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to the memory of Prof. Tito Arecchi. . .



vi Nonlinear Dynamics of LASER

“It was strange, in a way, because there were no ideas involved

in the laser that weren’t already known by somebody 25 years

before lasers were discovered. The ideas were all there; just,

nobody put it together.”

— Charles H. Townes



In memoriam — Tito Arecchi
(11 December 1933–15 February 2021)

Very recently a commemorative paper on Prof. Tito Arecchi appeared in

Chaos [Meucci & Kurths (2022)]. The authors decided to reproduce it here

entirely to honor his memory.

The nonlinear science community experienced a painful loss with the

sudden death of our colleague and friend, Professor Tito Arecchi. Professor

Arecchi was one of the 12 founding editors of the board ofChaos and later he

became an Honorary Editor. He was very active and stimulating in forming

and evolving this journal, resulting in such a serious and influential journal

for Nonlinear Sciences and manifold applications. Tito Arecchi was a pio-

neer of nonlinear optics and laser physics as well as in nonlinear dynamics.

His contributions have been so significant as to constitute milestones in the

field of photon statistics and in that of nonlinear dynamics, not limited to

lasers. In relation, we would like to emphasize the year 1965 as emblematic

for his brilliant personality. He published two fundamental contributions:

In the first one [Arecchi (1965)], he presented the first experimental evidence

of the statistical difference between a laser and a random field obtained by

photon statistics. In the second one, in collaboration with his first student

Rodolfo Bonifacio, they derived the nonlinear equations which describe an

electromagnetic pulse interacting self-consistently with an ensemble of two-

level atoms under the assumption of a homogeneously broadened electric-

dipole transition with two Bloch relaxation times T2 (γ⊥ = 1/T2) and T1

(γ‖ = 1/T1), and of a linear broadband loss mechanism [Arecchi & Bonifa-

cio (1965)]. These equations are usually referred to as the Maxwell–Bloch

equations but they should be referred to as the Arecchi–Bonifacio equations

[McNeil (2015)]. In these equations, the Slowly Varying Envelope Approx-

imation (SVEA) for the electromagnetic pulse was introduced for the first

time. The Arecchi–Bonifacio equations are universally used to describe the
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viii Nonlinear Dynamics of LASER

dynamics of a single mode laser. Nowadays, it is well known that they are

formally equivalent to those of the Lorenz model [Lorenz (1963)] and there-

fore, chaotic behavior is inherent in a laser [Haken (1975)]. However, we

had to wait until 1982 to give an experimental confirmation using a single

mode CO2 laser with sinusoidal modulation of the cavity losses [Arecchi et

al. (1982)]. This is due to the fact that in a large class of lasers, the so-called

class B lasers, the macroscopic polarization evolves on fast time scales com-

pared with the two other dynamical variables, i.e. the laser intensity, which

is proportional to the photon number of the laser field mode, and the pop-

ulation inversion (γ⊥ > k > γ‖), where k is the decay rate for the electric

field. Few years later, Lorenz type chaos has been demonstrated for class

C lasers, where the three decay rates are of the same order of magnitude

[Weiss & Brock (1986)]. The above classification of lasers is another crucial

contribution by Tito Arecchi [Arecchi et al. (1984)]. However, linking the

scientific activities of Tito only to these aspects would be limiting. Tito has

developed, with several colleagues, other important lines of research in the

fields of complex systems, both from a theoretical and experimental point

of view; among which we recall the optical vortices and their statistics,

control and synchronization of chaos, multistability and even applications

to neuroscience [Arecchi & Kurths (2009)]. It is important to emphasize

that Riccardo Meucci et al. have recently revisited the rather simple laser

model used in 1982 [Arecchi et al. (1982)]. They have highlighted new as-

pects on the relationship between multistability and dissipativity as well as

its control [Meucci et al. (2022)]. Generalized multistability, another pio-

neering contribution by Tito, has become a focusing issue in many different

fields as the numerous papers published in Chaos demonstrate [Feudel et al.

(2018)]. In this latest period, when the pandemic has profoundly changed

our lives, Tito’s enthusiasm and passion for physics have not diminished,

until few days before his departure, and no one who has interacted with

him can forget it. This is the greatest legacy of him to science. He will be

greatly missed by his many colleagues, former students and friends.
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Chapter 1

Laser Physics and Laser Instabilities

The purpose of this chapter is to provide an introduction to the field of laser

theory and laser instabilities. We briefly derive and discuss one of the most

popular theoretical models: that for the homogeneously broadened single

mode, laser. For a continuous wave (c.w.) pumped laser it seems natural

to expect a steady output, and in fact, many lasers can be operated in a

very stable way. However, for specific conditions and for certain types of

lasers, the output may vary in time. In this case, we say that the laser has

developed an instability. Instabilities induced by the nonlinearity of the

interaction between radiation and matter have been carefully investigated

both theoretically and experimentally.

1.1 Introduction

A laser consists of a dielectric material confined between, two reflecting

mirrors acting as an optical cavity. The energy spectrum of the dielectric

must contain two atomic or molecular energy levels whose populations are

inverted with respect to the equilibrium condition. Different mechanisms

may be responsible for achieving population inversion in the medium, such

as an electrical discharge, optical pumping or chemical energy. When pop-

ulation inversion is established, atoms in higher level emit photons corre-

sponding to energy difference between the two levels, by spontaneous and

stimulated emission. The photons are reflected between the mirrors many

times, thus stimulating the intense electromagnetic field characteristic for

the laser. It is important to consider that before the laser process starts,

the excited atoms in the laser resonator emit light spontaneously into all

possible directions. On the other hand, an optical resonator such as a

Fabry–Pérot interferometer, strongly discriminates among the possible fre-
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2 Nonlinear Dynamics of LASER

quencies giving preference to “modes” which have relatively long lifetimes.

In other terms, only those light waves (modes) which can stay long enough

in the resonator cause significant stimulated emission of the atoms. If we

limit our considerations to the axial modes we observe that a resonator can

support only modes for which nλ/2 = L where λ is the wavelength in the

medium, L is the distance between the mirrors and n is an integer number.

The axial modes have frequency separation Δf = c/2L.

1.2 Semiclassical theory

In this section, the semiclassical laser theory is derived following the ap-

proaches of Lamb and Haken [Sargent et al. (1974); Haken (1985)]. In the

semiclassical. framework, the light field is treated as a classical variable ne-

glecting its operator character while atoms are treated using the formalism

of quantum mechanics. We restrict our investigation to the case where the

active material consists of two level atoms with a homogeneously broadened

line. Usually in laser theory we consider the scalar transverse electric field

strength E(z, t) and we expand it into spatial modes uλ(z) determined by

the resonator. For a Fabry–Pérot resonator the electric field can then be

represented as a superposition of standing waves uλ(z):

E (z, t) =
∑
λ

Eλ (z)uλ (z) (1.1)

where uλ (z) = sinκλ, which can be written as:

E (z, t) =

√
h̄ω0

2ε0V

[
b(t)e−i(ω0t−κz) + b∗(t)ei(ω0t−κz)

]

Thus we have:

|E (z, t)|2 =
h̄ω0

2ε0V
|b(t)|2

The mode amplitudes Eλ(t) are decomposed into their positive and

negative frequency parts as follows:

Eλ (t) = E
(+)
λ e−iωλt + E

(−)
λ e−iωλt (1.2)

where ωλ is the frequency of the mode λ of the empty cavity. In our

treatment we introduce the following normalization for E(±):
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Laser Physics and Laser Instabilities 3

E
(−)
λ =

√
h̄ωλ

2ε0V
b∗(t)

E
(+)
λ =

√
h̄ωλ

2ε0V
b(t)

(1.3)

where V is the volume of the laser cavity. From a simple energy calculation

we can show that b∗b is equal to the number of photons in the cavity. The

energy density W of the laser radiation, in the case of single mode laser, is

W =
1

2
ε0 |E (z, t)|2 + 1

2
μ0 |H (z, t)|2 = ε0 |E (z, t)|2

= 2ε0

∣∣∣E(±)
λ (t)

∣∣∣2 =
h̄ωλ

V
b∗λbλ

(1.4)

Integrating over the mode volume V and dividing by the energy of

the single photon h̄ωλ, we observe that using our normalization b∗λbλ rep-

resents the semiclassical photon number in the mode λ. The amplitudes

E
(+)
λ (t)(b(t)) and E

(−)
λ (t) (b∗(t)) are time dependent complex functions but

with a time dependence much slower than that of their accompanying ex-

ponential functions.

In the fully quantum-mechanical treatment we have the correspondence

b∗λ (t) → b+λ bλ (t) → bλ (1.5)

where b+ and b are the creation and annihilation operators, respectively, of

photons in the field mode λ. The operators band b+ obey the commutation

relation [b, b+] = 1.

We assume that the field-matter coupling interaction can be described

in the electric dipole moment approximation. The interaction Hamiltonian

can be given by

Hint = −ex̂.E (z, t) , (1.6)

where we consider the electric field E(z, t) propagating along the laser axis

z and polarized perpendicular to it in a direction we will call x. ex is electric

dipole displaced by x. The total Hamiltonian is given by

H = H0 − ex̂.E (z, t) , (1.7)
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4 Nonlinear Dynamics of LASER

where H0 is the unperturbed Hamiltonian. The density operator, which

characterizes the statistical behavior of atom-field system evolves in time

following the equation

ρ̇(μ) = − i

h̄

[
H, ρ(μ)

]
(1.8)

As we consider only a two-level system, the density operator can be

expanded in terms of the eigenstates |1〉 and |2〉 of the Hamiltonian operator

H0.

H0|1〉 = E1|1〉
H0|2〉 = E2|1〉 E2 − E1 = h̄ω0

〈i|j〉 = δij

(1.9)

We assume that there is no permanent dipole moment in the ground

and excited states 〈1|x̂|1〉 = 〈2|x̂|2〉 = 0. The phases of the eigenstates |1〉
and |2〉 are also chosen so that 〈1|ex̂|2〉 ≡ ex12 ≡ 〈2|ex̂|1〉 is a real number.

With these assumptions the evolution equation for the elements ρij are:

ρ̇
(μ)
21 = −iω0ρ

(μ)
21 + i

( e

h̄

)
x12E (z, t)

(
ρ
(μ)
22 − ρ

(μ)
11

)
− γ⊥ρ

(μ)
21 (1.10)

ρ̇
(μ)
22 − ρ̇

(μ)
11 = i

2

h̄
ex12E (z, t)

(
ρ
(μ)
12 − ρ

(μ)
21

)
+ γ‖

[
d0 −

(
ρ
(μ)
22 − ρ

(μ)
11

)]
(1.11)

The last two tenus in the above equations are added in a phenomenolog-

ical way in order to describe damping processes of the off-diagonal elements

(−γ⊥ρ
(μ)
21 ) and of the diagonal elements (−γ‖(ρ

(μ)
22 −ρ

(μ)
11 )) due to such pro-

cesses being spontaneous emission or collisions and in order to describe the

pumping mechanism (γ‖d0) that creates the inversion. The damping rate

γ⊥ is often referred to as the dipole’s dephasing rate in order to distinguish

it from an energy decay rate. In a gas medium, elastic collisions have the

effect of interrupting the phase of the electron’s oscillations. To account for

inelastic collisions and spontaneous emission whose effect is to depopulate

the energy levels 2 and 1 into other unspecified energy levels of the atom,

we introduce the relaxation rate γ‖. As an exercise one can show that γ⊥
is related to the width (Half Width at Half Maximum: H.W.H.M.) of the

Lorentzian lineshape function which describes the gain of a homogeneously

broadened atomic or molecular transition. A Lorentzian lineshape function

L(ν) =
δν0/π

(ν − ν0)2 + δ‘ν20
is completely defined by assigning δν0 =

γ⊥
2π

which
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Laser Physics and Laser Instabilities 5

is the half width at half maximum and the resonant frequency ν0. Damping

constants γ‖ and γ⊥ have the some meaning as the inverse of the relaxation

times T1 andT2 of the Bloch equations of the spin resonance theory. Using

the field expansion (1.1) and the rotating wave approximation (R.W.A.),

Eq. (1.10) becomes

ρ̇
(μ)
21 = −iω0ρ

(μ)
21 − iex21

h̄
d(μ)

∑
λ

E+
λ (t)e−iωλtuλ(zμ)− γ⊥ρ

(μ)
21 (1.12)

Application of R.W.A. means that we retain only those terms evolving in

time at about e−iωλt, the temporal evolution due to the first term ρ21(t) ∝
e−iω0t. This approximation is justified since the laser process is important

only for mode frequencies ωλ close to the atomic transition frequency ω0.

It is useful to define new “slowly” varying variables ρ̃21 and ρ̃12 through

the relations:

ρ21(t) = ρ̃21(t)e
−iωt , ρ12(t) = ρ̃12(t)e

+iωt (1.13)

For the case of a single mode laser, using the normalization (1.3) and

the relation (1.13) we obtain:

˙̃ρ
(μ)
21 = (−i(ω0 − ω)− γ⊥) ρ̃

(μ)
21 − igμλd

(μ)b (1.14)

where

gμλ =
e

h̄
x12u(zμ)

√
h̄ω

2ε0V
= gu(zμ)

is the field-matter coupling constant.

For simplicity the coupling constant will be assumed to be independent

on the position of the atom zμ, so that gμλ,= g. This approximation is

nearly exact for a single mode ring cavity and gives little error for Fabry–

Pérot laser near threshold. Making use of the same hypothesis we obtain

the following equation for the population inversion ρ
(μ)
22 − ρ

(μ)
11 = d(μ).

ḋ(μ) = γ‖
(
d0 − d(μ)

)
+ 2ig

(
bρ̃

(μ)
12 − b∗ρ̃(μ)21

)
(1.15)

From the Maxwell equations, we obtain the one-dimensional wave equa-

tion for the electric field E(z, t) driven by the polarization P (z, t):

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

03
/1

6/
23

. R
e-

us
e a

nd
 d

ist
rib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



6 Nonlinear Dynamics of LASER

∂2E

∂t2
+ 2k

∂E

∂t
− c2

∂2E

∂z2
= − 1

ε0

∂2P

∂t2
(1.16)

where k describes the losses of the electric field. Let us assume that the

only cause of loss is associated with transmission through the mirrors of the

optical cavity. In the bare cavity, the cavity intensity decays exponentially:

Iλ (t) = Iλ (0) e
−

c

2L
ln

1

R1R2
t

(1.17)

where L is the cavity length, R1 and R2 are the reflectivities of the cavity

mirrors (R1, R2 < 1). Since the intensity is proportional to the square of

the electric field amplitude Eλ(t), it follows that the frequency spectrum

associated with the time-dependent free field in the cavity is a Lorentzian

with a bandwidth δνc =
1

2π

1

2

c

2L
ln

1

R1R2
=

1

2π
k.

Frequently the resonances of a cavity are characterized by the dimen-

sionless quality factor

Q =
1

2

ν

δνc
(1.18)

A high-Q cavity is one with low loss, while a low-Q cavity has a high

loss rate. These results can be generalized to include other losses effect.

The macroscopic polarization P (z, t) is related to the microscopic vari-

ables ρ
(μ)
12 and ρ

(μ)
21 by the following relation

P (z, t) =
1

V

∑
μ

ex12

(
ρ
(μ)
12 + ρ

(μ)
21

)
δ(z − zμ) (1.19)

where δ is the Dirac’s δ-function.

Introducing the field expansion (1.1) in the wave equation (1.16) we

obtain for the amplitude E(t) (as we consider only one mode the subscript

λ will be neglected) the following equation:

ω2
λE (t) + Ë (t) + 2kĖ (t) = − 1

ε0
P̈ (t) (1.20)

where ωλ is the frequency of the bare-cavity mode, and

P (t) =
1

V

∑
μ

ex12

(
ρ
(μ)
12 + ρ

(μ)
21

)
u(zμ).
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Laser Physics and Laser Instabilities 7

Applying the RWA and the Slowly Varying Amplitude Approximation

(SVEA) to Eq. (1.20), we obtain

Ė(+) (t) = (−i(ωλ − ω)− k)E(+) (t) +
iω0

2ε0
P (+) (t) (1.21)

where

P (+)(t) =
1

V

∑
μ

ex12ρ̃
(μ)
21 u(zμ).

The SVEA approximation means that the field amplitude E(+)(t)

evolves slowly on the time scale of a period of its accompanying expo-

nential function. Therefore, we may assume that the temporal derivative

of E(+)(t) is much smaller than ωE(+)(t), i.e. |Ė(+)(t)|� ω|E(+)(t)|.
Using the normalization for electric field we finally obtain:

ḃ (t) = (−i(ωλ − ω)− k) b (t) + ig
∑
μ

ρ̃
(μ)
21 . (1.22)

Introducing the collective variables S(t) =
∑

μ ρ̃
(μ)
21 (t) and D(t) =∑

μ d
(μ), assuming the resonance condition ω = ωλ = ω0 one obtains the

following equations (the so-called Maxwell–Bloch equations):

ḃ = −kb+ igS (1.23)

Ṡ = −γ⊥S − igbD (1.24)

Ḋ = γ‖ (D0 −D) + 2ig (bS∗ − b∗S) (1.25)

We briefly discuss the physical content of these equations. The right-

hand side of Eq. (1.23) describes the causes of the temporal change of the

field amplitude. The first term describes the damping of the field amplitude

in the empty resonator, while the second describes how the dipole moment

acts as a source for the field. In analogy to the field equation, the first term

of Eq. (1.24) describes the damping of the dipole moment. The last term

describes the interaction of the field mode with the atoms, which create a

dipole moment. As we are dealing with two-level atoms, the energy flux

between atoms and the field depends on the state of the atoms. If the

populations are inverted, energy will be transferred from the atoms to the

dipole moments. On the other hand, if the atoms are in their lower state,

energy will be transferred from the field to the atoms by absorption.
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8 Nonlinear Dynamics of LASER

In the equation for population inversion (Eq. (1.25)) the first term de-

scribes the relaxation of the inversion. γ‖ is the relaxation rate, while D0

represents the equilibrium inversion in the absence of field. The last term is

proportional to the energy per second put into the atoms or extracted from

the atoms caused by the coherent interaction between the dipole moment

of the atoms and the field. The conceptual foundations of the semiclassical

theory can be summarized in the scheme reported just below. An inci-

dent electromagnetic field interacts with a collection of microscopic dipoles

and creates a macroscopic polarization. This polarization acts as a driving

force for the field which interacts again with the microscopic dipoles. An

external pump mechanism provides energy to the active medium in order

to establish population inversion.

E (z, t)
Quantum−−−−−−−→
mechanics

〈ex〉μ statistical−−−−−−−→
summation

P (z, t)
Maxwell’s−−−−−−→
equations

E (z, t)

The semiclassical approach to the laser theory

1.3 Fundamental results of the semiclassical theory

The Maxwell–Bloch equations have a non-zero solution, if the pump pa-

rameter D0 is larger than the threshold value

D0 > Dths =
kγ⊥
g2

. (1.26)

The steady state photon number is given by

b∗b =
γ‖
4k

(D0 −Dths) . (1.27)

The steady state population inversion which is clamped to the threshold

value is given byDss =
kγ⊥
g2

. As a consequence we can find how b∗b depends

on D0 getting

b∗b = ns

(
D0

Dths
− 1

)
. (1.28)

Solving Eq. (1.28) for D0 we obtain the well known expression for the

saturation of the population inversion:
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Laser Physics and Laser Instabilities 9

Dths =
D0

1 +
4g2b∗b
γ⊥γ‖

=
D0

1 +
b∗b
ns

. (1.29)

where ns is saturation photon number defined as

ns =
γ⊥γ‖
4g2

=
γ‖
2G

where G =
2g2

γ⊥
. (1.30)

It should be noted that, if ω = ωλ = ω0, S and b can be considered as

real variables. In this case the related dynamical motion is confined to a

three-dimensional phase space. However, by considering the different time

scales of relaxation processes in this phase space, the dynamics may be

limited further to a subspace, giving rise to a well established classification

of lasers such as Class A, Band C lasers [Arecchi (1987)].

In the most familiar gas lasers (He-Ne, Ar+, Kr) and in dye lasers the

population and polarization variables decay much faster than that of the

electric field, so the corresponding equations can be solved at equilibrium

with the field and their quasi steady state solution can be substituted in

the field equation. More precisely when γ⊥, γ‖ > k we can perform the adi-

abatic elimination of the two atomic variables. The field equation becomes:

ḃ+ kb = ig

(
− igb

γ⊥
Dths

)
. (1.31)

using the relation (1.29) we have

ḃ+ kb =
g2

γ⊥
b

⎛
⎜⎜⎜⎝ D0

1 +
4g2b∗b
γ⊥γ‖

⎞
⎟⎟⎟⎠ . (1.32)

Near threshold where b∗b � ns Eq. (1.32) can be written approximately

as

ḃ =

(
−k +

g2

γ⊥
D0

)
b− 4g4

γ2
⊥γ‖

D0|b|2b . (1.33)

The first term in the brackets on the rhs stems from the cavity losses,

the second positive term describes the gain of the unsaturated inversion.

The last term describes the saturation effect of the laser process. In some
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10 Nonlinear Dynamics of LASER

other lasers, as e.g. ruby, Nd, CO2 and semiconductor lasers, only the

polarization decay rate is sufficiently larger compared to the other two

rates. In this case, only the polarization can be adiabatically eliminated

and the resulting laser dynamics is described by the “rate equations”:

ḃ+ kb =
g2

γ⊥
bD (1.34)

Ḋ + γ‖ (D −D0) = −4g2

γ⊥
|b|2D (1.35)

Considering that in our notation b∗b = n= photon number, Eqs. (1.34)–

(1.35) can be rewritten as:

ṅ+ 2kn = GnD (1.36)

Ḋ + γ‖ (D −D0) = −2GnD (1.37)

Let us now consider the stability of the c.w. (continuous wave) solu-

tion of the rate equations (1.36)–(1.37). It is convenient to introduce the

normalized quantities

n̂ =
n

ncw
, D̂ =

D

Dths
(1.38)

and the normalized pump parameter

Λ =
D0 −Dths

Dths
(1.39)

Using these normalized quantities Eqs. (1.36)–(1.37) become

n̂+ 2kn̂ = 2kn̂D̂ (1.40)

˙̂
D + γ‖D̂ = γ‖ (Λ + 1)− γ‖Λn̂D̂ (1.41)

In order to check the stability of the stationary solution D̂ = n̂ = 1 we

introduce small deviations δn̂ and δD̂ from the steady state solution. The

linearized equations for δn̂ and δD̂ can be written as:(
δ ˙̂n

δ
˙̂
D

)
=

(
0 +2k

−γ‖Λ −γ‖ (1 + Λ)

)(
δn̂

δD̂

)
(1.42)
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Laser Physics and Laser Instabilities 11

These equations have a solution given by

(
δn̂ (t)

δD̂ (t)

)
=

(
δn̂ (0)

δD̂ (0)

)
eλt

where the eigenvalues of the stability matrix are the roots of the polynomial

P (λ) = λ2 + γ‖ (1 + Λ)λ+ 2kγ‖Λ (1.43)

These eigenvalues are given by

λ12 = −γ‖
2

(1 + Λ)± i

√
2kγ‖Λ−

[γ‖
2

(1 + Λ)
]2

(1.44)

One observes that the steady state solution is always stable. The in-

tensity oscillates about the steady state value and approaches ncw at the

exponential rate
γ‖
2

(1 + Λ). The relaxation oscillations occur at a fre-

quency

ωr =

√
2kγ‖Λ−

[γ‖
2

(1 + Λ)
]2

(1.45)

When the three decay rates for the polarization, population and field

are of the same order of magnitude (class C lasers) all three equations are

essential.

We investigate now the stability of the c.w. solution of the single mode

laser equations (1.23)–(1.25). It is useful to introduce the following nor-

malized variables:

b̂ =
b

bcw
, Ŝ =

S

Scw
, D̂ =

D

Dcw
(1.46)

A little algebra transforms the laser equations into the following nor-

malized form:

˙̂
b+ kb̂ = kŜ (1.47)

˙̂
S + γ⊥Ŝ = γ⊥b̂D̂ (1.48)

˙̂
D + γ‖D̂ = γ‖ (Λ + 1)− 1

2
γ‖Λ

(
Ŝ∗b̂+ Ŝb̂∗

)
(1.49)
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12 Nonlinear Dynamics of LASER

The c.w. solution reads, of course,

b̂ = Ŝ = D̂ = 1 (1.50)

Introducing the small deviations δb̂, δŜ and δD̂ from the c.w. solution,

the linearized equations for δb̂, δŜ and δD̂ are:

⎛
⎜⎜⎝

δ
˙̂
b

δ
˙̂
S

δ
˙̂
D

⎞
⎟⎟⎠ =

⎛
⎜⎝

−k +k 0

γ⊥ −γ⊥ +γ⊥
−γ‖Λ −γ‖Λ −γ‖Λ

⎞
⎟⎠

⎛
⎜⎝

δb̂

δŜ

δD̂

⎞
⎟⎠ (1.51)

Solutions of the form ⎛
⎜⎝

δb̂

δŜ

δD̂

⎞
⎟⎠ =

⎛
⎜⎝

δb̂0

δŜ0

δD̂0

⎞
⎟⎠ eλt

lead to the cubic equation

λ3 + λ2
(
k + γ⊥ + γ‖

)
+ λ

(
kγ‖ + γ⊥γ‖ + γ⊥γ‖Λ

)
+ 2γ‖γ⊥kΛ = 0 (1.52)

It follows from the Hurwitz criterium that the solutions of Eq. (1.52)

are stable, i.e. all eigenvalues have negative real parts if either γ⊥ + γ‖ ≥ k

or γ⊥ + γ‖ < k and Λ ≤ Λc. Here, Λc is given by

Λc =

(
γ‖ + γ⊥ + k

)
(γ⊥ + k)(

k − γ‖ − γ⊥
)
γ⊥

(1.53)

The solutions are unstable if

γ‖ + γ⊥ < k and Λ > Λc (1.54)

Thus in order to get unstable solutions for the single mode laser the

cavity losses must exceed the sum of the losses of the polarization and the

inversion (bad cavity condition). Furthermore, the pump strength must be

very high in order to fulfill the condition Λ > Λc.

It was demonstrated by H. Haken [Haken (1975)] that Eqs. (1.47)–(1.49)

are equivalent to the Lorenz equations which provide a simple model for

convective turbulence in fluid-dynamics [Schuster (1988)]. Lorenz consid-

ered the problem of convection instability or Benard instability i.e. the
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Laser Physics and Laser Instabilities 13

problem of a fluid layer heated from below. The motion of the fluid is

described by the Navier–Stokes equations which are nonlinear, partial dif-

ferential equations. The Lorenz model comes from a truncation of a Fourier

expansion of the velocity and temperature fields of the fluid. The Lorenz

equations have the following form:

ẋ = σy − σx (1.55)

ẏ = −xz + rx − y (1.56)

ż = xy − bz (1.57)

where σ is the Prandtl number, r =
R

Rc
where R is Rayleigh number and

Rc is the critical Rayleigh number for the onset of convection. A numerical

analysis of this set of nonlinear differential equations shows that its variables

can exhibit an irregular motion which is called “chaotic” when r is above

a threshold value rc.

Figure 1.1. The Lorenz attractor, after a computer calculation by Lanford (1977). See

[Schuster (1988)].

Figure 1.1 shows the trajectory generated by the Lorenz equations for

r = 28, σ = 20 and b =
8

3
. One finds what the trajectory is attracted to

a bounded region in phase space and it makes one loop to the right, then
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14 Nonlinear Dynamics of LASER

few loops to the left, then to the right and so on . . . Another peculiarity of

the “chaotic” solution is that if another adjacent initial condition is taken,

the new solution exponentially deviates from the old (sensitive dependence

on the initial condition).

As introduced in this paragraph the Lorenz equations play a crucial role

in laser physics because they are equivalent to single mode laser equations.

Introducing the transformations

τ = γ⊥t , x =

√
Λ
γ‖
γ⊥

b̂ , y =

√
Λ
γ‖
γ⊥

Ŝ and z = Λ+ 1− D̂ (1.58)

the laser Eqs. (1.47)–(1.49) are transformed to the Lorenz Eqs. (1.55)–(1.57)

if σ, b, and r are defined as follows:

σ =
k

γ⊥
, b =

γ‖
γ⊥

, r = Λ+ 1 , Λ =
D0

Dths
− 1 (1.59)

Experimental evidence of chaotic instabilities showing characteristics

similar to Lorenz chaos was found in the far infrared NH3 ammonia laser

[Weiss & Brock (1986)] which is a class C laser. Chaos can also be observed

in lasers by other mechanisms. One idea was to use class B lasers, where

the atomic polarization can be adiabatically eliminated, but at the same

time to introduce some modulation on a given parameter or to introduce

optical or electroptical feedback schemes so that the number of variables

remains (at least) three. In the literature [Abraham et al. (1988)] different

configurations have been treated, such as

(a) time dependent modulation of the cavity losses,

(b) time dependent modulation of the population inversion,

(c) injection of a coherent electric field into the cavity of a laser,

(d) electroptic feedback,

(e) laser with saturable absorber.

A loss modulated single mode CO2 laser was one of the first laser devices

for which chaotic dynamics was investigated in a detailed way [Arecchi et

al. (1982)]. The experiments were performed using a single mode CO2 laser
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Laser Physics and Laser Instabilities 15

with an intracavity electroptic modulator allowing modulation of the cavity

losses. The intensity decay rate can be expressed as follows:

K (t) =
c

2L

[
2T + (1− 2T ) sin2 π

V (t)

Vλ

]
(1.60)

where L is the cavity length, T is the total transmission coefficient per pass

of the cavity, Vλ is the λ/2 voltage which is a characteristic parameter of the

EOM used and V (t) = V0+V1 sin 2πft the voltage applied to the modulator

(V0 is a suitable bias voltage). The modulation frequency f must be selected

in a range close to the value of the relaxation oscillations estimated from the

linear stability analysis. Considering that V (t) < Vλ the above expression

for the cavity losses can be approximated as K(t) 
 K0(1 +m sin 2πft).

Acknowledgments

The author is indebted for fruitful conversations with Prof. N.B. Abraham.

A debt of gratitude is devoted to Prof. F.T. Arecchi for introducing the

author to the field.

1.4 References

Sargent M., Scully M.O. & Lamb W.E. (1974). Laser Physics (Addison-

Wesley).

Haken H. (1985). Light Volume 2: Laser Light Dynamics (North Holland).

Arecchi F.T. (1987). Instabilities and Chaos in Quantum Optics, eds. F.T.

Arecchi and R.O. Harrison (Springer, Berlin).

Haken H. (1975). Analogy between higher instabilities in fluids and lasers,

Physics Letters A, 53(1), pp. 77-78.

Weiss C.O. & Brock J. (1986). Evidence for Lorenz-type chaos in a laser,

Physical Review Letters, 57(22), pp. 2804-2806. (See also: Weiss C.O.,
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Chapter 2

Generalized Multistability and its
Control in a Laser

In this chapter, we revisit the model of the laser with cavity loss modulation

from which evidence of chaos and generalized multistability was discovered

in 1982. Multistability refers to the coexistence of two or more attractors

in nonlinear dynamical systems. Despite its relative simplicity, the adopted

model shows us how the multistability depends on the dissipation of the

system. The model is then tested under the action of a secondary sinusoidal

perturbation, which can remove bistability when a suitable relative phase

is chosen. The surviving attractor is the one with less dissipation. This

control strategy is particularly useful when one of the competing attractors

is a chaotic attractor.

We revisit the dynamics of a simple model used to describe the first

experimental evidence of chaos in a modulated laser. This pioneering ex-

periment had an enormous impact on the scientific community, considering

that a laser could also emit in a chaotic way while retaining its optical

coherence properties. Lasers, particularly class B-lasers, like the CO2 and

later semiconductor lasers, became reliable devices for studying chaos and

generalized multistability. Nowadays, the latter phenomenon is widely in-

vestigated in the most diverse fields, sharing the possibility of jumping

between the different attractors using small perturbations. The model has

been explored in terms of its dissipativity. A novel aspect of the present

investigation is the stability analysis in an increased dimension phase space

allowing analytic treatment.

17
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18 Nonlinear Dynamics of LASER

2.1 Introduction

Exactly forty years have passed since the pioneering experiment on deter-

ministic chaos and generalized multistability in a CO2 laser with periodic

modulation of the cavity losses [Arecchi et al. (1982)]. These two issues

have profoundly influenced and motivated research in fields different from

that of laser physics. Let us consider multistability, that is, the coexistence

of different stable states in nonlinear systems (for two review papers on the

subject, see [Feudel (2008); Feudel et al. (2018)]). This means that a dis-

sipative dynamical system can have more solutions for equal values of the

control parameters depending only on the values of initial conditions. The

set of initial conditions (more precisely, the closure of it) leading, in the

long term limit, to a given attractor is called the basin of attraction whose

structure can be fractal. The complicated structure of basin boundaries in

multistable systems determines their sensitivity to noise and periodic per-

turbations. This makes them attractive for controlling techniques allowing

the switching from one attractor to another one. Many dynamical sys-

tems exhibit multistability, including laser physics [Saucedio et al. (2003);

Pisarchik et al. (2011)], neuron models [Schwartz et al. (2012)], chemical

reactions [Ryashko (2018)], climate systems [Lucarini & Bodai (2017)], bi-

ological and ecological ones [May (1977)].

In the 1982 seminal paper [Arecchi et al. (1982)], a simple two-level

laser model was used. A few years later, a five-dimensional model was in-

troduced accounting for the interaction between the electromagnetic field

and a molecular model where the two lasing levels are coupled to two rota-

tional manifolds. Using the center manifold theory, it is possible to reduce

the five-dimensional model to a two-dimensional model adding suitable non-

linear corrections as demonstrated by Ciofini et al [Ciofini et al. (1993)].

However, considering that the key nonlinearity is the same in the two mod-

els, it often is preferable to use the two-level model. Very recently, a simple

three-dimensional laser model was proposed to investigate the instabilities

of the laser with feedback. Such a model possesses the minimal and essen-

tial nonlinearities as the Roessler, Lorenz, Chua, and Chen models [Meucci

et al. (2021); Ricci et al. (2021)]. The two-level model that we use here sim-

ply derives from it by eliminating the feedback equation and introducing a

sinusoidal modulation of the cavity losses parameter, and recapturing the

basic scheme of the one introduced in [Arecchi et al. (1982)]. In such a case,

a certain flexibility is used in the parameter gamma (γ), which accounts for

the relaxation rate of population inversion.

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

03
/1

6/
23

. R
e-

us
e a

nd
 d

ist
rib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



Generalized Multistability and its Control in a Laser 19

An increasing interest has been posed on generalized multistability and

its control, considering the possibility of using small perturbations to select

one of the competing solutions as demonstrated by Goswami and Pisarchick

[Goswami & Pisarchick (2008)]. Here, we consider the key role of the phase

difference between the main driving frequency responsible for chaos and

multistability(fmod) and a secondary sinusoidal perturbation for its control

(fpert). The attention is here focused on the resonant case where fmod =

fpert [Meucci et al. (1994, 2016)]. This chapter is organized as follows: In

Section 2.2, we introduce the two-level laser model and its time rescaled

version. Numerical results showing evidence of generalized bistability are

here presented. In Section 2.3, we transform this two-level non-autonomous

model into an autonomous four-dimensional dynamical system that enables

us to provide a mathematical analysis and confirm the numerical results

obtained. In Section 2.4, control of bistability is obtained by introducing a

secondary sinusoidal perturbation adjusting the relative phase.

2.2 Two-level non-autonomous laser model

Starting from the seminal works of Arecchi et al. [Arecchi et al. (1982,

1986); Arecchi (1987)], we propose to analyze the following two-level laser

model :

ẋ = −k0x
[
1 + k1 (B0 +m sin(2πfmodt))

2 − y
]
,

ẏ = −γy − 2k0
α

xy + γp0.

(2.1)

where the fast variable x is the laser intensity with a time dependent decay

rate k(t) given by k0

[
1 + k1 (B0 +m sin(2πfmodt))

2
]
, where k0 is the non-

modulated cavity loss parameter and k1 accounts for its modulation depth.

B0 +m sin(2πfmodt) is the applied modulation signal consisting of a bias

value B0 summed to a sinusoidal signal with amplitude m and modulation

frequency fmod. The slow variable y is the population inversion with a de-

cay rate γ, while the parameter y0 is the population inversion imposed by

the pumping process. The adopted normalization is such that the original

equations in Ref. [Arecchi et al. (1982)] can be re-obtained considering α =

2k0/γ and a threshold inversion ythres = k0/G where G is the field-matter

coupling constant that appears in Ref. [Arecchi et al. (1982)].
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20 Nonlinear Dynamics of LASER

2.2.1 Rescaled form

We propose the following change of variables and parameters to recast

Eq. (2.1) in a rescaled form. Let us suppose: t → t
k0

and

k = k1, f
′
mod =

fmod

k0
, γ′ =

γ

k0
, α′ =

2

α
.

By dropping the ′ for these parameters, the two-level model (2.1) now

reads:

dx

dt
= −x

[
1 + k (B0 +m sin(2πfmodt))

2 − y
]
,

dy

dt
= −γy − αxy + γp0,

(2.2)

where k = 12, B0 = 0.1215, m = 0.02, fmod = 0.005, γ = 0.0025, α = 0.002

and p0 = 1.252. In the following, we will use B0 as the bifurcation pa-

rameter. Numerical investigations on the non-autonomous dynamical sys-

tem (2.2) enable highlighting generalized bistability and its control. After

presenting these numerical results, the two-level laser model (2.2) will be

transformed into an autonomous four-dimensional dynamical system that

will allow its mathematical analysis.

2.2.2 Jacobian matrix

The phenomenon of generalized multistability, that is, the coexistence of

attractors for the same parameter values, is related to the phenomenon of

crises [Grebogi et al. (1983)]. The presence of different crises in dynamical

systems depends on the amount of dissipation [Feudel et al. (1996)]. Al-

though an attempt to relate bistability and dissipation has already been

made in this system (see Ref. [Meucci et al. (1988)]), here we want to trace

it starting from the first principles. Dissipativity is related to the Jacobian

matrix of the model [Sprott (2003); Ott (1993)].

The Jacobian matrix of the rescaled two-level model (2.2) reads:

J =

⎛
⎝y − k (B0 +m sin(2πfmodt))

2 − 1 x

−αy −γ − αx

⎞
⎠ (2.3)
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Generalized Multistability and its Control in a Laser 21

So, the trace of the Jacobian which represents the dissipation rate of

the rescaled two-level model (2.2) reads:

Tr(J) = y − k (B0 +m sin(2πfmodt))
2 − 1− γ − αx. (2.4)

In Figure 2.1a, the bifurcation diagram of system (2.2), i.e. the max-

ima of the solution x(t) as a function of B0 (all other parameters are those

given above), has been plotted while using the forward (pink) and back-

ward (cyan) methods. The corresponding Lyapunov exponents for the same

range of parameter B0 are reported in Figures 2.1b–2.1c.

Figure 2.1. Bifurcation and Lyapunov exponents diagram as a function of B0.

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

03
/1

6/
23

. R
e-

us
e a

nd
 d

ist
rib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



22 Nonlinear Dynamics of LASER

As we deduce from the bifurcation diagram (Figure 2.1a), the attrac-

tors’ structure is rather complicated due to the presence of local and global

bifurcations [Sprott (2003); Ott (1993)]. However, a qualitative description

can be provided in terms of five leading periodic orbits present in this dy-

namical system (2.2). Such periodic solutions are labeled P1, P2, . . .P5,

each of them is characterized by the presence of a single peak every 1 to

5 periods of the driving frequency (fmod). As the control parameter B0

is increased, we observe that the P2 solution replaces the P1 solution due

to a crisis. This solution (upper branch solution) coexists in the range

B0 ∈ [0.0445, 0.0558] with the lower branch solution and its first subhar-

monic P1,2 (first bistable window BI). The upper branch solution P2 loses

its stability via a subharmonic bifurcation till a new crisis is encountered

and replaced by a P3 solution which coexists with a lower branch chaotic

attractor in the range B0 ∈ [0.0776, 0.0858] (this is the second bistability

region). This process is continued up to the appearance of the P4 solution

and the fourth bistability region around B0 ∈ [0.0988, 0.1018]. The fourth

bistability occurs at around B0 ∈ [0.1120, 0.1134]. At B0 ≈ 0.12, we ob-

serve the last crisis with lower amplitude attractors belonging to an inverse

cascade of the primary P1 lower branch solution. The four bistable regions

BI, II, III, IV have been identified by using different numerical algorithms as

the bifurcation parameter is scanned in the forward and backward direc-

tions [Jafari et al. (2021)]. Relevant information about the organization of

the solutions is provided by the evaluation of the dissipation rate (trace

of the Jacobian matrix). The corresponding dissipation diagram of the

bifurcation diagram described above is shown in Figure 2.2.

Figure 2.2. Dissipation diagram Tr(J) as a function of B0.
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Generalized Multistability and its Control in a Laser 23

From Figure 2.2, we can graphically deduce the bistability regions as

well as in Figure 2.1 (see the zoomed regions of bistability in Figure 2.3).

We observe that in the second bistability region BII the upper branch

periodic solution P3 is characterized by the alternating between two values

whose average is below the competing chaotic attractor. Figures 2.2 and

2.3 enable us to distinguish the two coexisting solutions according to their

dissipative rate. It is important to note that the upper branch solutions

(periodic solutions) are characterized by lower dissipativity.

Figure 2.3. Zoom in of bistability regions in Figure 2.2.

In Figure 2.4, the bifurcation diagram of the system (2.2), i.e. the

maxima of the solution x(t) as a function of γ as a function of gamma (all

other parameters are those given above), has been plotted. From Figure 2.4

we observe three bistability windows around γ = 2.5×10−3, γ = 3.5×10−3

and γ = 5.5 × 10−3. In the latter bistability window, the two coexisting

solutions are periodic ones. From the bifurcation diagram (Figure 2.4), it

is also possible to identify the bifurcation regions.

Thus, in Section 2.2, we have numerically shown that generalized bista-

bility (simultaneous presence of two kinds of attractors having the same
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24 Nonlinear Dynamics of LASER

Figure 2.4. Bifurcation diagram xmax(t) as a function of γ.

values of the control parameters but different initial conditions, in our case,

we only consider x(0) is different) depends on either B0 or γ for the two-

level laser model (2.2). Such bistability regions will be highlighted with

the help of a new kind of bifurcation diagrams presented in the next sec-

tion below. To this aim, in the following section, we will transform this

two-level non-autonomous model (2.2) into a four-dimensional autonomous

dynamical system.

2.3 Two-level autonomous laser model

Let us notice that the presence of the sin(2πfmodt) on the right-hand side

of the first equation of the two-level model (2.2) makes it non-autonomous.

However, recall that a sine function is nothing else but the solution of a

harmonic oscillator. So, let us take:

z (t) = B0 +m sin(2πfmodt),

which is the solution of the following second-order ordinary differential

equation (ODE):

z̈(t) + ω2z(t) = ω2B0.

where ω = 2πfmod. By using the classical D’Alembert transformation

[D’Alembert (1748)], this second-order ODE may be written as the follow-

ing system of first-order ODEs:
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ż = −ω2u(t), z(0) = B0,

u̇ = z(t)−B0, u(0) = −m

ω
.

Thus, we transform the two-level non-autonomous model (2.2) into an

autonomous one while increasing the dimension of two. We have:

ẋ = −x
(
1 + kz2 − y

)
,

ẏ = −γy − αxy + γp0,

ż = −ω2u,

u̇ = z −B0,

(2.5)

where k = 12, B0 = 0.1215, m = 0.02, fmod = 0.005, ω = 2πfmod, γ =

0.0025, α = 0.002, p0 = 1.252 and where the initial conditions z(0) = B0,

u(0) = −m/ω are imposed on z(t) and u(t).

2.3.1 Fixed points

By using the classical nullclines method, it can be shown that the dynamical

system (2.5) admits two fixed points.

I1 (0, p0, B0, 0) ; I2

(
− γ

α

1 + kB2
0 − p0

1 + kB2
0

, 1 + kB2
0 , 0, 0

)
(2.6)

2.3.2 Jacobian matrix

The Jacobian matrix of the dynamical system (2.5) reads:

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(1 + kz2 − y) x −2kxz 0

−αy −γ − αx 0 0

0 0 0 −ω2

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.7)

By replacing the coordinate of the fixed points I1 (2.6) in the Jacobian

matrix (2.7), one obtains the four following eigenvalues:

λ1 = −γ, λ2 = − (
1 + kB2

0 − p0
)
, λ3,4 = ±iω. (2.8)
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26 Nonlinear Dynamics of LASER

With this parameters set −(1 + kB2
0 − p0) > 0, λ2 is real and positive

while λ1 is real and negative. So, according to the Lyapunov theorem, the

fixed point I1 is unstable.

By replacing the coordinate of the fixed points I2 (2.6) in the Jacobian

matrix (2.7), one obtains the four following eigenvalues:

λ1,2 = −γp0
2y∗

±
√
Δ

2
and λ3,4 = ±iω. (2.9)

where

Δ = (
γp0
y∗

)2 + 4γ(y∗ − p0) with y∗ = 1 + kB2
0 .

With this set of parameters, Δ < 0 and both real parts gamma γp0/y
∗

of λ1,2 are negative. Hence, according to the Lyapunov theorem, the fixed

point I2 is stable. Notice that a Hopf bifurcation could only occur if and

only if p0 = 0. Nevertheless, in such a case, Δ would become positive.

So, no Hopf bifurcation can occur in system (2.5). It is important to note

that the emergence of chaos is related to the interplay between the two

stationary points. The unstable fixed point I1 provides the re-injection to

I2, allowing time evolution of the trajectory in phase space.

Now, let us highlight the bistability regions of the system (2.5) and so

of the two-level model (2.2). To this aim, we propose to use bistability

bifurcation diagrams by plotting (as usual) the maxima of the variable x(t)

as a function of the initial condition x(0) instead of the control parameterB0

which is fixed here. Figures 2.5a–2.5d, represent such bifurcation diagrams

for B0 = 0.05, B0 = 0.08, B0 = 0.1 and B0 = 0.112.

Figure 2.5 highlights the existence of two different regions of stability for

the attractor solution of the system (2.5). In the following, we will consider

that the lower branch corresponds to the first stability region while the

upper branch corresponds to the second. As an example, from Figure 2.5a

(B0 = 0.05), we deduce that for x(0) = 1, the attractor is in the lower

branch, and the solution is a periodic solution with one peak for the x(t).

For x(0) = 3, the attractor is in the upper branch, and the solution is a P2

solution (see Figure 2.6a). From Figure 2.5b (B0 = 0.08), we find that for

x(0) = 1, the attractor is in the lower branch and the solution is chaotic.

For x(0) = 3, the attractor is in the upper branch, and the periodic solution

is a P3 solution (see Figure 2.6b). From Figure 2.5c (B0 = 0.1), we find

that for x(0) = 1, the attractor is in the lower branch and the solution is
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Generalized Multistability and its Control in a Laser 27

Figure 2.5. Bistability diagrams of system (2.5). Maxima of the solution x(t) as a

function of the initial condition x(0) for four different values B0 corresponding to the

four bistability windows.

chaotic. For x(0) = 2, the attractor is in the upper branch, and the periodic

solution is a P4 (see Figure 2.6c). From Figure 2.5d (B0 = 0.112), we find

that for x(0) = 3.7, the attractor is in the lower branch and the periodic

solution is a P5. For x(0) = 4, the attractor is in the upper branch, and the

solution is chaotic (see Figure 2.6d). Notice that both attractors coexist in

all these cases. The basins of attraction corresponding to the four bistability

regions are reported in Figure 2.7. Although basins of attraction provide

general information about the organization of the phase space, we consider

the representation in terms of bistability bifurcation diagrams easier to be

interpreted.
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28 Nonlinear Dynamics of LASER

Figure 2.6. Phase portraits of system (2.5) in the xyz-space for various values B0.

Figure 2.7. Basins of attraction of system (2.5) for various values of B0 as in Figure 2.6.

2.4 Control of generalized multistability

Let us consider the effects of a second sinusoidal perturbation with ampli-

tude ε smaller than m in the two-level non-autonomous model (2.2). So,
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Generalized Multistability and its Control in a Laser 29

the dynamics are now described by:

ẋ = −x
[
1 + k (B0 + ε sin(2πfmodt+ ϕ) +m sin(2πfmodt))

2 − y
]
,

ẏ = −γy − αxy + γp0.

(2.10)

where k = 12, B0 = 0.0832, m = 0.02, ε = 0.0006, fmod = 0.005,

γ = 0.0025, α = 0.002 and p0 = 1.252. Bistability can be removed by

accurately choosing ε and phase difference ϕ as we can observe from Fig-

ure 2.8. In such a case the optimal value for the phase difference ϕ is

around π = 3.1415. The opposite effect occurs when φ = 0 = 2π as we can

observe from Figure 2.9. Removing bistability means to stabilize to lower

amplitude attractors which are less dissipative compared with the upper

branch solutions (see the blue and pink traces in Figure 2.8).

Figure 2.8. Bifurcation diagram xmax(t) as a function of B0 with (ε, ϕ) = (0.006, π).

From a comparison with the unperturbed bifurcation diagram shown

in Figure 2.1, we see that the controlling perturbation critically affects

the dynamics by delaying the occurrence of the first bifurcation window

to a value of the control parameter B0, where the unperturbed dynamics

was chaotic. Furthermore, we note that, for ε = 0.006, which implies a

relative perturbation strength ε/m = 0.006/0.02 = 30%, the unperturbed

bistability window centered around B0 = 0.05 is shifted around B0 = 0.06.

Here several considerations can be drawn. First, if the competing solutions

are periodic, as in the first bistability window, we need to use a greater

perturbation with respect to the case where the lower branch solution is

chaotic, and the upper branch is periodic. From Figure 2.8, we clearly
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30 Nonlinear Dynamics of LASER

see that the first bistability window is shifted in the forward B0 direction,

but the other bistability windows are removed except the small one around

B0 = 0.09. This is consistent with the fact that the width of the bistability

regions diminishes as B0 is increased.

Figure 2.9. Bifurcation diagram xmax(t) as a function of B0 with (ε, ϕ) = (0.006, 0).

In Figure 2.9, where the wrong phase difference ϕ is chosen, we clearly

see that the first bistability window and the other ones are anticipated with

respect to the bifurcation parameter B0. We also observe that their width

is increased when compared with the unperturbed case of Figure 2.1.

Figure 2.10. Bifurcation diagram xmax(t) as a function of B0 with (ε, ϕ) = (0.002, π).by
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Generalized Multistability and its Control in a Laser 31

As the perturbation strength ε is reduced (keeping the right phase dif-

ference ϕ), we observe that the adopted strategy for controlling bistability

remains valid but on restricted regions of the unperturbed bistable regions.

This fact emerges from Figure 2.10 where the relative perturbation strength

is ε/m = 0.002/0.02 = 10%.

2.5 Discussion

The original laser model that gave evidence of chaos and generalized multi-

stability has been revisited. Multistability depends on dissipativity, so the

two decay rates for laser intensity and population inversion must be chosen

accurately. Multistability can be controlled by means of a secondary sinu-

soidal perturbation resonant with the main one responsible for its occur-

rence. The stabilized solution is the one characterized by less dissipativity

providing an important indicator for applications when the selection of the

solutions is desired.
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Chapter 3

Minimal Universal Model for Chaos
in Laser with Feedback

In this chapter, we revisit the model of the laser with feedback and the

minimal nonlinearity leading to chaos. Although the model has its origin

in laser physics, with peculiarities related to the CO2 laser, it belongs to the

class of the three-dimensional paradigmatic nonlinear oscillator models gen-

erating chaos. The proposed model contains three key nonlinearities, two

of which are of the type xy, where x and y are the fast and slow variables.

The third one is of the type xz2, where z is an intermediate feedback vari-

able. We analytically demonstrate that it is essential for producing chaos

via local or global homoclinic bifurcations. Its electronic implementation

in the range of kilo Hertz (kHz) region confirms its potential in describing

phenomena evolving on different time scales.

3.1 Introduction

Deterministic chaos has represented a crucial issue in laser physics because

the Lorenz system [1963] is formally equivalent to laser equations [Haken

(1975)]. The first evidence of chaos in lasers was given in 1982 in a mod-

ulated single mode CO2 laser [Arecchi et al. (1982)] and we had to wait

until 1986 for an evidence of Lorenz type chaos in a particular and little

used laser emitting in far infrared region (the so-called class C-laser) [Weiss

& Brock (1986)]. Commonly used single mode lasers are described by two

rate equations and they are intrinsic stable devices (class B-laser). Feed-

back circuits are frequently used to improve their stability properties by

reducing residual intensity and frequency fluctuations in order to match

specific requests. However, a feedback can have the opposite effect, that

is, enhancing the relaxation oscillations around the steady state solution.

In other words, a simple linear filtering with the appropriate bandwidth on

33
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34 Nonlinear Dynamics of LASER

the laser output intensity can induce chaotic fluctuations on it [Arecchi et

al. (1986); Arecchi (1987)]. From the dynamical point of view, a feedback

increases the dimensionality of the phase space from two to three whence

chaos becomes possible. In the last two decades of the past century, the

use of CO2 lasers for demonstrating such a behavior has had advantages,

mainly due the convenient time scales associated with the laser intensity

and the population inversion. The former, evolves on a time scale regulated

by the parameter k (the decay rate of photon number of the laser mode) is

imposed by the length of the optical cavity and its losses. In our case, k is

around 107 s−1. The latter, i.e. the decay rate of the population inversion,

is called γ. For a molecular laser as the CO2 laser, γ is of the order 103−104

s−1. These two parameters imply a resulting time scale given by

√
kγ(p0 − 1),

where p0 is the pump strength normalized to the threshold value. Usually,

p0 is around 2. To be effective in producing chaos, the feedback loop should

act on the above mentioned time scale, in other terms, we have the following

condition to be satisfied:

k > β > γ,

where β is the bandwidth of the feedback loop. A simple three-dimensional

model accounting for the laser intensity x with decay rate k, population

inversion y with decay rate γ, and feedback strength z with decay rate

β, explains qualitatively the observed dynamics but it does not yield an

accurate matching with the experiment. The problem is overcome by in-

troducing the so-called 4-level model for the CO2 laser. It consists in taking

into account two resonant levels with populations N1 and N2 and two rota-

tional manifolds with populations M1 and M2, respectively. In this refined

model the dimensionality of the phase space is increased up to 6 instead

of the previous 3. For an introduction to the six-dimensional model and

accurate numerical simulations on it, see for example Freire et al. [2015].

To reduce the dimensionality two different approaches can be followed. The

first one is to use a reduction based on the Center Manifold Theory (CMT)

proposed by Varone et al. [1995]. This analytical method implies a re-

duced four-dimensional model with the addition of nonlinear terms whose

physical interpretation is difficult to provide. A feasible reduction to three

dimensions is imaginable considering that it has been obtained for the five-
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Minimal Universal Model for Chaos in Laser with Feedback 35

dimensional model of the CO2 laser with cavity losses modulation [Ciofini

et al. (1993)]. The second approach for an equivalent three-dimensional

model which is more physical and straightforward is to take advantage of

the 4-level model only from the correct value of the laser intensity in the

stationary regime. This condition implies the use of an artificial value of γ

which can be of two orders of magnitude greater, that is, 104 to 105 s−1.

As the laser output intensity does not depend on β, we have to use an

effective value of β for the feedback variable z up to 106 s−1. The advan-

tage consists in keeping the original nonlinearity in the x and y differential

equations given by their product xy. Considering the above advantages and

in view of the extension to different dynamical systems ranging from neu-

ron dynamics in the low frequency region (below 1 Hz) to high frequency

domains (fast electronics, opto-electronics, etc.) we adopt the following

three-dimensional model:

dx

dt
= −k0x

(
1 + k1z

2 − y
)
,

dy

dt
= −γy − 2

k0
α
xy + γp0,

dz

dt
= −β

(
z −B0 +

R

α
x

)
,

(3.1)

where x is the fast variable (laser output intensity), y is the slow variable

(population inversion), and z is the feedback variable affecting the fast one

in a nonlinear way but regulated in linear way as the result of a low pass

filter whose input is the fast variable summed to bias. The parameter α is

a suitable normalization of the fast variable x which however does not alter

its form considering that it is homogenous in x. If α = 2ko/γ, the adopted

model is formally equivalent to the original model of the laser with feedback.

The chapter is organized as follows. First, we introduce a numerical analysis

followed by an experimental part containing an analog implementation of

the oscillator. Second, we compare the new model with other paradigmatic

oscillators. Its potentialities are discussed in conclusions.
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36 Nonlinear Dynamics of LASER

3.2 Minimal universal model

3.2.1 Dimensionless form

We propose the following change of variables and parameters to recast

Eq. (3.1) in a dimensionless form. Let us take:

y → p0y, t → t

γ
, ε1 =

k0
γ
, ε2 =

β

γ
, B1 =

R

α
=

Rγ

2k0
.

Thus, the minimal universal model for chaos in laser reads:

dx

dt
= −ε1x

(
1 + k1z

2 − p0y
)
,

dy

dt
= −y − xy + 1,

dz

dt
= −ε2 (z −B0 +B1x) ,

(3.2)

Let us note that with the parameter set used in our experiment and

analysis, ε1 � 1 and ε2 � 1. So, model (3.2) is a slow-fast dynamical

systems involving two fast times scales. In the following, B0 will play the

role of a control parameter.

3.2.2 Fixed points

By using the classical nullclines method, it can be shown that the dynamical

system (3.2) admits four fixed points only two of which are positive.

I1 (0, 1, B0) ,

I2

(
x∗, y∗ =

1

1 + x
, z∗ = B0 −B1x

)
,

(3.3)

where the expression of x∗ (too large to be explicitly written here since

it comes from the solution of a cubic polynomial) depends on the control

parameter B0. In this problem all fixed points are supposed to be positive.

Thus, starting from the right-hand-side of Eq. (3.2), it can be easily shown

that:

0 � x∗ � p0 − 1,
1

p0
� y∗, B0 −B1 (p0 − 1) � z∗ � B0.by
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3.2.3 Jacobian matrix

The Jacobian matrix of dynamical system (3.2) reads:

J =

⎛
⎜⎜⎜⎝
(−1 + p0y − k1z

2)ε1 p0xε1 −2k1xzε1

−y −1− x 0

−B1ε2 0 ε2

⎞
⎟⎟⎟⎠ (3.4)

By replacing the coordinate of the fixed points I1 (3.3) in the Jacobian

matrix (3.4) one obtains the Cayley–Hamilton third degree eigenpolynomial

which reads:

(λ+ 1) (λ+ ε2)
[
λ+ ε1

(
1 +B2

0k1 − p0
)]

= 0 (3.5)

Thus, provided that:

p0 < 1 +B2
0k1, (3.6)

the fixed point I1 is a saddle node. Moreover, such condition (3.6) provides

a upper boundary for the control parameter B0:

B0 <

√
p0 − 1

k1
. (3.7)

From the positivity of the fixed points, we notice that if B0 = B1(p0−1),

then the second fixed point I2 reads: I2(x
∗ = p0 − 1, y∗ = 1/p0, z

∗ = 0). In

these conditions and according to Eq. (3.7), it can be stated that:

B1 (p0 − 1) < B0 <

√
p0 − 1

k1
. (3.8)

Thus, for B0 = B1(p0 − 1), computation of the eigenvalues of I1 shows

that two of them are real and negative and one is real and positive con-

firming thus the saddle node feature of this point while for I2, one is real

and negative and the two others are complex conjugate with negative real

parts. So, in this case the fixed point I2 is stable and attractive according

to Lyapunov theorem. For B0 =
√
(p0 − 1)/k1, we found that both fixed

points I1 and I2 are stable and attractive (all the real parts of their eigen-

values are negative). Such a result will enable to explain the limits of the

bifurcation diagram presented below (see Figures 3.1 and 3.2) outside which

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

03
/1

6/
23

. R
e-

us
e a

nd
 d

ist
rib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



38 Nonlinear Dynamics of LASER

no attractor can exist. Then, while using the parameters set of our experi-

ment, i.e. for any value of B0 ∈ [B1(p0− 1),
√
(p0 − 1)/k1] it can be shown

that I2 is a saddle-focus (the first eigenvalue is real and negative while the

two others are complex conjugate with positive real parts). This implies

that a Hopf bifurcation occurs in the interval [Hopf (1942); Andronov et

al. (1971); Marsden & McCracken (1976); Kuznetsov (2004)]. Nevertheless,

the fact that the fixed points are solutions of a cubic polynomial precludes

from the explicit value of the control parameter B0 for which such a Hopf

bifurcation occurs. However, we have found a method (see Appendix) al-

lowing to analytically compute the upper bound of such a parameter. In

the following we will use the parameters set in our experiment and analysis:

ε1 = 200 , ε2 = 6 , k1 = 12 , p0 = 1.208 , B1 = 0.555.

3.2.4 Bifurcation diagram

Thus, in order to highlight the effects of the control parameter B0 changes

on the topology of the attractor, we have built a bifurcation diagram (see

Figures 3.1 and 3.2) that we have compared to the phase portraits plotted

in Figure 3.3. First, we observe that for B0 ≈ 0.12, a Hopf bifurcation

occurs (see Appendix). Then, for B0 = 0.123, a limit cycle appears. As

B0 increases between 0.123 and 0.1237, a “period doubling cascade” occurs

and so, we observe a 2-periodic limit cycle. In the interval 0.1237 < B0 <

0.12425, the period of the limit cycle increases again and becomes equal

to the number of branches in the bifurcation diagram (see Figures 3.2 and

3.3a). For 0.12425 < B0 < 0.129, a stable homoclinic orbit appears and

persists (see Figures 3.2d and 3.3b).

In order to confirm such scenario, Lyapunov Characteristic Exponents

(LCE) have been computed in each case.

3.2.5 Numerical computation of the Lyapunov exponents

The algorithm developed by Marco Sandri [1996] for Mathematica®

has been used to perform the numerical calculation of the Lyapunov

Characteristics Exponents (LCE) of the dynamical system (3.2) in each

case. LCEs values have been computed within each considered inter-

val (B0 ∈ [0.123, 0.1234] and [0.1235, 0.125]). As an example, for B0 =

0.123, 0.124 and 0.1246, Sandri’s algorithm has provided respectively the

following LCEs (0,−0.56,−6.63), (+0.27, 0,−7.47) and (+0.2, 0,−7.32).
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Figure 3.1. Bifurcation diagram xmax as a function of B0.

Then, following the works of Klein and Baier [1991], a classification of

(autonomous) continuous-time attractors of dynamical system (3.2) on

the basis of their Lyapunov spectrum is presented in Table 3.1. LCEs

values have also been computed with the Lyapunov Exponents Toolbox

(LET) developed by Steve Siu for MatLab® and involving the two al-

gorithms proposed by Wolf et al. [1985] and Eckmann and Ruelle [1985]

(see https://fr.mathworks.com/matlabcentral/fileexchange/233-let). Re-

sults obtained by both algorithms are consistent.

Table 3.1. Lyapunov characteristic exponents of dynamical system (3.2)

for various values of B0.

m LCE spectrum Dynamics of the attractor

0.1230 < B0 < 0.1234 (0,−,−) Periodic Motion

0.1235 < B0 < 0.124 (0,−,−) n-Periodic Motion

0.1241 < B0 < 0.125 (+, 0,−) Homolinic Chaos
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Figure 3.2. Zoom of the bifurcation diagram xmax as a function of B0.

3.3 Experimental part

The set up used in our experiment is illustrated in Figure 3.7. Briefly,

it consists of three integrators I1, I2 and I3 (LT1114 by Analog Devices),

whose outputs are the signals x, y and z and y = ẋ contained in Eq. (3.1).

The other integrator I4, is employed for an inverting amplifier with unitary

gain. The two nonlinearities are implemented by means of three analog mul-

tipliers M1, M2 and M3 (MLT04, by Analog Devices). The first one yields

the product xy, while the other two multipliers implement the product xz2.

The simplification of the proposed scheme is evident when compared with

the one obtained using a Field Programmable Analog Array (FPAA) circuit

[Arecchi et al. (2005)].

Considering the limits imposed by analog simulations, the desired dy-

namics of the oscillator is obtained by fine adjustments of two bias voltages

V (p0) and V (B0) accounting for the parameters, p0 and B0 in Eq. (3.1).

This condition has been achieved by means of two potentiometers P1 and

P2 connected to a fixed negative voltage source −Vs. The relaxation rates

of the three variables (reciprocal of the integration times of the three
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(a) B0 = 0.12413

���

���

���

���




����

����

����

����

�

����

���

���

�

(b) B0 = 0.1243
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(c) B0 = 0.12463

Figure 3.3. Phase portraits of model (3.2) for various values of B0.
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(a) Time series x(t) and z(t) for B0 = 0.12413
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(b) Time series x(t) for B0 = 0.1243
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(c) Time series x(t) for B0 = 0.12463

Figure 3.4. Time series of model (3.2) for various values of B0.
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(a) Phase portrait for V (B0) = −2.550V

(b) Phase portrait for V (B0) = −2.596V

(c) Phase portrait for V (B0) = −2.628V

Figure 3.5. Oscilloscope snapshots of phase portraits for V (p0) = −2.983V and various

values of V (B0).
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(a) Time series x(t) and z(t) for V (B0) = −2.550V

�
(b) Time series x(t) for V (B0) = −2.596V

(c) Times series x(t) for V (B0) = −2.628V

Figure 3.6. Oscilloscope snapshots of time series for V (p0) = −2.983V and various

values of V (B0).
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�

Figure 3.7. Circuit diagram of the “laser with feedback”.

integrators), according to Eq. (3.1) and after a temporal rescaling of three

orders of magnitude, are selected as follows. For the x integrator we set

k0 = 1/(R1C1) = 2.463 × 104s−1 where R1 = 33kΩ and C1 = 1.67nF ,

(R3 = R1 = 33kΩ). For the y integrator we set γ = 1/(R4 × C2) =

1.00× 102s−1, where R4 = 10kΩ, C2 = 1μF . For the z integrator we select

β = 1/(R7 × C3) = 1.00× 103s−1, with R7 = 10kΩ and C3 = 100nF . For

the other parameter values we have: k1 = R1/(R2 × 2.5) = 13.2 where

R2 = 1kΩ; p0 = R4/R6 = 1.196 where R6 = 8.36kΩ; B0 = R7/R9 = 0.115

where R9 = 86.6kΩ; R/α = R7/R8 = 0.222, where R8 = 45kΩ.

The attractors in the x − z phase space for different values of the B0

parameter value are reported in Figure 3.5. In panel (a) the local dynamics

emerging after an Hopf bifurcation is shown. An increase of the control
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parameter B0 leads to a condition of homoclinic chaos due to a homoclinic

orbit around which a chaotic regime characterized by pulses nearly of the

same height but erratically separated in time due to the rejection mecha-

nism around the local chaos are shown in (a). A successive increment of

the control parameter leads to the stabilization of the pulsed regime which

are typical in a relaxation oscillator. In the presented attractors (see Fig-

ures 3.5b and 3.5c) we observe a small distortion for high amplitudes of the

x signal due to the frequency limitation of the analog multipliers. This lim-

itation does not induce severe limitations to the global dynamics as shown

in the temporal behavior of the x signal, when we consider applications in

the low frequency range below 1 kHz. For applications in high frequency

regimes the nonlinearities must be implemented by using CMOS devices

(range 1–10 MHz).

3.4 Discussion

Numerical analysis of the proposed model and its electronic implementation

confirm its potentialities that promote it to the class of other well-known

paradigmatic models as the Lorenz’s [Lorenz (1963)], Chua’s [Matsumoto

(1984); Chua et al. (1986)] Chen’s [Hau et al. (2010); Celikovshy & Chen

(2002)], Roessler’s [Roessler (1976)] and other simple three-dimensional sys-

tems reported by Sprott [Sprott (2003)]. The Lorenz model is formally

equivalent to the laser equations (the so-called class C-laser), as demon-

strated by H. Haken [Haken (1975)] so the link with laser dynamics is

direct. The intrinsic symmetries imply a chaotic trajectory visiting two

saddle foci to be contrasted with the laser with feedback where the com-

peting steady states are a saddle focus and a saddle node which contribute

to the creation of the homoclinic connection. The comparison with the

Chua’s circuit which relies on a “locally active resistor” with static nonlin-

ear characteristic is of another kind. This element is the Chua’s diode and

it can be implemented in different ways. The chaotic attractors from the

Chua circuit perfectly reproduce Lorenz chaos even though the correspon-

dence with laser equations is difficult to draw. The chaotic Chen system

is similar but not equivalent to the Lorenz one as recently pointed out by

Chen [Chen (2020)] introducing the concept of “generalized Lorenz systems

family”. In both cases the nonlinearities are two of the quadratic type in

models which have seven terms on the right-hand side. The Roessler circuit

is simpler when compared with Lorenz systems because it possesses only
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one quadratic term and seven terms on the right-hand side. It does not seem

that both Chua and Roessler systems are related to laser dynamics. The

above cited systems played a crucial role in chaos synchronization demon-

strated by Pecora and Carroll [Pecora & Carroll (1990)] using Lorenz and

Roessler circuits. The increased complexity in the laser with feedback is

due to feedback process which implies the additional cubic term xz2 to the

two quadratic nonlinearities xy. This is the first time that the cubic term is

treated in its simplest form approximating sin(z)2 with z2. It is important

to stress that adiabatic elimination of the fast variable corresponding to

laser polarization in the Lorenz system does not lead to rate model of the

laser equations in the so-called class B laser, the large class of the avail-

able lasers, including semiconductor lasers and solid state lasers. As far as

laser semiconductor lasers are concerned, it is important to note that their

dynamics is well described by the Lang and Kobayashi (LK) model [Lang

& Kobayashi (1980)] accounting for the effects of delayed optical feedback

acting on the timescale of the intrinsic semiconductor laser. The LK equa-

tions describe the complex dynamics of the complex electric field E and

the inversion (number of electron-hole pairs) N inside the laser. The fast

chaotic dynamics from these lasers has been largely used in applications

for secure communication systems ([Fischer et al. (2000); Van Wiggeren &

Roy (1998); Donati & Mirasso (2002); Ohtsubo & Davis (2005)]).

3.5 Conclusions

In conclusion, we retain that the laser with feedback, whose historical

origins dates back in the same period of other chaotic oscillators will be

appropriate for describing instances of local chaos, reached after subhar-

monic bifurcations, global bifurcations as homoclinic chaos and relaxation

type oscillation behavior or regular spiking behavior when a control pa-

rameter is changed. Another valuable advantage over the nonlinear oscil-

lators described above is related to the fact that elimination of the feed-

back variable leaves unchanged its potentialities, and chaos can be reached

by modulation of the parameter k, provided the general condition on the

timescales are fulfilled. In this framework, interesting perspectives are also

foreseen for competition population dynamics ruled by Volterra–Lotka mod-

els [Volterra (1926, 1931); Lotka (1910, 1920)] and chaotic epidemiological

models [Schwartz & Smith (1983)], in both cases the underlying nonlinear-

ities are of the direct product of two variables.
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3.6 Appendix

This appendix presents a method allowing to provide an upper bound for

the Hopf bifurcation parameter for any three-dimensional autonomous dy-

namical system for which the fixed point coordinates cannot be easily ex-

pressed analytically as it is the case for the dynamical system (3.2) for

which the coordinates of the fixed point I2 are the roots of a cubic poly-

nomial. Let us suppose that the three eigenvalues of the Jacobian matrix

J of this dynamical system evaluated at the fixed point (I2 in our case)

are real and complex conjugate λ1, λ2,3 = α ± iω. The Cayley–Hamilton

eigenpolynomial reads:

λ3 − σ1λ
2 + σ2λ− σ3 = 0 (3.9)

where σ1 = Tr (J), σ2 =
∑3

i=1 Mii (J) is the sum of all first-order diagonal

minors of J and σ3 = Det (J). Thus, we have:

σ1 = Tr (J) = λ1 + λ2 + λ3 = λ1 + 2α,

σ2 =

3∑
i=1

Mii (J) = λ1λ2 + λ1λ3 + λ2λ3 = 2αλ1 + β,

σ3 = Det (J) = λ1λ2λ3 = λ1β,

(3.10)

where β = α2 + ω2. In order to analyze the stability of fixed points ac-

cording to a control parameter value (B0 here), i.e. the occurrence of Hopf

bifurcation, we propose to use the Routh–Hurwitz’ theorem [Routh (1877);

Hurwitz (1893)] which states that if D1 = σ2 and D2 = σ3 −σ2σ1 are both

positive then eigenpolynomial equation (3.9) would have eigenvalues with

negative real parts. From Eq. (3.10) it can be stated that:

α =
σ1σ2 − σ3

λ2
1 + σ2

(3.11)

Thus, α = 0 provided that κ = σ1σ2 − σ3 = 0. For dynamical system

(3.2), we obtain:

κ = (1 + x) [p0xyε1 + (1 + x+ ε2) ε2]− 2B1k1xzε1ε
2
2 (3.12)

then, by replacing x, y and z the coordinates (3.3) of the fixed point I2, we

have:

B0 =
1 + ε2

2B1k1x∗ε1ε2
+

p0ε1 + ε2(2 + ε2)

2B1k1ε1ε22
+

(1 + 2B2
1k1ε1ε2)x

∗

2B1k1ε1ε2
(3.13)
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Positivity of fixed points has led to x∗ � p0 − 1 which implies that

max (x∗) = p0 − 1. Thus, by posing x∗ = p0 − 1 in (3.13) and while using

the parameter sets of our experiment, i.e. ε1 = 200, ε2 = 6, k1 = 12,

p0 = 1.208 and B1 = 0.555, we find:

BHopf
0 � 0.12057

The numerical computation of the Hopf bifurcation parameter value has

been found to be equal to 0.12036 which is below and very near the upper

bound analytically obtained.

3.7 References

Andronov A., Leontovich E., Gordon I. & Maier A. (1971). Theory of Bifur-

cations of Dynamical Systems on a Plane, Israel Program for Scientific

Translations, Jerusalem.

Arecchi F.T., Meucci R., Puccioni G.P. & Tredicce J.R. (1982). Experimental

evidence of subharmonic bifurcations, multistability, and turbulence in

a Q-switched gas laser, Physical Review Letters, 49(17), pp. 1217-1220.

Arecchi F.T., Gadomski W. & Meucci R. (1986). Generation of chaotic dy-

namics by feedback on a laser, Phys. Rev. A, 34(2), pp. 1617-1620.

Arecchi F.T., Meucci R. & Gadomski W. (1987). Laser dynamics with com-

peting instabilities, Phys. Rev. Lett., 58(21), pp. 2205-2208.

Arecchi F.T., Fortuna L., Frasca M., Meucci R. & Sciuto G. (2005). A pro-

grammable electronic circuit for modelling CO2 laser dynamics, Chaos,

15, 043104.

Celikovshy S. & Chen G. (2002). On a generalized Lorenz canonical form of

chaotic systems, Int. J. Bifurcation Chaos, 12, pp. 1789-1812.

Chen G. (2020). Generalized Lorenz systems family, arXiv:2006.04066.

Chua L.O., Kumaro M. & Matsumoto T. (1986). The double scroll family,

IEEE Transactions on Circuits and Systems, 33, pp. 1072-1118.

Ciofini M., Politi A. & Meucci R. (1993). Effective two-dimensional model for

CO2 lasers, Phys. Rev. A, 48, pp. 605-610.

Donati S. & Mirasso C.R. (2002). Feature section on optical chaos and appli-

cations to cryptography, IEEE J. Quantum Electron., 38, pp. 1138-1205.

Eckmann J.P. & Ruelle D. (1985). Ergodic theory of chaos and strange at-

tractors, Rev. Mod. Phys., 57, pp. 617-656.

Fischer I., Liu Y. & Davis P. (2000). Synchronization of chaotic semiconductor

laser dynamics on subnanosecond time scales and its potential for chaos

communication, Phys. Rev. A, 62(1), 011801 (4 pages).

Freire J.G., Meucci R., Arecchi F.T. & Gallas J.A.C. (2015). Self-organization

of pulsing and bursting in a CO2 laser with opto-electronic feedback,

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

03
/1

6/
23

. R
e-

us
e a

nd
 d

ist
rib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



50 Nonlinear Dynamics of LASER

Chaos, 25(9), 097607.

Haken H. (1975). Analogy between higher instabilities in fluids and lasers,

Physics Letters A, 53(1), pp. 77-78.

Hau Z., Kang N., Kong X., Chen G. & Yan G. (2010). On the equivalence

of Lorenz system and Chen system, Int. J. Bifurcation Chaos, 20, pp.

557-560.

Hopf E. (1942). Abzweigung einer periodischen Lösung von einer stationären
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Chapter 4

Slow Invariant Manifold of Laser
with Feedback

Previous works have demonstrated experimentally and theoretically the

existence of slow fast evolutions, i.e. slow chaotic spiking sequences in the

dynamics of a semiconductor laser with ac-coupled optoelectronic feedback.

In this chapter, by using the so-called Flow Curvature Method, we provide

the slow invariant manifold analytical equation of such a laser model. This

equation and its graphical representation in the phase space enable on the

one hand to discriminate the slow evolution of the trajectory curves from

the fast one and, on the other hand to improve our understanding of this

slow-fast regime.

4.1 Introduction

More than ten years ago, Al-Naimee et al. [Al-Naimee et al. (2009)] studied

“the occurrence of chaotic spiking in a semiconductor laser with ac-coupled

nonlinear optoelectronic feedback. The solitary laser dynamics is ruled by

two coupled variables (intensity and population inversion) evolving with

two very different characteristic timescales. The introduction of a third

degree of freedom (and a third timescale) describing the ac-feedback loop,

leads to a three-dimensional slow–fast system displaying a transition from

a stable steady state to periodic spiking sequences as the dc-pumping cur-

rent is varied (. . . ). The timescale of these dynamics, much slower with

respect to typical semiconductor laser timescales (few ns), is fully deter-

mined by the highpass filter in the feedback loop.” Then, they provided a

minimal physical model qualitatively reproducing the experimental results.

Since this model involves two time scales, it can be considered a slow–fast

dynamical system or a singularly perturbed system.
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At the end of the nineteenth century, Henri Poincaré originally de-

veloped, in his New Methods of Celestial Mechanics [Poincaré (1892)],

singular perturbation methods. During the thirties and in the following

decades, Andronov and Chaikin [Andronov (1937)], Levinson [Levinson

(1949)] and Tikhonov [Tikhonov (1948)] generalized Poincaré’s ideas and

stated that slow–fast dynamical systems, also called singularly perturbed

systems, possess invariant manifolds on which trajectories evolve slowly,

and toward which nearby orbits contract exponentially in time (either for-

ward or backward) in the normal directions. Then, from the beginning

of the sixties, the seminal works of Wasow [Wasow (1965)], Cole [Cole

(1968)], O’Malley [O’Malley (1974, 1991)] and Fenichel [Fenichel (1971,

1974, 1977, 1979)], to name but a few, gave rise to the so-called Geometric

Singular Perturbation Theory. Fenichel [Fenichel (1971, 1974, 1977, 1979)]

established the local invariance of slow invariant manifolds that possess

both expanding and contracting directions and which were labeled slow

invariant manifolds while using his theory for the persistence of normally

hyperbolic invariant manifolds. Let us note that the theory of invariant

manifolds for an ordinary differential equation was independently devel-

oped by Hirsch, et al. [Hirsch (1977)]. Since the beginning of the eighties,

two kinds of approaches have been developed: singular perturbation-based

methods and curvature-based methods. The former include the Geomet-

ric Singular Perturbation Theory (GSPT), the Successive Approximations

Method (SAM) [Rossetto (1986, 1987)] and the Zero-Derivative Principle

(ZDP) [Gear et al. (2005); Zagaris et al. (2009)], and the latter, the Intrin-

sic Low-Dimensional Manifold (ILDM) [Maas & Pope (1992)], the Inflec-

tion Line Method (ILM) [Brøns & Bar-Eli (1994)] and the Tangent Lin-

ear System Approximation (TLSA) [Rossetto et al. (1998)]. In 2005, a

new approach of n-dimensional singularly perturbed dynamical systems or

slow–fast dynamical systems based on the location of the points where the

curvature of trajectory curves vanishes, called the Flow Curvature Method,

was developed by Ginoux et al. [Ginoux (2006a,b, 2008)] and then by Gi-

noux [Ginoux (2009, 2011, 2014)]. In a recent publication, Ginoux [Ginoux

(2021)] proved, on the one hand, the identity between all the methods be-

longing to the same category (i.e. belonging to singular perturbation-based

methods or to curvature-based methods) and, on the other hand, that be-

tween both categories. Moreover, he also established, on the one hand, that

his Flow Curvature Method encompasses the three other methods (IDLM,

TLSA, and ILM) and, on the other hand, the identity between his Flow

Curvature Method and Geometric Singular Perturbation Method.
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Thus, the aim of this work was to provide the slow invariant mani-

fold analytical equation of the semiconductor laser model with ac-coupled

optoelectronic feedback introduced by Al-Naimee et al. [Al-Naimee et al.

(2009)]. Let us observe that, since this three-dimensional model has two

small multiplicative parameters on the right-hand side of its velocity vector

field, it has two fast variables and one slow. Thus, as highlighted by Ginoux

and Rossetto [Ginoux (2006a)], in this specific case, one of the hypotheses of

Tihonov’s theorem [Tikhonov (1948)] is not checked since the fast dynamics

of the singular approximation, i.e. the zero-order approximation of the slow

invariant manifold, has a periodic solution. As a consequence, Geometric

Singular Perturbation Theory fails to provide its analytical equation. To

overcome such difficulty, we used, in this work, the so-called Flow Curva-

ture Method. This chapter is organized as follows: in Section 4.2, the laser

model and its parameters are presented. In Section 4.3, the main features

of the Flow Curvature Method are recalled and the slow invariant manifold

of the laser model is provided as well as its graphical representation in the

phase space. In the last section, the results are discussed, and perspectives

on this work are given.

4.2 Slow–fast dynamical system

Following the work of Al-Naimee et al. [Al-Naimee et al. (2009)], we will

use the dynamical system:

dx

dt
= x (y − 1) ,

dy

dt
= ν (δ0 − y + f (x, z)− xy) ,

dz

dt
= −ε (x+ z) ,

(4.1)

where

f (x, z) = α
x+ z

1 + s (x+ z)
(4.2)

and the parameters s = 11, α = 1, ν = 10−3, and ε = 2 × 10−5 as well as

the bifurcation parameter δ0 = 1.017 are exactly the same as in [Al-Naimee

et al. (2009)]. Due to the presence of the two small parameters ν and ε,

the dynamical system (4.1) is considered slow–fast. However, let us observe

that ε = κν where κ = 2 × 10−2. Thus, by posing τ = νt, system (4.1)

reads:
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dx

dτ
= x′ =

x

ν
(y − 1) ,

dy

dτ
= y′ = δ0 − y + f (x, z)− xy,

dz

dτ
= z′ = −κ (x+ z) ,

(4.3)

Thus, x′ = O(ν−1) � 1, since ν � 1, y′ = O(1), and z′ = O(κ) � 1,

since κ � 1. It follows that x is a (very) fast variable and y is a fast

variable, while z is a slow variable.

4.3 Stability analysis

4.3.1 Fixed points, Jacobian matrix and eigenvalues

Fixed points are determined while using the classical nullclines method.

System (4.1) has two fixed points: I1(0, δ, 0) and I2(δ − 1, 1, 1− δ).

The Jacobian matrix of system (4.1) reads:

J =

⎛
⎜⎜⎜⎜⎜⎝

y − 1 x 0

ν

(
∂f

∂x
− y

)
−ν (1 + x) ν

∂f

∂z

−ε 0 −ε

⎞
⎟⎟⎟⎟⎟⎠ (4.4)

Let us observe that for both the fixed points I1 and I2:

∂f

∂x
=

α

[1 + s (x+ z)]2
=

∂f

∂z
= α = 1, (4.5)

since nullcline ż = −ε(x+ z) = 0 and the parameter α = 1.

By replacing the coordinate of the fixed point I1 in the Jacobian matrix

(4.4), the Cayley–Hamilton eigenpolynomial can be easily factorized and

reads:

[λ− (δ − 1)] (λ+ ν) (λ+ ε) = 0 (4.6)

Thus, there are three real eigenvalues:

λ1 = δ − 1 ; λ2 = −ν ; λ3 = −ε. (4.7)

Thus, the fixed point I1 is a saddle-node provided that δ > 1.
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Then, upon replacing the coordinate of the fixed point I2 in the Jacobian

matrix (4.4), the Cayley–Hamilton eigenpolynomial reads:

λ3 − (νδ + ε)λ2 + νδελ− (1− δ) νε = 0 (4.8)

Numerically solving this third-degree eigenpolynomial (4.8) leads to:

λ1 = −0.00124128 ; λ2,3 = 0.000102141± 0.000513301i. (4.9)

Thus, the fixed point I2 is a saddle-focus .

By using perturbation methods [Bender & Orszag (1999)], the real root

λ1 of the eigenpolynomial (4.8) may be approximated by:

λ1 = −νδ +O (ε) , (4.10)

where O (ε) = −kε with k � ε. Moreover, the trace of the Jacobian matrix

(4.4), evaluated at the fixed point I2, provides:

Tr (J) = λ1 + λ2 + λ3 = −νδ − ε. (4.11)

Since λ2,3 = σ ± iω is a complex conjugate, this trace reads:

Tr (J) = λ1 + 2σ = −νδ − ε. (4.12)

Thus, by replacing, in the previous equation (4.12), λ1 with the expres-

sion (4.10), we obtain:

2σ = (k − 1) ε > 0. (4.13)

It follows that the real part of the eigenvalues λ2,3 is necessarily positive

and, thus, the fixed point I2 is a saddle-focus .

4.3.2 Bifurcation diagram

Following the work of Al-Naimee et al. [Al-Naimee et al. (2009)], we used

δ as a bifurcation parameter and computed the bifurcation diagram, which

is presented in Figure 4.1. Such a diagram, which is exactly the same as

that produced in [Al-Naimee et al. (2009)], provides information that can

be used to have a better understanding of the phase space orbits plotted in

Figure 4.2.
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Figure 4.1. Bifurcation diagram xmax as a function of δ.

From Figure 4.1, we observe that, for δ ∈ [1.006, 1.0082], the attractor

is a limit cycle of period one (see Figure 4.2a). For δ ∈ [1.0082, 1.0105]

and δ ∈ [1.0117, 1.0137], the period of the limit cycle becomes of period

two (see Figure 4.2b). For δ ∈ [1.0105, 1.0117], the limit cycle is of period

four (see Figure 4.2c). When δ > 1.037, the attractor becomes chaotic

(see Figure 4.2d). To confirm these results, Lyapunov characteristic expo-

nents were computed in each case.

4.3.3 Numerical computation of the Lyapunov characteris-

tic exponents

The numerical computation of the Lyapunov Characteristic Exponents

(LCEs) of the system (4.1) was performed in each case with the algo-

rithm developed by Sandri [Sandri (1996)] for Mathematica® and the

Lyapunov Exponents Toolbox (LET) developed by Siu for MatLab®

and involving the two algorithms proposed by Wolf et al. [Wolf et

al. (1985)] and Eckmann and Ruelle [Eckmann & Ruelle (1985)] (see

https://fr.mathworks.com/matlabcentral/fileexchange/233-let). The re-

sults obtained by both algorithms are consistent. The LCE values were

computed within each considered interval δ ∈ [1.006, 1.02]. As an example,

for δ = 1.007, 1.010, 1.011 and 1.017, both algorithms provided, respectively,

the following LCEs: (0,−0.15,−0.82), (0,−0.17,−0.81), (0,−0.16,−0.80)
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(a) δ = 1.007 (b) δ = 1.010

(c) δ = 1.011 (d) δ = 1.017

Figure 4.2. Phase portraits of system (4.1) in the phase space for various values of δ.

and (0.025, 0,−1.06). Then, the classification of (autonomous) continuous-

time attractors of the dynamical system (4.6) on the basis of their Lyapunov

spectrum, together with their Hausdorff dimension, is presented in Table

4.1 according to the work of Klein and Baier [Klein & Baier (1991)].

4.4 Slow invariant manifold

In recent publications, a new approach to n-dimensional singularly per-

turbed systems of ordinary differential equations, called the Flow Curvature
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Table 4.1. Lyapunov characteristic exponents of dynamical system (4.6) for various

values of δ.

δ LCE spectrum Dynamics of the attractor Hausdorff dimension

δ ∈ [1.0060, 1.0082] (0,−,−) Limit Cycle of period 1 D = 1

δ ∈ [1.0082, 1.0105] (0,−,−) Limit Cycle of period 2 D = 1

δ ∈ [1.0105, 1.0117] (0,−,−) Limit Cycle of period 4 D = 1

δ ∈ [1.0117, 1.0137] (0,−,−) Limit Cycle of period 2 D = 1

δ ∈ [1.0137, 1.02] (+, 0,−) 2-Chaos D = 2.02

Method, has been developed by Ginoux et al. [Ginoux (2006a,b, 2008, 2009,

2011, 2013, 2014, 2015, 2016, 2019)]. It considers the trajectory curves in-

tegral of such systems as curves in Euclidean n-space. Based on the use of

local metric properties of curvatures inherent to Differential Geometry, this

method, which does not require the use of asymptotic expansions, states

that the location of the points where the local curvature of the trajectory

curves of such systems is null defines an (n− 1)-dimensional manifold as-

sociated with this system and called the flow curvature manifold. The

invariance of this manifold is then stated according to a theorem intro-

duced by Gaston Darboux [Darboux (1878)] in 1878. Moreover, as stated

in Ginoux [Ginoux (2009)], if the slow–fast dynamical system has a sym-

metry such as (−x,−y, z), its flow curvature manifold has the same, i.e.

φ(−x,−y, z) = φ(x, y, z). Thus, as previously stated (see Section 4.2), the

system (4.1) is a three-dimensional singularly perturbed dynamical system

with two fast variables. However, in such a specific case, one of the hy-

potheses of Tikhonov’s theorem [Tikhonov (1948)] is not checked since the

fast dynamics of the singular approximation have a periodic solution. Nev-

ertheless, while using the Flow Curvature Method, an approximation up

to order three in νε2 and ν2ε of the slow invariant manifold equation of

the system (4.1) can been computed for various values of the bifurcation

parameter δ.

According to the Flow Curvature Method, the following proposition

holds for any n-dimensional singularly perturbed dynamical system com-

prising small multiplicative parameters in its velocity vector field:

Proposition 4.1. The location of the points where the (n− 1)th curvature

of the flow, i.e. the curvature of the trajectory curve �X integral of any

n-dimensional singularly perturbed dynamical systems vanishes, providing
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a p-order approximation of its slow manifold, the equation of which reads

φ( �X) = �̇X · ( �̈X ∧
...
�X ∧ . . . ∧

(n)

�X ) = det( �̇X, �̈X,
...
�X, . . . ,

(n)

�X ) = 0, (4.14)

where

(n)

�X represents the time derivatives up to order n of the velocity vector

field.

For a proof of this proposition and that of the invariance of the slow

manifold (4.14), see Ginoux [Ginoux (2006a,b, 2008, 2009, 2011, 2013, 2014,

2021)]. Let us observe that the p-order approximation depends on the

number of small multiplicative parameters in the velocity vector field. In

the particular case of system (4.1), it can be easily stated that, since the

plane x = 0 is invariant with respect to the flow and due to the presence

of two small multiplicative parameters, i.e. ν and ε, the slow invariant

manifold equation (4.14) can be simply and directly expressed by:

φ( �X) = ( �̇X ∧ �̈X) ·�i = 0, (4.15)

where �i is the unit vector along the x-axis. Thus, by using the Flow Cur-

vature Method and Eq. (4.15), the slow invariant manifold equation of

system (4.1) reads:

φ(x, y, z, ν, ε) = x(1 − y)(δ + δs2x2 + s2x2yz − s2x2y + 2s2xyz2 − 2s2xyz + 2δs2xz

+ s2yz3 − s2yz2 + δs2z2 + sx2 + 2δsx+ 2sxyz − 2sxy + 2sxz + 2syz2 − 2syz

+ sz2 + 2δsz + yz − y)− ε(x+ z)(−δ + s2x3y − δs2x2 + 2s2x2yz + s2x2y

+ s2xyz2 + 2s2xyz − 2δs2xz + s2yz2 − δs2z2 + 2sx2y − sx2 − 2δsx+ 2sxyz

+ 2sxy − 2sxz + 2syz − sz2 − 2δsz + xy + y) + ν(x+ 1)(x+ z)(sx+ sz + 1)

× (−δ + sx2y − δsx+ sxyz + sxy + syz − δsz + xy − x+ y − z). (4.16)

The slow invariant manifold equations (4.16) of the system (4.1) have

been plotted in the figures below (see Figure 4.3) for various values of the

bifurcation parameter δ = 1.007, 1.010, 1.011 and 1.017.

We observe that, for δ = 1.007, the trajectory curve integral of system

(4.1) is a periodic stable limit cycle that lies partly on the left side and

right side of the slow invariant manifold ; see Figure 4.3a. For a bifurcation

parameter δ equal to 1.010 and 1.011 (see Figures 4.3b and 4.3c), the same

evolution appears. Let us observe that the kind of funnel in Figures 4.3a

and 4.3c corresponds to the attractive eigendirection of the fixed point I2.
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(a) δ = 1.007 (b) δ = 1.010

(c) δ = 1.011 (d) δ = 1.017

Figure 4.3. Slow invariant manifolds of system (4.1) in the phase space for various
values of δ.

When δ = 1.017, the attractor becomes chaotic and the trajectory curve

evolves slowly from the bottom to the top on nearly all the left part of the

slow invariant manifold . Then, it jumps on the upper right part of slow

invariant manifold and starts spiraling around the attractive eigendirection

corresponding to the negative real eigenvalues λ1 ≈ −νδ of fixed point I2;

see Eqs. (4.9) and (4.10). When the trajectory curve reaches the lower

right part of the slow invariant manifold, it jumps to its left part. Let us

observe that, during its descent, it lies in the vicinity of the slow invariant

manifold ; see Figures 4.3d and 4.4.
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Figure 4.4. Evolution of the trajectory curve integral of system (4.1) for δ = 1.017.

4.5 Discussion

In this work, by using the so-called Flow Curvature Method, we provide

the slow invariant manifold analytical equation of a laser model. This

equation and its graphical representation in the phase space enable, on

the one hand, discriminating the slow evolution of the trajectory curves

from the fast one and, on the other hand, improving our understanding of

this slow–fast regime. Thus, the repelling and attracting branches of the

slow invariant manifold have been specified. We also highlighted that the

deformation of the surface representing, in the phase space (x, y, z), the

slow invariant analytical manifold according to the bifurcation parameter

δ is rather weak (see Figure 4.3). This confirms an assumption made by

Al-Naimee et al. [Al-Naimee et al. (2009)] according to which:

“Therefore, it is expected that they should not imply strong

modifications of the slow-manifold shape which, as discussed

above, is responsible for the observed dynamics.”
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Finally, our mathematical analysis also enabled confirming another as-

sumption made by Al-Naimee et al. [Al-Naimee et al. (2009)], according to

which “since (x1, y1, z1) is located precisely on the slow manifold, the exact

homoclinic connection does not occur.”
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Chapter 5

Phase Control in Nonlinear Systems

5.1 Introduction

Since the pioneering work on controlling chaos due to Ott, Grebogi and

Yorke (OGY) [Ott et al. (1990)], different control schemes have been pro-

posed that allow to obtain a desired response from a dynamical system

by applying some small but accurately chosen perturbations [Shinbrot et

al. (1993)]. In this context, some techniques that allow avoiding escapes

in open dynamical systems presenting transient chaos have been proposed,

with applications to many different situations in physics and engineering

(see Ref. [Aguirre et al. (2004)] and references therein).

The methods stated to control chaos can be classified in feedback and

nonfeedback methods [Boccaletti et al. (2000)], depending on how they inter-

act with the system. Feedback methods of chaos control, as the celebrated

OGY [Ott et al. (1990)], stabilize one of the unstable orbits that lie in

the chaotic attractor by using small state-dependent perturbations into the

system. However, in experimental implementations, the fast response that

these methods require cannot usually be provided. For these situations,

nonfeedback methods are more useful. Nonfeedback methods have been

mainly used to suppress chaos in periodically driven dynamical systems.

ẋ = f(x, λ) + F cosωt (5.1)

where x, f and F are vectors of the m-dimensional phase space, and λ is a

parameter of the system. The main idea of these nonfeedback methods is

to apply a harmonic perturbation either to some of the parameters of the

system

ẋ = f(x, λ(1 + ε cos(rωt+ φ)) + F cosωt (5.2)

67
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68 Nonlinear Dynamics of LASER

or as an additional forcing,

ẋ = f(x, λ) + F cosωt+ εu cos(rωt+ φ) (5.3)

where u is a conveniently chosen unitary vector.

The effectiveness of this type of methods has been tested experimen-

tally in different works [Lima et al. (1990); Meucci et al. (1994)]. In the

first where these nonfeedback methods were explored, the numerical and

experimental explorations were essentially focused on the role played by the

perturbation amplitude ε and the resonance condition r, but the role of the

phase difference φ was hardly explored. However, in [Meucci et al. (1994)],

it was observed that the phase difference φ between the periodic forcing

and the perturbation had certain influence on the dynamical behavior of

the system. Furthermore, in [Qu et al. (1995)], the authors have shown

that φ plays a crucial role on the global dynamics of the system. Thus, it

was clear that the role of the phase difference is important in the global

dynamics of the system. The type of control based on varying the phase

difference φ in search of a desired dynamical behavior is known as the phase

control technique.

The aim of this chapter is to show that the phase control is very versatile

and that it can be applied in many different contexts. As we said, this tech-

nique can be used to control chaos, but also to control other paradigmatic

dynamical behaviors present in nonlinear dynamical systems. Thus, we are

going to show in this chapter that phase control can be used to suppress

chaos [Zambrano et al. (2006)], but also to control the phenomenon of crisis-

induced intermittency [Zambrano et al. (2006)] and to avoid escapes in an

open dynamical system that presents transient chaotic behavior [Seoane et

al. (2008)]).

This chapter is organized as follows. In Section 5.2 we present an ap-

plication of the phase control method to the paradigmatic model for both

the CO2 laser and how this technique can be used to control crisis-induced

intermittency. Some conclusions and a discussion of the main results of

this chapter are presented in Section 5.3.
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5.2 Phase control of intermittency in dynamical systems

5.2.1 Crisis-induced intermittency and its control

For some chaotic systems it can be observed that, by modifying a control

parameter, the chaotic attractor can touch an unstable periodic orbit inside

its basin of attraction. This phenomenon, known as interior crisis [Ott et

al. (1982)], induces a sudden expansion of the attractor, after which most

trajectories alternate over periods of time in the region where the pre-crisis

attractor lay with excursions out of it.

This type of intermittency, called crisis-induced intermittency is a

widespread phenomenon [Ott et al. (1987)], so it is common to find sit-

uations where a control of this type of behavior becomes desirable. Fifteen

years ago, [Meucci et al. (2005)] a feedback method to enhance or tame the

intermittency has been devised. The strategy is to force the system with a

feedback in which the “typical” frequency of the excursions, that is the fre-

quency of the periodic orbit involved in the interior crisis, is either filtered

or enhanced. This method has been shown to be effective in a periodically

driven chaotic CO2 laser, as the one described in [Meucci et al. (2004)].

However, as we said in the previous section, feedback control methods

might present some difficulties for their implementation. Thus, in some

contexts nonfeedback methods might be more useful. In some of our pre-

vious works, we have shown that phase control of chaos [Qu et al. (1995);

Yang et al. (1996)] is a powerful tool to control the dynamics of a peri-

odically driven chaotic system. In this section, we are going to show that

the intermittent behavior of a dynamical system close to an interior crisis

can be controlled by using the phase control scheme. We give experimental

and numerical evidence of the validity of the method for the periodically

driven CO2 laser close to an interior crisis, and in order to have a deeper

insight on the role of φ we also present an analysis of phase control of the

quadratic map close to a crisis.

5.2.2 Experimental setup and implementation of the phase

control scheme

We first address the experimental implementation of the phase control

scheme on a CO2 laser, to control its intermittent behavior. The experi-

mental setup consists of a single-mode CO2 laser, as shown in Figure 5.1.

The laser cavity is defined by a totally reflecting grating and a partially re-
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flecting mirror (G and M), and the gain medium is pumped by a constant

electric discharge current. An electro-optic modulator (EOM) is inserted in

the laser cavity in order to control the cavity losses by an external forcing,

obtained from a sinusoidal generator (MD), that can be represented as

F (t) = β sin(2πf0t) + b0, (5.4)

where β is the amplitude of the external forcing, b0 is a bias voltage and

f0 = 100 kHz is about twice the relaxation frequency of the laser.

B0

G M

phase 
control

sync in

sync out

LT

M D

P

EOM

Figure 5.1. Experimental setup for a single-mode CO2 laser with modulated losses.

EOM: intra-cavity electro-optic modulator, G: total reflecting grating, M: partial reflect-
ing mirror, D: fast infrared detector, P: sinusoidal generator, MD: digital oscilloscope.

The CO2 modulated laser is accurately described by the following model

of five differential equations [Marino & Miguez (2006)]:

ẋ1 = kx1(x2 − 1− α sin2(F (t)))

ẋ2 = −γ1x2 − 2kx1x2 + gx3 + x4 + p

ẋ3 = −γ1x3 + gx2 + x5 + p (5.5)

ẋ4 = −γ2x4 + zx2 + gx5 + zp

ẋ5 = −γ2x5 + zx3 + gx4 + zp.

In the above equations, x1 represents the laser output intensity, x2 is

the population inversion between the two resonant levels, and x3, x4 and

x5 account for molecular exchanges between the two levels resonant with

the radiation field and the other rotational levels of the same vibrational

band. The parameters of the model are the following: k is the unperturbed

cavity loss parameter, g is a coupling constant, γ1 and γ2 are population
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relaxation rates, z accounts for an effective number of rotational levels, α

accounts for the efficiency of the electro-optic modulator and p is the pump

parameter. The rest of the parameters are related to the external periodic

forcing defined above.

By increasing the amplitude of the external forcing, the system under-

goes a sequence of subharmonic bifurcations, and for β < 0.1 the dynamics

is restricted to a certain region of the phase space, say |x1|< 0.013, as

shown in Figure 5.2. Further increase of β induces an interior crisis, and

the clear attractor expansion that can be observed in Figure 5.2 for β ≈ 0.1.

This leads to the occurrence of a regime where there is an intermittency

between orbits contained in the pre-crisis bounding region and excursions

out of it, of period three and four. The set of parameters used in the nu-

merical simulations are k = 30, α = 4, γ1 = 10.0643, g = 0.05, p = 0.01987,

γ2 = 1.0643, z = 10, f0 = 1/7 and b0 = 0.1794. The stability analysis

provides a value of the relaxation oscillation frequency of 0.07, which is

around half the frequency of the forcing signal.

Figure 5.2. Numerical bifurcation diagram for β. Two interior crises are observed, but

we are going to study the effect of harmonic perturbations on the laser around the first
crisis.

The phase control scheme is here implemented as follows. We choose

again to perturb harmonically one of the parameters of the system, b0,

because it is easily accessible in the experimental setup. The perturbed

parameter becomes a periodic function b(t) = b0(1 + ε sin(2πf0rt + φ)).

The phase control scheme relies in an appropriate use of the phase φ, once

ε and r are fixed.
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Due to the fact that F (t) depends linearly on the bias b0, one can clearly

see that adding a harmonic perturbation to the bias is equivalent to adding a

second periodic forcing, which is one of the possible implementations of the

phase control scheme [Qu et al. (1995); Yang et al. (1996)], corresponding

to Eq. (5.3). Thus, for the perturbed system, the forcing term of Eq. (5.5)

should read

F (t) = β sin(2πf0t) + ε′β sin(2πf0rt+ φ) + b0, (5.6)

with ε′ = b0ε/β. We consider ε′ instead of ε, since it enables us to quantify

the strength of the applied perturbation in terms of the main periodic

forcing.

5.2.3 Phase control of the laser in the pre-crisis regime

We consider the role of the phase when the unperturbed laser is placed in

the situation previous to the interior crisis, so that no intermittency takes

place (not even induced by noise, since we choose to be quite far from the

interior crisis). In this case, we characterize the effect of φ for fixed values

of ε′ and r by taking records of very long time series where φ is slowly

varied φ �→ φ(t) = 2πμt where μ � 1/f0, i.e. the phase varies very slowly

compared to the typical time scale of the laser. Thus, for t = 0 the phase

difference is φ = 0 and it increases until t = 1/μ, where it is φ = 2π. The

dynamical state of the system at a certain time t′ corresponds essentially
to the expected behavior for φ = 2πμt′.

Let us first analyze the case in which the frequency of the perturbation

is the same as the frequency of the main driving, that is, r = 1. The

experimental long time series for this case is plotted in Figure 5.3. We can

observe how there is an increase of the amplitude of the peaks when φ is

close to 0 and 2π, and a depression as φ goes to π. This phenomenon has

a simple explanation, indeed

F (t) = β sin(2πf0t) + ε′β sin(2πf0t+ φ) = β′ sin(2πf0t+ φ0), (5.7)

where

β′ = β
√

1 + ε′2 + 2ε′ cosφ. (5.8)

Notice that we basically have a single forcing, so the resulting φ0 plays

an irrelevant role. However, the effective amplitude of the perturbation,
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Figure 5.3. Long time series varying the phase φ for r = 1 ε′ = 0.1. Note that for φ = 0

and φ = 2π the maxima of the series are increased, as expected.

β′, depends on φ. Thus, by choosing φ = 0, the effective amplitude of

the periodic forcing is increased to a value closer to the critical value so the

height of the peaks becomes bigger. Instead, by choosing φ = π, β′ becomes

smaller, so the system is further away from the crisis, and the height of the

peaks becomes smaller. We shall point out, in this figure, that with a

perturbation of about 10% of the main forcing, the system is not led to the

intermittent regime. This is not very relevant by itself, because Eq. (5.8)

shows that the necessary amplitude of the perturbation to lead the system

to the intermittent regime could be reduced just by placing the unperturbed

system closer to the crisis. However, it is an important reference to evaluate

the effectiveness of perturbations with different frequencies.

Now we consider the laser in the same unperturbed situation before the

crisis and we apply a perturbation whose frequency is the same as the fre-

quency of the unstable periodic orbit involved in the interior crisis [Meucci

et al. (2005)], that is, f0/3. The two main behaviors observed experimen-

tally are summarized in the two diagrams shown in Figure 5.4. We observe

an evident 2π/3 symmetry of the first diagram, which could be deduced

from the invariance of Eq. (5.6) under the transformation t �→ t+ k/f0 and

φ �→ φ+2πrk, with k an integer. Figure 5.4a shows the crucial role played

by the phase difference. For the same values of the perturbation amplitude,

by adjusting the phase, the system can be placed either in an intermittent

regime or in the pre-crisis regime. It is important to note that we observe

experimentally this significant effect even if the amplitude of the perturba-
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Figure 5.4. Long time series varying the phase φ for r = 1/3, (a) ε′ = 0.003 and

(b) ε′ = 0.006. The diagrams present the expected 2π/3 symmetry, even if in (b) the

intervals of φ leading to intermittency have merged and the behavior is nearly phase
independent.

Figure 5.5. Long time series varying the phase φ for r = 1/2, (a) ε′ = 0.006 and (b)

ε′ = 0.01. We have a π symmetry, as expected. The dependence on the phase φ is clear,

and we observe that in (b) a correct selection of the phase determines whether there is
intermittency or not.

tion applied is about 0.3% of the amplitude of the main forcing, which is

much smaller than in the r = 1 case. However, as we observe in Figure 5.4b

for ε
′
= 0.006, there is intermittency for nearly all values of φ. In summary,

the r = 1/3 perturbation is much more effective than the r = 1 perturba-

tion to control the intermittency. New features arise when the system is

perturbed with the frequency corresponding to the period doubling bifurca-

tion of the system, f0/2. Again, two experimental diagrams are presented

to see the effect of the phase, shown in Figure 5.5. We can observe the

expected π symmetry in φ. On the other hand, Figure 5.5a shows again

that the phase difference modulates the maximum height of the peaks, but
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intermittency does not take place. However, when the perturbation is in-

creased to ε′ = 0.01, Figure 5.5b, just 1% of the main forcing, the effect

of the phase is even clearer: again, the phase enables us to place the sys-

tem either in the intermittent regime or in the small chaos regime. In the

intermittent regime observed in Figure 5.5b, the high amplitude orbits are

related with the second interior crisis shown in Figure 5.2, thus a variety

of dynamical behaviors is accessible by varying φ.

Figure 5.6. The medium height of the maxima of x1, <H >, as a function of ε and φ

for (a) r = 1, (b) r = 1/3 and (c) r = 1/2.
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Numerical calculations provide a confirmation of these results, together

with a deeper insight on the role of the phase. A good indicator to discrim-

inate between the different dynamical states of the laser for different values

of the parameters is

<H > = < max(x1(t))>|x1(t)>x0
(5.9)

where < · > indicates the average over a long time series, and max( ) in-

dicates the relative maximum of the series. The value of x0 is chosen

in such a way that <H > enables us to distinguish between the small

chaos and the intermittent regime. In the numerical simulations we have

observed that taking x0 = 10−5, that is, neglecting only the extremely

small peaks of the signal is sufficient for this discrimination. We have ob-

served that <H > ≤ 0.006 corresponds to the pre-crisis chaotic regime,

0.006 < <H > ≤ 0.0074 matches with the intermittent regime observed af-

ter the first crisis shown in Figure 5.2 and <H > > 0.0074 corresponds to

the regime in which there are high amplitude orbits, like those observed in

Figure 5.2 after the second crisis. <H > can be easily computed by numer-

ical integration of the equations of the laser. We study the dependence of

the global dynamics on the parameters of the system by calculating <H >

as a function of ε and φ, fixing r.

Numerical calculations are presented in Figure 5.6. As for the experi-

mental results, we include the calculations for the trivial case r = 1 for the

sake of clarity. In this case, Figure 5.6a, the color of the diagram and thus

<H > change smoothly as the parameters vary, from a minimum at φ = π

to a maximum at φ = 0.2π, as observed in the experiment (Figure 5.3).

For the r = 1/3 case, Figure 5.6b, <H > presents the expected 2π/3

symmetry. On the other hand, it can be clearly observed how the value of

<H > increases gradually with ε. For a narrow interval of ε, approximately

ε ∈ [0.002, 0.003], depending on φ we have values of <H > bigger than 0.006

intercalated with values of <H > smaller than 0.006. This agrees with the

phase-induced transitions between the intermittency and the small chaos

regime observed experimentally. However, as in the experiment, we can see

that if the perturbation amplitude ε is further increased with the intervals

of φ giving rise to intermittency merge, so intermittency is observed almost

independently of the phase.

Let us finally comment on the results for the r = 1/2 case. For small

values of ε, ε < 0.02, the <H > remains around <H > ≈ 0.005 almost

independently of the phase. However, when ε becomes bigger than a certain

critical value ε0 ≈ 0.02, there is a sudden change in the medium height of the
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peaks. This sudden transition to a high<H > regime, which corresponds to

the dynamical state observed after the second crisis of the laser, is evident

from the drastic change of color that we can observe in the diagram of

Figure 5.6c, which is fully consistent with the experiments on the laser.

Thus, once again we see the important role played by φ in placing the

system before or after the interior crisis.

5.2.4 Phase control of the intermittency after the crisis

Up to now we have shown that the intermittency of the CO2 laser in the pre-

crisis regime can be controlled, by just varying the phase φ. In this section,

in analogy with [Meucci et al. (2005)], we show that the phase control does

also work when the unperturbed laser is placed in the post-crisis region.

Figure 5.7. Experimental bifurcation diagram (a), showing how an appropriate selection

of the phase φ can take the laser from an intermittent regime to a small chaos regime.
A controlled time series of the laser, where control is applied at t ≈ 2 ms and the

intermittent behavior is nearly immediately suppressed (b).

In order to characterize the role of φ in this case we have opted to

perform a bifurcation diagram by localizing the maxima of different time

series of the laser with different values of φ, for ε = 0.01 and r = 1/2,

as shown in Figure 5.7a. We can clearly appreciate a π symmetry in the

diagram as in the previous section. We can see how a variation of φ allows

us to move from the intermittent regime to the small chaos regime. The

action of the applied perturbation on the laser is illustrated by Figure 5.7b,

where we can see how, once the perturbation is applied (for t ≈ 2 ms), the

system passes from an intermittent regime, with the characteristic large

spikes, to a small chaos regime.
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Figure 5.8. The medium height of the maxima of x1, <H >, as a function of ε and φ

for r = 1/2.

We have performed a numerical analysis to see this phenomenon in more

detail. We characterize the role of the phase φ by calculating <H >, as

defined in Eq. (5.9), and the results are shown in Figure 5.8. Again, the

symmetry induced by our selection of r and the nontrivial role played by

the phase φ are evident. Thus, we have shown that we can use φ to control

the intermittency after the interior crisis.

5.3 Conclusions and discussions

In this chapter we have made a thorough exploration of the applications

of the phase control technique. Firstly, we have focused on its applica-

tions to control chaos in the paradigmatic Duffing oscillator. We have

performed numerical simulations confirming the most important proper-

ties of this method: that only a correct choice of φ can lead the system

to a periodic orbit and that, by adequately selecting the phase, the nec-

essary amplitude to suppress chaos can be minimized. By using extensive

exploration of parameter space in search of zones of chaos suppression for

different values of ε and φ, we have detected some interesting patterns.

Most of the interesting patterns found numerically have been recovered in

an experiment with an electronic circuit that mimics the dynamics of the

Duffing oscillator with a slight potential asymmetry, even in the presence

of noise. This fact suggests that phase control of chaos is robust even in

the presence of distortions of the potential symmetry and that all the prop-

erties are of quiet general nature, so they must be taken into account when

applying this control method to the most diverse dynamical systems.
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On the other hand, we have shown that the phase control scheme is

able to control the intermittency in a chaotic system close to an interior

crisis. First, we have shown both experimentally and numerically how, if

we apply a harmonic perturbation to a chaotic CO2 laser, it is possible to

control the crisis-induced intermittency by accurately choosing φ. We have

seen that this scheme is more effective when the frequency of the perturba-

tion is equal to either the frequency of the unstable periodic orbit involved

in the crisis or the frequency involved in the period doubling bifurcation,

which can be obtained from experimental time series by using the Fourier

transform. Our analysis shows that the application of a periodic modula-

tion to a system close to an interior crisis perturbs its geometry, and such

perturbation depends strongly on φ, which becomes a key parameter for

the global dynamics.
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Chapter 6

The Jerk Dynamics of Laser’s
Minimal Universal Model

6.1 Introduction

The model of laser with feedback and minimal nonlinearity belongs to the

class of three-dimensional paradigmatic nonlinear oscillator models giving

rise to chaos. The minimal universal model for chaos in laser with feedback

contains three key nonlinearities, two of which are of the type xy, where

x and y are the fast and slow variables. The third one is of the type xz2,

where z is an intermediate feedback variable. In a previous publication,

Meucci et al. [2021] have analytically demonstrated that it is essential to

produce chaos via local or global homoclinic bifurcations. Its electronic

implementation in the range of kilo Hertz region has also confirmed its

potential to describe phenomena evolving on different time scales.

During these last two decades, the seminal works of Gottlieb [1996] and

Sprott [2003, 2011] have triggered an increasing interest in the study of

chaotic oscillators based on jerk equations, that is, oscillators which can be

completely described by third-order ordinary differential equations of the

form
...
x = f(ẍ, ẋ, x). Recently, Buscarino et al. [2014] and Xu and Cao

[2020] have provided the jerk forms dynamics of Chua’s circuit.

In this paper, following the method proposed by Buscarino et al. [2014],

we prove (to our knowledge for the first time) that at least two jerk forms

of laser’s minimal universal model can be derived: the two forms refer

respectively to the variables z and y of laser’s minimal universal model.

Although a jerk equation in terms of the variable x cannot be provided by

such methods, it may be possible to obtain it with the controllable canonical

form used by Xu and Cao [2020]. Let us note that due to the quadratic

term in xz2 in the original three-order laser’s minimal universal model, the

jerk form in y is bi-valuated, i.e. depends on the square root of z which

81
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can be either positive or negative. Such peculiarity makes the analysis very

difficult and prevents from plotting its attractor. That is the reason why

we have focused our analysis on the first jerk form in z. Then, by making

a comparison of the Lyapunov Characteristic Exponents, eigenvalues and

attractors between the original three-order laser’s minimal universal model

and its first jerk form in z, we have demonstrated the topological equivalence

of both systems.

The chapter is organized as follows. In the next section, some introduc-

tive materials on jerk equations and laser’s minimal universal model are

reported. Then, in Section 6.3 the jerk equations of laser’s minimal univer-

sal model are derived. Mathematical and numerical results concerning the

stability analysis are reported in Section 6.4. The electronic realization of

the jerk laser’s minimal universal model is proposed in Section 6.5.

6.2 Preliminaries

At the end of the seventies, Stephen H. Schot [1978] published a very in-

teresting paper in which he made a short history of the origin of the use

of the concept of jerk, i.e. the time rate of change of the acceleration. He

explained that:

“The French geometer Transon in 1845 was probably the first

to consider the third time derivative of distance in mechanics

and he uses the term virtualité for it. Transon computes the

normal component of the jerk and expresses it in terms of what

is now called the aberrancy (he uses the term déviation de cour-

bure). Other early writers who treat the third derivative use

of neutral terms such as second acceleration or higher acceler-

ation for it. Thus, Resal resolves the jerk along a space curve

into tangential, normal, and binormal components and Somoff

first establishes recursion formulas for these components of the

higher-order accelerations in terms of those of the ordinary ac-

celeration. Subsequently, the term jerk for the second acceler-

ation seems to have gradually entered the literature of physics

and without any explicit rational explanation for its use.”

According to Pr. Christian Mira (personal communication), at the end

of the nineteenth century, the French scientist Martin Haag (not to be

confused with Jules Haag) made use of the concept of “over-acceleration”
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or jerk in a mathematical analysis [Haag, 1879]. Then, as recalled by Schot

[1978]:

“An unequivocal definition of the jerk as “the derivative of ac-

celeration with respect to time” was given in 1928 by Melchior

who justifies the use of the term by referring to the physiological

sensation experienced by large changes in acceleration . . . The

term is now commonly used in mechanics and is being adopted

in other areas of physics as well.”

More than half a century later, Julian Clinton Sprott [1994] found prob-

ably the simplest three-dimensional first-order system for chaos. Two years

after, Hans Gottlieb [1996] wondered “what is the simplest jerk function

that gives chaos?” where the jerk function is of the form:
...
x = f(x, ẋ, ẍ).

According to Buscarino et al. [2014]: “If a mechanical interpretation of

the variable x in terms of displacement is given, the jerk equation can be

viewed as an equation where the derivative of the acceleration is involved,

that is, where a measure of the instantaneous variation of the accelera-

tion is included.” Since the question of the simplest jerk function is still

open, in this work, we will only focus on the topological equivalence between

the original model and its corresponding jerk equations. To this aim, we

will use the Lyapunov Characteristic Exponents, the bifurcation diagram

and the shape of the attractor in the phase space to show that both laser’s

minimal universal model and its jerk equations in z are topologically equiv-

alent. In general, given a nonlinear system of order n and considered one

of its n state variables, say variable xi, there is no guarantee that it can be

rewritten in the equivalent form:

dnxi

dtn
= f

(
d(n−1)xi

dtn−1
,
d(n−2)xi

dtn−2
, . . . , xi

)
. (6.1)

Although Xu and Cao [2020] have proposed a scheme to implement the

Jerk form of the Chua system family using a controllable canonical form

applied in linear systems, it does not seem (to our knowledge) that this

scheme has been used for more general system such as laser’s minimal uni-

versal model. So, we will follow in this work the method used by Buscarino

et al. [2014]. Thus, when it is possible to derive a jerk equation, the state

space normal form of the system can also be written as follows:

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

03
/1

6/
23

. R
e-

us
e a

nd
 d

ist
rib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



84 Nonlinear Dynamics of LASER

dx̃1

dt
= x̃2,

dx̃2

dt
= x̃3,

...

dx̃n

dt
= f (x̃1, x̃2, . . . , x̃n−1) ,

(6.2)

with x̃1 = xi.

The minimal universal model for chaos in laser reads [Meucci et al.

(2021)]:

dx

dt
= −ε1x

(
1 + k1z

2 − p0y
)
,

dy

dt
= −y − xy + 1,

dz

dt
= −ε2 (z −B0 +B1x) ,

(6.3)

Let us note that with the parameter set used in our experiment and

analysis, ε1 � 1 and ε2 � 1. So, model (6.3) is a slow–fast dynamical

system involving two fast times scales. In the following we will use the

parameter set in our experiment and analysis:

ε1 = 200 , ε2 = 6 , k1 = 12 , p0 = 1.208 , B1 = 0.555.

and B0 (0.12 < B0 < 0.125) will play the role of a control parameter.

6.3 The jerk form of laser’s minimal universal model

Let us consider Eq. (6.3). Is it possible to obtain the following jerk forms?

...
x = f1 (x, ẋ, ẍ) , (6.4)

...
y = f2 (y, ẏ, ÿ) , (6.5)

...
z = f3 (z, ż, z̈) . (6.6)
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We show here that this question has a positive answer only for the

forms (6.5) and (6.6). Nevertheless, due to the quadratic term in xz2 in

the original three-order laser’s minimal universal model, the jerk form in

y is bi-valuated, i.e. depends on the square root of z which can be either

positive or negative. This prevents from plotting its attractor and precludes

any analysis of the jerk form (6.5), i.e. the 2 − 1 − 3 structure. That is

the reason why, in the following, we will focus our analysis on the first jerk

form in z (6.6), i.e. the 3− 2− 1 structure.

6.3.1 Jerk form in z

Starting from the first equation of (6.3), we obtain:

y =
1

ε1p0

(
ẋ

x
+ ε1 + ε1k1z

2

)
. (6.7)

From the third equation of (6.3), we deduce that:

x =
1

ε2B1
(ε2B0 − ż − ε2z) . (6.8)

Taking the time derivative of this Eq. (6.8) leads to:

ẋ =
1

ε2B1
(−z̈ − ε2ż) . (6.9)

By using the expression of ẋ and x, i.e. Eqs. (6.8)–(6.9) to obtain the

ratio ẋ/x and by replacing in Eq. (6.7), we find that:

y =
1

ε1p0

(
z̈ + ε2ż

ż + ε2z − ε2B0
+ ε1 + ε1k1z

2

)
. (6.10)

The time derivative of Eq. (6.10) reads:

ẏ =
1

ε1p0

(
(
...
z + ε2z̈) (ż + ε2z − ε2B0)− (z̈ + ε2ż)

2

(ż + ε2z − ε2B0)
2 + 2ε1k1zż

)
. (6.11)
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Then, from the second equation of (6.3), we have:

ẏ + y (1 + x) = 1. (6.12)

By replacing x in Eq. (6.12) by the expression (6.8) and ẏ by the ex-

pression (6.11) and solving the resulting equation with respect to
...
z , we

obtain:

...
z = ε1p0 (ż + ε2z −B0ε2)

[
1− 2k1zż

p0
− ε2z̈

ε1p0 (ż + ε2z −B0ε2)
+

(z̈ + ε2ż)
2

ε1p0 (ż + ε2z −B0ε2)
2

−ε2B0 + ε2B1 − ż − ε2z

ε1ε2p0B1

(
ε1 + ε1k1z

2 +
z̈ + ε2ż

ż + ε2z −B0ε2

)]
(6.13)

Then, the jerk form in z (6.6) is obtained by posing:

ż = y, z̈ = x,
...
z = f3 (z, ż, z̈) = x. (6.14)

Considering Eq. (6.3) of laser’s minimal universal model, we obtain the

dynamics of the jerk system:

dx

dt
= f3 (x, y, z) ,

dy

dt
= x,

dz

dt
= y,

(6.15)

where

f3 (x, y, z) = ε1p0 (y + ε2z −B0ε2)

[
1− 2k1zy

p0
− ε2x

ε1p0 (y + ε2z −B0ε2)
+

(x+ ε2y)
2

ε1p0 (y + ε2z −B0ε2)
2

−ε2B0 + ε2B1 − y − ε2z

ε1ε2p0B1

(
ε1 + ε1k1z

2 +
x+ ε2y

y + ε2z −B0ε2

)]
(6.16)

Equations (6.15) provide in different state space a representation of

system (6.3) and thus maintain its structural properties. The three-

dimensional attractors for the previously defined parameters and for B0 =

0.1246 are reported in the following figures. The original laser’s minimal

universal model chaotic attractor is reported in Figure 6.1a, the attrac-

tor of the equivalent jerk system represented by Eqs. (6.15) is reported in

Figure 6.1b.
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(a)

(b)

Figure 6.1. Phase portraits of (a) the original laser’s minimal universal model (6.3) and

(b) its jerk form in z (6.15).
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In order to state the topological equivalence between the original repre-

sentation of the original laser’s minimal universal model (6.3) and its jerk

form in z (6.15), we have performed a stability analysis including the fixed

points stability, the occurrence of Hopf bifurcation, the representation of

the bifurcation diagram and the computation of the Lyapunov Character-

istic Exponents for the jerk form in z (6.15) that we have compared to the

stability analysis of the original laser’s minimal universal model (6.3).

6.3.2 Stability analysis

By using the classical nullclines method, it can be shown that the dynamical

system (6.15) admits four positive fixed points.

I1 (0, 0, B0) , I2,3,4 (0, 0, z
∗) , (6.17)

where the expression of z∗ (too large to be explicitly written here) is the

solution of the following cubic polynomial and depends on the control pa-

rameter B0.

k1z
3 − k1 (B0 +B1) z

2 + z +B1 (p0 − 1)−B0 (6.18)

If we replace z∗ by 0 in the above equation (6.18) we obtain:

B1 (p0 − 1) − B0 < 0. Now, if we replace z∗ by B1, we find B0(p0 −
k1B

2
1 − 1) > 0. This means that:

B0 −B1 (p0 − 1) < z∗ < B1

Let us note that the left part of this inequality exactly corresponds to

the one found in our previous publication [Meucci et al. (2021)].

6.3.3 Jacobian matrix

The Jacobian matrix of the dynamical system (6.15) reads:

J =

⎛
⎜⎜⎜⎜⎜⎝

∂f3
∂x

∂f3
∂y

∂f3
∂z

1 0 0

0 1 0

⎞
⎟⎟⎟⎟⎟⎠ (6.19)

By replacing the coordinate of the fixed points I1 (6.17) in the Jacobian

matrix (6.18) one obtains the Cayley–Hamilton third degree eigenpolyno-

mial which reads:
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(λ+ ε2)
[
λ2 + λ+ ε1

(
1 +B2

0k1 − p0
)]

= 0 (6.20)

It follows that the first eigenvalue λ1 = −ε2 < 0 and the two others are

such that λ2λ3 = ε1(1 +B2
0k1 − p0). Thus, provided that:

p0 < 1 +B2
0k1, (6.21)

the fixed point I1 is a saddle-node. Moreover, such condition (6.21) provides

an upper boundary for the control parameter B0:

B0 <

√
p0 − 1

k1
. (6.22)

Let us note that if B0 = B1(p0 − 1), the fixed points I1,2 read

I1(0, 0, B1(p0 − 1)), I2(0, 0, 0) and the two others read: I3,4(0, 0, z
∗ =

1
2 (B1p0±

√
B2

1p
2
0 − 4/k1)). In these conditions and according to Eq. (6.22),

it can be stated (exactly as in our previous publication [Meucci et al.

(2021)]) that:

B1 (p0 − 1) < B0 <

√
p0 − 1

k1
. (6.23)

Thus, for B0 = B1(p0−1), computation of the eigenvalues show that I1
is still a saddle-node, I3 is a saddle-focus while the two other fixed points

are stable foci. For B0 =
√
(p0 − 1)/k1, the computation of the eigenvalues

show that I1 is stable while I2 is a saddle-node and I3 a saddle-focus.

Such a result will enable to explain the limits of the bifurcation diagram

presented below (see Figures 6.2 and 6.3) outside which no attractor can

exist. Then, while using the parameter set of our experiment, i.e. for

any value of B0 ∈ [B1(p0 − 1),
√
(p0 − 1)/k1] it can be shown that I3 is a

saddle-focus (the first eigenvalue is real and positive while the two others

are complex conjugate with negative real parts). This implies that a Hopf

bifurcation occurs within this interval [Hopf (1942); Andronov et al. (1971);

Marsden & McCracken (1976); Kuznetsov (2004)]. Nevertheless, since the

fixed points are solutions of a cubic polynomial, the value of the control

parameter B0 for which such a Hopf bifurcation occurs cannot be given

in a simple mathematical way. However, we have numerically computed

this Hopf bifurcation parameter value B0 ≈ 0.12036. Let us note that

this is exactly the same value as the one found in our previous publication

[Meucci et al. (2021)]. In the following we will use the parameter set in our

experiment and analysis:

ε1 = 200 , ε2 = 6 , k1 = 12 , p0 = 1.208 , B1 = 0.555.
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6.3.4 Bifurcation diagram

Thus, in order to highlight the effects of the control parameter B0 changes

on the topology of the attractor we have built the bifurcation diagram of the

jerk form in z of laser’s minimal universal model (6.15) (see Figure 6.2b)

that we have compared to the bifurcation diagram of the original laser’s

minimal universal model (6.3) (see Figure 6.2a). Both Figures 6.2a and

6.2b clearly demonstrate the equivalence of the two representations.

We have also compared the zoom of such bifurcation diagrams for B0 ∈
[0.12410, 0.124145] (see Figures 6.3a and 6.3b).

Here again these bifurcation diagrams are very similar. The same holds

for the time series of the original laser’s minimal universal model (6.3) and

its jerk form in z (6.15). In order to confirm the topological equivalence be-

tween both systems, Lyapunov Characteristic Exponents (LCE) have been

computed for the jerk form in z of the laser’s minimal universal model (6.15)

and compared to those obtained for the original laser’s minimal universal

model (6.3).

6.3.5 Numerical computation of the Lyapunov exponents

As previously, we have used the algorithm developed by Marco Sandri [1996]

for Mathematica® to perform the numerical calculation of the Lyapunov

Characteristics Exponents (LCE) of the original laser’s minimal universal

model (6.3). LCEs values have been computed within each considered

interval (B0 ∈ [0.123, 0.1234] and [0.1235, 0.125]). For 0.1246, Sandri’s

algorithm has provided the following LCEs (+0.2, 0,−7.32). By using the

same algorithm we found exactly the same LCEs for the jerk form in z of

the original laser’s minimal universal model (6.15).

6.4 Experimental part

Experimental set up used for laser’s minimal universal model has been

revisited and now illustrated in Figure 6.4.

The electronic components are the same used in the original configura-

tion but with some adjustments in the resistor values near the conditions

of homoclinic chaos discussed before. Another difference is the use of a

different digital scope (Tektronix) in order to highlight the thickness of the

traces more than its temporal persistence. In Figure 6.5, we can clearly

distinguish traces originated after the rejection mechanism near the saddle
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(a)

(b)

Figure 6.2. Bifurcation diagrams of (a) the original laser’s minimal universal model
(6.3) and (b) its jerk form in z (6.15).

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

03
/1

6/
23

. R
e-

us
e a

nd
 d

ist
rib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



92 Nonlinear Dynamics of LASER

(a)

(b)

Figure 6.3. Zoom of bifurcation diagrams of (a) the original laser’s minimal universal

model (6.3) and (b) its jerk form in z (6.15).by
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Figure 6.4. Circuit diagram of laser’s minimal universal model. M1, M2 and M3 are

three analog multipliers (MLT04 by Analog Devices). I1, I2 and I3 are integrators

(LT1114 by Analog Devices). INV is an inverting gain implemented with the same kind

of differential amplifier. V (p0) and V (B0) are two adjustable bias voltages.

focus leading to a small chaotic tangle. The chaotic evolution near the sad-

dle focus disappears when the trajectory is attracted by the saddle node

with zero intensity solution. This competition mechanism between these

two unstable fixed points is responsible for homoclinic chaos with pulses of

the same shape but erratically separated in time due to the time spent near

the saddle focus. The chaotic fine structure is similar to the one reported

in [Pisarchik et al. (2000)] where simulations were performed on a more

refined laser model named the four-level laser model.by
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Figure 6.5. Oscilloscope snapshots of phase portraits of laser’s minimal universal model

(6.3) corresponding to (a) V (p0) = 3.53V and (b) V (B0) = 3.64V and (c) its jerk form

(6.15) in z. (a) Phase space portrait projected in x−z plane; (b) expansion of the chaotic
tangle region; (c) simulation of the model jerk form.
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Considering the limits imposed by analog simulations, the desired dy-

namics of the oscillator is obtained by fine adjustments of two bias voltages

V (p0) and V (B0) accounting for the parameters, p0 and B0 in Eqs. (6.3)

and (6.15). This scheme is exactly the same as the one used in our previous

publication [Meucci et al. (2021)]. The attractors in the x− z phase space

for the B0 = 0.1246 parameter value is reported in Figure 6.5a. The com-

parison with the attractor obtained by numerical integration of the jerk

form in z of the laser’s minimal universal model (6.15) (see Figure 6.5c)

highlights a very high level of similarity between them.

6.5 Discussion

In this chapter, two jerk forms of the laser’s minimal universal model have

been derived and the corresponding state space representation in z has

been presented. Then, its stability analysis has enabled us to show that

the jerk form in z of laser’s minimal universal model (6.15) has the same

fixed points features (saddle-foci), the same bifurcation diagram, the same

Hopf bifurcation parameter value, the same Lyapunov Characteristic Ex-

ponents and the same attractor shape. Moreover, we have also observed

that an electronic circuit implementing the original laser’s minimal univer-

sal model (6.3) performed in our previous publication [Meucci et al. (2021)]

perfectly corresponds to the jerk form in z of the laser’s minimal universal

model (6.15) (see Figures 6.4a and 6.4b). Thus, the topological equivalence

between both original laser’s minimal universal model (6.3) and its jerk

form in z (6.15) is clearly established. In a previous publication [Ginoux

et al. (2022)], by using the Flow Curvature Method, we have been able to

state a link between the curvature and energy of planar generalized Liénard

systems. This has been made possible because this kind of system of two

ordinary differential equations of order one can be transformed into a non-

linear second order ordinary differential equation. The transformation of

systems of three ordinary differential equations of order one into a third

order ordinary differential equation, i.e. a jerk equation thus enables to

open some promising developments for assessing the energy of nonlinear

and chaotic three-dimensional dynamical systems.
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Chapter 7

A Short History of the
Discovery of LASER

7.1 The nature of light

Since ancient times, the nature of light has been the subject of much ques-

tioning. During the seventeenth and eighteenth centuries, two theories of

light were opposed: the corpuscular theory and the wave theory. In his

Hypothesis of Light of 1675 and then, in his Opticks of 1704, Isaac Newton

claimed that

“Light was made of very small corpuscles.”1

For him, light was composed of corpuscles (particles of matter) which

were emitted in all directions from a source. During the same period,

Christiaan Huygens worked out a mathematical wave theory of light in

1678 and published it in his Treatise on Light in 1690. He proposed that

light was emitted in all directions as a series of waves in a medium called

the luminiferous æther. Of course, Newton’s reputation helped the particle

theory of light to hold sway during the eighteenth century.

In 1802, Thomas Young showed by means of his now famous double-

slit experiment that Newton’s corpuscular theory was unable to explain

the observed phenomenon and so, that light behaved as wave. In fact,

by considering that one particle of light passes through the first slit and

another by the second one, one would expect to observe light on the screen,

since obviously some light plus light may only give light. Nevertheless,

Young’s diffraction experiment showed that it provides shadow. A result

that seemed to invalidate Newton’s particle theory of light, at least for a

while . . .

1See Newton (1704).
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98 Nonlinear Dynamics of LASER

Newton’s corpuscular theory implied that velocity of light would be

greater in a denser medium like water than in the air, while the wave theory

of Huygens implied the opposite. At that time, the speed of light could not

be measured accurately enough to decide which theory was correct. The

first to make a sufficiently accurate measurement was Léon Foucault, in

April 1850. His result supported the wave theory and the classical particle

theory was finally abandoned, only to partly re-emerge in the twentieth

century.

In 1862, James Clerk Maxwell calculated that the speed of propagation

of an electromagnetic field is approximately that of the speed of light. He

considered this to be more than just a coincidence, commenting:

“We can scarcely avoid the inference that light consists in the

transverse undulations of the same medium which is the cause

of electric and magnetic phenomena.”2

7.2 The birth of Quantum Mechanics

In 1900, Max Planck sought to explain the phenomena of incandescence, i.e.

the emission of electromagnetic radiation (including visible light) from a hot

body as a result of its high temperature. In the attempt to bring theory into

agreement with experiment, he then showed that light or electromagnetic

energy is not exchanged with matter in a continuous way but by packets

of energy. He thus postulated that this electromagnetic energy is absorbed

or emitted in discrete packets, which he calls quanta. The energy is given

by the formula E = hν with ν the frequency of the radiation and h called

in fact Planck’s constant.3

In 1905, in order to explain the photoelectric effect, i.e. the emission

of electrons when electromagnetic radiation, such as light, hits a material,

Albert Einstein had the idea to return to the Newton’s corpuscular light

conception.4 He then showed that each corpuscle of light has a determined

energy that he called lichtquanta (light quantum). This energy is equal to

the product of the frequency ν of the light by the constant h.

In 1913, Niels Bohr presented an atomic model consisting of a small,

dense nucleus surrounded by orbiting electrons — similar to the structure

2See Maxwell (1862).
3According to Planck, the letter h is the abbreviation of the German words Hilfsgröße

(“auxiliary variable”).
4See Einstein (1906).
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A Short History of the Discovery of LASER 99

of the Solar System, but with attraction provided by electrostatic forces in

place of gravity. In this planetary representation, electrons are distributed

in different orbits around the nucleus. The farther the electrons are from

the nucleus, the greater their energy. Thus, each orbit corresponds to an

energy level. Bohr then showed that electrons have the possibility of passing

from one energy level to another by emitting or absorbing a quantum of

energy, i.e. a photon.5

In 1913, only two interaction processes between atoms and radiation

were known: absorption and spontaneous emission.

During absorption (see Figure 7.1, left), the atom passes from the ground

state (lower level 1) with energy E1 to the excited state (upper level 2) with

energy E2 by absorbing a photon. A photon disappeared from the incident

wave, and the latter is attenuated.

Figure 7.1. Absorption and spontaneous emission processes.

During spontaneous emission (see Figure 7.1, right), the atom initially

in the excited state with energy E2 goes back down to the ground state

with energy E1 by emitting a photon. This photon is emitted in a random

direction after a random time. Upper level 2 is depopulated to the benefit

of lower level 1.

In two articles published in 1916 and 1917, Albert Einstein6 introduced

a third process: stimulated emission. It is the inverse process of absorption,

occurring, as in the presence of incident radiation resonant with the transi-

5The term “photon” was introduced by Gilbert Lewis in 1926 for the smallest unit

of radiant energy (light). This name was adopted for what Einstein had called a light
quantum (lichtquanta in German).
6See Einstein (1916 and 1917).
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100 Nonlinear Dynamics of LASER

tion frequency of the atoms. During stimulated emission (see Figure 7.2),

a photon of energy hν induces the de-excitation of an atom from upper

level 2 to lower level 1. This is accompanied by the emission of an induc-

tor photon of the same frequency, same direction of propagation and same

state of polarization. The incident beam of light is “increased” with iden-

tical photons to come and create an amplification of the light. The photon

created by stimulated emission has the same properties as the “trigger”

photon (frequency, phase, direction of propagation, state of polarization).

Figure 7.2. Stimulated emission processes.

However, for the stimulated emission process to occur, there must be

more atoms in the upper level than in the lower one. However, in matter,

particles are much more numerous in the ground state than in an excited

state. It was then necessary to find a means of reversing the thermal ten-

dency to obtain, in the medium, more particles in an excited state than

in a fundamental state, that is to say to carry out a population inversion.

At that time, this seemed impossible because the coefficient of probability

of spontaneous fallout of atoms A2→1 is very large. Albert Einstein had

notably shown that this probability was proportional to the cube of the

frequency. As we will see in the next section, stimulated emission is the

basis of laser functioning.

7.3 From MASER to LASER

In the beginning of the fifties, Charles Townes worked on microwave mi-

croscopy of molecules using electronic oscillators. He realized that Ein-

stein’s stimulated emission at microwave frequencies could oscillate in a

resonant cavity and, in 1954, he built his first device. It will have thus
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A Short History of the Discovery of LASER 101

taken almost forty years to move from Einstein’s imagination to the prac-

tical realization of stimulated emission. Then, by replacing the incident

radiation of light, of frequencies of 106 Ghz, by an incident radiation of

microwaves of frequencies of the order of GHz, Charles Townes understood

that the probability of spontaneous fallout of atoms would be divided by

a million cubed. So, he chose to deflect the atoms being in the E1 level

against a wall cooled with liquid nitrogen, to solidify them. The atoms in

the E2 state were, on the other hand, directed towards an orifice to fall into

a waveguide, in which was the incident wave. Subsequently, the emitted

radar wave emerged amplified. Charles Townes called his device Microwave

Amplification by Stimulated Emission of Radiation7 (MASER).

In 1955, Charles Townes benefited from a sabbatical year during which

he spent several months in a laboratory of the ENS on rue d’Ulm in Paris

with Albert Kastler. In this laboratory, Kastler used optical pumping to

move atoms from one energy level to another. Townes had the presenti-

ment that it was possible to generalize optical pumping to build a LASER.

According to Hecht (2010):

“At this point Townes had essentially formulated a physics

problem — how could one build an optical oscillator to gen-

erate coherent light by amplifying stimulated emission? Gould

(then a 37-year-old doctoral student) had always dreamed of be-

ing an inventor, and had the advantage of having earlier worked

with optics. He holed up in his apartment with a stack of refer-

ences, coined the word laser (see Figure 7.3) for his invention,

and sketched out a plan for the now-familiar Fabry–Pérot res-

onator in a notebook he had notarized on November 13, 1957.

That notebook would become the foundation for a battle over

patents, which after 30 years finally made Gould a multimillion-

aire. Townes teamed with Arthur Schawlow, a former Columbia

colleague who had married Townes’s sister and had worked on

optical spectroscopy. Together they wrote a detailed proposal

for what they called an “optical maser” that Physical Review

published8 in December 1958.”

7See Gordon (1954).
8See Schawlow and Townes (1958).
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102 Nonlinear Dynamics of LASER

Figure 7.3. First page of the notebook wherein Gordon Gould coined the acronym

LASER, and described the elements required to construct one.

The publication of the theoretical article by Townes and Schawlow then

triggered a “laser race”, in which many laboratories participated. In the

beginning of 1960, Theodore Maiman, then working at Hughes Research

laboratories, started investigating ruby doped with chromium ions. The

pumping is triggered by a flash of white light. The yellow, green and

purple radiation from the flash is absorbed by the chromium ions which
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A Short History of the Discovery of LASER 103

change in energy level. A very large part of the white light spectrum is

thus used to raise the atoms into higher electronic levels (the continuum).

Unfortunately, as recalled by Hecht (2010):

“Schawlow had decided ruby would not work in lasers because

it was a three-level system, with its red line dropping to the

ground state, and because other measurements had shown its

red fluorescence was inefficient. Maiman made his own mea-

surements and found that ruby fluorescence actually was quite

efficient.”

Maiman had the idea of making a pulse source and not a continuous one,

for which the oscillation conditions are only realized in transient state. The

ruby laser he developed was a surprisingly simple device to build and use.

Due to the bandwidth of the doped crystal, only 10% of the white light is

sufficient to carry out the population inversion. The atoms in the continuum

move spontaneously, by energy exchange with the thermal vibrations in the

crystal, towards the bottom of the energy band. This is how population

inversion is achieved.

“Maiman tested his design on May 16, 1960, by gradually in-

creasing the voltage applied to the flashlamp until the pulses

of red light grew sharply brighter and their time and spectral

profiles showed the changes expected from a laser.

Hughes chose to announce the laser at a July 7, 1960, press con-

ference in New York after Physical Review Letters summarily

rejected Maiman’s report of the discovery.

Maiman published a very short description of his experiment in

Nature,9 but the most complete account of his experiments did

not appear10 until 1961.11”

In December 1960, Ali Javan at Bell Labs built the first continuous-wave

laser and the first gas-laser in which the discharge excited helium atoms,

which transferred energy to the neon atoms that emitted light.12

9See Maiman (1960).
10See Maiman (1961) and Maiman et al. (1961).
11See Hecht (2010).
12See Javan et al. (1961).
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104 Nonlinear Dynamics of LASER

7.4 LASER applications

As recalled by Hecht (2010):

“Soon after Maiman built the first laser, his assistant Irnee

D’Haenens joked that the laser was

“a solution looking for a problem.”

Like any successful wisecrack, it contained a bit of truth. The

laser was not a device invented to fill specific application re-

quirements, like the telephone. It was more a discovery than

an invention, a way to generate coherent light that laser devel-

opers expected would find applications in broad areas, such as

research or communications.”

Thus, after its discovery, thanks to applied and industrial research, the

laser passed in a few decades from the status of a laboratory object to that of

a commercial “press-button” device with constantly improved performance.

Hecht (2010) explains that:

“As new types of lasers and new applications emerged, the laser

caught the public imagination. It had the good fortune to be

invented when the public welcomed new technology with open

arms and optimism. The United States was in the midst of

a technology boom, and with the notable exception of nuclear

weapons, the public generally saw new technology as bringing

hope. A 1962 article titled “The Incredible Laser” gives a snap-

shot of the laser’s public image at the time. It promised “an

exciting report on science’s new ‘Aladdin’s lamp.’ It can light

up the moon, kill instantly, or perform miracle surgery”.”

This is probably the reason why a laser seems to appear in the 1964

Goldfinger spy film, the third instalment in the James Bond series. As

recalled above, lasers did not exist in 1959 when the book of the same

name was written by Ian Fleming, nor did high-power industrial lasers at

the time the film was made, making them a novelty. In the novel, Goldfinger

uses a circular saw to try to kill Bond, but the film makers changed it to a

laser to make the film feel fresher.

Why a laser, specifically? Because in 1964, a laser was cutting edge (pun

intended) technology. Lasers were invented in 1960; when Goldfinger was

filmed, scientists still had not figured out a practical use for them. Giving

Goldfinger a laser for his deathtrap gave the scene a science-fiction flavor
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A Short History of the Discovery of LASER 105

and made it more exciting for audiences. The laser’s inclusion also wound

up giving birth to a whole new Bond cliché.

Bond is captured and strapped to a table with an overhead industrial

laser, the beam slicing toward him (see Figure 7.4).

Figure 7.4. James Bond (Sean Connery) in Goldfinger movie film.

To ensure that audiences would understand the laser, authors of the

scene wrote Goldfinger some dialogue explaining the machine and how it

works before activating it:

Auric Goldfinger explains:

“You are looking at an industrial laser, which admits an ex-

traordinary light not to be found in nature. It can project a

spot on the moon, or at closer range, cut through solid metal.

I will show you.”

James Bond: I think you made your point. Thank you for the

demonstration.

Auric Goldfinger: Choose your next witticism carefully Mr.

Bond, it may be your last.

James Bond: You expect me to talk?

Auric Goldfinger: No Mr. Bond I expect you to die!

The laser scene was the first to be filmed for Goldfinger and one of the

trickiest to complete. For starters, the laser itself was a dangerous tool not

conducive for filming. Special effects supervisor Cliff Culley said:
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106 Nonlinear Dynamics of LASER

“They bought a real laser in, which looked great. It had a pencil-thin

line, but as soon as you turned all the studio lights on, it disappeared.”

In his book, effects technician Albert Luxford (2002) added:

“The laser was an extremely dangerous thing insofar as it hav-

ing 400 to 500 volts going through the coil . . . If you touched

it, you’d have been dead. It wasn’t a toy. If you’d gone within

a foot of it when it was on, you’d have had arcs too - giving a

very nasty shock, to say the least.”

For these reasons, the real blue beam fired from the machine was not

used; the orange laser beam in the film was added as an optical effect in

post-production.

Unable to use the real laser to cut through the table, the crew impro-

vised. During shooting, Luxford sat under the table and cut from under-

neath it with a blowtorch. In the scene, Bond mentioning Goldfinger’s

“Operation: Grand Slam” is what gets him out of a clean-cut death; Sean

Connery saying these words was Luxford’s cue to stop cutting. Luxford

(2002) recalled:

As I got nearer and nearer to his crotch, Sean was sweating a bit

. . . I was about three inches from his crotch when I stopped.”

The laser scene is one of the most iconic in 007 history. As deathtraps

come and go, Goldfinger’s laser remains in the public memory.
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Appendix A

Appendix

In this appendix we present three different kinds of normalization of the

basic laser equations. In the first section, we briefly recall the laser rate

equations and its stationary solutions.

A.1 Laser rate equations

The laser rate equations reads:

ṅ = −Kn+GnΔ

Δ̇ = −γ‖ (Δ−Δ0)− 2GnΔ
(A.1)

where

- n represents the photon number,

- Δ is the population inversion, i.e. N2 −N ,

- K is the decay rate of the laser intensity,

- γ‖ is the decay rate of the population inversion,

- Δ0 is the population inversion imposed by the pump,

- G is the field-matted coupling constant (stimulated emission).

109
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110 Nonlinear Dynamics of LASER

A.1.1 Stationary solutions

The stationary solutions of the above equations are obviously given by the

nullclines process:

ṅ = 0

Δ̇ = 0
(A.2)

The first equation of (A.2) gives:

n (−K +GΔ) = 0 → Δs =
K

G
= Δthreshold = Δth (A.3)

The second equation of (A.2) leads to:

2GnsΔs = −γ‖ (Δ−Δ0) → ns = − γ‖
2G

Δ−Δ0

Δs
(A.4)

Thus, we have:

ns =
γ‖
2G

(
Δ0

Δs
− 1

)
(A.5)

By posing Isat =
γ‖
2G

we obtain:

ns = Isat

(
Δ0

Δs
− 1

)
= Isat (A− 1) (A.6)

where A =
Δ0

Δth
represents the pump parameter (normalized threshold).

A.2 First normalization

Let us take:

X =
n

Isat
=

n

γ‖/2G

Y =
Δ

Δth
=

Δ

K/G

(A.7)

we obtain:

Ẋ = −KX (1− Y )

Ẏ = −γ‖ (Y −A+XY )
(A.8)
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Appendix 111

A.2.1 Stationary solutions

The stationary solutions of the above equations are obviously given by the

nullclines process:

Ẋ = 0

Ẏ = 0
(A.9)

These equations give first:

X̄ = A− 1

Ȳ = 1
(A.10)

where X̄ is here positive defined. Then, we also have:

X̄ = 0

Ȳ = A
(A.11)

where 0 < A < 1 (0 int. solution). It follows from Eqs. (A.11) that:

X̄ �= 0 = A− 1

Ȳ = 1
(A.12)

where A > 1 is a non-zero solution.

A.2.2 Linear stability analysis

Let us evaluate the Jacobian matrix of system (A.8) at the non-zero solution

(X̄ �= 0 = A− 1, Ȳ = 1), we have:

J =

⎛
⎝−K +KȲ KX̄

−γ‖Ȳ −γ‖ − γ‖X̄

⎞
⎠ =

⎛
⎝ 0 K (A− 1)

−γ‖ −γ‖A

⎞
⎠ (A.13)

The characteristic polynomial reads then:

λ2 + γ‖Aλ+Kγ‖ (A− 1) = 0 (A.14)

The roots of this equation are:
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λ1,2 = −γ‖A
2

±
√(

γ‖A
)2 − 4Kγ‖ (A− 1)

2
,

λ1,2 = −γ‖A
2

± i

√
4Kγ‖ (A− 1)− (

γ‖A
)2

2

(A.15)

Since A > 1, X̄ is a stable solution.

Now, let us evaluate the Jacobian matrix of system (A.13) at the non

zero solution (X̄ = 0, Ȳ = A), we have:

J =

⎛
⎝−K +KȲ KX̄

−γ‖Ȳ −γ‖ − γ‖X̄

⎞
⎠ =

⎛
⎝−K +KA 0

−γ‖A −γ‖

⎞
⎠ (A.16)

The characteristic polynomial reads then:

λ2 +
(
K −KA+ γ‖

)
λ+ γ‖ (K −KA) = 0 (A.17)

The roots of this equation are:

λ1,2 = −K +KA+ γ‖
2

±
√(

K(1−A) + γ‖
)2 − 4Kγ‖ (1−A)

2
(A.18)

If A < 1, λ1,2 are both negative and the solution is stable.

If A = 1, λ1 = 0 and λ2 = −γ‖. This solution corresponds to the

marginal stability.

If A > 1, λ1 > 0 and λ2 < 0, the solution is unstable.

A.3 Second normalization

Let us take in (A.1):

X =
n

K/G

Y =
Δ

K/G

(A.19)by
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we obtain:

Ẋ = −KX (1− Y )

Ẏ = −γ‖ (Y −A)− 2KXY
(A.20)

A.3.1 Stationary solutions

As previously, by taking Ẋ = 0 and Ẏ = 0, we find:

X̄ = 0

Ȳ = A
(A.21)

A.3.2 Linear stability analysis

Let us evaluate the Jacobian matrix of system (A.20) at the non-zero solu-

tion (X̄ = 0, Ȳ = A), we have:

J =

⎛
⎝−K +KȲ KX̄

−2KȲ −γ‖ − 2γ‖X̄

⎞
⎠ =

⎛
⎝−K +KA 0

−2KA −γ‖

⎞
⎠ (A.22)

The characteristic polynomial reads then:

λ2 +
(
K −KA+ γ‖

)
λ+Kγ‖ (1−A) = 0 (A.23)

The roots of this equation are:

λ1,2 = −K −KA+ γ‖
2

±
√(

K −KA+ γ‖
)2 − 4Kγ‖ (1−A)

2
(A.24)

If 0 < A < 1, both λ1,2 are negative and so, the solution is a stable.

If A = 1, λ1 = 0 and λ2 = −γ‖. This solution corresponds to the

marginal stability.

If A > 1, λ1 > 0 and λ2 < 0, the solution is unstable.
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Now, let us evaluate the Jacobian matrix of system (A.13) at the non-

zero solution (X̄ = γ‖/2K(A− 1), Ȳ = 1), we have:

J =

⎛
⎝−K +KȲ KX̄

−2KȲ −γ‖ − 2KX̄

⎞
⎠ =

⎛
⎝ 0 γ‖/2 (A− 1)

−2K −γ‖ − γ‖ (A− 1)

⎞
⎠ (A.25)

The characteristic polynomial reads then:

λ2 +
(
γ‖ + γ‖ (A− 1)

)
λ+ γ‖K (A− 1) = 0 (A.26)

The roots of this equation are:

λ1,2 = −γ‖A
2

± i

√
4Kγ‖ (A− 1)− (

γ‖A
)2

2
(A.27)

Both λ1,2 are negative and so, the solution is a stable.

A.4 Third normalization

Let us take X ′ = αX in (A.20), we obtain:

Ẋ ′ = −KX ′ (1− Y )

Ẏ = −γ‖ (Y −A)− 2
K

α
X ′Y

(A.28)

Obviously, if α = 2K/γ‖, we find again the first normalization.

A.4.1 Stationary solutions

By taking Ẋ ′ = 0 and Ẏ = 0, we find:

X̄ =
αγ‖
2K

(A− 1)

Ȳ = 1

(A.29)

or,

X̄ = 0

Ȳ = A
(A.30)
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A.4.2 Linear stability analysis

The Jacobian matrix of system (A.28) reads:

J =

⎛
⎜⎝
−K +KȲ KX̄

−2K

α
Ȳ −γ‖ − 2K

α
X̄

⎞
⎟⎠ (A.31)

Let us first evaluate the Jacobian matrix for the fixed point (A.29), we

obtain

J =

⎛
⎜⎜⎝

0
αγ‖
2

(A− 1)

−2K

α
−γ‖ − γ‖ (A− 1)

⎞
⎟⎟⎠ (A.32)

The characteristic polynomial reads then:

λ2 + γ‖Aλ+ γ‖K (A− 1) = 0 (A.33)

The roots of this equation are:

λ1,2 = −γ‖A
2

± i

√
4Kγ‖ (A− 1)− (

γ‖A
)2

2
(A.34)

Both real parts of λ1,2 are negative and so, the solution is a stable.

Now, let us first evaluate the Jacobian matrix for the fixed point (A.30),

we obtain

J =

⎛
⎜⎝
−K +KA 0

−2KA

α
−γ‖

⎞
⎟⎠ (A.35)

The characteristic polynomial reads then:

λ2 +
(
K (A− 1) + γ‖

)
λ+ γ‖K (1−A) = 0 (A.36)

The roots of this equation are:

λ1,2 = −
(
K (A− 1) + γ‖

)
2

±
√(

K (A− 1) + γ‖
)2 − 4Kγ‖ (1−A)

2
(A.37)

Both roots λ1,2 are negative and so, the solution is stable.
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Appendix B

Appendix

This appendix presents a method allowing to provide a upper bound for the

Hopf bifurcation parameter for any three-dimensional autonomous dynam-

ical system for which the fixed point coordinates cannot be easily expressed

analytically as it is the case for the dynamical system (3.2) for which the

coordinates of the fixed point I2 are the roots of a cubic polynomial. Let us

suppose that the three eigenvalues of the Jacobian matrix J of this dynami-

cal system evaluated at the fixed point (I2 in our case) are real and complex

conjugate λ1, λ2,3 = α± iω. The Cayley–Hamilton eigenpolynomial reads:

λ3 − σ1λ
2 + σ2λ− σ3 = 0 (B.1)

where σ1 = Tr (J), σ2 =
∑3

i=1 Mii (J) is the sum of all first-order diagonal

minors of J and σ3 = Det (J). Thus, we have:

σ1 = Tr (J) = λ1 + λ2 + λ3 = λ1 + 2α,

σ2 =

3∑
i=1

Mii (J) = λ1λ2 + λ1λ3 + λ2λ3 = 2αλ1 + β,

σ3 = Det (J) = λ1λ2λ3 = λ1β,

(B.2)

where β = α2 + ω2. In order to analyze the stability of fixed points ac-

cording to a control parameter value (B0 here), i.e. the occurrence of Hopf

bifurcation, we propose to use the Routh–Hurwitz’ theorem [Routh (1877);

Hurwitz (1893)] which states that if D1 = σ2 and D2 = σ3 −σ2σ1 are both

positive then eigenpolynomial equation (B.1) would have eigenvalues with

negative real parts. From Eqs. (B.2) it can be stated that:

α =
σ1σ2 − σ3

λ2
1 + σ2

(B.3)
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Thus, α = 0 provided that κ = σ1σ2 − σ3 = 0. For dynamical system

(3.2), we obtain:

κ = (1 + x) [p0xyε1 + (1 + x+ ε2) ε2]− 2B1k1xzε1ε
2
2 (B.4)

then, by replacing x, y and z the coordinates (3.3) of the fixed point I2, we

have:

B0 =
1 + ε2

2B1k1x∗ε1ε2
+

p0ε1 + ε2(2 + ε2)

2B1k1ε1ε22
+

(1 + 2B2
1k1ε1ε2)x

∗

2B1k1ε1ε2
(B.5)

Positivity of fixed points has led to x∗ � p0 − 1 which implies that

max (x∗) = p0 − 1. Thus, by taking x∗ = p0 − 1 in (B.5) and while using

the parameters sets of our experiment, i.e. ε1 = 200, ε2 = 6, k1 = 12,

p0 = 1.208 and B1 = 0.555, we find:

BHopf
0 � 0.12057

The numerical computation of the Hopf bifurcation parameter value has

been found equal to 0.12036 which is below and very near the upper bound

analytically obtained.
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Lösung eines Differentialsystems, Berichte der MathematischPhysikalischen
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Fabry–Pérot resonator, 2
feedback method, 67, 69
frequency regimes, 46

Haken, 2, 12, 46
homoclinic bifurcation, 33
Hopf bifurcation, 26, 38, 45, 48, 49,

88, 89
hyperbolic, 54

instability, 1, 12
intermittent regime, 73, 75–77
invariant, 61
invariant manifold, 54

jerk, 81–83, 85, 86, 90

laser, 1, 5, 9, 11, 14, 17, 18, 33–35,
47, 53

laser axis, 3
laser cavity, 3, 12, 14, 17
laser dynamics, 10, 46, 53
laser equations, 33, 46
laser intensity, 19, 34, 35

127

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

03
/1

6/
23

. R
e-

us
e a

nd
 d

ist
rib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



128 Nonlinear Dynamics of LASER

laser mode, 1, 34

laser model, 18–20, 24, 31, 36, 53, 55,
63

laser polarization, 47

laser process, 9

laser theory, 2, 8

laser timescales, 53
laser with feedback, 33, 35, 45–47, 53,

81
limit cycle, 38, 58, 60, 61

Lorenz, 12–14, 18, 33, 46, 47

Lyapunov exponents, 21, 38, 58, 82,
83, 88, 90

Lyapunov theorem, 26, 37

minimal universal model, 36, 81, 83,
86

noise, 18, 72, 78

nonfeedback method, 67–69

nonlinear, 13, 17, 18, 33–35, 46, 53,
68

OGY, 67, 69

optical cavity, 1, 6, 34

optical coherence, 17

optical feedback, 14, 47

optical pumping, 1

optical resonator, 1

period doubling, 38, 74, 79
periodic forcing, 68, 71–73

periodic limit cycle, 38

periodic modulation, 18, 79

periodic orbit, 78

periodic orbits, 22

periodic solutions, 22, 23, 26, 29, 55,
60

periodic spiking, 53

periodically driven, 67, 69

perturbations, 17–19, 67, 71, 73
phase control, 68, 69, 71, 72, 77–79

phase space, 9, 13, 17, 26, 27, 34, 45,
53, 55, 57, 63, 67, 71, 83

photon, 1, 3, 8–10, 34

Poincaré, 54
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