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Phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry
breaking classify all phases of matter

e Symm. breaking phases are classified by a pair Gy C Gy
Gy = symmetry group of the system (Hamiltonian).
Gy = symmetry group of the ground states.
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Can symm. breaking describe all phases of matter?

A spin-liquid theory of high 7. superconductors:

e 2d spin liquid — spin-charge separation:
electron — holon ® spinon,
holon: charge-1 spin-0 boson,
spinon: charge-0 spin-1/2 fermion.
Holon condensation — high T, superconductivity.

e But how to characterize a spin liquid?

One of the spin liquid is a state that break time reversal and parity

symmetry, but not spin rotation symmetry, with order parameter

51 : (52 X 53) §é 0.

— Chiral spin liquid Wen, Wilczek, Zee, PRB 39 11413 (89)
e But we discovered several different chiral spin states with

the same symmetry breaking.
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Topological orders in quantum Hall effect

m 2mh
n e?

e Quantum Hall states R,, = V, /I, =

von Klitzing Dorda Pepper, PRL 45 494 (1980)
Tsui Stormer Gossard, PRL 48 1559 (1982)

e FQH states have different
phases even when there is no
symm. and no symm. breaking.

e Chiral spin and FQH liquids must
contain a new kind of order,
named as topological order
Wen, PRB 40 7387 (89); [JMP 4 239 (90) Magnetic Field (T)
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How to characterize chiral-spin/FQH liquids?

e How to extract universal information (topological invariants) from
complicated many-body wave function W(xy, -, x320)

Put the gapped system on space with various topologies,
and measure the ground state degeneracy.

— The notion of topological order

g ground-state A—>finite gap
subspace¢ e—>0

GSD:1 GSD:Dl GSD:D2

Wen PRB 40 7387 (89)
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The ground state degeneracy is topological

-

e The ground state degeneracies are robust against
any local perturbations that can break any
symmetries. The ground state degeneracies
have nothing to do with symmetry.

— topological degeneracy Wen Niu PRB 41 9377 (90)
e The ground state degeneracies —
can only vary by. some large groundostate | A—>finite gap
changes of Hamiltonian subspace v & _ ()
— gap-closing phase transition.
E E
2 A
8 8
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What is the origin of topological degeneracy?

What is the origin and mechanism of topological order.

At first, the topological degeneracy was shown formally in using the
so called large gauge transformation in gauge field theory.
Wen PRB 40 7387 (

e In 2005, we discovered
topological entanglement entropy
Kitaev-Preskill hep-th/0510092
Levin-Wen cond-mat/0510613

and long range quantum entanglement
Chen-Gu-Wen arXiv:1004.3835

¢ Topological degeneracy (and topological
order) comes from long range entanglement
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Why entanglement and degeneracy are related?

e For a highly entangled many-body quantum systems:
knowing every parts still cannot determine the whole

- In other words, there are different 7
“wholes”, that their every local WHOLE = zPar‘ts *
parts are identical. *

- Local perturbations can only see the parts — those different
“wholes” (the whole quantum states) have the same energy.

e What is “whole”?, what is “part”?
whole = the whole wave function |V_) \TT%W =WV_(my, my)
or the whole density matrix
= V) (Vil, Py iy = Vi (e, mo) W (my, m))

pm1m27 mlm

part = entanglement density matrix: ppare = Tother part ( Pwhole)

1
= 0
rt-1
’p:ltml memz mj my B (8 1) ’ <Hpaft-1> = Tr(Hpart-lppart-l)

2
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Topological order as long range entanglement

e A local quantum system is described by (Vy, Hy)
Vn: a Hilbert space with a tensor structure Vy = ®,’.\’:1V,-
Hy: a local Hamiltonian acting on Vy:

Hy = 0;

A—>finite gap
Le—>0

ground—state
subspace

.

- A ground state is not a single state in Vy, but a subspace
Vernd space C V.

e A gapped quantum system (a concept for N — oo limit):
{(Vnys Hay )i (Vs Hi )i (Wi, Hi); -+ + with gapped spectrum.

- A gapped quantum system is not a single Hamiltonian, but a
sequence of Hamiltonian with larger and larger sizes.
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Local unitary trans. & gapped quantum phases

e Two gapped states, |W(0)) and |W(1)) (or more precisely, two
gapped ground state subspaces), are in the same phase iff they are
related through a local unitary (LU) evolution

(1)) = P(e o HED) jw(0))
where H(g) = >, Oi(g) and O;(g) are local hermitian operators.

e |W(0)) and |W(1)) can be smoothly connect without closing the
gap. Hastings-Wen cond-mat/0503554; Bravyi-Hastings-Michalakis arXiv:1001.0344

e LU evolution = local unitary transformation:

(1)) = P (e T % M) ) [w(0))
ground—state A >finite gap

:(He*ATH)w(o» >0
_ <H —ArHy —ATHB>|\U %%%%W

AT

where HA = Z,- A O,', HB = Zi B O,‘
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Local unitary trans. & gapped quantum phases

e The local unitary transformations define an equivalence relation:
Two gapped states related by a LU transition are in the same
phase.

A gapped quantum phase is, by definition, an equivalence
class of local unitary transformations Chen-Gu-Wen, arXiv:1004.3835.

A gapped quantum phase: WN
HvaHN27HN37HN4$”' 1 (\/ (\/ (\/
H;V17 HI/VQ’ H//V37 H;V4v e /\;1 llINv l|"N3 l|”N4

OK definition only for translation invariant systems.

Xiao-Gang Wen, MIT Microscopic models of topological order



Gapped quantum liquid phase

e A gapped quantum liquid phase: U dU . el
Hva HN27 HN37 HN47 T TNI‘_'WNZHWNSH“ENAt
Hll\ll’ H//V2’ H;V3’ H//V4’ Y L;U L’U L’U L,U
N1 =5sNg, s~ 2 Yy, Wy, Wy, Wi,

o WUy, 9 Wy ® \Ilj\’,’:ﬂf,\,’_. Generalized local unitary (gLU) trans.
Whel’e Ny N /]

VY=o 1) ERIE
Col 8 saaC)
AKX

e gl U transformations allow us to take the thermal dynamical limit
(Nx — oo limit) without translation symmetry.
Zeng-Wen, arXiv:1406.5090

e Gapped quantum liquid phase = Topological order
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Examples and beyond gapped quantum liquid

Different gapped quantum systems are described by
different sequences of Hamiltonians {H), } :

e Trivial gapped quantum liquid: |Wgound) = |-+ 7171 ---) from
Htr|V|a| ||qU|d ZNk Z

e Transverse Ising model in symmetry breaking phase
— a gaped quantum liquid. Ground state degeneracy GSD = 2

e Stacking 2+1D topologically ordered states with ground state
degeneracy m # 1 on torus — a gapped quantum state, but not a
gapped quantum liquid.

- \
- Layered topological order: e — %
— ] \
Ground state degeneracy can be e ———
GSD — m m m2 periodic 1-twisted 2—-twisted
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Fracton state — commuting operator models

e Chamon's quantum-glass model on 3D FCC lattice:
Chamon, cond-mat/0404182

H=- Zcubes Ol + OH—%X—&-%y + OI+%X+%Z + Ol—l—%y-‘,-%z

e Haah's cubic code on 3D cubic lattice:
Haah, arXiv:1101.1962

1z zI IX X1
zI ZZ/ XI/ II/
H - (G + G )7 el 12 P o S Ix
cubes ry ZI/ e i
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More exotic long-range entanglement

e Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14

LU‘\UNk+1> - |w’Vk> ® |\Upr0d> N Ny N1
— gauge theory FRFRFTTN]

— quantum field theory 5? ﬁ*i*ii 'i}>

— MERA rep. Vidal 06

® S-source.: LU‘Wi\I:,jJ = ‘WN;(> ® ‘WN;(> ® ‘\Uprod> Swingle-McGreevy 14

- Quantum liquid has s = 1 N 2N, Nisr

- 3D layered FQH: s = 2 $ 3 peds

- d41D Fermi liquid:s = % 5? ﬁ‘?i*ii%

- no MERA rep.

e Haah's cubic code: LUV, ) = [Wy,) @ [W32) @ [WPed)

- no MERA rep. N 2N, Nie1

- No quantum field ‘
theory description %.5?
Many-body entanglement
goes beyond quantum field theory.
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Topo. order = Pattern of long range entanglement
Chen-Gu-Wen arXiv:1004.3835

For gapped systems with no symmetry:
e According to Landau theory, no symm. to break
— all systems belong to one trivial phase

e Thinking about entanglement: there are
- long range entangled (LRE) states — many phases

- short range entangled (SRE) states — one phase

|
ILRE)  Eihilproduct state) = [SRE) &1 wptaion
LRE 1 _LRE2
local unitary local unitary local unitary N\
transformation transformation transformation \ ) phase
LRE  SRE SRE SRE LRE1 LRE2 ~ transition
state  product product product SRE
state state state
e All SRE states belong to the same trivial phase g,

e LRE states can belong to many different phases: different
patterns of long-range entanglements defined by LU trans.
= different topological orders wen, Phys. Rev. B40, 7387 (1989
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Gapped liquid phase with symm: SET/SPT phase

For gapped systems with a symmetry H = UgHU;7 geG
e LRE symmetric states — many different phases

e SRE symmetric states — one phase (no symm. breaking)
We may call them symm. protected trivial (SPT) phase

Gu Wen arXiv:0903.1069

phase

0
8 O 8Asy-LrE1 ‘SY—LREZ orolosical onden transition
opological order topological order (0(];);)00)31(.(1 orders %
LRE 1 ‘ LRE 2 SBLIRE | ISB—LREZ preserve
symmetry
SB-SRE1 | SB-SRE2 ;yrmoumeﬁ::e;’k'"g
SRE group theory SPT1  SPT2
SY-SRE 1 SY-SRE2  SPT phases
(227)

g] g] no symmetry
e SPT phases = equivalent class of symmetric LU trans.

e Examples: 1D spin-1 gapped phase Haldane 83; Gu-Wen 09,
2D TI Kane-Mele 05; Bernevig-Zhang 06, 3D TI Moore-Balents 07; Fu-Kane-Mele 07
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phase

0
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LRE 1 ‘ LRE 2 SBLIRE | ISB—LREZ preserve
symmetry
SB-SRE1 | SB-SRE2 ;yrmoumeﬁ::e;’k'"g
SRE group theory SPT1  SPT2
SY-SRE 1 SY-SRE2  SPT phases
(227)

g] g] no symmetry
e SPT phases = equivalent class of symmetric LU trans.

e Examples: 1D spin-1 gapped phase Haldane 83; Gu-Wen 09,
2D TI Kane-Mele 05; Bernevig-Zhang 06, 3D TI Moore-Balents 07; Fu-Kane-Mele 07

croscopic models of topological order



Gapped liquid phase with symm: SET/SPT phase
e

For gapped systems with a symmetry H = UgHU;7 geG
e LRE symmetric states — many different phases \"g;

e SRE symmetric states — many different phases -
We may call them symm. protected trivial (SPT) phase

or symm. protected topological (SPT) phase
Gu Wen arXiv:0903.1069
8 N 8Asy-LrE1 ‘SY—LREZ L ) ) E—};:i?[ion
topological order I— topological order to{p;:iuglcal orders x
LRE ‘ LRE2 SB-LRE 1 ‘SB—LREZ )

N

preserve
symmetry

symmetry breaking

SB-SRE 1 SB-SRE 2
(group theory)

SPT 1 SPT 2

SRE
SY-SRE 1 SY-SRE2  SPT phases

777)
g] g] no symmetry

e SPT phases = equivalent class of symmetric LU trans.

e Examples: 1D spin-1 gapped phase Haldane 83; Gu-Wen 09,
2D TI Kane-Mele 05; Bernevig-Zhang 06, 3D TI Moore-Balents 07; Fu-Kane-Mele 07
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Example of Topologically ordered states

To make topological order, we need to sum over many different
product states, but we should not sum over everything.

Zall spin config. ‘ T‘L > - ’ - > \/\
p ) OO %/ z/®

e sum over a subset of spin config.: ®

® @@@
07, = 5 [95) X,va

N X<

|¢D5 >_ Z( )# of loops

loops

) <>
B 9

e Can the above wavefunction
be the ground states of
local Hamiltonians?

Xiao-Gang Wen, MIT
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Local rule — global wave function

A A
H 5050 $5:5h
CPOOO® zDs 3Ds

e Local rules of a string liquid:
(1) Dance while holding hands (no open ends)

@) 0 () = 0 (1), 00 (I W) = 0, (HW)
— Global wave function @, <§5§) =1

e Local rules of another string liquid:
(1) Dance while holding hands (no open ends)

2) &s (W) = 0 (), 0 (B> W) = —0, (BW)
— Global wave function ®, <f§&) = (—)# of loops

e Two topo. orders: Z, topo. order Read-Sachdev PRL 66, 1773 (91), Wen
PRB 44, 2664 (91), Moessner-Sondhi PRL 86 1881 (01) and double-semion
topo. order Freedman etal cond-mat 0307511, Levin-Wen cond-mat/0404617
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Toric-code model — Z, topological order

Local rule d)str( 1) —q>str< ;) :CDS”( > < ) —q>5t,< o ) —0

— local Hamiltonian P&, = 0.
e The Hamiltonian to enforce the local rules: Kitaev quant-ph/9707021

legs of 1 edges of p
e The Hamiltonian is a sum of commuting operators

[Fo, Fol =0, [Qr, Q] =0, [Fp, Q1 =0. F2=Q} =1
e Ground state [Wyng): Fp|Wgrna) = Qi[Wgrma) = [Vgrna)
— (1 — Q,)(ngd = (1 — Fp)cbgrnd =0.
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Many-body energy spectrum of toric code model

e The U, @, enforce closed-string ground state.
e [, adds a small loop and generates a permutation among the loop

Cx (08
§>9<> — Ground states on torus [Wg ;) =5 [ Q<>

e There are four degenerate ground states oo = ee, eo, oe, 0o
@ € €
DD % [0} 140
® el 0] -
OGPODOD® N[O ps
o

(o)

states

o

e On genus g surface, ground state degeneracy D, = 4%

e Quasiparticle excitation energy gap (from thermal activation)
AS =2U, Ag =2g
Spectrum energy gap (from neutron scattering, )
A =4U, AF =4g  (Double the quasiparticle gap)

Microscopic models of topological order
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String operators that create topological excitations

e Toric code model: A
/:/:_UZ/QI_gZpr
(?l = Hlegs of I Zj,
FP = Hedges of p Xi o
e Topological excitations: flipping Q. Fp
e-type: Q, =1 @, =1
m-type: /-ﬁp =1— /:_p =—-1
e Type-e string operator W, =[], Xi
e Type-m string operator W, =[] .« Zi
e Type-f string op. Wy = Hsmng Xi H,egs Z;
o [H, Woor] = [H, W,',?‘ip] = 0. — Closed strings cost no energy
o [Q, WePen] £ 0 flip Q — —Qy, [Fp, WP # 0 flip Fp — —Fp
—» open-string create a pair of topo. excitations at their ends.

e Fusion algebra of string operators — fusion of topo. excitations:
W? = W2 = W? = W.W,,W; = 1 when strings are parallel

Xiao-Gang Wen, MIT Microscopic models of topological order
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String operators that create topological excitations

e Toric code moAdeI: A
'l:/: —UX,Q _gZpr
(?l = Hlegs of | Zi'
FP = Hedges of p Xi A
e Topological excitations: flipping Q. Fp
e-type: Q, =1 @, =1
m-type: /-ﬁp =1— /:_p =—-1
e Type-e string operator W, = Hsmng Xi — etype. e®e=1
e Type-m string operator W,, =[] Zi — m-type. m@m=1

string® <!

o Type-f string op. Wr = [[ i, Xi [ e £ — f-type =e@m

o [H, Wleor] = [H, W°°P] = 0. — Closed strings cost no energy

o [Qr, WoPer] £ 0 flip @y — —Qy, [F,, WEPe] £ 0 flip F, — —F,
—» open-string create a pair of topo. excitations at their ends.

e Fusion algebra of string operators — fusion of topo. excitations:
W? = W2 = W? = W.W,,W; = 1 when strings are parallel
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Statistics of ends of strings

e The statistics is determined by particle hopping operators
Levin-Wen cond-mat/0302460:

Toalebtha b

C
Tl a d
U 1 5

d
&t ba X ¢
b

Tbalchlbd d

e An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string operator determine the statistics.
e For type-e string: tp, = X1, top, = X3, thg = X5
We find tygtoptps = tpatenthd
The ends of type-e string are bosons
e For type-f strings: tp, = X1, to, = X324, tpg = XoZ3
We find tpgtoptrs = —thatentpa
The ends of type-f strings are fermions

Xiao-Gang Wen, MIT Microscopic models of topological order



Topological excitations and higher symmetry

e Point-like topological excitations are created by string operators.
String-like topo. excitations are created by membrane operators.
The interior of string/membrane operators commute with all the
local terms in the Hamiltonian and does not create any energy.
The boundary of string/membrane operators does not commute
the Hamiltonian, and create energy that corresponds to the
topological excitation.

The existence of topological excitations implies higher
symmetry — logical operators in topo. quantum computation

e The toric code model has a higher symmetry:
[H, WP°P] = [H, W°°P] =0,  for any closed loops
The symmetry, whose transformations are generated by all closed

co-dimension-1 extended operators, is called a 1-symmetry.
Nussinov Ortiz, arXiv:cond-mat/0702377 (called gauge-like symmetry)
Gaiotto Kapustin Seiberg Willett, arXiv:1412.5148 (called higher-form symmetry)

Xiao-Gang Wen, MIT Microscopic models of topological order



Topological ground state degeneracy and

spontaneous higher symmetry breaking

e When strings cross, W, W,, = (—)# o <oss W/, W, e
— 48 degeneracy on genus g surface e -1
— Topological degneracy
Degeneracy remain exact for any -1 "
perturbations localized in a finite region. m

e The ground state degeneracy remain exact even if we explicitely

break the 1-symmetry on lattice.
e

This hints a general result: Pace Wen arXiv:2301xxxx
Emergent higher symmetry is always exact, while
emergent 0-symmetry is not exact.
- Breaking of emergent O-symmetry ~ E7 + L~"|, ., — non-zero.
- Breaking of emergent higher symmetry ~ e 2|, ,., — 0.

This makes higher symmetry useful in condensed matter.
Foerster Nielsen Ninomiya, Phys. Lett. B 94, 135 (80); Hastings Wen cond-mat/0503554
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Topological ground state degeneracy and

spontaneous higher symmetry breaking

e The ground states of toric code model spontaneously break the
1-symmetry.
Def: A (higher/algebraic/non-invertible) symmetry is
spontaneously broken if the symmetry transformations is not o id
in the ground state subspace, for some closed spaces.

A (higher/algebraic/non-invertible) symmetry is not spontaneously
broken if the ground state not degenerate for all closed spaces.

- In the presence of the 1-symmetry, the ground state degeneracy
(and topological order) can be viewed as coming from the
spontaneous breaking of the 1-symmetry.

- In the absence of the 1-symmetry, the ground state degeneracy

(and topological order) can be viewed as coming from the
spontaneous breaking of the exact emergent 1-symmetry.

Xiao-Gang Wen, MIT Microscopic models of topological order



A closer look at higher symmetry and anomaly

e The toric model has two 1-symmetries Z$"° and Z{""™, generated
by two loop operators W!°oP  /loop,

But the combined symmetry is not Z$"¢ x Z{V"™.

It is Zgl)e V Zgl)m — a twisted product, because the symmetry

transformations of the two symmetries do not commute:

Wloop Wloop — (_)# of cross Wloop Wloop (_)# of cross can be —1 only
e m m e

when the loops are non-contracible (non-trivial topology).

e This new relation between the two symmetry is called a mixed
anomaly. The anomaly prevents the system to have a gap
symmetric ground state (/e to have a non-degenerate
gapped ground state on all closed spaces).

In presence of anomaly:
Gapped ground state must spontaneously break some symmetry

The symmetric state must be gapless

Xiao-Gang Wen, MIT Microscopic models of topological order



Anomaly through patch symmetry operator

e A p-symmetry is generated by operators on co-dimension-p closed
manifolds. A patch symmetry operator is given by part of
co-dimension-p closed manifolds — co-dimension-p open manifolds.

- Example: In 2-dim space, a 1-symmetry is generated by closed
string operators. lts patch symmetry operators are open string
operators.

e For the two 1-symmetries Z “and Z )™ in toric N _ d
model, their patch symmetry operators are given S

by open-string operators [/°Pen-string /) open-string

- The boundaries of the patch symmetry operators correspond to the
e-particle and the m-particle in the toric model.

- e-particle and the m-particle have a non-trivial mutual statistics 7
between them: Weopen—string W:qpen—string _ _lepen—string Weopen—string if
strings cross Wen arXiv:1812.02517
— mixed anomaly between two 1-symmetries Z( ) and Z (L)m

Xiao-Gang Wen, MIT Microscopic models of topological order



Types of higher symmetries

e The boundaries of patch symmetry operators correspond to
topological excitations. If those topological excitations have
trivial mutual statistics and trivial self statistics, then the
symmetries are anomaly-free.

- The mutual statistics ¢ can be calculated from the algebra of patch

N N\
symmetry operators /\ = e“’/

- The self statistics ¢ can also be calculated from the algebra of

C
thdtchtha b

c
tel a d
o 7
d
Tha x ¢

tpatept
ba(bbda d

patch symmetry operators
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Types of higher symmetries

e The boundaries of patch symmetry operators correspond to
topological excitations. If those topological excitations have
quantum dimension-1 (je are Abelian anyons), then the
symmetries are higher-form symmetries described by higher
group. Nussinov Ortiz, arXiv:cond-mat/0702377 (called gauge-like symmetry)

Gaiotto Kapustin Seiberg Willett, arXiv:1412.5148 (called higher-form symmetry)

e The boundaries of patch symmetry operators correspond to
topological excitations. If those topological excitations have
quantum dimension larger then 1 (je are non-Abelian
anyons), then the symmetries are algebraic higher
symmetries (also called non-invertible higher symmetries)
beyond higher group. What mathematical theory describes
algebraic higher symmetries?

Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178

Frohlich Fuchs Runkel Schweigert arXiv:hep-th/0607247; Chang Lin Shao Wang Yin
arXiv:1802.04445; Thorngren Wang arXiv:1912.02817 (for 1+1D algebraic 0-symmetries)
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Non-Abelian anyon and

non-Abelian topolocal order

e Topological excitations has internal degrees of freedom,
characterized by quantum dimension d.

- d =1 — Abelian anyon

- d > 1 — Non-Abelian anyon (or d ¢ 7)

Example: spin—% has 2 degrees of freedom (the spin quantum
states form a 2-dim vector space). Quantum dimension for spin-2
isd=2.

e The quantum dimension d for a non-Abelian anyon may not be an
integer.

Example: A particle carrying a Majorana zero mode is a

non-Abelian anyon — Ising anyon. It has /2 degrees of freedom
1

(the internal states of n Ising anyons form a 1(1/2)"-dim vector

space). Quantum dimension for Ising anyon is d = /2.

Xiao-Gang Wen, MIT Microscopic models of topological order



241D Abelian topological order

e Laughlin filling fraction v = 1/m state of electrons:

1 2
m_ —z zj :
Wgrnd:”(zi_zj) e a2l z = X + 1y

i<j

e A charge-1 electron (a hole) excitation at &:
Ve =[[€ - 2)"[[(z — z)me s >lr

i i<j

e A charge-1 quasiparticle excitation at ¢, which also carry 27-flux:

m_ —%3|z?
Ve =[[(€-2)[[(z—z)me s>
i i<j

e As a charge-flux bound state, it carries a fraction statistics L)

1 1 1
Q:Chargexfluxxiturn:;><27T><§:E. %
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Most general 241D Abelian topological order

e K-matrix wave function of x-layer 2d electrons (x = dim(K)):

Wy = H (Zil i ZjI)K,, H (Zil o ZJ'J)K,JC%E|Z,!|2

i<j =1,k i,l<J
where K is a symmetric integer matrix, with even diagonals
(assuming electrons are bosons). Blok Wen Phys. Rev. B, 42 8145 (90)

e An excitation at ¢ is labeled by an integer vector [:

Ve = H (E—z) H(Z,-' —zf)f H (z/ - Z,J)Kue*%Z\z/l2

il=1,- K i<j,l ij,l<J
e Two quasi-particles differ by a bosonic electron are equivalent:
| ~ I+ Kj o (column vectors of K). Number of inequivalent
quasi-particles = | det(K)| )

[ ]
e Self and mutual statistics N
0, :WITK_ll, gﬁ[’// =27l"K71I. H

e = edge modes. Signs of K-eigenvalues — left/right moving modes.
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An 8-layer quantum Hall state with no anyons

e An even-diagonal symmetric K-matrix with det(K) =1

2

2
|
o o ooo

0

1

oo oo kRN

0

0

O o0 oo kRN

oo krNKEOO

H O RN RO OO

0

O~ NROOO

oON K+~ OOO OO

N OO RO OO o

It gives rise to an Eg topological order which has no anyons (no

topological excitations).

Such a topological order is non-trivial since its has 8 right moving
edge modes (more precisely, # of right modes — # of left modes
= 8). So the Eg topological order is almost trivial.

IQH state with 2 filled Landau level

described by K = ((1) 2) has
2 right moving edge modes.

bulk excitation

Xcitation

Xiao-Gang Wen, MIT
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First examples of non-Abelian topo. order (1991)

Let xm({z}) be the many-body wavefunction of m filled Landau
levels, where z; = x; + iy;. x1=[](z — zj)e*%Z\Zi\zj v=1

o SU(m)k state via slave-particle Wen PRL 66 802 (1991)
Vsua, = (x2), v =2/3;  Vsy, = xalx2)? v =1/2;

— Effective SU(2),, SU(3), Chern-Simons theory
— non-abelian statistics

e Pfaffien state via CFT correlation Moore-Read NPB 360 362 (1991)
1
]H Pe s ZlH Ly =12

— Conformal block — non-abelian statistics.
e The Vg0, and Wpy, states have Ising anyons, with d = V2

e The Vg3, state has Fibonacci anyons, with d = %

wPfa A[

21—2223—24
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Non-Abelian statistics in 13

Topo. degeneracy even when all the quasiparticles are fixed.
e The ground state x1(x2)? = x1X2X2 is non-degenerateon S52.

e Degeneracy Dy, of 4 trapped quasiparticles at xi, X2, X3, Xa:

many different wave functions:
X1X2 . X3Xa X1X3 ., X2Xa

X1X5 °Xo ZX1X5 X5
OO— — 0O 4 O—0— —O0—C

e The above represent a topological degeneracy Dy, = 2, since
locally the two wave functions ;x5 X2 and y1x2X5" are identical.

Xiao-Gang Wen, MIT Microscopic models of topological order



How to realize non-Abelian FQH states

e IQH = filled Landau levels -
e FQH = partially filled Landau levels L eeevesssees®

Xcitation

e We can realize (non-)Abelian FQH '0 — - R

V,_1/3 = (x1)° partially filled LL, 3" order zero in wave function
W, _2/5 = (x1)?X2 when the first 2 LLs are degenerate

Wsy(2), = X1(x2)? when the first 3 LLs are degenerate

Vsy(s), = (x2)® when the first 4 LLs are degenerate

e Usy(2), = x1(x2)? contains a neutral fermionic quasiparticle ).

Now we consider Wsy2), = x1(x2)? state with many neutral
fermionic quasiparticles ¢/, and let the neutral fermionic
quasiparticles to form different IQH states, then we can obtain
Wpfa, as well as \UPH_Pfa, \Um, WW, etc.

e Upy ps, is realized in the 2nd LL in experiment.
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How to detect non-Abelian FQH states

e The central charge ¢ describes the low energy many-body density
2
of states, ie the low temperature specific heat C = c¢ k6T

vh

e Thermal Hall conductivity L m ‘s R N
T e domendent 3 L.
r = vC = cg =~ is independent kBT\ ‘ /kBT2
of any material properties.
e Several non-Abelian states:
Wl — \ lc = n| Abelian
Wi |c = 2| Abelian
x1(x2)?|c = 2|non-Abelian
11 — WFQH _ 3 -
A[zl—ZQ el 1Tz — z) = \U(pHP) ¢ = 5|non-Abelian
(Ff?fip) c= % non-Abelian
W(Siiip) c= % non-Abelian

e All Abelian FQH have central charge ¢ € 7 wen-Zee 92

Xiao-Gang Wen, MIT Microscopic models of topological order



Experimental measurement of central charge

Banerjee, Heiblum, etc arxiv:1710.00492 found
c = 2.56 18mK, ¢ = 2.64 15mK, ¢ = 2.76 12mK,
for the v = 5/2 state in GaAs-AlGaAs hetero structure.

Xiao-Gang Wen, MIT
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