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FOREWORD TO ENGLISH EDITION

It is with great anticipation that we, who have worked on one aspect or
another of the band structure of semiconductors, have looked forward to
the appearance of the English translation of the Bir-Pikus book. It is a
landmark! No other term, I think, fits so aptly. And now it will become
accessible through the good offices of the Israel Program for Scientific
Translations to a much larger readership outside of the Soviet Union. Its
impact on semiconductor physics will be great and long lasting.

This book is distinguished in many ways. Much could be said about the
wealth of material it holds, a great deal of which is exposed to easy access
for the first time, or about the thorough exposition of the methods of group
theory formal enough to satisfy the theorist yet cast in a pedagogical style
to teach the experimental physicist. But the four de force which sets this
book apart from all others is its elegant and definitive treatment of the
theory of deformation effects incrystals, which organizes and elevates this
subject to its rightful place of importance in solid state physics. Certainly
no one is better qualified than the authors to do this. Bir and Pikus effec-
tively opened this field in the late 1950s with their now classical papers on
the effects of uniaxial deformation on the degenerate valence bands of cubic
semiconductors. Since that event, and stimulated to a large extent by a
continuing flow of theoretical work from Bir and Pikus, the subject has
expanded immensely, so that today uniaxial stress occupies a role alongside
large external magnetic and electric fields as a standard tool for perturbing
and studying energy spectra in solids. This book crowns their accom-
plishments.

One topic which receives special emphasis is the theory of invariants.
This beautiful and rigorous theory based on symmetry was pioneered nearly
20 years ago by J. M. Luttinger, but has failed to receive the widespread
application it deserves. This is surprising because one needs only to re-
count how much the explosive growth of electron paramagnetic resonance in
the 1950s owes to the single development of the Spin Hamiltonian to realize
how important the analogous construct could be for the representation of
energy spectra of electrons and phonons, especially in the presence of
crystal deformations and magnetic fields. In the hands of Bir and Pikus
the theory of invariants is developed with such clarity and applied so
generally that its simplicity, elegance, and impressive power can no longer
be overlooked.

The authors include some experimental results for illustration. The
speed at which these parts become dated will be a measure of the book's
success.

J.C. Hensel



PREFACE

In recent years, group-theoretic methods have found wide application in
solid state physics and the use of these methods has become a prerequisite
for experimental as well as theoretical physicists.

By tradition, however, most books on group theory are devoted primarily
to questions arising in atomic and molecular theory. Much work, including
important results, with a bearing on the application of group theory to solid
state physics cannot be found in any of these books.

The present authors' goal was to write a book devoted specifically to the
applications of group theory to solid state physics, presenting, on the one
hand, a detailed exposition of those parts of group theory which find applica-
tion in solid state physics and, on the other, leading up to an examination of
specific physical effects. Major attention has been paid to strain-induced
effects, more precisely, effects produced by strains which break the sym-
metry of the crystal, since the relevant theory may be based almost entirely
on symmetry theory.

The first part of the book, Chapters I—III, presents an exposition of the
requisite parts of group theory. In distinction from other monographs, we
make systematic use of projective representations to construct representa-
tions of the space groups. In this connection a detailed description is given
of Schur's classical method for construction of projective representations,
and their properties are described in detail. Using this method, we con-
struct projective representations of all the point groups, which then lead
easily to the representation matrices of all the space groups.

Consideration is also given in this part of the book to the role of time
inversion and to selection rules for space groups allowing for time inver-
sion, Hitherto, material on these questions has been available only in the
original papers.

The second part of the book, Chapters IV and V, gives a description of
group-theoretic methods for construction of electron or phonon spectra in
the vicinity of singular points, including spectra in strained crystals. Apart
from the so-called kp theory, which is essentially a modification of the usual
perturbation theory for a degenerate spectrum, we make wide use of the
theory of invariants. The latter method is employed not merely for its com-
putational advantages. Unlike kp-theory, whichis based onthe self-consistent
field approximation, the theory of invariants usually assumes, apart from the
general elements of symmetry theory, only the existence of quasi-particles,
which is not open to question, at least when the number of particles is suffi-
ciently small and their interaction therefore negligible. For this reason,
comparison of the results obtained by both methods enables one to determine
which of the conclusions of kp-theory are indeed based on the assumption that
the self-consistent field exists and which are not. For example, the two-
band model of kp-theory is based on the assumption that the self-consistent



potential is the same for electrons at the bottom of the conduction band and
at the top of the valence band. Results obtained by the theory of invariants
show that practically all conclusions following from the kp-theory remain

valid independently of this assumption.

The third part of the book (Chapters V1 and VII) examines various strain-
induced effects in semiconductors. From the extremely broad range of such
effects, we have selected mainly optical and resonance phenomena which
are most directly linked with the structure of the current carrier spectrum
and the changes it experiences under strain, and which yield the most reli-
able determination of this spectrum. An exception is §34, in which we con-
sider the effect of strain on the electric conductivity of semiconductors.
This effect, which has been studied most extensively, is the basis for many
more complex effects widely applied for investigation of semiconductors,
and is exploited in various semiconductor devices. The piezoresistance
effect and the various secondary effects that it produces, such as concentra-
tion effects in intrinsic semiconductors, are widely used in strain gauges of
various types.

Unlike the first two parts of the book, which discuss general material,
the last part is more specialized in nature. We have nevertheless seen fit
to include these sections, since they provide good examples of the use of
general methods to solve specific problems with a direct bearing on experi-
ment, and are moreover of independent interest owing to the increasing use
of strain-based methods to investigate semiconductors. Most of our atten-
tion in this part of the book is devoted to theoretical questions. The experi-
mental material presented in the tables and figures is mainly illustrative
and far from complete,

In describing methods for construction of spectra and examining specific
effects we naturally could not consider all groups of conductors. We have
therefore confined ourselves consistently throughout this part of the book to
the semiconductors best studied and most widely used in technology: cubic
lattices of the diamond type (Ge, Si) and the zinc blende type, and hexagonal
lattices of the wurtzite type. The wurtzite lattice is characteristic for most
semiconductors of A3Bg and Ay;Bg types. Brief consideration is also given to
the NaCl cubic lattice. This structure is characteristic for PbSe, PbTe,
PbS and other semiconductors.

The literature used in writing the book and various papers significantly
complementing and extending the material are listed in the bibliography.
This bibliography naturally lays no claim to completeness. The items are
classified according to the specific sections of the book to which they are
relevant. For this reason, specific references are generally omitted in
the text,

As stated above, familiarization with the methods of group theory is a
sine qua non not only for theoreticians but also for experimental physicists.
The authors have therefore striven to present the material in the most sys-
tematic and accessible form. To what degree they have achieved this goal
must be judged by the reader.

In conclusion, it is our pleasant duty to thank D.,K. Faddeev, E.I. Rash-
ba and E. L. Ivchenko, who read through the manuscript fully or in part and
offered many useful comments.

The authors



Chapter 1
CRYSTAL SYMMETRY

§1. ELEMENTS OF ABSTRACT GROUP THEORY

The symmetry of a body is characterized by the transformations which
leave it invariant, i.e., bring it into coincidence with itself.

The set of symmetry elements has a number of properties which follow
directly from the definition. Thus, the set of symmetry elements always
contains the identity (or unit) transformation. Ifthere areno other elements,
the body is totally devoid of symmetry.

If we apply two symmetry transformations to a body in succession, it is
again left invariant,i.e., successive application of two symmetry transfor-
mations is also a symmetry element.

" Applying one of the symmetry transformations to a body, we bring it into
coincidence with itself. The inverse transformation again brings it into co-
incidence with itself. Thus, for each symmetry transformation there is an
inverse, which is also a symmetry element, and successive application of a
transformation and its inverse is equivalent to the identity transformation.

A set of elements with the above properties forms a group.

Let us present the definition of a group. Agroup & is a (finite or infinite)
set of elements g having the following properties:

1. A multiplication operation is defined for all elements g =¥ ,* so that
for any g, and g, in ¥ there exists g, & ¥ such that g,g; = g;. In other words,
the multiplication operation associates with any two elements of the group
(taken in a definite order) a third element of the group.

Thus, multiplication of symmetry operations means successive applica-
tion of symmetry transformations, the operation appearing on the right being
the first performed, In the general case, gig: + g.g,. Groups in which gg2 =
= gg for all elements are known as commutative or abelian groups.

2. The associative law of multiplication holds: (g:ig2)8: = g1(ggs) . **

3. Among the elements of a group there is one and only one element,
called the identity or unit element ¢, which has the property ge=eg = g for
every g9,

4. Each group element g has an inverse g! such that gg-' = e. Using pro-
perties 2 and 3, we easily show that also g-lg=e.

The definition of the inverse implies

(88 - &) ' =g ... &g (1.1)

* The symbol g & ¥ means: g belongsto ¥, and the symbol g € means: g does not belong to ¥,
** This property is obvious for symmetry transformations.
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In fact, by definition we have (gig2...8n)(g182-..8x)"'= e. Multiplying this
equality from the left by g;', g;'. ..., g7 successively, we obtain (1.1).

These group postulates conform exactly to the properties of the set of
symmetry elements, which followed from intuitive considerations. Indeed,
the fact that the set of symmetry elements forms a group is the reason for
the prominent role of group theory in physics.

An example of a group which is fundamental in physical applications of
group theory is the group of n-th order square matrices A with nonzero
determinant, Det A#0. If we take the usual multiplication of square
matrices A and B as the group multiplication,

(AB)y = § AyBy;,

and let the identity element be the identity matrix I with elements /;; = §;,
where §;; is the Kronecker symbol:

s _{1 if i=j,
U7 0 if  is%j,

it is easy to prove that all the group postulates are fulfilled.

The condition Det A 540 is known to be necessary and sufficient for the
matrix A to have an inverse.

The number of elements comprising a group may be finite or infinite.
Accordingly, the group is said to be finite or infinite. The number of ele-
ments in a finite group is called its order 4.

Let us consider a few properties of finite groups.

Take any element g; of the group & and form every possible product gg;,
ge%. All these elements obviously belong to ¥, and their number equals the
order h of the group #. It is easy to see that the set of elements gg, yields
the whole group &, but in a different order. It is sufficient to show that no
two of the elements gg; are equal. In fact, the equality g,g:= g.g; would
imply that g, = g».

Thus, the set of elements g;'gg, again yields the whole group ¥, where
g runs through all elements of the group and g; is any fixed element.

These group properties are very useful in summation of some function
over the group, i.e., a function g¢(g) which depends on the elements g= %,
since on the basis of the preceding properties

‘EZ, o(g)= ig’ ?(g.8)= ‘EE’ o(ge,) = gg’ o(gr'ee)) (1.2)

for any fixed g;=%. Equalities (1.2) are obvious, since the sums on the left
and right of each equality contain the same terms, taken in a different order.

Consider some fixed element g of the group ¥ and form the sequence of
elements

e g g g ..., gh ... (1.3)

Because of the finite number of elements in the group,_one of the terms in
this sequence must appear a second time after a certain number of powers.
Let the first repeating element be gm = gr (where m > p). It is obvious that
p= 0 and gm=e, since if p> 0 we would have gm-! — gr-1, i.e., the element
g™, equal to gr-!, would appear earlier in the sequence (1.3) and gm would
not be the first repeating element, contrary to hypothesis.
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Thus the first repeated element in (1.3) is the identity element e.
The smallest number m for which gm = e is called the order of the
element g, and the sequence

e, g, g% ..., g™! (1.4)

is its period. It is easy to see that gn! =g, gn? = g2 etc. If we extend
the sequence (1.3) to £ > m, it will simply repeat the period (1.4) periodical-
ly. The period (1.4) of any element g forms a cyclic group.*

Any set of elements of the group & which itself comprises a group is
called a subgroup. Thus, the period of each element g of ¥ is a cyclic
subgroup of ¥. To show that some subset of a group & is a subgroup, it is
sufficient to verify that it contains all products of its elements. Indeed, the
associative law holds for every group element, including, of course, the
elements of the set under discussion. Next, since together with an element
g the set also contains all products of its elements, it also contains every
power of an element g, in particular, gn =e, where m is the order of g.
Thus, the set contains the identity element. It also contains g-!, since
g-l . gm—l’

We now show that the order of a subgroup & is a divisor of the order of
the group (Lagrange's theorem).

To prove this theorem, consider some element g, belonging to the group
% but not to its subgroup &, and form all its right multiples fg, fe &, or
left multiples g,f, respectively. The set g (&%) is called the right (left)
coset of g, by #. The elements fg belong to % but not to #. In fact, if fg
belonged to &, then g, would also belong to #, and this would contradiet the
assumption. Now let g, be an element belonging neither to & nor to Fg,,
and form the set fg, . It is readily seen that no element Fg; isin F or in
Fg.. For suppose, say, that figa = fag, fi, o= F ; then g.‘,=f|"’f,g|, so that g,
belongs to the set Fg,, contrary to assumption.

Thus, the cosets Fg and Fg: are disjoint. Continuing this process until
we exhaust the entire group, we conclude that & can be partitioned into com-
plexes having no common elements:

F, Fg, Fgo ---, Fgi-n (1.5)

where [ is an integer. Since each coset of Fg; contains a number of elements
equal to the order s of the subgroup &, it follows from (1.5) that

h=1s. (1.6)
The number [, which is equal to &/s, is called the index of the subgroup &
in &.
Since the period of each element is a subgroup with number of elements

equal to the order of the element, it follows that the order of each element
must divide the order of the group. In particular, it follows from (1.6) that

g'=e (1.7)
for any g=%.

* A group consisting of elements e, a, @* ..., a"~' (a™ = e) is said to be cyclic. It is clear from the defini-
tion that a cyclic group is commutative.
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If the order is a prime number, then what has been said implies that in
such a group there are no subgroups besides the trivial ones: e and the
whole group. In this case ¥ is a cyclic group.

Let us introduce the concept of conjugate elements.

Elements g, and g, are said to be conjugate if there exists an element
xe=% such xgix!' = g;. It is clear from the definition that the relation of
conjugacy is (a) symmetric and (b) transitive, i.e.: (a) if g, is conjugate to
g2, then g, is conjugate to g,; (b) if g, is conjugate to g, and g: is conjugate
to g3, then g, is conjugate to ga.

In fact: (a) By definition, if g, is conjugate to g,, there exists x= % such
that xgx! = g,, whence we obtain g, = x'gox = (x")g:(x!)"!, and since x'e g,
symmetry is proved. (b) Let xgix' = g, and ygy'= g,, where x, y=¥. From
the second equality we obtain g, = ylg,y. Substituting g, into the first equal-
ity, we find xgix! = y'gay or yxgi(yx)"'= ga. Since x, y=%, we have yx= %,
and so g is indeed conjugate to g,.

These properties imply that the elements in a group may be partitioned
into sets of conjugate elements, known as conjugate classes or just classes,
each element appearing in one and only one class.

Forming the 4 products ggig!, we obtain all the elements of the class p,,
containing g,. The number of elements in the class p is denoted by h,. Not
all the products ggig! are different. We shall show that each element of P
appears as ggg-! the same number of times, namely, hfh, times.

Let the element g’ appear in the class p times. Then there exist p ele-
ments x, %, ..., ¥p, forming a set X, say, such that xgix'= g’. Let the
element g” appear 4 times as gg,g™! and let y,, g2, 43 ..., Yo be all the elements,
forming a set ¥, for which ygiy! =g”. Since g’and g”belong to the same
class p, there exists go= ¢ such that ¢'=gg"g;!, or g"=g;'¢’g,. Hence
(goy) g1(goy)'= g, which implies that the set X must contain ¢ elements of the

form goy; (=1, ..., ¢), so that p>=g¢4. On the other hand, in exactly the

same manner we may show that the set Y contains p elements g;'x, (i =

=1, 2, ..., p), sothat ¢ = p. This implies that p=g4, i.e. each element of

the class p appears as gg,g-! the same number g/h, of times, Therefore,
Y ¢(gg|g“')=7f; Y e@, (1.8)
'{=F4 g=ng,

where ¢ is any single-valued function on the group.

All elements of the same class have the same order. In fact, if the order
of an element g ism, i.e. gn = e, then (xgx')" =xgmx'=ce.

The identity element e alone forms a class, since it is not the conjugate
of any other element.

Each class of an abelian group consists of one element, since xgxr'=g
for all x.

We have considered the partition of a group & into subgroups and classes,
It is essential to note, however, that classes (other than the identity element)
are not subgroups, since they do not contain the identity element. On the
other hand, in the general case any subgroup of the group & contains ele-
ments from different classes, but not necessarily complete classes. The
invariant subgroups of the group ¥ represent a special case.

An invariant (or normal, self- conjugate) subgroup is a
subgroup # of & consisting of complete classes of &, i.e., if #is an invariant
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subgroup and re®, then grg'e R for every g=%. We have already defined
the right and left cosets by a subgroup . If & =% is an invariant subgroup,
the right and left cosets coincide. In fact, the right coset of an element
g ER consists of the elements eg =g, g, ..., rig (neR i=1,2, ..., L rn=ce).
But since rig = gg'lr;g and g'rig =r, = R by the definition of an invariant sub-
group, we have rig = gr,. Therefore, when r; runs through all the elements
of &, r, runs through the same elements but in a different order, i.e., the
sets rig and gry coincide, and so the right and left cosets coincide.

Consider two cosets ®g and #g: and choose any representatives §  #g,
and g = #g,. It is easily proved that the product §,3,, where § e #g, and
g2 = Rg., belongs to the coset #gig:.

In fact, g and g, may be written & = rig, and gy= g2, where r; and
are any elements of #. Thus

&= ="8\ & 818 =T 18 8= T, 8,8 S Rg &,

since r,=grg7' ® by the definition of an invariant subgroup and r;r; =
=r;eR. Conversely, each representative g of the coset #g;g; may be
written as a product of representatives g = #g, and g, = #g,, where we may
choose rg, as § and g, as .. Thus all the products g8, § = #g, & = Re:,
belong to the coset #gig: and completely exhaust it.

Thanks to this property of the cosets of an invariant subgroup £, we may
treat each coset #g as an element of a new group, called the factor group
by-the subgroup #, with multiplication defined by #g,-#g: = #gig2. The asso-
ciative law for multiplication of cosets follows from the associative law for
multiplication of elements of &.

Furthermore, each element of the factor group #g has an inverse,
namely, the coset #g'. Since rgrg' =r(grng')e®, the product of g and
#g' is the subgroup & itself, which acts as the identity element in the factor
group. The order of the factor group is the number of cosets by &, i.e., the
index of #.

We now introduce the concepts of isomorphism and homomorphism of
groups.

Two groups % and & of the same order are said to be isomor phic if
we can establish a one-to-one mapping or correspondence g; « 3 between
their elements g% and =& such that if g,«+ g and g, < g,, then
g182 <+ §,4,. It is easily shown that the identity element e of ¥ corresponds
to the identity element & of §, and that the inverse g-! corresponds to g,

Isomorphic groups obviously have exactly the same structure, and from
the standpoint of group theory they are generally not distinguished from one
another, although in reality such groups may be quite different as to the
physical or geometric meaning of their elements.

A more general type of correspondence between two groups is homomor-
phism; here, as opposed to isomorphism, the mapping is not required to be
one—one. A group ¥ is homomorphic to a group & if each element of
¥ is mapped onto an element of #; several (but at least one) elements of ¥
may be mapped onto each element of F The mapping is such that if g, =,
&>l g.82€9, [LheF, then gg—fif..

Homomorphism is therefore not a symmmetric relation.

The number of elements in the group & is obviously not less than the
number of elements in the group #. If the number of elements is equal, the
homomorphism becomes an isomorphism.
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Let us consider the structure of the group §. Consider the set of all ele-
ments e, e, ..., e, =% mapped onto the identity element e of the group &
This set & is called the kernel of the homomorphism. We shall show that
the kernel of a homomorphism is an invariant subgroup of ¥.

First, any product e;e; is also in &, so that & is a subgroup of ¥. In fact,
any product ee; is mapped onto e-e = e, the identity element of &, and every
element of ¥ which is mapped onto e in ¥ is contained in &. In order to
show that & is an invariant subgroup of %, we consider any element ge;g-!,
e; =&, where g is an arbitrary element of ¥ mapped onto an element f (say)
of ¥. The element of ¥ onto which ge;g! is mapped is fef;'=e. Thus,
the element ge,g-! belongs to &, i.e., &is an invariant subgroup of &,

We now determine the set of elements of ¥ mapped onto a fixed element f
of & (by the definition of a homomorphism, there is at least one such ele-
ment). Let g be any element of % which is mapped onto f. It is evident that
the entire coset by &, i.e., the coset g&, isalso mapped onto f, since the
image in & of each element ge; is fe=/f. Conversely, each element of &
which is mapped onto f& % belongs to the coset g&. In fact, let g be an
element of the group other than g, which is mapped onto the element [in &.
Consider the element g,g-!. The corresponding element of ¥ is the identity
element ff'=e. Thus gig'e&, so that gi=&g. Hence the number of ele-
ments in § mapped onto the element fe & is just n, the order of the sub-
group &, and they form a coset g& of the group ¥. These cosets exhaust
the group %.

In contrast to an isomorphism, which is a one—one correspondence be-
tween the elements of two groups F and ¥, in a homomorphism we have a
single-valued mapping of the elements of & onto those of ¥ and an n-valued
mapping of F onto ¥. Each element fe % is the image of n elements of &,
which form a coset by & Thus the correspondence between the elements of
F and the cosets is one—one. Since the cosets by & are the elements of the
factor group, it follows that & is isomorphic to the factor group of & by its
subgroup &,

The set of all elements of a group ¥ which commute with every element
g€ ¥ is a subgroup ¥ called the center of ¥ The center is an abelian in-
variant subgroup of .

Consider two groups ¥ and # with elements fe % and he#. The set of
all pairs of elements (f, #) is a new group ¥, under the multiplication defined
by (fi, h1) (fa» h2) = ([if2, h2) . This group & is called the direct product of
F and 36

§=F X 8.

The number of elements in this new group is the product of the order of &
and the order of 46. Since

(, &Y (G )G, ™ =", BaA™")

the number of classes in % is the product of the numbers of classes in &
and in 7.

If the only common element of the groups ¥ and #€ is the identity element
e and every element of ¥ commutes with every element of 5, the group
% = & X 3 may be viewed as the set of elements g = fr, with multiplication
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defined by
&182= hhfsha = (F,f,) (h,hy)-

In the sequel we shall have to deal with direct products of groups only in
this situation.

To define a group, we must list all of its elements and specify the multi-
plication law. For finite groups this may be done by providing a multiplica-
tion table. In certain cases, however, it is more convenient to specify a
group through generators and defining relations.

In fact, each element of a finite group may be represented as a power or
product of powers of a certain finite number of elements a, b, ¢, ... called
generators of the group. These generators satisfy relations of the type

a’bic’ ... =e, (1.9)

where p, ¢, and r are positive integers or zero, and e is the identity element
of the group. These relations are called defining relations. Inthe
case of symmetry groups they depend on the mutual arrangement of the sym-
metry elements.

Specification of generators and defining relations completely determines
the group. For example, a cyclic group of order n is defined by one genera-
tor a and one relation a" = e.

The same group may generally have different systems of generators. The
defining relations will also differ accordingly.

Obviously, if we can set up a correspondence between two groups so that
they have the same number of generators and the same defining relations,
they are isomorphic.

§2. SYMMETRY TRANSFORMATIONS

We now consider symmetry transformations in greater detail. Any trans-
formation which brings a body into coincidence with itself preserves the
distance between any two of its points; a symmetry transformation may
therefore be decomposed into elementary transformations: (1) rotation about
an axis, (2) reflection in a plane, (3) translation f. (parallel displacement)
by some vector a.

A rotation ¢ (a) is defined by specifying the direction of the rotation axis
I and the angle of rotation «. A reflection o in a plane is defined by speci-
fying the reflection plane. A translation by a vector a displaces each point
along the vector a.

These three elementary transformations have different sets of fixed
points. Thus, under rotation about an axis all points on the axis remain
fixed, and reflection in a plane fixes the points on the reflection plane; a
translation does not have fixed points at all.

Note that although reflections.in a plane and rotations about an axis have
fixed points, their products may lack fixed points in the general case. For
example, it is easy to see that two reflections in parallel planes o1 and o
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8,
z & -6,z : 6,z
b S _———
.L T
>

a
2a

FIGURE 1. Successive reflection in parallel planes.

separated by a distance a are equivalent to transiation by the vector 2a, i.e.,
020y = 1, (Figure 1),

The symmetry group of a body of finite dimensions (such as an atom or
molecule) cannot contain a translation, since for any finite body there must
be a fixed point, namely, the center of gravity of the object.

A symmetry group in which there is a fixed point common to all transfor-
mations of the group is called a point group.

All rotation axes and reflection planes in a point group intersect at the
fixed point. Thus, a point group may be the symmetry group of a finite
body only.

Symmetry groups of infinite bodies, such as a crystal lattice, may con-
tain translations, since a lattice is obviously invariant under displacements
as well as rotations and reflections.

Before proceeding to discuss the various symmetry groups, let us consi-
der the basic properties of rotations, reflections and translations.

Successive application of m rotations about an axis [ through an angle «
is equivalent to rotation through the angle ma:

cf (@) =c¢,(ma).

Let @ be a rational fraction of 2r, say, @ = 2x/n, where n is an integer;
then n rotations are equivalent to the identity transformation ¢} (o) =¢, (na) =
=¢,(2n). Therefore, the set of rotations through such angles contains a finite
number n of elements and forms a cyclic group, known as Chs.

If « is not commensurable with 21, no two rotations ¢P(a) are equal, and
they are dense in the set of all rotations about the given axis (through all
possible angles from 0 to 2a). It follows that rotation angles which are irra-
tional in 2n signify the existence of axial symmetry. The corresponding
symmetry groups are infinite and allow rotations through arbitrarily small
angles.

Rotations through infinitesimal angles are impossible in a crystal lattice,
in view of the discrete nature of its structure, and therefore only elements
of the finite point groups can be symmetry elements of a crystal lattice.

The product of any number of rotations about different axes which inter-
sect at a point is again a rotation about an axis through the same point.

Rotations about different axes are in general not commutative. Commu-
tativity holds only in the special case of rotations through n about two mu-
tually perpendicular axes, since the product of such rotations is a rotation
through = about a third axis perpendicular to the first two axes.

Let ¢, (&) be rotation about an axis [ through an angle « and f any rotation
We claim that the operation fe,(«)f* is rotation through the angle & about a
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new axis fI, i.e., the image of the axis ! under the transformation f:
fc,{(l}f_1=€n(ﬂ). (2].)

In fact, the axis fl remains fixed under the transformation f¢,(@)f™", since
fe,@F' (f) =fc,(a)t=fl. Consequently, fc,(a}f_' is a rotation about fI. We
now show that fe,(a)f~' is a rotation through the angle a. Let x be an arbi-
trary vector through the axis I and perpendicular to it: x1I. Then a =
= (%, ¢,(a)x). Since f does not change angles between vectors, it follows that
fxLft and the angle of the rotation ¢y (a.),/ﬁi .e., the angle between the vectors
fe and ¢, (@) x=Ffc,(a)f 'fx=fc, (@)%, is (fx, fc,(a) ¥)=0q.

We now show that the product of two rotations through n about axes I and
I’ which make an angle ¢ is rotation about a third axis !” perpendicular to
I and ¥, through the angle 2¢, i.e.,

ey (me (n)=f2, (2.2)
where f=c.(¢9), I'=c,.(@l=fl.
In fact, by (2.1), ¢, (®) ¢, (w)=fe,(x) ['c,(x), and ¢,(x)[7'¢,(m)=]f, since rotation
of the axis I” through 7 about any perpendicular axis reverses its direction.
We now turn to the basic properties of reflections. Twofold reflection in
the same plane yields the identity transformation:

ol=e. (2.3)

Successive application of rotations and reflections gives rise to new symme-
try elements, known as improper rotations sa.

An improper rotation s» is a transformation made up of a rotation ¢, and
a reflection o,* in the plane perpendicular to the rotation axis:

Sp=O4Cp = Cp0p, (2.4)

since, as is easily proved, any rotation commutes with any reflection in a
plane perpendicular to the rotation axis.
It follows from (2.4) that
st=cl, o,s,=c, (2.5)
An improper rotation has only one fixed point, the point at which the rotation
axis intersects the reflection plane.
An improper rotation of order 2 is a special case, known as inversion, i:

Sy=e0, =i, P=e, io,=c¢, it,=a0, (2.6)

Inversion maps each point in space onto its reflection relative to a certain
point, known as the center of inversion, which is the point of intersection of
the rotation axis and the reflection plane.

Under inversion, each vector a reverses its direction, ia = —a. Thus in-
version converts a right-handed coordinate system into a left-handed coordi-
nate system.

Geometric considerations show that inversion commutes with all rotations
and reflections. The elements of a point group not involving reflections, i.e.,
rotations, are called elements of the first kind. The remaining elements,
which do contain reflections, are called elements of the second kind. Each

* A reflection plane perpendicular to the rotation axis is usually denoted by g, If the rotation axis lies in the
reflection plane, the latter is denoted by 0.
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element of the second kind A may be expressed as the product of a certain
rotation | and inversion i:

h=if=fi.
For example,

s:(ﬁ}———'“n";(ﬁ)=f‘-';(ﬂ)f:(ﬁ)="‘—';(“+ﬂJ' (27)

Since the product of two rotations is a rotation, the product of any number
of elements of the first kind is again an element of the first kind. Conse-
quently, a set consisting only of rotations may be a group.

The product of two elements of the second kind is an element of the first
kind: therefore, the product of an even number of elements of the second
kind is a rotation, and the product of an odd number of elements of the
second kind is again an element of the second kind.

Point groups consisting only of elements of the first kind are called
groups of the first kind, and groups containing elements of both the first and
second kind are groups of the second kind.

Conjugate elements of the second kind satisfy relations similar to (2.1).

If ¢,(a) is rotation through an angle a about an axis {, and h = if is any
element of the second kind ( f is a rotation), then

he@ h™ =c_,, (@) =c,, (— a). (2.8)

In fact,
hcl’ {11} h-x = i-fc; (CC) i-'r_l = C” (G} =C_u (IJ,) = CM (— Cf.}.

We can also prove the following equalities in a similar manner:
fs, (@) f™" =, (), (2.9)
hs, (@) A" =s_,,(a). (2.10)

In particular, if we note that when a =0, s,(x) is the reflection ¢ in the plane
perpendicular to the axis [, then by (2.9)

fof ' =0, (2.11)

where ¢’ is reflection in the image of the plane ¢ under the rotation f.

It follows from (2.11) that the product of two reflections in intersecting
planes o and ¢ making an angle ¢ is rotation through the angle 2¢ about the
line of intersection of the planes. In fact,

do=jof'a=F, (2.12)

since by (2.8)
0,6 (a)o, =c_,(a)=c;" (a). (2.13)

Axes of rotation (or improper rotation) and reflection planes which are
mapped onto each other by one of the group elements are said to be equiva-
lent. We must remember here that, by (2.8), (2.10), and (2.13), improper
rotations and reflections in a plane also reverse the direction of the
rotation axis.

It follows from (2.1), (2.8), and (2.9) that rotations through identical
angles about equivalent axes, or reflections in equivalent planes, lie in the
same conjugate class.
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A symmetry axis is said to be two-sided if rotations about this axis
through equal angles in opposite directions are conjugate. As follows from
(2.1), (2.8), (2.9), and (2.13), for this to be true the point group must contain
a rotation which reverses the direction of the rotation axis or an improper
rotation (in particular, a reflection) which does not change the direction of
the rotation axis. Examples are rotations through the angle n about a per-
pendicular axis or reflections o, in a plane containing the original axis.

We now consider the properties of translations.

By the definition of a translation, successive translation by vectors a
and b is translation by the vector a-+b:

tats = tays. (2.14)
It follows from (2.14) that any two translations commute:
taty = fpla = laye. (2.15)
The inverse of a translation {, is the translation {_.:
(ta) ™' =t-a, (2.16)

since fal_o=¢e, where e is the identity transformation.

These properties of parallel displacements imply that the set of translations
forms an abelian group.

The group of translations is isomorphic to the vector group ¥ whose ele-
ments are vectors a, & and the group operation is vector addition. The zero
vector acts as the identity in the group &, and the inverse of the vector a is
—a. If all vectors in & lie on one straight line, the group is said to be one-
dimensional; if all vectors lie in one plane, it is two-dimensional, If there
are three non-coplanar vectors in &, it is said to be three-dimensional.

The symmetry group of an infinite body — space group — may contain
rotations, reflections and translations, and so a symmetry element of an
infinite body may be written

g=lar (2.17)
or

g=(rla), (2.17a)
where fs is translation by the vector @ and r is a ''rotational" element; ro-
tation, reflection or improper rotation.

New symmetry elements arise in a space group: screw displacements
and glide reflections. Screw displacements arise as a result of the addition
of rotations and translations.

Let 7 be the rotation ¢/(a).

We resolve the vector a into its components e, and a :

a=a,+a,
where @/ and a, LI. Then
g=f¢lf“lc, ().

The transformation {, ¢, (a) is a plane transformation, since it leaves every
L

point lying in the plane perpendicular to the /-axis in the same plane.
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According to Chasles's theorem, any plane transformationis either a pure
rotation about some axis !’ perpendicular to the plane, when « 0 (the point
of intersection of this axis and the plane, which is the fixed point of the

transformation ACY is called the Chasles center)or

a pure translation, when a=0,

Let us determine the position of the Chasles center
and the angle of rotation about I'. In Figure 2 the points
I and ! denote the points at which the axes [ and ¥ cut
the plane perpendicular to them. The transformation
!,J_c,(u) fixes the point [’ and displaces [ by the vector

a,. It is clear from Figure 2 that the rotation angle
about I'is a'=g¢. To determine the position of the
Chasles center, draw the vector a, from the point ! and
then draw straight lines from the end of the vector a,
and the point /, making an angle p= (n—a)/2 with the vector @,. Their point
of intersection isthe Chasles center I

Thus, !clc‘(u}=c‘,(a) and the transformation g=t ¢ (a) may be written

FIGURE 2. Plane trans-
formation £, 16 (a).

g=1,c. (). (2.18)

A transformation involving rotation about an axis I’ through an angle « and
subsequent translation by a vector a, parallel to the rotation axis (Figure
3,a) is called a screw displacement, and the axis I’ is called the screw axis.
Screw displacements obviously do not have fixed points.

FIGURE 3. a) Screw displacement, b) Glide reflection.

Glide planes are produced by reflections in a plane followed by transla-
tions in the same plane. Let r be reflection in some plane ¢. We again
resolve a into two components, 4, and a,, respectively parallel and perpen-
dicular to the plane o¢:

a=a, + a, t,= t‘lf‘l.

As shown above (see Figure 1), f; o=0;, Where o is reflection in a plane

parallel to ¢ at a distance a,/2. Therefore,
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g=1la0:. (2.19)

The transformation g involves reflection in the plane ¢ and subsequent
translation by the vector a, which is parallel to the reflection plane (Fig-
ure 3,b). This transformation is called a glide reflection and o, is the
glide plane.

In the general case, then, each space group element is either a screw
displacement or a glide reflection, special cases of which are either pure
translations, pure rotations or reflections in a plane.

The translations by vectors obtained from a by applying all the "rota-
tional" point group operations r comprise the conjugate class of ¢,, since
rt,r~ is translation by the vector ra:

rtaf'_|=fra- (2.20)

In fact, successive application of transformations rfr-! to the point with the
radius-vector x yields

rtar~'x=r(r"'x4+a)=1x+ ra,

so that the resultant transformation is translation by the vector ra.
Equality (2.20) implies that

rla=tar. (2.21)

The multiplication rule for elements g =t,r, and g,=t,r, follows from
(2.21):
tard,ro=t, (rt,)ro=tt .rira,
ie.,
fmrlf“f, =t Ir|-'2: (2 .22 )

@y4ridy

or, in the notation of (2.17a),
(rila) (rplay) = (riry | @, + riay). (2.22a)

So far we have considered the symmetry elements geometrically, indicat-
ing the effect of the transformations on points. However, these transforma-
tions may also be described by methods of analytic geometry. The position
of each point is given through its cartesian coordinates x;=ux, y, z in some
fixed coordinate system. A symmetry transformation moves the point to a
new position, whose coordinates in the same coordinate system are x; =
=x', ¢, 2. By specifying the transformation law for the coordinates, i.e,,
the dependence of x; on x, y, 2z, one obtains an analytical expression for the
symmetry element.

A convenient choice of origin for point group transformations is the fixed
point. Then any point group transformation r is described by a linear homo-
geneous coordinate transformation:

¥=rx=RR(r)xor xf—Zﬂ,,(r)x” (2.23)
where, #(r) is a real 3 X 3 matrix.

Since rotations and reflections do not change the length of vectors or the
angles between them, the matrix  satisfies the orthogonality conditions:

2Ry (1) R () = 8. (2.24)
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This means that the sum of squares of the elements of each column of the
matrix & is unity, and the [scalar] product of any two distinct columns is
zero. Such matrices are said to be orthogonal.

It follows from (2.24) that

EMUENCEICE I (2.25)

where & is the transpose of &, i.e., the matrix in which the rows and
columns are interchanged:
Ry =Ry (2.286)

Equation (2.25) implies that
R)=R" (), (2.27)

ie., the transpose of an orthogonal matrix is its inverse. By (2.27),
(RR)ir = i » from which it follows that the orthogonality relations hold not
only for the columns of orthogonal matrices (2.24), but also for their rows:

RENCEMGELN (2.28)

We have already discussed how the coordinates of a point in a fixed coor-
dinate system transform under symmetry transformations. Let us now
consider how the coordinates of the fixed point A vary when a symmetry
operation is applied to the coordinate system itself. Let the coordinates of
A in the coordinate system xyz be (x, y, 2). Now change over to a new coor-
dinate system x'y’z, obtained from the coordinate system xyz by a transfor-
mation r. Obviously, the coordinates of the point A(x’, ¢/, 2’) in the new
coordinate system x'yz’ are simply the coordinates of the vector r4 in the
old coordinate system, since the same rotation of both the coordinate system
and the vector A leaves its coordinates unchanged. Consequently, by (2.23)
and (2.27), the coordinates of 4 in the new coordinate system x'y’2’ will be

=02, =2 R %= ;: R (r)st Xs. (2.29)

Evidently, the matrix of the transformation of the coordinates of a fixed
point under a rotation of the coordinate system is the transpose of the matrix
R(r) of (2.23), which describes the change of the coordinates for the motion
of a point in a fixed coordinate system.

Since Det &= Detd®, it follows from (2.25) that (Det &) =1, i.e,,

Detd == 1.

It is easy to show that for rotations the determinant of the matrix & is
unity. The identity matrix I with elements In = én corresponds to the
identity transformation. The matrix —I corresponds to inversion, which
changes the signs of the coordinates. The determinant of this matrix is
obviously —1. Since multiplication of transformations corresponds to multi-
plication of matrices, as will be shown below, and the determinant of a
product of matrices is the product of their determinants, it follows that the
determinant of the matrix of any element of the second kind is —1.

Viewing a point group of transformations in the setting of analytical
geometry, we obtain a group of orthogonal matrices &.



§3. POINT GROUPS 15

If we define the group operation to be the usual matrix multiplication, the
group of matrices (r) is clearly isomorphic to the point group ¥, since the
matrix of the transformation #(r.r1) is the product of the matrices () R(r)).
Indeed, if x”=ryx=rx’, we have

,\.’:= .Z ﬂ(rg)ux::' § “(r‘-‘)ng(’l sfxf = ; R(rzfl)" o

Consequently,
R(ror)) =R (r) R (r)). (2.30)

Translation operations may also be specified by a coordinate transforma-
tion: a translation {, corresponds to addition of a vector a to the radius-
vector x of the point:

x=x+a, x;t=x,+a‘. (2.31)

Any transformation #,r (2.17) involving a rotational element r and trans-
lation by a vector a may be written as an inhomogeneous linear coordinate
transformation:

¥ =a+R(M)x, (2.32)

where & is the orthogonal matrix of the rotational transformation r.

§3. POINT GROUPS

We now consider the possible types of point groups.

Every point group can be built up from the simplest groups C. by adding
new symmetry elements: rotations around other axes and reflections in
planes. The addition of one of the new elements entails the appearance of
other symmetry elements.

It should be stressed that in building up finite point groups these new
symmetry elements cannot be added arbitrarily. For example, new sym-
metry axes cannot intersect the old ones at arbitrary angles.

Indeed, the product of two rotations through angles commensurate with 2x
about axes intersecting at an arbitrary angle may produce a rotation about
a third axis, through an angle not commensurate with 2n; as shown in §2,
this results in an infinite group.

This is precisely the reason for the existence of finitely many types of
point group.

There are altogether fourteen types of finite point groups. These are the
groups Cn, San, Cnhn, Cno, Dny Dnny Dnd, T, Ta, Th, O, On, ¥, Yy,

Group Cn. This is the group of rotations about an axis through angles
1:_# (k=0,1,2, ..., n—1). The group is cyclic, and the number of classes

equals the number of elements n. The group C, is defined by one generator
a = ¢, and one defining relation

a"=e. (3.1)

Group Ca. The groups Cns have an n-fold axis and a reflection plane
on perpendicular to it (Figure 4,a). The group Cnx has 2n elements: the
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n elements of the group Cn

ct (k=0,1,.... n—1)

n

and n improper rotations
sk=ckg, (=0, 1,..., n—1).

When n is even, the group contains an inversion i=o,¢%?. All these groups
are abelian, since rotations about an axis commute with reflections in a
perpendicular plane. The number of classes equals the number of elements.
The group Cu = C, consists of two elements, e and os.

€
€ pat 6
s, ]
/S : .:
ui'
a b C] c
G
6 g
'h IH: uz
Uy
d e
FIGURE 4, Symmetry elements of point groups:
a)Cnpi b) Capi C) Dy; d) Dep: e) Dyg.
Cnn is the direct product of the groups C. and (,:
Cap=Cn XCy, (3.2)

and for even n=2p
CQD-R_CRXCI!

where C; is the group consisting of the two elements, € and {.
The group Cn is defined by two generators a=g¢, and b = o,, and the
relations
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a"=e, b*=e, ab=ba. (3.3)

When n is even, the inversion { may be chosen as the generator b.

Group S, is formed by the powers of an improper rotation: e, s,, 8=
=c, s3=o0,3, etc. If nis odd, S, is of order 2a, since sM=cl=e, and
si=g"=0,. Thus, if nis odd, S.is generated by ¢, and o, and coincides
with the group C,,. For odd n, therefore, the groups Cas are actually the
cyclic groups Sam.

When n is even, S, is of order n, since st=ct=e¢. Thus, the rotation ¢,
and reflection o, do not appear separately in this group; s, acts as the inde-
pendent element, and S, consists of the powers sk (=0, 1,...,n—1). Here
s%=¢%  The group S: is just the group C; introduced above.

The group S;p is isomorphic to Czp and is defined by one generator a=s,,
and the condition a?r =e.

Group Cnp,. The groups Cp, have an n-fold axis and n reflection planes
through this axis (see Figure 4,b, where the arrangement of the symmetry
elements is depicted for the group Cs ). Each group contains 2n elements,
n of them being the elements of the group Cn, and the others reflections in
n vertical planes. Since there is a reflection plane through the axis ¢,, this
axis is two-sided, i.e., the rotations ¢! and en=* are conjugate.

If n is odd, the rotations ¢% (k=0, 1, ...,n—1) take each of the planes o,
successively onto all the others, and so all the reflections in the planes o,
are in one class. If n is even, say n=2p, the rotations ¢} take each plane o,
successively onto the next but one, and so the reflections in the planes are
divided into two classes, each containing p reflections.

If n is even, the group Cy, , has p +3 classes: p—1 classes (¢}, ¢3;}) (k=
=1,..., p—1), the class ¢f,, the identity element e, and two classes each
containing p reflections in the planes c},0,c2* and c},0,¢5%, respectively,
k=0, 1, ..., p—1,0,=c,0,.

If n=2p +1 is odd, then all the planes are equivalent and the correspond-
ing reflections constitute a single class. In addition, there are p classes of
rotations (3,4 €5%,) (k=1, ..., p), and the class consisting of the identity
element, a total of p + 2 classes.

The group Ca, is also defined by two generators, a=c¢s and b=gog,. It
follows from (2.13) that o,c,0,=¢ ! =c"~!, so that the generators of Cas
satisfy the relations

an=e, b¥=e, ba=a""'b. (3.4)

Group Da. The groups D, have one n-fold axis and n twofold axes per-
pendicular to it (we denote the latter by ua). Figure 4, c shows the system of
axes for D,. The group D, contains 2n elements: the n elements of the
group Cn and n rotations about the twofold axes. The n-fold axis is two-
sided, owing to the presence of the perpendicular twofold axes. The groups
D, are isomorphic to the groups Cp., the isomorphism being given by cn<>cn,
U3 «++0s. As in the groups Cns, when n is odd all the twofold axes of D, are
equivalent, When n is even, each twofold axis is taken successively onto the
next but one, and there are two sets of n/2 equivalent twofold axes, The
distribution of elements among the classes is similar to that in Cns. The
groups D, are defined by two generators a=c¢s and b =y, satisfying the
relations (3.4).
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Groups D,,. The groups D, are obtained from D, by adding a reflec-
tion plane on perpendicular to the n-fold axis. The group D,: contains 4n
elements: the 2n elements of D, and the 2n products uon; by (2.12) the
latter are reflections o, in planes through the axis ¢ and the twofold.axis u,.
Thus, addition of a horizontal reflection plane gives rise to n vertical
reflection planes passing through the n-fold axis. It follows that the group
D,, may be obtained from either Cu, or Cp,, by adding a reflection plane oa
or a twofold axis, respectively. Figure 4,d shows the arrangement of the
elements in Dy,. The 4n elements of D,, include n rotations ¢t (k=0, 1, ...,
n—1), n rotations through n about twofold axes u,! (these are elements of
D,), n improper rotations st=g,ct, and n reflections in vertical planes ock.

Since o, commutes with each element of D,, D, is the direct product of
D, and C,:

DnA=DnXCJ-

Therefore, the number of classes in D, is twice the number of classes in
D, and the classes of D,, are obtained by multiplying the classes of D, by
e and on.

When n is even, D,y contains the inversion ¢%%,=¢,0,=i; thus, when
n=2p the group Dz, » may be written as a direct product

Dﬂp.a = sz X Cy.

The groups D,, are defined by three generators a=¢,, b =4, and c=g,or
i for even n. These satisfy the relations

a*=e, b®=e, c?’=e, ba=a""'b, ac=ca, cb=bc. (3.5)

When n is odd, Dasx is isomorphic to D:., and it may be defined by two gener-
ators a=gs, and b =u,. The defining relations are similar to (3.4):

ah=—e, b’=e, ba=a¥"lbh.

Groups Dny. The groups D4 are obtained from the groups D, by adding
n "diagonal" reflection planes through the n-fold axis midway between each
twotwofold axes (see Figure 4,e, which illustrates the axes and planes of the
group D).

The group D,s contains 4n elements: besides the 2n elements of Dy,
there are 2n new elements, obtained from the elements of D, through mul-
tiplying by reflection o4 in the diagonal planes. These 2n elements comprise
n reflections o4 in different planes c*s, and n products gaus.

By (2.12), the product oqu; may be rewritten as oy = 040,04 = OnCen = San »
since #2 = oy0n, and 040, is rotation about the axis ¢» (which is the line of
intersection of the planes o, and o4), the rotation angle being twice that
between neighboring planes ¢, and 64, i.e., 2x/2n = n/n. All the other products
ouct (k=0,1,...,n—1) are improper rotations si*'. Consequently, the
axis ¢, in Dyy becomes a 2n-fold improper rotation axis.

Since reflections in the diagonal planes take each twofold axis successive-
ly onto the next, all the twofold axes are equivalent, as are the reflection
planes. The improper rotations s2+1 and s;2~1 are conjugate. Therefore,
if n=2p each group Dsp,q contains 2p + 3 classes: e, ¢, p— 1 classes each
containing two rotations aboutthe n-fold axis, the class of 2p =n rotations
around the twofold axes, p classes each containing two improper rotations
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of the form s@*! and s;*-! (k=0, 1, 2, ..., p—1), and the class of n=2p
reflections o4 in the diagonal planes.

For odd n=2p+1, the group Dip4,« contains the inversion, since then
for each twofold axis u; there is one plane o4 perpendicular to it. When n is
odd, therefore, the group Dipy,q4 may be written as a direct product

Dipi1,a== Dops1 X C,.

Thus Dipys,a contains 2(p+42) =2p+ 4 classes, obtained from the p+ 2
classes of Dypy through multiplying by e and inversion i.

The group D,q may be obtained by adding the twofold axis u; or the re-
flection plane @» to the group S:,. Hence, Dn,4 has two generators: a=s,,,
a 2n-fold improper rotation axis, and b =y,, a twofold axis, satisfying the
relations

ain=e, b’::e, ba = a’*'h. (3.6)

Thus D,; is isomorphic to Ds,.
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FIGURE 5, Symmetry elements of the cubic groups:
a) Ti b)O; ¢) Tq.

Group T. The group T is the group of rotations which leave a tetra-
hedron invariant (Figure 5,a). This group has three mutually perpendicular
twofold axes joining the midpoints of opposite edges of the tetrahedron, and
four threefold axes joining each vertex of the tetrahedron to the midpoint of
the opposite face. The group T may be obtained from D; by adding a three-
fold axis. The tetrahedral group has twelve elements: e, 3c;, 4cs and 4¢i. The
three twofold axes are equivalent, since they go into each other under rota-
tions about the threefold axis. The threefold axes are also equivalent, since
they go into each other under rotations about the axes ¢,. The elements of
the group T comprise four classes: e, (3c), (4¢,), (4¢3). T is defined by two
generators, the twofold axis @ = ¢, and the threefold axis 6 = ¢;. To derive
the relations defining the mutual arrangement of these elements, we note
that the other twofold axes are obtained from a by rotations about either of
the threefold axes c¢j=rc,,c;' and ¢; =cic,c;2.  Since the axes ¢, and ¢} are
mutually perpendicular, the product of ¢, and ¢] gives rotation through =
about the third axis ¢; =cies, i.e., ab"'a=1>bab~*. This yields the following
defining relations for T:

a’=e, b*=e, bab=ab%a. (3.7)
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The elements of T are expressed in terms of the generators as follows:

c,=a, ci=>bab?, ¢ =bab;
e,=>b, cj=aba, c¢j=uab, c}’=ba; (3.8)
c;! =ab’a, cé"“’ = ba, c;”z =ab?, cl= b2,

Group T, is obtained from T by adding inversion, with the inversion
center at the center of the tetrahedron;

Ty=T XC,

Since ¢ = ax, Ty has three mutually perpendicular reflection planes. In
addition, we get improper rotations s; and s}, since

ci=rc,e0,=clo,=s3 and cli=cl,0,=s,

i.e., the threefold axes become sixfold improper rotation axes. The number
of classes in the group is twice the number of classes in T, i.e., 8. These
conjugate classes are obtained from those of T through multiplying by e and
i, respectively. The group T» may be defined by two generators, a = ¢; and
§ = 8s.

Since the rotation s; takes the axis ¢; into ¢; =sg,55', and c¢,=s? takes the
axis ¢, into ¢f=c,c,e;' and cje,=cy, it follows that sas-? = as-'a!, whence we
obtain defining relations for T:

at=e, s*=e, sas=asa. (3.9)

Group O is the group of rotations which leave a cube invariant. It con-
tains three fourfold axes joining the centers of opposite faces, four threefold
axes ¢ joining opposite vertices of the cube, and six twofold axes u, joining
the centers of opposite edges (Figure 5,b).

This group may be obtained by adding a threefold axis to D4. In the group
O axes of the same order are equivalent, and they are all two-sided. The
24 elements of O are distributed among five classes:

@, (4cp 4¢3, (3¢ 3c3) (3} (6uy) (3.10)

The octahedral group has two generators, which may be taken as rotation
about a fourfold axis a = ¢, and rotation about a threefold axis b = ¢,, satis-
fying the following relations:

at=e, b=e, aba=0b% (3.11)

the last relation follows from the fact that u}= (ab)’=e. All the other ele-
ments in the group of the octahedron may be expressed in terms of different
powers and products of the generators:

c,=a, c;=bab®, c]=>b%b,

c2=a% c=ba%? ¢!’ = b,

d=a = b, ¢/ =ab?, (3.12)
=05, c¢,=aba®, cj=aba®, c;"=a’a,

2=10% cf=a%, c=a%? c"=0ba u’=ba,

u,=ab, u)j=a%ha', uj=a%a’, u}V'=ba’b%a, u’= b%ab>
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Group T, is the full symmetry group of the tetrahedron. In addition to
the elements of the group T it contains reflections, one for each plane
through two vertices and the midpoint of the opposite edge (see Figure 5, c).
There are 24 elements in T4: 12 elements of T,

e, 3c, 4c, 4cl

six reflections in the planes o4, and six improper rotations s, and s}. These
improper rotations arise, as in Dy, because the reflection planes for
the twofold axes are diagonal. The symmetry planes contain the axis ¢;; in
T4, therefore, as opposed to T, these axes are two-sided. As in the group
Dy, the improper rotations § and s} are conjugate and appear in one class.
Thus the elements of T; are distributed among five classes:

@, (4cy 4c3, (60) (35, 3s), (3cy).

The group T, is isomorphic to the group 0, via the correspondence
Sy «> 4, Ca >3, Ug+> 0. Hence the defining relations for Ty are the same as
for 0, i.e., equations (3.11), if we take a= s, and b =¢; as generators. All
the elements of Ty are expressed in terms of the generators as in (3.12).
The group O, is the full symmetry group of the cube. It is obtained by
adding an inversion center to 0:

O,ﬁ-OXC,.

The number of elements in 0, is 48. The threefold axes are the diagonals
of the cube: as in the group T4, these become sixfold improper rotation axes,
and three reflection planes o, appear perpendicular to the fourfold axes. In
addition, there are six reflection planes o4, one through each pair of opposite
edges. The number of classes in the group 0, is 10; five of them coincide
with those of the group 0, and the others are obtained from them through
multiplying by the inversion i. These classes are:

O, (4sp 45, (35, 35, (30,) (69,):
The group O, may also be obtained by adding the inversion to the group 7Ta:
0,=TyXC;

We may take the rotation ¢; = @ and improper rotation ss = s as the gener-
ators of 0,. These elements satisfy the following defining relations:

at=e, s"=e, as=s%, sa’s=a. (3.13)

The third of these relations is the commutativity of inversion i= s® and ¢;
the last follows from the easily verified fact that sa®=sy}=iclc] is reflection
in one of the planes o4, and o}=e,

Each element of 0, is either an element of O or the product of an element
of O and the inversion i =s%, Therefore, half of the elements of O, are ex-
pressed in terms of the generators a and b as in equations (3.12), except
that b must be replaced by s?, and the other half is obtained through multi-
plication by the inversion s°

We shall show in §5 that the icosahedral groups Y and Y, are not crystal
symmetry groups and therefore we shall not discuss them.
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§4. FULL ROTATION GROUP

We now consider the symmetry group of a sphere, the spherical group X,
which consists of all possible rotations through arbitrary angles about an
arbitrary axis through the center of the sphere and thus contains a continu-
ous set of elements, This group is also known as the full rotation group.
Although the full rotation group is not a crystal symmetry group, it is
important in many applications of solid state theory, and we shall therefore
discuss its basic properties briefly.

Each element of X is a rotation &:(¢), characterized by the direction of
the rotation axis I and the angle of rotation ¢. We shall describe the rota-
tion ¢ (p) by a vector ¢ with components ¢,, ¢,, ¢, directed along the rotation
axis I. The length of the vector ¢ is the angle of rotation ¢:

lol=VEFEF .

Thus each element of the full rotation group is a function of three parameters
@x 9y, ¢:, Which satisfy the inequality

VEFEF & <o

The Euler angles 8, ¢, ¢ are frequently used as the three independent
parameters characterizing rotations.

All the general theorems proved in §1 for finite groups which are based
on group properties are applicable to the full rotation group, provided the
conclusion does not involve the number of elements.

All rotation axes in the spherical group are two-sided and equivalent, and
so all rotations through the same angle |g| about all possible axes lie in a
single conjugate class.

If we add the inversion i to the full rotation group X, we obtain the full
orthogonal group

Hy=X XC,

in which each plane through the center of the sphere is a reflection plane,
Each element of the orthogonal group X, is either a rotation or the product
of inversion and a rotation.

Every finite point group is clearly a subgroup of the orthogonal group.

Rotations through infinitesimal angles play a decisive role in the full rota-
tion group, since any rotation through a finite angle about a given axis may
be obtained as a result of continuous successive rotations through infinitesi-
mal angles. Thus the properties of rotations in the full rotation group are
determined by the properties of infinitesimal rotations.

Consider an infinitesimal rotation ¢. Simple geometric considerations
show that, up to first order terms in|¢|, this rotation takes the radius-
vector ¥’ of an arbitrary point in a fixed coordinate system to the new
position:

¥ =x+ [xg].* (4.1)

* Accordingly, by (2,29), the change in the radius-vector of the point under a small rotation ¢ of the coordi-
nate system is ¥ =% — [x@].
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For infinitesimal rotations about the x-, y- and z-axes, respectively,
formula (4.1) gives
=0, X=ux Y=y+z9, 2’=z—yp,
=0, X=x—29, y=y, 2=z 4 xq, (4.2)
=0, ¥=x+yp, yY=y—xq, 2=z
Let & (x,y 2z) be a single-valued differentiable function of the coordinates.
Consider its variation under an infinitesimal rotation ¢ of the coordinate
system:
DQF (x, y,2) =F (@7'2) =F (x+ 29) — Yu Y — 20x + X0 2+ Y9x — x9,).

Expanding F(p™'%) in a Taylor series up to first order in ¢, we obtain
D@F (x, . 2)=F (x, 4, Z)+(%2-yroz}-f,%(x. 4,2+

+ (s — 29) 258D (yg, — x9) 2 (x, 4, 2) =
=(1+iLQ) F (5, y, 2), (4.3)

where L is the vector operator — i[xV] with components

L‘=_i{5‘az—’ay} L"_‘{z_ ‘az} (4.4)
mifxmy ) |

L is known as the infinitesimal rotation operator; it coincides with the angu-
lar momentum operator of quantum mechanics
A direct check shows that the operators Li, L, and L, satisfy the following

commutation relations:
LeLy—Lyley=il, Lyly—L,Ly=iL,, L,L,~L,L,=iL, (4.5)
Using the group properties of rotations, we shall show that the operator
D@QF (x, g 2)=F (¢7'), (4.6)

which describes how the function & (x,y, 2) transforms under a rotation
through any finite angle ¢, is uniquely determined by the infinitesimal rota-
tion operator L and the angle ¢.

To this end, we consider two rotations about the same axis throughangles
s¢ and f¢. Since the product of s¢ and f¢ is a rotation about the same axis,
through the angle (s 4 f)g, successive application of the operators 2 (sq)and
@D (tg) yields the transformation effected by the operator D((s + t)¢):

D (sq) D (tg) = D ((s + 1) ). (4.7)

Differentiating with respect to s and setting s = 0, we obtain

D (wl —_dD((s+ 09 __ dD(tq)
2 (tg) =0 ds |s==ﬂ_ dat *
By (4.3)
D .
= a‘(ss‘N 0 iLg,
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and hence the following equation for 2D (fg):
2209 i (Le) D (te). (4.8)

Since when { =0 we have 2 (0) =1, the identity operator, it follows from
(4.8) that
@D (t‘q)) — LR

Setting =1, we obtain an expression for £(g) in terms of the infinitesimal

rotation operator L:
D () =e' L9, (4.9)

The operator e't* is defined through the series expansion

et =1 4i(Lg+LE g CEOF (4.10)
thus formula (4.3) is the first term in the expansion of £ (¢) in powers of the
small parameter g¢.

With any rotation of space we may associate a certain transformation of
the plane. Indeed, let us consider the stereographic projection of the sphere
onto the plane (Figure 6). Take a sphere of unit radius with center at the
point O (0,0,0). With each point P of the sphere we associate the point P’ in
the En-plane at which the line O’'P intersects the &n plane. This correspon-
dence is clearly one—one, provided we associate the point 0’(0, 0, 1) with the
point at infinity on the plane. For any rotation of the sphere, taking a point
P onto some point M on the sphere, we have a certain transformation of the
tn-plane, taking the point P’ onto the corresponding point M’ in the gn-plane.

FIGURE 6, Stereographic projection of
sphere onto plane.

If we introduce the complex variable { =t + in, we can show /I.8/ that
any rotation of the sphere induces a certain linear-fractional transformation
of £ in the En-plane:

F_oL+p 4.11
V=%+s (4.11)

defined by the matrix

g M
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with complex parameters a, p, y, §, which depend on the components ¢ 9, g,
of the rotationvector. The matrix u is unitary, and its determinant is unity.*

Thus, with every rotation of the sphere we can associate a unitary matrix
with determinant unity, which defines the corresponding linear-fractional
transformation of the in-plane. Moreover, the product of two rotations cor-
responds to the product of the corresponding matrices u. Since the product
of two unitary matrices with determinant unity is again a unitary matrix
with determinant unity, the matrices u# form a group %, which is known
as the unitary group or group of motions. We have thus established a corre-
spondence between the rotations of a sphere, which form the full rotation
group ¥, and the unitary matrices u with determinant unity, which are the
elements of the unitary group %.

However, this correspondence is not one—one, In fact, each matrix «
corresponds to a definite transformation (4.11) of the &n-plane and thus to
a definite rotation of the sphere. Therefore, each matrix u uniquely deter-
mines a rotation of the sphere. However, to each rotation of the sphere
there correspond not one but two unitary matrices with determinant unity,
namely the matrices # and —u, since it is clear from (4.11) that both these
matrices correspond to the same transformation of the &n-plane. Thus the
unitary group % is homomorphic to the full rotation group #. The kernel of
the homomorphism is the group of two elements I and -1, where I is the
2 X 2 identity matrix. This group is the center of the group %. The corre-
sponding factor group is isomorphic to the full rotation group X',

It can be shown /I.8/ that the matrix u corresponding to a rotation ¢ with
components ¢x @, , ¢: is

u (Q)) — 8‘ (0, @pto, @ +o, 002 e! I'.ﬂ).l’?l (4 . ]_2)

where the "vector'" ¢ is a 2 X 2 matrix with components

01 0 —i
%=l o %= . 0=

i 0
o,, 0, and o, are known as the Pauli matrices; they play an important role in
the theory of representations of the rotation group and in applications of
group theory in physics. It follows from the definition of the Pauli matrices
(4.13) that they satisfy the relations

1 0
o il (4.13)

ol=0ol=0ol=1, 00,=—00, 00,=—00, 0,0,=—0,0, (4.14)

Formula (4.12) for a(g) is a symbolic notation for a 2 X 2 matrix and is
defined through series expansion of the exponential in (4.12). Expanding
el 92 in geries (see (4.10)) and using (4.14), we easily show that

u(q:)=e“°”4’2=!cos%+£{—a;-'lsin%, (4.15)

where I is the identity matrix,
It follows from (4.15) that the matrix of a rotation about the z-axis
through an angle ¢ (i.e., ¢ =) is
e‘@fz 0
u{¢z)=fcos%+io,sin%=| 0 e“mﬂ' (4.186)

* The matrix u is unitary if le[*+|B|* =|y|*+|6|? =1 and a*y 4 p*6 = 0. For further details on unitary
matrices, see §7.
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Formulas (4.15) and (4.16) demonstrate why the correspondence between
u(p) and ¢ is not one—one. In fact, the rotations ¢ and ¢+ 2x are indistin-
guishable; however, as is clear from (4.15) and, in the special case of
rotation about the z-axis, from (4.16), the matrices u(g)and u(p+ 2n) differ
in sign. For example, the matrices I and - I both correspond to rotations
about the z-axis through angles 0 and 2n,

§5, BRAVAIS LATTICES

In this and in the following sections we shall discuss the crystal symme-
try groups. We shall not list all the space groups* but only explain their
structure and indicate the elements that must be specified in order complete-
ly to define the symmetry group of a crystal.

The crystal symmetry groups may be constructed by purely mathematical
reasoning, starting from simple axioms which embody the hypothesis of the
atomic structure of crystals. These groups were constructed by Fedorov
and somewhat later by Schoenflies, who showed that there are altogether
230 space groups for crystal lattice symmetry.

We shall call points of a crystal equivalent if they are indistinguishable
by their physical and geometric properties.

The symmetry group of a crystal consists of all transformations which
take every point of the crystal onto an equivalent point.

Every crystal lattice possesses the fundamental property of translational
periodicity, which may be taken as the basis for the definition of a crystal
lattice. To elucidate: the symmetry group of a lattice always contains a
three-dimensional group of translations T by vectors a, which form a three-
dimensional vector group F. By virtue of the atomic structure of a crystal
lattice, the lengths of the translation vectors a € # are bounded below by
some positive quantity, since the distance between the atoms (ions) in a
crystal lattice cannot be arbitrarily small. A vector group ¥ is said to be
discrete if the length of any vector a =& is greater than some number d.

Every three-dimensional discrete group contains three noncoplanar vec-
tors ay, a;, a3 such that any vector a =% may be expressed as

a=ma, + ma,+ mua, (5.1)

where mj, m; and m; are integers (positive, negative or zero). The parallel-
epiped whose sides are the basic vectors a,, a;, a; is called the basic paral-
lelepiped or primitive cell of the crystal. We note that the choice of the
basic vectors @, @, a; is to some degree arbitrary,

Any of the primitive cells may be constructed in the following manner,
Choose an arbitrary vector a = &, and define @, to be a vector in the
group &, parallel to a, of minimal length. Now choose an arbitrary vector
be & not parallel to a;. The vectors a and b define a plane a,b. Let a; be

any vector in &, in the plane ab, with minimal projection on the straight
line perpendicular to a, in the plane a,b. The two vectors a, and a, define a
face of the primitive cell. Finally, a; will be a vector of ¢ €& which does not
lie in the plane @,a; and has minimal projection on the straight line perpen-
dicular to this plane.

* The space groups are described, for example, in the monographs /1.3, 1.10/ and the handbooks /1.19, 1,18/,
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It is clear from the above construction that one edge of the primitive cell
may be directed along any vector a =4, and one of its faces may lie in the
plane defined by any iwo vectors @ and b= &. The volume of the primitive
cell based on vectors a,, a;, as is (ai[a: X as])= Q,; all parallelepipeds deter-
mined by three basic vectors chosen as just described have the same volume.

A crystal lattice may be considered as constructed from identical primi-
tive cells. The vertices of the parallelepipeds which form the cells, i.e, the
ends of the vectors a (5.1), are called Bravais points, and the lattice formed
by the Bravais points is called a Bravais lattice.

It should be noted that the points of the Bravais lattice are in general not
real points of the crystal lattice, i.e., locations of atoms or ions. In fact, in
order to construct a Bravais lattice in the general case one can start from
an arbitrary point of the crystal lattice as zero point, and therefore the other
points of the Bravais lattice may lie at arbitrary but equivalent points of the
lattice.

If there is one atom for each primitive cell of the crystal, it is convenient
to locate the points of the Bravais lattice at the positions of the atoms, and
then the Bravais lattice coincides with the real lattice of the crystal. But if
there are several atoms for each cell, i.e., the lattice is compound, then of
course only one of the atoms of the primitive cell may determine the zero
point of the Bravais lattice; thus the number of points in the Bravais lattice
is less than the number of real points in the crystal lattice.

We may view a compound lattice of this kind as a lattice formed by
several interpenetrating Bravais lattices (the exact number depends on the
number of atoms in the primitive cell), whose zero points coincide with the
positions of the atoms in the primitive cell. However, the translational
symmetry of the crystal is characterized, of course, by only one of the
Bravais lattices.

In the general case the parallel displacements (5.1) do not exhaust all the
symmetry transformations of the crystal, since the latter may contain equiv-
alent points which cannot be brought into coincidence by any of the transla-
tions (5.1); thus the symmetry group of the lattice may contain rotational
elements: rotations, reflections and improper rotations.

Symmetry of Bravais Lattices

The totality of reflections and rotations (improper rotations) which map
the Bravais lattice onto itself and have a fixed point form a certain point
group. This symmetry point group of the Bravais lattice, #, is also the
symmetry group of the vector group F which characterizes the translation-
al symmetry of the crystal. Each element r&X¥ maps a vector a =¥ onto
another vector ¢’ =ra=# . A necessary and sufficient condition for this to
be true in a discrete vector group is that each basic vector a,, a3 a3 remain
in the group & under any transformation r, i.e.

ra, = ma, + mqa, + mya,,
ray = ma, + na, + nya,, (5.2)
ra;=\la, + l,a, 4 la,,
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where my, n;, I; are arbitrary integers. The actual meaning of condition (5.2)
is that rotations and translations by whole periods must be compatible.

The compatibility condition (5.2) for rotations and translations implies
that not every point group may be the symmetry group of a vector group. In
order to ascertain which point groups may be symmetry groups of a three-
dimensional discrete vector group, let us examine the elements which the
group X contains.

Together with any vector a, a vector group ¥ also contains —a; thus any
group X must contain inversion.

Let ¢, be an n-fold rotation appearing in the group X¥. For any a e &, the
vector c,a—c;'a lies in a plane perpendicular to the axis ¢,; thus, the three-
dimensional discrete vector group & induces a certain discrete group on this
plane. Let e be the shortest vector in the latter group. The vector c,e+c;le
is obviously parallel to e, and so it is a multiple of e of length at most 2e.
Therefore

cetcle=me (m=0, =1, +2). (5.3)

The length of this vector is |¢,e+ ¢ le| =2ecos(2n/n), where e is the length of
the vector e. Hence we obtain the equation

28 =m  (m=0, x1, %2). (5.4)

Formula (5.4) can hold only for n =2, 3,4 and 6. Thus condition (5.2)implies
that the symmetry group of any three-dimensional Bravais lattice may have
been only twofold, threefold, fourfold, and sixfold axes. It can also be shown
that if the group X contains a subgroup C,with n> 2, there is also a reflec-
tion plane o, passing through the axis ¢,, i.e., the group X contains a sub-
group Chp,.

Therefore, every symmetry group of a vector group contains inversion
and may contain only twofold, threefold, fourfold, and sixfold axes; more-
over, for any of these threefold, fourfold, and sixfold axes there is always
a reflection plane containing the axis.

It is readily checked directly that only seven groups have these properties.
These are the groups 8s, Con, Do, Dsa, Dun, Den, 0,. We shall show below that
for each of these seven point groups we may actually construct the vector
group ¥ and a Bravais lattice whose symmetry group is this point group.
Note that the same symmetry group ¥ may correspond to different vector
groups, and accordingly different Bravais lattices. The totality of all vector
groups having the same symmetry group is called a system or holohedry.

Thus there are altogether seven systems. These systems are given the
following names: triclinic T (group §;), monoclinic M (group Cs), ortho-
rhombic O (group Dy), rhombohedral or trigonal R (group D), tetragonal
or quadratic Q (group D), hexagonal H (group Ds) and cubic K (group 0,).

Thus, there are altogether seven symmetry groups X for all crystals,
i.e., seven systems of Bravais lattices.

Lattice Types

Two vector groups belonging to one system are said to be of the sametype
if one of them can be obtained from the other by a continuous transformation
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of the basic vectors which does not lower the symmetry of the vector group.
It follows from this definition that different vector groups which can be ob-
tained from one another by a continuous variation of the parameters permit-
ted by the symmetry group, for example, by changing the scale of the vectors
a;, @z, a;, belong to the same type.

As we shall see below, for each system there may be several types of
Bravais lattices (lattice types), i.e., several arrangements of the basic
vectors, satisfying condition (5.2), which cannot be taken into each other by
a continuous transformation. Altogether, the seven systems subdivide into
fourteen types of vector groups, i.e., fourteen lattice types.

We now consider the lattice types.

Triclinic system T (group S:). The symmetry group S;contains
only two elements, e and i, and so any triple of noncoplanar vectors a, a;, a,
may be a basis in the group & (Figure 7). Since any other triple of nonco-

planar vectors may be taken onto the given vectors a,
a; a3 by a continuous transformation, it follows that for
Mg thetriclinic systemthere is only one lattice type, called
| a primitive lattice and denoted by I'}. Each Bravais
lattice of type I't is determined by six parameters: the
lengths of the vectors a,, a;, a; and the three angles
between them.

The primitive cell for type I: is an arbitrary paral-

lelepiped (see Figure 7) with the points of the Bravais
lattice at its vertices. It is invariant under transfor-
% mations of the group S,.

Monoclinic system M (group C»). The mono-
clinic system contains two lattice types. The first
type I'm, called a primitive lattice, is shown in Figure
8,a. The arrangement of the basic vectors for this
type is characterized by the conditions

a;

FIGURE 7, Basic vectors of
the Bravais lattice of the
triclinic system.

a;l a, a3 1 ay

The vector a; is parallel to the twofold axis ¢;,, and the vectors a, and a; lie
in the reflection plane g,. The primitive cell in type T'm is a right parallele-
piped with an arbitrary base. It is invariant under every operation of the
group Cax. The points of the Bravais lattice are located at the vertices of
the primitive cell.

The arrangement of the basic vectors for the second lattice type of the
monoclinic system, shown in Figure 8,b, is characterized by the conditions

2a;—a,la, 2a,—a la,

This type is known as a base-centered lattice, denoted by I'%. The primitive

cell (dashed lines in Figure 8,b) is not invariant under the transformations

of the group Ca, although, of course, a lattice composed of these cells is

mapped onto itself by these transformations: each of the basic vectors a,, ay,

a3 is transformed into a linear combination (5.2) with integer coefficients,
Type I, lattices nevertheless contain a parallelepiped invariant under Cy,

built up from the vectors a,, a3, a;. This is the right parallelepiped with

sides a), @, 2a3— a, (bold lines in Figure 8,b), known as the Bravais parallel-

epiped. In the case of a primitive lattice the Bravais parallelepiped coincides
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FIGURE 8. Basic vectors of Bravais lattice in monoclinic system:

a) primitive lattice Ip,,; b) base-centered lattice I‘,‘: (dashed lines: primitive cell).

with the primitive cell; the points of the Bravais lattice are located at its
vertices and there is one point for each parallelepiped. Inthetype I lattice
there are also points of the Bravais lattice, at the midpoints of the lateral
faces (with respect to the axis ¢;); this is the reason type I lattices are
known as base-centered lattices. Here the Bravais parallelepiped contains
two lattice points.

The Bravais parallelepiped for the monoclinic system is determined by
four parameters: the height, lengths of edges of base, and angle between
them; thus the type I and T lattices of the monoclinic system are deter-
mined by these four parameters. It should be clear from Figure 8,b that
type I'm and I'm lattices cannot be taken into one another by any continuous
transformation (i.e., a continuous variation of the four parameters) without
lowering their symmetry.

For each of the Bravais lattices belonging to one of six systems (the ex-
ception is the hexagonal system) we may construct a Bravais parallelepiped,
i.e., an invariant parallelepiped of minimal volume built from the basic vec-
tors. In the general case, there will be points of the Bravais lattice not only
at the vertices of the parallelepiped, but also (possibly) at the midpoint of
the parallelepiped and the midpoints of its faces. The Bravais lattice of a
crystal may be built up from identical Bravais parallelepipeds. In a certain
sense invariant parallelepipeds are more convenient for describing Bravais
lattices than primitive cells, since the form of the latter depends on the
specific choice of basic vectors a,, a;, a,.

In the general case, the Bravais parallelepiped does not coincide with the
primitive cell. This is demonstrated in the monoclinic system, where the
volume of the Bravais parallelepiped for type I lattices is twice that of the
primitive cell. However, the primitive cell for primitive T'm lattices (and,
of course, for I') coincides with the Bravais parallelepiped.

Henceforth, our examination of the possible lattice types belonging to a
given system will start from the appropriate Bravais parallelepiped.

Orthorhombic system O(group D). In the orthorhombic system
there are three mutually perpendicular twofold axes; the Bravais parallelepiped



§5. BRAVAIS LATTICES 3

Iy T
2a,-a,
g,
4 __—-_-, \
a_,\J A \
3 ==
] \ a,
a’ AY a, \\
a b
v f
ly Iy
;? IR
f/ a, Il/{ - ay
———t— / .1/ - \
/ s \ T
/! a. /! A}
8, *\z \
\‘. rd
c d

FIGURE 9. Basic vectors in orthorhombic system:

a) primitive lattice I'y;; b) base-centered lattice I‘O"'. c) body-
centered lattice Ij; d) face-centered lattice I‘{,.

is therefore a parallelepiped with mutually perpendicular edges (Figure 9).
There are four lattice types, determined by the possible location of the lat-
tice points in the Bravais parallelepiped.

The primitive lattice I'p is obtained when the lattice points lie at the ver-
tices of the Bravais parallelepiped (Figure 9,a). As basic vectors ay, a;, a;
we may choose three mutually perpendicular edges of the parallelepiped,

a la, a,la; ala,

The primitive cell for the I'y lattice, which coincides with the Bravais paral-
lelepiped, is invariant under the transformations of the group Da.

The base-centered lattice [} (Figure 9,b) is similar to the type I, lattice
of the monoclinic system; two points of the Bravais lattice are located at the
centers of any two opposite faces. The basic vectors for type IS lattices
may be chosen as shown in Figure 9,b: a4 and a; are edges of the parallele-
piped, and the end of the vector a; lies at the midpoint of an adjacent face,i.e.,

a lay,l 2a,—a la,.

In the orthorhombic system there are two new lattice types not met with
in the monoclinic system: body-centered and face-centered.
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Tn the hody-centered lattice I'f one of the lattice points is located at
midpoint of the Bravais parallelepiped (Figure 9,c). The basic vectors may
be chosen in the following manner: g, and a; along edges of the Bravais par-

allelepiped, the end of a; lying at the midpoint of the Bravais parallelepiped:
a la,l 2a;,—a —a,la,.

In the face-centered lattice I} there are lattice points at the midpoint of
each face of the Bravais parallelepiped (Figure 9,d). The basic vectors may
be chosen as in Figure 9,d; they are determined by the conditions

a l2a,—a l2;—a la,.

The Bravais parallelepiped in the orthorhombic system is determined by
three independent parameters: the lengths of three of its edges; thus any
lattice of the orthorhombic system is determined by these three parameters.
It is easily seen that the lattice types enumerated above cannot be reduced
to one another by any variation of the lengths of the edges of the Bravais
parallelepiped.

The primitive cells for type I}, I't and I} lattices, indicated in Figures
9,b, c,d by dashed lines, are not invariant under the transformations of the
group Dy ; their volumes comprise respectively 1/2, 1/4, and 1/8 of the
volume of the Bravais parallelepiped.

Note that we could have chosen a right parallelepiped with rhombic rather
than rectangular base, which is also invariant under D, to play the part of
the Bravais parallelepiped. Of course, this would again have given four lat-
tice types; an examination of Figure 10 reveals the following correspondence
between the two sets of lattice types:

Rectangular base Rhombic base
Figure 10,a Primitive Iy Base -centered
Figure 10,b Body-centered I§ Face-centered
Figure 10,c Base-centered Ty Primitive
Figure 10,d Face-centered I‘s Body-centered

Since the Bravais parallelepiped in the monoclinic system may be any
right parallelepiped, there is no distinction between right parallelepipeds
with rhombic and rectangular bases. This is why the face-centered and
body-centered lattices of type I are equivaleni in this system.

Tetragonal system Q (group Dy). Inthe group Dy, one of the two-
fold axes of the group D, becomes a fourfold axis, and so the appropriate
Bravais parallelepiped is a right parallelepiped with a square base (Figure 11).

In transition from the orthorhombic systemtothe tetragonal, the rectangle
and rhombus forming the bases of the two possible Bravais parallelepipeds
become squares, so that the distinction between these parallelepipeds again
disappears. Therefore, as is clear from Figure 10 and the above table, the
base-centered lattice of the tetragonal system is equivalent to the primitive
lattice, and the face-centered and body-centered lattices are equivalent.
Thus, only two lattice types are possible: primitive I, (Figure 11,a) and
body-centered I'; (Figure 11,b).

The primitive lattice is similar to the primitive lattice of the group Da.
Its basic vectors satisfy the conditions

ala,la;la, a=a,
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FIGURE 10, Bravais lattices in orthorhombic system with different choice
of Bravais parallelepiped,
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FIGURE 11. Basic vectors in tetragonal system:

a) primitive lattice Pq: b) body-centered lattice l":.

The body-centered lattice I'j; is also similar to the type I7 lattice.
basic vectors may be chosen as for type Iy:

a la,l2a—a —ala,,

33
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but the presence of a fourfold axis adds one other condition:

ay =ds.

Since the Bravais parallelepiped is determined by two parameters: length
of edge and height, all lattices in the tetragonal system are also determined
by these parameters.

Cubic system K (group 0,). In the cubic system the Bravais paral-
lelepiped is a cube. Therefore, in the primitive cubic lattice I, the primi-
tive cell is a cube, and the basic vectors g, a;, @ may be chosen mutually
orthogonal and of equal lengths (Figure 12,a):

GIJ-GL‘J-“JJ-GI’ ay=0a;=0as

In the body-centered lattice TI; there is a lattice point at the midpoint of
the cube. The basic vectors indicated in Figure 12,b are characterized by
the conditions

ala, al2—a,—ala, a=a,=|2a;—a,—al|

FIGURE 12. Bravais lattices in cubic system:

a) primitive lattice Te:  b) body-centered lattice I';; ¢) face-centered I‘I..

We showed above that in the tetragonal system the face-centered lattice
is equivalent to the body-centered lattice, but in the cubic system there is
no such equivalence, since the resulting parallelepiped with square base is
not a cube; in the cubic system, then, the face-centered lattice again be-
comes an independent type, with lattice points at the midpoints of each face
of the cube (Figure 12,¢). The basic vectors a,, a;, a3 may be chosen to
satisfy the conditions

e+a,—a,lae,+a,—a, at+a—ala—ata,
a+a—ala—ata, aq=a,=a;

Since a cube is determined by only one parameter, the length of the edge,
all cubic lattices are determined by one parameter — the lattice constant.

Rhombohedral (trigonal) system R (group Dy). Dij; symmetry
is characteristic of a rhombohedron — a parallelepiped obtained by stretch-
ing or compressing a cube along its diagonal (Figure 13).
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FIGURE 13, Bravais paral= FIGURE 14. Bravais prism
lelepiped of rhombohedral of hexagonal lattice T'y.

lattice Typy.

In the rhombohedral system there is only one possible lattice type, the
primitive lattice I'm, with the lattice points situated at the vertices of a
rhombohedron. A simple construction will show that in the rhombohedral
system both face-centered and body-centered types are equivalent to the
primitive lattice. The arrangement of the basic vectors of the I' lattice,
shown in Figure 13, is characterized by the conditions

Eant ~~ ~~
a;=a,=4a; aa,=a,a;=aa;.

Lattices of the rhombohedral system are uniquely described by two parame-
ters: the length of the edges and the angle between them.

Hexagonal system H (group De). Since the group De admits a six-
fold axis, it can have no invariant parallelepiped. The figure invariant under
the transformations of De is a hexagonal prism (Figure 14), known as the
Bravais prism,

In the hexagonal system there is again only one lattice type, I'n; the lat-
tice points are located at the vertices of the Bravais prism and at the cen-
ters of its bases (see Figure 14), The basic vectors in a type I'x lattice
satisfy the conditions

ala, ayla, aa=2n3.

The primitive cell is shown in Figure 14 by dashed lines; it is a right
parallelepiped on a rhombic base. The angle between the edges of the
rhombus is 27/3.

Type @i lattices are determined by two independent parameters: height
of the prism and length of edge of the base.

The Bravais lattices listed above exhaust all the possible types of dis-
crete three-dimensional lattices.
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TABLE 5.1
System Type Basic vectors Parameters Gf_ Bravais
parallelepiped
Triclinic T (Sy)| Primitive Ty |Arbitrary @y, @y, @, (Fig. U O O
a,dy, 4,4y, a4

Monoclinic Primitive I'm a3 la,;, asla; (Fig. 8,a) ay, ay, as, ;‘;
M(Cap) Base-centered |2a, —a&,la, 28, —a,lay (Fig. 8,b) e

T
Orthorhombic | Primitive I'y aylasla;la (Fig.9,a)
0 (Dyp) Base-centered |a,lasl2as —a,la, (Fig. 9,b)

0 ay, as, 4y

Body-centeredI'f|a, Lay 1 %2a; — @, — a;la, (Fig.9,c)

Face-centeredI'}a, 1 2a; — a, 122, — a, la, (Fig. 9,d)
Tetragonal Primitive 'y a,la,lasla, a,=a; (Fig. 11,a)
Q(D.p) Body-centeredl') d La; 1%a; — a, — asLa,, a,=a; (Fig.11,b) as, a,
Rhombohedral | Primitive I'py Q) = g v G, Gylly = ylly == Gy (Fig. 13) o “/I-;.
R(Dyq)
Hexagonal Primitive Ly a1le;, 8y Llas ;;;gﬂﬁnﬁ. P (Fig. 14) 8, Gy
H (Dyy)
Cubic K (Op) Primitive I'e a laylasla, a,=ay=a, (Fig.12,a)

Face-centered |a;,+a; —a;la;+a; — ay, (Fig.12,c)

Pi as4+a;, —a,la;, —as;+a,

a;+a; —azla; —a;+a,, a
3 =ay==ay
Body-centered (@ la,, @, 1l2a; —ay —a,Llay, (Fig. 12,b)
ry ay=ay=|2a, — a;, — a, |

Table 5.1 presents the basic characteristics of all fourteen Bravais
lattice types.

Hierarchy of Systems

Of the point groups of crystal lattice symmetry, the groups O, and D
possess the highest symmetry. All the other groups are subgroups of these.
Thus, we can go from 0, to S; by successively lowering the symmetry:

On = Dyp — Dap — Cap — S3.Each group in this series is a subgroup of any pre-
ceding group. We can also go from O, to Cy, through Dyg: Oy = Dyg—> Can. A
similar series goes from Dg to S through Dj, and Cau: Dep = Doy = Cop — Sa.

Note that D3y is a subgroup of Dg; one would thus expect a continuous
lattice transformation from Dg to S; by the scheme D¢ — Dyg— Cop — S,. How-
ever, as we shall show below, this continuous transformation of crystal
structures is impossible.

To completely determine the symmetry of a Bravais lattice, we must
specify not only its symmetry group but also the lattice type; we must there-
fore examine how a given lattice type of higher symmetry becomes a type of
lower symmetry when the symmetry of the lattice is lowered.

We shall say that a system A is subordinate to a system B, A< B, if the
symmetry point group of the system A is a subgroup of that of the system B8,



§5. BRAVAIS LATTICES 37

and each lattice type belonging to B may be converted into a lattice type of
A by an infinitesimal continuous transformation of the basic vectors, which
corresponds toreduction of the symmetry of the point group from B to A.

As we shall show below, except for the above-mentioned case of the
groups Dg, and Dy, the first condition implies the second.

We now consider the hierarchy of systems in greater detail.

If we dilate (or compress) a cube along one of its fourfold axes, it be-
comes a right parallelepiped on a square base, the Bravais parallelepiped
for the system Du. In the process, a primitive cubic lattice obviously be-
comes a primitive tetragonal lattice: I''—T,, and the lattices Il and ¥
become the body-centered lattice I';, since we have already shown that in the
tetragonal system face-centered and body-centered lattices are equivalent.

The Bravais parallelepiped for the tetragonal system may be converted
into the Bravais parallelepiped for the orthorhombic system in two ways.

1. Dilation (or compression) on one of the lateral faces, The result
is a right parallelepiped with rectangular faces, which is invariant under Dj,.
Of the four twofold axes of D, the two axes along the edges of the parallele-
piped remain. This deformation converts type Iy lattices into I, and Iy
into I7.

2. The deformation is brought about by shearing the plane of the parallel-
epiped base, thus altering the angle between the edges of the base. The
result is a rectangular parallelepiped with rhombic base, which is also
invariant under D, , i.e., of the original four twofold axes the other twoaxes
(the diagonals of the base) now remain. It is easy to see that under this
deformation a type I'; lattice becomes 'y, and I') becomes TIf.

The invariant parallelepiped of the system Ca may be obtained from the
Bravais parallelepiped of the orthorhombic system by deforming the base so
that the angle between its edges is changed. As implied by our previous dis-
cussion of the relationships between the lattice types, this deformation
transforms the lattice types of the orthorhombic and monoclinic systems in
the following manner:

I3 Fo—=T» and re, Th—rk.

When the symmetry is lowered still more, removing the twofold axis, the
group Gy becomes S;, and both monoclinic lattice types are converted to
type Tt:

5, To—Ty.

Now consider the transition from 0, to 82 through Dss. It is brought about
by dilating (or compressing) a cube along one of its diagonals, as a result
of which the cube becomes a rhombohedron. This deformation converts all
three cubic lattices into the primitive lattice I'm. Indeed, the primitive cell
of types It and I'! is a rhombohedron, but the angles between the edges are
not arbitrary. The deformation makes the primitive cell a rhombohedron,
with an arbitrary angle between the edges. In the rhombohedron there are
three twofold axes perpendicular to the threefold axis and three diagonal re-
flection planes containing a threefold axis. Each of the twofold axes is per-
pendicular to one of the reflection planes. When the symmetry is lowered
from Ds; to Cy, one of these twofold axes and the reflection plane perpen-
dicular to it remain.
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FIGURE 15, Correspondence of Bravais lattices in transformation
from rhombohedral to monoclinic system.

This transformation may be brought about, for example, by a shearing
deformation (Figure 15), altering one of the angles at a vertex, say CBD,
and a change in the length of the edge AB and the parallel edges CK, DG,
ML. The resulting parallelepiped, which is invariant under Cy, is shown in
Figure 15 by bold lines. Its face EFGD is an arbitrary parallelogram and
lies in one of the reflection planes. The faces CDEH and CDGK are rectan-
gles and are perpendicular to the plane of EFGD, since their edges CD, HE,
KG and NF are parallel to the twofold axis.

FIGURE 16, Hierarchy of systems.
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As Figure 15 shows, in this case the lattice I'» becomes a base-centered
lattice If. This may be verified directly by comparing the primitive cells
for type Iy, T§, and Iy lattices (see Figures 9 and 13), since it is obvious
that no small deforrnatlon of the basic vectors can convert a type I'm lattice,

o~ T~
where 4141—¢|¢3—¢zﬂs , into a primitive lattice I, for which a3 L a, and a3 L ay

Although D, is a subgroup of Dg,, it is impossible to convert a hexagonal
lattice into a rhombohedral lattice by any infinitesimal transformation of the
basic vectors, since the basic vectors for hexagonal lattices TI'y satisfy the

the conditions a; 1 a,, a; L a3 a, = a; + a;, and no infinitesimal transformation

will make them satisfy the conditions @ =aa;=a; and a, = a; = a;, which

must hold for lattices of the rhombohedral system.

The group Dg is a subgroup of Ds, since together with inversion Dg has
three mutually perpendicular twofold axes: ¢} and two horizontal twofold axes
lying in a plane perpendicular to the sixfold axis.

A deformation along the horizontal twofold axes lowers the symmetry of
D¢y to Dy, and the primitive cell of I's becomes a right parallelepiped with
rhombic base, which (see table on p. 49) is equivalent to I'f. Therefore, in
transition from the hexagonal to the orthorhombic system the primitive
hexagonal lattice becomes a base-centered lattice I”.

The hierarchy of systems and the relationships between lattice types in
different systems is summarized in Figure 16.

§6. SPACE GROUPS
Crystal Classes

The system and lattice type characterize the symmetry group of a crystal
incompletely, since they determine only the symmetry of its Bravais lattice.
In compound crystals, having more than one atom in the primitive cell, the
Bravais lattices may coincide without all equivalent points being the same.
Thus the symmetry of a crystal lattice may in fact be lower than the sym-
metry of its Bravais lattice.

For example, although the Bravais lattice of any crystal contains inver-
sion, inversion is not a symmetry element for all crystals,

Directions in a crystal along which all the physical properties of the
crystal are identical will be called equivalent directions. Any two equivalent
directions in a crystal clearly contain identical sequences of equivalent
points of the crystal (e.g., identical sequences of atoms).

Let r be any element of the symmetry point group X of a Bravais lattice.
According to the definition of the group ¥, the Bravais lattice is invariant
under the transformation r.

How do the other points of the crystal and the directions in the crystal
transform? There are obviously three possibilities.

1. The transformation r takes every point of the erystal, and not only
those of the Bravais lattice, onto equivalent points. When this is the case,
of course, every direction is also mapped onto an equivalent direction. The
element r then belongs to the crystal symmetry group G.
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2. The transformation r maps every direction onto an equivalent direc-
tion, but not every point is mapped onto an equivalent one.

3. Not every direction is mapped onto an equivalent one.

In the last case, r is not an element of the crystal symmetry group.

We now consider a transformation r which maps any direction in the
crystal onto an equivalent direction. Clearly, for this transformation to
take all the points of the crystal onto equivalent points, we also need a
parallel displacement (translation)by some vector e which is not a vector of
the Bravais lattice. Therefore, although r itself is not an element of the
crystal symmetry group G, the element {,r is in G.

The elements of the point group X* which take every direction in the
crystal onto an equivalent one (i.e., the elements r in the first and second
cases) form a certain point group F, which is a subgroup of ¥. The group
F is a crystallographic point group, also known as a crystal class,

The symmetry group of a macroscopic body is its crystallographic point
group; thus the crystal class determines the macrosymmetry of the crystal.
In particular, the number of independent components and the form of the
macroscopic tensors are determined by the group F characterizing the
crystal class.

Since each class is a subgroup of the symmetry group of a vector group,
there are altogether 32 different crystal classes, according to the number
of different subgroups in the symmetry groups of the Bravais lattices: e, S,
Cs, Ca, Can, Cao, D3, Dan, Si, Dag, Ci, Cyyy Cany, Dy, Din, Cs, Se, Cavy D3, D3a, Cany Dsn, Co, Con, Cor,
D¢, Dy, T, Ty, Ta, O, On. Note that the same class may be a subgroup of differ-
ent point groups determining the symmetry of a Bravais lattice. For exam-
ple, S:is a subgroup of any of the seven point groups defining the system.

The crystal class is referred to the system with the lowest symmetry in
which it first appears; in other words, a crystal class F belongs to system
X if F is a subgroup of ¥ and no system X subordinate to ¥ contains F.
This distribution of the classes among the systems is based on the following
considerations. If the Bravais lattice of a crystal had a higher symmetry
than required by the crystal class, it would be unstable, and any small effect
(thermal expansion, changes in interatomic interaction, etc.) would lower the
symmetry of the Bravais lattice to the lowest level permitted by the crystal
class. Thus each crystal class belongs to one system. The only exception is
the hexagonal system, whose lattice, as noted above, cannot be transfofmed into
lattices of the rhombohedral system by any infinitesimal deformation. Hence
the classesof therhombohedral system also belong to the hexagonal system.

TABLE 6.1

System Crystal classes
Triclinic e, S,
Monoclinic C;, € Cau
Orthothombic Cao. Dy Dup
Tetragonal Su D € Cun Cipo Dy Dy
Rhombohedral Cy So. Ciw Dy Dy
Hexagonal Cip, Dsp, Coi Cop. Covn Dy Dgy
Cubic T, Tw Ta O, Oy
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The distribution of the thirty-two crystal classes among the systems is
presented in Table 6.1.%*

Space Groups

Even the crystal class and lattice type are not enough to characterize the
symmetry of a crystal. The crystal class characterizes the symmetry of the
erystallographic point group, but in order to describe the space group which
determinesthe microsymmetry of the crystal we must still specify the length of
the translationvector ar needed tobring all points of the crystal into coincidence
with equivalent points. Hence, to each''rotational' element r of the crystallo-
graphic point group F (rotation, reflection, or improper rotation) corresponds
a certain translation f.,, known as a nonprimitive translation.

Thus each element g of the space group G has the form

g=tlobst =lasa r=(r|a+a), (6.1)

where r is a ''rotational" element in the crystal class, and f4 the correspond-
ing nonprimitive translation.

While a point group, in which all the symmetry elements have a common
point, may be determined by simply listing all its symmetry elements, for
a space group we must also specify the position of each rotational element
within the primitive cell; this is the reason for specifying the vector a.

Since the "'rotational" transformation r maps all the points of the Bravais
lattice onto each other, while a is not a "whole' vector of the Bravais lattice,
the transformation for does not bring the lattice points into coincidence with
each other. The presence of such an operation in the symmetry group of a
crystal signifies that the crystal lattice is compound, i.e., there are at least
two atoms of the same kind in each primitive cell. As remarked above, a
lattice of this kind maybe viewed as a system of interpenetrating identical Bra-
vais lattices, The operations f.r, ¢ %= a, map the points of each component
lattice onto the identical points of another lattice.

The various space groups belonging to one class differ from each other
as to the set of vectors or corresponding to the symmetry elements r in the
group F, The vectors a may be expressed as linear combinations of a,, a,,
and as:

a=vy,a -+ y8; + v:a3. (6.2)
The numbers y;, y2, and ys may be assumed nonnegative and less than unity»*;

o<y <1, 0y <], 0<y<l1. (6.3)

The set of vectors a; is not arbitrary, since they must satisfy certain re-
lations, bound up with the fact that the rotational elements r; themselves
form a group. In fact, let the "rotational' element r, correspond to a
nontrivial translation a;, and r; to 2. Since

trit ry=t

o ey r

l,-l»f.l'rl n

* Crystals of the rhombohedral classes with hexagonal Bravais lattice belong to the rhombohedral system.
**If yi, y2, and ¥s are not required to be nonnegative, they may be so chosen that

Ini<i2 Inl<ue w2
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it follows that the element rs= r,r, may correspond only to the vector as =
= ay+ riaz+a, where a is a "whole'' lattice vector, chosen so that as; satisfies
condition (6.3)

Thus the nontrivial translation a;is uniquely determined for each rotation-
al element a of the crystallographic point group by specifying nonprimitive
translation vectors for the generators of the crystallographic point group.
The defining relations between the ''rotational" generators of the group F
define the possible types of vectors for nonprimitive translations of the
generators, hence also the possible types of space groups belonging to one
crystal class.

Altogether, our 7 systems, 14 types, and 32 crystal classes consist of
230 different space groups,

Let us examine the structure of the space groups. Every space group
contains an abelian subgroup T of translations by the fundamental lattice
periods, with elements {s. This subgroup is an invariant subgroup of the
space group.

Indeed, all elements conjugate to f. are also translations and therefore
lie in T:

torta (tar)™ = Lt bar="t_o = t,4. (6.4)

Divide all the elements of the space group G into cosets modulo the
translation subgroup and construct the corresponding factor group.

The elements of these cosets are all possible products of translations £,
and elements for;:

(Th (Tt,r)s oo (T8, 1), (6.5)

where a is any vector of type (5.1).

The factor group of any space group belonging to a given class is isomor-
phic to the crystallographic point group characterizing the crystal class.
There is a one—one correspondence between the elements r; of the group F
and the cosets Ttalr,:

ry - {Tf‘ir‘]. (6.6)
Indeed, by (2.22), the product of representatives of cosets (Ti__r.) and (Tt,r,)

t‘fmr]f“,f.lrz = Ir-'-l+v.n-'+r.n.+-.""1"2

is an element of the coset (Tf r,), corresponding to the element ry=ry-r,.

Thus space groups belonging to one class are homomorphic to the group
F characterizing the crystal class. The kernel of the homomorphism is the
translation group T, and the corresponding factor group is isomorphic to F.
This does not, of course, imply that space groups belonging to the same
crystal class are isomorphic.



Chapter 11
REPRESENTATIONS OF SYMMETRY GROUPS

§7. REPRESENTATION THEORY

Following on our discussion of symmetry groups, we now turn to the
theory of representations of these groups. The special significance of
representation theory is that in effect it provides the basis for all physical
applications of group theory.

Let ¢, be an arbitrary single-valued function of the coordinates of a point
x(xy, X3, x3) in the coordinate system xyz. We transform to a new coordinate
system x’y’z’, obtained from xyz by a symmetry transformation g,. By (2.29)
the coordinates of the point x in the new coordinate system, x{, x§, x}, are

x;=;ﬂ”(g‘)x;=(g;lx)‘_ (7.1)
Now replace x; in @i(x) by %f and express xi in terms of x; using (7.1). The

result is a new function ¢,(x). We shall treat this transformation as the
result of applying an operator 2(g) to the function g;(x):

D(g,) 0 (x) =0, (g7'%) =9, (x). (7.2)
Successively applying all the operations g to ¢, we obtain 4 functions
¢, 92, ..., ¢, In the general case, however, these functions need not all be

linearly independent and some of them may be expressed in terms of the
others. Let the total number of linearly independent or basis functions ¢ be
n: then each function ¢.(x) may be expressed as a linear combination of these
functions. If we apply the operator 2(g) to one of the basis functions ¢i(x),
the new function ¢:(g-'¥) may be expressed as a linear combination of the
basis functions:

D (g) 4 (x) = s (g™ %) =§-®u{g} @ (x). (7.3)

The actual form of the matrices #(g) and their order n depend on the
choice of the function ¢i(x). We note that the transformation (7.1) may also
be viewed as the result of applying the operator @(g,) to the vector functions
X1, X2, %. In this interpretation, we have from (7.2) that @(g)xi = (g 'x);, and
it follows from (7.3) and (7.1) that D(g)=dR (g).

We claim that with this definition of the operator 2(g) the operator 2(g.)
corresponding to the operation g,= g,g, is the product of the corresponding
operators:

D(gog) =D (g,) D(gy)- (7.4)

43
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In fact, it follows from (7.3) that

D(g,) D (2,) 9 (x) = D(g,) % (R (2,) x) =
=, (R(g,)R(g,) x)=:(e7'¢;'x) =
=0, (2,0, ¥) = 2.(e5'%)= D (g,) %, (»)-

We now show that if the order of the summation indices is chosen as in
(7.3) a similar rule holds for the matrices:

D(g) D(g)oi=D(g) 2{11 Dyi(gg) @ = ‘,2‘ Dii(gy) ;I Dy (85) Ba-

On the other hand,
D(g)p= ; Dyi(@s) Px-

Consequently, by the usual rules of matrix multiplication,
D (gp8) =D (g,) D (g,)- (7.5)

Now suppose that with each element g of the group ¥ we associate a
square matrix 2 (g) of order n, so that for any p and ¢ the product g, = gpg,
is associated with the product 2 (g,) of the matrices .‘i’)(g,}f){gq). The set of
matrices PD(g) is then called a representation of the group %, of dimension
(or degree) n, denoted by the symbol @. A set of linearly independent func-
tions ¢: (i=1, 2, ..., n) which transform according to (7.3) is called a basis of
the representation @, The set of operators 2(g) defined as described above
and satisfying condition (7.4) is an operator representation of the group %.

Given any n linearly independent functions, we may always form n new
functions (via linear combinations) which are orthogonal and normalized to
unity. Henceforth, therefore, we shall always assume that the basis is a
system of orthonormal functions, i.e., functions satisfying the condition

@)= { 99, dx =29, (7.6)

Multiplying equation (7.3) by ¢;(x) and integrating with respect to x, we
obtain in view of (7.6)

D,@)= [ 92 @9 dx= (9,2 (@) (7.7)

Formula (7.7) recalls the usual definition of the matrix element of an oper-
ator in quantum mechanics.

The choice of the system of orthonormal functions is not unique. Given
any system g;, we may always transform to a new system g¢] via a linear
transformation

¢;=S¢;=§S”¢,. (7.8)
A necessary condition for the new system of functions ¢] to be orthonormal
is that the matrix 8§ be unitary, i.e.,
st=8§=s8" ie., Si'=S} (7.9)
or

§s=88=1I (7.10)
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Here 8+ denotes the hermitian conjugate of §:
S*=3§",
where, as usual, the star denotes complex conjugation and the tilde ( ~)

transposition.
Formula (7.10) shows that a unitary matrix has orthogonal columns and

rows:
gsiasn=6u- %S:k5u=6u. (7.10a)

When (7.10) holds, we have
(o) = g SuSe {n®y) = % SuSedu =19

For real matrices the unitarity condition reduces to the orthogonality
condition (2.24).

If the basis functions are orthonormal, the matrices P(g) in (7.3) are also
unitary. Indeed, the value of the integral (7.6) is the same under any change
of variables. Now, volume is invariant under symmetry transformations,
i.e., dxidxidxi=dxidxadxy, since the Jacobian of the transformation is

2(st, 55 5)
(%1, X3, X3)

Thus, if we transform to the variables %" as in (7.1), it follows from (7.3) that
f @ (%) @, (x) dx = _[ 9; (¥) 9, (x) dx’ = _f 9 (g~'x) @, (g~'%)dx =

=YY%, 2, [ 9@ e@d= Y2}, D, @) =3,
kil k

Consequently,
D =D( =D (0)=2D (g). (7.11)

The n-tuple of functions ¢; may be viewed as a vector ¢ in n -dimensional
space with components ¢;, written as a column vector. The operator § de-
fined by (7.8) transforms the vector ¢ into the vector ¢ with components [
given by (7.8).

How do the matrices 2 (g) transform when we go over from the represen-
tation ¢; to the representation ¢;? The matrix element of the new represen-

tation is
D, (8) = (9D () ¥))-

Expressing ¢’ in terms of ¢ by (7.8) and using (7.9), we obtain

D (g) = % SkDuSi= %14 Six DuSy = (s~'Ds),
or
D (@)=8"'D(@s. (7.12)
giving the usual rule for transformation of matrices in quantum mechanics.
Representations which may be obtained from one another by a unitary

transformation (7.12) are said to be equivalent. Representations 2 and @’
with equal matrices &(g) and D’(g) will also be called equal.
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An important property of the transformation (7.12) is that it preserves the
trace of the matrix D(g), i.e., the sum of its diagonal elements, In fact,
by (7.12),

$p D' =X Dir= 3 S DuSu = 3 Dudw = I Duu=5p D. (7.13)

The determinant of the matrix 2(g) is also preserved under the transfor-
mation (7.12), since

[S™'DS|=[s""]1DIISI=1DI

The total number of matrices 2 (g) coincides with the number of elements
in the group, #. However, some of these matrices may coincide. If all h
matrices are different, the representation is said to be faithful. If several
group elements correspond to the same matrix, the representation is un-
faithful. In the latter case, the group % is homomorphic to the group ¥
formed by those of the matrices which are in fact different. The kernel of
the homomorphism is the set & of m (say) elements e, e, ..., em which corre-
spond to the identity I. These elements, as shown in §1, form an invariant
subgroup of %, and all the elements of the coset g.&, i.e., the elements
gre; (i=1,2, ..., m), gn =&, are associated with the same matrix Fx=2D(g.) .
Consequently, the matrices 2 (g), though not a faithful representation of the
group %, always constitute a faithful representation of its factor group by &.
Thus the set of all representations of the group ¥ exhausts the representa-
tions of all the factor groups of &.

As mentioned above, the dimension of a representation is defined as the
number of basis functions ¢;. However, it may turn out that a suitably chosen
unitary transformation § divides the system of basis functions into two or
more subsystems ¢!, ¢% ..., in such a way that any symmetry transformation
maps each of the functions ¢}(g~'x) onto a linear combination of the functions
of the same subsystem:

D)o} (D) =0 (g7'x)= ; D9

in other words, the linear space spanned by the functions decomposes into
invariant subspaces, Consequently, the set of matrices P (g) for all the
elements of the group is transformed by the unitary transformation (7.12)
into a system of block-diagonal matrices of the form (say)

D\ (g) 0 0
D= 0 Dg 0 |. (7.14)
0 0 Dilg)

This means that each of the sets of matrices @.(g) forms a representation
of the group. The representation 2 is then said to be reducible. If there is
no unitary transformation inducing further decomposition of the systems ¢¥
into smaller subsystems with the above property, each representation Dy is
said to be irreducible. The reduction of & to the form (7.14) is known as
decomposition of the reducible representation @ into irreducible represen-
tations D, (its irreducible constituents).

In the general case, some of the representations 2, may be equivalent.
These equivalent representations may always be reduced to equal represen-
tations by an appropriate unitary transformation.
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Irreducible representations play a major role in the physical applications
of group theory, since, as we shall show below, wave functions which trans-
form according tothe same irreducible representation correspond to the same
energy eigenvalue. Thus, for example, the dimension of the irreducible
representations directly determines the possible degeneracy of the terms.

In the following sections we shall discuss the properties of irreducible
representations and show how the decomposition of a reducible representa-
tion into irreducible ones may be carried out in practice.

§8. IRREDUCIBLE REPRESENTATIONS. CHARACTERS

Matrices forming irreducible representations of a group have a number
of important properties. These properties follow from the fundamental
lemmas of Schur.

Consider two sets of square matrices P(g) and D’'(g), both representa-
tions of a group . The orders of these matrices may be different. Let 4
be a rectangular matrix with as many rows as 2 and as many columns as
P’, such that for all g=¥&

D(g) A=A (). (8.1)

Schur's first lemma states that if representations @, and @, are equal, i.e.,
p=vand D,(@)=2,(g), then A=cl, ie., any matrix A that commutes with
every matrix of an irreducible representation #,(g) is a multiple of the
identity matrix:
if D,(@)A=AD,(g), where g=¥, then A=cl. (8.1a)
Here the matrices 2,(g) are assumed to be unitary.
To prove (8.1a), we take hermitian conjugates in (8.1); since (AB)* = B+A+,

we obtain
A*D* (@) =D+ (g) AT.

Multiplying the last equation on the left and the right by 2(g) and using (7.11),
we obtain

D (g) A* = A*D (g).

Hence, if (8.1) holds for A, it is also true for A+, and consequently also for
the hermitian matrices

A=5(A+ A% and A" =+£(A— A"

Both hermitian and unitary matrices may be brought to diagonal form by
a unitary transformation. If § is a transformation which diagonalizes 4 or
A, it follows from (8.1) that

5{3)¢=¢5(§}-
where D=8"'DS8, and a=S"'4S is a diagonal matrix. We may write this as

Dy (@) (e —ay) =0 (k 1=1,2 ..., h). (8.1b)
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There are two possibilities in regard to (8.1b). Either all the a,, are
equal, so that the matrix is indeed a multiple of the identity matrix, or some
of the elements, say am (=1,2,...,r), are different from other ones ay (I =
=r+1,...,h). In the latter case, by (8.1b), we have

Dy(g) =0 where k=1, 2, ..., r, l=r+1,r+2, ..., h

and this means that each matrix D(g) is block-diagonal, as illustrated in
(7.14), and each of the submatrices with elements @D (g) (b, k=1, 2, ..., 1)

and Dw(g) (LY =r+1, ..., h) defines a representation of the group. Thus the
representation 2, is reducible. But this contradicts our assumption, and so
only the first possibility remains, i.e., a=cI. Consequently, the matrices
A’ = 8a8"' and A” are multiples of the identity, and therefore so is the original
matrix 4 =A4"—iA”,

Schur's second lemma states that if representations @ and @’ are irre-
ducible and inequivalent, i.e., @ =2,, D' = D, and p st vy, then the only
matrix A satisfying condition (8.1) is the zero matrix, i.e., the matrix in
which Ay = 0 for all f and !:

if D,(0)A=AD,(g), g=¥% and p¥*v, then A=0. (8.2)

On the other hand, if A% 0 for two representations @ and %’, then at least
one of these representations is reducible, and @ and 2’ must contain at
least one common irreducible constituent.

We note that if &, and @, are equivalent representations, i.e., there is
a unitary matrix § such that

D@ =8"'D,(g)S,

then any matrix A4 satisfying (8.2) must be a multiple of the unitary transfor-
mation matrix, A=¢S§.

Let the matrices Pyu(g) be of order #, and the matrices Dv(g) of order #,,
i.e., A has h, rows and hs columns. To fix ideas, assume that ha=h,. To
prove Schur's second lemma we go over to hermitian conjugates; using the
fact that D* (@) =D ' (@) =D(g”"), we obtain

A*D, (g ) =2, (") A*.
Multiplying on the right by A and noting that by (8.2) AD,(g-)=D.(g~"4,
since g''=¥, we obtain
AA* D, (e =D, (g"") AA*, ¢'e9.
By Schur's first lemma, the square matrix AA* of order A, is a multiple of
the identity, since it commutes with every matrix Du(g):
AAtY =cl

and so Det AA*=c¢n. Ifcs 0, then Det A0,

If by = h;, so that A is a square matrix, the last condition implies that it
has an inverse A-!. Then multiplying (8.2) by 4!, we obtain 47'D, () A=29D, (g),
so that the representations @, and 9D, are equivalent, contrary to hypothesis.
Consequently, if # =k, we have ¢=0, i.e., 44" =0 or

$ AuAl = .?.4 Al = 121 Aul =0,

which is possible only if all the matrix elements A4, vanish, i.e., A= 0.
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If hy < hy,, we complete A to a square matrix by adding h, — A&, zero rows,
to obtain a matrix A with determinant zero. On the other hand, AA*= A4A*,

and so L _ _
Det AA* = Det AA* = Det ADet A* =0,

and this means that if & < h, then ¢= 0, i.e., AA*=0, whence it follows as

before that 4= 0.
Using Schur's second lemma, we can prove the following orthogonality

relation.
If D,(g and D, (g) are inequivalent irreducible representations of the

group %, then the matrix elements 2);(g) and Dk (g), for arbitrary i, j, k I,
satisfy the orthogonality relation:

X D (g) D (g) =0 if pEw (8.3)
g

To prove (8.3), we consider the matrix

A=§.®.Ag1w:‘{g1. (8.4)

where B is an arbitrary matrix. It is evident that the matrix A satisfies
(8.2), since by (8.2)

2,&) A= 39,2, (0) BD3' (0)~
= § Du(g) D) BDT (@) D' (g) Du (g) =
= g_‘. Du(@")BD:' (@) Dy (') = ADy (&) (8.5)

Consequently, by Schur's second lemma, A= 0, i.e,,
23 D () Bee Vi (g) =0 (8.6)

If we let B be a matrix whose only nonzero elements are Byy =08y by, it fol-
lows from (8.6) that

g‘.% @D (g™")=0. (8.7)

Equation (8.3) now follows from (8.7) and the unitarity condition (7.11).

Now consider the case that the representations p and v coincide. In
proving (8.5) we imposed no conditions on the matrices &, and it remains
valid when Dy (g) = D,(g). In this case the matrix A satisfies condition (8.1),
and so, by Schur's first lemma, A=¢l, or

§ ‘; Div (g) Bk'e'@':":_’ (g) =cdyr.

The value of the constant ¢ depends on the choice of B. Letting Bwr =
= b0k as before and denoting c=c¢,, we get

§®'r‘;(g} D (g™") = epdur.
To evaluate ¢, we set i=[ and sum over i. Noting that
232 Dui(g™) = 2 Duy (&7'2) = ey,
"

and 26”=nu , where n, is the dimension of the irreducible representation 2,
i
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we obtain ¢;, =(k/n,) 8, , and consequently

295'?.' (&) D (8_1)*%0»611‘ (8.8)
g

Using (7.11), we may rewrite this relation for unitary matrices as

2@}"; (g Dy (£}=%0u0u- (8.9)
&

Equations (8.3) and (8.9) may be combined into a generalized orthogonality
relation:

Y 21 @) B (@) = Budusdi. (8.10)
g

The quantity .y
@Lq=(—,,“~) "D (g0 (8.11)

where p stands for the triple p, i, j, may be viewed as the ¢-th component
of the p-th vector in h-dimensional space. Then (8.10) means that the scalar
product of different vectors vanishes, i.e., vectors with different p's, i.e.
different triples p, i, j, are orthogonal and normalized. In fact, (8.10) is re-
miniscent of the familiar orthogonality relation for the unit vectors e* in
three-dimensional space:

3
(8"85) E lzl e?e': = 6ﬂﬂ {U,. ﬁ: 1, 2, 3)-

The total number of orthogonal vectors cannot exceed the dimension & of the
space. In the present case the number of vectors @, =2, for fixed p is the
square n? of the dimension of the representation. Thus the total number of

vectors, which equals Eﬂ-ﬁ» is at most 4.
u

We shall show below that the system of all such vectors is complete in the
h-dimensional g,-space, i.e., their number equals the dimension of the space:

N
2 nt=h. (8.12)
=l

Formula (8.12) is known as Burnside's theorem.

It can also be shown that n, always divides the order # of the group:

hin,=m k=12 ..., N), (8.13)

where m is an integer,and N the number of inequivalent irreducible
representations.

It follows from (8.12) that the index p in (8.11) runs through 4 values, i.e.,
the matrix elements @), form a square matrix %’ of order k. The ortho-
gonality condition (8.10) shows that this matrix has orthogonal rows, i.e.,
9”3 =1. By virtue of (7.9), this implies that 2’ is a unitary matrix and so,
by (7.10), it also has orthogonal columns, i.e., DY =1 or, in the notation
of (8.10),

§ § nu DY} (g) D (g') = hdgg- (8.14)
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Since the actual form of the representation matrices #(g) depends on the
choice of basis functions and is changed by unitary transformations, it is
particularly interesting to study the properties of the trace of the matrix
PD(g), which is invariant under unitary transformations and is thus the same
for all equivalent representations. In group theory the trace is known as the
character of g in the representation @, denoted by y(g):

xtg}=§®u(g). (8.15)

As we shall show below, the set of characters of all the elements com-
pletely determines an irreducible representation. The orthogonality relation
(8.10) for elements implies an orthogonality relation for characters. To
show this, we set i=j and k=1 and sum over i and k:

§x;(g) 1, (&) =hd,,. (8.16)

This relation implies that in inequivalent irreducible representations, the
group elements cannot all have the same characters. It also enables one to
check directly whether a given representation @ is irreducible and to de-
termine the irreducible representations contained in 2@ and how many times
they occur there.

By (8.16), for an irreducible representation,

§u@ﬁ=& (8.17)

If @ is a reducible representation, it follows from (7.14) that each matrix
2 (g) may be reduced toblock-diagonal form, each submatrix defining an irre-
ducible representation. Consequently, the trace of the matrix D(g) of a
reducible representation, which is invariant under the diagonalizing unitary
transformation, is the sum of the traces of the submatrices, i.e., the sum
of characters for all irreducible constituents of @ :

ﬂm=§%mm. (8.18)

The coefficient N, indicates the number of times the irreducible representa-
tion with characters yx,(g) occurs in @. [This number is called the multiplic-
ity of the irreducible representation.] Knowing x(g), we can at once deter-
mine V,. To this end, multiply (8.18) by %, (g) and sum both sides over g. In
view of (8.16), we obtain

V=% D60 1@ (8.19)

Formula (8.19) shows that in order to determine the number of irreducible
constituents of a given reducible representation, we need only know their
characters.

Multiplying equation (8.18) by its conjugate, summing over g and using
(8.16), we obtain a relation similar to (8.17) but for reducible representations

Zix@F=ZNN, Ty, @K @=hINNS, =hZN;, (8.20)

It is clear that E1x(g) P is always a multiple of 4.
g

We now show that the characters y(g) are actually functions of the conjugate
class p, i.e., all elements g in the same class p have the same character y,.
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By definition, g, and g, are in one class if there exists an element g; such
that g1 = gagsg7' . Consequently, by (7.5)

D(g)=2D(g) D(g) D' (g

By (7.13), this implies that x(g)=1y(g;). In equations (8.16)—(8.20), there-
fore, instead of summing the characters over the group elements g, we may
sum them over the classes p. Denoting the character of the elements of a
class p in a representation pu by y%, we may write the orthogonality relation
(8.16) as

No
2o 2y =0 (8.21)

Here h, is the number of elements in the class p and ¥,the number of
classes in the group %.

By (8.19), the number N,, which indicates how many times the represen-
tation p otcurs in a given representation with characters y,, is

Np
N,o=5 N1, (8.22)
p=I

We now use equation (8.14) to prove another orthogonality relation for
characters. Set g=g,, g’ = gg,g in (8.14) and sum both sides of (8.14) over
g. By (7.11) and (8.10), we have

n - n . .
vy ;9’?‘: (e2.7")= ?; Dy () D (0) Di(@) = Y, D (8)0,,00 =%, (82) b:pr
I3 113

and so the sum is
3% 8 82062 (en™) = B 621 )3 =
h 4 11(81) Dy \ge.8 (N CAEZACALY
n I & i/
EX,:(QJ (&)= E*L"x: = 2 641[. FEN
M [ g

where p is the class of g, and 7 that of g,.
If g, and g, are in different classes, then for all g

g7 gg.¢~"' and 26 —1=0.

ra L

If g, and g, are in the same class, it follows from (1.8) that g, occurs h/h,
times among the 4 elements gg,g-!, and so

h
E 68.- 2R el W
P

This means that
. h
D =5 Oy (8.23)

[

The first orthogonality relation (8.21) concerns characters in different
irreducible representations and the summation extends over all classes: the
second orthogonality relation (8.23) concerns characters of different classes
and the summation extends over all irreducible representations. Equation
(8,21) shows that the reduced characters

Yo = (o[ R)" 2} (8.24)
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may be viewed as the p-th components of orthonormal vectors % in the

space of classes p, which has dimension ¥,. The number of orthogonal vec-
tors, which equals the number of irreducible representations N, is at most
the dimension N, of the space, N<N,.

On the other hand, by (8.23) these same quantities ¥} , may be viewed as
the p-th components of orthonormal vectors % in the space of irreducible
representations p, which has dimension N, The number of orthogonal vectors
which equals the number of classes VN,, is at most ¥, Ny<< N. It follows that

N, =N. (8.25)

Consequently, the total number N of irreducible representations of a group
% equals the number N, of conjugate classes of the group.
Formulas (8.21) and (8.23) show that the matrix y’ is both row-orthogonal

i"!' =f'
and column-orthogonal

y L

As shown above, this implies that y’ is a square matrix, i.e., N=N, *
(see (8.25))

To end this section, we consider the representations of the direct product
% of two groups & and %,.

The elements of the group & are products of the form g = gllg®(gh = g,,
g9 =%;). The order of the direct product is kA = hjh;, where h; and h; are
the orders of % and %, respectively.

If the p-th irreducible representation of the group & has a basis ¢} (i =
=1, 2,..., n,), and the v-th representation of the group &, a basis ¥} (j =
=1, 2, ..., n,), then the functions [y = ®}¥] may serve as a basis for the
representations of the group ¥. Then by (7.3) the elements of the matrices
D (g"g®), which form a representation of the group $=9%%,, are

Q}}'}' m(g"’g"')=£?‘[',(g'") @n(gm)_ (8.26)

It is assumed here that the operation g is not applied to the functions y
of the group %; and vice versa, so that the functions % and ¢ are defined in
different spaces.

The resulting matrix 2(g) is called the direct or Kronecker product of the
matrices and denoted by 2 X H® (not to be confused with the usual matrix
product).

By (8.26) the character of an element in this representation is the product
of the characters of the corresponding elements in the irreducible represen-
tations of &, and %,:

Yoy (8) = ‘EII@T?: (@) = ;@':‘(g"’)§$§,(g"‘)=xu(e"’)z,(g‘”)- (8.27)

* Formula (8,23) yields an immediate proof of Burnside's theorem (8.12). Indeed, let both p and 7 be the
conjugate class of the identity element e, so that h, = 1. Since y,(e) = n,, it follows from (8.23) that

M nun, =4, which is (8.12).

L)

Note, however, that our proof of (8.23) is based on (8,14), which in turn was derived from (8,12). Although
(8.23) may be proved without (8.14), the proof is more complicated. In the next section we shall therefore
present an independent proof of Burnside's theorem,
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The dimension of the representation, n,,, is the product of the dimensions
of the component representations, n'n®. The representations of the group g
thus obtained are irreducible, for by (8.27) and (8.17)

St (@) P =31 %, (@) F D1 (¢®) P = hryhy =h.
[; o pred]
By (8.12), the sum of squared dimensions of all the representations is
2 nf“ = Eﬂini =hhy=h,
[ wY

and so it follows via (8.17) that by multiplying together all pairs of irreduc-
ible representations of the groups %, and %; we obtain all the irreducible
representations of the group 9.

§9. CONSTRUCTION OF BASIS FUNCTIONS
OF IRREDUCIBLE REPRESENTATIONS.
PRODUCTS OF REPRESENTATIONS

Once we know the matrices of the irreducible representations, we can
construct basis functions which transform according to each of the represen-
tations. To this end, we choose an arbitrary function @,(x). Successively
applying all operations of the group ¥,

16 gn «0or En

we obtain 4 functions
O, =D(2,) D, (x) =D, (g7 ). (9.1)

The function ®(x) may be chosen so that all the functions ®@; are linearly
independent. The functions ®@; are normalized to unity, provided @ is nor-
malized. The operation g maps each of the # functions ®;(x) onto another
function of the set:

D@D, (x) =D (g) D(g,) D, (x) =D, (g;'g™"'x). (9.2)

This representation, whose basis consists of # linearly independent functions
@;, is called the regular representation of the group.

The matrices of this representation are easily constructed via (9.2), using
only the multiplication table of the group. Since gg;s=g;, if g+ e, it follows
from (9.2) that the operator @(g) (g # e) transforms each of the functions into
another function of the set, not equal to @;. Consequently, the matrix of the
regular representation #(g), g + e, has zero diagonal elements, and the
character is
h for g=e,

x(g)z{o for ge. (9.3)

In the general case, the regular representation is reducible. In order to
determine the multiplicity of a given irreducible representation p in the

regular one, we use (8.19). By (8.19) and (9.3),

Ny= 5% @) =1 @ =n, (9.4)
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Consequently, the multiplicity of any irreducible representation p in the
regular representation is equal to its dimension.

Burnside's theorem follows directly from equation (9.4). In fact, by (9.4)
all the basis functions fall into groups of n, functions which transform ac-
cording to the irreducible representation u, n, groups for each representa-

tion. Consequently, the total number of basis functions is Znﬁ. On the other
m
hand, this is precisely the dimension of the regular representation, i.e., the
order A of the group. Consequently, Enf‘=h.
m

Since the regular representation contains all the irreducible representa-
tions, we may use the functions ®; to construct 4 functions ¢¥, (x), forming
a basis for each irreducible representation. Here p indexes the irreducible

representations, m (m=1, 2, ..., n,) indexes the equivalent p-representa-
tions, and & (k= 1,2, ..., n,) indexes the basis functions of the appropriate
representation.
We claim that the operator
n .
Prv=—1 Y, Din () D (), (9.5)
g

acting on any one of the functions @;, yields the set of functions ¢%,. To
show this, we check that for fixed p and m the partner-functions

ﬁ.=ﬁ.®.=%2@i;(&)mf (9.6)
i

indeed transform according to the irreducible representation u. By (9.5),
(9.6), (7.4) and (1.2)

D@V o= NP () D(g'g) O, =
g

=7 Y D e D)0 =

=g’

=2 N B @) Y D (@) D @) O, = Y, D ()0 (9.7)
i ' ]

Using (8.10), one easily checks that any functions ¢#, which form a basis
for an irreducible unitary representation are orthogonal in all three indices.

Since the functions @; are linearly independent, i.e., no linear combina-
tion of them can vanish, it follows from (9.6) that none of the functions ¢4,
vanishes and they are linearly independent. Therefore, applying the opera-
tors P, to the functions ®,=®, (g;'x), we obtain the functions ¢%, ,=Ps.@,,
which represent a superposition of the functions ¢¥,= P, @, with the same p
and & but different m.

In the general case, however, there is no need to use (9.6) to determine
all the functions ¢%,. It is sufficient to pick one function for each represen-
tation p, m, say ¢,. Applied to this function, the operator 2(g) yields only
functions of this representation, while the same operator applied to @, pro-
duces the functions of all the representations. In practice, therefore, it is
more convenient to obtain the other partner-functions ¢4, by applying the
operator Py to ¢&,. By (9.5), (9.7) and (8.10)
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Phwh, =7 XD (@ D (@) = 5 D (@) D (@) W= X, 0o =T
gn n

[

Consequently, .
P‘f:tq:‘r:ll = q’!r‘lr ( 9’3)

For example, the operator P: gives the m-th function of the representation
B, m:
n .
U =Prn D=7 X Do (@) D () O, (9.9)
4

whence the other functions of this representation follow:
Pk = Phax P (9.10)

The above formulas (9.5)—(9.10) thus enable one to construct all the func-
tions which transform according to any irreducible representation.

However, these equations are useless unless the matrices of the irreduc-
ible representations are available, and these are often quite difficult to
determine. If only the characters of the representations are given, it follows
from (9.9) that application of the operator

?"=ZP;m=%"~§x;(g}®(g) (9.11)

to @, yields a set of functions
,ﬂ'=§,¢1m=9ﬂm,, (9.12)

which transform according to p. Only one of the mt linearly independent
functions is obtained here,

Applying the operators @D(g), g= %, to the function fu or, equivalently,
applying the operator #* to all the functions ®; = @ (g;)®,, we can obtain
from this function fv another 4 functions, of which, however, only n: are
linearly independent: ¢, (m=12,...,n,k=12,...,n,), since

Me™)=2@ " =2 2@ ¢, = 2 D} (@ (9.13)

Of course, in order to select the n? functions ¢%, from these # functions
fu(g™'x) (g=g1.82 ..., g), we need all the matrices @Df.(g). In simple cases,
however, these functions may be selected quite easily and the use of charac-
ters shows that they transform according to the required representations.

The above expressions (9.5)—(9.13) are valid regardless of the choice of
functions ®;(x). Therefore, using the operators (9.5), (9.9), or (9.11), which
are called projection operators, we can determine all the basis functions of
the irreducible representations that occur in the representation @ generated
by any function ®(x).

If the set of functions @, =®(g;'x) includes n’ (n’ < h)linearly independent
functions ®@;, the representation in question is not regular, and some or all
of the irreducible representations p occur in @ less than n, times, or even
not at all. Thus some of the functions determined by the operators (9.5) or
(9.11) are linearly dependent or zero. If the representation @ does not
contain the irreducible representation p, then for any m and # all the func-
tions ¢, and the functions fu determined by the operator (9.11) vanish.
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If the matrices of the representation P(g) according to which the func-
tions @; transform are known, the projection operators (9.5) and (9.11) may
be written in matrix form:

‘Fﬂmaz”h.f‘% where P:lnl..f=ﬂTu2@:; (8) D, (g); (9.14)
! €
f“=2§’}'®;, where ?}':nT“ Exu{g)m_“(g)‘ (9.14a)
! ;

A knowledge of the characters yx(g) of the representation 2 enables one at
once, using (8.19) or (8.22), to evaluate the multiplicity of each irreducible
representation p in @, and thus to find the total number N,n, of linearly
independent functions ¢4, for given p. The total number of linearly indepen-
dent functions ¢4, equals the dimension n’ of the representation @. Choosing
the first Nyn, operators P (m=1, 2, ..., n,) and using (9.14), we obtain the
n,N, functions ¢#,. If some of these functions vanish or are linearly depen-
dent, we must use additional operators Py (m=N,+1, N, +2,...), until we
obtain all the linearly independent functions.

Proceeding in this manner for every representation p, we find »’ linearly
independent functions and determine the n’ components of the operator Pl ,,
which selects n’ functions ¢, from the n’ functions ®;, to form bases of the
irreducible representations.

These components of the operator form a square matrix P of order
n’ — Py,, where g stands for the triple index p,m, &k (g=1, 2, ..., n). If these
components are appropriately indexed, it follows from (7.12) that the matrix
P transforms the matrix @ into & =P 'PDP, which is in block-diagonal
form (7.14).

In practical construction of the basis functions it is often more convenient
to begin with simple functions, such as the functions x, y, z, which form a
basis for one or more irreducible representations, rather than from a
general function @(x) generating the regular representation. The basis func-
tions of the other representations may then be obtained from harmonic poly-
nomials of higher degrees.

A similar problem often arises in other practical applications, when it is
necessary to construct functions that transform according to irreducible re-
presentations as products of known functions f} (i=1, 2, ..., n,) forming a
basis for a representation @, and functions @i (=1, 2, ..., n,) forming a
basis for a representation @,. The products ¥,,=f'¢, form a basis for a
representation &), , of dimension a,n,, which is called the direct product of
the representations: &,,=9,.9,.

The basis functions ¥ of this representation carry two indices in order
to indicate their origin, Thus the matrix elements of the representation 2,
carry four indices: @Dy ;. By (7.3)

D(@)u= ;; DR (@ 0= (@) fion= 12;4 D (@) |1 D (@) = % D5 (8) Dix (2) bir-

Consequently, the matrices of the direct product Dy are the direct
(Kronecker) products of the matrices of the representations &, and Dv:

DR, = D4 D (9.15)
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and the characters of the direct product are the products of the characters
of the constituent representations. Indeed, by (9.15),

Yuv () = ga Dy (@)= g D (g)g Dix (@),

Yuv (8) =%, (8) %v (@) (9.16)

In general, a direct product of irreducible representations may be
reducible. The problem of decomposing a direct product of two or more
representations into irreducible representations often arises in physical
applications.

Equations (9.16) and (8.19) enable one directly to determine which irre-
ducible representations occur in the direct product. If the functions f, and
¢x transform according to the same representation, the character of the
direct product is

Yun (8) = (0 (2)). (9.17)

In this case one can use the n} functions 4, =f @, to define the symmetrized
and antisymmetrized functions y;, and yj,:

v =fo,+he, (=12 ..., 0 k=12 ..., (9.18)
Wo=fo,— e  (=1,2 .., n; k=12 ..,i—1. (9.19)

As we shall show below, these functions transform independently and
form bases for the symmetrized product [®}], whose characters are denote:
by [#2 (g)], and the antisymmetrized product (@), whose characters are de-
noted by [¥%(g)!, respectively.

Since ¥, =1, and V), = — ¥;,, the functions ¥, and ¥;, should be treated
as one function; the same holds for ¢}, and ¥y,. The values of the second
index for the symmetrized functions should be confined to k<i, and for the
antisymmetrized functions to k#<i, since v;=0.

The total number of symmetrized functions is

, 1
n; = i=n,(n,+1),

The total number of functions sp:* and ¢fk is of course nﬁ‘
By (9.18) and (7.3),

D)V, =2 '_2 DDy, (Fror+ Fipp)

j=1 i=i

Since the functions ¢}, js£ I, appear in this sum twice, their coefficients
must be combined:

"

i=1
D (3] ‘P:k = 2 (!gl (Q“QDR + @"Q”] ¢f¢ + @‘,,!E"\b;‘,) -

=]
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Consequently, the matrix elements of the symmetrized product have the form

(Z)us, = (DDt + DEDE) (1 — 5 00). (9.20)
Similarly, for the antisymmetrized product
" M

3 =1
D (g) ¥y = ﬁ% Egrt@u o — o) = El z‘.(g”m“ —DuD )b

(D), = DY\ Dh — DD (9.21)

Thus the character of the symmetrized product is

LT ny, gi=l
(e @)= 2 2 (22 @), = (2 D1 () Dhe (&) + Dhi (g) Dk (g)) + Dl (g) D (g) =

(o] =l f==] =]
ny oAy " "
=5 Y YD Dh @+ D@ Dh @ = § (% @ Y, Dir () + D (g’)),
L (= =
whence o i =
[ @] = 5 (% (@) + 1, (€))- (9.22)

Similarly, for the antisymmetrized product
(22 (@) = 3 [, (@) — %, (89)- (9.23)

Thus, the direct product @, X D, of equal representations, whose charac-
ters are defined by (9.16) decomposes in the general case into two represen-
tations, the symmetrized and antisymmetrized products, whose characters
are defined by (9.22) and (9.23), respectively. These representations may be
reducible; the number of irreducible representations occurring in them may
be determined with the aid of (8.19), (9.22), and (9.23).

The basis functions of the irreducible constituents of direct products,
which are linear combinations of the products f;p;, may be constructed with
the help of the projection operator (9.14) and (9.14a), using expressions
(9.15), (9.20), or (9.21) for the matrices of the appropriate products.

In certain applications, one is particularly interested in determining the
number of times the identity representation [i.e., the (irreducible) one-
dimensional representation defined by mapping each group element onto 1]*
occurs in a given reducible representation, and in constructing basis func-
tions which transform according to the identity representation. By the defi-
nition of the identity representation, these functions are invariant under all
the symmetry operations of the group in question.

By (8.19), (9.5) and (9.14), the number of times the identity representation
occurs in a representation with characters y(g) is

No=7 Y 1(e) (9.24)
g

* [The Russian term used here has been rendered unit representation” in previous translations of the Russian
literature (see, e.g., M.A,Naimark, Linear Representations of the Lorentz Group, New York, Pergamon
Press, 1964, and the English translation of /1.7/). This is apparently in order to avoid confusion with (reduc=-
ible) identity representations of dimension higher than one, Our usage follows W, Miller, Symmetry Groups
and their Applications, New York, Academic Press, 1972, p,78.— Trans. editor. ]
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and its basis functions of the representation are
1
¥ =%E@{g)?f=72§@:: (&) e (9.25)
g )

where @;(x) is any function appearing in a basis of the given reducible
representation.

In particular, by (9.4) the regular representation contains the identity
representation exactly once, and the invariant function ¢°is

V=t 2@ 0 @)=Y 0. (9.26)
£ i

We now consider a direct product &, X @,. By (9.24) and (9.16), the pro-
duct contains the identity representation if

No=14 2 %u (&) 1 (&) # 0.
]
On the dther hand, by the orthogonality relation (8.16),
+ 2% @ %, (@) =3,,.
)

We may treat i as the character of the representation .ﬂD;, the complex
conjugate of »,. We see from (7.3) that, if the matrices 2D(g) form an irre-
ducible representation whose basis is the set of functions ¢;, the complex
conjugate matrices P°(g) also form an irreducible representation, whose
basis is the set of functions ¢;.

Consequently, the identity representation occurs only in a direct product
of mutually conjugate representations, y, =x".

If the representation has real characters, y, (8)=1x,(2), the conjugate re-
presentations @ and @* are equivalent, i.e., $ may be transformed into D*
by a unitary transformation (7.12). Under these conditions, if in addition the
basis functions ¢, and accordingly all the matrices & (g), can be made real
by a unitary transformation, we shall say that the representation is real. If
the character of the representation is real but its matrices P(g) are essen-
tially complex, in the sense that no unitary transformation can make them
real, we shall say that the representations @ and 2*are complex equivalent,
Representations @ and 2* with complex characters are complex inequivalent.

Consequently, for complex inequivalent representations we can form an
invariant function only from the product of basis functions ¢, and ¢; for the
conjugate representations @ and 2*, and this function is unique. By (9.25),
(9.15) and (8.9) the function is

! ‘. 1 , .
¥ =TE Dy 1 @00 =% Z 2 D, @) Dyo9, =
[ g ik
1 . 1 .
= ; 80,919, = T z P, (9.27)
i
For equivalent representations, we may form an invariant function from
the product of basis functions of one representation. This function coincides

in form with (9.27), but now the functions ¢; depend linearly on ¢, via a uni-
tary transformation T. Thus, for real representations with ¢;=g¢,,

=2V (9.28)
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As we shall show below (see (18.27)), for real representations

T3 =1
]
and so, by (9.22) and (8.17),

%;mw=h

i.e., by (9.24), for real representations the symmetrized product, whose
basis includes the functions ¢}, indeed contains the identity representation.
By (18.27), for complex equivalent representations,

ITEZ(QJ)="‘ 1,
F;
so that, by (9.23) and (8.17),
FaB@ =1
g

Thus, for complex equivalent representations, the identity representation
whose basis is the function (9.27) occurs in the antisymmetrized product.

§10. REPRESENTATIONS OF THE FULL
ROTATION GROUP

In this section we shall briefly discuss the representations of the full
rotation group.

It can be shown that, as in the case of finite groups, every representation
of the full rotation group is equivalent to a unitary representation. Since a
rotation ¢ is defined by three parameters ¢., ¢,, 9., €ach representation
D(p) = D (P ¢y ¢:) is also a function of these parameters. *

We shall show that all the matrices of any representation 2(g), where ¢
runs through all finite rotations, are completely determined by the matrices
of the representation for infinitesimal rotations ¢.

Expand @ (9,, ¢,, ¢.) as a Taylor series in ¢,. Then, since P(0,0,0) =
=P ©0)=1I, it follows that up to second order terms in q:

D (@n 9 @) =TI+ i(Ae,+ A9, + A,0,) =14 ilAg), (10.1)
where
=199 —199 192
A=T5-| A= dor e’ =T Fork (10.2)

are infinitesimal rotation matrices, i.e., matrices of the representation @

for rotations through small angles about the x-, y- and z-axes, respectively.
Consider two rotations s¢ and fp, where s and f are arbitrary numbers.

The product of sp and tp is the rotation (s+4¢)¢. Consequently, the matrices

* By the derivative 93 e mean the matrix 99\ _ 9Dk \pose elements are the derivatives of the
Ps Ips lak aps

elements of & with respect to g
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of the representation @ must satisfy the relation

Ds+ D9 s+ 09, (s+ D)= D (s, 59 59.)D (tg,, 9, tg,).

Differentiating this equality with respect to s and setting s=0, we obtain a
differential equation for the matrix 2 (fg):

#DG+09|_ =7 2t0=200 20| _,

whence, by (10.2), it follows that

2 D (t9) =iD (19) (4,9, + A9, + A0 =iD (t9) (A9). (10.3)
The matrices 2 (fp) satisfy the boundary condition
D () =D (0) =1 (10.4)
System (10.3) with boundary condition (10.4) has the solution
D () = e AP — g (A9, 44,0, 449,) (10.5)

and when =1 we obtain an expression for 2 (¢) in terms of the infinitesimal
rotation matrices A, 4, 4,:

D () =—e' APxt AR HAS) _ 1149, (10.6)

Thus, determination of the representation P(¢) reduces to determination
of the matrices of an infinitesimal rotation A,, 4,, A,.

We now consider a few properties of infinitesimal rotation matrices. The
matrices of the representation & for any rotations ¢, and ¢; satisfy the
relation

D (@) D (@) D™ () = D (@07 ). (10.7)

It follows from (2.1) that ¢,¢,9' is a rotation through ¢, about the axis

¢, =R (¢) 9o, which is the image of the axis ¢, under the rotation .. If ¢, is
an infinitesimal rotation, then @' is also an infinitesimal rotation. Using
(10.1), we find from (10.7) that

D (¢) (A9) D" (@) = (A(q.07")). (10.8)

Formula (10.8) was obtained for small ¢, but it can be shown to hold for
arbitrary g..

By (2.23), 9,9 =¢,=dR(9,) 9, or, in component notation,(py), = g Ris (91) (92)ss
where &R(p) is the matrix of a transformation applied to vectors in a fixed
coordinate system. Substituting these expressions into the right side of
(10.8), we see that the matrix A with components A4,, A,, 4, transforms in
the same manner as a fixed vector x, 4, z in a moving coordinate system:

D(@)AD ' (9) =R (e A (10.9)

or

Do) AD (@)= § Ry, (o) A, = ; R, (9) A,

From (10.9) we can obtain commutation relations for the matrices 4, 4,,
A,. Let @ be a rotation about the x-axis through a small angle ¢,. According
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to (4.2),

I o0 0
Rip)=}0 1 'Pxﬂ- (10.10)

0 —g, |

Setting A= A4, in (10.9), we obtain
(14 ipA) A (1 —ig.A) = Ay + i9 (A A, — AA)=A4,— 9,4,
from which follows the commutation relation for A; and A,:
A A —AA =iA,

In a similar manner one obtains commutation relations for the other infinite-
simal rotation matrices, similar in form to (4.5):

AA —AA, =i, AA—AA=iA, AA—AA=iA,.  (10.11)

Formulas (10.11) were obtained using only properties of rotations and are
therefore valid for infinitesimal rotation operators for all representations.
The unitarity condition for small rotations ¢

DD ) =(1+i(Ap)(1 —i(A*q) =1
implies
A=21%, (10.12)

i.e., the matrices A are hermitian. By virtue of condition (10.12), the re-
presentation D(¢) (10.6) is unitary for any finite angle ¢.

Instead of the matrices 4, 4,, A, it is sometimes more convenient to
introduce the matrices A; = A4, and Ay = A, +iA,, which, according to (10.11),
satisfy the following commutation relations:

A A —AA, —=—A, AA—AA_—A_,

A A_—A_A, =24, (10.13)

All infinitesimal rotation matrices, and consequently all different irre-
ducible representations of the full rotation group, may be constructed effec-
tively with the aid of the commutation relations (10.11) or (10.13). It can
moreover be shown that every irreducible representation @; of the full
rotation group is characterized by an index j, which runs through all integer
and half-integer values:

j=0, 12, 1, 3/2, 2, .., (10.14)
and is called the weight of the representation @;. The dimension of the re-
presentation ®;is 2j + 1. Thus, the full rotation group may have represen-
tations of all dimensions.

By (10.6), the representation 2(g) is fully determined by matrices 4, 4},
Al. As a basis of the representation D,(¢) we take the eigenvectors Yh of the
matrix A}, which satisfy the relations (see /1.7, 1.8/)

AV =ViFmFOG—m) Vi,
ALY =V(iF+mi—mF )i,

where m runs through the 2j +1 values

(10.15)
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m=—j —j+1, —j+2,...,i—1L | (10.16)
If j is an integer (half-integer), then m is also an integer (half-integer).
It follows from (10.15) that, relative to the basis we have chosen, the
matrix elements of A}, 4}, AL are:

(4D, = mOmm,
(A4) e =V G+ mF DG —m)bmsr, mes (10.17)
(AD) e =VGi+ m)G—m F D n-1, m
It is easily shown that
() e = (AL + A + AL), =G+ 1) Saim. (10.18)

Formulas (10.15) and (10.17) are valid for the special basis chosen above,
which is known as a canonical basis. When one transforms to any other
equivalent basis using linear combinations (7.8) of the functions y%, the in-
finitesimal rotation matrices A’ transform according to (7.12). The infinite-
simal rotation matrices (10.17) completely determine the matrix of the
representation PD(g) for arbitrary rotation angles ¢, as shown by (10.6).
Thus, the matrix &), (¢) for a rotation about the z-axis through the angle ¢ is,
by (10.6) and (10.17),

eiiv 0 0 0
0 eftu-ne 0 ... 0

D@ =] o 0 etu-2e 0 |. (10.19)
0 0 0 ...et®

From (10.19) we easily obtain the character yxj(gp) of the representation @;:

me—— sin %

s .
0= Dpomm (@)= Y etmr = MO DO (10.20)

The direct product of irreducible representations @, X®,,is a (2j;+1)X
(2/2 +1)-dimensional representation of the full rotation group. It is generally
reducible. In fact, each irreducible representation with weight ranging from
fi+j: to |j1—j2| occurs exactly once in @, X Dy,:

fi+le

DX D= X D, (10.21)
u==| j,= 14|
Formula (10.21) is easily verified by observing that for small ¢ the charac-
ter y;(p) = 2j +1 equals the dimension of the representation @;. Then, in
view of the identity
L+l

Ch+ D@+ h= “_”Z_J 1(2;1 +1),

we obtain
h+h

Yo

x —_—
hXb i p

which is just (10.21),
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It follows from (10.21) that the product of two representations with half-
integer weights decomposes into representations with integer weights. The
direct product D, X @, contains the identity representation if and only if
fr=a.

Let us decompose the direct product @;X @, into the symmetrized and
antisymmetrized products:

DX D) =D X D)) + (D X Dy). (10.22)

By (9.23), the character of the antisymmetrized product
I
(x) = 7 [% (@) — %, (29))

is for small values of ¢ equal to 2j+41)j. Hence we can show that the anti-
symmetrized product of @; and @; decomposes as follows;

Doj-1 + Dyy—3+ Dyy—s+ ... + D, for integer j,

DX D) .’{ Do+ Doz + Dy-s+ ... + D, for half-integer j. (10.23)

For example, when j is an integer the sum of characters on the right of
(10.23) is
Toy-t+ Aop-at . F U =2@Qj—D+14+2@ =)+ 1+ ... +1=2j+ 1D/

which is {¢}}.
It follows from (10.21)=—(10.23) that
92, + gﬂ-g 4+ ... + @o for integer js

Do+ Dyy—y+ ... + D, for half-integer j. (10.24)

(D, X D))=

Thus, the identity representation occurs in the symmetrized direct pro-
duct of representations with integer weight and in the antisymmetrized pro-
duct of representations with half-integer weight j.

The matrices of the representation &, for integer j are single-valued
functions of the rotation angle ¢. As we see, for example, from (10.19),
rotations ¢ and ¢ 4 2x are associated with the same matrix &;. Therefore,
the basis functions ¥, with integer ; may be constructed from single-valued
functions of the coordinates, and the representation matrices Al A/, A! (in-
teger j) are, as follows from (4.3), (4.5), (4.6) and (10.11), (10.6), (10.1),
the matrices of the angular momentum operators L;, L,, L, relative to this
basis, in the representation for which L, is diagonal.

If j=0, any function ¥ which depends only on the absolute value of the
radius vector & (|x|) generates a one-dimensional (scalar) representation
of the full rotation group, since it obviously remains invariant under every
space rotation.

If j=1, the canonical basis ¥}, Y.,, Yi for the representation 2, may be
constructed as linear combinations of the three components x, y, z of the
vector x:

Yo=iz, ri=—s%£. y‘..=z’—;_2_‘£. (10.25)

Using (10.21), we can successively construct basis functions for all the
irreducible representations @; with integer j, as products of different func-
tions (10.25) corresponding to the vector representation 2.
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Representations @; with half-integer j form a special case, for, as is
evident from (10.19), rotations ¢ and ¢+2n correspond to two matrices
differing only in sign. Therefore, representations 2; with half-integer j are
double-valued rather than single-valued functions and so, strictly speaking,
are not representations of the full rotation group in the usual sense.

If we associate the two matrices +2,(¢) with each rotation ¢, each pair
of matrices + @, (¢) forms what is known as a '"double-valued" representation
of the full rotation group.

The non-uniqueness of representations @; with half-integer weight j is
due to the fact that the above representations D;(¢p) are in fact ordinary
(single-valued) representations of the unitary group @ (see $4), which is
homomorphic to the full rotation group #. If the representations of %, which
is known as the representation group for the full rotation group, are viewed
as representations of the full rotation group, one obtains on the one hand the
(single-valued) representations of the spherical group — the representations
@D; with integer j, and on the other the double-valued representations ®; with
half-integer j.

Let us consider the case j =1/2 in greater detail. From equation (10.17)
we easily find the infinitesimal rotation matrices 4%, Al?, AY* of the repre-
sentation 2y,. Up to a factor 1/2, these are simply the Pauli matrices intro-
duced earlier:

AP =02, Al=oq,2 AF=q,2, (10.26)

so that the matrix of the representation v, coincides with the matrix a of
(4.12), which is an element of the group % and describes the motion of the
&n-plane under a rotation of the sphere. The basis functions Yi and ¥4, for
the representation 2,,, which by (7.3) transform into each other under

rotations:
ms=]/2

D@m= _Z_m (D12 (@) Y 0 (10.27)

are called spinors of rank 1/2, or simply spinors. They are not single-
valued functions of the coordinates, and generate an ordinary representation
of the group % and a double-valued representation of the full rotation group.

It follows from (10.21) that, using products of different numbers of spin-
ors, we can construct representations of the full rotation group for any j.
The product of an odd number of spinors decomposes into half-integer repre-
sentations, and the product of an even number of spinors will yield represen-
tations of any dimension corresponding to integer weight.

Each element of the orthogonal group is the product of inversion and a
rotation.

Since inversion commutes with every rotation, the total number of repre-
sentations of the orthogonal group is twice the number of representations of
the full rotation group, and each representations ®; with weight j may be
either even or odd, according as the matrix 3, does or does not change sign
under inversion.

Scalar quantities which transform according to the representation @, under
rotations and do not change sign under inversion are called pure scalars. A
scalar that changes sign under inversion is called a pseudoscalar.

Quantities that transform according to the representation £, and do not
change sign under inversion are called pseudovectors.
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§11. REPRESENTATIONS OF THE POINT GROUPS

In §3 we considered the various point groups and divided their elements
into classes. Using the properties of irreducible representations, one can
determine the characters of all irreducible representations of a point group
without explicitly finding the representations themselves. As shown in §8,
the number of irreducible representations is equal to the number of classes,
their dimensions n, are divisors of the order & of the group, and the sum of
squares of the dimensions of all the representations, zﬂ:» is equal to A.

In

The set of irreducible representations always includes the (one-dimensional)
identity representation (the representation in which the characters of all the
elements equal unity). These requirements uniquely determinethe dimensions
of all the representations of any given point group, and the orthogonality and
normalization conditions (8.21)and (8.23)uniquely determine their characters.

A useful fact here is that the characters of mutually inverse elements are
related by

(g™ =x"(g), (11.1)

as follows directly from the unitarity of the matrices (7.11). Therefore, if
g and g-! are in one class the characters of the class are real, while if they
appear in different classes the characters of these classes are complex
conjugates.

For many groups determination of the irreducible representations may
be considerably simplified by using the theorem proved in §7 to the effect
that the representations of a group contain the representations of all factor
groups of the group relative to its invariant subgroups.

In determining representations of point groups, we restrict ourselves to
groups containing twofold, threefold, fourfold, and sixfold rotation or impro-
per rotation axes, since only such groups may be crystallographic point
groups. All the [irreducible] representations of these groups are given in
Table 11.1 at the end of this section. Following /I.7/, we dencte one-
dimensional representations in the table by the symbols A and B, depending
on whether the representation is respectively invariant under rotation about
the principal axis (the z-axis), i.e., x(¢g)=1, or noninvariant, x(¢e) 5= 1.
Two-dimensional representations are denoted by the symbol E, and three-
dimensional representations by F. For direct products of the groups C; or
C, with any group not containing a second order transformation, representa-
tions which are even relative to i or o, are provided with a plus sign, odd
ones with a minus sign.

We now show how these representations and their characters are
determined.

Cyclic groups C, and §,. Since these groups are abelian, the
number of classes equals the number of elements, n, and all the represen-
tations are one-dimensional, i.e., the characters y(g) coincide with the
representation matrices #(g). Therefore, ¥*(¢c,)=1x(ch)=x(e)=1, and for
these groups

2
M x

xwek)=e * (11.2)

where M is an integer. Setting M=0, 1, 2, ..., n—1, we obtain all n repre-
sentations. Representations with M=r and M =#h—r are complex conjugate
pairs.
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Similarly, for the groups Si;., which are isomorphic to the groups G,
siM

L(sh)=e " . (11.3)

Groups C, and C;= S, are isomorphic to C;, so that, like the latter,
they have two one-dimensional representations. For direct products of two
groups (the second group is usually C;, C, or C;) the representations and their
characters are determined (see (8.27)) by multiplying the characters of the
factors, and the total number of representations is the product of the number
of representations of the factors.

Thus, we may at once determine the characters for representations of
Cnn=Cn X C, and Sipia = Caput X Cyi, Cypsp = Capy X Cy, such as the groups
Se=0C3 X C;, Ce=C3XCy.

Since all the representations of the original groups are one-dimensional,
these groups also have only one-dimensional representations.

Groups Cz» and D=V are isomorphic to the group Ca=CyXC,=CsXCy
and have the same representations. Actually, these groups are also direct
products C,,=C,XC;, D,= C,XC;. The axis ¢; in the group C2, as opposed
to Cw, lies in the plane o, and the axes ¢ and ¢ in D, are perpendicular.

Group Ci. As opposed to all the groups considered above, the group
Cs, is noncommutative. It has six elements, distributed over three classes,
and so there are three representations. We see at once from condition(8.12)
that two of the representations are one-dimensional and one two-dimensional.
By (11.1), all the representations are real, i.e., the characters in the one-
dimensional representations may equal =1. It follows at once from the
orthogonality condition for the characters of the one-dimensional represen-
tations A, and A; that, for A,, x(e) =yx(cs) = 1, and %(e,) =—1. For the
remaining two-dimensional representation E, yx(e) =2, and the column-
orthogonality condition (8.23) at once gives g(ecs) =—1, %(0;) =0,

Group D; is isomorphic to Cs and has the same representations.

Group Cu contains eight elements in five classes. Hence it has five
representations, one of them two-dimensional, and all the representations
are real. The row-orthogonality condition (8.21) implies that for the three
nonidentity one-dimensional representations 4, B; and B, the characters of two
out of the three classes ¢, 0,, o/ must be —1, while for the remaining classes,
including one of these three, we have y=1. This immediately yields the
characters of all the one-dimensional representations.

Note that the factor group of the group C,, relative to its invariant sub-
group C;, which consists of the elements e and ¢, contains four elements,
the cosets eC, ¢(C,, 0,C, o!C,. This group is isomorphic to C;,. Thus the
four one-dimensional representations of Cy, coincide withthe representations
of C;,, and elements in the same coset have the same characters.

The characters of the two-dimensional representation E are determined
at once from the column-orthogonality condition. Since the columns corre-
sponding to the classes ¢,, 0,, o/ are orthogonal to the column of the class e
without the last representation E, it follows that their characters in the
representation E are =0, and the characters of the class ¢ are y(c) =
= —y(e) = —2.

Groups Dyand Dy are isomorphic to the group Cy,, and their repre-
sentation coincide.
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The characters of the representations of Dy, = Dy X C; and Dy, = Dag X C;
are determined by multiplying through the characters of the appropriate
groups.

In a similar manner we determine the characters of the representations
of the group D3 = C3, X C; and its isomorphic images Dy = D3 X C,, Cey = Cav X
X Cs and DGZDs><Cg.

Knowing the characters of the group D;, we can at once determine the
characters of the representations of Dg = Dg X Ci = D3 X Ca.

Group T contains twelve elements in four classes, so that by (8.12) it
has three one-dimensional representations and one three-dimensional repre-
sentation. The subgroup D of this group is invariant. The corresponding
factor group contains three elements, the cosets eD,, ¢,D,, ¢2D,, and is iso-
morphic to C;. Thus the three one-dimensional representations of T coincide
with the representations of Cs.

The characters of the classes e and ¢ in these representations coincide.
The column-orthogonality condition at once yields the character of the three-
dimensional representation F. Since the columns corresponding to the
classes ¢, and ¢} are orthogonal to the column of the class e without this
representation, it follows that their characters in the representation F are
equal to y= 0, while the characters of the class ¢; are y%(c)=—"hy(e)=—1.
Knowing the characters of the representations of the group T, we may at
once determine the characters of the representations of T, = T'X C;, which
has four even and four odd representations.

The characters of the representations of the group 0
are found in the same way as for the group T. The factor group of O by its
invariant subgroup D;, which includes the elements e and 3¢;, contains six
cosets, each having four elements: eD,=D,, ¢,D,, c}D,, u,D,, ujD, u}D,. This
group is isomorphic to D;. Thus the characters of two one-dimensional
representations and one two-dimensional representation of O coincide with
the characters of the corresponding classes of the group D;. The total num-
ber of elements in this group is 24, the number of classes 5. Consequently,
the sum of squared dimensions of the remaining two representations is
24—6 =18, so that these representations are three-dimensional. By (11.1),
the characters of all the representations are real,

Let us denote the characters of the classes ¢;, ¢, 43, ¢4 in each of these
representations by ai, b, ¢, di and ay, bs, ¢, d;, respectively. The orthogonal-
ity condition for characters yields three equations, from which we get a; =0,
bi=—1, ¢i=—d;. Next we find from the orthogonality of the characters of
both three-dimensional representations that d;d; = ¢jc2 = —1, while the nor-
malization condition (8.17) yields di=d3= 1. Hence, for one of the repre-
sentations dy = —c¢; = 1, and for the other dy= —c;=-1,

Thus, we have found the characters of all representations of the group 0.

Group Ty, since it is isomorphic to O, also has five representations;
the group O, = 0 X C; = Tq X C; has twice as many representations, whose
characters are obtained by multiplying the characters of the representations
of O or Ty by those of C;. Accordingly, five of these representations are
even and five odd.

We-have thus determined the characters of the representations of all the
crystallographic point groups, as listed in Table 11.1,
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Tables 11.1 and 11.2 present basis functions for each representation,
built up from the components of the polar vector x(x,y, z) or the axial vector
J(J: 1, 1) and their products. In accordance with the rules described in §9,
these functions may be constructed as follows.

First of all we determine the characters of a representation according to
which the components of x or J transform, for each operation g appearing
in the group. As shown in §10, the characters of these representations are

i /2) _—
1= xl) =T x(co: (11.4)

1)=%3 x0O)=Fyl)==1.

The upper sign refers to the components of the polar vector (representation
D7), the lower to those of the axial vector (representation 2;). Evaluating
the characters by (11.4) and using equation (8.19) or (8.22), we determine
the irreducible constituents of the representation @i or @{. We see that in
the cubic groups T, Ti, T4, O, O, the representation @; is irreducible and cor-
responds to the representation F,F~, F,or F;. In groups not containing
transformations of the second kind, such as T and 0, it is evident from
(11.4) that the components of x and J transform according to the same repre-
sentation; Tables 11.1 and 11.2 therefore list only functions based on the
components %, 4, z. In T; the components J/; transform according to F;; in
0, as in all groups containing inversion, the components J; transform
according to even representations, i.e., according to Ft,

It is clear that the products J;J, always transform like xixx.

In all other groups (except T, T,, T4, O, 0,) the representations Di* are
reducible. In Cjy, Cu Csy and their isomorphic images, these representations
decompose into one one-dimensional representation and one two-dimensional
representation. If we take the direction of the principal axis as z, it is im-
mediate that in all cases the z-component transforms according to the one-
dimensional representation, and consequently x and y form a basis for the
two-dimensional representation. The same applies to J; and the pair /., J,.

In the remaining groups, the representations 2 decompose into three
one-dimensional representations, and the basis functions are at once deter-
mined with the aid of equation (9.11). Here it is convenient to use the basis
(10.25):

[ | . 1 Vb
Y = 72=(x+:y], Yo=iz, Y, VT (x — iy), (11.5)
in which (see (10.6) and (10.17)) the matrix & for rotation operations about
the principal (z-)axis is diagonal:
D (20) = "™ by (m=1, 0, —1), (11.6)
Do (1) = F 8ty Do (08) = F €™ e

(minus for @, plus for 2y).
For rotations through n about mutually perpendicular axes,

0 0 1 0 0 —1
D ()=|0 —1 0, D)= 0 —1 o0f, (11.7)
1 0 o0 —1 0 0

and

D (0,)=2D, (420) D, (0,), D, (9;)=D (12,) 2, (4)-
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After determining the representations that belong to the components x;
and J;, we can at once find the representations according to which their pro-
ducts transform, using equations (9.16), (9.22), (9.23), (8.22). In so doing
one should note that the antisymmetrized product {xy} transforms like J/;, and
so on, If the product of two representations is irreducible, the basis func-
tions are determined at once; in particular, this is so whenever both repre-
sentations are one-dimensional. In the remaining cases we may use formula
(9.14a). No product of irreducible representations for point groups contains
any irreducible representation more than once. Therefore, this formula,
which involves only the characters x.(g), determines one of the functions,
and the others are obtained by applying the operations 9(g) to this function.
The matrices Dy;(g) according to which the products Y.LY! transform (see
(9.15), (9.20), or (9.21)) are determined by the direct product of the matrices
(11.6) and (11.7). For example, for the function Y% :

Dmm (o) = ™8 (11.8)

For the group Ty, we find that [Fl=A+E+F. By (9.26), the invariant
x?+ 2 + 22 transforms according to 4;. It is easy to show that the symmetrized
products [xy], [x2], [yz] transform according to F,. Consequently, the two re-
maining linearly independent functions, built up from x2, 42, 22, transform
according to E. These functions may be chosen as

Ry=x'4 eyt 4322, R,—=R]=x'+ el + e, (11.9)

where e;= ¢,

With the basis functions determined, one can, if necessary, immediately
construct the matrices of the corresponding representations. Of course, the
matrices of the irreducible representations may be constructed by using the
defining relations for point groups, (see §3), without specifying the basis
functions in explicit form; this will be done for projective representations
in $14.

Basis functions involving higher powers of the components x,y, 2 are
constructed in a similar manner.

If the matrices of the representations are known, the construction of the
basis functions may be based directly on the functions Y} with sufficiently
large j, forming a basis for the representation 2; of the rotation group. The
matrices of these representations are given by equations (10.6) and (10.17).
Since all the point groups are subgroups of the full orthogonal group, all
their representations may be obtained from the representations of the latter.
Using equation (8,19), one can determine the irreducible representations of
point groups that occur in the representation 2y, and find the functions
themselves from equations (9.14).

TABLE 11.1. Character tables for the point groups

Group E

E e

A 1
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TABLE 11,1 (coatinued)
Groups C,, C;, C;

Cy e [
(o} e i
C G C,
Cs e Op
A At At 1 1 z Ig 1y, 13 Xy
B A~ A~ I —1 x y Xy, z z
Group Cy
C; | e e |
A | | 1 z
B, 1 e & x— iy
By | 1 e | ¢ x+iy
gy == £
Groups C,, S,
C, e cy €y cz
C, S,
S, e | s, | & s
A A 1 1 1 I z Iz
B, B, 1 -1 1 | =y z
By By 1 i -1 —i x =iy x—iy I+ ily
B, B, 1| =i | =1 i x+iy iy, Jg—ily
Groups D,, Cy
Dy e 2¢, Jug
Dy Cso
Cyw | e 2y 300
A A 1 1 1 | 244 2 z
Ay | A | 1 1| =1 z Iy
E E 2 -1 0 x Y x4 Ta dy




TABLE 11.1 (continued)

Groups Dy, Cip, Dsg

§ 11, REPRESENTATIONS OF POINT GROUPS

D, e | cy |2, 2uy | 205
Con e | ey |2, 2, 20; D, Cip Dy
Dygl e | ¢y | 25| 2uy | 204
AlA AL I R B L z 2 x4t
Ag| Ay | Az ! 1 1] =1} —1 z Iz Iz
B,| B | B ]I 1| =1 1] =1 2=yt 32—y xt— g0
By| By | By] 1 1|]=1] =1 1 xy xy xy, 2
E|E|E|2(|-2] 0f o] O %y ity %y Is Jy
Group T
T e 3¢y 4ey 4c§
A 1 1 1 1 4yt 42
B, 1 1 e, s:‘; 2+ zgyz + 5322
B, 1 1 e? ey | ey’ +e3d
F 3 -1 0 0 Xz
Groups Tq, O
Ta e 8{.‘3 3¢y | bog | Bs,
Tq o
O | e | 8| 32 | 6uy | 6Gey
Al AL 1 1 1 1 B4+t
AR EE Uyl | e
E|E]| 2 1| 2| of o Ao el 2t
- P4 el el 12+ et + )]
F,| Fi ] 3 0 —=1| -1 1 e, Iy, Iz %Y 2z
_ - X, Yy Zi XY, XZ, YZ;
Fy| Fs 3 0 1 1 1 [ij)‘lt [!;!z]. [J-,le Xy, xz, yz
Groups Dy=0Cy X Cj, Cpp=C,X C;, Cpy=0C, X C]
D, e €1z | €1x | Cay
Cap e | e | i | on Dy Can Cyp
Csww| e | 5| 0, | o)
A AT AT 1 1 L] x2, 42 2 I; z
A A~ A~ |1 1| —1] =1 z z Iz
B, |B*|B*| 1 | -1 1| =1 x Ie, Iy vl
By | B- | B~ 1 -1 | =1 1 y £y x Iy

73
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TABLE 11,1 (coatinued)

Groups Cy=C3X Cy, Cyp =C3 X C5, Sg=Cy X C;

Ce e £y :§ €y cz Cg
Can e €3 cg o, | s s? Cy Cyp Sa
Ss e cy c§ i s: Sg
Al AT AT 1 1 1 1 1 z Iz I,
AlATAT] 1 I | =1 =] =] (xxig)® z z
B BB 1 e | @] 1] e | |c—w|xtg|ietuy
By | By | BT 1 | ey | & | =1 | —ey| =] i [retir] x+
B Bf|Bf| 1 | |e| 1|2 [ e |+ iy x = ig|le—idy
B, By B | 1| } e | =t | —eb| —ey| x =iy [ri—iry] x -ty
Groups Dy=D3X Cy, Cop="C30 X Cy, D3p =Dy C;s
Dy e |2¢5|3up| €, | 2¢q/3us
Cou e |2¢,/30,| ¢, | 2c6|207) Dy Ces Dsn
Dip| e |2c,|3uy] 0, | 25430,
Al AgpAat o] oo ) o] e 22 z g2, 2
- (x+iy) + | (x+ )+ lizllx+iy)'—
A Ag | ATV 1 === T | (= i) | — (x — i)
Al Al AFL V| =] 1) 1= z Iz Iz
f(x+ ) — | il(x+iy) —
A AgfAag U Y=t=n=1 K x -—yiy)’] = (x — iy)*) 2
(x + iy)3, (x + iy)%
£| EI E‘F 2 |—1 of 2|—1 0 {x —_ iy]’ (X — l‘!”: x ¥
ENE |E|2]|—1] 0-—2 1] o %y x, 4 Iy, Iy e Iy

For the remaining eight groups
Cin=C,XC CM=‘CGXCI_ D9h=D?XCI'- Dyy =Dy X Cy
Dy =D, X Cy, Degp=DgXCy,
each representation of the original group 2 is associated with two repre=
sentations D* with characters ¥ (ig) = =y (g), belonging to even and

odd funttions of the coordinates, respectively. All the functions @ (/)

transform according to even representations.

Th=TXC

Op=0XKC;=TygXC




TABLE 11.2, Basis functions for the groups T4, O, Oy
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Representations Basis functions
T, | o | o4 o () L)
Al A | AT A2t ety
4 2 __ a2 4 2 __ 42
A | A | AT v .f.)zi-'.ff! (_zy') M+ [Tl yl2)
2+ 83y2 +e5
O R 2+ &3 + ey, Tt ey + el
eyt + €32t 2+ 231';', + By’i
4 zgy‘ + aaz'
xy(x* — g7), xz(x? — 2%), N
F Fy | FY yz (y? — 2%) T dp da I Ip 13
I v xdz), Uylz]:
Fo | B, | FE | R xR uE Xy sy, pash g ;I x}%}J ;’z'f']
2 2 2 2xy?, xy'2?, yx'2? = x( t’ a)l
vy Ve
A | A | AT xyz
= xyz [x* (y* — 2%) +
A | AL AT G = ) 2 (af — )
£ E - xyz (xE +egy” + sgzy).
xyz (x2 + 2% + zaz’)
x (y?—2%), y (2"—x7), 2(2—y);
F, F, Fr £ (y?—2%), y* (27—x?),
2 (x2—y?
Fo | Fy | Fo | =gz 2% 08 2% 05 o5, 28

TABLE 11,3, Multiplication table for T4 and @

A A, E F, F,
Al al a E F F,
Ay Az A E Fa F,
E|E|E | A+M+E Fi+Fs Fi+Fy
F, F, Fy Fy+ F, A+E+F +F | A+E+F, +F,
F, Fa Fy Fi+F, A+E+F+F |AA+E+Fi+F,
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§12. REPRESENTATIONS OF SPACE GROUPS.
BRILLOUIN ZONE. LITTLE GROUP

In order to determine the irreducible representations of a space group,
we first find the representations of its translation subgroup, which, as
shown in §6, is an abelian invariant subgroup of the space group.

Representations of the Translation Group

Since the translation group is abelian, all its representations are one-
dimensional.

Let ¢(x) be a function realizing an irreducible unitary representation of
a translation group with generators a), @y, a;. Translation by the vectors a,
a;, a3 multiplies the function ¢ by factors Ai, Az, 4,. (Unitarity implies that
the absolute value of each A is unity).

(8|ﬂ|)¢=¢(t;.13)=‘?(x""ﬂ)=11‘?(-'): (12.1)
10, (x) =A9 (%), fa,@(x) =20 (%). '

A function ¢(x) which forms a basis of an irreducible unitary representation
of the translation group will be denoted by @,,,,.
It follows from (12.1) that for the general element a of the translation

group,
a=ma, + mua,+ ma,,
Paaa, transforms in the following manner:
€10) @55, (¥) =By, (x — @) =ATATALG, (). (12.2)

Thus the three numbers A, A2, As completely determine an irreducible repre-
sentation of the translation group.
Insteadof A, 2;, %3 itis convenienttointroducea singlevector &, defined by

Aj==eida, py—emita ) —p—ikay, (12.3)

However, the vector & is not uniquely determined by A, A, A4s. To clarify
this ambiguity, we define vectors b, b;, b, by

5|=‘%:£lﬂle‘3], alsz=%[¢3>'(*-"|]- 53=%:i[¢|><52]- (12.4)

where Q,= (ai[a: X a3}) is the volume of a primitive cell. We see from (12.4)
that the vectors #&; are orthogonal to the vectors a;:

ba, =218, (i, j=1,23) (12.5)
and therefore satisfy the equations
et =1, (12.6)
Taking b,, b, b; as a basis, we can construct vectors
b =nb, + nyby + nsbs, (12.7)

where n;, ny. ny are arbitrary integers (positive, negative or zero). The end-
points of these vectors form a lattice, called the reciprocal lattice with
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respect to the Bravais lattice defined by the vectors ay, a;, @;. If the vectors
a,, a;, ay have the dimensions of length, the reciprocal lattice vectors b have
the dimensions of inverse length (dimensions of a wave vector).

It follows from (12.6) that equalities (12.3) determine the vector & up to
an arbitrary reciprocal lattice vector (12.7).

We now describe some properties of the reciprocal lattice. Using the
definition of the vectors & (or the relations (12.5)), we can show that the
symmetry point group of the reciprocal lattice coincides with the symmetry
group of the Bravais lattice. However, the type of reciprocal Bravais lattice
is generally not the same as that of the Bravais lattice.

Using the definition of reciprocal lattice vectors, we can establish the
correspondence shown in Table 21.1 between the types of Bravais and recip-
rocal lattices.

The volume of the primitive cell of the reciprocal lattice is readily seen
from (12.5) to be (2n)3/Q,.

Thus, each irreducible representation of the translation group is charac-
terized by a vector k such that

‘.?.=(8|¢)¢‘.=1P.{x—ﬂ)=e".“¢.(-‘)- (12-8}

Since k is determined only up to an arbitrary reciprocal lattice vector, two
vectors kand K will be called equivalent, k= F/, if they differ by a recip-
rocal lattice vector.

TABLE 12.1
System Lattice type Reciprocal lattice type
Triclinie Primitive Primitive
Monoclinic Primitive Primitive
Base-centered Base-centered
Orthorhombic Primitive Primitive
Base-centered Base-centered
Body=-centered Face-centered
Face-centered Body-centered
Tetragonal Primitive Primitive
Body-centered Body-centered
Rhombohedral Primitive Primitive
Hexagonal Primitive Primitive
Cubic Primitive Primitive
Body-centered Face-centered
Face-centered Body-centered

Brillouin Zone

The.domain of definition of the vector & may be taken as the primitive
cell of the reciprocal lattice. However, this is not always convenient, since
the choice of the primitive cell is quite arbitrary and, moreover, in the
general case the primitive cell is not invariant under transformations from
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the symmetry group of the reciprocal lattice. The volume of the invariant
Bravais parallelepiped (or Bravais prism, for the hexagonal system) gener-
ally exceeds that of the primitive cell.

We can construct a primitive cell which on the one hand is invariant under
the transformations in the group ¥, and on the other has volume equal to the
volume of the primitive cell. As before, the Bravais lattice may be obtained
by unlimited repetition of cells. In the Bravais lattice this cell is known as
the symmetrized Wigner-Seitz cell; in the reciprocal lattice it is called the
first Brillouin zone or simply the Brillouin zone. The Brillouin zone is not a
parallelepiped, but rather (inthe general case) a certain polyhedron. The first
Brillouin zone is usually taken as the domain of definition of the vector &.

b

2

FIGURE 17. Construction of Brillouin zone.

The method for constructing the Brillouin zone is as follows. Choose an
arbitrary reciprocal lattice point O as the origin. The Brillouin zone is the
set of all points whose distance from the zero point O is less than or equal
to its distance from any other point of the reciprocal lattice. To construct
the Brillouin zone, join the point O to the various reciprocal lattice points
determined by the vectors & (12.7), and construct planes perpendicular to &
which lie equidistant between O and the corresponding point (Figure 17). The
polyhedron bounded by these planes is the Brillouin zone.

The system of planes bounding the Brillouin zone, and the cell itself, are
invariant under the symmetry group of the Bravais lattice. In particular, the
point O is a center of symmetry for the cell. Its volume is equal to that of
the primitive cell.

The equation for a vector x lying on a plane perpendicular to b at a dis-
tance &/2 from the origin is

xb = b2/2. (12.9)

By varying the vector b in (12.9), we easily obtain analytical expressions
for the planes bounding the Brillouin zone in cartesian coordinates.

It follows from this construction of the symmetrized cell that inside the
Brillouin zone there are no pairs of equivalent vectors g. If the vector k&
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lies on the boundary of the Brillouin zone, however, there is always at least
one equivalent vector & on boundary of the Brillouin zone.

Let us consider the form of the Brillouin zone in our hierarchy of crystal
systems.

In the cubic system there are three possible types of systems: primitive
., face-centered I, body-centeredI'?.

The Brillouin zone for the primitive cubic lattice is a cube (Figure 18, a).
It is clearly formed by intersecting planes perpendicular to the edges of the
cube forming the primitive cell. The Brillouin zone for the face-centered
cubic lattice* is shown in Figure 18, c. Formed by intersecting twelve planes
perpendicular to the six twofold axes, it is a dodecahedron, all of whose
faces are rhombuses. The threefold and fourfold axes intersect the sym-
metrized cell at its vertices.

FIGURE 18. Brillouin zone for cubic lattices:

a) simple cubic lattice; b) body-centered reciprocal lattice; c) face-centered
reciprocal lattice,

In the case of the body-centered lattice, the symmetrized cell is formed
by intersecting six planes perpendicular to the three fourfold axes and eight
planes perpendicular to the four threefold axes. It is a tetradecahedron, six

* In order to avoid misunderstandings, we stress that all references are to the type of the reciprocal lattice.
The correspondence between the original and reciprocal lattices was given above in Table 12.1,
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faces of which are squares and eight regular hexagons. The fourfold axes
pass through the centers of the square faces, the threefold axes through the
centers of the hexagonal faces (Figure 18,b).

In the tetragonal system there are two types of lattices: primitive I, and
body-centered T}.

The Brillouin zone for the primitive lattice I'; has the same form as the
primitive cell — a rectangular prism (Figure 19,a). It may be obtained from
the Brillouin zone for a primitive cubic lattice by stretching (or compressing)
along a fourfold axis.

FIGURE 19. Brillouin zone for tetragonal lattices:

a) primitive lattice; b) body-centered, height greater than diagonal of
the square; c) body-centered, height less than diagonal of the square.

For the body-centered lattice, there are two possible types of symme-
trized cell, depending on the relation between the edges a and ¢ of the
Bravais parallelepiped in the reciprocal lattice, since the system of planes
bounding the symmetrized cell will differ according as ¢>V2a or c<V2a.
The Brillouin zone for ¢>V2a is depicted in Figure 19, b, and fore<V2a
in Figure 19,c., The situation becomes clearer if we recall that according
to Figure 16 the lattice I'; may be obtained by continuously deforming the
lattices I'? and I'}.
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FIGURE 20, Brillouin zone for orthorhombic lattices:

a) primitive; b) base-centered; c) body-centered, height greater than diagonal of rectan-
gular base; d) body-centered, height less than diagonal of base; e) face-centered lattice.

In the first case a small deformation will keep ¢< VY2a (since in a cubic
lattice ¢ = a) and the symmetrized cell in Figure 19, c is obtained from the
symmetrized cell for I'; by stretching (or compressing) along a fourfold axis

The I'f lattice is equivalent to a body-centered lattice of the tetragonal
system when ¢=V)2a. If we dilate this lattice along a fourfold axis, ¢ be-
comes greater than Y2a. Consequently,the symmetrized cell for I} in this
case (Figure 19,b) is obtained from the Brillouin zone of the It lattice (Fig-
ure 18) by dilation along a fourfold axis.

In the orthorhombic system there are four possible types: Iy, s, Ih, I%.
The Brillouin zone for the primitive lattice is a right parallelepiped with
rectangular faces (Figure 20,a). The Brillouin zone for the base-centered
lattice, shown in Figure 20,b, is a hexagonal prism. For the body-centered
lattice there are three types of Brillouin zone, depending on the relation
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between the parameters. Figures 20, c and d show two types of Brillouin
zone for the body-centered lattice; Figure 20, e shows the symmetrized cell
for the I lattice.

In the monoclinic system there are two possible types of Bravais lattice:
primitive I', and base-centered I'. The Bravais parallelepiped in the mono-
clinic system is determined by four parameters: the angle z between the
edges of the base and the lengths of the edges. Therefore, the shape of the
symmetrized cells will depend on the relations between these parameters.

FIGURE 21. Brillouin zone for monoclinic lattices:

a) primitive; b) base-centered.

The Brillouin zone for the primitive lattice I'n is shown in Figure 21, a.
Depending on the parameters characterizing the primitive cell, five types
of Brillouin zone may occur for the T lattice; one of them is shown in
Figure 21,b.

In the triclinic system we have only the primitive Bravais lattice ;.
However, depending on the form of the primitive cell there are three types
of Brillouin zone.

In the hexagonal system there is one type of lattice and one type of
Brillouin zone, shown in Figure 22.

FIGURE 22. Brillouin zone for hexagonal lattice.
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FIGURE 23. Brillouin zone for rhombohedral lattices, Three translation vectors
of equal length lie on the surface of a cone about the threcfold axis:

a) height of cone greater than ¥2r, where r is the radius of the base; b) height
of cone less than ¥ 2r.

In the rhombohedral system there is only one type of Bravais lattice but,
depending on the degree of elongation of its primitive cell (rhombohedron),
there are two possible types of Brillouin zone, obtained by dilating the
Brillouin zone for the face-centered and body-centered cubic lattices of
Figures 18,b and c¢. These lattices are shown in Figure 23,

Thus, there are altogether twenty four types of Brillouin zone in the four-
teen Bravais lattices. These symmetirized cells are discussed in greater
detail in /1.10, I1.14/.

Construction of Representations of a Space Group

We now show how to construct the representations of a space group on the
assumption that the representations of its translation subgroup are known.
This procedure for constructing the representations of a-group based on those
of an (abelian) invariant subgroup dates back to Frobenius /I.11/.

Consider some s-dimensional representation 2 (g) of the space group, its
basis consisting of s functions ¢, ¢, ..., ¢. If s>1, the representation P
is reducible as a representation of the translation subgroup.

Choose the basis ¢ in such a way that each function ¢ belongs to an
irreducible representation of the translation subgroup, i.e., choose the
functions s, (12.8) as ¢@. Relative to this basis, the matrix

D(ta) = D (e|a)
is diagonal and has the form
e—ika 0 . 0
Delg=| © M O (12.10)
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In the general case some of the : vectors k; may be identical. We define

the star of the representation @ to be the set of all distinct vectors ki, k.,
.., ka (n<s) (equivalent vectors, i.e., vectors differing by a reciprocal
lattice vector, are also treated here as equal). ’

We claim that the star of a representation is invariant with respect to the
group G, i,e, if k is a vector in the star, then any vector k' = gk=rk is
also in the star,

For the proof, consider the function (r|e)g,, where a is the nonprimitive
translation corresponding to the "rotational' element r, and find its trans-
formation law under the primitive translations a:

(ela)(rla)g,=(rla)(e|r'a)p, = (r |a)e-tarT'a g, — e=trha(r | @) ,. (12.11)

Thus, the function (r|a)g,, which belongs to the space spanned by the
functions %, 1S an eigenfunction of the translation operators #;, correspond-
ing to the wave vector &’ = gk = rk (for any element g = (r|a +a), gk will
always denote the vector # = rk). Since the set of vectors &; (i=1,2,...,n)
for functions transforming according to the representation @ coincides with
the whole set of vectors &, itfollowsthatfor every g G the vector rk is one
of theky (i =1,...,n).

Now take any vector k, in the star of the representation, and consider all
possible vectors rk;. They are all elements of the star, but some of them
may be identical. There are two possibilities.

1) The set of vectors rk, exhausts the whole star of the representation 2.
The star is then said to be irreducible. Clearly, every irreducible star is
completely determined by specifying any of its vectors &, and the remaining
vectors are obtained by applying the operations g in the space group G. An
irreducible star may thus be characterized by a single vector k,, and we
shall denote it by {k}.

2) It may turn out, however, that the set gk, does not exhaust the whole
star, in which case the star is said to be reducible. Any reducible star may
be decomposed into irreducible stars, in the following manner.

Since the vectors gk, do not exhaust the whole star, there is some vector
&, in the star not belonging to the irreducible star {k}; constructing all
possible vectors gk,, form the irreducible star {k;}. These stars are dis-
joint, since otherwise, for some ry and r,, we would have rk = r;k;, or
ry'r ik, =k, contradicting the assumption that &, = (k). If union of {k} and {k;}
is not the entire star of the representation @, we can choose a vector k,,
ks = {k}, ks = {k2}, and construct the irreducible star {k}. Continuing this
process until the star of the representation @ is exhausted, we thus de-
compose it into irreducible stars.

In what follows, irreducible stars will be essential for our study of
irreducible representations of space groups: we shall now show that every
irreducible representation has an irreducible star. (Note that the converse
is false, since at the center of the Brillouin zone, k= 0, any representation,
reducible or not, corresponds to the irreducible star consisting of the single
vector k= 0.)

Suppose that the star of the representation 2 consists of two irreducible
stars {k} and {k} and accordingly the space of the representation @ decom-
poses into two subspaces L, and L.,. It is not difficult to see that each of
these subspaces is invariant under the group G, since any function ggq,, & = (&},
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is characterized by the wave vector & = gk = {k} and thus belongs to the sub-
space L,. Similarly, for all g G the functions g¢;, k={k}, belong to the
subspace L;. But since there are two invariant subspaces of basis functions,
the representation @ is reducible. Thus, an irreducible representation can-
not have a reducible star.

Little Group; Little Representations

The group of the wave vector G [or the little group] is the subgroup of
the space group all of whose elements # either leave the vector k unchanged
or map it onto an equivalent vector, i.e., for any 2 = G,

hk=Fk or hk=k. (12.12)

Since there is no pair of equivalent vectors inside the Brillouin zone, the
group G» for points inside the Brillouin zone can contain only those elements
which leave k unchanged. If k lies on the boundary of the Brillouin zone, G»
will also contain elements which map & onto an equivalent vector,

Like the space group, the little group G.contains an invariant translation
subgroup. The corresponding factor group is isomorphic to the crystallo-
graphic point group Fs, which includes all the ""rotational" elements r e F,
which either leave k unchanged or map it onto an equivalent vector. The
group Fiis determined by the vector k and is a subgroup of the crystallo-
graphic point group F characterizing the crystal class, In the special case
k=0 we have Fy= F, and of course G: = G.

Let us partition the ecrystallographic point group F into its cosets relative
to the subgroup F:

F=Fa+{r:Fa} +{rsFa}+ ... -+ {r.Fs}, (12.13)

where ry, r3, ..., rmE F, but ra & Fa, r3 & Fa, {r2Fa}, etc.
Let k& be any vector which defines an irreducible star (& and construct
the vectors

b=k ky=rk ky=rk, ..., ky=r,k. (12.14)

These vectors also define the star of k. In fact, none of them are equal,
since it would follow from k; =k, that ri=r;r, reF,, i.e., rie {r,Fa}, contrary
to the basic properties of cosets. On the other hand, for any vector rirk,

re Fy, we have ritk=rk==F~,.

Since the cosets (12.13) exhaust the whole group F, the vectors r# also
yield all the ""points'' of the star {k}. If the little group Ga(k) is known for one
of the points of the star, we easily construct the little group for any k; in {k}.
This group Ga, (k) consists of all elements

h,=g.hgr!, (12.15)

where & Gs, g1 = (rila; +a), and r; is determined from (12.13). In fact,
hk,=ghgr 'k =Fk,.

Gs, (k) is isomorphic to Gs.

The number of points of the star, i.e., distinct vectors & (12.14) forming
the star {k}, equals the number of cosets (12.13), which is by definition the
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index of the subgroup Fs» in F. Thus, the order f of the group F, the order {
of the subgroup Fx and the number n of points in the star {§} satisfy the
relation

f=lin. (12.16)

If the little group coincides with the group G, the star consists of one point;
if G is the translation subgroup, the number of points in the star (&} is the
order of the group F.

We now show that any representation D" of the little group, also called a
little representation, uniquely determines a representation 2 of the space
group with irreducible star {k}. Let @"* be an m-dimensional representation
of the little group G, with basis functions

o oD L e, (12.17)
which transform under ke G, according to

ho) =X D (Mo (g t=1,2, ..., m), (12.18)

where @4 (h) are the matrix elements of D*.
Along with the functions (12.17) we construct another n—1 m -tuples of

functions
e, =W . WY =g W g=(r] )

(=23, ..., n). (12.19)

The element g; may be any representative of the coset {r.F,}. To fix the
choice of the basis functions (12.19) once and for all, we choose the elements
gi =(rila:) of (12.13) as representatives. The linear space spanned by the
functions

q:‘,::Eq:‘i“ (t=1,2...,mi=12,...,n)

forms the basis of a certain representation @ with irreducible star {&}.

Let us express the matrix elements of this representation in terms of
those of @"(h), he Ga». Take some element ge G, and suppose that g maps
k; onto a (generally different) vector k;:

gki=k;. (12.20)
Consider the element
h=gr'gg,, (12.21)

where g; and g; are the fixed elements chosen above, which map & onto &;
and k;, respectively:
gik=Fk;, gk=k,.

It is easy to see that h=Ga, since, by (12.21), hk= g;'gg.k=k. Apply g to
{?. by (12.19) and (12.18), we obtain
89 =g her'vp) = g ho = g, DD, () o9 = 2D}, (1) ). (12.22)

Here h depends on i and j, by (12.21). Equation (12.22) yields the matrix
elements of the representation 2 (g):

27 () = 2%, (2] 'ee,)- (12.23)
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In particular, by (12.23) the representations 2 (k) of the little group with
elements h; € Gs, as in (12.15) are related to the representations D(h)of Gs by

@ff(”a)=@:é["a)=@:q(£¢_"’a8:) (12.24)

or

D (ghg ") = D" ().

The representation D" to which the functions P, belong is usually not
equivalent to *; indeed the equality

D (g'gg,)=D* (g7 D* (@) D*(g.)

does not hold for arbitrary g, since the matrix 9" is defined only for ele-
ments he< G, and g and g; need not be elements of Gs.

Thus, equations (12.23) and (12.24) define a representation of the entire
space group in terms of irreducible representations D* of the little group.

If " is an irreducible representation, the corresponding representation
of the space group will also be irreducible. If D' isa unitary representa-
tion, the total representation 2 defined by equations (12.22) is also unitary.

The dimension N of an irreducible representation of the space group is
obviously the product of the dimension s, of the little representation D" and
the number of different points n in the star {&}:

N = san. (12.25)

In the general case of an arbitrary interior point of the Brillouin zone,
where the little group is the translation subgroup, the dimension of the re-
presentation of the space group is equal to the number of points, i.e., to the
order f of the crystallographic point group F.

To summarize: in order to determine the irreducible representations of
the space group, we need only find the irreducible representations of the
little group G». These representations are determined by specifying the
wave vector kB and the specific irreducible representation of Ga.

Representations of the Little Group G.

The infinite group G has an abelian invariant subgroup, viz. its transla-
tion subgroup, and the corresponding factor group is isomorphic to the point
group Fa.

Let us establish the connection between a representation D*(h) of the
little group and the representations of its factor group F.. As noted above,
every element k< G» has the form

h=(rla+a)=(r|B), BP=a+gq,

where a is translation by the period of the Bravais lattice, r a "'rotational"
element, r = Fa, and a the nonprimitive translation vector corresponding to
the rotational element r, With each little representation 2* (k) we associate
a matrix D(r):

D (ry=¢ei*D*(h), h=(r|p), B=a+a. (12.26)
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Although each rotational element r corresponds to an infinite number of ele-
ments h in the group G., differing by primitive translations, the matrix 2D (r)
in (12.26) depends only on the rotational element r, since for any little re-

presentation 2*, by (12.10),
D* (htg) = e—i*a Pk (h). (12.27)

We now establish a multiplication rule for the matrices 2D (r). Let

h=(r1B), Bi=a,+ea, h=(r;|B), Br=a,+a.

and
D(r)=e*D*(h), D(ry)=e"*2D*(hy).

Consider the product

D (r1) D (ry) = e'* ®te2 D (7).

By (2.22a),
hihy=(ry 1B)) (ry 1B) = (rir2 | By + r\BY),

and so

y(f!lhz)_—_e-il(lﬂ-hlﬂﬂ{rlrzj-
Consequently,

D(r) D (ry=w(r, r2) D (rira), (12.28)
where

i (h=ry'0)a iba
@(ry, r))=e P 2=, (12.29)

Since b, =#k—r 'k is a reciprocal lattice vector or zero, it follows that
ety =1 .

The appearance of the factor w(ri, r;) in the multiplication law (12.28) shows
that the matrices 2 (r) do not form a representation of the group F. in the
usual sense, and therefore the representations H*(4) of the little group
generally do not define an ordinary representation of the point group Fa.
However, if w(r,rz)=1 for all r|, r,e Fa, then, as follows from (12.28), the
matrices 2 (r) define a representation of Fs, and then equations (12.26) at
once determine a representation 2*of the little group, given a representa-
tion ofthe pointgroup. This occurs, inparticular, intwo very important cases:

1) the point k is inside the Brillouin zone, when k—r'k =0 for all r;

2) the little group Gs does not containnontrivial screw axes and glide planes.

If there are nontrivial screw axes or glide planes in the little group and &
lies on the boundary of the Brillouin zone, the representations of the little
group cannot be determined unless we construct matrices & (r) satisfying
(12.28). The following section is devoted to this question.

§13. PROJECTIVE REPRESENTATIONS

A representation such that
D) D(r)=ow(r, r) D(rra), where |olr, r)l=1, (13.1)
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is called a projective representation or ray representation belonging to the
factor system a(ry, r2).*

Projective representations play an important role in applications of group
theory to quantum mechanics.

A factor system is specified by #£2 coefficients w(r,r;), where £ is the
order of the point group . These coefficients cannot be arbitrary, since
the associative law of group multiplication ri(ryrs) = (rirz)r; and equation (13.1)
imply that

D)D) D (r) =D (r) D (rorx) 0 (ry, r3) =

=D (rirar)alry, rars)o(ry, r)=2D(rirr) o (rr, rdolr, r),

whence it follows that the factor system a(r,, r,) must satisfy the following
identities for any r,, ro, ry:

@ (ry, rors) @ (ry, ra) = (ryro ra) @ (ry, ro. (13.2)

It can be shown that conditions (13.2) are not only necessary but also suf-
ficient: any set of numbers w(ry, r;) satisfying (13.2) may be a factor system
for the group,

However, conditions (13.2) do not define a factor system uniquely. In
fact, if PD(r) is a projective representation belonging to the factor system
w(ry, rz), then any other representation

2= 200, (13.3)

where u(r) is an arbitrary single-valued function on the group &, |u(r)|=1,
also defines a projective representation of the group &, but with a different
factor system o’(r, r3):

2’(r1)ﬂ’(rﬁ=w'{r|. f:)y(rlrz)s (13'4)

where
@ (ry, ra) u(ryry)

o (e ) =y a )

It is easy to prove that the new factor system w’(ry, r;) also satisfies relations
(13.2).

Thus, given any factor system, we can use (13.4) to obtain infinitely many
new factor systems, corresponding to different choices of the function u(r).
Factor systems and representations satisfying (13.2) are said to be projec-
tively equivalent or p-equivalent. The set of all p-equivalent factor systems
is called a class of factor systems.

Note that two different p-equivalent representations may belong to the
same factor system. For this to occur it is necessary that u(r))u(r;) = u(rira),
i.e,, the function u(r)defines some (ordinary) one-dimensional representa-
tion of the group ¥. In the general case, p-equivalent factor systems do not
coincide. However, conditions (13.4) do not exhaust all possible factor sys-
tems for the group ¥, since there may exist factor systems which cannot be

* Projective representations were first introduced by Schur, who developed a general theory of projective repre-
sentations and worked out methods for constructing projective representations of finite groups /4.1/. The con-
nection between projective representations and representations of space groups was demonstrated by Kovalev
and Lyubarskii, Lyubarskii /1.3/ uses the terms loaded representation and load for projective representation
and factor system w(ry, r2), respectively.
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reduced to one another by transformation (13.4), i.e., the group may have
several classes of factor systems.
Thus, if e(r,r;) and «’(r), r;) are two factor systems such that for some

pair of commuting elements a and b

@’ (a, b) w@(a, b)
Tba) " eba)’

these factor systems belong to different classes, since the transformation
(13.4) leaves the quotient w(a, b)/w(b, a) unchanged when a and b commute.
As the results of $14 will show, the converse is also true for all point

groups: if
(s b) __ ol(ab)
@' (b,a)  w(ba)’

for every pair of commuting elements a and &, then the factor systems o
and o’ are p-equivalent., In particular, any factor system such that w(a, b) =
= w(b,a)is p-equivalent to the identity factor system, o(r,r)=1.

If we have the projective representations @ (r) belonging to one factor-
system w(r, r:;), we can use (13.3) to find the projective representations
belonging to all other factor systems w’(ri, r;) of the same class. It is there-
fore sufficient to find the projective representations for one factor system in
each class. Although the total number of possible factor systems is infinite,
it can be shown that for a finite group the number of classes of factor sys-
tems is finite /1.5, 4.1/.

For every group there is a class K, containing a factor system all of
whose coefficients are equal to unity, e(r.rn)=1. By (13.4), this class also
contains any other factor system for which

I u{;l{){:‘ri;:} .

The class Ko with @(r;,r2)= 1 corresponds to the usual representations of
the group %, which in this context are called vector representations. The
other representations of the class Ko with w(r,r2) 5 1 are projectively equiv-
alent to vector representations.

Suppose there are m classes of factor systems Ko, Ky, ..., Km-1 for some
group &, Consider two classes K, and K, with factor systems w?(r,r,) and
w?(ry, rz) and construct the factor system

ok (ry, r)) =a”(r), r) " (ry, ra),

which is a factor system of some classes Krg. The class Kz containing
wk(ry, r2) is fully determined by the classes K, and K; containing the factor
systems P and w9, since it follows from (13.4) that the product of factor
systems p-equivalent to e? and 7 is again a factor system p-equivalent to
o®, Thus we can define multiplication of classes by

K,Q:Kpf(,r
The set of classes Ko, Ki, ..., Ku— forms a group with respect to this multi-
plication, with the class K, serving as the identity element. This group is
abelian, since the definition of multiplication implies KK, = K.Kp. It is
called the multiplicator of the group . The order of the multiplicator is

equal to the number of classes of factor systems. If the multiplicator of a
group consists only of the single element K,, the group may have only vector
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representations. The number of classes of factor systems and the structure
of the multiplicator are determined by the structure of the group %.

We now consider the properties of projective representations. We first
note that, as in the case of vector representations, the matrices 2 of pro-
jective representations of finite groups may always be chosen as unitary.

Two projective representations D(r) and D’ (r) are said to be equivalent if
there exists a unitary matrix 8§ such that for all re %

DiN=8D' (8. (13.5)

In order to distinguish between p-equivalent representations (13.3) and
equivalent representations (13.5), we shall call the latter unitarily equivalent.
Unitarily equivalent representations belong to the same factor system,

since
D) D (r) =S D(r) D (r) S=w(ry, r)) D’ (ryr2). (13.8)

We saw above that p-equivalent representations may belong to the same
factor system in a special case, but such projective representations are
generally not unitarily equivalent.

A projective representation % is said to be irreducible if there exists a
matrix 8§ such that for all representation matrices 2 (r) the equivalent
matrix D‘(r) (see (13.5)) decomposes into invariant submatrices of lower
order.

An essential feature of projective representations is that if a group ¥ has
seveéral classes of factor systems, then only the class Ko may correspond to
one-dimensional representations (e.g., the identity representation) and there
will be no one-dimensional representations for classes K, s K,. To prove
this, suppose that Do(r) is a one-dimensional representation,

Dy (r1) Do (ra) = 0 (ry, ra) Dy(rira), (13.7)

belonging to a factor system w?(r,, r;) in the class K;. Letting u(r) be the re-
presentation @Dy(r) itself, we see from (13.4) and (13.7) that the factor system
wP(r,r;) is p-equivalent to the factor system w'Pir,r2)=1, i.e., w?(r,r) is in
the class Ko. Thus classes K, #= K; cannot correspond to one-dimensional
representations.

The number of classes of factor systems and the structure of the multi-
plicator depend on the properties of the group ¥. Schur /4.1/ described a
general method to construct all projective representations of a finite group,
reducing the problem to finding the vector (usual) representations of a cer-
tain expanded group . To construct the group ¥'we must first find the
multiplicator of the group .

Let & be defined by generators a, b,¢,..., satisfying the v relations

ahiblicPi L =e  (i=1,2,..., V), (13.8)

where n., l;, p; are integers. Let A=2(a), B=2D(b).C= D (c), etc., be the
matrices of an irreducible representation D of ¥ for the generators
ab.c...

If & is a vector representation of %, the matrices 4, B, C, ... satisfy
the same relations as the generators:

AMBYCh ... =1 (i=1,2 ..., v. (13.9)
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In the case of projective representations, however, we have additional
numerical factors a@i(|ai|=1), determined by the coefficients of the factor
system, and conditions (13.9) become*

o, A" BC" .., =I, (13.10)

where
of ' ={o(a", b .. )b ¢ ...) ...} Qan@b,0cp, + - s (13.11)
©an, = (a, @) @ (a, a?) o(a, a™7"), (13.12)

o, = (b, b) (b, b) ... @(b, b")

and so on. Going over to the p-equivalent representations

r__A r__B __¢ 13.13
'l_u(al' B_u(a)' c'_u{c]""‘ ( )
we obtain
a:Am‘Bd‘C’p‘ ---=l| (13_14)
where
o) =au™(@u(b)u"t(c) ... (13.15)
If a suitable choice of the functions u(a). u(b) u(c), ... will reduce (13.14)

to (13.9), i.e., make all the af equal to unity, the projective representations
of & are equivalent to its vector representations. In the general case, how-
ever, the coefficients a cannot all be normalized to unity by any choice of
the functions u#, so that (13.14) will always involve a certain minimal number
of independent coefficients af{. Let this number be v"<v. In the sequel we
shall assume that conditions (13.14) contain only such independent param-
eters «ai.

Conditions (13.14) yield equations for the possible values of the coeffi-
cients «i;. By varying the functions u(a), u(b), u(c), ... we can simplify these
equations. As we shall see from the results of §14, for all 32 point groups
appearing in the space groups these equations may be expressed in the form

al=1  (i=1 2, ..., v) (13.16)

Equations (13.16) yield all possible p-inequivalent values for the coeffi-
cients «f, including, of course, the values o{=1 for vector representations.
Each set of solutions e« of equations (13.16) defines a class of factor sys-
tems, since it follows from the definition of «f that all p-equivalent factor
systems are characterized by the same set of values ;. In the case of the
point groups, for which ai=+ 1, the number of classes (order of the multi-
plicator) is 2V.

If two solutions af (1) and af (2) correspond to classes of factor systems
Ky and K, the solution of (3) =uai(l)«af(2) corresponds to the class K: = KKz,
Setting up all possible products of admissible solutions e/, we obtain the
multiplication law for classes of factor systems, inother words, the structure

* From now on we shall assume that w(e, ) = 1 for every factor system, This can always be achieved by putting
u(e)= w(ee), for B(e)=1I. Itis clear from (12,29) that for space groups the condition w(e,e)= 1 is fulfilled
identically, as follows from the definition of a factor system, This condition and identity (13,2) imply that
w(e,r)= w(r,e)=1 for all . For space groups this also follows from (12,29).
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of the multiplicator. Note that the admissible solutions «; form a represen-
tation of the multiplicator. This method will be used in §14 to construct
multiplicators for all the 32 crystallographic point groups.

We shall now view the ai not as numerical coefficients but as abstract
elements «; which commute with each other and satisfy the equations

al=ce, a0, =aa (i, j=1, 2, ..., %) (13.17)

Conditions (13.17) define a group H with generators «;. This group
contains 2 elements A4 of the form

h= ot =0, I). 13.18
t—l.;l:-!...\t'a‘ (P‘ ) ( ]
The group H whose elements are h,=e, h,, ..., h, (m =2") is isomorphic to
the multiplicator,

Now let ¥ be a group on generators a, b, ¢, ..., a;, defined by relations

analogous to (13.14). The generators o of the group # commute with all
elements of the group ¥. Thus %' is defined by the relations
aa"bici=e, ai=e, am;=aa, bu,—wupb, (13.19)
Cay=a,C, ..., G0 =00
Each element g’ of & has the form g’ = kr, where he H, re%. If two ele-
ments r, and r, have a product r; in the group G, rir; = r;, their product in
the group & will generally involve in addition an element 4 of H, depending
on the elements r; and r;, and denoted by hia:

ryra==hyyrs (13.20)

H is the center of $’, since by the construction of & all its elements com-
mute with the elements of H. Partition %’ into its cosets §; relative to the
subgroup H:*

So={H}, S,={rH}, S,=[rH),.... S;={rH), (13.21)

where r;€¥. The factor group by H, i.e., the group with elements S,, S,
..., 84, is isomorphic to .

Indeed, we establish a one—one correspondence between the elements S;
of the factor group and the elements r; of ¥ in the following manner:

Sye>rs. (13.22)

Then, if S;«—+r; and S;«= r;, we have S;5; « ri;, since the product S;S; is
the set of all possible elements r;r;h, i.e., the set {r;r;H}, to which corre-
sponds the element rir;. It follows that %’ is homomorphic to %, and the
kernel of the homomorphism, the subgroup #, is isomorphic to the
multiplicator.

The resulting group ¥ of order m# is called the representation group of
¥. We shall now show that all projective representations of ¥ may be obtain-
ed from vector representations of ¥’.

Let Py be any vector representation of . Let r,, n=%. Their product
in &, as noted above, generally involves an element h,=H (13.20). Since
Dy is a vector representation, it follows from (13.20) that

Dy (r) Dy (r) = Dy (hory) = Dy () D (r). (13.23)

* [The center of a group is always an invariant subgroup. — Trans. editor.]
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Since h;; commutes with all elements of %, D,(k) commutes with all
matrices Du(g’), g =% . Thus, by Schur's first lemma (equation (8.1a)),
Dyu(hiz) is a multiple of the identity matrix,

D, (hyp) = ol (13.24)

and (13.23) becomes
9;! (r) Dy (ry) = Qu (ra) =% D, (r,ry). (13.25)

Now consider the set of matrices D.(r) for elements r& ¥ only. These
matrices satisfy the multiplication law (13.25), so they define a projective
representation of & in which the numbers wf, of (13.24) serve as the factor
system w(r, ;). The defining relations for %’ (13.19) imply similar relations
for the matrix elements of the representation D,(r):

D, (a) Dy (") D, (6") D, (c™) ... = ai* (D, (@) (D, ) (D, )t ... =I, (13.26)

since by (13.24) we have @, (o)=¢/"l, where a* is a number ((e*¥=1). Con-
ditions (13 26) are precisely conditions (13.14) for the matrix elements of
projective representations. Therefore, every projective representation thus
obtained belongs to some class of factor systems for the group 3.

We claim that the set of all irreducible representations &, of the group ¥
yields projective representations belonging to all classes of factor systems.

Indeed, any irreducible representation &, of %’ clearly defines a certain
(generally reducible) representation of its abelian subgroup H, and the num-
bers " of (13.24) define irreducible representations of H. Since the set of
all irreducible representations 2, yields all the irreducible representations
of H, the values of the coefficients o and, in particular, the values of the
coefficients af, exhaust all possible values of the matrix elements of
representations of H. Since the generators a; of H satisfy equations
(13.17), the set of all values of PDy(e;) coincides with the set of all solutions
of equations (13.16): thus these are precisely all possible values of the coef-
ficients in (13.14), which determine the class of factor systems. Thus the
projective representations obtained from a full set of representations of %’
include representations belonging to all the classes of factor systems for
the group 9.

As noted above, for space groups we have ai= 11, and by (13.18) the
possible values of o2 are also +1. Consequently, for space groups eachclass
contains a factor system all of whose coefficients w(r, r;) are equal to +1.

It is easy to see that if two representations @, of the representation group
% are irreducible and inequivalent, then the corresponding projective re-
presentations are also irreducible and (unitarily) inequivalent. The con-
verse is also true; given any irreducible projective representation of the
group %, we can construct an irreducible vector representation of the group
%’. Thus the full set of inequivalent irreducible representations of the
representation group ¥’ yields all unitarily inequivalent irreducible pro-
jective representations of the group %, belonging to all possible classes of
factor systems.

Thus determination of all irreducible projective representations of a
finite group ¥ reduces to the problem of finding the usual representations
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of the representation group ¥. The solution of the latter problem is known
in principle, though in general it is quite laborious.*

We now consider the orthogonality relations for projective representa-
tions belonging to one factor system; these will follow from the orthogonality
relations for representations of .

Any irreducible representations #, and 2, of &’ satisfy the orthogonality
relation (8.10):

Y a2 (&)= ’:—f LN (13.27)
gey

where n, is the dimension of the representation @,. Each element of % has
the form g’ — kr, so that instead of summing over g’=%’ in (13.27) we can
sum over re % and A= H. We then obtain from (13.27)

S Dal(d)D¥ (e)= X ohat 3 Dh(n) DI (1), (13.28)
ger he H rey

where of is defined by (13.23), (13.24).
The representations 2, and 2, may lead to either identical or different
factor systems. Let p and p’ be representations which lead to the same

factor system; then

Zapop =Z|asf=m,

and (13,28) yields an orthogonality relation for projective representations
belonging to the factor system in question:

E D (1) Dt (r) =%6u6n'5m.'- (13.29)

which is reminiscent of the corresponding orthogonality condition for vector
representations. In (13.29) the indices p and p’ denote distinct irreducible
projective representations belonging to the same factor system. If p and p’
are such that @, and 2, define projective representations belonging to dif-
ferent factor systems, we have from (8.10) that

}nlmgm;,u'=o. (13.30)

since o and «} form different one-dimensional representations of the group
H, and in this case (13.29) holds identically.

In order to obtain the second orthogonality relation for the projective re-
presentations, we use the relations (8.14) for representations of %, for

elements g/ and g;:

21,2 (2) it (g5) = mAs .

* If the functions u(a) in (13.15) are not optimally chosen, so that the number of elements of the group # de-
fined by relations (13.17) exceeds the number of elements of the multiplicator, the group " defined by rela-
tions (13,19) will also have a larger number of elements than the representation group, Clearly, every vector
representation of the group ¥, which is known as the covering group of ¥, also determines projective repre-
sentations of &, However, if the covering group does not coincide with the representation group, some of these
representations will be piojectively equivalent,
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Set g{=hr, and g;=r,, where r, r,e% hsH. Then

Z-: Dl (rih) DY (ra) = E nuok Dy (r1) DY (r)=m# dpedy r,. (13.31)
By

Multiplying both sides of (13.31) by «j* and summing over he H, we obtain
> hzﬁm: o ‘E‘n,.@’;‘; (r) Dyt (r) = mhd, .02 =mhd,,., (13.32)

M
since it follows from (13.23) and (13.24) that w¥=1. Since o and o} define
a certain irreducible representation of the group #, it follows via (13.30)
that the sum

% @I
aezn AR

fails to vanish only if the representations o and o} of H induced by the
representation " and 2" of 9 are unitarily equivalent, i.e., if o} and oy
form the same factor system. If this is so,

aguml':mr =m
On the left of (13.31), therefore, we need only sum over representations u
belonging to the same factor system as p’ and (13.32) yields the second
orthogonality relation for projective representations belonging to the same
factor system:

Z mDi () Dif (r) = Adyr, (13.33)

It follows from the first orthogonality relation (13.29) for projective re-
presentations that the vectors @Y, Yn,/& form an orthonormal system in the
#-dimensional space spanned by the elements of the group ¥. Since the

number Znﬁ of these vectors is at most the dimension 4 of the space, wehave
[

2 <4
m

On the other hand, the second orthogonality relation (13.33) implies that the
vectors @i (r) Vnuh, r=%, with components p, j, | form an orthonormal sys-
tem in a space of dimension Zn';‘l; hence the inequality

TS

&égnﬁ.

Consequently, Burnside's theorem is also valid for projective representa-
tions belonging to the same factor system:

2n2=4. (13.34)
"

The character of a projective representation 3, is defined as in the case of
vector representations as the trace of the matrices of Dy:

xptr)=Tr$,{r)=.‘§‘.@5(r). (13.35)

and is the same for all unitarily equivalent representations.
The orthogonality relations for projective representations imply an ortho-
gonality condition for the characters of irreducible projective representations:
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B0, 0 () =48, (13.36)

Relations (13,36) enable us to decompose any reducible projective represen-
tation into irreducible representations belonging to the same factor system
as the original one:

9=§a,,9,., (13.37)

where, as in (8.19), the coefficients a, are given by

ay = A% 0), (13.38)

and g(r) is the character of the representation @.

The characters of projective representations are not functions of the con-
jugate classes of the group %. They are indeed functions of conjugate classes
in the group &, but the distribution of elements over classes in the groups
% and ¥ is generally different, for elements which are conjugates in ¥ need
not be conjugates in ¥’

It is easy to show directly that

1{’1’2'Tl)= w[rfll r|) -|) 1(—',) (13.39)

o(ry rori e (rg r

and in the general case X(r/,7') # %(r,). Thus the second orthogonality rela-
tion (8.23) fails to hold for projective representations, and the number of
projective representations for all classes of factor systems other than K, is
less than the number of conjugate classes in ¥.

We note one property of the characters of projective representations. If
the factor system is not symmetric for some pair of commuting elements r|,

ne¥, ie,, % =a% 1, riro = rer;, then the characters of these elements

in all p-equivalent representations vanish:
% (r) =%(r) =0.

Indeed, it follows from the condition D(r) D (ry) =aD (r) D(r,) that
D) D(r) D(r) =aD(r), whence (a— 1)x(r)=0, and if a1 we have x(r)=0.
The proof that y%(r))=0 is similar.

Consider the product of two projective representations @ = 2, X D,
belonging to factor systems @P(ri, r2), ©¥(r, re) in classes K, and K,, respec-
tively. The product of the representations belongs to the factor system
wP(ry, rg), the product of the original factor systems:

@R (ry, rd =@ (ry, r)) @ (ry, ros (13.40)

this factor system is in the class Kz = KyK;. A product of irreducible pro-
jective representations is in general reducible and may be decomposed as
in (13.37) and (13.38) into irreducible representations belonging to class Kg.
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§14. PROJECTIVE REPRESENTATIONS
OF POINT GROUPS

In §12 we showed that determination of the irreducible representations of
a space group G which have an irreducible star {k} reduces to finding the
projective representations of point group Fe which is a subgroup of the little
group Gx. The group Fr may be any subgroup of the crystallographic point
group F characterizing the crystal class of the crystal lattice. The totality
of all subgroups of the 32 crystallographic point groups consists of the
32 groups themselves; thus, in order to find the irreducible representations
of all 230 space groups all we need to know is the projective representations
of the 32 point groups described in §6.

To determine the classes of factor systems and the projective represen-
tations of the point groups we use the method of the preceding section.

We first consider cyclic groups of order n, i.e. groups with one gener-
ator a and defining relation

a =e. (14.1)

Let 2(a)=A be the matrix of an irreducible projective representation
corresponding to the element a. Then, by (14.1) and (13.11),

A" = a,,l, (14.2)
where
Wan=a(a, a)w(a, @ ... o(a, a™). (14.3)
Set
A=D(@=o"A (14.4)
Then (14.2) becomes
A" =] (14.5)

Hence all the projective representations of cyclic groups are p-equivalent to
vector representations. The multiplicator of a eyclic group consists of one
element, the class Kq,. Since all vector representation of cyclic groups are
one-dimensional,. all projective representations of cyclic groups are also
one-dimensional.

It is easy to see that the function u(a*) convertinga factor system w(a*, a?)
into the identity factor system via (13.4) has the form

k O
uah == (14.6)

The matrices P (a*) are then related to the matrices @ (") =(P’ (a)*=4",
which define vector representations of cyclic groups, by (13.3):

D) = A" u(a. (14.7)
Indeed, it follows from (13.4) and (14.6) that

P __ul@**No(ah)
o’ (a, a*)——*—“a)u(a,) =1

Hence &' (@)= (&) (@*")= ... =D" (@). This means that o’(a*, a”)= 1 for

all £ and p.
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Of the 32 point groups cited in §6, ten groups, e, Sz, Cy Cy, Sy, Cy, Cs, S5, Cs, Con,
are cyclic; therefore, whenever the crystallographic point group is one of
these, (14.7) defines all the projective representations belonging to the fac-
tor system in question.

Now congider a group with two commuting generators a and b of order
n and m, respectively, and defining relations

a"=e, b"=e, ab=ba. (14.8)

Examples of these groups are the groups Cn (@ =¢,, b =0y, m = 2).
Let A’ =% (a) and B’= P (b) be matrices of a projective representation for
the elements a and b; by (13.14) and (14.8),

A"=0,l, B"=o,,I, AB =BAq, (14.9)
o= (14.10)

We set A=qa /" A’ and B=q;li"B’; then, by (14.9),
A"=I, B"=I, AB—=BAa. (14.11)

To determine the possible values of the constant «, multiply both sides of the
last equality by A; using the commutation relation (14.11) for A and B, we
obtain A4?B = «?BA?. Repeating this procedure n times and remembering that
Ar =1, we obtain

a"=1. (14.12)

Multiplying (14.11) by B m times, we see similarly that
a"=1. (14.13)

Let d be the greatest common divisor of n and m; then equations (14.12) and
(14.13) may be combined:

al=1. (14.14)

If n and m are relatively prime, then d =1 and «a =1. Hence it follows that
for the groups Cmy with odd n all projective representations are p-equivalent
to vector representations. This also follows from the fact that, as shown in
§3, these groups are cyclic with generator a = copi.

When n is even, i.e., for the point groups Cip, 1(Can, Cw, Cey), We have
d = 2 and therefore, by (14.14),

a?=1, i.e., a==x1. (14.15)

For these groups, then, there are two classes of factor systems, K, and K,
corresponding to a=1and a=-—1. The class K,, as usual, corresponds to
the vector representations. Since the groups (14.8) are abelian, all their
vector representations are one-dimensional, and consequently so are the
projective representations belonging to class K.. The matrices A’and B’ of
a representation belonging to class K;(« =-—1) anticommute, and therefore
none of the projective representations of class K, is one-dimensional. This
agrees with the general theory of §13.

In order to construct the representation group with defining relations
(13.19),we adjoin to the elementsa and & a new second order element a
which commutes with a and b. By (13.19), (14.11), (14.15) the representa-
tion group is defined by the relations
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a"=e, b"=e, a’=e, ab=uaba, ab=0ba, aa=aqaa. (14.16)

Using (13.24) and (14.16), we easily obtain the factor system o’(a*, 67) for the
projective representations of the group (14.8) induced by vector representa-
tions of the group (14.16). If r, = a*”, r,= d"b”, then, using (14.16), we
obtain

KP K ot ¥

r]r2=a*b'°a’b"-u i.e., hm::u "

and (13.20) and (13.25) imply that
o (a"®, a*¥b") = o*", where a==x1. (14.17)

Below we shall obtain all the unitarily inequivalent projective represen-
tations of the group (14.8) that belong to the factor system (14.17).

Certain questions arise in practical applications: how can we classify a
given factor system as belonging to a particular class according to its form?
How should we choose the functions u in order to convert a given factor
system via (13.4) to the standard form (14.17) corresponding to its class?

The answer to the first question is given by equation (14.10). If x::’ ii =1
for a given factor system, it belongs to class K,; if %—% =-—1, it belongs
to class K.

We define u(a%") by

Tnpy P ¢ u (a%) u(bP)
uab)—u(bﬂ)=W' (14.18)
where u(a9) and u(br) are defined as in (14.6):
In oim
L) p— w:n Py = Dpm
u(a) ol u (b%) et (14.19)

Substituting (14.18) into (13.4), we obtain e’(a* b?) =1, whence

R . Y (a®p? kP 2] ] L3 4
o (a*6®, a*b”) = ”;, &,L?,;E::) ) =2 ﬁk‘gk,:i:zajﬂ(ﬂ @) _ gov, (14.20)
i.e., o’ is indeed the standard factor system (14.17).

Thus, if all the unitarily inequivalent irreducible representations that
belong to the factor system (14.17) are known, we can construct all the irre-
ducible representations for an arbitrary factor system by (13.3) and (14.18),
(14.19).

Since in all groups the class K, corresponds to the usual representations,
we shall confine ourselves below to projective representations belonging to
the other classes of factor systems.

Since the groups Cj, and D; are isomorphic to Cs, the results obtained for
Cy are also applicable to the former groups. By Burnside's theorem, the
class K; for the four-group Ca corresponds to one two-dimensional repre-
sentation. Since the matrices A and B anticommute when « =—1, and A4? =
= B? = I, they may be chosen as any two of the three Pauli matrices ox, 6, 0:.
The representation matrices for the group Cy are shown in Table 14.2 at the
end of the section.

The representation for an arbitrary element a%? of the group Cn is

3 (B‘b’) p— $ (b’a'} = A'B" = uprpAﬂ' ( 14.21 ]
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By (13.4) the matrices of a representation of the group Cas belonging to a
given factor system o(r, ry) are

D (a°b®) = u(a"b") A'B?, (14.22)

where u(a*b?) is defined by (14.18) and (14.19).

There are eight elements in the group Cy; therefore, by Burnside's
theorem (13.34), it has two two-dimensional representations, belonging to
class K.

For one of these representations, we can take the matrices of the repre-
sentation of the group Cs; as the matrices.

To find the matrices of the second irreducible representation of Cy in
elass K,, we make the following observation. If instead of the matrix A4 for
Cnn we consider A" =eld (en =€ g=0,1,2,...,n—1), the matrices A" will
also satisfy relations (14.11). In the general case, however, not all the
matrices ef4 and A are unitarily nonequivalent. Indeed, the matrices A and
elA are unitarily inequivalent for ¢=1, 2, ..., (n/2) —1 and even n, since
otherwise there would exist a matrix § such that SAS™'=elA. Squaring this
equality and remembering that A2=1, we see that e2?=1, but this contradicts
the choice of g<nf2. Each of the remaining matrices Asf (g=n/2, ..., n —1)
is unitarily equivalent to one of the matrices AeJ ( 4=0,1,..., (n/2)—1). Thus,
for example, A is unitarily equivalent to the matrix — A= A4et’?, as can be
checked directly by setting 8§ = g,.

Thus the other unitarily inequivalent representation of the group Cq
in class K, may be obtained by multiplying the matrices A of the representa-
tion of the group Cam by es=i.

There are twelve elements in the group Ce, so by Burnside's theorem
there are three two-dimensional representations in class K,; these are
presented in Table 14.2 at the end of the section.

Group D,. The groups D, and the isomorphic groups C,, are also
defined by two generators: a=r¢,: b = u, for D,, b =g, for C,,. The defining
relations (3.4) are:

a"=e, b*=e, ba=a""'b.

Let
D(a) 1)
P o2 (6, b) .

an

A =

Then the matrices A’ and B’ satisfy the relations

A"=I, B'=I] BA=dA"'P, (14.23)
where
o =2 do(aa) (14.24)

0" o (a7, b)
In order to determine the possible values of the constant a’, multiply the last
equation in (14.23) by A’ and use (14.23); this gives
BA? =o' 42" g
Repeating this procedure n times, we find that
=1, (14.25)
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=€  (m=0,1,2 ..., n—1) (14.26)

However, not all the possible values of &’ in (14.26) correspond to differ-
ent classes of factor systems. Indeed, set A= Aesd, where ¢ is some
integer., With this choice of the matrices 4, they again satisfy relations
(14.23), with « replaced by

-20 o/ = gm=~24
= !Pl a Sn .

If nis odd, n=2p+ 1, we can always choose ¢ so that e« =1. Indeed, if
mis even, a= 1 for ¢=m/2, and if mis odd, e=1 for ¢= (m—n)/2, There-
fore, when n is odd there is only one class, Ky, and all representations are
p-equivalent to vector representations. In particular, all the projective
representations of D;and Cs are p-equivalent to vector representations.

For even n, there are two classes, K, and K;. Indeed, if m in (14.26) is
even, the choice of ¢=m/2 gives a =1 and the factor system is p-equivalent
to the identity factor system, thus belonging to class Kq. If m is odd, no
choice of ¢ will make a equal to 1, and in this case the factor system is in
class Ki. Consequently, all factor systems with odd m=1,3,...,n—1 are
equivalent to each other and p-equivalent to the factor system with a = e,.

Thus, the groups D, with even n have two possible classes of factor
systems, K, and K. It is easily verified that multiplication of classes satis-
fies the relations

Ki=Ko KoKi=Ki Ki=Ko.
To construct the representation group, we distinguish two possibilities

for even n: a) n/2 is odd, b) n/2 is even.
If n/2 is odd, we can always make « = 11 by appropriate choice of 4. In

fact, if m isevenweget a=1 for g=m/2. If m is odd, the choice q=-=(m +-%)12,

gives e=eM?=—1. Therefore, if n/2 is odd, « takes the values +1, corre-
sponding to classes K, and K.

Viewing « now as a new second order element, a?=¢, we can construct
the representation group for the groups D» in the case of odd n/2 using the
results of the preceding section. The representation group is defined by

the relations
a"=e, b*=e, a®=e, ba=qa""'b, aa=aga, ab=ba. (14.27)

It is easy to see that any factor system for the group (14.27) has the form
o (a*®, a"b™) = o™, (14.28)

where a« =+1. Here p,pp=0, 1; & k=0,1,...,n— 1,
If n/2 is even and m is odd, we cannot make a' equal +1 by any choice of
g without altering relations (14.23). Set

A =eptmA =+ ia’'"A, (14.29)

where m is determined from (14.26). Then the third relation of (14.23)
becomes

BA— a'A("_”Bg;:—“ (m+%)--:——m — A" 'B.
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With this choice of A, however, the first relation of (14.23) is changed:
A =(—=1)"" = (—1) " I =al,

where a =11, depending on the parity of m. Therefore, in the case of even
n/2 relations (14.23) for the matrices A(14.29) and B become

A"=ql, B=I, BA=A""'B; (14.30)
here a =1 for the class Ko and « = —1 for the class K,. Using (14.30), we
readily construct the representation group for groups D, with even n/2. It
is defined by the relations

a"=a, b=e, ba=a""'h, aa=aa, ba=uab, a’=e. (14.31)

The group (14.31) leads to the factor system

l k+l'u—2p+onl]
" "’

o (@*6", a¥6") =dl (14.32)

where [l/n] denotes the integral part of U/n.

In §13 we noted that if

2—:%:7‘; # 1 for some pair of commuting elements r,
and r,, the factor system o cannot belong to class K,. In groups D, with
even n, the two mutually perpendicular twofold axes ¢ =a"? and wp =5
commute:

a™?h = pan2.

Hence the matrices of the projective representation 2 (a"?) and 2 (b) satisfy
the relation

As for the group C,,, this readily implies

n,
%‘;.—?)—=i 1. (14.32a)
Moreover, if this quotient is +1, the factor system belongs to class Ko; if it
is —1, the factor system belongs to class K.

In fact, as shown in §13, the quotient (14.32a) is the same for all
o’ (5, a"?)
o’ (a2 b) *
dard factor system. Our assertion may now be proved directly from (14.28)
or (14,32) for the standard factor system. Therefore, the value of the
quotient (14.32a) is a convenient criterion for classification of a given
factor system.

For any group D, with even n, there exists a single-valued function
u(a*b?) (=0, 1, ..., n—1; p=0, 1), defined on the elements a*y? of D,, which
converts any given factor system (a"t", a*b") to standard form (14.28) or
(14.32):

p-equivalent factor systems and thus equals where o’is the stan-

u (a*) u (57) whin

k —_ 'an
u(a*b®) = e u(a®)= o e, u(bP)=ar2(b, b). (14.33)

For even m, s=a’m=ef”. For odd m, e=+£q"‘""= iemi2,
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For example, let us show that if both m and n/2 are even, then
k+k
a(a¥, a*}u(afﬂ'} =a[—;—|.
u(a*) u(a®)
We first note that although &, # <n—1, their sum k4 k' may exceed n. Let

*-:;k']ﬂ:

@’ [ak', al) p—

{k + k'} denote the difference between k4 k& and [

k+k’={k+k’}+[¥]n.

Since u is a single-valued function on the group, u(a*+¥)=u(a®+*1). Therefore,
(h+4)

Koh) Gl o [aER ] [ kAR ]
o oy = 2D ooy a[HE] L[] ey
’ k+k an ’ ® .
e Of (k+4) a (k417

e ()

But

@_[E’}t] n 053050 (a¥, a¥) _ m-[-ﬂ,}‘i] 7 DY (@) D (a) D(®+W)
an D (h+k) an 2(a¥) 2 (a*) Pr+¥I(g)

=m;[¥] " 3'1*:1] " (@ =1,

o (a¥, a*) =

because D"(@)=o0,l. Since e’ =(—1)"=a, we have

o(a", a¥)=al = 1,
which coincides with (14.32) for p=p =0,

One proves similarly that u(a*b?) (14.33) converts any factor system to
the form (14.32) for p, p’'+ 0.

Consider the projective representations of the groups D, and D;that
belong to the factor systems (14.32) and (14.28). Since Cy, Dy are isomor-
phic to Dy, while Cey, Ds, D3y are isomorphic to D, the projective represen-
tations of the groups D, and Dgcoincide with the projective representations
of the groups Cy, D2a and Ce,, Da, D3g, respectively.

D, has eight elements, and so it has two two-dimensional projective
representations belonging to class Ki. Ds contains twelve elements and so
has three two-dimensional representations of class K;. The projective
representations of Dy and Ds are given in Table 14.2.

Groups D,,. We shall confine ourselves to the case of even n, since as
shown in §3, for odd n the group D, is isomorphic to D,,. Recall that D, is
obtained from D, by adjoining a reflection plane ox = ¢. This plane is perpen-
dicular to the n-fold axis and commutes with the other elements of D,,. The
groups D,, are defined by relations (3.5):

a"=e, bl=—e, ba=—a"'h, c?=e, ac=ca, bc=cb. (14.34)

Let D@ =4, D(b)=5B, D()=C be matrices of an irreducible projective
representation of D,,. We introduce the matrices

A B [+
A=—— N B=—— —_—
oy ', b) " @' (e, ¢)

Then the defining relations for D,, yield the following relations for the
matrices A, B, C:
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A'=I, B'=I, C'=I, BA=aA"'B, AC=BCA, BC—yCB,  (14.35)
where
o {a, c) __a(be)
P=GCa’ Y= %@n’ (14.36)

and « is defined by equation (14.24).
If n/2 is odd then « in (14.35) takes the values +1. If n/2 is even then, as
in the groups D, with even n/2, (14.35) may be brought to the form

A'=qal, B°=C'=1, BA=A""'B, AC—=BCA, BC=vCB, (14.37)

where e=+1.
As in the case of the groups C,,, it is easy to see that

pP=y'=1, i.e., p==x1, y==1. (14.38)

Therefore, groups D,., with even n have 23 =38 classes of factor systems,
depending on the possible values +1 of @, B, ¥:

Ko(ln 1) l)n KI(_li 1- l}n K2(1! 1! 7')- Ka(lr _1| 1)-
Ke(l, =1, =) =KiKs,  Ks(—=1, =1, =) =K\K:Ks =K K
Ks(—1, =1, ) =K\K,, K (=1 1, =) =KX,

This readily gives the multiplication table for classes of factor systems, i.e.
the multiplication table of the multiplicator. It is sufficient to form the pro-
ducts of the corresponding constants «, B, y and check the class to which the

products as = oiay, Bs = pip2 ¥3 = yiy2 belong.

To construct the representation group for D,,, we introduce new second
order elements a, p, y, which commute with each other and with the other
elements of the group D,. As in the case of the groups D,, the representa-
tion group has different defining relations for odd and even n/2.

For odd n/2, the representation group for D,, is defined by the relations

a"=e, b'=e, c'=e, a’=e, P'=e, y=e, ba=aa""'h,
ag=ge, ba=uab, ca=uwc, agc=Pca, bc=vycb,
ay=va, ap=Ba, by=vb, cv=vc, aP=0pa, (14.39)
bp=pb, cB=Pc, ofp=Pa, ay=va, Py=vh,
and for even n/2 by the relations
a"=gea, b’=ﬂ'2!lls‘==pz=\?2==8p
ba=a""'b, @a=ae, ba=ab, ca=ac, ac=pca,
be=vycb, aP=pa, bp=Pb, cP=Pc, ay=vya, (14.40)
by =vb, cy=ve, ap=pPa, ay=vya, Py=1yp.

The defining relations (14.39) and (14.40) easily yield expressions for the
factor system o' (a*6%c?, a*67c?)(k B =0,1,2 ..., n—1; p, p’, g, ¢ =0, 1) cor-
responding to the groups (14.39) and (14.40).

For odd n/2, the factor system a’is

@' (a*6%¢%, a¥b"c”) = o ™ 77, (14.41)
and for even n/2,

’#+I’(I—39+ml

o (a*6°¢% 6" c) =a n ] B v, (14.42)
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Any given factor system may easily be assigned to one of the eight classes of
factor systems for D,,, depending on the value of the quotients of the coeffi-
cients for commuting elements:

o (a"?, b) w(ac) (b c)
0, a"®’  w(ca) " e(b)

If we choose the function u(a*b?Pc?) to be

kpPaT) — u (a*) 0 (b, b) 092 (c, ¢)
u (a*b°c% ey (14.43)

where u(a*) is defined by (14.33), it is easily seen that any given factor sys-
tem o(a*°c?, a*b”c?) may be reduced to the form (14.41) or (14.42), for which
we present all the projective representations below.

Dy, has eight elements, and each class (except K;) contains two two-
dimensional representations.

The relations between the matrices A, B, C for the group Ds, (n = 2) differ
only by permutations of the numbers a, p, y. Thus the representations cor-
responding to classes obtained by permuting the numbers «, B, y may be
obtained from the representations for one class by the appropriate permuta-
tions of the representation matrices. For example, the representations for
classes K; and K;, as well as K, and K;, may be obtained from the represen-
tations for classes K, and K; by permuting the representation matrices
A, B, C.

There are sixteen elements in the group Dy, so that by Burnside's theo-
rem there may be either four two-dimensional projective representations or
one four-dimensional projective representation. Each of the classes K|, K,
Ks, K¢, K; contains four two-dimensional representations, while each of K
and K contains one four-dimensional representation.

There are 24 elements in the group Dg, so it may have either six two-
dimensional representations, or one four-dimensional and two two-dimen-
sional representations. Both these cases occur, the latter in classes Kj, K,
Ks. Ks.

The matrices of the projective representations for the generators of the
groups Dy are given in Table 14.2. These matrices completely determine
all the projective representations of the groups Dn, belonging to the factor
systems (14.41) and (14.42), since the representation matrix for an arbitrary
element atbPce (k=0,1,...,n—1;p, g=0,1) is

P’ (a*b”c%) = A*B°C. (14.44)
By(13.3), the representation @ (a*brc7) belongingtoa givenfactor systemis
D (a*b"c®) = A*BC° u (a*b"c), (14.45)

where u(a*bres) is given by (14.43).
Group T. This group has two generators a=1¢;, b = ¢;, and defining
relations (3.7):

a’=e, b =e, bab=aba. (14.46)
The remaining elements are expressed in terms of the generators as in(3.8).

The defining relations (14.46) imply relations for the matrices of the pro-
jective representations,
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i _ D) __ D)
A —m and B' = T

namely, o
A'=I, B'=I, BAB =oA'B'A, (14.47)
where
t,I’,_m”’(a, a)o (b, ab) o (a, b) (14.48)

~ ‘wl(a, b'a)w (5% a)w (b, b) "

From (14.47) we have B'A'B" —=o'A’'B'B'A'B’'=a”"A'B'A'B’A’' = «'B"A'B'A’ =o' B'A'B"’,
whence it follows that o' =1 and so

o=e (m=0,1,2 3). (14.49)

If mis even (m=0, 2), we can always make a'=1 by suitable choice of the
sign of A. The representation is then p-equivalent to a vector representa-
tion. If m is odd (m =1, 3), then, as in the case of the groups D, for even
n/2, the substitution A = a’d’ brings (14.47) to the form

A'=qal, B*=I, BAB=AB'A, a==*1. (14.50)

Therefore there are two possible classes of factor systems for the group T,
Koand K;, corresponding to a=11.
The representation group for T is defined by the relations

a*=ua, b*=e, a*=e, bab=ab%a, ao=wa, ba=ab. (14.51)

The factor system «’(r, ), rn,r2= T, for the group T that corresponds to
the representation group (14.51) is constructed using (13.23) and (13.24), as
follows. Each element r of T is a product of powers of the generators. The
product rir; is also an element of the group T, and therefore, with the aid of
the relations (3.7), it can be converted into one of the elements (3.8). How-
ever, in the representation group this may involve the appearance of the
additional factor a. If it appears, we have o'(r,rz) = —1; for K, otherwise
w’(ri,rg)=1. For example, to evaluate @(c, c¢j) we consider the product c,;
and obtain c,c} =abab?= a®b%ab =ab’ab, so that o’(c, c¢j)=—1. But @'(c; ¢,)=1,
since ¢jc,= bab’a = b%ab .

The group T has three two-dimensional representations defined by the
matrices A and B given in Table 14.2, Equations (14.48) and (14.49) enable
us to determine the class of any given factor system according to its coeffi-
cients. In practice, however, it is more convenient to consider the quotients
of the coefficients for commuting elements. In T, any two rotations about a
twofold axis, such as ¢; and ¢;, commute. The matrix elements of projective
representations satisfy the equality

ABAB’ —pBAB*A,
where

B=1(c—;'—5“—} (14.52)

o (cq ¢5) °
It follows from (14.50) that p=¢«, and thus =1 or —1 for classes K, and K,
respectively. Since (14.52) is the same for all p-equivalent factor systems,

we easily classify a given factor system as being in class K, or K,, depend-
ing on the value of (14.52) for any pair of twofold axes.
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By (3.8), any element of T may be written
a*bea¥'b?, (k, k' = 0,1; p, p'= 0, 1, 2).
The function u(a*bra¥b?) which reduces a given factor system o to standard
form e’ is
Rep 800 o (ab) 7 (g* o o o (af, b2a¥5P) o (87, a*'5”) & (a*, b7)
u(@*6°a*v”) = (a*) @ (a*) u (6°) u (6”) o 570 o (07 ) 0 (. 57)

i (a*) @ (a*) u (6°) u (+*)

o (a*, 67a¥'67) w (b®, a*'b”) 0 (a¥, 67) *

(14.53)
since by construction of the standard factor system
o(a*, 6°a"8") =o' (", a*b” )= (a", b") =1.

The functions #(a*) and u(b?) are defined by the coefficients of the factor
system:

) 0" (a, a) ofs’
(@) =—p—, u(?)= ot (14.54)

where o' is defined by (14.49). Using (14.53), we easily find explicit expres
sions for the functions u in terms of the coefficients of the factor system.
These are given in Table 14.1,

TABLE 14,1
u u
e 1 ab mi
a’ W (a, b)
a ' (a, a) ba 0'?(@a) of
a o @ (b, a)
sav? | ©" (@, a) o (b, %) I o
a @ (b, ab?) @ (a, bY) @ (b, b)
sap | @1 (. a) o (6, %) apta| 229 ol
o @ (6%, ab) © (a, b) a®  @(b, be(s, t%a) e (b a)
b o5 ba o'” (a, a) o}
a'e (b, b) o (¥, a)
wa| 0@ ap wt| @F@a  of ]
a’  wl(a, ba)o(b,a) o ol b) o@bh

Group Ty. This group is the direct product of 7 and inversion: T, =T X
X C;. Tt is defined by two generators a ==¢,, ss=s, Where s; is an improper
rotation, satisfying the relations (3.9):
a?=e, st=e, sas=as%a.
Here ¢,=3si.
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The 24 elements of T, comprise the twelve elements of T and the products
of these elements with inversion i=s}.

Set
D) D(s) .
A——w'i(a,a)' B= w}{‘ ! (14.55)

using the defining relations, we obtain
A'=I1, B°=1I, BA'B—= o A'B’A, (14.56)

a’=m(3' as) o (a, s)w'? (a, a) (14_57)
w(a, s*a)w (s*, a) w (s, 5) "

Reasoning as in the case of T, we can find that & =1, i.e.,

o’ =em, (14.58)

Here again the factor system belongs to class Ko if m=0, 2, to class K, if
m=1, 3.
Setting A = a’A’, we reduce relations (14.56) to a form similar to (14.50):

A’=qal, B°=1I, BAB=AB’A, a==1. (14.59)

The representation group for T, contains 48 elements; it is defined by
the relations

al=a, sf—e, o’=e, sas=as’a, au=aa, Sa=as. (14.60)

From (14.60) we easily see that the standard factor system o) for T,is
related to the factor system a, for T by .

of (ry re)=01, (1, iry) =0 (ir,s ry)= cn;.&I (iryir)=wp(r, r,), (14.61)

where r; and r; are any elements of T, and i is inversion s°

Formula (14.53) readily yields a function u which reduces any given factor
system to the form (14.61). For the elements of 7, which are also T, the
function u is defined in Table 14.1, with b replaced by s For the remaining
elements of the group T, which are products of the elements r of T and
inversioni, we have

TRELTLT
where u(r) is given in Table 14.1.

There are six two-dimensional representations of the group T} in class K;.
Three of these are representations of T, and the others are obtained from
them by multiplying B by the factor e = e They are given in Table 14.2.

Group 0. The octahedral group O and the isomorphic group 7. are
defined by two generators. The generators of 0 are a= ¢ and b = ¢,, satis-
fying the relations (3.10):

al=e, b3 =e, aba=0b%
Let
A= D (a) B = Dy

=" T
Doy Op3

where D(a) and D(b) are matrices of a projective representation for a and b,
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Then the defining relations yield
a'=1, B'=I, ABA =dB", (14.62)

where
m;"aa@ (a. ba) m(b. a)
ola(b,6) (14.63)

o =

Equations (14.62) imply the equality B’A’'B’ =qa'4'B’A"*, analogous to the
third equality in (14.56): therefore,

[+ .
a =1, i.e., a' =e™"

m  (m=0,12,..., 11). (14.64)

We now introduce new matrices A4 and B by

A=Ay, =efB;
then relations (14.62) become
A'=al, B'=I, ABA=a"B, o= (—1)’, (14.65)

where
" = ' p20g? = pmM g?,
a o’ e;%) = el efed.

Since e,=eg}, the expression for «” may be put in the form
a” = e +ogimta, (14.66)

It is clear from (14.66) that the choice of p=—m and ¢ = —3m, makes a”
equal to 1. Moreover, if m is even then a= (—1)™ =1, and all the projec-
tive representations are p-equivalent to vector representations. But if m is
odd we have a= —1, A*= —], and the factor system belongs to class K.
Thus there are two classes of factor systems for the group 0(7Ty), K, and K;,
corresponding to @ =11 (even or odd m in equation (14.64)).

As in the case of T, here again the membership of a given factor system
in Ko or K, is conveniently determined by quotients of its coefficients for the
pair of commuting elements ¢ and c:', since it follows from (14.65) that this
quotient is «® = 1 1 for classes K, and K, respectively.

The representation group for the octahedral group is defined by the
relations

at=a, a’=e, b'=e, aba=0>b’, ea=an, ab=0bau. (14.67)

For the group O, the class K, contains two two-dimensional representa-
tions and one four-dimensional representation. They are given in Table 14.2
Using equation (14.53), we easily find the function u#(r) reducing a factor
system o of O (T4) to the standard factor system o' defined by relations

(14.67). For an arbitrary element a*5°%"s* of the group 0 (TJ),

u(a*) u (a*) u (5”) u (6°)

ko kpp'y__
u(a"6a*v") = T ) a0 ") o ¥ 5] (14.68)
where
Amk _ k/4 B3 —pm
wa) =22, u ()= (14.69)

m is defined by (14.64).
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Group O. This group is the direct product of O (or T;) and inversion i.
It is defined by two generators a = ¢, s = s, satisfying the relations (3.13):

at=e, s°=e, sa’s=a, as®’=s%. (14.70)
0, contains 48 elements, half of which are the elements of 0, the others

their products by inversion i=s}.
From (14.70) we obtain relations for the matrices

,_ D) . D(s)
A= B
wg‘q and = ID:!: N
namely,
A'=], B'=I, BA’B'=a'A, A’B’ =pB" A, (14.71)

where

,_ (s, a’) o (d s) wy, _ oas)

‘ e PTG (14.72)

It follows from (14,71) that p*=1, or f=4=1,

To determine the possible values of a, we observe that the third relation
in (14.71) may be brought to the form B"?A”B’A"” = o«'B?. Using the last rela-
tion in (14.71), we obtain B'" = A’B”?A’a’f, which is similar to the correspond-
ing relation for 0. This implies that

12 2 .
(a’B) =a' =1, i.e., a=gf}.

Introducing the matrices A= A’%j, B=PBe?, we obtain the relations

A*=al, B*—=I, BA'B—a”A, AB—fBA, (14.73)

where

a=(—1)9, o" =a'efes =ertoginta,

Setting p=—m, ¢ = —3m, we find that «” =1, and relations (14.73) become
At=qal, B°=I, BAB=A, AB:=pB%A,

14.7
a=(—l)"==+1, p==1. (14.74)

As in the case of 0, if m is even then a¢= 1, and if it is odd, a=-—1.
Thus the group 0, has four classes of factor systems, corresponding to
the possible values of « and B:

Ko(ls 1)! Ki(—ls l), K!“v '_1) KS(_I! _'1}=K!.K2‘

The representation group for O, is defined by four generators a, s, a,
and relations

at=a, sf=e, o’=e, P’=e, sa’s=a, as®=Psia,

of = Ba, aa = qa, as =sa, pa=aP, Ps=sp. (14.75)

Half of the elements of 0, are elements of 0, and the others are their
products by inversion i=s}, which commutes with all the elements. However,
it is clear from (14.75) that in the representation group inversion does not
commute with a. Thus the factor system o, for 0,, which corresponds to
(14.75), depends on the specific choice of the elements of 0,. To fix ideas,
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we shall write the elements of O, as r or ri=rs*, where r is an element of
0. Then it is easy to show that a factor system for O, is related to a factor
system for 0 by

0, (rr 1) =0 (rys 1a)s @ (s 1y} =05, (ry, 13)s (14.76)
@, (Fis 12) = @ (r,s rof) =P* @ (), 1), '
where the number p indicates how many times inversion i and the fourfold
axis ¢ = a must be permuted to obtain rd from ir..
The function u(r) (r& On) reducing any factor system o for 0, to the stan-
dard factor system (14.76) has the form (14.68), with

BSn-:h L7 pf8 egm

“(at]=TT“' a(sr)=.'f.’;‘;? (14.77)

The following remark is important here. The function u(r) should be single-
valued, so that u(ri) = u(ir). However, the right-hand side of equality (14.68)
depends on the order of the factors and, in particular, may differ for ri and
ir. In order to eliminate this ambiguity, we shall consistently write inver-
sion to the right of the rotation in the right-hand side of equality (14.68): ri.
With this choice, u(r) indeed reduces any given factor system to standard
form (14.76). For example,

’ _0(asYu(as’) __ o(a,s®) ul@u(s) __
o @ )= =rarae = 0@ d@uE b
but o (%, @) = (s a) u(a)u(s) =B

o (a,5%) u(s*)ua)

in accordance with (14.76).

The group O, has four two-dimensional and two four-dimensional repre-
sentations in class K;, three four-dimensional representations in class Kj,
one six-dimensional and three two-dimensional representations in class K;.
These representations are defined by the representation matrices 4 and B
for the generators, satisfying relations (14.74); they are presented in
Table 14.2,

We have thus constructed the projective representations of all the point
groups, with a view to constructing the representations of the space groups.
The corresponding matrices for the generators of the 32 point groups are
presented in Table 14,2, Two-dimensional representations are denoted by
the symbol PY”. The superscript m specifies the class of factor systems,
the subscript n indexes the representation. Four-dimensional representa-
tions are denoted by Qf”, six-dimensional ones by Ry".

The characters of the irreducible projective representations are present-
ed in Table 14.3.

These tables make it possible to find the representations of any space group

By the results of §§12, 13 and 14, the procedure for determining the re-
presentations of a space group with star {k} is as follows.

1) Select the vector k and determine the crystallographic point group Fa
whose elements leave k invariant up to addition of a reciprocal lattice vec-
tor (see (12.12)).

2) Using formula (12.29), find the factor system o(r,r), ri, rn€ Fa, corre-
sponding to the selected point k.
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TABLE 14.2, Projective representations of the point groups

Repre-
Group Class| senta- A B Relations
tion
Csh (Cs0 Do) | Ky | PV | 0 |0y A*=B*=1I AB=—BA
Cn K Py [\ o
‘ o * |'*| a=B=1 AB—=—Ba
ng 0z Oy
Cer K, | P o, |oy| A*=B*=1I AB=—BA
P e o
2 ¢0z x . aeﬂf}3= 1+fﬁ
P;t;” €30z |0y ¢ 2
Dy (Cyp, D K 3
« (Ci0s D2a) 1 P €s 0 o A——1 Bie]
0 g
_l .
a ([ O)]g BA—A’B, ¢ —enin 11
P2 0 8;3 x 8 .’/—2-
Ds (Coo. Dsp Dsa)| Ky | P | —o, |0, =1 B =1
€ 0
Py 0 e ||% BA=— A°B
q
eg 0 ;
Py 0 & Ox ee=e"3= 1+i¥V3 +;ﬁ
6
Represen-| R
Group| Class tation A B c Relations
D 1) A=RB'=C*=1]
m | K P o Oy 1 ig — EAB‘A
Py % ox | =1 | BC=CB
2 — B? = 2 —
K Py o o, —0, ;B = 3 gﬁc I
; AC=—
Py —C: % | =% | BC=-CB
B —Ct=1
Ko P‘ls} o, Oy Oy AAB — _Bj BA
6 AC=—CA
P. a; Ty —0y BC = CB

113



114

TABLE 14.2 (continued)
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=
= 4 §= A B c Relations
gl5|58
Ol |=S
Dm Kl P(]“ € {0 o, I A‘--—-I
01 B'=C'e=1I
PPl — ; ? o, I BA= A’B
Py €y 01 [ -1 AC=CA
W io0
P —e oy o, —I BC =CB
K| P I o, o, |A‘=B=C'=1I
P, &21 o, Oy [ 7% BA = A’B
Py —I o o, | AC=ca
PP io, oy —o, BC——CB
Ks| P o, I 0, |Ai=Bi=Ci=I
Py io, o, Oy BA = A’B
Py o o | o, AC=—CA
P io, —0, o, BC=CB
K, P(lij oz [ o, A'=B?=C2=]
2% i0; —0, oy BA=A'B
Py o, —o, o, AC= —CA
Py io, o, o, BC=—CB
—i =100 0i oofljooo 1y At=-—1I
, B=]
K| @® 1 f—1 —io0of|l—io0o ooflloot1of|l ¢y
¢ VZl o o0il 00 oiflloroo gg=d°gd
0 01 00 —ioff{ftoool| gem—_cB
- =100 0i ooOpfqoo10 g;==r—f
K @O |1 —i00jj|—t0 o00fffooolll crmp
‘ V2| o o0il 00 oiffltooo)l BA=AB
0 01 00 —ioffforool| Bc=cB
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TABLE 14.2 (continued)

Repre-
Group|Class| senta- A B C Relations
tion
D K i0
R I el - o | o | A=—1 B=1
LU §
i 0
ng] — &g 01 Oy [P C*=1I, BA— A°B
i 0
Py e, o, | —0.| AC=CA, BC=—CB
i.0
| el | o | -o
Dgp K, —e!
p{ eg 0 o, I A =1 B =1
0 g
pp | |70 o I | ¢t=1 BA=—2aB
2 0 85_1 v &
P -0, o, I |ACc=cA
-1
—e O
PP 6 o, —1 | BC=CB
0 Eg
—& 0 14iV3
p 6 ¢ —1 %=eﬂ1f’3==+—'f_
s 0 e Y 2
Py -0, o, | =1
K: | P I o: | o A =1, B =1
PP e 0 o -0 C*=1I, BA=AB
2 ) eé_| x z ’ =
p | —[*° 1| o | —o.| ac—ca
0 ey
Py -1 o, | o BC=—CB
eg 0
pY - oy o,
0 eg
-1
eg 0
PP | - 0 o, | -0,
]
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TABLE 14,2 (continued)

&
V]
g H gg A B c Relations
G|0|<s
Dgp| Ks P{l3) g, 1 ~0y ;::{
Py o ~1 -0 =1
: ’ “ | Ba=aB
—~¢ 0 00 0100 0 0i0
oll © —e'00 1000 0 00 il aAc=—ca
Q 0 0 €0 0001 —i 000f| BC=CB
-1 0010 0 —i00
0 0 0 86
K-l P%“ [ o, “j! g::;
pW o e . I
2 z z ] BA— WB
—e 0 00 01 0 o 0 0i0
Wl 0 —eto o f|jro o ofj 0 00 gg__g;
Q 0 0 0 gg f:-—-(ij —:} ?gg -—
0 0 0 cé‘l - -
Ks| P o, o, o, ﬂ::f
5) o . e et
L) A . .
gg O 00 01 0 OJ|joo—i 0
oll° —e' 00 10 o offjoo 0 —if| Ac=—ca
< 0 0 =—¢gg0 00 o0—1f{fz0 o ol BC=—CB
-1 0 0
o o o' ofjlo
K| PP o, o o r=
©) _ _
P2 0z [ % o, Bc;;-_f‘sn
& O 00 01 0 of{go o0—io0
0 —56-’ 00 10 0 of{fo 0o 0| Ac=—cCA
o o —eo |[Jo0 o-t]]¢ o ooffBC=cB
0 0 0 & 00—1 of{fo—¢ 00
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§1a.

PROJECTIVE REPRESENTATIONS OF POINT GROUPS

Repre- _
Group|Class| senta- A B c Relations
tion
-
Den | K P —¢€ 0 o, | o AS==] Bi==1
0 €g
€s 0
Py 0 —e! o, | o Ct=1 BA=—A‘B
Py o; o, | o, AC=CA
-1
P —& 0 o, | ~0.| BC=—cB
0 Eg
& 0 ni/3 141 Vé—
po _ 0y | —0;| gg=e"""" = —p—
5 0 — € | 2
Pg’ o o, | —0:
Repre
Group | Class stlz_nta A B Relations
1on
T K, Pgl) io, (1/]/'2‘) gdnilt gy A=—]
P;” fox —'(]/ﬁ) 85:‘”[26 Bs=f
Py o (1/VZ) &8 | BAB= AB*A
s “E 11 ﬂ
-1 i
Ta | Ki | PYY io, (1/VZ) ™4 3
P&” ‘-ox _(llﬁ) 85’““26 A=—1
Py i, (1VZ)eM'?8 | B =1I
Py iy —(1/V2)"'?8 | BAB=AB'A
11
Ay o, —( VD) iy | b= _ ‘_ﬂ
Py ioy (1/VT) &2y
0 (Tq)| K, ) i0 | —dinny At=—1,
P “lo1 V2 B =1
i0 1 =3in/4 2
(N — —_— d ABA=DPB
P o ﬂ 2
0 0 —B, 0 B, = 5™/
QW |e2 0 0 0 Byl 1 e-umgm 0[] py==e™=
8l —p, 0 0 of|V2 edf|  —— BL
0 0 O LY
1]
[ -1
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TABLE 14.2 (continued)

&
v
m. @ Wm A 8 Relations
] E-]
50 |=z=
04l K| P [ 3 Al=—1 B=1I
&: —-p [\ BA’B= A, AB*=BA
1 VZie2 1
1) -0 p=—
P e «\L -1 —iVZ
e? 0
0 _ - =
Py P 8 _o m_
10 00
(1) 07 0e2 00 .ﬂllw 1 '.—\um.mu
Q 90 00 10 V3lyze 1
00 O¢
tooop fo__ 1l 1 V2
00 00 10 —_—
00 0¢ € =Ey




io; [ At=] B =]

e 0
0y __o Ia»__ BA*B=A
. e 0 AB= — B’A
io |__cum
0if 00 0 0 0 00 e=¢;
—i0 00 O 0 0 000
00—i0 O 0 0 0i0
00 00 —i 0—i 000
00 07 O 0 0—-i00O
00 00 O iff—t 0 000

p 0 € [0 =9 A= B =1
__clv__ _\lml 8 o BAB=A, AB*=— BA
__o; 1 ua:umm., oh _|eo

00 Vz 03 *=lo e

gowg Il_lma:m__n,o ola __=
po Y2 0 -t i
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TABLE 14.3. Character tables for the point groups

Cap Cso D, al=e, b?=e, ab="ba
A*=1I B*=1I AB=aBA
a=c,, b=i ( or ap)| a=c,, b=0, | a=c, b=u, o=t
e a b ab a

p 2 o o] o] —1

Cin at=¢, b*=e¢, ab=1"ba
A*=1 B*=1I, AB=uBA
a=c, b=i (or op) a=*|
e a a? a’ b ab a’b a’h a
p{" 2 0 2] 0 0 0 0 |
PP 0 —-2] 0 0
Cen at=e, b*=¢e, ab=ba
A®=1] B*=1 AB=aBA
a—c..b=£(or 0’;,) gﬂ=g'“”3'q,=il
e a a? a’ at a’ b ab | a®b | a | a%b | a% | @
P 2 2 oo
P | 2 | o |2 |0|2|0ofofofo]o]|ofo0|=I
PP | 2 | 0 | 2 2eg 0
Cio D, D4 at=e, b®=e, ba=a'b
‘=ual, B'=1I, BA= A’B
a=c¢, b=opla=c, b=u| a=s, b=u, a==xI
e a, @ a® | b, a®b | ab, a’h a
PO 2 | va |
PP 2 |=V2i| o
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TABLE 14.3 (continued)

Dg Ceo Dy Dy ab=e, b¥=e, ba=a%b
A*=], B'=I, BA=aA’B
a=cg, b=uy|a=cy, b=0,y |a=ss, b=uy| a=sg, b=u, a=xI|
e a a?, at at b, a%h, a'b| ab, a®h, a’h| a
P2 o 2] o 0 0
POl 2| V3 |=1|=iV3| o 0 |=1
PO 2 [—iVT|—1| V3| o 0
Doy a*=b=c'=e¢, ba=ab, cb=0be, ac=ca
A’=B*=C'=I, BA—aAB, CB=yBC, AC=pCA
a=c,, b=uy, c=i( or o) a, B, y==I
Class e a b ¢ ab be ca abe
K, PV | 2 of of 2| o of of o
a=—1p=y=I1| P [ 2 0 0| —2 0 0| o 0
K, PR | 2 of 2| of of of o] o
(2
a=p=1,y=—1| PP | 2 0| —2
Ky PP | 2 2| of o
a=y=Ip=—1| PP | 2 | =2 | o 0 0 0
K, PO | 2 0 0 0 2
p=y=—l,a=I1| PP | 2 0 o o|—2| o| of o
Ks PP | 2 ol of o of of of 2
a=p=y=—1| PP | 2 o] of of o] of o —2
Ks S 0 0 0 0 2
a=p=—1y=1| PO [ 2 0 0 0 0| —2 0 0
Ky PO | 2 0| o 0 0| o] 2 0
a=y=—1,p=1| PP | 2 o of of of o -=2| o
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Table 14.3 (continued)

D,y at=e, b=¢, ba=a’h
Al=ql, BA=A'B, B'=C'=], AC=fCA, BC=yCB
asc,, be=mu, c=I (or 0,) a B y==xI
Class e a a’ a' b | abla’b| a%| ¢ ac |a'c| a’ |be|abe|a’bela’be

POVl vai| of vu| of of of of of vZifo| vzi[ o « 0
ko |P@ |2 -vZu| of-vzi| of o of o 2-¥Zu| o|-VZi| of o o o
P P02 vzul of vau| of o o o-2-¥VZi| o|-VZi| o o of o
PO | of <vu| of-vZi| of o of of-2| VZi|o| vZi| o o of o

PA12l o [-2| o [ of o o o

=)
(5]
-
=)
J
w
-

amfml
y==11p@ 9 -2 | 2| -2

(=]
(=]
[=]
(=]
(=]
o
(=3
(=3

PDlof o |-2| o | of o o of o -2t | o 2

POfof o | 2] o 2 o 2 oo o ol o
ke [P ]2l o [-2| o | o o o of of o [o] o of -2 o
amy=]
B=—1{pP 2 o | 2| o -2 of-2 of of o [o] o of o o
P9l o [-2] o | o of of ol of o Jo| o |-2f of 2 o

[=]
o
o

POlof o | 2] o | of 2f of ofof o fof o oo oo
P12 o |-2| o | o of of of of o [of o

=)
L]
=)
|
]

K.
Bamym
et [P (2 o [ 2] o | o2 of-2f of o [o] o [ o o o o

PO Lof o -2 o [ o o o of of o [o] o [ o-2 o 2

a=f=|QB |4 o | of o | o o o of of o Jo; o | of o o o
=ym—]

Kq
e=Blo@ |4l o [ o] o | of of of of of o [o] o | o o o o
y=1

PP o vau| of vEi| of of of of o —vZ|-2e) ¥YZT| o of o o
amye|PY 2 =VZH| of-VTL| o of o of VZ(-2{-vVZ| of of of o
gt (PP |2 vau| of vau| o of o o of vZ|al-vz| o o o o

PO 2 =vai| o|=vEi| of of of of o -vZ| 2| vZT| of of o o

4
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Table 14.3 (continued)

Dgp a'=b =mcl=me, bam==ath, ca==ac, chm=be
A'=Bi=C=], BA=aA'B, CA=BAC, CB=yBC

a=cq b-u.z' e=i (or oh} a, B, y==x1
@ A be | abe
Class el a |g|d| @ 2‘ g :‘g e| ac a’c |a%| a'c a’c v
P (2] «¥3| = of—eVF| of of of iVE| -1 | of -1 |-iVF| of o
PO 2f-iva|—1 of i¥V3| of o 2-tVF| ~1 | of -1 [ V3| of o
k[P |2 o o o o of of 2| o 2| ol 2] o of o
i P Lol evT| | of=iVF| of of-2f-i¥T| 1| of 1| V| o o
P 2f=iVT[—1| of iV3| of o2 +¥F| 1| of 1 [-i¥F| o o
P2l o [ 2 of o | of of~2 o | -2 o -2 o0 o o
PPl2f 2| 2f 2 2| o o o o o | o o 0 o o
PR 2|l 1 |-af=of 1| o of o-iVE|-iVE| of ivF| iVE| o o
X Ptazi 2l —1 -1 of =1 | of of o ¢¥3I|-iV3| o tVF|-i¥V3| o 0
::ﬁ:f PP l2f —2 | of-2f =2 | of of of o o | o o 0 0| o
PPN2| 1 |=1f=2 1| of of of i¥VF| iVF| of~iVF|[~t¥VF| of o
PO L2 =1 |=1| 2 =1 | o o of-i¥V3| iVE| o|-iV3| i¥Z| o o
X P2 of o of of 2 o of o of o o o oo
a=y=! P2l o f of of o -2 of of of o o| of oo
Q3 f4 0 |-20 o o] o of of o o | o o o of o
ke [P0z of 2 of o 2l of o o] o o ol o o
B=YTle® 2]l o] 2o of o o-2 o o o] o o o| o o
a=lloW 4] of-2 of o o o o o of o o o] o o
X PO M2l o f of of of of of of o oo o o | o 2
ab= P2l of 2f o o o o of o 0 0 o | o2
Qi | 4 o |-2 o o] o of of o o o o 0 of o
ke |PP|2] of 2 o oo of o o of o 0| 2 o
e=b O 2| o o o] of of of o o o o o |-2f o
Y=l1a® 4| o |-z of o] o of o o o o o of o
P |2 im——l ol-i¥F| of of of =1 |~ivF| o VT <1 | of o
PO f2f-ival=1| of 4va] of o of -1 | ivE] of~ivE] -1 | o 0
amr | PP (2] o |2l of o | ofof of 2] o |2 o 2| o0
pt [P 2] iVE[=1] of=ivE| of of of 1| ivE|-g|-iVF| 1| o o
PO [2)-ivE[-1| of iva| o o of 1 |-ivE]—2 «¥F] 1| o 0
P 2| o | 2 ol o [ o of of] —2] o [—2 o —2 | o o
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TABLE 14.3 (continued)

T a*=¢e, b*=e, bab=ab%
A*=—I, B°=1, BAB=AB’A
a=urcy b=rs sgxem”
e a, bab®, b'ab b, ba, ab aba bab, b%a, ab? b?
pi 2 0 —1 1 1 —1
P(” 2 0 —8&3 €3 £§ —s§
Py 2 0 —e2 e €3 —g;
T
k al=e, s®=e, sas=aska

A= —] 8§ =1, SAS = AS*A

a==7C_Cy, S=3Ss

a s%a s st sas | sas'
€ 'y sas® | s'as® sa s'a | asa | as'a | s%a s'a 5? 5*
s'as | s%as' | as as as? | ast
PV [ 2 | 2f 0o [ 0o [=tf=t] 1|1 [1 1 |=1 =1
PO | 2 2( 0 0 |—es|—es| €| e | e [ e3|—e3|—ed
P | 2 2( 0 0 |—ei|—e2 sg e | e €3 [ —€3 | —€s
PV 2 [—2] 0 0 e[ —e3 | —e2| €2 | e |—es|—es| e
PO 2 | =20 0 L=t =1 |1 |1 |=1]|=1]1
PO 2| =2 0 0 ey | —es|—es| & | €] [—el|—el| €2
(o} T
d a‘=e, b*=e, aba=1>5?
At=—1 B’=1 ABA=B*
a=cy, b=10¢y a=s5,, b=1c3
a a? a’ ab ba b, b? ab?, bla?
e bab? ba?b? b%a bab? a’ba’ a’b a’bia?
biab biab ab? ba'ba a*ha? ba a*ba?
PV 2 | V2i| o |=V2i| o 0 -1 1
PP 2 [—VZi| o VZi 0 0 -1 1
QM| 4 0 0 0 0 0 1 -1
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TABLE 14.3 (continued)

04%) a‘=e, b=e, ba'b=a, ab®=0ba
A'=ual B*=1 BA*B=A, AB*=pBA
o==| f===xI

a=cy b=sg

bl b
viabe | apas i sap | avrare | ., | e
Clas| o] P S|l | s o | 2| S| S | B
il ekl R ot B ol I Rl L
b atbla?
PV 2| V2 ! —1| of o | 2f¥E|] =1 | 0] o0
PV 2]1-V2 | —1 o| o 2[-V2 | —1 0| o
a;\’u_l P (2| Y| = 0| 0 |[—2(-¥2 1 o | o
p=1 P [2|-¥VT| =1 0| o [—2f V7 1 0| o
A" 4] o 1 0] 0 4 1 0 0
Q" 4] o 1 o] o |—4| o -1 0 0
PP (2] o 2| —2| o ol o 0 0 0
Jol PP lel o | —1f—2f 0o of VT o o0
p=—1f PP 2] o | =1 | -2 o of o |—iV3| o (]
R ls| o 0 2| o | of 0 0 o] o
X, Q¥4 o | —2| of o | o] o 0 o | o
E_'._.} QP [4] o 1] of o | of o | ¢«¥V3| 0| 0
QY |4 o 1 ol o | of o |—¥V3| 0 | O

* To simplify the notation, inversion »* isexpressed in terms of even powers
of a, since a%*=#%* both in 0, and in the representation group (14.75),
For example, a'a%' = a'¥a’,

3) Determine the class of the factor system, using the appropriate formu-
las of §14 for the group Fa. Knowledge of the class enables one immediately
to determine the dimensions of the representations of the little group. If the
factor system obtained is not in the standard form corresponding tothe group
Fa, use the formulas of §14 to find a function u(r) which reduces the factor
system to standard form via (13.4).

4) The representation @*(k) of the little group for the element h =(r|a + a)
is determined from the formula

ar (h) = plk(@+s) 5 (r) 9 (,),

where D(r) is a projective representation belonging to the standard factor
system. If the element r=ambncr ..., where a, b, ¢, ... are the generators
of Fy, then @ (r) = AmBnCP ..., where A4, B, C, ... are the matrices of the
projective representation belonging to the standard factor system; these
matrices may be found in Table 14.2.%*

5) The total representation D™ of the space group is determined in terms
of the representation of the little group, using formula (12.23),

* Care should be taken here that the order of the generators amb"c# ... in the expression for r coincide with the
definition of r as given in the character tables for projective representations (Table 14.3).



Chapter I1II
SYMMETRY IN QUANTUM MECHANICS

The first chapters of this book presented the elements of symmetry
theory and representation theory. We now proceed to a discussion of the
physical consequences of symmetry in quantum mechanics and vibration
theory. Both determination of the allowed energies and eigenfunctions in
quantum mechanics and determination of vibrational frequencies and the
corresponding displacement vectors are essentially problems of determining
the eigenvalues and eigenfunctions of a suitable operator. The general nature
of the spectrum of an operator is largely conditioned by its symmetry. This
is the reason for the wide use of group theory in quantum mechanics and
vibration theory.

_Symmetry theory provides adescription, independent of the specific type
of interaction, of the important features of electronic and vibrational spectra
of atoms, molecules and crystals, the systematics of terms and the possible
types of degeneracy, the positions of extremum points for spectra in crystals
and the shape of the spectrum near these points, selection rules for various
transitions, the change in the spectra in external fields which break the
symmetry, and so on.

In §15 we dwell on the first of these questions,

§15. IRREDUCIBLE REPRESENTATIONS AND
CLASSIFICATION OF TERMS. NORMAL
MODES. PERTURBATION THEORY

The steady state of an eleciron in an external field is described by the

Schrodinger equation
2
%) 0= (— 30 '+ V (1)) 0= Eb. (15.1)

Since the kinetic energy operator
B2 a1 a? a?
— o (st ar+ 5)
is invariant under any operation of the space groups, i.e., under rotations
and translations, the symmetry of the Hamiltonian () is determined by the
symmetry of the potential V(x). For example, the potential V(x) for an elec-
tron in an ideal crystal is invariant under any transformation in the appro-
priate space group. For an electron located at an impurity center in the

T—

125



126 Ch. I1l. SYMMETRY IN QUANTUM MECHANICS

lattice, V(x) is invariant under the point group defined by the crystal sym-
metry and the position of the impurity center in the lattice. Hence, under
all operations g in the symmetry group ¥ of the Hamiltonian

76 (g~ 'x) =36 (x) (15.2)

or
D (g) 7 (x) b (x) =76 (g~'x) ¥ (g™'x) = % (x) D (g) b (%).

Therefore, invariance of # under the operation g implies that the operators
¥ and 2 (g) commute:

D (9) % = #D(g). (15.3)
Inthe new coordinate system x’ = g-'x, the Schrédinger equation (15.1) becomes

F(x)p(g~'x) = Ep(g~'x). (15.4)

Equations (15.1) and (15.2) show that the functions ¥(x) and ¥(g-'x) belong
to the same energy eigenvalue E. Applying all the transformations g in the
group, we thus obtain & functions y(g-'x), of which in general only a certain
subset ;(x) are linearly independent, and all the others may be expressed
in terms of them. Thus any function obtained by applying 2(g) to a function
P; is a linear combination of these functions:

@(EJ"P,‘='¢;(§_")=E‘@u¢|(ﬂ- (15.5)

Equation (15.5) shows that the system of eigenfunctions of the operator
belonging to one eigenvalue forms a basis for a representation 2 of the
symmetry group & of the Hamiltonian.

The representation 2 may be reducible or irreducible. Since the action
of all the operators g on any of the functions y; yields all the functions
on an irreducible representation, it follows that in any case all the functions
of an irreducible representation correspond to the same energy.

On the other hand, coincidence of eigenvalues for several independent
systems of functions, each forming a basis for a different representation,
may occur only accidentally. Asaruleone has a different energy eigenvalue
for each irreducible representation. Therefore, the possible degeneracy of
each term is determined by the dimension of the corresponding irreducible
representation, and the solution set of the Schrodinger equation will contain
terms of all multiplicites permitted by this condition. For this reason the
state of an electron is frequently characterized by the index of the corre-
sponding irreducible representation. Of course, this does not mean that
only one term can correspond to each representation. On the contrary, as
a rule one has a whole set of terms corresponding to each.

In some cases, however, additional symmetry conditions, unrelated to
spatial symmetry, lead to coincidence of the energies of several irreducible
representations. This additional degeneracy, as will be shown below, may
be caused by invariance of the equations of motion under time reversal. In
special cases the symmetry group of the Hamiltonian # =T+ V may possess
higher symmetry than the potential V; this is another source of additional
degeneracy. This is the case for the Coulomb potential V= —¢/x, and also
for the harmonic oscillator, with V = —cx2.
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Vibrational Spectra of Molecules and Crystals

Representation theory makes it possible similarly to classify the vibra-
tional spectra of molecules and crystals. As we know, in classical theory
the vibrational frequencies w and displacement vectors (/) of a system
consisting of N, atoms ! are defined by the system of equations /9.1, 9.2/

Na 3
M0 =— Mo, ) =— 3 3 @t 1y 1), (15.6)

where M, is the mass of the atom and @' (,I') = @i (I',]) are force constants,
i.e., the second derivatives of the potential energy with respect to the dis-
placements u;(!), 4 (). Equation (15.6) can be rewritten as

l__%(Du* 0, Iy — @®u8ur) uyr (1) YV M; =0. (15.6a)
Here D is the dynamical matrix, whose elements are

D (1, 1y = Dir (1, fy = b D) (15.6b)

VMM,

We now transform from the 3 N, variables % VMMu,(l) to the variables

1 .
acm?gBﬁ 1w (1) |/ -%, where M=2Ml, (15.7)
i

letting B be a matrix diagonalizing the dynamical matrix D: B-DB=Q,
where Q is a diagonal matrix with elements Qu=w:

2 BiiDu (4, 1) By, = 0l (15.8)

m}l
and the natural frequencies @? are the roots of the secular equation

| Dypr (1, 1) — @40y | =0. (15.8a)

In principle, some of the eigenvalues may be degenerate, several functions
a, corresponding to one frequency w,. The matrix B is unitary, BB*=1 and
E‘Bzf, or

2. Bji BIi = b, (15.9a)

2 BBl =i, (15.9b)
a
so that the eigenvectors Bj; are orthonormal. It can also be shown that
B°B* =0 if w, ¥ wg, Or, in coordinate notation,*
YBLBh =0 if g% op (15.9¢)
[
1t follows from (15.8) that in the new variables the system of equations (15.6)
splits into 3N, independent equations
(02 — o*)a,=0. (15.10)

* The eigenvectors B belonging to frequency wg satisfy equation (15,11b): DB® =QgB® . Multiply this equa-

tion on the right by B%, and the transposed equation B*D =Q,B°® on the left by Bf, and add. Since D=D
(15.6b), we obtain, by (15.9b): (Qq — 2p) B°B® = 0.
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Applying the inverse transformation to (15.7) and using (15.9), we express

u in terms of a,:
w)=2V -ﬁ;gmmﬁ. (15.11)
The vectors u?*(l) defined by the relations

up () =2/ 4 B g (15.11a)

are the eigenfunctions of equations (15.7) for @ = @, and are called normal
modes. They show how the atom [ is displaced when vibrating in mode @,.
In order to find the elements Bf; in explicit form, we must find the natural
frequencies and solve the system of equations DB = BQ, which in terms of
the elements is

;n;,- (i) B} = o Bii. (15.11b)

In a crystal, each atom [ may be characterized by two indices: the num-
ber f of the cell and the number =x of the atom in the cell. These indices
have the property that the force constants @ (fx, f'x’) possess translational
symmetry, i.e,, depend only on the difference f—f’. Therefore, the eigen-
vectors Bf can be chosen as

B =V 1% eige™, (15.12)

where v is the number of the spectrum branch and ¢ the wave vector; N is
the number of cells, M,= X M, the cell mass, and M = MN = py, where p is
*

the density and ¥ the volume of the crystal. The matrix B defined in (15.12)
enables one to go over from the 3Nn, functions uy,, to the 3Nn, functions agv
introduced below (equation (15.16)), where n, is the number of atoms in a
primitive cell. Here ¢ takes N different values, v varies from 1 to 3n,, and
for each ¢ the matrix e with elements e}, (g) is the matrix of transformation
from the 3n, functions u, (g) to the 3n, functions agy. The matrix e diagonal-
izes the matrix D’ whose elements are

VMM,
tinoe (q) == Dire (q), (15.13)
where
Dii’!‘t’{q)=% Epii'ﬁ’xx‘ 8-"(3?_‘;:’). (15-133)

I

In fact, substituting (15.12) into (15.8) and summing over f and p, we obtain
the system of equations:
l’ MKMH’ . .

2 iy Sxi Durn (@) €50 () = 0 0, (15.13b)

Tel's"
By (15.9), polarization vectors belonging to different branches or to different
atoms in the cell are orthogonal:

3:4 M.e3, (g)ey; (g) =Mgp (15.14a)

vy
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3 VMM exi(q) er (g) = Modudar, (15.14b)
E‘ Mue:( (4’}8:}(9')=0 if mqv?emqv'- (15.14C)
o

By (15.11b), in order to determine the elements e}, directly we must
solve the system of equations

2 (Duw (9) — @isdrocdur) exer V e =0, (15.15)

where the matrix Dyww(q) is defined by equation (15.13a), and the wg are the
roots of the secular equation

| Disrs: (9) — oudrondirr | =0, (15.15a)

which determines the vibrational spectrum of the crystal, i.e., the function
wy(q) for each branch v of the spectrum, just as the solution of the Schrodin-
ger equation (15,1) determines the electronic spectrum E(k) for each band
in an ideal crystal lattice.

The total number of branches is 3n,, i.e., thrice the number of atoms in
the primitive cell, The three branches for which wy(¢q) =0 as §—0 are
called acoustical, and the other 3(ns — 1) are called optical.

By (15.11a) and (15.12), the displacement of an atom f, » vibrating inmode
agy is

Ul | = 2agvels (q) € 1. (15.16)

An arbitrary displacement u;x; can be expanded in terms of normal modes
ufy .. By (15.7) and (15.11),

8y, = 2“’:"'22%“:@)0 F aneu(q)e of + agyer (q}e-"‘?. (15.12a)
If this equation is multiplied by e""‘”f and the right-hand and left-hand sides
summed over f, the result is
u..(q)=22¢:(q)aﬂ. (15.16a)
0

where

u, (g) =5 e T (15.16b)
f

In the quantum mechanical description of the motion of the atoms in a mole-
cule or crystal, the classical equation of motion (15.6) is replaced by the
Schrddinger equation with the operator

*= ?A:i} 5:15:1'1' Dy (k, l) uy () uy (1), (15.17)
where "
pi(k)= a“ (kl
We have

{pi(R) u; (1)) = — ind,,8,,. (15.17a)
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In order to diagonalize the Hamiltonian (15.16), we introduce operators &,
and b¥:

1 a* i
bﬂ=ﬁ§3*f(b My, "'(k)+VT_m.:p‘(k))' (15.18a)
1 a —— i
bt=ﬁ—§ B“(VM,mﬂu,(k}— —VE_;:p,(k)). (15.18b)
By (15.17a),
(babd} =8ep. (15.19)

In order to express u(k) in terms of these operators, we multiply (15.18a)
by Bfj(#/2M0e)'® and (15.18b) by Bf; (8/2M,0,)'?, add, and sum over «, using
(15.11a). We obtain*

w=3 (‘mfm)'m(bm? + b¥Bf"). (15.20a)

Similarly, multiplying (15.18a) by B/ (#Mi0s/2)"? and (15.18b) by Bff (aM0./2)'?,
subtracting, and summing over «, we obtain

p,:-:z(“’—;‘“ﬂ]"’ (baBF — b3 B{"). (15.20b)

If we now substitute (15.20a) and (15.20b) into (15.17) and sum over k and
I, noting (15.15), (15.8), and (15.19), we see that the Hamiltonian 2 splits
into the sum of independent Hamiltonians 3,:

%=, .=y, has (b3ba + 5)- (15.21)

Each of these Hamiltonians is the Hamiltonian of a harmonic oscillator. b*
is the "creation operator' and b the "destruction operator' of a phonon;

bpn=Vn,$,_,, b*éi=Vn,+1¢%,.. (15.22)

Here ¢, is the eigenfunction of the harmonic oscillator corresponding to the

quantum state n.
Hence b*b¢n, = n¢,, and consequently the eigenvalues of (15.21) are

Ex=toa(na+ 3)- (15.23)

In thermal equilibrium at a given temperature T, the average number of
phonons for a given normal mode at frequency o, is

Dinexp(— E:/k?) |
=3 - 15.24
"o X exp(— Ex[rT) exp (hwog/kT) — 1 ° ( )

If kT > ho,, then n, = kT/ta,.
In a crystal, where Bj can be expressed in the form (15.12), the displace-
ment ux may be expanded in plane waves:

¥ »
U= D agvek(g) e T +afv ek (g)e' T (15.25)
qv

* Here one uscs the fact that SE m;' (B:;B}": - B:@ﬁ']: 0. Indeed, §* = — S, but since the displacement
a

w; and the derivative LA %Pr are real it follows that §*=§. Hence §=0,

6‘u;
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Substituting (15.12) into (15.20a) and comparing the result with (15.25), we
establish the relationship between the operators a and b:

B 112 + )] 1z 4
aw=(mﬂ—r) bgv, ﬂev—(w) bav. (15.26)
Hence, by (15.22), the matrix elements of the operator a are
Bng, \12
(n'laﬂln)=(2p(::v,.] 8, nets (15.26a)
B (ngy + 1)\112
@ lagim =(Te ) ow . (15.26b)

Group theory makes it possible to determine the irreducible representa-
tions according to which the normal modes a or agv in the crystal trans-
form; moreover, once the matrices of these representations are known one
can use projection operators to find the matrices B or e, respectively, of
transformation from the reducible basis u;(l) or u.(g) to the irreducible
basis & or ag. ’

Since the force constants @ (I, I}, which are the coefficients of the expan-
sion of the potential energy of the molecule or crystal in terms of small
displacements ui(l) from the equilibrium position, are determined by the
undisplaced coordinates of the atoms, they remain invariant under all the
symmetry operations corresponding to the space group (for a crystal) or the
point group (for a molecule); moreover, it is readily seen that the elements
of the matrix D, as defined by (15.13), are invariant under all the operations
in the little group G,. Exactly as in the case of the eigenfunctions of the
Schrédinger equation, all the linear combinations of ui(l)or ux(g) forming a
basis of the same irreducible representation, i.e., transforming into one
another under an operation of the symmetry group, correspond to the same
vibration frequency og. Conseguently, these linear combinations are pre-
cisely the normal modes.

To determine according to which representations the functions a; or ag
transform, it is necessary to find the matrices of the vibrational represen-
tation @.(g), according to which the components u;(!) or uu(g) transform,
and then to expand @D,(g) in terms of the irreducible representations of the
appropriate group.

We shall now find these matrices 2u(g) and also the characters xu(g)of
the vibrational representations.

We first consider an N-atomic molecule. Applying a transformation g-t
from the symmetry group of the molecule transforms the 3N displacement
components u(l) into one another according to the equation

3 N

gl )=23 T Dur, ulg)ur ('), (15.27)

d=] ['=|

where
Dy, (&) =R (@), -y

Here (g) is the transformation matrix of the vector components (see
(2.29)) and g-4 is the index of the atom into which atom / is transformed by
g~ Note our use of the fact that a transformation g of the coordinate system
corresponds to atransformation g-* of the molecule, i.e., in accordance with
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the customary definition the transformation matrix 2 (g) corresponds to the
operation g-tu;(l). The matrices Dy, u(g) form a 3N-dimensional represen-
tation @.. By (15.27), the character of this representation is

% @)= 2 Drr,u(@) dude =ngu (&), (15.27a)

where ng is the number of atoms which remain fixed under the transforma-
tion g. When @, is expanded in terms of the irreducible representations
corresponding to the normal modes of the molecule, one must eliminate
the three normal coordinates

1

= Mu, (1),
] ;M;X 1%

describing the motion of the center of gravity, which transform like the
components of a polar vector, and the three normal coordinates

1
Q= ﬁ 2‘ M, [xu (),

( x is the radius-vector from the center of gravity to the atom /), describing
the rotation of the molecule as a whole, which transform like the components
of an axial vector, since neither of these types of motion is a vibration.*
Since the character y(g) of the representation according to which the compo-
nents of the vector transform is (see (10.20))

Anlegd =14 2cosq, x4 (sg) =— i (Cqsn) =— 14 2co0s0,
it follows that the character of the representation #u according to which the

normal modes of the molecule transform, after the six components men-
tioned above have been excluded, is

Yuleg) =(1 + 2cos9) (n, —2), Aa(sy) =(— 1+ 2cosq)n,. (15.27b)

The transformation sy clearly leaves only one atom fixed. This atom is
located at the intersection of the rotation axis and the reflection plane or at
the inversion center, i.e., ny is 0 or 1 (except for the operation o = $2,).

We now determine the transformation law of the components ux(g); by
(15.16b), these are related to the displacement u by

1 iax®
u Q)= 2 e ' up,.
1

The operation g-'=(r|1)~' transforms the components up, as in formula
(15.27) and u,(q) becomes

I - *
g 'u(g) = FZ e 2 Ria (8) upwer Ogw, ubgr, t =
" i

1 —tgx¥ 7
=N Pl upsrRiry (2) e" (;i ”f)oﬂ'. xOgp. -
Pt

Here uj is the displacement of atom f«/, which is the image of atom fx
under the transformation g-!=(|1)~'. The difference between the coordi-
nates of [ and fx is

3 — =1 =1
X —xf=r"lx;—x,+r(x,—7)—x,.

* Except in the case of linear molecules, for which only two rotational degrees of freedom need be excluded.



§ 15, CLASSIFICATION OF TERMS, NORMAL MODES, PERTURBATION THEORY 133

Here x,=x;, x,=x—x;, and moreover

q(r~'x— x) = x; (rq — q) = 2nm,
since # is a vector of the original lattice and, by (12.12), if ge& Gq then
rq —gq is either zero or a vector of the reciprocal lattice. Thus the factor
exp (ig(xf — 7)) equals exp {ig(r~'(x,— 7) — x,)} and does not depend on f.
Consequently,

g 'uy(q) = ”E‘, Dierv. i (g) v (q),

where
Dier, (g)=Rri(g)expfig (r~' (xx — 7) — %) Ogw', x. (15.28)
Hence we see that the character of the representation 2, equals
% (&) =0 (&) Zexplig (r=" (¥, — 7) — ) by o (15.28a)
whence
Y (g1 ¥) = (1 + 2 cos @) ?exp lig (c5' (2, — 7) — x,)}3,. cq? (15.28b)
Y (591 T)=(—14 2cosq) ;e"p (19 (s5'(* =) —%,))8, sgx’ (15.28¢)

In these formulas, 6x g« =1 if the operation g moves atom x to an equivalent
position, i.e., r~'(x,— 1) —x, is zero or a lattice vector, and &x ¢« =0 if the
atom is moved to an inequivalent position. For points such that r¢ =g, in
particular, for all points inside the Brillouin zone

glr-'(x,— 1) —x,)=(rg—q)x,—rgv=—gr
and so
D.(g) =R (g) e~'on,, (15.29)

where ng= X8 ¢ is the number of atoms that remain fixed under g. The
k]

character of the corresponding projective representation is xu(r) = yu(r)ng,
an equation similar to (15.27a). (In (15.29) the little group plays the role of
the symmetry group of the molecule.) For lattices which do not contain
identical atoms in the primitive cell, if rg=gq,

Dy (r)=dR(r) na (15.29a)

where n, is the number of atoms in the primitive cell, so that the projective
representation 2y is p-equivalent to a vector representation and contains
only the representations occurring in #, each n, times.

We shall use these formulas in §23 to determine the representations cor-
responding to normal modes at different points of the Brillouin zone, for
certain cubic and hexagonal crystals.

Splitting of Terms Due to a Perturbation

Thanks to representation theory, one can not only classify the terms,
establish their degree of degeneracy and determine the basis functions, but
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Degenerate Perturbation Theory

In perturbation theory the Hamiltonian # is expressed as the sum of two
parts: a Hamiltonian 2, with known eigenvalues E} and eigenfunctions g,,
and ', which is treated as a perturbation. The wave function ¢ is sought
in the form of a series:

¢=§c,.¢».. (15.30)

Substituting (15.30) into (15.1), multiplying by ¢, and integrating with respect
to all the variables x, we obtain a system of equations defining the coeffi-
cients ¢, for a given eigenvalue E, which may be writien in matrix form as

7o —IE+ Z' lle]=0, (15.31)

where [¢| is a column matrix with elements cun = ¢abs1, o is a diagonal
matrix,
whn’zﬁann’, (15.31a)

and #’ is the perturbation matrix:
= (9, |2 |0y = [ 4,5, dx. (15.31b)

The eigenvalues E are the zeros of the determinant
|#o—IE+ F’|=0. (15.32)

In effect, determination of the eigenfunctions (15.30) and eigenvalues E
means that one goes over to a representation in which the matrix 6,4+ #’ is
diagonal, The problem is usually solved by the method of successive approx-
imations. The corrections to the energy EJ, are determined from (15.32), and
the corrections to the wave function ¢m of a given state m, i.e., the coeffi-
cient ¢n(Em), from (15,31),

If this state m is not degenerate, i.e., there is only one state with energy
En, then the expression for the corresponding corrections can at once be
obtained in series form.

If there are, however, several states ¢m, ¢, ... with energy ES, it is cus-
tomary first to determine the true functions and eigenvalues in the zeroth
approximation, i.e., all the matrix elements 2%, in (15.31) and (15.32) are
assumed to vanish except the elements 3, , between the functions ¢,, ¢, ,
..., corresponding to the given energy, and then corrections due to higher
order terms are found.

However, this method is not always convenient, since even in the zeroth
approximation accurate evaluation of the zeros of the determinant (15.32)
is not always possible. The problem may be reformulated to yield at once a
system of equations (15.31) for the relevant N states m, m’, ..., m™, allowing
for the contribution of all the other states s, §’, s”, ... in the required approx-
imation of perturbation theory. As will be shown below, this is the procedure
in construction of the Hamiltonian in the effective mass approximation for
degenerate bands or for several close-lying bands.

To solve the problem we introduce a unitary matrix § which ""partially"
diagonalizes the Hamiltonian (15.31), in the sense that the matrix

H=eSHeS (15.33)
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also determine how the terms split when a perturbation is applied. Suppose
the Hamiltonian 2 may be divided into two parts 2 = 3,4 26,, where the
symmetry group of o is %o, and that of %, is a subgroup % of %. Then
a knowledge of the characters of the irreducible representations of these
groups is sufficient to determine how the terms of the operator %, split into
terms of the operator #. The degeneracy of term of 3, depends on the
dimension of the irreducible representations of %. If the splitting of terms
of #, due to the perturbation #, is small compared with the distance between
the terms of the unperturbed Hamiltonian #,, i.e., each term of 3 is pro-
duced by splitting of only one of the terms of , and there is no intersection
of terms, the nature of the splitting is determined by expanding every irre-
ducible representation of the group %,, which may become reducible in %,,
in terms of irreducible representations ;. If the representation is also
irreducible in &, then the corresponding term does not split but is only
shifted. If it becomes reducible, the term splits, and the number of new
terms is the number of irreducible representations of %, occurring in the
given representation @D of %,.

For actual performance of such calculations, one must evaluate the char-
acters of the representation 2 (g) for the elements g appearing in the group
¥: and then, using the equations of §8, expand the representation in terms of
the irreducible representations of %i.

If the operator # is the sum of several parts, %, 2, 7., ..., each being
treated as a perturbation of that preceding it, application of the method
described above reveals the progressive nature of the splitting of terms.
For example, if an atom possessing some definite symmetry is placed in a
crystal lattice, its terms are split by the crystal field, whose symmetry
depends on the symmetry of the crystal and the position of the impurity atom
Perturbation of the lattice due to an internal strain or the appearance of
other foreign atoms at neighboring sites can bring about further splitting of
the terms, and the new terms in turn will split when the crystal is placed
in a magnetic field.

The eigenfunctions of an unperturbed atom with given orbital angular
momentum ! are (2[+1)-fold degenerate and transform according to the
appropriate representations of the full spherical group, whose characters
are given by equation (10.20). Since the maximum degeneracy of the levels
in a crystal field with the highest cubic symmetry is 3 (with allowance for
spin, as we shall show below, the maximum degeneracy is 4), then all levels
with =2 always split in the crystal field; on the other hand, it is easily
shown that the levels with [=3/2 and { = 1 do not split in a cubic field but do
split when the symmetry is lowered. For example, the fivefold degenerate
atomic term %,, corresponding to /= 2 in a cubic field with T (or 0) sym-
metry, splits into two terms corresponding to the representations E and F,.
If the crystal is dilated along the principal z-axis, its symmetry is low-
ered to Dy (or D,, respectively); the representation E then splits into two
one-dimensional representations A, and B,, and the representation F, into
the one-dimensional representation B, and the two-dimensional represen-
tation E.

It must be noted that representation theory tells us whether or not term
splitting occurs, but not the order of perturbation theory in which it
takes place. The answer to this question is provided by perturbation theory.
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does not contain "off-diagonal" elements #m between the N given states and
the other states [ I, ... . The transformation (15.33) corresponds to transi-
tion from a representation ¢ to the representation ¢ defined by

e —e=S. (15.33a)

Since # has no "off-diagonal'' elements, the equations |7 — EI|l|ec|l= 0
fall into two independent systems: one for the N states m, m/, ..., m®™) and
another for the other states |, I, ...; the basis of the first system comprises
the functions

@m=;(3""):m% (15.34)

If we could determine the matrix § exactly, the problem would thereby be
solved. Except in the simplest cases, however, the problem must be solved
by expanding ¢5 in series

S=1+S+58+ 8+ ...

and determining the matrix 8§ by successive approximations. Since the
transformation (15.33) is unitary, this matrix must be antihermitian, i.e,

St=8§=—8.
Substituting the series expansion of ex§ into (15.22), we obtain
E=Y, o #s)" =Y, (" + Y, (78" (15.35)
n=0 n=0 ==

Here
Sy =2, (HS)"=(#S), (S =(HS}S), ...

We have thus expressed the matrix # as the sum of a diagonal matrix #° =
= #o+ #) which has no off-diagonal elements ., , and a nondiagonal matrix
#» which does not contain the elements #mwm and #,1, simultaneously expres-
sing #’ as the sum of a diagonal part #, and a nondiagonal part #.. Since
the matrix § defined by this condition is also nondiagonal, the diagonal part
of the matrix #, must contain the commutators {(#°S}"” involving even
powers of § and the commutators (#,8)" with odd powers of 8. Conversely,
the nondiagonal part must contain the commutators {#°S}"™ with odd powers
of 8 and (#,8)™ with even powers of §. In other words,

_V_! @ | Y ! @t+1)
o= Y i P + Y, g 651" (15.36)
t=) fuml)
The matrix 8 is defined by the condition that its nondiagonal partvanishes:
— S ! wsn |, W
Zra= Y gy VS + X, g (98 =o0. (15.37)
fuml) 1=0
Using successive approximations, one can eliminate the terms (#°S)®*"

with ¢+ 0 from this equality. To this end, we substitute the expression for
{7°S} (see (15.37)),

{FoS) = — E ET-IF_I-)T (eosy+? _g (;W {xzs}m]’
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into all the terms {(#°S}**" with > 1. The result is
Hona=HS}+ 3 b, (2°8)"" + Z e 9.8, (15.38)

where
re=t=1

bi=— 3 (@ + 1@ —r)+ 1 =
=l

romi—|
1 r41 4 _
ﬁwmzl C§(|+“I-—-[?TFW[22I‘ I f e l], (15333)
o=

ro=f
o=y — Q1 + D1 @ — ) =

o=l

i
1 1 2r+1 2 -
=Ty @+ §C==+I == (2 =2t —1]. (15.38b)

Here we have used a standard identity for the binomial coefficients Cf =
=H/rl({t—r):
r<t 1<t

- r+1 —_ =1
Zcr= 3 cit'=2""

Apart from {#°S}, equation (15.38) involves the terms {#°S}™ with n> 3.
Expressing {#°S) through the other terms and substituting into {#°S)**"(¢>
> 2), we obtain an equation containing {#°S}” with n> 9:

Hoa =008+ 28, (H°S™" + 3 v, (7.8 =o. (15.39)
Here
i —2 re={
&= 3 bbr w=c— Zberr (15.39a)
Consequently, up to eighth order, we have
]
@8}~ — Z v {#:5)™" — (#,S8). (15.40)
Substituting (15.40) into (15.36), we find that, up to ninth order,
oy
By Ho+ 7+ 28G5, (15.41)
where
1 9
_ — ?
&= ,§ BU=r T (15.41a)
The first few coefficients y, and §, in (15.40) and (15.41) are:
1 1 32
?=ll W=7, L@ =—FE Bs=37
n s 2 ’ a (15.42)
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Equation (15.39) may be solved by successive approximations, setting
S§=8,+ S8, + 8+ ...,

where 8;is of first order in ', S; of second order, etc. Retaining succes-
sively first, second, etc. order terms in (15.41), we obtain

(#S)}=—2
{#:S3} = —{#,S1},

(3,83 = — (%83 — + (:5) S)).
FoS) = — (7,5} — 5 (#:53S) — 5 (X:S) S},

(15.43)

and so on.
By (15.31a), {#oS)mi=/(Ew— Ef) Smi, and so it follows from these equations
that

*,
Simi=—TF—g" : |
15.44
s _2 x;!m’x:n'l __E ”-'nr‘*;i
M BB (- E) (BB

and so on.

The derivation of these formulas uses the fact that the only nonzero
matrix elements of the operator #, are the diagonal matrix elements #immw =
= #'w and My =6}y : similarly, for the operator #, only the off-diagonal
elements Hom= #m are nonzero, _

Evaluation of 8 yields the operator #, which may be written (see (15.41)
and (15 42))

T=Ho+ X, + 5 S} + 5 (7S + 5 (H:S)— 57 (.S 8)S)— ... (15:45)

Substituting the values of Sy, and S, from (15.44), we find the matrix ele~
ments Hmw up to third order terms:

B e = SIS ST L pY AT
xmm Txmm’ 22(52_50 + EO_EG,)WM"”””

_ i x;:sx;m'x ;'m x:nm'x;l'sx;m’ )
2,Em.((a‘:—ag,-)(se—e&-)*”(e*:—ss,-)(sz—fa) +

1 , , I .
+;g%’mtxu‘x:’m'((dms&)(gﬂ_ﬁa) +(£.;__Eg‘,)(£$_£2")), (1546)

5

where
38...».' b E?u 6:35:’ + %;m-.

For the sake of generality, we have not assumed here that all these states

have the same energy. If degeneracy occurs, i.e., En=FE%y=Fmn= ..., then
= Xy, M

w.mm'=ggmm’ —g L-°’ =

_ l x;s“;m"“:u“m' + x;:m'x:u'sx;m‘ x;u'x;!”;'m’
7 X ®—y tYE-mEomy (154D

mes
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In particular, for a nondegenerate state one obtains the usual equation
for the energy correction:
I x:M I ‘x xﬂu’“;s"x:’m
Ao~ S S Ee e (1549

If one is considering only two states with energies Ef and E3, each of
which may be degenerate, equation (15.47) becomes

R =B — 5 Y, s + .. (15.49)

ER = Em+ #mm —

where A=E{—E], This equation can be rewritten in matrix form. If the
matrix # is written

”= xll xl? E

Ha Hal

where #\ and #j are diagonal matrices with matrix elements #mm and
%,s, respectively, #i: and Hu =2 are nondiagonal matrices with matrix
elements 34,,, then (15.49) is rewritten as*

:?1|=”11—}T;fm£i'§+ ves (15.49a)

Formulas (15.35) and (15.44) also enable one immediately to express the
matrix elements of any operator F relative to the new basis (15.33) in terms
of the corresponding elements relative to the basis g,:

F=¢'Fes=F+(FS}+ 3 (FS) S}+ ¢ (F)$) S+ ...,  (15.50)
whence we obtain, for example, in the second approximation

me'=F|mu‘_2 Eom,F;;,’ + Eosmgg (15.51)

The summation in (15.51) extends, as in (15.46)—(15.48), over all states
s¥m,m, ..., mM,  Of course, some of these states can be degenerate.

It will be shown below that symmetry theory makes it possible, when only
the symmetry of the operators #, #' and F is known, to determine the num-
ber of linearly independent matrix elements and establish a relation between
the linearly dependent elements. All one needs, then, to determine in which
order of perturbation theory the splitting occurs, is the representation
according to which the functions ¢m of the unperturbed Hamiltonian transform
One is thus provided with a qualitative estimate of the amount of splitting; it

* This formula is readily derived from the equations (# — E) % = 0, regarded as a system of two matrix equations
(K — E) by + Hiaps =0, Koy + (K22 — E)$2=0.

Multiplying the second equation by (K3 — EY~!, we express ¥, in terms of ¥,. Then, substituting this expres-
sion into the first equation, we obtain

(#n— E) o= (0 — 203 (Hoa— B 25y — E) 4y =0.

The general equation (15.47) provides a practical means of determining the matrix (¥, — £)~". In the first

approximation, .
Hn— B =(B~E)".
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is alsopossible to ascertain which of the elements 2, do not vanish and how
elements with different n and n’ are related to each other., Of course, the
general picture of the splitting, which depends on the selection rules for the
matrix elements #mm, agrees with that furnished by general representation
theory, provided that all the necessary orders of perturbation theory

have been taken into consideration. Thus comparison of the two methc s
provides an immediate indication of when one must resort to higher orders
of perturbation theory.

§16. SPINOR REPRESENTATIONS

In discussing representations of point groups and space groups, we have
as yet made no allowance for electron spin.

The Schrédinger-Pauli equation, incorporating the first nonvanishing
relativistic terms, is

p ] in P a
0 ={ 5 +V @) + gz CIWP)— T WP — iz o=t (16.1)

where P = —ihiV and o; are the Pauli matrices (see (4.13)).

Equation (16.1) is the matrix notation of a system of two equations for the
two spinor components +; and ;. In matrix notation, the function v, is
written as a column vector:

_ %ll
%_I‘Prz ’

Here the indices 1 and 2 refer to the two spin states of the electron, where
the projection of the spin on the z-axis is +1/2 and —1/2, respectively.*

In order to determine how the wave functions ¢; transform under the oper-
ations g inthe symmetry group of the Hamiltonian (16.1), one must remember
that the coordinate transformations do not only affect the arguments of the
functions vsu(x) and $,2(x), but also transform the spinor components into one
another, since only transformations with this property preserve the Hamil-
tonian in (16.1). It follows from equations (10.6) and (10.26) that, under a
clockwise rotation through an angle 8 about an axis 2’ directed along the unit
vector e with projections e, =sin®sing, e, = sin®cosq, ¢; = cos® in the polar
coordinate system, the spinors with spin 1/2 transform according to the
matrix

91.42(63)=e““'-‘°-"=fcos%+i(ae)sin%. (16.2)

Therefore, under an operation g, the wave function y;(x¥) becomes

V=D (g) b= Dip(g) b (g~ '%) (16.3)

* Since the operations of the space groups — inversion, rotation, translation, and also time reversal — do not
cause mixing of the "electron" and "positron" components of the four-component wave function, which is a
solution of the Dirac equation, and moreover each pair of components transforms independently, none of the
consequences of symmetry theory depends on whether the starting point is the exact Dirac equation or the
approximate Schrodinger-Pauli equation (16.1), whose eigenfunction has two components.
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or in matrix notation
a B

—B a"

b (g 'x)

bt ﬂ=
bp2(g'x)

P2

, (16.4)

where @« and B are matrix elements of the matrix 2.(g)defined by equation
(16.2).

All the symmetry operations g which leave the potential V(x) invariant
produce a wave function D(g)y; which is a combination of linearly indepen-
dent functions y;(x) belonging to the same energy:

9(8’)%=§@u{£}%- (16.5)

The set of matrices d(g) forms a representation of the group ¥, called a
spinor representation. Like the usual representations, spinor representa-
tions may be reducible or irreducible, and any reducible representation may
be decomposed into irreducible representations as indicated above. Just as
in the case of the usual representations, functions belonging to the same
energy form the basis of an irreducible representation, except in cases
where the invariance of equation (16.1) under time reversal results in addi-
tional degeneracy or if accidental degeneracy occurs. When transformed by
g, each coordinate function ¢ alsobecomes alinear combination of the others:

.‘D(S)¢;k=¢ra(£"3]=§ D, 1x it (). (16.86)

The representation P’(g) formed by these matrices is generally reducible
Given the matrices Dip(g) and D (g) one can determine the matrix H(g). To
do this, compare the /-th rows of the function ¥; as given by the matrix
equations (16.5) and (16.3):

? Dy (g) Yu(x)= § Dijymt (8) bim (g™ '%).

Multiply this equation by 2} and sum over I. Then, using the relation
zl:g’u.na@ﬁ}n=6m, we obtain

Y (g'x)= ;E‘ D (2) Dy () b (). (16.7)
Comparing (16.7) and (16.6), we see that
D1, 1 (g) = Dirn (g) Duy (9) (16.8)
or
D =D XD (16.8a)

At this point one should ask in what cases allowance for spin in symmetry
theory implies new physical phenomena. It can be seen from equation (16.1)
that the only term that mixes wave functions ¢; with different spin indices &
is the so-called spin-orbit coupling

%= s (GIVVP)), (16.9)

which describes the interaction between the spin and orbital angular momen-
ta in atoms. If this term is negligible, the matrix equation (16.1) splits into
two identical equations for the functions +¥; and ¢;;, and so these functions



142 Ch, I1l, SYMMETRY IN QUANTUM MECHANICS

may also be identified. Thus, when spin-orbit coupling is neglected the
eigenfunctions of equation (16.1) correspond to values 1/2 and —1/2 of a;;
each of them is the product of the coordinate function ¢(r)and one of the
spin functions

0

!

The functions $(r)a, $(r)p transform according to the representation D,
which is the direct product of the representation 2, according to which the
coordinate function (r)transforms, and the representation %, defined by
equation (16.2), according to which the spin functions transform. If the oper-
ator in question does not explicitly affect the spin functions, all selection
rules etc. depend only on the representations according to which the coordi-
nate functions transform, since all the transitions are spin-conserving and
allowance for spin only doubles the number of electrons in each state,

Allowance for spin-orbit coupling may partially remove degeneracy, i.e.,
it may cause splitting of terms corresponding to the set of functions ay(r),
pp(r). This kind of splitting occurs when the representation P = D, X Dy,
according to which these functions transform is reducible. These functions
no longer correspond to a definite value of the spin projection, but are pro-
duced by superposition of states with o: equal to +1/2 and —1/2.

If spin-orbit coupling is neglected, all these representations correspond
to the same energy. On the other hand, when allowance is made for spin-
orbit coupling there is a specific eigenvalue £ for each irreducible repre-
sentation occurring in the direct product Dy, X Dy,

Thus, group theory makes it possible, irrespective of the specific form
of %, to determine immediately whether a given term splits when allow-
ance is made for spin-orbit coupling and to establish the nature of the split-
ting. In fact, we need only check what irreducible representations occur in
the product 2, X 2vy,. Although in atoms spin-orbit splitting is usually small
relative to the distance between terms, in crystals it usually exceeds the
thermal energy of the electron or the Fermi energy, if the degeneracy is not
too strong. In some crystals spin-orbit splitting is comparable with the band
gapor the separationbetweenbands produced by splitting of one atomic term
by the crystal field.

In all these cases the shape of the electronic spectrum and other proper-
ties are determined precisely by the spinor representations.

1
0

and f=

Construction of Spinor Representations

Asweseefrom (16.2), spinors have the special property that the matrices
D (co) and D (co4s4) corresponding torotations about an arbitrary z’-axisthrough
angles 6 and 8+ 2n differ in sign:

D (cos20) = — D (co), (16.10)
while

D =—De)=—DE)=—1L (16.11)
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For the coordinate functions, these two rotations are equivalent, and so the
relationships (16.10) and (16.11) must hold for any spinor functions. The
matrices PD(i) for these functions have the same form as for the usual func-
tions, i.e., depending on their parity,

DO=%+D()==1I (16.12)

An improper rotation through an angle 8 may be represented as the pro-
duct of inversion and rotation through the angle 8 =64+ a if 6 <sor 8 =0—=n
if 8 = n (this assures that 8’ < 21). Thus (16.10) remains valid for improper
rotations. In particular, the operation ox, which may be treated as an im-
proper rotation through 8 = 2x, is o, =ic;. Therefore,

D(0)=D(3) =D () =—1I (16.13)

Relationships (16.10) —(16.13) show that the spinor representations of
point groups are projective rather than vector representations, i.e., their
matrices satisfy the relationship

D (r1) D (ry) = ay(ry, 1) D (ryry). (16.14)

Any product of operations ryr, can be expressed as a rotation about some
Z axis through the angle 6 or as rotation and inversion. By (16.10), (16.11),
the factor system wa(ry,r2) is then defined by

1 if 8 < 2n,

@ (ris ”)={—1 if 4n>0>2n, (16.15)

where rotation through —8 coincides with rotation through 4n—#8, since

D (c_g) D(cy) =D(ty,). Formula (16.15) immediately yields w,(r, ry) if r, and r,
are rotations about the same axis (or rotations plus inversion). If the axes
are different, it is convenient to use the defining relations to determine

@y (ry, rg),

For example, in the group C;,, rotations through the angle n about the
axes u; and uy obtained from u, by rotations through 2x/3 and 4n/3, respec-
tively, are expressed as uj=cu,e;! and uj =cluc;?. Since ucu;'=c;!, it
follows that uj=cju, and uy =cu,. Consequently, the operation c,u,differs
from uy by a rotation through 2x, i.e., @,(c, 4))=—1, whereas o,(c}, u,)=1.
Similarly, according to the usual rules, uju, and wjuj are the rotation ¢2, and
uju, is the rotation ¢;. It follows from the defining relations that uju,=c2uZ,
ufuf=cul, ulu,=c2. This means that (4}, u)=w,(4;, u)= —1, o,(uy, u)= 1.

Spinor representations may be viewed as vector representations of the
double group, which includes an element Qg for each element g; here Q is
a rotation through 2r, which commutes with every element g; for spinor
representations D (Q)=— PD(e), but for vector representations D Q) =D (e) .

This method of determining the spinor representations, proposed by
Bethe, is essentially equivalent to construction of the covering group corre-
sponding to the factor system (16.15). In the general case, this group is a
subgroup of the [universall covering group introduced in §13, since it con-
tains projective representations for only one class — that containing the
given factor system. Thus Bethe's method is a variant of Schur's general
method for constructing projective representations.

The techniques of §12 reduce spinor representations of space groups to
projective representations of the corresponding point group. When this is
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done, the factor system (g, b) will be the product of & factor system ai(a,b)
defined by equation (i.e., by the properties of the space group) and a factor
system ws(a, b) defined by equation (16.15) (i.e., by the properties of the

spinors):
o (a, b)=o, (a, b) v, (a, b). (16.18)

Using the formulas of §14, we shall determine below the classes contain-
ing the factor systems w:(a, b) for all the point groups. A knowledge of the
classes K" and K@ of the factor systems @ and w2 immediately yields the
class K = KIK® of the factor system o, since the multiplication of classes
is governed by the multiplication table of the multiplicator group. In fact, as
shown in §13, it is sufficient to multiply the coefficients af’ and af? corre-
sponding to the classes K and K@, as given in Table 14.2 (pp. 113—118). The
values of a,=qal'a® then determine the class K.

Since all the projective representations of the point groups were found in
§14, the spinor representations of a given space group must coincide (up to
p-equivalence) with one of the types of projective representations or withthe
vector representations of the point groups.* To determine the spinor repre-
sentations of the space groups, one uses (12.29) and (16.15) to construct the
factor system, determines its class and, using the tables of the correspond-
ing projective representations, employs the p-equivalence transformations
given in §14 to go over from the standard factor system to a factor system
with the structure described above.

Thus, the only departure from the construction of vector representations
of these groups is the need to incorporate (16.15) in construction of the
factor system (16.16). We shall therefore describe the determination of the
factor system (16.15) in greater detail and construct the spinor representa-
tions of the point groups (see the next subsection).

According to (13.4), the standard factor system used in the construction
of Table 14.2 yields the present system when the matrix 2(r) corresponding
to the standard system is multiplied by a certain function u(r):

DO=Dulr). (16.17)

Table 16.2 (p. 150) gives the values of u(r) for all elements of the point
groups such that the factor system (16.15) corresponds to the class K,. The
spinor representations for the remaining groups correspond to the class K,
in Table 14.2. The characters of these representations are obtained by
multiplying the characters of the representations x(r) which correspond to
these classes by u(r).

We now show how to determine the classes of the factor systems (16.15)
and the functions u(r) for specific groups.

Spinor Representations of Point Groups

If all the projective representations of a group are p-equivalent to vector
representations, the spinor representations are of course also p-equivalent

* There is therefore no need to construct in addition projective representations of the double point groups, as
in references /11.2, 11.3/.
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to vector representations; the characters of the latter may be found in
Table 11,1 (pp. 71—-74). The cyclic groups C, are of this type, and by (14.6)
u may be written

“‘ﬁ::- nM
u(c:]=m” =e " (16.18)
n

where M is any odd integer, which may be chosen in the most convenient
manner. Equation (16.18) follows from the fact that by (16.15)

1 for k<ﬂ—1. (16 19)
@ (ep c")={ —1 for k=n-—1 '
so that
_ 1 for k<n,
Wc_,‘k:@(cns Cu)'-”(c?u cn) .. "’(cm ct ])={ —1 for Bk=n. (16.20}

By equation (16.13), w(oa 0n) =—1. Therefore for the group C,, just as for C,
ulo) =e™2=i, u(c)=i. (16.21)
Now, for spinor representations, just as for vector representations, () =
==+ D(e); thus
o(a b)=w(b, a)=1, if a=i and/or p=;, (16.22)

Therefore, for the group C;

For the groups Cm;=CyXC; Cia=CiXC; Con=0CsXC;, Se=C3XCy, the
spinor representations are also p-equivalent to vector representations, as
follows from (14.10) and (16.22), and by virtue of (16.12) the spinor repre-
sentations of these groups are the products of the spinor representations of
groups C, and C;, as was the case for vector representations. For these
groups, therefore, and in fact for any group G X C;, we have

u(ai) = u(a), (16.24)

where a is any element of C, for which u(r) is defined by (16.18).
In particular, for the groups C; and S;=C3XC;, we set M =3 in (16.18),
obtaining
ule)=u(sf)=—1 u()=u(s)=1 (16.25)

For the groups Cs and Ce = CsX C; it is again convenient to set M =3 in
(16.18). This also applies to the cyclic group Ds, whose generator a may
be expressed as a=¢,i=clo,. Then, by (16.18) and (1624),

u(o,)=—1, u(co,) =u(cdo,) =i, u(e;)=—1, u(c)=1. (16.26)

The only groups now remaining all of whose projective representations
are in class K, are Sy, D; and C;,. By (16.15) and (14.3), for S we have

o (sp s4)=m(s‘, s';']=m(s4, s}]=—- 1,

msﬂ=ms“=—l, (Il,.3=l
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and, consequently, by (14.6),

nl

u(sh) = — (—1re = (5, (16.27)

The spinor representations of the isomorphic groups D, and C,, have the
same factor systems w(a,b), where a=c*, and b=u;or b=g,=iu, respec-
tively. Thus the spinor representations of these groups coincide.

By (14.45), the values of the coefficients u(c}) for D; and Cs, are defined
by (16.25). As indicated above, w(cs 4) =—1 and o(c} u)=1. Therefore, by
(14.45) and (16.21),

u(u)=uw(c)u(u)=1i u(uy)=—u(c)u(u)=1. (16.28)

Consequently, for all three elements u; or o,, the function u is defined by
(16.21).

For the remaining groups, C,, and D,, the spinor representations belong
to class K,, since for these groups it follows from (16.15) that the quotient

o (cz" 2 u,] &(c:‘?. o’n)

ofuy &) " o(o, )

equals —1. Indeed, if u,e?? is rotation through the angle 2r about an axis per-
pendicular to ¢, and 4,, then ¢%, is rotation through the angle —2x.

For the groups C,, and D,, one sees from (14.45) that u(a) and u(b) are
given by equations (16.21). Here a=rc;, and b=u, or b = o,; u(ab) = u(a)u(b) =
=-—1, since (g, b) =1,

For all elements a*b of the groups C,, and D,, specifically, 4, uj=cu,,
uy =cpuer' =clu,, and u”=cuie;' =cu,, as for all the elements o,, we have
@(at, b)=1 and «(b, a)=—1, since ue,—e;'u,. Therefore, by (1424), (14.33)

, m(u.c)m(ca.c]
and (14.47), o’ = — 2

=—1, whence
m",m (f.‘i- .ﬂ,]

3 2k
a(c1)=e 2 »

e L
=z ™ u(cho,) =eT **, (16.29)

For the isomorphic group Dy, it follows from (14.24), (14.33) and
(16.26) that

u(chus) = u () u (u2)

e x n
u(sh) = — (=t =™ (-3), u(stus) =e 2", (16.30)

since for all elements a*b, specifically, u, uj=su,s7'=5su,, 0,=sl, 0, =
=su; =sju,, we again have o(a* b)=1 and w(b, a)=—1.

From (16.25) we see that the spinor representations of the group Dy =
= D; X C;, like those of D;, belong to class K,, i.e., are p-equivalent to
vector representations; u(ct) and u(cko ) are defined by (16.25), (16.28), and
for the other elements equation (16.24) is valid.

For the group Di, as for (,,, we have (o, 0n) = —w(on 0,), thus the spinor
representations belong to class K;, as is the case for the isomorphic groups
Cs, and Ds. By (14.45) u(a*), a= ¢ or ¢, is defined by (16.18). For all the

other elements, ciu,, cfo, or ictu,, it is easy to show that @(ck, up)=ua(cg 0,)=1;
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consequently,

"‘ LA

u(ck)=u(ich)=e? Yo (chu)=u(cko,) =u(icku)=e? (16.31)

As for the groups Dy, = D; X Ci, Dyn= DX C; and Dy, = Dg X C;, it follows
from (16.24) that the factors u(a) and u(ai) have the same values as for the
groups D,;, D, and Ds, respectively.

From condition (16.22) it follows at once that the factor system (16.15)
corresponds to the class K; of these groups, since in these representations
ai = ia for any element a. For the groups T, T), Ty, O and O,, the spinor re-
presentations are again p-equivalent to the projective representations in
class K,, since they all contain perpendicular twofold axes with w(a, b) =
=—w(b,a).

The function u(r) for T and O is defined by (14,53), (14.54) and
(14.68), (14.69); its values for T may be found in Table 14.1 (p. 108).
For T; the values of u(r) are the same as for 0, since the factor systems
(16.15) are the same. For the groups T,=T X C; and O, = 0 C;, it follows
from (16.24) that the values of u(r) and u(ir) coincide with the values of u(r)
for the same elements of groups T and O, respectively, and this at once
determines the appropriate class of factor systems.

If the characters of the irreducible spinor representations are known, the
formulas of §8 enable one directly to ascertain the irreducible constituents
of any product @ X %y, where D is any vector representation of the point
group; here one uses the fact that by (10.20) and (16.12) the characters of
the representation @i are given by

x(c,)——-!Zcos%. x(s¢)=x(fc,+,.)=—2sin%. (16.32)

The basis functions of any spinor representation may be built up from the
basis functions of a representation % X @, containing the given representa-
tion. For this purpose one expands the system of functions ¥ and ¢,
where ¥¢; are basis functions for &, in terms of irreducible representations.
The required basis functions may also be derived from basis functions for
the representations of the full spherical group with half-integer ;, expanding
the latter in terms of the irreducible representations of the point group in
question. If j=23/2 and the canonical basis is used,

s

h=—gg e Yi=g=lx+iyp—22a)

Y=ot (e—i)p Y= — el —in)at 2]
Table 16.1 gives the characters of the spinor representations for point
groups possessing projective representations not equivalent to vector repre-

sentations, for which the spinor representations do not belong to the class
Ko; basis functions are also listed. Table 16.2 indicates the representations
according to which the spinor functions transform, for groups such thatthese
representations are p-equivalent to vector representations, and the values
of the products D X Dy, are given for these groups. Groups which are pro-
ducts of these groups and C; preserve the same multiplication rules, since
2Dy, is even. In such cases the representations 2j according to which the
spinor functions transform are p-equivalent to appropriate vector represen-
tations @; and differ from them by the factor u(r) presented in the text and
in Table 16,2,
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TABLE 16.1. Character tables for spinor representations

Groups Dy Cyy

Basis R
D, . ciz | ear | ¢y | functions Multiplication table
ng e ] Op 00 D?! CSP AI Ag B| Bg
E 2 0 0 0 a, B E E E' E’
D,| e | e €4 8? 2u, 2“; Basis functions Multiplication table
Cio| € | €2 Cy "'-'3 204 20:. Dy, Cyp Dyy
ng e Cq 8y 33 2“9 20'd A] Aa Bl Bg E
El2|o|VZ|-Vzjo|o| ap [(XHOSE £ E £ E+E
Ble|o|-va|vz|o|olEtmal op |5 e g g4y
Groups D Cep, Dsp
Ds|e|cafes| ca g | 3uy | 3up Basis functions
Cap e Cg | Cy Cg Cg u‘.’g 30'(; 30'; DO: cév D‘.lk
Dsp| e | on| cg Sg s’g 3u, 30’0
_ _ (x—iy)a,
Efl2fof1|=1]|V3 3l o | o a, P X+ i)
(x+iy)a,
El2fo|1|=1|=V3| V3| o | o [GLPNE| a8
- (x+iy)a, | (x+iy) o,
Egl2|of=2(2 (o0 | o fo | o BT CTH
Multiplication table
Al Ag A; Aq El E!
At AT AF Ay E* E~
E| E| E| E, E Ej+Ey | El+E
E; E; E; E| E| El+E | E3+E
5 |l g | 5| B | B | B+ | E+g
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Group T
T e dey | 4ci | 3c, Basis functions
E | 2 1 [ =1 o a, p
1 . 1
Ej| 2 [ & |—e| 0 %3 (r¥, — ivdi), Ve (¥i — ir %)
E | 2 e2 | —e,| O 1 v 1 ,
3 3 3 75 (Y32 +iv*2,), 5 (Y4, +ir¥)
Multiplication table
A B, B, E
E} E} E; E} El + Ej + E
Ey Ey Ey Ej E{ + E3 + E}
E; Ey E; E; E| + E;+ E,
Groups Ty O
T4l ¢ 4cs 4L’§ 3¢y| 3s, 333 604 Basis functions
0| e| 45 (4¢3 3¢, 3¢, | 3¢} [6u, T4 o
1
[(x+iy) p+2a’
Ejl2| 1 [-1f0 V?—V'z’o'jé. a, B
Vs [(x—iy) a —2B]
1 .
ﬁ[(y + ix) 2B+xyal
Ejf2l 1 [—1]o|=V2|VZ |o a, ;
—[(y—ix) za —x
V-3—l(y ) yB)
Gl4—1]1 0 o |o y¥2,, v¥2, Y2 Y4
Multiplication table
| a4 | 4 | E F, F,
E| E| E; ¢’ El+G’ E3+G’
5| B | E o’ Ej+0’ E,+6’
¢’ G’ G | E{+E;+G’ | E|+E;+2G" | E\+E;+2G

149
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TABLE 16.2. Decomposition of & X 9, , into irreducible constituents*

Representa-|
tions accord-

Representations occurring
in the product of

ulg)

Group i“% I:n:;k:‘:h ®,, and the indicated
transform [iRgle-valued representation
C, | A| A |A>Aa4+ 4 u(e)=1
Ca | Al | Ay |Ay> Al + A} Ay > Al + AYf u(c) =i
Cs | Al | Ay |[A\ > A+ Ay Ay Al + Ayf u(o,) =i
Cs | By | B] |A ~>B{+ B3 B, >Al+ Byl u(cs)=—1, u(d)=1
B, > A} + B]
Co | By | AY |A=>A+By &> A+ B u(c)=0/V2)(1+1)
u(cg) =1
B,—> A| +B), By>A,+ By u(})=—0/V2)(1—i)
Se | Bl | A |A,>Aj+B), Ay> Al +B) usd=0/V2)(1 40
ue)=—i
B, > A} + B By>A|+B]| u(s)=—0/V2)1-0
Cs | By | B, |A > B|+ B} Ay>Bj+ Bj| u(cg)=u(cg)=i
By, > Al + By, By—> Ay + By| u(cg)=—1, u(c3) =1
By—> A} + B}, By~ A] + By| u(c))=—i
Cwn | By | B |Af»>B} +B;7, u(sy) =u(sy)=i
AT > By + B’
BY > A + By, u(eg)=—1, u(cf) =1
By > A7 + B}’
B > A7 + B}, u(o,) =—i
By - At 4+ BT’
Dy E’ A ~>E, A)~>E, ule)y=—1,
E+A{+A;+E’ u(c§)=l.u(u2)=i
Csv E A ~>E, Ay>E, u(cy) =—1
E>Al+ Aj+ E u(c3) =1, u(op) =i

* Forspinor representations there may be two values of y(q), differing in sign,
for each rotation ¢, depending on the choice of u(g). Here, for all the

groups except Si, yq (@) =e

ig/

%, xp@=¢"?; for s, the sign is reversed.

Since multiplication by u(g) may reverse the parity of the representa-
tion, the indices of A and B may not correspond to the true parity.
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§17. ELECTRON IN A PERIODIC FIELD

As indicated in §15, the states and spectra of any elementary excitations
of an ideal crystal, such as excitations of electrons, phonons, excitons,
spin waves, may be classified according to representations of the space
groups. In this section we shall use group-theoretic results to characterize
the wave functions and energy spectra of electrons in an ideal crystal,

The wave function of an electron moving in an ideal crystal is a solution
of the Schrddinger equation (15.1)

by = E. (17.1)
where the energy operator # is
h?
H=—5-V+V(x). (17.2)

For the time being, we shall not include spin-orbit coupling in the opera-
tor 2 (17.2).

The potential energy V(x), i.e., the self-consistent potential due to the
ions and electrons forming the ideal lattice, and hence also the energy oper-
ator #, are invariant under all transformations which take each point of the
crystal to an equivalent position, i.e., under all transformations in the
space group G. Consequently, by (15.2)

gVix)=V(g-'x)g=V(x)g, g¥—Hg. (17.3)

The symmetry group of the operator 3 is thus the space group G, and there-
fore all its eigenfunctions ¢ may be classified in accordance with the irre-
ducible representations of G. As pointed out in §6, any space group contains
as an abelian subgroup the group T of translations by the principal periods
of the Bravais lattice. In view of the translational invariance of the potential
V(x), it is often called a periodic potential.

The representations of the translation group are characterized by a con-
tinuous vector & in the Brillouin zone,

A convenient choice of eigenfunctions for the energy operator % is the
set of functions y, that transform according to the irreducible representa-
tions of the translation group T; by (12.8) we have

L0, () =1, (x —a)=e"*ay, (x). (17.4)
It follows from (17.4) that the wave function ¥, can be written
IP,=E“"H,{¥)- (17.5)

The functions (17.5) are known as the Bloch functions, and the functions us(x)
are the Bloch factors (or modulating factors).

The energy corresponding to state ¢, is a function E (k)= E(k,, k&, k) of the
vector k.

In the general case equations (17.1) and (17.4) have infinitely many linear-
ly independent solutions. We designate each linearly independent solution of
(17.1) and (17.4) by an index n:v,, =e*~u, (x), and the corresponding energy
is denoted by E.(k). Thus, an operator # with periodic potential generally
has a multiband spectrum E,(k), and each branch of the spectrum is charac-
terizedby a discrete band number n. The state within a given band n is
characterized by a continuous quantum number k.
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Different branches E,(k) may coincide at isolated points or along a curve
in k-space. This touching of bands may be either accidental, i.e., due to the
properties of the potential V(x), or a consequence of the symmetry of the po-
tential. In the latter case it can be investigated by group-theoretic methods.

From (17.2) and (17.5) it follows that u.. satisfies the equation

Bx tinp = & (R) ns, (17.8)
where
Hoy=— 4V (x)+ 22, (17.7)

Unlike the operator ¢ (17.2), #,depends on the wave vector k, since it in-
cludes the additional term #kp/m, where p is the momentum operator. The
eigenvalues E,(k) for this choice of & differ from the electron energy &, (k)
by the energy #%?*2m of a free electron.

The periodicity of the functions u.s is essentially a boundary condition for
equation (17,6); we must therefore confine our examination of the solutions
of this equation to periodic solutions.

If equation (17.6) has m linearly independent solutions us (i=1,2,..., m),
implying the existence of m linearly independent solutions v, =e"*u, of
equations (17.2), (17.5) corresponding to one energy E(k), we say that there
is an m-fold band degeneracy at the point k. As shown in §15, the number
of linearly independent solutions of the Schrodinger equation is determined
by the dimension of the irreducible representations of the symmetry group
of the energy operator, in the present case the operator # (17.7). Thus the
band degeneracy at the point & is determined in the general case by the di-
mension of the irreducible representations of the symmetry group of the
operator #,. Because of the term #kp/m, the operator 2, possesses lower
symmetry than that characterized by the space group G, which is the sym-
metry group of the Hamiltonian 2.

Indeed, it follows from (17.7) that for any element g= G

2 hkg—!

g (1) =1 (87 x) = — 5 V' + V (g') + P =

==L vtV +r L = (). (17.8)

m m
Thus the operator 2 is invariant only under transformations # in G that
leave the vector k fixed, hk=*k. For points inside the Brillouin zone, these
transformations form the little group G introduced in §13,
Consequently, the band degeneracy at k is determined by the dimension

of the irreducible representation 2* of the little group according to which
the Bloch functions y,, transform:

by =1, (h_t")=;g:: ()b, (), heg,.

The Bloch factors u.e transform according to the matrix 2*(r) introduced
in §12 (see (12.26)), which depends only on the rotational elements of the
group Fa:

huge (x) =un (B'%) = D D8 (N usa (x); h=(r|a + a), r & Fa.

As demonstrated in §12, the matrices D*(r) for points inside the Brillouin
zone form vector representations of the crystallographic point group f». For
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such points, therefore, the band degeneracy at k coincides with the dimen-
sion of the irreducible representations of F.. It is clear that band degener-
acy may occur only for points of sufficiently high symmetry.

A basis for the total representation £® of the space group with irreduc-
ible star {k} is formed by the Bloch functions 11:“‘, where k; ranges over the
different wave vectors in the star {#}. As pointed out in §12, the vectors &
may be obtained from & by applying transformations g:: k = g;k, which are
elements of the space group G but not of the little group G,. By (12.19),

Pus, = Vegp =¢_v"1":.¢_“I (x) =e'®i**u, e (%) (17.9)

Since all the functions belonging to one irreducible representation corre-
spond to the same energy,

E(k;)=E (gk)=E (k) (17.10)

for every g = G. Thus the band structure as a whole exhibits the symmetry
characterized by the crystal class F of the space group G.

The total energy degeneracy N, due to the lattice symmetry, equal to the
dimension of an irreducible representation of the space group, is by (12.16)
equal to the product of the band degeneracy m at & and the number of points
in the star (k}:

Ny = mf.

One can distinguish two types of degeneracy in the energy spectrum: band
degeneracy at a point k, due to the symmetry at &, and energy degeneracy,
due to equal energy at different points of k-space, corresponding to
different points in the star of the vector &.

Compatibility conditions. In crystals with sufficiently high sym-
metry, the Brillouin zone will always contain points or curves at which band
degeneracy may occur, i.e., there are representations of the little group of
dimension greater than 1. Consider any point &, inside the Brillouin zone in
whose neighborhood there are no points of higher symmetry. The band
degeneracy at the point & is characterized by the representations of the
little group Ga,; at a neighboring point &k + % =% we must consider the group
G:. In general, the point k possesses lower symmetry, and so Gsis a sub-
group of Gs, and the dimensions of the irreducible representations of G are
less than the dimensions of the representations of G. Hence the band
degeneracy at k1is partially or completely removed. Since the group Gs
depends only on the direction of the vector » if x» is sufficiently small, the
nature (but not amount) of band splitting also depends only on this direction.
But if the point k lies on a curve of symmetry, the symmetry of the points
k) and k remains unchanged when one moves along the curve, and the band
degeneracy is not removed.

The pivotal problem here is to determine which representations of G,
occur in a given representation @* of Gs, and what representation of Ga is
obtained from the representation £* if the degeneracy is not removed. The
answers to these questions are given by relations connecting the represen-
tations at neighboring points, known as compatibility conditions.

In order to derive compatibility conditions, we proceed exactly as in the
case of term splitting caused by a perturbation lowering symmetry from G,
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to Gs. Thus (see §16), we must determine the coefficients in the expansion
of @™ in terms of the representations D* of Ga:

D" =Y, D, (17.11)
3

The coefficients ¢,, which indicate how many times the representation D}
occurs in &%, may be determined from the known characters of the repre-
sentations @* and 2£*, using (8.18). If ¢, is not zero in (17.11), the repre-
sentations @ and @} are compatible. By (12.26), for points in the Brillouin
zone the matrices D*(r) may be used instead of $*(h) in the compatibility
conditions (17.11).

Allowance for spin-orbit coupling. As shownin §16,the
operator #,, should be included in the Hamiltonian &6 to allow for spin-
orbital coupling. If we omit the last two relativistic terms, which do not
depend on o, from (16.1), the energy operator # for an electron moving
in a periodic field will be

=L+ V(@) + g (W plo). (17.12)

Correspondingly, the operator 2, acting on the two-component function u.s is

Ba=L 4V () + 24 P {19V plo) + s (IO WV). (17.13)
The operator 2, (17.13) can be written
0= %6+ Lk, (17.14)
where %, is the operator (17.2), and = is the vector
x=p+ oz [0 W] (17.15)

The second term in (17.14), as in (17.12), mixes states with different spin
projections.

As usual, the symmetry group of the energy operator # (17.12) is the
space group G, and so the states of an electron with spin in a periodic field
must be classified according to the spinor representations of the space
groups. All the results of §12 are valid for spinor representations. Thus,
every irreducible spinor representation of the space group is characterized
by the irreducible star {k} of the vector & and by the index of an irreducible
representation of the little group Ga.

As pointed out in $12, these representations may be obtained using (12.23)
if the projective representations 2*(r) of the crystallographic point group Fs
are known,

If the wave functions +,, at the point k& transform according to an m -
dimensional representation £* when no allowance is made for spin-orbit
coupling, when the spinor functions « and B are taken into consideration the
functions ¢,a and ¢,B form the basis of the 2m-dimensional representation
D* X Dip. According to the rules developed in §16 for determining the nature
of band splitting due to spin-orbit coupling, the representation 2*X 2,
should be expanded in terms of the irreducible spinor representations @3 of
the little group:

D' X Dy = 3 ey D, (17.18)
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where ¢, are integer coefficients, determined by character theory.

If the representation @* X &y, is irreducible, spin-orbit coupling does
not remove band degeneracy. Instead of (17.16), one can expand the product
D*(r) X Dz in terms of irreducible projective representations of the point
group. For points on the boundary of the Brillouin zone, the direct product
D*r)X Dip of projective representations which belong to classes K, and K;,
respectively, should be expanded in terms of irreducible representations
Di(r) of class Ks = KiK.

The compatibility conditions are also valid for spinor representations of
space groups.

Analytical properties of the Bloch functions. The Bloch
functions v,,, as functions of the continuous spectrum, will be normalized
with respect to the crystal volume »:

J- ¢:|! *n‘!’ dv= (‘bﬂb 'pu‘!‘) = rénu'blh" ( 17.1 7)

The integration in (17.17) extends over the entire crystal volume. Since

» = NQ,, where N is the number of primitive cells and Q is the volume of
each cell, it follows from the periodicity of ¥,,¥,, and from (17.17) that the
functions u.s are normalized with respect to the volume of a primitive cell:

{Unn ﬂu'a)=~§;: J‘u:n Upen dty =80, (17.18)
d

Here the integration extends over the volume of a primitive cell.

Note that functions u.s and u,s with different k and K are not orthogonal
when ks k, since they are eigenfunctions of different operators 3 and ..

We now consider the behavior of the wave functions near a point of degen-
eracy k. Suppose that at k, there are m functions ¥, =e** y,, (x)(s=1,2 ...
..., m) with energy E(k). Remaining in the neighborhood of k,, let us move
to a point k=% +x. As indicated above, the symmetry of the wave functions
at k is determined by the little group Gs, which is generally a subgroup of
Gs,. Therefore, as we move away from k,;, the band splits into several
branches, i.e., the degeneracy is completely or partially removed. For
small vectors %, the symmetry of the wave function and the nature of the
band splitting depend only on the direction of ». The amount of band splitting,
of course, also depends on the length of x. Therefore, in any small neigh-
borhood of the degeneracy point k the wave functions ¥, ,,,, corresponding
to each of the split-off bands E;(k,+ %) depend essentially on the direction
of the vector x and may differ for arbitrarily small vectors = in different
directions, since as the point k is approached the wave functions ¢, , .,
become a combination of degenerate functions ¢, , which depends essentially
on the direction of approach to k. Thus, the wave functions corresponding
to each of the split-off bands, as functions of g, are discontinuous at k&,.
In a nondegenerate band, the wave function is continuous at any point k&,
since when &, is approached in any direction the wave function ¢, tends
to ¥,

To establish the analytical properties of the functions u,s and the energies
&.(k), we shall find it convenient to use the equation

(&n (k) — 8o (1)) Ctmrtinen) = 2= 3 (ke — ) 7, (17.19)
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which follows from the identities
(Unnr FBatinay = En (R') (Unatinnr), (HBatinn, Unw') = &En (B) (Upatinn)

and from the fact that the operator %, is selfadjoint. In (17.19) a8, ., is the
matrix element of the operator =n® evaluated for the periodic functions um:

ok = %J U no ity dyy=pt, .+ War:" lo VV]:._ s (17.20)
As usual, when allowance is made for spin-orbit coupling u.s is a two-
component function.

We first consider a band 7 which is nondegenerate at k. Setting n’=n in
equation (17.19), let & tend to k. Using (17.18) and expanding &, (k') in series
about k,, we obtain

a

’ 9&n R h ’ a
E (ku - ku) kg - _m" E ('ka - kn) ﬂ'nl. nk’*
a

Hence it follows that

oF. (k) _ B .
e s e (17.21)

Since =g, ., is a continuous function of k, it follows from (17.21) that in the
case of a nondegenerate band &,(k) is a continuously differentiable function
of k.

We now turn to the case of a band which is degenerate at k. Consider two
branches of the spectrum, i and j, and set k=ky+ », k¥ = ko+ Ax, where 1 is
an arbitrary number. Then, by (17.19),

h
& (ko + %) — &, (k) + 20) (uy p gy = o (L= Mxgn® L (17.22)
Now let x— 0. Expanding &,;(k, + =) and &, (k,+ A») in series in x,
8 kot %) =8 (k) + Yyt ger+ ...,

Bu(ko+1%) =8, (k) +1 Y %0 ot + ...,

noting that by (17.18)
ii_ﬂ(ﬂi. ot hn U megan) = 8yp,

and using the equality &, (k) =&, (k;), we obtain
8y z g -Z—E— (ko) = % Z HaTlh,, [k (%), (17.23)

i.e., the operator X x s, evaluated for the functions lim u k4, is diagonal
a A0

with respect to ¢ and j, and

3& (ko) B
dkg aTn‘ﬂ?.._“.- (17'24}

Since the matrix elements =3, , are evaluated for wave functions which de-
pend on the direction of approach to k, and therefore have a discontinuity at
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this point, it follows that the matrix elements themselves and the derivatives
6“ also have a discontinuity at g,.

We now consider the behavior of the function u,, 4. near &,. Expand this
function in terms of the complete system of periodic functions ums,. Since the
expansion coefficienis are the scalar products (u, a4uime), W€ obtain from
(17.19)

_ h xunml. i, 4x
Up, l.+n—7n‘m gn{iu-'—x} 8"‘(*} Uk, (17.25)

From (17.25) we obtain the first term of the expansion of u,, s,4, in series
with respect to the small parameter x, for a nondegenerate band:

*
Hn, h+n=uul. I 2‘ E. (:ojm. EP::‘[ko) Umn,, (17 26)

since &, (k) — &, (k)= E.(k) — En(k)). It follows from (17.26) that for a nonde-
generate band the function un is differentiable with respect to &:

Oty _ Z “m.lu — Tmbunk
mikyy

Ok Eq (ko) — Enm (o)
and thus the matrix element of the operator %. is
( 4 \ h ":u. nk, 9
Umr, —5 Unhk, —-_——— 17.27
T E G- Eal) (N (17.27)

Equation (17.26) now yields the expansion of the matrix elements =j, PR
terms of «:

h X6k, mk, Sk, ik, (17.28)

nt = n° + —
nky, nky4n nky, ni, »
™ g mwn  En (k) = Em (k)

and from (17.21) we obtain further terms of the energy expansion near g, for
a nondegenerate band:

B n? n? =P
& (b +2) =&, (k)+— Koy b, T =7 3 Ha ke mhs Tk, nky 17.29
o *)+ E e ng ”.E,. Ea(h)—Enl) D)

It follows from (17.29) that

a?gn{*o} L T, mb, Yk, nk
|'| =__ 0, Mk, m L] 17.30
dgokg  m' ; Ep (ko) = Ep (ko) - ( )

In a similar manner one obtains further expansions of the wave functions
Ua, a4+« and the energy &n(ko+ ) in terms of % for a nondegenerate band.
Hence the wave functions and the energy are analytic functions of k near
points at which there are no band degeneracies.

For a degenerate band, we divide the summation over m on the right of
(17.25) into two parts: summation over bands j which belong to the given
degenerate band, and summation over all other bands m. Then, for small x,

HaTU i, 1k, (%)

h
Uy, by = Uin, (%) + — O miby, AT
1, ket i, (%) + w By (ho) — By (R e

(17.31)
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Here

Uy, (W)= y_ﬂ“t, bttt e, 0, (R) = 1‘3“&.. TR (17.32)

This yields a correction to the matrix element anf, ;..

HgTin, ma, (%) “ﬁu,. 1, (%) ] (17.33)
8

h
Uy, e = Tin, 0, () F m 2 E; (Ro) — Em (ko)

moykny,,

The expansion of the energy near a degeneracy point of &, is

n n, ») nB ®
8,k %) = &, (k) + 1 Wy, o, () F o7 Dty 3y —rpmh D imb D (17.34)
a aff ok i
This expansion is formally identical to the formula (17.29) for a nondegener
ate band. There is, however, an essential difference between (17.34) and
(17.29). In (17.34) all the matrix elements depend on the direction of the
vector %, so that they undergo a discontinuity at * = 0. The expansion
(17.34) for a degenerate band is thus not the usual Taylor series expansion
of &;(ko+x), as in the case of a nondegenerate band. For example, if
aty, w, ®)¥ 0, the second derivative of &;(k) does not exist in the case of a

degenerate band, since %f—‘- has a discontinuity.
If all the matrix elements nfy, w, (¥) vanish identically at the point of de-

generacy k,, it follows from (17.34) that the second derivative af:‘:;s is

discontinuous there, and from (17.19) that the wave functions u, (x) diagonal:
ize the quadratic form

¥ o, m, () Thun, ga, (%)
ra § ¥akp 2 &o (ko) — Em (ko)
m

with respect to / and j.
The analytical properties of the electron energy

h2k?
E.()="2% 1 &, (k)
and the Bloch wave functions
Y=o u,
evidently coincide with the properties of &,(k) and u,, since #%4%/2m and ef*s
are analytic functions of the vector &.

Thus, for a nondegenerate band E,(k) and ¥,, are analytic functions of &,
and we have

dE, (k) h? B
ok — m Rt o Taa e (17.35
O°E, (k) B 22__ 2 Tin_ m onn, b+ e, ms Tona, ma -38)
Shadky — m T T £ En (k) — Em (R) :
my=en

The second of equations (17.35) is known as the f-sum rule. In the case of
a degenerate band, the first of equations (17.35) is always valid, the second

only when a?, . vanishes.
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We now consider the velocity operator v ={x3} =n/m of an electron in a
periodic field. The velocity operator is diagonal with respect to # and pos-
sesses both interband and intraband matrix elements:

1 (. » B
0 e =F _[q;u 0% g BT = kB By T 8000 ae (17.36)

By (17.36) and (17.35), the diagonal element of the velocity operator is

. | O, (k)
Un = F oh, (17.37)

§18. TIME REVERSAL

It is clear from (15.1) that when spin-orbit coupling is neglected and no
magnetic field* is present, the energy operator is real and the Schrddinger
equation

v
Ho=in3; (18.1)

is invariant under time reversal: replacing { by —¢ in (18.1) and taking
complex conjugates, we obtain

. . 0P
3’6‘# —-lhT. (18,2)

Equations (18.1) and (18.2) show that the operation of time reversal, usually
denoted by K, takes the function ¢ into a new function

Kp=1v", (18.3)

which satisfies the same equation as ¢ when # is real. The time-indepen-
dent Schrodinger equation is

(96 — E)yp=0. (18.4)

When the Hamiltonian is real, #*= K-'#K = #, the eigenfunctions ¥ and
K¢y correspond to the same energy, for the same reason as do ¢ and gy,
where g is an element of the symmetry group & of the Hamiltonian. The
operation of time reversal K may therefore be regarded as a new symmetry
element.

It is easy to show that K commutes with any transformation in the space
group G. Since ¢ and ¢*transform according to complex conjugate repre-
sentations 2 and 2* of this group, it follows that

w:=§®;;¢; and R(K¢=)=,E@?=(K¢;)- (18.5)

* The quantum mechanical equations are invariant under time reversal provided velocities are reversed simulta-
neously, and therefore provided the directions of the currents and the magnetic field are reversed. Thus the
term in # containing odd powers of the magnetic field H is imaginary, and

K™'3 (H) K = 26" (H) = 2 ( ~ H).

The operator K transforms (H) into Kp(H) = y*(—H) and couples wave functions corresponding to different
energies E(H) and E(—H).
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On the other hand,
Kgp =K ( ? Q;:‘Pr) = ;2 Djobi,

i.e.,
Kg=gK. (18.6)

The eigenfunctions ¢ and K¢, which satisfy the same equation (18.4) and
correspond to the same energy, may be either linearly independent, in which
case one has two independent systems of orthonormal functions ¢ and K¢ for
the same eigenvalue E, or linearly dependent on each other via a unitary
matrix T:

K‘Pt=$‘fn¢;- (18.7)

In the latter case the representations @ and @* are obviously equivalent.

If v and Ky are linearly independent, they may transform according to
either equivalent or inequivalent representations.

Thus, three cases should be distinguished*:

a) the functions ¢ and K¢ are linearly dependent;

b) the functions ¢ and Ky are linearly independent and transform accord-
ing to inequivalent representations @ and 2*, i.e., x(g) # x*(g);

c) the functions ¢ and K¢ are linearly independent and transform accord-
ing to equivalent representations @ and 2*, i.e., x(g) = x*(g).

Since linearly independent functions % and Ky correspond to the same
energy, it follows that in cases (b) and (c¢) invariance under time reversal
causes additional degeneracy, andinthese casestherepresentations 2 and 2*
according to which the functions transform must be combined. Specifically,
in case (b) complex conjugate inequivalent representations are combined,
and in case (c) equivalent representations. Therefore, it is of practical
importance to be able to distinguish these three cases, i.e., to determine
when invariance under time reversal imposes additional requirements on
the wave functions, due to the linear dependence of the functions ¢ and Ky,
and when it results in additional degeneracy.

In order to answer this question we study the properties of complex con-
jugate representations in greater detail. In cases (a) and (c¢) the represen-
tations 2 and 2* are equivalent, i.e., their charactersarerealand coincide,
so that there is a unitary matrix T which transforms all the matrices 2(g)
into @°(g):

2'(=T"'D(@)T- (18.8)

We stress that the existence of a matrix T with this property does not
guarantee a linear relation of type (18.7), but if there is such a relation the
matrices T in (18.7) and (18.8) coincide.

Let us consider the properties of the matrix T. Take complex conjugates
on the right and left of equation (18.8):

D@=T"D (T (18.9)

* This classification of representations, which is the most convenient for physical applications, differs somewhat
from that customary in courses on group theory, where real representations are assigned to case (a), complex
inequivalent and equivalent representations to cases (b) and (c). The two classifications agree for vector (usual)
representations, but cases (a) and (c) must be interchanged for spinor representations.
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Substitute P*(g), as given by (18.8), into (18.9):
D(e)=TT")" D(g)(TT). (18.10)

Equation (18.10) means that the matrix TT* commutes with all the matrices
2D (g) of the irreducible representation under consideration. Therefore, by
Schur's first lemma (8.1a) it mustbe a multiple of the identity matrix, TT*=
=clor T= e = ¢f'. Taking transposes on both sides of this equation, we
obtain T=¢T =¢T. Hence ¢= 11, and so there are two possible cases:
T="T,ie., IT"=1, or T=—T, ie., IT'=—1I (18.11)

For real matrices, =3, the matrix T in equation (18.8) is obviously
I and we have the first case: T =7. Now a unitary transformation of the
matrix @, taking D into SDS~', takes the matrix T into I”=S8TS; thus the
property (18.11) of the matrix T is preserved: T'T" =TT'. Hence, for any
representation 2 that can be made real, the matrix T must satisfy the
condition T=T,

Consequently, if F=—7T, the representation is essentially complex and
cannot be made real.

We claim that T= T is not only a necessary condition for the representa-
tion @ to be real, but also sufficient, i.e., if f =T there always exists a
matrix B which transforms the representation 2 into a real form:

2" =(B"'9B)=B"'PB=2. (18.12)
To prove this, we first diagonalize the matrix T by a unitary transformation
u: v=u-Tu, where t,=e'. This is always possible, since the matrix T is
unitary, Taking transposes in the equation

Tu=ur (18.13)

we get

ul =1u.
Since t, as a diagonal matrix, is symmetric (?=r), T=T and u=ug"", it
follows that

Tu' — u'r. (18.14)

The n-tuple uw (I=1,2,...,n), where n is the dimension of the matrix T,
is called the k-th eigenvector of the matrix T belonging to the eigenvalue n,
i.e., to the k-th root of the determinant |T —t|=0; it is denoted by u,. Since
by (18.13) an eigenvector is a solution of the system of homogeneous equa-

tions ; (Ty— b)) = 0, it is determined up to a constant factor ¢.. In order
that the matrix # remain unitary, it is necessary that ¢,; =1, so that ¢, =
= ¢!, This means that the matrices u and «*in (18.13) and in (18.14) differ
at most by a diagonal matrix ¢, cy =e'** 8, ; in other words, u* =uc, whence
(uc'?)® = uc'®, (18.15)

where ¢ is the matrix with elements clf,:_e‘%ﬂ o . Replacing u in (18.13)
by uc", we see from (18.15) that the matrix u in (18.13) may be assumed
real and unitary. A matrix satisfying the condition u' =4 is said to be
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orthogonal. Define a matrix B by
B —ubu-', (18.186)

where 02=1t, i.e,, 0is the diagonal matrix with elements 8, = 1} =¢'“u>. By
(18.13), this matrix satisfies the following relations:

B—=utw'=T, B=u'"9u=ubu-'=B. (18.17)

We claim that the matrix B with properties (18.17) satisfies equations
(18.12), i.e., transforms P into real form. By (18.8) and (18.17),

9 ' =(B"'9B) =BD'B"'=BT"'PTB'=B"'DB=9'.

Thus, the condition TT*=1 is a criterion for real representations. We
recall here (see §9) that real representations are representations all of
whose matrices can be reduced to real form, regardless of whether the
reduction is actually performed.

We now consider how the conditions imposed on the matrix T in (18.8)
link up with the properties of the functions ¢ and Ky. We first assume that
there is a relation (18.7) between the functions % and Ky, i.e., case (a)
holds. Applying the operation K to (18.7), we obtain

K% = 2 T} Kby = 2 T, Ty 0= 2 (T (18.18)

Since K% =K¢'=vy, i.e.,
K =1, (18.19)

it follows that necessarily TT* =1, so that the functions transform according
to a real representation D.

Condition (18.19) is valid, however, only for vector representations, i.e.
without allowance for electron spin.

As noted in §16, the Schrodinger-Pauli equation, as opposed to equation
(18.1), includes a complex term which describes spin-orbit coupling:

%= — s (G[VVY]). (18.20)

Thus the substitution / - —¢ and the transition to the complex conjugate
equation transform ,, into ., , corresponding to the substitution o, » ~0
Thus

" (0,) =36 (— o).

However, instead of the functions ¢*, which are solutions of the equation
(%*—E)$*= 0, we can consider functions 8y, where 8 is a unitary operator
which acts on the spin matrices, so chosen that in the new representation

8§7'% (0) S =8""'%(—0]) S = (v). (18.21)
It is evident from (18.20) that, since ¢,=0,, ¢,=—0, ¢,=0,, condition
(18.21) implies that
§'6,8=—0, S§'0,S=0, S$'¢,8=—o, (18.22)

Using the relations

0,0, = i0; Oy,
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where &;u is the unit antisymmetric tensor, one shows easily that the unit-
ary matrix § satisfying (18.22), coincides with oy up to an arbitrary phase
factor. This phase factor can be assumed equal to unity, taking

-1
§=8" =g,

Consequently, the function e,p* = 0,Kep, where K, is the operation of com-
plex conjugation, satisfies the same equation as the function y. This function

vi| |-
ﬂy ¢; =

ip;
will be interpreted as the image of the function ¢=i:;| under the time

reversal operator K. Thus the form of the time reversal operator for spin

functions is
K¢=ﬂvK°¢=ﬂ"¢.' (18.23)

We now show that the operator K defined by (18.23) commutes with all
the elements of the space group, i.e., satisfies condition (18.6). By (16.3)
and (18.23),

gk (x) = go¥’ (x) =Din () o,9" (g~

and
Kgb(x)=0,(Din (@) b(g~'%)" =0,D],(g) ¥ (g7'x),

where P, (g) is the matrix according to which the spinors with spin 1/2
transform under g. By (16.2), the general form of this matrix is

p

Diplg)= _uﬂ. <

It is easy to show that ¢,Dj,(g)=D,,(g)o,, and so the commutation relation
(18.6) is indeed fulfilled, It follows from the commutation condition that
the spinor functions % and Ky transform according to complex conjugate
representations. Indeed, if

&b = ? Dby

then by (18.6)
£K¢:=Kg¢;=ﬂ.KozI: Dy = ; Do) = JE Dy (K9),-
The previously cited cases (a), (b), (¢) may also hold for spinor functions,
In cases (a) and (c¢), when @ and 2*are equivalent, there exists a matrix T

which takes @ into D" and satisfies equations (18.8)—(18.11) and (18.18).
For spinor functions, however,

K=o Ko K= o0 b=—1,
so that, as opposed to (18.19),
Kr=—1. (18.24)

Consequently, in case (a), when there is a linear relation (18.7) between the
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functions ¢ and Ky, the matrix T satisfies the condition
TT"=KI=-1,

i.e., the representation @D according to which the functions ¢ transform is
essentially complex, and equivalent to the representation @* according to
which the functions Ky transform.

We have thus shown that the condition

+ 1 for vector representations,
TT'=K4 or T=KT, where K?= (18.25)
— 1 for spinor representations,

follows necessarily from the linear dependence of ¢ and Ky.

We will now show that this condition is also sufficient: if TT*= KzI, the
functions ¢ and Ky must be linearly dependent, except in the case of acci-
dental degeneracy, i.e., accidental coincidence of the energies of two in-
equivalent representations.

Define functions

Vit =¥+ 6, where 6 =TKy,

and T is the matrix defined by (18.8). Under all operation of the space
group, the functions ¥+ transform into one another, for by (18.8) T =32T,
and

Do, =DV + TKDY =Dy + TD'Kp = Dy,

Time reversal also transforms these functions into one another, since by
(18.25)
Kby =Kb+ KTKp=T"'0+ T 'K'p=T""p,.

It is easy to see that a similar relation holds for the functions y;- = ¢; — 6y

Thus, if TT*= K4, we can form two systems of functions ¥; and ¢-, which
transform independently into one another under the operations of the space
group and under time reversal. If these functions are independent, acciden-
tal degeneracy occurs. But if no such degeneracy occurs, then either the
functions ¥$_ are linearly dependent on ¥%;, or some of them vanish identical-
ly. Tn either case, ¢ and Ky must be linearly dependent.

Thus condition (18.25) is necessary and sufficient for case (a) to occur.
Consequently, in the alternative case (c), when the functions ¢ and Ky
transform according to equivalent representations but are linearly indepen-
dent, i.e., when time reversal causes additional degeneracy, the second
condition in (18.11) must hold. Thus,

in case (a): T=KT i.e., TT'=K1,
(18.26)
in case (¢): T=—K7T i.e., TT'=—KI

Frobenius and Schur showed that the properties of the matrix are suffi-
cient to determine whether the representation is real or complex, provided
only that its characters are known: if the sum of characters of the squares
of the group elements is equal to the order h of the group, then T=F and
the representation is real: if this sum is —A, then T = —7F and the represen-
tation is equivalent to its conjugate; and if the sum vanishes the representa-
tions 2 and %* are complex and inequivalent.
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Since we are interested in the possibility of distinguishing cases (b) and
(¢), in which time reversal causes additional degeneracy, from case (a),
when there is no such degeneracy, we write the criterion as follows:

l K?— case (a)
I=% Y x@)=] 0— case (b) (18.27)
[T — K?— case (c)

Let us prove this theorem.
For case (b), equation (18.27) follows directly from the orthogonality
relation (8.10). By (8.15),

=1 V% @) =% % Dh(e) =5 3, Dh (@) Dh (o). (18.28)
] al aik
For complex inequivalent representations, @ (g) = D (g), and since p+#Ait
follows from (8,10) that this sum vanishes,
In cases (a) and (¢), when the representations £ and 2* are equivalent,
we will express @} in (18.28) in terms of @¥; according to (18.8). Then,
using the orthogonality relation (8.10), we obtain

=13 ¥ 2 (o) Tt T =‘T“}; TuTni Y, D (2) Din (8)=
m ']

g irlm

"ﬁ 2 TaiTmt b1y Opm = % 2 TwuTil =-;:: E(T-T]“.
ikl ik i
By (18.26), this sum is K in case (a) and —K? in case (c).

Equation (18,27) is directly applicable to point groups and finite groups in
general. It is easy to prove that for the usual representations of the point
groups all representations with real characters are real, i.e., belong to
case (a), and all representations with complex characters belong to case (b)
and consequently must be combined in pairs.

For spinor representations of these groups, one must again combine
representations with complex characters, and the one-dimensional repre-
sentations must also be doubled, Indeed, when T = —T,

Det T =Det T =Det (— T) =(— 1)"s Det T.

Consequently, in case (a) spinor representations must have even dimension
n,, and therefore one-dimensional representations with real characters
always belong to case (c). All other spinor representations with real charac-
ters belong to case (a).

For space groups, however, if the star includes more than one point
these simple laws are not applicable, since usually only representations of
the little group are available and these representations may have complex
characters even if the complete representation of the space group is real.
Therefore, we first transform our criterion (18.27) for space groups. The
elements of a space group can be expressed as products of the fundamental
elements of the group g’ = (r|r), which include only nonprimitive translations,
and the elements of the translation group (e|f). The latter group may be made
finite formally by introducing the usual cyclic Born-von Kdrman boundary
conditions.

Since (rlt 4+t =(|v4+rr+ ¢+ rt), it follows by (12.27) that

x[r1x+87= By, @ ewren= By, (@ e “Er™), g, (18.29)
i
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where the summation is carried out over all points &; of the star {k¢}. There-
fore, upon summation over # in (18.27) only the terms with ki + gki=0
remain, the number of identical terms being equal to the order of the trans-
lation group, i.e., the order A of the space group divided by the number #’
of fundamental elements (elements not containing primitive translations ¢).
Thus the summation in (18.27) can be performed only over the basic ele-
ments g’, with & replaced by 4’:

1 1
P=5 Y@ =% X N, @), -ar (18.30)
g=a g=a i
Here, as usual, vectors differing by a reciprocal lattice vector & are
treated as equal, i.e., k;+} gk; may be zero or b.
Using the fact that, by (12.24),

%, (€) =1z (&) = (e7'2°2)).

where g; is a fixed operation mapping k=&, into k;, we can rewrite the sum
(18.30) in the form

S=g Y NnEree) s wp= T N N wlE@es, ., (18.31)

gsa i geg ] i
When the element g in this sum extends over all values from e to g,,, the
element g’=g;'gg, extends in a different order over values either coinciding
with g or differing from it by an integer translation. The phase factors
associated with these translations for elements g such that B+ gk= 0 all
become unity. Thus the sums over g in (18.31) are independent of i and
summation over i is simply multiplication by the number [ of points of the
star Consequently, for space groups the criterion (18.27) becomes

K? — case (a)

2==% 2 %s (8%) 0.~ = 0— case (b) (18.32)
g0y —K?— case (c)

Here A'/f is the number of fundamental elements of the little group G,, i.e.,
elements which do not contain primitive translations The criterion (18.32)
was first introduced by Herring /13.2/. The summation in (18.32) is per-
formed over the fundamental elements g2« G| of the little group such that

gh=—k, (18.33)

For spinor representations the summation in (18.27) or (18.32) must ob-
viously be performed over all the fundamental elements of the double group,
i e., the group containing the elements g? and (gQ)?. However, since (gQ)* =
=g%Q* = g?, it is actually sufficient to sum only over the elements of the usual
group. Of course, the characters for these elements must be taken from
tables of the appropriate spinor representations of the group.*

Note that for points not on the edge of the Brillouin zone the value of the
sum (18.32) is independent of whether there are nonprimitive translations in
the element g, and one can substitute for x(g?) the values of the character

* If tables of projective representations are used, one must bear in mind that the element g? = (r?|r7 4 1) may
contain a primitive translation f, and also the element Q. Accordingly, its character will differ from the
character of the element (r*|%,:) in the projective representation by the phase factor exp(—ikt) and, if r?
includes @, by the additional factor —1.
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x(r?) for the crystallographic point group corresponding to G,. Indeed, since
the summation in (18.32) is performed only over elements g = (r|r) which
satisfy condition (18.33), it follows that for points within the zone

1(@) =x()exp[—ik(rt + )] =x (") exp [—it(r~'k + k)] =% (r).

Let us consider the consequences of the presence or absence of a linear
relation between the functions ¢ and K¢ for space groups.

As indicated previously, in cases (b) and (¢), when the functions ¢ and Ky
are linearly independent, the representations ® and 2* according to which
these functions transform are combined. For space groups, however, the
functions Yy =uwuse'** and Ky = (Kus)e~'** generally belong to different points of
the stars {k} and {—#k), and time reversal takes the star {k} into the star {—&}.
Thus the relation between these stars plays an essential role in combination
of the representations, and for each of the previously cited cases three
possibilities should be distinguished:

1) the points k and — k are equivalent, i.e., k= —&;

2) k is not equivalent to —k, but the space group contains an element R
which maps &k onto —k:

3) the points k& and — k are in different stars.

In the last case there is no group element mapping k onto —k, and conse-
quently the sum (18.32) vanishes; thus the representations £ and #£*are
complex and inequivalent, i.e., only case (b) is possible. Combination of
these representations reduces to union of the stars {k and {—k}; time rever-
sal thus implies that the energies at the points k and — & are equal:

E (k)= E(—&). (18.34)

Of course, condition (18.34) is also valid in all other cases, but then it is
due to spatial symmetry. Thus, in case (bg)combination of representations
of the full space group does not imply combination of the representations of
the little groups.

In case (a;), the linear relation between the functions ¢ and K¢ implies a
linear relation between the functions ¥, and K+, belonging to one point of
the star.

In case (ap) we again have a linear relation, but now between the func-
tions ¢, and KRy,, which also belong to one point of the star.

In the other cases (by), (by), (¢1) and (c3), combination of the representations
of the space group results in combination of the representations of the little
groups, i.e., additional band degeneracy at the corresponding points of
k-space.* In case (b;) conjugate representations @* and @, i.e., represen-
tations with conjugate characters, are combined, and in cases (¢;) and (cg)—
equivalent representations, i.e., representations with equal characters.

* Thus, it follows immediately from Herring's criterion that in crystals with an inversion center all terms at an
arbitrary point of the Brillouin zone are at least doubly degenerate when allowance is made for spin. Indeed,
if the little group G, contains only the identity element, then the only element taking % into — & is inver-
sion, since if there were another element g with this property the group Gy would contain the element
giw e. Therefore, I = y(i|7)* = y(e|® 4 it)=x(e|0)= 1. Consequently, we see from (18.32) that the
spinor representations in this case belong to case (c), i.e. they are complex and combine in pairs.
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The situation is more complicated in case (bz), when the basis of the
representations @ and 2} being combined comprises the functions ¢ and
Y} = KRy%, where R is the operationwhich takes & into —g, and therefore
the representation p of the little group is the complex conjugate not of the
representation 2} but of the representation @;7* belonging to the point —&,
whose basis consists of the functions ¥} _,=R¥},. In this case, by (12 24),

D51 (g) = Dru(R™'gR)
and
Dy (g)= DX (R™'gR),

whence
(@) =xt"(R™'gR). (18.35)

Equation (18.35) defines the characters of the representation 2} to be
combined with @}. Since R is not an element of the little group G, the
elements ¢ and R-'gR may be in different classes, and therefore the charac-
ters of the representations @} and 9} are not necessarily conjugates. If one
of the elements R = (p|r) is an element R’ =(p’|v') such that ¢’ commutes with
all elements r of the point group corresponding to elements g= (r|r) of the
little group, i.e.,

R™'gR =(r| T+ 1), (18.36)

where ¢ =¢p 't—t+rp"”'v' —p”'v is a primitive translation, then it is conve-
nient to choose this R’ as the element R in (18.35). Then, by (18.35) and
(18.38),

x5 (@) =x4(g) e~ 14, (18.37)

For example, if the point group contains inversion, which commutes with
every element of the point group, the choice of R = (i|v;) gives ¢ =v;—rr,—2r.
Equations (18.35) and (18.37) are obviously also valid in cases(a;) and (c,),
when the representations @ and @} are equivalent, i.e., their characters
are equal. By virtue of equation (18.35), these characters must satisfy the
condition
(@) =x"(R™'gR), (18.38)

from which it is evident that in cases (a2)and (c2) it is not only the characters
of the full representation of the space group, which are sums of the charac-
ters of the representations for all star points, that are real, but also the
sums of pairs of characters of representations of the little groups at oppo-
site points k and —g, which are, by (18.37) and (12.24),

n@+1"@=1@+% (R "'gR)=2Rex) (g)

Of course, the characters of the little group representations themselves
may at the same time be complex. In cases (a;) and (c;), when the points k
and —k are equivalent and R = (e|0), it follows from (18.37) that these char-
acters are always real.

We note, in conclusion, that time reversal cannot be incorporated in one
group together with the symmetry operations, in the usual manner. This
results from the fact that the operator K is antilinear and anti-unitary.
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Indeed, for linear and unitary operators, such as spatial symmetry
operators, the following relations hold when a = const:

D (ap) =aDp (18.39)

and
(DY) | D) = (0, D" Dby) = (i), (18.40)
where (b¥,) = J‘ Y1, dt is the integral over the configuration space. For the

operator K, defined by equations (18.3) or (18.23), these relations look
different:

K (ap) =a’Kyp (18.41)
and
(Kb | Kop) = (Ko | Kowpz) = (b)), (18.42)
For spin functions, when K is defined by (18.23), the last equation is a con-
sequence of the unitarity of the transformation o,

We now consider the additional conditions that invariance under time
reversal imposes on the matrix elements of the operator V:

@by = [ iV, dr.
By (18.42),
(Vo) = (Kb, KVabg) = (Kb, KVK ™ Kopo).
On the other hand,

(bVe)" = (aV *4py).
Therefore,

01V =Ky, KVK™'Kpp)” = (Kpa, KV K"Ky (18.43)

We have used the equality (KVK-1)+ = KV+K-1.

Let us treatthe operation 8V = KV+K-t as the result of time reversal act-
ing on the operator. Since 82V =V, any operator V may be split into two
operators:

V=V,+V_, whereV,=7(V+86V) and V_=(V —eV).

With this notation, we have

+1 for V.p

1
—1 for v_. (18.44)

OV, =KVIK™ =fV., where fn{
Accordingly, the operator V, will be called even and V_ odd with respect to
time reversal. This nomenclature is motivated by the fact that for even
operators the mean value V({)=($V¥) is invariant under the substitution
t—-—t(i.e,p— Kp), whereas for odd operators this substitution changes
the sign of the mean value.
Indeed, by (18.43) and (18.44),

KV == (K$VKD) = KKV K™ K*p) = f (pVp) = 7. (18.45)
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Thus operators of magnitudes which do not change sign upon time reversal,
such as coordinates and energy, are even, while operators of quantities
which change sign when ¢ is replaced by —t, such as velocity, momentum
and current, are odd. Note that operators V for which ¥ is real are her-
mitian, i.e., V+= V¥, and if these operators do not act on the spin variables
then KV+K-!' = KVK-1=V*,

Thus, it follows from (18.43) and (18.44) that for even or odd operators
invariance under time reversal imposes an additional condition on the
matrix elements:

WV =1 {(Kp,VKb;), where f==1. (18.46)

Condition (18.46) yields two useful relations for the matrix elements of
Kramers conjugate functions. Thus, if ¢ =+;, we have from (18.45)

(KO Ky =F bV s)- (18.47)
If we now set ¢; = Ky,, it follows from (18.46) that

VK =FK? (VK.
which implies that
bV Ky =Owhen fK? = —1, (18.48)

i.e., the matrix elements of an even operator between Kramers conjugate spin
functions vanish, and for odd operators the matrix elements vanish on the
complex conjugate coordinate functions.

In conclusion, we note that although the operation K is anti-unitary, it
may be incorporated together with the unitary operations g in a special
group. When this is done, if the functions % and Ky are linearly indepen-
dent, they are also combined, to form a representation of this group, known
as a corepresentation, first introduced by Wigner /1.1/. Naturally, the
properties of corepresentations differ from those of the usual representa-
tions. They are considered in detail in /13.4/. When considering the effect
of time reversal on the spectrum, selection rules and other characteristics,
one may either make direct use of corepresentations, or start with the usual
representations of space or point groups, subsequently making special allow-
ance for the effect of time reversal. Both approaches lead to the same
results. In the present book we adopt the second approach, which seems to
us more meaningful from the physical standpoint.

§19. SELECTION RULES

In perturbation theory, the theory of quantum transitions, and so on, one
must know the matrix elements of a given operator V between known wave
functions ¥:

V., =@Ve)y= [ %V dx. (19.1)

For example, the square of the absolute value of a matrix element |V, |2
determines the probability of transitionfrom state ¥: to state $;due toa per-
turbation V. In many problems there is no need to calculate these matrix
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elements explicitly; it is sufficient to verify whether the corresponding
integrals differ from zero, to find the number of linearly independent com-
ponents V;;, and to establish the relation between different linearly dependent
matrix elements.

Since any operator V may be expressed as the sum of /-th components of
operators V¥, which transform according to an irreducible representation x»
of the symmetry group & of the Hamiltonian #,, whose eigenfunctions are ¥;
and ¥;, we shall assume that not only the wave functions ¢! and ] but also
the operators V* transform according to appropriate irreducible representa-
tions Dy, Dv and Dy of the group &, and we shall show how a knowledge of
these representations yields an answer to the above questions.

The application of group theory to selection rules is based on the follow-
ing lemma; if the function #;(x) transforms according to an irreducible re-
presentation @,, then the integral

J,=_[9', (x) dx

is nonzero only when @, is the identity representation Do.

To prove this lemma, we observe that the integral J does not change upon
passage to a new coordinate system %' = gx, since this involves a simple
substitution of variables under the integral sign. On the other hand, if g is
one of the group operations, we see from (7.3) that it takes the function
gF ()= (g '%) into

eF i(x)= 2I D1 (g) F(x).

From the orthogonality relations (8.3) and (8.10) it follows that

T Y D@ =8,

L=t 4

The last relationship is derived directly from (8.3) and (8.10) by putting
Dy(g) = Do(g). Therefore, summing

gli=[F.(g'x) dx
over g and using the fact that gJ; =J;, we obtain

1 1
li=+ z g-h=;2 2 Dy, (S)Iﬂ";{x)dx—époh.
=y i g=>

proving our assertion.
If the representation @ according to which the functions #;(x) transform
is reducible, it is obvious that the integral

I= [, (x)ax

may be nonzero only if this representation contains the identity representa-
tion. Indeed, applying the operation g to #;(x) and summing over g, we
obtain

!=lh§ _|-g9',(x)dx=_[P'9';(x]dx‘
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The operator
1
P=5¥D@
&

is a projection operator (9.5), which determines in the set of functions % ;(x)
a combination F4(x) which transforms according to the identity representa-
tion. The function F,(x) clearly differs from zero only if the representation
2 contains the identity representation.

Let us return to the integral (19.1). By (7.3), the operation g takes the
functions appearing in the integrand into

8‘1’}?= ; Dy (g) \l’}”v gvt’ = !Z 1 (@) o, HV? = ; Dy (@) V.

Therefore, the representation by which the integrand transforms is the re-
presentation with matrix elements

D, py, 11(g) = D () Dy (g) D (), (19.2)
i.e., @ is the direct product of the representations
D=D, X D, X D, (19.3)

and is reducible in the general case.

By the above lemma, this means that the matrix element of the operator
V* between functions which transform according to the representations Zj
and %, may differ from zero only if the direct product (19.3) contains the
identity representation. By (9.24) and (8.16), this requires that the product
D, X @D, contain the representation Dx. The transformation defined by

evi, =‘%_% (@) Dr1(g) Dl (@) Viry (19.4)

may be regarded as the result of the operator @(g) acting on Vi;, and the
totality of nynyn, different matrix elements v}, for i=1, 2, ..., n., =12,
oy ny, =12, ..., n,, may be regarded as the basis of the representation
%. Successively applying all the group operations g%, we can find in
general h linear relations (19.4) expressing one of the elements V!, in terms
of the others V. According to (9.5), the sum

PVi=3 3 2@ Vi=1Y Y Do u@ vir (19.5)
[ g T

may be viewed as the result of the projection operator P! acting on Vi, In

order to check whether a given matrix element is nonzero, one must apply

the operator P!, i.e., check that the sum (19.5) does not vanish.

Applying the operator P! to the various elements Vi, we generally obtain
various functions (19.4), which transform according to the identity represen-
tation. By (19.5) each nonzero matrix element may be expressed in terms of
these functions, and so the total number of linearly independent nonzero
matrix elements equals the number of linearly independent invariants con-
tained in the direct product (19.3). By (9.24), this number N, is

Vo= 38D, 1 s @=% 1% @1 @ % @) (19.6)
g

g il
Thus, to determine the number of linearly independent nonzero elements
it is sufficient to know the characters of the representations according to
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which the operator itself and the wave functions transform; to determine the
nonzero elements, however, one must find the invariants (19.5), and for this
the representations themselves are needed.

Allowance for invariance under time reversal. As noted
above, invariance under time reversal imposes an additional condition
(18.46) on the matrix elements:

Vi =tvivD) =F (KeVIKe), (19.7)

where f= 11 depending on whether the operator is even or odd with respect
to time reversal. If the wave functions K¢* and 4" are linearly dependent,
this condition results in additional relations, which lower the total number of
linearly independent matrix elements. As pointed out in §18, the functions
K¢+ and ¢* will be linearly dependent in case (a) when the functions %* and ¥
belong to one representation, i.e., p=v, and this representation @, is real
in the case of usual representations, complex and equivalent to @), for spinor
representations. By (18.7)

KtP}'= ;.'. TJ':"F}"-
Therefore, the transformation F defined by
FViy=HIOVITS) =1 3 TiuT Vi, (19.8)

may be regarded as the result of the operator F acting on Vi, invariance
under time reversal implying that Fv{,=V{;. If the functions ¢ and K¥i are
linearly independent, the representations @D, and @D, are combined, In this
case there are ""diagonal' matrix elements

Vi=iVe)), Ve ki={K$IVK$))
and "off-diagonal" elements
Vi 1 =CKOIVED), V. ki =GiVKP)).

Condition (19.7) shows that the diagonal elements of the first and second
types satisfy the relation

Vi, ki =(KOIVES) = BV =V (19.9)
and imposes an additional symmetry condition on the "off-diagonal" elements:
Vie, 1 = KOV = FVi, ;= f (KSIV KB = FK*V ik, 1. (19.10)

To determine the number of linearly independent matrix elements, one
can introduce the extended group consisting of the elements g and gF, where
F is defined by (19.8) or (19.10). Then, by (19.8), in case (a)

D, 11 1 (FRY=HDs (@) 1), (D (&) T),., Dii (g)- (19.11)

By (19.10), in cases (b) and (¢), for the "off-diagonal" element (K¥;V))
we have*
D, 11, 11(Fg) =[K" DV (g) D)1 (g) Dii (g). (19.12)

* For the matrix element (t}’vxwp}’). one replaces D, (g) by D, (g). Accordingly, in the final equation (19.13)
we have yx, (g) instead of %y (g). This is equivalent to replacing y, (g) by x; (g). In case (a) these expressions

coincide, since then y, (g) =, (g)-
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The number of linearly independent components Vi; equals the number of
identity representations occurring in the extended group representation @,
which is defined by (19.4) and (19.11) in case (a) or (19.4) and (19.12) in
cases (b) and (¢).* Thus:

No=15 3 % Dut. 1. (&) + Dus, 11, u (Fe)-

g in

The first term of this sum may be evaluated from (19.6), for in this case
%, (&) =x,(@)=1x, (g), since the representation & is equivalent to Dy. To
evaluate the second term, we use (19.11):

5:4 D (Fg)u. o =f E (E\r (g) r);; (mv (g} T}H Q:; (8) =
= fxx(g) ; (D (@) TDi (@) T)) =tu (@) Ef (D, (@) TT");; = K (@) % (&9

Here we are using the fact that by (18.8) Dv(g)=T""'D,(g)T and by (18.286)
TT* = K2, where K? =1 for usualrepresentations and K?=—1for spinor repre-
sentations. In case #(Fg) is determined by equation (19.12), we obtain
similarly

§ D, i1, u(Fg)=IK" ‘2” D} (g) D (2) Dii (8) = K (@) %o (8D
i.e., in both cases,
No=%2x,.(g)[xf.(g}+l(‘fx,(g’)]. (19.13)
€

Equations (19.6) and (19.13) are applicable to any finite group, in particu-
lar, to a space group, which may always be made finite, say by introducing
the cyclic Born-von Kdrman boundary conditions. However, their direct use
in this form is not convenient for space groups, since one would then need to
know the characters of the space group representations @¢', % and 2 in
the complete basis, which includes the basis functions of the representations
u, vand = for all points of the stars {k'}, {k} and {g}, respectively.

By (12.27), the characters of these representations are determined by

x(rlt+t}=¥ (r) ) e, (19.14)

The summation in (19.14) extends over all points &; of the star {#} and x"
is the character of a representation of the little group Gs,. If g= (r|) is not
an element of the little group Ga,, then it follows from (12.23) that x%(g) =0
(EEG).

As indicated in §12, representations of space groups are usually specified
not by the complete character (19.14) but by the star (&} and the character of
the appropriate representation of the little group of the Gs for one of the
points of the star {k). We therefore rework the general equations (19.6) and

* In similar fashion one can determine, for example, the number of identity representations occurring in the
symmetrized or antisymmetrized product. Rather than construct the symmetrized or antisymmetrized functions
(9.18) or (9.19), one assumes that all the functions ¥y are independent, introduces an index permutation oper-
ation [ similar to (19.10), and sums in (9.24) over all the elements g and gf. One then has D(f)=1 for
symmetrized products and P (f) = —I for antisymmetrized products. This gives the same expressions as when
the characters of the symmetrized or antisymmetrized products, given by (9.22) or (9,23), respectively, are
summed over g.
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(19.13), retaining only the characters of the fundamental elements (i.e., the
elements not containing primitive translations t) of the little groups for one
point &, k and ¢ of each of the stars (&}, {¢} and {q}.

We now consider the specific cases.

The representations 2% and 2 belong to different
energies, and the stars {—k’}and {k} are distinct. Matrix elements of this
type determine, for example, the probability of phonon emission or absorp-
tion during indirect optical transitions, i.e., transitions involving participa-
tion of a photon and a phonon.

To determine N, in this case we substitute (19.14) into (19.6) and sum over
all primitive translations. We obtain

M=z L0 @0 @ @e, , - (19.15)
g i rY
Here the summation extends only over the fundamental elements g =(r|1)
of the group G, which do not contain primitive translations; k& denotes the
number of these elements, equal to the order of the point group. As is
evident from (19.15), transitions may take place only with conservation of
quasi-momentum, i.e.,

K, —k,— g,=0. (19.16)

Here, as usual, vectors which differ by a reciprocal lattice vector b are
identified. Let us denote any three star points satisfying condition (19.16) by
ki=F, ki=k, q =gq , respectively, i.e.,

R —k—q=0. (19.17)

Applying the operations g G to (19.17), we find other values of &}, &, ¢,
satisfying (19.16):

gk’ — gk —gqg=0. (19.18)

Note that, as shown in §12, the vectors k are affected only by "rotational"
elements g, i,e,,if g=(rl7), then gk=rk.

Let us first assume that, as g runs through all the fundamental elements
of the group G, formula (19.18) yields all values ki, k, ¢ satisfying (19.186),
i.e., there is no operation g outside G: such that

k' — gik — g9 =0, (19.19)

if go is not in G, and g; is not in G,. Then, instead of summing over all i, j, {
in (19.15), we may sum over all elements g. In the process, each distinet
triple of vectors &}, k;, ¢, satisfying (19.16) occurs h, times, where #, is the
number of elements g which leaves each of the vectors &/, k, ¢ invariant

(up to equivalence). These elements g, are in each of the three groups Gy,
Gy and G4 and form their intersection G,:

Go= Gy Ga Gy

Thus, when replacing summation in (19.15) over i, j, [ by summation over g,
we must divide the sum by #,:

No=a'TnzZx:."'(a’)xi*w’)w(g'l- (19.20)
L2
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By (12.24), the characters of representations of little groups for different
points of the same star {k} are related by

@) =1 (@ =x"(¢]'¢e.). (19.21)

where g; is a fixed operation taking the point k=&, into & (see (12.20)).

If we substitute (19.21) into (19.20) and sum over all the fundamental ele-
ments g, letting this element run through all values from gfto g;, the ele-
ment grlg’g, runs in another order through the same values of g’ or values
differing from g/ by a primitive translation ¢. By condition (19.17), the
phase factors associated with the translation ¢ disappear, and so the sum

gxg*" (818 (&) %87 (g") =

=20 @9 @ e e =20 @)1 @) 5e) (19.22)
does not depend on g and summation over g in (19.20) reduces to multiplica-
tion by the number #k of fundamental elements in G. The products appearing
in (19.22) differ from zero only if the element g’ appears in each of the little
groups Gy, Gi, Gg. Thus the final summation in (19.20) need extend only over
the fundamental elements of the group Gi= Gu(1GaGq, Whose order is fo:

No= i 3 1 (@) 24 (20) (). (19.23)
ned
Equation (19.23) in fact tells us how many times the representation @, with
star {—g} occurs in the direct product @, X @, of representations with stars
{—k} and (£}, and condition (19.16) implies that N, differs from zero only if
the star {—gq)} occurs in the direct product of the stars {—k’} and {&}.

If (19.18) does not exhaust all the values of &, k, g, that satisfy (19.16),
i.e., there is another triple of vectors & =#{, k,=g.k, ¢,=g,§ satisfying
(19.19), application of the operation g to (19.19) yields another series of
vectors satisfying (19.16) but not appearing in (19.18). We thus have to add
to (19.23) a second sum

20" @ %" (2) 187 (@), (19.24)

where g are the fundamental elements of the intersection G=0CsNGguNGgyq,
whose order is again hy. If the stars {#’}, {k}, {¢} lie in arbitrary positions,
appearance of two independent relations (19.17) and (19.19) is accidental.
However, if the star (k) coincides with the star {—&}, there may be two
groups of vectors satisfying these relations. In that case there is an opera-
tion g, taking & into —&’:

— Rk =gk (19.25)
Now if (19.25) is fulfilled for one operation g,, it is fulfilled for all operations

gsgx, Where g, is an arbitrary operation of the group G.. We may then write
(19.17) as

—kK+ktg=gk+k+qg=0. (19.26)

Permuting the first two terms, we obtain
k+ gk +g=0. (19.27)
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Multiplying (19.27) by g, and using (19.25), we may write the last relation-
ship as
— k' + gk + g g=0. (19.27a)

If none of the elements g2 is a product g,g, of elements of the little groups
Gy and G,, relation (19.27a) cannot be obtained from (19.26) by application of
an operation g (without rearrangement of terms), and relations (19.26) and
(19.27a) must be considered independent. In that case, N, is the sum of
(19.23) and (19.24); moreover, as can be seen by comparing (19.19) and
(19.27a), g =¢? and g,=g,. Expressing the characters of the representations
of the groups G‘f* and G:,o in terms of the characters of the representations

of the little groups G. and G, with the aid of (19.21), we finally obtain

1 .
No= 7 230" (80) [ (€0) 18 (80) + 14 (85788 45 (85808, (19.28)
-]
If at least one of the elements g,=g,£.€, is such that gi=g,g,, then g;'g. = G,
and relation (19.27a) obviously need not be considered separately, since it is
a consequence of (19.26).*

Equation (19.28), which is valid when g2+ g,.g,, may be rewritten in a
more symmetric form, For this purpose we use (19.22), summing in the
second term over g;'g,g, instead of over g, and noting that, by (19.25) and
(19.21),

o @ =6 @=1"(e"ee) 1 (e.ee)=2%"@ (19.29)
We obtain
No= %;; A (o) [ (27 208.) 18 () + %7 (80) 4 (85 '208,)). (19.30)

where g,€G,=G_, ,NG,NG,.

In determining the probabilities of direct optical transitions, i.e., transi-
tions which occur without changes in momentum, and in a number of other
problems, one is concerned with vertical transitions. In these cases ¢, =0,
the operators V[ are translation invariant and transform according to the
representations of the point group F with characters y,(g). If k and k' — ¢
are points of one star, then g,=e and so for any operation we have gt=g,.g,,
since g, and g, are elements of G,.. In this case, therefore, equation (19.23)
is always valid, the summation extending over all fundamental elements of
the group Ga:

No=s X %' (@)% (@) (o) (19.31)

The representations @, and 2, belong to the same
energy. In this case the representations coincide or are combined owing
to invariance under time reversal. Matrix elements of this type determine,
for example, the probability of minimum-to-minimum (intervalley) transi-
tions with absorption or emission of phonons.

* Therefore, for groups in which the products g,.g, exhaust the whole group, equation (19.27a) is certainly
not independent,
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Let us first consider the case in which ¢* and Ky* are linearly indepen-
dent. Suppose that a transition occurs between states , which belong to the
same representation, but generally to different points of the star, e.g., &
and & =gk, so that these vectors satisfy equation (19.17):

gk —k—q=0. (19.32)

In this case N, is given by (19.23) but, since the representations @, and D,
are equal, it follows from (19.21) that

% (@) =12" () = (7' 202,) (19.33)
and, consequently,

= 2 (87208,) 7 (20) 5 (80). (19.34)
-1

where
goe GII = G‘r' n G, ﬂ Gq.

Equation (19.34) is applicable, for example, in case (b;), when combina-
tion of the representations %y and 2§ reduces to combination of stars, for
transitions between points belonging to one star. It is also applicable to
evaluation of the number of "diagonal" components in cases (b;), (bs), (¢;) and
(c;), when representations of the little groups at each point of the star are
combined. If none of the operations g2, where g, takes k into - & = —g.k, is
a product geygs, then (19.23) must be replaced by (19.30). In the present
case, the operation g, may be written g, = g,R-', where R is an operation
which takes k into —k. Since

% (@ =x%"@=2x(R"'gR), (19.35)
it follows that :

No = 378 (80) %" (¢7'0,) 14 (80) + 22" (R™'g,R)x" (Re 'gg,R™")).  (19.36a)

For cases (by) and (c;), when the points k and —k are equivalent, we have
R=¢e and

No =5 28 (80) 14" (87'802,) 14 (80) + 22" (€0) X4 (¢7'2:8,)) (19.36b)

The number of linearly independent off-diagonal elements in cases (b) and
(c) is determined by (19.13). In case (bg)these off-diagonal elements corre-
spond to a transition between points belonging to different stars, e.g., &k and
k{=—Fk,. In all these cases the off-diagonal elements (K'l’_. Vi, ) correspond

to a transition between the states q;‘ and ¥} _Kvb‘, , and the elements
<‘P" VKy:, ) to transitions from state \p,‘ qu:_” to 1;, Moreover, if D,= D,

for the diagonal elements, then @, =, for the off-diagonal elements. By
(19.33) and (18.35),

(@) = a7V (@) =2 (g7 'ga,) (19.37)

where g, is an operation which takes & into —&".
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The number of linearly independent elements in case (a), where the func-
tions ¢ and K¢ are linearly dependent, is again determined by equation
(19.13). In this case @D, = D,, since p=v, but by (18.38) the conjugate
characters also satisfy condition (19.37). The first part of the sum in (19.13)
differs from (19.6) only by the factor 1/2, since the quantity (x.(g))? in(19.13)
may be written y;:(g)xv(g) and in case (a) we have p =v. Therefore, this
term reduces to (19.23), and it remains only to evaluate the second part of
the sum in (19.13), which we denote by Z,.

Substituting (19.14) into (19.13) and summing over all primitive transla-
tions, we obtain the following expression:

=25 2 0 1 @)% (€98 s g=1a, vy (19.38)

g I
Here we have used the relation
L1+ =xb (] W) e=tretrn,
If the vectors —k, = g.k;, k;, ¢ satisfy only one independent relation

(19.17), all the others can be obtained by successive application of opera-
tions ge Gy to (19.17):

gg:k + gk + gg=0. (19.39)

Equation (19.39) determines all the possible values of the vectors &, kj, g,
which satisfy a condition like (19.16): for this condition to hold, the vectors
must satisfy the relations

‘—kl=g'_1k‘a=gg,k, k,lEgk, g1=£9q; (19.40)

each triple appears in (19.39) h, times, where h, is the number of fundamen-
tal elements of the intersection G, of the groups Gs, Gga, G,. Thus summa-
tion over j and ! in (19.38) may be replaced by summation over g, provided
the sum is divided by #. Using (19.39) and (19.40), we can rewrite the

argument of the 8-function as
g 7R+ R+ =g gk + gk + gg—
=g gk —ggk=g(g'g g — gk
Thus, proceeding as in (19.22), we can transform the sum (19.38):
% ; xﬁ' g’ xﬁ" (gﬁ) 63‘-‘;"'33, gk =
= § 3} X @D (@RI Oyt pm1 g a= 1 g} 15 @) (&7) 8¢, g
The delta-function 6‘*"?'*
Thus summation over g’ may be replaced by summation over the fundamental
elements of G,. Now the product of characters in the general term of this
sum differs from zero only if g'=g-'g, is an element of G, and its square

g"-——-(g;'g,)’ an element of Gi; hence, using (19.31) and (19?37), we can write
the final expression for N,

No= g5 [?] 1% (80) 13 (80) 4 (€' 808,) + Kf ?2. %% (€784 X8 ((e:’g.Jz)]- (19.41)

differs from zero only if g’'=g;'g,, where g, =G,.
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where
8EG=G,NG,,NG, g<GC, (¢'e,)<s0 £'8, <0,

As indicated above, if at least one of the elements g2 can be represented
as a product g,.g,, then (19.27) is not an independent relation and need not be
considered separately. It is easy to show that if & and —k are in one star,
the condition g?=g,g, is equivalent to the conditions

(6.8, =G, and (g7'e,) =0,
In fact, in this case # =gk and g, =g,g,g"", but g =gR. Therefore, the
condition g?=g,g, =g ,Rg,R '¢.'g, implies that (g;'g,!=Rg;'Rg,=G,. Hence,
if g’=g,g, for at least one element, the second sum in (19.41) differs from
zero. If none of the elements g; satisfies this relation, the second term in
(19.41) vanishes, and the first term must be replaced by (19.30). As seen
from (19.37), both terms in (19.30) then coincide. Hence, in view of the quan-
tity 2k, in the denominator in (19.13), we obtain

No = 304 (80) 2 (8'808.) 14 (80) (19.42)
-4

where g,=G,=G,N GeaNGy

Transitions between states belonging to one point of
the star. As will be shown below, matrix elements of this type determine
for example, the shape of the spectrum E(k) at the point in question. If the
matrix element is evaluated between ¢, and IIJ','. and the functions K¢v
and ¢V are linearly independent, N, is given by (19.34). Since here k=#', we
have g, =e, ¢=0 and

N°=T:" 2 | %% (&) |2 %y, ()- (19.43)
=Gy

The summation in (19.43) extends over all the fundamental elements g of
the group G,, since these are all elements of the point group F,.

Equation (19.43) is applicable when the points k and —k are in different
stars (case (b)). If # and —k are in the same star, and the functions %' and
K¢¥ are linearly independent and combine into one representation (cases (by),
(bg), (c1), (c2)), the equation determines the number of linearly independent
'"diagonal" elements corresponding to transitions between states ¥, and ¥y,
while the number of linearly independent "off-diagonal" elements corre-
sponding to transitions between states ¥; and Klp:, is determined by equation
(19.41), which in the present case is rewritten as*

No==; 3 (%@ (@)% (R™'gR) + K, (@R) 22 [(gR)*] ). (19.44)

g=Gy

* Note that for points inside the Brillouin zone the value of x[(Rg)?], like that of |%(g)|% is independent of the
nonprimitive translations in the element and coincides with the value of y[(Rr)?] for the point group G,. In
fact, since Rgk= —k, it follows that for R =(R]| ‘IR} and g=(r| 1)

% [(RgP) = x [(Rr)*) exp [— ik (Rr (*p + RY) + 7o + Re)]| = y [(R) ] exp |~ i (v + R¥) ((R)™" & + ] = 2 [(RA).
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Here the summation is performed over the fundamental elements of the group
Gi, and R is any element taking & into —&. In cases (b;) and (c;),when & and
—k are points of one star, we have R=e, and N, is given by

No=3; ¥ %@ @ + K (@), (19.45)

=0,

which differs from (19.13) only in that the summation extends over the funda-
mental elements of the little group, rather than over all the elements of
the group.

In case (a), when the functions ¢* and K¢¥ are linearly dependent, N,is
again given by equation (19.44); if the points k& and —k are equivalent (case
(a;), equation (19.45) is valid, but when they are inequivalent, equation
(19.44) must be used. Since in this case the representations @, and 2, co-
incide and equation (19.37) is valid, we can rewrite (19.44) in the form

No=1gr & [1.(@)]x @[+ K7z, (R x [(€RY1). (19.46)

g0y

The equations derived above completely solve the problem of determining
the number of linearly independent matrix elements: they tell us whether a
given transition is allowed or forbidden. In those cases in which it is also
necessary to actually specify the nonzero matrix elements and to establish a
relation between them, one can use the appropriate projection operators, via
equation (19.5). In so doing it is sufficient to extend the summation in (19.5)
only over the fundamental elements g= (r|r) of the space group and the ele-
ments Fg that figure in the corresponding sums for the number N,.

§20. DETERMINATION OF LINEARLY INDEPENDENT
COMPONENTS OF MATERIAL TENSORS

The method of the preceding section for determining the linearly indepen-
dent matrix elements is directly applicable to determination of the linearly
independent nonzero components of material tensors that determine the pro-
perties of crystals, such as the conductivity tensor ¢, elastic constant
tensor §, etc.

Every material tensor § relates two field tensors A4 and B. The tensors
A and B can be of different rank; in particular, they may be vectors, i.e.,
tensors of rank one. For example, the conductivity tensor ¢ relates the
components of the current density j to the electric field potential & j, =

=D ou¥,- The elastic constant tensor relates the strain tensor e to the
strless tensor T: "u=§simru . The rank of the tensor § is the sum of
ranks of the tensors A and B. Thus, let

A,zgs,,s,, (20.1)

where A; and B, are the components of tensors A and B. Upon transition to
a new coordinate system x'=rx, these components transform according to
the corresponding tensor representations 2. and @y of the full spherical
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group. In other words, the components A{ and B; of the tensors 4 and B in
the new coordinate system are related to the components 4; and B, in the old
system by

Ai=m;=§mﬁ (r) Ay a;=,s.=§aﬁ(r) B, (20.2)

It is important to note that here, as in (2.29), one is considering the action

of the operation r on the coordinate system, which is equivalent to the action
of the operation r—! on the tensors themselves. If the operation r is applied

to the tensors, the matrices @ (r) in (20.2) are replaced by their transposes.
For a tensor of rank n, the tensor representation 2, is in general the direct
product of n vector or pseudovector representations @, whose characters
are determined by equation (10.20).

These tensor representations are reducible and contain the representations

D; of the full spherical group as determined by equation (10.21), according

to which
I+
Dy X Dp= D,. (20.3)
F=lT=1"1

A product of representations of the same parity yields even representations
@D}, and a product of representations of different parity yields odd represen-

tations 2y.
if the matrices @,(r) and @Dy (r) are known, it is easy to find the transfor-
mation law of the tensor §. For this purpose we express B, in terms of B;:

B.=r"ai=§@,’i" () Bi = S (1 Bi. (20.2a)

Substituting this into the equation

A= ZDin () Av=Z Dl (1) SuBs, (20.4)
which follows from (20.1) and (20.2), we obtain
Ap = :fn?i D (r) DE (1) SuBi. (20.4a)
Since, on the other hand,
An= ; SmiBi, (20.4b)

it follows by comparison of (20.4a) and (20.4b) that the components of the
tensor § transform to the new coordinate system as

St = rSm= Z‘I‘ Q)m'm. rl (f} Smers (20 . 5)

where
Dowm, 11 (1) = Duem (r) DY (r). (20.6)
The indices ¢ and & in (20.4a) are here replaced for convenience by m’ and
I, respectively.
Thus, the components of the tensor § form a basis of a representation
Ds, the direct product of the representations @, and Djp:

Ds=D 4 X D. (20.7)
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Equations (20.5) and (20.6) define the transformation law of the tensor
component Sp; upon passage to a new coordinate system; they are valid for
any transformation r.

In the general case, the tensor representation (20.6) is reducible and can
be expanded in terms of the irreducible representations of the given space
group. Naturally, the components of the tensor § transform, as do both 4
and B, according to the translation-invariant representations, i.e., the
representations corresponding to the point k= 0, since the macroscopic
properties of the crystals depend only on the point group F, i.e. they are
the same for all space groups in the same crystal class.

If r is a symmetry element of the crystallographic point group F, so that
it preserves equivalence of directions in the crystal, the components Sm in
the new and the old coordinate systems coincide, i.e., if reF, then

Smi=rsml’=’§1 @:'m, H(r) Smer. (20-8}

Successively applying all the operations re F, we thus obtain h relationships
between Sw and the other components. Summing (20.8) over r, we can
express each of the components S, in terms of the invariants of the group F:

Smi =7 5 X Diem, 01 (1) St = P' S (20.9)
roml
Thus, all the matrix elements may be expressed interms of their invariant

combinations, which transform according to the identity representation; con-
sequently, the total number N, of linearly independent nonzero components
equals the number of these linearly independent invariants, i.e., the number
of i(dentity representations occurring in the direct product (20.7). Therefore,
by (9.24),

No=7 3 ¥ Dim () = Fxa ()3 0): (20.10)
r ml r

If the representations £, and @; are reducible in the group F, they may
be decomposed into irreducible representations by determining the compo-
nents An and B}, that transform according to each irreducible representation
D, of F. The tensor components S relating Al and B! transform according
to the representation Dw==2xX D;. As shown in §9, this product contains
the identity representation only if the representations @, and D, are equal,
and in that case the identity representation occurs just once in @, X Dy,.
Therefore,

if @4=§N¢Qx- Dp= 2 NiDy, then No=TNiNZ. (20.11)

The matrices of the representation #,, according to which the components
Snt transform are defined, according to (20.6), by

Dintw, u () = D (r) D1 (r). (20.12)
Substituting (20.12) into (20.9) and using the orthogonality relation (8.10),

we obtain

S;‘E = % 2 @;’m (r) -@;; (r) Sy = —?'& E 6m'§'6m;3:.‘:¢* E %— 2 S;‘fm*- (20_ 13)
o ® o

1.
r m'r "



184 Ch. I1l. SYMMETRY IN QUANTUM MECHANICS

Equation (20.13) shows that for this choice of components Ay and B} only the
diagonal components Sy, differ from zero, and they are moreover equal:
mm=S8iU=1,2, ..., n).

Note that it is assumed in (20,13) that the functions Ay and B} transform
according to conjugate representations. The subscript m indexes the func-
tions of the representation. In general, equality of these subscripts in
(20.13) by no means implies that the usual (coordinate) indices in the tensor
components coincide. For example, in the group C;, where the functions x
and y transform according to the same one-dimensional representation B,
A may denote both j, and j,» and Bf both &, and &,; the tensor ¢ then has
four linearly independent components: Oxx 0Oy, Oxy = 0y and o, (the latter
relating the components j, and &,) which transform according to the repre-
sentation A.

As we know, invariance of the equations of motion under time reversal
imposes additional conditions on the kinetic coefficients. These conditions
are known as the Onsager relations. They imply a connection between differ-
ent kinetic tensors, such as the Peltier tensor and the thermal emf tensor,
and in certain cases force the tensor components Sy to be symmetric with
respect to permutation of the indices { and %&. Similar conditions are im-
posed on other material tensors. These generalized Onsager relations may
be formulated as follows.*

dL
d

If the rate of change of total entropy — or internal energy % can be

expressed as a sum —EB,A‘, then the tensor § relating the components of
k

the tensors A and B according to (20.1) satisfies the condition

S (H)= Sy, (—H) (20.14)
if both operators A and B are real or imaginary, and
Sik(ﬂ)=—'8u(—"H) (20.15)

if one operator is real and the other imaginary.

For example, the conductivity tensor ¢, the elastic constant tensor § and
its inverse the stiffness tensor C satisfy condition (20.14).

The additional symmetry of the tensor § with respect to permutation of
indices may also be due to the symmetry of the field tensors A and B. For
example, the strain tensor e and stress tensor P are symmetric: ex = e
and Py = Py;. Similarly, the tensors of elastic constants 8 and stiffnesses C
must also be symmetric with respect to permutations in the first and second
pairs of indices:

Siktm = Skitm = Sitmt = Simue- (20.186)

Allowance may be made for all these additional eonditions in (20.4) by
introducing additional symmetry elements p; which permute the appropriate
indices. When this is done, the summation in (20,10) must extend over all
the elements r, rp, rpz, ..., taking into account that the operation p permutes
the corresponding indices on the right of (20.6). However, it is simpler to
incorporate these additional conditions directly in the definition of the repre-
sentation Ps in (20.7).

* See, for example, L.D, Landau and E. M., Lifshits, Statistical Physics, Moscow, 1964, §122, L.D. Landau and
E. M. Lifshits, Electrodynamics of Continuous Media, Moscow, 1957, §88.
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For example, the symmetry of the tensors e and P with respect to index
permutations implies that they transform according to a representation 2,
which is the symmetrized product [#}]. By (10.23) and (10.24), for integer j,

= f=r=1
[2H=2 2. (2i)= 3 Dups (20.17)

so that [D}] =@, + 2.

Symmetry (antisymmetry) of the tensor Six with respect to permutation of
the indices i and &, which of course may occur only if the representations
Dp and Dj are equal, implies that the tensor § transforms according to the
symmetrized (antisymmetrized) product @s=[2}| (Ds=(D3)), with charac-
ters given by (9.22) ((9.23)).

In that case, if .@3=2!]£); then, by (9.22) and (9.23),

PR %{ (2 1 (g))’ + Y u @ }= 3 @ +x@)+ Y, Y@@
! ! ] !

ieh]

(23] = (( E @;]2] = ;[@ﬂ + ); 2.", D,Dy; (20.18)

similarly, for the antisymmetrized product,
{m’a}z{(Zm;)’}=z{®’}} +X 3 2.9, (20.19)
] 7 T 1%

Note that the expressions (20.18) and (20.19) are valid regardless of
whether or not some of the @; are identical or whether these representa-
tions are irreducible. Thus, for example, by (20.16)— (20.18) and (20.3),
the tensor § or C transforms according to the representation

s =@t + D))= 28] + |2 + D¢ D} = DT +29F +22F.  (20.20)

In the absence of a magnetic field, we see from (20.14) that the tensor ¢
transforms according to the representation

Do =27 | =27 + D¢ (20.21)
By (20.14), the Hall conductivity tensor oy, which describes the current den-
sity in a magnetic field via the formula j,= Z{ olu& Hy, is antisymmetric with
k

respect to permutation of the first two indices, and so transforms according
to the representation

Dl =27 Dt = DDt =D} + D} + D} (20.22)

In an isotropic medium, whose symmetry is described by the full spheri-
cal group, the number of linearly independent tensor components is equal by
(20.10), to the number of identity representations %, occurring in the repre-
sentation 9s according to which the components transform. For example,
each of the tensors € and § has two linearly independent components in an
isotropic medium, while each of the tensors ¢ and ou has one. If the tensors
A and B in (20.1) are decomposed into irreducible representations A!, and
B, of the group, it follows from (20.13) that only the diagonal components
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Sit. differ from zero for this choice of the components of 4 and B, all com-
ponents S, for these j's being identical. If the symmetry is lowered, the
representations 2; with j= 1 (in cubic groups, with j>= 2) become reduc-
ible and may contain the identity representation of the group. To determine
the total number of identity representations in %; it is then sufficient to
know which of the constituents %2; of 2s contains the identity representation
and how many times.



