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49.1 Introduction

Quantum optics unites physical optics and the quantum field theory of light. The foundations of the latter
were laid by Planck, who succeeded to explain theoretically the black-body radiation spectrum by postulat-
ing that the energy of a harmonic oscillator is quantized. In 1927, Dirac developed this theory by solving the
long-standing problem of the wave-particle duality and unifying the wave and particle aspects of light by
quantization of the electromagnetic radiation. Thus, according to Dirac’s single-particle interpretation, the
light emitted from a spontaneously emitting source with low photon density is described as single-photon
emission events.

A fundamental consequence of light-field quantization is the appearance of vacuum (zero-point energy)
fluctuations, or quantum noise, which has no classical analogue and stems from the Heisenberg uncertainty
relations. However, some of the greatest successes of quantum theory—such as Planck’s black-body spec-
trum and Einstein’s theory of the photoelectric effect—do not actually require a full quantum-mechanical
treatment and can instead be explained using semiclassical theory, whereby matter is quantized but light
remains a classical wave, Only in the 1960s, motivated by the development of lasers, did researchers start to
examine effects which truly required a quantum theory of light. For instance, light quantization is required
to explain spontaneous emission, irreversible decay, and the origin of the laser spectral linewidth. The
demand to develop further the quantum theory of light in order to explain these effects was met by the
pioneering work of Glauber [1,2].

Vacuum quantum fluctuations are necessary to account for phenomena, such as the Lamb shift: a
radiative correction to the energy spectrum of hydrogen, as well as for the attractive force between two
uncharged conductive plates in a vacuum placed a few nanometres apart, known as the Casimir effect.
Some examples of effects which the semiclassical approach fails to explain are quantum beat phenomena
in a three-level atom, two-photon interferometry and production of “entangled” states of light, resonance
fluorescence (quantum jumps) in the emission of atoms, and the so-called “nonclassical” states of light.

The classification of light states as classical and nonclassical stems from the statistical properties of radi-
ation and, more specifically, from the second-order coherent properties of the light emitter. A crucial step
in elucidating these properties was the correlation experiment of Hanbury Brown and Twiss [3], which was
designed to measure the coincidence of individual photons at two detectors placed equidistantly from a
half-silvered mirror splitting a beam of oncoming low-intensity light. Using the second-order correlation
function, g'®' (1), quantifying the synchronicity with which photons arrive at the detectors, it was then pos-
sible to discern the manner in which different types of light sources emitted light. This method revealed
that classical light sources—such as a thermal black-body radiation source or a lamp—exhibited Bose-
Einstein statistics manifested by photon “bunching’, i.e., an increased likelihood of the photons to arrive at
the detectors at the same time, as though they had “bunched together” while traveling from the source to
the detectors. On the other hand, a stable coherent light source (e.g., a laser) exhibits Poissonian statistics,
which is manifested by a constant unity second-order correlation function, g®’ (t), meaning that photons
are not intercorrelated and are equally likely to impinge on the detectors with a delay of any length with
respect to each other. However, most interestingly of all, nonclassical states of light are described by sub-
Poissonian statistics (a diminished likelihood of coincident arrival) called “antibunching”: the photons are
“diluted” as they travel and eventually emitted one by one. Antibunching is characteristic of resonant flu-
orescence from single atoms, molecules, or semicondictor nanocrystals and quantum dots (QDs), and is a
signature of a single-photon emitter. For perfectly antibunched light, the second-order correlation function
vanishes for coincident detections. This is irreconcilable with the classical wave optics and is considered a
hallmark of pure quantum behavior.

Photon-number (Fock) states are states of light containing a specific number of photons. The single-
photon state is a special case of a Fock state and is a squeezed-light state [4], a quantum state of light
resulting from the Heisenberg relations with, e.g., reduced amplitude fluctuations at the expense of
enhanced fluctuations of the phase. An ideal amplitude-squeezed source delivers a stream of photons at
regular time intervals, which is the precise realization of a single-photon source [5].
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Another quantum-mechanical property is entanglement. Quantum systems consisting of interacting
subsystems become highly correlated and their individual constituents become “entangled”. The global
quantum state of an entangled system—for e.g., one consisting of two particles (e.g., a photon pair)—
remains correlated even when the two particles are separated by large distances from each other and unable
to interact or communicate in any known way. The most famous example of an entangled state is the
Einstein-Podolsky-Rosen-Bohm [6] state, whereby two spin 1/2 particles reside in a state with zero total
spin angular momentum: |¥) = Lz (1T ® 1) — |1) ® |1)). Notably, this state cannot be represented as a

simple product of the pure states of the individual particles.

Many of these quantum effects have been observed only in carefully controlled atomic systems; how-
ever, with the advent of quantum photonics (the applied device-oriented field of quantum optics), recent
advances in semiconductor technology have enabled the fabrication of solid-state devices that emit sin-
gle photons, opening new avenues for nonclassical light state generation. For instance, the use of radiative
cascades from QD excited states is a principal method for generation of quantum entanglement for appli-
cations of QDs as polarization-entangled sources. The exchange interaction and the fine structure splitting
of the energy levels involved in radiative cascades from QD excited states are of fundamental importance,
since they determine the polarization and entanglement of the emitted photons.

Quantum photonics has attracted great interest in recent years. This is due to its potential to revolu-
tionize science and day-to-day life alike through enabling the implementation of faster algorithms, secure
transmission of information, vast increase in data storage, and execution of more accurate measurements.
One of the major challenges of modeling quantum photonic devices is working out a way of efficient sim-
ulation and control of realistic, “open” quantum systems (i.e., allowing for energy to flow in and out of
the system) and devices for applications in quantum technologies. For optical quantum information pro-
cessing to advance beyond demonstration experiments, the development of on-chip capabilities will be
essential. Solid-state qubit architectures have emerged as a most promising physical implementation of
quantum photonic circuits, taking advantage of the state-of-the-art semiconductor technologies. Reliable,
integrated sources of nonclassical light, as well as realization of high-fidelity on-chip readout of solid-state
qubits, are a critical requirement for next-generation quantum technologies [7].

Recently, significant progress has been made toward the achievement of high-efficiency solid-state
single-photon sources [8-12]. Among these sources, QDs are particularly promising since they can be
embedded in devices enabling electrical injection while maintaining efficient light emission. Furthermore,
the dot doping—or the number and type of the charge carriers within the dot—can be controlled by apply-
ing electrical bias in a Schottky-type structure. A quantum bit (qubit) is a linear superposition of basis
states |0) (ground level) and |1) (excited level) in a two-level system, given by: |¥) = o |0) + p |1), with
and f being complex numbers such that o® + p?> = 1. In a classical computer, the information is encoded
in digital bit states 0 and 1. By contrast, in a quantum computer, the state of each bit is permitted to be any
quantum-mechanical state of a qubit (manipulated using qubit rotations, also known as gate operations),
leading to a massive parallelism and an exponential speed-up of the quantum computations.

The |0) and |1) states of a qubit could be encoded in the spin-up (|1)) and spin-down (|]}) states of a
charge carrier. The spin-up and spin-down states of a single electron or hole confined in a charged semicon-
ductor QD are a particularly attractive qubit candidate [13]. This arises from several advantages intrinsic
to this quantum system. The first advantage is that the atomic-like electronic structure suppresses coupling
of the spin to the solid-state quantum environment and thus impedes the spin decoherence processes. This
leads to a very long spin coherence time (denoted T,)—that is, the time within which the spin loses its
phase information—and thus a long-lived quantum state, which is required for performing a large num-
ber of spin manipulations. Another important advantage is optical convertibility—i.e., the ability to switch
through transfer of angular momentum between a “flying” qubit encoded in a photon and the stationary
matter qubit of the spin confined in a QD. This enables the transport of qubits over large distances and
facilitates the realization of scalable solid-state qubit architectures for optical quantum computing. Fur-
thermore, this promising platform allows integrating the operations of optical initialization, manipulation,
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and readout of a spin qubit on a chip. By employing a combination of optical orientation [14] and quantum
coherent control [15] techniques, using ultrashort polarized light pulses one can address individual car-
rier spins in semiconductor QDs, initialize and manipulate them coherently through optically excited states
(charged excitons), and detect the resulting spin qubit [16]. For quantum technologies applications, control
of both QD position and emission energy is crucial. For instance, deterministic site control of QD location
is indispensable for multiqubit operations and scalability. Therefore, new simulation tools are needed to
determine the allowed tolerances in the dot positions and emission energies to ensure observation of the
desired quantum-optical effects.

Quantum coherent control represents a universal approach for predictable manipulation of the proper-
ties of quantum systems, such as atoms and molecules. This technique has most recently been applied to QD
solid-state systems. Coherent control in semiconductor nanostructures allows for coherent manipulation
of the carrier wavefunctions on a time scale shorter than typical dephasing times. This is a prerequisite for
successful implementation of ultrafast optical switching and quantum information processing, Quantum
coherent control requires use of ultrashort pulses considerably shorter than the characteristic relaxation
times in matter (t < T, T,). This is equivalent to the photon-dipole coupling rate exceeding all dissipative
rates in the system, a general condition for achieving the strong-coupling regime. The ultrashort pulses are
usually characterized by high field amplitudes and, consequently, lead to nonlinear optical effects, such as
coherent pulse propagation and self-induced transparency (SIT) [17]. The phenomenon of SIT is observ-
able above a critical power threshold for a given pulse width: a high-intensity, ultrashort pulse propagating
through a medium composed of an ensemble of resonant quantum two-level absorbers, whose relaxation
times greatly exceed the pulse duration, travels at a reduced speed and unchanged shape with anomalously
low energy loss. The absorbers are driven into the excited state by absorbing ultrashort pulse energy; by
reradiating this energy into the pulse, they return to the ground state. Thus, the optical energy is carried
through the medium not by the electromagnetic field, but by a coupled light-matter polariton wave. The
polariton is a mixed light-matter quasiparticle resulting from the strong coupling of the optical wave to the
medium’s polarization. As a result, the pulse travels as a solitary wave, known as a SIT-soliton. This soliton
is localized both in space and time, in contrast with the well-known nonlinear optics solitons which result
from the interplay between nonlinearity and the medium’s dispersion and/or diffraction. The condition
of SIT is predicted by the remarkable pulse-area theorem (PAT) [18] which establishes a general criterion
for stable, ultrashort pulse propagation in attenuating or amplifying media based on an integral quantity—
namely, the pulse area. This phenomenon can be preserved to a great extent in solid-state systems—e.g.,
semiconductors—and has been experimentally demonstrated by picosecond pulse propagation in QD
waveguides [19].

When the laser pulse’s temporal width becomes comparable with the optical period (i.e., when the pulse
envelope contains only a few optical cycles of the carrier wave), a transition to a qualitatively new “extreme
nonlinear” regime of strong light-matter interactions is induced in which the electric field itself, rather than
intensity envelope, drives the interaction. The majority of the current analytical approaches are based on
the standard, slowly varying amplitude approximation (SVEA) and rotating-wave approximation (RWA).
However, a number of works have demonstrated the limitations of these approximations, and new phenom-
ena have been predicted on the basis of a non-perturbative approach (see, e.g., [20], and references therein).
This requires development of new, non-perturbative theoretical and computational methods beyond the
above approximations as shown in Section 49.2, which could account properly for the ultrafast carrier-wave
dynamics.

The earlier high-intensity (i.e., high photon density) limit allows to achieve the strong-coupling regime
in free space. However, in the opposite, low-intensity (i.e., few-photon) limit, the light-matter coupling of
a single photon to a single atom in free space is weak, and despite attempts by several groups [21-23] to
improve it, the experimental realization of high-fidelity excited-state preparation remains challenging. In
order to improve the performance of single-photon sources, it is necessary to incorporate the emitters in
cavities. The cavity helps to select a single mode out of the infinite number of radiation field modes coupled
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to the emitter. As the emission is preferentially directed into a single mode, owing to the Purcell effect the
spontaneous emission lifetime is reduced for emitters located at the antinode of the electric-field intensity
in cavities with a small mode volume and high quality factor. Faster emission is desired because it makes
the single-photon source more deterministic and reliable.

If the exciton-light coupling in a semiconductor microcavity is weak compared to all dissipative rates
in the system, irreversible decay occurs—that is, energy cannot be alternately passed from light to matter.
Depending on whether the quantum wells inside the semiconductor microcavity are situated near the node
or antinode of the excitatory electric field, either an inhibited or enhanced spontaneous emission takes
place. The cavity then operates in the weak coupling regime, whereby the dynamics of the light-matter
interaction is dominated by incoherent processes and damping. Conversely, in the strong coupling limit,
no irreversible decay takes place. Instead, a sequence of coherent reabsorption and reemission processes
occurs and the energy oscillates between the exciton and photon modes, a phenomenon known as optical
Rabi oscillations. The spectral signature of strong coupling is an anticrossing between the dot line (i.e., the
spectral linewidth of the QD) and the cavity mode. The eigenmodes of the system are mixed entangled
light-matter states, giving rise to quasiparticles known as microcavity exciton-polaritons which exhibit
bosonic properties. Considerable scientific effort worldwide has been invested in exploration and control
of a strongly coupled single QD in a cavity. The latter is considered a solid-state analogue of the atom-cavity
system for which many quantum-optical effects have been demonstrated. Some examples include cavity
field quantization [24] and photon blockade [25]. Embedding QDs in confined geometries—such as planar
[26], micropillar [27], microdisk [28], microsphere [29], nanowire [30], or photonic crystal nanocavities
[31]—provides a means for controlling the light-matter interactions. However, unlike isolated atoms, QDs
are embedded in a solid-state environment, so confined charge carriers may experience additional interac-
tions with phonons and other neighboring states and charges. These interactions may result in a departure
from the behavior of an idealized two-level quantum system, but can also be exploited as additional control
measures.

Cavity quantum electrodynamics (CQED), traditionally applied to atom-cavity systems, has gained
new momentum after recent reports of quantum-optical experiments in solid-state systems demonstrating
nonclassical light behavior, such as nonclassical photon statistics, nonlocality, and quantum entanglement
[32,33]. These cutting-edge studies put to the test the very foundations of quantum mechanics and open up
new avenues for on-demand generation and exploitation of various nonclassical states of light. So far, close
to perfect single-photon interaction with a QD has been achieved in a cavity under the strong coupling
regime [34,35].

A major goal of the simulation of quantum-photonic devices is to find an optimum design for combin-
ing photonic and solid-state devices on a chip. Integrated optical technologies for quantum computing
based on linear optics [36] have been under active development in the recent decade. However, non-
linear optical interactions “on a chip” offer new, unexplored functionalities, and may play a key role in
future technologies. In this respect, a major theoretical and computational challenge is the development
of new, tractable models of the nonlinear quantum dynamics in realistic devices with complex geome-
tries in multiple dimensions. This chapter reviews the evolution of the original methodology into our fully
non-perturbative, mesoscopic, Maxwell’s curl-pseudospin equation-based model of the optically induced
spatiotemporal dynamics in quantum-photonic devices. This chapter contains further details about its
numerical implementation and some concrete applications.

As we shall show in Section 49.2, our theoretical and computational approach differs substantially from
the methods described in Chapter 46 of this book. In that chapter, a number of different approaches for
calculation of the spontaneous emission have been employed. In the weak-coupling regime, a classical
dipole model is developed whereby the dyadic Green’s function is calculated and the spontaneous emis-
sion rate is found from Fermi’s Golden Rule. Analytical expressions for Green’s function are obtainable only
for a limited number of device geometries, and more generally one has to resort to numerical methods
(e.g., the finite-element method) to compute the electric field. This entails expanding the fields in
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the eigenmodes in different layers of the specific geometry under consideration. Another approach
for modeling cavity-emitter systems is CQED, which is based on the Jaynes-Cummings Hamiltonian,
describing the interaction of a two-level system strongly coupled to a single mode of an electromagnetic
field. Two approximations are made: (1) for a very low Q cavity, the optical field operators can be replaced
with material excitation operators; the dissipation in the system (spontaneous emission rate and dephas-
ing) is taken into account through Lindblad operators. Using the quantum regression theorem that is valid
for Markovian processes, an analytical expression for the correlation function is obtained; (2) for a coupled
cavity-emitter system, a more complicated master equation is written with an additional dissipation term
describing the cavity photon loss. However, for losses weaker than the cavity-emitter coupling, the cavity
can be adiabatically eliminated and this results in a master equation describing the emitter only but with
modified spontaneous emission rates. By contrast, we use the full master equation for the system density
matrix which is valid for all regimes: weak, intermediate, and strong coupling, In addition, in our case
the longitudinal and transverse dissipation are taken into account not through Lindblad operators, but
by considering the dynamics of population transfer and decoherence between the discrete levels. Another
difference between our model presented in Section 49.2 and the model of Gregersen et al. is that in our
case, the cavity-emitter (Rabi) coupling is not a model parameter, but is calculated from the initial pulse
amplitude, duration, and dipole moment of the specific optical transition, as in the actual experiment.
Furthermore, the cavity loss is not a phenomenological parameter either, as it is calculated numerically
through the perfectly transparent boundary conditions of the specific cavity geometry. The master equation
is solved self-consistently with the vector Maxwell equations for the pulse propagation.

Our approach, predominantly using quantum-optical description based on the Liouville equation of
motion for the density matrix, is quite distinctive from the many-body theoretical methods applied in
Chapter 48. For instance, the developed by the aforementioned authors quantum-optical semiconductor
laser theory beyond the semiclassical approach is based on a correlation-expansion and truncation tech-
nique for the quantized light field interacting with carriers in the single-particle picture (electrons and
holes) occupying the discrete QD levels. Dynamical equations for the carrier populations in the conduc-
tion and valence states of the QD, for the expectation value of the photon number operator of the laser mode
and the photon-assisted polarization are derived using Heisenberg operator equations of motion for the
creation and annihilation operators. These coupled equations contain carrier—photon and photon-photon
correlations, providing access to the second-order correlation function, g®). The interaction with the envi-
ronment is accounted through quantum kinetic equations, beyond the Boltzmann equation approach,
for the carrier dynamics due to carrier-phonon and carrier-Coulomb interactions. Many-body theory is
applied to calculate the corresponding matrix elements. In the former case, effects such as polaron scatter-
ing and non-Markovian dynamics are shown for QD systems. This is a very thorough many-body quantized
electromagnetic field approach; however, it does not take into account the specific macroscopic boundary
conditions of the particular device geometry considered, as the light-matter interaction is described by a
single laser mode coupled to the quantum system. An extension for multiple emitters coupled to a sin-
gle common light mode is proposed, taking advantage of the many-particle picture description of the QD
states, such as excitons, trions, multiexcitons, etc., to describe interemitter correlations and radiative cou-
pling. This is somewhat similar to our approach in that it considers many-particle states (e.g., excitons);
however, our approach is extended in that it also considers multiple cavity electromagnetic field modes. The
cluster expansion approach in Chapter 48 by Gies et al. is in essence a generation of equations of motion
for the photon correlations up to a given order of truncation of the expansion and thus providing access
to g®. The dissipation phenomena within this approach—such as the carrier-phonon and carrier-carrier
Coulomb scattering—are calculated from a microscopic many-body model (compared to the Lindblad
terms and our approach, where they are taken as phenomenological parameters), which is an advantage,
as the theory is self-consistent.

In Section 49.2, we will give an overview of the strategy we have used to construct a model for describing
coherent light-matter interactions in semiconductor nanostructures.
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49.2 Maxwell-Pseudospin Method
49.2.1 Pseudospin Equation

In what follows, we will consider either resonant or near-resonant laser optical field interactions with atom-
like discrete-level quantum systems, such as QDs. The optical field we consider is monochromatic and
(near-)resonant with a given transition between a pair of atomic levels, thus effectively mimicking a two-
level atom. As the two-level atom is conceptually equivalent to a half-spin particle in a magnetic field, the
dynamics of the laser-atom interaction is governed by the same Bloch spin vector equation of motion [37]
developed for describing nuclear magnetic resonance and the precession of a classical gyromagnet (or its
quantum analogue, the spin vector, §) in a constant magnetic field, B:

ds

7 =fBxS. (49.1)
Here f guarantees the constant length of the spin vector, thus confining the spin dynamics to the surface ofa
Bloch sphere. (Note, however, that this equation is valid only for systems with equally spaced energy levels).
The formal analogy between a spin and a nonspin (pseudospin) system was pointed out for the first time by
Feynman and coworkers [38], showing that when coherent processes are involved in a two-level system, it is
sufficient to consider a real three-vector, rather than the complex probability amplitudes in the Schrédinger
equation or the complex density-matrix elements [37]. This real-vector representation provides an elegant
and intuitive geometrical framework for comprehending the system dynamics in terms of rotations of a
real state vector in the Hilbert space. Furthermore, in contrast to the wavefunction formalism, it describes
both pure and mixed quantum states. Attempts to extend the formalism analogously for (N > 2)-level
quantum systems fail to preserve the simple vector form of the basic equation of motion for the real state
pseudospin (coherence, or Bloch) vector. The only known exception to this is the special case of excitation
of a spin-]J system in constant magnetic field (thus yielding a (N = 2] + 1)-level system), due to the equal
spacing of the energy levels in this system [39]. Preserving this simple form of the vector equation has a
number of advantages: (1) it accounts for the intrinsic symmetry of the underlying Hilbert space of the
system and therefore is an exact description, independent of the strength, number, or time dependence of
the external forces acting on the system; (2) similar to the two-level system, the dynamical evolution can
be illustrated as a rotation in the real physical space of a real coherence vector.

The case of a three-level system is of particular interest, since it provides a useful framework for study-
ing such phenomena as two-photon coherence, resonance Raman scattering, three-level echoes, three-level
superradiance, coherent multistep photoionization/photodissociation, coherent population trapping, and
electromagnetically induced transparency (EIT). A solution to this problem has been given by Elgin [40] by
invoking the invariance of the state vector under rotations of the SU(3) transformation group. The dynam-
ical evolution of a three-level system can be expressed in terms of an eight-dimensional real coherence
vector, taking advantage of the group-theory and Gell-Mann’s SU(3) generators, which had been developed
for the quark triplet in the domain of high-energy physics [41].

A general solution for an N-level quantum system with arbitrary level spacing has been provided by
Hioe and Eberly [42]. The starting point is the dynamical evolution of a quantum system described by the
Liouville equation for the density operator in the Schridinger picture

LD
hm [, p] . (49.2)

where H is the total system Hamiltonian:

H=Hy+ Hy, (1), (49.3)
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with H, being the unperturbed Hamiltonian of an N-level system: a diagonal matrix with eigenenergies
of each level, hwy, (k = 1,..., N), along the main diagonal, and F,,, is a time-dependent perturbation (not
necessarily small).

Hioe and Eberly showed that the presence of unitary group generators in the time evolution of an N-
level quantum system permits to describe the evolution in terms of the rotations of a real coherence vector.
Expanding the system Hamiltonian and the density matrix operators in terms of A-generators of the SU(N)
Lie algebra, },, they derived the pseudospin equation of motion in the Heisenberg picture, depicting the
time evolution of the real pseudospin vector, S, as a generalized rotation in N> — 1 Hilbert space:

$i = fisvjSk ik =1,2,..,N* =1, (49.4)

where the dot stands for the time derivative, y; is the torque vector, and fi = i i[Tr (iﬁkk?\j ) - Tr('ij'ijik )] .

i,j,k = 1,2,..,N? — 1, is the fully antisymmetric tensor of the structure constants of the SU(N) group,
whose asymmetry guarantees the constant length of the pseudospin vector, [S|, in the (N> —1)-dimensional
Hilbert space. The coherence vector is expressed as the trace of the product of the density and the
SU(N) group generators, whereas the torque vector is expressed as the trace of the product of the system
Hamiltonian operators and the SU(N) group generators

s Lo (o
S (6 = Tr (p(!‘) .Rj); () = 2 Tr (H(t) .xj). (49.5)

The SU(N) group generators obey the group property
I:AA.J, ik:l = ZIfij\‘f (49‘6)

and orthogonality relations, Tr (ij\k) = 81, however their choice is not unique.

For the simplest case of a two-level system, N = 2, the A-generators are simply the Pauli matrices 6,6,
and 6. This is obtained from Equation 49.4 when f;; is replaced by the Levi-Civita symbol, €. For a
dipole-coupling interaction H;,, = eE.#, where r is the local displacement operator and e is the electron
charge, and a linearly polarized dipole optical transition (E || r with an optical selection rule for the z-axis
projection of the total angular momentum, AJ, = 0) the optical Bloch equations are easily recovered:

§ = oS,
S=yx8 § = —wyS, +22;S; (49.7)
33 = _ZQRSZ’

where S; (i = 1,2, 3) is the real pseudospin three-vector, and the torque vector is given by y = (ZQR, 0, )
from Equation 49.5. Here we have defined the Rabi frequency, Qp = %E, with g = (ilef|j}, transition
dipole matrix element of i — j, and wy is the atomic transition resonant frequency. In case of near-resonant
excitation, my should be replaced by Aw = wy — , where o is the excitation frequency [43].

In the general case of an electric field vector noncollinear with the local displacement (dipole moment)
vector, the optical transition is excited by circularly or elliptically polarized light obeying the selection rule
AJ, = =+1, where the sign “+/-" corresponds to right/left circularly polarized light. The dipole matrix
elements are complex vectors yielding complex Rabi frequencies along the x- and y-direction in the plane
determined by E and r (or equivalently, along the dipole moment vector): Q, = %Ex; Q, = %E},. The



Nonlinear Dynamics in Quantum Photonic Structures 669

torque vector is given by y = (-va Q, U’o) and the resulting pseudospin equations read (see also [37])

Sl = —(I}082 — Q}.S3
S3 = Q),S] = QTSZ &

The relationship between the real-state coherence vector components and the density-matrix components
for the general N-level case is given by Equation 49.5, and for a two-level system reads

Sy = P12 + P21 = 2Re (p12)
Sy =i (P12 = Pa1) = —2Im (py,) = 2Im (py; ) (49.9)
S3 =Py — Par -

The physical meaning of the first two components of the pseudospin vector are dispersive (in-phase) and
absorptive (in-quadrature) parts of the dipole polarization, and the third component is the population
difference between the two levels. Since the level occupation probability is conserved, i.e., p;; + ps; = 1,
it can be easily shown that the length of the coherence vector is unity: |S|* = S% + S% + S§ = 1, and the
evolution of the pseudospin is “inscribed” by the pseudospin vector on the surface of the Bloch sphere.

Up until now, we have only considered coherent processes; however, in an open quantum system there
is always energy dissipation. For a two-level system, it is easy to define phenomenological longitudinal
relaxation time (also known as population relaxation time), T}, and transverse relaxation time (also known
as polarization-decay or dephasing time), T5, leading to the well-known optical Bloch equations for a two-
level system with damping for e.g., linearly polarized transitions:

di =w,5 — LS
EY 0°2 = 71
% = —0,8; +2Q,8; - lesz (49.10)
% =-2Q.8, - T (83— S3)
where S3; = +1 is the initial population profile; “-” and “+” correspond, respectively, to all of the popu-

lation in the ground and the excited state. Upon optical excitation, the former describes absorption, while
the latter describes optical gain. However, it is not so easy to generalize the dissipation dynamics for a sys-
tem with an arbitrary number of levels (N-level system), because each pair of levels within this system is
characterized by their individual population transfer rates and dephasing rates. We show how to do this
generalization next. The time evolution of the two-level quantum system is described by the generalized
rotation of the real three-vector, S, in the three-dimensional Hilbert space; at all times the tip of § is just
touching the surface of the Bloch sphere, shown in Figure 49.1.

49.2.2 Dissipative Dynamics and Master Pseudospin Equation

To include energy relaxation and decoherence processes in the system dynamics, we adopt an unconven-
tional approach. We introduce longitudinal relaxation in the Liouville equation for the density matrix by
considering first the diagonal population components of the Liouville equation, p;;, and taking into account
population transfer between all allowed dipole optical transitions in the system with corresponding rates.
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FIGURE 49.1 Geometrical representation of the time evolution of a two-level quantum system by generalized rota-
tion of the real state pseudospin vector, §, in the 3D Hilbert space, drawing a trajectory on the |S§| = const. sphere
surface. A one-qubit rotation occurs when the vector is rotated through n from state 0 (spin down, dashed arrow) to
state 1 (spin up, solid arrow along 3-axis), or vice versa.

N
N-1
i

Ia:
7
b

b~~~
-

E=0

FIGURE 49.2 Schematic of an N-level quantum system with energy zero at the ground state. [Vertical solid arrows,

coherent optical excitation; wavy lines, population relaxation & (spontaneous emission); tilted arrows, dephasing I',
(decoherence).]

For each Liouville equation we can construct a longitudinal damping matrix of rank N: ', i = 1,...,N,
whose elements are the population transfer rates between all pairs of levels. This allows us to introduce a
diagonal matrix, 6 = diag(Tr(I";.p)), which accounts for the longitudinal population relaxation. Similarly,
we introduce an off-diagonal matrix, [, of rank N with zero main diagonal components to account for
the dephasing rates of all levels (Figure 49.2). Adding the relaxation and dephasing terms in the Liouville

equation thus leads to the following master equation:

»

- [p.H] +6—T.p. (49.11)

= =

Using Equation 49.5, we can now rewrite the density-matrix equations in terms of the pseudospin vector,
S [44]:

1 53 1 . _
os; | fuluSi+31r (07\}) 1 (SJf . sje) . j=1,2,.NN=-1) —
o | furys+ i (&.xj), J=EN(N=1)+1,...N—1,
where we have defined an equilibrium coherence vector, Sg = (S, Sp¢s - Sv2—1)e)» and Ty j = 1,2...,
N? — 1 are phenomenologically introduced nonuniform decay times describing the relaxation of the com-

ponents of the real state vector towards their equilibrium values, S;,. Because of the incoherent processes
involved in maintaining the system at a definite level of excitation, the equilibrium system polarization is
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zero. This means that the subset of Sg containing the polarization components of the equilibrium coher-
ence vector is zero, i.e.,, S = (Sy,: Szes s Syn—1)e) = 0. The second term in the second line of the Equation
49.12 containing the trace of the density matrix through & can be rewritten in terms of nonuniform relax-
ation times, T = Ty(n—1)41- ---» Tn21» describing the relaxation of the population components of the real
coherence vector toward their equilibrium values. Therefore, the total equilibrium coherence vector is of
the form: Sp = (0,0, ..., 0, Syy—1)4+15 - Sy2—1)- We shall refer to Equation 49.12 as the master pseudospin
equations.

49.2.3 Vector Maxwell Equations and Coupling to Pseudospin Equations

The optical wave propagation is described by the vector Maxwell equations:

L ]
ot H
JE P (49.13)
1 1
—==-VxXxH--—,
dt £ e ot
where P is the macroscopic medium polarization vector given by
P = —eN,Tr(p.#), (49.14)

with N, signifying the density of the ensemble of resonant dipoles in the medium. Starting with a
phenomenologically constructed dipole-coupling interaction Hamiltonian with coherent Rabi frequency
terms describing optical transitions between pairs of levels, one can decompose the dipole moment oper-
ator, and represent it as a linear combination of A-generators, whose coefficients are the corresponding
Cartesian dipole moment vector components. Then, using Equation 49.14, we can find a relationship
between the macroscopic polarization components, P, , ., and the coherence vector components, §;. To
illustrate this procedure, suppose we have a transverse electromagnetic wave propagating along the z-axis
exciting a given i — j(i < j) transition in an N-level system. Let the wave be circularly polarized in the
plane perpendicular to z, with in-plane electric-field components E, and E,. Then, the (i, j) term of the
interaction Hamiltonian will contain a complex coherent term A(€Q, +i€Q, ), where the sign “+/—" depends
on the helicity of the pulse, 6t or 6™. (The sign convention is such that “+” and “~” correspond to, respec-
tively, clockwise and counterclockwise rotation of the electric-field vector, when viewed from a direction
opposite to that of the propagation of the pulse.) Note that, for the case of a linearly polarized excitation,
the Rabi frequency will be real. The in-plane dipole moment vector can be decomposed into two Carte-
sian components: er = e(7,é, + 7,€,), where ¢, and ¢, are the unit vectors along the x- and y-axes. The

coefficients 7, and 7, are A-generators; 7, contains unity at positions (i, /) and (j, i), whereas 7, contains the

imaginary number, —i, at position (i, j) and i at position (j, i):

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 —i 0
o o0 o0 - - - - 0] 0 o - - . -0
r=r9ql . |et| 0 R % & (49.15)
0 1 0 0 0 i 0 0
L 0 0 0 0 0 0 0 0 0 0 0 0 |
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where 7, is the dipole length scale. The following general formula can be used to obtain the corresponding
A-generators, depending on the number of discrete levels of the system, N:

?'x = AX i-1

j—i+ ¥ (N—d)
. =1 (49.16)
F,=A i-1

joi+ T (N—d)+ NE=D
d=1

In fact, this linear combination reproduces the phenomenologically constructed dipole coupling inter-
action Hamiltonian, H;,, = —er.E, when the dipole moment and the decomposed electric-field vector
(E=Eé, +E¢) are substituted in

00 0 0 00
00 0 Q, -iQ, 0

A 00 0 .o - .0

Hy=h| "~ _ - _ R (49.17)
0 Q. +iQ, 0 0
00 0 0 00

The macroscopic polarization vector components, P, and P, are then obtained from Equation 49.14, giving
P, = —@N,Tr(p.%,)
P, = —gN,Tr(p.7,). (49.18)
Now we can write down the vector Maxwell equations for a circularly polarized optical wave exciting the
i — j transition of an N-level system, and thus inducing dipole polarizations P, and P, along the x- and

y-directions, respectively:

OH, (z,t) 19E,(z1)

ot po oz
0H, (z.t) __1 0E, (z,1)

dt p dz (49.19)
OE,(z,t)  10H,(z1) 0P, (z1)

a e oz e ot
dE, (z,1) B laHx (z, 1) ~ ldP}, (z,1)

o0 e oz e o

For the special case of a transverse optical wave linearly polarized along x and propagating in the
z-direction, the above system (Equation 49.19) is reduced to

0H, (z,1) __10E(zt)
at B ooz

OE,(zt) _ 19H,(z0 1 0P, (z1)
o & oz e o

(49.20)
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FIGURE49.3 Energy-level scheme of a V-type three-level system. wy. = (E; — E;)/h, with energy zero chosen at the
ground state |1). (I', population relaxation rate; y, dephasing rate.)

We solve Maxwell’s curl equations, (Equations 49.19 or 49.20), and the pseudospin equations (Equation
49.12) self-consistently, having established a link between them via the medium’s polarization (Equation
49.18). We shall refer to this coupled system of first-order differential equations as the coherent Maxwell’s
curl-pseudospin model.

49.2.4 Coherent Maxwell-Pseudospin Equations in 2D

Description of nonlinear pulse propagation, interaction, and localization phenomena in multiple dimen-
sions requires dipole coupling to at least a 2D resonant medium, whereby the electric field of a single-
photon excitation is coupled to at least two distinct dipole optical transitions. We have previously shown
that as a minimum requirement, it is sufficient to consider a degenerate three-level ensemble of dipoles
in which two of the allowed dipole optical transitions are excited by each of the two components of the
electric-field vector in the waveguide plane [45]. The pseudospin geometrical picture thus allows for ade-
quate modeling of the interaction of an ultrashort laser pulse with a medium in two spatial dimensions.
Therefore, we consider a V-type degenerate three-level system of resonant dipoles shown in Figure 49.3,
for which a linearly polarized monochromatic electromagnetic wave induces polarizations (dipoles) in two
orthogonal directions in the waveguide plane. Two cases arise: a transverse electric (TE) wave, for which
E = (E,,0,0)and H = (0, H,, H,), and transverse magnetic (TM) wave, for which E = (0,E,, E,) and
H = (H,, 0, 0). The respective vector Maxwell equations are

OHy _ _19E
ot TG4
0H, 10E,
? = Ed_y (49.21)
OE, 1 (oH, OH, 1 0P
a e\ dy oz e ot
for the TE wave and
0H, 10E, 19E
a  pady poz
% _10H, 1% (49.22)
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for the TM wave. We can phenomenologically construct the system Hamiltonian corresponding to each of
the cases above:

0 Q 0 0 Q Q
Hpp(t)=| Q @ 0 |sHnO=]Q, o, 0 | (49.23)
0 0 o Q, 0

The master pseudospin equations (Equation 49.12) for a three-level system with i, j,k = 1, 2, ..., 8 are cou-
pled to Maxwell’s equations above through the macroscopic polarization, Equation 49.14. It thus becomes
possible to derive the following relationships between the polarization components and the pseudospin
vector components for the case of a TE wave:

P.=—@N,S,, (49.24)
and for a TM wave:
P,=—@N_§
¥ NGOy (4925)
P, = —gN,S;.

49.2.5 Numerical Methodology

The Maxwell-pseudospin system is discretized on a Yee grid in 1D (modified Yee grid in 2D, see Figure 49.4)
and solved directly in the time domain by the finite-difference time-domain (FDTD) method [46]. At each
time step, a solution to all equations is obtained using a predictor-corrector iterative scheme, proven to be
very efficient in solving simultaneously a large number of first-order differential equations [47]. The time
evolution of a discrete multilevel system under an external perturbation can be viewed as a Goursat-type
initial boundary value problem, which is well posed when the time history of the initial electric field is
given along, e.g., the left (lower) boundary of the simulation domain in 1D (2D). We impose analytical
absorbing boundary conditions at the simulation domain boundaries, based on the Engquist-Majda [48]
one-way wave equations discretized by the Mur finite-difference scheme [49] using a two-term Taylor-
series approximation [46]. To ensure numerical stability, the time step and the spatial discretization are
chosen to satisfy the Courant stability criterion: %‘; < 1in 1D and % < 1in 2D [46]. The
(@r*ar)

FDTD numerical technique has numerous advantages over other methods, such as the beam propaga-
tion method (BPM). For instance, modeling structures with rapid longitudinal variations (on the scale of
the wavelength, 1) of, e.g., refractive index or energy-level population, is impossible to model with BPM,
because it relies on the paraxial approximation which in this case is invalid. Moreover, FDTD can handle
strong coupling between forward- and backward-propagating fields and can be used to describe general,
nonharmonic electromagnetic fields. It can also be used to simulate ultrashort (sub-picosecond) pulses in
situations where the pulse bandwidth is significant compared to material resonances.

49.3 Simulation of Nonlinear Dynamics in Optical Waveguides
and Semiconductor Microcavities

In this section, we apply the vector Maxwell-pseudospin formalism to the problem of nonlinear optical
pulse propagation in planar waveguides and microcavities with embedded quantum systems. We pro-
vide a solution in both 1D and 2D. As a first step, we perform validation studies against well-established
theoretical and computational methods.
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FIGURE49.4 Modified Yee grid for discretization of the 2D Maxwell-pseudospin system for the purpose of carrying
out numerical modeling. The grid is staggered, meaning that the electric and magnetic fields are calculated at every
other node. This schematic is for a TM wave: the electric-field vector is in the y-z plane (arrows); the magnetic-field
vector is pointing out of the page toward the reader (circle with dot). The electric- and magnetic-field components are
spatially separated by Ay/2 and Az/2 in the y-z plane, and temporally by At/2, with the electric-field components
situated in the middle of the cells’ edges, and magnetic-field components in the center of the cell [46]. The magnetic-
field equation is solved at the spatial steps (i + 1/2)Az and (j + 1/2)Ay over time step (k + 1/2)At. The electric-field
components, E}, and E_, are solved at the spatial steps ((j + 1/2)Ay, iAz) and (jAy, (i + 1/2)Az) over time step kAt.
Quantum-system variables, S}, are assigned to the empty nodes in the 2D Yee grid, while the electric-field component
values at these empty mesh points are estimated by averaging over the electric fields located at the nearest neighbors in
the plane.

49.3.1 One-Dimensional Model of a Two-Level System

Consider a two-level quantum system, such as fundamental heavy-hole transitions in a QD. The coherent
Maxwell-pseudospin equations describing the interaction of an optical wave propagating along the z-axis
and linearly polarized in a transverse direction along x are given by Equations 49.10, 49.20, and 49.24:
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aEx _ ldH)" _ g"JNuS + @Nam(}

o  eoz eI, ®

% _ Tiz S s, (49.26)
% =~y - lesz + Z%Exs-‘

%,Sfi = —2%@82 - % (83— S30) -

We apply an excitation pulse of duration T, with either a hyperbolic secant or Gaussian envelope and
central frequency, o, in resonance with the two-level transition at the boundary z = 0 of the simulation
domain. Its time dependence is thus

7
f—— 3
E,sech (10—5—) sin (wt)

E;(z=0,0)= (49.27)

2
Ejexp [(%) ] sin (wgt) ,

where E is the initial pulse amplitude, f; is the time moment at which the Gaussian pulse is initially
centered, and t, is the characteristic 1/e Gaussian decay.

49.3.2 Passive Cavity Properties

To validate our model, we construct a simple, symmetric test Bragg microcavity containing 5 A/4
GaAs/Aly Gagy gAs/AlAs layers, with A being 1.4 pm (Figure 49.5f) and compute the passive (cold-)cavity
modes and the electric-field standing-wave profile within the cavity. In order to compute the resonant cavity
modes, we launch a short broad-band pulse of duration < 100 fs from the left boundary of the structure and
sample in time the electric-field evolution at the output on the right. This time trace is Fourier-transformed
and normalized with respect to the Fourier transform of the input trace, thus yielding the transmission
spectrum of the microcavity. The resonant frequency is extracted from the peak in the stop band of the
spectrum (Figure 49.5d). Note that reducing the time step allows to resolve higher-order cavity modes. To
obtain the electric-field standing-wave profile within the cavity, a continuous sine wave at the resonance
frequency (obtained in the previous step) is pumped from the left boundary, and the time evolution of the
intracavity field is monitored. The field amplitude increases in time and eventually reaches a steady value.
The results shown in Figure 49.5f are compared with the cavity modes and field distributions computed by
the transfer matrix method (TMM).

Using the above FDTD-based methodology, we will subsequently investigate passive cavity properties
of more complex cavities. For example, we calculate the resonant cavity modes and standing-wave profile
of a Coldren-type microcavity structure designed at A = 1.3 pm and consisting of 10 GaAs/Alj ¢Ga, | As
pairs for the bottom distributed Bragg reflector (DBR) mirror, followed by an AlAs supply layer, a tun-
ing Al,-Ga ;As layer, a GaAs A/2 cavity and 15 GaAs/Al; ;Ga, ; As pairs for the top DBR mirror. The
simulation results for the resonant cavity modes, namely the transmission spectrum as a function of A
and the electric-field standing-wave profile along the structure, are displayed in Figure 49.6.
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FIGURE49.5 (a) Initial ultrashort pulse (T, =100 fs). (b) Fourier spectrum of the initial broad-band pulse. (¢) Time
trace of E, (t) at the output boundary of the structure. (d) Transmission spectrum as a function of wavelength, &, com-
puted as the discrete Fast Fourier transform (FFT) of the output time trace in (c), normalized with respect to the input
FFT spectrum (b). The resonant cavity wavelength, A, = 1.4 pm, is extracted from the peak in the DBR cavity stop
band. (e) Reflectivity spectrum as a function of wavelength computed by the TMM: the resonant cavity wavelength,
hg & 1.4 pm is obtained from the dip in the reflectivity spectrum within the DBR cavity stop band. (f) Comparison
of the standing-wave profile within the cavity, as obtained by the TMM (dashed curve) and FDTD (solid black curve)
methods. The FDTD-inferred instantaneous field standing-wave profile is computed with continuous sine-wave excita-
tion propagating from the left boundary at the cavity resonance frequency equivalent to A,,,,,, = 1.4116 pm, obtained
from (d) after a sufficiently large number of time steps 2 x 10® (each of duration At = 3.33 x 1073 fs ) with 31,300
spatial grid points (each spatial step of Az = 1 nm), Courant number= 0.75. The scale on the right corresponds to the
refractive-index profile of the DBR cavity (top).
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FIGURE 49.6 (a) FFT of the time trace of the signal detected at the output boundary of a Coldren-type microcavity
structure, revealing the cavity’s (nonnormalized) transmission spectrum. The resonant cavity mode is indicated with
g, and corresponds to approximately 1.3 pm. (b) Standing-wave profile after 6 million (dashed curve) and 12 million
(solid curve) time steps superimposed on the refractive-index profile of the microcavity (scale on right-hand side).
The time step in the simulation was Af = 3.33 x 1072 fs and the spatial step was Az = 1 nm. The amplitude of the
standing wave increases as the number of time steps is increased, and eventually reaches a steady maximum value (solid
curve). The amplitude is augmented with time due to the build-up of the field caused by multiple reflections at the cavity
mirrors.

49.3.3 Active Nonlinear Optical Waveguide/Cavity Properties

We have performed gain validation studies of our 1D semiclassical Maxwell-pseudospin model. This was
done by establishing the ability of our model to recover the linear small-signal (unsaturated) gain and
nonlinear (saturated) gain of a homogeneously broadened (HB) two-level system, and comparing the result
against that of the density-matrix theory, which served as a benchmark (see, e.g., [50]). The test structure
used for these validation studies was a 15 pm-long simulation domain consisting of a GaAs slab waveguide
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with a gain region length of L, = 9 pm, refractive index ng, 4, = 3.59, and pumping wavelength of 1.5 ym
corresponding to the resonant transition frequency of a two-level system sandwiched between two free-
space regions (Figure 49.7a). The GaAs slab was represented by an initially inverted (S35 = 1) two-level
medium with resonant dipole density N, = 1 x 10> m~3, dipole transition matrix element, gp = 1 x
1072 C - m and population relaxation and dephasing times, T, = 100 ps and T, = 50 fs, respectively. We
then applied a switch-on pulse: a continuous, sinusoidal electric-field pulse, with pulse carrier frequency
@y in resonance with the two-level system, which is smoothly increased in amplitude from 0 up to unit
amplitude (E, = 1 V- m™!) within five periods:

0, for t <0
E, () = Egsin (wgt) 3 (1-x%)", for 0<t<5T, (49.28)
1, for t > STP,

withx = (¢ = 5T,,) /5T, and T}, being the period of one cycle of the sinusoid. The electric-field amplitude
is clearly amplified upon the passage of the sinusoidal pulse across the gain region, thus demonstrating
linear small-signal gain (Figure 49.7a). In the time domain, the application of an initial sinusoidal pulse
with unit amplitude is amplified at the output end of the structure (Figure 49.7b). Let us compute the
complex propagation factor between two points in the gain medium, z; and z,, separated by one dielectric
wavelength, I = z; — z; = 4y/m:

etke(z2—n1) — -ELzm) . (49.29)
Ex (Zl'm)
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FIGURE 49.7 (a) Slight amplification of a sinusoidal electric-field switch-on pulse upon its passage through an ini-
tially inverted two-level GaAs slab medium of refractive index 3.59 after 1 x 10° time steps (each of duration 1x10~* fs)
with Courant stability parameter 0.75. The initial population profile across the structure is shown with a thick solid
line (top-hat shape). The spatial discretization in this simulation was 1 A. (b) Intensity evolution in time of the pulse
at the input boundary of the simulated structure (fast-oscillating curve on the left) and the amplified time trace of the
pulse at the output boundary (time-delayed curve on the right). The fast oscillations are at the resonant pulse carrier
frequency, w.
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where E,(z;,w) i = 1,2, are the Fourier transforms of the time traces of the electric field sampled at the
two points, and k. = p + iy is the complex wavevector with f-phase shift and y-gain/absorption coef-
ficient, depending on its sign (+/—). Thus, substituting these back into the left-hand side of Equation
49.29, one can define the amplification and phase factors as e/ and eP/, respectively. For the ampli-
tude gain coefficient, the steady-state solutions of the density-matrix equations for a two-level system
(see [50]) read:

Yﬂl’?lpf (m} = & Nag)z

—g(w), (49.30)
Co 2e 0 hn GaAs

where ng, ,, is the GaAs refractive index, c; is the speed of light, g, is the dielectric permeability in vacuum,
2T,

—————, with normalization
I+(w—w,) T3

and the normalized Lorentzian lineshape function is given by: g(w) =

oo

condition: | g(w)dw = 1. The “atomic” phase shift of the optical wave induced by the two-level system is
—o0

given by
N.g* (0 —w,) T
W *Ya o) 2 W
Apy = Akl= ———mF———— =pl - —1. 49.31
Pat C 480‘&”(;‘“\5 g (w)=p HGaAs C ( )

We can now compare the FDTD simulation results obtained with our Maxwell-pseudospin model
(Equation 49.26) with the above analytic expressions (Equations 49.30 and 49.31); the results from the
two methods are plotted in Figure 49.8. Our model is in remarkably good agreement with the density
matrix-calculated gain/absorption coefficients (a) and phase shift (b) in a HB two-level system.
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FIGURE 49.8 (a) Amplification spectrum of a switch-on pulse with carrier wave of angular frequency, w, passing
through a GaAs slab waveguide. The spectrum was calculated using two independent methods: by applying the analyt-
ical expressions of the density-matrix method to a HB two-level system (Equation 49.30) (dashed curve), and by finding
the FDTD solution of the Maxwell-pseudospin set of equations (Equation 49.26) (solid curve). The w corresponding
to the amplification peak is resonant with the optical transition of the two-level quantum system making up the waveg-
uide and is denoted w,. Note that the ripple effect observed in the solid curve is an artefact of the FDTD numerical
method. (b) w-dependence of the phase shift (in degrees) of the switch-on pulse emerging from the waveguide. The
phase-shift spectrum was inferred independently from the density-matrix method (Equation 49.31) (dashed curve)
and the Maxwell-pseudospin method (Equation 49.26) (solid curve). FDTD, finite-difference time-domain.
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49.3.4 Resonant Nonlinearities and Gain Saturation

In Section 49.3.3, we employed the analytical steady-state density-matrix equations to perform a successful
validation of our Maxwell-pseudospin model against the linear small-signal gain in a HB two-level system.
In what follows, we shall show that our model also describes correctly the nonlinear gain dynamics of a
HB two-level saturable gain medium. We keep the model structure, source excitation (i.e., input pulse)
shape, and material parameters the same as in Section 49.3.3, so that the saturation condition at resonance
is satisfied:

BT\ T,

" (49.32)

We apply the same source excitation (Equation 49.28) but vary the amplitude, E;, running separate simu-
lations for different amplitudes, ranging from Ey = 5% 10°V-m™! to E; = 1 x 10® V-m™". The nonlinear
gain dynamics is shown in Figure 49.9 [51]. The gain peaks and levels off after some time, due to the deple-
tion of the population residing on the upper level. The higher the initial excitation, the faster the gain
reaches the steady-state field amplitude value. We proceed to demonstrate quantitative agreement between
density-matrix theory of saturation of a two-level system and our Maxwell-pseudospin model. We choose
the initial electric-field amplitude Ey, = 5 x 10V - m™!, T, = 10ps, and T, = 10 fs, again satisfying
the resonant saturation condition (Equation 49.32). The saturation value of the population inversion was
calculated in [50] to be

1 _h

- @VTsz‘

(49.33)

giving a value S3;,, = 0.3 for the chosen parameter set. We can calculate the unsaturated intensity gain

unsat _ Im(Imax /1,
2L

coefficient from the maximum intensity using y;' ), By definition, the saturated intensity is

the intensity of the signal passing through the laser medium for which the gain coefficient is reduced down
to one-half of its original value [52]:

unsat

Y.
sat int
sl — 49.34
Tint 1+ Iﬂsm ( )

Given that the normalized saturated field intensity is I, /I, = exp( %MLK) [51], I /1y is calculated to be
1.01. In order to make quantitative comparison with our model, we run the code with a large number of
time steps (4.8 X 107, of 1 X 107 fs duration each) to ensure that the field and population dynamics have
reached stationary values. In Figure 49.10a, we plot the final instantaneous electric-field distribution and
population profile at subsequent time steps, showing the population relaxing to a steady-state value. In the
time domain, the time trace at the waveguide output, (Figure 49.10b), and the population inside the gain
region (Figure 49.10c), are plotted. It is easy to check that the steady-state values inferred from our model
are in excellent agreement with the theoretically computed values. With this we conclude our corroboration
of the ability of our model to reproduce correctly the gain saturation dynamics of a HB two-level quantum
system.
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FIGURE 49.9 Gain saturation dynamics of a HB two-level quantum system excited by a source electric field with
different amplitude: (a) E, = 5% 106V - m™!; (b) E; = 5% 107 V- m~!. The time trace of the amplified electric field
is sampled at the output of the simulation domain. In both cases, the amplitude of the oscillations (with frequency wy)
stabilizes after some time. Note that after peaking, the gain in (a) continues to drop approximately linearly at a relatively
slow rate over the entire time span shown on the graph, while the gain in (b) reaches a steady-state value after ~4 ps.
(G. M. Slavcheva et al., IEEE Journal of Selected Topics in Quantum Electronics © 2004 IEEE.)
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FIGURE 49.10 (a) Instantaneous electric-field amplitude profile across the waveguide (sinusoidal curve), obtained
after 4.8 107 time steps (corresponding to a total time of ~4.8 ps), and the population inversion profile within the active
region at several subsequent time steps (top-hat function with decreasing amplitude). The step in zis ~1.8x107'° mand
the time step is ~1x 10~ fs. The population is initially completely inverted: S;; = 1, but reduces over time (downward-
pointing arrow), eventually converging to the theoretically obtained population steady-state value of 0.3. (b) Time
evolution of the normalized field intensity showing convergence toward the theoretical value of 1.01. (c) Population
relaxation over time, tending toward the theoretically predicted value of 0.3. (G. M. Slavcheva et al., IEEE Journal of
Selected Topics in Quantum Electronics © 2004 IEEE.)

49.3.5 Coherent Propagation Effects, Self-Localization and Pattern Formation
in 2D Planar Nonlinear Optical Waveguides and Semiconductor
Microcavities

49.3.5.1 2D Nonlinear Optical Waveguides

We employ our 2D Maxwell-pseudospin model (see Section 49.2.4), based on self-consistent solution of the
time evolution equations of a degenerate three-level quantum system, (Equation 49.4), forj, k,I = 1,2, ..., 8
and Maxwell’s curl equations for a TE-guided mode, Equation 49.21 (Equation 49.22 for a TM equivalent),
propagating in a planar parallel-plate mirror optical waveguide, or planar semiconductor microcavity [45],
of the type shown in Figure 49.11.

It is easy to show that by setting §; = §,,§; = =S§,,S; = S3, the TE case is equivalent to a two-level sys-
tem case (Equation 49.7) and the equations for the remaining coherence vector components are decoupled
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FIGURE 49.11 Planar parallel-mirror waveguide (left panel) and a semiconductor microcavity (right panel) filled
with a resonantly absorbing three-level medium. Only TM-guided modes are shown. Perfectly transmitting boundary
conditions are imposed on the upper/lower boundaries (upward-pointing arrows) and perfectly reflecting side bound-
aries are assumed (left/right arrows). The pulse initially propagates through a free-space region (air), then penetrates
further, interacting with the degenerate three-level medium, and finally exits through another free-space region. B.C.,
boundary conditions; DBR, distributed Bragg reflector.

from this system, since there is no coupling to “level 3” in this case. In the FDTD numerical implementa-
tion, we use as a source field the TEM (i.e., TM,) guided mode of a parallel-mirror slab waveguide. The
electric field is a plane wave linearly polarized in the transverse x-direction perpendicular to the waveguide
plane

Eqsech (100) sin (wy?)

By [(%)z] sin (@ot)

E, (z=0y.t)= E,(z=0,5.t) =0, (49.35)

21
2

t
where I' = 7, Here we have allowed for two electric-field envelopes: hyperbolic secant and Gaussian.

We should thezrefore expect that the PAT [18] still holds. The pulse area at a given time is given by

t
J A(zt')dl, (49.36)

-0

O(z,t) =

=8

where the electric-field envelope is as follows:

t—Z

Az, )= Eusech( = X ) = Eysech (10I). (49.37)
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The area under the entire pulse is given by

=9

Bpulse (2) = ] Al(z.t')df. (49.38)

According to PAT, pulses with areas less than n should be completely absorbed within several absorption
lengths; however, pulses with an area of even multiples of n should continue to propagate undistorted as
a solitary wave—known as SIT soliton—through the resonantly absorbing medium. We set all resonant
dipoles initially to the ground state, i.e., S;, = —1,8g, = —%. We then test the predictions of PAT by

calculating the pulse amplitude from the PAT, which is given by the following relation for a pulse with a
hyperbolic secant-shaped envelope:

2nh Opulse (2 =0)
Ey = o pulse , (49.39)

g arctan (sinh (1)) |fw 2n

10

where f; = 1/7, and 1, = T,/20, with T, = 100 fs being the pulse duration chosen for this simulation.
If we set the initial pulse area 0(z = 0) to 2%, we get a pulse amplitude corresponding to a soliton pulse of
Ey = 4.2186 X 10° V - m~!. The simulated waveguide structure is 150 pm long and 50 pm wide. 3D plots
of the soliton field modulus (a) and population relaxation term S, (b) distributions in the waveguide y-z
plane and a slice through the middle of the waveguide’s width are displayed in Figure 49.12.

The stable SIT soliton propagation is shown in Figure 49.13a and b: the initial 2x pulse propagates in the
resonantly absorbing medium while maintaining its hyperbolic secant shape without any loss. The atoms
are driven into the excited state by absorbing ultrashort pulse energy, and by reradiating this energy to the
field they return to the ground state. The corresponding population inversion exhibits complete transition
from the ground level to the excited state and back to the initial state within one Rabi period. By contrast,
for a 0.9x pulse with pulse amplitude E, = 1.18957 x 10° V- m~, the initially symmetric pulse is distorted
and reshaped during its propagation (Figure 49.13c). The initial equilibrium between the energy absorbed
by the leading pulse edge and the energy reemitted by the trailing edge is violated and the pulse becomes
increasingly asymmetric. In addition, the system is only partially inverted (Figure 49.13d). The reemitted
energy of the continuously growing trailing edge is transmitted through the lower (z = 0) boundary. After
a sufficiently long time, this pulse should eventually be completely absorbed, in agreement with the PAT.

Let us consider now the more interesting case of a TM, -guided mode of a parallel-mirror slab waveguide,
which cannot be reduced to the two-level system case. We solve self-consistently Maxwell’s equations for
a TM wave, Equation 49.22, with the pseudospin equations, (Equation 49.4), for a three-level system. As a
source field we use the TM; slab waveguide mode

E, (z=0,y,t) = E,¢; cos (K—:) sech (100) sin (@,t) = E, (. t) sin (w,t)
D % .

E,(z=0,y,t) = —E,¢; sin (E ) sech (100) cos (w,t) = E, (y,t) sin (0,t)

ﬁ)‘%i‘lz 2

+-(3) T

6= — - Cf = —
1 ) » 2 3
W,E,N o€t

(49.40)

where w is the waveguide width. In order to obtain a stable soliton solution, we generalize the PAT to
multiple spatial dimensions, defining the pulse area as the area below the modulus of the field envelope,
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FIGURE 49.12 (a) Superimposed snapshots of the modulus of the electric field for a TEM guided mode propagating
in a planar parallel-mirror waveguide at times t = 150,250, 350, and 500 fs after the arrival of the pulse at the left
boundary of the waveguide. The initial population profile, S-_, is also shown as an indication of the 2D boundaries
of the active medium; the resonant dipoles are initially in the ground state with §,, = —1, absorbing the incoming
field radiation. (b) Corresponding population inversion term §; distribution across the waveguide plane, showing Rabi
flops. (c) Slice straight across the middle of the waveguide along the propagation direction, showing the modulus of
the electric field, dispersive, and absorptive polarization components, §; and S, respectively, and the population, S,
performing a full Rabi flop along the waveguide axis. Az = 30nm, Ay = 500 nm, At = 9.989 x 1072 fs, the pulse
wavelength is A = 1.5pm and the duration T, = 100 fs. (Adapted with permission from G. Slavcheva et al., Physical
Review A, 66, 063418, 2002. Copyright 2002 by the American Physical Society.)

which depends on the point in the waveguide plane we choose to consider:
oo o0
A © [ s
0(y.z) = - I ]E (5.2 t’)ld:’ = I 2+ Edt’. (49.41)
—oo —00

Assuming that the initial pulse is injected into the active medium at a point y = y, at the boundary (z = 0),
stable pulses in the absorbing medium are obtained when

oo
0(y=ypz=0)= % l \/Eﬁ (70:0.') + E2 (7,0, ¢')dt' = 2nm, (49.42)
-0



Nonlinear Dynamics in Quantum Photonic Structures 687

1. 1 T
08 ] 0.8 |
06 h |‘ . 06
04 ‘ 04|
Virt! 0_3; [ '.‘II | |. | ,,:'3 {)‘(2).
S| BOW Ty
W e | | '
—oa| | | Y
—0.6 | ' ‘ | 06}
-0.8/ | - -08 |
-1 30 60 90 120 150 Ay 30 60 90 120 150
z (pm) z (pm)
(a) (b)
1 0
08 0.1
06 | -0.2 |
s 04 —03!
“’.; 0.2 | @ —04|
S ‘1 =05
g2 “ 06
—0.4 | —0.7 |
—0.6 | -08f b
—0.8 | - —09f [N
1 30 60 9 120 150 1 30 60 90 120 150
Time (pm) z (pm)
(c) (d)

FIGURE 49.13 (a) Time evolution of a 2x initial pulse (E; = 4.2186 x 10° V.- m~!)at t = 150, 250, 350, and 500 fs
after impinging on the left boundary of a planar parallel-mirror waveguide. The soliton propagates undistorted through
the resonant medium, the boundaries of which are shown by the initial population profile, §;, = —1, i.e, all dipoles
are initially in the ground state. (b) The corresponding population inversion term, S, exhibits full Rabi flops, whereby
the absorbed energy is fully balanced by the emitted energy over one Rabi period. (¢) Time evolution of a pulse with
initial pulse area 0.9n (< n) (E, = 1.18957 x 10° V- m~!) at the same simulation times. In this case, the pulse becomes
distorted due to imbalance of the absorbed and reemitted energies, and will eventually decay to zero in agreement with
the PAT. (d) The resonant system is only partially inverted: there is no population swap between the ground and excited
levels. (Adapted with permission from G. Slavcheva et al,, Physical Review A, 66, 063418, 2002. Copyright 2002 by the
American Physical Society.)

with n being an integer. A 2x pulse has an initial pulse amplitude E, = 1.123 X 10’ V - m~!. The time
evolution of the TM, soliton is shown in Figure 49.14.

49.3.5.2 2D Semiconductor Microcavities

Using the 2D model, we numerically investigate conditions of onset of SIT cavity soliton formation in
a semiconductor cavity driven by a coherent ultrashort pulse launched from the lower boundary (see
Figure 49.11, right panel) [53]. We have designed a number of 2D microcavity structures in order to test
the influence of the cavity length on the localization phenomena and pattern formation. A typical 5i-
cavity (where the optical path length between the mirrors of the cavity is equal to an exact multiple of five
wavelengths) designed at A = 1.3 pm, filled with resonantly absorbing medium sandwiched between a
bottom DBR (31.5 pairs of GaAs/AlAs) and a top DBR (24 pairs of Al, ; Ga, 9As/Al, ¢Ga, 5 As) is shown
in Figure 49.15a and b. We apply a driving pulse excitation with duration 100 fs at the left boundary
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FIGURE 49.14 Time evolution of the (a) modulus, (b) E,, and (c) E, electric-field vector component of the TM,
soliton at times t = 90, 125, and 155 fs after its arrival at the left boundary of a planar parallel-mirror waveguide. The
2D pulse travels undistorted in the resonant medium with refractive index, n = 1. The waveguide is 50 pm long and
9.9185 pm wide. Discretization grid: Az = 1.5nm; Ay = 119.5nm; At = 5 X 1073 fs, (d-g) Polarization components
of significance (i.e., those corresponding to transitions from one level to another) in a degenerate three-level system.
§, and §;: in-phase dispersive components; S; and S4: in-quadrature absorptive components. (Continued)
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FIGURE 49.14 (Continued) (d-g) Polarization components of significance (i.e., those corresponding to transitions
from one level to another) in a degenerate three-level system. §, and §,: in-phase dispersive components; S; and Sg: in-
quadrature absorptive components. (h) Population component S; showing population Rabi flops along the waveguide
and in a transverse direction (two complete Rabi flops are visible). (i) lengthways cross section of (h) showing complete
Rabi flops in the propagation direction, z.

(z = 0) of the microcavity (Figure 49.15a), which is 12 pm long and w = 9.92 pm wide. The dipole num-
ber density is N, = 10** m~ and the dipole matrix element, g = 1 X 107 C - m. The relaxation
times are assumed uniform and equal to 100 ps, satisfying the SIT criterion T}, < Tj, i = 1,2,....8.
The initial pulse amplitude E;, = 4.8643 x 107 V - m~! is calculated for a pulse area of 2, assuming that
the PAT still holds. As pointed out in [54-56], this is not a necessary condition for SIT in multilayered
media. Even a relatively weak pulse would lead to SIT intracavity patterns after sufficiently long simula-
tion times, due to field enhancement by constructive interference from multiple reflections in the DBR
mirrors. The population inversion gradually builds up with time and begins to perform Rabi flopping.
In Figure 49.15c through f, the electric-field modulus and the corresponding population inversion profile
are plotted for the cavity region. The clearly visible instantaneous roll patterns for the electric field and
population inversion, S, feature a quasi-stationary standing-wave (i.e., quiescent) SIT soliton. The cavity
induces a quasi-stationary population “grating’, and the number of the quasi-complete Rabi flops (10) of
the population equals the number of half-wavelengths along the cavity length, L. = (104) / (2n). At the
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FIGURE49.15 (a) 2D refractive-index profile across the semiconductor microcavity. (b) Longitudinal slice of (a) ata
distance y, = 6 pm from the left interface, y = 0. (c) A snapshot at time ¢ = 3.6055x 10717 s of the electric-field modulus
distribution across the cavity. (d) Top view of (c) showing the roll patterns formed. (e) Snapshot of the corresponding
population inversion profile across the cavity, showing 10 complete Rabi flops. (f) Top view showing the intracav-
ity population “grating” (roll pattern). (G. Slavcheva et al., IEEE Journal of Selected Topics in Quantum Electronics
© 2003 IEEE.) (Continued)
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FIGURE 49.15 (Continued) (g) Top view of the E,-component roll pattern. (h) Top view of the 2D pattern of
the E. electric-field component. (G. Slavcheva et al., IEEE Journal of Selected Topics in Quantum Electronics © 2003
IEEE.)

same time, a roll pattern for the E, electric-field component, Figure 49.15g, and a more elaborate 2D one,
Figure 49.15h, for the E, field component are observed. Performing simulations with different driving pulse
durations on a number of different microcavity designs, we demonstrate numerically the existence of a new
type of 2D spatiotemporally localized standing-wave soliton (“light bullet”). The SIT cavity soliton results
from the interplay of the resonant nonlinearity and the Bragg reflection interference and dispersion in the
microcavity.

49.4 Optical Orientation in Quantum Wells and QDs

Circularly polarized optical excitations of semiconductor nanostructures excite particular interest due
to their ability to transfer angular momentum and thus to drive the quantum system to a specific
angular-momentum state. The conversion between the flying qubit encoded in photon polarization and
the material qubit encoded, for example, in the carrier spin, is known as optical orientation, and this
technique has been successfully applied to spin-polarized states in semiconductors [14]. This, in turn,
opens up the possibility for faithful transmission of flying qubits between distant locations. If suffi-
ciently short (and therefore high-intensity) optical pulses are used, so that they can interact with the
system before it can be affected by its environment, the spin does not have time to decohere (i.e.,
lose its phase information) and could be coherently manipulated by such light pulses. In this high-
intensity, coherent regime, optical Rabi oscillations take place; one-half of each oscillation consists of
the population being driven from the ground to the excited state (or vice versa), hence performing a
Rabi flop. A Rabi flop corresponds to a one-qubit rotation, whereby the spin is rotated through x; this
entails a transition either from spin-down (state 0) to spin-up (state 1) or vice versa (Figure 49.1). The
achievement of control and manipulation of the single charge-carrier spin dynamics and the collective
many-body dynamics of multiple entangled spins is the key to the physical implementation of quantum
computation.
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49.4.1 Circularly Polarized Optical-Pulse Interactions with Two-Level
Quantum Systems: Selective Spin Initialization and Readout

In bulk semiconductors and in semiconductor structures with reduced dimensionality, dipole optical tran-
sitions (including excitonic transitions) between energy levels are only allowable subject to satisfying
the angular-momentum optical selection rules, AJ, = 0, +1, for linear and circular photon polarization
respectively, where J, is the total angular-momentum projection on the electromagnetic wave propagation
direction coinciding with the QD growth axis. We shall consider optical transitions with AJ, = +1 that
are excited by circularly (or elliptically) polarized light, and will therefore apply the pseudospin equations
derived for circularly polarized light in Equation 49.8, coupled to Maxwell’s vector equations for an electro-
magnetic wave propagating along the z-direction, circularly (elliptically) polarized in a plane perpendicular
to z [57]:

OH, (z,t) _19E,(z1)

ot po oz
oH, (z.1) _10E.(z1)

dat po oz (49.43)
OE,(z.,t)  10H,(z1) 0P (z1)

dt T e oz e Ot
0E, (z,1) _10H, & 1 9Py (z,1)

ot e 0z e ot

We phenomenologically construct the Hamiltonian corresponding to initially absorbing energy-level
schemes (i.e., S35 = —1), shown in Figure 49.16:

o 0 | (Q —iQ )

= =% _ ot S (49.44)
—1(e+ :QJ,) @

The Hamiltonian for an initially amplifying two-level system (i.e., S5, = 1) is the transposed matrix. Here

we have introduced a complex Rabi frequency, whose real and imaginary parts correspond to the E,

()]
electric-field vector components, , = %Ex and Q, = %E},.

E, = hw seee E, = ho
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FIGURE 49.16 Energy-level diagram of (a) initially absorbing (i.e., entire charge-carrier population in the ground
state) and (b) amplifying (i.e., entire charge-carrier population in the excited state) two-level system, with energy-level
separation hayg and allowed dipole optical transitions subject to the condition AJ. = +1. States are additionally labeled
(/. J.), where ] is the total angular momentum and /. is its projection along z. (a) A left circularly polarized optical field,
o, drives the population into the upper excited level, |2}; the population is returned to the ground level by an optical
pulse with opposite helicity, 6*. (b) Having been initially prepared in the excited state, |1), the population in the system
is driven by a right circularly polarized pulse, 6, to the ground state |2) and returned to the initial excited state by a
left circularly polarized pulse, o™
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Employing the general methodology in Section 49.2.3, we can easily show that

Px = "@Ndsl‘ (49.45)
Py = —@N,S,.

We solve numerically by the FDTD method the system of equations, Equations 49.43 and 49.8, coupled

through Equation 49.45. The source optical fields for left and right circularly polarized light are each given

by two orthogonal, linearly polarized pulses, one time-delayed relative to the other by n/2, with carrier
frequency @, tuned in resonance with the two-level system:

= { E (z=0,t)=E (t)cos(p) { E, (z=0,1) = E, (t) cos(®,1) (49.46)

E, (z=0,1) = —E, (t) sin(w,t) ° E, (z=0,1) = E, () sin(w, 1), '

where the pulse shape is determined by the envelopes:

ey Egsech (10IN) 49.47)
AT Egexp [— (t— rU)Z /tj] ; ‘

which we choose to be either hyperbolic secant or Gaussian. We consider a 15 pm-long simulation struc-
ture filled with either a resonantly absorbing or amplifying (S;; = —1 or §3; = +1) two-level medium,
assumed to be GaAs (refractive index, n = 3.3827). We use a pulse wavelength, A; = 1.5 um and a pulse
duration, T, = 30fs; the dipole coupling g = 1 x 1072 C - m, and two-level system ensemble density
N, = 1 x 10** m™ are taken from [47]. We restrict ourselves to the linear regime (initial electric-field
amplitude, E, = 1V - m™'). The material relaxation times are T; = 100 ps and T, = 70 fs. We launch a
left circularly polarized pulse, 67, from the left boundary of the simulation domain and sample the electric
field at two locations, z; and z,, along the active medium. The complex propagation factor (see Equation
49.29) over one dielectric wavelength / = z; — z; = A/n is calculated for the E, and E, components, and
the results for the gain/absorption coefficient spectra are compared with the steady-state density-matrix
theory spectra (see Equation 49.30). A snapshot of the electric-field components, E, and E,, at the input
and output boundaries are shown in the first column of Figure 49.17. The corresponding Fourier spectra
and gain/absorption coefficients are shown in the second and third columns, respectively, of Figure 49.17
for an initially absorbing (Figure 49.17a through f) and initially amplifying (gain) medium (Figure 49.17g
through 1). The optical wave interacts with the two-level system, driving the population into the upper
state (or returning the population to the ground state) by absorbing (or emitting) pulse energy. Therefore,
we clearly observe gain/absorption in the Fourier spectra. The gain/absorption coeflicients coincide with
those for linear polarization. In addition, we have shown that when pumping an absorbing system with a
right circularly polarized pulse, the pulse fails to excite the system, and similarly, when pumping an initially
inverted system (the whole population residing on the upper level) by a left circularly polarized pulse, the
system remains unaffected. Therefore our model correctly describes the excitation using circularly polar-
ized light of dipole optical transitions subject to the optical selection rules, A] = +1, in a two-level system.
We have thus numerically demonstrated selective excitation of specific spin states by circularly polarized
pulses with predefined helicity.

49.4.1.1 SIT and Polarized SIT Soliton Formation

The results in Section 49.4.1 were obtained in the linear (small-signal) regime. Let us now consider the
nonlinear coherent regime of ultrashort pulse propagation through resonant media, whose atomic life-
times greatly exceed the pulse duration (i.e., such that Ty, T, > T,). The simulation domain is 150 pm
long and a two-level resonantly absorbing medium with refractive index n = 1 is embedded between two
symmetric free-space regions, each with length 7.5 pm. We inject a resonant, left circularly polarized pulse,
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FIGURE 49.17 Time evolution at the input (solid line) and output (dashed line) structure boundaries of the electric-
field components, E, (a) and E, (d), of a circularly polarized optical pulse with unit amplitude and pulse duration 30 fs
for an initially absorbing two-level medium. (b), (e) Fourier spectra corresponding to the E, and E, field components,
respectively, showing absorption of the pulse (dashed curve dip). (c), (f) Absorption coefficients for E, and E,, respec-
tively; in this case, the dashed curve indicates the numerically calculated coefficients for linear polarization, while the
solid curve signifies the analytically computed ones (Equation 49.30). (g-1) Respective plots for an initially amplifying
(gain) medium; notations are the same as in (a—f). The gain is clearly visible in the Fourier spectra in (h) and (k) (see
overshoot of dashed curve). (Adapted with permission from G. Slavcheva and O. Hess. Physical Review A, 72, 053804,
2005. Copyright 2005 by the American Physical Society.) (FDTD, finite-difference time-domain.)

o, with hyperbolic secant envelope, since this is the well-known stable soliton solution of the Maxwell-
Bloch system (see, e.g., [58]). We choose the electric-field component amplitudes so that the pulse area,
according to the PAT, is 2x. This condition implies that E, = 4.2186x10° V-m~. The time evolution of a 21
pulse is shown in Figure 49.18a. Both circularly polarized pulse components travel undistorted through the
resonantly absorbing two-level medium as a solitary wave, and the population inversion is driven through
complete Rabi flops by the leading and trailing pulse edges. An expanded view of a snapshot of a circularly
polarized SIT soliton at the simulation time t = 0.2 ps is shown in Figure 49.18b. By virtue of the PAT,
stable soliton solutions in gain (initially inverted, S3; = 1) medium are obtained for pulse areas which are
odd multiples of &. In order to confirm this prediction, we launch a right circularly polarized pulse with
amplitude E; = 2.1093 x 10° V- m~!, which corresponds to a pulse area of m. As expected, a n-pulse com-
pletely de-excites the population back to the ground state (Figure 49.18c); the pulse amplitude increases,
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FIGURE49.18 (a) Time evolution of a 2r, 6™ pulse propagating (from left to right) in a resonantly absorbing medium.
The region where the initial charge carrier population profile is §;5 = —1 demarcates the extent of the active medium
on the diagram. The normalized electric-field components, E, and E,, and the instantaneous population profile, S, are
plotted at the simulation times ¢ = 200, 267, 334 and 400 fs from the moment the pulse is injected at the left boundary
of the medium. The pulse travels without loss: it is a SIT soliton. (b) Expanded view of the 6~ SIT soliton in (a) at
t = 267 fs showing the full Rabi flop of the population inversion. (c) A snapshot of a 6t SIT = pulse at t = 267 fs that
completely inverts the population in the resonantly amplifying medium. (Adapted with permission from G. Slavcheva
and O. Hess. Physical Review A, 72, 053804, 2005. Copyright 2005 by the American Physical Society.)

while the pulse duration decreases, thereby conserving the pulse area during the pulse propagation in the
amplifying medium.

49.4.2 Circularly Polarized Optical Pulse Interactions with Degenerate
Four-Level Systems

Let us consider now a more realistic discrete-level quantum system, such as excitonic transitions in bulk or
low-dimensional semiconductor systems. For instance, we consider fundamental heavy-hole dipole optical
transitions in QDs or quantum wells (QWs), whereby the band structure in the vicinity of the I'-point
(k = 0) in the Brillouin zone (BZ) is isomorphic with a pair of two-level systems corresponding to 6~ and
o™ heavy-hole excitonic transitions, as shown in Figure 49.19.

Consider a plane electromagnetic wave propagating along z direction, circularly polarized in a plane per-
pendicular to z, and tuned in resonance with the fundamental heavy-hole transition of the semiconductor
system. The resonant nonlinearity is modeled by an ensemble of degenerate four-level systems of the type
shown in Figure 49.19, with density N,,. The time-evolution of a four-level system under a dipole-coupling
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FIGURE49.19 Energy-level diagram of 6~ and 6* heavy-hole transitions in a quantum well near the I"-point (k = 0)
or between s-shell heavy-hole and electron levels in a QD. The energy separation between the upper and lower levels is
hwg, and the allowed dipole transitions satisfy AJ. = +1.€Q, and , are, respectively, the real and imaginary part of the
Rabi frequencies associated with the coherent transitions. y; and y; are, respectively, the longitudinal relaxation and
transverse dephasing rates of the excited states. ¢, is the bottommost electron energy level in the conduction band, and
hh, is the topmost heavy-hole energy level in the valence band; together, these energy levels make up the fundamental

bandgap.

external perturbation is described in terms of the SU(4) group generators by an equation of motion for
a 15-dimensional real state pseudospin vector (see Equation 49.12 for j. k.l = 1,2, ..., 15), where the dis-
sipation in the system is accounted for by introducing nonuniform relaxation times, T;. Without making
any assumptions about the initial population redistribution between the levels, the system Hamiltonian is
given by [59]

0 : (Qx—igy) 0 0
_L (Q +iQ ) ® 0 0
T 2 X 'y 0
A=n 5 . . o (49.48)
-3 1 'y
0 0 -1 -ie) 0y

We investigate the nonlinear coherent propagation regime, where the SIT condition T}, < T} is satisfied
with T, = 100fs and T; = 100ps. A circularly polarized pulse, amplitude-modulated by a hyperbolic
secant function and whose carrier-wave frequency is resonant with the optical transition (at A = 1.5 um),
Equation 49.46 and 49.47, is applied at the left boundary z = 0 of a 150-pm-long simulation domain, with
either resonantly absorbing or amplifying media embedded between two free-space regions of thickness
7.5 um each. We choose the initial pulse to be a n-pulse, giving E, = 1.093 X 10° V - m™! according to the
PAT. We wish to achieve selective excitation of dipole optical transitions with AJ, = —1 or AJ, = +1, with
a view to manipulate a particular spin state simply by selecting the helicity of the impinging optical pulse.
The two leftmost columns of Figure 49.20 show all four possible cases where the initial state population
of each two-level system is either entirely in the ground or entirely in the excited state. The two rightmost
columns of the same figure also show the outcome of pulse excitation of each respective system. The con-
clusion that can be drawn is that we can indeed coherently control the spin population of specific spin
states in the four-level system by choosing the proper polarization of the injected pulse. We have numeri-
cally demonstrated SIT and SIT soliton propagation in a four-level system initially prepared in a state with
uniformly distributed populations in either the ground or excited states of the two two-level systems [60].
The ultrashort pulse travels undistorted in the resonant, degenerate four-level medium, Figure 49.21a, and
the population is locally driven by the electric field through full Rabi flops simultaneously in both two-level
systems, Figure 49.21b (compare with the two-level system soliton, Figure 49.18b).
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FIGURE 49.21 (a) Polarized SIT soliton propagation through a four-level medium resonant with the carrier wave of
the injected pulse. The diagram shows a superimposition of the soliton at three different times: t = 133, 266 and 400 fs
from the moment the pulse is injected at the left boundary of the medium. (b) A snapshot of the polarized soliton in
the four-level medium, consisting of two pairs of two-level systems, at t = 200 fs. The medium is initially prepared in
a state with the charge-carrier population residing in the lower-lying level, |1}, of the first two-level system and in the
upper level, [4), of the second two-level system (see Figure 49.19).

49.5 Modeling Coherent Spin Generation, Manipulation, and
Readout in Charged QDs

In Section 49.4, we demonstrated coherent, selective spin excitation dependent on the helicity orientation
of an impinging ultrashort optical pulse. In this section, we will show how spin states in low-dimensional
semiconductor structures can be generated, manipulated, and read out using ultrashort circularly polarized
pulses. Our goal will be to compute the time evolution of a discrete-level system and map the allowed dipole
optical transitions that occur in a semiconductor nanostructure (e.g., a single QD or an ensemble of QDs)
upon ultrashort, circularly polarized optical excitation. The pulse leaves behind a long-lived coherence,
and we shall look for characteristic signatures in the dynamics that would allow us to determine the initial
spin state and find useful regimes and schemes for high-fidelity optical manipulation of the spin confined
in a QD. One promising approach is to address optically individual carrier spins in semiconductor QDs
and manipulate them through optically excited states (charged excitons) by employing the techniques of
coherent quantum control and optical orientation.

49.,5.1 Single-Charged QD Embedded in a Waveguide

We will study n-doped QDs with an overall negative charge of a single electron. Injection of a single elec-
tron into a QD can be achieved either by modulation doping of the barrier region, adjusting the impurity
doping within a delta-doped layer to transfer on average one electron per dot to the lowest energy states,
or by electrical injection. A large class of self-assembled QDs posses quasi-cylindrical geometry about the
quantization axis, z, and the electron and hole single-particle states in the conduction and valence band,
respectively, can be approximated by harmonic oscillator potentials [61] (Figure 49.22). The resonant, cir-
cularly polarized optical excitation of a charged QD leads to the formation of a three-particle complex—a
trion—consisting of two electrons occupying the same lowest conduction-band electron level in a spin sin-
glet state, and a hole occupying the lowest valence-band hole level (Figure 49.22c and d). There is strong
evidence from both experiment [62] and theory [63,64] that an intense resonant excitation of the trion
transition suppresses the electron spin relaxation due to hyperfine interaction of the electron spins with
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FIGURE 49.22 (a), (b) Schematic of the initial electron states (spin down and spin up) in a singly negatively charged
QD and (c), (d) the ground singlet negatively charged exciton, X~, which forms upon left circularly polarized, 67, and
right circularly polarized, 6*, optical excitation of the heavy-hole excitonic transitions. (e) Energy-level diagram of a
negatively charged trion (a three-particle complex of two electrons and a hole), equivalent to (a—d); the levels are labeled
with the J, quantum number, and the allowed dipole transitions correspond to AJ, = +1 with an energy gap of hwy,.
[Solid upward arrows, coherent optical transitions excited by 6~ or by 6™; dashed arrows, spontaneous emission rate,
I'; double-headed arrows, transitions due to electron- and hole-spin relaxation, with rates y, and y;, respectively; v,
and I'_, spin decoherence rates for electrons and holes, respectively.]

the lattice ions’ nuclear spins. The latter limits the ability to measure accurately the electron spin orienta-
tion at low temperatures, It is obvious that the longer the spin lifetime, the better the chances for optical
manipulation and readout of that spin state. We shall investigate both low- and high-intensity nonlinear
excitation regimes.

In our treatment of a single quantum object, we shall assume that the ergodic hypothesis holds—i.e., the
equivalence of time averages of an observable (in this case, the single-dot polarized, time-resolved pho-
toluminescence TR [PL]) and the ensemble averages at one time over a large number of identical replicas
of the dot system. Under such conditions, quantum mechanics allows the prediction of the single-system
properties on the basis of macroscopic ensemble averages. Therefore, we shall assume that the time depen-
dence of the optically induced coherent spin generation and subsequent relaxation in a single QD, averaged
over a large number of successive measurements, is equivalent to the corresponding spin dynamics of an
ensemble of identically prepared QDs. The ensemble of degenerate four-level systems describing the QD
resonant nonlinearities is resonantly coupled to an optical wave propagating along the QD growth axis,
z, and circularly polarized in a plane perpendicular to z. We use our general methodology to tackle this
problem [44] and solve the 1D Maxwell’s curl equations (Equation 49.43) coupled to the master pseu-
dospin equations for a four-level system (Equation 49.12) through the induced macroscopic polarization
given by

P, = —@N,.$,
Py = _@N‘QS?‘

(49.49)

The system under investigation is a GaAs/AlGaAs self-assembled, molecular beam epitaxy (MBE)-grown
QD with a height of 5 nm and refractive index, nig,s, = 3.63, sandwiched between two Al ;Gay ;As bar-
rier regions, each with a width of 50 nm and refractive index, nyjg,4s = 3.46, at the trion fundamental
transition resonance wavelength of 757 nm. The circularly polarized pulse, whose carrier wave is resonant
with the trion transition, is described by a hyperbolic secant envelope (see Equation 49.46 and first line
of Equation 49.47) and has a duration of 1.3 ps. The simulations are run repeatedly with a different initial
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pulse amplitude, E,, which is varied from a low value, E, = 550 V - m~!, through E; = 3x 106V . m~!,
representing a n-pulse completely inverting the spin population in the system, to Ey = 4 x 107 V- m~!,
corresponding to a pulse area of 121 and inducing six full Rabi flops. The fundamental trion transition
dipole moment is estimated to be o = 4.8 X 1072¥ C - m, and the 3D number density of the resonant
four-level dipoles, N, = 2.5 x 10** m™, is calculated from the QD surface density to give on average
one dot within the microscopic single-dot volume. The trion recombination (spontaneous emission) rate,
I" = 400 ps~!, is taken from [62]; the electron spin-flip rate due to hyperfine interaction with the lattice
ions’ spins, y, = 0.5ns™!, has been calculated in [65,66]; the hole spin-flip relaxation is widely assumed to
be due to phonon-assisted processes, and an estimate of y; ~ 170 ps~! [67,68] has been given. The trion-
bound electron and hole spin phonon-assisted decoherences are taken as y, = 450 ps~! and I'; = 340 ps™!
[69]. We shall assume that the initial spin population resides either in state |1) with spin-down, or in state
|3) with spin up. We initially excite the |1} — |2} transition by a 6™ pulse. The simulation results for
the time evolution of the pulse’s electric-field vector components and the populations of all four levels for
three initial electric-field amplitudes, E,, are summarized in Figure 49.23. Excitation of the |3) — |4) opti-
cal transition is, of course, identical to exciting the [1) — |2) transition. The simulated detection of the
time-resolved signals shows that there is a sufficiently long time interval—on the order of 400 ps—within
which it is possible to determine the spin of the initial states. Indeed, there are two reliable ways for initial
spin-state identification: through examining the PL trace profile and through the presence or absence of
a second echo pulse after a 6/~ n-pulse excitation. The observation of a nonmonotonic PL trace, rather
than an exponential decay, is always associated with a spin-up state; in addition, the appearance of a second
echo pulse post 6~ n-pulse excitation alludes to a spin up, whereas a repeated echo after a 6™ n-pulse exci-
tation is indicative of a spin down. The simulations show the onset of the high-intensity Rabi oscillations
regime, which suppresses the spin-relaxation processes.

49.5.2 Coherent Spin Manipulation through Hot-Charged Exciton States
in QDs

Optical manipulation of the spin of a QD-confined single electron or hole through the resonantly driven
trion ground singlet transition (described in the previous section) is considered to be one of the most
promising schemes for implementation of spin-based quantum computing, due to the extended spin life-
times which are limited only by the hyperfine interaction. However, the requirement of a resonantly driven
ground trion transition in an inhomogeneously broadened ensemble of charged QDs represents an obstacle
for the scalability of architectures based on this quantum system. This problem can be overcome by optical
excitation into the excited trion states, taking advantage of a recently discovered effect, herein referred to as
“spin filtering”. The effect is observed in p-doped QDs under nonresonant, circularly polarized optical exci-
tation, and constitutes an enhanced, photo-induced circular dichroism in the excited trion-state emission,
compared to the dichroism exhibited by the ground singlet trion state [70]. The degree of spin polarization
is nearly doubled when a high-energy level in the QD is excited resonantly. This is due to an increased
spin “injection” efficiency—i.e., the resonant excitation prevents relaxation processes from occurring and
the desired spin is maintained. In addition, nonmonotonic dependence of the degree of spin polarization
on the optical pulse power is observed, allowing to maximize it by optimizing the pulse characteristics.
This spin-filtering effect is promising for realization of high-fidelity schemes for all-optical spin manipula-
tion, since the increased polarization contrast for the two pulse helicities enables highly efficient selective
excitation and readout of the spin-up and spin-down populations.

We consider quasi-resonant 6~ or 6™ circularly polarized excitation of a p-doped QD ensemble into
the p-shell in the presence of a resident s-shell hole, and subsequent cascade relaxation to the bright trion
ground singlet state, whose decay is detected as PL. The optical excitation creates X** states, consisting
of one electron-hole pair in the s-shell and a resident hole in the p-shell (1e' 1h'2h"), grouped in four
degenerate doublets [71]. The exchange interactions can be revealed in the excited exciton spectra, and the
energy-level diagram and the spin configurations of the X™* trion are given in Figure 49.24.
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FIGURE 49.24 Energy levels and spin configurations of the hot X** trion states under ¢~ (left six-level system)
and o* (right six-level system) optical excitation, The excited singlet is energetically split from the triplet by A;;; the
excited triplet states are separated from each other by energy A,;,. The levels are labeled with the total spin projection,
], of the electrons and holes. [Small solid arrows, s-shell electron-spin projection; small open arrows, s-shell hole-spin
projection; large open arrows, p-shell hole-spin projection; upward wavy arrows, either 6~ or " excitation; downward

wavy arrows, photoluminescence (PL); shaded ellipses, exciton coupling in the radiative states; Agwp, energy separation
between p-shell and s-shell trion states.]

Spin decoherence mechanisms that need to be considered include the electron-hole anisotropic
exchange interaction (AEI), which remains relevant for excited trion states, and the hyperfine interac-
tion between nuclei and either electrons [72] or holes through dipole-dipole interaction [73]. The two
degenerate six-level systems for 6~ and o* excitation are coupled through transverse spin decoherence
mechanisms, as shown in Figure 49.25.

The system Hamiltonian of a circularly polarized pulse resonantly coupled to an ensemble of six-level
resonant absorbers with density N, is given by

0 0 0 0 0 -i(a=i,)
0 wy — Ay, — Ay 0 0 0 0
i 0 0 Wy — Ay, — A 0 0 0
H¥ =h i i cht " 49.50
0 0 0 Wy — Ay, 0 0 ( )
0 0 0 0 = Ay + Ay 0
1 )
-1 (QA. +iQ,) 0 0 0 0 oy

where —/+ correspond to 6~/c™" polarization, Q, = @% and Q, = {mi;—: are the time-dependent Rabi
frequencies associated with the E, and E, electric-field components, and o, and g are the resonant tran-
sition frequency and the optical dipole matrix element of the ground to excited singlet state transition
(1) = 16)).

In the presence of relaxation processes (Figure 49.25), under time-dependent external perturbation,
e.g., a laser pulse, the time evolution of the six-level quantum system is governed by a master equation,
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FIGURE 49.25 Discrete-level model of the X** states in a p-doped QD. The two degenerate six-level systems are
coupled via spin decoherence mechanisms represented by double-headed arrows. [y, hole-spin decoherence; v,,
electron-spin decoherence; y7, spin decoherence due to spin flip-flop processes, i.e., anisotropic electron-hole exchange
interactions (AEI); (J or O, circularly polarized transitions; upward arrows, o, and G:x resonant pumping; down-
ward arrows, radiative or nonradiative transitions; downward arrows denoted I'; |, detected polarized PL; vertical small
curved arrows, spin flip-flop coupling due to AEL]

Equation 49.12, for the N> — 1 = 35-dimensional real state pseudospin vector, S;» coupled to Maxwell’s
curl equations, Equation 49.43 [74], through the macroscopic polarization induced by the electromagnetic
pulse:

Px = _@NRSS (49.51)
P, = F@N,Sy

where —/+ again correspond to 6~ or 6" excitation, respectively.

The QD samples modeled are chosen to be identical to the ones used in TRPL experiments, namely
MBE grown on a semi-insulating GaAs (001) substrate. The QD layers are sandwiched between two GaAs
barriers and the dot areal density is approximately 2x 10'” cm~2 with an average uncapped height of 4 nm,
equivalent to a volume dot density, N, = 5 X 10> m~>, The simulation domain consists of an InAs QD
layer with nominal thickness given by the height of the typical QD (i.e., 4 nm) embedded between two
GaAs barrier regions, each with thickness 50 nm (see Figure 49.26).

The circularly polarized Gaussian pulse at the left boundary of the simulation domain, z = 0, is mod-
eled using two x and y linearly polarized waves with resonant carrier frequency, w,, phase-shifted by x/2
according to Equation 49.46 and bottom row of Equation 49.47. The system of equations is discretized in
space and time, with spatial and temporal steps, Az = 1 A and At = 3.33 x 107 fs, respectively, and solved
numerically directly in the time domain using the FDTD technique.

For comparison with the theory, PL experiments with short (i.e., 50 ps) 6~ or 6* optical excitation pulses
with pumping wavelength A, = 1065 nm inducing a resonant transition to the excited dot states were
carried out on QD ensembles nominally doped with one hole. The polarized PL was detected at the ground
singlet X transition, exhibiting a peak at A4, = 1148 nm. In our simulations, an optical pulse of duration
50 ps is injected at z = 0. The pulse center frequency, wy, is tuned in resonance with the energy splitting
between the ground heavy-hole level | 1) and the excited singlet trion state |6): AE, s = Ay, +Ex+ +4A,_p,
where A;_, is the energy separation between the s- and p-shell trion states. The ground trion singlet energy,
Ex+ = 1.0815¢€V, is determined from the resonant PL spectra at A4o. A;_, ~ 73 meV is inferred from the
PL spectra [70], and A;;, = 12 meV is taken in agreement with [71]. In order to calculate the Hamiltonian
in Equation 49.50, A, = 0.5 meV is used, as obtained in [71,75].
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FIGURE 49.26 A snapshot of the spatial distribution of the circularly polarized electric-field components of an exci-
tation pulse interacting with a six-level quantum system. The timing of the snapshot is t = 23.3 psafter the source pulse
impinges on the left boundary (z = 0) of the medium incorporating the quantum system. The charge-carrier spin pop-
ulations (diagonal density-matrix elements) of all six levels are shown; these indicate the fractional occupancy of each
level compared to the total number of charge carriers spread across the different levels. The refractive-index profile of
the simulation domain (bottommost curve, right-hand side scale) is produced by an InAs QD layer of thickness 4 nm
embedded between two 50-nm-thick GaAs barrier regions.

The pulse area is chosen to be x, so that the pulse completely excites the ground-state spin population
to the excited singlet level |6); this corresponds to choosing E, = 2.69 X 10° V - m~!, assuming a dipole
matrix element gp = 9.83 X 1072° C - m. The dipole matrix element’s value is comparable to the dipole
moment of the X* ground singlet transition, and is calculated using the Fermi Golden Rule [50] from the
energy separation between the levels and the spontaneous emission rate I';; ~ 1.2ns™!, which is close to
the experimentally observed value.

The longitudinal relaxation times are taken as follows: the radiative spontaneous decay, 5, ~ 1.27 ns,
is experimentally measured from a sample with one hole; spontaneous emission times, t,; = 1.35ns and
T5; = T, = 1.2 ns are estimated from the energy-level separation using the Wigner—Weisskopf formula
[50]. The nonradiative decay times are taken from theory [76], the transverse spin decoherence rates are
obtained from experiment: T, = 500ps [72] and 7, = 14ns [73], and a theoretical estimate for 75 =
125 ps is made on the basis of the Heisenberg uncertainty relations. We should note that there are only two
adjustable parameters in our model—namely the largely unknown nonradiative spin relaxation times, 75,
and tgs.

The theoretically computed TRPL traces that are displayed in Figure 49.27 clearly exhibit photo-induced
circular dichroism in the polarized TRPL emission; this is manifested as a different evolution of PL in
time, depending on the pulse helicity used. In contrast to the widely used rate equations model which
assumes mono-exponential decays, the dynamics of the quantum system described by the present model
is nonlinear and, as a result, the simulated PL decay is not mono-exponential.

The experimentally detected TRPL trace shape strongly depends on detector characteristics: the faster
the detector’s response and the higher its sensitivity, the better the agreement between theory and
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FIGURE 49.27 Theoretically computed polarized TRPL traces for 6~ and ¢ excitation of a six-level QD. The
presence of circular dichroism is clearly visible.
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FIGURE 49.28 Comparison between the simulated TRPL trace (after convolution with the detector’s response
function) and experimentally detected TRPL trace for (a) 6~ excitation and (b) 6" excitation of a six-level QD.

experiment. For proper comparison with experiment, we convolve our theoretically calculated polar-
ized traces with the detector’s response function and plot them along with the experimental traces in
Figure 49.28.

There is excellent agreement between the theoretical and the experimental results. The rising slope and
initial decay after the peak in the experimental trace are almost perfectly reproduced by our simulations.
The small discrepancy at longer times can be attributed to several factors. Firstly, it is not possible during
the course of an experiment to determine precisely which hot trion state is being resonantly excited, so the
assumed A, is only approximate. Secondly, A,_; is inferred from the resonant PL spectra and is only a
rough estimate, since the excited state does not correspond to a sharp spectral line, but rather a broadened
line of finite width; in addition, the inhomogeneous broadening has not been taken into account. The lower
peak height for 6 excitation can be attributed to the estimated value for the spin flip-flop coupling rate
and requires further investigation.

Our theoretical model explains quantitatively the origin of the spin-filtering effect. The experimentally
observed enhanced time-resolved circular dichroism in the excited trion state emission is shown to emerge
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from the dynamical spin flip-flop coupling between the two degenerate sets of excited charged excitonic
states. The theory is in very good agreement with experiment, thereby allowing to obtain an estimate
for largely unknown intra- and intershell spin-relaxation timescales. The approach also allows to predict
optimum pulse parameters, such as power and duration, for efficient control of spin dynamics.

49.6 Quantum Stochastic Formalism for Modeling Cavity-Emitter
Systems

Future advances in information systems are expected to exploit the quantum nature of their constituent
parts—e.g., in the development of quantum simulators and design of architectures for quantum cryptog-
raphy. The implementation of these technologies necessitates a fuller understanding of the underlying
quantum systems, which in turn will require several fundamental aspects of quantum theory to be tested.

One example of a quantum-optical phenomenon is quantum noise. In contrast to the more familiar
classical noise, which can be regarded as spontaneous random fluctuations from a steady state, quantum
noise arises from the Heisenberg uncertainty relations, which are fundamental to quantum theory [77]. The
concept of quantum noise stems from the statistical interpretation of quantum mechanics and our inability
to access any particular one out of the infinite number of degrees of freedom of the electromagnetic field
propagating in free space. Quantum noise is closely related to spontaneous emission, irreversible decay
and the origin of the spectral line width described by the theory of Weisskopf and Wigner [78], who are
considered to have laid the foundations of the quantum noise theory.

At large photon densities, quantum fluctuations are necessary to explain laser linewidth and the thresh-
old properties. By contrast, at low photon densities, light is generated by spontaneous emission described
in terms of single-photon emission events within the single-particle Dirac [79] picture. Control over such
noise effects will be crucial in the design of devices for quantum information processing.

49.6.1 Langevin Formalism for Modeling Quantum-Optical Effects

Considering a two-level system with a few degrees of freedom immersed in a radiation-field heat bath with
an infinite number of degrees of freedom, we exploit the quantum-classical correspondence in the presence
of noise and employ the Langevin formalism. The essence of the Langevin approach lies in the realization
that the action that the many unknown “bath” (i.e., external) variables have on the system is to modify
its deterministic equation of motion, and that this can be accommodated by the inclusion of apparently
random terms, known as “Langevin forces.”

49.6.2 Spontaneous Emission of a QD Ensemble in a Semiconductor
Microcavity and Onset of Lasing

Consider the semiconductor microcavity structures shown in Figure 49.29, designed at 1 = 850 nm and
A = 1.29 pm. The cavity of the first structure (bottom DBR: 35.5 pairs AlAs/Alj ;Gag - As; top DBR: five
pairs AlO /Al 3Gag ;As) is filled with a resonant two-level medium (Al 5Ga, 5As), whereas within the sec-
ond cavity, there are six (Gay g3Ing 37N g12As) quantum wells filled with the resonant medium. To describe
the interaction of an optical wave with these systems, we use the semiclassical 1D Maxwell-Bloch equations
in the real vector pseudospin picture, Equation 49.26, for an optical wave linearly polarized along x propa-
gating in the z-direction. In order to model the spontaneous emission of two-level atoms, we add a random
electric-field fluctuation, 8E,, at each time step:

0H, N N,
_ _l Fo % a$2y
(Ey(z,t) + BE, (z,1)) = e e S, +

S,. (49.52)
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FIGURE49.29 Refractive-index profile along a semiconductor microcavity (a) filled with gain medium (shaded area)
with n = 3.2736 at A, = 850 nm; (b) with 6 GaInNAs-QWs, filled with gain medium of refractive index n = 3.4 at
A = 1.29 pm. (G. Slavcheva et al., IEEE Journal of Selected Topics in Quantum Electronics © 2004 IEEE.)

We use a pseudorandom number generator based on the Box-Miiller method for generating random
deviates with a normal (Gaussian) distribution from uniformly distributed in the interval (0, 1) random
numbers @ and b. At each time step, j, white Gaussian noise with variance & = 6> = 1 X 1073 V?m~2 is
implemented according to

E. (z)j =E, (z)j + 3/ —2&; In (a) cos (27b) . (49.53)

White Gaussian noise has a mean zero and §-correlated second moment of the random distribution:

(8E, (z.0)) =0

(-t (49.54)
At ) :

(BE, (z. 1) 8E, (z.1")) = Epd (t — 1) = ExR,D (

where an expression for the spontaneous emission rate has been derived:

Er(ege)’
sp N2 T : (49.55)
Consider the first microcavity: we assume that the resonant medium is initially inverted (S5, = 1), thus
providing gain, and apply solely random white Gaussian noise at each point within the cavity according to
Equation 49.53. The spatial distribution of the intracavity electric field as a function of time, and the time
evolution of the electric field at the microcavity structure’s output boundary are calculated. The parameter
set used for this simulation is gp = 4.8 X 1072 C - m, n = 3.2736, N, = 1 x 10** m~3, initial field
amplitude, E; = 700 V - m~!, and relaxation and dephasing times, T; = 10 ps and T, = 70 fs, respectively.
The cavity field enhancement provided by the DBR mirrors leads to build-up of the electric field within
the cavity borne out of the quantum noise. A snapshot of the intracavity electric-field build-up is shown in
Figure 49.30, along with the corresponding Rabi flopping of the population dynamics. The amplitude that
has arisen solely due to noise gradually builds up towards a standing-wave mode in the cavity.

After this initial amplitude build-up process, the lasing threshold is reached, and coherent oscillations
appear at the output boundary. This is the onset of the lasing regime, shown for the unsaturated

QAT T, ~ 1.59 (49.56)
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FIGURE 49.30 (a) Stationary electric-field standing-wave profile arisen from quantum noise in the cavity.
(b) (Top) Refractive-index profile within the cavity and in its vicinity. (Bottom) A snapshot of the spatial distribu-
tion of the intracavity E, electric field (left axis, slowly-varying sinusoidal curve) and the corresponding population
inversion (right axis, fast-oscillating curve) exhibiting fast Rabi oscillations at ¢ = 8 ps after the instant when the quan-
tum noise arises. These oscillations result in the fast modulation of the electric-field envelope observed at the output
boundary of the structure, which is shown in Figure 49.31a and b.

and saturated
QET| T, ~ 16241 > 1 (49.57)

cases in Figure 49.31 (a,b), respectively. The charge-carrier population performs multiple Rabi flops, oscil-
lating about a steady population inversion value close to zero. The net gain and absorption are therefore
similar, resulting in a gain saturation in time.

Let us now consider the structure designed at A = 1.29 pm. The population in all six quantum wells
is initially inverted into the upper state, S;;, = 1, representing a nonlinear gain medium, while the bar-
rier regions within the cavity are assumed to be in the ground state, S;; = —1. Random noise is generated
within the cavity with a parameter set corresponding to the unsaturated case above (49.56). In Figure 49.32,
a snapshot of the spatial distribution of the electric-field amplitude and the steady-state population inver-
sion are shown. The population inversion relaxes to this value after a sufficiently large number of time
steps. The time evolution of the electric field at the output boundary is shown in Figure 49.33, show-
ing continuous build-up of coherent self-sustained oscillations and lasing. The lasing threshold is clearly
discernible, and the electric-field envelope exhibits rapid damped relaxation oscillations with a decay rate,
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FIGURE 49.31 Time evolution of the electric field at the output boundary of a semiconductor microcavity, showing
the noise-induced build-up of coherent oscillations and onset of lasing of the structure displayed in Figure 49.29a.
Simulations were run for two different sets of relaxation and dephasing times (T and T, respectively). (a) T} = 10 ps,
T, =70 fs; (b) T} = 1 ns, T, = 10 ps. (¢) Expanded view of (b} in the steady-state region, showing single-mode
oscillations and lasing at a frequency corresponding to A = 850 nm. (G. Slavcheva et al., IEEE Journal of Selected Topics
in Quantum Electronics © 2004 IEEE.)

I'p & 1.5 % 10" 571, These rapidly varying oscillations are a new feature which is not predicted by the usual
rotating-wave (RWA) and slowly-varying envelope (SVEA) approximations. The oscillations eventually
reach the steady-state gain saturation value, S;.,, = 0.0025, at simulation times exceeding 16 ps.

We perform a Fourier transform of the output electric-field trace in Figure 49.33 and obtain the laser
spectral linewidth, shown in Figure 49.34. The obtained linewidth exhibits superfine structure: the main
mode is centered at a frequency w;, corresponding to A = 1.289 um, and the wings exhibit satellite peaks at
@y + 182, The frequency of the fast relaxation oscillations, f, & 2.54 THz, is determined from the figure.

We showed that an extension within the Langevin framework of our Maxwell-pseudospin model
predicts the build-up of coherent, self-sustained oscillations and the onset of lasing, which is a sole conse-
quence of noise being introduced into the cavity. This emphasizes the importance of quantum fluctuations
for triggering the lasing regime of cavity operation. The simulations allow to investigate the lasing threshold
behavior directly in the time domain and provide an estimate for the coherence time of the laser emission
and the laser linewidth. We showed that several important parameters can be extracted from the simula-
tions and that they can be optimized using numerical experiments on a variety of design geometries. Most
importantly, the developed quantum stochastic approach is capable of modeling quantum effects, such as
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FIGURE 49.32 (a) Instantaneous profile of the electric-field standing wave borne out of quantum noise in the
cavity. (b) (Top) Refractive-index profile implying the cavity boundaries and the location of the quantum wells.
(Bottom) Spatial distribution of the stationary electric-field standing wave (left axis, sinusoidal curve) and the corre-
sponding saturated population inversion, S3,, = 0.0025, in the quantum wells within the cavity (right axis, spiky curve).
(G. Slavcheva et al., IEEE Journal of Selected Topics in Quantum Electronics © 2004 IEEE.)
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FIGURE 49.33 Build-up in time of coherent, self-sustained oscillations arisen from noise introduced into the cavity
of the structure displayed in Figure 49.29b. The lasing threshold is apparent. The decay rate of the electric-field envelope
is 'y & 1.5 % 10" 57!, Inset: expanded view of the fast carrier-frequency oscillations with A = 1.289 pm; the steady-
state region occurs for t > 16 ps. (G. Slavcheva et al., IEEE Journal of Selected Topics in Quantum Electronics © 2004
IEEE.)
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FIGURE 49.34 (a) Laser spectral line obtained by Fourier-transforming the output trace of the electric-field ampli-
tude centered at the lasing frequency, corresponding to & = 1.289 pm. (b) Magnified view of the spectrum in (a)
showing relaxation oscillation sidebands. (G. Slavcheva et al., IEEE Journal of Selected Topics in Quantum Electronics
© 2004 IEEE.)

spontaneous emission, and thus can be used to model the system dynamics in the few-photon limit as well
as demonstrate and predict quantum-optical effects,

49.7 Modeling Optical Rotation in Chiral Carbon Nanotubes with
Master Maxwell-Pseudospin Equations

In this section, we shall employ our vector Maxwell-pseudospin model [44] to investigate how chirality
affects the ultrafast nonlinear optical and magneto-optical response of a single chiral CNT [80]. We shall
show that a simple discrete-level model of the optically active states near the bandgap edge of a chiral nan-
otube is sufficient to explain the circular dichroism and birefringence, as well as to quantify the optical
rotation per unit length (also known as specific rotatory power), either in the absence or in the presence of
an external magnetic field permeating the tube. The model predicts a giant natural gyrotropy for the spe-
cific chirality considered in this case, which is comparable with or exceeding that of artificially fabricated
helical photonic structures. This is remarkable because the latter are considered to achieve the largest opti-
cal rotation of all known materials: orders of magnitude larger than that of crystal birefringent materials
or of liquid crystals. Finally, we will give a quantitative estimate of the nonlinear coherent magneto-chiral
optical effect in an axial magnetic field.

Chirality is one of the main symmetries of the CNT geometry that determines the optical properties
of single-walled CNTs (SWCNTs). SWCNTs are uniquely determined by the chiral vector, C;, = na; +
ma, = (n,m), with 0 < |m| < n, or equivalently by a pair of integer numbers (#, m) in the planar
graphene hexagonal lattice unit-vector basis (Figure 49.35). Two helical forms (enantiomers), e.g., AL (5, 4)
and AR (4, 5), can exist. Topologically, the CNT can be viewed as a graphene sheet rolled up along the
chiral vector into a cylinder. Chirality serves as a primary classification criterion. Achiral nanotubes, whose
mirror image is superimposable, are subdivided into two classes: zigzag (m = 0) and armchair (m = n)
nanotubes. The rest of the nanotubes, whose mirror reflection is not superimposable, are subsumed into
the most general class of chiral nanotubes.

There is a fundamental relationship between chirality and optical activity. The interaction of polarized
light with chiral materials gives rise to the phenomenon of optical rotation (or optical activity), whereby
the polarization plane is rotated continuously during the propagation of the light through the nanotube.
In the presence of an external magnetic field, magnetically induced optical activity—also known as Fara-
day effect—takes place. Both effects manifest themselves as a rotation of the transmitted light; however,
the origin of the two effects is fundamentally different. While the natural optical activity is a result of
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FIGURE 49.35 (a) Chiral vector, C;, (C, on schematic) and chiral angle, 8 = £ (a,,C}), 0° < |8] < 30°, where a,
and a, are the elementary Bravais cell unit vectors. (b) Left-handed AL (5,4) (with m > n; m, n - integers, see text)
and (c) right-handed AR (4, 5) (with m < n) single-walled CNT molecular structure calculated by the tight-banding
method [81]. Shown is a view along the tube axis looking in the negative z-direction. Chirality is determined by the
rotation of the so-called armchair chains of carbon atoms either clockwise or counterclockwise when looking in the
negative z-direction.

the nonlocal optical response of a medium lacking mirror symmetry, the magnetic optical activity results
from time-reversal symmetry breaking by the magnetic field. The two phenomena are linked through the
magneto-chiral optical effect which takes place when both symmetries are broken simultaneously [82].

The electronic band structure of an SWCNT is described by the quantization of the wavevector along the
tube circumference perpendicular to the tube axis. This results in a discrete spectrum of allowed k-vector
states forming subbands in the valence and conduction bands labeled by the quasi-angular momentum
quantum number, p [83]: k;, = 3%’-‘ p = 0,£1,%2,.., where L = |C,| is the tube circumference
(Figure 49.36a). We should note that due to symmetry in the graphene hexagonal unit cell, there are two
equivalent points, K (with p > 0) and K’ (with p < 0) in the BZ (Figure 49.36¢). The energy dispersion
of a CNT can be visualized as intersections of the graphene conical dispersion at the quantized transverse
wavevector, k; (Figure 49.36b).

The most widely studied excitation geometry in experiments on individual CNT is the one of linearly
polarized excitation perpendicular to the tube axis, shown in Figure 49.37a. In this excitation geometry, the
longitudinal E, electric-field component is dominant, because the transverse E, component is suppressed
by depolarization effects, and linearly polarized intersubband optical transitions from the valence p sub-
band to the conduction p subband with Am = 0 can be excited (here m signifies the eigenvalue of the
quasi-angular momentum operator projection, J,). We shall be interested, however, in the unconventional
circularly polarized excitation geometry shown in Figure 49.37b, whereby a circularly x-y plane-polarized
laser pulse propagates along the tube axis, exciting only one of the two allowed transitions, p — p+1, where
“+/=" corresponds to right and left circularly polarized light, respectively (Figure 49.38b). The molecular
structure and the allowed dipole optical intersubband transitions of a (20, 10) chiral CNT are shown in
Figure 49.38.

We shall consider aggregates or bundles of aligned SWCNTs grown by chemical-vapor deposition in an
electric field [84], or aligned in a polymer matrix [85]. We model the single carbon-nanotube bandgap-
edge structure at the K point of the BZ (where the fundamental bandgap opens) by a large ensemble of
identical four-level systems, corresponding to the allowed transitions of the two valence subbands clos-
est to the Fermi level for the AL and AR nanotube enantiomers shown in Figure 49.39. We note that the
energy-level diagrams for the left- and right-handed helical forms in Figure 49.39 are nonsuperimpos-
able: absorption of 6" light excites the p — p + 1 transition in AL-handed SWCNT, while absorption
of light with the same helicity excites the p — p — 1 transition in AR-handed SWCNT. The difference
between the optical selection rules for left and right circularly polarized light gives rise to the optical
activity [86].
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FIGURE 49.36 (a) Energy dispersion as a function of the longitudinal wavevector, k”, normalized with respect to
the wavevector at the boundary of the first BZ of a (5,4) SWCNT. k" points along the tube axis. The tube for this
chirality is semiconducting—i.e., a bandgap is opened at the center (I" point) of the BZ. (b) Parabolic cross sections of
the graphene linear dispersion, corresponding to points K and K’ in (a) representing the nanotube energy dispersion
curves. (c) Unfolded 2D first BZ of graphene, showing the equivalent points K and K’ in the band structure.

FIGURE 49.37 (a) Linearly polarized excitation perpendicular to the tube axis exciting intersubband optical
transitions with Am = 0. (b) Circularly polarized excitation along the tube axis exciting Am = +1 optical transitions.

49.7.1 Natural Optical Activity

In this section, we compute the natural optical activity rotation angle (rotatory power per unit length) in
the absence of an external magnetic field and demonstrate the possibility to manipulate it by engineering
the nanotube chirality. We consider the specific case of a chiral, left-handed AL (5,4) SWCNT, which is
chosen for illustration of the general method valid for an arbitrary chirality. The nanotube length is 500 nm
and all edge effects will be ignored in our 1D model. We performed tight-binding calculations of the elec-
tronic band structure (Figure 49.36a) and determined the fundamental bandgap, E;, = E, , = 1.321eV,
corresponding to a pumping wavelength of A = 939 nm. The tube diameter is 0.611 nm, and the chiral
angle, 26.33°. The resonant transition energy for circularly polarized excitations is E, ,,.; = 1.982eV,

corresponding to a resonant wavelength, A, = 626.5 nm.

INTES



Nonlinear Dynamics in Quantum Photonic Structures 715

DOS(E) (eV '*em™)

~1 -] -3 =} - =) w -
ool vl yovd oo v osd soond ool 3ol 4

(b)

FIGURE 49.38 (a) Molecular structure of an AL (20, 10) left-handed chiral CNT. (b) 1D electron density of states
(DOS) plotted as a function of energy at the K point of the BZ (p > 0). The allowed dipole optical transitions for
circularly polarized light are denoted by arrows for left- (™) and right-handed (o) pulse helicity.
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FIGURE49.39 Energy-level structure at the K (or K') point of the lowest subbands labeled by the subband index p for
an (a) AL (le-handed) and (b) AR (right-handed) SWCNT. The fundamental energy gap is shaded. The dipole optical
transitions excited by 6~ and o™ circularly polarized light are designated by arrows. Only one of the two transitions
is allowed for circularly polarized light, denoted by solid arrow (by contrast, the forbidden transition is indicated by
a dashed arrow). Valence-band states below the bandgap are populated. (w,, resonant transition frequency; A, energy
separation between the lowest subband and the second lowest subband near the bandgap.)

We consider a circularly polarized ultrashort pulse of duration 60 fs matching experiments [87], and a
pulse area of m, giving an initial electric-field amplitude E; = 6.098 x 10% V - m~!. We inject the pulse
from the left boundary of the simulation domain, consisting of the tube embedded between two free-space
regions of thickness 50 nm each. The pulse is resonant with the energy E, .., of the allowed dipole optical
transition and is coupled to an ensemble of identical, HB four-level systems (Figure 49.39a for a left-handed
AL SWCNT) used to describe the optical transitions involving the lowest-energy subbands lying nearest
to the bandgap edge (Figure 49.40a).
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FIGURE 49.40 (a) Plot of the 1D density of states (DOS) showing the lowest-energy subbands near the bandgap edge
involved in dipole optical transitions excited by circularly polarized light. Only one transition at a time can be excited
by each helicity (6~ or 6™). (b) Energy-level diagram in the general case of a resonant optical excitation of p — 1 — p
and p — p—1interband transitions by a 6™ and 6™ polarized pulse, respectively. The resonant transition energy is hay,.
The initial population of the lowest valence states below the bandgap, p;,; and ps3;, is equally distributed between levels
|1} and |3) (here, the subscript “i” denotes “initial”). (A, the energy separation between the first and the second lowest
conduction (or valence) band states; wavy lines denote longitudinal relaxation processes between the levels, associated
with population transfer; I'}, spontaneous emission (radiative decay) rate of |2) — [1) transitions, assumed to be equal
to that of |[4) — |3); I';, spontaneous emission rate for the linearly polarized transition from the conduction p subband
to the valence p subband; I's, decay rate of the linearly polarized transition from the conduction p — 1 subband to the
valence p — 1 subband; y, intraband relaxation rate; I', and I',_, transverse relaxation (dephasing) rates.)
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The corresponding energy-level diagram is shown in Figure 49.40b, with all coherent and sponta-
neous transitions indicated. Following our coherent vector Maxwell-pseudospin formalism, the system
Hamiltonian for a four-level system that applies for either excitation by 6~ or 6™ is given by

0 -1 (Qx +i0,) 0 0

fi=n - (Q" ~ ) w0 0 1 ° . (49.58)
0 0 A -1 (Qx -i2,)
0 0 -He+ie) A+

where Q, = %Ex and Q, = %Ey are the time-dependent Rabi frequencies associated with the E, and E,
electric-field components, and g is the optical dipole matrix element for p — p + 1 transitions excited by
circularly polarized light. This parameter is largely unknown. We have provided an estimate for it,

o ~3x1077C-m, (49.59)

based on an extension of the effective-mass method applied to chirality effects in carbon nanotubes (CNTs)
[88], in agreement with the measured radiative lifetime of typical molecular transition in a single CNT [89],
which is on the order of Ty, ~ 10 ns.

We consider a four-level resonant medium consisting of a large number of identical aligned CNTs with
an average density N, = 6.8 X 10%* m™, calculated in such a way that the volume of the simulated nan-
otube with diameter 0.611 nm and length 500 nm contains just a single nanotube on average. A method
called the effective medium approximation—used for describing the macroscopic properties of compos-
ite materials, such as the dielectric permittivity of a single CNT—has been successfully applied in FDTD
modeling of the thermal radiative properties of vertical arrays of multi-walled CNTs [90]. We use two
independent theoretical approaches to obtain an estimate for the effective dielectric constant of an isolated
SWCNT: the aforementioned effective medium approximation [80] and tight-binding model calculations
of the axial component of the imaginary part of the dielectric function tensor [91,92]. This gives a value for
the refractive index, n ~ 2.3 along the nanotube axis. With dipole matrix element from (49.59), we use the

ion for th - . _ 3agghd’
expression for the spontaneous emission rate: Ty, = P

of each transition, to obtain an estimate for the relaxation rates: I', = 2.907ns™!, ', = 9.812ns™!, and
I'; = 1.227 ns™!. We take the experimental value obtained in [87] for the intraband optical transitions,
¥ =130fs~". Since the dephasing rates for the states involved are largely unknown, we treat them as phe-
nomenological parameters adopting the following values: I', = 800 fs~! and [,_; = 1.6ps™'; however,
our simulations show that the dynamics is largely insensitive to the choice of these dephasing rates.

We consider separately the cases of an ultrafast resonant optical excitation of the |[1) — |2) transition
with 6™ helicity, and of the |3) — |4) transition with ¢~ helicity (Figure 49.40b). Note that in the former
case, level |4) does not participate in the relaxation dynamics and the system is effectively a three-level
A-system, rather than a four-level system. The initial population is assumed to be equally distributed
between the lower-lying levels. The ultrashort circularly polarized source pulse is injected into the medium,
and the temporal dynamics of the electric-field vector components and population of all four levels are sam-
pled at four different locations along the nanotube z-axis. The spatially resolved temporal dynamics at a
point z = 300 nm from the left boundary of the simulated structure for 6* and ¢~ excitations is shown in
Figure 49.41.

It would be interesting from an experimental point of view to test whether nanotube chirality could
be determined from the ultrafast nonlinear response using ultrashort pulses with either helicity. We
compare the Fourier spectra at the output boundary for each helicity of the optical pulse excitation
in Figure 49.42. Both transmission spectra exhibit a sharp peak at the resonant wavelength, indicating

taking into account the energy separation
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FIGURE 49.41 Time evolution of the electric-field components E, and Ey, and the populations of all four energy
levels of a SWCNT (a) for a circularly polarized 6 excitation pulse (note that level [4) is not involved in the dynamics)
and (b) for a circularly polarized 6~ excitation pulse. The location is z = 300 nm. The left boundary of the SWCNT is
at z = 0. The SWCNT is 500 nm long and is placed between two free-space regions, each 50 nm long.
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FIGURE 49.42 Transmission Fourier spectra plotted against the wavelength of the E, and E, electric-field compo-
nents at the input, E,. ,(0), and output, E, (L), of the structure fora (a), (b) o™ polarized pulse,and a (¢), (d) 6~ polarized
pulse. Note that the peak output amplitudes are approximately 20% higher in (a) and (b) compared to in (c) and (d).

The simulated structure is as in Figure 49.41.
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resonant amplification; however, the peak intensity corresponding to o™ excitation is nearly 20% higher.
This difference can be exploited in an experiment aiming to determine unambiguously the chirality of
a single CNT by first injecting a pulse of one helicity, then the other, and observing the consequences
at the output. We show that the difference in the polarization-resolved transmission spectra of a lin-
early polarized pulse is much more pronounced and allows identification of the precise helical form of
the SWCNT.

In order to demonstrate rotation of the electric-field polarization plane during the pulse propagation
across the resonant four-level medium, we launch a linearly polarized pulse along x, expressed by:

x {Ex (z=0,t) = E[,e_(’_"')'/ f cos(wyt) (49.60)
E),(zz 0,1)=0.

The system’s temporal dynamics induced by the ultrashort linearly polarized pulse is shown in
Figure 49.43a and b on an expanded scale, where the appearance of a second E, component, and there-
fore also the appearance of optical rotation of the electric-field vector polarization, is clearly visible. The
maximum amplitude of the E, component continuously increases as the pulse propagates along the nan-
otube structure. We should therefore expect the maximum optical rotation angle to occur at the output
boundary.
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FIGURE 49.43  (a) Time evolution of a linearly polarized pulse with initial value E, = 0, and the populations of all
four levels at z = 550 nm from the left boundary. The simulated structure is as in Figure 49.41. (b) Magnified view of (a)
showing the build-up of the E,, component with time, which is equivalent to a rotation of the electric-field polarization.
The transmitted pulse is elliptically polarized and displays different power spectra for (c) the E, component (sharp
resonant peak superimposed on a broader line) and (d) the E, component (single spectral line).
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The polarization-resolved transmission spectra of the E, and E, components are quite distinct: while
the former is similar to the spectrum obtained for circularly polarized optical excitation, the E, spec-
trum exhibits a single spectral line. Conversely, for excitation with light of the opposite helicity (data not
shown), the E, and E, profiles are interchanged. This difference in the polarization-resolved nonlinear
optical response can therefore be used for unambiguous determination of the nanotube chirality.

In order to obtain a quantitative estimate of the natural optical activity in a single chiral CNT, we fol-
low the general methodology developed in Section 49.3.3. We calculate the gain/absorption coeflicient
from the complex propagation factor, ek(z2=21)  for the E, and E, electric-field components of a circularly
polarized pulse over a distance of one dielectric wavelength, | = z, — z; = ), /n, where }; is the resonant
wavelength. The wavevector is k. = p + iy, where B is the phase shift per unit length induced in the opti-
cal pulse by the interaction with the resonant medium, and y is the gain/absorption coefficient. The gain/
absorption coefficient allows us to calculate the magnitude of the circular dichroism, whereas the phase
shift represents a measure of the rotation angle. A comparison between the spatially resolved gain coeffi-
cients for 6+ and 6~ pulse excitation is shown in Figure 49.44a; the analytically computed gain coefficient
of a HB two-level system has also been plotted on the same graph, for reference. The maxima of the gain
coefficients for both 6 and 6™ occur at the resonant wavelength. The circular dichroism, AA = G — G},
is therefore calculated as the average of the difference between the maximal gain coefficients for 6+ and 6~
excitation (R and L subscripts, respectively) computed at several points along the nanotube. This yields a
value for the circular dichroism of 0.083 pm™!. By comparison, the absolute value of the circular dichroism
of an artificial helicoidal bilayered structure varies in the range of 5-9 dB, which is equivalent to a linear
amplitude gain/absorption coefficient of 0.58-1.04 um™". The atomic phase shift (Bg(;) (/) and the aver-
age rotation angle are plotted in Figure 49.44b. The specific rotatory power per unit length is calculated
using p = w(n; — ng)/Ag, where ny_and ny, are the refractive indices for left and right circularly polarized
light. Computing this value gives %2962.24° /mm,

Although the circular dichroism is low compared to the artificial chiral photonic structures, the opti-
cal rotation, as computed from the phase shift, is enormous compared to other birefringent materials. The
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FIGURE 49.44 (a) Plot against wavelength of the spatially resolved gain coefficient per micron for a 6t (dashed
curve) and 6~ (dash-dotted curve) circularly polarized ultrashort optical pulse, and the theoretical gain coefficient of
a homogeneously broadened (HB) two-level system (solid curve) (Equation 49.30). The simulated structure is as in
Figure 49.41. (b) Spectrum of the phase shift, averaged over the entire length of the structure, of the E, (dashed curve)
and E). (dotted curve) electric-field components of 6* excitation, E, (dash-dotted curve) and Ey (dotted curve) of 6~
optical excitation, and theoretical calculations of this phase shift (Equation 49.31), assuming a HB, resonant two-level
system.
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specific rotatory power of crystals varies widely from 2.24° /mm for NaBrO; to 522° /mm for AgGa$,. Liq-
uid substances exhibit much lower values of specific rotatory power—e.g., p = —0.37° /mm for turpentine
(T = 10° A = 589.3nm); p = 1.18° /mm for corn syrup, etc. Cholesteric liquid crystals and sculptured
thin films exhibit large rotatory power in the visible spectrum: ~1000° /mm and ~6000° /mm, respectively,
which is comparable with the calculated rotatory power. We should note that the dependence of the optical
rotation angle on chirality opens up the exciting possibility to engineer this angle through manipulating
the chirality of the structure.

49.7.2 Faraday Rotation and Magneto-Chiral Effects

In this section, we shall develop a theoretical model of the resonant, coherent nonlinear optical activity
when a static magnetic field, By, threads the nanotube (Figure 49.45).

We shall be interested in the Faraday effect, or the rotation of the polarization of a plane-polarized elec-
tromagnetic wave propagating in a medium permeated by a static magnetic field, B, oriented along the
direction of propagation. In the presence of an axial magnetic field, the electronic band structure of a sin-
gle CNT—and the electronic states near the bandgap edge in particular—change significantly, owing to the
combined action of two effects: the spin-B interaction, resulting in Zeeman splitting of the energy levels
[93-95], and the appearance of the Aharonov-Bohm phase in the wavefunction [83,96,97]. The two sym-
metric subbands at the K (or K') point of the BZ are degenerate at By = 0 (Figure 49.45b). An applied
magnetic field along the nanotube axis lifts this degeneracy by shifting the energy levels. As a result, the
bandgap of one of the subbands (K") becomes larger while the bandgap of the other subband (K) becomes
smaller [94] (Figure 49.45¢).

Without loss of generality, we shall consider the electronic states near the bandgap at the K point in
the BZ. Therefore, the overall effect will be a bandgap reduction. We consider and calculate separately the
contributions to the bandgap from the Zeeman splitting and the Aharonov-Bohm effect.

The effect of the Aharonov-Bohm flux on the bandgap is to induce oscillations in its energy. The energy
bandgap thus varies between zero and a fixed value with a period of the flux quantum, ®;, = h/e [83,93],

(b) (c)

FIGURE 49.45 (a) Single (20, 10) chiral nanotube threaded by an axial magnetic field (a so-called Faraday configu-
ration). (b) Magnetic energy bands in the absence of a magnetic field, By|; the energy subbands at the point K (K”) are
degenerate. (c) When an axial magnetic field is applied, the degeneracy is lifted and the energy bandgap of the subband
at K’ becomes larger, while that of the other subband at K diminishes.
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resulting in periodic oscillations of the magneto-optical absorption spectra given by

3EGO) |- 2], 0<d/dy<1/2

P
Eg (@) = N (49.61)
3E;0)|2-2

1/2 < ®/Dy < 1,

L T

@ |°

where E;;(0) = ha is the energy bandgap at zero magnetic field and wy, is the resonant transition frequency.

For a magnetic field B = 8 T with a flux ® threading a (5,4) nanotube with a diameter 0.61145 nm,
the ratio @ /®, = 0.00057, and therefore the first of the equations (49.61) above holds. Due to the orbital
Aharonov-Bohm effect, this leads to an energy-level shift, or bandgap renormalization of E,p = 3.37 meV,
corresponding to a resonant angular frequency, w5 = 5.12x 10'? rad/s. At a fixed value of the static mag-
netic field, the orbital Aharonov-Bohm effect leads to a uniform shift in the energy levels, so the resonant
transition frequency wy, is replaced by wy — w4 p.

In an external magnetic field, the energy levels near the bandgap of Figure 49.40b split and the spin
degeneracy is lifted. The resulting energy-level system can be split into two reduced systems of levels, each
of which represents a mirror image of the other. The symmetry is broken only by the fact that the allowed
optical transitions are different in each case (see Figure 49.46).

The Zeeman splitting, or the spin-B interaction energy, is given by

E, = upg.oB, (49.62)

where pp = ;T}: is the Bohr magneton; the electron g-factor, g, is taken to be the same as that of pure
graphite (= 2), = +1/2 is the z-axis projection of the electron spin (spin-up/spin-down state), and m,, is
the free electron mass.

We have performed simulations with magnetic fields in the range 2-100 T and found for the consid-
ered (5, 4) tube a nonmonotonous dependence of the optical rotation angle on the magnitude of B, with
maximum rotation reached for magnetic fields in the range 8-10T. We therefore selected B = 8T to
demonstrate the maximum angle of Faraday rotation. Another reason for choosing this value is that it was
the maximum magnetic field achievable by the static magnet available in the laboratory of our collabora-
tors at the time when we performed these calculations. For B = 8 T, the Equation (49.62) gives an energy
shift of E. ~ 0.46 meV, which corresponds to a Zeeman resonant frequency, o, = 7.026 X 10'! rad/s.

N L=41/2
12 I / 147

FIGURE 49.46 A four-level system at B # 0 splits into two nonsuperimposable reduced systems, involving levels
energetically closest to the bandgap edge. (a) Left-handed reduced energy-level system excitable by a 6~ optical pulse.
(b) Right-handed reduced energy-level system excitable by a ot optical pulse. (Coherent and spontaneous transitions
indicated as in Figure 49.40b. Forbidden dipole optical transitions are denoted by ). In fact, there is a X-circle over
the dashed lines in Figure 49.46, denoting forbidden transitions between levels).
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The system Hamiltonians corresponding to the energy-level schemes displayed in Figure 49.46 are
given by

o, -H(e-i9) o 0
. 1 :
H—' =h -3 (Qx + IQ),) Wy — W, 0 0 (4963)
0 0 A-w, 0
0 0 0  A+o,
and
Wy — W, 0 0 0
0 Wy + o, 0 0
Fetl
A =n 0 0 A+ o, -1 (gx + ;’_Qy) . (49.64)
0 o ! (QX—EQ},) A+wy—0,
respectively.

We employ our vector Maxwell-pseudospin master equations model for the four-level systems above.
The simulation structure is the same as the one described for the B = 0 case. Note that due to the presence of
a magnetic field, the energy levels |1}, |2), |3) and |4} are split into two sets, which we choose to distinguish
by adding a’ and ” to the notation; the first set (denoted by ') is accessed only using ¢~ light, whereas the
second (denoted by ") is accessible only via 6 light, due to the optical selection rules. We then resonantly
excite the |1") — |2") and |3"") — [4”") transitions using, respectively, a left (™) and right (¢*) circularly
polarized n-pulse of duration 60 fs. The pulse’s central frequency is tuned in resonance with the transition
frequency, wy — 0, — 2m,, and the pulse envelope is a Gaussian function. Owing to the combined effect
of the Aharonov-Bohm and Zeeman energy-level shift, the dipole matrix element is modified. An estimate
of the optical dipole matrix element in an axial magnetic field can be obtained from the theory developed
in [88], taking into account the bandgap reduction at B = 8T, giving go = 3.6205 X 1072 C - m. We
recalculate the relaxation times using the above mentioned magnetic-field dipole coupling, thus obtaining
the following relaxation rates: I'; = 2.914ns™!, I, = 9.79ns™! and I'y = 9.77 ns™!. The intraband relax-
ation rate, y = 130fs™", and the dephasing rates, I', = 800 fs™! and =16 ps~!, are taken to be the
same as for the zero-field case. Note that the initial charge-carrier populations are different for excitation
by the 6~ and ¢ pulses: while in the former case the initial population is assumed to be equally distributed
between the valence-band levels py/y/; = py3; = 1/2 nearest the bandgap edge, in the latter case the whole
population is in the single valence-band state py4; = 1.

Similar to the zero-field case, the time evolution of the electric-field components and populations of
all four levels are sampled at several points along the nanotube axis, and the magnetic circular dichroism
spectra of the gain/absorption coefficients and phase shifts are calculated and displayed in Figure 49.47.
Note that the resonance is shifted toward longer wavelengths due to the bandgap reduction. We should
point out that the magnetic circular dichroism spectra at B = 8 T are quite distinct from the zero magnetic
field ones for natural optical activity (Figure 49.44). While the 6~ polarized pulse is amplified during its
propagation along the nanotube, the 6* polarized pulse is absorbed, resulting in a much larger net circular
dichroism. The average value of the magnetic circular dichroism is 0.706 um~', an order of magnitude
larger than the natural circular dichroism. The different behavior of the calculated gain and absorption
spectra under ¢~ compared to 6% polarized optical pulse excitation is a direct consequence of the different
energy-level configuration describing the two cases. While the energy-level system for the 6™ excitation
is a four-level system, the one corresponding to the 6% excitation is a three-level A-system, due to level
|2} being completely decoupled from the rest of the levels as a result of the dipole optical selection rules.
The calculated spectra in the latter case are, in fact, a signature of EIT and coherent population trapping
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FIGURE 49.47 (a) Spectrum of the gain coefficient per micron, averaged spatially over the entire length of the struc-
ture, of the E, and E}, electric-field vector components of 6~ (dashed curve) and ¢* (dash-dotted curve) circularly
polarized ultrashort optical excitation. The theoretical gain coefficient of a homogeneously broadened (HB), resonant
two-level system (solid curve) at B = 8T is also shown. Note that, while the 6™ pulse is amplified during its prop-
agation along the nanotube, the 6% pulse is absorbed, resulting in an absorption dip in the spectrum. (b) Spectrum
of the phase shift, averaged spatially over the entire length of the structure, at B = 8T of the E, (dashed curve) and
E, (dots) electric-field components under ¢~ excitation, and of E, (dash-dotted curve) and EJ, (dots) under o+ circu-
larly polarized ultrashort optical excitation. The phase spectra exhibit double-peaked refraction characteristic of EIT.
The theoretical phase shift of a HB resonant two-level system (solid curve), is also given. (FDTD, finite-difference
time-domain.)

effects in a three-level system [98], as will be explained subsequently. The absorption at resonance is close
to zero, and the spectrum exhibits a dip (Figure 49.47a) similar to the absorption dip characteristic of
EIT. The dip is caused by destructive interference between the excitation and emission fields, and leads to
the trapping of the charge-carrier population in the ground state (hence, the term “coherent population
trapping”). Whereas the phase-shift spectrum for a 6~ pulse excitation is of the type of a two-level atomic
phase shift, the spectrum of the phase shift for 6" excitation is double peaked (Figure 49.47b). The latter
is characteristic of the real part of the dielectric susceptibility in a three-level system exhibiting EIT. The
predicted destructive interference in an external axial magnetic field after the passage of the ultrashort pulse
is a direct consequence of the timescales of the processes involved in the relaxation dynamics and the phase
shift which they introduce in the emission. The calculated average specific rotatory power in a magnetic
field B = 8T is —32580.4° /mm, corresponding to an average refractive-index anisotropy (ng — ny) of
6.497 (the purpose of the minus sign in the rotatory power is to denote counterclockwise rotation of the
field when viewed from a direction opposite to that of its propagation). This is nearly an order of magnitude
greater than the natural optical rotation. We should note that the calculated rotation is a combined effect
of the chirality of the nanotube and the magnetic field-induced rotation, and thus can be considered as an
estimate for the magneto-chiral effect in a single nanotube, Therefore, our model can be used to study the
magnetic field and chirality dependence of the optical rotation angle.

49.8 Conclusion

We have developed a general methodology for description of ultrashort optical-pulse interaction with
open, discrete multilevel quantum systems, based on a self-consistent solution of the vector Maxwell’s
equations and equations for the time evolution of the quantum system in the real-vector representation of
the density-matrix geometrical picture. An advantage of this theoretical method is that the coupled vector
Maxwell-pseudospin equations can be generated on the fly for a quantum system with an arbitrary number
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of energy levels using the corresponding unique SU(N) Lie algebra generators. Unlike the widely accepted
approach of using simplified two-level systems for description of the system dynamics, our approach allows
to model multiple optical transitions and time-dependent gain effects that occur in a realistic quantum sys-
tem. Our theoretical framework goes beyond the usual rate equations approach, which is unable to model
and predict coherent quantum effects that could arise due to couplings and interplay between multiple opti-
cal transitions in the system. Most other approaches use the SVEA and RWA which consider only events
occurring on a relatively slow timescale—such as the pulse envelope—but do not take account of the pulse’s
fast carrier wave. By contrast, the proposed approach allows to model rigorously ultrashort optical pulses
down to a few optical cycles. Contrary to BPM, no approximations are made to the electromagnetic field
equations and their solutions.

We have shown that the model can describe coherent propagation effects: self-induced and EIT, and
self-localization effects, such as soliton and pattern formation in cavities. The method can be applied to
a wide range of quantum-system geometries by imposing macroscopic boundary conditions and, hence,
it can be used to simulate the performance of not only individual idealized devices, but whole interacting
systems. We have shown that the model can successfully describe the complex dynamics of an open quan-
tum system, and at the same time provides the capability to observe the feedback mechanisms—including
non-Markovian memory effects—as they occur in space and time. In addition, within the Langevin model
extension, we were able to model quantum-optical effects such as spontaneous emission. This approach can
be used to simulate quantum correlations, nonclassical light generation and manipulation, and few-photon
optical nonlinearities.

The model can describe interactions of matter with circularly/elliptically polarized optical pulses and
was successfully applied to the problem of generation, manipulation, and readout of single spins and their
dynamics. This success is critical for the development of quantum information technologies—currently
a very hot research topic which could potentially revolutionize technological applications. Possible appli-
cation areas include—but are not limited to—quantum computing and information technologies, such
as spin-qubit manipulation in QDs, cold atoms, and NV centers in nanodiamond. CNT and arrays of
aligned nanotubes have the potential to serve as functional elements in polarization-sensitive devices and
polarization switches, as well as for metamaterial applications in the visible part of the electromagnetic
spectrum. Predicted spatio-temporal coherent effects, such as cavity solitons, can be used as integrated low-
loss optical switches and for all-optical information processing. Finally, the proposed methodology can be
used as a design tool for future quantum-optical devices and for the advancement of quantum-photonic
technologies.

References

. R.J. Glauber. The quantum theory of optical coherence. Physical Review, 130:2529, 1963.

. R.J. Glauber. Quantum Optics and Electronics. New York, NY: Gordon Breach, 1965.

. R. Hanbury Brown and R. Q. Twiss. Nature, 177:27, 1956.

. L. Mandel and S. Wolf. Optical Coherence and Quantum Optics. Cambridge University Press, 1995.

. B. Lounis and M. Orrit. Single-photon sources. Report on Progress in Physics, 68:1129, 2005.

. A. Einstein, B. Podolsky, and N. Rosen. Can quantum mechanical description of physical reality be
considered complete? Physical Review, 47:777, 1935.

. J. L. O’'Brien, A. Furusawa, and J. Vuckovic. Photonic quantum technologies. Nature Photonics, 3:687,
2009.

8. T. M. Babinec, B. ]. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, Ph. R. Hemmer, and M. LonAar.

A diamond nanowire single-photon source. Nature Nanotechnology, 5:195, 2010,

9. J.Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-

M. Gerard. A highly efficient single-photon source based on a quantum dot in a photonic nanowire.

Nature Photonics, 4:174, 2010.

D oA W e =

~]



726

10

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25,

26.

27.

28.

29.

30.

Handbook of Optoelectronic Device Modeling and Simulation

. D. Dalacu, K. Mnaymneh, V. Sazonova, P. ]. Poole, G. C. Aers, J. Lapointe, R. Cheriton, A. J.
SpringThorpe, and R. Williams. Deterministic emitter-cavity coupling using a single-site controlled
quantum dot. Physical Review B, 82:033301, 2010.

. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gétzinger. A

planar dielectric antenna for directional single-photon emission and near-unity collection efficiency.

Nature Photonics, 5:166, 2011.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroft, and D. Bouwmeester. High-

frequency single-photon source with polarization control. Nature Photonics, 1:704, 2007.

D. Loss and D. P. diVincenzo. Quantum computation with quantum dots. Physical Review A, 57:120,

1998.

B. Meier and B. P. Zakharchenya editors. Optical Orientation. North-Holland, Amsterdam: Elsevier,

1984.

W. S. Warren, H. Rabitz, and M. Dahleh. Coherent control of quantum dynamics: The dream is alive.

Science, 259:1581, 1993.

K. De Greve, D. Press, P. L. McMahon, and Y. Yamamoto. Ultrafast optical control of individual

quantum dot spin qubits. Reports on Progress in Physics, 76:092501, 2013.

M. Sargent III, M. O Scully, and W. E. Lamb Jr. Laser Physics. Reading, MA: Addison-Wesley

Publishing Company Advanced Book Program, 1974.

S. L. McCall and E. L. Hahn. Self-induced transparency by pulsed coherent light. Physical Review

Letters, 18:908, 1967.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Forstner, A. Knorr, R. L. Sellin, D. Ouyang, and D.

Bimberg. Self-induced transparency in InGaAs quantum-dot waveguides. Applied Physics Letters,

83:3668, 2003.

S. Hughes. Breakdown of the area theorem: Carrier-wave Rabi flopping of femtosecond optical

pulses. Physical Review Letters, 81:3363, 1998.

D. Pinotsi and A. Imamoglu. Single photon absorption by a single quantum emitter. Physical Review

Letters, 100:093603, 2008.

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs. Design of a

mode converter for efficient light-atom coupling in free space. Applied Physics B, 89:489, 2007.

S.]. van Enk. Atoms, dipole waves, and strongly focused light beams. Physical Review A, 69:043813,

2004.

M. Brune, E. Schmidt-Kaler, A. Maali, ]. Dreyer, E. Hagley, ]. M. Raimond, and S. Haroche. Quan-

tum Rabi oscillation: A direct test of field quantization in a cavity. Physical Review Letters, 76:1800,

1996.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Nortup, and H. J. Kimble. Photon blockade

in an optical cavity with one trapped atom. Nature, 436, 87:87, 2005.

R. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields. Advances in Solid

State Physics, Vol. 46:55. Berlin: Springer Verlag, 2008.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco,

A. Lemaitre, and P. Senellart. Bright solid-state sources of indistinguishable single photons. Nature

communications, 4:1425, 2012.

K. Srinivasan and O. Painter. Linear and nonlinear optical spectroscopy of a strongly coupled micro

disk-quantum dot system. Nature, 450:862, 2007.

N. Le Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U, Banin. Cavity QED with

semiconductor nanocrystals. Nano Letters, 6:557, 2006.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wust, C. Magen, D. D. O'Regan, ]. W. Luo, B. Ketterer, S.

Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, ]. R. Morante, M. Cantoni, N. Mazari, J.

Arbiol, A. Zunger, R. ]. Warburton, and A. Fontcuberta i Morral. Self-assembled quantum dots in a

nanowire system for quantum photonics. Nature Materials, 12:439, 2013.



Nonlinear Dynamics in Quantum Photonic Structures 727

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.
42,

43.
44,

45.

46.

47.

48.

49.

50.
51.

52.
53.

54.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks. A quantum logic gate between a solid-state
quantum bit and a photon. Nature Photonics, 7:373, 2013.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovi¢. Coherent generation of
non-classical light on a chip via photon-induced tunnelling and blockade. Nature Physics, 4:859,
2008.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Hing, A. Forchel,
and W. Langbein. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system. Nature
Materials, 9:304, 2010.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroft, L. Zhang, E. Hu, and A. Imamoglu.
A quantum dot single-photon turnstile device. Science, 290:2282, 2000.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto. Indistinguishable photons from
a single-photon device. Nature, 419:594, 2002,

E. Knill, R. Laamme, and G. J. Milburn. A scheme for efficient quantum computation with linear
optics. Nature, 409:46, 2001.

L. Allen and J. H. Eberly. Optical Resonance and Two-Level Atoms. New York, NY: Wiley, 1975.

R. P. Feynman, E L. Vernon, and R. W. Hellwarth. Geometrical representation of the Schrodinger
equation for solving laser problems. Journal of Applied Physics, 28:49, 1957.

R.]. Cook and B. W. Shore. Coherent dynamics of N-level atoms and molecules. III. An analytically
soluble periodic case. Physical Review A, 20:539, 1979.

J. N. Elgin. Semiclassical formalism for the treatment of three-level systems. Physics Letters, 80A:140,
1980.

M. Gell-Mann and Y. Neeman. The Eightfold Way. New York, NY: Benjamin, 1964.

E T. Hioe and ]. H. Eberly. N-level coherence vectors and higher conservation laws in quantum
optics and quantum mechanics. Physical Review Letters, 47:838, 1981.

S. L. McCall and E. L. Hahn. Self-induced transparency. Physical Review, 183:457, 1969,

G. Slavcheva. Model for the coherent optical manipulation of a single spin state in a charged quantum
dot. Physical Review B, 77:115347, 2008.

G. Slavcheva, J. M. Arnold, I. Wallace, and R. W. Ziolkowski. Coupled Maxwell-pseudospin
equations for investigation of self-induced transparency effects in a degenerate three-level quan-
tum system in two dimensions: Finite-difference time-domain study. Physical Review A, 66:063418,
2002.

A. Taove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood,
MA: Artech House, 2000.

R. W. Ziolkowski, ]. M. Arnold, and D. M. Gogny. Ultrafast pulse interactions with two-level atoms.
Physical Review, 52:3082, 1995.

B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves.
Mathematics of Computation, 31:629, 1977.

G. Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain
electromagnetic-field equations. IEEE Transactions on Electromagnetic Compatibility, 23:377,
1981.

A. Yariv. Quantum Electronics. New York, NY: Wiley, 1989.

G. M. Slavcheva, J. M. Arnold, and R.W. Ziolkowski. FDTD simulation of the nonlinear gain dynam-
ics in active optical waveguides and semiconductor microcavities. IEEE Journal of Selected Topics in
Quantum Electronics, 10(5):1052, 2004.

A. E. Siegman. Lasers. Mill Valley, CA: University of Science Books, 1986.

G. Slavcheva, J. M. Arnold, and R. W. Ziolkowski. Ultrashort pulse lossless propagation through a
degenerate three-level medium in nonlinear optical waveguides and semiconductor microcavities.
IEEE Journal of Selected Topics in Quantum Electronics, 9(3):929, 2003.

M. Blaaboer, G. Kurizki, and B. A. Malomed. Spatiotemporally localized solitons in resonantly
absorbing Bragg reflectors. Physical Review E, 62:R57, 2000.



728

55

56

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77

Handbook of Optoelectronic Device Modeling and Simulation

. A. Kozhekin and G. Kurizki. Self-induced transparency in Bragg reflectors: Gap solitons near
absorption resonances. Physical Review Letters, 74:5020, 1995.

. A. Kozhekin, G. Kurizki, and B. A. Malomed. Standing and moving gap solitons in resonantly

absorbing Bragg gratings. Physical Review Letters, 81:3647, 1998.

G. Slavcheva and O. Hess. Dynamical model of coherent circularly polarized optical pulse interac-

tions with two-level quantum systems. Physical Review A, 72:053804, 2005.

A. I. Maimistov, A. M. Besharov, O. Elyutin, and Yu. M. Sklyarov. Present state of self-induced

transparency theory. Physics Reports, 191:1-108, 1990.

G. Slavcheva and O. Hess. Spin-dependent dynamics of ultrafast polarised optical pulse propagation

in coherent semiconductor quantum systems. Physica Status Solidi C, 3:2414, 2006.

G. Slavcheva and O. Hess. All-optical coherent control of spin dynamics in semiconductor quantum

dots. Optical and Quantum Electronics, 31(12-14):973, 2007,

A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak. Electronic structure and magneto-optics of self-

assembled quantum dots. Physical Review B, 54:5604, 1996,

A. Greilich, R. Oulton, E. A. Zhukov, I. A. Yugova, D. R. Yakovlev, M. Bayer, A. Shabaev, A. L. Efros,

I. A. Merkulov, V. Stavarache, D. Reuter, and A. Wieck. Optical control of spin coherence in singly

charged (In,Ga)As/GaAs quantum dots. Physical Review Letters, 96:227401, 2006.

P. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel. Theory of quantum optical

control of a single spin in a quantum dot. Physical Review B, 69:075320, 2004.

A. Shabaev, A. L. Efros, D. Gammon, and I. A. Merkulov. Optical readout and initialization of an

electron spin in a single quantum dot. Physical Review B, 68:201305(R), 2003.

A. V. Khaetskii, D. Loss, and L. Glazman. Electron spin decoherence in quantum dots due to

interaction with nuclei. Physical Review Letters, 88:186802, 2002.

I. A. Merkulov, A. L. Efros, and M. Rosen. Electron spin relaxation by nuclei in semiconductor

quantum dots. Physical Review B, 65:205309, 2002.

D. V. Bulaev and V. Loss. Spin relaxation and decoherence of holes in quantum dots. Physical Review

Letters, 95:076805, 2005.

T. Flissikowski, I. A. Akimov, A. Hundt, and E Henneberger. Single-hole spin relaxation in a

quantum dot. Physical Review B, 68:161309(R), 2003.

S. Economou, R.-B. Liu, L. ]. Sham, and D. G. Steel. Unified theory of consequences of spontaneous

emission in a Asystem. Physical Review B, 71:195327, 2005.

M. Taylor, E. Harbord, P. Spencer, E. Clarke, G. Slavcheva, and R. Murray. Optical spin-filtering effect

in charged InAs/GaAs quantum dots. Applied Physics Letters, 97:171907, 2010,

K. Kavokin. Fine structure of the quantum-dot trion. Physica Status Solidi: A, 195:592, 2003,

P. F. Braun, X. Marie, L. Lombez, B. Urbaszek, T. Amand, P. Renucci, V. K. Kalevich, K. V. Kavokin,

O. Krebs, P. Voisin, and Y. Masumoto. Direct observation of the electron spin relaxation induced by

nuclei in quantum dots. Physical Review Letters, 94:116601, 2005.

B. Eble, C. Testelin, P. Desfonds, F. Bernardot, A. Balocchi, T. Amand, A. Miard, A. Lemaitre, X.

Marie, and M. Chamarro. Hole-nuclear spin interaction in quantum dots. Physical Review Letters,

102:146601, 2009.

G. Slavcheva. Model of coherent optical spin manipulation through hot trion states in p-doped

InAs/GaAs quantum dots. ArXiv:1301.7018v1, 2013.

T. Warming, E. Siebert, A. Schliwa, E. Stock, R. Zimmermann, and D. D. Bimberg. Hole-hole

and electron-hole exchange interactions in single InAs/GaAs quantum dots, Physical Review B,

79:125316, 2009.

G. A. Narvaez, G. Bester, and A. Zunger. Carrier relaxation mechanisms in self-assembled (In, Ga)

As/GaAs quantum dots: Efficient P—S§ auger relaxation of electrons. Physical Review B, 74:075403,

2006.

. C. W. Gardiner and P. Zoller. Quantum Noise, 3rd ed. Berlin: Springer, 2004.



Nonlinear Dynamics in Quantum Photonic Structures 729

78.

79.

80.

81.

82.
83.

84.

85.

86.

87.

83.

89.

90.

91.

92.

93.

94,

95.

96.

97.

98.

V. Weisskopf and E. Wigner. Berechnung der natiirlichen linienbreite auf grund der diracschen
lichttheorie. Zeitschrift fiir Physik, 63:54, 1930,

P. A. M. Dirac. The quantum theory of the emission and absorption of radiation. Proceedings of the
Royal Society London A, 114:243, 1927.

G. Slavcheva and Ph. Roussignol. Nonlinear coherent magneto-optical response of a single chiral
carbon nanotube. New Journal of Physics, 12:103004, 2010.

L. Yang, M. P. Anantram, J. Han, and J. P. Lu. Band-gap change of carbon nanotubes: Effect of small
uniaxial and torsional strain. Physical Review B, 60:13874, 1999.

G. L. A. Rikken and E. Raupach. Observation of magneto-chiral dichroism. Nature, 390:493, 390.
A. Ajiki and T. Ando. Electronic states of carbon nanotubes. Journal of the Physical Society of Japan,
62:1255, 1993.

Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, ]. Kong, and H. Daia.
Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters,
79:3155, 2001.

L. Jin, C. Bower, and O. Zhou. Alignment of carbon nanotubes in a polymer matrix by mechanical
stretching. Applied Physics Letters, 73:1197, 1998.

Ge. G. Samsonidze, A. Griineis, R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and M. S.
Dresselhaus. Interband optical transitions in left- and right-handed single-wall carbon nanotubes.
Physical Review B, 69:205402, 2004.

J.-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, O. Jost, and L. Capes. Ultrafast
carrier dynamics in single-wall carbon nanotubes. Physical Review Letters, 90:057404, 2003.

E. L. Ivchenko and B. Spivak. Chirality effects in carbon nanotubes. Physical Review B, 66:155404,
2002.

E Wang, G. Dukovic, L. E. Brus, and T. F. Heinz. Time-resolved fluorescence of carbon nanotubes
and its implication for radiative lifetimes. Physical Review Letters, 92:177401, 2000.

H. Bao, X. Ruan, and T. S. Fisher. Optical properties of ordered vertical arrays of multi-walled carbon
nanotubes from FDTD simulations. Optics Express, 18:6347, 2010.

V. N. Popov and L. Henrard. Comparative study of the optical properties of single-walled car-
bon nanotubes within orthogonal and nonorthogonal tight-binding models. Physical Review B,
70:115407, 2004.

V. N. Popov. Curvature effects on the structural, electronic and optical properties of isolated single-
walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New
Journal of Physics, 6:17, 2004.

J. Jiang, J. Ding, and D. Y. Xing. Zeeman effect on the electronic spectral properties of carbon
nanotubes in an axial magnetic field. Physical Review B, 62:13209, 2000.

E. D. Minot, Y. Yaish, V. Sazonova, and P. L. McEuen. Determination of electron orbital magnetic
moments in carbon nanotubes. Nature, 428:536, 2004.

E L. Shuy, C. P. Chang, R. B. Chen, C. W. Chiu, and M. E Lin. Magnetoelectronic and optical
properties of carbon nanotubes. Physical Review B, 67:045405, 2003.

H. Ajiki. Magnetic-field effects on the optical spectra of a carbon nanotube. Physical Review B,
65:233409, 2002.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Magnetic energy bands of carbon nanotubes.
Physical Review B, 50:14698, 1994.

K.J. Boller, A, Imamoglu, and S. E. Harris. Observation of electromagnetically induced transparency.
Physical Review Letters, 66:2593, 1991,



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com



Mathematical Methods

50 Drift-Diffusion Models Patricio Farrell, Nella Rotundo, Duy Hai Doan, Markus Kantner,
Jiirgen Fuhrmann, and Thomas Koprucki..............cocviiiiiiieiiiiiiiiiinie s 733
Introduction « How to Get Started: Numerical Solution of the Stationary 1D Semiconductor
Equations « Van Roosbroeck System « Discretizing the van Roosbroeck System « Nonlinear
Solvers « Mesh Generation for the Finite Volume Method « Time Discretization « Contact
Terminal Currents « An Alternative: The Finite Element Method « Extensions and Outlook

51 Monte Carlo Device Simulations Katerina Raleva, Abdul R. Shaik, Raghuraj Hathwar,

Akash Laturia, Suleman §. Qazi, Robin Daugherty, Dragica Vasileska, and Stephen M. Goodnick ... 773
Introduction « Bulk Monte Carlo Method Description « Particle-Based Device Simulation »
Representative Simulation Results « Outlook

52 PHoOtOOICS FrankSehmid ...ccovvmivimmsinisnusissmiiivsvassmisissssmmssissymvesssnivis 907
Landscape of Numerical Methods « Maxwell’s Equations in Nondispersive, Chargeless Media «
FDTD Method « Fourier Modal Method « Finite Element Method « DG Method

731



50

Drift-Diffusion Models

50.1
50.2

50.3

50.4

50.5
Patricio Farrell
Nella Rotundo

50.6

DUY Hai Doan 50.7

50.8
50.9

Markus Kantner

Introduction.............. wivis 133
How to Get Started Numerlcal Selutmn of the Stahonary

1D Semiconductor Equations
1D van Roosbroeck Model » Thermodynamic Equilibrium and Local

Charge Neutrality » Discretizing the Poisson Problem « Solving the
Discrete Nonlinear Poisson Problem « Discretizing the Continuity
Equations Using the Scharfetter-Gummel Scheme « Solving the Full
Discretized van Roosbroeck System « Why Not Use Central Finite
Differences for the Fluxes?

Van Roosbroeck System............. v, 745
The van Roosbroeck System of Equatlunz. . Imllal and Boundary

Conditions » Recombination Processes « Thermodynamic
Equilibrium « Non-Boltzmann Statistics and Generalized Einstein
Relation « Free Energy and Dissipation Rate « Existence and
Uniqueness Results « Maximum Principle

Discretizing the van Roosbroeck System ............ ... 753
Finite Volume Method in Higher Dimensions » Scharfetter—Gummcl

Fluxes and Their Non-Boltzmann Generalizations « Flux Expressions
Consistent with the Thermodynamic Equilibrium « Free Energy and
Dissipation Rate « Existence, Uniqueness, and Convergence »
Maximum Principle

Nonlinear Solvers.............. U o 1
Newton’s Method « Gummels Melhod

Mesh Generation for the Finite Volume Method ................... 761

Boundary Conforming Delaunay Meshes on Polyhedral Domains »
Tensor Product Approaches « Open Problems

Time Discretization... TGRSR 108
Contact Terminal Currents ChvhTSERRS 103
An Alternative: The Finite Element Method e~ 1

Jirgen Fuhrmann 50.10 Extensions and Outlook............... ... 766

and

Thomas Koprucki

50.1 Introduction

Additional Physical Models « (,ouplmg the van Roosbrocck System
to Other Models « Methods for Doping Optimization « Alternative
Modeling Approaches for Carrier Transport

The semiconductor technology is undeniably one of the most important branches in modern industry.
Apart from its obvious significance to our daily lives, this technology is an excellent example of a broad
collaboration among various disciplines. The development of novel technologies and devices has not only
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been driven by engineers, but also by physicists, mathematicians, and numerical analysts. On the one hand,
rigorous mathematical models allow sophisticated predictions, which might be difficult to observe experi-
mentally. On the other hand, numerical simulations have the potential to optimize device designs without
the costly and time-consuming development of prototypes.

In 1950, van Roosbroeck introduced the fundamental semiconductor device equations [1] as a system of
three nonlinearly coupled partial differential equations (PDEs). They describe the semiclassical transport
of free electrons and holes in a self-consistent electric field using a drift-diffusion approximation. Since
then, the so-called van Roosbroeck system (frequently also called drift-diffusion system) became the stan-
dard model to describe the current flow in semiconductor devices at a macroscopic scale. Typical devices
modeled by these equations range from diodes and transistors to LEDs, solar cells, and lasers [2,3]. In recent
years, the emergence of quantum nanostructures [4-7] and organic semiconductors [8-10] has invigorated
the research activities in this area.

In this chapter, we focus on solving the van Roosbroeck system numerically. From a mathematical point
of view, the challenge lies in the strong nonlinearities, the drift dominated nature of the underlying physics,
the formation of internal and boundary layers as well as the need to accurately mirror qualitative physical
properties, such as nonnegativity of carrier densities and consistency with thermodynamical principles.
The finite difference scheme invented by Scharfetter and Gummel [11] was the first to deal appropri-
ately with most of these difficulties for charge carrier densities described by Boltzmann statistics. Later
on, Fichtner, Rose, and Bank [12] extented it to higher dimensions as a finite volume scheme, providing
geometric flexibility. Selberherr combined a lot of these results along with his own contributions in his
textbook [13] which has become one of the standard reference works in the field.

However, often the Boltzmann approximation is insufficient and one has to impose Fermi-Dirac statis-
tics or other constitutive laws for the charge carrier densities. For this reason, we present recent attempts
to generalize the Scharfetter—-Gummel approach while still reflecting the physics correctly.

In order to enable readers not familiar with semiconductor simulations to quickly grasp the main points
in the discretization process of the van Roosbroeck system, we start by studying a one-dimensional (1D)
problem in Section 50.2. Even though we have to postpone some of the solid-state physics to the third
section, we can already introduce many key concepts of the standard finite difference ansatz proposed by
Scharfetter and Gummel, which we will interpret as a 1D finite volume scheme.

In Section 50.3, we introduce the full van Roosbroeck system in higher spatial dimensions along with its
physical concepts. In Section 50.4, we look at its numerical solution. We present the two-point flux finite
volume method for the stationary case, which allows to use the Scharfetter-Gummel scheme in higher
dimensions and discuss its generalization to more general carrier statistics. The remaining sections are
devoted to special numerical aspects: nonlinear solvers, mesh generation, time stepping, the correct com-
putation of terminal currents, and the finite element method. In the final section, we discuss generalizations
of the approach and its embedding into more complex physical models.

50.2 How to Get Started: Numerical Solution of the Stationary 1D
Semiconductor Equations

This section serves as a quick introduction to convey the main idea behind the van Roosbroeck system
and its discretization. The van Roosbroeck system consists of three equations modeling the charge carrier
flow as well as the electrostatic potential distribution in a semiconductor device. However, since the physics
behind these equations is rather cumbersome and the focus of this chapter are numerical methods, we omit
some of these physical details for now and start with a relatively simple 1D problem. Thus, we can highlight
the key elements (and difficulties!) in the discretization of the van Roosbroeck system. This approach may
appeal to newcomers to the field of optoelectronics. Experienced readers may jump directly to Section 50.3,
where we will dive into the physical meaning of this model.
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Here, we wish to model the stationary state of a 1D semiconductor device consisting of a homogeneous
material on an interval Q = [0, L] with Ohmic contacts at each end. This configuration already covers the
simulation of p-n and p-i-n junctions.

50.2.1 1D van Roosbroeck Model

The stationary 1D van Roosbroeck system consists of three nonlinear ordinary differential equations for the
unknown electrostatic potential y(x), the quasi-Fermi potential for electrons ¢, (x) and the quasi-Fermi
potential for holes ¢, (x). It links Poisson's equation for the electric field to the continuity equations for the
carrier densities as follows:

d( d ;
“ax (Bsaw) = ‘?(C TP, p) — n(w,tp,,)), (50.1)
%jn = qRY, 9, 9p)s (50.2)
d .
o = "R @ @p)- (50.3)

The fluxes or current densities are given by

. d d
In = “CIIJﬁ”(lIL ‘pri)aq}n and J'p = —ql-lpP(W- q)p}aq}p' (5{}‘4}

The electron density n and the hole density p are related to the electric potential y as well as the quasi-Fermi
potentials of electrons and holes via

_ q(“p = lpn) = Ec - q((Pp B llJ) + E“'
n(y, ¢,) = N, exp ( KT ) and  p(y,@,) = N, exp ( KT : (50.5)

We stress here that in (50.5) we have used the so-called Boltzmann approximation. In general, the expo-
nentials will be replaced by some monotonically increasing statistical distribution function F. This function
will be discussed in greater detail in Section 50.3.

Next, we explain the constants and functions in the van Roosbroeck system. The elementary charge g
and the Boltzmann constant ky are universal constants. The (absolute) dielectric permittivity &, = gyg,
is given as the product of the vacuum dielectric permittivity ¢, and the relative permittivity of the semi-
conductor g, in static (low frequency) limit. The carrier mobilities ,, and p,,, the conduction and valence
band densities of states N_ and N, as well as the conduction and valence band-edge energies E_ and E, are
assumed to be constant even though in general they can vary with the material (e.g., due to abrupt or graded
heterojunctions). The temperature T is also assumed to be constant; in general it can be space and even
time dependent. The doping profile C = C(x) describes material properties and the function R(y, ¢,,, 9)
models the recombination and generation of electron-hole pairs. The electric field E is determined by the
derivative (in higher dimensions the gradient) of the electrostatic potential

E= —%lp [
where e, denotes the unit normal along the x axis. A more detailed discussion on the physics behind these
different quantities will be given in Section 50.3.
In the literature, authors frequently use a different set of unknowns for the van Roosbroeck system by
replacing the quasi-Fermi potentials with the carrier densities n and p. However, we prefer to use the
quasi-Fermi potentials for several reasons: they allow to easily model abrupt or graded heterostructures
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and appear naturally in the thermodynamic description of the van Roosbroeck system since the negative
gradients of the quasi-Fermi potentials are the driving force of the currents [14]. Even mathematically,
they are more beautiful as they make it possible to write the whole van Roosbroeck system in a gradient
form [15] consistent with the principles of nonequilbrium thermodynamics [16]. Also carrier densities as
opposed to quasi-Fermi potentials vary drastically in magnitude, which may lead to numerical difficulties.

The system of Equations 50.1 through 50.3 needs to be supplied with boundary conditions at x = 0 and
x = L. For applied external voltages U, and U,, we require Dirichlet boundary conditions at the Ohmic
contacts, i.e.,

W (0) =y, (0) + Uy, W (L) = yq (L) + U, (50.6)
0, (0) = Uy, 9, (L) = Uy, (50.7)
q}p (0} = U] s (PP (L) = Uz- (50‘8)

We discuss the meaning of the potential y in Section 50.2.2.

50.2.2 Thermodynamic Equilibrium and Local Charge Neutrality

The goal is to enforce that the van Roosbroeck system of (50.1) through (50.3) is consistent with the
thermodynamic equilibrium, which is a physical state defined by vanishing currents, namely

Jn=jp=0 implying P 1= @, = @, = const. (50.9)

Without loss of generality, we can set ¢, = 0. We also discuss the thermodynamic equilibrium in
Section 50.3.4. As a consequence, the three differential equations (50.1) through (50.3) reduce to the 1D
nonlinear Poisson equation

d (. d \_ E, —qy qy — E,
o (Esall’) =q (N,, exp( KT ) N, exp( kT +C). (50.10)

We supply it with Dirichlet boundary conditions (50.6) for zero voltages U; = U, = 0. The solution of
Equation 50.10 with these boundary conditions is the built-in potential denoted with .. In general, we
cannot expect to find an analytic expression for .

Another important physical concept is local charge neutrality, characterized by a vanishing left-hand
side in the Poisson equation. Combined with the equilibrium condition (50.9), this leads to

_ Ev_qw() qyo — E;
O—q(Nvexp(]%—T — N, exp kT +CJ, (50.11)

which can be solved for y, by solving a quadratic equation and omitting the unphysical solution, yielding

E-+E; 1 N, )
=—— - -U;l — U h ; 50.12
Wolx) 2 5 108 (N.a + Yiparcsin - ( )
where the intrinsic carrier density Nj,,, and the thermal voltage Uy are given by
E.—E kT
NZ,. = NN, exp (— CkB = ") and  Up= 5 (50.13)
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The potential y, serves two purposes. In Section 50.2.4, it will be used to obtain an initial guess for the
nonlinear iteration to solve a discretized version of Equation 50.10. On the other hand, modeling (ideal)
Ohmic contacts requires local charge neutrality. Hence, the boundary values in (50.6) are obtained by
evaluating the function y at the contacts x = 0 and x = L. The voltage difference between the boundary
values y,(0) and (L) is called built-in voltage.

50.2.3 Discretizing the Poisson Problem

Our goal is to find a discrete solution to Equation 50.1. For this, we will use the finite volume method which
naturally preserves many important physical properties. To see this, the reader may have a quick look
in the table of contents and compare the next two sections devoted to the van Roosbroeck system and its
numerical solution. It will become apparent that for many aspects the continuous model and its discretized
counterpart are closely related.

We discretize the interval using a (possibly) nonuniform mesh of the form

0=:x <+ <xy:=L
We associate each node x;. with a control volunie w defined by the interior subintervals
Wy = [xk-—l.k’xk‘lﬁl] for k=2,...,.N-1
and the boundary subintervals
o) = [x.x,]  and oy =[xy neay] -
The boundaries of the kth control volume are given by

o Mgy T X ;
Xi—1k += -5 and Xkl =

Xp + Xy
2

fork =2, ..., N —1. We point out that we have generated a disjoint partition of the interval, Q = UkN=| ;.
This discretization along with its notation is illustrated in Figure 50.1.

We introduce a finite volume discretization for Poisson’s equation. Using the fundamental theorem
of calculus, we integrate Equation 50.1 over the interior control volumes w; and obtain Gauss’s law of
electrodynamics:

dy dy ) [

—&| — e =1 q{C+plw,9,) —nly,¢,) ) dx. (50.14)
( Lo P W ( g " )
By i Bygsn
bommmmmmmmmooooo D 1

e —| = P—

Xp— 1 Xk Lk X Xhk+1 Xkt

e 4
e

FIGURE 50.1 1D discretization around the kth node along with the corresponding notation.
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This equation constitutes a balance law that can be interpreted as follows: the total charge in the kth control
volume is given by the difference of the electric displacement D = —¢; dd—x\p at its interfaces.

So far, we have derived an integral form of Poisson’s equation for every interior control volume. We need
approximations of the electric displacements at the boundary of each control volume. For this we employ
central finite differences:

dy o Wke1 ~ Wk

: 50.15
o (50.15)

Kb k41 hk.k'l-]

with the distance between two neighboring nodes given by

by g1 1= Xy — X4

Moreover, the integral over the net charge density is approximated by the rectangle method, evaluating
the integrand at node x;. times the size of the control volume |w;| = X} ;. — x;_; ;- That is, the balance
equation (50.14) is approximated by

(‘Pk+1 “ W Wp— W

=q| Cp. + p(yy, @) — HOW, @) ) 0p |
Mk Ry ) q( k+ PV Ppik Wi (pn.k) k

or, slightly rearranged,

1 1 1 1
0=—¢g, (h—ll-'kﬂ - [h— + h_] Wi + A ‘lfk-l)
k k+1 kk+1 k—1.k k—1.k (50.16)

= Q(Ck + P Ppiic) — 1Y (Pn;k)) |l

where k = 2,...,N — 1. The subindices denote evaluation at a given node. So, for example, y;, means
W (x;) as well as @, indicates @, (x;). We use this nodal notation frequently within this chapter. To incor-
porate the Dirichlet boundary conditions (50.6), we simply impose two more equations for the endpoints,
namely

50.2.4 Solving the Discrete Nonlinear Poisson Problem

Using the finite volume discretization scheme we have just described, we solve the nonlinear Poisson
equation (50.16) with Dirichlet boundary conditions (50.17) in thermodynamic equilibrium (U, = U, =
0) to obtain the built-in potential . Recalling that there are N — 2 interior and two boundary nodes, we
end up with a system of N variables which can be summarized by the nonlinear discrete system

0= Fl('l"eq)’

where W, = (yq (% )];:’=1 is the vector of the nodal values. Solving this system is not straightforward due to
its inherent nonlinearity. One approach to obtain a solution is Newton’s method, which we discuss in more
detail in Section 50.5. Newton’s method converges quadratically—if one has a starting guess sufficiently
close to the solution [17].
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50.2.4.1 Solution Procedure: Nonlinear Poisson Problem

1. The easiest way to obtain a starting guess for the solution of Equation 50.16 with Dirichlet bound-
ary conditions (50.17) is to neglect the left-hand side. That is, we use the local charge neutrality
condition (50.11) for each node, which we can solve explicitly for y, via (50.12). With this func-
tion, we determine the components (nodal values) of our starting guess for the nonlinear Poisson
problem yy, via

wo = Wk -

2. Solving the discrete nonlinear Poisson problem via Newton'’s method with the starting guess y,
yields the built-in potential vector solution .

This solution procedure for the nonlinear Poisson equation for a p-i-n structure is illustrated in
Figure 50.2. In the following, we address how to discretize the continuity equations. A task which turns
out to be nontrivial.

50.2.5 Discretizing the Continuity Equations Using the Scharfetter-Gummel
Scheme

Now, we turn our attention to the continuity equations (50.2) and (50.3). We proceed just as for Poisson’s
equation: we integrate over the control volumes w; = [x3_; r, X} k41 ], apply the fundamental theorem of
calculus for the left-hand sides and approximate the integral of the recombination term as before. For the
interior control volumes we obtain

0 :jn:k.k+l _jn:k—l.k - qR(ka Pk (pp:k)iwk]'
(50.18)
0 = jpkks1 ~Jpik—1k + GRWks P> Ppeic) | 0|

where k = 2, ..., N — 1. Similar to before, these equations constitute a balance law in integral form which
we can interpret as follows: the carrier densities within the control volume w;, change either due to in- and

outflow or by recombination.

1.4 T T LI | 1 1 T

12f
1.0

08}

06F

E ---- Local charge neutrality
0.4 X :
[ oo 1 iteration
02| — 3 iterations
— 9 iterations

00 1 2 3 4 5 6 7 8 9 10

Space (pm)

Electric potential (V)

FIGURES50.2 Convergence of the electric potential toward the thermodynamic equilibrium solution (built-in poten-
tial) for a GaAs p-i-n diode on an equidistant mesh with 51 nodes. The locally electroneutral initialization quickly
converges to the built-in potential by means of a Newton iteration. The device has total length of 10 um (1 pm n-
doped with N, = 10'® ¢m~?, 8 um intrinsic, 1 pm p-doped with N, = 10'7 cm~3. Standard parameters for GaAs at
T =300K:E, = 0eV, E, = 1.424¢V, N, = 9.0 X 108 em™, N, = 4.7 x 10" em~3, and ¢, = 12.9.
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The fluxes (50.18) need to be expressed in terms of our set of unknowns, namely the nodal values of the
electrostatic and the quasi-Fermi potentials. Deriving a suitable approximation for the current expressions
Jnik ka1 and jp 4 describing the carrier exchange between neighboring control volumes w; and oy, is
crucial for numerical simulations. Since standard discretization techniques such as central finite differences
may lead to unphysical behavior (see Section 50.2.7), the derivation of such an approximation requires
particular care.

For the Boltzmann approximation (50.5), a numerically stable scheme was invented in 1969 by Schar-
tetter and Gummel [11]. In fact, it has been discovered independently several times [18-20]. Its derivation
is based on integrating the flux along the interval [x;, x, ] between two neighboring discretization nodes x;.
and x, under the assumption of constant current density and constant electric field. That is, either £ = k—1
or £ = k + 1. We illustrate the approach for the electron current density j,,.

In order to obtain a flux approximation, we will make two important assumptions, namely

1. The electric field along each edge is constant. This implies that the derivative of the electric potential

da"’ along the edge [x;. x| is approximated by %, where again y, = y(x,)and g, = y(x;). This
is consistent with the central difference approximation for the electric field in the Poisson equation,
see (50.15).

2. The current density j, is assumed to be constant along the edge.

The second assumption means that the current fluxes through the boundary from one control volume to
another are conserved, which implies that the derivative of the flux along the interval [x;, x,] vanishes.
This means that we assume that there is no recombination along the edge between neighboring nodes.
Hence, we obtain for the electron flux (the hole flux follows analogously)

d. _d(_ Ay - @,()) —E\ d a
W & ( auN, eXP( kT ) dx(p,,(x)) =0. (50.19)

We supply the differential equation with the boundary conditions

@, (x) = Pk and @, (xp) = Prze- (50.20)

The values @, and @,,.» have to be determined. But for now we assume they are given. Equations 50.19
and 50.20 constitute a two-point boundary value problem. Upon integrating once and multiplication by
the integrating factor

M(x) = exp (—%x) .
ke ~T

we obtain for the integration constant j,.;. » the equation

- -E
Jne e M(x) = qp”NcUTi (M(x) exp (q(w(x) ¢,(x) — E, )) _

ke T

Integrating once more from x;, to x, and using the boundary conditons (50.20) yields after some algebraic
manipulations the Scharfetter-Gummel expression for the current flux along the edge [x, x,] between
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neighboring control volumes

. . qpaUr Ve =W q (v = @ux) — Ec
Inike = fu:k.f'(lpk* Wes Pk (Pr!:(") =" l [B (_ ! ) NC o (—"

. =i ) =B
(YT N e q(We = Pur) ,
(50.21)
where we have introduced the Bernoulli function
X
P et

This function smoothly interpolates between zero and —x, see Figure 50.3. Remembering the relationships
(50.5), the flux can be brought into the simpler form

. qHy UT We — Wi Wy — Wy
g = = Bl - —B| —— . 50.22
Inckt hy o [ ( Uy ) . ( Ur ) n{] ( )

An important property of this scheme is its consistency with the thermodynamic equilibrium. That is,
similarly to (50.9), we have

Juke =0 for @, =@, , = const. (50.23)

For vanishing electric fields corresponding to 8y, » : =y, — y = 0, the flux j,., » reduces to a purely
diffusive flux

; Nz = My
Inke = —4 (_Du h ) .
ki

6 T T 60

40

B(x)

Current approximations

x Potential difference Sy . ,[U+]
(a) (b)

FIGURE 50.3 On the left the Bernoulli function B(x) is shown. The picture on the right shows different current
approximations for g, Uy /hy , = 1, n, = 10, and n; = 1 in terms of the potential difference Sy, . The dashed
black line denotes the equilibrium potential difference. The dotted lines show the drift currents, i.e., the asymptotics of
the Scharfetter-Gummel flux (50.24) for large positive and for large negative arguments. The central-difference flux is

denoted with j°P and the Scharfetter-Gummel flux with j56,
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The diffusion constant D,, is defined via the so-called Einstein relation D,, = p,, Uy, which we discuss in
Section 50.3.5 in more detail. For large electric fields, we obtain asymptotically a drift flux

Wi
—qW, g Lk : 5, for dwy , > +Ur,

Jnke = ! (50.24)
—qu, "y w;k :""' for &y , < —Uy.

These two extreme cases show that the Scharfetter-Gummel scheme naturally encompasses drift and
diffusive currents depending on the strength of the local electric field, see Figure 50.3.
Using analogous considerations, we can derive a current expression for the holes

. aHp Ur [ (W _‘l-'k) ( We —‘Uk) l
s = B -  —B| —— | .
Jpike Ty Uy P Ur Pe

Since we have an approximation for the fluxes at the control volume boundary, we can derive from
the discrete system (50.18) nonlinear equations for the interior nodes in terms of our set of unknowns
(V. @y ).

We stress once more that the previous discussion is only valid for the Boltzmann approximation made
in (50.5). A discussion on more general distribution functions follows in Sections 50.3.5 and 50.4.2.

50.2.6 Solving the Full Discretized van Roosbroeck System

So far we have described how to derive a set of discrete and nonlinear equations from the 1D van
Roosbroeck system ((50.1)-(50.3)), namely

1 1 1 1
0=—g | —w —[ +—]l|1+ l|!_)
! (hk‘kﬂ il T e R T T

- ( i+ POV @pe) = W 910 )l

0= j.-r:k‘k—#l (W Wkt 15 Pucs Przkr1) _qu:kul‘k(wkul s Wi Prrzk—1> Puikc) — qROyy., Pskes (pp:k)lmk I

0 = Jpdkt 1 (Whs Wi 1- Ppiks Ppika 1) — Jipik—1 k(Wiem12 Whes @pik—1> Ppik) + GROWE: @y i) || (50.25)

with k = 2,...,N — L. For the boundary nodes x; and xy;, the equations are given by the boundary
conditions ((50.6)-(50.8)):

Wy = y(0) = wyy(0) + Uy, Pn1 = Pu(0) = Uy, Pp.1 = 9p(0) = Uy,
yy = y(L) = yy(L) + Us, Qun = Pu(L) = Uy, PpN = (PP{L] =U,.

Just as for the Poisson problem we assume there are N control volumes in total. We end up with a system
of 3N variables which we can summarize by the nonlinear discrete system

Fl(‘l‘s(pn’tpp)
0=Fy, 9, 9,) = |F(w.e,9,)|,
FS(‘"- @y 'I)P)



Drift-Diffusion Models 743

where

W= WEDL @ = @D @ = @

Again, we employ Newton’s method to solve this system. We aim to guarantee an appropriate starting
guess by starting from thermodynamic equilibrium where the three equations reduce to one. The solution

of the

full van Roosbroeck system with an applied bias is then obtained via an iteration technique that we

state here.

50.2.6.1 Solution Procedure: Full van Roosbroeck System

L.

We assume thermodynamic equilibrium and set the constant quasi-Fermi potentials to ¢, = 0.
With the solution procedure introduced in Section 50.2.4, we obtain a solution vector s, for the
nonlinear Poisson problem with Dirichlet boundary conditions.

. We denote with (pg and q}g the constant vectors, consisting of the equilibrium value for the quasi-

Fermi potentials, namely

o=@y, and @) =(p)y,

We choose zero boundary voltages U; = U, = 0 and remember that we have obtained y;(0)
and (L) via the charge neutrality condition. Thus we have determined the boundary conditions
((50.6)-(50.8)). Using the equilibrium vector (Wegs (pﬂ, Q)g} as a new starting guess, we can now solve
the full discrete system (50.25) with these boundary conditions via Newton’s method, yielding a solu-
tion (', @1, (p;}‘ That is, we compute the equilibrium state of the full van Roosbroeck system using
the equilibrium of the Poisson equation as a starting guess. We point out that solution and starting
guess should agree up to machine precision by construction.

. We slightly increase U; and U, to generate a “small” bias 8U = U, — U;. What small here means

is not very precise and needs to be determined via trial and error. Now we solve the full discrete
system (50.25) via Newton’s method with the starting guess (y, (p,:.qr;) to obtain a new solution

. 0. 9).

. Now we iterate the last step: gradually increase the bias and use the old solution as starting guess for

the new one.

Figures 50.4 and 50.5 show the numerical results for the p-i-n structure, already introduced in
Section 50.2.4. They depict the band edge energies, the quasi-Fermi energy levels E; = —q¢, and
Ep, = —qq, as well as the carrier densities for different bias values. Additionally, the current voltage

characteristics for different n-dopings are shown.

50.2.7 Why Not Use Central Finite Differences for the Fluxes?

Thus far, we have discussed the Scharfetter-Gummel scheme to approximate the flux at the control volume
interface. One might ask why not use a simpler flux approximation, for example, central finite differences.
This question we address now.

For simplicity we assume a linear electrostatic potential. In this case

d _ _ _;
LY =v® y(0) =: dy.
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FIGURE 50.4 Computed band edge energy and quasi-Fermi levels for a GaAs p-i-n diode at different values of the
applied voltage. (a) Thermodynamic equilibrium (off-state, 0V), (b) U = 1.5V (flat band), (c) U = 3.0 V. Device has
total length of 10 um (1 um n-doped with Nj, = 10'® cm™3, 8 um intrinsic, 1 pm p-doped with N, = 10' em~>. The
parameters used are standard parameters for GaAs as given in the caption of Figure 50.2 and p,, = 8500 cm® V™1 571,
B, =400cm? V157l 7, =1, =1n5,C, = C, = 1 X 1072 em® 5™, and 1,5y = 1 X 10710 cm® 571,
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FIGURE 50.5 (a) Carrier densities in the p-i-n-diode at different applied voltages. Electron densities are shown as
solid lines, holes are illustrated by dashed lines. One observes how the intrinsic region gets populated by free carriers
while increasing the applied bias. (b) Current-voltage curves for the same device with altered values of the donor density
Np. Same parameters as in Figure 50.4.

We focus on the continuity equation for electrons on the domain Q = [0, 1] which results in a linear
differential equation of second order,

d'—Dd2 Sd—O 50.26
a.}n_q n@n_qpn ﬂ!a”— - (50.26)

In this equation, we have introduced the drift-diffusion form of the (electron) flux

; d d
In=9 (Dnan — ”I—lna‘&f) . (50.27)

where we have used again the Einstein relation D,, = p, Uy. We omit the physical derivation of the flux
here. It is only important to know that this way of characterizing the flux is equivalent to Equation 50.4.
We have already seen how to solve this type of equation numerically by solving local two-point boundary
value problems for the flux, which yields the Scharfetter-Gummel scheme (50.22). Of course, there are
many different ways to discretize the flux (50.27) at a control volume interface x;_,, needed in (50.18). For

example, looking at Equation 50.27 one might consider replacing the derivative of the electron density in
with a central finite difference and the density n with an average. That is, at the control volume interface
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FIGURE 50.6 The exact solution (black) of Equation 50.26 and its central difference approximation (gray) on a uni-
form mesh with mesh width h = 1/12. The boundary conditions (50.28) lead to a numerical solution which violates
the maximum principle (left). On the other hand, the boundary conditions (50.29) produce a numerical solution which
violates the positivity of the density (right). Here gD, = 0.01 and qp,,6y = 1.
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This, however, is a very bad idea since the scheme will become unstable, resulting under certain
conditions in large oscillations. To show this, we supply Equation 50.26 with two different types of
boundary conditions:

n(0) =1 and n(1l)=0 (50.28)
as well as
n0)=0 and n(l) =1. (50.29)

Then, the discretization using central finite differences shows large oscillations for p,, 8y /D,, = 100, which
can be seen in Figure 50.6. For the first set of boundary conditions, we can see that the maximum principle is
violated, i.e., the solution exceeds both boundary values [21,22]. For the second set of boundary conditions,
the numerically computed density becomes negative. Both observations constitute huge violations of basic
physical laws and are unacceptable in applications.

The problem here is that the diffusion constant D, is small compared to the drift constant p,dy. We
point out, that in this special 1D case of vanishing recombination the Scharfetter-Gummel scheme, on
the other hand, yields exact nodal values due to its construction. The Scharfetter-Gummel and the central
difference flux are compared in Figure 50.3.

50.3 Van Roosbroeck System

In this section, we make several generalizations to the van Roosbroeck system ((50.1)-(50.3)). In particular,
we make the model time dependent and allow higher spatial dimensions. Before stating the equations, we
discuss the physical concepts we want to encode in the model.
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As in the 1D case, the van Roosbroeck system consists of three equations: the Poisson equation and two
continuity equations for the carrier densities. The Poisson equation describes the electric field E = —Vy
which is generated by a scalar electric potential y(x, t) in the presence of a free charge carrier density.
In a (doped) bipolar semiconductor device, this charge density has three ingredients: the density of free
(negatively charged) electrons n(x, t) occupying the conduction band, the density of (positively charged)
holes p(x, t) occupying the valence band and the density of ionized built-in dopants C(x) = NE (x) =N (x),
where NS denotes the density of singly ionized donor atoms and N, is the density of singly ionized acceptor
atoms.

The continuity equations (in differential form), on the other hand, model the flow of the charge carrier
densities due to diffusion and drift governed by the self-consistent electric field, which is generated by the
net charge density. Furthermore, the recombination and generation of electron-hole pairs influences the
electron and hole densities.

50.3.1 The van Roosbroeck System of Equations

For a bounded spatial domain Q C R4 where d € {1,2,3), the van Roosbroeck system consists of three
coupled nonlinear PDEs of the form

-V - (e,Vy)=q(p-n+C), (50.30)
—-qon+V -j, =qR, (50.31)
qop+V -j, = —qR, (50.32)

forx € Qand ¢t € [0, T]. The current densities in Equations 50.31 and 50.32 are given by the usual
expressions

jn=—qunVe, and  j, = —qu,pVq,. (50.33)

That is, the negative gradients of the quasi-Fermi potentials are the driving forces of the currents [14].
These relationships correspond directly to Equation 50.4.

Within the framework of effective mass approximation [2], the densities of free carriers in a solid are
given by

_ ‘I(lIJ - (P,,) . Ec _ Ev - ‘?(lll - (pp)

Equations 50.34 indicate that the electric potential effectively leads to a bending of the energy band edge
levels and thus a nonlinear, self-consistent coupling to the carrier densities is achieved. We assume a
globally constant temperature for both carrier species and the crystal lattice.

The function F describes the occupation of energy states in the semiconductor. Since it plays an impor-
tant role in the following discussion, we will define and discuss it later in Section 50.3.5. We only point out
here that Equations 50.34 is analogous to Equations 50.5 when choosing for F the exponential function,
the so-called Boltzmann approximation.
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50.3.2 Initial and Boundary Conditions

The system ((50.30)-(50.32)) must be supplemented with initial and boundary conditions. The initial
conditions at time ¢ = 0 are given by the initial distributions y', ¢} and @}, i.e.

v =y'®, 9,0 =¢[(x), @x0=gx forxeQ

Regarding the boundary conditions, we briefly discuss the most important case where the boundary of the
domain Q can be decomposed into Ohmic contacts, a gate contact and artificial interfaces, i.e.,

No
0Q = (U ro_u) %Y B3O8 o
=1

Semiconductor-metal interfaces, such as Ohmic contacts, are modeled by Dirichlet boundary conditions.
For any Ohmic contact I' , witha = 1,..., N, weset forallx e 'p and t € [0,T]

@n(x. 1) = Uy(h), (50.36)
(pp(X, t)= U(:(r)- (50.37}

where U, denotes the corresponding externally applied contact voltage. The value ,, at the boundary is
defined by local charge neutrality similar to (50.11), where the exponential is now replaced by F:
E, —qy,® qvo (x) — E,
0=NF| *+———)-NF| ——= | +C).
! ( kyT ¢ kT )
We just remark that, in general, this equation yields no analytical solution, and therefore its solution
needs to be obtained by a nonlinear solver. The boundary conditions for the more advanced nonlinear
semiconductor-metal interfaces (Schottky contacts) can be found in [13,23].
Gate contacts are modeled by Robin boundary conditions for the electrostatic potential and homoge-
neous Neumann boundary conditions for the quasi-Fermi potentials

e Vy(x, 1) - v+ 22 (y(x, 1) — Ug(t)) = 0,
L ) dox -w © forallx e I'; and t € [0, T, (50.38)
inx v =]p(x, -v=0,

where g, and d,, are the absolute dielectric permittivity and the thickness of the oxide, respectively. The
function Ug(t) is the applied voltage at the outside of the insulating gate oxide at I';. Here v denotes the
outer normal vector on the interface.

On the remaining (artificial) interfaces, one typically imposes homogeneous Neumann boundary
conditions (natural boundary conditions), namely

Vyx.t)-v=j,(x1)-v= jpx.t)-v=0 foralxeI'y andt € [0, T]. (50.39)

50.3.3 Recombination Processes

The net recombination rate R on the right-hand side of Equations 50.31 and 50.32 describes the radiative
and nonradiative generation or recombination of carriers due to thermal excitation and various scattering
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effects. We assume that the recombination rate R(n, p) is given by the sum of the most common processes,
namely the Shockley-Read-Hall recombination Rgpyy, the spontaneous radiative recombination R4 and
the Auger recombination Ry, All of these rates are of the form

R(n,p) = r(n, p)np (l — exp (?E%B:;&)) , (50.40)

where r(n, p) is a model-dependent generation-recombination rate [2,13,24]. In Figure 50.7, one finds the
definitions of these rates together with a schematic illustration of the corresponding processes. For Boltz-
mann statistics, Equation 50.40 is equivalent to the widely used R(n, p) = r(n, p)(np — Nizmr), where Ny,
is the intrinsic carrier density defined in (50.13).

50.3.4 Thermodynamic Equilibrium

The thermodynamic equilibrium is characterized by vanishing current fluxes j, (x.t) = j p(x.1) = 0. Asa
consequence, R(#n, p) = 0 and the quasi-Fermi potentials assume constant values which due to (50.40) are
equal:

Py 1=, =@, = const.

Without loss of generality, we set ¢, = 0. Therefore, the van Roosbroeck system of (50.30)-(50.32) reduces
to the nonlinear Poisson equation

E, —qy qy — E;
~-V.eVy=gq|(NF|2—=)-NF|l—-= C). 50.41
evw=a(nr (o) -nr (To) + oy

We supply it with Dirichlet boundary conditions (50.35) for zero voltages U, = 0 for a = 1,...,Ng
and homogeneus Neumann boundary conditions (50.39) elsewhere. The solution of (50.41) with these
boundary conditions defines the built-in potential denoted with .

Recombination processes

Spontaneous radiative Auger SRH
recombination T recombination recombination
E. [ ] FE_®&e @& E
" Photon € Cs & R, |\annnrs Phonon
AR 5
. . Cp Pl-.- W Phonon
B, 5 E—— &
[ ]
Spontaneous. radiative Auger recombination rate SRH recombination rate
recombination rate 1
e - re =
Fspont FAuger= Can + ("J"p SRR T;r(" +np)+T,(p+pr)

FIGURES50.7  This figure illustrates three different recombination processes. The carrier life times 7,,, 7, the reference
carrier densities ny, pr, and the coefficients rgo» C,,» C, are material-dependent parameters.
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50.3.5 Non-Boltzmann Statistics and Generalized Einstein Relation

Now, we address the statistical distribution function F which appears in Equation 50.34. It describes the
relationship between the density of the free carriers as well as the electrostatic potential and the quasi-Fermi
potentials [2].

Assuming that the electrons in the conduction band are in quasi equilibrium, i.e., they are described by
the quasi-Fermi level Ef, , the electron density can be introduced as a convolution integral of the density
of states DOS(E) with the Fermi-Dirac distribution function

o0
s I DOS(E)—E__—‘HF——dE. (50.42)
a0 exp (—kn’f‘“ ) +1

It is possible to express this convolution as a product of the effective density of states N. and a nondimen-
sionalized statistical distribution function F, i.e.,

n(n) = N.F[®). (50.43)

We consider organic and inorganic semiconductors. For inorganic, three-dimensional (3D) bulk semi-
conductors with parabolic bands the statistical distribution function is given by the Fermi-Dirac integral of
order 1/2 [2], which can be approximated by the Blakemore [25] or the Boltzmann distribution in the low
density limit. For organic semiconductors, it is given by the Gauss—Fermi integral [10], which reduces to a
Boltzmann type distribution function (up to some normalizing factor) in the low-density limit or a Blake-
more distribution function for vanishing variance . The latter corresponds to a §-shaped density of states
[10,26], describing a single electronic transport level. See Figure 50.8 for definitions and a relationship
between these functions and Figure 50.9 for a graphical representation.

For inorganic, 3D bulk semiconductors assuming parabolic bands with effective mass m the effective
density of states is given by

m*knT 3/2
=Bt ,
2mh?

where T is the temperature and 7 the Planck constant. For organic semiconductors, the effective density
of states N_ is given by the density of transport states N,.

Introducing a general relationship between carrier density as well as quasi-Fermi and electrostatic poten-
tial via Equation 50.34 has quite a few implications. The nonlinear Poisson equation (50.41) becomes more
complicated. In Section 50.2.4, we have studied how to design useful starting guesses for the Boltzmann
approximation. For general distribution functions 7, it is no longer possible to obtain an explicit expres-
sion for yy, like we have achieved in Equation 50.12. One rather needs to solve a nonlinear equation, for
example, via Newton’s methods at a given point x. For highly doped regions, the Boltzmann approximation
strongly overestimates the carrier densities if n > 0, see Figure 50.9. This implies that the more realistic
Fermi-Dirac distribution leads to a higher built-in voltage. Moreover, from a numerical point of view, the
Scharfetter-Gummel method needs to be adjusted. We discuss this in Section 50.4.2.

Finally, the distribution function F influences the ratio between diffusion and drift. To see this, we write
the currents in drift-diffusion form. Using the relations for the carrier densities (50.34), we obtain

Jn = _qpnﬂv‘l‘ s qulV”' jp = —QI-IPPVW - quVP‘
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FIGURE 50.8 This figure shows two important choices of the statistical distribution function: for three-dimensional
bulk semiconductors and for organic semiconductors [10] described by a Gaussian density of states with variance .
Both can be approximated using the Blakemore or Boltzmann distribution function.
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FIGURE50.9 (a) Some frequently considered distribution functions for the density of free carriers. For the Blakemore
and the Gauss-Fermi functions one obtains a saturation of the carrier density at high values of 1. (b) Illustration of
the diffusion enhancement factors for the distribution functions shown in (a). In the case of the Blakemore and the
Gauss—Fermi functions the saturation values of the carrier density directly lead to a divergent behavior of the nonlinear

diffusion factor.
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The diffusion coefficients D, and D, are connected to the carrier mobilities by a generalized Einstein

relation

D, kyT D, k,T

J:B_g(i), _P=B_g(£) (50.44)
By g ©\N. q °\N

with a density-dependent nonlinear factor

g®=&(F ") @,

leading in general to a nonlinear diffusion coefficient. For the Boltzmann approximation, we immediately
see that g(€) = 1, which gives the classical Einstein relation D,, = kg T, /q. For non-exponential distribu-
tion function and £ > 1, however, we note g(§) > 1, see [27]. For this reason, we call this factor diffusion
enhancement as proposed in [9]. The dependence of the diffusion enhancement g on the density is depicted
in Figure 50.9 for various distribution functions.

50.3.6 Free Energy and Dissipation Rate

We consider consistency with fundamental principles of thermodynamics to be a quality measure for mod-
els describing natural processes. So it is of significant interest to study the consistency for both continuous
and discretized models. Due to our simplifying assumption of constant temperature, we cannot have energy
conservation in the proper sense. The second law of thermodynamics for nonequilibrium processes [16,28]
requires nonnegativity of the local entropy production which, multiplied by the temperature T, gives the
dissipation rate.

For the sake of readability, we discuss these concepts for Boltzmann statistics [29] here. See [30]
and [31] for more general statistics. For a triple (y,n, p) and a thermodynamic equilibrium solution
(Weqs Meqs Peg) *= (Weqs M(Weq), P(Weq)) Of the full van Roosbroeck system the free energy is defined as

[F(lpm.p)zj n]ogi—n+plogi—p+neq+peq dx
Q Meq pcq
(50.45)

SS 2 1 SOX )
+Lz 2 ’V (v —‘Ueq)[ i 2 Ir(,- E;; (v lPeq] o

For a transient solution (y(t), n(t), p(t)) of ((50.30)-(50.32)), the function L(t) = F(y(t), n(t), p(t)) decays
exponentially as f tends to infinity and one has

t
L) = L(0)— J D(t)dt,
0

where D(t) is the nonnegative dissipation rate [29]

D(t) = I (rl|,l“|V(p"|2 + piy |V, |* + r(n, p)(np — 1) log(np))dx >0 (50.46)
Q

depending on t via the time evolution of n and p. This result confirms the consistency with the second
law of thermodynamics. Incidentally, the function L is a Lyapunov function, allowing in certain situations
to prove the global stability of the thermodynamical equilibrium. Furthermore, it can be used as a tool
to prove uniqueness of solutions to the system ((50.30)-(50.32)). This leads us naturally to the following
subsection.



752 Handbook of Optoelectronic Device Modeling and Simulation

50.3.7 Existence and Uniqueness Results

When modeling complex physical phenomena, it is often necessary to simplify the underlying physical
model. Therefore, a sound mathematical investigation is necessary to assess the implications of such simpli-
fications. Take, for example, the electrostatic potential of a device. Physically, we know that such a potential
exists. Hence, a sound model should guarantee its existence—also from a mathematical point of view. If the
existence cannot be shown, then the model does not represent the physical world accurately. Apart from
existence, uniqueness of the solution is often desirable as well as continuous dependence on the initial data.

The mathematical technique used to prove existence and uniqueness depends on the device geometry
and the model. The first existence result on the van Roosbroeck system was shown by Mock [32]. Since
then several results have been obtained by Gajewski and Groger, we refer the interested reader to [33,34].
In [34], the key tool to show the existence and uniqueness of the time-dependent system is based on finding
a Lyapunov function. Moreover, Gajewski and Groger presented the first result which considered Fermi-
Dirac statistics instead of Boltzmann statistics. There are other important existence results. We would like
to mention explicitly the results studied by Markowich see, for example, [35], Jiingel [36], and Jerome [37].

We would like to show the reader that these results are not of purely analytical interest but can also be
used to design numerical methods. Gummel’s method [38], for example (see Section 50.5), is based on
the same fixed point iteration technique used to obtain the existence result which we discuss next. The
connection to numerics can be found in [37]. We would like to give the reader an idea regarding the proof
of a standard result without going into the tricky details. We follow ideas from Markowich’s textbook [39].

We consider the stationary van Roosbroeck system with Boltzmann statistics. Using a scaling that can be
found in [39, Section 2.4] and making a change of variables, we can rewrite the steady-state van Roosbroeck
system in the following way:

Ay = 8% Vv —8%"u+C, (50.47)
V- (n,e¥Vu) =R, (50.48)
V(e YVy) =R (50.49)

The densities 7 and p are related to the so-called Slotboom variables u and v vian = §%e¥uand p = 8¢ V.
In Equations 50.47 through 50.49, the parameter A denotes the normalized characteristic Debye length
of the device, 8% indicates the scaled intrinsic carrier density and R is the scaled recombination term. It
is of the form R = c(y, u, v)(uv — 1) with c(y,u,v) > 0. The chosen scaling and change of variables
make it possible to rewrite the boundary conditions. We consider only Ohmic contacts and homogeneous
Neumann boundaries.

In order to prove the existence of solutions for the system ((50.47)-(50.49)) equipped with suitable
boundary conditions, we need to make several technical assumptions. We refer the interested reader to
[39] where these assumptions are well explained as well as physically and mathematically justified. Here,
we would rather like to focus on the key idea of the proof which is exploited numerically, omitting math-
ematical detail. The existence proof is based on an iteration scheme which considers the Poisson equation
(50.47) decoupled from the continuity equations (50.48) and (50.49). The proof consists of the following
steps:

1. We fix some 4, vy > 0, and consider the semilinear elliptic problem
—2Ay = 8% Vv, — 8%e¥uy + C, in Q, (plus BC for y on 0€2). (50.50)

Using standard analytical results for semilinear elliptic equations (namely the Leray-Schauder fixed
point theorem and the maximum principle [40]) we prove that there exists a unique solution of the
problem (50.50) that we denote with ;.
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2. We insert the solution y of Equation 50.50 into the decoupled linear elliptic equations

V- (p,e¥1 V) = clyy, ug, vo)(uvg — 1), in Q, (plus BC for u on 09), (50.51)

V- (ppe""’i Vv) = oy, ug, vy — 1), in Q, (plus BC for v on 0€2). (50.52)

We point out that in the right-hand side of Equation 50.51 the rate ¢ depends only on y; determined
from the previous step and on the fixed u,, vy. The other term, uv, — 1, depends linearly on the
unknown u. Analogous considerations are valid for Equation 50.52. Physically, this means that in
the factor describing relaxation to equilibrium, uv — 1, we freeze the hole density, more precisely
the Slotboom variable v, in the continuity equation for the electrons and vice versa. Thanks to the
nonnegativity of c(y,, u. v) there exist unique solutions u#; and v, to Equations 50.51 and 50.52. This
is ensured by standard results for linear elliptic equations (see, e.g., [40]).

3. Based on the first two steps, we can now define a map H which maps (1, vy) onto (uy, v;). This
map is known as Gummel map. It is possible to prove that this map has a fixed point (u*, v*) which
determines a (weak) solution (y*, u*,v*) of the coupled system ((50.47)-(50.49)). The electro-
static potential y* that solves Poisson’s equation (50.47) can be determined using the first step by
substituting (uy, vy) with (u*, v¥).

Finally, we discuss the uniqueness of solutions to the van Roosbroeck system. It is well known that for the
steady-state system, the uniqueness of the solution cannot be shown without additional assumptions, for
example, on the applied voltage. This is no surprise, as in fact, some semiconductor devices (e.g., thyristors
[41]) are designed to have multiple steady states. However, for a device in thermal equilibrium (see Section
50.3.4), we have u = v = 1. In this case, there is a unique function which satisfies the Poisson equation
(50.47). Hence, the solution (y,, 1, 1) is the unique equilibrium solution of the system ((50.47)-(50.49)),
see [32]. For sufficiently small bias voltages, the uniqueness of the solution is shown in [39] under some
specific assumptions on the recombination rates. All recombination mechanisms appearing in Figure 50.3.3
fulfill these assumptions. However, impact ionization rates, for example, are excluded.

50.3.8 Maximum Principle

An important mathematical tool, often used for proofs similar to the ones in the previous section, is the
maximum principle. Intuitively, the maximum principle states that if the domain is bounded and the right-
hand side of the elliptic equation is positive, then the maximum of the solution is attained on the boundary
of the domain [40].

50.4 Discretizing the van Roosbroeck System

In this section, we introduce a method for discretizing the van Roosbroeck system which is close to the
physicist’s approach to derive PDEs based on a subdivision of the computational domain into representative
elementary volumes or control volumes. The two-point flux finite volume method described here can be seen
as a straightforward generalization, preserving the properties of the 1D Scharfetter-Gummel scheme in
higher dimensions. Figure 50.10 shows a 2D simulation. The 2D variant of this approach was introduced
as box method in [12]. Historically, it goes back to [42]. The 3D variant of this method was probably first
investigated in [29,43].

The method has two main ingredients: a geometry-based approach to obtain a system describing com-
municating control volumes and a consistent description of the fluxes between two adjacent control
volumes. These are discussed in the following two subsections. We finish this section by describing various
properties of the finite volume scheme.
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FIGURE50.10 Exemplary results of a 2D simulation. The example is inspired by a ridge-waveguide laser with Ohmic
contacts on the top of a mesa and at the side. For simplicity, we restrict to a homogeneous material which is here GaAs
with the parameters as given in Figure 50.2. Within the mesa, an intrinsic domain is enclosed by a p-doped top-layer
(Ny =2x% 10'8 em™3) and the n-doped substrate (N, = 2 X 10'® cm=3). The boundaries of the doped domains are
shown in the pictures as dashed lines. (a) At an applied voltage of 1.5V (flat band conditions) a significant electron
current flow can be observed. The absolute value of the current density is shown by the gray scale, the arrows indicate
the direction of particle flow (in the case of electrons the current density vector points in the opposite direction). (b)
Plot of the total recombination rate at the same bias. The maximal recombination rate is observed in the vicinity of the
intrinsic domain.

FIGURE50.11 Two adjacent control volumes wy and w, with corresponding data.

50.4.1 Finite Volume Method in Higher Dimensions

We partition the domain into N nonintersecting, convex polyhedral control volumes w, such that Q =
Uf:l w;.. We associate with each control volume a node x; € w,. If the control volume intersects with the
boundary of our domain, we demand that the node lies on the boundary, that means x;, € dQ2 N w;. We
assume that the partition is admissible [44], i.e., the edge X; X with length h;_, is orthogonal to dwy N d,.
Thus, the normal vectors to dwy. can be calculated by v , = (x, — x;)/lIx, — X;||. See Figure 50.11 for
details.

The set of all nodes and control volumes is called the mesh of the domain Q. For a discussion of con-
structive ways to obtain such mesh partitions, see Section 50.6. In order to keep the equations simple, we
introduce two abbreviations,

q(v-¢,) —E E,—q(v—-9,)
Ny (W.0,) = kB—T and 1, (‘P"Pp) - kB—T’

and assume that we have only a single gate contact with gate voltage Ug;. We integrate the van Roosbroeck
system ((50.30)-(50.32)) over w; and apply Gauss’s divergence theorem, resulting in the integral equations

- l e, Vy - vds + I Zﬁ(w - Ug)ds = qJ (C_Ncp (y (s @) +N,F (“p (w,(pp)))dx,

oxX
day, dhing ﬁrG 1y
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d .
—a3 [ NF (n, (. 9,)) dx+ ] ju-vds=q J Rdx,

o Dy, wy,
d .
qa N,F (np (w, cpp)) dx+ | j,-wds=—q [ Rdx,
[ g, o
fork =1, ..., N. Here, v is outward-pointing unit normal to the control volume w; see Figure 50.11. These

equations represent an integral form of the van Roosbroeck system on every control volume. In particular,
the first equation is Gauss’s law of electrodynamics. The other two equations are balance laws for the carrier
densities. The densities in each control volume change only due to in- and outflow through the boundary
or recombination.

Next, the surface integrals are split into the sum of integrals over the planar interfaces between the
control volume w; and its neighbors. Employing one point quadrature rules for the surface and volume
integrals, we deduce the finite volume scheme

Z |()wk n amlek,f = Q|wk| (Ck - NL'P (nn (wk’[pn;k)) + NVP (qp (lpk,[pp:k)))
wEN(wy)

(50.53)
SUX
+low, N Tl == (Ug — wp)s
dox
d .
—qloxIN. 2 F (N (Wi @) ) + Z |00y N 0w |k r = qloog| Ry (50.54)
wEN (0)
d .
qlogIN, T F (Tlp (‘I-’ks pr;k)) + Z 0wy N Oy jpg e = —qloog|Ry. (50.55)
weEN (ay)

In the above mentioned formulas, N () denotes the set of all control volumes neigboring wy. In 2D, the
measure |dwy N dw, | corresponds to the length of the boundary line segment and in 3D to the area of the
intersection of the boundary surfaces. The measure |w; | is in 2D given by the area and in 3D by the volume
of the control volume w;. The unknowns yy, ¢,,.1> and ¢, are approximations of the electric potential as
well as the quasi-Fermi potentials for electrons and holes evaluated at node x;, like already introduced for
the 1D case in Section 50.2. Accordingly, R, is defined as

Rk =R (Nc;p {“n (‘Pk' (Pn:k)) » er (np (wk'lpp:k) )) .
The doping is defined by the integral average

(o L[ C(x)dx,
Wy

o]

which can be estimated by its nodal value C(x). The numerical fluxes Dy ¢, j,.x » and jyx » approximate
=€V - Vigs i, - Vi and j, - Yy, respectively, on the interfaces between two adjacent control volumes
and w,, see Figure 50.11. As in the 1D case, we assume that these fluxes can be expressed as nonlinear
functions depending on the values Wy, @, @px and W, @5 @y

The electric displacement flux is approximated by
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where
hie = lIxe — %l

is the edge length, compare with Equation 50.15.

For the Boltzmann approximation, the numerical charge carrier fluxes can be approximated via the
Scharfetter-Gummel expression (50.21). In theory, any classical technique such as central differences or
upwinding could be used to discretize the numerical fluxes. However, the former suffers from instability
issues (as seen in Section 50.2.7) and neither scheme is consistent with the thermodynamic equilibrium.
We will explain what this means in Section 50.4.3. In the next section, we discuss thermodynamically
consistent schemes for non-Boltzmann statistics.

The finite volume scheme ((50.53)-(50.55)) yields a nonlinear system of 3N equations depending on
3N variables. We can directly substitute Dirichlet boundary values in the equations. In practice, however,
this way of handling Dirichlet values is very technical to implement. Exploiting floating point arithmetic,
the Dirichlet penalty method [45] provides a reasonable alternative. Physically, it replaces the Dirichlet
boundary conditions by gate boundary conditions with very high oxide permittivity.

50.4.2 Scharfetter—-Gummel Fluxes and Their Non-Boltzmann Generalizations

In 1D, we have already discussed the highly effective flux discretization scheme proposed by Scharfet-
ter and Gummel for Boltzmann statistics [11]. They derive the numerical flux by locally solving a linear
two-point boundary value problem, The 1D idea immediately carries over to higher dimensions if we
insert the Scharfetter—Gummel (50.21) into the discrete system ((50.53)-(50.55)). However, if the Boltz-
mann approximation is not valid anymore, we can no longer derive the flux like Scharfetter and Gummel
suggested.

This motivated the work in [46] where the Scharfetter—Gummel idea was generalized to a large class of
nonlinear convection-diffusion problems, allowing to define consistent numerical fluxes from nonlinear
two-point boundary value problems. Unfortunately, these generalized Scharfetter-Gummel schemes cannot
be expressed by closed formulas. Sometimes, however, the local fluxes can be obtained iteratively [27]. It
is also possible to approximate the two-point boundary value problems by simpler ones (e.g., by freezing
some coefficients). This leads to modified Scharfetter-Gummel schemes. We address some of these schemes
now.

For the sake of readability, we provide the formulas for electrons only. The formulas for holes follow
similarly.

50.4.2.1 Generalized Scharfetter—-Gummel Schemes

By the construction of our mesh, it suffices to study the 1D flux j, along the edge X, x,. For general
distribution functions ¥, we want to solve the ordinary differential equation

d

: d
ajn = a( - qunNcP (nn (1|1.{PH)) Vq]n) =0

on the interval [0, h; ] with boundary conditions
¢, (0) = Pk and Py (hk‘t’) = Qs

where ¢, and @,  are the values of the quasi-Fermi potentials at nodes x;. and x, respectively, see Figure
50.11. We assume now that the flux is constant between both nodes and denote it with j,., ». Integrating
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twice leads to an integral equation [27] for the unknown current, namely

Nt

jll:k.!XjO We — WYy )H]
+ =1, 50.56
[ ( F(n) Ur l e

Mk

U
ﬁ and the limits are given by 1. = N, (Wi, @pt) and n.p = Ny, (e @yp ). For
strictly monotonousl)} increasing 7 (n) this equation has always a unique solution [47].

For the Boltzmann approximation 7 (1) = exp(n), this integral equation can be solved analytically and
yields the classical Scharfetter—Gummel expression for the flux (50.21). In [27], it was shown that for the
Blakemore distribution function F (1) = , the integral equation yields a fixed point equation

where jo = qu,N,

1
CXP(—ni+y

~ ~ We — Wi : ~ We — Wi
Juke =B (Y}n:k.{ + KU—) ¢ — B (— [T)n:k.f + {U—jl ) eflmk (50.57)
T -

for the nondimensionalized edge current }'\mk.f = juk1/jo- The right-hand side is a Scharfetter-Gummel
expression where the argument of the Bernoulli function is shifted by y}‘jx r.¢+ Hence, this reduces to the
classical Scharfetter-Gummel scheme for y = 0.

Since the Bernoulli function is strictly decreasing, this fixed point equation possesses a unique solution
}'\mk‘f. If we want to use the flux given by (50.57) in the discrete system ((50.53)-(50.55)) , we need to solve
for the fluxes twice (once for electrons and once for holes) on each discretization edge x;x,. A few Newton
steps are sufficient to solve this equation iteratively.

Even though (50.57) is restricted to the Blakemore approximation, it provides a useful scheme in the
context of organic semiconductors. There it arises naturally as a model for materials with §-shaped density
of states [10,26], describing a single electronic transport level, see Figures 50.8 and 50.9. This has been
described in Section 50.3.5.

Unfortunately, for a general statistical distribution function, no corresponding equation has been
derived so far. Therefore, in [47] it was proposed to use piecewise approximations of 7 by Blakemore
type or rational approximations of Padé type in order to obtain piecewise integrable expression from the
local boundary value problem.

50.4.2.2 Modified Scharfetter—-Gummel Schemes

Bessemoulin-Chatard [48] derived a finite volume scheme for convection-diffusion problems by averag-
ing the nonlinear diffusion term appropriately. This idea was generalized to more general distribution
functions in [49], introducing a logarithmic average of the nonlinear diffusion enhancement

Mk = Nz
log F (qn:k) = IOg F (nn:/‘)

Enike =

along the discretization edge. Using the generalized Einstein relation (50.44), one immediately observes
that the diffusion enhancement g can be seen as a modification factor of the thermal voltage U;. Replacing
Uy in the Scharfetter-Gummel expression (50.21) by UL = Usg,,t »» we deduce the following modified
Scharfetter-Gummel scheme

: aH, Ur ( ( w—w—) (w—w))
5 e ke | NF (nug) Bl ————— ) = N.F (Ne) B{ 7——— ) ) (5055
Jnikt hk,f 8kt £ ( nik ) U’l‘gn:kf % ( me ) U‘]‘gn:k,f

approximating the current along the edge.
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Previously, we have replaced the thermal voltage by a suitable average along the edge. Now, we want to
approximate 7'(n) along the edge by an exponential (Boltzmann approximation) and adjusting the effective
density of states N, accordingly, i.e.,

NF®) ~ N, exp(n)-

This choice makes it possible to use the original Scharfetter-Gummel flux (50.21) by replacing N, with

N?, ,. One choice for the modified density of states is

Fn®)
Nx L Y N ,
c:k.e"’[n ) € exp(q*)

where n1* € [ng,n,], assuming n; < n,. In practice, we might consider taking the geometric average

between N (n;) and N_(n,), which leads to another modified Scharfetter-Gummel scheme:

Uy F (k) F (0, - -
j";k‘(’ o, ql'ln 1 Nc\/ (I'l IJL) (l" f] B (_Wr ‘Pk) BI]”'J‘ s B (u) g'ln:t' . (5059)
hk.f exp(nn:k) Exp(“n:f ) UT UT

The idea behind this scheme was introduced in [50] for the numerical solution of the generalized Nernst-
Planck system which is similar to the van Roosbroeck system ((50.30)-(50.33)). A variant of this scheme for
Fermi-Dirac statistics is described in [14,51] and numerically implemented in the semiconductor device
simulation package WIAS-TeSCA [52].

50.4.3 Flux Expressions Consistent with the Thermodynamic Equilibrium

As introduced in Section 50.3.4, the currents of holes and electrons vanish in the thermodynamic equi-
librium when no bias is applied. If a numerical scheme for zero bias boundary conditions results into
vanishing numerical fluxes, we call it consistent with the thermodynamical equilibrium. In practice, one can
examine this consistency by checking whether j, ;. » = jpx.r = 0if @ = @, and @y = @, Violating
this property causes unphysical dissipation (spurious Joule heating) in the steady state attained for zero
bias boundary conditions, which by definition is supposed to be the thermodynamic equilibrium [48].

All schemes introduced in Section 50.4.2 are consistent with the thermodynamical equilibrium. Indeed,
let us assume that the quasi-Fermi potentials ¢,, and @, between two adjacent control volumes w; and o,
are equal. The consistency of the classical Scharfetter-Gummel (50.21) and the scheme using a modified
density of states (50.59) are obvious since the Bernoulli function satisfies B (—x) = exp (x) B (x).

Due to the definition from the solution of the two-point boundary value problem, the generalized
Scharfetter-Gummel scheme defined in Equation 50.56 and its specialization for the Blakemore approxi-
mation (50.57) are consistent with the thermodynamic equilibrium. And finally, the logarithmic average of
the diffusion enhancement is the only possible average which guarantees consistency with thermodynamics
in the scheme (50.58). For details see [27,47,49].

50.4.4 Free Energy and Dissipation Rate

For Boltzmann statistics, it is rather straightforward to define discrete analoga of the free energy (50.45)
and the dissipation rate (50.46). The positivity of the discrete dissipation rate was shown in [29], and the
exponential decay of the free energy to its equilibrium value was proven in [53]. An overview of the entropy
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method for finite volume schemes has been given in [54]. First results on more general statistics functions
in this respect have been obtained in [55].

These pioneering works strongly indicate that the chosen discretization approach results in discrete
models, which are consistent with the structural assumptions of nonequilibrium thermodynamics. A full
account of these issues in the context of general statistics functions remains an open research topic.

50.4.5 Existence, Uniqueness, and Convergence

There are very few existence proofs for the solutions of the discretized system ((50.53)-(50.55)). For the
Boltzmann approximation, Girtner [56] proved that the discretized steady-state system has a solution,
which becomes unique if a small bias is applied. A similar result for Fermi statistics has been obtained
in [47].

A convergence theory for the finite volume scheme for the full discrete system ((50.53)-(50.55)) and
general flux functions is still missing. However, practical experience and a number of results make its
convergence plausible.

For example, in one space dimension, second-order convergence in the discrete maximum norm for
the Scharfetter-Gummel scheme has been shown in [19]. Under the assumption that second derivatives of
the continuous solution exist, in [57] for moderately sized drift terms and two-dimensional (2D), square
grids, first-order convergence for the simple upwind scheme (see e.g., [21]), and second-order convergence
for the exponential fitting scheme in the L,-norm has been shown. Reinterpretations of the finite vol-
ume Scharfetter-Gummel scheme as a nonstandard finite element method allowed to obtain convergence
estimates for Scharfetter-Gummel schemes on Delaunay grids (see Section 50.6) [58,59]. For a general
approach to the convergence theory of finite volume schemes, see [44]. In [46], weak convergence (no
order estimate) for a generalization of the Scharfetter-Gummel scheme to nonlinear convection-diftusion
problems has been shown. A convergence proof for a variant of the van Roosbroeck system discretized
with the simple upwind scheme was given in [60].

50.4.6 Maximum Principle

When applied to the drift-diffusion formulation, compared to various variants of the stabilized finite
element method, the two-point flux finite volume scheme is outstanding in the sense that it guarantees
positivity of densities and absense of unphysical oscillations [61,62]. It allows to carry over the discussions
of Section 50.2.7 to the higher dimensional case.

50.5 Nonlinear Solvers

In Section 50.2, we have already briefly mentioned that we need to solve a nonlinear discrete system of the
form

Fl(‘l"e(pnv(pp)
0= F(ll'»‘llm(llp) = Fz(‘l‘s‘PnJPp) .
E5(W. 9, D)

Here, we discuss two ways to do this: Newton’s method and Gummels iteration method [38], which is based
on a blockwise decoupling of the discrete system.
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50.5.1 Newton’s Method

Assuming that a good starting guess has been provided, for example, by following the ideas in Section
50.2.6, Newton’s method constructs a new (k + 1)th iterate from the kth one by solving the linear system

OB OF oF o

op o, 09, | (St F (" 9,.9,)

JF, dF, dF!; ‘pk : k ;: {

wn o 2 | |30 ]|= | W e, 9) (50.60)
"R | ok k ok ok

ok, o, oF|(80) (Ftefeb)

dys d‘pu dqp

for the update vector

) (v
a .
0 =[P~ %
sq’p P~

Then the new iterate is obtained by adding the previous vector to the update. The advantage of Newton’s
method is that it converges quadratically if the starting guess is sufficiently close to the solution [17]. This
allows to obtain highly accurate discrete solutions at low additional cost. The major drawback is that it
might converge very slowly or even fail to converge if the starting guess is too far from the actual solution.
Damping—multiplying the update with a factor less than 1—is known to increase the convergence region.
Another remedy is parameter embedding where one slowly changes a parameter, always using the old
solution as a new starting guess. We have already employed this embedding technique in Section 50.2.6
when gradually increasing the bias voltage in the solution procedure.

An important advantage of finite element and finite volume discretizations is the fact that they create
only next-neighbor couplings in the discretized systems. The resulting linearized systems are therefore
sparse, i.e., the maximum number of nonzero elements in a matrix row is bounded by a constant indepen-
dent of the number of discretization cells, making it possible to use highly economic storage schemes. For
2D applications, one can usually solve the resulting sparse linear system (50.60) via sparse direct solvers,
such as PARDISO [63-66] or UMFPACK [67,68]. Direct solvers calculate a representation of the system
matrix as a product of easily solvable lower and upper triangular matrices, which unfortunately are not any-
more sparse, increasing memory consumption and computational time especially in large 3D applications.
This fill-in phenomenon is avoided by preconditioned Krylov subspace methods [69], which compared to
the direct solvers need significant effort in tuning and adaptation to the problem at hand.

50.5.2 Gummel’s Method

Gummel [13,38] suggested decoupling the three equations in the van Roosbroeck system. He devised an
iterative method at the continuous level, which for Boltzmann statistics and drift-diffusion form leads
to alternating between solving linear differential equations for the electric potential as well as the charge
carrier densities. Suppose, one already knows the iterate (y¥, n¥, p¥). In order to obtain the electric potential
at the new level, y**!, one solves

Kl _ yk

0= —év (e vk ) + (k) (_w

ko ak
+nk—pk—c.
Ur ) e

This formulation is motivated by linearizing a fixed point problem that one obtains from the Poisson
equation [13]. Once one has solved for the electrostatic potential at the new level, one can successively
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solve the continuity equations from

0=V- j”(wk+| : P’lk+1) - CIR(‘-IJHI , !‘Ik+1,Pk)

0 - V .jp(lp-'\-'-l,P.f\'l'])_'_ qR(lpJ\'I-}, nk'l-]‘pk-'-l}.

Gummel’s method is known to have a larger convergence region and a slower asymptotic convergence rate
compared to Newtons’s method. Depending on the software environment chosen, it also may be easier to
implement. Note that standard existence and uniqueness proofs for the van Roosbroeck system rely on a
similar decoupling strategy, see Section 50.3.7.

50.6 Mesh Generation for the Finite Volume Method

While appearing to be just a technical footnote compared to the questions of modeling, analysis and dis-
cretization, mesh generation in reality is a hard problem which deserves special attention. We focus on
methods to construct admissible subdivisions of the computational domain € as used in Section 50.4.

50.6.1 Boundary Conforming Delaunay Meshes on Polyhedral Domains

Assume a partition (triangulation in 2D, tetrahedralization in 3D) of the polyhedral domain Q = Uii‘l h
into nonoverlapping simplices X, as it is commonly used for finite element methods [70]. We require that
this simplicial partition of € has the boundary conforming Delaunay property [71]. For a triangulation of a
2D domain this property is equivalent to:

(1) For any two triangles with a common edge, the sum of their respective angles opposite to that edge
is less or equal to 180°.
(2) For any triangle sharing an edge with 0, its angle opposite to that edge is less or equal to 90°.

For a given vertex x; € X, where X is the set of vertices, the Voronoi cell around X is the set
Vi={xeR?: Ix=xl < llx- x|l forall x; € X with x; #x; }.

The Voronoi diagram—the set of Voronoi cells for all vertices in X—is dual to the Delaunay triangulation
of the point set X in the sense that for each edge X;X; in the Delaunay triangulation, dV; n 9V; # 0. If the
simplicial partition is boundary conforming Delaunay, the restricted Voronoi cells w; = Q n V; are well
defined and can be obtained by joining the circumcenters of the simplices adjacent to the vertex x;. These
restricted Voronoi cells provide an admissible control volume partition as required in Section 50.4. We
note that in order to implement the finite volume method as described in Section 50.4, there is no need for
an explicit construction of the control volumina w; as geometrical objects. Given the simplical partition, it
is sufficient to base the calculations on the simplicial contributions s{} = |00;Ndw;NZy| and ;N Zg|, and
to use a simplex-based assembly loop as common for finite elements [29]. Figure 50.12 shows (boundary
conforming) Delaunay triangulations.

There are several efficient algorithms to construct Delaunay triangulations for a given point set X [73,74].
These are good starting points of devising meshing algorithms in general. Many different problems compli-
cate the generation of a mesh. For example, the boundary conforming Delaunay property is rather difficult
to achieve, in particular it requires the careful insertion of additional points on the boundary. In 3D, slivers
(very flat tetrahedra) must be avoided. And finally, it may be very complicated to fulfill additional require-
ments like constraints on the minimum angle or the local element size. Though there are still unsolved
problems, the triangle ([72], 2D, free for noncommercial use) and TetGen ([75], 3D, open source) mesh
generators help to create boundary conforming Delaunay meshes based on algorithms which are proven to
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FIGURE 50.12 (a) Piecewise linear description of computational domain with given point cloud. (b) Delaunay trian-
gulation of domain and triangle circumcenters. As some boundary triangles have angles larger than 90° angles opposite
to the boundary, their circumcenters (small dots) are outside of the domain. (¢) Boundary conforming Delaunay trian-
gulation with automatically inserted additional points at the boundary (large dots), and Voronoi and restricted Voronoi
cells (black). Created using triangle [72].

deliver meshes with the desired properties in finite time for a broad class of geometries given by a piecewise
linear description of the boundary.

Other mesh generation approaches, in particular the advancing front [76] and the octree method [77],
are similarly widespread. However, while popular in finite element community, their design makes it much
harder to use them as a starting point for generating boundary conforming Delaunay meshes.

50.6.2 Tensor Product Approaches

In simplified geometrical situations, rectangular and cuboid mesh structures are a straightforward way to
generate admissible finite volume partitions of the computational domain [12]. Extrusion of a 2D boundary
conforming Delaunay base mesh into a 3D mesh consisting of prisms (and optional subsequent subdivision
of these prisms into tetrahedra) provides another method to create admissible finite volume partitions [78].

50.6.3 Open Problems

Charge densities and potentials in semiconductors exhibit interior and boundary layers, i.e., thin regions
charaterized by rapid gradients in one direction and slow gradients in the orthogonal direction. This may
happen in space charge regions in the vicinity of gate contacts and at p-n junctions. These layers and other
possible “hotspots” due to recombination, for example, call for local mesh adaptation. Element size control
via the mesh generators using a priori knowledge is often used in this situation [72,75]. The development
of reliable a posteriori mesh refinement criteria is an open problem in the context of the strongly coupled
van Roosbroeck system. A physically motivated heuristic approach based on the equidistribution of the
dissipation rate was suggested in [29] and investigated in [79].

Mesh generation tools mostly fail to create boundary conforming Delaunay meshes which use thin,
anisotropic simplices to resolve interior and boundary layers with an optimal number of points. A partial
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remedy in some situations can be provided by node offsetting [80], a technique still under development.
In certain cases, tensor product approaches [78] give reasonable results.

50.7 Time Discretization

In order to discretize the time derivative in the van Roosbroeck system ((50.30)-(50.32)), we define a series
of discrete time values 0 = 1%, t!, ..., t™ = T with step lengths t" = ¢"*! — ", We describe the temporal
semi-discretization of the (spatially) continuous problem. For practical purposes it needs to be combined
with the space discretization approach described in Section 50.4. The implict Euler time discretization

m

scheme assumes given values y™, ¢ .tp;'. n™, p™ of the variables at time t". Values at the subsequent
time t"*! are calculated by solving the nonlinear system of equations

V- (Ssvwﬂﬂ—]) = q(c_ nm‘F] +pm+l}. (5061)
_QM s qv o n?f1+lv(parx+1 — qR(an Pm+1) (50 62)
.rm n " ] 1) .
m+l _ am
qp =5 P = qv = I-IPP”’-HV(P;PH = —qR(n"Hl,p"Hl). (50.63}

where

nm+| L Nr?(nn(wmﬂ'm:ﬁi)}'
Pm+1 = N.,P(ﬂp(lllmﬂ‘ ;JM-H)}_

As a consequence, the nonlinear system ((50.61)-(50.63)), which is structurally similar to Equations
50.53 through 50.55, has to be solved for each time step by iterative methods described in Section 50.5. An
initial guess for these methods can be obtained from the old time step t" or a linear extrapolation involving
data from several previous time steps [81].

It is advisable to choose the size of the time steps ©™ according to multiple criteria, including the
convergence radius of Newton’s method, the free energy, and local changes of the potentials.

At first glance, the computational cost of having to solve a nonlinear system for each time step appears
to be rather high. However, this scheme is stable independent of the time step size and allows to carry over
all advantages of the finite volume scheme from the stationary to the transient case. The transient discrete
solution converges to the stationary one, in particular, for the corresponding boundary condition to the
thermodynamic equilibrium solution. The free energy of the system decays during this approach to the
equilibrium. In several cases, it has been proven that this decay is exponential [55,82]. By preserving the
physics, the implicit Euler scheme fits well to the thermodynamically motivated discretization schemes.
The use of other schemes implies giving up some of these physical properties. If the resulting deviations
from thermodynamic properties can be kept under control, higher order schemes (e.g., backward differen-
tiation formula (BDF) methods [83]) might help to reduce computational costs due to a higher temporal
convergence order.

Due to the perceived complexity and high computational costs of solving coupled nonlinear PDE
systems, linear implicit methods, mixing linearization, and time discretizations are alternatives. Most
prominent is the scheme devised in [84].

50.8 Contact Terminal Currents

In simulations, one is usually interested in IV-curves, i.e., the dependency of terminal currents on applied
voltages. Therefore, calculating terminal currents accurately is crucial to a successful postprocessing of the
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simulated field data. The total current density is given by
j = jd + jn + jpv

where j; = —e,V(d,y) = 9,D is the displacement current density. Taking the time derivative of the Poisson
equation (50.30) yields

=V -e V(o) =q(0n—0,p) ==V -j, —qR=V - j, +qR
V-oD=-V-j, -V-j,

resulting in V - j = 0, which physically implies charge conservation.
Given a set of contacts I', C d0Q for @ = 1, ..., N, the terminal current through contact a is defined as

Iu=J j-vds.

(i

The correct calculation of this integral presupposes a regularity of the solution and its derivative which is
not supported by analytical theory. Therefore, in [51,52] a test function-based technique was proposed,
which uses the weak formulation of the problem. For a physical motivation of this approach and an inter-
pretation as a generalized Shockley-Ramo theorem we refer to [85]. For any o, let the function T, : Q — R
solve the boundary value problem

-VT, =0 in Q, (50.64)
Ne

VT, -v=0 on 0Q '\ U T, (50.65)
p=1

Ty = Byp on Iy (for p=1,...,N), (50.66)

where 8,5 denotes the Kronecker delta. As a consequence,

quj jrvds=

Tuj-vdszj V- (T, j) dx
Jagy Q

Iy

= VTu‘jdx+J T,V -jdx
Ja Q

=| v1,-, +jP)dx+d,J VT, -Ddx
Q

of (!
Given the semi-discretization in time from Section 50.7, one arrives at

I:x+1 — Ll VT, - GTH +j;)"+1)dx + ﬁ JQ VT, - (Dm+1 _ Dm) dx.

Like in Section 50.4, we approximate the system (50.64)-(50.66) by a finite volume discretization. Using
partial integration and the notation introduced in Section 50.4 we come up with an expression for the total
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current through the a-th contact of the form

ni+1 m
RfEl B AR
; y k.t k.t
s Y |amknam,e|(;;;;;;.+;;1;}+T)(Ta:k—rﬂf}. (50.67)
wp €N ()
k<t

50.9 An Alternative: The Finite Element Method

We have put special emphasis on the finite volume method. However, it is worth pointing out that there
are other approaches. The finite difference method that has been used to solve the van Roosbroeck system
[13] on tensor product meshes is equivalent to the previously introduced finite volume method.

The most popular ansatz to deal with unstructured meshes is the finite element method [70]. It starts
with a weak formulation of the steady-state van Roosbroeck problem ((50.30)-(50.32)). Each equation of
the system is multiplied with a so-called test function and integrated in space. Integrating by parts, each
equation of the steady-state system can be restated as the following problem:

find u € U such that a(u,v) = f(v) forallv € V,

where U is a function space containing the ansatz functions u and V is a function space containing the test
functions v. The map a: U X V — R has the structure

a(u,v) = J of)Vu - Vvdx — J' Vu-nvds (50.68)
Q 193

and the functional f : V — R is continuous. The idea of a finite element method is to approximate this
continuous problem with a discrete version. We approximate the infinite dimensional spaces U and V with
finite dimensional subspaces Uy, and V), spanned by basis functions with localized support. Then we obtain
a finite dimensional version of Equation 50.68, namely

find u;, € Uj, such that ay(uy,, vi,) = f(v;,) forall v, € V),

As it is sufficient to fulfill this condition for finitely many localized basis functions in V), we obtain a sparse
(containing many zeros) nonlinear system of equations for the basis coefficients of 1), assuming we are able
to calculate the integrals. One usually approximates these integrals by quadrature rules.

Auf der Maur [86] suggested to write the stationary van Roosbroeck system in this framework, using
the quasi-Fermi potential formulation of the flux. In this case one has

a"’(w,v):J sst-Vvdx+J Sﬂ(w— Ug)vds, f"’(v):q[ (p—n+Cvdx, (50.69)
Q Q

g dox
an(g,.v) = J p, Ve, - Vvdx, fP(v) = J Rvdx, (50.70)
Q Q
a® (@, v) = J HppVep, - Vvdx, flv)y=- J Ry dx. (50.71)
Q Q

At the Dirichlet parts of the boundary, namely at the Ohmic contacts I'g , introduced in Section 50.3, we
assume that test functions v vanish and the ansatz functions denoted by y, ¢,,, and ¢, fulfill the Dirch-
let boundary conditions ((50.35)-(50.37)). Note, that the gate boundary conditions (50.38) have been
incorparated into the boundary part of the quadratic form (50.69).
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We point out that for Poisson’s equation oV (y) = €, and for the continuity equations we have a¥n(¢,,) =
Hunand o« (@,) = p,p, respectively. Due to the formulation of the problem with quasi-Fermi potentials as
unknowns, this means that a®(¢,,) and a* (@, introduce nonlinearities in a® and a®. The integrals on
the left-hand side of Equations 50.69 through 50.71 have no analytical expressions and are approximated
using quadrature rules [70].

Essential for this finite element scheme is the underlying potential-based formulation of the flux in
terms of ¢, and @,. If one attempts to apply the finite element method using the density-based, drift-
diffusion formulation of the flux, one encounters a lot of technical difficulties and one has to stabilize the
finite element method [61,87]. A convergence proof of the finite element method for a similar system in a
somewhat different context (and without recombination) is available in [88].

50.10 Extensions and Outlook

In this chapter, we discussed the most important numerical solution techniques of the van Roosbroeck
system, describing the transport of electrons and holes in semiconductors in a self-consistent electric
field. This approach provides the core functionalities for a solver, which can be enhanced by models
describing additional physical phenomena and more complex device structures including, for example,
heterostructures. We mention a number of additional extensions and point to the corresponding literature.

50.10.1 Additional Physical Models

Many devices require a more accurate description of the carrier mobilities. For example, models of ionized
impurity scattering, high-field drift velocity saturation and similar effects [13,89] introduce dependen-
cies of the mobilities on carrier densities and the electric field strength, resulting in even more nonlinear
couplings in the system.

The carrier transport in organic semiconductors is governed by hopping transport between the energy
states of neighboring molecules. The van Roosbroeck system can be used to describe this effectively [8,9].
This may require the use of statistical distribution functions that reflect the distribution of the energy
transport levels such as Blakemore for 8-shaped densities of states or the Gauss-Fermi integral [10]. In
this context, the correct treatmeant of the diffusion enhancement is vital. One also has to account for the
nonlinear mobilities [8,90] related to the energetic disorder characteristic for organic semiconductors.

Spin-polarized drift-diffusion models have been proposed in [91] for the description of spintronic
devices. They generalize the van Roosbroeck system, introducing spin-resolved densities for electron and
holes and additional mechanisms describing the spin relaxation. They have been recently studied also from
a numerical point of view in [92-94].

50.10.2 Coupling the van Roosbroeck System to Other Models

When modeling lasers one has to couple the van Roosbroeck system to equations for the optical modes.
This introduces additional recombination processes, describing stimulated emission. Additionally, one has
to consider balance equations for the photon number. A comprehensive model (also including heating
effects) along with a numerical solution strategy is given in [14].

In semiconductor devices with embedded nanostructures (such as quantum dots and quantum wells),
one has to couple the drift-diffusion equations to equations describing the dynamics of the carrierslocalized
in the nanostructures [4,5,7]. A multiscale approach for coupling atomistic with continuum drift-diffusion
models is presented in [95].

If heating effects become important, the van Roosbroeck system needs to be extended by an energy
transport model for the heat flow in the device. For a thermodynamically consistent extension of the van
Roosbroeck system to account for this effect we refer to [14,31].
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50.10.3 Methods for Doping Optimization

An important task when designing semiconductor devices is finding a suitable doping profile. This is an
analytical and numerical challenge. Electric properties of the device can be improved by optimizing the
doping profiles using suitable objective functionals [96-98]. Recently, the approach introduced in [96] has
been extented for the optimization of doping profiles in lasers [99].

50.10.4 Alternative Modeling Approaches for Carrier Transport

The van Roosbroeck system uses implicitly the assumption that the carrier ensemble is locally in quasi
equilibrium. When this assumption is not met, for example, for hot electrons, one has to consider alter-
native approaches. The most common ones are hydrodynamic models [100] and approximations of the
Boltzmann transport equation which are derived from a spherical harmonics expansion [101]. The book
[102] gives a mathematically oriented overview of these topics.
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51.1 Introduction

The semiconductor device-based electronics industry has been the largest industry in the world with global
sales of over a trillion dollars since 1998. The revolution in the semiconductor industry, a large portion of
the electronics industry, began in 1947 with the fabrication of bipolar devices on slabs of polycrystalline
germanium (Ge). Single-crystalline materials were later proposed and introduced that made possible the
fabrication of grown junction transistors. Migration to silicon (Si)-based devices was initially hindered by
the stability of the Si/SiO, materials system, necessitating a new generation of crystal pullers with improved
environmental controls to prevent SiO, formation. Later, the stability and low interface-state density
of the Si/SiO, materials system provided passivation of junctions and eventually, the migration from
bipolar devices to field-effect devices in 1960. By 1968, both complementary metal-oxide-semiconductor
(CMOS) devices and poly-Si gate technology that allowed self-alignment of the gate to the source/drain of
the device had been developed. These innovations permitted a significant reduction in power dissipation
and a reduction of the overlap capacitance, improving frequency performance and resulting in the essential
components of the modern CMOS device.

Since the invention of the bipolar transistor in 1947, the number and variety of semiconductor devices
have increased tremendously as advanced technology, new materials, and broadened comprehension have
been applied to the creation and innovation of new devices. Dr. William Shockley suggested in the fifties
the use of semiconductors of different bandgap for the fabrication of heterostructure devices. Professor
Herbert Kroemer’s contributions to heterostructures—from heterostructures bipolar transistors to lasers—
culminated in a Nobel Prize in Physics in 2000 and have paved the way for novel heterostructure devices
including those in silicon. The unique properties of semiconductor materials have enabled the develop-
ment of a wide variety of ingenious devices that have literally changed our world. To date, there are about
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TABLE51.1 Major Semiconductor Device Discoveries

«  1874: Metal-semiconductor contact

= 1907: Light-emitting diode

= 1947: Bipolar junction transistor (BJT)

«  1954: Solar cell

« 1957: Heterojunction bipolar transistor (HBT)
« 1958: Tunnel diode

+  1959: Integrated circuits

s 1960: Field-effect transistors (FETs)

«  1962: Semiconductor lasers

s 1966: Metal-semiconductor FET (MESFET)

« 1967: Nonvolatile semiconductor memory

«  1974: Resonant tunneling diode (RTD)

«  1980: Modulation (MOD) FET

«  1994: Room-temperature single-electron memory cell (SEMC)
«  2001: 15 nm MOSFET

«  2006: 3 nm FinFET

«  2012: Single atom transistor in Si technology

60 major devices, with over 100 device variations related to them. A list of most of the basic semicon-
ductor devices discovered and used over the past century with the date of their introduction is shown in
Table 51.1.

The metal-oxide-semiconductor field-effect transistor (MOSFET) and related integrated circuits (ICs)
now constitute about 90% of the semiconductor device market. Combining Si with the elegance of the
field-effect transistor (FET) structure has allowed simultaneously making devices smaller, faster, and
cheaper—the mantra that has driven the modern semiconductor microelectronics industry. Indeed, the
single factor driving continuous device improvement has been the semiconductor industry’s relentless
effort to reduce the cost per function on a chip. The way this is done is to put more devices on a chip while
either reducing manufacturing costs or holding them constant. This leads to three methods of reducing the
cost per function. The first is transistor scaling, which involves reducing the transistor size in accordance
with some goal, i.e., keeping the electric field constant from one generation to the next. With smaller tran-
sistors, more can fit into a given area than in previous generations. The second method is circuit cleverness,
which is associated with the physical layout of the transistors with respect to each other. If the transistors
can be packed into a tighter space, then more devices can fit into a given area than before. The third method
is to make the die larger. More devices can be fabricated on a larger die. All the while, the semiconductor
industry is constantly looking for technological breakthroughs to decrease the manufacturing cost. All of
this effort serves to reduce the cost per function on a chip.

51.1.1 Transistor Scaling

Device engineers are most concerned with the method of scaling introduced in Section 51.1. The semicon-
ductor industry has been so successful in providing continued system performance improvement year after
year that the Semiconductor Industry Association (SIA) has been publishing roadmaps for semiconductor
technology since 1992. These roadmaps represent a consensus outlook of industry trends, taking history
as a guide. SIA roadmaps [1] incorporate participation from the global semiconductor industry, including
the United States, Europe, Japan, Korea, and Taiwan. They basically affirm the desire of the industry to
continue with Moore’s law [2], which is often stated as the doubling of transistor performance and quadru-
pling of the number of devices on a chip every 3 years. The phenomenal progress signified by Moore’s law
has been achieved through scaling of the MOSFET from larger to smaller physical dimensions [3].



Monte Carlo Device Simulations 775

More than Moore: Diversification I

o) \l‘ie'{

5=

5} 2

. o oV Q7
.qu:‘}“ [ d.g& l{\\Q

(a)
¢ o @

More Moore 0%
miniaturization e

->

130 nm Interacting with people and environment

90 nm Nondigital content
Baseline system-in-package
CMOS: 5 nm
CPU, Information
memory, 45 npm | Processing
logic

32 nm || Digital content
System-on-chip
22nm § (SoC)

v

Beyond CMOS

FIGURE 51.1 Schematic description of More Moore, More than Moore, and beyond complementary metal-oxide—
semiconductor (CMOS). (R, radio frequency; HV, high-voltage. [Reprinted from ITRS Roadmap for Semiconductors.
Available at: www.itrs.org. With permission.])

The More Moore domain is internationally defined as an attempt to further develop advanced CMOS
technologies and reduce the associated cost per function by introducing strain and silicon-on-insulator
(SOI) technology (see Figure 51.1). Almost 70% of the total semiconductor components market is directly
impacted by advanced CMOS miniaturization achieved in the More Moore domain. This 70% comprises
three component groups of similar size, namely microprocessors, mass memories, and digital logic. As an
example, in recent years, technology has advanced to fabricate ICs at 14-nm gate length commercially [4].
Fab industry giants such as Intel, TSMC, Samsung, and Global Foundries have plans to fabricate ICs at
10 nm by 2017. Samsung has already fabricated and tested 128 Mb SRAM in 10 nm [5] and is hoping to
commercialize the process by the end of 2016. This aggressive scaling of technology is possible because of
the advent of FinFETs and fully-depleted silicon-on-insulator (FD-SOI) device technology [6].

More than Moore (MtM) refers to a set of technologies that enable nondigital micro-/ nanoelectronic
functions. MtM radio frequency (RF), high-voltage power, solid-state lighting (SSL), medical ultrasound,
biochips and microfluidics, energy scavenging, electronic imaging, sensors, and actuators on CMOS plat-
forms are some of the applications. They are based on, or derived from, Si technology but do not necessarily
scale with Moore’s Law. MtM devices typically provide conversion of nondigital as well as nonelectronic
information, such as mechanical, thermal, acoustic, chemical, optical, and biomedical functions to digital
data, and vice versa.

51.1.2 More Moore Technology

For digital circuits, a figure of merit for MOSFETs for unloaded circuits is CV/I, where C is the gate capac-
itance, Vthe voltage swing, and I the current drive of the MOSFET. For loaded circuits, the current drive
of the MOSFET is of paramount importance. Keeping in mind both the CV/I metric and the benefits of
a large current drive, one notes that device performance may be improved [7] by (1) inducing a larger
charge density for a given gate voltage drive; (2) enhancing the carrier transport by improving the mobil-
ity, saturation velocity, or ballistic transport; (3) ensuring device scalability to achieve a shorter channel
length; and (4) reducing parasitic capacitances and resistances. For capitalizing these opportunities, the
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proposed technology options generally fall into two categories: new materials and new device structures.
In many cases, the introduction of a new material requires the use of a new device structure, or vice versa.
To fabricate devices beyond current scaling limits, IC companies have simultaneously pushed the planar,
bulk Si CMOS design while incorporating alternative gate stack materials (high-k dielectric [8] and metal
gates), band engineering methods (using strained Si [9] or SiGe [10]), and alternative transistor structures.
The concept of a band-engineered transistor is to enhance the mobility of electrons and/or holes in the
channel by modifying the band structure of Si in the channel in a way such that the physical structure of
the transistor remains substantially unchanged. This enhanced mobility increases the transistor transcon-
ductance (g,,,) and on-drive current (I;). A SiGe layer or a strained Si on a relaxed SiGe layer is used as
an enhanced-mobility channel layer. It has already been demonstrated experimentally that at T = 300 K
(room temperature), effective hole enhancement of about 50% can be achieved using the SiGe technology
[10]. Intel has adopted strained Si technology for the first time for its 90-nm process [11]. This resulted in
nearly 20% performance improvement per technology generation, with only a few additional process steps.
The challenge in identifying suitable high-k dielectrics and metal gates for both conventional p-channel
MOS (PMOS) and n-channel MOS (NMOS) transistors has led to early adoption of alternative transistor
designs. These include primarily partially-depleted (PD) SOI and FD-SOI devices. Today, there is exten-
sive research in double-gate (DG) structures and FinFET transistors [12], which have better electrostatic
integrity and, theoretically, have better transport properties than single-gated FETs. A FInFET is a form of
a DG transistor having surface conduction channels on two opposite vertical surfaces and having current
flow in the horizontal direction. The channel length is given by the horizontal separation between source
and drain and is usually determined by a lithographic step combined with a side-wall spacer etch process.
Many innovative structures, involving structural challenges such as fabrication on nanometer-scale fins
and nanometer-scale planarization over an entire wafer are currently being implemented. Some new and
revolutionary technology such as carbon nanotubes or molecular transistors might be on the horizon, but
it is not clear, in view of the predicted future capabilities of CMOS, whether they will be competitive. In
conclusion, the semiconductor industry is approaching the end of an era of scaling gains by rote shrinkage
of device dimensions and entering a postscaling era, a new phase of CMOS evolution in which innovation
is demanded simply to compete. The trends in benefits to density, performance, and power will be con-
tinued through such innovations. Rather than coming to a close, a new era of CMOS technology is just
beginning.

51.1.3 Importance of Modeling and Simulation

As semiconductor devices are scaled into nanoscale regimes, first, velocity saturation starts to limit the
carrier mobility due to pronounced intervalley scattering; when the device dimensions are scaled below
200 nm, velocity overshoot (velocity of the carriers in the channel is larger than the steady-state satura-
tion velocity) starts to dominate the device behavior leading to larger on-state currents. Alongside with the
developments in the semiconductor nanotechnology, in recent years, there has been significant progress in
physically based modeling of semiconductor devices. There are two issues that make simulation important.
Product cycles are getting shorter with each generation, and the demand for production wafers shadows
development efforts in the factory. Consider the product cycle issue first. In order for companies to main-
tain their competitive edge, products have to be taken from design to production in less than 18 months.
As a result, the development phase of the cycle is getting shorter. Contrast this requirement with the fact
that it takes 2-3 months to run a wafer lot through a factory, depending on its complexity. The specifi-
cations for experiments run through the factory must be near the final solution. While simulations may
not be completely predictive, they provide a good initial guess. This can ultimately reduce the number of
iterations during the device development phase. The second issue that reinforces the need for simulation
is the production pressures that factories face. To meet customer demand, development factories are mak-
ing way for production space. It is also expensive to run experiments through a production facility. Such
resources could have otherwise been used to produce sellable products. Again, device simulation can be
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used to decrease the number of experiments run through a factory. Device simulation can be used as a tool
to guide manufacturing down the right path, thereby decreasing the development time and costs. Besides
offering the possibility to test hypothetical devices that have not (or could not) yet been manufactured,
device simulation offers unique insight into device behavior by allowing the observation of phenomena
that cannot be measured on real devices. It is related to, but usually separate from, process simulation,
which deals with various physical processes such as material growth, oxidation, impurity diffusion, etch-
ing, and metal deposition inherent in device fabrication leading to ICs. Device simulation is distinct from
another important aspect of computer-aided design (CAD), device modeling, which deals with compact
behavioral models for devices and subcircuits relevant for circuit simulation in commercial packages such
as simulation program with integrated circuit emphasis (SPICE). Device simulation can provide the param-
eters that are used to generate the compact behavioral models, and when coupled with process simulation
and circuit simulation, it provides a hierarchical approach to technology computer-aided design (TCAD).

The main components of semiconductor device simulation at any level of approximation are illustrated
in Figure 51.2 [13]. There are two main kernels, which must be solved self-consistently with one another, the
transport equations governing charge flow, and the fields driving charge flow. Both are coupled strongly to
one another, and hence must be solved simultaneously. The fields arise from external sources, as well as the
charge and current densities which act as sources for the time-varying electric and magnetic fields obtained
from the solution of Maxwell’s equations. Under appropriate conditions, only the quasi-static electric fields
arising from the solution of Poissons equation are necessary. The fields, in turn, are driving forces for
charge transport as illustrated in Figure 51.3 for the various levels of approximation within a hierarchical
structure ranging from compact modeling at the top to an exact quantum-mechanical description at the
bottom. For devices for which gradual channel approximation cannot be used due to the two-dimensional
(2D) nature of the electrostatic potential and the electric fields driving the carriers from source to drain,
drift-diffusion models have been exploited. These models are valid, in general, for large devices in which
the fields are not that high so that there is no degradation of the mobility due to the electric field. The
validity of the drift-diffusion models can be extended to take into account the velocity saturation effect with
the introduction of field-dependent mobility and diffusion coefficients. When velocity overshoot becomes
important (for length scales less than 200 nm—see Figure 51.4), the drift-diffusion model is no longer valid
and the hydrodynamic model must be used.

The hydrodynamic model has been the workhorse for technology development and several high-end
commercial device simulators have appeared including Silvaco, Synopsys, Crosslight, etc. The advantages
of the hydrodynamic model are that it allows quick simulation runs, but the problem is that the amount
of the velocity overshoot depends upon the choice of the energy relaxation time. The smaller the device,
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FIGURE 51.2 A schematic description of the building blocks of device simulator.
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the larger the deviation when using the same set of energy relaxation times. A standard way in calculating
the energy relaxation times is to use bulk Monte Carlo simulations. However, the energy relaxation times
are material-, device geometry-, and doping-dependent parameters, so their determination ahead of time
is not possible.
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To avoid the problem of the proper choice of the energy relaxation times in hydrodynamic models, a
direct solution of the Boltzmann transport equation (BTE)

o 1 eE (9
o TR VkER - Vof + (_7) Vif = (a)mu (51.1)

using the Monte Carlo method is the best method of choice for nanoscale devices in which position and
momentum can still be treated as independent variables. In Equation 51.1, f(r, k, t) is the semiclassical
distribution function, E(k) the dispersion relation for the electrons, and E the electric field. When, for
example, collisional broadening of the states is important, quantum transport approaches must be pursued.

This chapter focuses on Monte Carlo methods for the solution of the BTE and is organized as follows.
Monte Carlo solution of the BTE for homogeneous systems is given in Section 51.2. Particle-based device
simulator is described in Section 51.3. Representative simulation results for bulk material and for semi-
conductor devices are given in Section 51.4. Conclusions and future directions of research are presented
in Section 51.5.

51.2 Bulk Monte Carlo Method Description

The ensemble Monte Carlo (EMC) techniques have been used for well over 40 years as a numerical method
to simulate nonequilibrium transport in semiconductor materials and devices and have been the subject of
numerous books and reviews [14-16]. In the applications to transport problem, a random walk is generated
using the random number-generating algorithms common to modern computers to simulate the stochastic
motion of particles subject to collision processes. This process of random walk generation is part of a very
general technique used to evaluate integral equations and is connected to the general random sampling
technique used in the evaluation of multidimensional integrals [17].

The basic technique as applied to transport problems is to simulate the free particle motion (referred to
as the free flight) terminated by instantaneous random scattering events. The Monte Carlo algorithm con-
sists of generating random free-flight times for each particle, choosing the type of scattering occurring at
the end of the free flight, changing the final energy and momentum of the particle after scattering, and then
repeating the procedure for the next free flight. Sampling the particle motion at various times throughout
the simulation allows for the statistical estimation of physically interesting quantities such as the single par-
ticle distribution function, the average drift velocity in the presence of an applied electric field, the average
energy of the particles, etc. By simulating an ensemble of particles, representative of the physical system
of interest, the nonstationary time-dependent evolution of the electron and hole distributions under the
influence of a time-dependent driving force may be simulated. This particle-based picture, in which the
particle motion is decomposed into free flights terminated by instantaneous collisions, is basically the same
approximate picture underlying the derivation of the semiclassical BTE. In fact, it may be shown that the
one-particle distribution function obtained from the random walk Monte Carlo technique satisfies the
BTE for a homogeneous system in the long-time limit [18]. This semiclassical picture breaks down when
quantum-mechanical effects become pronounced, and one cannot unambiguously describe the instanta-
neous position and momentum of a particle. In the following, we describe first the standard Monte Carlo
algorithm used to simulate charge transport in semiconductors. We then discuss how this basic model for
charge transport within the BTE is self-consistently solved with the appropriate field equations to perform
particle-based device simulation (Section 51.3).

In the bulk Monte Carlo method [19], particle motion is assumed to consist of free flights terminated by
instantaneous scattering events, which change the momentum and energy of the particle after scattering.
So, the first task is to generate free flights of random time duration for each particle. To simulate this process,
the probability density, P(t), is required, in which P(t)dt is the joint probability that a particle will arrive at
time t without scattering after a previous collision occurring at time f = 0, and then suffer a collision in a
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time interval df around time t. The probability of scattering in the time interval d¢ around t may be written
as I'[k(t)]dt, where I'[k(t)] is the scattering rate of an electron or hole of wavevector k. The scattering
rate, I'[k(t)], represents the sum of the contributions from each individual scattering mechanism, which
are usually calculated quantum mechanically using perturbation theory [20]. The implicit dependence of
I'[k(#)] on time reflects the change in k due to acceleration by internal and external fields. For electrons
subject to time-independent electric and magnetic fields, the time evolution of k between collisions is
represented as

e(E+vxB)t

(51.2)

where E is the electric field, v the electron velocity, and B the magnetic flux density. In terms of the scat-
tering rate, I'[k(#)], the probability that a particle has not suffered a collision after a time f is given by

t
exp( - [T [k(t’)] dt’ |. Thus, the probability of scattering in the time interval df after a free flight of time
0

tmay be written as the joint probability:
t
P(t)dt = I'[k(t)] exp | — J I[k(¢)]dt" |dt. (51.3)
0

Random flight times may be generated according to the probability density P(t) above using, for example,
the pseudo-random number generator implicit on most modern computers, which generate uniformly
distributed random numbers in the range [0, 1]. Using a direct method, random flight times sampled from
P(t) may be generated according to

Ir

r= l P(t)dt, (51.4)
0

where r is a uniformly distributed random number and ¢, is the desired free-flight time. Integrating
Equation 51.4 with P(t) given by Equation 51.3 above yields

r!’
r=1-exp —JI‘[k(r’}]dt’ : (51.5)
0

Since 1 — r is statistically the same as r, Equation 51.5 may be simplified to

t
—lnr=lr[k(t’)]d:’. (51.6)
0

Equation 51.6 is the fundamental equation used to generate the random free-flight time after each scat-
tering event, resulting in a random walk process related to the underlying particle distribution function.
If there is no external driving field leading to a change of k between scattering events (e.g., in ultrafast
photoexcitation experiments with no applied bias), the time dependence vanishes, and the integral is triv-
ially evaluated. In the general case, where this simplification is not possible, it is expedient to introduce
the so-called self-scattering method [21] in which one introduces a fictitious scattering mechanism whose
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scattering rate always adjusts itself in such a way that the total (self-scattering plus real scattering) rate is
energy-independent:

['=T [k(t')] + e [k(t)] . (51.7)

where I, [k(t')] is the self-scattering rate. The self-scattering mechanism itself is defined such that the
final state before and after scattering is identical. Hence, it has no effect on the free-flight trajectory of
a particle when selected as the terminating scattering mechanism, yet results in the simplification of
Equation 51.6 such that the free flight is given by

g -%m r. (51.8)

The constant total rate (including self-scattering) I" must be chosen at the start of the simulation interval
(there may be multiple such intervals throughout an entire simulation) so that it is larger than the maximum
scattering encountered during the same time interval. In the simplest case, a single value is chosen at the
beginning of the entire simulation (constant gamma method), checking to ensure that the real rate never
exceeds this value during the simulation. Other schemes may be chosen that are more computationally
efficient, and which modify the choice of I" at fixed time increments [22].

The algorithm described above determines the random free-flight times during which the particle
dynamics is treated semiclassically. For the scattering process itself, we need the type of scattering (i.e.,
impurity, acoustic phonon, photon emission, etc.) which terminates the free flight, and the final energy
and momentum of the particle(s) after scattering. The type of scattering that terminates the free flight is
chosen using a uniform random number between 0 and I', and using this pointer to select among the rel-
ative total scattering rates of all processes including self-scattering at the final energy and momentum of
the particle:

I = Fyeln k] + Ty [n. K] + [, K] + - Ty, k], (51.9)

with n the band index of the particle (or sub-band in the case of reduced-dimensionality systems), and k
the wavevector at the end of the free flight. This process is illustrated schematically in Figure 51.5.

Once the type of scattering terminating the free flight is selected, the final energy and momentum (as
well as band or subband) of the particle due to this type of scattering must be selected. For elastic scattering
processes such as ionized impurity scattering, the energy before and after scattering is the same. For the
interaction between electrons and the vibrational modes of the lattice described as quasi-particles known
as phonons, electrons exchange finite amounts of energy with the lattice in terms of emission and absorp-
tion of phonons. For determining the final momentum after scattering, the scattering rate, I"J,-[n,k;m.k’]
of the jth scattering mechanism is needed, where n and m are the initial and final band indices, and k
and Kk’ are the particle wavevectors before and after scattering. Defining a spherical coordinate system
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FIGURE 51.5 Selection of the type of scattering terminating a free flight in the Monte Carlo algorithm.
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around the initial wavevector k, the final wavevector k' is specified by |k’| (which depends on conser-
vation of energy) as well as the azimuthal and polar angles, ¢ and 0 around k. Typically, the scattering
rate, I';[n,k;m, k'], only depends on the angle 8 between k and k’. Therefore, ¢ may be chosen using a
uniform random number between 0 and 2z (i.e., 2r), while 0 is chosen according to the angular depen-
dence for scattering arising from I';[n,k;m,k']. If the probability for scattering into a certain angle P(6)d0
is integrable, then random angles satisfying this probability density may be generated from a uniform dis-
tribution between 0 and 1 through a prescribed recipe. Otherwise, a rejection technique may be used to
select random angles according to P(8). Common scattering mechanisms that contribute to transport are
summarized in Figure 51.6. The corresponding scattering rate expressions for general nonparabolic bands
are summarized in Table 51.2 [23-25].

A general Monte Carlo code is then developed as follows: First, a subroutine is typically called that con-
tains all material and scattering rates parameters for the scattering mechanisms included in the theoretical
model. After the material and run parameters are read, in the first step of the Monte Carlo simulation pro-
cedure, it is necessary to construct scattering tables for the I', L, and X valleys (for GaAs as a prototypical
example) that initialize a series of events that are summarized in Figure 51.7. Then, for each energy, the
cumulative scattering rates for each valley are stored in separate look-up tables and renormalized according
to the maximum scattering rate (including self-scattering) that occurs over the range of energies stored.

Having constructed the scattering table and after renormalizing the table, examples of which are given for
GaAsin Figures 51.8 and 51.9 for the I', L, and X valleys, the next step is to initialize the carrier’s wavevector
and energy and the initial free-flight time. This is accomplished by calling the initialization subroutine.
Energy and wavevector histograms of the initial carrier energy and the components of the wavevector along
the x-, y-, and z-axes are shown in Figure 51.10. For good statistics, the number of particles simulated is
typically taken to be 10,000, and one can see the statistical fluctuation of these average quantities associated
with the finite number of particles. Notice that the variance is inversely proportional to the square-root of
the number of particles. Also note that the initial y-component for the wavevector is symmetric around the
y-axis, which means that the average wavevector along the y-axis is zero, which should be expected since
the electric field along the y-component is zero at t = 0. Identical distributions have been obtained for the
x- and for the z-components of the wavevector. Also note that the energy distribution has the Maxwell-
Boltzmann form, as it should be expected. One can also estimate from this graph that the average energy
of the carriers is on the order of (3/2)ky T(ky is the Boltzmann constant and T the temperature).

Scattering mechanisms
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FIGURE 51.6 Scattering mechanisms in a typical semiconductor.
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TABLES51.2 Scattering Rate Expressions I'(k) = W(k) = W(E) for Electrons for General Nonparabolic Energy Bands

1. Ionized impurity scattering: Scattering from ionized Coulomb charges in the Brooks-Herring approach.

W(E) = ( \/5:;:::“., ) % (\JE(I +aF) % (1 + Z:xE}) X (W) gy = ﬁ, where n and p are the electron and

hole concentrations, respectively, k, is the Boltzmann constant, m, is the density of states mass, T is the lattice temperature,
£, is the permittivity of the material, E is the energy, and « is the nonparabolicity factor.

2. Alloy disorder scattering (e.g., Al Ga,  As): Scattering due to the presence of a random alloy.

5 Bod
W(E) = (“-—“) x ( - ) x my\/2m,E(1 + o) X (1 + 2aE),

where x is the mole fraction, d the lattice disorder (0 < d < 1), a the lattice constant, and D, .
potential.

the alloy disorder scattering

3. Dislocation scattering (e.g., GaN): Scattering due to crystal defects/dislocations (Coulomb-type interaction).

it 2 oKy . = :
WI(E) = (::“:'J‘ ) % L3 — | x (] + W) X (14 2aE) b = K\“:" . where n' is the effective screening
< Ly Frtvai) ) 1 : L
({,r By o) )
concentration and N, the line dislocation density.

4. Acoustic deformation potential scattering: Describes fluctuations in the band structure due to deformation of the unit cell
because of the strain due to the different amounts of displacement of the atoms (in the same direction).

W(E) = (:nn—;‘.x,.f',_ ) % (:1"”:: \I-"H“hd:'!) % (1 + 20E),

hCy 4x2n?

where D,_is the acoustic deformation potential constant and C, is the sound velocity.

5. Piezoelectric scattering: Dipole-type interaction in zinc-blende materials in which there is charge transfer between the two
atoms in the unit cell. The optical modes of vibration (vibration of the atoms in opposite direction) directly affect the magnitude
of the dipole moment, which in turn leads to scattering potential.

1 . N
= "i,f K, T, ( 142uE ) (& )" ( B Bl 1 4ak) ) = Einp) 5 .
WI(E) = per ol Kl G- R ot R In{1+ “%e )P =Vien where p is the crystal density, v, sound

velocity, ¢, the piezoelectric constant, and ¢, the high-frequency dielectric constant.

6. Polar optical phonon (POP) scattering: In polar materials (where there is transfer of charge from one atom to the other, which
in turn, leads to a dipole moment), optical modes of vibration cause direct modification of the dipole moment, which then
leads to polar optical phonon scattering which is a Coulomb-type interaction.

WI(E) = (m)x(Nu-}-iii)x(%)xf'(ﬁk.f:‘}

-\\."’Exm'p
v = ! i ViEtyTe
Ny=—— &=———= FE E)=In (mod (—m_vﬁ))

A"[“,: - high  Flow
Yo =E( +wE, E =E +hW,,
where W, is the optical phonon energy and the indices high/low stand for high frequency/static dielectric constants.

7. Intervalley phonon scattering: Scattering between equivalent or nonequivalent valleys.

3
oz (2o ) T 4 JE {140k )
W(E) = (—':‘ f) x (n(w,.,){ ¥ ;) x ('7 ”’) X (1+2yE) E =F+hw,— AE,
P 2 L

v, =i

where D, is the coupling constant, Z; the number of final valleys, p the crystal density, and w; the energy of the phonon
involved in the process.

Sources: M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press, London, 2000; B. K.
Ridley, Quantum Processes in Semiconductors, Oxford University Press, 1982; D. Vasileska nanoHUB.org page:
nanohub.org/groups/dragica_vasileska/semiclassical For more details on the derivation of these formulas, please refer
to Refs. [26-28].
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FIGURE 51.7 (a) Schematics of a bandstructure for GaAs. (b) Procedure for the creation of the scattering tables for
electron transport.
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FIGURE 51.8 (a) Scattering rates for the I" valley. For simplicity, we have omitted Coulomb scattering in these cal-
culations. In (a) the dashed line corresponds to the acoustic phonon scattering rate, solid lines correspond to polar
optical phonon scattering (absorption and emission), and the dashed-dotted line corresponds to intervalley scattering
from I to L valleys. Since the L valley is along the [111] direction, there are eight equivalent directions, and since these
valleys are shared, there are a total of four equivalent L valleys. The dotted line corresponds to scattering from I' to X
valleys. The X valleys are in the [100] direction and since there are six equivalent [100] directions and the valleys are
shared between Brillouin zones, there are three equivalent X valleys. (b) Normalized cumulative scattering table for the
I"valley. Everything above the top line up toI" = 1 is self-scattering so it is advisable when checking the scattering mech-
anisms to first check whether the scattering mechanism chosen is self-scattering or not. This is in particular important
for energies below 0.5 eV for this particular scattering table when the I" to X intervalley scattering (absorption and
emission) takes over.
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FIGURE51.9 Scattering rates for the L (a) and X (b) valleys used to create the corresponding normalized scattering
tables (not shown here).
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FIGURE51.10 Initial carrier distribution for an ensemble of 10,000 particles. (a) Energy distribution. (b) Distribution
of wavevector k}“

When the initialization process is finished, the main free-flight-scatter procedure takes place until the
completion of the simulation time. There are two components in this process: first, the carriers accel-
erate freely due to the electric field, accomplished by calling the drift() subroutine (which implements
Equation 51.2), and then their free-flights are interrupted by random scattering events that are managed
by the scatter_carrier() subroutine. The flowchart for performing the free-flight-scatter process within
one time-step At is shown diagrammatically in Figure 51.11.

In the scatter_carrier() subroutine from Figure 51.11, first the scattering mechanism terminating the
free flight is chosen, to which certain attributes are associated such as the change in energy after scattering.
For inelastic scattering processes, we have the change in energy due to emission or absorption of phonons,
for example. Also, the nature of the scattering process is identified as isotropic or anisotropic. Note that
when performing acoustic phonon and intervalley scattering for GaAs, both of which are isotropic scat-
tering processes, no coordinate system transformation is needed to determine the final wavevector after
scattering. Because polar optical phonon and Coulomb scattering mechanisms are anisotropic, it is neces-
sary to do a rotation of the coordinate system, scatter the carrier in the rotated system, and then perform
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FIGURE 51.11  Free-flight-scatter procedure within one time-step. Time variable dtau is the remaining free-flight
time from previous time-step At.

inverse coordinate transformation. This procedure is needed because it is much easier to determine final
carrier momentum in the rotated coordinate system in which the initial wavevector k is aligned with the
z-axis. For this case, one can calculate that the final polar angle of scattering with polar optical phonons
for parabolic bands in the rotated coordinate system as

_ r 21/Ex (Eg + hoyy)
oo (¥0-a+2 VB (Exho)

: (VB - VEczhay)

(51.10)
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where E, is the carrier energy, iimy the polar optical phonon energy, and 7 a random number uniformly
distributed between 0 and 1. The final angle for scattering with ionized impurities (Coulomb scattering)
and for parabolic bands is

o P VN (51.11)

3 s
14+ 4k2LD[1 —r)

where k is the carrier wavevector and Ly, is the Debye screening length. The azimuthal angle for both scat-
tering processes is simply calculated using ¢ = 2xr. The importance of properly calculating the polar angle
0 after scattering to describe small angles of deflection in the case of Coulomb or polar optical phonon
scattering is illustrated in Figure 51.13. The histogram of the polar angle (from 0 to ©* = 3.141592654)
after scattering for electron-polar optical phonon scattering is presented in Figure 51.12, from where we
can clearly see the preference for small angle deflections that are characteristic for any Coulomb-type
interaction (polar optical phonon is in fact electron-dipole interaction). Graphical representation of the
determination of the final angle after scattering for both isotropic and anisotropic scattering processes is
shown in Figure 51.13.

The direct technique described above can be applied when the integrals describing cosB can be analyti-
cally calculated. For most cases of interest, the integral cannot be easily inverted. In these cases, a rejection
technique may be employed. The procedure for the rejection technique goes as follows:

» Choose a maximum value C, such that C > f(x) for all x in the interval (a, b).

« Choose pairs of random numbers, one between a and b (x; = a + r;(b — a)) and another onef, =
r,C between 0 and C, where r; and r] are random numbers uniformly distributed between 0 and 1.

« Iff; < f(x,), then the number x, is accepted as a suitable value, otherwise it is rejected.

The three steps described above are schematically shown in Figure 51.14. For x = x;, r,; C is larger than
f(x;) and in this case, if this represents the final polar angle for scattering, this angle is rejected and a new
sequence of two random numbers is generated to determine x, and r,C. In this second case, f(x,) > r,C
and the polar angle 0 = x, is selected (for polar angle selection a = 0 and b = ).

After the simulation is completed, typical results to check are the velocity—time, the energy-time, and
the valley occupation versus time characteristics, such as those shown in Figure 51.15, where the velocity-
time characteristics for applied electric fields ranging from 0.5 to 7 kV/cm, with an electric field increment

x 10*

Arbitrary units

0 05 1 1.5 2 25 3 3.5
Polar angle

FIGURE 51.12 Histogram of the polar angle for electron-polar optical phonon scattering.
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FIGURE 51.13 Description of final angle selection for isotropic and anisotropic scattering processes using the direct
technique.

of 0.5 kV/cm, are shown. These clearly demonstrate that after a transient phase, the system reaches a
stationary steady state, after which time we can start taking averages for calculating steady-state quantities.

From the results shown in Figure 51.15, one can see that steady state is achieved for larger time intervals
when the electric field value is increased and the carriers are still sitting in the I" valley. Afterward, time
needed to get to steady state decreases. This trend is related to the valley repopulation and movement of the
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FIGURE 51.14 Schematic description of the rejection technique.
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FIGURE 51.15 Time evolution of the drift velocity for electric field strengths ranging between 0.5 and 7 kV/cm, in
0.5 kV/cm increments.

carriers from I', into the X and finally into the L valley. The steady-state velocity-field and valley population
versus electric field characteristics are shown in Figures 51.16 and 51.17, respectively. One can clearly see
on the velocity-field characteristics that a low field mobility of about 8000 cm?/V-s is correctly reproduced
for GaAs without the use of any adjustable parameters.

At this point, it is advisable to check the energy and wavevector histograms (Figure 51.18) to ensure
that the energy range chosen in the scattering tables is correct or not for the particular maximum electric
field strength being considered, which gives the worst case scenario. Since, as already noted, we apply the
electric field in the y-direction, for comparative purposes, we plot the histograms of the x-component of
the wavevector, y-component of the wavevector, and the histogram of the final carrier energy distribution
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FIGURE 51.17 Different valley occupancy versus electric field.

for which a drifted Maxwellian form is evident. Since there is no field applied in the x-direction, we see that
the average wavevector in the x-direction is 0. Due to the application of the field in the y-direction, there
is a finite positive shift in the y-component of the velocity, which is yet another signature for the displaced
Maxwellian form of the energy distribution in the bottom histogram.
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FIGURE 51.18 (a) Histogram of the x-component of the wavevector. (b) Histogram of the y-component of the
wavevector. (c) Histogram of the carrier energy. Applied electric field is 7 kV/cm.,

51.3 Particle-Based Device Simulation

In Section 51.2, we introduced the numerical solution of the BTE using Monte Carlo method.
Within a device, both the transport kernel and the field solver are coupled to each other. In Poisson’s
equation, the field associated with the potential is the driving force accelerating particles in the Monte
Carlo phase, for example, while the distribution of mobile (both electrons and holes) and fixed charges
(e.g., donors and acceptors) provides the source of the electric field. Below, we give a brief description of
the Monte Carlo particle-based device simulator development.

Within the particle-based EMC method, with its time-marching algorithm, Poisson’s equation may be
decoupled from the BTE over a suitably small time step (typically less than the inverse plasma frequency
corresponding to the highest carrier density in the device). Over this time interval, carriers accelerate
according to the frozen field profile from the previous time-step solution of Poisson’s equation, and then
Poisson’s equation is solved at the end of the time interval with the frozen configuration of charges arising
from the Monte Carlo phase [6,26]. Note that Poisson’s equation is solved on a mesh, whereas the solution
of charge motion using EMC occurs over a continuous range of coordinate space in terms of the particle
position. Therefore, a particle-mesh (PM) coupling is needed for both the charge assignment and the force
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interpolation. The PM coupling is broken into four steps: (1) assign particle charge to the mesh, (2) solve
the Poisson equation on the mesh, (3) calculate the mesh-defined forces, and (4) interpolate to find forces
on the particle.

The motion in real space of particles under the influence of electric fields is somewhat more complicated
due to the band structure. The velocity of a particle in real space is related to the E-k dispersion relation
defining the bandstructure as

dr 1
v(t) = d_I = EVkE(k(I))

s (51.12)
dk _ qE(r)

dt ~ h

where the rate of change of the crystal momentum is related to the local electric field acting on the par-
ticle through the acceleration theorem expressed by the second equation. In turn, the change in crystal
momentum, k(f), is related to the velocity through the gradient of E with respect to k. If one has to use the
full bandstructure of the semiconductor, then integration of these equations to find r(t) is only possible
numerically, using, for example, a Runge-Kutta algorithm [27].

To simulate the steady-state behavior of a device, the system must be initialized in some initial condition,
with the desired potentials applied to the contacts, and then the simulation proceeds in a time stepping
manner until steady state is reached. This process may take several picoseconds of simulation time, and
consequently several thousand time-steps based on the usual time increments required for stability. Clearly,
the closer the initial state of the system is to the steady-state solution, the quicker the convergence. If one is,
for example, simulating the first bias point for a transistor simulation, and has no a priori knowledge of the
solution, a common starting point for the initial guess is to start out with charge neutrality, i.e., to assign
particles randomly according to the doping profile in the device and based on the super-particle charge
assignment of the particles, so that initially the system is charge neutral on the average. (For 2D device
simulation, one should keep in mind that each particle actually represents a rod of charge into the third
dimension.) Subsequent simulations at the same device at different bias conditions can use the steady-state
solution at the previous bias point as a good initial guess. After assigning charges randomly in the device
structure, charge is then assigned to each mesh point using the nearest-grid-point (NGP), cloud-in-cell
(CIC), or nearest-element-cell (NEC) PM coupling methods, and Poisson’s equation is solved. The forces
are then interpolated on the grid, and particles are accelerated over the next time-step. A flowchart of a
typical Monte Carlo device simulation is shown in Figure 51.19.

As the simulation evolves, charge will flow in and out of the contacts, and depletion regions internal to
the device will form until steady state is reached. The charge passing through the contacts at each time step
can be tabulated, and a plot of the cumulative charge as a function of time gives the steady-state current.
Figure 51.20 shows the particle distribution in three dimension of a metal-semiconductor field-effect tran-
sistor (MESFET), where the dots indicate the individual simulated particles for two different gate biases.
Here, the heavily doped MESFET region (shown by the inner box) is surrounded by semi-insulating GaAs
forming the rest of the simulation domain. Figure 51.20a corresponds to no net gate bias (i.e., the gate is
positively biased to overcome the built-in potential of the Schottky contact), while Figure 51.20b corre-
sponds to a net negative bias applied to the gate, such that the channel is close to pinch-off. One can see
the evident depletion of carriers under the gate under the latter conditions.

51.3.1 Calculation of the Current

The device output current can be determined using two different yet consistent methods. First, by keeping
track of the charges entering and exiting each terminal/contact, the net number of charges over a period of
the simulation can be used to calculate the terminal current. The net charge crossing a terminal boundary
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FIGURE 51.20 Example of the particle distribution in an MESFET structure simulated in three dimension using an
EMC approach. (a) The device with zero gate voltage applied and (b) the device with a negative gate voltage applied,
close to pinch-off.
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is determined by

Q) = e(ny, (1) — ”injcc(‘)) +e J' Ey(x, t)dy, (51.13)

where ng, is the number of particles that are absorbed by the contact (exit), n;yje. the number of par-
ticles that have been injected at the contact, and E,, the vertical field at the contact. The second term in
Equation 51.13 on the right-hand side is used to account for the displacement current due to the changing
field at the contact. Equation 51.13 assumes the contact is at the top of the device and that the fields in
the x- and z- directions are negligible. The charge e in Equation 51.13 should be multiplied by the particle
charge if it is not unity. The slope of Q(t)versus time gives a measure of the terminal current. In steady
state, the current can be found by

T dQ(t) _ e(nper)

dt At elild)

where 1, = fyp — Migjec 18 the net number of particles exiting the contact over a fixed period of time Af.
In a second method, the sum of the electron velocities in a portion of the channel region of the device is
used to calculate the current. The electron current density through a cross-section of the device is given by

J = envy, (51.15)

where vy is the average electron drift velocity and » the carrier concentration. If there are a total of N
particles in a differential volume, dV = dL - dA,the current found by integrating Equation 51.15 over the
cross-sectional area, dA, is

N

e F
5o l= va(;}, (51.16)

i=1

eNv
[=—29

where v, (i) is the velocity along the channel of the ith electron. The device is divided into several sections
along the x-axis, and the number of electrons and their corresponding velocity is added for each section
after each free flight. The total x-velocity in each section is then averaged over several time-steps to
determine the current for that section. Total device current can be determined from the average of sev-
eral sections, which gives a much smoother result compared to counting terminal charges. By breaking
the device into sections, individual currents can be compared to verify that there is conservation of par-
ticles (constant current) throughout the device. In addition, sections near the source and drain regions
may have a high y-component in their velocity and should be excluded from the current calculations.
Finally, by using several sections in the channel, the average energy and velocity of electrons along the
channel can be observed to ensure the proper physical characteristics. The two methods for the calcu-
lation of the current are performed, as illustrated in Figure 51.17, on a 50-nm channel length MOSFET
device.

Extrapolating the slope of the curve shown in Figure 51.21a, that represents the cumulative electron
charge that enters/exits the source/drain contact, leads to source/drain current of 0.5205/0.5193 mA/pm.
When compared with the results shown in Figure 51.21b, it is evident that both current measurement
techniques discussed in this section give current values with relative error less than 1%.

51.3.2 Ohmic Contacts

Another issue that has to be addressed in particle-based simulations is the real space boundary conditions
for the particle part of the simulation. Reflecting boundary conditions are usually imposed at the artificial
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FIGURE 51.21 (a) Net charge entering/exiting the source/drain contact. (b) Average current along the channel. The
gate length of the device being modeled equals 50 nm. V; = 1.4 Vand V, = 1V in these simulations. Width of the
gateis W = 0.5 pm.

boundaries. As far as the ohmic contacts are concerned, they require more careful consideration because
electrons crossing the source and drain contact regions contribute to the corresponding terminal current.
Commonly employed models for the contacts include the following [28]:

» Electrons are injected at the opposite contact with the same energy and wavevector k. If the source
and drain contacts are in the same plane, as in the case of MOSFET simulations, the sign of k, normal
to the contact will change. This is an unphysical model, however [29].

+ Electrons are injected at the opposite contact with a wavevector randomly selected based upon a
thermal distribution. This is also an unphysical model.

» Contact regions are considered to be in thermal equilibrium. The total number of electrons in a
small region near the contact are kept constant, with the number of electrons equal to the number
of dopant ions in the region. This is a very good model most commonly employed in actual device
simulations.

» Another method uses “reservoirs” of electrons adjacent to the contacts. Electrons naturally diffuse
into the contacts from the reservoirs, which are not treated as part of the device during the solution
of Poisson’s equation. This approach gives results similar to the velocity weighted Maxwellian but at
the expense of increased computational time due to the extra electrons simulated. It is an excellent
model employed in few most sophisticated particle-based simulators,

There are also several possibilities for the choice of the distribution function—Maxwellian, displaced
Maxwellian, and velocity-weighted Maxwellian [10].

51.3.3 Time-Step

As in the case of solving the drift-diffusion, hydrodynamic, or full Maxwell’s equations, for a stable Monte
Carlo device simulation, one has to choose the appropriate time step, At, and the spatial mesh size (Ax, Ay,
and/or Az). The time-step and the mesh size may correlate to each other in connection with the numerical
stability. For example, as discussed in the context of solving drift-diffusion simulations, the time-step At
must be related to the plasma frequency:

2

e’n
o B8 51.17
P gm* ( )

where n is the carrier density. From the viewpoint of the stability criterion, At must be much smaller than
the inverse plasma frequency. The highest carrier density specified in the device model is used to estimate
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At. If the material is a multivalley semiconductor, the smallest effective mass to be experienced by the
carriers must be used in Equation 51.17 as well. In the case of GaAs, with the doping of 5 x 10'7 ecm™3,
®, = 5 x 10"%; hence, At must be smaller than 0.02 ps.

The mesh size for the spatial resolution of the potential is dictated by the charge variations. Hence, one
has to choose the mesh size to be smaller than the smallest wavelength of the charge variations. The smallest
distance is approximately equal to the Debye length, given as

ESkBT

en

The highest carrier density specified in the model should be used to estimate Ap, from the stability cri-
terion. The mesh size must be chosen to be smaller than the value given by Equation 51.18. In the case of
GaAs, with the doping density of 5 x 10'7 cm™3, A, = 6 nm.

Based on the discussion above, the time step (Af) and the mesh size (Ax, Ay, and/or Az) can be specified
separately. However, the At chosen must be checked again by calculating the distance [, defined as

Imax = Ymax X AL, (51.19)

where v, is the maximum carrier velocity that can be approximated by the maximum group velocity of
the electrons in the semiconductor (on the order of 10* cm/s). Therefore, the distance I, is regarded as
the maximum distance the carriers can propagate during At. The time step chosen must be small enough so
that I, is smaller than the spatial mesh size chosen using Equation 51.19. This is because large At chosen
may cause substantial change in the charge distribution, while the field distribution in the simulation is
only updated every At.

51.3.4 PM Coupling

As mentioned earlier, the position of charge as described by the EMC algorithm is continuous, whereas
Poisson’s equation is solved on a mesh, hence the charge associated with the individual particles must be
mapped onto the field mesh in some manner. The charge assignment and force interpolation schemes
usually employed in self-consistent Monte Carlo device simulations are the NGP, CIC, and NEC schemes
[30]. In the NGP scheme, the particle position is mapped into the charge density at the closest grid point
to a given particle. This has the advantage of simplicity, but leads to a noisy charge distribution, which may
exacerbate numerical instability. Alternately, within the CIC scheme, a finite volume is associated with each
particle spanning several cells in the mesh, and a fractional portion of the charge per particle is assigned
to grid points according to the relative volume of the “cloud” occupying the cell corresponding to the grid
point. This method has the advantage of smoothing the charge distribution due to the discrete charges of
the particle-based method, but may result in an artificial “self-force” acting on the particle, particularly
if an inhomogeneous mesh is used. For the case of inhomogeneous mesh or spatially varying dielectric
permittivity, the NEC scheme is the best choice. Within the NEC scheme, the charge is moved at the center
of the cell and then CIC-like charge assignment to the node points is performed. The PM coupling sequence
is presented in Figure 51.22.

51.4 Representative Simulation Results

51.4.1 Bulk Monte Carlo Simulations of Different Materials

In most semiconductors, in order to properly simulate high field transport, it is necessary to consider more
than one conduction band valley. To calculate the drift velocity along any direction, the effective mass along
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FIGURE 51.22  Particle-mesh coupling sequence. (SR, short range; LR, long range.)

that particular direction is required. In GaAs, for example, a subvalley of the L valley lies along the [111]
direction. We know the effective masses along the transverse and longitudinal directions of the subvalley
but we do not know the effective mass along the [100] direction. This makes it hard to calculate the drift
velocity along the [100] direction.

Assume the Monte Carlo simulation is run on the x, y, z- coordinate system where the x-direction is
[100], y-direction is [010], and z-direction is [001]. Let the three perpendicular directions that describe
the subvalley be [ay, by, ¢;], [a5, by, ¢5], and [a;, b3, c5]. The electrons in the Monte Carlo simulation will
be drifted according to the x, y,z coordinate system so there will be k, the wavevector along [100], k,
the wavevector along [010], and k, the wavevector along [001]. The drift velocity of the electron is first
calculated along the three directions that describe the subvalley and along which we know the effective
masses.

Ak([a), b))
m, (1 + 2aE)

thﬂthfﬂ

(1 +20B) (31.20)

vy, [lal byey] = va. [lalybyey] =

Here m, is the effective mass of the electron along [a,, b;,c;]. The final expression of drift velocity
along that direction is then calculated by calculating k(a1 5,¢,1K{(a), b,¢,) USing a simple transformation of
coordinates to give [31]

kya kyby k,a
Kital, by, = 2 + . + = . (51.21)

V@+e+ad) J@+n+d) ([(@+p+a)

Using similar methods we get v, [lﬁlzbzfz] and vy, [Ia]3b3c3]. The coordinates system is then trans-
formed once again back to the x,y,z coordinate system to get the drift velocities along x,y, and z.
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X
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V@+r+d) (J(@+8+3) yJ(@+pi+a)

C1Vd[[aly by, ] 2V, [lalyby05] + C3Vd,[[al3bses]

V@+8+d) (J(@+8+3) (J(@+1+3)

Vi

Also, as the three directions are mutually perpendicular we have

ayd; +blb2 +C|C2 =0

dszay + b3b2 + €36, = 0.
For N electrons in the simulation, an average drift velocity is then calculated as
N

e ()=4

i=1 i

=
=

Vi (Vo) = % pIRA (51.24)

where each drift velocity depends on the subvalley the electron is currently in. The mobility is calculated
as the slope of the velocity versus field curve for low fields. The range of “low fields” varies from mate-
rial to material, but in all cases, it is the range of fields for which the velocity linearly varies with the
field.
The results presented in Figure 51.23 shows the difference in velocity of electrons for different materials.
For GaN, the peak velocity of 3 X 107 cm/s occurs at around 150 kV/cm so that in the electric field range
shown in Figure 51.19 it is clear that for electric fields below 30 kV/cm, GaN carriers in the bulk GaN
materials are still in the low-field regime.

As the drift velocities saturate at much smaller electric fields in Si and Ge, they are plotted on a separate
graph (see Figure 51.24) [32].

FIGURE 51.23 Drift velocity (107 cm/s) versus electric field (kV/cm).
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FIGURE 51.24 Electron drift velocity (cm/s) versus electric field (V/cm) in Si and Ge along the principal crystallo-
graphic directions.

51.4.2 Modeling Thermal Effects in SOI Devices Using Particle-Based Device
Simulator

There are many applications of the Monte Carlo approach to device simulations that can be found in the
literature. Here, we show the example of Monte Carlo device simulation to self-heating which requires
coupling of the Monte Carlo device solver self-consistently with a solver for the phonon bath. Self-heating
(despite the fact that supply voltages are reduced when reducing the size of the channel of nanoscale tran-
sistors) is still a problem, since there are sufficiently large electric fields in the smallest devices that can
accelerate the carriers to average energies of 0.5-0.8 eV. These hot carriers then interact with the lattice and
transfer their energy to the phonon bath (both acoustic and optical), thus heating the lattice and increasing
the lattice vibrations (scattering). This leads to a negative feedback on the carrier drift velocity or mobility
(if transport is scattering dominated). Thus, we may conclude that when transistors are in the ON-state,
there is a strong interaction of the electrons with the lattice on a very short time scale (in particular with the
optical phonons). The optical phonons in a longer time scale decay into acoustic phonons through a har-
monic multiple phonon processes, thus removing the heat from the hot spot. Therefore, to properly treat
the operation of nanoscale devices it is necessary to, at least, consider the electrons within the BTE pic-
ture and, in the lowest approximation, via energy balance equations including the acoustic and the optical
phonon baths separately. This is what the Arizona State University (ASU) group has implemented couple
of years ago [33]. Our ultimate goal is to have coupled the developed phonon BTE solver [34] with the
electron BTE solver in a self-consistent manner.

51.4.2.1 Theoretical Model and Computation Details

A schematic description of our 2D/3D electrothermal simulator is shown in Figure 51.25. It is impor-
tant to note that the EMC transport kernel for the electrons is in the loop for the solution of the energy
balance equations for the acoustic and optical phonon temperatures. The criterion for convergence of the
whole self-consistent loop (measured in terms of Gummel cycles) is convergence in the current to the third
significant digit.

Between iterations, there are variables that are being exchanged between the electron and phonon
solvers. Namely, after running the EMC for the electrons in the device for about 5-10 ps for 2D device
analysis and 10 ps for the 3D nanowire simulations, the electron transport solver passes to the phonon
energy balance solver the information about the spatial variation of the electron density, spatial variation
of the average drift velocity, and spatial variation of the average electron temperature, where an assumption
is made that the drift energy is much smaller than the thermal energy. These variables are then used in the
solution of the energy balance equations for the acoustic and optical phonons to get updated values for the
spatial variation of the optical phonon and acoustic phonon temperatures, which are then used as inputs,
in the choice of the scattering table for the electrons (proper scattering table is chosen with the acoustic and
optical phonon temperatures at the NGP). Then, when the proper table is selected, based on the energy of
the electron and a selection of a random number, the scattering mechanism is selected.
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FIGURE 51.25 Exchange of variables between the two kernels. The electron density (n), electron drift velocity (vy),
and electron temperature (T,), obtained from the electron solver, are input variables for the phonon kernel. The output
variables of the phonon solver are acoustic and optical phonon temperature profiles (T, and T, respectively). They
enter in the beginning of the free-flight-scattering phase through phonon temperature-dependent scattering tables.
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FIGURE 51.26  Schematic of the simulated device structure which illustrates the boundary conditions used in some
of the simulations presented. Note also that the boundary conditions at the bottom of the substrate can be mapped as
a boundary condition at the bottom of the BOX.

The question of the proper boundary conditions for the electronic part of the problem is rather clear
and has been discussed in many papers and texts in the literature [35]. The problem in properly specifying
the phonon boundary conditions is the selection of acoustic and optical phonon temperatures either at the
artificial boundaries or at the contacts. Typically, acoustic phonon temperature is equated with the lattice
temperature. To better understand the choice of boundary conditions we have considered in various works
[15], we want to point out that lattice temperature is analogous to electrostatic potential and heat flux is
analogous to current. As it is well known, when considering electrical behavior of the device, at least one
node within the structure has to have Dirichlet boundary conditions specified (specify the potential for
Poisson). Analogously, for the lattice temperature, we need at least one node that is a thermal contact and
whose temperature is set to 300 K. As illustrated in Figure 51.26 for the case of FD-SOI devices, the bottom
of the BOX is assumed to be at thermal equilibrium. Also, the gate contact is assumed to be at thermal
equilibrium, but not necessarily at 300 K. For example, in one set of simulations, we vary the temperature on
the gate to be 300, 400, and 600 K. Now comes the question: What happens to the source and drain contacts
and the side artificial boundaries? Specifying Dirichlet boundary conditions at the ohmic contacts is not
accurate from a standpoint that there is current flowing through the contacts, and since the contacts have
finite resistance, there will be Joule heating (so the problem becomes unconstrained). The best solution to
this, as we have done in several studies, is to extend the metal contact to become part of the simulation
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FIGURE 51.27 Device structure with extended domain. The geometrical dimensions are for the simulated 25-nm
channel length FD-SOI nMOSFET.

domain and to apply at the very ends of the contact isothermal boundary conditions (see Figure 51.27).
With the top and bottom specified, we have vertical transport of heat through the structure.

The next question is, is there lateral transfer of heat across the artificial boundaries? Here we can con-
sider two cases: case when the neighboring device is ON, in which case Neumann boundary conditions
are appropriate (derivative of the temperature), and case when the neighboring device is OFF, in which
case Dirichlet boundary conditions are appropriate. In the case when Neumann boundary conditions are
applied across the artificial boundaries, the heat transport remains vertical, but for the case when Dirichlet
boundary conditions are applied across the boundary, the heat transport has both vertical and horizontal
component, The case of Neumann boundary conditions can happen in analog circuits such as current mir-
ror in which both transistors are simultaneously ON, whereas the case of Dirichlet boundary conditions
occurs in digital circuits in which most of the time the transistors are OFF.

Yet another issue that deserves attention in getting physically correct results is the proper choice of
the thermal conductivity for thin Si slabs and for nanowires. Asheghi and coworkers [36] and Li Shi and
coworkers [37] have demonstrated via experimental measurements that thermal conductivities of thin Si
films and Si nanowires, respectively, strongly depend of the geometry as for smaller geometries phonon
boundary scattering can reduce the thermal conductivity of the Si film or nanowire by a factor of 10 or more
from its bulk value. Moreover, thermal conductivity is temperature-dependent quantity. We made extensive
efforts, using the theory of Sondhaimer for conductivity of metals [38], to arrive at an empirical formula
that simultaneously described the thickness and temperature dependence of the thermal conductivity [39].
Our empirical expression perfectly matched the experimental data of Asheghi and coworkers [16]. In the
model, it was assumed that phonon boundary scattering was perfectly diffusive.

51.4.2.2 Simulation Results

To validate our premise that self-heating effects become smaller as we scale devices into the nanometer
regime (due to more pronounced velocity overshoot effects and thinner BOX layer that leads to smaller
thermal resistance), in Table 51.3 we present the parameters of the devices being simulated. Simulation
results for the lattice temperature profile in the Si film for devices with channel lengths from 25 to 180 nm
are shown in Figure 51.28. We clearly see that the hot spot is in the channel for 180-nm channel length
device and moves into the drain contact for 25-nm channel length device. The current degradation for
isothermal temperatures on the gate of 300, 400, and 600 K are shown in Figure 51.29. These are the worst
case scenario results as we use Neumann boundary conditions at the side boundaries.

In obtaining the results presented in Figures 51.28 and 51.29, constant thermal conductivity value of
13 W/m-K was used in the simulations [40]. The use of constant thermal conductivity model with value of
13 W/m-K leads to underestimation (25 nm channel length) or overestimation (180 nm channel length)
of the average maximum temperature of the lattice in the channel region of the device.
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TABLE 51.3 Parameters for Various Simulated Device Technology Nodes (Constant
Field Scaling)

Linm) ¢, (nm) t,(nm) t, (nm) N, (em™) Vo=V, (V) I, (mA/pm)

25 2 10 50 1x10"% 1.2 1.82
45 2 18 60 1x 10" 1.2 1.41
60 2 24 80 1% 10" 1.2 1.14
80 2 32 100 1% 107 L5 1.78
90 2 36 120 1% 10" L5 1.67
100 2 40 140 1x 107 1.5 1.57
120 3 48 160 1% 107 1.8 1.37
140 3 56 180 1107 1.8 1.23
180 3 72 200 1x 107 1.8 1.03

Note: Parameters of the simulated structure given in Figure 51.26 are L, gate length; t_, gate oxide
thickness; ty, active Si-layer thickness; t,,, BOX thickness; N ;, channel doping concentration;
1, isothermal current value (300 K).

51.4.2.3 Summary of Results

In this section, we have presented modeling of self-heating effects in FD-SOI devices. Larger velocity over-
shoot and smaller BOX thickness lead to smaller degradation due to self-heating effects in 25-nm channel
length FD-SOI devices. The amount of self-heating significantly depends upon the magnitude of the ther-
mal conductivity used. Bulk values are inadequate and proper thickness and temperature dependence of

500

450

650
600
550
500
450

FIGURES51.28 Lattice temperature profile in the active Si-layer for the FD-SOI devices from Table 51.2 ranging from
25 nm (top) to 180 nm (bottom) channel length. Shown here is only the thin Si film of the SOI device, namely the active
area of the device.

180 360 54(
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FIGURES51.29 Current degradation (abs(Iy;,—I,)/I,, where I, is the on current when the self-heating model is incor-
porated and I, is current in the isothermal case) versus technology generation for the FD-SOI devices from Table 51.2
ranging from 25- to 180-nm channel length. Different curves correspond to different temperatures on the gate electrode
(bottom set of results: Ty, = 300 K, middle set of results: Ty, = 400 K and top set of results: Ty, = 600 K).

the thermal conductivity must be taken into consideration. The choice of the BOX material makes signif-
icant impact on the amount of observed self-heating. Both diamond and Si are good materials to be used
as BOX. Diamond, when compared to aluminum nitride (AIN) is a better heat spreader.

51.5 Outlook

The drift-diffusion solvers are applicable in situations in which the bias conditions and the device geome-
try are such that electric fields are relatively low and velocity saturation model is applicable [41]. Situations
in which drift-diffusion models are applicable are the Si-based power MOSFET devices, bipolar junction
transistors, light-emitting diodes (that are used more and more in solid-state lightning), and crystalline
solar cells, just to name a few. In some of these devices, such as power transistors and light-emitting diodes
(LEDs) used for solid-state lighting, it is of paramount importance to incorporate self-heating models
within the drift-diffusion framework [42]. The accuracy of simple heating models in conjunction with
drift-diffusion models is to some degree questionable so that it is in many circumstances justifiable to use
particle-based device simulators with more exact self-heating models [43].

On the other hand, the hydrodynamic models do not suffer from the limitations of the drift-diffusion
approaches and the incorporation of the additional energy balance equation allows one to include velocity
overshoot in the model. Velocity overshoot and nonstationary transport are key features of conventional
MOSEET devices with gate lengths of 200 nm and below [44]. However, the magnitude of the velocity over-
shoot observed via simulations depends strongly upon the choice of the energy relaxation time, mostly in
sub-100-nm channel length devices. This, in turn, affects the magnitude of the drain current. The reason
for such drastic differences in the results when different energy relaxation times are used is due to the fact
that the energy relaxation time is a material-dependent as well as device geometry-dependent parameter.
So, to calculate better estimates for the velocity overshoot, higher moments of the BTE are needed [45].
These, in turn involve parameters that are more and more ambiguous on the expense of increased com-
putational cost and when the computational cost of hydrodynamic models exceeds one of particle-based
device simulators, there is no point in using moment methods. In these circumstances, the direct solution
of the BTE via the Monte Carlo method becomes a method of choice. Thus, we might conclude that it is
advisable to use particle-based device simulators when nanoscale devices are concerned [33].

But how far down in the scaling can we go? Particle-based device simulators capture on an equal foot-
ing both ballistic and diffusive transport, so if the ballisticity factor in the device increases [46], there
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is no problem that ballistic transport is effectively captured with particle-based device simulators [47].
Quantum-mechanical size quantization effects can also be captured by solving in slices the correspond-
ing one-dimensional (1D) or 2D Schrodinger equation if one is concerned with conventional or FD-SOI
MOSFETs, or nanowire transistors, respectively. What cannot be captured with particle-based device sim-
ulators is if there are local strains and stresses in the ultra-nanoscale devices, but that can also be cured via
coupling of Monte Carlo device simulators with atomistic models [48,49] for bandstructure calculation.

In summary, Monte Carlo device simulators are a powerful tool for modeling devices ranging from the
nanoscale regime to the microscale regime. What cannot be modeled with particle-based device simulators
are resonant tunneling diodes in which quantum interference effects dominate the device behavior [50].
Efforts have been made along this direction as well [51], but the inclusion of the quantum-mechanical
phase alongside with well-defined particle trajectory still remains open field of research.
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This chapter deals with numerical simulation in photonics. It provides an overview of the most widely
used methods, explains their concepts, and gives some details, as long as it is necessary for a qualitative
understanding. It is far from being complete but tries to describe the landscape of simulation tools. Parts
of this review are closely related to the book Numerical Methods in Photonics [1], which itself is a compre-
hensive representation of the field covered by many very detailed monographs. The methods we describe
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in the following are the finite-difference time-domain FDTD method, closely related to the finite integration
technique (FIT), the Fourier modal method (FMM), the finite element method (FEM), and the discontinu-
ous galerkin (DG) method. We omit other very useful methods often specialized to certain applications, in
particular:

+ Beam propagation method (BPM), for simulation of paraxial beam propagation [2]
+ Integral methods such as boundary integral methods, for simulation problems in grating design [3]
+ Plane wave expansion (PWE) for simulations of band structures [4]

and refer the reader to the given monographs.

52.1 Landscape of Numerical Methods

There are many aspects to consider if one has to choose a numerical method to solve a particular problem
in photonics. We now discuss a few.

52.1.1 Time-Harmonic versus Time-Dependent Modeling

In the most general case, one wants to solve time-dependent Maxwell’s equations with general, i.e., non-
local, nonlinear, dispersive media. Both FDTD and DG methods in time provide such general solutions.
On the other hand, especially in the case of high accuracy requirements, strict conditions on the maximal
stepsizes in time may cause a high amount of central processing unit (CPU)-time consumption. Therefore,
in case of linear and nondispersive problems, it is often useful to consider time-harmonic problems, and,
if needed, to combine time-harmonic solutions via Fourier transform with different frequencies to obtain
a time-dependent behavior.

52.1.2 Exact versus Approximate Models

It is common to approximate Maxwell’s equations by structurally simpler equations. Especially, the sim-
plification in terms of polarizations have a long tradition, where the full vectorial equations are replaced
by semivectorial or scalar approximations. The scalar Helmholtz equation, e.g., is well investigated and a
number of efficient numerical approaches exists, hence at first glance it seems reasonable to try Helmholtz
solvers instead of Maxwell solvers. But the full vectorial Maxwell solvers available today do not have signif-
icant disadvantages with respect to speed or memory consumption, thus it is obsolete in many cases to use
such semivectorial or scalar approximations. The case is different for special situations such as paraxial field
propagations along distinguished propagation directions. As long as reflections can be neglected, in the case
of waveguide tapers for example, so-called BPM are useful. They map a time-harmonic three-dimensional
(3D) scattering problem approximately to a time-like evolution problem with 2D cross sections, which
results in a substantial reduction of the computational effort.

52.1.3 Order of Approximation and Flexibility of Meshes

All methods described in the following offer, at least in principle, high-order approximations in space and
time, thus resulting in high-order convergence. Nevertheless, this is not always used in practice. FDTD
methods, e. g, are typically linked to a second-order discretization in time and space on staggered grids.
Therefore, once geometrical flexibility is needed, one would typically, instead of enhancing FDTD, directly
apply DG. Implementation of DG is more involved than of FDTD, but offers the flexibility of FEM meshes
by design and yields the time evolution with costs comparable to FDTD.
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52.1.4 Computing Aspects: CPU-Time versus Memory

The time-dependent solvers FDTD and DG can be treated by explicit time integrators. Thus, the evolution
procedure results in much less memory consumption than that is typical for FMM or FEM, where either
full or large sparse matrices have to be inverted. Hence, on memory-restricted systems, FDTD or DG are
advantageous. The price to pay is longer computing times.

52.1.5 Special Adaptation to Photonics

FDTD, DG, and FEM are general methods for solving electromagnetic problems; they are not specially
tailored to photonics. Since mode propagation is often the central physical effect, numerical methods based
on the interaction of waveguide or cavity modes are often very effective. The dominant class of methods
here are the FMMs. Subdividing the structure into waveguide sections and relating waveguide modes to
each other result in algorithms which often offer surprisingly fast convergence in the range of lower, but in
practice sufficient accuracy.

52.2 Maxwell’s Equations in Nondispersive, Chargeless Media

In the most general case, the numerical methods of photonics solve time-dependent Maxwell’s equations
with general media, i.e., with nonlocal, nonlinear, dispersive media. For a concise and clear presentation
of the different numerical methods, we use only a subset of the general equations. Our discussions are
based on

dD
VxH=]+—
J ot
JdB
VXE=-—
at (52.1)
V.-D=20
V:-B=0
completed by the corresponding constitutive equations
D =¢E B =pH J =oE. (52.2)

These equations describe the fields in linear, nondispersive, and chargeless media, where the magnetic
field H, the electric field E, the electric displacement D, and the magnetic flux density B are vectorial
quantities defined for the entire space and positive times, H, E,D, B : R> x R* — R?, and the permit-
tivity €, the permeability p, and the conductivity ¢ are scalar, piecewise continuous functions in space,
epo: R — R

The field equations combined with the constitutive equations yield the system, on which our represen-
tation of the FDTD method and the DG method are based:

(x ™))l )G 29

The other methods, FEM, FMM, etc., are based on the time-harmonic form of Equation 52.3. The concept
is to use a Fourier transform of the fields in Equation 52.3 for a single frequency w. Assuming the single
frequency dependence to be exp(—iwt), the Fourier transformed fields become complex but live in space
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only, H,.E : R* — €. We do not introduce a special notation for the time-harmonic fields, since the
meaning becomes clear from the context. In the frequency domain, Equation 52.3 reads

(o ™) (B[ )8

52.2.1 Scattering, Mode Propagation, and Resonance Problems

Maxwell’s equations take different forms depending on the different modeling situations. In the case of
time-dependent problems, these are the different types of linear and nonlinear scattering problems. In
the case of time-harmonic problems, where mostly but not exclusively, linear problems are considered,
we have scattering, mode propagation, and resonance problems. Time-dependent solutions to Equation
52.3 including also nonlocal, dispersive, or nonlinear materials are the most general classical solutions to
Maxwell’s equations—the corresponding computational effort is usually relatively large. Solutions to the
time-harmonic system (52.4) are often much cheaper.

52.2.1.1 Scattering on Unbounded Domain

Figure 52.1 shows the situation of a time-harmonic scattering problem, the situation for time-dependent
scattering is very similar. There is a source field E, . traveling through the unbounded space, being itself
a solution to Maxwell’s equations (Equation 52.4). If no scatterer would be present, this would be the only
field we have. But if it hits an object, scattered fields E,_,jreq (0r in short E,) are generated. We need to
compute the field inside a computational domain &, which we also call the interior domain, in contrast
to the exterior domain surrounding Q. Further, we denote the boundary of the computational domain
with 9.

Let the source field E,,..(r), with r in the exterior domain, r € R3 \ Q be given. Then, the general
scattering problem in 3D is defined by the following conditions:

1. Interior problem. The field on the computational domain obeys Equation 52.4.

2. Exterior problem. The fields in the exterior domain are a superposition of the source and the
scattered fields Eg,,.. and E;. The source field and the scattered field must also obey Maxwell’s
equations.

3. Continuity of the tangential data and their normal derivative along the boundary of the computa-
tional domain.

4. In the case of time-harmonic fields, the Silver-Miiller radiation condition for the scattered field

lim r ((VXEy) xr”—i|k|E) =0 (52.5)

r—oo

holds true uniformly in all directions r. Here, r” denotes the radial vector of unit length.

/ __%__

Esource ;
— 08
- — Q

scattered

%}Escattered &,

FIGURE 52.1 Scattering problem.
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Typically, the radiation condition is not directly applied. But the methods that treat the exterior part of the
problem ensure that the scattered fields satisfy the condition. The most prominent and successful method
here is the perfectly matched layer (PML) method, see the Section 52.2.4.

52.2.1.2 Resonance Problems

In resonance problems, we consider Equation 52.4 as an eigenvalue problem with the unknown eigenvalue
o and the unknown resonance mode, the eigenvector, (E, H)”. The special challenge lies in the treatment
of the exterior domain. Either the boundary conditions on the boundary of the computational domain are
explicitly known, e. g., as a magnetic or electric wall, or methods from scattering problems are applied.

52.2.1.3 Mode Propagation Problems

Again, we consider Equation 52.4 as an eigenvalue problem. This time, we specialize the problem further to
z-invariant problems: € = £(x, y). We take a fixed frequency w and look for solutions of the type E(x, y, z) =
E(x, y)e*:* with a (unknown) phase velocity k,. Two common forms of the eigenvalue problem for k,
are the following: Since any z-dependence is given by factors exp(ik,z), one can introduce a specialized

nabla-operator V= e,d, + e,d, + ik, e, and Equation 52.4 reads

(v ™) (8) === L))

Here, the eigenvector consists of both E and H, the eigenvalue k, appears in linear form. Alternately, elim-
inating, e. g., the magnetic field, and using the decompositions E = E|, +e.E, and V = V| +iek_, one
derives from Equation 52.4 the modal eigenvalue problem

N 1 K2 ik
EVLX'.ViT to ] s_uvl] [ El ] = @’ [ El ] (52.6)
Lt TeVenyve b )

The eigenvector consists just of the E-field, but this is a quadratic eigenvalue problem in k.. The same
procedure for the magnetic field yields

ly xly, x +& &y H

pot el ep ep L H 1
L H =W . (52.7)
sy 1 1 1
IEVJ_:‘ _EVJ‘;VJ‘ % HZ

52.2.2 Simplification: 2D Geometries and 2D Fields

In a 2D geometry, the permittivity € depends only on two coordinates, say the x- and y-coordinates: € =
€(x, ), just as in the mode propagation case in Section 52.2.1. In the mode propagation case, all fields
depend on a common phase factor exp(ik,z). If we set k, = 0, i. e., we consider only fields with transversal
position dependence E = E(x, y), we obtain from (Equations 52.6 and 52.7) the decoupled 2D equations

V, XV, XE|(x,y) = e(x, )po’E | (x, )
=V -V E.(xy) = e(x, R0 E,(x, y). (52.8)
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If we additionally assume uniformity in y-direction, we find the eigenvalue problem for waveguides with
a 1D cross section

OE. +e(Opo’E; = KE.. (52.9)
The same applies to the magnetic field:

1 2
VX ——V | xH, =po"H,(x,y)
1 e(x.y) 1 1 145 Y,

s(x)dx$axﬂz +e(x)po’H, = ijz. (52.10)

These equations are simpler than the original ones and they build the basis of many (approximate) solvers.
They are simpler in the operator structure and they are linear in the eigenvalue k2.

Note that, conventionally, the propagation direction of waveguide modes along the axis of waveguides is
chosen to be the z-axis. To meet this convention, one has to interchange the y- and z-indices in Equations
52.9) and 52.10.

As a consequence of decoupling, we can split the entire field globally into a transversal electric (TE or
s-polarization) and a transversal magnetic (TM or p-polarization) field:

E(x,y) _ E.(x.y)e, + E.(x,y)e, + Ey(x, y)ey . (52.11)
H(x, y) H,(x,y)e, + Hy(x, y)e, H,(x,y)e,
s-pulariu:t'iﬂn (TE) p-pnlari?.;:ion (TM)

52.2.3 Transformation Rules
Transformation techniques often yield considerable simplifications, e.g.,

« Exploiting symmetries by adapting coordinate systems (cylindrical, spherical coordinate systems,
etc.)

« Using precomputations on reference elements as in FEM, cf. Section 52.5

« Handling of PML, cf. Section 52.2.4, by a complex coordinate stretching

The transformation rules describe the change of the equations when we change a local coordinate system.
The PML, seen as a complex scaling of coordinates, can be treated as change of a coordinate system. The
computations in FEM simplify if they are done in the reference coordinate systems and then mapped to
the physical systems.

Geometric quantities and field quantities transform differently. For an easy algebraic notation, it is useful
to write geometric quantities in row vectors and field quantities in column vectors of their coefficients.
Expressions like dl - E with dl = (dx, dy,dz) (a row vector of path components) and E = (E,. E,, E)T
(a column vector of field components) have then the right algebraic form and can be programed directly
as they appear in the formula,

52.2.3.1 Mapping of Geometric Quantities
Let an arbitrary domain mapping Q : K — Kbe given by

X
y |=Q(%7.2). (52.12)
Z
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X x

FIGURES52.2 Example of a domain mapping. A square is mapped to a curvilinear quadrilateral. Quantities belonging
to the reference domain are marked with a hat.

see Figure 52.2. This way we map points from the reference domain to points in the original domain, where
the points are defined by the coefficients X, 7,7 in the reference system and by the coefficients x, y, z in the
original system.

We study how infinitesimally small path, face, and volume elements dl, dA, dV, transform. In 3D, we
describe dl and dA by three-coefficient row vectors. A linearization of the mapping at point (%,7,Z) yields

dx dx 0;:Q a:.‘aQ1 0;Q,
dy |=71(%3.2)| & [, TJEZ) =] 6Q QA &Q | (52.13)
dz dz %Q; Q3 0;Q;

Defining the path element as the row vector dl = (dx, dy, dz), we obtain the path element transformation
di=dj”. (52.14)

A similar computation for a face element dA = (dAx, da,, dAz) spanned by two path elements gives,

with |]| the determinant of J, the transformation rule
dA =dAJ~! ]| (52.15)
and for a volume element dV spanned by three path elements we obtain
dv =dVj|. (52.16)

52.2.3.2 Transformation of Grad, Curl, Div

‘We use the nabla notation describing a column vector

0,v(x,y,2)
grad v(x,y,z) = V,v(x,y,2) =| 0,v(x,y,2)
d,v(x,y,2)

Let an arbitrary function scalar v(x, y, z) be given which lives on K and allows for the computation of the
gradient. We compute the scalar quantity dI-V,, .v. This is a physical quantity with the meaning of a voltage
(e.g., E-ds) ora current (H - ds). This quantity must not change if we change the coordinate system, hence,
we require

dl- V. v(x,y,2) = di- V}‘j»’z‘,‘; (%5.2),
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TABLE 52.1 Transformation of Geometric and Field Quantities

Geometric Quantity Field Quantity Nabla Operation
. E=J"E o
Segment dl =dlj" ! o VoV =17V ¥
H=/"H 7

Face dA=dA ]! D=J;_Iﬁ V. Xv=L1V._.x¥

- B= L8 xyz = Ve
U
Volume dv =dV ]| p=-p V’_(l.:v\':F'IVST__;f

I

A~

where 7 (%,7.2) in the reference domain follows from v (X,7,Z) in the original domain by v(x, y,z) =
v(Q(R.3.2)) = (voQ) (X.7.Z), hence ¥ = voQ, based on the coordinate transform Equation 52.12. It
follows from Equation 52.14 that

diy” . Vi V%, 9,2) = dl- Ver? (2.7, 2

xyz
Since this should hold true for all functions v, we find the mapping of the gradient

Vige =T Vi3 (52.17)
The coefficient of the nabla operator transform like the coefficients of the field strength. The same way one
computes the transformations rules for curl and div, as collected in Table 52.1.

52.2.3.3 Transformation of p and ¢

Rewriting Maxwell’s curl equations from the physical to the reference domain we get

l%v;@? x H = ioe] TE

ﬁvm x E = —iop/TH,

which shows that the entire transformation can be traced back to a mapping of the material quantities

ol (52.18)
pr=tw (52.19)

52.2.4 Perfectly Matched Layers

A standard problem in the simulation of scattering problems is the treatment of scattered fields outside the
domain of interest £;,,, cf. Figure 52.3. The predominantly used method is the PML technique introduced
by Berenger [5]. The PML treatment of Berenger relies on a split field formulation of Maxwell’s equations
in the PML region. This has been shown in [6] to be only weakly stable. In contrast, the uniaxial PML
(UPML) [7] does not require such a splitting of Maxwell’s fields and maintains the strong well-posedness
of the original Maxwell system. Both formulations are equivalent to an elegant and general approach: the
stretched-coordinate PML [8,9]. We describe briefly only the latter one. It has among others two remarkable
properties

1. It can be used in a similar way in higher space dimensions.
2. It can be plugged into existing codes provided that the codes allow for sufficient general materials
and field representations.
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FIGURE 52.3 Sketch of a 1D time-harmonic scattering problem. The source fields are given, the interior field u;,,
and the scattered field ug has to be computed.

iy

y

0 L i

FIGURE 52.4 Complex PML path. Within the interior domain (0, L) the x-coordinate is real but becomes complex
outside.

52.2.4.1 PML in 1D

Let us consider the right exterior domain x > L, where L marks the right boundary point of the situation
depicted in Figure 52.3. The general solution of the scattered field in the scalar 1D version of Equation
52.8is

u=c_e ™y x> L

We have to discriminate between the incoming version of the scattered field c_ exp(—ikx), which we need
to drop and the outgoing scattered field ¢, exp (ikx). Here, x is the real space coordinate. Now, we allow
x to be a path in the complex plane, not just on the real axis. We parameterize path x with the real
parameter % to derive a path in the complex plane; now X takes the role of the reference coordinate as in
Section 52.2.3:

x(X)=L+(1+i0)x
o > 0, real, fixed (52.20)

X > 0, real reference coordinate;
compare Figure 52.4, which yields the following mapping:

c_exp(—ikx) +— c_exp(—ikL)exp(—ikX) exp(ckX)
coexp(ikx) +— ¢, exp(ikL) exp(ikX) exp(—ckX).

The first expression, the incoming field, blows up for ¥ — co, due to the factor exp(ck%), whereas the
second one decreases exponentially with exp(—ck%). So for X large enough, we have a clear discrimination:
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iy

iy{.

FIGURE 52.5 Transformation from the unit interval to the complex-valued PML interval.

nearly the entire field value comes from the left traveling scattered field. Hence, a proper formulation of
Sommerfeld’s radiation condition in terms of the complexified path x(%) is

u(x(x)) — 0 as X — oo.
Let us stay in the right exterior domain and introduce the complex distance variable x:
x(X) =X + ioX.

We consider the complexification of the spatial variable within the Helmholtz equation:
2
Fu+kPu=0 = ;_a—u+k2u=

This step is decisive. If we are allowed to generalize the real derivative to a complex derivative, i. e, if the
derivative is independent of the direction in the complex plane, we can use the linear path transformation,
see Figure 52.5, (or others) to obtain the last equation.

This transformation is what we in fact exploit within the algorithmic realization. We define the com-
plexification of the real x-coordinate to a complex coordinate x by means of the real reference coordinate X

X (1 +ic),

X<0
X=AR, 0<%<L (52.21)
L+(X-L)(1+ic), X>L.

52.2.4.2 PML in 2D and 3D

The (tensor product type) generalization of Equation 52.20 to 2D is obviously the following (c,, 6, are real,
positive constants):

X(1+i0,), <0 ?(H-lﬁy)- y<o0
x=1%, 0<%<L, y=13, 0<y<L (5222
L+(3-1)(1+i0,), R>L L+(-1) (1+i0,), 721
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FIGURE 52.6 PML-regions in 2D lexicographically enumerated.

The Jacobian of the mapping (X,7) + (x.y) depends on the position, see Figure 52.6, and evaluates

to, e.g.,
1 1+io 1+io
(22) _ (3.2) _ x (3.3) — x
e() () (T )

The realization of the PML now consists in using the transformed permittivity (Equation 52.18) and per-
meability (Equation 52.19), where the Jacobians are computed from the complex stretching of the space
variables (Equation 52.22). We proceed now as follows. We consider a subdomain of the exterior, say
Q2D c R? from Figure 52.6 and the complex solution u>!V : Q21 — C living there. Then, we
use the mapping from the real to the complex coordinates to define a complex-valued spatial domain:
Q2D - Q42D ¢ €2, On the complexified domain Q21), we have a complex extension of u>!) which
we denote by u“?1, The solution u“1) is different to the one on the real space Q), it is the complex
continuation of the original function. The key point is that our original function u‘>"(x, y) has a com-
plex extension by its nature, and we point to its values by introducing complex instead of only real spatial
coordinates,

52.3 FDTD Method

The FDTD method is the most widely used method for the simulation of electromagnetic field propagation.
It combines algorithmic simplicity with a deep universality. Nonlinear, nonlocal, and dispersive material
responses can be treated. The reason for this generality lies in the fact that the structure of the FDTD
scheme is very close to the structure of Maxwell’s equations and has several algorithmic features:

» Itis simple to implement and fast.

+ High-order discretizations are feasible.
o Itis explicit in time.

» There is a comprehensive theory.

Besides these pros, there are also severe drawbacks:

+ The simple local approximation based on Cartesian staggered grids restricts geometric flexibility
unless the grid is prohibitively fine (staircasing problem).

« The inherent second-order accuracy in time and space of the original method limits long-time
computations on large domains.
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52.3.1 Historical Notes

The initial and most important step was done by Yee in 1966 [10]. He used a so-called staggered mesh
discretization in space and time, see the following subsections, and replaced the differential operators
grad, curl, and div by finite-difference approximations to obtain a discrete approximation of second-
order accuracy. Since then, a huge number of contributions improved the method and extended the
fields of applications. An interesting view on the derivation of the FDTD equations has been given by
Weiland in 1977 [11] starting from an integral formulation of Maxwell's equations. This approach is
called FIT and yields the same set of equations. We use this approach to motivate the finite difference
equations.

A number of efforts have been aimed at addressing the above-mentioned problems. The staircasing
problem has been treated in many papers, e.g., [12]. High-order methods have been proposed, e.g., in [13,
14].The generalized finite difference method introduced by Bossavit [15] in 2001 takes ideas from differential
geometry and topology and stimulates new interpretations of classical finite element schemes in terms of
finite differences. Clemens and Weiland [16] follow a similar spirit in the framework of FIT to extend
classical schemes.

A comprehensive overview of FDTD methods and further improvements along with detailed
applications is given in [17] which is the standard reference book on FDTD methods. A thoroughly dif-
ferent approach to time-dependent problems is given by the class of DG methods which by its inherent
construction offer high-order approximations in space and time as well as flexible meshes, cf. Section 52.6.

52.3.2 Concept: Discrete Differential Operators on Staggered Grids

Figure 52.7 explains the basic construction principle. We consider two entangled loops. One, say the light
gray loop, is associated with the electric field, the other one with the magnetic field (left part of Figure 52.7).
These loops will be used later for line integrals. The straight edges of the loops themselves are the edges
of a cube, see the middle part of Figure 52.7. Then, by adding cubes related to the electric and magnetic
fields, the complete spatial Yee mesh is generated. It can be considered as composed from two independent
Cartesian meshes where the “electric” mesh and the “magnetic” mesh are shifted compared to each other
by half of an elementary edge length of a cube.

52.3.2.1 Degrees of Freedom

A central question in any numerical scheme is the proper definition of the degrees of freedom (DoF).
Typically, the stability of a method essentially relies on this. In FDTD methods, it is common to project the
fields to the edges and to take the values at the midpoints of the edges as DoF. For example, we project E
to the ith edge e;, E - e;, take the value at the midpoint, and denote it as E;. We motivate the DoFs in the
following by approximations of integral expressions (e.g., by the midpoint rule) as it is done in the FIT. This
offers additional insight into the structure of the equations. The same results are obtained if the differential
operators are approximated by finite difference stencils.

52.3.2.2 Discrete Gradient

For a direct discretization of Maxwell’s equations, it is not necessary to consider the discrete approximation
of the gradient but it completes the insight into the structure of the subsequent discretization process.
Consider an edge e of length h connecting two neighboring vertices v, , v, of the Yee mesh. The fundamental
theorem of calculus

v

[ grad ¢ de = p(v,) — d(vy),

¥
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FIGURE 52.7 Schematic interaction of electric and magnetic fields and its realization with staggered grids.

motivates the definition of the discrete gradient operator grad, :

0
grad, ¢|, : = % (p(vy) — dp(vy)) forall edgese,

where €” is the normalization of e to unit length. The grad,, -operator maps quantities defined on vertices
to quantities defined on edges.
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52.3.2.3 Discrete Curl

The definition of the discrete curl -operator, curl,, , relies on the Stokes theorem

J'curlE df=JEde
f of

with fa plane, rectangular face of a cube and df its boundary consisting of four edges e;. The discrete version
reads

™M=

curl E|; : = ——

{0
Tty 2 te,f |€;] E; forall faces f.

Il
—_

The iota-symbol 1,  denotes the incidence number of edge e; with respect to the orientation of the face
f. Itholds 1, = 1, if edge e; shares the same direction as that induced by the face vector f, otherwise
le,f = —1. The curl;, -operator maps quantities defined on edges to quantities defined on faces. For the
light gray loop of Figure 52.7, e.g., starting with the edge in front of the figure and assuming the edge
lengths of the rectangle are all the same h; = h, = h, this is

curl E|; : = % (Ey+E,—E3—E,).

52.3.2.4 Discrete Divergence

The definition of the discrete div -operator, divy, , relies on the Gauss theorem

Jd.ideV: J D df.
av

Here, V is the volume of the cube, dV its boundary consisting of 6 faces, and f is the outward pointing
surface vector. The discrete version reads

6
; 1
div, D|, = i ; te, fi| D for all cells c.

The iota-symbol 1, . denotes the incidence number of face f; with respect to the orientation of cell ¢, defined
positive by the outward orientation of all surface vectors. Hence, it holds 1, . = 1, if face f; points outward
¢, otherwise 1 . = —1. The div}, -operator maps quantities defined on faces to quantities defined on cells.

52.3.2.5 Exact Sequences
As a direct consequence of the fact that the Yee mesh is orientable, it follows
curl, -grad, =0

(52.23)
divy, - curly =0.

Hence, the discrete operators share the same properties as the continuous ones. For the Yee mesh, the
property follows easily from a direct computation.
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52.3.3 Spatial Discretization of Maxwell’s Equations

Let us denote by E;, the column vector of all DoFs associated with the primal mesh and by Hy, the column
vector of all DoFs associated with the dual mesh. Then, the spatial discrete version of Equation 52.3, setting
o = 0 for simplicity, reads

ed,Ep|, = curl, Hy | for all faces fy of the dual mesh, (52.24)
P
pd,Hh|ed = — curl, Ep |, for all inner faces f;, of the primal mesh. (52.25)
P
Here, e, denotes the edge of the primal mesh that penetrates face f4 of the dual mesh and ey denotes the

edge of the dual mesh going through f,. For implementations, it is convenient to consider both the primal
and the dual meshes as submeshes of a common Cartesian mesh.

52.3.4 Time Evolution

The time evolution of the semidiscretized equations (Equations 52.24 and 52.25) can be computed by a
number of different time integrators. Frequently used is the so-called leapfrog scheme. It fits perfectly to
the spatial discretization and offers the advantage of being an explicit method.

52.3.4.1 Leapfrog Scheme in Time

We introduce a uniform mesh in time

S RO o T i

I

2

1
3

with ¢, ; — t; = At for all time steps and indicate the discrete time by a superscript at the quantities to use,
1

n+3
e. g., the discrete electric field vector at time £, 1 is B %, Using a central finite difference approximation

of the time derivative in Equation 52.24, we obtain its fully discretized version

1
T % curly, Hh|'f’d for all faces f; of the dual mesh. (52.26)

The time derivative is centered around #, hence it is of second-order accuracy. Using the updated electric
field of Equation 52.26, Equation 52.25 is updated accordingly:

n n +% . .
Hh|;rl = Hy|,, - L curly, Eh|: *  forall inner faces f; of the primal mesh. (52.27)
d d H P

Equations 52.26 and 52.27 are typical FDTD update equations.
52.3.5 Dispersion, Stability, and Courant-Friedrichs-Lewy Condition

Let us consider a monochromatic plane wave of frequency m in a homogeneous medium, with speed of
light ¢ = 1/4/ep, e and p independent of position, and a wavevector k = (k,, k,, k). Then the plane wave

Ee—f(l)H-I'k]‘
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with a constant vector E is a solution of Maxwell’s equations without sources, if the dispersion relation
w? =K (52.28)
and orthogonality condition
kKE=0

hold true. The first one follows from the curl-curl equations, the second one from the divergence condi-
tion. For the Yee mesh, there is a discrete counterpart. The discrete plane wave satisfies Equations 52.26
and 52.27 takes the natural form

E, e—iwf}-ﬂ‘krh !

The corresponding discrete dispersion relation, however, contains the stepsizes in time, At, and space, h,,

h,,h,,
1 oAt 1 o kh, 1,5k 1. o kb,
A_tl sin? T =¢? ((—i sin? %) + (h_i sin’ T + E sin? ZT ; (52.29)

For a derivation see, e. g.,[17] or [1]. Clearly, this discrete dispersion relation approaches Equation 52.28 as
At,hy hy, h, — 0as it must be. But the sin-function of the left-hand side of Equation 52.29 has a further
consequence. Let k., k. k; be real, hence the plane wave is spatially bounded everywhere as in the case of

'y

the the continuous plane wave. Multiplying with A#? from the left-hand side of Equation 52.29 might result
in a real number larger than 1, if At is large enough. Then w onthe left-hand side becomes imaginary, and
since the expression involves sin?, both positive and negative imaginary frequencies occur. The positive one
will cause an exponential increase of the discrete plane wave in time, hence the solution becomes unstable.
Consequently, for stability we must require

8Ar2(1+—1~+-1—)£1
Wb B

or, for uniform meshes, h = h, = h, = h,,
NP
cy3
These inequalities are the Courant-Friedrichs-Lewy (CFL) conditions for the wave equation.

52.3.6 Discrete Div-Conditions

It is a remarkable property that the Yee scheme preserves the div-conditions of Equation 52.1 for homoge-
neous media in discrete form [18]. Computing the discrete divergence of the updated Equation 52.26

1 ok
div;, s:Eh|::2 = div, £E|,|:p * + Atdivy, curly, th?u for all cells of the dual mesh.
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The last term vanishes due to property (Equation 52.23), hence we have the convergence

Tt} 1k -
div,, eEh|:}‘ ? = div, eE}, |:p ! = .= div, SEhleP‘ for all cells of the dual mesh.

The divergence attributed to a cell is preserved over all time steps. For the magnetic field, we obtain the
corresponding result the same way:

divy, pHp[¢ " = divy pHp |, = ... = div, pHy |, forall cells of the primal mesh.

If the initial data at time step n = —1/2 and n = 0 are divergence-free,
e 4
div, ¢E * =0 div, pH; =0,
this property is preserved for all following time steps.

52.3.7 Convergence

Let, as before, E;, be the vector of field values attributed to the edges of the primal mesh with values com-
puted at the midpoint of edges. Let us denote the vector of the exact field values, projected to the edges, by
E; hence E;, approximates E pointwise. We define the following, mesh-dependent discrete norm

2 2
|E-E,||" : =k’ (B, —E)",
and the analog for H with values attributed to the centroids of the cell faces.The following holds true. Let
E and H be three times continuously differentiable in Q. Then, there exists a constant C independent of h
such that

||E - Ey|| + ||H - Hy|| < Ch.

FDTD converges with second order. This classical result extends also to nonuniform meshes as shown by
Monk and Sli [19].

52.4 Fourier Modal Method

This summary of FMMs follows Chapter 6 of [1]; for more details see that textbook and the references
given therein.

52.4.1 Historical Notes

The FMM is a family of methods that belong to the class of spectral methods for the frequency domain and
has been well established for more than three decades now. The term spectral method means that the field
approximation is realized with functions which have a global support. In contrast, in FDTD methods, we
consider only the pointwise-defined functions, and in FEM methods, we have basis functions with a very
small, local support.

The origins of the FMM dates back to the 1960s and were devoted to grating analyses [20,21]. In 1981,
Moharam and Gaylord established in their seminal paper [22] a computational framework they called
rigorous coupled wave analysis (RCWA). Other synonyms or variations of the method include the PWE,
the eigenmode expansion (EME), and eigenmode expansion technique (EET). A typical observation in
RCWA methods has been that the convergence of TM fields is notably worse than that of TE fields. In 1996,
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Lalanne and Granet and coworkers [23,24] found a solution to overcome this TM convergence problem
and in the same year Li published his factorization rules [25] formalizing the results. Currently, different
proposals are being investigated to establish a fast convergent 3D FMM, e. g., [26].

52.4.2 Concept: Segmentwise Waveguide Treatment
The family of FMMs are characterized by the following building blocks:

1. The geometry is subdivided into a sequence of waveguide-type sections, see Figure 52.8b and c.

2. The field within each waveguide section is represented by up and down propagating modes as well
as evanescent modes.

3. The transversal fields of the waveguide-type eigenmodes are computed in Fourier representation,

4. The interaction of the individual sections is realized by posing proper continuity conditions at the
interfaces and a scattering-matrix formalism.

52.4.3 Transfer-Matrix Approach

We consider the fields in two subsequent layers i and i + 1, cf. Figure 52.9. At the moment, we do not focus
on the special structure of the electromagnetic field except that we can decompose it into upward (E*) and
downward (E™) propagating parts with respect to the z-direction. Let Ef(x, z) be arbitrary normalized
solutions of Maxwell’s equations split into propagation directions and a;° € C their weights. It holds that

Field in layer i : aEf(x2) + @ E(x2)
| implies (52.30)
Fieldinlayeri+1 : a;';ll':'.?;l(x,z) + a_ E_ (x2)

Given the complete field in one layer, Maxwell’s equations including continuity conditions enforce the
complete field in the other layer. This can be expressed by a transfer-matrix relation of the coefficients

+ +
Kiis ( zf_+1 ):A,-( zf_ ) (52.31)
i+1 i

where A;, A, | are complex 2 X 2 matrices. We introduced this symmetric form since the count sequence
of layers (top-down or bottom-up) is arbitrary. The typical application of the 1D transfer-matrix method
is, given n layers of finite thickness with indices 0 and n + 1 referring to substrate and superstrate, the

(a) (b) (c)

FIGURE 52.8 (a) A schematic geometry and a Cartesian mesh as used in FDTD methods. (b) Slicing of the geometry
into segments along z. (c) Waveguide-like approximation of the geometry used in Fourier modal methods.
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| l

aE} (x,2) + a; Ej(x,2)

X

FIGURE 52,9 Superposition of up and down propagating fields in two subsequent layers.

+ +
a a
+1 — . P 0

( aﬁ ) =Ty o Tijpy - Toy ( a )
n+1 0

This procedure may become unstable due to the exponentials involved in T} ; ;.

update procedure

52.4.4 Scattering-Matrix Approach

The scattering-matrix approach uses merely the same representation as the transfer-matrix approach,
except that the computation of the coefficients a* is reordered (Figure 52.10). The scattering-matrix
notation corresponding to Equation 52.31 is

- +
( y. )=Sf..-+l( K ) (52.32)
i %

with the obvious computation of the coefficients of §; ;, | from A; and A;,,. The notion scattering follows

from the fact that we can consider the coefficients (a:r,aa_l) as fields incident to the layer separating

boundary and the coefficients (a.". al ) as fields scattered away from the boundary, respectively. The
P77+

scattering matrix for an n-layer system is derived as follows. We rewrite Equation 52.31 as

( g )=( Ai(d) Ay (0 )[ E

]
a
i

+

| =

[Beagt S

1

i+1
Here, the top coefficient a of the column vector and the bottom coefficient a;,, are the incident
coefficients. We repeat this for the next layer, increasing the index i by 1

ot
0 a;
0 _( Ai(d)  -Ap 0 ) @
0] A (diy) —Au(0) a,
0 aj;;z
a

i+2
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¥ = i 2,
ﬂ”+] U ﬂ a!i"'l “u+l U l au+l

I IR
1
I Tl

+
CH

i
0
a1 e sl =

FIGURE 52.10 (a) Transfer-matrix approach. The data a/, a; are given (filled arrows), the others are computed.

(b) Scattering-matrix approach. The data a}, a; 41 are given, the others are computed.

Again, the top and bottom coefficients of the column vector are the incident coefficients of the layer system.
Moving these coefficients to the left-hand side, deleting the first and last column of the system matrix, and
inverting it yields the scattering-matrix formulation with scattering matrix S:

a-
+ 0
ay at
0 :
a
sl :+ =] ' | (52.33)
0 :
a-
n+l +
' au+I

52.4.5 Layered Media Stack as Model Case

A layered media stack is a 1D problem, if we choose the z-axis normal to the faces of the layers. To discuss
the structure of FMM algorithms, we construct the standard transfer-matrix algorithm in scattering-matrix
formulation from the viewpoint of the FMM. To find the field representation in layer i, we have to solve
Maxwell’s equations in layer i, i. e., either the equation for TE or TM. Let us consider the TE case. The
modal ansatz

laYer i: Ey(x. z)= E(I)C‘Ik!z = Eue'.kxx'“'kzz

satisfies Equation 52.9 if n?

ki — k% = k2 . Hence, given k,, we have
layeri : E},_,-(x. z)= ﬁ?' eikertikoz ai_eka“fk:,fz, (52.34)

which is the first line in Equation 52.30. Equally, we have for layer i + 1

P . — 4+ ikex+ik, 2 - ikx—ik, 1z
layeri+1: Ey,;,(x,2) =a; €™ ® 4 g e AHLE
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We compute matrices A; and A;,,. Let the boundary between the two layers be placed at z=0. The
tangential electric and magnetic fields must be continuous. It follows for the electric field

k. x

+ ik, x - ik.x _ _+ ik.x - ik,
ot a;e™ =al " +a e forallx € R,

a’e
i
hence
+ - -
a; +a; =a; +a_,. (52.35)

Given the electric field in each layer, we compute the tangential component of the magnetic field

layeri:  opH,(x.z) = atk, etk - ark, etk
layeri+1: opH,;,(x2) = a} ke thmz — an ko ek
and obtain the continuity condition
+ - _ - -
kz.ia;' - kz.ia;' - kz.i—l-laH_] - kz‘:'+1ai+1' (52.36)

Consequently, taking Equations 52.35 and 52.36,

1 1 al ) ( 1 1 ) ( at )
i+1 = . (52.37)
( kzj+1 _kz.i+] ) ( a4 kz.i _kz.i a,

Repeating this calculation with a finite layer thickness d; between the two boundaries, we obtain

1 1 iy id; 0
A,-(di)=( S )( N ) (52.38)
Z,0 Z,0

Collecting the steps, we obtain the classical transfer-matrix algorithm in scattering formulation
Algorithm 52.1.1In 1D it is not necessary to save the eigenvectors since they are the same for all layers. But
in 2D and 3D, the eigenvectors are different in each layer, so we introduced the step here for full parallelism
with Algorithm 52.1.

Algorithm 52.1: Transfer-Matrix Algorithm in Scattering Formulation

PR —
Require: aj and a, to define source fields.

for all layers do
Solve each layer’s eigenvalue problem (Equation 52.9).
Save: eigenvectors exp(ik,x) and eigenvalues k_
for later field representation (Equation 52.34).
Compute the matrices A; by (Equation 52.38).

end for

Assemble the system (Equation 52.33).

Solve.

return coefficients a, ..., a;"

n+l’
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52.4.6 FMM in 2D

We generalize the foregoing, where € has been constant in each layer. Now, let & vary with x, each layer may
have a different dependence g;(x). The eigenvalue problems are Equations 52.9 and 52.10 with layerwise
z-independent permittivities. In RCWA and FMM methods, these eigenvalue equations are solved based
on a Fourier representation of the fields and the permittivities. This implies essentially two properties:

+ Advantage: There is no lateral mesh needed. The nonlocal (or spectral) basis functions of fields and

permittivities are simply constructed which results in a straightforward implementation.

+ Disadvantage: The convergence of RCWA and FMM depend on the convergence properties of the

Fourier representation which are not advantageous for nonsmooth functions.

52.4.6.1 Fourier Series Representation of Functions and Products of Functions

We consider a function f(x) which is periodic with L: f(x + L) = f(x). Hence, f(x) has a Fourier series

representation

foy= 3, fud™E",

m=—co
We denote its Fourier transform byf
L
}'\(k) = % Jf(x}e_"kx dx and compute f,, :? (Z—Em) , medZ.
0

(52.39)

We consider a second function g(x), also periodic with interval L, and study the product h(x) = f(x)g(x),

which is also L-periodic and consequently has a Fourier representation

oo
h(x}: Z hmeim%ﬁx.

m=—0oo

In terms of the Fourier coeflicients of f and g, this is

( Z ﬁ”efm%;x)( Z g"em%x) - Z ( Z ﬁn—ngn)eim%“'

H==00 M==00 H==00

h(x)

o0
h!}i = Z f;ﬂung.ﬂ"

n=—co

We write the last equation in matrix-vector form

h = Fg
5 i Fa b
5 £ h ¥ Lo
L h f S

L R h S

where the convolution matrix F is called the Toeplitz matrix.

(52.40)
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52.4.6.2 Fourier Series Convergence in Dependence of the Smoothness of the Functions

In electromagnetics, we have to deal with piecewise smooth functions which have different global
smoothness properties. Roughly, we have three classes:

Discontinuous: Functions that are piecewise smooth, but may have jumps or singularities. Example:
Normal field components in a 3D setting with material discontinuities.

Continuous: Functions that are continuous but not differentiable at positions, where different materials
meet. Example: H,, in TM fields as solution of, e.g., Equation 52.10.

Smooth: Functions that are continuous and the first derivative exists everywhere, even at positions, where
different materials meet. Example: E,, in s-polarization, e.g., Equation 52.9.

52.4.6.3 Truncation

For an algorithmic application, the infinite series has to be truncated. The truncated Fourier series
(Equation 52.39) then reads

JM
M@= ), fuf™T% fu=

m=—M

M=

L
J f(x)e *n*dx,  k, ==m (52.41)
0

and the symmetric truncation of (Equation 52.40) yields

M M - M
h‘“(x): Z ( Z fm-—ngﬂ) eni’, hf:: = Z Fri B

m=—M n=—M n=—M

Not only does the number of terms of the convolution sum change, but the individual coefficients h
change too. The truncation changes the problem from an infinite to a finite one. The finite dimensional
problem will differ from the exact, infinite dimensional one, as always in numerics, and the quality of this
difference depends on the nature of the applied series truncation. The truncated matrix-vector form reads

WM = FMgM  “direct rule’ (52.42)

FY (fm_")—Mﬁm.nﬁM (52.43)

with FM the finite dimensional Toeplitz matrix and f,,_,, = 0 for [m — n| > M . As shorthand for FM
generated by coefficients f,, we also write [ f[] := FM.

52.4.6.4 Li’s Factorization Rules

It has turned out that the originally observed slow convergence rate of TM problems is related to the
smoothness properties of the products of field and permittivity and a special, polarization-dependent treat-
ment can be used to remove the difficulty [23-25]. To this end, we introduce the discontinuity-types shown
in Figure 52.11:

1. Type: I The product f(x)g(x) results in h(x) which exhibits also jump discontinuities.
2. Type: Il The product f(x)g(x) yields a continuous function h(x). The discontinuities are removed in
h(x).

For a formulation of the FMM algorithm, taking into account the accelerated TM technique, we need
additionally, the finite Fourier series representation of the inverse function f:

oy e L
F'0=z5
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fob——T 1 f 1
e — 1 £ LT
b (x) I_I I—I h(x)
Typel ) Type 11 *

FIGURE 52.11 Two different types of jump discontinuities. Type I: The product f(x)g(x) results in h(x) which
exhibits also jump discontinuities. Type II: The product f(x)g(x) yields a continuous function h(x).

together with its matrix-vector representation as counterpart to Equation 52.42
+y 1 s »
M = (FM1) 7 gM inverse rule’ (52.44)

The factorization rules are as follows:

1. Type: 1 If the discontinuities are not removable (Type 1), apply the direct rule (Equation 52.42) for
fastest convergence.

2. Type: 11 If the discontinuities are removable (Type II), apply the inverse rule (Equation 52.44) for
fastest convergence.

52.4.6.5 Eigenvalue Problems in Fourier Space and Application of the Factorization Rules

The eigenvalue problems Equations 52.9 and 52.10 with & independent of z hold true in each layer. We
consider the TE equation Equation 52.9. Its continuous Fourier transform reads

Fourier transform

01E, + e(x)po’E, = kJE, — (ik,)’E, + po’€ * E, = KE,. (52.45)

Restricting E, (x) to functions periodic over L (discretization in k-space), truncating the number of Fourier
basis functions, and using the Toeplitz matrix to compute the convolution we obtain the eigenvalue
equation in Fourier space

- 5 218 = 12%
(K,)’E, + po’ [€] E, = KE,. (52.46)

Equation 52.46 yields the generalization of the plane waves (TE) used in Equation 52.34 for the derivation
of the transfer-matrix algorithm. The same procedure applies to the TM case, where strict consideration
of the factorization rules is important. We compute

1
S(x)ax‘g(—x'ja_\,Hy + E(x)pwzHy = kﬁH}
Fourier transform 71N

— £ (ikx)(é) * (ik)H, + po’ « H, = k2H,, (52.47)
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For proper discretization based on the factorization rules, we rewrite Equation 52.47, factoring out €,
2 ((ikx}(l) « (ik,) + pmz) 7,=KH, (52.48)
€

First, d.H, and 1/e are discontinuous, their product is continuous, hence factorization rule II applies.
Second, the large parenthesis on the left-hand side of Equation 52.48 must be discontinuous since € is
discontinuous. The product, however, is continuous, since the right-hand side is continuous. Hence, the
factorization rule type II applies again:

ﬂ(jjﬂ F (fo [I(E)ﬂ_l (iK,) + pmz) fl, = f,. (52.49)

£

52.4.6.6 Continuity Condition

We derive the continuity condition Equation 52.31 for the 2D case. In two subsequent waveguide sections,
the multimode generalization of Equation 52.30 holds:

field in section i i Yt B (x2) + >, a. E” (x,2)

imim mim T im

| implies (52.50)
field in sectioni+1 : Y af E;:_lm(x,z) + Y. a.. E  (x2).

m ik lm m ikl m i+ m

The generalization from plane waves (Equation 52.34) to waveguide modes reads

Lm

sectioni @ E,i(x,2) = Z at E;, (x)ezim® 4 Z aEmE,-_m(x)e_"k-'-i-f"z. (52.51)
m

m

Each mth normalized mode in section i has a Fouriermode representation E; ,,, = ¥, b; . exp ik, jx. Here,
the weights b, ,, | (ith section, mth waveguide mode, /th Fouriermode of this waveguide mode) are, in case

of TE fields, the coefficients of the eigenvectors (Equation 52.46), i.e., b;,,; = (ﬁy)!’ if Ey is the mth

waveguide mode in the ith section. Hence,

Ey.!'(x‘ z] — ] Z a:—m Z bl_.m‘{e'k.\',i,m.I'\-e;kz.:,mz + Z a;m Z br_.m‘{e'k.w',m.J'xe_’kz,f.mz.
m I

m I
Setting the interface position between sections i and i + 1 to z = 0 and requiring continuity of E, yields

M

M
+ -\= + - 2
Z bi-’”-’ (ai.m + ahm) - Z bH'l»mJ (ar'+}.m + ai+1,m) d M<I<M.
m=—M m=—M

In the same way, one computes the 2D counterpart to Equation 52.36

M M
+ -\ + -
Z brlm.f (kz‘:}ma;‘,,, - kz‘:',m‘;,"m) = Z bH-l.mJ (kz.i-l-l‘ma,-_,_l.m kz.r'+1.ma,'+1_m)

m=—M m=-M

-M<I<M
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Introducing the matrix

: T
T -~ -~ ~
B; = (bf.l'.m) = ( E)'.»—M’ 'Ey‘m' 'E}'.M )

allows writing the two continuity conditions in compact block matrix form:

B; I Iy ai+
B; diagk.; —diagk.; a

= Bf—H Id Id a:H

B diagk, ;. —diagk_;, it

In this form, the similarity to the continuity condition Equation 52.37 of the transfer-matrix algorithm
becomes obvious. For compact algorithmic notation, we define

f—_ BI‘ Id Id
% '_( B; )( diagk,; —diagk,; ) (52.52)

and have exactly as in the 1D case
W a
A8 )= ().
3 3ig

Collecting the steps, we obtain the FMM algorithm in 2D, Algorithm 52.2.

Algorithm 52.2: Fourier Modal Method in 2D

Require: aj anda
for all sections i do
Solve each sections’s eigenvalue problem, either (Equation 52.46), TE, or (Equation 52.49), TM.
Save: eigenvectors ﬁy‘,-_m, eigenvalues k_ ,,
for later field representation (Equation 52.51).
Compute the matrices A; by (Equation 52.52).

to define source fields.

end for
Assemble the system (Equation 52.33).
Solve.
- -
return vectors ao gowaly a”H X

52.4.7 Convergence

The two significant approximation errors in FMM are the geometrical approximation by staircasing and
the trunction in the number of Fourier modes. These problems have been addressed in numerous papers
(see also the introduction). Especially, the representation of permittivities, which are not continuous in lat-
eral direction, by global Fourier modes poses a convergence problem. Since in this case, the corresponding
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Fourier coefficients decay only as 1 /n, where n is the number of the Fouriermode, the spatial approximation
is worse than the 1/n* we know, e.g., from the FDTD method. On the other hand, physics very often
behaves in a way that only a few modes are sufficient to describe reasonably wave propagation and
scattering. In these cases, FMM has been proven to be a very efficient method.

52.5 Finite Element Method

Several excellent books treating the finite element analysis of Maxwell’s equations are available; the books of
Peter Monk [27] and Leszek Demkowicz [28] are very recommendable. The summary of FEM here follows
Chapter 8 of [1].

52.5.1 Historical Notes

The deep understanding of the relation between the scalar Helmholtz case, which enforces the use of
classical, nodal based Lagrange shape functions, and the vectorial Maxwell case relies greatly on the
work of Whitney and Nédélec [29,30], Bosssavit [31], and Webb [32]. Many important contributions of
other authors have added to the field, which makes the FEM today a very flexible, effective, and well-
studied method for electrodynamical simulations. An early survey of finite element studies with focus on
nano-optical applications has been given in [33].

52.5.2 Concept: Patchwise Tangential Continuous, Polynomial
Approximation on Unstructured Grids

The FEM is based on a variational formulation of Maxwell’s equations that involves integral expressions
on the computational domain. The FEM does not use any approximation to Maxwell’s equations itself,
except the discretization of the geometry, but approximates the solution space in which one tries to find a
reasonable approximation to the exact solution. This is in contrast to the finite difference method which
approximates Maxwell’s equations directly via an approximation of the differential operators by finite dif-
ference stencils. In some respects, the FEM is comparable to FMMs: one takes a number of trial functions
(the Fourier modes in case of FMM) and asks in which way a superposition of them gives a reasonable
approximation to the exact solutions.

The solution space of FEM, however, is obtained by subdividing the computational domain into small
patches and by providing a number of polynomials on each patch for the approximation of the solution. The
patches together with the local polynomials defined on them are called finite elements. The most common
examples of finite elements are triangles and rectangles in 2D and tetrahedrons and cubes in 3D together
with constant, linear, quadratic, and cubic polynomials. These locally defined polynomial spaces have to
be pieced together to ensure tangential continuity of the electric and magnetic field across the boundaries
of neighboring patches. Once these local approximations with proper continuity conditions have been
defined, these are inserted into the variational equation. This results in a linear system whose solution is a
piecewise polynomial approximation of the exact solution. Hence, the two basic ingredients in each FEM
for Maxwell’s equations are

1. A variational formulation of Maxwell’s equations.
2. A suitable construction of finite elements based on polynomials defined on local geometric patches
to transform the variational formulation into a discrete, algebraic problem.

This concept has a number of remarkable properties:

« Complex geometrical shapes can be treated without geometrical approximations, e.g., rounding can
be well and easily approximated, cf. Figure 52.12.
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FIGURE52.12 Sketch of a 2D triangulation for FEM, cf. also Figure 52.8 with staircase approximation. The triangles
are shaped and placed such that the geometry is well covered by relatively few triangles.

+ The finite element mesh can easily be adapted to the behavior of the solution, e.g., to singularities at
corners.
« High-order approximations are available and ensure fast convergence.

52.5.3 1D: Weak Form and Variational Formulation

For the introduction of the finite element concept, we start with the most simple approximation of the time-
harmonic scattering problem—the scalar Helmholtz equation in 1D, defined on the whole real axis, see
Figure 52.3. The exterior domain should have a spatially invariant k. We let our computational domain Q
be the interval (0, L). The source field is a plane wave coming from the left. A possible problem formulation
reads: Find u(x), x € Q = (0, L) such that

O2u(x) + K u(x) = 0, xeR (52.53)

Wil =g, xeR\Q (52.54)

Let us choose the interval (0, L). We multiply Equation 52.53 with the complex conjugate of a so-called test
function v(x) and integrate over the domain Q to arrive at

L
I v (x) (Pu(x) + Ku(x)) dx =0 (52.55)
0

where nothing has been specified so far about v(x), except that we must be allowed to compute the inte-
gral. This formulation cannot be equivalent to Equation 52.53, since very special choices of v would equate
the integral to zero even for functions, which do not satisfy Equation 52.53. Hence, in order to have the
chance to get something equivalent to Equation 52.53, Equation 52.55 must hold true for many functions
v(x). We call the class of functions from which we take v(x), the test space. In contrast, the space of func-
tions containing the desired solution u(x) is called the trial or ansatz space. In general, both spaces can
be different. It is subject to the convergence theory of finite elements to define precisely the test and trial



Photonics 835

spaces and to conclude convergence rates. For our purpose here, it is sufficient to define these spaces in a

way that makes the construction of the numerical algorithms reasonable. In the first attempt, we require
I

| v*vdx < oo, which is the class of square-integrable functions, the L*(0, L)-functions. We will make the
0

choice of the space more precise below, but only in a framework that introduces usual FEM notions and
gives a first look at the topic. A comprehensive treatment can be found, e. g., in [27]. The functions u(x)
should be twice differentiable since the second derivative is contained in Equation 52.53. Hence, we seek
them in the class C?(0, L). So in a first attempt to construct a variational equation, we formulate find a
function u(x) € C*(0, L) such that Equation 52.55 holds true for all v € L(0, L).

52.5.3.1 Weak Form
We perform an integration by parts on the left-hand side of Equation 52.55:

L L
I vi(x) (Q2u(x) + Ku(x)) dx = I (=0,v* ()0, u(x) + KV (Du(x)) dx + vV (x)d,u0)g . (52.56)
0 0
It is convenient to abbreviate the negative of the integral without boundary terms by
L
Ay (vou) 1= I (0v* () u(x) — K2 v (0u(x)) dx (52.57)
0
to rewrite (Equation 52.56) to
I Vi) (Q2ulx) + Ku(x)) dx =1 —ag(vou) + Z v (x)0, u(x). (52.58)

Qjm xEdQ‘inl

The term Equation 52.57 is called a sesquilinear form because it is antilinear in its first argument (the v,
due to complex conjugation) and linear in its second argument (the ). Hence, a;,,(v, u) maps two complex
functions via integration to a complex number. We may repeat this for the scattered part of the exterior

field

A (v, u) — Z vi(x)d,u(x) =0 inQ, (52.59)
.\:Edﬂim

Aoy (Vs tg) — Z V' (x)d, ug(x) =0 inR\ Q. (52.60)
XEI

where we ensure (see discussion below) that the boundary term at infinity vanishes and only the boundary
08, contributes to the equation. Using on this boundary, u = uy,. + ts and introducing an auxiliary
function g with

U= U;+g —g
——

8(0Q4n0) = Ugouree(024ny)
g(e0) =0

(52.61)
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we obtain

i (v, 1) — Z Vi()0, (Usource +Us) =0 in Qyp, (52.62)
xedﬂinl
QoW —g) = D V(@)o,ux)=0 nR\Qp. (52.63)
X€MLY,

Adding these two equations, taking into account the different normal directions, we end up with

(v, ) + ag (v, w) = 2 V(X)) tgource T Fext (Vs £). (52.64)
xE0LY .

Next, using the function u, which lives only on the interior domain, and the function w, which lives only on
the exterior domain, we define a joint, continuous function, again called u. This gives rise to the variational
formulation of the scattering problem.

52.5.3.2 Variational Formulation

Let the source field data 1. and @, 1, at the boundary € of the computational domain Q be given.
The variational form of the scattering problem reads

FindueV: a(v,u)= Z V()0 Ugguree + ey (v, ) forallv e v, (52.65)
xeminl

with a(-, <) = ay, (-, -)+aeq (-, -), with a;,, and a,,, given by Equation 52.59, Equation 52.60 and g defined by
Equation 52.61. Note that in Equation 52.60 we neglected the contribution from the outer boundary d€2ext.
The reason is that the expression is established for the scattered field u, and we perform the integration
over the complex extended exterior domain as described in Section 52.2.4. The complex extension leads
to an exponential decay of u, hence the contribution of 0Qext vanishes,

52.5.4 1D: Linear Finite Elements, Local Matrices, and Assembly Process

The discretization of a given variational form to get the FEM equations is a straight forward procedure:
just restrict the infinite dimensional test and trial space V to a finite dimensional space V),

FindueV : a(v,u) b(v) forallve V.

Findu, € V), : a(v,.uy,) b(vy,) forallv, € V. (52.66)

The space V), is not uniquely predetermined. The different types of Galerkin-type methods differ in the
construction of the elements of Vj,. Let V), be spanned by N linearly independent functions v;(x), j =

1,...,N. We represent the discrete approximation of the exact solution u by uy,(x) = Zjil u;v;(x), insert
this into Equation 52.66:

N
a (Vh» Z “;Vj(x)) = b(vy) (52.67)

J=1
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and get the linear system

J\I
f= 1,0 N Zaij“j =b,  with a,-j=a(v,-,vj) and b; = b (v;). (52.68)

=

52.5.4.1 Linear Finite Elements

We want to construct the matrix (a,-j) as a sparse matrix, i.e., a matrix with predominantly zero entries,

which is a very useful numerical property. To this end we construct test functions v; that exist only on small
patches. The most common finite elements are the piecewise linear “hat”-functions shown in Figure 52.13a:

x;ﬁ for x€ [x_.x]]

=1

Vi) ={ - for x € [x; %] (52.69)
0 elsewhere,

where we introduced the lengths of the subdomains with h;_; = x; — x;_; and h; = x;| — x;.

52.5.4.2 Assembly Process: Patchwise Computation of A = (a,-j)

We start from Equation 52.67 with the summation moved to front of a(-, -):

a (v,-{x), vj(x)) uj = b(v;).

0
=
™M=

1

1]

7

Next we denote a(:, -) restricted to patch K by a(:, ")|x = ag(:, ) and rewrite the above in terms of a sum
over patches:

=

b= LN Zak (v;(x), vj(x)) uj = b(v;).
=1 k

Interchanging the order of summation we have
N
i=1,...,N Z a (V;(x), Vj(x)) = b(v;).

k =1

Xixl

(a) (b)

FIGURE52.13 (a) Piecewise linear test function v;(x). (b) Piecewise linear function w;, composed from trial functions
v;(x) and v, (x). Only trial functions v; and v;, | have support on the interval K, but no other trial function.



838 Handbook of Optoelectronic Device Modeling and Simulation

In principle, this is a summation over k different matrices A, = a, (v‘-(x), vi(x) ), each of dimension N X N

multiplied with a vector u = (u); of dimension N, hence

(Z Ak) u = b(v,).
k

The matrices Ay have full dimension. However, since they are computed only over a single patch K they
have entries different from zero only if both v; and v; have support over K, hence most entries but a few
are zero. Suppose we have a set of (few) trial functions v; , v , ..., v; with index set {i},i,,....i,} which
contribute to A; assigned to patch K. We count these indices as follows:

local DOFs —  global DOFs

(L2, 5sm) = (i1a855000000)
and store the connectivity data, using MATLAB ® notation, in an element connectivity vector
c=lijig, ...0iy]. (52.70)

We have such a mapping for each patch connecting the local DOFs to the global ones. With the help of the
local DOFs we define dense, so-called local matrices At’“ € C™ of small dimension n and corresponding

local vectors b}?‘ e C":

AX<(l,m) Ay (i i,,)  for all indices with non-vanishing values of A, and

b() = by

The process of distributing the entries of the local matrices to the global matrices is called index scattering.
The MATLAB ® statement

Ac, ¢) = Alc

scatters the entries of the local matrix A€ to their global counterparts.

52.5.4.3 Computation of Local Matrices

For a convenient computation of the local vectors and matrices, it is useful to decompose the form a(v, u),
e.g., Equation 52.57, into the so-called stiffness and mass parts s(v, u), m(v, u), respectively:

a(v,u) = s(v,u) — m(v,u) with

L L
s(v,u) 1 = [6xv*0xu and m(v,u): = Ikzu*u_
0 0

The terms stiffness and mass come from mechanical systems and have no meaning in electrodynamics.
But, as we will see, both parts have very different mathematical properties.

Let us compute the stiffness matrix based on the hat-functions. We consider the patch K from
Figure 52.13 which gives us the local— global assignment of indices

(1,2) — (i.i+1).
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Using Equation 52.69, we get

S(Vi’ VI)‘K S(Vi" V:'+l)|K

5(";+|»"’i)|K 5(":‘+1s1’;+1)K

loc

We compute directly

sloc = hl ( ll _ll) and the in same way m'° = h;
\-

Sl =
L - ]

The structure of a finite element algorithm is given in Algorithm 52.3.

52.5.5 2D and 3D: Weak Form and Variational Formulation

The Maxwell scattering problem with PML is derived in complete analogy to Section 52.5.3. Let the source
field data E. .. and V X E_ . at the boundary dQ of the computational domain Q be given. The
variational form of the scattering problem reads:

FindE€V : a(v,E)= st- (v % [(4) 7 VX Buuree] ) + e (vog)  forallve v, (5271)
7.9

with

a-,+) = “im('v )+ aext(" 9

ain[(v!E) = J dxdy (V xv*) ¥ }1_1 (V XE) —{.l.)2 J dxdy"*SE

Q Q
AoV, 8) = J dxdy (Vxv*) - (p")_l (Vxg)—o J dxdyv'e‘E
chl erl

and g is an arbitrary tangentially continuous function with

g(aﬂ) = Esuurce((}g)
g(c0) = 0.

The transformed permeabilities and permittivities are

()" = ﬁITu‘II. e = |1 e T,

with J the Jacobian of the complex extension. Here, we let Q_,, be the original, real exterior domain and the
PML-complexification is hidden in the transformed materials p¢ and &€, see Equations 52.18 and 52.19.
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52.5.6 2D and 3D: Linear Finite Elements, Local Matrices, and Assembly
Process

The basic scheme of deriving the numerical algorithm is exactly the same as in 1D, see Section 52.5.4, and
also Algorithm 52.3:

1. Construct a mesh that describes the geometry plus surrounding domain. The meshes in 2D are
triangular or quadrilateral meshes, in 3D these are meshes based on tetrahedrons, bricks, prisms,
and pyramids. Typically, special mesh generators are employed. The construction of high-quality
meshes is often a nontrivial task and a research field in its own right.

2. On each patch of the mesh, say on a triangle, a polynomial space is defined which is the basis of
the construction of so-called shape functions. The local space of shape functions must be capable
of approximating the solutions on the patch. Given a polynomial space, different families of shape
functions can be constructed which all span the same space. A local matrix and a local right-hand
side vector is attributed to each patch. The computation of these involves mapping from reference
elements.

3. The shape functions of neighboring patches are glued together to build the discrete test and trial
functions v;. These functions must be tangentially continuous across the patch boundaries to be a
global basis function of the solution space for Maxwell’s equations. One DoF is attributed to each v;.

4. Having obtained all test and trial functions v;, the assembly process is carried out as in 1D, see
Equations 52.67 and 52.68. The scattering of local to global matrices depends on the neighborhood
relation of patches.

Algorithm 52.3: Basic Finite Element Algorithm

construct a tessellation Q = U;K;
for all patches K; do
map K- K;
compute local matrices A}“‘
compute local vectors bl°¢
scatter the local matrices and vectors to global ones
update global matrices A and right-hand side b
end for
solve Au, =b
return u,,

52.5.6.1 Finite Elements

Figure 52.14 recalls the construction of the global test and trial functions from the local shape functions.
The process is the same in higher dimensions, but there are many more possibilities for how to do it.

We illustrate these possibilities by means of some examples in 2D. First, we consider a mesh built from
quadrilaterals, see Figure 52.15a. For a technical simplification of finite element algorithms, each quadri-
lateral is considered to be a map from a unit square, see Figure 52.16. The test and trial functions are
constructed over the unit square and then mapped to their original positions. The lowest order trial func-
tions are linear functions, in the case of a unit square, we use simply tensor products of 1D linear functions,
see Section 52.5.4.
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¥i (x)

Xigl i1 X Xis1

FIGURE 52.14 Construction of a global trial function v;. Two neighboring intervals with two linear shape functions,
each have the common boundary point x;. One of the shape functions of each interval is taken and glued to the other
and continued to a global, continuous trial function with local support.

(a) (b)

FIGURE 52.15 Structured mesh based on quadrilaterals (a) and a triangular mesh with the same vertices (b). The
gray shaded areas show the geometric possibilities of constructing trial functions based on the interior of a single patch,
neighboring patches with a common edge and neighboring patches with a common vertex.

y Q y y

FIGURE 52.16 Mappings from reference elements to desired shapes.

52.5.6.2 Scalar Helmholtz Equation

Scalar trial functions v; are used to approximate the solution of Helmholtz equations (Equation 52.8). In
the case of a quadrilateral mesh with a unit square as reference element, the tensor product of the 1D shape
functions gives four bilinear shape functions:

(N ri=1..4) = {(1-8) (1-5).2(1-9).9. (1 %) ).
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FIGURE 52.17 Bilinear shape function N; on a unit square and the composed trialfunction.

Figure 52.17a shows the shape function N}, which is associated to the vertex (0, 0) of the reference coor-
dinate system K. In the spirit of the 1D construction (Figure 52.14), neighboring shape functions will be
connected to continuous, global trial functions v; as shown in Figure 52.17b. The common vertex is the
defining feature of the resulting global trial function. The DoF attributed to this function is usually taken
as its nodal value at the vertex position.

52.5.6.3 Maxwell’s Equations

In the case of Maxwell’s equations, the fields are generally no longer continuous. They are tangentially con-
tinuous but may have jumps or even singularities in normal field components at material discontinuities.
Hence, nodal values, at least along material discontinuities, do not represent the physical situation properly.
Therefore, the lowest order vectorial shape functions for Maxwellequations are so-called edge functions.
They are constructed in a way that they allow for an easy extension to tangential continuous, global trial
functions. The four lowest order edge functions attributed to the unit square are shown in Figure 52.18.

52.5.6.4 Computation of Local Matrices and Assembly Process

This is very similar to the procedure discussed for the 1D Helmholtz problem Section 52.5.4. According
to the Maxwell scattering formulation (Equation 52.71), we have to evaluate the variational formulation
(Equation 52.71) on a finite dimensional test and trial space V},. The computation of the local matrices and
vectors goes the same way as in Section 52.5.4 with

aij =a(v,-,vj) = J dxdy (Vxvy)-p~! (vaj)—mz I dxdyviev;
Qg Qa

LN vl A\ v
v v

stiffness part s; mass part n;;
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FIGURE 52.18 Vectorial, first-order edge elements of the unit square.
and
(b}:’ = J df - (v;& X [I'IHIV X Esource]) + Aext (vj'g)' (52'72)
a0

52.5.7 Convergence

The convergence analysis for edge element discretizations of time-harmonic scattering problems yields
very useful insights into the behavior of numerical codes. The analysis itself is a challenging task since
even in the lossless case the variational equations are neither elliptic nor definite. As a typical example we
refer to Monk [34], who investigated a lossless scattering problem with sources on a bounded domain with
electric boundary conditions. The error estimation uses the curl -norm

2

1B~ Billcun := B~ E4* + |V x B~ Ep],

curl *

where ||-|| is the standard L?-norm, h denotes again a typical meshsize and as subscript it indicates discrete
approximation. Depending on the properties of the computational domain and the smoothness of the exact
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solution there are constants C and § independent of h and a constant s, > 0 independent of E and E;, such
that forall0 < h < h,

1 y
curl = W ‘,“:g.‘f,n "E - vh"curl'

1B~ |
This result shows that for h less than a threshold value ), the FEM scheme converges to the exact solution,
but in the worst case without a polynomial rate. However, if the solution is smooth quantified as E €
H*(curl ; Q) and s is a smoothness parameter, then, we obtain in fact the desired polynomial convergence
if we use high-order finite elements

IIE = Ep|cun < CI°.

curl

52.6 DG Method

The FDTD method has become the method of choice in physics and engineering when time-dependent
Maxwell's equations have to be solved. The reasons are its simplicity, robustness and sufficient accuracy
for most practical problems. On the other hand, it has severe limitations. These are mainly the difficultie
incorporating complicated geometry due to its link to staggered grids unless the grid is prohibitively fine,
the inherent second-order accuracy in time and space. Both topics have been addressed successfully in the
frame work of FDTM methods, see the section about FDTD. However, DG methods present a successful
alternative with the two main features geometrical flexibility and high-order approximations both in time
and space inherently anchored in the method from the beginning.

52.6.1 Historical Notes

As any other method described in this chapter, the DG method has a long history with many contribu-
tions from many sides. Reed and Hill [35] applied a first form of the DG method to the neutron transport
equation in 1973.

Since then, it has undergone a fast development and finds numerous applications to e.g., the Euler
equations of gas dynamics, the shallow water equations, the equations of magneto-hydrodynamics, the
compressible Navier-Stokes equations, and Maxwell’s equations only to mention a few; see e.g., [36] for an
overview and analysis of many of these applications.

The combination of the DG method for spatial discretization and of an explicit Runge-Kutta scheme
for time-integration has been introduced by Cockburn and Shu in several papers, [37] maybe being one
of the latest. [38] gives an introduction to the DG method and contains a more complete list of references
on the (RKDG) method; it can be downloaded online. We also mention [39-41], which is a review paper
about RKDG methods, as references on the DG method. [42] gives a review of the DG method applied to
nanophotonics.

52.6.2 Concept: Combine Adaptive Spatial FEM Discretization with the Time
Treatment in Finite Volume Methods

The FEM treats successfully complicated geometries in a natural way. There is no basic obstacle in com-
bining local high-order approximations on unstructured meshes composed from different elements like
tetrahedrons, prisms, bricks, and pyramids. The difficulties here lie on the side of implementations and
is linked to the complexity of the problem: nontrivial geometries have to be described, decomposed into
geometric patches, a detailed and efficient bookkeeping has to be realized for fast traversing. A direct appli-
cation of FEM to time-dependent problems are possible but has a severe drawback: due to the occurrence
of the mass matrix in conjunction with the time-derivative, an inversion of the mass matrix is needed. This
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can be done in several ways; nevertheless, it causes a problem not present in FDTD methods. The reason
for the necessity to invert a mass matrix lies in the construction of finite elements. Typically, neighbor-
ing elements couple to each other in a way that the resulting system matrices are sparse but yield a global
coupling of DoF which does not break down to structures which are cheaply invertible.

Finite volume methods, on the other hand, offer explicit time-integration schemes like those in FDTD
methods. The key idea is to localize most of all spatial discretization into cells which are treated completely
independent from each other. The cells are connected to each other by an explicit kind of continuity state-
ment. This connection has to satisfy natural requirements like continuity or convergence properties but is
not derived from first principles. There are many choices which can be adapted to given situations. The
most intriguing feature is that by construction, each cell “sees” its own time evolution which results in
an explicit scheme. The key idea of DG methods now is to combine this kind of time-treatment with a
high-order spatial discretization localized to individual cell which are connected only by explicitly forced
interface conditions on the cell boundaries.

52.6.3 Scalar Advection Equation as Model Equation: The Finite Volume
Method in 1D

Consider the scalar advection equation

ou+0,f(u1)=0
f(u) = au, aisareal constant, (52.73)

u(x,0) = uy(x), x€R,

where d, f(u) is the 1D model for divergence in higher dimensions V - F(u). The solution to Equation 52.73
is u(x, t) = uy(x—at). If a > 0, this is a right traveling wave, if a < 0, this is a left traveling wave. In order to
analyze the stability of the FVM described below, we consider energy conservation. We multiply the wave
equation (Equation 52.73) with u and integrate over a subdomain Q; = (x;, x;,):

dl , dl -
—_—_—U 4 — = :0
a2 T ax2™
Xit1 Xit1
—g; J -;—uzdx+ J a-*—auzdx=0
X; X;

D, = —a (42 (xi01) 12 (). (52.74)

52.6.3.1 Direction of Information Flow

From Equation 52.74 we deduce the direction of information flow and stability under perturbation. Let
a > 0, the wave is right propagating. At a fixed time, we consider the function u(x) on the interval (x;, x;, ).
Since (Equation 52.73) is linear, we can subtract a constant such that we obtain a new u(x) with u(x;) = 0.
When we consider this value as a given zero boundary condition at the left side, we read from (Equation
52.74) :% "””f},- < 0 independently from the right value. This right value might be the result of a compu-
tation, hence it might be contaminated by an error. Independent of contamination, there is no increase in
the norm of u, hence a perturbation does not lead to instability. If we had chosen the right boundary to
be the place for the exact boundary condition, the opposite would be the case. There would always be an
increase in ”””f!,- in time.
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52.6.3.2 Link to Finite Volume Methods

The whole computational domain  is decomposed into small control volumes Q = UQ;, ;N Q; = 0 for
i # j. We consider one subdomain €; and use the conservation form of Equation 52.73 applying Gauss’s
theorem:

9, I udv + I fdS =0, (52.75)
Q dQ;

where in higher dimensions the surface integral takes the form [ f - ndS and n is the outwardly directed

s
unit normal vector. Next, let the surface dQ; of cell Q; be subdivided into surfaces S, which connect cell i
introduce the cell average u; as an unknown target

quantity
1
— dS=0 52.76
3l 270
u-=LJudV (52.77)
el ]

)
On the 1D mesh this results in the numerical scheme:

[fmv —fic12) = 0; (52.78)

see Figure 52.19. As in the FDTD method, the solution is based on a combination of quantities defined
in primal meshes (the function u;, at integer positions) and on dual meshes (the discrete flux f;, at half
counting positions). The main question is how do we define the values of f = au at positions x;_; ;, and
Xir1/2°

The answer depends, as discussed above, on the direction of wave propagation. It is natural to select the
points in the solution at current time that are “upwind” of the solution at the position i for increasing time
to maintain the causal connection. Depending then on the direction in which the solution is translated, we
have different numerical schemes.

52.6.3.3 Finite Volume Method with First-Order Upwind Scheme
If @ > 0, there is propagation in the positive x-direction. It holds u;_, , ~ u;_, and u;;,/, &~ u;, hence

Jix172 = au;, fi_y 2 = au;_y, and the scheme (Equation 52.78) would be

ou; + ﬁ (u; —u_y) =0.

In contrast, ifa < 0, there is propagation in the negative x-direction. Itholds u;_ ;, = u;and u;y, /; & ujy g,

hencefi,,/, = aujyy, fiy /2 = au;, and the scheme (Equation 52.78) would be

c?,uf+ Hj]=0.

a
Ax (i —

Let us fix position x;, /,. The approximation of the flux just used is called the numerical flux, f™™,

au; ifa>0
mm () = ' (52.79)
#1/2 (144341 {au,-H ifa <0.
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FIGURE 52.19 Vertex-centered finite volume method in 1D.

This can be compactly denoted as

num

1 |al
i+lf2(uj‘uj+1)=a5(u + )+ 2 (4 = i)

ISR —
={uis1 /2 =lulliga

—a{u},_,_l/,+ ﬂ“]]m/z

We describe the typical finite volume discretization and give explicitly the 1D scheme:

1. Subdivide the domain into finite control volumes £;. In one space dimension this is

Q= (x:'-—lg‘z?xﬂ-l/z)'
2. The conservation law is computed independently on each individual control volume Q; (52.76)

!' i |Q | Z Jf
with #; the approximation to the average (Equation 52.77)

u; = 5 J udV.
]
Q;

The resulting upwind scheme is, with flux (Equation 52.79),

I | (f+1/2 i— 1/2

1
= (7 o) =2 (o)) (5250
]

3. Solve the semidiscrete system (Equation 52.80) with a suitable time-integrator. There are many pos-
sibilities, the most often used scheme in conjunction with time-dependent Maxwell’s equations are
low-storage Runge-Kutta methods. The resulting scheme after discretization in time must be a
so-called monotonic scheme. Monotonic numerical schemes are ones which, given an initial dis-
tribution which is monotonic, produce a monotonic distribution after advection. A consequence
of this property is that monotonic schemes neither create new extrema in the solution nor amplify
existing extrema.
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52.6.3.4 DG Method in 1D

The goal is to replace the low-order (piecewise constant) solution by a high-order approximation. We
consider cell ©;. Exactly as in the FEM, we multiply (Equation 52.73) with a test function v € V:

I vo,udx + [ v, f(u) dx = 0.
Q, Q,

An integration by parts gives

[ vou dx — devf(u)dx= - I vf(u)ds.
Q Q a0

i i i

Again as in FEM, we obtain the numerical method in weak form if we restrict the general space V to a finite
dimensional space (of possibly high order) V,, c V:

J vy, 0,1y, dx — [ O vy f(uy,) dx = — J vif ™ (uy) ds  forall v, € V). (52.81)
Q; Q; a9,
The corresponding strong version results, if we undo the partial integration:

J vy, 014y dx + [ v Onf () dx = I v (f () = ™™ (uy)) ds  forallv, € V). (52.82)
Q Q i,

52.6.4 Maxwell’s Equations in Conservation Form

We generalize the above step by step and present the framework of DG for Maxwell’s equation’s in 3D.
The matrix-valued flux function F := (F,,F,, F;) is composed of three column vectors of length n, F; :

QC R} - R, withi=1,2,3,and F; = (Fy,..., F,;) " The divergence V - F of this matrix-valued field
F: Qc R?— R™ is defined as

0 Py 40, Fipt+ 9 Fis
V-F:= :
ax1 JFrll +ax2Fn2+ axJFnB

The generalization of the 1D advection equation (Equation 52.73) reads

Qo,u+V-Fu)=0
(52.83)
u(x,0) = uy(x), x€R.

Next, we bring Maxwell’s equations into this conservation form. From

(") ()= (o ™))
Q=(8 u) F=(_::EH)

we read



Photonics 849

with e; being one of the three Cartesian unit vectors. Hence, there is in fact a conservation form (Equation
52.83) of Maxwell’s equations.

52.6.5 Concept of DG-Algorithms for 3D Maxwell’s Equations

The 3D algorithm follows the 1D concept. The only missing link is the upwind flux for the situation
of Maxwell’s equations. Following the same strategy as in 1D, Hesthaven and Warburg [43] derive the
following expression:

(52.84)

n-(F—Fum) = ( Z'nx (-Z* [H] +nx [E]) )

Y='nx (=Y* [E] +nx [H])

Here Z and Y are the wave impedance and admittance, respectively,

+ _ + - _ + -
o h.l_# vt = (22)7), L2 G _YTHYT
e+ 2 2

W

The superscript “—” denotes the limit from the interior to the cell boundary, and the superscript “+” the
limit from the neighboring cell to the boundary.

Algorithm 52.4: Basic Discontinuous Galerkin Algorithm

1. Discretization in space

construct a tessellation Q = U,Q,

for all patches Q,; do
map K- K;
compute local matrices on local volumes
assemble them (independently) to a global matrix
compute local matrices on interior interfaces
connect them to the global matrix
compute local matrices on boundary interfaces
connect them to build up the right-hand side

end for

2. Time evolution

use a time integrator (e. g., Runge-Kutta, leap-frog) to solve the semidiscrete, block-diagonal system in

time

return vector of field values and fluxes in time

52.6.6 Convergence

We consider Maxwell’s equations with homogeneous, isotropic materials and a convex domain Q c R?
and arbitrary smooth initial data. This is a simplified model case which has no singularities. In this case
optimal L?-convergence for a fixed time interval is obtained [44]:

[ — wy | < ChP*L.
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This is the same as we would have, under the same conditions, for finite elements.

Symbol Definition

1’ Vector of unit length.

Q Computational domain.

0 Boundary of Q.

E, eF, +eE,

V, ed,+e,

Vi, €0 +e,0, +ike,

lo incidence number edge-face

¢ speed of light

k wavevector

r position

[[f]] Toplitz matrix generated by f

[[] jump across a face

-} average across a face
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