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Preface to the second edition

The first edition of this book was written in a period when the drift-diffusion-
based description of semiconductor devices was beginning to lose validity and
many kinds of interesting transport effects (e.g. velocity overshoot, ballistic
transport, real-space transfer, etc.) and their implications for devices were
being explored. Since that time, semiconductor devices have continued to shrink
in size, so that engineers and device researchers now face these issues daily. When
the first edition was written, quantum transport in mesoscopic structures was
also an active research field, with many uncertainties being debated. In the
intervening years, this field has matured; the general principles are now under-
stood and are becoming relevant to semiconductor technologists as devices con-
tinue their relentless march to microscopic dimensions.

The goals of the second edition are much like those of the first. The book is an
attempt to help students with little formal training in quantum mechanics or
solid state physics (i.e., the typical graduate of an undergraduate electrical engi-
neering program} understand the fundamental concepts of carrier transport in
semiconductors. Writing the second edition was an opportunity to update and
clarify material in the first edition and to treat new topics. The most significant
change in the second edition is the addition of Chapter 9 on transport in meso-
scopic structures, a topic that device engineers now deal with.

Two classes of graduate students wotrked through early versions of this text and
helped me to clarify the presentation and reduce the number of typos and errors. [
am grateful to them for their willingness to suffer through those rough drafts and
want to thank Muhammad A. Alam, Kausar Banoo, and Jung-Hoon Rhew in
particutar for their help in clarifying my thinking. Thanks also to my colleagues,
Professors Supriyo Datta, Karl Hess, David K. Ferry, Robert W. Dutton, and
Robert S. Eisenberg who helped to make this a better book by sharing their
insights with me. The work of Professor Chihiro Hamaguchi’s group {T.
Kunikiyo, et al. Journal of Applied Physics, 75, pp. 297-312, 1594.) was the
inspiration for the cover illustration. I hope that the result of these efforts will
help device engineers and researchers acguire the understanding of transport
fundamentals that is essential for device research and engineering.
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Preface to the first edition

The operation of semiconductor devices is controlled by how electrons and holes
respond to applied, built-in, and scattering potentials. Electrical engineers are
used to treating transport pHenomenologically — carriers drift in electric fields
and diffuse in concentration gradients. For much of the past 40 years during
which semiconductor technology advanced from point-contact transistors to
megabit memories, drift-diffusion equations have served as the backbone of
device analysis. As devices continue to decrease in size and increase in sophisti-
cation, however, this siimple picture of carrier transport is beginning to lose
validity. Device engineers now need a clear understanding of the physics of
carrier transport in a variety of semiconductors as well as an understanding of
the nature of transport in modern, small devices. The focus of this book is on
carrier transport fundamentals beginning at the microscopic level and progres-
sing to the macroscopic effects relevant to devices. The reader should acquire an
understanding of the general features of low- and high-field transport in common
semiconductors as well as of the characternistics of transport in small devices. He
or she should learn how to evaluate scattering rates and mobilities from the
semiconductor’s material properties and should understand the wvarious
approaches commonly used to analyze and simulate devices.

The book is directed at elecirical engineering graduate students or practicing
device engineers who typically possess a mature understanding of semiconductor
fundamentals and devices but only an acquaintance with the basics of quantum
mechanics and solid-state physics. In addition to discussing physical principles,
one objective is to familiarize the reader with commonly used theoretical
approaches. Although this necessarily involves some amount of mathematics,
the derivations have been written with the student in mind; intermediate steps
and tricks have been displayed, so that students can learn-the art of performing
such calculations and develop confidence in their problem-solving skills. The
reader is assumed to understand semiconductor fundamentals at the level of
R.F. Pierret’s Advanced Semiconductor Fundamentals (Vol. VI of the Modular
Series) and to be familiar with devices at the level of S.M. Sze’s Physies of
Semiconductor Devices, 2nd Ed., (Wiley-Interscience, New York, 1981). The
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reader should also be acquainted with the rudiments of quantum mechanics and
solid-state physics. Although a sophisticated understanding is not essential, read-
ers seeking a thorough grounding in microscopic physics are encouraged to
consult Supriyo Datta’s Quantum Phenomena {Vol. VIII of the Modular
Series). There is some overlap between Datta’s text and this one (both treat
the Boltzmann Transport Equation, carrier scattering and balance equations,
for example), but Quantum Phenomena is an excellent companion text. The
difference is that in this book the focus is on applications, while Datta’s centers
on the underlying physical principles. :

In accordance with the philosophy of the Modular Series, this book is designed
to be a self-contained treatment of the carrier transport fundamentals essential
for modern device research and development. The book is not comprehensive,
nor is it a review of current research, it represents the basics that [ believe a
device engineer needs to understand. Each chapter ends with references which
the reader 1s encouraged to explore to deepen and broaden his understanding.
Because the focus is on transport fundamentals which underlie the operation of
devices in general, relatively httle emphasis s placed on specific devices. The
discussion is also restricted to electron transport in silicon and gallium arsenide,
which [ justify by the technological importance of these two semiconductors and
because the results are representative of transport in most covalent or polar
semiconductors. The text can be covered at a comfortable pace in one semester,
which allows the instructor to supplement it with current research topics or with
subjects that I've overlooked or slighted. After working through this text, stu-
dents should be prepared to follow current device research and to actively parti-
cipate in developing future devices.

For the most part, I've tried to stick with conventional notation, but a few
deviations should be noted. A set of brackets, {-}, is used to denote an average
over the distribution function. The double brackets, {{-)}, denote the specially-
defined average that appears in transport theory. Following Pierret in Vol. VI of
the Modular Series, T use ‘degrees’ Kelvin (K) to measure temperature. Finally,
the reader will note words and groups of words italicized from time to time. [ use
this device to call the reader’s attention to the fact that an important concept,
term, or name is being introduced.

While teaching my first graduate level course on these topics, the need for this
text became apparent. To introduce students to classical, semiconductor trans-
port as well as to the effects now occurring in modern devices, I compiled a
collection of book excerpts, monograph chapters, and research papers. By the
end of the semester it was clear that a systematic, ¢onsistent treatment of these
topics required that a book be written. I'm grateful to the students in that class
and to those in subsequent semesters who struggled through successive versions
of the manuscript and pointed out errors, inconsistencies, and confusions.



XVl PREFACE TO THE FIRST EDITION

" Professor Christine Maziar tested the text in her course at the University of
Texas, Austin and provided a wealth of suggestions and Insights. Dr. Peter
Blakey’'s careful review of the manuscript and his numerous suggestions on
Chapters 6-8 were also a great help. Professor Robert Trew of North

~Carolina State University filled me in on the interesting mystery regarding the
field-dependent diffusion coefficient for electrons in GaAs, and Professor Robert
Pierret’s meticulous review of the manuscript kept me on my toes.

My understanding of the subject of this text has been evolving during the
course of my research on advanced semiconductor devices. I feel fortunate to
work in a stimulating environment and owe a special debt to my colleague,
Supriyo Datta, from whom I’ve learned much and to my research students
who also taught me a lot. Special thanks go to Christine Maziar and Martin
Klausmeier-Brown, for developing a Monte Carlo simulation program, and to
Amitava Das and Mark Stettler, for extending and enhancing it and performing
many of the stmulations which illustrate the text. Finally, I now understand how
demanding the writing of a book is — not only upon the author but upon his
family as well. I'm especially thankful to my wife, Mary, who encouraged me to
undertake the project and helped me find the quiet time needed to complete it.
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An overview

Until recently, a deep understanding of electron transport in semiconductor
devices has not been essential to the device engineer because the familiar drift-
diffusion equation,

J, = ngu,&+ gD, Vn _ (0.1)

described devices well, and the transport parameters, u, and D, did not need to
be computed from first principles because they had been carefully measured.
For advanced devices, however, the situation is much different. In small
devices, 1t, and D, are no longer material- and field-dependent parameters;
they depend on microscopic physics, on the structure of the device, and even
on the applied bias. A variety of materials is now being investigated, and with
modern epitaxial technology it is even possible to engineer material properties.
This book begins at the microscopic level and progresses towards the macro-
scopic level of devices.

At the most basic level, electrons in semiconductors are quantum mechanical
waves propagating through the device under the influence of the crystal, applied,
and scattering potentials as indicated in Fig. 0.1a. Chapter I begins at this level
and shows that when the scale of the device is large enough, the electron can be
treated much as a classical particle as indicated in Fig. 0.1b. Electron scattering,
however, is the result of short-range forces and must be treated quantum
mechanically. Calculation of scattering probabilities per unit time for the per-
turbing potentials encountered in common semiconductors is the subject  of
Chapter 2.

At the macroscopic level, equations like eq. (0.1) result by averaging an enor-
mous number of nearly chaotic trajectories like that displayed in Fig. 0.1b.
Alternatively, one may simply ask: what is the probability of finding an electron
at r with momentum p? The answer is / (r,p,f), the distribution function, which
defines the state of the device. As illustrated in Fig. 0.1c, the distribution function
is a probability density function, which completely defines the average state of
the system. In Chapter 3, we formulate the Boltzmann Transport Equation
(BTE), an equation that determines f{r,p,t), and show how to solve it under
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Fig. 0.1 Illustration of the various levels at which carrier transport can be described. (a),
The quantum mechanical, individual particle viewpoint; (b), The semiclassical, individual
particte viewpoint; (c), The collective variable viewpoint using the distribution function; {d),
The collective variable viewpoint using moments of the distribution function.

simple circumstances. A systematic ireatment of low-field transport based on
solving the BTE is the subject of Chapter 4.

Device engineers rarely need to know the state of the system in detail as
described by the distribution function. The quantities of interest are typically
the average carrier density, velocity, and, perhaps, energy, which are the zeroth,
first and second moments of the distribution function. A formal procedure for
generating balance equations for these quantities is described in Chapter 5. In the
process, we will discuss the derivation of. the drift-diffusion equation from the
BTE. At the drift-diffusion level, the quantities of interest are the position-
dependent carrier and velocity profiles as illusirated in Fig. 0.1d. Another
approach for computing macroscopic transport properties is to simulate a
large number (typically several thousand) trajectories like that in Fig. 0.1b on
a computer to average the results. The technique, known as Monte Carlo simu-
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lation, is the subject of Chapter 6. In Chapter 7, both the balance equation
approach and Monte Carlo simulation are applied to the problem- of analyzing
high-field carrier transport in bulk semiconductors. Several of the interesting
transport effects that occur in modern devices are examined in Chapter 8.
Devices contain both low- and high-field regions, but the spatial variations are
strong, so some qualitatively new transport features arise. Finally, the book
concludes in Chapter 9 by examining transport in mesoscopic devices whose
size lies between the macroscopic and atomic regimes.



The quantum foundation

1.1 Electrons in a nonuniform potential, £cy(r)

1.2 Electrons in a periodic potential, Uc(r)

1.3 Semiconductor heterostructures

1.4 Counting electron states

1.5 Electron wave propagation in devices

1.6 Semiclassical electron dynamics

1.7 Scattering of electrons by the random potential, U(r, 1)
1.8 Lattice vibrations (phonons)

1.9 Summary

Conventional device analysis begins by assuming that carriers behave as classical
particles which obey Newton’s laws. A more fundamental treatment describes
the electron by its wave function, ¥(r, ), which is obtained by solving the
Schrédinger equation,
L S 4
e = = V¥ + [Ey(r) + Uc(r) + Uslr, H]¥(r, ). (LD

at 2my

The quantity *(r, )¥(r, Hdr is the probability of finding the electron between
r and r +dr. Three different potential energies appear in the wave equation; the
first, Eqp(r), describes potentials that are built-in or applied to the device. (The
energy band diagram of a semiconductor device is just a plot of this potential
versus position. Device engineers usually refer to this potential as Eq(r), but in
this text E¢ will refer to the position and momentum-dependent conduction band
potential; it contains a potential energy component, £~ (r), and a kinetic energy
coimponent.) The second potential is the crystal potential, U(r), which describes
the electrostatic potential due to the atoms. (Since eq. (1.1) is a wave equation for
a single electron, Ue(r) also includes the average potential due to thé other
electrons in the solid.) Finally, Us is a scattering potential due to random devia-
tions in potential caused by ionized impurities or by lattice vibrations. Device
analysis is usually based on an approximate solution to eq. (1.1) known as the
semiclassical treatment which describes carrier dynamics in the applied and built-
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in potentials by Newton’s laws without explicitly treating the crystal potential.
The influence of the crystal potential is treated indirectly by the use of an effec-
tive mass or an energy band structure. Carrier scattering is treated quantum
mechanically.

This chapter reviews techniques for treating the three different potentials in the
wave equation. The emphasis is on justifying the semiclassical approach to car-
rier transport because it serves as the basis for most of conventional device
analysis and for most of this text. It is important to understand the underlying
approximations because they can be violated in advanced, ultra-small devices.
For the most part, this chapter should be a review of introductory quantum
mechanics and solid-state physics; results are stated, not derived, and their sig-
nificance and relevance to device analysis is noted. For a thorough treatment of
the fundamentals surveyed in this introductory chapter, the reader is referred to
Quantum Phenomena, by Supriyo Datta [1.1].

1.1

Electrons in a nonuniform potential, £-q(r)

Let us first review the nature of solutions to the wave equation in the absence of
the crystal and scattering potentials; we further simplify the problem by reducing
it to one spatial dimension. Application of the technique of separation of vari-
ables to the wave equation then shows that the solutions are of the form

Wz, £) = w2 B = y(z)e ', (1.2)

which oscillate in time with a frequency of w = E/h. When eq. (1.2) is inserted in
the wave equation, we obtain the time-independent wave equation,

d2
%JFJC?;/,:(), (1.3a)
where
2m
k* :—hzi[E-Eco(z)]. (1.3b)

The nature of the solutions is determined by whether &* is greater or less than
7ero. - ' C '

General features of the solutions can be illustrated by a few very simple
examples (see Fig. 1.1). First, we let E-p(z) be constant and set the constant to
zero. Since k* > 0, the solutions to eq. (1.3) are of the form

W(z) = aqpe™™ (1.4)



1.1 ELECTRONS IN A NONUNIFORM POTENTIAL, Ecolr)

{a)

Egp— e Egg— =

r 4’\/\/\/\/ EC2
ey
J—————» Zz
0
(d)
AVAVAVAV .
Ecol2)
I z
0

Fig. 1.1 Example potential profiles. (a) free electron, (b) infinite potential well, (c) finite
potential step, and (d) slowly varying potential.

(or, equivalently, sin kz or cos kz), where

ke = \/ImyE, , (1.5)

and «, is an arbitrary constant, According to eq. (1.5),

h2k2
Ek) = T (1.6)

is the relation between the electron’s energy and its wave vector. Since Ak can be
shown to be the electron’s momentum [1.2], the energy and momentum of a free
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electron are related exactly as they are in classical physics. The time-dependent

solution,
P(z, 1) = qpel T (1.7)

represents a wave traveling in the - Z direction.

The probability of finding the electron, P(z) = W(z)*¥(z), is simply |a}*; the
electron has an equal probability of being anywhere. To describe a particle
located near zy with a momentum of about #k,, we form a linear combination
of the solutions, eq. (1.4). Such a solution, )

oo ,
Pz, 1) = J alk — kyyeC=memiebi gp (1.8)
oo :

18 known as a wave packet. The weighting function, a(k — kg),’is large only near
ky as shown in Fig. 1.2. At ¢ = 0 and z = z; the phase is zero so the contributions
for all wave vectors add in-phase and the result is a large amplitude. But for
2] 3> 1zo], the exponential, ¢~ oscillates rapidly with &, and the contribu-
tions from different & add destructively. The result is that eq. (1.8) describes an
electron that is located with high probability near z = z;. The plane wave solu-
tion, eq. (1.7), had a well-defined momentum (k) but the particle’s location was
undefined. Equation (1.8) localizes the particle, but since we had to add waves
with different momentum, an uncertainty, 24k, has been introduced in the elec-
tron’s momentum.

The uncertainty in the particle’s position is related to the spread in wave

vectors by [1.2]
AzAk >~ 1, (1.9)

which states that many Fourier components are needed to describe a small
particle. Similarly, a particle can be localized in time by adding contributions
with different frequencies such that

Awdt = 1. (1.10)

alk - k)

b

SN | SO SANANNINANY &
D < < A5

k

Fig. 1.2 Weighting function a(k — k) used to localize an electron.
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When a change of variables to momentum and energy is made in eq. (1.9) and eq.
(1.10), we find the uncertainty relations:

AzAp > T (1.1
and
AEAt = h- o (1.12)

which state that we cannot know both a carrier’s position and momentum
exactly and that we cannot determine its exact energy in a finite time,

Each of the individual components of the wave packet, eq. (1.8), travels at its
own phase velocity

up:ikkz. (1.13)

Since each of the components travels at a different velocity, both the center of the
wave packet and its shape change with time. The center, which occurs where the
components add constructively, moves at the group velocity, v,, where

de(k
vilhy) = <20

_1dER)

= (1.14)
ek, 1dE

k=ky

According to eq. (1.14) and eq. (1.6}, for free electrons

_hky _{p)
Y, == —s =

. - %»
which shows that the group velocity of the electron wave packet is simply its
average momentum divided by its mass — just what classical physics would give.

For electrons constrained within a potential well, the solutions are much
different. Consider a second example (Fig. 1.1b) for which Ecy = 0 between 0
and }¥, but assume now that W is small and that Eqy — oo at x = 0 and W so
that the electron is bound — 1t must remain between 0 and W. The solutions are
still given by eq. (1.4) but it is more convenient to use linear combinations of
these, or sin(kz) and cos(kz). Because ¥(z) = 0 at z = 0, we find

W(z) = ay sin kz. (1.15)
But ¥(z) must also be zero at z = W, so the wave vector must be restricted to

nmw
k,=— n=12,... : 1.16

=1 (116
In the first example, the electron was free, and we found a continuous distribu-

tion of wave vectors given by eq. (1.6), but in this example, the electron is bound
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and only certain k’s, specified by eq. (1.16) are permitted. From eq. (1.6) we find
that the energy is also quantized according to '
Wi B it

En = E(kn) =5

B — =1,2,... 1.17
2my 2myW? ! B ( )

With modern microfabrication technology, potential wells can be engineered
into devices by appropriate variations of doping or composition. In a silicon
metal-oxide-semiconductor field effect transistor (MOSFET), inversion layer
carriers are confined in a potential well at the oxide-silicon interface. For such
structures, the carriers are confined in only one direction; in the orthogonal
plane, the potential is constant and the wave functions have the plane wave
character of the first example. Electrons confined in the so-called guantum
wells are discussed in Section 1.3.

As a third example, we consider an electron, which may be propagating
through a device, when it encounters the potential step sketched in Fig. l.lc.
For the conditions shown, E > Eqo(z) everywhere so the solutions are traveling
waves of the form

W(z) = "7 p e 2 <0 (1.18a)
ji = 220 (1.18b)
h

Wl iﬁ@ (1.19a)
:i ~W;“E@) (1.19b)

Both y(z) and dv/dz must be continuous everywhere otherwise d*y/dz> would
be infinite and eq. (1.3a) could not be satisfied (unless Eq(z) goes to infinity as it
did for the second example). Applying these continuity conditions at z = 0, we
find

ky — K,

. 1.20
i e ( a)

and

2y
kit

t (1.20b)
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From a classical perspective, we expect that when the electron’s energy is
greater than the top of the step, it will simply transmit across. The finite prob-
ability of reflection at a step is a quantum mechanical effect due to the wave
nature of carriers. Such reflections occur when the potential changes rapidly
(meaning that it varies significantly on a distance comparable to the electron’s
wavélength). ) :

The final example, illustrated in Fig. 1.1d, shows an electron moving through a
slowly varying potential (the electron’s energy is assumed to be greater than the
potential energy). For such potentials, reflections do not occur and the solution
can be obtained using the Wentzel-Kramers-Brillowin approximation as in [1.2]

= e Lo (121)
where k(7) is given by eq. (1.3b). The absence of reflections can be understood if
the slowly varying potential is approximated by a large number of small poten-
tial steps. The small reflections that occur at each interface add destructively so
that no net reflected wave occurs. Electron motion in a slowly varying potential
can be descnbed classically because reflections do not occur.

Probahility current

The goal of device analysis is often to compute the current through the device.
Since quantum mechanics is based on probability, we evaluate the flow of prob-
ability,

aP(z) @ P oY

= (PP — W P 22
ot 81( ) ot * ot (1.22)

The denvatives can be evaluated from the wave equation, eq. (1.1), and its
complex conjugate to find

aP aJ
— 4+ —=10 1.23
ot + oz ( )
where

h L 0¥ Rl
J = ——zmoi {‘P Fo b4 P } (1.24)

Equation (1.23) is a continuity equation — the first term is the rate of increase of
probability and the second term, the divergence of a vector J, represents the flow
of probability away from z. The vector J, which describes the flow of probability,
is termed the probability current. For an ensemble of electrons, we interpret
Y(z)" ¥(z) as n(z), the electron density and J(z) as the electron flux,
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For the plane wave solutions found in the first example, the probability cur-

rent works out to be

Syt (1.25)
my

Since ¥ * ¥ is the electron density and Ak the electron momentum, eq. (1.25)
simply states that J = nu. For the second example, the states were bound, and

W(z) was proportional to sinkz. For such statesﬁ‘eq. (1.24) shows that J =0

which is consistent with the fact that the electron is localized and not going
anywhere. For the potential step considered in the third example, the wave
functions, eq. (1.18), produce a current

J:ﬁu_m%z<o (1.26a)
my

and
Tk

J=""212 250, (1.26b)
g

from which the incident, reflected, and transmitted currents J;, J,, J,, are appar-
ent. Transmission and reflection coefficients for the currents can be defined as

Jo ks oo

=t __ 2 1.27
T 7 kllri (1.27)
and
R;§:m% (1.28)

Notice that 7 and R are real numbers unlike ¢ and r and that 7+ R == 1 as
expected. )

For electrons moving in a slowly varying potential, the wave function is given
by eq. (1.21). For electrons in such a potential,

hk(z)

my

J = Y2y () (1.29)

Since ¥ v ~ 1/k(z), the current is constant — as it should be. When v*v is

‘interpreted as the electron density, eq. (1.29)1s seen to correspond to the classical

current density, J = n(z)u(z). The electron’s momentum is hk(z), so from eq.
(1.29) its velocity is

2mg(E — Eco(z
o) =Y mo( col )). (130)

1y -
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1.2 ELECTRONS IN A PERIOOIC POTENTIAL, Ue(r)

L is theelectron’s total energy and Eqy(z) its potential energy, so eq. (1.30) is just
the expression for the velocity of a classical particle.

These examples show that the wave nature of carriers is important when the
potential changes rapidly, but when the potential varies gradually, reflections
don’t occur and electrons can be treated as classical particles which obey
Newton's Laws. The electrons in the conduction band of a semiconductor always
see at least one rapidly varying potential — it is the crystal potential due to the
nucleus and core electrons. '

Electrons in a periodic potential, U-(r)

Flectrons in a semiconductor crystal respond when fields are applied, but a
crystal potential due to the lattice atoms and other electrons is always present.
As sketched in Fig. 1.3a, the crystal potential, Uq(z), displays the periodicity of
the lattice. To find the wave functions we solve the one-electron wave equation

Ue
(a)
NCNCNONONONC
Y
(b)
—» Z
Yy
te) ¢
—> 2
alkz
)]
—> Z

Fig. 1.3 lllustration of wave functions in a periodic potential. (a) Uc(z), the crystal
potential, (b) y. the eigenfunction, {c) u,. the Bloch function, (d) e a plane wave. From

Harrison [1.4]. (Reproduced with permission from Dover, New York.)
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)

{—fédz+tk&ﬁwcw:5wa. (131
1 dz

The solutions sketched in Fig. 1.3b also reflect the periodicity of the lattice. The
solutions for a periodic are called Block waves and consist of a function with the
periodicity of the lattice multiplied by a plane wave. Figures 1.3c and 1.3d dis-
play the two components of a Bloch wave, which is mathematically defined by

Yy = e, (1.32a)
where
U (z + a) = u(2). (1.32b)

The electron’s momentum varies with position because the crystal potential
alternately speeds up and slows down electrons. Nevertheless, the quantity 7k,
termed the ¢rystal momentum, often acts like the carrier’s momentum.

To find u,(2) we mnsert eq. (1.32a) in eq. (1.31) and find

[i (@3 n ﬁk)‘—}- Uc(z)]uk = E(lu,, (1.33)

2imy \ I 0z

which must be solved with the boundary condition eq. (1.32b). For any k we
select, eq. (1.33) can be solved for the energy eigenvalue, £(k), and the eigenfunc-
tion, u;. Since there are an infinite number of eigenvalues, we should label them
as £,(k), where n == 1,2, 3, ... labels the particular eigenvalue. Choosing another
k results in another infinite set of eigenvalues. Each eigenvalue is associated with
a band because as k varies a band of energies is traversed.

The general features of energy bands found by solving eq. (1.33) are summar-
ized in Fig. 1.4, Only four eigenvalues for each k are shown. The eigenvalues
E\(k), Ex(ky), Es(ky), Es(k)), ete., are found by solving eq. (1.33) for k& = k. By
repeating the procedure for other choices of k, one continuous curve, E,(k), is
mapped out for each of the various eigenvalues. The dashed lines show that E, (k)
is periodic in k-space. Note also that there are certain energy gaps — forbidden
regions on the energy axis that cannot be reached by any real £ in any band.

The periodicity of E(k) is a consequence of the spatial periodic crystal poten-
tial. In general,

E (k) = E,(k+ K,), - (138

where

2
K,-:j% j=12. (1.35)
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Fig. 1.4 Eleciron energy versus wave vector, E(k).

18 a reciprocal lattice vector, and ¢ is the lattice constant. Because E, (k) is
periodic, all information is available in one period or Brillouin zone. 1t is con-
venient to use a period centered about the origin (the so-called reduced zone
representation).

The band structures of common semiconductors are well known from various
experiments and from numerical solutions to the wave equation. For semicon-
ductor work, approximate solutions to eq. (1.33), accurate near a band mini-
mum, are often adequate. The so-called k.p method for obtaining such
approximate solutions is discussed in the texts by Datta [1.1] and by Singh
[1.6]. To treat very energetic carriers, however, a full, numerical tabulation of
E(k) throughout the Brillouin zone is essential [1.7].

If the band structure is known, E(k) can always be expanded in a Taylor series

as

L VPER)
o 2 0K

IE(K)

B
o +

E(k) = E(0) + ——=

k=0

When the band minimum occurs at k == 0, the gradient of E(k) is zero at k = 0,
so, to the lowest order,

E(0) = BO)+5_- e (1.36)

where
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E(’f) ' (1.37)

is the effective mass. A comparison of eq. (1.36) with eq. (1.6) shows that for
electrons near a band minimum, the £(k) relation in a crystal is just like that for
free electrons except for a change in curvature of the band. The electron mass is
simply replaced by the effective mass. Knowledge of m* is sometimes the only
information from the E(k) characteristic that is required to describe carrier

transport.

Model band structure

In real, three-dimensional, semiconductors the Brillouin zone becomes a volume
and E(k) generally depends on the direction of k. The simple E(k) model shown
in Fig. 1.5a describes both diamond and zincblende crystals such as silicon and
GaAs. The conduction band has three minima; one at k = 0 (called the " point),
another along {1 11) directions at the boundary of the first Brillouin zone (called
L) and a third near the zone boundary along (100} directions (the A-line). (The
standard notation for labeling lines and points in the Brillouin zone is displayed
in Fig. 1.5b.) The model semiconductor has three valence bands — each has a
maximum at k = 0. Two of the valence bands are degenerate at k = 0; the third is
split-off by the spin-orbit interaction.

Table 1.1 lists several band parameters, defined in Fig. 1.5, for a variety of
semiconductors. For silicon and germanjum, the lowest conduction band minima
are along 4 and at L respectively. When the conduction band minimum doesn’t
occur at the same point as the valence band maximum, the semiconductor is
called indirect. GaAs is seen to be direct, but it also has a minimum at L that is
only a few tenths of an electron volt higher. This upper minimum plays an

“important role for electron transport in GaAs.

When the conduction band minimum or valence band maximum lies at k = 0,
E(k) may be approximated as

12

. 3
2m* (1.38)

E(K) = %

where the positive sign is for the conduction band and the negative sign for the
valence band. The energy zero is taken at the band extrema, so E£(k) represents
the carrier’s kinetic energy. Equation (1.38) describes a band whose constant
energy surface in k-space is a sphere; the effective mass is isotropic. This simple
model is appropriate for the conduction band at I' and for the split-off valence
band. but is often used more widely — whenever rough estimates suffice.
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(a} L=(111) I ={000} X ={100)
A A

L

Energy
( |
<
Conduction hand

T Wave vector

Valence hand

Fig. 1.5 (a) Band structure of the model semiconductor {from Reggiani, L., Chapter 1:
General Theory. In Hot Electron Transport in Semiconductors. Springer-Verlag, New
York, 1985.) (b) Standard notation for labeling high symmetry lines and points in the
Briliouin zone for diamond and zincblende crystais. (Reproduced with permission from
Springer-Verlag.)
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Table 1.1. Band parameters of common cubic semiconductors {from

- L. Reggiani, Chapter 1: General Theory. In Hot Electron Transport in

Semiconductors. Springer-Verlag, New York, 1985, Reproduced with permission

Jrom Springer-Verlag.)

E, E; Ex E, nty m* i a |4] | B| |1
V) (V) (V) (V) (mg) (mg) (mg) (eV7)

C 11.67 12.67 545 0.006 1.4 - 0.36 - 3.61 018 3.76
Si 408 187 1.13 0044 0.98 - 0.19 0.5 422 0.78 4.80
Ge 0.8 076 05 029 1.64 - 0082 065 1335 850 13.11
AlP 33 30 21 0.05 - - - - - 3.47 012 3.98
AlAs 295 267 216 028 20 - - - 404 156 4,71
AlSb 2.5 239 1.6 0.75  1.64 - 0.23 - 415 202 495
GaP 2.7 27 22 0.08 1.2 - 0.22 - 420 196 4.65
GaAs 142 171 1.90 0.34 - 0.067 - 0.64 7.65 482 771
GaSb  0.67 1.07 130 0.77 - 0045 - 1.36  11.80 806 11.71
InP 1.26 20 23 0.13 - 0.080 - 0.67 6.28 416  6.35
InAs 035 145 214 038 - 0.023 - 273 19.67 16.74 13.96.
InSb 023 058 073 08! - 0.014 - 572 3508 31.28 22.27
ZnS 38 53 52 0.07 - 0.28 - 0.14 254 150 275
ZnSe 29 45 45 0.43 - 0.14 - 0.26 3.77 248 387
ZnTe 256 364 426 092 - 0.18 - 0.26 374 214 430
CdTe 1.80 340 432 091 - 0.096 - 0.45 529 378 546

For many semiconductors, electrons respond to applied fields with an effective
mass that depends on the crystallographic orientation of the field. In common
cubic semiconductors, we find that

()f_[k_q 0139)

2 |\my  mf

Equation (1.39) describes a band with ellipsoidal constant energy surfaces. The
effective mass 1s a tensor — the longitudinal and transverse effective masses, m1;
and m}, differ. Equation (1.39) describes conduction bands at L and along 4.
Note that there are eight equivalent L points and six equivalent 4 lines in cubic
crystals so there are actually many of these valleys in k-space. '

For high applied fields, carriers may be far above the minimum, and the higher
order terms in the Taylor series expansion cannot be ignored. For the conduction
band, nonparabolicity is often described by a relation of the form

Wk

= om (1.40)

E(l+akE
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where m* is determined from eq. (1.37) at the minimum. (Equation (1.40) 1s
obtained from approximate solutions to eq. (1.33) derived by k - p theory.) For
a minimum at k = 0.

2
arzl—(l—fl_ﬂ> , , (1.41)

o Egr my /o
where Egp 1s the direct bandgap. '

The simple expressions we have presented generally work well for electrons in
the conduction band, but the valence bands are much more complex. In k- p
theory, the shape of £(k) is attributed to interactions between various bands. In
wide bandgap semiconductors, the conduction band ts well separated from the
valence bands, interactions are weak, and the resulting band structure is para-
bolic. (But at high energies, or in narrow bandgap semiconductors, these inter-
actions become important leading to conduction band nonparabolicity as
discussed above.) The light and heavy hole valence bands, however, are degen-
erate at k = 0, so the interactions are strong and the band shapes become com-
plex. Since the split-off valence band is generally rather well-separated from the
other valence bands, we expect its shape to be more nearly parabolic. Because the
band structure has such a strong influence on carrier transport, it is important
that we develop a descriptive understanding of the valence bands. (For a discus-
sion of how to actually compute these band shapes, consult Datta [1.1] or Singh
[1.6].)

The light and heavy hole valence bands in common semiconductors can be
described by

E(K) = ak*[1 = (6. ¢)]. ' (1.42)

Such bands have a warped constant energy surface (the = refers to the heavy and
light hold bands respectively). The angles, 8 and ¢, are the polar and azimuthal
angles of k with respect to the crystallographic axes. The function g(6, ¢) is given
by

a6, @) = [B + (sin* 0 cos” ¢ sin’ ¢ +sin?6 cos’ )] (1.43)
with
1Al 8] |
o= , h=—rr, =— 1.44
2my | 4] | 4] (1.44)

where A, B, and C are listed in Table 1.1.

Figures 1.6-1.8 show the constant energy surfaces for the heavy, light, and
sphit-off valence bands in Si. As shown in Fig. 1.6, the heavy hole band 1s warped
at low energies, and the shape becomes complicated at higher hole energies: For
the hght-hole band displayed in Fig. 1.7, the distortion is smaller, and it is even
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Fig. 1.6 The constant energy surfaces for the heavy hole band in Si. (a) £ = I meV, and
(b} £ = 40meV. From Singh [1.6]. (Reproduced with permission of The McGraw-Hill

Companijes.)

less for the split-off valence band, as shown in Fig. 1.8. For Si, the $pin-orbit
coupling 15 small (dsq = 0.044 eV}, so the split-off band can play a role in hole
transport, but for most semiconductors, the spin-orbit coupling s much larger,
and the split-off band is not typically populated by holes (e.g. in GaAs,
dso = 0.35eV). These examples show why hole transport is difficult to treat,
even at low fields when the carriers reside near the top of the band. We will
generally make use of very simple, spherical and parabolic energy band models,
but it 15 important to recognize that a realistic description of the valence band
shape is required for a quantitative treatment of hole transport.

Full band structure

As discussed in the previous section, the conduction band can be approximated
as parabolic only near the band minima. For higher energies, we can approx-
imate the conduction band with a nonparabolicity parameter, e, as defined in eq.
(1.40). In Section 1.4.2, we will show that a spherical, nonparabolic band pro-
vides a reasonable approximation to the density of states in Si up to an energy of
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Fig. 1.7 The constant energy surfaces for the light hole band i Si. (a) £ = 1 meV, and
{b) £ = 40meV. From Singh [1.6]. (Reproduced with permission of The McGraw-Hill
Companies.)

about = 1-2¢V. There are important reasons, however, for examining electrons
at much higher energies. Impact ionization, for example, involves electrons with
a few electron volts of kinetic energy, and in Si MOSFETs an important relia-
bility problem is the injection of electrons from the channel into the gate oxide.
The energy barrier at the SiQ, : Si intéerface is &~ 3.1eV. For such problems, we
must abandon simple expressions for E(k) and resort to & numerically-generated
table of £(k).

To evaluvate E£(k) numerically, eq. (1.1) is solved for a bulk semiconductor
{Ecpl{ry =0} in the absence of scattering (Usg(r, £} = 0). The well-developed art
of such calculations is discussed by Singh [1.6]. One popular method is the
pseudopotential technique which relies on the fact that the band structure is
largely determined by the valence electrons. Accordingly, the effect of the core
potential is subtracted out by replacing the actual potential by a pseudopotential
which reproduces the actual potential between atoms but which is smooth
through the ion core. Empirical form facrors have been derived to fit optical
bandgaps at the high symmetry locations. Using this empirical pseudopotential
method, the energy band structures of most common semiconductors have been
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Fig. 1.8 The constant energy surfaces for the split-off hole band in Si. (a) £ = 45meV, and
(b} £ = 84 meV. From Singh [1.6]. {(Reproduced with permission of The McGraw-Hill
Companies.)

evaluated. The results of such calculations are generally presented as plots of
E(k) along the high symmetry lines displayed in Fig. 1.5b. Figures'l‘9 and 1.10
show the results for the conduction bands of Si and GaAs [1.7].

Figures 1.9 and 1.10 show the first several conduction bands; the lowest con-
duction band in each case is indicated by a heavy line. For Si, we see that the
lowest conduction band energy is along the x-line (a [100] direction) and occurs
at about 85% of the way to the zone boundary. These are the well-known six,
equivalent ellipsoidal constant energy surfaces of Si. Note that when electrons
gain =~ (.13 eV of kinetic energy, they can cross the zone boundary. More impor-
tantly, we see a second conduction band ohly 0.1eV above the minimum of the
first conduction band. Carriers above = 0.1eV in kinetic energy may reside in
either of two conduction bands. Note also that the first conduction band mini-
mum at L lies about 1eV above the lowest first band minimum. Under high
electric fields, carriers can gain enough energy to populate these {Ge-like) valleys
too. '

The ellipsoidal constant energy surfaces at low energy become very compli-
cated at high energies. In Figs. 1.1la-c we examine the constant energy contours
in a cross-section of the Brillouin zone. The ellipsoidal constant energy surfaces
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Fig. 1.9 E(k} for the conduction bands of Si. From M. Fischetti [1.7]. {© 1991 IEEE)
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Fig. 1.10 E£(k) for the conduction bands of GaAs. From M. Fischetti [1.7]. {© 1991 IEEE)

of the first conduction band are displayed in Fig. 1.11b, and the constant energy
surfaces of the second conduction band are displayed in 1.11c. The second con-
duction band minima lie at the zone boundary, and the constant energy surfaces
are more spherical than the first, Under high electric fields, electrons populate the
entire Brillouin zone, and Figs. 1.11b and ¢ show that the constant energy
surfaces between the minima cannot be described by simple analytical expres-
sions.

The E(k) relations for the conduction bands of GaAs are displayed in Fig.
1.10. In contrast to Si, we see that the second conduction band lies wel]l above the
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{a)

{b) {c)

Fig. 1.11 (a) A (100} plane cross-section of the Brillouin zone. From J. Y. Tang and K.
Hess, Impact ionization of electrons in silicon (steady state), J. Appl. Phys., 54(9) 5139~
5144, 1983, (b) The (100)-plane contours of constant energy for the first conduction band
in Si. From Tang and Hess. (¢) The {100)-plane contours of constant energy for the second
conduction band in Si. From Tang and Hess. (Reproduced with permission of American
Institute of Physics.)

first; we can do a decent job of describing transport in GaAs with just a single
conduction band. Note, however, that the first conduction band shows three
minima with the lowest at the I' point. The first conduction band minima at L
(the Ge-like valleys) lie only about 0.31¢V above the I'-valley minima, and the
minima along X (the Si-like valleys) are only about 0.5¢V above the [-valley
minimum. These valleys are easily populated under modest and high electric
fields and give Gads its distinctive transport features.

Because of the increasing importance of high energy carriers in modern
devices, the use of full, numerical tables of E(k) is common. When generating
such tables, it is important to exploit symmetry to minimize the data to be stored.
Consider Fig. 1.12, which shows a location in a cubic coordinate system. For a
cube, one symmetry operation is reflection across the x—z plane. From repeated
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O

Fig. 1.12 Illustration of the symmetry operations for a cubic lattice. (a) Reflection across a
(100) plane, (b) reflection across a (110) plane, and (¢} rotation of 37/2 about a [[11]
direction.

(e

Fig. 1.13 The irreducible wedge of the Brillouin zone, Given E(k) for this 1/48th of the
Brillouin zone, E(K) for the entire Brillouin zone is obtained by applying the symmetry
operations of the cubic lattice.

reflections across equivalent planes, eight equivalent points can be formed.
Another symmetry operation is reflection across a (110) plane, which generates
another equivalent point for each of the first eight equivalent points. Finally, one
can rotate a cube by 37/2 about a [L11] direction to get three more equivalent
points. The result is that for the given point, there are 8 x 2 x 3 = 48 equivalent
points. Tt is sufficient, therefore, to evaluate E(k) in 1/48 of the Brillouin zone
and to generate the other points by symmetry operations. The volume commonly
used is shown in Fig. 1.13; it is known as the irreducible wedge of the Brillouin
zone and is defined by :

0<k, <k, <k, <2n/a
(1.45)

ky+k,+k. <3m/a

When simple, analytical expressions for E(k) (e.g. eq. (1.38)) are used, we shall
see that analytical expressions for quantities such as the density of states and
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carrier scattering rates can be obtained, but when a full, numerical description of
the bandstructure is employed, we must resort to numerical integration.

Semiconductor heterostructures

One feature of modern semiconductor technology is that the material composi-
tion is readily varied as a semiconductor film is grown. This is particularly easy
to accomplish in semiconductor alloys, but other combinations of different semi-
conductors are readily produced. Junctions between two different semiconduc-
tors are called heferojunctions. More complex, perhaps continuous, compo-
sitional variations are referred to as heterostructures. In this section, we introduce
some general concepts that we will use when we discuss transport in heterostruc-

tures.

Band structure of semiconducter alloys

Alloys of two or more semiconductors have many device applicaﬁons. The alloy
Al,Ga;_ As, for example, comprises GaAs (a direct gap semiconductor with a
bandgap of 1.42eV) and AlAs (an indirect semiconductor with a bandgap of
2.16eV). As the AlAs mole faction varies from 0 to 1, the bandgap of the alloy
varies from that of GaAs to that of AlAs. The use of such alloys offers an
additional degree of freedom to device engineers because both the doping and
bandgap can be varied with position. Fo analyze such devices, the alloy’s com-
position-dependent properties must be known. Adachi [1.9] describes how para-
meters such as the bandgap, effective masses, and dielectric constant vary with
alloy composition in the Al,Ga,__.As system. For other materials, consult
Landolt-Bérnstein [1.10].

Energy band diagrams for abrupt hetersjunctions

To draw energy band diagrams for compositionally nonuniform devices, we need
to know more than how the bandgap varies with composition, we must also
know how the bands line up at compositional junctions. Figure 1.14 shows-the
experimentally observed band alignments for Aly;Gag,As/GaAs heterojunc-
tion. For Al.Ga,_,.As heterojunctions, the offset in conduction bands is found
to be about 65% of the difference in band gaps for alloy compositions below
about x = 0.5 where the band structure is direct,

With modern epitaxial growth techniques, the alloy composition can be varied
on an atomic scale to produce structures like that shown in Fig. 1.15a, which
consists of a GaAs guantuim well sandwiched between two Al .Ga,_ As layers.
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Fig. 1.14 Experimentally observed band alignments for Al,Ga,_ As for x =0 and x = 0.3.

E\/O ’ EVO

Fig. 1.15 Energy band diagram for an Al/GaAs/GaAs/AlGaAs quantum well structure.
(a) For this case, we assume that the electrons are ‘frozen’ in place in the N-AlGaAs so
that they cannot transfer to the i-GaAs. (b) A more realistic energy band diagram for the
AlGaAs/GaAs/AlGaAs quantum well which displays the effects of mobile charge transfer
to the quantom well.

Since the width of the well may be less than 100 A, carriers within these wells are
strongly influenced by quantum effects.

For this example, we assume that the Al.Ga,_ As layers are doped n-type
and that the GaAs well is uﬂndoped. In Fig. 1.15a we have assumed that the
electrons are frozen in place so that they cannot move down in energy from the
N-AlGaAs to the i-GaAs. For this case, the bands are flat, and there-is no
electric field. A more realistic case is illustrated in Fig. 1.15b where the electrons
move from the higher Fermi level to the lower one and establish equilibrium.
As a consequence of the charge transfer, the AlGaAs layers are depleted and
the GaAs well is accumulated. It is interesting to note that the electrons reside
in the undoped quantum well — spatially separated from their parent donors in
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the N-AlGaAs. As a result, electrons in the well experience little ionized impur-
ity scattering and have an especially high mobility. The technique is known as
modilation doping and is the basis for a transistor known as a modulation
doped field-effect transistor (MODFET) (or HEMT) in which the electrons in
a modulation-doped quantum well comprise the channel of the field-effect
transistor. This device, and several other heierostructure devices are described
in Weisbuch and Vinter [1.11].

Energy band diagrams for continuous compositional variation

For a conventional, homostructure semiconductor device, the conduction and
valence band edges move in response Lo a macroscopic potential set up by space
charges. The slope of the conduction or valence band give the electric field. More
generally, both F(x) and the composition of the semiconductor vary with posi-
tion. Since the composition is nonuniform, the crystal periodicity is broken, and
one may question the whole concept of energy bands. If the composition varies
slowly, however, we may take the band structure at any point to be the band
structure of the corresponding bulk semiconductor with the composition at that
point (see [1.12—1.14]).

Because the composition 1s nonuniform, Eqy and Fyq (and therefore the elec-
tron affinity x and the bandgap £g) will also be nonuniform. As a result,

Eco(2) = £y — xs(2) — gV (2) (1.46a)
and
Eyol(z} = Eg — xs(2) — gV (2) — Eg(2). (1.46b)

An energy band for this case might look like Fig. 1.16 which shows a semicon-

ductor with band-bending which is due to both an electric field and to composi-

tional variations. The slope of the conduction band gives the force of an electron,

but it is impossible to deduce the electric field from the energy band diagram.
Consider the force acting on an electron in the conduction band,

—dE d¥F(zy d
_ 9 dVE) | dxs (1.472)

F
¢ dz dz dz

and on a hole in the valence band

_HdBye  dV(2)  dxs + Eg)

dZ dZ dZ (I 47b)

Fh

The force on electrons is not equal in magnitude and opposite in direction to the
force on holes, as we would expect for forces due to electric fields. The electric
field is only one component of the force on a carrier. Since we are used to
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Fig. 1.16 An energy band diagram for a compositionally graded semiconductor.

thinking of electric fields producing forces on carriers, we can define guasi-
eleciric fields for electrons by

P, = —q&(z) — g€qn(2) (1.48a)
and for holes by
Fy = +9€(2) + ¢€qp(2). (1.48b)

With these definitions we have

= —— .49
EQN g dz (1.49a)
and

1d

Notice that the quasi-electric field for electrons can differ both in magnitude and
direction from the quasi-electric field for holes. These quasi-electric fields give the
device designer an additional degree of freedom since they can be controlled by
the nonuniform composition. Notice that Eqg and Fy, are not constrained to be
parallel in a heterostructure. ‘
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Counting electron states

Any finite volume of semiconductor will contain a finite number of states derived
from the finite number of energy levels in the isolated atoms. To determine the
macroscopic properties, the contributions from each occupied state have to be
added. Because the number of states is usually very large, it is more convenient to
integrate over a range of states in k-space or in energy space. To do so, however,
we need to know the density of states in k-space or in energy space.

Density of states in k-space

Although we have drawn F£(k) as continuous, in a semiconductor of finite size
only a finite number of ks is allowed. Consider a chain of N atoms. Since the
precise boundary conditions matter only very near the ends, we impose periodic
boundary conditions,

¥(z) = ¥(z + Na), (1.50)
for mathematical convenience. From eq. (1.32)

W(Z + Nﬂ) — eik(:-*_Na)M(Z T NCT) — ei/\’/\"lrl/[(z). (ISI)
The boundary condition eq. (1.50) then requires '
kNa=2nf ¢£=1,23,... N

so only discrete values of & are given by

k= e N | (1.52)

Na
are allowed. Since Na = L the sample’s length, each state occupies a space 2/ L
in k-space. The number of states between k and &k + dk on the curves of Fig. 1.4
is Ldk/2m. In three dimensions the number of states per unit volume of k-space
generalizes to L3/8ﬂ3. We also need to multiply by two to account for the spin of
the two electrons which can occupy a state. We conclude, therefore, that

Number of electron states B Q (1.53)
Volume of k-space © '

F 4

where 2 = L* is the sample’s volume.
We shall frequently have to evaluate sums like

> ek,
k

where g(k) is some function of k and the sum contains all states in the first
Brillouin zone as given in eq. (1.52). 1t is usually convenient to think of the
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E(k) curve as continuous and to integrate rather than sum. To do so, we must
properly account for the number of states between k'and k + dk as given by eq.
(1.53). The result,

Y e = N, L ddk | (1.54)

k

is one that we shall often make use of. For device applications, we’ll evaluate
sums like eq. (1.54) to determine how the carrier density or current density varies
with position within the device.

For carriers in a bulk semiconductor, N, i1s given by eq. (1.53), and Q is a
purely conceptual box whose dimensions are large compared to an average
electron’s wavelength but small on the scale of the device. With the use of
heterostructures, carriers can be confined in quantum wells, where they are
free to move only in two dimensions, or in quantum wires where they can
only move in one dimension. Equation (1.53) generalizes to

d
N,c:zxﬁg, (1.55)
where L is the sample size, d the dimensionality (1, 2, or 3), and the factor of two
accounts for spin degeneracy. The integrals are then carried out in one, two, or
three dimensions. We shall see many applications of egs. (1.534) and (1.55).

Density of states in energy space

Equation (1.53) shows that the density of states in k-space is constant. We will,
however, frequently find it convenient or necessary to deal with the density of
states in energy space. Figure 1.17 illustrates the relationship between N{k) and
N(E). The states are distributed uniformly in k-space, but not in energy space.
One way to evaluate N(E) is to construct a histogram. After defining bins of
width AE, we can scan through all of the allowed k-states, evaluate their energy,
and increment the count in the appropriate energy bin. Mathematically, the
number of states in a range of AE about E is

N(EYAE =Y AlE — E(K)], (1.56)
k

. where the sum is over all states in the Brillouin zone and A[E — E(k)] = 1 if

E(k)— AE/2 <« E < E(k) + 4E/2 and zero otherwise. Letting AF approach
zero, we obtain

N(E |
cctt) =" - LS by (L.57)
Tl
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E(k)

Fig. 1.17 Tlustration of the density of states in k-space and in energy space. In k-space, the
density of states is uniform as shown by the x’s. A given number of k-states, however,
occuples different ranges of energy, as shown by the shaded Jines on the energy axis. In this
example, g(F) decreases as E increases because we are considering 1D electrons (see

eq. (1.63a)).

(In this equation, §(e) is actually a Kronecker &, which becomes a é-function

when the sum is converted to an integral.)
Equation (1.57) can be understood as a count of every state with energy £. We
can prove that this is the correct result by evaluating the electron density from

1
n :an:f(k), (1.58)

where the f(k) is the probability that the state at & is occupied. Alternatively, we
can evaluate the electron density in energy space from

E[op
n=| " eetpiEpE. (1.59)
bot
Using eq. (1.57) for the density of states, we find
Eop | §[E— EX)f(E)AE 1.60)
= g - . .
[, aXae - swwe (
By interchanging the order of integration and summation,
o T 1.61
””ékZLM [E — BRI/ (E)E, o e

we find

n= ?12 Z FIE&D]. (1.62)
- _
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Example: Density of states calculation for 3D carriers

A simple example w11 Tlustrate the use of eq. (1.57). Recall that the dens;ty of states versus -
ENnergy varics as E'7 for three dimensional e]ectrons ‘We can obtain th;s result by evaluat— .

ing,

SclB) = 5 38800 — £}

To perform the sum, we convert it to an znte:,ral using the preacnpnon FHV&D by eq (} 54) :
and wsert the E(k) relation to ﬁnd it SER R o

1 PR Rk : Ej; 'j R
gc{E(k)1=~§j 5(W )4 Ko
Usmo 5(ax) 5(’()/8. thls becomes : i

I

Fl-. o

To integrate a 5 fLIHCtiOD; we need an: expressmn Gf the form‘ J"AS(‘C
Iettmg X =K we ﬁnd : ‘

| ; /Jdv e

the expected result. :

The fact that eq. (1.62) is identical to the correct result, eq. (1.58), verifies that eq.
(1.57) is the correct expression for the density of states.

For parabolic energy bands, the density of states goes as £'/2, as the example
calculation showed. For non-parabolic energy bands, we need to repeat the
calculation using eq. (1.40) for E(k). (See homework problem 1.4 for the result-
ing expression.) As illustrated in Fig. 1.18, nonparabolicity flattens the energy
bands, so there are more k-states between E and E + dE and the density of states
increases. In general, it will be necessary to evaluate eq. (1.56) numerically using
a table of E£(k).

Figure 1.19 compares the density of states in silicon assuming full, numerical
energy bands, to that evaluated from the parabolic and nonparabolic expres-
sions. The structure in the full band density of states is a result of the E(k)
relation plotted in Fig. 1.9, The sharp drop above = 2 eV results from the fact
that the first conduction band extends to only about 2eV. The parabolic band
assumption is seen to apply only to very low energy carrers near the band
minima, The non-parabolic energy band assumption provides a rough approx-
imation to almost 2¢eV, but for very energetic carriers, the full, numerical density

of states must be used.
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E(k}

Parabolic
Non-parabolic
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Fig. 1.18 Tllustration of how conduction band nonparabolicity flattens the E{k) relation
and increases the density of states in energy space. For a given d£, shown in dark on the
energy axis, there are more allowed k-states for the nonparabolic energy band.

6 T T ! 1 T
/

nonparabolic -», |

3 [band / « full band

DOS (x 10% cm3 eV)

0 1 2 3 4 5
Energy {(eV)}

Fig- 1.19 Comparison of the density of states (DOS) for the conduction bands of silicon.
The results for parabolic and non-parabolic energy bands are compared to the result using
the full numerical description of the energy bands. From Kunikiyo, T. et al., Journal of
Applied Physics, 75(1), 297-312, 1994. (Reproduced with permission of American Institute
of Physics.)

Density of states for confined carriers

For carriers in a bulk semiconductor, the density-of-states for parabolic energy
bands goes as E', but for confined carriers, the density of states is altered.
Using eqgs. (1.54) and (1.55), we find the one-, two-, or three-dimensional density
of states as (see homework problem 1.3)
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Fig. 1.20 The density of states versus energy for I, 2, and 3-dimensional carriers with
parabolic energy bands. The energcy E has been referenced to Eo,, the conduction band
minima for three-dimensional carriers. For two- and one-dimensional carriers, the
minimum energy is raised by quantum confinement.

m* 2h (1.63a)
T .63a
810 = i JImE ’
for one-dimensional carriers, and
m*
&0 = 3 (1.63b)
h*
for two-dimensional carriers. These results should be compared to
m* N 2mE
py = ——— 1.63
&3D Tmz Th ( 6 C)

for three-dimensional carriers. Figure 1.20 sketches the density-of-states versus
energy for one-, two-, and three-dimensional carriers. Because carrier confine-
ment is common in modern devices, we shall have to become familiar with
evaluating carrier densities, average kinctic energies, scattering rates, ctc. in
one, two, and three dimensions.

1.9

Electron wave propagation in devices

An electron propagating within a device sees both the crystal potential and those
that are applied or built-in to the device. When the applied and built-in fields are
absent, only the crystal potential, U(z), sketched in Fig. 1.21a is present. The
solutions to the wave equation are well known for the crystal potentials of
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Fig. 1.21 Illustrations of the crystal and applied potentials within a semiconductor. {a) The
crystal potential versus position, (b) the applied or built-in potential versus position, {c) the
total potential versus position.

common semiconductors [1.6]. In devices, however, another potential can be
built-in by varying the doping or material composition or imposed by biasing
the device. [This is the potential we refer to as Eqy(r).] As sketched in Fig. 1.21b,
the applied and built-in potentials often vary slowly in comparison to the crystal
potential [but with modern epitaxial growth techniques, potentials that vary as
rapidly as the crystal potential can also be engineered into the device (recall Fig.
1.15)]. Electrons see both the crystal and applied or built-in potentials as
sketched in Fig. 1.21c.

The effective mass equation

When scattering can be neglected, the electron’s wave function is found by

solving
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nod il
— s+ Up(2) + Ecg2) | P(z, ) =1h—. 1.64
I: 2m0d22+ oz + co():{ (z =i o1 (1.64)
Since the Bloch function solutions to eq. (1.64) in the absence of Fpy(z) are
assumed to be known, the question of whether eq. (1.64) can be simplified by
using these -known solutions arises. The answer is yes, for carriers near the
bottom of a simple, spherical, parabolic band, the wave equation can be written
as
R

d L F
{—Zﬂ—d——? + Eco(z)}F(z, H=ih— (1.65)

where F(z, 1) is the envelope function, and the actual wave function is
Y(z, 1) = F(z, Oujeyg- (1.66)

The wave function is the product of a slowly varying envelope function and a
rapidly varying Bloch function evaluated at the band minimum. Equation (1.65)
is known as the single band effective mass equation and represents an enormous
simplification of eq. (1.64) because the effects of the complicated crystal potential
have been described by a single number, the effective mass. Equation (1.65)
applies only when the applied or built-in potential varies slowly on the scale of
the crystal potential. This certainly is not the case for the quantum well sketched
in Fig. 1.15, but if the well is not too narrow, then an effective mass equation
usually provides a good description of the energy levels for electrons within the
well. Equation (1.65) also applies only to a parabolic band. The effective mass
equation needs to be generalized when the band is non-parabolic or, in the case
of valence bands, when several nearby energy bands are coupled. The derivation
of the effective mass equation, and its extension to more realistic band structures,
are discussed by Datta [1.1]. '

In devices, the contacts launch electron waves which propagate through the
device according to the effective mass equation. A device can be described by
specifying its energy band diagram as displayed in Fig. 1.22. The ‘contacts’ are
heavily doped regions where Ecy(z) is uniform; they are assumed to be near
thermodynamic equilibrium so that each can be described by its own Fermi
level. To compute the current through the device, we evaluate the sum

— hk. hk,
J. = % > :{fL(m(m;) Tor(K) —fR(k)( -)TRL(m}. (1.67)
k

m*

In this equation, #k,/m" is the velocity of electrons as they are injected from the
contact with wave vector, k, /1. (k) is the Fermi factor for the left contact, which
gives the probability that such an electron is injected from the contact, and
Ter(K) is the current transmission coefficient for the electron. In Section 1.1, we
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{ L >z

Q L
Fig. 1.22 Representation of a device by its energy band profile. Each contact, assumed to
be in thermédynamie equilibrium, injects electrons into the device and absorbs electrons

incident upon it.

computed T(k) for a simple potential step. For arbitrary potential profiles, the
current transmission coefficient is found by numerically solving the effective mass
equation. The sum of eq. (1.67) accounts for the current due to all the electrons
injected from each of the two contacts, and must, in general, be evaluated numeri-
cally.

Device analysis based on solving the effective mass equation is necessary when
the potential, E¢y(z), varies rapidly so that wave phenomena are important.
Vassell et al. [1.8] describes how this technique is applied to devices.

{luantum confinement

Because electrons confined within a small potential well experience a rapidly
varying potential, the carriers’ wave nature becomes important. For the quantum
well illustrated in Fig. 1.23a, electrons are confined in the Z-direction but are free
to move in the ¥ — 7 plane. For the quantum wire illustrated in Fig. 1.23b,
electrons are confined in the & — 7 plane but are free to move in the Z-direction.
Such structures can be produced with semiconductor heterojunctions, as illu-
strated in Fig. 1.15 for the quantum well. To describe confined carriers, the
three-dimensional effective mass equation,

712

5= VIF®) + Eqo(F() = EF(r) (1.68)

must be solved. Equation (1.68) is readily solved by separating variables. For
quantum wells, carriers are free to move in the ¥ — ¥ plane, so we try solutions of
the form

ik ik

F(r) = p(2) e (1.69)

A% L,\'L_r
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{a)

Fig. 1.23 Electrons confined in a quantum well (a) and in a quantum wire {(b).

where A = L, L, is the cross-sectional area. After substituting eq. (1.69) into eq.
(1.68), we find an equation for ¢(z) as

d2o(z

d‘ig ), Ep(z) =0, (1.70)
where

5 2m*
ki = . [e — E¢o(2)] (1.71)
and

—E L K+ K2 1.72
&= —Zw':(x‘F W (1.72)

Because /7 (k2 + ki)/Qm* is the kinetic energy we associate with motion in the
X — J plane, € must be the energy associated with confinement in the Z-direction.

Equation (1.70) 1s identical in form to the simple, one-dimensional wave equa-
tion, eq. (1.3). The three-dimensional wave equation consists of a plane wave in
the ¥ — § plane multiplied by a function, #(z), which is found by solving an
equation that is very similar to the one-dimensional wave equation. If the quan-
tum well is deep, then ¢(z) is given by the infinite well solutions of Section 1.1 as

2
#(z) = \/p;;sin k.z, (1.73)

where
k,=n/W (1.74)

and

e K,
E = — — (k> ke
Eco + o T 2m*( k)
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or

P

&

A
E = Ecy +8r1+2—”'1:(k.2\7+ki), (1.7%)

where &, is given by eq. (1.17). Quantum confinement restricts k. to discrete
values, and the energy consists of a component due to confinement in the
Z-direction and one due to the free motion in the X — p plane.
Carriers in quantum wires are treated in a very similar manner. Instead of eq.
(1.69), we write the wavefunction as
eik:Z
F(r) = ¢(x, y)ﬁ- ' (1.76)

If the confinement potential is infinite, we find

2. [ 2
olx, y) = w;smkxx -@Slnkyy (1.77)

where

ky=nm/W, (1.78a)
and

ky = n,m/W,. . (1.78b)

For quantum wires, the bottom of subbands are at the energies,

WPt (nz_ " )

= =4 (1.79)
2 2

w2 W

8”,\'1”}' 2nr*

and if the electron is moving in the Z-direction, its total energy is

wk?

o (1.80)

E= ECO + gnnn_r +

Carrier density relations for confined carriers

For three-dimensional carriers in a bulk semiconductor, there is a simple relation
between the equilibrium carrier density and the location of the Fermi level, The
corresponding relations for confined carriers are readily derived. Figure 1.24a
shows three energy levels, or subbands, in a quantum well along with the position
of the Fermi level. To compute the density of electrons in the well, we evaluate

1 | —
n= Ekx%;k:fo[ﬁ‘(kmk},,k:)] cm™?, . (1.8
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Fig. 1.24 Energy band diagram of a quantum well with the location of three subbands and
the Fermi level indicated. (a) The filled circles at the right indicate occupied states and
show that only the first subband is occupied. (7 = 0K is assumed.) (b) The first two
subbands are occupied.

where the sum is over each state in the Brillouin zone, and f; gives the
probability that the state at energy, E, with crystal momentum, (k. k,, k.), is
occupied.

The sum, eq. (1.81), is easiest to evaluate at T = 0 K because then all states
below Ep are occupied, and all those above Er are empty. For the example
illustrated in Fig. 1.24a, only states with k. = k., are occupied, so eq. (1.81)
becomes

11

—— > fo[ Bl ke k)]

_ 1 1.82
§ WL-YLYk.k. ( )

Using egs. (1.54) and (1.55), we convert the sum over wave vectors in the X —
plane to an integral as

1 20
ng =nW = WJ Jo(E2mkydky cm 2, (1.83)

Dl 0
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where ng is the electron density per unit area, and
k= ks + ki (1.84)

Only states below Ef are occupied, so from eq. (1.75) we find that all states above

2m*
ki = ki = > (Ep — ) (1.85)
are empty. At T = 0K, eq. {1.83) becomes
Lff kt
Hg = FL 27Tk“dku s é—j—'[
or
m* .
ns = | — J(£F — &) = gan(Er — ). (1.86)
h

If the Fermi level lies above two subbands, as it does in Fig. 1.24b, then the sum
in eq. (1.81) becomes

1
T.L

S AL K k)] S A Bl k)] (187

Yy, XYk k.,

Jig ==

For this case, the carrier density is simply the sum of the contributions from
the two subbands,

ns = gp(Er — &) + gan(Er — &). (1.88)
The corresponding results for finite temperatures are also readily derived. We
begin with eq. (1.81) but use the Fermi function,

fo= 1 (1.89)

14 e(g]+213/<ﬁ/2mmEF)/kBT'

Alternatively, we can work in energy space and evaluate

. m gmdE
g == J; Tm (190)

In either case, for one occupied subband, we find

ng = gapkg T In(1 + eFrarkaly oy =2, 7 (1.91)
which is analogous to | .
n=NcF1pl(Er — Ec)/kgT) cm™ (1.92)

for three-dimensional electrons. Here, F,, is the Fermi-Dirac integral of order
1/2. and
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(1.93)

D kg T\
"

IVC :2(

is the effective density of states. When additional subbands are occupied, eq.
(1.91) is easily generalized by adding the contributions from the additional sub-
bands.

Quantum confinement often occurs in modern devices such as heterostructure
field effect transistors in which the channel comprises carriers confined in a
quantum well [1.10]. Even in the conventional, silicon MOSFET, carriers are
confined within a nearly triangular potential well at the oxide-silicon interface,
The wave functions of confined electrons are qualitatively different from the
plane waves that describe three-dimensional, bulk electrons. There is a close
analogy between these confined electrons and electromagnetic waves in a wave-
guide. The various subbands are analogous to the waveguide modes; occupied
subbands correspond to propagating modes, unoccupied subbands to evanescent
modes. This analogy can even be expleited to build electron devices analogous to

optical or microwave devices.

1.6

Semiclassical electron dynamics

For conventional devices, the applied or built-in potentials vary slowly in com-
parison to the crystal potential, so that wave phenomena such as reflections and
tunneling are absent and electron motion can be described by classical physics.
When the potential is nearly constant, the bottom of the band is simply shifted,

E(k, 2) = Eco(2) + E(k). (1.94)

Ecy(2) is interpreted as the bottom of the conduction band, and E(k) repre-
sents only the kinetic energy. Since E¢y = constant — ¢ ¥(z), where V(z) is the
electrostatic potential, it varies with position only when applied or built-in fields
are present.

Equation (1.94) is illustrated in Fig. 1.25. As the electron wave packet (cen-
tered at k) moves without scattering, its total energy remains constant. From eq.
(1.94) we have

dE(ky,z) OE dky OE dz

dr ok dr 9z dr

y ko | BEco(?)

=u,- .
£ dr 9z §

Because energy must be conserved, dE/dt = 0 and we conclude that
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Fig. 1.25 Motion of an electron wave packet centered at k. =k, across a region of slowly

varying potential. After Datta [1.1].

d(ke) .95
-_d_ro_ = —VEq(2) = F, (1.9%2)

where kg is the wave vector at the center of the wave packet. Because eq. (1.95a)
is so similar to the equation of motion for classical particles, with kk, playing the
role of momentum, %kg is termed the crystal momentum.

For heterostructures, the effective mass may vary with position, so

Pk’
Eolz, k)= E —
ez k) co+ 2m*(z)

e

For heterostructures, the equation of motion generalizes to (see homework
problem 1.13)

d(fkg) ) wi?
— = —VEcq(z) — v(m) (1.95b)

In this case, only the first term represents a real, physical force on carriers.
The analogy of 7k, to momentum is also apparent from the velocity of a Bloch
clectron as given by eq. (1.14). For spherical, parabolic bands described by eq.
(1.38), we obtain C T
hkg .
1R (1.96)

Uy =— )
£ mr

which looks like momentum divided by mass. But for nonparabolic bands
described by eq. (1.40), the group velocity is
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?‘lkg

Y = o+ 20E) (1.97)

in the semiclassical view of electron transport, the electron wave packet is
treated as a particle; the uncertainty in the momentum is assumed to be small
so that the electron’s energy is sharply defined, the uncertainty in the electron’s
posi'tion is assumed to be small in comparison to the distance over which applied
and built-in potentials vary significantly. The motion of the center of this wave
packet is described by eq. (1.95), which looks like the classical relation between
force and momentum. The velocity of the electron, eq. (1.14), corresponds to the
velocity of a classical particle only for spherical, parabolic bands. This semi-
classical treatment of carrier dynamics is the basis for each of the following
chapters, but collisions involve rapidly varying potentials and must be treated
quantum mechanically.

Scattering of electrons by the random potential, Us (r,f)

Bloch waves move through the lattice unimpeded by the crystal potential
Occasionally, however, the electron encounters a perturbation caused when a
lattice vibration moves an atom or by impurities or defects which may be present.
When an electron encounters sich a perturbation it scatters — scattering ‘knocks’
an electron wave packet centered at &, to k. Frequent scattering tends to ‘wash
out’ the interference effects due to the carrier’s wave nature. Scattering plays a
dominant role in transport, and it is important that we know S(kg, kg), the
transition rate from kg to kg, We now present a brief derivation of the expression
for S{ky. ko) in terms of Ug(z, £), the perturbing potential. For a proper deriva-
tjon, consult a quantum mechanics textbook such as Datta [1.1]. The intent here
is to indicate how the result is derived and some of its limitations. We will make
extensive use of the result, known as Fermi’s Golden Rule, to calculate scattering
rates for electrons in semiconductors, so the reader should develop a familiarity
with 1its use.

Fermi's Golden Rule

The wave equation, [eq. (1.1)] is written as ‘
ey

[Hy + Us(z, D]¥(z, £) = maj%, (1.98)

where Hjy 1s the Hamiltonian operator for the unperturbed problem (the problem
without the scattering potential). We assume that the unperturbed problein:
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Hyre = E(k)r, (1.99)

Pz, 1) = (z)e O (1.100)

has been solved. These solutions form a complete, orthonormal set, so we can
express the solution to the perturbed problem as linear combinations of them:

V() =Y al0¥i(z 0 =) (e O (1.101)
k s

Now consider the situation sketched in Fig. 1.26 — an electron wave packet
centered at & — kg enters, interacts with Ug(z, 1), and emerges centered at kg, At
t — 0 we have
Ckn(f == 0) =1

Gli=0)=0  (k+ k).

(1.102)

After the scatfering event, the probability of finding the electron with wave
vector, kg, 1S

2

Pk = ki) = lim 'cka(i) (1.103)
=
so the scattering rate from kg to kg is
, , ICA»‘;(F‘)IQ
Sk, ko) = lim — (1.104)
=0

(To allow t — oo in these expressions, without another collision occurring, colli-

sions must be infrequent.)
To find ¢;, we insert eq. (1.101) in eq. (1.98) and obtain

Ry ac Eth
U B (O, —ERn 4 Xk . "E(/‘)r/ﬁ' 1.105
s( )Xk:ﬁ()%e -”Zk: o Yie ( )

Next, we multiply both sides by 7 .cF* 7% inteerate over position, and make
ply ko S

use of the orthogonality of eigenfunctions, to find

{t— o)

Fig. 1.26 Scattering of a wave packet centered at k= &y to one centered at k = ky.
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ocy o ,
ihﬁ% = D Hygge(n)e S5O, (1.106)
k
where
. N
Hy g (0 = Y (2)Us(z, Dy, (2)dz / (1.107)
0 o

is the matrix element of the scattering potential between states k; and k. We have
normalized the wavefunctions over a length L, which becomes a volume, @, in
three dimensions.

Since we assume that the scattering is weak, cg, = 1 for all time, and the other
¢,’s are always small. With this approximation (the so-called Born approxima-
tion) the sum in eq. (1.106) can be approximated by one term as

Bck/ . ;
ihy = Hyg, (e FEHEI,
which can be integrated to find
1 e r
(D) = — J H,., lER—E&l g, 4 (), (1.108)
(] th 0 [ [

Because the final state kg was empty at £ =0, ¢p(0) = 0.
Let’s specify the time-dependent matrix element as
Hig (1) = Hif e ™. (1.109)
(The significance of the a and e superscripts which apply the minus and plus signs
respectively will be explained shortly.) With eq. (1.109) for the matrix element,
eq. (1.108) can be integrated as
1 By~ Elkg)Fhaji/f 1

= HYE . 110
T ek E(RY) — Eko) T heol/h (1.116)

When we define
A = [E(lq) — E(ky) F hoo/h, (1.111)
then eq. (1.110) can be written as

. i 2
2 Sin(A1/2) (1.112)

1
C‘/\»é(f) :AHzéiUe /11‘/2

14

Now, according to eq. (1.104), we find the transition rate as
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2

[ a.e
. ; _ ’H ey
S(ky, kg) = lim 5

— l‘h”

sin(A1/2) 2 )
;: A }t. (1.113)

For large ¢, the function in brackets is very sharply peaked near the origin and
looks like a $-function. The strength of the §-function is determined from the
area under the curve. Recall that

dx =m,

3

Jf’“ sin® x
oo AT

so sin® x/x” can be replaced by 8(x). Using x = A¢/2, we find the replacement

22
lim SO 27
,in; (At/2)* t ) (1.114)

which can be inserted in eq. (1.113) to find

N 2T ;
S 8) = 2 iy 8CEGkq) — Elleg) — o)

(1.115)

20| e o
+ 2 Hy | K ~ Etkg) + he

The §-function in eq. (1.115) simply expresses conservation of energy and applies
when scattering is weak, so that time can approach infinity in eq. (1.113). For
frequent scattering, there 1s an uncertainty in the final energy, given by eq. (1.12),
which is known as collisional broadening. The first term in eq. (1.115) contributes
when E(ky) = E(ky) + ho; an energy of how has been absorbed. The second con-
tributes when E(kg) = E(ky) — hew; an energy of hw has been emitted.

Equation (1.115) 1s the basic result of scattering theory that we will apply to
carriers in semiconductors. The result is known as Fermi's Golden Rule. To apply
the Golden Rule, the scattering potential must be identified so that the matrix
element can be evaluated. For electrons in semiconductors, the wave functions
for the unperturbed problem are Bloch waves. When the matrix element, eq.
(1.107) is evaluated for Bloch waves, one finds [1.3]:

Hpp = e, kK YUs(k = k) (1.116)

where

Ik k') = J up (D) (2)dz . (1.117)
cell 7

1s called the overlap integral {the integral is over a unit cell), and
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+L/2 i’z +ikz
Uk — kN = — Us(z)—=dz 1.118
k)= [ e (1.118)
For a parabolic band, 7(k, k) ~ 1 [1.5] and
L2 e iz
H,{,(MLJ 4y (Z)e' dz (1.119)
L2

which is just what we would have obtained from eq. (1.107) using plane waves
rather than Bloch waves. When we evaluate scattering rates in Chapter 2, we’ll
keep the algebra to a minimum by assuming that the energy bands are parabolic
and employ eq. (1.119), but for quantitative work, overlap integrals should be

considered.

Examples

To illustrate how the Golden Rule is applied to scattering problems, we consider
two simple, but illustrative, examples. First, we consider scattering from a §-
function potential, which might approximate a short range scattering potential.
Second, we consider a periodic perturbing potential, which might represent, for

exarmple, a lattice vibration.

“tion potentlal is an’ apprommate descrlption of i
strongly. screencd by free cartiers,
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: Example:' Seattering from a periodic potential

As a second exampie con51der the scattermg potentlal

; US(‘ t)_A“E il(ﬁ.“u)t) w R 7 o : i ,: (1123)

jFor lane: waves, conﬁned to. a normahzaﬁon Iength L/2 <7< L/2

onecker de a é'

i s deﬁned t6.be ane 1f I ‘] and 2e10 for ‘

;whlch we' mterpret as a statement of conservauon of momentum T he scattered momentum
“has elther absorbed or emiitted momentum CThe momentum conservmg Kronecker B: wWas
Tabsent in eq (l E22) becanse the 6 function. scattenng potennal contained FOUI]CI compo-;-_
""nent with: all momenta) ‘This scattering” potennal isia good descrlptlon of. the perturblng;'
potentlal due to Iamce vtbratlons (phonons) o Bt et

1.8

Lattice vibrations (phonons)

Because much of the scatteringin semiconductors is due to lattice vibrations, it is
important that we understand their basic properties. If an atom is displaced from
its equilibrium position, the bonding forces tend to push it back, so it oscillates
about its equihbrium site. Since fattice waves propagate in a periodic medium,
they have properties much hke those of Bloch waves. Figure 1.27a shows a
typical dispersion relation, o versus 8, observed for elastic waves in cubic semi-
conductors iike silicon and gallium arsenide. (We label the wave vector by f
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(a)

Longitudinal
= — — Transverse

Optical

- R . —.—-.—-—.--——-a):a)0

Acoustic

—_ e CE I

Fig. 1.27 () Typical dispersion relation tor elastic waves propagating along a high-
symmetry direction in cubic semiconductors. (b) Simplified dispersion relation useful when
only longitudinal lattice vibrations near the center of the Brillouin zone are considered.
After Datta [1.1]. (Reproduced with permission from Addison-Wesley)

rather than k to distinguish elastic waves from electron waves.) Six types of
elastic wave exist — three acoustic modes, and three optical modes. Acoustic
modes are like sound waves in that adjacent atoms are displaced in the same
direction — only the magnitude of the displacement varies from atom to atom. Of
the three acoustic modes, one is longitudinal {LA) and two are transverse (TA).
For longitudinal waves, atoms are displaced in the direction of propagation; the
two transverse modes, in which atoms are dispiaced in a transverse direction, are
degenerate in cubic silicon and GaAs.

In Chapter 2 we shail establish that the scattering of electrons within a valley is
due to lattice vibrations with wave vectors very near the origin of the Britfouin
zone. For small 8, the dispersion relation for acoustic modes can be approxi-
mated by

w(B) = vib, (1.130)

where v, is the sound velocity.

Optical modes differ from acoustic modes in-that adjacent atoms are displaced
out of phase. (The term arises because such vibrations can interact strongly with
light.) As shown in Fig. 1.27a, the dispersion refation for optical modes dispiays
relatively little variation with wave vector. When electrons are scattered by opti-
cal phonons and remain within the same valley, only small wave vectors are
involved and the dispersion relation can be approximated as

w(B)%wo, (1.131D)
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where wy is a constant. Figure 1.27b shows a simplified dispersion relation for
acoustic and optical modes that is often used for scattering calculations.

Lattice vibrations are much like the vibrations of a harmonic oscillator, so the
energy of each normal mode must be quantized according to

() = hotp) Wy + 5. (1.132)

The quantum of energy is viewed as a particle called a phonon, and the number of
phonons is given by the Bose-Einstein factor as

1

No = Goomar: 1 (1.133)
For
ha(B) & kg Ty
eq. (1.133) reduces to
ke Ty
Ng =~ , [.i34
7 helB) .

which is known as equipartition and is usually valid for acoustic phonons —
except at very low temperatures. Equation (1.134) is easy to understand; kg7,
is the thermal energy and /wy is the energy of the phonon at 8, so eq. (1.134) just
tells us how many phonons are needed to account for the thermal energy. In
Chapter 2, we shall describe how phonons, both acoustic and optical, scatter

carriers.

Summary

A simple approach for treating carrier motion within conventional devices has
been outlined. This semiclassical approach treats carriers as particles whose
dynamics, between collisions, are governed by eq. (1.14) and eq. (1.95), which
are analogous to Newton’s Laws. Carrier scattering, however, is treated by
quantum mechanics using Fermi’s Golden Rule. The semiclassical approach is
applicable when the applied and built-in potentials vary slowly on the scale of an
electron’s wavelength. Room-temperature, thermal average electrons in silicon
have a wavelength of about 120 A and about 240 A in GaAs, so the semiclassical
approach may be questioned in ultra-small devices. Many devices contain quan-
tum wells, and the carriers within such weils clearly display their wave nature.
Quantum confinement atters the wavefunctions of efectrons confined in potential
wells, but transport within the confined region can often be described semi-
classically. Our focus in this text is on the semiclassical transport of three dimen-
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sional carriers, but we shall also from time to time consider the transport of
carriers confined in quantum wells and wires. An introduction to quantum trans-
port, in which the electron’s wave nature is essential, is contained in Chapter 9.
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Problems
1.1 Assume the scattering potential shown below and assume that electrons are free to move in the
z direction only.
u b
p
AU
I L 4
—w/2 0 w2
(a) Work out an expression for the transition rate, S(p, p") for one-dimensional electrons. Be
sure to normalize the wavefunction over a length L.
(b) Anincident electron with crystal momentum p can only make a transition to one different
state, p’. What is that state?
(c) Explain what would happen if the sign of AU were to change.
1.2 Consider the effect of a perturbing potential that is constant in both space and time,
Us(z, ) = U
and answer the following questions.
(a} Obtain an expression for the transition rate, S(k, ).
(b) Interpret your answer to part (a). What does your result imply about the motion of
electrons through regions of uniform potential?
1.3 The densities of states in one, two, and three dimensions can-each be expressed as the sum in
k-space as given by eq. (1.57). : i -
(a) Evaluate the two-dimensional density of states, and show that the result is eq. (1.63b).
(b) Evaluate the deasity of states for one-dimensional electrons and show that the result is eq.
(1.63a).
14 When evaluating the density of states in energy space, we have assumed parabolic energy

bands, but energy bands are typically nonparabolic.
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(a) For three-dimensional carriers with parabolic encrgy bands, the density of states goes as
EY? as siven by eq. (1.63¢). Work out the corresponding result for 3D carriers with
nonparabolic energy bands as given by eq. (1.40). Show that the density of states for
nonparabolic energy bands is the parabolic band result multiplied by +/T + «E(1 + 2«E).

{b) For two-dimensional carriers with parabolic energy bands, the density of states is con-
stant, as given by eq. (1.63b). Work out the corresponding result for 2D carriers with
nonparabolic energy bands as given by eq. (1.40). Show that the density of siates for
nonparabolic energy bands is the parabolic band result multiplied by (1 + 2aE).

The following problem concerns electrons in a quantum well of width, ¥, with one subband at
E = ). Assume equilibrium conditions and that the Fermi level is locatéd above ¢,. Answer
the following questions assuming parabolic energy bands.

£y

(a) Write an expression, involving sums over momentum space, which gives the average
kinetic energy (due to its motion in the x—y plane) per electron.

(b} Convert the sum to an integral over momentum or k-space.

(¢) Write an expression, involving an integral over energy space, which gives the average
kinetic energy per electron.

(d) Assume 7 = 0K and evaluate the average kinetic energy per electron. You may work in
either energy or momentum space.

Obtain an expression for the concentration per unit area of electrons in a quantum well as a

function of the Fermi level position, ng(£g). You should assume that the temperature is finite,

and do not assume that the semiconductor is nondegenerate.

(a) Find ns(Eg) when one subband is occupied. For this part, you should work in energy-
space using eq. (1.90).

(b) Repeat part {a) but do the work in k-space using eq. {1.83). For both parts (a}) and (b),
show that the answer is eq. {1.91). '

(¢) What is the result when two subbands are occupied?

(d) Explain how the results depend on the shape of the quantum well (i.e., does eq. (1.91)
hold for parabolic or triangular quantum wells? What changes, if anything?).

For an infinite depth GaAs quantum well of width W = 200A at T = 0K,

(a) How many subbands are occupied if ng = 5 x 10" em™?

(b) How many if ng = 5 x 10'* cm™?

For the quantum well problems, we have been asking about the total number of electrons per
unit area within the well — not how the electrons are distributed within the well, The carrier
density as a function of position within the well is found from

n) = FEW ()
ok ke

where
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H2) 2 i Nz
7} = ./—sin .
w W

(a} Show that the carsier concentration within the well is

Itk TSN oz
n(z) = &Zsinzn—;ln(l Femy

i 7?2 w n=1
where
1onta? _E
(Zm* w* F
g kg1

Hint:  Ii’s easlest to perform the integral over &, and &, in polar coordinates.

(b) Compute and plot n(z) versus z for quantum wells of width # = 50, 100, and 500 A.
Assume that m® = 0.067m, Ecy — Ep = 0.3¢V, T = 300K.

(¢} Compare the resuits of part (b} with the classical result.

Consider a 100 A wide GaAs quantum well, and assume that £ = 56meV and &, = 225 meV
above the bottom of the quantum well. If the Fermi level is 100 meV above the bottom of the

well, then
(a) What is ng at T = 300K? 7
(b) If the electrons were considered to be three-dimensional, what ng would be computed?

The quantum well that confines carriers at the AlGaAs/GaAs interface in a MODFET is
approximately triangular. The first two energy levels are given by

Ey = Vlné/B

and

By =y

where

=25 %1072 eV —m'?
and

ve =32 x 107 eV — mt3,

(See M. Shur, Gads Devices and Circuits, p. 519, Plenum Press, New York, 1987, for a
derivation of this result.) If we require that enly one subband be occupied, what is the max-
imum number of electrons per square centimeter that can be accommodated in the well at
T=0K?

Verify the results, eqs. (1.77)-{1.80) for electrons in a quantum wire.

Assume E-(z) is as follows:

AE,
¢ Eclz)




53

1.13

1.15

~ PROBLEMS

(a) Compute qb’fu: (2)¢p_(z) assuming dE¢ = co.
(b) Compte a(z} for x > 0, approximate fp(k}) using Boltzmann statistics.
(c) Sketch n{z} and compare it with the classical value. Show that differences occur when z is

with A of z = 0.

1 2%
14 m*/cBT

Prove that the equation of motion for a semiconductor heterostructure in which m* varies
slowly with position is given by eq. (1.95b).

In the so-called tight binding method for computing bandstructures, the £(%) relation for a
one-dimensional lattice 1s given by

E(k) = d — Bcos(ka),

where 4 and B are constants, and a is the lattice spacing. Using this band structure for one-

dimensional electrons, answer the following questions.

(a} Plot the E(k) relation for —n/a <k < m/a.

(b} Plot the velocity, vk}, for —rr/a <k < 7/a.

(c) Assuming that the electric fleld is — &, how long would it take an electron to travel from
k=0tok =n/2a?

(d) Given the answer, Ty, from part (¢}, how far would the electron go in this time?

(¢) Compute the density of states, g(£), for this one-dimensional semiconductor.

Consider a metal-semiconductor barrier as shown below:

J JSM
e
gV,
" Ew e
} % -
0

(a) Write an expression, involving a sum, for the electron current injected from the semi-
conductor to the metal, Jgy.

(by Convert the sum to an integral. Be sure to show the limits of integration.

(¢) Sketch the transmission coefficient versus k&, expected {rom {1} quantum mechanical and
{2) classical considerations.

(d) Set up the problem for compmiting the classical {thermionic emission) current Jgy. Show
the formuta that has to be integrated, but do not integrate it. )

(e) FEwaluate the integral and show that the result is the expected thermionic emission rela-
tron.
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2.1 Relaxation times
2.2 The perturbing potential
2.3 General features of phonon scattering
2.4 Scattering by ionized impurities
2.5 Energy-momentum conservation in phonon scattering
2.6 Procedure for evaluating phonon scattering rates
2.7 Deformation potential scattering
2.8 Polar optical phonon (POP) scattering
2.9 Intervalley scattering
2.10 Carrier—carrier scattering
2.11 Phonon scattering of confined carriers
2.12  Scattering at a surface
2.13 Scattering rates for non-parabolic energy bands
2.14 Electron scattering in Si and GaAs
2.15 Screening
2.16 Summary

As carriers traverse a device, their motion is frequently interrupted by collisions
with impurity atoms, phonons, crystal defects, or with other carriers. In this
chapter we examine carrier scattering and evaluate the transition rate, S(p,p”).
which is the probability per unit time that a carrier with crystal momentum p
scatters to a state with crystal momentum p’. Our approach is based on Fermi’s
Golden Rule as described in Section 1.7. The first step is to identify the scattering
potential then to evaluate the matrix element,

l * in -ri i 3
Hyy =5 J e PP _ e

—0oC

In this chapter, we keep the mathematics to a minimumm by evaluating matrix
elements using plane wave electron wave functions rather than the actual Bloch
functions. The overlap integral due to the cell periodic part of the Bloch function
[recall eq. (1.116)] is unity when the constant energy surfaces are spherical and
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the energy varies parabolically with momentum (which we will simply call sphe-
rical, parabolic bands). In practice, however, the energy bands are rarely para-
bolic, and overlap integrals have to be evaluated [[.5].

Having evaluated the matrix element, we find the transition rate as

(b ) = 7 [y S — E () — 4E), 2.2

where AL is the change in energy (if any) caused by the scattering event. (Note
that the order of p and p’ in H,, is, by definition, opposite to their order in
S(p.p))

The effects of scattering are conveniently summarized by evaluating character-
istic times from the transition rate, S(p, p’). We discuss these relaxation times in
the following section. The perturbing potentials for several common scattering
mechanisms are then identified in Section 2.2. Next, some general features of
carrier scattering are described in Section 2.3 followed by a step by step exam-
ination of various scattering mechanisms. We will not attempt to catalog S(p, p’)
for all possible scattering mechanisms but will focus, instead, on scattering by
ionized impurities, phonons, and by other carriers because they tend to be the
most important. Finally, in Section 2.14, we summarize the general features of
scattering in common semiconductors. For a first reading, Sections 2.4-2.13 can
be bypassed.

Relaxation times

Consider a beam of energetic carriers injected into a semiconductor at time ¢ = 0,
with their momenta, p,, aligned along the Z-axis. Figure 2.1 illustrates how
collisions affect such carriers. The transition rate is the rate at which carriers
out-scatter from a specific initial state to a specific final state. The scattering rate,

1-
= > S(p, p)[1 = /0], 2.3
o pZTj (po, [1 = /(") | (2.32)

1s the rate at which carriers with a specific momentum p, scatter to any other
state. Alternatively, t(py) Is the average time between collisions (also. known as
the lifetime of the state, py). The vertical arrow below the sum is to indicate that
the sum over final states includes only those whése spin is parallel to that of the:
incident carrier (the scattering mechanisms we consider do not flip the carrier’s
spin). The factor of [1 — f(p")], where f(p’) is the probability that the state at p’ is
occupied, gives the probability of finding an empty final state. For a non-degen-
erate semiconductor, there is a high probability that the state at p’ is empty, so
eq. (2.3a) becomes



56

__ CARRIER SCATTERING

—
t= TE(IDQ)‘\ /

Fig. 2.1 llustration of how collisions affect a group of electrons mjected at 1 = 0 with

momentum py.

I
= S . 2.3b
TSP RIS (239

This sum is much easier to evaluate because it does not depend on knowing how

the states are occupied.

Some important scattering mechanisms are not isotropic. Instead, they tend to
deflect carriers by small angles. Such a case is illustrated in Fig. 2.1, which shows
that even after v(p,) seconds, the carriers can retain a memory of their incident
momentum. To evaluate the rate at which the Z-directed momentum is refaxed,
we need to weight each collision by the fractional change in the z-directed

momentunt. The result is

!
Tm (Po)

=Y S(pg. b X1 — pl/p0) = Y S(pg. pO[1 = (p'/po)cosal, (2.4)
p'1 p.t

where « is the polar angle between the incident and scattered momenta as illu-
strated in Fig. 2.2a. 7,,(py) is known as the momentum relaxation time and, as Fig.
2.1 indicates, is the time required to randomize the momentum.

We may also be interested in the time required to dissipate carrier energy
which 1s denoted by the length of the vectors in Fig. 2.1. As Fig. 2.1 indicates,
it is quite possible to relax the injected momentum by elastic scattering without
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(a) z A o o) z,

0 , P
o p

a

6=c
>y Y,
X X,

{c)

&) AP
e 2

o 2

Fig. 2.2 (a) Illustration of a scattering event showing the incident and scattered momenta
and the polar angle, «. (b) The same scattering event with the coordinate axes oriented so
that # = ¢. (¢) Definition of /iff, the momentum change resulting from scaltering. We also
show two choices for orienting the r-axis. The first choice, denoted by z|, is used to
evaluate the matrix element in eq. (2.34), and the second choice, denoted by z,, is used for
evaluating the momentum relaxation time in eq. (2.38).

affecting the energy of the carriers. To find the energy relaxation rate, we weight
gach collision by the fractional change in energy and find

E(p
ZS(O, [ Fip J : (2.5)

where tg(py) is the energy relaxation time. We routinely evaluate t(py). T(py),
and zE(p,) from S(p,, p’) because knowledge of these three characteristic times
concisely summarizes how collisions affect carriers.

g (Po)

Example: Scattering by a S-functiﬁn'pofentiﬁi

In Section 1,7, we evaluated S(p, p’y for two 51rnp g perturbm potentia.ls;"FO{ the 5—funcjﬁh
tion perturbing potentlal we found ) : : S eh

S(p,p/)ZES(E/-vE), : _: . .: . - . . | | | AR (26)*5'

where Cis a constant and Q a normalization volume. For this potential, the scattering rate

is
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1 C . - _ L
T—@zﬁgéw ~E) | | ) @D

which'is evaluated by converting the sum to an integrai,

] . C 00 it p;2 p , S “ = i
=7 b, 5(2".1 £ oiumsndnde

Note that in converting the sum to an integral, we used one-half of the préscr'intion' stated
in eq, (1.53) because only those ﬁna! states w1th spm parallei to the mmdent electron s are
dvailable: - . : s

The mtegral ineq, (2 8) 18 1eadﬂy evaluated to find

ey ;;z
-r(p)’ : 47;27“

Where gC(E) is.the three- dlmensxonal dens ity of states at energy, b The result states that’.y.
the scattering rate-fora carrier-with: encrgy, F, is proportional o the denslty of states at E.
The' THOTE final I'states avallable the: higher: the scattering Tate. k i
To find the momentum relaxanon timie; we nidke use of ¢ éq: (2:4). The resultlng 1ntegrai 138
niuchilike gq. (2: 8) but with a second term as welE If we ahan our coordinate axes so ‘that 3,
is direeted along the: incident. momentum, thema =4, as il ustrated in F1g 2.2b. The second-_;
contri butlon to the: mtegraE then mvolves IHtEET&thH over cos 9 sm@ ae whlch mtegrates 0.

re[axation time is aiways equal to-the’ scattenng time When the transmon rate s ISOtfople‘:
[thatis, S(p, p’ ) contains no dependence on'o or #l : : ¢
Finally;" we ‘consider  the energy . relaxation timé. It is apparent that thls scattermgi,
mechanism s elastic, so B/ = E, and from ed.(25) we: conclude that T =00, The resultV
simply states that elastic scattermg cannot refax.energy: N '

2.2 The perturbing potential

The first step is to identify the perturbing potential responsible for scattering, so
that the matrix element can be evaluated. In this section, we identify the perturb-
ing potentials for the most common scattering mechanisms, ionized impurity and
phonon scattering. In following sections, the transition and scattering rates will
be evaluated, and some additional mechanisms will be considered.

221  lonized impurity scattering

Carriers are scattered when they encounter the electric field of an 1onized impur-
ity. We might assume that the scattering potential is Coulombic,
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2

Us(r) = (2.10)

47[K350T' '

but the ionized impurity attracts mobile carriers which screen the potential. The
electrostatic potential due to both the ionized ympurity and mobile carmers is
found by solving Poisson’s equation in spherical coordinates,

I d ay g )

where an n-type semiconductor has been assumed. Space charge neutrality dic-
tates that n = ny = Ny, (with a corresponding efectrostatic potential of ¥ = V)
on a macroscopic scale, but on a microscopic scale, perturbations in the potential
and carrier density exist. By writing the potential and carrier density as V' =
Vo + 8V and n = ny + 8n and substituting in eq. (2.11), we find

I d/,dsV Ggon
- — = 2.12
r2dr (r dr) K& (2.12)

To find 8n, recall that
n = NeelbrEcmliT
for a non-degenerate semiconductor and that

Ec(r) = constant — ¢ ¥ (r),

so small perturbations in carrier density can be refated to perturbations in the
potential by

on= gy = A5y
n=—38V =—§V.
v kyT
After inserting this result in Poisson’s equation, we find
I d[,dsV 7*ny )
AT = 2 sy =SV LA, 2.13
P dr (r dr) ksEokpT /D (2.13)
where

kT
Lp = [S50780 w 219
L )

“is known as the Debye length. [For degenerate semiconductors, Fermi~Dirac

statistics apply, and the scrreen‘mg fength, eq. (2.14), must be generalized as
discussed in homework problem 2.3.] -
The solution to eq. (2.13),

A _
sV = Ze/n, (2.15)
¥
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2.2.2

shows that perturbations i potential decay exponentally with distance from the
perturbation. If the perturbation is due to an ionized impurity, we should recover
the Coulombic potential as r — 0, so

2
q

T dmkgsg

For an »#-type semiconductor, therefore, the appropriate perturbing potential s
the screened Coulomb potential,

2
Us(r) = ——e~to | — (2.16)
drricgeyr

On the other hand, when the mobile carrier density is low, as it is in the depletion
region of a p-# junction, the unscreened Coulomb potential [eq. (2.10)] is used.

Phonon scattering

Because a semiconductor’s band structure is determined by the crystal potential,
it is influenced by changes in lattice spacing. A semiconductor under pressure has
a perturbed lattice constant and band structure as sketched in Fig. 2.3a and 2.3b.
For a small change in lattice constant, we expect that

5
SE- = Do (2.17a)
a
apnd that
5
SEy = sz“, (2.17b)

where De and Dy, the deformation potentials, can be deduced from experiments

and have been characterized for common semiconductors (refer 1o Table 2.1 at

the end of this chapter). The change in effective mass with lattice spacing is small

and is neglected. Lattice vibrations deform the fattice producing a ‘grating’ in the

band edges as sketched in Fig. 2.3b. Electrons and phonons interact when carrier

waves scatter off of this grating. "
Consider an elastic wave,

u(x, 1) = Age NPT o gremiBroen, CT ' ) (2.18)

propagating in a one-dimensional lattice. (Writing it in this form ensures that the
wave 1s real, see Datta [1.1].) The use of a continuum description in eq. {2.18) is
justified because only long wavelength (smalfl §) phonons are effective in intra-
valley scattering. Four acoustic phonons, which displace neighboring atoms in
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o
.

b g O g
Normal volume Dilated

(b)

Atomic displacement

Undisturbed Disturbed
band gap band gap

.Fig. 2.3 (a) Effact of a change in lattice spacing on the band structure of a semiconductor.

After Harrison, W. A., Solid State Theory, Dover, New York, 1980. (b) Band edge
variation produced by a lattice vibration. After Nag, B. Electron Transport in Compound
Semiconductors. Springer-Verlag, New York, 1980. (Reproduced with permission from
Springer Verlag.)

the same direction, changes in lattice spacing are 'produced by the strain du/dx
not by the displacement, u(x, 7}, Motivated by eq. (2.17a), we write the interac-
tion potential for acoustic phonons as ‘

UAP(X, [):DAg—Lé . (219)

To extend these arguments to three-dimensional crystals, the phonon’s polar-
ization must be considered. Since transverse elastic waves produce no first-order
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change in the lattice spacing, the perturbing potential, eq. (2.19), applies only to
longitudinal:phonons. For semiconductors with a band structure more complex
than a simple spherical band, the problem is further complicated because the
deformation potential becomes a tensor [2.1, 2.4].

For optical phonons, which displace neighboring atoms in opposite directions,
the displacement produces a change in lattice spacing directly, so the scattering
potentiai for optical phonons is written as

Uoplx, 1) = Dyuix, 1) |, (2.20)

where D, is the optical deformation potential. In real, three-dimensional semi-
conductors, optical phonon vibrations consist of one sub-lattice moving against
the other. In contrast to the simple change in volume of the unit cell produced by
longitudinal acoustic phonons, optical phonon scattering is sensitive to the sym-
meiry of the crystal. Selection rules forbid optical phonon scattering of electrons
at p=(0,0,0) and along (100} directions (which includes electrons in the con-
duction bands of GaAs and silicon). Optical phonon scattering does occur for
holes, and for conduction band electrons in germanium.

Acoustic and optical deformation potential scattering afso occurs in com-
pound semiconductors, but an additional, very strong interaction due to the
polar nature of the bonds often dominates. In compound semiconductors iike
GaAs the bond between adjacent atoms is partially ionic; the arsenic atom
acquires a slight positive charge, the gallium atom a small negative charge.
The magnitude of this charge, termed the effective charge, ¢%, is a fraction of
the electronic charge, ¢, and is determined by the degree of ionicity of the bond
[2.1]. Deformation of the lattice by phonons perturbs the dipoie moment between
atoms which resuits in an electric field that scatters carriers. Polar scattering may
be due to either acoustic or optical phonons. Polar acoustic phonon scattering,
known as piezoelectric scattering, can be important at very low temperatures in
very pure semiconductors. Polar optical phonon scattering is very strong and is
typically the dominant scatltering mechanism in GaAs near room temperature.

For longitudinal optical phonons, the displacement perturbs the dipole
moment directly according to

bp=q'u. (2.21)

The electric field due to the perturbed dipole moment is obtained from the
relation,
D =¢ggf + 5P, (2.22)

and from the assumption of zero macroscopic. free charge (that is, V- D = 0).
(In eq. (2.22), 8P is the change in the dipole moment per unit volume produced
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by the elastic wave.) Since the fields and polarization are due to elastic waves,
they vary as

D= De® + D™ = |D|cos(Bx + ¢).
Taking the divergence,

D, . .
VD= 5;“3“)' sin(Bx + @) =0,

which implies that D = (. From eq. (2.22) with D = 0, we find
8P

E=——, (2.23)
&g

where
5p

8P == 2.2
o (2.29)

u

with V/, being the volume of a unit cell. From eq. (2.23), we find the electric field

as

g u B
E=———, 2.25
£ Vu ( )

which is integrated to find the interaction potential,

Ug(ee, ) = —q { Edx. (2.26)

For polar optical phonon scattering, the resulting perturbing potential is

o gg*u
. , 2.2
O ey 220

It is common to measure the strength of the polar interaction by the low and high
frequency dielectric constants, which are easily measured, rather than by the
effective charge, 4, on the dipole. The two approaches are related by [2.1]

(£)2: £0P0 (ﬂl ~ 1), o . (2.28)
Vu Kp Koo

which 18 understood as follows. At low frequencies, the dielectric constant
inciudes a contribution due to the dipole between atoms, but at high frequencies
this dipole cannot respond to the signal so that k., < k. The factor, xp/k. — 1.
is a measure of the strength of the dipole.

In polar semiconductors, acoustic phonons also produce an electrostatic per-
turbation known as piezoelectric scattering. This effect is much weaker than
polar optical phonon scattering, but it can be important at very low temperatures
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when the number of optical phonons is small and carriers don’t have sufficient
thermal energy to emit them. As shown in homework problem 2.4, the perturb-
ing potential for piezoelectric scattering is

where epz 1S the piezoelectric constant.

Discussion

In the following several sections, the transition rates, S(p,p’), and the various
relaxation times of interest are computed from the interaction potentials identi-
fied here. We will also consider some additional scattering mechanisms, such as
electron—electron scattering. The mathematical procedure is straightforward, but
it can get tedious, so before we do the calculations, we discuss some general
features of carrier scattering which will come out of these calculations.

General features of phonon scattering

The general features of phonon scattering are easy to describe and understand.
In this section, we describe the general characteristics of the most common types

of scattering.

Scattering from a static potential
The simplest model for a static perturbing potential is a §-function
Lfs(l') = Aoé(r) : (2303)

As shown in Section 1.7, this perturbing potential leads to 4 transition rate of the

for_m

Sp.p)Y=CoE—-E"), (2.30b)
which, as shown in Section 2.1, produces a scattering rate that is proportional to
the density of states, B T

1
- < 8c(E). (2.30¢)

This basic result, that the scattering rate is proportional to the density of states, is
a common feature of carrier scattering. The more states at a given energy, the
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more ways a carrier can scatter to it. The é-function approximation is a useful
approximation for highly localized, static scattering potentials.

Nonpolar phonon scattering

A second common scattering potential 1s the oscillating potential produced by
lattice vibrations. This potential can be written as

US = Kﬂllﬁ = KﬁAﬁeii(ﬁ'r_“’!’)’ (2313)

where 44 is related to the amplitude of the oscillation and Kj to the deformation
potentials discussed in Section 2.2. As shown in Section 1.7, this type of perturb-
ing potential leads to a transition rate of the form

S, p") = Ce8[E(") — EM®) T hol By perps (2.31b)

where the &-function expresses conservation of energy and the Kronecker
conservation of momentum.

In Section 2.5 we will demonstrate that the requirement that both energy and
momentum be conserved restricts the phonons that can be involved in intravalley
scattering processes to those near the center of the Brillouin zone. As a result, we
can use the simplified phonon dispersion relation shown in Fig. 1.27b. For
acoustic phonons, the result is that the phonon energy is small and can be
neglected near room temperature where the average kinetic energy of a carrier
is much larger, so we can simplify eq. (2.31b) for elastic, acoustic deformation
potential (ADP) scattering as

S(.p) = C3[ED’) — ED)5y pans- (2.31¢)

(it turns out that the strength of the transition as measured by C is independent
of B in this case). Equation (2.31c} is much like eq. {2.30b), so we find that the
scattering rate for this case is also proportional to the density of states.

For optical phonon scattering, Fig. 1.27b shows that the phonon energy is
large, but that it is independent of B (this also applies to scattering of carriers
between valleys by optical or acoustic phonons). For optical phonon scattering,

eq. (2.31b}). simplifies to
S(p. p") = Cs8[E(p) — E(P) F Tiewg |8y pocrp- - (2.31d)

As shown in Section 2.6, this expression can be integrated over the final states to
find the transition rate as

1 ,
— o gelE £ hay), (2.31e)
I
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where the top sign applies to scattering by absorbing an optical phonon and the
bottom to scattering by emitting an optical phonon (phonon emisston ¢annot
occur unless the carrier’s kinetic energy exceeds the optical phonon energy).

" - Equation (2.31e) simply states that the scattering rate is proportional to the

density of states at the final energy. Figure 2.4a compares the scattering rates
for elastic ADP scattering to that for inelastic, optical deformation 'potential
(ODP}) scattering, Note the presence of a threshold-energy for ODP scattering.
Below the threshold, carriers can scatter only by absorbing optical phonons.

Scattering by electrostatic interactions

The s-function potential is not a particularly good approximation for ionized
impurity scattering because carriers feel the potential only when they encounter it
directly. For more realistic potentials, we expect that the amount that a carrier is
deflected will be determined by the strength of the electrostatic interaction and by
the length of time that the carrier feels the potential. The result is that slower
moving carriers scatter more than faster moving carriers. The effect is particu-
larly strong for the momentum relaxation rate as illustrated in Fig. 2.4b. These
considerations apply not only to 1onized impurity scattering, but to any electro-
static interaction. Consider polar optical phonon (POP) scattering, the strongest
mechanism in polar semiconductors like GaAs. As shown in Fig. 2.4b, POP
scattering displays the general features of optical phonon scattering with a
clear threshold energy for phonon emission, but the scattering rate decreases

{ad % by 4
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Fig. 2.4 General features of carrier scattering in semiconductors. (a) Nonpolar phonon
scattering, acoustic deformation potential {ADP) in the elastic imit and optical
deformation potential (ODP). (b) Scattering by electrostatic interactions, ionized impurity
(II) and polar optical phonon (POP).
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at high energy (as for ionized impurity scattering) because the faster moving
electrons spend less time in the vicinity of the perturbing potential.

Discussion

Figure 2.4 summarizes the general features of scattering in common semiconduc-
tors. We expect the scattering rate to be proportional to the density of final
states, except for electrostatic interactions which become weaker for high energy
carriers. The sketch in Fig. 2.4 assumes carriers are near the bottom of a band
where the density of state goes as /£, but for higher energy carriers, we expect
the scattering rate to mimic the density of states as displayed in Fig. 1.19. For
analytical calculations of scattering of low energy carriers, it is often convenient
to express the scattering rate in power law form,
t(E) = constant x £, (2.32)
where s is a characteristic exponent. When the bands are parabolic and the
scattering goes as the density of states, then s — —1/2. For ionized impurity
scattering, on the other hand, s = -+3/2.

In the next several sections, we will work out the scattering rate expressions for
various mechanism; readers not interested in these details may proceed to

Section 2.14. i

Scattering by ionized impurities

Having identified the perturbing potential for ionized impurity scattering in
Section 2.2.1, we evaluate the matrix element from eq. (2.1) as’

. o =iflpN
}{p/p = i q e“jp T/ c e]p-r/ﬁdBr
Q 4]TK580 , I3

or

1 (2 2t oo B X
H., =— 7 dqu e Eng®=PTL 4, 6in gdg.
pe Q 471'!(580 0 0 Jo . .

According to the geometry of the scattering eVenty(displayed in Fig. 2.2¢), -
hB=p —p . (2.33a)
and

hB = Zpsin(%), (2.33b)
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the latter follows from Fig. 2.2¢ because p = p’ for elastic scattering. With the aid
of eq. (2.33a), the matrix element becomes

2 oo p2r et )
H 1(_ 9 )J J J re'Tbpe =100 e g dedr, (2.34)

L é 43’1’!(580 o Jo —1

which can be intégrated to find

2

g 1 3
H:Ww=———F——+. 2.35
PP QK35052+1/L123 ( )

According to eq. (2.2), the transition rate due to scattering from a single ionized

mpurity is

2 2 ;s
S(p’p,)_zn( g ) 5(E’ — E)

— o \Qxsey) [B+ 1/IAP

Finally, we multiply by N,;Q, the number of impurities in the normalization
volume, and make use of eq. (2.33b) to write

2N g SE' —E)
- Tic2el 2 2
PY 02 1
lill(ﬂ sin (%) =+ L—%]

Equation (2.36a) describes scattering from an ionized impurity whose potential is
screened by mobile carriers. When mobile carriers are absent, Lp — oc and eq.
(2.36a) becomes

S(p.p") (2.362)

2N, g" SE' - E
_ f”z 129;) ( . ) (2.36b)
) a3

Equation (2.36b) applies when mobile carriers are absent which occurs, for
example, in the depletion region of a p—n junction. When the carrier density is
very high, L is small so that 1/L3 in the denominator of eq. (2.36a) dominates.
For this strongly screened case,

Sp.p)

. 2N g'Lh N

S(p.p) = AL R HE ~ B) : | S 236
g erQ

and the transition rate has the form of eq. (2.6) which describes scattering from a

3-function potential. ,
A plot of S(p,p’) versus « (the polar angle between the incident and scattered
momenta) is displayed in Fig. 2.5. The important point to note is that 1onized
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L a
0 7 T

Fig. 2.5 S(p, p) versus « for jonized impurity scattering; the solid line is for a screened
Coulomb potential, the dashed line for the unscreened (Lp — oc) Coulomb potential, and
the dotted line for the strongly screened (Lp — 0) Coulomb potential.

impurity scattering tends to deflect carriers by small angles — except when it is
strongly screened in which case lonized impurity scattering is isotropic.

From the transition rate, the various relaxation times can also be evaluated.
Evaluation of the scattering rate is the subject of homework problem 2.1. To find
the momentum relaxation time, we evaluate

! / P
= S(p. (1 —fcosa)
AP IR R U

Q g - ' P’ 2 ’
J J J Sp,p )(I - ;cos oe)p “dp'd(cos 8)de.
-1

i - ,_;
87’k Jo 0

(2.37)

If we orient the Z axis so that it points along the initial momentum (see Fig. 2.2¢),
then o = @, p = pZ, p. = p' cosh, and eq. (2.37) becomes

L N JOO j", (1 — cos@)d(cos 8)
- 2,244
T, (D) 2micseph - 4([)/7?)2“12 Q) +u}5_,,,
2 Ly

(we also made use of the fact that p = p’ because ionized impurity scattering is
elastic). With the substitution, x = (1 — cos#), the first integral in eq. (2.38)
becomes

0

S(E'— E)pdp’ (2.38) -

STy,
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2 xdx 1 > y2
fo = ,JU {2(;)/7?)% . mi_T - 4(p/hyt *iln(l +y) - W}
Ly,
where
V= AL (p/h) = 8n" E(p)Lb /1. (2.39)
After inserting this result for /, in.eq. (2.38) and integrating over p’, we find
X 20 -
0,() = lﬁl/_?llq_;”‘%ﬂ [ln(] - 1 fsz Epy | (2.40)

Figure 2.6, a plot of 1/7,,(p) versus energy, shows that carriers with high kinetic
energy have long momentum relaxation times. The increase in t,, with energy
occurs because rapidly moving carriers are deflected less by ionized impurities.
As 4 consequence, the influence of ionized impurity scattering decreases at high
temperatures or at high electric fields becanse both increase the carriers’ kinetic
energy. Equation (2.40), which assumes a screened Coulomb potential, 1s a
simple version of a theory due to Brooks and Herring.

Unscreened Goulomb scattering

When the free carrier density is low, screening is minimal, and the transition rate
is given by eq. (2.36b). When we attempt to use eq. (2.36b), however, we are

10 p T T i ]

1013

_\
2,
N

e (1fs)

»IOH

Momentum relaxation rate,

| | i 1
0.1 0.2 0.3 0.4 0.5 0.8

1010 |
0
Electron energy, £ (eV)

Fig. 2.6 lonized impurity momentum scattering rate versus energy for electrons m GaAs
(N, =107 em™, T = 300K).
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confronted with the unpleasant fact that it predicts that the probability of scat-
tering approaches infinity as the angle of deflection approaches zero. When the
carrier is far from an ionized impurity, as measared by the impact parameter
defined in Fig. 2.7, it is deflected very little. But if the carrier’s impact parameter

1s greater than
brax = 1/2[\1',_]/3, (241

which is half spacing between impurities, then the scattering simply occurs from
a neighboring impurity. The result is that a minimum scattering angle exists, so
the infinity in S(p, p') is never approached. Since the impact parameter and the
angle of deflection are related by Rutherford’s theory as

2

g
b= Sreses E ) E@)cot(a/Z), (2.42)

the minimum deflection angle is determined from

1

= 1+ Vew, 2.43
i1 (Brin/2) - (249
where

dirics e B b,
Vew = 5¢0 Uj) _ max (2‘44)

PN [ 8rrse )]

The subscript CW is for Conwell and Weisskopf who first performed the calcu-
lation about to be described.

The momentum scattering rate in the Conwell-Weisskopf approach is
obtained from eq. (2.38) by letting Lp — oo. If we orient the coordinate system
so that « = 8 and integrate from 6, to 7, we find

(a) (b)

Fig. 2.7 Effect of impact parameter on ionized impurity scattering. {a) large impact
parameter, (b) small impact parameter.
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N 4 G pCOS By — ) /
1 B *ICL*J J (l cos Q)d(COS 9) S(E/_ E)]] Zdl]'_ (245)
J0

T(p)  2mdedn’ o Jo te(p/nytsint(0/2)

Equation (2.45) works out much like the integrals in the Brooks--Herring
approach with the resulit that

' 22
o) = 257 2”2’{550[ L 153/2(;;) . (2.46)
Nig In(l + J/(_jw)

Except for the term in brackets, eq. (2.46) is much like the Brooks-Herring

result.

Strongly screened Coulomb scattering

When the mobile carrier density is very high, the Coulomb potential is strongly
screened, and the transition rate is given by eq. (2.36¢). Because the result has the
simple forin due to a é-function scattering potential, the results of the example
considered in Section 2.1 apply, and we find

2
1 I N (d°Lb
=——=20 2elE). , (2.47)
Tm(p) T(p) h (KSSO g((

Discussion

We have outlined three simple treatments of ionized impurity scattering; the first
assumed that free carriers were present o screen the impurity potential, the
second assumed that free carrier screening was very weak, and the third assumed
that free carrier screening was very strong. The final results [egs. {2.40), (2.46),
and (2.47)] can all be written in the form,

Tm([)) = IO(E//(B T)Xv ' (248)

where 5 is a characteristic exponent. Because the terms in brackets in eq. (2.40)
and eq. (2.46) vary slowly with energy, 7o is approximately constant. When the
screening Is moderate or weak, s = 3/2, but when it is very strong., s = —1/2.
Finally, we should mention that the several theoretical difficulties we've
glossed over actually make 1onized impurity scattering rather difficult to treat
accurately. The Born approximation, on which the Golden Rule is based, fails
for slow moving electrons in a Coulomb potential. Moreover, our simple expe-
dient of computing the scattering due to a single impurity then multiplying by the
number of impurities does not account for the interference effects that occur as
the electron wave propagates through the array of randomly placed scatterers.
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The expressions developed in this section comprise the standard approach for
treating ionized impurity scattering in semiconductors; they serve reasonably
well for many applications. The limitations of this approach are described in
Anderson et al. [2.10]. '

Energy-momentum conservation in phonon scattering

When a carvier collides with a phonon, both energy and momentum are con-
served. Energy and momentum conservation impose constraints on the maxi-
mum wave vector change and, therefore, on which phonons may participate in
scattering events. Our purpose in this section is to demonstrate that for mtraval-
fey scattering, in which the carrier resides in the same valiey before and after
scattering, the phonons involved are those with wave vectors near the center of
the Brillouin zone. This result i1s important because it means that we can employ
the simple dispersion relations sketched in Fig. 1.27b.
Conservation of energy states that

E(p") = £(p) % hol ), (2.49)

where hw(f) 15 the energy of the phonon and =+ denotes scattering by phonon
absorption or by emission. For spherical, parabolic energy bands, eq. (2.49)

becomes

2

3
rp- o 2
S zm*:{:hw(ﬂ). (2.50)

Momentum conservation also applies and states that
p' =php, (2.51)

where Af is the momentum of the phonon. The dot preduct of eq. (2.51) with
itself can be inserted in eq. (2.50) and re-arranged to write

w _

hp = 21;!}: COSQ:‘:—“{|‘ (2.52)
u(p)B

where # is the polar angle between p and f. Equation (2.52) simultancously states

energy and momentum conservation. Since cos 8 is restricted to range between

—1 and +1, eq. (2.52) determines the minimum and maximum values for the

wave vectors of the phonons involved in intravalley carrier scattering.
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Intravalley acoustic phonon scattering

For acoustic phonons with wave vectors near the zone center, w is proportional
to B (recall Fig. 1.27),.[ewe call the slope the sound velocity, vg, then w/8 = ug

and eq. (2.52) becomes -

ng = 2;{; cosd :&i} ; (2.53)
VN

For phonon absorption, the maximum wave vector occurs when § = 7 and when

6 = 0 for phonon emission, so we conclude that

B man(AP) = 2p[z + i} (2.54)
uip)

Since v, > 10° cm/sec and v(p) ~ 107 cm/sec for a thermal average carrier,
IBmax(AP) = 2p (2.55)

for a typical acoustic phonon scattering event. As shown in Fig. 2.8, eq. (2.55) is
what we expect for clastic scattering, which suggests that acoustic phonon scat-
tering is nearly elastic. Note also that eq. (2.54) aud the requirement that the
wave vector be positive dictate that a carrier can’t scatter by emitting an acoustic
phonon unless its velocity exceeds the sound velocity.

To gauge the magnitude of By, it should be compared to 7/, the approx-
imate half-width of the Brillouin zone. From eq. (2.55) we find that

BI”HE\X ZJYZ*UU))
—E o ——n /4
/a hr/a
[for m™ =~ my, u(p) == 10" emyjsec, and a = 5A]. We conclude that acoustic
phonon scattering involves phonons with wave vectors near the center of the
Brillouin zone.

The maximum change in carrier energy resulting from acoustic phonon scat-
tering is readily estimated from

: -3
AEpay = Mg = B vs = 1077 eV,

Acoustic phonon scattering is often taken to be elastic because AE is small
compared to kg7, except at very low temperatures.

&
@
7

Fig. 2.8 Hlustration of maximum phonon wave vector for elastic scattering.
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Intravalley optical phonon scattering

For optical phonons, o is nearly constant at w(f) = wy (recall again Fig. 1.27).
According to Table 2.1 at the end of this chapter. the optical phonon energy,
hayy, ts typically tens of milli-electron volts, which 1s comparable to the thermal
energy. of an average carrier at room temperature. As a consequence, optical
phonon scattering can rarely be considered elastic. With a constant w(f), eq.
(2.52) produces a quadratic equation for 8 that can be solved to obtain

y By
hB =p| Fcosh+ <0 b | 2.56
B=p| Fcos \/COS )| (2.56)

from which we obtain the maximum wave vector of the optical phonon as

[ hrewg
— o Y 2
DB (OP) =p| 1 + \/1 | (2.57)
Because the maximum wave vector must be a positive number, eq. (2.57) states
that carriers cannot scatter by emitting optical phonons unless their energy
exceeds the optical phonon energy. When typical numbers arc inserted in eq.
(2.57), we find that only optical phonons near the center of the Brillouin zone
participate in intravalley scattering.

Application of energy and momentum conservation has identified the phonons
involved in intravalley scattering as those whose wave vectors are near the center
of the Brillouin zone. Acoustic phonon scattering is usually considered to be
elastic, but optical phonon scattering can be considered elastic only for high
energy carriers. Figures 2.9 and 2.10 illustrate typical carrier wave vectors before
and after scattering from acoustic and optical phonons.

—
- ~
s/ b
p N
/ \
7 .
Ap:\me*ﬁ(uS ] \
| }
ap=J2m*ho, \ ]
\ / .
N\ / -
N 7 .
~ e
\\ //

Fig. 2.9 lustration of carrier scattering by absorbing an acoustic or optical phonon. The
incident momentum 1s p. The momentum afler scattering by absorbing an acoustic phonon
is p’. The momentum after scattering by absorbing an oplical phonon is p”. [2.1].
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Fig. 2.10 Hlustration of carrier scattering by emitting an acoustic or optical phonon. The
incident momentum is p. The momentum aflter scaltering by emitting an acoustic phonon is
p’. and the momentum after scattering by emitting an optical phonon is p”. [2.1].

2.6

Procedure for evaluating phonon scattering rates

In the next two sections, we evaluate the scattering and momentum relaxation
rates for phonon scattering. Because the same general procedure is used for all
types of phonon scattering, we present the general procedure first, then examine
the various types of phonon scattering separately. Recall first from Section 2.2,
that we can express the perturbing potential for phonon scattering as

US = Kﬁuﬁ» (258)

where ug i3 a Fourier component of the lattice vibration as given by eq. (2.18).
From the results of Section 2.2.2, we have

‘Kﬁ’2= B D3 (ADP scattering) (2.59a)
Ky['= D} (ODP scattering) (2.59b)
2 [2w2 K
|Kg| = 4 7] 0 (JL - 1) (POP scattering) (2.59¢c)
Brogn | \Kac
2 e 2
[KﬁJ'= (w) (PZ scattering). - . (2.59d}
Ks€p

Because the perturbing potential is a traveling wave, we can evaluate the matrix
element by analogy with eq. (1.127) in Section 1.7 to find

2 02 ,
| Hyol = Kol | 4618y png (2.60)
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To evaluate the transition rate, we insert eq. (2.60) in eq. (2.2} to find
W AT 2 , ,
Stp.p) = —ﬁ[Kﬂ[ | 45| 8y penpd(E' — E F hog). (2.61)

The two é-functions in this equation are simply expressions of conservation of
momentum and energy. To deal with the product of two &-functions, we re-
express them as a single §-function expressing conservation of both momentum

and energy. Beginning with

p=pxhp (2.62)
and taking its dot product with itself, we find

p p =prE2hp A 1E (2.63)

which, assuming parabolic energy bands (£ = p2/2m*), we use to write

E' - Exhws == fw;i:gﬁ hﬁ_ (2.64)

or

, h

E" ~ EF hwg = hup icos6’+—ﬁ¥% . . (2.65)
2p  up

By inserting this expression inside the é-function in eq. (2.61), we obtain

l hg  wg
5p’,pﬂ:ﬁﬁ5(b E + ha)ﬁ) —> ﬁg(i COS<9 + :F Uﬂ) (266)

(here, we made use of the fact that §{ax) = 8(x)/a). Equation (2.66) replaces the
product of two é-functions, which express momentum and energy conservation,

. with a single é-function that expresses both momentum and energy conservation.

Finally, inserting eq. (2.66) in eq. (2.61), we find the transition rate for carriers

scattering from p to p’ as

Sp.p') = IK,sl |45/ 6(tcos9+h5 = ) (2.67)

Before we proceed to evaluate scattering rates from eq. (2.2}, however, we should
recognize that !Aﬁiz, the magnitude squaréd of the lattice vibration, is a classical
concept. We need to deduce the proper qu”tntum mechanical expression to
replace EAﬂl : st
Recall that, classically, the energy of a vibration is proportional to the square
of its magnitude. Quantum mechanically, however, the energy is quantized
according to £ = (N + 1/2Dhw, where N =0,1,2,... is an integer. To relate
lAﬁ[2 to the classical energy, recall that the kinetic energy of a vibration is
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1 2
KE=_-M
2

du

5 (2.68)

L)

where M is the mass of the quantity oscillating. The lattice displacement with
wavevector 8 is a real quantity given by

u(x, f) = Aﬂei(ﬁ"""’o + A;e‘i(ﬂ"“”’) (2.69a)
or |
u(x, 1) = 2| Ag| cos(Bx — wgt + by). : (2.69b)

By differentiating (2.69b) and inserting the result in eq. (2.68), we find the
maximum kinetic energy as

1 bl 2
KE = E/OQCUBll"AﬁI = F, (270)

The energy oscillates between kinetic and potential energy, but their sum is
constant, so the maximum kinetic energy is also the total, time-independent
energy. By equating eq. (2.70) to the quantum mechamnical result, we find

2 (N‘“ﬂ + %)h

IVAA“: (wrong!)

2pQwg

The resuit is correct on average, but more careful considerations show that when
the lattice scattering event occurs by absorbing a quantized lattice vibration (i.e.
a phonon), then we should make the replacement,

|45

el ]\[ 7:1
g (ABS) (2.71a)
250wy

and when it occurs by emitting a phonon,

(N, + D

A 2.71b
2 (EMS (2.71b)

Ay~

We can write the general replacement more compactly as

.k I
4P “—(Nw»«*i;?) , Q.71¢)
Z ﬂ A

where the top sign applies for phonon absorption and the bottom for phonon
emission. This discussion should be considered as a simple plausibility argument
for the prescription for the conversion to quantum mechanics as given by eq.
(2.71¢). For a more thorough treatment of the problem, consult Datta (f1.1], pp.
122-130).
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After inserting the prescription, (2.71c¢), into the transition rate, eq. (2.67), we

obtain
Sp.p’) = Cﬁ(fvﬁ+%$%)5(icosé+z—}jq:;%) ’ 2.72)
where
12
i ;?TZZ):D)?) (ADP) : (2.73a)
am* D
B hpnpQ (ODP) (2.73b)
ﬂm*qzwo %o
7 hgeoBpQ2 (;; - 1) (POP) (2.73¢)
ge L m
Co= (Kszj) hous B2 pQ (PZ). (2.73d)

Evaluation of the seattering rate

To evaluate the scattering rate, we sum the transition rate over all final states,

1
—— T S ¢ = S . ! . 274
20) ;/,T (p.p) Eﬁ (p.p) (2.74)

The second expression occurs because the mapping from p’ to 8 is unique, so it
doesn’t matter if we take the sum over final states, p’, or over f (recall Fig. 2.2).
Converting the sum to an integral by the usual procedure,

1 Qo I 5o 8w
= Ng+=F d 8 £cos+—=F—|d(cosb).
T 87 ‘[o d¢.[o ( 5+2:!:2)C5ﬁ ﬁj—l ( oo +2P:FU5) (cos6)
(2.75)

Consider the integral over d(cos8) first (recall that 8 is the angle between p and
B). This integral is of the form

[1 8(x — xo)dx,

SN

where x = cos8 and xp = F(hB/2p) + (w/uB). This integral is unity, as long as
X, < Xy < X, and it 18 zero otherwise. If 8 is either too large or too small, then
the argument of the é-function will never go to zero, so the effect of the 4-
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function in cos@ is simply to restrict the integration over 8. Equation (2.75)

becomes

i B (@] (Brax
T 4’

N

" The minimum and maximuwm phonon wavevectors, By and By, are the mini-

mum and maximum values of 8 for which the argument of the §-function goes to
zero. These are simply the minimum and maximun phonon wavevectors for
which both energy and momentum are conserved, and the results are just
those stated in Section 2.5.

Evaluation of the momentum relaxation rate

For the momentum relaxation rate, we evaluate a sum of the form

tml(p) = ;S(p, p’)(l ‘I;cos (x), (.77

where « is the angle between p and p’. The geometry of the scattering event was
iltustrated in Fig. 2.2; recall again that we have identified 6 as the angle between p
and B’. Note that

(1 ~£COSQ):1~P’(P:j:f1/5)_:':775c059‘ 2.78)
r o )4

With eq. (2.75). we can write the momentum relaxation rate as

1' Q -2 o 1 1 , i ﬁﬁ W
—=— d N —x— |CyxBd 8l +cosf+—F—
Tin 87T3J0 (pJo ( ﬁ+2;2) ﬁﬁ ﬁJ~I ( 0 2]):FU/3)

N (:F hBcosd

)d(cos a).
In this case, the integral over 8 is of the form

J s = xf (d,

A

which s f(xg) for By < B < Bmax. The result is that the momentum relaxation
rate becomes
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Binax + a3
L ij (Nﬁ%:;l)cﬁ(@:p‘“)ﬁidﬁ L (2.80)

LS o P 2 2p " uB) p

Equations (2.76) and (2.80) are the main results of this section. They give the
scattering and momentum relaxation rates for phonon scattering in general. To
evaluate these expressions, we identify the appropriate Cy from egs. (2.73), the
appropriate minimum and maximum phonon wavevectors from Sec. 2.5, then
evaluate the integrals. For acoustic phonons, w = wg = Sug, and for optical
phonons w = g 2 constant.

2.7

2.71

- Deformation potential scattering

As discussed in Section 2.2, the perturbing potential for phonon scattering can be
the deformation potential, or in polar materials there 1s also an electrostatic
interaction. In this section we treat deformation potential scattering by nonpotar
acoustic or optical phonons.

Acoustic deformation potential (ADP) seattering

To evaluate scattering rates for acoustic phonon scattering via the deformation
potential scattering, we begin with eq. (2.76) and insert eq. (2.73a) to find

] m*Dz,_\ B A
—_— N —F—|B°dB. 2.81
=g | (f w,+2¢2)ﬁ 8 .81)

min

At room temperature, the number of acoustic phonons is large, so N, =
N, + 1. Recalling eq. (1.134), we can invoke equipartition, N, =z kg7 /hws,
because heog « kg Ty With this approximation, we simplify eq. (2.81) for room
temperature applications as

I m*DikgTy Jﬁm m* Dikg Ty | 5 5

_ ——— dB = ———= (B .. — B, , ' 2.82
T 271’712 op - 471’72261}7 (,Bmdx ﬁmm) ( )
where we have used

Loy 4 (2.83)

3 \ s
to relate the sound velocity, v, elastic constant, ¢, and mass density, p. Equation
(2.82) is the sum of transitions due to acoustic phonon absorption and emission.

To evaluate eq. (2.82), we need to specify the mmmum and maximum phonon
wavevectors involved. From eq. (2.33), and the reasonable assumption that ADP
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scattering is approximately elastic near room temperature, we find that 28, =
2n°U(p) and AByn = 0 which can be inserted in eq. (2.82) to find

1 “L:L\‘l - JTD%A\kBTL

gcll) (2.84)

‘where ga(E) is the density of states defined in eq. (2.9). The result, which shows

that the scattering rate is proportional to the number of final states available,
could have been obtained by simpler methods, but the general procedure
employed here will prove useful for more complex scattering potentials. We
have indicated in eq. (2.84) that the scattering and momentum relaxation rates
are equal; acoustic phonon scattering is isotropic. This can be verified by eval-
nating 1/t,, from eq. (2.80}, but the two rates are equal only when acoustic
phonon scattering can be regarded as elastic (at low temperatures, ADP scatter-
ing is anisotropic). Finally, it 1s worth noting and remembering that 7,,(p) for
ADP scattering has the power Jlaw form of (2.32) with s = —1/2. Figure 2.1lais a
plot of the ADP scattering rate versus energy for electrons in silicon.

Optical deformation potential (ODP) scattering .

The treatment of optical deformation potential (ODP) scattering proceeds much
like ADP scattering, except that it can’t be considered as elastic unless the carrier
energy is very high. Beginning with eq. (2,76) and using eq. (2.73b), we find

1 P’i’l*Dg 1 1 Brrer Lomomes Lo N T i
- [N, + = F = d T - 2.85
T dahppo, ( o 27T 2) me pdp, L e (2.85)

where hew, is the optical phonon energy. After integratiﬁg this expression and
obtaining Sy, and Bu.. from eq. (2.56), we find

1 1 nD?

B0 g, Mo T V2 /DB ) | (2.86)

Note that the density of states 1s nonzero for positive arguments only and that
optical phonon scattering is also isotropic. Equation (2.86) states that a carrier
with any energy can scatter by absorbing optical phonons, but only those whose
energy exceeds fie, can emit optical phonons. The result is that a plot of the
scattering rate versus carrier energy displays a threshold at hw, above which the
scattering rate greatly increases. Figure 2.11b is a sketch illustrating how the
ODP scattering rate varies with energy.

High energy carriers shed their energy by emitting optical phonons, and the
energy loss can be characterized by the energy relaxation time,
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(a) 10t i

1013 i
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Scattering rate, 1/t {(1/s)
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Fig. 2.11 {a) Scattering rates versus energy due to acoustic phonon scattering of electrons
in silicon at 300 K. The curve was computed from eqg. (2.84) using the density of states
effective mass for Si and the deformation potential listed in Table 2.1. (b) Scattering rate
versus energy for optical phonon scatiering. ABS denotes scattering by optical phonon
absorption and EMS by emission.

1 ,
—— = S(p,p )l — EVE). 2.87
=) pE,)T (P p X /E) (2.87)

For very high energy carriers, phonon emissicn greatly exceeds absorption, so
E(p") = E(p) — hw,, and we find the energy relaxation rate as

1 huw how, 1
R S(n. 0’ o _ o 1
e~ 25 E )
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or

E(p) = (l;’;ff) ) wp) |- (2.88)

The fraction E(p)/hw, simply tells how many optical phonons must be emitted to
remove the carrier’s kinetic energy, E(p). Accordingly, the energy relaxation time
may greatly exceed the momentum relaxation time.

2.8

2.8.1

Polar optical phonon (POP) scattering

Phonon scattering in polar semiconductors may occur from either acoustic or
optical phonens. Polar acoustic phonon, or piczoelectric, scattering can be
important at very low temperatures in very pure semiconductors. Scattering
rates due to the piezoelectric interaction are the subject of homework problems
2.4 and 2.5. Polar optical phonon (POP) scattering, by contrast, is a very strong
scattering mechanism for compound semiconductors like GaAs. It is neither
elastic nor isotropic.

The POP scattering rate

The scattering rate for POP scattering is found from eqs. (2.73¢) and (2.76), as

1 m*dPw, [« 1_ 1\ [Pedp
LS N T 289
T 4JT7‘IK080P (KOO ) ( ¢ _E_ 2 :F 2) J'ﬁmin ‘5 ( )

or

1 1
1 quO(ND+2:*:2)(£(]‘—I)
K
— = In(Bn: ) 2.90
o(p) Aicqeoh r—“ﬁﬁE(p)/H‘[* (Bmax/ Bain) ( )
and all that remains is to specify 8., and By

To find the maximum and minimum phonon wave vectors, we set the argu-
ment of the -function in eq. (2.72) to zero and find a quadratic equation,

2pcosf 2pw
I hu
whose solutions give those values of g which satisfy energy and momentum
conservation for a given scattering angle 8. Solving for B and B, (from
—1 < cos® = +1), we find

(2.91)

i
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P N
Brnax = ; (1 + /1 + E(p)) (2.92)

and

- .
Brain Z% (:Fl + 1+ Ew0)> , (2.93)

which are very similar to the results of Section 2.5. With these results, the POP
scattering rate becomes

2

2 Ko
q ol 7 — 1 12
1 (K“’ ) [Nosmh—l (—i(")>

wp) 2rkgenh/2E(p)fm* @

12 (2.94)
+(N, + 1)sinh™* (if)p — 1) }

where the first term represents POP absorption, the second POP emission. It is
understood that the second term applies only when £(p) > ha,, so that emission

_ can occur. In going from eq. (2.90) to eq. (2.94), we made use of the identity

sinh™'(x) = ]n[x +V1+ xz]

Figure 2.12 is a plot of the POP scattering rate versus carrier energy for electrons
in GaAs at room temperature. The onset of phonon emission at
E(p) = ho, = 35meV is readily apparent. Notice that in contrast to ADP and
ODP scattering, the POP scattering rate is roughly constant at high energies.

The POP energ.y relaxatien time

The energy relaxation rate due to POP scattering is found by weighting each
transition by the fractional change in energy. For high energy electrons, POP
emission dominates and from eq. (2.5) and eq. (2.94) we find

2 E(p)/2E *
e (p) = (‘:?) wp) = ﬁ;eo () (12(;’;“ e (2.95)
¢ 7wy (7~ 1) (N, + D) sinh™! ( 1)

hw,
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Fig. 2.12 Polar optical phonon scatlering rates versus energy for electrons in GaAs at room
temperature. Parabolic bands are assumed. The solid line is 1/7(p), the dashed line 1/7,,(p}).

The POP mementum relaxation time

The moment relaxation time is found from eq. (2.80), which works out much like
the sum in eq. (2.89) with the result

1 7w (KKJ a I) hew he
) Amigeghn/2LED) ] [Nc’\/:@ FWox | TEw (2.96)

hooNy . (EGN hoo(No+1) . _(Ep) 7"
) sinh (h%) +—-E(p)—smh (ha) —1-) )

The momentum relaxation rate versus energy is also plotted in Fig. 2.12. Notice
that 7., exceeds t, which is a consequence of the fact that POP scattering favors
small angle scattering events which have little effect on momentum relaxation.

8]

Intervalley scattering

As displayed in Fig.'2.l3, the constant energy surfaces for electrons in St and
GaAs consist of several valleys. For Si, the valleys are energetically equivalent
and lie along [100] directions near the zone boundary. Two types of intervalley
scattering are possible in Si; “g-type’ processes move a carrier from a given valley
to one on the opposite side of the same axis (e.g., from a valley along (100} to one
along (100)). The */-type’ processes move a carrier to one of the remaining
valleys. Both g- and f-type scattering produce very large changes in momentum,’
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{a) {b)

Fig. 2.13 (a) constant energy surfaces for silicon, and (b) constant energy surfaces for
gallium arsenide.

so they require phonons with wave vectors near the zone boundary. Such pho-
nons are termed intervalley phonons and may be either acoustic or optical pho-
nons. Note from Fig. 1.27a that near the zone boundary the energies of both
acoustic and optical phonons are comparable and are somewhat less than the
longitudinal eptical phonon energy, Aw,. The specific phenons involved in g- and
f-type scattering are listed in Table 2.1 at the end of this chapter.

Intervalley scattering in GaAs is somewhat different because the valleys shown
in Fig. 2.13b are not energetically equivalent. The central, I', valley lies about
0.3eV below the ellipsoidal, L, valleys located along {111} directions. An illus-
tration in energy-momentum space of a [ to L transition is shown in Fig. 2.14.

Satellite valley

Central
valley

D
0 (111}

Fig. 2.14 Diagram illustrating non-equivalent intervalley scattering by phonon absorption
and emission in GaAs. (From Seeger, Semiconductor Physics. 3rd edn, Springer-Verlag,
New York, 1985}
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Because carriers must acquire =~ 0.3 eV of energy, intervalley scattering is rare in
GaAs unless a high-electric field is present to accelerate the carrier to energies
high within the I valley. For electrons in GaAs, equivalent, /-, intervalley
scattering also occurs in addition to the non-equivalent, I'-L., scattering.

The mathematical treatment of intervalley scattering is done in a very simple,
phenomenological way. We postulate an interaction potential,

Uit = Dyulx, 1), (2.97)

where D;;, the intervalley deformation potential, characterizes the strength of the
scattering from the initial valley ‘i’ to the final valley ‘f". This interaction poten-
tial is like eq. (2.20) for optical phonon scattering, but if the intervalley phonons

~ are acoustic phonons, we really should use an expression like eq. (2.19). Such a

choice would simply change our final result by a constant, which could be
absorbed in the definition of Dj.

When we evaluated the scattering rates for optical phonon scattering, we
assumed that the phonon energy was constant. For intervalley scattering, the
phonon momentum is large and nearly constant, so fiw;, the intervalley phonon
energy, can be assumed to be constant. As a consequence, the intervalley scatter-
ing rate works out just like that for nonpolar optical phonon scattering. By
analogy with eq. (2.86) we find

11 aDiz
p)  Tlp)  2pwy

where Z, is the number of final valleys available for scattering, and gey is the
density of states in the final valley. The term AEjy is the difference between the
bottom of the conduction bands in the final and initial valleys (4E; = 0 for
equivalent intervalley scattering in Si and GaAs, and A4F; = 0.3eV for -1,
non-equivalent scattering in GaAs). N; is the number of intervalley phonons
as given by the Bose-Einstein factor. Because intervalley scattering is isotropic,
©(p) = 1,4(p)-

In Figs. 2.15 and 2.16, we plot the intervalley scattering rates for Si and GaAs.
For silicon, equivalent intervalley scattering is important near room temperature.
For electrons i1 GaAs, non-equivalent intervalley scattering is important only at
high fields.

Carrier-carrier scattering

When the carrier density is high, collisions between carriers are an important
scattering mechanism. Two types of processes must be distinguished — a binary
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Fig. 2.15 Equivalent intervalley scattering rates in silicon due to f-type and g-type

scattering processes. The intervalley deformation potentials and phonon energies are listed
in Table 2.1.
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Fig. 2.16 Non-equivalent, I'-L, scattering rate in GaAs at room temperature.

process in which one carrier collides with another and a collective process in
which a carrier interacts with the plasma comprised by the carriers.

Binary carrier-carrier scattering

For the binary process, which is depicted in Fig. 2,17, momentum and energy
conservation dictate that

pP+p=p +p (2.992)
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P>

Fig. 2.17 Binary collision between a carrier with momentum p and one with momentum p,.

and
E(p) + E(py) = E(p") + E(p3), (2.99b)

where p and p’ are the momentum of the carrier before and after the collision,
and p,-and p; refer to the carrier it collides with. Although the total momentum
and energy of the carrier ensemble cannot change by carrier-carrier scattering,
the distribution of momenta can be affected. By altering the distribution, carrier—
carrier scattering affects the average relaxation times and, therefore, the value of
observables such as the average carrier velocity and energy.

To write the collision term for carrier—carrier scattering, we define a pair
transition rate, S{p, p,; p’, p) which is the probability per unit time that carrier
at p and p, collide and scatter to p’ and p;. When viewed in the center-of-mass
reference frame, the binary carrier—carrier collision looks just like an ieonized
impurity scattering event. By analogy with eq. (2.36a) for ionized impurity scat-
tering, we write the pair transition rate as

27(:]4/71/(%8(2)9 s /
[4(p/hy sin(a/2) + 1/ TR~ 7700 (2.100)
x SLE(D) + E(p2) — E(') — E(p3)].

S(p.pyip'.p2) =

(For details of this derivation, consult Ridley [2.1].)

To evaluate the scattering rate due to binary carrier—carrier scattering, we
weight the pair transition rate by the probability that a target carrier-is present
and by the probability that the final states at p’ and p; are empty. The result is
summed over the final states, p’ and over the target states, p,, to obtain

%@) - Z Z S(p, p2: PP (P2)[L — F(PH][L —f(pz')]. (2.101)
p2op
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[A separate sum over p, is not performed because it is uniquely determined from
p, ps» and p’ according to eq. (2.99a).] In eq. (2.101), f(p’) is the probability that
the state at p’ is occupied and is known as the distribution function. To find
Sf(py), a complicated integrodifferential equation known as the Boltzmann
Transport Equation (BTE) must be solved. The requirement that we know the
distribution function makes carrier—carrier scattering extremely difficult to treat,
The BTE, and techniques to solve it for the distribution function, are the subjects
of Chapter 3.

Callective carrier-carrier scattering

In addition to binary collisions, carriers also interact with oscillations in the
carrier density. Such fluctuations are accompanied by electric fields which oppose
the fluctuation and produce oscillations at the plasma frequency,

) 12

- gn 2.102

“p = (Kseom*) ’ (2.102)
which can be sustained if

wpt > 1, (2.103)

{to ensure that collisions don’t damp out the oscillations). Because 7 is on the
order of one picosecond, eq. (2.103) implies that plasma oscillations can be
sustained if the carrier density exceeds about 107 em™?. Carriers which scatter
from plasma oscillations interact with the ensemble of carriers rather than with a
single carrier as in the binary process.

The charge density oscillation of the plasma can be written as

pp = AgeHBTD (2.104)

and the electric field it produces as

da
SB:J@—Y:—Q‘}—_ (2.105)
KgEg 1;31(380

The interaction potential is obtained by integrating again to find

4Pp
U :«qJE dx == (2.106)
o g Kseoff”

from which the matrix element for carrier—plasma scattering is obtained as

qAg
Hy o =258y panp- (2.107)

Kkg&B*
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So far we have treated the plasma oscillation classically, but its energy should
be quantized in units of 1wy By equating the classical, electrostatic energy to its
quantum mechanical counterpart, we find

hawpk kseof’

5 (N + 1/2:;1/2) - (2.108)

N, represents the number of plasmons (quantized plasma oscillations) as given by
the Bose-Einstein factor. When-eq. (2.108) is inserted in eq. (2.107) and used in
the Golden Rule, the transition rate is found to be

2,

g w 1 1

S(p, pH) = 2 Np+2 3F3 8yt panpd(E — E F howp). (2.109)
g B 02 2)

Using eq. (2.66) for the §-functions, this becomes,

, 11 7/3 @
= +L5F5 + :F 2.
Sp.p)=Cq (Np 2 2)8(:&: cost vﬁ) (2.110a)

where

* 2
T .
e N (2.110b)
hl(sé'oﬁ pQ

Since the transition rate for plasmon scattering is so similar to that for POP
scattering [compare egs. (2.110) with eqs. (2.72) and {2.73¢)], the results of
Section 2.8 may be used directly. By analogy with eq. (2.90), we find the scatter-
ing rate for plasmon scattering as

I Fa(Ny+1/2F1/2)

(D) dmigegh 2 E(p)m*

where B.,,x and By, are determined by energy and momentum conservation as in
egs. (2.92) and (2.93), but some care is required when specifying Bmax- A large
Bmax refers to short wavelength oscillations, but about one Debye length is
required to screen out the charge of a carrier. When f,, exceeds about 1/Lp,
the scattering should be treated as a binary coilision. Since eq. (2.1 1) does not
apply to binary collisions, B, i replaced by B, which is equal to B, from eq.
(2.92) or 1/Lp, whichever is smaller. The scattering rate for plasmon scattering

becomes

m(ﬁmax/ﬁmin): . (2.1 i 1)
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2 T
gw, N, +5F~
1 p( P72 2) m[( heo _ (2.112)
P

Wp)  duiseghy/2E(p)/m* 1+ /T £ 70, /EQ)

In Fig. 2.18 we plot the scattering rate versus energy for electron—plasmon
scattering in GaAs at room temperature. For high carrier densities, plasmon
scattering is an important component of the total scattering rate, but when the

- electron density exceeds about 10% em™, the computations become more
involved because the plasma oscillations couple with the LO phonons [2.9],
and the scattering rate from these coupled modes must be evaluated. Finally,
we shouid note that aithough the electron-plasmon scattering rate may be
high, the effects of electron—plasmon scattering can be subtie. If the plasma
oscillations are not heavily damped by phonon scattering, then the total momen-
tum of the electron ensemble is conserved. One electron may iose momentum to
the plasma, but another will gain momentum. In this case, electron-plasmon
scattering is similar to binary electron—electron scattering, and the biggest effect
may be simply to change the shape of the electron distribution function.

Phonon scattering of confined carriers

In a bulk semiconductor, carriers are free to move in three dimensions, but in
modern semiconductor devices, carriers are often confined in quantum wells
where they can move in only two dimensions. Important examples are silicon

101 T ¥

10!3_ ]

Scattering rate, /7 {1/s}

1012 1 ] | | 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Electron energy, E {eV)

Fig. 2.18 Electron—plasmon scattering rate versus energy for electrons in GaAs at room
temperature. The electron density is ny = 1.0 x 107 em™,
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MOSFETs and modulation-doped I11-V FETs where the carriers in the channel
arc confined near the surface in a potential well. The scattering rates for these
two-dimensional carriers are different than for three-dimensional carriers. This

- section is an introduction to the treatment of carrier scattering in reduced dimen-

sional structures.

Brief review of {juantum confinement

Quantum wells

Figure 2.19 reviews some fundamentals of quantum wells. In Fig. 2.19a we show
a GaAs quantum well; the confining barriers are a wider bandgap semiconductor
such as Al,Ga,_ As. Because of the confinement in the z-direction, k. is quan-
tized. For an infinitely deep well, momentum conservation does not apply. Since
the carriers are unconfined in the x—y plane, however, momentum conservation
continues to hold in the plane.

£
(a) j
//\ € £,
Fyl2) —
L
Fil2) — \~—£1 £y
W
{e) £ {d) 4
!
28,
2r — ¥y_ .
k = & Y
z W 2 !
.3
kZ: W 51
kIi - > £
€4 £,

Fig. 2.19 (a) Hlustration of a quantum well, two subbands, and the corresponding envelope
functions. (b) The carrier energy versus parallel momentum relation with z-directed
momentum as a parameter, (¢) Intra-subband and inter-subband scattering of electrons in a
quantum well. Scattering by optical phonons is assumed. (d) Expected shape of the
scattering rate versus energy (mimics the density of states).
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The calculation of two-dimensional (2D} scattering rates proceeds much like it
does for three-dimensional (3D) electrons, but the proper wave function for
confined carriers must be used. We should also consider the possibility of 2D
phonons as well as 2D electrons, but for many quantum wells, the elastic con-
stants of the well are similar to those of the surrounding media, so 3D phonons
can be assumed. While the calculations proceed differently in two dimensions, we
still expects that the overall scattering rate will be proportional to the density-of-
states, except for electrostatic interactions which favor small angle deflections.
Instead of the | /7 oc E£Y/2 result for simple energy bands in 3D, we recall that the
density of states for carriers in a quantum well is piecewise constant at

@:%; n=1,2.3 o | (2.113)
where W is the width of the quantum well. Also sketched in Fig. 2.19a are the
electron envelope functions for the first two levels. Again, for an infinitely deep

well, the envelope functions are given by

2.
F ()= \/;;Su'l k.z. (2.114)

Electrons are confined in the z-direction, but they are free to move in the x—y
plane. The total wavefunction for the electron is
iky-p

w@%@=&@77, (2.115)

where A is the cross-sectional area. These specific results apply only to infinitely
deep wells, but the underlying concepts for finite depth wells are the same.
Because the momentum in the z-direction is quantized, the electron’s energy is

also quantized.

hgkﬁ B i fzzkﬁ

= ) 2.
vt 2w WE O 2m® (2.116)

E=g, +

The E(ky) relation is sketched in Fig. 2.19b.

Figure 2.19¢ is a simple picture of carrier scattering in a quantum well. In
intra-subband scattering (analogous to intraband scattering in a bulk semicon-
ductor), k. does not change. In inter-subband scattering, however, k. does
change. This picture is flawed, however, because momentum conservation does
not strictly apply. Recall the uncertainty relation,

Azdp. = h. (2.117)

" Because the uncertainty in the carrier’s position has been reduced by confining it

in a well of width, J¥, the uncertainty in the z-directed momentum can be large,
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For wide wells, momentum conservation is approximately valid and sometimes
assumed, but for thin wells,

m* .
Zp(E) = (2.118)

el

wh”

for each subband, so the scattering rate would reflect the piecewise constant
density of states as sketched in Fig. 2.19d. In this section, we’ll discuss ADP
scattering of 2D electrons to illustrate how such calculations proceed and to
establish the important features of phonon scattering of confined cafriers.

Confinement in an inversion layer

Confinement potentials can also be produced by electrostatic effects and hetero-
junctions. A common example, the metai~oxide-silicon (MOS) system, is itiu-
strated in Fig. 2.20. The gate voltage and the energy barrier at the Si:SiO,
interface confines carriers near the oxide—silicon interface. If the number of elec-
trons in the inversion layer is small, then the confining potential can be approxi-
mated by a triangular well as shown in Fig. 2.20b. In this case, the probiem can be
solved analytically and the wave functions are Airy functions (recali homework
problem 1.10). Note that there are two series of subbands, ladder | and tadder 2
{also called the unprimed and primed series). Ladder 1 is associated with the two
valleys whose ellipsoids have their long axes normal to the surface, and ladder 2
with the remaining four valleys whose short axes are normal to the surface. For
ladder 1, the confinement energy is determined by the longitudinal effective mass,
m; and for ladder 2 by the transverse effective mass, m/.

(a) Oxide (b
Sio, -

Silicon

-. ladder2
— ladder 1

Metal gate

4 Oxide | Silicon
} >z e e —

Fig. 2.20 {a) Illustration of a metal-oxide-silicon (MOS} structure used to confine electrons
near the oxide-silicon interface. A voltage V5 > 0 produces a confining potential for
minority carrier electrons. (b) The conduction band energy versus position versus distance
from the oxide-silicon interface. The energy levels for confined electrons are also sketched.
Ladder ! is associated with electrons that respond with the longitudinal effective mass and
ladder 2 with those that respond with the transverse effective mass.
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Because the triangular well approximation is crude, numerical solutions are
often used. It is usually necessary to solve the effective mass equation and
Poisson’s equation simu]taheously to determine the energy levels and the wave-
functions of inversion layer electrons. We begin by solving an effective mass
equation like eq. (1.63),

n d*Fiz)
2t dz?

—qV(D)F(2) = & F, (2.119)

where the confining potential is the electrostatic potential determined by the gate
voltage and the band bending in the semiconductor, and m? = m; for ladder 1
and m} = m{ for ladder 2. The numerical solution to the eigenvalue problem in
eq. (2.119) with an assumed potential profile V(z) gives the energy levels for
ladders | and 2 along with the wavefunctions, ‘

After solving eq. (2.119) for the energy levels, the next step is to solve Poisson’s
equation to correct the assumed electrostatic potential. We solve

d’v(z N )
are 4 J:(Ng(z) ~ Na(z) - Z%g’ [F,{z)l—:!. (2.120)

2
dz* Ks&p 7

The first term in brackets is the ionized dopant charge, and the second term is the
contribution from the confined electrons. The sum is over all of the occupied
levels in ladders 1 and 2, g is the total concentration per cm® of confined
electrons and #; is the contribution of each level as given by

mfl EFHEE
NV, =, [ 28 kg Tin| 1+ e , 2.121
= (e <57 a1

which is similar to eq. (1.91). Here n, is the valley degeneracy (two for ladder |
and four for ladder 2), and mj is the density-of-states effective mass per valley.
(For ellipsoidal bands, m;; = /m'm;.)

The numerical solution to eq. (2.120) corrects the electrostatic potential, which
can then be inserted in eq. (2,119} to obtain an improved solution to the effective
mass equation. The process proceeds until the solution, ¥(z), converges. Figure
2.21 shows the results of typical calculations. For low carrier densities. (Fig.
2.21a), the potential well is triangular, but for the higher densities (Fig. 2.21b),
the potential is highly nonlinear. Figure 2.21 also shows the two ladders of
energy levels, the ground state wavefunctions for both ladders and the first
excited state for the first ladder. When the energy levels and wavefunctions are
only known as numerical tables, we should not expect to obtain closed-form
expressions for the scattering rates.
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(a) (b)
200 T T T T T T
Ng =7.0%x 10" (cm™) F e 2 N, = 1.0X 10*% (cn™3)-
S
Ladder 1 e Ladder 1
Ladder 2 q00Fy T Ladder 2
g g P
£ 2 E .
@100 ¢ ( = S ...................... :
@ o H [
0 &5 200 .
! 1o
0 55 00T 0 50 100 150

Distance from surface {A) Distance from surface {A)

Fig. 2.21 Results of a self-consistent solution of the effective mass and Poisson equations
for an MOS structure. (a) Low density of confined carriers {b) High density of.confined
carriers. (From Yamakawa, S. et al. Journal of Applied Physics, 79, 911, 1996). Reproduced
with permission of American Institute of Physics.)

Phonon scattering rate for 20 carriers

The transition rate for carrier scattering continues to be given by eq. (2.2), but
the matrix element,

+oc .
Hyp = J oy Usppd’r, (2.122)

—oC
works out differently. The perturbing potential for electron—phonon scattering,
Us, is still given by egs. (2,58) and (2.59) if we assume three-dimensional
phonons, but the initial and final wavefunctions are different. Writing

p=Dp +p-Z (2.123a)
p =py+p-z (2.123b)
and
B=5+8.z (2.123c)
eq. (2.122) becomes

Copree einpp/h e it
Hyp = Lc F;‘(:)T (Aﬁf\’ﬁe*‘ﬁ!*'pe*’ﬁ")ﬁ(z) Nz dzdp. (2.124)

A subscript, i, refers to an initial subband and  to the final subband. The integral
over the transverse plane gives a §-function expressing momentum conservation
in the plane, so eq. (2.124) becomes
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Hyp = ]ﬂ(ﬂi)AﬁKﬁaps;=Pziiﬁ5!\’ (2.125)
where ’
I :J R EF(d:. (2.126)

Finally, we write the transition rate for 2D carriers from eq. (2.2) as

21 2 2 2 ]
S(p.2) = = (1B [ K[| s 8y s 8 = E F 1), (2.127)

which is exactly like the corresponding result for 3D carriers [eq. (2.61)] except
for two things: (1) momentum conservation only applies in the plane, and (2) the
appearance of the form factor, I;(8.). The 2D transition rate is identical to the
3D expression, except for the replacement,

: 2
8pr peeip —> By p 18, |1:(8.)] (2.128)

which results from the fact that z-directed momentum is not strictly conserved.
To evaluate the scattering rate, we begin with eq. (2.3) and write

I 2 202, 12 ' ,
= ;7 g B[ K| | 4] 8y o, 21 0(E" — E F hav) (2.129)
or
| 2 . 2 2 2
= 2 | 2 TR Al oy s S — EF ). (2.130)
P p:
Defining a quantity,
2 2 2 2
DB =D |8 7| K5 | 4] (2.131)
p!
we can express the scattering rate as
1 2 2 i
e Z}; |D2n(B)] 8y, g2, SE" — £ F hw). (2.132)
fi ; : ‘
Py
The corresponding expression for 3D carriers is
1 27 2 i
o= ;77— D3B8y pinpd(E' — E F how), | (2.133)
where
2 2, 12
|D3D(/3)| = ‘Kﬁ Aﬁ] . (2.134)
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If the é-functions in eq. (2.133) are converted to a single §-function expressing
momentum and energy conservation, and the sum is converted to an integral,
then the 3D result is simply eq.(2.75). Comparing eqs. (2.132) and (2.133), we see
that the 2D and 3D scattering rate expressions are identical except for the dif-
ference between Dy, and Dsp and the two-dimensional sum in eq. (2.132) and
the three-dimensional sum in eq. (2.133).

ADP scattering rate of 2D carriers

Using eq. (2.59a) for |K5|2 and eq. (2.71c) in the equipartition approximation [eq.
(1.134)], we find

2, 2 DiksTy
[K5| |A/5| - 2C]Q ’ (2135)

which allows us to write

s DikgTy W Jw )
D === |[:(B)] dB.. 2.136
D=5 55 | el e (2.136)
Using §2/W = A, the cross-sectional area and inserting eq. (2.126) for |]ﬁ(ﬂz)|2,
we have

Dikp Ty +o0
e A

2

|Dan(8)

+00 o0 et
| rerea: | Rewees | e,
4l

- -0

2.137)

where we have replaced the dummy variable, z, with z’ in the last integral. Doing
the integral over B, first and using

1 oo . ¥
_J etif:lz—s )dﬁ,- =¥z — Z’), (2.133)
2m )
we obtain
2 00 2
9 D;kBTLJ* 2 2 DpkgTy, 1
D et T 2 F F dz="L 2= 2.139
DB ==520= | |F@[ ARG e == =7 (2.139)
The quantity
1 oo 2 2
WEJ F: (@) |Fi(2)] de, : - (2140
ft -2

describes the effective extent of the interaction in the z-direction. It is the princi-
pal difference between the 2D and 3D results. If the well has a simple shape, this
quantity can be evaluated analytically. More generally, the integral has to be
performed numerically.
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For an infinite, square well, the envelope functions are sine and cosine func-
tions and the integral in eq. (2.140) works out to be

L—FCO|F(7)|2 Ffdr= = i=j (2.141a)
70 L N I Y7 S
o= | _E@lEGdz =5 i), (2.141b)

S

The general result for both intra- and inter-subband scattering in an infinite,

square well is

1 {2 + d8g)
[ 2
Wa 2w (2.142)
Finally using eq. (2.139) in eq. (2.132), we have
1 nDiksTr 1\ 1 ) :
= (T 7 ZZapﬁ,pHﬂﬁua(E — E = hw). (2.143)
Py

The sum in eq. (2.143) is similar to one we’ve worked out before. In three
dimensions, the result was one-half of the three-dimensional density of states.
In two dimensions it is just one-half of the two-dimensional density of states as
given by eq. (2.118). After multiplying by two to account for ABS and EMS, the
final scattering rate for ADP scattering of 2D carriers is

1 JTDZ-_\_I{B 7 L 1
- ml 2.144a
T he, W, &pi(£) ( )

Equation (2.144a) should be compared to eq. (2.84), the corresponding result for
3D carriers. The two differences are the replacement of the 3D density of states
by the 2D of states and the appearance of the 1/} factor.

Equation (2.144a) describes ADP scattering from subband ‘i’ to subband *f”;
Zopr 18 the two-dimensional density of states for the subband, */.” For intra-
subband scattering in an infinite, square well, eq. (2.144a) reduces to
I 3aDakgTy

—= A Lo (E ' 2.144b
T, 2hC1W gZDL( ) . ( 4 )

and for inter-subband scattering to

1 _ TF.Di‘kB TL

o haW gilE). (2.144¢)

The density of states for 2D carriers is constant with energy for each subband.
Adding the density of states for a quantum well with three subbands, we get the
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results in Fig. 2.22a. The 2D ADP scattering rate is proportional to the 2D
density of states, so for intra-subband scattering, we get the results sketched in
Fig. 2.22b. Inter-subband scattering can also be induced by ADP scattering; the
acoustic phonons carry little energy, so an electric field must accelerate carriers
to energies exceeding the bottom of the next subband before scattering to a
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81 52 63

" Fig. 2.22 (a) The two-dimensional density of states versus energy for electrons in a

guantum well. The subband energies are labeled, £, £y, and E5. (b) Acoustic deformation
potential scattering rate versus energy for 2D electrons. Intra-subband scattering is
assumed. (c) Inter-subband scattering by acoustic phonons. The solid line is for scattering
from subband | to subband 2 and the dashed line is the total scattering rate for transitions
from subband 1 to 2 and from subband | to 3.
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higher subband can occur. Figure 2.22¢ illustrates inter-subband scattering of
electrons by acoustic phonouns.

intervalley scattering of 2D carriers

Very similar procedures can be used to evaluate the scattering rates of confined
carriers due to other mechanisms. For example, in addition to inter-subband
scattering, intervalley subband scattering also occurs in semiconductor like sili-
con. The results for 3D carriers, eq. (2.98) becomes

! 1 nDiZ; | (N + 1 Dgapp(E & heog — AE) (2.145)
e T = — e ~ - 1y — . .
W) )\ 2pwg W) T T HEIRRE G AR

Again, the only difference 1s the replacement of the 3D density of states by the
2D density of states and the appearance of the effective interaction length, Wy
which depends on the envelope functions of the confined carriers.

Discussion

In this section, we have discussed one example calculation of scattering rates for
carriers confined in a quantum well and have quoted the result for one more. For
confined carriers, the matrix element needs to be evaluated with the proper wave
function for confined carriers — not with the plane wavefunctions used for bulk
electrons. We found that momentum conservation applies in the plane of the
quantum well but that it is ‘fuzzy’ in the Z-direction. Both 2D and 3D scattering
rates generally vary as the density of states, but the staircase variation of g5, with
energy leads to very abrupt changes in the 2D scattering rate versus energy.
Similar procedures can be used to evaluate the scattering rates due to other
mechanisms, such as POP scattering. Such calculations are discussed in the
references listed at the end of this chapter.

2.12

Scattering at a surface

Confined electrons are subject to all the scattering mechanisms that affect 3D
carriers, but some additional mechanisms also occur. One is inter-subband scat-
tering, but another is the possibility that electrons can scatter off the boundaries
of the confining potential. If the confining potential is smooth, there is no effect,
butitis usually atomically rough, so electrons may scatter. Consider the Si: SiO,
interface in an MOS structure. As sketched in Fig. 2.23, the oxide growth process
leaves a rough surface, so the thickness of the oxide fluctuates. Since the gate is
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Gate

Source /// Drain

{specular) {diffuse)

Fig. 2.23 Ttustration of surface roughness scattering of electrons at the Si: SiQ, interface in
an MOS structure. Scattering 1s specular from a smooth interface but diffuse from a rough
mterface.

an equipotential, this produces fluctuations in the confining potential along the
channel. The result is that the subband minimum will fluctuate which gives rise to
scattering. It should be expected that this effect will increase as the gate voltage
increases, which confines carriers more closely to the surface. For high gate
biases, surface roughness scattering can be the dominant mechanism at the
Si:Si0, interface. Other effects occur too. For example, charges at the
Si: 510, interface will produce tonized impurity scattering. At-low inversion
layer densities, charged impurity scattering will dominate, but at high inversion
layer densities, screening will reduce charge hmpurity scattering, and interface
roughness scattering dominates.

To evaluate the scattering rate due to surface roughness, we first need to
identify the perturbing potential. A fluctuation in the oxide thickness wili pro-
duce a fluctuation in the confining potential,

dV(z)
dz

Viz + 8(p)] = V(z) + 8p) (2.146)

where pis a vector in the plane of the interface and 8(p) is a random function that
measures the surface roughness. The perturbing potential is simply

Usr = ¢&.8(p), ' (2.147)

where £. is the electric field. Evaluating the matrix element in the usual way, we
find

oo +oe . ’
H FY(2)g€.)F()dz x ;H S(p)e " dp. (2.1484)

p'p _
o = x

The first integral is seen to be a weighted average of the electric field; we will term
this the effective normal electric field, £.r. The second term is the Fourier trans-
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form of 8(p), which is the power spectrum, S(B;). Using these definitions, we

write the matrix element as
Hyy = —q&S(By) (2.148b)

and the scattering rate as

; 2r B 2 ;
Slpy, py) = 7;(6]56[»{)"5(,3“)' S(E"—E). (2.149)
The thickness fluctuations can be described by an exponential autocorrelation
function
(8(0)S(p" — )} = A% | (2.150)

where 4 is the rms amplitude of the fluctuations and L is their correlation length
(roughly the distance between fluctuations). Surface roughness is controlled by
processing conditions and can be measured by scanning probe microscopy.
Typical values are 42— 4A and L 210—30A. [Some authors use a
Gaussian autocorrelation function instead of the exponential in eq. (2.150).]
The power spectrum of eq. (2.150} is

|S(BIP= ma? 2 . (2.151)

[1+ @282

When eq. (2.151) is inserted in (2.149), the scattering rate can be evaluated. Note
the strong dependence on the strength of the electric field and on the amplitude
of the interface roughness.

2.13

Scattering rates for nonparabolic energy bands

When working out expressions for scattering rates, we have been assuming
spherical, parabolic energy bands. For silicon and germanium, the constant
energy surfaces are ellipsoids, but appropriate averages of band structure depen-
dent parameters can often be used to reduce the problem to an ‘equivalent’,
spherical band problem [2.5,-2.7]. Under high applied fields, however, carriers
may be accelerated to energies far above the band minima. At such energies, the
bands are definitely not parabolic. To evaluate scattering rates for high energy
carriers, the non-parabolicity of the energy bands must be considered. In this
section, we outline briefly how scattering rates are evaluated when the energy
bands are spherical but noenparabolic.
Any spherical energy band can be described as
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2

% — JEW), (2.152a)
m

- where m" is evaluated from the curvature of E(p) at p = 0, and y is sorne function

of energy. For s‘pherical,'parabolic bands

WE) = E@p), - | (2.152b)
but if nonparabolicity is described by eq; (1 .40)\ then

Y(E) = E(p)[1 + «E(p)]. 7 (2.152¢)

To compute scattering rates, we first need to find S(p, p”) from Fermi’s Golden
Rule. When the bands are spherical and parabolic, the overlap integral 7(p, p’) is
unity, but for a nonparabolic band it can be substantially less than one.

The occurrence of non-unity overlap integrals is only one consequence of
nonparabolicity. The varjous sums also work out differently. Consider the sum,

o<

| P _»1; A 2 '
a};a[ﬂp)AE(p)]fijzh3 '[0 S| E(p) — Ep)|p *dp (2.153)

which we worked out in Section 2.1 and found the result to be one-half of the
density of states. For nonparabolic bands

P 2oy w(E"

SO

! / ‘ 243 d '
pidp’ = ﬁ[V(E )]Wm’"”/zd—EK/dE , (2.154)

After substituting eq. (2.154) into eq. (2.153). we find

I o _ 2m* —dy
o :;T S| EQp") - E(p)] = o JVHE )dE’)Et:E (2.155)

which is the density of states (for one of the two spins) for a nonparabolic band.

With the technique outhined above, band nonparabolicity can be accounted for
m the various scattering rates. It is essential to do so when high-field transport is
analyzed. For example, when nonparabolicity is included, we find that the POP
scattering rate is nearly constant with energy (for energies considerably above the
optical phonon energy) in contrast to the decreasing behavior displayed in Fig.
2.12, which was based on parabolic energy bands.
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Electron scattering in Si and GaAs

The expressions we've developed in this chapter describe electron scattering in
common semiconductors. We haven't treated hole scattering because 1t is coni-
plicated by the degenerate heavy and light hole bands with their warped constant
energy surfaces [2.6]. For energetic carriers, overlap integrals need to be consid-
ered and the non-parabolicity accounted for as discussed in Section 2.13. For
very energetic carriers, even this is not adequate and a detailed, numerical
description of E(p) is required.

Common scattering mechanisms in semiconductors

Common scattering mechanisms can be classified as shown in Fig. 2.24. The total
scattering rate is the sum of the rates for each of the individual processes,

1
Fp)= ) —=. (2.156)
Z 7(p)

where the index, /, labels the various scattering mechanisms listed in Fig. 2.24. To
evaluate the scattering rate versus energy, the important scattering mechanisms
need to be identified for the particular semiconductor and conditions under
consideration. Scattering occurs by defects, phonons, and by other carriers.

Defect scattering includes scattering by both ionized and neutral impurities

Defects

s Neutral impurities
* Dislocations

s Alloy scattering

* lonized impurities

Screening

» Binary: electron-electron;
electron-hole
* Collective: plasmons

Carriets

Coupled
plasmons
and phonons

Phonons

» Acoustic/optical: deformation potential
* Acoustic/optical: polar

Fig. 2.24 Classification of carrier scattering mechanisms.
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and by crystal defects such as dislocations. For semiconductor alloys, variations
in the alloy composition also produce scattering (see homework problem 2.6).
Phonon scattering occurs by the deformation potential in covalent semiconduc-
tors and by both the deformation potential and by polar interactions in ionic
semiconductors. Carrier—carrier scatlering includes both binary collisions and
interactions with the carrier plasma. Free carriers can also influence the other
scattering process by screening the perturbing potential (see Section 2.15). In
polar semiconductors, free carrier plasma oscillations can also couple with the
longitudinal optical phonons. For high-quality, intrinsic, crystalline semiconduc-
tors, defect scattering is minimal, as is carrier—carrier scattering if the carrier
density is low. Figure 2.25 plots electron scattering rates versus energy for intrin-
sic 8i and GaAs. For these conditions, scattering is dominated by intra- and

intervalley phonon scattering.

Electron scattering in Si and GaAs

For pure silicon, acoustic deformation potential and equivalent intervalley scat-
tering are the dominant mechanisms. Near room temperature, the acoustic
deformation and equivalent intervalley scattering rates for thermal average elec-
trons are comparable. Because of the several phonons involved, intervalley scat-
tering rises faster than +/F as the onset for various emission processes is met. As
a consequence, the high energy scattering rate is dominated by equivalent inter-
valley scattering.

The scattering rate versus energy for electrons in intrinsic GaAs is displayed in
Fig. 2.25b and shows a characteristic distinctly different than that of Si, The
important scattering mechanisms in intrinsic GaAs are POP intravalley and
I'— L and L-L intervalley scattering. The scattering rate displays two thresh-
olds; the first (at £ = 0.03 eV} is for POP emission and the second (at E = 0.3eV)
for I' — L intervalley scattering. In contrast to Si, the scattering rate remains low
until the onset of intervalley scattering when the two become comparable. We’H
see in later chapters that many of the features of transport in Si and GaAs can be
understood from their scattering characteristics as summarized in Fig. 2.25.

Full band treatment of scattering

For most of this chapter, we have assumed. simple spherical energy. bands.
Expressions for the various scattering rates were then expressed analytically.
In Section 2.13, we showed how to extend these calcuiations to treat spherical,
nonparabolic energy bands. Recall from Section 1.2.2, however, that at high
energies, the bandstructure can be very complicated. Carriers with energies of
a few electron volts can cause reliability problems by being injected into the gate
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Fig. 2.25 (a) Electron scattering rate versus energy for intrinsic Si at room temperature.
This curve was computed by assuming ellipsoidal, nonparabolic energy bands. (b) Electron
scattering rate versus energy for intrinsic GaAs at room temperature. This curve was
computed by assuming spherical, non-pardbolic energy bands. (Courtesy of Amitava Das.)

oxide of a MOSFET, or they can tead to breakdown by impact jonization. When

evaluating the scattering rates of such carriers, the bandstructure will generaily

be available only as a numericat tabie of values. Scattering rates are stifl eval-

uated from eqs. (2.1)-(2.3), but the integrals must be performed numerically,
A general form for phonon scattering was given in eq. (2.133), 7

} J—

27 2 ; ;
- Z';TIDSD(,B)I by panp(E” — E F hw),
>
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which, using eqs. (2.71¢) and (2.134) becomes

/ , b1
= Z powe |1<ﬁ o pempd(E = EF hw)(N,,, +5F E)' (2.157)
Recal} that [1_(ﬂi2 is the Fourier componént of the perturbing potential as given by
eq. (2.59) and that /i = p’ — p is the change in momentum due to scattering.
Equation (2.157) can be generalized to remove the assumptions inherent in it. We
write the result as

! il 2 1 2
e —— A, APy, v p,
7.',7'7)(1)) DZ’; pa)n(ﬁ)g l n.v (ﬁ)l l (U vip.p )‘

(2.158)

) T 1
X 8y punpd(E" — EF ﬁw)(N,f(ﬁ) + 5 ¥ 7)_

Note first that the scattering rate is, in general, anisotropic; it depends on the
particular momentum state, p, and not simply on the energy. The index n refers
to the type of phonon involved, transverse or longitudinal, acoustic or optical.
The full phonon dispersion characteristic 1s used [te. Fig. 1.27(a) not Fig.
[.27(b)]. When computing the scattering rate, the sum is over all the possible
momentum states, f, and to all the bands a carrier may scatter to, v'. fA,7_V»(ﬁ)f2 1s
the strength of the perturbing potential for the particular phonon and band
involved, and |I(v,v; p, p’)|2 is the overlap integral hetween the initial and
final states [recall eq. (1.116)]. Because the electron and phonon dispersion rela-
tions are only given by numerical tables, a numerical integration is necessary to
evaluate the scattering rate. Although the calculations can be complex, we still
expect the scattering rate versus energy to reflect the full band density of states as
ilfustrated in Fig. 1.19.

Figure 2.26 plots the total phonon scattering rate versus energy for electrons in
sificon. In general, the scattering rates are anisotropic, depending on the location
of the carrier tn the Brillouin zone. The rates plotted in Fig. 2.26 were averaged
over constant energy surfaces. Also shown in Fig. 2.26 is the scaftering rate
calculated assuming spherical, nonparabolic energy bands. We note first, that
the scattering rate versus energy does have the expected shape of the density of
states. Spherical nonparabolic energy bands are a good assumption up to about
2eV. For higher energies, detailed full band calculations are essential.

Screening

When a charge is placed in an electron gas, mobile electrons move to cancel out
the charge, and the net result is a screened potential which alters the Coulomb
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Fig. 2.26 (1) Tofal electron—phonon scattering rate versus energy for intrinsic silicon. Also
shown, as a dotted line, is the scattering rate evaluated from spherical nonparabolic energy
bands. (From T. Kunikiyo, et al., Journal of Applied Physics, 75(1), 299, 1994.)

(Reproduced with permission of American Institute of Physics.)

potential of the point charge. For ionized impurity and electron—electron scatter-
ing, we treated screening by replacing the bare Coulomb potential, eq. (2.10),
with the screened Coulomb potential, eq. (2.16). The Debye length, eq. (2.14), is
the distance over which the perturbation is screened out. To derive the screening
length in Section 2.2.1, we used a simple procedure whose underlying approx-
imations are not at all clear. The response of the total charge distribution to the
charge perturbation is actually a complicated, many body problem that must be
solved self-consistently to treat screening., A good mntroduction can be found in
Ferry [2.15]); what follows is a brief synopsis of some important points.

A review of the screening derivation in Section 2.2.1 reveals that we assumed
an equilibrium relation between the carrier density and the electrostatic poten-
tial. In effect, we assumed that carriers are distributed in momentum space in a
thermal equilibrium Maxwellian or Fermi-Dirac distribution. As we’ll discuss in
Chapter 3, the actual distribution function can be much different. In addition,
when the perturbing potential varies rapidly in time or space, electrons are not
able to fully respond, so the screening length should depend on the frequency
and spatial variation of the perturbing potential. Screening should become
weaker at high frequencies and for rapid spatial variations.

Screening is most conveniently treated in Fourier space. If a perturbing poten-
tial is applied, the true potential that results from screening is given by '

Vbarc(ﬁ)
ef.w)’

where Vyue(f) 1s the Fourier component of the bare perturbing potential, and
e(B, w) is the wave-vector and frequency-dependent dielectric function.

V{ruc(ﬁ) - (2159)
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Ferry [2.15] discusses the calculation of the dielectric function. For static,
slowly varying perturbing potentials, it can be shown that

e — 0,0) = EOKS(l +%_122), : (2.160)

where Bp is related to the Debye length by fp = 27/ L. (The derivation assumes
that 8 <« Bp.) By Fourier transformihg the bare Coulomb potential, eq. (2.10),
and using the result in eq. (2.159) we obtain the Fourier transform of the
screened potential. By inverse Fourier transforming, we find that the screened
potential is just eq. (2.16).

" If we continue to assume a static potential, but do not assume a slowly varying
potential, eq. (2.160) can be generalized as [2.15]

(B, 0):eofc5(1 +ﬁbF(ﬂ)), (2.161)

52

where F(J) is a function that approaches unity as g — 0 and zero as § — oo,
which means there is full screening for small g (slowly varying perturbing poten-
tial) and no screening for large g (rapidly varying perturbing potential).

Figure 2.27 illustrates how momentum-dependent screening affects ionized
impurity scattering. Recall that #f = p’ — p, which is small when the carrier is
scattered while far away [rom the perturbing potential as illustrated in Fig. 2.27a.
In this case, Debye screening applies [F(8) = 1]. A large change in momentum,
however, implies that the carrier made a close approach to the impurity as

{a) o (b)

p
p’ G
p
o
p

p i'j 48 o

Ap. .

p
Fig. 2.27 Hlustration of how momentum-dependent screening influences ionized impurity
scattering. (a) An electron far away from the impurity is deflected by a small amount, small
B. (b) an electron that makes a close approach is deflected by a Jarge amount, large 8. The

first electron sees the Debye length screened potential. and the second sees the bare ionized
impurity potential.
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sketched in Fig. 2.27b. If the electron approaches closer than a Debye length, the
Coulomb potential 1s not screened at all [F(8) = 0].

Finally, we consider time-dependent perturbing potentials. It should be appar-
ent that if’ the perturbing potential varies too rapidly in time, the electrons will
not have time to respond and screen the potential. If the electron response is out
of phase with-the perturbing potential, anti-screening can even result. The

“natural response of the electron gas is determined by the plasma frequency, w,

as given by eq. {2.102). The plasma frequency increases as the square root of the
carrier density, so for low and moderate electron densities, the optical phonon
energy is much higher. This is the reason that we did not screen polar optical
phonon scattering in Section 2.8. At higher electron densities, however, w, can
approach or even exceed w,, and the role of screening has to be considered. We
have treated phonon and plasmon scattering as two separate mechanisms, but in
reality screening couples them. Scattering from these coupled plasmon-phonon
modes can be treated by evaluating a dielectric response function for the coupled
phonon-plasmon system [2.15].

2.16

Summary

The purpose of this chapter was to illustrate the procedures and a few of the
tricks commonly employed to evaluate scattering rates for carriers in semicon-
ductors. Important scattering mechanisms for common semiconductors were
also identified, and the scattering rate versus energy characteristics of pure Si
and GaAs were described. The method employed is based on Fermi’s Golden
Rule and proceeds in a straightforward manner once the interaction potential is
identified. The scattering rate, and the momentum and energy relaxation rates
are evaluated directly from the transition rate, S(p, p’). Various material para-
meters needed for scattering rate calculations in silicon and gallium arsenide are
listed tn Table 2.1. Although our discussion centered on electron scattering in Si
and GaAs, the general features of the results are typical of those observed in
other covalent and polar semiconductors.

Since our motives were to introduce the basic procedure and to establish the
approximate magnitude of the various scattering rates and their functional
dependence on carrier energy, a simple approach was adopted. In practice, how-
ever, overlap integrals must be treated and the energy bands cannot be rd_escribed
as spherical and parabolic. For high energy electrons in GaAs, the conduction
band non-parabolicity is important, and for electrons in silicon, the ellipsoidal
nature of the conduction band minima must be included. For holes, scattering
between light and heavy hole bands must be included along with the warped
constant energy surfaces described in Chapter 1. For the very high energies
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Table 2.1. Transport parameters for silicon and gallivm arsenide

Parameter Symbol Value m Si Value in GaAs
Mass density (g/cm®) b 2.329 5.36
Lattice constant (Angstroms) éy 5.43 5.462
Low frequency dielectric constant &, 11.7 12.90
High frequency diclectric constant  x,, . - 10.92
Piezoelectric constant (C/m?) py - 0.160
Longitudinal acoustic velocity vy 01 U, 9.04 5.24
(x10° cmfs) '
Transverse acoustic velocity v, 5.34 3.0
(x 10° cm/s)
Longitudinal optical phonon B, 0.063 ' 0.03536
energy (eV)
Electron effective mass ratio m* - 0.067
(lowest valley) (1) (0.916, 0.19)
Electron effective mass ratio m* - : 0.22 (L)
{upper valley) « - 0.58 (X)
() 1.59, 0.12
Non-parabolicity parameter o 0.5 0.610 (T)
parameter (V™ 0.46] (L)
0.204 (X)
Electron acoustic deformation Dy 9.5 7.01 (I
potential (eV) 9.2 (L)
9.0 (X)
Electron optical deformation D, - 3.0 (L)
potential (x1 0 eViem)
Optical phonon energy (eV) w, 0.0343 (L)
Hole acoustic deformation Da 5.0 3.5
potential (eV)
Hole optical deformation D, 6.00 6.48
potential (eV/cm)
Intervalley parameters g-type Dy, Ey 0.5, 0.012(TA) -
(X-X) 0.8, 0.019 (LA)
(x 108 eViem){eV) 11.0, 0.062 (LO)
Intervalley parameters f-type Dy, Eiy 0.3 0.019(TA) -
X-X) 2.0 0.047 (LA)
(x10%eV/em)eV) 2.0 0.059 (TO)
Intervalley parameters {X-L) Dy E, ' 20 0.058 -
2.0 0.055

(x10% eViem)(eV). 2.0 0.041.
2.0 0017
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Table 2.1. {continued)

Parameter Symbol Value in St Value in GaAs
Intervalley deformation Dry. Dry - 10, 10.
potential (x 10% eV/jem) Dy, Dix 10, 5.0
- Dy 7.0
Intervalley phonon energy (eV) Er Erx - 0.0278, 0.0299
EiL. Eix 0.0290, 0.0293
Exx 0.0299
Energy separation between AL ¢ - 0.29
valleys (eV) AEyr

typical of carriers in modern devices, a full, numerical treatment of the energy
bands 1s essential. Finally, there is the critical issue of screening to consider.
Many of these refinements to the basic procedure are discussed in the chapter

references.
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For the theory of phonon scattering of two-dimensional electrons, consult
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the Monte Carlo method. Journal of Applied Physics, 79, 911-16, 1996.
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Problems
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N y*
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(b) Evaluate the scattering rate for thermal average electrons in room-temperature GaAs
doped at Np = 10" ecm™3. Explain why the scattering rate is so much higher than the
momentum relaxation rate plotted in Fig. 2.6.

(a) Show that the Conwell-Weisskopf scattering rate is
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2.4

2.6

PROBLEMS

V2m*E(p)
= N,rrbm“ —_—
r(;) nr*

(b) Provide a simple, physical explanation of the Conwell-Weisskopf expression for 1/1(p)
terms of the cross-section for scattering, rmmd\

(¢) Evaluate and plot the scattering rate for thermal average electrons in GdAS at room-
temperature and compare it with the momentum relaxation rate. You should plot 7/t
versus V) for 10M < &, < 10® em™ . Explain in physical terms why 7(p) and 1, (p) differ,
and explain why 7, (p)/7(p) decreases with Ny.

Equation (2.14), the Debye length, is the screening length for a nondegenerate semiconductor.

Derive a more general expression for the screening length by removing the assumption that the

semiconductor is nondegenerate. You should express the vesult as the nondegenerate result

times a correction factor.

Using arguments similar to those in Section 2.2, derive an expression for the interaction

potential for piezoelectric scattering, and show that the result is eq. (2.29). Begin with,

du
dx

where epy is the piezoelectric constant. Show that the piezoelectric scattering potential is

D= Kssog -4 ep7 =

qepz
KgEQ

(,/pz(x, I) ll(‘f I)

This result is sometimes stated in terms of the electromechanical coupling coefficient, K*, where
i
K’ ¢bz
(1=K kseous

fit

and vg is the longitudinal sound velocity.

Use the scattering potential for piezoelectric scattering derived in problem 2.4 to answer the

following:
(a) Assume equipartition and show that the matrix element for piezoelectric scatiering is

7 2 fge ks T
ol = (52) 0T v = 1l 1A i

What is lKﬁrz for piezoelectric scattering?

(b) Write an expression for S(p, p’) for piezoelectric scattering. Your expression should be in
the form of eq. (2.72). What is Cg for piezoelectric scattering?

(¢) Evaluate !/7,(p) assuming that piezoelectric scattering is elastic.

For alloys of compound semiconductors such as Al Ga,_,As microscopic fluctuations in the
atloy composition, x, produce perturbations in the conduction and valence band edges. The
transition rate for alloy scattering is

N 2w tAU?
Sp) =7 (16) No M B
where N is the concentration of atoms and

AU = Y(1 - x)(Xqu\s - XAIAS)

where x = electron affinity.
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2.8

2.9

2.10

CARRIER SCATTERING

(a) Explain why the alloy scatiering rate vanishes at x = 0 and at x = 1.
(b) Derive an expression for 1,,(p) for alloy scattering.
Acoustic phonon scatiering was assumed to be elastic when evaluating the momentum relaxa-
tion rate (2.84). Work out an expression for 1/7,,(p) due to ADP scattering withour assuming
that the scattering is elastic, and show that the result is nearly equal to equation (2.84) near
room temperature. )
Compute the energy relaxation rate due to-ADP scattering. Assume energetic carriers so that
phonon emission dominates, and assume that spontaneous emission dominates so that
N, +1=1].
(2) Show that

ky Ty

E = 2 T~
2mmug

T

(by Assuming GaAs, evaluate the ratio for thermal average electrons at 7 = 300K and at
T, =T1K. f

Compute and compare the momentum relaxation times due to ionized impurity scattering

under the following circumsiances (you may use either the Brooks—Herring or Conwell-

Weiskopf approach):

(a) Find |/, for electrons with the thermal average energy £ = 3kg 77 /2. in GaAs doped at
Np = 10" cm™. Assume & lattice temperature of 7; = 300K.

(b) Find 1/7,, for electrons with £ = 0.3¢V in GaAs doped at Np = 10'® em ™. Such elec-
trons can be produced by a heterojunction launching ramp as displayed in Fig. 3.2,

Consider the optical deformation potential scaitering of confined electrons. Assume a rectan-

cular well with infinitely high barriers and answer the following.

(a) Derive an expression for the transition rate S(p, p").

(b) Obtain an expression for the scattering rate. .

(c) Plot the total scattering rate versus energy for ODP scattering. Assume that hwy = £,
Niwg) = 1/4, and that £, = 4£, and E; = 9EF,. Compare your answer to Figure § of
Ridley’s paper [2.12].
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3.1 The distribution function, f{r,p, ¢)

3.2 The Boltzmann transport equation

3.3 The collision integral and the relaxation time approximation
3.4 Solving the BTE in the relaxation time approximation

3.5 Validity of the relaxation time approximation

3.6 Numerical solution to the BTE

3.7 Validity of the Boltzmann transport equation

3.8 Summary

To completely specify the operation of a device, we should know the state of each
carrier within the device. If the carriers behave as classical particles, we should
know each carrier’s position and momentum as a function of time. A direct
approach would consist of solving Newton’s equations,

dp;

d% — ()€ +R(r, p, 1) (3.1)
and

dr;

Ty 2
s {5, (3.2)

for each of the i = 1, ..., NV carriers in the device. In these equations p,(f) is the
momentum of carrier i, r{f) its position, and R is the random force due to
impurities or lattice vibrations. Alternatively, we could ask: what is the prob-
ability of finding a carrier with crystal momentum p, at location r, at timhe #? The
answer is f{r, p, f) where f(r, p, 1), the distribution function, is a number between
zero and one. To find f(r, p, {) we solve the Boltzmann Transport Equation. The
distribution function describes the average distribution of carriers in both posi-
tion and momentum and can be used to obtain various quantities of interest such
as the carrier, current, and kinetic energy densities. Our purpose in this chapter is
to derive and discuss the Boltzmann Transport Eguation (BTE) and to show
how it is solved to obtain the distribution function.
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The distribution function, /(r, p, 9

Before formulating an equation for f(r, p, 1), let’s discuss what 1t is and how it is
used. The equilibrium distribution function is simply the Fermi-Dirac function,

I .
fG(p) - | + elfctrpi~Lrlks T, B ’ v (3.3)

where Ep 1s the Fermi level, T the lattice temperature, and
Ec(r, p) = Eco(r, 1) + E(p) (3.4)

is the sum of the carrier’s potential, Eqy(r, 1), and kinetic, E{p), energies. If the
energy band is assumed to be spherical and parabolic, then E(p) = p*/2m". For
such cases, the equilibrium distribution function depends only on the magnitude
of p, so, for a nondegenerate semiconductor, eq. (3.3) becomes:

folr, p) = elEr Eo®iikaTi LS T (3.5)

which is plotted in Fig. 3.la. The distribution function shows that the zero
velocity state has the highest probability of being occupied, but that a significant
number of high velocity states are also occupied.

To find the total number of carriers we simply add up the carriers in each
momentum state. The average carrier density Is

|
Ar, 1) = aXp:f(r, P, 1), (3.6)
{a} fip,) {b) fip,)
A
el !k

)\/e( Ec- ExgllkgT

P,

Fig. 3.1 (a) [llustration of Maxwellian distribution functions. The solid line is the
equilibrium, non-degenerate, distribution function, and the dashed line is an equilibrium
Maxwellian with the Fermi level repiaced by the quasi-Fermi level. (b} Hlustration of
displaced Maxweliian distribution functions. The solid line assumes that the carrier

‘temperature is equal to the lattice temiperature, and the dashed line assumes a carrier

temperature that exceeds that of the lattice.
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where the sum is over all states in the first Brillouin zone. Equation (3.6) is the
average carrier density in a small normalization volume, £, centered about r.
Similarly, we find the electron current density by weighting the sum by velocity,

3.0 = "2 oyt n 0= "L B rwp), 37
- p - Toop

and the average kinetic energy density from

(3.8)

| P’
Wi, 0= ZE(p rp0=452 5"
243

In each of the above two equations, the second expression on the right-hand side
follows for spherical, parabolic, energy bands.

Because 1t is easier to integrate over p than to sum over a very large number of
states, we usually convert the sums to integrals as prescribed by eq. (1.54). After
transforming from wave vector to momentum space, the prescription becomes

Q
> elp) = WL g(p)dp (3.9)

P
for three-dimensional electrons. Although the integration is to be performed only
over the states in one Brillouin zone, the integration limit 1s extended to infinity
in practice because the probability that states are occupied falls off very rapidly
with energy. Because we shall make frequent use of eq. (3.9), it is worthwhile to
consider a few examples of its use (a nondegenerate semiconductor in equili-

brium is assumed).

Example: Evaluation of macroscoplc quantmes trom the ethbrmm dlstnbutlon

functl()n

Carrier denszty : : : ’
. The equl librium CdI‘HeI‘ densxty is evaluated from . I

I'lo(l')— Zf()( p) = T J [EF‘FCn(r) P/’m*]{knTl dp

After performmg the mteora weé ﬁnd

a famillar resuit Wthh relates the equlhbnum carner dermty to the. Ferml Ieve!

Avemge kinetic energy per carrzer
The.average kinetic energy denszty in eqm 1b11um is found from

i .
Wo{r)—-— fo( D=7 2ol alt) -0 s T gy H
77}1 R3tn



3.1 THE DISTRIBUTION FUNCTION, (v, p, ©)

The fundamental problem in device analysis is to find f(r, p, 1) because it
defines the average state of the carriers in the device. We shall find that it is
exceedingly difficult to deduce f(r, p, ¢) in realistic devices, so a reasonable guess
for the distribution function is often used for device analysis. For example, the
quasi-Fermi level is introduced so that the nonequilibrium distribution function
can be wriften as T

I N
AL IR N O B Y (3.16)

where F,(r, 1), the quasi Fermi level, plays the role that Er did in equilibrium.
That this cannot be the correct distribution function is apparent by observing
that it is even in momentum and therefore predicts that current can never flow.
Nevertheless, it is not an unreasonable guess considering that average carrier
velocities are frequently small. If we measure the spread in velocities by the
velocity at which f(r,p) drops to l/e of its peak, we find a spread of
2Ty /m* or about 10’ cm/sec for a semiconductor with m* ~ my. Since aver-
age velocities in a device are often much smaller than this, the assumption that
the average velocity is zero may not be so bad. The non-degenerate approxima-
tion to eq. (3.16) is also plotted in Fig. 3.1a.

A better guess for f(r, p, {) might be to assume that it retains its equilibrium
shape but that its peak, or average, momentum is displaced from the origin. If
the average carrier velocity is vy, then we would write f{r, p, £) in this displaced
Maxwellian approximation as

flr,p, ) = elfuln = Eealr ik T e—lP—P,rfz/Zm*f\’a T (3.17)
where
Py = m"g, (3.18)

and v, is the average carrier velocity. By computing the carrier density, we find

n(r, 1) = Nce[ﬁ.(f,f)*Ecn(r,f)]/fiuTl_

which is much like eq. (3.10), but the kinetic energy density per carrier is

u(r) :E{@:lm*uff—i—ékgﬂ_ : (3.19)
n 2 2
instead of eq. (3.11). We interpret this result as the sum of drifr energy, due to the
average carrier velocity, and thermal energy due to the collisions of carriers with
random lattice vibrations. The fact that the temperature is the lattice temperature
implies that phonon scattering is strong enough to ensure that the carriers and
lattice are in equilibrium.

We could further improve this approx‘imation to f(r, p, ©) by replacing the
lattice temperature, Ty, with T, the carrier temperature. The lattice and carriers
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el AEry

Eco /

Base

Emitter

Collector
{b)
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Electron distribution {arbitrary units)
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0.00 ‘
20 -15 -1.0 -05 0 0.5 1.

Electron velocity (x 107 cm/s}
Fig. 3.2 (a) The energy bands versus position for an AlGaAs/GaAs bipolar transistor with
a heterojunction launching ramp. (b) The electron distribution function near the beginning

of the base for the transistor sketched in Fig. 3.2a (from Maziar C. M_et al., JEEE
Transactions in Electron Devices ED-33, 881-888, 1986. Reproduced with permission from

IEEE).

are two systems, each characterized by a temperature, which interact through
collisions. The carriers and the lattice exchange energy through collisions, but the
rate of energy transfer is frequently too slow to make 7. = 7;. Under high
fields, T~ > 7, high-field transport is sometimes referred to as fiot-carrier trans-
port. Figure 3.1b displays two displaced Maxwellian distribution functions, one
with the carrier temperature equal to that of the lattice and another with a higher
carrier temperature.

Qur guesses for nonequilibrium distribution functions have been guided by
knowledge of the equilibrium distribution function. Since each guess resembles
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Table 3.1. Various guantities of interest for a Maxwellian and displaced
Maxwellian distribution function™

Quantity Notation Maxwellian Displaced Maxwellian
Distribution function fopo gnelrg v/ kT O R
Carrier density Con(r, i) Neelctr-niksTe Neeeln ks Ie
Average velocity by 0 P/

A

L 3 3 . .
Average kinetic energy u ka Tc 5/(3 Te +pi/2m’
per carrier 1 g

Kinetic energy component U ;kB Tc skgTe + po 2

1 1 )
Energy-related tensor W/ln 3kB Tody 5 kgTedy + papy/2m’

*The quantity nc is defined by ne = (F, — E¢o/ksTc) where T is the carrier temperature.

JSo(r, p), we expect them to be valid in benign situations — when the device is near
equilibrium, But in devices the carriers may be very far from equilibrium so that
we have little guidance as to what to expect for f(r, p, 1). For example, consider
the energy band diagram for a heterojunction bipolar transistor as sketched in
Fig. 3.2. The heterojunction ‘launching ramp’ at the emitter acts like an electron
gun shooting electrons into the base with their initial momentum plus
8p, = /2Zm* AEq. (This device is made with a wide band gap Al Ga,_,As emit-
terand a GaAs base for example.} If the base 1s so thin that little scattering takes
place, and 1if dp. is much larger than the thermal spread of velocities entering
from the emitter, then f(z, p.) >~ 8(p. — /2m* AEgq) as shown in Fig. 3.2b (which
was obtained by Monte Carlo simulation as described in Chapter 6).

[t is apparent from this example that we need an equation which we can
solve f(r, p, ) since it may be difficult to guess its form. The equation is called
the Boltzmann Transport Equation and is derived next. Nevertheless, a
Maxwellian or displaced Maxwellian is a frequently-used approximation.
Table 3.1 summarizes the important specific results for Maxwellian distribution

functions.

3.2 The Boltzmann transport equation

The distribution function gives the probability of finding carriers at time, 7,
located at position r, with momentum p. The Boltzmann transport equation
(BTE) is just a bookkeeping equation for f(r,p.?) (much like the continuity
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equation for carriers) which accounts for all possible mechanisms by which f
may change. The BTE can be obtained in several different ways. Because of its
importance, we present two derivations in this sectton. The first derives the BTE
in terms of carrier in- and out-flows, and the second is based on carrier trajec-
tories in the six-dimensional position—momentum space.

Derivation of the BTE hy carrier cun'servatiun in position-momentum space

The BTE is much like the familiar particle continuity equation; the difference Is
that it describes particle flow in a six-dimensional position-momentum, or phase,
space. The BTE can be derived by careful bookkeeping. Consider a region in
two-dimensional position—momentum space as shown in Fig. 3.3. In a time &z, /
may increase within the region shown if the in-flow exceeds the out-flow (in both
position and momentum space) or if there s a net generation of carners or if
collisions send carriers from other cells to the one shown (collistons are assumed
to instantaneously change the carriers’ momentum but not their position).
Conservation of carriers requires that

(8f érdp) = [f(r) = f + 8n)Juvdidp + [f (p) — [ (p + Sp))Fardr

(3.20)
+ [s(r, p, )+ 0f /81|, J5eérdp.

>

Out-scattering

Cut-flow
f{p + dpldp/dt
In-scattering

Out-flow

j flr+dnv
0
|

in-flow
| flpdpdt

r r+dr

In-flow —
firty

p+dp \O ﬂ
>

Fig. 3.3 Cell in two-dimensional position-momentum space.
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After rearranging terms and letting &7, 87 and dp approach zero, we find

v_
or Uar ap  or

af Jf of
vy Y +5(r, p. 1), (3.21)
coll

which is the BTE for one space and one momentum dimension. Generalizing this
result to a six-dimensional position—momentum space, we find

3 . 9
oo vrrvr=2 tswnn]. (3.22)
a[ or cot!
where
o . o . 9. :
Vf=—"3+-—p+2=z 323:
i e T (3.234)
and
3. . of . of.
Vf &= X4 p st (3.23b)
M pe dpy dp-

Equation (3.22) is the Boltzmann transport equation; its solution provides
the distribution function from which macroscopic quantities of interest are
readily evaluated. For classical particles, v = p/m”, but for electrons in semi-
conductors, v=V,E(p). The two expressions are equal only when
E(p) = p’/2m".

One can understand the BTE by analogy with the familiar hole continuity
equation,

P W+ (3:24)

which simply states that the increase in carrier density, p, within a small
volume centered at r is due to the net in-flow of carriers plus the net increase
due to generation-recombination processes. (Note that we use p in eq. (3.24)
to denote the hole density rather than the usual p to avoid confusion with
momentum.) In Eq. (3.24), —V - (J,,/¢) represent the net in-flow of particles to
an elementary volume centered at r. Similarly, —(v-V,/ +F-V,f) in the BTE
represents net in-flows. The first term is an in-flow in position space and the
second is an in-flow in momentum space. The ‘generation-recombination’ term
in the BTE consists of two components. The first describes actual carrier
generation recombination processes such as photogeneration or recombination
through defects by the function s(r,p, f). Collisions send carriers from one
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momentum state to another and, therefore, also produce sources and sinks in

momentum space.

LT —

- Derivation of the BTE from fra}ecturies in position-momentum space

The BTE can also be derived from a much different viewpoint, one that is useful
not only for deriving the BTE, but also, as we shall see in Section 3.6, for solving
the BTE. Carriers in a semiconductor move and change momentum in response
to an electric field. We call the path a carrier takes in the six-dimensional phase
space, its trajectory [r(7), p(7)]. Figure 3.4 shows several trajectories in a simple,
two-dimensional phase space. Consider a carrier at position A on trajectory 2 at
time 1. Carriers at position A were at position A’ at time ¢ — d¢. The probability
that a state at A is occupied, therefore, is simply the probability that the state A’
was occupied at a time dr earlier. That is,

Flrop. 0y =f(r—ude, p— Fde, 1 —dp), {3.25)
or
%é =0 (no scattering). (3.26)

Equation (3.26) states that if we follow a4 carrier as it moves in phase space, the
probability of occupation does not change. If the state was occupied at t =0,
then it is always occupied; if it was empty at ¢ = 0, then it is_always empty. In
deriving eq. (3.26), however, we made no allowance for scattering or carrier
generation. As shown in Fig. 3.4, the probability that the state at A is occupied
can change if carriers out-scatter to other trajectories or if they in-scatter from
other trajectories. The probability may also change if there is a source, s, of
carriers present. Consequently, eq. (3.26) must be modified to

Y L (3.27)

dr ot coll

i1 order to account for scattering. To obtain the BTE explicitly, we expand the
total derivative on the left-hand side of eq. (3.27) to find

o Y ydr ydp o o O, ¥ (3.28)

de —8r ardr dpdr at @ dp 0|y

which is the one-dimensional analog of eq. (3.22). We will find this viewpoint
useful when we discuss path integral solutions to the BTE in Section 3.6.
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1
i
|
|

In-scattering,

\/

Fig. 3.4 IHustration of trajectories in position-momentum space. Carrier’s move along a
trajectory according to Newton’s Laws. Occasionally they scatter to another trajectory.
Scattering instantly changes the carrier’s momentum, but does not affect its position.

The collision integral and the relaxation time approximation

Scattering may alter f(r, p, 1) by two processes — carriers at p’ could be scattered
to p thereby increasing / (the in-scattering process) or carriers at p could scatter
out decreasing f (the out-scattering process}. The net rate of increase of f(1, p, 1)
due to collisions is a result of the competition between in-scattering and out-
scattering and is given by

= fpOL - SIS p) - Z/(p)l— (p)]Sp.pY=Cf,  (3.29)

coll '

az

where € is the collision operator. For the in-scattering process, f(p’) gives the
probability that a carrier is at p’, and [1 — f(p)] is the probability that the state at

*p is empty. The transition rate S(p’, p) is the probability per second that a carrier

at p’ will scatter to p (assuming that state p’ is occupied and that state p is
empty). The sum is over p’ — all of the possible states from or to which carriers
may scatter. In non-degenerate semiconductors f(r,p, ) « 1 and the [1 — f(p)]
terms in eq. (3.29a) can be set to unity, so

Zf(p )S(p’, p) — Zf pS(p, p'). (3.29b)

coll

af
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In Chapter 2 we derived S(p, p’) for several scattering mechanisms important
in common semiconductors. The collision term is a sum (or integral) involving
these known expressions and the unknown distribution function, f(p). As a
consequence, the BTE is a rather complicated integro-differential equation for

f(r,p, ) whose solutign usually requires a number of simplifying approxima-

tions.

. The role of electron-electron scattering

Forces on the carriers, which push the distribution away from equilibrium and
scattering, which pushes the distribution back towards equilibrium determine the
shape of the distribution function. To find the distribution function, we need to
solve the Boltzmann equation, but when electron—¢lectron scattering dominates,
it assumes a simple shape. Usihg the pair transition probability [recall eq.
(2.100)], we can write the collision integral as

A

S| == 2 S pap PR Y () + ) SEp3 b ) (R (). (3.30)

colf P .m pp;

Equation (3.30) describes processes in which carriers at p out-scatter from 4
target carrier at p, (first term) and in which carriers at p’ in-scatter from a target
carrier at p, (second-term). (Note that eq. (3.30) assumes nondegenerate condi-
tions because there are no (1 — f) state-filling terms present.) Figure 2.17 illu-
strated the electron—electron scattering process. Notice from eq. (2.100) that the
probability for a forward transition is equal to the probability for a reverse

transition, that is

S(p. pyi P’ p3) = S(p". P2i P. Po)- (3.31)
Using eq. (3.31) in eq. (3.30) and performing the second sum over p, instead of p;
(which is permissible because the two are related by momentum conservation),
we find

af

== St Y () - S0 (2] (332)

coll p.ps

Eventually, in-scattering and out-scattering balance and steady-state conditions
are achieved. Then 9f/0dt}.,» = 0, which occurs when

Y (p) = f(p") (p3). . (333

To solve eq. (3.33). let’s try a Maxwellian distribution function,

1) = e, (3.34)

where K is a constant. After inserting eq. (3.34) into eq. (3.33), we find
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KWty oK ") (3.35)

Equation (3.35) is indeed satisfied because electron—electron scattering conserves
energy, so we conclude that in steady state, electron—electron scattering forces
the carrier distribution functions to a Maxwellian shape. The constant, K, is
related to the average carrier energy and, therefore, to the carrier temperature
({(E£y =3/4m"K = 3/2k4T¢). So when the carrier concentration is high
(typically = 10'7—1p" cm_B), electron—electron scattering dominates and the
distribution function can safely be assumed to be Maxwellian with the spread
of the distribution, or carrier temperature, being determined by the average
kinetic energy of the carriers. For such cases, the problem is greatly simplified
because there is no need to solve for the shape of the distribution function.
Finally note that our argument assumed simple, parabolic energy bands and
nondegenerate conditions. For degenerate conditions, electron—electron scatter-
ing forces the carrier distribution to a FermiDirac shape rather than to a

Maxwellian.

The relaxation time approximation

We conclude this section by introducing & commonly-used simplification for the
collision integral. In the following section, we explore solutions to the BTE using
this simplification, and in Section 3.5 we examine its validity. We begin by
writing the non-equilibrium distribution function as

J,p, ) = fslr,p. 0) + fy(r.p, O, - (3.36)

where the first term is symmetric in momentum and is assumed to be large while
the second term is a small, anti-symmetric component, Note that although the
symmetric component is large, it can carry no current. [t is apparent that in
equilibrium, f5 = fy and f, = 0. Out of equilibrium, we assume that fy has the
same form but with £ replaced with F, as in eq. (3.16). Under high applied
fields, we would also need to replace the lattice temperature with the carrier

temperature.

Using eq. (3.36) in the non-degenerate collision integral, we find
af ) of,
AR (. (3.37)
Ofleon 9 leon 9t lcon
where e
ofs

Jt

coll

= fs(p)S0" p) — fs(D)S(p. p') (3.382)
-
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and

Ay
ot

coll .

= [Ap)S(p.p) —f4(p)S(p.p). (3.38b)
.

In equilibrium, f5 =/, and 3fg/0ri,; vanishes. When the non-equilibrium fg
* retains its equilibrium form with the carrier temperature equal to that of the
_ lattice, 3fg/8t|.o also vanishes [see homework problem (3.12)]. For high electric
fields, however, the carriers are heated, so 7¢ > Ty, and dfs/ 8|, 18 non-zero.
We conclude that for low-field transport when the carrers are in equilibrium
with the lattice, dfg/d!],, may be set to zero.

To continue, we need to approximate df/0#.on- A plausible form is

P
ot

_ e (3.39)
coil 1?[(1', P l> ’ N

where 17 is a characteristic time which describes how the distribution function
relaxes. Putting these considerations together, we obtain

vy _¥s

Sa
— A 3.40
ot |,y 01 ( 8)

colt Y

for high applied fields and

(3.40b)

for low applied fields. Both results are known as the relaxation time approxima-
tion (RTA}, but in this text the term RTA will refer only to eq. (3.40b) which is
valid for low applied fields.

To illustrate the meaning of eq. (3.40b), consider the BTE under spatially
uniform conditions with no applied force. From eq. (3.22) and eq. (3.40b), we
find '
¥__U-h (3.41)
ar Tr

(if we assume near-equilibrium conditions so that fg = f;). According to eq.
(3.41), the semiconductor responds to small perturbations in the distribution
function by trying to restore equilibrium 9/t < 0 if /' > fy and 8f/9t > 0 if
f < fp. The solution to eq. (3.41) is

SO =fo +1/0) —fole ™%, (3.42)
which states that perturbations decay exponentially with the characteristic time

T[.
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It is far from obvious that eq. (3.38b) can be written in the simple form, eq.
(3.40b). Of course, the collision term may always be written in this form if we
simply equate the two expressions and view the result as a defining relation for
1. But the approximation is useful only if z; is independent of the distribution
function. We expect that this can be true only under low-field conditicns where
the perturbations are small, but as we show in Section 3.5, even under low-field
conditions, the RTA is valid only when the scattering mechanism 1is either efastic,

isotropic or both.

3.4

Solving the BTE in the relaxation time approximation

341

In this section we examine solutions to the BTE for a few simple cases, A
systematic treatment of low-field transport in the relaxation time approximation
is deferred until Chapter 4.

Equilibrium

We consider equilibrium first. Recall that the equilibrium distribution function is
] :

h=m7 (3.43)

where

@ =(Eco + p*/2m" — Ey)/ke Ty, (3.44)

(spherical, parabolic energy bands are again assumed). The BTE, eq. (3.22),
becomes

v-Vifo +F-V. [, =0, (3.45)
because nothing changes with time in equilibrium. Equation (3.45) can be written
as
oy afh v
-2V F.— =0 ’ .
300 T e, - (3.46)

since V,& = v/kgT;. Now if we permit Ecy, Eg, and Ty to vary with position,
then eq. (3.46) becomes

2 *
2 — E
v, (ECO(T) “’T/ m F) +F o (3.47)
L

?L~
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Using F = —V,Eqy(r), this expression can be expanded to find
] 1

—?V,AEF + [Eco(v) + p*/2m" — E¢]V, (T) =0, (3.48)
L L

which must hold for every p so each of the two terms must independently be zero.
We conclude that in equilibrium — even when built-in fields make Eq, position-

" dependent, that

V,Ep =0 _ (3.49a)
=0 . | (3.49b)

This solution to the BTE demonstrates that both the Fermi-level and tempera-

ture are constant in equilibrium.

Uniform electric field with a constant relaxation time

Next, consider an #-type semiconductor under bias and assumne that it s long, so
that we need not be concerned with boundary conditions, that it is uniform, so
V) =0, and that it is in steady-state, so 3//3r = 0. If a small electric field is
applied, we expect that f(r, p) will be close to f4(p) and may hope that the RTA is
valid. To simplify the calculations, we’ll assume for now that 1, = 7, a constant.
Under these assumptions, eq. (3.22) becomes 7

(—)E-V,f = A ' (3.50)
To

If we assume that f = fy, then V,/ may be approximated by V,f; so

T = fo = o= = Vofo = fy = e (.51

is the solution to the BTE with the force on electrons arising from an applied

electric field E.
To examine the shape of the non-equilibrium /', assume £ is directed along Z.

Then eq. (3.51) becomes

) ) . a
I =fotfn=fot 61705:'“1{_0~ (3.52)

which may be interpreted as a Taylor series expansion for fy(p,, p.. p- +q1p€-) if
£. is small. We conclude that the non-equilibrium distribution function is simply

f(p\-pj'~f):) :fo(anP_r-P: + Qfog.-)a * (353)

which is the equilibrium distribution function shifted by gzp€. in a direction

-opposite to the applied field. In this simple case, the non-equilibriwm distribution
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function is a displaced Maxwellian. As shown in Fig. 3.5, the distribution has a
net negative velocity and current will flow. To gauge the magnitude of this
displacement let 7y = 0.1 picosecond and £. = [ kV/em. Then the displacement
is gro€. = 1.6 x 107 kgm/sec. A Brillouin zone half width is roughly An/a.
Assuming a lattice spacing of a =~ 5A, we find that the distribution function is
displaced from origin by only =~ 1077 of the Brillouin zone width, so the dis-
placement is typically quite small.
From the tow-field solution, eq. (3.31), the electron current,

Sy = (—qin{v), (3.54)
can also be evaluated. The average electron velocity is evaluated from the sum,

) ]
SIS et A ' (3.35)

where f, 18 the deviation from equilibrium as given by eq. (3.51). Notice that f; is
even in momentum whereas f, i1s odd. Under low fields, fy <« f; s0 it can be
ignored when evaluating the sum in the denominator, but the product, v_f;, is
odd so only the v.f, term contributes to the sum in the numerator. Evaluating
{(v.) from this sum is a good exercise, but we can find the answer very easily
because p is assumed to be constant. According to eq. (3.53), f(p) is simply £
shifted in momentum by (—g)7,é. in the p. direction. Because the distribution

{v

function is symmetrical,

. £
(v.) = ifl;) = (=)~ (3.56)

and the electron current becomes

J. = ngu,€-. (3.57)

- D,

,q-ro,r

Fig. 3.5 The nonequilibrium distribation function for efectrons in the presence of a small
applied electric field. The dashed fine is the equitibrinm distribution function. f3(p).
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where

q7
Mg = —1 {358)
m
is the electron mobility. Under low fields, the current is directly proportional to
the electric field; we have derived Ohm’s taw. High carrier mobilities are asso-
ciated with long relaxation times and small effective masses.

Uniform electric field with energy-dependent relaxation time

For most common scattering mechanisms, 7, is a function of the carrier’s kinetic
energy, so the nonequilibrium distribution function is not a simple displacement
of fy. Equation (3.51) is stull a valid solution where 7, is replaced by 7,(£), but the
average velocity is more difficult to evaluate.

To evaluate the average velocity, we begin with eq. (3.55) and insert eq. (3.51)
to find

. 2
oy = 22 e {M} (3.59)

2 /0 nkgTyL
which can be written as

(=g | T 2m D (B (B) .
o (1/2nkpTy)

{v:)

According to equipartition, the denominator of the term in brackets is simply
one-third of the average equilibrium kinetic density. Using this, and the spherical
symmetry of the problem, we find

(—q) [(W} zp<1/2nz*u2)q-<E>fo<E>} .

{02y =

*

(1/3)(E)

m

which we can write as

(=@ E{E)
W) = e (3.60)

Equation {3.60) shows that the average electron velocity is proportional to the
electric field. We can express the final result as

(U:> = _/'Lng:,

where the mobility is
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(3.61)

where

(E7(E))
(E)

i

{reh) (3.62)

The quantity {{z;)) was introduced to make the result for an energy-dependent
relaxation time look like eq. (3.58), the corresponding result for a constant
relaxation time. The double brackets are to indicate that {{z}} is not a simple
average of 7,(E) over the symmetric component of the distribution function; it is
a specially defined ‘average’ that arises in transport calculations.

In the following section we’ll specify 7,(£) and show that for several common
scattering mechanisms, it can be expressed in power-law form as

(B = rlE@)/ ke T, (3.63)

where 7, is @ constant and ‘s” a characteristic exponent. When this form is
inserted in eq. {3.62), we find

50/ 2mNp’ 2 e Ty e T
Zp(p2/2m*)e~p3/2m*kg N

’

U =

which can be converted to an integral and evaluated. Since the integrations over
the angular coordinates cancel from the numerator and denominator, we find

J(?O(pz/2m*k3 TL).\‘e~pf/2m“kB TLp4dp
JOOO e~pz/2m*kBTLp4dp '

o) =7

With the substitution, y = p° /2m*kg Ty,

J’OO ys—f—3/2e—ydy
()} = 7000043/3'__-_~
J‘O ye )‘dy
After recalling the definition of the I'-function,
toe)
0

)= J ¥ e dy, (3.64)



THE BOLTZMANN TRANSPORT EQUATION

Table 3.2. Charucteristic exponents for common power law scattering

mechanisms®

Séattering mechanisims Exponent s Hall factor
Acoustic phonon —1/2 1.8
fontzed mmpurity (weakly screened) +3/2 1.93
fonized impurity (strongly screened) —1/2 [.18
Neutral tmpurity 0 1.00
Piezoelectric +1/2 1.10

*The meaning of the term Hall factor is discussed in Chapter 4.

we can write the result as

o T+5/2)
((?/))_TOW . (3.65)

The average relaxation time is seen to be a function of the exponent, s, which
characterizes the energy-dependence of t,(£). The following three properties of
the I” function enable us to evaluate {{r}) for any exponent, s,

Fny={un-1) {for integer o)

i
g (z) VT (3.66)

For example. if s = —1/2. then
o re I 4
o) = T e = 0 T T 3w

The results of Chapter 2 show that the power law form describes scattering by
acoustic phonons. It also describes ionized impurity scattering, but then 7, varies
stowly with energy. Because the variation with energy is slow, eq. (3.65) is still a
good approximation. In this case, 7, 1s evaluated at the energy which maximizes
the integrand. In Table 3.2, the characteristic exponents for several common

scattering mechanisms are listed.
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3.5 VALIDITY OF THE RELAXATION TIME APPROXIMATION

Validity of the relaxation time approximation

The relaxation time approximation i1s widely used because it makes solving the
BTE so easy. Chapter 4 presents a formal theory for low-field, or linear, trans-
port theory based on the RTA. Our objective for now is to identify the condi-
tions under which the RTA is valid and then to specify its form. As demonstrated
in the previous section, the RTA [as we defined it in eq. (3.40b)] is valid only
under low applied fields so that the carriers and lattice are in equiibrium. Even
for such cases, however, stringent conditions must be met in order to apply the
RTA.
Our goal is to demonstrate that the collision mtegral can be written as

U =y spi-spn=-"2 (3.67)
> |

a icoll f

where S" = S(p’, p), fu =/alp): § = S{p,p") and fy = fa(p). In equilibrium,
8 /81)con = 0, s0 S = Sofp/fo. If we assume that this relation applies out of
equilibrium as well, we can use it to eliminate S’ in eq. (3.67) and find

I f&)fA'J
—= Sl —===1 3.68
5 2 - (69

Use of the equilibrium relation between S’ and S is justified because the
transition rate is often determined by strong, short-range potentials that do
not change out of equilibrium. Equation {3.68) could be regarded as a definition
of 7, but when the term, relaxation time approximation, is used, we mean some-
thing much more specific. To be useful, 1, should not depend on the distribution
function nor on the driving force which determines f(r, p, ).

Notice that if the second term in eq. (3.68) sums to zero, then 1, will depend
only on the scattering processes as described by S(p,p’) and the relaxation time
approximation will be valid. Notice also that f, and f4 do not depend on p’, that

fy 1s an even function of p’. and that £y is odd [recall eq. {3.51)]. As a conse-

quence, fofa/fofa 1s odd in p’, so when S(p, p’) is even in p’, the second term on
the right-hand of eq. (3.68) sums to zero. The transition rate S(p, p”), is even for
isotropic scattering, so we find

1 I .
—— =% S(p,p’)=—— (isotropic scattering) | . 3.69
7(p) va—f =(p) (3.69)

We conelude that the relaxation time approximation is valid when the scattering
is isotropic and that the characteristic time, 7;{p), 1s just the average lime between

collisions, (p).
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From eq. (3.68), we can also demonstrate that elastic scattering will produce a
1 that is independent of the distribution function. To demonstrate so, first recall
that the form for f, obtained in Section 3.4 involved a dot product between the
applied force and the carrier’s velocity [see eq. (3.51)]. In Chapter 4 we’ll show
more generally that for spherical bands under low fields, the general form for f4

18
= g(p*) cos, (3.70)

where 8 is the angle between p and the generalized force (which may include both
electric fields and temperature and concentration gradients). The function g
depends on the strength of the driving force and on the carrier energy. Using
eq. (3.70) for fa in eq. (3.59), we find

. _Jog cosé
1 ZS{ fogcong 3.71)

Since both f; and g depend on the carrier energy, fy = fy and g = g’ when the
scattering is elastic and only cos8’/cosé need be evaluated.

Figure 3.6 shows the geometry for a particular scattering event with the initial
momentum along Z and the appliéd force in the y — Z plane at an angle 6 to p.

Since
_rp
cosf = —— (3.72)
Ep
z
'y
p: p,=0 p,=0 p,=p
F: F=0 y:Fsine F,=Fcos @

’

p" p,=p sinacos ¢ p\’(:p’sinasindj p.=p’cos a

Fig. 3.6 Coordinate system illustrating a scattering event., The incident carrier has
momentum p, the scattered carrier, p’, and the applied force is F.
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3.6 NUMERICAL SOLUTION TO THE BTE

we find
cosd’ = sin@sinasin¢ + coshcosa, (3.73)
or
cos®’ . i Ny

= tanf@singsing + cosw. (3.74)
cosf

When eq. (3.74) s inserted 1n eq. (3.71), the term involving ¢ will integrate to
zero because S(p, p') is independent of ¢ for spherical bands. For elastic scatter-
ing, we conclude that eq. (3.68) becomes

= ZS(p, p (1 —cosa) (elastic scattering) |, (3.75)

77(p)

which again depends only on scattering processes and not on the distribution
function. Since « is the polar angle between the incident and scattered carrier, eq.
(3.75) says that collisions which don’t change the direction of p very much, don’t
count very much.

We conclude that under low fields when the scattering is elastic or isotropic the
collision term in the BTE can be approximated by eq. (3.40b) with a relaxation
time, 7y, that depends only on the nature of the scattering process. For isotropic
scattering 7; = 7, the average time between collisions. For elastic scattering a
weighting factor of (1 — cos«) appears.

Numerical solution to the BTE

Although the relaxation time approximation makes it easy to solve the BTE, it
cannot be applied to semiconductors such as GaAs for which the dominant
scattering mechanisms are neither elastic nor isotropic, and it does not work
well under high flelds in any semiconductor. For such cases, numerical tech-
niques are necessary. In this section, we describe a numerical technique that is
widely-used for low-field transport, another one that is often used for high-field
transport, and briefly examine techniques for solving the Boltzmann equation for

devices.

Rode’s iterative method

An iterative technique for solving the BTE under steady-state, spatially homo-
geneous, low field conditions is introduced in this section. The technique is due to
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Rode and is described in [3.6]. (Homework problem 3.13 asks you to fill in the
details of the derivation sketched below.)
We begin with the steady-state, spatially homogeneous BTE for a nondegen-

erate semiconductor,

0%, = SO0~ Sy = 1) - HE (3.76)
p’ p’
where
1p)=) S pfp) (3.77)
a

is a ‘source’ term which describes the in-scattering of carriers, and

N

w2 Ysirp) (378

is the out-scattering rate. The sum over / is to include the N different scattering

mechanisms described by §;. Note that the in-scattering contribution depends on

the unknown distribution function, but the out-scattering part, 1/z(p), is known.
To proceed, we write the unknown distribution function as f = f, + /4 and

decompose the scattering processes into elastic and inelastic components,

S (p,p") and S™(p,p). With these assumptions, eq. (3.76) becomes

I(p)— (—q)E-V
Sa= (p)ul(+cf)ﬁ_ oh (3.79)
where
l in ’
o= ;S (- p)- (3.80)
v =) S9p, p')(1 — cosa). (3.81)
pl
and
Ipy=> "' p)J”(p'*)[fA(p/)ﬁ)(p)/fo(p’)]- ©(3.82)

Equation (3.81) arises because elastic scattering satisfies the relaxation approx-
imation. Inelastic scattering is treated differently because we don’t assume that it
1§ isotropic. :

Using eq. (3.70), fa = g(p)cosé, where 6 1s the angle between p and &, and
assuming that &€ is oriented along the z-axis, we can express eq. (3.79) as
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Ipy — (—q_)E_gjjg cosé
dp

3. il
Vg + 1/fin ( 83)

g(pycosd =

The unknown: in eq. (3.82) is the function g(p). Equation (3.83) can be solved for

g(p) to obtain (see homework problem 3.13)

f(p)—(—qwi,_{j
gp) = T (3.84)
where
Ipy= Y S"p". Do)/ fop))]gp") cos . (3.85)
~

Note that g(p) appears on both sides of eq. (3.84).

Equation (3.84) can be solved by approximating the right-hand side using a
suess for g(p) [we denote the kth guess by ¢"]. This guess is then iteratively
refined according to the prescription.
¥

1(p) = (~a)€
= 2 (3.86)
Ve + 1/Tin

Equation (3.86) describes a convergent, iterative process which begins with a
guess for the distribution function [3.6]. Using the guess, the right-hand side of
eq. (3.86) is evaluated, a better guess obtained, and the process repeated until
convergence is achieved.

To implement the iterative solution technique, a grid in energy space, like that
shown in Fig. 3.7, is defined. A guess, g%(p), for the value of g at each node in the
grid is then made. With this guess, the in-scattering term, f(p) can be computed
by numerical integration. A new guess, g'(p), for the value of g at each node in
the grid is then obtained from eq. (3.86). The process continues until the dis-
tribution function, or some quantity such as the average velocity, does not
change appreciably from one iteration to the next.

An éasy guess with which to begin the iteration is the equilibrium solution,
where g = 0. In this case, /(p) = 0, and eq. (3.86) gives the first approximation as

i e
: o .
20 = ol o (5.87)
(e + 1/mn) ] Bp
Equation (3.87) 15 exactly eq. (3.52), with a relaxation time, 1, = 1 /(v + 1/73,),
which demonstrates that the first step of this iterative process is identical to the
relaxation time approximation. The iterative process, however, must continue
until it converges. For some scattering processes, the RTA is valid and one
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gip)

£ or energy

Fig. 3.7 Discretization of momentum space for numerical solution by the iterative

technique,

iteration suffices, but for others the RTA produces poor results and additional

iterations are required.

Path integral solution to the BTE

Rode’s technique is limited to low-field, or near-equilibrium conditions, where
the sequence converges rapidly. A more general solution can also be obtamed
[3.8]. We begin with the BTE for a nondegenerate semiconductor and express it
in a form similar to eq. (3.76),

8 JSp)

— 4+ (- -V -V — =1 3.88
o FCOE VotV D= 1) (3.88)
where I{p), given by eq. (3.77) describes in-scatiering and involves the unknown
distribution function and z(p), given by eq. (3.78) describes out-scattering. Next,

we define a fictitious scattering process known as self-scaftering by

N
Setr(p.p) = D S, p") + Q) . (3.89)
f==

where the sum is over the N physical scattering processes present and the second
term is an additional, fictitious, scattering mechanism. Note that the added term
has no physical effect because it is only non-zero when the scattered momentum
is equal to the incident momentum. The self-scattering term is not essential, it.
just simplifies the derivation (and in Chapter 6 we’ll see that it is also useful in
Monte Carlo simulation). We select the magnitude of the fictitious scattering so
that the total cut-scattering rate is constant, '
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/ 1 .
Ser(pp)=—=+Q(p =T, (3.90)
. )
where I' is a constant. The meaning of eq. (3.90) is illustrated in Fig. 3.8; an
additional, fictitious scattering rate with no physical effect, £2(p), is added to the
real out-scattering rate, 1/7(p), so that the total scattering rate becomes a con-

stant. Using egs. (3.89) and (3.90), the BTE, eq. (3.88) becomes

T CQE Y, v VS T = 1), (391)

where

N - l\
'(p) = P — e )8y (D) 3.92
7'(p) ;§[&<p p>+(r T(p))sp.p}ﬂp) (3.92)

Equation (3.91) can be solved for two cases: (i) spatially uniform conditions and
(i) time-independent conditions.

Spatially homogeneous path integral selution:
Setting V, = 0 in eq. (3.88), we find

of /
5 T (=) V[ +1f(p =1(p), (3.93)
which can be solved by introducing the path variables,
i=t (3.943,)
p=p+ ¢&t (3.94b)
r~——-~~r ————————

o Q)
g
‘G_J .
3

1rt(E)

Energy (E)

Fig. 3.8 Illustration of how an energy-dependent self-scattering rate is used to make the
total scattering rate a constant.
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In response to an electric field, electrons move along a trajectory in momentum
space (recall Fig. 3.4). The path variables define a moving coordinate system in
which the electrons are stationary. With this change of variables,

gll; . % (3.95a)
and

%C:%/;_Jr%_(qg)_ (3.95b)
After inserting eqgs. (3.95) in the BTE, eq. (3.93), we find

(D — gEL D+ Tf(p— g€L 1) = I'(p — ¢&L, ). (3.96)

To sSlve eq. (3.96), note that

ey o

= 4 I 3.97
ot ot =1 (3:97)
Using eq. (3.97) in eq. (3.96), we find
afe’™ g .
(faf ) _ e’ 1P — &L 1), (3.98)

which can be integrated between 7, and 7, to find
_ o } o C L
"/ (p~ ¢€h. ) — (b~ gE1y. 1) = J e"'1'(p — g€l D)di. (3.99)
L
Finally, we return to the original variables; inserting
=1 (3.100a)
p=p- ¢&hH (3.100b)

in eq. (3.99) to find

i

S, 0= 4GB 1) 1) + | Ot g€ - D), DT

h

(3.101)

Equation (3.101) took some work to derive, but the result has a simple physical
interpretation as illustrated in Fig. 3.9. The first term is just the probability that
an electron upwind on the trajectory can move from the state (p + ¢&€(1 — 1)), 1))
to the point (p, 1) without scattering.
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A

Pl

! -
t Time

)

4

Fig. 3.9 Tlustration of the path integral solution to the Boltzmann Transport Equation. A
collisionless trajectory is shown. Electrons at the state 4(p, ) at time ¢ were at state B [p +
g&(t — 1)) at an earlier time, ¢,. The probability that electrons at state B at time 1, arrive at
state A at time £, without out-scattering is e” "™ (p + ¢&(r — 1,)). Similarly, the
contribution from electrons that in-scatter to the trajectory at time ¢ = 7 then travel without
scattering to state A is also shown.

The second term is the probability that an electron in-scatters at time f (where
t, <f<1{) toa point (p+¢&t— 1,7 on the trajectory, then travels without
scattering to the point (p, 7). The integral sums the contributions for in-scattering
at all times from #; to ¢.

From eq. (3.101), we can also obtain the steady-state solution by letting
ty — —co. As shown in homework problem 3.15, the result can be expressed as

f(p):L eI (p + g€, ndt |, (3.102)

Equation (3.102) is a Fredholm integral equation of the second kind; it contains
the unknown distribution function on both sides. This equation can be solved by
Kellog iteration as

k * r / 1 dep s
S p) = L e’ Z{ZSJ(PJF g€t p) + (F*W>5p,p'}]\@ yde|

o

(3.103)

which shows how to obtain an improved guess from the kth guess for f(p).
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Space-dependent, time-independent path integral solution

Homogeneous sclutions are useful for bulk semiconductots, but in devices, the
distribution function varies with position. Path integral solutions can be derived
for the space-dependent, time-independent BTE

Y, Coed L, 1) ' (3.104)
oz v, 9p, U v,

but the presence of the electric field complicates matters. When the electric field is
zero eq. (3.104) for carriers with v, > 0 becomes

+ I
e +£f+:£@, (3.105)
9z v,

Z

which can be integrated to obtain
ST =/ (p, 0™/ + J I'(p, )" dy’ (3.106)
0

(see homework problem 3.16). The first term on the right is f(p) at the contact
multiplied by the probability that the electron out-scatters on it’s way to posi-
tion, z. The second term is the probability that an electron in-scatters to p at
position, z, multiplied by the probability of out-scattering as it travels to loca-
tion, z.

The presence of an electric field complicates matters because: (i) backward-
travelling carriers can be converted to forward-travelling carriers by the electric
field, (i) some carriers injected from a contact may not reach location, z, and (iii)
carriers at location, z, may have a different kinetic energy or p than they were
injected with. A solution for the field-dependent case can be constructed by
evaluating the different ways that carriers can populate the distribution at loca-
tion, z (i.e. by travelling ballistically from a contact or by scattering at an inter-

mediate location).

Solution by orthogonal polynomial expansion

Another useful technique for solving the BTE is by expanding the sclution in a
set of orthogonal polynomials [3.9, 3.10]. To solve the Boltzmann equation
generally requires at least a three-dimensional solution becausé momentumn
space 1s three-dimensional. When the spatial variation is along a single direction
and the energy bands are isotropic, however, then the symmetry simplifies the
solution. Recall that for low fields, the solution has the form [see eq. (3.51)]

Sz, p) = folz. p) + g(p) cos & (3.107)
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and, therefore, depends only on the magnitude of the momentum (or the energy)

and on the angle, 6, between the momentum vector and the electric field which is

assumed to point along the z-axis (in this case, there is azimuthal symmetry

about the direction of the electric field). Rode’s iterative technique, therefore,

only needed to work in a one-dimensional energy space and provides a numerical

solution for g(p).” ‘
Recall that the Legendre polynomials are defined as

Py = | | (3.108a)

Py =cosd (3.108b)

P, =2 costh (3.108¢)
2 2

ete.

and that they are orthogonal when integrated dgainst d{cos8),

! 2
J_l P[P['d(COS 9) :‘2"1—_:—15/['. (3108(1)

For spatial variation in one dimension with azimuthal symmetry about the z-
axis, the distribution function can be written as an infinite sum of Legendre

polynomials,
fep )= itz p. )P feos ), (3.109)
[=0

whereﬁ(z p, 1) is the weighting coefficient for the Legendre polynom1a1 P, The
first two terms of eq. (3.109) are

Sz ) =fo(z.p, )+ /i(z. p, 1) cosé, (3.110)

which shows that the low-field solution [eq. (3.107)] consists of the first two terms
of a Legendre polynomial expansion. Under low-field conditions, we assume that.
/o 1s the equilibrium distribution function, but in general we should solve for £,
and under high-field conditions, we expect to find a heated Maxwellian for f;.

To indicate how an orthogonal polynomial solutlon proceeds consxder the
one-dimensional BTE,

., Y  _ ¥
gl = 3.0
a1 o Faz 1 apz dt coll ( ?
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or
o 3 o _of

- g —gfcosf == 3.111b
81+UCOS 5, T 9cos B al, ( )

wheré we have assumed that the electric field points along the z-axis. Equation
(3.109) can now be inserted into eq. (3.111b). If the result is multiplied by P, and
integrated against d(cos &), we obtain an infinite set of equations for the Legendre
polynomial coefficients, P;.

To keep the mathematics simple, let’s work with two terms of the expansion
and insert eq. (3.110) in eq. (3.111b) to find

"o
=

x’,@‘;‘/a 3
%Jrzf; +v f cos 9+vaf cos’ 9~q£u 2(:059 un—é%cos % -
a ad ’
:~]—(9 -!——Ji cos @,
ot coll 8[ coll

where the collision terms are obtained by inserting eq. (3.110) into the collision
integral, eq. (3.29b). This two-term expansion is actually quite good for semi-
conductors like Si where the dominant scattering mechanisms are isotropic. Now
if we integrate eq. (3.112) against d(cos §), we find

8ﬁ)+ [af] 3_1"1} _% (3.113a)

2 | T

coll

Similarly, if we multiply eq. (3.112) by cos éd(cos @) and integrate, we find

o [% %} _N (3.113b)

3t oz 1BE| T w

coll

FEquations (3.113) are two coupled partial differential equations for f; and f;, the
space, energy, and time-dependent coefficients for the first two Legendre poly-
nomials. Note that instead of having to solve a four-dimensional problem {ore in
position space and three in momentum space), the symmetry of the problem and
the use of orthogonal polynomials has reduced the problem to two dimensions,
one in position space and one in energy space. When the electric field varies in
two dimensions, then we lose the symmetry about the electric field and must
solve for the dependence of f(p) on azimuthal angle, ¢. For such cases, the
Legendre polynomials are replaced by spherical harmomcs, the technique is
more involved mathematically but conceptually the same. Hennacy et al. [3.9]
and Gnudi et al. [3.10] discuss numerical solutions by Legendre polynomial and

spherical harmonic expansions.
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3.7

3.7 VALIOITY OF THE BOLTZMANN TRANSPORT EQUATION

Device analysis

To analyze a device, the spatial gradient terms in the BTE must be retained and
boundary conditions imposed. Because the electric field may depend on the free
carrier density, Poisson’s equation should also be solved simultaneously with the
BTE. Device analysis by.solving the BTE is quite a challenge computationally
because the problem is multi-dimensional in both position and momentum space.
The imposition of spatial boundary conditions also requires some care. The BTE
is a first order equation; one spatial boundary condition can be specified, but
a one-dimensional device has two contacts. To handle the contacts, we must
specify one-half of the boundary condition at each one. The problem can be
shown to be mathematically well-posed when the incoming flux along the bound-
ary is specified [3.7].

Solving the BTE for a device is computationally demanding. For bulk semi-
conductors, the BTE can be readily solved using the relaxation time approxima-
tion or by numerical techniques like those just described. For devices, orthogonal
polynomial expansions can help make the problem manageable, but there are
always concerns about how many terms of the expansion are required. More
rigorous techniques such as Monte Carlo sitmulation, discussed in Chapter 6, or
scattering matrix simulations [3.1] are available, but the computational demands
increase, so these technigques are primarily used for scientific studies or as bench-
marks to assess sunpler approaches. For device design, engineers typically use
simplified approaches to avoid solving the Boltzmann equation. One widely-used
technique is the balance equation approach described in Chapter 5.

Validity of the Boltzmann transport equation

Because we so often begin at the BTE, it is important to understand its limita-
tions. The BTE is approximate because it is a single particle description of a
many particle system of carriers. Correlations between carriers are not treated.
Another approximation is the semi-classical treatment of carriers as particles
that obey Newton’s laws. Finally, the simple treatment of scattering assumes
binary collisions that occur instantly in time and are localized in space. The
nature of these approximations and some of their -implications are briefly
addressed in this section. k

The distribution function defines the most probable state of the system of
carriers. Such a statistical description is appropriate when the number of carriers
is large (extremely small devices might contain too few carriers to justify a
statistical treatment). Since carriers interact through their electric fields, correla-
tions between carriers exist, In principle, therefore, to determine the probability
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that a state at p is occupied, we need to know how the other states are occupied.
The statistical treatment of this N-particle system is in terms of an N-particle
distribution function [3.4, 3.5]. For dilute concentrations, carrier—carrier correla-
tions are weak, and the N-particle distribution function can be contracted to the
one-particle distribution function, /(r, p, ) which satisfies the BTE [3.4, 3.5]. The
influence of other carriers is, however, treated directly through the self-consistent
electric field.

The BTE is also approximate because it treats carriers as classical particles
that obey Newton’s laws. Quantum mechanics is used only to describe the colli-
sions. That f(r, p, 1) is a classical concept is clear because it specifies both position
and momentum at the same time. According to the uncertainty principle,

ApAr > h. | (3.114)

If we assume that the spread in carrier energy is about k57", then

Ap 2= 2m*kg T,

S0

h
Ar> ——
2tk T
Since the wavelength of a thermal average carrier is Ay = /4//2m*ky T, we con-
clude that

A7 > Ap. » (3.115)

The result tells us that to treat carriers as particles, it should not be necessary to
localize the carrier sharply with respect to Ay which is typically 100-200 A at
room temperature. Equation (3.115) should be satisfied when the potential varies
slowly on the scale of Agz. As demonstrated in Chapter 1, a slow variation of
potential is also a prerequisite for describing carrier dynamics by Newton’s
Laws. When the potential varies rapidly, a wave equation must be solved to
learn how the carrier wave propagates through the device.
Another limitation of the BTE arises from the second uncertainty relation:

AEAt =k, (3.116)

which states that a carrier must remain in a state for a long time in order to have
a well-defined energy. If we take Af to be 1, the time between collisions, and
assume that AE = kg7, then

h
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When we multiply (3.117) by the thermal average carrier velocity, a condition on
/ = vz, the mean distance between collisions results. Neglecting a factor of 1/7,

we find
> kg, (3.118)

which states that the mean free path must be much longer than the mean De
Broglie wavelength if the BTE is to be valid. For low-mobility semiconductors,
eq. (3.118) may not be satisfied.

A condition on the maximum operating frequency for which the BTE is valid
can also be obtained by multiplying eq. (3.117) by 2 and inverting to find

k
w<<BTT. (3.119)

At room temperature, we find that o must be less than 6 x 10 Hz, which is well
above the operating frequency of today’s devices. Most conventional transistors
~are still described reasonably well by the BTE, but with modern epitaxia’f and
lithographic techniques, it is possible to realize devices whose active regions are
comparable in size to an electron’s wavelength. The mathematical analysis of
such devices is based on a wave equation rather than on the BTE.

Summary

For device analysis, the BTE is frequently assumed to be the fundamental
description of carrier transport. We derived the BTE from simple arguments
and obtained an equation that looks simple, but the complexity hides in the
collision term. Because the BTE is so difficult to solve, we often make drastic
simplifications or resort to numerical techniques using computers. We discussed
one exceedingly useful simplification, the relaxation time approximation, which
can be used when the scattering is elastic or isotropic. A formal transport theory
based on the RTA is the subject of the following chapter. We also described some
numerical techniques which can be used when the RTA can’t. Another numerical
technique, the Monte Carlo method, is discussed in Chapter 6. But for device
analysis and simulation, the direct solution to the BTE, with or without the
RTA, is often computationally prohibitive so devices are usually analyzed by
solving a simplified set of equations which are derived from the BTE. These
moment, or balance, equations are the subject of Chapter 5.
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Problems
31 Answer the following questions by evaluating the equilibrium carrier density from eq. (3.6).
(a) Verify eq. (3.10) for nondegenerate semiconductors.
(b) Derive the corresponding result without assuming nondegeneracy.
Hint: Use spherical coordinates to perform the integrations and consult page 118 of
Advonced Semiconductor Fundamentols by R. F. Pierret (Vol. VI in the Modular Series
on Solid State Devices) for a review of Fermi-Dirac integrals.
3.2 Answer the following questions about the kinetic energy density.

(a) Verify eq. (3.11) for nondegenerate semiconductors in equilibrium.
{b) Derive the result corresponding to eq. (3.11) without assuming nondegeneracy.
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3.4

35

3.6

3.7

3.8

3.9
3.10

~ PROBLEMS

(c) For strongly degenerate semiconductors, ne = (Egp — Eco)/kg Ty 3> 0. For these condi-

tions,

e
Fiplne) = F(Scjz)
_and

52

i
Finlne) = T{7C/2)'

Derive an expression for the average kinetic energy per carrier in a strongly degenerate
electron gas. Ts the result higher or lower than the corresponding result for a non-degen-
erate electron gas? :
(d) Verify eq. (3.19) for the displaced-Maxwellian distribution.
For a three-dimensional, nondegenerate electron gas, the average kinetic energy per carrier is
3kpTy/2. Work out the corresponding result for a two-dimensional, nondegenerate electron
gas.
Verify eq. (3.14) assuming nondegenerate, equilibrium conditions.
Hint: Evaluate each of the nine components of the tensor separately.
Show that for a nondegenerate semiconductor in equilibrium the flux directed outward along
one of the three coordinate axes 13

Alternatively, /2kg T /rrm* 13 the average velocity for a hemi-Maxwellian.

The collisions that we consider do not create or destroy carriers — they simply move carriers
about in momentum space. As a result,

ar

pBI

= 0. (P3.1)

colt

(a) For the general form of the collision operator, prove the equation stated above.
{b) Prove that the relaxation time approximation to the collision operator satisfies (P3.1).

Compare eqgs. {3.29b) with (3.40b) to show that the RTA is adequate to describe the out-
scattering process but not, in general, the in-scattering process.

Derive the BTE for a semiconductor with a slowly varying effective mass.

Hint: First derive an expression for dp/ds using arguments like those in Section 1.6.
Evaluate (1.} from eq. (3.55), and verify that the result is eq. (3.36).

Use the principle of detailed balance in equilibrinm (i.e. that dfy/dr = 0) and answer the

following questions.
{(a) Establish the following relation between the equilibrium transition rate and its inverse:

Su(p’ B) _ ey BT,
So{p, p")

{This relation is often true away from equilibrium because S(p, p’) is determined by the
scattering potentials and is relatively insensitive to the applied fields.)
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(b) Use physical arguments to explain why transitions to higher energy states are less prob-
able than transitions to lower energy states.

Figures 3.1a and 3.1b apply to nondegenerate semiconductors. Draw corresponding figures for

a degenerate semiconductor.

Assume that /(p) = f5(p) 1s a Maxwellian at the lattice temperature (but don’t assume that

Js =f3). Show that 8f5/81|.n = 0.

Begin with the steady-state, spatially uniform BTE,
(- Vo f = Sip'.p)f(p") — Sp.p' Y (p). (P3.2)
o
and derive Rode’s iterative technique for low-field transport as follows:

(a) Decompose the scattering into elastic and inelastic components, S%(p, p’) and $™(p, p’),
and let f = fs + fx. Show that eq. (P3.2) becomes

R .V 0
=I(p)— (—g)——EZ2L P3.3
Sa= )= =gy, A (P33)
where
! n ’
—=2_5"0.p)
mn p

How are vy and /(p) defined and what are they?

(b) Let fy = g(p)cos B, where 6 is the angle between p and £. Show that eq. {P3.3) becomes
s h)
I(p) — ()&=

) —(—q) o cos @

P3.4)
vy + 1/ (

glp)cosd =

{c) Solve eq. (P3.4) for g(p). Youwll find the theorem,
Z cos ' A{cosa) = cos Z cos & A(cos o),
» p

useful. In this theorem, A is an arbitrary function of cos o, where « is the angle between p
and p’. {The theorem can be proved by direct integration using a coordinate system like
that in Fig. 3.6.) Show that the final result is

RCE -pede

= , P3.5
46 Sy (P3.5)
where f(p) is defined in eq. (3.85).
(d) Explain how eq. (P3.5) is used to iteratively solve for g(p?).
{e) Show that from the solution, g(p), the mobility can be found from
o Jk3 )k - ' o P3.6)
R -y 8k (P3.

In metals, we often assume that 3f;/6F =~ 8(E — Ef).

{a) Explain and justify this approximation.

{b) Derive an expression for the mobility of electrons in a metal and compare the result to eq.
(3.61).
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3.17

_ PROBLEMS

Derive eq. (3.102), the steady-state path integral solution to the BTE, by letting 1, = —oc in

eq. (3.101).

Hint: Make a change of variables to ” =/ — 1.

Evaluate the rms carrier velocity for a nondegenerate semiconductor as follows:

{a) Write an expression for the rms velocity, v, =/ (v°) involving sums in momentum
space. - e

(b) Evaluate the sum to find an expression for v y,.

Write an expression for ((rf)), where {{t;)} = (E7;(£))/{£) with E being the kinetic energy.

Assume power law scattering and express your answer in terms of [-functions.
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Low-field transport

4.1 Low-field solution to the BTE (B = 0)

4.2 The coupled current equaﬁons

4.3  Transport coefficients

4.4  Transport in a2 weak magnetic field

4.5  The phenomenological current equations

4.6  Applications of the phenomenological equations
4.7  Measurement of carrier concentration and mobility
4.8 Low-field mobility of electrons in bulk Si and GaAs
4.9  Low-field mobility of 2D carriers in Si and GaAs
4.10 Low-field transport equations for heterostructures
4.11 Summary

A formal theory for the flow of charge and heat will be developed in this chapter.
Applications of the theory will also be explored, experimental techniques dis-
cussed, and results surveyed. Our goal is to extend Ohm’s law, J = &, to include
temperature gradients and to develop an analogous expression for the heat
current, J,. The final result has the form

J = L]1€+ L-DVTL, (413)

Jo =Ly &+ Ly VT (4.1b)

We might have expected to associate applied electric fields with electric currents
and temperature gradients with heat currents, but electrons transport both
charge and heat, so the two flows are coupled. Our goal is to derive eqs (4.1)
from the BTE and to relate the coefficients, L;. to the semiconductor’s material
properties. ) :

The theoretical treatment is based on a number of simplifying assumptions.
First, conduction by electrons is assumed (but a corresponding set of equations
for holes could be readily developed). We also assume that the applied fields are
low, so that the currents are proportional to the driving forces (the electric field
and the temperature gradient). Finally. we assume the relaxation time approx-
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imation and spherical, parabolic energy bands which makes it easy to solve the
BTE.

When the band structare is complex or when the RTA doesn’t apply, the BTE
is difficult to solve, but the form of the resulting current equations is unchanged.
We can view the coupled current equations, (4.1a) and (4.1b), as phenomenolo-
gical relations describing low-field transport in any semiconductor, but the coef-
ficients, L;;, may have to be measured or determined from numerical solutions to
the BTE. We’ll illustrate how useful these phenomenological relations are by
applying them to a variety of experimental situations.

41 Low-field solution to the BTE (B=0)

We begin by assuming that the distribution function consists of two parts: a large
component shaped like the equilibrium distribution function and a small pertur-
bation which is obtained by sotving the BTE, The first component has the form

Js= 1 | (4.24)
where
O = [Ecy(r, 1) + E(p) — F(r, )/ kg TL(r, 1) (4.2b)

and is just like £, except that the Fermi-level is replaced by the quasi-Fermi level
which may vary with position; the temperature is also allowed to vary. Equation
(4.2a) cannot be the correct distribution function because it is symmetric in
momentum, so the average velocity is zero, and no current flows. We assume,
therefore, that

S =Is+Ta (4.3)

where £, 1s a small, anti-symmetric component that we shall find by solving the

BTE.
For the steady-state BTE in the relaxation time approximation, we have

N L, S
v Vlfs ) HF Vst ) == (4.4
;
To simplify eq. (4.4), we assume that fg > fa. We also need to assume that
IV./s| > |V, fal and that |V, /5| 3 |V,fa| which are more difficult to justify. We
can demonstrate, however, that the approach is self-consistent, which means that
if we make these assumptions, the solution we find satisfies the original assump-

tions (see homework problem 4.3). With these assumptions, eq. (4.4) simplifies to
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A

v Vifs HF-Vfs = -~
f

to which we apply the chain rule and write

s 9s Sa
22 VO4+F- 2V 0 = 12 4.5
Vg O T e VO =T (45)
From eq. (4.2) we obtain
[V, Eco(r) — V,F(n)] !
V.6 = + [Eco(r) + E(p) — F,]V. {(4.6a)
fea TL(D) [£co (p ] )
and
V,0 =v/kgTy. (4.0b)
The low-field solution to the BTE is obtained by inserting eqs. (4.6) in eq. (4.5)
to find
fa= (3500 F @.7)
Ja = g T, - ¢ s/ v/, .
where
1
F = =V.E,(r) + T [Eco(r) + E(p) — Fu{r)]V. (T) (4.8)
L

1s interpreted as a generalized force. To derive eq. (4.7) we assumed F =
—V, Eco(r) which applies only when magnetic ficlds are absent. (Magnetic fields
require a somewhat different treatment which we defer to Section (4.4.) The
generalized force describes the influence of gradients in the electrostatic potential,
temperature, and carrier concentration on the distribution function. Observe that
eq. (4.7) has the form

Sa = glp) cos G, (4.9)

where § is the angle between the carrier velocity and the generalized force. The
function, g, depends only on the magnitude of p because we shall permit z; to
vary with the magnitude but not direction of p. Equation (4.9) is the general form
that we assumed in Chapter 3 in order to establish the validity of the RTA.

42  The coupled current equations

The electric and heat current densities are evaluated from the anti-symmetric
component of the distribution function. To find the electric current density (here-
after, simply the current density) we evaluate
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1="0% (4.10)
Toop

For the heat current we might use the kinetic energy current,
1
Jw =50 E@urap). - (@10
P

because heat is associated with the kinetic energy. But part of the kinefic energy

1s drift energy, which is due to the average motion of carriers in the applied field.

A suitable definition of the heat current should include only the random com-
ponent of the kinetic energy,

A proper definition of the heat current is suggested by the thermodynamic
relation between the increase in internal energy, d U, and the increase in heat, dQ,
and particle number, dN:

dU = dQ + F,dN, (4.12)

where F, the quasi-Fermi potential (or electrochemical potential), is the increase
in internal energy that occurs when a small number of carriers, dV, is added at a
constant temperature. When eq. (4.12) is written as

dQ =dU — F,dN,
it suggests that the heat current should be defined as
Jo=Jy - FJn. (4.13)

where Jy; is the flux of internal energy (the sum of potential and kinetic energy)
and Jy is the particle current density (that s, the carner flux). From eq. (4.13),
we obtain the desired expression for the heat current as

1
Jo =52 [Ecop) + E(p) = F.Jufa. (4.14)
P

Expressions for the electric and heat current densities result by inserting eq.
(4.7) for f5 in eqs. (4.10) and (4.14). For the electric current, we find

(

J= QkB’TL;u(u-f)rf(pwafs/a@), (4.15)

and for the heat current

]
Qkp T,

Jo = D v F)n(p)(—8fs/90) Eco + E(p) — F,). (4.16)
p

Equations (4.13) and (4.16) are written in symbolic, vector notatjon; it wilt be
convenient to write these equations in indicial notation which disptays the vector
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components explicitly. Written in indicial notation, the dot product of two vec-

1Ors 18

AB=) 4B = AB;. (4.17)

(Recall the summation convention introduced in Chapter 3, which states that
repeated indices should be summed over each of the three coordinate axes.) In
indicial notation, the ith component of the current density becomes

_ (=9
/= Gkt

Z VU F T o) (—df s /06). (4.18)

From eq. (4.8), we obtain the generalized force in indicial notation as
Fy = 9(~F) + Ti[Eco(t) + E(p) — F13,(1/T0), (4.19)

where

d
3-) = E(') j=1,2, or3 (orj=x,y, orz). (4.20)
;)

After putting eqgs. (4.18) and (4.19) together we find

JI:ala(E)/q)+B)/6j( /TL) (421)
where

qz
Oy = T, Xp: vy T (pI(—0fs/00) (4.22)

is the conductivity tensor and

By = Q(kBqT) ZU VT (p)TL[Eco(r) + E(p) — F,)J(—3fs/00). (4.23)

Equation (4.21) shows that the driving forces responsible for electric current are
gradients in the quasi-Fermi level and inverse temperature.

The cuwrrent equations can be expressed in symbolic notation if we recognize
the rule for matrix multiplication.

3
[AIX =D 4% = A,X,, (4.24)

and use it to express eq. (4.21) as

J =[0o]V{E,/q) + [BIV.(1/T1). (4.25)
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For isotropic materials, the tensors are diagonal,
[0] = ool/] (4.26a)

or

¢ y - UO(SU; (426b)

where oy is a scalar, [/] the identity matrix (recall that §;, the Kronecker delta, is

defined to be zero except when i = ).
In a very similar manner, the heat current is evaluated by using egs. (4.7) in
(4.14); the result is

Joi = Py Ful) = KL/ T0), (427
where

P = Bt U AP + Blp) = FI=45/40) («28)
and

K=o D vy WIEals) + Kp) ~ EFif/s0). (429)

The coupled current equations, (4.21) and (4.27), relate the flow of charge and
heat to the driving forces — gradients in the quasi-Fermt level and in the inverse
temperature. The constants of proportionality are the four tensors, oy, By, py.
and K. For anisotropic materials, the current and driving forces may not be
parallel, but for cubic semiconductors, the tensors are diagonal and the coupled

current equations become:

J =V (F,/q) + BoVA(1/TL) (4.30a)
and
Jo =nV.(Fo/q) + KV A1/ T1). ' (4.30b)

For this case, the transport coefficients, oy, By, pg, and K, are scalars; o and
K, are positive, and for conduction by electrons, B; and p, are negative.
Equations (4.30) are much like the expected form for the coupled current equa-
tions, (4.1), but they state that the natural driving forces are gradients in the
quasi-Fermi level and inverse temperature. When the carrier concentration is
uniform, V,.F, = ¢&, but more generally, V£, includes the effects of diffusion
in a concentration gradient as well as drift in the electric- field.
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4.3

Transpnrt coefficients

In this section we verify that the transport tensors are diagonal for common
semiconductors and work out the sums to express the transport coefficients in
terms of the semiconductor’s parameters, m”* and t;. The four tensors that
describe low-field transport,

2

Ojj q
By 1 ( fs ) Uiy (=T [Eco+ E(p) — FJ]
=_ (4.31)
pi| @ ; 90 keTu | (—g)[Ecy + Elp) — F)
K; TulEco + E(p) — F,?

are similar in form, so only the first, o, will be treated in detail; results for the
others will simply be quoted. To keep the mathematics simple, a nondegenerate
semiconductor is assumed, which means

- afs
= —fs. 4.32
fi=e®and 2= —f (4.32)
We'll allow 7, to be a function of the magnitude of p (that is, a function of
energy) and will assume spherical, parabolic energy bands centered at
k = (0,0,0). With these simplifying assumptions, eq. (4.31) for o; becomes

1
T kT O Zp: vt (pHfs.s

which can be re-written as

o — __q;l v u,
¥ m*(/cBTL/2)Q »

T (p)fs. (4.33)

The only angular dependence of the integrand arises from the v;v; factor. By
integrating over the polar angle, 8, we find

i

i , 2
J v, Singdi = - v ’5,
0o 3

so gy is diagonal. This result can be used to express eq. (4.33) as

e CY T o

We recognize the sum as n times E(p)t(p) averaged over fs(p), and 3kg71 /2 1s
the average kinetic energy, so eq. (4.34) can be written as
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g (ETp(E)) g({T)} -
Gy —-nqm*T&j - nq?&] (433)
The final result is what we obtained in Chapter 3, Section 4 with
E I 5/2
(EXE) _T+5/2) @36

(@) =5 =%,

The quantity, {{t}), is a specially defined ‘average’ relaxation time, and the final
result on the right-hand side applies to power law scattering characterized by an
exponent, s. (Power law scattering was defined in eq. (3.63), and the exponents
for common scattering mechanisms were listed in Table 3.2.)

The remaining transport coefficients are evaluated in a similar manner. The
result for nondegenerate semiconductors are:

o = nqu,dy (4.37a)
where My = q;ii” (4.37b)
T(s+5/2
with <w»=mi%%%3. (.37
and By = % TEHn(Ne/m) + (s + 5/2)]oy (4.37d)
1
Py =g By (4.37¢)
sz TE 2 '
Ky === [In(Ne/ny + (s + 5/ +(s + 5/2)]o; . (4.371)

Ellipsoidal energy bands

To evaluate the transport coefficients, spherical energy bands were assumed, but
for many semiconductors, the energy bands are ellipsoidal, and there are several
conduction band minima. The constant energy surfaces for silicon are displayed
in Fig. 4.1; they are ellipsoids of revolution described by

- (px _pxa)z (py - p_ya)2 (pz _pzo)z
B(p) = By + g St e (4.38)

XX vy
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Fig. 4.1 Constant energy surfaces for the conductton band of silicon.

where p, = (o, Py, P-o) Specifies the location of the ellipsoid’s center. To find
the transport coefficients for silicon, eq. (4.31) must be integrated with E(p) given
by eq. (4.38). The mathematics gets a little involved, but the final result can be
had with a few simple arguments.

In and near equilibrium, carriers are evenly distributed among the six equiva-
lent minima; to find the total conductivity, we consider the ellipsoids one at a
time then add the contributions together. Consider first ellipsoid 1 whose major
axis is oriented along the x-axis, and assume that the generalized field is also
oriented along the x-axis. Carriers in this ellipsoid respond to the field with the
longitudinal effective mass, »17, so we expect that the contribution of this ellip-
soid to the conductivity should be

o1 = g alaltm)/m). (4.39)

Ellipsoid 2 also responds to fields with effective mass, m;, but the other four
ellipsoids respond with the transverse effective mass, m;. Adding the contribu-
tions from each of the six ellipsoids, we find

o = ng(q{{t))/m). (4.40)
where
.2 ‘ @4

mi o 3m) o 3my

is known as the conductivity effective mass. The motivation for defining this new
effective mass is sunply to make the result look like the expression for a simple
spherical band given in eq. (4.37b). Equation (4.40) is correct for any orientation



43.2

4.3 TRANSPORT COEFFICIENTS

of the electric field. The conductivity of a given ellipsoid depends on the direction
of the applied field, but the total conductivity is mndependent of direction because
of the high degree of symmetry.

Multiple scattering mechanisms

Consider next a semiconductor in which two independent scattering miechanisms
exist. From the relaxation time approximation, we write

Y _ A A )
ot coll T T2 B Teﬂ" ‘ o
where
1
Lo L] (4.43)

r(p) Tl nl)
If both 7; and 1, have a power law dependence on energy with characteristic

exponenis, s; and s,, then

= T oy (0 /2m kg T
Teff = 2 ® 5) 2 * 5t (444)
o1 (P2 2m kg TV + 10y (02 [ 2m kg TL)

Now if s, just happens to equal s,, then T, has exactly the same form as does eq.
(3.63) for a single scattering mechanism. For this particularly simple case, the
mathematics works out just as it did for a single scattering mechanism with the
result that

q !: Tot To2 }F(S+5/2)

Hr = o+ T2 1(5/2)
or
Loom™ (52 om" I(5/2) (4.45)

Mo qroi T +5/2) " qroa T(s +5/2)

The final result can be expressed as

oLyl (4.46)
A A Y :
which is known as Maithiessen’s rule and states that the mobility may be deduced
from the mobility due to each mechanism acting alone. Mathiessen’s rule is often
used to estimate mobility when multiple scattering mechanisms are present, but it
must be stressed that Mathiessen’s rule applies only when s, = 5,. Because inde-
pendent scattering mechanisms rarely have the same energy dependence, the use
of Mathiessen’s rule is rarely justified in practice. Nevertheless, it is commonly
used in practice because it is often easy to estimate the mobility for various
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scattering mechanisms independently but difficult to do so when the processes

occur simultaneously.

44  Transport in a weak magnetic field

To treat magnetic fields, the force, (—g)v x B, is included in the BTE, and the
result is a set of four transport tensors that are functions of B, Since the mathe-
matics can get tedious, especially for strong magnetic fields, we shall simply
outhine the solution and discuss the results for weak magnetic fields. The more
general problem 1s treated in the homework problems and in the chapter refer-
ences.

We begin the analysis at eq. (4.4) but add to the BTE the force due to the
magnetic field,

v- V. + !:(—q)f—f— (—¢v x B} -V f = —‘%. (4.47)
For low fields, the equation can be solved by superposition. First, we set B =0
and solve eq. (4.47). The result is just eq. (4.7) which we now denote fx, that part
of f) due to all forces except the magnetic force. Next, the generalized force
(electric field, concentration gradients and temperature gradients) is set to zero
and the BTE solved for

A =1q( xB) . V,[. (4.48)

The complete solution is just fx + fa. The temptation is to approximate V,f fa
eq. (4.48) by V,fs, but

s dfs v

and
(vxB)y-v=20

so in this approximation fi = 0. A better procedure is to approximate V,f using
the solution obtained by ignoring the magnetic field. That is,

Vof = Vofi = Vp[ k;f; - (_%)(u - ]—"):’. ' (4.49)

In eq. (4.49), the term in brackets contains several functions. of energy (te(£),
dfs/06, and F). Consider the gradient in momentum space of a function of
energy, A(E),
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o o
VHE) =Dy g
pHE) =g Vb = g5,

so the gradient of a function of energy is proportional to the carrier velocity. If
we now take the dot product with (v x B), we get zero because (v x B) v = 0.
When evaluating eq. (4.49) therefore, the terms involving the gradient of a func-
tion of energy give zero when inserted into eq. (4.48). In indicial notation, eq.
(4.49) 15

e 1 - F 4,

. const X v+ T ( 36 ) ap 7 (4.50a)
For spherical bands

v; 1

sy, (4.50b)

and if egs. (4.50a) and (4.50b) are inserted in eq. (4.48), we find

gt 1 .
" Yty N
= = B.F) )
= T, a0 OB (4.51)
With the vector identity A - (B x C) =B - (C x A), this'equatjon can be rewritten
as
2
T

A= —0U- . 52
Ia m*kBTLE)@U (BxF) (4.52)

Since the BTE has been solved, the current density can be obtained by eval-

uating

- ) ’ i
1= ugi g, (4.53)
L
The first term in eq. (4.53) was already evaluated in Section 4.3; when the gen-
eralized force consisted only of an electric field, (F = —g&), those results were
J = [0, (4.54)

where [o] is diagonal. The current density due to the additional term in eq. (4.53)
arising from the B-field is

R 1 q3fj2p 1 _afs ‘
J _EZP: — kBTL(a‘@ )u[u-(BxE)]. (4.55)

Before we proceed, we must explain how to write cross-products in indicial
notation. To do so, we express the cross-product as

AxB= gljkAjBk*%l -+ E2jf\’AjB/\"{‘2 -+ 83jkAjBk*%3
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where g,y 18 the alternaring unit rensor defined as
g = +1 for i, j, k in cyclic order (1,2,3, 2,3, 1, etc)
= —1fori,j, k in anti-cyclic order (3,2,1,2,1,3 etc) ' (4.56)

= 0 otherwise

The ith component of the cross-product is expressed as
(A X B) - .,{",' = EU/\A}B/\ ) (457)

Now we can write the component of J due to the magnetic field, eq. (4.53), in
indicial notation as

, | g s
J,- = 5 Z m{m th(—()}(5/8@)7),-’11“,8,,””- Bug_/" (458)
P

from which we can write the component of the conductivity tensor due to mag-
netic flelds as

" 1 []3 2 |
Ty = a Xp:m1?/'(_afS/a@)(UfUannijn)~ ) (459)

Consider first the diagonal term, ;. The term in parentheses becomes
Uiumgnmfgn = N VUn€amt Bn'

We saw in Section 4.3 that when we integrate over 8 and ¢ only the v, vy term will
be non-zero, but if m = 1, ¢,,,, has a repeated index, so it is zero and o7} = 0.
Similarly, all other diagonal components of [¢”] are zero. We conclude that the
presence of a weak magnetic field does not affect the diagonal components of the
conductivity tensor.

Consider next an off-diagonal term such as

" 1 q3 2 »
Oz = 5 Xp:m 7 (_a.fS/a@)Ul Un15anBn-

The only non-zero term permitted by the alternating unit tensor occurs for

m=1,n=3

. 9By | ¢

12 =

- m* NkgT Q

> vt (-d/00) 1
P

The term in brackets is similar to the one we evaluated in Section 4.3 except for
the presence of r,; instead of 7. The result of performing the sum is

ofy = —ogunB- (4.60)
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where

Oy = HG L, (46])
and

R

Uy = (m)zu = rHu. (4.62a)

The Hall factor, ry, which relates the Hall mobility, 11y, to the drift mobility,
is given by

(T TRs+5/2I(5/2)

((T))? [F(s +5/2)F

'y =

(4.62b)

The Hall factor was tabulated for common scattering mechanisms in Table 3.2.
The weak B-field solution to the BTE shows that the diagonal elements of the

conductivity tensor are unchanged but that off-diagonal elements like eq. (4.60)

are introduced. After adding the diagonal and off-diagonal elements, we find

where
o;(B) = 0y — opkt g€ B (4.64)

The tensor, o, Is the magnetoconductivity tensor; 1ts components are
I —unB.  +unB,
[0(B)] = oy | +itnB- ! —UnBy |, (4.65)
—unB,  +unB, !

Alternatively, the current equation, eq. (4.63), can be expressed in symbolic
notation as

J= Uog— U[),LLHS x B y (466)

Although the mathematics is more involved, the treatment of magnetic fields
of arbitrary strength proceeds along similar lines. One technique is to use the
distribution function we obtained for weak magnetic fields, fo + f« , to obtain a
better approximation for V,f in eq. (4.48). The result is an improved estimate,

[ which leads to terms proportional to B? in the magnetoconductivity tensor.

The process can be continued iteratively to any order in 5.
Strong magnetic fields are defined by the criterion,

w. T > 1, {(4.67)
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where
B
c = Tq;; (4.68)

is the cyclotron frequency, the frequency at which carriers orbit the B-field. The
physical interpretation of eq. (4.67) is that under strong fields carriers complete
several orbits before scattering, while under weak magnetic fields, they scatter
many times before completing an orbit,

High magnetic fields affect both the diagonal and off-diagonal efements of the
magnetoconductivity tensor. Under low magnetic fields the Hall factor
approaches eq. (4.62b), and under high fields it approaches unity. For high
magnetic flelds applied along or perpendicular to the current, semiconductors
can display longitudinal or transverse magnetoresistance. For strong magnefic
fields, electron motion in the plane perpendicular to B is quantized into
Landau levels, which are separated in energy by hAw.. At low temperatures
where kpT} < Ao, these levels have a strong influence on carrier transport
[4]. Some of the high magnetic field solution techniques and transport effects
are discussed in the homework problems and, more thoroughly, in the chapter
references.

ot ans

The phenomenological current equations

The coupled current equations,

Ji = 0y(BYE; + By(B)a;(1/T1) (4.69a)

and .
Joi = py(B)E; + Ky(B)3(1/Ty) (4.695)

state that the electric and heat current densities are proportional to the driving
forces. (The driving force, d,F,/q, has been replaced by the electric field because
We now are going to restrict our attention to applications for which n(r) is
constant.) Although the derivation of these equations was based on a number
of simplifying assumptions (e.g. the relaxation time approximation), we could
have begun by assuming that eqs. (4.69a) and (4.69b) hold. The assumption is
reasonable because fluxes should be proportional to the driving forces when the
driving forces are small: From this viewpoint the equations are phenomenological
and describe low-field transport in any semiconductor — not just those for which
the simplifying assumptions hold. But the expressions we derived for the four
transport tensors were based on simplifying assumptions and are not valid in
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general. To apply egs. (4.69a) and (4.69b), the transport tensors must be mea-
sured or computed from a more accurate theory such as the iterative technique
discussed in Chapter 3.

Inversion of the transport equations

The independent variables in eq. (4.69) (those under control in an experiment)
are the electric field and the gradient of the inverse temperature. From an experi-
mental point-of-view, it is considerably more convenient to force a current then
measure the resulting electric field. We prefer to write transport equations as

gj = rojkjk + Oéj/cakTL (47021)
and

JTQ[ = /Tjk]/c - Kjkak TL . (470]3)

That these equations find more use than their counterparts is apparent from the
fact that each of the coefficients in eq. (4.70) has a name:

0 = resistivity
« = thermoelectric power
= Peltier coefficient

i = thermal conductivity.

To relate these parameters to those in eq. (4.69), we solve eq. (4.69a) for ;. The
solution is easy to find when eq. (4.69a) is written in symbolic notation as

B
1=te-Bv7,,

g
which is readily solved for
£+ T]z[ lv,7,. “.71)

L
Comparing eq. (4.71) with eq. (4.70a) we conclude that
[pl=[0""] (4.72)
and
B

[e] = el ]- (4.73)

T
Simﬂaf]y, casting eq. (4.69b) in the form of eq. (4.70b) we find that
[7] = [plle] (4.74)
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1

= = {[K] - [pllolI8]}. | (4.75)
L

[«]
Equatiotis (4.72)-(4.75) express the transport parameters for the inverted equa-
tions in terms of the transport parameters derived directly from the BTE.

Taylor series expansions of transport tensors

Equations (4.70a) and (4.70b) are difficult to apply because it is hard to experi-
mentally characterize the tensors for B-fields of arbitrary strength. We find it
more convenient to work with Taylor series expansions of the tensors because
the various terms in the expansions can be measured in zero, weak, or moderate
strength B-fields. To illustrate the technique, consider eq. (4.70a) in the absence
of a temperature gradient,

& = py(B), (4.76)
and expand p (B) in a Taylor series as

3p;(B) 1 & 0y(B)
(B) = p,(0 J A BB L 4.77
Io.f/( ) p[j( ) + BBk o k 2 aBkBB/ . L + ( )

For notational convenience, we make several definitions:

i = p;(0)
o = dp;(B)
ik =
v aBk B=0 (4 78)
o 1 szy-(B) ‘
P = 538,88,
B=0
etc.
so that eq. (4.77) can be written as
0i(B) = o5 + o By + i BBy 4. .. (4.79)
When eq. (4.79) 1s inserted in eq. (4.76), we find that
Er = oyl + o B + oy BBy + . (4.80)

which is the form that we shall find most useful. The first term describes electrical
conductivity, the second, the Hall effect and the third, magnetoresistance. Each
of the other three tensors in eq. (4.70) can be expanded in a similar manner.
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Transport coefficients for cubic semiconductors

Before we apply the phenomenological equations to experiments, it is necessary
to know something about the form of the various tensors (such as which ele-
ments are non-zero and which are equal). A very powerful techmgue for dedu-
cing the form of the transport tensors makes use of symmetry considerations
[4.1). When the phenomenological current equations are applied to cubic semi-
conductors like silicon and gallium arsenide, the tensors have a very simple form
— much like those we obtained in Section 4.3. For cubic semiconductors, the
conductivity tensor for B = 0 1s diagonal, so

Py = Pody (4.81)
where

]
Py = —-

oy

To find py we must invert the magnetoconductivity tensor, eq. (4.65), and
differentiate it. The result is

loi/'/\' - pUMHSJf'/\'v (482)
where g is the alternating unit tensor.
To find p;y, we must work with the magnetoconductivity tensor valid to

second order in B. For cubic semiconductors, only a few of the 81 terms of
this tensor are non-zero; they are:

lO(XDlCIH

roaaﬁb’ (483)

paﬂuﬁ — paﬁﬁa .

(By convention, Greek letter subscripts refer to a specific element in the tensor,
and no sum over repeated indices is assumed.) The final result for cubic semi-

conductors is

i &= podi + o€ B + o B B+ - (4.84)

The remaining transport tensors are similar in form to those already quoted.

For example
Kij = Kqdy,
Kijie = K185

and i, will have non-zero components where pyy, does.
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From the theoretical expressions for the transport tensors, eq. (4.37), and from
the prescription for inverting them given in eqgs. (4.72)-(4.75), we find

Po = 1/O-O - 1/”4/1'17 ) (485&)
- By K

oy = pOTﬁO - (—u‘—i]—)[ln(Nc/n) + (5 + 5/2)] | (4.85b)

JTO‘ = T]_Q’O . (485C)

and

Ko = Ty (kg/q)*(s + 5/2)op. (4.85d)

Although limited to nondegenerate semiconductors (n < N¢) with spherical and
parabolic bands and to scatfering mechanisms for which the RTA is valid, these
expressions provide useful estimates for the transport parameters.

The thermoelectric power is negative because an n-type semiconductor was
assumed; it is positive for p-type semiconductors. Since ky/g = 8617V /K, and
because In(N,/n) can be quite large for lightly doped semiconductors, |ag| may be
several millivolts per Kelvin. The close relation between the thermoelectric power
and the Peltier coefficient, eq. (4.85¢), applies generally and 1s known as the
Kelvin relation. Finally, note that eq. (4.85d) is only the electronic contribution
to the thermal conductivity; the lattice also makes a sizable contribution.

Applications of the phenomenological equations

The phenomenological equations describe currents in the presence of electric and
magnetic flelds and temperature gradients. Because so many effects can occur, we
describe only a few simple cases to illustrate how the coupled current equations
are applied to experiments. The effects are conveniently divided into three
classes. Thermoelectric effects involve temperature gradients and electric fields,
thermomagnetic effects involve temperature gradients and magnetic fields, and
gafvanomagnetic effects occur in the presence of electric and magnetic fields.

46.1  Thermoelectric effects

Thermoelectric effects relate electric fields to temperature gradients. For exam-
ple, when a temperature gradient is maintained across an open-circuited semi-
conductor, a voltage across the two ends appears. The phenomena is know as the
Seebeck effect and can be described by (4.70a) with B = 0. If the one-dimensional
semiconductor in Fig. 4.2 is open-circuited, then J, = 0 and eq. (4.70a) gives
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L

Fig. 4.2 THustration of the Seebeck effect.

> X

a1y (Ty - Tp)
Ex =y E? =0y __,Jm[_’__GS

where g is the diagonal element of [¢]. The voltage developed across the two

faces is
VS = —O(()A T]_. - (486)

The physical explanation for the Seebeck effect is that carriers diffuse down the
temperature gradient; when the sample is open-circuited, they accumulate at the
cold end where the resulting charge imbalance sets up an electric field that
opposes the diffusion of carriers from the hot end. Since oy < 0 for n-type
semiconductor and ¢, > 0 for p-type, measurement of the Seebeck voltage, typi-
cally performed in an instrument known as a hot-point probe, is a convenient
means to determine the type of a semiconductor.

The Seebeck effect concerns electric fields produced by temperature gradients;
the Pelrier effect describes the evolution or absorption of heat caused by the flow
of electric current. Consider the one-dimensional semiconductor in Fig. 4.3
which is maintained at a constant temperature 7. According to eq. (4.70b),"

the heat flux is
Jor = Tl = moJy C(487)

xxvx

where m, is the diagonal element of [x]. The metal contacts and the semiconduc-
tor will have different Peltier coefficients, say my and wg. At contact #1 we have

Mot = Jgin — Jgou = (Mg — M)W (4.88a)
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Fig. 4.3 Ilustration of the Peltier effect.

since we know that the electric current must be constant. At the second contact
AJQZ - JQin - JQoul = (75 — JTM)J,\'- (488b)

If 75 is more negative than my, then 4Jy =0 at contact #1 and 4J5 <0 at
contact #2. We conclude that heat must be released at contact #1 and absorbed
at contact #2. The first contact will get hot, the second cold. Physically, the effect
arises because electrons carry different amounts of heat in different materials,
but the circuit constrains the clectric current to be constant.

Thermomagnetic effects

Several different effects occur when a magnetic field and temperature gradient
are simultaneously applied. The Seebeck effect in the presence of a Z-directed B-
field can be evaluated from eq. (4.70a), which is expanded to second order in B as

Er = podi + pattmed; B + pigtd i BB + agd; Tr + e ;T By + a8, T By By,
(4.89)

where we have written ey as a8 For experimental conditions which ensure
that J; = 0 and 07 /3y = 0, (4.89) becomes

£ = apd, T + o8, 0 T B + a8, T B2

Since &,- =0,

£ = (org + o0y, BT /3. V (490
The change in thermoelectric power with magnetic field,

do = a(B) — o{0) = . B (4‘.91)

is termed the /nagneto-Seebeck effect.
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Table 4.1. Coupled current effects in the presence of transverse magnetic field

Effect

Experimental
conditions

Result

Transverse magneto-
resistance (isothermaly’

Transverse magneto-
resistance (adiabatic)

Magneto-Seebeck
(isothermal)

Magneto—Seebeck
(adiabatic)

Nernst
(isothermal)

Nernst
(adiabatic)

Hall
{isothermal)

Hall
(adiabatic)

Ettingshausen

Righi—Leduc

J=J % B=B2
T, = constant

J=J % B=287
Jor =0, 8T, /dx =0

J=0,B=247%

J=J.%B=B:
Ty = constant

J=Jx B= B.Z
Joy =10

J=J.% B= 8%
JQ,\" = O dTL/a‘C — O

J=0,B=B?
JQ,J‘ = O

g,\’ = (:O() + p\:v::Bg)']\'

T 042 ‘)
5,\’ = (:DO + (:O\’\;:: -k E)B:)J\
Ko

5. 07
5,\’ = (aO + O‘XL“‘B; 7L
: ax
1
g,\' - {O‘O + (O‘x.\:: ’—E{Lﬁ) sz! =t
Kq ax
a7,
g‘ = —) B: EY—L
K T
€ =~ —an B
gy = pB.J,

€y
a7
—.*L:—E‘I‘J\‘B
dy LON
aTL_K'| BTL
By T kp T Ax

Several other thermomagnetic effects also exist; examples are the Nernst,
Ettingshausen, and Righi-Leduc effects listed in Table 4.1. We examine just
the first, and leave the others as exercises. For the Nernst effect, the experimental

conditions dictate that no current flows. A Z-directed magnetic field is applied as
an x-directed temperature gradient. From (4.89) we find

gi = aOBITL + algijfajTLB: + aij::ajTLB_%'

For i == x we get the magneto-Seebeck effect, but there is also a p-directed electric

field given by

A
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£, = —a,B.OT /dx. (4.92)

The appearance of an electric field transverse to a temperature gradient and B-
field is known as the Nernst effect; it occurs because carriers that diffuse down
the temperature gradient are deflected by the magnetic field.

Galvanomagnetic effects

The best-known galvanomagnetic effect is the Hall effect: a magnetic field nor-
mal to the direction of current flow produces an electric field normal to both.
With J = J/,.x and B = B.Z we find that an electrie field transverse to both the
direction of current flow and magnetic field develops. Assuming that the sample

1s isothermal, eq. (4.89) gives

gy = —potydB; (4.93)
or

&y
= R = o (4.94)

The Hall coefficient, Ry, is easily determined from an experiment and using
theoretical expressions for py and uy is readily related to physical parameters as

'y

n(—g)’ @)
where the Hall factor ryy varies between 1 and 2 depending on the dominant
scattering mechanism (recall eq. (4.62b) and Table 3.2). According to eq. (4.93),
by measuring Ry, one can estimate the carrier density, Since the sign of Ry
changes for p-type semiconductors, the sample may also be typed.

The derivation of eq. (4.94) was based on the assumption that the sample was
isothermal, From an experimental perspective, it mdy prove easier to ensure that
no heat flows across the sample. By setting Jq, = 0 in eq. (4.70b), we find

Ry

0= Tr}'x‘[x + Tf}'x:‘[xB: - K_\jaj TL - K_\j:aj TLB:'

Because [n] and [«] are diagonal, and assuming the temperature can be main-
tained constant in the X-direction, we find

AT, o 7 - o
T Ty g~ Mg (4.96)
ay L&) . Kp T

This temperature gradient will produce an electric field by the Seebeck effect.
When the field due to the thermoelectric effect is added to the Hall field, eq.

(4.93), we find that
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i
£, = [wom,_o‘” IJJYB_., 4.97)
Ko
SO
' (24921
R%z[*PDMH* . ‘J S (4.98)
R KO

is the Hall coefficient under zero heat flow (adiabatic) conditions in the p-direc-
tion. In an experiment, it may be difficult to know whether isothermal or adia-
batic conditions apply, we don’t know whether to apply egs. (4.95) or (4.98). This
uncertainty clouds most measurements.

Table 4.1 summarizes the coupled current phenomena that occur in a trans-
verse magnetic fleld. The table shows that the measured result depends on
whether the experiment was conducted under isothermal or adiabatic conditions.
Thermomagnetic effects can also affect the accuracy of Hall effect measure-
ments. If, for example, d77/3x # 0 (perhaps due to heating caused by the
Peltier effect associated with J,) then an &, component will be developed by
the Nernst effect. The measured voltage is the sum of the Hall voltage and the

Nernst voltage
VM = VH + VN

where Vy = —&,d with &, from (4.93) and Vy = —&,d with £, from (4.92).
Notice that if both B and J are reversed, V}y doesn’t change sign but Fyy does
(assuming that the measurement 15 done quickly so that 377 /dx does not
change). By averaging the two measurements, therefore, 5 can be eliminated.
The Righi-Leduc and Ettingshausen effects also influence the measured voltage
similarly. The influence of the Righi—Leduc effect can be eliminated by reversing
B and J and averaging the measured voltages, but it is impossible to eliminate the
influence of the Ettingshausen effect.

47

Measurement of carrier concentration and mobility

One of the most common uses of low-field transport theory is in characterizing
semiconductor layers to determine the carrier concentration and mobility.
Knowledge of transport theory and careful attention to detail is necessary to
obtain accurate results, but the basic concepts are straightforward. For example,
consider the semiconductor bar illustrated in Fig. 4.4. By forcing a current from
contact A to B while applying a z-directed magnetic field, we measure the Hall
voltage, Vcg. From eq. (4.94), we have
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Fig. 4.4 Hall bar geometry for performing Hall effect measurements as well as resistivity

measurements.
W Veg
e 4.99a
Pyly BT ( )

which can be solved for the carrier density to find

pe -2 (4.99b)
gWVeg

This Hall effect measurement gives the carrier density, if the Hall factor 1s
known.

To determine the carrier mobility, we need to measure the semiconductor
resistivity. Using the geometry (Fig. 4.4), we force a current from contact A te
B and measure the voltage from contact C to D. From this measurement, we

obtain the resistivity as

e Ven
= 4.100
Po O ( )
Since the resistivity depends on both the carrier density and mobility, we can use
eq. (4.99a) to solve for the mobility as

_ 3 Ve _ (4.101)
ra LEB: Vep

Equations (4.99b) and (4.101) show that to determine the drift mobility and
the carrier concentration, the Hall factor must be known. If the scattering
mechanisms are understood, it may be possible to estimate the Hall factor, but
in most cases, the precise determination is not easy. It is common practice.
therefore, to assume that the Hall factor is 1.0 when reporting results. Since
the Hall factor is expected to vary from about 1.0 to 2.0, there is a corresponding
uncertainty in the measured carrier density and mobility. When performing
measurements, care must be taken to avoid errors from thermal gradients, mis-
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aligned Hall contacts, etc. As discussed in Section 4.6, some of these effects can
be eliminated by reversing the direction of current flow and magnetic fields, re-
measuring the voltage, and averaging the results. Look [4.6] discusses the uncer-
tainties that can affect Hall effect and resistivity measurements as well as experi-
mental techniques and data analysis.

Hail effect measurements in a general, 20 geometry

The semiconductor bar geometry is not always the most convenient for perform-
ing measurements. Typically, we wish to characterize transport in a thin semi-
conductor layer where the current flow is constrained to flow in a plane (e.g. a
thin n-type layer on a p-type layer or on a semi-insulating substrate). Figure 4.5
shows a general geometry with the four contacts placed along the perimeter (the
prectse location of these contuacts may or may not be known). Assuming that the
current flow is in the x—y plane, eqgs. (4.80) give

Ev = pod + (ooknB)J, (4.102a)

Fig. 4.5 A general two-dimensional geometry for performing Hall effect and resistivity
measurements to characterize a semiconductor layer. {a) The structure consisting of & thin
layer on a semi-insulating or opposite conductivity type layer. (This geometry.is known as a
van der Pauw pattern.) (b) A top view showing how the Hall effect is measured in the
presence of a B-field directed in the =-direction. {¢) A top view showing how the resistance,
Ran.op is measured to deduce the sheet vesistance of the film. The surface of the film lies in
the x—y plane with the = direction normal to the film.
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and
€, = ~(oonn B + oo, (4.1020)

In the presence of a z-directed B-field, the voltage measured between contacts P
and N is

P P
Vpu(B.) = “J £-dl = fJ £.dx + £,dy, (4.103)
_ N N
which can be written as
Xp Xp Yp
Ven(B) = [poj Jdx + (POMHBZ)J Jydx — (ppupB.) [ Jdy
. o e (4.1042)
+ poJ J)dy:I
Similarly,
Xp Xp Yp
Ven(—B;) = [poJ Jdx — (PDMHB:)I Jdx + (pop1 B} [ Jdy
} o e (4.104b)
+ :OOJ Jydy:|-
¥
Now if we define
1
V= z[VPN('l‘Bz) —~ Ven(=B.}1, (4.105)
we find from egs. (4.104a) and (4.104b) that
Ve Xp
VH = pOMHBZ [J dey — J J},dx:I. (4 106)

The measured quantity ¥y, which is obtamed from the measured Vpn(+5,)
and Vpn{(—B.), must be related to the current being forced through contacts M
and O. All of the current must pass through a cross-section of the layer connect-
ing contacts N and P, so conservation of current gives,

I= th J - ad, (4.107)
N
where 7 is the normal to the path d/. Using

ndl =dl x £=dyx —dxp

we find

P
= IJ Jodx — Jody, 7 (4.108)

N
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which can be used in eq. (4.106) to obtain
Vi = (r—H)B.[. (4.109)

qnty -

From eq. (4.09) we observe that the measurement determines carrier concen-
tration per square cm, ng = n¢ (within the uncertainty of the Hall factor).
More generally,

Vi = (L“) B.I : (4.110)
qns
where
s
ng = J n(z)dz. (4.111)
0

We conclude that a Hall effect measurement using a general two-dimensional
geometry, with four contacts placed on the boundary as illustrated in Fig. 4.5,
gives the carrier concentration per cm? in the film. The location of the contacts
does not need to be precise (but they should be small and on the boundary).
There is, however, the unavoidable uncertainty in the final result associated with
the Hall factor. Just as for the simple Hall bar geometry, to determine the
mobility in the layer, we need to perform a resistivity measurement on the
same sample.

Resistivity measurements in a general, 20 geometry (van der Pauw technique)

The geometry for resistivity measurements is illustrated in Fig. 4.5¢, which shows
that we inject a current, /, from contacts M and P and nieasure a voltage between
contacts P and O. We define a resistance by

Veo

Ryn.op = 7

(4.112)

which describes a measurement in which the current fliows from M to N and the
potential drop is from P to O. Our task now is to relate this measured voltage to
the resistivity of the semiconductor. )

It is easier to perform the calculation in the infinite half-plane geometry shown
in Fig. 4.6 rather than in the general geometry of Fig. 4.5¢c. After completing the
calculation, we’ll show that the result doesn’t change when we make the geome-
try more general. Because we consider the semiconductor film to be a 2D sheet,
the current injected at contact M spreads radially into the film with the magni-
tude of the radial current density being



185

LOW-FIELD TRANSPORT

P

i - o0 o
NN \%\%\\\\
\\\\*”\X i \\ RN \%\\\\

N,
b
Fig. 4.6 A simplified geometry, an infinite half-plane with the four contacts at the
boundary, used for establish the resistivity measurement relations for the more general

geometry displayed in Fig. 4.5c.

=L (4.113)

P +
wrt

where r is the radial distance from the contact M.
If we assume that the current flow is entirely by drift in a radial electric field,
then

7
=1 (4.114)
rt

Using eq. (4.114) we can find the potential difference between any radial dis-
tance, r, and a reference location, ry, as

VO)—-VU@)—-—€%Un<£J. (4.115)

Now it is a simple matter to evaluate the potential at contact P,

1oy (u +b+ c’)
In{ ———|,
Tt Iy

at contact O,

/
an_v”@mc+”)
r

Iy

V(P) = —

and then to evaluate the potential difference as

Ipg, fa+b+c C ' o :
Vory = — 2 In | e ). 4.116
PO Tl u( a+b ) ( 2)

So far, we have evaluated the measured potential between contacts P and O
due to current flowing in at contact M. There is another contribution, with
opposite sign, due to current flowing out at contact N. This contribution is
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Ip. (b
Vio =+ pfln( +C)- (4.116b)

The total measured potential is the difference between egs. (4.116a) and (4.116b).
From this potential difference, we evaluate the ‘resistance’ from eq. (4.112) as

@ 1n((“+ by *Q) @.117)

Run op =
MNOPT bla+b+0)

Another ‘resistance’ can be measured by injecting the current into contact N and
extracting it from contact O while measuring the potential between contacts M
and P. Using similar arguments, we find

0 {a+ bYb+ ¢
Ruo.om :;‘;ln(%%m—)). (@.118)

Equations (4.117) and (4.118) relate the measured ‘resistances’ to the resistivity
of the semiconductor films in terms of the spacing of the contacts, a, b, ¢, and d.
For some regular arrangements of the contacts, simple expressions are obtained
(see homework problem 4.21). Without even knowing the location of the con-
tacts, however, eqs. {4.117) and (4.118) give

x

ei‘f—;’%RMN_()I’ + eiR_SRNO.?M - 1 , (4] 19)
where
R =20 (4.120)

s

is the sheet resistance of the film. By measuring Ryn.op and Ryo.pu. €4. (4.119)
can be solved either numerically or graphically to determine the sheet resistance
of the film.

It may appear that the simple, infinite half-plane geometry used for these
calculations has no relevance to the general geometry shown on Fig. 4.6a.
Conformal mapping techniques, however, can map most geometries onto the
infinite half-plane. van der Pauw [4.5] showed that if a shape meets the following
conditions, it can be mapped onto an infinite half-plane:

. Vv.J=0

2. VxJ=0

3. the region is simply-connected (i.e. it contains no holes)

4. the region is homogeneous, isotropic, and of uniform thickness
5. the contacts are located on the pertmeter and are point contacts.

Since these conditions are often well-approximated in practice, the van der Pauw
method is widely-used in practice.



188 LOW-FIELD TRANSPORT

Fig. 4.7 Tllustration of carrier concentration and mobility measurements using a van der
Pauw pattern. (a) measurement of the Hall voltage for a +z-directed B-field, (b)
measurement of the Hall voltage for a —z-directed B-field, {(c) measurement of resistance,
Run,op. for resistivity determination, and (d) measurement of resistance, Rye pum-

Figure 4.7 summarizes the measurement procedure. First, a z-directed B-field
is applied, a current injected into one contact and extracted from another, and a
voltage measured across the other two contacts. Next, the direction of the B-field
is reversed and the voltage measured. We then obtain a Hall voltage from

1
Vy = 3 [Ven(+B.) ~ Vpn(—8.)] (4.121)

‘ ' R Co . 2
from which we determine the carrier density per em” from

Vig =~ B[ (4.122)
qng

Next, we set B = 0, inject a current and measure a voltage to determine Ry op

and repeat the procedure to measure Ryg py- From these two measurements and

eq. (4.119), we determine the sheet resistance of the film. Finally, from the

measured Hall voltage and extracted sheet resistance, we determine the Hall

mobility,
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VH
IRsB.

Hy =T = (4.123)

Low-field mobility of electrons in bulk Si and GaAs

The theory we've developed in this and preceding chapters generally does a good
job of describing the low-field electron transport in common semiconductors.
The most general theoretical approach relies on a numerical solution to the BTE
and can accurately evaluate the electron mobility and dther transport coefficients
for a variety of semiconductors [4.5]. Hole transport is a difficult theoretical
problem because of the degenerate light and heavy hole bands with their warped
constant energy surfaces.

An extensive survey of the measured low-field transport properties of Si and
GaAs can be found in the references [4.7-4.12]. In this section, we focus on the
measured electron mobility and examine its temperature and doping dependence.
Phonon scattering controls the mobility in pure semiconductors, while for doped
samples, both ionized impurity and phonon scattering are important. Before we
examine the measured data, we use the relaxation time approximation to estab-
lish the general features of phonon and impurity scattering.

Low-field mohility due to ionized impurity and phonon seattering

Because lonized impurity scattering is elastic, the relaxation time approximation
is valid, and we can describe 1, the relaxation of f{(p) to fy(p) for small perturba-
tions, by the characteristic time, 7;. For elastic scattering, the time t; is precisely
the momentum relaxation time. Equation {2.40) for the momentum relaxation
time due to lonized impurity scattering can be expressed as

E 32

rf(m:rm(p):ro(p)(,, (5?) , (4.124)
*B4 L

where

-1
168/ 2m* kel 3 2 Vv
IS0 e T Y In(] + ) — ) 4.125
(0) N (kgTp) n(l + %) Y ( )

Because the dependence of 1; on energy is weak, (4.124) is approximately in
power law form with a characteristic exponent of s = 3/2, From (4.37b) and
(4.37¢) we find the mobility due to ionized impurity scattering as
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) _amo(E) T'4) (4.126)
mt ot [(5/2) o

Mg =

where the energy Eis (s + 3/2)kg T, = 3k T, which maximizes the integrand
(see homework problem 4.2). The parameter, y, which is responsible for the
energy-dependence of 7y, is evaluated at E= kT to obtain

2y
vt = =2 Vom Ty | (4.127)

and the mobility due to jonized impurity scattering is obtained from (4.126) and
(4.127) as

128+ 2rcieq kg TL)*”
([3 ot Ny[In(1 + V}%H) - V}%H/(] + V}%H)]

HpH = (4.128)

As expected, eq. (4.128) shows that the mobility is approximately inversely pro-
portional to the ionized impurity concentration. We also observe that mobility
increases with temperature at Ti/z, which occurs because the faster moving
electrons are deflected less. Observation of this temperature dependence in an
experiment is often taken as the ‘signature’ indicating that the measured mobility
is dominated by ionized impurity scattering. In the absence of screening, the
Conwell-Weisskopf expression for 7, should be used to evaluate the mobility.
The result (see homework problem 4.17) should be used when the screening
length is greater than half the average impurity separation.

Acoustic phonon scattering is elastic and isotropic, so the relaxation time
approximation is valid and 7, = v = 7,,. According to eq. (2.81) we find

Ep ]
(P} =1, [ J . (4.129)
! ke TL
. where
2/ 74 iy 372
0= T kg T ) (4.130)

The mobility due to ADP scattering is evaluated from

gy gry T(2)
Bap = T rs/2y (.13
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to find

B 23/ 2mgh’e,
3D (") kg T

Hap (4.132)

Equation (4.132) shows that acoustic phonon scattering by the deformation
potential produces a mobility that falls with temperature as TE‘W. We saw earlier
that ionized impurity scattering leads to a T,fm temperature dependence. At low
temperatures, few phonons are present, so tonized impurity scattering dominates
and p ~ TE/; At high temperatures, however, phonon scattering dominates and
o~ T,:S/z. The resulting temperature-dependent mobility, sketched in Fig. 4.8
rotighly describes (T ) for many semiconductors. With this background, we are
ready to examine the measured low-field mobilities of silicon and gallium

arsenide.

Low-field mohility of electrons in silicon

Measured low-field mobilities of electrons in pure (by which we mean not inten-
tionally doped) and doped silicon are displayed in Fig. 4.9, The measured mobi-
lity varies with temperature much as expected from Fig. 4.8. For temperatures
below 80K, acoustic phonon scattering dominates, and the expected TI:M
dependence is observed. For higher temperatures, however, intervalley scattering
becomes important and causes the mobility to decrease more rapidly with tem-

Fig. 4.8 Mobility versus lattice temperature for ionized impurity and acoustic phonon

scattering.
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Fig. 4.9 Low-field mobility of electrons in silicon as a function of temperature. (From
Jacoboni, C., Canali, C., Ottaviani, G. and Alberigi Quaranta, A. A review of some
charge transport properties of silicon. Solid-Stare Electronics, 20, 77-89, 1977. Reproduced
with permission from Pergamon Press.)

perature. Near room temperature, intravalley ADP scattering and intervalley
scattering are about equally frequent for electrons.

The observed temperature dependence of the low-field mobility in pure silicon
can be fitted by an expression of the form [4.9]

g =A/TY, (4.133)

where the constant, 4, and the exponent, p, are chosen to produce the best fit to
the measured results. The parameter values listed in Table 4.2 fit the measured
data from 77-430 K with a maximum of 6% error [4.11].

When the doping density exceeds about 10'°cm™
becomes important for both electrons and holes. The measured data can be fitted
by [4.12]

, Impurity scattering

Hmax — Hmin (4_ 1 34)

M= Lmin + R
1+(N/Nref)

where NV is the total ionized impurity concentration and the other parameters are
listed in Table 4.2.
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Table 4.2. Best fitting parameters for the temperature and doping dependence of
the low-field electron and hole mobilities in silicon. The parameters are those in
eqs. (4.133) and (4.134) and are taken from [4.11, 4.12].

Parameter Electrons : " Holes
A 119 % 10°em?K2/V's 130 x 10° cm? K22/ Vs
p 2.0 2.2
Lo 1360cm?/Vs 495.0
L i 92 em’/Vs 47.7
Neer 1.3 x 107 em™3 6.3 x 10'¢
a 0.91 0.76
T T T T TTTT ! T T IREE I T T F ¢ 1 FTL
L Deformation \ \/ i
potential  \ /{ Polar
100 L mobility A \mobility
F 7N E
. - /s N =
2 L 7 N s ]
S | A i
5 AN
= | N
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£ 10 = 7/ N =
N E
E - jonized -
= [ impurity n
xT " mobility b
104 B -
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Fig. 410 Low-field Hall mobility of electrons in GaAs as a function of temperature. (From
Stillman, G. E., Wolfe, C. M. and Dimmock, J. O. Journal of the Physics and Chemistry of
Solids, 31, 1199, 1970.) Sample A had an ionized impurity concentration of 7 x 10" em™,
for samples B and C the concentrations were higher. (Reproduced with permission from
American Institute of Physics.) '

Low-field mohility of electrons in GaAs

The low-field mobility versus temperature of electrons in GaAs is displayed in
Fig. 4.10. For electrons in GaAs, the mobility is controlled by polar optical
phonon scattering, but at very low temperatures, the mobility is limited by
residual impurities. As the dashed lines show, the low-temperatiure mobility is
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Fig. 4.11 (a) Theoretical room temperature component and total mobilities of electrons in
GaAs as a function of electron concentration. (b) Comparison of the room temperature
mobility of clectrons in GaAs with the estimate based on Mathiessen's rule. (From
Walukiewicz, W., Lagowski, L., Jastrzebski, L., Lichtensteiger. M, and Gatos, H. C.
Electron mobility and free-carrier absorption i1 GaAs: determination of the compensation
ratio, Journal of Applied Physics, 50, 899-908, 1979. Reproduced with permission from
American Institute of Physics.)

well-described by the Brooks—Herring theory, and the high temperature mobility
can be accounted for by polar optical phonon scattering.

Figure 4.11a shows how the individual mobility components due to the var-
ious scattering processes vary with the electron concentration. For lightly doped
samples, polar optical phonon scattering controls the mobility, and at heavier
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doping it is controlled by ionized impurity scattering. Figure 4.11b shows the
total electron mobility due to all of the scattering mechanisms and compares it
with the total mobility as estimated from the individual component mobilities
according to Mathiessen's rule, eq. (4.46). The figure clearly shows that
Mathiessen’s rule must be viewed simply as a rough estimate for the mobility.

Low-field mobility of 2D carriers in Si and GaAs

In silicon and 111-V field-effect transistors, the channel often consists of carriers
confined in a potential well. Figure 4.12 shows a silicon metal-oxide semicon-
ductor field-effect transistor (MOSFET) and an AlGaAs/GaAs modulation-
doped field-effect transistor (MODFET). (See [8.1-8.3] for a discussion of
these devices.) In the MOSFET, electrons are confined in a potential well at
the oxide-silicon interface. In the MODFET, a potential well exists at the
AlGaAs-GaAs heterojunction. In both cases, the depth of the potential well is
controlled by the voltage on the gate. The carriers within these potential wells
display quantum confinement effects and can be regarded as two-dimensional
carriers. The mobility is still given by u, = g{{t))/#", but {{1}} is obtained from

Si0, p-Silicon

(b)

/
n* GaAs cap layer

undoped AlGaAs
p—-GaAs

Fig. 4.12 [Hustration of two devices that rely on the transport of confined, two-dimensional
cavriers. (a) Metal-oxide semiconductor field-effect transistor {MOSFET). (b) Modulation-
doped field-effect transistor (MODFET).
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the scattering rate of 2D carriers as discussed in Chapter 2, Section 2.11. Because
of the different elastic properties of silicon and silicon dioxide, the phonon
dispersion curve may be modified, and stresses at the oxide-silicon interface
may change the phonon deformation potentials. The first effect is thought to
be small, but the second leads to a lower mobility for inversion layer electrons.
Because of the similar material properties of GaAs and AlGaAs, these effects are
small in AlGaAs-GaAs heterostructures. :

In addition to changes in the scattering rate due to the two-dimensional nature
of the confined carriers, additional scattering mechanisms also occur for trans-
port along an interface. Carriers may scatter from charges in the oxide or in the
AlGaAs as well as from charges in the depletion layers of the silicon and GaAs
bulk regions. The oxide charge may be a contaminant, such as sodium, or a fixed
charge at the oxide-silicon interface. For the MODFET, the charges are likely to
be dopants in the AlGaAs. An undoped spacer layer of AlGaAs is frequently
inserted at the AlGaAs-GaAs interface in order to spatially separate the dopants
from the carriers and thereby reduce the charged impurity scattering rate.
Carriers may also scatter from roughness at the oxide-silicon or AlGaAs—
GaAs interface. For Si, oxidation tends to produce a rough interface, so this
scattering compornent is substantial, but AlGaAs—GaAs epitaxy produces very
smooth interfaces so that surface roughness scattering is not as important.
Finally, because of the high carrier densities in the inversion layer. it is important
to include the suppression of scattering by the (1 — /) factor which accounts for
final state filling [recall eq. (2.3a)].

Low-field transport of electrons in $i0,-Si inversion layers

Figure 4.13a compare the measured inversion layer mobility of electrons in
silicon with some numerically evaluated results that include phonon, ionized
impurity, and oxide charge scattering. The horizontal axis is the inversion
layer density, which increases as the normal electric fleld, which provides the
confining potential, increases. To illustrate the strong effects of inter-subband
scattering, two calculations are displayed; one treats only the lowest subband,
and the second includes all subbands up to 1045 T above the lowest (the number
of subbands can be on the order of 100 for low inversion layer densities {normal
electric fields). For high inversion layer densities (normal electric fields), the sub-
band energy splittings increase, and only the few lowest subbands are occupied.
This explains why the one subband calculation approaches the all subband
calculation for high inversion layer densities.

The measured results displayed in Fig. 4.13a show two important features.
First, at low inversion layer densities, the mobility of inversion laver electrons is
about 65% of the corresponding bulk mobility. Second, the measured inversion
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Fig. 4.13 The calculated inversion layer mobility versus inversion layer density for electrons
in silicon. The lines are calculated results and the points are the measured mobility for
lightly doped silicon. (a) The calculated phonon-iimited mobility. (b) The calculated
mobility including both phonon and surface roughness scattering. (From Jungemann et al.
[4.13].) (Reproduced with permission of Pergamon Press.) :

layer mobility shows a strong decrcase at high inversion layer densities. Recall
that surface roughness scattering was not included in these calculations, so the
lower mobility cannot be due to that. The all-subband calculation matches the
measured results at low inversion layer densities if the acoustic deformation
poteniial is increased from its value in the bulk. The increase is thought to be
due to interfacial stress at the oxide-silicon interface and is, therefore, a para-
meter that varies as the oxidation procedures vary. The calculations do not,
however, show the strong decrease in mobility at high inversion layer densities
that the measured results display.

Figure 4.13b shows that when surface roughness scattering 1s included in tlhe
calculation, the observed decrease in mobility at high inversion layer densities
can be reproduced. As discussed in Chapter 2, Section 2,12, surface roughness
scattering depends on the magnitude and spatial correlation length of the rough-
ness and is, therefore, dependent on the oxidation conditions used to grow the
S10;. _

In'spite of the fact that the inversion layer mobility is sensitive to processing
specifics (processing conditions may affect surface roughness and stress at the
oxide-silicon interface), a type of universal behavior has been observed. When
the measured mobility is plotted as a function of the effective normal electric
field,

¢
Eerr = ("1—) [Naept + 71Ninv]. _ (4.135)
KgEp
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then the mobility vs. effective field plots for structures with different substrate
doping densities lie on top of each other. The effective field is usually interpreted
as the average normal feld experienced by inversion layer electrons. The para-
meter, i, 1s 1/2 for inversion layer electrons on (100) St and 1/3 for holes, but it
also varies with surface orientation. Figure 4.14 compares experimental results
with calculations for several different substrate doping densities. The calculations
reproduce the universal relation between mobility and effective normal field that
is observed experimentally. Universal behavior occurs because phonon scattering
has little dependence on the normal field and surface roughness is the same for
wafers processed identically. Deviations from universal behavior occur in heavily
doped substrates at low inversion layer densities, when ionized impurity scatter-
ing becomes important. Coulomb scattering (ionized impurity and oxide charge)
also produces deviations from universal behavior at low temperatures, and low
normal fields.

Finally, we examine the temperature dependence of the inversion layer mobi-
lity in Fig. 4.15. The mobility increases as the temperature is lowered because of
the decreasing importance of phonon scattering. The low-temperature mobility
also displays a steeper decrease with normal electric field in comparison to the
room temperature mobility. This occurs because at room temperature, phonon
scattering, which has a weak dependence on normal field, is substantial, while at
low temperatures, surface roughness scattering, which has a strong dependence
on normal field, dominates. At very low temperatures and low normal field,
tonized impurity scattering causes the mobility to drop.

. i
X experiment
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it lem¥Vs)
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E, g (kV/em]
Fig. 4.14 The calculated inversion laver mobility versus normal electric field for four
different substrate dopings. Experimental results are also displayed. (From Jungemann et
al. [4.13].) (Reproduced with permission of Pergamon Press.)
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Fig. 4.15 The calculated inversion layer mobility versus normal electric field for four
different temperatures. Experimental resuits are also displayed. (From Jungemann et al.
[4.13].) (Reproduced with permission of Pergamon Press.)
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Fig. 4,16 THustration of the normal field (or inversion layer density) dependence of the
inversion layer mobility. {(From Takagi et al. [4.14]) (0 1994 1EEE)

Figure 4.16 summarizes the conceptual picture of inversion layer transport.
Coulomb scattering (ionized impurities in the depletion region and charges in the
oxide) dominates at low normal fields (where the inversion layer densities are too
small to screen the charges) and at low temperatures (where phonon scattering is
reduced). Surface roughness scattering has a strong dependence on the normal
field, because the strong fields confine carriers close to the interface where the
scattering occurs. Phonon scattering has the strongest temperature dependence.
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The overall inversion layer mobility is a combination of these three mechdnisms,
and their relative contributions are set by the normal electric field and by the

temperature.

Transport of electrons in GaAs-AiGaAs inversion layers

Carriers can also be confined in potential wells created by heterojunctions, In I11-
V systems, the carriers are usually referred to as the two-dimensional electron gas
(2DEG) rather than as an inversion layer, but the two systems are conceptually
very similar. There are, however, very important quantitative differences. For
T1I-V material systems, the interfaces are produced by epitaxy and can be much
smoother than that of the oxide-silicon interface. Stresses at the interface are
also smaller, so increases in the deformation potential, which increases the scat-
tering rate, are minimal. The result is that the mobility of the 2DEG can be much
greater than the corresponding bulk mobility, rather than much less as in the
Si0,/St material system. In a bulk semiconductor dopants are necessary to
produce carriers, but i an n-AlGaAs/i-GaAs system, the dopants are in the
AlGaAs while the carriers are in the GaAs. The result is that jonized impurity
scattering is minimized and mobilities correspond to those of intrinsic GaAs. The
effect is known as madulation doping, and the 2DEG is sometimes referred to as
the high electron mobility layer.

Figure 4.17 displays the measured mobility and sheet carrier density for a
2DEG in the AlGaAs—GaAs material system. At room temperature, phonon
scattering dominates, but ionized impurity scattering is suppressed because the
dopants are spatially separated from the 2DEG. The result is that the room
temperature electron mobility (= 7000cm?/V's) is about that of intrinsic GaAs
(recall Fig. 4.11a). As the temperature decreases, the mobility rises then saturates
at a value determined by the residual ionized impurity scattering. lonized impur-
ity scattering does not cause a drop in mobility at low temperatures as it does in
the bulk {recall Fig. 4.10). The reason is that for a degenerate 2DEG, the impu-
rities are strongly screened and the average thermal velocity i the degenerate
limit varies little with temperature. The result is that ionized impurity scattering
in the degenerate limit shows little variation with temperature. Note that very
high mobilities can be achieved at very low temperatures. Mobilities well above
10 cmz/Vs can be achieved.

Figure 4.18 shows how the undoped AlGaAs-spacer layer thickness affects the
mobility and sheet carrier density. Thin spacer layers reduce the separation
between the 2DEG and the ionized impurities and. therefore, lower the mobility.
With the proper spacer laver thickness, this sample displays mobility of over
2 x 10°cm?/Vs. It may come as a surprise that the mobility falls when the spacer
layer is very large. This occurs because the inversion layer density is reduced,
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Fig. 4.17 The measured temperature dependence of the 2DEG mobility and density in an
n-AlGaAs-GaAs heterostructure. (From Mort, Y., Nakamura, F. and Wantabe, N. Journal
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Fig. 4.18 The measured variation of the 2DEG mobility and density in an #-AlGaAs/GaAs
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which reduces the screening of the background impurities in the GaAs. It also
lowers the thermal velocity because the 2DEG becomes nondegenerate. The
result is that the mobility falls.

Low-field transpert equations for heterostructures

One trend in semiconductor devices is the increasing use of heterostructures,
semiconductors in which the material composition varies with position. For
example, the heterostructure may be a quantum well which consists of a small
bandgap semiconductor imbedded within a wide bandgap semiconductor (recall
Section 1.3.2). In this case, the material composition varies rapidly on an atomic
scale and the width of the quantum well is on the order of the electron’s wave-
fength, so a quantum mechanical treatment is essential. On the other hand, the
material may be a semiconductor alloy with a slowly varying alloy composition
(recall Section 1.3.3). When the material composition varies slowly, we should be
able to describe transport semiclassically. That is our objective in this section, to
derive semiclassical transport equations for semiconductor heterostructures
when the flelds and quasi-fields are low. When the fields are high, the transport
equations can be derived from moments of the BTE, as discussed in Chapter 3,
Section 5.8. The reader may wish to review heterostructure fundamentals in
Chapter 1, Section 1.3.3.

Phenomenological derivation of the heterostructure drift-diffusion equation

If we restrict ourselves to near-equilibrium conditions, it 1s easy to derive the hole
and electron current equations, J, and J,, for a semiconductor with nonuniform
composition.

To begin, recall:

dF,
S :[7,[117“—‘(1*:/* (4.136a)
and
iF,
o= ”/117[_1,1"~, - : - (41361’))
dz

where F, and £, are the quasi-Fermi levels. If the semiconductor is nondegene-
rate, the carrier densities are related to the quasi-Fermi levels by

p= 1?\’71_(:)6(Et1)*}7:”/'/‘r (4.137a)
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and

n = N, (z)e!frEcl/iT (4.137b)

From eqs. (4.137a) and (4.137b), we obtamn

F, = Eyy— kT 1og(—fl) . (4.138a)
IVI!

and

Fr=Eco+ mog(ﬁ“}- (4.138b)

Consequently

dF, dE 1dp 1 dN,

p_ 9fvo 1dp 1 dw, 'L
dz  dz kTL z N, dz] (4.1392)
and
dF, dEq 1dn I dn,

- Sl e v £ 13
dz dz + [n dz N, dz:! (4.139b)

Using the above in (4.136a} and (4.136b) we get

dEy, kT dN, dp

Jp:: P[ dZ N: d::{ “I’CT/,L{JE (41403)
dEcy KT dWN, d

s [’E:_O - c;} T kTu,,E’;. (4.140b)

These expressions look like drift—diffusion equations — especially if we use the
Einstein relation

D, D, kT

== (4.141)
p H

To complete the derivation, we must express d£-;/dz and dE/dz in terms of
material parameters and the electrostatic potential, V(z). From our band modetl
for a nonuniform semiconductor, eqgs. (1.46a) and (1.46b), and eqs. (4.140a) and
{4.140b), we find

(@) +E@(2)} kT 1 dNUJ _y ,g (4.142a)

d
']p: = —Pqlp [@ { V(,,) + q N“ -

d x(2) kT 1 dN, dn
, = — —{V(z —_— D, —. 4.142
Iz ﬂ[[ﬂn[ dz{ (=) + g }Jr g N, - +ab ( b)
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In examining these results, we see that compositional variations introduce
additional terms into the dnft-diffusion equations. The drift current (the part
in {} brackets) includes both electric and quasi-electric fields. We also sce a
conventional diffusion current, but there is another term involving the gradient.
of the effective densities of states. It is not clear whether to write this density of
states effect as a drift current (because it 15 proportional to the carrier concen-
tration) or as a diffusion current (because it involves a gradient). Physically, this
term arises because carriers tend to diffuse in the direction of increasing density
of states, because there are more states available for the random walk. In prac-
tice, however, the biggest effect is drift in the quasi-electric fields, and the density
of states effect is rather small.

Derivation of the heterostructure drift-diffusion eguation from the BTE

A transport equation for heterostructure can also be derived by solving the
Boltzmann equation in the relaxation time approximation. We begin with

o dxl of P8/ 1IN f4
Tyl e SV Y PO NS a4 4.143
> + { 9c- + dz} dp, 2 dz\m*) dp, T ( )

which is the steady-state Boltzmann equation, eq. (3.22), but with the equation of
motion, dp,/dt as given by eq. (1.95b) for a semiconductor with a slowly varying
effective mass. We then solve for fy by approximating / on the left-hand side by
Js to find,

. - 8« prd(1/m") o
fAwqrf[s_.—d(x/q)/dﬂgﬁ—r,,«uzg%%a%. (@.144)

To evaluate eq. (4.144), assume near-equilibrium conditions,
fo == g BT 20" = F ik Ty (4.145)

When eq. (4.145) is inserted in eq. (4.144), we find

Tr an -
= : 4.146
fA kB TL U_fS dz ’ ( )

which, after mserting in eq. (4.10) gives

dF,
Sy = HiLy, Ad—_'l (4.147)

Equation (4.146) was where we started when deriving the near-equilibrium trans-
port equation for heterostructures, eq. (4.136b),
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REFERENCES AND FURTHER READING

Summary

The low-field transport theory developed in this chapter was based on the relaxa-
tion time approximation, When acoustic phonon or ionized impurity scattering
dominates, the RTA is valid and the theory applies, but for semiconductors such
as GaAs, polar optical phonon scattering often dominates, so the RTA cannot
be used. For such cases, numerical solutions to the BTE can be used (see the
article by Rode [4.7] for a discussion of one such technique). Nevertheless, we
can view the final result of our simple theory, the coupled current equations, as
phenomenological descriptions of low-field current flow in any semiconductor.
The specific expressions we developed for the various transport tensors, however,
aré not valid generally; they must be measured or computed from a more accu-
rate theory. The phenomenological couple current equations are readily applied
to'experimenta] situations They describe the thermoelectric, thermomagnetic,
and galvanomagnetic effects that occur in semiconductors. Qur discussion of
the temperature-dependence of the carrier mobility in silicon and gallium
arsenide showed that the temperature dependence of the bulk mobility could
be understood in terms of the increasing strength of phonon scattering and the
decreasing influence of ionized impurity scattering as the temperature increases.
For the mnversion layer mobility, surface roughness scattering also has to be
considered as well as the effects of carrier degeneracy and stresses at the inter-
face. Fially, we showed how low-field transport equations can be generalized to
treat transport in heterostructures, when the material composition varies slowly.

References and further reading

Thorough treatments of low-field transport theory can be found in the texts listed below, The
treatment presented in this chapter closely follows that of Smith, Janek, and Adler.

Smith, A. C,, Janek, J. and Adler, R. Electronic Conduction In Solids. McGraw-Hill, New
York, 1965.

Wolle, C. M., Holonyak, N. and Stilithan, G. E. Physical Properties of Semiconductors.
Prentice-Hall, Englewood Cliffs, NJ, 1989,

Conwell, E. Transport: the Boltzmann equation. In Handbook on Semiconductors, Vol. 1,
North Holland Publishing Co., 1982, p. 513.

The influence of quantum effects under very strong magnetic fields on transport is discussed by
Sceger. He also discusses the influence of the valence band structure on the transport of holes.
Seeger, K., Semiconductor Physics, 3rd edn. Springer-Verlag, New York, 1985,

Expertmental techniques for measuring carrier densities and mobilities are discussed in
van der Pauw, L. J. A method of measuring specific resistivity and Hall effect of discs of
arbitrary shape. Phillips Research Reporis 13, 1-9, 1938.
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4.3
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Low-field transport characteristics of silicon and GaAs are discussed in

Rode, D. L. Low-field electron transport. In Semticonductors and Semimetals. ed. by
Willardson, R. K. and Beer, A. C. Vol. 10. Academic Press, New York, 1975, pp. 1-89.
Walukiewicz, W., Lagowski, L., Jastrzebski, L., Lichtensteiger, M. and Gatos, H. C. Electron
mobility and {ree-carrier absorption in GaAs: determination of the compensation ratio.
Journal of Applied Physics, 50, 899908, 1979.

Jacoboni, C., Canali, C., Ottaviani, G. and Alberigi Quaranta, A. A review of some charge
transport properties of silicon. Solid-State Electranics, 20, 77-89, 1977.

Wiley, J. D. Mobility of holes in III-V compounds. In Semiconduciors and Semimetals, ed. by
Williardson, R. K. and Beer, A. C. Academic Press, New York, 1975. ‘

Ali Omar, M. and Reggiani, L. Drilt and diffusion of charge carriers in silicon and their
empirical relation to the electric field. Solid-Sture Electronics, 30, 6937, 1987.

Baccarani, G. and Ostoja, P. Electron mobility empirically related to the phosphorus concen-
tration in silicon. Selid-State Elecironies, 18, 579--80, 1975.

The mobility of two-dimensional electrons in the Si/SiO, system is discussed in

Jungemann, Chr., Emunds, A. and Engl, W. L. Simulation of linear and nonlinear electron
transport in homogeneous silicon inversion layers. Solid-State Electronics, 36, 132940, 1993.
Takagi, S., Toriumi, A., Iwase, M. and Tango, H. On the universality of inversion layer
mobility in 8i MOSFET’s. /EEE Transactions on Electron Devices, 41, 2357-68, 1994,

Verify the results eqs. (4.37d), (4.37¢), and (4.37f) for the tensors, By, pjy, and Kj;.

The integrand in the numerator of the expression for ({r)}, eq. (4.36), is of the form

00 N p2 |
efp’/Zm"kBTLr 4d )
,L Nk, ) P

Assume that 7, 18 a constant, change variables to integrate over energy, and show that the

mtegrand peaks at

E=(s+3/DkgT\.

For lonized impurity scattering, 7, varies with energy, but the variation is slow so it can be
moved outside the integral and evaluated at £ = E when computing {(r})}. This technique is
used to evaluate the Brooks—Herring mobility, eq. (4.128).

For a thermal average electron, show that |V 5| > |V.fa|l. Assume n-type silicon with
£ =100 V/cm. - -

Show that eq. (4.30a) reduces to the conventional drift-diffusion equation under isothermal
conditions.

Obtain an expression relating the carrier density in silicon to the quasi-Fermi level. Approach

the problem as follows:
(a) Show that eq. (4.38) can be written as
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I

E(P,) =FEeg + cym
2ng

where
pr=pl+pl
‘and

L fmy

= j—p. — p.w) etc.
p‘\ Vi fr’.\'.\'. : 1 *

This change of variables effectively stretches the coordinate axes, so that £(p) appears to
be spherical.

{(b) Since the coordinate axes have been stretched, the number of states in a velume, dpldp,
dp! ditfers from the number in a volume, dp dp,dp.. Show that these volumes are related
by

Jre
dpedpedp! = \/ ——L—dp dp,dp..

L

(c) Show that the carrier deusity due to a single ellipsoid,
1 .
n o= E;f&

(where the sum is over the states near the center of the ellipsoid) evaluates to

(kg Ty V2 e
a = B‘ l-) m;kn,lf?.(_,(’rﬁ(u)/AnTi'
4k’

(d) Add the contributions for the six ellipsoids, obtain an cxpression for #, and show that the
result is

- [VCE(F”_EC“)MBT",

where

N Qrkeg Tum zf
¢ 470

and

p 23w x2\1/3
nr) = 6% (mfmf')l/".

Like my, the density of states effective mass, my, is defined so that the result has the same
form as the result for spherical bands.

4.6 Compute oy; for stlicon and verify the resuits obtained in Section 4.3. Approach the problem as
follows:
(a) Use the change of variables described in problem 4.5 and show that when the sum in eq.
{(4.31) 1s converted to an integral over the primed coordinate system, the conductivity for
a single eflipsoid is

32

(2rkyT)
B 473}

b
i o et ~EenkaT 4T ((Tﬁ .
* Mg

o
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{(b) Show that when the contributions for all six equivalent minima are added, the resuit s eq.
(4.40).

Use arguments similar to those in Section 4.3 to obtain an expression for the conductivity

effective mass in germanium.

Show that (1)) = ol (2s + 5/2)/1(5/2) and verify eq. (4.62b) for the Hall fuctor, ry.

Obtain an expression for o; without assuming that the semiconductor is non-degenerate.

Assume spherical, parabolic energy bands and power law scattering.

Verify the result stated in Table 4.1 for the Ettingshausen effect, and provide a simple, physical

expianation for the effect.

Evaluate the isothermal longitudinal magneto-resistance for a cubic crystal. Let B and J

be X-directed and find the apparent resistivity, £./J. = p,. Find an expression for

Ap = pa(B.) — pall).

For a cubic crystal aligned along the coordinate axes, evaluate the isothermal planar Hall

effect. Let J be X-directed and find £, when B lies in the x—y plane oriented at 45° with respect

to the x-axis. Show that R, = E,'J./JI‘.B2 = Ogfiup-

Assume that the electric current is zero and that 977 /3y = 0. Show that the sothermal (in the

p-direction) thermal conductivity xr is magnetic-field dependent. Assume a cubic crystal

aligned along the coordinate axes and define «p by

_ Jox
Ky = — .
3TL/3x

(Assume that B is z-directed.)

Evaluate the adiabatic (in the y-direction) electrical resistivity for cubic crystals. Assume J, =
877 /dx = 0 and B = B.Z as before, but now assume Jg, = 0 instead of 97 /8y = 0. Evaluate
oo = £,./J. Show that pg = g, for B =0 but that the transverse magnetic-field dependence

differs from the isothermal result.

Estimate gy, 7, and &, for a-type silicon doped with 10" carriers/em®. Assume that acoustic
phonon scattering dominates and that T =300K. (You may use measured data for the
electron mobility.}

Assume that the transport tensors are scalars as in eq. (4.30), and obtain expressions for the
corresponding parameters in the inverted equations. Show that the results are analogous to

eqs. (4.72)(4.75).
Use the Conwell-Weisskopf treatment of ionized impurity scattering and show that the mobi-

lity is

_128VFakdethg 1)
T PV MIn(l + yiy))

"

Explain how to determine when to use the Brooks-Herring approach and when to use the
Conwell-Weisskopf approach.

Compute the electric current in the presence of a magnetic field using a simple particle
approach based on the equation of motion for an average particle:
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dp e P
o= DEF g x B2,

‘Approach the problem as follows:

(a)

Write the current as

J =~ = (gL
B 1t

©

assume steady-state conditions, and show from the equation of motion that the steady-
state current is

ngte (—q)t
=g Tg

m* Iz
To find the current, we must solve a vector equation of the form
c=a+bxec,
which has a solution,

_a+bxa+(a b
B 1 +4

Use this result to show that

sl Yool 2 N
Tt N+ ol (mey A\ 1+ wlt?
+ /”f_ T—3 (€ BB
(m*Y \\ 1+ oir? '

where
gB
e =

is the cyclotron frequency.

Demonstrate that when a magnetic field is applied parallel to the electric field, J = oy &,
which means that there 18 no fongitudinal magnetoresistance. This result applies to semi-
conductors with a simple, spherical energy band centered at k = {0, 0, 0). It also applies to
ellipsoidal bands if the magnetic field is directed along the major or minor axis of all of

the ellipsoids.
Consider the effect of a magnetic field applied transverse te the current flow by letting J

e in the 3—p plane,

J.\‘ = G.v.(g.v + U.Y)'E)'

‘1'1«‘ = G.Y,L' E.V + G‘_l’)'gvl«"

Assume that B = B% and that J, =0, and show that an electric field transverse to the
direction of current flow develops. Show that

Oy

Jo=—H B

5 L=
‘ {(—q)n

X L2
Oy T 0%y

Show also that the Hall factor for arbitrary strength magnetic fields is



218

4.19

4.20
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2
{1+t
= . N 7
(—r—>>u+m@ T
< 1+ oir? N+l

and that ry approaches eq. (4.62b) for weak magnetic fields and unity for strong ones.

It is also possible to solve the BTE directly for arbitrary strength magnetic fields. The solution
begins by assuming # solution of the form

gt I,

AT T a0

which is similar to eq. (4.7) except that G is an unknown vector which must be determined.
() Solve the BTE and show that G is given by the vector equation,

G:5+%(B < G).

(You may find the vector identity, G - (v ¥ B) = v - (B x G), useful.)
{b) Solve the vector equation to find

B B B
&+ w1y (E X 5) + (w,ry) (E -5) Y

G= ;
I+ {(‘)CTI')~

Hint: See problem 4.18b.
{c) Explain how one uses this solution to find o,{B), and show that when B is aligned aloug 2,

o T
T V+widdf]

Repeat the derivation of the Hall effect in a general geometry, but use eq. {4.80) and work to
second order in the magnetic field, instead of first order as done in egs. (4.102a) and (4.102Db).
Show that magnetoresistance has no effect on the measurement.

Consider a van der Pauw pattern with the contacts at the four corners of a square, as in Fig.
4.7. Show that the sheet resistance of the film is

TNV

Re= (27

In2/ 1
where { is the current forced through two of the contacts and  is the voltage measured across
the other two.
The sheet resistance of a semiconductor film is often measured by a ‘four-point probe’. As
shown In Fig. P4.1, it consists of four probes in & line placed in the center of a semi-infinite
layer. A current, /, 1s forced through the outer two probes and a voltage, I is measured across
the inner two. Using methods similar to those in Section 4.7.2. develop an expression which
relates the measured voltage to the semiconductor resistivity.
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(b) C

+Y -

D
&\\\\\\

Fig. P4.1 Geometry for a four-point probe measurement of semiconductor resistivity. (a)
Top view of the probes on a semi-infinite plane. (b) Cross-section showing the layer being
measured and substrate beneath it.




Balance equations
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5.3 The balance equations

5.4 Carrier temperature and heat flux

5.5 The displaced Maxwellian approximation
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5.9 Summary

Because it is so difficult to solve the Boltzmann transport equation (BTE)
directly, simpler approaches are often adopted when analyzing, designing, and
optimizing devices. The use of balance, or conservation, equations which are
derived from the BTE is a common approach. Balance equations have a very

~ clear physical interpretation. For example, the electron continuity equation,

212

%;:)V-F,T+G,,-Rn, (5.1)
states that the net rate of increase of average carrier density at a specified loca-
tion and time, a(r, ), is given by the rate per unit volume at which carriers are
flowing in (the negative divergence of the electron flux, F,,) plus the rate per unit
volume of electron creation, (G, (due to optical or avalanche generation, for
example) minus the rate per unit volume at which electrons disappear (by recom-
bining with a hole or defect). Figure 5.1 illustrates this conservation law sche-
matically. Balance equations for the average carrier momentum and energy
density can also be formulated and expressed as continuity equations in the
form of eq. (5.1). Such equations find wide application in device analysis. The
familiar drift-diffusion equation, for example, is a simplified form of the momen-
tum balance equation.

This chapter begins by introducing a mathematical prescription for generating
balance equations directly from the BTE. Balance equations for the average
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Fig. 5.1 [lustration of a balance equation.

carrier density, momentum density, and energy density are then formulated. An
infinite number of such equations can be generated; they are useful when only a
few are required to describe a device accurately. During the course of this dis-
cussion, we’ll derive the drift-diffusion equation which continues to serve as the
basis for most device analysis. An important objective is to clearly establish the
limitations of the drift—diffusion equation because it is losing its validity as device
dimenstons shrink. In the drift—diffusion approach, the unknowns are the aver-
age carrier density and velocity. When the average carrier energy is also needed,
another balance equation can be solved. Although the balance equation
approach is conceptually straightforward, many different sets of balance equa-
tions can be formulated, depending.on the specific approach and the simplifying
assumptions. Because such equations are so widely used, it is important to clearly
understand their relation to the BTE.

Derivation from the Boltzmann equation

To evaluate the total carrier momentum, we should weight the momentum of a
state by the probability that the momentum state is occupied then sum over all
states. Similarly, the total value of a quantity associated with the function of
momentum, ¢(p), is the weighted sum

1
no(r. 0 =5 D ¢V p. 0. (5.2)
p

By ‘appropriately selecting ¢(p), n, may represent, for example, the carrier
density, momentum, or the energy density. (For these examples, ¢(p) =1,
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p and F(p) respectively.) We seek a balance equation for n, and want to make the
result look like eq. (5.1), the electron continuity equation.
To find the balance equation for 4, multiply the BTE by ¢(p)/¢2 and sum over

momentum, to find

Z¢<p) += qu(p)v VS +5 Z¢(p)( DE - Vuf

(53)
=5 ; ¢()s(r,p, 1) + 5
Because &(p) 1s independent of time, the first term can be written as
8n¢(r f) (5.4)

Qqu()

Similarly, for the second term, the spatial gradient can be moved outside the sum

to write
1 )
0 Zp:fﬁ(l))v' V.S =V-F,, (5.5)
where
1
Bolr. )= 5> e/ (5.6)
3

is the flux associated with the quantity n;. (For example, if n, is the carrier
density, then F, is the carrier flux. If n, is the carrier energy, then £y is the

energy flux.)
The third term in eq. (5.3) can be re-expressed as

(~E ) dVof = (~q€ - > Vi) + € ) TV,
p p * P

which may be simplified by noting that the first term on the right-hand side sums
to zero because f(r, p, ) approaches zero rapidly for large p. (Although this
assumption is standard, it may have to be questioned for extremely high electric
fields.) By defining a ‘generation rate’, G,, we can write

] .
op

where

1
Golr, 1) = (—)E - 5 D V,0(0) - (58)
T
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Because the electric field increases carrier momentum, it also increases g, and
for this reason, the term involving the electric fleld has been labeled as a
generation rate.

In addition to the increase of ng caused by the electric field, there is also an
increase (or decrease) 0frz¢ caused by the creation (or recombination) of carriers by
the source (or sink) terms, s(r, p, £). This contribution to the balance equation is

Syr )= =3 6(piir. .. (5.9)
o

Collisions destroy momentum and should, therefore, produce a ‘recombina-
tion’ term in the balance equation. Because collisions oppose deviations from
equilibrium, we define the rate of loss of n, to be proportional to the deviation
from equilibrium, n, = #j, or

—1 af ]
Ry=— ;gb(p)é—’; = ((-T;))[%(r, £) — ni(r, 1)), (5.10)

where ((1/74)} is the ensemble relaxation rate. Equation (5.10) should not be
confused with the relaxation time approximation; 1t simply defines the quantity
{({}/14)}; no approximation is involved.

To find an explicit expression for ((I/7;)}), we expand the collision term
(assuming nondegenerate conditions) to find

> cb(p)%l
P

which can be simplified by interchanging the dummy indices p and p” in the first
term, then reversing the order of summation. The result is

=3 smSK’, p) ) = aSh, p )V (P),
Py

colt

o , ¢(p") ) N F(g(p) ;
k) —1)S(p.p) = — : :
Sew = rwem S(G81 -1 )soan = - IREE e
where
! :Z(z—@)S(p,p’) (5.12)

is the out-scattering rate associated with ¢. This characteristic rate is just the
transition rate from p to p’ weighted by the fractional change in ¢ summed over
all states, p’, to which the carrier can scatter.

The characteristic rate, 1/74(p), describes only the out-scattering process, but
changes in iy are the result of both in-scattering and out-scattering. The effect of
scattering on n, is described by the ensemble relaxation rate, ({(1/74)), which is
found by equating egs. (5.10) and (5.11) to obtain
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1 5 )/T4p)
<<_>> _ , (5.13)
T [g0r, 1) — n{r, 1)]

Note that I/'r(;(p) depends only on the scattering physics as described by S(p, p’),
but {{I/74)) depends both on the scattering physics and on how the carriers are
distributed in momentum. {(Under degenerate conditions, however, both the in-
and out-scatfering rates depend on the distribution function.) Finaily, it is impor-
tant to note that according to eq. (5.13), the ensemble relaxation time, 1 /{{1/7,)}
is not (1))

Finally, after collecting the results, egs. (5.4), (5.5), (5.7), (5.9), and (5.10), and
inserting them in eq. (5.3), we obtain the desired balance equation for the quan-

tity ng:

ang(r, 1)

=V Fot Gy = Ry + Sy (5.142)

Although this section has been somewhat mathematical, the final resuit, eq.
{5.14a), has the clear physical interpretation itlustrated in Fig. 5.1. Any balance
equation we seek can now be obtained with the appropriate choice of ¢(p). The
mathematical prescription for generating the various terms in the balance equa-
tion is summarized below.

s Dersityn 1) By : 3.14b) -
Densitys ol ) _ngqﬁ(p) g | (5.14b)
Assoczazedﬂux Fu(r, o "m:"}_Zufqﬁ(p) ' | (5.14c)
ama Tell, V=5 a
Field generation rate: "< Gylr 1) = ()€ D fV,8() (5.14d)
_ : B _ n
Lo 5 . . 1 4]
Scartering recombination rate: Ry(r,1) = = [nq,(r, 1) — my(r, f)] (5.14e)
: (4
Associated out-scatiering rate: — == (1 ———218(p,p") 5.14f)
octated e w02\ " S (
Particle gen-rec rate: Sy(r 1)=~I~Z (p)s(r [)., ' T (5.14g)
icle gen-rec rate: 5(1, *Qp¢p5‘p,. l4g

é 2 S, p. 0g(p)/7a(p)
P

[rg(r. £) — ay(r. 7))

(5.14h)

Ensemble relaxation rate: <(}1—>>
]
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5.2 CHARACTERISTIC TIMES

Characteristic times

5.2.1

The ensemble relaxation rates describe the change of ny(r, 1) due to collisions.
From egs. {(5.11) and (5.13) we find

8n¢,{ _' 1 af o _1 0
i - 5 ZP: ¢(p)ait co]]: <<t¢>>[n¢ R n¢]‘ (5. 15)

di ’cofl

The characteristic rate, {(1/7,}}, describes how collisions tend to drive the col-
lective variable, n,, to its equilibrium value, ng. By selecting ¢(p) = p;, we find
ng = Py and

dP;|” — *<<L>>Ph . (5.16)
coll T

dt

where P, = nm* vy is the average momentum density of the ensemble (v, is the
average velocity of the ensemble). The quantity, {{1/1,}}, is an ‘average’ momen-
tum relaxation rate of the ensemble and includes both in-scattering and out-
scattering contributions. In Section 5.5, we will discuss how ({1/1,,}) relates to
{{zr}}, the ‘average’ time that appeared in the relaxation time approximation
solution to the BTE.

By selecting ¢(p) = E(p), we find ny = W, the kinetic energy density, and
Lid «l»(w - wh, (5.17)

dt o TE

where W = nu (with u being the average kinetic energy per carrier) is the average
kinetic energy density of the ensemble, and ({1/tg}) is the ensemble energy
relaxation rate. Both {{1/7,,)) and {{zg}) are evaluated from the prescription,
eq. (5.14h).

It is important to reiterate that eqgs. (5.16) and (5.17) are exact — no relaxation
time approximation is assumed. But to evaluate the ensemble relaxation rates
from the prescription, the distribution function must be known. To avoid solving
the BTE, the ensemble relaxation rates are often assumed to be constant, or to
depend only upon the average carrier energy. When this approach 1s taken, egs.
(5.16) and (5.17) comprise a type of relaxation time approximation. -

The out-scattering rates

According to the prescription, eq. (5.14h), ({1/1,)) appears to be an average of
L/zy(p) over ¢(p)f(p). For ¢lp) = p., 1/75 = 1/7,, where

1
= S.p)[1 - pl/r] (5.18)
~

Tu(p)
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When ¢(p) = E(p). 1/14 = 1/7c where

E(p) ,
SR

Equations (5.18) and (5.19) should be recognized as the momentum and energy
relaxation rates intr oduced in Chapter 2. As was illustrated in Fig. 2.1, these
characteristic times describe the rate of loss of momentum or energy of a beam of
electrons injected into a semiconductor; the probability of in-scattering is small.

Figure 5.2 illustrates the difference between the out-scattering and ensemble
momentum refaxation times. As shown in Fig. 5.2a, the momentum relaxation
rate due to out-scattering is a known function of momentum and is determined

lely by the scattering processes. (We are assuming a non-degenerate semicon-
ductor. Recall also that we computed 1/7,,(p) for several scatiering processes in
Chapter 2.) To determine how the total momentum of the ensemble relaxes;
however, we need to know both the distribution function and the out-scattering

i ! + P
{pln {plhf)
(b) flp,)
Low field
\Hﬁgh field
-
e ~
r'd ~
- ~
- : ™~ .
B — P
(M) E{p )

Fig. 5.2 (a) The momentum relaxation rate versus p. The ensemble relaxation rates for the
two distribution functions displayed in Fig. 5.2b are also indicated. (b) The distribution
functions under low and high applied fields versus the 2 component of p. The average
momenta. {p-(//)) and {p_(4f)} are indicated.
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rate. Representative distribution functions under low and high applied fields are
sketched in Fig. 5.2b. If the average momenta under low and high fields are p
and p;, respectively, then we find that the ensemble relaxation rates are some-
what greater than 1/1,,(p;) and 1/7,,(p;,) respectively. The reason is that 1z,,(p)
generally increases with energy and the prescription, eq. (5.14h) weights the
higher momentum states more. -

The balance equations

Only a few of the balance equations have a simple physical interpretation.
Fortunately, these few are sufficient for analyzing many devices. In this section,
we derive the balance equations that are commonly needed for analyzing devices.

The carrier density halance equation

To derive the balance equation for carrier density, n, we let ¢(p) = 1, so that n, =
n and find from eq. (5.14c),

= e Z v = nw, = Jq) (5.20)

where n, 13 the average electron velocity, and J,/{—g) is the electron flux. The
general relations, eq. (5.14), also show that both G, and R, are zero (because V,¢
and 1/t, are both zero). Physically, this occurs because the electric field and
scattering merely rearrange carriers in momentum space; the scattering processes
we consider don’t generate carriers. After assembling these results and inserting
them in the general balance equation, {5.14a), we find

L R (.21
a g

the familiar electron continuity equation, The term, S, is a particle generation—
recombination rate and plays the role of (G, — R,) in eq. (5.1).

The momentum balance equation

A balance equation for the zZ-directed component of the momentum density
results by setting ¢{p) = p.. From eq. {(5.14b) we find

b= Zp S =P, =nm*uy, (522)
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where P. is the Z-component of P, the total momentum density, and vy, is the -
component of the average carrier velocity. The flux associated with n, must be a
‘flux of momentum’ and is obtained from eq. (5.14c) as

1
Fy=5 ; op.f, (5.232)
which is

I
Fy=g ; upsf = 2W, (5.23b)

in indicial notation. Note that the product of velocity and momentum is related

fo the kinetic energy.
The electric fleld ‘generates’ momentum because it accelerates carriers in the

direction of the field. From eq. {5.14d) we find
Gy = (—gn&.. (5.24)

On the other hand, collisions with the lattice randomize momentum and lead to
the loss term, R,. From eq. (5.14e) we find that momentum is lost by collisions at
the rate

R, = <<;>>P (5.25)

After collecting these results and inserting them in eq. (5.14a), we find the
momentum balance equation as

0P, @ | |
a[ _ @(2 VV}:) + }1(~—q)5: - ((m>>P:s (526)

where we have written out the divergence of the momentum flux in mndicial
notation. Similar equations can be written for the other two components of P,

so in general

aP; d g 1
R g —NE = — .
el 2Wy) +n(—=q)&; <<%>>Pj. | (5.27a)

According to eq. (5.27a), the rate of increase of momentum is the rate-at which
momentum flows into the volume plus the rate at which momentum is generated
by the field minus the rate at which collisions with the lattice destroy momentum.
An explicit source term is absent in our momentum balance equation because
we've assumed that s(r, p. 1) creates carriers with randomly directed momenta. In
symbolic notation, the momentum balance equation becomes
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P e A1 <
= =2V W n(—g)E <<>>P , (5.27b)
at tl]/
where
1 B o )
W, =55 > vy (5.28)
3
defines the {i/)th component of the tensor W and
> . a )
VW% =— W, (5.29)

ax ;

defines the dot product of a tensor (note that the dot product of a tensor is a
vector). The trace of this tensor has a clear physical meaning,

I
Wi=) 50 5m il =W =n, (5.30)
i 3

where W is the average kinetic energy density and u 1s the average kinetic energy

per carrier,
For simple spherical, parabolic energy bands, the current density can be
obtained directly from the momentum density as

P
J, = (—qnv, = (—q)g- (531

It is a simple matter, therefore, to obtain an equation for the electric current
density from the momentum balance equation,

. * *
ar m m T,

8, _~2-q)V- W e <<_1.>>J',, (5.32)

We'll show in Section 5.7 that with appropriate simplifications, eq. (5.32) reduces
to a drift-diffusion equation,

The energy balance equation

When ¢(p) = E(p) is selected, a balance equation for
l .
=5 Z Ep)f =W, (5.33)
Tp

which is the kinetic energy density, results. For this case, the associated flux is
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] :
Fy= 5 vE@Y = Fy. | (5.34)
p

an energy flux. Energy is supplied to the carriers by the electric field. From eq.
(5.14d) we find the generation rate as

p

(recall that V/,E(p) is the carrier velocity). As expected, the input power density,
J, - £, is responsible for increasing the energy density of the carriers.

Applied fields increase carrier energy, but energy is lost by collisions with the
lattice. The rate of energy loss is obtained from eq. (5.14e} as

Ry = ((;E»(W -, (5.36)

where W is the energy density in thermal equilibrium.
Putting these results together, we obtain the energy balance equation as

W y. Fw +J, &~ <<1>>(W - W +se | (5.37)
8[ Tr

According to eq. (5.37), the rate of increase of carrier energy, W /a¢, is due to
energy flowing in (—V - Fy), to the field accelerating carriers (J, - &), or to the
exphcit generation of carriers as described by S¢. Energy is lost by collisions with
the lattice at the rate. ({1/r)}(W — WO).

Discussian

Using the prescription developed in Section 5.1, we’ve derived three balance
equations. We began by letting ¢(p) = | and derived a balance equation for
carrier density, which contained two unknowns, carrier density and current
density. We then sought a balance equation for current c}gznsity (or momentum),
but the resuiting balance equation contained the tensor W whose trace we inter-
preted as the kinetic energy density. The balance equation for carrier energy
introduced the energy flux. As discussed in homework problem 5.6, a balance
equation for the energy flux can be written as

Fw _ A Cr)) £

W W ]
V.- X E+2(— —{(— ;oL .
dt + nr* + ( q) nt <<TFH/>>FV\ (5 38)

-
where X 1s a tensor defined as
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1
Xy =50 v E). (539
P

but now we have another unknown tensor to deal with. No matter how many
balance equations we write, they always contain one more unknown than the
number of equations. The-solution to this infinite set of balance (or moment)
equations is the solution to the BTE itself.

To summarize, the first four balance equations derived from the BTE are

(i) -carrier density:

on 1
—==V- 2
5= S, | . 521y
(y  momentum density: _
E;—l: =22V, I/?/ + (=& — <<L)>P . ) : (5.2_7bj.
Tr i
(111) ) energy density: _ oo
==V Fy + d &= =W = WS : (53T
at . ) S TE - . ERT
(iv) -energy flux: . _
Fw _ oy ¥l qi £—<<L>>FW : . L 558)
at e A\ Trw S : L -

Notice that the first and third balance equations describe the conservation of a
quantity, carrier density or kinetic energy, and that the second and fourth
describe the flow of a quantity, mass or kinetic energy. We reiterate that these
equations were derived from the BTE without simplifying approximations. To
make use of them, however, the hierarchy of balance equations has to be trun-
cated and simplifying assumptions are necessary in order to express the relaxa-
tion times in ferms of macroscopic quantities such as the average kinetic energy
rather than in terms of the unknown distribution function. Before discussing the
application of these equations, however, we reformulate the balance equations in

a more convenient form.

Carrier temperature and heat flux

The carriers in a semiconductor comprise a gas with a temperature, 7, that may
differ from the lattice temperature, 77. Electric fields can increase the carrier
energy so T > T, but carriers exchange energy with the lattice which tends to
equalize the two temperatures. The flow of kinetic energy consists, in part, of a
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flow of heat. For many applications, we find it convenient to work with balance
equations formulated in terms of the carrier temperature and heat flow, which
are the subjects of this section.

Carrier temperature

To begin, examine the kinetic energy density:
1 m* 5, mmt
Wff=E¥Pfsz=E;Uf:—2—<U 2 (5.40)

Remember the implied sum over repeated indices, and recall that the brackets,
{-}, denote an average over the distribution function and that the double brack-
ets, ({)), are reserved for the specially defined, ensemble averages. The carrier
velocity,

V=1, +c¢, (5.41)
has an average component, v,, due to the applied field, and a random compo-
nent, ¢, due to collisions. Using eq. (5.41) in eq. (5.40) we find

1 1 1
W, = an*uf,,- + Enm*(c?) = inm* i+ 51117’1*(02) (5.42)

(because (c;) = 0 by definition). The first term represents the drift energy,
1 x 2
de'ﬁ = if’lﬂ"l Uy, (543)

and the second term is due to random, thermal motion; its magnitude is

1 * 2
Winermar = 5 1m0 n{c™), (5.44)

which, for an ideal gas is 3/2nkT (one third of which is associated with each
degree of freedom). Equation (5.44) suggests that we define the carrier tempera-
ture by

3 1.
gnkBTCEEm"n(CZ) , (5.45)

so that the kinetic energy of the ensemble consists of a drift component, asso-
ciated with the average motion of the ensemble, and a thermal component asso-
ciated with the random component of the velocity.

Figure 5.3 illustrates the difference between drift and thermal kinetic
energy. The low-field distribution function displayed in Fig. 5.3a is character-
ized by a temperature equal to the lattice temperature, 77, because the car-
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(a) fip,)
'y

P,
{b} flp,)
A
P,
(c) fip,)
P,

Fig. 5.3 Ilustration of how the drift and thermal energies are related to the shape of the
distribution function. (2) Low-fleld conditions. (b) High-fleld conditions in which the drift
energy dominates. (¢) High-field conditions in which the thermal energy dominates.

riers and the lattice are in equilibrium. Under high applied fields the kinetic
energy of the distribution increases; Figure 5.3b shows a high-field distribu-
tion for which the additional kinetic energy is largely drift energy. This situa-
tion can occur in devices shortly after the application of a high field, but for
uniform or slowly varying fields, scattering produces a large random compo-
nent to the velocity, and the kinetic energy is mostly thermal as illustrated in

Fig. 5.3c.
Guided by eq. {5.45), a temperature tensor can now be defined as

! 1.,
511!{3 Ty = M n{eie;) | (5.46)
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Heat flux

Consider next the energy flux, eq. (5.34), which can be written as
m' 5 . M,
szﬁ;u of == ('), (5.47)
and the ‘heat’ flux, Q, which we define as
_om" 2 oty
QZE;CCJLT« c). (5.48)

(The flux, Q, is just the kinetic energy flux in a coordinate system moving at the
average carrier velocity.) Using eq. (5.41) for the carrier velocity, the kinetic

energy flux becomes

* *
Fo = "0 (v + 5 (%) (5.49)
o7
nm*
Fw = Wo, + T((u?, + 20, ¢+ e, (5.50)

The second term in Fy consists of three components,

nm’ N '
%Uﬁ(cf) + nn* v g{eic;) + % ((chj). (5.51)

nm”

2

~

[y + 204 e+ D)) - %, =

The first component averages to zero, the second is related to the temperature
through eq. (5.46), and the third to the ‘heat’ flux by eq. (5.48). After making use
of these definitions, we find

F\N = WUC[ + Ly - I’Tkg? + QJ . (552)

Equation (5.52) can be understood physically by viewing the electrons as an
ideal gas. Recalling that PQ = NkgT for an ideal gas tells us that P = nkg T is
the pressure of the electron gas. If we consider moving a small volume element
through the gas, the first term in eq. (5.52) is simply the energy density within the
volume element times the velocity at which it moves. The second term is the
velocity of the volume element times the pressure of the electron gas which
represents the work to push the volume element through the gas. The third
term describes the loss of energy from this volume element by the flow of heat

out.
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5.4 CARRIER TEMPERATURE AND HEAT FLUX

The meaning of O in the hydrodynamic flow equations

The balance equations we have derived are known as the hvdrodynamic equations
because of their similarity to the equations commonly used to analyze fluid flow.
The flux, Q, arises when we express the energy flux in terms of carrier tempera-
ture rather than average kinetic energy directly. Equation {5.48) shows that Q is
a flux in a coordinate system moving at the average carrier velocity. Since it is
associated with the random component of the carrier velocity, it seems reason-
able to associate Q with the flow of thermal energy, or heat. Indeed, the quantity,
Q, is commonly termed the heat flux, but it is reasonable to ask how it relates to
the heat flux we defined in eq. (4.13).

In Chapter 4 we defined a heat flux under near-equilibrium conditions using
thermodynamic arguments. The result, eq. (4.30b), had a Peltier component
which accounted for the heat carried by the particles as they flow, and a diffusive
compornent associated with heat flowing down a temperature gradient. To derive
a thermodynamically sound balance equation for the heat flux, we should begin
by recalling that the increase in heat is 7¢dS, where T¢ is the carrier tempera-
ture, and dS is the increase in their entropy. The heat current, therefore, should
be related to flow of entropy by

Jo =TcJs (5.53)
where the entropy flux 18 given by
! ; :
Jg = 520{_}"(9) Inf(p) — [1 = F(p)]In[l — £ (p)}}. (3.54)
15 .

Entropy is a measure of disorder. Notice that if all states are either empty (f(p}
= 0) or full {f(p) = 1), then, as expected, the entropy is zero. For a derivation of
eq. (5.54), consult Chapter 7 of Smith, Janek and Adler [4.1].

Under near-equilibrium conditions, the general prescription for the heat flux,
eq. (5.53), reduces to eq. (4.13). Equation (5.48) for the vector Q, however, does
not. In a bulk semiconductor, the vector Q actually points in a direction opposite
to the direction of carrier flow! (If it were the heat flux, heat would have to be
carried with the particles.) Although it may be difficult to associate the vector, Q,
with a physical quantity, that does not prevent us from solving the balance
equations for physically meaningful quantities such as the average carrier den-
sity, velocity, and energy.

The momentum and energy balance equations

Having introduced the carrier temperature, T¢, and a related vector, QQ, we can
reformulate the balance equations in terms of them. Guided by eq. (5.42), we
write the tensor, W, as
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1 1
W, = Enm*v[ﬁv,,j + EJ?/(B T (5.55)
or
nkpTy
Wy=Kj+—5—, (5.56)
where
nm” _
K’I = —2““ UiV : (557)

Equation (5.56) decomposes I/?/ intg a component, [? associated with the aver-
age motion of carriers, and other, 7, which is determined by the random com-
ponent of the carriers’ velocity. After inserting eqgs. (5.56) and (5.27b), we obtain
the momentum balance equation as

& V. QK + kg )+ (— g€ — ((—1—>>P . (5.58)

fm

With the aid of eq. (5.52), we can express the energy balance equation, eq. {5.37),
as

oW o |
T = -V - (Wl)d + Q + I?kBl)ar . T) —E—g J” — <<r—>>(W - WO) + SE . (559)
E

Equations (5.58) and (5.59) are the momentum and energy balance equations
written in terms of the carrier temperature. They are mathematically equivalent
to egs. (5.27b) and (5.37), which are the corresponding equations expressed in
terms of the carrier energy.

5.5

The displaced Maxwellian approximation

Before the balance equations can be solved, several simplifying assumptions are
necessary. The hierarchy of equations must be truncated, some of the terms
simplified, and expressions for the ensemble relaxation times developed. One
approach is to make some simplifying assumptions and to extract parameters
from measured results and from Monte Carlo simulations (Monte Carlo simula-
tion is the subject of Chapter 6, and measured results are discussed in Chapter 7).
A second approach is to guess the form of the distribution function and then use
the balance equations to solve for the parameters in this functional form. The
most commonly used guess is the displaced (or drifted) Maxwellian,
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Fp) ~ exp[#ip — 117*0(/!2/2}11*1(8 TC} (3.60)

which contains two parameters, the drift velocity, v,, and the carrier tempera-
ture, 7. We might have expected the distribution function to be strongly dis-
torted in the direction of the applied field which is accelerating the carriers. To
achieve the symmetrical distribution function described by eq. (5.60), frequent
collisions to randomize the momentum gained in the direction of the field must
occur. As discussed in Chapter 3, Section 3.3.1, if the carrier density is high
enough, collisions between carriers will randomize momentum and energy and
lead to a Maxwellian distribution. A carrier density in excess of 10'®/cm’ is
typically required [3.4]. Consequently we may expect the distribution function
to be Maxwellian in the channel of a MOSFET where the carrier density is very
high but not in the space-charge region of bipolar transistors where the carrier
density is low.

Balance equations in the displaced Maxwellian apprnximatinn

Let’s consider how the second form of the balance equations, those involving
carrier temperatlire and heat flux, are simplified when a displaced Maxwellian
distribution function is assumned. First, the temperature tensor for a displaced
Maxwellian can be shown to be diagonal {see homework problem 5.4),

Ty = Tcdy. (5.61)

More complex situations can occur, however. For example, different tempera-
tures might be associated with motion parallel and perpendicular to the applied
field. For complex band structures and arbitrarily oriented fields, the tensor may
even contain off-diagonal elements. For diagonal tensors, however, the diver-
gence of the tensor becomes the gradient of a scalar,

V.T = VT, (5.62)
so the momentum balance equation, eq. (5.58), can be simplified to

apr; dnmvguy)  AnkpTe) 1

—=_ @ R (=& — ()P, 5.63
- T <r,,, : (5.63)

To solve the momentum balance equation, the carrier temperature must be
known. Under low applied fields, we can assume that the carrier temperature is
the temperature of the lattice. Under high applied fields, however, the carrier
temperature must be found by solving the energy balance equation. But the
energy balance equation introduces the ‘heat’ flux, Q. If the Q is evaluated
from its definition, eq. (5.48), using the displaced Maxwellian distribution func-
tion, eq. (5.60), we find that Q = 0 (see homework problem 5.10). If the distribu-
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tion function is truly a displaced Maxwellian, then Q = 0, but the heat flux is
often important in devices [5.3], so it is better to abandon the displaced
Maxwellian when evaluating Q and to describe it phenomenologically. Since
we know that heat flows down 4 temperature gradient, it seems reasonable te
approximate Q by

Q= —«VT, (5.64)

where « is the thermal conductivity. This equation is approximate; it ignores the
Peltier effect discussed in Chapter 4, and the linear form of the equation applies
only when the temperature gradient is gentle. More tmportantly, it is based on
assigning a physical interpretation to Q that we know is incorrect. Nevertheless,
eq. (5.64) is a plausible way to terminate the hierarchy of equations and is
preferable to simply ignoring heat conduction. With eq. (5.64) and the use of a
diagonal temperature tensor, the energy balance equation, (5.59), becomes
oW ]
T —~V  (Wyvy —«¥VTe +nkgTevy) +J, - €~ ((?E>>(W — Wo) +Se. (5.65)
We now have a complete set of simplified balance equations, egs. (5.21), (5.63),
and (5.65) in a form suitable for solving for the unknowns, a(r), u(r), and Te(r).
When spatial variations are confined to the Z-direction and no sources or sinks
for carriers are present, the simplified balance equations for electron transport

reduce to:

147, ) ' S

X% _ R e e
o g0 . T e
P, R kg TC) 1 N Cne

9 - At vg: + nkyTe) L (=), — <<_>)p’ = (5.66b)
ar Cdz Al : S 4
W ] aT, 1 ;

A, T T o (W+nkBTC)Ud:_K—C +Jrr:£: W (W"" WO): ’ ’ (566C)
at .. -dz dz TE

along wit:h the constitutive relations,

P, = vy (5.66d)

and

w1, 3 _

7 — Eiﬂ 'UE/: -+ ikBTC' ) ) 7 B ) o (3666)

These equations comprise a set of three equation in the three unknowns, n(z, f),
vg(z, 1), and Te(z, 1) — providing that we can approximate the ensemble relaxa-
tion times in terms of these unknowns.
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Relaxation times in the displaced Maxwellian approximation
To evaluate the ensemble momentum relaxation rate,

1 Zp:f/rm(p) )
Sl R 5.67
<<Im>> 2. p-f _ (.67
P

it is convenient to expand the displaced Maxwellian as

5

/(p) — e—(p2 2 pevg ) 2 kg T (5 ' 68)

because the last term, which represents the drift energy, can be ignored for low
fields and for uniform high fields, and the second term can be assumed small and

expanded to obtain
F(p) = e 2T o, fkg Te) = fo + f (5.69)

(The validity of these assumptions will be estabiished in Chapter 7, Section 2.)
The displaced Maxwellian has been factored into two components, a symmetric
component, f5, which is even in momentum and an anti-symmetric component,
Jfa, which s odd. If 7,(p) is an even function of momentum, only the odd
component of f contributes to eq. (5.67), and we find

1 Zp:(p ' Dz/)jé@)/ﬂrt@)
J—— — P

<<Tm>> sz(p ’ U{/’)fS(p)
p

After dividing numerator and denominator by 2m* and assuming a one-dimen-
sional problem (v, = v.2), eq. (5.70) becomes

2
R ORI
<<?>> = (5.71)
i ﬂ_ .
% 2m*fS (P)
Due to the assumed spherical symmetry of the problem, the same result is
obtained for any choice of direction, so using E(p) = p/2m", we can write

E : i
(1) 5 OO o 572
T Z E(p)fS(p) ) (ECD» , .
P

(5.70)

where the averages are over fs.
For power-law scattering,

Tm(E) - TD(E/kBTC)S! (573)
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and eq. (5.72) evaluates to

1 1(5/2 =5
EASRRICTERO) (5.74)
T 5] F(S/z)

To underscore the fact that the ensemble relaxation times depend on the assumed
distribution function, note that if we use, instead, f(p) as given by the relaxation
time approximation solution to the BTE, we find

L)) _1 16 (5.75)
Tin a To F(5/2 + S) ‘

{see homework problem, 5.13). For the same power law scattering characteristic,
we find different ensemble relaxation times for the two different assumed dis-
tribution functions. Obviously, the best answer is the one for which the assumed
distribution function corresponds most closely to the actual distribution function
under the conditions of interest.

Discussion

Equations like (5.66) are frequently the starting point for device analysis.

~ Reference [5.3] describes the application of these equations to silicon devices.

We formuiated egs. {5.66) by simplifying the general equations assuming a dis-
placed Maxwellian distribution function. In practice, the approach is not so
clean. The temperature tensor is assumed to be diagonal (which can be justified
for a displaced Maxwellian distribution function) and the relaxation times are
extracted from Monte Carlo simulations for which the carrier distributions are
highly non-Maxwellian. There are many issues to address when applying balance
equations to devices, and other approaches to consider as well. Because such
equations are so widely used, a clear understanding of these issues is essential, so
we return to the subject again in Chapter 8.

Stratton’s approach

The set of simplified balance equations as presented 1 egs. {5.66a)—{5.66¢) repre-
sents one formulation of the macroscopic transport equations. Many variations
on this basic theme exist, but one popular approach is somewhat ddferent [5.5,
5.6]. Recall the first and third balance equations expressed continuity of carrier
density and energy and that the second and fourth were flow equations. For the
flow equations, Stratton worked directly with the BTE using a relaxation fime
approximation [5.5]. The key difference, then, is that the so-called hydrodynamic
transport equations use a macroscopic relaxation tume which describes the
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ensemble of carriers while Stratton uses a microscopic relaxation time that
describes how individual carriers scatter.

Stratton’s approach essentially solves the BTE in the relaxation time approx-
imation as we did in Chapters 3 and 4, but it removes the restriction to low electric
fields and near-equilibrium conditions. We begin by decomposing the carrier
distribution into symmetric and anti-symmetric components in momentum,

J) = fslp) +La(p). (5.76)
which can aiways be done. The next step is to write the collision integral as

Y| _| (Y Y s (5.77)
at coll a! coll ot coll at coll Tr

Equation {5.77) is the same assumption we used to solve the BTE under near-
equilibrium conditions. The difference is that we are now considering more
general conditions where the carriers may be near or very far from equilibrium.
The symmetric component of the carrier distribution will not be an equilibrium
Maxwellian. If it is a heated Maxwellian, then the assumption that df5 /¢, = 0
can be justified. As demonstrated in Chapter 3, we also require that the dominant
scattering mechanisms be either elastic or isotropic.

Stratton’s approach begins with simplifying assumptions about the scatiering
integral. The heated Maxwellian assumption requires that the carrier density be
high, and the assumption of isotropic or elastic scattering applies to nonpolar
semiconductors like silicon. In the balance equation approach, we formulated the
equations without making simplifying assumptions, but to solve the equations,
they must be simplified. As a result, we shall find that the hydrodynamic and
Stratton equations, as they are actually solved, look very similar.

Using the microscopic relaxation time approximation as given in eq. (5.77), we
write the steady-state BTE as

Yo YN | (5.78)

We can approximate / on the LHS of eq. (5.78) by f5 and solve for f; to obtain

Us o0 s, : (5.79)

fa= G’Tj'gz . 3z

Now that we have solved the BTE for f(p), we can evaluate the fluxes directly.
For the carrier flux (or, rather the current density), we have

T = %ﬂ > ufalp), (5.80)
P

which, using eq. (5.79) becomes
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Jie = T (8 0po)uE + Tt (ifs/32)). (5.81)

34 P

For the assumed Maxwellian distribution,

8}% . .
G 5.82
8/)_ (/cB Tc )\fs : ( )
which can be nserted in eq. (5.81) to find
R o UL/ G
.= - . 5.83
11 Z { kB TC + T 9z ( )

To evaluate eq. (5.83), note that because of the symmetry of the assumed
Maxwellian, (U2) = () = (u7) = (")/3. Note also that () = 3k T¢/2. Using
these expressions eq. (5.83) becomes

Stratton assumed that 7, was position-independent. This is true for phonon
scattering, but if the doping density varies with position, then the ionized impur-
ity relaxation time will vary with position. Nevertheless, if we follow Stratton
and assume that 7, is position-independent, then eq. (5.84) becomes

%2 A f g 2
- g% ;m:&) {(mzv )m PV A»,quc al(m Uaiz)fﬁfs] | 555
which, finally, we can write as
o =g, + w (5.86)
where -
/ (Er,-)_ (5.87)

g = 177 <E)

If we mak}: another definition,

D, = s (5.88)
/ .
then we can write Stratton’s current equation as

D
a— . _ -
(but recall that we have assumed that 7, is spatially independent).
The energy flux equation is derived by a similar procedure. Beginning with

1
Fy. = 62 E(p)v-fa (5.90)
o

S =ngi, &+ q
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and using eq. (5.79), we obtain

A JA T,
Fagy = =Codnp b TeEo + M} (591)
oz

where -
= (5/2 +35) (3.92)
for the4 power law scattering. Alternatively, Stratton’s energy flux can be
expressed as
J, aTc
wz = kpTcC e 5.93
z=Kplc ((_ )) n 52 (5.93)

where

kg
G = nqur,( q) C.Te. (5.94)

(Homework problems 3.5 and 5.20 ask you to fill in the steps of the derivation
and to relate Stratton’s equation 1o the hydrodynamic equations )

Stratton’s approach provides an alternative set of flow equations for describ-
ing transport. In practice, both forms are used. Stratton’s equations will be
compared to the hydrodynamic flow equations in Section 5.7.

Drift-diffusion equations

The simplified hydrodynamic equations, or Stratton’s equations form a closed
set of equations useful for analyzing transport in bulk semiconductors or in
devices. Electrical engineers, however, are used to treating carrier transport
wilh the even simpler, drift-diffusion equation,

J, = ngu, &+ gD, Vn. (5.95)

QOur objectives in this section are to understand the origin of the drift-diffusion
equation and the assumptions that limit its validity,

Derivation from the momentum balance equation
Starting at the momentum balance equation as stated in eq. (5.32),

2 5 -
1 8J”: gn £4 G V.

((1/ ) 8t me{{l/T,)) r({1/T)

we define a carrier mobility as
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gq

My =———. (5.96)
g ”7‘(“/‘[;1;)) :

We can normally assume that the current does not vary appreciably over a

momentum relaxation time, 1/{{1/7,)), to obtain

J, :/nq,u,,f,'—l— 2u, V- W, : (5.97)

According to eq. (5.55), the tensor W contains components due to the average
(drift) velocity and due to the random, thermal energy. To simplify eq. (5.97),
ignore the drift velocity components of W and assume that the temperature

tensor is diagonal, so

I'lkB TC W
Wy=—75=8 =53 (5.98)
where

3
W = EnkB Te (5.99)

is the kinetic energy density (assuming again that the drift energy is small). When
eq. (5.99) is inserted in eq. (5.97), we find

2
J, = ngqu &€+ g,u,,VW : (5.100)

Equation (5.100) leoks like a drift-diffusion equation, but it demonstrates that
diffusion is associated with gradients in the kinetic energy density which can
result from variations in either the carrier density or average kinetic energy
per carrier. After expanding the gradient and writing the result in terms of the
carrier temperature, the current equation becomes

J, = qun€+ gD, Vi + gS,VTe | . ' (5.101)

and we have our drifi—diffusion equation. In eq. (5.101), we have defined two

new parameters:

p,="sTc (5.102)
g |

1s the diffusion coefficient, and
k

Sy = niL, (~B—) x (5.103)
q

is the Soret coefficient.



237

3.7.2

3.73

5,7 DRIFT-DIFFUSION EQUATIONS

Equation (5.101) shows that the drift—diffusion equation is valid when gradi-
ents 1n carrier temperature are gentle. There are some additional assumptions,
frequencies much less than the momentum relaxation rate, a diagonal tempera-
ture tensor, neglect of the drift energy, but these are generally well satisfied,
especially when VT is small. Note, in particular, that there is no restriction to
low-field, near-equilibriimi conditions; drift—diffusion equations under high-field
conditions when gradients in carrier temperature are not large.

Comparison to Stratton’s equation

Both Stratton’s approach -and the balance equations yield similar, drift—
diffuston-like current equations, but the differences are interesting. Stratton’s

approach gives
J, = ngu, £+ gV(D,n), (5.104)

which should be compared with eq. (5.101), the hydrodynamic result. {Recall
than when deriving Stratton’s equation, we assumed that the microscopic relaxa-
tion time did not vary with position. Equation (5.104) has to be modified when ,
is position-dependent, but the result still does not agree with eq. (5.01)]. The
essential difference between the two approaches is that the mobility (or diffusion
coefficient) appears inside the gradient in Stratton’s approach and outside it in
the hydrodynamic approach.

It should not surprise us that the two approaches give different results; they
are based on different assumptions. But even when the underlying physical
assumptions are the same (i.e. isotropic or elastic scattering so that a relaxation
time can be assumed and sufficient carrier-carrier scattering so that the distribu-
tion is Maxwellian) the two approaches still give different forms of the resulting
equations. This occurs because Stratton’s approach uses a microscopic relaxa-
tfion time while the hydrodynamic approach is formulated in terms of a macro-
scopic, ensemble relaxation time, When the underlying physical problem justifies
the microscopic relaxation time approximation and a Maxwellian shape for fg,
then the two approaches give the same final result. In practice, comparison of the
two approaches is clouded by the fact that both methods use experimental data
and Monte Carlo simulations to extract parameters. We return to this issue in
Chapter 8 where the use of macroscopic transport equations for device analysis is
discussed.

The carrier mohility

To make use of the current equation, the mobility, diffusion coefficient, and
carrier temperature must be known. Under low fields, the carrier temperature
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is that of the lattice, but for high fields, we need to solve the energy balance
equation to find 7. To evaluate t,, the distribution function must be known or
approximated, For low flelds, however, the perturbation in /(p) is proportional
to the electric field, so the mobility becomes a material-dependent parameter (see
homework problem 5.11). For high applied fields in bulk semiconductors, there
is a one-to-one correspondence between the electric field and the distribution
function, so we can view u, as a field-dependent, material parameter. For small
devices the applied fields are also high, but the distribution function depends on
the electric field throughout the device and must be found by solving the BTE.
The drift—diffusion equation loses its simplictty when applied to a small device
because w, and D, depend on the device structure and applied bias as well as the
material properties of the semiconductor. '

To illustrate the dependence of the mobility on the distribution function,
consider a heavily doped semiconductor for which ionized impurity scattering
dominates and the RTA applies. Evaluating ({1/17,,)) from eq. (5.75), we find

gto 1(5/2+5) (5.105)

Wl REA) = )

If, however, there is also a high density of electrons, then electron-electron
scattering may dominate. Scattering of electrons by clectrons may seem unim-
portant because the total momentum of the electron ensemble i1s unaffected, but
it does influence the mobility indirectly by its effect on the distribution function.

For high electron—electron scattering rates, a displaced Maxwellian results, and
{{l1/1,,)) must be evaluated from eq. (5.74). The corresponding mobility is

g I'5/2)
my(DM) _Fm (5.106)

For ionized impurity scattering, s = 3/2, and we find
wg(RTAY = 34u,(DM), (5.107)

so the assumed distribution function can have a large effect on the mobility.

Balance equations for heterostructures

One trend in semiconductor devices is the increasing use of heterostructures,
semiconductors in which the material composition varies with position. For
example, the heterostructure may be a quantum well which consists of a small
bandgap semiconductor embedded within a wide bandgap semiconductor. In
this case, the material composition varies rapidly on an atomic scale and the
width of the quantum well is on the order of the electron’s wavelength, so a
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quantum mechanical treatment is essential. On the other hand, the material may
be a semiconductor alloy with a slowly varying alloy composition. When the
material composition varies slowly, we should be able to describe transport
semiclassically. That is our objective in this section, to derive semiclassical trans-
port equations for semiconductor heterostructures. The reader may wish to
review heterostructure fundamentals in Chapter 1, Section 1.3.3 and the deriva-
tion of the drift—diffusion equation for heterostructures in Chapter 4, Section
4.10.
The equation of motion for an electron in momentum space,

d
f = F, = (—g)(r), (5.108)

has to be modified in a heterostructure as given by eq. (1.95b),

% — —VEqy— VE(p). (5.109)
In this equation, the first term represents the actual force on the electron,
F, = —VEq,, where the Eq is the clectron’s potential energy (the bottom of
the conduction band). In the second term in eq. (5.109), £(p) represents the
electron’s kinetic energy. Using eq. (1.46a) for the bottom of the conduction
band and assuming simple energy bands, we obtain

dp P’ 1
— = (— Vox—=V.|— :
7 (=) + V. x 5 r(m*), (5.110)

which feads to the BTE for heterostructures,

. (511D

coll

5
oo { =g Vel s+ {_%v(%)} =2

The derjvation of balance equations starting from eq. (5.111) now proceeds
with the procedure of Section 5.1. The appearance of the quasi-electric field
causes no problems, we simply add the quasi-electric field to the actual field in
the final result. The balance equation will have an additional term associated
with the position-dependent effective mass to the balance equation, and the term
involving the gradient of the associated flux will change.

Beginning with the second term in the BTE, we multiply by ¢(p) and sum over
momentum to find

Zaﬁ(p)v- V.f=V,. Zcb(p)%f — V,-( ! ) Zaﬁ(p)pf, (5.112)
p P p

m*

which can be re-expressed as
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qu(p)v V=V, F¢+(1 foz)-ﬁ¢. (5.113)

Multiplying the fourth term n the BTE by ¢(p) and summing over the
Brillouin zone, we find

L\ 9" )" 3f
—_— - 5.114
+(77 *2) 9z Z 2 . ( )

1
n

p B(l/m ) df
Zfb( o

which can be written as

_ (e 3 [¢mp’f LY ™ 8 {emp*\ .
M—(m»«z>§2p:a( > )—(;,:5)*8;“;5;( 5 ),f. (5.115)

The first term integrates to zero if f goes to zero at the boundaries of the
Brillowin zone, so the additional term in the balance equation is

_ (L \ar N (e’
M**(m*z) bz ;5( 2 )f (5.116)

The general prescription for a balance equation for heterostructures is:

ingtr ¢ S117:
n¢,§§ ) =V F¢+( v, n* )F¢+G¢+M—R¢+S¢ ( 4)
w0 ‘. S 1 . _
:Dg;zsz,}, = npln 1) = 5 ;f(ﬁ(p) (5.117h)
‘f'i":k‘rdﬂ : F z)—IZf‘() (5.117¢)
ssociated .u,\‘ ) oL, 1) = o p uf plp Alc
ST 1
Field generation rate: Go(r, ) =U—0)E +V, 1) 5 Z]'qu')(p) (5.1174d)
. . o
pon 1 . :
Effective mass tern: M= —(7> V- ZVP (¢{p)p )f (5.117¢)
L = ; 2
: 1
Scatiering recombination rate:  Ry(r, 1) = ((17))[%(1', - ng,-(r, l)} (5.117f)
®

. . I P(p )) .
Associated out-scattering rate: == I - S(p.p") (5.117g
7s(p) ;( ap )0 T )
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Particle gen-rec rate: Sylr, ) = 5 }; o(p)sir, p, D) (3.117h)

(5.117h)

<< B >> _ B 5, 0 060/ 50)

Ensemble relaxation rate:
[ng(r, £) — ng(r, 0]

oy

It's now a straightforward matter to derive a momentum balance equation for
heterostructures. Proceeding as in Section 5.3.2, we find

op. 3 1 o™ dx
—_ = - (2 W — | W —qE. + =
ot 8.(,-( )+ (m”‘ 8x,) - +n{( DE-+ 3:}
1 9m* > A | (5.118)
(L “fn_ wo (28N, 1L p
mt or m* 0z - Tl °
which can be simplified by assuming a Maxwellhan distribution,
3
W=3W_.= 5n/cBTC. (5.119)

By also assuming time variations slow on the scale of the momentum relaxation
time, we arrive at a current equation of the form

v
m*

. (5.120)

Jn = nqlty |:g* V(X/‘ﬁ:} -+ /.,L”V(nkBTc) - /‘111(3}7/{]3 TC/Z)

The first two terms in this current equation represent drift in the electric and
quasi-electric fields, the second diffusion in concentration and temperature gra-
dients, and the third term arises from the density of states effect. When the
temperature s uniform, eq. (5.120) reduces to the expected result, eq. (4.141b)

Summary

By solving the BTE, we learn how electrons are distributed in momentum space
as a function of location within the device. By soiving the balance equations, we
learn considerably less: the average number of electrons, their average momen-
tum, and their average energy. This information, however, often suffices for
analyzing the performance of a device, and it 1s far sitmpler to solve the balance
equations than it is to solve the BTE directly. Much of present-day device ana-
tysis and simulation consists of solving balance equations. The accuracy of the
solution depends on how the infinite series of balance equations is truncated,
how the resulting equations are simplified, and how the relaxation times are
defined. We return to these issues in Chapter 8 where the application of macro-
scopic transport equations to device analysis 1s discussed.
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The drift-diffusion equation serves as the cornerstone of semiconductor device
analysis, so our discussion of how it is derived was especially important. To put
the momentum balance equation in drift-diffusion form, three assumptions were
necessary. Iirst, temporal variations were assumed to occur nn a time much
longer than the momentum relaxation time. Second, the drift component of
the kinetic energy density was assumed to be negligible. And finally, a diagonal
temperature tensor was assumed. Conventional drift-diffusion equations are
based on even more assumptions. First, the thermoelectric effect is assumed to
be small, which means that the field is either low or if high, that it is uniform.
Second, the transport parameters, u, and D, are assumed to be material-depen-
dent but device-independent. This also necessitates low, or uniform high applied
flelds so that the transport parameters are either independent of field or else
depend only on the local electric field. Modern devices contain both Jow and
high-field regions, and the spatial variations are rapid. Many of the interesting
phenomena that occur under such conditions will be described in Chapter 8.
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forces acting in materials with non-uniform band structure: a canonical approach. Solid-State
Elecironics, 38, 217-23, 1993,

Problems

Show that the sum, Zp V,(¢/), is irideed zero as argued in Section 5.1. Be sure to state the
conditions on @(p) and F{p.r, [) that are required. Hint: Convert the sum to an integral in
rectangular coordinates.

Derive expressions for 1/74(p) and for {{i/7,)) analogous to eq. {5.14f) but valid for degen-
erate semiconductors.

Evaluate the thermal energy from the definition, eq. (5.44), assuming a displaced Maxwellian
distribution function, and show that the result is eq. (5.45).

(a) Evaluate the tensor, Wy, for a displaced Muxwellian distribution function and show that
the result is

nm" nkgTe
Wy =" g + [hLC}

b 2 2 5

i
(b) When drift energy is negligibly small show that W; = (W/3)s; where W = 3nkgTc/2 is
the kinetic energy density.
These results demonstrate that a displaced Maxwellian with negligible drift energy satis-
fies the assumptions made in Section 3.5 to derive a drift-diffusion equation.

Stratton writes the steady-state current and energy flux equations for electrons as
Jo- = nqu,l. + gd(D,yn)/dz (P5.1)
and

S(Tc) = _K(Tc)dTe/dZ - (]rr:/(/}ﬁ(Te)kB Te' (P52)

Joe - £ = nB(TL) + dS(T)/dz, (P5.3)

(see [5.5]). In these equations, S(7.) is the energy flux, 8(7,) is described as ‘the average kinetic
energy transported per electron arising from the current flow’, and B(T,) is the average rate of
energy loss per carrier to the lattice. )

Beginning with the hydrodynamic transport equations, egs. (3.32), (5.37), and (5.52), recast
them in the form of eqs. (P5.1), (P5.2), and (P5.3). You should assume that Q. = —«,(T,)dT,
/dz and should carefully list all assumptions that you make. Obtain expressions for B(T;) and
8(T.). Under what conditions does §(7,) = 5/2? This exercise shows that the hydrodynamic
flow equations and Stratton’s equations, though derived from very different approaches, can
be cast in very similar forms.

To derive the balance equation for the Z component of the energy flux, eq. (5.38), we set
@(p) = v-E(p). Answer the following questions about the energy flux balance equation.
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5.8
5.9

5.10

5.11
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(a) Assume spherical and parabolic energy bands to show that the energy flux balance
equation is

BFws __ Xy QW 2A-gE W <( 1 >)FWZ_ 5.

dz ax; m* ni* Tew

{

which, in symbolic notation 1s -

. <

aF < (—)EW E- W 1 -

W _v.x +% +2(—g)—— <<A)>FW . (P5.5)
d¢ m ) n* Trw

The tensor, X, is defined as

1 -
Xy =52 v E@). _ (P3.6)
3
{b) Assuming that f(p) is a Maxwellian, evaluate the clements of X; to show that
SkpTc
Xo=3— = Wéfj'

According to Widiger et al. ({EEE Transactions on Efectronic Devices, ED-32, 1092-1102,
1985) the energy flux balance equation can be written as

] Fw

——+Fy = —ugWE - V(D).

(o o W= HEWE-VIDED)

(a) Begin with eq. (5.38) and derive this expression. List all assumptions that are required.

(b) Show that u; = eu and obtain an expression for o Simplify your expression for power
law scattering (i.e., T = 1(E(p)/kg T)).

(c) Obtain an ‘Einstein relation’ for Dy and pg.

Derive the energy balance equation for a semiconductor with a position-dependent effective
mass.

Begin at the definition of the ensemble momentum relaxation rate for a Maxwellian, eq. (5.72),
and verify the result for power law scattering, eq. (5.74).

Evaluate the heat flux from (5.48) using a displaced Maxwellian distribution function. Hint:
sum over the peculiar momentum, p, = "¢, rather than over p, and exploit the symmetry of
the integrand. Show that the heat flux for a displaced Maxwellian is identically zero.

Assume that the low-field distribution function has the form

F(p)y =) +/ap)

where f5 is symmetric in p and fi = g(p)- £. is antisymmetric. The function, g(p). is material-
dependent. Show that the mobility is a material-dependent number that is independent of the
electric field.

Compare 7,,(p} as given by eq. (5.18) with (p) as given by eqgs. (3.69) and (3.75).

(a) Show that 7;(p) = 7,,(p) for elastic scattering.

(b) Show that 1:(p) = 7,,(p) for isotropic scattering.

Assume that the distribution function is given by eq. (3.51) which was derived from the
relaxation time approximation. Assuming power law scattering, answer the following.

(a) Derive an expression for ({!/z,)) and show that the result is eq. (5.75).
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(b) Assume isotropic scattering, and derive an expression for ({I/7g)). Explain the signifi-
cance of the result.

The drift-diffusion equation, eq. (5.101), is sometimes written as
Jy = gpapE + gV(D,n).

What assumption is required in order to write eq. (5.101) in this form?

Begin with the general prescription, eq. (5.14), and derive a balance equation for nkg T where
Tc is the carrier temperature. Approach the problem as follows:

(a) Determine the appropriate ¢(p).

(b) Evaluate F,, and express the result in terms of T¢, vy, and the heat flux, Q.

() Evaluate G,.

{d) Write out the complete balance equation.

Derive & balance equation for the tensor, ¥, You can check your result by comparing it with
Eq. (6) in Bringer, A and Schon, G. Journal of Appfied Physics, 64, 2447-2455, 1988.

Begin with the general prescription, eq. {5.14), and derive a balance equation for the carrier
flux. Use this result to derive a drift-di{fusion equation without assuming spherical, parabolic
energy bands.

Let ¢ = 4(p — p,) and derive the corresponding balance equation. Explain the significance of
#n, and of the balance equation.

Assume a hypothetical, two-valley semiconductor with the valleys labeled 1 and 2. (These may
represent the lower, I'-valley and the equivalent, L-valleys in GaAs, for example.) Also assume
1sotropic intervalley scattering and that the average intervalley scattering rate from valley 1 to
218 {1/7p») and from valley 2 to 1, {1/1,). Derive balance equations for this multi-valiey
semiconductor, and answer the following.

{a) Show that the carrier balance equation for valley 1 is

a 1
—E:—V‘J,I] + —1~ Hy — “L Hy.
o g =1 T2
(b} Show that the momentum balance equation for valley 1 ig

81, —20V-W, , £ |1
A A Frrid ey LS

ml
(c) Finally, show that the energy balance equation is

AW, 1 1 1
= V.Fy +J, E- <—>(W] -+ (—)W2 - (—)WE.
9 Tg; Ty At

Using Stratton’s approach, dertve an expression for the energy flux, eq. (5.91). Compare y“our
answer to the result obtained from the balance equation approach.

In this chapter we have generally assumed simple, parabolic energy bands. Derive the current
equation for a semiconductor with an energy-dependent effective mass. Proceed as follows.
(a) Beginning with the steady-state Boltzmann equation,

af af o

Ve

Y T

coll
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(b)

©

multiply by p./@Q and suin over momentum to show:

2 8(mu_.) ‘
oz

How is u._ defined? v
Show that the collision integral can be written as

| o
a2y

Using the results from parts (a) and (b), show that the current equation is

an u::)
0z

:‘_n(rf'”* (E)U:/Im)-

coli

Jpz = ”q[‘LnE: + 24ty

where

g(u;)

o = o)

(P5.7)

(P5.8)

(P5.9)

It is also possible to remove the assumption of spherical energy bands. See
Bandyopadhyay, S., et al., JEEE Transactions on Electron Devices, 34, pp. 392-399, 1987.
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Monte Carlo simulation

6.1 Particle simulation

6.2 Free flight

6.3 Identification of the scattering event

6.4 Selecting a final state after scattering

6.5 Full band Monte Carlo simulation

6.6 Monte Carlo simulation for butk semiconductors
6.7 Monte Carlo simulation for devices

6.8 Monte Carlo simulation and the BTE

6.9 Summary

In Chapter 3 we introduced the Boltzmann Transport Equation (BTE) as an
alternative to calculating the position and momentum versus time for each car-
rier within a device. The BTE is usually very difficult to solve; it is much easier to
simulate the trajectories of individual carriers as they move through a device
under the influence of electric fields and random scattering forces. Since each
path is determined by choosing random numbers (properly distributed to refiect
the probabilities of the various scattering events) the techmque is a game of
chance which has become known as Monte Carlo simuiation. If the number of
simulated trajectories is large enough, the average results are a good approxima-
tion to the average behavior of the carriers within a real device. In many cases,
Monte Carlo simuiation 1s the most accurate technique available for simulating
transport in devices; it is frequently the standard against which the validity -of
simpler approaches is gauged.

Much of our undersfanding of high-field transport in bulk semiconductors and
in devices has been obtained through Monte Carlo simulation, sp it is important
to understand the basics of the method. Because it directly mimics the physics, an
understanding of the technique is also useful for the insight it affords. This
chapter’s emphasis 1s on the underlying principles of the Monte Carlo technique
and on how the results of a Monte Carlo simulation are interpreted. {(For the
mmportaiit details involved in actually implementing a Monte Carlo simulation
program, consuit the chapter references.) The chapter begins by discussing how



248

6.1

MONTE CARLD SIMULATION

to siunulate carrier trajectories in semiconductors. Approaches for applying the
method to bulk transport and to transpost in devices are then described.
To make our discussion concrete, we define a ‘model semiconductor’ chosen to

- roughly approximate the behavior of silicon at room temperature. (In Section 6.5

we discuss how to generalize the approach to use a numerical table of the full
band structure.) The equivalent conduction band minima are assumed to be
spherical and parabolic with an effective mass ratio of unity. Four types of
clectron scattering processes will be considered; the first is ADP scattering in
the form of eq. (2.84}, in the elastic limit, with a numerical value of

;_1'—: 2 x 10™E@P)/q. ' (6.1
! .

The second is equivalent intervalley scattering by phonon absorption and is
described by

1
— = (1.5 x 10" /[E(p)/q] + 0.050, (6.2)
5] :

and the third is equivalent intervalley scattering by phonon emission,

1

— = (1 x 10"[Ep)/q] - 0.050, (6.3)
T3

which applies when E(p) > 0.050eV. Notice that both eqs. (6.2) and (6.3) are in
the form of eq. (2.86). Finally, we include ionized impurity scattering in the
Conwell-Weisskopf formulation as stated in homework problem 2.2,

a1
i—(lxlO”)(M—U) VEG4, 6.4)

T 10’6
For this model semiconductor, the total scattering rate versus energy, I'(p), is the
sumn of the rates due to these four independent processes,

4

ey =) . (6.5)

=1

and 1s plotted versus energy in Fig. 6.1a. In Fig. 6.1b the contributions to I from
each of the four individual processes are displayed. We shall refer frequently to
these figures as the simulation algorithm is described.

Particle simulation

Figure 6.2 shows the trajectory of a representative electron moving under the
influence of an electric field. (A bulk semiconductor is assumed for now; the
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Fig. 6.1 (a) Total scattering rate versus energy for the model semiconductor. (b) Fractional
contribution versus energy that each of the four scattering processes makes to the total
scattering rate. 1: ADP, 2: intervalley absorption, 3: intervalley emission, and 4: ionized
impurity with &, = 10%em™?,
technique will be generalized to devices in Section 6.7.) Because a —z-directed

electric field is assumed, electrons prefer to move in the +Z direction according to
dp .
Fo === (9 | 66

and frequently scatter off phonons and impurities. Because the duration of a’
collision is typically much shorter than the duration of the free-flight between_ _
collisions, collisions are treated as instantaneous events: Figuse—6.2b shows 4
representative electron trajectory in momentum space. Between collisions, the
electron’s momentum increases with the time according to eq. {6.6), but scatter-

ing produces an instant change in the electron’s momentum.
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(a) zln

\
(b) Pyil)
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Fig. 6.2 (a) Representative trajectory (in the X — ? plane) of an clectron in a bulk

semiconductor. A —Z-directed electric field is assumed. This trajectory will be labeled, 7. (b)
Plot of Z-directed momentum versus time for electron trajectory, 7 (¢) Plot of position, =,
versus time for electron trajectory. 7, displayed in (a) and (b},

The carrier’s position varies with time according io
f
) = r(0) + J o{t")de’. (6.7)
0

Figure 6.2c shows z(r) for the trajectory displayed in Fig. 6.2b. Notice ihat
collisions produce instantaneous changes in momentwm but not in position.
The reason is that the change in position is Ar = vAr, where v is the average
velocity during the collision, and Az is the duration of the collision. Because we
assume that A7 is zero, no change in position can occus.
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To simutate a single free flicht and scattering event, a sequence of four random
numbers is generated. The first specifies the free-flight duration during which the
carrier moves in accordance with Newton’s laws. At the end of the free flight, the
carrier’s position and momentum are updated according to eqgs. (6.6) and (6.7).
Next, a random number is generated to identify the scattering event that termi-
nated the free flight. The last step is to determine the final state after scattering.
The energy may increase or decrease due to phonon absorption or emission, and
the direction of 8 will change. Two more random numbers are then generated to
specify the polar and azimuthal angles after scattering. (As discussed in Section
6.5, final state sefection is more involved when full, numerical energy bands are
used.) A flow chart for this basic algorithm is shown in Fig. 6.3.

In the next few sections, we discuss each of the components of a Monte Carlo
simulation and describe how the random numbers are chosen to mimic the
physics. In Section 6.7 we’ll explain how the technique is applied to devices.

6.2  Free flight

After moving for a time, t, under the influence of a 7-directed electric field, the
electron’s momentum and position are obtained from eqs. (6.6) and {(6.7) as

2.8 = p0) ' =
P = p,(0) (6.8)
p-(0) = p(0) + (=)t
and
{0
x(8) = x(0) + "’-‘ﬂ ),
m
(0
sy = 50+ 22, (6.9)
E(f) ~ E(0)
) ==z(0) + ———,
() = =(0) (—)E.
Select free-flight duration o Update momentum
{random number: r} N {random, number: Fao Ty)

4

Y

ldentify scattering event

Update position/momentum  ——| {random number: r,)
-2

Fig. 6.3 Algorithm for Monte Carlo simulation of carrier trajectories.
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where, because parabolic energy bands are assumed,

P

2mt

E(t) = (6.1
We assume that the field, £, is nearly constant for the duration of the free flight.
The first question to consider is: how long should the free flight continue — or
what is the time of the next collision? The duration of the free flight is directly
related to the scattering rate — the higher the scattering rate the shorter the
average free flight.

The rate at which carriers scatter is

ko

r@)_;ri@), (6.11)
where the sum includes ali the k scattering mechanisms {(k = 4 for our model
semiconductor). Because I' varies with energy and the carrier’s energy changes
with time as it moves in the field, I' is a function of time. For now, we simplify
the probiem by approximating I'{(#) by a constant, I'y {see Fig. 6.4). This approx-
imation greatly simplifies the mathematics, and a clever trick will enable us to
apply the result to real semiconductors.

. Consider an ensemble consisting of carriers that have not undergone a colli-

sion since f = Q. Since each carrier has a scattering rate of I'y, the time rate of
change of the collision-free carrier density, nep, is

dngy

dfF = ~Tyncr (6.12a)
107 s r I 7

C r 3

. - T —————————————

g |

= 14 |- — i

. 10 Tope =15~ 1p)
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Fig. 6.4 Total scattering rate versus energy for electrons in the model semiconductor. An
approximation that assumes I'(p) = 'y is also displayed.
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which can be solved to find

nep(t) = nep(0)e. (6.12b)
The probability that an electron survives until time ¢, without scattering is,
therefore,
neplt

cell) _ oror (6.13)
nce(0)

The probability that a carrier undergoes its first colhision between ¢ and ¢ -+ d¢ is
the scattering rate times the probability that it survives until time ¢, or

P(tydt = I'ge "'dr, (6.14)

The free-flight durations must be selected at random in accordance with the
probability distribution function specified by eq. (6.14). We need to ensure that
the probability of selecting a random number between » and r + dr is equal to the
probability of selecting a collision time between t and ¢+ dz; that is

Pirdr = P(nd:. (6.15)

For a random number generator that produces random numbers uniformly dis-
tributed between 0 and I, P{r) = I and

dr = Fge 'de

which can be integrated to find

e IL -
J dr:FOJ' e~loldy,

0 0
or
Fo=1—e Tk, (6.16)

The randomly distributed collision times are, therefore, related to these compu-
ter-generated random numbers by

z ,
lo = —F—Oin(m) : ' (6.17)

where r; = I ~ r,. (Note that r; is also a random number uniformly distributed
between 0 and 1.) Figure 6.5a shows a histogram of 10 000- free-flight durations
computed from eq. (6.17) with the aid of a pseudo-random number generator. A
value of Iy = 3 x 10™s™! was assumed. As expected, the histogram approxi-
mates the probability distribution, eq. (6.14), and the average duration of a
free flight 15 close to 1/1.
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Fig. 6.5 Histogram of {a) 10000 free flight durations for a semiconductor with I'(p) =1

and (b) 10000 real free flight durations (those terminated by a real scattering event) for the

model semiconductor. The times were computed from eq. (6.17) assuming ) = 3 x 105!

by summing the times for successive random numbers until a real scattering event was
detected. The electron’s kinetic energy was assumed to be 0.15eV. The titnes were
computed from eq. (6.17).

Although eq. (6.17) is a simple prescription for generating free flight durations,
it 1s not valid for real semiconductors in which ['(p) varies with energy.
Fortunately there is a simple expedient, we just add to the k real scattering
mechanisms under consideration a fictitious one called self-scattering. As Fig.
6.4 shows,

1
= Lsar(p) = Iy — ' (p), : ' o (6.18)
ket
where ['(p) includes only the real scattering mechanisms. Note that [e(p) 1s
energy dependent as displayed in Fig. 6.4 and that Iy (which 1s usually specified
by the simulation program’s user} must be greater than I'(p) over the energies
occurring during simulation to ensure that I is always positive.
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With the addition of self-scattering, the total scattering rate is constant, 5o eq.
(6.17) now applies, but we must be certain that the fictitious scattering mechan-
1sm introduced does not alter the problem. Real scattering events alter the car-
rier's momentum, but when a self-scattering event occurs we do not change the
carrier’s momentum. Self-scattering does not affect the carrier’s trajectory — it
simply makes the scattering rate constant so that eq. (6.17) applies. The histo-
gram of free flight durations in Fig. 6.5a includes both the real and the fictitious
scattering events. When a free flight is terminated by a fictitious scattering event,
a new random number is generated and the free flight continues. Figure 6.5b
shows a histogram of 10000 real free flights for carriers with E(p) = 0.5eV. Note
that the average duration of a real free flight is 1/I'(p) — not 1/,

Figure 6.6 shows the momentum—space and position-space trajectories for an
electron with the real and fictitious scattering events indicated. Several self-scat-
tering events typically precede each real event. The price for the simplicity of
using eq. (6.17) to generate free flight durations is an added computational
burden due to the increased number of scattering events, most of which do
not affect the carrier’s trajectory at all. (Techniques to minimize the number
of self-scattering events and thereby maximize computational efficiency are

p,(1)
&

(a)

Fig. 6.6 (a) Momentum versus time for an electron trajectory. {b) Position versus time for
the electron trajectory. Fictitious scattering events are identified by an *O’, real events by an

s

“x
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described in Jacoboni and Reggiani [6.1].) Our next task is to learn to separate

the real and fictitious scattering events.

Identification of the scattering event

After selecting the duration of the free flight using the prescription, eq. (6.17), the
carrier’s momentum, position, and energy are updated at time 77 according to
egs. (6.8), (6.9), and (6.10). Collisions alter the carrier’s momentum, but each
mechanisms does so differently. To update the momentum at 7, we must first
identity the scattering event that terminated the free flight and determine whether
it was real or fictitious.

As Fig. 6.1b ilustrates, the contribution that each individual scattering
mechanism makes to the total scattering rate varies considerably with energy.
Since we have now added a (k -+ 1)st scattering mechanism, the contribution of
self-scattering must also be included. By using eqs. (6.1)~(6.4) for the real pro-
cesses and eq. (6.18) for the fictitious process, we counstruct the new version of
Fig. 6.1b displayed in Fig. 6.7. Because the carrier’s energy at the end of the free
flight is known, the probabilities of the various events can be read directly from
the figure. As a specific example, let’s assume that E(f;) = 0.15eV, then Fig. 6.7
shows that 83.4% of the collisions such carriers suffer will be due to self-scatter-
ing, 10.5% will occur by intervalley phonon emission, 2.6% by acoustic phonon
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Fig. 6.7 Fractional contribution versus energy that each of the five scattering processes
makes to the total scattering rate. The first four processes are those defined for the model
semiconductor in egs. (6.1)+(6.4), and the fifth is self-scattering as specified by eq. (6.18). A
value of I'g = 3.0 x 10**s7 is assumed.
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scattering, 2.2% by intervalley phonon absorption, and 1.3% by icnized imput-
ity scattering. By adding up the various contributions in this order, we obtain the
graph shown in Fig. 6.8a. Selection of a random number, r», uniformly distrib-
uted from zero to one locates a region in the graph and identifies the scattering
event. '

The mathematical description of the identification procedure is to select

mechanism /, if

e-1 | ¢ 1
i () <7 < Ll (p)

=1,2.3, . k+1L .
I I I=1,23... k+ (6.19)

The procedure consists of determining the carrier’s energy just before the colli-
sion, constructing a bar graph like that in Fig. 6.8a, choosing a random number,
ry, and locating 1t within the bar graph to identify the scattering event. (This
procedure was used to separate the real from the fictitious scattering events in
Fig. 6.5a in order to produce Fig. 6.5b.) When prescription (6.19) is applied to
10 000 scattering events in the model semiconductor, the distribution of scatter-
ing events displayed in Fig. 6.8b results. As expected, the distribution of scatter-
ing events identified by random number r,, is very near the physical distribution
summarized in Fig. 6.8a.

6.4

Selecting a final state after scattering

Betore beginning a new free flight, the carrier’s state (its location in momentum
space) is updated to reflect the effect of scattering. In general, both the magni-
tude and orientation of the carrier’s momentum are altered by scattering. For
spherical, parabolic energy bands, the magnitude of the carrier’s momentum just

after scattering is

plg) = p' = 2m*[E(0) + AE], (6.20)

where A£ 1s the change in energy associated with the particular scattering event
selected by random number r,. For clastic scattering, 4AE = 0, and for inelastic
scattering it is typically a phonon energy. Because there is a unique 4F asso-
ciated with each scattering event, random number _r”gmglso determines the magni-
tude of the carrier’'s momentum after scattering, but to update the orientation of
p, two more random numbers must be selected.

When updating the orientation of p, it is convenient to work in a coordinate
systemn in which the 7 axis is directed along the initial momentum p. The new
coordinate system (X,, ¥,, £,) is obtained by rotating the (X, 7, Z) system by an
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Fig. 6.8 (a) Illustration of the procedure for identifying a scattering event. An electron with
kinetic energy of 0.15eV in the model semiconductor is assumed. The various contributions
were obtained from Fig. 6.7. (b) Result of identifying 10000 scattering events for electrons

with 0.15eV kinetic energy in the model semiconductor. Note that the results are

distributed very nearly as expected from Fig. 6.7.

angle ¢ about the Z axis, then 8 about j as Jlustrated in Fig. 6.9. The probability

that p’ lies between azimuthal angle £ and g 4+ dg is found by evaluating

dB [;” [¥ S(p, p') sin aedap 2dp’

B [ [T S(p.p’) sinadap 2dp’

(6.21a)
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Fig. 6.9 (a) Scattering event in the (¥, ¥, £) coordinate system. The incident momentum is p
and the scattered momentum, p’. (b) The same scattering event in the rotated coordinate
system, (%, 7. ). which is obtained by rotating {2, ¥, £} by an angle of ¢ about the Z-axis,
then & about the f-axis. In the rotated systern, the incident momentum is p, and the

. scattered momentum p;.

(Do not confuse the azimuthal angle, 8, with the phonon wavevector, 5.) Because
our simple treatment of scattering makes the transition rate independent of 8, the
Integration over B in the denominator can be performed directly, and we find

P(BYdp = dp/2x, , (6.21b)
which states that the azimuthal angle is uniformiy distributed between 0 and 2.

The azimuthal angle after scattering is specified by a third random number, r;,

according to

I B=2mrs | . (6.22)

If 75 is uniformly distributed from zero to one, then g will be uniformly distrib-
uted from O to 2x. 7

The prescription for selecting the polar angle « is slightly more involved
because S(p, p’) may depend ¢n « (recall that ionized impurity and polar optical
phonon scattering favor small angle scattering). By analogy with eq. (6.21a), we
find

. 27 ’ 2 ’
sinede [ ;7 S(p, p')dBp *dp : 6.23)
2 T "ot [ ;- T
b Jo” [ 1S(p, p)sin e dald gpdp
Consider an isotropic scattering mechanism like acoustic phonon scattering for

which S(p, p)) = Capd(E’ — £)/Q, as in eq. (2.6). Because Cup is independent of
o, . (6.23) gives

Plojde =

sina da
2

Pla)da =

The angle, ¢, is specified by a fourth random number according to
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Plr)dr = 20 =% det

For a uniform random number generator, P(r) = 1, and

e [ I
Ldr:—z-L sinade = 5“ — COos &),

so that for isotropic scattering, « is determined by

cosa = | — 2/'4 (624)

[

Figures 6.10a and 6.10b show histograms of 10 000 azimuthal and polar scattering
angles selected according to prescriptions, egs. (6.22) and (6.24). Note that 8 is
uniformly distributed between 0 and 27, but o is not uniformly distributed between
0 and 7 (rather, it 1s cos« that is uniformly distributed between —1 and +1).

For anisotropic scattering, small angie deflections are most probable. The
procedure for selecting the polar angle begins with eq. (6.23), but the appropriate
S(p, p’) must be used. An example calculation for ionized impurity scattering
follows.

. Example: polar an'gle selection for ionized impurity scattering
Ioniz”éd impurity sééttering is described in the Conwell-Weisskopf approach as
Sp.p) =0 (or & < )
: ahci .
S (.Pi, p)= w
or'(3)

where Cew was'given in €q. (2.36b). In this case, the probability of scattering between @ and
o+ do, eq. (6.23), becomes

(for a > o)

(Sjn o/ sin® %—) der
T . L4 !
fami" (sm o/ sin %) da

The procedure leading to eq. {6.24) can now be followed to obtain

Plo)da =

1 ~cos Hmin . (6 ,)5)
- "4[] ~%(l ~cosamm)J

cose =1 —

which relates the fourth random number to the polar angle for ionized impurity scattering.
Figure 6.10c shows a histogram of 10000 randomly selected polar angles for ionized
mpurity scattering. The contrast with Fig. 0.10b is sharp — lonized impurity scattering
strongly favors small angle deflections.
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Fig. 6.10 Histograms of (a) 10000 azimuthal angles chosen according to eq. (6.22); (b)
10000 polar angles for isotropic scattering chosen according to eq. (6.24): (¢} 10000 polar
angles for tonized impurity scattering chosen according to eq. (6.25). An ionized impurity

3

. £ _
concentration of 1.0 x 10" em™ and an electron energy of 0.15eV were assumed.

Having determined the orientation of p’. in the rotated system, we now need to
determine it in the original coordinate system. (Note that p and p’ do not change
when the coordinate system is rotated, but their components as measured along
the coordinate axes do. When the initial and scattered momenta are labeled, p,
and p/, their components are measured in the rotated system.) In the rotated
coordinate system, the initial momentum, p,, was directed along the Z, axis as
illustrated in Fig. 6.9b. After scattering, the components of p, in the rotated
coordinate system are
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p'sinecos B
p, =1 p'sinasing }. (6.26)
p'eosa

where p' was given by eq. (6.20), and « and 8 were specified by the random
numbers. r; and ry. To find the components of p in the original coordinate system
of Fig. 6.9a, we rotate the axes by —@ about i, then by —¢ about Z,. (See
homework problem 6.5 for an example of this procedure.)

Full band Monte Carlo simulation

The accuracy of a Monte Carlo siinulation is determined by several factors.
These include the treatment of the scatiering processes, the self-consistent electric
field and particle—particle interactions, etc., as well as numerical considerations,
such as the size of the ensemble that is sitmulated. A key issue is the £(p) descrip-
tion used. In the preceding sections, we assumed parabolic energy bands because
it simplified the discussion, but parabolic energy bands are too crude to provide
méaningfui resuits. For moderate and high carrier energies, where Monte Carlo
simulations are typically employed, the energy bands are nonparabolic.
Spherical, nonparabolic energy bands as described by eq. (1.40} provide much
better accuracy. (The evaluation of scattering rates for nonparabolic energy
bands was discussed in Section 2.13.) For extremely high. energies, typical of
avalanche breakdown conditions, for example, analytical descriptions aren’t
adequate and a full numerical description as discussed in Section 1.2.2 is neces-
sary. The concepts we described using spherical, parabolic energy bands still
apply, but it is worth discussing some of the details,

Full band particle simulation

The equation of motion in momentum space. eq. (6.6), does not depend on the
bandstructure, so it is easy to track p(s), the trajectory in momentum space.
Equation (6.8) can stiii be used to update p after a short timestep. The energy
can also be easily evaluated from the numerical table describing £(p). Tracking
particles in real space, however, is more involved. The real space trajectory is stiil
described by eq. (6.7), but the carrier velocity is numerically evaluated from

vp()] = V,E[p()]- (6.27)

Equation {(6.9) can be still used to update the carrier’s position after a short
timestep if p/m” is replaced by the group velocity.
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Full hand scattering events

In a full band simulation, the electron—phonon scattering rate for a carrier at
state p 1s evaluated from eq. (2.61) using eq. (2.71c) for 44 to find

1 1 T ; 2 LN /
TM—E-?(@){/@ K (Ng+1/2F 1/2)8(E — E T hwg) 8y pasp,

(6.28a)

where [I(p’, p)| is the overlap integral involving the Bloch functions [recall eq.
(1.116)], and 1Kﬁ12 is the Fourier component of the perturbing potential which
connects the initial and final states [recall eq. (2.58)].. The perturbing potential
is anisotropic for electrostatic scattering processes, which favor small angle
events. The phenomenological deformation potentrals are usually taken to be
constants, but rigorous calculations show that they can depend on the initial
and final states [6.9]. The full dispersion curve which describes wg is usually
used rather than assuming that @ = @, for eptical phonons and w = fus for
acoustic phonons. Finally, note that the sum is over the phonon wavevector, §,
which by momentum conservation is equivalent to summing over the final
electron states, p’.

Electrons in semiconductors may populate several different energy bands
(recall Fig. 1.9), and electron—phonon scattering may occur from several differ-
ent phonons (longitudinal, transverse, acoustic, or optical as shown in Fig, 1.27).
The electron—phonon scattering rate should, therefore, be written as 1/7, ,(p),
where 7 refers to the type of phonon and © to the band the electron resides in
before scattering. Equation (6.28a) becomes

1 1 " . )

) ! /’ /; ! i K7 v’ -
7)) Q“Z/;(pww)i O RS K (B
| (6.28b) .

% Ny + 1/2F 1/2)8(E) — Ey 5 heo, g)8y pang,

which includes a sum over all of the final energy bands that the electron may
occupy.

Because the bandstructure is tabutated throughout the Brillouin zone (in a set
of cubes in k-space, for example), the sum in eq. (6.28) can be carried- out directly
to evaluate the scattering rate: By adding the contributions of all impeortant
mechanisms, a table of scattering rate versus energy like that displayed in Fig.
2.26 1s constructed. Self-scattering, the selection of free-flight times, and identi-
fication of the free-flight terminating scattering events all proceed just as they do
for simple energy bands.
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6.6

6.6 MONTE CARLD SIMULATION FOR BULK SEMICONOUCTORS

Selection of the final state

The last step in the procedure is to select a final state, and this is the most
involved step in a full band Monte Carlo simulation. A final state that conserves
energy and momentum must be selected. For simple bands, this was done ana-
lytically, but for full bands it involves a search throughout the Brillouin zone.
Figure 6.11 summarizes the final state selection procedure.

The first step is a “coarse search’ throughout the discretized Brillonin zone to
identify all cubes that may contain states that conserve energy and momentum.
[f, for example, the electron energy 8 £, and the maximum phonon energy for
any transition 1s 635meV, then all cubes that contain energies in the range
E £+ 63meV are located (Fig. 6.11a). The next step is a ‘fine search’; each cube
18 subdivided into fine cubes, and each fine cube is examined. The difference
between the momentum of each possible final state and the initial state momen-
tum gives A8, and the phonon dispersion curve gives the corresponding phonon
energy (Fig. 6.11b). Only cubes containing fine cubes that satisfy energy and
momentum conservation are retained (Fig. 6.11c).

After identifving all potential final state cubes, the density of states for each
cube can be computed and a total sum computed. If the scattering process
depends on 8, each term in the sum is weighted appropriately. By selecting a
random number between zero and one and comparing it with the normalized,
running sum density of states, one state can be selected (Fig. 6.11d). Finally,
since each cube spans a significant volume of momentum space, it is necessary to
identify the constant energy plane within the cube and to choose two random
numbers to select & specific momentum within the cube. For simple energy
bands, this process of selecting a final state that conserves energy and momentum
was done by analytically integrating the S-functions expressing energy and
momentum conservation as discussed in Section 2.6.

Mente Carle simulatian for bulk semicanductars

Having described how Monte Carlo techniques are used to simulate trajectories
of individuatl electrons, we are ready to describe how transport is simulated. For
a bulk semiconductor, with a uniform electric field, the technique is simple, as
lustrated in Fig. 6.12. We begin with an electron whose momentum is specified
(the actual value does not matter; because the simulation will run to 1 — oo, the
initial condition 1s not important). A ‘clock’ with time intervals of A7, which js.
generally small compared to the average time between collisions, is then started,
and the electron trajectory is tracked by Monte Carto methods. Every AT sec,
the state of the electron is examined and its velocity and energy are recorded.
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Fig. 6.12 The basic algorithm used for simulating electron transport in a bulk
semiconductor. Note fhat scattering events may occur dyring the time, A7, for which
carriers are moved,

(Alternatively, we could use the collisions as the clock and record the electron’s
velocity and energy just before each collision.) As the process continues, a sta-
tistical estimate for the average electron velocity and energy is generated. The
process terminates when the statistical error in the estimates is acceptable. To
generate an energy distribution, we define a set of bins with finite width in
energy. At each sampling time, we note the energy bin the electron resides in,
then add to a counter for that bin. The final population of the bins gives an
estimate for the energy distribution function. Note that the magnitude of the
energy distribution at a particular energy is proportional to the time an electron
spends in that energy bin. We'll find this concept useful when we talk about
devices too.

As we will discuss in Chapter 7. Monte Carlo simulations of electron trans-
port in bulk semiconductors provide a good description of high-field transport
in bulk semiconductors. The spatially varving electric field and the boundary
conditions make the simulation of devices somewhat more involved.
Nevertheless, the central element, the (racking of carrier trajectories, 1s done
by the same methods.
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Monte Carlo simulation for devices

Having discussed how to generate carrier trajectories by the Monte Carlo
method, we are now ready to apply the technique to devices. Two different
approaches are 1n use; in the first. which we'll term “ensemble Monte Carlo’,
the trajectories of an ensemble of particles within a device are followed in "par-
allel’ in time. In the second, or ‘incident flux’, approach, carriers are injected
from a contact and followed one at a time as they traverse the device. This
technique works best for steady-state simulations. We begin with the ensemble
Monte Carlo technique, the most widely-used method tor simulating devices.

Ensembie Monte Darlo

To discuss the ensemble Monte Cario method, consider the two-dimensional
MOSFET sketched in Fig. 6.13, which 1s divided into cells by a numerical
grid. Each of the cells is first populated with carrters, then the position and
momentum of each carrier is tracked as it moves from cell to cell under the
infiuence of the electric field and scattering potentials. It is convenient (o begin
the simulation in thermodynamic equilibrium where the solution is known. Each
cell is then populated with carriers whose momentum is randomly selected from
a Maxwellian (or Fermi—Dirac) distribution. Under charge-neutral conditions,
the total number of free carriers within the device must equal the total number of
ionized donors within the device, but to keep the computational burden manage-

Fig. 6.13 (a) Sketch of a two—dimensionz{] silicon—metal-oxide semiconductor ﬁeld—effeét
transistor (MOSFET). A numerical grid which divides the device into cells is also shown.
Monte Carlo technigues track the carriers as they move within the device (a). Carriers can
enter (b) and exit (¢) the device from ohmic contacts, and they cau reflect specularly (d) or
dittusively (e) from the Si/SiO; interface. Carners that leave through « line of symmetry ()

arve reflected.
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able, the number of sumulated electrons must be limited — 10000 or so is typical.
Since there are far more dopaunts within a typical device, each electron is treated
as a superelectron for charge-assignment purposes and represents the charge of
many electrons. The charge on each superelectron 1s simply

N | ,
O=—q N (6.29)
where N 1s the number of charges in the device, and N, is the number of
superelectrons used in the simulation.

To simulate devices, the boundaries must be treated properly. Ohntic contacts
are often assumed to be perfect absorbers, so carrters that reach them simply exit
the device. To maintain space-charge neutrality at the contact, carriers are
injected as needed. For two-dimensional devices, the noncontacted free surfaces
arc commonly treated as reflecting boundaries for carriers. For field-effect tran-
sistors, roughness at the surface of the chanunel can cause scattering. A simple
approach is to treat some fraction of the encounters with the surface as specular
scattering events and the remainder as diffuse scattering events. The specific
fraction is selected to match transport measurements.

After the device has been populated with electrons, the bias is applied, and the
simulation begins. A short timestep, A7 is defined, and the momentum and
position of each particle are tracked by the techniques discussed earlier. At the
end of the timestep (typically tens of femtoseconds), thermal electrons are
injected from the contacts to maintain space-charge neutrality there. Poisson’s
equation is then solved to update the electric field. The whole process can be
repeated as illustrated in Fig. 6.14 to simulate the transient response of the
device; eventually the steady-state is achieved. At any time during the simulation,
the average carrier density, velocity, energy versus position can be computed by
averaging over the particles witlin each siab. Moglestue [6.5], Tomizawa [6.7],
and Kunikiyo et al. [6.9] discuss the application of this approach to the simula-
tion of two-dimensional transistors.

One issue thal merits some discussion is the treatment of electron—electron
scattering and the self-consistent electric field. Before we do so, however (in
Section 6.7.3), we deseribe a second method for simulating devices by Monte

Carlo techniques.

incident flux approach

An alternative approach consists of viewing the contacts as sources which
continually inject fluxes of carriers into the device. The basic wdea, as illustrated
m Fig. 6.15. begins with a guess for the seif-consisted conduction band profile,
Ec(z). The approach consists of selecting a carrier at random from the injected
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Fig. 6.14 Algorithm for time-dependent, ensemble Monte Carlo simulation of devices.
Carriers are moved for 47 seconds by Monte Carlo techniques.

: I .

E.l2)
J\i-»

Position

Energy

Fig. 6.15 Basic concepts ol incident flax Monte Carlo simulation. The heavy lines indicate
the carriers injected from the contacts. ‘

flux and following it until it exits through the same, or another contact.
Another carrier is then selected and the process repeated to simulate an ensem-
ble of trajectories. Carriers are followed one at a time, in ‘series’ rather than in
‘parallel” as in the many-particle approach. While the carrier is in the device,
statistics are collected in order to extract from the ensemble of trajectories the
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collective variables of interest. When enough trajectories are collected, an esti-
mate of the carrier profile, n(z), can be obtained. Poisson’s equation can then
be solved to update Eq(z), and the process continues until the potential con-
yerges. —— :

The merdent flux approach is best suited for steady-state simulations.
Compared to ensemble Monte Carlo simulation, the interpretation of individual
trajectories in term of collective variables is somewhat more involved in the
incident flux approach, but the approach provides a useful, alternative way to
think about steady-state transport in devices. {We discuss this approach in
Chapter 9.) To understand the incident flux approach, we need to discuss how
to select carriers from the incident flux and how to collect statistics from the

carriet trajectories.

Injecting electrons from the contacts

The incident flux simulation begins by selecting a carrier to follow. Each contact
injects a flux of carrters into the device; carriers must be selected at random from
this incoming flux. The total flux incident from the left contact is

o1 Jilp) 1 7 .
(—9) QP;Q (—q) QNZ:;O fn*fL(p)’ (6.30)

where £, (p) is the Fermi function in the left contact. For a nondegenerate contact
region, the sum can be evaluated to find (see homework problem 6.6)

, — -BiL 6.31
(—q} R pr (6.3
The flux of injected carriers with momentum between p and p + d°p is

'/[(p) 3 P- 3

———d'p=—= d’p. 32
-0 d'p = f(e)dp. (6.32)

so the probability, P, that a carrter with momentum between p and p—:d3p

enters from the left contact is

Pp)d'p = Jol0de | Ezsz(p)- (6.33)
Jr i o

If the contact region is nondegenerate, then
J1(p) = exp[—(Ecy +p*/2m" ~ F,)/kp T | (6.34)

(where F,; is the Fermi Jevel in the left contact), and eq. (6.33) can be written as
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PO p = Plp)dp, Plp)dp, Plp)dp. ~ [exp(—pt/2m*ksT,)dp, ]

x fexp(—pt/2m"k 5 TL)dPr][:T; exp(—p2/2m* k5T, ) dp:],
which states that p, and p, are normally distributed, but the distribution for p_ is
veloeity weighted towardsjlarger values of p. because such carriers enter from the
contact more often.

The entering electrons must be selected at random in accordance with the
probability distributions specified by eq. (6.35). The momenturm of the entering
carrier is specified by three random numbers, r,, r,, and r. which determine p,,
pr»and p.. Since random number generators with normal distributions are widely
available, p, and p, are easily selected. To select p., we must ensure that

P(rydr = P(p-)dp-, (6.36)

where P(p.) is the probability distribution function for p. as given in eq. (6.35)
and P(r) is the probability distribution function of the random number genera-
tor. For a uniform random number generator, P(r) = 1, and

P e—pifzm*kﬁ'/' dp-
dr = = . (6.37)
[ P- —~p_?/2m*/'cn T

— < dp:

Jo m*

where the denominator is a normalizing factor to ensure that the probability of
finding a carrier with p. somewhere between zero and infinity is unity. Both sides
of eq. (6.37) can be utegrated to find

0

P A
; ] p- e--p;/era‘/\'Bpo:
dr = =%
JO J P- efj)gleil*kuyldp:

o m*

or

pe = ImkgTinr, (6.38)

which specifies the z-component of the carrier’s momentum from the random
number, r.. Figure 6.16 shows histograms of p,, p,. and p. as determined by
random numbers, r, ,r,, and r. for 10000 carriers. Along £ and j the velocities
are distributed almost normally with an average velocity 1000 times smaller than
in the Z direction. The finite values for (v,) and (v} are a consequence of the
statistical nature of the Monte Carlo method. (Statistical noise poses problems
for Monte Carlo simulation under moderate or low fields where the average
velocities are comparable to or less than the noise.)
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Fig. 6.16 Histogram of (a} 10000 p,’s selected by random number, r,: (b) 10000 p,’s
selected by random number, . and {¢) 10000 r.’s selected by random number, ..

Collecting statistics from carrier trajectories
After selecting a carrier from a contact, the simulation continues by following its
trajectory until it exits the device. A trajectory in position space for one repre-
sentative carrier is displayed in Fig. 6.17a. The result of the simulation process is
a whole collection of such trajectories, z,(¢} and p,(f) where / runs from one to
N, for the Ny, carriers selected from the contacts. By collecting statistics from
these trajectories, the values of collective variables such as the average carrer
density can be deduced as described next.

We begin by asking for the average carrier density within each slab within the
device. If we consider only one trajectory 7, then either the carrier is in the slab */°
or it is not, so the carrier density near : = z; due fo this single carrier is
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(a) zo

Lo oL & b Ll & by
Fig. 6.17 (a) Representative trajectory of a single carrier through a device. (b) Carrier

density versus time at slab /" due to a single carrier frajectory.

1
Ad

dniz 1) =

3]

when the carrier is in the jth slab; it is zero otherwise. (Here 4 is the cross-
sectional area of the device and dz the width of the slabs.) The carrier density
in slab °j” versus time due to this single trajectory is shown in Fig, 6.17b and is
mathematically described by
Alz; = #i(0) | ‘

8ni(z;. 1) = (6.39)
where A(z) = 1/dz when —dz/2 < z < dz/2 and zero otherwise. Equation (6.39)
gives the contribution of trajectory " to the carrier density at z = z;. To find the
total, - time-dependent carrier density, we add the contributions from each
injected carrier to find
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N
Az = (0]
iz, =Y —— 6.40
(2. 1) ZI y | (6.40)
where N is the number of carriers injected from the contacts. Equation (6.40)
states that the time-dependent carrier density is obtained simply by counting the
number of carriers in each slab at the time of interest.

To find the steady-state carrier density due to trajectory 7, we average én;(z;, £)

over time,

’ 1 T .
8ny(z;) = ?Jo 8n;(z;, H)du, . (6.41)
and let 7 — co. Before we insert eq. (6.39) for (2, 1), we should realize that the
contacts continually inject carriers, so that during the time, 7J, (p)A T carriers
with momentum p,, will be injected. After sumuming over the incident momenta,
the steady-state carrier density becomes

T
) = S | ALz 20 (6.42)
a

Because the 4-function is non-zero only when z;(¢) is within dz/2 of z;, the value
of the integral is proportional to the time the carrier spends at location z;. The
steady-state carrier density is a sum of contributions {from each trajectory. Each
term in the sum is proportional to the probability that such a carrier enters from
the contacts, J, (p;), multiplied by the time the carrier spends at position z. The
steady-state carrier density builds up when the carriers move slowly through the
device because the contacts are constantly injecting carriers.

To evaluate the steady-state carrier density, a carrier is first selected at random
from one of the contacts as described above, then its trajectory is followed unti] it
leaves the device. While the carrier is within the device, its location is sampled
every A7 seconds. and the slab it is in is recorded. The number of times a carrier
appears in a slab is proportional to the time spent in that slab, as illustrated in
Fig. 6.18. The process is repeated for a second carrier, and the results are added
to those for the first carrier. The simulation continues until it is determined that
the shape of the n(z) profile has converged to its steady-state value. To obtain a
profile of the average velocity or kinetic energy versus position, we simply multi-
ply the time spent in the slab by the velocity.or energy of the carrier. Similarly,
the distribution function, f(py. z;) is proportional to the time a carrier spends in
the momentum bin at p; while it 1s stmultaneously in the position bin at z;. By
these means. the value of any collective variable of interest can be obtained from
the collection of carrier trajectories computed by incident flux Monte Carlo

stmulation.
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Fig. 6.18 (a) Carrier trajectory showing spatial bins and sampling times. (b) Histogram
showing time spent in each bin.

Treatment of Coulomb effects in Monte Carlo simulation

The treatment of electron-—-electron scattering and space-charge effects (recall
Chapter 2, Section 10) are key issues in Monte Carlo sunulation. For ultra-
small devices, the number of carriers and dopants is small, and the Coulomb
forces between each discrete charge and all others can be evaluated directly.
These molecular dynamic simulations treat Coulomb effects exactly, within a
classical framework, but the computational burden is large when the number
is charges is large. For large devices, the mobile and fixed charges can be treated
as a continuous charge density with Poisson’s equation giving the self-consistent
electrostatic field. In general, however, we need to treat the short-range effects of
discrete charges (binary electron—electron scattering) as well as the long-range
space charge effects described by Poisson’s equation.

Typical practice in Monie Carlo simulations treats binary, electron—-electron
scattering of an electron with its neighbors within a radius, R, that is roughly a
Debye length. (At longer distances, screening smooths the charge distribution so
that discrete charges are not sensed.} The effect of these more distant electrons is
described indirectly through the self-consistent electrostatic field obtain from
Poisson’s equation. Fischetti and Laux [6.8] describe one implementation in a
Monte Carlo simulation program..

Coulomb effects also influence the timestep, 47, between Poisson solutions in
a Monte Carlo simulation. Of course, electrons cannot be allowed to move too
far, or the electric field will change rapidly during the timestep. The criterion is

AT < = : (6.43)

)
T

Umax

where A 1s the size of a spatial cell, and vy, is the maximum carrier velocity
(typically = 10% cm/s). But a much more stringent limitation exists.
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Recall from Chapter 2 that electrons in a semjconductor oscillate at the plasma

frequency,

[ 2

gn
= 6.44
“p \Kssom* : ( )

[recall eq. (2.102)]. During a period of the plasma oscillation, a charge imbalance
occurs, then a restoring force which acts to restore the charge balance is set up.
To resolve these plasma oscillations and ensure that the charge balance does not

grow without bound, we require that

AT <22 . (6.45)
Wy

In the heavily doped contact regions of a device, n = 10°cm ™,

means that extremely short timesteps are necessary.

—1 .
w, = Ifs, which

6.8 Monte Carle simulation and the BTE

In the previous section we presented a prescription for finding the distribution
function by Monte Carlo simulation, but we also know that f(r,p, t) can be
found by solving the BTE directly. In this section we demonstrate that Monte
Carlo simulation is a numerical technique for solving the BTE. (Actually, if
Coulomb effects are carefully treated, then Monte Carlo simulation can also
treat carrier—carrier correlations and, therefore, provides more detail than the
Boltzmann equation which ignores such correlations.)

To begin, we need a definition for f(z, p, 1). We begin by letting the width of
each slab in a one-dimensional device approach zero, so that the carrier density
due to the single trajectory, 7, becomes

dig;(r, 1) = 8[r — r,(8)], (6.46)
which is the mathematical definition of carrier density due to a single trajectory.
Similarly, we find _

&filr, p. 1) = 8lr —~ r(O18[p —p,()], (6.47)

which is the contribution to the distribution function due to the single trajectory.
To find how f(r, p, t) evolves with time, we apply the chain rule to eq. (6.43) to

obtain

381 dr; dp,

=V, 8 LV, 8, 48
at &l dr n i de” (6.48)

where
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5= (6.49)
and

dpf . apl -
E = (ff])g(rf) + o (6.30)

coll .
because momentum can change for two reasons — fields may accelerate carriers
or collisions may occur.

At this point we should stress that r, p, and ¢ are the independent variables
which we would like to appear in the final equation but r/(#) and p,(z), the
dependent variables, refer to the time-dependent posttion and momentum of a
single trajectory. Fromeq. (6.47) we observe that V,. f = ~V.fand V, =~V f
so eq. (6.48) becomes
38f; ap

T —V.8f; - v; + gE(x;) - V.81, + _87[

v, 5

coll

The final term is the rate of change of 8f; with momentum times the rate at which
momentum changes with time due fo collisions and is therefore 38f;/0¢].,. We
also note that &(r -~ r;) is non-zero only when r = r;, so when summed over all

trajectories,

28/ %

B L V80— gE)  V,of = 2

5t V0B Vb = == -

gives
d )
Y vrv—gem v =L , (6.51)
ot 3| con

and we have succeeded in showing that the distribution function obtained by
Monte Carlo simulation satisfies the BTE.

683  Summary
In this chapter we showed how to simulate the motion of carriers through a
device as they respond to the applied and built-in potentials and to the random
scattering potentials. The average effects of the various scattering processes are
simulated by properly selecting random numbers. The technique i3 appealing
because it directly mimics the physical processes that occur during transport
and because very accurate solutions to the BTE can be obtained by relatively
simple means. This chapter focused on the basic concepts central to Monte Carlo
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simulation — how a particle trajectory is simulated and how the technique is
applied to dewvices. To apply Monte Carlo simulation to real semiconductors
and obtain accurate fesults, several details must be carefully considered. For
example, energy bands are rarely spherical and parabolic, and carriers may
scatter to other valleys. (For such cases, we must keep track of the valley in
which the carrer resides in addition to tracking 1ts position.and momentum.)
The chapter references describe how the Monte Carlo technique 1s applied to
silicon and gallum arsenide.

Although the Monte Carlo method is often the most accurate method avail-
able for simulating devices, it does suffer {rom some limitations. First, the sta-
tistical uncertainty in the results should be obvious from the histograms
presented in this chapter. For a typical semiconductor under low applied fields,
the expected drift velocity can be smaller than the statistical noise. The statistical
error shrinks as the number of simulated carriers, Ny, increases, but it only
drops as 1/4/Ngm, 0 large numbers of carriers have to be simulated. Monte
Carlo simulation is not well-suited for analyzing low-field transport, and most
devices do contain some low-field regions. Other difficulties include carrier injec-
tion over a large energy barrier and electron-hold recombination. Because these
processes are statistically unlikely, the simulation times can be long.

Because of such limitations, devices are frequently analyzed by approximate
techniques based on the collective variable view point rather than by direct
Monte Carlo simulation. The most commonly used approach is to solve the
balance equations introduced in Chapter 5. Quite often, however, Monte
Carlo simulation is used to evaluate the ensemble relaxation times needed for
the balance equations and to assess the validity of the simplifying approxima-
tions that are necessary when using balance equations.

ences and further reading

Application of Monte Carlo simulation to group 1V and 111-V semiconductors is discussed in
the following reviews.

Jacoboni, C. and Reggiani, L. The Monte Carlo method for the solution of charge transport in
semiconductors with applications to covalent materials. Reviews of Modern Physics, 55, 645~
705, 1983. ) _ ) _

Reggani, L. Hor-Electron Transport in Semicanducf‘orzv, in Topics in App[z'ed’Phj"sics. Vol 38,
Chapter 2. Springer-Verlag, New York, 1985

Fawcett, W., Boardman, A. D. and Swain, S. Monte Carlo determination of electron trans-
port in gallium arsenide. Jouwrnal of the Physics and Chemistry of Solids, 31, 1963-90, 1970,
Price, P. J. Monte Carlo calculation of electron transport in solids. Semiconductors and
Semimetals, 14, 249-334, 1979,
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6.5 Moglestue, C. A self-consistent Monte-Carlo particle model to analyze semiconductor micro-
components of any geometry. /EEE Transactions on Computer-Aided Design. CAD-5, 32645,
1986.
The classic reference for simutating the flow of particles is

6.6 Hockney. R. W. and Eastwood, J. W. Compurer Sinudarion Using Particles. McGraw-Hill,
New York, 1981,
This book describes how a Monte Carlo semiconductor device simulation is implemented in a
computer program.

6.7 Tomizawa, K. Numerical Sinutlation of Submicron Semiconductor Devices. Artech House,
Boston, 1993.
"Full band’ Monte Carlo simulation is described in

6.8 Fischetti, M. V. and Laux, S. E. Monte Carlo analysis of electron transport in small semi-
conductor devices. Physics Review B, 38, 9721-45, 1988.

6.9 Kunikivo, T., Takenaka, M., Kamakura, Y., Yamaji, M., Mizuno, H., Morifuji, M. et al. A
Monte Carlo simulation of anisotropic electron transport in silicon using full band structure
and anisotropic impact-ionization model. Journat of Applied Physics, 75, 297-312, 1994,

Problems

6.1 1f free flights are distributed according to eq. (6.14), show that the average duration of a free
flight 1s {t.} = 1/1;. Hint;

oC Q0
() = J fP(f)dt/J Pt)ds.
Jo 0

6.2 Examine the computer-generated free Right times as follows.
(a) Write a computer program (o select scattering times from eq. {6.17) for I'y =3 x IOH/S.
(b) How many selections are required to make that average time between collisions correct to

within 10%?

6.3 Derive an expression analogous to eq. (6.14) {or the probability that a carrier’s first collision
occurs between r and 7 + dr, but do not assume thar ihe scaitering rate, I', is constant.

6.4 Derive an expression for the polar angle, «, after scattering that is valid for ionized impurity
scattering in the Brooks—Herring formulation.

6.5 As discussed in Section 6.4, updating the carrier momentum after scattering is most casily

accomplished in a rotated coordinate system. The following questions concern the operations
required to rotate, update, then rotate back. '
{a) The rotated ¥ axis X, is related to the original X axis by

where Y, describes a rotation of 8 about the V-axis, and Z, describes a rotation of ¢ about
the 7-axis. Show that
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cos@ 0 sing
Yo = 0 I 0
—sinf 0 cos@
and that
cosg. ~sing 0
Zy=1sing cos¢g 0
0 0 1

(b) Assume elastic scattering with an incident momentum, p = (p/+2, p/~2,0). If & = 7 and
B =r/2, find p’ after scattering.

Answer the following questions about the flux injected from a contact.

(a) Evaluate the sum in eq. (6.30) and show that the result for a nondegenerate semiconduc-
tor is eq. (6.31).

(b) Find the corresponding result for a degenerate contact.

Compare the accuracy of the average velocity of the computer-selected injected flux by

answering the following:

(a) Derive an expression for (v.) for carriers injected in the Z-direction from a contact.
Assume that m* = my.

(b) Write a computer program and use it to select 1000 values of p. according to eq. (6.38).

(c) How close is the average, computer-generated (v.) to the exact value? How many more
selections are required to reduce this error by a factor of two?

Assume that the p, momentum component of an injected flux is distributed according to

P(p,)dp, = exp[—pl/2m* Iz T;]dp, and that a random number generator which generates nor-

mally distributed with a standard deviation of 1.0 is available. How would you use this random

number generator to select p,?

Consider electrons flowing through the device structure sketched below. The electrons are each
injected with p. = po; the injected current is Jy. Assume that the structure is short, so that

scattering does not occur. The electron’s potential energy 18 U(z) = ~¢g€=.
A
e P,

>

Iy

o5 ]

o

wl

|
Position (2)
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(a) Find an expression for the carrier density at z = 0.
(b) Assume that the current s constant, J(z) = Jy, and show that the steady-state carrier
density is
n(0
() = ©

v/ 1+ 2m* U(z)/p}

{¢) Use an expression analogous to eq. {6.40),
T
n =3 Julp) L 81z — ()
o .

to derive the result of part (b).

6.10 Write a computer program to compute a table of the self-scattering rate versus energy for the
model semiconductor. Let the maximum energy be 1.0eV and assume that [y = 3 x 10M*57",

6.11 Write a computer program to compute the relative percentages of the various scattering events
for the model semiconductor. {(Assume that [y =3 x 107! J)
() Assume E = 0.15eV and thereby venfy the results in Fig. 6.8.
{b) Repeat for £ =0.30eV.
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7.1 General features of high-field transport
7.2 Velocity saturation

7.3 The electron temperature approach

7.4 The Monte Carlo approach

7.5 Electron transport in bulk Si and GaAs
7.6 High-field transport of confined carriers
7.7 Summary

Steady-state, low-field transport in bulk semiconductors is described by the drift—
diffusion equation,

dn

']172 = ”qfu‘ngz +quz dz’

where w, and D, are maierial-dependent transport parameters refated by the
Einstein relation. The parameters are independent of the field because the low-
field perturbation in the distribution function is directly proportional to the
electric field (recall homework problem 5.11). Under high fields, however, the
distribution function becomes a nonlinear function of the field, so u, and D,
become field-dependent parameters. In devices, the situation is even more com-
plex because the distribution function has a nonlocal dependence on the electric
field. In this chapter, our focus is on steady-state, high-field transport in homo-
genous semiconductors. In the following chapter, we discuss the interesting and
important effects that can occur in devices when the applied fields vary rapidly in
time and space.

The chapter begins in Section 7.1 with a qualitative description of the general
features of high-field transport in bulk semiconductors: The electron temperature
approach for solving the momentum and energy balance equations to obtain the
field-dependent mobility and diffusion coefficient is introduced in Section 7.2
Although limited in accuracy, this approach is useful for the insight it provides.
The application of Monte Carlo simulation to accurately evaluate the field-
dependent transport coefficients is then described. Some experimental results
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for the high-field transport of electrons in bulk Si and GaAs are examined in
Section 7.4, and high-field transport of confined carriers is examined in Section
7.5.

Genera! features of high-field transport

By assuming steady-state conditions and that the energy-related tensor, W, is
diagonal, the electron current is obtained from eq. (5.97) as

Joo = 1€, + 20, 1 .0
where dz
o= o (72)
. . i ({1/ 7))
1s the electron mobility and
W =qnlpv.) = i, (7.3)

is (for simple bands) the average kinetic energy density associated with the degree
of freedom along the Z-axis (u.. 15 the average kinetic energy component per
electron). The second term in eq. (7.1) can be expanded into a diffusion term,
which involves the concentration gradient, and a thermoelectric term, which
involves the kinetic energy gradient. A bulk semiconductor in which the average
kinetic energy per carrier is uniform (although it may be higher than in equili-
brium) is assumed, so we find

e = gl E)E. + 4D (2.4
where

DLE)  2u.()

PR R (73)

The mobility and diffusion coefficient are determined by the distribution func-
tion, but in bulk semiconductors, there 1s a one-to-one correspondence between
the applied field and the distribution function, so we can speak of field-dependent
mobilities and diffusion coefficients. Equation (7.4) describes how a pulse of
electrons moves through a bulk ‘semiconductor under the influence of a high
applied field. The average velocity of the pulse is determined by the mobility,
and the spatial spread of the puise increases with time as VD 1. The longitudinal
diffusion coefficient defined by eq. (7.5) describes the spread of the pulse along the
direction of the field. In the transverse plane, the spread is controlled by the
transverse diffusion coefficient which may be different because u.., may not ecjua[



HIGH-FIELD TRANSPORT IN BULK SEMICONDUCTORS

Uyy OF Uy, Our objective is to understand, both qualitatively and quantitatively,
how p, and D, vary with the electric field in common semiconductors.

The free carriers and the semiconductor lattice are two separate systems which
exchange energy via phonon scattering. Under low fields, the carriers and lattice
are in equilibrium, so u,, = kg 77 /2. Under high fields, however, the carriers gain
energy from the field, so their kinetic energy (or, loosely speaking, temperature)
can be higher than that of the lattice. High-field transport is commonly termed
hot-carrier transport because the temperature of the carriers exceeds the tem-
perature of the lattice. The difference in energy of the two systems is determined
by the rate at which they exchange energy through phonon scattering.

These ideas are illustrated by the bucket analogy shown in Fig. 7.1. The liquid
inside the bucket represents the free carriers, while that outside represents the

(a) ==
Jo
q Electron system
tz=Z

J-
Electron system

Fig. 7.1 Bucket analogy to illustrate the balance of energy between the free carriers and
lattice. The faucet represents the energy input from the field, the holes in the bucket
represent the phonon scattering processes, and the height of the liquid is a measure of the
kinetic energy density. (a) The apphied field is low, so the carriers and lattice are in
equilibrium. (b) The applied field is high, so the kinetic energy of the carriers exceeds that
of the lattice.
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lattice. The height of the liquid corresponds to the kinetic energy (or tempera-
ture), and the holes in the bucket represent the phonon scattering processes
through which the two systems interact. Under low ficlds, the energy input
from the field (which is represented by the faucet) is slow, so scattering (l.e.

. holes in the bucket) ensures that the energies of the carriers and latiice are nearly

equal. Under high fields, however, the energy input is rapid, so the fluid inside
the bucket rises until a new balance 1s achieved. As Fig. 7.1b illustrates, the high-
field carrier energy exceeds that of the lattice.

With this background, the general features of high-field, eiectron transport in
silicon and gallium arsenide, as summarzed in Fig. 7.2, are réadily explained. In
covalent semiconductors such as silicon, the conduction band consists of a set of

Covalent Polar
E(p) E{p)
NS NS
p - p
Transport
(E) (B
A
> L
Uy Uy
—
D . D
Eleciric field Electric field ’

e

Fig. 7.2 General features of high-field electron transport in covalent and polar
semiconductors. (From Jacobini, C, and Reggiani, L. Adva;gg;es in Physics, 28, 493-553,
1979. Reproduced witfy permission from Taylor and Frances.)
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equivalent minima. (Higher states do exist airdan be populated as discussed in
Section 7.3:3.) Gallium arsenide and similar polar semiconductors have a low
mass valtley eentered at p = 0-and a set of higher mass, Si-like, equivalent upper
valleys which lie within a few tenths of an electron volt of the lowest valley. These

. upper valleys become populated at modest fields and profoundly influence car-

rier transport. ,

As we illustrated in Fig. 2.25a, the dominant energy-relaxation mechanism
for silicon is equivalent intervaliey scattering whose rate increases with carrier
energy. The average electron energy slowly increases with field as shown in Fig.
7.2 because much of the energy gained from the field is lost to the lattice in
collisions. For GaAs, however, the situation is much different. When the car-
rier energy is greater than the optical phonon energy (~ 0.032eV) and less than
the I' to L-valley separation (=~ 0.3eV), scattering is predominantly by potar
optical phonon emission, and the rate is nearly constant. Because their effective
mass is small, electrons rapidly gain energy from the field; little is lost by
collisions because the scattering rate is constant. Once the average carrier
energy exceeds ~ 0.3eV, however, the scattering rate increases greatly due to
mtervalley scattering (recall Fig. 2.25b), and the electrons no longer gain
energy as rapidly.

Because the applied ficld increases the average electron energy which causes
the scattering rate to increase, the ensemble relaxation rate, ({1/t,)), increases
and the mobility decreases with increasing field. In silicon, the velocity vs. field
characteristic is sublinear as shown in Fig. 7.2. Eventually the scattering rate is so
high that any further input from the field is simply lost to collisions and the drift
velocity saturates. For electrons in GaAs, however, the mobility remains quite
high as long as the average carrier energy is < 0.3eV (because in this range the
scattering rate is nearly independent of energy). When a threshold field at which
the average electron energy =~ 0.3 eV is exceeded, the mobility drops very rapidly
for two reasons: (1) the scattering rate increases greatly due to the onset of
intervalley scattering and (2) the effective mass of electrons is large when they
reside in the upper valleys.

The field-dependent diffusion coefficient observed in covalent and polar
semiconductors can also be readily understood. For covalent semiconductors
like silicon, the field-dependent mobility decreases with £ while wu.. increases,
50, as eq. (7.5) predicts, D(E) 15 roughly constant. For GaAs, however, u,__
increases with £ while (&) decreases slowly below the threshold- field for
intervalley transfer. The result is that D(E) rises before the onset of intervalley
transfer. When carriers scatter to the higher mass upper valleys, however, their
energy increases less rapidly with field while, at the same time, their mobility
plummets, so above the threshold field, the diffusion coefficient begins to

decrease with fleld.
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Velocity saturation

The tendency of the average carrier velocity to saturate in a bulk semuiconductor
under high electric fields is one of the most important high-fleld transport effects.
In"the next section, we’'ll use an electron temperature approach to compute the
velocity versus electric field chavacteristic for electrons in Si and show that the
drift velocity does, indeed, approach a limiting vaiue at high electric fields. In this
section, we present a simple derivation of the saturated velocity to provide some
physical instght into why the velocity saturates.

To begin, recall that scattering rates are generally proportional to the density
of final states. For scattering by optical phonon emission, eq. (2.86) gives

1
Pl g(E = hw,). (7.6)
Optical phonon scattering is 1sotropic, so

o1 (7.7)

and the energy relaxation time due to optical phonon emission is

15 = (i) Ton- (78)
71(1)0

According to eq. (7.1), the drift velocity is

vy = u€ = Q(L:Qg_ (7.9
m
Note that to keep the notation simple, we write the average momentum relaxa-
tion time as {t,,) rather than as 1/({1/t,)). The final result will be uncertain by a
statistical factor of the order of unity. (The assumption of a constant effective
mass is also unrealistic, but sufficient to iliustrate the underiying physics.)
For a uniform semiconductor, the energy balance equation, eq. (5.66¢c),

becomes

P CullD) (7.10)
(Tg)

which c¢an be solved for

u:%+”ﬂ@%¢f - IR AL

m

Under high field conditions, 3 w,, so we can use eq. (7.8), in eq. (7.11) to
find
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ha,n* ,j Ny

(7.12)

<‘EI‘H) = qg:

Here we are assuming that eq. (7.8), which applied to the energy-dependent,
microscopic relaxation times, also applies to the average relaxation times.
Finally, if we insert eq. (7.12) into eq. (7.9), we find

i, ;
e = Vi = e | (7.13)

which is a constant, independent of the electric field.

According to this simple derivation, the electron velocity saturates because the
momentum relaxation time varies as 1/£, under high-field conditions. The 1/&,
dependence anises from energy balance considerations and the close connection
between momentum and energy relaxation for optical phonon emission. The
effective mass should be interpreted as an average effective mass for the hot
carriers, not that at the energy band minima. Its value is likely to be similar
for energetic electrons in various semiconductors. Optical phonon energies do
vary, however, and eq. (7.13) indicates that its value should affect the saturated
velocity., High optical phonon energies lead to efficient energy relaxation, which
keeps the clectron ensemble near to equilibrium where the velocity versus field
characteristic is nearly linear.

Si, Ge and SiC are covalent semiconductors with different optical phonon
energies. For Si, fiw, = 0.063eV and vy, ~ 1 x 107 cm/s. For Ge, hw, = 0.037,
and as expected from eq. (7.12), the saturation velocity is lower
(Vg &~ 0.6 % 107 cmy/s). Silicon carbide has a much higher optical phonon energy
(hw, = 0.12eV), and the corresponding saturation velocity is also much higher
than Si (v ~ 1.5 % 107 cm/s).

This simple derivation gives some indication as to why the carrier velocity
saturates at high electric flelds and indicates the trends for different semicon-
ductors. There is much that it misses, for example, it does not explain why the
saturated velocity increases as the temperature decreases. To address such equa-
tions, and to compute the complete velocity versus electric fleld characteristic, we
need a more sophisticated theory, such as Monte Carlo simulation or the elec-
tron temperature approach discussed in the next section.

7.3 The electron temperature approach

The correct way to evaluate the field-dependent transport coefficients is to solve
for the distribution function then find the mobility and diffusion coefficient from
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eqs. (7.2) and (7.5). Numerical treatments such as the Monte Carlo or iterative
techniques are generally required, but simpler, analytical approaches are often
useful for the qualitative insight they provide. In this section, we use the simpli-
fied balance equations presented in Section 5.3, along with the assumption that
the distribution function has a displaced Maxwellian form,

f =~ e~1p~m”0,/§.:/2m*kgE ’ (7-14)

to compute the field-dépendent mobility and diffusion coefficient. As we dis-
cussed in Section 5.5, electron—electron scattering tends to produce a
Maxwellian distribution function, so eq: (7.14) can be justified when the electron
density is sufficient to ensure that electron—electron scattering dominates. A
density of at least 10" cm™ is typically required.

In Section 5.5.2 we showed that the argument of the displaced Maxwellian
could be expanded into three terms, the second term assumed small, and the
third term neglected to obtain
f o= e e 2 i e o 2R T (1 +£B—;Z) — fs+ fa. (7.15)
One can show (see homework problem 7.2) that the simplification described by
eq. (7.13) is valid when the drift energy is smaill compared to the thermal energy.
To examine the validity of this assumption, consider electrons in silicon with an
applied field of 50k V/cm. Under such conditions, Monte Carlo simulations show
that w >~ 0.20eV and that v, >~ 107 cm/s (refer ahead to Fig. 7.4a). The drift
energy component,

Ugar = s Ug = 0,038V,
is only a small fraction of the total kinetic energy, so eq. {7.15) should be a good
approximation to eq. (7.14). For uniform fields, whether they be high or low, we

usually find that eq. (7.15) is valid, but in devices, where spatial variations are

strong, the drift energy can be significant.
Under the uniform high fields we are considering, the carriers’ kinetic energy is

mostly thermal so

kB:l .
€ : 7.16
2 b . ( )

and the Einstein relation, eq. (7.5), assumes the particularly simple form,

U,

(7.17)

The drifted Maxwellian approach is also known as the electron temperature
model because the kinetic energy is measured by the electron temperature.
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We should stress that the drifted Maxwellian is simply a reasonable guess for
the form of the distribution function — one that considerably simplifies the
mathematics of the theory~But distribution functions that are far from

- Maxwellian occur frequently in practice. For example, pdlar optical phonon
* scattering (often the dominant mechanism in GaAs) favors small angle scatter-

ing, so the momentum gained from the field is not effectively randomized but
rather focused in the direction of the applied field. The use of a drifted
Maxwellian for transport in GaAs can produce sizable errors.

Solution by balance equations

Because our assumed form for the distribution function contains parameters
related to momentum and energy, we use the momentum and energy balance
equations to solve for them. From eq. (5.66b) under steady-state, spatially
uniform conditibns, we find 7 7

__ (2 '
Ug: = mé‘z, (7 lg)

and from the energy balance equation, eq. (5.66c), we find

Loy, 2% : £ (7.19)
I 3k Tom™ ((1/T)){(1/Te)) '
To actually solve eqs. (7.18) and (7.19), the ensemble relaxation times must be
specified. According to the prescription, eq. (5.14h), these times depend on the
distribution function, so they are functions of v, and 7¢. The neglect of the drift
energy, however, leads to a further simplification; we showed in Section 5.5.2
that when the drifted Maxwellian is approximated by eq. (7.15) the ensemble
relaxation times have the especially simple form

1 E»)/t,
(i = L P (7.20)

T (E(p))
where <.> denotes-an average over fs(p), the symmetric component of the
distribution function. For power law scattering with a characteristic exponent,
5, €q. (7.20) simplifies to

{ 17(5/2 -5
(g =~ L0229 o g2
T T, 1(5/2)

[y

A similar result can be obtained for ({1/zg)}.

To summarize, the electron temperature approach to high-field transport
theory consists of first identifying the scattering mechanism that controls
momentum relaxation, then evaluating ({1/z,)}. The mechanism responsible
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for energy relaxation is then identified (it may be different from the one that
coritrols momentum relaxation), and ({1/z¢)} is computed. Finally, the momen-
tum and energy balance equations, egs. (7.18) and (7.19), are solved for v, and
T..

The hot carrier mobility

An expression for {{1/z,)) is required, but we can’t simply replace 77 in the
expressions obtained in Chapter 2 by 7, because part of the temperature depen-
dence is due to phonons whose number is determined by the lattice temperature.
The technique will be illustrated by considering two examples; for the first,
momentum relaxation is controlled by acoustic deformation potential (ADP)
scattering and for the second by ionized impurity (II) scattering.

‘:;Example. Electron temperature dependent moblhty for ADP scatterang

As shown i Chdpter 2 [recaH eq (2 84)]

f(m*)3/’p; FaTy o

“iwhen’ ADP Scattermg dommates The term l /AB TL, arose because the number of phonons
'::.was determmed aceordmv to eqmpdrtmon Equcmon (7 22) can be rewntten as S

f (m*)mD' (/cBTL)W kB

WhLCh iyan power law foml With ¢ = —1/7 The constant l'g, dxffers from the IOW-ﬁeld :
,result by the factor \fTL/Tc, 50 : 3 SR T R

E

TL

_zrhiyce' e .E"Iﬂ £

o

m@

:ec;.ufm & <<1/rm f(?.ic{)ff

_Where ((I / Tl ) ‘is the ensembie low- ﬁeid momentum relaxatmn rate due to ADP scatter— ‘;
ing Altematwely, in terms of moblhty we hdve e ' : ; i

_‘ M"(Te):uz\/%(ADP) ’t .’ | - :’. 1"‘: :1 ‘, (725) ,’

where g,, —‘C]/J;II. RIVEMY ) is the low-field mobilify due to ADP seattering Eq.t‘lati“oh (7: 75}
shows' that when ADP seatterm6 dominates, the moblhty decreases as the electron tem-

. perature incréases.
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When other types of seattering dominate, the functional dependence of u,(7,)
will-differ from eq. (7.25). Only one more example, u,(7,) when tonized impurity

scattering dominates, will be considered.

:Xample Electron temperature dependent moblhty for I scattermg

eca]l from Chapter 2 that for 1omzed 1mpur1ty scattermg oL

32 <N .
T. E
cur (—T-—L-)f x(m) :

dcan be super hnear Ll

Figure 7.3 summarizes the expected mobility versus carrier temperature char-
acteristic for acoustic deformation potential and ionized impurity scattering. For
GaAs, the mobility is usually determined by polar optical phonon (POP) scatter-
ing. While the calculation of {{l/7,,)} for this mechanism is tedious [7.9], recall
that the POP scattering rate decreases with increasing energy. As a consequence,
w(T.) should increase with T, when POP scattering dominants.

The energy relaxation time

To convert the mobility versus electron temperature characteristic to a mobility
versus electric field characteristic, we need to relate the electron témperature to
the applied field. To do so, we solve the energy balance equation, but the energy
relaxation time must first be expressed in terms of the electron temperature. The
first step is to identify the scattering mechanism that controls energy relaxation,
which may be different from the one that controls momentum relaxation.

For electrons in silicon, energy relaxation is typically a consequence of equiva-
lent intervalley scattering (acoustic deformation potential scattering is approxi-
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H{300)

1
T (K
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Fig. 7.3 Expected mobility versus carrier temperature characteristic for acoustic
deformation potential (ADP) and ionized impurity (ION) scattering.

mately elastic, except at low temperatures). The energy relaxation rate works out
to be [7.11]

1 2 ¢ T
—h == - 7.3
N =3 T (7:30)

where € = 107 watts for silicon. Using the energy balance equation, (7.19), and
assuming momentum refaxation by acoustic phonons, we find

7, f/#ﬁ 2
R R L.y 7.31
TL e e (7.31)

where u; is the low-field mobility due to ADP scattefing. After defining a critical
field by

c _
Ecrn= =% (7.32)
Gl

which has a numerical value of ~ 7 x 10* V/em for silicon, eq. (7.31) becomes

T. - . .
e NN ‘ (7.33)
TL - : T .

~ which can be used to conipute the field-dependent electron temperature.

To détermine the field dependence of the mobility, syg insert eq. (7.33) in eq.
(7.25) 1o find. =
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2]
Hp

,U.”(E) N e . )
VI Eey : ' (7.34)

Although eq. (7.34) was derived by assuming momentum relaxation by acoustic
phonons, it usually does a pretty good job of describing the field-dependent
mobility of silicon (see homework problem 7.8). Note that for very high electric
fields, the mobility decreases linearly with electric field, which means that the

drift velocity saturates at

Usat = Mnop (7.35)
For lightly doped silicon, eq. (7.35) gives vy, 107 cm/s — in close agreement
with the measured value. ‘

We should also be able to find the high-field diffusion coefficient by multi-
plying the field dependent mobility by kyT./q. According to egs. (7.33) and
(7.34}, the electron temperature approach predicts that D(E) should increase
with field. In this respect, the electron temperature model does not agree with
experiments. The measured diffusion coefficient for electrons in silicon decreases
slowly with field as was indicated in Fig. 7.2.

The electron temperature model i1s much more difficult to apply to multi-valley
semiconductors such as GaAs because balance equations for each valley are
required and because carrier transfer between valleys must be accounted for.
In addition, POP scattering tends to dominate in GaAs and focuses the distribu-
tion function along the applied field, so that f(p) is not well-approximated by a
drifted Maxwellian. Nevertheless, the general features of high-field transport in
GaAs can be described with an electron temperature model (refer to the text by

Nag [7.8]).

The Monte Carlo approach

By using Monte Carlo simulation, the simplifying approximations inherent to
the electron temperature model can be removed. The shape of the distribution
function can be computed, so there is no need-to assume a simple form such as
the displaced Maxwellian. Details of the energy band structure and scattering
mechanisms can also be treated. Monte Carlo simulations are generally in excel-
lent agreement with the experimental results to be reviewed in the following
sections. Jacoboni and Reggiani [7.5] and Fawecett et al. [7.6] describe the appli-
cation of Monte Carlo techniques to electron transport in bulk silicon and GaAs.
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Monte Carlo simulation of high-field electron transpart in intrinsic Si

Figures 7.4-7.6 summarize Monte Carlo simulations of high-field electron trans-
port in intrinsic silicon. (These simulations used a simple, nonparabotlic, ellipsoi-
dal description of the energy bands and the scattering mechanisms described in
reference [7.5).). The drift velocity and average kinetic energy per carrier are
plotted versus electric field in Fig. 7.4a. Note that the velocity versus field char-
acteristic becomes sub-linear above about 10kV/cm, which is also the field at
which the kinetic energy increase becomes significant. This field, above which hot
carrier effects are important, s roughly the critical field defined in eq. (7.32).
Note also that the drift velocity saturates at about 107 cm/s.
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Fig. 7.4 (a) Average velocity and kinetic-energy of electrons in pure silicon at 300 K versus ‘
electric field. The field is oriented along a {100} direction. (b) Ratio of s-directed Kinetic
energy component to the total kinetic energy (u.. = u) versus electric field for electrons in
pure stlicon. The field is oriented along a {100} direction. (Monte Carlo calculations
courtesy of M. A. Stettler and A. Das.)
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Fig. 7.5 Computed distribution functions for electrons in pure Si at room temperature for
applied electric fields of: (a) 1, (b) 10, (¢) 50, and (d) 100kV/em. The magnitude of the
distribution function has been normalized to unity in each case. (Monte Carlo calculations
courtesy of M. A. Stettler and A. Das.)

Figure 7.4b compares the kinetic energy component associated with motion in
the #-direction to the total kinetic energy. In equilibrium, equipartition of energy
applies, and w.. = u/3. Figure 7.4 shows that equipartition is a reasonable
approximation for electrons in silicon under most applied fields. The electric
field does tend to align p along £, but the dominant scattering mechanisms are
isotropic and tend to distribute the components of p equally ameng the coordi-
nate axes.

Figure 7.5, which shows the computed distribution functions for four different
applied fields, illustrates the detail afforded by Monte Carlo simulation. For
modest fields, the computed distribution function 1is approximately
Maxwellian, but as the field increases, the peak of the distribution shifts to
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Fig. 7.6 Normalized distribution function for (a) electrons residing in the four valleys for
which the major axes of the constant energy ellipsoids are oriented perpendicular to the
applied field; {b) electrons residing in the two valleys for which the major axes of the
constant energy ellipsoids are oriented parallel to the applied field. Pure silicon and an
applied field ol 50k V/em are assumed. The field is oriented along a (100) direction. (Moute
Carlo calculations courtesy of M. A. Stettler and A. Das.)

positive velocities, and it broadens, which indicates that the carrier temperature
is increasing. It is also apparent that the distribution function is only roughly
Maxwellian. The reason is that carriers residing in the four ellipsoids with major
axis perpendicular to the field respond with the transverse effective mass while
those in the other two ellipsoids respond with the heavier, longitudinal effective
mass. - . S ,

Figure 7.6 shows separate distribution functions for carriers in'the four valleys
for which the major axes of the constant energy ellipsoids are perpendicular to
the applied field and for the two whose ellipsoids are oriented along the electric
field. The results show a roughly Maxwellian distribution of electrons for each of
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the two types of valleys, but the distributions have different widths depending on
whether the electrons are responding with the transverse or longitudinal effective
mass. These results demonstrate that the non-Maxwellian distribution functions
plotted in Fig. 7.5 largely arise from the superposition of two different nearly
Maxwellian distributions. As we’'ll discuss in the foHowihg section, the differ-
ences between valleys oriented parallel and perpendicular to the field make high-
field transport anisotropic in Si. '

Monte Carlo simulation of high-field electron transport in intrinsic GaAs

Monte Carlo simulations of electron transport in intrinsic GaAs are summarized
m Figs. 7.7-7.9. Figure 7.7a 1s a plot of electron drift velocity and average kinetic
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Fig. 7.7 (a) Average velocity and kinetic energy of electrons in pure gallium arsenide at
300K versus electric field. (b) The steady-state, fractional population of the T-valley versus
electric field. Also plotted is the ratio of Z-directed kinetic energy component to the total
kinetic energy, (u../u), versus electric field. (Monte Carlo calculations courtesy of M. A.
Stettler and A. Das.)
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Fig. 7.8 Computed distribution functions for electrons in pure GaAs at room temperature
for applied electric fields of: (a) 2, (b) 4, (¢} 15, and (d) S0kV/cm. The magnitude of the
distribution function has been normalized to unity in each case. (Monte Carle calculations
courtesy of M. A. Stettler and A. Das.)

energy versus electric field. As discussed in Section 7.1, the distinctive velocity
versus field characteristic for electrons in GaAs is a result of intervalley transfer.
Under low applied fields, electrons reside in the small effective mass, I valley
where their mobility is high. When their kinetic energy exceeds ~ 0.3eV, the
intervalley separatidn energy, they begin to transfer to the high-mass, L valleys.
Figure 7.7a shows that the peak velocity occurs when the average kinetic energy
of the carriers is still well below that required for intervalley transfer.

The steady-state, I'-valley occupation factor is plotted versus electric field in
Fig. 7.7.b. This figure shows again that the distinctive velotity-field characteristic
of GaAs is determined by the intervalley transfer of electrons. For low fields, the
mobility of electrons in GaAs is much higher than that for electrons in Si, but
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Fig. 7.9 Normalized distribution function for electrons residing in (a) the -valley and (b)
the L-valleys of pure GaAs. An applied field of 15kVjcm is assumed. (Monte Carlo
calculations courtesy of M. A. Stettler and A. Das.)

under very high applied fields, most electrons reside in the upper valleys, so there
is little difference between the drift velocity of electrons in GaAs and Si under
very high fields. '

Also plotted in Fig. 7.7b is the ratio, u,./u. Even for electrons in GaAs,
equipartition of energy is not a bad assumption. Below the onset of intervalley
scattering, the dominant scattering mechanism is POP scattering which tends to
deflect carriers by small angles, so w_. is somewhat greater than one-third of u.
For higher fields, however, isotropic, intervalley scattering dominates, and equi-
partition apples again.

The compuled distribution functions for four different apphed fields are dis-
played in Fig. 7.8. For £ =2kV/cm, which is below the onset of intervalley
scattering, the distribution function is significantly displaced from the origin,
but not strongly distorted. Above the threshold field, however, the distribution
function shows the effects of intervalley transfer. The highest velocity electrons
tend to be located in the I'-valley and the slower ones in the L-valleys.

Because the interpretation of Fig. 7.8 is clouded by the fact that electrons from
two different valleys are superimposed, we plot in Fig. 7.9 the distribution func-
tions for the two valleys separately assuming an electric field of 153kV/em. Since
randomizing intervalley scattering dominates;-the upper valley electrons display
a Maxwellian distribution, but the [-valley electrons have a distinctly non-
Maxwellian distribution. The focusing of the distribution along the applied
field which results from the anisotropic POP scattering is clear.

Figures 7.8 and 7.9 clearly show why the electron temperature model must be
used with caution when applied to'GaAs. The basic approximation, the use of a
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Maxwellian distribution function, is simply not adequate in many cases. Monte
Carlo simulation 1s usually the method of choice when the highest accuracy 1s
demanded. It also imposes a computational burden, however, so the simpler
approaches based on the use of balance equations continue to be widely used
for analyzing and designing devices.

Fudl band Monte Garlo simulation of high-field electron transport

For very high electric fields, a simple description of the energy bands no longer
suffices, and a full numerical description of E(p) becomes necessary (recall
Sections 1.2.2 and 2.14.3). So-called full band Monte Carlo simulations have
been developed and applied to transport in a variety of semiconductors (see
[6.8], [6.9], and [7.16]). Full band simulations are essential for treating impact
romzation and other hot-carrier effects involving energetic carriers.

Figure 7.10 shows the average energy versus electric field for electrons in Si
and GaAs as computed by full band Monte Carlo simulation. These results
should be compared with Figs. 7.4 and 7.7 which used a simple, nonparabolic
description of the energy bands. The full band results extend to electric fields an
order of magnitude higher, and they show that the average carrier energy can
approach [ eV.

Figure 7.11 shows the computed electron distribution functions versus energy
for electrons 1n silicon. Under very high electric fields, the distributions-are highly
non-Maxwellian, and energy states as high as 4-5¢V above the bottom of the
conduction band are occupied. Figure 7.12 shows how the electrons are distrib-
uted in momentum space. At 10kV/cm, electrons are still localized to the vicinity
of the six equivalent X-valley minima. By 100kV/cm, they have noticeably
spread out and at 1 MV/cm, they occupy the entire Brillouin zone. The results
make it clear that a simple treatment of the energy bands fails at very high
electric fields.

Electron transport in bulk Si and GaAs

The measured characteristics of high-field transport in Si and GaAs display the
general features characteristic of electron transport in covalent and polar semi-
conductors as described in Section 7.1. Theo.retical treatments based on the
electron temperature approach generally reproduce the gualitative features as
measured, and Monte Carlo simulations are usually in good quantitative agree-
ment. As for low. fields, high-field hole transport is a more difficult theoretical
problem because of the complex valence band structure. Measured high-ﬁeld
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Fig. 7.10 Average electron kinetic energy versus electric field as evaluated by full band
Monte Carlo simulation for (a) silicon and (b) GaAs. (From [7.16].)

characteristics are reviewed 1n several comprehensive surveys [7.1-7.3]. In this
section, we examine a few of the key results.

High-field electron transport in silicon

Figure 7.13a shows the measured velocity versus field characteristics for electrons
in Si at 300, 77, and 80 K. In contrast to low-field transport, high-field transport
is seen to be anisotropic. The measured field-dependent mobility can be fit by
[7.2]

J
(6= — M 7.36
) [1+ (/8,7 ” (7:36)
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Fig. 7.11 Electron energy distribution in bulk silicon at several different electric fields.
(From Kunikiyo, T. et al., Jouwrnal of Applied Physics, 75, 297-312, 1994.) (Reproduced with
permission of American Institute of Physics.) i

which 1s motivated by the theoretical result, eq. (7.36), but the parameters 8 and
£, are viewed as fitting parameters. For a (111}-oriented field in high-purity Si
[7.2],

B=2.57 % 107° x 7} (7.37a)
and
£, =101 x 1. (7.37b)

As Fig. 7.13b shows, the saturated drift velocity increases as the temperature
decreases. This result 15 1n agreement with theoretical expectations such as eq.
(7.35). (Because of the increased saturation velocity at low temperatures, device
speed might be improved with cooling.}) The observed temperature-dependent
saturation velocity can be fit by [7.2]

2.4 % 107

USat = W Cm/S, (738)

Finally, we note that the measured high-field, longitudinal diffusion coefficient,
D, behaves as sketched in Fig. 7.2. Except for the saturation that occurs at very
high fields, the measured D,(£) can be fit by [7.3]

g
[T+ (/€)1

"o

(7.39)

The anisotropic conduction displayed in Fig. 7.13a is a consequence of the
ellipsoidal, multi-valley band structure of silicon. For the two field orientations
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(a)

Fig. 7.12 Electron distributions in momentum space for bulk silicon at (a) 10kV/cm, (b)
100 kV/em, and (¢) 1 MV/em. (From Kunikiyo, T. et al., Journal of Applied Physics, 75,
297-312, 1994.) (Reproduced with permission of American Institute of Physics.)

shown in Fig. 7.13, the drift velocity 1s parallel to the applied field, but for
arbitrary orientations, v and £ may not even be paralle]. The anisotropy of uy
can be understood with reference to Fig. 7.14. Within a single ellipsoid, transport
1s anisotropic because carriers respond to applied flelds along the major axis with
a heavier effective mass (1) than when the field is along a minor axis {m}). The
measured current, which is the sum of the contributions from each ellipsoid, i3
1sotropic at low fields because the ellipscids are equally populated, so these
effects average out. Consider, however, a high-field oriented along the j-axis
{a (010) direction). Electrons in the four ellipsoids in the ¥— plane respond to
the field with a small effective mass, m;. Carriers in these ellipsoids are rapidly
heated and the intervalley scattering rate increases. Electrons in the other two



305 7.5 ELECTRON TRANSPORT IN BULK Si AND GaAs

T T T LI S ) B

(a) — 71 1 T T1TiiIt T LR T i\IHH‘
8l 108
10° - -_._j/
n T
E L.
g L
< - ~ 107
ol ]
5o ]
Q
o
> r7=8
:.E .
ks i
§ 107k
5 - _
i
108 — 108
__Ll \HH!! ] l\]lll!’ l. I \!IH\’ Il \l\ivll‘ ] |4Hl1_r
1 10° 102 103 104 10%
Electric field (V/icm)
(b) 1 F [ T T 10T T II\IHI] T ERL IR REL F T T ITTr T T T TEF
I
£ 107~ -
S F ]
Z r 2
‘O |
Q
2 _
> -
&
5 2 _
jud
2
o
& 108 —
Lid ~ S —
- $ 7
r VAN 7
_ \F\HH! L I\HHW‘ L {i\HI!I i 'III\I[‘ L 11 14t
1 10! 102 103 104 108

Electric field (V/em)

Fig. 7.13 -Measured drift velocity versus electric field for electrons in silicon at T} = §, ~ 77
and 300K. In (a) the field was applied along (111} (solid curves/) and (100) (dashed curves).
In (b) the field was applied along (111). (From Jacobini, C., Canali, C., Ottaviani, G., and
Alberigi, A. Solid-State Electronics, 20, 77-89, 1977. Reproduced with permission from
Pergamon Press.)

ellipsoids respond with my, a heavier effective mass, and, since they are not
heated as much, they don’t scatter out as rapidly. The result is that the two
ellipsoids ‘whose major axes are oriented along the field are more heavily popu-
lated at high fields. Since these carriers respond with the heaviest effective mass,
the mobility is lower than expected. When the field is oriented along a (I11)
direction, each ellipsoid is oriented the same with respect to the electric field and
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Fig. 7.14 Constant energy surfaces for electrons in silicon. Ellipsoids | and 2 are most
heavily populated for £ = &, .

no such valley repopulation occurs. As a consequence v, for £ along (111} is
higher than v, for £ along (100).

High-field electron transport in GaAs

The field-dependent mobility and diffusivity of electrons in GaAs are both domi-
nated by the effects of intervalley transfer. Figure 7.15 shows the measured vy{£)
characteristic for electrons in undoped GaAs at several temperatures and Fig.
7.16 the simulated longitudinal diffusion coefficient versus field.

The observed field-dependent mobility of electrons in undoped GaAs can be fit

by [7.4]
o ,
1a(E) = -, (7.40)
e e e — &
where ug is the low-field mobility, £, = v, /¢S, and

1
£, = 5 (5M +/E — 453,.), (7.41)

where &£y is the threshold field at which the drift velocity peaks. (The term,
u(E — £,) is the unit step function which is zero for £ < £, and one otherwise.)
The best fit to the measured velocity versus field characteristic is obtained by
setting &y = 3.2kV/em and vy, = 8 % 10° cm/s. The temperature-dependence of
vy, displayed in Fig. 7.15 can be summarized by [7.4]

Uggr = 1.2 % 107 — (1.5 x 10%)T, cm/sec. (7.42)

As for electrons in 81, the saturation velocity increases upon cooling.
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Fig. 7.15 Measured drift velocity versus electric field for electrons in undoped GaAs at
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Fig. 7.16 Longitudinal diffusion coefficient of electrons in GaAs as computed by Monie
Carlo simulation (From Glisson et al. assuming Np — 109 cm ™3 [7.13]. Reproduced with
permission from Pergamon Press.)

When we examine the field-dependent, longitudinal diffusion coefficient for
electrons in GaAs, the situation is not as clear. One reason is that the diffusion
coefficient is difficult to measure, and the results are quite sensitive to circuit
effects [7.12-7.13]. The Monte Carlo computations are also tricky, and confiict-
ing results have been reported [7.13—7.15]. Some recent Monte Carlo results are
displayed in Fig. 7.16 [7.13]. Below the critical field at which intervalley transfer
oécurs, the behavior is determined by how quickly u,, falls with field and how fast
u,, rises. The net effect predicted by these simulations is that D, is roughly
constant. Above the critical field, however, the energy increases more slowly
while the mobihty plummets, so D,(&,) falls ve:ry rapidly with field. It is inter-
esting to note that accurate simulations of impact ionization transit time devices
(IMPATT’s), which are especially sensitive to D,(£), result when the Monte.
Carlo simulated diffusion coefficient is used [7.13]. Because of the experimental
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difficulties associated with measuring D,(£), computer simulation using the
Monte Carlo method may actually be preferable.

High-field transport of confined carriers

When cairiers are confined so that they move in two-dimensions instead of three,
new transport features appear. The confinement potential in the z-direction splits
the conduction band into a system of subbands. For silicon, there are two sets of
subbands; electrons in the two ellipsoids with their long axes in the z-direction
respond to the confining potential with the longitudinal effective mass while the
remaining four ellipsoids respond with the transverse effective mass. The new
features of carrier transport are scattering between these subbands and scattering
from surface roughness and charges in the oxide. In Section 4.9.1 we discussed
low-field transport of electrons in the inversion layer of an Si/SiO-, structure. We
found that surface roughness scattering lowers the mobility to about one-half of
its value in the bulk. We also found that the mversion layer mobility was strongly
dependent on the strength of the confining potential. With increasing normal
electric field, electrons are confined more closely to the interface, which increases
the importance of surface roughness scattering and lowers the mobility. Qur
interest here 1s in examining high-field transport of electrons in an inversion
layer and comparing it with electron transport i bulk silicon. To avoid the
spatial gradients that occur in devices, we assume a hypothetical inversion
layer which is homogeneous parallel to the Si/SiO; interface. (Spatial gradients
mtroduce new transport features that are the subject of Chapter 8.)

As discussed in Section 7.3.1 and in reference [7.5], the key features of electron
transport in bulk silicon can be described by Monte Carlo simulations using a
nonspherical, ellipsoidal description of the energy bands and including acoustic
phonon, intervalley phonon, and ionized impurity scattering [7.5]. A similar
model describes the key features of inversion layer transport [7.17]. First, the
system of subbands has to be computed from a self-consistent solution to the
wave equation. Only a finite number of subbands can be treated in a numerical
simulation. For high longitudinal electric fields, carriers gain substantial kinetic
energy and 200 or more subbands may be occupied [7.17]. At low normal electric
fields, the confining potential is weak. Subbands are closely spaced and it is still
necessary to include on the order of 100 subbands [7.17].

The scattering rates of confined carriers differ from those in the bulk. Intra-
and inter-subband scattering rates can be caiculated as outlined in Section 2.11
using the same phonon energies and deformation potentials used for bulk silicon
[7.17]. (Actually, we should not expect the phonon dispersion relation near an
interface between two different materials to be the same as it is in the bulk of one
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of the materials: For some material systems, these interface modes have to be
considered, but for the Si/SiO; system, the use of bulk phonons introduces little
error [7.17]. Surface roughness scattering can be treated along the lines outlined
in Section 2.12. Because the carrier densities in the inversion layer may be large,
it is also important to treat carrier degeneracy. Scattering rates are suppressed by
a(l — ) factor to account for the number of available states. Because of the high
carrier density, screemung of scattering potentials by the free carriers is also
important. The use of a Debye length as discussed in Section 2.15 is extended
to treat the response of a 2D, degenerate electron gas to rapidly varying poten-
tials [7.17).

Figures 7.17a and 7.17b show Monte Carlo simulation results for electron
transport in a homogeneous silicon inversion layer [7.17]. As discussed in
Section 4.9.1, the low field mobility is reduced by almost a factor of two by
surface roughness scattering. We see, however, that the saturated velocity of
inversion layer electrons is identical to that of bulk electrons. As shown in
Fig. 7.17b, strong normal electric fields reduce the low longitudinal electric
field mobility, but they do not affect the magnitude of the saturated velocity.
The Monte Carlo simulations and the experimental results indicate that carrier
confinement and surface roughness scattering have a stroug effect on the low
fietd mobility but very Iittle effect on the high-field transport of inversion layer

B 10«7 L 200 kV/em.
600 kV/em

T 1000 kwcm\

tang

— )
g r £
[ L
N - =°
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Fig. 7.17 Drift velocity vs. electric field parallel to the $i/8i0; interface for electron
transport. (a) Monte Carlo simulations compared with experimental results for inversion
layer and bulk electron transport. (b) Results for three different normal electric fields and
three different doping densities. (From Jungemann et al. [7.17].) (Reproduced with
permission of Pergamon Press.)
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electrons (except for the increased critical field for velocity saturation caused by
the reduced low-field mobility).

Although a relatively simple Monte Carlo moedel can account for the key
features of inversion layer transport and pl'o{/ide good quantitative agreement

© too, unresolved issues remain. For example, the acoustic deformation potentiai is

assumed to be isotropic and is taken as an adjustable parameter [7.17], but a
more careful treatment shows that it is anisotropic [7.16]. A proper treatment of
screening is difficult and surface optical modes which couple longitudinal optical
modes and interface electromagnetic modes exist [7.16]. More careful calcula-
tions which do not include adjustable parameters over-estimate the mobility by
about 20%, but they also predict a saturated velocity identical to the bulk [7.16].
Even here, however, the issue is still unsettled because some experimental results
show a saturated velocity for inversion layer electrons that is as small as one-half
the bulk value (see [7.16] for a fuller discussion of these issues).

R

Summary

Our objectives in this chapter have been to explain the general features of high-
field transport in common semiconductors, to describe theoretical approaches
for computing the high-field transport coefficients, and to examine some mea-
sured results for Si and GaAs. Simple physical arguments can explain the qua-
litative features of high-field transport and the difference observed for covalent
and polar semiconductors. The electron temperature model provides a semi-
quantitative theory for computing the field-dependent mobility and diffusion
coefficient and establishes a useful framework for thinking about high-field, or
hot-carrier, transport. Direct numerical approaches, such as the Monte Carlo
technique, offer the best accuracy and can, to a large degree, reproduce the

experimental results.

According to the balance equations derived in Chapter 3, the mobility and
diffusion coefficient are determined by the distribution function. The assumption
underilying this chapter, that the high-field region is long, greatly simplifies
matters because of the one-to-one relation between the electric field and the
distribution function which ensues. As a consequence of this simplifying assump-
tion, we can speak of a field-dependent mobulity and diffusion coefficient. Drift—
diffusion equations can be used to analyze long devicesin which the electric field
changes slowly by determining p(£) and D(E) from the local electric field. But m
short devices the situation is far more complicated because the fields may change
too rapidly (in space or time) for the carriers to reach the steady-state, uniform
field conditions assumed in this chapter. Transport in devices is the subject of the

next chapter.
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Problems

7.1 Equation (7.5) is often stuted as

2u
Dy =z
3q
. Explain when this equation is valid.

7.2 Equation (7.15) is justified when
(m*v,) < 2p- vy )
and when
2m*p vy < P (ii)
Apply these relations to a thermal average carrier, and show that both require that the average
drift energy be a small component of the total energy.

7.3 Assume that the electron mobility in silicon is controlled by acoustic deformation potential
scattering, Use the data presented in this chapter to deduce T,(£). Plot the electron tempera-
ture versus electric field for 0 < £ < 10° V/em.

7.4 Solve the Boltzmann transport equation in the relaxation time approximation for moderate
strength fields and show that u(&) = po(1 + BE?). Hint: when evaluating df /9p. approximate f
by fy +f1 where i is the low-field solution we obtained in Chapter 3. ‘

7.5 Compute the velocity versus field characteristic when acoustic deformation potential (ADP)

_ HIGH-FIELD TRANSPORT IN BULK SEMICONDUCTORS

—

Comprehensive full band Monte Carlo simulations of electron and hole transport in a variety
of semiconductors are presented in

scaftering controls both energy and momentum relaxation.
(a) Use the resuits of homework problem 2.8 to show that

1 1, f2m)?
((?E")) = (("T;”(kBTL)-

(b) Show the solution to the energy balance equation is--

T 4 (1, EN\°
T,=E 14 o=

2 3\ v,

(¢) Simplify the result for high-fields and show that the high-field mobility and drift velocity

are:
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7.6

7.7

7.8

7.9

PROBLEMS

and

These conditions apply to lightly doped silicon or germanium at low temperatures where the
energy loss is primarily by emission of acoustic phonons. The measured characteristics do
display the predicted square root dependence on applied field [7.11].

Obtain an expression for the field-dependent mobility of silicon assuming that energy relaxa-

tion is accomplished by intervalley phonons and that momentum relaxation is controlled by

tonized impurity scattering according to eq. (7.29). Examine your result for small electric

fields. As the field increases from zero, does the mobility increase or decrease? Explain the

result physically.

Use the Monte Carlo results displayed in Figs. 7.4a and 7.7a to answer these questions.

(a) Plot the drift energy divided by the kinetic energy versus electric field. Is the neglect of the
drift energy valid for transport of electrons in silicon under uniform high electric fields?

(b) Repeat for electrons in GaAs.

Assume that a very high field is applied to silicon so that the average electron energy is much
greater than a phonon energy. Obtain an expression for the mobility as a function of electron
temperature assuming that equivalent intervalley scattering dominates. The fact that the result
is just like eq. (7.25) which was derived for ADP scattering helps to explain why eq. (7.34) does
such a good job of explaining the observed field dependence of the electron mobility for
silicon.

A Monte Carlo simulation of electron transport in bulk (100) silicon generated the results
shown in the table below. Use these results to answer the questions below.

£ (V/em) vy (cm/s) u (meV) Uy, (meV})
1% 10° 1.32 x 108 415 13.8
3x10° 3.06 x 10° 44.8 16.1

1 x10* 6.36 x 10° 61.6 24.7

3x 10 906><106 117.3 49.0

1 x10° 1.02 x 10 339.0 137.0

(a) Deduce the field-dependent electron mobility versus electric field and compare the result
with eq. (7.34). '

(b) Use the expression D, = 2u,,1,/q to deduce the diffusion coefficient versus electric field
Compare it to the value you would expect from -the conventional Einstein relation,
D, = (kg T/ q)ptn- : ‘

(c) Estimate the drift energy versus electric field. Proceed as follows Estimate the average
effective mass, (m") using m™(E) = m"(0)(1 4 «E). Estimate {(m"* ) by using the average
carrier energy printed in the output table (1) assuming that o =05eV™! and
i (0) = m = 0.26my. From the average effective mass; estimate the drift energy versus
electric field. What fraction of the total carrier energy is drift energy? S



(d) Using the average carrier energy and the estimated drift energy, estimate the electron

(e)

0]

@

temperature vs. electric field. Compare the result with eqg. (7.33). Use an Einstein relation
and the result of part™(a) to estimate the diffusion coefficient versus electric fleld and
compare the answer to the results of part (b). .

From the computed mobility versus electric field and electron temperature versus electric
field, construct a table of mobility versus electron temperature. Compare your results to
eq. (7.25). ’
Define the mobility as u, = g{7,,}/{m"), where {7} is the average momentum relaxation
time and {m"} is the average effective mass as obtained in part (b). Estimate the momen-
tum relaxation time versus electric field. , _

The steady-state energy balance equation is 3unkg(Te ~ T1)/(2{%g)) = J,.&, where (Tp) is
the average energy relaxation time. Use the Monte Carlo results to estimate the energy
relaxation time versus electric field and compare it to the momentum relaxation time.
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8.1 A generic view of transistors
8.2 Semiclassical transport and the drift-diffusion equation
8.3 Transport across a barrier
8.4 Diffusion across a thin base
8.5 Ballistic transport
8.6 Velocity overshoot
8.7 Transpert in rapidly varying electric fields
8.8 Carrier collection by a high-field region
8.9 Device simulation
8.10 Summary

Carrier transport in semiconductor devices is complicated by the rapid spatial
and temporal variations that often occur. For large devices, the low- and high-
field transport theory developed in previous chapters is directly applicable. Such
devices can be analyzed by drift—diffusion equations with field-dependent mobi-
lities and diffusion coefficients. Transport in small devices, however, differs qua-
litatively from that in bulk semiconductors because the carrier distribution
function s no longer determined by the local electric field. Since transport is
nonlocal in both space and time, conventional drift-diffusion equations do not
apply, but new possibilities for enhancing device performance arise.

In this chapter, we explain why the drift-diffusion equation loses validity for
small devices and describe some important features of carrier transport in the
presence of rapidly varying fields. The objective is to gain an intuitive under-
standing of carrier transport in modern devices such as small bipolar and field-
effect transitors. To identify the kinds of transport problems that need to be
addressed, we begin'by describing @ generic transistor. We then examine carrier
transport under several specific situations that occur in modern devices and
explain why the drift—diffusion equation often loses validity. Finally, we briefly
examine device simulation to indicate how the transport equations are formu-
lated for numerical solution, so that nonlocal transport can be simulated for

realistic devices.
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A generic view of transistors

A simple, conceptual model for a transistor consists of a carrier injector, a carrier
collector, and a control region that meters the flow of carriers out of the source
(Fig, 8.1). (For an introduction to semiconductor devices, consult Pierret [8.1],
Singh [8.2], or Sze [8.3].) This simple model describes a bipolar transistor where
the three regions are the emitter, base and collector, and the control voltage is the
base-emitter voltage. It also describes a metal-oxide—semiconductor field-effect
transistor (MOSFET) where the three regions are the source, channel, and drain,
and the control voltage is the gate to source voltage [8.4]. (More precisely, the
control region is the low-field portion of the channel near the source, and the
collector is the high-field portion of the channel and the drain.)

Figure 8.1 also indicates the types of transport that often occur in modern
semiconductor devices. Carriers injected from the source must first be {rans-
ported over a barrier by diffusing against an electric field. Next, they drift and
diffuse across the thin control region. Because this region (the base or the low-
field portion of the channel) is so thin in modern transistors, carriers may experi-
ence few scattering events as they cross it. Finally, the carriers are collected by a
thin, high-field region. What makes transport in devices interesting is the fact
that these three regions are short so that bulk conditions are never achieved, As
carriers travel from the source to the drain, a distance on the order of 100 nm in
present-day fransistors, they experience rapidly changing transport conditions.
We will examine transport under conditions like these in the remainder of this
chapter, but before we do, we explain why the simplest description of carrier

/Con‘[rol region

Finjected

Collector

Fig. 8.1 A generic model for a transistor showing a carrier injector, a carrier collector, and
a control region in between. The height of the potential barrier between the source and
control region is set by a third terminal (e.g. the base or the gate). Normal. active region of
operation for the transistor has been assumed.
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transport, drift-diffusion, breaks down under conditions like those shown in
Fig. 8.1.

Semiclassica! transport and the drift-diffusien equation

We begin with the drift—diffusion equation because it has long served as the
foundatign of device analysis. To derive it, we assume that the encrgy-related
tensor, W, is diagonal, so that the momentum balance equation for electrons, eq.
(5.32), can be written as

%/n%'i"‘]n: = nqpgls +2ﬁbniz—z£v (8.1a)
where R

i = L (8.1b)
1s the electron mobility, and ”

W= 1/2n{p. v} = nu_, (8.1¢)

is the average kinetic energy density associated with the degree of freedom along
the Z-axis (i.- Is the average kinetic energy component per electron). To simplify
the notation, an ‘average’ momentum relaxation time, 7,,, has been introduced. It
is rigorously defined as 7,, = 1/{{1/7,(p))}, but in practice it is frequently esti-
mated by Monte Carlo simulation. It is important to note that eq. (8.1) is essen-
tially exact; it was derived directly from the Boltzmann Transport Equation
(BTE) by integration. We did assume spherical energy bands and that Wois
diagonal, but these assumptions are readily removed (see Bandopadhyay et al.,
TEEE Transactions on Electron Devices, 34, 392-399, 1987). Equation (8.1)
reduces to a conventional drift—diffusion equation when: (1) the current density
varies slowly on the scale of the momentum relaxation time, and (2) the kinetic
energy component, .., varies slowly with position. As device speeds increase and
dimensions shrink, both assumptions are losing validity.

To make use of the drift—diffusion equation, the parameters i, and W.. (or,
equivalently, w,, D,, and «;.) must be specified. These parameters are directly
related to the distribution function, which means that the BTE should first be
solved. But if the BTE has been solved, then the state of the device is completely
specified, and eq. (8.1) is not needed. Under low applied fields, however, the
electron mobility becomes a material-dependent parameter which can be com-
puted once and for all by invoking the relaxation time approximation or by more
sophisticated numerical techniques. For low applied ﬁélds, the carriers are in
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equilibrium with the lattice, and W.. = nky T /2. For high applied fields in bulk
semiconductors, W.. is constant, and there is a one-to-one mapping between the
distribution function and the applied field. Consequently, for uniform, high fields
m bulk semiconductors, a field-dependent mobility and diffusion coefficient can
be defined. We can, therefore, describe transpoxt in bulk semiconductors by a
drift-diffusion equation. 7 :

small devices pose special problems for drift-diffusion equations because the
transport parameters become device-dependent. This occurs because the distribu-
tion function is no longer related to the local electric field but depends in a
complicated way on the electric field throughout the device. Equation (8.1} con-
tinues to hold, but the transport parameters can vary widely from device to
device, within a device, and can even change with the applied bias as the dis-
tribution function changes. One can still talk about mobilities and diffusion
coefficients with the understanding that they are not the fundamental parameters
they are in bulk semiconductors. In the next few sections, we’ll examine transport
under various conditions that can occur in modern devices. The objective is to
develop physical insight into the nature of carrier transport in devices. In Section
8.9 we’ll discuss device simulation whose objective is to provide accurate, quan-
titative predictions of device performance.

Transport across a barrier

Transport across a barrier occurs commonly in devices. For a metal-semi-
conductor junction, 1t determines the current—voltage characteristic. For a
MOSFET, it occurs across the source—channel barrier and in a bipolar transistor,
across the emitter—base junction. The problem is difficult because strong electric
fields occur over short distances accompanied by strong gradients in the carrier
concentration, Consider the simple p—n junction illustrated in Fig. 8.2. In equili-
brium, the transition region is less than ~ 100nm wide, and the electric field
within this region varies from over 10° V/cm at the junction to zero at the edge of
the transition region. Across the same region, the carrier concentration may vary
by nearly 20 orders of magnitude. In equilibrium, therefore, an enormous drift
current is balanced by an equal and opposite diffusion current (Fig. 8.2a). Under
forward bias, the electric field is reduced, and the net current consists of carriers
diffusing over the potential barrier (Fig. 8.2b). For reverse bias conditions, the
electric field increases, the net current consists of carrners drifting down the
potential drop. Some very interesting effects, known as vefocity overshool, can
occur for transport down a potential drop and are the subject of Section 8.6. Our
interest in this section is to understand transport over the barrier, when carriers
diffuse against the electric field. We examine the average carrier energy. ot
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Fig. 8.2 A simple p—n junction barrier. For a siticon diode with ¥ = 107 em™,
Ny =10"em™, Wy =~ 800 A and Vi = 1.0 V. (a) Equilibrium, where large drift and
diffusion current components balance exactly. (b) Forward bias, where a small imbalance in
the drift and diffusion current components results in a net diffusive flux over the barrier. (¢)
Reverse bias, where the net current is 2 drift current of carriers flowing down the potential

drop.

temperature, within the transition region and then examine diffusion in the

presence of a high concentration gradient.

The carrier temperature in the presence of built-in electric fields
We saw in Chapter 7 that for bulk semiconductors, electric fields heat the car-
riers. For electron transport in silicon, the carrier temperature was related to the

electric field by

2

T. £\’ |
_— e . 82
7 1+ (50) , (8.2)
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where the critical field, &, = v, /), is a material-dependent parameter which
specifies the electric field above which the carriers are significantly heated. But we
cannot apply this expression to the built-in fields within a junction. Consider a
p-n junction in equilibrium as shown in Fig. 8.3. In equilibrium, carriers do gain
energy from the field as process ‘a’ in Fig. 8.3 illustrates. But this process sets up
a gradient in carrier density and energy. The hot carriers give up their energy as
they diffuse against the field (process ‘b’ in-Fig. 8.3). The net result is that the
ensemble neither gains nor loses energy; it is in equilibrium with the lattice. The
built-in electric field is strohg, but the electron temperatﬁre 1s equal to the lattice
temperature. Under typical forward bias conditions, the junction remains in a
quasi-equilibrium condition, so the electron temperature is expected to remain
near the lattice temperature. (Since diffusion against the electric field dominates
in forward bias, the electron temperature may actually fall below the lattice
temperature.) Equation (8.2) does not apply to built-in electric fields.

To obtain the proper field-dependent mobility, we must re-derive eq. {8.2). The
electron temperature, 7., is obtained by solving the energy balance equation. To
keep the mathematics manageable while refaining the essential features of the
problem, we neglect spatial gradients in the energy balance equation to write
j,?zgz —= M (83)

i

e
ol

Positicn

Fig. 8.3 Illustration of energy balance in the depletion region of a p—n junction in
equilibrium. Process ‘a” depicts the gain in energy from the field, and process b’ the loss in
energy by diffusion against the field. In equilibrium, the two processes balance. Under
reverse bias, process ‘a’ dominates, and under forward bias process ‘b’ dominates. The
length of the arrows represents the kinetic energy of carriers.
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After solving (8.3) for T,, we find a result like eq. (8.2) except that

3 n/cB TL(E‘:

5 {'EJH: (84)

£, =
Note from the energy balance relation that the important quantity is not the
electric field but the product of field and current, which is the input power. In
equilibrium, the built-in electric field may be high, but J/,. = 0, so no power is
input from the field, the critical field approaches infinity, and 7, = 77. Only for
uniform semiconductors, in which J/,,. = nqu,£-, does eq. (8.4) reduce to a mate-
rial dependent parameter. In general, the critical field depends on the current
flow.

Under reverse bias, /,. and £. are less than zero, so S:“.,. is a posifive number,
and eq. (8.2) shows that the electron temperature increases. This situation
describes the collection of electrons from the p-layer which would occur if the
p—n junction were the base-collector junction of a bipolar transistor. As the
carriers are swept through the transition region, their energy increases. Since
the carrier scattering rate increases with carrier energy, we expect that the mobi-
lity will decrease under these conditions. If the transition region is wide, then the
electric field varies slowly with position, and the use of a field-dependent mobility
as discussed in Chapter 7 is justified. On the other hand, if the fransition region is
narrow, the electric field varies rapidly with position, and nonlocal transport
effects such as velocity overshoot occur. Such effects will be discussed in
Section 8.6.

When the junction is forward biased, J,, > 0 but £. < 0, so eq. (8.4) shows
that £, is negative. The result is that 7, < T; ; electrons are cooled by the electric
field as they diffuse against it. Typical junctions frequently operate under near-
equilibrium condition for typical forward biases, so the carrier temperature is
clese to 7. The cooling can be significant under some conditions, however, and
because the scattering rate decreases as the clectron temperature decreases, the
electron mobility could actually increase above its thermal equilibrium value.
The electron mobility, however, is related to the carrier distribution function
through eq. (8.1b). In general, the mobility will be related to all moments of
the distribution function, not only to the second moment (the electron tempera-
ture). So it is not clear whether the mobility in a forward-biased junction is
greater or less than the near-equilibrium mobility.

Diffusion in strong concentration gradients

Very strong concentration gradients can also occur within a potential barrier.
Simple, closed-form treatments are difficult to obtain because of the coexistence
of large gradients in both the potential and the carrier concentration. To gain
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some insight into diffusion in a strong concentration gradient, we consider a
simpler problem, diffusion in the absence of an electric field. Fick’s law gives
the electron current as

. dn '
Sz = C]Dng -~ (_Q)n(z)UDIFF(z)a ) (85&)
where the diffusion velocity is

o » 1 dn
vpirp{z) = =D, —— . 8.5b

pirE(Z) ” n(n(z) dz) (8.5b)

Since diffusion consists of the random thermal motion of the carriers, the
diffusion velocity should not exceed the thermal velocity, but eq. (8.5b) gives a
diffusion velocity that increases without limit as the concentration gradient
increases. - -

To compute the current properly, we begin with eq. (8.1a) in steady-state,
which becomes

d du.
J, = gD, d—” tonp, 0 (8.6)
z z

in a quasi-neutral base. Recall that D, = 2u_u,/q and that «_. comprises both
thermal and drift energy components, lLe.

] 1
kg T+ = m™ . (8.7

U.. —= —
-2 2

If the base is thin, then we can assume

Fa L dTe ~
M= 0. (8.8}
When no recombination occurs, V-.J,. = 0, and we find
du... m*J2, dn }
—— = L 3.9
dz g°n’ dz 9

which can be inserted in eq. (8.6) to obtain

2 2
2 (nq) J _ (gn) kBTe:O_ (8.10)

. .
warmdn/dz nr

Equation (8.10) is a quadratic equation for J;; that-can be solved for- -

—(ng)’ 2 .
= s [ 1=y 1 + 8 ks T/ gn) |, _
T 2u,mtdn/dz : \/1 8m*(ydn/dz) kg Te/(gn) (3.11)

which [s the proper current equation to apply in a field-free region with a con-

centration gradient.
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When the concentration gradient is gentle, the second term under the square
root in eq. (8.11) is small, so the square root can be expanded to find

Jy-=qD,dn/dz. (8.12a)
As expected, the result is just Fick’s law. For strong concentration gradients,
however, eq. (8.11) becomes

Jor = qny 2kg T, /07" (8.12b)

Since /2kyT./m* is approximately the thermal velocity, eq. (8.12b) states that
carriers cannot diffuse faster than the thermal velocity.
From eq. (8.11), we observe that Fick’s law is valid when

8l kg T. (dnfdz\"
WLnt kg (n/ )<<1’

5
q° n

which can be re-arranged as

143

dnjdz & ——t
I e
or
dn/d= <<% C O (8.13)

The parameter, 1, is the mean-free-path between scattering events. According to
eq. (8.13), Fick’s law holds when the carrier concentration changes slowly over a
distance equal to a mean-free-path.

From eq. (8.11), we obtain an expression for the diffusion velocity in the
presence of a general concentration gradient as

1dn
UpIFF = — Degr (ZE) 8.142)
where
. (g /i
Dep = { —— Lz | 1 = /1 + 8™ (p,,dn A=Yk T, (an ) R 14b
" {Zunm*(dn/dz)z{ VI 8/ ke T/ (gn) (8.14b)

The effective diffusion coefficient is simply the near-equilibrium diffusion coeffi-

cient, D,, when the concentration gradient is gentle, but it is reduced for high
concentration gradients so that unphysical carrier velociﬁes_do not occur. A plot
of the diffusion velocity versus the driving force for diffusion, Fig. 8.4, looks
much like a velocity versus field plot for a bulk semiconductor. For gentleyqon—
centration gradients, the diffusion velocity is proportional to the driving force,
but for strong concentration gradients, the diffusion velocity saturates at the

thermal veloaity.
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Fig. 8.4 The diffusion velocity versus the effective driving field for diffusion.
Eeffeclive = (/‘B T/(/)(i/”)d”/d:

Biscussion of barrier transport

We can now apply the concepts developed in the previous two sub-sections to the
barrier transport problem. Let’s separate the current into drift and diffusion
components {although the two are so strongly coupled in the barrier that it’s
not clear that this separation is meaningful}. Since the concentration gradient is.
strong, we expect that diffusion should be described by an effective diffusion
coefficient that is smaller than the near-equilibrium value. We also know that the
electron temperature is near the lattice temperature under forward bias condi-
tions, so if the Einstein relation holds, we conciude that- the mobility is also
reduced. On the other hand, since the electron temperature is near the lattice
temperature {or lower), scattering should not increase, which leads to the con-
clusion that the mobility 1s near its equilibrium value (or higher).

Barrier transport is an important feature of transport in most devices, but our
discussion shows that several uncertainties remain. In many cases, the junction
operates in a quasi-equilibrium mode. so the results are nearly independent of the
mobility and dei)end primarily on the boundary conditions assumed. For a
metal-semiconductor junction, however, the results do depend on the transport
model assumed. For low barriers, the proper current is obtained by integrating a
dnft-diffusion equation with near-equihbrium mobility and diffusion coefficient,
but for high barriers, the proper current is obtained by thermionic emission,
which limits the current to the thermal velocity [8.3]. One can obtain the proper
results for any barrier, however, if one assumes a reduced diffusion coefficient
and mobility related by the equilibrivm Einstein relation [Lundstrom, M. S. and
Tanaka, S. 1. Journal of Applied Physics. 66. 962-964, 1995, This suggests that
the primary effect 1s diffusion over a barrier. High barriers lead to high concen-
tration gradients and therefore to a reduced effective diffusion coefficient (and a

" corresponding reduced mobility through the Einstein relation).
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8.4

8.4.1

Diffusion across a thin base

In a device such as a bipolar transistor, transport is controlled by the diffusion of
carriers across a thin, quasi-neutral region. Consider a model problem in which
carriers are injected at the left side of a thin, neutral region and collected at the
right side. We will assume that the collector is a perfect absorber of particles:
imperfect collectors will be treated in Section 8.8. We consider the two different
mjection conditions shown in Fig. 8.5, In the first case, thermal equilibrium
carriers are injected and in the second case, hot carriers, Our objective is to
understand how transport changes as the width of the neutral region varies
from W » A to W « A, where X is the mean-free-path for scattering.

Ditfusion: near-equilibrium injection

Our model problem, sketched in Fig. 8.6, assumes a thermal flux injected from
the left and perfect absorption at the right. The essential features of the problem
can be illustrated by Fick’s law,

F = ~Ddn/dz, (8.15)

where F is the steady-state flux. A common approach assumes that the perfect
collector forces n{ W) ~ 0, so

b .
F = (W>I’I(O) = UDIFF”(O?' (816)

Neutral Neutral
region region

Position Position

Fig. 8.5 Tllustration of: {a) Near-equilibrium injection into a neutral region and (b)
Energetic {(hot) carrier injection.
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nlzt,

Z

0

Fig. 8.6 [llustration of diffusion across a thin region. (a) Solution assuming (W) = 0; (b)
solution asswming a more realistic boundary condition of n(W) = F,;/vr: and {¢) solution

assuming ballistic transport.

This approach is accurate when W is large, but as W shrinks, the diffusion
velocity, (D/ W), increases without bound. Since diffusion is a result of random,
thermal motion, vpep should be limited to vy, the thermal velocity.

Equation (8.16) holds only when

(D/W) < vr. (8.17)
The diffusion coefficient is proportional to vpi, where A is the mean-free-path for
scattering. Equation (8.6), therefore, holds when

W (8.18)

the region must be several mean-free-paths wide.

Fick’s Law can be used for a thin region {f we are careful about the boundary
conditions. Problems arise when we force n( ) = 0, which is non-physical and
produces artificially steep concentration gradients. A perfect collector can only
force the negative half of the velocity distribution to zero; there will still be a
positive half and, therefore, a finite value of n(W#) as illustrated in curve (b) of
Fig. 8.6. Since we assume a thermal distribution for the positive half,

F = n(Wyur, (8.19)
where

vt = 2k T Jam* Lo : - - (8.20)

1s the thermal velocity of an equilibrium hemi-Maxwellian. From Fick’s Law, we

also have

F = (%[n«)) — (W) 2D
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From eqs. (8.19) and (8.21) we find

F = D 4”(0.)___,_ (8 k) )
RV ZANER Sy ool
which should be compared to eq. (8.16). We also find that
,  a(0)
(W) = [M} 8.22b)
[+ o /(D] ) (

In the thick region imit, (D/ W) & vr, and eq. (8.22a) reduces to eq. (8.16). In
the thin region limit, (D/W) > vy, and eq. (8.22a) reduces to

F = vn(0), (8.23)

which is the ballistic limit flux. In this limit, #(¥) approaches 7(0). The concen-
tration gradient can be expressed as

dn n(0) 1
dz {(D/u—;) 1 W] T+ W (8.24)

which shows that the criterion, eq. (8.13), is satisfied so Fick’s Law can be used.
The steep concentration gradients that invalidate Fick’s Law do not occur in
diffusion across a thin, neutral region.

Diffusion: off-equilibrium injection

Transport across a thin, neutral region is more complex when carriers are
injected energetically, as shown i Fig. 85b. We consider a specific example,
electrons injected from an InP emitter into an Ing s3Gag 47As base (Dodd and
Lundstrom, Applied Physics Letters, 61, 465, 1992.) The injection energy 1s
7 [0kgT, which corresponds to an injection velocity of 22 9 x 10" cm/s. If
there were no scaftering, the corresponding transit time across a 300 A region
would be =~ 0.03ps. Monte Carlo simulations of electron transport for this
problem show that most electrons cross the region with no, or only a few,
scattering events. This suggests that transport is nearly ballistic. The steady-
state, average transit time, however, 1s about 0.1 ps, which is over three times
the ballistic transit time. It also scales as 7. These results suggest that transport
is diffusive. . »

Figure 8.7 shows the computed, steady-state velocity distribution in the middle
of the neutral region. The ballistic peak due to energetic electrons is observed
along with a Maxwellian component caused by the scattered carriers. From the
areas under the two distribution components, we fund that = 80% of the carriers
are in the Maxwellian distribution even though = 80% of the injected electrons
cross with three or fewer scattering events. The large Maxwellian component
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Fig. 8.7 Steady-state velocity distribution for electrons in the center of a 300 A wide ptn

GaAs base. The distribution function is plotted versus longitudinal veloeity. (From Daodd,
and ¢ Lundstrom, M. Applied Physics Letters, 61, 465, 1992}

explains why the average transit time 1s so much longer than the ballistic time,
but why does it occur? It turns out that under steady-state conditions, relatively
small amounts of scattering can produce relatively large populations of scattered
carriers. Ballistic electrons cross the region very quickly, but those that suffer a
wide angle scattering event spend a much longer time in the region as they diffuse
out. While the scattered carriers diffuse out, many more are being injected, so.the
steady-state population of carriers builds up.

To estimate the steady-state population of scattered carriers, we write the
injected flux as F,; = nguy,. The ballistic flux that exists is (1 — &guyy;, where
& 1s the probability of a large angle scattering event. Those that do scatter must
diffuse out, so the flux of scattered carriers that exists is nyw(2/W). Equating
injected and exiting fluxes,

Uy = (1 = E)guyy = nqw(D/ W)

we find

”MW _ Umj .
w oo ((D/W)) ' (8:23

The fraction of carriers in the scattered population is not simply the fraction that
scatters but is multiplied by the ratio of ballistic to diffusive velecities. The
diffusion coefficient is enhanced because the scattered carriers are hot, but the
ratio of velocities is still large so high steady-state populations of scattered

carriers results.
The important point in this example is that small amounts of scattering can
produce large steady-state populations of scattered carriers which slow down
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devices. Device designers frequently build an electric field into the region so that
carriers unlucky enough to scatter are swept out before their population can

build up.

Ballistic transport

As devices continue to shrink in size, they could eventually become so small that
carriers might traverse the active region without scattering. Under such condi-
tions, they would move ballistically, and Newton’s laws could be used to com-
pute their trajectories. One possibihity is that carriers could ballistically cross a
short, high-field region like the collector in Fig. 3.1, Another possibility is that
energetic carriers could ballistically cross a neutral region, as in Fig. 8.5b. A third
possibility, which has been discussed in Section 8.4, is that near-equilibrium
carriers could ballistically cross a thin, neutral region. In this section, we examine
ballistic transport across these kinds of structures, but we should stress that the
contacts establish boundary conditions which often contro! device performance.

Ballistic transport in mode! structures

If near-equilibrium electrons are injected into a high-field region with nearly zero
velocity and move across it without scattering, then the average velocity versus
position within the channel is simply

U(!:(Z) : \% 2QV(—7)/’7?*, (826)

where 7(z) is the electrostatic potential. The electron current density 1s related to

the carrier velocity by
an = (451)”(2)1)[/:(2) (827)

Because the current density may be quite high, the injected electrons may perturb
the electric field. Assuming that the density of injected electrons is much greater

. than the background doping density, Poisson’s equation becomes

() (a | | |
dz ke ' (8.28)

which, usihg eq. (8.27), can be expressed as

d* VEZ) _ [an\f m*/zq} V(Z);l/z. (829)
dz” Ks&y . _ .

Equation (8.29) can be integrated trom 0 to L to obtain
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Yt o
where ¥, is the voltage across the device. (To obtain this result, we assumed that
the electric field was zero at z = 0.) Equation (8.30) describes the J—¥F, relation
if" the electrons move ballistically across the region. It is an old result known as
Child’s law, which has long been used to describe vacuum tubes. '

Child’s law should be contrasted with the result obtained by assuming that
transport is collision-dominated for which electrons drift in the electric field

according to

Ug=(2) = 1,8 (8.31)
When the derivation is repeated for this assumption, we find

9 5 ;

_ 7K 2, (8.32)

n: — g“ZT/'Ln

which is known as the Moit-Gurney law.

The question of what mobility to use in eq. (8.31) is not so clear (the low-field
mobility, the field-dependent mobility, or something else?). We shall return to
this question in Section 8.6. It is interesting to observe, however, that the two
assumptions, collision-free transport and collision-dominated transport, produce
characteristic dependencies of current voltage that are not too different. The
effects of the contacts, which may influence or even dominate device perfor-
mance, also tend to obscure the transport-related effects, so the measured current
versus voltage characteristic provides no clear evidence of ballistic transport
within such structures. The message is that to exploit the spced advantages of
ballistic transport, devices must be carefully designed to minimize space—charge
and contact effects.

Consider next the energetic injection of electrons into a neutral region as
sketched in Fig. 8.5b. (Such conditions may occur in a heterojunction bipolar
transistor.) When electrons are injected into the base, the potential energy asso-
ciated with the change in conduction band, AE., is converted to kinetic energy

according to

v (2) = 2AEfm*. (8.33)

(This result assumes that electrons are injected with near zero velocity and that
they traverse the base without scattering.) The heterojunction step acts like an
electric field impulse which accelerates carriers quickly. With modern epitaxial
technology, the conduction band discontinuity can be engineered to be a few
tenths of an electron volt high in material systerns such as the Al Ga,_ As
ternary. Equation (8.33) predicts very high electron velocities which would sub-
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stantially lower base transit time and significantly lower the stored electron

charge in the base.

Ballistic transport in real devices

To determine whether ballistic transport can occur in real devices, we need to
examine the scattering rates in semiconductors. A rough estimate of the mean
free path of electrons can be obtained from eq. (8.1b) using the measured mobt-
lities of electrons in high-purity silicon and gallium arsenide. At room tempera-
ture, we find a mean free path of roughly 100 nm for both Si and GaAs, so the
active region of the device would have to be much shorter than 100 nm to achieve
ballistic transport. At hquid nitrogen temperature, however, the mobility of
glectrons in pure GaAs can be extremely high (= 150000cm?®/¥'s), and the
corresponding mean free path is about 1000 nm.

Before we conclude that ballistic transport is the rule in small GaAs devices
operating at 77K, we should examine the scattering rate versus energy for elec-
trons in GaAs. From Fig. 2.25b, the reason for the especially high low-tempera-
ture mobility of GaAs is apparent. At 77K the thermal energy is only about
10 meV, which.is below the longitudinal optical phonon energy of about 32 meV.
As a consequence, electrons in pure GaAs at low temperatures can scatter only
by absorbing optical phonons, and Fig. 2.25b shows that the time between
collisions is on the order of one picosecond. But electrons ballistically crossing
a high-field region gain an energy equal to the electrostatic potential. If the
apphied bias exceeds 0.032V, the electrons will have sufficient energy to scatter
by emitting optical phonons, and Fig. 2.25b shows that the average time between
collisions will decrease by almost an order of magnitude. But if the bias is
restricted to 0.032V, eq. (8.26) shows that the maximum velocity will be only
~ 3 x 107 cm /s. Since the 77K saturated velocity for electrons in bulk GaAs
under a high applied bias is roughly the same, such a ballistic device offers little
speed advantage. We conclude that ballistic transport should not be expected
unless the apphed voltage is unreasonably low.

For an applied bias (or AE¢) greater than 0.032V but less than about 0.3V,
the scattering rate for electrons in pure GaAs is nearly constant at about 103
collisions per second (refer again to Fig. 2.25b). If we set AE to 0.3 eV, then eq.
(8.33) predicts a velocity of about 10% em/sec. (Note that m* is actually a function
of energy, which is important because these hot electrons are far above the band
minimum.) The limit to the achievable velocities is not set by AF as implied by
eq. (8.33) but by the minimum curvature of E(p). For GaAs, this band-structure-
limited velocity is about 10% crm/s. Since the carriers are moving at = 10® ¢m/s and
travel for 107" before scattering, they can travel about 1000 A between
collisions. For heterojunction bipolar transistors with a base thickness much
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less than 1000 A, a sizable fraction of carriers might be expected to traverse the
base without scatfering. '
~Although ballistic transport has been observed in structures like that of Fig.
. 8.5b, the number of electrons that traverse the structure without scattering is
typically quite small [8.5, 8.6, 8.7]. The reason is-that the base regions need to be
heavily doped which results in a high rate of carrier—plasmon scattering, so the
mean-free-path is much shorter than the estimate above which assumed pure
GaAs. At very low temperatures and for very low applied biases, however,
mean-free-paths can be quite long. Under such conditions, devices can even
display interference effects due to the wave nature of electrons. By exploiting
the elecfron’s wave properties, electronic devices analogous to optical or micro-
wave devices are a possibility [8.8, 8.9].

s

fts

8.6  Velocity overshoot

For most devices operating near room temperature under modest bias, transport
is dominated by scattering. Between the frequent collisions, electrons move

according to

dUd ;

*Td _(_DEL 8.34
m ¥ (—g)E., ( a)

but collisions reduce the average velocity just as friction opposes the acceleration
of a mass. A simple way to treat collisions is to add a term to eq. (8.34a) so that

du. U .
m* Y (g, - L0 (8.34b)

d¢ Tin

which accounts for the ‘friction’ introduced by scattering. Equation (8.34b) 1s a
simple momentum balance equation for an average carrier. By comparing with
eq. (5.27b), the proper momentum balance equation derived from the BTE, we
observe that eq. (8.34b) neglects diffusion. It works well in strong, uniform
electric fields where diffusion effects are small but must be used with caution

in other situations.
For a uniform electric field applied at ¢ = 0, the solution to eq. (8.34b) is
Uae(1) = (g /m*)E(™ T — 1), (8.35)

This result, which is plotted in Fig. 8.8a, shows that steady-staté is achieved in a
time on the order of a momentum relaxation time. While steady-state is being
approached, carriers travel a distance

T a2
d= J v(fdr = (_i)}ﬁs_,,e—l. (8.36)
0 r

I
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Fig. 8.8 Carrier velocity versus time assuming several different momentum relaxation times.
(a) A constant 7,,,. (b) Two different, constant £,’s; case (i) assumes the low-field ensemble
relaxation time, and case (i) the ensemble relaxation time characteristic of uniform, high
fields. (¢) A variable 7,,; the plot shows the characteristic expected when £, adjusts rapidly
from low- to high-fleld conditions. {d) A variable 7,,; the plot shows the characteristic
expected when 1, adjusts slowly from low- to high-field conditions.

If we estimate 7,, from the measured low-field mobility, then for £, = ~10* V/em
we find d ~ 200 A for electrons in Si and d ~ 1500 A for electrons in GaAs. In
small GaAs devices, the active regions are not much bigger, so the steady-state
velocity is never achieved. Transport under such conditions is known as transi-
ent, nonstationary, off-equilibrium, or nonlocal transport.

Because the scattering rate generally increases with energy, 7, is not a constant
but, rather, decreases as the carriers are accelerated. In Fig. 8.8b the v ()
characteristic is plotted for two different momentum relaxation times; the first
corresponds to a low applied field and the second to a high field in a bulk
semiconductor. Because 7, varies during the transient, the actual characteristic
should lie between the limits displayed. If 7, adjusts very rapidly, then the
characteristic displayed in Fig. 8.8¢ results. On the other hand, if 7, adjusts
slowly, then the characteristic shown in Fig. 8.8d is obtained. For this second
case, the transient velocity overshoots its-steady-state vatue. Velocity overshoot
can improve the performance of small devices because the average carrier velo-
city can exceed the bulk hmit.
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Velocity overshoot does occur, and we can explain why using a few simple
arguments. Recall from Chapter 7 that 7, typically decreases as the carrier
temperature increases. A simple balance equation for electron temperature,

oo, enlTe —T)/2

- - (8.37)

can be postulated. The solutions, 7.(¢), are much like the solutions to (8.34) and
show that the steady-state temperature is achieved in a time on the order of the
energy rélaxation time.

The momentum and energy relaxation times are typically quite different
because several phonon collisions are required to reduce a carrier’s energy, but
a single large angle scattering event can remove all of its directed momentum. As
a consequence, Tg exceeds 7,,, 50 the electron temperature rises much more slowly
than the average velocity. Since 7, is a function of the electron temperature, it
adjusts slowly, and the overshoot characteristic of Fig. 8.8d results. In the limit
of ¢ > 7, the peak velocity is uo€. where py is the low-field mobility. Figure
8.9 shows a velocity overshoot transient as computed by Monte Carlo simulation
along with the associated distribution function at various times. At first, the
electric field simply displaces the distribution function with little change in
shape. Although the drift velocity is high, the temperature is not, so the mobility
remains high. Later on, collisions broaden the distribution, the electron tempera-
ture increases, 7,, decreases, so the drift velocity drops.

8.7

8.7.1

Transport in rapidly varying electric fields

We have seen that when an electric field is quickly switched on, velocity over-
shoot occurs. For electrons in silicon, velocity overshoot occurs because 7 > 7,
For electrons in GaAs, intervalley transfer gives rise to even stronger velocity
overshoot. When the electric field varies in time, complex effects can occur.
Velocity overshoot also occurs under steady-state conditions. In this section,
we examine some of the nonlocal transport effects than can occur in devices.

Transport in time-varying electric fields

The velocity transient of electrons in GaAs subjected to the electric-field pulse
displayed in Fig. 8.10a illustrates the rich variety of effects possible. The average
electron velocity versus time and the average energy versus time are displayed in
Figs 8.10b and 8.10c. (All results were cobtained by Monte Carlo simulation
[8.10].) For t< 2ps, electrons simply drift in a modest electric field. At

= 2ps, a high field is applied, and velocity overshoot occurs. Note that velocity
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Fig. 8.9 Evolution of the distribution function during a velocity overshoot transient. The
average drift velocity and energy versus time are shown in (a), and the evolution of the
corresponding distribution function is displayed in (b). The results were obtained from
Monte Carlo simulations of electron transport in silicon by E. Constant [8.10].

overshoot i1s much stronger for electrons m GaAs than it is for electrons in
silicon,

The velocity versus time transient displayed in Fig. 8.10b can'be understood by
referring to the corresponding energy versus time transient displayed in Fig..
8.10c. At time B the average electron is still low, so little intervalley scattering
occurs, and the electron velocity is high. By time C, the electron energy is very
high, so the intervalley scattering rate is high and the average velocity has plum-
meted. At 7 =4ps, the high field is removed, but it takes some time for the
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Fig. 8.10 (a) Applied electric field versus time. (b) Average drift velocity versus time for

electrons in GaAs at room temperature subject to the electric field pulse shown (a). (¢)
Average electron energy versus time. (Monte Carlo computations from E. Constant [§.10].)

clectrons in the upper valleys to return to the -valley. During this time, the
average velocity is especially low because the mobility is lower than its steady-
state value. As the carriers scatter back to the ["-valley, the mobility increases,
and the average velocity gradually rises. This velocity undershoot occurs when the
average carrier energy exceeds its steady-state value.

The dips in the velocity transient just-before time C, and just after time D
require some explanation. Both dips occur just after intervalley transfer begins;
the second dip 1s so severe that the velocity actually becomes negative. This Rees
effect can be explained by examining Fig. 8.11, which shows that carriers which
scatter back to the I'-valley may end up with either positive or negative momen-
tum. Those with positive momentum may gain energy from the field and scatter
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Elp)
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Fig. 8.11 IHustration of why electrons scattered from the upper to central.valley with
negative momentum remain in the central valley longer than carriers which enter with
positive momentum. This effect explains the two dips in the velocity transient of Fig. 8.10b.
{From E. Constant [8.10].)

out very quickly, but carriers with negative momentum must undergo a very long
flight before they can scatter out. As a consequence, electrons which enter the
I-valley with negative momentum remain in the valley longer and lower the

average velocity.

Steady-state transport in spatially varying electric fields

Electric fields within devices may vary both with time and position. In Section
8.6, we described how carriers respond to a time-varying, but spatially uniform
field. In this section, we describe how carriers respond to a spatially varying field
under steady-state conditions. in time. The simplest case to consider is that of
electrons being injected from a low-field region into a long, high-field region.
Eventually, the carriers simply drift at a velocity equal to the product of the high-
field mobility times the electric field, but a transient occurs first. Spatial transi-
ents for electrons in St and GaAs are displayed in Fig. 8.12, which shows steady-
state velocity overshoot in space. Note that overshoot is more pronounced for
electrons in GaAs and that its extent is an appreciable fraction of one micron for
GaAs, but only a few hundred angstroms for Si.

It might be expected that temporal transients could be converted to spatial

transients according to

3
;= J v (t)dE (8.38)
0
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Fig. 8.12 (a) Device structure with a low-field to high-field step. (b) Steady-state velocity
versus position for electrons in silicon subjected to the electric field profile shown in (a). (c)
Steady-state velocity versus position for electrons in GaAs subjected to the electric field’
profile shown in (a). (Monte Carlo computations (b and ¢) courtesy of M. A. Stettler and

A. Das.)

According to this prescription, the only difference between temporal and
spatial transients is a re-definition of the horizontal axis. This prescription
cannot be correct, however, because if the horizontal axis in Fig. 8.12 is time,
then the velocity profile would be non-causal; it would increase before the
electric field increased. To understand the difference between temporal and
spatial transients, compare the response of electrons to a field pulse in time
with the steady-state response to a field pulse in space. The results of a Monte
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Carlo simulation are shown in Fig. 8.13 [8.10]. For the spatial pulse, the
steady-state, average carrier velocity versus position is plotted in Fig. 8.13b,
and for the temporal transient the average carrier velocity is plotited on the
same scale by using (8.38) to convert the time axis to distance. Note the
distinct difference between the two plots; the temporal transient achicves
much higher velocities which persist much longer. The differences between
temporal and spatial transients are a result of ensemble effects, or more
simply, diffusion. The flow of momentum density into or out from the ensem-
ble of carriers is described by the term in eq. (5.27b) involving the spatial
gradient. It takes some time for the ensemble to build-up, so diffusion is most
pronounced under steady-state conditions. Equation (8.34b) describes tem-
poral transients rather well, but we cannot use eq. (8.38) to convert those
results to the steady-state case where diffusion is strong.

Figure 8.13b also shows an anticipatory effect, which is the increase in the
steady-state, average velocity prior to the electric field pulse. This effect can be
explained from the plots of average carrier velocity and density versus position
displayed in Figs. 8.13b and 8.13c. Because recombination-generation is
assumed to be absent, the steady-state electron current is constant which
means that the product of electron wvelocity and density must be constant.
The strong overshoot in velocity is accompanied by a dip in the carrier density
which leads to strong diffusion effects. The spatially varying energy also pro-
duces diffusion currents via the second term in (8.1a). The diffusion flux
increases the average velocity before the field step and decreases it after the
step.

We now have a phenomenological understanding of why spatial transients
‘anticipate’ the change in electric field and why they decay so rapidly after the
pulse. To develop a microscopic understanding, we need to examine the dis-
tribution function versus position as plotted in Fig. 8.13d. Well before the
fleld pulse and just after it (locations 4 and D) the distribution function is
approximately Maxwellian. As the field pulse is approached, however, the
distribution becomes increasingly non-Maxwelltan. At location B, which is
just before the pulse, the distribution function contains virtually no nega-
tive-velocity electrons. This distortion, which anticipates the field pulse, occurs
because the negative-going electrons must have come from the right, but the
strong field pulse prevents electrons with negative velocities from reaching
that portion of the structure to the left of the pulse. Within the puise, at
location C, the distribution function displays a strong ‘ballistic peak’ of elec-
trons that have been accelerated to very high energies within the I valley. Just
after the pulse, at location D, the distribution function picks up a large
component with negative velocities which sharply lowers the ensemble velo-
city, The region to the right of the pulse acts as a source of negative velocity
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Fig. 8.13 (a) Applied electric field pulse in time and in space. (b) Average velocity versus
position for a pulse applied in space (solid line) and in time (dashed line). The dashed line
was obtained from the temporal transient according to eq. (8.38). The solid line is the
steady-state velocity for the spatial pulse. (¢) Steady-state carrier density (solid line) and
energy density (dashed line) for the spatial electric field pulse. (From E. Constant, [8.10].)
(d) Steady-state electron distribution function versus v, at selected locations within the
device structure with a spatial pulse. The letters refer-to the various locations specified in
(b). Electron transport in GaAs is assumed. (Monte Carlo computations courtesy of M. A.
Stettler and A. Das.)
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Fig. 8.13 (continued)

electrons, which are produced by scattering. The electric field pulse prevents
them from flowing further to the left, but where the field pulse terminates, a
large negative velocity component of the distribution function appears and
lowers the velocity abruptly.

Diffusion accounts for the sharp differences between the average velocity
resulting from a temporal transient and the steady-state velocity produced by
a spatial transient. The differences can be profound, as illustrated in Fig. 8.14.
For this example, a series of field impulses is applied — first in time, then in
space. The resulting average velocity versus time plotted. in Fig. 8.14b is easy to
understand as a series of velocity overshoot transients. The steady-state velo-
city versus position for the impulses applied in space, however, is sharply
different, Figure 8.14c shows that the steady-state velocity increases in antici-
pation of the field impulse and then plummets abruptly after the impulse. The
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Fig. 8.14 (a) A series of electric field impulses versus time or distance. (b) Sketch of the
expected average velocity versus time for a series of electric field impulses applied in time.
(c) Sketch of the expected average velocity versus position for a series of electric field pulses

applied in space.

velocity versus time and velocity versus position plots are 180° out of phase.
The steady-state velocity versus position characteristic is a result of diffusion.
The high velocity at the impulse implies that the steady-state carrier density is
low. The resulting diffusion fluxes increase the average velocity to the left of
the impulse and decrease it to the right of the impulse. The moral is that for
devices in which the electric field varies rapidly in both time and space, diffu-
sion effects are pronounced. Equation (8.34b) cannot describe the momentum
versus time in most devices; eq. (5.27b), which was derived from the BTE, must
be used.
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8.8

Carrier collection by a high-field region

The collection of carriers by a high-field region is a common feature in devices. A
model collector is sketched in Fig. 8.15a. Carriers may be injected into the active
regron from theleft (in the case of a transistor) or photogenerated in the case of a
detector. Any carrier incident on the high-field collector should be swept across
and out the right contact. Transport across the collector is a complex problem in
off-equilibrium transport. As illustrated in Fig. 8.15b, strong velocity overshoot
can occur, and detailed numerical treatments are necessary, especially if the self-
consistent electric field is to be treated.

As llustrated in Fig. 8.15a, we characterize a collector by the fraction, R¢, of
the flux incident on the collector that backscatters within the collector and
returns to the active region. A fraction (1 — Rc) crosses the collector and emerges
from the right contact. For a perfect collector, Re = 0. It turns out that we can
estimate Rc rather easily, unless the carriers being collected perturb the electric
field in which case a full solution to the self-consistent transport problem is
necessary. Characterizing transport by reflection coefficients is the subject of
Chapter 9 where the ideas in this section are more thoroughly developed.

Consider first a simpler problem. If carriers are injected into the left face of a
neutral region of length L, the fraction that backscatters and re-emerges from the
left face is [8.9]

Ry =2 (8.392)
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Fig. 8.15 (a) A model electron collector and (b) the velocity versus position profile for the
model collector assuming electron transport in silicon,
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where A is the mean-free-path for carrier scattering. (Equation (8.39a) is derived
in Section 9.4.1) The problem is more complex, however, when an’electric field
exists.

Detailed simulations show that when carriers are injected at the top of a
potential drop, only those that backscatter very near the top can re-emerge
and exit the region. One reason is that scattering by phonon emission lowers
their energy, so they can not get back over the barrier and out, but the same
effect occurs for elastic scattering too. The reason is that only a small fraction
backscatter directly normal to the barrier and have

1/2m*v? > 4E,

where AE is the potential drop experienced by carriers before they scatter.
Detailed simulations show that if carriers travel more than ~ | — 2kg 7T /g down
a potential drop, they are unlikely to re-emerge, even if they do backscatter.
We can use these ideas to develop a simple estimate for Rc. When an electric
field is present, the relevant distance is not the length of the collector, L, but
rather, a length, £, over which the first kg T/q of potential drop occurs. Equation
(8.39a) must be modified to
R= ¢ 8.39b
=i, (8.39b)
where £ = (kg T/q)/1E.] with |£,| assumed to be constant. We can estimate the

mean-free-path, A, from the mobility. Recall that D = Avy/2. Using the Einstein
relation, we can relate A to the mobility. Equation (8.39b) then becomes

1
P — 8.40
CETHIENE, (8:400)
where
Eor = UT/ 24, (8.40b)

Next, we need to ask what mobility to use in eq. (8.40b). If near-equilibrium
carriers are injected into the collector, then we should use the near-equilibrium
mobility, because the relevant backscattering occurs before carriers have been
significantly heated by the electric field. This is a case of nonlocal transport
because even though the electric field may be very high, we use the low-fleld
mobility in eq. (8.40b). Finally, we note that when the electric field approaches
zero, eq. (8.40a) should reduce to eq. (8.39a), but it does not because £ L in
this limit. The expression -

Ry
Rom=—= Y 8.40
TV IEE, (8.400)

has the correct low-field limit.
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_ B.B DEVICE SIMULATION

Figure 8.16 is a plot of R versus electric field in our model collector (electron
transport in pure silicon is assumed). The solid line is the result of a Monte Carlo
simulation. As predicted by eq. (8.40), R decreases as the electric fleld increases.
In fact, eq. (8.40c) provides a rather good estimate for Rq. In the limit of a very
high electric field, R is only a few percent, In that case, the average velocity at
the beginning of the collector should just be up, the injected, thermal velocity.
For electrons in silicon, vy = 1 x 10’ em/s, which is very close to the velocity at
the beginning of the collector as shown in Fig. 8.15b.

In summary, under steady-state conditions, a carrier collector can be charac-
terized by its backscattering coefficient, R¢, which is zero for a perfect collector.
In a high-field collector, this parameter is determined by the low-field mobility
and by the electric field, or potential drop, within the first mean-free-path of the
collector. The design of efficient collectors, therefore, focuses on a thin region at
the beginning of the collector.

Device simulation

In previous sections we described the qualitative features of carrier transport in

_ devices, but device analysis, design, and optimization require accurate, guanti-

tative predictions of device performance. To simulate a device, we solve a trans-
port equation (to describe the response of carriers to the fields) and Poisson’s
equation (because as they move, they perturb the field). The simulation process is
summarized in Fig. 8.17.
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Fig. 8.16 The backscattering coefficient versus electric field for the model collector. Solid

line, Monte Carlo simulation, peints, the estimate of eq. (8.40c). The mean-free-path, 1,
was selected so that eq. (8.39a) matched the Monte Carlo results at low electric fields.
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Define initial conditions
nlr, 0), Vr, 0}
Sett=0

Apply bias: Vi, {1+ Al
Solve Poisson’s equation

Given: n(r, t}
Compute: Vr, t+ At}

Solve transport equation
Given: VAr, t + At)
Compute: nlr, t+ At)

¥

No

=t+ At

Fig. 8.17 The basic algorithm for time-dependent device simulation. (A unipolar device is
assumed, so hole transport is neglected.)

The accuracy of a device simulation is often determined by how accurately
carrier transport is described. Several options are available beginning at the
conventional, drift—diffusion approach, progressing to solutions of the BTE
and then to quantum transport approaches. Generally, the more sophisticated
the approach, the heavier the computational burden, so it is important to select
an approach adequate for the device under study and to appreciate its limits and
range of validity.

The simulation approach must accurately describe transport in the portions of
the device that control its performance. Figure 8.18 offers some guidelines. For
large devices that do not switch too quickly, drift—diffusion equations are ade-
quate. Such equations assume that the current changes slowly on the scale of the
momentum relaxation time, and they do not treat nonlocal effects such as velo-
city overshoot which occur on the scale of the energy relaxation time. On a
spatial scale, drift—diffusion equations are adeguate to sub-micron dimension
for Si devices but not below about 1 um for hot electrons in GaAs devices.
(The question of exactly when a drift—diffusion equation can be trusted has
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Fig. 8.18 Ilustration of the regions of validity for several device simulation approaches.
(The boundaries should be viewed as rough guidelines only.)

still not been clearly answered, but it has proven to be useful for far smaller
devices than originally expected.)

Some of the nonlocal effects missed by drift—diffusion equations can be cap-
tured by momentam—enecrgy balance equations. This approach, however,
requires a large number of simplifying assumptions about the shape of the dis-
tribution function and about the ensemble relaxation times. For very small
devices, in which these assumptions become suspect, direct solutions of the
BTE, using techniques such as Monte Carlo simulation, may be necessary.
The BTE loses validity under very short time scales, where collisions can no
longer be treated as instantaneous, and when the critical regions of the device
approaches the carrier’s wavelength. Quantum transport approaches may be
necessary to treat devices on this scale.

For the remainder of this section, some common device simulation techniques
will be surveyed with an emphasis on formulating and understanding each
approach, not on numerical solution techniques (for which the reader is referred
to the chapter references). We remind the reader again that the region of validity
for each transport model still has not been clearly identified. Those who use such
simulations must be able to ascertain from their understanding of transport
physics and the specific device being examined whether to trust the simulation

or not,
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The drift-diffusion approach

For the drift-diffusion approach, the transport model consists of the first two
moments of the BTE. The first gives the continuity equations for electrons and

holes,

oty o , (8.41a)
at g

and 3 l
p
Polv.) —R 41b
py 4 »— Ry, (8.41b)

which comprise two equations in the four unknowns, n(r, t), p(r, 1), J,,{r, £), and
Jp(r, ). The recombination rates, R, and R, are due to Auger, radiative, and
Shockley—Read-Hall processes and can be expressed in terms of n(r,7) and
p(r, 1). (See Pierret, [8.1].) '

The two additional equations needed to specify the problem are the current
flow equations. The simplest flow equations are the drift-diffusion equations,

J, = —nqu,VV 4 qD,Vn (8.42a)
and :

Jp = _qupVV - CJDan (842b)

which express the current densities in terms of n(r, ) and p(r, ). When Eqgs. (8.42)
are inserted in eq. (8.41), a system of two nonlinear equations in two unknowns
results. Along with the boundary conditions, these equations completely specify
the transport problem for drift-diffusion-based device simulation. The complete
simulation couples the solution of the transport problem to the self-consistent
electrostatic potential by solving Poisson’s equation too. For drift—diffusion
transport, three, coupled, nonlinear partial differential equations must be solved
to simulate a device.

Application of the technique to'a two-dimensional, Si-MOSFET is illustrated
in Fig. 8.19. The vertical boundaries of the device are assumed to be lines of
symmetry. Ideal contacts are assumed; they maintain the carrier densities at their
equilibrium values. Along such contacts, the electrostatic potential is its value in
equilibrium, shifted by the applied bias. Along noncontacted boundaries, the
normal components of the currents are set to the surface recombination rate
and the normal component of the displacement field to the surface charge.

For numerical solution, the device is subdivided by a mesh as illustrated in Fig.
8.19b. To obtain # and p at each of the N vertices, the defining equations are
applied to each element which results in a system of 3N nonlinear equations for
the 3N unknowns. The unknowns at node, (i,7) are u(i,)), p(i. j), and V{7 ).
Numerical techniques for solving such equations are highly refined and are dis-
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Fig. 8.19 (a) Hlustration of typical boundary conditions for drift-diffusion-based simulation
of a SIi-MOSFET. (b) {lhustration of a mesh for numerical solution of the drift—diffusion
equations. The seolution is sought at each of the & vertices of the triangular elements.
{(From Forghieri, A., et al. [8.15]. Reproduced with permission from IEEE.)

cussed by Selberherr [8.11]. The drift—diffusion approach to device simulation
continues to be the most widely-used tool for device engineering.

8.9.2  The hydrodynamic/energy transport approach

The drift-diffusion equation is a rough approximation to the momentum balance
equation. It ignores the spatial variation of the average carrier energy and
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assumes that ¢ and D are uniquely specified by the local electric field. A more
detailed approach includes the energy gradient in the current equation and
assumes that the mobility is a function of the average carrier energy. For this
approach, we solve the first three moments of the BTE rather than just the first
two as is done in the drift-diffusion approach. The additional equation is the
energy balance equation.

From eqgs. (5.21) and (5.37), we can express the continuity equations for the
electron density, n, and the kinetic energy per electron, u, (or the kinetic energy
density, W = nu) as )

dJ,.
= =4S, = (G- R), (8.43a)
and dF W, — W?
We T .6, — g-_! (8.43b)
dz TE

To keep the mathematics simple, we have assumed steady-state conditions and
spatial variations in one dimension only, but these assumptions are easily
relaxed. The particle generation term in the electron continuity equation, S,,
consists of a net generation rate, &, which may describe, for example, impact
ionization or photogeneration and a net recombination rate, R, which may
describe transitions between the energy bands and defect levels. These terms
can be related to the carrier concentration, kinetic energy, and current densities
as discussed in Pierret [8.1], Singh [8.2], and Sze [8.3].

In addition to the continuity equations, we also need to specify flow equations
for the electric current density, J,, and the kinetic energy flux, Fiy. As discussed
in Chapter 5, two approaches are possible. In the first, transport equations are
derived from moments of the Boltzmann transport equation (BTE). This
approach is termed the hydrodynamic approach because the resulting equations
are similar to the hydrodynamic flow equations of fluid dynamics. In this
approach, the effects of scattering are described by macroscopic relaxation
times that involve averages of the microscopic relaxation time over the distribu-
tion function. Alternatively, in Stratton’s approach (Section 5.6), the collision
integral in the BTE is approximated by a microscopic relaxation time. This
approach is often called the emergy transport approach. In practice, both
approaches are used. Their application involves a number of simplifying assump-
tions that makes the successful use of such equations something of an art. The
final accuracy can only be determined by comparing the results to those of a
more rigorous simulation. Fortunately, the form of the final equations is simlar
for the two approaches, and good results have been obtained for both
approaches. Since the two approaches are so similar, we refer to them as the
hydrodynamic/energy transport approach.
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We first present the hydrodynamc flow equations. Fromegs. (5.32) and (5.38),
we can write the steady-state flow equations for spatial variation in one dimen-

sion as

d
Jn: = nq_fjtngz + 2_:U“n a—7 (”Lt::) (8443)

d d
R I A L () (8.44b)

where pz is refated to the energy relaxation time by

qfﬁ o
Mg = o (8.45a)

and R,, is related to the fourth moment of the BTE, X_,, [as defined in eq. (5.39)],
by

m*X.,
R.= = (8.45b)
gn
We have assumed a constant effective mass, but that assumption can be elimi-
p

nated.)
Flow equations can also be developed by Stratton’s approach (the so-called

energy transport model). From egs. (5.86) and (5.91), we find

d
Jne = nqp,€, + 21, a—;(l’lll/3) (8.46a)

d . d
an Fipe = Conipks T, = Cotty = (k3 T2/, (8.46b)

where C, = (5/2-f s) depends on the power law, s, for scattering.

To complete the specification of the hydrodynamic/energy transport model,
we need to close the equations and specify the relaxation times. We desire a set of
equations in two unknowns, the electron density, n, and the kinetic energy per
electron, u, which means that »,_ and R_, in egs. (8.45) must be expressed in terms
of these parameters. The simplest closure approach 1s to neglect the drift energy
and assume equipartition of energy to write

u. = W/3n. ' (8.47a)

A better assumption is to assume that the component of the kinetic energy
associated with random, thermal motion is equally distributed among the
three degrees of freedom and to include the drift energy. The result is
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] 1 I i
nits, =5 ( W~ Em*],?z /nqz) + zm*J,fz /ng* = 3 (W +m*J% ng?), (8.47b)
which is much better, but note that the current equation, eq. (8.44a) is no longer

an explicit expression for the current because J,. appears on both sides of the

equation.
The tensor component, R,., can be expressed as (see homework problem 5.6),
to w2
R, =——, (8.48)
9 ¢ o

if we assume a displaced Maxwellian distribution and ignore the drift energy.
More refined treatments are possible [8.12]. Finally, we need to express the
relaxation times, 7,, and 7z, as functions of n and u. After doing so, which we
discuss in Section 8.9.3, the problem specification is complete. By using egs,
(8.44) in egs. (8.43), we obtain two coupled partial differential equations for
the two unknowns, n(z) and w(z). These equations are then solved self-consis-
tently with Poisson’s equations using techniques much like those for solving the
drift-diffusion equations, but instead of obtaining n(z) and ¥{(z) throughout the
device, we also obtain u(z).

The energy transport equations (Stratton’s approach) can also be used for the
flow equations. Instead of egs. (8.44), we use egs. (8.46). Note that there is no
closure problem for these equatibns because we assumed a displaced Maxwellian
when deriving them, so they are expressed in terms of the unknowns, n(z) and
u(z). Note also that the flow equations for the two approaches are very similar. In
fact, if we ignore the drift energy in the hydrodynamic equations and approx-
imate u_, by eq. (8.47a), then the hydrodynamic flow equation, eq. (8.44a), is
identical to the energy transport flow equation, eq. (8.46a). In the energy trans-
port approach,

W= %kB 1. (8.49a)
HE = g Cethn (849b)
and
2 Wt
= 57 . (849C)

We can, therefore, think of the energy transport flow equations as the hydro-
dynamic equations with a specific set of closure relations. The successful use of
these equations may require a careful examination of the closure relations (in the
hydrodynamic approach) or the assumed shape of the distribution (energy trans-
port approach). One of the key issues is determining the relaxation times, ., and
7, or equivalently the mobilities, i, and pg.
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Hydrodynamic/energy balance simulations are much like drift—diffusion simu-
lations — with the addition of equations for electron and hole energy balance.
Instead of 3/ equations, we have SN for the five unknowns, V,n, p, T,, and T},
at each of the N vertices. Figure 8.20 shows some results of simulating an -
channel Si-MOSFET using the momentum/energy balance approach [8.15]. The
large applied - bias at the drain and the positive gate voltage are apparent in Fig.
8.20a which 1s a plot of the electrostatic potential within the device. The simu-
lated electron concentration profile plotted in Fig. 8.20b shows the high electron
concentration expected in the channel, but it also shows that the channel elec-
trons are-not well-confined near the drain. Hot electron effects are illustrated by
Fig. 8.20c, which 15 a plot of the electron temperature within the transistor. Note
that the electron temperature is very high, in excess of 3000 K, near the drain end
of the channel where the electric field is high. The high-temperature ridge along
the drain-substrate junction occurs because the reverse-biased collector-substrate
junction collects electrons from the substrate which are then accelerated as they
traverse the junction. For the particular example considered, the channel length
was rather long (1 um), so the differences between the drift-diffusion and
momentum~energy balance approaches are quite small. For deep sub-micron
MOSFETs, however, the differences can be substantial.

Transport parameters in hydrodynamic/energy transport models

A key issue 1n using hydrodynamic or energy transport models lies in expressing

the mobilities, p, and g, or alternatively the relaxation times, 7, and g, in

terms of the unknowns, n(z) and u(z). A common approximation involves deter-

mining these expressions under steady-state, spatially uniform conditions and

then assuming that they apply to the transient, nonuniform conditions within a

device. The steady-state results may be measured or they may be obtained by -
Monte Carlo simutation.

Determining transport parameters from measured characteristics
We outline a simple approach that can be used to obtain transport parameters
from measured results [8.14]. Recall that D and p are related by

D kyT, ,
D ksle (8.50)
H q

for bulk silicon, where the drift energy can be ignored, and that for electrons in
silicon, the measured diffusion coefficient is roughly independent of field. If we
evaluate eq. (8.50) at low applied fields, where u, = u; and T, = T, and at high
applied fields and then divide the two results, we find
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- Fig. 8,26 Examples of hydrodynamic device simulation. (a) Plot of the electrostatic
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position. Computed by the momentum—energy balance equation approach by Forghieri, A.,
et al. [8.15]. (Reproduced with permission from IEEE.)

T,
a(T,) = p8 =

7 (8.517)

Equation (8.51) expresses the electron mobility in terms of the unknown electron

temperature, 7.
The energy relaxation time is determined by energy balance under steady-state,

spatially uniform conditions. Under such conditions, eq. (8.34b) becomes
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Fig. 8,20 (continued)

v /2 + 3kg(T, — 10)/2

= (8.52)
Tg

Grn(ENES =

The measured high-field mobility of electrons in bulk silicon is empirically
described by

[
Hn
wn(E) = ——> (8.53)
VI+HEIE,
where £, the critical field, is a material constant. From eq. (8.51)—(8.53), we find

3kg  T.Ty | mpun Ty

2queet T.+Te 2 T, (8.54)

%E(Te) =

This very simple approach has been used with some success for transport in
silicon {8.14], but as devices shrink, more sophisticated approaches become
necessary [8.12].

Determining transport parameters by Monte Carlo simulation

An alternative method for specifying the mobility (or momentum relaxation
time) and the energy relaxation time is to make direct use of Monte Carlo
simulation. Simulations of carrier transport in uniform, bulk semiconductors
are performed at a variety of electric fields. Since the average carrier temperature
and drift velocity are obtained from the simulation, a table of u(7) = v, /&, is
readily constructed. Similarly, from the average carrier energy and the input
power, a table of 7:(7) can be constructed. A key assumption underlying both
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methods for specifying the relaxation times is that the relaxation times deter-
mined under steady-state, spatially uniform conditions also describe the device
under non steady-state, nonuniform conditions.

Discussion of transport par'ameters in hydrodynamic/energy transport models
Hydrodynamic or energy transport simulations are frequently used when hot
carrier effects need to be simulated. In small devices under bias, carriers may
be heated so that impact ionization occurs. The simplest approach is to use drift—
diffusion equations with field dependent ionization coefficients taken from bulk
measurements or simulations. In small devices, however, the electric fields may
be large, but the carrier energy will be much less than in the bulk because carriers
don’t have the opportunity to gain the amount of energy they would in the bulk.
Using drift—diffusion models under these conditions produces an unphysically
high amount of impact ionization. Hydrodynamic/energy transport models
which relate impact ionization to the average carrier energy rather than to the
local electric field are much better for examining such effects in small devices.

Hydrodynamic/energy transport models are also used to treat velocity over-
shoot, which can increase the current and the high frequency performance of a
device. For accurate predictions, great care in specifying transport parameters is
essential, We know, for example, that the ensemble relaxation times are averages
over the carrier distribution, but mest approaches relate these parameters to the
second moment (the kinetic energy) alone. Consider a device like that shown in
Fig. 8.1. Carriers enter the collector with little kinetic energy, gain energy as they
cross the collector, then fose energy at the end of the collector. If we pick a
specific kinetic energy, say 10kpT, then it will occur both near the beginning
of the collector and near the end. Most approaches, which express the mobility as
a function of the kinetic energy alone, would predict the same mobility at the two
Iocations, but careful examination shows that it can be quite different. Tang et al.
[8.12] and Stettler et al. [8.13] discuss these issues, which are becoming increasing .
important as devices continue to shrink. The moral is that one who use§ hydro-
dynamic/energy transport simulations should be aware of the simplifying
assumptions used. At times, it is necessary to test these models by comparing
them to more rigorous approaches, such as Monte Carlo simulation.

The Monte Carlo approach

Drift-diffusion and hydrodynamic/energy transport approaches are based on
simplification of the more general Boltzmann transport equation, but for very
small devices, the BTE itself should be solved. The Monte Carlo method, a
numerical technique for solving the BTE, is becoming an impertant tool for
advanced device simulation. For this approach, the transport component of
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the simulation algorithm (as illustrated in Fig. 8.17) consists of moving each
particle within the device for a time, 4¢ by the Monte Carlo method.

The simulation procedure is basically the Monte Carlo method described in
Chapter 6, Section 5. It begins by speafying the imtial conditions using the
results of a previous simulation, or by employing a simpler method such as
the drift—diffusion approach: The device is sub-divided into small elements,
and each element is populated with electrons consistent with the known initial
conditions. Because it is not generally possible to simulate each electron, a small
sample of typically several thousand electrons is employed. The charge of each of
these super-electrons is weighted to ensure overall space-charge neutrality. After
applying the bias and solving Poisson’s equation, each particle is moved by
Monte Carlo methods for a time, 4¢ Poisson’s equation is re-solved for the
new distribution of super-electrons, and the process is repeated until steady-
state conditions are achieved.

Application of Monte Carlo simulation to advanced device simulation is dis-
cussed in Venturi et al. [8.16] and Fischett: and Laux [8.17]. A key issue is the
coupling of Poisson’s equation to the transport model. Because of the statistical
noise associated with Monte Carlo simulation, charge density fluctuations occur
and can be amplified by Polsson’s equation thereby preventing convergence.
Techniques to suppress the fluctuations, or to minimize their effects, are essential
[8.16, 8.17]. The heavy computational burden of the method also makes it
imperative to carefully structure the program for maximum efficiency [8.14,
8.17].

Figure 8.21 15 a glimpse at some Monte Carlo simulation results. As Fig. 8.21a
shows, the Monte Carlo computed average velocity of electrons in the channel of
a deep sub-micron, n-channel MOSFET is distinctly higher than that obtained
from a drift—diffusion simulation. This effect, a manifestation of velocity over-
shoot, can enhance the performance of very-small transistors. Figure 8.21b
compares the steady-state output characteristics from Monte Carlo and drift-
diffusion simulations. The higher drain current obtained by Monte Carlo simu-
lation is a consequence of the high average velocity of electrons in the channel.
The reduced transit time also affects the transient characteristics; Monte Carlo
simulation predicts a gain-bandwidth product 70% higher than the drift-diffu-
sion prediction for this particular device.

Summary

Semiconductor devices display a rich variety of transport effects, many of which
were illustrated in this chapter. To analyse or design a device, we need to select
an appropriate conceptual framework in which to think about the device. To
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Fig. 8.21 Example Monte Carlo simulations of a silicon MOSFET, {a) Average electron
velocity and energy versus position for electrons in the channe! of a 0.15 wm channel length,
Si-MOSFET. The dashed line for velocity was obtained by the drift—diffusion approach. (b}
Comparison of the simulated output characteristics of a 0.15 um Si-MOSFET. The x
denotes Monte Carlo results, and the O denotes the drifi—diffusion results. [From Venturi
F., et al. [8.16]. Reproduced with permission from IEEE.}

simuiate a device, we need to translate this conceptual framework into a math-

‘ematical formuiation. The appropriate framework is determined by the size of

the device and relevant time scale as summarized in Fig. 8.18. When the poten-
tials in the device vary on the scale of the lattice spacing, then a fully quantum
mechanical treatment 18 required. The wave equation, (1.1), should be solved
with the applied, built-in crystal, and scattering potentials all included. If the
device size 1s larger, but still comparable to the wavelength of the carriers, then
the rapidly varying crystal potential may be factored out and an effective mass
equation solved. If the potential varies slowly on the scale of the carrier’s wave-



359

 REFERENCES ANO FURTHER READING

tength, then quantum mechanical reflections do not occur. When the device size
1s also targe compared to a mean free path, then the collisions randomize the
phase and the various electron waves don’t interfere. For such devices, a classical
approach which treats carriers as particles is appropriate. The most accurate
treatment consists of solving the Bolizmann transport equation directly. For
this approach, the quanfum mechanics appears in the E(p) relation which is
used to evaluate the carrier velocity and in the scattering rates. A somewhat
less rigorous treatment consists of solving the carrier, momentum, and energy
balance equations derived from the BTE. Finally, when the device is large and 1its
response slow, then the balance equations reduce to drift-diffusion equations
with mobility and diffusion coefficients determined by the local electric field.

Most silicon transistors-can still be described by drift—diffusion equations,
although advanced silicon devices are now often simulated with the balance
equation or Monte Carlo approaches. Present-day GaAs devices are generally
not well-described by the conventional drift-diffusion approach. They require
the balance equations, or Monte Carlo solutions to the BTE. Quantum mechan-
ical effects are becoming increasingly important in devices. Quantum confine-
ment affects inversion layer carriers in silicon MOSFETs, and the resonant
tunneling diode uses quantum effects to produce negative differential resistance.
For most of this text, our focus has been on semiclassical transport for which the
wave nature of electrons is not a critical factor. In the next chapter, we generalize
these ideas to show how quantam transport is treated.
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Problems

8.1

83

84
8.5

8.6

Assume that electrons are injected into GaAs from a heterojunction launching ramp like that

shown in Fig. 8.5b. If p, = p, = 0 and p; is initially very small, then

(a) Derive an expression which relates the electron velocity, vy, to the energy step, 4Ec.
"Include the effects of conduction band nonparabolicity as described by

o
2m*{0)

(b) Plot v, versus 4Ec for 0.0 < 4Ec < 0.5eV. Compare the results to eq. {8.33) for para-
bolic energy bands.

{¢) Define an energy-dependent effective mass so that the result obtained in part (a) has the
form of eq. {8.33). Plot m*(E) for 0 < E < 0.5eV.

Assume ballistic transport across the base of a heterojunction bipolar transistor. Compute the

base transit time assuming a heterojunction launching ramp with AE- = 0.3¢¥. Compare the

result with the standard expression assuming that electrons diffuse across the base. Assume

m* =0.067mg, , = 1000cm?/Vs, and Wy = 750 A

Examine the ‘diffusion velocity’ versus ‘diffusion field’ characteristic by answering the follow-

= E(l +aFE).

ing:
(a) Show that an effective field which derives diffusion can be defined as
kyT. Vn

g n’

Eeffeclive =

Hint: examine the gradient of the quasj-Fermi level.
{b) Derive an expression for the average velocity versus effective field [assume that £ =0-and

use eq. {8.11)].
{c) Show that for ‘low-field’ diffusion (i.e. when the concentration gradient is gentle )

- Mﬂgeffective -

(d) Plot the average velocity versus effective field characteristic and show that the velocity

saturates when

ﬁungeffecnve 4 kB Tg/Zm_*.

Derive eq. (8.32), the Mott-Gurney law.

Read the paper: Investigation of transient electronic transport in GaAs fol lowmg high energy

injection, by Tang and Hess in JEEE Transactions on Electron Devices, ED-29, 1906-1911.

This paper presents Monte Carlo simulations of electron injection across a launching ramp

similar to the one illustrated in Fig. 8.5b.

(a) Assume ballistic transport and compute the average velocity for lannching ramps of 0.04,
0.07, 0.11, 0.16, 0.21, 0.27 and 0.34¢V. ‘

{b) Compare the answers to part (a) with the Monte Carlo simulation results presented by
Tang and Hess in Fig. 1a of their paper. Is ballistic transport a reasonable assumption for
such a GaAs device? Explain why the result for the 0.34 eV launching ramp is so different
from the rest.

Use the approach summarized by eqs. (8.50)+8.54) to answer the following.
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(a) Consiruct a plot of electron temperature versus electric ficld. Assume electrons in Si, a
spatially uniform field, and plot the result from 100 to 100000 V/em.

(b) Plot the mobility and the energy relaxation time versus electron temperature for 7, from
100 to 10000 K.

8.7 Use the Monte Carlo simulation results presented in Fig. 7.4a to construct a plot of electron
mobility versus electron temperature. How do the results obtained from Monte Carlo simula-
tion compare with those obtained in problem 8.6b above? :

8.8 Derive eq. (8.54).

8.9 Using the effect summarized in Fig. 8.11, explain why the distribution functions for high-field
electron transport in Si, as illustrated in Fig. 7.6, are skewed towards negative velocities.
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Classical physics describes the everyday, macroscopie, world, but quantum
mechanics  describes the microscopic world of atoms and molecules.
Traditionally, semiconductor devices could be thought of as macroscopic objects
describable by semiclasical concepts (i.e. we describe particle dynamics by equa-
tions like Newton’s law of motion generalized to include the concept of band-
structure). It is now possible, however, to produce devices and structures for
which these semiclassical concepts break down. Such devices are still larger than
the atomic or molecular scale, but they are smaller than some critical length
scales above which traditional transport‘ theories apply. The size scale between
the microscopic and macroscopic regimes is known as the mesoscopic regime.
Our objectives in this chapter are to describe some key approaches and impor-
tant results concerning transport at the mesoscopic scale,
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The mean-free-path for scattering is an important length scale for carrier
transport. One can show (see homework problem 9.1) that the mean-free-path,
A, s related to the diffusion coefficient. D, by D= ivg, where
v & JkgT1/2mm* is the so-called Richardson velocity. For room-temperature
electrons in pure-silicon, A &~ 700 A, while for GaAs, A =200 Al (At T=T77K,
the mean-free-path for electrons in pure GaAs increases to & 1 pn1) Another
characteristic length associated with scattering is the energy refaxation length for
hot electrons, which is'on the order of a few hundred Angstroms for Si and a few
thousand Angstroms for GaAs. Semiconductor devices with critical regions of
this length scale are readily produced. At these length scales, effects such as
quasi-ballistic transport and velocity overshoot come into play.

A second important length scale is the colierence length for the electron wave.
Collisions can umpart a random phase to the electron, thereby washing out
quantun interference effects. For macroscopic devices, phase randomizing scat-
tering dominates, so quantum interference effects can be neglected. For very
small devices, however, one may need to use a wave approach to electron trans-
port. It might be thought that the phase randonization length would be closely
refated to the mean-free-path for scattering, but this is not always the case.
Elastic scattering from ionized impurities, for example, imparts no random com-
ponent to the phase, so interference effects can still occur. Phonon scattering is
phase randomizing, so quantum interference effects are typically difficult to
observe at room temperdture. At low applied biases, only phonon absorption
occurs. At very low temperatures, few phonons are present. Under these condi-
tions, the major source of phase randomizing scattering is electron-clectron
scattering. The electron systems used for these studies tend to be degenerate at
low temperatures, so final state filling greatly suppresses scattering by the (1 — /)
factor. The result is that quite long phase randomization lengths can be obtained
at temperatures of a few Kelvin and below. Under these conditions, it is essential
to treat the wave nature of electrons when describing their transport.

Our purpose in this chapter is to provide an introduction to carrier trapsport
in the mesoscopic regime. Mesoscopic transport is a term usually applied to
quantum transport effects. For a thorough introduction to this field, consult
Datta’s book, Electronic Transport in Mesoscopic Systems [9.1]. In this chapter,
we will also discuss semiclassical transport in structures on the order of a mean-
free-path in length. Since semiclassical transport is more familiar, we will begin
there and introduce a general conceptual picture that will later be extended to
treat quantum transport.

Figure 9.1 shows the conceptual view that we will use to describe transport in
small structures and devices, The device is a structure connected to contacts that
are assumed to be in thermodynamic equilibrium. Each contact injects a known
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Fig. 9.1 A general, conceptual picture of a semiconductor device. The contacts are assumed
to be reservoirs of thermal equilibrium carriers. Each contact injects a flux of carriers into
the device itself (F_ and Fy in this case). A fraction, 7, of the flux injected from the feft
transmits across the device and a fraction 77 of the flux injected from the right transmits to
the left. {a) Equilibrium and (b) under bias. The net flux is F = TF ~ T'Fy.

flux of electrons into the device. If the contacts are heavily doped semiconductors
with ny carriers, then each contact imects a flux of

Foy = (%O')UT (9.1a)

where

Dhen T, ‘
UT:,/—R%Q*—L (9.1b)

is the average velocity of nondegenerate, thermal electrons crossing a plane

(recall homework problem 3.5).
The device itself is described by its transmission coefficients, 7 and 7', and the

net flux through the device is
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an:TFL—T’FR’ (91(:)

where F; and Fi are the fluxes injected from the left and right contacts. The
central problem. then, is to determine the transmission coefficients for the device.
This can. be done either By a semiclassical classical calculation, or by using
quantum mechanics. The general picture i1s a very simple one, but it has also
turned out to"be a.very powerful way to think about transport.

9.2

The scattering appreach to semiclassical transport

Scattering theory (also called the flux method) is formulated in terms of carrier
fluxes and their backscattering probabilities. As shown in Fig. 9.2, we separate
the flux distribution into positively- and negatively-directed fluxes. {Since we use
one average flux to represent the positive portion of the distribution and another
one for the negative portion, we refer to this approach as a one-flux method.) If
the positively-directed flux backscatters, it is reduced in magnitude, but if the
negatively-directed flux backscatters, the positively-directed flux increases. We
can, therefore, write

d ,
d-”: —Ea+ED (9.22)
d? ,
ch: —&a+£'h, (9.2b)
{a) fa
v

(b)

alz) alz+dz)

blz) blz + dz)

'y

Fig. 9.2 lllustration of the scattering approach to carrier transport (which is also known as
the flux method). (a) The carrier distribution is separated into positively and negatively
directed components. (b} Carrier backscattering from a region of length. 4z, changes the
magnitude of the two fluxes.
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where & and £ are the backscattering probabilities per unit length for the right-
and the left-directed fluxes respectively. (We assume steady-state conditions, so
a(z) and b(z) are the position-dependent, steady-state, right- and left-directed
fluxes. We also neglect recombination—generation processes. See [9.3-9.5] for
discussion about treating these effects.)

" If we examine a semiconductor slab with a finite thickness, Az, then as shown
in Fig. 9.3, there 1s a right-directed flux incident on the left face of the slab and a
left-directed flux incident on the right face. The problem is to determine the two
fluxes, b(z) and a(z + Az) that emerge from the slab, which is readily accom-
plished by integrating eqs. (9.2a) and (9.2b) across the slab (see Appendices A
and B of [9.3]). The result can be expressed in terms of the scarrering matrix for
the slab, which relates the two fluxes emerging from the slab to the two fluxes

incident on the slab by

afz+ Az)\ T [ T afz)
( b(z) >_[1‘T 7’ Mb(z+ AZ))’ (9.3)

where T and 7 represent the fraction of the steady-state right- and left-directed
fluxes that transmit across the slab. The column sum of one is a statement of
conservation of flux (recall that we have neglected recombination and generation
within the slab). The elements of the scattering matrices used to describe particle
fransport are real numbers between zere and one (in contrast to the scattering
matrices used for electromagnetic problems for which the elements are complex
numbers).

Scattering theory can be applied to semiconductor devices in two ditferent
ways. One way is to simply integrate eqs. (9.2a) and (9.2b) across the device.
Another way is to divide the device into a set of thin slabs connected so that the
output fluxes from one slab provide the input fluxes to its neighboring slabs. In
both cases, the boundary conditiong are the two fluxes injected from the con-
tacts. The central problem is to specify the backscattering probabilities per unit
length, £ and &', or the transmission coefficients of the finite thickness slabs.

Fig. 9.3 Carrier fluxes incident upon and backscattering from a slab of finite thickness.
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Scattering theory and the drift-diffusion equation

Scattering theory is an alternative to the conventional transport approaches
discussed in earlier chapters of this text. There is, however, a close connection
Between scattering theory and the conventional approaches. Conventional
approaches are formulated in terms of total quantities such as carrier density
and the net current. To keep things simple, assume that each half of the flux
distribution is described by a thermal equilibrium hemi-Maxwellian. The average
velocity of each half is

vt = v = up = 2k, T . (9.4)
The carrier density is related to the fluxes by

- M (9.5a)

ur

n(z)

Similarly, the net electron current is
Ju(z) = (—glla(z) — b(z)]. (9.5b)

Equations (9.2a) and (9.2b) can be manipulated into a more familiar form which
expresses them in terms of the carrier density and the net current density. First,
by subtracting the two equations, we find ’

dJ
= 9.6
L= (9.6)
which is recognized as the continuity equation for electrons (recall again that we
have neglected recombination—generation processes and have assumed steady-
state conditions). Next, by adding the two equations, we find
£ ¢ vr dnm

J(z) = (- }(———/ urn(z) g — . (9.7

@)= e e )
Equation (9.7} has a term proportional to the carrier density and one propor-
tional to the gradient of the carrier density, which suggests that it can be written
in drift-diffusion form. In fact, the suggestion is even stronger because the term
(" — &) should be related to the electric field. In the absence of a field, we expect
that £ = &', and in the presence of an electric field, their difference should be (to
first order) proportional to the electric field-Consequently, we can express eq.
(9.7) as

dn

o (9.8a)

‘])'!3 (Z) = qu/"‘l?g: “EM DI'I

where
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E=&"\(ur
n= o 98b
(5 o

and

Ut
P =Ev ey | 8
As we will discuss in Section 9.4, the backscattering probability per unit length is
simply one over the carrier mean free path, so eq. (9.8c) just states that the
diffusion coefficient is proportional to the product of the mean-free-path and
the thermal velocity, a well-known fact [see homework problem (9.1)].

These results show that there is a close connection between the scattering
equations, eqs. (9.2a) and (9.2b), and the conventional current continuity and
drift—diffusion equation, egs (9.6} and (9.8a). When eq. (9.8a) is inserted into the
continuity equation, eq. (9.6), we obtain a second order differential equation for
the carrier density, n(z). The process has simply converted the system of two first
order differential equations, egs. (9.2a) and (9.2b), into a second order equation

for n(z).

Working with scattering matrices.

To analyze a device in terms of interconnected scattering matrices, we need to
learn how to manipulate scattering matrices. Figure 9.4 shows two intercon-
nected scattering matrices. If we are only interested in the fluxes emerging
from this set of two scattering matrices, by and a,, then we can replace the
two scattering matrices by a single, composite scattering matrix. The procedure
is more involved than simple matrix multiplication, but it is readily derived (see
homework problem 9.2). If the two scattering matrices have elements, 1, {1, f,
and 75, then the elements of the composite scattering matrix are:

Fig. 9.4 Illustration of how two scattering matrices are cascaded to produce a single,
composite scattering matrix. For the composite scattering matrix, indicated by the large
gray box, the incident fluxes are ¢y and by and the emerging fluxes are by and a.
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by =n{l = J'ﬁj"j'z]7132 (9.9a)

== Iy Hrall = 1 _1[1 (9.9b)
\\A\___,,

ry =y nil - riel g (9.9¢)

i = ({1 = rira] '3, (9.9d)

where | = 1 — f, etc. The cascading rules are exactly the same ones that are
used for microwave analysis. Note that by flux conservation, ry; = | — £}, and
I'fz = | _.{{2-

Equations (9.9) describe the multiple reflection processes that occur as a flux
injected from the left or right, transmits across the first slab then backscatters
and reflects from the interiors of the two slabs infinitely many times. To analyze a
device, it is divided into a finite number of scattering matrices which are cascaded
two at a time until the entire device is described by a single, composite scattering
matrix. The two fluxes that emerge into the contacts can then be evaluated from
the known fluxes injected from the two contacts and the composite scattering
matirix. Once all of the fluxes are known, the current through the device can be
obtained by subtracting the right- and left-directed fluxes.

It is somctimes preferable to work with transmission matrices rather than with
scattering matrices. As illustrated in Fig 9.5, a transmission matrix relates the
two fluxes at the left of the slab to the two fluxes at the right. The elements of the
transmission matrix are readily determined from those of a given scattering
matrix (see homework problem 9.3). Cascading two transmission matrices
together is accomplished by matrix multiplication, which is much simpler than
the process for cascading scattering matrices. Using transmission matrices, one
could begin at the left slab of the device and evaluate the fluxes throughout the
device by matrix multiplication from left to right. There are two difficulties.
First, the two fluxes at the left side of the device are not known. We only
know that the left contact injects a known flux into the device, we don’t know

(a)

Fig. 9.5 Ilustration of the difference between (a) a scattering matrix and {b) a transmission
matrix. The heavy arrows indicate the given fluxes and the dashed lines are the fluxes
determined by the scattering matrix or by the trapsmission matrix.
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the flux that emerges until the problem has been solved. There are ways around
this {e.g. iterative solutions), but the second problem is that small errors can
grow exponentially when transmission matrices are multiphed.

94  One-flux scattering matrices
In this section, we derive some simple scattering matrices that describe transport
under conditions that conumonly occur in devices. In the following section, we'll
-apply these scatiering matrices to devices.

941  Transpott across a field-free slab

If there is no electric field present, the scattering matrix is symmetrical, so T =
T' =Ty and £ = & = &. Recall that £ represents the probability per unit length
of backscattering. In the absence of an electric field, this is just 1/, where X is the
mean-free-path for backscattering. If the slab is thin, the probability that a
carrier backscatters while crossing the slab is just dz/i. The scattering matrix
for a slab of thickness ¢z is, therefore,

Cdr odi) [T —ds/a dz/fa
[dS]_[dr dz}*[ dz/> l—dz//\]' - O

Because of the multiple scattering events that occur, it is more difficult to
deduce the scattering matrix for a slab of finite thickness. Within the slab, we

have .
da a b

Since flux is continuous, F = & — b is constant, and eq. (9.11) can be written as

Ejﬁ = —F/)\ (9.12)
dz

and integrated to obtain

a(z) = a(0y — (F/)z. 7 (9.13)

Here, zero is at the left face of the slab. If we again use current continuity,
a(z) = a(0) — [a(z) = b(2))(z/2), ' (9.14)

and evaluate the expression and at z = L, the end of the slab, we find

a(l) = (L : )\) a(0) + (iik) (L) = Tya(0) -+ RiH(L). | (9.15)
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We conclude that in the absence of an electric field, the transmission coefficient
of a slab of thickness L is

A '
T0:1“R0:m:To - : (9.16)

As expected, Ty goes to zero for a long slab and approaches one for a thin siab.

Transport across a thin base
Figure 9.6 illustrates a common situation which represents, for example, the bis:
of a bipolar transistor. Electrons are injected from the left (from the emitter) asd
collected at the right. The collector 1s modeled as an ideal, absorbing contact,
which means that any carrier incident upon it is absorbed (collected) and none
backscatters into the device. A real collector, such as the one in a bipolar tran-
sistor, 1s usually a good approximation to the ideal, absorbing collector.-

Since b; =0, the net flux at the right of the slab (and at the left by current
continuity) is given by

The carrier density at the left is

~lag + Roag)  ap

D14 Ry, (9.18)
1% Ur

1{0)
From eqgs. (9.16)—(9.18), we find

a(0)
F=0u/2)——— 9.19
G/ s (9.19)
which applies for an arbitrary thickness, L, from much thinner than the mean-
free-path to much thicker. When the slab is much thicker than a mean-free-pati.
the flux is also described by a diffusion equation and can be written as

Fig. 9.6 Carrier transport across a semiconductor slab. Carriers are injected st the Jeft and
collected by a perfectly absorbing contact at the right.
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n(0)
By equating these two expressions for the carrier flux in the limit L > x, we find
that the diffusion coefficient is related to the mean-free-path for backscattering
by
D, = hupg, . (9.21)

where vg = vy /2 1s the so-called Richardson velocity.

Equation (9.21) relates the mean-free-path for backscattering to a more famil-
1ar quantity, the bulk diffusion coefficient, but eg. (9.19) applies from the ballistic
to the diffusive limit. When using a diffusion equation, one often assumes carrier
densities at the two boundaries, #(0) and #n(L), and then computes the net flux.
The physically appropriate boundary conditions, however, are the fluxes injected
at the two ends of the slab, a(0) and A(L) [for the perfect absorber at the right,
b(L) = 0]. The response of the slab 1s determined by its transmission coefficient,

1
T T /(DL

and the net flux is given by eq. (9.17). The carrier densities that result from the
injected flux can be written as

T (9.22)

n(0) = UET (2 ;OTU) ©(9.23a)
and
n(L) = ;i- (9.23b)

and it is readily shown that the carrier density varies linearly within the slab. In
the limit of a thick slab, (D,/L) « vg, and one can shows that the net flux is
given by eq. (9.20) and that »n(L) approaches zero, the expected answers for
diffusive transport. On the other hand, for a thin slab, (D,/L) 3 vz, and #n(0)
and #(L) approach F/ur. In this ballistic limit the carrier density approaches a
constant. The average transit time for carriers to cross the slab can also be
evaluated:

L 2 .
fynzdz L7 L. 7 (9.24)

F Cap Yoo

which has the expected limits for the diffusive and ballistic cases.

Figure 9.7 summarizes the results and shows carrier profiles in the diffusive
and ballistic hmits. This simple version of scattering theory accurately describes
transpert as L varies from much Jess than to much greater than a mean-free-
path. Comparisons to solutions of the Boltzmann equation show that the errors
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Carrier concentration

Position

Fig. 9.7 Carrier profiles across a thin slab for a fixed net carrier flux, F, and a perfectly
absorbing contact at the right. Both the ballistic and diffusive limits are shown.

are typically only a few percent. It may be surprising, but one can also derive the
same equations by solving the diffusion equation if one is carcful not to impose
physically incorrect boundary conditions (see homework problem 9.4). The rea-
gon is that, as we showed in Section 9.2, the drift—diffusion equation is equivalent

to the flux equations.

Transport in the presence of an electric field

When an clectric field is present, the scatiering matrix is not symmetrical and
g#E and T # T'. One can determine T and 7' by integrating eqgs. (9.2a) and
(9.2b) across a slab as discussed in Appendices A and B of [9.3]. In this section, we
make some approximations in order to simplify the mathematics. Beginning with
eq. {9.2a) and using current continuity, F = a — b, we can generalize eq. (9.12) to

da , ,
a;+(§—$)a:——F§, (9.25)
which can be solved for
3 ~(&=£")
alz) =~ F + de ° (9.26)
-2 7
where 4 is an integration constant. If £ > 0. then & > £'. According to eq. (9.26).
dma)+ b F (9.27)
(E—-¢&

which, when ﬁsed in eq. (9.26) gives
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~&' & _(st_g’)L
L 5 ) 2
a(l) = - S)F—i—{(z(O)wL(é ) } (9.28)

Finally, using F = a(L) — b(L), we can express eq. (9.28) as

e-lE-E0L

= ) |
G i/s’) ()

{1 e e_@wwﬂ

The transmission and reflection coefficients for a slab of tength L with a nonzero
electric field are read directly from eq. (9.29) as

a(L) = a(0)

(9.29)

B(L).

(5-8§)
R=1-T (9.30b)

’ (El - E)
R=1-T" (9.30d)

Finally, we need to specify the parameters, £ and £". The easiest way to do so is
to recall that the near-equilibrium flux equations are formally identical to near-
equilibrium drift-diffusion equations. According to eqgs. (9.8b) and (9.8¢c),

D E.
=" 9.31)
2% ‘54 5 ) (
If we assume the Einstein relation, we find

£.
E—t)=—r— 9.32)
( GV (

Having specified the difference of the backscattering parameters, we now need
to specify one of them. There are a couple of plausible ways to do this. One isto
assume that for small electric fields,

E=§&+&/2 (9.33a)
and

£ =8-6/2, (9.33b)
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where &; = & — £, Another way to specify the backscattering probabilities, which
also works for large electric fields, is to assume that the flux traveling down the
potential drop is unaffected by the electric field and ail of the effect is felt by the
flux traveling against the electric field. So,

Fng

é‘-:go and 512m+€0 for 52 <0 (9343)

and

g =fandé= _led +& foré&. >0, (9.34b)
(kgTL/q) )

At this point, we should check to be sure that the final result is consistent with
our expectations. For an infinitely long slab, any flux incident on a finite slab
imbedded inside it will be the same as the corresponding flux that emerges (see
Fig. 9.8). We conclude, therefore, that

[S](Z) = (Z) (9.35)

The bulk solution corresponds to the eigenvector of the scattering maftrix asso-
ciated with an eigenvalue of one. This eigenvector is

a\ [(R/R
(b)—( | )b, (9.36)

from which we can find the average velocity as

F - b R~ R
<Uz) = ‘]_’1—- = (E‘E) Ut = (E’-’——R)’UT. (937)

Using egs. {9.30) and (9.33) with L — oo, we find

&

Fig. 9.8 lustration of the fluxes in an infinite, bulk semiconductor.



9.4.3

9.4 BNE-FLUX SCATTERING MATRICES

<m=—@@w. (9.38)

Using &, = 1/h and & = £./(kgT1 /g), we find

)xUR Dn
= - £ = - £ = —u,E., 9.39
T T T T o

which s exactly what we expected.

Transport over a barrier

Figure 9.9 shows the energy band diagram of a barrier with fluxes injected from
the left and right. We can use the methods of the previous section and integrate
the flux equations across the barrier. We expect that the transmission coefficient,
T, from the left to right will be small and depend exponentially on the height of
the barrier while the transmission coefficient for the flux injected from the right,
T', will be large and not depend sensitively on the barrier height. We can develop
the scattering matrix for a barrier directly from the results of the previous
section, but first we develop the results by physical reasoning.

If we assume ballistic transport within the barrier, the scattering matrix is

simply

—AE/kgT 0 :
1= S oammr 0] .40

Equation (9.40) is based on thermionic emission and works adequately when the
net flux is against the barrier. When the carrier fiow is predominately down the
potential barrier, then the junction is a carrier collector. If 7' is 1.0, as assumed

Energy

Fig. 9.9 The carrier fluxes for an energy barrier. The critical distance, {, corresponding to a
potential drop of kg Ty /g s also shown.
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in eq. (9.40), then the collector is an ideal absorbing collector, but there will be
some backscattering from a real collector.

Consider a flux of carriers injected from the top of a barrier of length L, as
shown in Fig. 9.9. If there were no scattering, T’ = 1. If the electric field in the
barrier were very small, then we could calculate 77 in the presence of scattering
using the approach of Section 9.4.2, but the electric field is typically very large in
collectors. Recall that when there is no electric field at all, then R’ Is (Section
94.1)

L
R =—— 9.41)

T L+n

Monte Carlo simulations show that if a carrier penetrates only a little way into
the collector, then even if it backscatters, it has little chance of making it over
the barrier and back out, so the length, L, of the collector is not relevant. Since
carriers enter with a kinetic energy of about kg7, the critical distance is the
distance over which the first k3 7| /g potential drop occurs, as illustrated in Fig.
9.9. We can, therefore, estimate the backscattering coefficient of the collector

by

¢ ¢
2o~ . _ 9.42
CT A T (ks T/qur) -

Note that the appropriate mobility to use is the near-equilibrium mobility (if
near-equilibrium carriers are injected into the collector) because the backscatter-
ing that contributes to Rc occurs before the carriers have acquired much kinetic
energy. So the backscattering coefficient of a collector can be readily estimated
from the low-field mobility, even if the electric field within the collector is high
and strong off-equilibrium transport effects occur.

To modify eq. (9.40) to include the effects of scattering, we must do more than
simply replace the 0 and 1 with R~ and | — Rc. The reason is that detailed
balance would not be satisfied (in equilibrium, the flux injected from the left
to right should exactly equal the flux from right to left). The appropriate scatter-
Ing matrix to use is

- (1 — Ree 2EMsT Re
L5]= [[E SR BEMT] 1R | - | _ (9.43)

where the exponential arises from thermionic emission over the barrier and Re
describes the backscattering of carriers traveling down the barrier. We have
developed eq. (9.43) by physical reasoning, but we could have obtained it directly
from eq. (9.30) using (¢ —~ &)L = AE/kyT.



379

9.5

9.5.1

9.5 ONE-FLUX TREATMENT GF DEVICES

One-flux treatment of devices

Having shown how scattering matrices are defined, we can now demonstrate how,
they are used to describe transport in devices. Only two short examples will be
considered, a p—n diode and a MOSFET. The objective 1s not an exhaustive
analysis of these devices, but merely to illustrate the approach.

Scattering matrix analysis of a p-n diode

Figure 9.10 shows an ap* diode and how electron transport can be analyzed by
dividing it into two scattering matrices. If we describe the barrier by a scattering
matrix, [5,], and the quasi-neutral p-type base by a scattering matrix, [Sg], then
the p—n diode is described by

[Sen] = [S;] @ [Sg], (9.44)

where @ stands for the scattering matrix cascading procedure described by egs.
(9.9). The scattering matrix for the p—n diode 1s found to be

T | — Tén
Spn] = PN ,*’“], 9.45a
[Spn] [1 T Tim ( )

{a}

Energy

Position

{b) a

(s) (Sg)

Fig. 9.10 Illustration of a p—n diode and how it is described in terms of two interconnected

scattering matrices.
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where
TTy
Tong = ———t 2 (9.45b)
T )
and
i TJ/T]é
Tppy = — e, 9.45
N RiRy) )
From Section 9.4.1, we have
; A 1

AEWs T+ ug/(Da/ W)

For the barrier, it is simplest to use the thermionic emission scattering matrix of
Section 9.4.3,

Ty = e~V V/haT (9.47a)
and

Ty =1 (9.47b)
By using these expressions, we find

Ton = T3 T = Tye 9o Vallkal (9.48a)
and

Ton = Tp. : (9.48b)

To compute the current versus voltage characteristic of the diode, we need to
specify the injected fluxes at each contact. At the left,

N
g = (_ilz) by (9.492)
and at the right,
n;
by = |t . 9.49b
2 (2 NA) U ( )

The current through the diode is obtained from the composite scattering
matrix and the injected fluxes as

Ip = q(Tenag — Tonby). : - (9.50)
Using the expressions presented above, we find

‘]D e (](W%Tr) TB ]:]\FDG*C/(L’bi“VA)/f'\’BT _ (H%‘/JVA):I’ (951&)

which can be expressed as
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2
Jp = q(fl—)vRTB(e‘”'*""” -1, (9.51b)
Na
or as
o 7 ,
i (D./ Wg) Vi ke T
Jp =gl | — 2L (e ), 9.51c
P q(m) W) | ) (9:510)
1 UR

Equation (9.51¢) is the conventional result for the current versus voltage char-
acteristic of a p—n diode — except that it is reduced by a factor of [I + @%‘f@]_l.
In the limit that the base is wide, (D,/W3) < vg, and eq. (9.51¢) reduces to the
conventional result. In the limit that the base is thin, Ty — 1, we find

2
Jp = g(f]\;'_>uR(efﬂ’-v’keT -1, (9.52)
A

which gives the current in a p—» diode with a ballistic quasi-neutral base.

The scattering analysis of the p—n diode produces simple results that apply
over a wider range than the conventional treatment. The conventional approach
does not treat transport across the barrier itself bit, rather, imposes a boundary

condition,
2

Ar(0) = n(0) — n,(0) = (%_) (etVa/BsT 1y (9.53)
A

at the beginning of the quasi-neutral base. We can check the validity of eq. (9.53),

which is known as the Law of the Junction, by using our scattering theory resutts.

The carrier density at the beginning of the base is, therefore,

(TJaO + TJCI()RB + TBbz)
vt

#(0) = R B R (9.54a)
ur vr

Using the expression for 75 that we developed earlier, eq. (9.54a) becomes

2
An(0) = (%)(WA/"HT ~Dx F iR.B], - (9.54b)

which is the Law of the Junction, eq. (9.53), multiplied by a correction factor,
For a thick base, Ry — 1, and eq. (9.54b) approaches the Law of the Junction,
but for a thin base, Ry — 0, and eq. (9.54b) is a factor of two smaller than the
value given by the Law of the Junction.
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The p—n diode example shows how scattering theory is applied to devices. For
a more complete treatment of this particular problem, including the effects of
scattering in the barrier, see Tanaka and Lundstrom [9.5].

e

Scattering matrix analysis of a MOSFET

For low drain biases, a MOSFET acts as a gate voltage-controlled resistor with
the drain current given by '

W
Ingn = teirCox(Vigs — V’r)(f) Vs Vbs < Vpsars (9.55a)

while for large drain bias it acts as a current source with the drain current given
by

[Dsat = H/Cox(v(o))(VGS - VT) VDS = VDsaU (9-55}3)

where (v(0)) is the average velocity at the source end of the channel. As
MOSFET channet lengths approach zero, questions about the limiting perfor-
mance of the device become hmportant. According to eq. (9.55a), the channel
resistance is proportional to L, so it should approach zero as L — 0. It is not
clear what value {1{(0)} will approach. For some time, it was thought that because
short channels fead to high electric fields, the saturation velocity would be the
limit, but it 1s now understood that velocity overshoot occurs in short, high-field
regions, which has led to the belief that (u(0)) can exceed wv,,. Questions like
these are readily addressed by a simple scattering theory of the MOSFET.

Figure 9.11 shows the energy band diagram of a metal--oxide~semiconductor
fleld-effect transistor (MOSFET). Since electrons are injected out of the source
and drain and into the channel, we could describe the MOSFET by three inter-
connected scattering matrices. However, we can simplify the problem by making
an assumption similar to the Law of the Junction for the diode. A quasi-equili-
brium assumption that the electron concentrations at the drain and source ends
are set by the gate voltage as they are in equilibrium results in

gns(0) = Coi(Vgs — V1) Vas > V1) (9.56a)
and
gns(L) = Cox(Vgs — Vps — F1) (Vgs = Vs + V1) - (9.56b)

where ¥7 is.the threshold voltage. (It should be understood that ng is zero if the
terms in the parentheses in eqns. (9.56) are less than zero.) The use of these quasi-
equilibrium assumptions in the channel of a MOSFET where the conditions may
be far from equilibrium is known as the Gradual Channel Approximation. In
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{al Source Gate Drain

b
() a a
—_ >
S}
b(] bL
-~ -

Fig. 9.11 Illustration of a MOSFET (a) and how it is described in terms of a channel
scattering matrix (b).

contrast -to the first example, we don’t view the injected fluxes as being fixed,
rather the MOS electrostatics fixes the carrier densities.

Before we can evaluate the Ipg versus Vg characteristic, the channel reflection
coefficient must be defined. The channel is a collector from source to drain and a
barrier from drain to source, so the channel reflection coefficient can be obtained
from eq. (9.43) as

_ S —qVos/keT
mﬂJ:[(lRfc)[l(ﬁiRggg%yhT]}, ©.57)

where R¢ is given by eq. {9.42) or by eq. (9.41).
Having defined the scattering matrix, we can write the drain current as

Ins = qlagTen — b TE)W, (9.58)
where

Ten=1-Re

and

T, = (1 = Ro)e™os/nt, -

With the use of these results, eq. (9.58) becomes

In = gW(t — Re)ag — bre @7 os/iT). (9.59)
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A general solution to eq. (9.59) would give the /; versus Fpg characteristic for
the MOSFET. The solutions are algebraically simple for two limiting cases.
Consider first the ohmic region, where Vpg < kg7 /g. In this case, ¢y = b, and
Re = Rep as given by eq. (9.41). After expanding the exponential in eq. (9.59),

-we find

: 14
Toww = aW0 = Rt (4125, 0.60)
B .

To proceed, the injected flux, A; , must be specified. To do so, we add the positive
and negative fluxes at the drain end of the channel to find

vr

ng(l) =

With the Jow bias assumption of ¢y &~ b and using eq. (9.57) for the channel
scattering matrix, eq. (9.61a) becomes

COX
by = ns(L)vg = P Vos — Vrlug. (9.61b)
From eq. (9.41), the backscattering coefficient at the beginning of the channel is
l - Reg = *
=TI

Using these results in eq. (9.60), we find

WCox AUR
- Veo— V)
Dlin L—H&(kBT/q (Vgs )VDs
or
w
Iotin = tetr Cox(Vos = Vi) 5—— Vs Vos < kgT/g. (9.62)

L+

Equation (9.62) is a generalization of the standard result, eq. (9.55a). It shows
that as the channel length approaches zero, the current approaches a finite value.
Alternatively, it says that the drain-to-source resistance has a fundamental lower
limit. This resistance is analogous to the fundamental quantum contact resis-
tance of s/2¢> that is observed in mesoscopic devices at low temperatures (see
Section 9.9). The effect is important when the channel length is on the order of a
mean-free-path for scattering.

The second case of interest is for Vs 3 kg T /¢ for which eq. (9.59) simplifies
to

[D ~ qWTCha(}. (963)

Since the flux injected at the drain end of the channel cannot transmit across
when the drain voltage 1s high,
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R
ng(0) = Lot Keco) +U cto) (9.64a)
T

from which we find

Cou(Vgg — V-
flo — OX( GS T)UT . (9.64b)
- gl +Re)
By using eq. (9.64b) in eq. {9.63), we finally obtain
Ip = WCy (v(0) (Vs — V1) Vs > kg1'/q (9.652)
1 - Re

0y = : 9.65b

w0 = (157 o (9.6

There is 4 difficulty in using eqs. (9.65) because the channel reflection coeffi-
cient, R, depends on the potential drop within the channel as given by eq.
{9.42). To estimate the potential drop, a self-consistent treatment 1s required.
Nevertheless, eq. (9.65a) does clearly specify the limiting current through the
device; it occurs when R approaches zero and the channel becomes ballistic.
In this limit, {1{0)}) — vy. The thermal injection velocity sets the upper limit for
the drain current; its value may exceed v,,,. Velocity overshoot may occur within
the channel, but it does not directly control the drain current. It can, however,
influence the self-consistent electric field in the channel and therefore affect the
drain current by changing the critical distance, ¢ in eq. (9.42).

9.6

Discussion: semiclassical transport

The version of scattering theory that we have described deals with the average
fluxes traveling in the positive and negative directions and with average mean-
free-paths for scattering. Equations (9.2) were written down by simple, physical
reasoning, so the question of how scattering theory is related to the Boltzmann
equation arises. -Equations {9.2) can be derived from the Boltzmann equation by
taking moments, but instead of summing over all momentum staiés, as in
Chapter 5, we only sum over the positive or negative states. For example,

a(z) :é > uflzp). , (9.66a)

T pp>0
Alternatively, eqs. (9.2) can be obtamned from an integral solution to the
Bolizmann equation as discussed in Alam et al. [9.7].
Instead of deriving an equation for the average carrier flux from the
Bolizmann equation, we could use scattering theory to solve the Boltzmann
equation. Instead of writing the average flux as a scalar, we discretize momentum
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space into M orthogonal basis functions (the simplest being cubic bins represent-
ing a volume dp.dp,dp. of momentum space) and write the flux as an M x 1

vector,
a,(2) -

la(z)) = ([2:(2) . (9.66b)
au(@)

where each element represents the flux carrie@iby a discrete ‘mode’ in momentuin
space. The vector, |a(z)) is a discrete representation of the flux distribution in
momentum space. The generalization of one-flux scattering theory to a rigorous
treatment of semiclassical transport leads directly to the Boltzmann transport
equation.

To pursue these ideas further would carry us too far astray. Our objective here
has been merely to convey the spirit of scattering theory and to show that even in
a simple form it presents a useful way to think about transport in small devices.
Those interested in exploring the connections to the Boltzmann equation should
consult Alam et al. [9.7].

9.7

The tunneling approach to quantum transport

We now consider a different class of devices, those for which transport is con-
trolled by quantum mechanics rather than by Newton’s laws and scattering.
Quantum transport can still be analyzed in terms of transmission coefficients.
Our approach will follow that of Datta quite closely. The reader is referred to
Datta [9.1, 9.2] for additional details.

Figure 9.12 is an illustration of a ‘quantum device’. For such devices, the
transmission coefficients depend strongly on the energy of the injected carrier.
(1t is easier for high energy carriers to tunnel through the barrier, and for the
double barrier structure shown in Fig. 9.12, resonances occur which produce
very high transmission at critical energies.) We should, therefore, generalize
eq. (9.1c) to resolve the incident fluxes and transmission coefficients in energy
{or momentum) space. To begin, we assume spatial variation in only one direc-
tion and write the flux from the left contact as

1 1 1 : s
== vfi(E—Er)=— > — ) vfilE~Er) 9.67
L QZP: il FL = /Z):L/Z: Sl FL). (9.67)
where {7 is Fermi function in the left contact, and £, is the Fermi level there.
The sum over momentum states has been separated into a sum over the trans-
verse momentum states, p,, (in the x—y plane} and the longitudinal states, p.. The
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Y

Energy

Position

Fig. .12 A general picture of a device for which quantum transport dominates. The region
within this device requires a quantum mechanical evaluation of the transmission coefficient.
The particular device shown here is a double barrier device which shows resonance at

critical energies.

sum over p. can be converted to an integral over energy (see homework problem
9.6) to write eq. (9.67) as

21 .
I R ©.6%)

where the transverse momentum states have been labeled by the index, n. To
define the current that transmits from the left contact to the right, we define 1,
(E) as the fraction of electrons incident from transverse momentum state » in the
left contact that transmit across to transverse momenfum state m n the right
contact. We can then write the electric current as

-2 ' . -2
hoown =25 [ EVE = Er0E = S0 S [ TUEAE = B

a0

(9.69)

where

TAE) = tul£) (9.70)

is the probability that an electron injected in transverse momentum state, #, from
the left contact transmits across the device into any of the m transverse states in
the right contact. Following the same procedure for the current injected from the
right contact, we obtain the net current as

=g = Tret) = 0 3 [TUEVLAE = Eru) = TI(EVR(E = el

9.71)
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Finally, we note that for elastic scattering events, T(E) = T'(E) (we proved a
similar property for S(p, p’} in homework problem 3.10), so that we can write
our final result for the current as

-2
1==2%" J TAENfL(E = Epy) = fR(E ~ Epp)JdE | . (9.72)

Equation {9.72) is widely used to evaluate currents in situations for which
quantum mechanical tunneling dominates. The assumption that T(E) = T'(E)
can be justified when elastic scattering dominates. (Equation (9.71) is more gen-
eral, but the evaluation of 7 and T’ in the presence of quantum mechanical
tunneling and inelastic scattering is quite difficult.) When the cross-sectional area
in the x—y plane is large, then the sum over transverse momentum states can be
converted to an integral and evaluated analytically (see homework problem 9.7).
For structures with small lateral dimensions that we will discuss in Section 9.9,
there are few transverse modes, so the contributions of each can be added.
Finally, one may ask why there is no [1 —f%] factor in the first term of eq.
(9.72) or a [1 — f;] factor in the second term. It would appear that these filling
factors should be present to account for the fact that the final state to which the
electron is being injected may be filled. It is easy to show, however, that these
factors cancel out, when the scattering is elastic, as eq. {9.72) assumes (see home-
work problem 9.8} More generally, however, the question arises as to whether
they should appear in eq. (9.71). It turns out that they should not appear when T
and T are appreciable because in this case, the states on the left and right of the
device are not isolated, but rather a single scatiering stare that includes incident,
transmitted, and reflected components. Sce Datta [9.1] for a discussion of this
subtle point.

According to egs. (9.71) and (9.72), devices controlled by quantum, mechan-
ical transport can be analyzed in much the same manner as classical devices, we
just need to calculate the transmission coefficients properly.

Calculating transmission coefficients

Figure 9.13 shows a simple potential energy step. Classical particles would trans-
mit across with a probability of unity if their energy were higher than the step
and would not transmit at all if their energy were lower. From a quantum
mechanical perspective, we expect reflections to occur and to modify the result.
To calculate the transmission coefficient, we begin with the time-independent

wave equation,
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oL, 5l07) \_f\/\"> ehan \M" o, gl0%

|
0
Position

Fig. 9.13 lilustration of a potential step and the incident and emerging waves used to define

a scattering matrix.

o\,
(i )kuy+aunwur—5wn, (9.73)

2m*

where Ecg(r) is the bottom of the conduction band as determined by the self-
consistent electrostatic potential and any compositional variations if the device 1s
a heterostructure. If we assume spatial variations in the z-direction alone, then
writing the solution as P(v) = x{x, »)e(z) leads to an equation for &(2),

2t d :.2

) (_h—) T L Eepiaa0) = (- B0l (9.74)

where £, represent the transverse energy (see homework problem 9.9). Equation
(9.74) can be written more compactly as

@éaJrgis(:)ab(z) =0, (9.75)
dz- h*

where

e(z) = £ — L — Egl2). . : (9.76)

In solving problems with the wave equation, note that £, the electron’s energy, is
a constant, because we assume that no inelastic scattering events take place.
Because we arc solving a wave equation, interference effects can occur.
(Phonon scattering would impart random phase changes to the electron, which
would tend to wash out interference effects.)

Consider now our potential step problem. The conduction band is piecewise

constant, so we have
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E=¢g =FL£—FE —E¢ z =<0 (9.77a)
t cl

=gy = FE— E — Ero, z>0 (9.77b)

where £, is constant because the potential energy does not change in the x—y
plane. Because g is constant on either side of the interface, we can write the
solutions to eq. (9.75) as

P(z) =" fre T 220 (9.78a)
P(z) = e, z>0 (9.78b)
where

ky = \/2m*e /A (9.79a)
ky = /2m*e; /1. {9.79b)

To solve for the amplitudes, r and ¢, we impose the two boundary conditions

- that ¢ and d¢/dz are continuous at the interface to find

l+r=1¢ (9.80a)

k(1= 1) = thy, (9.80b)

which can be solved for

ke, — ks

. 2 9.81a

TS T (9.81a)
2k,

. 9.81b

kl +k7 ( )

The procedure for evaluating » and ¢ can be used to evaluate r" and " i the
reverse problem; a wave traveling in the —z-direction and that is incident from
the right. The solution is the same, except that k; and &, are interchanged,

1 k?"[(i

¥o= — 982&)
A (9.82a;

’ 2k?

= =, 9.82b
k} +]C2 ( )

The results for this problem can be summarized compactly in terms of a
scattering matrix (Fig. 9.13). If we have incident waves from the left, ¢;_ z(07)
and from the right, bp_(07), then we can relate the emerging waves to the
incident waves by a scattering matrix and write the result as
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¢L~»R(O:)] !:f "I][@_-»R(O)] .
ik ' : 9.8
[¢R-—>L(O ) vt ]| dro(0T) (9.83)

Note that the elements of this scattering matrix related the amplitudes of the
incident and emerging waves; in general, they are complex numbers, and ¢+ r

need not sum to unity.
To relate the fluxes on the two sides of the barrier, recall the definition of the

quantum mechanical probability current,

h * ES
J =5 =7 (Ve) — ¢V (9.84)
i
Using the wavefunction, eq. (9.78), we find
Rk, 3 -
J = ——T(l - [f’[‘) = ‘]in(' - ‘]reﬂ z=<0 (9833)
e :
i
=2 i = gy 2> 0. (9.85b)

Current reflection and transmission coefficients can be defined as

R= J/‘éfﬂ/‘]fff(’ = frEQ (9863)
and
T = Jyuns/ ine = 11002 /K). (9.86b)

By the same techniques, we can show that R’ = Rand 7’ = 7T. The final result is
that we can relate the emerging currents to the incident currents by another

scattering matrix,

IR0 _ [T R’ [JM(M 087

Jr-1p(07) R T'|{ Jpr (0D [ '
When relating currents, the elements of the scattering matrix are real numbers,
and 7 4 R =1 expresses current conservation. This scattering matrix is much
like those we computed for semiclassical transport, but 7 and T are evaluated
by solving the wave equation and ignoring inelastic, phase randomizing scatter-
ing. Figure 9.14 is a sketch of 7 from eq. (9.86) for the potential step. Below the
top of the energy step, 7 = 0. When the energy is just above the step, T begins to
increase, but quantum mechanical reflections are strong. As the energy-increases,
T approaches unity as for the classical calculation.

Cascading amplitude scattering matrices

We consider now the scattering matrix for the more complex structure sketched
in Fig. 9.15. For this structure, we expect resonances because the reflections
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1 Classical

Quantum

0 E,
Energy
Fig. 9.14 The expected transmission coefficient versus energy for the potential step of Fig.
9.13. Classical and quantum mechanical treatments are shown. (The height of the potential

energy step is £,.)
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Fig. 9.15 A barrier with an electron with energy above the barrier incident.

occurring at z = 0 and at ¢z = & will interfere. We already know the amplitude
scattering matrices for the potential step at z = 0, and a similar matrix describes
the step at z = d. It’s easy to show that for the region in between where the

potential energy is constant,
¢ropld )] ei*a? 0 ]:¢’L—+R(O+)
[QSRA;L(O+)} - l: 0 el/x’w(f] (?R»L(dh) ' (988)

We can combine these three scattering matrices using the cascading rules given n
eqs. (9.9); the result is [9.2]



399

9.8 CALCULATING TRANSMISSION COEFFICIENTS

[z:iig” - [fﬁ “ } Lf:i((%] 9.89)
where
L 1’ L
LI (9.902)
and
12/
ry =l = f(l‘*% 9908

2
1 —ree

The current transmission coefficients for the structure can also be evaluated to

find

72

Ty =530 = 9.91a
b= 8l = T TR eos kd ©-91a)

and

2R — 2R cos2k,d
Ry = |rpl* = S— 9.91b
B = 1Bl = TR 2R cos 2iyd ©91b)

As expected by current conservation, Ty + Rp = 1. .

This example shows the resonances that can occur when quantum mechanical
interference effects are not washed out by phase randomizing scattering.
According to eq. (9.91a), 75 = | when 2k»d = n(2x), or when ¢ 1s a multiple
of Lg/2 where Lp is the wavelength of electrons in the middle region. When this
occurs, reflections at z =0 and at z = ¢ add in phase. To evaluate these inter-
ference effects, we need to cascade amplitude scattering matrices then determine
the current transmission matrices from the composite scattering matrix. If we
cascade the current scattering matrices, then all phase information is lost and no
interference effects occur. This is the essential difference between quantum and
classical transport. In quantum transport we multiply transmission amplitudes: in
classical transport we multiply transmission probabilities.

Interference effects in these kinds of structures tend to be weak at room
temperature for two reasons. One is that phonon scattering imparts random
phases to the electron waves, which washes out interference patterns. Another
is that a thermal distribution of electrons is incident on the barrier. Each electron
in the distribution has a different wavelength, and the overall effect is the sum of
many interference patterns with different wavelengths. If the meaSurements are
done at low temperatures and biases, however, interference effects are readily

observed.
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Tunneling

In the previous example, we assumed that the electron energy was above the
barrier; it is also interesting to see what happens when the electron energy is
below the barrier as illustrated in Fig. 9.16. We still have

k| = }MIER;—ECI) (9.92)

but now k,, which will be imaginary, is written as

ey =iy =i 25?4££3;z;::§2_ L (9.93)

The scattering matrix for the barrier is found by cascading three scattering
matrices as before to find [9.2]

14437
[B - ) 4 T2 3 (9943)
(ky +1y) — (k) —iy) e
and
A
VAWA =
§ U aVaA: o
o <+« N\
L
¢
{ |
0 d
Position
L
‘l -
d1
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d,>d,
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Energy

Fig. 9.16 (a) A barrier with an incident electron with energy below the barrier incident. (b)
The expected transmission coefficient versus energy.
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/{2 2 =
ki+y)(1—e ) (9.94b)

'pn = .
BTk ) = (kg — i)l

The current transmission coefficient for this barrier can be written as

= 1 (9.95)
B (EC'Z — ECl)g 831’11’13 )/d' ’

4(E = Eci)(Ec: — E)

If the energy is well below the top of the barrier, then yd > 1, and eq. (3.95) can
be simplified as

4(E — Ec1)(E_c2 - £) o (9.96)
(£ = Ec1)”

B

Equation (9.96) is an interesting result because classically we would expect that
if the electron’s energy were below the barrier, it could not transmit across.
Quantum mechanically, there is some probability that the electron can runnel!
through the barrier. The tunneling probability depends exponentially on the
thickness and height of the barrter.

Resonant tunneling

Finally, let’s consider one more problem. Figure 9.17 shows two tunneling bar-
riers in series separated by a distance L. Equations (9.94) give the amplitude
scattering matrices for the two identical tunneling barriers, and there is a uniform
region described by an amplitude scattering matrix like eq. (9.88) in between. By
cascading the three scattering matrices, we can show that [9.2]

3 kL

fge
r’) — ﬁ . 997
B i — I‘Eei"k‘L ( )

The corresponding current transmission coefficient for the double barrier can be
written as [9.2]

4Ry - B
Thg = llzsl2 = {:l +7;7Esmz(/c1L — 9)] 7 (9._98)

B

2 21
where r§ = Rpe™.

Figure 9.17b compares the current transmission ceefficients, Ty and T,g for
the single and double barrier structures. The striking feature 1s the strong reso-
nances and unity transmission that occur at certain critical energies. An electron
that may have a small probability of tunneling through a single barrier can go
through two barriers in series with no attenuation at all. This resonant tunneling
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Fig. 9.17 A double-barrier structure with an electron with energy above the barrier
incident. (a) The structure and (b) the current transmission cocfficient versus energy.

is a consequence of quantum mechanical interference and would have been
completely missed had” we cascaded the current transmission matrices for the

three regions.

Resonant tunneling diedes

Resonant tunneling is a phenomenon that can be used to realize useful electronic
devices. Figure 9.18a shows a simplified energy band diagram for a resonant
tunneling diode under four different bias conditions. Figure 9.18b shows the
corresponding current versus voltage characteristic. Under zero bias, the currents
carried by electrons injected {rom the left contact cancel with those injected from
the right contact, and no current flows. The resonant energies for transmission
through the double barrier correspond to the energy of the quasi-bound states in
the quantum well between the two barriers. (These are referred to as guasi-bound
states because the barriers are thin enough that electrons in the well eventually
tunnel out.) A bias on the anode lowers the energy of electrons in the anode so
that there are fewer available to tunnel through the double barrier. A current,
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Fig. 9.18 (a) Schematic energy band diagram for a resonant turnneling diode under four
different bias conditions. {b) The corresponding /—¥ characteristic for the resonant

tunneling diode.

due to electrons from the left contact tunneling through the double barrier,
begins to flow.

As the bias increases, the resonant tunneling energy aligns with the average
carrier energy in the cathode, and the current becomes very large. A further
increase in bias, however, removes the resonant tunneling condition, and the
current plummets. Further increases in energy increase the current slowly
again, until a second resonant energy is aligned with the cathode and a large
current flows again. The key feature of the device 1s that a region of negative
differential resistance occurs which can be exploited to produce oscillators.
Alternatively, digital circuits with multiple stable points can be realized to pro-



98

P

94

TRANSPORT IN MESOSCOFIC STRUCTURES

duce multiple level logic circuits. See Weisbuch and Vinter [9.8] for a brief dis-
cusston of resonant tunneling diodes.
We should note that our discussion of the resonant tunneling diode assumed

_that no inelastic scattering occurs. Since an electron in the well between barriers
R .

eansgeflect back and forth many times before tunneling out, inelastic scattering
events can occur. [t can be shown that. negative differential resistance still occurs,
even when the tunneling process is sequential, through the first barrier into the
well where the phase is randomized, then from the well out through the second
barrier. Inelastic scattering also increases the valley current, the minimum
current which occurs between resonances.

The tandauer formula

Equation (9.71) is used to describe ballistic quantum transport under arbitrary
biases. An important class of problems concerns transport under low biases in
degenerate electron gases, frequently at low temperatures. Figure 9.19 shows a
quantum device that uses two-dimensional electrons obtained from a modula-
tion-doped structure. Again, there are two contacts, assumed to be in thermo-
dynamic equilibrium, across which a small bias voltage, I/, is imposed. The two
contacts are connected by electron ‘waveguides’ of width, W, to a ‘device” struc-

(a)

Gahs

2Defectr6ngas o ri
|

l
Fig. 9.19 Hlustration of a 2D quantum device. {a) Top view and (b) cross-section showing
how it is constructed in a modulation-doped structure using 2D, confined electrons.
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ture described by a current transmission coeffictent, 7,,,. (We will assume that
only elastic scattering exists, so that 1, = T,,.) Equation (9.71) can be used to
describe the current versus voltage characteristics of such a quantum device.

This bias voltage across the quantum device lowers the Fermi energy in the
right contact; since the bias is small,

Y
R (4] (9.99)

In a degenerate electron system, the Fermi function changes from one to zero
over a range of a few kg7 about the Fermi level. At low temperatures,

of
2p (k). (9.100)

The result 1s that eq. (9.72) becomes
2

2 M 2
q 24, =
== E :T,,(EF)VD = TMT(EF)VD, (9.101)

n=|\

where M is the number of transverse modes in the electron waveguides connect-
ing the contacts to the device itself and T(Eg) is the average mode-dependent
transmission coefficient at the Fermi energy. For resonant tunneling devices, the
cross-sectionad-ares, A4, is typically large, and the sum over transverse modes in
eq. {9.72) can be converted to an integral (see homework problem 9.7). For
mesoscoplc devices like that sketched in Fig. 9.19, however, the number of
modes as determined by the width of the electron waveguides is small, so we
count them rather than integrating over them.
Equation (9.101) gives the conductance of a quantum device as

240 -
G = —Z—MT(EF) , (9.102)

which has become known as the Landauer formula and has been widely used to
interpret experiments and guide thinking in the exploration of mesoscopic trans-
port physics [9.1, 9.9]. According to the Landauer formula, the conductance of a
mesoscopic device is the product of some fundamental constants, the number of
propagating transverse modes, and the transmission coefficient of the device. It is
interesting to note that even in the ballistic limit where 7" = I, there is still a finite
conductance (or resistance) for the device. Each mode has a resistance of
12.9kQ, which is interpreted as a contact resistance due to the rearrangement
of charge between the contacts and the device. For a large device, there are many
transverse modes, and this fundamental resistance becomes negligibly small, but
as-devices shrink, it may become important.
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Quantized conductance

To actually compute the conductance of a Qua‘htum device, we need to compute
its transmission coefficient and the number of transverse modes. Consider the
number of modes and recall from Section 1.4.1 that each state oécupies a space,
27/ W in k-space. The number of transverse modes is, therefore,

Yep
M= 9.10
Qr/ W)’ | .103)

where kg is the maximum wavevector in the degenerate electron gas system, and
the factor of two arises because states from —kg to +4y are occupied. Recall
from Section 1.5.2 that in a degenerate 2D system,

ng = i (9.104)

(Section 1.5.2). We find, therefore, that

M= \/ZJ—IW (9.105)
bid

so the number of transverse modes, and therefore the conductance, is propor-
tional to the width of the electron waveguide and to the square root of the
electron density,

Figure 9.20a shows a device in which these features of quantum transport are
displayed clearly. The active portion of the structure consists of a region with
metal gates that can electrostatically control the width of the conducting region.
A classical theory would predict that the conductance of the device would
increase linearly as the width, W, increases, According to the Landauer formula,
however, the conductance should increase in steps as M increases i steps. The
measured results, shown in Fig. 9.20b, clearly show that G increases in steps.
Since the length of the active region is so short, there is little scattering, and
T =~ 1. For this reason, each step increase in & corresponds very closely to the
quantum of conductance, (2¢° /). :

Quantized conductance very clearty shows that non-classical transport can
occur in small structures at low temperatures. To observe these effects, the
device needs to be small, so that a few transverse modes are involved. The
temperature also needs to be low and the length of the critical region short so
that 7 =~ 1.
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Fig. 9.20 Quantized conductance. (a) The device structure; {b) The measured conductance
versus gate voltage. (From [9.9].) (Reproduced with permission of American Institute of
Physics.) '
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Conductance fluctuations and sample-specific transport

In the preceding sections, we discussed coherent quantum transport and pointed
out that inelastic scattering washes out quantum interference effects. It is also
Interesting to examine what happens when there is a random array of static
scatterers (such as randomly located impurity charges), but little inelastic scatter-
ing. Figure 9.21 is a sketch of a resistor containing randomly located scattering
sites. One might expect that because the scatterers are randomly located, inter-
ference effects would average out and a classical calculation would suffice. If the
resistor is wide, many transverse modes will be occupied, which should further
average out quantum interference. We find, however, that quantum transport
effects still occur, even with many propagating transverse modes, in the presence
of such disorder.

Strong localization
The resistance of the 2D resistor shown in Fig. 9.21a is given by the Landauer

- formula as

(a)

{b)

L Semiclassical

Conductance
=
z
=
<
=

Quantum average

Location of a single impurity

Fig. 9.21 Conductance fluctuations. (a) A 2D resistor with randomly located scattering
sites, (b) The expected conductance as a single impurity is moved. (After [9.1])
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h 1 .
Bo= c
4 (2[/3> AT (9.106a)

where we use the symbol, %, for resistance to differentiate it from the R used to
denote reflection. It we were to calculate the resistance classically, we would use
eq. (9.16) for T to find ~

I I L
A= 3 R el e 9.106b
(2q-M ) (2(/') MA ( )

The first term 1 eq. (9.106b) 1s independent of the length of the resistor and is
identified as a contact resistance (it is the limiting resistance that occurs when
T = 1). The second ferm, which is propoertional to the Z, is the resistance of the
resistor itself. The resistance is determined by the mean-free-path for scattering,
which in turn is determined by the averaged density of the scattering sites.
Quantum mechanically the transmission ceefficient is determined by reflection
from the scattering sites and by interference between the various reflection paths.
The resistance should depend not only on the number of scatters, but also on
exactly how they are arranged. For a given number of scattering centers, each
sample will have a different resistance depending on how the scattering sites are
arranged. [t only makes sense, therefore, to talk about the average resistance of

an ensemble of resistors.

Classically, the resistance is proportional fo the length of a resistor (i.e. to the
number of scattering sites). If phase randomizing scattering is weak, however, the
resistance will increase exponentiaily if the resistor 1s long enough so that its
resistance is ~ (h/zqz). According to eq. (9.106b), this effect, known as strong
localization, occurs when the resistor is longer than

Le= M2, (9.107)

which is known as the localization length. Practical wires or resistors are com-
posed of phase coherent segments which are short compared to the localization
lerigth so that strong localization does not occur, and the resistance scales with

length.

Weak localization

When the resistance is less than ~ (5/2¢*), quantum mechanical effects can still
influence the performance of a resistor. Since the resistance is determined by an
interference pattern set up by multiple reflections from the impurities, if a single
impurity 1s moved, the mterference pattern will change, which will change T{Ey)
and, therefore, the conductance. Alternatively, if the electron density is changed
{perhaps by a gate above the resistor), then kp will change which, by changing
the electron wavelength, wiil change the mterference pattern. (The same effect
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also occurs if a small magnetic field is applied.) Figure 8.21b shows what happens
when a single impurity is moved across the width of the resistor. Two effects are
worth noting. First, the conductance fluctuates as the interference pattern
changes, and the magnitude of the fluctuations is about 2¢4°/k. The second effect
to note is that the average value of the quantum mechanical conductance is 2q2//z
less than the classical value.

The surprising thing about the fluctuaticns is not that they occur but that they
have a untversal value of ~ 2q2/h independent of the size of the average con-
ductance itself. One might have expected that the size of the fluctuations would
vary as 1/M, where M is the number of modes, so that if the conductance were
high, it would unply many transverse modes, so that the fluctuations would be
small. In samples that are large compared to a phase relaxation length, however,
these universal conductance fluctuations are not observed. Fluctuations occur in
sub-elements of the resistor with dimensions of a phase relaxation length, but
these sub-elements are uncorrelated so the fluctuations average out in large
samples. A discussion of why the magnitude of the conductance fluctuations
has a universal value is heyond the scope of this discussion; the interested reader
should consuit Datta [9.1].

Intuitively, we might have expected fluctuations in the presence of disorder,
but the lowering of the average conductance due to quantum mechanical inter-
ference is something of a surprise. The following simple argument helps explain
why this occurs [9.1]. We begin with the Landauer expression for the conduc-
tance of the resistor,

2¢°

G==-M(1-R (9.108)

and recall from eq. (9.16) that in semiclassical transport,
L
Re = 9.109
L= K )

where the subscript, CL, denotes semiclassical. If the scattering is isotropic, then
backscattering should occur with equal probability into each of the M transverse
modes. We expect, therefore, that the probability of backscattering from mode m

into mode # 18

1 L
Ry = ———. 9.110

ML+ : ) - ( )
When we compute the backscattering from the random array of scatterers by
quantum mechanics, eq. {9.109) still holds on average when n 5 m

1L
ML

(R n#£m (9.111a)
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but when n = m, the probability for backscattering doubles,

2 L

=L n=m. (9.111b)

<R1V77)
To find the total probability for backscattering, we sum the contributions for all
modes fo find '

L L L 1 L 1

—_ =~ R e % R 9.11
T MLt Ratygri (9.112)

(R) =

where we have assumed that L 3> A, the resistor 15 many mean-free-paths long.
When eq. (9.112) is inserted into eq. (9.108), we find

h2
(G):GCL—*—EM. (9.113)
Equation (9.113) explains why the quantum mechanically evaluated conductance
is about 2¢° //1 lower than the value from a classical calculation. Tt arises because
the probability for backscattering increases by a facter of two when quantum
mechanics is considered. Why does quantum mechanics double the probability
for backscattering?

Consider an electron injected from the resistor’s left contact in mode m, that
subsequently reflects and emerges back into the left contact in mode #. There are
many different reflection and transmission paths {(so-called Fepnman paths)
within the resistor that contribute to this process. For example, we can write
the amplitude for one specific path as

m_

P = tmam

X X r}‘m//?j X INHIE’ (91]‘4)

msHy

which in words says that the electron first transmits from the injected mode, m,
into another transverse mode, #1;. Then it transmits to another mode, m;, after
which it reverses direction by reflecting into yet another mode, m;. Finally it
transmits from mode my into mode, n, and exists at the left contact. Note that
there are an infinite number of possible reflection paths within the resistors and
that these transmission and reflection coefficients are complex numbers. To
compute the real number, R,,, which gives the probability that an incident
current in mode m reflects into a current emerging in mode, n, we should add
up the contributions from all possible paths. Because of the disorder, there is no
phase relationship between the different paths, so

2 (9.115a)

1 2 3
Ry 7 1P+ P+ 70 4+ ),

rather,

] 2y 02 34,2
Ry = 10l + P+ 1P+ (9.115b)
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Because of the disorder, there are no phase relationships between different paths,
so we add probabilities as in semiclassical transport rather than adding ampli-
tudes.

The case for which an electron incident in mode /1 reflects back into the same
mode, m, i3, however, special. Consider one possibie path for such a process,

M

meTT M

f x trnsz X Fprymg X [mml' (91 1661)

This process could also occur in the opposite order,

A1)

Foam = [mEm X gy fm:mj x fmm:

(9.116b)

This pair of paths (so-called time-reversed paths) is special. Because the scattering
is elastic, we can show that the two paths have the same amplitude (recall the
discussion in Section 9.7 about 7 and T). They also experience exactly the same
phase shift because they traverse exactly the same path, just in opposite orders.
Since there is a definite phase relation between these two paths, their amplitudes
should be added rather than their probabilities. Consequently.

B¢ AN 2 2 A(2) 2 3 ~(3) )2
Rmm = |’r(m)n + rlﬁ))ﬂ[ + 1157‘1}71 + ’fm)w[ + Iri(m)n + ’il(ﬁl)ﬂ[ T (9 ! 1721)

; LB b
SIHCE Finm = Trams

Ry = AP 7+ 405517 + 4o+ (9.117b)

which is twice the value we would obtain if we had added the probabilities for
each path. Interference between lime-reverse paths doubles the probability of
reflecting back into the same mode, and therefore lowers the conductance of the
resistor by 2q2/fz as shown in eq. (9.113).

Discussion: guantum transport

Quantum transport is most readily understood and treated when inelastic scat-
tering is weak so that phase coherence can be assumed. In that case we see effects
such as resonant tunneling, quantized conductance, strong and weak localiza-
tion, and conductance fluctuations. We find that the properties of a device can be
sensitive to the precise, microscopic arrangement of scattering sites. At the oppo-
site extreme is the phase incoherent himit of-semuclassical transport, which we
treated in Sections 9.2-9.6. Room temperature electronic devices have histori-
cally operated in the incoherent regime, but as devices get smaller, quantum
transport effects may become important, even at room temperature, in electronic
devices. In that regime, both quantum interference and inelastic scattering pro-
cesses will have to be treated on a more or less equal basis.
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We saw in Section 9.6 that the proper generalization of the simple, one-flux
scattering theory is the Boltzmann Transport Equation. Similarly, the general-
ization of the transmission approach to quantum transport is a quantum kinetic
equation. For the Boltzmann equation, the unknown being solved for is the
distribution function, f(r, k, 7). For the quantum kinetic equation, the corre-
sponding quantity is —iG=<(r,r’, ¢, ("), which gives the correlation between the
amplitude in a state r at rime ¢ and another in state r’ at time /. See Datta
(Chapter 8 of [9.1]) for an introduction to quantum kinetic equations.
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9.1

9.2

9.3

9.4

Summary

Scattering (or transmission) theory provides a simple, conceptual way to think
about transpert in small structures. It is useful in short devices dominate by
semiclassical transport as well as in small devices controlied by quantum trans-
port. For semiclassical transport, the scattering approach provides an alternative
to the more traditional methods of transport theory that have been the subject of
Chapters 1-8. It is especially useful as quasi-ballistic transport begins to become
important. The analogous approach, transmission theory, has provided the most
widely-used conceptual tools for understanding a variety of quantum transport
effects that occur primarily at low temperatures. As devices continue to shrink,
however, quantum effects may eventually become important at room tempera-
tures. This chapter has been a brief introduction to the kinds of effects that can
occur in small structures. For a thorough introduction to quantum transport, the
reader is advised to consult Datta’s book [9.1].

nces and further reading

For an introduction to guantum transport in mesoscopic structures, see
Datta, S. Electronic Transport in Mesoscopic Systems. Cambridge University Press,
Cambridge, UK, 1995. :

Datta, S. Quantum Phenomena. Addison-Wesley, Reading, MA, 1989.

For a discussion of the scattering approach to semiclassical transport, including the treatment
of recombination—generation processes, time dependence, and applications to devices, consult
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Problems

gt e

9.1

The diffusion coefficient is often equated to the produet of the thermal velocity and the carrier
mean-free-path for scattering, A.

(a)

(b)

Derive an expression relating D and A when A = A4 is constant. Begin with

kT
D=—""={m)-
m
Next, relate the scattering time to the mean-free-path by
Ao
T=-,
U

where v is the carrier velocity,
(/2" = E.

Show that 7 can be written in power law form with an exponent of s = —1/2. Finally, use
this result to evaluate D and show that it can be writter: as

4
D= (:)AOUR-
3

where

kT
2mm*

Up =

is the so-called Richardson velocity. ) ) )
Derive an expression relating D and 4 when the scattering time is constant. Begin with

_ kgTL

D %
Iy

To

and define the average mean-free-path as
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For the average carrier velocity, use the rms thermal velocity,

[3kg T,
()= Urms — y B L‘

e

Use these assumptions to show that when seattering time is constant,

[ =
D= (»/‘?T)(x)uw

9.2 Figure 9.4 shows a set of two interconnected scattering matrices, The effect of these two
scattering matrices can be described by the single, composite scattering matrix. Derive expres-
sions for the elements of the composite scattering matrix, 7 and 7', and show that the results
are egs. (9.92)~(9.9d). Hint: begin by writing expressions for each of the emerging fluxes, then
eliminate the interior fluxes, &) and 5.

9.3 A scattering matrix relates the fluxes emerging from a slab to those incident upon it. For the
slab shown in Fig. P9.3, the scattering matrix gives

(=[x 7))

A transmission matrix relates the fluxes on the right side of a slab to those on the left,

ay . I’VH FV]Q dy
b ) Wy W |\ )

Fig. P9.3

Show that

Wy=T—R[TT'R
Wy = R[TT

Wy =—[TT'R
W = [T
- . . dn . .
9.4 Use Fick’'s Law of Diffusion, £ = —D e to solve for the net flux in a slab of thickness L.

Assume that #(0) is given and that F = Sa(L) at the right (§ is a ‘surface recombination
velocity” in cmy/s). Show that the results are equivalent to the flux analysis if we assume that
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S = ug. This example shows that diffusion can be described by Fick’s Law even when the
region is thin compared to a mean-free-path.

Consider a flux of carriers into a surface as ilfustrated in Fig. P9.5. Conventionally, we write,
F = 8n(0), where £ is the carrier flux, § the surface recombination veiocity, and r(0) the
carrier - density at the surface. If the flux comprises two near-equilibrium (thermai
Maxweilian) halves, show that the surface recombination velocity is related to the surface
backscattering coefficient, Rg, by

/11— Ry
S\UT(] +R9)

a4 ———7

Surface

b= Rga

Fig. P9.5

Derive eq. (9.68) from eq. 9.67.

In eq. (9.72), the sum over » represents the sum over the k-states in the x—y plane. Assuming
that the cross-sectional area the device is large, work out this sum.

Insert the (I — /) factors, which account for the fact that the final state may be filled, in eq.
(9.71). Show that these factors cancel out under the assumed conditions of elastic scattering.
Consider a device which is uniform in the x—y plane but for which a potential variation exists
in the z-direction. Soive the steady-state wave equation, eq. (9.73), by separation of variables
and show that the result is egs. (9.75) and (9.76). What is £,? Hint: assume plane waves in the
x- and y-directions.

Consider an AlGaAs/GaAs modulation-doped structure like that shown in Fig. 9.19. If the
electron density is 5 x 10" em™? and the width of the conducting layer is W = 0.25um, then
how many transverse modes are occupied? How thin does W have to be to make the efectron
waveguide single-moded?

Consider an ultrasmafl silicon MOSFET with W = {50nm. If the inversion layer density is
I x 10%cm™, what is the minimum resistance of the MOSFET?
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Appendix 1: summary of indicial notation and tensors
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Scalars, vectors, and tensors appear in transport theory. For our purposes, only a few defini-
tions relating to tensors and an acquaintance with indicial notation are necessary. We deal
with Cartesian tensors, those referred to a right-handed Cartesiian coordinate system. A tensor
of order zero is a scalar, which is compietely defined by 1ts magnitude. A tensor of order one is
a vector, which s defined by its magnitude and direction. A tensor of order two 18 a matrix.
Higher order tensors also appear in the transport equations. Tensors may be written in sym-
bolic notation or in indicial noiation. Indicial notation displays the indices explicitly and often
simplifies the manipulation of equations invoiving tensors. In this appendix, we present « brief
synopsis of indicial notation for Cartesian tensors.

In symbolic notation, we write a vector as V or v, Alternatively, we can write a vector in
terms of its three components with respect to 4 right-handed Cartesian coordinate system,

Vifori=1230ri=2x7J % {Al.1a)
The vector is the sum of its three components,
V=V25E+V0n+ Vs, (A1.1b)

where (3|, X,, £3) are the three orthogonal unit vectors. We can write eq. (Al.Ib) more com-
pactly by adopting the summation convention, which states that a repeated index is to be
summed over its allowed values. With this convention, eq. (AL.1b) becomes

V=V, (Al.1c)

We often speak of ¥; as u vector, but it should be kept in mind that ¥V, just represents the three
components of the Cartesian vector, V.
The convention of summing over alf repeated indices is used in all indicial equatiouns. For

example,
A;B;C; = A;B,C + A:B,Cy + A;B:C. (AL2)

Note that this expression is ‘a vector; the X, component of the VeCtOF s
A\(B,Cy + B>C> + B;(3). The repeated indices in the expression get summed our and are
called dummy indices. In eq. (A1.2) we could replace the dummy index, j, with any other letter
(except {) without changing the meaning of the expression. The indices that remain after
summing out the dummy indices are call floating subscripts.
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Occasionally, it is necessary to refer to one specific term of the sum rather than 1o the complete
sum, for example, V,,. To do this, we adopt the convention that repeated Greek subscripts

refer to a speafic term and do not imply a sum. For example, ¥, with o = z refers to V...
The dot product of two vectors is written as

3

VV-W:ZV]W]EV]-W], (A1.3)

=1
where the expression on the left-hand side is the dot product written in symbolic notation and
the others in indicial notation. The forni on the right employs the summation convention.

A vector can be formed by taking the gradient of a scaiar. In symbolic notation, we write
this as

V=V, (Al4)

or in indicial notation as

a
Vi=8v)= aT(ﬂ) =12, 0r3 (orj=xy o3, (A1.3)
7
where j ranges over the three coordinate axes. Similarly, the divergence of a vector, a scalar,
can be written as
oy Ay, avy

= =4;V; Al6
8X| axz 8X3 ( )

(AR

vV

We write a 3 x 3 matrix, a Cartesian tensor of order two, symbolically as [A] or in indicial
notation as

Ay for jand =12, or 3 {or x.y, orz). (ALT)

A second order tensor represents nine numbers, which can be writter as a matrix

Ay Az A
Az An An | (A1.8)
Az Ap Am

The product of a matrix times a vector {a second order tensor times a first) can be written in
either symbolic or in indicial notation,
1

[V =3 4V = 43V, (A19)

=1
where the last expression on the right-hand side makes use of the summation convention.
Equation (A1.9) is readily identified as the usual matrix—vector multiplication. The trace of a
matrix is the sum of its diagonal components,

Tr((4]) = A,. (A1.10)
The product of two second order tensors is
Cy = Ay By, (ALID)
which can be writien in matrix notation as

Cu Cnn Gy Ay A Ag || By B B

Ca Cn Cy =14y An Ax || By Bn By (A1.12)

Gy O Css Ay Ap As || By Byn By
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and evaluated by the normal rules of matrix mulitiplication.
A commonly used second rank tensor is the Kronecker delta,

Sy=0 if i#] (Al.13a)
§; =1 if i=] (A1.13b)

One can readily verify that _
Vs = Ve (Al 14y

Another useful tensor, ey, the alternating unit tensor, is defined as

g = +1 for i,k in cyclic order (1.2,3 2,3,1, etc)
= -1 for i j, kin anti-cyclic order (3,2,1 1,2,3, etc) (AL 15)

=0 otherwise.

Note that interchanging two adjacent subscripts changes the sign of the alternating unit
tensor. For example,
(Al.16)

Eyp =~ = Ejkr — i
The alternating unit tensor allows us to write cross~-products in indicial notation. To do so, we
express the cross-product as

AxB= gijkA/Bk'%l e EEJ}AJ-B/{JAQ + 83,;\-/‘1‘,-8;\”%3‘ (AEI—])
The ith component of the cross-product is written as
(AxB) &) =654, 8. (AL.18)
You can verify that these expressions are correct by simply working out the cross-product and
comparing it component by component to eq. (A1.18). The triple product A-B x C is written
in indicial notation as &4, 8,Cy.

There is an important relationship between the aliernating unity tensor and the Kronecker
delta. The relationship is

S Ciry = 050k — 8sbir (A1.19)

Since each index tuns over the three coordinate axes, eq. (Al.19) actually represents 81
separate equations.

We have described the dot product of two vectors and their cross-product. A third vector
product is the dyadic product, which is written as VW, The nine components of this product
can be written as

VW VW VI,
VW, = | Wy 1 W, Vs . (A1.20)
VW VW, Vs,

Ifa tensor is a function of the spatial coordinates, then the tensor may be differentiated. For
example, consider a second-order tensor, My(x(,x2, x;). Differentiation produces a third-
order tensor, My, where

a ] .l ,
IWU-/( = EIV]U (Al_l)
We can also generalize the concept of the gradient. Note that the gradient of a scalar (a tensor
of order zero) produces a vector (a tensor of order one). Similarly, the gradient of a vector, V,
produces a dvad VV, a tensor of order two. The nine components of the dyad are:
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alV
i V.
B,\‘_/ ’

(A1.22)

Tensors are classified according to their order, and the order of a tensor can be easily
" determined by identifying the number of unsummed indices. If these-are no unsummed indices,
the quantity is a tensor of order zero, a scala®™fthere is one unsummed index, the quantity is
a tensor of order one, a vector, which is described by three numbers. If two indices are
unsummed, the tensor has order two, etc. For example, C; = 4, By; is a second-order tensor,
with nine components, formed by ‘matrix multiplication’ of the two second-order tensors, 4
and By, but Cyy = A8y is a fourth-order lensor, with 81 components, formed by the dyadic
product of two second-order tensors. )
This short discussion provides an adequate background to follow the discussion in this text.
For a thorough introduction to tensor analysis, the reader should consult a text on applied

mathematics or on tensor analysis.

Appendix 2: some useful integrals

PO 5 1 50 N
J e dy = [T J \e"”_dx-"i
{ 2V Jo 2
= 1 o0 1
J Pe Wy = — [T J e dx = —
0 4oV o 0 2wt
l v4eAa\ dx = 3 ﬁ J 1{ic—af\ dy — :
Q 8a? Vo a o
pOS
Jm Somar 15 fr e dx = 14
1] 160{3\ [24 ¢ o
" dx !
ot __] 1 T ~1_—xy 00 — 1 1 -1
Jn s n(l +a7"e Mg n(l +a )

Fermi-Dirac integral: (typically, n = (Er — Ec)/kgT)

order 1/2: order J:
F1 () 2 ro x"dx % (0 1 J“ Mdx
” = — - win) =
G120 = T+ explx — 1) S E TG ) 1 Hexnl—n)

C{ [avd o~
o &0 =0

nondegenerate imit: degenerate limit:
32
4ps

lim ,(n) = exp(n) I
=2 n—Tx 2 i
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acoustic carrier—carrier scattering

deformation potential 60, 61 binary 89-91

phonon 46-8 collective 91-3

phonon scattering 81-2 effect on distribution function 130, 131
alternating unit tensor 170, 413 coherence length 364
anticipatory effect 339 ' collective variables 270

collision integral 129, {30
collision operator 129
collision time 535
collisional broadening 44
conductance
fluctnations 401-6
quantized 400, 401
conductivity 164
conductivity effective mass 166
conductivity tensor 164
confingment, quantum see quantum confinement
continuity equation 127, 212, 216
Conweli-Weisskopf 70-2 |
coupled current )
effects 17689
equations [58-63, 172-4
coupled modes 93
critical field 293
cross product in indicial notation 169, 170, 413
crystal
momentun: 10, 40
potential 1,9, 10
cubic semiconductors (transport coefficients) 175,
176
current
electric 160, 161
energy 161
heat 161
probability 7
cyclotron frequency 172

balance equation
approach to device simulation 212, 213
carrier density 219
energy 221, 222, 227, 228, 230
energy flux 222, 223
for heterostructures 238-41
general form 213-16
momentum 219-21, 227, 228, 229
“solution to the BTE 213--17
ballistic transport 329-32
band structure
of common semiconductors 12-14
ellipsoidal 14
full 16-22
of valence band 13, 16
paraboilic 12
spherical and parabolic 12
with non-parabolicity 14, 41
Bloch wave 10
Boltzmann Transport Equation
collision integral 129
equilibrium solution 133, 134
for heterostructures 204, 239
general form 127
low-field solution 134-8, 159, 160
low-field solution-for heterosiructures 204
orthogonal polynomial solution 148-50
path integral sohition 144-8
Rode's ilerative solution 141
validity of 15{-3

Born approximation 43 Debye length 59
Bose—Einstein factor 48 defosr/matiogn poteniial
boundary conditions acoustic and optical 60-2
infinite well 5 intervalley 88
periodic 26 -density of states
Brillouin zone 11, 13 effective mass 97
irreducible wedge 21 full band 30 s
BTOOKS*HGFI‘ing 70, 190 in k-space 26,27
built-in flefds 319-21 in energy space 27-9
of confined carriers 30, 31
characteristic exponent for scattering 67, 137, 138 thiee-dimensional 29
Child’s law 330 density of states effects 204

415
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INDEX

device simulation
drift-diffusion approach 348, 349
general approach 345-347
momentum/energy balance equation approach
353-6
Monte Carlo approach 356, 357
diffusion
across a thin region 325-7, 3724
and ensemble effects 337-42
coefficient 283
Fick’s law 323
field-dependent 303, 306
transverse and longitudinal 283
dispersion relation
electrons in a quantum well 35
electrons in a quantum wire 36
free clectrons 3
phonons 47
distribution function
definition {19

displaced {or drifted) Maxweilian 123, 228-32,

289
Fermi-Dirac 120
Maxwellian 120
symmetric and antisymmetric components 131
velocity-weighted Maxwellian 271
dot product of a tensor with a vector 162, 163,
412 .
drift energy 123, 224, 289
drift-diffusion equation
genera! form 235, 282, 283, 317
for heterostructures 2024, 241
relation to scattering theory 368, 369
validity of 237
dyad 413
dvadic product 413

effective charge 62
effective mass 12
conductivity 166
density of states 97
effective mass equation 32, 33
envelope function 33
Einstein relation 203, 283, 289
elastic scattering 45
electrochemical potential 161
electron affinity 24
electron dvnamics
for a position-dependent effective mass 40
in an external potential 39-41
ellipsoidal energy bands 14
energy balance equation 221, 222, 227, 228, 230
energy bands (see band structures)
energy conservation in phonon scattering 73-5
energy flux 161, 235
energy relaxation time
definition 37, 218
ensemble 222
for displaced Maxwellian 292
optical phonon scaitering 84
POP scattering 85
energy transport approach 330, 351
ensemble effects 339

ensemble relaxation rate 215, 216
envelope function 33
equipartition of energy 122, 296
equipartition 48, 81
Ettingshausen effect 179

Fermi’s golden rule 41-6
Fick’s law 323

flux method 366

free flight 249, 251-6
free-flight duration 252-6

Full Band Monte Carlo Simulation 262-5
Full Band Treatment of Scattering 108-10

galvanomagnetic effects 180, 181
gamma function 137, 138
generalized force 160

group velocity 5

Hall

coefficient 180

effect 174, 180-3

factor 171

mobility 188, 189
heat

current 161

flux Q 226, 227
heterojunction

definition 22

bipolar transistor 124, 125

launching ramp 124
heterostructure 22, 24, 25
homostructure 24
hot-carricr transport 284
hot-point probe 177
hydrodynamic equations 227, 350

impact parameter 71
indicial notation

definition 161, 162, 411

for dot product 162, 412

for cross product 169, 170, 413
inter-subband scattering 95, 10]-2

intra-subband scattering 93, 101
internal encrgy 161 .
intervalley

scattering 86-8

equivalent 86, 87

mequivalent 87
isotropic scattering 56

k-p method 11, 15
Kelvin relations 176
Kronecker delta 163

Landau Jevels 172

Landauer formula 398-400

Law of the Junction 381

Jattice vibrations see phonons
Jocalization length 403
Jongitudinal magnetoresistance 172

magnetoconductivity tensor 17]
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 INDEX

magneto-Seebeck effect 178
material parameters
band structure related 14
scattering-related 114, 1135
Mathiessen’s rule 167
malrix clement 43
mobility
acoustic phonon limited 19}
definition 137, 236, 283, 317, 369 -
Brooks-Herring 190
Conwell-Weiskopf 208
device-dependent 318
field-dependent 294, 318
Hall 188, 189
hot-carrier 292, 292, 353, 354
lattice temperature dependence 191, 192
low-field, pure Si 191, 193
low-field, pure GaAs 193-3
of 2D carriers 198-202
of electrons in a silicon inversion layer 196-200
of electrons in a GaAs/AlGaAs 2DEG 200-2
model semiconductor {2
modulation doping 24, 200
momentum
balance equation 219-21, 227-9
crystal 10, 40
ensemble relaxation time 220, 231, 232
relaxation time (ADP) 82
relaxation time definition 56, 217
relaxation time {intervalley) 88
relaxation time (ionized impurity) 70, 72
relaxation time {ODP) 82
relaxation time (POP) 86
Monte Carlo simulation
ensemble approach approach 276, 268
final state selection 257-62
full band 262-5
general approach 250, 251
cident flux approach 268~73
of bulk semiconductors 263, 266
relation to the BTE 276, 277
treatment of Coulomb effects 275, 276

‘Moit-Gurney law 330

Nernst effect 179, 180
nonparabolicity 14, 41

nonlocal effects 333

nonstationary carrier transport 333

optical deformation potential 62

optical phonons 47

orthogonal polynomial expansion 148-30
out-scattering rate 33, 217-19

overlap integral 44

parabolic energy band 12
path integral solution to the BTE 144-8
Peltier coefficient 173
Peltier effect 176, 177
phase velocity 5
phenomenological current equations [72~6
phonon
acoustic 46-8

distribution 48

intervalley 87

optical 47
plasma frequency 91
power-law scattering 67, 72. 137
p—n diode 379-82
probability current 7
pseudopotential 17

guantized conductance 400-2
quantum
confinement 5, 6, 34-9
effects in a S1 inversion layer 96-8
transport 386, 406-7
well 6, 22, 349, 94-6
wire 34-9
quasi-electric field 25, 204
quasi-Fermi level 123

reciprocal lattice vector 11
reduced zone representation 11
Rees effect 336
relaxation time
approximation 131, 132, 139141
energy 36, 57, 217
ensemble 216, 231, 232
momentum 56, 217
resistivity 173, 176
resonant tunneling 395-8
Richardson velocity 364, 373
Righi-Leduc effect 179
Rode’s iterative method 141 -4

saturation velocity 287

scattering
acoustic phonon 60-2, 73, 74, 81, 82
carrier—carrier 88-93
intravalley 86-8
ionized impurity 38-60, 67-72
isotropic 56
multiple mechanisms 107, 167, 168
of confined carriers 93-103
optical phonon 60-2, 73-6, 824
plezoelectric 62-4, 84—6
phonon 63, 66, 73-81
polar optical phonon 62-4, 84-6
surface roughness 1035

scattering rate
acoustic deformation potential 82
carrier—carrier 89-91
carrier-plasmon 91-3
‘definition 55
effects of non-parabolicity 103, 106
electrons in pure GaAs 109~
electrons in pure Si-109-11
from deta function 45, 57, 58
from periodic potential 46
full band 108-10
intervalley 88
of carriers in a guantum well 93-103
optical deformation potential 82
polar optical phonon 83
power law 67
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INDEX

Schrédinger equation |
screening 59, 110-13
screened Coulomb potential 60
Seebeck effect 176, 177

magneto- 178
self-scattering 144, (45, 254-6
semiclassical approximation [, 385, 386, 393
sermiconductor alloy 22
Soret coefficient 236
sound velocity 47
spherical parabolic bands 35 )
spontaneous and stimulated emission 78
Stratton’s Approach 232-5
subbands 36
summation convention 122, 162
superclectron 268

temperature

carrier 223-5, 284, 285

lattice 123, 284, 285

tensor 225
tensor

alternating unit 170, 413

conductivity 164

dot product with vector 162, 163, 412

magnetoconductivity 171

notation 41|

temperature 225
thermal conductivity 173, 176
thermial energy 123, 224, 289
thermoelectric effects 176-8
thermoelectric power 173, 176
thermomagnetic effects 178-80
transient carrier transport 3337
transistor

generic 316

HEMT 24

heterojunction bipolar 124, 125

MOSFET 24, 195, 382-5
transition rate
acoustic phonon scattering 79
carrier—carrier scattering 90
carrier—plasmon scattering 92
definition 41, 55
ionized impurity scattering 5860
optical phonon scattering 79
ptezoelectric scattering 79
polar optical phonon scattering 90
transmission coefficient 8, 33, 367, 391
transport
across a thin base 325-7, 372-4
high-fieid 282-
low-field 158-
nonlocal, nonstationary, off-equilibrium 31545
over barriers 377-9
quantum 386, 406, 407
transtent 333-7
transverse magnetoresistance 172

uncertainty relations 5
universal conductance fluctuations 404

velocity
group 5, 41
overshoot 332-4
phase 5
saturation 287-8. 303
sound 47
undershoot 336

wave
equation 1, 2
function 1
packet 4

WKRB approximation 7



