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FOREWORD

This work follows and largely replaces my 1977 Essay, FRACTALS: FORM, CHANCE AND
DIMENSION, which had followed and largely replaced my 1975 Essay in French, LES
OBJETS FRACTALS: FORME, HASARD ET DIMENSION. Each stage involved new art, a few
deletions, extensive rewriting that affected nearly every section, additions devoted to my
older work, and—most important—extensive additions devoted to new developments.

Richard F. Voss made an essential contribution to the 1977 Essay and to this work,
especially by designing and now redesigning the fractal flakes, most landscapes, and the

planets. The programs for many striking illustrations new to this Essay are by V. Alan
Norton.

Other invaluable, close, long-term associates were Sigmund W. Handelman, then
Mark R. Laff, for computation and graphics, and H. Catharine Dietrich, then Janis T.
Riznychok, for editing and typing.

Individual acknowledgments for the programs behind the illustrations and for other
specific assistance are found after the list of references at the end of the volume.

For their backing of my research and my books, I am deeply indebted to the
Thomas J. Waison Research Center of the International Business Machines Corpora-
tion. As Group Manager, Department Director, and now Director of Research, IBM
Vice President Ralph E. Gomory imagined ways of sheltering and underwriting my work
when it was a gamble, and now of giving it all the support I could use.

My first scientific publication came out on April 30, 1951. Over the years, it had
seemed to many that each of my investigations was aimed in a different direction. But
this apparent disorder was misleading: it hid a strong unity of purpose, which the
present Essay, like its two predecessors, is intended to reveal. Against odds, most of my
works turn out to have been the birth pangs of a new scientific discipline.
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Why is geometry often described as “cold”
and “dry?” One reason lies in its inability to
describe the shape of a cloud, a mountain, a
coastline, or a tree. Clouds are not spheres,
mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does light-
ning travel in a straight line.

More generally, 1 claim that many pat-
terns of Nature are so irregular and frag-
mented, that, compared with Euclid—a term
used in this work to denote all of standard
geometry—Nature exhibits not simply a high-
er degree but an altogether different level of
complexity. The number of distinct scales of
length of natural patterns is for all practical
purposes infinite.

The existence of these patterns challenges
us to study those forms that Euclid leaves
aside as being “formless,” to investigate the
morphology of the “amorphous.” Mathemati-
cians have disdained this challenge, however,
and have increasingly chosen to flee from na-

ture by devising theories unrelated to any-
thing we can see or feel.

Responding to this challenge, I conceived
and developed a new geometry of nature and
implemented its use in a number of diverse
fields. It describes many of the irregular and
fragmented patterns around us, and leads to
full-fledged theories, by identifying a family
of shapes I call fractals. The most useful frac-
tals involve chance and both their regularities
and their irregularities are statistical. Also,
the shapes described here tend to be scaling,
implying that the degree of their irregularity
and/or fragmentation is identical at all scales.
The concept of fractal (Hausdorff) dimension
plays a central role in this work.

Some fractal sets are curves or surfaces,
others are disconnected “dusts,” and yet oth-
ers are so oddly shaped that there are no good
terms for them in either the sciences or the
arts. The reader is urged to sample them now,
by browsing through the book’s illustrations.
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Many of these illustrations are of shapes
that had never been considered previously, but
others represent known constructs, often for
the first time. Indeed, while fractal geometry
as such dates from 1975, many of its tools and
concepts had been previously developed, for
diverse purposes altogether different from
mine. Through old stones inserted in the new-
ly built structure, fractal geometry was able
to “borrow™ exceptionally extensive rigorous
foundations, and soon led to many compelling
new questions in mathematics.

Nevertheless, this work pursues neither
abstraction nor generality for its own sake,
and is neither a textbook nor a treatise in
mathematics. Despite its length, I describe it
as a scientific Essay because it is written from
a personal point of view and without attempt-
ing completeness. Also, like many Essays, it
tends to digressions and interruptions.

This informality should help the reader
avoid the portions lying outside his interest or
beyond his competence. There are many
mathematically “easy’” portions throughout,
especially toward the very end. Browse and
skip, at least at first and second reading.

PRESENTATION OF GOALS

This Essay brings together a number of anal-
yses in diverse sciences, and it promotes a new
mathematical and philosophical synthesis.
Thus, it serves as both a casebook and a
manifesto. Furthermore, it reveals a totally
new world of plastic beauty.

A SCIENTIFIC CASEBOOK

Physicians and lawyers use “casebook™ to de-
note a compilation concerning actual cases
linked by a common theme. This term has no
counterpart in science, and | suggest we ap-
propriate it. The major cases require repeated
attention, but less important cases also de-
serve comment; often, their discussion is
shortened by the availability of “precedents.”
One case study concerns the widely known
application of widely known mathematics to a
widely known natural problem: Wiener’s geo-
metric model of physical Brownian motion.
Surprisingly, we encounter no fresh direct
application of Wiener’s process, which sug-
gests that, among the phenomena of higher
complexity with which we deal, Brownian
motion is a special case, an exceptionally sim-
ple and unstructured one. Nevertheless, it is
included because many useful fractals are
careful modifications of Brownian motion.
The other case studies report primarily
upon my own work, its pre-fractal anteced-
ents, and its extensions due to scholars who
reacted to this Essay’s 1975 and 1977 prede-
cessors. Some cases relate to the highly visible
worlds of mountains and the like, thus fulfill-
ing at long last the promise of the term
geometry. But other cases concern submicro-
scopic assemblies, the prime object of physics.
The substantive topic is occasionally eso-
teric. In other instances, the topic is a famili-
ar one, but its geometric aspects had not been
attacked adequately. One is reminded on this
account of Poincaré’s remark that there are



questions that one chooses to ask and other
questions that ask themsclves. And a question
that had long asked itself without response
tends to be abandoned to children.

Due to this difficulty, my previous Essays
stressed relentlessly the fact that the fractal
approach is both effective and “natural.” Not
only should it not be resisted, but one ought to
wonder how one could have gone so long with-
out it. Also, in order to avoid needless contro-
versy, these earlier texts minimized the dis-
continuities between exposition of standard
and other published material, exposition with
a new twist, and presentation of my own ideas
and results. In the present Essay, to the con-
trary, | am precise in claiming credit.

Most emphatically, I do not consider the
fractal point of view as a panacea, and each
case analysis should be assessed by the crite-
ria holding in its field, that is, mostly upon
the basis of its powers of organization, expla-
nation, and prediction, and not as example of
a mathematical structure. Since each case
study must be cut short before it becomes tru-
ly technical, the reader is referred elsewhere
for detailed developments. As a result (to
echo d’Arcy Thompson 1917), this Essay is
preface from beginning to end. Any specialist
who expects more will be disappointed.

A MANIFESTO: THERE IS A FRACTAL
FACE TO THE GEOMETRY OF NATURE

Now, the reason for bringing these prefaces
together is that each helps one to understand

(7]

the others because they share a common
mathematical structure. F. J. Dyson has given
an eloquent summary of this theme of mine.

“Fractal is a word invented by Mandelbrot
to bring together under one heading a large
class of objects that have [played]...an histori-
cal role...in the development of pure mathe-
matics. A great revolution of ideas separates
the classical mathematics of the 19th century
from the modern mathematics of the 20th.
Classical mathematics had its roots in the reg-
ular geometric structures of Euclid and the
continuously evolving dynamics of Newton.
Modern mathematics began with Cantor’s set
theory and Peano’s space-filling curve. Histor-
ically, the revolution was forced by the discov-
ery of mathematical structures that did not fit
the patterns of Euclid and Newton. These new
structures were regarded...as ‘pathological,’...
as a ‘gallery of monsters,” kin to the cubist
painting and atonal music that were upsetting
established standards of taste in the arts at
about the same time. The mathematicians
who created the monsters regarded them as
important in showing that the world of pure
mathematics contains a richness of possibili-
ties going far beyond the simple structures
that they saw in Nature. Twentieth-century
mathematics flowered in the belief that it had
transcended completely the limitations im-
posed by its natural origins.

“Now, as Mandelbrot points out,...Nature
has played a joke on the mathematicians. The
19th-century mathematicians may have been
lacking in imagination, but Nature was not.
The same pathological structures that the



mathematicians invented to break loose from
19th-century naturalism turn out to be inher-
ent in familiar objects all around us.”*

In brief, I have confirmed Blaise Pascal’s
observation that imagination tires before Na-
ture. (“L’imagination se lassera plutdt de con-
cevoir que la nature de fournir.”)

Nevertheless, fractal geometry is not a
straight “application” of 20th century mathe-
matics. It is a new branch born belatedly of
the crisis of mathematics that started when
duBois Reymond 1875 first reported on a con-
tinuous nondifferentiable function constructed
by Weierstrass (Chapters 3, 39, and 41). The
crisis lasted approximately to 1925, major
actors being Cantor, Peano, Lebesgue, and
Hausdorff. These names, and those of Besi-
covitch, Bolzano, Cesaro, Koch, Osgood,
Sierpinski, and Urysohn, are not ordinarily
encountered in the empirical study of Nature,
but I claim that the impact of the work of
these giants far transcends its intended scope.

I show that behind their very wildest cre-
ations, and unknown to them and to several
generations of followers, lie worlds of interest
to all those who celebrate Nature by trying to
imitate it.

Once again, we are surprised by what se-
veral past occurrences should have led us to
expect, that “the language of mathematics
reveals itsell unreasonably effective in the
natural sciences..., a wonderful gift which we
neither understand nor deserve. We should be
grateful for it and hope that it will remain

*From ‘““Characterizing Irregularity’* by Freeman Dyson,
Science, May 12, 1978, vol. 200, no. 4342, pp. 677-678.
Copyright © 1978 by the American Association for the
Advancement of Science.
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valid in future research and that it will ex-
tend, for better or for worse, to our pleasure
even though perhaps aiso o our bafiiemeni, io

wide branches of Jearning” (Wigner 1960).

MATHEMATICS, NATURE, ESTHETICS

In addition, fractal geometry reveals that
some of the most austerely formal chapters of
mathematics had a hidden face: a world of
pure plastic beauty unsuspected till now.

“FRACTAL"” AND OTHER NEOLOGISMS

There is a saying in Latin that “to name is to
know:” Nomen est numen. Until 1 took up
their study, the sets alluded to in the preced-
ing sections were not important enough to re-
quire a term to denote them. However, as the
classical monsters were defanged and har-
nessed through my efforts, and as many new
“monsters” began to arise., the need for a
term became increasingly apparent. It became
acute when the first predecessor of this Essay
had to be given a title.

I coined fractal from the Latin adjective
fractus. The corresponding Latin verb
Jfrangere means “to break:” to create irregular
fragments. It is therefore sensible-——and how
appropriate for our needs!--that, in addition
to “fragmented” (as in fraction or refraction),
Jfractus should also mean “irregular,” both
meanings being preserved in fragment.

The proper pronunciation is frac’tal. the
stress being placed as in frac’tion.

The combination fractal set will be defined



rigorously, but the combination natural
Sractal will serve loosely to designate a natu-
ral pattern that is usefully representable by a
fractal set. For example, Brownian curves are
fractal sets, and physical Brownian motion is
a natural fractal.

(Since algebra derives from the Arabic
jabara = to bind together, fractal and
algebra are etymological opposites!)

More generally, in my travels through
newly opened or newly settled territory, I was
often moved to exert the right of naming its
landmarks. Usually, to coin a careful neolo-
gism seemed better than to add a new wrinkle
to an already ovérused term.

And one must remember that a word’s
common meaning is often so entrenched, that
it is not erased by any amount of redefinition.
As Voltaire noted in 1730, “if Newton had
not used the word attraction, everyone in [the
French] Academy would have opened his eyes
to the light; but unfortunately he used in Lon-
don a word to which an idea of ridicule was
attached in Paris.” And phrases like “the
probability distribution of the Schwartz distri-
bution in space relative to the distribution of
galaxies™ are dreadful.

The terms coined in this Essay avoid this
pitfall by tapping underutilized Latin or
Greek roots, like trema, and the rarely bor-
rowed robust vocabularies of the shop, the
home, and the farm. Homely names make the
monsters easier to tame! For example, I give
technical meanings to dust, curd, and whey. |
also advocate pertiling for a thorough (= per)
form of tiling.

n

RESTATEMENT OF GOALS

In sum, the present Essay describes the solu-
tions 1 propose to a host of concrete problems,
including very old ones, with the help of
mathematics that is, in part, likewise very old,
but that (aside from applications to Brownian
motion) had never been used in this fashion.
The cases this mathematics allows us to tack-
le, and the extensions these cases require, lay
the foundation of a new discipline.

Scientists will (I am sure) be surprised and
delighted to find that not a few shapes they
had to call grainy, hydralike, in between,
pimply, pocky, ramified, seaweedy, strange,
tangled, tortuous, wiggly, wispy, wrinkled,
and the like, can henceforth be approached in
rigorous and vigorous quantitative fashion.

Mathematicians will (I hope) be surprised
and delighted to find that sets thus far reput-
ed exceptional (Carleson 1967) should in a
sense be the rule, that constructions deemed
pathological should evolve naturally from very
concrete problems, and that the study of Na-
ture should help solve old problems and yield
S0 mMany new ones.

Nevertheless, this Essay avoids all purely
technical difficulties. It is addressed primarily
to a mixed group of scientists. The presenta-
tion of each theme begins with concrete and
specific cases. The nature of fractals is meant
to be gradually discovered by the reader, not
revealed in a flash by the author.

And the art can be enjoyed for itself. =
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“All pulchritude is relative.... We ought free translation some excerpts from Perrin

not...to believe that the banks of the ocean are
really deformed, because they have not the
form of a regular bulwark; nor that the moun-
tains are out of shape, because they are not
exact pyramids or cones; nor that the stars are
unskillfully placed, because they are not all
situated at uniform distance. These are not
natural irregularities, but with respect to our
fancies only; nor are they incommodious to
the true uses of life and the designs of man’s
being on earth.” This opinion of the seven-
teenth century English scholar Richard Bent-
ley (echoed in the opening words of this Es-
say) shows that to bring coastline, mountain,
and sky patterns together, and to contrast
them with Euclid, is an ancient idea.

FROM THE PEN OF JEAN PERRIN

Next we tune to a voice nearer in time and
profession. To elaborate upon the irregular or
fragmented character of coastlines, Brownian
trajectories, and other patterns of Nature to
be investigated in this Essay, let me present in

1906. Jean Perrin’s subsequent work on
Brownian motion won him the Nobel Prize
and spurred the development of probability
theory. But here 1 quote from an early philo-
sophical manifesto. Although it was later par-
aphrased in the preface to Perrin 1913, this
text failed to gain attention until quoted in
this Essay's first (French) version. It had
come to my notice too late to have a substan-
tive effect on my work, but it spurred mec on
at a time of need, and its eloquence remains
unmatched.

“It is well known that, before giving a rig-
orous definition of continuity, a good teacher
shows that beginners already possess the idea
which underlies this concept. He draws a well-
defined curve and says, holding a ruler, “You
see that there is a tangent at every point.” Or
again, in order to impart the notion of the
true velocity of a moving object at a point in
its trajectory, he says, ‘You see, of course,
that the mean velocity between two neighbor-
ing points does not vary appreciably as these
points approach infinitely near to each other.
And many minds, aware that for certain fa-



miliar motions this view appears true enough,
do not see that it involves considerable diffi-
culties.

“Mathematicians, however, are well aware
that it is childish to try to show by drawing
curves that every continuous function has a
derivative. Though differentiable functions
are the simplest and the easiest to deal with,
they are exceptional. Using geometrical lan-
guage, curves that have no tangents are the
rule, and regular curves, such as the circle,
are interesting but quite special.

“At first sight the consideration of the
general case seems merely an intellectual ex-
ercise, ingenious but artificial, the desire for
absolute accuracy carried to a ridiculous
length. Those who hear of curves without tan-
gents, or of functions without derivatives, of-
ten think at first that Nature presents no such
complications, nor even suggests them.

“The contrary, however, is true, and the
logic of the mathematicians has kept them
nearer to reality than the practical representa-
tions employed by physicists. This assertion
may be illustrated by considering certain ex-
perimental data without preconception.

“Consider, for instance, one of the white
flakes that are obtained by salting a solution
of soap. At a distance its contour may appear
sharply defined, but as we draw nearer its
sharpness disappears. The eye can no longer
draw a tangent at any point. A line that at
first sight would seem to be satisfactory ap-
pears on close scrutiny to be perpendicular or
oblique. The use of a magnifying glass or mi-
croscope leaves us just as uncertain, for fresh

e
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irregularities appear every time we increase
the magnification, and we never succeed in
getting a sharp, smooth impression, as given,
for example, by a steel ball. So, if we accept
the latter as illustrating the classical form of
continuity, our flake could just as logically
suggest the more general notion of a continu-
ous function without a derivative.”

An interruption is necessary to draw atten-
tion to Plates 10 and 11.

The black-and-white plates first mentioned
in a given chapter are collected on pages that
follow immediately, and are numbered as the
pages on which they occur. The color plates
form a special signature, whose captions are
written to be fairly independent of the rest of
the book.

The quote resumes.

“We must bear in mind that the uncertain-
ty as to the position of the tangent at a point
on the contour is by no means the same as the
uncertainty observed on a map of Brittany.
Although it would differ according to the
map’s scale, a tangent can always be found,
for a map is a conventional diagram. On the
contrary, an essential characteristic of our
flake and of the coast is that we suspect,
without seeing them clearly, that any scale
involves details that absolutely prohibit the
fixing of a tangent.

“We are still in the realm of experimental
reality when we observe under the microscope
the Brownian motion agitating a small parti-
cle suspended in a fluid [this Essay’s Plate
13]. The direction of the straight line joining
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the positions occupied at two instants very
close in time is found to vary absolutely irreg-
ularly as the time between the two instants is
decreased. An unprejudiced observer would
therefore conclude that he is dealing with a
function without derivative, instead of a curve
to which a tangent could be drawn.

“It must be borne in mind that, although
closer observation of any object generally
leads to the discovery of a highly irregular
structure, we often can with advantage ap-
proximate its properties by continuous func-
tions. Although wood may be indefinitely po-
rous, it is useful to speak of a beam that has
been sawed and planed as having a finite
area. In other words, at certain scales and for
certain methods of investigation, many phe-
nomena may be represented by regular contin-
uous functions, somewhat in the same way
that a sheet of tinfoil may be wrapped round
a sponge without following accurately the
latter’s complicated contour.

“If, to go further, we... attribute to matter
the infinitely granular structure that is in the
spirit of atomic theory, our power to apply to
reality the rigorous mathematical concept of
continuity will greatly decrease.

“Consider, for instance, the way in which
we define the density of air at a given point
and at a given moment. We picture a sphere
of volume v centered at that point and includ-
ing the mass m. The quotient m/v is the
mean density within the sphere, and by true
density we denote some limiting value of this
quotient. This notion, however, implies that at
the given moment the mean density is practi-

cally constant for spheres below a certain vol-
ume. This mean density may be notably dif-
ferent for spheres containing 1,000 cubic
meters and 1 cubic centimeter respectively,
but it is expected to vary only by 1 in
1,000,000 when comparing 1 cubic
centimeter to one-thousandth of a cubic
millimeter.

“Suppose the volume becomes continually
smaller. Instead of becoming less and less im-
portant, these fluctuations come to increase.
For scales at which the Brownian motion
shows great activity, fluctuations may attain
1 part in 1,000, and they become of the order
of 1 part in 5 when the radius of the hypo-
thetical spherule becomes of the order of a
hundredth of a micron.

“One step further and our spherule be-
comes of the order of a molecule radius. In a
gas, it will generally lie in intermolecular
space, where its mean density will henceforth
vanish. At our point the true density will also
vanish. But about once in a thousand times
that point will lie within a molecule, and the
mean density will be a thousand times higher
than the value we usually take to be the true
density of the gas.

“Let our spherule grow steadily smaller.
Soon, except under exceptional circumstances,
it will become empty and remain so hence-
forth owing to the emptiness of intra-atomic
space; the true density vanishes almost every-
where, except at an infinite number of isolat-
ed points, where it reaches an infinite value.

“Analogous considerations are applicable
to properties such as velocity, pressure, or



temperature. We find them growing more and
inore irregular as we increase the magnifica-
tion of our necessarily imperfect image of the
universe. The function that represents any
physical property will form in intermaterial
space a continuum with an infinite number
of singular points.

“Infinitely discontinuous matter, a contin-
uvous ether studded with minute stars, also
appears in the cosmic universe. Indeed, the
conclusion we have reached above can also be
arrived at by imagining a sphere that succes-
sively embraces planets, solar system, stars,
and nebulae....

“Allow us now a hypothesis that is arbi-
trary but not self-contradictory. One might
encounter instances where using a function
without a derivative would be simpler than
using one that can be differentiated. When
this happens, the mathematical study of irreg-
ular continua will prove its practical value.”

Then, starting a new section for emphasis.
“However, this hope is nothing but a day-
dream, as yet.”

WHEN A “GALLERY OF MONSTERS"”
BECOMES A MUSEUM OF SCIENCE

Part of this daydream, relative to Brownian
motion, did become reality in Perrin’s own
lifetime. Perrin 1909 chanced to catch the
attention of Norbert Wiener (Wiener 1956,
pp- 38-39, or 1964, pp. 2-3), who, to his own
“surprisec and delight” was moved to define
and study rigorously a nondifferentiable first
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model of Brownian motion.

This model remains essential, but physi-
cists stress that its nondifferentiability is
traceable to abusive idealization, namely the
neglect of inertia. In doing so, physicists turn
their back to the feature of Wiener’s model
that is most significant for the present work.

As to the other applications of mathemat-
ics to physics that Perrin foresaw, they were
not even attempted until the present work.
The collection of sets to which Perrin was al-
luding (Weierstrass curves, Cantor dusts, and
the like) continued to remain a part of “pure
mathematics.”

Some writers, for example Vilenkin 1965,
call this collection a “Mathematical Art
Museum,” without suspecting (I am sure)
how accurate those words were to be proven
by the present work. We know from Chapter
1 that other writers (beginning with Henri
Poincaré) call it a “Gallery of Monsters,”
echoing the Treatise of Algebra of John Wal-
lis (1685), where the fourth dimension is de-
scribed as “a Monster in Nature, and less pos-
sible than a Chimera or Centaure.”

One of the aims of the present Essay is to
show, through relentless hammering at diverse
explicit “cases,” that the same Gallery may
also be visited as a “Museum of Science.”

Mathematicians are to be praised for hav-
ing devised the first of these sets long ago,
and scolded for having discouraged us from
using them. .



Plates 10 and 11 o ARTIFICIAL FRACTAL FLAKES

In an inspiring text quoted in Chapter 2, Jean
Perrin comments on the form of the “white
flakes that are obtained by salting a solution
of soap.” These illustrations are meant to ac-
company Perrin’s remarks.

One must hasten to state that they are nei-
ther photographs nor computer reconstitutions
of any real object, be it a soap flake, a rain
cloud, a volcanic cloud, a small asteroid, or a
piece of virgin copper.

Nor do they claim to result from a theory
embodying the diverse aspects of a real flake’s
formation—chemical, physico-chemical, and
hydrodynamical.

A fortiori, they do not claim to be directly
related to scientific principles.

They are computer-generated shapes
meant to illustrate as simply as I can manage
certain geometric characteristics that seem to
be embodied in Perrin’s description, and that

T propose to model using the notion of fractal.

These flakes exist only in a computer’s
memory. They were never made into hard
models, and the shading too was implemented
by computation.

W explained in
/(;llaptcr . The obvious perceptual differ-
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ences between them are due to differences in
the value of a parameter D written next to
cach. It is called fractal dimension, is basic to
the present work, and is introduced in Chap-
ter 3. The overall shapes being the same in all
3 cases is due to bias introduced by the use of
an approximation, and is discussed in the cap-
tion of Plates 266 and 267.

An earlier version was oddly reminiscent
of a presumed photograph of the Loch Ness
monster. Could this convergence of form be
coincidental? =E
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Plate 13 1 JEAN PERRIN'S CLASSIC DRAWINGS OF PHYSICAL BROWNIAN MOTION

Physical Brownian motion is described in Per-
rin 1909 as follows: “In a fluid mass in equi-
librium, such as water in a glass, all the parts
appear completely motionless. If we put into it
an object of greater density, it falls. The fall,
it is true, is the slower the smaller the object;
but a visible object always ends at the bottom
of the vessel and does not tend again to rise.
However, it would be difficult to examine for
long a preparation of very fine particles in a
liquid without observing a perfectly irregular
motion. They go, stop, start again, mount,
descend, mount again, without in the least
tending toward immobility.”

The present plate, the only one in this
book to picture a natural phenomenon, is re-
produced from Perrin’s Aroms. We see four
separate tracings of the motion of a colloidal
particle of radius 0.53u, as seen under the
microscope. The successive positions were
marked every 30 seconds (the grid size be-
ing 3.2u), then joined by straight intervals
having no physical reality whatsoever.

To resume our free translation from Perrin
1909, “One may be tempted to define an
‘average velocity of agitation’ by following a
particle as accurately as possible. But such
evaluations are grossly wrong. The apparent
average velocity varies crazily in magnitude
and dircction. This plate gives only a weak
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idea of the prodigious entanglement of the
real trajectory. If indeed this particle’s posi-
tions were marked down 100 times more fre-
quently, each interval would be replaced by a
polygon smaller than the whole drawing but
just as complicated, and so on. It is easy to
see that in practice the notion of tangent is
meaningless for such curves.”

This Essay shares Perrin’s concern, but
attacks irregularity from a different angle.
We stress the fact that when a Brownian tra-
jectory is examined increasingly closely,
Chapter 25, its length increases without
bound.

Furthermore, the trail left behind by
Brownian motion ends up by nearly filling the
whole plane. Is it not tempting to conclude
that in some sense still to be defined, this pe-
culiar curve has the same dimension as the
plane? Indeed, it does. A principal aim of this
Essay will be to show that the loose notion of
dimension splits into several distinct compo-
nents. The Brownian motion’s trail is
topologically a curve, of dimension 1. Howev-
er, being practically plane filling, it is
Sractally of dimension 2. The discrepancy be-
tween these two values will, in the terminolo-
gy introduced in this Essay, qualify Brownian
motion as being a fractal. .
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3 = Dimension, Symmetry, Divergence

A central role is played in this Essay by the
ancient notions of dimension {meaning num-
ber of dimensions or dimensionality) and of
symmetry. Furthermore, we constantly en-
counter diverse symptoms of divergence.

THE IDEA OF DIMENSION

Mathematicians recognized during their 1875-
1925 crisis that a proper understanding of
irregularity or fragmentation (as of regularity
and connectedness) cannot be satisfied with
defining dimension as a number of coordi-
nates. The first step of a rigorous analysis is
taken by Cantor in his June 20, 1877, letter to
Dedekind, the next step by Peano in 1890,
and the final steps in the 1920’s.

Like all major intellectual developments,
the outcome of this story can be interpreted in
diverse ways. Anyone who writes a mathemat-
ical book on the theory of dimension implies
that this theory is unique. But to my mind the
main fact is that the loose notion of dimension
turns out to have many mathematical facets
that not only are conceptually distinct but

may lead to different numerical values. Just
as William of Occam says of entities, dimen-
sions must not be multiplied beyond necessity,
but a multiplicity of dimensions is absolutely
unavoidable. Euclid is limited to sets for
which all the useful dimensions coincide, so
that one may call them dimensionally
concordant sets. On the other hand, the dif-
ferent dimensions of the sets to which the
bulk of this Essay is devoted fail to coincide;
these sets are dimensionally discordant.
Moving on from the dimensions of mathe-
matical sets to the “effective” dimensions of
the physical objects modeled by these sets, we
encounter a different sort of inevitable and
concretely essential ambiguity. Both the
mathematical and the physical aspects of di-
mension are previewed in this chapter.

DEFINITION OF THE TERM FRACTAL

The present section uses undefined mathemat-
ical terms, but many readers may find it help-
ful, or at least reassuring, to scan this text,
and anybody can skip it.
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This and later digressions in this Essay are
delimited by the new brackets <« and .
The latter is very bold, so as to be readily
found by anyone who becomes lost in a digres-
sion and wants to skip ahead. But the “open
bracket’ symbol avoids attracting attention,
so as to prevent digressions from receiving
excessive attention. Material discussed later
often receives advance mention in digressions.

-a The fact that the basic fractals are di-
mensionally discordant can serve to transform
the concept of fractal from an intuitive to a
mathematical one. 1 chose to focus on two
definitions, each of which assigns to every set
RE in Euclidean space, no matter how
“pathological,” a real number which on intui-
tive and formal grounds strongly deserves to
be called its dimension. The more intuitive of
the two is the topological dimension according
to Brouwer, Lebesgue, Menger, and Urysohn.
We denote it by Dt. It is described in an en-
try in Chapter 41. The second dimension was
. formulated in Hausdorff 1919 and put in final
form by Besicovitch. It is discussed in Chap-
ter 39. We denote it by D.

-<a Whenever (as is usuaII{ the case) we
work in the Euclidean span IR™, both Dt and
D are at least O and at most E. But the resem-
blance ends here. The dimension Dy is always
an integer, but D need not be an integer. And
the two dimensions need not coincide; they
only satisfy the Szpilrajn inequality
(Hurewicz & Wallman 1941, Chapter 4)

D=Dr.
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For all of Euclid, D=Dy. But nearly all sets in
this Essay satisfy D>Dy. There was no term
to denote such sets, which led me to coin the
term fractal, and to define it as follows:

<a A fractal is by definition a set for
which the Hausdorff Besicovitch dimension
strictly exceeds the topological dimension.

<a Every set with a noninteger D is a frac-
tal. For example, the original Cantor set is a
fractal because we see in Chapter 8 that

D=log 2/log 3~0.6309>0, while Dy=0.

And a Cantor set in IRF can be tailored and
generalized so that Dy=0, while D takes on
any desired value between O and E (included).

<a Furthermore, the original Koch curve is
a fractal because we see in Chapter 6 that

D=log 4 /log 3~1.2618>1, while Dy=1.

-a However, a fractal may have an integer D.
For example, Chapter 25 shows that the trail
of Brownian motion is a fractal because

D=2, while Dy=1.

-a The striking fact that D need not be an
integer deserves a terminological aside. If one
uses fraction broadly, as synonymous with a
noninteger real number, several of the above-
listed values of D are fractional, and indeed
the Hausdorff Besicovitch dimension is often
called fractional dimension. But D may be an
integer (not greater than E but strictly greater
than D). I call D a fractal dimension. w
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FRACTALS IN HARMONIC ANALYSIS

-a Part of the study of fractals is the geome-
tric face of harmonic analysis, but this fact is
not stressed in the present work. Harmonic (=
spectral or Fourier) analysis is not known to
most readers, and many who use it effectively
are not acquainted with its basic structures.

Also, both the fractal and the spectral ap-
proach have their own strong flavor and per-
sonality, which are better appreciated by first
investigating each for its own sake. Finally,
compared to harmonic analysis, the study of
fractals is easy and intuitive. »

OF “"NOTIONS THAT ARE NEW,... BUT”

Lebesgue made fun of certain “notions that
are new, to be sure, but of which no use can
be made after they have been defined.” This
comment never applied to D, but the use of D
remained concentrated in few areas, all of
them in pure mathematics. I was the first to
use D successfully in the description of Na-
ture. And one of the central goals of this work
is to establish D in a central position in empir-
ical science, thereby showing it to be of far
broader import than anyone imagined.

Several areas of physics accepted my claim
concerning D with exceptional promptness. In
fact, having recognized the inadequacies of
standard dimension, numerous scholars in
these areas had already been groping towards
broken, anomalous or continuous dimensions
of all kind. These approaches had remained
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mutually unrelated, however. Furthermore,
few definitions of dimension were used more
than once, none had the backing of a mathe-
matical theory, and none was developed far
enough for the lack of mathematical backing
to make a difference. For the developments to
be described here, to the contrary, the exist-
ence of a mathematical theory is vital.

A MATHEMATICAL STUDY OF FORM
MUST GO BEYOND TOPOLOGY

A mathematician, if asked which well-defined
branch of mathematics studies form, is very
likely to mention topology. This field is impor-
tant to our purposes and is referred to in the
preceding section, but the present Essay ad-
vances and defends the claim that the loose
notion of form possesses mathematical aspects
other than topological ones.

Topology, which used to be called geonie-
try of situation or analysis situs (Towos
means position, situation in Greek), considers
that all pots with two handles are of the same
form because, if both are infinitely flexible
and compressible, they can be molded into
any other continuously, without tearing any
new opening or closing up any old one. It also
teaches that all single island coastlines are of
the same form, because they are topologically
identical to a circle. And that the topological
dimension is the same for coastlines and cir-
cles: equal to 1. If one adds offshore “satellite
islands,” the cumulative coastline is topologi-
cally identical to “many” circles. Thus, topol-
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ogy fails to discriminate between different
coastlines.

By way of contrast, Chapter 5 shows that
different coastlines tend to have different
fractal dimensions. Differences in fractal di-
mension express differences in a nontopologi-
cal aspect of form, which I propose to call
Sractal form.

Most problems of real interest combine
fractal and topological features in increasingly
subtle fashion.

Observe that in the case of topology, the
definitions of the field itself and of Dt were
refined in parallel, while the notion of D pre-
ceded the present study of fractal form by
half a century.

Incidentally, Felix Hausdorff’s name being
given to a class of topological spaces, the
widely used contracted term for D, Hausdorff
dimension, seems to have undertones of
“dimension of a Hausdorff space,” thus sug-
gesting it is a topological concept—which em-
phatically is not the case. This is yet another
reason for preferring fractal dimension.

EFFECTIVE DIMENSION

In addition to the mathematical notions un-
derlying Dy and D, this Essay often invokes
effective dimension, a notion that should not
be defined precisely. It is an intuitive and po-
tent throwback to the Pythagoreans’ archaic
Greek geometry. A novelty of this Essay is
that it allows the value of effective dimension
to be a fraction.
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Effective dimension concerns the relation
between mathematical sets and natural ob-
jects. Strictly speaking, physical objects such
as a veil, a thread, or a tiny ball should all be
represented by three-dimensional shapes.
However, physicists prefer to think of a veil, a
thread, or a ball—if they are fine enough—as
being “in effect” of dimensions 2, 1, and O,
respectively. For example, to describe a
thread, the theories relating to sets of dimen-
sion 1 or 3 must be modified by corrective
terms. And the better geometrical model is
determined after the fact, as involving the
smaller corrections. If luck holds, this model
continues to be helpful even when corrections
are omitted. In other words, effective dimen-
sion inevitably has a subjective basis. It is a
matter of approximation and therefore of de-
gree of resolution.

DIFFERENT EFFECTIVE DIMENSIONS
IMPLICIT IN A BALL OF THREAD

To confirm this last hunch, a ball of 10 cm
diameter made of a thick thread of 1 mm
diameter possesses (in latent fashion) several
distinct effective dimensions.-

To an observer placed far away, the ball
appears as a zero-dimensional figure: a point.
(Anyhow, it is asserted by Blaise Pascal and
by medieval philosophers that on a cosmic
scale our whole world is but a point!) As seen
from a distance of 10 cm resolution, the ball
of thread is a three-dimensional figure. At 10
mm, it is a mess of one-dimensional threads.
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At 0.1 mm, each thread becomes a column
and the whole becomes a three-dimensional
figure again. At 0.01 mm, each column dis-
solves into fibers, and the ball again becomes
one-dimensional, and so on, with the dimen-
sion crossing over repeatedly from one value
to another. When the ball is represented by a
finite number of atomlike pinpoints, it be-
comes zero-dimensional again. An analogous
sequence of dimensions and crossovers is en-
countered in a sheet of paper.

The notion that a numerical result should
depend on the relation of object to observer is
in the spirit of physics in this century and is
even an exemplary illustration of it.

Most of the objects considered in this Es-
say are like our ball of thread: they exhibit a
succession of different effective dimensions.
But a vital new element is added: certain ill-
defined transitions between zones of well-
defined dimension are reinterpreted as being
fractal zones within which D>Dr.

SPATIAL HOMOGENEITY, SCALING,
AND SELF-SIMILARITY

Having finished with dimensions for the time
being, let us prepare for the theme of symme-
try by recalling that Euclid begins with the
simplest shapes, such as lines, planes, or
spaces. And the simplest physics arises when
some quantity such as density, temperature,
pressure, or velocity is distributed in a homo-
geneous manner.

The homogeneous distribution on a line,
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piane, or space has two very desirable proper-
ties. It is invariant under displacement, and it
is invariant under change of scale. When we
move on to fractals, either invariance must be
modified and/or scope.
Hence, the best fractals are those that exhibit
the maximum of invariance.

Concerning displacement: different parts
of the trail of Brownian motion can never be
precisely superposed on each other—as can be
done with equal parts of a straight line. Nev-
ertheless, the parts can be made to be super-
posable in a statistical sense. Nearly all the
fractals in the present Essay are to some ex-
tent invariant under displacement.

Furthermore, most fractals in this Essay
are invariant under certain transformations of
scale. They are called scaling. A fractal invar-
jiant under ordinary geometric similarity is
called self-similar.

In the compound term scaling fractals, the
adjective serves to mitigate the noun. While
the primary term fractal points to disorder
and covers cases of intractable irregularity,
the modifier scaling points to a kind of order.
Alternatively, taking scaling as the primary
term pointing to strict order, fractal is a mod-
ifier meant to exclude lines and planes.

The motivation for assuming homogeneity
and scaling must not be misinterpreted. Here
as in standard geometry of nature, no one be-
lieves that the world is strictly homogeneous
or scaling. Standard geometry investigates
straight lines as a preliminary. And mechan-
ics also views uniform rectilinear motion as
merely a first step.

restricied in its
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The same is true of the study of scaling
fractals, but the first step takes much longer
in this case because the straight line is re-
placed by a wealth of diverse possibilities,
which this book can merely sample. One
should not be surprised that scaling fractals
should be limited to providing first approxi-
mations of the natural shapes to be tackled.
One must rather marvel that these first ap-
proximations are so strikingly reasonable.

It is good to point out that self-similarity
is an old idea. In the case of the line, it occur-
red to Leibniz circa 1700 (see under SCALING
IN LEIBNIZ AND LAPLACE in Chapter 41). And
its generalization beyond lines and planes is
almost a hundred years old in mathematics,
though its concrete importance was not appre-
ciated until this Essay. Also, it is not new in
science, since Lewis F. Richardson postulated
in 1926 that over a wide range of scales tur-
bulence is decomposable into self-similar ed-
dies. Furthermore, striking analytical conse-
quences of this idea in mechanics are drawn
in Kolmogorov 1941. And the analytic aspects
of scaling in physics are associated with the
notion of renormalization group, Chapter 36.

However, this Essay’s 1975 predecessor
was the first to address itself to the geometric
aspects of nonstandard scaling in Nature.

“SYMMETRIES” BEYOND SCALING

After it finishes with lines, Euclid tackles
shapes with richer properties of invariance,
usually called *““symmetries.” And this Essay
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also makes a fairly lengthy excursion into
nonscaling fractals, in Chapters 15 to 20.

Self-mapping but nonscaling fractals are
intimately linked with some of the most re-
fined and difficult areas of “hard” classical
mathematical analysis. Contrary to rumors
that analysis is a dry subject, these fractals
tend to be astoundingly beautiful.

DIVERGENCE SYNDROMES

Almost every case study we perform involves
a divergence syndrome. That is, some quantity
that is commonly expected to be positive and
finite turns out either to be infinite or to van-
ish. At first blush, such misbehavior looks
most bizarre and even terrifying, but a careful
reexamination shows it to be quite accepta-
ble..., as long as one is willing to use new me-
thods of thought.

Cases where a symmetry is accompanied
by a divergence are also a familiar fixture of
quantum physics, within which diverse diver-
gence eliminating arguments take a place of
honor. Luckily, the various fractal divergences
are much easier to handle. » |
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Now that the diverse objectives of this Essay

arc outlined, we

attempts to integrate several distinct facets.

avaming ite mannar It
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OBSCURITY IS NOT A VIRTUE

To be accessible to scholars and students not
necessarily specializing in the various subjects
tackled, many of which are esoteric, this work
incorporates much exposition.

But exposition is not its principal purpose.

Further, an attempt is made not to fright-
en away those who are not interested in math-
ematical precision, but who ought to be inter-
ested in my main conclusions. Rigorous math-
ematical backup is available throughout (and
is sounder than in much of physics), but the
book’s style is informal (though precise). All
detail is set aside to Chapter 39, to the refer-
ences, and to diverse works to come.

Since original work is not expected to show
such concerns, this Essay is to some extent a
work of popularization.

But popularization is nor its
purpose.

main

ERUDITION 1S GOOD FOR THE SOUL

As exemplified in Chapter 2, this Essay in-
cludes many old and obscure references. Most
did not attract my attention until well after
my own work in related areas was essentially
complete. They did not influence my thinking.
However, during the long years when my in-
terests were not shared by anyone, I rejoiced
in discovering analogous concerns in ancient
works, however fleetingly and ineffectually
expressed, witness their failure to be devel-
oped. In this fashion, an interest in “classics,”
which the usual practice of science destroys,
was nurtured in my case.

In other words, I rejoiced in finding that
the stones I needed—as the architect and
builder of the theory of fractals—included
many that had been considered by others. But
why continue to dwell on this fact today?
Casual footnotes would satisfy the prevailing
custom, while an excessive stress on distant
roots or origins risks fostering the absurd im-
pression that my building is largely a pile of
old stones with new names on them.

Thus, my antiquarian curiosity would re-
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quire a justification, but I shall not attempt
one. It is enough to say that, in my opinion,
an interest in the history of ideas is good for
the scientist’s soul.

However, whenever we read a great man’s
writings in a light with which he was not
blessed, we may ponder the delightful preface
Lebesgue wrote to a book by Lusin. He dis-
claimed many profound thoughts with which
said book credited him, saying he might have,
or should have, had these thoughts, but had
not, and that they originated with Lusin. A
related item is Whittaker 1953, wherein
quotes from Poincaré and Lorentz are mar-
shalled in favor of a thesis both had pointedly
disclaimed: that the physical theory of relativ-
ity was their creation and not Einstein’s.

Also, for each author jotting down years
ago an idea which we can now develop but he
did not, we run the risk of finding a second
author to declare that the idea is absurd. And
should we credit the young Henri Poincaré
with ideas he failed to develop, and the ma-
ture Henri Poincaré rejected? Stent 1972
might lead us to the conclusion that prema-
turity, being too much ahead of one’s time,
deserves nothing but compassionate oblivion.

While excessive erudition in relation to the
history of ideas is self-defeating. I do wish to
assert the echoes from the past, stressing them
further in the biographical and historical
sketches in Chapters 40 and 41,

Yet, a display of erudition is certainly not
the main purpose of this Essay.
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“TO SEE IS TO BELIEVE”

In a letter to Dedekind, at the very beginning
of the 1875-1925 crisis in mathematics, Can-
tor is overwhelmed by amazement at his own
findings, and slips from German to French to
exclaim that “to see is not to believe” (“Je le
vois, mais je ne le crois pas”). And, as if on
cue, mathematics seeks to avoid being misled
by the graven images of monsters. What a
contrast between the rococo exuberance of
pre- or counterrevolutionary geometry, and
the near-total visual barrenness of the works
of Weierstrass, Cantor, or Peano! In physics,
an analogous development threatened since
about 1800, since Laplace’s Celestial
Mechanics avoided all illustration. And it is
exemplified by the statement by P. A. M. Di-
rac (in the preface of his 1930 Quantum
Mechanics) that nature’s “fundamental laws
do not govern the world as it appears in our
mental picture in any very direct way, but
instead they control a substratum of which we
cannot form a mental picture without intro-
ducing irrelevancies.”

The wide and uncritical acceptance of this
view has become destructive. In particular, in
the theory of fractals “to see is to believe.”
Therefore, before he proceeds further, the
reader is again advised to browse through my
picture book. This Essay was designed to help
make its contents accessible in various degrees
to a wide range of readers, and to try and
convince even the purest among mathemati-
cians that the understanding of known con-
cepts and the search for new concepts and
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conjectures are both heiped by fine graphics.
Rarely does contemporary scientific literature
show such trust in the usefulness of graphics.

However, showing pretty pictures is not
the main purpose in this Essay; they are an
essential tool, but only a tool.

One must also recognize that any attempt
to illustrate geometry involves a basic fallacy.
For example, a straight line is unbounded and
infinitely thin and smooth, while any illustra-
tion is unavoidably of finite length, of positive
thickness, and rough edged. Nevertheless, a
rough evocative drawing of a line is felt by
many to be useful, and by some to be neces-
sary, to develop intuition and help in the
search for proof. And a rough drawing is a
more adequate geometric model of a thread
than the mathematical line itself. In other
words, it suffices for all practical purposes
that a geometric concept and its image should
fit within a certain range of characteristic
sizes, ranging between a large but finite size
to be called outer cutoff and a small but posi-
tive inner cutoff.

Today, thanks to computer-controlled
graphics, the same kind of evocative illustra-
tion is practical in the case of fractals. For
example, all self-similar fractal curves are
also unbounded and infinitely thin. Also, each
has a very specific lack of smoothness, which
makes it more complicated than anything in
Euclid. The best representation, therefore, can
only hold within a limited range, on the prin-
ciples we have already encountered. However,
cutting off the very large and the very small
detail is not only quite acceptable but even
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eminently appropriate, because both cutoffs
are either present or suspected in Nature.
Thus the typical fractal curve can be evoked
satisfactorily by elementary strokes in large
but finite number.

The larger the number of strokes and the
greater the accuracy of the process, the more
useful the representation, because fractal con-
cepts refer to the mutual placement of strokes
in space, and it is vital in illustrating them to
keep to precise scale. Hand drawing would be
prohibitive, but computer graphics serves
beautifully. My successive Essays have been
very much influenced by the availability of
increasingly sophisticated systems-—and of
increasingly sophisticated programmer-artists
to run them! Also, I am fortunate in having
access to a device that produces camera ready
illustrations. This Essay provides a sample of
its output.

Graphics is wonderful for matching models
with reality. When a chance mechanism
agrees with the data from some analytic view-
point but simulations of the model do not look
at all “real,” the analytic agreement should
be suspect. A formula can relate to only a
small aspect of the relationship between mod-
el and reality, while the eye has enormous
powers of integration and discrimination.
True, the eye sometimes sees spurious rela-
tionships which statistical analysis later nega-
tes, but this problem arises mostly in areas of
science where samples are very small. In the
areas we shall explore, samples are huge.

In addition, graphics helps find new uses
for existing models. 1 first experienced this
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possibility with the random walk illustration
in Feller 1950—the curve looked like a
mountain’s profile or cross section, and the
points where it intersects the time axis re-
minded me of certain records I was then in-
vestigating, relative to telephone errors. The
ensuing hunches eventually led to the theories
presented in Chapters 28 and 31, respectively.
My own computer-generated illustrations pro-
vided similar inspiration, both to me and to
others kind enough to “scout™ for me in more
sciences than I knew existed.

Naturally, graphics is extended by cinema-
tography: films concerned with some classical
fractals have been provided by Max 1971.

THE STANDARD FORM, AND THE NEW
FRACTAL FORM, OF GEOMETRIC “ART"

As to this book’s endpapers and diverse pat-
terns scattered around, they were the unin-
tended result of faulty computer program-
ming. I hear and read of both the intended
and the unintended illustrations being de-
scribed as a “New Form of Art.”

Clearly, competing with artists is not at
all a purpose of this Essay. Nevertheless, one
must address this issue. The question is not
whether the illustrations are neatly drawn and
printed, and the originals being drawn by
computer is not essential either, except in
terms of economics. But we do deal with a
new form of the controversial but ancient
theme that all graphical representations of
mathematical concepts are a form of art, one
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that is best when it is simplest, when (to bor-
row a painter’s term) it can be called
“minimal art.”

It is widely held that minimal art is re-
stricted to limited combinations of standard
shapes: lines, circles, spirals, and the like. But
such need not be the case. The fractals used
in scientific models are also very simple
(because science puts a premium on simplici-
ty). And I agree that many may be viewed as
a new form of minimal geometric art.

Is some of it reminiscent of M. C. Escher?
It should be, because Escher had the merit of
letting himself be inspired by the hyperbolic
tilings in Fricke & Klein 1897, which (see
Chapter 18) relate closely to shapes that are
being incorporated into the fractal realm.

The fractal “new geometric art” shows
surprising kinship to Grand Masters paintings
or Beaux Arts architecture. An obvious reason
is that classical visual arts, like fractals, in-
volve very many scales of length and favor
self-similarity (Mandelbrot 19811). For all
these reasons, and also because it came in
through an effort to imitate Nature in order
to guess its laws, it may well be that fractal
art is readily accepted because it is not truly
unfamiliar. Abstract paintings vary on this
account: those I like also tend to be close to
fractal geometric art, but many are closer to
standard geometric art—too close for my own
comfort and enjoyment.

A paradox emerges here: As observed in
Dyson’s quote in Chapter 1, modern mathe-
matics, music, painting, and architecture may
seem to be related to one another. But this is
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a superficial impression, notably in the con-
text of architecture: A Mies van der Rohe
building is a scalebound throwback to Euclid,
while .a high period Beaux Arts building is
rich in fracial aspecis.

POINTS OF LOGISTICS

Successive chapters take up diverse topics by
increasing complexity, in order to introduce
the basic ideas gradually. The fact that this
approach seems feasible is a great asset for
the theory of fractals. The amount of built-in
repetition is such that the reader is unlikely to
lose the main thrust of the argument if he
skips the passages he feels to be either repeti-
tious or too complicated (in particular, those
that go beyond the most elementary mathe-
matics). Much information is included in the
captions of the plates.

As already mentioned, the plates are
grouped after the chapters where they are
first examined. Also this writer feels every so
often the need to engage in private conversa-
tion, so to speak, with specific groups of read-
ers who might be overly troubled if some
point were left unmentioned or unexplained.
The digressions are left in the text but mark-
ed by the newfangled brackets <« and m,
which should make them easier to skip. Other
digressions are devoted to incidental remarks
I have no time to explore fully. But this Essay
is less digressive than the 1977 Fractals.

An attempt is made to show at a glance

- whether the discussion is concerned with theo-

INTRODUCTION nnoo |

retical or empirical dimensions D. The latter
are mostly known to one or two decimals, and
are therefore written as 1.2 or 1.37. The for-
mer are written as integers, ratios of integers,
raiios of logarithims of iniegers, or in decimal
form to at least four decimals.

BACK TO THE BASIC THEME

Having disclaimed diverse goals that are pe-
ripheral to this Essay, let me echo Chapter 1.
This work is a manifesto and a casebook, de-
voted nearly exclusively to theories and theses
which I initiated but which often led to the
revival and the reinterpretation of diverse old
works.

None of these theories stopped growing,
and a few are still at the seed stage. Some are
published here for the first time, while others
had been described in my earlier articles. In
addition, I mention numerous developments
my earlier Essays had inspired, and which in
turn stimulated me. However, 1 do not at-
tempt to list all the fields where fractals prove
useful, for fear of destroying the style of an
Essay and the flavor of a manifesto.

Last reminder: I do not propose to develop
any case study in the full detail desired by the
specialists. But many topics are touched upon
repeatedly; don’t forget to use the index.
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5 » How Long Is the Coast of Britain?

To introduce a first category of fractals,
namely curves whose fractal dimension is
greater than 1, consider a stretch of coastline.
It is evident that its length is at least equal to
the distance measured along a straight line
between its beginning and its end. However,
the typical coastline is irregular and winding,
and there is no question it is much longer
than the straight line between its end points.
There are various ways of evaluating its
length more accurately, and this chapter ana-
lyzes several of them. The result is most pe-
culiar: coastline length turns out to be an elu-
sive notion that slips between the fingers of
one who wants to grasp it. All measurement
methods ultimately lead to the conclusion that
the typical coastline’s length is very large and
so ill determined that it is best considered in-
finite. Hence, if one wishes to compare differ-
ent coastlines from the viewpoint of their
“extent,” length is an inadequate concept.
This chapter seeks an improved substitute,

and in doing so finds it impossible to avoid
introducing various forms of the fractal con-
cepts of dimension, measure, and curve.

MULTIPLICITY OF ALTERNATIVE
METHODS OF MEASUREMENT

METHOD A: Set dividers to a prescribed open-
ing ¢, to be called the yardstick length, and
walk these dividers along the coastline, each
new step starting where the previous step
leaves off. The number of steps multiplied by
€ is an approximate length L(e). As the
dividers’ opening becomes smaller and small-
er, and as we repeat the operation, we have
been taught to expect L(e) to settle rapidly to
a well-defined value called the true length.
But in fact what we expect does not happen.
In the typical case, the observed L(e) tends to
increase without limit.

The reason for this behavior is obvious:
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When a bay or peninsula noticed on a map
scaled to 1 /100,000 is reexamined on a map
at 1 /10,000, subbays and subpeninsulas be-
come visible. On a 1 /1,000 scale map, sub-
subbays and sub-subpeninsuias appear, and so
forth. Each adds to the measured length.

Our procedure acknowledges that a coast-
line is too irregular to be measured directly by
reading it off in a catalog of lengths of simple
geometric curves. Therefore, METHOD A re-
places the coastline by a sequence of broken
lines made of straight intervals, which are
curves we know how to handle.

METHOD B: Such “smoothing out” can also
be accomplished in other ways. Imagine a
man walking along the coastline, taking the
shortest path that stays no farther from the
water than the prescribed distance ¢. Then he
resumes his walk after reducing his yardstick,
then again, after another reduction; and so on,
until € reaches, say, 50 cm. Man is too big
and clumsy to follow any finer detail. One
may further argue that this unreachable fine
detail (a) is of no direct interest to Man and
(b) varies with the seasons and the tides so
much that it is altogether meaningless. We
take up argument (a) later on in this chapter.
In the meantime, we can neutralize argument
(b) by restricting our attention to a rocky
coastline observed when the tide is low and
the waves are negligible. In principle, Man
could follow such a curve down to finer details
by harnessing a mouse, then an ant, and so
forth. Again, as our walker stays increasingly
closer to the coastline, the distance to be cov-
ered continues to increase with no limit.
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METHOD C: An asymmetry between land
and water is implied in METHOD B. To avoid
it, Cantor suggests, in effect, that one should
view the coastline with an out-of-focus camera
that transforms every point into a circuiar
blotch of radius ¢. In other words, Cantor con-
siders all the points of both land and water for
which the distance to the coastline is no more
than e. These points form a kind of sausage or
tape of width 2e, as seen in a different context
on Plate 32. Measure the area of the tape and
divide it by 2e. If the coastline were straight,
the tape would be a rectangle, and the above
quotient would be the actual length. With ac-
tual coastlines, we have an estimated length
L(e). As e decreases, this estimate increases
without limit.

METHOD D: Imagine a map drawn in the
manner of pointillist painters using circular
blotches of radius e. Instead of using circles
centered on the coastline, as in METHOD C, let
us require that the blotches that cover the
entire coastline be as few in number as possi-
ble. As a result, they may well lie mostly in-
land near the capes and mostly in the sea near
the bays. Such a map’s area, divided by Ze, is
an estimate of the length. This estimate also
“misbehaves.”

ARBITRARINESS OF
THE RESULTS OF MEASUREMENT

To summarize the preceding section, the main
finding is always the same. As e is made
smaller and smaller, every approximate length
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tends to increase steadily without bound.

In order to ascertain the meaning of this
result, let us perform analogous measurements
on a standard curve from Euclid. For an in-
terval of straight line, the approximate meas-
urements are essentially identical and define
the length. For a circle, the approximate
measurements increase but converge rapidly
to a limit. The curves for which a length is
thus defined are called rectifiable.

An even more interesting contrast is pro-
vided by the results of measurement on a
coastline that Man has tamed, say the coast
at Chelsea as it is today. Since very large fea-
tures are unaffected by Man, a very large
yardstick again yields results that increase as
¢ decreases.

However, there is an intermediate zone of
€’s in which L(¢) varies little. This zone may
go from 20 meters down to 20 centimeters
(but do not take these values too strictly). But
L(e) increases again after ¢ becomes less than
20 centimeters and measurements become
affected by the irregularity of the stones.
Thus, if we trace the curves representing L(e)
as a function of ¢, there is little doubt that the
length exhibits, in the zone of €s between
e=20 meters and ¢=20 centimeters, a flat
portion that was not observable before the
coast was tamed.

Measurements made in this zone are obvi-
ously of great practical use. Since boundaries
between different scientific disciplines are
largely a matter of conventional division of
labor between scientists, one might restrict
geography to phenomena above Man’s reach,
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for example, on scales above 20 meters. This
restriction would yield a well-defined value of
geographical length. The Coast Guard may
well choose to use the same e for untamed
coasts, and encyclopedias and almanacs could
adopt the corresponding L(e).

However, the adoption of the same e by all
the agencies of a government is hard to imag-
ine, and its adoption by all countries is all but
inconceivable. For example, Richardson 1961,
the lengths of the common frontiers between
Spain and Portugal, or Belgium and Nether-
lands, as reported in these neighbors’ ency-
clopedias, differ by 20%. The discrepancy
must in part result from different choices of e.
An empirical finding to be discussed soon
shows that it suffices that the e differ by a
factor of 2, and one should not be surprised
that a small country (Portugal) measures its
borders more accurately than its big neighbor.

The second and more significant reason
against deciding on an arbitrary ¢ is philo-
sophical and scientific. Nature does exist
apart from Man, and anyone who gives too
much weight to any specific ¢ and L(e¢) lets the
study of Nature be dominated by Man, either
through his typical yardstick size or his highly
variable technical reach. If coastlines are ever
to become an object of scientific inquiry, the
uncertainty concerning their lengths cannot be
legislated away. In one manner or another,
the concept of geographic length is not as
inoffensive as it seems. It is not entirely
“objective.”” The observer inevitably inter-
venes in its definition.
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IS THIS ARBITRARINESS GENERALLY
RECOGNIZED, AND DOES IT MATTER?

The view that coastline lengths are nonrecti-
fiabie is doubtiess held true by many peopie,
and I for one do not recall ever thinking oth-
erwise. But my search for written statements
to this effect is a near fiasco. Aside from the
Perrin quote in Chapter 2, there is the obscr-
vation in Steinhaus 1954 that “the left bank
of the Vistula, when measured with increasing
precision, would furnish lengths ten, hundred
or even thousand times as great as the length
read off the school map...[A] statement nearly
approaching reality would be to call most arcs
encountered in nature nonrectifiable. This
statement is contrary to the belief that non-
rectifiable arcs are an invention of mathema-
ticians and that natural arcs are rectifiable: it
is the opposite that is true.” But neither Per-
rin nor Steinhaus follow up on this insight.
Let me also retell a story reported by C.
Fadiman. His friend Edward Kasner would
ask small tots “to guess the length of the east-
ern coast line of the United States. After a
‘sensible’ guess had been made...he
would...point out that this figure increased
enormously if you measured the perimeter of
each bay and inlet, then that of every projec-
tion and curve of each of these, then the dis-
tance separating every small particle of coast-
line matter, each molecule, atom, etc. Obvi-
ously the coast line is as long as you want to
make it. The children understood this at once;
Kasner had more trouble with grownups.”
The story is nice, but it is not relevant here:
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Kasner’s goal was not to point out an aspect
of Nature worthy of further exploration.

Therefore, Mandelbrot 1967s and the pres-
ent Essay are effectively the first works on
this subjeci.

One is reminded of William James writing
in The Will to Believe that “The great field
for new discoveries...is always the unclassified
residuum. Round about the accredited and
orderly facts of every science there ever floats
a sort of dust-cloud of exceptional observa-
tions, of occurrences minute and irregular and
seldom met with, which it always proves more
easy to ignore than to attend to. The ideal of
every science is that of a closed and complet-
ed system of truth... Phenomena unclassifiable
within the system are paradoxical absurdities,
and must be held untrue...—one neglects or
denies them with the best of scientific con-
sciences... Any one will renovate his science
who will steadily look after the irregular phe-
nomena. And when the science is renewed, its
new formulas often have more of the voice of
the exception in them than of what were sup-
posed to be the rules.”

This Essay, whose ambition is indeed to
renew the Geometry of Nature, relies upon
many puzzles so unclassified that they are
only published when the censors nod. The
next section discusses a first example.

THE RICHARDSON EFFECT

The variation of the approximate length L(e)
obtained by Method A has been studied em-
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pirically in Richardson 1961, a reference that
chance (or fate) put in my way. I paid atten-
tion because (Chapter 40) 1 knew of Lewis
Fry Richardson as a great scientist whose
originality mixed with eccentricity. As we
shall learn in Chapter 10, we are indebted to
him for some of the most profound and most
durable ideas regarding the nature of turbu-
lence, notably the notion that turbulence in-
volves a self-similar cascade. He also con-
cerned himself with other difficult problems,
such as the nature of armed conflict between
states. His experiments were of classic sim-
plicity, but he never hesitated to use refined
concepts when he deemed them necessary.

The diagrams reproduced in Plate 33,
found among his papers after he died, were
published in a near confidential (and totally
inappropriate) Yearbook. They all lead to the
conclusion that there are two constants, which
we shall call X and D, such that—to approxi-
mate a coastline by a broken line—one needs
roughly Fe D intervals of length €, adding up
to the length

L(e)~FeP.

The value of the exponent D seems to depend
upon the coastline that is chosen, and differ-
ent pieces of the same coastline, if considered
separately, may produce different values of D.
To Richardson, the D in question was a simple
exponent of no particular significance. How-
ever, its value seems to be independent of the
method chosen to estimate the length of a
coastline. Thus D seems to warrant attention.
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A COASTLINE'S FRACTAL DIMENSION
(MANDELBROT 1967s)

Having unearthed Richardson’s work, 1 pro-
posed (Mandelbrot 1967s) that, despite the
fact that the exponent D is not an integer, it
can and should be interpreted as a dimension,
namely, as a fractal dimension. Indeed, I rec-
ognized that all the above listed methods of
measuring L(e) correspond to nonstandard
generalized definitions of dimension already
used in pure mathematics. The definition of
length based on the coastline being covered by
the smallest number of blotches of radius e is
used in Pontrjagin & Schnirelman 1932 to
define the covering dimension. The definition
of length based on the coastline being covered
by a tape of width 2¢ implements an idea of
Cantor and Minkowski (Plate 32), and the
corresponding dimension is due to Bouligand.
Yet these two examples only hint at the many
dimensions (most of them known only to a few
specialists) that star in diverse specialized
chapters of mathematics. A certain number of
them are discussed further in Chapter 39.
Why did mathematicians introduce this
plethora of distinct definitions? Because in
some cases they yield distinct values. Luckily,
however, such cases are never encountered in
this Essay, and the list of possible alternative
dimensions can be reduced to two that I have
not yet mentioned. The older and best investi-
gated one dates back to Hausdorff and serves
to define fractal dimension; we come to it mo-
mentarily. The simpler one is similarity di-
mension: it is less general, but in many cases
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is more than adequate; it is explored in the
following chapter.

Clearly, 1 do not propose to present a
mathematical proof that Richardson’s D is a
dimension. No such proof is conceivable in
any natural science. The goal is merely to
convince the reader that the notion of length
poses a conceptual problem, and that D pro-
vides a manageable and convenient answer.
Now that fractal dimension is injected into
the study of coastlines, even if specific reasons
come to be challenged, 1 think we shall never
return to the stage when D=1 was accepted
thoughtlessly and naively. He who continues
to think that D=1 has to argue his case.

The next step, to explain the shape of the
coastlines and to deduce the value of D from
other more basic considerations, is put off un-
til Chapter 28. Suffice at this point to an-
nounce that to a first approximation D=3 /2.
This value is much too large to describe the
facts but more than sufficient to establish that
it is natural, proper, and expected for a
coastline’s dimension to exceed the standard
Euclidean value D=1.

HAUSDORFF FRACTAL DIMENSION

If we accept that various natural coasts are
really of infinite length and that the length
based on an anthropocentric value of € gives
only a partial idea of reality, how can differ-
ent coastlines be compared to each other?
Since infinity equals four times infinity, every
coastline is four times longer than each of its
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quarters, but this is not a useful conclusion.
We need a better way to express the sound
idea that the entire curve must have a
“measure” that is four times greater than
each of its fourths.

A most ingenious method of reaching this
goal has been provided by Felix Hausdorff. It
is intuitively motivated by the fact that the
linear measure of a polygon is calculated by
adding its sides’ lengths without transforming
them in any way. One may say (the reason for
doing so will soon become apparent) that
these lengths are raised to the power D=1,
the Euclidean dimension of a straight line.
The surface measure of a closed polygon’s
interior is similarly calculated by paving it
with squares, and adding the squares’ sides
raised to the power D=2, the Euclidean di-
mension of a plane. When, on the other hand,
the “wrong” power is used, the result gives no
specific information: the area of every closed
polygon is zero, and the length of its interior
is infinite.

Let us proceed likewise for a polygonal
approximation of a coastline made up of small
intervals of length e If their lengths are
raised to the power D, we obtain a quantity
we may call tentatively an “approximate
measure in the dimension D.” Since according
to Richardson the number of sides is N=Fe_D,
said approximate measure takes the value
FePe P=F.

Thus, the approximate measure in the di-
mension D is independent of e. With actual
data, we simply find that this approximate
measure varies little with e.
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In addition, the fact that the length of a
square is infinite has a simple counterpart and
generalization: a coastline’s approximate
measure evaluated in any dimension d smaller
than D tends to co as e=0. Similarly, the area
and the volume of a straight line are zero.
And when d takes any value larger than D,
the corresponding approximate measure of a
coastline tends to O as e»0. The approximate

measure behaves reasonably if and only if
d=D.

A CURVE'S FRACTAL DIMENSION
MAY EXCEED 1; FRACTAL CURVES

By design, the Hausdorff dimension preserves
the ordinary dimension’s role as exponent in
defining a measure.

But from another viewpoint, D is very odd
indeed: it is a fraction! In particular, it ex-
ceeds 1, which is the intuitive dimension of
curves and which may be shown rigorously to
be their topological dimension Dy.

I propose that curves for which the fractal
dimension exceeds the topological dimension 1
be called fractal curves. And the present
chapter can be summarized by asserting that,
within the scales of interest to the geographer,
coastlines can be modeled by fractal curves.
Coastlines are fractal patterns. L

Plate 31 1 MONKEYS TREE

At this point, the present small incidental
plate should be viewed as merely a decorative
drawing, filling a gap.

However, when the reader has finished
Chapter 14, he will find in this drawing a hint
to help unscramble the “architecture” in Plate
146. A more sober hint resides in the follow-
ing generator.

D=1.8687

-



Plate 32 = AN EXAMPLE
OF MINKOWSKI SAUSAGE

When a mathematician wants to “tame™ a
wildly irregular curve, one of the standard
procedures is to select a radius ¢ and to draw
around each point of the curve a disc of radi-
us e. This procedure, dating back at least to
Hermann Minkowski and possibly to Georg
Cantor, is brutal but very effective. (As to the
term sausage, unverifiable rumor claims it is
a leftover of an application of this procedure
to the Brownian curves of Norbert Wiener.)

In the present illustration such smoothing
is not applied to an actual coastline but to a
theoretical curve that will be constructed later
(Plate 49) by continual addition of ever small-
er detail. Comparing the piece of sausage
drawn to the right with the rightmost end of
the sausage drawn above it, we see that the
construction of the curve passes a critical
stage when it begins to involve details of size
smaller than e. Later stages of construction
leave the sausage essentially unaffected. 1l
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Plate 33 u RICHARDSON'S EMPIRICAL DATA
CONCERNING THE RATE OF INCREASE OF COASTLINES’ LENGTHS-

This Figure reproduces Richardson’s
experimental measurements of length per-
formed on various curves using equal-sided
polygons of increasingly short side ¢. As ex-
pected, increasingly precise measurements
made on a circle stabilize very rapidly near a
well-determined value.

In the case of coastlines, on the contrary,
the approximate lengths do not stabilize at
all. As the yardstick length € tends to zero,
the approximate lengths, as plotted on doubly
logarithmic paper, fall on a straight line of
negative slope. The same is true of boundaries
between countries. Richardson’s search in en-

cyclopedias reveals notable differences in the
lengths of the common land frontiers claimed
by Spain and Portugal (987 versus 1214
km), and by the Netherlands and Belgium
(380 versus 449 km). With a slope of —0.25,
the 20% differences between these claims can
be accounted for by assuming that the €’s dif-
fer by a factor of 2, which is not unlikely.

To Richardson, his lines’ slopes had no
theoretical interpretation. The present Essay,
on the other hand, interprets coastlines as ap-
proximate fractal curves, and uses the slope of
each line as an estimate of 1-D, where D is
the fractal dimension. S
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In order to understand fully my interpretation
of Richardson’s D as a fractal dimension, we
move from natural phenomena over which we
have no control, to geometric constructs we
can design at will.

SELF-SIMILARITY AND CASCADES

Until now we stressed that coastlines’ geome-
try is complicated, but there is also a great
degree of order in their structure.

Although maps drawn at different scales
differ in their specific details, they have the
same generic features. In a rough approxima-
tion, the small and large details of coastlines
are geometrically identical except for scale.

One may think of such a shape as drawn
by a sort of fireworks, with each stage creat-
ing details smaller than those of the preceding
stages. However, a better term is suggested by
our Lewis Richardson’s noted work on turbu-
lence: the generating mechanism may be
called a cascade.

When each piece of a shape is geometrical-
ly similar to the whole, both the shape and the

Nitbne K nnh Cicvac
ULiel NUUIT Ul Ve o
cascade that generate it are called

self-similar. This chapter probes self-similar-
ity using very regular figures.

The most extreme contrasts to self-similar
shapes are provided by curves that (a) have a
single scale, like the circle, or (b) have two
clearly separated scales, like a circle adorned
with “scallops.” Such shapes can be described
as scalebound.

COASTLIKE TERAGONS
AND THE TRIADIC KOCH CURVE X

To insure that an infinite number of scales of
length are present in a curve, the safest is to
put them in deliberately and separately. A
regular triangle of side 1 has a single scale,
triangles of side ¥ have a smaller scale, and
triangles of side (lxé)k are of increasingly
small scale. And by piling these triangles on
top of each other, as in Plate 42, one is left
with a shape combining all scales below 1.

In effect, we assume that a bit of coastline
drawn to a scale of 1 /1,000,000 is a straight
interval of length 1, to be called initiator.
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Then we assume that the detail that becomes
visible on a map at 371,000,000 replaces the
earlier interval’s middle third by a promonto-
ry in the shape of an equilateral triangle. The
resulting second approximation is an broken
line formed of four intervals of equal lengths,
to be called generator. We further assume
that the new detail that appears at
9/1,000,000 results from the replacement of
each of the generator’s four intervals by the
generator reduced in a ratio of one-third,
forming subpromontories.

Proceeding in this fashion, we break each
straight line interval, replacing the initiator
by an increasing broken curve. Since we deal
with them throughout this Essay, let me coin
for such curves the term reragon, from the
Greek tepas, meaning ‘‘monster, strange
creature,” and ywria, meaning ‘‘corner, an-
gle.” Very appropriately, the metric system
uses rera as prefix for the factor 1012,

And, if the same cascade process is made
to continue to infinity, our teragons converge
to a limit first considered by von Koch 1904,
Plate 45. We must be specific, and shall call
it the triadic Koch curve and denote it by _X.

This curve’s area vanishes, as is obvious on
Plate 43. On the other hand, each stage of
construction increases its total length in a ra-
tio of 4 /3, hence the limit curve is of infinite
‘length. Furthermore, it is continuous, but it
has no definite tangent anywhere—like the
graph of a continuous function without a de-
rivative.

As a model of a coastline, X is only a sug-
gestive approximation, but not because it is
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tematic. Chapters 24 and 28 “loosen it up” to
make it fit better.

THE KOCH CURVE AS MONSTER

As introduced in the preceding section, the
Koch curve must seem the most intuitive
thing in geometry. But the conventional moti-
vation for it is totally different. So is the con-
ventional attitude towards it on the part of
mathematicians. They are all but unanimous
in proclaiming that _K is a monstrous curve!
For elaboration, let us look up The Crisis of
Intuition, Hahn 1956, which will serve us re-
peatedly. We read that “the character of [a
nonrectifiable curve or of a curve without a
tangent] entirely eludes intuition; indeed after
a few repetitions of the segmenting process
the evolving figure has grown so intricate that
intuition can scarcely follow; and it forsakes
us completely as regards the curve that is ap-
proached as a limit. Only thought, or logical
analysis, can pursue this strange object to its
final form. Thus, had we relied on intuition in
this instance, we should have remained in er-
ror, for intuition seems to force the conclusion
that there cannot be curves lacking a tangent
at any point. This first example of the failure
of intuition involves the fundamental concepts
of differentiation.”

The best one can say of these words is that
they stop short of a celebrated exclamation of
Charles Hermite, writing on May 20, 1893, to
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T. Stieltjes of “turning away in fear and hor-

mimmamdalala smlamiia AF Fuanotian

with no derivatives.” (Hermite & Stieltjes
1905, 11, p. 318.) One likes to believe that
great men are perfect, and that Hermite was
being ironic, but Lebesgue’s 1922 Notice
(Lebesgue 1972-, I) suggests otherwise. Hav-
ing written a paper concerned with surfaces
devoid of tangent planes, “thoroughly crum-
pled handkerchiefs,” Lebesgue wanted it pub-
lished by the Académie des Sciences, but
“Hermite for a moment opposed its inclusion
in the Comptes Rendus; this was about the
time when he wrote to Stieltjes....”

We recall that Perrin and Steinhaus knew
better, but the only mathematician to argue
otherwise on the basis of intuition alone
(Steinhaus argues on the basis of fact) is Paul
Lévy (Lévy 1970): “[I have] always been sur-
prised to hear it said that geometric intuition
inevitably leads one to think that all continu-
ous functions are differentiable. From my first
encounter with the notion of derivative, my
experience proved that the contrary is true.”

These voices had not been heard, however.
Not only near every book but every science
museum proclaims that nondifferentiable
curves are counter-intuitive, ‘“‘monstrous,”
“pathological,” or even “psychopathic.”

THE KOCH CURVE, TAMED.
THE DIMENSION D=log 4/log 3=1.2618

I claim that a Koch curve is a rough but vig-
orous model of a coastline. For a first quanti-
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tative test, let us investigate the length L(€) of
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length e. This lengths can be measured exact-
ly, and the result is extraordinarily satisfying:

L(e):(I—D.

This exact formula is identical with
Richardson’s empiric law relative to the coast
of Britain. For the triadic Koch curve,

D=log 4 /log 3~1.2618,

hence D lies in the range of values observed
by Richardson!
<a PROOF: Clearly, L(1)=1 and

L(e/3)=(4/3)L(e).

This equation has a solution of the form
L(e)=¢'"P if D satisfies

30-1-4/3.

Hence D=log 4 /log 3, as asserted. m

Naturally, the Koch D is not an empirical
but a mathematical constant. Therefore the
argument for calling D a dimension becomes
even more persuasive in the case of the Koch
curve than in the case of coastlines.

On the other hand, the approximate Haus-
dorff measure in the dimension D (a notion
introduced in the preceding chapter) equals ¢
multiplied by the number of legs of length e,
that is, equals 2. ¢ P=1. This is a good indi-
cation that the Hausdorff dimension is D. Un-



6 oo SNOWFLAKES AND OTHER KOCH CURVES

‘fortunately, the Hausdorff definition is disap-

pointingly difficult to handle rigorously.
Moreover, even if it had been easy to handle,
the generalization of dimension beyond integ-
ers is so far-reaching an idea that one should

welcome further motivation for it.

THE SIMILARITY DIMENSION

It happens that in the case of self-similar
shapes a very easy further motivation is avail-
able in the notion of similarity dimension.
One often hears mathematicians use the simi-
larity dimension to guess the Hausdorff di-
mension, and the bulk of the present Essay
encounters only cases where this guess is cor-
rect. In their context, there can be no harm in
thinking of fractal dimension as being synony-

mous with similarity dimension. <« We have

here a counterpart to the use of topological
dimension as synonymous with “‘intuitive”
dimension. m=

As a motivating prelude, let us examine
the standard self-similar shapes: intervals in
the line, rectangles in the plane, and the like;
see Plate 44. Because a straight line’s Eucli-
dean dimension is 1, it follows for every inte-
ger “base” b that the “whole” interval
0<x<X may be “paved” (each point being
covered once and only once) by N=b “parts.”
These “‘parts” are the intervals
(k=1)X/bsx<kX/b, where k goes from 1 to
b. Each part can be deduced from the whole
by a similarity of ratio r(N)=1/b=1 /N.

Likewise, because a plane’s Euclidean di-
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mension is 2, it follows that whatever the val-
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0<x<X; 0<y<Y can be “paved” exactly by
N=b? parts. These parts are rectangles de-
fined by the combined inequalities

mads un Af a4 ractanala
maGe up 01 a rectangie

(k=1)X/bsx<kX/b,
and (h—1)Y/b<y<hY /b,

wherein k and h go from 1 to b. Each part
can now be deduced from the whole by a simi-
larity of ratio r(N)=1/b=1/N".

For a rectangular parallelepiped, the same
argument gives us r(N)=1 /N%.

And there is no problem in defining spaces
whose Euclidean dimension is E>3. (The
Euclidean—or Cartesian—dimension is denot-
ed by E in this book.) All D-dimensional par-
allelepipeds defined for D<E satisfy

r(N)=1/N/P.
Thus,
NrP=1.
Equivalent alternative expressions are

log r(N)=log (1 /N'/Py=—(log N) /D,
D=-log N/log r(N)=Ilog N /log (1 /r).

Now let us move on to nonstandard shapes.
In order for the exponent of self-similarity to
have formal meaning, the sole requirement is
that the shape be self-similar, i.e., that the
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whole may be split up into N parts, obtainable
from it by a similarity of ratio r (followed by
displacement or by symmetry). The D ob-
tained in this fashion always satisfies

0<D<E.

In the example of the triadic Koch curve,
N=4 and r=%, hence D=log 4 /log 3, identi-
cal to the Hausdorff dimension.

CURVES; TOPOLOGICAL DIMENSION

Thus far, we have been casual in calling
Koch’s _K a curve, but we must return to this
notion. Intuitively, a standard arc is a con-
nected set that becomes disconnected if any
single point is removed. And a closed standard
curve is a connected set that separates into
standard arcs if 2 points are removed. For the
same reason, Koch’s _Kis a curve.

The mathematician says that all the
shapes with the above property, e.g., X, [0,1]
or a circle, are of topological dimension
Dt=1. Thus, yet another notion of dimension
has to be considered! Being disciples of Wil-
liam of Ockham, all scientists know that
“entities must not be multiplied beyond neces-
sity.” It must therefore be confessed that our
switching back and forth between several near
equivalent forms of fractal dimension is a
matter of convenience. However, the coexist-
ence of a fractal and a topological dimension
is a matter of necessity. Readers who skipped
the digressive definition of fractal in Chapter
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3 are advised to scan it now, and everyone is

advised to read the

DIMENSION in Chapter 41.

devoted to

INTUITIVE MEANING OF D IN THE
PRESENCE OF CUTOFFS A AND A

Cesaro 1905 begins with the motto,

The will is infinite

and the execution confined,
the desire is boundless

and the act a slave to limit.

Indeed, limits apply to scientists no less
than to Shakespeare’s Troilus and Cressida.
To obtain a Koch curve, the cascade of small-
er and smaller new promontories is pushed to
infinity, but in Nature every cascade must
stop or change character. While endless pro-
montories may exist, the notion that they are
self-similar can only apply between certain
limits. Below the lower limit, the concept of
coastline ceases to belong to geography.

It is therefore reasonable to view the real
coastline as involving two cutoff scales. Its
outer cutoff @ might be the diameter of the
smallest circle encompassing an island, or per-
haps a continent, and the inner curoff ¢ might
be the 20 meters mentioned in Chapter 5.
Actual numerical values are hard to pinpoint,
but the need for cutoffs is unquestionable.

Yet, after the very big and the very small
details are cut off, D continues to stand for an
effective dimension as described in Chapter 3.
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Strictly speaking, the triangle, the Star of
David, and the finite Koch teragons are of
dimension 1. However, both intuitively and
from the pragmatic point of view of the sim-
plicity and naturalness of the corrective terms
required, it is reasonable to consider an ad-
vanced Koch teragon as being closer to a
curve of dimension log4/log3 than to a
curve of dimension 1.

As for a coastline, it is likely to have sev-
eral separate dimensions (remember the balls
of thread in Chapter 3). Its geographic di-
mension is Richardson’s D. But in the range
of sizes of interest in physics, the coastline
may have a different dimension—associated
with the concept of interface between water,
air, and sand.

ALTERNATIVE KOCH GENERATORS
AND SELF-AVOIDING KOCH CURVES

Let us restate the basic principle of construc-
tion of the triadic Koch curve. One begins
with two shapes, an initiator and a generator.
The latter is an oriented broken line made up
of N equal sides of length r. Thus each stage
of the construction begins with a broken line
and consists in replacing each straight interval
with a copy of the generator, reduced and dis-
placed so as to have the same end points as
those of the interval being replaced. In all
cases, D=log N /log (1 /r).

It is easy to change this construction by
modifying the generator, in particular by
combining promontories with bays, as exem-

39

plified in upcoming plates. In this way we ob-

tain Knch teraonne that canveras tn curua
iain ARQeCn leragoens inatl converge Lo curve
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whose dimensions are between 1 and 2.

All these Koch curves are self-avoiding:
have no self-intersection. This is why their
wholes can be divided into disjoint parts with
no ambiguity, in order to define D, However,
a Koch construction using carelessly chosen
generators risks self-contact or self-intersec-
tion, or even self-overlap. When the desired D
is small, it is easy to avoid double points by
careful choice of the generator. The task be-
comes increasingly difficult as D increases,
but remains possible as long as D<2.

However, any Koch construction that at-
tempts to reach a dimension D>2 |eads inevi-
tably to curves that cover the plane infinitely
many times. The case D=2 deserves a special
discussion to be provided in Chapter 7.

KOCH ARCS AND HALF LINES

In some cases, the term Koch curve must be
replaced by more precise, and pedantic, termi-
nology. The shape at the bottom of Plate 44 is
technically the Koch map of a line interval,
and can be called a.Koch arc. Thus the
boundary in Plate 45 is made of three Koch
arcs. And it is often useful to extrapolate an
arc into a Koch half line: The extrapolation
enlarges the original arc, using its left end
point as focus, in the ratio 1 /r=3, then in the
ratio 32 and so on. Each successive extrapo-
late contains the preceding one, and the limit
curve contain all the intermediate finite
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stages.

DEPENDENCE OF MEASURE ON THE
RADIUS, WHEN D IS A FRACTION

Let us now extend from Euclidean to fractal
dimensions another standard result in Euclid.
For idealized physical objects of uniform den-
sity p, the weight M(R) of a rod of length 2R,
of a disc of radius R or of a ball of radius R is
proportional to pRE. For E=1, 2, and 3, the
proportionality constants are respectively
equal to 2, 2w, and 4« /3.

The rule M(R)<RP also applies to fractals
when they are self-similar.

In the triadic Koch case, the proof is easi-
est when the origin is the end point of a Koch
half line. When a circle of radius R0=3k
(with k=0) contains the mass M(Rg), the cir-
cle of radius R=Rg/3 contains the mass
M(R)=M(Rq) /4. Hence,

M(R)=M(Ro)(R/Ro)P = [M(Ro)Ro™PIRP.

Consequently, the ratio M(R)/RD is inde-
pendent of R, and can serve to define a
“density” p.

KOCH MOTION

l.magine a point moving along a Koch half
line, taking equal time to cover arcs of equal
measure. If we then invert the function giving
time as function of position, we obtain a posi-
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tion as function of time, that is, a motion. Of
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PREVIEW OF RANDOM COASTLINES

The Koch curve reminds us of real maps, but
has major defects one encounters almost un-
changed in the early models of every case
study in this Essay. Its parts are identical to
each other, and the self-similarity ratio r must
be part of a strict scale of the form b_k,
where b is an integer, namely, %, (%)%, and
so on. Thus, a Koch curve is a very prelimi-
nary model of a coastline.

I have developed diverse ways of avoiding
both defects, but all involve probabilistic com-
plications which are better tackled after we
settle many issues concerning nonrandom
fractals. However, curious readers familiar
with probability may peek ahead to the mod-
els based on my “squig curves” (Chapter 24),
and, more important, on level curves of frac-
tional Brown surfaces (Chapter 28).

The same method of exposition is followed
later in this Part. Numerous patterns of Na-
ture are discussed against the background of
systematic fractals that provide a very prelim-
inary model, while the random models I advo-
cate are postponed to later chapters.

REMINDER. In all cases where D is known
precisely, is not an integer, and is written in
decimal form to enable comparisons, it is car-
ried to four decimals. This number 4 is cho-
sen to make obvious that D is neither an em-
pirical value (all empirical values are known
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at present to 1 or 2 decimals), nor an incom-

nlately dptprmunﬂ-d nnnmﬂ-frlﬂ value {at nres-
n.u,u; ge a:ue jat pre

ent, the latter are known either to 1 or 2 deci-
mals, or to 6 decimals and more.)

COMPLEX, OR SIMPLE AND REGULAR?

Koch curves exhibit a novel and most interest-
ing combination of complexity and simplicity.
At first blush, they are enormously more com-
plicated than the standard curves of Euclid.
However, the Kolmogorov and Chaitin theory
of mathematical algorithms suggests the con-
trary conclusion, that a Koch curve is not sig-
nificantly more complicated than a circle!
This theory starts with a collection of
“letters” or “‘atomic operations,” and takes
the length of the shortest known algorithm
that yields a desired function as an objective
upper bound to the function’s complexity.

To apply this way of thinking to the con-
struction of curves, let the letters or ‘“‘atoms”
of the graphic process be straight “strokes.”
In this alphabet, tracing a regular polygon
requires a finite number of strokes, each de-
scribed by a finite number of lines of instruc-
tion, hence it is a task of finite complexity. By
contrast, a circle involves an ““infinite number
of infinitely short strokes,” hence seems a
curve of infinite complexity. However, if the
construction of the circle is made to proceed
recursively, it is- seen to involve only a finite
number of instructions, hence to be also a task
of finite complexity. For example, starting
with a regular polygon of 2™ sides (m>2),

1

one replaces each stroke of length

2 sin{x f‘)m\ by two strokes of le th
< ny oY SLIFORES Ox l\.«-llbl,ll

2 5|n(1r/2m+1) then the loop starts again.
To construct Koch curves, the same approach
is used, but with simpler operations, since the
stroke length has simply to be multiplied by r,
and the replacement strokes’ relative positions
are the same throughout. Hence this punch-
line: When complexity is measured by the
presently best algorithm’s length in this par-
ticular alphabet, a Koch curve is actually
simpler than a circle.

This peculiar ranking of curves by relative
simplicity should not be taken seriously. Most
notably, the contrary conclusion is reached if
the alphabet is based on the compass and
ruler—meaning that the circle is relabeled as
“atomic.” Nevertheless, as long as a sensible
alphabet is used, any Koch curve is not only
of finite complexity but simpler than most
curves in Euclid.

Being fascinated with etymology, I cannot
leave this discussion without confessing that I
hate to call a Koch curve “irregular.” This
term is akin to ruler, and is satisfactory as
long as one keeps to the meaning of ruler as
an instrument used to trace straight lines:
Koch curves are far from straight. But when
thinking of a ruler as a king (= rex, same
Latin root), that is, as one who hands down a
set of detailed rules to be followed slavishly, I
protest silently that nothing is more “regular”
than a Koch curve. |
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Plate 42 = TRIADIC KOCH ISLAND OR SNOWFLAKE _X. ORIGINAL CONSTRUCTION
BY HELGE VON KOCH (COASTLINE DIMENSION D=log 4/log 3~1.2618)

The construction begins with an “initiator,”
namely, a black A (equilateral triangle) with
sides of unit length. Then one pastes upon the
midthird of each side a A-shaped peninsula
with sides of length %. This second stage ends
with a star hexagon, or Star of David. The
same process of addition of peninsulas is re-
peated with the Star’s sides, and then again
and again, ad infinitum.

Each addition displaces the points in an
interval’s midthird in a perpendicular direc-
tion. The triangular initiator vertices never
move. The other 9 vertices of the Star of
David achieve their final positions after a fin-
ite number of stages. Still other points are
displaced without end, but move by decreas-
ing amounts and eventually converge to limits,
which define the coastline.

The island itself is the limit of a sequence
of domains bounded by polygons, each of
which contains the domain bounded by the
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preceding polygon. A photographic negative
of this limit is part of Plate 45.

Observe that this and many other plates in
the book represent islands or lakes rather than
coastlines, and in general represent “solid
areas” rather than their contours. This meth-
od takes fullest advantage of the fine resolu-
tion of our graphics system.

WHY A TANGENT CANNOT BE DEFINED
HERE. Take as fixed point a vertex of the orig-
inal A and draw a cord to a point on the limit
coastline. As this point converges clockwise to
the vertex, the connecting cord oscillates with-
in a 30° angle, and never tends to a limit one
could call a clockwise tangent. The counter-
clockwise tangent is not defined either. A
point where there is no tangent because clock-
wise and counterclockwise chords oscillate in
well-defined angles is called hyperbolic. The
points that _K attains asymptotically fail to
have a tangent for a different reason,



Plate 43 = TRIADIC KOCH ISLAND OR SNOWFLAKE _X. ALTERNATIVE CONSTRUCTION
BY ERNEST CESARO (COASTLINE DIMENSION D=log 4/log 3~1.2618)

An alternative construction of the Koch island
is given in Cesaro 1905, a work of such charm
as to make me forget the hard search for the
original (and the irritation at later finding it
reprinted in Cesdro 1964). Here is a free
translation of a few ecstatic lines. “This end-
less imbedding of this shape into itself gives
us an idea of what Tennyson describes some-
where as the inner infinity, which is after all
the only one we could conceive in Nature.
Such similarity between the whole and its
parts, even its infinitesimal parts, leads us to
consider the triadic Koch curve as truly mar-
velous. Had it been given life, it would not be
possible to do away with it without destroying
it altogether for it would rise again and again
from the depths of its triangles, as life does in
the Universe.”

Cesdro’s initiator is a regular hexagon with
sides of length v3/3. The surrounding ocean
is in gray. Increasingly small A-shaped bays
are squeezed in ad infinitum, the Koch island
being the limit of decreasing approximations.

This method of construction and Koch’s
method described in Plate 42 are carried out
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in parallel in the present plate. In this way,
the Koch coastline is squeezed between an
inner and an outer teragon that grow increas-
ingly close to each other. One can think of a
cascade process starting with three successive
rings: solid land (in black), swamp (in white),
and water (in gray). Each cascade stage
transfers chunks of swamp to either solid land
or water. At the limit the swamp exhausts
itself from a “surface” down to a curve.

MIDPOINT DISPLACEMENT INTERPRETATION.
It involves the following generator and next
step (the angle here is 120°)

N=2

VA .

D=log 2 /logv3~log 4 /log 3

When placed outside the inner kth teragon, it
yields the outer kth teragon; when placed in-
side the outer kth teragon, it yields the inner
(k+1)st teragon. This approach is useful in
Plates 64 and 65, and in Chapter 25. Hl
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Plate 44 = TWO KINDS OF SELF-SIMILARITY: STANDARD AND FRACTAL

The top Figures recall how, given an integer
(here, b=5), a straight interval of unit length
may be divided into N=b subintervals of
length r=1/b. Similarly, a unit square can be
divided into N=b? squares of side r=1/b. In
cither case, logN/log (1/r) is the shape’s
similarity dimension—a notion school geome-
try feels no need of pinpointing, since its valuc
reduces to the Euclidean dimension.

The bottom Figure is a triadic Koch curve,

one-third of a Koch coastline. It too can be
decomposed into reduced-size pieces, with
N=4 and r=%. The resulting similarity di-
mension D=log N/log (1 /r) is not an integer
(its value is ~1.2618), and it corresponds to
nothing in standard geometry.

Hausdorff showed that D is of use in
mathematics, and that it is identical to the
Hausdorff, or fractal, dimension. My claim is
that D is also vital in natural science. 1N

Plate 45 = TRIADIC KOCH LAKE _X (COASTLINE DIMENSION D=log 4/log 3~1.2618)

The construction described in the captions of
Plates 42 and 43 has been carried much fur-
ther, and a photographic negative taken,
yielding a lake rather than an island.

The peculiar pattern of gray “waves” that
fills this lake is not haphazard. It is explained

in Plates 68 and 69.

The coastline on this Plate is not self-sim-
ilar, because a loop cannot be decomposed
into the union of other loops. <o However,
Chapter 13 uses the notion of self-similarity
within an infinite collection of islands. s N
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Plates 46 and 47 = ALTERNATIVE KOCH ISLAND AND LAKE
(COASTLINE DIMENSION D=log 9/log 7~1.1291)

This variant of the Koch island is due to W.
Gosper (Gardner 1976): the initiator is a reg-
ular hexagon, and the generator is

N=3

N\ 1/r=v7

D=log 3/log (v7)~1.1291

PLATE 46. In this plate, several stages of
construction of the “Gosper island™ are drawn
as a bold line “wrapping.” The corresponding
thin line “filling” is explained in Plate 70.

PLATE 47. This is an advanced construction
stage of the “wrapping.” The variable thick-
ness “filling” is, again, explained in Plate 70.

Observe that, contrary to Koch’s original,
the present generator is symmetric with re-
spect to its center point. It combines peninsu-
las and bays in such a way that the island’s
area remains constant throughout the con-
struction. The same is true of the Koch curves
up to Plate 57.

TILING. The plane can be covered using
Gosper islands. This property is called tiling.

PERTILING. Moreover, the present island is
self-similar, as is made obvious by using
variable-widths hatching. That is, each island
divides into seven “provinces” deducible from

the whole by a similarity of ratio r=1/v7. 1
denote this property by the neologism
pertiling, coined with the Latin prefix per-, as
used for example in “to perfume” = ““to pene-
trate thoroughly with fumes.”

Most tiles cannot be subdivided into equal
tiles similar to the whole. For example, it is a
widespread source of irritation that hexagons
put together do not quite make up a bigger
hexagon. The Gosper flake fudges the hexa-
gon just enough to allow exact subdivision
into 7. Other fractal tiles allow subdivision
into different numbers of parts.

FRANCE. A geographical outline of unusual
regularity often described as the Hexagon,
namely the outline of France, resembles a
hexagon less than it resembles Plate 47
(although Brittany is undernourished here.)

-1 REASON WHY A TANGENT CANNOT BE
DEFINED AT ANY POINT OF THESE COASTLINES.
Fix any point that the coastline attains after a
finite number of stages of construction, and
join it by a cord to a moving point on the lim-
it coastline. As the moving point approaches
the fixed point along the limit coastline, either
clockwise or counter-clockwise, the cord’s di-
rection winds without end around the fixed

point. Such a point is called loxodromic. w-
| {






Plate 49 1 ALTERNATIVE KOCH ISLANDS AND LAKES
(COASTLINE DIMENSIONS FROM 1 TO D=log 3/logv~1.3652)

Throughout this sequence of fractal curves,
the initiator is a regular polygon with M sides,
and the generator is such that N=3 and that
the angles between the first and second and
second and third legs are both #=2n/M.
Plates 46 and 47 had involved the special val-
ue M=6 (not repeated here), and the value
M=3 is discussed in Plate 72. The present
plate exhibits advanced teragons for the val-
ues M=4, 8, 16, and 32, in the form of nest-
ed lakes and islands. For example, M=4 cor-
responds to the generator

N=3

l/\/. 1/f=\/5
D=log 3/log v5~1.3652

The shading on the central island (M=4) is
explained in Plates 72 and 73.

Were this pattern extended to M=oo, it
would converge to a circle. As we move in, the
.figurcs “shrivel,” first gradually, then by rap-
id jumps. The next stage of shriveling would
lead to M=3, but the corresponding curve is
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no longer self-avoiding. We meet it later, in
Plates 72 and 73.

A CRITICAL DIMENSION. When the initiator
is [0,1], the angle # may take any value from
180° down to 60°. There is a critical angle
Bcrit, such that the “‘coastline” is self-avoiding
if, and only if, #>8.;. The corresponding
Derit is a critical dimension for self-intersec-
tion. The angle 0, is close to 60°.

GENERALIZATION. The constructions of
Plates 46 to 57 are easily generalized as fol-
lows. Let the generators that are shown be
called straight (S), and define the flipped gen-
erator (F) as the mirror image of the straight
generator in the line y=0. Each stage of the
construction must use the same generator
throughout, either S or F, but different stages
may select different generators. These plates,
and more which follow, use S throughout, but
other infinite sequences of S and F yield im-
mediate variants.

-a If F and S alternate, the formerly loxo-
dromic points become hyperbolic, as in the
Koch curve. w» H






Plate 51 1 A QUADRIC KOCH ISLAND
(COASTLINE DIMENSION D=3/2=1.5000)

Plates 49 to 55 show several Koch construc-
tions initiated with a square (hence the term
guadric). One advantage is that one can expe-
riment with these constructions even when the
available graphic systems are crude.
-a Another advantage is that quadric fractal
curves lead on directly to the original Peano
curve described on Plate 63. m

PLATE 51. Here, the initiator is a square,
and the generator is

i

As in Plates 46 to 49, the total island area
remains constant throughout the succession of
stages. Plate 51 shows two stages on a small
scale, and the next on a larger scale.

In the last stage, enlarged even further,
the detail shows as very thin and barely visi-
ble whiskers, but much would be lost percep-

N=8
r=1/b=%
D=3/2
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tually if the graphics were less excellent, fore-
ing us to omit this detail.

Both the teragons and the limit curve in-
volve no self-overlap, no self-intersection, and
no self-contact. The same is true through
Plate 55.

=g One should not forget that the fractal
in Plates 51 to 55 is the coastline; the land
and sea arc conventional shapes that have pos-
itive and finite areas. Page 144 mentions a
casc in which the “sca” alonc has a well-
defined area, being again the union of simple-
shaped tremas, while the land has no interior
point. m=

TILING AND PERTILING. The present island
is decomposable into 16 islands reduced by
the ratio of r=%. Each is the Koch island
built on one of the 16 squares forming the
first stage of the construction.

—<a Chapters 25 and 29 show that D=3/2
is also encountered for various Brown func-
tions. Hence this value is easy to obtain with
random curves and surfaces. 18






Plate 53 1 A QUADRIC KOCH ISLAND
(COASTLINE DIMENSION D=log 18 /log 6~1.6131)

The initiator is again a square, and the gener-
ator is

N=18
r=1/b=6
D=log 18 /log 6~1.6131

The fact that the form of the quadric Koch
islands in the present portfolio of illustrations
depends very markedly upon D is significant.
However, their having roughly the same over-
all outline is due to the initiator’s being a
square. When the initiator is an M-sided regu-
lar polygon (M>4), the overall shape looks
smoother, increasingly so as M increases. A
genuine link between overall form and the
value of D will not enter until Chapter 28,
which deals with random coastlines that effec-
tively determine the generator and the initia-
tor at the same time.

-3 MAXIMALITY. Another fact that contrib-
utes to the similarity of overall outline is that
the quadric Koch curves in Plates 49 to 55
possess an interesting property of maximality.
Consider all Koch generators that yield self-
avoiding curves are traced on a square lattice
made by straight lines parallel and perpendi-
cular to [0,1], and in addition can be used
with any initiator on the square lattice. We
denote as maximal the generators that attain
the highest possible value of N and hence of
D. One finds that Ny,.=b2/2 when b is
even, while Nyay=(b?+1) /2 when b is odd.

-3 As the value of b increases, so does the
maximal N, and so also does the number of
a.lternativc maximal polygons. Therefore, the
limit Koch curve becomes increasingly influ-
enced by the original generator. It also looks
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increasingly contrived, because the wish to
achieve a maximal dimension without contact
points imposes a degree of discipline that in-
creases with D. It reaches its paroxysm in the
next chapter, for the Peano limit D=2,

-a LACUNARITY. Fractal curves sharing D
but with different N and r may differ qualita-
tively from each other. The resulting parame-
ter beyond D is discussed in Chapter 34.

CAPTION OF PLATE 55, CONTINUED

<a In fact, the value of D is likely to de-
pend on the fluid’s initial energy, and on the
size of the vessel in which dispersion is con-
tained. A low initial energy would wither a
disc-shaped blob into a curve with D close to’
1 (Plate 49). A high initial energy in a small
vessel might lead to more thorough dispersion,
with planar sections more reminiscent of Plate
54 (D~1.7373) or even of the dimension
D=2 (Chapter 8). See Mandelbrot 1976¢.

-a If this last inference is valid, the next
step would be to investigate the relation be-
tween initial energy and D, and to seek the
lowest energy that yields D=2 in the plane,
i.e., D=3 in space. When we examine the lim-
it case D=2 (Chapter 7), we shall see that it
differs qualitatively from D<2 because it al-
lows ink particles that start far apart to come
into asymptotic contact. <o Thus, I would not
be at all surprised if it turns out that the tur-
bulent dispersion is a single term representing
two sharply distinct phenomena.

~a POSTSCRIPT. Well after this plate had
first appeared in the 1977 Fractals, Paul Di-
motakis photographed thin sections of a tur-
bulent jet dispersing in a laminar medium.
The resemblance with the present plate is
most gratifying. m- EN






Plates 54 and 55 = A QUADRIC KOCH ISLANDS
(COASTLINE DIMENSIONS D=5/3~1.6667 AND D=Ilog 98/log 14~1.7373)

Now the same construction as in Plate 49 is row as one proceeds toward the peninsulas’
carried out with the following generators. In tips or the bays’ deepest points. In addition,
Plate 55, these widths tend to narrow down as the frac-
tal dimension increases, and “wasp waists”
N=32 appear around D~5/3.
r=1/b=% - DIGRESSION CONCERNING TURBULENT
D=5/3~1.6667 DISPERSION. 1 see an uncanny resemblance
between the sequence of approximate fractals
J drawn in Plate 55, and the successive stages
of turbulent dispersion of ink in water. Actual
and in Plate 54, dispersion is of course less systematic, a fea-

ture one can mimic by invoking chance.

-a One can almost see a Richardsonian
cascade at work. A finite pinch of energy
spreads a square ink blob around. Then the
original eddy splits into smaller scale eddies,
the effects of which are more local. The initial
energy cascades down to ever smaller typical
The causeways and the channels in these sizes, eventually contributing nothing but
nightmarish marinas become increasingly nar- slight fuzziness to the outline of the final ink
blob, just as in the following diagram from
Corrsin 1959b.

N=98
r=1/b=1/14
D=|og 98/log 14~1.7373

-a The conclusion that a Richardsonian
cascade leads to a shape bounded by a fractal
is inescapable, but the conclusion that
D=5/3 is shaky. This value of D corresponds
to planar sections of spatial surfaces with
D=8/3, which occur often in turbulence. In
the case of isosurfaces of scalars (studied in
Chapter 30), D=8/3 is reducible to the Kol-
mogorov theory. Nevertheless, numerological
analogies are not to be trusted.

THIS CAPTION CONTINUES ON PAGE 52







Plates 56 and 57 m GENERALIZED KOCH CURVES AND SELF-SIMILARITY
WITH UNEQUAL PARTS (D~1.4490, D~1.8797, D~1+¢)

These plates are constructed in the manner of
Koch, except that the lengths of the
generators’ sides take different values rm. Un-
til now, we assume that the N *“‘parts” into
which our “whole” is divided all involve the
same similarity ratio r. Using unequal rpy, the
Koch curve becomes less relentlessly regular.
Thus Plate 56 adds variety to the triadic Koch
curve.

Note _t.hat in all this series of plates, the
construction continues until it reaches details

56

of a predetermined small size. When rm=r,
this goal is reached after a predetermined
number of construction stages, but here we
need a variable number of stages.

The next task is to extend the notion of
similarity dimension to this generalization of
the Koch recursion. In a search for sugges-
tions, let ordinary Euclidean shapes be paved
with parts reduced in the respective ratios rm.
When D=1, the r,, must satisfy Zrm=1, and,
more generally, Euclidean shapes require



=rmP=1. Furthermore, in the case of fractals
that can be split into equal parts, the familiar

condition NrP=1 can be rewritten as
ZrmP=1. These precedents suggest forming
the dimension-generating function, namely
G(D)=ErmD, and defining D as its unique real
root of G(D)=1. It remains to investigate
whether or not said D coincides with the
Hausdorff Besicovitch dimension. In every
case I know of, it does.

57

EXAMPLES. Plate 56 has a D above Koch’s
original log 4 /1og 3. The top of Plate 57 has
a D slightly below 2. As D=2, the coastline
on this Figure tends toward the Peano-Polya
curve. a variant of the Peano curves examined
in thé next chapter. The resemblance between
this Figure and a row of trees is not acciden-
tal, as seen in Chapter 17. Finally, the bottom
of Plate 57 has a D slightly above 1. T8



7 = Harnessing the Peano Monster Curves

When the end of Chapter 6 tackles general-
ized Koch curves that do not self-intersect,
there is good reason for stopping short of
D=2. When D reaches D=2, a profound qual-
itative change occurs.

We shall assume that the teragons do not
self-intersect, although they may self-contact.
Then one symptom of reaching D=2 is that
points of self-contact become inevitable as-
ymptotically. The major symptom is that it is
inevitable that the limit should fill a
“domain” of the plane, that is, a set that con-
tains discs (filled in circles).

This double conclusion is not due to a cor-
rigible lack of imagination on the part of
mathematicians. It involves a fundamental
principle, central to the 1875-1925 crisis in
mathematics.

PEANO "“"CURVES,” MOTIONS, SWEEPS

The_corresponding limits, exemplified in up-
coming plates, are called Peano curves, be-
cause the first is found in Peano 1890. They
are also called plane-filling curves. For them,

the formal definition of dimension by
log N/log (1/r)=2 is justified, but for a dis-
appointing reason. From the mathematical
viewpoint, a Peano curve is merely an unusual
way of looking at a domain or piece of plane,
a set for which all the classical definitions
yield the dimension 2. In other words, the
term plane-filling curve should be avoided by
careful writers.

Fortunately, most Peano ‘‘curves,” includ-
ing those obtained by a recursive Koch con-
struction, are parametrized naturally by a
scalar t, which may be called “time.” In their
case, we can (with no fear of the guardians of
rigor) use the terms Peano motions, plane-
filling motions, tile sweeping motions, or tile
sweeps (tiles are discussed later in the
chapter). We shall do so when it seems appro-
priate, but Essays need not attempt full con-
sistency on any account.

THE PEANO CURVES AS MONSTERS

“Everything had come unstrung! It is difficult
to put into words the effect that [Giuseppe]
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Peano’s result had on the mathematical world.
It seemed that everything was in ruins, that
all the basic mathematical concepts had lost
their meaning” (Vilenkin 1965). “[Peano
motion] cannot possibly be grasped by intui-
tion; it can only be understood by logical
analysis” (Hahn 1956). “Some mathematical
objects, like the Peano curve, are totally non-
intuitive..., extravagant” (Dieudonné 1975).

THE PEANO CURVES" TRUE NATURE

I claim that the preceding quotes merely
prove that no mathematician ever examined a
good Peano graph with care. An unkind ob-
server could say these quotes demonstrate a
lack of geometric imagination.

I assert to the contrary that, after Peano
teragons arc observed attentively, letting one’s
thoughts wander about, it becomes very diffi-
cult not to associate them with diverse aspects
of Nature. This chapter takes up the self-
avoiding curves, those whose teragons avoid
self-contact. Chapter 13 takes up teragons
that self-contact moderately. Teragons that
fill a lattice (e.g., lines parallel to the axes
and having integer coordinates) must first be
processed to eliminate the self-contacts.

RIVER AND WATERSHED TREES

Examining diverse Peano teragons, I saw in
each case a set of two trees (or sets of trees)
possessing an endless variety of concrete inter-

pretations. They are particularly conspicuous
on the “snowflake sweep™ Peano curve I de-
signed, Plate 69. It is, for example, easy to
visualize this Plate as a collection of bushes
rooted side by side along the bottom third of a
Koch snowflake, and creeping up a wall. Al-
ternatively, one may choose to be reminded of
the boldly emphasized outline of a collection
of rivers meandering around, and eventually
flowing into a river that follows the
snowflake’s bottom. This last interpretation
suggests immediately that the curves that sep-
arate the rivers from each other combine into
watershed trees. And of course, the labels
river and watershed can be interchanged.

This new rivers-watersheds analogy is so

" obvious after the fact that it lays to rest any

notion that the Peano curve is necessarily pa-
thological. As a matter of fact if a tree made
of rivers of vanishing width is to drain an area
thoroughly, it musr penetrate everywhere.
One who follows the rivers’ combined bank
performs a plane-filling motion. Ask any child
for confirmation!

Helped by the intuition garnered from
Plate 68, it would be difficult not to see ana-
logous conjugate networks in every Peano ter-
agon. Even the crude island of Plate 63 begins
to make intuitive sense. The thin fingers of
water that penetrate it cannot be viewed as a
marina, however exaggerated, but can be
viewed as branching rivers.

When rivers give rise to a proper science,
it should be called potamology-—Maurice
Pardé’s coinage from moramos (= river) and
Aoyos. But sober usage merges the study of
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rivers into the science of water, hydrology,
into which this Essay makes many incursions.

MULTIPLE POINTS ARE UNAVOIDABLE
IN TREES, HENCE IN PEANO MOTIONS

Suddenly many mathematical properties of
Peano curves become obvious too. To account
for double points, assume one starts on a
river’s shore in a Peano river tree, and moves
upstream or downstream, making a detour for
the slightest branch (moving ever faster as
one gets to finer branches). It is clear that one
will eventually face the point of departure
from across the river. And since the limit riv-
er is infinitely narrow, one will effectively re-
turn to the starting point. Thus, double points
in a Peano curve are inevitable, not only from
a logical but also from an intuitive viewpoint.
Furthermore, they are everywhere dense.

Also, it is inevitable that some points be
visited more than twice, because a point
where rivers join is one where at least three
points of the bank coincide. When all points
of confluence involve only two rivers, there is
no point of multiplicity above three. On the
other hand, one can do without points of mul-
tiplicity of three if one agrees to have points
of higher multiplicity.

All the assertions in the preceding para-
graphs have been proven, and, since the proofs
are delicate and led to controversy, the prop-
erties themselves seem “‘technical.” But the
contrary is the case. Who would continue to
argue that a purely logical approach toward

THREE CLASSIC FRACTALS, TAMED Hono 1l

them is preferable to my own intuitive one?
Typically, a Peano curve’s rivers are not
standard shapes but fractal curves. This is
fortunate for the needs of modeling, because
every argument in Chapter 5 to the effect that
geographic curves are nonrectifiable applies
equally well to river banks. In fact, the Rich-
ardson data include frontiers that follow riv-
ers or watersheds. And rivers are involved in
the quote from Steinhaus 1954, As to rivers’
drainage basins, they are surrounded by
closed curves akin to island coastlines, made
of portions of watershed. Each basin is the
juxtaposition of partial basins and is criss-
crossed by the rivers themselves, but plane-
filling curves that are bounded by fractal
curves display all the structure we need.

PEANO MOTION AND PERTILING

Taking the original Peano curve (Plate 63),
develop t in the counting base N=9, in the
form O.7y72.... Times sharing the same first
“digit” are mapped on the same ninth of the
initial square, those with the same second dig-
it on the same 92-th, etc. Thus, the tiling of
[0,1] into 9-th maps on a tiling of the square.
Successive 9-ths of the linear tiles map on
successive planar subtiles. And the interval’s
property of being pertiling (page 46), i.e. sub-
divisible recursively and ad infinitum into
smaller tiles similar to [0,1], is mapped on
the square. Alternative Peano motions, due to
E. Cesiaro, G. Polya and others, map this
property on diverse pertilings of the triangle.
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More generally, most Peano motions gen-
erate pertilings of the plane. In the simplest
case, there is a base N, and one starts with a
linear pertiling that consists of successive divi-
sions into N-th. But the snowflake sweep of
Plate 68-69 requires an irregular division of
the [0,1] interval of t, into four subintervals
of length 1/9, then four of length 1/9v3,
one of length 1/9, two of length 1/9v3, and
two of length 1 /9.

ON MEASURING DISTANCE BY AREA

Exquisite relationships, wherein length and
area interchange, are a common occurrence in
Peano motion, especially if it is isometric,
meaning that a time interval [t;, tp] maps on
an area equal to the length |t;—-to|. (Most
Peano motions are both isometric and pertil-
ing, but these are distinct notions.) Calling
the map of the time interval [t;,tp] a planar
Peano interval implies that, instead of meas-
uring distances through a time, one may do so
through an area. But we encounter a vital
complication, because points that sit across
from each other on different banks of a river
coincide in space but are visited repeatedly.
The definition of “Peano distance” may
involve only the order of the visits. Denoting
the instants of first and last visits of P; and
P2 by t'; and t'p and by t"'; and t"5, the left
Peano interval L{P1, P2} is defined as the
map of [t'y, t'5] and the rightr Peano interval
R{P1, P2} is defined as the map of [t''1,t"5].
These intervals’ lengths define' the left

distance and the right distance as |L{Py,
P2}I = |t'1—t'2| and [;Q{Pl, PQ}I =
|t"1—=t"5|. Each of these distances is addi-
tive, meaning for example that if three points
P1. P2, and P3 are left ordered according to
the order of first visits, one has

|-L(P1.P3)[=[-L(P1,P2)|+|-L(P2,P3)|.

Alternate definitions of interval and dis-
tance distinguish between river and watershed
points. Denote by t' and t" the instants of
first and last visit of P. P is a river point if
the map of [t',t"] is bounded by P and wat-
ersheds. Successive visits of P face each other
across rivers. P is a warershed point if the
map of [t', t"] is bounded by P and rivers.

Furthermore, once a Peano curve is repre-
sented as the common shore of a river tree
and a watershed tree, the paths that link P
and P, through rivers (resp., along wat-
ersheds) include a common minimal path. It
is reasonable to follow this path in order to
measure the distance between P; and Pa.
Save for exceptional cases, the rivers’ and
watersheds’ dimension D is strictly below 2
and strictly above 1. Hence the minimal path
can be measured neither by length nor by
area, but in typical cases it has a nontrivial
Hausdorff measure in the dimension D.

MORE. Very important additional consid-
erations on Peano motions are detailed in the
captions that follow. -



Plate 63 = A QUADRIC KOCH CONSTRUCTION OF DIMENSION D=2:
THE ORIGINAL PEANO CURVE, A SQUARE SWEEP

The Peano plane-filling curve in this plate is
the original one. Giuseppe Peano’s incredibly
terse algorithm was graphically implemented
in Moore 1900 (which receives undue credit
in my 1977 Fractals). The present plate ro-
tates Peano’s curve by 45°, and by doing so
brings it into the fold of Koch curves in the
strict sense: the generator is always placed in
the same way on the sides of the teragon ob-
tained at the preceding stage.

The initiator here is the unit square
(bounding the black box) and the generator is
N=9
-> . rz%
D=2

Because this generator self-contacts, the re-
sulting finite Koch islands are sets of black
squares on a chunk from an infinite chess-
board. And the nth Koch teragon is a grid of
lines, a distance of n=3"" apart; they criss-
cross a square of area equal to 2 that becomes
covered increasingly tightly as k-oo. It suff-
ices to show one example of this dull design
(next to the initial black box).

Three illustrations on the top of page 63
avoid ambiguity by cutting off the corners
while leaving the total area invariant.

On the same scale, the fourth stage of this
sequence would merge into 50% gray, but a
larger drawing of one-fourth of the coastline
can be followed unambiguously (at some risk
of becoming seasick). It shows graphically
what is meant by saying that the limit Koch
curve fills the plane.

‘ It would have been nice to be able to de-
fine a limit island in analogy to the Koch is-
!an.ds of Chapter 6, but in the present case it
1s impossible. A point chosen at random al-
most surely flips between being inland and in
the ocean, without end. Adyanced teragons
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are penetrated by bays or rivers so deeply and
uniformly that a square of middling side
Xx—such that n<<x<<1—divides between dry
land and water in near equal proportions!

INTERPRETATION. The limit Peano curve
establishes a continuous correspondence be-
tween the straight line and the plane. The fact
that self-contacts are mathematically unavoid-
able is classical. The fact that they are valua-
ble in modeling Nature is new to this work.

LONG-RANGE ORDER. Without knowing of
the descending cascades that built our finite
Peano curves, one would be baffled by the
extraordinary long-range order that allows
these curves to avoid not only self-intersection
but also self-contact. Any lapse in discipline
would make the latter very likely.

-<a And total breakdown of discipline
makes endlessly repeated self-intersection al-
most certain, since a totally undisciplined
Peano curve is Brownian motion, mentioned in
Chapter 2 and explored in Chapter 25.

- LIOQUVILLE THEOREM AND ERGODICITY.
Mechanics represents the state of a complex
system by a single point in a “‘phase space.”
Under the equations of motion, every domain
in this space is known to behave as follows: its
measure (hyper-volume) remains invariant
(Liouville theorem), but its shape changes and
it disperses and fills all the space available to
it with increasing uniformity. Clearly, both of
these characteristics are echoed by the behav-
ior we impose upon the black domain in the
present Peano construction. It is interesting,
therefore, to dig deeper, by observing that in
many simplified “dynamical” systems that
allow a detailed study each domain disperses
by transforming into an increasingly long and
thin ribbon. It would be interesting to see
whether other systems’ dispersion proceeds
through  Peano-like trees instead of
ribbons. m N
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Plates 64 and 65 1= QUADRIC KOCH CONSTRUCTIONS OF DIMENSION D=2:
CESARO’S AND POLYA’'S TRIANGLE SWEEPS, AND VARIANTS

The simplest generator one could imagine is
made of N=2 equal intervals making an angle
@ that satisfies 90°<0<180°. The limit case
@=180° generates a straight interval; the
case #=120° (illustrated in the caption of
Plate 43) generates the triadic Koch curve
(among others). The limit case §=90° is

N
r=1/
D

This generator gives rise to an uncanny num-
ber of different Peano curves, according to the
initiator’s shape, and the rule of placement of
the generator upon the preceding teragon.
Plates 64 to 67 examine a few notable exam-
ples.

~a In addition, Chapter 25 obtains
Brownian motion by randomizing the class of
all Peano curves with these N and r ».

POLYA'S TRIANGLE SWEEP. The initiator. is
[0,1], the generator is as above, and it alter-
nates between the right and the left of the
teragon. The first position also alternates. The
early construction stages yield the following

AR

The teragons are pieces of square graph paper
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contained within a right isosceles triangle

\ sr\s

whose side is [0,1]. The limit curve sweeps
this triangle.

PLATE 64. POLYA SWEEP OVER A RIGHT
NONISOSCELES TRIANGLE. The generator is
changed to be made of two unequal orthogo-
nal intervals. Guessing the processing chosen
to avoid self-contact is left to the reader as an
exercise.

CESARO’S TRIANGLE SWEEP. The initiator is
{1,0], the generator is again as above, and the
next two construction stages are as follows
(for the sake of clarity, the drawing refers to
6=85° instead of #=90°).

L AN

Thus, in all the odd-numbered construction
stages, the generator is positioned to the right,
yielding as téragon a grid of lines parallel to
the initiator’s diagonals. And in all the even-
numbered stages, the gencrator is positioned
to the left, yielding as teragon a grid of lines
parallel to the initiator’s sides. Asymptotical-
ly, this curve fills a right isosceles triangle
whose hypotenuse is {0,1].
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PLATE 65. This plate represents a square
sweep obtained by adding the Cesdro sweeps
initiated by [0,1] and [1,0]. (Again, §=85°
instead of 90° for the sake of clarity.)

SELF-OVERLAP. Each interval in the grids
covered by the Cesdro teragons is covered
twice. Not only the construction is self-con-
tacting, but it is self-overlapping.

“EFFICIENCY" OF PLANE FILLING. AN EXTRE-
MAL PROPERTY OF THE PEANO-CESARO
DISTANCE. The Peano curve of Plate 63 maps
[0,1] on the square of diagonal [0,1] and area
2. The same shape is covered by the Pdlya
curve. But the Cesdro curve fills a right isos-
celes triangle of hypotenuse [0,1] and area Y.
To cover the whole square, Cesaro must add
the maps of [1,0] and [0,1]. Thus, the Cesaro
curve in the less “efficient,” of the two. As a
matter of fact, it is the least efficient non-
self-intersecting Peano curve on a square lat-
tice. But this fact endows it with a redeeming
virtue: the left or right Peano distance (see p.
61) between two points P; and Py is at least
equal to the square Euclidean distance:

IL(P1,P2)| = |P1P2I?; IR(P1,P2)| 2 |P1P22

For other Peano curves, the difference be-
tween Peano and Euclid distance may take
either sign.

KAKUTANI-GOMORY PROBLEM. After select-
ing M points P,, in the square [0,1]%, Kaku-
tani (private communication) investigates the
expression infZ|PmPm+1]2, where the infini-
tum is taken over all the chains that join the
P in sequence. He proves that inf<8, but
conjectures that this bound is not the best
one. Indeed, R. E. Gomory (private communi-
cation) obtains the improved bound inf<4.
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The proof uses the Peano-Cesiro curve, as
follows. (A) Add the square’s corners if they
are not already among the Pp,. (B) Rank the
M points P, in the order they are first visited
by the string of four Peano-Cesdro curves
drawn inside the square, along its sides. (C)
Observe that, by lengthening the chain in step
(A), we did not decrease Z|P,,P.1/%. (D)
Observe that each addend |PpPm.1]% is not
decreased if replaced by |L(Zy,Zmi1)l. (E)
Observe that 2|L(Z,,Zm+1)| = 4. If different
Peano curves were used, steps (B) and (D)
would be invalid. ==



Plates 66 and 67 1 A SQUARE SWEEP AND THE DRAGON SWEEP

The generator is the same here as in Plates 64
and 65, but seemingly slight changes in other
rules have lasting consequences.

A LATER SQUARE SWEEP BY PEANO. The
initiator is [0,1], but the second, fourth and
sixth construction stages are changed to

i
L . b

EFFICIENCY. AN EXTREMAL PROPERTY. This
curve fills a domain of area equal to 1, while
the curves of Plates 64-65 and the dragon
curve to be below covers Y2 or Y%. When the
teragons lie on an orthogonal lattice, the cov-
ered area cannot exceed 1. It reaches this
maximum whenever the teragons are self-
avoiding. In other words, absence of self-con-
tact is more than a matter of esthetics, and a
self-contacting curve whose self-contacts are
rounded off, as in Plate 63, does not become
equivalent to a self-avoiding Koch curve.

By taking the odd numbered stages of the
present square sweep, then joining the mid-
points of the teragons’ successive intervals to
avoid self-contact, one falls back on a Peano
curve due to Hilbert.

PLATE 67. A CURVE SWEEPING A RIGHT
TRAPEZOID. The generator is changed to be
made of two unequal orthogonal intervals.
The processing to avoid self-contact is the
same as in the preceding plate.

THE HARTER-HEIGHTWAY DRAGON. (Sce
Gardner 1967, Davis & Knuth 1970.) Here
the initiator is [1,0], the generator is as
above, and it alternates between the right and
the left of the teragon. The only difference
with the Polya triangle sweep is that the first
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position is always to the right at every stage
of construction, early stages being as follows

uly

The consequences of this change are dramat-
ic, since a mature stage looks like this

On this illustration, the curve itself has be-
come indistinct, and we see only its boundary,
called dragon curve. Thus, this Peano curve
deserves to be called dragon sweep. As any
Koch curve initiated by [0,1], the dragon is
self-similar. But in addition it is seen to be
segmented into portions, which join at wasp
waists. The sections are similar to one anoth-
er, but not to the dragon itself.

TWINDRAGON. The 1977 Fractals points
out that, with the dragon’s rules of construc-
tion, a more natural initiator is [0,1] followed
by [1,0], and terms the shape that is swept as
a result, a twindragon. This shape is encoun-
tered number representations, Knuth 1980. It
looks like this (one component dragon is in
black and the other is in gray).



TWINDRAGON RIVER. After the streams
near the source are erased (for legibility), the
river tree of a twindragon looks like this.

A twindragon can be tiled by reduced size
replicas of itself, like this.

TWINDRAGON SKIN. This is a Koch curve
with the following generator

\/\

D~1.5236

The short and long intervals here are of
lengths ri=1/v2 and ry = (%)(V2) = r13,
respectively. Hence, the dimension generating
function is (1/v2)P4+2(2v2)° = 1, showing
that the quantity 2072 satisfies x3—x?—2=0.

ALTERNATE DRAGONS. (Davis & Knuth
1970.) Pick any infinite sequence Xy, Xs...,
where each x can be either O or 1, and use
the value of Xk to determine the first position
of the generator during the k-th stage off con-
struction: when x,=1, a generator is first pos-
itioned to the right, but when x,=0 it is first
positioned to the left. Each sequence gener-
ates a different alternate dragon. Bl
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Plates 68 and 69 = THE SNOWFLAKE
SWEEPS: NEW PEANO CURVES
AND TREES (WATERSHED
AND RIVER DIMENSIONS D~1.2618)

These plates illustrate a family of Peano
curves I designed. They fill the original Koch
snowflake (Plate 45), hence two basic mon-
sters of circa 1900 are brought together.

A more important virtue is that a glance
suffices here to document a major theme of
the present Essay: Peano curves are far from
F)eing mathematical monsters with no concrete
interpretation. If they fail to self-contact, they
involve readily visible and interpretable conju-
gate trees. These trees are good first-order
models of rivers, watersheds, botanical trees,
and human vascular systems.

As a by-product, we obtain here a method
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for tiling the snowflake with unequal snow-
flakes.

SEVEN INTERVAL GENERATOR. Let the initi-
ator be [0,1], and the generator and the sec-
ond construction stage be

D=2

More precisely, let the above generator be
denoted by S and called straight, and define
the flipped generator F as the mirror image of
S in the line x=1%. At any stage of the con-
struction of the snowflake sweep, one can use
cither the F, or the S generator, at will.
Hence, each infinite sequence of F and S
yields a different snowflake sweep.
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ROUNDED OFF TERAGONS. Broken lines
tend to look raw, and the snowflake sweep’s
teragons are made to look isotropic and other-
wise much more “natural”, if each interval is
rounded off into one sixth of the circle.

PLATE 45. An advanced teragon of a seven
interval snowflake sweep, rounded off, and
later filled in, was used long ago in Plate 45
to provide a wavy background shading. Look-
ing at it again, we are reminded of a liquid’s
flow past a fractal boundary, and of the shear
lines between two roughly parallel flows of
different velocities.

THIRTEEN INTERVAL GENERATOR. Now
change the above 7 interval generator by re-
placing 5-th leg by a reduced version of the PLATE 68. This advanced teragon, shown as
whole. This version can be positioned either in ~ boundary between two fantastically intert-
the $ or the F position. The latter yiclds the  wined domains serves better than any number
following generator and second construction of words to explain whit plane-filling means.
stage PLATE 69. Let the above 13-interval gener-
: ator be rounded off, and do the same in paral-
lel to the snowflake curve. The resulting first
few stages arc shown in Plate 69,

RIVER DIMENSIONS. In Peano’s original
curve, each individual river is of finite length,
hence of dimension 1. Here individual rivers
are of dimension log 4 /log 3. To achieve the
dimension D=2, all rivers have to be taken
D=2 together, HN
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Plates 70 and 71 o THE PEANO-GOSPER CURVE. ITS TREES, AND
RELATED KOCH TREES (WATERSHED AND RIVER DIMENSIONS D~1.1291)

BACK TO PLATE 46. The thin broken lines on
this plate, unexplained until now, represent
the early construction stages 1 to 4 of a curve
due to Gosper (Gardner 1976). This was the
first self-avoiding Peano curve to be obtained
by the Koch method without further process-
ing.

The initiator is [0,1], and the generator is

By turning the generator counterclockwise
until its first link becomes horizontal, onec sces
that it is drawn as a triangular lattice, on
which it occupies 7 out of 3x7 links. This
feature extends to triangular lattices a proper-
ty which page 66 discusses for square lattices.

Now we see that the present Peano curve
fills the Koch curve of Plate 46. The variable
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width hatching in Plate 46 can be explained
now: it represents the fifth stage of the pres-
ent construction. .

LEFT OF PLATE 70. The fourth teragon of
the Gosper curve is redrawn as the boundary
between a black and a white region.

RIGHT OF PLATE 70. RIVER AND WATERSHED
TREES. Rivers and watersheds are drawn along
the midlines of the white and black ““fingers”
of the figure to the left of Plate 70.

TOP OF PLATE 71. Starting with the river
and watershed trees to the right of Plate 70,
the widths of the links are redrawn according
to their relative importance in the Horton-
Strahler scheme (Leopold 1962). In this in-
stance, the river or watershed links are given
widths proportional to their lengths as the
crow flies. The rivers are in black, and the
watersheds in gray.

DIMENSIONS. Each Peano curve determines
the D of its own boundary. In Plates 63 and
64, said boundary is merely a square. In later
plates, it was a dragon’s skin, then a snow-



flake curve. Here it is a fractal curve with
D~1.1291, which is part river and part wat-
ershed. And every other river and watershed
also converges to a curve of fractal dimension
D~1.1291.

FRANCE. One who as a schoolboy often
gazed on a map showing the rivers Loire and
Garonne does not feel far from home.

BOTTOM OF PLATE 71. A RIVER TREE CON-
STRUCTED DIRECTLY BY A KOCH CASCADE.
When the generator is itself tree-shaped, it
generates a tree. For example, let the genera-
tor be

Here we have an alternative method of drain-
ing the Koch curve of Plate 46. (The last
branches near the ‘“‘sources” have been clip-
ped off.) ma
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plates 72 and 73 = PLANE-FILLING FRACTAL TREES, FUDGEFLAKE, AND QUARTET

The plane-filling “river”’ trees deduced from
some Peano curves can also be obtained by a
direct recursive construction. The key is a
gencrator that is itself tree shaped. A dull
example is obtained if the tree generator is
made up of 4 legs forming a + sign. One ob-
tains the river tree of the Peano Cesaro curve
(Plate 65).

FUDGEFLAKE. A better example results
from taking [0,1] as initiator, and using the
following generator

N=3
1/r=v3
2

We begin by observing that individual rivers
are generated by a midpoint displacement
shape like on Platc 43. Hence, cvery asymp-
totic river has the dimension D
log2/logv3 log4/log 3. This value is
very familiar from the snowflake curve, but
the curve with which we deal here is not a
snowflake, because the positioning of the gen-
erator follows a different rule.

I VAR

al rivers can originate at the same point. But
we shall see later in this caption that river
teragons may avoid self-contact. Due to self-
contacts, the present river teragon is an illegi-
ble chunk of hexagonal graph paper, bounded
by an approximate fractal.

TOP OF PLATE 73. The river tree is made
more transparent by erasing all river intervals
that touch a source, and using a bolder pen to
draw the principal river. The area drained by
this tree is v3 /2~.8660.

FUDGEFLAKE SWEEP. Now draw a Peano
curve with a A shaped initiator, and a genera-
tor in the shape of a Z whose legs are equal
and make angles of 60°. This is the extreme
case for M=3 of the family of generators used
in Plates 46 and 47, but it differs profoundly
from all the other cases. It is investigated in
Davis & Knuth 1970.

One can verify that this Peano curve’s riv-
er tree is none else than the tree we just drew
directly. The initiator’s sides are of length 1,
and the corresponding Peano curve sweeps an
area equal to v3/6~.2886 (how inefficient!).

QUARTET. Next, we consider a different
Koch curve, together with three curves that
fill it: one Peano curve and two trees. These
shapes, which 1 designed, illustrate a further
theme of interest.

Take [0,1] as initiator, and take the fol-
lowing generator

In order to leave room for the rivers, the gen-
c]-ator must be made to alternate between the
right and the left, Therefore, the snowflake’s
symmetry is fudged, and the domain these
rivers drain is to be called Sfudgeflake.

Now, we turn to the river tree. Its teragons
do not‘self-ovcrlap, but they self-contact bad-
ly. This feature’s asymptotic variant is una-
voidable, and it is also unobjectionable, since
it expresses quite properly the fact that sever-
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N=5
1 /I’=\/5
D=2

_

This curves’ boundary converges to a Koch
curve of dimension D=log 3/l0g v5=1.3652.
Advanced teragons of the boundary and of the
Peano curve are scen in the center of Plate 49,




which I term the quartet. Each “player,” and
the table between them, pertile.

The quartet’s interior is of course drained
by its own intrinsic river tree. But totally dis-
tinct patterns of chainage are obtained by us-
ing either of the following generators

SN

With the generator to the left, the teragons
self-contact, as with the first example in this
caption. And the drainage area turns out to be
Y. With the generator to the right, the tera-
gons avoid self-contact. And the drainage
area 18 1. An advanced teragon is shown in
the bottom figure of Plate 73, 1R
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8 x Fractal Events and Cantor Dusts

This chapter’s principal goal is to acquaint
the reader concretely and painlessly with yet
another mathematical object ordinarily
viewed as pathological, the Cantor dust, C.
This and related dusts we shall describe have
fractal dimensions between O and 1.

Being formed by points on a straight line,
they are easy to study. In addition, they help
introduce in simplest form several concepts
that are central to fractals but that have been
so underutilized in the past that no specific
terms were required to denote them. First, the
term dust is given a technical meaning, as an
informal equivalent to a set of topological
dimension D=0, just as “curve” and
“surface™ denote sets of topological dimen-
sions Dy=1 and Dy=2. Other new terms are
curd, gap, and trema, to be explained.

NOISE

For the layman, a noise is a sound that is too
strong, has no pleasing rhythm or purpose, or
interferes with more desirable sounds. Par-
tridge 1958 proclaims that the term “derives

from the Latin nausea (related to nautes =
sailor), the semantic link being afforded by
the noise made by an ancient shipful of pas-
sengers groaning and vomiting in bad weath-
er.” (The Oxford English Dictionary is not so
sure.) As to contemporary physics, it is less
colorful, and not nearly so precise: it uses
noise as a synonym of chance fluctuation or
error, irrespective of origin and manifestation.
This chapter introduces € through the case
study of an esoteric but simple noise.

ERRORS IN DATA TRANSMISSION LINES

A transmission channel is a physical system
capable of transmitting electricity. However,
electric current is subject to spontaneous
noise. The quality of transmission depends on
the likelihood of error due to noise distortion,
which depends, in turn, on the ratio between
the intensities of signal and noise.

This chapter is concerned with channels
that transmit computer data and involve very
strong signals. An interesting fact is that the
signal is discrete, hence the distribution of
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errors simplifies the distribution of noise to
the bone, so to speak. Noise involves a func-
tion having several possible values, while er-
rors involve a function that has only two pos-
sible values. For example, it may be the indi-
cator function, which is O when there is no
error at time t, and 1 if there is an error.

Physicists have mastered the structure of
the noises that predominate in the case of
weak signals, e.g., thermal noise. In the prob-
lem just described, however, the signal is so
strong that the classical noises are negligible.

The nonnegligible excess noises are diffi-
cult and fascinating because little is known
about them. This chapter examines an excess
noise that was, around 1962, of practical im-
portance to electrical engineers, so that di-
verse talents were called upon to investigate
it. My contribution to this effort was the first
concrete problem in which I experienced the
need to use fractals. No one remotely imag-
ined at that time that a careful study of this
apparently modest engineering difficulty
would get us so far.

BURSTS AND GAPS

Let us subject the errors to increasingly re-
fined analysis. A rough analysis reveals the
presence of periods during which no error is
encountered. Let these remission periods be
called “gaps of rank O” if their duration ex-
ceeds one hour. By contrast, any time inter-
val flanked by gaps of rank O is singled out as
being a “burst of errors of rank 0.” As the
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analysis is made three times more accurate, it
reveals that the original burst is itself
“intermittent.” That is, shorter gaps “of rank
1,” lasting 20 minutes or more, separate cor-
respondingly shorter bursts “of rank 1.” Like-
wise, each of the latter contains several gaps
“of rank 2,” lasting 400 seconds, separating
bursts “of rank 2,” and so on, each stage be-
ing based on gaps and bursts that are three
times shorter than the previous ones. The
process is illustrated very roughly by Plate 80.
(Do not pay attention to the caption yet.)

The preceding description suggests some-
thing about the relative positions of the bursts
of rank k within a burst of rank k—1. The
probability distribution of these relative posi-
tions seems independent of k. This invariance
is obviously an example of self-similarity, and
fractal dimension cannot be far behind, but
let us not rush. This Essay’s diverse case stud-
ies are meant, among others, to elicit new
themes or refine old ones. With this in mind,
it seems best to reverse. the historical order,
and introduce a new theme through a rough
nonrandom variant of the Berger & Mandel-
brot stochastic model of errors, Chapter 31.

A ROUGH MODEL OF ERROR BURSTS:
THE CANTOR FRACTAL DUST C

The preceding section constructs the set of
errors by starting with a straight line, namely
the time axis, then cutting out shorter and
shorter error-free gaps. This procedure may
be unfamiliar in natural science, but pure
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mathematics has used it at least since Georg
Cantor (Hawkins 1970, especially p. 58).

In Cantor 1883, the initiator is the closed

interval [0,1]. The term “closed” and the use
of brackets indicate that the extreme points
are included; this notation was used in Chap-
ter 6, but there was no need until now to
“make it explicit. The first construction stage
consists in dividing [0,1] into 3 pieces, then
removing the middle open third, designated
1%, 2;[. The term “‘open’ and the use of rev-
ersed brackets indicate that the extreme
points are excluded. Next, one removes the
open middle of each of N=2 remaining thirds.
And so on to infinity.

The remainder set € is called either
dyadic, due to the fact that N=2, or triadic
or ternary, due to the fact that [0,1] is subdi-
vided into 3 pieces.

More generally, the number of pieces,
called base, is denoted by b, the ratio between
each N-th of the set and the whole being
r=1/b. Cis also called Cantor discontinuum,
and I shall momentarily suggest the term,
Cantor fractal dust. Since a point on the time
axis marks an “event,” Cis a fractal sequence
of events.

CURDLING, TREMAS, AND WHEY

Cantor’s procedure is a cascade, to use a term
Lewis Richardson had applied to turbulence,
and we first borrowed in Chapter 6 to de-
scribe coastlines and the Koch curve. “Stuff”
that was uniformly distributed over an initia-
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tor [0,1] is subjected to a centrifugal eddy
which sweeps it into the extreme thirds.

The middle third portion cut out of [0,1]
to form a gap is henceforth denoted as trema
generator. This neologism is being coined in
this section from 7pnyua meaning hole, whose
distant relative is the Latin termes = termite.
It may be the shortest Greek word that has
not yet been put to work with a significant
scientific meaning.

In this context, tremas coincide with gaps,
but in different instances to be encountered
later they do not, which is why two different
terms are required.

While a “first-order trema” is emptied, the
total stuff is conserved and redistributed with
uniform density over the outer thirds, to be
called precurds. Then two centrifugal eddies
come in and repeat the same operation, start-
ing with the two intervals [0,%] and [%5,1].
The process continues as a Richardsonian cas-
cade converging at the limit to a set to be
called curd. If a stage’s duration is propor-
tional to the eddy size, the total process is of
finite duration.

In parallel, I propose whey (a term Miss
Muffet should not mind) to denote the space
outside the curd.

It is suggested that the above terms be
used not only in a2 mathematical but also in a
physical meaning: curdling to denote any cas-
cade of instabilities resulting in contraction,
and curd to denote a volume within which a
physical characteristic becomes increasingly
concentrated as a result of curdling.

ETYMOLOGY. Curd derives from the old



8 OOO FRACTAL EVENTS AND CANTOR DUSTS

English crudan, ‘to press, to push hard.” This
erudition from Partridge 1958 is not necessar-
ily irrelevant, since the etymological kin of
curd doubtless include fractal kin of interest;
see Chapter 23.

Note the following free associations: -curds
- cheese » milk - Milky Way - Galaxy
(vyaha = milk) - galaxies. I coined curdling
while working on galaxies, and the etymologi-
cal undertones of “‘galactic curdling” did not
escape my notice.

OUTER CUTOFF AND
EXTRAPOLATED CANTOR DUSTS

As a prelude to the extrapolation of C, let us
recall a point of history. When Cantor intro-
duced C, he had barely left his original field,
the study of trigonometric series. Since such
series are concerned with periodic functions,
the only extrapolation they involve is endless
repetition. Now recall the self-explanatory
terms of inner and outer cutoff, which Chap-
ter 6 borrows from the study of turbulence.
These are, respectively, the sizes € and @ of
the smallest and the largest feature present in
a set, and one may say that Cantor restricted
himself to @=1. The k-th construction stage
yields e=3, but =0 for C itself. To achieve
any other Q<oo, for example the value of 2«
appropriate in a Fourier series, one enlarges
the periodic Cantor dust in the ratio Q.
However, self-similarity, which this Essay
views as valuable, is destroyed by repetition.
But it is readily saved, if the initiator is used
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only for extrapolation and if extrapolation
follows an inverse or upward cascade. The
first stage enlarges C in the ratio 1/r=3 and
positions it on [0,3]. The result is € plus a
replica translated to the right and separated
from C by a new trema of length 1. The sec-
ond stage enlarges the outcome of the first
stage in the same ratio 3 and positions it on
[0,9]. The result is € plus 3 replicas translat-
ed to the right and separated by two new tre-
mas of length 1, and one new trema of length
3. The upward cascade continues to enlarge
in the successive ratios of the form 3.

If one prefers, one may alternate two
stages of interpolation, then a stage of extra-
polation, etc. In this fashion, each series of
three stages multiplies the outer cutoff Q by 3
and divides the inner cutoff ¢ by 3.

-<a In this extrapolated dust, the negative
axis is empty: an infinite trema. The underly-
ing notion is discussed further in Chapter 13,
where we tackle the (infinite) continent and
the infinite cluster., m

DIMENSIONS D BETWEEN O AND 1

The set yielded by infinite interpolation and
extrapolation is self-similar, and

D=log N/log (1/r)=log 2 /log 3~0.6309,

a fraction between O and 1.

By following a different curdling rule, we
can achieve other D’s, in fact any dimension
between O and 1. If the first stage trema is of
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length 1-2r, where O<r<'z, the dimension is
log2/log (1/r).

Further variety becomes possible if N#2.
For the sets with N=3 and r=1 /5, we find

D=log 3/log 5~0.6826.
For the sets with N=2 and r=%, we find
D=log 2 /log 4=">.

For the sets with N=3 and r=1/9, we also
find

D=log 3 /log 9='%,

Although their D are equal, these last two
sets “look™ very different. This observation is
taken up again and extended in Chapter 34,
and leads to the notion of lacunarity.

Observe also that there is at least one Can-
tor set for every D<1, but it follows from
Nr<1 that N<1/r, hence D is never above 1.

C1S CALLED DUST BECAUSE D7=0

While a Cantor set’s D can vary between O
and 1, from the topological viewpoint all Can-
tor sets are of dimension Dy=0, because any
point is by definition cut from the other
points, without anything having to be removed
to cut it. From this viewpoint, there is no dif-
ference between.C and finite sets of points!
The fact that Dy=0 in this last case is famili-
ar in standard geometry, and Chapter 6 uses
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it in arguing that Koch’s _X is of topological
dimension 1. But D=0 for all totally discon-
nected sets.

In the absence of accepted colloquial
counterparts to “curve’” and “surface” (which
are connected sets with Dr=1 and Dy=2), I
propose that sets with Dy=0 be called dusts.

GAPS’ LENGTH DISTRIBUTION

In a Cantor dust, let u be a possible value of a
gap’s length, and denote by U the length when
it is unknown, and by Nr(U>u) the number of
gaps or tremas of length U greater than u.
-a This notation is patterned after the nota-
tion Pr(U>u) of probability theory. m One
finds there is a constant prefactor F, such that
the graph of the function Nr(U>u) constantly
crosses the graph of Fu™P. Here comes dimen-
sion again. With logu and log Nr as coordi-
nates, the steps are uniform.

AVERAGE NUMBERS OF ERRORS

As in the case of a coastline, a rough idea of
the sequence of errors is obtained if Cantor
curdling stops with intervals equal to e=37%
The € may be the length of time required to
transmit a single symbol. One must also use
Cantor’s periodic extrapolation with a large
but finite €.

The number of errors between times O and
R, denoted by M(R), keeps time by counting
only those instants that witness something
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noteworthy. It is an example of fractal time.

When the sample begins at t=0 (which is
the only case to be considered here), the de-
rivation of M(R) proceeds as in the case of the
Koch curve. As long as R is smaller than €,
the number of errors doubles each time R is
multiplied by 3. As a result, M(R)=<RP.

This expression is like the standard expres-
sion for the mass of a disc or ball of radius R
in D-dimensional Euclidean space. It is also
identical to the expression obtained in Chap-
ter 6 for the Koch curve.

As a corollary, the average number of er-
rors per unit length varies roughly like RD-1
as long as R lies between the inner and the
outer cutoffs. When Q is finite, the decrease
in the average number of errors continues to
the final value of P, which is reached with
R=Q. Thereafter, the density remains more or
less constant. When @ is infinite, the average
number of errors decreases to zero. Finally,
the empirical data often suggest that @ is fin-
ite and very large, but fail to determine its
value with any accuracy. If this is the case,
the average number of errors has a lower limit
that does not vanish but that is so ill-
determined as to be of no practical use.

TREMA ENDPOINTS AND THEIR LIMITS

<a The most conspicuous members of €, the
trema endpoints, do not exhaust  in fact
they constitute but a tiny portion of it. The
other points’ physical importance is discussed
in Chapter 19. »
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THE CANTOR DUSTS" TRUE NATURE

The reader who has followed thus far and/or
has heard the echo of the rapidly growing lit-
erature on Devil’s Staircases (caption of Plate
83) must find it hard to believe that, when I
started on this topic in 1962, everyone was
agreeing that Cantor dusts are ar least as

. monstrous as the Koch and Peano curves.

Every self-respecting physicist was auto-
matically “turned off” by a mention of Can-
tor, ready to run a mile from anyone claiming
C to be interesting in science, and eager to
assert that such claims had been advanced,
tested, and found wanting. My sole encour-
agement came from S. Ulam’s suggestions,
tantalizing despite their failure to be either
developed or accepted, concerning the possible
role for Cantor sets in the gravitational equi-
librium of star aggregates; see Ulam 1974.

To publish on Cantor dusts, I had to erase
every mention of Cantor!

But here we were led to € by Nature’s own
peculiarities. And Chapter 19 describes a sec-
ond, very different, physical role for C. All
this must mean that the true nature of the
Cantor dust is very different.

It is undeniable that in most cases C itself
a very rough model, requiring many improve-
ments. I contend, however, that the very same
properties that cause Cantor discontinua to
be viewed as pathological are indispensable in
a model of intermittency, and must be pre-
served in more realistic substitutes for C. =
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Plates 80 and 81 1 CANTORIAN TRIADIC
BAR AND CAKE (HORIZONTAL SECTION

DIMENSION D=log 2/log 3=0.6309).
SATURN'’S RINGS. CANTOR CURTAINS.

The Cantor dust uses [0,1] as initiator, and
its generator is

N=2
r="%
D=log2/log 3=.6309

—e

PLATE 80. The Cantor dust is extraordinar-
ily difficult to illustrate, because it is thin and
spare to the point of being invisible. To help
intuition by giving an idea of its form, thicken
it into what may be called a Cantor bar.
=<a In technical terms, this is the Cartesian
product of a Cantor dust of length 1, by an
interval of length 0.03, m
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CURDLING. The construction of the Cantor
bar results from the process 1 call curdling. It
begins with a round bar (seen in projection as
a rectangle in which width /length=0.03). 1t
is best to think of it as having a very low den-
sity. Then matter “curdles” out of this bar’s
middle third into the end thirds, so that the
positions of the latter remain unchanged.
Next matter curdles out of the middle third of
each end third into its end thirds, and so on
ad infinitum until one is left with an infinitely
large number of infinitely thin slugs of infi-
nitely high density. These slugs are spaced
along the line in the very specific fashion in-
duced by the generating process. In this illus-
tration, curdling (which eventually requires
hammering!) stops when both the printer’s
press and our eye cease to follow; the last line
is indistinguishable from the last but one:
cach of its ultimate parts is seen as a gray
slug rather than two parallel black slugs.



CANTOR CAKE. When curdling starts with a
pancake, much less thick than it is wide, and
dough curdles into thinner pancakes (while
exuding an appropriate filling), one ends up
with an infinitely extrapolated Napoleon,
which one might call Cantor cake.

SATURN'S RINGS. Saturn was originally
believed to have a single ring around it. But
eventually a break was discovered, then two,
and now Voyager | has identified a very large
number of breaks, mostly very thin ones. Voy-
ager also established that the rings are dia-
phanous: they let sunlight through...as befits a
set we called “thin and spare.”

Thus, the rings’ structure (see Stone &
Minen 1981, especially the cover illustration)
is suggestive of a collection of near circles,
each with a radius corresponding to the dis-
tance from some origin to a point in Cantor
dust. =a The technical term is Cartesian
product of a Cantor dust by a circle. Actually,
it may be that a closer picture is given by a
circle’s product with a dust with positive
measure, like those examined in Chapter
15. » Last minute insert: The same idea is
stated independently to Avron & Simon 1981,
which relates it to Hill’s equation; their Note
6 includes many other relevant references.

SPECTRA. Harter 1979-1981 describes
some spectra of organic molecules whose re-
semblance to a Cantor dust is stunning.

PLATE 81. Here, the Cantor dust’s shape is
clarified by being placed among generalized
dusts with N=2 and variable r. The vertical
coordinate is either r itself, ranging from 0 to
Y2 (bottom figure), or D ranging from O to 1
(top figure). Both theater curtains are topped
by the full intervai [0,1]. Every horizontal cut

"~ of cither figure is some Cantor dust, with the

arrows pointing out r="% and D=06309.

A FAMOUS GREEK PARADOX. Greek philoso-
phers believed that, in order to be indefinitely
subdivisible, a body had to be continuous.

They had not heard of Cantor dusts. ==
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Plate 83 @ CANTOR FUNCTION, OR DEVIL'S STAIRCASE (DIMENSION D=1
THE RISERS’ ABSCISSAS ARE OF DIMENSION D~0.6309). CANTOR MOTION

The Cantor function describes the distribution
of mass along the Cantor bar of Plate 80.
Many writers refer to its graph as the Devil’s
Staircase, because it is odd indeed. Set both
the bar’s length and mass as equal to 1, and
for every value of the abscissa R define M(R)
as the mass contained between O and R. Since
there is no mass in the gaps, M(R) remains
constant along intervals that add up to the
whole length of the bar. However, since ham-
mering does not affect the total mass in the
bar, M(R) must manage to increase
somewhere from the point of coordinates
(0,0) to the point of coordinates (1,1). It in-
creases over infinitely many, infinitely small,
highly clustered jumps corresponding to the
slugs. Hille & Tamarkin 1929 describes this
function’s odd properties in detail.

REGULARIZING MAPPINGS. The Devil’s
staircase accomplishes the feat on mapping
the drastic nonuniformity of the Cantor bar
into something uniform and homogeneous.
Starting with two different intervals of the
same length on the vertical scale, the inverse
function of the Cantor staircase yields two
collections of slugs that contain the same
mass—even though they usually look very dif-
ferent from each other.

Since science thrives on uniformity, it of-
ten happens that such regularizing transfor-
mations make fractal irregularity accessible to
analysis,

FRACTAL HOMOGENEITY. It is convenient to
describe the distribution of mass in the Can-
tor bar as fractally homogeneous.

CANTOR MOTION. As in the case of the
Koch curve reinterpreted as Koch motion, or
of the Peano motipn, it is useful to reinterpret
the ordinate M(R) as a time. If so, the inverse
function R(M) gives the position of a Cantor
motion at time t. This motion is most discon-
tinuous. Chapters 31 and 32 describe a ran-
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domized linear and spatial generalizations.

FRACTAL DIMENSION. The sums of the
widths and of the heights of the steps both
equal 1, and one finds in addition that this
curve has a well-defined length equal to 2. A
curve of finite length is called rectifiable and
is of dimension D=1. This example demon-
strates that the dimension D=1 is compatible
with the presence of many irregularities, as
long as they remain sufficiently scattered.

-<a One would love to call the present
curve a fractal, but to achieve this goal we
would have to define fractals less stringently,
on the basis of notions other than D alone. m

SINGULAR FUNCTIONS. The Cantor stair-
case is a nondecreasing and nonconstant func-
tion that is singular, in the sense that it is
continuous but nondifferentiable. Its deriva-
tive vanishes almost everywhere, and its con-
tinuous variation manages to occur over a set
whose length—i.e., linear measure—vanishes.

Any nondecreasing function can be written
as the sum of a singular function, of a func-
tion made of discrete jumps, and of a differ-
entiable function. The last two components
are classical in mathematics and of wide use
in physics. On the other hand, the singular
component is widely regarded in physics as
pathological and totally devoid of uses. A
principal theme of this Essay is that this last
opinion is totally devoid of merit.

DEVIL'S STAIRCASES IN STATISTICAL
PHYSICS. The publication of this plate in my
1977 Essay brought the Devil’s staircase to
the physicists’ attention, and stimuldated an
extensive literature. Diagrams analogous to
the “curtains” of Plate 81, or the Fatou cur-
tain of Plate 185, are encountered with grow-
ing frequency. See Aubry 1981. Important
earlier work (Azbel 1964, Hofstadter 1976),
which used to be isolated, merges with this
new development. H






Il = GALAXIES AND EDDIES

9 = Fractal View of Galaxy Clusters

In Chapters 6 and 7, the Koch and Peano
fractals are introduced via geomorphology,
but the most significant uses of fractals are
rooted elsewhere. Inching toward the main-
stream of science, this chapter and the next
two tackle two issues of exceptional antiquity,
importance and difficulty.

The distribution of the stars, the galaxies,
the clusters of galaxies, and so on fascinates
the amateur as well as the specialist, yet clus-
tering remains peripheral to astronomy and to
astrophysics as a whole. The basic reason is
that no one has yet explained why the distri-
butior} of matter falls into an irregular hier-
archy, at least within a certain range of
Eicales. While there are allusions to clustering
In most works on the subject, serious theoreti-
cal developments hasten to sweep it under the
rug, claiming that on scales beyond some
large but unspecified threshold galaxies are
uniformly distributed.

Less fundamenta]ly, the hesitation in deal-

ing with the irregular arises from the absence
of tools to describe it mathematically. Statis-
tics is asked to decide between two assump-
tions, only one of which is thoroughly ex-
plored (asymptotic uniformity). Is it surpris-
ing that the results are inconclusive?

The questions, however, refuse to be set
aside. In parallel with efforts to explain, 1
think it indispensable to describe clustering,
and to mimic reality by purely geometric
means. The fractal treatment of this subject,
scattered over several chapters of this Essay,
proposes to show by explicitly constructed
models that the evidence is compatible with a
degree of clustering that extends far beyond
the limits suggested by existing models.

The present introductory chapter describes
an influential theory of the formation of stars
and galaxies, due to Hoyle, the principal de-
scriptive model of their distribution, due to
Fournier d’Albe (also known as the Charlier
model), and, most important, sketches some
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empirical data. It is shown that both theories
and data can be interpreted in terms of a scal-
ing fractal dust. I argue that the distribution
of galaxies and of stars includes a zone of
self-similarity in which the fractal dimension
satisfies 0<D<3. Theoretical reasons for ex-
pecting D=1 are sketched, raising the ques-
tion of why the observed D is ~1.23.

PREVIEW. Chapter 22 uses fractal tools to
improve our understanding of what the cosmo-
logical principle means, how it can and should
be modified, and why the modification de-
mands randomness. A discussion of improved
model clusters is withheld until Chapters 22,
23, and 32 to 35.

IS THERE A GLOBAL
DENSITY OF MATTER?

Let us begin with a close examination of the
concept of global density of matter. As with
the concept of the length of a coastline, things
seem simple, but in fact go awry very quickly
and most interestingly. To define and measure
density, one starts with the mass M(R) in a
sphere of radius R centered on Earth. The
approximate density, defined as

M(R)/[(4/3)xR3],

is evaluated. After that, the value of R is
made to tend toward infinity, and the global
_density is defined as the limit toward which
the approximate density converges.

But need the global density converge to a
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positive and finite limit? If so, the speed of
convergence leaves a great deal to be desired.
Furthermore, the estimates of the limit densi-
ty had behaved very oddly in the past. As the
depth of the world perceived by telescopes
increased, the approximate density diminished
in a surprisingly systematic manner. Accord-
ing to de Vaucouleurs 1970, it has remained
«RP~3. The observed exponent D is much
smaller than 3, the best estimate, on the basis
of indirect evidence, being D=1.23.

The thesis of de Vaucouleurs is that the
behavior of the approximate density reflects
reality, meaning that M(R)<RP. This formula
recalls the classical result that a ball of radius
R in a Euclidean space of dimension E has a
volume <RE. In Chapter 6 we encounter the
same formula for the Koch curve, with the
major difference that the exponent is not the
Euclidean dimension E=2 but a fraction-
valued fractal dimension D. And Chapter 8
derives M(R)«<RP for the Cantor dust on the
time axis (for which E=1).

All these precedents suggest very strongly
that the de Vaucouleurs exponent D is a frac-
tal dimension.

ARE STARS IN THE SCALING RANGE?

Obviously, the scaling range in which D satis-
fies 0<D<3 must end before one reaches ob-
jects with well-defined edges, such as planets.
But does it, or does it not, include stars? Ac-
cording to data by Webbink reported in Faber
& Gallagher 1980, the mass of the Milky
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Way interior to radius R may very well be
represented as M(R)«<RP, with the D extrapo-
lated from galaxies. But we continue our dis-
cussion exclusively in terms of galaxies.

IS THERE AN UPPER CUTOFF
TO THE SCALING RANGE?

The question of how far the range in which
0<D<3 extends in the direction of very large
scales is controversial and the subject of re-
newed activity. Many authors either state or
imply that the scaling range admits of an out-
er cutoff corresponding to clusters of galaxies.
Other authors disagree. De Vaucouleurs 1970
asserts that “clustering of galaxies, and pre-
sumably of all forms of matter, is the domi-
nant characteristic of the structure of the uni-
verse on all observable scales with no indica-
tion of an approach to uniformity; the average
density of matter decreases steadily as even
larger volumes of space are considered, and
there is no observational basis for the assump-
tidn that this trend does not continue out to
much greater distances and lower densities.”

The debate between these two schools of
thought is interesting and important to
cosmology—but not for the purposes of this
Essay. Even if the range in which 0<D<3 is
cut off at both ends, its importance is suffi-
cient in itself to warrant a careful study.

In either case, the Universe (just like the
bal! of thread discussed in Chapter 3) appears
to involve a sequence of several different ef-
fective dimensions. Starting with scales of the
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order of Earth’s radius, one first encounters
the dimension 3 (due to solid bodies with
sharp edges). Then the dimension jumps to O
(matter being viewed as a collection of isolat-
ed points). Next is the range of interest, ruled
by some nontrivial dimension satisfying
0<D<3. If scaling clustering continues ad
infinitum, so does the applicability of this last
value of D. If, on the contrary, there is a fi-
nite outer cutoff, a fourth range is added on
top, in which points lose their identity and one
has a uniform fluid, meaning that the dimen-
sion again equals 3.

On the other hand, the most naive idea is
to view the galaxies as distributed near uni-
formly throughout the Universe. Under this
untenable assumption, one has the sequence
D=3, then D=0, and again D=3.

-<a The general theory of relativity asserts
that in the absence of matter, the local geom-
etry of space tends to be flat and Euclidean,
with the presence of matter making it locally
Riemannian. Here we could speak of a global-
ly flat Universe of dimension 3 with local
D<3. This type of disturbance is considered in
Selety 1924, an obscure reference which fails
to refer to Koch but includes (p. 312) an ex-
ample of the construction of Chapter 6. m-

THE FOURNIER UNIVERSE

It remains to construct a fractal that satisfies
M(r)<RP, and see how it agrees with accepted
views concerning the Universe. The first fully
described model of this kind is due to E. E.
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Fournier d’Albe (Chapter 40). While Fourni-
er 1907 is largely a work of fiction disguised
as science, it also contains genuinely interest-
ing considerations to which we come momen-
tarily. It is best, however, to first describe the
structure it proposes.

Its construction begins with the centered
regular octahedron whose projection is repre-
sented near the center of Plate 95. The pro-
jection reduces to the four corners of a square
whose diagonal is set to be of length 12
“units,” and to this square’s center. But the
octahedron also includes two points above and
below our plane, on the perpendicular drawn
from the center of the square, and at the same
distance of 6 units from this center.

Now, each point is replaced with a ball of
radius 1, to be viewed as “stellar aggregate of
order 0.” And the smallest ball including the
basic 7 balls is to be called a “stellar aggre-
gate of order 1.”" An aggregate of order 2 is
achieved by enlarging an aggregate of order 1
in the ratio 1/r=7 and by replacing each of
the resulting balls of radius 7 by a replica of
the aggregate of order 1. In the same way, an
aggregate of order 3 is achieved by enlarging
an aggregate of order 2 in the ratio 1/r=7
and by replacing each ball by a replica of the
aggregate of order 2. And so on.

In sum, between two successive orders of
aggregation, the number of points and the
radius are enlarged in the ratio 1 /r=7. Con-
sequently, whenever R is the radius of some
aggregate, the function Mo(R) expressing the
number of points contained in a ball of radius
R is Mg(R)=R. For intermediate values of R,
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Mo(R) is smaller (reaching down to R/7), but
the overall trend is Mg(R)«<R.

Starting from aggregates of order 0, it is
also possible to interpolate by successive
stages to aggregates of orders —1, -2, and so
on. The first stage replaces each aggregate of
order O with an image of the aggregate of
order 1, reduced in the ratio 1/7, and so
forth. If one does so, the validity of the rela-
tionship Mg(R)x<R is extended to ever smaller
values of R. After infinite extra- and interpo-
lation, we have a self-similar set with
D=log7 /log 7=1.

We may also note that an object in
3-space for which D=1 need not be a straight
line nor any other rectifiable curve. It need
not even be connected. Each D is compatible
with any lesser or equal value of the topologi-
cal dimension. In particular, since the doubly
infinite Fournier universe is a totally discon-
nected “dust,” its topological dimension is O.

DISTRIBUTION OF MASS;
FRACTAL HOMOGENEITY

The step from geometry to the distribution of
mass is obvious. If each stellar aggregate of
order O is loaded with a unit mass, the mass
M(R) within a ball of radius R>1 is identical
to Mg(R), hence «<R. Furthermore, to generate
aggregates of order —1 from aggregates of
order O amounts to breaking up a ball that
had been viewed as uniform, and finding it to
be made of seven smaller ones. This stage ex-
tends the rule M(R)=<R below R=1.



When viewed over the whole 3-space, the
resulting mass distribution is grossly inhomo-
geneous, but over the Fournier fractal it is as
homogeneous as can be. (Recall Plate 80.) In
particular, any two geometrically identical
portions of the Fournier universe carry identi-
cal masses. I propose that such a distribution
of mass be called fractally homogeneous.

< The preceding definition is phrased in
terms of scaling fractals, but the concept of
fractal homogeneity is more general. It ap-
plies to any fractal for which the Hausdorff
measure for the dimension D is positive and
finite. Fractal homogeneity requires the mass
carried by a set to be proportional to the set’s
Hausdorff measure. m

FOURNIER UNIVERSE VIEWED AS
CANTOR DUST. EXTENSION TO D#1

I trust the reader was not distracted by the
casual use of fractal terminology in the open-
ing sections of this chapter. It is obvious that,
without being aware of the fact, Fournier was
traveling along a track parallel to that of
Cantor, his contemporary. The main differ-
ence is that the Fournier construction is im-
bedded in space instead of the line. To further
improve the resemblance, it suffices to change
Fournier’s aggregates from being balls to be-
ing bricks (filled-in cubes). Now, each aggre-
gate of order O is a brick of side 1, and it in-
cludes 7 aggregates of side 1/7: one of them
has the same center as the initial cube, and
the other six touch the central subsquares of

GALAXIES AND EDDIES noo |l

the faces of the original cube.

Later we will examine how Fournier ob-
tains the value D=1 from basic physical phe-
nomena, and how Hoyle obtains this same
value. Geometrically, however, D=1 is a spe-
cial case, even if one preserves the overall oc-
tahedron and the value N=7. Since the balls
do not overlap, 1/r can take any value be-
tween 3 and infinity, yielding M(R)ccRD, with
D=log 7 /log (1 /r) anywhere between O and
log7/log3=1.7712.

Further, given any D satisfying D<3, it is
easy by changing N to construct variants of
Fournier’s model having this dimension.

THE CHARLIER MODEL AND
OTHER FRACTAL UNIVERSES

The above constructs share every one of the
characteristic defects of first fractal models.
Most conspicuously, just like the Koch curve
model in Chapter 6 and the Cantor dust mod-
el in Chapter 8, the Fournier model is so reg-
ular as to be grotesque. As a corrective, Char-
lier 1908, 1922 suggests that one allow N and
r to vary from one hierarchical level to anoth-
er, taking on the values N, and rp,.

The scientific eminence of Charlier was
such that, despite the praise he lavished on
Fournier, writing in the leading scientific lan-
guages of the day, even the simple model soon
became credited to its famous expositor in-
stead of its unknown author. It was much dis-
cussed in its time, in particular in Selety
1922, 1923a, 1923b, 1924. Furthermore, the
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model attracted the attention of the very in-
fluential Emile Borel, whose comments in Bo-
rel 1922, while dry, were perceptive. But from
then on, aside from fitful revivals, the model
fell into neglect (for not very convincing rea-
sons noted in North 1965, pp. 20-22 and
408-409). Nevertheless, it refuses to die. The
basic idea was independently reinvented many
times to this day, notably in Lévy 1930. (See
the LEVY entry in Chapter 40.) Most impor-
tant, the fractal core notion of the Fournier
universe is implicit in the considerations about
turbulence and galaxies in von Weizsdcker
1950 (see Chapter 10), and in the model of
the genesis of the galaxies due to Hoyle 1953,
which will be discussed momentarily.

The basic fractal ingredient is also present
in my models, Chapters 32 to 35.

In this light, the question arises of whether
a model of galaxy distribution can fail to be a
fractal with one or two cutoffs. I think not. If
one agrees that the distribution must be scal-
ing (for reasons to be elaborated in Chapter
11) and that the set on which matter concen-
trates is not a standard scaling set, it must be
a fractal set.

Granted the importance of scaling,
Charlier’s nonscaling generalization of the
Fournier model is ill-inspired. <a Incidentally,
it allows log Nm/log (1 /ry) to vary with m
between two bounds; Dyin>0 and Dpypax<3.
We have here yet another theme: effective
dimension need not have a single value, and
may drift between an upper and a lower limit.
This theme is picked up again in Chapter
15, m=
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FOURNIER'S REASON TO EXPECT D=1

We now describe the impressive argument
that leads Fournier 1907, p. 103, to conclude
that D must be equal to 1. This argument is a
strong reason for not forgetting its author.

Consider a galactic aggregate of arbitrary
order with mass M and radius R. Using with-
out misgivings a formula applicable to objects
with spherical symmetry, assume that the gra-
vitational potential on the surface is GM/R
(G being the gravitational constant). A star
falling on this universe impacts with the ve-
locity V equal to (2GM/R)".

To paraphrase Fournier, an important con-
clusion may be drawn from the observation
that no stellar velocity exceeds 1 /300 of the
velocity of light. It is that the mass comprised
within a world ball increases as its radius, and
not as its volume, or in other words, that the
density within a world ball varies inversely as
the surface of the ball... To make this clearer,
the potential at the surface would be always
the same, being proportional to the mass and
inversely proportional to the distance. And as
a consequence, stellar velocities approaching
the velocity of light would not prevail in any
part of the universe.

HOYLE CURDLING; THE JEANS
CRITERION ALSO YIELDS D=1

A hierarchical distribution also arises in a
theory advanced in Hoyle 1953, according to
which galaxies and stars form by a cascade
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process starting with a uniform gas.

Consider a gas cloud of temperature T and
mass Mo, distributed with a uniform density
throughout a ball of radius R. As shown by
Jeans a ‘‘critical” situation prevails when
Mo/ Ro=JKRT/G. (Here, k is the Boltzmann
constant and J a numerical coefficient.) In
this critical case, the primordial gaseous cloud
is unstable and must inevitably contract.

Hoyle postulates (a) that Mg/Rgp takes on
this critical value at some initial stage, (b)
that the resulting contraction stops when the
volume of the gas cloud drops to 1/25-th,
and (c) that each cloud then splits into five
clouds of equal size, mass M{=Mgy/5, and
equal radius R;=Rgp/5. Thus the process ends
as it started: in an unstable situation followed
by a second stage of contraction and subdivi-
sion, then a third, and so on. But curdling
stops as clouds become so opaque that the
heat due to gas collapse can no longer escape.

As in the diverse other fields where the
same cascade process is encountered, I pro-
pose that the five clouds be called curds, and
that the cascade process be called curdling.
As said when 1 introduced this last term, I
could not resist its juxtaposition with galactic.

Fournier injects N=7 to facilitate the
graphical illustration, but Hoyle claims that
N=5 has a physical basis. In another cofitrast
with Fournier, whose geometrical illustration
is detailed beyond what is reasonable or need-
ed, Hoyle is vague about the curds’ spatial
scatter. An explicit implementation has to
wait until we describe random curdling in
Chapter 23. But these discrepancies do not
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matter: the main fact is that r=1/N, so that
D=1 must be part of the design if curdling is
to end as it began, in Jeans instability.

Further, if the duration of the first stage is
taken to be 1, gas dynamics shows that the
mth stage’s duration is 5 ™. It follows that
the same process could continue to infinity
within a total time of 1.2500.

EQUIVALENCE OF THE FOURNIER
AND HOYLE DERIVATIONS OF D=1

At the edge of an unstable gas cloud satisfy-
ing the Jeans criterion, the velocity and the
temperature are linked by V2/2=JkT, be-
cause GM /R is equal to V2/2 (Fournier) and
to JKT (Jeans). Now recall that in statistical
thermodynamics the temperature of a gas is
proportional to the mean square velocity of its
molecules. Hence the combination of the
Fournier and Jeans criteria suggests that at
the edge of a cloud the velocity of the fall of a
macroscopic object is proportional to the aver-
age velocity of its molecules. A careful analy-
sis of the role of temperature in the Jeans cri-
terion is bound to show the two criteria to be
equivalent. -<a Most likely, the analogy ex-
tends to the M(R)xR relationship within gal-
axies, reported in Wallenquist 1957, m

WHY D=1.23 AND NOT D=1?
The disagreement between the empirical
D=1.23 and the Fournier and Hoyle theoreti-
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cal D=1 raises an important issue. P. J. E.
Peebles tackled it in 1974 by relativity theory.
See Peebles 1980, a full treatment of the
physics and of the statistics (but not of the
geometry) of this topic.

THE SKY'S FRACTAL DIMENSION

The sky is a projection of a universe, in which
every point is first described by its spherical
coordinates p, 6, and ¢ and then replaced by
the point of spherical coordinates 1, 8, and ¢.
When the universe is a fractal of dimension D,
and the origin of the frame of references be-
longs to the universe (see Chapter 22), the
“structure of this projection is “typically”
ruled by the following alternative: D>2 im-
plies that the projection covers a nonzero pro-
portion of the sky, while D<2 implies that the
projection is itself of dimension D. <a As ex-
emplified in Plates 95 and 96, typical allows
for exceptions, due to the structure of the
fractal and/or the choice of origin. It often
means “true with probability 1.” m

ASIDE ON THE BLAZING SKY EFFECT
(WRONGLY CALLED OLBERS PARADOX)

The rule in the preceding section bears direct-
ly upon the motivation that led diverse writers
(including Fournier) to variants of a fractal
Universe. They recognized that such universes
“exorcise” geometrically the Blazing Sky
Effect, often (but wrongly) called Olbers

N

paradox. Under the assumption that the dis-
tribution of celestial bodies is uniform, mean-
ing that D=3 for all scales, the sky is lit near
uniformly, during the night and during the
day, to the brighness of the solar disc.

This paradox is no longer of interest to
physicists, having been eliminated by relativi-
ty theory and the theory of the expansion of
the Universe, and other arguments. But its
demise left a peculiar by-product: numerous
commentators invoke their preferred explana-
tion of the Blazing Sky Effect as an excuse
for neglecting clustering, and even as an argu-
ment for denying its reality. This is a truly
odd viewpoint: even if galaxies need not be
clustered to avoid the Blazing Sky Effect,
they are clustered, and this characteristic de-
mands careful study. Furthermore, as seen in
Chapter 32, the expansion of the Universe is
compatible not only with standard homogenei-
ty but also with fractal homogeneity.

The Blazing Sky argument is simplicity
itself. When the light emitted by a star is pro-
portional to its surface area, the amount of
light reaching an observer at a distance of
Rocl/RQ, but the star’s apparent surface is
itself ucl/RQ. Thus, the apparent ratio of
light to spherical angle is independent of R.
Also, when the distribution of stars in the
Universe is uniform, almost any direction in
the sky sooner or later intersects some star.
Therefore, the sky is uniformly bright, and
seems ablaze. (The Moon’s disc would form
an exceptional dark domain, at least, in the
absence of atmospheric diffusion.)

On the other hand, the assumption that the
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universe is fractal with D<2 resolves the para-
dox. In that case, the universe’s projection on
the sky is a fractal with the same D, hence a
set of zero area. Even if the stars are given a
nonzero radius, a large proportion of direc-
tions go to infinity without encountering any
star. Along these directions, the night sky is
black. When the range in which D<3 is fol-
lowed by a range in which D=3, the sky’s
background is not strictly black but illuminat-
ed extremely faintly.

The Blazing Sky Effect was noticed by
Kepler shortly after Galileo’s Sidereal
Message had commented favorably on the
notion that the Universe is unbounded. In his
1610 Conversation with the Sidereal
Messenger, Kepler rejoined: “You do not hesi-
tate to declare that there are visible over
10,000 stars... If this is true, and if [the stars
have] the same nature as our sun, why do not
these suns collectively outdistance our sun in
brilliance?... But maybe the intervening ether
obscures them? Not in the least... It is quite
clear that...this world of ours does not belong
to an undifferentiated swarm of countless oth-
ers.” (Rosen 1965, pp. 34-35.)

This conclusion remained controversial,
but the argument was not forgotten, witness
the comment by Edmund Halley, in 1720,
that: “Another Argument I have heard urged,
that if the number of Fixt Stars were more
than finite, the whole superficies of their ap-
parent Sphere would be luminous.” Later, this
conclusion was discussed by De Chéseaux and
J. H. Lambert, but came to be credited to
Gauss’s great friend, Olbers. The term
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“Olbers paradox” that became attached to it
is scandalous but symptomatic. Observations
that had been rejected into the “‘unclassified
residuum”™ (page 28) become all too often
credited to the first Establishment figure who
decorates them by a classifiable wrapping,
however transient. Historical discussions are
found in Gamow 1954, Munitz 1957, North
1965, Dickson 1968, Wilson 1965, Jaki 1969,
Clayton 1975, and Harrison 1981.

ASIDE ON NEWTONIAN GRAVITATION

The Rev. Bentley kept pestering Newton with
an observation closely related to the Blazing
Sky Effect: if the stars’ distribution is homo-
geneous, the force they exert on one among
them is infinite. One may add that their gra-
vitational potential is infinite. And that any
distribution wherein M(R)«<RP for large R
yields an infinite potential unless D<1. The
modern theory of potentials (Frostman theo-
ry) confirms that there is a privileged link
between Newton’s gravitation and the value
D=1. The Fournier and Hoyle derivations of
D=1 cannot fail to be related to this link.
-a Fournier’s theme of “the gravitational po-
tential at the surface being always the same”
is central to modern potential theory. m=-

ASIDE ON RELATIVITY THEORY

< To paraphrase de Vaucouleurs 1970:
“Relativity theory led us to believe that to be
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optically observable, no stationary material
ball can have a radius R less than the
Schwarzchild limit Ry=2GM/c?, where ¢ is
the velocity of light. In a plot of the mean
density p and the characteristic radius R of
various cosmical systems, py = 302/8wGRM2
defines an upper limit. The ratio p/py may be
called the Schwarzchild filling factor. For
most common astronomical bodies (stars) or
systems (galaxies), the filling factor is very
small, on the order of 107* to 1076 The
square of the velocity ratio postulated by
Fournier is (300)72~107%, precisely in the
range middle of the above. m

AN AGGLUTINATED FRACTAL UNIVERSE?

Many authors think one may explain the gen-
esis of stars and other celestial objects by an
ascending cascade (i.e., the agglutination of
greatly dispersed dust particles into increas-
ingly bigger pieces) rather than by a
descending cascade a4 la Hoyle (i.e., the frag-
mentation of very large and diffuse masses
into smaller and smaller pieces).

An analogous alternative arises in connec-
tion with the cascades postulated in the study
of turbulence, Chapter 10. Richardson’s cas-
cade descends toward ever smaller eddies, but
ascending cascades may also be present; see
Chapter 40, under RICHARDSON. Thus it may
be hoped that the interrelations between de-

scending and ascending cascades will be clari-
fied soon.
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FRACTAL TELESCOPE ARRAYS

To wind up this discussion, nothing can be
more appropriate than a comment about the
tools used to observe the galaxies. Dyson 1977
suggests that it may be advantageous to re-
place one piece telescopes by arrays of small
telescopes. The diameter of each would be
about 0.1 m, equal to the patch size of the
smallest optically significant atmospheric dis-
turbance, their centers would form a fractally
hierarchical pattern, and they would be linked
by Currie interferometers. A rough analysis
leads to the conclusion that a suitable value
for the dimension would be %5. Dyson’s con-
clusion: “A 3-kilometer array of 1024 ten-
centimeter telescopes connected by 1023
interferometers is not a practical proposition
today. [It is offered] as a theoretical ideal, to
show what can be done in principle.”

SURVEY OF RANDOM FRACTAL
MODELS OF GALAXY CLUSTERS

If one grants the claim that the distribution of
galaxies is described usefully by unknowingly
fractal models of limited subtlety and versatil-
ity, one should not be surprised that knowing-
ly fractal random models provide even more
useful descriptions. To begin with, our under-
standing of Hoyle curdling improves when it
is set in its proper context: random fractals
(Chapter 23). Of greater significance, I think,
are the random models 1 developed and dis-
cuss in Chapters 32 to 35. One reason for
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dwelling on several models is that improve-
ment in the quality of description is “paid
for” by increased complication. A second rea-
son is that each model involves a fractal dust
that deserves attention. Let me survey these
models here, out of logical order.

Around 1965, my ambition was to imple-
ment the relationship M(R)ncRD with D<3
with a model in which there is no ““center of
the universe.” [ first achieved this goal by the
random walk model described in Chapter 32.
Then, as an alternative, 1 developed a trema
model, which consists in cutting out from
space a collection of mutually independent
randomly placed tremas of random radius,
ranging up to an upper cutoff L that may be
either finite or infinite.

Since both models had been selected solely
on the basis of formal simplicity, it was de-
lightfully surprising to discover they have pre-
dictive value. My theoretical correlation func-
tions (Mandelbrot 1975u) agree with the
curve-fitted ones reported in Peebles 1980
(see pp. 243-249). <a More precisely, my two
approaches agree on the 2-point correlation,
my random walk yields a good 3-point corre-
lation and a bad 4-point correlation, and my
spherical tremas model is very good for all
known correlations. -

Unfortunately, the appearance of samples
generated by either model is quite unrealistic.
Using a notion that I developed for this very
purpose and describe in Chapter 35, they have
unacceptable Jacunarity properties. For the
trema model this defect is corrected by intro-
ducing more eclaborate trema shapes. For the
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random walk model, I use a less lacunar
“subordinator.”

Thus, the study of galaxy clusters has
greatly stimulated the development of fractal
geometry. And today the uses of fractal geom-
etry in the study of galaxy clusters go well
beyond the tasks of streamlining and house-
cleaning accomplished in the present chapter.

CUT DIAMONDS LOOK LIKE STARS

And the distribution of raw diamonds in the
Earth’s crust resembles the distribution of
stars and galaxies in the sky. Consider a large
world map on which each diamond mine or
diamond rich site—past or present-—is repre-
sented by a pin. Where examined from far
away, these pins’ density is extraordinarily
uneven. A few are isolated here and there, but

.most concentrate in a few blessed (or ac-

cursed) areas. However, the Earth’s surface in
these areas is not uniformly paved with dia-
monds. When examined more closely, any of
these areas turns out itself to be mostly blank,
with scattered subareas of much greater dia-
mond concentration. The process continues
over several orders of magnitude.

Is it not irresistible to inject curdling in
this context? Indeed, an unknowingly fractal
model has been advanced by de Wijs, as scen
under NONLACUNAR FRACTALS in Chapter 39.

|
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Plate 95 = PROJECTION OF FOURNIER’S MULTIUNIVERSE (DIMENSION D~0.8270)

This plate represents to scale both the projec-
tion and the ‘“equatorial” section of a Uni-
verse of dimension D=1 described in the text.
See also Plate 96.

To paraphrase the caption in Fournier
1907: “A multiuniverse constructed upon a
cruciform or octahedral principle is not the
plan of the world but is useful in showing that
an infinite series of similar successive univers-
es may exist without producing a ‘blazing
sky.” The matter in each world sphere is pro-
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portional to its radius. This is the condition
required for fulfilling the laws of gravitation
and radiation. In some directions the sky
would appear quite black, although there is an
infinite succession of universes. The ‘world
ratio’ in this case is N=7 instead of 1022, as
in reality.”

In the sense described in Chapter 34, a
universe with D=1 and N=1022 is of very
low lacunarity, but extraordinarily stratified.

|



Plate 96 = A FLAT FOURNIER UNIVERSE WITH D=1

Plate 95, being drawn to exact scale, is not
On‘ly hard to print and to see, but potentially
mns]cgding. Indeed, it is not a universe of di-
mension D=1 but its planar projection, whose
dimension is D=log 5/log 7~0.8270<1.
Therefore, in order to avojd leaving the wrong
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impression, we hasten to exhibit a regular
Fournier-like planar pattern of dimension
D=1. The construction, which involves
1/r=5 instead of 1/r=7, is carried one step
further than is possible in Plate 95,
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The study of turbulence is one of the oldest,
hardest, and most frustrating chapters of
physics. Common experience suffices to show
that under certain circumstances the flow of a
gas or a liquid is smooth, the technical term
being “‘laminar,” while under different cir-
cumstances it is not smooth at all. But where
should we draw a line? Should the term
“turbulence” denote all unsmooth flows, in-
cluding much of meteorology and oceanogra-
phy? Or is it better to reserve it for a narrow
class, and, if so, for which one? Each scholar
seems to answer these questions differently.

This disagreement does not matter here,
because we focus on unquestionably turbulent
flows, whose most conspicuous characteristic
resides in the absence of a well-defined scale
of length: they all involve coexistent “eddies”
of all sizes. This feature can already be recog-
nized in Leonardo’s and Hokusai’s drawings.
[t demonstrates that turbulence is necessarily
foreign to the spirit of the “old” physics that
focused upon phenomena having well-defined
scales. But this same reason makes the study
of turbulence of direct interest to us.

As some readers know, practically all in-

vestigations of turbulence concentrate upon
the analytic study of fluid flow, and leave the
geometry aside. I like to think that this lack
of balance does not reflect a perceived lack of
importance. In fact, many geometric shapes
involved in turbulence are easily seen or made
visible and cry out for a proper description.
But they could not receive the attention they
deserve until the development of fractal geom-
etry. Indeed, as 1 immediately surmised, tur-
bulence involves many fractal facets, of which
1 describe a few in this and later chapters.

Two disclaimers are necessary. First of all,
we leave aside the problem of the onset of tur-
bulence in a laminar fluid. There is strong
reason to believe that this onset has fractal
aspects of great importance, but they have not
been clarified enough to be discussed here.
Secondly, such periodic structures as Bénard
cells and Karman streets do not concern us
here.

This chapter begins with pleas for a more
geometric approach to turbulence and for the
use of fractals. These pleas are numerous but
each is brief, because they involve suggestions
with few hard results as yet.
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After that, we focus on the problem of in-
termittency, which I have investigated active-
ly. My most important conclusion is that the
region of dissipation, namely the spatial set on
which turbulent dissipation is concentrated,
can be modeled by a fractal. Measurements
done for different purposes suggest that this
region’s D lies around 2.5 to 2.6, but proba-
bly below 2.66.

Unfortunately, the model cannot be pin-
pointed accurately, until we determine the
topological properties of the region of dissipa-
tion. In particular, is it a dust, or a wiggly
and branched curve (vortex tube), or a wiggly
and layered surface (vortex sheet)? The first
conjecture is unlikely, while the second and
third suggest models akin to the ramified
fractals of Chapter 14. But we are in no posi-
tion to decide. Progress on the new fractal
front does not help the old topological front at
all. Our knowledge of the geometry of turbu-
lence remains primitive indeed.

The bulk of this chapter requires no exper-
tise. <a But the specialist will observe that
part of fractal analysis of turbulence is the
geometric counterpart of the analytic analysis
of correlations and spectra. The relationship
between turbulence and probability theory is
an old story. Indeed, G. I. Taylor’s earliest
work was, after Perrin’s Brownian motion, the
second major influence on Norbert Wiener’s
c_reation of a mathematical theory of stochas-~
tic processes. Spectral analysis has long since
“paid back™ (with accrued interest) what it
once borrowed from the study of turbulence
and now it is time for the theory of turbulence
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to take advantage of the development of a
sophisticated stochastic geometry. In particu-
lar, the Kolmogorov spectrum has a geometric
counterpart examined in Chapter 30. »

CLOUDS, WAKES, JETS, ETC.

A generic problem in the geometry of turbu-
lence concerns the shape of the boundary of
the.region where some characteristic of the
fluid is encountered. Striking examples are
the billows upon billows which one finds in
the ordinary (water) clouds, as well as in the
clouds provoked by volcanic eruptions and in
nuclear mushrooms. At this stage of this Es-
say, it is indeed difficult to escape the impres-
sion that, insofar as there is a range of scales
wherein a cloud can be said to have a well-
defined boundary, cloud boundaries must be
fractal surfaces. The same remark applies to
the patterns of rain squalls seen on radar
screens. (For a first confirmation of this
hunch, see Chapter 12.)

But I prefer to deal with simpler shapes.
Turbulence may be restricted to a portion of
an otherwise laminar fluid, say a wake or a
jet. In the roughest approximation, each is a
rod. If, however, the boundary is examined in
detail, it reveals a hierarchy of indentations,
whose depth increases with the value of the
classic measure of hydrodynamic scale, called
Reynolds number. This very visible and com-
plex “local” structure does not evoke a rod as
much as a rope with many loosely attached
strings floating around. Its typical cross sec-

7
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tion is not at all circular, but closer in shape
to a Koch curve, and even closer to the most
rugged among the coastlines with islands in-
vestigated in Chapters 5 and 28. In any event,
a jet’s boundary seems fractal. When vortex
rings are present, their topology is of interest,
but does not exhaust the structure.

The next comment requires the reader to
have a mental picture of a wake, say, the love-
ly shape of a disabled tanker’s oil spill. The
“rod” that describes such a wake in the
roughest approximation has a great deal of
structure: it is not at all a cylinder, since its
cross section broadens rapidly away from the
ship, and its “‘axis™ is not at all straight but
shows meanders whose typical size again in-
creases away from the ship.

Analogous features are found in the turbu-
lence due to the shear between fluids masses
rubbing past each other, as shown in Browand
1966 and Brown & Roshko 1974. The result-
ing coherent structures (“‘animals’) attract
wide attention, today. Fractals do not concern
their overall form, but 1 think it is equally
clear that the hierarchy of fine features that
“ride” on the meanders is strikingly fractal in
its structure.

Jupiter’s celebrated red eye may also be an
example of this sort.

Related but different problems arise when
studying the Gulf Stream. It is not a single
well-defined sea current but divides into mul-
tiple wiggly branches, and these branches
themselves subdivide and ramify. An overall
specification of its propensity to branch would
be useful, and will doubtless involve fractals.

ISOTHERMS, DISPERSION ETC.

Similarly, it is interesting to study the shape
of the surfaces of constant temperature or the
isosurfaces of any other scalar characteristic
of the flow. The isotherms may be delineated
by the surface surrounding proliferating
plankton that lives only in water at T>45°,
and fills all the volume available to it. The
boundary of such a blob is extremely convo-
luted; in the specific model in Chapter 30, it
is demonstrably fractal.

A broad class of geometric problems oc-
curs when a medium is completely filled by
turbulence, but parts are marked by some
“passive” or inert characteristic that does not
affect the flow. The best example is when tur-
bulence disperses a blob of color. Branches of
all kinds shoot off in all directions, endlessly,
but existing analyses and standard geometry
are of little help in describing the resulting
shapes. Plate 55 and Mandelbrot 1976c¢ argue
that these shapes must be fractals.

OTHER GEOMETRIC QUESTIONS

CLEAR-AIR TURBULENCE. Some scattered evi-
dence 1 examined suggests that the set carry-
ing this phenomenon is a fractal.

FLOW PAST A FRACTAL BOUNDARY. This is
another typical case where fluid mechanics is
bound to involve fractals (Plates 45 and 68).

VORTEX STRETCHING. Fluid motion forces
vortices to stretch, and a stretching vortex
must fold to accommodate an increasing
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length in a fixed volume. To the extent that
the flow is scaling, I conjecture the vortex
tends toward a fractal.

THE TRAJECTORY OF A FLUID PARTICLE. In a
crude approximation, inspired by the Ptolema-
ic model of planetary motion, let our particle
be carried up vertically by an overall current
of unit velocity, while it is perturbed by a hi-
erarchy of eddies, each of which is a circular
motion in a horizontal plane. The resulting
functions x(t)-x(0) and y(t)-y(0) are sums
of cosine and of sine functions. When the high
frequency terms are very weak, the trajectory
is continuous and differentiable, hence it is
rectifiable and D=1. When, however, the high
frequency terms are strong and continue down
to O, the trajectory is a fractal, with D>1.
Assuming that eddies are self-similar, said
trajectory happens to be identical to a famous
counterexample of analysis: the Weierstrass
function (Chapters 2, 39, and 41). This leads
one to wonder whether or not the transition of
all the fluid to being turbulent can be associ-
ated with the circumstances under which the
trajectory is a fractal.

THE INTERMITTENCY OF TURBULENCE

Turbulence eventually ends in dissipation: due
to the fluid’s viscosity, the energy of visible
motion transforms into heat. Early theories
assume that the dissipation is uniform in
space. But the hope that “homogeneous
turbulence” would be a sensible model was
dashed by Landau & Lifshitz 1953-1959,
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which notes that some regions are marked by
very high dissipation, while other regions
seem by contrast nearly free of dissipation.
This means that the well-known property of
wind, that it comes in gusts, is also
reflected—in more consistent fashion—on
smaller scales.

This phenomenon, intermittency, was first
studied in Batchelor & Townsend 1949, p.
253. See also Batchelor 1953, Section 8.3, and
Monin & Yaglom 1963, 1971, 1975. Intermit-
tency is particularly clear-cut when the Rey-
nolds number is very large, meaning that the
outer cutoff of turbulence is large relative to
its inner cutoff: in the stars, the ocean, and
the atmosphere.

The regions in which dissipation concen-
trates are conveniently described as carrying
or supporting it.

The fact that this Essay brings together
the intermittency of turbulence and the distri-
bution of galaxies is natural and not new. A
while ago, physicists (von Weizdcker 1950)
attempted to explain the genesis of the galax-
ies by turbulence. Recognizing that homoge-
neous turbulence cannot account for stellar
intermittency, von Weizicker sketched some
amendments that are in the spirit of the Four-
nier (“Charlier”) model (Chapter 9), hence of
the theory presented here. If von Weizsicker’s
unifying efforts are taken up again, they may
establish a physical link between two kinds of
intermittency and the corresponding self-sim-
ilar fractals.

One goal of such a unifying effect would
be to relate the dimension of the distribution
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of galaxies, which we know to be D~1.23,
with the dimensions involved in turbulence,
which we noted lies around 2.5 to 2.7.

A DEFINITION OF TURBULENCE

We noted that, odd as it may seem, the same
term, furbulence, is applied to several differ-
ent phenomena. This continuing lack of a def-
inition becomes easy to understand if, as I
claim and propose to demonstrate, a proper
definition requires fractals.

The customary mental image of turbulence
is nearly “frozen” in the terms first isolated
by Reynolds, about one hundred years ago,
for fluid flow in a pipe: when the upstream
pressure is weak, the motion is regular and
“laminar”; when the pressure is increased suf-
ficiently, everything suddenly becomes irregu-
lar. In this prototype case, the support of tur-
bulent dissipation is either “empty,” nonexis-
tent, or is the entire tube. In either case there
is not only no geometry to study, but also no
imperative reason to define turbulence.

In wakes, things become more complicat-
ed. There is a boundary between the turbulent
zone and the surrounding sea, and one ought
to study its geometry. However, this boundary
is again so clear that an “objective’ criterion
to define turbulence is not really necessary.

In fully developed turbulence in a wind
tunnel, matters are again simple, the whole
appearing turbulent like the Reynolds pipe.
Nevertheless, the procedures used to achieve
this goal are sometimes curious, if we are to

believe certain stubbornly held stories. It is
rumored that wind tunnels when first “blown”
are unfit for the study of turbulence. Far from
filling up the volume offered to it, turbulence
itself seems ‘“‘turbulent,” presenting itself in
irregular gusts. Only gradual efforts manage
to stabilize the whole thing, after the fashion
of the Reynolds pipe. Because of this fact, I
am among those who wonder to what extent
the nonintermittent ““laboratory turbulence”
in wind tunnels can be regarded as the same
physical phenomenon as the intermittent
“natural turbulence” in the atmosphere.
Hence we must define the terms.

We approach this task indirectly, starting
from an ill-defined concept of what is turbu-
lent and examining the one-dimensional re-
cords of the velocity at a point. The motions
of the center of gravity of a large airplane
illustrate a rough analysis of such records.
Every so often, the airplane is shaken about,
which shows that certain regions of the atmos-
phere are strongly dissipative. A smaller air-
plane acts as a more sensitive probe: it “feels”
turbulent gusts that leave the large airplane
undisturbed, and it experiences each shock
received by the large airplane as a burst of
weaker shocks. Thus, when a strongly dissipa-
tive piece of the cross section is examined in
detail, laminar inserts become apparent. And
further smaller inserts are seen when the
analysis is refined further.

Each stage demands a redefinition of what
is turbulent. The notion of a turbulent minute
of record becomes meaningful if interpreted
as “minute of record that is not completely
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free of turbulence.” On the other hand, the
more demanding notion of a solidly turbulent
minute of record seems devoid of observable
significance. Proceeding to successive stages
of analysis, turbulence becomes increasingly
sharp over an increasingly small fraction of
the total record length. The volume of the
support of dissipation seems to decrease. Our
next task is to model this support.

ROLE OF SELF-SIMILAR FRACTALS

As already said, it is not surprising, in my
view, that very few geometric aspects of tur-
bulence have actually been investigated, be-
cause the only available techniques have been
Euclidean. To escape their limitations, many
pre-Euclidean terms are used. For example,
papers on intermittency make an uncommonly
heavy use of terms such as spotty and lumpy,
and Batchelor & Townsend 1949 envisions
“only four possible categories of shapes: blobs,
rods, slabs, and ribbons.” Some lecturers (but
few writers) also use the terms beans,
spaghetti, and lettuce, an imaginative termi-
nology that does not attempt to hide the pov-
erty of the underlying geometry.

By contrast, the investigations I carried
out since 1964, and first presented at the 1966
Kyoto Symposium (Mandelbrot 1967k), aug-
ment the classical geometric toolbox by the
addition of self-similar fractals.

To advocate the use of fractals is a radical

new step, but to restrict the fractals of turbu-
lence to be self-similar is orthodox, because
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the very notion of self-similarity was first con-
ceived to describe turbulence. The pioneer was
the Lewis Fry Richardson whom we first en-
counter in Chapter 5. Richardson 1926 intro-
duced the concept of a hierarchy of eddies
linked by a cascade. (See Chapter 40.)

It is also in the context of turbulence that
the theory of cascades and of self-similarity
achieved its triumphs of prediction between
1941 and 1948. The main contributors were
Kolmogorov, Obukhov, Onsager, and von
Weizsidcker, but tradition denotes the develop-
ments of the period by Kolmogorov’s name.
However, a subtle change occurred between
Richardson and Kolmogorov.

While self-similarity is suggested by the
consideration of visually perceived eddies, the
Kolmogorov theory is purely analytic. Frac-
tals, on the other hand, make it possible to
apply the technique of self-similarity to the
geontetry of turbulence.

The fractal approach should be contrasted
with the peculiar fact that the blobs, fods,
slabs, and ribbons involved in yesterday’s
four-way choice fail to be self-similar. This
may be why Kuo & Corrsin 1972 admit that
this choice is “primitive” and _that one needs
in-between patterns.

A number of possible ad hoc changes in
the standard patterns come to mind. For ex-
ample, one might split rods into ropes sur-
rounded with loose strands (remember the
analogous situation with wakes or jets) and
slice slabs into sheets surrounded with loose
layers. Somehow those strands and layers
might be made self-similar.
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However, an ad hoc injection of self-simi-
larity has never been implemented, and I find
it both unpromising and unpalatable. 1 prefer
to follow an entirely different tack, allowing
the overall shapes and the details of strand
and layer to be generated by the same proc-
ess. Since the basic self-similar fractals are
devoid of privileged direction, our study leaves
aside (for now) all the interesting geometric
questions that combine turbulence with strong
overall motion.

-a Obukhov 1962 and Kolmogorov 1962
are the first analytic studies of intermittency.
In immediate influence, they nearly matched
the 1941 papers of the same authors, but they
are seriously flawed, and their long run influ-
ence promises to be small. See Mandelbrot
1972j, 1974f, 19760; Kraichnan 1974, m-

INNER AND OUTER CUTOFFS

Due to viscosity, the inner cutoff of turbu-
lence is positive. And wakes, jets, and analo-
gous flows clearly show a finite outer cutoff
Q. But the widespread current belief in the
finiteness of of @ should be subjected to criti-
cism. Richardson 1926 claims that
“observation shows that the numerical values
[presumed to converge for samples of size
about @] would depend entirely upon how
long a volume was included in the mean.
Defant’s researches show that no limit is at-
tained within the atmosphere.” The meteorol-
ogists have discounted, then forgotten, this
assertion, far too hastily to my mind. New

data in Chapter 11 and the study of lacunari-
ty in Chapter 34 add to my conviction that
the matter is not yet closed. '

CURDLING AND FRACTALLY
HOMOGENEOUS TURBULENCE

In a rough preliminary stage, we may repre-
sent the support of turbulence by one of the
self-similar fractals which the preceding
chapters obtain through curdling. This cur-
dling is a crude *“‘de-randomized” form of the
Novikov & Stewart model of Chapter 23. Af-
ter a finite number m of stages of a curdling
cascade, dissipation is distributed uniformly
over N=r""0 out of r3™ mth-order non-
overlapping subeddies, whose positions are
specified by a generator. After a cascade has
continued without end, the limit distribution
of dissipation spreads uniformly over a fractal
of dimension D<3. I propose that the limit be
called fractally homogeneous turbulence.

G. 1. Taylor’s homogeneous turbulence is
obtained for D-»3. The salient fact is that
curdling does not exclude D=3, but it allows
the novel possibility D<3.

DIRECT EXPERIMENTAL EVIDENCE
THAT INTERMITTENCY SATISFIES D>2

From the viewpoint of linear sections, wide
classes of unbounded fractals behave very
simply: the section is almost surely empty
when D<2 and is nonempty with positive
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probability when D>2. (Chapter 23 proves
this result for a simple class of fractals.)

Had the set that supports turbulent dissi-
pation satisfied D<2, the preceding statement
should imply that nearly all experimental
probes would slip between turbulent regions.
The fact that such is not the case suggests
that in reality D>2. This inference is extraor-
dinarily strong, because it relies upon an ex-
periment that is repeated constantly, and for
which the possible outcomes are reduced to an
alternative between “never” and “often.”

A tentative topological counterpart Dy>2,
Mandelbrot 19760, is tempting, but too spe-
cial to be recounted here.

GALAXIES & TURBULENCE COMPARED

The inequality D>2 for the set that supports
turbulent dissipation, and the opposite ine-
quality D<2 for the distribution of mass in
the cosmos, Chapter 9, spring from the closely
related effects of the sign of D—2 on the typi-
cal section of a fractal and on its typical pro-
jection on a plane or the sky. For the phenom-
enon studied in the present chapter, the sec-
tion has to be nonempty. In Chapter 9, on the
contrary, the Blazing Sky Effect is
“exorcised” if the majority of straight lines
drawn from the Earth never meet a star. This
requires the stars’ projection on the sky to be
of vanishing area.

The contrast between the signs of D-2 in*

these two problems must have a vital bearing
on a constrast between their structures.
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(INJEQUALITIES BETWEEN EXPONENTS
(MANDELBROT 1967k, 19760)

Many useful characteristics of fractally homo-
geneous turbulence depend solely upon D.
This topic is studied in Mandelbrot 19760,
where intermittent turbulence is characterized
by a series of conceptually distinct exponents
linked by (in)equalities. <a The situation is
reminiscent of critical point phenomena. =

SPECTRUM (IN}JEQUALITIES. The (in)equality
first stated in Mandelbrot 1967k (which uses
the notation #=D-2), is ordinarily expressed
in terms of the spectrum of the turbulent ve-
locity, but is here stated in terms of variance.
In fractally homogeneous turbulence, the ve-
locity v at point x satisfies

([VO)—V(x+1)]?)=|r|*+8,

where B=(3-D)/3.

In Taylor homogeneous turbulence, D=3,
and B vanishes, leaving the classic Kolmogo-
rov exponent 2%, which we meet again in
Chapter 30.

Mandelbrot 19760 also shows that the
more general model of weighted curdling, as
described in Mandelbrot 1974f, involves the
inequality B<(3-D)/3.

THE 8 MODEL. Frisch, Nelkin & Sulem
1978 grafts a pseudo dynamic vocabulary
upon the geometry of fractally homogeneous
turbulence, as described in Mandelbrot 19760.
The interpretation has proven helpful, but the
mathematical arguments and the conclusions
are identical to mine. The term ‘“g-model”
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given to their interpretation has gained some
currency, and is often identified with fractal
homogeneity.

THE TOPOLOGY OF TURBULENCE
REMAINS AN OPEN ISSUE

The preceding chapters make it abundantly
clear that the same value of D can be encoun-
tered in sets that differ in terms of topological
connectedness. The topological dimension Dt
yields a lower bound to the fractal dimension
D, but this bound is frequently exceeded by
such a wide margin as to be of no use. A
shape with a fractal dimension D between 2
and 3 may be cither “sheetlike,” “linelike,”
or “dustlike,” and can achieve configurations
in such variety as to make it hard to coin or
find names for them all. For example, even in
fractal shapes that are most nearly ropelike,
the “strands” can be so heavy that the result
is really “more” than ropelike. Similarly,
fractal near sheets are “more” than sheetlike.
Also, it is possible to mix sheetlike and rope-
like features at will. Intuitively, one might
have hoped that some closer relationship
should exist between fractal dimension and
degree of connectedness, but this is a hope
mathematicians lost between 1875 and 1925.
We turn to a special problem of this kind in
Chapter 23, but it may be said that the actual
loose relationship between these structures is
essentially unexplored territory.

The question of ramification, raised in
Chapter 14, is also vital, but its impact on the

study of turbulence is as yet unexplored.
KURTOSIS INEQUALITIES. Using a measure
of intermittency called kurtosis, the issue of
connectedness is tackled in Corrsin 1962, Ten-
nekes 1968, and Saffman 1968. Ostensibly,
those models deal with shapes that share the
topological dimension of the plane (sheets) or
the straight line (rods). However, they test
the topology indirectly, through the exponent
of a predicted power law relationship between
the kurtosis and a Reynolds number. Unfortu-
nately, this attempt fails because the kurtosis
exponent is in fact dominated by diverse addi-
tional assumptions, and ultimately depends
solely on the fractal dimension D of the shape
generated by the model. Corrsin 1962 predicts
a value of D equal to the topological dimen-
sion it postulates, Dy=2. The prediction is
incorrect, expressing the fact that the data
involve fractals, but this mode]l does not. On
the other hand, Tennckes 1968 postulates
D=1 but yields the fractional value D=2.6,
hence does involve an approximate fractal.
Nevertheless, the attempted inference from
the kurtosis to a combination of intuitive
“shape™ and topological dimension is unwar-
ranted. |



11 = Fractal Singularities of Differential Equations

The present chapter concerns a first connec-
tion between the fractal geometry of Nature
and the mainstream of mathematical physics.
The topic is so vital that it deserves a separate
chapter. Readers whose interests lie elsewhere
should forge ahead.

A SPLIT IN TURBULENCE THEORY

A major defect of the current theoretical
study of turbulence is that it separates into at
least two disconnected parts. One part in-
cludes the successful phenomenology put forth
in Kolmogorov 1941 (examined in greater de-
tail in Chapter 30). And the other part in-
cludes the differential equations of hydrody-
namics, due to Euler for nonviscous fluids,
and to Navier (and Stokes) for viscous fluids.
These two parts remain unrelated: If
“explained” and “understood’” mean “reduced
to basic equations,” the Kolmogorov theory is
not yet explained or understood. And Kolmo-
gorov has not helped solve the equations of
fluid motion.

My assertion in Chapter 10, that turbulent
dissipation is not homogeneous over the whole
space, only over a fractal subset, may seem at
first sight to make the gap even greater. But I
contended that the opposite is the case. And
there is increasing evidence in my favor.

THE IMPORTANCE OF SINGULARITIES

Let us review the procedure that allows an
equation of mathematical physics to be solved
successfully. Typically, one draws up a list
that combines solutions obtained by solving
the equation under special conditions, and
solutions guessed on the basis of physical ob-
servation. Next, neglecting details of the solu-
tions, one draws a list of elementary
“singularities” characteristic of the problem.
From then on, more complex instances of the
equation can often be solved in the first ap-
proximation by identifying the appropriate
singularities and stringing them together as
required. This is how the student of calculus
draws the graph of a rational function. Of
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course, the standard singularities are standard
Euclidean sets: points, curves, and surfaces.

CONJECTURE: THE SINGULARITIES
OF FLUID MOTION ARE FRACTAL SETS
(MANDELBROT 1976c)

In this perspective, 1 interpret the difficulties
experienced in deriving turbulence from the
Euler and Navier-Stokes solutions as implying
that no standard singularity accounts for what
we perceive intuitively to be the characteristic
features of turbulence.

I contend instead (Mandelbrot 1976c) that
the turbulent solutions of the basic equations
involve singularities or “‘near singularities” of
an entirely new kind. The singularities are
locally scaling fractal sets, and the near sin-
gularities are approximations thereto.

An unspecific motivation for this conten-
tion is that, standard sets having proven inad-
cquate, one may as well try the next best
known sets. But more specific motivation is
available.

NONVISCOUS (EULER) FLUIDS

FIRST SPECIFIC CONJECTURE. Part of my con-
tention is that the simgularities of the solu-
tions of the Euler equations are fractal sets.
MOTIVATION. This belief relies on the very
old notion that the symmetries and other in-
variances present in an equation “ought” to
be reflected in the equation’s solution. (For a

self-standing, careful and eloquent descrip-
tion, see Chapter 1V of Birkhoff 1960.) Of
course, preservation of symmetries is by no
means a general principle of Nature, hence
one cannot exclude the possibility of “broken
symmetry” here. I propose, however, that one
try the consequences of symmetry preserva-
tion. Since the Euler equations are scale-free,
the equations’ typical solutions should also be
scale-free, and the same should hold of any
singularities they may possess. If the failure
of past efforts is taken as evidence that the
singularities are not standard points or lines
or surfaces, they must be fractals.

It may of course happen that a scale is
imposed by the boundary’s shape and the ini-
tial velocities. It is, however, likely that the
solutions’ local behavior is ruled by a
“principle of not feeling the boundary.”
Hence the solutions should be locally scale-
less.

ALEXANDRE CHORIN'S WORK. Chorin 1981
provides strong support for my contention, by
applying a vortex method to the analysis of
the inertial range in fully developed turbu-
lence. The finding is that the highly stretched
vorticity collects itself into a body of decreas-
ing volume, and of dimension D~2.5 compati-
ble with the conclusions in Chapter 10. The
correction to the Kolmogorov exponents,
B=.17+0.03, is compatible with experimen-
tal data. The calculations suggest that the
solutions of Euler’s equations in three dimen-
sions blow up in a finite time.

Unpublished work of Chorin comecs even
closer to experiment: 2,5<D<2.6.
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VISCOUS (NAVIER-STOKES) FLUIDS

SECOND SPECIFIC CONJECTURE. Furthermore, I
contended that the singularities of the solu-
tions of the Navier-Stokes equations can only
be fractals.

DIMENSION INEQUALITIES, Furthermore, we
have the intuitive feeling that the solutions of
the Navier-Stokes equations are necessarily
smoother, hence less singular, than those of
the Euler equations. Hence the further conjec-
ture that the dimension is larger in the Euler
than in the Navier-Stokes case. The passage
to zero viscosity is doubtless singular.

NEAR SINGULARITIES. A final conjecture in
the implementation of my overall contention
concerns the peaks of dissipation involved in
the notion of intermittency: they are Euler
singularities smoothed out by viscosity.

V. SCHEFFER'S WORK. The examination of
my conjectures for the viscous case was pio-
neered by V. Scheffer, recently joined by oth-
ers in studying in this light a finite or infinite
fluid subject to the Navier-Stokes equations
with a finite kinetic energy at t=0.

Assuming that singularities are indeed
present, Scheffer 1976 shows that they neces-
sarily satisfy the following theorems. First,
their projection over the time axis has at most
the fractal dimension %. Second, their projec-
tion on the space coordinates is at most a
fractal of dimension equal to 1.

It turns out, after the fact, that the first of

the above results is a corollary of a remark in -

an old and famous paper Leray 1934 ends
abruptly after a formal inequality of which

GALAXIES AND EDDIES OHI []|

Scheffer’s first theorem is a corollary, in fact
merely a restatement. But is it fair to say
“merely”? Restating a result in more elegant
terminology is (for sound reasons) rarely
viewed as a scientific advance, but I think
that the present instance is different. The ine-
quality in Leray’s theorem was nearly useless
until the Mandelbrot-Scheffer corollary
placed it in proper perspective.

The almost routine uses of Hausdorff Besi-
covitch dimension in recent studies of the
Navier-Stokes equations can all be traced
back to my conjecture,

SINGULARITIES OF OTHER
NONLINEAR EQUATIONS OF PHYSICS

The other phenomena which this Essay claims
involve scaling fractals have nothing to do
with either Euler or Navier and Stokes. For
cxample, the distribution of galaxies is ruled
by the equations of gravitation. But the sym-
metry preservation argument applies to all
scaling equations. As a matter of fact, an ob-
scure remark by Laplace (sce the entry SCAL-
ING IN LEIBNIZ AND LAPLACE, Chapter 41) can
now be construed (with 20/20 hindsight!) as
pointing toward the theme of Chapter 9.

More generally, the singularities’ fractal
character is likely to be traceable to generic
features shared by many different equations
of mathematical physics. Can it be some very
broad kind of nonlinearity? The issue is joined
again, in different terms, in Chapter 20. =
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12 = Length-Area-Volume Relations

Chapters 12 and 13 extend the properties of
fractal dimension through numerous mini case
studies of varying importance and increasing
difficulty, and Chapter 14 shows that fractal
geometry necessarily involves concepts beyond
the fractal dimension.

The present chapter describes, and applies
to diverse concrete cases, the fractal counter-
parts 1 developed for certain standard results
of Euclidean geometry. They can be viewed as
parallel to the fractal relations of the form
M(R) = RP obtained in Chapters 6, 8, and 9.

STANDARD DIMENSIONAL ANALYSIS
From the facts that the circumferential length
of a circle of radius R is equal to 2«R, and
the area of the disc bounded by the circle is

7R2, it follows that

(length)=27"(area)".

Among squares, the corresponding relation is
(Iength)=4(area)1’/2.

More generally, within each family of stand-
ard planar shapes that are geometrically simi-
lar and have different linear extents, the ratio
(Iength)/(area)v" is a number entirely deter-
mined by the common shape.

Yo

In space (E=3), length, (area)”, and
(volume)” provide alternative evaluations of
the linear extent of the shape, and the ratio of
any two of them is a shape parameter inde-
pendent of the units of measurement.

The equivalence of different linear extents
is very useful in many applications. And its
extension when time and mass are added lead
to a powerful technique, known to physicists
as “dimensional analysis.” (Birkhoff 1960 is a
recommended exposition of its basic features.)
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PARADOXICAL DIMENSIONAL FINDINGS

However, in increasingly numerous instances,
the equivalence between alternative linear
extents proves distressingly elusive. For exam-
ple, mammalian brains satisfy

(volume)“«(area)!/P,

with D~3, far above the anticipated value of
2. In river drainage basins, Hack 1957 meas-
ures length along the main river, and finds

(area)” o« (length)1/D,

with D definitely above the anticipated value
of 1. Early writers interpret this last result as
implying that river basins fail to be self-simi-
lar, large ones being clongated and small ones
being chubby. Unfortunately, this interpreta-
tion conflicts with the evidence.

The present chapter describes how I ex-
plain these and related findings in more con-
vincing fashion. My tool is a new, fractal,
length-area-volume relation.

FRACTAL LENGTH-AREA RELATION

To pinpoint the argument, consider a collec-
tion of geometrically similar islands with frac-
tal coastlines of dimension D>1. The standard
ratio (length) /(area)” is infinite in this con-
text, but I propose to show it has a usefu]
fractal counterpart. We denote as G-length
the coast length measured with a yardstick
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length of G, and as G-area the island area
measured in units of G2, Knowing the depend-
ence of G-length upon G to be nonstandard,
while the dependence of G-area is standard,
we form the generalized ratio

(G-length)1/P /(G-area)™.

I claim that this ratio takes the same value
for our geometrically similar islands.

As a result, there are two different ways of
evaluating the linear extent of each island in
units of G: the standard expression (G-area)”
but also the nonstandard (G-length)!/P.

The novel feature is that if G is replaced
by a different yardstick length G’ the ratio of
the alternative linear extents is replaced by

(G'-length)!/P /(G"-area)”,

which differs from the original one by a factor -
of (G'/G)1/P-1, '

As for the ratio of linear extents, it varies
between one family of mutually similar
bounded shapes and another, whether they are
fractal or standard. Hence it quantifies one
facet of the shapes’ form.

Note that the length-area relation may be
used to estimate the dimension of a fractal
curve that bounds a standard domain.

PROOF OF THE RELATION. The first step is
to measure each coastline length with the in-
trinsic area-dependent yardstick

G*=(G-area)” /1000.
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When we approximate each of our island
coastlines by a polygon of side G*, these poly-
gons are also mutually similar, and their
lengths are proportional to the standard linear
extents (G-area)”.

Next replace G* by the prescribed yard-
stick G. We know from Chapter 6 that the
measured length changes in the ratio
(G/G*)'P. Hence,

(G-length) « (G-area)’*(G/G*)} P
= (G-ar‘e.ai)1”‘2_1"&(1_[))(314)1000[)_1
= (G-area)””PG1-P1000P-1,

Finally, by raising each side to the power
1 /D, we obtain the relation I claimed.

HOW WINDING IS THE MISSOURI RIVER?

The preceding arguments also throw light on
the measured river lengths. To define a length
for the leading river of a drainage basin, we
approximate the river’s course by a wiggly
self-similar line of dimension D>1 going from
a point called source to a point called mouth.
If all rivers as well as their basins are mutual-
ly similar, the fractal length-area argument
predicts that

(river's G-length)!/P is proportional to
(basin's G-area)”.

Morcover, standard reasons predict that
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(basin's G-area)” is proportional to
(straight distance from source to mouth).

Combining the two results, we conclude that

(river's G-length)!/P is proportional to
(straight distance from source to mouth).

Most remarkably, as already mentioned,
Hack 1957 finds empirically that the ratio

(river's G-length) /(basin’s G-area)®

is indeed common to all rivers. This indirect
estimate of D/2=.6 yiclds D=1.2, reminis-
cent of the values inferred from coastline
lengths. If one measures the degree of irregu-
larity by D, the degrees of irregularity of local
wiggles of the banks and of enormously global
bends turn out to be identical!

However, for basins of area>10% km? and
correspondingly long rivers, J. E. Mueller ob-
serves that the value of D goes down to 1. The
two different values of D suggest that if one
maps all basins on sheets of paper of the same
size, maps of short rivers look about the same
as maps of long rivers, but maps of extremely
long rivers are more nearly straight. It may
be that nonstandard sclf-similarity brcaks
around an outer cutoff € whose value is of the
order of 100 km.

CUMULATIVE LENGTH OF A RIVER TREE. The
preceding argument also predicts that the cu-
mulative length of all the rivers in a drainage
basin should be proportional to that basin’s
arca. I am told this prediction is correct, but I
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have no reference.

BACK TO GEOMETRY. For the rivers and
watersheds relative to the “snowflake sweep”
curve of Plates 68 and 69, D~1.2618, some-
what above the observed value. The corre-
sponding dimensions in Plates 70 and 71 are
D~1.1291, on the low side.

The Peano curves of Plates 63 and 64 are
well off the mark, since D=1.

Note that the identity between the dimen-
sions of the rivers and of the watersheds is not
a logical necessity, only a feature of certain
specific recursive models. By way of contrast,
a river network linked with the arrowhead
curve (Plate 141) and described in Mandel-
brot 1975m involves rivers of dimension D=1,
which is too small, and watersheds of dimen-
sion D~1.5849, which is too large.

GEOMETRY OF RAIN AND OF CLOUDS

Pages 1, 10, 11, and 94 mention the possible
use of fractals to model clouds. This hunch
has now been confirmed by Lovejoy 1982, via
the fractal area-perimeter graph in Plate 115.
Very few graphs in metcorology involve all
the available data over an enormous range of
sizes, and are nearly as straight as this one.
The data combine radar observations from
tropical Atlantic rain areas (with rainrate
above .2 mm/hr), with geostationary satel-
lite infrared observations of cloud areas over
the Indian Ocean (= areas where the top of
the cloud temperature is below -10°0C). The
areas range from 1 to over 1,000,000 km?Z.
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The dimension of the perimeter, fitted over at
least six orders of magnitude, is 4/3. The
pleasure of providing a physical explanation is
left to Dr. Lovejoy.

The largest cloud extended from central
Africa to South India, a distance well above
the thickness of the atmosphere, to which the
outer cutoff L of atmospheric turbulence is all
too often assimilated. Richardson’s quote on
p. 103 may prove prophetic.

THE AREA-VOLUME RELATION.
CONDENSATION BY MICRO-DROPLETS

The derivation of the length area relationship
generalizes easily to spatial domains bounded
by fractal surfaces, and leads to the relation

(G-area)l’/P « (G-volume)”.

To illustrate this relation, consider the
condensation of vapor into liquid. This is a
very familiar physical phenomenon, yet its
theory is a recent development. To paraphrase
Fisher 1967, the following geometric picture
was put forward apparently quite independ-
ently by J. Frenkel, W. Band, and A. Bijl in
the late 1930’s. A gas consists of isolated mol-
ecules well separated from one another, ex-
cept for occasional clusters which are bound
together more-or-less tightly by the’attractive
forces. Clusters of different sizes are in mutu-
al statistical equilibrium, associating and di-
sassociating, but even fairly large clusters re-
sembling *“‘droplets” of liquid have a small
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chance of occurring. For a large enough clus-
ter (which is not too “drawn out,” like a piece
of seaweed for example!), the surface area is
fairly well defined. The surface of a cluster
gives it stability. If the temperature now is
lowered, it becomes advantageous for clusters
to combine to form droplets and for droplets
to amalgamate, thereby reducing the total
surface area and hence lowering the total en-
ergy. If conditions are favorable, the droplets
grow rapidly. A macroscopic droplet’s pres-
ence indicates that condensation has taken
place!

Building on this picture, M. E. Fisher pro-
poses that a condensing droplet’s area and
volume are related by a formula equivalent to
area'/P = volume!/3. Fisher evaluates D
analytically without concern for its geometric
meaning, but it is unavoidable that one should
now conjecture that the underlying droplet
surfaces are fractals of dimension D.

MAMMALIAN BRAIN FOLDS

To illustrate the area-volume relation in the
important limit case D=3, and at the same
time to buttress the exorcism of Peano shapes
presented in Chapter 7, let us interpret a fa-
mous problem of comparative anatomy in
terms of near-space-filling surfaces.
Mammalian brain volumes vary from 0.3
to 3000 ml, small animals’ cortex being rela-
tively or completely smooth, while large
animals’ cortex tends to be visibly convoluted,
irrespective of the animals’ positions on the
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scale of evolution. Zoologists argue that the
proportion of white matter (formed by the
neuron axons) to gray matter (where neurons
terminate) is approximately the same for all
mammals, and that in order to maintain this
ratio a large brain’s cortex must necessarily
become folded. Knowing that the extent of
folding is of purely geometric origin relieves
Man from feeling threatened by Dolphin or
Whale: they are bigger than us but need not
be more highly evolved.

A quantitative study of such folding is be-
yond standard geometry but fits beautifully in
fractal geometry. The gray matter’s volume is
roughly equal to its thickness multiplied by
the area of the brain’s surface membrane,
called ““pia.”” If the thickness ¢ were the same
in all species, the pia area would be propor-
tional not only to the gray matter volume but
also to the white matter volume, hence to the
total volume V. Therefore, the area-volume
relationship would yield D=3, and the pia
would be a surface that comes within e of fill-
ing the space.

The empirical area-volume relation is bet-
ter fitted by A « VP/3 with D/3~0.91 to
0.93 (Jerison, privatc communication, based
on the data of Elias & Schwartz, Brodman,
and others). The most immediate interpreta-
tion is that the pia is only partly space filling,
with D in the range between 2.79 and 2.73.
A more sophisticated argument is sketched
when we resume this topic in Chapter 17.
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ALVEOLAR AND CELL MEMBRANES

Will a biologist kindly stand up and proclaim
that the preceding section brings no hard re-
sult and no unexpected notion? 1 delight at
hearing this objection because it buttresses
further the argument with which Chapter 7
begins. Despite the fact that a biologist would
run a mile from a Peano surface as adorned
by mathematicians, I claim that the basic idea
is indeed quite familiar to the good theoretical
minds in this field.

Thus, the main novelty of the preceding
sections lies with surfaces of D<3, which (as
we saw) are required for a good fit. Let us
pursue their novel application to biology by
sketching how they help unscramble the de-
tailed structure of several living membranes.

First, a paragraph to summarize Weibel
1979, section 4.3.7. Estimates of the human
lung’s alveolar area are conflicting: light mi-
croscopy yields 80 m?, while electron micros-
copy claims 140 m?2. Does this discrepancy
matter? The fine details to which it is due
play no role with respect to gas exchange, be-
ing smoothed by a fluid lining layer (resulting
in an even smaller functional area), but they
are important with respect to solute ex-
changes. Measurements (triggered by my
Coast of Britain paper) indicate in the first
approximation that over a wide range of
scales the membrane dimension is D=2.17.

Paumgartner & Weibel 1979 examine
subcellular membranes in liver cells. Again,
the sharp past disagreement between different
estimates of area per volume disappear by
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postulating that D=2.09 for the outer mito-
chondrial membrane (which wraps the cell,
and departs only slightly from the smoothness
characteristic of membranes with minimal
area/volume ratio). On the other hand,
D=2.53 for inner mitochondrial membranes,
and D=1.72 for the endoplasmic reticulum.

Also let it be noted that many animals’
nasal bone structure is of extraordinary com-
plication, allowing the “‘skin” that covers this
bone to have a very large area in a small vol-
ume. In Deer and Arctic Fox, this membrane
may serve the sense of smell, but (Schmidt-
Nielsen 1981) the goal of an analogous shape
in Camel is to husband scarce water.

MODULAR COMPUTER GEOMETRY

To illustrate the arca-volume relationship fur-
ther, let us tackle a facet of computers. Com-
puters are not natural systems, but this should
not stop us. This and a few other case studies
help demonstrate that, in the final analysis,
fractal methods can serve to analyze any
“system,” whether natural or artificial, that
decomposes into “parts” articulated in a self-
similar fashion, and such that the properties
of the parts are less important than the rules
of articulation.

Complex computer circuits are always sub-
divided into numerous modules. Each contains
a large number C of components and is con-
nected with its environment by a large num-
ber T of terminals. Within an error of a few
percent, onc finds that T!/P<C!/E, The way
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the exponent is written will be justified in a
moment. Within IBM, the above rule is cred-
ited to E. Rent; see Landman & Russo 1971].

The carliest raw data suggested D/E=7%,
a value that Keyes 1981 extrapolates to huge
“circuits” in the nervous system (optic nerve
and corpus callosum). However, the ratio
D/E increases with the circuit’s performance.
Performance, in turn, reflects the degree of
parallelism that is present in the design. In
particular, the designs with extreme charac-
teristics lead to extreme values of D. In a shift
register, the modules form a chain and T=2,
independently of C, hence D=0. With integral
parallelism, each component requiring its own
terminal, T=C, hence D=E.

To account for D/E=%, R.W. Keyes no-
ted that components are typically arranged
within the volume of the modules, while the
connections go through their surfaces. To
show that this observation demands Rent’s
rule, it suffices to assume that all the compo-
nents have roughly the same volume v and
surface ¢. Since C is the total volume of the
module divided by v, C” is roughly propor-
tional to the radius of the module. On the oth-
er hand, T is the total surface of the
module divided by o, thus T” is also roughly
proportional to the radius of the module.
Rent’s rule simply expresses the equivalence
of two different measures of the radius in a
standard spatial shape. E=3 is the Euclidean
dimension of the circuit and D=2 is the di-
mension of a standard surface.

Note that the concept of the module is am-
biguous and almost indefinite, but Rent’s rule
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is quite compatible with this characteristic,
insofar as any module’s submodules are inter-
connected by their surfaces.

It is just as easy to interpret the extreme
cases mentioned above. In a standard linear
structure, E=1 and the boundary reduces to
two points, hence D=0. In a standard planar
structure, E=2 and D=1.

However, when the ratio E/D is neither
3/2, nor 2/1, nor 1/0, standard Euclidean
geometry does not make it possible to inter-
pret C as an expression of volume and T as an
expression of surface. Yet such interpretations
are very useful, and in fractal geometry they
arc casy. In a spatial circuit in contact with
the outside by its whole surface, E=3, and D
is anywhere between 2 and 3. In a plane cir-
cuit in contact with the outside by its whole
bounding curve, E=2 and D is anywhere be-
tween 1 and 2. The case of integral parallel-
ism, D=E, corresponds to Peano boundaries.
Furthermore, if the boundary is utilized in-
completely, the “cffective boundary” may be
any surface with D between O and E. -

LOG (AREA) FOR CLOUDS (0)
.| AND RAIN AREAS (e)

From Lovejoy 1982

Plate 115 = LOG (PERIMETER) VERSUS




13 « Islands, Clusters, and Percolation;
Diameter-Number Relations

This chapter is devoted to fractal e-curves,
that is, to fractals that decompose into an in-
finity of disjoint fragments, each of them a
connected curve. The concrete cases range
from the coastlines of islands in an archipela-
go to an important problem of physics: perco-
lation. The material in the first few sections
was new to the 1977 Fractals, and the bulk of
the chapter’s remainder is new.

To begin, let us echo “How Long Is the
Coast of Britain” and ask how many islands
surround Britain’s coast? Surely, their num-
ber is both very large and very ill-determined.
As increasingly small rock piles become listed
as islands, the overall list lengthens, and the
total number of islands is practically infinite.

Since earth’s relief is finely “corrugated,”
there is no doubt that, just like a coastline’s
length, an island’s total area is geographically
infinite. But the domains surrounded by coast-
lines have well defined “map areas.” And the
way in which a total map area is shared
among the different islands is an important
geographic characteristic. One might even

argue that this ‘“‘area-number relation” con-
tributes more to geographic form than do the
shapes of the individual coastlines. For exam-
ple, it is difficult to think of the Aegean Sea’s
shores without also including those of the
Greek islands. The issue clearly deserves a
quantitative study, and this chapter provides
one, by generalizing the Koch curves.

Next, this chapter examines diverse other
fragmented shapes obtained by generalizing
the familiar fractal-generating processes: ei-
ther the Koch procedure or curdling. The re-
sulting shapes are called contact clusters here,
and the diameter-number distribution is
shown to be the same for them as for islands.

Special interest attaches to the plane-
filling contact clusters, in particular those
clusters generated by certain Peano curves,
whose teragons do not self-intersect but have
carefully controlled points of self-contact. The
saga of the taming of Peano monsters is there-
by enriched by a new scene!

Last but not least, this chapter includes
the first part of a case study of the geometry
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of percolation, a very important physical phe-
nomenon also studied in Chapter 14.

KORCAK EMPIRICAL LAW, GENERALIZED

List all the islands of a region by decreasing
size. The total number of islands of size above
a is to be written as Nr(A>a) —a patterned
after the notation Pr(A>a) of probability
theory. m Here, a is a possible value for an
island map’s area, and A denotes the area
when it is of unknown value.

B and F' being two positive constants, to
be called exponent and prefactor, one finds
the following striking area-number relation:

Nr(A>a)=F'a™8

Kor¢cak 1938 (the name 1is pronounced
Kor'chak) comes close to deserving credit for
this rule, except that it claims that B = 2,
which I found incredible, and which the data
showed is unfounded. In fact, B varies be-
tween regions and is always >%. Let me now
-show that the above generalized law is the
counterpart of the distribution Chapter 8 ob-
tains for the gap lengths in a Cantor dust.

KOCH CONTINENT AND ISLANDS,
AND THEIR DIVERSE DIMENSIONS

To create a Koch counterpart to the Cantor
gaps, I let the generator split into disconnect-
ed portions. To insure that the limit fractal

remains interpretable in terms of coastlines,
the generator includes a connected broken line
of Nc<N links, joining the end points of the
interval [0,1]. This portion will be called the
coastline generator, because it determines
how an initially straight coastline becomes
transformed into a fractal coastline. The re-
maining N—N. links form a closed loop that
“seeds” new islands and will be called island
generator. Here is an example:

o =
T T

oeellecece C D=4/3

In later stages, the sub-island always stays to
the left of the coastline generator (going from
0 to 1), and of the island generator (going
clockwise).

A first novelty is that the limit fractal now
involves two distinct dimensions. Lumping all
the islands’ coastlines together, D =
log N/log (1 /r), but for the coastline of each
individual island Do = log N¢/log (1 /1), with
the inequalities

1<D.<D.

The cumulative coastline, not being con-
nected, is not itself a curve but an infinite
sum (2, sigma) of loops. I propose for it the
term sigma-loop, shortened into o-loop.

Note that modeling of the observed rela-
tion between D and D, in actual islands re-
quires additional assumptions, unless it can be
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derived from a theory, as in Chapter 29.

THE DIAMETER-NUMBER RELATION

The proof that the KorCak law holds for last
section’s islands is simplest when the genera-
- tor involves a single island, and teragons are
self-avoiding. (Recall that the teragons are
the approximating broken lines). Then the
first stage of construction creates 1 island; let
its “diameter,” defined by v'a, be Ag. The sec-
ond stage creates N islands of diameter rkg,
and the mth stage creates N™ islands of di-
ameter A=rM\g. Altogether, as X is multiplied
byr, Nr(A>X\) is multiplied by N. Hence the
distribution of A (for all values of X of the
form r™\g) takes the form

Nr(A>N)=FA P,

in which the crucial exponent is the coastline’s
fractal dimension! As a corollary

Nr(A>a) = F'a B, with B=1D,

we have thus derived the Korlak law. For oth-
er values of A or a, one has the staircase curve
familiar from the distribution of Cantor gaps’
lengths, Chapter 8.

This result is independent of N and D.. It
extends to the case when the generator in-
volves two or more islands. We note that the
empirical B regarding the whole Earth is of
the order of 0.6, very close to one half of D
measured from the coastline lengths.
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GENERALIZATION TO E>2

In the same construction extended to space, it
continues to be true that the E dimensional
diameter, defined as volumel/E, is ruled by a
hyperbolic expression of the form
Nr(volume!/E>\) = FAP, wherein the cru-
cial exponent is D.

The exponent D also rules the special case
of Cantor dusts for E=1, but there is a major
difference. The length outside the Cantor
gaps vanishes, while the area outside the
“Koch” islands can be, and in general is, posi-
tive. We return to this topic in Chapter 15.

FRACTAL DIMENSION MAY BE SOLELY
A MEASURE OF FRAGMENTATION

The preceding construction also allows the
following generator

o N=16
R3S B Y,

The overall D is unchanged, but the coastline
D, takes the smallest allowable value, Do=1.
In the present model, island coastlines are
allowed to be rectifiable! When such is the
case, the overall D is not a measure of irregu-
larity, but solely of fragmentation. Instead of
the wiggliness of individual curves, D meas-
ures the number-area relationship for an infi-
nite family of rectangular islands.
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It is still true that, when the length is
measured with a yardstick of ¢ the result
tends to infinity as e>0, but there is a new
reason for this. A yardstick of length € can
only measure islands with a diameter of at
least e. However, the number of such islands
increases as e—>0, and the measured length
behaves like e]‘_D, exactly as in the absence of
islands.

In the general case where D.>1, the value
of D, measures irregularity alone, while the
value of D measures irregularity and fragmen-
tation in combination.

A FRAGMENTED FRACTAL CURVE MAY HAVE
TANGENTS EVERYWHERE. By rounding off the
islands’ corners, one may make every coastline
have a tangent at every point, while the areas,
hence the overall D, are unaffected. Thus,
being a fractal o-curve and being without tan-
gent are not identical properties.

THE INFINITY OF ISLANDS

AN INNOCUOUS DIVERGENCE. As a-0,
Nr(A>a) = Fa™® tends to infinity. Hence,
the Korfak law agrees with our initial obser-
vation that islands are practically infinite in
numbers.

LARGEST ISLAND'S RELATIVE AREA. This
last fact is mathematically acceptable because
the cumulative area of the very small islands
is finite and negligible. <a All islands of area
below € have a total area that behaves like the
integral of a(E*}a"B_l)=Ba_B from O to e
Since B<1, this integral converges, and its
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value B(l—B)_]‘e]‘_B tends to O with e. »=

Consequently, the largest island’s relative
contribution to all the islands’ cumulative
area tends to a positive limit as the islands
increase in numbers. It is not asymptotically
negligible.

LONGEST COASTLINE'S RELATIVE LENGTH.
On the other hand, assuming D.=1, the
coastline lengths have a hyperbolic distribu-
tion with the exponent D>1. Hence the cumu-
lative coastline length of small islands is infi-
nite. And, as the construction advances and
the number of islands increases, the coastline
length of the largest island becomes relatively
negligible.

RELATIVELY NEGLIGIBLE SETS. More gener-
ally, the inequality D.<D expresses that the
curve drawn using the coastline generator
alone is negligible in comparison to the whole
coastline. In the same way, a straight line
(D=1) is negligible in comparison to a plane
(D=2). Just as a point chosen at random in
the plane almost never falls on the x-axis, a
point chosen at random on the coastline of a
“core’” island surrounded with sub-islands
almost never falls on the core island’s coast-
line.

SEARCH FOR THE INFINITE CONTINENT

In a scaling universe, the distinction between
the islands and the continent cannot be based
on tradition or *‘relative size.” The only sensi-
ble approach is to define the continent as a
special island with an infinite diameter. Let
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me now show that the constructions at the
beginning of this chapter practically never
generate a continent. <a For those who know
probability: the probability of a continent be-
ing generated is zero. m
In a sensible search for a continent, we
must no longer choose the initiator and the
generator separately. From now on, the same
generator must be made to serve both for in-
terpolation and for extrapolation. The process
runs by successive stages, each subdivided
into steps. It strongly resembles the extrapola-
tion of the Cantor set in Chapter 8, but de-
serves to be described even more thoroughly.
The first step upsizes our chosen generator
in the ratio of 1/r. The second step puts a
“mark” on one of the links of the upsized gen-
erator. The third step displaces the upsized
generator, to make its marked link coincide
with [0,1]. The fourth and last step interpo-
lates the upsized generator’s remaining links.
The same process is repeated ad infinitum,
its progress and outcome being determined by
the sequence of positions of the “marked”
links. This sequence can take diverse forms.
The first form requires the coastline gener-
ator to include a positive number N.-2 of
“nonextreme” links, defined as belonging to
the coastline generator but not ending on ei-
ther O or 1. If the mark is consistently put on
a nonextreme link, each stage of extrapolation
expands the original bit of coastline, and
eventually causes it to be incorporated into a
frac.tal coastline of infinite extent in both di-
rections. This proves that it is indeed possible
to obtain a continental coastline in this setup.
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Secondly, always mark an extreme link of
the coastline generator, each possibility being
chosen an infinite number of times. Then our
bit of coastline again expands without end. If
we always choose the same link, the coastline
expands in only one direction.

Thirdly, always mark a link that belongs
to the island generator. Then the biggest is-
land before extrapolation is made to lie off a
bigger island’s shore, then off-off a still bigger
island’s, and so on ad infinitum. No continent
is ever actually reached.

The next comment involves a bit of
“probabilistic common sense,” which must be
familiar to every reader. We suppose that the
marks fall according to the throws of an
N-sided die. In order for the extrapolation to
generate a continent, it is obviously necessary
that all the marks beyond a finite (kth) stage
be placed upon one of N.—2 nonextreme links
of the coastline generator. Call them
“winning” links. To know one has reached a
continent after k stages, one must know that
thereafter every throw of our die, with not one
exception, will win. Such luck is not impossi-
ble, but it is of vanishing probability.

ISLAND, LAKE AND TREE COMBINATION

The Koch islands being mutually similar,
their diameter A can be redefined as the dis-
tance between any two specified points, best
chosen on the coastline. Next, we observe that
the derivation of the diameter-number rela-
tion makes specific use of the assumption that
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the generator includes a coastline generator.
But the assumption that the generator’s re-
maining links form islands, or are self-
avoiding, is never actually used. Thus, the
relation

Nr(A>\)=Fx~P

is of very wide validity. <« One can even re-
lease the condition the teragons initiated by
two intervals must not intersect. m Let us
now show by examples how the configuration
of the original N—N; links can affect the re-
sulting fractal’s topology.

COMBINATION OF ISLANDS AND LAKES. Re-
lieve the generator from the requirement of
being placed to the left, going clockwise.
When it is placed to the right, it forms lakes
instead of islands. Alternatively, one may in-
clude both lakes and islands in the same gen-
erator. Either way, the final fractal is a ¢-loop
whose component loops are nested in each
other. For example, consider the generator

1

N=18
[ = Sy I‘=1/6
=1 D~1.6131

When initiated by a square, this generator
yields the following advanced teragon

THE ELUSIVE CONTINENT. In the above dia-
gram, the length of the initiator’s side injects
a nonintrinsic outer cutoff. A more consistent
approach is to extrapolate it as we did for is-
lands without lakes. Again, it is almost sure
that no continent is ever reached, and that the
nesting of islands within lakes within islands
continues without bound.

AREA-NUMBER RELATION. In order to de-
fine the area of an island (or lake), one may
at will take either the total area, or the area
of land (or water), within its coastline. The
two differ by a fixed numerical factor, hence
affect Nr(A>a) through its prefactor F', not
its exponent %2D.

COMBINATION OF INTERVALS AND TREES.
Now assume that the N-N_ links form either a
broken line with two free ends, or a tree. In
either case, the fractal splits into an infinite
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number of disconnected pieces, each of them a
curve. This e¢-curve is no longer a g-loop; it is
either a o-tree or a o-interval.

THE NOTION OF CONTACT CLUSTER

The generator may also combine loops,
branches and diverse other topological config-
urations. If so, the limit fractals’ connected
portions recall the clusters of percolation the-
ory (as seen later in this chapter) and of
many other areas of physics. To us, this usage
is terribly unfortunate, due to the alternative
meaning of cluster in the study of dusts
(Chapter 9). We need therefore a more spe-
cific and cumbersome term. I settled on
“contact cluster.” Luckily, the term o-cluster
is not ambiguous. )

(It may be observed that contact cluster
has a unique and natural mathematical defini-
tion, while the notion of clustering in a dust is
diffuse and intuitive, and is at best defined via
arguable statistical rules.)

PLANE-FILLING CONTACT CLUSTERS. As D
reaches its maximum D=2, the arguments in
the preceding section remain valid, but addi-
ti_onal comments become necessary. Each indi-
vidual cluster tends to a limit, which may be a
straight line, but in most cases is a fractal
curve. On the other hand, all the clusters to-
gether form a g-curve, whose strands fill the
plane increasingly tightly. The limit of this
o-curve behaves as in Chapter 7: it is no long-
er a g-curve, but a domain of the plane.

THE ELUSIVE INFINITE CLUSTER. No actual-
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ly infinite cluster is involved in the present
approach. It is easy to arrange the generator’s
topology so that any given bounded domain is
almost surely surrounded by a contact cluster.
This cluster is in turn almost surely surround-
ed by a larger cluster, etc. There is no upper
bound to cluster size. More generally, when a
cluster seems infinite because it spans a very
large area, the consideration of an even larger
area will almost surely show it to be finite.

MASS-NUMBER AND WEIGHTED
DIAMETER-NUMBER RELATIONS.
THE EXPONENTS D-D. AND D/D..

Now let us reformulate the function Nr(A>\)
in two ways: first by replacing a cluster’s di-
ameter A by its mass p, then by giving in-
creased weight to large contact clusters.

Here, a cluster’s mass is simply the num-
ber of links of length b~ in the clusters itself
(do not count the links within a looping clus-
ter!). In effect, Chapters 6 and 12, we create
a modified Minkowski sausage (Plate 33), by
centering a square of side b™ on each vertex,
and adding half a square at each end-point.

The mass of a cluster of diameter A being
the area of its modified sausage,
Moc(A /b¥)Pe(bk)? APe/(b%)Pe2. Since
Dc<2, M>0 as k—=co. The mass of all the
contact clusters taken together is «(b*)P~2; if
D<2, it too 0. And the relative mass of any
individual contact cluster is «(b*)PeP; it
tends to O at a rate that increases with D—D..

MASS-NUMBER RELATION. Clearly,
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Nr(M >M') o« (bk) 'D+2D/Dc'u_D/Dc_

DISTRIBUTION OF DIAMETER WEIGHTED BY
MASS. Observe that Nr(A>X) counts the num-
ber of lines above line A in a list that starts
with the largest contact cluster, continues
with the next largest, etc. But we shall mo-
mentarily have to attribute to each contact
cluster a number of lines equal to its mass.
The resulting relation is easily seen to be

Wnr(A>X\) « A D+0c,

THE MASS EXPONENT Q=2D.-D

Denote by F a fractal of dimension D, con-
structed recursively with [0,A] as initiator,
and take its total mass to be AP. When T is a
Cantor dust, Chapter 8 shows that the mass
in a disc of radius R<A centered at O is M(R)
« RP. < The quantity log[M(R)R™P] is a
periodic function of logy (A/R), but we shall
not dwell on these complications because they
vanish when the fractal is modified so that all
r>0 are admissible self-similarity ratios. m-

We know that M(R) « RP also applies to
the Koch curve of Chapter 6. Furthermore,
this formula extends to the recursive islands
and clusters of this chapter, with D replaced
by De. In all cases, the mass in a disc of radi-
us R centered at O takes the form

M(R,A) = RP¢p(R/A),

with ¢ a function deducible from the shape of
5. In particular,

M(R,A)=RPc when R<<A,
and M(R,A)ecAPc when R>> A,

Now consider the weighted average of M(R),
to be denoted by (M(R))}, corresponding to the
case when A is variable with the widely
spread-out hyperbolic distribution Wnr(A>\)
« NP+Pc We know that 1<D.<D<2. Ex-
cluding the combination of D=2 and D.=1,
0<D-D.<Dec. It follows that

(M(R)) « R? with Q=2D.~D>0.

When the disc’s center is a point of 3 other
than O, the factor of proportionality changes,
but its exponent is unchanged. It also remains
unchanged by averaging over all positions of
the center in 3, and by the replacement of
[0,1] by a different initiator. <a Usually, an
arc of random size A is also of random shape.
But the above formulas for M(R,A) apply to
(M(R,A)) averaged over all shapes. The final
result is unchanged. m~

REMARK. The preceding derivation does not
refer to the clusters’ topology: they can be
loops, intervals, trees, or anything else.

CONCLUSION. The formula (M(R))<R®
shows that, when A is hyperbolically distrib-
uted, hence of very wide scatter, one of the
essential roles of dimension is taken up by an
exponent other than D. The most natural ex-
ponent is 2D.-D, but different weighting
function give different Q’s.
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WARNING: NOT EVERY MASS EXPONENT IS
A DIMENSION. The combined quantity Q is
important. And, since it is a mass exponent, it
is tempting to call it a dimension, but this
temptation has no merit. Mixing many clus-
ters with identical D but varying A leaves D¢
unchanged, because dimension is nof a prop-
erty of a mixed population of sets, but a prop-
erty of an individual set. Both D and D, are
fractal dimensions, but Q is not.

More generally, many areas of physics in-
volve relations of the form (M(R)) « R9, but
such a formula does not by itself guarantee
that Q is a fractal dimension. And calling Q
an effective dimension, as some authors pro-
pose, is an empty gesture because Q does not
possess any of the other properties that char-
acterize D (for example, sums or products of
D’s have a meaning with no counterpart in the
case of Q). Moreover, this empty gesture has
proven a source of potential confusion.

NONLUMPED CURDLING CLUSTERS

We now proceed to describe two additional
methods for generating contact clusters. One
is based on curdling and applies for D<2,
while the other is based on Peano curves and
applies for D=2. The reader interested in per-
colation may skip this section and the next.
First, let us replace the Koch construction
by the natural generalization of Cantor cur-
dling to the plane. As illustration, consider
the fOllo\_ving five generators, with the next
construction stage drawn underneath
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In all these cases, the limit fractal is of
zero area and contains no interior point. Its
topology can take diverse forms, determined
by the generator.

With generator A, the precurd of every
stage k is connected, and the limit fractal is a
curve, an example of the very important
Sierpinski carpet examined in Chapter 14.

With generator F, the precurd splits into
disconnected portions, whose maximum linear
scale steadily decreases as k—=oo. And the
limit fractal is a dust, akin to the Fournier
model of Chapter 9.

The generators B, C and E are more inter-
esting: in their case, the precurd splits into
pieces to be called preclusters. Each stage can
be said to transform every “old” precluster by
making it thinner and wigglier, and to give
birth to “new” preclusters. Nevertheless, by
deliberate choice of generators, each newborn
precluster is entirely contained in a single
smallest cell in the lattice prevailing before its
birth. By contrast with the “‘cross lumped
clusters™ of the next section, the present ones
are to be called “nonlumped.” It follows that
the limit contact clusters have a dimension of
the form log N¢/log b, where N¢ is an integer
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at most equal to the number of cells in the
generator’s largest component. This maximum
is attained for generators B and C, for which
the contact clusters are, respectively, intervals
with De=1 and fractal trees with
D.=log 7 /log 4. But the fractal based on the
generator E does not attain this maximum: in
its case, the F-shaped preclusters keep split-
ting into parts, and the limit, again, is made
of straight intervals with Do=1.

Replacing the pseudo-Minkowski sausage
by the collection of cells of side b~ intersect-
ed by a contact cluster, the diameter-number
relation and the other results of the preceding
sections extend unchanged.

CROSS LUMPED CURDLING CLUSTERS

Next, let the generator of plane curdling takes
either of the following shapes, with the next
construction stages drawn to the side

bl

Both cases exhibit massive ‘“‘cross lumping,”
meaning that each newborn precluster com-
bines contributions. coming from several
smallest lattice cells prevailing before its
birth.

In the Koch context, an analogous situa-
tion prevails when the teragons are allowed to
self-contact, resulting in the merger of small

cluster teragons. In either case, the analysis is
cumbersome, and we cannot dwell on it. But
Nr(A>\)ecA™P remains a valid relation for
small .

-<a However, if one attempts to estimate D
from this relation, without excluding the large
N's, the estimate is systematically biased and
smaller than the true value. »

Novel features arise concerning the quanti-
ty bPe: it need not be an integer deducible
from the generator by simple inspection, but
it may be a fraction. The reason is that every
contact cluster combines: (a) an integer num-
ber of versions of itself, downsized in the ratio
1/b, and (b) many downsized versions due to
lumping, which involve smaller ratios of the
form rm=b"*™)_ The dimension-determining
equation =r,0=1 of page 56, when rewritten
in terms of x=b~P, takes the form Za,xM=1.
Cases where 1 /x is an integer can only occur
as exceptions.

KNOTTED PEANO MONSTERS, TAMED

A plane-filling collection of clusters (D=2)
cannot be created by curdling, but I found an
alternative approach, using Peano curves be-
yond those we saw being tamed in Chapter 7.
As the reader must recall, Peano curves with
sclf-avoiding teragons create river and wat-
ershed trees. But some other Peano curve ter-
agons (for example the teragons in Plate 63,
assuming that the corners are not rounded
off) are simply chunks of lattice. As the con-
struction proceeds, the open lattice cells sepa-
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rated by such curves “‘converge” to an every-
where dense dust, e.g., to the points for which
neither x nor y is a multiple of bk,

Between these extremes stands a new in-
teresting class of Peano curves. Their genera-
tors are exemplified by the following, shown
together with the next step

This class of Peano curves is now ready to be
tamed. We observe that each point of self-
contact “knots off” an open precluster, which
may acquire branches and self-contacts, sees
chunks of itself “knotted away,” and eventu-
ally thins down to a highly ramified curve
that defines a contact cluster. A cluster’s di-
ameter A, defined as in previous sections of
this chapter, is fixed from the moment of
birth: roughly equal to the side of the square
that “seeded” this cluster. Its distribution is
ruled by the familiar relation Nr(A>\)eA™2,

Observe in passing that, while Koch con-
tact clusters are limits of recursively con-
structed curves, the present clusters are limits
(in a peculiar sense) of the open components
of the complement of a curve.
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BERNOULLI PERCOLATION CLUSTERS

Whichever method is used to generate fractal
contact clusters with D=E and D.<D, they
provide a geometric model that had been lack-
ing in a very important problem of physics:
Bernoulli percolation through lattices. J. M.
Hammersley, who posed and first investigated
this problem, did not inject Bernoulli’s name
in this context, but the fractal percolation we
encounter in Chapter 23 makes the full term
unavoidable here. (It is independently adopted
by Smythe & Wiermann 1975.)

LITERATURE. Bernoulli percolation is sur-
veyed in Shante & Kirkpatrick 1971, Domb
& Green 1972-, especially a chapter by J. W,
Essam, Kirkpatrick 1973, deGennes 1976,
Stauffer 1979, and Essam 1980.

DEFINITIONS. Percolation involves probabil-
istic notions, hence would not be discussed at
this stage if we were entirely consistent. But
an occasional lack of consistency has its re-
wards. The simplest percolation problem for
E=2 is bond percolation on a square lattice.
To illustrate it in homely fashion, imagine we
construct a large square lattice with sticks
made either of insulating vinyl or of conduct-
ing copper. A Bernoulli lattice obtains if each
stick is selected at random, independently of
the other sticks, the probability of choosing a
conducting stick being p. Maximal collections
of connected copper or vinyl sticks are called
copper or vinyl clusters, When the lattice in-
cludes at least one uninterrupted string of
copper sticks, the current can flow through
from one side of the lattice to the other, and
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the lattice is said to percolate. (In Latin, per
= through, and colare = to flow.) The sticks
in uninterrupted electric contact with the top
and bottom sides of the lattice form a
“percolating cluster,” and the sticks actually
active in conducting form the percolating
cluster’s “backbone.”

The generalization to other lattices, and to
E>2, is immediate.

CRITICAL PROBABILITY. Hammersley’s most
remarkable finding concerns the special role
played by a certain threshold probability: the
critical probability perit. This quantity enters
in when the Bernoulli lattice’s size (measured
in numbers of sticks) tends to infinity. One
finds that, when p>perit. the probability that
there exists a percolating cluster increases
with lattice size, and tends to 1. When
P<Pcrit, to the contrary, the probability of
percolation tends to O.

Bond percolation on square lattices being
such that either copper or vinyl must perco-
late, perit = Y2.

ANALYTICAL SCALING PROPERTY. The study
of percolation long devoted itself to the search
for analytic expressions to relate the standard
quantities of physics. All these quantities were
found to be scaling, in the sense that the rela-
tions between them are given by power laws.
For p#pcyit, scaling extends up to an outer
cutoff dependent on p~pcrit and denoted by &.
As p->pcrit, the cutoff satisfies £-»co. Physi-
cists postulate (see Stauffer 1979, p. 21) that
(M(R,A)) follows the rule obtained on p. 123.

THE CLUSTERS" FRACTAL GEOMETRY

THE CLUSTERS' SHAPE. Let p=pcnt. and let
individual sticks decrease in size while the
total lattice size remains constant. The clus-
ters become increasingly thin (“‘all skin and
no flesh’), increasingly convoluted, and in-
creasingly rich in branches and detours
(“ramified and stringy™). Specifically, Leath
1976, the number of sticks situated outside of
the cluster, but next to a stick within the clus-
ter, is roughly proportional to the number of
sticks within the cluster.

HYPOTHESIS THAT CLUSTERS ARE FRACTALS.
It is natural to conjecture that the property of
scaling extends from analytic properties to the
clusters’ geometry. But this idea could not be
implemented in standard geometry, because
the clusters are not straight lines, Fractal ge-
ometry is of course designed to eliminate such
difficulties: thus, I conjectured that clusters
are representable by fractal o-curves satisfy-
ing D=2 and 1<D.<D. This claim has been
accepted, and found to be fruitful. It is elabo-
rated upon in Chapter 36.

-<a To be precise, scaling fractals are taken
to represent the clusters that are not truncat-
ed by the boundary of the original lattice.
This excludes the percolating cluster itself.
(The term cluster has a gift for generating
confusion!) To explain the difficulty, start
with an extremely large lattice, pick a cluster
on it, and a smaller square that is spanned by
this cluster. By definition, the intersection of
this cluster and the smaller square includes a
smaller percolating cluster, but in addition it
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includes a “residue” that connects with the
smaller percolating cluster through links
outside the square. Note that neglect of this
residue creates a downward bias in the esti-
mation of De. w=

VERY ROUGH BUT SPECIFIC NONRANDOM
FRACTAL MODELS. To be valid, the claim that
any given natural phenomenon is fractal must
be accompanied by the description of a specif-
ic fractal set, to serve as first approximation
model, or at least as mental picture. My Koch
curve model of coastlines, and the Fournier
model of galaxy clusters, demonstrate that
rough nonrandom picture may be very useful.
Similarly, T expect recursively constructed
contact clusters (like those introduced in this
chapter) to provide useful fractal models of
the ill-known natural phenomena that are cus-
tomarily modeled by Bernoulli clusters.

However, the Bernoulli clusters themselves
are fully known (at least in principle), hence
modeling them via explicit recursive fractals
is a different task. The Koch contact clusters
I studied are not suitable, due to dissymetry
between vinyl and copper, even when there
arc equal numbers of sticks of both kinds.
Next examine the knotted Peano curve clus-
ters. Take an advanced teragon, and cover the
cells to the left of the curve with copper, and
the other cells with vinyl. The result involves
a form of percolation applied to lattice cells
(or to their centers, called sites). The problem
Is symmetric. But it differs from the Bernoulli
pl'Ob']Cm. because the configuration of copper
or _mei cells are not the same as in the case
of independence: for example, 9 cells forming
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a supersquare can all be of copper or vinyl in
the Bernoulli case, but not in the knotted
Peano curve case. (On the other hand, both
models allow groups of 4 cells forming a su-
persquare to take any of the possible configu-
rations.) This difference has far-reaching con-
sequences: for example, neither copper nor
vinyl percolate in the Bernoulli site problem
with p=Y2, while both percolate in knotted
Peano clusters, implying that % is a critical
probability.

The list of variants of Bernoulli bond per-
colation is already long, and can easily be
lengthened further. And I have already exam-
ined many variants of recursively constructed
fractal contact clusters. The detailed compari-
son of these lists is unfortunately complicated,
and I shall not dwell on it here.

Let me therefore be satisfied with stating
the loose conclusion that significant fractal
essentials of the Bernoulli percolation problem
seem to be illustrated by nonrandom space-
filling o-clusters defined earlier in this chap-
ter. This model’s principal weakness is that it
is completely indeterminate beyond what has
been said. It can accommodate any observed
degree of irregularity and fragmentation. On
the matter of topology, see Chapter 14,

MODEL OF CRITICAL CLUSTERS. Specifical-
ly, consider the critical clusters, defined as
the clusters for p=pc,t. To represent them, a
recursive o-cluster is extrapolated as indicated
in earlier sections of this chapter. Then it 1s
truncated by stopping the interpolation so that
the positive inner cutoff is the cell size in the
original lattice.
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MODELS OF NONCRITICAL CLUSTERS. To
extend this geometric picture to noncritical
clusters, that is, to clusters for p#pecrit, We
seek fractals with a positive inner cutoff and a
finite outer cutoff. Analysis calls for the larg-
est copper cluster’s extent to be of the order
of & when p<perit, and to be infinite when
p>pPecrit- Either outcome is readily implement-
ed. For example, one can start with the same
generator as in the preceding subsection. But,
instead of extrapolating it naturally, one initi-
ates it with either of the following shapes

oo T
o 1T
o

SUBCRITICAL CLUSTERS. The initiator to
the left, which is geared towards p<pgrit, 1S
made of squares of side 2£. Now let the cho-
sen generator be positioned in through each
initiator’s left side, and out through the other
sides. The initiator square will transform into
an atypical cluster of length £, surrounded by
many typical clusters of length <£.

SUPERCRITICAL CLUSTERS. The initiator to
the right, which is geared towards p>pcrit, 18
made of those lines of the initial square lat-
tice, whose x or y coardinates are even integ-
ers. Four links radiate from each node whose
coordinates are even integers; the chosen gen-
erator is always positioned to the left. In the
special case when the coastline generator in-
volves no loops nor dangling links, the result-

ing picture is a de-randomized and systema-
tized variant of a crude model of clusters
based solely on “nodes and links.”

Observe that the fractal geometric picture
deduces the noncritical clusters from the crit-
ical ones, while physicists prefer to consider
the critical clusters as limits of the noncritical
clusters for £—»>co.

CRITICAL BERNOULLI CLUSTERS' D

The value of D, is immediately inferred from
either the exponent D/D.=E/D. in the for-
mula for Nr(M>gu), or the exponent
Q=2D.~D=2D.—E in the formula for (M(R)).
Using the Greek letters 7, 6 and n with the
meanings customary in this context, we find
that E/Dg=7-1 and 2D.~E = 2—. Hence,

De = E/(r—1) = E/(1+571),
and D.=1+(E—n)/2.

Due to relations that physicists established
between 7, § and 7, the above formulas for D
are equivalent. Conversely, their equivalence
does not reside in physics alone, because it
follows from geometry.

Independently of each other, Harrison,
Bishop & Quinn 1978, Kirkpatrick 1978, and
Stauffer 1979 obtain the same D.. They start
from the properties of clusters for p>peyit,
hence express their result in terms of different
critical exponents (8, v, » and ¢). These de-
rivations do not involve a specific underlying
fractal picture. The dangers inherent in this
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approach, against which we warned earlier in
this chapter, are exemplified by the fact that
it misled Stanley 1977 into advancing Q and
D, are equally legitimate dimensions.

For E=2, the numerical value is D,=1.89.
It is compatible with the empirical evidence,
as obtained by a procedure familiar in other
guises. Pick r, which need not be of the form
1/b (b an integer). Then take a big eddy,
which is simply a square or cubic lattice of
side set to 1. Pave it with subeddies of side r,
count the number N of the squares or cubes
that intersect the cluster, and evaluate
logN/log (1/r). Then repeat the process
with each nonempty subeddy of side r by
forming subsubeddies of side r?. Continue as
far as feasible. The most meaningful results
obtain when r is close to 1. Some early simu-
lations gave the biased estimate D*~1.77
(Mandelbrot 1978h, Halley & Mai 1979), but
large simulations (Stauffer 1980) confirm D.

<a The biased experimental D¥ is very
close to Q, hence briefly seemed to confirm
the theoretical arguments in Stanley, Birge-
nau, Reynolds & Nicoll 1976 and Mandelbrot
1978h, which were both in error in claiming
that the dimension is Q. The error was
brought to my attention by S. Kirkpatrick. A
different and even earlier incorrect estimate
of D is found in Leath 1976. w-

THE CYPRESS TREES OF OKEFENOKEE

When a forest that is not “managed” system-
atically is observed from an airplane, its
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boundary is reminiscent of an island’s coast-
line. Individual tree patches’ outlines are ex-
tremely ragged or scalloped, and each large
patch is trailed by satellite patches of varying
area. My hunch that these shapes may follow
the Richardson and/or Korcak laws, is indeed
confirmed by an unpublished study of the Ok-
efenokee swamp (Kelly 1951) by H. M. Hast-
ings, R. Monticciolo & D. VunKannon. The
patchiness of cypress is great, with D~1.6;
the patchiness of broadleaf and mixed broad-
leaf trees is much less pronounced, with D
near 1. My informants comment on the pres-
ence of an impressive variety of scales both on
personal inspection and on examination of
vegetation maps. There is an inner cutoff of
about 40 acres, probably a consequence of
aerial photography. L
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Chapter 6 investigates planar Koch curves
that satisfy D<2 and are devoid of double
points, hence can be called self-avoiding or
nonramified. And Chapter 7 investigates
Peano curves, for which everywhere dense
double points are unavoidable in the limit.
The present chapter takes the next step, and
investigates examples of deliberately ramified
self-similar shapes: planar curves with
1<D<2, spatial curves with 1<D<3, and sur-
faces with 2<D<3. In a ramified self-similar
curve, the number of double points is infinite.
This chapter’s mathematics is old (though
known to very few specialists), but my appli-
cations to the description of Nature are new.

THE SIERPINSKI GASKET AS MONSTER

Sierpihski gasket is the term I propose to de-
note the shape in Plate 141. An extension to
space is shown in Plate 143. The constructions
are described in the captions.

Hahn 1956 comments that “A point on a
Curve is called a branch point if the boundary
of any arbitrarily small neighborhood has

more than two points in common with the
curve... Intuition secems to indicate that it is
impossible for a curve to be made up of noth-
ing but... branch points. This intuitive convic-
tion had been refuted [by the] Sierpinski...
curve, all of whose points are branch points.”

THE EIFFEL TOWER: STRONG AND AIRY

Again, Hahn’s view is totally without merit,
and his uncharacteristic “‘seems to indicate” is
a wise choice of words. My first counter-
argument is borrowed from engineering. (As
argued before we tackled computers at the
end of Chapter 12, there is nothing illogical
about including articulated engineering sys-
tems in this work concerned with Nature.)

My claim is that (well before Koch, Peano,
and Sierpinski) the tower that Gustave Eiffel
built in Paris deliberately incorporates the
idea of a fractal curve full of branch points.

In a first approximation, the Eiffel Tower
is made of four A-shaped structures. Legend
has it that Eiffel chose A to express Amour
for his work. All four A’s share the same apex
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and any two neighbors share an ascender.
Also, a straight tower stands on top.

However, the A’s and the tower are not
made up of solid beams, but of colossal truss-
es. A truss is a rigid assemblage of intercon-
nected submembers, which one cannot deform
without deforming at least one submember.
Trusses can be made enormously lighter than
cylindrical beams of identical strength. And
Eiffel knew that trusses whose “members™ are
themselves subtrusses are even lighter.

The fact that the key to strength lies in
branch points, popularized by Buckminster
Fuller, was already known to the sophisticated
designers of Gothic cathedrals. The farther we
go in applying this principle, the closer we get
to a Sierpinski ideal! An infinite extrapolation
of the Eiffel Tower design is described in Dy-
son 1966, p. 646, wherein a former student of
Besicovitch seeks strong interplanetary struc-
tures of low weight.

CRITICAL PERCOLATION CLUSTERS

Let us now return to nature, or more precisely
to an image of nature provided by statistical
physics. I think the kin of the Sierpinski gask-
et is demanded by the study of percolation
through lattices. Chapter 13, which began our
case study of this topic, claims that percola-
tion clusters are fractals. Now I add the fur-
!her claim that the Sierpinski gasket’s branch-
Ing structure is a promising model of the
structure of cluster backbones.

The physicists will mostly judge this model
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on the fact that it rapidly fulfilled its promise:
Gefen, Aharony, Mandelbrot & Kirkpatrick
1981 shows the model allows usual calcula-
tions to be carried out exactly. But the details
are much too technical to be included in this
Essay, and the original reasons for my claim
remain of interest. It arose from a resem-
blance I perceived between the gasket and the
cluster backbones, as shown in this diagram:

The most conspicuous feature resides in the
tremas left vacant by the elimination of dan-
gling bonds (when a cluster was reduced to its
backbone), and of clusters contained entirely
within the cluster of interest. Second, the fact
that the branching is self-similar in a
Sierpinski gasket is shown in Chapter 13 to be
an eminently desirable property in a geome-
tric model of the percolation cluster. Finally,
the dimensions fit to a degree that can hardly
be coincidental! S. Kirkpatrick cstimates that
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in the plane D~1.6, astonishingly close to the
D of the Sierpinski gasket! And in space,
D~2.00, astonishingly close to the D of the
fractal skewed web in Plate 143, Furthermore,
Gefen, Aharony, Mandelbrot & Kirkpatrick
1981 observes that the identity between the D
of the backbone and that of the generalized
gasket persists in R*. An additional argument
in favor of the gasket model is mentioned lat-
er, as a last application of ramification.

THE TRIADIC SIERPINSKI CARPET

Let us now switch from triangular to orthogo-
nal lattices. They allow great versatility in
design, yielding curves in the plane or in
space, or surfaces in space. And the curves
they yield, despite a superficial resemblance
to the Sierpifniski gasket, are very different
from the fundamental viewpoint of ramifica-
tion, to which we turn after defining them.

The literal planar extension of Cantor’s
method of deleting mid-thirds initiates with a
square, and is described in the caption on
page 142. The fractal obtained by continuing
ad infinitum is widely known by the homely
term triadic Sierpinski carpet. Its dimension
is D=log 8/log 3=1.8927.

NONTRIADIC FRACTAL CARPETS
Given an integer b>3, and writing r=1/b as

usual, a “large centered medallion” carpet is
obtained by taking as initiator a square, as
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trema a square of side 1-2r, with the same
center, and as generator a thin ring of 4(b—1)
squares of side r. The dimensions are
D=log[4(b-1)]/logb. Given an odd integer
b>3, a “small centered medallion™ carpet is
obtained by taking as trema a single sub-
square of side r, with the same center as the
initiator, and as generator a thick ring of
b3-1 small squares. The dimensions are
D=log (b3-1)/logb. Thus, any D between 1
and 2 can be approximated arbitrarily closely
in a centered carpet.

Noncentered carpets can be defined for
b>2. For example, when b=2 and N=3, a
trema made of one subsquare can be posi-
tioned in the subsquare on the top right. The
corresponding limit set turns out to be the
Sierpinski gasket built with the triangle form-
ing the bottom left half of the square.

TRIADIC FRACTAL FOAM

The literal spatial extension of the triadic car-
pel consists in removing a cube’s mid 27-th
subcube as trema, leaving a shell of 26 sub-
cubes. The resulting fractal is to be called
triadic  fractal foam. lIts dimension is
D=log 26 /log 3=2.9656.

Here, every trema is entirely enclosed by
an uninterrupted boundary split into infinitely
many, infinitely thin layers of infinite density.
In order to join two points situated in differ-
ent tremas, it is necessary to cross an infinite
number of layers. One is reminded, but this is
a topic I do not master thoroughly enoughhw
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attempt to account for it here, of the “space-
time foam” which characterizes the finest
structure of matter according to J. A. Wheel-
er and G. W. Hawking.

MENGER’S TRIADIC FRACTAL SPONGE

Karl Menger selects a different trema, shaped
like a cross with spikes front and back, con-
sisting of N=20 subcubes of side %, connect-
ed to one another. Among them, 12 form
“rods” or ropes, and the remaining 8 are
knots, connectors, or ties. The limit (Plate
145) satisfies D=log20/log 3=2.7268. 1
call it a sponge, because both the curd and
the whey are connected sets. One can conceive
of water flowing between any two points in
the whey.

To obtain a mixture of ropes and sheets,
let the trema be a triadic cross continued by a
single spike in front. By changing the direc-
tion of the spike every so often, one may end
up with punctured sheets. It may be worth
mentioning that I thought of all these shapes
before reading Menger, while looking for
models of turbulent intermittency.

NONTRIADIC SPONGES AND FOAMS

Given a nontriadic base b>3, generalized
Menger sponges are obtained when the trema
is the union of three square based cylinders:
the axis of each coincides with an axis of the
unit cube, its length is 1, and its base has
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sides parallel to the other axes. The sponge is
called “light” when the bases’ sides are as
large as possible. For E=3, they are of length
1-2/b, leaving as generator a collection of
12b—16 cubes of side r=1/b. Hence the di-
mension is D=log (12b~-16)/log b. Similarly,
a “‘heavy sponge” is obtained, but only in case
b is odd, when the cylinder bases’ sides are of
length 1 /b. For E=3, they leave as generator
a collection of b3-3b+2 cubes of side
r=1/b. Now D=log (b3-3b+2)/logb.

Fractal foams generalize in analogous
fashion. For E=3, *‘thick wall” foams yield
D=log (b3-1)/logb, and “thin wall” foams
yield D=log (6b°~12b+8)/logb. With big
holes and D near 2, the foam resembles an
overly airy Emmenthaler. With small holes
and D near 3, it resembles a different cheese
delicacy, Appenzeller.

GAPS’ SIZE DISTRIBUTIONS

The sponges’ tremas merge together but
carpets’ and foams’ tremas remain as gaps
analogous to those of the Cantor dust
(Chapter 8). The distribution of their linear
scale A satisfies

Nr(A>N)<cFA P,
where F is a constant. We know this rule well

from the gaps of a Cantor dust, and the is-
lands and clusters of Chapter 13.
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THE NOTION OF FRACTAL NET, LATTICE

The lattices of standard geometry are formed
by parallel lines bounding equal squares or
triangles, and analogous regular designs. The
same term seems applicable to regular frac-
tals in which any two points can be linked by
at least two paths that do not otherwise over-
lap. When the graph is not regular, for exam-
ple is random, I replace lattice by net.

However, a closer comparison of standard
and fractal lattices reveals considerable differ-
ences. The first difference is that the standard
lattices are invariant by translation but not by
scaling, while for the fractal lattices the con-
trary is true. A second difference is that any
standard lattice, if downsized, converges to
the whole plane. Also, several standard lattic-
es in the plane can be interpolated by adding
lines halfway between existing parallel lines,
and repeating ad infinitum. Again, the result
converges towards the whole plane. Similarly,
when a standard spatial lattice can be interpo-
lated, its limit is the whole space. Thus, the
limit is not a lattice. In the fractal context, to
the contrary, the limit of an approximate
fractal lattice is a fractal lattice.

The term, ramified fractal lattices can
also be applied to the fractal foams.

THE SECTIONS'. FRACTAL DIMENSIONS

A BASIC RULE. In many studies of fractals, it is
important to know the dimensions of the line-
ar and planar sections. The basic fact (used in
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Chapter 10 to show that D>2 for turbulence)
concerns the section of a planar fractal shape
by an interval “independent of the fractal.”
One finds that if the section is nonempty, it is
“almost sure” that its dimension is D—1.

The corresponding value in space is D-2.

EXCEPTIONS. Unfortunately, this result is
hard to illustrate in the case of nonrandom
fractals that have axes of symmetry. The in-
tervals that impose themselves upon our con-
sideration are parallel to these axes, hence
atypical, and nearly every simple section by
an interval belongs to the exceptional set
wherein the general rule fails to apply.

For example, take the Sierpinski carpet,
the triadic Menger sponge and the triadic
foam. D—1, which is the almost sure dimen-
sion of sections by intervals, is, respectively

log (8/3)/log 3,
log (20/9)/log 3, and log (26 /9)/log 3,

On the other hand, let X be the abscissa of
an interval parallel to the y-axis of the
Sierpinski carpet. When X, written in counting
base 3, ends up by an uninterrupted infinite
string of O’s or 2’s, the sections are them-
selves intervals, hence D=1, larger than ex-
pected. When x ends up by an uninterrupted
infinite string of 1’s, to the contrary, the sec-
tions are Cantor dusts, hence D=log 2 /iog 3
is too small. And when X terminates by a peri-
odic pattern of period M, including pM times
1 and (1-p)M times O or 2, the sections are
of dimension p(log 2 /log 3)+(1—p). The ex-
pected D prevails for p~.29. The, same
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holds if the digits of x are random. m Thus,
three dimensions are involved here: the larg-
est, the smallest and the average.

Closely analogous results apply in space.

As to the Sierpinski gasket, the almost
sure D is log (3/2)/log 2, but the D’s rela-
tive to “natural” cuts range from 1 to 0. For
example, a short interval through the mid-
point of one of the gasket’s sides, if close
enough to the perpendicular, intersects the
gasket on a single point, with D=0.

In part, the variability of these special sec-
tions is traceable to the regularity of the orig-
inal shapes. But in another part, it is inevita-
ble: the most economical section (not neces-
sarily by a straight line) is the basis of the
notions of topological dimension and of order
of ramification, to which we proceed now.

THE RAMIFIED FRACTALS VIEWED
AS CURVES OR SURFACES

As often stated, curve is used in this Essay as
a synonym of “connected shape of topological
dimension Dy=1." Actually, this phrase is not
fully satisfactory to the mathematicians, and
the precise restatements are delicate. Luckily,
Chapter 6 could be content with a simple rea-
son why any Koch curve with [0,1] as initia-
tor deserves to be called a curve: like [0,1]
|tsc_lf, it is connected, but becomes disconnect-
ed if any point other than O or 1 is removed.
And a snowflake boundary is like a circle: it is

connec_tcd, but becomes disconnected if any
two points are removed.
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Restated more pedantically, as is now nec-
essary, the topological dimension is defined
recursively. For the empty set, Dy=-1. For
any other set S, the value of Dt is 1 higher
than the smallest Dt relative to a “cutset”
that disconnects .S. Finite sets and Cantor
dusts satisfy Dt = 1-1 = 0, because nothing
(the empty set) need be removed to disconnect
them. And the following connected sets are all
disconnected by the removal of a cutset that
satisfies Dt=0: circle, [0,1], snowflake
boundary, Sierpinski gasket, Sierpinski car-
pets, Menger sponges. (In the last three cases,
it suffices to avoid the special intersections
that include intervals.) Hence, all these sets
are of dimension Dr=1.

By the same token, a fractal foam is a sur-
face, with Dy=2.

Here is an alternative proof that Dt=1 for
the gasket, all carpets, and all sponges with
D<2. Since Dt is an integer <D, the fact that
D<2 means that Dt is either O or 1. But the
sets in question are connected, hence Dt is no
less than 1. The only solution is Dr=1.

A CURVE’S ORDER OF RAMIFICATION

Topological dimension, and the corresponding
notions of dust, curve, and surface, yield only
a first level classification. Indeed, two finite
sets containing M' and M" points, respective-
ly, have the same Dy=0, but they differ topo-
logically. And Cantor dust differs from all
finite dusts.

Let us now see how a parallel distinction
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based on the number of points in a set = its
“cardinality” m= carries on to curves, leading
to the topological notion of order of
ramification, defined by Paul Urysohn and
Karl Menger in the early 1920’s. This notion
is mentioned in few mathematics books other
than the pioneers’, but is becoming indispen-
sable in physics, hence becoming better known
after being tamed than in the wild. It shows
that the reasons for discussing first a gasket,
then a carpet, go beyond esthetics and the
search for completeness.

The order of ramification involves the cut-
set containing the smallest number of points,
that must be removed in order to disconnect
the set S, And it involves separately the
neighborhood of every point P in S.

THE CIRCLE. As background from standard
geometry, begin by taking for S a circle of
radius 1. A circle # centered on P cuts S in
R=2 points, except if & has a radius exceed-
ing 2, in which case R=0. The disc bounded
by £ is called a neighborhood of P. Thus, any
point P lies in arbitrarily small neighborhoods
whose boundaries intersect .S at R=2 points.
This is the best one can do: when # is the
boundary of a general neighborhood of P, not
necessarily circular but “not too large,” R is
at least 2. The terms “not too large’” in the
preceding sentence are a complication, but are
unfortunately unavoidable. R=2 is called the
order of ramification of the circle. We note
that it is the same at all points of the circle.

THE GASKET. Next, let S be a Sierpinski
gasket, constructed via tremas. Here R is no
longer the same for every P. Let me show af-
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ter Sierpinski that, excluding the initiator’s
vertices, R can be either 3=Rpj, or 4=Rpax.

The value R=4 applies to the vertices of
any finite approximation of .$ by triangles. A
vertex in an approximation of order h2k is
the common vertex P of two triangles of side
27K Again, circles of center P and radius 27,
with h>k, intersect S in 4 points, and bound
arbitrarily small neighborhoods of P. And if &
bounds a “sufficiently small” neighborhood of
P (in the new sense that the initiator’s vertic-
es lie outside £), one can show that & inter-
sects S'in at least 4 points.

The value R=3 applies for every point of
S that is the limit of an infinite sequence of
triangles, each contained in its predecessor
and having vertices distinct from its
predecessor’s. Circles circumscribed to these
triangles intersect .S in 3 points, and bound
arbitrarily small neighborhoods of P. Also if
# bounds a sufficiently small neighborhood of
P (again, the initiator’s vertices must lie out-
side), one can show that £ intersects S at 3
points at least.

THE CARPETS. When S'is a Sierpinski car-
pet, the result is radically different. Any
neighborhood’s boundary, if sufficiently small,
intersects .S in a nondenumerably infinite cut-
set, regardless of the parameters N, r, or D.

COMMENT. In this finite versus infinite di-
chotomy, the gasket does not differ from the
standard curves, while the carpets do not dif-
fer from the whole plane.

HOMOGENEITY. UNICITY. Denoting by Rmin
and Rmax the smallest and the largest R at-
tained on a point of .S, Urysohn prtr\fcs that



138

Rmax22Rmin—2. The ramification is called
homogeneous when the equality Rmax=Rmin
holds; this is the case when R=2, as in simple
ciosed curves, and when R=co.

For other lattices with Rmax = 2Rmin—2, 1
propose the term gquasi-homogeneous. One
simple and famous example, the Sierpinski
gasket, is self-similar. The other nonrandom
examples are part of a collection set up by
Urysohn 1927, and are not self-similar. Thus,
the conditions, of being quasi-homogeneous
and self-similar, have only one known solu-
tion, the Sierpinski gasket. Could this seeming
unicity be confirmed rigorously?

STANDARD LATTICES. Here the order of
ramification ranges from a minimum of 2 for
all points off the lattice sites, to a variable
finite maximum attained on the lattice sites: 4
(squares), 6 (triangles or cubes) or 3
(hexagons). However, as a standard lattice of
any kind is downsized, it transforms from a
curve into a plane domain, and its ramifica-
tion becomes R=co.

This last fact is made more obvious by ex-
changing the infinitely small and the infinite-
ly large, holding to a lattice of fixed cell size,
and observing that in order to isolate an in-
creasingly large portion of lattice, one must
Cut points whose number has no finite bound.

FORMAL DEFINITION. <a See Menger 1932
and p. 442 of Blumenthal & Menger 1970. m

APPLICATIONS OF RAMIFICATION

Let us now face a familiar question. Whatever
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interest the Sierpinski and Menger shapes,
and their kin, may have for the mathemati-
cian, is it not obvious that the order of ramifi-
cation can be of no interest to the student of
Nature? The response is as familiar—to
us!—as the question. The order of ramifica-
tion is already meaningful in the *“‘real world”
of the finite approximations which obtain
when the interpolation leading to a fractal is
stopped at some positive inner cutoff, e.

Indeed, given an approximate Sierpinski
gasket made of filled triangles of side ¢, a do-
main whose linear scale is above € can be dis-
connected by removing 3 or 4 points, each of
which belongs to 2 neighboring gaps’ bounda-
ries. This number (3 or 4) does not change as
this approximation is refined. Hence, from the
viewpoint of ramification, all approximate
gaskets are curve-like.

To the contrary, all carpets have the prop-
erty that the boundaries of any two gaps fail
to overlap. To disconnect a finite approxima-
tion of such a shape, in which the gaps of di-
ameter <e are disregarded, it is necessary to
remove whole intervals. And these intervals’
number increases as e>0. Whyburn 1958
shows that all the fractal curves that possess
this property are topologically identical
<a homeomorphic m», and are characterized
by the fact they contain no part that can be
disconnected by the removal of a single point.

Due to the preceding comments, it is not
surprising that the finiteness of ramification
acquires clearcut implications when fractal
geometry is called to determine in detail how
much a plane fractal curve partakes of its two
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standard limits: the straight line and the
whole plane. In general, knowing the fractal
dimension does not suffice. For example, Ge-
fen, Mandelbrot & Aharony 1980 examines
critical phenomena for Ising models on a frac-
tal lattice, and finds that the most important
issue <a whether the critical temperature is O
or positive m depends on the finiteness of R.

We are now in a position to give an expla-
nation we had postponed. The reason why a
cluster backbone in critical Bernoulli percola-
tion seems better modeled by a gasket than by
a carpet lies in this finding reported in Kirk-
patrick 197?. Even on extremely large lattic-
es, a critical backbone can be cut by removing
an essentially unvarying small number of
bonds, of the order of 2. Even allowing for
certain biases I could think of, this points out
very strongly toward R<co.

ALTERNATIVE FORM OF RAMIFICATION

Two variants of the Koch snowflake achieve
ramification t’hrough branches without loops.
The first is a plane curve obtained when the
initiator is a square and the generator is

N=5
r=1%
D~1.4649

The resulting shape is totally different
from the snowflake, as shown overleaf.

o i

s

The next example is a surface of zero vol-
ume, infinite area, and a dimension equal to
log6/log 2=2.58497. The initiator is a reg-
ular tetrahedron. On the mid-quarter of each
face (= the triangle having as vertices the
sides’ midpoints), one attaches a tetrahedron
reduced in the ratio Y. One repeats the proce-
dure with each face of the resulting regular
(skew and nonconvex) 24-hedron, and so on
ad infinitum. From the second stage on, the
added tetrahedrons self-contact along lines,
without self-intersecting. And eventually they
swarm all over the initiator. Let each fourth
of this shape, growing on a face of the initia-
tor, be called a Koch pyramid.

# 4
g

SECRETS OF THE KOCH PYRAMID

A Koch pyramid is a wondrous shape—plain
when seen from above, but with a wealth of
hidden chambers to defy the imagination.

Seen from above, it is a tetrahedron whose
base is a equilateral triangle, but whose three
other faces are right isosceles triangles joined
at their 90° vertices. Three Koch pyramids, if
put together on the sides of a regular tetrahe-
dron, add to a plain cubic box.

Now lift such a pyramid from the floor of
the desert. From a distance, we seg, its base

Y
s
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subdivides into four equal regular triangles.
But in place of the middle triangle there is a
hole opening up on a “chamber of order 1,”
shaped like a regular tetrahedron whose
fourth vertex coincides with the pyramid’s top
vertex. Next, as we approach and perceive
finer detail, we find that the regular triangles
that form the peripheral fourths of the base
and the top faces of the chamber of order 1
are not smooth either. Each is broken by a
tetrahedral chamber of order 2. Similarly, as
we explore the chambers of order 2, each of
their triangular walls reveals a chamber of
order 3 in its middle portion. And increasing-
ly tiny chambers appear without end.

All the chambers together add up precisely
to the Koch pyramid’s volume. On the other
hand, if the chambers are viewed as including
their bases but not their three other faces,
they do not overlap. Were our pyramid to be
dug from a mound, the chamber diggers
would have to scoop out all its volume, leaving
a mere shell. The curve along which this sur-
face rests on the base’s plane, and the cham-
ber “walls,” are Sierpinski gaskets.

SPHERICAL TREMAS AND LATTICES

Lieb & Lebowitz 1972 makes an unwitting
contribution to fractal geometry, by packing
R witlp balls whose radii are of the form
Pk=por”, with r<1; the per-unit-volume num-
ber of kballs of radius py is of the form
Nk=Nor", where v is an integer and is of form
v=(1-r)r"%, which strongly restricts r. Thus,

SCALING FRACTALS HHO IV

the exponent of the distribution of gap sizes is

D=logv/log (1l /r)=E-log (1-r)/logr.

First, one centers big spheres of radius p; on a
lattice of side 2p;. The vertices of a lattice of
side 2po that lie outside of the big spheres are
numerous enough to serve as centers for the
next smaller spheres, and so on. The construc-
tion involves these upper bounds on r:

for E=1, r<1/3;
for E=3,r<1/27;

for E=2, r<1/10;
as E—o0, r=0.

Packing of R® by nonoverlapping balls can
proceed more rapidly. For example, on the
line, the maximum r is Y, corresponding to
the triadic dust of Cantor! The existence of
Cantor dusts with r>% demonstrates that
one-dimensional packing can leave a remain-
der of arbitrarily low dimension. However, a
tighter packing involves richer structure.

PREVIEW OF LACUNARITY

Even after the order of ramification R is add-
ed to the dimensions Dt and D, a fractal re-
mains incompletely specified for many purpos-
es. Of special importance is the additional
notion of lacunarity that I developed. A very
lacunar fractal’s gaps are very large, and con-
versely. The basic definitions could have been
described here, but it is more expedient to
wait until Chapter 34. -
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plate 141, OVERLEAF = SIERPINSKI ARROWHEAD (BOUNDARY DIMENSION D~1.5849)

In Sierpinski 1915, the initiator is [0,1], and
the generator and second teragon are
N=3

D=log 3/log 2~1.5849

This construction’s next two stages are

o d A

And an advanced stage is shown as the
“coastline” of the upper portion of Plate 141
(above the largest solid black triangle).

SELF-CONTACTS. Finite construction stages
are free of points of self-contact, as in Chap-
ter 6, but the limit curve does self-contact
infinitely often.

TILING ARROWHEADS. The arrowhead in
Plate 141 (turned sideways, it becomes a trop-
ical fish) is defined as a piece of the
Sierpinski curve contained between two suc-

cessive returns to a point of self-contact,
namely the midpoint of [0,1]. Arrowheads tile
the plane, with neighboring tiles being linked
together by a nightmarish extrapolation of
Velcro. (To mix metaphors, one fish’s fins fit
exactly those of two other fish). Furthermore,
by fusing together four appropriately chosen
neighboring tiles, one gets a tile increased in
the ratio of 2.

THE SIERPINSKI GASKET'S TREMAS. I call
Sierpinski’s curve a gasket, because of an al-
ternative construction that relies upon cutting
out ““tremas,” a method used extensively in
Chapters 8 and 31 to 35. The Sierpinski gask-
et is obtained if the initiator, the generator,
and next two stages are these closed sets:

A LG 8

This trema generator includes the above stick
generator as a proper subset.

WATERSHED. I first encountered the arrow-
head curve without being aware of Sierpinski,
while studying a certain watershed in Mandel-
brot 1975m. A

Plate 143 = A FRACTAL SKEWED WEB
(DIMENSION D=2)

This web obtains recursively, with N=4 and
r=%, using a closed tetrahedron as initiator
and a collection of tetrahedrons as generator.
Its dimension is D=2, Let us project it
along a direction joining the midpoints of ei-
ther couple of opposite sides. The initiator

tetrahedron projects on a square, to be called
initial. Each second-generation tetrahedron
projects on a subsquare, namely (%)th of the
initial square, etc. Thus, the web projects on
the initial square. The subsquares’ boundaries
overlap.
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Plate 145 = THE SIERPINSKI CARPET (DIMENSION D~1.8928),
AND THE MENGER SPONGE (DIMENSION D~2.7268)

SIERPINSKI CARPET. In Sierpinski 1916, the
initiator is a filled square, while the generator
and the next two steps are

N=8, r=%, D~1.8928.

This carpet’s area vanishes, while the total
perimeter of its holes is infinite.

PLATE 145. THE MENGER SPONGE. The prin-
ciple of the construction is evident. Continued
without end, it leaves a remainder to be called
a Menger sponge. I regret having credited it
wrongfully in earlier Essays, to Sierpinski.
(Reproduced from Studies in Geometry, by
Leonard M. Blumenthal and Karl Menger, by
permission of the publishers, W. H. Freeman
and Company, copyright 1970.) The intersec-
tions of the sponge with medians or diagonals
of the initial cube are triadic Cantor sets.

FUSED ISLANDS. The carpet, as well as the
gasket in Plate 143, may also be obtained by
yet another generalization of the Koch recur-
sion, wherein self-overlap is allowed, but over-
lapping portions count only once.

To obtain a gasket, the initiator is a regu-
lar triangle, and we take the generator to the
left. To obtain a carpet, the initiator is a
Square, and we take the generator to the right

7. oD
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Two phenomena familiar from Chapter 13 are
encountered again: each island’s coastline is
rectifiable and therefore of dimension 1, and
the dimension of the gasket or the carpet ex-
presses the degree of fragmentation of land
into islands rather than the degree of irregu-
larity of the islands’ coastlines.

Otherwise, the result is unfamiliar: in
Chapter 13 the sea is connected, which seems
to be a proper topological interpretation of
nautical openness. It is also open in the set
topological sense of not including its bounda-
ry. The novelty brought in by the present con-
struction is that it is possible for the Koch
islands to “‘fuse” asymptotically into a solid
superisland; there is no continent, and the
coastlines combine into a lattice.

-a Topologically, every Sierpinski carpet
is a plane universal curve, and the Menger
sponge is a spatial universal curve. That is,
see Blumenthal & Menger 1970, pp. 433 and
501, these shapes are respectively the most
complicated curve in the plane, and the most
complicated curve in any higher dimensional
space. = HH






Plate 146 = SPLIT SNOWFLAKE HALLS Elders draw a line to divide the Halls between

(DIMENSION D~1.8687) the contenders from the North and the South.

RIDDLES OF THE MAze. Who controls the

Long ago and far away, the Great Ruler and  Great Hall, and how is it reached from out-

his retinue had sat their power in the splendid side? Why do some Halls fail to be oriented

Snowflake Halls. A schism occurs, a war fol-  toward ecither of the cardinal points? For
lows, ending in stalemate, and finally Wise  hints, see the Monkeys Tree on Plate 31.
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V nu NONSCALING FRACTALS

15 = Surfaces with Positive Volume, and Flesh

The fractal curves, surfaces, and dusts which
the present Part describes and tames for the
purposes of science, are only scaling in an as-
ymptotic or otherwise limited sense.

This first chapter centers on surfaces with
a positive (nonvanishing!) volume. What a
mad combination of contradictory features!
Have we not finally come to mathematical
monsters without conceivable utility to the
natural philosopher? Again, the answer is em-
phatically to the negative. While believing
they were fleeing Nature, two famous pure
mathematicians unknowingly prepared the
precise tool I need to grasp (among others)
the geometry of...flesh.

CANTOR DUSTS OF POSITIVE MEASURE

A preliminary step is to review Cantor’s con-
struction of the triadic set €. Its being of zero
length (more pedantically, of zero linear

measure) follows from the fact that the
lengths of the mid third tremas add to

1/3+2/32... 42K 3k+1 =1,

But the fact that C is totally disconnected,
hence of topological dimension Dy=0, is inde-
pendent of the trema lengths. It comes from
the basic fact that each construction stage
bisects every interval created in the preceding
stage, by removing a trema centered on the
“host” interval’s midpoint. Denoting the ratio
of the trema and host lengths by Ay, the cu-
mulative length of the intervals that remain
after K stages is IIOK(I—)\k). It decreases as
K->co to a limit denoted by P. In Cantor’s
original construction, Ax=7%, hence P=0. But
P>0 whenever Zg®Ak<oco. In that case, the
remainder set C, has the positive length 1-P.
This set is not self-similar, hence has no simi-
larity dimension, but the Hausdorff Besicov-
itch definition, Chapter 5, concludes that
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D=1. It follows from D>Dy that C, is a frac-
tal set. Since D and Dt are both independent
of the trema lengths Ay, their values describe
C, very superficially.

The construction is even more perspicuous
in the plane. Cut out from the unit square a
cross of area Aj, leaving four square tiles.
Next cut out from each a cross of relative
area Ao. This cascade generates a dust, D7=0,
having the area ILp®°(1-Ag). When this area
does not vanish, D=2.

In E-dimensional space, one can similarly
achieve a dust with positive volume, satisfy-
ing D=0 and D=E.

l

SLOWLY DRIXTING log N/log (1 /r)

-<a Although the Cantor dusts with positive
length, area or volume have no similarity di-
mension, it is useful to set rk=(1-\y)/2, and
to investigate the formal dimensions defined
as Dy=log N/log (1 /ry).

<a When Dy drifts slowly, it embodies the
idea of effective dimension discussed in Chap-
ter 3 when describing a ball of thread. On the
line, the dimension D=1 of the limit set C, is
the limit of log2/log(1/ry). Furthermore,
the conclusion D=1 does not require ZAk<00,
only the weaker condition Ax—O. Consequent-
ly there are three classes of linear Cantor
dusts: (a) 0<D<1 and length=0, (b) D=1
and length=0, and (c) D=1 and length>0.

-=a The counterpart of the above category
(¢) can occur for Koch curves. It suffices to
change the generator at each construction

NONSCALING FRACTALS Ooo v

stage and to let its D tend to 2. For example,
take r="k and adopt for N, hence for Dy,
the maximal value discussed in the caption of
Plate 53. The limit has a remarkable combi-
nation of properties: its fractal dimension
D=2 is nonstandard for a curve; but its topo-
logical dimension is standard: it is D=1, and
its area is standard: it vanishes.

<a The same properties coexist in Brown-
ian motion, Chapter 25, but here they are
achieved while avoiding double points.

-<a The formal dimension may also drift
away from D=2. For example, k stages of a
plane filling tree construction may be finished
off by stages with D<2. The result may be of
use in modeling certain river trees that seem
plane filling on scales above the inner cutoff g
but crisscross finer scale domains less thor-
oughly. This 7 would be very big in deserts,
and very small in soaked jungles, possibly
equal to 0. Such rivers' effective dimension
would be D=2 for scales above 5, and D<2
for scales below 7. m

CURVES WITH POSITIVE AREA

Our intuition of dusts being imperfect, it is
not bothered by dusts of positive length or
volume. But curves of positive area are truly
hard to swallow. Thus, after Lebesgue 1903
and Osgood 1903 showed that swallow them
we must, they came to supersede the Peano
curve as supreme monsters. After describing
an example, I show that the thought is worse
than the reality: in the most textual sense,



