Chapter V

SPECTRUM IN A STRAINED CRYSTAL

§28. EFFECT OF STRAIN ON
CRYSTAL SYMMETRY

A small homogeneous strain is defined by the symmetric strain tensor e,:

1 aﬂd 5“3)
sm=?(a—x, axe) (28.1)
where u(x) is the displacement vector of a point due to strain. In elasticity
theory, the connection between the strain tensor and the stress tensor P,
is determined by the stiffness tensor S§:

Bop = % Sap. va Pys- (28.2)

The form of the tensor S,s.ys depends on the crystal class F,

Equations (28.1) and (28.2) define the macroscopic strain tensor of an
anisotropic elastic medium not possessing internal structure.

In crystals which have more than one atom in the primitive cell, the
strain tensor (28.1) determines only the deformation of the primitive cell
as a whole, but the relative displacements of the atoms within the cell,
being proportional to the stress (strain), differ for different atoms.

In the general case, application of a stress to a crystal reduces its
symmetry.

The symmetry point group K’of the Bravais lattice of the strained crystal
is a subgroup of the symmetry group K of the Bravais lattice of the un-
strained crystal, containing those elements of K which are preserved under
the strain,

The Bravais lattice basic vectors a; of the strained crystal are obtained
by deforming the vectors a; of the unstrained crystal:

a,=(l+¢a, or a=a?+ Ve, ab (28.3)
B

The volume 9 of the primitive cell based on the vectors ajis
Qo =Qo(l +exx + &y, +€.) =Q (1 + Tre). (28.4)

Note that the strain may alter the type of the Bravais lattice, in accor-
dance with the possible lattice types for the new system K’ (see Figure 16);
the new Bravais lattice is then characterized by basic vectors which may be
quite different from af(28.3), but the volume of the new primitive cell al-
ways differs from @ by a factor proportional to the strain (see (28.4)). The
Brillouin zone of the strained crystal, which is independent of the specific
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296 Ch, V. SPECTRUM IN STRAINED CRYSTAL

choice of basic vectors, is obtained by a suitable deformation of the Brillouin
zone of the unstrained crystal.

Let us consider the effect of a homogeneous strain on the symmetry of the
Bravais lattice.

Application of a strain to a cubic lattice of class 0, along a fourfold axis
gives K’ = D,,; according to Figure 16, the cubic lattices T,, I'f and I be-
come lattices I'; and I of the tetragonal system: I',—T,; rt, r:—ry.

As shown in §5, lattices of the tetragonal system D, will yield ortho-
rhombic lattices D, when deformed in either of two ways:

1. Application of a strain along a twofold axis parallel to an edge of the
base of the Bravais parallelepiped (ex7 0 or e, # 0, if the z-axis lies along
the fourfold axis, and the x- and y-axes along the edges of the base of the
parallelepiped). In this case, T¢—Ts, Te—T0 .

2. The strain is applied along another (inequivalent) twofold axis lying on
the diagonal of the base: e+ 0. Then I,—TI%j, I'f—T%.

Lattices of the orthorhombic system will yield monoclinic lattices, K'=
= C;, when a shear strain is applied to the Bravais parallelepiped in a plane
normal to one of the twofold axes, destroying the horizontal twofold axes (in
other words, a nonzero component exy, ex Or &., if the x-, y- and z-axes
lie along the mutually perpendicular twofold axes). According to Figure 16,
we have IY, Ty—Tm and T8I} —Th.

The lattices T%, I'» of the monoclinic system yield the lattice I' of the
triclinic system when strained at an angle (neither zero nor 90°) to the two-
fold axis, so that the strain tensor has nonzero shear components e, &p
(the z-axis lies along the twofold axis).

The Bravais lattices of the cubic system yield the lattice I of the rhom-
bohedral system when strained along the diagonal of the Bravais cube. The
Bravais lattices of the hexagonal system yield the lattice T'n when strained
in a plane normal to the sixfold axis.

The crystal class F’ of the strained crystal is a subgroup of the class F
of the unstrained crystal, obtained from it by omitting the rotational ele-
ments destroyed by the strain. It may turn out that the class F’ belongs not
to the system K’ obtained from K under the strain, but rather to a system
K" subordinate to K’, The Bravais lattice of the strained crystal will then
have higher symmetry than implied by the crystal class. At first sight, this
statement seems to contradict the discussion in §5, but it is approximate and
valid only in the linear stress approximation. If we include quadratic terms
in e,p, the symmetry of the Bravais lattice of the strained crystal (28.3) cor-
responds to its crystal class F’, in complete agreement with §5.

Let us consider the change in the crystal classes when the symmetry is
reduced by a strain,

In transition from system O, to system D,,, when a fourfold axis is de-
stroyed, the crystal classes of system 0, yield:

On—+Dy, O0—Dy Ty— Dy, Ty—>Dy, T—D,

Classes D, D; and Dy belong to system Dy, but classes D; and Dj, possess
the lower symmetry D,,. Thus classes T and T, exemplify the situation de-
scribed above, in which the lattice of the strained crystal possesses higher
symmetry D, than required by the crystal class.
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However, if we include the quadratic stress terms in the strain tensor,
describing the change in the elastic constants S,g 4, due to strain,

€qp = § Sap. voPys + ?Oz‘f‘ﬁ’ BogysysPysPyys

where Bgyye is a sixth rank tensor defined by the crystal class of the un-
strained crystal, the Bravais lattice of the strained crystal, defined by the
vectors aj(28.3), belongs precisely to system D,, rather than D,,, and cor-
responds to classes Dy and D,of the strained crystal. Indeed, in classes T
and T, we have Byeu: % Byyu. (the x -, y- and z-axes lie along the twofold
axes of the group T); therefore, if a cubic crystal of class T or T, is
dilated along the z-axis we get a distortion of the Bravais parallelepiped
along the x- or g-axis, which is quadratic in the strain. For crystals of
class T4, O or 0,, which have a fourfold axis (or a fourfold improper rotation
axis), Bz = Byyu, and the Bravais parallelepiped dilated along the z-
axis remains a rectangular prism, in accordance with the classes D, D, and
Dyy characterizing the strained crystal.

In transition from the tetragonal to the orthorhombic system, when the
fourfold axis becomes a twofold axis, the classes of the tetragonal system
yield:

C,—Cy 5,35y Cupw—>Cy, Dy—>D; Dy Dy,
Cin—>Copy Doy — D,

As in the case of the cubic system considered above, the lowest symmetry
classes of system Dy (Ci, S, Cin) become classes of the monoclinic system.

Application of a strain in the reflection plane of D,, eliminates the twofold
axes in the reflection plane, and the classes of the orthorhombic system
become classes of the monoclinic system:

Cap—Cy Dy—+Cy  Dyp —Coy.
Upon further reduction of symmetry, from Cy to S.,
Cy—+e, C,—e, Cy—S,

The transition from the cubic to the rhombohedral system is effected by
applying a strain along the diagonal of the cube. The remaining symmetry
elements are; one threefold axis, three reflection planes passing through
the axis, and three twofold axes perpendicular to it. The classes of the
cubic system become classes of the rhombohedral system:

T—C; Ty—S, Tg— Cy, O0—D, Oy — Dy
Application of an arbitrary strain to lattices of the hexagonal system in

a plane perpendicular to the sixfold axis transforms the classes of the hexa-
gonal system as follows:

Ci—e, C!u_"e, Cg —"Cgp SG_’S" Da—“cz. Dsd-bC,,
Caw—+C,, Dy—C,, Cy—+Cy, Co,—+Ch, Dg— D, Dg — Dyy.

In a similar manner, we easily find the system, lattice type and crystal
class of the strained crystal for an arbitrary small strain, since in the
linear strain approximation any strain can be expressed through successive
application of several simple strains.



298 Ch. V. SPECTRUM IN STRAINED CRYSTAL

Thus, in each case we can determine the space group G’ of the strained
crystal, since each of the rotational elements remaining in the new group £
has the same nonprimitive translations relative to the new lattice vectors
(28.3) as it had in the space group G of the unstrained crystal.

The states of elementary excitations in the strained crystal must be clas-
sified according to the irreducible representations of the space group G"

In the general case, application of a strain reduces the crystal symmetry,
and so degeneracy of the excitation energy spectrum in a solid is partiallyor
wholly lifted. However, we cannot directly apply the results of §15 concern-
ing the splitting of terms due to reduction of symmetry, for the space groups
G and G’ are different insofar as they have different Bravais lattices, and
G’ is not a subgroup of G.* In order to avoid this difficulty, we ''deform" the
coordinates of the strained crystal by introducing x' coordinates

=(+e)"x=1—ex (28.5)

in such a way that the Bravais lattice of the strained crystal in the new co-
ordinates coincides with that of the unstrained crystal in the old coordinate
system. Of course, this does not mean that the crystal lattices are identical,
since in crystals with more than one atom in the primitive cell the distribu-
tion of atoms in the strained crystal in the %’ coordinates (28.5) does not
coincide with their distribution in the unstrained crystal in the x coordinates.

In the new coordinates (28.5), G’ is a subgroup of G, and in order to as-
certain how terms split upon application of stress we have to expand an ir-
reducible representation of G in terms of irreducible representations of its
subgroup G’. As shown in §12, every irreducible representation DM of the
space group G is characterized by an irreducible star {#}, which is defined
by any one of its points, and by an index v designating an irreducible repre-
sentation of the little group Ga or a projective representation 2.(r)of the
point group. In the strained crystal, the representations are characterized
by a star {¥} and an index v. Under the strain, the point g goes into the
point k' = (1 —e)k. In the x’ coordinates (28.5), the Brillouin zones of the
unstrained and strained crystals coincide, and the point & "returns' to its
original position k.

The total degeneracy of the state in the crystal is the product of the di-
mension of the projective representation 2*(r) and the number of points in
the star {k}.

In the general case, the strain has a twofold effect: the star (), which is
irreducible in the group G, becomes reducible in the group G’, and the de-
generacy at k is removed. Thus the expansion of the representation Z{"
may be carried out in two steps. We must first decompose the star {k} into
irreducible stars in the group G’, and then express the projective represen-
tations @5 (r) of the group F, in terms of irreducible projective representa-
tions @}*(r) of the group Fj.

The star {k} is easily expressed in terms of irreducible stars in the
group G’,

(kY ={(R)}+ (R + ..., (28.6)
by the method of §12. If the band is not degenerate at k, the expansion(28.6)

* A similar difficulty will be met in §29, in construction of the perturbation operator representing a strain
which alters the spatial periodicity of the crystal.
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determines the strain-induced splitting of the spectrum, since different
irreducible stars (k) determine states with different energies.

The expansion of the irreducible projective representation @{(r) of F in
terms of irreducible representations @}*(r) of Fi describes the band splitting
at k.

Each representation @D (r)of F’participating in the expansion is a pro-
jective representation of F;, whose factor system coincides with that of @%(r)
on the elements of Fi. This factor system belongs to one of the classes of
factor systems of F;. In practice, therefore, we must first find the factor
system a(r,ry) of F, resulting from the factor system of the representation
D4 (r) of Fs, and then, using the characters of the irreducible projective
representations of F, corresponding to this factor system, decompose the
representation @%(r) into irreducible representations @} in accordance
with (13.38).

Based on the results of §14, we can establish the general relation between
the factor system classes of the point group F and its subgroup F’.

It is clear that any vector representation, i.e., representation of class
Ko of the group F, becomes a vector representation of the subgroup F’. For
vector representations, this problem reduces to the corresponding problem
for the ordinary point group representations. We may therefore confine our-
selves to the relation between the other factor system classes of F and F’
for point groups, conforming to the existing hierarchy of crystal systems.

In transition from the cubic to the tetragonal system, the crystal class O,
becomes Dy. By (3.13), the generators a = ¢, s = s of the group O, satisfy
the relations a*=e, s®* = e, as® = s%, sa’s = a. The generators of the group D
may be chosenas a =¢, b =u, where u is a twofold axis (u = s*ast) and C is
the reflection plane ox(c = a%?%; these generators satisfy the defining
relations (3.5)

at=e, b'=e, c’=e, ba=a%, ac=ca, bc=cbh,

which follow directly from the defining relations (3.13) for O,.
By (14.74), the matrices A=%P(a), B=2D(s) of the projective representa-
tions of the group 0, satisfy the relations

A'=aql, B¢=1, AB*=pB’A, BA’B—A, Where ¢, p==z=1. (28.7)
It follows from (28.7) that the matrices A=D(a), U=D(u),C=D(c) of the
projective representations for the generators D,, satisfy the relations

A'=al, ?=apl, C*=al, UA=afA%U, AC=BCA, UC=afCU. (28.8)

Comparing (28.8) with (14.37), we see that the classes Ki, K, K; of factor
systems of 0, go into factor system classes of D,, in the following manner:

K (Og) = K7 (D) K, (On)_'K4(Dn)- KJ(On)“'*Ks{Du)-
A similar argument reveals the relation between the factor system
classes of the groups O— Dy, Tg—~> Dyy, Th - Dan, T—D,:

K(O)= K (D), Ki(Tg—K,(Dyg)y K (T)— K (D)),
K1 (Tp) = K7 (Day).
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In transition from the cubic to the rhombohedral system Dy, we need
consider only factor system classes of the groups Oy — Dy, since the pro-
jective representations of the other subgroups of Dy are all p-equivalent to
vector representations and therefore all the factor system classes of 0, go
into the class K, for these subgroups. This implies removal of essential
band degeneracy.

Note that if a factor system goes into class K, due to reduction of symme-
try, this does not yet mean that it becomes the identity factor system.

Reasoning in the same way as for the groups O, and D,,, we see that

K (0= Ko (Dag)  K32(0p), K3(0p)— K, (Dyg).

In transition from the tetragonal to the orthorhombic system, the relation
between the classes is

K (Co)= Ky (Cy)y  Ki(D)—Ky(Dg)y K (Cip)—> K\ (Con)s
Ky (Dy)—= Ky (Dy)y  Ki(Dy)—=>Ki(Dy) (i= 1,..., 7).

In transition from the orthorhombic to the monoclinic system, the corre-
spondence of factor system classes for the groups D,, and Cx is

K\ (Dy)s  Ky(Dop)r  K7(Dyp) = Ky (Cap)s
K3(Dgp),  Ky(Dzn), K5(Dgs)y  Kg(Dgp) = Ky (Cop).

In transition from the monoclinic to the triclinic system, each factor system
class goes into class K.

The relations between the classes show at a glance whether essential band
degeneracy may be removed by reduction of symmetry. To include the effect
of time reversal on the electron spectrum of the strained crystal, one pro-
ceeds as in the unstrained crystal. In certain cases additional degeneracies
caused by time reversal may be removed by a strain.

§29. EFFECT OF STRAIN ON THE SPECTRUM

In order to construct a matrix # (&, e) defining the various strain-induced
effects, we must first find the operator representing the change in the spec-
trum due to a homogeneous strain. The Schrédinger operator for an electron
in a strained crystal is

3 (€) =L+ V. (x) + oner (W, [po)), (29.1)

where V.(x) is the potential in the strained crystal: this operator is the Ha-
miltonian of the unstrained crystal
? h
36, = 3+ Vo(®) + gz (Wi [po]) (29.2)
with Vy(x) replaced by Ve(x).

The effect of a small strain may be treated as a perturbation, and we may
restrict ourselves to the terms linear in the strain, i.e., proportional to the
components of the strain tensor e. However, in the case of a homogeneous
static strain, we cannot interpret the difference V,—V, directly as a pertur-
bation operator #‘, since it is generally not small. Indeed, if we fix, say,



§29. EFFECT OF STRAIN ON SPECTRUM 301

a Bravais lattice point a, at the origin (m, = my = my = 0), then the lattice point
m(my, ms, my) whose position @ in the unstrained lattice is defined by equation
(5.1) is displaced by the strain to the point

a, =(l+2¢al, (29.3)
where ea is the vector with components
(ea) = Xiesja;. (29.4)

Therefore, at a sufficient distance from the point a, the relative displace-
ment Aa, =a, —a) =ea) due to an infinitesimal strain is comparable with the
lattice constant, and accordingly the difference V.(x) — V,(x) will be of the
order of V(x), irrespective of the magnitude of the strain.

Of course, we may always consgider a sufficiently small volume near an
undisplaced cell, but even then we cannot utilize ordinary perturbation
theory directly.

The point is that in perturbation theory the wave function of the perturbed
Hamiltonian is always expressed as a superposition of wave functions of the
unperturbed operator # (29.2) satisfying the same boundary conditions. In
a crystal, the boundary conditions are laid down by periodicity, but it is
clear from (29.3) that the periods of the potentials Vi(x) and V.(x) are differ-
ent, and consequently so are the periods of the Bloch modulating factors
uy, (x) for the equations (29.1) and (29.2). To avoid these difficulties, we sub-
ject (29.3) to a coordinate transformation similar to (28.5), making the posi-
tions of the Bravais lattice points in the new coordinate system a; coincide
with their positions in the unstrained lattice in the old coordinate system.
This is done by putting

¥=(+e) 'x=~(1l—e)x or x=(l+e)x. (29.5)
The transformation (29.5) takes the operator p=—iaV into
p=(l—e)p’, where p;=—:‘hi“ (29.6)
dx;
p? into
P " =2 3 b= — 20'ep), (20.7)

and V,(x) into V,[(1 +¢) x'].

If we now return to the old notation (%' — x), the potentials V,[(I +¢)x] and
Vo(x) will have the same periods, and their difference can be expanded in a
series in terms of e:

Ve “l +!)x]_ Vl)(x]z % V” {x)e”s(Vs}, (29.8)

where

1 .V -
Vir (8) = 5=~ lim °"'+‘j":‘ Yolx) (29.9)

The factor before the limit in (29.9) is needed because for given e (i % j)
formula (29.8) contains two identical terms Viei; and Vye;;. Consequently, the
transformation (29.5) yields the Hamiltonian

56’ (8) = 6 + ¥, + Hysor (29.10)
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where
%, = — 22 4 (ve), (29.11)
Hoso= 7irzs €9V o) [0p]) — (V (eV,) - [0p]) — (0VV ] ep))- (29.12)

The first term in (29.12) appears because under the transformation (29.5)
the operator V must be replaced by (I —e)V. The Hamiltonian 3¢’(e) in the
new coordinates has the same periodicity as ..

Under the transformation (29.5), an eigenfunction tes= tes (x)e** of ¥ (e)
(29.1) corresponding to energy E(e, #') and wave vector & in the strained
crystal goes into

¥, =ul, [(1 +¢) %) ik (140 % — uj (1 4 2) x7] ei*=,

where
k=(l+e)k'.

This function has the same periodicity as the functions 4,, or @,, with the
same wave vector k and may be expanded in terms of these functions:

¥ = DB =75 D™, (29.13)

where the 4, arethe eigenfunctions of 3,(x) at k,, and & is measured from the
point k.

Using perturbation theory,let us find the change in energy due to the strain:

SE(e)=E (e, (1 —e)k)— E, (), (29.14)

where E(e (1l —e)k)is the energy in the strained crystal at the point &' =
= (I —e)kto which % is displaced by the strain. For this purpose, we sub-
stitute (29.13) into (29.10), multiply on the left by ¢, and integrate over =x.
The result is a system of equations similar to (21.6):

Y [(Enss = E) 00w + 283c0] ca =0, (29.15)

where
x!:x{l'l'xz'f%’uo"' %en- (29.16)

Here %, and %,,, are defined by (29.11) and (29.12), and it follows from
(21.9) and (17.33) that

hk? hkn f
Hr =" -+, where T=p + g3z [0VV,]. (29.17)
The perturbation . contains terms proportional to products of the compo-

nents of eand k. In the nonrelativistic approximation,

a&.=-2i?:#. (29.18)

In accordance with general degenerate perturbation theory (see §15), in
order to determine the energy E,(e, k) in the strained crystal in the vicinity
of the point & in a band m, we must transform away interband terms ., in
(29.15), using (15.33); this gives a system of equations
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§ (xm'm - Eém‘m] Cm = 0,

which includes only coefficients ém belonging to one band. The energy E(e, &),
measured here from E,,,, is found by solving the secular equation

Ixm'm“Eam'I:O- (29.19)

By (15.47), (29.17), (29.18), in the nonrelativistic approximation the matrix
elements Mmm will include the following terms:

hk? h L (tpm's) [*P,.,)
ll’m':_gbmm"l';kpm'ﬂ'l‘?zh‘—_g,; (28.20)
M_=2( {nm)m Vf,f-m)zu=EDf-"ms-;- (29.21)
{’ Ilttk} *pﬂl xgﬂl +xﬂl8 t’Sl"ul
K = —2 ) z‘ 1Tt ZneBoum) (29.22)
where
D,l,:'fm= (P.P),,,,.,, +V:-’

The first term in (29.22) is due to the perturbation e (29.18); the sec-
ond, which is usually more important, arises in second order perturbation
theory from #, and #a. At an extremum, the first term always vanishes,
but the second may differ from zero. If the little group contains inversion
and the element (i|r) commutes with all the elements of the group, these
terms vanish, since for functions of like parity Pn, =0, and for functions
of unlike parity #ms=0.

As in §21, the relativistic term ,,, which describes spin-orbit coupling
at k), may either be included in 2, or treated as a perturbation. In the
latter case, when calculating the relativistic corrections proportional to e
we must take into account not only the contribution from ., in first order
perturbation theory but also the relativistic terms due to #. and #s. in
second order perturbation theory; the latter terms are usually larger than
the former.

We shall not write out all the terms explicitly, especially as it is far
simpler to introduce them by the theory of invariants.

Note that all the matrix elements in (29.20)—(29.22) are calculated be-
tween wave functions ¥, of the unstrained crystal, and the selection rules
depend on the little group G, in the unstrained crystal. Equation (29.14)
shows that in so doing one determines the spectrum at the point %; of the
strained crystal corresponding to the point &, of the unstrained reciprocal
cell, where ki= (1 —e)k,. By (29.14) and (29.16), the energy change at the
same point &k, AE(e)= E (e, k)— E;(k), is determined by the operator

26" (e, k)= €' (e, (1 + ¢) k). (29.16a)

When actually calculating the matrix # (k e) at a given point &, one must
calculate the matrix elements of the operator g, between the eigenfunctions
of the operator g, which transform according to a given representation of
the little group G,. These matrix elements have dimensions of energy and
are called the deformation potential constants.
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In accordance with the selection rules presentedin §19,in order todetermine
the nonzero elements #m» we must know how the components Vyjtransform.

Invariance of the Hamiltonian &, under the coordinate transformation
implies that

§ Vi = %‘. Ve (29.23)

where V[ (¥)=V, (g~'%) and e, are the values of the components Vi and &y in
the new coordinate system. Using (29.23), we easily show that the compo-
nents V| (x) transform under all the operations g of the space group G ac-
cording to the same representation @, as the components ey, i.e., like the
products pip; or xx;, and therefore the presence or absence of these terms
in (29.11) in no way affects the selection rules. We stress that this trans-
formation rule for the components V;; is valid only when g=G,, whereas
the analogous transformation for the components ei;, pip; is valid for arbi-
trary coordinate transformations. It is clear that the coefficients of ei; in
Heso transform like Vij.

The explicit form of V;(x) is much more difficult to determine than the
unperturbed potential V,(x), since this requires exact solution of the self-
consistent problem in the strained crystal, making it possible to find the
deviation of V.(x) from V,(x) for small strains.

In the earlier versions of scattering theory, in which, as we shall see
below, the same quantities V;; appear, various assumptions were adopted
concerning the relation between Vy(x) and V,(x). Although, as shown above,
the explicit form of V;;j(x) has no effect on the selection rules, so that it may
be important only in numerical evaluation of the integrals, we shall devote
a brief discussion to these models.

In the first of these models, proposed by Bloch and known as the deform-
able ion approximation, it was assumed that if a point x goes into x’ when
the lattice is deformed, the potential V,(x’) is equal to the potential V() in
the unstrained lattice, in other words, under a homogeneous strain,
¥=(l+ex,

Vel(1 + ) x] = Vo (x).

By (29.9), this implies that in the deformable ion approximation Vi;(¥) =0, and

&4 (PiP )
Hotm -—%}—’—(—m—’)’"—"‘. (29.24)

In a second model, proposed by Nordheim and known as the rigid ion
approximation, it was assumed that the potential V(%) is the sum of the po-
tentials of the individual ions, and deformation of the lattice causes only a
displacement R,of the centers of theions, without distorting their potentials.
In this model, for an electron-hole pair in atomic semiconductors, one must
assume that V(x) is the sum of potentials of the individual atoms V,.

If the primitive cell contains one atom, then

Vl! [x)= "Z Vn(x - Rn)r V:(‘)"’ ? Vc (x _(I + 8) R!I):
since the ion displacement is 3R, =eR,. Hence

Vel +e)x1 = Vo(x) = R Val(l + ) (x =R = Vo(x —R)= Y, -""‘";T““ﬂ’e,,(x—m;

s i
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and consequently, by (29.9),
Vi (x)= ;2[ Hal =R (x— Ry, +M}‘-’?’i(x—k i} (29.25)

If the primitive cell contains more than one atom, deformation of the crystal
may bring about displacement of one sublattice relative to another. This
displacement u'™ = u;— um is determined by a third rank tensor I', which is
symmetric in the last two indices:

ur = 2 Iive. (29.26)

The nonzero components of this tensor may be determined by the rules of
§20. The representations according to which the components u/™ transform
coincide with the representation corresponding to optical modes at §=0
and can be determined by the general rules of §15. An alternative method is
based on the observation that, under all group operations which do not
change the positions of the sublattice, the components #" transform like the
components of an ordinary vector. If the group contains operations under
which the sublattices change position, these operations change the sign of
the um, For example, in a Ge-type lattice, where these components trans-
form according to the representation F#, i.e., like xy, xz and yz, the tensor
I' has one nonzero independent component Iy = Iy = Tipy.

If the primitive cell contains two like atoms at points R, and R;, then, in
the rigid ion model,

Vo(x)= ;m.(x —Ry)+Va(x—Ry)),
V.(xl=§lv,(x—(1 +¢)R,) + Va(x — (1 +e) R, —Te)].

Hence,
Vi) =5 B {5 Wale — R+ Va(s — R (x — R), +

+g?,7[va(x—m+V.(x—k:.mx—n,.h]+2r“,"—"=(7‘—x:”. (20.27)
kn

Quantitative results fer silicon /24.1/ have shown that the deformable ion
and rigid ion models both yield deformation potential constants which differ
markedly from the experimental values. For numerical calculations, there-
fore, more sophisticated models are needed. We reiterate, though, that the
number of nonzero linearly independent components Dy, does not depend in
any way on the model chosen, but is deterinined only by the little group and
the representations according to which the wave functions transform at an
extremum point.

In nondegenerate bands, i.e., one-dimensional representations, the only
nonzero matrix elements are those of the components D;, = —pip;/m + V;
which transform according to the identity representation; in other words,
by (21.14) and (21.15), only the components &; or combinations of them
which are invariant under transformations of the little group may appear
in E(e, k). At an arbitrary point of the Brillouin zone where the little group
Ga, does not contain any elements besides the identity and possibly inversion,
all the components of the tensor of deformation potential constants are in
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principle nonzero. Like the effective mass tensor m*”, this tensor can be
transformed to principal axes, and in the appropriate coordinate system

E(")= Dyt +Dyy$“r+ D8z (2928)

The principal axes of the tensors m*' and D do not coincide in general, but
when the directions of the principal axes are determined by the symmetry
axes they are naturally the same for both tensors. Thus, if the little group
contains threefold or higher-order axes, then D, =D, = D,, D,;,= Dy, and

E(e) =D, (exx + &y,) + Dz (29.29)

Instead of the components D, and D;, one frequently defines 8s = D, and
Bu= Dy —D,. If the band extrema lie at different points %k, of the star {k}
(this is the case, for example, in the conduction band of Ge and Si), then
equation (29.28) or (29.29) is valid for each extremum in its system of prin-
cipal axes., These axes are, of course, different for different extrema, lead-
ing to the shift of inequivalent extrema derived in the preceding section from
general group-theoretic considerations.

A strain is usually referred to the principal crystal axes, whereas the
symmetry of the tensor D is determined by the positions of the symmetry
axes for the extremum in question. To determine this shift, then, we must
find the components of the strain tensor in the system of symmetry axes at
the extremum. These components e}, are related to the corresponding com-
ponents e, in the crystal system of principal axes:

eg!-=§ cos (ii) cos (j']) €., (29.30)

where cos(i"i) is the cosine of the angle between the / and /" axes. If the
directions of these axes are designated by the crystallographic indices i, &, {
and #, k', I'respectively, then for cubic systems

. ety iR+
cos(i, k, L; i", k', I") = T i (29.31)

Using the symmetry of the tensor e, it is convenient to replace the two-
component notation ei; by a one-component notation e;, as in /15.4/, denoting
Bxx = 1, Byy = &2, B;; = &3, 28y, = 6, 26, = £5, 28y = #&. Then the last equation may
be rewritten

€ = ;9}‘,—@;». (29.32)

where
6, =cos?(xx’), B,g=rcos(xx’)cos (xy’), Bz =26,
65 = cos (xx’) cos (yy’) + cos? (xy’) etc.

Since the components ¢} of the strain tensor will differ for different extrema,
the shift of these extrema may also differ.

In cubic little groups, all three tensor components coincide, D;; = C, and
accordingly

E(®)=Ce=C e, (29.33)
i
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By (29.11), the deformation potential constant appearing here is

C=g5{ Z[ 4 v4 dx + [ v, Trve, ax). (29.34)

where TrV = ‘2 Vi(x).

In the deformable ionapproximation, it follows from (29.24) that the second
term in (29.34) vanishes, and the deformation potential constant at 2=0 is

=—%%J’|Vuol’dx. (29.35)
Q

We have used Green's formula according to which, for arbitrary functions
¢ and ¢,

va?mdx+J.Vupvq:dx=§¢%:¥ds=§¢(?q:ds). (29.36)

The integral over the surface s of the primitive cell vanishes thanks to the
periodicity of the Bloch factor u(x).
In the rigid ion approximation, by (29.25), we have at k=0

C=‘%[%J|V%F“— [ @i pax]. (29.37)
Q

Here the field of all atoms other than that at the center of the primitive cell
is neglected, i.e., we are assuming that Vo(x) = V.(x). Although this assump-
tion is apparently not really justifiable, it is usually adopted in this model.
Through simple but rather cumbersome manipulations, expression (29.37)
may be rewritten /28.7/

= 3;; %0 (E— Vo)l up P ds, (29.37a)
where xn is the component of the radius vector normal to the surface.

In the case of degenerate bands, the strain not only shifts the band as a
whole, but may also split bands as a result of partial or complete removal
of degeneracy upon the reduction of symmetry. Therefore, the effect of the
strain on the spectrum is more complicated. As an example, we shall dis-
cuss in the next section the effect of strain on the valence band spectrum in
germanium, silicon and A3Bs compounds.

Along with terms proportional to e, k2 and ek, the Hamiltonian (e, k) may
contain terms proportional to ek*. These terms, which describe the change
in the effective masses due to the strain, belong to third order perturbation
theory.

In accordance with the general equation (15.48) and equation (29.16a), we
have for a nondegenerate band

st
aE" __x:""ztf —'Em)’-!-

+ ‘”;:x!s’x:’m + ‘”:mxsrx:‘m
+ 2 m) (E .~ E }

x’ %) +x' ol *p,,.) (kep,,,
-y 1 +2Re maz%- (29.38)



308 Ch, V. SPECTRUM IN STRAINED CRYSTAL

As a rule, effects due to a change in effective mass are significant only
if the relative change is considerably greater than the magnitude of the
relative strain e. The last terms in (29.38) do not cause such effects, but
the first ones may, if the energy denominator E,— Em for one or more bands
is small compared with the corresponding deformation potential constant,
i.e., if the nearest bands are closely spaced and the momentum matrix ele-
ment or matrix element of the operator . (or both) between the correspond-
ing states s and m does not vanish; this may happen when the functions ¥,
and ¥, do not possess a definite parity. If only the momentum matrix
element between the nearest bands is nonzero, then

it x:‘ x:’m“:s'
AE =Z(as:s Hoom) e EoE )2 + E EE)E—E] - (29.39)

In case only the interaction of the two nearest bands is significant, and these
bands are not degenerate, the change in effective mass is proportional to the
change AE; in the band gap:

aE,:as:s—as:mz.E,:(Df,—of;)e.,; (29.40)
in this case
8Eg (e) M
AEm - :\2 2 (*P)m (kp)snu
g
i.e.,
1 GE‘(e) 1
A=k (29.41)
My Eg my
where
L
mit  m'E

is the contribution to the effective mass due to the interaction of the m and s
bands. In this case, therefore, only those masses to which the major con-
tribution is the interaction of the nearest bands experience a significant
change. The strain does not alter the symmetry of the constant energy sur-
face, i.e., equal masses vary in the same way under strain.

If a state s in (29.39) is degenerate, then, as we show in the next section,
the symmetry of the spectrum may change. A similar effect may also occur
when the matrix element of #, between the nearest bands does not vanish.
By (29.38), if these bands are not degenerate, then

2Re[ B Z #0) s (ko ]] (29.42)

AEw =2
E,—E

‘mt E,—E_

Equation (29.41) is directly applicable to erystals of PbS, PbSe, PbTe, in
which the band extrema are located at the point L on the edge of the Brillouin
zone. In the nonrelativistic approximation, the interaction of these bands
determines only the transverse mass m}. If we include the relativistic
effects, which are significant in these crystals (since the spin-orbit splitting
is comparable with the crystal splitting and with the band gap), the interac-
tion of the nearest bands determines both masses.
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Si is an example of a crystal in which the second effect determined by
equation (29.42) is significant. The conduction band extrema of Si lie on the
[100] axes at a point ky distant 0.15 (2n/ay) from the band edge, i.e., fromthe
point X, and correspond to the representation A;. At X the two branches 4,
and A; of the spectrum merge and form the representation X, or X;; hence
their splitting at &, is comparatively small, amounting to about 0.5 ev.

In accordance with the selection rules, the matrix element of the operator
M, 36,, =i, =C', between the states A, and A; does not vanish, since, aswe
see from Table 11.1 (p. 73), the components y, z transform according to the
representation B,=A]X A] of Ci, which is the point group for the points A.

The only representation A, for which the matrix elements p, and p,y van-
ish simultaneously is A;, according to which the functions ¥, and Z, trans-
form. The nonzero matrix elements are {l|py|V) = (1]|p:|Z) and (X|p.|V}) =
=(X|py|Z1).

Since all these representations are real and k& 5= —k,, it follows from
(19.7) that

pht=—pp and Ky =

Thus, by (29.42), AE. for the point k, is
2D2C ek gk

AE.,:=~T, (29.43)
where ,
C'=(X|56| D, 8=Ey —E,,,
! 2 ey 1Y) (Yel o2 1X)
—_— == —_—, 29,
m m IZ E“I" —E_,_.‘I.. ( 9 44)

If we now go over to the system of axes x’ [100], 4 [011], 2'[011], then, in
view of (29.43), we can write the spectrum E (e, k) as

X & 2m C'e ) bl 2m C’e
Bl b =gt + gt (14 24 ) 4 2 (1 - TUTe) . (20.08)

Note that if the ek? corrections to the spectrum had been evaluated by the
theory of invariants, other invariants of the group Cw would have appeared
together with the term eykyk: in AE,», namely (see Tables 11.1 and 26.1), the
terms (e, —e,) (k2 — k), ek? e, k% ek?, e k2. As we shall show in the following

section, the predominant contribution of the term e;:k%; is due to the singu-
larities of the spectrum at the point X, which is near the extremum &,.

§30. EFFECT OF STRAIN ON DEGENERATE
BANDS IN CUBIC CRYSTALS

Let us consider how the spectrum changes at points of zero slope in de-
generate bands. In any cubic crystal, if spin is neglected, this is the case,
for example, at the point T, where there are six (for T4, three) representa-
tions which are degenerate when spin is neglected: I, Iy, s, s, Tas, T'%s .
Because of spin-orbit coupling, the three-dimensional representations I'is, I'js
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and T's, I split off a two-dimensional (counting spin) representation I'¢, I's
or T#, I7 and a fourfold degenerate representation Iy, ;. The representa-
tions T, T2 also become TI§, I'; counting spin.

In Ge, Si and most of the A3Bs compounds, the top of the valence band
corresponds precisely to the representation I'f or I's, formed by splitting of
the representations T or I's. In crystals of class T;, for example, in ZnS
lattices, the operator (k) for the representation I's includes relativistic
terms linear in k, whose role will be examined below. In crystals of O,
whose group contains inversion there are no such terms. In diamond-type
crystals (0}), X and L are also points of zero slope for degenerate repre-
sentations.

We first consider the point I The basis functions of the representations
I's and I'js transform under all group transformations like x, 4, zor /., J,, /.,
respectively, while the basis functions of the representations I and T
transform like yz, 2x, xy or =x2%y?, yz2x?, zx?y2. For brevity, we shall denote
both sets of functions by X, Y, Z, since the selection rules for the intraband
matrix elements of the operators : and #.are the same for all these
representations.

Since the operator D in (29.1) is even and by Table 26.2 (p. 250) its com-
ponents Dy;, like the components &;, transform according to the representa-
tions Ty, Ty, I'js, it follows from (19.45) that in the present case, case (a;),
the operator has three nonzero linearly independent matrix elements:

=D, m=D}, n=D0D%, (30.1)

and go the form of the matrix #(¢) relative to the basis X, ¥, Z is similar
to (24.5):

le,,+m {8“ +e..) ne,, ne..
¥ (e)=|ne,, ley,+megste,) ney, . (30.2)
Mn myz ts:: +m (sx; + 8”.)

As noted above, spin-orbit coupling splits the sixfold degenerate (counting
spin) representations Tis, I's, s, s into I's, I's or IY, I'7 and 'Y, I5. We al-
ready have basis functions for these representations (see equation (23.2)).
Using (30.2), we easily verify that relative to this basis for the representa-
tions Iy the matrix # (¢) has a form similar to (24.13):

Poroj 0
_|" e 0 30
X (e) = o g (30.3)
0 ) —h

where

F= 5" eex t £y) + Moy g =5 (F+2[m (e,atey) o),

h= = e e [ [ £ () eraeyy)—ines,)-

(30.4)
Thus the determinant | # (k)4 # (¢) — IE| has the same form as the determinant
of (24.13) for the unstrained erystal, the only difference being that F is re-
placed by F = F+4f, etc. As shown in §24, the general solution of the secu-
lar equation has the form (24.14).
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Substituting the values of the elements from (24.13) and (30.4) into (24.14),
we find the electron spectrum in the strained crystal:
Eiy=AR 4 ae (&4 + Eer + &', (30.5)

where
&y = Bk 4 C* (k3k} + KIRE + RERD), (30.6)

&= Bb ‘3 (Kiexx + kisw + kisu) - kzsl + 2Dd (kR ey + RekeErr + RykoEy), (30.7)
g‘ﬁb_': I{s“ - ew)2 + (ew - szz)g + (Gﬂ - sxx]2]+d2 (eiy + e£z+siz)‘ (30.8)

Here
_I42m {—m d n

a s = C*=D*—38%

The operator #(e) may also be obtained by the theory of invariants, like
the operator (k) in §26. For the representation I'i', operator #(e) includes
components ezs which transform according to the representations [IF?] =
=T, 4T+, and since these components also transform like the product
kokp the result is similar to (26.12) and (24.13):

as(s}=(a+§b)s—bzl]er“—_V%d%u,x,[eu. (30.9)

If the representation I'f, I'; arises from the representation 'y, Ty, the
operator #(e) in the nonrelativistic approximation will contain only compo-
nents #; that transform according to the representations [[})] =Ty 4+ 24 Ti;
in other words, it will not contain components e:; with isj and, as in
(26.16), d=0.

It is evident from equation (30.5) that, in accordance with group-theoretic
considerations, when a strain is applied, the light and heavy hole bands
remain twofold degenerate owing to time reversal. Here an isotropic strain
shifts the bands as a whole:

AE = ag, (30.10)
while an anisotropic strain splits the bands at k= 0:
8E ,=E, — E; =2&", (30.11)

A dilation along the [001] axis results in a splitting of
OE1,2 =2 beZ|, (30.12)

where el;=¢,; — & =¢,; —e,, is the relative strain along the [001] axis. Under
a dilation of the crystal along the [111] axis, when (see (29.30)) ey, =er.=¢,, =
= e{1/3, where ejy is the relative elongation along the axis, €|, =¢,;; —¢ep =
=e,;, — ¢, then

2
V3
Hence it is clear that the constant b determines the splitting due to dilation
along the [100], [010], [001] axes, the constant 4 fills this role for the [111],
[111], etc. axes.

8E) = | defn |- (30.13)
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We shall consider the spectrum for low kinetic energies Ex < 8E),; and
high energies Ei > 3E, , separately, since the behavior of the spectrum in
these regions is significantly different.

Low energies, To determine the spectrum near an extremum under
an anisotropic strain, we must expand (30.5) in powers of &u/&,, omitting
the term &:. To a first approximation,

Eia(e, *)=aa;|:&’1‘”+(,q T g;)k?x
e

+ {gﬁ%(&ie“ + Koy + ko) +
e

+ Dl (eken + kekes + k,k,e,,}}. (30.14)
1]

We see that the constant energy surfaces near an extremum in the strain-
ed crystal are ellipsoids, whose principal axes are the principal axes of the
reduced strain tensor:

, g if i=j,
Eu={ 1 i

(Dd/3Bb)e,, if i+ ] (30.15)

The directions of these axes and the tensor components ef; relative to the
principal axes may be determined by solving the secular equation
lei; —e”d; | =0. (30.16)

The three roots of this cubic equation determine the three components e}
referred to the principal axes. By (30.14), in this coordinate system

Eva(k)=ae + &+ LY £ (30.17)
2 — myy
where
h: Bb o
E,E-=A + M—;I&(aeu*e}. (30.18)

For example, under a dilation along the [100], [010], or [001] axes (Figure 30),
for the upper of the split-off bands,

2 —asxB B—az8, (30.19)
2m, 2m 2
The upper sign corresponds to bei: >0, the lower sign to bel,<0. For the
lower of the bands, the signs are reversed.
Under a dilation along the [111] axis, for the upper of the bands
M 4. D W, D
A EVE AT o
where the upper sign corresponds to dein> 0, the lower sign to dein <0, The
2’-axis lies along the [111]direction, the x'- and y’-axes perpendicular toit, say
along [110] and [112]:

(30.20)

1 1 =1
ky = o (katkytka), ky =V (—ketky), ky= Vg(k,-}-k,—-%,}, (30.20a)

so that
2(kyk, + kik, + kyk:) = 3k — B =2k — kY — B2
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gl £ ev

L

FIGURE 30. The spectrum E (k) (2) and the shape of the constant
energy surfaces in p-Ge, for a [100] strain; (b) low energy region,
(c) high energy region, The dashed lines show the shape of E (k)

and the constant energy surface in the unstrained crystal.

Formulas (30.14), (30.17)—(30.20) are valid for the upper of the split-off
electron bands, provided its kinetic energy E(k) is small compared with the
separation 6Ey,: to the other split-off band, as determined by (30.11)—(30.13).
The effective masses themselves, as remarked in §28, do not depend on the
magnitude of the strain but only on its direction. Only the energy of elec-
trons satisfying (30.14) depends on the magnitude of the strain.

Expanding expression (30.5) up to & terms, we can allow for the nonpara-
bolic nature of the band in the strained crystal near the extremum. In this
approximation,

m, | & 1 &2 1 &,
EI,,ﬁAk’+asi{ . +_i.’-?z%__8‘§3:;f+;é’_£’l (30.21)

For large strains in crystals with small spin-orbit splitting, we must
also introduce corrections due to the other split-off band, since the splitting
caused by the strain may amount to a significant fraction of the spin-orbit
splitting. The matrix # (k) for the two bands in the (Y3, v representation
is given in Table 24.1. The matrix # (¢) in this representation is readily
derived from (30.2). It is similar in form to Table 24.1, except that F is
replaced by f, / by j, Hby h, and G by g.

To obtain the corrections to E(e, k) due to the other split-off band, we
must partially diagonalize the matrix # (k, &), eliminating the interband
terms. As shown in §15 (equation (15.49a)), this transforms the matrix #,
with components #Hpym (m, m' =1, 2, 3, 4) into

??||=”|1+%mexuh (30.22)
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where #i is the off-diagonal matrix with components #,,(m=1,2,3,4, s=55)
and A is the spin-orbit splitting, A = E;— Ey;. As in (24.20), under the trans-
formation (30.22) the matrix elements F=F+ [ G=CG+g A=H+h I=1+j
become, respectively,

H=H — 7 (F—G)+2 V3IH), (30.23)

Substituting F, G, H, 7 into (24.14) and retaining additional terms of order
e’/A and ek?/A, we obtain

| &y
+ [31& e 8"'2 (331:' —‘Ea—e)] , (30.24)

E(e, k)= E,(e, k) +— ( 8“2

where FE,(e, k) is defined by (30.14), &. and &, by (30.7) and (30.8), and
Eo=—b I(B — 3exx) (8 - 33#3) (e — 3922)] +6 VE da'exysxz!yz +
+ 36 [(e — 3e,,)el, + (e — 3e,,)e2, + (e —3e,,)e2, ], (30.25)
Eowr = — Bb*[(K* — 382) (e — 3e,,) (e — 3ess) +
+ (- — 3k3) (e — Besx) (e — Be.0) + (K2 — 3k%) (e — Bexy) (e — 3e,,)] +
+6 V3 DA [kokyorey: + keker ey, + kyker o] +
+ 3842 [(k‘* — 3k°]s"‘ (k’ - 3k"’) (k"’ — 3k3)e'§”] +

+ 6 Db [kyk.e,, (e — 3e,,) + koke (e — 3e,,) + kokyey, (e—3e.,)). (30.26)
We see from equation (30.24) that inclusion of the split-off band leads to

two effects: first, a nonlinear dependence of the degenerate band splitting
under strain. Counting the split-off band,

o &
8Ei 2 =E; — E2=28/" + w‘"ﬂ' (30.27)
[
Thus, for a [001] strain
bej,
012 =21 be (1 + 2552), (30.28)
and for a [111] strain
2 " dey
6EI.2=}_,—:§—'|derlli(l + V__b) (30.29)

It is clear that the sign of the correction quadratic in e depends on that of
be’ or de’, respectively. This effect thus makes it possible to determine the
sign of the constants & and 4.

The second effect, which also enables us to determine the sign and the
magnitude of these constants, is a change in effective masses in a strongly
strained crystal, described by the last term in (30.24).

According to this equation, for a [100] strain the upper of the split-off
bands gives*

* £ is the electron energy, and so the highest value of E corresponds to the lower hole level,
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_ﬁi=,q+3(. +2l1l+_°)
. — b L

]
2 B be’ r
L 1E(l+2————| "“IHE").

2m

(30.30)

Clearly, if bei. <0 the effect is absent, while if be.:> 0 the change in

inverse mass is
# be, »” be’,
o( )=4B —= ( )= — 9B %
;:' e P 28 = (30.30a)

Similarly, for a [111] strain the effect does not appear for the upper of the
split-off bands if dei;; < 0; it is also absent for the lower band if defy >0. If

dejiy > 0, then for the upper band

¥ 4 _ dej, ( ¥ ) 2 _ dej)

£ ev

—— - &
572 ?‘“‘4—% & 122 160°cm™
g [irg}

a K,

/,-.‘h%. ‘-‘\\
! ]
\
\ !
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] lkx o
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\ ]

FIGURE 31, The spectrum E (k) (a) and the shape of the constant
energy surfaces in Ge for a [110] strain; (b) low energy region,

(c) high energy region,

The nonappearance of the effect for one of the bands, depending on the
sign of the strain, is not a general feature of equation (30.27) but occurs
only for the [100]and [111] directions. In other cases the effect appears ir-
respective of the sign. For example, for a dilation along the [110] axis
(Figure 31), if eio= —e j;= exy % 0, then, for the upper band

—£—-—= ﬁ: ) £ h! —_ 2
r— A, P A=z 2" T =AF > (30.32)

The upper sign corresponds to dejo> 0, the lower sign to de;o<0. The ef-
fective mass corrections proportional to the strain are determined by the



316 Ch. V. SPECTRUM IN STRAINED CRYSTAL

expressions:
()= (oo = 301901 e
(gurr) = (Deue *?B"""”')

(the upper sign corresponds to the upper band, the lower sign to the lower
band). The ¥’ -axis is directed along [110], y* along [110], and 2 along [001] *
From (30.31), (30.32), (30.32a), we see that in all cases
( +—+—'1—)—'U
m”

Myy

In the above derivation we assumed that the spin-orbit splitting A is inde-
pendent of the strain., The exact Hamiltonian #/(e) for the two valence bands
Iy and Iy, incorporating the change in spin-orbit splitting and the mixture
of states I'y and Ty due to the strain, is similar to (26.15)(j =1):

% (e) =(a + 2b)e — 3::2‘.13;,, -2 Vid z L ey +

(30.33)
+3800)+(a + 78) o) e~ 38 0w — V38 3 [iojles.

The constants B and 6 are of the same order of magmtude ag the spin-orbit
splitting A, and therefore the relative contribution of the last three terms in
(30.33) is small. When they are taken into account, the corrections to a, b, d
in (30.3)—(30.8), are «, B, §, respectively.

High energies. For high energies, & > &u > &,, the effect of strain
may be treated as a perturbation. We can thus omit the term &, in the gen-
eral equation (30.5) and expand the term under the radical sign in powers of
&ea/&,: the result is

El.z(k)=£‘0 |,2{k)+651‘2=

=Ey1,2(R)+ae = *25'1'72' (Bb[3(Kiexx + kie,, + kless) — kel +
k

+2Dd [kokyery + kekite, + kke,), (30.34)

where Eoi 2= Ak’ + & is the energy in the unstrained crystal (24.14a). The
behavior of E(k) and the shape of the constant energy surfaces at high ener-
gies were shown in Figures 30 and 31.

* In analysis of experimental data in this case, it should be remembered that when the stress P is applied along
the [110] direction the compression along the [110] and [001] axes is not the same; in other words, apart from
the relative dilation along the [110] direction,

1 3
el T(‘ﬁg + e0y) -% (811—81 +3 Saa),
a dilation occurs along the [001] direction:
1
L (S,,—Su +ES“].

Corresponding expressions for the effective masses are readily derived from the general equations (30,14) and
(30,27).
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We see from (30,34) that the energy correction AE, . due to strain satisfies
the condition

T';J‘.&Em{k)dﬂ=ac. (30.35)

The integral is evaluated over the solid angle Q for fixed |k|. Indeed, be-
cause of the cubic symmetry of &,,

k?
gm Q= fgm dnzf—ﬂm de;
hence

B — ar}
f —ap9e=0.

Similarly, for sk

km
gl!? dQ=0.

Condition (30.35) means that the ratio of the concentrations of light and
heavy holes,
[ exp (~ (8} + AB) 47} #* a a0

ny

" _[ exp {— (B + AE,)[#T) £k dg

is invariant under strain in the linear e approximation.

It is characteristic that the energy correction AEj . due to strain does not
depend on the magnitude of & but only on its direction. Thus, for a [001]
strain

AE,, o (k) =ae + — 1= (3k2 — k) e, (30.36)

&gm
where e, is the relative elongation along the [001] axis. For a [111] strain

AE, o(k)=ae = 1.'2(3‘@ k) &, (30.37)

where, as in (30.20a), the 2'-axis lies along [111] and ef; is the relative
elongation along this axis.

As we shall show in §34, it is precisely this effect of strain on the spec-
trum that causes relatively large changes in conductivity and other kinetic
coefficients under strain. Equations (30.34)—(3G.37) are also valid for semi-
conductors with a zinc blende lattice, such as InSb, CaAs, since the linear %
terms that appear in this lattice owing to the absence of an inversion center
are usually insignificant at the fairly high temperatures for which these
equations are applicable. In the low energy range, however, these terms
may be significant.

Spectrum in strained InSb-type crystals at low energies
As shown in §26, the Hamiltonian (k) for InSbh-type crystals includes a
matrix #'(26.17),

W= AV ), (30.38)



318 Ch. V., SPECTRUM IN STRAINED CRYSTAL

which contains linear k terms is given by (26.17a). In the unstrained crys-
tal, these linear terms remove degeneracy and shift the extremum from
k=0 to equivalent points on the [111] axis. In the strained crystal, the
linear terms split each of the two bands formed as a result of the strain and
shift the extremum. If the energy change due to the linear k terms, i.e.,
the difference between the energy at # =0 and the energy at the extremum
k), is much smaller than the separation of the bands split by the strain, we
may regard the matrix #’ as a perturbation and find the appropriate energy
corrections by calculating the matrix elements of #’ between eigenfunctions
Fi which diagonalize the Hamiltonian # (e, k) defined by (30.3) and (24.13) and
correspond to one of the split-off bands. These functions are defined by an
equation similar to (24.19), with E, F, G, I, H replaced by E, F, G, f, I, which
involve both quadratic % terms and terms linear in the strain (see (24.11),
(30.4), (30.5)). Here first order perturbation theory can account for only the
lower of the split-off bands. When we include the linear & terms, the spec-
trum E(e, k) is determined by the secular equation

|1E: + 71 — IE| =0, (30.39)

where #{ is the matrix of the operator (30.38) in the representation (24.19).
When calculating O0E; in a strongly strained crystal, we need include only
terms proportional to the strain tensor components, i.e., one set F =], etc,,
where f, g, 4, jare defined by (30.4). Inclusion of k% terms would result in
corrections proportional to #. To this approximation, the energy correction
due to the linear % terms is

4 n
OE = + JS’E!"{ Y, akik, }' , (30.40)
(>

where
a, = 3b=(ew —_ 8”)2 + 44 (szy + siz)’

(30.41)
Uxy = F 4 ﬁda’;r?&m + 4d28le’.,z,

and so on. The upper sign in the expression for a., corresponds to the upper
band, the lower sign to the lower band.

It follows from (30.19) and (30.40) that when a strain is applied along the
[100] axis the spectrum for the upper band near the extremum is given by

E*(kR)=(A + B)k§+(A¢%)[kJ_—k‘i]’, (30.42)
where
3 &
A=+ 8 =17
2

Here, as in (30.19), the upper sign for B corresponds to be;. >0, the lower
to be.. << 0.

The linear % terms cause complete removal of degeneracy and shift the
extremum from & =0 to the annulus k. =4%. Near the extremum the con-
stant energy surfaces are toroidal.

The spectrum has the same form for a [111] strain, provided defu>0,
for then, by (30.20) and (30.40),



§30. EFFECT OF STRAIN ON SPECTRUM IN CUBIC CRYSTALS 319

£ __ D2 __b 0
E (A+ﬁ)kz+(.4 zﬁ)(k; e (30.43)
where

o V4

T aA—rva)”

If dej;; <0, the extrema are shifted along the 2/-axis to a distance = &% from
k=0, and the constant energy surfaces are two displaced ellipsoids:

£ __ (2 D \pp, 02 2
E —(A ﬁ)[k, + KLY 4 (A""zv_)k“ (30.44)
where
B — V2 |k|
A= (V3

In equations (30.42)—(30.44) the energy is measured from the new extre-
mum point. As noted above, these expressions are valid for strains such
that the band splitting 8E,: (i.e., 2 |bei|or (2/V3)|deiul, respectively) consid-
erably exceeds the difference between the energies at k£ =0 and at the new

extremum point k,, which is i"/(}l;i) for a [001] strain and 242/(,4—- %)

(de;y; >0) or 212/(.4 — ?) ( dews < 0) for a [111] strain. Of course, theenergy
E{k) must also be small compared to 6 ;.

Corrections to effective mass due to interaction with
a degenerate band. As mentioned in the preceding section, interac-
tion with a degenerate band may change the symmetry of the spectrum in a
nondegenerate band when the crystal is strained. For example, the change
in the spectrum for the representation I'f or I'f¥, due to interaction with the
representation I'y or I'f, respectively, is (see (29.39))

AE (e, k)———1p|2k=(c-a)((£ +A),+ ) e+

;?ml‘&’;.(m+?e)+c3, (30.45)

where & is defined by the formula obtained from (30.7) when 1 is substi-
tuted for B and DA/3. The first term, which arises from the first term in
(29.39), describes an isotropic change in effective mass, as in (29.41) and
(29.42), while the second slightly distorts the spherical shape of the con-
stant energy surface when the strain is anisotropic.

The derivation of this equation uses the fact that the matrix elements of
the operator (e) defined by equation (30.33) (which is similar to Table 24.1)
have both nonzero "intraband" elements between the functions of the repre-
sentation I'f and nonzero "interband'' elements between the functions of the
representations I'y and I'¥ or I'Y. By (24.34), the operator #, has nonzero
matrix elements (S|p«|X) = (S|py|Y) = (S|p:|Z) = p (or (XYZ|p,|XY), ...), and
the spectrum in the unstrained crystal is

O (k) = l . IPI’ kz[ E‘L-a +T€2}-)‘ (30.46)

Effect of strain on spectrum in Sn and HgTe crystals. It
has recently been established that in gray tin crystals, which have a diamond
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lattice structure, and also in HgTe crystals with a zinc blende structure,
the bands I's and Ts(Iy) at # = 0 are reversed in comparison with Ge or InSb;
to be precise: I (or I'y), which is the conduction band in InSb and Ge, lies
below Ts (or I'Y), between the latter and the band Iy (IY) which splits off
from Ts (I'Y¥) owing to spin-orbit coupling.* Since the curvature of one of the
branches of T} (the band forming the light hole band in Ge) and T is deter-
mined mainly by their kp-interaction, the curvature of these bands in Sn and
HgTe is the reverse of that in Ge and InSb (Figure 32). Thus the band Ts (I7)
is completely filled, i.e., it is the lowest valence band, and the branch cor-
responding to heavy holes in the band Ty (I'¥) is also completely filled, while
the light hole branch in Ge is empty, i.e., it is the conduction band in Sn and
HgTe. Since the two branches of I's converge at k=0, these crystals are
semimetals, i.e., they display no band gap.

FIGURE 32. Positions of bands in Ge and InSb crystals (a), HgTe and gray tin (b).

The spectrum in the three bands Ty (I'¥), I7 () and [s (I7) in these crystals
is described as before by the system of levels in Table 24.2, but with E; re-
placed by —E,. Moreover, Eg<As. The spectrum of the bands converging
near the extremum is described by equations (24.13), (24.14). It should be
noted that now, as opposed to Ge and Si, the constant A is positive, and
|[B| > A since the heavy hole band, as in Ge, points downward. The most
interesting feature of strain-induced effects in such crystals is that a uni-
axial strain which splits the T; (T¥) band converts them from semimetals into
semiconductors. The width of the band gap is then proportional to the strain
and is given by equations (30.11)—(30.13). The nature of the spectrum in the
two bands is determined by equations 30.5)—(30.8), in the limiting low energy
case by equations (30.14)—(30.21), and in the high energy case by (30.34)
(note that for these crystals A >0,|B|> A and | D|[¥3> A). Since the nearest
band to Ts (I5) is I's (or T7), the nonparabolic nature of the I's band and the
behavior of the band gap and the effective massesunder large strainsarealso
determined, as in InSb, by the interaction of the bands Is (I¥) and T (T7),
while the effect of the band I'; (1), which plays the major role in Ge and Si,
is less important here.

* See, e.g., /21.10—27,12/ for references to earlier publications.



§30. EFFECT OF STRAIN ON SPECTRUM IN CUBIC CRYSTALS an

Change in spectrum at X in an 0, lattice. As shown in §24,
in the diamond lattice X is a point of zero slope for the representations X,
and X;. The spectrum at this point is most conveniently determined by the
theory of invariants. By (25.36), in this case the operator #(k e) must in-
volve even functions of £ and e which transform according to the represen-
tations A + By + B, and odd functions of & which transform according to
the representation A2. These functions are given in Table 26.1. Taking
matrices which transform according to these representations in the same
form as in equation (26.6), we write (k e) (without relativistically small
terms) as

H (k, &) =M + 0, (Ask b, + Dse,y), (30.47)

where
A=Ak + A2 (K} + £2) + Diez + Da(eyy + ez2). (30.48)

Hence
E(k, &) =2 = (Askyk, + De,,). (30.49)

It is evident that here band splitting at the extremum point may arise only
from a shear e,, and when this happens the constant energy surfaces near
the extremum are ellipsoids;

E (k)= Ak + (A = 51) k) + (4, % 3 ) £, (30.50)

where the y’- and 2z’-axes lie along the [011] and [011] axes, respectively.
A strain along the principal crystal axes [100], [010], or [001] does not
cause splitting, but it does shift the different extrema relative to each other
The point X; is not a point of zero slope for the representations X, and X,
In this case the operator (e, k) involves odd functions which transform ac-
cording to the representation B;, and even functions which transform
according to Af + A7 + Bf . Functions of k and e transforming according
to these representations are given in Table 26.1; a suitable choice of
matrices is o, I, 05, 0,. By (26.3)

% (2, k) =Ml + 0, (Askyk. + Dey.) + AS.ky (30.51)
Hence
E(e, k)=7 = [AR} + (Degya + Askyk)’]”, (30.52)

where A is defined by equation (30.48).

As mentioned above, the conduction band extremum in Si corresponds to
the representation A, and is located near the point X, where this represen-
tation, together with Aj, becomes X: or Xi.

If we assume that the expansion (30.52) is valid up to an extremum point
ky, a knowledge of the position of this point enables us to determine the
constant A;:

| A |=2A,k,

Expanding the root in (30.52), we obtain the spectrum near this point:

DyA.
E(s, B)= A1 (ks — k)’ + As(K + &) — Ty b+ Diges+ Daleyy+e). (30.53)
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The last term in (30.53) coincides with (29.43). In this approximation, the
splitting at k: = k) is A = 2|A;|k, and the matrix element of the operator 2,
between the functions 1 and X is the same at both points 4 and X, i.e.,

C, = D;. Consequently, #/m’ = A;. Hence it is clear that the strain e;:.induces
a comparatively large change in the mass at A precisely because it is the
only strain that splits the band X; or X, at the nearby point X.

§31. EFFECT OF STRAIN ON SPECTRUM
IN WURTZITE-TYPE CRYSTALS

As mentioned in §23, the wurtzite lattice (space group Ci,) is typical of
many semiconductors of the A;Bg group: BeO, MgTe, ZnO, ZnS, ZnSe,
ZnTe, CdS, CdSe.* The little groups for this structure have highest symme-
try at points on the axis (points A) and on the edge (points P) of the Brillouin
zone, As shown in §23, the representations of these groups are projectively
equivalent to vector or spinor representations, differing from the corre-
sponding representations of the point groups Cs, (for points A) and G, (for
points P) as given in §§11 and 16 only by the factor e-**, where & is the
position of the point and r the translation corresponding to the rotational
element in question.

Tables 31.1 and 31.2 list the characters of the usual and spinor represen-
tations for these points. The lower table lists the spinor representations
which split off from the vector representations when spin-orbit coupling is
introduced.

TABLE 31,1, Representations for A

Number| glement Characters
Onfler}fs- of class
e a,i Ay ] Ay | A | A Ay Ay ’ A ra.
1 eloy | 1] vt |11 2 | 2 2 2 2
I [(es I t/2) } Van,|—¥3n,| o
Me| Mg [~ M|~ Ma| M |~ Ma
o ((eBlor2) ~V3n,| V3n| 0
1 (e410) | | | | | 1 -2
1 1 _ —_
1| (c2]0) -1 -1 2
I ezl tof2)| ny| ny |—mp|—Np|—2ng| 20, 0 0
3 (o] 0) 1| =1 =1 1 0 0 0 0
3 (o' t/2) | Mp|—mp| Mp |—Ma| O ] 0 0 0
\1."=8_m"2. For points I' and K n, =1, for points A and H my=—1,

The classification of the representations according to their behavior
under time reversal and the representations which are combined owing to

* Some of these compounds also crystallize in zinc blende and NaCl-type latices.



§3‘|. EFFECT OF STRAIN ON SPECTRUM IN WURTZITE-TYPE CRYSTALS 323

TABLE 31.2. Representations for P

Nl.l.l")nbgr Elferr{ent Characters
of class
elements », P r I | Py l P I3
| (e]0) | 1 2 I 1 2
1 (¢5]0) -1 -1 1
. | | -1
1 (c3]9) 1 1 —1
3 (@it -, 0 iy, | —in, 0
& Ay [ Ag | Ay | By Ay Ay Py | Py Py
DXBy, | Br [ By | Da | Ag | Br+ g | As+Ag | Py | Py | Pyt Py+ Py

invariance under time reversal were discussed in §23; they are summarized
in Table 31.3.

TABLE 31,3, Time reversal properties of representations

Case Representations

a T Ty Ty, Toy T, Tey Ty, T, Ty

a3 Ky, Ki Ky Ky Ky Ko Hy Hg

by A=Ay Ay— Ay, Ay— Ay A — Ay

by H —H,y H— Hyg

by Bi Bz By, By Bs, Be Ay A Ay, Py, Py Py Py, Ps P
cy A"‘A‘

To construct the spectrum at points on the A and P axes by the theory of
invariants, we need the representations of the point groups Cs and Cs, ac-
cording to which the functions of the components &, ey, 0;, Ji transform.
Using the basis functions of Table 11.1 (p.72), we readily establish the
distribution of these components among the representations, as given in
Table 31.4.%

Knowing the characters of the representations of the little groups and the
representations according to which the components &4 transform, we can use
the equations of §21 to determine for which representations the points under

* When constructing the invariants, it is convenient to have all the functions of one representation transform
according to identical representations. Therefore, in contrast to §26, the operators o4, ¢-and J4, J. in
Table 31.4 are taken to be

i i .
G==t?[0‘ih}y), f==:|: ﬁ(fl;tlf'),

which transform under all Cyy operations like ky = ke + ik, and k- = k; — ik, , respectively. A unitary
transformation of the basis functions can transform these matrices 04 into the usual form (26.3), In this case
the components H, and H_ are also conveniently chosen in the same form when the magnetic field is
included in 2.
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TABLE 31.4. Distribution of functions of &, e, ¢, J according to repre-
sentations of point groups Cgp and Cyy

R;m:;“‘ Functions Basis
o | Con odd | even matrices
(relative to time reversal)
2. 12 g e g s
T, ke k: kzl, LI T Ji' 1
AK, ork_ +o_ky
I3B, - - -
;A oz Ozhy 04k —o_ky Iz
-"g-’(g
T8, - - -
kyks, k_kg, , A
TaEy | o4, 0o; by, ke :z 2 Btz B—z T4, 1=
T4Rz U—kz; O';kq.. 0’1*— lf+fz]. U—fz]
£ B, e, e,
T, o= 2R
0’4.&4., Ok

[ [
ky = kytiky, Oy = —(xi0,—0,), Iy = vE (il ,—1), & =8+ k2

Byg =8, tie,,, ey —e,—e, *t2, 6 e =¢ te,.

discussion are points of zero slope and which of the components & may
appear in the Hamiltonian (k) for the various representations. These data
are given in Table 31.5. The components enclosed in parentheses do not
appear in the vector representations, but only in the spinor representations
which split off from them. As a rule, the coefficients of these components
are small. The Hamiltonian (% e) for all the representations is readily
constructed by the methods of §26, since all these representations are one-
or two-dimensional.

TABLE 31.5. Nonzero components &; occurring in E (k) for different
representations

Ay, Ag, Ag, Ay | Ag, Bs | Ag, Ay Ag Py, Py | Py | P,y Py | Py

kg ke | k(ky) | R ke |k, ko ke Ry(ky)

FWla Tl [T Lo | Tnle | Ty | KK | Ko | Ko Ko | Ke

- - (k1) - - ky = |(ky)

A=A A—As| As— As | A — Ay | Ay — Ay |Hi—Hy| Hy |Hi—Hs| Hq

by N o R G

Possible points of zero slope are underlined. Components k; whose coef-
ficients are relativistically small are enclosed in parenthesis.
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Point A. It follows from (25.14) that for the one-dimensional represen-
tations A,, ..., A, the operator (e, k) will contain all the functions of k, e and
¢ which transform according tothe identity representations of the point group I'.
Hence, if the relativistic terms areneglected, each of these terms is twofold
degenerate counting spin and the constant energy surfaces are ellipsoids of revo-
lution. If the linear k relativistic terms are taken into account, the operator
(e, k) for the representations Ay, ..., Aibecomes

(e, k)= Ak, + A+ o, (0, k- +o_k,), (31.1)

where
A= Alki + Aﬁkﬁ. + Dls:z + D28J.’

k‘i= k2 + ki, 8L=B‘x+8‘w‘

Here % is measured from the value % at A. The constants 4, and D, in
(31.1) must be real for the Hamiltonian to be hermitian (recall that the her-
mitian conjugates of k4, o4, Jy are k_, o, J ).

We determine the spectrum from (31.1). At a point of zero slope, where
Ao = 0,

E (b e)=AR + Aj(k, £ K\ P+ De,,+ Dpe,, (31.2)

where k% =¢,/24,. The energy is measured from the minimum. It is clear
that if the relativistic terms are included the minimum is on the circumfer-
ence: k,=0, ky =41, and the constant energy surfaces near the extremum
are toroidal. The degeneracy is completely removed except at points on
the A axis.

For large k values, the linear terms become negligible, and the constant
energy surfaces are two slightly warped ellipsoids.

Equation (31.1) may also be derived by constructing (e, k) for the repre-
sentations A; or As, noting that in this case (k, e) should include all the
functions of k and e which transform according to the representations
occurring in

A XA =8 X A= A1+ A2+ Ei.
By (26.3), (26.31), a suitable choice of the matrices X; which transform
according to these representations is
I(A), 0,=0,(A), eo,=0, and p_=o_ (Ey)-

This construction automatically accounts for relativistic terms quadratic in
k and linear in e, and the result is

H(k e)=Ak,+1+q (P+k- + P_k+)+

+ak (0, k_+p_k )+ d(p,e_,tro_e,) (31.1a)
The last term in (31.1a) shows that application of strains e.: and e;; com-
pletely removes the degeneracy, and the band splitting is 2d(e?, +¢2,)'"”.

For the representation Ay, (e, ) will include functions of & and & which
transform according to representations occurring in A X As= A+ A2+ B, + B,
and

H (k, &)= Ak, + 1; (31.3)

consequently, E(e, k) differs from (31.2) in the absence of a linear &; term:
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the band As remains degenerate at all points, up to higher order terms in
and £, and the constant energy surfaces are ellipsoids.

The representation A, arises from splitting of representations As or As.
According to (25.14), in order to construct the operator (e, k) simulta-
neously for the representations A7+ A; or As+ A which arise from A4s or A,
respectively, we must include in (%, &) all functions of % e and ¢ which
transform according to the representations occurring in

As X B5=Ds X Bs= A1+ A2+ Ea.
By (26.3) and (26.31), we may choose the matrices X, which transform ac-
cording to these representations as I(4)), p,(Az), p4, p-(Ez)- Then the operator
H(k, e) is

(e k)= Ak, +r+ 80, + Ao, K2 +p_k2) +
+Dy(pye_+0_e,) 0 (0, k- +0_k,)+ ay(o,0_k_+p_0,k,)+

+ asptozkz + .I'II?P, (oi-k- - U—ki—)- (3 1. 4}

The constants are indexed here in the same way as in (31.8).
In matrix form, the Hamiltonian (31.4) is written

F j* # 0
xen=|L o0 (31.5)
0 # h F
where
F=2+ Ak, + Ay + agkz, =k,
G=nr+ Ak, — By — gk, j=(a)—in)k,,
# = Ask’ + Dsey, h=(a, + ia;) k.

In the general case the secular equation |#—IE| = 0 is a quartic. If we
neglect the relativistic linear k terms in (31.5), the roots become twofold
degenerate, since these are the terms which determine the splitting of each
band. To this approximation, at a point of zero slope,

Ei2(k &) =2 + (A3 4+ AlRY + DI[(exx — e,,)° + 462,] +
+ 2455 [(£2 — K2) (exx — £,) + desybsk,])”. (31.6)

At energies E(k)>» A;, when spin-orbit splitting may be neglected, the con-
stant energy surfaces are two ellipsoids

E (k)= Aik; + (A £ A kY, (31.7a)
which are displaced and warped by the strain.

If the kinetic energy and the strain-induced splitting are small compared
to the spin-orbit splitting, the spectrum E(e, k) near the extrema E}=Aa, and
Ef=—A, is given by

1
Eip(e k)= By + 2 £ 51— (431 + Di[(eax —£0)" + 4e3,) +
+ 24sDs[(kx — k) (xx — £4y) + dexyksik,]). (31.7b)

It is clear that the effective masses m; and m) are the same for both extrema
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in the unstrained crystal; we have AY2mj=A;, #*/2m}=A;, but strains e, e,
and ey, lead to a comparatively large anisotropy of the transverse effective
masses, of the order of Dg/A,.

Point T. The point I differs from the point A in that here k=—Fk,;, and
all representations at this point belong to case (a;). Therefore, it follows
from (25.36) that, as opposed to the point A, the operator # for the repre-
sentations Iy, ..., T will include only functions of &, e and ¢ which are even
with respect to time reversal and transform according to the representation
Ay in other words, at the point T' the constant A, in (31.1) vanishes. For I}
and Ty, 2(k, e) will include even functions transforming according to {Ij} =
= [r}) = 4 and odd functions transforming according to [[7]=[rf]= A, + E:.
Consequently, at the point T we must set 4o=0 and a=d = 0 in (31.2).
For Iy, (e k) will include even functions transforming according to [T3} = 4,
and odd functions transforming according to [I%]=A:+ B:+ Bi; thus (e, k)
will be the same as for A (31.3). For Ts or I's, (e, k) will include even
functions which transform according to [I3]=[I¢]= A, + E; and odd functions
which transform according to {I's) ={I'é} = 4., so that Ay=10 and ss=a;=0
in (31.4).

Experimental data and numerical band structure calculations show that in
compounds of the A;Bg group, such as CdS, CdSe, ZnS, ZnO, the valence
and conduction band extrema are at the point I'; the representation I'' arising
from T corresponds to the conduction band, while the valence band is made
up of three close-lying bands which correspond to representations I, I'; and
I'' and are separated from the other bands by a comparatively large interval
(Figure 33). The reason for this pattern is that the arrangement of the atoms
of the first coordination sphere in all these crystals is similar to their ar-
rangement in a cubic lattice, where they are at the vertices of a tetrahedron,
Indeed, in the crystals in question the ratio of the basis vector t, on the z-
axis to the perpendicular basis vector ¢ is 1.60—1.64, while for a tetrahedral
arrangement this ratio must be 2)2/3=1.632. The direction of # corre-
sponds to the [111] direction of a cubic crystal.*

h Ef
5 dso R
&
ACI
5—&—6 ’Sﬁ
a b

FIGURE 33. Origin of valence bands at T in crystals with wuntzite lattice. a) Ag; > Ago; b) Agr < Ago

Because of the relatively small deviation from cubic symmetry in these
crystals, the distance between the terms Iy and I;, which are combined into
one term T in the cubic lattice, is comparable with the spin-orbit splitting

* It should be borne in mind, though, that the positions of the atoms in the next coordination spheres in wurtzite
and zinc blende lattices are quite different; consequently, in accordance with the hierarchy of systems devel-
oped in §5, no strain can convert one lattice into the other,
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of the term Ts. In many situations, therefore, it is necessary to consider all
three valence bands Ty, I's, It together. The Hamiltonian (e, k) for these
three bands, which correspond to the representations I'i and T's, may be con-
structed following the rules outlined in §26.

According to (25.36), in case (a;) #(e, k) must contain functions which are
even with respect to time reversal and transform according to [(T\+TIs)¥ =
= 24, 4 E, 4 E», and odd functions which transform according to {(I' +Ts)? =
= A; + E,. In this case we may take the matrices J; and their products in the
representations Y|, ¥5, and Y_| as the matrices X{, since the representations
I'y and Ts may be built up from basis functions of the representation @. The
distribution of these matrices according to the representations of Cs was
presented above in Table 31.4, and the matrices themselves are given in
Table 31.7 below.

If we include in (e, k) only relativistic terms linear in &, as in (31.4),
then the operator #(k, ) is™

H(k, &) =AJ2+ Do+ V2B (oo +T_0y) + (A + A B2+
HArt AT Ko — As (P ke + T 0%) =21 Ack, (1] 1) =110 ) i)+
+ Ak R+ (0 + o) (o k_+ o ky)+
4 a2k o_+ I2k,0)+ 200, (/] ]k + [T _|k)+
+2iak, ([J.] Jo. —[/] Jo,)+ (D, + DyiY)e,, + (D, + DJY)e, ~
— Ds (e + 1) — 2iDe(Uad ) s — 2] -] e42). (31.8)

We emphasize that this operator, which has been derived from symmetry
considerations alone, is valid regardless of the mechanism producing the
levels Iy, I and I';. However, if the splitting between these levels is com-
parable with the separation E; to the other bands, we must also include in
(31.8) quadratic # and linear e relativistic terms, since their coefficients
may be of the order of A;s/E;, in which case they become comparable with
the coefficients of the nonrelativistic terms.

There is an interesting relation between the coefficients in the Hamilton-
ian (31.8) in the ""cubic'" approximation. Let us transform the Hamiltonian
#6r,(k, &), constructed for the representation TI's(I's) of the group T4, to a co-
ordinate system in which the 2’-axis is along [111] direction and the x'- and
¥’-axes along the [112] and [110] directions, respectively. Tn the cubic axes
the form of this Hamiltonian is similar to (26.15), (30.33)**:

1, (k, &) = ATk + 5 A(o]) + AL(TRY +- (45 — A7) U kit +
+Dle+ D $1331,+D;‘2;. [7J e, (31.9)

* We have denoted the deformation potential constants by Dy instead of C: and put 24, for Bs, 2D, for Cs, and
2¢4and 2es for By and Py in the original paper /26.1/, in order to simplify the coefficients in the matrix
(31.14). In addition, the numbering of the representations Iy and T conforms to the notation in most papers
(unlike /14.2/, /14.3/ and /26.1/ where the symbols I's and T's are interchanged). The factor V2 in the
third term has been introduced to enable us to simplify the form of the matrix by setting o, ==+ (i/2) x
X (0, * io,) throughout, while J, == (/VZ)(J x1,).

** We have not included in (31.9) the linear & relativistic terms, which, for the representations I's and I of
T4, have the form

Hry o= aj ; I (014 1R 41 — Trpokigo) + 203 I@{["’lf.‘] (0k)—aky), (31.9a)

and the quadratic & relativistic terms appearing in (26.15).
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ts A and D! are defined in terms
.2), (30.33) by
AM=L=A+2B, A=M—L=—3B, Aj=—N=— 3D,

e constants in (24.5),

(31.10)
Di=l=a+2, Di=m—I=—3b, Dj=—n=—)3d.

To transform (31.9) to the new coordinate system, we must replace
X, Y, 2 by

x ¥ z x y z
x=r_ Y 4 7 L _ X ¥ 7 31.10a
Ve " V3 + v Y =+ Ve + = ( )
Ve , z
z=—_x —_—
Vst va
The operator (31.9) is then written

)
!
381, (k, ©) = 5D+ Al+5 (45 — 49)) B+ ( A1+ 245+ 49+
+ ATIRE — 5 AR — (A3 + 24) (k2 + J283) —
~i @ (243 + A ([T 1) koo — [Jod - kzky) +
+ 1—;?:(;1;— A kil + T2k k) +
+ 5 (42— A) (U1 ) % — T -1 #2) + (Di + 3 (D5 — DY) ez +
1
+(Di+ 5 2D+ DY), + D1, — 3 Dy}, —
— 5 (Di +2D) (Fre- + Jey) —
— 1 Y2 D5+ DY (U4l e — [T ] ees) +
+ @(DE — D)(Vyeas +72e,2) + 5 (Di—D) (Ul ] es =120 ] ). (31.11)
It is at once evident that this operator contains terms not appearing in
(31.8). This is because Ce is not a subgroup of the cubic groups T4 or 0,,
and therefore certain invariants of the latter are not invariants of Ce. The
operator #(k,e) for Cs,, which is a subgroup of Ty, contains all these inva-
riants. In case (a;) it must include all functions which are even with respect
to time reversal and transform according to [(Ki + K3)? =24, + 2E and odd

functions which transform according to {(K, + K;)3 = A+ E. For the group
Cs, therefore, M (k e) will contain additional terms, not appearing in (31.8):

Fc,,=Hc,, + As(Fiks + T2k ke + 2045 (1121 K —
— /-1 k2) + Ds(Vierz + Joe_s) + 2iDo ([J 41 e+ —U-Li)e) +
+ ag(J%0, + 20 )k, + ia, (I3 k, — 2k _)o_ +
+ 2iay([J T ok, — [T -1 Jo_ k). (31.12)

Comparing (31.8) and (31.12) with (31.11), we can establish relationships
for the constants which must hold in the cubic approximation®:

1 1
ﬁ=ﬁ =—a‘ =—--—-2" ’.D=D'.
2 3 3 A'ﬁ 3 ﬁ( A’ + AJ) 3 3
2
A=A+ (A — A), A=0, D= — Dj,
* similarly, in the cubic approximation all the relativistic constants e, ..., &s must be expressed in terms of

ajand aj in (31,9a).
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A= Ai+ 5 @A+ A, A=Y (43— A), Ds—=-L(Ds+ 209,

A= A5, Ao =%(A£ — M%), Ds =3_‘.~’,2_(2D; + D),
A=—1 4, Di=Df + 20 — DY), Dy=YZ (D} — Dy,

I ’ » r 4 ’ o’ e
A= (4 +249),  Dy=Di+ 5 (2Di+ D3), Dy= (Dj— D3).
Hence, in the cubic approximation the constants A, 4;, D, satisfytherelations

By=08y 4A—V245=— Ay, 2D=—Dy=D,—D, (31.13)
20, =— A=A — A, A=0, 4Ds—ﬁDs=_Da-

The relation A;= A; seems to be in excellent agreement with the situation in
most of the above-mentioned crystals. According to the theoretical calcula-
tions in /25.11/ the quotient (A — As)/A; for CdS, CdSe, ZnS, ZnSe is at most
2:1072, According to the latest experimental data, this ratio is 1- 1072 for
CdS and 9:1072 for CdSe. The constant A; is also very small, since judging
from the data in /25.9/ the corresponding coefficient of the linear & term in
(31.23) (see below) is also at most 10”%ev/cm.

We now write the Hamiltonian in matrix form and find the shape of the
spectrum near the extrema of each of the three bands. In order to avoid
cumbersome expressions, we shall consider only the nonrelativistic terms,
including the linear % term with coefficient A;. Inclusion of the remaining
linear terms would only affect the expressions for the coefficients of the
linear term in (31.23).

In this approximation the matrix # (k ¢) has the form

F 0 —H 0 # 0
0 G A —H 0 #
—H A A oo
= !
* 0 —H 0 AN T (31.14)
# 0 / A G O
0 £ 0 I 0 F
where
A=V24A, H =i(Agk:ky + De.y + Ask,),

F=A+84+4+4+08, [=i(Askky+ Do,y — Ask,),

G=A—B0,+24+0, A=AR+ AR +De,_ +Dge,

#=Ak +De,, 0=Ak+ AR +De, +Dg,.
If we retain in # only the matrix elements F, G, A, and A that contain terms
independent of k and e, the roots of the resulting determinant |#,—IE| =0
are

Ei=F, Eba=SFra[(S5A) 4 )" (31.15)

Equation (31.15) determines E(k, e) with accuracy up to first order terms in
e and & (when A;=0).

By (31.15), the position of the terms at the point #= 0 in the unstrained
crystal is

E?=ﬁ|+ﬁa. Eg.a=i;—a’ + I-(n—l;:'élr + %g]m {3116)
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and the distance between the first level and levels Ej and E?is

E9— B3 o= +[(8 + 380) = [(8) — A" + 887", (31.16a)

In the absence of spin-orbit splitting, i.e., A2=A4;=0, we have El=E3,
and E}s—ES=A,. If 8i=0 and Ay=A4,, then EV=E}and Ej};—E3=3A:. There-
fore, the quantity A, is called the crystal splitting A, and the quantity 3A,
is usually put equal to 3A, and called the spin-orbit splitting A,:

A=bg A=b=7by (31.17)

In the notation of (31.17) equation (31.16a) has the form
B — Edo=5{ Ber + 820 F [(Ber + 8, — §Buibs] " |- (31.16b)

If the separation of the terms is known, we can determine A« and Aso (on
the assumption that A.= As). However, since these quantities play entirely
symmetric roles in (31.16b), we cannot decide which value must be ascribed
to Ae and which to As without appealing to additional considerations. For
example, it will follow from equations (31.24) below that this can be estab-
lished on the basis of the relative shift of the bands under a strain. Values
of A« and As for a few crystals are given in Table 31.9 at the end of the
section.

To determine the spectrum in each of the bands, the matrix (31.14) is
conveniently expanded in the eigenfunctions of the Hamiltonian #,, whose
eigenvalues are given by (31.15). A suitable set of eigenfunctions is

1 0
0 0
0 0
Fi= 0 H Fy= 0 H
0 0
0 1
31.18
0 0 ( )
—A 0
G—Ezs 0
F, =B "“l; F,¢=8B s
35 2.3 0 4.6 2.3 G—E;,s
0 —A
0 0
where
Bys=|(G — E} F + 27",
Expressing the Hamiltonian (%, ¢) in terms of (31.18), we obtain
E: 0 Yo 6- U'. p.
0 El 6 » p &
& Eja 0 v
=¥ " e 00y (31.19)
d a Ez hid 0
o p 0 8 E §
e £ n 0 B E
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where
8= — B,A#, t—B;(G—EYI,
= — B,A%, n=B:B;[(G — E3)H — (G — E}) I]A,
vy=—B:(G—E)H, 0=BB8[(G—E)H—(G—E)I]a,
0=—By(G—E)H, a=BA(G—E)H—1I),
x=B:(G — EY1I, B =BIA(G—E)H—I,

and we can then introduce the interband terms using the perturbation theory
of §15. By (15.47), in the second order theory, the matrix elements a6 for
E;=E; are

333;=93u+2%%%- (31.20)
]

Limiting ourselves to second order terms, we include the terms of order &,
ek? and e It is therefore sufficient to retain only terms independent of & and
e in the coefficients of the off-diagonal terms in (31.19), after replacing Ei,
E{ and G by Ai— A:. In this approximation,

Ei 4 E3=Ai—8s, EES=—A"=—2A] (31.21)
and so

G—EB=E, G—E=E, B=E(E—E), (31.21a)
By* = E3(ES — ES).

We shall also disregard the small contribution to the quadratic k terms from
terms proportional to A;. In this approximation

I=H, = —13, o=—§, n=—1% (31.22)

the terms containing A; need be included only in the matrix elements a and
which are proportional to H — I = 2i4:k, .
In this approximation, the energy in each band is determined by the
expressions

5 _ oty (B—E—E)IHP+E} 4P
N L G I
(=B +E)IHIP—EQI14F 244,

E-BB-8 " B-£"
(B +E—E)IHP—E314F 284,
B-B)&-8) B-8

Equations (31.23) determine the strain-induced shift of the terms, They
are valid for an arbitrary strain due to isotropic compression and dilation
along the z-axis (of course, only up to terms of order D./E;, where Eg is
the separation to other bands) and for strains e::— &y, exy, exz and ey such
that the shift of each of the terms is small compared to their separations.

If the formulas for E] are also limited to terms of order e?, equations(31,23)
yield the following equations, which determine the shift of each term when
k= 0:

EP =El 4 (31.23)

321* = E; + kJ_.
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E,— E)=(D, + D;)e,, + (D, + D)e, +
L D= B E)(eh + ) + DY =+ 46
At éﬁﬁf £y Jd (31.24a)

ER
E,— Eg=(D1 + Ds?é_t_sg) e, +

E E9E}
(D +D4Eo Eo)‘l (B - 50}3(D38::+D18J.)2+
D’(Eo £0+£n)(8 +e‘,z) Don[("xx_sw}z"'“xyl (31.24b)
E-DE-2)
ES
E,—Eg—(D,—DSEg—’Eg)s“+
ED EXES
+(D —D, B an) + 3= ;o)J(Dssu+Dqu.)2_
D4 (B + E3 — E9) (e}, + €. D’E"[(eﬂ o) +4e5,] (31.24c)
(E° E‘:')(E"

The spectrum in each subband in the unstrained crystal is determined by
expressions which differ from (31.24) by the substitution of k; and A; for
ei; and D,, respectively. In addition, E(k) will of course contain the linear k

terms from (31.23).
Hence we see that the effective masses in each subband are expressed

in terms of the constants A4, ..., 4;:

Band 1 Band 2 Band 3
E B
priem, | Av+As | A+A Ay — Ay
! ‘BB g (31.25)
B 2m | Az 4+ A, A+ A, Ay — Ay Eg
CEE H-B

In our model, therefore, the components my and m, for the three subbands
must satisfy
1 E? 1 ES 1 .

;,_._E‘;+E§;;-_ES+E‘§T,3=U (‘:”- i) (3126)
This relation can be used to verify to what extent these three bands may be
considered in isolation from the other bands. It is clear from (31.24) that a
similar relation must hold for the deformation potential constants of the
three bands.

The cross terms Ee, which are proportional to ek?, determine the strain-

induced change in the effective masses. According to (31.23),

Eeps, 1 = [(E? — Eg) (E?_Eg)]-l {2(5?_'53—5?) DeAsk: (ﬂxzkx+3yzky}+ (3 1 273)
+ 2E} DsAs [{Sxx —ey) (k% — k:) + 43kaxkynx .
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Eppo=—(B3—E)~ (2E3E3 (AR + ARY) (Dge,, + De )} +
+ [(E? - Eg) (Eg - Eg)]‘-‘l {2 (E? - Eg + Eg) Dsfqﬁkz {sukx + syzky) -
— 2E3DsAs [{sn - gw)z (k% — k:}+ “xykxky]}- (31.27b)

Eyp o=2 (B} — )7 (EJE3(AR2 + ARY) (Dge,, + D)) —
- [(Eg - Eg) (E‘Il - Eg)l_l [2 (E? ‘+‘ Eg - Eg] DGABka (exzkx + syzky) -
— 2E5D5As[(xx — £4) (K5 — k) + decykcky]). (31.27¢)

In the limiting case, when the crystal splitting A, far exceeds the spin-orbit
splittings A; and A;, we have Ej;= A + A, E3=0, and expressions (31.23)—
(31.27) for levels E; and E, reduce to (31.7).

Table 40.3 at the end of the book presents the currently known effective
masses and deformation potential constants D; for some crystals of the
AyBg group.

The eigenfunctions (31.18) may also be used to determine the relative
probabilities of transition of an electron from one of the three valence bands
to the conduction band upon absorption of light. The matrix elements for
the three transitions, for a given direction of the electric field, are propor-
tional to the coefficients of the corresponding components k; in the interband
operator #.,.. This operator may be based on the matrices of the components
of the polar vector R, which transform according to the representations
I X (Ty+I's) = A+ Ei. The operator #, must include invariant products of
these components by functions of & and o which transform according to the
representations A, and E,:

Hoe= PRk, + 7 Pr(Ryk+ Rk + R, (0, k- +0_k.) +
+V 2k (Ry0- + R-0,) ~ 2= 70, (Ryk — R-k). (31.28)

The matrices R;, in the same representation as the matrices in Table
31.7, are given in Table 31.8. The five constants P;, n; appearing in (31.28)
determine the intensity of the transitions (the transition I's—TI; is forbidden
when &/|C), If the three valence bands are sufficiently far away from the
other bands, the relativistic constants ni, nz and 73 must be small. If we
omit the corresponding terms, the matrix #,. in the presentation (31.18)
will have the form

e L e L e L

I _ (31.29)

B, ’ B
G R By (G~Eg) Pk, —= APzky By(G—Ef) Pk,

V2
Hence, using (31.21a), we obtain the expressions given in Table 31.6 for the
relative intensities of the transitions.
In the cubic approximation, when

.. = P(Rk)+ n(0[RE]), (31.30)
the constants P; and = in (31.28) must satisfy the relations
P|=P2=P| n=n=n;=1. (31‘31)

Fulfillment of these relations for the oscillator forces in Table 31.6 may
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serve as an indication of the validity of the three-band model and also of the
cubic approximation.

TABLE 31,6, Relative intensities of transitions between valence bands and
conduction band

Valence band Polarization of light
gic l gLC
1(ry) 0 | | Py 2
2E. E.
2 (Ty) ey L1s g | Pl
2E, Ey
3.(Ty) E,— E, 121 E.— L, | Pa|?

- - 2 12
B Bl o (A7 8) )",

In the cubic approximation A, = A, Ag=A;== ;—am Py =P,

Point 4. At the point A4 all representations belong to case (b,) or (c,)
and are combined in pairs. It is not a point of zero slope for any represen-
tation.

Point P. The points P may be points of zero slope for the representa-
tions P, and P,. In these representations, # (k, e) will include all the func-
tions of & e and ¢ which transform according to the identity representation of
the point group Cs, (i.e., according to Ki), and

FH(k, e)=Al+TAk, + o (6, k- +a_k,), (31.32)
where, as before, A=A#k2+ Ak + De,_+ Dge,. Hence, if 4 =0,

1"zz

E(k, e)=A =+ aiki, (31.33)

i.e., the spectrum E(k, e) for these representations, like that for the repre-
sentations A,, ..., A,, is determined by an equation similar to (31.2).

In the representations P;, the points P cannot be points of zero slope, but
in the representations P, P; and Pg, which result from spin-orbit splitting of
P;, the coefficients of all the linear £ relativistic terms may vanish at these
points.

Point K. At the point K there is an operation R, for example, (c;]|1/2),
which takes k, into —k, and the representations K,, K,, K at this point belong
to case (aj).

In accordance with equation (25.36), in the representations K, and K, the
operator J(k,e) will include functions which are even with respect to time
reversal and transform according to the A, representations of the group Cs,
and odd functions which transform according to B,., Therefore, the constant
A in (31.32), (31.33) vanishes at the point K.

In the absence of spin-orbit splitting, K is not a point of zero slope in the
representation Ks. However, in the representations K, and K5, which split off
from K;, K is a point of zero slope, and in the representations K, £(k) may
contain only relativistic terms linear in &,.
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Point H. At the point #, the representations H, and H. belong to case
(b;) and are combined.

According to the rules in $26, the diagonal blocks contain functions of %, ¢
and & which transform according to the representation H X H*= A, of the
group Cs,. Functions which are even with respect to the operation RK = c.K
then appear with the identity matrix, and even functions with the matrix p,.
By (25.16), the off-diagonal blocks contain functions which are even with
respect to time reversal and transform according to the representation B,
of the group Cj, X C: = Cs», and odd functions which transform according to 4.
A suitable set of matrices which transform according to these representa-
tions is p,, p,. Then

¥ (e, Ry=Al+ A (0, k- + 0_k,) + Ak, + Ap,0,. (31.34)
Accordingly, the spectrum is
Ei(k, &) =1 + (A2 4 A%2 + A% & 240 Ask i ks) " =
~ Ak A o (43R + AL 2 24045k 1 1,). (31.35)

In this case, then, the levels are twofold degenerate when &k =0. These
levels correspond to representations Hs, which belong to case (a;). As op-
posed to the representations H, — H,, in these representations H is a point
of zero slope.

TABLE 31.7. Matrices of the axial vector components [, I, J_ and their
products inrepresentations ¥}, ¥}, ¥!,

10 0 010 000

=00 o I,=l001 I-=l100

00 —1 000 010
1oo 001 0 00
I=loo00 Ii=looo 2=lo oo
001 000 1 00
100 o1 0 0 00
2[4,0-1=020 20 ]=|00 —I 2[Ld-]=|1 00
001 00 0 0—10

QLide) =10x + Iedy

TABLE 31.8. Matrices of the components of the polar vector R in representations
LOFR CRR CR

0010 000 —i 0—i00
0000 i00 0 0 000
R:=l1000 Re=l000 o R-=1o 000
0000 000 0 { 000
0010 0001 0100
, 0000 , 1000 , 0000
R=l_i000 Ri=looo0o R=ls000
0000 0000 1000
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In the representation Hs, which belongs to case (a;), it follows from
(25.17) that # (k, &) will contain functions which are even with respect to time
reversal and transform according to Ay, By, E,, and odd functions which trans-
form according to 4, By, E;. Thus, the matrix (&, e) has the form

H(k, &)=2A2p.0,+ o (0. k_+0o_k,)+p,H +p_H, (31.36)

where H= Ak b+ iook, + a0,k 4 Dey,,

Each of the terms at k=0 is twofold degenerate, since the representa-
tions H, and H; belong to case (b,;) and are combined. Accordingly, if we
neglect linear % relativistic terms,

E(e, B)y=1 = (A 4 ARLR2 + 245D, (eackik, + e,k k,) + DA (2, +¢2.)) " (31.37)

In this case, we can evidently expect a comparatively large change in effec-
tive mass under strains e, and e,

§32. INTERACTION OF ELECTRONS WITH LATTICE
VIBRATIONS AND THE DEFORMATION POTENTIAL

The theory of electron-phonon interactions in semiconductors is directly
connected with the theory of strain-induced effects.

Since the electron mass is much smaller than the atomic mass, the elec-
tron's potential energy essentially depends only on the instantaneous positions
of the lattice atoms, and not on their velocity. In this approximation, known
as the adiabatic approximation, the field acting on the electrons at a point x
may be represented as the periodic potential Vy(x) of an ideal lattice plus a
perturbation 8V(x) = V(x) — V,(x) determined by the displacement of the
atoms from their equilibrium positions. For small displacements, 6V(x)can
be expanded in terms of the atomic displacements:

8V (x) = fzu Vi (%) uy,,.

Here V;,(x)uy, is the perturbation induced at the point x by a displacement g,
of the atom fx located at the point x of the primitive cell f, whose position
is defined by the corresponding Bravais lattice point X;. Because of the pe-
riodicity of the crystal, the field set up at x when the atom fx is displaced
will equal the field at the point x—X; for an equal displacement of an atom x
in the Bravais lattice whose point X, is at the origin. Consequently, Vi (x) =
=Vo(x—X;), sothat V (x) depends only on the difference x— X, Therefore,
we can write the expression for 4V (x)as

oV (x)=§v,(x—x,)u,,. (32.1)
If the entire lattice undergoes a displacement u,

8V (x)=Vo(x—u) = Vy(x)=—uVV,
and so

fE“v,(x—x,1=—W.,(x)A (32.2)
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To deal with long wavelength modes, when the wavelength A=2n/q greatly
exceeds the lattice constant, it is convenient to introduce a quantity

;r = g M"“fﬁ/g M“:

which defines the motion of the center of gravity of the cell X;, and quantities
U, = Up,, — Upe, which define the relative motion of the atoms x and x’ in the
primitive cell f. Then (32.1) may be rewritten

o ()= uV (x— X+ 3 3, ¥, gVt (x — X)). (32.3)
f fouw

Here _
Vix—X)= g V.(x— X)),

Voo (x — X)) = Min (Vi(x — XMy — Voo (x — X M,),

and M,= X, M, is the mass of the primitive cell.
£

For long wavelength modes (A » a, where a is the lattice constant), the
potential 8V(x) is separable into two parts: 6Vs(x), due to the short-range
component of the potential V,(x — X;), which is determined by the motion of
the atoms nearest the point x, and &V,(x) = —egq(x), due to the long-range
component of V,(x—X;). The major contribution to the latter comes from the
motion of atoms remote from the point x, at distances substantially exceed-
ing the lattice constant and comparable with the phonon wavelength A, Since
the main contribution to the short-range part of V(x)at x is made by atoms
at distances |x—X,| <, the displacements & in the sum differ only slightly
from the average displacement u(x) at x, and they can be expanded in series
in |x— X;|, taking only the first two terms:

=)+ 3 T (e — Xy (32.4)
1

The relative displacements of the atoms u, in long wavelength acoustical
modes are proportional to the wave vector ¢, i.e., to the derivative of the
displacement at the point, since in the limit 4— 0, i.e., as 4 — o, the cells
move as a whole and 4, —0. Consequently,

Uuyw, | = 2 [‘}‘;’f'g”- (32 .5)
ik

The tensor T} is defined by the space group of the crystal, Under all
transformations of the space group which do not change the positions of the
atoms in the primitive cell (i.e,, do not contain nonprimitive translations),
the tensor I} does not change its upper indices, but transforms in its lower
indices like an ordinary tensor. Under transformations which exchange the
positions of atoms % and x’, the tensor also changes sign. The other trans-
formations correlate components TI}jj with different parameters x,»’(if there
are more than two like atoms). The number of linearly independent compo-
nents of the tensor may be determined by the equations of §15, once the re-
presentations according to which the components e;; and the displacements
4, transform have been found. If the number N, of atoms in the primitive
cell is > 2, not all the components «,, are linearly independent; it is then
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convenient to introduce 3 (N,—1) linearly independent components uf corre-
sponding to the branch of optical modes [ as §—0. By (15.27), the character
of the representation according to which these components (or the values of
Uy s When N,=2) transform is

%leg) =N, — 1)(1 +2cosq), x(s)=(N,—1)(—1+42cosq),

where N, is the number of atoms which are fixed (or displaced by a Bravais
lattice vector) under the transformation in question. (For example, for cubic
crystals 0}, the displacements u,; transform according to the representation
I't and the tensor I', as noted in §29, has one linearly independent compo-
nent Iy,..) Thus, by (32.2)—(32.5), the contribution of the short-range forces
due to acoustical modes is*

Ve (%) = — WV, (2) + ‘2} Vi (%) e (32.6)

where
Vi@ =4 Nl = XLV (x — X+ (x — Xp), Vi (x — X)) +
f

+5 X T Vw1 (x = X)), (32.6a)
Fun'l
For optical modes, in the limit as ¢ — 0, the center of gravity of the cells is
fixed, i.e., # =0, and the sublattice displacements are identical at all lat-
tice points. Therefore, the potential V,p which describes the contribution
from short-range forces due to long wavelength optical modes may be limit-
ed to terms independent of g:

Vopt =%2“W’V:;,t (%), (32.7)
nx"
where, by (32.3),
Voot (x)=2r‘;qu-(x—X,). (32.7a)

Long-range forces

Let us now consider the contribution to the potential —eg due to long-
range forces. Since the major contribution to ¢(x) in (32.1) comes from
terms with |x — X;|> a, it follows that g(x), in contrast to the short-range
forces, is practically constant within the bounds of a single primitive cell.
From the phenomenological standpoint, therefore, this potential is conve-
niently regarded as a potential set up by the polarization P, i.e., by electric
dipoles formed when the lattice vibrates. As independent variables, then, we
take the atomic displacements u;, and the components of the macroscopic
field & = — Vg, which determine the long-range forces. Then the internal

* Sincé a uniform rotation about the point # does not change the potential at the point, the antisymmetric
components of the tensor V,; vanish, It is also clear that this tensor coincides with that introduced in §29.
Indeed, if the strain is homogeneous, we can transform out the first term in (32,6) by applying the coordinate
transformation (29.5), and so the second term remaining in (32,6) will coincide with the second term in (29.11).
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energy U may be expressed as the sum of three terms: U, quadratic in the
displacement, Uy quadratic in the field, and a cross term U.y.
By (15.17), (15.6b) and (15.13), (15.16b), the first term is

Us = —é E O (I g (D g () = -;- MN 2 Diirsse () tta ( — @) i (q)s (32.8a)
wr qux'il’

where the matrix D is defined by (15.13), (15.6b) and the components ;,(g)

by (15.16b).
The second term is
Ug=— %Z_I-a;‘;&",(x)a‘}(x)dxz — 2 Y 8,08 (—9. (32.8b)
if ilg
Here

8@ =+ [ B)erewdx,

where &(—¢)=#&"(g), and u}"}=#(ﬁc;}— 1) are the components of the polariz-

ability tensor when the positions of the atoms are fixed.
The third term can be written

Vg = — 2= 3 @ (9) 4, (9) & (— q). (32.8¢)

qgijx

Here Qj; are phenomenological constants with dimensions of charge and Q,
the volume of the primitive cell.

If we now go over to the representation in which the matrix U is diago-
nal, introducing the normal coordinates a,, by (15.16a), the internal energy
U is written in the new representation as

U=2MNY oPa o, —2W Y Q,@)a, &, (—9)— 3 N o8, ()8 (—q). (32.9)
gv

qvi qif

Here o}, are the normal frequencies of the lattice vibrations when long-

range effects are neglected,

0P b= 3 €5, (=) Dy (@) €. (@). (32.9a)
and
Q, (=2 Q;(q)ex, (9 (32.9Db)

the components e}, (g) are defined by the system of equations (15.15).
If we expand the components Q,;(g) in g,

Q9=+ g Quud, + ;2;‘ Quurd9r (32.9¢)

then, using the aforementioned rules to determine the number of linearly
independent tensor components and the representations according to which
the normal coordinates agv (or displacements 4,(9)) and components &;
transform, we can find the number of nonzero components Q.;(q) (or Q}(q)
and the relation between the linearly dependent components, and the theory
of invariants readily yields the Hamiltonian U (32.9).
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It follows from equation (32.9) that the polarization P per unit volume is
1 au 2
Pf(?}=—7W=Q—UEQ“(Q)0“+Zar;é"(q). (32.10)

Transforming the equations of motion (15.6)

— M, 0%y, =—£%l-
to the new variables according to (15.10) and (32.9), we obtain
W, = ey s = e — 7 5O~ 9 (@) (32.11)
In order to determine the lattice vibration spectrum allowing for long-

range forces, we must supplement the system of equations (32.10) and
(32.11) by Maxwell's equations; for plane waves, these are

(9D =0, (gH)=0, [¢&]=7Hs [gH=—%D,. (32.12)
and they reduce to the single equation
2
9#“8¢+4“‘P€=_%[?(?81)—31'4’21- (32.13)
Expressing a,, in (32.11) in terms of &; and substituting into (32.10), we
find that
Dy () = Zwyy (0, 9 & (9), (32.14)
where
4n Qvf () Qui(—4q) o
ulf(mt '?)= Mnﬁq g m:’;—wg +3"-”. (32143)

Substituting (32.14) into (32.13), we obtain a system of equations for the
components &;(g), whose determinant

2.2 2
o= 0, = (2219

determines the spectrum w(g), both for photons and for those lattice vibra-
tions which set up a nonzero electric field.

In consideration of electron-phonon interactions, we can usually disre-
gard time lag, since for phonons with a wave vector close to the wave vector
of the electrons, ¢2?/w?>>1. In this approximation, the field &, as is evident
from (32.12) or (32.13), is longitudinal; it is easily determined by setting
&, = —igg, in the equation (¢D,) = ¢&, + 4n(P,g)= 0 and substituting P; from
(32.10). The result is

9= 4ni @P*(9) [ Z xij0.9, (32.16)

and thus

8(9)=—4nq(gP"(9))/ %1 24,9, (32.16a)

where P%(q) is the polarization induced by the lattice vibrations, which is, by
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(32.10) and (32.8c),

Pi@) =g % Q@01 @) =5 %0, @, (32.17)
[ ]

Substituting (32.16a) and (32.17) into (32.11), we obtain the system of
equations

(o — 0%) a,, + §6v(—q)ﬁv.(q)a'v.=0, (32.18)
where
8,()=[—-=22 ____\" . (32.18a)
(@) ( a3 *i"ﬂm) X Qui(9) s

Equating the determinant of this system to zero,

8, (q)8,(—q)
|0 —6?) 8,y +6,(— 98, (9)] = ] ] (o5, “")[‘ +2 ___—mz] =0, (32.18b)
we find the normal frequencies w4 allowing for long-range forces.
Equation (32.18b) shows that one term splits off from each n,-fold degen-
erate terms f when the long-range effect is included and 8y 0. The fre-
quency of these shifted terms is determined by the equation

. Qui (@) Qy(— 9 9,9,
0+ Ev—cﬁLa—' =0. (32.18¢)
i gy —

This equation can be derived at once from the condition

(9D)=—i !2;‘ %1999, =0,

whence it follows that if g+ 0
‘zjx”q'{q’t=0. (32.18d}

Substituting »;; from (32.14a) into (32.18d), we obtain (32.18c)*
Determining the normal frequencies o, from equations (32.18b,c, d),
using equation (32.18), we find the displacements as, corresponding to the

frequency wgy:

a:ng%ﬂ. (32.19)
)

Ogn — Ogy

* At first sight, the additional splitting of the terms in long wavelength modes, due to long-range effects, would
seem to contradict the conclusions of group theory. However, this splitting actually occurs not for ¢ = 0 but
for g ~ 1/L, where L is the dimension of the crystal. Because of the finite contribution of the surface to the
vibration energy of a polar crystal, the arrangement of terms at ¢ =0 is determined not only by the symme-
try of the crystal lattice, but also by the symmetry of the specimen. Therefore, when ¢ ~ 1/L, the spectrum
suddenly changes; when ¢ 3 I/L it no longer depends on the shape of the specimen, but then it depends in
principle on g. The splitting of terms due to long-range effects is then usually less than permitted by the
symmetry of the little group G-

The additional splitting due to short-range forces is proportional to ga, where a is the lattice constant, so it
becomes significant at considerably larger ¢ values, These terms must be taken into account when calculating
the phonon dispersion.
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The constant A= Y 8,(g)agy is determined by the normalization condition
v
§ Ia:u |2=l§1m F: const,

where |dg P is defined by (15.24). Substituting these values of a}y into(32.17),
we find the polarization P*(g), and then use (32.16a) and (32.16) to determine
the field & (g) and the potential ¢4 set up by the mode gp with frequency o,,.

Polarization proportional to the displacement (not vanishing at ¢=0) is
possible only for optical modes in polar crystals, i.e., crystals made up of
atoms of different elements, or in crystals whose primitive cell contains
more than two like atoms.

In cubic crystals whose primitive cell contains two atoms with masses M,
and M;, we can choose the polarization vectors e/JPt for the three branches of
the optical modes as

e[ =V MM, 5, e} =—V M,[M, 0, ; (32.20a)
correspondingly, the normal coordinates aj™ are
0] VMM,
apt= TOM, F Ay (P — Yay) (32.20Db)

and transform like the /-th component of the coordinate. Only the diagonal
components of the effective charge are nonzero:

QF(0)=0Qa,, (32.20c)
and consequently, by (32.16),
gt = — 2Qlee™) (32.21)

i.e., in the zeroth g-approximation the field ¢°" arises only in longitudinal
opt1cal modes, when the vector a°" with components a{? is parallel to gq.
By (32.18c), the frequency of these modes is
2y _ 4nQ?
=l Moo * (32.21a)
where o, = o is the frequency of the transverse modes.
In this case, according to (32.14a),

o 4nQ?
®(0) =x" + ———a—,

Moy (0] — o)
and so the effective charge Q may be expressed in terms of the difference
of dielectric constants between the higher frequency x® (o 3 «°) and the lower
® (0 <€ o)

(32.21b)

0_ o
Q= MQ}. (32.21c)

Equations (32.21a) and (32.21c) imply the well-known relation

(32.21d)

-Bael -e~a
*3 | z

For nonpolar crystals, the expansion (32.9c) begins with linear ¢ terms.
These are the terms that determine the dipole moment due to transverse
optical modes in cubic polar crystals with two atoms per cell.
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In the diamond lattice, the tensor @, like the tensor T in (32.5), has one
linearly independent component Q3 =Q%, =@, and thus

xyz

ot
q,:m == ;}"-‘; Q (qxq'agp‘ + qx‘i':“:m + quzaf"p‘), (32.22)

where, by (32.20b), agpt= (i, — u,).

For acoustical modes, the expansion (32.9¢) again begins with linear ¢
terms, since motion of the crystal as a whole does not create an electric
field. Rotation of the crystal does not induce an electric field either, and
so the dipole moment due to acoustical modes may only be proportional to
the strain:

Pi@=~—i § Brijeis (), (32.23)
where
i (@)= [ o (2)e=tom de =L (qutgs + gyt (32.23a)

Crystals for which the tensor B does not vanish are known as piezoelec-

tric crystals.
In cubie crystals of classes T and T,, the tensor P has one linearly inde-

pendent component Bz = Pry = p, and thus

9= — S (042 (@) + 0,20 + 2, @) (32.23b)
In cubic crystals of class O and crystals having an inversion center, =0,
and the acoustical modes produce a dipole moment proportional to the second
derivatives of the average displacements; these are precisely the normal
coordinates for acoustical modes at ¢ =0, i.e., the expansion (32.9¢c)begins
with second order terms in g¢:

P}‘(G)= - % Yijui¥qiqrqie (32.24)

The tensor y is symmetric under permutation of the last pair of indices. It
is easily seen from equation (20,10) that in a cubic crystal this tensor has
three nonzero linearly independent components:

Y= VYxrexer V12=Vaxyp Y4 = Vyzya

However, the quantity

4ni 4ni
Q' =— ‘,ﬁ:‘ (gPg) = ?%i' ;ﬂ Yiixiq 1 gugitiqr (32.25)

depends in a cubic crystal on only two independent constants, vy, and vz + 2v,,
since

gﬁ” (q) 9.9,= itg"ugiQ;qiq.r = I;j'eu (Q]' q? =g, q” —_ ; e, {q) Qf.
Therefore,

b= ;’Lni [(\'|2+27u) &gq” + (Vi — Vi2—2V,,) E €, (9) qf] ' (32.25a)
i
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where e;= %¢,(q). In an isotropic medium vy, — y;;=2y,,, and
i
ac_ 4l +2y,)e.q? (32.25b
Pq %% ('l'u Vq) q7 - . )

For acoustical modes, the derivatives of the relative displacements u*
need not be included separately in (32.23) and (32.24), since by (32.5) these
displacements may be expressed in terms of du;/dx;. However, they must be
kept in mind in direct calculation of the constants B or y. For example, by
(32.8), (32.5) and (32.23), in piezoelectric crystals their contribution to B is

" ] " .
By = 5 O O T
(30

and by (32.22), (32.5) and (32.24) their contribution to y in nonpiezoelectric
crystals may be written
| ’ .
Vim=g 3 O
MU’

For example, in the T lattice this contribution to B, is B{,,=86,rI, ., and in

the diamond ol lattice the displacements « , yield a contribution to v,:
=0_TI

’
\’xyxy xzy” zxy”

As noted in §22, the motion of an electron in sufficiently ""gentle' external
fields may be described in the effective mass approximation; in other words,
instead of the exact Schrodinger equation for the Bloch functions one uses
the equations for the smooth envelope functions & (x, ). The scattering of
current carriers in semiconductors can be treated in this approximation.
The potential ¢(x) due to long-range forces is smooth, and so it can be intro-
duced directly in the potential U(x)appearing in the operator ¥ of (22.15),
(22.186).

Short-range forces

The potential 8V, (x) due to short-range forces, unlike ¢(x), varies rapidly
within the bounds of one primitive cell. However, it is clear from (32.6)and
(32.7) that if ¢ is small this potential is almost periodic, since W (x), V,,(x)
and V¥ (x) are periodic functions with the same period as V,(x), so that we
can describe the interaction of the electrons with the lattice using only the
envelope functions ¥ (x, {). In order to obtain the operator .y acting on
these functions and determining the electron-phonon interaction, we first
write the operator 8V (x) in the (& n)-presentation. To this end we proceed as
in §22, expressing the function ¥ as a linear combination (22.2) and then
expanding & a(x, f) in Fourier series (22.3). To derive the equation for the
coefficients ¢,, in (22.3) and (22.4), we must calculate the matrix elements

of the operator §V(x) between the functions cp,,,ﬂ-—y.'?—w,‘,,e‘". To do this, we

expand the periodic function ¥, VWV, in Fourier series:

VoYV 0= ?E "_“N‘Rm
M
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where
VRy= % Jl'l’;'h.vvn'h:.em“' dx,

and by are reciprocal lattice vectors. Then the matrix elements of the
operator #” = —uVV, may be written

Brn o= — @8V V @) = — z Ry _[ u(x)e' FFTME gy
M

If # and g’ are sufficiently small, so that ¢=#" —k& is within the Brillouin
zone,only terms with by=0 remain, and then

Brin, wn = (Puatt VWV oPaa) = — ey (1/7) by Wotbra )- (32.26)
Similarly, we can expand the periodic functions ‘P,‘.‘.E.V;,-‘?,..o and ‘P:.—.BV:”"I’,,.O in
Fourier series, and similar transformations then yield the matrix elements

of the operators ’=(eV) and 93’”——~%2V3"“u“-:

'

x;n s = (Ppsr 6V) @, 3=(1/¥) tZ; By q’n’hvtfﬂ’nl.)bf. Pt (32.27)
S 1 HH o HH'
L ) Z“' (mn'k‘vﬂ “xﬂ'¢ni> = % 2 "“: (‘hn'hvo i ‘pua.) 60, L (3 2.28 )

As a result we obtain a system of equations for the coefficients ¢,,, similar
to (22.11):

Y (96, + 36+ 36" + 36,4+ 567),.,.. ., + Exduubis) car=in 2 con,  (32.29)
nk

where 7, and #%, are the operators defined in (22.10) in our treatment of the
spectrum by kp-theory:

%25'!'.nh=_r:'ﬂkpn‘nbl’h M) nw . ne -'—-%Gﬂ’nd}'j. (32.30)

In order to go over from the exact system of equations (32.29) to a sys-
tem containing coefficients c¢,, for only one band, we must proceed as in
§§21 and 22 to eliminate the interband matrix elements of #;and %", At a
point of zero slope, the operator #: does not contain intraband matrix
elements. Using the relation

(VWo) b=V (9609) — BN = (Y0} b = 7 (%0} ¥,

we can express the matrix elements of the operator VWV ,=(i/a){ps%,} in the
form (21.35):

(Uy) ("n’i\vvﬂﬂ,nh) = iﬁ 2 (pn’mxl]mu - xtm’mpmn) = 'imu'rlpn'rl’ ( 32.3 1)

where @un=(Ey — En)n.

Thus, the operator " also has only interband matrix elements. The
operators #’ and " have interband matrix elements too, but the operator
¢ obtained by eliminating them would have terms which either are quadratic
in the displacement or contain the second derivatives of the displacement u
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and the first derivatives of #**, Since terms of this order are omitted in
(32.6) and (32.7), they need not be considered here, and only the intraband
elements of these operators need be retained.

Now the displacements u are time-dependent; thus, when the interband
elements of #, are eliminated, additional terms appear in # owing to the
explicit dependence of the transformation matrix §(15,33) on /. However,
as shown in §22, these terms are smaller than the principal terms by a
factor @/w.n . Since o < Ey/h, these additional terms may be omitted. As a
result we obtain a system of equations similar to (22.12):

2 Hmw, ml;_-ml =ih 'g,— :-m'r. (32.32)
]
where, by (15.47), #mnws.ms contains the terms

Hgmen' surPCogn mu + o ey
B, b= B+ By g+ D —EET A (32.39)
sk

apart from the terms determined by equation (21.19). Terms of second order
in 76", i.e., quadratic in the displacement, may be ignored. Using the equa-
tions (32.26), (32.30) and (32.31) for the matrix elements of the operators .,
and #”, we can rewrite the last term in (32.33) as

z Z(ut’—k. ey — gy ,k:)PL:,Pim-
seam, o m' I, ]
We can then sum over s, using the fact that the functions ¢,, form a com-
plete system and the matrix element p,. vanishes at an extremum point, so
that the summation may be extended to all s values, including m, m’,
The result is

h? .
‘__)I“i_Z(”t LTl N !kD Puca, ""?a"‘f Pk }

ih’ ar
u =
2 ng,r\ m 28' ”\ | dx, dx, I

Here we have put ¢ =% —k. We have also utilized the invariance of the
matrix element

dx, dx

[ | 9
\ | ox, ax, ’"}
under permutation of the indices i and j. Combining this term with the first
term in (32.33), we obtain an expression for the operator #* which de-
scribes the interaction with acoustical modes:

”SCM_M= i = D’ m’ _-_f‘__ \ ! .

q. gzq.qum tz"sq tj'( \ 6.\7‘ ax" |m;+(m IV”[m)) {32.34)

The second term in (32.33) yields the operator #°", which describes the
interaction with optical modes: 438

P = Zu:“V:.P,La—Zg:" (m" | V2% | m). (32.35)

x, %
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We now transform (32.32) to the x-representation, multiplying its right and
left sides by e** and summing over &, & as in §22 (equation (22.14a)); we
obtain a system of equations for the functions Fm:

3 i (k) + 25+ Kook — Ep) F = in 2o, (32.36)
where
Frim(®) =3 &1/ Drtoms (32.36a)
93;?;; (l‘opt)= % 2 R“H‘V:’f‘;‘opt- (32.36b)

*x’

It is evident from equations (32.36a) and (29.21) that " is precisely the
operator * defining the change in the spectrum under a homogeneous strain.
The effective potential produced by the lattice vibrations, defined by equation
(32.36),is called the deformation potential; the constants D appearing in %
are the deformation potential constants introduced above. The matrix #*,
and the matrix #°”describing the interaction with optical modes associated
with short-range forces, may be constructed by the theory of invariants.
For this purpose, we write H°™ as a sum of products of matrices X, which
transform according to irreducible representations, and the combinations of
displacements u*, which transform according to the conjugate representa-
tions., These combinations of u** are the normal modes corresponding
to the limiting optical frequency.

When necessary, it is easy to find the relativistic corrections to the de-
formation potential constants by the theory of invariants. However, it is
usually enough to allow for spin-orbit coupling only in the zeroth approxima-
tion with respect to % and e, the eigenfunctions of the operator ,, which
includes 3;., being taken as the basis functions of the matrix #.

To introduce the effect of long-range forces in (32.36), we must include
the matrix #) nm=—e@d,yn, where ¢ is the potential set up by the corre-
sponding vibrations, defined by equations (32.16), (32.21), (32.22), (32.23b)
and (32.25). Comparing (32.36b) and (32.22), we see that in nonpolar crystals
the contribution of both short- and long-range forces associated with optical
modes to # is of the same order, namely, zeroth order, with respect to g,
while, as we see from (32.21), in polar crystals the long-range forces con-
tribute to a lower order: 8V ~ g'. Similarly, piezoelectric acoustical modes
produce a potential (32.23b) which is zero order in ¢, while according to
(32.36a) and (32.25) both short- and long-range forces in nonpiezoelectric
crystals are first order in gq.

As to the relations between these forces in nonpiezoelectric crystals, at
present there is no experimental evidence that long-range forces play a sig-
nificant role in scattering by acoustical modes or in scattering by optical
modes in nonpolar crystals. Henceforth, then, we shall disregard their
contribution to scattering. On the other hand, neither is there any theoret-
ical basis for the assumption that the potential ¢(x) in such crystals must be
small compared to the deformation potential.
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Transition probabilities

In order to calculate the probability of the transition of an electron be-
tween states due to the perturbations #* and #°"in (32.36), we must first
find the eigenfunctions of the operator # (k). In the case of degenerate bands,

different values of E((k) ({=1,2,...) correspond to the same value of k. In
crystals with an inversion center each of the states Al is twofold degenerate
counting spin, i.e., for each energy E,(k) therearetwo functions ¥, (=1, 2).

Each of these functions may be written as a column matrix with elements
Fiw. The number of rows in this matrix is determined by the dimension of
the representation. For example, for the I's representation in the Ge and Si
lattice, the functions are given by equations (24.19). Let us expand the dis-
placement of each of the atoms in Fourier series, as in (15.25). Thus, the

| (da i .
expansion for a strain ey (:1:}=§(j -1-%) due to long wavelength acoustical
]

6xl.
modes is
=, 3, O e T, e, (32.37)
where
’ f v v
Sw‘”=i(8‘ (‘i)qﬁ"e;(?}qt)- (32-38)
In this case, by (15.14),
e'e"" =38, e'e”=0 for v£v'. (32.39)

The total wave function of the system is a product of electronic functions &
and phonon functions. The selection rules for the operators a and a* acting
on the phonon functions are determined by (15.26). The final expression for
the probability of a transition from state kit to state k't with absorption of
an acoustical phonon v is

2 h
Pyt nsg= T"(T”Eﬂ',v)l (I8, k+ q 126 (e23) | 11RY 2 X
X 8 (E; (k) — Ep (R + q) + hogy), (32.40)

where
e 26 ity =3) FirwdboF in,

and the matrix  (e;) is defined by (32.36a). In order to obtain the total pro-
bability of transition of an electron from a state with energy E,(k)to a state
Ey(®), we must sum (32.40) over the final states { and average over the
initial states ¢ and also over the initial states of the phonons. This reduces
to replacing the occupation numbers n,, by their averages fi,,, defined by
equation (15.24). The transition probability is

Phivse="1 (poy ) Winss GRS ED — Er b+ @) 4 og), (32.41a)

where

Wi (ehos ) =53, Ix(s.,_..\.),.,.,, 2, (32.42)
L T4 Itk
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Similarly, the total probability of transition from a state with energy E,(k)
to a state E, (k') with emission of an acoustical phonon is
23 [ M(fgy+ 1)\ _ ac ,
Pl = T(—gpz).«" )W{_ s-o () (E () — Er(k — g) — hog).  (32.41b)

The total probability of transitions with absorption and emission of optical
phonons is derived in analogous fashion:

opt 2x [ BalP! opt
Plllﬁ:+v= - (W) Wﬁ’::d—v (ebpt () X 8(Ei(k) — Er (k+ )+ nol™),  (32.43a)
opt 2% [ B(ASP 1)\ L opt v
Phe= (P ) Wk (@) X 86, ()= £y (=) — g, (32.430)
where ol is the limiting frequency for the y-th branch of optical modes:
=1 opt (g¥ 2 (32.44
Wi: 3 § |x (Gopt)j.:.:, [ » )

and the matrix elements of #°"(e},) are, by (32.36b),
K (eopdnm =7 3y (€ — €X0) Virimopt. (32.45)
"

If the band at k, is degenerate only counting spin, by (29.28),
Wie » =D (€0:9.) + D, (e3,9,) + Do (eg.9)] (32.46)

i.e., Wi% depends only on the difference ¥ —k=g.

In cubic crystals, in the elastic continuum approximation, acoustical
modes separate into one purely longitudinal mode with eq. =¢/¢ and two
purely transverse modes, for which e, may be taken as

Gy GxG2»

1 1

eqr, = — Hx egr, = F2] {32'47)
TT@EET L T f’_”‘;q, +)

' x wl

Accordingly, for the longitudinal mode,
Wi ssq 2 =0 [Ds+ (Do — Dyo)sin’ 0 cos’ @ + (D, — Dyo)sin* sin’ef’,  (32.48a)

where ¢ and ¢ are the polar angles, determining the direction of the vector
g, where the polar axis is the principal axis 0z of the ellipsoid. The total
Wr,e+q for both transverse modes is

Wis s g0 = ¢*[(Dex — D, sin* 9 sin? 2 +
+ (Dyy — D) sin? 26 cos? @ + (Dy, — D,,)? sin? 26 sin’ g]. (32.48b)

For groups Ga, with n-fold axes, »> 2, it follows from (29.29) that D, =
=D,,=D,, D,,=D;, and

Wis+a2=q*[Dy+ (D — Dy)sin? 8], (32.49a)
Wi 2 g0 = ¢*(Dy — D, \*sin? 26. (32.49b)

For cubic groups Ga, by (29.33), Dy=D, =¢, and in this case scattering
in nondegenerate bands is due only to longitudinal acoustical modes:

Wi azxq »=C%", Wr.oa 2a=0. (32.50)
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In cubic crystals, the optical branches at ¢ =0 are threefold degenerate (if
we neglect the long-range forces arising in polar crystals), i.e., the corre-
sponding normal modes transform according to a three-dimensional repre-
sentation, whereas in the case of nondegenerate representations #°can
contain only modes which transform according to the identity representation.
Thus, for cubic groups Gs, scattering by optical modes associated with
short-range forces is absent in nondegenerate representations.

If the group Gs, has lower symmetry, the three-dimensional representa-
tion according to which the optical modes transform is reducible in the cor-
responding point group. If one of its irreducible constituents is the identity
representation, the optical modes which transform according to this repre-
sentation will appear in 2#°", i.e., these modes will cause scattering of
electrons.

For example, in the diamond lattice the representation I'; corresponds
to the limiting optical mode (see Table 23.4, p.227). In C,,, which is the
point group for A, we have I's—B7 + E* (see Table 11.1, p. 73). Conse-
quently, in Si, where the conduction band has an extremum A, electrons are
not scattered by optical modes. In Dy = C,, X C;, which is the point group
for L, Is=Af + E*. Thus, in Ge, where the conduction band has an extre-
mum at L, electrons are scattered by optical modes with displacements
) = —ls; = p;, which transform according to the representation Af, and

mim () = sV *™ S, Where VOP'—=2Voh (32.51)

Here the z-axis is along the [111] direction or an equivalent direction.
Consequently,

P (edp0) = (el — e3:) Vomm = elaV °%,

since, if both lattice atoms have the same mass, then e = —e, for the
limiting optical modes, where |e|*=|e|*=1,
Accordingly, for the longitudinal mode

Witk s qn =Vipcos’®, (32.52a)
and the total W, for the two transverse modes is
Wik eqn =V, sin’®, (32.52b)

where & is the angle between the direction of the vector ¢ and the z-axis
[111].

Since the frequencies of transverse and longitudinal optical modes in non-
polar lattices coincide, we can at once sum the scattering probabilities in
(32.43) over all polarizations, setting Wi%, s =Vip in accordance with (32.44).

It is clear from the above equations that in the case of nondegenerate
bands the probability (32.42), (32.44) of scattering from state & to &’ depends
only on the direction of the vector ¢ =k—#&’. The situation is more compli-
cated in the case of degenerate bands. As an example let us find the scatter-
ing probabilities for holes in Ge and Si. The functions F, and the energy
E,(k) for holes in Ge and Si are given by (24.19) and (24.13a), and the matrix
6 (e) by (30.3), (30.4). The operator V° has one linearly independent non-
zero matrix element

vl =x|vy) = Vf dopt. (32.53)
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The operator #°™(eS®) can be determined by the theory of invariants. Since
the displacements u}” transform according to the representation Fi of the
group 0,=T,XC,;, this operator is

P! () = },"? dope (4" [1,1] + ug™ [Td 2] + u™ [741,). (32.54)

We have here used the fact that uop’ﬂ-l?(a, —u)=u=—u,, i.e., #°(e)is
similar in form to (30.3), with

[P =g =0, K" = —dop(ie) +e)), j=—dopiel, (32.55)
where

V¥ — gV
e’ =e¢} e}

By (32.40), in order to calculate W;’f»_,q,, which determines the probability
of scattering by acoustical modes, we multiply the matrices &, (), Fu
and sum over the degenerate states. After some rather tedious calculations,
the result is found to be

W;,,:.. (¢') =08Ei(¢’, R)OEm (&, k") — OE} (') OE3 (') Wi'h- (32.56)
Here I, m=1 denote light holes, [, m= 2 heavy holes; 8E,(e, k) are the energy
changes of the holes under the strain & at high energies, defined by (30.34),

and 8E](e) the changes in the energy of the holes at k=0. By (30.5) and (30.8),
8E7 2(e) =ae + &” and

8E1 (2) 8E3 () = (o’ — bz)z.e?‘ +(@+ 5) e, — &Y e (32.57)

Iy [y
The function ¥§} in (32.56) is defined by
ml I 1 2 ne 2090 ,2 ?_ ATy ]
‘P.',=?[11W[D (k'Y — Bk + (3B D’))J‘m,]. (32.58)

where, according to (30.6),

&, =B+ L (D*—3BY) ¥, k3k2.
Iohf
The plus sign in (32.58) corresponds to intraband transitions (/=m), the
minus sign to interband transitions (! % m).
In this case, both Wi and Waw s depend on the directions of the vectors
&k and k’. The quantity Wes. s, which determines the probability of scattering
by optical modes, is similar to (32.56):

W%’;ﬂ! (ev) = BE:(ey, k) 8Em (ev, k') — OES (v) SES (ey) ¥ih. (32.59)
Here &E;(u°", k) is the change in the energy of the holes when each of the sub-
lattices is subjected to a displacement u°Pt=u = —g,, at energies signifi-

cantly exceeding the band splitting 8E} (w) — 8E3 (u) at the point k=0,
As (30.34)

OF, (8%, k)= = ;’;f;;‘ (e o uSP + b fe u2P + ko u0P), (32.60)
[ ]

OFT (1°P") 8E3 (u°™") = — d2petil . (32.61)
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Recall that the constant dop in (32.54) has dimensions of energy per unit
length, and the quantities 3E;(e,, #) and 8E (e,), as opposed to 8E,(¢°" k) and
3E°(¢°"), have the same dimensions as dop.

Intervalley scattering

When there are several equivalent extrema, scattered electrons may
jump from an extremum located near k& to an extremum k. To calculate
the probabilities of such transitions, we use the general equation (32.1).
Using (25.25), we expand the displacement in normal modes a, and
rewrite (32.1) as

aV(x)=§[V;,(x)aw+ Vaat) (32.62)

where
Vo= 2 Vu(z— X)) el (@) eton] (32.63)

It follows from equations (32.62) and (15.26) that the probability of transi-
tion of an electron from state k, to state &, with absorption of a phonon ¢v is

n 1 .
P*""“ h= 2“(2p(::\,)F’1 (‘phl VW|¢‘I> F 6‘|+1< *ab{E.: + hwq - El'n) (32-64}

By (15.26), for a transition with emission of a phonon we need only replace

fige by figv+1 and Vg, by Vgv. The selection rules for the matrix element

Vv =;,1~(¢h|V;,u|¢.l) depend on the transformation rule of the operator V.

LA N
The invariance of the Hamiltonian (32.62) under the space group operations
implies that if the components a,, transform under operations ge G, accord-
ing to a representation 2 of G,, then the components Vg transform accord-
ing to the complex conjugate representation £*. Under other operations of
the space group, which take the vector ¢ to an inequivalent point gg, the
component ag goes into Ggev Or into a combination of components agew (2
similar situation was observed for the Bloch functions). It follows from the
definition of Vg, (equation (32.63)) that in the latter case Vg also goes into
Vgqv. Consequently, the components Vg (x) transform according to the same
representations as the normal modes a,,.

Knowing these representations and using the equations of §19, we can
determine whether transitions from state & to & are allowed or forbidden
and which phonons can cause such transitions. For arbitrary points & and
k,, these transitions are always allowed, but if the points are near extrema
ky and kp of sufficiently high symmetry and transitions from &, to &y are
forbidden, the probability of transitions from k, to k, will be small. Selec-
tion rules must therefore be determined specifically for extremum points k.

Below we shall discuss selection rules for intervalley transitions between
points of the stars X, A and L in cubic crystals of the Ge, InSb and PbS types.
Transitions between points of the stars X and L are induced by phonons of
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the star X. For example, for the star X
kox — ko, =22 (100) — 22 (010) = 22 (1T0) = 25 001) 4+ 22 (1TT) = ko, — b

Transitions between points of A (k=(00ky)) are caused by phonons of £; when
k0=§% the point £ with k=(k.k,0) goes into the point K or the equivalent

point K’ with k=EE(Ll 1]; when k>3 % it goes into the point ¥’ with
ap \ 4 4 2 a

k= (kiks 22), where ki=12% —k < 2%
All the points X, A and L belong to case (a;), and the selection rules at
these points are determined by equation (19.41), according to which {he num-
ber of nonzero matrix elements for the transition from state %'u to t%*n with

phonon emission in the branch v with wave vector ¢=#&,+ gk is

1
N:=W.,{EXS(go)x:'(gu)x:'(g:'mJ+K’Zﬁ(£r£:‘)x:'((efs:')”)]— (32.65)

& €
Here g, is an element of a group G, defined as the intersection of Ga, G-ga,
and G,, and ko is the order of this group. Note that any element common to
two of these groups is always a member of the third. The only nonzero
terms in the second sum are the characters of elements (g,&7'} of G, . In
that case, g,g;'eG,; and conversely, if g¢'=G,, then (g,4;'f=G,,. Inall
cases considered, such elements exist (if there are none, it follows from
(19.42) that we must replace 2h, by ho in (32.65)). For transitions between
points of the star X, when the phonons also belong to the star X,

x4 (€0) = 13" (87'8,8)),

where g, is an element which takes k;, into ¢g. We must remember here that

the elements grlg.g,, like g;'ge, and (g.g;') in (32.65), may also contain pri-
mitive translations. This is an essential factor in determining selection
rules for transitions between points L and X for Ge-type crystals.

TABLE 32.1. Selection rules for intervalley transitions

Type of Ge InSb PbS
crystal

Positions| A X L & X L A X L
of ex-
trema

Represend di—s [Xi—a|Li,zf Lo | Bumy [ X0l Koo | Ko |Lo, o) Lo | A=y Xiq L}-a‘

’ ’
tation Ly, 2 Ly Xs| Xe Li—s

Transi- Z | Xu| X Xo| X | X Xpo (2K & -| -
tions (or | X3 a| or Xe| Xy | Xo| (0Or
allowed [K,, 2 K, % Xs Xs |k, )
with

phonons
of repre-
sentations

L=
>

4

i)
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Table 32.1 presents the results of the calculations and indicates which
phonons can cause transitions between the corresponding electron states.
It is evident from the table that in PbS-type crystals intervalley transitions
between points of the stars X and L involving phonons of X are forbidden,
since at X the phonons transform according to the odd representations X-,
whereas the product of the electronic functions may correspond only to even
representations. In the other cases intervalley transitions are allowed.
Time reversal symmetry forbids some of the possible transitions, such as
transitions between points of the stars X and L in Ge with absorption or
emission of phonons of Xi.



Chapter VI

EFFECT OF STRAIN ON FREE CARRIERS

§33. CYCLOTRON AND COMBINED RESONANCES
IN STRAINED GERMANIUM AND SILICON

In the last chapter we discussed the effect of a strain on the spectrum
of the current carriers — electrons and holes. In this chapter and the next
we shall consider the physical effects associated with these spectral
phenomena.

Cyclotron resonance, i.e., resonant UHF absorption due to electron
transitions between Landau levels, is the most direct method to determine
how the spectrum changes under a strain. The resonant frequency, usually
called the cyclotron frequency, is determined by the carrier spectrum ina
magnetic field. To determine this spectrum we must solve the Schrédinger
equation in a magnetic field:

(% (K) + 26, — E) F =0, (33.1)

where K=k+{ﬁ-d is the generalized momentum, H= rot #, and F is the
wave function in the effective mass approximation.

We first consider cyclotron resonance in strained erystals with ger-
manium-type valence band. In germanium and silicon, the operator #(K)
for one of the strain-split valence bands is given in the quadratic k&
approximation by equations (30, 14)— (30.20). To determine the operator
2, describing the spin splitting, we write the spin Hamiltonian in the un-
strained crystal, defined by equation (26.14), in the representation (24.19)
which diagonalizes the Hamiltonian (e, &) in the strained crystal. (A
similar procedure was adopted in Sec. 30 to determine the linear k terms;
see equation (30.40)). For the upper split-off band, this gives

My = K10, + H1904 + Hizo_; (33.2)

here

%, =pogle,F{5 H.BURE~1iP +(E — Pl +
+ 0% & —pwH-—hH,)).
36, = hogeic, (3H,IW — LVI(E, = )t +i(E, ~ I} H_), (33.3)
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where
Hy=H,xiH, | ey, 2P=(E, 2 —F(E) s — Ea )
|, h,and j are defined by equation (30.4), and g = go# (for 4= 0). The spin
splitting AE, = to, for an arbitrary strain is determined by
nm‘=po{§ gfIH‘HI}'”, (33.4)
where
2
8= (1817 + (e — 3o, P + 33, + o),

(33.5)
e,= 315’:5'_‘ (V3de

28" —b(e—3e,)])s

uggrz - gxy[

&, is given by (30.8). (The remaining components are obtained by a cyclic
permutation x—y—2.) In particular,if the strain is applied along
principal axes [001] or [111],

ho, =, (g} H; + &\ HY)'"", (33.86)
where H} =H.+ H2, the z-axis lying along [001] or [111], respectively, and

g=gx2 g=g0=xIl (33.7)

The upper sign refers to be’ > 0 or de’ >0, the lower sign to be’ <Oor
de’ < 0.

Classical cyclotron resonance

If we restrict ourselves to terms quadratic in K in #(K) in (33.1), there
is no need to allow for the dependence of the g-factor on K. Since ¢yclotron
transitions take place without spin flip, it follows that in this approximation,
according to which the cyclotron frequency is the same for all electrons,
there is no need to include the spin explicitly; referred to the principal
axes of the effective mass tensor, equation (33.1) reduces to

(; -g‘:l(’f—E)F=0. (33.8)

Going over to the variables

x;=x,(m/m)"”, where m=(m_m, m,)", (33.9)

and accordingly

kj=k,(m/m)", st;=st,(mim)" H;=H,(m,[m)", (33.10)



358 Ch. VI. EFFECT OF STRAIN ON FREE CARRIERS

we can reduce J6(K) in (33.8) to spherical form. Now let the 2’ -axis point
in the direction of the field H’, whose magnitude is

R 12
H _(;(m‘/m)ﬂg)' , (33.11)
and choose = —3#'y", S =0, s#;-=0; then equation (33.8) is written
h? eH' \2 2 2
{H (ke + 5 o) + 6+ &]—E}F=0 (33.12)

(we have written k; and x, without primes). As is known /1.7/, the solution
of this equation is

F,.=£”"'H‘z)¢u(y+ Yo)» (33_13)
where

yy=s%k,, s*=HhcleH’, (33.14)

and ®,(y+ yo) are the harmonic oscillator functions, i. e., the eigenfunctions
of the operator

=[5+ 0 — o (33.15)
We introduce the operators

a ==Kt 1K), at =7 (Ko~ iK)), (33.16)

which, by (22.19), satisfy the relation
{aat)}=1. (33.17)

Then the operator K- K? is written
K2+ K2=s7(aa* + a*a) =25 (a*a + ). (33.18)

The functions F, satisfy the relations
aF,=VnF,., a*F,=Vn+1F,., (33.19)

whence

ataF,=nF,. (33.20)
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It follows from (33.12), (33.18), (33.20) that

E, h”gz LA B2 —2( +%)=":Tk§+ﬂ%(”+%)' (33.21)

where the cyclotron frequency is

0, =22 e (33.21a)

In the presence of a variable electric field &(f)=2&sinot, the Hamiltonian
(33.1) must include of(f)=28—cosef in of. In the linear field approximation,

this produces an additional term in (33.8):

31—2—2-—(kté’,)coswt (33.22)

The transformation (33.9) takes &, into & =& ;(m/m)'?, and E——-(K,&’,}

into —(R’S'}, and in terms of the variables (33.16) the operator My is

2cﬁs -1

2y =20 (0& 4 at &, + ok, E). (33.23)

Here 8’1=%(@’; +i&),and &, &, &, are the projections of the vector §

on the x”, y” and 2” -axes. By (33.19), %y has nonzero matrix elements
between states n and nx 1, provided the /ield & has components &, and &;.
Consequently, a variable electric field & induces cyclotron transitions if
it has components normal to H’. However, this does not imply that transi-
tions are always forbidden if & is parallel to H, for if & and H do not point
along one of the principal axes of the ellipsoid, the fact that &|H does not
imply that &’ is parallel to H’.

Going back to the original variables (33.10), (33.11) in (33.21a), we find
w. as a function of the orientation of the magnetic field relative to the
principal axes of the ellipsoid x, y and z:

2 2 Tl 2 2
@, = eH,Where~!2—= sin &cosw_l_sm & sin’g + cos? & ) (33.24)
m. m, MyxMzz myyMez My Myy

Here ¢ is the angle between the magnetic field H and the z-axis, and ¢ the
angle between the zH and 2x planes. In particular, if the strain is applied
along the principal [001] or [111] axes, when the constant energy surfaces
are ellipsoids of revolution, the cyclotron mass m. depends only on the
angle # between the magnetic field and the strain direction:

T (33.25)
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where m,and m are defined by (30.19) or (30.20), respectively.

Hensel and Feher (29.1) have measured cyclotron resonance in strained
p-Si. Figure 34 shows that with an increase in strain the resonant lines of
the light and heavy holes disappear, and a new line appears, which corres-
ponds to the holes in the upper of the split valence bands. In addition, there
is a marked change in the intensities of the electron lines, caused by
transfer of electrons from the extrema on the [100] and [010] axes to the
extremum on [001], which is shifted downward under the strain.

Electrons

Light hole Heavy hole p=f

Split-band hole ﬂ'#lﬁkg/cmz

Signal

P22270kg/cm?

Al

Jo0 2000 1500 2000
H,oe

FIGURE 34. Cyclotron resonance in strained p-Si /29.1/.
Horizontal axis: magnetic field in oersteds. ¥ == 8,900 MHz.

It is clear from Figure 35 that the dependence of the cyclotron mass on
the angle 8 is adequately described by equation (33.25) for the split-band
hole. The values of m,and m, may be determined from the m.(#) curves and
the values of the constants 4, B, D found from equations (30.19) or (30.20).*

Measurements of this type yield the sign of the products 5B or dD but not
the sign of B and D separately,since the sign in the formulas (30.19) and
(30.20) for m, and m, depends on the sign of the deformation potential
constants b and d.

As shown in /29.3/, the sign and magnitude of these constants can be de-
termined by measuring the strain dependence of the effective masses. In
silicon, which has a large spin-orbit splitting (A= 0.0441ev), one can
reliably measure the change in the effective masses due to the effect of
the split-off band, as given by (30.24)— (30.26), and for (001] and [111]
strains by equations (30.30) and (30.31).

* Note that all the above equations refer to electrons. If the current carriers are holes, # must be replaced
by —#and e by —e. This is equivalent to changing the sign of the effective mass and the magnetic field.
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FIGURE 35, Cyclotron mass in p-Si vs.
angle between magnetic field and strain
direction /29.1/. #, is the angle between
the magnetic field and the [001] axis in
the (110) plane (degrees): #, is the angle
between the magnetic field and the [111]
axis in the (110) plane.

Figure 36 is a plot of m. as a function of stress P (H|IP). It is evident
that §m* depends linearly on e only for large strains. The nonlinear be-
havior of §m* for small e is due to the nonparabolic nature of the bands when
the splitting A, is small. If the ratio kT/A, is not too small, terms of fourth
or higher orders in k, defined by equations (30.5) and (30.21), become
significant. When these terms are included, the cyclotron frequency de-
pends on the number n of the level; this brings about a shift of the line
with increase in temperature or decrease in stress, and the dependence of
®, on ki causes the so-called k. line broadening, which increases with
decreasing e.

k Hooy

Ty

% D’“'D"y-
o0 2 4 ) 8 0 r
P,:"-‘i'i’?kg/t_‘miC

FIGURE 36, Cyclotron mass in p-Si vs, stress /29.1/,
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The increaseineffective mass due to terms ~k* is also inversely propor-
tional to the strain, whereas according to (30.24)—(30.26) &m* isproportionalto
The general behavior of m.(e) is reasonably approximated by the function

’
E, .
zz

Here the constant @ for a [100] or [111] strain is determined from equations
(30.30) and (30.31). Once values of ¥ have been derived from experimental
data, we can find the constants b and d appearing in (30.30) and (30.31), and
then, on the basis of their signs and the signs of 68 and dD, determine the
signs of B and D. The value of the ratio b/d has been determined inde-
pendently from similar measurements, for a [110] strain. Table 40.2 (p. 468)
presents values of the constants A, B, D,b and d* determined in this manner.

Note that if the sign of the strain is reversed, so that the crystal under-
goes tension instead of compression, no marked changes in cyclotron mass
are observed for large strains /30.1/. As pointed out in §30, this effect
should indeed be absent for a strain along the principal [100] or [111] axes
when be’ < 0 or de’ < 0.

Quantum cyclotron resonance

In p-Ge, which has a large spin-orbit splitting, the above method for
measuring the deformation potential constants fails, since the contribution
of the split-off band is comparable with that of the other close-lying bands,
such as the conduction band. Another method, quantum cyclotron resonance
in a strained crystal, is applicable for Ge. As noted previously, the cyclo-
tron frequency wn4i,n = (Eny1 — Es)/h, which is proportional to the energy dif-
ference AE,, , between levels n+ 1 and n, decreases with increasing n
because of the nonparabolic nature of the strain-split bands. In strong
magnetic fields, at low temperatures and not too large strains, the individual
lines corresponding to different n values can be resolved and their shift
under the strain measured. To calculate the position of these lines for
large n values it is sufficient to include in #(K) the terms ~ K*defined by
equation (30.21). However, under conditions of quantum cyclotron resonance,
when e, is of the order of kT, levels with small n are significant, and this
equation is no longer applicable, since we must now take into account the
noncommutativity of the operators K; and the magnetic field. In order to
determine the Hamiltonian (K) in a magnetic field in a strained crystal
to an approximation of higher order in K, we must first diagonalize the
matrix #(e)by using functions similar to (24.19). In this representation
the blocks #/(K,e) and #yu(K, ) are diagonal:

#=IE (K, e), Huu=IE (K, ¢),

where E, ,(K, ¢) is defined by (30.14) and I is the 2 X 2 identity matrix.
Next, using equation (15.49), we must eliminate the off-diagonal terms

D,

2
£

* In the notation of /29.3, 40.3/, g = — -%D:. b= — 2 Dy, and d = —
3 3
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Fry and #)y 1, allowing for the noncommutativity of the operator K. In so
doing, we must remember that, by (22.20), the original matrix # (K) includes
the symmetrized products [ K.Kp ], whose commutator is

{IKaK ] (K Kol = 5 (KK K Ko} HK g Kol (KoK ) HKaKo] (KpK -+ Ky Ky KK ).

We must also allow for the dependence of the g-factors on the wave vector
K, introducing a matrix #,similar to (33.2) with f, g, h, j replaced by

F4+f, %+g H+h ]+ |, respectively, where F, %, H, ] are defined by (24.11).
If the strain and the magnetic field are applied along the principal [001] or
[111] axes, there is no need to use the general method outlined above, which
is applicable to any orientation of the strain and magnetic field; in these
cases, we can use a representation in which the matrices # (e) and

#; = pg# (JH) are diagonal, thereby eliminating two steps of the general
procedure. For the first case, this is the representation (24.12), (26.12),
(30.3), (30.9). For the second case the operator (K, &) may be derived
from (26.12) and (30.9) by transforming to a coordinate system with axes
2/ [111], » [112], ' [110], as done in the transition from (31.9) to (31.11)

in §31.

According to (31.10a), the Hamiltonian (K, e) defined by equations
(26.12), (26.14), (30.9), (27.62) has the following form relative to the new
axes (for holes, g = 0)

% (K, &, H)= (v, — 3 v)) K2 4 202+ v, 2K = 3y 262+
+ 3 (o 2v) (KL + 22K3) +
+2YZ oy, 90 (1L KK -~ [LI] KK ) —
— 2T (v~ v)ULK K, + KK~
= = ¥)([1I,] K = (1] K2) + (D1 — 5 Ds) e+
+ 7 Dye, + DyJ2e — 3D, J%, ++ (D, + 2D)) (e + Ie,) +
+2VZ (9D, + D (1.1, )ea- — U -1es) ~
— 2T (0, — DBy, + ,) —

— B (Dy— D) (U Jes — 1] -le- + gosof (TH), (33.26)
—=— -t =—d_ ini i
where Dyj=—a, D, > b, Dy Vs The remaining notation follows

that in Table 31.4 (p.324). If both strain and magnetic field are applied
along [111],i. e., the only nonzero components in (33.26) are e, and H,,
the matrix # (K, e, H)is

Hu=—(a = 7)ot i+ v)@ata+ Vs~ +(v, = 2v) K+  mgfHo,,  (33.27a)

Hun=— (a + -]f-f)zu+ (vi — v5) 2a*a+ 1) s=2 + (v, + 2v,) k2 + %uogofﬂa;, (33.27)

hyy hyy l’ (33.27¢)

ki — ki

xl n=
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where

hy==2(3)" (=) a*s + (vs+ 2va as~'k,),
hy=—2 [%)'m[(vﬂr 2y3)a’s~? + 2 (vs — Vo) a*s~ 'k,

We have written these equations in terms of the operators a and a*, replac-
ing K, by V2s'a and K. by V2 s-'a* (see (33.16)). Next, eliminating the off-
diagonal terms, we find

]?||=311+Lg:ﬁj-. ??un=3€un'—L;.xi—'L (33.28)

Here é,rs:(2/]/§)ds;, and, in contrast to (30.13), this term may be either
positive or negative. In addition to the diagonal terms, the matrix &u#u,
includes terms of fourth order in £ or a, which may be determined at once
from equation (30.21), and terms of second order in k or g, arising from the
noncommutativity of the operators g, a*
Substituting (33.27) into (33.28), we obtain
=5 0,+2(v,+v) s [atal+ (v, — 2v) B+
2 (8299 s~ [a™a?)+ 2 (4 — v) ="k, o+ a9 +
+ 22+ 2¥3) s~k2[a*a]] + o, {% nog,AH +
8
+ 3, [(v2 + 2v3 — 2(vs — v2)*) s~*[a*a] +
4
+ 3 [+ 20 — 2(v— v %2 |+
+o {ﬂ(y — v [2(v; + 2v;) s~*[a* 2v.) =282 3.2
2| 38, (Yo (¥2 ¥s)s~*[a*a] — (v, + Vo) STRZ] [ (33.29)
Run=—58,+2(v —v)s~2la*al+ (v, + 2, 42 —
— 2|3+ 2¥) s [a*a?) + 2(¥3 — ) s~k (0 + a*) +
+2(v3+ 2¥9) s~k [a*a]] + 0, { 5 pogotH —
— o [+ 2¥) s~ [a*al+ 5 2+ v) s~ }+
+ 3';24 V2 vavss~3k. (040 + o_a*). (33.30)

As a trial solution of the system of Schrédinger equations with the Hamilton-
F
ian (33.29) or (33.30) we take P"=ﬂ2;¢°“| , where F, are the functions defined
n

by (33.13). In so doing, we may treat the terms containing 4, in the de-
nominator as a perturbation. If kT € hw., we can omit terms containing k&,
in these perturbations, since A%?2/2m;, ~ kT. To this approximation, the
function F, is an exact solution of the corresponding Hamiltonian, since by
(33.20) and (33.17)

l[a*%a®) F, = ((a*a)® + (a*a) + 1) Fy =(n* + n+ 1) F,. (33.31)
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It is now convenient to express the constants ¥, ¥z, ¥a in units of #2/2m,
where m is the mass of a free electron,i.e., we go over to dimensionless
constants /20.1/, noting that

hs—? eﬁH __ehH .32
— — =Ry, Pl = povs = fwy,. (33.32)

If we omit the terms containing &,, the hole spectrum will have the form

L= oy v+ v9 (7 + ) + TS (13 + 29 (R4 n o+ D]
2 {2 noyp+ 2 ool l(v,+2v3)*—2wwv,ﬂ[u+ b (33.33)
Ea=—T‘+h%{vu—?s}(n+g)—
— Bl [+ 22+t 1)
t{%ﬂmo*—z Boa (42 + 290) (n + 1) }. (33.34)

The contribution of the off-diagonal elements in (33.30) to Ell may be ignored,
since it is of the order of (Aw)/A? and terms of this order were omitted in
the expansion (33.28).

It follows from equation (33.32) that for the series of levels EY, which
are the lower levels of the holes if Aer-2ds,,,r']/§>0. the cyclotron frequencies
for n4+ 1 —n transitions

E 3 * E 3
n(o,‘+1_ n= Eu+l — Ex

are defined by

Sathn — g — vy — B (4 2 (4 1 £ D), (33.35)

i.e., the strain-induced change in the cyclotron frequency is, for the upper
spin level,

1}
Amn:l, n__ 2ﬁm0
L]

(4 2v) (n +2), (33.36a)

and for the lower spin level,

aw,, Ln 2.‘!@0
o=, (it 2 (33.36b)

It is clear from (33.36) that for a I-»0- transition the frequency is
independent of the strain, but for all other transitions o, decreases, and so
m. increases, with decreasing strain.

For the series of levels E., which are the lower levels for the holes if

de <0,
1+

In 2 1
Tt =vtwt T%[(Yg'*'?ﬁ](""‘ L+ -3*) x ;(\’3"'?2)2]. (33.37)
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in other words, if de << 0 then o, decreases with decreasing strain for all
levels.

Equations (33.35), (33.37) imply that for large n values the change in
cyclotron frequency for both spin levels is the same, while for the terms
Ep and Ey, it differs only in sign (this is also clear from equation (30.21)).

Cyclotron resonance has been observed experimentally by Hensel /30.2/
in strained germanium at low temperatures. Figure 37 shows curves of
wyfw¥,, , for transitions between the various levels shown in the inset. The
solid lines are theoretical curves, obtained by computer solution of the
system of equations (33.27) for the spectrum under an arbitrary strain.
The parameter d, chosen to ensure the best fit between the theoretical and
experimental curves, was d = -4.41 0.3 ev, and the value of y,—y;=
=— A+ D/2V3, determined from the position of the unshifted line in units
of #?/2my, was 7.745+ 0.012. This is in good agreement with the other data
in Table 40.2 (p. 468).
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FIGURE 37. Cyclotron frequency in p-Ge vs. strain parameter x' == M;;mc /30.2/.

The energy in the Landau ladder is in units of heH/me,

Combined resonance

The off-diagonal matrix elements in (33.29) and (33.30) do not contribute
to the spectrum in this approximation, but they may give rise to transitions
with spin flip in a variable electiric field. Analogous to ordinary
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paramagnetic resonance, when such transitions are caused by a magnetic
field, this effect, first predicted by Rashba /31.1/, is known as combined
resonance.

As shown above, the transition probabilities in a variable electric field
are determined by the operator #y=/(e/fc)[Vast(k)ot] . If the original
matrix #€ (k) contains only quadratic k terms, the matrix #g, which is
similar to (33.23), is derived from # (k) via the substitutions

a—a +sj_e€+m(ll at - gt + s____eé‘;m(:) , ky, > k,+s"“—-—-—-ei;m .

»

It follows via (33.29) that the off-diagonal elements of the matrix Z%, which
determine the probability of a transition between states E and EL, is

Hye =T B0 2 (o ) (s + 2095 (8. +aB) —
- sﬂ {73 + 2?!) kzé’z] ﬂ".

Here, as in (33.33) and (33.34), the constants y, and ys are expressed in
units of #%/2m,. It is evident that a field &|H causes transitions between
spin states on the same Landau level, but a field € L H causes transitions
with a unit change in n: &_.downward and &, upward.

The off-diagonal elements of the matrix #%, which determine the
probability of a transition between states EY and E" are, by (33.30),

(33.28)

Kl =6V2ERL Lo yivi[s'h, (0,8, +0-8.) + &, (0,a+0-a%).  (33.29)

The situation here is evidently reversed: a field & L H induces transitions
involving only spin flip, while a field &| H causes transitions between different
spin levels belonging to neighboring Landau levels. Comparing (33.38) and
(33.39) with (33.23), we see that the intensity of these combined transitions
is a factor of approximately (hwo/A,)? lower than that of the cyclotron transi-
tions, but it is usually much higher than the intensity of paramagnetic
resonance, which has not yet been observed for free holes.

Figure 38 illustrates the results of an experimental study of combined
resonance in strained germanium /31.3/. Arrows indicate transitions
observed for compression along [111] (de > 0), H|[111] and &|H. According
to (33.39), only transitions (n, +) —(n+1,—) are observed in these condi-
tions. Curves of wi/wnt, » Plotted against e are shown, where wn41,» is the
frequency corresponding to the transition Aws4i, .= Easi —E+. The solid lines
are theoretical curves obtained by computer solution of equations (33.27).
The parameters d and # were chosen so as to assure the best fit between
the experimental and theoretical curves: d = -4.5+ 0.3 ev, #= -3.60+ 0.04.
Later measurements of paramagnetic resonance in free carriers in
strained p-Ge /31.4/ have produced a more precise value of the constant #,
namely -3.41+0.03, and also a value of g= 0.06+0.01% (see (26.14)).

* Values of the constants y more precise than those in /31.3/ are also given in this paper.
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FIGURE 38. Combined resonance in strained p-Ge /31,3/.

Change of effective masses in nondegenerate bands

Cyclotron resonance enables one to observe not only "large' variations
of effective masses in semiconductors with degenerate bands, but also
"small" effects, due to the effect of the neighboring bands on effective
masses in nondegenerate bands. As mentioned in §§29 and 30, when a
shear strain is applied to n-5i, the transverse masses l/m,, and 1/m,»

m*‘:us”‘ (equation (29.45)).

must differ by the quantity 4 o

a

0422
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0420 A
0418 &= v '/ai7 T
Py
4
0.416 /
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—
0914

0° 10 2030 40 S0 60 70 80 90°
log g w [on]
FIGURE 39. Cyclotron mass in n-Si vs,
angle ¢ between magnetic field and [011]
axis ([001] srrain) /297/.
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If the magnetic field is normal to the principal x-axis, it follows from
(33.25) that the cyclotron mass m, in the unstrained crystal is m=(m m)"
and does not depend on the orientation of the magnetic field in the y'z’ -
plane. By (29.45) and (33.25), this mass varies under strain as a function
of the angle ¢ between H and the y’-axis (i.e., the [011] axis), according to the
equation

o -1
miemm m,(1 + 2 2 cos 29) (33.40)
whence
.
e (&)= me (0) (1 — 322 cos 29). (33.41)

Figure 39 plots m/m, as a function of ¢, as observed in strained and un-
strained crystals /29.7/. The solid curve is

:%:=ﬂ—bcos2tp

where a=14-1073,
=(9.1 =0.4) 1073

The constant component g, which is absent in (33.41), is due to the effect
of the other bands. The above value of p corresponds to

fod
L
a =T_=8‘3'

A

The separation Ato the nearest band at the point &k, is about 0.5 ev, while
theoretical estimates /29.7/ give a value 1.32 for the ratio m’/m ; this
yields the value 5.6 ev for the constant C’.

§34. EFFECT OF STRAIN ON KINETIC PHENOMENA

In this section we shall consider the variation of electric conductivity
in semiconductors under an anisotropic strain — the piezoresistance effect.
Discovered in 1954 by Smith in Ge and Si /32.1/, this phenomenon marked
the first research into the effect of uniaxial strains on the physical pro-
perties of semiconductors.

Phenomenological description of the piezoresistance effect

Application of a strain to a crystal causes a change in the electric
conductivity tensor Ag,p, which in the linear strain approximation may be
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written
ﬁﬂag
5 E Map, yoByde
¥

where mgg ,, is a dimensionless fourth rank tensor symmetric with respect
to inversion of indices within each pair:

(34.1)

Mag, y8 = My, yo = Mpa, 8y = Mag, sy (34—2)
and ¢ is the average conductivity of the crystal:

1 O+ Oyy + Ozz
?Tl"a =3

=
The tensor m,g, 4, is known as the elastoresistance tensor. Its form and
the number of independent components depend on the crystal symmetry
and on the symmetry (34.2) of the tensor itself relative to permutation of
indices. By (20.18), the number of independent components is

N=2 Y @] (34.3)

gsF

where yx is the character of a vector representation and % the order of the
group F characterizing the crystal class. Egquation (34.3) implies, for in-
stance, that in cubic crystals three of the elastoresistance tensor components
differ from zero: i, ., Mex y and Mgy, L.

Experimentally, one usually measures the emf at a given point,i.e.,
determines the change in the resistivity p=¢-' under a strain.

The strain-induced change in resistivity, Ap,p/p, is described as in (34.1)
by a fourth rank tensor m{ , which has the same symmetry as the tensor
m@ . In cubic crystals, m ,,=—mf .., but in crystals with lower symmetry
the connection between the components of m@ and m® also involves the
quotients of the components of the conductivity (or resistivity) tensor of
the unsirained crystal.

Since all the components of the tensors m, ¢, e depend only on the pair
of indices ap, it is convenient to adopt an abbreviated notation, denoting each
pair of indices by one number. The strain tensor components e,s are now
characterized by a single index,

e

xx ~* B By —> By By —>Ey 2‘%rz —ey 28, —e;, 23:] —> &g,

Oex >0y Oyy—>0y 0,0, Oy —> 0y, Oxz —> 05, Ogy—* Og

and the tensor mgp y, becomes a 6 X 6 matrix. Thus, instead of 81 com-

ponents symmetric with respect to inversion of indices within each pair,

the tensor mg,g, y, is defined in the general case by 36 values of my;.
Relation (34.1) may be written in matrix form:

ﬁal
= - - Mgy (34.4)
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In a cubic crystal, with the x-, y-, and z-axes taken along the fourfold
axes, the elastoresistance matrix has the form

my my my 00 0

myp my my 0 0 0

my my my; 0 0 0

0 0 0 mg O 0 (34.5)
o 0 0 0 m, O

0 0 0 0 0 my

and is characterized by three independent constants:
My == My, g0 M= Myg, gy My = Myy, 2y

These constants are easily determined experimentally by considering dif-
ferent orientations of the current, stress and strain., Using different
relative orientations of the strain, field and current, one can in principle
determine all components of the elastoresistance tensor.

Any small strain can be expressed as the sum of a strain which pre-
serves the crystal symmetry and a strain which breaks the symmetry. An
example of a strain preserving crystal symmetry is an isotropic strain

=sw=zu=%£"¥- , where -‘9’,1 is the relative change in volume.

In noncubic crystals there are other types of symmetry-preserving
strain. In uniaxial crystals, this is the case for a strain along the symmetry
axis. Therefore, the coefficients my; are conveniently replaced by suitable
linear combinations, corresponding to strains which preserve the crystal
symmetry, known as the volume elastoresistance opefficients, and combina-
tions of my;'s defined only by strains which reduce the crystal symmetry.
The latter are known as the shear elastoresistance coefficients. The
physical justification for this division of the coefficients into "volume'" co-
efficients, not associated with a change in symmetry, and shear coefficients
is that, as we shall show below, they generally depend on different mechanisms

For cubic crystals, the change in conductivity under anisotropic strainisa
volume coefficient.

sxx

Ao myy + 2
AT 7 R Rt (34.6)

The shear coefficients in cubic crystals are (my — my)/2, which describes the
change in conductivity along the x-axis under a strain ez = —ey, and my,
which determines the component Ag,, for a strain e,, varying the angle
between the x- and y-axes.

The elastoresistance coefficients are dimensionless; they determine
the relative change in conductivity per unit strain, each for a specific type
of strain. They are more convenient for a theoretical interpretation of
piezoresistance effects.

In practice, however, one applies a stress to the crystal, and the relative
change in conductivity is measured per unit stress in a given direction.
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The relative change in conductivity, which is proportional to the stress,
is defined by a fourth-rank tensor g, 4 defined by a relation similar
to (34.1):

Agag

== = ) Tag, yoPyos (34.7)
o

where P, is the stress tensor. The tensor ngp, v, is called the piezo-
resistance tensor. It has dimensions cm®/dyne and possesses the same
symmetry properties as the tensor mgp, vy

Introducing the notation

Px,=Pp PV¥=P2' Pu=P3, Pyzﬂp"
Tex, xx = s 2“xy.1y=n6h etc.,

we write (34.7) as
Ag
==Y P, (34.8)
I

The piezoresistance matrix =y is analogous to the matrix m, and has the
form (34.5) for cubic crystals.

The coefficients (7 4 2m12)/3 describe the change in conductivity under an
isotropic pressure, while (m; —=n12)/2 and ny describe the change in con-
ductivity under shear stresses.

The stress tensor P,y may be expressed in terms of the strain tensor
by means of the tensor of elastic moduli C,g y,, which is the inverse of the
tensor S, 4, We may write this relation in matrix form as

P=Ce, (34.9)
where Cj;—Cg,ys, i=(af) and j=(y0).

The matrix C, which is analogous to the matrix m or a, depends on three
constants: Cn=ng, XXy C]2=Cx:. vin Cﬂzclﬂ» v

Equation (34.9) implies a relation between the matrices m and a:

m=nC, (34.10)

so that the elastoresistance and piezoresistance coefficients for cubic
crystals satisfy the following relations:

2 2,
mut e  Ent B (C, 4 2C0),

My, — m My — N
“2 L= “.2 I:'(Cn_cm),

My =14Cyy

(34.11)

These relations enable us to determine the elastoresistance coefficients
from experimental values of the piezoresistance coefficients.

A phenomenological description of piezoresistance effects makes it pos-
sible to derive the form of the elastoresistance matrix from symmetry
considerations, and also to find the relative orientation of the electric field,
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current and stress necessary for experimental determination of the elasto-
resistance tensor.

Volume piezoresistance effects

The electric conductivity tensor o, of a crystal is the sum of the
electric conductivity ¢, of the carriers near each extremum:

u¢n=2“,u;ﬂ. (34.12)

If the band is degenerate at the extremum point k, and the energy spectrum
has several branches, each corresponding to a particular species of current
carrier, the conductivity (34.12) is the sum of conductivities of the different
species of carriers. But if there are electrons and holes in the semicon-
ductor, its conductivity is composed of the electron and hole conductivities.

In the general case, the conductivity tensor of, for carriers of species i,
in the case of nondegenerate statistics, may be written

oty =1 [ Fsetgoto ok, (34.13)

~E)/rT

where f, is the equilibrium distribution function f,—=e( , L the chemical

potential, v} the group velocity of the current carriers:

| OE
Ya =7 e, *

and 1}, the relaxation time, which generally depends on k as well as on the
direction of the current and the electric field. The relaxation time is
determined both by scattering of current carriers due to phonons and im-
purities within the band i and by transitions between different branches of
the spectrum.

Upon application of a strain, the energy spectrum E,; changes, inducing
changes in the distribution function f, at the given point of k-space, and in
the group velocity; the relaxation time i also changes.

As shown in §§29 and 30, the nature of the change in the energy
spectrum is essentially bound up with the band structure in the unstrained
crystal.

In the case ofanondegenerateband, the strain displaces the extremum
by a quantity AE, proportional to the strain, and changes the effective masses
of the ellipsoid. The correction to the energy due to the change in the
effective masses, AE ~ De%, is significantly less than AE; ~ De; as a
first approximation, then, we shall disregard the strain-induced change in
effective mass. In this approximation the group velocity for a nondegenerate
band does not change.

As shown in §30, the change in the spectrum in a degenerate band, in-
duced by a strain which removes the degeneracy, is more complicated:
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there is a sharp change near the point of degeneracy, where the carrier
kinetic energy, measured from the extremum point, is comparable with or
less than the strain-induced band splitting, while in regions of k-space
sufficiently remote from the extremum point the energy correction AE;is
proportional to the strain but depends on the direction of the vector &.

If the strain does not alter the crystal symmetry, each extremum is
shifted by the same amount AE.. The degeneracy is not removed and the
current carrier relaxation time t; does not change.

In an impurity semiconductor, in the exhaustion region, the current
carrier concentration remains the same when a strain is applied, and all
the volume piezoresistance coefficients are small.

The volume piezoresistance coefficients in impurity semiconductors may
be large when there are several species of current carriers with the same
sign, i. e., in semiconductors which have close-lying inequivalent extrema.
In this case an isotropic strain induces a redistribution of the current
carriers among the extrema and consequently a change in conductivity.

The volume piezoresistance coefficients may be large in the region of
intrinsic conductivity, where conduction is due to electrons and holes. The
conductivity tensor in this case is:

aﬂﬂzenpgn-{—eppgs. (34.14)

where n, p are the total concentrations of electrons and holes and g, p},
their mobilities, averaged over all extrema. The electron and hole con-
centrations satisfy the neutrality condition By

p—n=N,—N,=N, (34.15)

where N, and N4gare the concentrations of the acceptors and donors, which
are assumed to be completely ionized. In a nondegenerate semiconductor,

pn=ng=N_N,e Ba/*", (34.16)

where n, is the intrinsic carrier concentration (that of an undoped semi-
conductor at the given temperature), N.and N,the effective density of states
in the conduction and valence bands, and E, the band gap.

The concentrations p and n are easily found from (34.15) and (34.16):%

N+ VN +4n] VN 44ni—N N
p=—"—= z

N (34.17
=?(R+1)n n= 2 = )

where
R=VT+ N>

Under a strain which preserves the crystal symmetry, the bottom of the
conduction band is shifted by AE. and that of the valence band by AE,. As a
result, the band gap changes, by AEg=AE. — AE,, and hence, by (34.16), so
does the intrinsic concentration n,. According to (34.15) and (34.16), if we

* To fix ideas, we assume that Ng—Ng =N > 0.
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disregard the change of the effective masses, i. e., assume that AN.=AN,=0,
then

AE, n, AE ng
Ap=bn=— gt o =— Wk (34.18)

Since the mobilities pg; and pfy are invariant under strain, the relative
variation Ag.p/d is

Aogg  AE; RP—1 pag + 1ig

5 W R R=DMFRFDW’ (34.19)

where d=enp" + epji’ is the average conductivity of the unstrained crystal,
fl.":-%-Trp“ and p.’:--;-Trp"’ are the average electron and hole mobilities.

For cubic crystals, where pj=p",, and jif,=p"3,, equation (34.19) yields:

my+2my  Eg RP—1 145
T3 T T I R R—-I+(R+Db’ (34.20)

where b = p»/up, and E|4is the deformation potential constant, which defines
the change in the band gap E, under an isotropic strain: AE;=E;Tre.
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FIGURE 40. Temperature dependence

of the volume piezoresistance coef-
ficient in InSb /33.,2/. The concentration
Ng— Ng4 insamples A, B, C is 3-10',
6.3+10%, 6.6°10' cm 3, respectively.

At low temperatures, when ny € N, i. e., in the region of impurity con-
ductivity, we have R = 1. and the volume coefficients are small, in agreement
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with the above result. With increasing temperature, n; increases exponen-
tially and the piezoresistance effect becomes stronger. At high tempera-

tures, when R>> 1, Ac.p/5 is the order of AE, /24T and decreases like I/T with
further increase in temperature.

The volume coefficient reaches a maximum at a temperature T, near
which the intrinsic concentration n, and impurity concentration N become
equal. At this maximum, the value of (my 4 2m;;)/3 is of the order of E;,/2kT,.
Since Ejz is of the order of 5 to 10 ev, the value of (my + 2my3)/3 at the maxi-
mum may reach a few hundred in adequately pure specimens.

Thus, volume effects may be large in the intrinsic conductivity region
for semiconductors with a narrow band gap.

Figure 40 illustrates the temperature dependence of the volume coef-
ficient in InSb / 33.2/ . It is clear that the temperature and concentration
t(iependence of the volume coefficient is described satisfactorily by equation

34.20).

Shear piezoresistance coefficients in many-
valley semiconductors

In this case, each extremum is shifted by a quantity AE;, which differs
for different extrema, removing the many-valley degeneracy of the
spectrum. Since AE;is independent of & when the change in effective mass
is ignored, there is no change in group velocity.

Electrons may be scattered in a many-valley semiconductor because of
either transitions within one ellipsoid or transitions between different
extrema. Intravalley scattering is not affected by strain, but intervalley
scattering may change. Under normal conditions, however, intervalley
scattering makes only a small contribution to the relaxation time of the
conduction electrons, which determines the conductivity, and we shall there-
fore neglect it, assuming that the relaxation time of the electrons (and
hence also their mobility) remains unchanged under a strain.*

The mobility tensor is diagonal relative to the principal axes of the
ellipsoid:

by = uaéﬂ!

where p, are the principal values of the mobility tensor, which are the
same for all ellipsoids.
The carrier conductivity of, in the i-th ellipsoid, relative to the crystal
axes, is
olg=enply, n =Net—EprT, (34,21)

where n, is the carrier concentration in one ellipsoid (the same for all
ellipsoids in the unstrained crystal) and pf, the carrier mobility tensor of

* The contribution to piezoresistance effects from strain-induced changes in intervalley scattering has been
discussed in /32.2/.
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the i-th ellipsoid relative to the crystal axes. Equations (34.12) and (34.21)
give the strain-induced change in conductivity:

Aoy, = Y, B0ty =e ¥ Anply = — FL V) (AE, — AL) .
i I i
Since the concentration is assumed constant, we have
1
An=— 7L IE(M:', —AM)=0; A=~ lEms, =AE,,

where N, is the number of extrema. Thus the relative change in con-
ductivity is

Adgg 1 1 AE; Rap
i =“?(W72T“33_AE=T . (34.22)

_ 1 . : .
where i=3Trpl,; is the average current carrier mobility near one of the
ellipsoids, which is the same for all the ellipsoids and thus coincides with

the average mobility in the crystal, and unasﬁrzuia is the mobility tensor

i
in the unstrained crystal. In a nondegenerate band,
AE;= 3 Disews, (34.23)
¥

where ey, are the components of the strain tensor referred to the crystal
axes, and Dy, is the tensor of deformation potential constants of the i-th
ellipsoid in the same reference system. Substituting (34.23) into (34.22),
we obtain an expression for the tensor mgg, y,:

1 1 p D‘w [ 1
'"ua-w=—v(m‘2 = 2 D) (34.24)
i

i

This expression for mgug, v, in terms of the mobility components and
deformation potential constants relative to the crystal axes, is sometimes
conveniently rewritten in terms of the principal values of the mobilities
us (s=1,2,3) and of the deformation potential constants D, (t=1, 2, 3) re-
lative to the principal axes of each ellipsoid, x{ (t= 1, 2, 3), since these
values are the same for all the ellipsoids. Since

g = :?4 1, cos (X, X!)cos(x,, xi),

(34,25)
Diy= ,2 D, cos (xy, x{)cos (¥ x7),
it follows from (34.24) that
I'D 5 £ ]
Mag, o =— 57 X Tt (Rabvs — RasRYo), (34.26)
st

where
Rﬁfg, o= NL. E cos (xa, x:) cos (xﬂ. xi) cos ("v' x,‘) cos (xa- xf),
1

Rap= -1,1-.- 2 cos (x,, x!)cos(xg, xi). (34.27)
i
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Since R, y» and Rl are symmetric with respect to permutation of the
inner pair of indices, it follows that mg, s (34.26) also possesses the re-
quired symmetry (34.2) with respect to index permutation.

The quantities R, ysand Ris satisfy the relations

};;Rﬁs.w=R;abvo. ;Riﬁ,w=ﬁwk§a. §R$s=a,¢. (34.28)

Equation (34.26) expresses the elastoresistance tensor components in
terms of the principal values of the mobility tensors and the deformation
potential constants at one of the extrema, and in terms of the positions of
the extrema in k-space. It may be simplified if the energy ellipsoids are
ellipsoids of revolution.

Indeed, if we assume that the axis of revolution of the ellipsoid is the
x-axis, then p,=p,, pp=ps=p1, Dy=Dy, D;=Dy=D,; using (34.28), we obtain

—p D, —D
Mg, yo = — b (2224 ) (R, 8 — RigRbo). (34.29)

As follows from equation (34.29), the shear elastoresistance coefficients
are proportional to the anisotropy (u,—u,)i of the carrier mobility at each
extremum and to the deformation potential constant E&,=D,— D,, which de-
termines the relative shift of the extrema under a shear strain. For the
case of a cubic crystal with extrema on the [100] and [111] axes, equation
(34.29) yields

myy — M 1 1—K B
U — 9k 5 Mu=0 for extrema on [100], (3.30)
my —m 1 1—-K B .

1 - 120, my,= T TR T:% for extrema on [111],

where K=up,/u, is the anisotropy of the current carrier mobility at each
extremum.

Thus, the magnitude of the shear effects is essentially determined by the
positions of the extrema in k-space.

The source of these effects is that, under a strain which destroys the
equivalence of the extrema, some of the electrons transfer from one ex-
tremum to another (with conservation of total concentration), and the re-
sultant mobility in the strained crystal becomes anisotropic.

From the standpoint of group theory, determination of the extrema whose
equivalence is destroyed by a strain involves decomposition of an irreduc-
ible star (&} in the group F into irreducible stars {&} in the group F’into
which the strain transforms the group F.

The piezoresistance effects associated with carrier transfer have a
characteristic temperature dependence, which is determined primarily by
a Boltzmann factor and also by the temperature dependence of the mobility
anisotropy (p, —u,)i. The magnitude of the piezoresistance effect is of
the order of E./kT, where E, is the deformation potential constant, usually
about 1-10ev. Therefore, at relatively low temperatures the shear piezo-
resistance effects associated with carriertransfer may have values of 10%-10%.
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FIGURE 41. Temperature dependence of piezoresistance in
n-Ge strained along [110] /32.2/.

Figure 41 illustrates the relative change in resistivity for n-Ge strained
along [100]; it is evident that the coefficient m,, in n-Ge increases pro-
portionally to I/T over a wide temperature range and is practically inde-
pendent of the carrier concentration. The small deviation from linearity
at high temperatures is due to the contribution of intervalley scattering.

Piezoresistance effects in semiconductors with
degenerate bands

Large piezoresistance effects also arise in the case of degenerate bands,
for strains which remove the degeneracy.

Let us consider a degenerate band having s branches E;(k) (i=1, 2, ..., s).
If the temperature is sufficiently high most of the current carriers will be
in a region quite remote from the degeneracy point, where the energy
corrections are linear functions of the strain. In this case the conductivity
change is also proportional to the strain.

In the case of a degenerate band, the conductivity o}y of each species of
carrier is affected by the change in the distribution function f,, the variation
of the group velocity Ao;=%g—2- ,and also the change in the relaxationtime tf.

As remarked in §32, scattering theory of current carriers in a
degenerate band is more complicated than in the case of a nondegenerate
band, since scattering may involve transitions both within and between dif-
ferent spectrum branches, and the transition probabilities are fairly
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complicated functions of the scattering angle. It is even more difficult to
determine the change Ar in the relaxation time, since the strain causes
to change not only via the difference in the carrier energy spectrum from
the initial to the final states, but also owing to the change in the scattering
matrix element due to the effect of strain on the wave functions.

If the transition probabilities are isotropic, it can be shown that the
relaxation time is also isotropic, depending only on the energy:

m‘=—‘;'g—'ae,. (34.31)

In the case of anisotropic scattering, equality (34.31) is strictly speaking
not valid, but we can reasonably assume that it accounts for the major part
of the strain-induced change in the relaxation time, and we shall use it to
calculate the piezoresistance effect in a degenerate band.

In calculating the shear piezoresistance coefficients, we shall assume
that only the shear components of the strain tensor are nonzero, while the
components &£; which transform according to the identity representation
and determine the shift of the band as a whole vanish.

We claim in this case

Y AE(k, ©)=0 and [ AE,(k, &) dQu =0, (34.32)
i

where dQ, is the solid angle element in k-space.

Indeed, since E;(k, e) is a solution of the equation |# (k) + # (e) — IE(k, &) |=0
where 76 (k) and 6 (e) are the matrices determining the spectrum in the
unstrained crystal and the strain-induced splitting of the bottom of the
band, it follows that

2{15; (k, &) =Tr (k) +Tr (e).
Expanding E,(k, ) in series in e, we obtain
2‘.55, (k, &)= Tr Z (e) =0.
The second equality in (34.32) follows from the fact that IAE,(& e)dQs is an
invariant combination of the strain tensor components, and is thus pro-

portional to those of the components which we have assumed to be zero.
It follows from (34.32) that

O e 1

In an impurity semiconductor, in the exhaustion region An=0,and so A{=0.
Using (34.13) and (34,31), we obtain the correction Acly to the conductivity
tensor of the carriers in the i-th band:

oty =5 { [ ot () ot B, db+ 3 [ e (0 of +- 2858 ot) i }
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g
Integrating by parts, we find
e? a 2 NE (34.33)
M:'B= - %F [ J‘E(fu'(l) U;Ua &E‘ dk + o J‘fott Okq dLﬂﬁE‘ dk}‘
Transforming from the variables &,, k,, &, to the energy E; and angles

. E;

0, 9, we write E, v, and e 3ty *
21 hk 2E;)'?
Ei=—tte o= AL, =S50 AL, o).
2m; (6, ) my my (34.34)
9*E; L

i
kg oy (6, 9) Bas (6, 9)-

In the quadratic k approximation, m*, A, and B, depend only on the angles
0 and ¢. It follows from (34.34) that

! 12 (2-'“:)m
dk=-2-dE: E{"dQ, B

and we can integrate separately in (34.33) over the energy E; and over the
angles @ and g@:

»
Aoty——o 2 J'fo-;‘E}!‘-‘dEt J' d9, (3 ALALAE, — BL,AE,).
0

(34.35)
For M;,/&, we obtain
i =
L9 _ g (%) 3 (34.36)
5 Z(t‘é“) [
where
_l-fo"ss}'&dfl
(="
I!oE""dE
1]

is the Maxwellian average of 1, and §; the average carrier conductivity in
the i-th band:

.2 & (vE)
S=FE " m,

‘ (34.37)
1 I a9, (AL + A4 + A7) my'" (34.38)
y Im;wm, ! )

* In (34.34) the effective mass m*(0, @) is assumed to be positive for both electrons and holes. This means

thdt for the valence band, E; and AE; in (34.33)—(34.35) denote the hole energy, which is opposite in sign
to the energy of electrons in the valence band.
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3 is the average conductivity of the crystal, 6= X 6,. The quantities ]‘f,n
i

are proportional to the deformation potential constants:

A2
_ 3 I dQ, AEmy (s A;‘\E_B;ﬁ) (34.39)

I dQ, (A%, + A + Az mi'

Te

(1)
The value of )

depends on the function t(E). If t(E)~E", then

As in many-valley semiconductors, the shear coefficients in a degenerate
band are of the order of D/kT, where D denotes the deformation potential
constants.

The temperature dependence of piezoresistance effects in a degenerate
band is more complicated. It depends on the Boltzmann factor D/&T, on the
temperature variation of the conduction mechanisms which determine the
average (i,:;?) , and on the temperature variation of the contribution of dif-
ferent species of carriers to the conductivity a,/a.

For subsequent calculations of the elastoresistance coefficients mgg ,,
we shall need the coefficients I'g; these may be determined only in each
specific case, since by (34.29) the coefficients depend on the shape of the
spectrum in the unstrained crystal and on the form of AE;.

We can nevertheless state that in the degenerate model the piezoresist-
ance coefficients will be large for shear strains which remove the band
degeneracy at an extremum point, since only for such shear strains does
AE; fail to vanish.

The previous discussion of piezoresistance effects in many-valley and
degenerate semiconductors implies that the shear elastoresistance coef-
ficients will be large for strains which completely or partially lift the
degeneracy of the band structure. From the group-theoretic standpoint,
these are strains which reduce the crystal symmetry to the degree that the
representation @ of the space group for the unstrained crystal correspond-
ing to the star (k) of the extremum positions becomes reducible in the
symmetry group of the strained crystal.

Let us consider piezoresistance effects in a degenerate Ty band of the
type of the valence band in p-Ge and p-Si.

The integrals in (34.39) cannot be calculated explicitly for the TIg band,
and computers must be used. The calculations can be done if the surfaces
of constant energy E, :(k) of the heavy and light holes (24.13a) are approxi-
mated by suitable average spheres:

Em(k)=%, where 2:’. =] A= B, §=]/ 32+55-’—. (34.40)
1.2
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In this approximation A,= kgk, BY" = dep/miz2, and from (34.35) and (30.34)
for AE,,(k) we obtain the shear piezoresistance coefficients for the Iy band:

My — Mz __ _iﬁ[ (&) G __ _ 0O (&)
2 20 B L(vE) oi+ 02 01 +0p (Era) )’ (34.41)
m =_i£ {m1) O O (T3}
“ 20 B [(Ev) oi+02 o1+ 0z (Ep) )

The indices 1 and 2 in (34.41) designate heavy and light holes respectively.
It follows from equation (34.41) that neither of the shear components
(my — my3)/2 and m,, of the piezoresistance vanishes in the band I';. Data on
piezoresistance effects enable one to determine only the sign of the pro-
ducts Bb and Dd, but not the deformation potential constants & and d

themselves.
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FIGURE 42, Temperature dependence of piezoresistance
in p-Ge /32.2/.

Figure 42 illustrates the change in resistivity in p-Ge induced by strains
along the [100] and [111] axes. One sees from the figure that although the
piezoresistance coefficient increases sharply with decreasing temperature,
nevertheless, as opposed to n-Ge and n-5i, the temperature dependence is
markedly different from 1/T. The value of n;, depends essentially on the
carrier concentration.

Figure 43 shows a similar, even more marked dependence in p-Si: the
coefficient m,, — m; changes sign with decreasing temperature and passes
through a minimum. With increasing concentration, the position of the point
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at which m;; —m;=0 is displaced toward higher temperatures. Underlying
this behavior is the change in the relative contribution of the light and heavy
holes, as well as the complicated temperature dependence of —((g—}when
there are several scattering mechanisms. The nonspherical nature of the
band, which increases the contribution of the light holes to m;; — m, and de-
creases it in my, is a decisive factor in p-Si.
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FIGURE 43, Temperature dependence of piezoresistance coefficients in p-5i for samples
with different impurity concentrations /32,6/. The curves are numbered in order of
increasing concentration.

Since light holes are more strongly scattered than heavy holes by im-
purities, the contribution of the former to the electrical conductivity in-
creases with increasing temperature and decreasing impurity concentration;
this is the reason for the change of sign in the coefficient my;; — m,y with in-
creasing temperature /32.6/. At even higher temperatures, the relatively
large change in effective mass determined by equation (24.21) assumes a
significant role and, as we show below, leads to temperature-independent
strain-induced effects.

We have assumed hitherto that the electron (or hole) gas is not degener-
ate. Expressions for the piezoresistance coefficients allowing for Fermi
degeneracy are readily obtained.

Allowance for Fermi degeneracy

In case of Fermi degeneracy, the current carrier conductivity for each
ellipsoid or for each species of carrier in a degenerate band is

g
0op=— & [ 22 00,0, dk, (34.42)
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where f; is the Fermi equilibrium distribution function,
1
fo=‘w. (34.43)

and { is the chemical potential.

Expression (34.13) differs from (34.42) in that 8f./0E is replaced by fo/kT.
Duplicating the derivation of equation (34.26), we easily verify that in the
case of an arbitrary electron degeneracy all the previous equations for
piezoresistance effects in many-valley semiconductors remain valid,
provided we replace p/i by the product (m/f)4, in equations (34.24)— (34.30),
where u,/ji is the ratio of mobilities in the degenerate case:

B J.gg ov, dk

(34.44)
I o 2"5'0
and
nr! g“ vt dk
Ay = (34.45)
!—’E ,u’;d.t
If 7,(E)=13E", then
tr_[%a‘*’ﬂa
e

J%E-B“'”JB

Integrating by parts and assuming that n >—3/2 (this assumption is valid in
semiconductors for the known scattering mechanisms), we obtain

1 . o —
Treonasd 1 =T (34.46)

Foi1pp(8°) . _
Froin @ if a>-—1/2

Here {*={/kT is the reduced chemical potential, and

1 x" dk
*) = T 34.47

In the case of nondegenerate statistics, when e~t*» 1, we have F,({")=et
and A=1 regardless of the nature of the energy dependence of the relaxation
time. In the case of strong degeneracy, when &' » |, the elastoresistance
coefficients are of the order of D/f, where D is the shear deformation
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potential constant and { the value of the chemical potential. Thus, for a
degenerate electron gas the magnitude of the piezoresistance effects de-
creases and they become less dependent on temperature.

Repeating the appropriate derivations for degenerate bands, we easily

verify that Agg,/é is given by an equation similar to (34.36), with %%) re-
placed by

ﬁ E‘ndf ___I_—l._,_ = —
3E * kT (l+e"'}ln(l+e‘.) ! " 1z, (3448)

eo_,,_,__‘e

) - _] 1 Fu—'l.ﬂ(;-) > 1
I%%fﬁ“”dz AT n+3/2 Fop1n(®) "’ n>—12
0

provided =~ E",
As in the case of many-valley semiconductors, for strong degeneracy,
the elastoresistance coefficients in a degenerate band are of the order of Df§
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FIGURE 44. Temperature dependence of piezo-
resistance in heavily doped n-Ge /32.10/.

The decrease in the piezoresistance coefficient and the weakening of the
temperature dependence with increasing degeneracy are quite noticeable
in Figure 44, which shows the temperature dependence of n for samples with
different concentrations. Since the value of [ at a given concentration de-
pends on the density of states, i. e., on the number of equivalent extrema N,
the variation of ny with concentration, as is evident from Figure 45, must
be different for the point L, where N = 4, and for the point A, where N= 8.
The agreement of the experimental data with the calculated curve for
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N = 4 served as proof that the extrema in n-Ge are located on the edge of
the Brillouin zone.
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FIGURE 45, Piezoresistance vs. carrier concentration in
heavily doped n-Ge /32.10/.

Nonlinear effects

The expressions we have derived for the shear piezoresistance coef-
ficients, according to which the conductivity varies linearly in the strain,
are valid provided E.e/kT < | or S.eft € 1 (when{ > £T). If the strain is
sufficiently large and these conditions are not fulfilled, nonlinear effects
become significant. In the many-valley model, the nonlinear effects are
simple in nature. When the energy gap between different ellipsoids be-
comes comparable with &7, the linear approximation An; = n;(A{ — AE;)/kT
underlying the linear theory of piezoresistance effects in many-valley
semiconductors is no longer vAlid for change in carrier concentration in
each of the valleys.

For a strain of arbitrary magnitude, it follows from (34.21) that for
Boltzmann statistics the conductivity o.p(e) of the strained crystal is

‘ -
0(e)=e Z{ Bogh; (2) = ee® T 5‘_,' p.;ﬂg AE /AT

The chemical potential f(e) in the strained crystal is determined from the
condition that the total electron concentration be constant:
2' ny {B) =Nﬂ0,
whence
ek (kT —

1
‘|_ —AE”’M' ’
N 2{ €

and so

0oy (8) = ~~v—=agar 2% s (34.49)
> L
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where ogla=enp.;ﬁ is the carrier conductivity of the i-th ellipsoid.
It follows from (34.49) that the average conductivity of the strained

crystal, 6(s)=%Tra(s), is independent of the strain and equal to the con-

ductivity of the unstrained crystal, &(0)=—:13-Tro{0).

Let us consider the strain dependence of the conductivity in cubic semi-
conductors with extrema on the fourfold and threefold axes, i.e., semi-
conductors with band structure of the n-5i and n-Ge type.

For n-Si, strained along the z-axis,*

where e=Tre and e, =8,; — &y,.
In n-Ge, where there are four valleys at the point L, for a [111] strain

with e =e  =e, =¢,[3 and ¢, =¢e, —epy,

BE = (B4 + 5 B)e + 3 Bueiu,
DEy=AEy=AE,= (8, + 3 2.) e — 3 Buelu

(the index 1 refers to the extremum on the [111] axis).
For n-Si and n-Ge, equation (34.49) yields

3o n, —n, o, + 20,
-0 = g — AT, AR, (34.50)
where gy is the conductivity of the unstrained crystal, K the ratio of
mobilities, K=p lu; (m—ng)in is the relative variation of current carrier
concentration in the first and second ellipsoids, where n is the total current
carrier concentration:

_ TAERT
o4 ¢ BERT
—~AEIT _ |

n,—ny
n

AE=E,e}, (extrema at A),

(34.51)

=Ny €
n 34 ¢—BEIRT *

AE= %E‘,a,,, (extrema at L).

For small strains, when |AE/kT| 3 1, equations (34.50) and (34.51) imply
(34.30).

In the case of large strains, when one of the groups of ellipsoids is
completely "emptied," if AE/AT > 1, we have (n, — n,)/n=—1/2 for extrema at
A, and (n,— ny)/n=—1/3 for extrema at L. If AE/kT > |, (n, —ng)/n=1in both
cases, i. e., all electrons are located in the first ellipsoid. The limiting

* In n-5i there are six equivalent extrema at the point A, but since the valleys at &, and — kg are uniformly
shifted under a strain we may confine ourselves tothree extrema, on the k,, ky and k, axes, respectively.
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conductivities in the case of large strains are, respectively,

30,(1 — K) s AE
GI_UJ-=__2_(I+_2K) [If ‘-ﬁr)l),
o (1 — . E .
g, —0,= 30] E}-QKKJ (1f _i_r> I) (point A); (34.523)
_ _ m(l—=K) :p AE
o—o,=—2C58 (it GF>1),
30 (1 — K) . AE 34.52b
o, —o, =20l (it —4F>1) (point ). ( )
r— - — 7
Sample 11
7 o H410
1ok Sample 1 148
> 06
‘\ag..
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04
0 1 2 7 4 5 om0’
P, dyne/cm?®

FIGURE 46, Saturation of piezoresistance in n-Ge
under a large strain /32.9/.

Figure 46 plots resistivity in n-Ge for large strains at low temperatures.
The curves show very clearly that for large strains, when all the electrons
transfer to the lower of the split extrema, resistivity ceases to depend on
strain. By (34.52), the limiting value

Pofsat =(po/0y), , .,

is 3/(1 4+ 2K). Inn-Ge, m,[/m,= 20; when scattering is by lattice vibrations,
(%,ﬁ)._,,," 0.09 for t/v, =1.24. When scattering is due to ionized im-
purities, (P[P k»=0.3. According to Figure 46, the experimental value of
py/p, is 0.35-0.37, pointing to the predominant role of impgrlty scattering
under these conditions.

Effects which depend nonlinearly on the strain are more complicated in
the degenerate model, for then a large strain may also cause rearrangement
of the energy spectrum near the point of degeneracy.

Under strains for which the band splitting as given by (30.11) for the
Iy band exceeds the average current carrier energy, only carriers in the
lower split-band hole contribute to the conductivity. The constant energy
surfaces for the bulk of the carriers in this band will be ellipsoids. There-
fore, for large strains the conductivity depends not on the magnitude of the
strain but only on its direction and sign, being determined by the effective
masses of the ellipsoids (given by (30.18) for the Ty band) and the current
carrier scattering mechanism.
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FIGURE 47. Saturation of Hall mobility

in p-Ge for large [100] and [111] strains

/32.4/, T = 6,19°K.

Figure 47 shows the change in the mobilities p, and p, in p-Ge for dila-
tion along the [100] and [111] axes under large strains, at low temperatures.
According to these data, the value of K=(aj_{c'),-mis 0.62 and 0.33,
respectively, while according to (30.19) and (30.20) the ratio of the effective
masses m /m, for the lower hole band under these conditions, with 68 > 0and
Dd >0, should be 0.23 and 0.13, respectively. Consequently, the relaxation
time anisotropy 7/, is 0.4 in both cases, indicating the major role of
impurity scattering.

Let us briefly consider the contribution to the piezoresistance effect
due to strain-induced changes in effective mass.

According to the discussion in §29, in the case of a nondegenerate
band application of a strain affects the nonzero effective mass tensor
components and also gives rise to new components, equal to zero in the
unstrained crystal. In a degenerate band, strain will influence the constants
determining the band in the unstrained crystal (similar to the constants
A, B and D for the [y band) and will also lead to the appearance of new terms
of order ek?, not present in the unstrained crystal, in the matrix # (%, e).

As shown in §29, the relative change in effective masses and band con-

stants under strain is of the order of De/E, where D is the deformation
potential constant and E the separation to the nearest band contributing to

the relevant effective mass tensor component or band constant. Accordingly,
the contribution of the change in effective masses and band constants to
piezoresistance effects is of the order of D/E, i.e.,usually much less than
the shear piezoresistance coefficients, which are of the order of D/kT.
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The elastoresistance coefficients associated with the strain-induced
variation of effective masses are thus smaller and have a far weaker
temperature dependence, conditioned chiefly by the change of scattering
mechanisms. In the general case, the strain-induced change in effective
masses contributes to all components m;; of the elastoresistance tensor
which differ from zero owing to specific symmetry considerations. In
particular, they contribute to the valume elastoresistance coefficients.

Thus, in the general case, the piezoresistance coefficients associated
with the strain-induced change in effective masses are not affected by
specific features of the band structure.

However, if the semiconductor has close-lying bands, as in the case of
semiconductors with a narrow bandgap in which the extrema lie at one
point of the Brillouin zone (e. g., InSb), or if there are close-lying bands
split by spin-orbit coupling (e. g., p-Si or crystals of the PbSe, PbTe types
/34.8/), the piezoresistance constants associated with changes in effective
mass may be quite large, reaching values of 10-20.

Even then, though, not all the elastoresistance coefficients will be large,
but only those associated with the interaction of the close-lying bands. In
certain cases, therefore, experimental data on piezoresistance effects due
to changes in effective mass will yield information on the symmetry of
close-lying bands /34.6/.

In conclusion, we note that corrections of the same order must be made
to the large piezoresistance coefficients as well if the nonparabolic nature
of the band is taken into account. Indeed, for nondegenerate statistics, the
change in effective mass with energy due to the nonparabolic nature of the
band is of the order of

dm*(E) kT
am s B
m* E

implying corrections to large piezoresistance effects of the order of

5lo
nﬁl:
l
| o

Therefore, when such corrections to large piezoresistance effects are in-
cluded, we must take into account both strain-induced changes in effective
masses (or in band parameters) and the nonparabolic nature of the band.

In several papers, study of piezoresistance effects is accompanied by
theoretical and experimental investigations of the influence of uniaxial
strain on other kinetic effects: Hall effect /32.3/, magnetoresistance /32.3,
36.1/, thermal emf /36.2, 36.3/, thermomagnetic effects /36.5, 36.6, 36.7/.
These tensor effects are similar in nature to piezoresistance and are
associated with carrier transfer (many-valley model) or with changes in the
spectrum (degenerate model),

The change in all these kinetic coefficients under a strain is of the same
order De/kT (or Dejf for a degenerate semiconductor) as the strain-induced
change in conductivity.
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§ 35. ABSORPTION AND REFLECTION OF LIGHT
BY FREE CARRIERS IN STRAINED CRYSTALS

One of the effective methods of investigating semiconductors is to study
their optical properties. The optical properties of a crystal are fully
determined by its complex conductivity ¢. The real part of ¢ is related to
the light absorption coefficient «.

In cubic crystals

cm—‘%, (35.1)

where ¢ is the velocity of light and a the refractive index. The imaginary
part of ¢ determines the contribution x* of the current carriers to the
dielectric constant:

xty = — 2 Im Gp (@). (35.2)

ik

The dielectric constant #(w) determines the refractive index n. If the
tensor x is anisotropic, n depends on the direction of light propagation;
this produces the phenomonen of birefringence.

In the transparency region of the crystal, this effect makes it possible
to measure the very small anisotropy of the dielectric constant: we can
detect an anisotropy Ax ~ Aa, where A is the wavelength of the light.

In cubic crystals, the tensor is isotropic: xy=2x0dy;. Application of a
strain gives rise to an anisotropic increment Axy, which can be detected
by the appearance of birefringence.

In the linear strain approximation the change in %,p is determined by a
fourth-rank tensor #,p, y,, similar to the tensor m describing the strain-
induced change in static conductivity (see (34.1) and (34.2)):

m,=§3’,,,wsw (35.3)

It follows from the kinetic equation that
- &2 0,'0 T d 3
Bap(0) = — € | S5 Valy Ty k- (35.4)

If or € 1, equation (35.4) reduces to (34.42), which determines the static
conductivity g,s. In the optical range wr> 1, the conductivity in a nonde-
generate semiconductor is

& fo?a®,
0% =rar | % g, (35.5)

and it follows from (35,2) and (35.4) that the contribution x4 of thefree
carriers to the dielectric constant is

4ne?
M&:——;—O*T Ifﬂunupdk' (35.5)
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Equation (35.5) is valid at relatively low frequencies o, less than kT/8. When
ko > kT, a quantum-mechanical calculation of the absorption coefficient « is
necessary; the calculation should take into account processes of absorption,
spontaneous and induced photon emission, and scattering by phonons at
impurities.

For nondegenerate bands, equation (35.6) for the dielectric constant %ap
is valid provided Bo/Eg €« 1. If Bo is comparable with the band gap E, at the
extremum point ky, we must allow for the contribution of interband virtual
transitions; this necessitates quantum-mechanical corrections to %, of
the order of (ha/E;)? * For degenerate bands, if #e > kT, virtual transitions
between the branches of the spectrum become significant, and so we must
take into account the interband components of the velocity operator. Thus,
equation (35.6), like (35.5), is valid for degenerate bands provided to € kT.

Equations (35.5) and (35.6) show that the conductivity o depends on the
shape of the energy spectrum and the nature of the current carrier relaxa-
tion, but the electronic contribution x* to the dielectric constant is deter-
mined only by their spectrum.

As in §34, we examine the strain-induced changes in ¢ and x»* for our
two models — the many-valley and degenerate models.

Many-valley model

In a many-valley semiconductor, the tensors ¢~ and »° are the sums of
the respective tensors over all the extrema. The main effect conditioning
the changes in ¢® and »* under a strain is carrier transfer between different
extrema. As mentioned in §34, the strain-induced changes in group
velocity and relaxation time associated with the change in effective masses
and intervalley scattering, cause extremely small changes in ¢® and %*under
normal conditions, and we shall disregard them.

By (35.5) and (35.6), the components of ¢* and »* for each ellipsoid,
referred to the principal axes of the ellipsoid, are defined by

o =enuy,
‘M’ﬂ] (35'7 )

wim,; *

n=-

where n,; is the electron concentration in each ellipsoid, p®and m, the
principal values of the mobility for et | and the effective mass. If we

* Thus, in the case of the simple two-band model /39.10/, when Ao < Eg

*qu™ l_-{ﬁhff'

where % is defined by (35.7).
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include only carrier-transfer effects, we have formulas similar to (34.24)
and (34.26) for the tensor components mg ,, and P '

1 “:Dt ot s nt
mo o= — — ¥ —a(R ¥ — RunRya).
ww R Zg e (35.8)

4me? D, T
Papovo= Wi 2t " (Rt o = REaRSa),
st
where
1 1 1 1 1
7= 3 (ot )

n=n,N, is the total current carrier concentration, R,y and Ri are coef-
ficients which depend on the positions of the extrema in k-space, defined
by (34.27).

If the constant energy surfaces near each extremum are ellipsoids of
revolution, equations (35.8) reduce to a form similar to (34.29):

1—K= g,
Mg =3 Tox= T (Rew. v — RusRi),
Kko=PL (35.9)
b

dne’n my —m, E
P =g L 2 (Rl — RigRb).

For n-Si, in which the extrema are on the [100] axes,
m3—m 1 1—K™ B, .0
2 =Z2T+2K= *T* my="0

P, =%, 2 ne’nmy—m, B
— =3 e —_lm.l.ml hk-;"’ Pu=0.

(35.10)

For n-Ge, in which the conduction band minima are on the [111] axes,

w1 1—K% B, m‘l',’—m"l,
Ma=73 T¥2K= T’ 7 =0

4 ne’n my—my B, 9”-—'!! (35.11)
?“——9— o? (mlm')W’ 2 =0.

Since m, m™ and & are determined by different combinations of mj and 1,
simultaneous measurement of these quantities makes it possible to deter-
mine the ratios of effective masses and relaxation times separately. Thus
the magnitude of the components of the tensor m depends on the anisotropy
of the low frequency mobility K=p,/p,, which in the case that 7 is a tensor
is equal to mg,/m,v,. The components of m= involve the ratio K®=pT[u =
=mgq,[m,T, while the magnitude of the components of the tensor
& depends only on the effective mass anisotropy. Note that in the many-
valley model the phenomenological equations (35.8)—(35.11) are valid



§35. ABSORPTION AND REFLECTION OF LIGHT (FREE CARRIERS) 395

whatever the relationship of #e and kT, but when #w > kT the classical formula
for K=is no longer valid.

Degenerate model

For a degenerate band, the components of the tensors m*”and §° are
calculated in the same way as the components of the tensor m in §34.
If we assume, as in §34, that the relaxation time depends only on the
energy and its behavior under strain is described by (34.31), then Acr;;/&“ is
given by a formula similar to (34.36):

Ao, Ity &
SRl S (35.12)
i

where Tl is defined by (34.39), &~ is the average mobility of a carrier of
the i-th species, and 6°'=$ 2. The change Axg in the dielectric constant,

which depends only on the behavior of the spectrum, is given by

8ne?

B i
Ay = — somr - ,;,_‘rnﬂv (35.13)

where

L [T w8k + A+ A) a0, (3510
g [ mt" 0,91 40, ' ’

A, and m;(8, ¢) are defined by (34.34).

For the Ty band in cubic crystals, in the spherical approximation (34.40),
the components of the tensors m™and & are given by a formula similar to
(34.41):

mi—m 9 Bb[ () op AT ]

T2 2 B L(&r) (o7 +05)  (Em)(eT+or) )’
mun_ii[(lh.) of  _ (my  ef ] (35.15)
“ 0 B L(Em) (6T +0F)  (Ery) (o7 +07) )’ '

P —-P 6 men mjlt — \? B
2 5§ o m®+4+m)® BT’

2 ne’n ml"’— 12 pd (
—l2menm —m Dd 35.16
Pu 5 o mP+m? BAT )

The indices 1 and 2 in these formulas refer to heavy and light holes,
respectively.

Expressions (35.8)— (35.16), which determine the strain-induced change
in the real and imaginary parts of the dielectric constant, have been derived
for a nondegenerate electron gas. If Fermi degeneracy is taken into
account, as is the case for piezoresistance effects, additional factors must
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be introduced. These factors are given by equations (34.46) and (34.48) for
the many-valley and degenerate models, respectively. In this context, when
high-frequency conductivity is being considered n must be replaced by —n
in (34.46) and (34.48), since the expression for high-frequency conductivity
involves r!. For the imaginary part of the dielectric constant, »n must be
set equal to zero.

Nonlinear effects

The equations we have derived for the change in the real and imaginary
parts of the high-frequency conductivity, like the expressions (34.24) and
(34.36) for the piezoresistance constants, are valid provided Bye/kT € 1 (or
B.e <l ). For sufficiently large strains, when these conditions are no longer
fulfilled, the strain-dependence of ¢* and »* becomes nonlinear. In the
many-valley model, expressions for ¢ and »* may be obtained for any value
of B.e/kT, using an equation similar to (34.49).

Thus, for n-Si and n-Ge, ¢®(e) and »‘(e) are given by equations (34.50) with
o, and K replaced by o5 and K™ for ¢, by —4ne'n/o’m and m/m, for =¢. If the
extrema lie on the [100] and [111] axes, we thus obtain for =*:

ey m— (L) EEa) (00

ml my n

where (7, —ny)/n is given by (34.51).
In the limiting case of large strains |AE/kT|» 1, when all the electrons
are concentrated at the lowest extrema, we obtain from (35.17) and (34.51):
extrema at the point A:

au'ui’f;f;’-"-(*'h—a—'w) (it 4F>1).

Mc=_ﬂ(_‘__‘) (if _%>l); (35.18)

=37 (m—mr) (0 ), (35.19)
M‘=*%(m—l,—m—ll) (it —4E>1).

Formulas (35.18) and (35.19) are also valid in the case of Fermi degeneracy
provided AE[L>> 1.

In the degenerate model the nonlinear effects are more complicated.
Here we shall consider the nonlinear effects for degenerate bands if the
type of the valence band in Ge and Si. We restrict ourselves to the effect
of a strain on the dielectric constant, since this effect is independent of
the scattering mechanisms and therefore yields direct information about
the band structure.

In principle, equation (35.6) and the general expression (30.5) for E(k, ¢)
in the strained crystal provide the means for finding the function »*(e),



§35. ABSORPTION AND REFLECTION OF LIGHT (FREE CARRIERS) 397

whatever the magnitude of the strain. However, this calculation may be
carried out only by numerical methods. We therefore restrict ourselves
to a discussion of two limiting cases in which explicit expressions may be
derived for the function x¢(e): small strains A./kT <« 1, for which we shall
find corrections to »¢ of second order in A./kT, and large strains |A./kT|> 1.
In the latter case we shall determine the limiting values for [100] and [111]
strains as |A,/kT| > oo, together with corrections of the order of 7T/A,. Here
Ay = 8E, s is the band splitting at k= 0 (see (30.11)).

Quadratic effects. It follows from equation (35.6) that in order
to calculate effects which are quadratic in the strain we must introduce
both quadratic e corrections to the energy, AE®(e), and squares of the
linear e correction AE(k, e), which is determined by relation (30.34). In
addition, we must allow for the change A{ in the chemical potential, which
is quadratic in the strain. The correction A3 quadratic in the strain is thus

M'E‘ilg"-__'ﬁ'{J-fn —-— 0, . —
— (‘“_E)(v.. Avy + 0,A0,) + Avg Aoﬂ] dk+

+If" ._.ﬂ 0,0, + Moo, +Auf”vg)d*+ = J‘fuuauadk} (35.20)
where

1 dAEW®
e

By (30.5),

(2) = [l S
AE t(! Vr’ 8 ‘%rx)‘ (35.21)
Noting that

1 4
AE Aﬂu == ﬁ a—ku (AEP,

we integrate (35.20) by parts and bring the result to the form

toym — A0 (b [ Fo(@EP 0oyt +

+ g [ OB 25 fodk + [ fobo, Bu,dk +

Ifo AE® uau’dk—-s-jfo Emﬂiqdkgd*-l- J‘fuﬂa%dk} (35.22)

To calculate Ax3, we shall proceed as in the case of the linear correc-

tions, using the spherical approximation (34.40). In this case ﬁ%ﬁg&_"oﬂs'
' (]

and therefore the corresponding terms in (35.22) do not result in anisotropy
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of Axgg The first term of AE®(35.21) and the term proportional to A/kT
in (35.22) always give an isotropic contribution to Ax2,, and so we may dis-
regard them when calculating anisotropic effects.

Since AE, = —AE,, the (AE)? terms bring in contributions of the same sign
to the anisotropic component from both light and heavy holes, while the
contributions from the AE® terms have opposite signs.

For a [001] strain,

&,=b%[., &, =Bb(3k2— ke,
and in this case

2 — 2) — —
o — o = ) — o) =

48 ne’n (ws’z )2 i P 1
-y L 2 112 o —
35 m’Tm?”+m§¢2) BeT {m. + my? + TV (;:;,;- my,)}. (35.23)

By (34.40), in the spherical approximation,

ﬁ:..:. 4rmym,

B my—my’

By (35.16) and (35.23), for small strains the anisotropic component of
the dielectric constant Ax = Ax,— Ax , counting linear and quadratic terms,
may be written

5
o= B, — o = L2 2O (___3”5*) mi” = m? "”‘?) I [_amtmt gt (‘“';z)]. (35.24)

5 o \ Bkl /\m}*+ m)? 7 my — my BkT

In (35.23) and (35.24) m, and mp are the effective masses of the heavy
and light holes respectively.
Under a [111] strain, by (30.14) and (30.37),
l » ] ’
gl =§ 423;2" 8’“=-§ Dd(Skg' - k?) sz"z"
where the 2’-axis lies along [111]. Therefore, the expression for Ax in the
case of a [111] strain differs from (35.24) in the substitution of

Bbe,, for  Ddel,.

Large strains. Inthe limiting case of large strains A./kT > | the
constant energy surfaces are ellipsoids (see $30). Therefore, the tensor
®gs referred to the principal axes of the ellipsoid, for A./AT » o0, is given by
equation (35.7):

Xt o . AR 1 (35.25)

L) o' mg"

The effective masses m, depend on the strain direction and are given by
(30.18). To calculate the corrections to »* of the order of kT/A,, we must
include in the expansion (30.21) of E(k,e) terms §E of the order of [V,
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which describe the nonparabolic nature of the bands under the strain. By
(35.6), the contribution to %, from these terms is

deg=— 35 ([ 1(3E788) o2k +2 [ foo, Ao, ). (35.26)

If the carrier concentration n= _[ fodk is independent of the strain, the

change in chemical potential is
A= ffoosa'k.

Integrating the second term in (35.26) by parts and using the fact that
for an ellipsoidal constant energy surface

[ 2 dk = (uim Yo

we obtain
e, == — i f 02 3E gp — L E dk
=~ iTe fo s wT R o f,6E dk |. (35.2?)
By (30.21) and (30.5), for a [100] strain, we have for the lower hole band:

O0F = — -5-13‘;,; (3B (kt + k}) + 2(2D* — 3B°) k243 + 4D (kK2 + £242)).  (35.28)

Calculation of &, for 8E as given by (35.28) reduces to evaluation of
integrals of the type

1% = [ 1R dk =

vz
F1\ (BN [yl
—nmff’mg"‘mg”afztrr)‘“u”n l‘( a 1 )PI—(rﬁ%j )P(" 3 ) ' (35.29)

where I(z) is the gamma-function. The calculation gives

_ 8ne'nm, ATD?
T Tel (55,50
35.30
dne’n kT
6“J'=W m—{(02+332) mJ_ + D’ml}.

Hence, in view of (35.25) and (30.19), if |be,,|> AT, the anisotropic part of
the dielectric constant x—xq is

B kT
boor =g — g = S0 g g {1+ g [ (03— 389 — Dimy) }, (35.31)
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where

Bbe,,

Y= Tosel [’
and B,, D, are dimensionless coefficients:

e |
B=gm By D=5z Ds

Under a [111] strain, the constant energy surfaces are ellipsoids of
revolution, the axis of revolution being [111]. Referred to the coordinate
system (30.20a) for the principal axes of the ellipsoid, the z-axis lying

along [111), the 8E for a [111] strain is
—-V3 2, 42 2 2042 4 52 2, D
55=w[(f¢x+ky)’(32+“592)+4k.(ks+ka)(23 +'§')'—
- 4V‘fk,kv(ki—%k§)(o’—3a’)}. (35.32)

Note that the last term in (35.32), which depends on the choice of the
k. and k, axes, does not contribute to 8x, since it contains odd powers of k.
The calculation yields

by = e (284 5).
o, = "“"'ﬁi"—[mL (B’+—:—D’)+ ml(2B’ +%)}, (35.33)

L 'dc,’,,l o B

whence, in view of (30.20), we obtain the following equation for the aniso-
tropic part xf —x4 of the dielectric constant under a [111] strain:
Axf =unf — x4 =

N e

Dde,

| Dae,

It is noteworthy that the calculation of x¢ for large strains does not as-
sume that the band in the unstrained crystal is spherical. In the spherical
approximation D= }3B, equations (35.32) and (35.34) yield the same value

for Ax¢ for the same band splitting:

where y=

A, =26be, = M e

Vs t2

In semiconductors with small spin-orbit splitting A (e.g., p-Si), we must
introduce a correction to »* of the order of A,/A. For large strains, this
contribution is due to the changes in effective mass, given by (30.24), (30.30)-
(30.32a). When these corrections are taken into account, the expression
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for Axs when A, > kT, is:
for [100] strains, be,, >0

5x¢=x:_x1=ﬁ’i‘fﬂﬂfl(1 +%ba;z); (35.35)

o'm

for [111] strains, dej;, >0

= —_— == ﬁM’!IID I _4_ dslll
Bt =y — g = LY (1 + o T ) (35.36)

If bef, <0 or dej,, <0 there are no corrections linear in e.

The effect of strain on light absorption and birefringence has been
studied most thoroughly in n-Ge and n-Si. When analyzing the experimental
data, one must remember that these effects may be caused not only by free
electrons but also by the lattice, by impurities, and by interband transitions
of electrons.

Since by (35.5) the absorption coefficient for free electrons, a¢, is pro-
portional to A%, it may be determined by subtracting the limiting value
a(A—0) (found by extrapolating the straight line a = f(A?) to zero) from the
experimental value of a(i).

a« AL
7 X7
® ! 2 J 4
L5 ‘ . ' d
14} K"=o0
— ]
P ey
13t /
a4
o A=Sp
1k + A=1.5u
DAI4”
!.U i 1 1 1
2 P 6 a0f
ﬁd}'ne/cm’

FIGURE 48. Light absorption by free electrons
in strained Ge /37.1/. Solid curve: theoretical.

Figure 48 illustrates the behavior of af(e)/a?(0) for n-Ge compressed
along the [111] direction, with the light propagating in the same direction.
By (34.50), under such conditions

a*(e) a, 1 =K® n,—n,

=] —— 2 (35.37)
a* (0) Ty 142K n



402 Ch. VI. EFFECT OF STRAIN ON FREE CARRIERS

Theoretical a¢(e)/a(0) curves based on this equation for 8,= 18ev, K»= 8
and K= = oo are shown in the same figure. The K»= 8 curve gives the
best fit to the experimental curve. Since m,/m = 20 for n-Ge, this value
of K= gives tp/t} = 0.4, whereas the ratio of low-frequency relaxation
times 7,fv, is 1.24 for scattering due to lattice vibrations and 4.5 for
impurity scattering. The reason for this discrepancy is apparently that
at the light frequencies © used in /37.1/ the condition #o < { for applicability
of the classical theory is not fulfilled.

As noted above, measurement of piezo-absorption does not yield the
deformation potential constants directly, and here measurement of strain-
induced birefringence is more convenient. Based on such measurements,
we can directly determine the tensor of piezo-optical constants @, which
relates the change in the dielectric constant Ax tothe applied stress:

An,
MB=_=;£EQ%WP?& (35.38)
vo
or
Ax=2% op, (35.39)

Here Ais the wavelength of light in vacuum, a=xl?the refractive index of
the unstrained crystal.

The tensor Q is related to the tensor §° of (35.3), whose components may
be called the elasto-optical constants, by an equation similar to (34.10):

&=220c,

where C is the matrix of elastic constants.
As in §34, we introduce a two-index notation for the tensors & and
Q, denoting

Hyg =My Hpy™=Hgr «uey Prrxx =211, -?xpxy‘:?ur ey

Qrxxx= Qs 2Q:yl = qu veen

and then the above relation yields, for cubic crystals, formulas similar to
(34.11):

F 2P A 2Q,
||‘|; 12 r:_;:_n Qnt Q2 {Cll +2C]2}.

9;—9| 0 11 = 2
SR =MTQ 2Q1 (Cu — Cig)s (35.40)

Pu=2 0,00

The tensor @ is usually determined by the phase shift between two beams
of light polarized parallel and perpendicular to the strain. In cubic
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crystals strained along [100], this phase shift, relative to the length d of
the sample, is

Ag/d = (Q); — Qi2) Proo- (35'41)
Similarly, for a [111] strain,
Ag/d = QP (35.42)

The following method is usually used to measure the phase shift Ag.
Light, linearly polarized at 45° to the strain direction, is focused on the
sample. An analyzer at the output passes plane polarized light rotated
through 90° with respect to the polarization plane at the incident beam.
The output intensity is then a function of the phase shift:

I = Iysin? (Ag/2), (35.43)

where [, is the intensity of the incident beam.

1 L 1 1
g ! 2 J 4
P 19° d)rne/lzm2

FIGURE 49. Light modulation in strained
Ge due to change in dielectric constant
/38.3/. I is the intensity in arbitrary units.
P [111], T=4.2°K, A=2.1p.

Figure 49 is a plot of the intensity of the radiation emerging from the
n-Ge sample as a function of stress.

The contribution »* to Ax due to the free carriers is usually comparable
with the contribution xit due tointerband transitions. The latter canbedeter-
mined independently by measurements on pure samples. However, a high
impurity concentration may somewhat alter the probabilities of interband
transitions. Thus, the interband contribution is more reliably detected by
measurements under large strains, when ¢ reaches saturation.

Figures 50 and 51 illustrate the behavior of :;3'- as a function of the
n

stress P, obtained in this way at different wavelengths n and different
carrier concentrations n. It is clear that, as predicted by the theory, A¢®
is proportional to the impurity concentration and increases linearly with
increasing A.
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FIGURE 50, Birefringence in n-Ge vs. stress at different
wavelengths /38.3/, m =8,12-10% cm-? (As),
T =14k, PJI[111]

I I I I
2 5883 8000 ° 0
-»3%
;‘:3203'— (3 —
£
b4
a - -
o
E
< wont- -
3
9=
| ! 1 |

ar a2 a3 o4 a5
P/ (0), 10"%ayne/ cm?ev
FIGURE 51. Birefringence in n-Ge at different impurity concentrations /38.3/,
£ (0) is the Fermi energy at P=10. Circles—n = 1.24-10% cm=? (As), squares —
n = 3.67-10" cm-? (As), diamonds — 7,14-10% ¢m~? (As), triangles —
n = 4.66-10" cm=? (sb).

To determine the deformation potential constants from these data, we
need a sufficiently accurate value of the carrier concentration. This con-
centration may be determined from the value of Ax*. In the case of Ge
and Si, for which effective masses are readily available, this method is
more accurate than Hall effect measurements. Here the deformation
potential constants are most conveniently determined from a stress value
Py corresponding to the intersection of a straight line, extending the initial
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linear part of the curve, and the straight line corresponding to saturation
of the electronic part »* (Figures 52 and 53).

By (35.10), (35.11), and (35.31), the condition for these lines to intersect,
for n-Si compressed along [100], is

- il Fin _ 35.44
(S“— Slz)PoEu ‘F——m =1L ( )

For n-Ge compressed along [111],

T Fip
-5 T =1. (35.45)

Knowing Py, we can determine E, from (35.44) and (35.45). In this method
the concentration is needed only to determine the value of { in the un-
strained crystal, which enters into the integrals Fip and F_;;. The method
is convenient in that there is no need for direct inclusion of the interband
contribution, since the position of the point P,is independent of whether
there is such a contribution linear in the strain.

@
=
1%
®
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~ 77%
= 293 W
i i
S |4 ‘?,{ Pifiog]
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275 20
Ap

FIGURE 54. Elasto-optical constants in Ge /39,4/
vs, light wavelength.

P, = 3,000 kg/cm?, P; = 6,000 kg/cm?,

The resulting values of the deformation potential constants are: ger-
manium 8,= 18.0+ 0.5ev, silicon B,= 8.5t 0.4 ev.

Strain-induced birefringence has also been observed in p-Ge and p-Si
/38.4/, [39.4/. As figure 53 shows, in this case too there is an initial
segment, determined by free carriers and interband transitions, and a linear
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segment corresponding to large e, which in this case may be caused not
only by interband transitions but also by the change in x*due to compara-
tively large effective mass changes. This contribution is determined by
equation (35.35) or (35.36). By (35.35) and (35.36), the ratio of the xf4e
values for [111] and [100] strains is D[V3B.

Because of the large anisotropy of the band constants and the small
spin-orbit splitting, when calculating the initial segment and the nonlinear
region for Si we must take into account the nonspherical and nonparabolic
nature of the bands.

§36. ABSORPTION AND REFLECTION OF LIGHT
IN INTERBAND TRANSITIONS IN STRAINED CRYSTALS

As mentioned in §35, the optical properties of a substance are com-
pletely determined by the complex conductivity tensor ¢, or by two real
tensors: the conductivity tensor ¢ =Reo and the dielectric constant tensor
#*= — (4n/o)Ime . The contribution to these tensors from interband transi-
tions (and transitions between local levels), allowing for spatial dispersion,
is given by /39.1./*

B )=—15 ¥ Folita(—0E.(@d0—0,)—

m, nekm

— i (~ B, ()8 (0+0,,)), (36.1a)

. 4n Bal—@) B (@)
b mn n,
*op(©: ) = 5557 P % Fﬁ{“;:?;.;f‘"‘
_B—i. e
W+ Wmn

imn () Fom (0) + im (0) foun (0) l (36.1b)

Omn

4

The summation extends over all quantum states m and n. For Bloch
electrons, these indices include the band number, the spin states and the
set of wave numbers k. F% denotes the distribution function

R = (e 1),

o is the frequency of the light, ¢ its wave vector, fomn= Em—En; P denotes
the principal value of the integral.
When the spin-orbit coupling is included, the current operator j has

the form**

tax 4 a—ior & o
1(g) =5 (e~t9% + e~losn) — o, J(0) =22 — o, (36.2)

* o (0, q) is defined as the ratio of the total current § (o, g) including the magnetization current j = rot M,
to the field of the electromagnetic wave & =V p/xH. Equations (36.1) therefore fail at ®@= 0, where &
and the magnetic susceptibility p = | 4 4nM/cH must be introduced separately /39,1/.

** To allow for spatial dispersion, we must include the contribution of quadrupole and the magnetic dipole
transitions to & and ®. These effects may usually be neglected for interband transitions, since even if dipole
transitions at the extremum point &, are forbidden, they become allowed when higher order terms in
k=K — ky are included.
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where, by (17.15),

b

In the multiband model, in which the energy operator is M. (k) (22.27),
the current operator matrix in the same representation is

fm‘.t’, mk (0} = eum'l’. mhk =—;' lem'm (k) 6”_., (36‘ 3)
i. e., by (22.27),

I m= M‘*‘szzkn( s m+“5-="?m)(£ml—£.+ s,,l,lws,)' (36.3a)

As mentioned in §22, this equation is valid at frequencies te which
are small compared with the separations to the bands not included in # (&),
since the derivatives dS/dt were neglected in its derivation. We may thus
use the equation for degenerate bands provided #e € E4, and for the multi-
band model if ap is much smaller than the separation to other bands E,, i.e.,
10 & Em— E;, Ew—Es. Since ho > Eg in interband transitions, this means
equation (36.3)is applicableif E, — E, » E,when En — Es = Ew — E,. If this condi-
tionis not fulfilled, we must replace (36.3a) by the exact expression, which may
be derived from the general equation (15.51) by the substitution 2’ == pkx/m:

I my=—"p m:,,. Ekﬂ(“m“m ++v. -5 n,,,,'::,; ) (36.3b)

The first terms in (36.3a) and (36.3b) are obviously identical, but the
second terms coincide only if E; « E,— En. Equation (36.3b) is applicable
at frequencies for which |#e — Eg| € |Eg— Em|. By (26.34) and (26.35), in
the simplest case, the two-band spherical model,

[0 = 59,00 + 2 80, (Gas 1kars + Tarshasr) (36.4)

where § = Aym*/#? is a dimensionless constant. Similarly, for the two-band
ellipsoidal model

1* = 050400 + 2 01 B+ 10041tz + Ogs 00 s2kas1)- (36.5)

For biaxial ellipsoids, two of the constants s; and 6, coincide (for example,
when mj =m; we have s =s, and 8,=8,).

If the corresponding little group contains inversion, one of the constants
s or # vanishes, depending on the parity of the representations corresponding
to the two bands. In the absence of inversion, as in crystals of class Ty,
both constants may be nonzero.
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When calculating the effect of strain on optical phenomena, we must bear
in mind that strain-induced changes in ¢ and » may result both from changes
in the spectrum and from changes in the matrix elements of the current
operator | or the velocity .

Nondegenerate bands

For nondegenerate bands near the absorption edge, i. e., when |#o — E;| € Eq,
the major factor is the shift of the bottom of the bands; the change in the
matrix elements and the change in the effective masses may both be
neglected. Only when the selection rules dictate that a dipole transition at
an extremum point is forbidden in the unstrained crystal but allowed in the
strained crystal (due to reduction of symmetry) must we include the strain-
induced change in the matrix element.

If |#o — E4] is much less than E, and the separation to other bands, in
calculating ¢ and » we may disregard the nonparabolic nature of the bands
and the contribution of all the other bands to x.

If transitions occur between two nondegenerate bands whose extrema lie
at the same point of k-space and for which the principal axes of the ellipsoids
coincide, the components ¢! and x, for each of the extrema, referred to its
principal axes, are determined according to (36.1) and (36. 2) by

2 (1 yii) (A0 — E,)'® if ho>E,
Oi,= —1TY _ p [{ . (4 36.6
el S R . (36.6)
f &1 (thyhyrhy) ' [ "7 __ m_{ 0 if Be>E, 36.7
!, ot — Ps | 2B — (ho + E;) (E,—h o) if  Ae< E’ ( )

where

2 1 1 0
E = —— P.= 2
’ﬁt mcl + mot ! ’ ‘ez“n |Poﬂcn‘,|
Here @, and a, denote the sets of spin states of the valence and conduction
bands, respectively. The valence band is assumed to be completely filled

and the conduction band empty. The strain-induced change in of,and x!, is
determined by the change in the band gap E; at k: by (29.28),

OEy= 2‘15,,3,,, (36.8)

where ey are the components of the strain tensor referred to the principal
axes of the extremum, Ey; = Dy — Dy,, and accordingly

OE,
5"’..=“;“§am7_-;-‘)ﬁ- (36.9)
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As in (34.1), (35.3) we introduce tensors mib.s and P2, which determine
the change in o®® and x™® under strain:
800, ib ib
2 = Y oo Byns Sap = Y Pavo v, (36.10)
)

ib
o )

where

No € (1 gig)'*
4nm?hie

olb= L N,Trol,= (ho — E,)'® B, (36.11)

Ny is the number of extrema, 3=§|2P,. The components m.i,%\.g and 9.;'.%\,0

are determined by expressions simixlar to (35.9). However, as opposed to
(35.9), there is no analog of the second term in (35.9), which is associated
with the condition that the free carrier concentration is constant. In this
case, then, not only the shear coefficients but also the volume coefficients
will differ from zero. The general expressions for magy and 3, are

ib 1 Ps pst
Mapyy = — S (o —Ep) ”2 E"_F Ragys, (36.12)
ib P G ¢
Pobi0 = = Fruim (6 — ha S £ PR (36.13)

For cubic crystals, the volume coefficients are

ib ib
+2m E!
- 2(nml_£,) (bo>Ep (36.14)
P20+ 225 & (mymymy) 2P E
ut 2 _ _ y, (017 e (po<E,), (36.15)

3 ° opetm  (Ep—be)R

where

E]'=_; 2 E".
t

If the extremum is at k= 0, the shear coefficients vanish in this ap-
proximation, for they depend only on the changes in the effective

masses and matrix elements and are smaller by a factor I ME_ Ee I than the
€
volume coefficients.
The shear coefficients for crystals in which the extrema are at the
point L (111) (such as PbS, PbSe, PbTe) are given by expressions similar

to (34.30):

1 p—p, Ef—-BE®
. . 5 1 4 '
mb — mib=0, mib =__€WI {a:,_gi)' (36.16)

i i i 1 & (mi)? Py—P
PP _ P, P _ - 21T 1771 (e _av), 36.17
1l 12 “ B botm? (E‘—hml”z( u u ( )




§36, ABSORPTION AND REFLECTION OF LIGHT (INTERBAND TRANSITIONS) 4an

Similarly, for nondegenerate bands with extrema at the point X (100),

ib ib '3 o
- mi—m | P—P, 8 -8
mg=0, 7 T 1P F2P, (lo—E,)" (36.18)
. fih—.‘?ib 1 eg(mm )"2 P,—P
ib — - 1 1 1 36.19
25=0, 2 127 potm? (Eg — ho )'F’( ( )

If the selection rules forbid dipole transitions at an extremum point for all
polarizations, and the probability of these transitions is proportional to &2,
the conductivity o, is of the order of (fw—E;)3. In this case the strain-
induced change &d, like 6%, has no singularities as #w —» E4, and

| ] { ] - ]
mu‘.’m-——-— 2F:T‘§ E.,;—;Rﬁw.where U,,=—3-26,,. (3620)

If an extremum in a cubic crystal is at the point # = 0 and the bands are
not degenerate, then, as noted above, the shear coefficients are determined
by comparatively small changes in the effective masses and in the matrix
elements that determine the transition probability. But if the band is
degenerate at & = 0 the shear effects will also be large.

Degenerate bands

As an example, let us consider the band structure characteristic for most
crystals of groups III-V and for Ge: the valence band at T is fourfold
degenerate counting spin and corresponds to the representation Ty (or TI'¥);
the conduction band at T' is degenerate only counting spin and corresponds
to the representations I's or I; (or I'F and I'¥). The two-band Hamiltonian
7 (k, ¢) for these bands is given in Table 24.2% (p. 238).

In this case, therefore, the interband matrix elements of the velocity

operator (rela.twe to the basis Yif, Y%, and Y¥, ¥ Yi, Y, ¥Y¥3p) are

o _O%®_s| 0 —1 0 —-V3

o 2| 4Yy3 0 i o |

o OXb_ sl 0 —i 0 1}/5# (36.21)
¥odpy 2l y3 0 1 o0 |

_axb s 0 0 2 0
"%, "2 0o 2 o o |
where
RVENHEAI)

* If |hw— E,| is greater than or comparable with the spin-orbit splitting Aso, we must allow both for trans-
itions from the split-off band and for the nonparabolic nature of the valence band, In this case (36.21)
must be replaced by the complete Hamiltonian for all three bands, determined from Table 24.2.
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In the Kane approximation, in which only the interaction of the two nearest
bands is considered, 2m;s?=E_, where m, is the effective mass of the elec-
trons and the light holes. By (24.6) and (24.34), in this approximation

A=B=—F=——1, (36.22)

To calculate ¢ and x from equations (36.1a) and (32.1b), we must go over
to the representation (24.19) in which the intraband matrix (30.3), (24.13)
is diagonal. Next, we sum the product 02 08 over both states of the conduc-
tion band n and the two states of the valence band m corresponding to light
and heavy holes with energy E(e,k) (I=1,2). As a result we find the

values of Oj;= w2 of : ifa=8p
mn

Oha =55 (26— (L + MK + (L— M) Ka— (1 + m)e + (| — m)eas), (36.23a)

and if as=p

8= E :ffzzr (Nkokg + negy). (36:23b)

Here [+ ['. It follows from equation (36.23) that, in the notation of (24.12)
and (30.8),

?;-Tr81=%26fm=8!, (36.24a)
B — Bp = 5= [B(Ki — k) + b (eca — 25y)] (36.24b)
el = Efi} (Dhokg + degy). (36.24c)

Substituting (36.24a) into (36.1), we find that in the unstrained crystal

. 202 - -

o= ropw (b0 — E )P (A3 + m), (36.25)

b & (A" +md) 1 2E{" — (Eq + ho)'® if  ho> Eg
= Po? 2ES — (Eg+ 10)” — (Eg — h0)'®  if ho<E,, (36.26)
where
ﬁfi.z='$;_|-dﬂfﬁi_,(ﬂ, ), (36.27a)
2 1 2 -

e —m T (Al B, o)), (36.27b)

2,2 2 4 42,2 \1j2
B(®, @)=(B’+C’W_&) . (36.27¢)
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The change in ¢ and xi® under anisotropic strain depends only on the change
in the band gap: in this case we must replace E; by E, 4 Ee in equations
(36.25) and (36.26). Substituting (36.24b, c) into (36.1), we obtain the shear
constants miband ', which describe the change in ¢iband »® under an aniso-
tropic strain in the linear e approximation:
ib _ r.r b

Xx

o’ Xl

i ; 3 b @ .
mi} — mi3 = =T ez, AeapE (f 1>ED (36.28)

mibe Y3 _d o,
“

- _— 36.29
2o, 4 ho— E, R e ( )

ih
Ph_ P — ”u”i‘.z=3
Gxx 2

&%
Bo? (ho — Eg)'P?

D, (36.30)

ib V3 s’
E_——— 36.31
2.,, 4 Bo?(ho — Eg)'R Pz ( )

where

®1=4ﬁ U dg[’“:m‘ﬁ- ®) — 7" (8, 9) +
" B(® 9

3 B%: (K~

PAATTS (m (8. @) — )2 (8, 9))+
3 B% (ki —FK}) )
4ﬁm"‘ w3 (8, @) + i} (8, q:})]}.

L { [rﬁ:""tﬁ. ) — my? (9, 9)
= Idg B(6. ¢ +

D2k2 2
m.—(m”’(ﬂ Q) — m}?(8, ¢)) +
DR

l x
+Em(m (0, 9) + mi* (8, q;})]

(36.32)

+

In the spherical approximation, in which B(#®, ¢) is replaced by the constant

B= [% 2B + 39?)]'”= ﬂ_(fﬁyi.;_”ﬂ_}

which is independent of the angles, the effective masses i, and m, are also
independent of the angles and the constants @, and @, are:

— 2y 1B

O = A (l 5 )+ 1o B (A ) (36.33)
ity D )

O e (1 = 35 35) + 55 5 (A1 + )

In the Kane approximation, i, = 2m, r,==m,, B=D[Y3=B, we have

=0, =1.7m", m®—mb= 2V_3b _ 0676

©— Lg
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The above equations are valid at frequencies for which |#o — E;| signific-
antly exceeds the strain-induced band splitting.* On the other hand, |fwo — E;|
must be much less than E; and Aso.

For sufficiently large strains, near the band edge when |fo — E;| <A,, the
opposite approximation (large strains) is valid. In this case we see from
(36.24b, c¢) that for the upper of the split-off p-bands, under a strain es,

B.x— 8y, =3 5, Where ¥="pey: (36.34)
under a strain e,,
3 dey
8., =22 %, where V=T (36.35)

Substituting these values into (36.1), we find that for a strain e,,

3¢ (myn) " s

Trx _GUH=Wv{nm_ El (e))”\zr (36'368‘)
and for a strain e,,
Tet (myi)" 52
Oxy= fi-(-ﬁ%é— v (ho — Eg (&))" (36.36b)

Similarly, when A, > E; — fin>0, for a strain e,,,

2 2y1/2
=iy =3 G (o) — (ot By — (B0 =), g o

and for a strain e,,
o V3E (myd)
iy = L3ECUL) N (051 (6) — (R + Ey () — (Eg ) — 20)).  (36.37b)

Here

The effective masses of the holes near the band edge, which depend on the

sign of bBg or dDe, were given in §30 (equations (30.18)— (30.20)), and

Eg(e) is the band gap including its change under a strain: Eg(s)=Eg+E.,3-— e
It is evident from our equations that the sign of the effect of both small

and large strains depends only on the sign of the constants b and d (and on

the sign of the strain), as opposed to the effects associated with free car-

riers, whose sign depends on the sign of the product bBe or dDe.

* The difference |Aw — Eg| must also exceed the exciton binding energy, since the interaction of an electron-
hole pair excited by light was neglected in the derivation of these equations. The effect of strains on the
exciton spectrum will be discussed in the following chapter.



Chapter VII

EFFECT OF STRAIN ON IMPURITY CENTERS
AND EXCITONS

§37. SPECTRUM OF IMPURITY CENTERS
IN A STRAINED CRYSTAL

We saw in §27 that in the effective mass approximation the energy levels
and wave functions of a shallow impurity center are given by an equation
(27.1) whose form depends on the band structure at the extremum point.
Under a strain, the band structure changes, causing a change in the energy
and wave functions of the ground state and excited states of the impurity
center. In this section we consider the strain-induced change in the states
of a shallow impurity center for various band structures: nondegenerate
bands, many-valley bands and bands which are degenerate at an extremum
point.

Nondegenerate bands

In a nondegenerate band, a strain induces a shift AE of the band edge
and a change in effective masses. Thus the equation (27.1) for a shallow
impurity center will include terms of the order of ek? describing the change
in the effective masses of the band carriers.

The band edge shift AE results only in a corresponding energy shift for
all the impurity states, and thus does not affect the ionization energy, which
is measured from the band edge. The change in ionization energy E; in this
case is due only to the strain-induced change in the effective masses; it
is of the order of 8E{/E; ~ Am*/m* ~ De/E;,. Under an anisotropic strain, when
the change in effective masses is anisotropic, the degeneracies of excited
states may be removed. The splitting of a degenerate level with energy Ea,
caused by the change in effective mass, is also of the order of E.De/E,.

The nature of the splitting may be determined in the usual manner from
symmetry considerations.

Many-valley bands

Let us consider a band with several extrema, at each of which the band
is nondegenerate. As shown in §27, in the effective mass approximation

415
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the ground state of the impurity center is n-fold degenerate, where n is the
number of extrema, and the wave functions are arbitrary combinations of
the impurity center functions ‘F,—t.'f' corresponding to the states near the
I-th extremum. Here t,' is the Bloch function at the I-th extremum, and
fi(x) is a smooth function (the envelope function) satisfying equation (27.1).

If we neglect the overlapping (in k-space) of wave functions belonging
to different extrema, a homogeneous strain will not cause mixing of states
belonging to different extrema but will merely shift the energy of the state
at each extremum by a quantity 8E:, which is equal to the band shift AE; at
the extremum if the effective mass changes under the strain are neglected.
Since different extrema are generally shifted by different amounts under a
strain, the strain removes the many-valley degeneracy of the impurity
center ground state to the same degree that it removes the degeneracy of
the bottom of the band.

As an example, let us consider donor levels in Si and Ge. In the effective
mass approximation, the shallow donor center ground state in Si is sixfold
degenerate, Under a strain along the z-axis, e;; 0, the impurity center

levels corresponding to extrema on the &, axis are shifted by AE,:-%E,,;;,,
while for extrema on the k. and k, axes they are shifted by bEg==—-:l;Bue'u.

Thus the sixfold degenerate state splits into fourfold and twofold degenerate
states separated by E.el., which is just the strain-induced splitting of the
conduction band bottom.

In n-Ge, where the ground state of the impurity center is fourfold de-
generate, the impurity center state corresponding to an extremum on the

[111) axis is shifted under a [111] strain by AE,-%E,;{,I, and the remaining
three states are shifted by AE;=AE;=AE,= —%8,,;{1,,* i.e., the ground state
splits into onefold and threefold degenerate states with splitting %E.,ein. This

splitting of an impurity state in a many-valley band occurs only in the ef-
fective mass approximation, which ignores the splitting of the impurity state
in the unstrained crystal due to the departure from effective mass theory.
As noted in §27, it is these corrections that cause the removal of many-
valley degeneracy characteristic of effective mass theory.

If these corrections are small compared to the ionization energy, the wave
functions may be derived from group-theoretic considerations as linear
combinations of the impurity center functions corresponding to each valley.
The correct linear combinations of functions for shallow donors in Ge and
Si were indicated in $27 (equations (27.20), (27.22)).

To determine the ground state energy and the wave functions of an
impurity center in the strained crystal we must diagonalize the perturbation
matrix, which is made up of the strain and the corrections to effective mass
theory for all states which are degenerate in the effective mass approxi-
mation. Relative to the basis of correct functions, incorporating the cor-
rections to effective mass theory, the strain matrix is no longer diagonal.

If the strain splitting of the bottom of the band is small compared to the

* From now on we omit the term (E‘.‘i +% 8.) Tre describing the uniform shift of all the impurity levels,



§37. SPECTRUM OF IMPURITY CENTERS 417

chemical shift, we can consider the strain splitting of each degenerate level
separately.

If we take as basis the functions ¥, so that the strain matrix is diagonal,
the chemical shift matrix has off-diagonal matrix elements. Thus, for n-Ge
the perturbation matrix relative to the basis ¥ is, by (27.22),*

AE, — A4 —A/4 —A/4 —A/4
—Al4  AE,—A4 —A4 — A/4 (37.1)
— A4 —A4 AE,—AM4  —A4 )
— A4 —A/4 — A4 AE,— A4

where AEie) (I =1,2,3,4) is the band shift at the I-th extremum and A is the
splitting between the triplet and singlet states in the unstrained crystal;

the zero of energy is taken to be the triplet energy in the unstrained crystal.
By (37.1), the energy E in the strained crystal is determined by the equation

(AE, — E) (AE, — E) (AE, — E) (AE, — E) —
—2{(AE, — E) (AE, — E) (AE; — E)+ (AE,—E) (AE,—E) (AE—E)+
+ (AE, — E) (AE; — E) (AE, — E) + (AE,—E) (AE;—E) (AE,—E)}=0.  (37.2)

For a [111] strain,

2 2 ’
AE =3Bl AE,=AEy=AE;=—5E, ¢,

and from equation (37.2) we obtain

Ey=Ey= — 2B = — 5 &, (37.3)
E.‘,=%{—l+-—2‘-1m}, (37.4)
where
—_— 8 Sueill
=32

Figure 55 plots the energy of an impurity center in n-Ge as a function
of x for different signs of the strain.

It follows from (37.4) that a strain induces splitting of a degenerate state,
but the degeneracy is not completely removed.

If e,y =0, the terms E,, E,, E, coincide, corresponding to a threefold
degenerate state, while E, = —A corresponds to the singlet state of the

impurity center. Under small strains, with I%E..s'm l <A,
A
Ey=—A, Ey=-Z.en. (37.5)

* Owing to the deviation from effective mass theory there is another diagonal increment which shifts all the
levels by A; this correction is neglected here.
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FIGURE 55, Strain splitting of donor ground state in Ge .

Under large strains, when the induced splitting exceeds the chemical shift,

|%3,,e;,, |>a or 1xi»1,

A 2 e,

Ea=—75Qxy+ g5 (1F2), (37.6)
where
Y":_""- B¢y
FINET )
Ify=1
3 2B s A 2
Ey—— b ——, Ey=— o+ 3Buli; (37.7a)
if y=—1
El=*%+%5a8'iu, Es=—%6—%3uﬂn. (37.7b)

Using the matrix (37.1), we easily find the wave functions corresponding
to the eigenvalues E;; they are determined by the coefficients of the ex-
pansion in terms of the impurity center functions near each extremum.

For degenerate states with energy E; = E; the two wave functions may
be taken as

‘P,=%(010T). \P‘=Y—’3_-(0l§'l)

or any linear combination of these functions. It is sometimes convenient
to take the functions

;—'Wm—m. ‘Pi-—'ﬁ(‘l’a-%-i‘l").
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which are multiplied by e*%53 when rotated about the [111] axis through 2x/3.
For states with energies E; and E; the wave functions are

w,=7ﬁ-(a1m. w,—ﬁ{puu. (37.8)
where
a=—1—2¢4+2yV1+x+ 2, af=-—3. (37.8a)

For a [110] strain,

AEy=AE; = Buefiy, AEy=AE, = — + Euelio,
80 =8;0 — &5 = 2e,,,

where the indices 1, 2, 3, 4 designate extrema on the [111], [111], [111], [I11]
axes, respectively, and from (37.2) we obtain

Ey= ‘% El&{lﬂn Ep=— % Bue‘;lo.
A 1 2 L\
Ey=—3%3} ‘52+(”3'au°uo)'

If elin= 0, the terms E,, E,, E;coincide and correspond to the triplet state;
E, is the singlet.

The impurity center wave functions in the strained crystal, for a [110]
strain, are

(37.9)

¥, = % (1T00), ¥, =.7'_2— (017,

(37.10)
1 - 1
= Vrtnre Col W= g G,
where
a=mx+ VIFH, p=VIFF —x, x=200 ooy (37.11)

We now consider the effect of a strain on a donor ground state in silicon.
The energy levels in the unstrained crystal will be measured from the
lowest state — the singlet. We denote the energies of the triplet and doublet
states by A;and A;. Then the matrix of the interaction with the strain,

relative to the basis (27.20), is

1 1 1
(— (ABy+ABy+ AB, —= (AB;=AB; - 88— 4, 0
St 1+ ABy+AEBy) Vﬁ-t f 1) YT (2 ABy=AB—AE) 0 0
1 AB+AE; 1
— (AB=AE, —— —
Yo (AR, 2 ——'-;-—-I-Bc P (AB,=ABy [] L] 0
1 1 AB+AB;, 2
= (2 ABy=AE;=AE)) =——(AE;~= Tl
Sﬁ‘ ¥ ¥ l)z‘(“_fb ABy) s +';‘ ABs+As L] 0 []
0 0 [] AE+4A, 0 0
0 0 0 0  AB#a, O
0 0 0 0 o as+al (37.12)
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It follows from (37.12) that under a strain the triplet states are shifted
by AE,, AEy and AEjs, so that in the general case the degeneracy is removed;
the correct wave functions of the triplet level in the strained crystal are

again given by (27.20). Under a [001] strain, AEl—hEg——-i-E.,s;,, 653—-2-3.‘3;.

and equation (37.12) yields the energies for the states arising from the
doublet and singlet levels in the unstrained crystal:

Ey=A, —%Eusrm

B (37.13)

Iz A’ 1 2
Byy= 224+ F a7V Eaf+8i+ AR,
The states with energies E,, E; correspond to doublets, the state with energy
E; to the singlet state of the unstrained crystal A3 > 0.
The state with energy E, corresponds to the wave function -é—(llﬁﬂ()). the

states with energies E; and Ej to the functions

‘Fag Vl—‘li:;‘ (ll‘lﬁ-}-wa),
(37.14)
tim e
where
—2¥72 x/3 B¢,
a= . 3 » X = A:'n
A (37.14a)
=1 = (11T
¥, ﬁ(llllll), LA 2,,.3.(11[122),

For a [110] strain, the nonzero strain tensor components are s =gy, &z,
&xy, and since the shear strain e, does not affect the positions of the ex-
trema in Si equations (37.13) and (37.14) remain valid, with e}; =€z — 6xs.

The excited states of a shallow impurity center have a considerably
larger radius than the ground state, and therefore, as noted in §27, we may
expect the chemical shift for excited states to be small.

If we neglect chemical shifts, the strain splitting of the excited states of
a shallow impurity center coincides with the splitting of the band bottom.

Degenerate bands

To determine the energy and wave functions of an impurity center in a
degenerate band, we must solve the system of equations (27.1), augmented
by adding, besides the operator #(k)(21.19), an operator #(e)which determines
the splitting of the bottom of the band. Under a strain, therefore, the spectrum
and wave functions of the impurity center are determined by the system of
equations

S #ul. =B B=BE)+V )+ 5. (37.15)
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As opposed to the nondegenerate band, a strain may significantly alter the
electron spectrum in the band near an extremum. This results in consider-
able rearrangement of the impurity center spectrum and the wave functions
under large strains, when the valence band splitting A, becomes comparable
with the impurity ionization energy Ei.

Equations (37.15) cannot usually be solved in closed form for an arbitrary
strain. We shall therefore consider two limiting cases: small strains
A, € E; and large strains A, ® E;.

In the case of small strains the operator #(e) may be treated as a
perturbation, and so the splitting of a degenerate state is determined by a
perturbation matrix #’(e) with elements

%;,0) =Y, [ 1%, @f dc =Y, %), [ 17]dz, (37.16)
st st

evaluated between the envelope functions ft of the impurity center, with
components fi (see § 27).

For the impurity center ground state, which has the symmetry of the
band bottom, the matrix #”(e) has the same form as #(s) for a band which
differs from the ground state only in the values of the deformation potential
constants. These constants b and d’ generally differ from & and d: they
depend on the form of the wave functions and may be expressed in terms of
b and d via (37.186).

Let us consider the deformation potential constants for acceptor states
in Ge and Si.

Suppose we let the fi 's be the trial functions (27.23) or (27.25), cor-
responding to the approximation A+ or A = 0, where A is the valence
band spin-orbit splitting; then we obtain (provided ¢, = 0)

am0: v=(1-3a)e o=(1-%)g

(37.17)
A=oo: b'=(c]—c})b, d’=(cf—c§—-%§~)d.
Using the values of the constants defining the wave functions for Ge and Si

in (27.25) and (27.23) as indicated in Tables 27.3 and 27.5 (pp. 276 and 277),
we obtain the following values for &'/b and d'/d:

TABLE 37.1
b/ d'id

Ge 056 061

Aw=oco Si 077 0.82
Ams Si, B<0 0.84 0.93
Si, B>0 073 0.75

As seen in the table, the shear deformation potential constants § and d’
for an impurity center may differ considerably from the constants b and d,
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coinciding only if ¢,=1¢; =10 in (27.23). The deformation potential constant
o' is always equal to a if terms of the order of e& are neglected in the
matrix # (¢, k). In the general case this is valid for all deformation
potential constants which do not cause band splitting at the extremum point.

Note that the ratio of the deformation potential constants for band and
impurity center depends sensitively on the form of the functions, and so it
is difficult to estimate the accuracy of the data in Table 37.1.

Thus, the strain-induced splitting of an impurity level is determined by
the same equation as the splitting of the band bottom, provided we replace
the band deformation potential constants by corresponding constants for the
impurity center. The impurity center wave functions for the strained
crystal are linear combinations of ground state functions which diagonalize
the matrix #' (). For example, in p-Ge and p-Si these combinations are
determined by equations (24.19) with k.kp replaced by e, and B—>b', D »d’.

In the case of large strains, when the strain splitting A. of the band bottom
is greater than the ionization energy E; of the impurity center, we must
first diagonalize the matrix # (e) in equation (37.15). In the new representa-
tion, the matrix # (k) becomes #'(k), which determines the spectrum in the
strained crystal in the vicinity of the degeneracy point. Thus, for large
strains A, > E, the energy and wave functions of the impurity center in the
strained crystal are again given by equation (27.1), in which # (k) determines
the carrier spectrum in the strained crystal.

In a degenerate band of the type of the valence band in Ge and Si, the
constant energy surfaces become ellipsoids under a strain, and so, in the
limiting case of large strains, the problem of determining the energy and
wave functions of an impurity center ground state for Ge and Si reduces to
solving the corresponding problem for a simple band, as discussed in $27.

Under a [001] or [111] strain, when the constant energy surfaces are
ellipsoids of revolution with effective masses (30.19), (30.20), we may use
the trial function (27.17), which gives equations (27.18) and (27.19) for the
ionization energy.

For large but finite strains corrections must be made to the ionization
energy, of the order of EyA,; these are due to the nonparabolic nature of
the split-off band.

If we transform equations (27.1) to the representation based on functions
of the band bottom in the strained crystal which diagonalize the matrix
7 (v), equation (27.15) becomes

"(E:(k)-%) #in II I_I (37.18)

it &ma—

where I'is the 2 X2 identity matrix, #inand XK are 2 X2 matrices of
second order in k, dependent on the strain direction, and E,(k), E;(k)are given
by equations (30.14)— (30.17).

To calculate the energy corrections to first order in Ey/A,, we can trans-
form the Hamiltonian as in (15.49a).* As a result we obtain the transformed

* To introduce corrections of higher orders in Ey/A, the Hamiltonian AK can no longer be obtained by simply
expanding E (e, k) in higher powers of k?*fA,, because of the noncommutivity of the operators k== — (¥
and ¥ (x).
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Hamiltonian for the upper of the split-off levels:

iy

2..=1(E:(k)—§)—-T. (37.

On the other hand, the operator A = — X u#iu/20. determines energy
corrections of the order of k¥A,; by (30.21),

2
Mg=m‘5=;(l_f£ﬁ_l&). (37.
e

where &,, &., &. are given by equations (30.6)— (30.8).
The corrections to the ionization energy are

O, = [ I"AEf dx, (37.

where f is the envelope function of the ground state, defined by (27.17).

Under a [001] strain, by (37.20),

m-{—i B (k' + 2£°k; — 3k3) + C* (K3kj + kiki + kyk7) } /b (37.

if the trial function is taken as
2 1
f=(na,a .)""’exp{—(—"-+—-+ 1) "}
“ Z2taTaE
the integrals defining the correction 8E; are

4 1, 2.2 _1
If’k.fdxna—:, jlf'k,k,fdx_—an:a;. (37.

Therefore, for a [001] strain,
OE, =

B,
2[begy

For a [111] strain, similar calculations yield

OE —— S0

‘ 2Id8;lllﬁ|

—2Zpd (1 2\ 202 1
a=ira(Era)tea(@ta) 37

The behavior of the ionization energy of the impurities in the large
strain region is investigated experimentally in /32.4/. The change in
ionization energy is determined by the change in hole concentration at
temperatures, kT < A..

By= BTt D2 (1 , 2
I where & Bm_+3agl( + ) (37.
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FIGURE 56. Ionization energy of acceptors (Sb and Al) in p-Ge under [100]
and [111] /32.4/.

The function E;(e) is shown in Figure 56 for [100] and [111] strains.
Figure 56 shows that the ionization energy is different for different dopants
this is because of chemical shift.

It is evident from Figure 56 that under the maximum strain attained in
the experiment the value of E;(e) does not yet reach saturation; the author
therefore approximated E;(e) by

Ei(e)=Ejo+ 21 + 22, (37.26)

choosing the constants E;., W, ,W;s0 as to guarantee the best fit.

§38. EFFECT OF STRAIN ON OPTICAL PROPERTIES
OF IMPURITY CENTERS

In this section we shall discuss optical transitions between the ground
and excited states of a shallow impurity center in a strained crystal.

We first consider the case of a many-valley band structure in which the
constant energy surfaces are ellipsoids of revolution, as in the conduction
bands of Ge and Si.

A perturbation producing optical dipole transitions is described by the
operator

6y = 2¢ (€x) cos wf, (38.1)

where & is the electric field of the light wave, e the electron charge, and
o the frequency of the radiation. The impurity center wave function is a
product of functions of the band bottom and envelope functions of effective
mass theory.

In the effective mass approximation, transitions may occur only between
states corresponding to the same extremum; thus the selection rules
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depend on the coordinate matrix elements between the envelope functions
of the ground and excited states of the impurity center. Moreover, transi-
tions may occur only between states with unlike parities.

Let us consider in greater detail transitions between the different levels
of the Is ground state and the nearest excited states p, and ps.

If the original state ¥, is a superposition of states belonging to different
extrema,

\l!.’ ; C?H"lr
and a transition occurs to an excited state
‘PP;-flﬂﬁﬁl’

corresponding to the extremum [, the transition probability is proportional
to

|(¥el Bx) W) P =] CE ' <fol (8x) | Fo) [
The scalar product (8x) may be written

@x) =&+ &+ &L,

where

rh = "VI_?"' (x: £ iy), 8’2 =% (83; + fa’ﬂf):

and the x;, y, 2 axes are taken along the principal axes of the ellipsoid /.
The p-state wave functions in these axes transform thus: f,, as z, f, as x4
Thus the probability of a transition to the p, state is proportional to

| (W | 82) 1 'W,u) P =| CI [ 418" cos’ g3 (38.2a)
for a transition to the p, state,
(¥ | (8x) | Wo i) l’—%[C:’ I* AL & sin’qy. (38.2b)

Here ¢ is the angle between the direction of & and the z-axis of the
extremum,

A= [Hezft dr, A, = [ roet st dr.

If the final state is degenerate, the transition probability must be summed,
as usual, over all final states.

In an unstrained cubic crystal, the total transition probability is of
course independent of the direction of the electric field.
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A strain induces splitting of the degenerate ground and excited states of
a shallow impurity center. This in turn causes splitting of the optical
lines and makes the absorption coefficient dependent on the direction of
the electric field of the wave relative to the crystal axes.

Nondegenerate bands

Let us consider transitions between the ground and excited states in
n-Ge under a strain along [111]). Figures 57 and 58 are energy level
schemes for a strained Ge crystal with 6=%Ens§u <0, for small (|8] <« A) and

large (|8]> A) strains (where A is the valley-orbit splitting of the ground
state.
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-#*8  FIGURE 58. Same for Ge. large strains, |8/A|3> 1.
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The probabilities of transition to the excited states p, and p. are given
in Table 38.1, for a field & making an angle ¢ with the strain direction.

TABLE 38.1
Py (1) Py (3) Px (D) P (6)
A x A2 %
a' 2 2 |3faf a? 2 2 |3 Faf
Al “) md.mq : H—uidlslnm 5
X(-§-+sin’tp) X(—a'+cos‘lp)
a’4} a’A?
3A? BFan X 32 EJEET o
Fy (1) ﬂj&;cos'w i 3+ﬂ,sln’¢ 5
X(E--{-sin’ w) X(g-&-cos’m)
2ax 2 A%
Fy (2) 0 I 0 5
X (? + sin? m) X (? + cos’q:)

¢ — angle between field & and strain direction [111]; a is defined by
(37.14a),

The dashed arrows in Figures 57 and 58 show the allowed transitions in
a longitudinal electric field, the solid arrows the transitions in a transverse
field. The degeneracies are indicated in parentheses.

Let us first consider small strains. In this case the line corresponding
to the transition A, — pp in the unstrained crystal splits into two lines, shifted

by —%!,‘s:”=-—-%- (transition A;-po(3)) and & (transition A, - pe(1)).

When & L[111] only the transition A, - po (3) is observed, but when &l [111]
both components are observed. The line corresponding to 4, — p. also

splits into two components, shifted by —% (A = p:(6)) and 8 (A= ps(2)).

When &l1[111] only the transition A, — p4(6) is observed, but when & 1[111]
both transitions are allowed. The lines corresponding to the transitions
Fy—py and F;—p. in the unstrained crystal split into three com-
ponents. One of these is not shifted and corresponds to the line position
in the unstrained crystal — transitions Fy(2) — py(3), F2(2) — p+(6); the other

two are shifted by — and % ( F2(1) = po(3), F2(1) = p+(6) and Fg(1)— po(1), p+(2),
respectively). When &Il [111] all three lines are observed for transitions
Fy— p and two lines for the transition F;— py, namely Fy(1), F2(2) — p+(6).
When & L[111] all three lines are observed for the transition F; — p: and two
lines for transitions Fa—»po: Fa2(l), F2(2) = po(3).

Under a large strain, || >A, the ground state changes considerably, and
as a result the pattern of optical transitions from the ground state to the
excited states is quite different. When & [111] the only possible transition
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from A, is to pe(l) (see Figure 58, which shows all the allowed transitions
under large strains), which is shifted from its position in the unstrained
crystal by Af4. The possible transitions from an F; state are Fg(l)— po(3),

p+(6) , shifted by %& relative to the unstrained crystal, and transitions F;(2)—>

= po(3), p+(6), which are not shifted. In the transverse orientation
& L[111], the transition A,-»ps(2)is shifted by A/4, the transitions Fs-» po(3),

Fy > p,(6) by %a, and the positions of the lines corresponding to transitions

F2(2) > po(3), p+(6) coincide with their positions in the unstrained crystal.
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FIGURE 59. Same for Si, small strains, |8/5 | < 1:
2
[] —?B“s;,‘(l).

We now consider optical transitions in n-Si under a strain along [001].
Figure 59 is a splitting diagram of the ground and excited p-states for
shallow donor centers in Si (small strains). The figure indicates the de-

generacy of the impurity center state and the energy shift for 6=%E,,e;¢ <0.

Equation (37.13) implies that under such a strain all the levels except A,
split into two.

As in the case of n-Ge, selection rules for optical transitions between
the ground and excited ps, ps: are readily established.

It follows from Table 38.2 and Figure 59 that the line corresponding to a
transition A;—p, in the unstrained crystal splits into two components shifted
by 6 and —&/2, the first line appearing when &[I[001] and the second when
& 1 [001]. Of the transitions F;— py, only Fz(1)—po(2)is allowed in the
strained crystal when & ||[001], and only F:(2)-> po(4) when & L [001]. Both
transitions correspond to an unshifted line. All the transitions F3(2)-> p+(8)
when & || [001] and Fy(1)> p+(4), F:(2)->p+(8) when & L[001] between the
states F2—ps: in the strained crystal correspond to the line position in the

unstrained crystal.



429

§38. OPTICAL PROPERTIES OF IMPURITY CENTERS

*(ep1°LE) Aq pauTyap 51 © ![T00] UONIDAIIP UTRIIS PUR @ PIa1J J11109]3 uUsamiaq 21Sue — b

& T 2+ 1)9 b owsT zo+1)¢g & us! ;o419 & so! o+1)g () _g
CEED o=y | Y GiFe e | Y ez | P D

(6500 4 ) =2 b uis & 0 n,3

T .qu.v‘ 0 ._MW +

0 & uis Ty 0 & soaly (4
(® 500+ 1) Ty 0 & sy 0 @)%

" T ®+1)9 & 7, Go+1e s ] @4+ 1)9 & 1, o+1)e .
{ «mou+ 1) m_v.l.lllillw: +ula.\: s LY Ty —7) s .f|~: +u.m|\C 500V I]aEIBv (v

19 Fd ) *d w % 1) %

2'8e ITVL



430 Ch, VIl. EFFECT OF STRAIN ON IMPURITY CENTERS AND EXCITONS

The line corresponding to the transition E -+ p, splits under a strain into
two components. In a parallel field &Il [001], the transition E-(1) — pe(2)*
is allowed; it corresponds to a line shifted by 6/2; when & L [001] transi-
tions E*(1)—+ po(4) and E-— py(4) , corresponding to an unshifted line and a
line shifted by —#8, are allowed.

The line corresponding to the transition E — p, splits under a strain
into three components. One of these coincides in position with the line in
the unstrained crystal and is observed for both orientations of the field
E+(1)— p+(8) ), another is shifted by —8 (E-(1)—» p+(8)), and the third is shifted
by 8/2 ( E-(1)= ps(4)when & 1 [001]).

The above selection rules and the nature of the line splitting under a [001]
strain are also valid for transitions from the ground state to any excited
npo and nps states.

The polarization dependence of the selection rules is similar in the case
of a strain along [110], provided we continue to measure the angle ¢in
Table 38.2 from the [001] direction, which is now perpendicular to the strain.

Optical transitions from the ground to the excited py and p: states for
shallow donor centers in Ge and Si have been investigated in a number of
papers. The line positions and polarization dependence of the line intensities
are in good agreement with theory.

As noted in §27, if we introduce corrections to effective mass theory,
the impurity center wave functions in Ge and Si are classified according to
the representations of the local symmetry group T4 (rather than 0,) and do
not possess a definite parity. From the group-theoretic viewpoint, there-
fore, transitions A, — F,(and E— F,) are allowed; the intensities of these
transitions, which are forbidden in the effective mass approximation, are
necessarily higher for deeper centers.

Transitions A, — F; for Bi impurities in Si were observed in /41.10/.

The authors measured the spin-orbit splitting between the states Ej and G’,
which, as noted in §27, split off from the state Fa.

The strain-induced splitting of the F: level for strains which are smaller
than or comparable with the spin-orbit splitting presents a more com-
plicated picture than indicated in §37; it is determined by an equation
similar to (30.33).

Degenerate band

We now consider the case of a degenerate band of the Ge and Si valence
band. The excited states of the acceptor center are now classified accord-
ing to the representations of the entire cubic groqp:_'ﬁh = Tg X Cy, i.e., they
may have the symmetry of E{*, E{*, G'*. In the efféctive mass approxima-
tion, optical transitions may occur only between states of unlike parity,

i. e., we may have transitions from the ground state G'* to states E{~, £1, G".
The probability of transitions to "even' states, which are allowed from
the group-theoretic viewpoint, is small for shallow impurity centers.

In the unstrained crystal the intensities of these transitions are inde-

pendent of the direction of the electric field vector of the wave. Under a

* Levels of the state E which increase (decrease) under a strain are denoted by E£(1). When 8§ < 0, the
solution Eyof equation (37.13) defines the level E*(1).
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strain, the G’z levels are shifted by ae and splitintotwo. The splitting A,is given
by (30.11) with b and d replaced by the correct deformation potential con-
stants b and d’ for the level, which differ for different levels. Since the
Kramers doublets Ef and E} are also shifted by ae, an isotropic strain does
not affect the position of an optical transition line in the effective mass
approximation.

An arbitrary strain splits the lines of the optical transitions from the
ground to an excited state: lines corresponding to transitions G'*— E{~, Ef~
are split into two components shifted by +A./2 relative to the unstrained
crystal. The G'*—G’~ line generally splits into four components, shifted by

FERIIY, S RN}

where Al and A} are the splittings of the first and second levels.

Selection rules for optical transitions in the strained crystal are readily
derived from group-theoretic considerations.

Let us consider strains along [001] and [111]. Under a [001] strain, the
symmetry group Oy = T4 X C;is reduced to Dy, and the representations
Ei~, E2~, G'*, respectively, become the following representations of
D.m = Dm X C|.'

E{"—=E{", E—E{", G'*=>Ei*+ E*. (38.3)

Of course, group theory does not tell us which level of the representations
Ei*or Ej*that split off from G'* is the lower; this is determined by the sign
of the deformation potential constants and the sign of the strain.

Use of character tables shows that

E"XE*=E" X Bi* = AT + A7 + E, (38.4)
Ef* + B =By + B +E,

where A7, Az, Br, Bz, E” are the corresponding single-valued odd representa-
tions of Dg (Table 11.1). Since 2 transforms according to the representation
A7 and x, yaccording to E-, it follows from (38.3) and (38.4) that, for the
longitudinal orientation, the only allowed transitions for G'*—E;~, E}~ occur
from one of the split states, the corresponding lines for transitions
G™* - E|”, G' - E{” being shifted in different directions relative to the line
position of the unstrained crystal. In a transverse field, both transitions
are allowed.

In a longitudinal field, the only allowed transitions G'+-» G'- are Ej~—Ej*
and E}” — E}"; tothese correspond two lines which are shifted relative to the

unstrained crystal by + %(ﬁ: — A)) if the deformation potential constants b]
and b} for levels G'* and G'~ have the same sign and by 1%(&14-&3) otherwise.

According to (38.3), all four transitions are allowed in the case of a
transverse field.
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FIGURE 60, Splitting of acceptor levels
under a [001] strain.

Figure 60 shows the impurity levels for a strain along [001], in the case
that the deformation potential constants 6f and b7 have the same sign and
the state Efis the lower of the split levels. The figure shows the
allowed transitions in longitudinal and transverse fields.

Under a [111] strain, the 0, symmetry is reduced to Dy=D;XC;, and the
representations of the group 0,=T,XC,; E{~, E~, G’* become double-valued
representations of Dy=D;XC;:

E{"—E", Ey"—»E~, G'*=E{* + Ei* + E'*, (38.5)

where E'* is a two-dimensional double-valued representation of Dy, E*and
Ei* one-dimensional representations with complex conjugate characters.

As in the case of a [001] strain, the G’* level splits into two Kramers
conjugate doublets, the representation £’ and the representations Ej 4 E3,
separated by A.=(2d’/}/3)efi; in the general case, therefore, the absorption
lines corresponding to transitions G’* — E|~, E}~ split into two components
and the G'* -+ G’~ line into four components.

It follows from character tables that

ETXE*= AT+ A7 + E7, E”X(Ef* +E5*)=2E", (38.6)
(E* + Ei*) (™ + Ei7) = 2(AT + 47).

Since a parallel strain of the x; coordinate transforms according to the
representation Ay and the perpendicular components according to E, (38.8)
yields selection rules for transitions between the states G'* and Ei~, Ef",
G’~ under a [111] strain. For transitions G*— ET, E7, one line, correspond-
ing to the transition E’* - E’",is observed in the parallel orientation, while
both split-off lines are observed in the transverse orientation.

For the transition G’* — G’~, with the field parallel to the strain, the
allowed transitions E’~—E'* and E{*4E{* — E{”+E}~, corresponding to lines
shifted by =+ 1/,(A? —Al) from the line position in the unstrained crystal if
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difdi >0 (or by = ',(Af 4 Ag)) if djfdi < 0 . In the transverse orientation three
lines appear, corresponding to transitions E'*—E'~, E'* 5 E{” + E}” and

Ei* 4 E5* - E', shifted by =+ '/,(A2+ Al) and 1,(A2—Al) if dj/d] >0 (if difd] <0 the
line shifts are = ',(A2—A!) and ', (A2 4 A})).
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FIGURE 61. Splitting of acceptor levels under a [111] strain.

Figure 61 illustrates the splitting of acceptor levels under a [111] strain
when dj/d; > 0 and shows the allowed transitions for longitudinal and trans-
verse fields.

The above expressions for the nature of the line splitting and the
probability of optical transitions were obtained under the assumption of a
small strain, for which the strain-splitting and the level shift are small
compared to the separation between the nearest excited states.

In Ge, which has close-lying excited acceptor states, this approximation
is not always valid.

When there are close-lying levels and the strain splitting of the levels
is comparable with or greater than their separation, one must consider the
entire group of close-lying levels as a whole, using degenerate perturbation
theory. In this case the energy and the wave functions in the strained
crystal are determined by solving the characteristic equation, whose degree
is equal to the number of close-lying levels.

Experimental investigations of optical transitions between ground and
excited levels of shallow acceptor centers in strained crystals of Ge and Siare
presented in /41.1-41.9/, Investigating the nature of the strain-induced
line splitting and the polarization dependence of the intensities, one can
identify most of the lines with the transitions from ground to excited states
considered by Schechter /21.4/, Mendelson and James /21.5/.
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§39. PARAMAGNETIC RESONANCE ARISING
FROM SHALLOW IMPURITY CENTERS

In this section we discuss Zeeman splitting of shallow impurity centers
in many-valley and degenerate semiconductors, and its behavior under a
strain.

Many-valley bands

In a semiconductor whose constant energy surfaces near an extremum
are ellipsoids of revolution, the energy levels and wave functions of an
impurity center in a uniform magnetic field H are determined by equations
(33.1), (22.21):

2 2
{2::. (ki+k3}+:Tk§—7z+%(gma+2L)H}f=Ef, (39.1)
where po is the Bohr magneton, po=eb/2me. In a nondegenerate band fis a
two-component quantity, corresponding to two Kramers-conjugate functions
of the band bottom. As shown in §22 (see (22.22)), the matrix L determines
the correction to the g-factor of the band carriers due to the effect of the
other bands. If the level splitting caused by the magnetic field is small
compared to the ionization energy of the impurity (the case to be considered
presently), the external magnetic field may be viewed as a perturbation. If

the vector potential is taken to be wﬁ=%[ﬂx], the perturbation operator
ieh

K =5 1o (800 + 2L) H — oo (st e+ Sty o) — 22 54, -2

becomes
=g o (€00 + 2L) H + o 7~ (ZH) +
—}—p.,(HJ_%-—H_x;gz—)m(;:—‘—;lr]. (39.2)

where H==%(H, xiHy), x, =%(x + iy), £ is the orbital momentum

operator, £, =—i (x -% — g-;;), etc.

The first term in (39.2) describes that part of the level splitting in the
magnetic field associated with the wave functions of the band bottom; the
second and third terms represent the contribution to this splitting due to
the orbital motion of an impurity electron. To determine the splitting of
the impurity levels in the magnetic field, we must find the matrix elements
of #n between the envelope functions of the impurity ground state. It is
easy to see that symmetry considerations dictate the vanishing of the
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contribution from the last two terms in (39.2) for the ground state, and
consequently the Zeeman splitting of the ground state in the nondegenerate
band coincides with the Zeeman splitting of the band carriers near the
extremum.

The spin Hamiltonian for the [-th extremum may be written

1
Hy=5 11-02 840, Hy  where gl =g, + Sp(L{a,); (39.3)
@

gly are the components of the g-factor of the free carriers of the /-th
extremum. The symmetry of the g-factor is determined by the little group
G, and is analogous to the symmetry of the effective mass tensor. If the
constant energy surfaces are ellipsoids of revolution, the g-factor is also
determined by two components g, and g, .

The Zeeman interaction (39.31) of the impurity center is referred to the
axes of the /-th ellipsoid. It is often convenient to go over to the co-
ordinate system defined by the principal axes of the crystal. The Zeeman
interaction operator will again have the form of (39.3), but the gj; are ex-
pressed relative to the crystal axes in terms of the principal components
of the tensor g, by

g;'s:- g g,cos (¥, x,)cos (xl, xy), (39.4)

where cos (xl, x,) are the direction cosines of the principal axes of the [-th
energy ellipsoid relative to the principal crystal axes x,.

If the splitting of a many-valley impurity center degeneracy due to
chemical shift is neglected, it follows from (39.3) and (39.4) that in general
one should observe a number of paramagnetic resonance lines for each
extremum, determined by the g-factor (39.4): these lines may coincide for
certain magnetic field directions. If, however, the chemical shift is
significantly greater than the Zeeman splitting (which is usually the case),
one must consider paramagnetic resonance at each of the levels formed as
a result of chemical shift. As is evident from (27.10), each such state is
described by the expansion coefficients ¢ of the impurity center functions
in terms of the impurity states near the extremum k. If the state in
question is m-fold degenerate, there are m columns ei (s=12 ..., m) of
coefficients.

The Zeeman interaction matrix for a onefold degenerate state has the
form of (39.3), and the effective g-factor is

=2 e, g2f (39.5)

The summation in (39. 5) extends over all extrema. If the state is
degenerate, the matrix elements of #y are

£ hl‘.’. 55",
=4 g‘gﬂa%”v (39.6)

where

g:;'=; c,‘sc;'g;:,. (39.7)
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Let us consider the g-factor for donor centers in Si. For the singlet
state A4, it follows from (39.5) and (27.20) that the g-factor is isotropic:

g:8=%(gl+2gi)6¢ﬁ’ (39.8)

as it must be for a symmetric state in a cubic crystal. The matrix &« for
the doublet state E, relative to the basis functions (27.20), is

g,+2% 2,~¢ g,—g
1 L | S N 5L
— (.m _'.T ((. Hj_mz"" 2 '(3_ ('ij_.yH") ( 3 9 . 9 )
&, g+ £,~8 '
S L1 1
v (oo ) ..,.l_a....._ (.m_J_s__ ((oH) =30, H,)

where o: are the Pauli matrices. If g,+ g,, the Zeeman splitting depends
on the direction of the magnetic field.

The matrix #u for the threefold degenerate (neglecting spin) level F,
relative to the basis functions W, ¥}, ¥, (27.20), is

g, (eH)+(g—a, ) H, 0 ’
o €, Ht@-a, ), 0 :
0 0 'R IOHH{!'-EL) o H, (39.10)

Thus the Zeeman splitting of the F;level relative to the crystal axis isde-
termined, as is that of the band carriers, by three anisotropic g-factors.

We now consider the g-factor for different levels of the ground state of
shallow donors in Si, under a [001] strain such that the strain splitting
significantly exceeds the Zeeman splitting. In this case we may consider
the g-factor for each of the split levels.

According to (39.5) and (37.14), the g-factor for the ground state in the
strained crystal becomes anisotropic and has two components g; and g’
relative to the strain direction:

fi"iﬁ)'{ggl(l_?"?ﬁ‘")z'}'g'(l'*'"m}' (39.11)

= {0 -7+ 04V D+ - )

where a is given (37.14). For large strains ¢ | we have a— —1/V2, but if
x<€—1 then a— VY 2and from (39.11) we obtain

] . +
G—e, -5 @3, (39.12)
8,8, & —& (x—1).

The g-factor for the state with energy E; (37.13) is obtained from (39.11)
by substituting-1/a for @. The g-factor for the second doublet level E; (37.13
is independent of the strain:

Ll . g +g
g=g, g=—"5-. (39.13)
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For a [001] strain, the Zeeman splitting for a triplet level is determined,
as before, by (39.10). Similar expressions for g-factors hold in the case

of a [110] strain, provided we replace x by &, —GE—E,& in the expression

for @ in (37.14).
We now consider shallow donors in germanium. The g-factor for the
singlet state is again isotropic,

. &Gt2%
gglal.

The Zeeman splitting matrix for the triplet state, relative to the basis
functions Wi, Wi, w3 (27.22), is

g +2% g~ -
ST om) P ety oyt B (e, 4 ey
- +2g -
& 3 £L (028 y + 0y H;) g'TJ' (oH) &ggiufﬂy +o.H,)
g —8 g—8 + 2,
L2 Haout Hioy) D2 oy ooty BT L o (39.14)

As noted above, under a [111] strain the triplet state splits into a onefold
state E; (37.4) and a twofold degenerate state with energy E;= E, (37.3), while
the state with energy E;is mixed with the singlet state with energy E,.

The g-factor for the singlet and onefold degenerate states has two com-
ponents g and g relative to the strain direction:

4 g +2, a?—1

ﬁ=3+“’( 3 ) 3+a &r .

. 4 (g +2,\  al—I (singlet state E))

8¢=3+.,s( X ) e (39.15)
. da* g, +2, 9—a? :
O=3F@ T FITEEAE | (qrate )

. da? f|+2fl 9 —a?
Si=335a 5 tIigTar iy

and ais given by (37.8a). For a zero strain, a= 1; for a large strain, if
Xx=+—o00 then g@=—+o0, and if x — oo then a—0. In this case, we obtain for the
singlet state

g=g, g =¢, (x—> — o), (39.16)

"8’| +5¢,
9

- l -
g|=i(g|+sgl)$ gJ_= (x_’m)-

Corresponding expressions for the g-factor of the E;level may be obtained
from (39.16) by reversing the sign of the strain,
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Degenerate bands

To determine the Zeeman splitting of acceptor levels in a degenerate
band, we must replace kgzkp in the kinetic energy matrix (k) by the
symmetrized product [K,Kp] and in addition, according to (26.14) we must
include in # the term

gmo("(m}+9§!?!ﬂ). (39.17)

Thus the interaction matrix in the linear magnetic field approximation for
the degenerate I's band has the form

= o8y (4 TH) + 9 ZTH ) + pod€y, (39.18)

where #} is obtained from the operator (k) describing the hole spectrum
in an ideal crystal by the substitution kgkg——i(A4Vs + AgV,). In a nonde-
generate band, in the case of an ellipsoidal isoenergy surface, ¥k cor-
responds to the second and third terms in (39.2).

To determine the Zeeman splitting of an impurity level we must
evaluate the matrix of the operator #» between the impurity center wave
functions. Symmetry considerations imply that the resulting perturbation
matrix X may be written in a form similar to (39.17):

Hi'=w(a (0 + & Z5H). (39.19)

The constants g, and g in this equation may be expressed in terms of 4, ¢4
and the band parameters A, Band D.

Two remarks are in order here.

First, the constant ¢ for band holes is relativistic and must be small
/20.1/, whereas the constant g2 in (39.19) is not relativistically small and
differs from zero even at ¢ = 0.

Second, the Zeeman splitting constants g, and g: also depend on the
orbital parameters A, B,D, so that they do not vanish even at #=¢=0. In
this sense the situation for an acceptor center is analogous to the case of
free holes, for which the g-factor is determined primarily by the band
parameters A, BD. The constants g, and g, for Ge and Si are evaluated
in /42.9, 42.10/. Calculations using the trial functions for the impurity
center ground state /21.4/ show that for Ge

g1 =—=8.49, g,=0.6, (39.20)

whereas go# = -6.82, gog = -0.12. The deviation of g,, g, from #, g(like
that of &', b from b, d) is due to the fact that the impurity center wave
functions depend on the angles, so that, if we set ¢;=c;=0 in (27.23), then
g1=go? and g,=ge¢. However,as Mendelson and James have shown /21.5/,
the angular dependence of the trial function is highly sensitive to the
method of calculation, and it is therefore difficult to estimate the error in
g and g, when an approximate wave function is used.
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Diagonalizing the matrix (39.19), we obtain the splitting energy of the
acceptor center in a magnetic field:

Ejp= 1!-‘0{ % [9 (&'1 + % 82)2 + (El + 'gf)!} +
+Heo+7a)(o+2 ) 1 —9a(a+3a)x
X(Ififfﬁ+ﬁiﬁi+ff£ﬂ£)]“”}”’, (39.21a)
{2 [o(a + 2 0 + (18] -
—(a+fe) (o +Fa) 1 —9a: (e + % &) X
X (HiH} + HiH2 + HLHD] " )7 (39.21b)
If g,= 0, the energies Ej,== %lg. |uoH belong to states with m= + 3/2, the

energies E; = :tl“;—'iun!{ to states with m=+1/2; the energies do not depend

on the direction of H.

If g % 0, the Zeeman splitting of the acceptor center depends on the
direction of the magnetic field H:

when the direction of H is along [001]

El.a=i%}‘n”(§1+%gx)- EM=1%H"(gI+%L); (39.22)

when the direction of H is along [111]

El.2=i%!][5(8| +%gﬂ)!+3(gl +‘§‘ gzje.

(39.23)
Eu=+ %7 (g, +3g)
In the general case, when g; %= 0 and the direction of H is arbitrary, para-
magnetic transitions are allowed between all the split levels. The
probabilities of transitions with selection rules Am==1 (transitions
E,—E,, Es—E, E,—~E;) are proportional to g?; the probabilties of other
transitions are proportional to g2, so that if |g| € |g| these lines are much
weaker.

To date, no observations have been recorded of paramagnetic resonance
due to degenerate impurity centers in unstrained erystals. The reason is
apparently its short lifetime, due to strong interaction with acoustical
lattice modes, the considerable line broadening caused by strains arising
from dislocations and other defects, and the electric field of charged
impurities.

In the presence of an external strain, the operator #y (39.18) must in-
corporate an operator #'(e) describing the interaction of the impurity
center with the strain, which is similar to (30.9). Then, using (27.62), we
find that the splitting of the acceptor levels in the strained crystal is
determined by the operator

3’==|zo(m(lﬂ')+&2ﬂ!ﬂ)-—as!+b’E(!?—-%)su-l—T%-Elhh]su- (39.24)
i i

iokf
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FIGURE 62. Splitting of the ground state
of an acceptor center in a magnetic field:
a) unstrained crystal, b) under large
strains.

We first consider relatively small strains, when the strain-induced level
splitting exceeds the spin splitting: 24, > #e, but 2A, €« E;. In this case the
fourfold degenerate state of the acceptor center splits into two Kramers
doublets. In a magnetic field, each of the Kramers doublets splits into two
levels (see Figure 62b).

To determine the Zeeman splitting of each of the split-off Kramers doub-
lets in the zeroth approximation with respect to ha,/A,, we must evaluate
the operator #x (39.19) in a new representation which diagonalizes #'(e).
The calculation yields the following value of the Zeeman splitting AE;sin
the strained crystal /40.4/:

BE, 3=t Z(H.833Hy) ", (39.25)

where

=5 {[= V& (a+ Ta) + 0 (Tre—3e. (2 + 7 &) +
+3d” (€2, + 2 )(g. +1&)(a+7a) (39.26a)
82 =L Vadesen(a + L a) +
+en(e+ T &) [F2VE (@ +Ta)+
+ 0/ (Spe—3e) (&1 + 4 &) }- (39.26b)

The other components gi¢ are obtained from (39.26) by cyclic permutation
of the indices x, y, 2. The indices 1 and 2 in (39.25) and (39.26) refer to
the states with hole energy & V/&,, respectively.

As follows from (39.26),.in the strained crystal the g-factor of each of
the split-off levels is anisotropic and depends sensitively on the direction
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and sign of the strain. For a strain along [001] and [111], the g-factor has
two components g, and g, relative to the strain direction; their values for
the lower level (level 1) are given in Table 39.1, depending on the sign of
the strain. The g-factors for the upper level are obtained from these
values by reversing the sign of the strain.

TABLE 39.1

foo1} [

&f L rr L ’ "
2 >0 by, <0 e >0 dey <0

1 9 13 23 187 2
& ‘I""'T‘l 3(8:4‘7&) 8|+T8: 3(ﬁ+?£1§2+W8§)

3 7
€, | 2g +6g: 78 281""'4‘3: 0

Using the acceptor center wave functions in the strained crystal, we can
compute the squared absolute value of the matrix element of a paramagnetic
transition caused by a high-frequency field A(f) = hcoswf. The perturbation
operator is

73‘=pucosmf[gl(Jh}-l-g,:ﬂ!}h‘)]. (39.27)

The matrix element defining the transition probability is

2 12 125 ) _ 12
| #a, mF‘-‘-?(HJ H’)(‘}:fmg:gf’) (Hasagh )’ . (39.28)

The transition probabilities display a fairly complicated angular de-
pendence, determined by the orientation of the constant and high-frequency
magnetic fields relative to the crystal axes. In the case of a strain along
the principal axes, (39.28) becomes

(e X w1} + (80 (H X AR
Ixh IRP*_"F‘E (ﬂ.‘z)iﬁi_!_(g]}):”i ! (g'f)’ (39.29)

This implies that the transition probability vanishes at g, = 0, as is the
case, e. g., for a [111] strain with d’%, <0.

It is highly significant that the conditions for observation of paramagnetic
resonance are considerably more favorable in a strained crystal than
otherwise, since under a strain the line-broadening mechanisms are
significantly weakened. Since the strain and the electric field alone cannot
cause splitting of Kramers levels, their effect may be sensed only through
consideration of another split-off level, which reduces the heterogeneous line
broadening by a factor of A/t /40.4/.

Paramagnetic resonance at acceptor levels in strained crystals of Si
was first observed in /42.1/, under a compression along [001]. Figure 63
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shows the appearance of a paramagnetic resonance line when a strain is
applied. The experimental dependence of the position of the line for dif-
ferent acceptors, as shown in Figure 64, is well described by the two com-
ponents g, and g, of the g-factor. To determine g;and g from (39.28)~
(39.26) using experimental data, we need the signs of the constant ¥ and of
the ratio g,/g,. Depending on these signs, one obtains four systems of
values g and g; from the known values of |g,| and |g,|.

P=0
ET
P30 kg/ cm® 26 | |
] ot B(E=45mv)
\'\.\_/ \"""n-— 21}3{.‘_{@‘1
E 20
g Gal£ 7mv)
7] L 18 . <
P=300xg/ cm? 8,5 RN
Y B N
" ) In(£=154mv) oy
\ SN P ICEES NS NN
10
a8
2400 2500 2600 2700 2800 060 70 80 50 w0 0 2D 19 0°
H, oe ¥
FIGURE 63. Paramagnetic resonance at FIGURE 64. g-factor of acceptor center
acceptor centers in strained Si /42.1/. in strained Si vs. angle @ between magnetic
T =13K, ¥= 9065 MHz, field and strain direction /42.1/. T=1.3K
v~ 900 MHz.

If the values of g, and g, for a [111] strain were known, it would be pos-
sible to determine g and g; uniquely. These data are not given in /42.1/,
but the authors note that the values of g, and g, for a [111] strain are close
to their-values for a [001] strain. It follows from Table 39.1 that this
situation is possible only if ¢’ <0, ¢’ <0, g,/g,>0 and |g|<|g|. These
conditions agree with the theoretical estimates, since according to
Table 37.1 the signs of b, d’ coincide with those of b and d, and it is known
from other experiments that b <0and d <0in Si. The inequality |gs|<€|g:|
follows, as shown previously, from theoretical estimates using trial functions.

TABLE 39.2
B Al Ga In
& =121 | =L19 | —=LM -—1.00
r'y 0.002 0.047 0.051 0.087
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Table 39.2 presents values of g, and gy calculated from the experimental
data in /42.1/ for various acceptors in Si. The sign of g, cannot be deter-
mined from the experimental data, but we may expect it to coincide with the
sign of #; according to /20.1/, #<0in silicon. The table shows that &l
decreases and |gy| increases, with increasing ionization energy of the
acceptors.

For large strains, A, *® E;, the acceptor center energy levels correspond,
as noted in $26, to a simple ellipsoidal band, and the g-factor is given by
(39.26) with g and gyreplaced by g and gof, respectively.

§40. EFFECT OF STRAIN ON OPTICAL PROPERTIES
OF EXCITONS IN SEMICONDUCTORS

One of the most effective methods of exciton research is to exploit the
optical effects associated with the excitation of exictons. Measurement of
the change in the absorption or reflection coefficient in the region of exciton
transitions enjoys several advantages over direct observation of interband
transitions, while yielding practically the same information about the band
structure in the case of shallow excitons.

Since the original state of the crystal without the exciton is completely
symmetric, the general selection rules for direct excitons allow optical
dipole transitions to occur only to exciton states which transform like the
components of the vector p (or 8),1i.e., states belonging to the representation
D7 in cubic groups or the representations split off from @i in groups of
lower symmetry. Similarly, magnetic dipole transitions are allowed to
states which transform like the components of the pseudovector [rp] or H,
i.e., states belonging to representations which split off from [D] X Di] =
= @} . Quadrupole transitions are allowed to states which transform
like symmetrized products [r,pg], i. €., to representations splitting off from
the representations (@7 X &7} =®DF + DF. In the case of shallow excitons
the probability of a transition to an allowed state depends essentially on
whether the transition between the corresponding bands at the extremum
point is allowed. If it is allowed, the line will be relatively strong. For
this reason, quadrupole and magnetic dipole transitions, whose intensities are
significantly lower than dipole transitions, may apparently be observed only
when the corresponding interband transitions are allowed.*

If the interband transition is forbidden at the extremum, the matrix
element of a transition between states with ks« 0 is proportional to the
first (or higher) power of k (see (36.3)). Since exciton states are super-
positions of states with k=~ (2m*Ed/#?)'%, where Eois the exciton binding energy,
the intensity of the transition will then be proportional to the first (or
higher) power of EyJE; where Ejis the separation to the nearest band to
which a transition is allowed from both the conduction and valence bands.

In this case the excitation of an exciton may be regarded as a virtual
transition through one or more intermediate bands.

The absorption coefficient or the corresponding conductivity tensor ¢
associated with exciton excitation may be calculated from the general
formula (36.1a).

* To date, quadrupole transitions have been observed only in one crystal, cuprous oxide /43.1, 43.2/,
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In the effective mass approximation, where the exciton function is ex-
pressed as a superposition of valence band hole states (n, &) and conduction
band electron states (m, k), the matrix element of the current operator for
a transition from the ground state of the crystal to a given exciton state !
may be expressed as the corresponding superposition of matrix elements
for the transition of an electron from state K(n, k) to state (m, k), since, as
seen in §27, the formation of a hole in state (n, k) is the excitation of an
electron from the state K¥,, =v¥x(,s,- As shown in the supplement to this
section,

f;(Q)- m§l| C;:.h n, g8, iM“(kI' q), (40.1)

where

Tten B ) =Tres, k(0. g1y =3 (Prusd (D K¥, o_s)-

We have used the fact that, by (36.3), the interband matrix element of the
current operator differs from zero only when k,=¢ —#&,,1i. e., when the total
momentum of the electron-hole pair is JH =Rk + k;=q.

By (217.51), the coefficients Cms, ns, are the expansion coefficients of the
exciton function F.(r. o) in the effective mass approximation:

Flt, ma(F1s 72) = o €%l (1) == 3 Chas, ae' @759 (40.2)
%, mn (F1: 72) V& 1w malr ,.§'m
and so
b o (P)= - C s ns®™ 40.3)
[ 7‘?.2 mk, n—d (
By (36.1a),
030 =505 Nit(— ) @)(0 =) (40.4)
]

The summation is performed over all exciton states with the given energy
hoy=Ey — E|.

In the case of nondegenerate bands, when equations (27.63) reduce to
one equation for the single function f(r) (not counting the exchange inter-
action), the coefficients Cms,ms, are independent of the indices m and n, and
we may take each exciton state /to be the state corresponding to a definite
pair m, n, and summation over [ may be replaced by summation over m and
Kn, which in this case is equivalent to summation over m and n:

053 (©) =505 X, Co.-sCr, v Nina(®s — 15 (¥, 900 —0).  (40.5)
1 4 mn

If interband transitions are allowed at the extremum point, the matrix
elements j,, may be viewed to a first approximation as constants which do
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not depend on k&, and then
05(0) = 4= PO Y it (—9) £ (@) 8 (0 — @), (40.6)
since, by (40.3),
+ g Cy, -¥Ca, -4 =(0) [ (0).

By (36.3b), for dipole transitions,
o =en,[m.
In the case of spherical bands it follows from (36.4) that j*=esp,0,, and
053 (0) = = €25% | (0) F 3,00 (0 — @), (40.7)
since
..2.. 02,08, = Tr(0,0,) =208, (40.8)

In this approximation only excitons in the s-state may be excited, since only
for these does f(0) fail to vanish. For these states

|f.(o)|=-8—a%n—,-, where ao—%’;-, (40.9)
and so
ug’(m)—%o,ﬂo(w—n,). (40.10)

If the constant energy surfaces are coaxial ellipsoids, the tensor og, re-
ferred to principal axes, also has only diagonal components; by (36.5), the
constant & in (40.7) must then be replaced for each component by sg.

Let us now consider the case that only transitions between states with
k9 0are allowed and the matrix element of the transition is proportional
to k:

where, by (46.3b),

o B N mpag | Apag, 0
Rmn=s M En—f, t B i (40.11a)
2
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Substituting (40.11) into (40.5), we obtain

o;;(m)-ﬁzfgirmzmmm-m (40.12)

since, according to (40.3),

2 Cw, —wkaCs, —-sky = ( 9%a )n—ﬂ (Ee‘tl-)

In the case of spherical bands, we have from (36.4) that
Jo== % 002 (05418042 + Osskasi)

and so, in view of (40.8), we find that

wn'e* af (0) |2 3f (0)
o= 9,
®= [ ﬂﬂ(l Oxa+1 Oxa+s ( 3)
6!’(0) _of (0) af*(0) af(0) 40.1
+ 8as1,p L 4 8040,y L D 130 — ).

For hydrogenic functions, the derivative _a_rjo_ differs from zero only for

p-like functions, and moreover, there is on]y one nonzero derivative for
each of the three functions X, ¥, Z: the derivative with respect to x, y, 2,
respectively. We than have

a0 3@ (40.14)

A (0)F==| oy [

Thus, only transitions to two of the three p-like functions, namely X,y and
Xq42, contribute to each of the diagonal components 0,4, and the off-diagonal
components 6,p vanish. Consequently, summing (40.13) over all p-states,

we finally obtain

0= o bug | VI (0) PO (0 — @) (40.15)
or, in view of (40.14),
o= —,,__M - d0gd (@ — @y). (40.15a)

If the constant energy surfaces are ellipsoids of revolution, the p-state
splits into X, Y and Z states. The component o;; then differs from zero
only for transitions to the X and Y states and is determined by a formula
differing from (40.15) in the substitution of 8} =62 for 6 (see equation
(36.5)); the component 0« {0y,) differs from zero for transitions to the ¥
or X state (Z state) and is determined by a formula differing from (40.5)
in the substitution of e£+ei for 202.
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If the matrix element of a transition is proportional to &% only excitons

9% (0)
Oxq 05’

in the d state for which the second derivative differs from zero will

be excited.

We shall now consider the effect of a strain on the exciton spectrum,
and how it is manifested in optical effects. We shall first neglect exchange
splitting, since, as will be seen further on, it appears only under special
conditions.

Nondegenerate bands

In the case of nondegenerate bands, a shift of exciton lines corresponds
to a change in the band gap, since the comparatively small change in ef-
fective mass has practically no effect on the activation energy of an exciton.*

As an example, Figure 65 illustrates how the activation energy of
excitons in CdS changes for different strain directions /43.7/. The three
lines A, B, C correspond to three excitons formed by an electron-hole pair
in one of the three valence bands. If we neglect the strain-induced change
in the exciton binding energy, the behavior of these lines corresponds to the
relative change in the separation from the conduction band to the three
valence bands and is described by equations (31.23), (31.24) and (31.15).
The terms proportional to e:; and e+ &, in these equations are accurate,
but those proportional to ezz— eyy, &2y, €2 and e, are accurate only up to e,
If the separation E%— E3 of the two lowest-lying levels is much less than
the separation Ej— EZ to the third level, which, by (31.16) and (31.17), is
the case when

2AccA
oo Far < b (40.16)

we can derive a more accurate expression for these low-lying levels, valid
for any strain under which the shift of these levels remains small compared
to the separation to the third level. If we omit the matrix elements as-
sociated with the third level in (31.19), the eigenvalues E, . will be given by
a formula similar to (24.14):

P L il(E=;£§)’+lvF+NF}m- (40.17)

* When the exciton binding energy is comparable with the separations between the nearest bands, as is the
case, for example, for many wurtzite-type crystals, the exciton state is a superposition of states of different
bands. A change in the interband separation may then significantly alter their contribution to the state in
question and consequently cause a change in the ionization energy. At such small interband separations,
the strain-induced change in effective masses may also be significant. However, since the exciton binding
energy in these crystals is determined as a rule by the effective electron mass, which is much smaller than
effective hole mass, we may usually disregard the change in ionjzation energy for these crystals. As for
the polarization dependence considered below, the contribution of several nearest bands to the exciton
state cannot lead to forbidden transitions becoming allowed, since their being forbidden depends only on
the symmetry of the exciton state; however, the ratio of the intensities for the allowed polarizations may
then change.
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FIGURE 65. Exciton activation energy in CdS vs. stress for different stress directions
/43.7/. T =11K,

We see from this formula that levels 1 and 2 may intersect, as is the case
in Figure 65a, only for strains e. 7= 0 or e« + &y 7= 0, when the values of
E! and Ejdetermined by (31.15), (31.14) are comparable. On the other
hand, for strains corresponding to the curves in Figure 65b and ¢, when
the components ez — ey, &z, &z Or &: do not vanish, the constants appearing

in (40.17),
_ (06— EY Di(s}, +¢}.) w:l(-,,—sﬁl)’wﬂ’j
IVP="— gy |8F= ) (40.18)

differ from zero and the terms cannot intersect.

The deformation potential constants for CdS may be determined from
the curves in Figure 65. In so doing, though, one should remember that in
the region where the energy spacing is comparable with exchange splitting
the exchange interaction must be included in the calculation of strain-
induced effects. The corresponding data in Table 40.3 were obtained in
/43.17/, with allowance for the exchange interaction.
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The strain-induced line shift is accompanied by a change in the transition
intensities for different polarizations. As is clear from equation (40.6),
the polarization dependence of o¢* is determined by the polarization depend-
ence of the interband transitions.

In the linear s approximation the current operator matrix element jma,
which determines the probability of a transition from a valence band state
n to a conduction band state m in the strained crystal, is, by the general
formula (15.51),

z Mﬂ'u (‘) (40.19)

where jp, is the matrix element in the unstrained crystal, which is, accord-
ing to (36.3),

Tna ™5 i o (B).

Here (k) is the "interband" matrix (31.29) and the .. (¢) in (40.19) are

the matrix elements of the intraband matrix (31.19). For example, under
strains which break the lattice symmetry the excitation of an exciton
associated with the highest lattice band (4), which belongs to the representa-
tion Iy, is also possible for longitudinal polarization &|IC. It is evident from
Table 31.6 that in the unstrained crystal such transitions are forbidden.
Substituting the matrix elements from (31.19), (31.29) into (40.6), (40.19)
and using (31.21a), we find the relative intensity of such transitions in the
strained crystal:

Su _ 2P} D5(E)— By — EGY(eh, + €)) + D3O [(egs — 8,,)" + 4eE,
TR E-BE-BF L (4020

Here E} is the position of the corresponding extremum in the unstrained
crystal, given by (31.16).

Degenerate bands

In the degenerate model, determination of the exciton spectrum in strained
crystals requires solution of the system of equations (27.63), with the
operator # incorporating terms proportional to e, as in the treatment of
impurity centers in §37. Again, as in the latter case, we must distinguish
two cases.

Under small strains the splitting of degenerate exciton states does not
coincide with the band splitting, but is determined by a matrix # (e) similar
to (37.186).

If we use trial functions of the type (27.23) for the ground state of a
direct exciton in Ge, the relationship of the constants & and d’, which de-
termine the splitting of this state under small strains, to the band constants
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b and d is described by equations similar to (37.17) (c4=0as A->oo):
b =b(c?— d’==d(c’—-c’—i) (40.21)
(@ —c) 1—g-3). :

The constant g’ defining the exciton level shift under an isotropic strain is
the sum of the constants —a <4 ¢ which determine the change in the band gap.
For large strains, when the band splitting exceeds the exciton binding

energy, each of the split bands corresponds to a fixed group of exciton
levels which are shifted together with the band. The binding energy of each
of these levels is determined by the effective mass of the band, and there-
fore the ground state binding energies for the split excitons are generally
different and differ from the binding energy in the unstrained crystal. If
the anisotropy of the reduced mass tensor (27.85) is low (as it is in Ge,
owing to the small effective electron mass compared to the hole masses),
these energies are close together. Thus, for a trial function of type (27.17)
it follows from equations (27.18), (27.19) that for a small anisotropy

-tz ) ()

h LY ml

the exciton binding energy is

Ey= Eo(m) (1 —35) = & () (1 +55)- (40.22)

Here Ey(m)and E, %}are the "isotropic exciton' binding energies e'm/2%»* for
- T\ .
m=m and m=(?) , respectively, where

=5 (R, + 2 ), (l)—%(ﬁ#'+*—2l).'

Since, as we see from equation (30.18), the average inverse hole mass
(1/mn) in both split bands in strained Ge is (2/#?) |A| for any strain, it follows
that always

()= + a4

and if the anisotropy is ¥ < 0.5 the binding energies in the two split-off
bands differ by at most two to three percent. Hence, as is clear from

* If the dielectric constant is also anisotropic, as is the case, for example, in crystals with wurtzite structure,
equation (40,22) is valid with

(;nl-)"' '::‘(‘:f +’;—‘-,—;-I-), o () P, ,..(f})"l (m_:_ _%%) (40.22a)
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Figure 66 /43.8/, the straight lines representing the behavior of the exciton
levels under a strain "nearly'' intersect at e = 0, and the experimental points
lie on one straight line under both compression and tension; this would

not have been the case had there been a significant change in the reduced
effective masses.

AE, 107 ev

FIGURE 66. Splitting of the ground state of
direct exciton in Ge under a [111] strain /43.8/.

For indirect excitons in Ge and Si we must also allow for the difference
in the shifts experienced by different conduction band extrema, along with
the valence band splitting. Therefore, under an arbitrary strain, the ground
state in Ge splits into eight levels and in Si into six levels. Under a strain
along the principal axes, when all or some of the extrema are shifted uni-
formly, the number of split levels is smaller. For sufficiently large
strains, each pair of split-off bands corresponds to a specific exciton,
whose shift is determined by the shift of the corresponding bands.

For example, for Ge strained along the [100] axis, when the conduction
band does not split, there are two levels, whose splitting is determined by
the valence band:

AE,,=E, e & be,,. (40.23)
Under a [111] strain the conduction band splits: three extrema are shifted
in one direction and one in the other. Thus four lines are observed, with

AE,_ = Byt & e, + = Byef, (1 2:2). (40.24)

A similar picture is observed under a strain along [110], when two con-
duction band extrema are shifted downward and two upward (Figure 67)
/43.10/.

By contrast, the exciton level for Si splits under a [111] strain into two
(Figure 68) /43.10/. Here

AEM-E,‘s:t?%a{“. (40.25)
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while a [100] strain gives rise to four levels with

AE,_,=E g bej, + =Bl (1+3). (40.26)

6 "u"zz

Under a [110] strain the exciton level splits into four, as in Ge.
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FIGURE 67. Splitting of ground state of FIGURE 68. Splitting of ground state of in-
indirect exciton in Ge under strains along direct exciton in Si under strains along [111]
(111], [001], [110] /43.10/. T = 80°K, and [001] /43.10/. T =80°K, Eg— Eqo= 1.210 ev.

Eg— Eo = 0161 ev.

We reiterate that equations (40.23)— (40.26) are valid for those strains
under which the band splitting considerably exceeds the exciton binding
energy. The binding energies of excitons belonging to different bands may
differ slightly.

Table 40.1 presents the binding energies of E, of excitons for different
extrema of the conduction band and two valence subbands, calculated by
means of equations (27.18). When all three masses were different, the two

closest together were assumed equal and replaced by the average % =

=—2[-(-ﬂ:—l+n+.). The table also lists the deviations of these energies from

their values according to the hydrogenic equation (27.14) with isotropic mass
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L dft 2 3 1L _ 2 .
- ( +m1 +;;) , where 3 ?-IAI. In certain cases the ratio AEy/E,

m  3\m]

may reach 20%. Thus equations (40.23)— (40.26) determine the slope of
each of the straight lines in Figures 67 and 68, but not the distance between
different lines, which also includes the difference in binding energies. The
difference in these energies is the reason that these straight lines intersect
at different points and not at e = 0.

TABLE 40.1

Substance Si Ge

(111}, 111],
[1i1]

[100], [010]
[100], [010]

positions of minima

L0011, [001) [111]

shape of valence

band ellipsoids prolate | oblate |prolate | oblate | prolate | oblate | prolate | oblate

[001] strain Ep, mev 12,3 12,0 12.4 12.1 2.6 2.5 2.6 2.5
AE,, mev -0.4 -0.7 -0.3 -0.6 | -0.4 -0.5 -0.4 -0,5
[111] strain Ep, mev 12.5 12.0 12.5 12.0 3.4 2.5 2.5 2.7
AEy, mev -0.2 -0.7 -0.2 -0,7 | +0.4 -0.5 -0.5 -0.3

From the behavior of the exciton levels under large strains we can
determine the deformation potential constants for both valence band and
conduction band. The values of these constants according to the data in
/43.8/ and [43.10/ are presented in Table 40.2 at the end of the section.

A characteristic feature of exciton lines in the degenerate case is the
strong polarization dependence of the levels that split under the strain.
This should be observed for both direct and indirect excitons, when the
excitation includes two stages: a ''vertical" transition without change in &,
accompanied by absorption of a photon, and a transition with transfer of
momentum to an impurity or a phonon. In the latter case the polarization
depends significantly not only on the original and final states of the electron,
but also on the intermediate state that participates in the transition. We
shall therefore restrict ourselves here to a discussion of the simplest
case — a direct exciton in Ge.

By (40.6), (36.3) and (36.23), for sufficiently large strains, so that the
excitons associated with each of the split bands may be treated inde-
pendently, the conductivity is given by

oG =T 1[0(0) P48 (0 — @), (40.27)

where, by (36.24), relative to the principal crystal axes,

Tr 6 =3+,
b - d
Oua— Oy =30 "W g YT TR qp).  (40.28)
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The upper sign corresponds to the highest valence band, the lower sign to
the lowest of the split-off bands; A, =28 .

For a stress P of arbitrary direction, it is convenient to determine the
polarization for three directions: along the § axis parallel to P, and-along
the { and n axes in a plane perpendicular to P. The { axis is placed in
the 2zt plane and the n axis perpendicular to this plane. The angle between
the z and t axes is denoted by #, the angle between the zx and 2§ planes by ¢
The tensor components 8gzp relative to the § §, n axes, which determine the
polarization dependence of o, in these axes via (40.27), are

O =s* £ 5-{ 26 (S),—Syp) [1—3sin? -+ 3sin* 6 (1 —sin*g cos? )]+
+ V3 dS,[sin? & — sin* 8 (1 — sin? gcos? ¢)] }-

oy =s'F ia."i{ra(s.l — 8,9 [1 — 6sin? 0 cos? & (1 — sin?@ cos? ¢)] + (40.29)

+ V3dS,,sin*®cos? 0 (1 — sln’opcos’q:)}.
9m=s’=F-’;.—P{b(S“ — 819)(1 —6sin?®cos? @sin’ ) +
+ ﬁdS«sin’Gcm’¢sin’¢}.

If the stress P is applied along the principal [100] or [111] axes, then

Ou=s'(12y), Ox=6yn=s(1%%). (40.30)

where v—-l%l- or Y--lj—:r, respectively. Here positive P corresponds to

tension and negative P to compression. It is immediate that if y = -1 ab-
sorption occurs for the upper band, only when the electric field & of the.
wave is perpendicular to P,i.e., o,= 0, and o,/0, = 4 for the lower band. If
¥y = 1,the bands are interchanged. Similar relations hold for an arbitrary
direction of P in the spherical approximation, i.e., if dS,=2V35 (S, — S.) .
If this relation is not valid, the transverse components oy and o4 are not
the same for a strain along any direction other than [100] and [111].

Exchange interaction in semiconductors with
simple bands

As noted in §27, the exchange interaction results in additional splitting
of the exciton state. A strain which reduces the crystal symmetry will
induce further splitting of exciton levels. The characteristic feature of
the exchange interaction is that the strain-induced splitting also occurs
when the exciton is associated with nondegenerate bands (neglecting spin)
which cannot themselves split under a strain. This effect was first ob-
served in cuprous oxide in 1960 /43.2/; it was then explained qualitatively
by an exchange interaction /22.5/. In cuprous oxide the extrema of the
conduction band and of several close-lying valence bands are located at
the point T (k=0), where the little group is O,.
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FIGURE 69. splitting of exciton ground
state in cuprous oxide under strains along
[100] and [110] /43.2/.

Figure 69 illustrates the splitting of the exciton ground state associated
with the nondegenerate bands I'f and I'Y under strains along [100] and [110].
This state corresponds to the representation I'f X T =T: + I, so that it
splits into a onefold and a threefold degenerate state. The basis functions
of the state I transform like XY, XZ, YZ and its strain splitting is deter-
mined by a matrix similar to (30.2): under a [100] strain it splits into two
terms, corresponding to the functions XZ, ¥Z and XY; undera [110] strain
the degeneracy is completely lifted, the three split-off states corresponding
to the functions (1/V2)(XZ+Y2), (1/V2)(XZ —YZ)and XY. Quadrupole transi-
tions are allowed to all these states; the matrix element of the transition
to state XY is proportional to &.q, + &9z, and soon. Both dipole and quad-
rupole transitions to the state I'; are forbidden, and this line was not
observed.

Later, splitting of exciton states associated with nondegenerate bands
was observed in a number of crystals with wurtzite structure /43,12 —
43.17/. The line shifts in these experiments were determined from re-
flection spectra.

Figure 70 illustrates the line splitting for excitons A and B under a
compression perpendicular to the principal axis €. The light propagated
along this axis. and was polarized parallel or perpendicular to the strain
direction; one of the split lines was observed for each polarization.
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FIGURE 170, Splitting of exciton ground state in hexagonal ZnO,
CdS and CdSe under a strain perpendicular to the principal axis
/43.12/. Solid lines: g L P,C; P L C; dashed lines $IP, P LC;
dotted lines: ¢11C, P C.

For an accurate calculation of nonlinear strain effects, we need the ex-
change interaction matrix #*"(27.77), (27.75) between the band functions,
incorporating their change under the strain. We shall not present the
rather tedious calculations here, but restrict ourselves to the linear case.
We shall use the theory of invariants to construct #*(e), and then estimate
the constants entering into this Hamiltonian. The exchange interaction for
an exciton A corresponding to the representation Iz X Tey=Tjs+ T, splits the
ground state into two. Z*Ne)may contain components of ¢ which transform
according to the representations Iy XTs=Tg XTg=T, 4T3+ and [g Xl =
= T3+4T,+Ty, and relative to the basis Yii==(1/V2)(X £ i¥)(Ts), Yiz (Te)
the operator = Me) has the form

Ey4 A2 ce- Cazy 0
xc E,+ A2 0 Ce8ym
XNy | €18+ ° : 40.31
A (e €38y 0 E,— A2 0 ( )
0 Cafrs e, E,— A2

Here E,is the exciton energy, not counting exchange splitting, including the

strained-induced shift defined by (31.23), (31.24), (31.15) or (40.17), and

A is the exchange splitting. For the other notation, see Table 31.4 (p. 324).
Of the two split states, only I's is optically active. It is clear from

(40.31) that under strains e.x — ey Or e it splits into two, with energies

E 2= Eo+ 3 ¢, (6 —e,,) +4¢,]7, (40.32)
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corresponding to the functions

= ! - = 1 xI N —
o ?2=| II' P 72—,1 , where % T (40.33)

For a strain e,;—e,, , these are the functions X and Y; for e,, they are
(X+Y)/V2 and (X—Y)/V2. In these cases the lines are completely
polarized: when &||P, one of the levels is excited, and when &L P and

& L C the other.

The ground state for excitons B and C, which correspond to the re-
presentations Iy XT,=T,+ T+ T, is split by the exchange interaction into
three states, two nondegenerate (I, and I) and one twofold degenerate (IY).
In this case #**h(e) may contain components of ¢ which transform according
to Ty, Ty Ty, Ty X Ts=T5 and Ty XTy=T,+ T+ Ts. If we take Y3~ Y3, Y. as
basis functions which transform according to the representations I, I, 1
respectively, the matrix will be

A
Eq—5+4" 0 Ca€ry  — C38,
A
En — - -—-ﬁ'
25 00)= P e (40.39)
(2. (- E,+ % -
— Cafzs CoByy €184 Eo+ %

Here A and A’ are the exchange splittings.

It is clear from (40.34) that the state Is splits under strains e: 7 e,, and
exy in the same way as in the case of A. If ¢||C, then here again the only
excited states are I's. Their splitting and polarization are defined by
equations similar to (40.32) and (40.33), so that here again if &|| P one of
the levels is excited, and if &L P (and &L C) the other level is excited.

But when the polarization is & C, the state I't must also be excited. In
(40.31) and (40.34) we have omitted the diagonal terms defining the change
in the constants A and A’ under the strain, which are proportional to e and

These components do not cause additional splitting or shifting of states
In the quasi-cubic model, in which the wave functions of the three bands
I, I'7, I'7 are defined by equations (31.18), the constants A and A’ for excitons
A, B, C in (40.31) and (40.34) satisfy the following relations:

g .

exciton A: A= —34,,
exciton B: A= 3A,(sin?® — cos?0), A’ = 3A,sin?0, (40.35)
exciton C: A=3A,(cos?8 —sin?8), A’ = 3A, cos? 9,

where tan 0=(-E§/E§)"'. Here E? and Ej are defined by (31.16). When
Ay ® Ay, tand=}2. In this case the representations I, and I for the
exciton C are combined.

Formulas (40.35) are valid provided the contribution of the neighboring
bands to the wave function of excitons A, B, C is not significant, and the
value of |f(0)|? for the ground states of these excitons is the same as when
m, € my. Under these conditions, the constant A, in (40.35) coincides with
the A, in equation-(40.37) below.
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According to the data in /43.17/ the value of the constant 3A,; (in the
notation of /43.17/, 3A,=j) is 5.7mev for ZnO, 2.5 mev for CdS and 0.4 mev
for CdSe.

Note that in crystals without an inversion center, the linear k terms (and
odd terms of higher order in k) may contribute to the exchange splitting in
the electron-hole spectrum. For the exciton I'; X I'7, when the electron-hole
spectrum is given by (31.12), the corresponding contribution to A’is

N =4(m, m, h)% (my +m, a)ﬁl (AE, 55-:)%;

where AE.,is the downward shift of the extrema for electrons and holes
due to the linear k terms (by (31.2), this shift is —E(0) = a?/44,) and m,,,
m,, are the transverse electron and hole masses: m7' = 2A,/H? .

The contribution of linear k& terms to A for the exciton I''t X I';, as for the
exciton Iy X I'7, vanishes.

Relation (40.35) is no longer valid for the contributions to A and A" from
linear k terms.

The constants ¢ in (40.31) and (40.34) are proportional to the exchange
splitting; in order of magnitude,

Dy,
Come E —E, A,

where D);is the off-diagonal deformation potential constant which determines
the strain-induced change in the separation of the band 1 from the neighbor-
ing band 2; here the constant is Ds in (31.14), and E; — E, is the separation
of the bands.

Using the values of the elastic constants from Figure 70, we can estimate
the values of ¢: for ZnO =2ev, for CdS =1lev. .

Equation (40.34) is valid only for strains so small that Ds|es| is consider-
ably less than the separation of the valence bands, so that 2¢/|e,] <A. For
large strains, the strain-induced splitting must be ''saturated' and approach
the exchange splitting in order of magnitude.

In conclusion, we note that, as is clear from (40, 31) and (40.34), the states
split off as a result of exchange splitting are mixed under shear strains e,
and e;:. This should activate optically inactive states,

Exchange interaction in semiconductors with
degenerate bands

As we saw in §27, in cubic crystals with a fourfold degenerate valence
band (I's) and a nondegenerate conduction band (Ts or I4), the ground state
of a direct exciton corresponds to the representation De=IsX ;.

If one of the bands is simple, the wave function of the exciton may be
written

4
‘pmﬂ=§y: (rl’ r2) ¢m“u=wm‘bll’ Where ‘b“=§| 9-: (rl' l‘,)ﬂn.
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The envelope functions F4(r,, r,)="F4, (r)e'*® are independent of the index
of the conduction band functions, since the operator (27.63), defining these
functions is independent of these indices, provided, of course, that the ex-
change interaction is not included in M. The functions %u for the exciton
ground state at k= 0 transform according to the same representation I's
as the functions u. of the band bottom. It follows that some of the functions
fo(r) corresponding tog¥=0 transform according to all the representations
occurring in the product I's X Ts= A, 4+ A2 + E 4 2F, + 2F;, so that at least one
of these functions transforms according to A, and does not vanish at r=0.
We shall designate this function by the index f =,f:, assuming that the func-
tion ¢, transforms in the same way as the band bottom function u,. Ac-
cordingly, we may write the function ¥my, atd' = 0 as

Yimy = Pn¥o, = [1,], (1) +n§“f'.: (ra,)- (40.36)

The representation De=Is X I'h=E + F, 4+ F, is reducible, and the exchange
splitting splits it into three terms. The operator #*<" describing the
splitting must contain three constants, since P, X D, contains the identity
representation three times; it may be written

"= Ao + A (Jo) + Ay (Fox + Lo, + I20.). (40.37)

The operators J; act on the wave functions ¢, the operators o; on the
conduction band functions ¢m. If the functions of the representation I's are
built up from functions of only one representation F; or F;, then A;= 0 in
this approximation, and

Bo=—38, =57 |[ (O f U (r,—r;) S*(r)) S (o) X (r)) X" (ry) dr, drs,

where X(r)is a function which transforms according to the representation
Fy (or F|) and S(r) a function which transforms according to the identity
representation. It is obvious that in the spherical approximation the
Hamiltonian (40,37) does not contain the last term, and Dex=Dip X Dan =D, +
+ &:. When the symmetry is reduced to Tq4, the representation @i becomes
I; (D} goes into Fy), and @5 splits into £+ F|) (D7 into E + F2). The operator
#.xdescribing the splitting of an exciton levelunder small strains, whenthis
splitting is much less than the excitonbinding energy, is determined by an equa-
tionsimilarto (30.9)with b andd replaced by b’and d’ (see (40.21)), In this
case the exciton level splits under a strain even in the absence of the ex-
change interaction, and so the Hamiltonian need not include the small terms
that describe the strain-induced change in exchange splitting.

Since the constant A; vanishes in the spherical approximation, we may
expect it to be much smaller than A,. We therefore set A= 0, and it is
thus possible to diagonalize e, whatever the direction of the strain. Below
we shall discuss the qualitative features of the spectra when A; % 0, using
group-theoretic considerations, and show that the experimental data also
confirm that A; is small.
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We now introduce the reduced strain tensor, setting

By for f=l=lj",

8”% for is=]

and go over to a new coordinate system whose x'-, y- and Z-axes are the
principal axes of the reduced strain tensor ef;, and the principal values of
the tensor ¢’ are equal to ¢ (i =1,2,3). The operator #.x in this coordinate
system is

Hoorm 56704 26, = b W (17— §) ey + 8, (0. (40.38)

Here we have incorporated the quantities A, and E\;e=(c—a)e intothe energy
E,, which will be the zero point for the energy E later.
We take the following functions ¥; =¥, = ¢,¥, as basis:

¥, = @by Yo=0_nboswr  Yis=0_inbip (40.39)
V=0 1 Ys=0_ b Yo =022
V=00 i Y=o b i

Here ¥, are functions which transform like Yi?, and ¢, like Y!®. Relative
to the basis (40.39), the matrix (40.38) becomes

Hy 0 )
”exgl(} Jflm" (40.40)
YA —F 0 0 -1
0 8/p, — F -1 0
In=| —1 —@A+F oA | (40.40a)
I 0 —2iA, —(A+F
—%A—F iV34 0 —1
| -ivea am+F -1 0
Hun= 0 -1 —3A —F —iV34h (40.40b)
—1 0 iV3a B/A+F

e
where F=— (35 —e), I= gb'(ﬁ —ey).

The solutions of the equation |#ex— EIl==0 are
E.2=E=34 V3,

Ea.q=E*é’=—%‘ + VA + 487 + 206" (3¢, —e),

(40.41)

Eso=E¥=— 2 2 VA 48 + 20,6 (3e o),

Ers=EQ =— 3+ VA+4AT+ 20067 (36, — o),
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where

Ae=%"{(3| — el (e — &g + (e — 29)}, 3""23“-

The eigenfunctions of the Hamiltonian (40.40) are superpositions of the
functions (40.36), (40.39):

V'=24Y=2 A (9, (40.42)
i mun
For states with v =1, 2, 3, 4,
I . v
Al =— g A A=xiAl, A==xidl, (40.042a)
V|2 I %A —F—Ey .
|4 =S

for states withv= 5,6, 7, 8,

=1 3 .
Ag’“ﬁ%‘ﬂ- A=FiMy, A==FiA,

IA:F_i sb + F+ Ey
4 (M2)+Ey

(40.42b)

The upper sign in (40.42a, b) corresponds to v= 1, 2, 5, 6, the lower sign to
v=23,4,17,8.

If we expand the envelope functions f}, (r) in Fourier series, then in the
general case, when both bands are degenerate and f(r) depends on both
indices m and n, the function ¥¥ may be written

v

v = Jﬁ ”§u A:mu fon (F) Pt == 3'!7 E.ka. n—k e“rq;,,,“,‘-

where

Cr:t. n, —k= Z A:muc::ll. n, —k-
m
Consequently, by (40.1), (40.36) the current operator matrix element is

’\r =’§.c:nk. n, —k imKn = ani A::nuct‘n.i, n, =k !mxn =

, v ) (40.43
= ﬁw% A:mll'r:n (0) jmxu = Wﬂ% 'f:m (0) !m.'(n' )

Here
!:m (r) = Z A;nwf:n (r)
I

In the case of a simple conduction band, when the only function not vanish-
ing at r=01is f“‘=f| and f(r) is independent of m,

F'=VVHOZ AL (40.43a)
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For the current operator we have jux,=evnx,, where v,,, is the interband
matrix of the velocity operator, defined by equations (36.21) for the band
structure under consideration. Using this equation and noting that the
functions Kqu are related to qu by

Ko =0_yp K¥p=—0 KO_;=0yn Kop=—0,,
we see that for states v=1,..., 8 with energies (40.41) the nonzero com-

ponents of the complex dielectric constant %;=— (4n/0); are given, in
accordance with (36.1), by*

& B2
§u=—4n-ﬁ,—n|(0){ﬂ E e
Vo3, 4
&s? BY
== ta b OF ¥ 55 (40.44)
Yo, 6
e%s? BY
= —dn g lhOF ¥ o5
V=T, 8
where
24, + (8'/2) (3¢, — &)
=12 T0)Ce—e)
Bi=1 1 T v=3, 4),
Ve | — 20+ (672) B2y — &) - )
By=1 OB (v=5, 6), (40.45)
=1— 20+ (2 (3, —¢) —
By=1 I Ey + (8,/2) (v=7, 8).
Here
o, = (E,/h) + ly,.

The constant yy defining the width of the exciton lines vanishes in this
approximation. Since we have restricted ourselves to dipole transitions,
the components #%i; may be calculated from the start relative to the principal
axes of the reduced strain tensor.

Equations (40.41) show that when there is no strain the eight levels
defined by (40.41) merge into two levels, corresponding to the representations
D, and D, which become F; and E + F, when A; %= 0 (which of the levels coin-
cide at e= 0 depends on the sign of the constant A,). Under a strain along
the 2-axis, with e =e;=e.x, e3=e¢,; , the crystal symmetry is reduced from T,
to Dy, and these representations split as follows:

E—’B|+A|, F|—F£+A2. FE—FE+BQ.
forming six different terms, two of which are twofold degenerate.
In the absence of a strain the only optically active level is F; It is

readily verified from the character table of the representations of the
group Dy that under a strain the optically active terms are the two twofold

* We are neglecting the nonresonant terms whose denominators contain @ + wy.
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degenerate terms (in an electric field perpendicular to the z-axis,i.e., in
o-polarization), which correspond to the levels E;=F; and Es=E; in (40.41),
and the term B, (when &l 0z,1i.e., in n-polarization), which corresponds to
one of the levels Eyor E;. Two of these lines originate in the optically
active term F;, while one originates in the inactive term F, so that its
intensity approaches zero when e;;=e,, —ée;,=0. Under a [111] strain,
referred to the coordinate system [110], [112], [111]), and also under a
[001] strain, we have e;=e2. Hence the expressions for E, and B, in this
case differ from the equations for P | |001] and the same value of e, —e;in that & is
replacedby d’[V3. Ineither case, as we see from (40.41), Egy=E;and Eg=Esand
one of the levels E,ycoincides with one of the levels E; ,. This identity of results
for [001] and [111] strains is a consequence of the approximation A, = 0.

Group-theoretic analysis reveals the difference between these cases and
permits qualitative analysis of the role of the Ay terms. When PJj[111] and
the symmetry is reduced from T, to Cy,, the terms E, F,, Fy split, becoming
representations of the group Cse:

E""E. Fl-’E+A‘, F,—DE+A|.

The states E of the group Cs, which arise from F,; and F; correspond to
the levels Ej; and Egg, and the state E arising from E of the group T4 cor-
.responds to a pair of coinciding levels, one from each of Ei3 and Esq.

The state A; corresponds to a nondegenerate term from the pair E,,,
the state 4, to a nondegenerate term from the pair Esy.

According to group theory, transitions are allowed to state 4; in a longi-
tudinal field and to state E in a transverse field. In contrast to the case
P) [001], the degeneracy of levels arising from E (T4) is not removed even
when A;# 0; a transition to these levels is allowed in a transverse field,
its probability vanishing both as A;— 0 and as ¢~ 0,

Under a [001] strain, referred to the system of axes [100], [011], [011],
where the tensor e is diagonal and all three components e,, es and e are
different, the degeneracy is completely removed. The symmetry is then
reduced to Cj,, and the representations of the group Tq become representa-
tions of Cg:

E—~A+4, F,—~A+B+8B, F—4+8B +B8,.

By group theory the allowed transitions are: to B;in x-polarization, to B,
in y-polarization, to 4, in z-polarization,

Thus, the terms E34 correspond to representations 4,, the terms Ejy to
representations B,, the terms Egg to representations B,, and the terms Ej; to
representations A,. This analysis shows that for a strain along [011] in-
clusion of the A; terms entails no new qualitative features of the spectrum.

Figures 71 and 72 show the change in the positions of the exciton lines
in cubic ZnS under compression along the [001] and [011] axes. The line
positions were determined from the position of the inflection point on the
dispersion curve of the reflection coefficient.

According to the theory, under a strain along [001] three polarized
lines appear in the spectrum: a strong = line and ¢, and 02 lines.

The o¢; line weakens somewhat with increasing strain. The o, line
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is observed only under sufficiently large strains, and becomes stronger
with increasing strain. Under a strain the n and o3 lines are shifted toward
longer wavelengths. In the absence of the exchange interaction, these lines
would merge into one line, corresponding to the lower sign in equations
(40.30) with y = -1. The o line is shifted under a strain toward shorter
wavelengths — this is the line corresponding to the upper sign in (40.30)
with y= -1; 05 ~Og=20.%

Jo660
Jo640
30620 +
Josoo
JO580
Jos60
L 1 ' '} '} L L L A i i A 1 1
G794 & & W & W50 74 6 & w iz 1658
£ kg/mm? b A kg/mm®
FIGURE 71. Splitting of exciton ground state FIGURE 72. Splitting of exciton ground
in cubic ZnS under a [001] strain with reflection state in cubic Zn$ under a [011] strain with
from the (100) and (011) faces /43.14/. reflection from the (100) (a) and (011) (b)

faces /43.15/.

Under a strain along [011], when the levels Eg E; and Es, Es are non-
degenerate, the lines Es and Es are observed in g-polarization in reflection
spectra measured from the (100) face when & = &,, and the lines E; and E,
in reflection spectra measured from (011) when & = &,. In either case,
one of the lines Ey or E;is observed in sm-polarization. As follows from
(40.44) and (40.45), the intensity of the other line, although not zero for
either P|I[001] or P|I[111], is very small. Both the intensity of the lines
and the difference in the positions of the e, and o: lines in reflection spectra
from inequivalent faces are determined by the anisotropy factor

o—_2 Su___ .
V36 2(Si—Si)

* Equations (40.27)—(40.30) were derived on the assumption that the splitting A, exceeds the exciton bind-
ing energy Eo. However, they are also applicable to the reverse case A®xh & A, € E,(with & replaced
by & and d by d’), since the functions ¥y, (40.36) for the exciton ground state transform like the functions
uy of the valence band bottom,
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In Figures 71 and 72 the solid lines indicate the theoretical curves Ev(e),
calculated for levels Esg, Ezg, Esq from equations (40.41). The parameters
A, ¥, d’ ,E\y were chosen to guarantee the best fit with the experimental
points:

A=4p=—28-10"ev, Ego~4 ev,
V=—1bev, d=—45ev,

Throughout the foregoing computations, we neglected the contribution to
the exciton energy associated with the annihilation or resonance interaction
defined by (27.69). Indeed, in our application of the theory of invariants we
did not include in the Hamiltonian terms depending on the direction of the
exciton wave vector o, so that we in effect considered only the terms
(27.77). We shall show that the exciton spectrum allowing for the annihila-
tion interaction coincides with the excitation spectrum obtained by solving
Maxwell's equations and neglecting time lag, provided the dielectric constant
in the equations is calculated without allowance for the annihilation inter-
action. The exciton spectrum based on (27.69) is determined by the
equation

IE?611+M;~361:|=0- (40.46)
Itis assumed here that the exchange interaction (27.717) is incorporated in
the Hamiltonian ¢ and the energy eigenvalues and eigenfunctions are

defined with this interaction taken into account. Since the matrix elements
(27.69) may be written

%% =RIR), (40.47)

where

R= 2 o 0) P ° (40.47a)

2
mE V_x

the determinant in (40.46) is similar to (32.18b), and (40.46) reduces to the
equation

H(E:—E}[l+gy ’le, E{E,—er‘x
XY T 0) P Ef;..(o) Knm ¥ ]—0— (40.48)

am’'n’
For optically inactive terms, for which
mzn f:m (0) p:mm = 0’

the roots of equation (40.48) are E;=E, for every «; similarly, for N-fold
degenerate optically active terms, N~ 1 of the roots E; are equal to Ey.
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The remaining roots are determined by the equation

xt T ;;éz-gw.—m-' )Y A0 p:,,,‘_,x',’g“f‘m O P, Xy=0. (40.49)

it
am’'n

Like (32.18c), this equation coincides with the phenomenological equation
(32.18d):

§x,,x,x‘-o, (40.50)

which follows from Maxwell's equation (neglecting time lag) if we include
the contribution to the dielectric constant x from exciton excitation. Ac-
cording to (36.1), this contribution is

ex An f:ﬁ
M”__Wg_‘_.,. (40.51)

By (40.43), the current operator matrix elements in the dipole approxi-
mation are

ﬁ=%2f:.'.(0)p:m- (40.52)

Substituting these into (40.51), we obtain from (40.50)— (40.52) an equation
coinciding with (40.49). This phenomenological approach shows that the
annihilation interaction is determined by a potential U(r) with a dielectric
constant % (ov) (minus the contribution to x due to excitation of the exciton),
in practice optical dielectric constant %~, while the direct Coulomb inter-
action for the exciton of large radius is determined by the static dielectric
constant ».

Analysis of optical data requires calculation of the reflection (or absorp-
tion) coefficient with the aid of Maxwell's equations, using the above values
of the tensor =, calculated without allowance for the annihilation interaction.
However, in all experimental situations considered above the stress P, the
wave vector g of the light and the electric field & were directed along the
principal axes of the strained crystal. Under these conditions, only "trans-
verse'' excitons, for which 3 i39,=0, are excited, and therefore the positions

a

of the absorption lines or of the inflection points on the dispersion curves
of the reflection coefficient are at wy = E,/#, where E, is determined by
equations which neglect the contribution of long-range forces to the exciton
energy.

Current operator matrix element for transition to an
exciton state (supplement to §40)

In the second quantized formalism, the current operator is

1= M.ZM Imp, 0870 8nn: (40.53)
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Here a},and a,,are the electron creation and destruction operators in the
k-representation, related to the corresponding operators in the x-representa-
tion, ¥ () and ¥y, (7), by

1
VE(=—= D atae™, () m—e Y et (40.54)
) o)

These operators satisfy cross relations similar to (27.90):
{atsamn) =0nmdan  (ahaaha) = apmatma} =0 (40.55)
and the averages over the vacuum are
(0] @0t 4 10) =8, 80s,  (0la} 4,0y 10) =0. (40.56)

Using (40.56), we easily see that the matrix element of the operator
(40.53) between states y,,, =ajt, |0) andy,,, =an, [0)i. e.,{¥ra, || ¥na,), is indeed
Im#,, nae Moreover, g, =(0]|a,,

Let 8}, and ¥,,, denote the creation and destructlon operators for a hole:
they are related to the operators a,, and a, by relations similar to (27.87):

bl =Kk (nay  Onay=OF (nayr (40.57)

These operators satisfy relations similar to (40.55), (40.56); the corres-
ponding operators in the x-representation, ¢} (r)and @, (r) (27.92), possess
expansions similar to (40.54) in terms of the b-operators. The operator
j in the new notation is

1= 2 I, K (ki@ Oy (40.58)

mk,. n

The matrix element of this operator between the ground state of the crystal
and the state a}t, bﬂ,,lo) corresponding to the creation of the electron-hole
pair (mk,, nk,) is

Ims,, na,, 0= Ima, Kinmy (40.59)
The exciton wave function in the k-representation is
¥,m= 3 Cha, naSma b, 10 (40.60)
miky, nky

where the coefficients Chy 44, are defined by equations (40.2), (40.3). Cal-
culating the matrix element of the operator (40.57) between the ground state
|0} and the state ¥}, we obtain

‘f'# 2 le., nky nul,x[.“,y (4061)



Ch. VIl. EFFECT OF STRAIN ON IMPURITY CENTERS AND EXCITONS

TABLE 40.2. Effective masses and deformation potential constants in Ge, Si
and some A4Bg compounds. All effective masses are in units of the free
electron mass ms; A, B, D are in units of #2my; A, and the deformation
potential constants are in ev.

Conduction band Valence band
- . s average hole
position| . mp omy masses
of lowest (atrr ) (at extremum bg
extremuim| points X, A or L) light heavy
Ge L 0.041¢ | 1.588° | 0.0815¢ | 0.29° 0.045° | 0.35¢
Si A - 0.9163° | 0.1905¢ | 0.044° | 0.12° 0.44¢
0.0144 0.90° A 4
- 021 .
InSb r 0.01458 0814 0. 0.39
0.067¢ P A
r - 0.21 - 0.4
fnP 0,073
0.0224 0.41¢ " &
- . 041
InAs r 0.026% 0434 0.025
0.047%: € 0.80% " A
- 0.06
GaSb r 0704 0.3
GaP x |oa | (mm))"=o035¢| 043¢ | — -
0.068¢ h h
- . 0.12 0.68
GaAs r 0.065 0.354
o oniy_ [0.394] 758 A
AlSb X 0.094 mym .L?) ' { 0.95/ 0.604 - 0.9
Valence band parameters
A B D ] ¢
—13.2! —8.2! —19.5 —3.294
Ge —13.27/ —8.69/ —19.4/ —3.60¢ —0.06™
—13.38™ —8.5m —19.8™ —3.41™
si —422° | —1.00° —4.78¢
—4.08/ —0.75/ —5.4 - -
InSb —25# —218 —408 —10—13¢ -
CaSb —112 —6¢ —158 - -




TABLE 40.2 (continued)
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Deformation potential constants

EI‘-Sd-f'!s-B' —-a 8, b d
—2?; ,,5,7:
-2, —4.5
Ge 2.97 16.0¢ 549 —47p
_3.54
. —1.4 -3/
Si 3.8 867 —o.4¢ —5.37
GaP 37" 6.27 —1.38 —4.0"

References

a 27.2 e 27.15 i 27.19 m 31.4
b 27.3 f 27.16 i 29.1 n 437
¢ 27.7 g 27.17 k 30.1 p 438
d 27.14 27.18 [ 313 q 43.10

TABLE 40,3, Crystal and spin-orbit splitting, effective masses, g-factors and
deformation potential constants in hexagonal CdS, CdSe, ZnS (/27.4, 217.5,

27.13, 43.17/)
cds Cdse | Zn$
Ay, 10-° ev 284 68.8 55
Ay, 102 ev 209 138.0 28 — 31
By 107 ev 207 150.7 28 — 31
myy 0.2050.01 0.13+0.01 0.28+0.03
m,y 0.206:£0.01 0.13£0.01 0.28+0.03
myy (To) 5 1 14
mp 1 (Tg) 0.7£0.1 0.45::0.09 0.49:+0.06
€a 1.78+0.05 0.6+0.1 19
F 1.72:£0.1 051:+£0.05 22£02
f*l([‘g) 1.16+0.5 - 1.5
\— Dy —2.8 —0.76 -
D,—D; —4.5 —3.7 -
D, -1.3 —4.0 —_
D, 2.9 2.2 -
Dy 15 1.2 -
Dql 1.2 1.5 -

Dy and D are the deformation potential constants for the conduction

band (Ty).
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Absorption coefficient 392, 401 Cyclotron frequency 356
Acceptor impurities in Ge, §i 275 ff change under strain 365
Acoustical modes 129, 225, 338, 344, 347 ff Cyclotron mass 359
Adiabatic approximarion 337 Cyclotron resonance 356 ff
Adiabatic case 271 classical 357 ff
Annihilation interaction 289, 465 in strained Ge 356, 366
Axis in strained Si 360

rotation T quantum 362 ff

two-sided 11

screw 12 Defining relations 7

Deformable ion model 304 f

Band extremum 187 ff Deformation potential 348
Basic vectors 26 Deformation potential constants 303, 348, 360
Basic parallelepiped 26 for acceptors in Ge, Si 421
Basis functions 43, 54 ff Degeneracy 126
Birefringence 209, 392 additional 126

in strained Ge, Si 404 ff additional, due to time reversal 160
Bloch functions 151 and representation theory 134
Bloch (modulating) factors 151 band 152
Bravais lattice 26 ff Fermi 384, 395
Brillouin zone 78 removal by strain 298, 307
Burnside’s theorem 50, 53, 55 Dielectric constant 392

for projective representations 96 Dirac equation 262, 282

Donor impurities in Ge, Si 273 ff

Carrier mobilities 374 Dynamical matrix 127
Carrier transfer 378, 391, 393
Center of a group 6 Effective mass theory 202 ff
Character 51 applicability 208
Chasles's theorem 12 constant electric (magnetic) field 210
Chemical shift 270, 283, 417, 435 corrections to 280 ff, 319
Class (conjugate) 4 crossed fields 210
Class of factor systems 89 Elastic continuum approximation 350
Classification of terms 125 f Elasto-optical constants 402
Combined resonance 209, 366 f Elastoresistance coefficients, shear 371

comparison with cyclotron and volume 371

paramagnetic resonance 367 Elastoresistance constants for cubic crystals 371 f

compatibility conditions 153 Electron-electron interaction 284

in cubic groups 222 Electron-hole interaction 287
Complex conductivity 392 derivation from electron-electron interaction 293 f
Conjugate elements, classes 4 Electron in crystal in external field 202
Corepresentation 170 Electron in ideal crystal (group-theoretic
Coset 3 treatment) 151 ff
Covering group 95 Electron-phonon interaction 337 ff
Crystal class 40 Electron spectrum 151 ff
Crystal splitting in cubic crystals 226 ff, 248 ff, 252 ff
Cubic’approximation 334 Elements of the first (second) kind 9
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Energy spectrum 189 ff
allowance for time reversal 195 ff
degenerate bands 193 ff
in diamond lattice 248 ff
nondegenerate bands 189 ff
Envelope function 202
Equivalent axes 10
Equivalent directions 39
Equivalent lattice points 26
Exchange interaction 287, 289, 454 ff
Excitons 284 ff
in degenerate bands 291
in spherical bands 291
indirect 290
indirect, in strained Ge, Si 451 f
polarization dependence of strain-split
exciton levels 453 f
shallow 284
short-range potential 289 ff
Wannier-Mott 284
(See also: strain-induced effects)

Factor system 89
identity 90

Force constants 127

f-sum rule 158

Generators of a group 7

Group 1
abelian (commutative) 1
cyclic 3
discrete 26
double 143
factor 5
full rotation (%) 22
icosahedral 21
little 85
octahedral 20
of the first (second) kind 10
of the wave vector 85
orthogonal (}) 22
point 8, 15 ff

crystallographic 40

space 11, 26, 41
spherical (X%") 22
symmorphic 211
tetrahedral 19
unitary (%) 25

Hall effect 391
Herring's criterion 166
Hierarchy of lattice systems 36 ff
Holohedry 28
Homomorphism 5
kemel 6

Identity element 1
Impurity center 125 f
deep 208
effect of strain 415 ff
hydrogenic 271
in degenerate semiconductor 275 ff
in many -valley semiconductor 271 ff
shallow 208 f, 268 ff, 292
wave function 268 ff
Impurity semiconductor 374, 380
Interaction of electrons with lattice
vibrations 337 ff
long -range 339 ff
short-range 345 ff
Interband transitions 407 ff, 443
Intervalley scattering 353, 376, 379
Intervalley transitions 177
Intrinsic conductivity 374
Invariance of Hamiltonian
crystal symmetry 239 ff
time reversal symmetry 243 ff
Invariants, theory of 239 ff
construction of basis matrices 247 ff
Inverse element 1
Inverse transformation 1
Inversion 9
Irreducible constituents 46
Isomorphism 5

Kane model 237, 413
k-space 77 ff
kp-theory 187 ff

k - line broadening 361

Lagrange's theorem 3
Landau levels 208, 356
Lattice
base -centered 29
body -centered 32
diamond 211, 344, 351
face-centered 32
halite 211
primitive 29
wurtzite 223
zinc blende 212, 237
Linear strain approximation 300 f
Long wavelength modes 338, 342, 349
Luttinger-Kohn representation 188 f

Magnetoresistance 391
Many-valley model 193

Material tensors 181 ff

Multiband model 208

Multiplicator 90

Multiplicity (of a representation) 51



Normal modes 128, 340
and irreducible representations 225 ff

Onsager relations 184

Operator, angular momentum 23, 65
current 466 ff
electron creation (destruction) 293, 467
even (odd) w.r. to time reversal 169
hole creation (destruction) 293, 467
phonon creation (destruction) 130
projection 56

Optical modes 129, 225, 339, 343 f, 347 ff

Order of element 3

Order of group 2

Paramagnetic resonance 367
due to acceprors in Si, Ge 438 ff
due to donors in Si, Ge 436 ff
due to shallow impurity centers 434 ff
Pauli matrices 25
Period of group element 3
Perturbation theory 133 f, 187 ff
degenerate 135 ff
Piezo-absorption 402
Piezoelectric crystal 344
Piezo-optical constants 402
Piezoresistance coefficients
cubic crystals 372
many -valley semiconductors 376 ff
Piezoresistance effects
and carrier transfer 378

contribution from effective mass changes 390 f

in degenerate semiconductors 379 ff
in Ge, Si 382 ff, 388
nonlinear 387 ff
phenomenological description 369 ff
saturation 389
shear 376 ff
temperature dependence 378, 382
volume 373 ff
Pockels effect 209
Point of zero slope 187
Polar crystal 343
Primitive cell 26
Product
antisymmetrized 58
direct
of groups 6
of representations 53
symmetrized 58
Pseudoscalar 66
Pseudovector 66
Pure scalar 66

Quasi-cubic model 457

SUBJECT INDEX

Reciprocal lattice 76
Reflection 7
Relaxation time 373, 380
Representation 44
basis of 44
double-valued 66
faithful 46
identity 59
irreducible 46
little 86
projective 89, 253
ray 89
reducible 46
regular 54
spinor 141 ff, 253
tensor 181
vector 90, 250 ff
Representation group 93
Representations
classification w.r. to time reversal
(cases (a), (b), (c)) 160 ff
combination 165, 258 ff
equivalent 45
equivalent projective 91
of space groups
determination 112 ff
in cubic crystals 210 ff
in hexagonal crystals 223 ff
projectively equivalent (p-equivalent) 89
spinor, determination 142 ff
spinor, of point groups 144 ff
Resonance interaction 289
Rigid ion model 304 f
Rotation 7
improper 9
infinitesimal 22, 61

Scattering by lattice vibrations in Ge, Si 351 f

Schrodinger equation 125
Schrodinger-Pauli equation 140

Schur's lemmas 47 f

Screw axis 12

Screw displacement 11

Selection rules 170 ff

Spherical approximation 382

Spherical model 271

Spin
and symmetry 140 ff
in two-band model 261

Spinel crystals 211

Spin-orbit coupling 141 f, 154, 197 ff, 253 ff
in strained crystal 303

Spin-orbit splitting 331

Spinors 66, 140

Splitting of terms 133 ff
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Star (of representation) 84
irreducible 84
Strain-induced effects
absorption of light 392 ff
in degenerate bands 411 ff
in Ge,5i 401
interband transitions 407 ff
acceptor levels in Ge, Si 421 ff
activation energy of excitons 447 f
crystal symmetry 295 ff
degenerate bands in cubic crystals 309 ff
donor levels in Ge, Si 416 ff
electric conductivity 369, 372 ff
in degenerate semiconductors 394
in many-valley semiconductors 393 f
large strains 398 ff
nonlinear effects 396
exciton lines in cubic ZnS 463
exciton states in cuprous oxide 454 ff
impurity centers 415 ff
optical properties 424 ff
optical properties of excitons 443 ff
resistivity 370
spectrum 300 ff
in cubic crystals 312 ff
in diamond lattice 321
in gray tin 319 f
in Insb 317 f
in wurtzite-type crystals 322 ff
(See also: piezoresistance effects)
Strain-induced optical transitions
acceptors in Ge, Si 430 ff
donors in Ge, Si 426 ff
Subgroup 3
index of 3
invariant 4
normal 4
self-conjugate 4
trivial 4
Symmetry element 1
Symmetry transformation 1
System 28

System, cubic (K) 34
hexagonal (H) 35
monoclinic (M) 29
orthorthombic (0) 30
rhombohedral (R) 34
tetragonal (Q) 32
triclinic (7)) 29

Tensor
conductivity 181, 374
deformation potential constant 305
elastic constant 181, 297
elastoresistance 370
inverse effective mass 191
material 181 ff
mobility 376
Peltier 184
piezo-optical 402
piezoresistance 372
stiffness 184, 295
strain 181, 295
reduced 312, 460
stress 181, 295
Thermal emf 391
Thermomagnetic 391
Time reversal 159 ff, 195 ff
invariance under 173 ff
Trace of a matrix 46
Transition probabilities 349 ff
Translation 7
nonprimitive 41
Two-band model 201

Valley-orbit splitting 270

Variational method for impurities 271 ff

Vibrational spectra, classification by
representation theory 127 ff

Weight (of a representation) 63
Wigner-Seitz cell 78

Zeeman splirting 434 ff






