Beyond CMOS Nanodevices 1 [2014-10-28] |
索书号 F/TN401/B184/1 ACKNOWLEDGMENTS xiii GENERAL INTRODUCTION xv PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1 PART 1. INTRODUCTION 3 CHAPTER 1. FABRICATION OF NANOWIRES 5 1.1. Introduction 5 1.2. Silicon nanowire fabrication with electron beam lithography 6 1.2.1. Key requirements 6 1.2.2. Why electron beam lithography? 7 1.2.3. Lithographic requirements 8 1.2.4. Tools, resist materials and development processes 9 1.2.5. Exposure strategies and proximity effect correction 10 1.2.6. Technology limitations and how to circumvent them 11 1.3. Silicon nanowire fabrication with sidewall transfer lithography 14 1.4. Si nanonet fabrication 17 1.4.1. Si NWs fabrication 18 1.4.2. Si nanonet assembling 19 1.4.3. Si nanonet morphology and properties 19 1.5. Acknowledgments 21 1.6. Bibliography 21 CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION 25 2.1. Introduction 25 2.2. Functionalization process 27 2.3. Functionalization of Si nanonets for DNA biosensing 28 2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence microscopy 31 2.3.2. Preliminary electrical characterizations of NW networks 33 2.4. Functionalization of SiC nanowire-based sensor for electrical DNA biosensing35 2.4.1. SiC nanowire-based sensor functionalization process 35 2.4.2. DNA electrical detection from SiC nanowire-based sensor 38 2.5. Acknowledgments 39 2.6. Bibliography 40 CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS 43 3.1. Introduction 43 3.1.1. Definitions 43 3.1.2. Main parameters affecting the sensitivity 47 3.2. Sensitivity and noise 47 3.3. Modeling the sensitivity of Si NW biosensors 50 3.3.1. Modeling the electrolyte 52 3.4. Sensitivity of random arrays of 1D nanostructures 54 3.4.1. Electrical characterization 55 3.4.2. Low-frequency noise characterization 56 3.4.3. Simulation of electron conduction in random networks of 1D nanostructures 56 3.4.4. Discussion 59 3.5. Conclusions 59 3.6. Acknowledgments 60 3.7. Bibliography 60 CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65 4.1. Introduction 65 4.2. Overview of CMOS process technology 66 4.3. Integration of silicon nanowire after BEOL 66 4.4. Integration of silicon nanowires in FEOL 67 4.5. Sensor architecture design 69 4.6. Conclusions 71 4.7. Bibliography 72 CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73 5.1. Introduction 73 5.2. Portable stand-alone system 74 5.3. Integrated impedimetric interface 76 5.4. Impedimetric measurements on nanowire sensors 78 5.5. Bibliography 81 PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83 PART 2. INTRODUCTION 85 CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89 6.1. Introduction 89 6.2. Piezoelectric energy transducer 91 6.2.1. Introduction 91 6.2.2. State-of-the-art devices and materials 92 6.2.3. MEMS piezoelectric vibration energy harvesting transducers 95 6.2.4. RMEMS prototypes characterization and discussions of experimental results 102 6.2.5. Near field characterization techniques 104 6.2.6. Dedicated electro-mechanical models for piezoelectric transducer design 106 6.3. Electromagnetic energy transducers 109 6.3.1. Introduction 109 6.3.2. State-of-the-art devices and materials 109 6.3.3. Vibration energy harvester exploiting both the piezoelectric and electromagnetic effect 122 6.3.4. Device design 125 6.4. Bibliography 128 CHAPTER 7. THERMAL ENERGY HARVESTING 135 7.1. Introduction 135 7.1.1. Basics of thermoelectric conversion 136 7.1.2. Strategies to increase ZT 137 7.1.3. Heavy-metal-free TE generation 140 7.1.4. Alternatives to TE harvesting for self-powered solid-state microsystems 141 7.2. Thermal transport at nanoscale 142 7.2.1. Brief review of nanoscale thermal conductivity 143 7.2.2. The effect of phonon confinement 146 7.2.3. Fabrication of ultrathin free-standing silicon membranes 153 7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and thermal conductivity 156 7.3. Porous silicon for thermal insulation on silicon wafers 172 7.3.1. Introduction 172 7.3.2. Thermal conductivity of nanostructured porous Si 172 7.3.3. Thermal isolation using thick porous Si layers 176 7.3.4. Thermoelectric generator using porous Si thermal isolation 177 7.4. Spin dependent thermoelectric effects 185 7.4.1. Physical principle and interest for thermal energy harvesting 186 7.4.2. Demonstration of the magnon drag effect 188 7.5. Composites of thermal shape memory alloy and piezoelectric materials 192 7.5.1. Introduction 192 7.5.2. Physical principle and interest for thermal energy harvesting 193 7.5.3. Novelty and realizations 194 7.5.4. Theoretical considerations 195 7.5.5. Examples of use 196 7.5.6. Summary of composite harvesting by the combination of SMA and piezoelectric materials 204 7.6. Conclusions 204 7.7. Bibliography 205 CHAPTER 8. NANOWIRE BASED SOLAR CELLS 221 8.1 Introduction 221 8.2. Design of NW-based solar cells 223 8.2.1. Geometrical optimization of NW-based solar cells by numerical simulations 223 8.2.2. TCAD simulation of NW-based solar cells 230 8.3. Fabrication and opto-electrical characterization of NW-based solar cells 235 8.3.1. Elaboration of NW-based solar cells 235 8.3.2. Opto-electrical characterization of NW-based solar cells 236 8.4 Conclusion 243 8.5 Acknowledgments 243 8.6 Bibliography 243 CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249 9.1. Introduction 249 9.2. Power management solutions for energy harvesting devices 251 9.2.1. Ultra-low voltage thermoelectric energy harvesting 251 9.2.2. Sub-1mW photovoltaic energy harvesting 256 9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260 9.2.4. DC/DC power management for future micro-generator 262 9.3. Sub-mW energy storage solutions 266 9.4. Conclusions 270 9.5. Bibliography 271 PART 3. ON-CHIP ELECTRONIC COOLING 277 CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS 279 10.1. Introduction and motivation 279 10.1.1. Existing cryogenic technology 280 10.2. Tunneling junctions as coolers 281 10.2.1. The NIS junction 281 10.2.2. Cooling power 284 10.2.3. Thermometry 286 10.2.4. The superconductor-insulator-normal metal-insulator-superconductor (SINIS) structure 287 10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler 288 10.3. Limitations to cooling 289 10.3.1. States within the superconductor gap 290 10.3.2. Joule heating 291 10.3.3. Series resistance 291 10.3.4. Quasi-particle-related heating 293 10.3.5. Andreev reflection 295 10.4. Heavy fermion-based coolers 297 10.5. Summary 299 10.6. Bibliography 300 CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303 11.1. Introduction to semiconductor-superconductor tunnel junction coolers 303 11.2. Silicon-based Schottky barrier junctions 304 11.3. Carrier-phonon coupling in strained silicon 308 11.3.1. Measurement of electron-phonon coupling constant 312 11.4. Strained silicon Schottky barrier mK coolers 315 11.5. Silicon mK coolers with an oxide barrier [GUN 13] 318 11.5.1. Reduction of sub-gap leakage 318 11.5.2. Effects of strain 319 11.6. The silicon cold electron bolometer 321 11.7. Integration of detector and electronics 324 11.8. Summary and future prospects 325 11.9. Acknowledgments 327 11.10 Bibliography 327 CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331 12.1. Introduction 331 12.2. Lattice cooling by physical nanostructuring 331 12.3. Porous Si membranes as cryogenic thermal isolation platforms 337 12.3.1. Porous Si micro-coldplates 337 12.3.2. Porous Si thermal conductivity 339 12.4. Crystalline membrane platforms 343 12.4.1. Strained germanium membranes 343 12.4.2. Thermal conductance measurements in Si and Ge membranes 350 12.4.3. Epitaxy-compatible thermal isolation platform 355 12.5. Summary of thermal conductance measurements 355 12.6. Acknowledgments. 358 12.7. Bibliography 358 PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS 365 PART 4. INTRODUCTION 367 CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE PASSIVE DEVICES 373 13.1. Introduction 373 13.2. High-resistivity Si substrate for RF 374 13.2.1. Losses along coplanar waveguide transmission lines 375 13.2.2. Crosstalk 380 13.2.3. Nonlinearities along CPW lines 384 13.3. Porous Si substrate technology 385 13.3.1. General properties of porous Si 386 13.3.2. Dielectric properties of porous Si 389 13.3.3. Broadband electrical characterization of CPWT Lines on porous Si 393 13.3.4. Inductors on porous Si397 13.3.5. Antennas on porous Si399 13.4. Comparison between HR Si and local porous Si substrate technologies 400 13.4.1. Comparison of similar CPW TLines on different substrates 400 13.4.2. Comparison of inductors on different RF substrates 404 13.5. Design of slow-wave CPWs and filters on porous silicon 404 13.5.1. Slow-wave CPW TLines on porous Si 405 13.5.2. Simulation results for S-CPW TLines 406 13.5.3. Stepped impedance low-pass filter on porous silicon 408 13.5.4. Simulation results for filters 409 13.6. Conclusion 411 13.7. Acknowledgments 411 13.8. Bibliography 411 CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS 419 14.1. Introduction 419 14.2. Metal nanowires (nanolines) 420 14.2.1. General properties 420 14.2.2. Transmission nanolines in microstrip configuration: characterization and modeling 426 14.2.3. Transmission nanolines in CPW configuration: fabrication, characterization and modeling 430 14.2.4. Characterization up to 200 GHz 440 14.3. Antennas 441 14.3.1. On-chip antennas: general 441 14.3.2. On-chip antenna characterization method 443 14.3.3. Measurement results 444 14.3.4. Discussion on antenna results 451 14.4. Conclusion 451 14.5. Acknowledgments 452 14.6. Bibliography 452 CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY APPLICATIONS 457 15.1. Introduction 457 15.2. Power conversion and integration 457 15.3. Materials and integration 459 15.4. Controlling the magnetic properties 463 15.5. Magnetic properties of nanocomposite materials 467 15.6. Magnetic properties of nanomodulated continuous films 470 15.7. Conclusion 478 15.8. Bibliography 479 LIST OF AUTHORS 485 INDEX 493 |