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10.1 Introduction

Dilute bismide alloys are III–V semiconductor alloys containing small fractions of substitutional bis-
muth (Bi) atoms. Similar to the incorporation of nitrogen (N) to form the dilute nitride alloys described
in Chapter 9, dilute bismide alloys are characterized by the fact that Bi acts as an isovalent impurity
when incorporated into, e.g. (In)GaAs, to form the (In)GaBixAs1−x alloy. Similar to the case of dilute
nitride alloys, it is the large di�erences in size (covalent radius) and chemical properties (electronegativity)
between Bi atoms and the group-V atoms they replace that brings about this impurity-like behavior, which
in practice means that incorporating Bi at dilute concentrations has a signi�cant impact on the material
properties. Dilute bismide alloys, like dilute nitrides, are considered to be highly mismatched semicon-
ductor materials. However, while N incorporation primarily a�ects the conduction band (CB) structure
of the material into which it is incorporated, Bi, being signi�cantly larger and more electropositive than
N, primarily a�ects the valence band (VB). Since several general aspects of the physics of dilute bismide
alloys are qualitatively similar to those of dilute nitrides, dilute bismide alloys can be considered a naturally
complementary material system to the dilute nitrides.
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The dilute bismide alloy GaBixAs1−x has several novel electronic properties. For example, substitution
of As by Bi causes a rapid reduction in the band gap (Eg) with increasing Bi composition x, by up to 90 meV
per % Bi at low x [1–6]. This strong Bi-induced decrease in Eg is accompanied by a strong increase in the VB
spin-orbit-splitting energy (ΔSO) [5–7], and the changes in both Eg and ΔSO are characterized by strong,
composition-dependent bowing, much like the band gap reduction in GaNxAs1−x [5,8]. These unusual
material properties—among others, which we discuss in Section 10.2—have prompted signi�cant interest
in the development of dilute bismide alloys for a range of practical applications, including in semicon-
ductor lasers [9–15] and photodiodes [16–19], as well as photovoltaics [20–23], spintronics [7,24,25], and
thermoelectrics [26].

The theoretical modeling of dilute bismide alloys is signi�cantly complicated by the impurity-like behav-
ior of the Bi atoms in the alloy, and the resultant strong perturbation of the electronic structure of the
host matrix semiconductor. The presence of alloy disorder due to the formation of pairs and larger clus-
ters of Bi atoms in GaBixAs1−x has a particularly signi�cant impact on the electronic structure, meaning
that any serious attempt to quantify the consequences of Bi incorporation on the material properties must
encompass an atomistic viewpoint. In Section 10.2, we provide an overview of the theory of the unusual
properties of dilute bismide alloys, as revealed by experimental measurements, and discuss the various
atomistic approaches that have been developed to understand the impact of Bi incorporation on the elec-
tronic structure. In particular, we focus on an atomistic tight-binding (TB) model we have developed to
study the electronic structure of dilute bismide alloys of (In)GaAs(P) and compare the results of calcula-
tions undertaken using this approach to a series of experimental measurements of the electronic [5], optical
[6,27,28], and spin properties [29] of GaBixAs1−x alloys.

While atomistic models provide signi�cant insight into the properties of Bi-containing alloys, they are
too computationally expensive to apply directly on the length scales required to model the properties of
optoelectronic devices. This motivates the development of continuum models which are suited to cal-
culating the properties of realistically sized Bi-containing device heterostructures. Through a series of
detailed atomistic calculations, we review that the main features of the band structure of GaBixAs1−x
and related alloys can be understood in terms of a band-anticrossing interaction, much like that consid-
ered for the dilute nitrides in Chapter 9. However, for GaBixAs1−x alloys the situation is the converse of
that in GaNxAs1−x. In GaNxAs1−x, the band-anticrossing model describes the N composition-dependent
coupling between the extended states of the host matrix (GaAs) CB edge and highly localized N-related
impurity states which are resonant with the CB. In GaBixAs1−x, atomistic calculations reveal that a Bi
composition-dependent band-anticrossing interaction occurs between the extended states of the host
matrix VB edge and highly localized Bi-related impurity states which are resonant with the VB.

Taking into account the p-like nature of the GaAs VB edge eigenstates, as well as the presence of strong
spin-orbit-coupling in the VB, it is clear that even the simplest description of the GaBixAs1−x VB struc-
ture will be more complicated than that of the GaNxAs1−x CB structure. It is to this issue that we turn
our attention in Section 10.3, where we review how atomistic calculations can be used to directly derive
and parameterize valence band-anticrossing (VBAC) models for dilute bismide alloys, thereby remov-
ing the parametric ambiguity with which phenomenological models of this type are typically associated.
Following this approach, we review the derivation of a 12-band k⋅p Hamiltonian for the band structure
of (In)GaBixAs1−x alloys directly from atomistic supercell calculations, and present a general method
for calculating the band o�sets in (001)-oriented pseudomorphically strained epilayers and quantum
wells (QWs).

The practical application which has to date seen the largest research e�ort and most signi�cant progress
has been the development of GaBixAs1−x alloys for applications in GaAs-based semiconductor QW lasers
[10–12,15,30]. A critical issue with existing InP-based 1.3- and 1.55-μm QW lasers is that their threshold
currents and optical (cavity) losses tend to increase strongly with increasing temperature, due largely to
a combination of two intrinsic loss mechanisms: non-radiative Auger recombination [31,32] and inter-
valence band absorption (IVBA) [33]. GaBixAs1−x alloys having Bi compositions x > 10% have been
demonstrated to have a band structure in which ΔSO > Eg, while also possessing a band gap Eg ≈ 0.8 eV
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(1.55 μm) [5,6]. It has therefore been proposed that this large VB spin-orbit-splitting energy could lead
to the suppression of the dominant “conduction-hole-spin-hole” (CHSH) Auger recombination process in
1.55-μm semiconductor lasers [9,10,12] in which the energy and crystal momentum of an electron–hole
pair recombining across the band gap excite a hole from the VB edge to the spin-split-o� (SO) band, as
depicted schematically in Figure 10.1.

The CHSH Auger process is a loss mechanism which accounts for the majority of the current at thresh-
old in conventional InP-based devices, and which also strongly degrades the stability and e�ciency of the
device operation above room temperature [31]. Suppression of the CHSH Auger recombination pathway is
therefore expected to bring about highly e�cient, temperature-stable laser operation, opening the route to
uncooled GaAs-based telecom lasers with signi�cantly reduced power consumption and providing large
energy savings compared to the InP-based technologies currently deployed in optical communication net-
works [9–12]. Using dilute bismide alloys as a route to realizing long-wavelength semiconductor lasers on
GaAs substrates should also enable the growth of monolithic telecom-wavelength vertical-cavity surface-
emitting lasers (VCSELs), thereby bringing the bene�ts of (Al)GaAs-based distributed Bragg re�ectors
(DBRs) to 1.55 μm. This is appealing from a technological perspective, because of the possibility of taking
advantage of the enhanced carrier and optical con�nement o�ered by (Al)GaAs-based heterostructures,
as well as the potential to monolithically integrate long-wavelength semiconductor lasers with high-speed
GaAs-based microelectronics.

Considerable progress has been made in developing epitaxial growth of GaBixAs1−x alloys, leading to
the demonstration of an optically pumped bulk-like laser by Tominaga et al. in 2010 [34]. Room tem-
perature electrically pumped lasing from a GaBixAs1−x QW laser was �rst demonstrated at x = 2.1%
by Ludewig et al. in 2013 [30], and the Bi composition in such laser structures has since extended up to
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FIGURE 10.1 Le�: Schematic illustration of the hot hole-producing CHSH Auger recombination process, in which a
CB edge electron (1) recombines with a VB edge hole (2), with the energy released then exciting a VB edge hole (4) to
the SO band (3), such that energy and crystal momentum (ℏk) are conserved. The hot hole generated by this process
dissipates its excess energy and crystal momentum primarily via scattering within the lattice, which generates phonons,
increasing the lattice temperature and generating signi�cant waste heat. The presence of strong, temperature-dependent
CHSH Auger recombination in the materials forming the active region of InP-based 1.3- and 1.55-μm semiconductor
lasers means that external cooling equipment is required to extract Auger-generated waste heat, in order to maintain
operational stability, but at the cost of signi�cantly increasing power consumption. Right: Schematic illustration of
suppressed CHSH Auger recombination, achieved for a band structure in which the spin-orbit-splitting energy SO
exceeds the band gap: ΔSO > Eg. In this case, the CHSH process is forbidden by conservation of energy, since the
energy made available by an electron–hole pair recombining across the band gap is insu�cient to excite a VB edge hole
to the SO band. The suppression of IVBA proceeds in a similar manner: for ΔSO > Eg the energy of a photon emitted
by an electron–hole pair recombining across the band gap is insu�cient to promote (by optical absorption) an electron
from the SO band to a hole state at the VB edge, thereby suppressing photon reabsorption in the active region.
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x = 6.5% by Butkutė et al. [35,36]. However, Bi compositions x> 10% are required to obtain a band struc-
ture having ΔSO >Eg (and hence suppression of Auger recombination and IVBA processes involving the
SO band) in GaBixAs1−x alloys. Achieving high-quality GaBixAs1−x layers with x> 10% is challenging due
to the di�culty associated with epitaxial growth of Bi-containing alloys (see, e.g., Refs. [37,38] and refer-
ences therein). While signi�cant progress has been made in developing GaBixAs1−x materials and devices
over the last 5 years, e�orts are ongoing to grow heterostructures with su�ciently high Bi compositions to
demonstrate lasing at 1.55 μm, as well as suppression of Auger recombination and IVBA, in this new class
of semiconductor alloys.

Given the signi�cant potential of dilute bismide alloys for applications in next-generation semiconduc-
tor lasers, our focus throughout much of this chapter is on reviewing the theory of dilute bismide lasers.
In Section 10.4 we provide an overview of the theory of GaAs-based dilute bismide QW lasers, using a
theoretical model based on the 12-band k⋅p Hamiltonian derived in Section 10.3. Using this approach, we
review (1) the impact of Bi on the band structure, density of states (DOS), and optical gain, (2) pathways
toward device optimization at low Bi compositions, (3) trends in the expected device performance as a
function of Bi composition, and (4) the potential of GaBixAs1−x alloys for the development of highly e�-
cient and temperature-stable 1.55-μm lasers. We also review direct comparisons of theoretical calculations
of the (1) threshold characteristics, (2) spontaneous emission (SE), and (3) optical gain, to experimental
measurements performed on �rst-generation GaBixAs1−x QW laser devices [15,39].

While the majority of research on dilute bismides has to date centered on GaBixAs1−x alloys and laser
applications, the potential of alternative Bi-containing alloys for a range of practical applications has
begun to drive an increasing diversity of research into related dilute bismide semiconductors. It is to these
emerging directions in dilute bismide research that we turn our attention in Section 10.5. We discuss the
signi�cant potential o�ered by the quaternary alloys InyGa1−yBixAs1−x and GaBixNyAs1−x−y—for respec-
tive applications in InP-based mid-infrared photonics and multijunction solar cells—due to the broad
�exibility of their band structures, associated with the ability to engineer the band gap, spin-orbit-splitting
energy, strain, and band o�sets over wide ranges [12,13,40–45]. We also review the recent development
of GaBixAs1−x/GaNyAs1−y type-II QWs, and demonstrate that this novel class of GaAs-based, strain-
balanced heterostructures has great potential to deliver emission/absorption across a broad range of near-
and mid-infrared wavelengths on, making them of interest for applications in photonics and photovoltaics
[46]. Finally, we provide a brief overview of emerging interest in narrow-gap Bi-containing alloys, which
are generating strong interest for applications in mid-infrared photonics, as well as in spintronics.

Overall, this chapter should equip the reader with a comprehensive overview of the theory and simu-
lation of dilute bismide alloys and provide an up-to-date overview of ongoing research on this emerging
class of semiconductor materials.

10.2 Electronic and Optical Properties of GaBixAs1−x Alloys:
Atomistic Theory

In this section, we discuss some of the general properties of dilute bismide alloys, the understanding of
which has been strongly informed by theoretical interpretations of experimental measurements. Since Bi
acts as an isovalent impurity in (In)GaAs(P) and strongly perturbs the electronic structure, alloy disorder,
which is inevitably present in real materials, plays an important role in determining the material proper-
ties. This, combined with the associated breakdown of the virtual crystal approximation in Bi-containing
alloys, means that atomistic calculations are required in order to provide a quantitative understanding
of the impact of Bi incorporation on the electronic structure. As such, we present our discussion in this
section within the context of atomistic electronic structure calculations. In Section 10.2.1, we trace how
such analyses have contributed strongly to developing the current understanding of this unusual class of
semiconductor alloys. Next, in Section 10.2.2, we present and compare to experiment the results of atom-
istic calculations of a range of material properties for realistic, disordered materials. In Section 10.2.3 we
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provide a brief outlook for the atomistic theory of dilute bismide alloys, highlighting the tasks and chal-
lenges that must be completed and overcome to improve the fundamental understanding of dilute bismides
and related emerging classes of highly mismatched semiconductor alloys.

Since GaBixAs1−x is the material which has been the subject of most of the research e�ort on dilute
bismide alloys to date, it is to this material that we devote our attention in this section. However, the
understanding of the impact of Bi incorporation on the properties of GaBixAs1−x alloys has been found to
transfer to a range of related materials, so that the theory and material trends we outline in this section can
be understood to apply in a general sense to other Bi-containing III–V semiconductor alloys.

10.2.1 Impact of Bi Incorporation on the Electronic Structure:
Atomistic Theory

The �rst atomistic study of the impact of Bi incorporation on the electronic structure of GaAs was under-
taken by Janotti et al. [47]. Using a �rst-principles approach based on density functional theory (DFT),
Janotti et al. analyzed the electronic structure of GaBixAs1−x alloys, as well as the impact of co-alloying
Bi and N in GaAs to form the GaBixNyAs1−x−y quaternary alloy (cf. Section 10.5.2). In Ref. [47] the
�rst detailed calculations for the III–V compound GaBi were also presented. In addition to calculating
structural parameters such as the lattice constant and bulk modulus, Janotti et al. presented a calculation
of the band structure of bulk GaBi in the zincblende phase. This calculation con�rmed the presence of
an extremely large spin-orbit-splitting energy in the VB, which �rst principles calculations indicate to be
>2 eV [48]. Furthermore, an unusual (topological) band ordering was identi�ed at the Γ-point in GaBi.
As a result of the extremely large spin-orbit coupling, the Γ6c CB edge states were calculated to lie lower
in energy than the Γ8v VB edge states, but higher in energy than the Γ7v SO band edge states. As such,
GaBi is predicted to be a metallic compound, with its negative band gap Eg = E(Γ6c) − E(Γ8v) ≃ −1.5eV .
While the analysis of Janotti et al. correctly suggested that Bi incorporation leads to a reduction of Eg with
increasing x in GaBixAs1−x, the calculated band gap bowing was approximately one-sixth of that calculated
for GaNxAs1−x using the same approach. However, experimental measurements and subsequent theoret-
ical analyses have revealed that replacing 1% of the As atoms in GaAs by Bi (N) causes a reduction of Eg
of up to 90 (150) meV, meaning that while the impact of Bi incorporation is not as strong as that of N
incorporation, the e�ects are broadly comparable in magnitude.

The �rst major advancement in the understanding of the electronic structure of GaBixAs1−x came from
the work of Zhang et al. [49]. Using �rst-principles pseudopotential calculations to investigate the elec-
tronic structure as a function of Bi composition in a series of ordered GaBixAs1−x supercells, Zhang et
al. provided a number of key insights into the impact of Bi incorporation on the GaAs electronic structure
and also highlighted the di�erences between Bi and N incorporation in terms of their relative impact on the
electronic structure. First, it was calculated that Bi incorporation causes a signi�cant decrease (increase)
in Eg (ΔSO). The calculated Eg data for ordered alloy supercells were shown to be in good agreement with
experiment for Bi compositions up to x= 3.125%, the largest dilute composition which could be reliably
investigated using the small calculational supercells employed. However, no comment on the precise nature
of the strong Bi-induced band gap bowing was provided, and no direct attempt was made to elucidate its
origin. Second, it was demonstrated that a substitutional Bi atom in GaAs forms impurity states which are
(1) highly localized about the Bi atomic site, and (2) resonant with the extended states of the GaAs host
matrix VB—i.e. lie below the GaAs VB edge in energy. Third, it was demonstrated that application of
hydrostatic pressure decreases the energy of the Bi-related resonant states. As such, while the N-related
states in the GaNxAs1−x CB can be pushed into the band gap under the in�uence of high hydrostatic pres-
sure [50], the Bi-related states in GaBixAs1−x are expected to move deeper into the VB with increasing
pressure.

The presence of spin-orbit coupling splits the resonant states associated with an isolated Bi impurity into
a doublet (lying close in energy to the top of the GaAs VB) and a singlet (lying deep within the VB, due
to the large spin-orbit coupling). Zhang et al. focused on the higher-energy Bi-related doublet, |ψBi⟩, and
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investigated the character and evolution of the these states as a function of Bi composition. Following this
approach, it was found that the states |ψBi⟩ are formed of a linear combination of host matrix VB states—
having wave vectors located along theΔ,Λ, and Σ directions in the Brillouin zone—which are folded back
to Γ. This suggests that the Bi-related states, which lie energetically within the VB, form at the expense of a
host matrix VB state. This is in contrast to the case of N incorporation in GaAs, in which N is understood
to contribute an additional state to the CB. It was shown using a series of ordered GaBixAs1−x supercells
containing a single substitutional Bi impurity that the calculated energy EBi of the doublet states |ψBi⟩

increases strongly with increasing supercell size (decreasing Bi composition), with the trend stabilizing
in large supercells containing >2000 atoms where the impurity limit is approached. A signi�cant number
of host matrix states with large wave vectors are then folded back to Γ in these large supercells, and are
hence available to contribute to the supercell representation of the states |ψBi⟩. As a result, a more accurate
representation of the impact of Bi incorporation is obtained in larger supercells. In the impurity limit,
Zhang et al. estimated that an isolated substitutional Bi impurity produces resonant doublet states that lie
approximately 80 meV below the GaAs VB edge in energy—i.e. lying directly between the GaAs VB and
SO band edge states in energy.

While this analysis has played a signi�cant role in informing the current understanding of the fun-
damental aspects of the GaBixAs1−x electronic structure, the charge-patching method used for larger
supercells by Zhang et al. is restricted in the size and type of alloys to which it can be applied. For exam-
ple, such an approach is not well-suited to analyze the properties of randomly disordered alloys at low
composition, since it relies on patching the converged charge densities from small supercells into larger
supercells: �nite-size e�ects associated with the periodic boundary conditions employed in the underly-
ing small supercell calculation(s) are implicitly retained, which introduces some degree of spurious Bi-Bi
interactions in the large supercell calculation(s). In order to overcome these limitations Usman et al. [5]
developed a semi-empirical atomistic TB model, based on the sp3s∗ basis set originally introduced by Vogl
et al. [51]. Since it employs a localized basis of atomic orbitals, the TB method is well-suited to study the
impact of localized impurities on the electronic structure (as we highlighted and reviewed in our discus-
sion of dilute nitride alloys in Chapter 9). Compared to related atomistic approaches, the TB method is
computationally cheap and can be used to e�ciently study the electronic structure of large alloy supercells
containing upward of thousands of atoms. As described in Chapter 9, the TB method has previously been
applied with much success to the study of GaNxAs1−x alloys, where it has provided quantitative predictions
of several important material properties in real, disordered alloys (see, e.g., Refs. [50], [52] and [53]).

Using the TB method, in Ref. [5], Usman et al. signi�cantly broadened the scope of the analysis under-
taken by Zhang et al. to include detailed investigation of (1) coupling between localized Bi-related states
and the extended states of the host matrix VB, (2) the nature of the localized impurity states associated
with the formation of pairs and larger clusters of Bi atoms in a realistic, disordered alloy, (3) the impact of
alloy disorder on the overall electronic structure, (4) trends in the electronic structure across an extended
range of Bi compositions, and (5) the nature of the VB structure of GaBixP1−x alloys. The TB method has
been highly successful in elucidating the impact of Bi on the electronic and optical properties of GaBixAs1−x
alloys. For example, the calculated evolution of the band gap, spin-orbit-splitting energy, and electron e�ec-
tive g factor [5,29] are in quantitative agreement with experiment across the full composition range for
which experimental data are available (cf. Section 10.2.2). Further investigations based on the TB method
have also quanti�ed the origin and consequences of the strong band gap bowing in Bi-containing alloys
[42,54], as well as the e�ect of intrinsic alloy disorder on the optical properties of bulk and QW GaBixAs1−x
[27,28].

Before describing the TB analysis, it is worthy of note that the prediction by Zhang et al. that Bi forms a
resonant state in GaAs, energetically within the VB, is contradictory to the conclusions of Janotti et al. in
Ref. [47], whose analysis suggested that a substitutional Bi impurity in GaAs forms a bound state lying
approximately 100 meV above the GaAs VB edge in energy. This result of the analysis of Janotti et al. is
surprising. It has been known since the 1960s that a substitutional Bi impurity in GaP produces a bound
state lying approximately 100 meV above the GaP VB edge in energy [55]. Since the di�erence in energy
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between the 3p valence orbitals of P and the 6p valence orbitals of Bi is larger than that between the latter
and the energy of the 4p valence orbitals of As, it is expected that Bi is less likely to form a bound impurity
state in GaAs than in GaP, with the energy of the Bi-related impurity states in GaAs expected to be lower
than those in GaP (relative to the host matrix VB edge) [5]. That Bi forms a bound state in GaBixAs1−x
is therefore highly unlikely, given the known energy of the Bi-related states in GaP:Bi and the fact that
the corresponding states in GaAs:Bi are expected to be at lower energy based on well-established chemical
trends.

It has been proposed [4,54] that a band-anticrossing approach, similar to that for the GaNxAs1−x CB,
can be applied to describe the VB structure in GaBixAs1−x alloys. However, this interpretation of the VB
structure has generated to a degree of controversy [54,56]. In order to con�rm the presence of a Bi-induced
VBAC interaction, Usman et al. used the TB method to investigate the validity of this approach for the VB
structure of ordered GaBixP1−x and GaBixAs1−x alloys by directly analyzing the Bi-related doublet states
|ψBi⟩ [5]. For the case of a substitutional Bi atom in GaP the analysis and interpretation are straightforward,
since the Bi-related states lie energetically within the GaP band gap. By explicitly constructing the states
|ψBi⟩ in a series of ordered GaBixP1−x supercells (cf. Section 10.3.1), and by directly computing the strength
with which these states couple to the GaP VB edge as a function of Bi composition, it was found that (1)
in the impurity limit, an isolated, substitutional Bi impurity in GaP forms bound states which are highly
localized about the Bi atomic site and lie approximately 120 meV above the GaP VB edge in energy, and
(2) the coupling of the states |ψBi⟩ to the GaP VB edge states is precisely of the form VBi = β

√

x, as in
GaNxAs1−x and GaNxP1−x alloys [5]. The calculated Bi bound state energy for GaP:Bi in the impurity limit
is in good agreement with the experimentally measured value of Ref. [55], and the TB analysis explicitly
con�rms the presence of a VBAC interaction in ordered GaBixP1−x alloys [5].

In order to examine the validity of the VBAC model for GaBixAs1−x, Usman et al. repeated the impurity
state analysis described above for GaBixP1−x [5,54], and reached broadly similar conclusions to those of
Zhang et al. [49]: (1) a substitutional Bi atom in GaBixAs1−x forms a set of impurity states that are res-
onant with the extended states of the GaAs VB, (2) these Bi-related states are highly localized about the
Bi atomic site, and (3) the calculated energy EBi of these Bi-related states varies strongly with supercell
size (emphasizing the role of the �nite-size e�ects described above), and converges in the impurity limit,
a prediction which is qualitatively the same as, and quantitatively very close to, that of Zhang et al. The
di�erence in the energies EBi calculated using the �rst principles pseudopotential and TB methods is likely
related in part to the treatment of the supercells: the pseudopotential calculations rely on patching the con-
verged charge density from a 64-atom supercell into larger supercells in order to reach the impurity limit,
while the TB method treats all supercells directly. This analysis predicts that Bi forms resonant states in
GaBixAs1−x which lie approximately 180 meV below the GaAs VB edge in energy in the impurity limit.
Usman et al. further found that the coupling between the Bi-related resonant states and the GaAs VB edge
states in GaBixAs1−x varies with Bi composition as VBi = β

√

x in ordered alloys, explicitly con�rming
that the alloy VB edge states can be described in terms of a VBAC interaction. Recent experimental studies
have provided direct evidence of the presence of Bi-related resonant states lying energetically within the
GaBixAs1−x VB [57,58]. These detailed measurements support the general conclusions of the theoretical
calculations of Refs. [5], [49] and [54], and provide direct experimental support for this interpretation of
the VB structure of GaBixAs1−x alloys.

On the basis of DFT calculations, Deng et al. [56] suggested that the VBAC approach breaks down at
higher Bi compositions, where alloy disorder e�ects become important and lead to strong modi�cations
of the VB structure resulting from interactions between neighboring Bi atoms. Detailed analysis of this
“band broadening” concept by Virkkala et al. [59] showed that a model Hamiltonian considering Bi–Bi
interactions is indeed capable of producing a signi�cant band gap with increasing Bi composition in disor-
dered GaBixAs1−x alloys. However, this approach has two signi�cant shortcomings. First, the predicted
decrease in the GaBixAs1−x band gap is linear in x, meaning that the strong, composition-dependent
bowing of the band gap observed in experimental measurements is not captured by the band broaden-
ing interpretation of the band structure. Second, the proposed model requires extraction of supercell- and
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composition-dependent parameters from DFT calculations in order to de�ne the alloy band gap, which
limits predictive power. Furthermore, it has been demonstrated [54,60] that the conclusions of Deng et al. in
Ref. [56] were based on a misinterpretation of the VB ordering in the small GaBixAs1−x supercells stud-
ied. As such, while the strict validity of the VBAC approach must necessarily break down in a disordered
alloy, it is noteworthy that the predictions of the model are in quantitative agreement with experimental
measurements of Eg andΔSO in GaBixAs1−x across the full range of compositions for which data are avail-
able (cf. Section 10.3.2). Detailed investigations suggest that the VBAC model describes well the band edge
states in GaBixAs1−x alloys, but breaks down for states lying deeper in the VB, particularly in the vicinity
of the SO band [29,61]. As we review in Section 10.4, this means that a VBAC approach provides a simple
and accurate means by which to describe the properties of semiconductor lasers and related optoelectronic
devices, where we are interested only in states lying energetically in the immediate vicinity of the CB and
VB edges.

The understanding of the GaBixAs1−x electronic structure developed through atomistic calculations and
experimental measurements then describes that (1) Bi introduces highly localized impurity states which
are resonant with the GaAs VB, (2) the main features of the band edge states, and hence the alloy band
structure, can be e�ectively described in terms of a VBAC interaction between localized Bi-related doublet
states (lying between the GaAs VB and SO band edges in energy) and the extended states of the GaAs VB
edge, (3) Bi-related singlet states, which lie much deeper (by several eV) within the VB, play a negligible role
in determining the details of the electronic structure, and (4) the CB and SO bands in GaBixAs1−x are rela-
tively unperturbed by Bi incorporation—their evolution with increasing Bi composition can be described
in a conventional manner using, e.g. the virtual crystal approximation. Given the strong impact of
alloy disorder on the electronic properties, interpretation of the details of the GaBixAs1−x band structure
at higher Bi compositions then remains a somewhat open question: detailed and systematic analysis of the
relative impact of As–Bi (VBAC-like) and Bi–Bi (band broadening) interactions on the band structure at
higher compositions—building upon that already present in the literature—is required to provide de�ni-
tive insight. However, as we describe throughout this chapter, describing the impact of Bi incorporation
via a simple VBAC approach can be used to analyze the VB edge states in (In)GaBixAs1−x alloys with a
degree of accuracy that is su�cient to describe and predict the optical properties of semiconductor lasers
and related devices.

Since our focus in this chapter is on developing theory with a view to the modeling of photonic devices,
we have concentrated in this overview on the fundamental features of the dilute bismide electronic struc-
ture which are relevant for such applications (primarily the evolution of the band edge energies and
character of the band edge eigenstates with Bi composition). We note there have been several additional
studies which have either further explored the electronic structure, or which have focused on other aspects
of the interesting and unusual properties of dilute bismide alloys. For example, further DFT-based calcu-
lations of the electronic structure of GaBixAs1−x and related Bi-containing alloys have been carried out
by Mbarki et al. [62], and more recently by Polak et al. [63,64]. Calculations of the structural, elastic, and
vibrational properties of III-Bi compounds have been undertaken by Ferhat et al. [65,66], and theoretical
investigations of the thermo-dynamics and kinetics of the growth of GaBixAs1−x alloys have been carried
out by Morgan et al. [67,68] and by Punkinnen et al. [69,70]. We direct the reader to the references pro-
vided for further information on these and related aspects of the physics and chemistry of Bi-containing
compounds and alloys.

10.2.2 Comparison of Atomistic Theory with Experimental Measurements

Having outlined the general features of the electronic structure of GaBixAs1−x alloys, we now turn our
attention to direct comparisons between theory and experiment for this material system. We reserve
detailed discussion of the impact of isolated Bi impurities and quantitative analysis of the VBAC model until
Section 10.3.1, and focus here on disordered alloys. The TB method described in Section 10.2.1 provides a
particularly useful framework within which to analyze such systems, since it enables direct calculation of
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the electronic structure in large supercells containing several thousand atoms, thereby allowing alloy dis-
order e�ects at dilute compositions to be treated in a realistic manner. Theoretical analysis of the electronic
structure of disordered GaBixAs1−x alloys and QWs using the TB method—full details of which are beyond
the scope of this chapter—can be found in Refs. [5,27–29]. Here, we provide a brief overview of this work,
describing some general features of the electronic structure, and comparing the results of TB calculations
on disordered alloys directly with experimental measurements of the band gap, spin-orbit-splitting energy,
and electron e�ective g factor.

The electronic structure calculations we review in this section were performed on a series of disordered
4096-atom supercells, which are either free-standing (unstrained) or under compressive pseudomorphic
strain. Beginning with a GaAs supercell, a disordered GaBixAs1−x supercell was generated by replacing
As atoms by Bi atoms at randomly chosen sites on the anion sublattice. In the free-standing supercells,
all atomic positions were allowed to relax freely—using a valence force �eld model based on the Keating
potential [71,72]—with no constraints applied to the atoms at the supercell boundaries. For pseudomor-
phically strained supercells, a macroscopic pseudomorphic strain was imposed by �xing the positions of
the atoms on the exterior boundaries and relaxing the positions of the atoms in the interior of the supercell
[29]. For the construction of the supercell TB Hamiltonian, the orbital energies at a given atomic site were
computed depending on the overall neighbor environment. Local strain e�ects were taken into account by
scaling the interatomic interaction matrix elements based on the relaxed nearest-neighbor bond length d
as

(

d0
d

)η
, where d0 is the equilibrium bond length in the equivalent binary compound and η is a dimen-

sionless scaling parameter (the value of which depends on the type and symmetry of the interaction). The
bond angle dependence of the interaction matrix elements was represented using the two-center integrals
of Slater and Koster [73]. Full details of the TB model are described in Ref. [5].

In order to facilitate the TB analysis of the electronic structure of GaBixAs1−x alloys, the fractional Γ
character spectrum GΓ(E) serves as a useful tool to probe the nature and origin of the alloy eigenstates.
GΓ(E) is calculated in general by projecting a speci�c choice of host matrix (in this case, GaAs) Γ-point
eigenstates onto the full spectrum of zone-center eigenstates for a given alloy supercell. Speci�cally, using
(0) and (1) to respectively denote the unperturbed host matrix and Bi-containing alloy supercell states,
GΓ(E) is computed by projecting the unperturbed zone-center eigenstates {|ψ(0)l ⟩} of a 2M-atom GaMAsM

supercell onto the eigenstates {|ψ(1)k ⟩} computed at Γ for a given GaMBiLAsM−L alloy supercell

GΓ (E) =
∑

k

g(El)
∑

l=1
|⟨ψ(1)k |ψ(0)l ⟩|

2 T
(

E − Ek
)

, (10.1)

where x = L
M is the Bi composition, Ek is the energy of the zone-center alloy supercell eigenstate |ψ(1)k ⟩,

g(El) is the degeneracy of the unperturbed host matrix eigenstate having energy El at Γ (so that g(El) =
2, 4, and 2 for the CB, VB, and SO band edge eigenstates, respectively), and where the “top hat” function
T
(

E − Ek
)

is de�ned so that GΓ(Ek) has a value of unity for a doubly (spin) degenerate host matrix Γ
state at energy Ek. As has previously been demonstrated—in Refs. [5], [27] and [29]—computing GΓ(E)
for a range of band edge states provides (1) a consistent approach with which to analyze the evolution of
the electronic structure in both ordered and disordered alloy supercells, and (2) detailed insight into the
nature of the zone-center eigenstates in a Bi-containing alloy, by quantifying their origin in terms of those
of the unperturbed host matrix semiconductor.

Figure 10.2 shows the calculated distribution of the Γ character associated with the extended GaAs host
matrix heavy-hole (HH), light-hole (LH), and SO band edge states over the full spectrum of zone-center
alloy states, for a disordered 4096-atom Ga2048Bi82As1966 (x = 4%) supercell under compressive pseudo-
morphic strain [29]. The top, middle, and bottom panels of Figure 10.2 show, respectively, the GHH

Γ (Ej,1),
GLH
Γ (Ej,1) and GSO

Γ (Ej,1) spectra, calculated using the unperturbed GaAs host matrix HH, LH, and SO states
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FIGURE 10.2 Black lines: Calculated distribution of the Γ character associated with the GaAs HH (top panel), LH
(middle panel), and SO (bottom panel) band edge states over the full spectrum of alloy zone-center valence states in
a disordered, 4096-atom Ga2048Bi82As1966 (x = 4%) supercell (cf. Equation 10.1). The supercell was placed under
compressive pseudomorphic strain corresponding to epitaxial growth on a GaAs substrate, as described in the text.
(Adapted from C.A. Broderick et al., Phys. Rev. B, 90, 195301, 2014.) Gray lines: Corresponding distribution of the Γ
character in a Bi-free Ga2048As2048 supercell. The zero of energy is taken at the GaAs VB edge.

|ψl,0⟩ = |ψHH,0⟩, |ψLH,0⟩ and |ψSO,0⟩ in Equation 10.1. For comparative purposes, the corresponding Γ
character of the unperturbed Ga2048As2048 host matrix is also shown in Figure 10.2 using gray lines.

Comparing the computed spectra for the host matrix and Bi-containing supercells reveals several impor-
tant e�ects of Bi incorporation on the VB structure. First, incorporation of Bi leads to strong hybridization
between the GaAs VB edge states and a series of Bi-related states lying at lower energies, within the VB.
Second, this hybridization acts to push to the alloy VB edge states upward in energy with increasing Bi
composition. In the ordered supercell case, this behavior can be explained directly in terms of a VBAC
interaction (cf. Section 10.3.1), and this general behavior is clearly observed in disordered GaBixAs1−x
alloys across a broad composition range [5]. Third, we note that the Γ character associated with the GaAs
HH and LH states is distributed over a large number of VB states in a disordered GaBixAs1−x supercell.
There are primarily two reasons for this: (1) the localized impurity states associated with substitutional Bi
atoms are resonant with a large density of host matrix VB states, which leads to strong energy broadening
of the associated quasi-localized resonances (as described for N impurities in Chapter 9) and is re�ected
by the large number of alloy VB states having small Γ character [54], and (2) the presence of Bi–Bi pairs
(in which a single Ga atom has two Bi nearest neighbors) and larger clusters of Bi atoms (having shared Ga
nearest neighbors) leads to the formation of localized impurity states which more strongly bind holes—i.e.
which lie close to and/or above the GaAs VB edge in energy [5]. This progression of localized Bi-related
cluster states leads, in a disordered alloy, to the distribution of a signi�cant fraction of the GaAs Γ character
over a range of VB states lying close in energy to the alloy VB edge. This then quanti�es quantifying the
strong inhomogeneous broadening of the band edge features in GaBixAs1−x alloys observed in spectro-
scopic measurements in terms of the strong impact of Bi-related disorder on the nature of the GaBixAs1−x
VB [27]. Fourth, in contrast to the character of the alloy VB edge, we note that the feature associated with
the Γ character of the GaAs SO band edge states, visible in the bottom panel of Figure 10.2, remains rel-
atively sharp in GaBixAs1−x. This suggests that the impact of Bi incorporation and alloy disorder on the
SO band is less perturbative than it is on the HH- and LH-like states at the VB edge. However, additional
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calculations indicate that this distribution of the SO-related Γ character persists as the Bi composition is
increased, leading to strong energy broadening and a breakdown of the alloy SO band edge at higher Bi
compositions [5]. This suggests a breakdown of a conventional band description of the SO states, which has
been con�rmed by further analysis [29,61]. Finally, as expected for an epilayer under compressive strain,
we see that the highest-energy alloy VB state is predominantly HH-like, having >50% GaAs HH Γ charac-
ter. We additionally note that both the LH and HH band edges in the alloy are strongly inhomogeneously
broadened, which is evidenced by the large number of alloy VB states over which the GaAs VB edge Γ
character is distributed [27].

Similar analysis of the conduction states suggests that the impact of Bi incorporation on the CB is gen-
erally weak, leading to a downward shi� in energy and decrease in the CB-related Γ character that is
consistent with alloying e�ects in conventional semiconductor materials. Overall, these calculated trends
con�rm that Bi incorporation almost exclusively and strongly perturbs the VB structure, while the CB
structure is, by comparison, relatively una�ected [5].

On the basis of these supercell calculations, the variation of the band gap and spin-orbit-splitting energy
as a function of Bi composition can be extracted for disordered GaBixAs1−x alloys. These values were cal-
culated directly for each supercell on the basis of the calculated GΓ(E) spectra: the band gap was computed
as the di�erence in energy between the (largely GaAs-like) lowest-energy CB state and the alloy VB state
having the largest HH or LH GaAs Γ character; the spin–orbit-splitting energy was then computed as the
di�erence in energy between this (typically highest-energy) alloy VB state and a weighted average energy
for the alloy SO band (obtained by averaging over the full set of zone-center alloy energies using the value
of the SO Γ character as a weight for each contributing eigenstate) [5]. Given the important role played
by alloy disorder in determining the details of the VB structure, for each Bi composition considered this
analysis was undertaken for �ve supercells in which the Bi atoms were randomly distributed at di�erent
sites on the anion sublattice. The values of Eg and ΔSO were then obtained for that Bi compostion as the
average of those calculated using each of the di�erent supercells considered. The results of these calcula-
tions are shown in Figure 10.3a, which compares the calculated variation of Eg and ΔSO as a function of
Bi composition x in GaBixAs1−x to a range of experimental measurements. We note that the theoretical
calculations are in excellent agreement with the experimental measurements, across the full composition
range for which data are available. In particular, the TB model accurately captures the strong, composition-
dependent bowing of Eg and ΔSO demonstrating—in line with the discussion above—that the observed
strong decrease (increase) of Eg (ΔSO) with increasing x is primarily attributable to the impact of Bi incor-
poration on the VB structure, and results largely from the upward shi� in energy of the alloy VB edge. The
TB analysis con�rms that this behavior originates due to hybridization of the GaAs VB edge states with a
full distribution of Bi-related localized states in a disordered alloy [5,54].

The Landé e�ective g factor of conduction electrons (g∗e ) is a key parameter in semiconductor materials,
describing the response of the electron spins to externally applied magnetic �elds, as well as providing use-
ful information regarding the symmetry of the electron and hole states at the Γ-point in the Brillouin zone.
Therefore, in addition to providing information pertinent to evaluating the potential of speci�c materi-
als for spintronic applications, analysis of the electron spin properties and g factor gives insight into the
material band structure, providing valuable data for material characterization and modeling. In particu-
lar, g∗e is extremely sensitive to the separation in energy between zone-center crystal eigenstates, as well as
hybridization between zone-center eigenstates caused by, e.g. a reduction of symmetry due to strain [75]
or quantum con�nement [76]. As a result, calculations of g∗e provide a stringent test of theoretical models
of the material band structure [77].

Optical excitation of a semiconductor material with circularly polarized light is known to generate a
spin-polarized population of electrons in the CB. These electrons can then relax by recombining with holes
in the VB and emitting photons which must be circularly polarized in order to conserve angular momen-
tum, with the nature of the circular polarization determined by the orientation of the electron spin. As such,
Larmor precession of electron spins in the presence of an externally applied magnetic �eld leads to beating
of the circular polarization of the photoluminescence (PL) generated by exciting a material sample with
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FIGURE 10.3 (a) Comparison between theory and experiment for the variation of the band gap (Eg) and spin–orbit-
splitting energy (ΔSO) as a function of Bi composition x in GaBixAs1−x at 300 K. Experimental measurements of Eg
are depicted by open circles. (The experimental data are taken from S. Tixier et al., Appl. Phys. Lett., 82, 2245, 2003;
S. Francoeur et al., Appl. Phys. Lett., 82, 3874, 2003; W. Huang et al., J. Appl. Phys., 98, 053505, 2005; K. Alberi et al.,
Phys. Rev. B, 75, 045203, 2007; Z. Batool et al., J. Appl. Phys., 111, 113108, 2012; Yoshida et al., Jpn. J. Appl. Phys., 42,
371, 2003.) Experimental measurements of ΔSO are depicted by open squares. (The experimental data are taken from
K. Alberi et al., Phys. Rev. B, 75, 045203, 2007; Z. Batool et al., J. Appl. Phys., 111, 113108, 2012; B. Fluegel et al., Phys.
Rev. Lett., 97, 067205, 2006.). Closed circles (squares) show the variation of Eg (ΔSO) calculated using the TB model
for a series of disordered, 4096-atom supercells. (Adapted from M. Usman et al., Phys. Rev. B, 84, 245202, 2011; C.A.
Broderick et al., Semicond. Sci. Technol., 28, 125025, 2013.). (b) Comparison between theory and experiment for the
variation of the transverse and longitudinal components g∗⟂,e and g∗∥,e of the electron e�ective g factor g∗e as a function
of Bi composition x in GaBixAs1−x at 200 K. Closed circles (squares) show the variation of g∗⟂,e (g∗∥,e) calculated using
the TB model for a series of disordered, 4096-atom supercells placed under pseudomorphic strain as described in the
text. Open circles (squares) show the variation of g∗⟂,e (g∗∥,e) measured for a series of GaBixAs1−x/GaAs epitaxial layers
using spin quantum beat spectroscopy. (Adapted from Broderick, C.A. et al., Phys. Rev. B, 90, 195301, 2014.)

circularly polarized light [78]. Using time-resolved PL spectroscopy, the Larmor frequency ω = g∗e μB
ℏ B of

these “quantum beats” can be determined, allowing the relevant component of g∗e to be determined directly
for a given relative orientation of the material sample and externally applied magnetic �eld [76]. As a result
of the long coherence times associated with the beating of the PL polarization, this experimental tech-
nique, known as spin quantum beat spectroscopy, enables highly accurate determination of the electron
Larmor frequency, and hence the e�ective g factor g∗e [77,78]. In order to investigate in further detail the
impact of Bi incorporation on the electronic structure, as well as to provide insight into the impact of Bi
incorporation on the spin properties of electrons, Broderick et al. [29] developed a TB-based model for the
calculation of g∗e in disordered GaBixAs1−x alloys. Here, we provide a brief summary of the analysis of g∗e
in GaBixAs1−x, including comparison to experimental data, full details of which can be found in Ref. [29].

The hybridization between zone-center LH and SO states brought about by the tetragonal deformation
and associated reduction of symmetry in pseudomorphically strained layers is known to play a key role
in determining the anisotropy of g∗e in conventional semiconductor alloys, leading to distinct transverse
and longitudinal components g∗⟂,e and g∗∥,e of the g∗e tensor [75]. Returning our attention to Figure 10.2, we
begin by noting that the calculated distribution of GaAs SO character for this typical pseudomorphically
strained GaBixAs1−x supercell highlights that the strong inhomogeneous broadening of the LH-like alloy
VB states brought about by alloy disorder minimizes this expected strain-induced LH–SO hybridization—
i.e. there is no notable projection of the GaAs SO band edge character onto LH-like states close to the alloy
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VB edge—providing the �rst hint that the unusual VB structure of Bi-containing alloys is likely to have a
strong impact on g∗e .

In the absence of strain, g∗e is expected to be isotropic, with g∗⟂,e = g∗∥,e [75]. Comparative calculations we
have undertaken on free-standing (unstrained) supercells demonstrate strain-induced mixing between the
LH and SO states in ordered supercells, enabling us to conclude that the strong inhibition of such mixing
observed in Figure 10.2 arises due to the disorder-induced energy broadening of the GaAs LH character
over a signi�cant number of alloy VB states. In order to investigate the impact of Bi incorporation, pseudo-
morphic strain, and Bi-related alloy disorder on the isotropy of g∗e , we have therefore �rst calculated g∗⟂,e
and g∗∥,e as a function of Bi composition x in a series of free-standing supercells. These calculations show
that (1) Bi incorporation leads to a rapid, monotonic increase in the magnitude of g∗e with increasing x,
and (2) the reduced local symmetry present in a disordered GaBixAs1−x alloy supercell has a negligible
e�ect on the isotropy of g∗e [29]. The latter result suggests that the anisotropy of g∗e observed in experi-
mental measurements performed on GaBixAs1−x epitaxial layers arises primarily due to the reduction in
symmetry brought about by the impact of biaxial stress on the band structure, much like in conventional
semiconductor materials, but that the LH–SO mixing to which this behavior is attributed in conven-
tional semiconductor alloys [75] is not a signi�cant factor determining the anisotropy of g∗e in GaBixAs1−x
alloys.

In order to determine the anisotropy of g∗e in real, pseudomorphically strained epitaxial layers, as well
as to compare the results of the theoretical calculations to experiment, Broderick et al. repeated this anal-
ysis for disordered GaBixAs1−x supercells under the application of a macroscopic strain corresponding to
pseudomorphic growth on a GaAs substrate [29] (applied as described above). The results of this analy-
sis are summarized in Figure 10.3b, which shows the calculated variation of g∗⟂,e (closed circles) and g∗∥,e
(closed squares) with x, as well as experimental measurements of g∗⟂,e (open circles) and g∗∥,e (open squares)
performed on a series of strained GaBixAs1−x epitaxial layers at a temperature of 200 K [29].

In the presence of pseudomorphic strain, we see that g∗e is strongly anisotropic. As in the unstrained case,
we note that the magnitudes of both g∗⟂,e and g∗∥,e increase strongly and monotonically with increasing x.
We also calculate that (1) the magnitude of g∗∥,e exceeds that of g∗⟂,e for non-zero x, in agreement with
experiment, and (2) the magnitude of g∗∥,e is close to the isotropic value of g∗e calculated in the absence
of strain [29], both of which are expected for compressively strained epitaxial layers [75]. Based on these
comparative calculations, we conclude that while the overall symmetry of g∗e is largely independent of the
e�ects of alloy disorder, the impact of pseudomorphic strain is crucial for determining the experimentally
observed anisotropy of g∗e in GaBixAs1−x epitaxial layers. We note that the calculated enhancement of
g∗⟂,e with increasing x is in excellent agreement with experiment, con�rming not only the accuracy of the
detailed picture of the GaBixAs1−x VB structure provided by the TB model, but also the strong impact of
Bi incorporation on the spin properties of electrons in GaBixAs1−x alloys.

The e�ects of alloy disorder on the calculated variation of g∗⟂,e and g∗∥,e with x can be understood in more
detail by considering the distribution of host matrix Γ character shown in Figure 10.2. In a disordered
GaBixAs1−x alloy, the VB edge GaAs Γ character is distributed over a large number of alloy VB states,
with the details of the distribution determined by the precise short-range disorder present in the alloy. The
details of this distribution of the GaAs Γ character onto VB states lying below the alloy VB edge in energy
plays a crucial role in determining the calculated variation of g∗⟂,e and g∗∥,e with x, since the contribution
from a given alloy VB state to a speci�c component of g∗e is weighted by its associated host matrix Γ
character [29]. Speci�cally, mixing of GaAs VB edgeΓ character into alloy VB states with greater separation
in energy from the alloy CB edge results in contributions to g∗e which act against the much stronger increase
in the magnitudes of g∗⟂,e and g∗∥,e than would be expected based solely upon the measured variation of Eg
and ΔSO with x [24,29]. We recall from Section 10.2.1 that this breakdown of the simple VBAC picture of
the VB structure in the vicinity of the SO band [29] suggests that detailed approaches are typically required
to understand material properties involving eigenstates that are energetically remote from the CB and VB
edges.
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Overall, we conclude that the TB model developed in Ref. [5] provides a detailed and quantitative
understanding of the electronic structure of GaBixAs1−x and related alloys. The variation of the band gap,
spin–orbit-splitting energy, and electron e�ective g factor as a function of Bi composition calculated using
the TB method are in good, quantitative agreement with experiment, and this theoretical approach has
delivered signi�cant insight into the impact of Bi incorporation on the GaBixAs1−x band structure.

10.2.3 Outlook for Atomistic Theory

Despite the detailed insight atomistic calculations have provided into the impact of Bi incorporation on
the electronic and optical properties of GaBixAs1−x and related alloys, there is still signi�cant potential
to develop and apply atomistic methods and models to further analyze a range of fundamental material
properties in this emerging class of III-V semiconductors.

For example, based on the observation that the VBAC picture of the band structure—which very accu-
rately describes the evolution of Eg and ΔSO with x (cf. Section 10.3), as well as the optical properties
of dilute bismide semiconductor lasers (cf. Section 10.4)—breaks down for states energetically remote
from the VB edge, it is possible to conclude that simple, phenomenological approaches are ill equipped
to account for the impact of Bi incorporation and alloy disorder on a number of technologically relevant
material properties. This is perhaps unsurprising, since the VBAC model treats only the main features of
the band structure and does so in a phenomenological manner. However, this conclusion has signi�cant
implications for further theoretical analysis of dilute bismide alloys, implying, e.g. that simple models of
the band structure are ill equipped to quantitatively describe key processes such as Auger recombination
and IVBA, which involve a broad energy range of alloy VB states including, in particular, states lying close
to the SO band edge in energy. As was described for dilute nitride alloys in Chapter 9, detailed and special-
ized theoretical approaches must therefore be developed in order to obtain a quantitative understanding
of complicated processes and properties of this nature.

There have to date been no direct theoretical investigations on a fundamental level of the impact
of Bi incorporation on a number of important material properties and processes including, e.g.
(1) carrier lifetimes, (2) radiative and non-radiative recombination rates, (3) carrier transport, and
(4) impact ionization. Detailed understandings of these and related properties must be developed in order
to inform the development of Bi-containing alloys for applications in a range of novel semiconductor
devices.

Previous theoretical analysis has highlighted the strong in�uence of Bi-related alloy disorder in deter-
mining the details of the electronic structure, meaning that further quantitative theoretical analysis of
the properties of Bi-containing alloys is likely to require detailed atomistic treatments. This requirement
presents the theoretical community with a series of interesting challenges, centered on developing the capa-
bility to describe—on an atomic scale—the impact of short-range disorder on a range of fundamental
properties and processes in highly mismatched alloys, where dilute concentrations of impurities strongly
perturb the electronic structure in a manner that is not compatible with many commonly employed
approximations due to the prominence of alloy disorder e�ects in determining the material properties.

On this basis, further theoretical research on dilute bismides—perhaps informed by related research on
dilute nitride alloys—is likely to deliver not only an improved understanding of this interesting class of
semiconductors, but also insights and methods that can be applied to a broad range of emerging highly
mismatched materials.

10.3 Modeling Dilute Bismide Band Structure: The k•p Method

Having presented an overview of atomistic electronic structure calculations for GaBixAs1−x alloys, in
this section, we present a (continuum) k⋅p model of the (In)GaBixAs1−x band structure which is well
suited to the simulation of the electronic and optical properties of dilute bismide materials and devices.
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In Section 10.3.1, we outline how a VBAC approach can be used to provide a simple yet e�ective inter-
pretation of the band structure of dilute bismide alloys and describe how detailed atomistic calculations
have provided a means to deliver quantitative predictive power to this phenomenological picture of the
electronic properties.

In Section 10.3.2 we review the use of TB supercell calculations to derive an extended basis set 12-band
k⋅p Hamiltonian for (In)GaBixAs1−x alloys. This rigorous analysis veri�es that localized impurity states
associated with isolated substitutional Bi atoms play the dominant role in determining the main features
of the band structure close in energy to the VB edge. The result of this is—despite the fact that more
sophisticated atomistic approaches are typically required to understand the detailed properties of these
materials—a VBAC-based approach is su�cient to provide a understanding of the electronic and optical
properties of dilute bismide devices such as QW lasers in which only quantitative optically active states
lying close in energy to the CB and VB edges are of signi�cant importance.

In Section 10.3.3 we present a general method—based on the 12-band k⋅p Hamiltonian—for calculat-
ing the band o�sets in pseudomorphically strained (In)GaBixAs1−x epitaxial layers and QWs, such as those
which are attracting signi�cant attention for the development of highly e�cient GaAs- and InP-based semi-
conductor lasers. The theory outlined in this section lays the foundation for our analysis of dilute bismide
QW lasers in Section 10.4.

10.3.1 Valence Band-Anticrossing

As described in Chapter 9, the strong, composition-dependent band gap bowing observed in the dilute
nitride alloy (In)GaNxAs1−x is well explained in terms of a band-anticrossing interaction between two
levels: one at energy ECB associated with the extended CB edge states of the (In)GaAs host matrix, and
the second at energy EN associated with the highly localized N-related impurity states. In this simple
model, the CB edge energy of the N-containing alloy is given by the lower eigenvalue of the two-band
Hamiltonian [8]:

H =
(

EN VNc
VNc ECB

)

, (10.2)

where VNc is the N composition dependent matrix element describing the interaction between ECB and
EN, which varies with N composition x as VNc = β

√

x.
Bismuth, being the heaviest stable group-V element, is signi�cantly larger and more electropositive than

As. It is therefore expected that any Bi-related impurity levels in (In)GaAs should lie close to or below
the VB edge in energy and, if present, a VBAC interaction will occur between the Bi-related impurity
levels and the VB edge states of the host matrix (cf. Section 10.2.1). The presence of such an interaction
has been proposed on the basis of experimental measurements [4], in order to account for the observed
composition-dependent bowing of the (In)GaBixAs1−x band gap. While detailed analysis of atomistic
supercell calculations [5,54,60] directly con�rms the validity of this approach to describing the band struc-
ture in the case of ordered alloys, we note that the VBAC model introduced in Ref. [4] is in practice strongly
limited by parametric ambiguity which removes its predictive capability. For example, one typically has two
parameters (the energy of the Bi-related states EBi and the VBAC coupling strength β) which must be �tted
to a single piece of experimental data (the measured alloy band gap at a given Bi composition), meaning
that there is insu�cient information available with which to provide an unambiguous �t without resorting
to limiting assumptions. For example, initial estimation of the energy of the localized states associated with
an isolated substitutional Bi impurity in GaAs produced a value EBi = −0.4 eV, which lies approximately
60 meV below the SO band edge [4]. However, �rst principles pseudopotential and large-supercell TB cal-
culations con�rm that these states lie above the SO band edge in energy (cf. Section 10.2.1), suggesting
that simple estimates based on experimental data produce a qualitatively di�erent description of the VB
structure. Usman et al. overcame this limitation by using atomistic TB calculations to directly evaluate the



9781498749466_C010 2017/8/29 14:10 Page 328 #16

328 Handbook of Optoelectronic Device Modeling and Simulation

VBAC parameters, thereby producing a quantitative VBAC approach that provides a predictive capability
which has been veri�ed by comparison to a range of experimental data [15,39,54,79]. Here, we outline the
TB analysis of the VBAC interaction, as a prelude to the derivation of a suitable k⋅p Hamiltonian with
which to model the band structure of (In)GaBixAs1−x alloys [54] and heterostructures [15,39,79].

To directly analyze the VBAC interaction, we consider the electronic structure of ordered GaBixAs1−x
and InBixAs1−x alloys by inserting a single substitutional Bi atom in a series of cubic XMBi1AsM−1
(X = Ga, In) supercells containing a total of 2M = 8N3 atoms, for 2 ≤ N ≤ 8. In the VBAC model the
Bi-hybridized (In)GaBixAs1−x VB edge states are an admixture of the unperturbed GaAs VB edge states
and the T2 symmetric localized states associated with isolated Bi impurities. Writing the alloy VB edge
states as a linear combination in this manner, we obtain an expression for the Bi-related (doublet) states
that interact with the (In)GaAs VB edge [5,42,54]

|ψBi,i⟩ =
|ψ(1)i ⟩ −

∑

n |ψ
(0)
n ⟩⟨ψ(0)n |ψ(1)i ⟩

√

1 −
∑

n |⟨ψ
(0)
n |ψ(1)i ⟩|

2
, (10.3)

where the indices n and i run respectively over the four-fold degenerate states of the (In)GaAs and
(In)GaBixAs1−x VB edge, respectively. The superscripts (0) and (1) refer respectively to the unperturbed
host matrix and alloy VB edge eigenstates.

From Equation 10.3 we have calculated the energy of the Bi-related states, EBi,i = ⟨ψBi,i|Ĥ(x)|ψBi,i⟩, as
well as the coupling strength VBi,i of the VBAC interaction between |ψBi,i⟩ and the host matrix VB edge
states, VBi,i = ⟨ψBi,i|Ĥ(x)|ψ

(0)
VB,i⟩, where Ĥ(x) is the full TB Hamiltonian for the Bi-containing supercell

and |ψ(0)VB,i⟩ is the unperturbed host matrix VB edge state with which |ψBi,i⟩ interacts [5]. Doing this shows
directly that (1) a substitutional Bi atom in GaMBi1AsM−1 or in InMBi1AsM−1 forms a set of four-fold
degenerate impurity states (at energy EBi = EBi,i), which are highly localized about the Bi site, and (2) the
strength of the VBAC interaction between the states |ψBi,i⟩ and those of the unperturbed host matrix VB
edge varies with Bi composition x as VBi = β

√

x.
Figure 10.4 shows the calculated values of the di�erence in energy between the Bi-related states and the

unperturbed host matrix VB edge, ΔEBi = EBi − E(0)VB, as well as the VBAC coupling parameter β, as a
function of supercell size (alloy composition) for a series of ordered XMBi1AsM−1 (X = Ga, In) supercells.
We calculate a strong variation ofΔEBi and β with Bi composition at larger x, with the trends stabilizing as
x approaches the impurity limit in the larger (>2000 atom) supercells [5]. In line with the �rst-principles
pseudopotential calculations of Zhang et al. [49], we �nd that this behavior is attributable to the folding
of host matrix VB states back to the Γ point as the supercell size is increased, which makes more zone-
center supercell states having large k components available to construct |ψBi,i⟩ in the larger supercells [54].
Therefore, we conclude that one should refer to large supercell calculations when examining the behavior
of a substitutional Bi impurity in (In)GaAs alloys. We also note that ΔEBi < 0 in both GaBixAs1−x and
InBixAs1−x, indicating that a substitutional Bi atom forms resonant states in (In)GaAs which lie below the
unperturbed host matrix VB edge in energy. This is distinct from the case of a substitutional Bi impurity
in GaP, where Bi forms bound states that lie energetically with the host matrix band gap [5,55].

10.3.2 12-Band k⋅p Hamiltonian for Dilute Bismide Alloys

In order to derive an appropriate k⋅pHamiltonian for (In)GaBixAs1−x, we began with an eight-band model
for the (In)GaAs host matrix [80], which employs a basis of spin-degenerate zone-center Bloch states for
the lowest-energy CB, as well as the HH, LH, and SO VBs. By diagonalizing the (In)GaAs TB Hamiltonian
at Γ, we obtain these basis states |u1⟩,… , |u8⟩ directly. Then, we use this set of supercell basis states to
construct an eight-band parameter set for (In)GaAs directly from the full TB calculations. This gives a
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FIGURE 10.4 Calculated di�erence in energy between the Bi-related localized impurity states and host matrix VB
edge, ΔEBi (closed symbols) and VBAC coupling parameter, β (open symbols) for a substitutional Bi impurity in a
series of ordered, cubic GaMBi1AsM−1 (circles) and InMBi1AsM−1 (squares) supercells. (Adapted from C.A. Broderick
et al., Semicond. Sci. Technol., 28, 125025, 2013; C.A. Broderick et al., Phys. Stat. Sol. B, 250, 773, 2013.) Each supercell
contains a total of 2M = 8N3 atoms (where N is the number of cubic 8-atom unit cells along each of the x-, y- and
z-directions), corresponding to Bi compositions ranging from x = 0.049% (4096 atoms) to x = 3.125% (64 atoms).
The zero of energy is taken in each case at the host matrix VB edge and is denoted by a dash-dotted line at 0 eV.

parameterization of the eight-band Hamiltonian that reproduces the full TB band structure of an XMAsM
(X = Ga, In) supercell with a high degree of accuracy in the vicinity of the zone center [42,54].

Having established this description of the host matrix band structure, we extend the eight-band basis set
that describes the host matrix band structure by directly including the four Bi-related localized impurity
(doublet) states described by Equation 10.3. The manner in which these Bi-related basis states couple to
the host matrix VB edge states is then straightforward to include in the modi�ed k⋅p Hamiltonian: the
matrix elements between the localized Bi-related states and the extended VB edge states of the host matrix
are precisely those evaluated in Section 10.3.1 as VBi = β

√

x. In this manner, we arrive at a 12-band,
extended basis set k⋅p Hamiltonian for (In)GaBixAs1−x alloys in which the impact of Bi on the band struc-
ture is described primarily via the VBAC interaction. In addition to the VBAC-induced shi� in the VB
edge energies, there are also conventional (virtual crystal) contributions to each of the band edge energies
which depend linearly upon the Bi composition x. We have again used the TB model to directly quantify
these e�ects, by evaluating the matrix elements ⟨ub|Ĥ(x)|ub⟩, where |ub⟩ are the aforementioned basis
states for the host matrix. Following this approach, we �nd �rstly that the Bi-related localized states do
not coupled directly to the extended CB edge states of the host matrix. Next, we calculate that the virtual
crystal contributions to the variation of the (In)GaAs band edge energies with Bi composition x are given
by: ECB(x) = E(0)CB − αx, EHH(x) = ELH(x) = E(0)VB + κx, and ESO(x) = E(0)SO − γx, for the CB, VB, and SO
band edges, respectively (where the superscript (0) denotes the band edge energy of the unperturbed host
matrix).

We note that the incorporation of Bi then introduces �ve band structure parameters in addition to
those that describe the (In)GaAs host matrix, all of which are required to provide a reliable description
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of the GaBixAs1−x band structure using a VBAC-based approach. (As we see in Section 10.3.3, this num-
ber increases to seven in the presence of pseudomorphic strain.) These parameters are (1–3) the virtual
crystal contributions to the energies of the CB (α), VB (κ), and SO (γ) band edge energies, (4) the energy
of the Bi-related localized states relative to the (In)GaAs VB edge (ΔEBi), and (5) the VBAC coupling
strength (β). This number of free parameters is too large to provide an unambiguous �t to the avail-
able experimental band structure data, thereby emphasizing the importance of atomistic calculations in
informing not only the understanding of the fundamental properties of Bi-containing alloys, but also the
development and parametrization of su�ciently detailed phenomenological models to enable the investi-
gation of heterostructures and devices. The 12-band k⋅p Hamiltonian derived by Broderick et al. using this
approach is presented in full in Ref. [54]; the Bi-related band structure parameters derived for GaBixAs1−x
and InBixAs1−x alloys on the basis of the TB analysis are listed in Table 10.1. We note that while this 12-
band model contains fewer bands than the 14-band model originally introduced by Alberi et al. in Ref. [4],
it ultimately provides a more accurate description of the band structure since, in addition to VBAC interac-
tions, the contributions of strain and virtual crystal e�ects on the composition dependence of the band edge
energies have been explicitly taken into account. Additionally, the 12-band model is fully parametrized on
the basis of atomistic supercell calculations, without making recourse to �ts to experimental data, thereby
providing genuine predictive capability.

Figure 10.5a compares the results of calculations of the Ga32Bi1As31 (x = 3.125%) band structure in the
vicinity of the zone center using the 12-band k⋅p (solid lines) and full TB (closed circles) Hamiltonians.
Note that since the TB calculation is carried out on a 64-atom supercell, the appropriate values ofΔEBi and
β for the supercell must be used in the k⋅p calculation in order to directly compare the band structures
calculated using the two methods (cf. Figure 10.4). We observe excellent agreement between the k⋅p and
TB band structures. It can be seen that (1) the VBAC interaction has pushed the alloy VB edge upward in
energy, and (2) the CB and SO band edge energies in the alloy are well described by the Bi-induced virtual
crystal shi�s described above. The VBAC interaction, which describes the strong composition-dependent
band gap bowing, accounts for the majority of the observed band gap reduction with increasing x. We
also note that the presence of the VBAC interaction is veri�ed by the presence of TB bands that corre-
spond to the lower energy Bi-related (ELH/HH

− ) bands in the k⋅p calculation. These calculations therefore
con�rm that the 12-band Hamiltonian provides an accurate description the unusual band structure of
(In)GaBixAs1−x alloys [42,54].

The main features of the band structure calculated using the 12-band Hamiltonian are in excellent agree-
ment with those obtained from TB calculations performed on realistic disordered alloys across a wide range
of Bi compositions, despite having been derived and parameterized for ordered alloys [54]. Figure 10.5b
shows the variation of Eg (solid black line) and ΔSO (dashed black line) as a function of Bi composition
x at 300 K in GaBixAs1−x, calculated using the 12-band k⋅p model. Comparing the results of these cal-
culations to a range of experimental data from the literature, we see that the 12-band model produces a
highly accurate description of the main features of the GaBixAs1−x band structure, and does so across
a broad composition range. Overall, this analysis suggests that a suitably constructed and parametrized

TABLE 10.1 Bi-related Band Structure Parameters for the 12-band k⋅p
Hamiltonian, Computed Directly Using TB Supercell Calculations for
GaBixAs1−x and InBixAs1−x Alloys as Described in the Text

Alloy ΔEBi (eV) β (eV) α (eV) κ (eV) γ (eV)

GaBixAs1−x −0.183 1.13 2.82 1.01 0.55
InBixAs1−x −0.217 0.92 2.60 1.03 0.02

Source: C.A. Broderick et al., Semicond. Sci. Technol., 28, 125025, 2013.
The parameters ΔEBi and β specify the nature of the VBAC interaction, while
α, κ, and γ, respectively, describe the Bi-induced virtual crystal (conventional
alloy) shi�s to the CB, VB, and SO band edge energies.



9781498749466_C010 2017/8/29 14:10 Page 331 #19

Dilute Bismide Alloys 331

–1

–0.5

0

0.5

1

1.5

2

0 0.50.5 1.0 1.51.01.5

En
er

gy
 (e

V)

Wave vector, k (nm–1)

L Λ Γ Δ X

Ga32Bi1As31
(x = 3.125%)

E–

E+

(a)

CB

SO

HH E–LH

LHE+HH

En
er

gy
 (e

V)

Eg, 12-band model

Eg

ΔSO, 12-band model

T = 300 K

ΔSO

1.4

1.6

1.2

1

0.8

0.6

0.4

0.20 2 4 6
Bi composition, x (%)

(b)

8 10 12

FIGURE 10.5 (a) Calculated band structure of an ordered, cubic Ga32Bi1As31 (x = 3.125%, 64-atom) supercell,
along the Λ- and Δ-directions, close to the center of the Brillouin zone, using the TB (closed circles) and 12-band
k⋅p (solid lines) Hamiltonians. (Adapted from Broderick, C.A. et al., Semicond. Sci. Technol., 28, 125025, 2013; C.A.
Broderick et al., Phys. Stat. Sol. B, 250, 773, 2013.) The zero of energy is taken at the host matrix (GaAs) VB edge.
(b) Comparison between theory and experiment for the variation of the band gap (Eg) and spin-orbit-splitting energy
(ΔSO) as a function of Bi composition x in GaBixAs1−x at 300 K. Experimental measurements of Eg are depicted by
closed circles. (The experimental data are taken from S. Tixier et al., Appl. Phys. Lett., 82, 2245, 2003; S. Francoeur
et al., Appl. Phys. Lett., 82, 3874, 2003; W. Huang et al., J. Appl. Phys., 98, 053505, 2005; K. Alberi et al., Phys. Rev. B,
75, 045203, 2007; Z. Batool et al., J. Appl. Phys., 111, 113108, 2012; J. Yoshida et al., Jpn. J. Appl. Phys., 42, 371, 2003.)
Experimental measurements of ΔSO are depicted by open circles. (The experimental data are taken from K. Alberi et
al., Phys. Rev. B, 75, 045203, 2007; Z. Batool et al., J. Appl. Phys., 111, 113108, 2012; B. Fluegel et al., Phys. Rev. Lett., 97,
067205, 2006.) Solid (dashed) lines show the variation of Eg (ΔSO) calculated using the 12-band k⋅p model. (Adapted
from C.A. Broderick et al., Semicond. Sci. Technol., 28, 125025, 2013; C.A. Broderick et al., Phys. Stat. Sol. B, 250, 773,
2013; C.A. Broderick et al., IEEE J. Sel. Top. Quantum Electron., 21, 1503313, 2015.)

VBAC model can be used to reliably describe the evolution of the main features of the band structure of
(In)GaBixAs1−x alloys across a wide range of Bi compositions.

10.3.3 Calculation of Band Offsets in Bi-Containing Quantum Wells

Having considered the theoretical description of the bulk band structure of dilute bismide alloys,
we turn our attention now to the calculation of the band o�sets in pseudomorphically strained
GaBixAs1−x/(Al)GaAs QWs, as a prelude to our discussion of the electronic and optical properties of
GaAs-based dilute bismide QW lasers in Section 10.4. Here, we outline the calculation of the band o�-
sets at arbitrary Bi composition x using the 12-band k⋅p model described in Section 10.3.2. Full details of
the analysis upon which this analysis of the QW band o�sets is based can be found in Ref. [79].

In order to calculate the strained GaBixAs1−x band edge energies we consider the 12-band Hamilto-
nian including the Bir-Pikus matrix elements describing the impact of pseudomorphic strain on the band
edge energies at Γ [81]. The steps in the calculation of the band o�sets for a GaBixAs1−x/GaAs QW are
illustrated schematically in Figure 10.6. While we focus here on GaAs-based heterostructures, we note that
this method for calculating the QW band o�sets is generally applicable to alloys whose band structure
can be described using the 12-band model, and so can readily be applied to Bi-containing alloys grown
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FIGURE 10.6 Schematic illustration of the calculation of the bulk GaBixAs1−x/GaAs CB, LH, HH, and SO band o�-
sets, using the 12-band k⋅p model of Section 10.3.2 and including the e�ects of pseudomorphic strain on the band edge
energies. (Adapted from Broderick, C.A. et al., Semicond. Sci. Technol., 30, 094009, 2015; G.M.T. Chai et al., Semicond.
Sci. Technol., 30, 094015, 2015.) The zero of energy is taken at the VB edge of the unstrained GaAs host matrix. The full
details of each step in the calculation are outlined in the text.

using alternative barriers and/or substrates. For barrier materials other than GaAs, the calculation follows
straightforwardly from that presented here: one needs simply to calculate the (In)GaBixAs1−x band edge
energies as outlined below, with the barrier band edge energies then calculated with respect to the (In)GaAs
host matrix in the usual way (using, e.g., the model solid theory [82]) in order to determine the band o�sets.

The �rst step in the calculation is shown on the le� side of Figure 10.6, in the portion labeled “Host
matrix.” Here, we begin with a GaAs host matrix (barrier material) and choose the zero of energy to lie
at the unstrained VB edge. Second, in the section labeled “Virtual crystal,” we include the conventional
alloy contributions to the Bi-induced band edge energy shi�s for a given Bi composition x as ẼCB(x) =
ECB − αx ≡ Eg − αx, ẼLH/HH(x) = ELH/HH + κx ≡ κx, and ẼSO(x) = ESO − γx ≡ −ΔSO − γx, where, as
described above, incorporation of Bi has introduced a set of degenerate resonant impurity levels at energy
ΔEBi relative to the host matrix VB edge.

Third, in the section labeled “Strain," we calculate the strain-induced shi�s to the band edge energies,
thereby taking account of the fact that an (In)GaBixAs1−x epilayer grown on a GaAs substrate will be under
compressive pseudomorphic strain. Following the conventions of Krijn [83], we calculate these strain-
induced shi�s to the CB, HH, LH, and SO band edge energies as ẼCB(x, ϵ) = ẼCB(x) + δEhy

CB, ẼLH(x, ϵ) =
ẼLH(x)+δEhy

VB+δEaxVB, ẼHH(x, ϵ) = ẼHH(x)+δEhy
VB−δEaxVB, and ẼSO(x, ϵ) = ẼSO(x)+δEhy

VB, where the energy

shi�s associated with the hydrostatic and axial components of the strain are δEhy
CB = ac

(

ϵxx + ϵyy + ϵzz

)

,

δEhy
VB = av

(

ϵxx + ϵyy + ϵzz

)

, and δEaxVB = −
b
2

(

ϵxx + ϵyy − 2ϵzz

)

[81]. The non-zero components of the

strain tensor given by ϵxx = ϵyy =
a0−a(x)

a(x) and ϵzz = −
2C12(x)
C11(x)

[83], where a0 is the substrate lattice constant,
and a(x), C11(x), and C12(x) are the (In)GaBixAs1−x lattice and elastic constants.

In order to obtain a(x), C11(x), and C12(x) for (In)GaBixAs1−x we interpolate linearly between those
of the end-point binary compounds: we use the (Al)GaAs lattice and elastic constants recommended by
Vurga�man et al. [84], and for (In)GaBi we use those calculated ab initio by Ferhat and Zaoui [65]. Due to
a lack of information in the literature regarding the band edge deformation potentials of (In)GaBi, we take
ac, av, and b for (In)GaBixAs1−x to be equal to those of the (In)GaAs host matrix, which is expected to be
a good approximation at the dilute Bi compositions under consideration.
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Due to the p-like symmetry of the Bi-related impurity states, there is a li�ing of the degeneracy of the
LH- and HH-like impurity states in the presence of pseudomorphic strain, resulting from the tetragonal
distortion of the crystal lattice. Based on the results of TB calculations on large, ordered supercells, it is
found that the energies of these states, ELH

Bi and EHH
Bi , vary with strain as ELH

Bi = ΔEBi + δEhy
Bi + δEax

Bi

and EHH
Bi = ΔEBi + δEhy

Bi − δEax
Bi , with δEhy

Bi and δEax
Bi given by δEhy

Bi = aBi

(

ϵxx + ϵyy + ϵzz

)

and δEax
Bi =

− bBi
2

(

ϵxx + ϵyy − 2ϵzz

)

. The Bi-impurity state hydrostatic and axial deformation potentials—determined
using large supercell TB calculations to track the evolution of the Bi-related localized states as functions of
hydrostatic and axial strain—are aBi = −1.11 eV and bBi = −1.71 eV, respectively.

Finally, in the section labeled “VBAC,” the VBAC interactions between the strained virtual crystal band
edges and the Bi-related localized states are included to �nally determine the band o�sets. Examining the
12-band Hamiltonian [54,79] we see that in bulk (with k = 0), the CB is decoupled from the Bi-related
states, so that ECB(x, ϵ) = ẼCB(x, ϵ), while the host matrix HH-band couples directly to EHHBi , giving

EHH
± (x, ϵ) =

ẼHH(x, ϵ) + EHHBi
2

±

√

√

√

√

√

(

ẼHH(x, ϵ) − EHHBi
2

)2

+ |VBi|2 . (10.4)

Since the axial component of the pseudomorphic strain couples the host matrix LH and SO bands [83],
there exists a second-order strain-induced coupling between the LH-like Bi-related localized states and
the host matrix SO band. As a result, the SO band cannot be treated independently and the LH, SO, and
lower-energy LH-like VBAC band edges in the strained alloy are obtained as the eigenvalues ELH

± (x, ϵ) and
ESO(x, ϵ) of the 3 × 3 Hermitian matrix

⎛

⎜

⎜

⎜

⎝

ẼLH(x, ϵ) −
√

2 δEaxVB VBi
ẼSO(x, ϵ) 0

ELHBi

⎞

⎟

⎟

⎟

⎠

, (10.5)

which completes the calculation.
On the basis of detailed spectroscopic measurements performed on a series of GaBixAs1−x/(Al)GaAs

QW laser structures with x≈ 2% [79], the Bi-related parameters α and β of Table 10.1 have been re�ned
in order to produce an optimized set of parameters for modeling real GaBixAs1−x QWs at low x, giving
α = 2.63 eV and β = 1.45 eV, with the remaining parameters unchanged from those listed in Table 10.1.
These optimized Bi-related band structure parameters have been demonstrated to produce band o�sets
and transitions energies which are in good, quantitative agreement with those measured for a series of
GaBixAs1−x/(Al)GaAs QWs. This not only veri�es the predictive capability of the 12-band model, but
also emphasizes its potential for application to the calculation and analysis of the electronic and optical
properties of dilute bismide QWs and related heterostructures.

10.4 GaBixAs1−x/(Al)GaAs Quantum Well Lasers

Having focused so far on constructing a consistent approach to model the (In)GaBixAs1−x band structure,
in this section we turn our attention to the theory and modeling of dilute bismide semiconductor lasers. In
order to address the potential of GaBixAs1−x for the development of long-wavelength GaAs-based lasers,
we introduce a theoretical model—introduced by Broderick et al. [15]—describe the impact of Bi on the
performance of real and ideal QW laser devices. A�er outlining the theoretical model in Section 10.4.1,
in Sections 10.4.2 and 10.4.3 we analyze the e�ect of Bi incorporation on the electronic and optical prop-
erties of an exemplar GaBixAs1−x/(Al)GaAs QW, which has been chosen on the basis of the active region
employed in the �rst electrically pumped dilute bismide laser [30]. Using the theoretical model we review
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the Bi-induced changes to the band structure, DOS, optical transition matrix elements, and optical gain,
and show how the choice of barrier material plays a key role in optimizing the performance of the device
at low Bi composition.

Next, in Section 10.4.4, we review gain calculations for a GaBixAs1−x/GaAs laser structure with high Bi
composition (x = 13%), designed to emit at 1.55 μm and to have ΔSO > Eg in order to suppress CHSH
Auger recombination and IVBA (cf. Figure 10.1). We highlight that the modal and di�erential gain at
this composition is signi�cantly higher than that at lower x due to the combined e�ects of increased CB
o�set and compressive strain at larger x. Finally, in Section 10.4.5 we review comparison of the results of
these theoretical calculations directly to experimental measurements of the SE and gain [39]. These are
the �rst measurements of SE and optical gain for a dilute bismide semiconductor laser and the only such
comparison between theory and experiment to date for this material system.

The theoretical results reviewed in this section elucidate important trends in the properties and perfor-
mance of GaBixAs1−x QW lasers grown on GaAs substrates, and con�rm the potential of dilute bismide
QW structures for the development of highly e�cient 1.55-μm lasers. Comparison to experimental data
displays the predictive capability of the theoretical model, highlighting its potential for use in the design
and optimization of future dilute bismide devices.

10.4.1 Theoretical Model for Dilute Bismide Quantum Well Lasers

Here, we provide a brief outline of the theoretical model developed to study the electronic and optical
properties of dilute bismide QW lasers. Full details of the model can be found in Ref. [15]. The theoret-
ical model is based upon the 12-band k⋅p Hamiltonian presented in Section 10.3.2. The QW eigenstates
are calculated in the envelope function approximation using a numerically e�cient plane wave expansion
method, similar to that widely employed in �rst-principles calculations. An overview of the plane wave
expansion method within the context of k⋅p theory can be found in Ref. [85].

In the plane wave approach, the QW eigenstate |ψn(k∥, z)⟩ at position z and in-plane wave vector k∥,
having energy En(k∥), is written as

|ψn(k∥, z)⟩ = 1
√

L

12
∑

b=1

M
∑

m=−M
anbm(k∥) eiGmz

|ub⟩ , (10.6)

where L is the length of the calculational supercell (− L
2 ≤ z ≤ L

2 ), b indexes the bands of the bulk k⋅p
Hamiltonian, m indexes the plane waves, and the discrete wave vectors Gm are de�ned as Gm = 2mπ

L . |ub⟩

are the zone-center Bloch states of the bulk 12-band k⋅p Hamiltonian. We note that this description of the
QW eigenstates, which consists of 2M + 1 independent Fourier components, is formally exact as M →∞.
However, for most practical applications, a basis set containing∼ 70 plane waves is su�cient to ensure that
the calculated eigenstates have converged with respect to further increases in the basis set size [86].

By substituting Equation 10.6 into the multi-band Schrödinger equation, it is straightforward to derive
analytical expressions for the matrix elements of the QW Hamiltonian in the plane wave basis set de�ned
by the set of wave vectors Gm [85,86], leading to a reciprocal space Hamiltonian matrix of size 12(2M +
1) × 12(2M + 1). In this manner, an independent Hamiltonian matrix is obtained at each in-plane wave
vector k∥, diagonalization of which yields the QW band structure En(k∥) and eigenstates |ψn(k∥, z)⟩. We
note that the eigenstates de�ned by Equation 10.6 satisfy periodic boundary conditions over the calcu-
lational supercell, meaning that a QW will tend to undergo spurious interactions with identical QWs in
neighboring supercells. This can readily be mitigated by choosing a su�ciently large supercell length L,
and in practice this feature of the method means that it can be used to e�ciently investigate the electronic
and optical properties of superlattices.

Analysis of the band o�sets (cf. Section 10.3.3) suggests that the small CB o�set leads to very weak
electron con�nement in GaBixAs1−x/GaAs QWs at low x. As such, hole-induced electrostatic con�nement
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of electron states is likely to play an important role in determining the electronic and optical properties
of GaBixAs1−x/GaAs QW lasers at low x. For selected laser structures (cf. Section 10.4.3), we therefore
also consider self-consistent calculations of the electronic and optical properties, in which the QW band
structure and eigenstates are calculated self-consistently by using Poisson’s equation in order to determine
the net carrier-induced electrostatic potential at each injected carrier density n. For the self-consistent
calculations, the coupled multi-band Schrödinger–Poisson system is solved in reciprocal space, using the
technique outlined in Ref. [86].

The atomistic supercall calculations reviewed in Section 10.2 clearly demonstrate that Bi-induced
hybridization plays an important role in determining the character of the VB edge eigenstates. As such, in
order to facilitate accurate calculation of the optical properties of dilute bismide laser structures, it is impor-
tant to include the impact of Bi incorporation on the QW eigenstates. For this reason, in the theoretical
model the QW band structure, envelope functions, and Hamiltonian (calculated in the axial approxima-
tion [87]) are used directly to compute the optical properties of a given laser structure. Key to this analysis
is the calculation of the optical (momentum) transition matrix elements. Following Ref. [88], the transi-
tion matrix element describing optical recombination of an electron-hole pair at in-plane wave vector k∥
is given in terms of the QW eigenstates described by Equation 10.6 as [88]

Pnc,nv

(

k∥
)

=
m0
ℏ

⟨

ψnv

(

k∥, z
)

|

|

|

|

|

∂Ĥ
∂k∥

⋅ ê
|

|

|

|

|

ψnc

(

k∥, z
)

⟩

, (10.7)

where ê is a unit vector denoting the polarization of the emitted photon, and nc (nv) indexes the conduction
(valence) subbands. This approach to calculating the optical matrix elements then explicitly incorporates
key band structure e�ects in the computation of the optical properties including: Bi-induced VB hybridiza-
tion (VBAC) and localization, temperature- and injection-dependent carrier spillout from the QW(s), band
mixing at non-zero in-plane wave vector, and pseudomorphic strain, all of which are necessary to quantita-
tively describe the SE and optical gain in real devices [15,39]. Note that when discussing optical transition
“strengths” below we are referring to the quantity 1

2m0
|Pnc,nv

(

k∥
)

|

2, which has units of energy.
Using the optical matrix elements computed in this manner, the calculation of the material gain

spectrum g(ℏω) follows the approach of Ref. [89], which consists of transforming the corresponding
polarization component of the SE rate rspon(ℏω) at �xed carrier density n according to

g(ℏω) = 3π2ℏc2

2n2
rω2

(

1 − exp
(

ℏω − ΔF
kBT

))

rspon(ℏω) , (10.8)

where ℏω is the photon energy, ΔF is the quasi-Fermi level separation at temperature T in the presence of
an injected carrier density n, and nr is the refractive index of the optical mode in the active region. The SE
rate rspon is calculated as described in Refs. [15,89]. Here, we are concerned solely with transverse electric
(TE)-polarized gain, which is of larger magnitude than the transverse magnetic (TM)-polarized gain in the
compressively strained structures under investigation. As such, rspon is understood to represent only the
TE-polarized component of the total SE rate (which gives rise to the leading factor of 3

2 in Equation 10.8).
This approach to calculating the optical gain spectrum has the bene�ts that (1) it removes the anomalous
absorption at energies below the QW band gap that can plague calculations undertaken using an energy and
crystal momentum-independent interband relaxation time (homogeneous spectral linewidth), and (2) by
de�nition, g(ΔF) = 0, so that the transparency point on the high-energy side of the gain peak is maintained
at the correct, thermodynamically consistent energy. As we will see, when we review the comparison of
theory and experiment for the optical gain in Section 10.4.5, this latter characteristic of Equation 10.8
enables a distinct carrier density n in the theoretical calculations to be associated with each current density
J at which the gain spectrum is measured, thereby facilitating direct comparison of theoretical calculations
to experiment.
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Based on theory-experiment comparisons, it is found that the spectral broadening of GaBixAs1−x QWs
is well described using a hyperbolic secant lineshape of the form S(ℏω) = 1

πδ sech
(

E0−ℏω
δ

)

, where δ is the
(homogeneous) spectral linewidth. We note that this lineshape function was previously found to describe
well the SE spectra of 1.3-μm GaInNAs dilute nitride QW lasers [90]. For the calculations in Section 10.4.2
we set δ = 6.6 meV, a typical value for III–V semiconductors such as InGaAs. This enables direct compar-
ison between the calculated SE and gain in Bi-free and Bi-containing structures, and hence quantitative
analysis on the impact of Bi incorporation on the optical properties. This value of the spectral linewidth is
smaller than that observed in real GaBixAs1−x devices by a factor of approximately four [15]. Larger more
realistic linewidths are included in several of the calculations presented in Sections 10.4.2 and 10.4.3 by
inhomogeneously broadening the calculated spectra [15], and the spectral linewidth is directly analyzed
in Section 10.4.5 when review the comparison to experimental measurements of the SE and modal gain
spectra [39].

For the calculation of the threshold properties in Sections 10.4.2 and 10.4.3, internal optical (cavity)
losses of αi = 4 cm−1 are assumed, lattice-matched Al0.4Ga0.6As cladding layers are chosen to form the
separate con�nement heterostructure (SCH), and an overall cavity length of 1 mm is assumed for all of
the devices considered [30]. The calculated facet re�ectivity for this structure is R = 0.35. The con�ne-
ment factorΓ of the fundamental (TE-polarized) optical mode was calculated for each laser structure using
an e�ective index approach [91]. It was found for all laser structures considered that Γ is maximized for
150-nm-thick (Al)GaAs barriers. Alternative approaches, based on similar models of the band structure,
have been proposed by other authors [14,92]. However, the theoretical model presented here bene�ts from
detailed and unambiguous parameterization based on atomistic calculations, and has been con�rmed to
provide reliable predictions of key trends in the properties and performance of GaAs-based dilute bis-
mide QW lasers [15], including descriptions of the measured SE and optical gain that are in quantitative
agreement with experimental measurements on real devices [39].

10.4.2 Impact of Bi Incorporation on the Band Structure and Gain of
Quantum Wells

In order to quantify the impact of Bi incorporation on the electronic and optical properties of laser struc-
tures having low Bi compositions, we compare the calculated gain characteristics of a GaBixAs1−x QW laser
structure at low x with those of an equivalent laser structure containing a GaAs (Bi-free, x = 0) QW [15].
We focus here on Bi-containing laser structures having a single 6.9-nm-thick GaBi0.021As0.979 (x = 2.1%)
QW with Al0.144Ga0.856As barriers [30,79].

The calculated CB and VB o�sets are ΔECB = 150 meV and ΔEHH/LH = 65 meV in the unstrained
Bi-free QW [79]. The incorporation of 2.1% Bi introduces a compressive in-plane strain of 0.25% and, when
VBAC e�ects are taken into account, this leads to calculated HH and LH band o�sets ΔEHH = 224 meV
and ΔELH = 208 meV, and a CB o�set ΔECB = 185 meV [15,79]. The transition energy between the
lowest-energy bound electron state (e1) and the highest-energy bound hole state (hh1) is calculated to be
1.480 eV in the Bi-free QW, which is reduced to 1.289 eV in the x = 2.1% QW. Of this 191 meV reduction
in the QW band gap, only 31 meV is due to the Bi-induced reduction of the CB edge energy, while the
remaining 160 meV results from the VBAC-induced upward shi� of the VB edge energy.

Figure 10.7 shows the calculated VB structure and DOS for the x = 0 and 2.1% QWs. We focus our
analysis of the band structure and DOS on the VB, since Bi incorporation has a comparatively minor impact
on the CB (cf. Section 10.2). The zero of energy is taken at the energy of the hh1 state (i.e., the QW VB
edge) in each case, to facilitate a direct comparison of the DOS. Three factors contribute to di�erences in the
band structure and DOS between the two QWs: (1) the compressive strain in the Bi-containing structure
leads to a slight increase in the energy separation between hh1 and the highest-energy bound LH state
(lh1), leading in turn to a reduction in the DOS at energies from 0 to −20 meV, (2) the VBAC interaction
pushes the VB dispersion upward in energy at �xed k∥, increasing the DOS in the x = 2.1% QW relative
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FIGURE 10.7 Calculated band structure (le� panel) and density of states (DOS; right panel) in the vicinity of
the VB edge for 6.9-nm-thick GaAs (Bi-free; dashed lines) and GaBi0.021As0.979 (x = 2.1%; solid lines) QWs with
Al0.144Ga0.856As barriers. (Adapted from Broderick, C.A. et al., IEEE J. Sel. Top. Quantum Electron., 21, 1503313, 2015.)
Note that the zero of energy has been taken in each case at the energy of the highest bound hole state (hh1) to facilitate
comparison between the two QWs.

to the Bi-free QW for energies between −20 and −60 meV, and (3) the barrier VB edge lies approximately
60 meV (200 meV) below hh1 in energy in the x = 0 (x = 2.1%) QW, so that the calculated DOS in the
Bi-free structure increases above that of the x = 2.1% QW for energies between −60 and −100 meV due
to the large density of VB states in the AlGaAs barrier. We note that, overall, the calculated impact of Bi
incorporation on the VB structure and DOS are relatively minor at low Bi compositions x ≈ 2%.

Having considered the impact of Bi incorporation on the QW band structure and DOS, we now turn our
attention to the impact of strain and Bi-induced VBAC on the interband optical transition strengths, and
then investigate the e�ect of Bi incorporation on the material gain. Figure 10.8a shows the TE-polarized
optical transitions strengths, calculated as a function of k∥ for the e1-hh1 and e1-lh1 transitions, for the
Bi-free (dashed lines) and Bi-containing (solid lines) QWs. Incorporation of Bi reduces the optical transi-
tion strength at k∥ = 0 for transitions between the e1 and hh1/lh1 states. For example, the e1–hh1 transition
strength at k∥ = 0 in the Bi-containing QW is approximately 67% of that in the Bi-free QW. The majority of
the reduction in the optical transition strengths at x = 2.1% is due to the VBAC e�ect, which accounts for
all but 1.1% of the calculated 33.4% reduction for the TE-polarized e1–hh1 transition in the x = 2.1% QW.
This is due to the fact that the hybridization of the bound hole states in the QW with Bi-related localized
states leads to a portion of the hole states consisting of an admixture of p-like Bi-related localized states
which do not couple optically to the s-like states at the CB edge [54] (cf. Section 10.3.2).

Next, we investigate the variation of the peak material gain as a function of carrier density n, for tem-
peratures T = 100, 200, and 300 K. The results of these calculations are shown in Figure 10.8b for the
x = 2.1% and x = 0 laser structures using solid and dashed lines, respectively. Since the material gain at
�xed n is inversely proportional to the photon energy, to facilitate a direct comparison of the gain charac-
teristics of the two QW structures—which have di�erent band gaps—all CB states in the x = 0 calculation
have been shi�ed downward in energy by 191 meV in order to bring the e1–hh1 transition energies into
coincidence for both QW structures. Therefore, the di�erences between the material gain for two laser
structures shown in Figure 10.8b arise only due to the impact of Bi incorporation on the QW band struc-
ture and optical transition strengths. Based on a calculated optical con�nement factor Γ = 1.66% for the
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FIGURE 10.8 (a) Calculated TE-polarized optical transition strengths as a function of in-plane wave vector (k∥), for
optical transitions between the lowest-energy bound electron and highest-energy bound LH- and HH-like states for
6.9-nm-thick GaAs (Bi-free; dashed lines) and GaBi0.021As0.979 (x = 2.1%; solid lines) QWs having Al0.144Ga0.856As
barriers. (Adapted from Broderick, C.A. et al., IEEE J. Sel. Top. Quantum Electron., 21, 1503313, 2015.) (b) Calculated
variation of the peak TE-polarized material gain as a function of carrier density, at temperatures of 100, 200, and 300 K
for the same QWs as in (a). (Adapted from Broderick, C.A. et al., IEEE J. Sel. Top. Quantum Electron., 21, 1503313,
2015.) The horizontal dash-dotted line denotes the calculated threshold material gain, gth = 919 cm−1.

x = 2.1% laser structure, we estimate a threshold material gain gth = 919 cm−1 (denoted by a horizontal
dash-dotted line in Figure 10.8b).

There is little change in the calculated transparency carrier density, ntr, between the x = 0 and 2.1% laser
structures for all temperatures considered. This re�ects the small di�erence between the calculated VB edge
DOS for the two QWs (cf. Figure 10.7). However, we �nd for n > ntr that (1) the gain saturates at a lower
level with increasing n at x = 2.1%, and (2) the threshold carrier density, nth, is higher at x = 2.1% than in
the Bi-free QW. Both of these features arise due primarily to the general reduction in the optical transition
strengths in the Bi-containing QW structure. We also note that while the di�erential gain at threshold,
dg
dn , is approximately equal for both the Bi-free and Bi-containing lasers structures at 100 K, dg

dn for the
Bi-containing QW decreases with respect to that of the Bi-free QW with increasing temperature. Since the
modulation response frequency of a semiconductor laser is proportional to the square root of the di�eren-
tial gain [93,94], these calculations suggest that Bi incorporation can be expected to lead to a degradation
of the dynamical performance at low Bi compositions compared to that of an equivalent Bi-free structure.

10.4.3 Optimization of GaBixAs1−x/(Al)GaAs Laser Structures

Theoretical and experimental analysis has shown that GaBixAs1−x/GaAs QWs have very small CB o�sets
at low x, estimated at only 55 meV for a QW with x = 2.1% [79]. Such a low CB o�set is detrimental
to laser operation, leading to low electron-hole spatial overlap and signi�cant electron leakage from the
QW at high temperatures and carrier densities, and is therefore a major factor limiting the material gain
at low x. Electron con�nement must then be improved by growing GaBixAs1−x QWs with AlyGa1−yAs
barriers to increase the CB o�set, but at the cost of reducing the optical con�nement in a laser structure
with a �xed Al composition y in in the cladding layers. This leads to a trade-o� between the material gain
(which increases with increasing y due to improved electron con�nement) and the optical con�nement
(which decreases with increasing y due to a reduced refractive index contrast between the barrier and
cladding layers). The theoretical model described above has been used to determine the Al composition
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y in the barrier layers required to optimize the performance of a laser structure containing the same
6.9-nm-thick GaBi0.021As0.979 QW considered in the exemplar structure of Section 10.4.2. The modal
gain of the laser structure, Γg, is the quantity optimized, in order to minimize nth. The gain calculations
for this optimization include (1) electrostatic e�ects, computed self-consistently via coupling the Poisson’s
equation, and (2) inhomogeneous broadening, in order to produce realistic estimates of the material gain
in the laser structure [15], an approach which has been shown to be in excellent agreement with experiment
[39,95].

Figure 10.9 shows the calculated variation of nth and gth with the barrier Al composition y for this series
of laser structures. Examining �rst the variation of gth with y (closed circles, solid line) we see that the
degradation of the optical con�nement when Al is incorporated in the barrier layers leads to an increase
in gth with increasing y. This increase in gth is modest at low Al compositions y < 10%, with the optical
con�nement factor at y = 10% being 90% of its maximum calculated value Γ = 1.95% at y = 0. For
y > 10% Γ degrades rapidly with increasing y, reaching values as low as 1.24% at y = 25%. This results
in a large increase in gth, since gth ∝ Γ−1. The net e�ect of this trend on the laser performance can be
seen by considering the variation of nth with y (open circles, dashed line). Beginning with a QW having
GaAs barriers (y = 0), a large threshold carrier density nth = 6.3 × 1018 cm−3 is calculated. When Al
is incorporated in the barrier layers nth decreases rapidly with increasing y, reaching a minimum value
for 10% < y < 15%. For y < 10%, we therefore conclude that the increase in the material gain at �xed
carrier density arising from the enhanced CB o�set and electron con�nement is su�cient to overcome
the associated reduction in Γ, leading to a strong reduction in nth. However, for y > 15%, we �nd that
nth increases rapidly with increasing y, re�ecting that any further improvement in the material gain is
insu�cient to overcome the rapid further degradation of Γ and associated increase in gth. These theoretical
calculations therefore suggest that QWs having barrier Al compositions y = 10%–15% o�er enhanced
performance as compared to a QW having GaAs barriers, for x ≈ 2%.

While the �rst electrically pumped GaBixAs1−x QW laser had a nominal barrier Al composition
y = 20% [30], more recently improved device performance has been demonstrated following the struc-
tural optimization outlined here [96]. Speci�cally, measurements con�rm that choosing Al0.12Ga0.88As as
opposed to Al0.20Ga0.80As barriers leads to a decrease of the threshold current density, Jth, by a factor of

5.25

5.5

5.75

6

6.25

6.5

0 5 10 15 20 25
700

800

900

1000

1100

1200

1300

Th
re

sh
ol

d 
ca

rr
ier

 d
en

sit
y, 

n t
h (

×1
018

 cm
–3

)
Th

reshold m
aterial gain, gth  (cm

–1)

Barrier Al composition, y (%)

x = 2.1%
T = 300 K
σ = 25 meV

nth gth

FIGURE 10.9 Calculated variation of the threshold carrier density (nth; open circles, dashed lines) and threshold
material gain (gth; closed circles, solid lines) as a function of the barrier Al composition y for a series of 6.9-nm-
thick GaBi0.021As0.979/AlyGa1−yAs QWs. (Adapted from Broderick, C.A. et al., IEEE J. Sel. Top. Quantum Electron., 21,
1503313, 2015.) The calculated gain spectra, from which the values of nth were determined, include an inhomogeneous
broadening of 25 meV.
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TABLE 10.2 Measured Room Temperature Emission Wavelength
λmeas and Threshold Current Density Jth for a Series of GaBixAs1−x/
AlyGa1−yAs Laser Structures Containing Nominally Identical 6.4-nm-
Thick GaBi0.022As0.978 (x = 2.2%) QWs

QW Material Barrier Material λmeas (nm) Jth (kA cm−2)

GaBi0.022As0.978 GaAs 938 7.5
GaBi0.022As0.978 Al0.12Ga0.88As 947 1.0–1.1
GaBi0.022As0.978 Al0.20Ga0.80As 947 1.5–1.6

Source: Marko et al., J. Phys. D: Appl. Phys., 47, 345103, 2014.
The measured variation of Jth with barrier Al composition y closely follows the
trend calculated for the threshold carrier density nth (cf. Figure 10.9), verifying
that Jth can be minimized by varying y to control the trade-o� between the
carrier and optical con�nement.

approximately three. The results of these measurements, which emphasize the importance of AlGaAs bar-
riers for the design and optimization of GaBixAs1−x QW lasers at low x, are summarized in Table 10.2. Full
details of this optimization analysis can be found in Refs. [15] and [96]. Examining the experimental data
in Table 10.2 we can clearly identify the trends predicted by the theoretical calculations. First, the laser
structure with Al-free (GaAs) barriers o�ers poor material gain leading to high Jth. Second, incorpora-
tion of 12% Al in the barrier (close to the optimum composition suggested by the theoretical calculations)
results in a strong reduction of Jth as a consequence of the enhanced modal gain. Finally, increasing the Al
composition in the barrier from 12% to 20% brings no further improvement in the laser performance; an
increase in Jth is observed, in line with the degradation of the optical con�nement and model gain predicted
by the theoretical calculations.

Since the ultimate goal is to grow GaBixAs1−x lasers with Bi compositions x > 10%, this analysis has been
repeated for a series of GaBixAs1−x/(Al)GaAs QW laser structures as a function of x. In general, it is found
that Al incorporation in the barrier layers is required to enhance the otherwise weak electron con�nement
for x < 5%. For x = 6%, the GaBixAs1−x/GaAs CB o�set is su�ciently large that incorporating Al in the
barrier layers has a negligible impact on the material gain. We therefore conclude that AlGaAs barriers are
required to optimize the performance of GaBixAs1−x QWs with x < 6%. For higher Bi compositions, GaAs
barriers should su�ce to provide modal gain which exceeds that calculated for the x = 2.1% laser structure
considered above at �xed n, provided that QWs with x > 6% can be grown with su�ciently high material,
structural, and optical quality. This conclusion has proved useful, particularly for the growth of hybrid
laser structures such as those presented in Ref. [35], where the cladding and part of the barrier layers are
grown by metal-organic vapor phase epitaxy (MOVPE) and the active region by molecular beam epitaxy
(MBE). This analysis suggests that, for su�ciently large x, GaAs can be used as the �nal layer grown before
a laser substructure is transferred in either direction between MOVPE and MBE growth chambers, thereby
minimizing the impact of AlGaAs-related degradation during transport and storage of partly grown laser
structures.

10.4.4 Gain Characteristics of GaBixAs1−x Quantum Wells at � = 1.55 �m
Having elucidated the consequences of Bi incorporation for the gain characteristics and performance of
real GaBixAs1−x QW lasers at low x, we now turn our attention to an ideal 1.55-μm device at higher
Bi composition. We again choose a 6.9-nm-thick GaBixAs1−x QW, in order to compare the calculated
modal gain directly to that calculated for the x = 2.1% QW of Sections 10.4.2 and 10.4.3, and, in light
of the analysis described in Section 10.4.3, we choose GaAs as the barrier material. For this 6.9-nm-wide
GaBixAs1−x/GaAs QW, we calculate that a Bi composition x = 13% produces an emission wavelength close
to 1.55 μm. We note that the bulk band structure of the GaBi0.13As0.87 QW material hasΔSO > Eg, so that
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it should be possible to use GaBixAs1−x alloys to develop, on a GaAs substrate, a 1.55-μm laser in which
the CHSH Auger recombination and IVBA processes are suppressed (cf. Figure 10.1) [12,15].

Incorporation of 13% Bi in the QW produces an in-plane compressive strain of 1.53%, compared to
0.25% in a QW with x= 2.1%. We calculate that the tendency of the VBAC interaction to increase the
e�ective masses of the bound hole states in the QW is overcome by the strain-induced reduction of the
in-plane hole e�ective masses [93], leading to a signi�cant reduction of the DOS in the vicinity of the VB
edge at x = 13% [15]. This strong reduction of the DOS at energies close to the QW VB edge should
then enhance the performance of this high Bi composition QW compared to the low x laser structures
considered above.

Compared to the value Γ = 1.66% calculated for the optical con�nement factor of the x = 2.1% laser
structure of Section 10.4.2, we calculate Γ = 1.26% in the x = 13% QW. The reduction in Γ results from
the longer emission wavelength of the x = 13% structure and leads to an increase of the material gain at
threshold gth. We note that the degradation of the optical con�nement a long wavelengths can be mitigated
by increasing the barrier thickness. We have not pursued this approach here, as our intention is to analyze
only the impact of changing the Bi composition in otherwise identical laser structures. Based on the cal-
culated di�erence in Γ between the two laser structures we calculate gth = 1208 cm−1 at x = 13%, which
is 32% larger than the value of 919 cm−1 calculated for the x = 2.1% laser structure. However, the calcu-
lated CB o�set of 245 meV in the GaBi0.13As0.87/GaAs QW is 60 meV larger than that calculated for the
GaBi0.021As0.979/Al0.144Ga0.856As QW above, leading to enhanced electron con�nement in the 1.55-μm
QW without the need to incorporate Al in the barrier layers. The calculated optical transition strength at
k∥ = 0 for the e1–hh1 optical transition in the x = 13% QW is approximately 90% of that calculated at
x = 2.1%, suggesting that the Bi-induced decrease of the optical transition strengths described above is
most prominent at low x, but has little additional e�ect as x is increased. When combined with the favor-
able impact of strain on the VB structure and DOS at larger values of x, these e�ects together ensure that
the material gain at �xed n is signi�cantly improved in the x = 13% QW compared to the x = 2.1% laser
structure considered above.

The x = 13% laser structure has a calculated threshold carrier density nth = 3.42 × 1018 cm−3 at 300
K, which is approximately 60% of that calculated for the x = 2.1% laser structure. Additionally, for the
x = 13% laser structure dg

dn = 2.76 × 10−16 cm2 for the di�erential (material) gain at threshold, which is
approximately a factor of two larger than the value of 1.32 × 10−16 cm2 calculated for the x = 2.1% laser
structure. This analysis suggests that the marked improvement in the threshold characteristics of the device
at x = 13% results primarily from the increased compressive strain in the QW. First, the strain-induced
reduction in the DOS at the VB edge leads to an increase in the quasi-Fermi level separation at �xed n,
meaning that population inversion can be achieved at lower carrier densities. Second, the reduced in-plane
hole e�ective masses ensure that holes occupy VB states over a smaller range of k∥ (i.e. a narrow k-space
distribution) at x = 13% than at x = 2.1%, better matching the distribution of electrons in the CB and
hence ensuring that more carriers are available to contribute to the lasing mode [97]. These factors ensure
that a larger increase in material gain can be obtained for a given change in n at x = 13%, leading to the
calculated signi�cant improvement in dg

dn .
Previous calculations for InP-based QW structures designed to emit at 1.55 μm suggest that the max-

imum dg
dn obtainable using optimized quaternary InGaAsP QWs are ∼ 14 × 10−16 cm2 for a multi-QW

device containing four QWs [98]. While the calculations here suggest that GaAs-based GaBixAs1−x QWs
o�er slightly lower dg

dn than conventional InP-based devices, we recall that this analysis has been per-
formed on a prototypical 1.55-μm dilute bismide structure in which the waveguide has not been optimized.
We therefore conclude that 1.55-μm GaBixAs1−x QW lasers have the potential to o�er di�erential gain,
and hence dynamical performance, that compares favorably with existing InP-based devices, particularly
for structures incorporating multiple GaBixAs1−x QWs. We further note that the calculated value of dg

dn
for this 1.55-μm dilute bismide device exceeds that calculated for ideal 1.3-μm GaIn(N)As/GaAs QW
structures [99].
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FIGURE 10.10 Calculated variation of the peak TE-polarized modal gain as a function of carrier density at 300
K for the GaBi0.021As0.979/Al0.144Ga0.856As (solid line) and GaBi0.13As0.87/GaAs (dashed line) QWs described in the
text. (Adapted from C.A. Broderick et al., IEEE J. Sel. Top. Quantum Electron., 21, 1503313, 2015.) The x = 2.1%
structure has a room temperature emission wavelength ∼950 nm, while the x = 13% structure is designed to have
ΔSO > Eg and to emit at 1.55 μm. The horizontal dash-dotted line denotes the calculated threshold modal gain,
Γgth = 15.2 cm−1.

Figure 10.10 shows the calculated variation of the modal gain as a function of n for the x = 2.1% (solid
line) and x = 13% (dashed line) laser structures at 300 K. We see that, even in the presence of signi�-
cant inhomogeneous broadening of the gain spectrum, the enhancement of the material gain described
above is su�cient to overcome the reduction in Γ between x = 2.1% and 13%, leading to signi�cantly
improved modal gain at �xed n. Additionally, we note that the di�erential modal gain at threshold is sig-
ni�cantly improved at x = 13%, due to the fact that the calculated increase in the di�erential material gain
at threshold is also su�cient to overcome the reduction in Γ between x = 2.1% and 13%. We recall that
optimization of the waveguide can be undertaken for long-wavelength emission, which can be expected
to further improve the performance of QW structures having high Bi compositions over that of low x
structures operating at shorter wavelengths.

We therefore conclude overall that the performance of ideal GaBixAs1−x QW lasers at high Bi composi-
tions (x > 10%) should be signi�cantly improved compared to that of shorter wavelength devices at lower
x. The calculated improvement in the threshold characteristics with increasing x is primarily attributable to
the associated increase in compressive strain in the QW when more Bi is incorporated. We also emphasize
that the presence of a QW band structure in which ΔSO > Eg promises to deliver even greater bene�t for
the laser operation, due to the elimination of the dominant non-radiative CHSH Auger recombination and
IVBA losses.

10.4.5 Theory versus Experiment for First-Generation GaBixAs1−x/(Al)GaAs
Lasers

Having explored general trends in the electronic and optical properties of GaBixAs1−x/(Al)GaAs QW
lasers, we now compare the results of the theoretical calculations directly to experimental measurements
of the SE and gain spectra. The experimental measurements were carried out using the segmented con-
tact method, which allows measurement of the optical absorption, SE, and gain spectra of a multi-section
device [100]. The multi-section devices used in this study were fabricated from a wafer on which a sin-
gle QW GaBixAs1−x/(Al)GaAs laser structure was grown. The laser structure is as described in Ref. [30]
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and consists of Al0.4Ga0.6As cladding layers, 150-nm-thick AlGaAs barriers and a GaBixAs1−x QW with a
nominal thickness of 6.4 nm.

Two multisection devices were fabricated in order to carry out the segmented contact measurements:
(1) a device fabricated from material located close to the edge of the wafer (“device 1”), and (2) a device
fabricated from material located closer to the center of the wafer (“device 2”). Full details of the growth
and fabrication of these devices, as well as the theory-experiment comparison to be outlined here, can
be found in Ref. [39]. While the barrier has a nominal Al composition of 20%, based on the analysis of
Ref. [79] we �nd that the actual composition is 14.4%—we use the latter in the theoretical calculations, as
in Section 10.4.2.

Comparing the measured optical absorption spectra for the two multisection devices, it is found that
(1) the optical (cavity) losses are in the range αi = 10–15 cm−1 at room temperature, and (2) the absorp-
tion edge measured for device 2 is red-shi�ed by approximately 20 nm compared to the that measured
for device 1 [39]. The latter suggests the presence of Bi composition �uctuations across the wafer, with
the Bi composition being slightly reduced toward the wafer edge. This is consistent with the measure-
ments of Ref. [79], in which GaBixAs1−x/(Al)GaAs laser structures having nominally identical x = 2.2%
QWs-displayed variations of approximately 30 meV in the QW band gap (corresponding in theoretical
calculations Bi compositional variations of up to ± 0.4%).

In order to investigate this behavior, we �rst analyze the measured SE spectra for the two devices.
Figure 10.11a shows the SE spectra measured at threshold using the segmented contact method for device 1
(closed circles) and device 2 (closed squares). Both spectra have similar overall shape with the main di�er-
ence between them being the wavelength of the SE peak, which is approximately 20 nm shorter in device 1.
This shi�ed emission peak is consistent with the observed shi� in the absorption edge between the two
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FIGURE 10.11 (a) Measured (using the segmented contact method; open symbols) and calculated (lines) SE spectra
at threshold for a multisection device fabricated from material located close to the wafer edge (open circles; solid line)
and fabricated from material located close to the center of the wafer (closed squares; dashed line). The ∼20 nm shi�
in the SE peak wavelength between the two devices suggests the presence of Bi compositional variations of up to 0.4%
across the wafer from which the devices were fabricated. (Adapted from Marko, I.P. et al., Sci. Rep., 6, 28863, 2016.)
(b) Measured (using the segmented contact method; closed symbols) and calculated (lines) net modal gain spectra for
the device fabricated from material located at the wafer edge, at injected current densities J = 0.7, 1.4, 2.0, and 2.4
kA cm−2 (open circles, upright triangles, inverted triangles, and squares, respectively). The carrier densities used in
the theoretical calculations (determined as outlined in the text) are n = 5.12, 7.11, 8.24, and 9.38 × 1018 cm−3; the
corresponding gain spectra are shown using solid, dashed, dotted, and dash-dotted lines, respectively. (Adapted from
Marko, I.P. et al., Sci. Rep., 6, 28863, 2016.)
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devices. In order to quantify this variation in Bi composition across the wafer, and to facilitate theoretical
analysis of the measured gain spectra for device 1, the theoretical model has been used to analyze the SE
spectra shown in Figure 10.11a. The careful parameterization of the 12-band k⋅pmodel for the GaBixAs1−x
band structure described in Section 10.3 enables us to treat the Bi composition x in the QW to be treated as
the only free variable in the analysis of the SE emission peak. Through the theoretical calculations we �nd
that the measured SE peak wavelength of 910 nm for device 1 corresponds to a Bi composition x = 1.8%
in the QW (assuming that the QW thickness to be is �xed at its nominal value of 6.4 nm).

Next, by comparing the full calculated SE spectrum for device 1 (shown in Figure 10.11a using a solid
line) to the experimental data, we �nd that the spectral broadening is best described by a hyperbolic secant
lineshape with a homogeneous linewidth δ = 25 meV. The theoretical calculation was also carried out
at the threshold injection level, which was determined as the carrier density required to produce the TE-
polarized threshold material gain gth = 1325 cm−1 (computed using an e�ective index calculation to
determine Γ = 1.60% for a QW containing 1.8% Bi, and using the measured threshold current density
Jth ≈ 1.6 kA cm−2 in similar devices [96]). Due to uncertainty in the absolute units and relative intensity
of the SE measured for the two devices, the calculated SE spectrum has been normalized to the measured
value at the SE peak in order to compare the theoretical and experimental data. We note that the measured
and calculated SE spectra are in good overall agreement, with the spectral broadening observed in the
experiment well described by a combination of the energy broadening at room temperature of the electron
and hole (quasi-Fermi) distribution functions, as well as the hyperbolic secant line broadening.

In order to quantify the variation of the Bi composition across the wafer the SE spectrum for device 2 has
also been calculated. The calculation of the SE spectrum in this case proceeds as above, this time with the Bi
composition again being the only parameter allowed to vary. The result of this calculation is shown using
a dashed line in Figure 10.11a. We �nd that (1) the measured SE peak at 932 nm is well described in the
theoretical calculations, assuming that the QW contains the nominal Bi composition of 2.2%, and (2) the
calculated SE spectrum for x = 2.2% is in good overall agreement with experiment for this device. Overall,
these theoretical results suggest that the Bi composition in the QW is close to the nominal value of 2.2% near
the center of the wafer, but is slightly reduced, to 1.8%, toward the wafer edges. We recall that this variation
in Bi composition is consistent with that determined previously via spectroscopic measurements [79].

The closed symbols in Figure 10.11b show the (TE-polarized) net modal gain spectra, Γg−αi, measured
using the segmented contact method for device 1. These gain spectra, which were measured at room tem-
perature for current densities J = 0.7, 1.4, 2.0, and 2.4 kA cm−2, are shown using closed circles, upright
triangles, inverted triangles and squares, respectively. The measured gain spectra are relatively broad, with
a full width at half maximum of approximately 100 meV at a current density of 2 kA cm−2, which is close
to twice that observed for an InGaAs/GaAs SQW laser operating at a similar wavelength [101] and is most
likely related to the strong Bi-induced inhomogeneous broadening that is characteristic of the optical spec-
tra of GaBixAs1−x alloys [27,28]. Based on the αi = 15 cm−1 optical losses measured for device 1, the
estimated peak modal gain at J = 2 kA cm−2 is Γgpeak = 24 cm−1. Using the calculated optical con�ne-
ment factor for this laser structure, Γ = 1.60%, we estimate a peak material gain gpeak ≈ 1500 cm−1 at J =
2 kA cm−2, which agrees well with the value of 1560 cm−1, calculated using the theoretical model.

In order to compare the calculated gain spectra to experiment we must determine the carrier density
n corresponding to each current density J at which each of the gain spectra depicted by open circles in
Figure 10.11b was measured. In order to do so, we recall from Equation 10.8 that the transparency point
at which there is zero material/modal gain on the high-energy side of the gain peak is given when the
photon energy is equal to the quasi-Fermi level separation at a given level of injection (i.e., g = 0 for
ℏω = ΔF). We therefore proceed by shi�ing the measured net modal gain spectra, Γg − αi, upward by the
αi = 15 cm−1 optical losses in order to obtain the absolute modal gain Γg in the device. Next, we use the
transparency points on each of these absolute modal gain spectra to extract the quasi-Fermi level separation
ΔF corresponding to each current density J in the experiment. Finally, using the theoretical model we
calculateΔF as a function of the injected carrier density n for the laser structure and, in doing so, determine
the value of n which produces the extracted ΔF for each current density J. Following this procedure, we
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�nd that the current densities J = 0.7, 1.4, 2.0, and 2.4 kA cm−2 at which the gain spectra were measured,
correspond to quasi-Fermi level separations of 1.375, 1.409, 1.423, and 1.435 eV, which in turn correspond
to carrier densities n = 5.12, 7.11, 8.24, and 9.38 ×1018 cm−3, respectively, in the theoretical calculations.
The TE-polarized component of the SE rate at each of these carrier was then calculated as outlined in
Section 10.4.1, from which the theoretical net modal gain spectrum was calculated at each carrier density
as Γg − αi, with Γ = 1.60% (calculated) and αi = 15 cm−1 (measured), and where g is the TE-polarized
material gain spectrum computed using Equation 10.8.

The results of these calculations are shown in Figure 10.11b using, in order of increasing current/car-
rier density, solid, dashed, dotted, and dash-dotted lines. We note that the theoretical gain spectra shown
using solid, dashed and dotted lines include e1-hh1 optical transitions only while the dash-dotted line,
corresponding to the highest current density of 2.4 kA cm−2, also includes e1-lh1 optical transitions.
Including e1-hh1 transitions only at the highest carrier density was found to underestimate the peak modal
gain by ∼10%, highlighting that TE-polarized optical recombination involving LH-like states contributes
appreciably to the optical gain at higher levels of injection. This conclusion is consistent with further exper-
imental analysis of the SE spectra [39]. Overall, we see that the theoretical spectra are in good, quantitative
agreement with experiment: the calculated magnitude of the net modal gain is in excellent agreement with
that measured using the segmented contact method across the full investigated range of current densi-
ties (con�rming in particular the accuracy of the optical transition matrix elements computed within the
framework of the 12-band k⋅p model), and the shape (in photon energy/wavelength) of the experimental
gain spectrum is well reproduced at each current/carrier density by the theoretical model. This analysis has
been repeated for a series of multisection and Fabry–Pérot laser devices having x ≈ 2%, demonstrating that
the theoretical model is generally capable of quantitatively predicting the variation of gpeak with J for this
new class of laser structures [39]. Overall, we note that the theoretical model presented in Section 10.4.1,
which is directly underpinned by detailed analysis of the impact of Bi on the band structure (facilitated
by atomistic supercell calculations), allows calculation of the device properties and performance that are
generally in good, quantitative agreement with the available experimental data. The results presented here
therefore con�rm the predictive capability of the model, suggesting that it can be used as a reliable tool in
the analysis, design and optimization of future devices.

10.5 Emerging Directions in Dilute Bismide Research

Having primarily focused so far in this chapter on describing developments in the growth, characterization,
theory and applications of GaBixAs1−x alloys grown on GaAs substrates, in this section, we turn our atten-
tion to alternative, emerging directions in research on dilute bismide alloys. Sections 10.5.1 and 10.5.2
outline the basic band structure properties of the quaternary Bi-containing alloys InyGa1−yBixAs1−x
and GaBixNyAs1−x−y, grown on InP and GaAs substrates, respectively. By extending the k⋅p model
for GaBixAs1−x alloys outlined in Sections 10.3.2 and 10.3.3, we demonstrate how the incorporation
of Bi leads in each case to highly �exible alloy band structures and long emission wavelengths beyond
those currently accessible using GaAs or InP substrates. We also brie�y describe the development of
GaBixAs1−x/GaNyAs1−y type-II QWs grown on GaAs and demonstrate that this novel class of strain-
balanced heterostructures have signi�cant promise for the development of photonic devices operating at
and beyond 1.55 μm. GaBixAs1−x/GaNyAs1−y type-II QWs also have the potential to act as a route to
extending the emission wavelength beyond that which has been demonstrated to date in GaBixAs1−x/GaAs
type-I QWs, which is currently limited by the challenges associated with the epitaxial growth of GaBixAs1−x
QWs having su�ciently high optical quality and Bi composition to demonstrate electrically pumped las-
ing at 1.55 μm. In all three cases, we demonstrate the ability to engineer the band gap, spin-orbit-splitting
energy, strain, and band o�sets over wide ranges, highlighting the potential to use these new material con-
cepts to deliver enhanced capabilities in near- and mid-infrared photonic devices, as well as (at shorter
wavelengths) in photovoltaics.
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In addition to these three emerging directions in dilute bismide research, we note that ongoing increase
of interest in Bi-containing materials has led to initial demonstrations of a number of additional classes
of alloys and heterostructures for a range of potential applications. While it is beyond the scope of this
chapter to discuss all of these topics in detail, we brie�y list prominent examples in Section 10.5.4 and refer
the reader to the references provided therein for further information.

10.5.1 InyGa1−yBixAs1−x/InP Alloys

The vibrational-rotational spectra of many important gases are characterized by strong optical absorption
at mid-infrared wavelengths. As such, there is broad scope for practical applications of semiconductor
lasers operating in the 2- to 6-μm wavelength range, including: (1) chemical monitoring in industrial
processes, (2) detection of environmental pollutants, (3) remote analysis of hazardous substances (includ-
ing toxic gases and explosives), and (4) detection of biological markers in medical diagnostics. Despite
this, mid-infrared semiconductor laser technology is generally less developed than the GaAs- and InP-
based technologies that are employed in optical communications at wavelengths <2 μm. Despite the fact
that much e�ort has been dedicated to developing mid-infrared emitters and detectors over the past two
decades [102,103], there remains a need to develop new material and device concepts in order to over-
come the limitations associated with current technologies. Existing mid-infrared semiconductor lasers
typically (1) incorporate Sb-containing materials grown on nonideal and relatively expensive GaSb or InAs
substrates, (2) su�er from di�culties associated with the growth of Sb-containing alloys, and/or (3) incor-
porate complicated heterostructures, such as in quantum (intraband) or interband cascade devices, where
the laser structure must be formed of many layer repeats which require a high degree of design optimization
and growth control.

In order to overcome these issues, as well as to improve device performance, there has been increasing
e�ort directed toward developing Sb-free devices grown on InP substrates. From a practical perspective,
it is desirable to develop InP-based mid-infrared devices, for several reasons. First, materials growth and
processing is signi�cantly more advanced for the InP platform than for GaSb or InAs, since the former has
experienced heavy technological and commercial development for applications optical in communications.
As such, the InP platform o�ers well-developed, reproducible, and cost-e�ective device fabrication. Sec-
ond, from a material physics perspective, InP has several advantages over GaSb, including higher thermal
conductivity and lower electrical resistance. Third, growth of InP-based materials stands to bene�t from
the ready availability of advanced optical components such as low-loss waveguides.

InyGa1−yBixAs1−x/InP alloys o�er a promising alternative to existing approaches in this challenging
wavelength range, and provide the possibility to develop interband diode lasers incorporating type-I QWs
which (1) signi�cantly extend the wavelength range accessible using InP substrates, (2) fully exploit the
well-established aspects of the InP material platform [45], and (3) use the Bi-induced modi�cations to the
band structure to suppress the Auger and IVBA loss mechanisms. Full details of our theoretical analysis
of the InyGa1−yBixAs1−x band structure and its suitability for applications in mid-infrared light-emitting
devices, can be found in Refs. [13] and [42]. Figure 10.12a shows the variation of the band gap Eg and spin-
orbit-splitting energyΔSO with Bi composition x in In0.53Ga0.47BixAs1−x alloys grown pseudomorphically
on InP. Solid (dashed) lines show the variation of Eg (ΔSO) calculated using the 12-band k⋅p Hamiltonian
described in Section 10.3, while closed (open) circles show the values of Eg (ΔSO) measured using a com-
bination of optical absorption, PL, and photomodulated re�ectance spectroscopy [40,42]. We note that (1)
the calculated variation of Eg and ΔSO with x is in quantitative agreement with experiment, and (2) the
theoretical and experimental data indicate that a band structure in whichΔSO > Eg can be obtained at low
Bi compositions x > 3.5% in compressively strained In0.53Ga0.47BixAs1−x/InP alloys, which is signi�cantly
lower than the ∼10% required on GaAs (cf. Figure 10.3aa).

In order to evaluate the suitability of InyGa1−yBixAs1−x/InP alloys for applications in mid-infrared
devices, we have used the 12-band k⋅p model to investigate general trends in the band structure as a func-
tion of the Bi and In compositions x and y [44,45]. Figure 10.12b shows a composition space map of the
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respectively), compared to calculations undertaken using the 12-band k⋅p Hamiltonian of Section 10.3 (solid and
dashed lines, respectively). (Adapted from Marko, I.P. et al., Appl. Phys. Lett., 101, 221108, 2012; C.A. Broderick et
al., Phys. Stat. Sol. B, 250, 773, 2013.) (b) Calculated variation of Eg, and of the di�erence between the band gap and
spin–orbit-splitting energy, Eg−ΔSO, as a function of Bi and In composition (x and y) for InyGa1−yBixAs1−x/InP alloys
(Adapted from Broderick, C.A. et al., In Proceedings of the 16th International Conference on Numerical Simulation of
Optoelectronic Devices, p. 47 (2016); C.A. Broderick et al., Theory and design of InyGa1−yAs1−xBix mid-infrared semi-
conductor lasers: type-I quantum wells for emission beyond 3 μm on InP substrates, submitted 2017.) Solid and dashed
lines denote, respectively, paths in the composition space along which Eg and Eg − ΔSO are constant. Dash-dotted
lines denote paths in the composition space along which strain is constant. We see that InyGa1−yBixAs1−x alloys can
be grown either lattice-matched (ϵxx = 0), or under compressive (ϵxx < 0) or tensile (ϵxx > 0) strain, and that compres-
sively strained alloys enable emission at wavelengths >3 μm at relatively low Bi compositions. Alloys with compositions
lying above the Eg = ΔSO contour are alloys in which ΔSO > Eg, and in which suppression of the nonradiative Auger
recombination and IVBA processes involving the SO band can hence be expected.

band gap (Eg), and of the di�erence between the band gap and spin-orbit-splitting energy (Eg − ΔSO), in
pseudomorphically strained InyGa1−yBixAs1−x/InP, calculated using the 12-band model. The dash-dotted
lines denote paths in the composition space along which the in-plane strain ϵxx is constant when the
InyGa1−yBixAs1−x alloy is grown pseudomorphically on an InP substrate and show that the alloy can be
grown either lattice-matched (ϵxx = 0) or under compressive (ϵxx < 0) or tensile (ϵxx > 0) strain. Solid
lines denote alloy compositions for which Eg is constant. Examining the calculated variation of ϵxx and
Eg with alloy composition, we observe that the band gap of InyGa1−yBixAs1−x alloys can be varied over
an extremely wide range, from ∼1.55 to >4 μm, and that this broad spectral coverage can be obtained at
modest strains |ϵxx| < 1.5%.

The dashed lines in Figure 10.12b denote alloy compositions for which Eg −ΔSO is constant. Following
the ϵxx = 0 line, we calculate that (1) the amount of Bi required to bring about the ΔSO > Eg band struc-
ture condition (all alloys lying above the Eg = ΔSO contour) is close to 4% (a prediction in quantitative
agreement with the results of a range of experimental measurements [40,43,54]), and (2) the amount of
Bi required to achieve ΔSO > Eg remains constant at approximately 4% in tensile strained alloys less In
while, by contrast, it is signi�cantly reduced in compressively strained alloys having higher In compositions.
Compared to GaAs, InyGa1−yAs/InP alloys have reduced band gaps and comparable spin-orbit-splitting
energies, so that signi�cantly less Bi is required to achieve the ΔSO > Eg band structure condition in
InyGa1−yBixAs1−x/InP alloys than in the GaBixAs1−x/GaAs materials considered previously [13,40,42,43].
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Therefore, in addition to providing the possibility of suppressing the CHSH Auger recombination and
IVBA loss mechanisms in InP-based mid-infrared semiconductor lasers, the InyGa1−yBixAs1−x/InP mate-
rial system also has the potential to provide an important proof of principle regarding the use of dilute
bismide alloys to suppress the dominant loss mechanisms in GaAs-based semiconductor lasers operating
at telecommunication wavelengths.

The di�erence in band structure between the compressive and tensile strained alloys shown in
Figure 10.12b is readily understood: Bi, being larger than the As atoms it replaces, introduces compres-
sive strain so that a signi�cant fraction of In needs to be removed in order to obtain a tensile strained
quaternary alloy containing Bi. This removal of In leads to a tensile strained InGaAs host matrix with an
increased band gap, as well as a VB structure in which the VBAC coupling is weakened compared to the
unstrained or compressively strained cases [13,42]. When these e�ects are combined, we �nd that signi�-
cantly larger Bi compositions are required in tensile strained InyGa1−yBixAs1−x in order to bring about a
given band gap reduction for a �xed magnitude of the strain, as compared to the compressively strained
case in which both In and Bi simultaneously contribute to the band gap reduction and compressive strain.
Bearing this in mind, and examining Figure 10.12b from the perspective of laser design, we note that the
composition region of interest are those lying above the Eg = ΔSO contour, since it is expected that the
Auger and IVBA processes involving the SO band will be suppressed in these alloys, while they are close to
resonant for 2 < λ < 2.5 μm, at which compositions Eg ≈ ΔSO. Within the reduced composition range of
alloys having ΔSO > Eg we note that the alloy band gap covers a large range of wavelengths >2.5 μm and,
signi�cantly, that the 2.5- to >4-μm spectral range can be accessed in alloys having modest compressive
strains and Bi compositions.

Our theoretical analysis of InyGa1−yBixAs1−x/InP laser structures [45] suggests that there is broad
scope to use this material system to realize compressively strained type-I QWs having emission wave-
lengths in the 2.5- to 5 μm range. Furthermore, our analysis indicates that the physical characteristics of
InyGa1−yBixAs1−x/InP QWs are intrinsically superior to existing GaSb-based heterostructures in the same
wavelength range. First, as outlined above, theoretical calculations and experimental measurements have
con�rmed thatΔSO > Eg can be achieved in In0.53Ga0.47BixAs1−x/InP alloys for Bi compositions as low as
x ≈ 4% [13,40,42,43]. This means that it should be possible to suppress the CHSH Auger recombination
and IVBA processes and bring about highly e�cient, temperature-stable operation in mid-infrared semi-
conductor lasers. Second, our calculations indicate that large type-I band o�sets can readily be engineered
in InyGa1−yBixAs1−x QWs having unstrained ternary In0.53Ga0.47As barriers. This has two signi�cant ben-
e�ts: (1) the presence of large CB and VB o�sets will mitigate carrier leakage, thereby overcoming a key
factor limiting the performance of GaSb-based devices at high temperature, and (2) the ability to grow
lattice-matched, ternary InGaAs barriers, without the need to incorporate Al or P to enhance the carrier
con�nement, promises to simplify the growth of these laser structures. We note that (3) also means that
it is not necessary to introduce a trade-o� between the carrier and optical con�nement in these struc-
tures (cf. Section 10.4.3). Furthermore, these ternary barrier materials are the same unstrained InGaAs
bu�er layers upon which InyGa1−yBixAs1−x epilayers have typically been grown. Overall, this means that
InyGa1−yBixAs1−x QWs can be used to develop mid-infrared lasers in which the remainder of the laser
structure is essentially identical to those commonly employed in the well-established 1.3- and 1.55-μm
InP-based devices. As such, InyGa1−yBixAs1−x/InP alloys o�er the possibility not only to provide type-
I InP-based QW diode lasers operating at wavelengths >3 μm, but also promise to deliver several key
advantages over competing mid-infrared device concepts.

While there have been some investigations of InyGa1−yBixAs1−x alloys grown on InP substrates, this
material system has to date been the subject of much less research attention than the GaAs-based
GaBixAs1−x alloys discussed above. Initial growth of InyGa1−yBixAs1−x/InP materials was reported by Feng
et al. [104,105], and has since been established by several other groups [106–109]. Enhanced understanding
of the incorporation of Bi in InGaAs has led to growth of InyGa1−yBixAs1−x alloys with Bi compositions
as high as 7% [108], and recent experimental and theoretical analysis of a sample containing 5.8% Bi has
veri�ed the presence of a ΔSO > Eg band structure up to and above room temperature [43]. Growth of
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InyGa1−yBixAs1−x alloys has, however, to date been limited to bulk-like epitaxial layers and so, in order to
develop this material system for applications in mid-infrared semiconductor lasers, future studies will need
to focus on (1) the growth of thin, strained QWs having high optical quality, and (2) providing evidence of
reduced CHSH Auger recombination and IVBA in materials and heterostructures havingΔSO > Eg. While
research on InyGa1−yBixAs1−x/InP alloys still faces challenges related to the establishment of growth and
fabrication of high-quality materials and devices, recent successes in the development of GaBixAs1−x alloys,
including the demonstration of electrically pumped lasers [30,35,96], suggest that these issues can be over-
come with dedicated research e�ort. We therefore conclude that InyGa1−yBixAs1−x alloys are a promising
candidate for the development of highly e�cient, temperature-stable semiconductor lasers, grown on InP
substrates and operating in the 3- to 5-μm wavelength range.

10.5.2 GaBixNyAs1−x−y/GaAs Alloys

An alternative quaternary Bi-containing alloy which has begun to attract research interest is
GaBixNyAs1−x−y. Initial theoretical analysis has demonstrated that the band structure of GaBixNyAs1−x−y
alloys grown on GaAs substrates is extremely �exible, providing signi�cant potential to develop mate-
rials suited to a range of applications in the near- and mid-infrared [12,41,54]. First, since Bi is larger
than the As atoms it replaces in GaAs to form GaBixAs1−x, it introduces compressive strain when grown
on a GaAs substrate. Likewise, N atoms, which are smaller than As, introduce tensile strain. As a result,
independent control of the Bi and N compositions in GaBixNyAs1−x−y allows precise strain engineer-
ing with respect to a GaAs substrate. Second, Bi or N incorporation in GaAs is known to cause a rapid
reduction of the band gap with increasing composition. Theoretical calculations [54] suggest that coal-
loying Bi and N in GaAs to form GaBixNyAs1−x−y enhances these e�ects and leads to an extremely large
reduction in the band gap with increasing Bi and N composition, which is larger than that observed in
either GaBixAs1−x or GaNxAs1−x alloys. As a result, the band gaps of GaBixNyAs1−x−y alloys are capable
of covering a large spectral range in the near- and mid-infrared, and come with the added bene�t of being
able to independently control the strain and band gap. These properties make GaBixNyAs1−x−y alloys of
particular interest for applications in multi-junction solar cells [21], since they o�er the potential to pro-
vide optical absorption across an extremely wide range of wavelengths while remaining lattice-matched
to either a GaAs or Ge substrate. In addition to the ability to readily control the strain in these alloys,
the impact of Bi on the VB structure are retained, meaning that it should also be possible to achieve a
band structure in which ΔSO > Eg in order to suppress Auger and IVBA processes involving the SO
band.

Detailed atomistic calculations suggest that the e�ects of Bi and N on the band structure are e�ectively
decoupled [54], with the modi�ed CB (VB) structure describable primarily in terms of the well-known
e�ects of N-(Bi-)related localized resonant states. On this basis, Broderick et al. derived a 14-band k⋅p
Hamiltonian to describe the band structure of GaBixNyAs1−x−y alloys [54]. In this model the e�ects
of N and Bi incorporation on the CB and VB structure are described independently in terms of band-
anticrossing interactions between N-(Bi-)related localized states and the extended states of the GaAs host
matrix CB (VB) edge (cf. Section 10.3.1), with additional virtual crystal and strain-induced modi�cations
to the CB, VB, and SO band edge energies (cf. Section 10.3.2). The fact that N (Bi) primarily a�ects the
CB (VB) then means that the GaBixNyAs1−x−y/GaAs band o�sets are e�ectively independently control-
lable, so that there is signi�cant potential to engineer the properties of QWs and related heterostructures.
Incorporating N brings about a large reduction in the CB edge energy, resulting in a large CB o�set and a
small VB o�set with respect to GaAs. The converse is true of Bi incorporation, which leads to a small CB
o�set and a large VB o�set. Combining these e�ects means that the CB and VB o�sets can be engineered
relatively independently of one another in GaBixNyAs1−x−y, opening up signi�cant potential to develop
GaBixNyAs1−x−y QWs providing tunable long-wavelength emission and absorption across a broad spec-
tral range. Full details of our theoretical analysis of the GaBixNyAs1−x−y band structure can be found in
Refs. [12], [41] and [54].
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Figure 10.13 shows a composition space map of the band gap (Eg), and of the di�erence between the band
gap and spin–orbit-splitting energy (Eg − ΔSO), in pseudomorphically strained GaBixNyAs1−x−y/GaAs,
calculated using the 14-band k⋅p Hamiltonian described in Ref. [54]. The dashed lines denote paths in the
composition space along which the in-plane strain is constant when the GaBixNyAs1−x−y alloy is grown
pseudomorphically on a GaAs substrate, and show that the alloy can be grown either lattice-matched (ϵxx =
0), or under compressive (ϵxx < 0) or tensile (ϵxx > 0) strain. Solid lines denote alloy compositions for
which Eg is constant. Examining the calculated variation of ϵxx and Eg with alloy composition we observe
that the band gap of GaBixNyAs1−x−y alloys can be varied over an extremely wide range, from that of GaAs
(∼850 nm) through the near-infrared, and out to wavelengths >3 μm in the mid-infrared. We also note
that this broad spectral coverage can be obtained in alloys that are lattice-matched to GaAs, or in alloys
having modest tensile or compressive strains with |ϵxx| < 1%. The dashed lines in Figure 10.13 denote
alloy compositions for which Eg − ΔSO is constant. The fact that N incorporation brings about a large
band gap reduction while leaving the VB structure almost unaltered (apart from minor strain-induced
changes) means that co-alloying N and Bi has the potential to bring about an ΔSO > Eg band structure
at lower Bi compositions than in the N-free GaBixAs1−x alloy. Following the ϵxx = 0 line we calculate
that the amount of Bi required to bring about the ΔSO > Eg band structure condition (all alloys lying
to the right of the Eg = ΔSO contour) is close to 7% in the lattice-matched case, which is approximately
30% less than that required in GaBixAs1−x. In addition to the aforementioned potential of this material
system for applications in multijunction solar cells, we also note that the wide composition range for which
ΔSO > Eg indicates that there is also potential to grow GaBixNyAs1−x−y QWs for>2-μm emission, bringing
about the possibility of developing GaAs-based mid-infrared diode lasers with suppressed CHSH Auger
recombination and IVBA. This also provides an interesting opportunity to develop monolithic GaAs-based
VCSELs and related devices operating in the mid-infrared.
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FIGURE 10.13 Calculated variation of the band gap (Eg), and of the di�erence between the band gap and spin-
orbit-splitting energy (Eg − ΔSO), as a function of Bi and N compositions (x and y) for GaBixNyAs1−x−y alloys grown
pseudomorphically on GaAs compositions. (Adapted from Broderick, C.A. et al., Semicond. Sci. Technol., 27, 094011,
2012.) Solid and dashed lines denote, respectively, paths in the composition space along which Eg and Eg − ΔSO
are constant. Dash-dotted lines denote paths in the composition space along which strain is constant. We see that
GaBixNyAs1−x−y alloys can be grown either lattice-matched (ϵxx = 0), or under compressive (ϵxx < 0) or tensile (ϵxx>0)
strain, and that the band gap can be varied over an extremely wide spectral range in the near- and mid-infrared. Alloys
with compositions lying to the right of the Eg = ΔSO contour are alloys in which ΔSO>Eg, and in which suppression
of the non-radiative Auger recombination and IVBA processes involving the SO band can hence be expected.
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While there is increasing interest in the development of GaBixNyAs1−x−y alloys for applications in the
areas described above, to date there have been limited growth studies of this novel material system. Initial
growth of GaBixNyAs1−x−y bulk-like epitaxial layers was undertaken via MBE in the mid-2000s [110,111],
while more recently epitaxial layers and QWs have been grown using MOVPE [112]. MOVPE growth has
realized co-alloying of Bi and N compositions up to x = 3.5% and y = 2.7%, but PL has only been observed
for samples with compositions up to x = 1.8% and y = 1.8%. However, the observed PL at these compo-
sitions demonstrated an alloy band gap close to 1 eV, con�rming that co-alloying of Bi and N can bring
about an extreme reduction of the band gap at relatively low compositions [112]. Meanwhile, MBE growth
of GaBixNyAs1−x−y alloys has demonstrated electroluminescence at wavelengths out to 1.3 μm [113], and
Bi and N incorporations up to x = 4.5% and y = 8.0% have been obtained [110]. However, no measure-
ments of the band gap have been performed on these higher composition materials, with the Bi and N
compositions having been deduced on the basis of x-ray di�raction measurements. Despite the signi�cant
challenges presented by the growth of this highly mismatched quaternary alloy, initial investigations have
been promising, and the realization of a 1-eV band gap at such low compositions merits further inves-
tigations in order to re�ne the growth of GaBixNyAs1−x−y alloys to exploit their signi�cant potential for
practical applications.

10.5.3 GaBixAs/GaNyAs1−y Type-II Quantum Wells on GaAs

In addition to the direct co-alloying Bi and N in GaAs to form GaBixNyAs1−x−y, Bi and N incorporation in
GaAs opens up additional possibilities for band structure engineering and the development of novel het-
erostructures. For example, GaNxAs1−x (GaBixAs1−x) can be used to form tensile (compressively) strained
type-I QWs it possible to grow strain-balanced type-II QWs and superlattices in which electrons (holes)
are con�ned in the GaNxAs1−x (GaBixAs1−x) layer(s) [46,114]. Such structures o�er a number of advan-
tages for applications in semiconductor lasers, photodetectors, and solar cells, including the possibility of
facilitating optical emission and absorption across a wide range of wavelengths, as well as exploiting a high
degree of control over the built-in strain, carrier transport, radiative lifetimes and non-radiative recombi-
nation rates [46]. A range of type-II QWs grown on GaAs using di�erent combinations of III-V alloys are
currently under investigation for long-wavelength applications. However, strain-balancing of type-II QWs
on GaAs has not been possible using the (In)Ga(N)As1−xSbx/InyGa1−yAs or GaAs1−xBix/InyGa1−yAs
structures that have been investigated recently [115–118], since the constituent alloys are all compressively
strained when grown on GaAs. By comparison, GaAs1−xBix/GaNyAs1−y type-II structures are highly engi-
neerable, can be grown with little or no net strain relative to a GaAs substrate, and signi�cant potential for
applications in GaAs-based near- and mid-infrared photonic devices [46] and (at shorter wavelengths) in
photovoltaics [114].

The band alignment, band o�sets, and emission wavelengths achievable using GaAs1−xBix/GaNyAs1−y
structures on GaAs are summarized in Figure 10.14a. Dashed lines denote Bi and N compositions x and
y for which the CB o�set ΔECB and VB o�set ΔEVB are equal in GaAs1−xBix and GaNyAs1−y. Above
(below) the lower dashed lineΔECB is larger (smaller) in GaNyAs1−y than in GaAs1−xBix, while to the right
(le�) of the upper dashed line ΔEVB is larger (smaller) in GaAs1−xBix than in GaNyAs1−y. This divides
the composition space into three regions. Regions A and C correspond to type-I band alignment, with
electrons and holes both con�ned within either the GaNyAs1−y (A) or GaAs1−xBix (C) layers. Region B
corresponds to type-II band alignment, with holes (electrons) con�ned in the GaAs1−xBix (GaNyAs1−y)
layers. Closed circles denote increases of 50 meV in the respective band o�sets, beginning from zero at
x = y = 0 (GaAs). Solid (dash-dotted) lines in region B denote alloy compositions for which the band gap
in a bulk (QW) type-II structure—between the GaNyAs1−y CB and GaAs1−xBix VB—is constant. These
calculations demonstrate that type-II GaAs1−xBix/GaNyAs1−y QWs grown on GaAs have the potential to
cover an extremely broad spectral range, through the near-infrared to mid-infrared wavelengths in excess
of 3 μm [46].
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Broderick et al. [46] recently presented the �rst demonstration of this new class of III-V heterostruc-
tures. The black and gray lines in Figure 10.14b show, respectively, the room temperature PL and optical
absorption measured for a prototypical type-II GaBixAs1−x/GaNyAs1−y structure containing �ve QWs,
having Bi and N compositions x = 3.3% and y = 5.2%, and with GaBixAs1−x and GaNyAs1−y layer
thicknesses of 10.5 and 9.2 nm [46]. This structure was grown using MOVPE and characterized using high-
resolution x-ray di�raction measurements, which indicated high structural quality of the strained type-II
QWs. Examining Figures 10.14a and 10.14b we note that, despite the intrinsically low optical e�ciency of
the type-II structure (resulting from the low electron–hole overlap under optical excitation), the measured
PL peak at 0.72 eV agrees well with the e1-hh1 transition energy of 0.74 eV calculated using a care-
fully parameterized 14-band k⋅p Hamiltonian [54] in conjunction with the plane wave expansion method
described in Section 10.4.1 [46]. We note that this band gap corresponds to an emission wavelength
∼1.7μm, which demonstrates that GaBixAs1−x/GaNyAs1−y type-II QWs grown on GaAs can readily pro-
vide emission at and beyond 1.55 μm with signi�cantly reduced Bi compositions compared to those
required in type-I GaBixAs1−x/(Al)GaAs structures (cf. Section 10.4). Indeed, it is promising to observe
clear room temperature PL and optical absorption in initial growth of a prototype structure, particularly
given the signi�cant scope to optimize the layer ordering and thicknesses to enhance the optical e�ciency
[46]. Theoretical investigations are ongoing to quantify the electronic and optical properties of this new
class of GaAs-based heterostructures, and re�nement of epitaxial growth is expected to lead to the devel-
opment of structures with improved optical e�ciency for potential applications in QW solar cells, as well
as in semiconductor lasers and photodetectors.
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17th International Conference on Numerical Simulation of Optoelectronic Devices, 2017)



9781498749466_C010 2017/8/29 14:10 Page 353 #41

Dilute Bismide Alloys 353

10.5.4 Further Directions: Quaternary Alloys, Type-II Structures, and
Narrow-Gap Materials

Here, we brie�y outline additional emerging directions in resarch on dilute bismide alloys by describing
some recent work on materials and heterostructures distinct from, but related to, those discussed above.
We refer the reader to the reference provided for further information.

Recently, the quaternary dilute bismide alloy GaBixAs1−x−yPy has been proposed as an alternative
material system to GaBixNyAs1−x−y that can provide a 1 eV band gap while remaining lattice matched
to a GaAs substrate (cf. Section 10.5.2). In contrast to co-alloying Bi with N to form GaBixNyAs1−x−y,
incorporation of phosphorus (P), which also compensates the compressive strain brought about by Bi
incorporation, tends to increase the band gap at �xed Bi composition. This means that larger Bi com-
positions will be required to achieve lattice-matched alloys having a given band gap compared to those
required in GaBixNyAs1−x−y alloys. However, initial investigations of GaBixPyAs1−x−y have demonstrated
that incorporation of a small amount of P signi�cantly enhances Bi incorporation during MOVPE growth
[119]. Although it is likely to be related to the P-induced reduction of compressive strain in the quaternary
alloy, the precise mechanism by which co-alloying P and Bi enhances Bi incorporation has yet to be de�ni-
tively determined. Related structures have been grown which include compressively strained GaBixAs1−x
QWs having tensile strained GaAs1−yPy barriers, with the �rst results for this new class of GaAs-based
strain-compensated laser structures having been reported recently in Ref. [120]. Investigations of quat-
nerary dilute bismide alloys containing P (or N) are at a relatively early stage, but initial results have been
promising and investigations of these novel semiconductor alloys are ongoing.

Further examples of recently emerging directions in dilute bismide research are the growth of type-II
and metamorphic heterostructures. In Section 10.5.3 we described that GaBixAs1−x/GaNyAs1−y type-
II QWs can be used to achieve long emission wavelengths on GaAs substrates. Recently, GaAs-based
InyGa1−yAs/GaBixAs1−x type-II QWs have been suggested as an alternative approach to achieving this
goal. These heterostructures are similar in principle to the GaBixAs1−x/GaNyAs1−y type-II QWs dis-
cussed above, but di�er in two important aspects. First, the electron-con�ning layer(s) of the structure
are formed of the conventional alloy InyGa1−yAs. The ease and reproducibility with which high-quality
InyGa1−yAs strained layers can be grown on GaAs is likely to be of bene�t for the realization of elec-
trically pumped lasers and related devices. Second, while the electron-con�ning GaNyAs1−y layer(s)
in a type-II GaBixAs1−x/GaNyAs1−y structure are tensile strained, the InyGa1−yAs layer(s) in a type-II
InyGa1−yAs/GaBixAs1−x structure are compressively strained. This means that it is not possible to grow
strain-balanced InyGa1−yAs/GaBixAs1−x type-II structures on GaAs, which limits the ability to grow
large numbers of QWs due to the accumulation of compressive strain in the device active region. This
may limit the ability to grow device structure with su�ciently high optical e�ciency. MBE growth of
InyGa1−yAs/GaBixAs1−x type-II structures has recently been established by Pan et al. [115], who reported
low temperature PL at a wavelength close to 1.1 μm, thereby providing an initial con�rmation of the poten-
tial of these structure to overcome the limitations associated with the growth of GaBixAs1−x/GaAs type-I
QWs having high Bi compositions (∼ 10%).

The �rst metamorphic heterostructures based on dilute bismide alloys were presented recently by Gu et
al. [121], who demonstrated MBE growth of InP-based type-I structures incorporating AlyIn1−yAs meta-
morphic bu�er layers and InBixAs1−x QWs. The aim of these structures is the same as that outlined for
InyGa1−yBixAs1−x/InP in Section 10.5.1: to extend the emission wavelength in InP-based QWs beyond
3 μm. Current approaches to obtaining emission at wavelengths >3 μm on InP include InAs metamor-
phic QWs grown on AlyIn1−yAs metamorphic bu�er layers. It is hoped that the strong reduction of the
InBixAs1−x band gap with increasing Bi composition [54] should allow the wavelength to be extended sig-
ni�cantly beyond that obtainable using existing devices [19]. The initial work of Gu et al. demonstrated low
temperature PL at wavelengths beyond 3.1 μm, con�rming the validity of this approach. However, further
e�ort, is required to quantify and exploit the potential of this class of dilute bismide heterostructure for
applications in mid-infrared photonic devices.
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Finally, we note that there has also been a steady growth of interest in narrow-gap dilute bismide
alloys such as (In)GaBixSb1−x. These alloys, typically grown on GaSb or InAs substrates, o�er the poten-
tial to use Bi to reduce the already narrow (In)GaSb band gap, and hence cover an extremely broad
range of wavelengths in the mid-infrared and beyond. As such, while investigations of Sb-containing
dilute bismide alloys are at a relatively early stage, (In)GaBixSb1−x alloys are attracting interest for the
development of type-I and -II QW lasers and photodetectors throughout the full mid-infrared spectral
range [17,122]. Furthermore, due to their intrinsically large spin-orbit coupling, in addition to the poten-
tial of using Bi incorporation to introduce large, tunable Rashba spin-splittings, interest in narrow-gap
dilute bismide alloys for applications in spintronics is likely to attract signi�cant attention in the coming
years [25].

10.6 Summary and Conclusions

In this chapter we have provided an introduction to the theory and simulation of dilute bismide materi-
als and devices, which we have framed within the context of recent and ongoing research on GaBixAs1−x
and related Bi-containing alloys. Beginning with a general overview of the electronic properties of dilute
bismide alloys, we highlighted the potential to exploit the Bi-induced modi�cations of the band struc-
ture of conventional III–V semiconductors to develop photonic, photovoltaic, and spintronic devices
with enhanced performance and capabilities. In particular, we discussed that the incorporation of Bi
in (In)GaAs leads to a signi�cant reduction in the material band gap (Eg), which is accompanied by a
strong enhancement of the spin-orbit-splitting energy (ΔSO), both of which are characterized by strong
composition–dependent bowing. We demonstrated that it is possible, through Bi incorporation, to engi-
neer a band structure in which ΔSO >Eg at telecommunication wavelengths, which is expected to lead to
suppression of the dominant nonradiative Auger recombination and IVBA processes (involving the SO
band) that limit the high-temperature performance of existing InP-based 1.55-μm semiconductor lasers.
As such, we concluded that GaBixAs1−x alloys have the potential to deliver the long sought-a�er goal of
realizing uncooled operation of highly e�cient and temperature-stable telecom lasers, which promises to
deliver signi�cant energy savings in next-generation optical communications networks. Growth of long-
wavelength devices on GaAs also presents the opportunity to exploit vertical-cavity architectures, meaning
that dilute bismide alloys have signi�cant potential to extend the bene�ts of the GaAs platform to telecom-
munications and mid-infrared wavelengths and, hence, facilitate the development of advanced photonics
technologies, with enhanced performance and new capabilities.

Taking into account the fact that Bi incorporated into (In)GaAs acts as an isovalent impurity, in
Section 10.2 we highlighted the need for detailed atomistic models to provide a quantitative understanding
of the electronic properties. On this basis, we provided a review of the atomistic methods which have been
developed for, and applied to, the study of GaBixAs1−x and related alloys. Having identi�ed the theoretical
methods and models that are capable of describing the impact of Bi on the electronic structure, we then
compared the results of atomistic TB calculations for realistic, disordered GaBixAs1−x alloys to experiment.
We showed that a TB approach is capable of describing, in a quantitative manner, the strong Bi-induced
reduction (increase) in the band gap (spin-orbit-splitting energy), across the full composition range for
which experimental data are available. We further demonstrated that a TB approach quantitatively predicts
the strong Bi-induced increase in the magnitude of the electron e�ective g factor in pseudomorphically
strained GaBixAs1−x/GaAs alloys, thereby providing detailed insight into roles played by strain and short-
range alloy disorder in determining the details of the strongly perturbed VB structure and con�rming the
predictive capability of the theory.

In Section 10.3 we turned our attention to deriving a continuum k⋅p model which is suited to model-
ing the electronic and optical properties of dilute bismide heterostructures. Using an atomistic TB model,
we reached two signi�cant conclusions. First, we reviewed that the main features of the band structure
of (In)GaBixAs1−x alloys are well described in terms of a phenomenological Bi composition–dependent
VBAC interaction between the extended VB edge states of the host matrix semiconductor and localized
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Bi-related impurity states which are resonant with the host matrix VB. Second, we demonstrated how the
TB method can be used to directly determine the energies of the Bi-related impurity states, as well as the
coupling strength between the Bi-related impurity states and host matrix VB edge states, thereby removing
the parametric ambiguity associated with band-anticrossing models parameterized solely with reference
to experimental measurements. On this basis, we reviewed the derivation of a 12-band k⋅p Hamiltonian
for (In)GaBixAs1−x directly from a series of detailed atomistic supercell calculations, provided a consistent
set of parameters for performing calculations on real alloys, and used the k⋅p model to explicitly derive
expressions for the band edge energies and o�sets in pseudomorphically strained (In)GaBixAs1−x alloys
and QWs, respectively.

Next, in Section 10.4, we discussed the theory and modeling of dilute bismide QW lasers grown on GaAs
substrates. We applied the 12-band k⋅p model to the study of GaBixAs1−x/(Al)GaAs QW heterostructures
and quanti�ed the impact of Bi incorporation on the (1) VB structure and DOS, (2) optical gain, and
(3) threshold characteristics of realistic device structures. By considering the incorporation of Al in the
barrier layers to improve electron con�nement in the QW, we demonstrated the presence of a trade-o�
between the carrier and optical con�nement which allows the design of GaBixAs1−x/(Al)GaAs QWs at low
Bi compositions x < 6% to be engineered in order to minimize the threshold current density, a prediction
which has been veri�ed experimentally. Repeating this analysis as a function of the QW Bi composition x,
we demonstrated that the need to incorporate Al in the barrier layers is removed for x > 6%, which should
lead to improved device performance as the Bi composition in GaAs-based laser structures is increased. We
extended this analysis to consider the gain characteristics of a GaBixAs1−x laser structure designed to emit
at 1.55 μm and showed that QWs having higher Bi compositions stand to bene�t not only from suppressed
Auger recombination and IVBA, but also from the e�ects of Bi-induced compressive strain, with the latter
leading to a favorable VB structure that should, in an ideal device, deliver low threshold current density
and high di�erential gain. Having con�rmed the potential of GaBixAs1−x QWs for the development of
highly e�cient and temperature-stable 1.55-μm GaAs-based semiconductor lasers, we then turned our
attention to a detailed comparison between theory and experiment for the �rst generation of electrically
pumped GaBixAs1−x laser devices. We demonstrated that the theoretical approach outlined in Sections 10.3
and 10.4 is capable of quantitatively describing the SE and optical gain of this new class of GaAs-based
semiconductor lasers, con�rming its predictive capability and highlighting its potential for use in the design
and optimization of future GaBixAs1−x lasers and related devices.

Finally, in Section 10.5, we provided an overview of emerging directions in dilute bismide research,
including quaternary Bi-containing alloys grown on InP and GaAs substrates, type-II QWs, and narrow-
gap materials. We described the potential of InyGa1−yBixAs1−x and GaBixNyAs1−x−y alloys for respective
applications in InP-based mid-infrared photonics, and in multi-junction solar cells. In both cases, we
showed that Bi-containing quaternary alloys enable a large degree of control over the band structure,
allowing for �exible engineering of the band gap, spin-orbit-splitting energy, band o�sets, and strain
over wide ranges, thereby making it possible to design new photonic and photovoltaic materials and
device structures with enhanced capabilities in the near- and mid-infrared. We described that GaBixAs1−x/
GaNyAs1−y type-II structures grown on GaAs o�er a route to emission on GaAs at wavelengths out to
and beyond 3 μm, in strain-balanced QWs and superlattices. We further highlighted emerging work
on InyGa1−yAs/GaBixAs1−x type-II QWs and metamorphic InBixAs1−x QWs, which, respectively, o�er
alternative routes to extending the spectral ranges accessible using GaAs and InP substrates. Finally, we
described growing interest in narrow-gap (In)GaBixSb1−x alloys, which have signi�cant potential for
applications across the entirety of the mid-infrared as well as in spintronic devices.

Overall, we conclude that dilute bismide alloys are a rich and rapidly growing area of semiconductor
research in which there remain a range of materials physics and device engineering challenges that must
be overcome in order to realize the signi�cant potential of this new class of III–V semiconductor materials
for practical applications. The theoretical models and calculations reviewed in this chapter constitute the
most complete analysis to date of the electronic, optical, and spin properties of dilute bismide alloys, and
are expected to serve as a platform to support, interpret, and stimulate ongoing and future research on
Bi-containing materials and devices.
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99. S. Tomić and E. P. O’Reilly. Optimization of material parameters in 1.3-μm InGaAsN-GaAs lasers.
IEEE Photon. Tech. Lett., 15:6, 2003.



9781498749466_C010 2017/8/29 14:10 Page 361 #49

Dilute Bismide Alloys 361

100. P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson and J. Lutti. Characterization
of semiconductor laser gain media by the segmented contact method. IEEE J. Sel. Top. Quantum
Electron., 9:1275, 2003.

101. D. J. Bossert and D. Gallant. Gain, refractive index, and α-parameter in InGaAs–GaAs SQW
broad-area lasers. IEEE Photon. Tech. Lett., 8:322, 1996.

102. A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Hö�ing, L. Worschech, and A. Forchel. Mid-
infrared semiconductor heterostructure lasers for gas sensing applications. Semicond. Sci. Technol.,
26:014032, 2011.

103. E. Tournié and A. N. Baranov. Mid-infrared semiconductor lasers: A review. Semiconduct. Semimet.,
86:183, 2012.

104. G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, and Y. Horino. New III–V semiconductor InGaAsBi
alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys., 44:L1161, 2005.

105. G. Feng, K. Oe, and M. Yoshimoto. Bismuth containing III–V quaternary alloy InGaAsBi grown by
MBE. Phys. Stat. Sol. A, 203:2760, 2006.

106. J. P. Petropoulos, Y. Zhong, and J. M. O. Zide. Optical and electrical characterization of InGaAsBi for
use as a mid-infrared optoelectronic material. Appl. Phys. Lett., 99:031110, 2011.

107. Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide. E�ects of molecular beam epitaxy growth
conditions on composition and optical properties of InxGa1−xBiyAs1−y. Appl. Phys. Lett., 100:112110,
2012.
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11.1 Introduction

A quantum well (QW) is a heterostructure in which one thin-well layer is surrounded by two barrier layers.
This layer is so thin that both electrons and holes are quantized. The electronic and the optical properties
of quantized states o�er new opportunities in developing practical devices, such as QW infrared photo-
detectors, quantum cascade lasers, all-optical switches, modulators, and many others [1–4]. Hence, it is
very important to obtain eigenvalues and wave functions for the design of the active region in these opto-
electronic devices based on QW structures. In this chapter, we review theoretical formalism to calculate
eigenvalues and wave functions of (001)-oriented zinc-blende and (0001)-oriented wurtzite QW struc-
tures [5–10]. We block diagonalize zinc-blende and wurtzite Luttinger–Kohn 6 × 6 Hamiltonians for the
valence bands to two 3×3 Hamiltonians, which have analytical solutions for eigenvalues and eigenvectors.
We derive several important forms such as interband optical matrix elements and optical gains [11–15].
Also, as a numerical example, we calculate eigenvalues and wave functions for zinc-blende and wurtzite
Hamiltonians using a �nite-di�erence method (FDM) [4]. On the basis of this information, we discuss
crystal orientation e�ects on electronic and optical properties of strained zinc-blende and wurtzite QW
structures, including the Hamiltonian for nonpolar wurtzite QW structures.

365
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11.2 Band Structures of Bulk Semiconductors

11.2.1 Zinc-Blende Hamiltonian of the (001) Orientation

11.2.1.1 6 × 6 Hamiltonian for the Valence Band

The Luttinger–Kohn Hamiltonian for the valence band of the (001)-oriented zinc-blende semiconductor
is given by [2,4,5]

HLK(
⇀

k, ̄̄ε) = −

⎛
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⎜
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2 0
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, (11.1)

where

P = Pk + Pε, Q = Qk + Qε,
R = Rk + Rε, S = Sk + Sε,
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(11.2)

and ̄̄ε = (εij) for i, j = x, y, z is a symmetric strain tensor; γ1, γ2, and γ3 are the Luttinger parameters; av, b,
and d are the Bir–Pikus deformation potentials;Δ is the spin–orbit split-o� energy; m0 is the free electron
mass; ℏ is Planck’s constant divided by 2π; and ki is the wave vector. The superscript † means taking both
transpose (~) and complex conjugate (*). In the Hamiltonian H, we restricted ourselves to the biaxial strain
case for simplicity, namely,

εxx = εyy ≠ εzz, εij = 0 for i ≠ j. (11.3)

For the case of a strained-layer semiconductor pseudomorphically grown on a (001)-oriented substrate,

εxx = εyy =
az

s − az
l

az
l

, εzz = −
2C12
C11

εxx, (11.4)

where az
s and az

l are the lattice constants of the substrate (s) and the layer (l)material, and C11 and C12 are
the sti�ness constants for the zinc-blende structure. The bases for the Hamiltonian are
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11.2.1.2 Block-Diagonalized 3 × 3 Hamiltonian

Under the axial approximation [2], we write the Rk term
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where γ̄ = γ2+γ3
2 . In this approximation, we assume γ2 ≅ γ3 in the Rk term only, whereas we still use γ2

and γ3 in the other terms. When we de�ne the angle φ by

kx + ikx = k
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eiφ, (11.7)

we can write
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where k
||

=
√
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x. Then, the 6×6 Hamiltonian can be block-diagonalized into two 3×3 Hamiltonians
by using the transformation matrix U
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where
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A new basis set is given by using the basis transformation, |i >=
∑

Tij|uj >, where T = U∗. That is,
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⟩

e−i 1
2φ − 1

√

6
|

|

|

(X − iY) ↑ −Z ↓
⟩

ei 1
2φ.

(11.12)

11.2.2 Wurtzite Hamiltonian of the (0001) Orientation

11.2.2.1 6 × 6 Hamiltonian for the Valence Band

The c-plane Hamiltonian for the valence band of the (0001)-oriented wurtzite semiconductor in
{|1⟩, |2⟩, |3⟩, |4⟩, |5⟩, |6⟩} bases is given by [4,6]

H(
⇀

k, ̄̄ε) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F −K∗ −H∗ 0 0 0
−K G H 0 0 Δ
−H H ∗ λ 0 Δ 0

0 0 0 F −K H
0 0 Δ −K ∗ G −H∗

0 Δ 0 H∗ −H λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11.13)

where

F = Δ1 + Δ2 + λ + ϑ,

G = Δ1 − Δ2 + λ + ϑ,

λ = ℏ2

2m0

[

A1 k2
z + A2

(

k2
x + k2

y

)]

+ D1εzz + D2

(

εxx + εyy

)

,
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ϑ = ℏ2

2m0

[

A3 k2
z + A4

(

k2
x + k2

y

)]

+ D3εzz + D4

(

εxx + εyy

)

, (11.14)

K = ℏ2

2m0
A5

(

kx + iky

)2
+ D5

(

εxx − εyy

)

,

H = ℏ2

2m0
A6

(

kx + iky

)

kz + D6

(

εxz + iεyz

)

,

Δ =
√

2Δ3,

and the Ai’s are the valence-band e�ective-mass parameters analogous to the Luttinger parameters for
the zinc-blende semiconductors, the Di’s are the deformation potentials for wurtzite semiconductors, Δ1
is the crystal-�eld split energy, and Δ2 and Δ3 are the spin–orbit interaction energies. Under the cubic
approximation [6,10], the following relations hold for the parameters Ai’s and Di’s:

A1 − A2 = −A3 = 2A4, A3 + 4A5 =
√

2A6, D1 − D2 = −D3 = 2D4, D3 + 4D5 =
√

2D6. (11.15)

Here, we restricted ourselves to the biaxial strain case for simplicity, namely,

εxx = εyy ≠ εzz, εij = 0 for i ≠ j. (11.16)

For the case of a strained-layer semiconductor pseudomorphically grown on a (0001)-oriented substrate,

εxx = εyy =
aw

s − aw
l

aw
l

, εzz = −
2C13
C33

εxx, (11.17)

where aw
s and aw

l are the lattice constants of the substrate (s) and the layer (l)material, and C13 and C33 are
the sti�ness constants for the wurtzite structure. The bases for the Hamiltonian are

|

|

u1
⟩

= − 1
√

2
|

|

|

(X + iY) ↑
⟩

,

|

|

u2
⟩

= 1
√

2
|

|

|

(X − iY) ↑
⟩

,

|

|

|

u3
⟩

= |

|

|

Z ↑
⟩

,

|

|

u4
⟩

= 1
√

2
|

|

|

(X − iY) ↓
⟩

,

|

|

|

u5
⟩

= − 1
√

2
|

|

|

(X + iY) ↓
⟩

,

|

|

|

u6
⟩

= |

|

|

Z ↓
⟩

.

(11.18)

11.2.2.2 Block-Diagonalized 3 × 3 Hamiltonian

When we de�ne the angle φ by

kx + ikx = k
||

eiφ, (11.19)
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we can write

K = Kte2iφ, H = Hteiφ, Kt =
(

ℏ2

2m0

)

A5k2
||

, Ht =
(

ℏ2

2m0

)

A6k
||

kz. (11.20)

Then, the 6× 6 Hamiltonian can be block-diagonalized into two 3× 3 Hamiltonians following a similar
procedure to that of the zinc-blende structure by using the transformation matrix U [4,6,7]

H′ = UHU+ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F Kt −iHt 0 0 0
Kt G Δ − iHt 0 0 0
iHt Δ + iHt λ 0 0 0
0 0 0 F Kt iHt
0 0 0 Kt G Δ + iHt
0 0 0 −iHt Δ − iHt λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11.21)

and

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α 0 0 α∗ 0 0
0 β∗ 0 0 β 0
0 0 β 0 0 β∗
α 0 0 −α∗ 0 0
0 β∗ 0 0 −β 0
0 0 −β 0 0 β∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11.22)

where

α = 1
√

2
ei
(

3
4 π+

3
2φ

)

, β = 1
√

2
e

i
( 1

4 π+
1
2 φ

)

. (11.23)

Also, a new basis set is given by using the basis transformation, |i >=
∑

Tij|uj >, where T = U∗.
That is,

|1⟩ = − 1
√

2
|

|

|

(X + iY) ↑
⟩ 1
√

2
ei
(

3
4 π+

3
2φ

)

+ 1
√

2
|

|

|

(X − iY) ↓
⟩ 1
√

2
e−i

(

3
4 π+

3
2φ

)

|2⟩ = 1
√

2
|

|

|

(X − iY) ↑
⟩ 1
√

2
e
−i
( 1

4 π+
1
2 φ

)

− 1
√

2
|

|

|

(X + iY) ↓
⟩ 1
√

2
e

i
( 1

4 π+
1
2 φ

)

|3⟩ = |

|

|

Z ↑
⟩ 1
√

2
e

i
( 1

4 π+
1
2 φ

)

+ |

|

|

Z ↓
⟩

ei 1
2φ 1

√

2
e−

i
( 1

4 π+
1
2 φ

)

|4⟩ = − 1
√

2
|

|

|

(X + iY) ↑
⟩ 1
√

2
ei
(

3
4 π+

3
2φ

)

− 1
√

2
|

|

|

(X − iY) ↓
⟩ 1
√

2
e−i

(

3
4 π+

3
2φ

)

|5⟩ = 1
√

2
|

|

|

(X − iY) ↑
⟩ 1
√

2
e
−i
( 1

4 π+
1
2 φ

)

+ 1
√

2
|

|

|

(X + iY) ↓
⟩ 1
√

2
e

i
( 1

4 π+
1
2 φ

)

|

|

6
⟩

= −||
|

Z ↑
⟩ 1
√

2
e

i
( 1

4 π+
1
2 φ

)

+ |

|

|

Z ↓
⟩

ei 1
2φ 1

√

2
e−

i
( 1

4 π+
1
2 φ

)

.

(11.24)
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11.3 Band Structures of Strained-Layer QW

11.3.1 Zinc-Blende Semiconductor

Here, we consider a strained-layer QW structure, assuming that the growth direction is along the z-axis
and the strain caused by lattice mismatch is entirely elastically accommodated in the QW.

11.3.1.1 Conduction Band

For the unstrained QW, the e�ective mass theory for the conduction band is obtained from the dispersion
relation

E(k) = ℏ2k2

2me
, (11.25)

where the e�ective mass of the electron in the conduction band is me = mb in the barrier region and
me = mw in the QW. The potential for the unstrained QW is given by

Vc(z) =

⎧

⎪

⎨

⎪

⎩

ΔEc |z| ≻ Lw
2

0 |z| ≤ Lw
2

, (11.26)

where ΔEc is the conduction-band o�set. The energies are all measured from the conduction-band edge
of unstrained QW. For a strained QW, the e�ective mass equation for a single band is

[

− ℏ2

2mc
e

∂2

∂z2 +
ℏ2

2mc
e
∇2

t + V(z) + ac(εxx + εyy + εzz)
]

ψ( r⃗ ) = Eψ( r⃗ ), (11.27)

where mc
e is the e�ective mass in the conduction band for zinc-blende structure and ac is the conduction-

band deformation potential. In general, the wave function ψ( r⃗ ) can be written

ψcη( r⃗ ) = ei(kxx+kyy)
√

A
f (z)|S, η > (11.28)

and

[

− ℏ2

2mc
e

∂2

∂z2 + V(z) + ac(εxx + εyy + εzz)
]

f (z) =

(

E(kt) −
ℏ2k2

t
2mc

e

)

f (z), (11.29)

where η is the electron spin and |S > is the basis function near the zone center in the conduction band.
The eigenvalues and eigenfunctions in the conduction band are obtained from the earlier equation. When
we ignore the kt dependence of f (z), Equation 11.29 is solved at kt = 0 for the nth sub-band energy En(0)
and we have En(kt) = En(0) + ℏ2k2

t ∕2m∗.

11.3.1.2 Valence Band

For the unstrained QW, a QW potential is given by

Vh(z) =

⎧

⎪

⎨

⎪

⎩

−ΔEv |z| ≻ Lw
2

0 |z| ≤ Lw
2

, (11.30)
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where ΔEv is the valence-band o�set. The eigenvalues and eigenfunctions for the strained QW can be
obtained by solving the e�ective mass equation for a QW potential Vh(z) given earlier:

[

HLK
(

kx, ky, kz = −i ∂
∂z

)

+ Vh(z)
]

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F1
F2
F3
F4
F5
F6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= E

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F1
F2
F3
F4
F5
F6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (11.31)

where HLK is the 6 × 6 Hamiltonian given by Equation 11.1 and the envelope functions F1, F2, F3, F4, F5,
and F6 can be written in the vector form

F⃗k⃗( r⃗ ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F1
F2
F3
F4
F5
F6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g3∕2,3∕2(kx, ky, z)
g3∕2,1∕2(kx, ky, z)

g3∕2,−1∕2(kx, ky, z)
g3∕2,03∕2(kx, ky, z)
g1∕2,1∕2(kx, ky, z)

g1∕2,−1∕2(kx, ky, z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ei(kxx+kyy)
√

A
. (11.32)

The wave function in component form is expressed as

ψk⃗(r⃗) = F1
|

|

|

|

3
2
, 3

2

⟩

+ F2
|

|

|

|

3
2
, 1

2

⟩

+ F3
|

|

|

|

3
2
,−1

2

⟩

+ F4
|

|

|

|

3
2
,−3

2

⟩

+ F5
|

|

|

|

1
2
, 1

2

⟩

+ F6
|

|

|

|

1
2
,−1

2

⟩

= ei(kxx+kyy)
√

A

∑

υ
g3∕2,υ(kx, ky, z)

|

|

|

|

3
2
, υ
⟩

,
(11.33)

where υ = 3
2 ,

1
2 ,−

1
2 , − 3

2 ,
1
2 , and − 1

2 . Denoting k⃗t = kxx̂ + kyŷ, we can write

[

HLK
(

k⃗t , kz = −i ∂
∂z

)

+ Vh(z)
]

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g3∕2,3∕2(k⃗t , z)
g3∕2,1∕2(k⃗t , z)

g3∕2,−1∕2(k⃗t , z)
g3∕2,03∕2(k⃗t , z)
g1∕2,1∕2(k⃗t , z)

g1∕2,−1∕2(k⃗t , z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= E(k⃗t)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g3∕2,3∕2(k⃗t , z)
g3∕2,1∕2(k⃗t , z)

g3∕2,−1∕2(k⃗t , z)
g3∕2,03∕2(k⃗t , z)
g1∕2,1∕2(k⃗t , z)

g1∕2,−1∕2(k⃗t , z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (11.34)

However, it is convenient to solve eigenvalues and eigenfunctions with a block-diagonalized 3×3 Hamil-
tonian for a numerical calculation. Let us look at the upper 3 × 3 Hamiltonian in Equation 11.9. The wave
functions can be written as

ψU (k⃗t , r⃗) = eik⃗t ⋅r⃗t
√

A

[

g(1)(kz, z) |1⟩ + g(2)(kz, z) |2⟩ + g(3)(kz, z) |3⟩
]

. (11.35)
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The wave function satis�es the upper Hamiltonian equation

−

⎛

⎜

⎜

⎜

⎜

⎜

⎝

P + Q −Rρ − iSρ −
√

2Rρ + i
√

1
2 Sρ

−Rρ + iSρ P − Q
√

2Q + i
√

3
2 Sρ

−
√

2Rρ − i
√

1
2 Sρ

√

2Q − i
√

3
2 Sρ P + Δ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎢

⎣

g(1)(k⃗t , z)

g(2)(k⃗t , z)

g(3)(k⃗t , z)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎛

⎜

⎜

⎜

⎝

Vh(z) 0 0ρ
0 Vh(z) 0
0 0 Vh(z)

⎞

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎣

g(1)(k⃗t , z)

g(2)(k⃗t , z)

g(3)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

= E(k⃗t)

⎡

⎢

⎢

⎢

⎣

g(1)(k⃗t , z)

g(2)(k⃗t , z)

g(3)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

. (11.36)

A similar procedure holds for the lower 3 × 3 Hamiltonian. That is, the wave function is given by

ψL(k⃗t , r⃗) = eik⃗t ⋅r⃗t
√

A

[

g(4)(kz, z) |⟩ + g(5)(kz, z) |⟩ + g(6)(kz, z) |⟩
]

, (11.37)

which satis�es the following 3 × 3 Hamiltonian equation

−

⎛

⎜

⎜

⎜

⎜

⎜

⎝

P + Q −Rρ + iSρ −
√

2Rρ − i
√

1
2 Sρ

−Rρ − iSρ P − Q
√

2Q − i
√

3
2 Sρ

−
√

2Rρ + i
√

1
2 Sρ

√

2Q + i
√

3
2 Sρ P + Δ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎢

⎣

g(4)(k⃗t , z)

g(5)(k⃗t , z)

g(6)(k⃗t , z)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎛

⎜

⎜

⎜

⎝

Vh(z) 0 0ρ
0 Vh(z) 0
0 0 Vh(z)

⎞

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎣

g(1)(k⃗t , z)

g(2)(k⃗t , z)

g(3)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

= E(k⃗t)

⎡

⎢

⎢

⎢

⎣

g(4)(k⃗t , z)

g(5)(k⃗t , z)

g(6)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

. (11.38)

11.3.2 Wurtzite Semiconductor

We consider nitride-based semiconductors as an example of wurtzite materials. We assume that a strained-
layer semiconductor is pseudomorphically grown along the (0001) direction (c-axis) on a (0001)-oriented
substrate [16]. The wurtzite structure di�ers from the zinc-blende structure in several aspects. First, in
the (0001) wurtzite GaN-based QW structures, there exists a large internal �eld due to the strain-induced
piezoelectric (PZ) and spontaneous (SP) polarizations [17–21]. Second, there are energy splittings in the
valence band such as a crystal �eld splitting and the splitting due to spin–orbit interaction [6].

11.3.2.1 Internal Field

For binary AB compounds such as a GaN wurtzite structure, the sequence of the atomic layers of the
constituents A and B is reversed along the [0001] and [0001̄] directions. De�ning the +z direction with a
vector pointing from a Ga atom to the nearest neighbor N atom, the Ga face means that Ga is on the top
position of the {0001} bilayer, corresponding to the [0001] polarity. The induced piezoelectric polarization
is given by [20]

PPZ
z = e31(εxx + εyy) + e33εzz = 2

(

e31 −
C13
C33

e33

)

εxx, (11.39)
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where eij are piezoelectric constants. In the case of AlGaN system, for example, the piezoelectric polariza-

tion is negative for tensile strain and positive for compressive strain because 2
(

e31 −
C13
C33

e33

)

< 0 for the
whole range of Al compositions. Also, there exists a spontaneous polarization along the c-axis. That is, the
spontaneous polarization for GaN (or AlN) has been found to be negative, meaning that the polarization
for Ga-face (or Al-face) is pointing toward the substrate. As a result, in the AlGaN system, the alignment of
the piezoelectric polarization and the spontaneous polarization is parallel in the case of tensile strain and
antiparallel in the case of compressive strain [18]. In the case of multiple QW (MQW) structure, the internal
�eld Fz is determined from the periodic boundary condition and the di�erence between the sum of spon-
taneous and piezoelectric polarizations of the well and barrier layers. The continuity of the displacement
vector (Dz) normal to the surface gives

Dz = εwFw + Pw = εbFb + Pb, (11.40)

where the subscripts w and b mean the well region and the barrier region, respectively, Pw = PPZ
w + PSP

w ,
and Pb = PPZ

b + PSP
b . We consider the periodic boundary condition that the net voltage drop over one

period is zero. That is,

FwLw + FbLb = 0, (11.41)

where Lw and Lb are the well width and the barrier width, respectively. Then, we �nd the electric �elds in
the well and the barrier:

Fw =
Lb

εbLw + εwLb
(Pb − Pw)

Fb =
−Lw

εbLw + εwLb
(Pb − Pw). (11.42)

Hence, the self-consistent solution, which solves the Schrödinger equation and Poisson equation simulta-
neously, is necessary for the wurtzite QWs.

11.3.2.2 Energy Splitting

At the zone center (kx = ky = kz = 0), we can obtain the following doubly degenerate band-edge energies

E1 = Δ1 + Δ2

E2 =
Δ1 − Δ2

2
+

√

(

Δ1 − Δ2
2

)2
+ 2Δ2

3

E3 =
Δ1 − Δ2

2
−

√

(

Δ1 − Δ2
2

)2
+ 2Δ2

3. (11.43)

Without the spin–orbit interaction, Δ2 = Δ3 = 0, we have the top two degenerate bands and the lower
band as the reference level Ev. That is,

E1 = E2 = Ev + Δ1 = Δ1

E3 = Ev = 0. (11.44)
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Here, we set the reference energy Ev to 0. Then, with the spin–orbit interaction, the top valence-band
energy is E1 = Δ1 + Δ2, and the conduction-band edge is given by adding the bandgap energy Eg to Ev:

Ec = Eg + Δ1 + Δ2. (11.45)

11.3.2.3 Self-Consistent Calculations with the Screening of Eigenvalues and
Eigenfunctions in the Conduction Band and the Valence Band

The total potential pro�les for the electrons and the holes are

Vc(z) =

⎧

⎪

⎨

⎪

⎩

Ec + ΔEc + |e| Fbz − |e|φ(z) |z| ≻ Lw
2

Ec + |e| Fwz − |e|φ(z) |z| ≤ Lw
2

(11.46)

and

Vh(z) =

⎧

⎪

⎨

⎪

⎩

−ΔEv + |e| Fbz − |e|φ(z) |z| ≻ Lw
2

|e| Fwz − |e|φ(z) |z| ≤ Lw
2

. (11.47)

Here, φ(z) is the screening potential induced by the charged carriers and satis�es the Poisson equation

d
dz

(

ε(z) d
dz

)

φ(z) = −|e|[p(z) − n(z)], (11.48)

where ε(z) is the dielectric constant and we assume that there is no doping in the well and the barrier. The
electron and the hole concentrations, n(z) and p(z), are related to the wave functions of the nth conduction
sub-band and the mth valence sub-band by

n(z) =
kTme
πℏ2

∑

n
|fn(z)|2 ln

(

1 + e[Efc−Ecn]∕kT
)

(11.49)

and

p(z) =
∑

σ=U,L

∑

m ∫ dk
||

k
||

2π
∑

ν
|gσ(ν)mk

||

(z)|2 1
1 + e[Efv−Evm(k||)]∕kT

, (11.50)

where n and m are the quantized sub-band indices for the conduction and the valence bands, Efc and Efv are
the quasi-Fermi levels of the electrons and the holes, respectively, and Ecn and fn(z) are the quantized energy
level of the electrons at a band-edge and eigenfunctions, respectively. The eigenvalues and eigenfunctions
in the conduction band are obtained by solving

[

− ℏ2

2mw
ez

∂2

∂z2 + Vc(z) + aw
ct(εxx + εyy) + aw

czεzz

]

f (z) =

(

E(k
||

) −
ℏ2k2

||

2mw
et

)

f (z), (11.51)

where aw
ct and aw

czare the conduction-band deformation potentials along the c-axis and perpendicular to
the c axis, respectively. Usually, it is convenient to obtain eigenvalues in the conduction band with Ec = 0
in Equation 11.46. The term (Eg + Δ1 + Δ2) can be added when we calculate optical properties such as
spontaneous emission coe�cient and optical gain.
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Also, Evm(k||) is the energy for the mth sub-band in the valence band, σ denotes the upper (U) and
the lower (L) blocks of the Hamiltonian, k

||

is the in-plane wave vector, ν refers to the new bases for the
Hamiltonian, and gσ(ν)mk

||

(z) is the envelope function in the valence band.
The eigenvalues and eigenfunctions for the upper Hamiltonian equation of the valence band are

obtained by solving

−
⎛

⎜

⎜

⎝

F Kt −iHt
Kt G Δ − iHt
iHt Δ + iHt P + Δ

⎞

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎣

g(1)(k⃗t , z)
g(2)(k⃗t , z)
g(3)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

+
⎛

⎜

⎜

⎝

Vh(z) 0 0ρ
0 Vh(z) 0
0 0 Vh(z)

⎞

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎣

g(1)(k⃗t , z)
g(2)(k⃗t , z)
g(3)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

= E(k⃗t)

⎡

⎢

⎢

⎢

⎣

g(1)(k⃗t , z)
g(2)(k⃗t , z)
g(3)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

. (11.52)

A similar procedure holds for the lower 3×3 Hamiltonian, which satis�es the following 3×3 Hamiltonian
equation

−
⎛

⎜

⎜

⎝

F Kt iHt
Kt G Δ + iHt
−iHt Δ − iHt P + Δ

⎞

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎣

g(4)(k⃗t , z)
g(5)(k⃗t , z)
g(6)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

+
⎛

⎜

⎜

⎝

Vh(z) 0 0ρ
0 Vh(z) 0
0 0 Vh(z)

⎞

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎣

g(1)(k⃗t , z)
g(2)(k⃗t , z)
g(3)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

= E(k⃗t)

⎡

⎢

⎢

⎢

⎣

g(4)(k⃗t , z)
g(5)(k⃗t , z)
g(6)(k⃗t , z)

⎤

⎥

⎥

⎥

⎦

. (11.53)

The potential φ(z) is obtained by integration

φ(z) = −

z

∫
−L∕2

E(z′)dz′, (11.54)

where

E(z) =

z

∫
−L∕2

1
ε(z)

ρ(z′)dz′. (11.55)

The procedures for the self-consistent calculations consist of the following steps:

1. Start with the potential pro�les Vc and Vh with φ(0)(z) = 0 in Equations 11.46 and 11.47.
2. Solve the Schrödinger equation (for electrons) and the block-diagonalized Hamiltonian (for holes)

with the potential pro�les φ(n−1)(z) in step (1) to obtain band structures and wave functions.
3. For a given carrier density, obtain the Fermi energies from Equations 11.49 and 11.50 by using the

band structures and the charge distribution by using the wave functions.
4. Solve Poisson’s equation to �nd φ(n)(z).

Check if φ(n)(z) converges to φ(n−1)(z). If not, set φ(n)(z) = wφ(n)(z)+(1−w)φ(n−1)(z), n = n+1;
then, return to step (2). If yes, the band structures and the wave functions obtained with φ(n−1)(z)
are solutions. An adjustable parameter w (0 < w < 1) is typically set to be 0.5 at low carrier densities.
With increasing carrier densities, a smaller value of w is needed for rapid convergence.
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11.4 Optical Matrix Elements

11.4.1 Zinc-Blende Structure

The optical momentum matrix elements are de�ned as

|

⌢ε ⋅Mησ
lm (k||)|

2 = |<ψηl |
⌢ε ⋅ p⃗|ψvσ

m >|2, (11.56)

which represents the interband transition probability between electrons and hole. Using the expressions
given in Equations 11.28 and 11.35 and taking the φ integration of the momentum matrix elements, we
obtain the following momentum matrix elements for the upper Hamiltonian.

Transverse electric (TE) polarization (⌢ε = x̂ or ⌢ε = ŷ):

|MTE|
2 = |<ψηl |px|ψvσ

m >|2 = |<ψηl |py|ψvσ
m >|2

= δk⃗′t ,k⃗t
< fn|g(1) > < S ↑ |px|1 > + < fn|g(2) >< S ↑ |px|2 > + < fn|g(3) >< S ↑ |px|3>|2

= δk⃗′t ,k⃗t
|< S ↑ |px|X >|2|>fn|g(1) >

(

−1
2

e−i 3
2φ
)

+ < fn|g(2) >

(

− 1
2
√

3
ei 1

2φ
)

+ < fn|g(3) >

(

− 1
√

6
ei 1

2φ
)

|

2

= δk⃗′t k⃗t
|< S ↑ |px|X >|2 1

12

×

{

3 < fn|g(1) >2 +[< fn|g(2) > +
√

2 < fn|g(3) >]2

+2
√

3 cos 2ϕ < fn|g(1) >< fn|g(2) > +2
√

6 cos 2ϕ < fn|g(1) >< fn|g(3)

}

. (11.57)

When we calculate the absorption coe�cient, the summation over kt is given by

1
V
∑

kt

= 1
Lz

∞

∫
0

kt
2π

dkt

2π

∫
0

dφ
2π

. (11.58)

Thus, the term containing the cos 2φ factor does not contribute to the absorption coe�cient because
the integration over φ vanishes. We obtain

|MTE|
2 = δk⃗′t ,k⃗t

|< S ↑ |px|X >|2 1
12

{

3 < fn|g(1) >2 +[< fn|g(2) > +
√

2 < fn|g(3) >]2
}

. (11.59)

Transverse magnetic (TM) polarization (⌢ε = ẑ):

|MTM|

2 = |<ψηl |pz|ψvσ
m >|2

= δk⃗′t ,k⃗t
|< fn|g(1) >< S ↑ |pz|1 > + < fn|g(2) >< S ↑ |pz|2 > + < fn|g(3) >< S ↑ |pz|3>|2

= δk⃗′t ,k⃗t
|< S ↑ |pz|Z >|2|< fn|g(2) > i 1

√

3
e−i 1

2φ− < fn|g(3) > i 1
√

6
e−i 1

2φ
|

2

= δk⃗′t ,k⃗t
|< S ↑ |pz|Z >|2 1

3

|

|

|

|

|

|

< fn|g(2) > − < fn|g(3) >
1
√

2

|

|

|

|

|

|

.

(11.60)
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Here,

|< S ↑ |px|X >|2 = |< S ↑ |pz|Z >|2 =
mo
2

(

mo
me

− 1
) (Eg + Δ)Eg

(Eg + 2Δ∕3)
. (11.61)

The momentum matrix elements for the lower Hamiltonian can be also obtained by a similar procedure:

|MTE|
2 = δk⃗′t ,k⃗t

|< S ↓ |px|X >|2 1
12

{

3 < fn|g(6) >2 + [< fn|g(4) > +
√

2 < fn|g(5) >]2
}

(11.62)

and

|MTM|

2 = δk⃗′t ,k⃗t
|< S ↓ |pz|Z >|2 1

3

|

|

|

|

|

|

< fn|g(5) > − < fn|g(4) >
1
√

2

|

|

|

|

|

|

|

2. (11.63)

11.4.2 Wurtzite Structure

Similarly to the zinc-blende case, we can obtain the optical momentum matrix elements as follows.
TE polarization (⌢ε = x̂ or ⌢ε = ŷ):

|MTE|
2 = |<ψηl |px|ψvσ

m >|2 = |<ψηl |py|ψvσ
m >|2

= δk⃗′t ,k⃗t
|< fn|g(1) >< S ↑ |px|1 > + < fn|g(2) >< S ↑ |px|2 > + < fn|g(3) >< S ↑ |px|3>|2

= δk⃗′t ,k⃗t
|< S ↑ |px|X >|2

|

|

|

|

|

−1
2
< fn|g(1) > ei

(

3
4 π+

3
2φ

)

+ < fn|g(2) >
1
2

e
−i
( 1

4 π+
1
2 φ

)

|

|

|

|

|

2

= δk⃗′t ,k⃗t
|< S ↑ |px|X >|2 1

4
|

|

|

< fn|g(1) >2 + < fn|g(2) >2 +2 cosφ < fn|g(1) >< fn|g(2) >
|

|

|

.

(11.64)

Finally,

|MTE|
2 = |δk⃗′t ,k⃗t

|< S ↑ |px|X >|2 1
4
{

< fn|g(1) >2 + < fn|g(2) >2}. (11.65)

TM polarization (⌢ε = ẑ):

|MTM|

2 = |<ψηl |pz|ψvσ
m >|2

= δk⃗′t ,k⃗t
|< fn|g(1) >< S ↑ |pz|1 > + < fn|g(2) >< S ↑ |pz|2 > + < fn|g(3) >< S ↑ |pz|3>|2

= δk⃗′t ,k⃗t
< S ↑ |pz|Z >2

|< fn|g(3) >
1
√

2
e

i
( 1

4 π+
1
2 φ

)

|

2

= δk⃗′t ,k⃗t
< S ↑ |pz|Z >2 1

2
< fn|g(3) >2 . (11.66)

The momentum matrix elements for the lower Hamiltonian also can be obtained by a similar procedure:

|MTE|
2 = |δk⃗′t ,k⃗t

|< S ↓ |px|X >|2 1
4
{

< fn|g(4) >2 + < fn|g(5) >2} (11.67)

and

|MTM|

2 = δk⃗′t ,k⃗t
< S ↓ |pz|Z >2 1

2
< fn|g(6) >2 . (11.68)
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11.5 Band Structures of Bulk Semiconductors with an Arbitrary
Crystal Orientation

11.5.1 Zinc-Blende Structure

The Hamiltonian for an arbitrary crystal orientation can be obtained using a rotation matrix

U =
⎛

⎜

⎜

⎝

cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ

⎞

⎟

⎟

⎠

, (11.69)

The rotation with the Euler angles θ and φ transforms physical quantities from the
(

x, y, z
)

coordinates
to the (x′, y′, z′) coordinates. Figure 11.1 shows con�guration of the [lmn]-oriented coordinate system
to the conventional [001]-oriented coordinate system. The relation between the coordinate systems for
vectors and tensors is expressed as

kα = Uiαk′i ,

εαβ = UiαUjβε′ij,
(11.70)

where the summation over repeated indices is assumed. Our object is to obtain Pk′ , Qk′ , Rk′ , and Sk′ in
the (x′, y′, z′) coordinates. First we obtain the 4 × 4 Hamiltonian for general crystal orientation by using
invariant method and then extending these results to obtain the 6 × 6 Hamiltonian. Here, for simplicity,
we consider the case of the QWs with (11n) orientations with θ = arctan(

√

2∕n) and φ = π∕4. For exam-
ple, (110) means θ = π∕2 and φ = π∕4. The 4 × 4 Hamiltonian to describe the interaction between
the heavy-hole and light-hole bands along with the Bir–Pikus Hamiltonian for strain can be formally
written as

Hv
t = Hv

0(
⇀

k) +Hv
s , (11.71)

with Hv
0(

⇀

k) representing the valence-band Hamiltonian and Hv
s the valence-band strain or Bir–Pikus

Hamiltonian. The Luttinger formulation of the most general Hamiltonian for the (001) crystal orientation

FIGURE 11.1 Con�guration of the [lmn]-oriented coordinate system to the conventional [001]-oriented coordinate
system.
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is given by [22,23]

Hv
0 =

ℏ2

2mo
(γ1k2I4 − 2γ2[( J2

x − 1∕3J2)k2
x + ( J

2
y − 1∕3J2)k2

y + ( J
2
z − 1∕3J2)k2

z]

− 4γ3[{JxJy}{kxky} + {JyJz}{kykz} + {JzJx}{kzkx}]),

Hv
s = −av(εxx + εyy + εzz)I4 + b[( J2

x − 1∕3J2)εxx + ( J2
y − 1∕3J2)εyy + ( J2

z − 1∕3J2)εzz]

+ 2d∕
√

3[{JxJy}{εxx} + {JyJz}{εyy} + {JzJx}{εzz}]),

(11.72)

where the Ji’s are the angular momentum matrices for a state with spin 3/2; I4 is a 4×4 identity matrix; and
{kxky} = (kxky + kykx)∕2. The angular momentum matrices are any three matrices, (JxJyJz), which satisfy
the rules of commutation for angular momentum. These matrices given by Luttinger are as follows:

Jx =

⎛

⎜

⎜

⎜

⎜

⎝

0 0
√

3∕2 0
0 0 1

√

3∕2
√

3∕2 1 0 0
0

√

3∕2 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, Jy =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 −i
√

3∕2 0
0 0 i −i

√

3∕2
i
√

3∕2 −i 0 0
0 i

√

3∕2 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

Jz =

⎛

⎜

⎜

⎜

⎝

3∕2 0 0 0
0 −1∕2 0 0
0 0 1∕2 0
0 0 0 −3∕2

⎞

⎟

⎟

⎟

⎠

, I4 =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

. (11.73)

We can obtain the (001)-oriented Hamiltonian by substituting Equation 11.73 into 11.72:

Hv
0 =

⎛

⎜

⎜

⎜

⎝

P + Q R −S 0
R∗ P − Q 0 S∗
−S∗ 0 P − Q R
0 S∗ R∗ P + Q

⎞

⎟

⎟

⎟

⎠

. (11.74)

This is exactly the same from as the upper 4×4 Hamiltonian given in Equation 11.1. However, note that,
in this case, the ordering of the basis functions for the choice of the Ji’s is ||

|

3
2 ,

3
2

⟩

, ||
|

3
2 ,−

1
2

⟩

, ||
|

3
2 ,

1
2

⟩

, ||
|

3
2 ,−

3
2

⟩

.

Next, we consider the case of QWs with (11n) orientations with θ = arctan(
√

2∕n) and φ = π∕4. Then,
from Equations 11.69 and 11.70,

Pk′ =
(

ℏ2

2m0

)

γ1(k2
x′ + k2

y′ + k2
z′ ),

Qk′ =
(

ℏ2

2m0

){[

(n2 − 4)(n2 − 1)
(n2 + 2)2

γ2 +
9n2

(n2 + 2)2
γ3

]

k2
x′ +

[

(n2 + 2)(n2 − 1)
(n2 + 2)2

γ2 +
3

(n2 + 2)
γ3

]

k2
y′

+
[

−2
(n2 − 1)2

(n2 + 2)2
γ2 −

6 + 12n2

(n2 + 2)
γ3

]

k2
z′

}

,

Rk′ =
(

ℏ2

2m0

){

√

3
[

(n2 − 4)
(n2 + 2)2

γ2 −
5n2 + n4

(n2 + 2)2
γ3

]

k2
x′ +

√

3
[

1
(n2 + 2)

γ2 +
1 + n2

(n2 + 2)2
γ3

]

k2
y′
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+ 2
√

3
[

−
(n2 − 1)
(n2 + 2)2

(γ2 − γ3)
]

k2
z′ + i2

√

3
[

(n2γ2 + 2γ3)
(n2 + 2)

]

kx′ky′

+ 2
√

6
[

i n
(n2 + 2)

(γ2 − γ3)
]

ky′kz′ + 6
√

6
[

n
(n2 + 2)2

(γ2 − γ3)
]

kx′kz′

}

,

−Sk′ =
(

ℏ2

2m0

){[

√

6
n(4 − n2)
(n2 + 2)2

(γ2 − γ3)
]

k2
x′ +

[

√

6 n
(n2 + 2)

(γ3 − γ2)
]

k2
y′

+
[

2
√

6
n(n2 − 1)
(n2 + 2)2

(γ2 − γ3)
]

k2
z′ + i2

√

6
[

n
(n2 + 2)

(γ2 − γ3)
]

kx′ky′

+ i2
√

3
[

2γ2 + n2γ3
(n2 + 2)

]

ky′kz′ +
√

3
[

− 12n2

(n2 + 2)2
γ2 − 2

(4 − 2n2 + n4)
(n2 + 2)2

γ3

]

kx′kz′

}

,

Pε′ = −av1(εx′x′ + εy′y′ + εz′z′ ),

Qε′ = −
b(n2 − 1)(−Γ + 3

√

2εx′z′n + Γn2) + d
√

3[Γ +
√

2εx′z′n + n2(2Γ −
√

2εx′z′n)]
(n2 + 2)2

,

Rε′ = −
b
√

3(−Γ + 3
√

2εx′z′n + Γn2) + d(Γ − 3
√

2εx′z′n − Γn2)]
(n2 + 2)2

,

−Sε′ = −
b
√

3n(
√

2Γ − 6εx′z′n −
√

2Γn2) + d[
√

2n(n2 − 1)Γ + εx′z′ (−4 + 2n2 − n4)]
(n2 + 2)2

, (11.75)

where Γ = ε
||

−εz′z′ , ε|| = (as−ae)∕ae, and as and ae are lattice constants for the substrate and the epilayer
materials, respectively. The biaxial strain components for a general crystal orientation are determined from
the condition that the layer is grown pseudomorphically and these strain coe�cients should minimize the
strain energy of the layer simultaneously [24,25]. That is,

εx′x′ = εy′y′ = ε||, εx′y′ = εy′z′ = 0, εz′z′ = −2
K3

√

2K2

ε
||

, εx′z′ = −2
K1

√

2K2

ε
||

, (11.76)

where

K1 = (C11 + 2C12)(−C11 + C12 + 2C44)n(n2 − 1),

K2 = 2C11C44 + 2C12C44 + 2C2
44 + (C

2
11 + C11C12 − 2C2

12 + 2C11C44 − 4C12C44 + C11C44n2)n2,

K2 = −2
[

C11C44 + 3C12C44 − 2C2
44 + (C

2
11 + C11C12 − 2C2

12 − C11C44 + C12C44n2)n2] , (11.77)

and Cij are the sti�ness constants in the strained epilayers. Then, the 4 × 4 Hamiltonian of (11n)-oriented
zinc-blende crystal is given by

H′
4×4 =

⎛

⎜

⎜

⎜

⎝

P′ + Q′ R′ −S′ 0
R′∗ P′ − Q′ 0 S′∗
−S′∗ 0 P′ − Q′ R′

0 S′∗ R′∗ P′ + Q′

⎞

⎟

⎟

⎟

⎠

, (11.78)

where

P′ = Pk′ + Pε′ , Q′ = Qk′ + Qε′ , R′ = Rk′ + Rε′ , S′ = Sk′ + Sε′ . (11.79)
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O�-diagonal strains in zinc-blende structure semiconductors induce a polarization given by [25]

PS
i = 2e14εjk, (11.80)

where PS
i is the induced polarization, e14 is the piezoelectric constant, and i, j, k = x, y, z. Here, i, j, k are

in cyclic order. A strained layer with a [001] growth direction has only diagonal strains. Thus, the (001)-
oriented layer will not have strain-induced piezoelectric polarization �elds. However, strained layers with
any other growth direction will have piezoelectric polarization �elds. The piezoelectric polarization along
the growth direction is important because the electric �eld in the QW originates from polarization charges
at heterojunction interfaces. The electric �eld induced perpendicular to the growth direction due to the
strain can be calculated as

E⊥ = −
P⃗S ⋅ û
ε

, (11.81)

where the unit vector û along the growth direction is given by û =
√

1∕(n2 + 2)(î + ĵ + nk̂). For an [11n]
growth direction,

E⊥ = −
2e14

√

n2 + 2
(n2εxy + εyz + εzx), (11.82)

where

εxy =
1

(n2 + 2)

(

−εx′x′ +
√

2nεx′z′ + 2nεz′z′
)

,

εyz =
1

2(n2 + 2)

(

−2nεx′x′ −
√

2(2 − n2)εx′z′ + 2nεz′z′
)

εzx = εyz. (11.83)

It is straightforward to obtain the 6 × 6 Hamiltonian of (11n)-oriented zinc-blende crystal using com-
ponents P′,Q′,R′, and S′ in the (x′, y′, z′) coordinates. That is, the 6×6 Hamiltonian for the valence-band
structure in the (x′, y′, z′) coordinates can be written as

H′
6×6 = −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

P′ + Q′ −S′ R′ 0 −S′∕
√

2
√

2R′

−S′† P′ − Q′ 0 R′ −
√

2Q′
√

3∕2S′

R′† 0 P′ − Q′ 0
√

3∕2S′†
√

2Q′

0 R′+ S′† P′ + Q′ −
√

2R′† −S′†∕
√

2
−S′†∕

√

2 0
√

3∕2S′ −
√

2R′ P′ + Δ 0
√

2R′†
√

3∕2S′†
√

2Q′ −S′∕
√

2 0 P′ + Δ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

|3∕2, 3∕2⟩′

|3∕2, 1∕2⟩′

|3∕2,−1∕2⟩′

|3∕2,−3∕2⟩′

|1∕2, 1∕2⟩′

|1∕2,−1∕2⟩′

.

(11.84)
Here, the basis set in the (x′, y′, z′) coordinates consists of the following basis functions:

|

|

u1
⟩′ = |

|

|

3
2
, 3

2

⟩′
= − 1

√

2
|

|

|

(

X′ + iY′
)

↑′
⟩

,

|

|

u2
⟩′ = |

|

|

3
2
, 1

2

⟩′
= 1

√

6
|

|

|

−
(

X′ − iY′
)

↓′ + 2Z′ ↑′
⟩

,

|

|

|

u3
⟩′
= |

|

|

3
2
,−1

2

⟩′
= 1

√

6
|

|

|

(

X′ − iY′
)

↑′ + 2Z′ ↓′
⟩

,
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|

|

u4
⟩′ = |

|

|

3
2
,−3

2

⟩′
= 1

√

2
|

|

|

(

X′ − iY′
)

↓′
⟩

, (11.85)

|

|

|

u5
⟩′
= |

|

|

1
2
, 1

2

⟩′
= 1

√

3
|

|

|

(

X′ + iY′
)

↓′ +Z′ ↑′
⟩

,

|

|

|

u6
⟩′
= |

|

|

1
2
,−1

2

⟩′
= 1

√

3
|

|

|

(

X′ − iY′
)

↑′ −Z′ ↓′
⟩

.

11.5.2 Wurtzite Structure

Analytical expressions for strain components for general crystal orientation can be obtained from the con-
dition that the layer is grown pseudomorphically and the condition that strain energy density should be
minimal. Figure 11.2 shows (a) con�guration of the coordinate system (x′, y′, z′) in (hkil)-oriented crystals
and (b) a wurtzite primitive cell. The z-axis corresponds to the c-axis [0001] and the growth axis or the
z′-axis is normal to the QW plane (hkil). We de�ne the unit vectors x̂′, ŷ′ and ẑ′ along the ⇀x′−, ⇀y′-, and
⇀z′-axes and they are related to unit vectors x̂, ŷ, and ẑẑ′ along the ⇀x-, ⇀y-, and ⇀z-axes of the original crystal
orientation (0001) by the rotation matrix Equation 11.69. We de�ne the hexagonal primitive translational
vectors as

⇀αi = aix̂,

⇀

βi = −
ai
2

x̂ +

√

3ai
2

ŷ,

⇀γi = ciẑ,

(11.86)

where ai and ci are lattice constants of the hexagonal structure with the subscript i denoting the epilayer
(e) and substrate (s), respectively. When the crystal is strained the primitive translation vectors become

⇀α ′′i = aix̂′′,

⇀β ′′i = −
ai
2

x̂′′ +

√

3ai
2

ŷ′′,

⇀γ ′′i = ciẑ′′,

(11.87)

FIGURE 11.2 (a) Con�guration of the coordinate system (x′, y′, z′) in (hkil)-oriented crystals and (b) a wurtzite
primitive cell.
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with

x̂′′ = (1 + εxx)x̂ + εxyŷ + εxz ẑ,

ŷ′′ = εyxx̂ + (1 + εyy)ŷ + εyz ẑ,

ẑ′′ = εzxx̂ + εzyŷ + (1 + εzz)ẑ.

(11.88)

When a pseudomorphic interface is formed during the epitaxial growth, the translation vectors of each
strained layer must have the same projection onto the growth plane, which is so-called the lattice com-
mensurability constraint. By applying the lattice commensurability constraint on the QW and a�er some
mathematical manipulations, we obtain the following analytical expressions for the strain tensors:

εxx = ε
(0)
xx +

sin θ cosϕ
cos θ

εxz,

εxy =
sin θ sinϕ

cos θ
εxz,

εyy = ε
(0)
xx +

sin θ sin2 ϕ
cos θ cosϕ

εxz,

εyz =
sinϕ
cosϕ

εxz,

εzz = ε
(0)
zz +

cos θ
sin θ cosϕ

εxz,

(11.89)

where ε(0)xx =
as−ae

ae
and ε(0)zz =

cs−ce
ce

. The strain tensor εxz can be evaluated by minimizing the strain energy
density which is given by

W = 1
2

[

C11ε2
xx + C11ε2

yy + C33ε2
12 + 2C12εxxεyy + 2C13(εxxεzz + εyyεzz) + 4C44ε2

zz

]

. (11.90)

By minimizing the strain energy density with respect to εxz , we get

εxz = −
N(θ,ϕ) sin θ cos θ

D(θ,ϕ) cosϕ
ε(0)xx , (11.91)

where

N(θ,ϕ) = sin2 θ

(

C11 + C12 + C13
ε(0)zz

ε(0)xx

)

+ cos2 θ

(

2C13 + C33
ε(0)zz

ε(0)xx

)

, (11.92)

and

D(θ,ϕ) = sin4 θ
(

C11
sin4 ϕ + cos4 ϕ

cos2 ϕ
+ 2C12 sin2 ϕ

)

+ C33
cos4 θ
cos2 ϕ

+ 2
(

C13
cos2 ϕ

+ 2C44

)

sin2 θ cos2 θ.

(11.93)
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Using Equations 11.70 and 11.89, general expressions for the Hamiltonian for the valence-band structure
in (x′, y′, z′) coordinates can be written as

H̃′(⇀k′, ̄̄ε′) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F′ −K′∗ −H′∗ 0 0 0
−K′ G′ H′ 0 0 Δ
−H′ H′∗ λ′ 0 Δ 0

0 0 0 F′ −K′ H′

0 0 Δ −K′∗ G′ −H′∗

0 Δ 0 H′∗ −H′ λ′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11.94)

where

F′ = Δ1 + Δ2 + λ′ + ϑ′,

G′ = Δ1 − Δ2 + λ′ + ϑ′,

λ′ = ℏ2

2m0
A1

(

sin2 θk′2x − 2 sin θ cos θk′xk′z + cos2 θk′2z
)

+ ℏ2

2m0
A2

(

cos2 θk′2x + s cos θ sin θk′xk′z + sin2 θk′2z + k′2y
)

+ D1

(

ε(0)zz −
N(θ,ϕ) cos2 θ
D(θ,ϕ) cos2 ϕ

ε(0)xx

)

+ D2

(

2 −
N(θ,ϕ) sin2 θ
D(θ,ϕ) cos2 ϕ

)

ε(0)xx ,

ϑ′ = ℏ2

2m0
A3

(

sin2 θk′2x − 2 sin θ cos θk′xk′z + cos2 θk′2z
)

+ ℏ2

2m0
A4

(

cos2 θk′2x + s cos θ sin θk′xk′z + sin2 θk′2z + k′2y
)

+ D3

(

ε(0)zz −
N(θ,ϕ) cos2 θ
D(θ,ϕ) cos2 ϕ

ε(0)xx

)

+ D4

(

2 −
N(θ,ϕ) sin2 θ
D(θ,ϕ) cos2 ϕ

)

ε(0)xx ,

K′ = ℏ2

2m0
A5e2iϕ

(

cos2 θk′2x − k′2y + sin2 θk′2z + 2 sin θ cos θk′xk′y + 2i cos θk′xk′y + 2i sin θk′yk′z
)

− D5
N(θ,ϕ)

(

cos2 ϕ − sin2 ϕ − 2i sinϕ cosϕ
)

sin2 θ
D(θ,ϕ) cos2 ϕ

ε(0)xx ,

H′ = ℏ2

2m0
A6eiϕ

{

sin θ cos θ
(

k′2z − k′2x
)

+ cos2 θk′xk′z − sin2 θk′xk′z + i
(

cos θk′yk′z − sin θk′xk′y
)}

− D6eiϕN(θ,ϕ) sin θ cos θ
D(θ,ϕ) cos2 ϕ

ε(0)xx . (11.95)

We note that the old bases {|1⟩, |2⟩, |3⟩, |4⟩, |5⟩, |6⟩} are used in the matrix representation of the Hamil-
tonian in Equation 11.94 and we assumed the hexagonal symmetry in the calculation. The Hamiltonian
for nonpolar wurtzite QW structures can be obtained by substituting θ = π∕2 into the above equations.
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11.5.3 Interband Optical-Matrix Elements for QW with an Arbitrary Crystal
Orientation

11.5.3.1 (11n)-Oriented Zinc-Blende QW

The hole wave function in a QW can be written as

Ψm(z′; k′t) =
eik⃗t ⋅r⃗t
√

A

6
∑

ν=1
g(ν)m (z′; k′t) ||uν⟩ , (11.96)

where g(ν)m (z′; k′t)(ν = 1, 2, 3, 4, 5, and 6) is the wave function for the mth sub-band in (x′, y′, z′) coordi-
nates, |⟩ uν⟩′ is given by Equation 11.85, and g′(i)m follows the normalization rules

6
∑

ν=1 ∫
dz′ |g(ν)m (z′; k′t)|

2 = 1. (11.97)

Since we solve one Schrödinger equation for electrons and 6 × 6 Hamiltonian for holes, we need only
the optical matrix elements for two cases: spin up and spin down. The polarization-dependent interband
momentum-matrix elements are written as follows.

TE polarization (⌢e ′ = cosφ′⌢x ′ + sinφ′⌢y ′):

|

|

|

⌢e ′⋅ M⃗′↑|
|

|

2
=
|

|

|

|

|

|

cosφ′
{

− 1
√

2
Px

⟨

g′(1)m |ϕl

⟩

+ 1
√

6
Px

⟨

g′(3)m |ϕl

⟩

+ 1
√

3
Px

⟨

g′(6)m |ϕl

⟩

}

+ sinφ′
{

−i 1
√

2
Px

⟨

g′(1)m |ϕl

⟩

− i 1
√

6
Px

⟨

g′(3)m |ϕl

⟩

− i 1
√

3
Px

⟨

g′(6)m |ϕl

⟩

}

|

|

|

|

|

|

2

|

|

|

⌢e ′⋅ M⃗′↓|
|

|

2
=
|

|

|

|

|

|

cosφ′
{

− 1
√

6
Px

⟨

g′(2)m |ϕl

⟩

+ 1
√

2
Px

⟨

g′(4)m |ϕl

⟩

+ 1
√

3
Px

⟨

g′(5)m |ϕl

⟩

}

+ sinφ′
{

−i 1
√

6
Px

⟨

g′(2)m |ϕl

⟩

− i 1
√

2
Px

⟨

g′(4)m |ϕl

⟩

+ i 1
√

3
Px

⟨

g′(5)m |ϕl

⟩

}

|

|

|

|

|

|

2

.

(11.98)

TE polarization (⌢e ′ = ⌢z ′):

|

|

|

⌢e ′M⃗′↑|
|

|

2
=
|

|

|

|

|

|

− 2
√

6
Pz

⟨

g′(2)m |ϕl

⟩

+ 1
√

3
Pz

⟨

g′(5)m |ϕl

⟩

|

|

|

|

|

|

2

|

|

|

⌢e ′⋅ M⃗′↓|
|

|

2
=
|

|

|

|

|

|

2
√

6
Px

⟨

g′(3)m |ϕl

⟩

− 1
√

3
Px

⟨

g′(6)m |ϕl

⟩

|

|

|

|

|

|

2

.

(11.99)

11.5.3.2 Wurtzite QW

The optical matrix elements general crystal orientation are given by

|

|

ê′⋅
⇀

M′η
|

|

2 =
|

|

|

|

⟨

Φ′ηl
|

|

|

ê′⋅ ⇀p′ |⟩Ψ′m⟩
|

|

|

|

2
. (11.100)
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The polarization-dependent interband momentum-matrix elements can be written as follows.
TE polarization

(

ê′ = cosφ′x̂ + sinφ′ŷ
)

:

ê′⋅
⇀

M′↑ = − cosφ′ sin θPz

⟨

φ′l
|

|

|

g′(3)m

⟩

− 1
√

2
cosφ′ cos θ cosϕPx

{

(1 + i)
⟨

φ′l
|

|

|

g′(1)m

⟩

− (1 − i)
⟨

φ′l
|

|

|

g′(2)m

⟩}

+ 1
√

2
sinφ′Px

{

sinϕ
(⟨

φ′l
|

|

|

g′(1)m

⟩

−
⟨

φ′l
|

|

|

g′(2)m

⟩)

− i cosϕ
(⟨

φ′l
|

|

|

g′(1)m

⟩

+
⟨

φ′l
|

|

|

g′(2)m

⟩)}

,

ê′⋅
⇀

M′↓ = − cosφ′ sin θPz

⟨

φ′l
|

|

|

g′(6)m

⟩

+ 1
√

2
cosφ′ cos θ cosϕPx

{

(1 − i)
⟨

φ′l
|

|

|

g′(4)m

⟩

− (1 + i)
⟨

φ′l
|

|

|

g′(5)m

⟩}

− 1
√

2
sinφ′Px

{

sinϕ
(⟨

φ′l
|

|

|

g′(4)m

⟩

−
⟨

φ′l
|

|

|

g′(5)m

⟩)

+ i cosϕ
(⟨

φ′l
|

|

|

g′(4)m

⟩

+
⟨

φ′l
|

|

|

g′(5)m

⟩)}

.

(11.101)

TM polarization
(

ê′ = ẑ′
)

:

ê′⋅
⇀

M′↑ = cos θPz

⟨

φ′l
|

|

|

g′(3)m

⟩

+ 1
√

2
sin θ cosϕ

{

−
⟨

φ′l
|

|

|

g′(1)m

⟩

+
⟨

φ′l
|

|

|

g′(2)m

⟩}

− i
√

2
sin θ sinϕ

{⟨

φ′l
|

|

|

g′(1)m

⟩

+
⟨

φ′l
|

|

|

g′(2)m

⟩}

,

ê′⋅
⇀

M′↓ = cos θPz

⟨

φ′l
|

|

|

g′(6)m

⟩

+ 1
√

2
sin θ cosϕ

{⟨

φ′l
|

|

|

g′(4)m

⟩

−
⟨

φ′l
|

|

|

g′(5)m

⟩}

− i
√

2
sin θ sinϕ

{⟨

φ′l
|

|

|

g′(4)m

⟩

+
⟨

φ′l
|

|

|

g′(5)m

⟩}

,
(11.102)

11.6 Optical Gain Model with Many-Body Effects

The optical gain spectra are calculated using the non-Markovian gain model with many-body e�ects
[11,13]. The many-body e�ects include the plasma screening, band-gap renormalization (BGR), and the
excitonic or the Coulomb enhancement (CE) of the interband transition probability [14]. The simplest non-
Markovian quantum kinetics is Gaussian line-shape function, which is connected with memory e�ects in
the system–reservoir interaction [13]. The optical gain with many-body e�ects including the e�ects of
anisotropy on the valence-band dispersion is given by

g(ω) =
√

μo
ε

2
(

e2

m2
oω

)

2π

∫
0

dφ0

∞

∫
0

dk
||

2k
||

(2π)2Lw

|

|

|

Mnm(k||,φ0)
|

|

|

2
[f c

l (k||,φ0) − f v
m(k||,φ0)]L(ω, k

||

,φ0),

(11.103)

where ω is the angular frequency, μo is the vacuum permeability, ε is the dielectric constant, e is the charge
of an electron, mo is the free electron mass, k

||

is the magnitude of the in-plane wave vector in the QW
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plane, Lw is the well width, ||
|

Mnm(k||,φ0)
|

|

|

2
is the momentum matrix element in the strained QW, f c

l and f v
m

are the Fermi functions for occupation probability by the electrons in the conduction sub-band states and
the valence sub-band states, respectively, and the indices l and m denote the electron states in conduction
sub-band and heavy hole (light hole) sub-band states, respectively. Also, Elm(ℏω, k

||

,φ0) = Ec
l (k||,φ0) −

Ev
m(k||,φ0) + Eg +ΔESX +ΔECH − ℏω is the renormalized transition energy between electrons and holes,

where Eg is the band gap of the material, andΔESX andΔECH are the screened exchange and the Coulomb-
hole contributions [14] to the BGR, respectively. The factor Q(ℏω, k

||

,φ0) accounts for the excitonic or
CE of the interband transition probability [14,15]. The Gaussian line-shape function L(Elm(ℏω, k

||

,φ0)
renormalized with many-body e�ects is given by

Re[L(Elm(ℏω, k
||

,φ0))] =

√

πτin(ℏω, k
||

,φ0)τc

2ℏ2 exp
(

−
τin(ℏω, k

||

,φ0)τc

2ℏ2 E2
lm(ℏω, k

||

,φ0)
)

Im[L(Elm(ℏω, k
||

,φ0))] =
τc
ℏ

∞

∫
0

dt exp
(

−
τc

2τin(ℏω, k
||

,φ0)
t2
)

sin
(τcElm(ℏω, k

||

,φ0)
ℏ

t
)

. (11.104)

The correlation time τc is related to the non-Markovian enhancement of optical gain [13] and is assumed
to be constant. The τin and the τc used in the calculation are 25 and 10 fs, respectively. The BGR is given
as a summation of the Coulomb-hole self-energy and the screened-exchange shi� [14]. The φ0 depen-
dence of the BGR is very small and neglected for simplicity. The Coulomb-hole contribution to the BGR is
written as

ΔECH = −2ERaoλs ln

(

1 +

√

32πNLw
Cλ3

s ao

)

, (11.105)

where N is the carrier density, λs is the inverse screening length, and C is a constant usually taken between
1 and 4. The Rydberg constant ER and the exciton Bohr radius ao are given by

ΔER(eV) = 13.6
mo∕mr
(ε∕ε0)2

(11.106)

and

ao(Å) = 0.53
ε∕ε0

mo∕mr
, (11.107)

where mr is the reduced electron–hole mass de�ned by 1∕mr = 1∕me + 1∕mh. The exchange contribution
to the BGR is given by

ΔESX = −
2ERao
λs

∞

∫
0

dk
||

k
||

1 +
Cλsaok2

||

32πNLw

1 + k
||

λs
+

Caok3
||

32πNLw

[

f c
n (k||) + 1 − f v

m(k||)
]

. (11.108)
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The factor 1∕(1 − Q(k
||

, ℏω)) represents the CE in the Padé approximation. Here, the factor Q(k
||

, ℏω)
is given by [11,14]

Q(k
||

, ℏω) = i
ERao

πλs
|

|

|

Mnm(k||)
|

|

|

2

∞

∫
0

dk′
||

k′
||

|

|

|

Mnm(k||)
|

|

|

[f c
n (k

′
||

) − f v
m(k

′
||

)]Ξ(Elm(ℏω, k
||

))Θ(k
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and

q = |
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− k′
||

|

|

|

. (11.111)

The spontaneous emission coe�cient gSP(ω) can be obtained by replacing [f c
l (k||,φ0) − f v

m(k||,φ0)] in
Equation 11.103 by f c

l (k||,φ0)(1 − f v
m(k||,φ0)).
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√
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ε
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|
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,φ0).

(11.112)
The spontaneous emission rate rspon(E) can be obtained from our calculated spontaneous emission

spectrum gSP(E) by using

rspon(E) =
(

4n2

ℏλ2

)

gSP(E),

where n is the refractive index of the QW and E = 2πcℏ∕λ with c being the speed of light.

11.7 Numerical Example

As a numerical example, we calculate valence-band structure, optical matrix element, and optical gain as a
function of crystal angle for zinc-blende and wurtzite GaN/AlGaN QW structures. For zinc-blende case,
we consider the compressively strained GaN well by assuming that QW structures are grown on AlGaN
substrate. On the other hand, in the case of the wurtzite semiconductor, we assume that QW structures are
grown on GaN substrate. The material parameters for zinc-blende GaN and AlN used in the calculation
were taken from Refs. [9,26–32] and references therein. Also, the material parameters for wurtzite GaN
and AlN used in the calculation were taken from Refs. [33–35] and references therein. All parameters used
in the calculation are summarized in Table 11.1.

11.7.1 Zinc-Blende Structure

Figure 11.3 shows the valence-band structures along kx′ and ky′ of (a) (001)-, (b) (111)-, and (c) (110)-
oriented zinc-blende GaN/AlxGa1−xN QWs (Lw = 2.5 nm). The sub-bands are labeled HHi and LSi,
where i denotes the sub-band level. Here SL is the acronym for “splito�-hole-light-hole,” and the �rst letter
denotes the dominant component for the wave function. The crystal angles for QWs with (11n)orientations
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TABLE 11.1 Parameters Used in the Calculation

Wurtzite Zinc-Blende
Parameters GaN AlN GaN AlN

Lattice constant (Å)
a 3.1892 3.112 a 4.460 4.342
c 5.185 4.982
Energy parameter
Eg(eV) 3.44 6.16 Eg(eV) 3.1 4.9
Δ1 = Δcr(meV) 22.0 −58.5 Δ (meV) 11.0 11.0
Δ2 = Δ∕3 (meV) 15.0 20.4
Δ3 = Δ2(meV) 5.0 6.8
Conduction-band e�ective masses
mw

ez∕mo 0.2 0.3 mc
e∕mo 0.13 0.21

mw
et = mw

ez

Valence-band e�ective-mass parameters
A1 −6.56 −3.95 γ1 3.06 2.42
A2 −0.91 −0.27 γ2 0.91 0.58
A3 −3.13 −1.95 γ3 1.03 0.71
Deformation potentials
ac −4.6 −4.5 ac −2.77 −6.8
D1 −1.7 −2.89 av 3.63 2.3
D2 6.3 4.89 b −2.67 −1.5
D3 −4.0 −3.34 d −4.62 −4.5
Dielectric constant
ε 10.0 8.5 ε 10.69 8.5
Elastic sti�ness constant
C11 39.0 39.8 C11 29.6 30.4
C12 14.5 14.0 C12 15.4 15.2
C13 10.6 12.7
C33 39.8 38.2
C44 10.5 9.6 C44 20.0 19.9
C66 12.3 12.9
Piezoelectric constant
d31(×10−12 m/V) −1.7 −2.0 e14(C/m2) −1.11 −0.526
Spontaneous polarization (C/m2)
PSP −0.029 −0.081

(φ = π∕4) are obtained by using the relation θ = tan−1(
√

2∕n). For example, crystal angles for (111) and
(110) are θ ≈ 55◦ and θ ≈ 90◦ , respectively. The valence-band structures of the self-consistent model are
calculated at a carrier density of N2D = 10 × 102 cm−2. The strain-induced piezoelectric �eld in the GaN
well for the (111) orientation is about 1.33 MV/cm. The sub-band structures for di�erent orientations are
apparently di�erent. For the (001) and the (111) orientations, the sub-band structures are nearly spherically
symmetric. On the other hand, the valence-band structure of the (110)-oriented QW shows anisotropy. In
particular, the e�ective mass of the �rst sub-band along ky′ is observed to be greatly reduced for the (110)-
oriented structure. A larger energy spacing between the �rst two sub-bands (HH1 and SL1) and higher
sub-bands are observed for the (001)-oriented structure. The increase in the sub-band energy spacing will
reduce the carrier population in the higher sub-bands. However, the energy spacing is gradually reduced
with increasing polar angle θ.
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FIGURE 11.3 Valence-band structures along kx′ and ky′ of (a) (001)-, (b) (111)-, and (c) (110)-oriented zinc-blende
GaN/AlxGa1−xN QWs (Lw = 2.5 nm). The sub-bands are labeled HHi and LSi, where i denotes the sub-band level.

FIGURE 11.4 (a) x′-Polarized normalized optical matrix element as a function of k
||

for various values ofφ for (110)-
oriented zinc-blende GaN/AlxGa1−xN quantum wells (QWs) (Lw = 2.5 nm) and (b) averaged optical matrix element
as a function of k

||

for (001)-, (111)-, and (110)-oriented zinc-blende GaN/Alx Ga1−xN QWs (Lw = 2.5 nm).

Figure 11.4 shows the x′-polarized normalized optical matrix element as a function of k
||

for various val-
ues of φ for (110)-oriented zinc-blende GaN/AlxGa1−xN QWs (Lw = 2.5 nm) and (b) the averaged optical
matrix element as a function of k

||

for (001)-, (111)-, and (110)-oriented zinc-blende GaN/AlxGa1−xN

QWs (Lw = 2.5 nm). The angle φ is de�ned by tanϕ = ky′∕kx′ and k
||

=
√

k2
x′ + k2

y′ . Here, φ = 0◦ and
90◦ mean that optical matrix elements are plotted along kx′ and ky′ . The optical matrix elements of the self-
consistent model are calculated at a carrier density of N2D = 10 × 1012 cm−2. The optical matrix element
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increases with increasing angle between kx′ and ky′ wave vectors, that is, with changing from the x′ to y′
direction. The optical matrix elements averaged in the kx′ − ky′ plane show that they signi�cantly depend
on the crystal angle. The optical matrix elements of the (001) orientation are nearly independent of the
wave vectors. On the other hand, in the case of the (110) orientation, the optical matrix element rapidly
increases with increasing wave vectors k

||

and begins to decrease in a range of large k
||

. The optical matrix
elements of the (111)-oriented QW structure slowly decreases with increasing wave vectors k

||

. The (111)-
oriented QW structure has a smaller matrix element than the (001)- or the (110)-oriented QW because
the spatial separation between the electron and the hole wave functions increases due to the piezoelectric
�eld, which results in a reduction in the transition probability between an electron and a hole.

Figure 11.5 shows x′- and y′-polarized many-body optical gain spectra of (a) (001)-, (b) (111)-, and
(c) (110)-oriented zinc-blende GaN/AlxGa1−xN QWs (Lw = 2.5 nm). Optical gains of the self-consistent
model are calculated at a carrier density of N2D = 10 × 1012 cm−2. They are also averaged in the kx′ − ky′
plane because of their anisotropy in the QW plane. The optical gain spectra have peaks corresponding to
C1-HH1 and C1-HL1 transitions. The (111)-oriented QW structure shows that y′-polarized optical gain is
larger than x′-polarized optical gain. The in-plane optical anisotropy ρ is about−0.17. Here, ρ is de�ned as
(Ix′ − Iy′ )∕(Ix′ + Iy′ ), where Ii(i = x′, y′)means an intensity of peak optical gain. On the other hand, in the
case of the (111)-oriented QW structure, y′-polarized optical gain is shown to be similar to x′-polarized
optical gain with ρ ≈ 0.

For a given carrier density, the (111)-oriented QW structure has a smaller optical gain than the (001)-
or the (110)-oriented QW. This can be explained by the fact that the (111)-oriented QW has much smaller
matrix elements than the (001)- or the (110)-oriented QW structures, as shown in Figure 11.4b. This is
because the spatial separation between the electron and the hole wave functions is increased due to the
piezoelectric �eld, which results in a reduction in the transition probability between electrons and holes.

11.7.2 Wurtzite Structure

Figure 11.6 shows the valence-band structures of wurtzite GaN/AlxGa1−xN QWs (Lw = 2.5 nm) with (a)
θ = 0◦ (c-plane), (b) 30◦, and (c) 90◦ (a-plane). Here, the naming of the sub-bands follows the dominant
composition of the wave function at theΓ point in terms of the |

|

X′
⟩

, |
|

Y′
⟩

, and |
|

Z′
⟩

bases. The components
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FIGURE 11.5 x′- and y′-polarized many-body optical gain spectra of (a) (001)-, (b) (111)-, and (c) (110)-oriented
zinc-blende GaN/AlxGa1−xN quantum wells (QWs) (Lw = 2.5 nm). Optical gains of the self-consistent model are
calculated at a carrier density of N2D 10 × 1012 cm−2.
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Pi(=X′,Y′,Z′)
m of each wave function are given by

PX′
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g′(3)m | g′(3)m
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g′(6)m | g′(6)m

⟩
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⟩
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. (11.113)

The valence-band structures of QW structures with θ = 30◦ and 90◦ show anisotropy in the QW plane,
unlike the (0001)-oriented structure (c-plane). The e�ective mass of the topmost valence band along ky′ is
smaller than that along kx′ . Also, the hole e�ective mass (1.24 mo for a-plane) of the topmost valence band
along ky′ is lower than that (1.56 mo) of the c-plane. However, the hole e�ective mass (1.39 mo) averaged
in the kx′ − ky′ QW plane is slightly larger than that along ky′ . Here, to estimate the magnitude of the hole
e�ective mass, we considered a parabolic band �tted to the lowest sub-band of the exact band structure.
The e�ective mass is determined so that, for a given carrier density and the quasi-Fermi level for holes, the
carrier density and the quasi-Fermi level agree with those of the exact band structure. Hence, the e�ective
mass of the �tted parabolic band re�ects an averaged density of states.

Figure 11.7 shows the y′-polarized normalized optical matrix element as a function of k
||

for various
values of φ for wurtzite a-plane GaN/AlxGa1−xN QWs (Lw = 2.5 nm) and (b) averaged optical matrix
element as a function of k

||

for QW structures with crystal angles of (a) θ = 0◦ (c-plane), (b) 30◦, and
(c) 90◦ (a-plane). The optical matrix elements of the self-consistent model are calculated at a carrier density
of N2D = 10 × 1012 cm−2. The optical matrix element rapidly decreases with increasing k

||

and greatly
depends on angle φ between kx′ and ky′ wave vectors. In particular, in the case with φ = 90◦, the decrease
in the optical matrix element is observed to be much more rapid, compared to the other case. The optical



9781498749466_C011 2017/8/29 12:35 Page 394 #30

394 Handbook of Optoelectronic Device Modeling and Simulation

xʹ-polarization 

Averaged

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2

(a) (b)

0.3 0.0 0.1 0.2 0.3

ϕ = 90°
ϕ = 75°

 ϕ = 50°

ϕ = 25°

ϕ = 0°
θ = 0°: (0001)
θ = 30°
θ = 90°

|M
|2

|M
|2

k‖(1/Å) k‖(1/Å)

N2D = 10 × 1012cm–2

FIGURE 11.7 (a) y′-Polarized normalized optical matrix element as a function of k
||

for various values of φ for
wurtzite a-plane GaN/AlxGa1−xN quantum wells (QWs) (Lw = 2.5 nm) and (b) averaged optical matrix element as a
function of k

||

for QW structures with crystal angles of θ = 0◦ (c-plane), 30◦, and 90◦ (a-plane).

360 380 400
0

2000

4000

6000

8000

10,000

340 360 380 400
0

2000

4000

6000

8000

10,000

340 360 380 400 420
0

2000

4000

6000

8000

10,000

Wavelength (nm)

(a) (0001)

G
ain

 (1
/c

m
)

Wavelength (nm)

N2D = 10 × 1012cm‒2
(b) θ = 30° (c) θ = 90°

xʹ
yʹ

Wavelength (nm)

FIGURE 11.8 x′- and y′-polarized, many-body optical gain spectra for quantum well (QW) structures with crystal
angles of θ = 0◦ (c-plane), 30◦, and 90◦ (a-plane).

matrix elements averaged in the kx′ − ky′ plane show that they signi�cantly depend on the crystal angle,
as observed for the zinc-blende case of Figure 11.3. The optical matrix element rapidly increases with
increasing crystal angle. This can be explained by the fact that the internal �eld is reduced for the QW
structure with larger crystal angle. In particular, in the QW structure with θ = 90◦, the internal �eld is
disappeared and the transition probability between an electron and a hole is signi�cantly enhanced due to
the reduction in the spatial separation between the electron and the hole wave functions.

Figure 11.8 shows x′- and y′-polarized many-body optical gain spectra for QW structures with crystal
angles of (a) θ = 0◦ (c-plane), (b) 30◦, and (c) 90◦ (a-plane). Optical gains of the self-consistent model
are calculated at a carrier density of N2D = 10 × 1012 cm−2. They are also averaged in the kx′ − ky′ plane
because of their anisotropy in the QW plane. The (0001)-oriented QW structure shows that y′-polarized
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optical gain is the same as x′-polarized optical gain because of its isotropy in the QW plane. The QW
structure with θ = 30◦ also shows that x′- and y′-polarized optical gains are similar to each other. On the
other hand, the a-plane QW structure shows that y′-polarized optical gain is much larger than x′-polarized
optical gain. The in-plane optical anisotropy ρ is about −0.58, which is much larger than that observed for
the zinc-blende QW structures.

11.8 Summary

In summary, we reviewed theoretical formalism to obtain eigenvalues and wave functions of (001)-oriented
zinc-blende and (0001)-oriented wurtzite QW structures. In addition, we reviewed crystal orientation
e�ects on electronic and optical properties of strained zinc-blende and wurtzite QW structures. As a
numerical example, we calculated valence-band structures, optical matrix elements, and optical gains as a
function of crystal orientation for zinc-blende and wurtzite AlGaN/GaN QW structures. These results can
be used for a design of QW-based optoelectronic devices.
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12.1 Introduction: Semiconductor Nanowires

During the past years, much research e�ort has been dedicated to explore the properties of semiconductor
nanowires (NWs). Correspondingly, remarkable progress has been achieved in design, growth, characteri-
zation, and theoretical description of these structures. Many di�erent applications have been suggested,
ranging from energy harvesting and storage (Wallentin et al. 2013) to single-photon emitters (Heiss
et al. 2013) and general lighting, with some of them poised to enter the commercial market in the near
future.

Free-standing semiconductor NWs, sometimes also referred to as nanorods, are grown using molecular-
beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD) or produced from planar
layers by lithography. They have diameters of a few tens to hundreds of nanometers and lengths of a few
hundred nanometers to a few micrometers and exhibit some unique properties in comparison to planar
semiconductor quantum wells (QWs) or embedded quantum dots (QDs). If the diameter of a NW is small
enough such that quantum con�nement along the transverse direction is ensured, the NW is called a
quantum wire. A particular advantage of the NW geometry is that it facilitates a much better strain relax-
ation, resulting in a better overall material quality. Additionally, the large surface-to-volume ratio of NWs
represents an advantage for light emitting and detecting devices.

If heterostructures such as QWs or QDs are incorporated in NWs, the free side facets additionally facil-
itate elastic relaxation, allowing one to design heterostructures from materials that have a large lattice
mismatch with respect to the NW material, which could not be produced in a planar structure. Typical
heterostructures in NWs are of either axial or radial character, as depicted in Figure 12.1. The active layer
of the heterostructure is then either perpendicular to the growth direction (axial heterostructure) or par-
allel to it (radial heterostructure). Thickness and material composition of axial and radial layers can be
controlled during the growth process, so that the electronic properties of the NW can be tailored to suit
speci�c applications.

397
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FIGURE 12.1 Cross-section of an axial (a) and a radial (b) heterostructure in a hexagonal nanowire (NW). The active
layer is light gray.

Moreover, surface states at the side facets of NWs give rise to additional electrostatic potentials whose
impact on the electronic properties needs to be understood. The simulation of semiconductor surfaces is
a very challenging �eld and very few sophisticated approaches exist to model a semiconductor–vacuum
interface.

Most III–V semiconductor NWs also show a high density of stacking faults. In some cases, the switching
in the crystal structure along the length of an NW can be controlled. This allows one to investigate material
properties of semiconductors in crystal structures that do not occur otherwise in the bulk. For example,
whereas bulk GaAs exhibits a zinc-blende (ZB) crystal structure, GaAs NWs with the hexagonal wurtzite
(WZ) structure have o�en been reported (Hoang et al. 2009; Heiss et al. 2011; Ahtapodov et al. 2012).
Since the electronic properties of ZB and WZ GaAs are di�erent, both phases have to be addressed in a
simulation of an NW, with a particular focus on the treatment of their interface.

Finally, the photonic properties of NWs are altered by their peculiar geometry. In particular, the light
absorption and extraction e�ciencies depend strongly on the polarization of light with respect to the NW
axis and it is mandatory to take this e�ect into account when correlating the degree of polarization of
optical transitions with possible valence-band mixing in the NW.

12.2 Basic Charge Confining Mechanisms in NWs

In the following, we provide a brief overview of mechanisms that in�uence the localization and the energy
levels of carriers in NWs. We compare these mechanisms to those that occur in planar layers or QDs and
discuss speci�c features of NWs.

12.2.1 Bulk Electronic Properties: Band Offsets and Work Functions

Similar to planar heterostructures and QDs (see Chapters 11 and 13), the electronic properties of axial or
radial semiconductor NW heterostructures are determined by the band o�sets between the conduction and
valence bands, Ec and Ev, of the materials involved. If we neglect surface states in a �rst step, the potential
barrier arising at the interface between the NW and the surrounding vacuum is best described by the work
function of the NW material. For the hole state, the following consideration yields a good description of
the con�ning potential: The minimum energy to create a hole in the valence band is the sum of bandgap
(to excite an electron from the valence to the conduction band) and the electron a�nity. Therefore, we
consider the sum of bandgap and electron a�nity as a potential barrier for the valence band at the side
facet of the NW. However, as the work function and the electron a�nity of most semiconductors is on the
order of a few eV and typically much larger than bandgaps and band o�sets within an NW heterostructure,
a good approximation can already be achieved by assuming an in�nite potential at the semiconductor–
vacuum interface. This simpli�cation is in particular reasonable for the electron and hole states closest to
the conduction and valence-band edges, respectively (Levine 1965).
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12.2.2 Approaches to Compute Elastic Properties of Nanostructures

The electronic properties of a semiconductor nanostructure are signi�cantly modi�ed if the system is
subject to elastic relaxation. The impact of strain on the electronic properties is commonly taken into
account via deformation potentials. For example, within the ZB structure, the lowest conduction band is
modi�ed via the deformation potential ac by the additional contribution ac ⋅ Tr(ε). In a WZ system, two
deformation potentials a1 and a2 are employed such that the conduction band is modi�ed by the term
a2 ⋅ (εxx + εyy) + a1 ⋅ εzz . The strain-induced modi�cations of the valence bands are more complex. As
an example, the impact of strain on the three highest valence bands can be computed using a six-band
Pikus–Bir Hamiltonian (Ghosh et al. 2002). Chapter 1 provides a more detailed discussion on how strain
is considered in the simulation of electronic properties of semiconductor nanostructures.

NWs exhibit quite speci�c strain pro�les as the free side facets facilitate elastic relaxation. This feature
allows not only the NW itself to relax toward the bulk lattice constants but also a much better elastic relax-
ation of axial and radial heterostructures incorporated within the wire. The possibility to relax even a large
lattice mismatch is a particular strength of NWs in comparison to planar heterostructures, where large
di�erences in the lattice constants lead to defects and crack formation.

To shed some light on the speci�c elastic properties of semiconductor NWs and their impact on the
electronic properties, we discuss di�erent approaches to compute the elastic properties of an NW in the
following.

12.2.2.1 Valence Force Field Model

The most complete description of the elastic properties of an NW is achieved using an atomistic model.
However, accurate models rely on ab initio methods, which are computationally highly expensive thus
limiting the simulation domain to a small number of atoms (Yang et al. 2008; Xiang et al. 2008). Given the
typical dimensions of semiconductor NWs in the order of tens to hundreds of nanometers, it is clear that
such models are not well suited to describe NWs of the commonly observed dimensions.

An alternative approach is the computationally less expensive valence force �eld (VFF) model. Within
the VFF model (Keating 1966), the atomic coordinates ri of the individual atoms of the NW are the degrees
of freedom. For an NW with a ZB crystal structure, the potential energy of the crystal to be minimized can
be written as (Keating 1966):

E =
∑∑ 3α

8r2
ij0

(

r2
ij − r2

ij0

)2
+
∑∑ 3β

8rij0 ⋅ rik0

(

rij ⋅ rik − rij0 ⋅ rik0

)2
, (12.1)

where the equilibrium bond angles satisfy rij0 ⋅ rik0 = −|rij0||rik0∕3 and N indicates summation over
the nearest neighbors. rij = ri − rj is the distance between atoms i and j and rij0 denotes the value
of rij in a bulk, strain-free crystal. The parameters α and β are coupling constants between neighboring
atoms.

However, the basic VFF model is inaccurate for hexagonal crystal structures and thus requires improve-
ments (Rücker and Methfessel 1995; Große and Neugebauer 2001), and it is questionable whether this
model is an appropriate choice for the description of semiconductor NWs (Singh et al. 2011). Moreover, the
computational e�ort of the VFF scales nearly linearly with the number of atoms involved. For typical NWs,
even the VFF becomes computationally highly expensive if the super cell spans over a large segment of
the NW.

12.2.2.2 Linear Continuum Elasticity Theory

As a computationally inexpensive alternative to the atomistic VFF model, the elastic properties of an NW
can also be computed using a continuum-based approach. Here, the underlying atomistic lattice is ignored
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and the strain tensor εij(r) is expressed in a continuous manner. The elastic energy to be minimized is then
(Landau and Lifshitz 1959) given as follows:

E = 1
2 ∫

∑

Cijkl(r)εij(r)εkl(r)dV, (12.2)

where Cijkl(r) denotes the elastic constants of the materials involved and i, j, k, l = x, y, z. Note that all
information on the underlying crystal structure is contained in the elastic constants. Within the ZB lattice,
only the constants C11 = Ciiii = Cxxxx = Cyyyy = Czzzz , C12 = Ciijj (i ≠ j), and C44 = Cijij (i ≠ j) are
nonzero. The advantage of the continuum elasticity model is of course its computational e�ciency, as the
discretization of the super cell is not bound to atomistic coordinates. However, the atomistic nature of the
system under consideration is fully neglected.

12.2.3 Elastic Properties of NW Heterostructures

In this section, we discuss strain distributions in axial and radial NW heterostructures, as well as their
impact on the electronic properties. We also discuss the speci�c advantages of axial and radial NW
heterostructures in terms of elastic relaxation.

12.2.3.1 Radial NWs Heterostructures

In radial semiconductor NW heterostructures—typically referred to as core–shell NW—a core material
is surrounded by one or more shells consisting of di�erent materials or having di�erent doping densities.
The elastic properties of core and shells are controlled by their respective thicknesses, which �nally allows
the control of the electronic properties. In a simpli�ed picture, a core–shell NW can be approximated
as a cylinder with a lattice mismatched shell. The strain inside such a cylindrical core–shell NW is best
described within cylindrical coordinates and the nonzero components of the strain tensor are (Menendez
et al. 2011)

εrr = εθθ = −ε0
(

R2
s − R2

c
)

[

(ν + 1) (1 − 2ν)
(1 − γ) (1 − 2ν)R2

c − (1 − 2ν + γ)R2
s
+ ν
(

R2
s − R2

c
)

+ γR2
c

]

εzz = ε0

[
(

R2
s − R2

c
)

(

R2
s − R2

c
)

+ γR2
c

]

(12.3)

in the core and

εrr(r) =
ε0 (ν + 1) γR2

c
(1 − γ) (1 − 2ν)R2
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s

[

(1 − 2ν) −
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s
r2

]

+
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cε0
(
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c
)
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εθθ(r) =
ε0 (ν + 1) γR2

c
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[
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s
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(
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s − R2

c
)

+ γR2
c

εzz =
γR2

cε0
(

R2
s − R2

c
)

+ γR2
c

(12.4)

in the shell, where r is the radial position. ε0 =
(

as − ac
)

∕ac is the initial mis�t for core and shell materials
with lattice constants ac and as, respectively. Rc and Rs denote core and shell radii. For the Poisson ratio ν,
we use the Voigt average (Hirth and Lothe 1968) and consider this ratio as being constant inside both the
core and the shell. Within a cubic crystal, this ratio reads
νc,s = Cc,s

11 + 4Cc,s
12 − 2Cc,s

44∕4Cc,s
11 + 6Cc,s

12 + 2Cc,s
44 where the Cc,s

ij are the elastic constants of the core and
the shell.



9781498749466_C012 2017/8/29 14:38 Page 401 #5

Nanowires 401

γ = Ecore∕Eshell with E denoting Young’s modulus. In the case of an NW grown along the [111] axis, this
modulus can be determined from the stress–strain relation as (Hirth and Lothe 1968)

E111 = 3
C44

(

C11 + 2C12
)

C44 + C11 + 2C12
.

All components of the strain tensor are constants inside the core and depend only on the elastic constants
of the materials involved as well as on the ratio between core and shell radii. Within the shell, εzz is constant.
In contrast, εrr(r) and εθθ(r) are functions of the radial distance from the NW core, and converge for large
radii, as shown in Figure 12.2 for a Ge–Si core–shell NW with a core radius of 10 nm and a shell radius of
20 nm. The ratio between the radii of the core and the shell determines the strain state of the NW and is a
property that can be easily controlled during the growth process.

For more realistic NW geometries that cannot be described using analytical models, the elastic prop-
erties can be computed only numerically using continuum-based or atomistic approaches. A comparison
between the analytic solution for the cylindrical NW and a numerical solution using the �nite-elements
method for hexagonal, [011]-grown Ge–Si NWs can be found in Singh et al. (2011), where the authors
report a very good agreement with the analytic model for the εzz component.

Discrepancies are observed in εrr and εθθ inside the shell toward the corners of the realistic, hexagonal
NW, whereas a very reasonable agreement is reported in the vicinity of the core. Note, however, that εrr
and εθθ are not uniform within the hexagonal core anymore, as derived analytically for a cylindrical NW.
The agreement in εzz is very good with uniform values in both core and shell (Singh et al. 2011).

A comparative study between a continuum elasticity model and the atomistic VFF model is presented
by Grönquist et al. (2009) for GaAs/GaP core–shell NWs with a total diameter of 27.8 nm. The agreement
between VFF and continuum elasticity model is very good throughout the NW cross-section and devia-
tions occur only at the free ends of the �nite wires. For typical semiconductor NWs, elasticity theory within
a continuum picture can thus be considered as a reasonable and computationally inexpensive model.

The elastic relaxation within the model NW has a signi�cant in�uence on its electronic properties.
Tr(ε)> 0 within the shell leads to a reduction of both the conduction and the valence-band energies. Within
the core, the hydrostatic strain is negative and the energies of the conduction band minimum and valence
band maximum increase. The impact of strain on the conduction band is larger, such that the bandgap
of the core material (GaAs) increases and a red shi� of luminescence from the core is predicted. As the
magnitude of the strain depends on the thicknesses of the core and the shell, bandgap engineering can be
applied in core–shell NWs by a variation of the core and shell thicknesses. An example for such bandgap
engineering is presented in Liu et al. (2014), where the bandgap of an InAs shell around an InP core is
tuned by up to 210 meV solely by a variation of the core diameter.
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FIGURE 12.2 Nonzero strain components of a Ge–Si core–shell nanowire (NW) in cylindrical coordinates. The
radius of the Ge core is 10 nm.
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12.2.3.2 Axial NW Heterostructures

Axial NW heterostructures consist, similar to planar heterostructures, of thin layers separated by the matrix
material (barriers). In contrast to their planar counterparts, the elastic strain caused by the mismatch
between the insertion and the matrix crystal lattices relaxes at the side facets. This relaxation only par-
tially eliminates the strain in the wells and gives rise to a complicated inhomogeneous strain distribution
that depends on the relation between the NW diameter, the thickness of the insertion, the barrier thick-
ness, and also the thickness of the whole stack of the insertions. The elastic relaxation facilitated by the free
side facets is of particular importance for InxGa1−xN disks in GaN NWs, as InN and GaN exhibit a lattice
mismatch of approximately 10%, making it di�cult to produce planar InxGa1−xN/GaN heterostructures
with large In content and high crystal quality.

The di�erence in lattice parameters between the matrix and the inserted layer gives rise to the strain
ε0

zz = (c − c0)∕c0, ε0
rr = ε0

θθ = (a − a0)∕a0, which itself does not cause stress and is called the intrinsic
strain (the terms self-strain and eigenstrain are also used). a (a0) and c (c0) denote the layer (matrix) lattice
constants. The elastic strain ε and the stress σ result from the coherency of the crystal lattices of the layer
and the matrix. In a planar heterostructure, the layer is clamped by the matrix. Therefore, the components
of the total strain in the plane εT

rr = ε0
rr + εrr and εT

θθ = ε
0
θθ + εθθ are equal to zero. The whole structure

can freely expand in the direction normal to the layer, so that the stress σzz = 0. Using Hooke’s law, these
conditions lead to the stress in the layer plane σrr = σθθ = −σ0, where σ0 = (C11 +C12 − 2C2

13∕C33)ε0
rr . In

NWs, this stress is relaxed at the free side facets. The solution of the above problem for the NW is, therefore,
the sum of two terms: The solution in a planar structure described earlier and the image �eld due to stress
σim

rr = σ0 applied at the interface of the layer to satisfy the boundary conditions σrr = 0, σrz = 0 at the
side facets. The elastic problem can be solved analytically for a circular cylinder shape of the NW and an
arbitrary intrinsic strain distribution ε0(z) (Kaganer and Belov 2012). In this case, the image displacements
are written as

uim
r (x, ς) = −

Rσ0

c44

∞

∫
0

[

1
1 + k1

I1(qx∕v1)
I1(q∕v1)

− 1
1 + k2

I1(qx∕v2)
I1(q∕v2)

]

g(q)
D(q)

cos qςdq,

uim
z (x, ς) = −

Rσ0

c44

∞

∫
0

[

k1v1
1 + k1

I0(qx∕v1)
I1(q∕v1)

−
k2v2

1 + k2

I0(qx∕v2)
I1(q∕v2)

]

g(q)
D(q)

sin qςdq,

D(q) =
c11 − c12

c44

k2 − k1
(1 + k1)(1 + k2)

− q
(

v1
I0(q∕v1)
I1(q∕v1)

− v2
I0(q∕v2)
I1(q∕v2)

)

. (12.5)

I0 and I1 are modi�ed Bessel functions, ζ = z∕R, and x = r∕R with R being the radius of the cylinder. The
constants k1, k2, ν1, ν2 are de�ned by the elastic moduli of the material, which are k1 = 0.234, k2 = 4.264,
ν1 = 1.589, ν2 = 0.623 for GaN. The function g(z) describes the strain distribution and g(q) its Fourier
transform. For a homogeneous disk of thickness 2d, it is given by g(q) = 2sin(qd∕R)∕(πq).

Figure 12.3 illustrates the strain state in the disk center of a cylindrical NW with an inserted disk. In the
limit of large diameters, the strain state approaches to the one of a planar structure. When the diameter is
much smaller than the disk thickness, the inserted disk is strain free. As shown in Figure 12.3, the strain
changes sign when going from very thin to thick NWs since both the insertion and the matrix are distorted.
The insert in Figure 12.3 visualizes the displacements calculated by Equation 12.5 for the cylinder diameter
corresponding to the minimum of εzz (exaggerated for better visibility).

The strain in the inserted disk is compensated by an opposite strain in the matrix. The displacements
well above and well below the disk obtained using Equation 12.5 show that the total displacement due
to transverse intrinsic strain is zero. In other words, the strain averaged over the whole cylinder is zero.
This result has important consequences for multi-QW NW heterostructures since each QW experiences



9781498749466_C012 2017/8/29 14:38 Page 403 #7

Nanowires 403

0.01

εzz

εrr

0.00

El
as

tic
 st

ra
in

–0.01

–0.02

0 50
Diameter (nm)

100 150

FIGURE12.3 Elastic strain at the center of a 5-nm-thick In0.25Ga0.75N disk inserted in a GaN cylinder as a function of
the diameter of the cylinder. The inset shows the displacements (magni�ed for better visibility) for a cylinder diameter
of 8 nm corresponding to the minimum of εzz .

strain produced by the other QWs. Variation of the barrier thickness and the NW diameter are therefore
additional degrees of freedom for strain engineering of NW heterostructures (Wölz et al. 2013).

Figure 12.4 shows three strain states of lattice-mismatched heterostructures. In the case of a planar
heterostructure (cf. Figure 12.4a), the Poisson e�ect gives rise to a homogeneous strain in the layer. In
a multilayer NW heterostructure, the lateral elastic relaxation occurs in both materials. Figure 12.4b shows
the displacement (center) and the out-of-plane strain (right) that were obtained for an axial superlattice
using Equation 12.5. The strain is nonuniformly distributed. In the center of the cylinder, shown by the red
line, the barrier crystal is laterally expanded. The QW is still under lateral compression, but to a smaller
extent than in the planar case of Figure 12.4a. Going outwards, the strain distribution remains qualitatively
similar to the one in the center up to about 0.8R, shown by the green line. Toward the surface, the strain
pro�le is more complex as shown by the blue line at 0.95R.

This complicated strain state can be approximated by the strain state shown in Figure 12.4c, where it
is assumed that the in-plane lattice spacing is constant everywhere in the superlattice. The strain can be
determined by the condition that the average strain on the side surface is zero (Wölz et al. 2011, 2012). This
relaxation reduces the strain in the QW by the factor dbarrier∕(dbarrier + dwell) compared to the case of a
planar heterostructure in Figure 12.4a. This lateral relaxation approximation is a much simpler description
of the dominant strain states in the superlattice compared to the full consideration of the inhomogeneous
strain resulting in a con�guration as shown in Figure 12.4b. A systematic comparison of the full calculation
based on Equation 12.5 with this approximation allows one to establish criteria for its validity (Wölz et al.
2013). First, the height of the whole stack of QWs should be larger than the NW diameter. Second, to
achieve a large strain in QWs, the NWs should be su�ciently thick.

For more complicated geometries or material compositions, the strain can be determined by �nite ele-
ment calculations. For example, Figure 12.5 shows the strain distribution in an axial InxGa1−xN/GaN NW
heterostructure containing two InxGa1−xN insertions (Knelangen et al. 2011). Each insertion consists of a
2-nm-thick InxGa1−xN layer with an In content of 19% and a 9-nm-thick layer with an In content of 39%.
They are embedded in a GaN NW with a diameter of 30 nm and separated from the side facets by a 7-nm-
thick GaN shell. The distance between the two disks is 3 nm. The magnitude of the strain increases toward
the side facets, whereas elastic relaxation occurs near the center of the NW. Nevertheless, signi�cant strain
persists at the side facets of the NW.

A study on single InxGa1−xN disks in a GaN NW that extend throughout the whole NW section without
a GaN shell also reports persisting strains (Böcklin et al. 2010). An In0.4Ga0.6N layer with a thickness



9781498749466_C012 2017/8/29 14:38 Page 404 #8

404 Handbook of Optoelectronic Device Modeling and Simulation

z

x

(a)

z

x

(b)

z

x

(c)

z

εzz

z

εzz

z

εzz

FIGURE 12.4 Strain states of lattice-mismatched heterostructures: sketch of the entire structure (le�), atomic dis-
placement (center), and out-of-plane strain εzz (right) near one quantum well (QW). (a) Planar pseudomorphic
epitaxial QW growth, the substrate remains strain free. (b) Axial nanowire (NW) superlattice, nonuniform strain pro-
�le calculated with a cylindrical model. The red, green, and blue curves represent the displacement and strain at the
radial positions indicated by the arrows (NW center, 80% and 95% of NW radius). (c) Axial NW superlattice, lateral
relaxation estimate, QW and barrier assume a common average in-plane lattice parameter. (Reprinted with permission
from Wölz et al. (2013). Copyright [2013] American Chemical Society.)
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Knelangen, M. et al., Nanotechnology, 2011. © IOP Publishing. All rights reserved.)
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of 3 nm within a hexagonal GaN NW with a diameter of 50 nm is highly strained due to the large In
content and experiences a signi�cant lateral extension. In the center of the layer, the magnitude of the
strain approaches the value predicted in the biaxial limit. As a consequence, the bandgap is signi�cantly
lowered at the NW surface, inducing a localization of electrons and holes at the corners and at the side
facets, respectively.

12.2.4 Piezoelectric and Spontaneous Polarization

Both GaN and InN exhibit pyroelectric and piezoelectric polarization. Planar heterostructures are com-
monly grown along the polar [0001] axis, resulting in large internal electrostatic �elds in the InxGa1−xN
QWs. These �elds lead to a spatial separation of electrons and holes and thus to a considerable reduction
of the radiative recombination rate. The use of axial GaN NW heterostructures promises to resolve some
of these problems (Kikuchi et al. 2004; Kim et al. 2004; Li and Waag 2012). As discussed in the previous
section, the free side facets facilitate the elastic relaxation of strain in the InxGa1−xN disk, so that higher
In contents can be achieved (Björk et al. 2002; Ertekin et al. 2005; Kaganer and Belov 2012). Along with
the elastic relaxation, a signi�cant reduction of the built-in piezoelectric potential and hence the quantum
con�ned Stark e�ect (QCSE) (Miller et al. 1984) is expected. In fact, some researchers report evidence of
a vanishing QCSE (Lin et al. 2010; Armitage and Tsubaki 2010; Nguyen et al. 2011; Bardoux et al. 2009),
whereas others observe a signi�cant QCSE (Wölz et al. 2013). Typically, the polarization P is computed
directly using the strain tensor. For WZ crystals, it reads (Nye 1985):

P(r) =
⎛

⎜

⎜

⎝

2e15ε13
2e15ε23

e31
(

ε11 + ε22
)

+ e33ε33 + Psp

⎞

⎟

⎟

⎠

, (12.6)

where eij = eij(r) are the piezoelectric constants and Psp(r) is the spontaneous polarization is the sponta-
neous polarization: WZ crystals exhibit a charge separation even in the absence of an electric �eld. The
polarization potential V(r) is computed solving the Poisson equation.

ρp(r) = ε0∇ ⋅
[

εr(r)∇V(r)
]

with ρp(r) = −∇ ⋅ P(r). (12.7)

ε0 and εr denote the vacuum and the relative dielectric constants, respectively.
The resulting electrostatic potential V(r) is used in the model to compute the electronic properties as a

potential contribution added to both the conduction and the valence bands.
For the system considered by Böcklin et al. (2010), accounting for the polarization potential leads to a

con�nement of the hole ground state at the center of the NW, whereas the electron remains at the edges.
Depending on size and material composition of NW and disk, both strain and the polarization potential
can therefore dominate the localization of carriers in a NW.

For an InxGa1−xN disk in a circular cylinder GaN NW, the Poisson equation can be solved using
Equation 12.5 and the electrostatic potential is expressed in similar integrals (Kaganer et al. 2016).
Figure 12.6 displays the electrostatic potential V along the axis of the cylinder (r = 0) for an In0.25Ga0.75N
disk of thickness 5 nm inserted into GaN cylinders of di�erent diameters. The potential for a �lm (i.e.,
a cylinder of an in�nite diameter) is included for comparison. Already for very thick NWs with a diame-
ter of 150 nm, the electrostatic potential of the disk along the central NW axis is visibly reduced and this
reduction increases for decreasing diameters. However, even for a very thin NW with a diameter of 15 nm,
a potential di�erence of approximately 300 meV persists.

Although the polarization potential is signi�cantly reduced compared to the one of planar heterostruc-
tures of similar growth direction, thickness, and In content, a very small NW diameter (d < 30 nm) is
required to achieve a substantial reduction of the piezoelectric potential for the typical disk thicknesses of
only a few nanometers. Even in such systems, a nonvanishing built-in potential remains. The magnitude of



9781498749466_C012 2017/8/29 14:38 Page 406 #10

406 Handbook of Optoelectronic Device Modeling and Simulation

1.0

0.5

0.0

−0.5

−1.0

−6 −4 −2 0
z (nm)

V 
(V

)

2 4 6

15 nm

30 nm

50 nm
150 nm

Film

FIGURE 12.6 The electrostatic potential V along the axis of the cylinder (r = 0) for a 5-nm-thick In0.25Ga0.75N disk
inserted into GaN cylinders of di�erent diameters, as indicated in the �gure. The interior of the disk is highlighted.
(Reproduced with permission from Kaganer, V. M. et al., Nanotechnology, 2016. ©IOP Publishing. All rights reserved.)

the polarization potential decreases with larger aspect ratio and the extrema of the potential shi� from the
central axis of the NW toward the side facets (Kaganer et al. 2016). The polarization potential therefore not
only a�ects the transition energies but also the con�nement of electrons and holes and thus the recombi-
nation rates. Strain relaxation in axial NW heterostructures represents an additional degree of freedom to
control the emission wavelength and the electron–hole overlap in comparison to their planar counterparts.
However, electrostatic potentials remain and exert an important in�uence on the electronic properties of
the system.

12.3 Doping and the Influence of Surfaces

The electrical conductivity of semiconductor materials can be tuned over many orders of magnitude by the
intentional incorporation of impurities (Schubert 2005). The ability to dope semiconductors in a controlled
fashion is a key feature of all semiconductor-based technology (Sze 1985; Seeger 1991). For a theoretical
description, doping poses a formidable problem, as dopants occupy random positions in the host lattice.
Established solid-state simulation methods exploiting the periodicity of the system cannot be employed
(Shklovskii and Efros 1984). For device simulations, the discrete nature of the dopant positions is there-
fore commonly ignored altogether, and a homogeneous, continuous distribution of charge is assumed
(Keyes 1975).

In semiconductor NWs, intentional or unintentional doping is of particular importance due to the vicin-
ity of free surfaces. In the case of an InxGa1−xN based NW, the residual doping concentration of O and Si
atoms is ρD = 1016 − 1017 cm−3. These donors transfer their extra electrons to surface states, leaving the
donor ionized and the NW depleted at all temperatures, as long as the radius of the NW does not exceed
the typical thickness of the depletion region in the bulk material. In the following, we discuss concepts to
simulate the impact of doping on the electronic structure of semiconductor NWs.

12.3.1 Continuous, Homogeneous Doping-Related Background Charge

In a simple picture, the potential arising from ionized donors is treated as an electrostatic potential
obtained from a homogeneous background charge density by solving the Poisson equation. In the case of a
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semiconductor NW with doping density ρD and with a cylindrical shape, the surface potential V arising
from a homogeneous background charge density is

V(r) = EF −
e ⋅ ρD

4ε0 ⋅ εr
R2

[

1 −
( r

R

)2
]

, (12.8)

with R being the radius of the NW and EF being the surface Fermi level pinning. For a cylindrical GaN
NW with R = 40 nm and a doping density of 1017 cm−3, the potential di�erence between the center and
the side facets of the NW is 80 mV. If the residual doping consists of Si and O, which is typical for GaN,
the potential is positive at the side facets, that is, attractive for holes.

Figure 12.7 shows the electron (red) and hole (blue) ground-state-charge density in an axial
InxGa1−xN/GaN NW heterostructure for various values of x and accounting for the in�uence of a sur-
face potential, computed using an eight-band k⋅p model (see Chapter 1 for details). It can be seen that
the surface potential gives rise to a behavior speci�c to NWs. As long as the thickness of the InxGa1−xN
disk is small compared to the NW diameter, the strain-induced piezoelectric potential exhibits extrema
at the top and bottom surface of the InxGa1−xN disk along the central axis of the NW (see discussion in
Section 12.2.4). For the hole state, this potential is attractive at the bottom center of the disk. A surface
potential arising from an unintentional background doping, on the contrary, localizes hole states at the
side facets of the NW. The localization of the hole state therefore depends on the magnitude of surface and
polarization potentials: For large In contents, the polarization potential increases and induces a localiza-
tion of holes along the central axis of the NW. For small In contents, the localization of the hole state is
dominated by the surface potential and the hole is con�ned near the side facets of the NW (Marquardt
et al. 2013).

12.3.2 Random Dopant Fluctuations: The Discrete Nature of Dopants in
an NW

In a typical axial InxGa1−xN/GaN NW heterostructure, the number of dopants is commonly not large
enough to justify the picture of a homogeneous doping-related background charge (Corfdir et al. 2014).
With a diameter of 80 nm, a doping concentration of 1017 cm−3 corresponds on average to only 8.3 charges
within a segment of 20 nm length. Therefore, individual, randomly distributed dopants have to be consid-
ered in NWs. Of course, the ideal approach to deal with in�uences of individual atoms is an atomistic
picture, such as empirical tight binding or pseudopotential methods or density functional theory (for
more details on these models see Chapter 1). At the same time, experimentally relevant semiconductor

In content x

GaNGaN

GaN GaN GaN GaN

GaNGaN

t =
 5 

nm
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 5 
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 5 
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 5 

nmIn0.05Ga0.95N In0.10Ga0.90N In0.20Ga0.80N In0.40Ga0.60N

FIGURE 12.7 Side view of the electron (red) and hole (blue) ground-state charge density in an axial InxGa1−xN/GaN
nanowire (NW) heterostructure for x = 0.05, 0.1, 0.2, and 0.4 (le� to right). The NW diameter and disk thickness are
not to scale. (Reprinted with permission from Marquardt et al. (2013). Copyright 2013 American Chemical Society.)
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NWs exhibit typical diameters of a few tens to hundreds of nanometers. Therefore, a reasonable simulation
domain commonly contains millions of atoms. Random dopant �uctuations (RDFs) induce variations of
the electronic potential landscape between individual NWs. A meaningful study of the impact of RDFs
on the electronic structure of NWs will thus require a statistical evaluation of these variations so that a
correspondingly large number of simulations needs to be performed. Within an atomistic picture, this
represents a massive computational e�ort. However, individual dopants can also be included within the
computationally inexpensive continuum approaches, for example, e�ective mass or multiband k⋅p models
(see Chapter 1 for more details) under certain conditions.

If an impurity can be considered a hydrogenic dopant, its main in�uence on the electronic structure is a
long-range Coulomb potential. These shallow donors and acceptors induce only a small deformation to the
host lattice and require only small energies (less than 3 kBT ~75 meV at room temperature) to be ionized.
Some examples for shallow donors and acceptors in di�erent host materials are listed in Table 12.1.

A shallow impurity can be modeled as a point charge. The respective Coulomb potential obtained from
the Poisson equation is then simply added to the potential landscape within the simulation cell. Note that a
shallow impurity in a binary material is not necessarily a shallow impurity in a ternary system. For example,
O is a shallow donor in GaN but its behavior in AlxGa1−xN alloys is still a matter of controversy. Some
studies report a shallow–deep transition (Park and Chadi 1997; McCluskey et al. 1998), whereas others
claim O to remain a shallow donor in AlxGa1−xN even for large Al contents (Kakanakova-Georgieva et al.
2013). For deep dopants, the model of a simple point charge for an ionized dopant becomes inaccurate.

Figure 12.8a shows an example of a Coulomb potential resulting from RDFs in an axial InxGa1−xN/GaN
NW heterostructure. The respective electron (red) and hole (blue) ground-state charge densities are shown
in the center of Figure 12.8, computed using an eight-band k⋅pmodel (Chuang and Chang 1996). To inves-
tigate the variations of electron and hole wave functions as well as binding energies in an ensemble of
otherwise identical NWs, one can perform a statistical study by employing a larger number of random
donor distributions. The electron–hole ground-state recombination energy resulting from such a study is
shown in Figure 12.8c. Additionally, the energy values obtained by assuming a continuous, homogeneous

TABLE 12.1 Activation Energies of Shallow Impurities in Di�erent Host Materials

Host Material Donor Ec − Ed (meV) Acceptor Ea − Ev (meV)

GaAs S 6 Mg 28
Se 6 Zn 31
Te 30 Cd 35
Si 58 Si 26

GaN O 33.21 (Freitas et al. 2003)
Si 30.19 (Freitas et al. 2003)
C 34.0 (Wang and Chen 2000)
Ge 31.1 (Wang and Chen 2000)
S 29.5 (Wang and Chen 2000)
Se 29.5 (Wang and Chen 2000)

AlN Si 60 (Zeisel et al. 2000)
ZnO Al 53 (Meyer et al. 2005)

Ga 54.5 (Meyer et al. 2005)
In 63.2 (Meyer et al. 2005)

Si Sb 39 B 45
P 45 Al 67
As 54 Ga 73

Source: If not indicated di�erently, taken from Whitaker (2005). Freitas, J. A. et al., Phys. Stat. Solidi
B, 240, 330, 2003; Wangm, H. and A.-B. Chen, J. Appl. Phys., 87, 7859, 2000; Zeisel, R. et al. Phys.
Rev. B, 61, R16283, 2000; Meyer, B. K. et al., Semicond. Sci. Technol., 20, S62, 2005.
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FIGURE 12.8 (a) Coulomb potential isosurfaces for a random distribution of nine individual dopants in an axial
InxGa1−xN/GaN nanowire (NW) heterostructure. The active layer is marked in the lower part of the NW. (b) Elec-
tron (red) and hole (blue) ground-state charge density. (c) Histogram of the electron–hole ground-state recombination
energy for an ensemble of 500 di�erent random dopant distributions with an average of 8.3 charges in the vicinity of
the active layer. For the dimensions of the NW segment under consideration, this number corresponds to a doping
density of 1017 cm-3.

doping-related background charge (solid red line) as well as the one of an ideal, undoped NW (dashed
black line) are shown. It is seen that both of these energies are larger than the ones obtained assuming
RDFs, which arises from the fact that RDFs induce much deeper local potentials than the surface potential
arising from a homogeneous doping-related background charge. The ground-state recombination energy
of the undoped NW represents an upper limit for the other two models (Marquardt et al. 2015).

In contrast to shallow impurities, an atomistic treatment as described in Chapter 1 is necessary for deep
donors or acceptors, that is, impurities that exhibit a large chemical shi� or induce a large deformation to
the host lattice.

12.3.3 Dielectrically Enhanced Ionization Energies of Dopants

In the previous sections, we have neglected the mismatch in dielectric constants at the surface of the NWs.
Still, the discontinuity of the dielectric constant at the surface of NWs strongly a�ects the properties of
dopants in these nanostructures. In particular, it has been demonstrated that the Coulomb interaction is
enhanced in nanostructures surrounded by a barrier material with a lower dielectric constant (Keldysh
1979). This so-called dielectric con�nement is a consequence of the electrostatic potential that is set up
by the presence of a charged particle in a nanostructure and that can be calculated using the image charge
method (Kumagai and Takagahara 1989).

Whereas the mismatch in dielectric constants at the interface of heterostructures such as GaN (Al,Ga)N
or GaAs/(Al,Ga)As is small and induces only minor changes in the binding energy of excitons and in
the ionization energy of dopants (Andreani and Pasquarello 1990), the mismatch is maximum for NWs
in air or vacuum, and the increase in the dopant ionization energies due to the dielectric con�nement is
considerable (Shik 1993; Diarra et al. 2007). Although quantum con�nement leads as well to increased
ionization energies for impurities in NWs with a radius smaller than the Bohr radius of donors in the
bulk, aB (Bryant 1984), the dielectric con�nement in semiconductor NWs in vacuum sets in already for
NW radii smaller than 5aB (Diarra et al. 2007). This �nding has been veri�ed experimentally by Björk
et al. (2009) who measured a signi�cant increase in resistivity in n-doped Si NWs with a diameter smaller
than 15 nm.

The impact of image charges on donors or excitons in low dimensional systems has been studied using
envelope function calculations (Kumagai and Takagahara 1989), tight binding methods (Allan et al. 1995;
Diarra et al. 2007), or density functional calculations (Chan et al. 2008). All of these simulations predict an
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increase in ionization energy for donors located at the center of a nanostructure as a result of the dielectric
con�nement (Shik 1993; Diarra et al. 2007; Chan et al. 2008; Corfdir and Lefebvre 2012a). The situation
is more complicated for donors located o� the axis of NWs. Early e�ective-mass simulations neglecting
the dielectric con�nement have predicted that the in�nite potential barrier at the surface leads to a change
in the symmetry of the wave function of the donor ground-state electron and to a monotonic decrease in
donor ionization energy when getting closer to the surface (Levine 1965; Satpathy 1983). In particular, the
binding energy of an electron to a donor located at the surface of a semi-in�nite layer is one quarter of that
of a bulk donor (Levine 1965). However, accounting for the combination of the surface potential barrier
with the image charges, one obtains that the ionization energy of a donor in a thin slab bounded by vacuum
exhibits a nonmonotonic dependence on the donor site: It �rst increases and then decreases when the donor
moves from the center to the surface of the slab (Corfdir and Lefebvre 2012a). This position-dependent
binding energy of electrons to donors has been used to explain the inhomogeneous broadening of the
photoluminescence lines related to donor bound excitons in unintentionally doped and strain free GaN
NWs (Corfdir et al. 2014). However, using scanning tunneling microscopy, Wijnheimer et al. measured
a gradual increase in the ionization of Si over the last 1.2 nm below the (110) surface of a thick GaAs
layer (Wijnheijmer et al. 2009). This increase, not reproduced by the e�ective mass theory, was tentatively
explained by the authors in terms of broken symmetry at the surface.

The increase in dopant ionization energies in thin NWs due to the dielectric con�nement leads to a
decrease in conductivity, which may hinder the realization of e�cient electronic and optoelectronic devices
based on these structures (Björk et al. 2009). In addition, theoretical and experimental studies have shown
that the deactivation of dopants is not homogeneous across the NW section (Wijnheijmer et al. 2009). This
�nding, together with the nonuniform distribution of dopants in NWs discussed above and the modi�ca-
tion of the dielectric environment by electrical contacts or gates (Diarra et al. 2008), renders the simulation
of NW-based devices challenging.

12.4 Crystal-Phase Bandgap Engineering

An additional peculiarity of III–V NWs with respect to their planar counterpart is their pronounced
polytypism, that is, the crystal structure along the NW length alternates between WZ and ZB. Although
III-nitride NWs usually grow within the WZ structure with only a few stacking faults, III-arsenides and
III-phosphides NWs show frequent alternation between ZB and WZ segments of various lengths along
their axis (Figure 12.9a; Algra et al. 2008; Bao et al. 2008; Caro� et al. 2009; Jacopin et al. 2011; Heiss et al.
2011; Graham et al. 2013). This polytypism is usually regarded as detrimental for the electronic proper-
ties of NWs: Alternation between WZ and ZB crystal structures e�ciently scatters electrons (Konar et al.
2011) and leads to a signi�cant increase in the resistivity of NWs (Thelander et al. 2011). In addition, the
presence of stacking faults along the length of NWs leads to localization of electrons and holes, increasing
the ionization energies of dopants in these nanostructures (Corfdir et al. 2009).

Although considerable e�ort has been devoted to the elimination of stacking defects in NWs, some
degree of control on the switching between WZ and ZB during the NW growth has been demonstrated
(Algra et al. 2008; Caro� et al. 2009). This control opens the possibility of realizing crystal-phase bandgap
engineering in NWs, where carrier con�nement is obtained by alternation of the crystal structure and not
by the composition (Algra et al. 2008; Caro� et al. 2009; Akopian et al. 2010; Corfdir et al. 2013).

Such crystal-phase quantum structures exhibit atomically �at interfaces (Bolinsson et al. 2011) and are
free of alloy disorder. Thanks to the high quality of their interfaces, crystal-phase quantum structures
exhibit a sub-meV photoluminescence line width at cryogenic temperatures (Figure 12.9b; Akopian et al.
2010; Jacopin et al. 2011; Graham et al. 2013) and they can be of interest for quantum optics applications
(Akopian et al. 2010; Castelletto et al. 2014).

The band alignment between the WZ and the ZB phases of a III–V semiconductor is usually con-
sidered to be of type II, with the electron and the hole localized in the ZB and WZ phases, respectively
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FIGURE 12.9 (a) High-resolution transmission electron micrograph of a polytype GaAs nanowire (NW). Wurtzite
(WZ) segments are highlighted in red. (Adapted with permission from Corfdir et al. (2013). Copyright 2013 American
Chemical Society.) (b) Photoluminescence spectra at 4 K from single NWs (red, blue, green) and from an ensemble
(gray) of polytype GaAs NWs. The signal between 1.46 and 1.50 eV arises from recombination at crystal-phase quantum
disks. The inset depicts schematically the band pro�le for a zinc-blende (ZB) inclusion in WZ GaAs (blue). The energy
and the wave function of the electron (red) and the hole (green) are shown with solid and dashed lines, respectively.
(Adapted with permission from Graham et al. (2013). Copyright 2013 by the American Physical Society.) (c) Band
pro�les and electron and hole energy and wave function for the NW segment shown in (a). (Adapted with permission
from Corfdir et al. (2013). Copyright 2013 American Chemical Society.) (d) Oscillator strength for an exciton in a QW
of ZB GaN in WZ GaN as a function of the well thickness and in the presence of built-in electric �elds. The lines from
top to bottom correspond to built-in electric �elds of 0, 0.1, 0.5, 1, 2, and 3 MV/cm, respectively. The built-in electric
�elds along the con�nement axis lead to a spatial separation of the electron and hole wave functions (inset). (Adapted
with permission from Corfdir and Lefebvre (2012a). Copyright 2013, American Institute of Physics.)

(Figure 12.9b; Murayama and Nakayama 1994). Ab initio calculations have predicted small band o�sets
and small bandgap di�erences between the WZ and the ZB phases (Bechstedt and Belabbes 2013). There-
fore, although long radiative lifetimes have been calculated for thick crystal-phase QWs in NWs (Zhang
et al. 2010), the electron and hole wave functions for thin ZB insertions in the WZ show signi�cant spread-
ing into the WZ and the ZB, respectively. Their squared overlap is large (Corfdir and Lefebvre 2012b;
Corfdir et al. 2013) and thin crystal-phase QWs and QDs in NWs act as e�cient light emitters, despite
their type-II band alignment.

E�ective-mass calculations have been used to calculate the photoluminescence energy associated to sin-
gle crystal-phase QWs and to polytype semiconductor NW segments (Bao et al. 2008; Jacopin et al. 2011;
Heiss et al. 2011; Corfdir and Lefebvre 2012b; Lähnemann et al. 2012; Corfdir et al. 2013). For instance,
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such calculations have been combined with photoluminescence and transmission electron microscopy
experiments to obtain information on the band structure of WZ GaAs (Figure 12.9c; Corfdir et al. 2013).
However, the conclusions obtained from those studies remain only qualitative since many parameters
required for the calculations (e.g., the conduction and valence-band o�sets) are poorly known. The sit-
uation is particularly complex for GaAs NWs. Despite a large number of experimental and theoretical
studies, there is still no agreement on the value of the bandgap of WZ GaAs; values larger and smaller than
the bandgap of ZB GaAs have been reported, and the symmetry of the lowest energy conduction band of
this material remains under debate (Martelli et al. 2015). Note also that, due to the small conduction and
valence-band o�sets between the WZ and the ZB phases of a semiconductor, the energy computed for an
exciton in crystal-phase quantum structures of a thickness of a few monolayers is not sensitive to the exact
values of the band o�sets. As shown in Lähnemann et al. (2012), the photoluminescence energy for three-
to-�ve-monolayers-thick crystal-phase QWs in GaN NWs can in fact be reproduced using either a type-I
or a type-II band alignment between WZ and ZB GaN.

The connection of bands at the interface of di�erent crystal phases is of particular importance for the
modeling of polytype NWs. In the case of GaAs, the lowest conduction band in the ZB phase has a Γ6
symmetry and is well separated in energy from any remote conduction bands (Belabbes et al. 2012). The
equivalent of the Γ6 band in the WZ structure is the Γ7 band. However, compounds with a WZ structure
show an additional band with a Γ8 symmetry that results from the zone folding due to doubling of the
WZ unit cell along the [0001] direction when compared to the ZB unit cell. For WZ GaAs, recent studies
(De and Pryor 2010; Heiss et al. 2011; Belabbes et al. 2012; Graham et al. 2013) suggest that this Γ8 band is
very close in energy to the Γ7 band. It is, however, not clear yet which of these two bands exhibits the lowest
energy. This point is, however, essential since (1) these two bands are expected to exhibit very di�erent
e�ective masses and a weak coupling with the fundamental Γ7 and Γ9 valence bands, and (2) con�nement
in crystal-phase quantum disks could give rise to some conduction band mixing.

Finally, although strain-free compounds with a ZB structure do not exhibit any spontaneous polariza-
tion, WZ III–V semiconductors are polar materials. Di�erential phase contrast microscopy and photo-
luminescence spectroscopy on polytype NWs have shown that the spontaneous polarization in WZ GaAs
and GaN is aligned along the c-axis of the WZ and has a strength equal to 2.7×10−3 and−2.2×10−2 C/m2,
respectively (Bauer et al. 2014; Lähnemann et al. 2012). Since the axis of most WZ NWs is parallel to the
c direction, the spontaneous polarization �eld in polytype NWs shows discontinuities at the interfaces
between WZ and ZB segments. These discontinuities give rise to built-in electric �elds parallel to the axis
of polytype NWs with an intensity on the order of MV/cm in WZ/ZB GaN quantum structures (Corfdir
and Lefebvre 2012b; Lähnemann et al. 2012). The resulting quantum con�ned Stark e�ect strongly a�ects
the optical properties of thick crystal-phase QWs. The photoluminescence transitions are redshi�ed and
may be centered even at energies below the band gap of ZB GaN, as observed for ZB insertions thicker than
six monolayers (Jacopin et al. 2011), and the oscillator strength of the exciton is decreased (Figure 12.9d;
Corfdir and Lefebvre 2012b).

12.5 Optical Anisotropy of NWs—The Antenna Effect

Semiconductors in the form of NWs not only show altered electrical characteristics but also strongly mod-
i�ed optical properties. As shown by Wang et al. (2001), the electric �eld at the sidewalls of NWs with a
diameter much smaller than the wavelength is discontinuous (continuous) for light polarized perpendic-
ular (parallel) to the NW axis. For an NW considered as an in�nite dielectric cylinder, the electric �eld
is Ei = 2κ0∕

(

κr + κ0
)

E0 for light polarized perpendicular to the NW axis, where E0 is the electric �eld
outside the NW and κ0 and κr are the dielectric constants of vacuum and of the NW, respectively. Since
κr ≈ 10 in III–V semiconductors, this antenna e�ect leads to signi�cant polarization anisotropies of inter-
band transitions in NWs. In particular, the antenna e�ect may a�ect the emission intensity ratio between
di�erent interband transitions. For instance, while heavy holes have dipoles oriented perpendicular to the
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axis of GaAs NWs, light holes exhibit a large on-axis dipole. Optical transitions related to light–hole exci-
tons are thus promoted by the antenna e�ect (Spirkoska et al. 2012). Complete reversal of the polarization
anisotropy with respect to the bulk has even been predicted for WZ NWs with crystal �eld and spin–orbit
splittings such that the A and B valence bands are close in energy (Efros and Lambrecht 2014).

The situation is more complicated for NWs with diameters on the order of the wavelength, as they
support guided modes (Ruppin 2002). The latter gives rise to oscillations in the degree of polarization of
the NW luminescence with varying wavelength or NW diameter (Giblin et al. 2009; Corfdir et al. 2015).
NW ensembles usually exhibit a broad diameter distribution, and the polarization response may vary from
one NW to another (Corfdir et al. 2015).

The polarization properties of interband transitions have been commonly used to extract the strain state
of planar structures. Comparison between the measured optical anisotropy and the one computed using
k⋅p calculations has made it possible to estimate the strain state of group-III-nitrides layers grown along a
nonpolar or a semipolar axis (Ghosh et al. 2002; Funato et al. 2013). The analysis is more complicated for
NWs since the combination of strain, dielectric contrast and possible surface-induced wave function dis-
tortion (see Section 12.3.3) may result in a complex polarization anisotropy of the interband transitions in
NWs. For instance, the degree of polarization of single InP/InAs NWs exhibiting valence-band mixing and
dispersed on a carbon grid had to be calculated using detailed �nite di�erence time domain calculations
(Anufriev et al. 2015).
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and

Nenad Vukmirović
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13.1 Introduction

Semiconductor nanocrystals or quantum dots (QDs) are the subject of intensive research due to a number
of novel properties, which make them attractive for both fundamental studies and technological applica-
tions [1–6]. QDs are of particular interest for solar cell applications due to their ability to increase e�ciency
via the generation of multiexcitons from a single photon [7–9]. QDs can be synthesized with a high degree
of control using colloidal chemistry [10,11]. Much research e�ort has been directed toward studying
QDs grown from more than one semiconductor, e.g., core/shell heterostructures [12–14]. Such core/shell
nanostructures provide means to control the optical properties by tuning the electron–hole wave function
overlap, which is a�ected by the alignment of the conduction band (CB) and valence band (VB) edges,
as well as the QD shape and size [15–17]. In addition, such core/shell structures can provide for type-II
alignments with staggered CB and VB edges so the lowest energy states for electrons and holes lie in dif-
ferent spatial regions, leading to charge separation between the carriers. Such staggered band alignments
have several useful physical consequences, including longer radiative recombination times for more e�-
cient charge extraction in photovoltaic applications [18,19], optical gaps that can be made smaller than
the bulk values of constituent materials [12,20,21] and control of the electron–hole wave function overlap
that determines the exchange interaction energy [22]. Charge separation in type-II QDs can also be used
to increase the repulsion between like-sign charges in biexciton states [23,24], leading to the possibility of
lasing in the single exciton regime [6,25,26].

To determine the energetics of many-body states in QDs both the con�nement potential and many-body
interactions between the carriers need to be taken into account. Many-body interactions lead to Coulomb
(charge) and Fermi (spin) correlation. Coulomb correlation arises from the electrostatic interaction of
charge carriers in the many-body complex, while spin correlation occurs due to the fermionic character

419
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of charge carriers (i.e., the Pauli exclusion principle) [27]. Correlated many-body states may be calculated
with the con�guration interaction (CI) method, which can be used in the framework of continuum or
atomistic descriptions of single-particle (SP) states. [28–38].

Colloidal QDs are usually embedded or dispersed in media [39] of lower dielectric constant than the
semiconductor itself—this dielectric con�nement leads to a modi�cation of the Coulomb interaction,
which can be described using classical image charge theory. While atomistic calculations [40] showed that
dielectric con�nement signi�cantly a�ects the charging energies of QDs, in single-material spherical QDs
the similar electron and hole charge distributions lead to a weakened dielectric con�nement e�ect [41]
on exciton states, which mainly increases the binding energy [28,42]. It is, therefore, natural to wonder
if the optical properties of spherical type-II core/shell QDs can be signi�cantly a�ected by the dielectric
environment.

The e�ect of dielectric con�nement and many-electron correlation means that the single-particle picture
is not good enough to faithfully predict exciton energetics or wave functions in colloidal QDs. The proper
treatment of charges requires a many-electron description that goes beyond mean-�eld theories, and the
CI method is the most appropriate approach. However, the full con�guration method becomes progres-
sively computationally expensive as the number of states increases. Luckily, however, the interpretation of
physical experiments o�en requires detailed knowledge of just a few excitons of particular symmetry. This
allows us to evaluate the e�ect of correlation on exciton energies and dipole matrix elements for arbitrary
QD geometries.

In this chapter, we review the theoretical methods for the description of the electronic structure and
transport properties of colloidal nanocrystal quantum dots (NQD). The chapter is organized as follows:
a�er introducing the core/shell morphology in Section 13.2, in Section 13.3, we review the widely used
k⋅p theory for electronic structure of semiconductor nanostructures, both the 8-band and 14-band ver-
sion, taking into account e�ects like band-mixing, strain, piezoelectric �eld, and spin–orbit interaction. In
Section 13.4, we outline the plane wave (PW) basis set implementation of the k⋅p Hamiltonian and nec-
essary modi�cations for QDs, i.e., three-dimensional (3D) con�ned systems. In Section 13.5, we discuss
the e�ect of dielectric con�nement, polarization, and self-polarization due to large contrast and spatial
variation of the dielectric constant in colloidal NQD. In Section 13.6, we derive the CI Hamiltonian for
the description of many-electron states in colloidal NQD. In Section 13.7, we present the basic theory of
the electron transport through NQD networks. In Section 13.8, we present our results on the ground state
exciton absorption edge, radiative times of the ground state exciton, and correlation energies of the ground
state exciton, as well as electronic charge transport in NQD solids.

13.2 The Core/Shell QD Structure

The core/shell QD structures are comprised of a single-crystal “core” region enveloped by a second “shell”
region of a di�erent semiconductor material. The shell region usually possesses a larger band gap than
the core region. In such a con�guration, with appropriate materials combinations and alloys, such QD
can exhibit a type-II band alignment, thus o�ering an extra degree of freedom in quantum engineering
of nanostructures for speci�c purposes. The addition of the shell has two main e�ects. First, the shell
serves to passivate dangling bonds at the surface of the dot (surface ligands), which arise from the lack
of coordination in atoms at the dot surface, vastly reducing the number of trap states near the surface. This
reduces the e�ect of the nonradiative processes on device operations. Second, the energy o�sets forming
the type-II heterostructure result in con�nement of the charge carriers into separate regions of the QD:
electrons are con�ned to the core, while holes are con�ned to the shell region, or vice versa, depending on
the relative band alignment between the two regions. Such staggered band alignments have several useful
physical consequences, including longer radiative recombination times for more e�cient charge extrac-
tion in photovoltaic applications and optical gaps that can be made smaller than the bulk values of the
constituent materials. To illustrate the problem and introduce basic parameters, in Figure 13.1 we show
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FIGURE 13.1 (a) Cutaway view of a spherical core/shell quantum dot (QD) characterized by core radius ac and shell
thickness as; (b) conduction band minimum (CBM) and the valence band maximum (VBM) corresponding to type-II
alignment, in (i) an h∕e CdTe/CdSe QD and (ii) an e∕h CdSe/CdTe QD.

(a) a schematic of a spherical core/shell QD characterized by core radius ac and shell thickness as, the stag-
gered alignments of the CB minimum (CBM) and VB maximum (VBM) in type-II structures where (b,i)
holes (h) are con�ned in the core and electrons (e) are con�ned in the shell, as in CdTe/CdSe QDs and
(b,ii) electrons are con�ned in the core and holes are con�ned in the shell, as in CdSe/CdTe QDs.

13.3 The k•p Method for SP Electronic Structure

The quantum mechanical description of electrons in any material requires detailed knowledge of their
wave functions, ψn,k(r), which are found by solving the Schrödinger equation (in the single-electron
approximation):

H0ψn,k(r) = En,kψn,k(r). (13.1)

The Hamiltonian in Equation 13.1, H0 = p2∕2m0 + V(r), is the function of the quantum mechanical
momentum operator,p = −iℏ∇, and the crystal potential experienced by electrons, V(r) = V(r+R), which
is a periodic function, with the periodicity of the crystal lattice,R, and m0 is the free electron mass. Accord-
ing to Bloch’s theorem, the solutions to this Schrödinger equation can be written as ψn,k(r) = eik⋅run,k(r)
where k is the electron wave vector, n is the band index, and un,k is the cell-periodic function, with the same
periodicity as the crystal lattice. The cell-periodic function, un,k , satis�es the equation

Hkun,k = En,kun,k, (13.2)

where the Hamiltonian

Hk = H0 +H′
k =

p2

2m0
+ V + ℏ2k2

2m0
+

ℏk ⋅ p
m0

(13.3)

is given as a sum of two terms: the unperturbed, H0, which in fact equals the exact Hamiltonian at k = 0
(i.e., at the Γ point in the Brillouin zone) and the “perturbation,” H′

k . The Hamiltonian given by Equation
13.3 is called the k⋅p Hamiltonian [43–45]. If the eigenvalues are nondegenerate, the �rst-order energy
correction is given by E′n,k ≈ ⟨un,0|H′

k|un,0⟩ and there is no correction (to �rst order, in the absence of
nondiagonal matrix elements) in the eigenfunctions. The second-order correction arises from nondiagonal
terms; the energy correction is given by E′′n,k ≈

∑

n′≠n |⟨un,0|H′
k|un′,0⟩|

2∕(En,0−En′,0). The “perturbation”
term H′

k gets progressively smaller as k approaches zero. Therefore, the k⋅p perturbation theory is most
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accurate for small values of k. However, if enough terms are included in the perturbative expansion, then
the theory can in fact be reasonably accurate for any value of k in the entire Brillouin zone [46,47]. For a
band n, with an extremum at k = 0, and with no spin–orbit coupling, the result of k⋅p perturbation theory
is (to the lowest nontrivial order):

un,k = un,0 +
ℏ

m0

∑

n′≠n

⟨un,0|k ⋅ p|un′,0⟩

En,0 − En′,0
un′,0 (13.4)

En,k = En,0 +
ℏ2k2

2m0
+ ℏ2

m2
0

∑

n′≠n

|⟨un,0|k ⋅ p|un′,0⟩|
2

En,0 − En′,0
. (13.5)

The parameters required to do these calculations, the band edge energies, En,0, and the optical matrix
elements, ⟨un,0|p|un′,0⟩, are typically inferred from experimental data or detailed atomistic-based
theories.

A particular strength of the k⋅p theory is a straightforward inclusion of the spin–orbit interaction and
of the strain e�ects on the band structure via deformation potential theory [48].

Relativistic e�ects in the k⋅p method are included also perturbatively via the spin–orbit (SO) interaction
Hamiltonian, HSO =

ℏ
4m2

0c2

[

∇V (r) × p
]

⋅ σ⃗, where σ⃗ = (σx, σy, σz) is a vector consisting of the three Pauli
spin matrices. Finally, the k⋅p Hamiltonian becomes

Hk =
p2

2m0
+ V + ℏ2k2

2m0
+

ℏk ⋅ p
m0

+ ℏ
4m2

0c2
(σ⃗ × ∇V) ⋅ (ℏk + p). (13.6)

In a strained system, the lattice constants are stretched or compressed [48]. This a�ects the SP potential
experienced by electrons and consequently yields an additional term in the k⋅p Hamiltonian. Taking into
account only the e�ects up to �rst order in strain tensor ϵ, the strained k⋅p Hamiltonian becomes

Hk =
p2

2m0
+ V + ℏ2k2

2m0
+

ℏk ⋅ p
m0

+ 1
4m2

0c2
(σ⃗ × ∇V) ⋅ (k + p) +D� ⋅ �, (13.7)

where D� is the deformation potential operator. This Hamiltonian can be subjected to the same sort of
perturbation theory analysis as above [49].

The most widely used version of the k⋅p Hamiltonian is the 8-band model [50], in which the operator
given in Equation 13.7 is represented in the basis of s-bonding and p-antibonding states around the energy
gap:

|u1⟩ = |

1
2 ,+

1
2 ⟩ = |s; ↑⟩ |u5⟩ = |

1
2 ,−

1
2 ⟩ = −|s; ↓⟩

|u2⟩ = |

3
2 ,+

3
2 ⟩ =

i
√

2
[|x; ↑⟩ + i|y; ↑⟩] |u6⟩ = |

3
2 ,−

3
2 ⟩ = −

i
√

2
[|x; ↓⟩ − i|y; ↓⟩]

|u3⟩ = |

3
2 ,+

1
2 ⟩ =

i
√

6
[|x; ↓⟩ + i|y; ↓⟩ − 2|z; ↑⟩] |u7⟩ = |

3
2 ,−

1
2 ⟩ = +

i
√

6
[|x; ↑⟩ − i|y; ↑⟩ + 2|z; ↓⟩]

|u4⟩ = |

1
2 ,+

1
2 ⟩ =

i
√

3
[|x; ↓⟩ + i|y; ↓⟩ + |z; ↑⟩] |u8⟩ = |

1
2 ,−

1
2 ⟩ = +

i
√

3
[|x; ↑⟩ − i|y; ↑⟩ − |z; ↓⟩]

Occasionally, the 14-band k⋅p Hamiltonian is also used, in which one exploits the basis of p-bonding,
s-bonding, and p-antibonding states around the energy gap [51]:
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|u1⟩ = |

3
2 ,+

3
2 ⟩ =

i
√

2
|(xa + iya) ↑⟩ |u8⟩ = |

3
2 ,−

3
2 ⟩ = −

i
√

2
|(xa − iya) ↓⟩

|u2⟩ = |

3
2 ,+

1
2 ⟩ =

i
√

6
[|(xa + iya) ↓⟩ − 2|za ↑⟩] |u9⟩ = |

3
2 ,−

1
2 ⟩ = +

i
√

6
[|(xa − iya) ↑⟩ + 2|za ↓⟩]

|u3⟩ = |

1
2 ,+

1
2 ⟩ =

i
√

3
[|(xa + iya) ↓⟩ + |za ↑⟩] |u10⟩ = |

1
2 ,−

1
2 ⟩ = +

i
√

3
[|(xa − iya) ↑⟩ − |za ↓⟩]

|u4⟩ = |

1
2 ,+

1
2 ⟩ = |sa ↑⟩ |u11⟩ = |

1
2 ,−

1
2 ⟩ = −|sa ↓⟩

|u5⟩ = |

3
2 ,+

3
2 ⟩ =

i
√

2
|(xb + iyb) ↑⟩ |u12⟩ = |

3
2 ,−

3
2 ⟩ = −

i
√

2
|(xb − iyb) ↓⟩

|u6⟩ = |

3
2 ,+

1
2 ⟩ =

i
√

6
[|(xb + iyb) ↓⟩ − 2|zb ↑⟩] |u13⟩ = |

3
2 ,−

1
2 ⟩ = +

i
√

6
[|(xb − iyb) ↑⟩ + 2|zb ↓⟩]

|u7⟩ = |

1
2 ,+

1
2 ⟩ =

i
√

3
[|(xb + iyb) ↓⟩ + |zb ↑⟩] |u14⟩ = |

1
2 ,−

1
2 ⟩ = +

i
√

3
[|(xb − iyb) ↑⟩ − |zb ↓⟩]

13.4 PW Implementation of the k•p Hamiltonian and Coulomb
Integrals for QD Structures

The QD as a three-dimensional (3D) object breaks the translational symmetry of the bulk material along
all three Cartesian directions implying operator replacement kν → −i∂∕∂ν in Equation 13.6, where ν =
(x, y, z). To solve the multiband system of Schrödinger equations, Equation 13.6, the PW methodology
is employed as an expansion method [33,52–56]. In the PW representation, the eigenvalues (Ei) and the
coe�cients [A(i)n,k] of the ith eigenvector [ψ(i)n (r) =

∑

k A(i)n,keikr], are linked by the relation

∑

n,k′
hm,n(k, k′)A

(i)
n,k′ = EiA

(i)
m,k, (13.8)

where hm,n(k, k′) are the Hamiltonian matrix elements in the PW basis, and m, n ∈ {1, ..., 8} or m, n ∈
{1, ..., 14} are the band indices in the k⋅p Hamiltonian. All the elements in the Hamiltonian matrix,
Equation 13.8, can be expressed as a linear combination of di�erent kinetic and strain related terms
and their convolution with the characteristic function of the QD shape, χqd(k) [33,57]. The whole k-
space is discretized by embedding the QD in a rectangular box of dimensions Lx, Ly, and Lz and volume
Ω = Lx × Ly × Lz and choosing the k-vectors in the form k = 2π(nx∕Lx, ny∕Ly, nz∕Lz), where nx, ny, and
nz are integers. Maximal absolute values of these integers control the accuracy of the method.

Having determined PW expansion coe�cients, A(i)n,k , from Equation 13.8, we can use the single-particle

wave functions,ψ(i)n (r), to calculate the Coulomb integrals, Vijkl, relevant for many-electron processes that
occur in QDs. The Coulomb integral among states i, j, k, and l is de�ned as

Vijkl =
Nb
∑

b=1

Nb
∑

b′=1
∫Ω

d3r ∫Ω
d3r′ψ(i)b (r)

∗ψ(j)b (r)V(|r − r′|)ψ(k)b′ (r
′)∗ψ(l)b′ (r

′), (13.9)

where V(u) = e2∕4πϵu, with ϵ being the static dielectric constant, b is the band index, and Nb is the number
of bands, i.e., 8 or 14 in the k⋅p Hamiltonian. The integral 13.9 can be rewritten as

Vijkl = ∫Ω
d3r ∫Ω

d3r′Bij(r)V(|r − r′|)Bkl(r′), (13.10)

where we introduce

Bij(r) =
Nb
∑

b=1
ψ(i)b (r)

∗ψ(j)b (r). (13.11)
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The integral 13.10 can be calculated by performing a six-dimensional integration in real space, which is,
however, numerically very demanding, especially when a large number of integrals has to be calculated, as
in the CI approach [33,58]. One of the advantages of the PW method is that relevant physical quantities
can be expressed in terms of the coe�cients in the PW expansion, i.e., by the Fourier transform (FT). The
last statement holds in principle when the evaluation of Coulomb integrals is concerned, since the FT of
the Coulomb potential is fully analytical. This can be shown by the following set of transformations leading
to Equation 13.16. De�ning the PW expansion of Bij(r)

Bij(r) =
∑

k
Bij(k)eik⋅r (13.12)

and putting the last expression into Equation 13.10 one obtains

Vijkl =
∑

k
Bij(k)

∑

k′
Bkl(k′) ∫Ω

d3r ∫Ω
d3r′eik⋅rV(|r − r′|)eik′⋅r′ . (13.13)

Using the properties of convolution and Parseval’s theorem in inverse space, the Bij(k) can be expressed in
terms in the coe�cients in the PW expansion of the envelope functions as

Bij(k) =
Nb
∑

b=1

∑

q
A(i)∗b,q A(j)b,q+k. (13.14)

By introducing the approximation changing the domain of integration in one of the integrals in
Equation 13.13 from Ω to the whole space (which is valid when Ω is large enough) one gets a�er the
replacement of variables from r and r′, to r and u = r − r′

Vijkl =
∑

k
Bij(k)

∑

k′
Bkl(k′)[∫Ω

d3reik⋅reik′⋅r][∫ d3uV(|u|)e−ik′⋅u]. (13.15)

Using the relations

∫ d3ue−ik′uV(|u|) = e2

ϵk′2

and

1
Ω ∫Ω

d3rei(k+k′)r = δk+k′,0

one obtains

Vijkl = Ω
∑

k
k≠0

Bij(k)Bkl(−k)
e2

ϵk2 . (13.16)

13.5 The Effect of Dielectric Confinement

For colloidal QDs, the dielectric constant ϵ of the QD material is typically much larger than that of the sur-
rounding medium, and the spatial variation ϵ = ϵ(r) cannot be ignored. Such dielectric contrast means that
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any free charge in the QD induces polarization charge in the QD and its surroundings. As a consequence,
the Coulomb energy for the electron–hole pair for a system with a spatially varying dielectric constant is

V(re, rh) = Vc(re, rh) + Vs(re) + Vs(rh), (13.17)

where Vc is the interparticle Coulomb potential and Vs is the self-polarization potential. The potential,
Vc(re, rh), encompasses both the “direct” interparticle Coulomb interaction and the interface polarization
potential due to the interaction between a real particle and the induced charge of the other particle. The
self-polarization potential Vs(r) arises from the interaction of a particle and its own induced charge.

The interparticle Coulomb potential in real space:

Vc(re, rh) =
1

ϵ(re, rh)
e2

4πϵ0|re − rh|
, (13.18)

under the assumption, ϵ(re, rh) ≈ ϵ(re − rh) = ϵ(r) [59], can be recast in the form of product of two
functions

Vc(r) =
1
ϵ(r)

e2

4πϵ0|r|
= 1
ϵ(r)

U(r), (13.19)

where U(r) = e2∕4πϵ0r is the bare Coulomb potential due to charge e, with the well-known FT in the
inverse space:  [U(r)] = Ũ(k) = e2∕ϵ0k2. Considering stepwise uniform regions where ϵ (r) = ϵm =
const., and m is the index of the region, and spherical QD shape, the general expression, Equation 13.18,
acquires the simple analytical form:

Ṽc(k) =
e2

ϵ0k2

[

1
ϵc
+
(

1
ϵs
− 1
ϵc

)

cos(kRc) +
(

1
ϵcoll.

− 1
ϵs

)

cos(kRs)
]

, (13.20)

where ϵc, ϵs, and ϵcoll. are the dielectric constants of the QD’s core, shell, and surrounding colloid
respectively, and Rc and Rs are the radius of core and outer radius of the shell, respectively.

Calculation of the self-polarization potential for the arbitrary QD shape in the inverse space is a bit
involved. Alternatively, for several characteristic QD shapes, like spherical QD [60], spherical core/shell
QD [61,62], elliptical QD [63], elliptical core/shell QD [64–66], and cuboidal QD [67], there are available
expressions for Vs(r) in real space. Here, we list a general expression for the self-polarization potential of
spherical QD with an arbitrary number, m, of core/shells:

Vm
s (r) =

e2

8πϵ0ϵm

∞
∑

l=0

1
1 − pm,lqm,l

[

pm,lr2l + pm,lqm,lr−1 + qm,lr−2(l+1)
]

, (13.21)

where pm,l and qm,l are recursive coe�cients that depend on the dielectric constants, ϵm, and radii, Rm, in
the region m, of the core/shell structures (see Ref. [61]). Such expressions are then simple to FT into Ṽs(k)
and are used when calculating the Coulomb matrix elements, Vijkl for the CI Hamiltonian; see Section 13.6.
The expression for the contribution of the direct Coulomb, Equation 13.20, and self-polarization energy,
Equation 13.21, to the total Coulomb integral reads as

V(c)
ijkl = Ω

∑

k
k≠0

Bij(k)Bkl(−k)Ṽc(k) (13.22)
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FIGURE 13.2 Variation of the interparticle Coulomb potential (a), Vc(r), and self-polarization potential (b), Vs(r),
of CdSe/CdTe core shell quantum dot (QD) with ϵc = 7.1, ϵs = 6.2, ϵcoll. = 2, and Rc = 2 nm and Rs = 3 nm. In
(a), the tiny bright line represents analytic Vc(r) obtained by Equation 13.19, while solid thick line represents the same
Vc(r) recovered from the analytical expression in the inverse space, Equation 13.20.

and

V(s)
ijkl = Ω

∑

k
[Bij(k)δkl + δijBkl(k)]Ṽs(k). (13.23)

In colloidal core/shell QDs, the self-polarization potential is characterized by a small peak and well near
the core/shell interface due to the small dielectric mismatch between the core and shell materials. However,
a much larger peak just inside r = Rc+Rs and a deep well slightly outside the QD are due to the far greater
dielectric mismatch of the shell and matrix material. In Figure 13.2, we present the radial variation of Vc(r)
and Vs(r) of CdSe/CdTe core shell QD with ϵc = 7.1, ϵs = 6.2, ϵcoll. = 2, and Rc = 2 nm and Rs = 3 nm.

13.6 The Configuration Interaction Hamiltonian for NQD

In this section, we derive the Hamiltonian describing interacting electrons and holes in QDs. This Hamil-
tonian can be used to calculate neutral and charged excitonic and multiexcitonic states that are populated
upon photoexcitation of the QD.

We start with a general Hamiltonian describing interacting electrons in the solid

H = Hs +Hint, (13.24)

where the noninteracting part of the Hamiltonian is

Hs = ∫ d3x ψ† (x)
[

− ℏ2

2m0
∇2 + V (x)

]

ψ (x) d3x (13.25)

and the interaction part is

Hint =
1
2 ∫ d3x d3y ψ† (x) ψ†

(

y
)

Vint
(

x, y
)

ψ
(

y
)

ψ (x) . (13.26)
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In previous equations, ψ (x) is the fermionic �eld operator, ψ† (x) is its adjoint operator, V is the potential
of atomic cores in the solid, and Vint

(

x, y
)

is the interaction potential between the particles at x and y,
which for the bare Coulomb interaction reads Vint

(

x, y
)

= e2

4πϵ0|x−y|
.

Next, we express the �eld operator in terms of annihilation operators as

ψ (x) =
∑

v∈VB
avϕv (x) +

∑

c∈CB
acϕc (x) , (13.27)

where ϕc (x) and ϕv (x) are the SP wave function for states in the CB and VB, while ac and av are the corre-
sponding electron annihilation operators. The operator ac acts on arbitrary many-body state of the system
by destroying an electron in state c and av acts by destroying an electron in state v. Their adjoint operators
a†c and a†v act by creating an electron in the corresponding state. A�er substitution of Equation 13.27 into
Equations 13.25 and 13.26, one arrives at the expressions

Hs =
∑

j1j2

a†j1 aj2 ∫ d3x ϕ∗j1 (x)
[

− ℏ2

2m0
∇2 + V (x)

]

ϕj2 (x) (13.28)

Hint =
1
2

∑

j1j2j3j4

a†j1 a†j2 aj3 aj4 ∫ d3x d3y ϕ∗j1 (x) ϕj4 (x)Vint
(

x, y
)

ϕ∗j2
(

y
)

ϕj3
(

y
)

, (13.29)

i.e.,

H =
∑

j1j2

vj1j2 a†j1 aj2 +
1
2

∑

j1j2j3j4

Vj1j4j2j3 a†j1 a†j2 aj3 aj4 , (13.30)

where

vj1j2 = ∫ d3x ϕ∗j1 (x)
[

− ℏ2

2m0
∇2 + V (x)

]

ϕj2 (x) (13.31)

Vj1j4j2j3 = ∫ d3x d3y ϕ∗j1 (x) ϕj4 (x)Vint
(

x, y
)

ϕ∗j2
(

y
)

ϕj3
(

y
)

. (13.32)

The summations in Equation 13.30 should in principle include all SP states in the valence and the CB.
However, we are interested mainly in the lowest energy excitations of the system where electrons at the
bottom of the CB and holes at the top of the VB are created. To study these excitations, it is more convenient
to use electron and hole creation and annihilation operators ej(e

†
j ) and hj(h

†
j ) de�ned as ej = aj, when

j ∈ CB and hj = a†j when j ∈ VB. These operators satisfy the following fermionic commutation rules:

{ei, e†j } = δij, {hi, h†j } = δij, {ei, ej} = 0, {hi, hj} = 0, {e†i , hj} = 0, {ei, h†j } = 0, where {a, b} = ab + ba
denotes the anticommutator of two operators. The Hs term then reads

Hs =
∑

j1j2∈CB
vj1j2 e†j1 ej2 −

∑

j1j2∈VB
vj2j1 h†j1 hj2 +

∑

j∈VB
vjj, (13.33)

where the last term contributes an irrelevant constant shi� and can be omitted from further consideration.
To obtain the Hint term, we �rst introduce an approximation to consider only the terms in Hint that con-
tain the same number of electron creation and annihilation operators, as well as the same number of hole
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creation and annihilation operators. The other terms that do not conserve the number of pair excitations
give rise to the polarization of the electronic orbitals, and their main e�ects can be taken into account by a
dielectric constant in the Coulomb potential, which can be inserted into the �nal result [68].

Under such an assumption the Hint term consists of three sets of terms Hint = H(1)
int + H(2)

int + H(3)
int . The

�rst set of these terms (when j1, j2, j3, j4 ∈ CB) reads:

H(1)
int =

1
2

∑

j1j2j3j4

Vj1j4j2j3 e†j1 e†j2 ej3 ej4 . (13.34)

The second set of these terms H(2)
int that is obtained when j1, j2, j3, j4 ∈ VB contains the term hj1 hj2 h†j3 h†j4 .

By exploiting the fermionic commutation relations, this term can be rewritten as

hj1 hj2 h†j3 h†j4 = δj2j3δj1j4 −δj1j3δj2j4 −δj2j3 h†j4 hj1 −δj1j4 h†j3 hj2 +δj1j3 h†j4 hj2 +δj2j4 h†j3 hj1 +h†j3 h†j4 hj1 hj2 . (13.35)

The H(2)
int term is then given as

H(2)
int =

1
2
∑

j1j2

Vj1j1j2j2 −
1
2
∑

j1j2

Vj1j2j2j1 −
1
2
∑

j1j2j4

Vj1j4j2j2 h†j4 hj1 −
1
2
∑

j1j2j3

Vj1j1j2j3 h†j3 hj2

+1
2
∑

j1j2j4

Vj1j4j2j1 h†j4 hj2 +
1
2
∑

j1j2j3

Vj1j2j2j3 h†j3 hj1 +
1
2

∑

j1j2j3j4

Vj1j4j2j3 h†j3 h†j4 hj1 hj2 .
(13.36)

In Equation 13.36, the �rst and the second terms describe the Coulomb direct and exchange interactions
between the carriers in fully occupied VB. These terms lead to an irrelevant shi� of the total energy and can
be omitted from the Hamiltonian. The third and the fourth terms describe the direct Coulomb interaction
of holes with fully occupied VB, while the ��h and the sixth terms describe the exchange interaction of
holes with fully occupied VB. The third, fourth, ��h, and sixth terms are of the same mathematical form
as the second term in Hs [Equation 13.33] and can be considered to originate from the e�ective potential
that describes the interaction of holes with occupied VB. Consequently, these terms can be incorporated
into Hs. Finally, the last term in Equation 13.36 describes the hole–hole interaction.

The third set of terms, H(3)
int , includes the terms that contain two electron and two hole operators. Among

these terms, the terms that contain hj1 e†j2 ej3 h†j4 and e†j1 hj2 h†j3 ej4 contribute equally to H(3)
int . The same holds

for the terms that contain hj1 e†j2 h†j3 ej4 and e†j1 hj2 ej3 h†j4 . By exploiting the identities

hj1 e†j2 ej3 h†j4 = e†j2 ej3 hj1 h†j4 = δj1j4 e†j2 ej3 + e†j2 h†j4 ej3 hj1 (13.37)

and

hj1 e†j2 h†j3 ej4 = −e†j2 ej4 hj1 h†j3 = −δj1j3 e†j2 ej4 − e†j2 h†j3 ej4 hj1 (13.38)

one obtains

H(3)
int =

∑

j1j2j3j4

Vj1j4j2j3 e†j2 h†j4 ej3 hj1 −
∑

j1j2j3j4

Vj1j4j2j3 e†j2 h†j4 ej3 hj1

+
∑

j1j2j3

Vj1j1j2j3 e†j2 ej3 −
∑

j1j2j4

Vj1j4j2j1 e†j2 ej4 .
(13.39)
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The last two terms in Equation 13.39 describe direct and exchange Coulomb interaction of electrons with
fully occupied VB. In the same way as similar terms for holes these can be incorporated into Hs. One thus
obtains the Hamiltonian

H =
∑

j1j2∈CB
ṽj1j2 e†j1 ej2 −

∑

j1j2∈VB
ṽj2j1 h†j1 hj2

+1
2
∑

ijkl
Viljke†i e†j ekel +

1
2
∑

ijkl
Vlikjh

†
i h†j hkhl

−
∑

ijkl
e†i h†j hkel

(

Vilkj − Vijkl

)

.

(13.40)

So far, we have not speci�ed the SP states ϕc (x) and ϕv (x). If we choose these states to be eigenstates of
the e�ective SP Hamiltonian ṽij, Equation 13.40 reduces to

H =
∑

j∈CB
εje

†
j ej −

∑

j∈VB
εjh

†
j hj

+1
2
∑

ijkl
Viljke†i e†j ekel +

1
2
∑

ijkl
Vlikjh

†
i h†j hkhl

−
∑

ijkl
e†i h†j hkel

(

Vilkj − Vijkl

)

.

(13.41)

To obtain the energies of exciton states, one needs to diagonalize the Hamiltonian given in Equation 13.41.
Since all terms in the Hamiltonian contain only the operators that conserve the number of electrons and
the number of holes, one can separately �nd exciton states (one electron and one hole), biexciton states
(two electrons and two holes), negative trions (two electrons and one hole), etc. For example, to �nd the
exciton states one has to diagonalize the Hamiltonian in the Hilbert space spanned by the vectors e†ah†b |G⟩,
where |G⟩ is the ground state of the system (fully occupied VB and empty CB), a ∈ CB and b ∈ VB. Each
element of the Hamiltonian matrix depends on Coulomb integrals de�ned in Equation 13.32. When the
k⋅p method is used to evaluate the SP wave functions, these are expressed as

ϕj (x) =
∑

b
ψ(b)j (x) ub (x) , (13.42)

where b is the band index, ub (x) is the Bloch function of underlying crystal, and ψ(b)j is the slowly varying
envelope function. The Coulomb integral (Equation 13.32) then reads

Vj1j4j2j3 =
∑

b1b2b3b4
∫ d3x d3y ψ(j1)b1

(x)∗ ψ(j4)b4
(x)Vint

(

x, y
)

ψ(j2)b2

(

y
)∗ ψ(j3)b3

(

y
)

×

×u∗b1
(x) ub4

(x) u∗b2

(

y
)

ub3

(

y
)

.

(13.43)

Next, we exploit the fact that for the slowly varying function f (u) and rapidly varying periodic function
g (u), the following approximation holds

∫ du f (u) g (u) ≈ ∫ du f (u) ⟨g (u)⟩T , (13.44)
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where ⟨g (u)⟩T is the average of the function g (u) over its period. In Equation 13.43, the terms in the �rst
line de�ne a slowly varying function, while the terms in the second line de�ne a rapidly varying function
whose average over the period is

⟨

u∗b1
(x) ub4

(x) u∗b2

(

y
)

ub3

(

y
)

⟩

T
= δb1b4

δb2b3
, (13.45)

due to orthonormality of the Bloch functions. Consequently, the Coulomb integral 13.43 can be expressed
only in terms of envelope functions as

Vj1j4j2j3 =
∑

b1b2
∫ d3x d3y ψ(j1)b1

(x)∗ ψ(j4)b1
(x)Vint

(

x, y
)

ψ(j2)b2

(

y
)∗ ψ(j3)b2

(

y
)

. (13.46)

These integrals can be evaluated in the PW representation using the expression given by Equation 13.16
in Section 13.4. More details on the implementation of a numerically e�cient scheme for evaluation of
Coulomb integrals when the PW basis is used to represent the envelope functions is given in Ref. [33].

13.7 Transport Properties of QD Nanocrystal Arrays

In this section, we discuss electrical transport properties of colloidal QD nanocrystal arrays and we derive
the formula for the charge carrier hopping probability from one dot to another.

QDs obtained by colloidal chemistry typically contain ligand molecules that passivate the surface and
eliminate unwanted surface trap states. However, the ligands also increase the separation between the
neighboring dots and consequently decrease the wave function overlap between the electron wave func-
tions in neighboring dots (and their electronic coupling). The presence of ligands, therefore, signi�cantly
inhibits charge transport between neighboring dots. The approaches where short ligands are used enable
the improvement of electrical transport between the dots.

To engineer the transport in QD arrays, it is highly desirable to have a theoretical approach for calcu-
lating the electrical transport properties of these systems. Since electronic coupling between the dots is
weak, it can be considered a perturbation that leads to occasional carrier hopping from one dot to another.
To evaluate the hopping rate of charge carrier between the dots, we model the system using the following
Hamiltonian

H = H1 +H2 + V. (13.47)

In the previous equation, H1 is the Hamiltonian of the �rst dot, H2 is the Hamiltonian of the second dot, and
V is the part of the Hamiltonian that describes the electronic coupling between two dots. For notational
simplicity, we will assume that each of the dots accommodates only one electronic energy level that is
coupled to all vibrational modes of that dot. The Hamiltonian H1 is then given as

H1 = ε1a†1a1 +
∑

s
ℏω1sb

†
1sb1s +

∑

s
g1sℏω1sa

†
1a1

(

b†1s + b1s

)

. (13.48)

In the previous equation, a1 is the electron annihilation operator that annihilates an electron in state of
energy ε1, g1s is the dimensionless coupling constant describing the coupling of electron in dot 1 to the
phonon mode s of dot 1, and ℏω1s is the energy of that phonon mode, while b1s is the corresponding
phonon annihilation operator. Electronic operators satisfy fermionic commutation relations, while phonon
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operators satisfy bosonic commutation relations. Analogously, the Hamiltonian H2 reads

H2 = ε2a†2a2 +
∑

s
ℏω2sb

†
2sb2s +

∑

s
g2sℏω2sa

†
2a2

(

b†2s + b2s

)

, (13.49)

where the notation is analogous to that in the Hamiltonian H1. The last term in Equation 13.47 reads

V = −t
(

a†1a2 + a†2a1

)

, (13.50)

where t is the electronic coupling parameter between the two electronic states in dots 1 and 2.
We are interested in determining the transition rate for the process in which an electron that is initially

in dot 1 makes a transition to dot 2. Possible initial states for this process are |i⟩ = a†1
|

|

|

iph
⟩

, where ||
|

iph
⟩

denotes a state of the phonon subsystem. The �nal state is given as |
|

f ⟩ = a†2
|

|

|

fph
⟩

, where ||
|

fph
⟩

is the �nal
state of the phonon subsystem. The transition rate is then given by Fermi’s Golden Rule rule expression

W = 2π
ℏ

∑

i
pi
∑

f

|

|

|

Vif
|

|

|

2
δ
(

Ei − Ef
)

, (13.51)

where pi is the probability that the initial state is |i⟩ Vif = ⟨i |V| f ⟩ is the matrix element of the operator
V , while Ei and Ef are energies of the unperturbed system in the initial and �nal states. We will transform
this conventional expression to a form that is more convenient for our analysis. Using the identities

δ
(

Ei − Ef
)

= 1
2πℏ ∫

∞

−∞
dt exp

[ i
ℏ
(

Ei − Ef
)

t
]

, (13.52)

|

|

|

Vif
|

|

|

2
= ⟨i |V| f ⟩ ⟨f |V| i⟩ , (13.53)

and

⟨i |V| f ⟩ exp
[ i
ℏ
(

Ei − Ef
)

t
]

=
⟨

i
|

|

|

|

exp
[ i
ℏ

H0t
]

V exp
[

− i
ℏ

H0t
]

|

|

|

|

f
⟩

(13.54)

where H0 = H1 +H2, we arrive at the expression for transition rates that is convenient for our analysis

W = 1
ℏ2 ∫

∞

−∞
dt
∑

i
pi
∑

f

⟨

i |
|

VI (t)|| f
⟩⟨

f |
|

VI (0)|| i
⟩

, (13.55)

where VI (t) = exp
[

i
ℏH0t

]

V exp
[

− i
ℏH0t

]

.
The Hamiltonians H1 and H2 can be diagonalized exactly using the unitary transformation

U = exp

[

a†1a1
∑

s
g1s

(

b†1s − b1s

)

]

exp

[

a†2a2
∑

s
g2s

(

b†2s − b2s

)

]

. (13.56)
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This transformation acts on electron and phonon operators as

UaiU† = ai exp

[

∑

s
gis

(

b†is − bis

)

]

(13.57)

and

UbisU† = bis − gisa
†
i ai. (13.58)

The transformed Hamiltonian then reads

H̃ = UHU† = H̃1 + H̃2 + Ṽ, (13.59)

with

H̃1 =

(

ε1 −
∑

s
g2

1sℏωs

)

a†1a1 +
∑

s
ℏω1sb

†
1sb1s, (13.60)

H̃2 =

(

ε2 −
∑

s
g2

2sℏωs

)

a†2a2 +
∑

s
ℏω2sb

†
2sb2s, (13.61)

and

Ṽ = −t

[

a†1a2 exp

[

−
∑

s
g1s

(

b1s − b†1s

)

]

exp

[

∑

s
g2s

(

b2s − b†2s

)

]

+ c.c.

]

. (13.62)

To obtain the expression for transition probability given by Equation 13.55, we �rst express the matrix
elements as

⟨

i |
|

VI (t)|| f
⟩

= ⟨Ψi|| exp
( i
ℏ

H̃0t
)

Ṽ exp
(

− i
ℏ

H̃0t
)

|

|

Ψf⟩ . (13.63)

In the last expression |
|

Ψi⟩ =U |i⟩ and |
|

Ψf⟩ =U |

|

f ⟩. By noting that H̃0 = H̃e
0+H̃ph

0 and exp
[

− i
ℏ H̃e

0t
]

|

|

Ψf⟩ =

exp
[

− i
ℏεft

]

|

|

Ψf⟩, using Equations 13.62 and 13.55 one arrives at

W = t2

ℏ2 ∫

∞

−∞
du exp

[ i
ℏ
(

εi − εf
)

u
]

∑

iph

piph

×
∑

fph

⟨iph| exp
( i
ℏ

H̃ph
0 u

)

exp

[

−
∑

s
g1s

(

b1s − b†1s

)

]

exp

[

∑

s
g2s

(

b2s − b†2s

)

]

exp
(

− i
ℏ

H̃ph
0 u

)

|fph⟩

× ⟨fph| exp

[

∑

s
g1s

(

b1s − b†1s

)

]

exp

[

−
∑

s
g2s

(

b2s − b†2s

)

]

|iph⟩. (13.64)
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Taking into account that
∑

fph
|fph⟩⟨fph| = 1 and

∑

iph
piph

⟨iph|X|iph⟩ = ⟨X⟩ph, where ⟨X⟩ph denotes the
expectation value of the operator X, we obtain

W = t2

ℏ2 ∫

∞

−∞
du exp

[ i
ℏ
(

εi − εf
)

u
]

×

⟨

exp

{

−
∑

s
g1s

[

b1s(u) − b†1s(u)
]

}

exp

{

∑

s
g1s

[

b1s − b†1s

]

}⟩

×

⟨

exp

{

∑

s
g2s

[

b2s(u) − b†2s(u)
]

}

exp

{

−
∑

s
g2s

[

b2s − b†2s

]

}⟩

.

(13.65)

Next, we exploit the identity

⟨

exp
{

−gis

[

bis(u) − b†is(u)
]}

exp
{

gis

[

bis − b†is
]}⟩

=

exp
{

−g2
is
[

2nis + 1 − (nis + 1)e−iωisu − niseiωisu]} ,
(13.66)

where gis, nis, and ℏωis are, respectively, the electron–phonon coupling constant, the phonon occupation
number and the phonon energy for the sth phonon mode at site i. We �nally obtain the transition rate as
[69–71]

W = t2

ℏ2 ∫

∞

−∞
du exp

[ i
ℏ
(

εi − εf
)

u
]

×

∏

s
exp

{

−g2
1s
[

2n1s + 1 − (n1s + 1)e−iω1su − n1seiω1su]}×

∏

s
exp

{

−g2
2s
[

2n2s + 1 − (n2s + 1)e−iω2su − n2seiω2su]} .

(13.67)

Equation 13.67 can be used directly to calculate the transition rate from one dot to another. In some cases,
a simpler Marcus formula is o�en used instead of Equation 13.67. In what follows, we introduce additional
approximations that lead to the reduction of Equation 13.67 to the Marcus formula. However, we alert the
reader that the conditions for the validity of the Marcus formula should be carefully checked before that
formula is used.

A detailed analysis of the exponential terms in Equation 13.67 leads to the conclusion that when
electron–phonon interaction is strong (

∑

s g2
is ≫ 1) exponential terms decay very quickly when |

|

ωisu|| ≫ 1.
Therefore, only the terms with |

|

ωisu|| ≪ 1 contribute signi�cantly to the integral. By keeping terms up to
the quadratic in the Taylor expansion eiωist = 1 + iωist −

1
2ω

2
ist

2, one obtains

∏

s
exp

{

−g2
1s
[

2n1s + 1 − (n1s + 1)e−iω1su − n1seiω1su]} ≈

∏

s
exp

(

iω1sg2
1su

)

exp
[

−1
2

g2
1sω

2
1su

2 (2n1s + 1
)

]

.
(13.68)

When the temperature is high, kBT ≫ ℏωis, the
(

2nis + 1
)

term reduces to 2kBT
ℏωis

. Using that approximation
one obtains

W ≈ t2

ℏ2 ∫

∞

−∞
du exp

[ i
ℏ
(

εf − εi + λ1 + λ2
)

u
]

exp
[

−
kBT
ℏ2

(

λ1 + λ2
)

u2
]

, (13.69)
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where λi =
∑

s ℏωis g2
is. The solution of the last integral gives the Marcus formula

W ≈ t2

ℏ

√

π
kBTλ

exp

[

−

(

λ + εf − εi
)2

4kBTλ

]

, (13.70)

where λ = λ1 + λ2.

13.8 Practical Examples: Cd-Based Chalcogenide QDs

13.8.1 Comparison with Experiment: Absorption Edge Wavelength of
CdSe/CdTe Type II CQDs

In this section, we apply the theoretical approach described in previous sections to calculate the absorp-
tion wavelength in CdSe/CdTe core/shell QDs. We analyze the in�uence of CdSe/CdTe core/shell colloidal
QD (CQD) morphology on the variation of the �rst exciton peak in the absorption spectra, which cor-
responds to excitation of the 1Se

1∕21Sh
3∕2 state. As a �rst step, we validate our theoretical methodology,

Sections 13.3–13.6, based on the combination of k⋅p and CI Hamiltonians, against available experimen-
tal and theoretical results on CdSe and CdTe core-only CQD, as they are the constituent materials of our
core/shell structure. Figure 13.3 shows the variation of the 1Se

1∕21Sh
3∕2 exciton energy as a function of CdSe

and CdTe QD radius, ac, respectively. Solid symbols represent experimental results from several indepen-
dent measurements from di�erent groups and the line is an empirical inverse polynomial �tting curve,
E

1S1∕21S3∕2
X (ac) = Ebulkg + (Aa2

c + Bac + C)−1, to this experimental data proposed by de Mello Donega
in Ref. [72], where A, B, and C are �tting parameters. Results of 1Se

1∕21Sh
3∕2 exciton energies predicted

by our calculation are shown on the same �gures and exhibit excellent agreement with the experimental
measurements [73–82].

Having validated the methodology for core-only CQD structures, we now employ our method to
describe CdSe/CdTe core/shell type-II CQD structures. The remaining question when modeling the sys-
tem of core/shell structures is the parametrization of the valence band o�set (VBO) between core and shell
materials, in our case CdSe and CdTe, respectively. From our previous analysis [58] of the variation of
1Se

1∕21Sh
3∕2 and 1Se

1∕22Sh
3∕2 excitonic energies with the shell thickness in CdTe/CdSe core/shell CQD, we

have estimated the VBOCdTe∕CdSe = 0.4 eV. We have assumed the same VBO for inverse structures, i.e.,
for CdSe/CdTe core/shell CQD considered here.

The 1S(e)1∕2nS(h)3∕2 (n = 1, 2) states are the two lowest-energy excitons observed in the absorption spectra of
colloidal CdTe/CdSe NCs [23,83,84], making them the most important for understanding the near band-
edge absorption characteristics of such nanoparticles. Figure 13.3 shows the 1S(e)1∕21S(h)3∕2 and 1S(e)1∕22S(h)3∕2
exciton energies (solid lines) calculated by the CI as a function of shell thickness for CdTe/CdSe QDs with
(a) ac = 1.7 nm, (b) ac = 1.72 nm, (c) ac = 1.75 nm, and (d) ac = 1.95 nm. Dashed lines show upper and
lower limits on the exciton energies resulting from an uncertainty of 1 monolayer (ML) in the displayed
core radii (∼ ±0.3 nm). Filled circles show exciton energies taken from the �rst and second absorption
peak positions in absorption spectra measured by (a) Gong et al., [84], (b) Ma et al., [85], (c) Cai et al.
[86], and (d) Oron et al. [23]. We see good quantitative agreement between the calculated exciton energies
and the experimental data, with the data lying in the channels de�ned by an uncertainty of ±1 ML width
in the core size. It should be noted that the results of Oron et al. [23] were obtained on zinc-blende NC
structures, in addition to those of Cai et al. [86] The papers by Gong et al. [84] and Ma et al. [85] do not
explicitly state the crystal structures of the core/shell nanoparticles, although Ma et al. [85] note that their
core/shell NCs gave very similar absorption and photoluminescence spectra to those of Cai and coworkers
[86]. Our calculations accurately reproduce the 0.25 eV energy separation between the 1S(e)1∕21S(h)3∕2 and

1S(e)1∕22S(h)3∕2 excitons that is nearly independent of shell thickness [84]. This constant energy separation is
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FIGURE 13.3 Variation of the 1Se
1∕21Sh

3∕2 exciton energy as a function of colloquial quantum dot (CQD) core radius,
ac, in (a) CdSe and (b) CdTe CQDs: experimental results (square symbols), de Mello Donega’s empirical �t to the
experimental data (dotted line) [72], and theoretical model (solid line). Calculated (lines) energies of the 1S(e)1∕2nS(h)3∕2
(n = 1, 2) excitons for CdTe/CdSe QDs with shell thickness as and core radius of (c) ac = 1.7 nm, (d) ac = 1.72 nm,
(e) ac = 1.75 nm, and (f) ac = 1.95 nm; experimental data taken from Refs. [84], [85],[86], and [23] are shown as �lled
symbols. Error bars represent an uncertainty of 1 mono-layer (ML) (≈ ±0.3 nm) in the shell thickness. Dashed lines
show upper and lower limits on the exciton energies resulting from an uncertainty of 1 ML in the nominal core radii.

characteristic of changing electron con�nement but approximately constant hole con�nement in the h∕e
heterostructure. We also �nd good agreement between the oscillator strength obtained by Gong et al. [84]
from the absorption spectra and our calculations. Calculating the oscillator strength fn of the 1S(e)1∕2nS(h)3∕2
(n = 1, 2) excitons as fn = 2P2

X∕m0EX we �nd that f1 + f2 ∼ constant (inset Figure 13.3), con�rming the
validity of relevant excitonic wave functions too.

In contrast to core-only CQDs, the size dependence of 1Se
1∕21Sh

3∕2 exciton energies in core/shell CQDs
is more complex and it is not possible to capture its trend by a simple polynomial �tting curve. Figure 13.5
shows the shell thickness, as, dependence of the 1Se

1∕21Sh
3∕2 absorption wavelengths for CdSe/CdTe

core/shell CQDs for di�erent core radii, ac, ranging from ac=1.5 nm to 2.5 nm. Also shown in Figure 13.5
are experimental data for a CdSe core of 1.7-nm radius, as measured by transmission electron microscopy,
and di�erent CdTe shell thicknesses [87,88]. Good agreement is seen between the calculated energy of the
1Se

1∕21Sh
3∕2 exciton and the spectral position observed for the �rst absorption peak, further validating our

theoretical approach.
To illustrate our theoretical model outlined in Section 13.6, in Figure 13.4, we show the excitonic spectra

of an ac = 2 nm CdSe core-only QD (as = 0 case) and a set of CdSe/CdTe core/shell QDs with shell
thicknesses varying from as = 0.5 to 3.0 nm. By changing the shell thickness from as = 0 (no shell) to
as = 3 nm the excitonic ground state energy, EX0, is changed from 2.30 eV to 1.49 eV. It is also interesting
to note that for certain shell thicknesses, i.e., between as = 0.5 and 1 nm, the character of the ground
state exciton changes from 1S1∕21S3∕2 to 1S1∕21P3∕2. It can be observed that the density of excitonic states
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increases with shell thickness: this suggests that phononic gaps are more likely to be found in core-only or
core/shell structures with thin shells [16].

In Figure 13.5, we can clearly distinguish between two trends in the 1Se
1∕21Sh

3∕2 absorption wavelengths
in the region of shell thicknesses <0.5 nm and for shell thicknesses >0.5 nm. For the QDs with shells of
thickness approximately or less than 0.5 nm, we can see that (1) the 1Se

1∕21Sh
3∕2 absorption wavelengths

are approximately linearly dependent on as, suggesting strong in�uence of the dielectric con�nement on
1Se

1∕21Sh
3∕2 excitons and their wavelengths in this region and (2) as the core size, ac, increases the gradi-

ent of the 1Se
1∕21Sh

3∕2 absorption wavelength versus as curves decreases. We explain such nonmonotonic
behavior in terms of the changing localization regime of the 1sh

3∕2 SP hole, in the correlated 1Se
1∕21Sh

3∕2
exciton, as the QD dimensions change [58]. The lower gradient of the curves for shell widths <0.5 nm is
due to the fact that the 1sh

3∕2 hole is in the delocalized regime, i.e., its probability density is spread over the
whole heterostructure and its energy is mainly determined by the global con�nement provided by the QD
potential well of radius ac+as. In this regime, the size dependence of the hole con�nement is closer to that
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of one con�ned in a core-only QD. For the QDs with shells of width greater than 0.5 nm, we can see that
the 1Se

1∕21Sh
3∕2 absorption wavelengths again acquire a trend that can be described by a quadratic polyno-

mial function. As as increases, for a particular core size, the 1sh
3∕2 SP hole localizes in the shell fully so the

absorption wavelength is again more strongly a�ected by the e�ect of shell thickness on the con�nement
energy of 1sh

3∕2. This behavior is closer to the SCR in a core/shell heterostructure. Maps of the absorption
wavelength against QD core/shell dimensions as depicted in Figure 13.5 can only be obtained numerically
and should be of use to experimentalists studying such systems.

13.8.2 Radiative Lifetimes in CdSe/CdTe CQDs

Next, we analyze the radiative lifetimes in core/shell CdSe/CdTe CQDs [17]. In order to assess the vari-
ation of the radiative times, τrad., with the core size, ac, and the shell thickness, as, we use the following
expression:

1
τrad.

= 1
3

F2n̄e2

πϵ0c3ℏ4 EX
1

dX

dX
∑

i=1
|PXi

|

2, (13.71)

where n̄ is the refractive index of the colloidal material, e is the electron charge, ϵ0 is the permittivity
of free space, m0 is the electron rest mass, c is the speed of light, and ℏ is the reduced Planck constant.
In the expression above, |PX| is the modulus of excitonic dipole matrix element, given in (eVÅ), and EX
is the excitonic energy, both obtained from the CI calculation, and dX is the integer number representing
the degree of degeneracy of a particular excitonic state. For the 1Se

1∕21Sh
3∕2 exciton considered below the

degeneracy is dX = 8. The expression for dielectric screening of spherical core/shell QDs is given as F =
9ϵsϵcoll.∕(ϵsϵa + 2ϵcoll.ϵb), where ϵa = ϵc(3 − 2Ωs∕Ωqd) + 2ϵsΩs∕Ωqd, ϵb = ϵcΩs∕Ωqd + ϵs(3 − Ωs∕Ωqd),
and Ωqd and Ωs are the volume of QD and shell, respectively [89].

Figure 13.6 shows the mean radiative lifetime of the 1Se
1∕21Sh

3∕2 exciton in CdSe/CdTe CQDs as a func-
tion of shell thickness as for several di�erent core radii. The most noticeable feature is the sudden increase
in τrad. at around as ∼ 0.5 nm. In comparison to core-only CQDs, in which the value of 1Se

1∕21Sh
3∕2 exci-

tonic radiative time τrad changes relatively weakly with the CQD size [35,90], in core/shell structures it is
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possible to increase this radiative time over one order of magnitude with suitable change in the core and
shell sizes. Several observations regarding the trend in τrad in CdSe/CdTe core/shell type II CQDs can be
made here: (1) again as in the case of the absorption wavelength, shown in Figure 13.5, we can distinguish
clearly between two di�erent regions of the shell thicknesses as < 0.5 nm and as > 0.5 nm. In the region of
as < 0.5 nm, the whole CQD system behaves similar to core-only CQDs, since both electron and hole cor-
related charge densities are either largely con�ned in the core region or just starting to delocalize over the
whole CQD structure. In this region, the optical dipole matrix element, |PX|, is strong while the magnitude
of both |PX| and EX changes very little with the overall sizes of QDs, which explains the almost constant
τrad. (2) As shell thickness increases, and in particular beyond as > 1 nm, the hole states become strongly
con�ned in the shell region. Here, dielectric con�nement does not have enough strength to overcome the
con�nement imposed by the type II aligned VB edge of CdTe, so that the exciton reaches the SCR. Conse-
quently, the electron–hole wave function overlap is dramatically reduced and EX is mainly now determined
by the variation of the 1s(h)3∕2 hole con�nement with as. For as > 1 nm, τrad. continues to increase, but more
slowly, reaching values that are about one order of magnitude greater than those for core-only CQDs. For all
shell thicknesses, a monotonic trend to larger τrad. with increasing core size is also observed. It is interesting
to observe that for CdSe/CdTe type II CQDs, the value of τrad. increases over “only” one order of magni-
tude, while in other systems, such as epitaxially grown type II InAs/GaAs/GaAsSb structure, the radiative
times can increase over three orders of magnitude [91,92]. This di�erence in behavior is attributed to the
absence of signi�cant dielectric con�nement in epitaxially grown QDs, compared to CQDs.

13.8.3 Correlation Energy

The correlation energy of the exciton can be de�ned as

Ecorr = EX,CI − EX, (13.72)

where EX is the exciton energy calculated according to �rst-order perturbation theory inside the strong
con�nement approximation for the exciton wave function [42,61,83,93], and EX,CI is the excitonic energy
calculated using the CI method.

13.8.3.1 CdTe/CdSe QD: Effect of Electron Shell Localization

In Figure 13.7a, we present Ecorr for the 1S(e)1∕21S(h)3∕2 exciton as a function of core radius for �xed shell
as = 2 nm CdTe/CdSe QDs. We see that in the presence of dielectric con�nement |Ecorr | ≲ 20 meV and
that Ecorr exhibits at least one minimum as a function of ac in the ϵ = const. and ϵ = ϵ(r) case. |Ecorr | is
up to four times greater in the presence of dielectric con�nement, ϵ = ϵ(r), compared to the ϵ = const.
case. This result highlights the importance of a proper treatment of the dielectric environment in such
nanostructures. The minimum in Ecorr for the 1S(e)1∕21S(h)3∕2 exciton, Figure 13.7a, is a consequence of two
competing e�ects: proximity of the self-polarization potential peak, which tends to reduce the electron–
hole separation and the e�ect of the type-II con�nement pro�le, which tends to separate the carriers as ac
increases.

13.8.3.2 CdSe/CdTe QD: Effect of Hole Shell Localization

In Figure 13.7b, we present Ecorr for the 1S(e)1∕21S(h)3∕2 exciton as a function of shell thickness for an ac = 3.5
nm �xed core in CdSe/CdTe QDs. We observe the largest size correlation energy of the considered excitons
for the 1S(e)1∕21S(h)3∕2 state in CdSe/CdTe QDs when ϵ = ϵ(r), with Ecorr reaching −62 meV for an ac = 3.5
nm, as = 0.6 nm QD, Figure 13.7b. This value is more than six times larger than the corresponding value
for the ϵ = const. case, highlighting the particularly strong e�ect of the dielectric environment on this
exciton. It can be observed from Figure 13.7b that the e�ect of dielectric mismatch on Ecorr is strongest
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in the vicinity of the 1s(h)3∕2 localization boundary (LB), i.e., once the SP hole starts to move signi�cantly
toward the shell region and becomes delocalized over the whole QD.

1S(e)1∕21S(h)3∕2 exciton: In the case of a core-only CdSe QD correlation causes both carriers, correlated elec-
tron and correlated hole, to move closest toward the center of the QD compared with their strongest SP
character. This is purely a result of the direct interparticle Coulomb interaction. Introduction of the self-
polarization potential, i.e., ϵ = ϵ(r), further exaggerates this move of the radial probability densities (RPD)
of both carriers away from the QD surface in the core-only CdSe QD, Figure 13.8a. This e�ect increases
localization of both carriers near the center of QD, increasing overlap between them and giving correlation
energies Ecorr = −18 meV. For the 1S(e)1∕21S(h)3∕2 exciton in the CdSe QD, the shi� in RPD is mainly due to

an increase in 2s(e)1∕21s(h)3∕2 character.
To assess the e�ect of dielectric con�nement on the correlated carriers in the CdSe QD, we consider the

expectation value of the 1s electron (hole) radial coordinate, denoted ⟨re(h)⟩. When ϵ = const. (no self-
polarization) we �nd ⟨rh⟩ = 1.55 nm compared to ⟨rh⟩ = 1.44 nm when ϵ = ϵ(r) for the 1s(h)3∕2 state. In

contrast, the e�ect of dielectric con�nement moves the 1s(e)1∕2 electron from ⟨re⟩ = 2.01 nm to ⟨re⟩ = 1.89.

Although the SP 1s(e)1∕2 RPD has signi�cantly greater overlap with the repulsive peak in self-polarization

potential near the QD surface than the SP 1s(h)3∕2 hole RPD, the correlated electron is shi�ed by dielectric
con�nement by almost the same distance as the correlated hole. These results re�ect the larger sensitivity
of the correlated hole wave function to the dielectric environment compared to the electron in the CdSe
core-only QD.

In Figure 13.8b, we see that the introduction of a thin CdTe shell allows the uncorrelated hole to start
to localize nearer the QD surface (at r = ac + as), dramatically reducing its overlap with the uncorrelated
electron. However, the e�ect of correlation is strong enough to pull the hole back toward the center, mainly
due to the addition of the 1s(e)1∕22s(h)3∕2 electron–hole pair (EHP) character to the exciton wave function. We
see that the introduction of dielectric con�nement exaggerates this move of the carriers further away from
the QD surface compared to the ϵ = const. case [58]. The e�ect of dielectric con�nement is particularly
strong in this case because ⟨rh⟩ for the 1s(h)3∕2 state is close to the value of QD’s outermost radius, ac + as.
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The close proximity of the hole to the QD surface reduces the distance ξ = ⟨rQDh ⟩−⟨rind.h ⟩ between the hole
in the QD and its induced charge in the colloid, increasing the Coulombic repulsion between them which
scales as ∝ 1∕ξ. Such repulsion, in addition to the strong e�ect of correlations as discussed above, causes
the hole to be pushed back toward the center of the QD, thereby dramatically increasing overlap with the
correlated electron wave function. The presence of dielectric con�nement means the exciton wave function
is an almost equal superposition of the 1s(e)1∕2ns(h)3∕2 (n = 1, 2) states, with characters |c1|

2 = 0.449 and

|c2|
2 = 0.458. For comparison, when ϵ = const. the 1s(e)1∕22s(h)3∕2 character amounts to only |c2|

2 = 0.019.
The much stronger con�guration mixing in the dielectric con�nement case allows Ecorr to reach ∼ −62
meV, compared to −9 meV without dielectric con�nement.

Further increase of the CdSe/CdTe QD shell thickness to as = 1 nm, Figure 13.8c, allows the SP hole to
fully localize in the shell, while the SP electron stays in the core, reaching the type-II localization limit. The
carriers e�ectively enter the strong con�nement regime (SCR) in which the Coulomb e�ects are overridden
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by the e�ects of the type-II spatial con�nement. In the SCR the charge density of a correlated excitonic state
is very similar to the charge density of the uncorrelated product of SP states, ρe(h)

X ≃ ρe(h)
SP , and the e�ect of

correlations is lost. Again, Ecorr is only nonzero when the hole is delocalized; once it localizes in the shell,
the e�ect of VBM con�nement overrides the interparticle Coulomb attraction.

Overall, we �nd that dielectric con�nement a�ects the correlated hole density more than the correlated
electron density for two reasons. First, the larger e�ective mass and deeper potential well experienced by
SP hole states compared to electron states allows the former to localize more fully in the shell, closer to the
peak in Vs(r) at r ≃ ac + as. Second, the smaller energy spacing between the hole SP basis states (i.e., the
larger density of hole states) compared to electron SP basis states means that the resulting correlated hole
density has more “degrees of freedom” to adjust to the e�ects of dielectric con�nement.

13.8.4 Absorption Spectra of Equivalent CdTe and CdTe/CdSe QD

In Figure 13.9, we compare the exciton dipole spectrum of (a) an ac = 2 nm, as = 1 nm CdTe/CdSe QD
and (b) an “equivalent” ac = 3.8 nm CdTe QD calculated using the CI Hamiltonian. The radius of the
CdTe core-only QD is chosen such that the absorption wavelength of its ground-state exciton is the same
as that of the CdTe/CdSe core/shell QD. The energy gap between the 1S(e)1∕21S(h)3∕2 and 1S(e)1∕22S(h)3∕2 excitons
is increased from ∼ 0.1 eV in the core-only QD to ∼ 0.18 eV in the core/shell structure. The size of the
ground-state exciton optical dipole matrix element is reduced by about 30%, from 0.15P2

0 (where P0 is the
bulk optical dipole matrix element) in the core-only QD to 0.11P2

0 in the core/shell QD due to reduced
electron–hole overlap and electron delocalization (the ac = 2 nm, as = 1 nm QD lies in the quasi-type-II
regime). As expected, the CdTe QD shows slightly stronger absorption than its CdTe/CdSe QD counterpart
(see Figure 13.9c), mainly due to the better overall overlap between electron and hole states in core-only
QDs compared to type-II structures. However, we note that type-II QDs overall have superior absorption
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properties compared with core-only QDs for the important application area of QD-sensitized solar cells.
For example the type-II band alignment allows the band-edge absorption to be red-shi�ed compared to the
core-only QD—this is o�en desirable because the optimum energy for exploitation of the solar spectrum
is ∼1.35 eV. Type-II QDs also allow greater absorption ranges to be achieved compared to core-only QDs
since the absorption edges are not limited by the energy gap of the underlying bulk materials [94].

13.8.5 Charge Carrier Mobility in CdSe QD Arrays

In this section, we evaluate the charge carrier mobility in QD arrays. Good charge carrier mobility is essen-
tial for applications of QDs in solar cells since photogenerated carriers have to reach the contacts to form
the current in external circuit.

We consider a three-dimensional lattice of CdSe QDs and calculate the temperature dependence of elec-
tron mobility in such a system. For hopping transport in a cubic lattice of QDs, the mobility is related to
hopping rate between two neighboring dots via μ = ea2

kBT W, where a is the distance between centers of
two neighboring dots (lattice constant of a QD supercrystal) and W is the transition rate between the dots
that can be evaluated using either Equation 13.67 or 13.70 from Section 13.7. If all dots are identical the
mobility reads

μ = ∫

∞

−∞
dt ea2t2

ℏ2kBT
∏

s
exp

{

−2g2
s
[

2ns + 1 − (ns + 1)e−iωst − nseiωst]} (13.73)

and takes the form μ = ∫∞−∞ dt h(t). By exploiting the fact that h(t) = h(−t)∗, the last integral reduces to
μ = ∫∞0 dt f (t), where f (t) = 2 Re h(t).

We consider two di�erent dots. For dot 1, the diameter is D = 3.6 nm, relevant phonon ener-
gies and electron–phonon coupling constants are ℏωs(1 − 6) = {3.78, 8.10, 1.46, 2.87, 24.0, 24.0} meV,
g1−6ℏωs(1 − 6) = {2.82, 0.14, 0.78, 0.52, 20.33, 3.52}meV, the supercrystal lattice constant is a = 5.0 nm,
and the electronic coupling parameter is t = 4.0 meV. For dot 2, the relevant parameters are D = 7.0 nm,
ℏωs(1 − 6) = {1.95, 4.16, 0.75, 1.48, 24.0, 24.0} meV, g1−6ℏωs(1 − 6) = {1.06, 0.14, 0.40, 0.27, 14.58,
2.52}meV, the supercrystal lattice constant is a = 8.0nm, the electronic coupling parameter is t = 2.5meV.

One might expect that it is di�cult to numerically integrate the function f (t) because of oscillatory terms
of the form exp

(

iωst
)

. However, in the strong electron–phonon coupling regime this function is smooth
and decays with t very quickly. Its form for dot 1 at temperatures of T = 200 K and T = 300 K is presented
in Figure 13.10.
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respectively, calculated using Equations 13.70 and 13.67.

Temperature dependence of the mobility for dots 1 and 2 is presented in Figure 13.11. It has been
checked that the assumption of strong electron–phonon coupling is valid in this temperature range [95].
The mobility was calculated using both the fully quantum treatment from Equation 13.67 and the Mar-
cus formula given by Equation 13.70. We �nd that for this system in the relevant temperature range the
mobility decreases with increasing temperature. This temperature dependence is o�en observed in the case
of band transport. However, one should note that the charge transport in our case takes place by carrier
hopping between neighboring dots. This suggests that the measurement of temperature dependence of
mobility is not su�cient to identify the charge carrier transport regime. By comparing the results obtained
using fully quantum treatment and Marcus formula, we �nd that, as expected, the agreement between these
approaches is the best at high temperatures.

13.9 Conclusion

In conclusion, we have reviewed the methodology for calculation of SP, (multi)excitonic states, and charge
transport in colloidal QDs. The methodology was then applied to analyze the optical absorption wave-
length, radiative lifetimes, and correlation energy in CdSe/CdTe core/shell QDs, as well as charge carrier
mobility in CdSe QD arrays.
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33. N. Vukmirović, and S. Tomić. Plane wave methodology for single quantum dot electronic structure
calculations. J. Appl. Phys. 103, 103718 (2008).
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51. S. Tomić, and N. Vukmirović. Symmetry reduction in multiband Hamiltonians for semiconductor
quantum dots: The role of interfaces and higher energy bands. J. Appl. Phys. 110, 053710 (2011).

52. M. A. Cusack, P. R. Briddon, and M. Jaros. Electronic structure of InAs/GaAs self-assembled
quantum dots. Phys. Rev. B 54, R2300 (1996).

53. A. D. Andreev, and E. P. O’Reilly. Strain distributions in quantum dots of arbitrary shape. Phys. Rev.
B 62, 15851 (2000).
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92. S. Tomić. E�ect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb
quantum dots: Implication to solar cell design. Appl. Phys. Lett. 103, 072112 (2013).

93. L. E. Brus. A simple model for the ionization potential, electron a�nity, and aqueous redox potentials
of small semiconductor crystallites. J. Chem. Phys. 79, 5566 (1983).
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14.1 Introduction

Due to the breakthroughs in technological advances in the development of III-nitride semiconductors
made in the early 1990s, visible light-emitting diodes (LEDs) now occupy the dominant sector of the opto-
electronics market. The emerging LED production is also stimulated by ever-increasing demands from
solid-state lighting, which is expected to not only reduce world energy consumption but also change human
conceptions of light quality and ways to utilize it. However, because of the constantly increasing capacity
of production equipment and, in particular, of growth reactors, the cost of research and development in
the LED industry continues to increase at a very high rate, making comprehensive investigations virtu-
ally impossible for all but the biggest universities and industrial players. In this situation, modeling and
simulation are especially important, saving time, money, and manpower at the research and development
stage.

Simulation of LEDs is essentially a multiscale and multidisciplinary problem. The relevant speci�c sizes
range from a few nanometers for the widths of LED active regions to a few centimeters for the LED lamp
dimensions, that is, about seven orders of magnitude. This means that, electromechanical, electrical, ther-
mal, and optical phenomena involved in LED operations are o�en considered to be self-consistent and, in
the case of state-of-the-art LEDs, in three-dimensional (3D) formulation. In practice, this makes straight-
forward LED simulations unacceptably time- and computer resource-consuming. The commonly utilized
approach to resolving this problem and making simulation a helpful research and engineering tool is to
split the task into independent but interrelated subtasks. This approach correlates three stages of LED fab-
rication: heterostructure growth, chip fabrication, and lamp assembly. We choose the LED structure, chip,
and lamp as the major objects of investigation within the above-mentioned subtasks.
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This chapter focuses on fundamental mechanisms underlying the LED operation that should be
included in the simulation models. LED heterostructures, chips, and lamps are considered separately, with
a discussion on links between them. Here, inorganic LEDs will be considered only when the organic LED
models require special modi�cations.

14.2 LED Family

There is no wonder that most LED applications are related to various kinds of lighting, and thus utilize the
visible optical spectrum. The visible spectral range is shared by phosphide LEDs with (AlxGa1−x)0.51In0.49P
active regions (emission wavelength λ = 555−625 nm), usually lattice matched to the GaAs substrates and
nitride LEDs with InGaN-based active regions (λ = 400−600 nm). Beyond the visible spectral range, the
most important region is the ultraviolet (UV) region where UVA (λ = 315−400 nm), UVB (λ = 280−315
nm), and UVC (λ = 100−280 nm) diapasons are commonly distinguished. The active regions of UV LEDs
are normally based on AlGaN compounds, with the emission wavelength decreasing with the Al content.
These LEDs are used for resin curing, sterilization of water, air, and food, and in medical and biotechnology
applications. Infrared (IR) LEDs are situated at the other siide of the visible spectral range, with the active
region made up of AlGaInAs and GaInAsSb compounds. They are used in niche applications such as IR
lighting, remote control, and gas sensing with mid-IR LEDs (λ = 1.8−5.0 μm).

LED e�ciency is the most important characteristic of the devices (see Section 14.3.4). It is also simulta-
neously a measure for the maturity of their fabrication technology. Figure 14.1 summarizes the maximum
external quantum e�ciency (EQE) achieved to date in di�erent spectral ranges by LEDs from various
industrial companies and leading research centers. There are two distinct EQE maxima: one of ~77%–82%
has been reported for InGaN-based LEDs (λ = 410−440 nm), whereas another of ~71% has been attained
by red AlGaInP (λ = 625 nm) and IR AlGaAs (λ = 850 nm) devices. Between them, that is, in the spectral
range of 500–600 nm, a so-called “green gap” is seen where EQE drops to ~10%–30% in both nitride and
phosphide LEDs. Electron leakage into p-type layers has been proved to be responsible for the e�ciency
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FIGURE 14.1 Maximum external quantum e�ciencies (EQEs) of light-emitting diodes (LEDs) as a function of their
emission wavelength (symbols are data compiled from numerous sources, lines are drawn for eye). Arrows indicate the
ranges of utilizing various III–V compounds for the active region fabrication.
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reduction in phosphide LED (Altieri et al., 2005), whereas the nature of the “green gap” in nitride LEDs is
not yet completely understood.

Figure 14.1 shows that EQE of AlGaN-based ultraviolet (UV) LEDs decrease dramatically with the Al
content in the alloy (at shorter λ), which is attributed to (1) insu�ciently high light extraction e�ciency
partly related to strong transverse-magnetic polarization of the emitted light and absence of highly re�ec-
tive metallic contacts in this spectral range, (2) problems of p-doping of AlGaN alloys with high Al content,
and (3) higher defect density in the grown materials, as compared to Al-free nitride compounds.

E�ciency of IR LEDs su�ers primarily from nonradiative Auger recombination inherent in narrow-
bandgap semiconductors. In particular, EQE of mid-IR GaInAsSb LEDs emitting in the spectral range of
2.0–4.5 μm (not shown in Figure 14.1) does not exceed ~0.5%–3.0% at room temperature.

To date, as shown earlier, nitride and phosphide LEDs have attained the best performance in terms
of emission e�ciency. Therefore, simulation examples given in this chapter focus primarily on these two
material systems.

14.3 Carrier Transport and Recombination in LED
Heterostructures

Any LED structure consists of a stack of epitaxial layers grown in a certain sequence on a substrate of
choice. At an arbitrary orientation of heterostructure growth surface, the epilayer interfaces do not always
correspond to the main low-index facets of the grown crystals. Therefore, it is convenient to distinguish
between the epitaxial coordinate system (ECS) x′y′z′, with the x′ and y′ axes lying in the interface plane
and the z′-axis being normal to this plane, and the crystal coordinate system (CCS) xyz, with the axes
corresponding to the symmetry axes of the crystal (see Figure 14.2). While ECS is suitable for analysis of
carrier transport across the LED structure, CCS enables easy description of anisotropic properties of the
crystalline materials (Nye, 1964).

Any crystal of wurtzite symmetry has elastic properties isotropic in the plane normal to its hexagonal
C-axes. If the CCS z-axis corresponds to the C-axis of the crystal, the other x- and y-axes can be chosen
rather arbitrarily. It is convenient to choose the x-axis of CCS and the x′-axis of ECS to coincide with each
other and to be normal to both z- and z′-axes (Romanov et al., 2006). Then the y′- or y-axis orthogonal
to both x′- and z′- or x- and z-axes can be unambiguously determined. In ECS de�ned in such a way, the
in-plane lattice constant mismatch can be characterized by two parameters corresponding to the lattice

z
z'

y'

y

x

x'

θ

Ψ

FIGURE 14.2 Crystal coordinate system (CCS) xyz, epitaxial coordinate system (ECS) x′y′z′, and speci�c angles
between their axes.
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constant variation along the x′- and y′-axes (Romanov et al., 2006):

ηx = 1 − aS∕aE and ηy = 1 − [(aS∕aE)2 cos2 θ + (cS∕cE)2 sin2 θ]1∕2, (14.1)

where aE and cE are the lattice constant of the epitaxial layer considered, aS and cS are the lattice constants
of the substrate or a thick template layer on which the LED structure is coherently grown, and θ is the polar
angle between the z′- and z-axes (see Figure 14.2). This angle can be expressed via four-digit Miller indices
[klmh] (m = −k−l) characterizing the orientation of the LED structure interfaces (Gil, 2009):

cos θ = h
[h2 + 4

3 (cE∕aE)2(k2 + l2 + kl)]1∕2
(14.2)

In the case of zinc-blende materials having no in-plane isotropy of elastic properties, the x′-axis normal to
both z′- and z-axes does not coincide with the x-axis of CCS but lies in the xy-plane (Figure 14.2). Then
the angles θ and ψ (see Figure 14.2) can be expressed via three-digit Miller indexes [klm] as follows:

cos θ = m
(k2 + l2 +m2)1∕2

, cosψ = l
(k2 + l2)1∕2

(14.3)

The lattice mismatch in zinc-blende crystals is described by the only parameter ηx (see Equation 14.1),
where aE and aS denote the lattice constants of the epilayer and substrate/template, respectively.

Generally, epitaxial layers may have the lattice constants highly mismatched with those of substrate/tem-
plate layer. The mismatch produces elastic strain a�ecting the band structure of the material, its electric
polarization, and the band o�sets at the structure interfaces. Therefore, determination of strain distribution
in an LED structure is the primary task in analysis of its operation.

14.3.1 Electromechanical Coupling

Under isothermal conditions, the equations for elastic strain, stress, and electric polarization in every
epitaxial layer of the LED structure can be written in matrix form (Nye, 1964):

� = Ĉ" − êTE (a), " = Ŝ� + d̂TE (b), D = Psp + d̂� + κ0κ̂E (c). (14.4)

Here, � is the vector built up of six components of the stress tensor (σxx, σyy, σzz , σyz , σxz , and σxy), "
is the vector consisting of the diagonal and doubled nondiagonal components of the strain tensor (uxx,
uyy, uzz , 2uyz , 2uxz , and 2uxy), E and D are the electric �eld and induction vectors, respectively, and Psp
is the spontaneous electric polarization that does not vanish in wurtzite crystals. The �rst and second of
Equations 14.4 correspond to the direct and reverse Hook laws, where Ĉ and Ŝ are the 6 × 6 matrices of
sti�ness and compliance constants having a standard form in CCS (Nye, 1964); Ĉ ⋅ Ŝ = Ŝ ⋅ Ĉ = Î, where Î
is the 6 × 6 unity matrix. Here, d̂ and ê are the 3 × 6 matrices of piezoelectric coe�cients (ê = d̂ ⋅ Ĉ and
d̂ = ê ⋅ Ŝ) having a standard form in CCS too (Nye, 1964), and the superscript “T” denotes transposition
of a matrix. The third of Equations Equation 14.4 links the electric �eld, induction, and stress vectors; κ0
is the electric constant; and κ̂ is the 3 × 3 matrix of static dielectric constants, being diagonal in CCS for
both zinc-blende and hexagonal crystals.

The strain components in every epitaxial layer can be determined as follows (Romanov et al., 2006). First,
the stress components are assumed to be uniform within the layer, which is valid, if the lateral dimensions of
an LED structure are much larger than the vertical ones and bending of the structure is negligible. Second,
the components of the stress vector in ECS σz′z′ , σy′z′ , and σx′z′ are regarded as vanishing according to
the absence of external mechanical loading of the top heterostructure surface. Third, the shear component
σx′y′ is also equal to zero due to uniformity of the strain distribution in the x′- and y′-directions. Then the
strain vector contains only two components, σx′x′ and σy′y′ . To determine them, the respective components
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of the strain vector εx′x′ and εy′y′ should be expressed through σx′x′ and σy′y′ using Equation 14.4 in ECS.
These components are known from geometrical consideration, that is, εx′x′ = −ηx and εy′y′ = −ηy, which
enables the determination of two nonzero components σx′x′ and σy′y′ . As soon as they are found other
components of the strain vector " in ECS can be calculated using Equation 14.4 and then transformed into
CCS in a standard way.

In the simplest case of wurtzite crystals, the above procedure provides the analytical solution, which is
formulated as follows, neglecting the electric �eld contribution to the stress components:

σx′x′ = σ1 = −
S′22ηx − S′12ηy

S′11S′22 − (S
′
12)2

, σy′y′ = σ2 = −
S′11ηy − S′12ηx

S′11S′22 − (S
′
12)2

, (14.5)

where S′11 = S11, S′12 = S12 cos2 θ + S13 sin2 θ and S′22 = S11 cos2 θ + S33 sin2 θ + 1
4 (2S13 + S44 − S11 −

S33) sin2 2θ.
Then the strain components in CCS can be obtained from Equation 14.5:

εxx = −ηa; εxz = εxy = 0

εyy = S12σ1 + (S11 cos2 θ + S13 sin2 θ) σ2

εzz = S13σ1 + (S13 cos2 θ + S33 sin2 θ) σ2

εyz = −
1
2 S44σ2 sin 2θ.

(14.6)

Nonzero stress components in zinc-blende crystals depend generally on both angles θ and ψ. Using the
above approach, one can obtain the strain components in CCS for three practically important orientations
of the LED structure interfaces, that is,

• for (001) orientation:

εxx = εyy = −ηx, εzz = −
2S12

S11 + S12
ηx, εxz = εxy = εyz = 0; (14.7)

• for (111) orientation:

εxx = εyy = εzz = −ηx
S11 + 2S12

S11 + 2S12 +
1
4 S44

, εxz = εxy = εyz = ηx

1
2 S44

S11 + 2S12 +
1
4 S44

; (14.8)

• for (0lm) orientations: strain components can be found from Equation 14.6), assuming S33 = S11,
S13 = S12, and �nding the angle θ from Equation 14.3); in particular, θ = 45◦ for the (011)
orientation.

The obtained strain components in CCS can then be used for calculating strain-dependent band structure
and electric polarization of every epitaxial layer. In wurtzite crystals, the components of the total electric
polarization vector P in ECS are

Px′ = 0

Py′ = e15εyz ⋅ cos θ − [Psp + e31(εxx + εyy) + e33εzz] ⋅ sin θ

Pz′ = [Psp + e31(εxx + εyy) + e33εzz] ⋅ cos θ + e15εyz ⋅ sin θ.

(14.9)
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In zinc-blende crystals,

Px′ = Py′ = Pz′ = 0, for (001) orientation

Px′ = Py′ = 0 and Pz′ =
√

3e14εyz, for (111) orientation

Px′ = e14εyz and Py′ = Pz′ = 0, for (0lm) orientation.

(14.10)

The di�erence in the z′-component of the electric polarization vector ΔPz′ of neighboring layers deter-
mines the polarization charge accumulated at their interface. Figure 14.3a shows ΔPz′ at the interfaces
between the In0.2Ga0.8N, Al0.2Ga0.8N, In0.17Al0.83N, and GaN layer as a function of the C-axis inclina-
tion angle θ (the sign of ΔPz′ corresponds to the sign of the interface charge). To calculate ΔPz′ for the
nitride alloys, Vegard’s rule was used for estimation of the compliance constants Sij. The application of
Vegard’s rule to the sti�ness constants Cij had proved to provide the results graphically indistinguishable
from those shown in Figure 14.3a. TheΔPz′ values plotted in Figure 14.3a re�ne the similar results reported
by Romanov et al. 2006, as the nondiagonal component of the strain tensor uyz was erroneously used in
this study instead of εyz .

An alternative approach to analysis of electromechanical coupling in nitride compounds is based on
minimization of the elastic energy in every epitaxial layer (Park and Chuang, 1999). This approach provides
incorrect results as the predicted stress does not correspond to unloaded free surface of the LED structure
and its interfaces.

Equation 14.10 relevant to zinc-blende semiconductors shows, in particular, that only the (111)-
orientation possesses polarization charges at the LED structure interfaces.

14.3.2 Transport Equations

In the hierarchy of transport models, the dri�-di�usion one (DDM) was �rst successfully applied to
electron and hole transport in semiconductor devices. Introduced in the mid-twentieth century (Van Roos-
broeck, 1950), DDM is commonly recognized as the best compromise between the predictability of the
theory and the cost of its numerical implementation.
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dielectric constant matrix of Al0.3Ga0.7N (b) in the epitaxial coordinate system (ECS) as a function of inclination angle θ.
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Within DDM, the electron n and hole p concentrations can be found from the continuity equations
solved in ECS:

∂n
∂t
+ ∇ ⋅ Jn = G − R,

∂p
∂t
+ ∇ ⋅ Jp = G − R, (14.11)

where G is the carrier generation rate, for example, due to light absorption, R is the electron/hole recom-
bination rate, and Jn and Jp are the electron and hole �uxes, respectively, related to their partial current
densities jn and jp as follows: jn = −qJn, jp = qJp; q is the elementary charge.

The most compact de�nition of the carrier �uxes Jn and Jp is based on linear nonequilibrium thermo-
dynamics, involving electron (Fn) and hole (Fp) quasi-Fermi levels measured in electron volts (eV):

Jn = −μnn∇Fn, Jp = −μpp∇Fp. (14.12)

Here, scalar electron (μn) and hole (μp) mobilities are used as there is no distinct evidence in the litera-
ture for noticeable anisotropy of carrier electric conductivities in various LED structures. The expression
14.12 for the carrier �uxes account for all the forces driving the carrier movement if the electron and hole
concentrations are de�ned as

n = NC ⋅ Fn

(

Fn − EC + qϕ
kT

)

, p =
∑

s
Ns ⋅ Fs

(

Es − Fp − qϕ
kT

)

. (14.13)

Here, EC is the conduction band energy determined from the known electron a�nity of every epitaxial
layer in the LED structure, Es is the energy of the sth valence sub-band obtained from EC and the energy
gap of the sub-band, ϕ is the electric potential, k is the Boltzmann constant, T is temperature, NC is the
e�ective density of states in the conduction band, and Ns is e�ective density of states in the s-th valence
sub-band (heavy-hole, light-hole, or split-o� hole one), that is,

NC = 2mn
xx(m

n
zz)

1∕2
(

kT
2πℏ2

)3∕2
, Ns = 2ms

xx(m
s
zz)

1∕2
(

kT
2πℏ2

)3∕2
, (14.14)

where ℏ is Planck’s constant (mn
xx)

−1, (mn
zz)
−1, and (ms

xx)
−1, (ms

zz)
−1 are the components of the inverse

e�ective mass tensor of electrons and holes in the s-th valence sub-band (s = hh, lh, or so) in CCS, respec-
tively (mn

xx = mn
zz = mn and ms

xx = ms
zz = ms in cubic crystals within isotropic approximation). Integrals

Fn and Fs in Equation 14.13 are

Fν(ζ) =
∞

∫
0

gv(x)
1 + exp(x − ζ)

, (ν = n, s), (14.15)

where gν(x) is the density of states in the ν-th band, which is expressed as a function of carrier kinetic
energy normalized by kT. For a simple parabolic band, gν(x) = x1∕2 and the integral 14.15 is reduced to
the standard Fermi integral of the 1/2-order. In a general case, Equation 14.15 enables accounting for the
band nonparabolicity or a more complex energy spectrum typical for holes.

Electric potential distribution in the LED structure can be found from the Poisson equation solved
in ECS. In wurtzite heterostructures of arbitrary orientation, the Poisson equation should account for
anisotropic properties of the materials:

κ0∇ ⋅ (κ̂e�∇ϕ) = ∇ ⋅ P − ρ, κ̂e� = κ̂ −
(êŜêT)
κ0

, (14.16)

where ρ = q(N+
D + p − N−

A − n) is the charge density, and N+
D and N−

A are the concentrations of ionized
donors and acceptors, respectively. The e�ective dielectric constant κ̂e� is a diagonal matrix in CCS. To
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obtain its components in the ECS, the standard transformation should be applied. The second term in the
expression for κ̂e� originates from the elastic stress produced by the electric �eld (see Equation 14.4) and
the back contribution of the stress to the electric polarization.

The dielectric constant of cubic crystals κ is a scalar as well as the e�ective dielectric constant κe� =
κ − S44e2

14∕κ0. Therefore, the Poisson equation for the cubic heterostructures has the same form in both
CCS and ECS. As a rule, κ >> S44e2

14∕κ0, which allows neglecting the stress contribution to the dielectric
constants. In the case of wurtzite semiconductors, the stress contribution to κe�

zz of ~7%–8% is not negligi-
ble, changing remarkably the anisotropy degree of the dielectric constant. Variation of κ̂e� with the C-axis
inclination angle (Figure 14.3b) may exceed ~10% and should be accounted for in the analysis of nonpolar
and semipolar LEDs; in the latter case, the nondiagonal κe�

y′z′ component of the e�ective dielectric constant
should also be considered.

Concentrations of ionized donors and acceptors in Equation 14.16 depend locally on the quasi-Fermi
level positions relative to the band edges, that is,

N+
D =

ND

1 + gD exp
(

Fn−EC+ED+qϕ
kT

) , N−
A =

NA

1 + gA exp
(EV+EA−Fp−qϕ

kT

)
, (14.17)

Here ND and NA are total donor and acceptor concentrations, respectively, ED and EA are the activation
energies of the impurities, and gD and gA are their degeneracy factors. These equations assume free carriers
and those trapped by donors and acceptors to be in thermodynamic equilibrium with each other.

Equations 14.11 through 14.17 form the simplest DDM for the carrier transport in LED structures.
More elaborate models (Lundstrom, 2000; Jüngel, 2009; Jacoboni, 2010; Querlioz and Dollfus, 2010), both
semiclassical and quantum mechanical, are not discussed here as most of the practically important results
have been obtained with DDM allowing clear and straightforward interpretation.

Figure 14.4 presents band diagrams of single-quantum well (SQW) LED structures consisting of a thick
n-GaN contact layer, an undoped 15 nm i-GaN interlayer, an undoped 3-nm In0.17Ga0.83N SQW, a an
8-nm i-GaN spacer where Mg was assumed to di�use to from the neighboring 20-nm p-Al0.1Ga0.9N
electron-blocking layer (EBL), and a 150 nm p-GaN contact layer. The above structures di�er in crystal ori-
entation only, demonstrating orientation-dependent band diagrams primarily controlled by the interface
polarization charges. The Ga- and N-polar structures (Figure 14.4a and b) form QWs with strong built-in
polarization �elds and asymmetric barriers, whereas nonpolar (Figure 14.4c) and semipolar (Figure 14.4d)
ones possess a rather weak electric �eld inside the well, and nearly symmetric barriers. The QW asymme-
try varies with the forward bias applied and produces a strong, by tens of nanometers, bias-dependent blue
shi� of the emission wavelength of the Ga- and N-polar structures. In contrast, the emission wavelengths
of the nonpolar and semipolar structures are predicted to be stable within ~3–5 nm under the bias/current
variation. It is also interesting that GaN claddings of the InGaN SQW in N-polar structure form rather
high natural barriers, preventing electrons and holes from leakage to the p- and n-layers of the structure,
respectively (Figure 14.4b).

14.3.3 Recombination Models

Various recombination channels should be accounted for in LED simulations. The �rst one is the nonra-
diative Shockley–Read–Hall (SRH) recombination mediated by defects. The respective recombination rate
is

RSRH =
np

τpn ( 1 + ξn) + τnp ( 1 + ξp)
⋅
[

1 − exp
(

−
Fn − Fp

kT

)]

;

ξn = exp
(

Et − Fn
kT

)

, ξp = exp
(Fp − Et

kT

)

.

(14.18)



9781498749466_C014 2017/8/29 14:52 Page 459 #9

Light-Emitting Diode Fundamentals 459

–1

0

1 (0001) 1021

1020

1019

1018

1017

1016electrons

290 300 310 320

Concentration (cm
–3)

En
er

gy
 (e

V)

330 340 350

n-
G

aN

i-G
aN

i-G
aN

p-
AI

G
aN

holes

p-
G

aN

–2

–3

–4

Distance (nm)
(a)

–1

0

1 (000-1) 1021

1020

1019

1018

1017

1016

electrons

290 300 310 320

Concentration (cm
–3)

En
er

gy
 (e

V)

330 340 350

n-
G

aN

i-G
aN

i-G
aN

p-
AI

G
aN

holes

p-
G

aN

–2

–3

–4

Distance (nm)
(b)

–1

0

1 (11-20) 1021

1020

1019

1018

1017

1016electrons

290 300 310 320
Distance (nm)

(c)

Concentration (cm
–3)

En
er

gy
 (e

V)

330 340 350

n-
G

aN

i-G
aN

i-G
aN

p-
AI

G
aN

holes

p-
G

aN

–2

–3

–4

–1

0

1 (30-3-1) 1021

1020

1019

1018

1017

1016electrons

290 300 310 320
Distance (nm)

(d)

Concentration (cm
–3)

En
er

gy
 (e

V)

330 340 350

n-
G

aN

i-G
aN

i-G
aN

p-
AI

G
aN

holes

p-
G

aN

–2

–3

–4
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Here, Et is the dominant energy level of a defect responsible for SRH recombination, τn and τp are the
electron and hole life times. One can see from Equation 14.18 that ξn , ξp << 1, if the energy Et is located
deep in the materials bandgap.

In the case of recombination via point defects, τn,p = (cn,pVn,pNt)−1, where cn,p is the electron/hole
trapping cross-section by the defects, Vn,p is the carrier thermal velocity, and Nt is the defect concentration
in the material. Dislocations threading through the LED active region are inherent defects in III-nitride
epitaxial structures because of lack of native substrates. Here, the electron/hole life times can be estimated
by the expression (Karpov and Makarov, 2002)

τn,p =
1

4πDn,pNd

{

ln
(

1
πr2

c Nd

)

+
2Dn,p

rcVn,p
− 3

2

}

, (14.19)

where Dn,p is the carrier di�usivity, Nd is the dislocation density, and rc is the dislocation core radius equal
to the lattice constant a in the order of magnitude.

Another recombination channel is the radiative one. The rate of radiative recombination between free
carriers in the conduction and valence bands can be calculated as

Rrad = Bnp ⋅
[

1 − exp
(

−
Fn − Fp

kT

)]

, (14.20)
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where the radiative recombination constant B depends essentially on the particular mechanism of light
emission. In the case of bulk unstrained zinc-blende semiconductors, the B constant corresponding to
optical transitions occurring with the k-selection rule at a rather low excitation level can be estimated as

B0 = (NcvτB)−1 ⋅

(

1 + 3kT
2Eg

)

; Ncv = 2
[

(mn +mhh)kT
2πℏ2

]3∕2
, τB =

3ℏm0c2

2αnrEgEP
(14.21)

Here, mn and mhh are the e�ective masses of electrons and heavy holes, respectively, m0 is the free electron
mass, c is the light velocity in vacuum, α = q2∕(4πε0ℏc) ≈ 1∕137 is the �ne structure constant, nr is the
group refractive index at the wavelength corresponding to the optical transition, Eg is the bandgap of the
semiconductor, and EP is the energy related to the Kane’s matrix element P (Kane, 1957): EP = 2m0P2∕ℏ2.
At high excitation levels, the B constant starts to depend on the carrier concentrations. Numerical calcula-
tions of the radiative recombination rate under these conditions, accounting for the fact that mn << mhh
have found the B constant to be well �tted by the expression: B = B0Ncv∕(Ncv + p).

Many other processes may also contribute to radiative recombination, including excitonic optical
transitions, band-to-impurity (donor, acceptor, or a deep center), donor-to-acceptor, phonon-assisted
band-to-band recombination, and so on (Pankove, 1971), each providing its own speci�c radiative recom-
bination constant. In addition, each of the above processes occurs di�erently in bulk materials, QWs, and
quantum dots (QDs), multiplying a variety of B constants. Therefore, the choice of dominant mechanisms
should be based on experimental data in every particular case and corresponding models should be applied
in the framework of DDM.

The third important mechanism is nonradiative Auger recombination with the rate

RA = (Cnn + Cpp) np ⋅
[

1 − exp
(

−
Fn − Fp

kT

)]

, (14.22)

where Cn and Cp are the Auger recombination coe�cients related to the microscopic processes involving
two electrons and a hole and two holes and an electron, respectively. In bulk unstrained zinc-blende semi-
conductors, the Cn coe�cient corresponding to the process involving two electrons and a heavy hole, that
is, the CHCC† process, is given by the equation (Gelmont and Sokolova, 1982; Abakumov et al., 1991)

Cn =
16
√

π
χ

νD
NCNhh

(

kT
Eg

)3∕2
⟨εc⟩

Eg
exp (−Eth∕kT);

Eth =
mn
mhh

Eg
(2Eg + Δ)(3Eg + 2Δ)
(Eg + Δ)(3Eg + Δ)

, νD =
ED
ℏ

,

χ =

(

Eg + Δ
3Eg + 2Δ

)3∕2 (3Eg + Δ
2Eg + Δ

)1∕2

, ED =
mnq4

32π2(κ0κ)2ℏ2 .

(14.23)

† To distinguish between various microscopic Auger processes, the following four-letter notation is commonly accepted. First
two letters indicate the initial and �nal electronic states of the recombining particle, e.g., an electron in the conduction band
(C) and a hole in the heavy hole sub-band (H). Last two letters indicate the initial and �nal states of the third particle to which
the excess energy released in course of recombination is transferred. Therefore, the CHCC notation means that an electron
in the conduction band and a heavy hole recombine with each other, transferring the excess energy to one more electron
(C), which is scattered within the same conduction band (C). In turn, the CHHS notation means that an electron in the
conduction band and a heavy hole recombine, transferring the excess energy to another heavy hole (H), which is scattered
into the split-o� hole sub-band (S).
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Here, NC and Nhh are the e�ective densities of states in the conduction band and heavy-hole sub-band,
respectively (see Equation 14.14), ED is the ionization energy of a shallow donor, ⟨εc⟩ is the mean elec-
tron energy in the conduction band, and Δ is the spin–orbital splitting of the valence band. The energy
⟨εc⟩ =

3
2 kT in the case of nondegenerated electrons and ⟨εc⟩ =

3
5εF ∝ n2∕3 for degenerated electrons,

and εF is the Fermi energy. In the latter case, Auger recombination depends even more on the electron
concentration than in the case of nondegenerated carriers.

The CHCC Auger process has a threshold accounted for by the exponential factor in Equation 14.23,
with Eth being the threshold energy. The existence of the threshold originates from simultaneous
conservation of the momentum and energy during recombination. As follows from Equation 14.23, the
rate of the CHCC Auger recombination decreases dramatically with the material bandgap; therefore, this
nonradiative process is especially important in narrow-bandgap semiconductors.

Among the processes involving two holes and an electron in bulk cubic semiconductors, the most impor-
tant is the CHHS one, where the high-energy hole transfers from the heavy-hole to the split-o� hole
sub-band. At Eg − Δ >> kT, the recombination coe�cient associated with this process has an analytical
representation (Abakumov et al., 1991):

Cp =
216
√

π
χ

νD
NhhNso

(

kT
Eth

)1∕2
(

kT
Eg

)3

exp
(

−Eth
kT

)

;

Eth =
mso
mhh

Eg
Eg(Eg − Δ)

(Eg + Δ)(3Eg − 2Δ)
, χ =

(

mhh
mso

)1∕2
(

Eg + Δ
Eg

)2

.

(14.24)

Equation 14.24 shows that the energy threshold of the CHHS process disappears under resonance con-
ditions Δ ≈ Eg; near the resonance, the threshold energy is relatively small, resulting in a considerable
increase in the recombination rate.

Similarly to the case of radiative recombination, there is a variety of microscopic Auger recombination
processes, involving, in addition to free carriers, those trapped by shallow donors, acceptors, and deep cen-
ters (Abakumov et al., 1991), or injected into QWs and QDs (Zegrya and Kharchenko, 1992; Dyakonov and
Kachorovskii, 1994; Zegrya and Samosvat, 2007) as well as phonons (Kioupakis et al., 2011). In all these
cases, the momentum conservation is violated in one or more directions, leading to the disappearance of
the Auger recombination threshold and, as a result, to an increase in the nonradiative recombination rate.
Unfortunately, not all of the mechanisms allow even simpli�ed analytical treatment to derive the recombi-
nation coe�cient; moreover, the theory for some important mechanisms is not yet completely developed
(Abakumov et al., 1991). Therefore, only experimental observations may provide guidelines for the choice
of dominant Auger mechanisms, in particular materials and device structures, and �tting of the Cn and Cp
coe�cient to the available data instead of using a rigorous theory may be applied in some cases.

The �nal nonradiative mechanism of carrier losses to be considered is that their surface recombination
is occurs mainly at free surfaces of the LED active region. The surface recombination is accounted for via
the �ux Js of carriers arriving at the free surface to recombine nonradiatively. The �ux may be calculated as

Js =
np

n∕Sp + p∕Sn
⋅
[

1 − exp
(

−
Fn − Fp

kT

)]

, (14.25)

where Sn and Sp are the surface recombination velocities associated with n-type and p-type materials,
respectively. Frequently the carrier losses localized at the active region surface are accounted for by the
e�ective recombination rate distributed over the whole active region with the area A and perimeter P,
which can be calculated by Equation 14.18 with ξn = ξp = 0 and τn,p = A∕(PSn,p) (Royo et al., 2002).
Such a simpli�ed model is valid if the carrier concentration variation in the active region is much lower than
their mean concentrations. In other cases, a more elaborate approach should be applied (see Section 14.4.2).
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14.3.4 Efficiency of Light Emission

A number of parameters characterize the e�ciency of LED structures. One is the injection e�ciency ηinj,
which accounts for the losses of minority carriers arriving at the contact electrodes without recombination
inside the LED structure. The injection e�ciency is de�ned as the ratio of the recombination current Irec =
q ∫V R(r) d3r to the total current I �owing through the LED (here, the integration is performed over the
whole LED volume V). Another important parameter is the internal quantum e�ciency (IQE) ηi, de�ned
as the ratio of the radiative recombination current Irad = q ∫V Rrad(r) d3r to Irec. EQE ηe characterizes the
number of photons outgoing from the LED per one electron–hole pair passing through the LED contact
electrodes. Generally, ηe = ηextηinjηi, where ηext is the e�ciency of light extraction (LEE) from the LED
die. Finally, the wall–plug e�ciency (WPE) ηw is the ratio of the output optical power to the electrical
power consumed by LED during its operation. The ratio ηw∕ηe is sometimes regarded as the so-called
electric e�ciency. However, this ratio may be greater than unity at low currents and, therefore, use of this
parameter appears to be somewhat misleading.

Both blue/green InGaN-based and red/amber AlGaInP-based LEDs exhibit rather strong EQE reduction
at high operating currents but the dominant mechanisms responsible for the reduction are di�erent in
nitride and phosphide devices. In AlGaInP LEDs, the EQE reduction with current has been primarily
attributed to electron leakage into the p-side of the LED structure because of insu�ciently high barriers
inherent in the AlGaInP materials system (Royo et al., 2002; Altieri et al., 2005). The leakage is found to
be strongly increased by elevated temperature, with the activation energy nearly equal to the di�erence
between the electron energy levels involved in optical transitions and the edge of the barrier conduction
band (Altieri et al., 2005). This experimental fact was the major argument for attributing the EQE reduction
with current to the electron leakage.

Blue/green nitride LEDs operate at the nonequilibrium carrier density in the active region, at least an
order of magnitude higher than that in phosphide LEDs (compare Figures 14.4 and 14.5a). Therefore, the
EQE reduction (droop) with current is associated here with Auger recombination (Shen et al., 2007; Bula-
shevich and Karpov, 2008; Laubsch et al., 2009); see also various reviews (Piprek, 2010; Avrutin et al., 2013;
Verzellesi et al., 2013; Cho et al., 2013) for more detailed discussion on this and alternative mechanisms
and experimental studies (Iveland et al., 2013; Galler et al., 2013; Binder et al., 2013) directly demonstrating
the importance of Auger recombination. Although particular microscopic mechanisms of Auger recom-
bination in nitride LEDs are not reliably identi�ed, the concept of enlarged recombination volume used
in the LED structure design (see, e.g., the review by Weisbuch et al. 2015) and aimed at suppression of
the nonradiative carrier losses due to lowering the carrier concentration in the active region works well in
practice.

Figure 14.5a shows the band diagrams and nonequilibrium carrier concentrations in a red (λ = 622 nm)
LED structure grown on an n-GaAs substrate and consisting of an undoped 5 × (3.5 nm Ga0.51In0.49P/7
nm (Al0.8Ga0.2)0.51In0.49P) multiple-quantum well (MQW) active region sandwiched between n- and p-
Al0.51In0.49P con�nement layers, both 100 nm thick; a thick p-GaP contact layer completes the structure.
As one can see from a comparison of Figures 14.5a and 14.4, the electron/hole concentration in the active
region of the red LED is ~1–2 orders of magnitude lower than in InGaN-based LEDs at the same oper-
ating current density of 30 A/cm2. This originates from di�erent properties of the phosphide and nitride
semiconductors: conduction and valence band o�sets, carrier mobilities, and recombination constants.
The band alignment in the MQW active region is rather �at, providing a uniform distribution of the
recombination rate among all the QWs.

The injection e�ciency of the red LED structure plotted in Figure 14.5b is strongly dependent on tem-
perature. It di�ers from unity rather weakly at 300 K, and is considerably reduced at 340 and 370 K,
indicating increasing carrier losses via leakage. The electron leakage is predicted to dominate over the
hole one at all current densities considered. IQE of the red LED structure varies weakly with temperature
(Figure 14.5c) due to temperature-dependent recombination constants. The IQE dependence on current
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FIGURE 14.5 Band diagram (gray shading indicates the bandgap) and distributions of electron (solid lines) and hole
(dotted lines) concentrations in a red MQW light-emitting diodes (LEDs) structure at the current density of 30 A/cm2

(a). Injection e�ciency (b) and IQE (c) of the structure as a function of current density at three di�erent tempera-
tures. IQEs of the InGaN-based SQW LED structures shown in Figure 14.4 are also given versus current density for
comparison (d).

has a dome-like shape, re�ecting competition between the radiative and nonradiative recombination chan-
nels. In particular, the IQE droop at high currents is related to nonradiative carrier losses caused by Auger
recombination. Because IQE starts to decline at much higher current density than IE does, degradation of
the overall red LED e�ciency with temperature should be primarily attributed to the carrier leakage.

Figure 14.5d displays current-dependent IQEs of the nitride SQW LED structures discussed in
Section 14.3.2. Simulation of the structures was intentionally carried out with the same recombination
constants in order to emphasize the role of the crystal polarity. The computed injection e�ciency is equal
to unity for all the structures in the whole range of the current density variation. Therefore, the IQE
droop clearly seen in Figure 14.5d should be attributed entirely to Auger recombination. As the carrier
concentrations in the active region of InGaN-based LEDs considerably exceed those in the red LED
structure, the IQE droop in nitride emitters starts at lower current densities (compare Figure 14.5c and d).

The e�ciency droop is also observed in UV LEDs with AlGaN active regions (Mickevičius et al., 2015).
The nature of the droop here, however, remains unclear and requires further investigation.
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14.4 Current Spreading, Heat Transfer, and Light Extraction in
LED Dice

State-of-the-art LEDs utilize rather complex essentially 3D chip designs aimed at achieving various goals:
providing a uniform carrier injection into the active regions at minimum series resistance, e�cient light
extraction from the LED dice, and e�cient heat removal from the active region. Most of the physical pro-
cesses involved in the chip operation are coupled with one another so that their straightforward modeling
requires a large amount of computational time and computer resources. Therefore, implementation of
approximation approaches to create engineering simulations of the processes occurring in the LED chips
is highly desirable.

A rather e�ective approach can be developed on the basis of the equation for the total current density
j = jn + jp; under steady-state conditions, this equation follows from Equation 14.11: ∇ ⋅ j = 0. It does
not contain any recombination terms and enables much easier and faster numerical solution than full
DDM equations, if the relationship between j and electric potential ϕ is speci�ed. In the contact layers, this
relationship can be approximated by a unipolar conductivity, that is, j = −σn,p∇ϕ, where σn and σp are
the electric conductivities of the n- and p-contact layers, respectively. This approximation does not work,
however, in the LED active region. On the other hand, electrons and holes are transferred here mainly in
the vertical direction due to dominant vertical components of the electric �eld and gradients of carrier
concentrations. Therefore, the carrier transport in the active region may be well approximated by a 1D
model. The 1D solution to the DDM equations provides a nonlinear dependence of the vertical current
density jv on the p-n junction bias Ub = Fn − Fp, where the values of the quasi-Fermi levels Fn and Fp are
taken at the n- and p-sides of the active region, respectively. Thus, the jv(Ub) dependence obtained may
be used as a nonlinear boundary condition in 3D chip simulations, connecting the vertical component of
the local current density j with the electric potential di�erence on the n-side (ϕn) and p-side (ϕp) borders
of the active region: n ⋅ j = jv(ϕp − ϕn), where n is the normal to the active region directed from the p-
to n-contact layer. Solution to the above problem provides 3D distribution of the current density in an
LED die.

This approximate approach has proved to be quite e�cient for coupled modeling of LEDs with rather
complex chip designs (Bogdanov et al., 2008); it can also be easily re�ned by using additional experimental
input (López and Margalith, 2008). Comparison of theoretical results obtained by the above approach with
available observations has demonstrated its good predictability (Chernyakov et al., 2013).

As it was already mentioned, the carrier transport in the LED active region occurs primarily in the ver-
tical direction. Therefore, considering the lateral electron and hole transfer as a perturbation, one can also
account for the lateral redistribution of carriers due to ambipolar di�usion and their surface recombination
at the free surface of the active region.

To illustrate, Figure 14.6 shows simulated 2D current density distribution over the active region and
some characteristics of a vertical red LED die shaped in such a way as to increase its light extraction
e�ciency (LEE) using inclined side walls of the die (see Figure 14.7a). The LED structure presented in
Figure 14.5a has been chosen for the simulations, whereas modeling of current spreading, heat trans-
fer, and light extraction was carried out self-consistently in 3D approximation. Due to the vertical chip
geometry, current crowding (see Section 14.4.1 for a more detailed discussion) is rather weak in the chip
(Figure 14.6a), resulting in a nearly linear relationship between the mean current density and current
(Figure 14.6b). Simulated current–voltage and light–current characteristics of the red LED are shown in
Figure 14.6c, whereas EQE and WPE variation with current is given in Figure 14.6d. At relatively low cur-
rents, WPE exceeds EQE (see Figure 14.6d), which is typical for LEDs operating at the forward voltage
Vf < Eph∕q, where Eph is the mean energy of emitted photons. The decrease of EQE and WPE at high
currents is caused by the thermally enhanced electron leakage, as discussed in Section 14.3.4. One can see
from Figure 14.6b that the mean temperature in the LED die increases superlinearly with the operating
current.
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FIGURE 14.6 Two-dimensional (2D) vertical current density distribution in the active region at the current of 100
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tum e�ciency (EQE) and wall–plug e�ciency (WPE) (d) as a function of operating current of the red light-emitting
diode (LED) chip shown in Figure 14.7a.
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As soon as the distribution of electron and hole concentrations in the active region is determined, the
radiative recombination rate in each point can be obtained (Bogdanov et al., 2008). Using the radiation pat-
tern speci�c for the active region band structure, one can use the ray tracing to simulate photon propagation
and absorption in the LED die, as well as their extraction e�ciency.

Figure 14.7 shows results of the ray-tracing modeling of the shaped red LED die considered previously.
LEE has been found to be independent of operating current due to weak current crowding and equal to
35.2%. Near-�eld emission intensity distribution over the outer surfaces of the LED die (Figure 14.7a)
demonstrates that most of the emitted photons are extracted through the inclined side walls of the die and
primarily through the regions adjacent to the die edges. As a result, the far-�eld emission pattern di�ers
substantially from the Lambertian one, providing nearly constant intensity in a wide observation angle of
~100° (Figure 14.7b).

Ray tracing is quite suitable for accounting properties of the photon ensemble in LED dice. However,
its applicability is rather limited as the approach ignores the wave nature of photons, that is, the e�ects of
their di�raction and interference. Ray tracing is warranted if speci�c LED chip dimensions are much larger
than the photon wavelength. However, any elements of the chip design based on the photon interference or
di�raction, such as photonic crystals or textured surface commonly used for better extraction of photons
from LEDs, cannot be considered to be accurate in the ray tracing procedure.

An alternative approach frequently applied for estimation of LEE is the direct �nite-di�erence time
domain (FDTD) simulations, where the Maxwell’s equations are solved for the electromagnetic �eld
induced by a dipole imitating the act of radiative recombination of an electron and a hole. The FDTD
method is quite suitable, in particular, for analysis of light di�raction at a textured surface of the LED
dice. Despite the accounting for photon wave nature, the FDTD approach has also some limitations related
to (1) ignoring the ensemble properties of electrons/holes and, hence, of emitted photons and (2) using
some arti�cial boundary conditions for the Maxwell’s equations, the impact of which on the accuracy of
theoretical predictions is still uncertain (Zhmakin, 2011).

To summarize, ray tracing and FDTD simulation are complementary approaches to LEE calculation
rather than competing ones. The choice between them depends on the LED chip geometry and parameters
desirable to predict LEE value, emission pattern in the near- and far-�eld zones, light absorption in LED
die, emission polarization, and so on.

14.4.1 Current Crowding

Current crowding is the e�ect of the current density localization inside the LED die around the stream-
lines with minimum path resistance. Generally, every LED chip can be represented via two distributed
linear resistors corresponding to n- and p-contact layers and a nonlinear resistor corresponding to the
LED active region, including p-n junction, all connected in series. The nonlinear p-n junction resistor has
a nearly exponential resistance dependence on the internal p-n junction bias. At a low operating current,
the p-n junction resistance is much higher than both linear ones and the lateral current �ow in the contact
layers dominates, resulting in a rather uniform distribution of the vertical current density over the LED
active region. At higher currents, the increase in the p-n junction bias leads to a dramatic reduction of the
p-n junction resistance, which becomes comparable to or lower than both contact layer resistances. As a
result, the vertical current density redistributes signi�cantly in such a way as to minimize the total path
resistance along the current streamlines. Therefore, current crowding is essentially a nonlinear e�ect, which
develops with the LED operating current I and depends on temperature primarily through the nonlinear
p-n junction resistance.

Because of current crowding, the main LED characteristics should be obtained by averaging over the
active region area A with the local current density jv serving as the weight function. So, the mean current
density in the active region j = I−1 ∫A j2v(r) d2r > I∕A is no longer proportional to I = ∫A jv(r) d2r, if the
current crowding is pronounced. Also the mean IQE of an LED becomes dependent on current crowding
(see simulation results obtained by Bogdanov et al. (2010) and experimental data by Malyutenko et al.
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(2010)): ηi = I−1 ∫A ηi(jv) ⋅ jv(r) d2r, where ηi(jv) is the IQE of LED structure dependent on the local
current density jv.

Another important e�ect of current crowding found by simulations (Bogdanov et al., 2010) and reported
experimentally by Laubsch et al. (2010) is the current localization under metallic electrodes deposited on
the emitting surface of LEDs. Depending largely on the operating current, the localization results in LEE
decreasing with current, enhancing the overall e�ciency droop. The e�ect was found to be much stronger
than the IQE reduction caused by current crowding (Bogdanov et al., 2010). Avoiding metallic electrodes
on the emitting surface by the use of advance chip designs (see, for instance, Laubsch et al. 2010) improves
LEE substantially.

Generally, current crowding is especially pronounced in lateral LED chips utilizing nonconductive sap-
phire substrate and having one-side electrode access to both n- and p-contact layers. This is because of a
relatively thin n-contact layer providing dominant lateral current �ow inside the chip. In a vertical LED die
similar to that shown in Figure 14.7a, the current crowding is weaker but, nevertheless, still tangible (see
Figure 14.6a) despite a relatively large distance, ~200 μm, between the n- and p-electrodes, which looks at
�rst glance to be quite su�cient for the complete homogenization of the current density distribution inside
the die.

14.4.2 Surface Recombination

There are three main parameters a�ecting the surface recombination impact on the LED e�ciency: the
recombination velocity S, the ambipolar carrier di�usion coe�cient Da in the active region, and the carrier
di�erential life time τd generally dependent on the carrier concentration in the active region. The latter two
parameters determine the carrier di�usion length Ld = (Daτd)1∕2, which characterizes the width of the
region adjacent to the free surface of the active region where contribution of surface recombination to the
carrier losses is signi�cant.

Red/amber AlGaInP LEDs operate normally at a reduced, ~1017–1018 cm−3, carrier concentration in
the active region (Figure 14.5a), providing a relatively long τd. The carrier di�usivity in the active region
enhanced in undoped QWs may be rather large. As a result, Ld may approach ~10–25 μm in such devices.
Therefore, surface recombination results in a remarkable rise to the carrier losses already at the LED chip
dimensions as small as ~150–250 μm (Royo et al., 2002).

The carrier concentration in the active regions of blue and green InGaN-based LEDs is ~1–2 orders of
magnitude higher (Figure 14.4), shortening signi�cantly the lifetime τd; the carrier di�usivity here is also
about an order of magnitude smaller. Therefore, Ld does not normally exceed a few micrometers in nitride
LEDs. On the other hand, the free active region surface is normally located close to the regions of strong
current crowding in the III-nitride LED chips. Estimates show that surface recombination may be valuable
in blue/green LEDs at low currents corresponding to the maximum of their e�ciency. Surface recombina-
tion is expected to be especially pronounced in deep-UV LEDs because of (1) a high Al content in the active
region normally increasing the surface recombination velocity, (2) a weaker carrier localization resulting
in their higher di�usivity in the active region, and (3) smaller LED die dimensions usually utilized in
practice.

14.5 Phosphor-Converted White Light Emission

An important sector of LED industry is the production of white light sources for solid-state lighting. Such
sources are based on emulation of sunlight by a number of LEDs emitting in di�erent spectral ranges or
by using a partial light conversion by one or more phosphors. As it has been shown by Bulashevich et al.
(2015), the phosphor-converted LEDs (PC-LEDs) provide a higher e�cacy at a better color rendition, as
compared to white light sources utilizing LEDs only. In addition, fabrication of PC-LEDs represents the
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main industrial approach to the white light production. Therefore, this section will focus on simulation
models necessary for the analysis of light conversion by phosphors pumped with LEDs.

14.5.1 White Light Characteristics

The fundamentals of color perception and white light characterization are described in detail by Judd and
Wyszecki (1975). Here, the main white light characteristics will be brie�y discussed in view of discussion
on their further modeling.

Starting with J.C. Maxwell’s studies in the mid-nineteenth century, it became customary to decompose
the light color into three components. According to CIE (1986), three color coordinates, X, Y , and Z, can
be brought in by the convolution of a light source spectral power density emission spectrum Sλ(λ) with
three tabulated color matching functions, x(λ), y(λ), and z(λ). Then the relative chromatic coordinates
x = X∕(X + Y + Z) and y = Y∕(X + Y + Z) project the emission spectrum into the CIE1931 color chart,
which is represented by points in the (x, y) space, all the possible colors that can be encountered in practice.

A natural source producing white light is a black body heated up to a certain temperature. Under the tem-
perature variation, chromatic coordinates of the black-body radiation (BBR) form in the CIE1931 diagram,
a locus nearly corresponding to white light. In practice, some deviations of the white-light chromatic coor-
dinates xw and yw from the BBR locus are admissible. In this case, a certain projection of the (xw, yw) point
to the BBR locus produces the so-called correlated color temperature (CCT), which is one of the most
important characteristics of white light.

Another important characteristic is the luminous e�cacy of radiation (LER) obtained by convolution
of the spectral power density spectrum Sλ(λ) with the human eye sensitivity function Φ(λ) (Judd and
Wyszecki, 1975), accounting statistically for the perception of human eye: LER = ∫ Sλ(λ)Φ(λ) dλ. The
e�cacy of a white light source is the product of LER and total WPE of the source, which depends on WPEs
of individual LEDs and the power fractions of the emission spectra supplied by these LEDs into the total
spectrum Sλ(λ) (Bulashevich et al., 2015). If a phosphor emission is used for white light generation, its
e�ective WPE depends on the WPE of the pumping LED, the Stokes shi� caused by down conversion of
the photon energy, and quantum yield of the phosphor emission (Bulashevich et al., 2015).

Ability of a light source to reproduce the colors of illuminated objects accurately is characterized by the
color rendering index (CRI). The CRI accounts for the di�erences between the chromatic coordinates of
light re�ected from a number of standard color samples at their illuminating by the light source studied
and by one or another standard illuminant. Detailed procedure of the CRI evaluation is recommended by
CIE (1986). The CRI is reduced from the maximum value of 100 by every chromatic coordinate di�erence
obtained from the selected color samples.

14.5.2 Light Conversion by Phosphor

Conversion medium in an LED lamp typically consists of a silicone layer with embedded particles of one or
more phosphors deposited on the surface of pumping LED. Therefore, the light absorption and scattering
by the phosphor particle, as well as emission of the down-converted light and its scattering by the particles,
occurs in the medium. Here, spectral ray tracing is the approach most suitable for simulations of light
conversion by phosphors. Assuming the phosphor particles to be randomly and uniformly distributed in
silicone, one can derive the light conversion to depend on scattering properties of an individual particle
and total volume fraction fph of the particles in the conversion medium.

Rigorous Mie theory (Van de Hulst, 1957) is currently the best model for analysis of light scattering
by individual phosphor particles. Assuming spherical particle shape, the theory predicts the wavelength-
dependent scattering and absorption cross-sections necessary for ray tracing simulations, as well as the
scattering pattern in the far-�eld zone. For particles of realistic size and monochromatic light, the scattering
patterns exhibit strong interference oscillations (black lines in Figure 14.8), which should be absent in
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FIGURE 14.8 Scattering patterns of YAG:Ce3+ particle with the radius of 4 μm obtained by the Mie theory with and
without account of particle size dispersion and by Henyey–Greenstein approximation for the wavelength of 600 nm (a)
and 400 nm (b).

practice in view of (1) dispersion of the particle sizes, (2) deviation of the particle shapes from the spheri-
cal one, and (3) a nonmonochromatic spectra of the pumping LED and phosphor. Accounting for the size
dispersion of phosphor particles is already su�cient to avoid the oscillations in the scattering pattern (gray
lines in Figure 14.8). It is interesting that the Henyey–Greenstein scattering functions (Henyey and Green-
stein, 1941) commonly used for empirical �tting of the scattering pattern do not work well in the case of
realistic phosphor particles, if the asymmetry parameter g of the function is correctly estimated as the �rst
moment of the scattering pattern predicted by the Mie theory (dotted lines in Figure 14.8). Being �tted to
the computed pattern, the Henyey–Greenstein scattering function at g ~0.98–0.99 is capable of predicting
the enhanced forward scattering seen in Figure 14.8 but fails to reproduce the wings of the scattering pat-
tern predicted by the Mie theory. So, there is an unlikely alternative to the use of Mie theory for modeling
the light interaction with the phosphor particles.

The absorption/scattering cross-sections and scattering pattern of individual phosphor particles
involved in spectral ray tracing allow simulating the total emission spectrum in the far-�eld zone, esti-
mating the color characteristics of white light, that is, chromatic coordinates x and y, CCT, and CRI, and
their dependence on the observation angle. The latter dependence is quite important as the overall white
light LED performance requires uniform color characteristics in a wide range of the observation of angle
variation. As soon as the angle dependence of the total emission spectrum is obtained, integration over the
angle enables calculation of LER and then of e�cacy of the white light source.

One of the approaches aimed at improving angle uniformity of color characteristics is based on the
fact that the scattering cross-section of phosphor particles depends very critically on the particle size.
Figure 14.9 shows the simulated angle dependence of CCT and CRI of the white light source compris-
ing of a blue (450 nm) LED and a yellow YAG:Ce3+ phosphor with the emission spectrum peaked at 560
nm and its full width at half maximum of 120 nm. Simulations were carried out for a square-shaped LED
chip uniformly coated by a 230-nm silicone layer with 8% of its volume �lled by the phosphor particles.
One can see from Figure 14.9 that the angle uniformity of CCT and CRI is strongly dependent on the par-
ticle size. Among the chosen values of the mean particle radius, only that of 2 μm provides simultaneously
the angle-uniform CCT and CRI.

The above results have been obtained by ray tracing performed in 50 spectral intervals from 380 to
730 nm, using 108 rays. Even at that, the simulated color characteristics in the far-�eld zone are rather noisy
because of insu�cient ray statistics. Therefore, parallel computing is normally required for the spectral ray
tracing in order to accelerate simulations.
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white light source consisting of a blue light-emitting diode (LED) and a YAG:Ce3+ yellow phosphor with the particles
of various sizes. The conversion media thickness Dph = 230 μm is assumed in the ray-tracing simulations.

14.6 Concluding Remarks

This chapter presents a general frame and a strategy for multiscale and multidisciplinary simulations of
state-of-the-art LEDs from heterostructure to lamp. The basic models and the most important mechanisms
underlying the simulations are reviewed with the focus on those that were not discussed in detail previously.
It should be noted that many aspects of simulations are just outlined in the chapter and should be adopted
to speci�c subjects of the study. In particular, the radiative and nonradiative recombination mechanisms
require more detailed description that accounts for both direct and phonon-assisted processes, as well as the
variety of active region designs (quasi-bulk, QWs, or QDs). Another issue beyond the scope of the chapter
is the proper choice of materials properties, which are known to o�en be highly inaccurate, and its impact
on the simulation results. Finally, the role of a number of material factors important for LED operation,
such as high-density threading dislocations and compositional �uctuations in InGaN and other alloys, are
still in the early stages of study. A better understanding of these factors may result in a reconsideration of
the basic carrier transport and recombination models in the future.
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15.1 Introduction

The 2014 Nobel Prize in Physics was awarded “for the invention of e�cient blue light-emitting diodes
(LEDs) which has enabled bright and energy-saving white light sources” [1–3], setting a clear target to
mankind: energy-e�cient and environmental-friendly light sources [4]. The �rst organic LED (OLED) was
reported in 1987 by a team at Kodak [5]. This publication, cited to date more than 10,000 times, stipulated
the entire �eld of organic electronics. Shortly a�erward, a polymer LED (PLED) was demonstrated [6],
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paving the way for �exible lighting applications [7]. Nowadays, OLEDs are successfully used in displays of
mobile phones and televisions: In 2008, Samsung announced a �exible display that was only 50 μm thick [8],
about half the thickness of a sheet of paper. A prototype of an OLED display for the automotive market
was presented recently by Continental [9]: In OLED displays, black pixels are completely switched o�,
allowing the driver’s eye to adapt better to the darkness. Contrary to liquid crystal displays (LCDs), OLED
screens do not require backlight illumination, yielding exceptionally good contrast ratios and reduced
power consumption. OLED displays also provide viewing angles and response times superior to LCDs
and are, in general, thinner and lighter. Last but not least, many organic materials can be printed from
solution, enabling cost-e�ective large-scale manufacturing on mechanically �exible �lms.

The prime challenge in OLED development is an improvement of device operation lifetimes. In many
cases, the steady decrease of luminescence e�ciency of OLEDs under continuous operation is compen-
sated by a gradual rise in bias voltages, or by using larger pixel sizes, which can then be operated at lower
voltages and luminances. In particular, blue phosphorescent devices, with their high energy of emitted pho-
tons and long-lived excited states, are prone to rapid material degradation. The underlying mechanisms of
degradation, discussed in Section 15.12.5, are unfortunately not fully understood.

Designing new organic materials is crucial for tuning OLED properties, performance, and stability.
One, therefore, needs to provide rigorous links between device characteristics and the chemical composi-
tion of the layers, or structure–property relationships. This can be done with the help of cheminformatics
tools [10], i.e., by correlating available experimental data to underlying chemical structures. However, the
number of experimental samples is normally limited to a few hundred since synthesis, device optimiza-
tion, and characterization are o�en costly and time consuming. A substantial extension of the training set
is therefore experimentally not feasible to achieve, again motivating the development of computer sim-
ulations techniques capable of predicting device characteristics in silico [11]. In this chapter, we aim to
provide an overview of theoretical models and simulation approaches developed to study charge and exci-
ton transport in organic semiconductors, as well as to predict and eventually optimize current–voltage
characteristics, electroluminescence e�ciency, and lifetimes of OLEDs.

15.2 Working Principles of an OLED

We start by reviewing the elementary processes taking place in an OLED. The simplest two-layer OLED
consists of hole and (luminescent) electron transporting layers (ETLs), which are sandwiched between two
electrodes, as shown in Figure 15.1a. When a voltage is applied to the electrodes, holes are injected from the
anode into the hole transporting layer (HTL) and electrons from the cathode into the ETL. The external
�eld forces electrons and holes to dri� toward the interface between these layers, where they recombine
and emit light. Energetically, such a heterojunction is designed to facilitate the hole injection from HTL to
ETL as well as to block electron di�usion into the opposite direction.

To �ne-tune device properties such as luminescence, driving voltage, light outcoupling, and lifetime,
more layers are added to a two-layer OLED: A typical phosphorescent OLED is shown in Figure 15.1b.
Here, when a voltage is applied to the electrodes, electrons are injected from the re�ective metal cathode
(Al) and holes from the semitransparent anode (indium tin oxide or ITO). The cathode has a low work
function, while the anode has a high one. This energy di�erence is compensated by the externally applied
voltage, which forces charge carriers to dri� into the emission layer. In the emission layer, holes and elec-
trons form excitons, predominantly on the emitter (guest) molecules. Finally, radiative decay of an exciton
leads to light emission. In the next sections, we brie�y review the functionality of all layers.

15.2.1 Electrodes

The outermost layers, metallic or metal-oxide electrodes, inject electrons and holes into organic layers.
A common material for the semitransparent anode is ITO [12]. Its low ionization potential (IP) ensures
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FIGURE 15.1 (a) Schematic of a two-layer electroluminescent organic light-emitting diode (OLED) and its energy
level diagram under applied voltage. (b) Structure of a blue phosphorescent OLED with a transparent anode (indium
tin oxide or ITO), a re�ective cathode (Al), emission layer, and hole/electron conduction/blocking layers. Indicated
energy levels are without the applied bias. (c) Compounds used in the OLED (b). (Adapted from P. Kordt et al., Adv.
Funct. Mater., 25, 1955–1971, 2015.)

e�cient hole injection into the organic layer. For e�cient electron injection a low work function cathode
is required. Since such materials are o�en air-unstable, normally bilayered structures are used [13], e.g.,
Al/LiF [14,15] or Ag/MgAg [16,17].

15.2.2 Charge Transport Layers

The role of electron and hole transport layers (HTLs) is to provide an Ohmic contact to the electrodes
(barrierless injection) and to help control light outcoupling. These layers are o�en doped. By inserting
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electron donating or accepting impurities into a material, their intrinsic charge carrier density is increased,
leading to higher conductivities and a reduction of the injection barrier. While it is a standard technique in
inorganic semiconductors, it can be challenging in organic materials: Dopant molecules create energetic
traps, hindering the formation of mobile charges [18].

Realizing p-type doping, which increases the hole density, requires a dopant material with a lowest
unoccupied molecular orbital (LUMO) level close to the highest occupied molecular orbital (HOMO)
of the host. This is feasible in most cases and, consequently, it is used in many OLEDs. For example,
the OLED stack in Figure 15.1b has a p-doped Tris[(3-phenyl-1H-benzimidazol-1-yl-2(3H)-ylidene)-
1,2-phenylene]Ir (DPBIC) HTL. On the contrary, n-type doping requires a dopant material with an
HOMO level near or above the LUMO of the host. The necessity to �nd air-stable dopant materials
with such a high HOMO level makes n-type doping challenging. Moreover, when using small molecules
such as O2, Br2, and I2 as dopant materials, these can di�use into an organic host, leading to unde-
sired doping pro�les. This e�ect, however, can also be used to actually dope the adjacent layer with an
interlayer of dopant molecules. In the stack shown in Figure 15.1b this technique is applied: Here an LiF
interlayer is placed between the aluminum cathode and the electron transport layer (ETL) doping the lat-
ter [19]. Alq3 (aluminum-tris(8-hydroxychinolin)) is a material that can be used for both the hole- and
electron-conducting layers. In the stack in Figure 15.1b DPBIC is used for hole conduction and bath-
ocuproine-4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline (BCP) serves as an electron-conducting layer
[14,16,17,20,21].

15.2.3 Blocking Layers

Hole/electron blocking layers suppress charge �ow to the opposite electrodes, enhancing their recombina-
tion probability in the emission layer. The hole blocking layer has an IP lower than the IP of the emission
layer. Similarly, an electron blocking layer has an electron a�nity (EA) higher than the EA of the emission
layer. In Figure 15.1, DPBIC is used as an electron blocker and BCP as a hole blocker [14,16,17,20,21].

15.2.4 Emission Layer

In the emission layer, electrons and holes recombine, leading to exciton formation. Upon radiative decay
of the excitons, photons are emitted. To avoid exciton quenching, emitters (host molecules) are embed-
ded into a matrix (guest molecules). In the stack shown in Figure 15.1b, Tris[(1,2-dibenzofurane-4-ylene)
(3-methyl-1/1-imidazole-1-yl-2(3/1)-ylidene)]Ir(III) (TBFMI) is a blue phosphorescent emitter, while
8-bis(triphenylsilyl)-dibenzofuran (BTDF) is the host material.

Exciton generation and the emission of photons proceeds in several steps, which are illustrated in
Figure 15.2. First, a carrier (in this case a hole) is trapped on an emitter molecule and an oxidized com-
plex is formed. Driven by Coulomb forces, a carrier of opposite charge (electron) moves on host molecules
toward the trapped carrier. When the electron reaches a host molecule’ neighboring oxidized emitter, a
charge transfer (CT) state is formed, as shown in Figure 15.2b. In a CT state, the short-range exchange
interaction leads to an energy splitting of singlet (S) and triplet (T) states. The triplet consists of three
triplet substates, which di�er from one another by their relative spin orientations. Statistically, one obtains
a population ratio of 1:3 between singlet and triplet substates. In a �nal step, the electron moves in a very
rapid process directly to the emitter molecule, forming an excited emitter, see Figure 15.2c. This process
may occur via a singlet or a triplet path, depending on the initial spin orientation of the electron–hole pair.
The two spins of an electron and a hole are then coupled to four new combined states: one singlet state,
with total spin momentum 0, and one triplet state, with the total spin momentum 1. In a statistical limit,
all four substates are populated with an equal probability.

An exciton formed on an emitter molecule can decay radiatively by �uorescence or phosphorescence.
In �uorescence, which is the most common radiative decay pathway for organic molecules, the radiative
decay occurs from the excited singlet state, S1, to the ground state. If triplet states are not harvested, the
internal quantum e�ciency of an OLED is limited to 25%. Phosphorescence, conversely, allows harvesting of
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FIGURE 15.2 Exciton formation in the emission layer of a phosphorescent organic light-emitting diode (OLED).
(a) Electron moves toward a hole which is trapped on the emitter molecule. (b) Charge transfer state is formed with
the electron on a host and hole on a neighboring emitter molecule. Spins of hole and electron are already correlated to
one singlet and three triplet states. (c) Exciton is formed on the emitter molecule with a statistical probability to be in a
25% singlet and 75% triplet state. Singlet state undergoes fast intersystem crossing (ISC) into a triplet state which then
emits light.

triplet states. One can use compounds with large spin–orbit couplings, such as organometallic complexes,
to achieve this. The large spin–orbit coupling capacitates a spin �ip, (see Figure 15.2c), leading to ISC, i.e.,
a transition between singlet and triplet states. Thus, triplets can also decay radiatively (T1 → S0), yielding
an internal quantum e�ciency of 100%.

Another way of harvesting triplet states is via a thermally activated delayed �uorescence (TADF) [22].
TADF can be realized in organic molecules even with small spin–orbit coupling. In TADF triplets are con-
verted to singlets thermally (reverse ISC) and a radiative S1 → S0 decay (�uorescence) takes place. TADF
requires small energy di�erences between T1 and S1 levels ΔEST ∼ kBT. To achieve this, a large spatial
HOMO–LUMO separation is required. This, however, competes with the requirement of large oscillator
strengths of �uorescence, i.e., a large transition dipole moment [23].

Several processes in an OLED can lead to e�ciency losses. In a phosphorescent OLED, these are
triplet–triplet quenching, where two triplets are annihilated as a result of the interaction of neighboring
excited emitter molecules, and triplet–polaron quenching, i.e., an interaction between electronic and vibra-
tional modes, energy transfer to polarons, and dissociation into free carriers [12,24]. These processes are
discussed in more detail in Sections 15.12.3 and 15.12.5.

A comprehensive OLED model should incorporate all the aforementioned elementary processes: charge
injection from electrodes, charge trapping, and transport to the emission layer, long-range electron–
hole interactions, formation of CT and excited states, exciton–exciton and exciton–polaron interactions,
and radiative decay of excitons. The ultimate goal of such a model is to predict the current–voltage–
luminescence characteristics of the multilayered OLED structure. Since the typical thickness of an organic
layer of an OLED stack ranges from 10 to 100 nm, it is computationally prohibitive to use only �rst-
principles methods for OLED modeling. State-of-the-art OLED simulations employ either continuous
models, such as dri�–di�usion equations (see Section 15.3), or solve the master equation for charge/exci-
ton occupation probabilities (see Section 15.4). Both approaches use models of di�erent complexity. For
example, if the target is to optimize the composition of the stack made of well-characterized organic layers,
dri�–di�usion equations and lattice models with phenomenologically �tted parameters are used. If one
also needs to retain the link to the underlying chemical composition of layers, o�-lattice models based on
�rst-principles parametrizations are required. In all cases, we are dealing with a typical multiscale prob-
lem, which requires the development of scale-bridging techniques (see Section 15.11). In the next sections,
we review these approaches, paying special attention to limitations, parametrizations, and scale-bridging
issues.
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15.3 Drift–Diffusion Equations

We start with the most coarse model: On a macroscopic level, the dri� and di�usion of electrons, holes,
and excitons in an OLED stack can be described by the corresponding densities, denoted here as n, p,
and s, respectively. The dri�–di�usion model assumes that local charge densities, charge mobilities, μn,
μp, di�usion constants, De, Dn, and �eld strength, F, all vary continuously in space. The set of equations
describing the time-dependent spatial distribution of charge and exciton densities is then based on the
respective conservation laws. In what follows, we describe a model where charges dri�-di�use in a given
density of states (DOS) g(E) (see also Section 15.7), can be trapped, have density- and �eld-dependent
mobilities, and recombine either radiatively or nonradiatively.

15.3.1 Charges

Charge conservation leads to two continuity equations, for electrons and holes

e∂n
∂t
= ∇⃗ ⋅ J⃗n − eR(n, p) − e

∂nt
∂t

, e
∂p
∂t
= −∇⃗ ⋅ J⃗p − eR(n, p) − e

∂pt
∂t

, (15.1)

where R(n, p) is the recombination rate (see Section 15.3.2), nt and pt are densities of trapped charges, and
e is the electron charge. The current equations for electron and holes dri�–di�usion in an electrostatic
potential ψ read [25,26]

J⃗n = −enμn∇⃗ψ + eDn∇⃗n, J⃗p = −epμp∇⃗ψ − eDp∇⃗p. (15.2)

Note that only mobile charges contribute to the current. Summing up electron and hole currents yields
the total current in the device, J⃗ = J⃗n + J⃗p. The electrostatic potential ψ is related to the electron and hole
densities via the Poisson equation

ε0εrΔψ = e
(

n − p + nt − pt
)

, (15.3)

where ε0 is the vacuum and εr is the relative permittivity. The densities of trapped charges obey the
phenomenological rate equations

∂nt
∂t

= rc,nn(Nt − nt) − re,nnt ,
∂pt
∂t

= rc,pp(Nt − pt) − re,ppt , (15.4)

where it is assumed that traps occupy two levels (one for holes and one for electrons). Here Nt is the trap
density, re is the escape rate, and rc is the capture rates of electrons (n) and holes (p), respectively.

Since two electrons or holes cannot occupy the same energy level at the same time, the occupation
probabilities of energy levels follow the Fermi–Dirac statistics [27]

f (E,EF) =
[

1 + exp
(

E − EF
kBT

)]−1
, (15.5)

where f (E,EF) is the occupation probability of a level with energy E, kB is the Boltzmann constant, and T
is the temperature. The carrier density is then related to the quasi-Fermi level, EF, as

p
(

EF
)

= N
V ∫

∞

−∞
g(E)f (E,EF)dE, (15.6)

where g(E) is the DOS (see Section 15.7), N is the number of holes, and V is the box volume. A similar
relation holds also for electrons. Fermi–Dirac statistics implies that the di�usion coe�cient and mobility
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in Equation 15.1 are related via the generalized Einstein relation [28]

D =
pμ
e

(

∂p
∂EF

)−1
. (15.7)

In order to solve the dri�–di�usion equations one needs to know the dependence of mobility on charge
density, electric �eld, and temperature, μ(p, n, F⃗,T). These can be obtained either from experiments or
Monte Carlo simulations, as discussed in Section 15.11.

15.3.2 Recombination

The recombination rate R(n, p) includes two loss mechanisms: Shockley–Read–Hall (SRH), or trap-
assisted recombination, and bimolecular recombination. In SRH recombination, electrons are trapped in
low-energy states and recombine with free holes. The macroscopic rate for this process reads [29]

RSRH =
CnCpNt(np − nipi)

Cn(n + ni) + Cp(p + pi)
. (15.8)

Here Cn and Cp are the capture coe�cients for electrons and holes, respectively, Nt is the trap density for
electrons, n and p are the electron and hole densities, and ni and pi are the intrinsic electron and hole
densities.

Bimolecular recombination is o�en modeled using the Langevin rate

RL = γ(np − nipi), γ =
q
ε0εr

(

μn + μp

)

. (15.9)

Here γ is the recombination constant and μn and μp are electron and hole mobilities. The intrinsic electron
and hole carrier densities are o�en neglected [29,30], simplifying the expression to

RL ≈ γnp. (15.10)

There are several assumptions on which the Langevin rate is based and which might not hold in the case of
organic semiconductors. Its validity can be veri�ed by performing kinetic Monte Carlo (KMC) simulations
on lattices, as discussed in Section 15.6.2.

The overall recombination rate, RSRH + RL, enters the continuity Equation 15.1. Experimentally, the
prevailing recombination mechanism can be probed by means of the classical Shockley diode equation
with an ideality factor η that di�ers depending on the dominant mechanism [31,32].

15.3.3 Excitons

The generation, transport, and decay of excitons can be described with a phenomenological equation for
the population of excitons Si, where i denotes the exciton type (triplet, singlet) [26]

∂Si
∂t

= GiR(n, p) + ∇⃗ ⋅ J⃗i −
(

k(r)i + k(n)i

)

Si − k(a)i fS2
i +

∑

j=S,T
(kjiSj − kijSi) − kTPQ(n + p). (15.11)

Here Gi is the exciton generation e�ciency: For singlet excitons GS = 0.25, while for triplet excitons
GT = 0.75. k(r) and k(n) are the radiative and nonradiative (position-dependent) decay rates, and k(a) is the
annihilation rate. The factor f is 0.5 if only one triplet is lost or 1 if both are lost. The radiative decay rate
can be calculated using the dipole emission model [26,33]. The exciton energy transfer rate, kij, describes
the conversion of triplet excitons to singlets and vice versa. kTPQ is the triplet–polaron quenching rate [24]
(assumed here to be the same for electrons and holes). Since excitons are charge-neutral, their transport
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is purely di�usive, i.e., J⃗i = Di∇⃗Si. Note that the exciton dissociation into an electron and a hole has been
neglected in Equation 15.11.

15.3.4 Boundary Conditions and Numerical Solution

Equations 15.1 through 15.11 are complemented by the boundary conditions for the electrostatic potential,
ψ, by setting the potential di�erence at the boundaries to ψeff = Vapp − Vint , where Vapp is the applied
potential and Vint is the built-in potential, de�ned as the di�erence of the materials’ work functions.

The set of Equations 15.1 through 15.11 is normally solved using iterative schemes, until self-consistency
for the electrostatic potential, density, and current is reached. The Gummel iteration method [34] with
a discretization according to a scheme proposed by Scharfetter and Gummel [35] can be used to solve
linearized equations. This method is less sensitive to the initial guess than a Newton algorithm and thus is
the method of choice despite its slower convergence in terms of iteration steps [36].

15.3.5 Limitations

Field, temperature, and charge density dependencies of the mobility entering dri�–di�usion equations
are normally parametrized in equilibrium or under stationary conditions. These dependencies cannot in
general be used to describe nonequilibrium, time-dependent processes. For example, charge-carrier relax-
ation makes the mobility e�ectively time dependent, as evident from, e.g., impedance and dark-injection
studies (see Section 15.12.2). Moreover, it has been shown that the current density in the device can be
spatially inhomogeneous in all three dimensions (�lamentary structures) [37–39], which then questions
the applicability of mean-�eld descriptions. Last, some processes, e.g., exciton–electron interactions or
energetic barriers between organic layers, are di�cult to incorporate into dri�–di�usion equations. The
master equation, which we review in the next section, allows us to consider the individual rates between
CT and other events. In the subsequent section, we describe the Monte Carlo technique that also allows us
to include excitonic processes.

15.4 Master Equation

In inorganic, crystalline semiconductors charges are delocalized and energy eigenvalues of the electronic
Hamiltonian form smooth bands. Consequently, one deals with band-like charge transport, where mobility
decreases with increasing temperature. In contrast, in amorphous organic semiconductors, molecules are
weakly bound by van der Waals forces and, consequently, intermolecular electronic couplings are small. As
a result, excess electrons are localized on single molecules or their fragments. Moreover, orientational and
positional energetic disorder helps further localize charged excitations. In this situation, charge transport
can be modeled as thermally activated charge hopping between neighboring molecules. Mathematically,
this is described by a Poisson process: The probability of an event to happen depends only on the time
interval (no memory) and events do not occur simultaneously. The corresponding master equation, which
describes the time evolution of a system with a discrete set of states i, then reads

dPi(t)
dt

=
∑

j≠i

[

wijPi(t) − wjiPj(t)
]

, (15.12)

where Pi(t) is the probability of �nding the system in state i at time t and wij is the transition rate from state
i to j. In most situations, the dimension of the state space is too large to use direct numerical di�erential
equation solvers to solve for Pi. In special cases, e.g., for single charge carrier transport or transport of
many carriers in a mean-�eld approximation, this equation can be rewritten in terms of site occupation
probabilities, pi.
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15.4.1 Single-Carrier Charge Transport

If only one charge carrier is present in the system, the state of the system is fully determined by the position
of the charge or the index of the molecule which this charge occupies. In this situation, the occupation
probability of the system state, Pi, is equivalent to the site (molecule) occupation probability, pi. The rates
for transitions between states are then given by CT rates, ωij (see Section 15.6), and the master equation
can be rewritten in terms of site occupation probabilities

dpi(t)
dt

=
∑

j≠i

[

ωijpi(t) − ωjipj(t)
]

. (15.13)

Equation 15.13 is a set of linear equations of size N, where N is the number of molecules in the system.
It can be solved using standard numerical di�erential equation solvers [40]. In special cases, e.g., for one-
dimensional charge transport, it is even possible to obtain an analytic solution [41–43]. Alternatively, one
can use the KMC algorithm, which is discussed in Section 15.5.

15.4.2 Finite Charge-Carrier Densities

In experimentally relevant conditions, charge densities have �nite values. The system state is now given by
a vector of indices of occupied molecules and the number of states increases dramatically. It is, however,
still possible to reformulate the master Equation 15.12 in terms of site occupation probabilities by using a
mean �eld approximation [44,45]. The master equation then reads

dpi
dt

=
∑

j≠i

[

ωijpi

(

1 − pj

)

− ωjipj
(

1 − pi
)

]

. (15.14)

The resulting equation is no longer linear in pi and thus requires more involved numerical solvers. In most
cases, where one deals with many carriers the KMC method (see Section 15.5) becomes more practical: It
does not rely on the mean �eld approximation but solves the original master equation, and it can easily be
extended to other processes, such as exciton transport, triplet–triplet annihilation, etc.

15.4.3 Mobility and Diffusion Constant

The stationary solution of the master equation for a system in an external �eld F⃗ allows to evaluate both
charge carrier mobility and di�usion constant. For single-carrier transport, the mobility tensor μ̂ = v⃗ ⊗
F⃗∕F2 reads

μαβ = F−2
∑

ij
ωijpirij,αFβ, (15.15)

where rij,α = ri,α− rj,α and v⃗ is the average velocity of a charge carrier [45]. For �nite charge carrier density
ρ = N∕V , where N is the number of carriers and V is the volume of the box, Equation 15.15 takes the form

μαβ =
1

ρF2V
∑

ij
ωijpi

(

1 − pj

)

rij,αFβ. (15.16)

In a similar fashion, occupation probabilities can be used to calculate charge and current distributions
in the system [45]. Alternatively, one can directly analyze charge trajectories of KMC simulations and
evaluate mobility tensor as

μ̂ =

⟨

v⃗
⟩

⊗ F⃗
F2 , with

⟨

v⃗
⟩

= Δr⃗
Δt

. (15.17)
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Here F⃗ is the external electric �eld, r⃗ is the charge position, and Δt is the simulation time. The di�usion
tensor can also be calculated directly from the charge trajectory generated without the applied external
�eld [46]

Dαβ =

⟨

ΔrαΔrβ
⟩

2τ
, (15.18)

whereΔrα(t) = rα(t + τ) − rα(τ), or can be obtained from charge mobility with the help of the generalized
Einstein relation, Equation 15.7.

15.5 Kinetic Monte Carlo

As we saw in the previous section, rewriting the master Equation 15.12 to a form tractable for large sys-
tems (i.e., in terms of site occupation probabilities) requires certain approximations. Moreover, this step
becomes less and less straightforward if events other than CT are included, e.g., electron–hole recombina-
tion, exciton splitting, exciton decay, or transfer. For these reasons, a di�erent way of solving the master
equation becomes more practical. Here, system dynamics, or trajectories in the phase space, or Markov
chains, are generated explicitly by using the so-called KMC method.

KMC, also known as dynamic Monte Carlo, Gillespie algorithm, residence-time algorithm, n-fold way,
or the Botz–Kalos–Lebowitz algorithm, was initially developed by Doob [47,48]. The time update as it
is used here was �rst introduced by Young and Elcock [49]. Bortz, Kalos, and Lebowitz developed the
same algorithm independently and applied it to the Ising model [50]. Gillespie provided a physics-based
derivation of the algorithm [51,52], which was then improved in terms of computational e�ciency by
Fichthorn [53] and Jansen [54]. The version we describe here is known as a variable step size method
(VSSM) [54].

15.5.1 Variable Step Size Method

The VSSM allows us to group certain events and treat the groups and events in the group hierarchically.
In the case of charge transport with multiple charge carriers, e.g., a two-level approach can be used. First,
a charge is selected with the probability proportional to its escape rate ωi, that is the sum of the rates of all
possible moves of this charge away from the occupied site

ωi =
m
∑

j=1
ωij, (15.19)

where m is the coordination number, i.e., the number of neighbors to which the site is connected, and
ωij is the rate for all possible moves to connected sites. A�erward, the destination site is chosen with a
probability ωij∕ωi. Since we are dealing with a Poisson process, waiting times are exponentially distributed
with a parameter λ that is the inverse of the sum of all escape rates

Δt ∼ exp (λ) , λ =

(

∑

i
ωi

)−1

. (15.20)

In order to reproduce this distribution, the time in the VSSM algorithm is updated a�er each move with
Δt drawn from an exponential distribution. In practice, this is achieved by drawing a random number u
from a uniform distribution on the interval (0, 1] and setting Δt to

Δt = −λ ln(u), u ∼  ((0, 1]). (15.21)
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15.5.2 Forbidden Events

The VSSM algorithm can be adapted to e�ciently treat forbidden events [54]. In the case of charge
transport, e.g., each site (molecule) can be occupied by one charge carrier at a time (the Pauli exclusion
principle). As a result, charge carriers obey Fermi–Dirac occupation statistics (see Section 15.3). Hence, if
site j is already occupied, all incoming rates, ωi→j should be set to zero. This is computationally ine�cient,
since all rates (as well as escape rates) must be updated a�er every event. A much more e�cient way is to
keep the forbidden event in the event list. Once this event is attempted, i.e., a carrier attempts to hop to
an occupied site, this destination site is marked as forbidden and another destination is selected from the
remaining possibilities. If all surrounding sites are occupied, the algorithm switches to the level above, i.e.,
a di�erent charge is selected and the previous one is added to a temporary list of forbidden events. The
time is updated regardless of whether or not the event is forbidden (the charge moved or not). One can
show that this strategy results in the same statistics as a priori removing all forbidden events from the event
list [54].

15.5.3 Efficiency and Parallelization

Developing an e�cient KMC code for charge/exciton transport is a rather challenging task. Indeed, if only
the Pauli exclusion principle is taken into account, a single charge transfer event does not a�ect the rates,
and only the (local) list of forbidden events should be updated. Hence, all rates can be precomputed before
the KMC simulation is performed. If (long-range) Coulomb interactions are included, every CT event
changes all rates. In other words, energy di�erences between two states of the system depend now on the
relative positions of all charges in the system. To avoid updating rates at every KMC step, one can use scale-
separation techniques: Since mesoscopic charge densities evolve on time scales much longer than typical
CT times, electrostatic �elds created by far-o� charges can be treated in a mean-�eld way, e.g., by solving
the Poisson equation. In this case, one can update local rates at every step, while all rates are updated only
every 100–1000 steps [55].

Even the local rate updates can become computationally costly for systems with many charge carriers.
In this situation, the binary tree search algorithm helps improve computational e�ciency by providing a
faster way of identifying which events and escape rates should be updated. By using this algorithm one can
gain a factor of 10 speed-up for systems with 10% occupied sites [55]. Another alternative is to use the next
reaction method [56], an improved version of the �rst reaction method, where a dependency graph is used
to determine which rates to update.

Apart from trivial parallelization, where multiple copies of the system with di�erent initial conditions
are run in parallel, Monte Carlo schemes can be parallelized by dividing the simulation volume into
subvolumes treated as individual simulations [57–60]. An e�cient parallel implementation on graphics
processing units (GPUs) has also been demonstrated [61].

15.6 Rates

To parametrize the master Equation 15.12, we need to evaluate the rates of all elementary processes of
interest. For example, for charge transport, CT rates must be evaluated for all neighboring molecular
pairs. To make this computationally feasible, we o�en rely on simpli�ed theoretical treatments of trans-
fer reactions. In this section, we review several of such theories as well as introduce the corresponding rate
expressions.

15.6.1 Charge Transfer

The simplest expression for the CT rate, proposed by Miller and Abrahams [62], is the rate of thermally
activated, barrierless tunneling between two localized electronic states. The corresponding rate is propor-
tional to the Boltzmann prefactor of the free energy di�erence between the initial and �nal states, ΔEij,
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and the electronic overlap between the states, which decays exponentially with the molecular separation

ωij =

{

ω0 exp
(

−2γrij

)

exp
(

−
ΔEij
kBT

)

ΔEij > 0,

1, ΔEij ≤ 0,
(15.22)

where 1∕γ is the localization length of the charge, rij is the distance between the two molecules, and ω0
is the attempt frequency. The simplicity and intuitiveness of this rate justi�ed its use in the early stages of
understanding charge transport in organic semiconductors [63].

Environmental e�ects, as well as molecular reorganization upon charging/discharging (i.e., the energetic
barrier between the initial and �nal states), have been accounted for in the so-called Marcus CT rate [64,65]

ωij =
2π
ℏ

J2
ij

√

4πλijkBT
exp

⎡

⎢

⎢

⎢

⎣

−

(

ΔEij − λij

)2

4λijkBT

⎤

⎥

⎥

⎥

⎦

. (15.23)

Again, ΔEij = Ei − Ej is the driving force or the free energy di�erence of the �nal and initial states of
the CT reaction [66]. An accurate evaluation of these energies using polarizable force-�elds is discussed
in Section 15.7. Jij is the electronic coupling element. They are intimately related to the overlap of the
diabatic electronic states, as discussed in Section 15.9. Finally, λij is the sum of the external and internal
reorganization energies, discussed in more detail in Section 15.8.

The main issue with the classical Marcus rate is that the intramolecular vibrational modes promot-
ing the CT reaction are energetically comparable to the C–C bond stretching mode at room temperature,
ℏωCC ∼ 0.2 eV ≫ kBT ∼ 0.025 eV. Therefore, these modes should be treated quantum mechanically.
For a common set of intramolecular high-frequency (quantum-mechanical) and an outer sphere low-
frequency (classical) vibrational coordinates, a mixed quantum-classical multichannel generalization of
the Marcus formula is readily available [66,67]. A generalization for the bimolecular electron transfer rate
with independent sets of coordinates for donor and acceptor has also been proposed [45].

Another rate expression has been proposed by Weiss and Dorsey [68–70]. In the low temperature limit,
ℏνc∕kBT ≫ 1, it reads

ωij (ϵ) =
J2
ij

ℏ2νc

(

ℏνc
2πkBT

)1−2α
|

|

|

|

Γ
(

α + i
ΔEij

2πkBT

)

|

|

|

|

2

Γ(2α)
exp

⎛

⎜

⎜

⎝

ΔEij

2kBT
−
|

|

|

ΔEij
|

|

|

ℏνc

⎞

⎟

⎟

⎠

. (15.24)

Here Γ(z) is the gamma function and νc is the characteristic frequency, or the largest frequency in the
Ohmic bath, which is related to the reorganization energy, λ, by λ= 2αℏνc. The Kondo parameter, α,
describes the coupling strength between the charge and the heat bath [71]. In the high temperature limit,
the Weiss–Dorsey rate simpli�es to the Marcus rate. Indications that the Weiss–Dorsey rate is better
suited for describing charge transport, especially at low temperatures and high �elds, have recently been
reported [72].

15.6.2 Electron–Hole Recombination

The microscopic process of electron–hole recombination is straightforward: Whenever a hole and an elec-
tron occupy the same site (molecule), they recombine with a certain rate, wr . Radiative recombination leads
to a photon emission which is the basis of OLED functionality.

On a macroscopic level, electron–hole recombination is traditionally described by the Langevin equation
(see Section 15.3.2), with a prefactor proportional to the sum of electron and hole mobilities. Extensive
KMC simulations were performed to verify this dependency [73]. An excellent agreement was found if the
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electron and hole mobilities are extracted from simulations with both carrier types, which was attributed to
the change in mobilities upon inclusion of two carrier types due to their Coulomb attraction. Deviations at
high charge concentrations (>10−3 carriers per molecule) were also observed: Here, the average electron–
hole distance becomes smaller than the thermal capture radius, rc = e2∕4πϵϵ0kBT, violating assumptions
used in the derivation of the Langevin formula.

15.6.3 Energy Transfer

We now brie�y review rate expressions used to describe electronic excitation (energy) transfer (EET). EET
is also known as a resonant energy transfer (RET).

A theory explaining the mechanism of EET was �rst proposed by Förster [74]. The electronic interac-
tion promoting EET relies on a coupling of the donor and acceptor molecules via Coulombic interaction.
Similar to CT, Förster theory relies on Fermi’s Golden Rule with the electronic coupling between donor
and acceptor treated perturbatively. Additional assumptions are that the system equilibrates a�er the elec-
tronic excitation of the donor on a time scale much faster than that of EET and that coupling to the bath
(given by the absorption line shape) is much greater that the electronic coupling between donor and accep-
tor. Energy conservation in the weak coupling limit results in a coupling element, which is proportional
to the overlap of the donor �uorescence spectrum with the acceptor absorption spectrum. The spectral
overlap includes nuclear overlap (in the form of Franck–Condon factors), which depends on the spectral
line shapes and thus provides the temperature dependence of the EET rate. Under these assumptions, the
EET rate between emitters i (donor) and j (acceptor) takes a simple form

ωF
ij =

1
τr,i

(

RF,ij

rij

)6

, (15.25)

where τr,i is the radiative life time of the emitter (donor), rij is the separation between donor and acceptor,
and RF,ij is the Förster radius for transfer from donor to acceptor.

An EET process can occur even when Coulomb-term-mediated electronic transitions are forbidden.
Dexter provided a derivation for the case when the Coulombic interaction is negligible and EET is due to
the exchange part [75]. This rate decays exponentially with intermolecular separation

ωDij = kD exp
(

−2γrij

)

, (15.26)

where 1∕γ is the wavefunction decay length and kD is the Dexter prefactor proportional to the exchange
integral.

Note that since the exchange integral is a quantum mechanical correction to the Coulombic repul-
sion, the total EET rate is always a sum of the two rates. However, due to the exponential decay of the
Dexter coupling, the electronic interaction that mediates EET at separations greater than 5 Å is invariably
Coulombic.

The importance of exchange and other short-range interactions, as well as higher multipole contribu-
tions to the Coulombic interaction, has been examined fairly extensively, helping improve the accuracy of
rate expressions 15.25 and 15.26. An overview of these extensions can be found in Refs. [76–80].

15.7 Density of States

In the previous section, we saw that CT rates depend on the energies of the initial and �nal states of the CT
complex. In an amorphous organic semiconductor, every molecule is embedded in a unique environment
and therefore every molecule has its unique set of energy levels, EA, and IP. The set of energy levels available
for an excess charge is termed the DOS. In this section, we discuss several methods of evaluation of the
DOS of an amorphous organic semiconductor.
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15.7.1 Gaussian Disorder

The simplest approach to model the DOS of organic semiconductor is to assume a Gaussian distribution
of energy levels

g(E) = 1
√

2πσ2
exp

[

−

(

E − Ē
)2

2σ2

]

. (15.27)

This phenomenological expression, �rst proposed by Bässler [63] and termed the Gaussian disorder model
(GDM), is motivated as follows: Randomly oriented dipole moments in an amorphous material interact
with one another, thus in�uencing the energy levels of neighboring molecules. As a result of the central limit
theorem, this leads to approximately Gaussian distributed energy levels. The width of the distribution, σ, is
called the energetic disorder and can be extracted from temperature-dependent mobility measurements [81,
82] or from simulations, as discussed in Section 15.11.1.

The original model was extended to the correlated disorder model (CDM) by accounting for spatial
correlations that arise from the dipole interaction of neighboring molecules [83]. For randomly oriented
dipoles, p⃗j, the the electrostatic energy of a site i is given by [84]

Ei = −
q
4ε

∑

j≠i

qp⃗j ⋅ (r⃗j − r⃗i)

|r⃗j − r⃗i|
3

, (15.28)

where ε is the dielectric permittivity and q is the charge. In the case of equal absolute values, |p⃗j| = p,
and dipoles �xed on a cubic lattice with lattice constant a, the sum can be evaluated using Ewald summa-
tion [85,86], yielding a Gaussian DOS with energetic disorder σ = 2.35 q p∕ε a2 [83,87]. The spatial energy
correlation function

κ(r) =
E
[

(

E(r⃗i) − Ē
)

(

E(r⃗j) − Ē
)]

σ2 (15.29)

is then given by κ(r) ≈ 0.74 a
r [88]. Here r = |

|

|

r⃗i − r⃗j
|

|

|

is the distance between two molecules, Ē is the mean
of the energy distribution, and E [⋅] is the expectation value. Note that the spatial correlation function
of this simple model system depends only on the lattice spacing a, limiting its applicability to realistic
morphologies [89], as discussed in Section 15.11.1.

The Gaussian DOS is at the heart of the family of GDM, where Miller–Abrahams rates, Equation 15.22,
with the Gaussian DOS are assumed for a charge hopping on a cubic lattice. Extensive KMC simulations
of these models helped parametrize the mobility as a function of temperature, �eld, and �eld carrier den-
sity [63]. It was extended by including the important in�uence of charge carrier density in the extended
Gaussian disorder model (EGDM) [90] without spatial correlation of site energies. The mobility expression
in the EGDM at �nite can be written as a product of three functions,

μ(T, F, ρ) = μ0(T)g(T, ρ)f (T, F), (15.30)

where

μ0(T) = 1.8 × 10−9μ0 exp
[

−Cσ̂2] , g(T, ρ) = exp
[1

2
(

σ̂2 − σ̂
) (

2ρa3)δ
]

, (15.31)

f (T, F) = exp

[

0.44
(

σ̂3∕2 − 2.2
)

(√

1 + 0.8F̂2 − 1
)

]

, δ = 2
ln
(

σ̂2 − σ̂
)

− ln(ln 4)
σ̂2 ,

with C = 0.42, F̂ = eaF∕σ and σ̂ = σ∕kBT. A similar parametrization, termed the extended correlated
disorder model (ECDM), also exists for the spatially correlated DOS [91].
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15.7.2 Perturbative Approach

While Gaussian disorder models have been successful in describing many properties of organic semi-
conductors, they do not provide a direct link to the material morphology or chemical composition.
A perturbative approach allows us to evaluate site energies in atomistically resolved (see Section 15.10),
large-scale morphologies. Furthermore, it can also be used to parametrize Gaussian disorder models and
perform large-scale simulations (see Section 15.11.2).

For every molecular pair, our quantity of interest is the energy di�erence ΔEij = Ei − Ej, which is the
energy separation between the minima of the diabatic potential energy surfaces (PES). In systems with
weak intermolecular couplings, one can treat interactions with the environment perturbatively: The inter-
molecular electrostatic and induction contributions are then given by the �rst- and second-order terms in
the expansion of the interaction energy [92].

The total energy energy of an ion embedded in a molecular environment thus includes an internal con-
tribution Einti , i.e., the electron a�nities for electrons and IPs for holes of isolated molecules. These can
vary from one molecular pair to another because of di�erent energy levels for di�erent types of molecules,
or di�erent conformers of the same molecule. Correspondingly, the external contribution is due to the
electrostatic and induction interactions, Eeli and Eindi , of a charged molecule with the environment. These
interaction energies are determined by the electrical charge distribution and the polarizability distribu-
tion, respectively, in the environment of the charged molecule. Overall, the total energy of molecule i is
then given by

Ei = Einti + Eeli + Eindi . (15.32)

Most di�cult to evaluate is the interaction with the environment. This is for two reasons: First, the under-
lying interactions are long-ranged and thus large system sizes are needed to converge the values of site
energies. Second, special summation techniques are needed in order to evaluate interactions of an ion
with a neutral periodic environment [93–96]. Also note that the perturbative evaluation of site energies
relies on accurate molecular representations in terms of distributed multipoles and polarizabilities and is
computationally demanding, in spite of being classical [97].

15.7.3 Hybrid Approaches

Using Equation 15.32, the site energies can be evaluated by solving a microscopic analogue of the Poisson
equation. The self-consistent solution is normally achieved using iterative schemes for induced multipoles
and Ewald summation techniques for static multipoles, which is computationally demanding. The role of
hybrid schemes is to reduce computational cost. Here, one relies on the fact that the �elds created by the
far-o� charges can be treated in a mean-�eld way, i.e., obtained by solving the Poisson equation. Nearest-
neighbor interactions (i.e., interactions between molecular pairs within a certain cuto� distance) are still
evaluated explicitly. This scheme also allows us to add metallic electrodes as image charges and has been
used extensively to simulate multilayered OLED devices [98–100]. To improve computational e�ciency, in
this approach all induction interactions are taken into account e�ectively, by rescaling interaction energies
by the (e�ective) dielectric constant of the medium.

15.8 Reorganization Energy

The reorganization energy, responsible for the energy barrier between diabatic states as well as for the
broadening of energy levels of the electron detachment/attachment spectra, has two contributions. The
internal reorganization energy is a measure for how much the geometry of the CT complex adapts while
the charge is transferred. It can be estimated based on four points on the diabatic PES [45,101]

λintij = EnC
i − EnN

i + EcN
j − EcC

j . (15.33)
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Here, small letters denote the state and capital the geometry of a molecule, e.g., EnC
i is the internal energy

of the molecule i in the geometry of its charged state. Treatments that do not approximate the PES in terms
of a single shared normal mode are also available [45,66,102].

An additional contribution to the overall reorganization energy results from the rearrangement of the
environment in which the CT takes place. In a classical case, this outer-sphere reorganization energy, λout,
contributes to the exponent in the rate expression in the same way as its internal counterpart. Assuming
that CT is signi�cantly slower than electronic polarization but much faster than the nuclear rearrangement
of the environment, λout can be evaluated from the electric displacement �elds created by the CT com-
plex [66], provided that the Pekar factor is known. Alternatively, one can use polarizable force-�elds [103]
or quantum mechanics/molecular mechanics (QM/MM) methods [104]. It also turns out that the classi-
cal Marcus expression for the outersphere reorganization energy (inversely proportional to the molecular
separation) can predict negative values of λout for small intramolecular separations, which are unphysical
and hence should be used with care [45].

15.9 Electronic Coupling Elements

Electronic coupling elements, or transfer integrals , Jij, entering the CT rate (Equations 15.23 and 15.24)

are o�-diagonal matrix elements, Jij =
⟨

ψi|Ĥel
|ψj

⟩

, of the electronic Hamiltonian, Ĥel = T̂el + V̂el−el +

V̂nuc−el, based on a diabatic (noninteracting) state, ψi [66]. A number of approaches can be used to eval-
uate electronic coupling elements. Their e�ciency and accuracy depend on how the diabatic states and
Hamiltonian are constructed, as well as how the matrix projection is performed.

Diabatic states are o�en approximated by the HOMO of monomers for hole transport, or the LUMO
for electron transport (“frozen core” approximation) [105–107]. An approximate diabatic basis can also be
constructed using constrained density functional theory [108].

The dimer Hamiltonian can be constructed using semiempirical methods, e.g., the Zerner’s Intermediate
Neglect of Di�erential Overlap (ZINDO) Hamiltonian [101,109–111]. This approach does not require a
self-consistent evaluation of the dimer Hamiltonian and is therefore computationally very e�cient [110].
One can also employ density functional theory (DFT) and use either the fully converged Hamiltonian or
only the initial guess [105]. Another way to improve the e�ciency is to reduce the number of orbitals for
which electronic couplings are calculated. A detailed comparison of accuracy and e�ciency of di�erent
approaches can be found in Refs. [105,112,113].

For (approximately) spherically shaped molecules the logarithm of the squared electronic coupling,
log(J2

ij), decays linearly as a function of the intermolecular separation r (at least for large distances), justify-
ing the functional form of the Miller–Abrahams rate (see Equation 15.22). If molecular pairs are extracted
from the respective dimers in the realistic atomistic morphology, log(J2

ij) is o�en Gaussian distributed, with
a mean and variance that depend on the molecular separation [55,114]. This observation can be used to
parametrize coarse-grained (stochastic) charge transport models, as discussed in Section 15.11.1.

Since electronic couplings are related to the overlap of electronic orbitals participating in charge trans-
port, they are very sensitive to the relative positions and orientations of molecules. Hence, an amorphous
morphology of an organic material should be generated as precisely as possible. The corresponding
methods are covered in the next section.

15.10 Morphology

In the previous sections, we explained how charge/exciton transport and recombination can be mapped on
a series of events with speci�ed rates. We have also emphasized that rates are very sensitive to both local and
global molecular ordering. For computer-based predictions of material properties it is therefore important
to simulate the material morphology as realistically as possible. In OLEDs, we usually deal with amorphous
molecular arrangements—crystalline �lms are o�en less e�cient in OLEDs because of the resulting large
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exciton di�usion distances, leading to enhanced exciton loss due to quenching processes. Amorphous �lms
have a well-de�ned local structure, which depends on molecular interactions and processing conditions.
In this section, we describe how amorphous morphologies of 104−105 molecules can be simulated using
atomistic force �elds or coarse-grained models. These systems can then be used to study small-scale charge
transport [45,115–119], or to parameterize mesoscale models, as discussed in Section 15.11.1.

15.10.1 Classical Force Fields

The role of classical force �elds in simulations of organic semiconductors is two-fold. First, they are used
to generate atomistically resolved morphologies of molecular assemblies. Second, they are employed to
evaluate the solid-state electrostatic and induction contributions to site energies (see Section 15.7). In both
cases, these classical molecular representations should be appropriately parametrized.

For site energy calculations, it is important to evaluate electrostatic and induction contributions as accu-
rately as possible. The corresponding parametrization is rather straightforward: A perturbative expansion
of the intermolecular interaction energies is based on distributed multipoles (electrostatic interaction) and
distributed polarizabilities (induction interaction) [92,97,120–122]. Van der Waals interactions are nor-
mally ignored since we are interested in free energy di�erences between charged and neutral states of
the system. To improve computational e�ciency, one can also use machine-learning techniques to devise
simple structure–property relations for, e.g., atomic multipoles of molecular conformers [123].

Polarizable force �elds based on distributed multipole expansions are still computationally prohibitive
for simulating molecular arrangements of large systems. Moreover, parametrizations of e�ective pairwise
potentials (partial charges and Lennard–Jones parameters), which mimic many-body van der Waals and
induction interaction energies, are a nontrivial task, which largely relies on experimental input [124,125].
Standard forces �elds, e.g., those suitable for biosystems, are o�en not transferable to organic molecules
with large π-conjugated subsystems. A representative example is the comparison of the Williams 99 and the
optimized potential for liquid simulations (OPLS) force �elds for the amorphous mesophase ofAlq3 [126],
which predict fairly di�erent densities, radial distribution functions, and glass transition temperatures.

That being said, the development of new force �elds for organics is currently limited to re�tting of partial
charges using the Merz–Singh–Kollman [127] scheme or the CHarges from ELectrostatic potentials using a
grid-based method (CHELPG) [128] scheme, and a parametrization of missing bonded interactions from
�rst-principles scans (see Figure 15.3). The remaining parameters are o�en taken from standard force
�elds, such as OPLS [124]. Reparametrized force �elds are then veri�ed against experimentally available
densities and glass transition temperatures.
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FIGURE 15.3 Potential energy scans of two dihedral angles of the DPBIC molecule, the chemical structure of which
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P. Kordt et al., Adv. Funct. Mater., 25, 1955–1971, 2015. With permission.)



9781498749466_C015 2017/8/29 14:58 Page 490 #18

490 Handbook of Optoelectronic Device Modeling and Simulation

15.10.2 Morphology Simulations

With the force �eld at hand, one can, in principle, simulate amorphous molecular assemblies. For systems
with periodic boundaries in all directions this is done by �rst equilibrating the system above the glass
transition temperature and then quenching it to room temperature in the NPT ensemble using molecular
dynamics [126,129,130].

For thin slabs (2D-periodic systems) one can directly deposit molecules either using molecular dynam-
ics [94] or Monte Carlo [131] techniques. In both cases the dynamics of deposition is not realistic. In other
words, if surface di�usion plays an important role (e.g., in the case of guest aggregation in the host) these
techniques cannot be applied in a straightforward manner, since the length scales and time scales required
of host aggregation cannot be reached by atomistic molecular dynamics simulations. It is, however, possible
to explore the fact that certain parts of molecules evolve on much slower time scales and larger-length scales
and to combine several coherently moving atoms, connected via sti� degrees of freedom (e.g., bonds) into
a single interaction site, as it is done, e.g., in the united atom force-�elds with hydrogens incorporated into
heavier atoms [132]. By doing this, we reduce the number of degrees of freedom to be propagated and, more
importantly, obtain a much smoother potential energy landscape in terms of the coarse-grained degrees of
freedom [133] (so�er interaction potentials, less friction), allowing one to simulate 10–100 longer times
and system sizes [132].

In order to perform correct statistical sampling of the coarse-grained degrees of freedom, the potential
of mean force should be used as the interaction potential [134], which is inherently a many-body potential.
To reduce computational cost, this potential is represented as the sum of a few functions, i.e., projected onto
the basis functions of the force �eld. The accuracy of the coarse-grained model thus becomes sensitive to
the way the projection is performed as well as the number of basis functions that are used to represent the
coarse-grained force-�eld [135]. Existing projection schemes try to reproduce various pair distribution
functions (structure-based coarse-graining [136–139]), to match the forces [134,140,141], to minimize
the information loss in terms of relative entropy [142], or to use liquid state theory [143]. An extensive
overview of such coarse-graining techniques is provided in Ref. [144]. O�en, the accuracy of the coarse-
grained model can be improved by explicitly incorporating information about macroscopic properties of
the system, i.e., its equation of state or the symmetry of its mesophase [145–147]. Moreover, one can further
reduce the number of degrees of freedom by introducing anisotropic interaction potentials. Eventually,
atomistic details can be reintroduced into coarse-grained morphologies [148].

15.11 Scale Bridging

Now that we have seen how an OLED device can be modeled on di�erent time and length scales, we
eventually would like to transfer our knowledge about the system between the scales. For example, dri�–
di�usion equations (Section 15.3) can be used to calculate current–voltage curves of a device (micrometer
scale). However, they require expressions for charge carrier mobility, the di�usion constant and, in the case
recombination is taken into account, the recombination rate, all as a function of external �eld, carrier den-
sity, and temperature. Microscopic simulations (see Sections 15.4–15.10) can provide this information, at
the same time retaining the link to the molecular structure. However, they are becoming computationally
too demanding for high charge densities and large system sizes required to parametrize these dependen-
cies. Our aim here is to provide several strategies, which can be used to link di�erent time and length
scales.

15.11.1 Stochastic Models

In an OLED, charges are inhomogeneously distributed [149] and charge density variations span several
orders of magnitude. To cover the required density range in simulations, one needs to deal with rel-
atively large systems—this quickly becomes computationally demanding if all rates are evaluated from
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�rst principles, as described in Section 15.6. To remedy the situation, one can devise a phenomenological
algorithm to parametrize the master equation. In this section we outline how such an algorithm can be
constructed for charge transport simulations.

We �rst note that the master equation (Section 15.4) is completely determined by the event rates. In the
case of charge transport, these rates depend on site energy di�erences, electronic coupling elements, and
reorganization energies. In order to evaluate observables of interest (e.g., charge mobility), one additionally
needs site positions. Hence, the algorithm should be able to reproduce (statistically) several distribution
and correlation functions.

Let us start with molecular positions. In an amorphous solid, both positions and orientations are com-
pletely de�ned by a set of (many-body) spatial correlation functions. For (approximately) spherically
shaped molecules, the pair correlation function, or radial distribution function, g(r), which quanti�es the
density of molecules at a separation r, contains the most relevant structural information. To reproduce
this function approximately, one can use “thinning of a Poisson process” [114,150]. More accurate coarse-
graining techniques, such as iterative Boltzmann inversion [138,151] or inverse Monte Carlo [136,137,152],
allow a (numerically) exact reproduction of the radial distribution function [55]. These methods opti-
mize a pair interaction potential, U(r), in a way that the corresponding g(r) is reproduced. They rely
on the Henderson theorem [153], which states that there is a unique correspondence between U(r) and
g(r). An illustration of this algorithm for an amorphous layer of DPBIC is presented in Figure 15.4a.
The approach can also be applied to nonspherical molecules, by using several interacting sites per
molecule [135].

The second ingredient of the stochastic model is the connectivity: In the atomistic model only molecules
within a certain cuto� distance are used for calculating CT rates. The rest of the rates are set to zero. This
is justi�ed by the fact that electronic coupling elements decrease roughly exponentially with molecular
separation [55], see, e.g., Equation 15.22. The distance that determines whether or not two molecules are
connected is given by their two closest atoms. Since this information is not present in the coarse-grained
model, the resulting probability of two sites to be connected, as a function of their center-of-mass separa-
tion, is given by the corresponding probability extracted from the reference data. Figure 15.4b shows this
probability for an amorphous DPBIC layer.

As explained in Section 15.7, the stochastic generation of site energies should reproduce both their dis-
tribution function (DOS) and their spatial correlation. This can be achieved by mixing in site energy con-
tributions of neighboring sites [89]. Figure 15.4c shows the spatial correlation function for an amorphous
DPBIC layer.

Electronic coupling elements can also be generated using appropriate distributions. These distributions
are, however, separation dependent: The logarithm of squared transfer integrals, log J2 (which is o�en
Gaussian distributed), depends on molecular separation. For DPBIC, the distance dependence of the mean
and the standard deviation is shown in Figure 15.4d. In the stochastic model, transfer integrals are then
drawn from such distant-dependent distributions.

With all necessary rate ingredients, one can now validate the model, e.g., by evaluating the distribution
of rates, see Figure 15.4e, or by directly comparing charge carrier mobilities, as shown in Figure 15.4f. Note
that charge transport in systems with large energetic disorder has pronounced �nite size-e�ects [130].
Therefore, similar system sizes should be used to compare stochastic and reference simulations.

Since stochastic models are computationally signi�cantly less demanding, they can serve as an inter-
mediate step between atomistic and macroscopic (dri�–di�usion) descriptions, as discussed in the next
section.

15.11.2 Parametrization of Gaussian Disorder Models

As mentioned in Section 15.3, macroscopic OLED modeling requires the charge mobility as a function of
external �eld, temperature, and carrier density, μ(T, F, ρ). Analytic expressions of these dependencies can
be provided by the EGDM and ECDM, as discussed in Section 15.7.1. These generic expressions include
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several material-speci�c parameters. In this section, we describe how to determine these parameters from
simulations of small systems.

Both EGDM and ECDM depend parametrically on the lattice constant a, the energetic disorder σ (see
Section 15.7), and a prefactor μ0, which is related to the temperature-dependent mobility at zero �eld and
charge density by μ0(T) = 1.8 × 10−9μ0 exp(−0.42σ̂2) for the EGDM (see Section 15.7.1) or μ0(T) =
1.0 × 10−9μ0 exp(−0.29σ̂2) in the case of ECDM.

In principle, both a and σ can be evaluated in a relatively small system: a as the mean distance between
neighboring molecules and σ as the width of the DOS that results from perturbative energy calcula-
tions. μ0 can be extracted from charge transport simulations performed at di�erent temperatures. This
approach, however, does not lead to reliable parameterizations [55,114]. Indeed, a multidimensional �t of
simulated mobilities to the EGDM or ECDM expressions, for a wide range of temperatures, charge den-
sities, and external �elds, yields a very di�erent set of parameters. A comparison of these two approaches
for amorphous dicyanovinyl-substituted quaterthiophe (DCV4T) and DPBIC is given in Table 15.1. One
can see, e.g., that the EGDM underestimates the energetic disorder, while the ECDM overestimates it. In
both cases, spatial site energy correlations are responsible for this discrepancy: EGDM does not include
correlations and compensates for higher mobility values by reducing the energetic disorder σ. On the
other hand, ECDM overestimates spatial correlations and compensates this by reducing the lattice con-
stant [89]. The discrepancy between microscopic values and �ts to EGDM and ECDM teaches us that
parameters of these models do not have a clear physical interpretation. Nevertheless, they still provide
reasonable parametrizations and can eventually be used in conjunction with dri�–di�usion equations; see
Section 15.12.1. Figure 15.5 compares EGDM and ECDM �ts to microscopic simulations for an amorphous
mesophase of DCV4T.

On a technical side, the stochastic models described in Section 15.11.1 become very useful to perform
the �ts. They help cover the required range of charge carrier densities and reduce �nite-size e�ects. Note,
however, that �nite-size e�ects in systems with small charge carrier densities and large disorder are so large
that the actual value of mobility is overestimated by several orders of magnitude [130]. In this case, one
needs to use the extrapolated mobility values [114].

15.11.3 Tabulated Mobilities

Fitting the results of KMC simulations to the parametrizations provided by the EGDM or ECDM imposes
a constraint on the functional form of μ(ρ, F⃗,T). To avoid this, one can tabulate the mobility in a wide range
of charge densities, temperatures, and electric �elds. This tabulated function can then be used directly in
the dri�–di�usion equations solver [149]. The tabulation is computationally feasible only with the help
of a stochastic model—otherwise it is not possible to reach the necessary system sizes and to span the
wide density regime. Before using the tabulated function, it has to be interpolated and smoothed to ensure
numeric stability [149]. Figure 15.6 shows the tabulated and smoothed mobility for amorphous DPBIC,
which is eventually used to evaluate current–voltage characteristics of a DPBIC �lm; see Section 15.12.1.

TABLE 15.1 Lattice Spacing, Energetic Disorder, and Mobility at Zero Field and Density Extracted From a
Microscopic System and From Fitting Simulated Hole Mobilities to Extend Gaussian Disorder Model (EGDM)
and Extended Correlated Disorder Model (ECDM) for Amorphous Phases of (a) dicyanovinyl-substituted
quaterthiophe (DCV4T) and (b) DPBIC

(a) DCV4T a [nm] σ [eV] μ0(300K) [m2∕Vs]

Microscopic 0.86 0.253 2.0 × 10−21

EGDM 1.79 0.232 2.1 × 10−21

ECDM 0.34 0.302 3.3 × 10−22

(b) DPBIC a [nm] σ [eV] μ0(300K) [m2∕Vs]

Microscopic 1.06 0.176 3.4 × 10−12

EGDM 1.67 0.134 2.1 × 10−11

ECDM 0.44 0.211 1.8 × 10−13

Source: DCV4T values: Reprinted from P. Kordt et al., J. Chem. Theory Comput., 10, 2508–2513, 2014. With
permission; DPBIC values: Reproduced from P. Kordt et al., Adv. Funct. Mater., 25, 1955–1971, 2015. With permission.
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15.12 Case Studies

So far we have described various methodological developments and simulation approaches, which can
be used to simulate multilayered OLED structures. In the following sections, we show how these methods
can be used to simulate steady-state current–voltage characteristics of an OLED, perform impedance spec-
troscopy simulations, estimate OLED e�ciency, and study electroluminescence of a white OLED, as well
as to gain insight into OLED stability.
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15.12.1 Current–Voltage Characteristics

We start by showing how the steady-state current–voltage characteristics of a single layer device can be
simulated starting from the chemical structure of an organic semiconductor. As an example, we use a
thin layer of DPBIC, a hole-conducting material, which is sandwiched between an ITO and aluminum
electrode.

A�er parametrizing the DPBIC force �eld [55], amorphous boxes of 4000 DPBIC molecules are simu-
lated by molecular dynamics (MD) simulations, as described in Section 15.10.2. The DOS of an amorphous
solid state is then evaluated for holes using the perturbative scheme (see Section 15.7.2), yielding a mean
value of 5.28 eV and an energetic disorder of σ = 0.176 eV. Density functional theory calculations
(B3LYP/6-311g(d,p), see also Section 15.8) yield a hole reorganization energy of λ = 0.068 eV.

The reference system of 4000 molecules is further used to parametrize a stochastic algorithm (see
Section 15.11.1) and to generate larger systems of 40,000 sites (details can be found in Ref. [149]). KMC
simulations in large systems allow us to tabulate charge mobility as a function of charge density, electric
�eld, and temperature. The interpolated and smoothed tabulated function, depicted in Figure 15.6, is then
used to solve the dri�–di�usion equations, as described in Section 15.3. For the electrode IPs we use aver-
age values of experimental reports: 4.73 eV for ITO [154–157] and 4.16 eV for aluminum [158]. These
values, together with the DPBIC IPs, provide the value of the injection barrier, which is required to solve
the Poisson Equation 15.3.

Without further microscopic calculations, it is now possible to solve the dri�–di�usion equations for
�lm thicknesses of 203, 257, and 314 nm and temperatures of 233, 293, and 313 K, corresponding to di�er-
ent experiments. Figure 15.7 shows a comparison of simulated and experimental current–voltage curves
in these situations. The agreement is remarkable for higher temperatures (293 and 313 K). A possible rea-
son for the larger di�erences at low temperatures are nonequilibrium processes, such as charge relaxation,
which are not accounted for in our approach that relies on mobility parametrizations under stationary con-
ditions. Another possibility is that the Marcus rate expression, Equation 15.23, is no longer valid at these
temperatures, since it is derived assuming a classical promoting mode and is valid only for high enough
temperatures.
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FIGURE 15.7 Current–voltage characteristics for DPBIC �lms of di�erent thickness sandwiched between an indium
tin oxide (ITO) anode and an aluminum cathode, measured at di�erent temperatures. Theoretic predictions (lines)
were obtained using parameter-free coupling of microscopic hole mobility data to dri�–di�usion equations. Sym-
bols are experimental results. (Reprinted from P. Kordt et al., Phys. Chem. Chem. Phys., 17, 22778–22783, 2015. With
permission.)
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15.12.2 Impedance Spectroscopy

In addition to studies of steady-state current–voltage characteristics, valuable insight into the function-
ing of organic devices can be obtained from impedance spectroscopy studies. In particular, impedance
spectroscopy can provide information about carrier relaxation in the DOS, can help distinguish between
di�erent trapping regimes in organic-semiconductor devices [36], and can be used to determine the width
σ of the Gaussian DOS [159].

In impedance spectroscopy a dc bias V is applied over a device and, in addition to that, a small ac
component ΔV(t) = ΔV exp(2πi�) is added, where f is the frequency. The impedance Z = Z′ + iZ′′
is de�ned as the zero-amplitude limit of the ratio of ΔV(t) and the response ΔI exp

[

2πi(f + ϕ)t
]

in the
current, with ϕ a phase di�erence. Of particular interest is the capacitance–voltage, C–V , characteristic,
with the capacitance given by C = −Z′′∕2πf |Z|2.

Applying KMC simulations to extract the small responseΔI(t) is extremely cumbersome because of the
noise present in such simulations. It has been shown, however, that for single-carrier organic devices the
current–voltage characteristics obtained by solving the master equation are practically the same as those
obtained from KMC simulations [160]. The in�uence of small perturbations can be rather easily evaluated
using the master equation. Within the framework of the time-dependent master equation, the small ac
component of the voltage in a single-carrier device leads to a time-dependent probability, pi(t), of the
occupation of a site i by a charge, obeying Equation 15.14:

dpi
dt

=
∑

j≠i

[

ωjipj(1 − pi) − ωijpi(1 − pj)
]

≡ gi(p⃗), (15.34)

where p⃗ is the vector of occupational probabilities of all sites.
Using a perturbative approach, �rst the steady-state solution, p⃗0, for dpi∕dt = 0 at the applied static

voltage, V , has to be evaluated. The procedure for doing so has been described in Ref. [99]. Sheets of sites
representing the electrodes are introduced at either side of a simulation box representing the device. An
additional small-amplitude ac voltage with frequency f induces a small change, Δ⃗p. Linearizing, we write
p⃗(t) ≈ p⃗0 + exp

(

2πi�
)

Δ⃗p and g⃗(p⃗) ≈ g⃗(p⃗0) + exp(2πi�)
[

ΔV∂g⃗∕∂V + ĴΔ⃗p
]

, with the matrix elements of

the Jacobian, Ĵ, given by Jij = ∂gi∕∂pj
|

|

|p⃗0
. Substituting these expressions into Equation 15.34 and linearizing

leads to the equation

(2πif Î + Ĵ)Δ⃗p = −ΔV
∂g⃗
∂V

, (15.35)

with Î denoting the identity matrix. Equation 15.35 can be solved for Δ⃗p with standard techniques, and
from this the current, ΔI, and the capacitance, C, are readily obtained.

As an example, we consider two hole-only devices with the structure glass, ITO (100 nm), poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (100 nm), light-emitting polymer (LEP), Pd
(100 nm). The LEP consists of poly�uorene with 7.5 mol% copolymerized triarylamine units for hole trans-
port; see the Figure 15.8a inset. The LEP-layer thicknesses are L = 97 and 121 nm for the two devices and
their areas are A = 9 × 10−6 m2. According to EGDM modeling studies of the current density–voltage,
J–V , characteristics of these devices [161,162] no injection barrier is present at the anode (PEDOT:PSS)
and injection barriers of 1.65 and 1.90 eV are present at the cathode (Pd) for the L = 97 and L = 121 nm
device, respectively. These modeling studies gave best �ts for the J–V characteristics with σ = 0.13 eV.

We apply the above method to calculate the C–V characteristics of these two devices. As in the EGDM
studies [161,162] we assume an uncorrelated Gaussian DOS with standard deviation σ. The use of Marcus
rates would require knowledge of the reorganization energy λij, which is not available here. We therefore
assume Miller–Abrahams nearest-neighbor hopping with rates given by Equation 15.22. In the absence
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FIGURE 15.8 (a) Current density–voltage, J–V , characteristics of the devices with organic layer thicknesses L = 97
and L = 121 nm at T = 295 K. Dots: measurements [163]. Curves: solutions of the steady-state master equation
with σ = 0.13 and 0.08 eV for simple cubic (SC) and face-centered cubic (FCC) lattices. Inset: the used hole-
transporting copolymer. (b) Capacitance, C, normalized to its value at V = 0, as a function of V at a frequency
f = 100 Hz and temperature T = 295 K for the L = 121 nm device. Dots: measurements [164]. Dash–dot–dotted
curve: dri�–di�usion calculation with an extended Gaussian disorder model (EGDM) mobility function for σ = 0.13
eV, neglecting relaxation. Long-dashed curve: multiple-trapping result, which includes relaxation [164]. Other curves:
Solutions of the time-dependent master equation for σ = 0.13 and 0.08 eV and for SC and FCC lattices. (c) and
(d) C–V characteristics at di�erent frequencies for the L = 97 nm (c) and L = 121 (d) device. Dots: Measure-
ments [164]. Curves: Solutions of the time-dependent master equation. (Reprinted with permission from M. Mesta,
J. Cottaar, R. Coehoorn, and P. A. Bobbert, Study of charge-carrier relaxation in a disordered organic semiconductor
by simulating impedance spectroscopy. Appl. Phys. Lett., 104(21), 213301, 2014. Copyright [2014], American Institute of
Physics.)

of any morphological information we assume a regular lattice of hole-transporting sites. To investigate a
possible in�uence of morphology we investigate simple cubic (SC) as well as face-centered cubic (FCC)
lattices with a lattice constant a = 1.19 nm for the SC lattice and a = 1.88 nm for the FCC lattice, in
accordance with the known density 1.8 × 1026 m−3 of hole-transporting units. The simulation boxes have
dimensions L × Ly × Lz , with Ly = Lz = 50a and periodic boundary conditions in the y- and z-directions,
yielding a su�cient lateral averaging. For further details we refer to Ref. [159].

As expected from the EGDM modeling [161,162] it can be observed in Figure 15.8a that the experimen-
tal J–V characteristics (dots) at room temperature (T = 295 K) of the two devices are very well described
by the solution of the steady-state master equation for σ = 0.13 eV, both for the SC (dotted curve) and
the FCC (dash-dotted curve) lattice (a prefactor in the hopping rates was adjusted in both cases to obtain
an optimal �t). However, this is not at all true for the C–V characteristics. It is seen in Figure 15.8b that
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for the L = 121-nm device solving the time-dependent master equation for σ = 0.13 eV at a frequency
f = 100 Hz yields results that deviate strongly from the experimental C–V characteristic. The fact that
the master-equation results for the SC and FCC lattice are quite comparable shows that this deviation is
probably not due to a morphological issue.

In order to understand the problem better we �rst distinguish the di�erent regimes in the C–V charac-
teristics. (1) At low voltage all characteristics converge to the geometrical capacitance, because almost no
carriers are present in the device. (2) With increasing voltage, a sheet of holes builds up by di�usion from
the anode, but these cannot yet move to the cathode because the electric �eld is still directed from cathode
to anode. As a result, the e�ective thickness of the device decreases and the capacitance rises. (3) When
approaching the built-in voltage Vbi these holes start to move to the cathode, leading to a decrease of the
capacitance. The result is a peak in the C–V curve before Vbi is reached [165]. (4) In the regime beyond
Vbi the C–V curve rises again. Here relaxation e�ects play a dominant role and therefore this is the regime
we want to focus on.

In order to identify the e�ects of relaxation we display in Figure 15.8b (dash–dot–dotted curve) the C–V
characteristic obtained by solving the time-dependent dri�–di�usion equation with the EGDM mobil-
ity function corresponding to σ = 0.13 eV. In this case, the local mobility μ(x; ρ, F,T) depends on the
instantaneous local charge density ρ and electric �eld F, and therefore contains no relaxation e�ects. It is
seen that without relaxation e�ects the capacitance decreases a�er Vbi to a value that is even smaller than
the geometrical capacitance. The long-dashed curve is the result of a multiple-trapping model for relax-
ation [164]. With a �tted conduction-level energy Ec = −0.75σ, this model leads to a fair agreement with
experiment.

Since solving the time-dependent master equation for σ = 0.13 eV apparently overestimates relaxation
e�ects and since such e�ects decrease with decreasing σwe solved the time-dependent master equation for
lower values of σ. With a value of σ = 0.08 eV we �nd a very satisfactory agreement with the experimental
C–V characteristics, not only for the device and frequency considered in Figure 15.8b, but also for both
devices and all considered frequencies; see Figure 15.8c and 15.8d. The only clear disagreement is in the
peak, which is more pronounced in the calculations than in the experiment. This may be partially explained
by lateral variations in Vbi of the devices [164]. The dashed (SC) and full (FCC) curves in Figure 15.8a are
the corresponding J–V curves obtained by solving the steady-state master equation. It is observed that for
high voltages the experimental J–V curves are very well described, but signi�cant deviations occur at low
voltages around Vbi.

The analysis brings up the question why there is such an apparent discrepancy between the description of
steady-state and time-dependent charge transport. A possible explanation is that in steady-state transport
the low-energy tail of the DOS is important, represented by a relatively large σ, while in time-dependent
transport relaxing carriers probe a larger part of the DOS, represented by a smaller σ. This would mean that
the shape of the DOS is more complicated than a single Gaussian. It would also explain the di�erence in the
description of the J–V curves in Figure 15.8c. At low voltage, when carriers only occupy the low-energy
tail of the DOS, σ = 0.13 eV gives a better description, while at higher voltage, when the DOS is �lled up
further, σ = 0.08 eV provides an excellent description, which is even slightly better than with σ = 0.13 eV.
A value of σ = 0.13 eV at low voltage could also partially explain the lower peak in the C–V curve as
compared to the calculations with σ = 0.08 eV in Figure 15.8b through d. We note that the position of
the peak could be improved by adapting the used built-in voltages Vbi. These voltages were obtained from
an EGDM �t of the J–V characteristics with σ = 0.13 eV [161,162], but should be optimized again in a
�t with σ = 0.08 eV. In addition, the EGDM neglects spatial correlations of site energies. This can lead
to discrepancies when analyzing an experimental system with correlations in terms of a model without
correlations [89].

The present conclusion that σ = 0.08 eV should be used to describe carrier relaxation in the considered
devices is fully in agreement with the conclusion that dark-injection experiments on the same devices,
which also probe carrier relaxation, can be described by solving a time-dependent master equation with
the same value of σ [163].
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15.12.3 Efficiency

In OLEDs, electrical power is converted to a radiant �ux (radiant energy emitted per unit time), Φe. The
power e�ciency, sometimes called the wall-plug e�ciency, is given by

ηpower =
Φe
IV

=
∫∞0 Φe,λ,OLED(λ)dλ

IV
, (15.36)

where I is the current, V is the applied voltage, and Φe,λ,OLED is the total optical power that is emitted
externally per unit wavelength λ. The power e�ciency is generally limited by inevitable Ohmic losses in
the electrodes and in the organic charge transport layers, and sometimes also by Ohmic losses due to
the presence of internal organic–organic energy barriers outside the emissive layer. When judging the
e�ciency of the conversion process in the emissive layer, one therefore o�en focuses on a complementary
quantity, the external quantum e�ciency ηEQE (EQE), that is de�ned as the total number of externally
emitted photons per charge carrier that has passed the device:

ηEQE =
e
I ∫

∞

0
Φe,λ,OLED(λ)

λ
ch
dλ, (15.37)

where e is the fundamental charge, c is the speed of light, and h is Planck’s constant. Due to full or partial
internal re�ection of light, not all photons that are internally generated will escape from the microcavity
that is formed by the OLED layer structure. It is therefore useful to introduce an additional quantity, the
internal quantum e�ciency (IQE) ηIQE, which is de�ned as the ratio of the total number of photons gener-
ated within the device and the number of electrons injected. The IQE is not directly measurable, but may
be derived from the EQE using the expression

ηIQE =
ηEQE
ηout

, (15.38)

where ηout is the light-outcoupling e�ciency. For emission from a speci�c position in a planar OLED
microcavity, under a speci�c angle and for a speci�c wavelength, the (s and p) polarization-dependent
emitted light intensity may be obtained from optical simulations [166–169]. The light-outcoupling e�-
ciency is thus an e�ective value, which is determined by averaging over the entire emission pro�le and the
entire emission spectrum and which is sensitive to the precise angular dependence of the emission from the
dye molecules. Application of advanced emission pro�le reconstruction techniques [170,171] and a mea-
surement of the emitter orientation distribution [172] are required to determine ηout for a speci�c case with
high precision. In the absence of such information, one o�en assumes that for well-designed phosphores-
cent OLEDs with a (glass ∣ ITO ∣ organic semiconductor ∣ Al) layer structure and with a random emitter
orientation ηout is approximately 0.2. Larger values, up to ∼0.25−0.30, are possible by optimizing all layer
thicknesses [173]. Several methods, including the use of a roughened external glass surface or the use
of internal high-refractive index scattering layers, have been developed to enhance the light-outcoupling
e�ciency to values above 0.5 [174,175].

Recently, much progress has been made in advanced molecular-scale KMC calculations of the IQE
[176–178]. We focus in this section on applications of KMC simulations to phosphorescent OLEDs based
on a small concentration of metal-organic emitter molecules in a matrix material. In general, the IQE may
be expressed as [174]

ηIQE = ηrecηSTqeff , (15.39)

with ηrec the recombination e�ciency, de�ned as the fraction of injected charges which contributes to
exciton formation, ηST the singlet–triplet factor, de�ned as the fraction of generated excitons which is
quantum-mechanically allowed to decay radiatively, and qeff the e�ective radiative decay e�ciency, de�ned
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as the fraction of such excitons which actually decays radiatively. In phosphorescent OLEDs based on
heavy metal-organic molecules, strong spin–orbit interaction gives rise to triplet states with some mixed-
in singlet-character, so that also triplets are emissive and ηST = 1. The recombination e�ciency can be
close to unity by making use of appropriate electron and hole blocking layers. A highly e�ective radiative
decay e�ciency may be obtained, �rst, by using emissive dye materials with a large radiative decay rate,
Γrad, and a small nonradiative decay rate, Γnr . In the absence of other loss processes, the IQE is then equal
to Γrad∕(Γrad + Γnr) ≡ ηPL, the photoluminescence (PL) e�ciency. Nonradiative decay is a result of the
nuclear motion, so that the energy of the molecule in its excitonically excited state can be equienergetic
with a highly vibrationally excited excitonic ground state [179]. Second, the matrix material and the adja-
cent blocking material should have a triplet energy level signi�cantly larger than the dye triplet level so
that the triplet excitons stay con�ned to the dye sites. These design rules are already relevant to the IQE at
small current densities. Experimentally, the IQE is found to depend on the current density, J. At large J, ηIQE
decreases with increasing J. For some devices, ηIQE is found to show a broad maximum before the decrease
(“roll-o� ”) sets in. A practical measure is the current density J90 at which the IQE has decreased to 90%
of the maximum value. For e�cient phosphorescent OLEDs, maximum reported values of J90 are approx-
imately 300A∕m2 [180]. In commercial white OLEDs for lighting conditions, operated at high luminance
levels, the e�ciency loss due to roll-o� can be indeed of the order of 10%.

Understanding the roll-o� is not only important as a �rst step toward enhancing the e�ciency. Loss pro-
cesses that limit the IQE at high J can also trigger local degradation processes with a certain probability, as
will be discussed in Section 15.12.5. By building “virtual OLEDs” in which the interplay of all charge trans-
port and excitonic processes is included mechanistically using KMC simulations, the functioning of OLEDs
can be studied with subnanosecond time and molecular-scale spatial resolution. The �rst demonstration
of the feasibility of such an approach was presented by van Eersel et al. [176]. We discuss their simula-
tion results for OLEDs based on the green-emitting metal-organic molecule tris[2-phenylpyridine]iridium
(Ir(ppy)3) and the red phosphorescent dye platinum octaethylporphyrin (PtOEP).

The simulations were based on the three-dimensional (3D) KMC code Bumblebee (http:/simbeyond
.com): For a detailed discussion of the model used, we refer to Refs. [176,177,181,182]. Ref. [176] also gives
motivations for the parameter values used and provides analyses of the sensitivity of the simulation results
to the parameter values. Brie�y, the OLEDs were modeled as a collection of molecular sites on a simple
cubic lattice. For each type of molecule, the site energies for electrons and holes were taken randomly from
a Gaussian DOS with an average energy as given in Figure 15.9a. Charges were assumed to hop with a rate as
described within the Miller–Abrahams formalism Equation 15.22. The hopping attempt frequency ω0 and
the wavefunction decay length λ = 1∕γwere taken equal for all pairs of sites. The simulations included the
Coulomb interactions between all charge carrier pairs and with image charges in the metallic electrodes.
In a natural way, the formation of space-charge layers near the injecting and organic–organic interfaces,
and the resulting “band bending,” was thus included. Cottaar et al. have demonstrated that in energetically
disordered materials, as they are used in OLEDs, explicitly taking the individual 3D Coulomb interactions
into account is important for properly treating charge accumulation near internal interfaces [183]. Instanta-
neous ISC was assumed, so that only triplet excitons were considered. Exciton generation and dissociation
were treated in the same way as hops of electrons and holes, but including the triplet exciton binding
energy. Radiative and nonradiative triplet exciton decay was included, as well as exciton transfer between
the dye molecules, leading to exciton di�usion. The transfer rate was expressed as a sum of Förster-type
and Dexter-type contributions, Equations 15.25 and 15.26, where τ = (Γrad + Γnr)−1 is the e�ective decay
time, RF is the Förster radius for di�usion, and kD is the Dexter prefactor. The two bimolecular loss pro-
cesses that potentially contribute to the IQE roll-o�, triplet–polaron quenching (TPQ) and triplet–triplet
annihilation (TTA), were both included in a parameter-free manner, viz. by assuming an in�nite (zero)
rate when an exciton and a polaron or two excitons, respectively, are present on nearest-neighbor (more
distant) sites. Table 15.2 gives an overview of the used parameter values.

Figure 15.10a and b shows a comparison of the calculated and experimental J–V and IQE roll-o� curves,
respectively, for a temperature of 300 K. The slope of the J–V curves is well described, but the absolute

http://simbeyond.com
http:/simbeyond.com
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FIGURE 15.9 (a) Energy level and layer structure of the green and red organic light-emitting diodes (OLEDs)
studied in Ref. [176]. The phosphorescent emissive layer (EML) is sandwiched in between materials facilitating hole
and electron injection, transport and blocking: CuPc (copper phthalocyanine), α-NPD (4,4′-bis[N-(1-naphthyl)-N-
phenyl-amino] biphenyl), BCP (2,9-dimethyl, 4,7-diphenyl, 1,10-phenanthroline), and Alq3 (tris [8-hydroxyquinoline]
aluminum). (b) Triplet energies for the materials used in the EML (solid line: CBP; dashed line: Ir(ppy)3; dotted line:
PtOEP) and the layers adjacent to the EML. (c)–(e) Contribution of the various exciton decay processes in the EML of
the Ir(ppy)3 device (b), in the entire Ir(ppy)3 device (c), and in the EML of the PtOEP device (d). The �gures show that
even above 6 V only a small fraction of the e�ciency loss (less than 2% (0.5%) for the Ir(ppy)3 (PtOEP) devices) is due
to triplet–triplet annihilation (TTA). (Reprinted with permission from H. van Eersel, P. A. Bobbert, R. A. J. Janssen,
and R. Coehoorn. Monte Carlo study of e�ciency roll-o� of phosphorescent organic light-emitting diodes: Evidence
for dominant role of triplet-polaron quenching. Appl. Phys. Lett., 105(14):143303, 2014. Copyright [2014], American
Institute of Physics.)

value of the current density is somewhat overestimated. As argued in Ref. [176], this might be related to an
underestimation of the HOMO–LUMO gap, which was taken to be equal to the optical gap. This o�en-used
approach neglects the exciton binding energy, which can be around 1 eV [184]. Such a correction would
horizontally shi� the J–V curves by 1 eV, giving rise to a signi�cant reduction of the discrepancy. The roll-
o� curve would not be a�ected by such a correction. We note that (as mentioned above) the triplet exciton
binding energy was included when calculating the rates of exciton generation and dissociation processes.
For Ir(ppy)3, the simulation results agree within the error margin with experiment, whereas for PtOEP the
roll-o� is slightly underestimated at high current densities. A sensitivity analysis was carried out to �nd out
which uncertainties in the choice of parameter values have the largest impact. It was found, e.g., that the
J–V characteristics are quite strongly determined by the energy-level di�erences at interfaces and between
the host and guest states in the emissive layer (EML). The sensitivity to the hopping attempt frequency was
found to be relatively small.

The simulations provided detailed views on the cause of the roll-o�, as shown in Figure 15.9c through e.
In both devices, most of the emission was found to occur near the anode-side of the EML. This may
be understood from Figure 15.9a, from which the guest molecules are expected to give rise to stronger
hole trapping than electron trapping. As a result, the e�ective electron mobility is larger than the hole
mobility. In the emissive layer, most of the IQE loss was found to be due to TPQ, and only at high voltages
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TABLE 15.2 Overview of the Simulation Parameters

Parameter Description Value

Common

ω0 Hopping attempt frequency to the �rst neighbor 3.3 × 1010 s−1

σ Width of the electron and hole Gaussian DOS 0.10 eV
Nt Site density 1.0 × 1027 m−3

λ ≡ 1∕γ Wavefunction decay length 0.3 nm
εr Relative dielectric permittivity 3.5
σT Width of the triplet exciton DOS 0.10 eV
ET,b Triplet exciton binding energy 1.0 eV
kD Prefactor for triplet exciton Dexter transfer 1.6 × 1010 s−1

Material-speci�c Ir(ppy)3 PtOEP

RF Förster radius for triplet exciton di�usion 1.5 nm 1.5 nm
Γrad Radiative decay rate 0.816 μs−1 0.1 μs−1

Γnr Nonradiative decay rate 0.249 μs−1 0.525 μs−1

Note: The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) energies are given in Figure 15.9a, and the triplet energies are given in Figure 15.9b.
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H. van Eersel et al., Monte Carlo study of e�ciency roll-o� of phosphorescent organic light-emitting diodes: Evidence
for dominant role of triplet–polaron quenching. Appl. Phys. Lett., 105(14):143303, 2014. Copyright [2014], American
Institute of Physics.)

was a small TTA contribution was found (see Figure 15.9c). For the Ir(ppy)3 devices, the overall loss was
found to be determined mostly by a nonideal recombination e�ciency due to imperfect electron blocking
and by triplet exciton di�usion to the α-NPD layer (see Figure 15.9d). The �nding of electron loss to the
α-NPD layer is consistent with the observation of some blue emission from that layer [185]. Due to sub-
sequent TPQ, triplet transfer to the α-NPD layer also gives rise to a loss. From simulations, improving the
devices by introducing perfect electron blocking was predicted to give rise to a 10% increase of the IQE
at small voltages, from ∼ 34% to ∼ 44%. The IQE at small voltages was found to become equal to the PL
e�ciency assumed (77%) when the triplet transfer to the HTL also was eliminated. For the red devices, at
low voltages no signi�cant electron and triplet loss to the α-NPD layer was found, as may be understood
from the lower LUMO energy and the smaller triplet energy of PtOEP. The IQE is then close to the PL
e�ciency assumed (16.4%).
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15.12.4 Electroluminescence of a White OLED

The KMC simulations described in Section 15.5 can be employed to model all molecular-scale electronic
processes that �nally lead to electroluminescence of an OLED: injection, transport, and recombination
of electrons and holes as well as di�usion and radiative decay of excitons. We consider here the white
multilayer OLED stack of Figure 15.11a, which was studied experimentally and by KMC simulations in
Ref. [181]. It concerns a so-called “hybrid” OLED, which combines red and green phosphorescent emission
with blue �uorescent emission. Phosphorescent emission can be very e�cient because of the harvesting
of both singlet and triplet excitons (see Section 15.2.4). However, since stable blue phosphorescent emit-
ters with long-term stability are to date unavailable, many commercial white OLEDs make use of blue
�uorescent emission, despite the fact that then only singlet excitons are harvested.
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reconstructed from the measured angle- and polarization-dependent emission spectrum [181]. The percentages of red,
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probabilities of the emitters. The error in the simulated pro�les is about 1%. Reprinted by permission from Macmillan
Publishers Ltd. Nat. Mater. [181] Copyright (2013).
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The working principle of the OLED of Figure 15.11a is the following. Holes reach the light-emitting lay-
ers of the stack a�er being injected by an ITO layer into a 4 mol% p-doped injection layer of NHT5:NDP2
and transported through a hole-transporting and electron-blocking layer of α-NPD (N,N′-di(naphthalen-
1-yl)-N,N′-diphenyl-benzidine). Electrons reach the emitting layers a�er being injected by an aluminum
cathode into a 4 mol% n-doped electron-injection of NET5:NDN1 and transported through an electron-
transporting and hole-blocking layer of NET5 (materials supplied by Novaled). Blue light is generated in a
10-nm-thick �uorescent layer of spiro-DPVBi (2,2′,7,7′-tetrakis(2,2-diphenylvinyl)spiro-9,9′-bi �uorene)
adjacent to the NET5 layer. Green light is generated in a 3-nm-thick layer of TCTA (4,4′,4′′-tris(N-
carbazoyl)-triphenylamine) doped with 8 mol% of the green phosphorescent dye Ir(ppy)3 (fac-tris(2-
phenylpyridyl)iridium). Red light is generated in a 20-nm-thick α-NPD layer doped with 5 mol% of the red
phosphorescent dye Ir(MDQ)2(acac) ((acelylacetonate)bis(2-methyldibenzo[f,h]quinoxinalate)iridium).

The green phosphorescent layer is separated from the blue �uorescent layer by a thin (3-nm) interlayer
consisting of a mixture of the hole-transporter TCTA with 33 mol% of the electron-transporter TPBi (1,3,5-
tris(N-phenylbenzimidazol-2-yl)benzene). This interlayer has several purposes [186]. It should block the
transfer of singlet excitons from the blue to the green layer and of triplet excitons from the green to the
blue layer (spiro-DPVBi has a triplet energy lower than that of Ir(ppy)3). Also, this interlayer should allow
the passage of electrons from the blue to the green layer (by the TPBi) and of holes from the green to
the blue layer (by the TCTA). The red phosphorescent layer is purposely in direct contact with the green
phosphorescent layer, allowing triplet excitons formed on the phosphorescent dye in the green layer to
di�use to the phosphorescent dye in the red layer. This di�usion is an important process in establishing
the right color balance.

The measured room-temperature current density–voltage characteristic of the OLED is shown in
Figure 15.11b. The arrow indicates the bias voltage of 3.6 V for most of the reported results. The CIE
1931 color point of the perpendicularly emitted light at this bias was measured to be [x, y] = [0.47, 0.45],
which corresponds to warm-white emission. The EQE, i.e., the fraction of emitted photons per injected
electron–hole pair, is measured to be 5 ± 1% [181]. Figure 15.11c shows the color-resolved emission pro-
�le, which was reconstructed with a precision on the order of a nanometer from the measured angle-
and polarization-dependent emission spectra [170,181]. It is observed that in the blue layer, the emission
occurs close to the interface with the interlayer and in the red layer close to the interface with the green
layer.

The KMC simulations of the charge dynamics were carried out in the following way. Point sites are
arranged on a cubic lattice with a lattice constant a = 1 nm, the typical intermolecular distance of the used
molecular semiconductors represent the molecules in the stack. A simulation box of 50 × 50 × 56 sites
with periodic boundary conditions in the lateral (x- and y-) directions was used, which turned out to yield
su�ciently accurate results. Since charge transport in various small-molecule materials was found to be
described well by the ECDM [161,191], correlated disorder caused by random dipoles was assumed for
the electron and hole energies. The energetic disorder was taken to be σ = 0.1 eV, corresponding to the
value found for hole transport in α-NPD [161]. With this value the charge transport in all materials in the
stack is expected to be reasonably described. Red and green emitting guests were introduced according
to the known concentration of the emitters, with appropriately adapted energy levels. Electron traps were
introduced in the layers in which electron transport is important: the blue �uorescent layer and the ETL.
They were modeled with an exponential DOS of trap energies [192–194] with a concentration ctrap and a
characteristic energy kBT0.

Nearest-neighbor hopping of charges on the lattice using the Miller–Abrahams rate (see Equation 15.22)
was assumed. The energy di�erences in the hopping rates contain, apart from the random site energies, an
electrostatic contribution due to the bias applied to the OLED and the Coulomb energy due to all present
charges. The doped injection layers were treated as metallic, injecting and collecting charges with an energy
according to their work function, indicated by the arrows in Figure 15.11a. Exciton generation was assumed
to occur by hopping of an electron to a site where a hole resides, or vice versa, and was assumed to be always
an energetically downward process.



9781498749466_C015 2017/8/29 14:58 Page 505 #33

Organic Light-Emitting Diodes 505

Table 15.3 gives the parameters of the stack materials used in the KMC simulations of the charge
dynamics. The parameters were determined from charge-transport and spectroscopic studies of the various
materials [181]. Exciton di�usion within the green and red layers and from the green to the red layer was
included in the simulations. Since the red and green emitters trap electrons as well as holes (see the energy
level scheme in Figure 15.11a), almost all excitons in the red and green layers are generated on the emit-
ters. The di�usion of excitons among the emitters was described by Förster transfer (see Equation 15.25),
made possible by the spin–singlet character that is mixed into the exciton wave function by the spin-orbit
coupling of the heavy iridium atoms. Apart from being transferred, excitons can decay radiatively with a
rate Γrad,i = 1∕τr,i or nonradiatively with a rate Γnr,i = 1∕τnr,i. These rates are related to the radiative
decay probabilities ηr by ηr,i = Γrad,i∕(Γrad,i + Γnr,i). We took ηr = 0.84 and 0.76 for the red and green
phosphorescent emitters in their respective hosts [169]. Other parameters used in the exciton dynamics
are given in Table 15.4. Only exciton transfer from green to red was taken into account. Transfer from red
to green should be negligible.

TABLE 15.3 Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital
(LUMO) Energies, Room Temperature Hole- and Electron-Mobilities μ0,h and μ0,e at Low Field and Low
Carrier Density, Electron-Trap Concentration ctrap, and Trap Temperature T0 of the Exponential Trap
Density of States (DOS) in the Di�erent Layers of the Stack, as Used in the Kinetic Monte Carlo (KMC)
Simulations

Material EHOMO (eV) ELUMO (eV) μ0,h (m2/Vs) μ0,e (m2/Vs) ctrap T0 (K)

NHT5:NDP2 −5.10
α-NPD −5.43 −2.33 6 × 10−9 6 × 10−10

Ir(MDQ)2(acac) −5.13 −2.93 6 × 10−9 6 × 10−10

TCTA −5.60 −2.20 2 × 10−8 2 × 10−9

Ir(ppy)3 −5.20 −2.70 2 × 10−8 2 × 10−9

TCTA −5.60 −2.20 2 × 10−8 2 × 10−9

TPBi −6.20 −2.60 2 × 10−8 2 × 10−9

Spiro-DPVBi −5.70 −2.80 6 × 10−9 8 × 10−9 0.001 2350
NET5 −6.00 −2.50 1.5 × 10−11 1.5 × 10−10 0.005 1400
NET5:NDN1 −2.50

Source: M. Mesta et al., Nat. Mater., 12, 652–658, 2013.
Note: Spiro-DPVBi, 2,2′,7,7′-tetrakis(2,2-diphenylvinyl)Spiro-9,9′-bi�uorene; TCTA, 4,4′,4′′-tris(N-carbazoyl)-
triphenylamine; α-NPD, N,N′-di(naphthalen-1-yl)-N,N′-diphenyl-benzidine; MDQ, acelylacetonate)bis(2-
methyldibenzo[f,h]quinoxinalate)iridium; TPBI, 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene. NHT5:NDP2
and NET5:NDN1 are doped hole and electron transporter materials supplied by Novaled.

TABLE 15.4 Radiative and Nonradiative Exciton Decay Rates Γrad and
Γnr , Förster Radii RF for Exciton Transfer between Phosphorescent Emitter
Molecules and Triplet Energies ET

Material Γrad (μs−1) Γnr (μs−1) RF (nm) ET (eV)

Ir(MDQ)2(acac) 0.588 0.112 1.5 2.0
Ir(ppy)3 0.816 0.249 1.5 2.4

Note: For the green emitter Ir(ppy)3 Γrad and Γnr were taken from Ref. [187]. For
the red emitter Ir(MDQ)2(acac), Γrad was obtained from Ref. [188], and Γnr from ηr
is given in Ref. [169] and the relation ηr = Γrad∕(Γrad +Γnr ). The value RF = 1.5 nm
for transfer between equal emitter molecules is a typical value given in Ref. [189].
According to the estimate in Ref. [190] we took RF,GR = 3.5 nm for the transfer from
a green to a red emitter. The triplet energies were taken from Ref. [186].
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For each exciton generated in the red or green layer a separate simulation of its dye-to-dye di�usion and
�nal radiative or nonradiative decay was performed. This di�usion was assumed to proceed independently
from all other processes, which means that exciton quenching processes were neglected. Excitons generated
on host sites in the red and green layers (a small fraction) were assumed to transfer instantaneously to
an emitter in their neighborhood. Di�usion of excitons generated in the blue layer was not accounted for
because the di�usion length of these excitons is short and because their transfer to the green layer is blocked
by the interlayer. We assumed that in the blue �uorescent layer singlet and triplet excitons are generated in
a quantum-statistical ratio of 1:3 and that the triplet excitons are lost. For the radiative decay probability
of singlet excitons in the blue layer we took ηr = 0.35 [195]. Excitons generated in the interlayer were
assumed to be lost by nonradiative decay or emission outside the visible spectrum.

The J–V characteristic following from the KMC simulations is given in Figure 15.11b. Considering the
various simpli�cations that were made, the agreement with the measured characteristic is fair. The under-
estimation of J at high voltage could be due to a heating e�ect, while the overestimation of J at low voltage
could result from a systematic underestimation of the LUMO energies due to neglect of the exciton bind-
ing energies. At the bias voltage of 3.6 V for most of the reported results, the experimental and simulated
current density agree quite well.

Figure 15.11d and e present the simulated exciton generation pro�le and emission pro�le, respectively, at
3.6 V. The e�ect of exciton transfer from green to red is clearly observable and is very important for the color
balance of this OLED. The simulated emission pro�le is in fair agreement with the reconstructed emission
pro�le from Figure 15.11c. The broadening of the simulated emission pro�le over a few nanometers in the
red layer found in the simulations is not seen in the reconstructed emission pro�le but this could be due
to the limited resolution of the reconstruction procedure [170,181]. The total percentages of emission in
the red, green, and blue agree quite well with the reconstructed emission pro�le.

The results presented in this section show that KMC simulations of all molecular-scale electronic pro-
cesses leading to electroluminescence in quite complicated multilayer OLEDs with commercial relevance
are feasible. The parameters in the present study were almost all obtained from experimental studies, but
there is no obstacle for obtaining these from �rst-principles computational studies. Complete in silico
studies of the functioning of commercial OLEDs therefore seem to be within reach.

15.12.5 Degradation

Developing an improved understanding of the mechanisms that limit the operational lifetime of OLEDs is
of key importance toward the further adoption of OLED technology for display, lighting, and signage appli-
cations. Experimentally, given �xed current density and ambient temperature conditions, the luminance
is o�en observed to decrease with time in an approximately exponential or stretched-exponential man-
ner. For commercial white OLEDs for lighting applications, the time at which the luminance has dropped
to 70% of the initial value (the so-called LT70 lifetime) can today be as large as 10,000 hours or more at
a luminance of 8000 cd/m2. However, long lifetimes are in practice o�en realized by making a trade-o�
with device e�ciency (e.g., when using hybrid OLEDs, see Section 15.12.4) or production cost and ease of
manufacturing (e.g., when using multiply vertically stacked OLEDs). Examples of other aspects of OLED
reliability during prolonged operation are the voltage stability (at a �xed current density), the color point
stability, the stability at high ambient temperatures, and the stability under prolonged exposure to the ambi-
ent atmosphere [196,197]. The latter issue, leading to so-called black-spot formation, has been mitigated
by the development of improved encapsulation technologies [198]. Recently, an excellent overview of the
degradation mechanisms and reactions in OLEDs has been given by Scholz et al. [199].

In this section, we focus on the use of molecular-scale OLED device modeling as a means to elucidate the
role of various possible intrinsic degradation processes, i.e., processes that are caused by excitons (includ-
ing those due to absorption of internally emitted photons), charges, and �elds in the opto-electronically
active organic semiconducting layer. When setting up an extension of the KMC simulations described
in Sections 15.5 and 15.12.3, in order to include degradation, �rst an inventory should be made of the



9781498749466_C015 2017/8/29 14:58 Page 507 #35

Organic Light-Emitting Diodes 507

processes which for a speci�c system are expected to give rise to degradation. Formally, a distinction
should be made between (1) monomolecular degradation processes, which occur when the state of a
single-speci�c molecule is modi�ed, e.g., due to the presence of a polaron or an exciton or due to a
local electric �eld, and (2) bimolecular degradation processes, which occur upon an interaction between
charges and/or excitons on two di�erent molecules, e.g., exciton–exciton annihilation or exciton–polaron
quenching.

Including these two types of degradation processes requires a rate and a probability, respectively, as well
as a description of the resulting changes of the KMC parameter values. Monomolecular degradation has
been observed, e.g., in OLEDs containing the electron transport material Alq3, in which the presence of
holes gives rise to a reduction of the emission by the formation of �uorescence quenchers [200]. Degra-
dation due to the presence of singlet excitons has been reported for 4,4′-bis(N-carbazolyl)biphenyl (CBP),
used as a matrix material in the EML of green-emitting phosphorescent OLEDs [201]. The degradation
products can act as nonradiative recombination centers and trap states. Degradation due to singlet exci-
tons has also been reported for OLEDs based on the �uorescent emitter material spiro-DPVBi [202]. An
example of a bimolecular process which can be accompanied by degradation is triplet–polaron quench-
ing (TPQ). When TPQ is due to excitation of the polaron by the triplet exciton, followed by nonradiative
decay of the excited polaron due to internal conversion, the locally dissipated energy may, with a certain
probability, lead to a chemical change of the molecule. Such a mechanism was found for a blue phos-
phorescent OLED using 4,4′-bis(3-methylcarbazol-9-yl)-2,2′-biphenyl (mCBP) as the host material in the
EML [203]. The mCBP defect sites were argued to act as deep charge traps and the dissociation products
were argued to damage the guest (emitter) so that it becomes a nonradiative center and a luminescence
quencher.

A KMC degradation study starts in general with running a simulation without degradation until
dynamic equilibrium is achieved under the operational conditions (voltage, temperature) of interest. Sub-
sequently, the simulations are continued while degradation is switched on. Monomolecular degradation
due to a charge or an exciton on a sensitive site is included as a new possible process which competes with
all other possible processes. Degradation that accompanies a bimolecular process such as TPQ is included
by branching the end result of that process, so that a defect site is formed with a certain probability. We note
that in KMC simulations only the primary event needs to be described. All subsequent e�ects (e.g., a shi�
of the recombination zone to a less favorable position due to a changed mobility balance, or an e�ciency
loss due to TPQ at charges residing on defect molecules which act as traps [204]) will follow “automati-
cally” from the simulations. KMC lifetime simulations are necessarily strongly accelerated, as practically
realistic simulated times are usually at most of the order of 1 ms, 6–11 orders of magnitude smaller than
actual lifetimes in the range of 1–100,000 hours. This can be accomplished by assuming an enhanced value
of the degradation rate (for monomolecular degradation) or the degradation probability (for degradation
accompanying a bimolecular process). As in the case of experimental OLED lifetime tests, it is also possible
to accelerate the simulations by carrying them out for high current densities and/or elevated temperatures,
followed by extrapolation to application-relevant operational conditions.

A �rst demonstration of the feasibility of 3D KMC OLED lifetime simulations was presented in
Ref. [177]. The simulations were carried out for a symmetric OLED with an energy level structure as shown
in Figure 15.12a, for a temperature of 300 K. The mixed-matrix emissive layer contains equal concentra-
tions of the HTL and ETL material as a host, and 4 mol% of emitter molecules (guest). The hole and
electron blocking is excellent, so that the recombination e�ciency is 100%. The simulation parameters are
as given in Table 15.2, with the following exceptions: εr = 3, σT = 0 eV (no triplet energy disorder), and
Γrad = 0.544 μs−1 and Γnr = 0.181 μs−1 (values typical for the orange-red emitter Ir(MDQ)2(acac) in an
α-NPD matrix [205]). As in Section 15.12.3, TPQ and TTA were treated in a parameter-free manner as
instantaneous nearest-neighbor processes.

Van Eersel et al. [176] showed that for these symmetric devices and with a dye trap depth Δ = 0.2 –
0.3 eV the emission pro�le at small voltages is quite uniform across the emissive layer. This is illustrated by
Figure 15.12b, which shows the emission pro�le at 3 V for the case studied (Δ = 0.2 eV). On the one hand,
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ered in the kinetic Monte Carlo (KMC) degradation simulation studies. Dashed lines: Emitter energy levels (4 mol%).
(b) Emission pro�le at 3 V. The full curve is a guide-to-the-eye. (c) Current density dependence of the internal quan-
tum e�ciency. The full curve is a �t using Equation 15.41 with m = 0.80 and J50 = 10 kA/m2. The vertical dashed
line indicates the current density at which the IQE has dropped to 50% (J50) of the value at small current densities.
(d) Time-dependence of the normalized emission at 6 V as obtained from a KMC degradation study which assumes
that (1) the degradation occurs on triplet-excited dye sites upon triplet-polaron quenching processes (TPQ-t, see the
main text) resulting from the displacement of a polaron on a neighbor site to the dye site, and which assumes that
(2) each quenching is followed by a degradation process upon which the involved dye molecule becomes nonemis-
sive. The simulations were carried out with and without exciton di�usion (closed and open symbols, respectively). The
dashed curve is a stretched-exponential �t to the simulation results without di�usion (see the main text). (Reproduced
from R. Coehoorn et al., Adv. Funct. Mater., 25, 2024–2037, 2015. With permission.)

this choice avoids a large Ohmic loss due to deep trapping and a large overvoltage due to the enhanced
built-in voltage (for large Δ). On the other hand, it also avoids a large loss due to strong roll-o� caused by
emission from thin zones near the blocking layer interfaces (for small Δ). The optimum value of Δ will
depend on the application goal (see Ref. [176]) and is sensitive to the detailed mechanisms of the TPQ and
TTA processes. Figure 15.12c shows the calculated IQE roll-o� curve before degradation. The J–V curve is
given in the inset. At small voltages, the IQE is equal to the assumed radiative decay (PL) e�ciency (ηrad =
Γrad∕(Γrad + Γnr) = 0.75). The J90 current density, de�ned in Section 15.12.3, is approximately 640A∕m2.
This is larger than the largest experimental value obtained so far (∼ 300A∕m2, see Section 15.12.3). The
full curve gives a �t through the data points, discussed below (see Equation 15.41). For the nearest-neighbor
TPQ and TTA mechanisms considered, the roll-o� is almost completely due to TPQ.

Figure 15.12d shows the dependence of the normalized emission on the simulated time, at constant
voltage conditions (6 V), for a degradation scenario in which, upon a TPQ process, the polaron involved is
displaced to the site at which the triplet exciton resides (a “TPQ-t process,” see Figure 2 in Ref. [177]), which
then becomes nonemissive with a degradation probability pdegr = 1. The simulations thus employ the
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largest possible acceleration factor. All other parameters are kept identical. The current density was found
to remain essentially unchanged during the degradation process. Furthermore, it was found that choosing
a smaller degradation probability does not signi�cantly change the results, apart from changing the time
scale. That indicates that the lifetime is still much larger than all other relevant time scales. Simulations
including exciton di�usion are computationally more expensive, and were stopped when a 50% emission
reduction had been obtained. Simulations without di�usion were continued until a reduction to only about
10% of the initial emission was reached. An approximate description of the decay is given by the stretched
exponential curve, shown in the �gure, with the form I(t) = I(0) exp[−(t∕τsim,acc)β], with a simulated
accelerated (1/e) lifetime τsim,acc ≅ 80 μs and a stretching exponent β = 0.91. The actual (1/e) lifetime as
predicted from the simulations is given by

τsim =
τsim,acc
pdegr

. (15.40)

Conversely, using Equation 15.40 the value of pdegr could be deduced from a degradation simulation and
a measurement of the lifetime. Such an analysis led in Ref. [177] to an estimated order-of-magnitude value
of pdegr ∼ 10−8 when assuming that the simulations discussed above are relevant to state-of-the-art white
OLEDs.

Within a re�ned approach, the probability that a TPQ process gives rise to degradation could be treated
stochastically, e.g., by treating it as a thermally activated process with an activation energy with a Gaussian
distribution. Such an approach is expected to give rise to a smaller value of the stretching exponent β.
Experimentally, values of β around 0.5 have been observed. The e�ect is so far generally explained in a
rather phenomenological manner [206]. It should be noted that the decay can also become more stretched-
exponential like for OLEDs with imbalanced electron and hole mobilities, resulting in a highly nonuniform
emission pro�le. If this picture is correct, lifetime studies could also, albeit indirectly, provide information
about the shape of the emission pro�le.

We envisage that, using Equation 15.40, lifetime predictions can be obtained from KMC lifetime sim-
ulations if the parameter pdegr (or its distribution) can be determined from a few well-chosen combined
experimental and KMC calibration studies. Subsequently, KMC-based lifetime predictions can be obtained
for other measurement conditions (e.g., current density and temperature), device architectures, and other
dye concentrations in the same host. So far, studies which could validate this view have not been carried
out. As a �rst step, KMC simulations were carried out of the iridium dye concentration dependence of
the lifetime, for otherwise identical simulation parameters [177]. Figure 15.13a shows the accelerated LT90
lifetime obtained from the simulations (large open circles), and results from simulations in which exciton
di�usion was switched o� (small open circles). For iridium dye concentrations above about 7 mol%, exci-
ton di�usion is found to yield a signi�cant decrease of the lifetime, up to a factor∼4. The exciton di�usion
length is then larger than the average distance to a degraded site, so that a large fraction of the excitons
which have been generated on nondegraded sites is lost due to di�usion and subsequent nonradiative decay
on degraded sites. Interestingly, the IQE obtained when exciton di�usion was switched o� was found to be
slightly reduced for all systems studied, namely by 1%–2%. The reduction cannot be due to switching o�
the transfer of triplets from matrix to guest sites, as due to the large energy gap of the matrix materials all
excitons are generated directly on the dye sites. We surmise that the reduction is due to switching o� the
possibility that excitons di�use to molecular sites in regions with a slightly smaller average polaron density,
in which the loss due to TPQ is reduced. This e�ect may for the highest iridium dye concentrations con-
sidered be compensated in part by an increase of the IQE due to a smaller exciton di�usion contribution to
the TPQ loss. For the devices and the parameter values employed, the latter e�ect was found to be almost
negligible for iridium dye concentrations around and below 8 mol% [177].

The simulation data shown in Figure 15.13a may be analyzed more quantitatively with the help of
a useful relationship which has been established between the lifetime and the IQE roll-o� [177]. It is
based on a model which assumes uniform electron, hole, and exciton densities in the emissive layer. If
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the charge carrier mobility is charge carrier concentration (c) dependent and proportional to cb, with b a
positive exponent which increases with an increasing width of the polaron DOS, the IQE roll-o� curve is
given by

ηIQE =
ηrad

1 +
(

J
J50

)m , (15.41)

with ηrad the PL e�ciency (0.75 for the case studied in this section), J50 the current density at which the IQE
has dropped to 50% of its low-voltage value, and m = (1 + b)∕(2 + b). In the absence of exciton di�usion,
the simulated accelerated (1/e) lifetime is then given by

τsim,acc = edndyeJm
50∕Jm+1, (15.42)

where d is the EML layer thickness and ndye is the dye molecule volume density. From this formalism,
a current density acceleration exponent m + 1 = (3 + 2b)∕(2 + b) in the range 1.5–2 is expected, as
is indeed o�en observed for phosphorescent OLEDs. The linear ndye dependence is due to the linear
increase with increasing dye concentration of the probability that a dye is still emissive a�er a certain
period of operation. The closed circles in Figure 15.13 show the simulated accelerated LT90 lifetime,
obtained using Equation 15.42 under the assumption of exponential decay (β = 1), so that LT90,sim,acc =
− ln(0.9) × τsim,acc ≅ 0.105 × τsim,acc. These predictions from the roll-o� curves agree quite well with
the explicit KMC simulation results, obtained when exciton di�usion is switched o� (small open circles).
We note that at the constant voltage (6-V) condition employed, the current density shows a weak but
nonnegligible nonmonotonic dependence on the Ir-dye concentration. It shows a broad minimum around
a concentration of approximately 10 mol%, and is ∼15% larger for the 2 and 25 mol% systems. Within the
concentration range studied, the transport shows a cross-over from a low-concentration guest–host–guest
hopping regime, in which the guest molecule states act as traps, to a high-concentration regime, in which
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the transport is predominantly due to direct guest–guest hopping (see, e.g., Figure 15.5a in Ref. [100]).
The lifetime at a �xed voltage, as obtained from Equation 15.42, is therefore not proportional to the Ir-dye
concentration.

Various optical and chemical analytical techniques have been used to investigate the degradation mech-
anisms of OLEDs and to quantify the concentrations of degraded molecules (see Ref. [199] and references
therein). In future studies, it would be useful to compare such experimental results with the results of KMC
simulations. Interestingly, the simulations for the model systems discussed in this section revealed that, to
a good approximation, the fraction of degraded Ir-dye molecules increases with time as

fdegr(t) = fdegr,f inal
[

1 − exp
(

−
(

t∕τsim,acc
)β
)]

, (15.43)

with fdegr,f inal the �nal (t →∞) fraction of degraded Ir-dye molecules.
The values of τsim,acc and β are, within the numerical uncertainty, equal to the values describing the

luminance decay. Figure 15.13b shows the Ir-dye concentration dependence of fdegr,f inal as obtained from
KMC simulations with and without exciton di�usion. The �gure shows that in the absence of di�usion,
only 60%–70% of the sites have degraded in the t = ∞ limit. This result indicates that, on a signi�cant
fraction (30%–40%) of the sites, excitons are either never formed, or that excitons on those sites are well
protected against TPQ due to a position of those sites well outside the somewhat �lamentary electron and
hole current density pathways. The �rst explanation is consistent with the �nding that in systems with a
monomodal Gaussian DOS exciton generation preferentially takes place on sites with a low-lying electron
or hole state [73]. When exciton di�usion is included, fdegr,f inal is found to decrease signi�cantly with
increasing Ir-dye concentration, to only approximately 0.16 for 25 mol% systems. This is consistent with
the view that, due to the energetic disorder, the average polaron density and the local polaron di�usivity
will be quite nonuniform [99,207], so that in the case of strong exciton di�usion, degradation will occur
predominantly on the relatively small fraction of sites that are located in a region with a large average
polaron density and di�usivity.

We emphasize that the degradation scenario assumed in the case study discussed in this section was
only chosen for the purpose of giving a demonstration of the feasibility of KMC lifetime simulations.
Including monomolecular or other bimolecular scenarios or including re�nements (e.g., a degradation
probability distribution, conversion of the degraded molecules to polaron trap sites, or an extension of
the TPQ interaction range so that the role of the degraded molecule as an exciton quencher is enhanced)
is straightforward. It also will be useful to develop analytical models as discussed above for other degra-
dation scenarios and to extend these to a more realistic nonuniform emission from the EML, in which
the lifetime becomes position-dependent, so that the emission decay becomes more stretched-exponential
like.

15.13 Outlook

In this chapter, we have reviewed multiscale techniques used to simulate organic LEDs and demonstrated
the feasibility of full 3D OLED modeling. As an outlook, we would like to mention areas where substantial
method development is still required in order to achieve a parameter-free modeling of realistic devices.
Re�ned studies that aim at developing a �nal view on the detailed performance of speci�c devices should
consider the following: (1) �rst-principles evaluations of charge injection rates, (2) explicit treatment of
the induction interaction when solving the master equation, (3) quantitative treatment of excited states
embedded in a heterogeneous polarizable molecular environment, (4) more quantitative descriptions of
charge–exciton and exciton–exciton interactions, and (5) descriptions of TTA and TPQ as longer-range
Förster and Dexter-type interactions. Advancements in all these directions are absolutely vital for devising
accurate structure–property relationships for organic semiconductors used in OLEDs.
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16.1 Introduction

The use of p-n tunnel junctions for applications in GaN-based electronic and optoelectronic devices has
become increasingly attractive. The use of tunnel junctions has conceptually been desired for the reuse
of carriers for coupled active regions, enabling high quantum e�ciencies and improved vertical transport
(Ozden et al., 2001). Concepts of the tunnel �eld-e�ect transistors, multiple active region light-emitting
diodes (LEDs) and laser diodes, high-conductivity hole injection layers, and multijunction solar cells may
be realized with the III-nitride material system providing that a su�ciently low-resistivity tunnel junction
can be obtained. However, the feasibility of forming low-resistivity tunnel junctions in the wide-bandgap
III-nitride devices has been a challenge due to the high hole and electron concentrations required for band
alignment. Substantial e�ort is still required to resolve this critical issue.

16.1.1 Polarization-Assisted Tunneling Effect

The probability of interband tunneling across a potential barrier is mainly governed by the tunneling
barrier height determined by the bandgap and the tunneling barrier thickness (Simon et al., 2009). For
wide-bandgap III-nitrides, tunneling is di�cult due to the high barrier height and the di�culty in achiev-
ing degenerate p-type impurity doping (Simon et al., 2009; Krishnamoorthy et al., 2010). However, the
strong polarization-induced electric �eld available in the III-nitrides and other highly polar semicon-
ductor materials provides a new design approach for tunneling structures. In hetero-structures of highly
polar materials, the polarization-induced sheet charges can create signi�cantly high electric �elds result-
ing in large band bending over a small distance. The insu�cient band-bending for interband tunneling
from doping-induced built-in electric �eld (Ebi) can thus be supplemented by the polarization-induced

523



9781498749466_C016 2017/8/29 15:02 Page 524 #2

524 Handbook of Optoelectronic Device Modeling and Simulation

electric �eld (Ep) assuming that the two electric �elds are oriented in the same direction. The probability
of interband tunneling can therefore be increased.

Recently, GaN-based tunnel junctions, which are supplemented by the polarization-induced electric
�eld, have been demonstrated (Simon et al., 2009; Krishnamoorthy et al., 2010, 2011, 2013; Schubert,
2010a; Grundmann and Mishra, 2007). The use of large spontaneous and piezoelectric polarization �elds
present in the III-nitrides enables the formation of thin depletion region and relaxes the strict requirement
for degenerate doping. Structures including the GaN/AlN/GaN, AlN/GaN/AlN, and GaN/InGaN/GaN
have been investigated theoretically and experimentally (Simon et al., 2009; Krishnamoorthy et al., 2010;
Schubert, 2010a). In particular, tunnel-junction structures using an intermediate InGaN layer have been
developed due to the advantages of low bandgap and large piezoelectric polarization. It was shown by
estimation of tunneling probability using the Wentzel–Kramers–Brillouin (WKB) approximation that the
optimal performance, with n-doping ND = 5×1019 cm−3 and p-doping NA = 1×1019 cm−3, would occur
when the indium composition in InGaN is greater than 30% and the thickness is larger than 3 nm, which
was achieved on the N-polar GaN with molecular beam epitaxy (MBE) growth method (Grundmann and
Mishra, 2007; Krishnamoorthy et al., 2011, 2013). In many of the envisioned applications in optoelectron-
ics, an indium composition of greater than approximately 20% in InGaN is not favorable due to the high
optical absorption caused by the InGaN and the problem in crystal growth for the layers subsequent to
the tunnel junction. Moreover, the doping levels are limited by the Si-induced roughening and strain, ion-
ization e�ciency, and solubility of Mg dopants. In this chapter, design and analysis for the low-resistivity
tunnel junctions, which are with adequate indium composition and doping density for a typical Ga-polar
InGaN multiple-quantum well (MQW) LED structure, are introduced.

16.1.2 Efficiency Droop in III-Nitride LEDs

For the application in solid-state lighting, the development of high-e�ciency and high-power III-nitride
LEDs is required. In this demand, the major issue that needs to be resolved might be the problem of e�-
ciency droop, i.e., the reduction in illumination e�ciency at high current density. It is believed that heating
is not the major cause for e�ciency droop due to the fact that the e�ciency droop occurs in both pulsed
and continuous wave (CW) conditions and the droop becomes severe with the decrease of ambient tem-
perature (Laubsch et al., 2009; Kim et al., 2007). To date, the physical origin of e�ciency droop remains
debatable even though numerous possible physical mechanisms, such as the carrier delocalization (Mon-
emar and Sernelius, 2007; Chichibu et al., 2006), Auger recombination (Shen et al., 2007; Delaney et al.,
2009), insu�cient hole injection (Rozhansky and Zakheim, 2006), carrier leakage (Shim et al., 2012; Lin
et al., 2012), and polarization e�ect (Kim et al., 2007; Kuo et al., 2009), have been proposed and demon-
strated to be related to the e�ciency droop in GaN-based LEDs. Even though continuous e�orts have been
made, an overall solution for the e�ciency droop of III-nitride LEDs is still lacking. In this chapter, instead
of trying to promote the quantum e�ciency at high current density, another approach in circumventing
the issue of e�ciency droop is proposed, which is based on the use of GaN-based tunnel junctions. Specif-
ically, in this approach it is suggested to operate the III-nitride LEDs within the range of high e�ciency,
i.e., to operate the LEDs at low current density, with the insertion of a low-loss tunnel junction between
two active regions, which is bene�cial in reducing the carrier density in each active region and mitigating
the problem of e�ciency droop.

16.2 Physical Models and Simulation Parameters

16.2.1 Bulk Band Structure

The characteristics of III-nitride tunnel junction and tunnel-junction LEDs constructed along the c-axis
are numerically studied using a self-consistent simulation program Advanced Physical Models of Semi-
conductor Devices (APSYS). APSYS employs the 6 × 6 k⋅p model, which was developed for the strained
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wurtzite semiconductor by Chuang and Chang (1996), to calculate the energy-band structures of the non-
active bulk regions. The unstrained bandgap energies of the InxGa1−xN and AlyGa1−yN ternary alloys can
be expressed by the following formula (Vurga�man et al., 2001)

Eg(InxGa1−xN) = x ⋅ Eg(GaN) + (1 − x) ⋅ Eg(InN) − x ⋅ (1 − x) ⋅ B(InGaN), (16.1)

Eg(AlyGa1−yN) = y ⋅ Eg(GaN) + (1 − y) ⋅ Eg(AlN) − y ⋅ (1 − y) ⋅ B(AlGaN), (16.2)

where Eg(GaN), Eg(InN), and Eg(AlN) are the bandgap energies of GaN, InN, and AlN, which have values
of 3.42, 0.64, and 6.0 eV at 300 K, respectively (Nepal et al., 2005; Wu et al., 2003). B(InGaN) and B(AlGaN)
are the bandgap bowing parameters of InGaN and AlGaN, respectively. The bandgap bowing parameters of
InGaN and AlGaN are assumed to be 2.1 and 1.0 eV, respectively (Gorczyca et al., 2011a, b). The band-o�set
ratio is assumed to be 0.7/0.3 for the III-nitride material systems.

16.2.2 MQW Model: Approximation of Effective Mass

A model of e�ective mass for the computation of density of states (DOS) and for a simpli�ed MQW model
is needed because, in general, the dispersion of bulk valence bands is nonparabolic and anisotropic with
strong mixing or anticrossing behavior in the direction perpendicular to the c-axis. Based on the method
of Chuang and Chang (1996), an analytical model of e�ective mass is implemented for the valence band.

Within a range of small k, a situation when the valence band is lightly populated by holes, the following
e�ective masses hold:

mz
hh = −m0(A1 + A3)−1, (16.3)

mz
lh = −m0

[

A1 +

(

E0
2 − λe

E0
2 − E0

3

)

A3

]−1

, (16.4)

mz
ch = −m0

[

A1 +

(

E0
3 − λe

E0
3 − E0

2

)

A3

]−1

, (16.5)

mt
hh = −m0(A2 + A4)−1, (16.6)

mt
lh = −m0

[

A2 +

(

E0
2 − λe

E0
2 − E0

3

)

A4

]−1

, (16.7)

mt
ch = −m0

[

A2 +

(

E0
3 − λe

E0
3 − E0

2

)

A4

]−1

, (16.8)

where E0
i (i = 1, 2, 3) are the valence-band edge (values) at k = 0.

For a large range of k, i.e., a situation when the valence band is heavily populated by holes, the following
e�ective masses are valid:

mz
hh = −m0(A1 + A3)−1, (16.9)

mz
lh = −m0(A1 + A3)−1, (16.10)

mz
ch = −m0A−1

1 , (16.11)

mt
hh = −m0(A2 + A4 − A5)−1, (16.12)

mt
lh = −m0(A2 + A4 − A5)−1, (16.13)

mt
ch = −m0A−1

2 . (16.14)
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In the present simulation, a compromise of the above two models is used, i.e., to average them. Note that
the choice of model is based on how heavily the valence bands are populated by holes. Other parameters
of band structure for the binary nitride wurtzite semiconductors employed in the simulation are listed in
Table 16.1 (Wu, 2009; Vurga�man and Meyer, 2007).

16.2.3 Incomplete Ionization of Impurities

The degree of ionization is described by the occupancies fD and fA. Shallow impurities are assumed to
be in equilibrium with the local carriers and therefore the occupancy of the shallow impurities can be
described by

fD =
1

1 + g−1
d exp[(ED − Efn)∕kT]

, (16.15)

fA =
1

1 + ga exp[(EA − Efp)∕kT]
, (16.16)

where the subscripts D and A are used to denote shallow donors and acceptors, respectively. The
degeneracy levels are gd = 2 and ga = 4 (Tiwari, 1992).

TABLE 16.1 Material Parameters of the Binary Semiconductors GaN, AlN, and InN (Wu, 2009;
Vurga�man and Meyer, 2007)

Parameter Symbol (Unit) GaN AIN InN

Electron e�ective mass (c-axis) mz
c

(

m0

)

0.21 0.33 0.068
Electron e�ective mass (transverse) mt

c

(

m0

)

0.19 0.32 0.065
Hole e�ective mass parameter A1 −7.21 −3.86 −8.21

A2 −0.44 −0.25 −0.68
A3 6.68 3.58 7.57
A4 −3.46 −1.32 −5.23
A5 −3.40 −1.47 −5.11
A6 −4.90 −1.64 −5.96

Spin–orbit split energy Δso(eV) 0.017 0.019 0.005
Crystal-�eld split energy Δcr(eV) 0.010 –0.169 0.040
Lattice constant a a0(Å) 3.189 3.112 3.533
Lattice constant c c0(Å) 5.185 4.982 5.693
Elastic sti�ness constant C11 (GPa) 390 396 223
Elastic sti�ness constant C12 (GPa) 145 137 115
Elastic sti�ness constant C13 (GPa) 106 108 92
Elastic sti�ness constant C33 (GPa) 398 373 224
Elastic sti�ness constant C44 (GPa) 105 116 48
Hydrost. deform. potential (c-axis) az (eV) −7.1 −3.4 −4.2
Hydrost. deform. potential (transverse) at (eV) −9.9 −11.8 −4.2
Shear deform. potential D1 (eV) −3.6 −2.9 −3.6

D2 (eV) 1.7 4.9 1.7
D3 (eV) 5.2 9.4 5.2
D4 (eV) −2.7 −4.0 −2.7
D5 (eV) −2.8 −3.3 −2.8
D6 (eV) −4.3 −2.7 −4.3

Dielectric constant ε 8.9 8.5 10.5

Note: Δcr = Δ1, Δso = 3Δ2 = 3Δ3.
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In the simulation, the acceptor activation energy (EA) of Mg doped in InGaN is scaled linearly from
60 meV (InN) (Khan et al., 2007) to 166 meV (GaN) (Kumakura et al., 2003). The acceptor activation
energy of Mg doped in AlGaN is scaled linearly from 166 meV (GaN) (Kumakura et al., 2003) to 510 meV
(AlN) (Nam et al., 2003).

16.2.4 Electronic Polarization and Interface Charges

In typical III-nitride semiconductor devices, the device structure is usually constructed of ternary AlGaN
and InGaN alloys. In order to consider the in�uences of internal polarization in tunnel junction and
tunnel-junction LEDs, the method developed by Fiorentini et al. (2002) is employed to estimate the
internal polarization in Ga-face con�guration, which is represented by �xed surface charges at hetero-
interfaces (Fiorentini et al., 2002). The composition of the compound determines the net polarization
charges that remain at each hetero-interface. The nonlinear model described in the papers by Fiorentini
et al. (2002) and Vurga�man and Meyer (2003) is used here. The spontaneous polarization Psp (Cm−2) is
calculated as

Psp(AlxGa1−xN) = −0.090 ⋅ x − 0.034 ⋅ (1 − x) + 0.019 ⋅ x ⋅ (1 − x), (16.17)

Psp(InxGa1−xN) = −0.042 ⋅ x − 0.034 ⋅ (1 − x) + 0.038 ⋅ x ⋅ (1 − x). (16.18)

For binary compounds, the piezoelectric polarization Ppz (Cm−2) is given as the nonlinear function of the
transverse strain εxx by

Ppz(GaN) = −0.918 ⋅ εxx + 9.541 ⋅ ε2
xx, (16.19)

Ppz(InN) = −1.373 ⋅ εxx + 7.559 ⋅ ε2
xx, (16.20)

Ppz(AlN) = −1.808 ⋅ εxx − 7.888 ⋅ ε2
xx (εxx > 0), (16.21)

Ppz(AlN) = −1.808 ⋅ εxx + 5.624 ⋅ ε2
xx (εxx < 0). (16.22)

The piezoelectric polarization of a speci�c ternary compound is linearly interpolated by the piezoelectric
polarizations of the corresponding binary compounds.

The built-in electric �elds of III-nitride devices obtained from experimental measurements are usually
smaller than the values obtained from theoretical calculation, ranging from 20% to 80% (Piprek, 2007),
due mainly to partial compensation of the polarization �eld by �xed defect and interface charges. In this
study, the polarization-induced surface charge densities are assumed to be 50% of the values determined
from theoretical calculation.

16.2.5 Interband Tunneling Model

Direct interband tunneling in a p-n junction between the valence and conduction bands in an external
applied electric �eld is commonly referred to as a tunnel junction, or an Esaki junction, or a Zener tun-
neling diode under reverse bias. The probability of tunneling within the WKB approximation, following
the derivation of band-to-band tunneling in the papers by Kane (1960), Duke (1969), and Moll (1964), is
calculated as follows:

D = exp(−2J) = P0 exp
(

−E⊥
E

)

, (16.23)
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P0 = exp

[

π(m∗)1∕2(Eg)3∕2

2(2)1∕2qFℏ

]

= exp
(

−
Eg

4E

)

E =
(2)1∕2qFℏ

2π(m∗)1∕2(Eg)1∕2
,

(16.25)

m∗ =
2mcmv
(mc +mv)

. (16.26)

E∥ and E⊥ are the electron kinetic energies in the directions along and perpendicular to the tunneling
direction, respectively. P0 is the tunneling probability with a momentum of zero perpendicular to the
x-direction. The electrons that can tunnel through the bandgap barrier are those electrons with perpendic-
ular momentum near zero if E is small. E is a measure of signi�cance of perpendicular momentum range
and m∗ is the e�ective tunneling mass.

16.3 III-Nitride Tunnel Junction

For the applications in Ga-polarity InGaN-based LEDs, with the use of InGaN as the barrier material
between the heavily doped n- and p-type GaN layers, the vectors of the polarization and normal built-
in �elds have the same direction for an n-on-p tunnel diode, which helps the generation of the electric
�eld required for tunneling. Furthermore, the reduced barrier height of InGaN also promotes the tunnel-
ing probability of carriers since the bandgap energy of InGaN is relatively low when compared to GaN.
Figure 16.1 shows the schematic diagram of n-GaN/p-GaN and n-GaN/InGaN/p-GaN tunnel-junction
structures. The illustrations for the directions of built-in �eld and polarization �eld are also indicated in
Figure 16.1 for better reference. Here, let us begin with the n-GaN/InGaN/p-GaN tunnel-junction struc-
ture, which is composed of a heavily doped n-GaN layer, a 7-nm-thick InGaN barrier layer, and a heavily
doped p-GaN layer (Krishnamoorthy et al., 2011), and calculate the tunneling current as a function of
reverse bias voltage, as shown in Figure 16.2. In the simulation, the dopant concentrations of n- and p-type
GaN layers are assumed to be identical, while the ionization energies for the computation of incomplete
ionization of donors and acceptors are quite distinct, making the electron and hole concentrations also
di�erent. It is observed in Figure 16.2a that the tunneling current increases dramatically with the increase
of indium composition. It is required that the Fermi levels are in the valence band and the conduction band

Ebi

Ebi Ep
n++-GaN InGaN

n++-GaN

P++-GaN P++-GaN

(b)(a)

FIGURE 16.1 Schematic diagrams of (a) n-GaN/p-GaN and (b) n-GaN/InGaN/p-GaN tunnel-junction structures.
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on the p- and n-side, respectively, so that the carriers can tunnel between the bands as in a Zener diode.
The improved tunneling characteristics with the increase of indium composition are thus ascribed to the
promotion of the polarization �eld and the reduction of potential barrier height, as shown in Figure 16.3.
However, it is noteworthy that when the composition of indium is high, the crystalline layer tends to relax
and the �lm quality may deteriorate due to the large lattice mismatch and thermal mismatch between the
InN and GaN. Under these circumstances, the strain-related polarization �eld reduces and the defect den-
sity increases, which is harmful for the applications in optoelectronics since the high defect density may act
as the nonradiative recombination centers (Cherns et al., 2001). Moreover, for many applications in opto-
electronics, it is usually required that the tunnel junction is with a reduced percentage of indium due to the
problem of optical absorption. In the present study, the indium composition is �xed at 20% for subsequent
simulations.
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Another approach to improve the performance of tunnel junction is to increase the built-in �eld and
reduce the depletion width by supporting more space charges through the increase of acceptor and donor
densities of heavily doped p-type and n-type GaN layers. In Figure 16.4, it is found that the total electric �eld
of the In0.2Ga0.8N layer can be e�ectively enhanced when the acceptor and donor densities are increased
from 2 × 1019 cm−3 to 5 × 1019 cm−3. Consequently, the tunneling current increases with the increase of
doping level, as shown in Figure 16.2b. Note that there is a limit for the above-mentioned improvement
because the doping level of III-nitrides cannot be unlimitedly increased, especially for p-type doping. It
is also noteworthy that the tunneling characteristics can be signi�cantly promoted by increasing the Si
doping level, while the tunneling current cannot be appreciably increased by increasing the Mg doping
(Krishnamoorthy et al., 2013; Tsai et al., 2013). The �ndings provide another design approach that might be
applicable for the realization of III-nitride tunnel junctions since heavy doping can be more easily achieved
for the n-type materials than the p-type materials.

16.4 Tunnel-Junction LED

16.4.1 Single LED

Characterization of the blue single LED structure under study, which is used as a reference for the following
investigations in stacking LEDs with tunnel junctions, is introduced �rst in this section. The LED structure
is composed of a 3-μm-thick n-GaN layer (1×1019 cm−3), four pairs of QWs with 3-nm-thick In0.2Ga0.8N
wells and 6-nm-thick GaN barriers, a 20-nm-thick p-Al0.15Ga0.85N electron-blocking layer (EBL) (1 ×
1019 cm−3), and 100-nm-thick p-GaN layer (1 × 1019 cm−3). The layer structure of the reference blue
single LED is listed in Table 16.2. In the simulation, to focus on the topic explored and to eliminate the
issue of current crowing, ideal ohmic contacts are assumed to cover the full top and bottom surfaces of
the simulated vertical LED structure. The Shockley–Read–Hall (SRH) recombination lifetime and Auger
recombination coe�cient are set to be 50 ns and 2×10−30 cm6∕s, respectively (Yoshida et al., 2010; Piprek
and Li, 2013). It is also assumed that the light extraction e�ciency is 70%.

Figure 16.5 shows the simulated electrical and optical characteristics of the blue single LED. In the energy
band diagram, as shown in Figure 16.5a, obvious band deformation caused by the polarization �eld is
observed. In particular, the energy bands of QWs and barriers are severely sloped, forming triangular-
shaped band pro�les, which impact the transport, injection, and con�nement of carriers in the MQW
active region (Kim et al., 2007; Kuo et al., 2009). The polarization-induced sloped well results in spatial
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TABLE16.2 Layer Structure of the Reference Blue Sin-
gle Light-Emitting Diode (LED) under Study

Parameter (unit) d(nm) Ndop(1∕cm3)

p-GaN 100 1 × 1019

p-Al0.15Ga0.85N (EBL) 20 1 × 1019

i-GaN (barrier) 6 –
i-In0.2Ga0.8N (well) 3 –
i-GaN (barrier) 6 –
i-In0.2Ga0.8N (well) 3 –
i-GaN (barrier) 6 –
i-In0.2Ga0.8N (well) 3 –
i-GaN (barrier) 6 –
i-In0.2Ga0.8N (well) 3 –
i-GaN (barrier) 6 –
n-GaN 3000 1 × 1019

Note: d, layer thickness; Ndop, dopant density.
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plug e�ciency (WPE) of the reference blue single light-emitting diode (LED).
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separation of electron and hole wave functions in the well, which is believed to be one of the key issues
that deteriorate the radiative recombination. Moreover, the electron leakage current is negligibly small,
which indicates that the capability of carrier con�nement of the MQW active region is superior. As shown
in Figure 16.5b, the distribution of carriers in the QWs is quite nonuniform. Most of the carriers accu-
mulate in the QWs close to the p-side. Similar nonuniform carrier distribution in the InGaN LED has
also been reported, which is attributed to the poor injection and transportation of holes (David et al.,
2008). Under these circumstances, the illumination e�ciency of the blue single LED is severely limited
by the huge transition loss of Auger recombination. The droop of wall-plug e�ciency (WPE), de�ned as
(WPEmax − WPE100mA)∕WPEmax where WPEmax is the maximum WPE and WPE100mA is the WPE at
100 mA, is as large as 42%, as shown in Figure 16.5c and d. Note that the WPE is referred to the energy
conversion e�ciency with which the LED converts the electrical power into optical power, as de�ned
below:

WPE =
Light output power
Current × Voltage

. (16.27)

The in�uence of Auger recombination on the e�ciency of LEDs is typically analyzed based on the reduced
rate equation. Assuming that the injection e�ciency is 100%, the internal quantum e�ciency (IQE), which
is directly related to the light output power, can be expressed as

IQE = B ⋅ n2

A ⋅ n + B ⋅ n2 + C ⋅ n3 , (16.28)

where A, B, C, and n are the SRH coe�cient, radiative coe�cient, Auger coe�cient, and carrier density,
respectively. According to Equation 16.28, the Auger recombination dominates the total recombination rate
at high carrier density because it scales with the cubic power of the free carrier density, which is believed to
be one of the key factors contributing to the e�ciency droop (Shen et al., 2007). If the carrier density in the
active region can be reduced while the total carriers con�ned within the active region remains unchanged,
the e�ciency at high current may be improved due to the suppression of Auger recombination. It might
be helpful to use more QWs in the active region because the carrier density per QW may be reduced
under this situation. Figure 16.6 shows the simulated carrier concentrations and recombination rates of
the single LED structure with 8 pairs and 12 pairs of QWs. It is observed that the carrier distribution of the
LED structures with more QWs is still quite nonuniform and most of the carriers accumulate in the QWs
close to the p-side. Therefore, the goal of reducing the carrier density in the QWs cannot be satisfactorily
achieved. Under this circumstance, the structure with more QWs does not bene�t from the suppressed
Auger recombination and hence, similar radiative-Auger relations are observed for the 4-, 8-, and 12-QW
LED structures as shown in Figure 16.6c and d. As a result, the e�ciency characteristics do not exhibit
much di�erence when the number of QWs changes.

16.4.2 Blue Tunnel-Junction LED

The monolithic structure with multiple LEDs stacked by tunnel junctions was introduced recently (Akyol
et al., 2013; Piprek, 2014; Tsai et al., 2014). The stacking of multiple LED structures with tunnel junctions
allows for the repeated use of electrons and holes for photon generation in each individual single LED.
Ideally, if every individual LED in the stacking structure possesses identical carrier transport and recombi-
nation mechanism, the total photon number of the tunnel-junction LED should be approximately N times
to that obtained from the single LED if the number of the unit LED in the stacking structure is N, provided
that the tunnel junctions possess negligible loss. Therefore, an IQE of more than 100% is possible for the
tunnel-junction LEDs. Note that, accompanying with the multiplication of output power, bias and input
power multiply with the number of unit LED in the stacking structure simultaneously. Hence, the WPE of
tunnel-junction LEDs remains below 100% (Piprek, 2014).
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FIGURE 16.6 (a) and (b) Carrier concentrations and (c) and (d) recombination rates of the blue single light-emitting
diode (LED) with 8 pairs and 12 pairs of QWs at 100 mA.

The simulated energy band diagram and radiative recombination rate at 100 mA for the blue tunnel-
junction LEDs are depicted in Figure 16.7. Note that, in this �gure, the n-type layer is located in the
le�-hand side of each unit LED. In the simulation, the n-GaN/In0.2Ga0.8N/p-GaN tunnel junction with
a dopant concentration of 5 × 1019 cm−3 is utilized to ensure good tunneling characteristics, as shown in
Figure 16.2c. When the tunnel-junction LED is turned on, electrons are injected and then transported in
the conduction band of n-type layer of the �rst stacked LED. In the meantime, in the valance band of the
p-type layer, electrons are transported and then transferred into the conduction band of the second stacked
LED, which is regarded as holes moving in the opposite direction. The electrons and holes then recombine
in the MQW active region of the �rst stacked LED to generate photons. The carrier transport and photon
generation repeat in subsequent stacked LEDs. The emission pro�les of all unit LEDs are almost identical,
as shown in Figure 16.7.

Figure 16.8 shows the light output power as a function of current (L–I) and current as a function of
voltage (I–V) characteristics of the blue single LED and tunnel-junction LEDs. It is observed that the light
output power and operation voltage of the stacked LEDs are almost equivalent to the light output power
and operation voltage of the blue single LED multiplied by the number of unit LED in the stacked LED
structure. Under these circumstances, the WPE of the tunnel-junction LEDs would not vary too much
comparing to that of the single LED. As mentioned previously, the approach of stacking LEDs with tunnel
junctions is not intended to promote the quantum e�ciency at high current density; instead, it �nds a way
to operate the LED devices at low current density that possesses relatively high IQE. Figure 16.9 shows the
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WPE of the blue LED structures under study. Only one curve is presented in this �gure since all the WPE
pro�les are quite similar. For the single LED structure, the output power is 71 mW at 100 mA. For the
tunnel-junction LEDs with two and three stacked unit LEDs, in order to obtain the same output power,
the operation currents are 40.8 and 20.9 mA, and the WPE are 30.4% and 33.8%, respectively. As for the
stacked structure of �ve unit LEDs, it can be operated at a relatively low current of 13.7 mA, which has a
WPE of 37.4%. Consequently, if the tunnel-junction LED is stacked by more unit LEDs, the input power
required to obtain a speci�c output power can be markedly reduced because of the relatively high WPE, as
shown in Figure 16.10.

16.4.3 Green Tunnel-Junction LED

The concept of stacking identical LED structures with tunnel junctions is also investigated for green InGaN
LEDs in this chapter to probe its e�ectiveness. The green single LED structure under study is identical to the
blue LED except that the indium composition of InGaN wells is increased to 29%. Moreover, considering
the enlarged lattice mismatch between the wells and barriers and the limited solubility of indium in GaN,
the SRH recombination lifetime is reduced to 20 ns in the simulation. Figure 16.11 shows the energy band
diagram, carrier concentrations, and recombination rates at 100 mA and WPE of the green single LED.
The electrical and optical characteristics of the green single LED are quite similar to those of the blue
single LED shown in Figure 16.5. However, since the indium composition of the InGaN wells in the green
single LED is higher than that in the blue single LED, deeper QWs are observed in the band pro�le. Due
to the deeper wells, the feature of nonuniform carrier distribution becomes much more severe, in which
only the QW closest to the p-side contributes to interband transitions, as shown in Figure 16.11b and c.
Under these circumstances, the droop of WPE in the green LED is more severe than that in the blue LED
(48% versus 42%).

Since the holes almost accumulate in the last QW closest to the p-side, similar WPE is obtained no matter
how many QWs are utilized in the green single LED under study, as shown in Figure 16.12a. Moreover,
it was reported that the defect-related SRH recombination is an important interband transition loss that
slashes the low current e�ciency (Schubert et al., 2007). The WPEs of the green single LED structures
with various SRH lifetimes are plotted in Figure 16.12b. The peak e�ciency increases with the increase
of SRH lifetime, which is similar to the results reported in the published literature (Schubert et al., 2007).
The WPE droop deteriorates when the SRH lifetime increases, due mainly to the marked variation of peak
e�ciency. Since the high current e�ciency remains almost unchanged, the high-power applications cannot
bene�t much from the improved �lm quality in the single LED. However, it is not the case for the tunnel-
junction LED because the design concept for tunnel-junction LEDs is to operate the LEDs at low current
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density. Figure 16.13 shows the WPE of the green single LED and tunnel-junction LEDs when the SRH
lifetimes are 20 and 50 ns. It is observed that the WPE of the tunnel-junction LED with 5 unit LEDs in
the stacked structure is almost twice that of the single LED, especially when the SRH lifetime is high. The
design strategy of tunnel-junction LED is thus applicable to the green LEDs. Since the e�ciency of green
LEDs is di�cult to upgrade due to the nature of deeper InGaN wells, the idea of tunnel-junction LED may
be of great bene�t in improving the physical and optical performance.

16.5 Conclusion

In this chapter, several design approaches of the GaN-based polarization-assisted tunnel junctions are
explored. With appropriate design via polarization engineering, low-resistivity and excellent tunneling
characteristics can be achieved in the structures with practical indium composition and doping density.
Note that the tunneling currents of the tunnel-junction structures obtained from experiments typically
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FIGURE 16.11 (a) Energy band diagram, (b) carrier concentrations, (c) recombination rates at 100 mA, and (d)
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exceed the values obtained from theoretical calculation. The additional tunneling current may be owing
to the defect and impurity-related mid-gap electronic states (Schubert, 2010b), which are not considered
in the present study. Hence, the utilization of tunnel junction in nitride-based applications is quite feasi-
ble, which enables the development of high-e�ciency GaN-based devices, such as the multijunction solar
cells, multijunction optoelectronic devices, and multijunction electronic devices. Speci�cally, in the present
chapter, the application of low-resistivity tunnel junction in both the blue and green tunnel-junction LEDs
is explored. Through the stacking of LEDs, it is shown that marked improvement in WPE can be achieved
by operating the stacked LED devices at low current density. Furthermore, the tunnel-junction LED struc-
ture allows further design modi�cation for better electrical and optical characteristics, such as the removal
of the EBL and optimization in number of QWs. It is our belief that the method introduced in this chapter
may be of great help in obtaining cost-e�ective and high-e�ciency LED devices for solid-state lighting.
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17.1 Introduction

Due to their properties, nanowire (NW) based light-emitting diode (LED) structures o�er very interesting
advantages, such as defect-free material, due to small footprint on the substrate, which allows higher LED
e�ciency, and three-dimensional (3D) geometry features, such as lateral strain relaxation, which can also
be exploited to increase e�ciency (Ristic et al., 2005). Group III nitride semiconductors have attracted
much attention for quite a long time especially for their light-emitting device applications. A new approach
for reaching exceptionally high e�ciencies of LEDs for the whole visible spectrum is therefore based on
nanostructured InGaN emitters, where nanorods, which have been shown to be defect-free, serve as active
light-emitting structures. Light-emitting nanorod arrays based on InGaN as a material for the active region
have been investigated (Kim et al., 2004); in principle they could cover the whole visible spectrum from
blue to red and be incorporated into a single device for phosphor-free white light emission. By controlling
indium content in the InGaN quantum disk (QD) embedded in the NW, nanorod emitters are expected to
exhibit e�cient green, yellow, and red emission, allowing coverage of the full visible spectrum with GaN-
based LEDs. This could overcome a major drawback of today’s red–green–blue (RGB) light sources, that
is, the lack of an e�cient green emitter due to the e�ciency gap existing between the blue InGaN and the
red InGaAlP materials system (Piprek, 2010).

In this chapter, we discuss several simulation approaches for the numerical study of the transport and
optoelectronic properties of GaN NW diode structures with an embedded InGaN QD. Nanostructure-
based emerging electronic and optoelectronic devices, such as LEDs or photodetectors, need a fully

541
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FIGURE 17.1 Nanowire (NW) quantum dot (QD) light-emitting diode (LED) model structure.

quantum mechanical or atomistic approaches to obtain a correct description of structural, electrical, and
optical properties. Usually, the active region of a device, which needs such an advanced investigation,
is small compared to the overall simulation domain. The computational cost of more accurate quan-
tum mechanical models, however, makes their application to the whole device unfeasible. It is, therefore,
necessary to implement a multiscale simulation approach, which couples the semiclassical models describ-
ing the bulk regions of the device to the quantum mechanical or atomistic models, acting only on the
nanostructured regions of the device.

We see in the rest of the chapter how an integrated multiscale and multiphysics simulation environment
(see Auf der Maur et al., 2011, 2013; Auf der Maur, 2015) may be capable of coupling di�erent models on
di�erent scales, ranging from macroscopical to atomistic representations.

In the following, we �rst describe brie�y the di�erent physical models that need to be applied for an ade-
quate description of these devices. Then we show the main results obtained from these numerical methods
in the simulation of QD-based LEDs. If not stated otherwise, in the rest of the text we refer to the model
NW LED structure with a single QD described in Figure 17.1. This model structure is a GaN NW usually
around 1 μm high with a hexagonal base and a radius between 25 nm and several hundreds of nanometers.
The embedded QD, which constitutes the LED active region, is a 3-nm-thick disk made of InGaN alloy,
with In composition varying between 10% and 40%.

17.2 Overview of Numerical Methods

17.2.1 Strain

Strain has a critical in�uence on the behavior of heterostructures due to its e�ect on the band energies and
the strain-induced piezoelectric polarization. The latter is particularly important in nitride-based devices.
A straightforward approach for the calculation of strain in lattice mismatched heterostructures is the one
based on the linear elasticity theory of solids. Usually, in this approach it is assumed that pseudomorphic
interfaces are present between di�erent materials (Povolotskyi and Di Carlo, 2006). One also assumes small
deformations, such that the strain is a linear function of deformation and that Hooke’s law, which linearly
relates stress to strain, can be used. The strain and deformation �eld are found by minimizing the elastic
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energy of the system. As a result, one obtains the strain tensor in any point of the structure, the shape
deformation, and the piezoelectric polarization, which to the �rst order depends linearly on strain. Self-
consistent electromechanical simulations can be carried out by including the converse piezoelectric e�ect.

This continuum elastostatic model described here has several limitations.
In particular, it does not contain any information on internal strain, which can be very important, par-

ticularly in wurtzite crystals. A more accurate description of strain can be obtained by means of the valence
force �eld (VFF) method, which o�ers the best compromise between accuracy and computational e�ort
in the study of semiconductor nanostructures. One of the implementations is based on the Keating model
(Keating, 1966), for diamond structures, as generalized by Camacho and Niquet (2010) to treat nonideal
wurtzite structures. As VFF is computationally more intensive than the continuous media model, a possi-
bly convenient implementation is the one that allows coupling of the two models in a multiscale simulation
(see Auf der Maur et al., 2011, 2013).

17.2.2 Transport

Usually transport of electrons and holes in LED structures is treated in a semiclassical picture based on the
dri�–di�usion model (Sze, 1981). The particle �uxes are written in terms of the electrochemical potentials.
The carrier statistics are given by Boltzmann or Fermi–Dirac statistics, assuming as usual local equilibrium.
The conduction and valence band edges and e�ective masses may be obtained from bulk k⋅p calculations;
in this way, the local corrections due to strain can be easily included.

To account for quantum e�ects, a correction to this purely classical approach is needed. Several methods
can be applied, such as the density gradient quantum correction model (Ancona, 1990) up to the more
computationally demanding nonequilibrium Green’s function (NEGF) (Datta, 2000).

A self-consistent approach in many cases may be a good compromise. Some applications of self-
consistent techniques will be described in the following.

17.2.3 Quantum Models

Quantum mechanical models are used for the calculation of eigenstates of con�ned particles in nano-
structures, either based on the envelope function approximation (EFA) or on atomistic approaches. In
the former, the Hamiltonian of the system is constructed in the framework of single-band and multiband
k⋅p theory (Chuang, 1995; Chuang and Chang, 1996). The single particle wave functions are expanded in
terms of bulk Bloch functions (usually taken at the zone center k = 0 for direct band gap materials) of the
constituent materials, leading to a system of equations for the envelope functions. The atomistic approaches
are typically based on the empirical tight binding (ETB) method (Di Carlo, 2003). In this method, the
electronic states are written as a linear combination of atomic orbitals (LCAO). In this case, an atomistic
structure describing the heterostructure studied has to be generated according to the macroscopic device
description and crystallographic orientation. The solution of the eigenvalue problems resulting from the
EFA and ETB models provides the energy spectrum, the particle densities, and the probabilities of optical
transitions. The particle densities are calculated by populating the electron and hole states according to
the expectation value of the corresponding electrochemical potential. The particle densities may then be
fed back to the Poisson/dri�–di�usion model for a self-consistent Schrödinger–Poisson/dri�–di�usion
calculation.

17.3 Strain Maps

It is interesting to study the behavior of the strain tensor in an GaN NW embedding an InGaN QD. As previ-
ously discussed, strain induced by the lattice mismatch in a heterostructure can be calculated, for example,
by means of an elasticity model. In the case of the QD NW LED, strain obtained from this numerical
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model is due to the lattice mismatch between the material of the NW or nanocolumn and the material that
constitutes the QD. It has been shown (Hugues et al., 2013) that a GaN NW grown bottom-up becomes
strain free a�er around 100 nm. Thus, we can expect that a typical GaN NW, with a height of 1 μm or
more, is completely relaxed beyond the region surrounding the QD. This justi�es the choice of the NW
material (GaN in this case) as the substrate reference material for the strain calculations. This means that
the components of the strain tensor as resulting from the minimization of the elastic energy in the system
composed by the whole heterostructure will tend to vanish in the substrate material.

If we look at the calculated in-plane strain tensor component εxx in an NW, we clearly see a strong
compressive strain inside the InGaN QD (Sacconi et al., 2010, 2012). In fact, the InN lattice constant is
higher than that of the reference GaN lattice material; thus, a negative in-plane strain is determined in the
pseudomorphic InGaN/GaN heterostructure. Besides, due to 3D e�ects, a tensile strain is present in the
GaN barrier, close to the interface with the quantum well, while it vanishes in the bulk of the GaN NW.
A peculiar feature of the NW structure is the strong reduction of the in-plane strain close to the column
surface. The strain relaxation due to the surface boundary is visible in Figure 17.2 where εxx is shown,
along the z-axis (growth direction), for two di�erent radial positions: in the center of the QD (r = 0) and
close to the surface boundary (r = 25). Strain is clearly higher in the center of the column, while it tends
to vanish at the surface boundary. Piezoelectric polarization is obtained from the strain �eld and exhibits
a similar behavior: polarization is higher at the center of the QD and tends to decrease toward the lateral
surface of the NW. Piezoelectric polarization (together with spontaneous or pyroelectric polarization) has
a direct e�ect on the band pro�les and therefore on the quantum and optical properties.

It is interesting to analyze the dependence of the εxx strain tensor component in the QD on the column
size. It is found (Sacconi et al., 2012) that, by increasing the NW size, the (tensile) strain in the barrier
regions outside the QD tends to vanish, while the compressive strain slightly increases inside the QD.
Moreover, it can clearly be seen that the e�ect of strain relaxation is more evident for columns with a
radius lower than 50 nm and it tends to vanish for very large columns.

The dependence on QD thickness of the εxx strain tensor component in the NW is shown in Figure 17.3,
for an In0.1GaN QD in an NW with radius 25 nm. The value of εxx is shown along the z-axis, close to the
surface boundary. It can be noted that by increasing QD thickness from 2 to 5 nm, the compressive strain
slightly decreases inside the QD, while the tensile strain in the GaN surrounding the QD slightly increases.
On the other hand, by comparing strain behavior in the center and close to the lateral surface (Figure 17.3)
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r = 0
r = 25 nm

z-axis [nm]

ε xx

‒0.01

0

FIGURE 17.2 εxx strain tensor component along the z-axis, respectively, at the center of the column (dashed line)
and close to the column surface (solid line), for an In0.2GaN quantum dot (QD) with r = 25 nm.
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FIGURE 17.3 εxx strain tensor component along the z-axis, close to the lateral surface, for an In0.1GaN quantum dot
(QD) thickness from 2 to 5 nm.

of the NW, the strain relaxation is clearly noticed, which is more evident for thicker QDs (50% reduction
for 5-nm-thick QD). We see in the following how these peculiar strain features of the NW structure can
be put in relation with the emission properties of the QD LED.

17.4 Transport Properties

Transport in NW QD LED may be studied in a �rst approach with a classical model. In this way, the IV
characteristic of the forward-biased p-i-n LED diode is calculated by imposing ohmic boundary conditions
to the contact regions at the two sides of the NW (anode and cathode) and by solving the Poisson/dri�–
di�usion model, taking care to include the e�ects of polarization (both spontaneous and piezoelectric), by
means of an appropriate polarization vector P in the current equation. Figure 17.4 shows the conduction
and valence band pro�les and the electron and hole densities along the z-axis in the center of the NW, as
obtained from these classical calculations. The dependence of the calculated IV characteristics on the In
molar fraction in the InGaN QD is shown in Figure 17.5 for a column with radius r = 25 nm (Sacconi
et al., 2010). As expected, the threshold voltage decreases from 3.2 to around 2.2 V with an increase of In
concentration from x = 0.1 to x = 0.4, since the energy gap of the alloy material in the QD is decreasing.
In addition, from the IV characteristics for a 20% In composition in the QD we obtain an increase of the
output current by about two orders of magnitude for increasing values of the column size, from 25 to 200
nm. In the following, we see how a self-consistent calculation can be used to couple these classical results
with a quantum model for the QD.

17.5 Quantum Calculations: EFA Models

For the calculations of the eigenvalues of a con�ned system, an approach based on EFA is usually a good
trade-o� between computational load and precision of the results. A solution based on the k⋅pmodel allows
us to take into account the electronic structure details close to the valley minima, which is considered a
reasonable approximation, provided that particle energies are not too high, as could be the case for hot
electrons. The most complete model, the so-called 8 × 8 k⋅p model, takes into account the three valence
bands: heavy-hole (HH), light-hole (LH), and crystal-�eld split-o� (CH), together with the �rst conduction
band (CB).
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FIGURE 17.4 Band pro�les and electron and hole densities from classical calculations.
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FIGURE 17.5 IV characteristics of the p-i-n diode with radius r = 25 nm for several values of In concentration in
the InGaN quantum dot (QD).

However, when the energy gap of the material is wide enough, as is the case of GaN and its alloys with
AlN and InN (for low InN contents), the interaction between conduction and valence bands is so weak
that it can be neglected. Thus, one can apply separately a single band (e�ective mass) model for CB and a
6 × 6 k⋅p model for the three VBs, thus reducing the computational time needed without signi�cant loss
of accuracy in calculations.

To perform quantum calculations with the EFA model for an LED device, usually the dri�–di�usion
model is �rst solved, in order to apply a bias ramp to the diode until the desired operation conditions
are obtained. Then a Schrödinger solver is applied for the solution of the eigenvalue problem, restricted
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FIGURE 17.6 Conduction and valence band tight-binding states in a 14-nm-wide In0.1GaN quantum dot (QD).

to the active region of the device, comprising the QD and part of the GaN barrier regions. From the cal-
culated conduction and valence ground states, the transition energies between the �rst electron and hole
states can be obtained, for several values of In content (Sacconi et al., 2012). It is found that the transi-
tion energy decreases with higher In content mainly due to a lower energy gap in the QD. The transition
energy dependence on geometrical and material parameters will be analyzed in more detail later in this
chapter.

If we express the conduction and valence band ground states by means of the isosurface of probability
density for each quantum state, it is evident that in both cases the quantum states are con�ned in the QD
region (see also Figure 17.6). However, a spatial separation is clearly present between the electron and hole
states due to the polarization �elds that cause the so-called quantum con�ned stark e�ect (QCSE), contrary
to what usually happens with GaAs-based structures.

In the following, we see how these results can be corrected by a self-consistent solution of Schrödinger
and Poisson/dri�–di�usion equations.

17.6 Quantum Calculations: Empirical Tight-Binding Approach

As we have seen before, a more accurate approach for the study of quantum properties of nanostructures is
based on atomistic methods. It has been shown recently that this approach is able to provide a description
of a realistic InGaN alloy features, contributing to an explanation of the decreasing emission e�ciency on
nitride-based quantum well (QW) LEDs (green droop) (Auf der Maur et al., 2016). We therefore present the
results obtained when ETB calculations are performed to �nd con�ned electronic states in an InGaN/GaN
QD NW.

In a �rst example, the simulation model is applied to an GaN NW with an In0.1GaN QD about 14 nm
wide and with a thickness of 3 nm. First, an atomistic structure comprising around 77,000 atoms is gen-
erated, based on the �nite element (FE) grid used for the discretization of continuous partial di�erential
equation (PDE) models (Auf der Maur et al., 2011, 2013). This association with FE allows projection to
the atomic positions the displacements obtained from strain calculation in the heterostructure with the
PDE-based elasticity model.

Then eigenstates and eigenfunctions of the system are calculated on the strained atomistic system with
an ETB model based on an sp3d5s∗ parameterization (Jancu et al., 2002).

The calculation is restricted to the atomistic structure, which describes the materials included in the LED
active region consisting of the InGaN QD (see Figure 17.6) and an appropriate portion of the GaN NW
surrounding the QD. As in the EFA k⋅p case, here a Poisson/dri�–di�usion calculation also is performed
earlier on the NW model (that is its FE grid). Then the potential pro�le obtained at a given bias, which
includes polarization �elds, is projected on the atomistic representation to be used for ETB calculations.
This is generally accomplished with a shi�ing of the on-site energies of the ETB Hamiltonian matrix (Auf
der Maur et al., 2011, 2013).
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In Figure 17.6, we show the �rst hole and electron quantum states, calculated at an applied bias of Vd =
3.5 V. As in the previous EFA results, it is clearly seen that the polarization-induced electric �eld leads to
a spatial separation of electron and hole states.

We see in the following how a multiscale simulation can be performed where both the atomistic (ETB)
and the continuous (EFA) models are applied together for a better description of the QD electronic
structure.

As a second example, we see an ETB calculation based on a random alloy approach.
Given a ternary alloy in the formAxB1−xC, such as InxGa1−xN, there are two ways to model it. The �rst is

virtual crystal approximation (VCA), where we consider the alloy as a �ctitious material whose properties
are a weighted average of the properties of the binary components AC and BC (e.g. InN and GaN), in
function of the molar fraction x, according to Vegard’s law. The second is the random alloy approach,
which consists of studying an ensemble of stochastic realizations of structures where we substitute the
anion according to a probability given by the concentration of anion A in the alloy.

Let us consider then a QD NW with a diameter of 10.7 nm with a 2-nm-thick QD. The total number of
atoms in the atomistic structure is around 51,000.

A set of atomistic structures of the GaN/InGaN/GaN QD region, including the InGaN QD and two
2-nm-thick GaN barrier regions, are created on the GaN substrate lattice. Random alloy is generated in
the InGaN region by including In atoms with a probability given by the chosen In concentration. Then,
as an initial guess, macroscopic strain is calculated and the displacements obtained are projected on the
atom positions. VFF relaxation is applied on this structure until the atoms’ equilibrium positions are found.
Finally, ETB calculation is performed on the relaxed structure, taking into account the appropriate scaling
of ETB parameters according to the bond length obtained by the relaxation procedure.

Electron and hole ground states have been calculated. Figure 17.7 shows the transition energy Et for
increasing In concentration in the InGaN QD. The average value of Et for the set of calculations is plotted,
together with the range between the minimum and maximum values. Random alloy results are compared
with those obtained with ETB for the same model structure, but with a VCA approach and just a macro-
scopic strain. It can be seen that there is a signi�cant discrepancy between the two models. In fact, they
di�er by about 50 meV for x(In) = 0.1 and the di�erence gets larger with increasing In content. These
results show that VCA may not be adequate to describe nanostructures based on InGaN alloys due to the
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FIGURE 17.7 Dependence of transition energy on In concentration in the quantum dot (QD): Virtual crystal
approximation and random alloy model.
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great di�erence in the lattice properties of its component. The random alloy approach, with an atomistic
treatment of strain with VFF, may be required to study these devices.

17.7 Self-Consistent Calculations

As discussed previously, a correction to a purely classical description of transport in the NW QD LEDs
is needed to account for quantum e�ects. In this section, we describe a convenient procedure to take into
account quantum charge densities of electrons and holes, obtained from an EFA model as described ear-
lier, in the transport calculations of an NW QD LED. The solution to this issue described here consists
of a self-consistent coupling of the Schrödinger equation in the EFA framework and the Poisson/dri�–
di�usion equations. This approach presents the advantage of a lower computational load with respect to
more accurate methods for the calculation of quantum transport (e.g., NEGF; see Datta, 2000) while pro-
viding all the information about scattering features included in the dri�–di�usion model. Thus, even if
several approximations must be adopted, such as the assumption of quasiequilibrium of Fermi levels in the
quantum regions, the results obtained may be considered reasonably accurate and have been validated by
several experimental benchmarks. For more details on the method applied, see, e.g., Auf der Maur et al.
(2011).

Let us see now an example of the application of a self-consistent model to an NW QD LED device. It
is convenient to perform �rst purely classical dri�–di�usion calculations to ramp the diode voltage up
to a desired operating point (e.g., just above its threshold voltage Vth). In this way, the LED is biased
at a point where the �rst quantized levels in the QD are populated; this guarantees that the calculated
particle quantum density resulting from quantum EFA calculations is not vanishing and thus can be con-
sidered comparable with the classical density of the particle resulting from the Fermi level position in
the QD. Then, the dri�–di�usion model is coupled with a Schrödinger solver for the self-consistent solu-
tion of the eigenvalue problem restricted to the active region of the device. The quantum mechanical
electron and hole densities are fed back into the Poisson/dri�–di�usion equations for a self-consistent
Schrödinger–Poisson/dri�–di�usion calculation. A self-consistent loop may be implemented by using a
simple predictor–corrector scheme that assumes that the quantum density nq varies with the potentials
as the classical density ncl (for more details see Sacconi et al., 2012). As the electron and hole states in
the system are calculated applying closed boundary conditions, the quantum densities near the interface
between quantum mechanical and classical simulation domains su�er from arti�cial behavior. To obtain a
continuous transition from the purely classical densities far away from the QD to the quantum mechanical
densities, one may de�ne an embracing region with an extension of a few nanometers where a linear mixing
of classical and quantum density can be applied (Sacconi et al., 2012). Figure 17.8 shows the conduction
and valence band pro�les along the z-axis in the center of the NW, together with the particle densities
obtained a�er the self-consistent cycle.

By comparing the self-consistent electron and hole charge densities of Figure 17.8 with those of
Figure 17.4, obtained with purely classical calculations, the e�ect of quantum correction is evident. The
charge density distribution is no longer peaked at the heterointerface between the QD and the GaN barrier
material, as determined by the band bending in classical calculations. Instead, it is moved toward the center
of the QD, accordingly with the behavior of the wave functions of the particle con�ned states.

The distribution of the electron quantum densities on a xy-plane orthogonal to the growth direction is
shown in Figure 17.9. The planar quantum con�nement toward the center of the QD is clearly visible for
the electrons and it is found even more pronounced for holes, due to their larger e�ective mass. This e�ect
is even more evident when we compare the classical and self-consistent electron density in the QD region
along the y-axis on a slice on a xy-plane orthogonal to the growth direction (Sacconi et al., 2012). As for the
classical results, for both conduction and valence band a band bending forms close to the lateral surface
due to the strain relaxation. A lower strain determines a lower band-gap at the surface than in the center of
the NW. This in turn determines a higher value of classical electron and hole densities close to the surface.
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FIGURE 17.9 Electron quantum densities in the xy-plane in the middle of the quantum dot (QD).

On the other hand, the self-consistent densities show the e�ect of a lateral quantum con�nement, so that
the carriers are mainly con�ned to the center region of the QD, even if for electrons this behavior is slightly
more complicated.

Due to the behavior of both hole and electron density, we can expect a very di�erent qualitative result
when comparing the radiative recombination rate R = Bnp in the active region, that is, the QD, calculated
with classical and quantum model. In fact, it is found that from the classical results the emission appears
to originate from a region very close to the surface of the column; on the other hand, when quantum
mechanical particle densities are used the radiative recombination is mainly concentrated at the center of
the QD due to the spatial con�nement of the carriers. In Figures 17.10 and 17.11, we show a comparison of
the calculated current density through the NW QD, in both cases. Current �ow lines in the self-consistent
case (Figure 17.11) indicate that the con�nement of the quantum states leads to a current crowding at the
center of the NW. In the purely classical calculation (Figure 17.10), on the contrary, �ow lines focus toward
the lateral surfaces, where the classical densities are higher. This result can explain the di�erence in the IV
characteristics obtained with the two approaches (Sacconi et al., 2012). In fact, it turns out that the self-
consistent results show a lower threshold voltage and an integrated current value at the contacts of around
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FIGURE 17.10 Classical calculations: Current �ow is focused to quantum dot (QD) edges.
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FIGURE 17.11 Self-consistent calculations: Current �ow is focused to quantum dot (QD) center.

10 times higher with respect to the classical outcome. This discrepancy can be attributed to the increased
recombination rate in the QD active region. In fact, on the one hand, the classical particle densities show
higher peak values, but on the other hand, the average value of densities and thus of recombination is
higher a�er quantum correction, which leads to a higher level of output current.

17.7.1 Multiscale Simulation

We now consider an example of a multiscale simulation applied to a NW QD LED (Auf der Maur et al.,
2011). Here, a self-consistent classical/quantum calculation is again performed, but this time the informa-
tion on quantum density of electrons and holes is obtained by an atomistic model. In this case, the device
model is a p-i-n LED made of an AlGaN NW with an embedded GaN QD. The simulation is performed
as follows.

First, the strain in the NW is calculated based on continuum elasticity theory. This result is then used
as a guess for an atomistic VFF method applied for the relaxation of the atomistic structure generated
according to the FEM model of the GaN device active region.

Then the electronic transport in the NW LED is simulated based on the self-consistent solution of
the Schrödinger/Poisson/dri�–di�usion equations using both the continuous media EFA model and the
atomistic ETB approach.

To perform the transport calculation, �rst the dri�–di�usion model is applied to get a bias where the
diode is nearly in �at band condition. At this bias point the actual multiscale simulation is performed by
concurrently solving the Poisson/dri�–di�usion and the quantum mechanical models. For the latter both
a k⋅p 6 × 6 model and an ETB model (using an sp3d5s∗parameterization) are used. Since the hole states
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result is very dense for this device structure, a large number of states are needed to obtain a reasonably
converged quantum hole density. Moreover, the ETB calculation is computationally much more intensive
than an EFA calculation. Therefore, one possible choice is to calculate only the �rst three electron states
using ETB and the higher ones with EFA, while EFA alone is used for the hole states.

This approach is a good compromise between the accuracy of full-band ETB calculations of the particle
quantum states and an a�ordable computational load. In fact, it turns out that the hole state energies cal-
culated by EFA and ETB are very similar and thus we can rely on the less computationally demanding EFA
model for them. On the other hand, the higher electron states are less populated and therefore they have
less impact on the properties of the system. We limit then our ETB approach to the �rst more populated
electron states. This can be considered a decomposition of the problem in energy space since EFA and ETB
are used to calculate energetically di�erent particle states.

The coupling between the di�erent models constituting the multiscale system is obtained by a concur-
rent solution implemented by applying a self-consistent cycle, similar to that shown earlier.

This coupling can be viewed as a quantum correction of the local density of states (LDOS) in the classical
expression for the particle density, where the local densities can be easily calculated based on the envelope
functions. In addition to the purely continuous case, here we have also the particle density obtained by ETB,
which needs to be projected onto the FE mesh that has been used for the discretization of the continuous
media models. This projection may be obtained by using an exponentially decaying function centered on
each atomic site.

The results of these self-consistent calculations show also in this case that the con�nement of the quan-
tum states leads to a current crowding toward the center of the NW (Auf der Maur et al., 2011). We can
conclude that a multiscale approach is in principle able to describe with higher accuracy the con�nement
e�ects that are critical for the NW LED devices while keeping the simulation domain for the quantum
mechanical models reasonably small.

17.8 Modeling of Surface States

Surface states are expected to be present on the surface of GaN NWs due to defects and dangling bonds
(Van de Walle and Segev, 2007).

The e�ect of surface states can be taken into account in a numerical simulation through the implemen-
tation in the dri�–di�usion model of an acceptor trap model so that the trap is negatively charged if not
occupied by a hole. Following the results obtained in Calarco et al. (2005) we can place the trap at an energy
value of 0.6 eV below the conduction band, assuming a trap charge density of 1 × 1012 cm−2. If we apply
this model to a GaN NW we obtain a conduction band pro�le that shows a pinning of the Fermi level at the
surface at around 0.6 eV below the conduction band. As is shown in Calarco et al. (2005), when a doping
is present the pinning of the Fermi level determines a depletion region that, in this case, covers the whole
column size. In this way, we have �tted the surface trap model to the experimental value of the Fermi level
pinning in a GaN NW. In the following, we assume that, as a �rst approximation, the same model holds
for the InGaN/GaN QD NW structure.

To investigate the in�uence of surface states on the electronic properties of the QD NW LED, a Shockley–
Read–Hall (SRH) surface recombination model has to be associated to the traps. In this way, an SRH model
for nonradiative recombination takes into account the surface traps, with a given density and recombina-
tion time, and their contribution to the recombination part of the current (Sacconi et al., 2012). Now,
if one performs classical dri�–di�usion calculations, taking into account the SRH surface recombination
component, results (Sacconi et al., 2012) show that the presence of the surface states induces a large recom-
bination current in the diode, which provides an output current around 60 times larger than in the case
where surface states are neglected.

As is reported in Sacconi et al. (2012), the �ow lines focus close to the surface, where there is the peak
of the classical particle densities, which, thus, largely increases the surface recombination contribution.
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On the other hand, when self-consistent quantum densities are calculated, this e�ect almost vanishes, and
the self-consistent current at the contacts is just 20% higher than in the case without surface recombina-
tion. In fact, it is found that the self-consistent current �ow lines tend again to crowd inside the QD since
contribution from surface states is now limited by the quantum con�nement e�ect.

17.9 Sensitivity to Geometrical and Material Parameters

We discuss in the following the dependence of the transition energies and thus of the optical emission from
the QD on the NW geometrical and material parameters.

The optical emission spectra from spontaneous recombination may be calculated in the following way
(Chuang, 2009):
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∞
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where fi and fj are the Fermi distributions and Mi,j is the optical matrix element between the states i and
j. The matrix elements may be obtained with di�erent quantum models, such as ETB and EFA k⋅p, and
provide the probability of optical transitions between each couple of states. The sum is extended to all the
quantum states calculated for conduction and valence band. In this way, the optical transition probability
is weighted with the occupation functions for each couple of particles, calculated according to the Fermi
distribution at each state energy. The result is the total emitted power for transitions in a given energy
range, given the particle population of the considered quantum states.

Usually, we are interested in the emission resulting from the spontaneous recombination of electrons in
conduction band and holes in valence band. From the simulation point of view, this means that the device
conduction band has to be populated with an optical or electrical pumping. In the following, the latter
method has been performed, that is, a ramp bias has been applied until the LED is in conduction regime
and the conduction and valence band are populated. At this point, a quantum model, such as k⋅p, is applied
for the calculation of quantum states. Following that, the optical emission spectra are calculated based on
the previous steps.

Figure 17.12 shows the optical spectra obtained for a GaN column with a radius of 25 nm and a 3-nm-
thick InGaN QD (Sacconi et al., 2010). The results show a decrease of the peak emission energy with the
increase of In concentration in the InGaN QD from 10% to 40%, indicating that an emission wavelength
range between 400 and 680 nm can be covered in principle by these devices.

Generally speaking, in NW LEDs, similarly to QWs LED structures, emission energy decreases with
higher In content due to a lower energy gap in the QD and a higher QCSE. The variation of the QCSE is
caused by the increase of polarization �elds with lattice mismatch between InGaN and GaN (piezoelec-
tric polarization) and with In content (pyroelectric polarization). Moreover, it can be seen (Sacconi et al.,
2012) that the emission power tends to decrease with higher In concentration due to the increase of spatial
separation of the carriers caused by higher strain-induced QCSE. On the other hand, the calculated optical
spectra for a �xed In composition and variable column size for the LED considered earlier show an increase
in the value of peak emission energy of around 60 meV when the NW width is reduced from 400 to 50 nm.
This result is a combination of several e�ects related to strain relaxation close to the NW boundaries and
quantum con�nement in the QD; we discuss this point in detail in the following paragraph.

As for the e�ect of InGaN QD thickness on the optical emission spectra, the behavior is again similar
to what occurs in a QW LED. For example, the emission peak in a 50-nm-wide QD increases by 150 meV
when the thickness of the QD decreases from 5 to 2 nm. This is mainly due to the higher quantum con-
�nement in the thinner QD; moreover, for the same polarization �eld, the QCSE is lower for a smaller
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thickness, and thus QCSE-induced red-shi� is reduced. This also determines an increased emission power
due to the reduced spatial separation of electron and hole quantum states.

Let us see now in more detail how the transition energies depend on the geometry parameters of the
QD NW, in particular, how the lateral scaling of the NW a�ects the emission properties.

Figure 17.13 shows the dependence of emission energy on In concentration in an InGaN QD NW for
several values of the column radius (Sacconi et al., 2012). It can be seen that, for all the column widths, the
emission energy has a linear dependence on the In molar fraction. On the other hand, Figure 17.13 shows
that the transition energy increases slightly with decreasing width, with a larger slope for radii lower than
50 nm. The e�ect gets larger with increased In concentration.

Calculations performed in a study by Sacconi et al. (2012) by applying a full self-consistent
quantum/dri�–di�usion coupling shows an emission energy increase of around 64 meV, from 2.440 to
2.504 eV, when the column radius decreases from 100 to 25 nm. These results show a trend in qualitative
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agreement with experiments (Ramesh et al., 2010), even if it must be noted that a comparison of calcu-
lations with experimental results is quite di�cult because the results depend critically on the geometrical
and structure details, as well as on the particle density distribution in the NW.

To point out the role of con�nement and of strain distribution on this lateral size e�ect, the dependence
of emission energy on NW geometry has been studied in Sacconi et al. (2012) for several structures, begin-
ning with simulations for undoped structures at equilibrium. In Figure 17.14, the result of a 1D calculation
for a QW structure, which can be assumed as a model of a NW with an in�nite radius, is compared to the
result for a 50-nm-wide NW. It is clear that the geometry of the NW increases the transition energy for a
given value of In molar fraction. Moreover, calculations for a very wide column (10 μm) yield results very
close to the thin �lm case. This result can be put in relation with the polarization-induced electric �eld
obtained in the QD shown in Figure 17.15. It can be seen that the electric �eld gets lower in the NW QD
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with respect to the QW value due to the 3D strain e�ects, causing lower QCSE and therefore higher transi-
tion energy. Furthermore, the electric �eld in the QD is even more reduced close to the lateral surface due
to the strain relaxation e�ect. The situation is anyway less clear in the doped structures, where screening
e�ects become appreciable. Moreover, it is found that if polarization and strain are not taken into account,
the lateral con�nement has a signi�cant e�ect only when the NW radius is reduced under 10 nm (Sacconi
et al., 2012).

From these considerations, it seems reasonable to conclude that the main e�ect of the lateral scaling of
the NW is the reduction of the strain inside the QD due to its relaxation at the NW lateral surfaces. In fact,
the smaller the NW size, the more pronounced is this reduction of the strain. A lower strain implies less
piezoelectric polarization and thus a lower value of QCSE, which causes a blue shi� in emission energies. In
addition, a smaller size induces a stronger quantum con�nement, whose e�ect on transition energy would
be, however, signi�cant only at an extremely reduced size. Anyway, as we have seen earlier, an important
role of quantum con�nement is to keep particles far from the lateral surfaces, thus limiting the direct
in�uence of NW surface e�ects, such as strain relaxation and surface states, on the behavior of current in
the QD and thus on the LED emission properties.

We have seen the e�ects of scaling down the NW geometry; on the other hand, one can wonder what
happens when the NW size is scaled up. It has been found experimentally (Kawakami et al., 2010) that for a
500-nm-wide NW, emission seems to occur at the strain relaxed region close to the lateral boundary. From
simulations performed on an NW model with this size (Sacconi et al., 2012) it turns out that higher recom-
bination rates are obtained for the regions close to the lateral surface, suggesting that for very wide NWs
the con�nement of quantum states on the NW lateral plane is not su�cient to focus the recombination at
the center of the QD. Thus, emission takes place mainly in the lateral regions, where the strain relaxation
induces a lower energy gap. However, it has been found from simulations that already for 200-nm-wide
NWs the quantum con�nement begins to a�ect the charge distribution, focusing the emission at the center
of the QD.

17.10 Conclusions

A�er having discussed the several aspects of NW QD behavior, we can now underline the main bene�cial
features provided by NW geometry compared with planar LED structure.

First of all, the NW geometry can be grown almost without defects, yielding in principle high-emission
e�ciency. NWs also o�er the possibility of covering a wide emission spectrum by means of band-gap
engineering through variations of alloy concentration in the QD.

Another peculiar NW feature is the relaxation of strain induced in the QD, which occurs at the lateral
surface of the NW. This is part of a 3D e�ect, which determines a lower strain in the QD active region, with
respect to an analogous QW in a planar LED structure. This in turns causes less QCSE and higher overlap
of quantum wave functions, increasing recombination rate, and internal quantum e�ciency, with respect
to the planar case.

A lower strain at lateral boundaries determines a lower energy gap with respect to the rest of the QD.
This may a�ect the LED e�ciency by reducing the recombination rate. However, as we have shown earlier,
the quantum con�nement on the lateral plane is su�cient, at least for NW size lower than 200 nm, to focus
particle densities in a limited region at the center of the QD. The resulting current crowding in the QD and
the increase of radiative recombination are then further advantages of NW geometry versus planar LED.
It must be noted also that very o�en the embedded QD obtained by the NW growth is surrounded by the
NW material (yielding a so-called InGaN inclusion in a GaN NW). In this case, the active region is even
less a�ected by surface e�ects, such as surface states, while the con�nement is increased and thereby also
the current focusing and the radiative recombination.



9781498749466_C017 2017/8/29 15:06 Page 557 #17

Quantum Disk Nanowire Light-Emitting Diodes 557

For all of these features, one can expect NW QD structures to be very promising for the design of future
high-e�ciency LED devices.
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18.1 Introduction to Random Alloy Distribution

Unlike the GaAs-based light-emitting diodes (LEDs), the carrier transport and recombination mechanism
in nitride-based LEDs are relatively more complicated. As we know, nitride-based wurtzite structures have
a strong spontaneous polarization �eld inside the material. In addition, when the InGaN quantum well
(QW) is grown on the GaN bu�er layer, it also su�ers extra strain, which induces the piezoelectric polar-
ization. Therefore, the polarization �eld di�erence at the interface will induce the quantum con�ned stark

559
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e�ect (QCSE) and increase the radiative lifetime. The lack of native substrate also makes the crystal quality
of the GaN and InGaN layer relatively poor, where a typical 108 cm−2 dislocation density can be observed
in the InGaN QW, which is expected to a�ect device performance signi�cantly. The e�ciency droop, where
the light output power increases sublinearly with the drive current, has also been an issue in limiting LED
e�ciency. There are many studies focused on determining the origin of droop, such as electron over�ow
[1–3], Auger recombination [4–9], or defects [10–14]. The defect or phonon-assisted Auger recombination
is also proposed to explain the larger Auger coe�cient. Recently, the direct measurement of Auger elec-
trons [7,15] and a clear correlation between the Auger current and droop seem to indicate that the Auger
process might be the main cause of droop. In addition, as mentioned, the QCSE will increase the radiative
lifetime and the contribution of nonradiative Auger recombination or carrier delocalization toward droop
will become more signi�cant.

Despite these issues, the nitride-based blue LED still has very high internal quantum e�ciency (IQE)
even under this high dislocation density. The 80% peak IQE of blue LEDs still can be easily achieved in
today’s commercial LEDs. The reason for this high quantum e�ciency has been attributed to the carrier
localization e�ects, where carriers are localized at a local potential minimum so that it will not di�use
into the dislocation center for nonradiative recombination. The spectrum broadening e�ect is also much
stronger compared to GaAs-based LEDs. This is attributed to the random distributed localized state. The
origin of carrier localization has been an issue whether it is from indium clustering e�ect, random alloy
�uctuation, or even charged dislocation line-induced potential barrier, etc. More and more evidence shows
that random alloy �uctuation should be the main reason for this e�ect. First, this localization and spec-
trum broadening is still observed in GaN-negative substrate, which could exclude the e�ect of a charged
dislocation-induced potential barrier. In addition, the three-dimensional (3D) atom probe tomography
(APT) data [16–24] show that the indium composition distribution is naturally disordered. Figure 18.1a
shows the randomly �uctuated indium distribution in the lateral direction from the APT data [17]. The in-
plane map reveals that there are some high indium composition locations corresponding to the red regions
and relatively low indium composition sites scattered in the 2D map. Figure 18.1b also indicates that the
average indium composition along the growth direction is not uniform and decreases from the middle of
the QW to the interface of the InGaN/GaN. Therefore, the QW structure possesses an indium distribu-
tion closer to a Gaussian shape rather than the ideal “top-hat” function. A similar idea of the in�uence of
Gaussian shape QW on the IQE has been discussed by Hader et al. [6]. However, their analyses were one
dimensional (1D) and lateral �uctuations in indium composition were not considered.

Many simulation tasks [22,24] suggested that carrier localization, induced by these �uctuations, has a
strong in�uence on the broadening of the light emission spectrum. As discussed in Refs. [6,22,23], due to
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FIGURE 18.1 (a) The in-plane indium distribution of the quantum well (QW). (b) The average indium composition
along the growth direction of one 3-nm QW. (From D. A. Browne et al., Journal of Applied Physics, 117, 185703, 2015.)
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the indium �uctuation, the electrons and holes injected into InGaN QWs will localize in the high indium
regions because of the deep localized potential. Additionally, the localized energy states originating from
quantum con�nement will vary due to �uctuations in indium composition and the QW width, thus broad-
ening the emission spectrum [22,24]. In addition, the carrier localization will increase the local carrier
density and the strong screening of the polarization �eld might be achieved at a smaller current density. The
high local carrier density might increase the in�uence on Auger recombination or defect-assisted recom-
bination [11] at a relatively smaller current density. In addition, the local polarization value induced by
composition �uctuation will also in�uence polarization potential in the QW [25].

Besides these tasks that study the in�uence on radiative and nonradiative recombination due to the
localization e�ect, there are a few other e�orts that analyze the impact on carrier transport by considering
random alloy potential �uctuation. In the past, many simulation studies on multiple QW LEDs have been
performed under the assumption of a uniform composition and thus potential in the QWs. However, the
simulations reveal a large deviation from the experimental data, especially in the InGaN MQWs cases.
Due to the strong GaN barrier induced by the piezoelectric charges, a much higher applied bias is usually
obtained in the simulation than in the experimental data. The deviation of simulation to experimental
results becomes very signi�cant, especially in MQW cases where many triangular shapes of GaN barriers
exist in the system. Some studies reduced the theoretical polarization value to �t the experimental data.
However, these assumptions might lead to more problems since they might improve electron–hole overlap
and result in no droop or droop at a much larger bias, or need a much larger Auger coe�cient to reproduce
the experimentally observed droop behavior. Some used the tunneling e�ect to explain this phenomenon.
However, the tunneling e�ect is signi�cant only when a smaller polarization �eld was employed since the
potential barrier induced by the 100% theoretical polarization �led could be very high. If the simulation
only tries to �t the current versus IQE and neglects the �tting of I–V curve, usually a higher voltage is
obtained in simulation and a conclusion of over�ow or overshot e�ects are o�en obtained. This is due
to that the extra-voltage lowered down polarization barrier induced by polarization �eld and potential
barrier in electron blocking layer and make carrier to over�ow much easier. However, this extra voltage is
not observed in experimental result in a good commercial LED. Therefore, the conclusion would be wrong
since it is based on a non-existence factor.

As mentioned earlier, the in�uence of random alloy �uctuation on the transport is seldom considered
due to the need of large amounts of computational power. Atomic simulation of carrier transport with the
3D random indium �uctuation, especially in MQWs at current computation power, is also impossible. Even
modeling a small area of InGaN QW (10 nm × 10 nm × 3 nm) will require a few months calculation with a
super computer. Therefore, some quasi-classical simulation work is needed to approach these issues. Our
past work [23,24,26] indicated that the results obtained by including the indium �uctuation into the 2D and
3D Poisson, dri�–di�usion, and Schrödinger equation simulation model could be closer to experimental
data, without the necessity for the assumptions mentioned earlier. The randomly �uctuated alloy compo-
sition of ternary epilayers will result in irregular energy bandgap and piezoelectric potential distribution,
which will make carrier percolation and con�nement more complicated compared to the traditional 1D
assumption.

Figure 18.2 shows a sketch of a carrier percolation in the random alloy system. The red regions refer
to the high potential region and the blue regions refer to the low potential area. As the sketch shows, the
potential distribution is �uctuated either in the QW region or in the electron-blocking layer (EBL) region,
where carriers are much easier to percolate through smaller barrier sites and localize in the local low-energy
areas. While the large number of localized carriers accumulate in QWs, the local polarization charges will
be screened and the e�ect of Auger recombination will be enhanced at the same time. In addition, the inher-
ent complex potential distribution might provide carriers a path to avoid �ow into defect-related regions
formed by threading dislocations (TDs) in GaN LEDs. Our past research [23,24] has shown that the cal-
culated turn-on voltages and IQE performances can be better predicted without any parameter reductions
by considering random alloy �uctuations. A more reasonable Auger coe�cient is used in the model [15],
and a broad emission spectrum is also observed due to di�erent localized states produced by alloy �uctu-
ations. Moreover, the emission spectrum shi� can be modeled well in the paper [24]. In this chapter, we
will introduce how we use the traditional 3D Poisson and dri�–di�usion solver to address these issues.
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18.2 Methodology in Random Alloy Modeling

To model the 3D structure properly, we need to use a full 3D model to examine the device performances
of the di�erent structures. The 3D �nite element method (FEM) Poisson, dri�–di�usion, and Schrödinger
solver developed by our lab (named the 3D-DDCC) is mainly used for solving the 3D carrier transport
issue of the semiconductor. This program can correlate the electrical characteristic with optical problems
and give a self-consistent solution. Our lab has tested and veri�ed the model [24,26–28] and the model
has been further developed to apply in the 3D transport simulation. In addition, 3D dri�-di�usion charge
control (3D-DDCC) program is a very versatile so�ware, in that we can easily use inserted functions in
special cases to model the structures or the physics more precisely. In this chapter, the externally inserted
functions have the decisive position in the simulation. The details of the functions will be introduced later.

Figure 18.3 shows the full diagram of the simulation �ow chart in this modeling process. First, the Gmsh
program is used to construct the 3D mesh structure [29]. A�erwards, we need to use the random number
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FIGURE 18.3 The full diagram of the simulation �ow chart in this modeling process.

FIGURE 18.2 The sketch illustrates the carrier percolation in the random alloy system. The red regions refer to the
high potential region, and the blue regions are low potential area.
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generator to generate the random alloy composition which is utilized in the examination of carrier trans-
port in the random alloy system. A�er obtaining the indium map, we assign the indium composition in
each node of the mesh element and all physical parameters change with the indium composition. To obtain
a proper consideration of the piezoelectric polarization under the random alloy conditions, the 3D FEM-
based strain solver can be used to account for the piezoelectric polarization and calculate the polarization
charge. The 3D-DDCC developed by our lab is then used to solve the transport equations with the appro-
priate input parameters generated by the external modules until we get the converged solutions. Finally, we
can obtain the physical pro�les such as the potential distributions, current–voltage (I–V) curve, and IQE
curve.

18.2.1 Method for Generating the Random Alloy Distribution

As shown in Figure 18.4a, �rst the In(Al) and Ga atoms are randomly assigned by the random number gen-
erator according to the average indium composition and are aligned to the cation lattice site. The lattice
site size is decided by the atom density. In addition, according to the APT data, the average alloy compo-
sition of each lateral plane along the z-direction, χavg(z), is like a Gaussian shape distribution as shown in
Figure 18.5a and b, especially when the QW is very thin [6,23,24,30]. Note that the adenosine triphosphate
(ATP) resolution in the depth is about one monolayer and lateral resolution is around 2 nm. Therefore, we
can obtain the average indium composition of the ith QW by the following equation:

χavg(z) = χmaxe
−(z−zi)2

2σ2
s , (18.1)

where χmax is the peak average composition of the epilayer, zi is at the middle of the ith QW, and σs is the
half width of the Gaussian broadening coe�cient. The value of σs is around the half width of the epilayer
in the z-direction. When atoms are assigned according to Equation 18.1, we need to choose a volume size
to get the average local alloy composition. The volume size we use to calculate the local composition is
around 2 nm × 2 nm × 0.667 nm, which is close to the APT resolution. Then the alloy composition is
weighted at this volume region with Gaussian shape weighting criteria.

As shown in Figure 18.6, the local alloy composition extracted on volumes as mentioned before is
following a binomial distribution, which is similar to Refs. [16,18–22].

- Ga

- In/Al

FIGURE 18.4
assigned by the random number. Then we choose a proper volume to average the local alloy composition. (From C.-K.
Wu et al., Journal of Computational Electronics, 14, 416–424, 2015.)

The concept of the alloy generator. The In, Al, or Ga atom at each lattice site (all with N atoms) is
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A�er assigning the alloy landscape as shown in Figure 18.7, we combine the mesh �le of the struc-
tures with the alloy maps and produce the local input parameters simultaneously. The material parameters
of each mesh node are assigned according to the local alloy composition map x(r). All parameters (e.g.,
bandgap [31], e�ective mass [32,33]) in each node are calculated locally with the indium composition map
x(r) by our in-house 3D simulation solver.

18.2.2 Strain Modeling

18.2.3 Calculation of Strain with 3D FEM Method

To understand how the polarization is induced in the random alloy �uctuation condition, we need to do a
3D �nite element strain analysis. We need to solve the displacement �eld by the FEM a�er considering the
incorporation of incoherent lattice constants.

FIGURE 18.5 (a) The average alloy composition distributes along the 2-nm quantum well. (b) The average alloy
composition distributes along the 45-nm electron blocking layer (EBL). (From C.-K. Wu et al., Journal of Computational
Electronics, 14, 416–424, 2015.)

FIGURE 18.6 The counting distribution of certain alloy compositions of the In0.12Ga0.88N quantum well (QW) [26].
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FIGURE 18.7 (a) One random alloy distribution of the n-i-n InGaN quantum wells (QW). (b) The section view of
the �uctuated conduction band potential, which is corresponds to the random alloy distribution, in the n-i-n InGaN
quantum well case at 0 V bias. (From C.-K. Wu et al., Journal of Computational Electronics, 14, 416–424, 2015.)

18.2.3.1 Equilibrium Equations

When the element is located in the x,y,z coordinates and some regions are constrained, the element deforms
under the balanced force. We can describe the deformation of a point x (= [x, y, z]T) in three components
of its displacement:

u = [u, v,w]T . (18.2)

The force per unit volume in the vector form can be expressed as:

f = [fx, fy, fz]T . (18.3)

In Figure 18.8, we can �nd the stresses and the body force distributed on the elemental volume dV . Here,
we describe the stress by six components as

� = [σxx, σyy, σzz, σyz, σxz, σxy]T , (18.4)

where σx, σy, σz are the normal stresses and σyz , σxz , σxy are the shear stresses. Under the equilibrium
conditions, the total forces along each direction are zero in each elemental volume. In Figure 18.8, we
can pay attention to the x-axis and multiply the stresses to the corresponding areas and list the following
equation:

∂σxx
∂x

dx(dydz) +
∂σxy
∂y

dy(dxdz) +
∂σzx
∂z

dz(dxdy) + fxdV = 0. (18.5)

Knowing the dV = dxdydz, Equation 18.5 can be simpli�ed as the following:

∂σxx
∂x

+
∂σxy
∂y

+
∂σzx
∂z

+ fx = 0. (18.6)
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FIGURE 18.8 Equilibrium condition of an elemental volume. (From T. R. Chandrupatla and A. D. Belegundu.
Introduction to Finite Elements in Engineering. Pearson Education International, 2002.)

A�er considering the total force along x-, y-, and z-directions, we can list the total equilibrium equations
as follows:

∂σxx
∂x

+
∂σxy
∂y

+
∂σzx
∂z

+ fx = 0 (18.7)

∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ fy = 0 (18.8)

∂σzx
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ fz = 0. (18.9)

18.2.3.2 Stress–Strain–Displacement Relations

In Equations 18.2 and 18.4, we know the form of the stresses and displacement. The strains have the
corresponding form as following:

� = [ϵxx, ϵyy, ϵzz, ϵyz, ϵxz, ϵxy]T , (18.10)

where ϵxx, ϵyy, and ϵzz are normal strains and ϵyz , ϵxy, and ϵxz are shear strains. We can also write the
strain–displacement relation as

� =
[

∂u
∂x

, ∂v
∂y

, ∂w
∂z

, ∂v
∂z
+ ∂w
∂y

, ∂u
∂z
+ ∂w
∂x

, ∂u
∂y
+ ∂v
∂x

]T
. (18.11)

These strain–displacement relations hold under small deformations.
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In our research, we assume that the linearly electric stress–strain relations come from the generalized
Hooke’s law.

� = D�. (18.12)

D is the material matrix. In our research, we focused on the wurtzite structure, AlN, GaN, and InN, and D
is given by

D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (18.13)

18.2.4 Calculation of Piezoelectric Polarization and the Implementation
Method

Due to the random alloy �uctuation, each element has its own spontaneous polarization Psp(r) and piezo-
electric polarization Ppz(r) depending on the local alloy composition. A�er calculating the strain energy,
we can further analyze the piezoelectric polarization �eld distribution using the following equation:

Ppz =
⎛

⎜

⎜

⎝

0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵxx
ϵyy
ϵzz
ϵyz
ϵxz
ϵxy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

e15ϵxz
e15ϵyz

e31(ϵxx + ϵyy) + e33ϵzz

⎞

⎟

⎟

⎠

. (18.14)

The e15, e31, and e33 are the piezoelectric coe�cients, which are listed in Table 18.1.
A�er obtaining the piezoelectric polarization, the total polarization of each element can be calculated by

Ptotal(r) = Psp(r) + Ppz(r), (18.15)

where Psp is the spontaneous polarization of InGaN alloy where the value can be found in Ref. [35].
A�er calculating the polarization Ptotal(r), the polarization charge, ρpol(r), induced at each element can
be calculated by

∇ ⋅ Ptotal(r) = −ρpol(r). (18.16)

The induced �xed polarization charges at di�erent positions will be put into the 3D Poisson and dri�–
di�usion solver to obtain the potential inside the devices.

TABLE 18.1 Piezoelectric Coe�cients

e33(cm−2) e31(cm−2) e15(cm−2)

GaN 0.73 −0.49 −0.4
InN 0.73 −0.49 −0.4
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18.2.5 Modeling of Carrier Transport under the Random Alloy Fluctuation
with Drift–Diffusion Solver

To study the 3D carrier transport simulation under the random alloy �uctuation, we need to apply our
3D FEM-based Poisson and dri�–di�usion solver. Although the 3D Poisson and dri�–di�usion solver
cannot describe the tunneling e�ect, which can estimate the device performance more accurately, it has
been proved that it is a suitable model to describe the carrier transport behavior with proper physical
parameters, and a solver that yields an acceptable calculation time and required computation memory
[24,26–28]. The solver is based on solving the following equations:

∇ ⋅ Ptotal(r) = −ρpol(r) (18.17)

∇(ϵ∇V(r)) = n(r) − p(r) + NA(r) − ND(r) + ρpol(r), (18.18)

Jn(r) = qμnn(r)∇V(r) + qDn∇n(r), (18.19)

Jp(r) = qμpp(r)∇V(r) − qDp∇p(r), (18.20)

∇ ⋅ Jn,p(r) = q(SRH + B0n(r)p(r) + C0(n2(r)p(r) + n(r)p2(r))), (18.21)

SRH =
n(r)p(r) − n2

i

τn

(

p(r) + nie
Ei−Et
kBT

)

+ τp

(

n(r) + nie
Et−Ei
kBT

) , (18.22)

where V is the potential, and ϵ is the static dielectric constant. N−A and N+D are the doping density. n and p
are the free carrier concentration of the electron and hole. ρpol(r) is the local analytic polarization charge
which varies with local indium composition or the calculated results by the 3D FEM elastic strain solver. q
is 1.6×10−19C. μn,p are electron and hole mobility. Dn,p are the coe�cients of di�usion, and Jn,p(r) are the
electron and hole current, respectively. The Shockley–Read–Hall (SRH) is the defect-assisted nonradiative
recombination, where τn and τp are the nonradiative carrier lifetime depending on the crystal quality. Et
is the trap energy level located at the midgap. Ei and ni are the intrinsic energy level and intrinsic carrier
density, respectively. kB is the Boltzmann constant andT is the temperature (300 K here). B0 is the radiative
recombination coe�cient. C0 is the Auger recombination coe�cient. We solved those equations until we
obtained a converged solution.

18.2.6 Schrödinger Equation and Emission Rate

To analyze the emission properties of the LED, we need to solve the time-independent Schrödinger
equation:

HΨ
(

x, y, z
)

= EΨ
(

x, y, z
)

, (18.23)

where H is the Hamiltonian operator, which is a second-order di�erential operator. The time-independent
Schrödinger equation can be also expressed as

[ −ℏ
2m∗∇

2 + Ec,v
(

x, y, z
)

]

Ψ
(

x, y, z
)

= EΨ
(

x, y, z
)

. (18.24)

Ec,v is the conduction and valence band potential calculated by the 3D-DDCC.Ψ is the carrier wavefunc-
tion. m∗ is the e�ective mass and ℏ is the Planck constant divided by 2π. Since the Schrödinger equation
is an eigenvalue problem, we obtain the eigenenergy E corresponding to the eigenwave function.
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The formula we used to calculate the spontaneous emission rate [36] can be expressed as

Rsp (ℏω) =
e2nrℏω
m2

0ε0c3ℏ2
1
V
∑

i,j
|a ⋅ pi,j|

2 × 1
σb
√

2π
exp

⎡

⎢

⎢

⎢

⎣

−
(

Ei,j − ℏω
)2

2σ2
b

⎤

⎥

⎥

⎥

⎦

× fe
(

Eei
)

fh
(

Ehj
)

(

cm−3s−1eV−1) , (18.25)

where nr is the refractive index and c is the light velocity. The |a ⋅ pi,j| is the momentum matrix element,
which includes the overlapping of the electron and hole wave function. Eei and Ehj are electron and hole
eigenenergy states, respectively. Ei,j is the e�ective bandgap and is equal to Eei −Ehj . fe and fh are the Fermi–
Dirac distribution of electrons and holes, respectively. The equations are shown below:

fe
(

Eei
)

= 1

1 + exp
((

Ei − Efn
)

∕kBT
) (18.26)

fh
(

Ehj
)

= 1

1 + exp
((

Efp − Ej
)

∕kBT
) . (18.27)

The |a ⋅ pi,j| is the momentum matrix element term where electron and hole overlapping is taken into
account in both the localization by �uctuations. The e�ect of QCSE is already accounted for in solving the
Poisson equation. A Gaussian broadening σb was used in the modeling. The value of σb used in modeling
was 10 meV, which is slightly smaller than kBT to limit the spectrum broadening due to σb. Therefore,
the calculated emission spectrum broadening will be mainly determined by the di�erent energy levels of
localized states.

18.3 Unipolar Transport for Random Alloy System

In this section, the percolation transport study of the random alloy system will be presented. To understand
how the piezoelectric �eld a�ects the transport, we investigate the pure electron transport in the n-GaN/i-
InGaN/n-GaN QW structures and the simulation results will also be compared to the experimental work
from Browne et al. [17,37]. The 3D numerical model considering random alloy �uctuations will be applied.

18.3.1 Electron Transport in n-GaN/i-InGaN/n-GaN Structures

The existence of piezoelectric polarization and spontaneous polarization has been con�rmed by many
studies [31,38,39]. As shown in Figure 18.9, if the InGaN QW is grown in between the GaN, it will induce
a huge electric �eld (>1 MV/cm) in the QW and cause the potential bending as shown in Figure 18.9b. If
the quantum barrier (QB) thickness is 10 nm, the induced potential barrier peak could be more than 1 eV
without electron screening. Theoretically, under this large electric �eld, we need to apply a strong bias to
overcome this barrier for carrier to go through the multiple quantum wells (MQWs). For the single QW
case, the in�uence of the polarization-induced barrier is not signi�cant, especially as it will be screened by
carriers from the n-GaN cap layer. However, under the MQW condition, it could cause a huge resistance for
carrier transport. For the n-i-n structure, there is no in�uence of radiative or nonraditive recombination.
Therefore, it is a good platform to test how alloy �uctuation and the polarization-induced potential barrier
a�ect the carrier transport. In this section, in order to understand the carrier transport mechanism across
the InGaN QWs, we show that we must study how carriers overcome the piezoelectric barriers before we
start to investigate the LED structures.
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The traditional c-plane MQWs have a larger degree of piezoelectric barriers than nonpolar (m-plane)
MQWs, as shown in Figure 18.9b. That means the performance of di�erent traditional c-plane MQW
structures has a higher correlation with their level of piezoelectric barriers. Browne et. al. [17,37] have
found a clear rectifying I–V curve in c-plane MQWs which is related to the QW thicknesses and numbers,
where the equivalent piezoelectric barriers will increase with increasing the QW thicknesses and numbers.
Figure 18.10 shows that the higher piezoelectric barriers in the devices will increase the driving voltages at
the same current density. However, if the QW model is used to study the vertical transport by considering
either a full theoretical polarization value or a zero polarization value (nonpolar MQWs), there is a large
deviation of predicted driving voltages between experimental work at the same current density, as shown
in Figure 18.11.

Besides, it should not be Auger-assisted hot carriers over�ow since no Auger recombination could occur
in an n-i-n structure and an investigation of the n-i-n structure can be regarded as one that focuses on
the carrier transport without any recombination mechanism. The percolation transport through the ran-
dom alloy system might be a possible reason. A similar e�ect is also observed experimentally in n-GaN/

FIGURE 18.9 (a) The modeled device paradigm of n-GaN/i-InGaN/n-GaN quantum well structures for model-
ing the pure electron transport. (b) The potential distribution of In0.14Ga0.86N c-plane and nonpolar piezoelectric
barriers.

FIGURE 18.10 (a) The experimental I–V curves of c-plane In0.14Ga0.86N with di�erent thicknesses of quantum wells
(QWs). (b) The experimental I–V curves of c-plane In0.13Ga0.87N with di�erent numbers of QWs. (From D. A. Browne
et al., Journal of Applied Physics, 117, 185703, 2015; D. A. Browne et al., Investigation of electron transport through
InGaN quantum well structures. In 14th Electronic Materials Conference, Santa Barbara, CA, June 25–27, 2014.)
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FIGURE 18.11 The I–V curves of �ve experimental and simulated 3-nm quantum wells (QWs) in the n-i-n system.
(From D. A. Browne et al., Journal of Applied Physics, 117, 185703, 2015; D. A. Browne et al., Investigation of electron
transport through InGaN quantum well structures. In 14th Electronic Materials Conference, Santa Barbara, CA, June
25–27, 2014.)

TABLE 18.2 Detailed Parameters of Each
Epilayer for n-GaN/i-InGaN/n-GaN Structures

Epilayer n-GaN i-InGaN/GaN

μe (cm2∕Vs) 200 600
Doping (1/cm3) 5.0 × 1018 1.0 × 1017

Ea (meV) 25 –

i-AlGaN/n-GaN EBL cases [40]. To verify this, we apply the 3D program by considering the random alloy
�uctuation in the InGaN QW.

The structures modeled consiste of two n-type doping sides (5 × 1018 cm−3) that sandwich an intrinsic
MQW region. The thicknesses of the QWs are 1.5, 3, and 4.5 nm. The barriers in all the cases are 10 nm.
The numbers of QWs are 1 and 5. The con�guration of the n-i-n structures is shown in Figure 18.9a. In
order to present the nanoscale random alloy �uctuations, a small mesh element size is needed. Therefore,
we need to limit our chip to 80 nm × 80 nm in the lateral direction due to computational limitations. The
random alloy distribution is based on the rule mentioned in the previous section. The average indium
composition is 14% according to Refs. [17,37]. The �uctuation range is around 8%–21%, which follows
the binomial distribution. We have simulation results of the ideal In0.14Ga0.86N QW cases for comparison.
The physical parameters are listed in Table 18.2.

One of the alloy distributions is shown in Figure 18.7a, and the corresponding �uctuated conduc-
tion band potential at 0 V is shown in Figure 18.7b, where a local composition site will induce a
reversed trend of potential distribution. Moreover, the lower indium regions will induce relatively low
polarization barriers and the electrons could percolate through the relatively lower barrier, as plotted in
Figure 18.12.

Hence, the �uctuated case performs smaller turn-on voltages than the uniform cases, as shown in Figure
18.11. Compared with the experimental data [17,37], the turned-on voltage of the I–V curve with indium
�uctuations is close to the experimental results. Since the experimental result has additional sheet resistance
not modeled by our vertical transport study due to the size limitation, with the �tted sheet resistance,
the calculated results can further match the experimental results. Figure 18.13 shows a comparison of
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Browne et al., Investigation of electron transport through InGaN quantum well structures. In 14th Electronic Materials
Conference, Santa Barbara, CA, June 25–27, 2014.)

the experimental work with the calculated outcomes at di�erent temperatures. At low temperature, the
calculations do not �t well. The result reveals that a small portion of tunneling current might dominate at
the low temperature rather than the thermionic emission current in the random alloy system because the
tunneling current should have a weaker temperature dependence. Consequently, the deviation between
predicted current behavior and experimental results might be due to the lack of tunneling process in our
transport model.

On the other hand, Figure 18.14 shows the increasing turn-on voltage with increasing the thickness or
number of QWs. As we know, for the same polarization electric �eld, a thicker QW will cause a much larger
potential band bending, making it harder for carriers to go across the junction. The turn-on voltage of a
single QW is very low because it has only one barrier to be overcome by applying the bias voltage. Even
though the thickness of the QW increases to 4.5 nm, the turn-on voltage is still less than 0.5 V. When the
number of QWs increases to �ve, the positive turn-on voltages for 1.5, 3, and 4.5 nm at 20 A/cm2 current
density are 0.10, 0.68, and 1.73 V, respectively.

In addition, there is an asymmetric I–V behavior induced by the polarization �eld, which needs a larger
negative voltage to reduce the barriers at reverse bias range. However, since the thermionic current is lower
at the reverse bias region, the tunneling current might play a more important role, which requires a program
that can handle tunneling transport to model this problem in the future.
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FIGURE 18.14 The I–V curves of various thicknesses and numbers of the �uctuated quantum wells (QWs).

18.4 Modeling Result of MQW InGaN LED and the Comparison
to the Traditional Model

From the unipolar transport, we �nd that the polarization-induced barrier does play an important role in
limiting the carrier transport behavior. However, without using the random alloy �uctuation, it is hard to
approach the experimental I–V behavior. In this section, we focus on how indium �uctuation a�ects the
carrier transport in InGaN LEDs.

As we know, InGaN QW LED has become a popular technology in solid-state lighting. Due to the strong
lattice mismatch between InN and GaN layers, the self-formed random indium �uctuation has played an
important role in in�uencing LED electrical and optical properties. In this section, we �rst study the in�u-
ence of nanoscale indium �uctuation on the emission spectrum and then the relation of carrier transport
and radiative e�ciency in LEDs. The randomly generated indium �uctuation in the QW in this simulation
will be used again in the study with 3D modeling.

18.4.1 Simulation Structure

As we mentioned previously, we divide our study into two parts: the in�uence of indium �uctuation on (1)
emission spectrum and (2) carrier transport. In these two parts, we use di�erent simulation structures. In
part (1), since the 3D eigenvalue solver requires huge computer memory and calculating time, the simu-
lation structure is relatively small. The simulation domain for a double QW LED was 30 nm × 30 nm, as
shown in Figure 18.15a. The detail parameters setting can be found in Table 18.3. On the other hand, the
simulation structure is an 80 nm × 80 nm 6-pair QW LED and included a 40-nm AlGaN EBL in part (2),
as shown in Figure 18.15b. The detailed setting can also be found in Table 18.4. We considered a MQW
with a 100-nm p-doped GaN layer and a 200-nm n-doped GaN layer, and the QW and barrier width are
3 and 10 nm, respectively. We focus pm a 450-nm MQW blue LED (In0.17Ga0.83N). In the uniform QW
case, the indium composition is uniformly chosen to be 17%. In our case, as we mentioned previously, we
assigned the indium �uctuation in each QW randomly. The maximum local indium composition, which
is determined by the random number generator, was around 18%–19%.

A constant nonradiative lifetime was assumed to be 5.0×10−8 s, and the radiative recombination coef-
�cient B0 was assumed to be 2.0×10−11 cm3/s [5,15,41]. Note that recombination rate is decided by B0
n(r) ⋅ p(r) where the electron–hole overlap term is in the term of n(r) ⋅ p(r). In all cases, a 100% theo-
retical polarization value was applied [38]. The EBL thickness was 40 nm with 15% Al content AlGaN.
For studying the carrier transport, we solved the 3D Poisson and dri�–di�usion solver with the classi-
cal particle model. A larger area can be used in the modeling because we do not need to solve for the
Schrödinger equation for the eigenstates for transport properties, which needs a much longer computing
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FIGURE 18.15 (a) The simulation structure in analyzing the emission spectrum. (b) The simulation structure in
analyzing the carrier transport.

TABLE 18.3 The Material Parameter Settings of the Structure in Analyzing the
Emission Spectrum

Thickness Doping Ea Impurity e Mobility h Mobility
Unit (nm) (1/cm3) (meV) (1/cm3) (cm2/V ⋅ s) (cm2/V ⋅ s)

p-GaN 100 2.0 × 1019 170 0.0 200 5
InGaN 3 0.0 0.0 1.0 × 1017 600 10
GaN 10 0.0 0.0 1.0 × 1017 200 10

InGaN 3 0.0 0.0 1.0 × 1017 600 10
n-GaN 100 5.0 × 1018 25 0.0 200 10

Note: The unit of thickness is nm. The unit of doping and impurity is 1/cm3. The unit of
activation energy (Ea) is meV. The unit of electron and hole mobility is cm2/V⋅s.

time. We modeled 10 di�erent �uctuation maps and took the averaged I–V and IQEs. Due to memory
limitation, we cannot model the whole area of LED. Therefore, we only modeled the limited area in the
p-i-n region, as shown in Figure 18.15b. Therefore, the sheet resistance in our simulation was not included
due to the memory limitation. In general, the sheet resistance will cause voltage drops in the p-GaN and
n-GaN layers so the calculated voltage across the active QW region is smaller than the externally applied
bias in experiments. In addition, the real device structures also su�er current crowding e�ects, which will
lead to a more serious droop e�ect than the result we obtain here.

18.4.2 The Influence of Indium Fluctuation on the Emission Spectrum

In this section, we discuss the in�uence of indium �uctuation on the emission spectrum. First, as we men-
tioned previously, the simulation structure we used in this section is a double QW LED and the simulation
domain was 30 nm × 30 nm due to computer memory limitations required for 3D simulation, especially
for the eigenvalue solver. To avoid the result being limited by the restricted area, we ran a set of di�erent
random cases and took the average results. First, the 3D Poisson and dri�–di�usion solver developed by
our lab was used to obtain a converged band potential at a �xed current density of 20 A/cm2. Second, we
solved the 3D Schrödinger equation with the calculated potential and obtained the con�ned eigenstate Ei,j.

Figure 18.16 shows the e�ects of randomly generated �uctuations in the QW for �ve di�erent random
maps. A total of 22 di�erent random cases were run and averaged (dashed line in Figure 18.16). As we can
see, the emission spectra broadened when the indium �uctuations were included in the simulation. The
main reason is that the indium �uctuations form indium-rich regions in the QW (Figure 18.7a and b) with
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TABLE 18.4 The Material Parameter Settings of the Structure in Analyzing the
Carrier Transport

Thickness Doping Ea Impurity e Mobility h Mobility
Unit (nm) (1/cm3) (meV) (1/cm3) (cm2/V ⋅ s) (cm2/V ⋅ s)

p-GaN 100 2.0 × 1019 170 0.0 200 5
EBL 40 2.0 × 1019 200 0.0 200 5

p-GaN 10 1.0 × 1018 170 0.0 200 5
InGaN 3 0.0 0.0 1.0 × 1017 600 10
GaN 10 0.0 0.0 1.0 × 1017 200 10

InGaN 3 0.0 0.0 1.0 × 1017 600 10
GaN 10 0.0 0.0 1.0 × 1017 200 10

InGaN 3 0.0 0.0 1.0 × 1017 600 10
GaN 10 0.0 0.0 1.0 × 1017 200 10

InGaN 3 0.0 0.0 1.0 × 1017 600 10
GaN 10 0.0 0.0 1.0 × 1017 200 10

InGaN 3 0.0 0.0 1.0 × 1017 600 10
GaN 10 0.0 0.0 1.0 × 1017 200 10

InGaN 3 0.0 0.0 1.0 × 1017 600 10
n-GaN 10 5.0 × 1018 25 0.0 200 10
n-GaN 200 5.0 × 1018 25 0.0 200 10

Note: The unit of thickness is nm. The unit of doping and impurity is 1/cm3. The unit of
activation energy (Ea) is meV. The unit of electron and hole mobility is (cm2/V⋅s).
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FIGURE18.16 The calculated emission spectra when including the indium �uctuation. The dashed line is the average
result of 22 random cases.

di�erent bandgaps and con�ned energy levels. However, local peaks are observed in some cases (the ran-
dom 2 and random 3 cases in Figure 18.16). This might be the result of the small sampling volume used
in the simulation. In real devices with much larger area, these di�erent local peaks merge into the overall
spectral broadening. Figure 18.17b shows the calculated full width half maximum (FWHM) of the emis-
sion spectrum is around 80–120 meV at room temperature, which is close to the experimental results.
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FIGURE 18.17 (a) The position of emission peak shi� at di�erent current density. (b) The full width half maximum
(FWHM) of the emission spectrum. (From T.-J. Yang et al., Journal of Applied Physics, 116, 113104, 2014.)

Homogeneous broadening mechanisms usually will not lead to such large linewidths. If we compare the
calculated intensity to the uniform QW case, the emission is stronger due to three factors occurring in
the high In content regions where carriers localize in high indium region (deep potential): (1) there is less
electron–hole separation; (2) there is more screening of electric �eld at a given current; and (3) there is
an increased QW occupancy factor due to carrier localization. Figure 18.17a shows the blue shi� of the
spectrum when increasing the current density. A 40 meV (∼ 7 nm) blue shi� is observed when the current
density increases from 10 to 100 A/cm2, which is close to most experimental observations. Comparing
with simulations of ideal QWs, assuming 50% polarization only leads to a very small blue shi� due to
a very reduced QCSE and the emission peak shi�s to much shorter wavelength, while assuming a 100%
polarization gives a reasonable shi�, while, however, leading to very large forward bias (see the discussion
in Section 18.4.3.1).

18.4.3 The Influence of Indium Fluctuation on the Carrier Transport and the
Efficiency Droop

To model the vertical carrier transport in the 3D indium �uctuation cases, we used LEDs with six InGaN
QWs with GaN barriers and included an AlGaN EBL, as shown in Figure 18.15b. We considered an MQW
with a 100-nm p-doped GaN layer and a 200-nm n-doped GaN layer. The QW and barrier widths are 3
and 10 nm, respectively. We focus on 450-nm MQW blue LEDs (In0.17Ga0.83N). In the ideal QW case,
the indium composition was uniformly 17%. In our case, we assigned the indium �uctuation in each QW
randomly as described above. The maximum indium composition, which is determined by the random
number generator, was around 18%–19%.

18.4.3.1 The Simulation Result of c-Plane LED

The simulation result is shown in Figure 18.18a. This is the calculated conduction band potential landscape.
The indium-rich regions correspond to regions with a lower potential. The carriers will localize in the
relatively lower potential regions because carriers inherently tend to stay in low-energy regions, as shown in
Figure 18.18b. Consequently, the radiative recombination rate increases in the indium-rich region because
of the carrier screening of the polarization �elds, as shown in Figure 18.18c.

18.4.3.2 The I–V Curve

Next, we focused on the comparison of transport between the QW including indium �uctuation and uni-
form QW. Figure 18.19a shows the I–V curves. The forward voltage Vf used here is for a current density of



9781498749466_C018 2017/8/29 15:25 Page 577 #19

Influence of Random InGaN Alloy Fluctuations on GaN-Based Light-Emitting Diodes 577

Conduction band potential

80 nm

–0.25 0.075

(a)

0.4 eV

Electron density

(b)

3.0 × 1017 3.87 × 1018 5.0 × 1019

80 nm

Radiative recombination rate

(c)

1.0 × 1025 5.63 × 1026 3.17 × 1028

80 nm

FIGURE 18.18 (a) The conduction band potential at 3.1 V. (b) The electron density at 3.1 V. (c) The radiative
recombination rate at 3.1 V. (From T.-J. Yang et al., Journal of Applied Physics, 116, 113104, 2014.)

200 Ideal QW, without Auger

In-fluctuation, without Auger
In-fluctuation, C = 2 × 10–31cm6/s

Ideal QW, C = 2 × 10–31cm6/s180
160
140
120
100

80I (
A/

cm
2 )

60
40
20

0 2.8 3.2 3.6 4.0 4.4 4.8
V (V)

(a)

100

80

60

Ideal QW, without Auger
Ideal QW, C = 2 × 10–31 cm6/s
In–fluctuation, without Auger
In–fluctuation, C = 2 × 10–31 cm6/s

40IQ
E 

(%
)

20

00 20 40 60 80 100

(b)
I (A/cm2)

120 140 160 180 200

FIGURE 18.19 (a) The in�uence of indium �uctuation on the I–V curves. (b) The internal quantum e�ciency (IQE)
curves. (From T.-J. Yang et al., Journal of Applied Physics, 116, 113104, 2014.)

20 A/cm2. For commercial blue light LEDs, Vf is around 2.8–3.0 V. For the ideal QW simulation (with
uniform indium composition and 100% theoretical polarization value), Vf is almost 4.4 V, which is far
larger than experimental results. This is also observed in most commercial simulation so�ware with
the same parameters set, which was also discussed in our twodimensional (2D) modeling results [23].
Some suggest including tunneling in the model to get a smaller Vf. But our calculation shows that using
Wentzel–Kramers–Brillouin (WKB) tunneling between ideal QWs and 100% polarization cannot push Vf
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FIGURE 18.20 (a) The high barrier in higher indium region in the �rst quantum well (QW). (b) The low barrier in
low indium region in the �rst QW. (c) The illustration of carrier transport in the device.

lower than 3.7 V. On the other hand, when including indium �uctuations, we calculated a Vf of 3.05 V even
without considering tunneling.

The reason why the Vf shi�s to a reasonable value is that the indium composition will directly a�ect
the bandgap potential in the QW due to di�erent strength of the polarization �eld that in turn a�ects the
bandgap potential in the QW. As we can see for the �rst QW in Figure 18.20a and b, the potential at the high
indium region is lower than the potential at the lower indium region. However, due to the strong lattice
mismatch, the piezo polarization charge will induce a triangular shape barrier between the GaN barrier and
InGaN QW. The piezo polarization-inducing barrier height also depends on the indium composition. As
shown in picture, the barrier at the high indium region is high due to the large polarization di�erence. On
the other hand, the barrier at the low indium side will be reduced. For carriers, they are much easier to �ow
through the low barrier (low indium side) and localize in the low potential region (high indium side). This
is the main reason why the I–V curve shi�s to a value that matches experimental data more closely. Because
the carriers will inherently �nd a percolation path and transport in the device, the indium �uctuation
will strongly in�uence the carrier transport. Figure 18.20c illustrates the carrier transport in the device.
Nevertheless, the Vf calculated is still slightly higher than the experimental result. Recent studies show
that QW LEDs without V-pit or GaN substrate LED with very low dislocation density have a Vf around
3.2–3.4 eV, which is close to our prediction because the in�uence of V-pit has not yet been included in
our simulation. In addition, the indium �uctuations of the piezoelectric �eld–induced GaN barrier might
enhance the tunneling since the induced barrier height will be smaller at the lower indium composition
site. This might further lower the Vf.

18.4.3.3 The Droop Behavior of IQE

Turning to the dependence of IQE on current, there are several reasons proposed for origins of droop, such
as over�ow [1–3], Auger recombination [4–9], and defects [10–14]. For the idealized uniform QW without
considering the Auger e�ect and with EBL, the e�ciency peak occurs at 80 A/cm2 and at a very large
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bias (∼ 4.5V). (Figure 18.19b) (considering only vertical transport and neglecting the in�uence of sheet
resistance). Although the dri� process becomes dominant at this high bias, the electrons are blocked by
the EBL, and the over�ow is weak. Even including the Auger recombination, the droop e�ect only occurs
at 4.0 V, which is very large compared to commercial data sheets. Note that this large bias condition across
the junction should not occur in the real device application. If we observe the most recent experimental
results, we can �nd that the droop occurs at very low current density (∼10 A/cm2) and the applied bias
is typically lower than 3.1 V. In the past, most researchers focused on the current density and disregarded
the voltage except when discussing the wall plug e�ciency. However, here the voltage plays a key role in
understanding physical processes in LEDs.

When Auger recombination is excluded from the simulation, there is no droop even when the current
is ∼200 A/cm2 (Figure 18.19b). This is due to the blocking action of EBL. With In �uctuations included,
a small droop occurs when the current density is above 400 A/cm2 and the applied voltage above 3.5 V
is larger than VBI and ΔEc, which is unphysical as the resistive voltage drop should only occur in n and
p-layer surrounding the depletion region. The biased voltage larger than built-in voltage VBI including the
ΔEc should not be exist in the depletion region. Such voltages are very di�erent from observed ones since
the experimental droop typically occurs at 2.8–3.0 V from commercial data sheets (Figure 18.24).

At 3.0 V, the bias is smaller than the built-in voltage, VBI (3.3 V in our case), and the carrier transport
is mainly dominated by the di�usion process, as we can see in Figure 18.22a. The potential in the p-region
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FIGURE 18.21 The internal quantum e�ciency (IQE) curves with di�erent Auger coe�cients.
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FIGURE 18.22 (a) When V < VBI, it is mainly dominated by the di�usion process. It is harder for the carrier to
over�ow or overshoot the active region. (b) When V > VBI, the carrier start to over�ow or overshoot the device.
However, the droop of a commercial grade light-emitting diode (LED) occurs at V << VBI.
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including the extra barrier height from the AlGaN EBL is much higher than the n-region and forms a large
barrier to the carriers. Therefore, it is harder for carriers to spill over the barrier especially with the existence
of the AlGaN barrier. Even with the polar optical phonon absorption process to gain the electron energy
(∼90 meV), it is still hard to overcome the 0.3–0.4 eV barrier. On the other hand, when the voltage exceeds
the VBI, as we can see in Figure 18.22b, the band structure reverses. In this situation, the carrier transport
turns from the di�usion process to the dri� process. The carriers start to over�ow the device. Therefore,
the simulation only sees the droop caused by over�ow at a voltage higher than the built-in voltage (>3.3 V),
if the Auger recombination is not considered. Therefore, the droop caused by the over�ow only happens
when the bias is larger than the built-in voltage or even larger bias when the AlGaN EBL is added.

Since the actual droop occurs at a very low bias in the experiments, we need to consider other factors
that might cause droop e�ect at low bias. When the Auger recombination is included, the result shows
that the droop occurs at 3.0 V, which matches closely to the experimental data. Consequently, we conclude
that the droop e�ect is mainly dominated by the Auger recombination rate or other reasons such as carrier
density dependent nonradiative recombination by defects.

As we can see in Figure 18.19a and b, when Auger recombination is included, droop occurs in both cases
of ideal QW or QW incorporating In �uctuations. However, in the former case the bias voltage is again an
unphysical 4.0 V, while in the latter case it is 3.0 V, which matches experimental data. Consequently, we
conclude that the droop e�ect is mainly dominated by Auger recombination, enhanced by the e�ect of
indium �uctuations. In addition, it should be pointed that due to the memory limitation, we calculated
the vertical carrier transport within a limited area. In a real device, current crowding [42] issues can make
local current density much higher than expected, making the droop e�ect worse, as discussed in earlier
studies [43,44]. Figure 18.21 shows the IQE curves with the di�erent Auger recombination coe�cients, C.
With larger values of C, the IQE curves show earlier droop onset, lower IQE peak, and more severe droop
e�ects.

18.4.3.4 The Comparison of IQE between the Ideal QW and In-Fluctuation QW

In Figure 18.19b, the indium �uctuation case shows a good IQE performance with the higher IQE peak
value and lower droop e�ect. Due to the carrier localization, the QCSE will be screened by the localized
carrier charge. As a result, the better electron–hole overlapping will lead to a higher e�ciency peak. On
the other hand, in the ideal QW case, the IQE curve reaches the peak value when the applied bias is over
4.0 V, which is much larger than VBI (3.3V). Therefore, the carrier leakage starts to a�ect the droop e�ect
so the IQE curve shows a severe droop e�ect in the ideal QW case.

In conclusion, we prove that by considering the indium �uctuation in MQW LEDs, the electrical and
optical properties are much closer to the commercial blue light LEDs. The droop behavior might be domi-
nated by the Auger recombination at the lower current density since the voltage is much smaller than VBI,
and the ratio of the over�ow mechanism might increase only when the bias is close to or larger than VBI
and the current density gets larger.

18.5 Carrier Transport in Green LEDs: Influence of Possible
Imperfection in QWs

18.5.1 Introduction

Simulations with a proper model can provide some suitable evidence or clues to improve the optimization
of devices. Before the 3D random alloy �uctuation model was proposed, scientists had focused on the
current behavior of blue LEDs, because the I–V behavior could not be modeled well with 1D transport
computer-aided design (CAD) so�ware without considering the random alloy �uctuation. To explore the
carrier transport and recombination mechanism in green LEDs, we conduct a preliminary examination of
the electric property of green p-n LEDs.
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18.5.2 Carrier Transport in Green LEDs Considering Indium Fluctuations
Only

Initially, we constructed a green emitting p-n LEDs with �ve pairs of uniform 3-nm/10-nm In0.27Ga0.73N/
GaN MQWs (517-nm green emission) and a �uctuated case for comparison. Both the cases are composed
of 295-nm n-doped layer with 5×1018 cm−3 doping density and a 100-nm p-type layer with 2×1019 cm−3

doping density. Figure 18.23a shows the epilayers of all the simulated structure here. The chip size for
the 3D case is 250 nm × 40 nm. The average composition for the 3D �uctuated case is 21%, as shown in
Figure 18.23b, where the maximum composition of the �uctuated case is around 27%. Table 18.5 lists the
input parameters of all the cases in this section. Figure 18.24 shows the calculated I–V curves of green
LEDs. As expected, the 1D vertical transport model with a 100% theoretical polarization value failed to
describe the experimental observation because of strong polarization �elds. Even when the ideal polariza-
tion is reduced to 50%, the calculated result still shows a large di�erence with the extracted experimental
values. However, the simulated green emitting LED with random alloy �uctuations also performs a larger
driving voltage compared to the experimental result. Obviously, carriers still could not percolate through
the �uctuated piezoelectric barriers in the simulation because the average compositions of QWs are so high
that the piezoelectric �elds will result in high potential barriers. The assumption of average 21% �uctuated
QWs with 27% maximum composition might be far removed from the real devices. Our past study also
shows that a much larger period of composition �uctuation will further reduce the turn-on voltage [23].
Therefore, it is worth taking further investigation.
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FIGURE 18.23 (a) The structure of the simulated green light-emitting diode (LED). (b) The average composition of
the quantum well along the growth direction in the 3D �uctuated case.

TABLE 18.5 Detailed Parameters of Each Epilayer for Green
Emission LEDs

Epilayer n-GaN i-InGaN/GaN p-GaN

μh (cm2/Vs) 10 10 5.0
μe (cm2/Vs) 200 600 200

Doping (1/cm3) 5.0 × 1018 1.0 × 1017 2.0 × 1019

Ea (meV) 25 – 170
τn (s−1) 5.0 × 10−8 5.0 × 10−8 5.0 × 10−8

τp (s−1) 5.0 × 10−8 5.0 × 10−8 5.0 × 10−8

B0(cm3∕s) 2.0 × 10−11 2.0 × 10−11 2.0 × 10−11

C0(cm6∕s) 2.0 × 10−31 2.0 × 10−31 2.0 × 10−31
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18.5.3 Imperfection of QWs in Green LEDs

Some studies [47,48] have shown that the QWs are not perfect. The studies in Refs. [47,48] further indicated
that large-scale well-width �uctuation exists in the commercial green LED samples. Inconsistent growth
temperature between GaN layer and InxGa1−xN might be the main reason for the interrupted void regions
among the QWs. Especially when the indium composition increases, the di�erence of the required growth
temperature with GaN will be larger. To further understand how the imperfect QWs a�ect the electrical
property of green p-n LEDs, we apply the 3D model in examining the imperfection of QW in the green
LED device.

18.5.4 3D Examination of Green LEDs with Imperfect QW Model and
Random Indium Fluctuations Model

To examine the carrier transport in the void structures, we construct a 3D structure with random alloy �uc-
tuations that is much closer to the real physics. The structure is with di�erent void densities. The distance
of void is 30 and 40 nm. The input parameters are listed in Table 18.5. Due to the huge computation time
in the 3D calculation, the calculation area is limited to 250 nm × 40 nm in the lateral direction. All the epi-
layers are the same as mentioned previously. The side view and section view composition distributions are
shown in Figure 18.25. Compared to the normal �uctuated QWs, the map with imperfect QWs will have
some void regions in the QW region. The void regions are also not aligned with one another according to
experimental observations [47,48]. Figure 18.26a shows that the 3D model with di�erent void lengths can
better model the Vf of the experimental data. The conduction band potential at 3.05 V of 3D �uctuation
with 40-nm lvoid shows that the piezoelectric barriers are smaller in the void region, which is shown in
Figure 18.26b. In addition the piezoelectric �elds near the normal �uctuated QW region have the insuf-
�cient impact on the void region. Hence, the carriers would prefer to percolate through the void regions
into the active area, which might be closer to the real devices.

Figure 18.27 shows the calculated vector pro�le of both electron and hole currents. The results indicate
that the void regions dominate the current �ow path for both electron and hole currents. While carriers
percolate into the void regions, other carriers might prefer to �ow into the low potential areas locatied at the
stripe QWs. As a result, the smaller Vf s in imperfect QW cases are attributed to an alternative percolation
path provided by the void regions.

To conclude this section, we applied the 3D model to show that the void regions in the green emission
LEDs indeed a�ect the carrier injection. The imperfect regions provide an additional injection path for the

FIGURE 18.24 The I–V curves of the several models and the extracted experimental data. (From C.-H. Lu et al.,
Journal of Alloys and Compounds, 555, 250–254, 2013.)
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carrier percolation. Although more reports of microscope observations in green emitting QWs are needed
to prove that the structure of green LEDs are commonly imperfect, this preliminary simulated survey can
still provide some hints for future modeling of the physical properties of green LEDs.

18.6 Summary

For the sake of simplicity, the simulation of the InGaN/GaN multiple QW LED usually assumes the uniform
QW. However typical simulation results, such as the extremely high forward voltage (Vf), were far from
the experimental data. These extra voltages will make the interpretation of carrier transport inaccurate.
Because the extra voltage applied in the junction does not appear in the real device and will change the
current transport mechanism from di�usion process into dri� process. Therefore, it is important to make
voltage �tting at accurate as possible. The simulation results show that by including the random indium
�uctuation distribution in the QW, we can get a more reasonable �tting in the I–V curve.

For the transport issue with the random alloy �uctuation in the unipolar system, the simulation results of
n-i-n GaN/InGaN/GaN MQW structures show that the �uctuated piezoelectric barrier induced by random
alloy �uctuations will provide some current �ow paths for the percolation transport, and the �uctuation
model can give a reliable explanation for how the carriers perform in real devices. In modeling the emission
spectrum, we found that the indium �uctuation will lead to a broader emission spectrum. The main reason
is that the indium �uctuation forms several In-rich clusters, which look like quantum dots. The carriers
localize in the QD-like regions and lead to di�erent levels of quantum con�nement. The e�ective bandgaps
at each region vary from the di�erent indium composition and the con�ned size of the indium clusters,
which are the two important roles to a�ecting the discrete energy of quantum con�nement. In addition,
the emission strength will also be enhanced due to the better electron–hole localization e�ects.



9781498749466_C018 2017/8/29 15:25 Page 585 #27

Influence of Random InGaN Alloy Fluctuations on GaN-Based Light-Emitting Diodes 585

We also analyzed the in�uence of indium �uctuations on the carrier transport. The simulation result of
the I–V curve shi�s to a value that is close to the experimental data. It indicates that the indium �uctuation
does strongly a�ect the transport in the device. The main reason is that the low indium composition region
will reduce the large potential barrier induced by the QCSE. For the uniform QW structure, the large Vf
mainly comes from the strong band bending, which makes carriers hard to travel across the quantum
barrier. For the indium �uctuation case, the reduction of the band bending at low indium regions provides
a leaky way for carriers to �ow through. The tunneling e�ect is not included in the indium �uctuation
model but this will be a future project and may push the I–V curve to an even lower value. Furthermore,
the IQE peaks occur at about 3.0 V, which also matches up to the experimental observation. Based on these
simulation results, we tried to explain the cause of the droop e�ect. At a low bias condition, the droop
e�ect is mainly dominated by the Auger recombination since the voltage is much lower than VBI. When
the bias gets higher and reaches the built-in voltage, the ratio of the droop in�uenced by carrier leakage
will increase since the carrier transport turns from di�usion process into dri� process at the reverse band
condition.

Finally, we analyzed the green LED. We found that green emitting LEDs are di�cult to use the traditional
model to describe their physical property. Even for simulations that consider nanoscale alloy disorders, the
calculated result di�ers from the experimental result. According to some reports, the green LEDs might
exist in large-scale �uctuations, such as imperfect QWs in devices. Hence, we applied 3D models to examine
the performance of the LEDs with imperfect QWs. The results show that the void region in the QWs
provide an alternative path for carrier percolation. Thus, the IV of our simulation cases may approach
the experimental observation more closely. In the future, we can model the green emission LEDs more
elaborately based on the imperfect QW model.
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19.1 Introduction

More than 30 years ago, the concept of a superluminescent light-emitting diode (SLED) was proposed for
the �rst time (Kaminow and Marcuse 1983). It can be brie�y described as an edge-emitting semiconductor
light source that operates in the so-called superluminescence regime, also known as the ampli�ed sponta-
neous emission (ASE) regime. This means that the gain medium is pumped to a level beyond transparency
but below the threshold for starting lasing activity. As a consequence of this particular operating range,
SLEDs combine some aspects of the electro-optical performance from standard light-emitting diodes
(LEDs) and laser diodes (LDs). They are able to produce high-output powers with high brightness similar
to high-power LDs. On the other hand, they show a broadband emission spectrum similar to LEDs. With
respect to their coherence properties, this translates into high spatial coherence similar to LDs and low
temporal coherence like LEDs. A more detailed comparison is given in Rossetti et al. (2012).

Due to these intermediate characteristics, SLEDs are preferred light sources for many applications,
including �ber-optic gyroscopes (FOGs) (Burns et al. 1983), �ber-optic current sensors (FOCSs) (Bohnert
et al. 2002), optical coherence tomography (OCT) (Schmitt 1999; Drexler and Fujimoto 2008), structural
health monitoring with optical �ber sensors (Wild and Hinckley 2009), speckle-free illumination (Ros-
setti et al. 2012), metrology systems (Dufour et al. 2005), or optical test equipment for �ber-optic networks
(Senior 2009). In order to meet the di�erent requirements of these applications, broadband SLEDs at vari-
ous emission wavelengths with di�erent spectral bandwidths and shapes are used. SLEDs can be designed
for wavelengths ranging from 390 nm up to 2700 nm. They can be realized in GaN (390–570 nm), GaAs
(570–1150 nm), InP (1150–2000 nm), or GaSb (2000–2700 nm). Figure 19.1 shows a selection of typical
ASE spectra obtained for various commercially available SLED modules operating at center wavelengths
from around 400 to 1550 nm (Exalos 2017).
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FIGURE 19.1 Measured ampli�ed spontaneous emission (ASE) spectra (on a linear scale) obtained for six di�erent
superluminescent light-emitting diode (SLED) modules operating at relevant wavelength ranges from about 400 to
1550 nm. The full-width at half maximum (FWHM) or 3-dB bandwidth is given in the diagrams. The Gaussian-shaped
spectra shown in (a), (b), and (f) are based on a single transition epitaxial design, whereas the spectra with two humps
shown in (c), (d), and (e) are based on a multitransition epitaxial design, as explained in Section 19.3.1.

Traditionally, the vast majority of SLEDs are employed in systems with light emission in the near
infrared from 750 to 1600 nm (see Figure 19.1c through f). Over the last decade, the emerging interest
in speckle-free red–green–blue (RGB) applications forced the development of SLEDs operating in the vis-
ible wavelength range (see Figure 19.1a and b). Based on the technology for red LDs, which has been well
established over the last 30 years, the demonstration of a red SLED realized in GaAs was a straightforward
task (Semenov et al. 1993a). In contrast, the development of blue and green SLEDs has been confronted
with a couple of intrinsic technological di�culties (Rossetti et al. 2012). One of them is the choice of the
substrate material, which can be GaN, SiC, sapphire, or others. For SLEDs and LDs, high-quality substrate
materials with good thermal conductivity and low dislocation densities are considered to be of utmost
importance. Therefore, past development activities have focused on the growth of the epitaxial layer struc-
ture on free-standing (mainly c-plane) GaN substrates. The �rst GaN-based SLEDs emitting in the blue
violet spectral region could be demonstrated just a few years ago (Feltin et al. 2009; Rossetti et al. 2010),
whereas research and development for the demonstration of green SLEDs is still ongoing. Very recently, the
�rst long-wavelength SLED realized in GaSb for optical sensing at 2.4 μm has been demonstrated (Wootten
et al. 2014).
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19.2 Design and Modeling of SLED Devices

19.2.1 SLED Geometry and Epitaxial Design

Typically, SLEDs are realized as epitaxially grown layers on a substrate in an index-guided ridge-waveguide
geometry similar to Fabry–Pérot-type LDs. The latter consists of a straight waveguide with optical dielectric
coatings applied at the facets of the chip, typically a high-re�ective (HR) at the back facet and a partial-
re�ective (PR) coating at the front facet (see, e.g., Macleod 2010). The straight waveguide in combination
with re�ecting facets de�nes a resonant cavity that allows for the build-up of longitudinal cavity modes
and laser oscillations. In contrast, several tricks are applied to SLEDs for the suppression of resonant cavity
modes in order to minimize modulations in the ASE spectrum (so-called spectral ripples) or, even worse,
to prevent the starting of lasing. The most popular and very e�cient way to achieve this is the tilting of
the waveguide by a few degrees with respect to the normal of the facets (Alphonse et al. 1988) in combi-
nation with the application of antire�ection (AR) coatings (Macleod 2010) at the facet sides. The residual
net modal re�ectivity of such a design can be calculated using the analytical model presented in Marcuse
(1989). Exemplary re�ectivity calculations as a function of the tilt angle are given in Matuschek and Duelk
(2013). Other methods are based on the incorporation of an absorber section at the back-facet side of the
waveguide (Patterson et al. 1994; Kwong et al. 2008), the use of a bent (Semenov et al. 1993b), or tapered
(Koyama et al. 1993) waveguide structure, or a combination of various methods (see, e.g., Lee et al. 1973;
Nagai et al. 1989; Semenov et al. 1993a; Middlemast et al. 1997).

The ASE process occurs in the active region along the SLEDs waveguide structure. The most common
approach to realize a positive material gain is based on a single-quantum well (SQW) or multiquantum well
(MQW) active region design (see, e.g., Chuang 1995). For some applications, a bulk layer approach might
be advantageous, as it is the case, for example, for SLEDs that require a low polarization extinction ratio
(PER),† that is, the amount of transverse electric (TE)- and transverse magnetic (TM)-polarized output
power should be as equal as possible (Heo et al. 2011). Quantum-dot epi structures for SLEDs have been
proposed (Sun et al. 1999) and demonstrated a few times as well. However, this technology has various
severe limitations, like a limited wavelength range (so far 1050–1200 nm), low di�erential gain requiring
long SLED chips and large drive currents, manufacturing challenges, and others (Rossetti et al. 2008).

Figure 19.2 shows the schematic front view of a typical SLED structure for an SQW epitaxial layer
design. Generally, quantum well (QW) active-region designs allow for the use of strained layers. Com-
pressively strained QW layers are required for SLED designs showing a high PER greater than ∼10 dB,
which is desired for many applications. Maximum strain values up to 3% (with respect to the lattice con-
stant of the substrate material) may be realized in practice. Higher strain values may lead to the formation
of dislocations and are therefore detrimental to achieving a good long-term reliability. In addition to the
relative strain of an individual layer, the total integrated net strain for the entire active region must be taken
into account too. Hence, strain compensation by incorporation of tensile strained barrier layers is a useful
option for strain relaxation over the active region (Tansu and Mawst 2001).

The QW and barrier layers are sandwiched between (undoped or partially doped) waveguide layers that
are surrounded by highly doped n- and p-cladding layers. The high refractive index of the active-region
and waveguide layers leads to the con�nement of the optical mode in vertical direction. On the other hand,
the ridge-waveguide geometry ensures the lateral mode con�nement. As a result, the epitaxial layer stack
realized in a ridge-waveguide geometry allows for the build-up of transverse optical modes with a lat-
eral extension roughly given by the ridge width and a vertical extension as given by the thickness of the
waveguide layers. For almost all applications, single-mode operation on the fundamental optical mode is
preferred. Hence, care has to be taken to avoid the occurrence of higher-order modes or leaky substrate

† The PER is de�ned as PER = 10 ⋅ lg
(

PTE

PTM

)

dB, where PTE and PTM is the SLED’s total output power from the front facet in
TE and TM polarization, respectively.
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FIGURE 19.2 Basic layer structure of a single-quantum well (SQW) epitaxy. The QW and barrier layers are
sandwiched between waveguide layers followed by the cladding layers on both sides. The ridge-waveguide geometry
ensures the lateral guiding of the optical mode, whereas the vertical guiding is a consequence of the refractive-index
pro�le de�ned by the material composition of the di�erent layers.

modes. The latter are particularly a problem for GaN-based epi structures in the visible due to the high
refractive index of the substrate material (Laino et al. 2007; Matuschek and Duelk 2013). Moreover, some
output power might be lost into higher-order lateral modes if such modes are supported by the lateral
waveguide (see, e.g., Coldren et al. 2012). The number of supported lateral modes, and thus, the corre-
sponding power loss scales with the width of the ridge waveguide. Therefore, the stripe width is typically
chosen to be smaller than 10 μm.

As mentioned earlier, the appropriate choice of semiconductor materials depends primarily on the wave-
length range of interest, and thus, on the bandgap energy of available semiconductor compound material.
In Table 19.1, the substrate materials and the most commonly used compound materials for the functional
layers of the epitaxial structure, as shown in Figure 19.2, are summarized for the di�erent wavelength
regimes.

19.2.2 Modeling and Simulation Approaches

A couple of di�erent approaches exist for the modeling and simulation of SLEDs. Generally, the analytical
insight into the electro-optical performance decreases with the complexity of the set of coupled equations
taken under consideration. On the other hand, the accuracy increases when more e�ects are taken into
account.

Commercially available packages (Synopsis 2017; Crosslight So�ware 2017; Photon Design 2017) allow
for full three-dimensional (3D) simulations. They are based on the coupling of solvers for the various prob-
lems involved in the simulation of an SLED (so-called multiphysics treatment) (Li and Li 2010). Typically,
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TABLE 19.1 Materials Used for the Epitaxial Layers of an SLED Grown on a Substrate
Depending on the Wavelength Range of Interest

Wavelength Range 390–570 nm 570–1150 nm 1150–2000 nm 2000–2700 nm

Substrate GaN GaAs InP GaSb
Cladding AlxGa1−xN AlxGa1−xAs InP AlxGa1−xAs1−ySby

AlxGayIn1−x−yP AlxIn1−xAs
Waveguide GaN AlxGa1−xAs AlxGayIn1−x−yAs AlxGa1−xAs1−ySby

AlxGayIn1−x−yP InxGa1−xAs1−yPy

Active region InxGa1−xN AlxGayIn1−x−yP AlxGayIn1−x−yAs AlxGa1−xAs1−ySby
(QWs + barriers) AlxGayIn1−x−yAs InxGa1−xAs1−yPy InxGa1−xAs1−ySby

InxGa1−xAs1−yPy

Note: The general de�nition of the quaternary materials includes the special case that the materials
may reduce to ternary or binary materials if the material fractions x and/or y are equal to 0 or 1.

the quantum-mechanical problem is described using the k⋅p method and the optical modes are found
from a Helmholtz equation (Chuang 1995). These equations are coupled to the semiconductor equations,
for example, as Poisson equation and dri�-di�usion equation and to a heat-transfer equation if the thermal
properties are also taken into account (Loeser and Witzigmann 2008). All equations are then solved simul-
taneously and self-consistently for each iteration step, yielding a solution for all local and global variables
of the system.

In analytical approaches both the physical dimensionality of the problem and the number of coupled
equations are reduced. They are normally based on a traveling-wave equation for the electric �eld (Park
and Li 2006) or the optical power (or photon density) (Matuschek and Duelk 2013; Milani et al. 2015) and
on rate equations for the carrier density. The material gain is either calculated from quantum-mechanical
equations or using simpli�ed semianalytical equations assuming a logarithmic or linear gain dependence
on the carrier density (Coldren et al. 2012). In order to calculate the net modal gain, both the optical
con�nement factor and the internal loss coe�cient are required. The �rst can be calculated from the overlap
integral of the optical modes with the active layers. The latter can be used, for instance, as a free �tting
parameter or it can be extracted from an inverse e�ciency versus chip length plot, which is obtained from
the L–I characteristics of LDs measured for various chip lengths. The LD design for such measurements
di�ers from the SLED design only in the straight ridge waveguide and its facets are typically uncoated.

19.2.3 L–I Characteristics of Reflecting SLEDs

SLEDs operate in the ASE regime, that is, spontaneously emitted photons induce the process of stimulated
emission of photons while traveling along the waveguide. Hence, the number of forward- and backward-
propagating photons grows exponentially in direction to both facets of the chip. On the other hand, the
SLED’s L–I characteristic follows to good approximation a power law with chip length–dependent expo-
nent because of the logarithmic gain dependence on current density as shown in Matuschek and Duelk
(2013). The analytic derivation of this power law was based on the assumption of an ideal SLED without
any residual re�ectivity at both facet sides.

Here, we want to extend this approach to the general case of SLEDs with arbitrary e�ective modal re�ec-
tivities at the chip’s front- and back-facet sides. This derivation includes special cases of standard SLEDs
and of so-called re�ecting SLEDs (R-SLEDs). Typical SLEDs feature a tilted ridge-waveguide geometry
with tilt angles smaller than 15◦ and high-quality AR coatings deposited at both facet sides in order to
avoid any resonant cavity e�ect. In contrast, R-SLEDs consist of a tilted waveguide section in direction to
the front facet with deposited AR coating and a straight waveguide section toward the chip’s back facet
with a deposited HR coating (Matuschek and Duelk 2014), as shown in Figure 19.3. As explained below
in more detail, R-SLEDs are able to produce much higher output powers due to the double-pass geometry
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FIGURE 19.3 Schematic top view of an SLED and an R-SLED with e�ective modal re�ectivities Rf and Rb. The power
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the power distribution for forward-propagating photons and P− for backward-propagating photons, respectively. Pf
and Pb are the powers, which are coupled out and can be measured at the front- and back-facet sides of the SLED or
R-SLED. The z-axis is de�ned by the propagation direction of photons along the ridge-waveguide structure, so that the
single-path length is slightly greater than the vertical distance between the facets due to the tilt.

compared to standard SLEDs under same operating conditions. However, the drawback is that such devices
are much more susceptible to the appearance of ripples in the ASE spectrum and/or starting of undesired
lasing operation.

In the following, the longitudinal power distribution for two counter-propagating waves is derived under
the condition of steady-state continuous wave (CW) operation. Based on a one-dimensional (1D) traveling-
wave ampli�er approach similar to (Marcuse 1983; Matuschek et al. 2008), the di�erential equations

dP+(z)
dz

=
(

gmod − αi
)

⋅ P+(z) +
nspℏωvgr

2L
gmod , (19.1)

−
dP−(z)

dz
=
(

gmod − αi
)

⋅ P−(z) +
nspℏωvgr

2L
gmod , (19.2)

determine the power distribution P±(z) for forward- and backward-propagating photons of the same lon-
gitudinal mode with angular frequencyω. gmod = Γgmat is the modal gain with gmat being the material gain
and Γ the mode con�nement factor. αi is the internal loss coe�cient, nsp the population inversion factor,
L the e�ective chip length of the tilted ridge-waveguide structure, and vgr = c∕ngr the group velocity with
the speed of light in vacuum, c, and the e�ective group index, ngr. The independent variable (z-coordinate)
is de�ned in the range z ∈ [0; L], where the boundaries are de�ned by the chip’s front and back facet (see
Figure 19.3). The second term on the right-hand side describes the generation of light by spontaneously
emitted photons, whereas the �rst term describes the stimulated ampli�cation process by already existing
photons.

It should be noted that, generally, there is one set of equations for each longitudinal mode. Here, we
have omitted an index for the number of the longitudinal mode. We solve the equations for the mode
closest to the gain maximum. Finally, the total power values are obtained by summing over an e�ec-
tive number of longitudinal modes, which is proportional to the full-width at half maximum (FWHM)
or 3-dB bandwidth of the emitted ASE power spectrum (Matuschek and Duelk 2013). As explained in
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detail in Marcuse (1983), it is not necessary to treat this ASE process as a coherent signal since it distributes
itself continuously over a relatively wide band of wavelengths with random phases between adjacent wave-
length components. Hence, a description using powers instead of �elds with de�nite amplitude and phase is
su�cient.

Equations 19.1 and 19.2 can be easily solved if we assume that the gain is homogeneous in longitudi-
nal direction, that is, we neglect any gain saturation e�ects. This approximation is justi�ed for low-power
SLEDs but might be questionable for SLEDs and R-SLEDs operating at high injection currents, and
thus, at high-output powers, as will be shown at the end of this section. Then the general solution is
given by

P+(z) = P+0 ⋅ G(z) + a ⋅ {G(z) − 1} , (19.3)

P−(z) = P−L ⋅ G (L − z) + a ⋅ {G (L − z) − 1} , (19.4)

with

a =
nspℏωvgr

2L
gmod

gmod − αi
, (19.5)

where we have introduced the gain ampli�cation factor

G(z) = exp
{

(gmod − αi)z
}

. (19.6)

The subscripts 0 and L denote power values at positions z = 0 and z = L inside the chip.
Equations 19.3 and 19.4 are coupled by the boundary conditions

P−L = Rf ⋅ P+L , (19.7)

P+0 = Rb ⋅ P−0 , (19.8)

where Rf and Rb are the e�ective modal re�ectivities at the front and back sides, respectively. Using these
boundary conditions, we can derive the expressions

P+L = a ⋅
1 + G(L)Rb

1 − G2(L)RbRf
⋅ (G(L) − 1) , (19.9)

P−0 = a ⋅
1 + G(L)Rf

1 − G2(L)RbRf
⋅ (G(L) − 1) , (19.10)

for the light powers that hit the facets from inside the chip. It should be noted that Equations 19.9 and 19.10
are symmetric with respect to an exchange of the chip’s front- and back-facet sides.

The power coupled out of the chip is obtained by multiplying (Equations 19.9 and 19.10) with the e�ec-
tive transmittance of the front- and back-facet coatings, Tf and Tb.† Thus, taking the values of all variables
at the spectral position of the gain maximum, which we indicate by adding a subscript index 0 at each

† Generally, the inequality Rf/b+Tf/b < 1 holds because of slight absorption that might occur in the applied dielectric coatings.
Moreover, for tilted SLED sections light that is not re�ected back at the facet into the waveguide but elsewhere, is lost and
not covered by the re�ectivities Rf/b.
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relevant variable and summing over the number of e�ectively contributing modes �nally leads to

Pf = P̃ ⋅
1 + G0(L)Rb

1 − G0 (2L)RbRf
⋅
(

G0(L) − 1
)

⋅ Tf, (19.11)

Pb = P̃ ⋅
1 + G0(L)Rf

1 − G0 (2L)RbRf
⋅
(

G0(L) − 1
)

⋅ Tb. (19.12)

The prefactor P̃ is given by

P̃ = ne�a0 = ne� ⋅
nspℏω0vgr,0

2L
gmod,0

gmod,0 − αi,0

= Δλ3dB ⋅
nsphc2

λ3
0

gmod,0
gmod,0 − αi,0

,

(19.13)

where we have estimated the e�ective mode number, ne�, by the 3-dB bandwidth of the ASE output spec-
trum, Δλ3dB, and the longitudinal mode spacing, λ2

0∕(2ngr,0L). Strictly speaking, the replacement of the
sum by an e�ective mode number requires that the dispersion of the e�ective modal facet re�ectivities and
coating transmittance can be neglected over the relevant spectral range.

Equations 19.11 and 19.12 together with Equation 19.13 represent the general solution for the front- and
back-facet output power of an SLED with arbitrary front- and back-side re�ectivity. They are particularly
useful for analyzing di�erences observed in the output power from both facets caused by residual facet
re�ections. In Matuschek et al. (2008), very similar expressions were derived and a short discussion of the
consequences on the front-to-back output power ratio was given. In the following, we apply our general
results to two special cases of an SLED, namely an ideal standard SLED and an ideal R-SLED.

19.2.3.1 Ideal Standard SLED

An SLED device is assumed where both facets do not have any residual re�ection. This condition is nearly
ful�lled for real devices with su�ciently great tilt angle and AR-coated facets. In this limit, we can set
Rf = Rb = 0 and Tf = Tb = 1 and obtain

Pf = Pb = P̃ ⋅
(

G0(L) − 1
)

= ΔλFWHM ⋅
nsphc2

λ3
0

gmod ,0
gmod ,0 − αi,0

⋅
(

e(gmod ,0−αi,0)⋅L − 1
)

. (19.14)

Inserting a logarithmic gain model in Equation 19.14 yields a power law for the SLED’s L–I characteris-
tic with chip length–dependent exponent. The consequences of this power law have been discussed and
experimentally proven in detail in Matuschek and Duelk (2013) and are not repeated here.

19.2.3.2 Ideal R-SLED

An SLED device is assumed with a perfect front facet having zero residual re�ection, similar to an ideal
standard SLED, but with a back facet being a perfect re�ector that re�ects all incident light back into the
waveguide. For real devices, this condition is fairly well realized with e�ective modal re�ectivity values of
about 90% or even higher for the HR coating. Moreover, the waveguide at the back facet must be straight or
perpendicular with respect to the facet in order to avoid any geometrical reduction of the e�ective modal
re�ectivity. In the limit of an ideal R-SLED we can set Rf = Tb = 0 and Rb = Tf = 1 and obtain

Pf = P̃ ⋅
(

G0 (2L) − 1
)

= ΔλFWHM ⋅
nsphc2

λ3
0

gmod ,0
gmod ,0 − αi,0

⋅
(

e2⋅(gmod ,0−αi,0)⋅L − 1
)

(19.15)
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for the total power out of the front facet. It should be obvious that under those assumptions no power will
exit the back facet of the chip, that is, Pb = 0.

Comparing Equation 19.15 with Equation 19.14, it follows directly that with respect to output power
from the front facet an R-SLED of length L behaves like a standard SLED of twice the length 2L. This result
seems intuitive since the ampli�cation process for photons is extended over a distance, which corresponds
to one round-trip in the chip with perfect re�ection at the back facet. However, it is important to realize
that with respect to current injection the chip is still a short chip of length L. This means that an R-SLED
of length L emits the same power out of the front facet as a standard SLED of length 2L at same current
density values J or, in other words, at half values of the injection current I. Also, under these conditions the
average carrier densities are approximately the same and, thus, the emitted ASE output spectra with their
corresponding FWHM bandwidth. Consequently, the prefactor of Equation 19.13 has the same value in
both cases.

19.2.4 Experimental and Numerical Verification of the Analytical Model

In this section, we want to verify the results derived from the analytical treatment by comparing them with
experimental results as well as results obtained from a full 3D simulation of the SLED and R-SLED under
consideration. The simulation so�ware is based on a �nite-element discretization of the device. Using the
k⋅p method, the quantum mechanical system is described by a 6 × 6 Luttinger–Kohn Hamiltonian and
the eigenvalue problem is solved as well as a Helmholtz equation for the optical modes (Chuang 1995).
These equations are coupled to the semiconductor equations and thermal equations as described earlier.
All equations are then solved self-consistently on a discrete mesh.

As an object for our study, we use SLED and R-SLED chips from the same epi wafer with light emission
in the wavelength region around 860 nm. All chips are operated at a heat-sink temperature of 25◦C. The
MQW epi structure of these chips is based on (Al)GaAs/(In)GaAs layers grown on a GaAs substrate (see
Table 19.1). For the simulation, the e�ective modal re�ectivity values have not been set to the ideal values
0 and 1 but to values of 10−9 for the AR-coated facets with tilted waveguide section and 0.95 for the back
facet with straight waveguide section. These values are quite realistic for well-designed SLED and R-SLED
structures. The simulator has been calibrated by adjusting the L–I characteristics and ASE output spectra
for short standard SLEDs with chip lengths ranging from 500 to 850 μm.

Figure 19.4 shows the results obtained for the 850-μm-long SLED chip a�er the calibration procedure.
Obviously, the measured L–I curve is almost exactly reproduced by the simulation. Moreover, the detailed
shape of the measured ASE spectra is also simulated very accurately for di�erent levels of injection cur-
rents. The quality of the analytical model is shown by the dotted L–I characteristic, which is obtained from
Equation 19.14 by following the procedure described in Matuschek and Duelk (2013). The center wave-
length and 3-dB bandwidth have been taken from the ASE spectrum at an injection current of 100 mA. The
modal gain as a function of the current density has been derived from the full 3D simulation by averaging
over the z-direction. Apparently, the output power at high-injection currents is somewhat overestimated
by the analytical model because the relatively simple model does not take into account self-heating and
gain saturation e�ects of the chip.

A�er successful calibration, we are able to compare the electro-optical properties of a 1750-μm standard
SLED with an 840-μm R-SLED. The chip length ratio is 2.08, which is close to the ideal value of two.
Moreover, the back-facet coating of the R-SLED chip is not a real HR coating but only a PR coating with
a re�ectance value of about 20%. Figure 19.5 shows the measured and simulated front-facet output power
as a function of the current density for both types of SLEDs. For our considerations the e�ective width of
current injection is not relevant. Therefore, we scale the current values only by the chip length so that the
density values are de�ned by J = I∕L. As can be seen, the agreement between all curves is excellent. Only
the measured power of the R-SLED (dash-dotted line) is slightly smaller because of the nonideal re�ectance
of the PR coating. First of all, this proves that an R-SLED behaves like a standard SLED of twice the length
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FIGURE 19.4 (a) L–I characteristics and (b) ASE output spectra (on an absolute logarithmic scale) for an 850-μm-
long standard SLED chip. Solid lines represent measurement data and dashed lines simulation results obtained from
a full 3D simulation a�er the calibration procedure. The dotted L–I characteristic follows from the analytical model
according to Equation 19.14, as explained in the text. The ASE spectra are shown for four di�erent injection currents:
50, 100, 150, and 200 mA. At 100 mA the 3-dB spectral bandwidth is about 16.5 nm. Note that all simulated ASE spectra
have been shi�ed slightly by the same amount in wavelength so that they coincide at their maximum values with the
measured spectra. This allows a better comparison of the detailed behavior of the spectral shapes.
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power of an SLED chip with length 1750 μm and an R-SLED chip with length 840 μm as function of current density,
as described in the text. All curves agree almost perfectly.

at the same current density. Second, experimental results can be accurately reproduced and extrapolated
once the simulator is well calibrated.

This is further demonstrated by analyzing the ASE output spectra. Figure 19.6a shows measured ASE
spectra and Figure 19.6b shows simulated ASE spectra for both chips at two di�erent levels of current den-
sity. In the �rst case, the current density with values slightly below 60 mA/mm is just above the threshold
for ASE operation, which is why the output power is low. In the second case, the current density is beyond
170 mA/mm, resulting in the chips operating at high front-facet output powers of about 75 mW. The sim-
ulated curves coincide more or less over the entire spectral range for both current densities, whereas a
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FIGURE 19.6 (a) Measured and (b) simulated ASE output spectra of an SLED chip with length 1750 μm and an
R-SLED chip with length 840 μm at two di�erent levels for the current density. The dotted and dash-dotted lines cor-
respond to a current density slightly below 60 mA/mm and the solid and dashed lines to a value slightly above 170
mA/mm. In contrast to Figure 19.4b, no additional wavelength shi� has been applied to the ASE spectra.

small wavelength shi� can be observed for the measured curves. This is explained by the fact that even
nominally identical chips from the same epi wafer have slightly di�erent center wavelengths of the emit-
ted ASE spectra. Furthermore, the thermal heat sinking toward the submount might not be identical for
all chips. A more important di�erence, which can be observed for the measurements at the high current
densities, is that the ASE spectrum of the R-SLED is somewhat narrower and shows strong periodic mod-
ulations (spectral ripples) in the center part. The periodicity corresponds to the longitudinal mode spacing
de�ned by the length of the linear cavity. This is a clear indication of a resonant cavity e�ect (Fabry–Pérot
modulation) caused by the high back-side re�ectivity and demonstrates the tendency of an R-SLED to start
lasing at high levels of current injection. In Section 19.3.2, the in�uence of spectral ripples on the coherence
function will be discussed.

To gain further insight into the physical properties of an SLED and R-SLED, respectively, we analyze
the longitudinal distribution of the optical intensity and the carrier density along the z-axis inside the chip
based on the results obtained from the full 3D simulation (see Figure 19.7). The intensity pro�les have been
extracted at the center of the optical mode, and the maximum value at the front facet has been normalized to
unity. The carrier density pro�les have been extracted at the center of one of the QWs. The z-axis has been
de�ned so that the back facet of the R-SLED coincides with the middle of the standard SLED and the front
facets almost coincide, too. With this de�nition, all chip properties of the standard SLED are symmetric
with respect to the origin. As shown in the upper plot, the shapes of the optical intensity pro�les are quite
similar for the same current density. However, as can be clearly seen, for low current densities (dotted and
dash–dotted lines) the growth of the optical intensity in direction to the front facet is almost exponential,
whereas the optical intensity saturates for higher current densities (solid and dashed lines) and, hence,
higher optical output powers. This gain saturation behavior due to high optical powers is directly linked
to the longitudinal carrier density distribution as shown in the lower plot. At low current densities, the
carrier density is almost constant along the chip with a value of about 3.3 × 10−18 cm−3. In contrast, at
high current densities the carrier density decreases strongly by more than 40% from the origin toward the
front facet with a terminal value of about 2.8 × 10−18 cm−3. Low values of the carrier density mean low
material gain, and thus, low gain ampli�cation of the optical power.

Our investigations can be summarized as follows:

• At same current densities an R-SLED behaves very similar like a standard SLED with twice the length.
• An important di�erence is that R-SLEDs show ripples in the ASE spectrum and may have the

tendency to start lasing operation.
• For long SLED chips and for R-SLEDs at high-output powers, gain saturation e�ects are not

negligible anymore.
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FIGURE 19.7 Longitudinal distribution of the optical intensity (upper plot) and carrier density (lower plot) along
the z-axis inside the chip of an SLED chip with length 1750 μm and an R-SLED chip with length 840 μm at two dif-
ferent levels for the current density. The dotted and dash-dotted lines correspond to a current density slightly below
60 mA/mm and the solid and dashed lines to a value slightly above 170 mA/mm.

19.3 SLED Designs with Specified Targets

Commercial SLEDs have to ful�ll target speci�cations for the electro-optical performance (output power,
wavelength, bandwidth, spectral shape, ripple, PER, etc.) that are de�ned by the application. Also, their
long-term reliability has to meet certain lifetime requirements (e.g., 10% power drop over 5000 hours of
operation or 50% power drop over 100,000 hours of operation) that are dependent on the application and
the intended use of operation. The shape and width of the ASE spectrum is directly linked to the coherence
function, which is the autocorrelation function of an SLED. This is of particular importance for applications
like OCT, as explained below. It is well known that increasing the output power is, in general, accompanied
by a reduction in the ASE spectral bandwidth. Hence, methods are required to overcome this limitation.

19.3.1 Broad-Bandwidth SLED Designs

Generation of light in an SLED is based on the recombination from an electronic state in the conduction
band with a hole state in the valence band (VB). In a QW, the bound states build a discrete set of sub-
bands. In the simplest case, the SLED’s epitaxial structure is based on an SQW active-region design or an
MQW structure consisting of uncoupled identical QWs. Such designs can be reduced to the discussion of
the quantized SQW states. Here, we restrict our discussion to the VB for heavy holes because ASE spec-
tra of SLEDs consisting of compressively strained QWs are dominated by transitions to the heavy-hole
sub-bands.
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19.3.1.1 SLEDs with Bell-Shaped (Gaussian) ASE Spectra

The spectral shape of the ASE spectra is mainly determined by the fundamental sub-band transition from
the �rst electronic state to the �rst heavy-hole state

(

e1 → hh1
)

, as long as the carrier density is su�ciently
low, so that the population of other sub-band states can be neglected (Chen et al. 1990). Generally, single
transition designs yield bell-shaped (Gaussian) ASE spectra as shown in Figure 19.1a, b, and f. Such spectra
are preferred with respect to the avoidance of side lobes in the near optical path length di�erence (OPD)
range of the coherence function (see Section 19.3.2). An increasing carrier density in the QW leads at �rst
to a rising population of high-energy states in the fundamental sub-bands, and thus, to a broadening of
the spectrum. If other sub-band states start to become signi�cantly populated, an additional hump tends
to appear on the short-wavelength side (as shown in Figure 19.1c). Hence, with increasing population of
the sub-bands, the spectral appearance changes continuously from being bell shaped in direction to an
M-shaped double-humped spectrum (see Figure 19.1d).

19.3.1.2 SLEDs with M-Shaped (Double-Humped) ASE Spectra

Generally, all approaches for the design of SLED structures showing an ASE spectrum with ultrawide emis-
sion bandwidth are based on a multitransition design. This means that more than just one optical transition
contributes to the emission spectrum. One has to distinguish between two principally di�erent approaches.
The �rst one is based on the SQW (or MQW) epitaxial design, as just discussed, in which, in addition to
the fundamental transition, other transitions ful�lling the quantum-mechanical selection rules are utilized
to contribute to the generation of light. If properly designed, such QW structures allow for the enormous
enlargement of the spectral bandwidth (Semenov et al. 1993b; Kondo et al. 1992). The second approach is
based on the use of nonidentical (so-called chirped) QWs (Lin et al. 2004). Chirping means that at least
one QW of an MQW epitaxial layer structure is di�erently designed compared to the other QW(s), yielding
optical transitions at di�erent wavelengths. Chirping can be achieved by a di�erent QW thickness and/or
di�erent material compositions for the QW and/or the barrier layers. The basic idea of utilizing chirped
QWs is demonstrated in Figure 19.8 for a chirped double-quantum well (DQW) structure. Due to the
greater band-gap energy and thinner QW thickness of the right QW, the fundamental transition results
in photons with higher energy (shorter wavelength) compared to the le� QW. Thus, an ultrawide band-
width design may be achieved if the spectral separation chosen between both fundamental transitions is
su�ciently large.

hν1 hν2En
er

gy
 

Vertical position

e1
e1

hh1hh1

CB

VB

FIGURE 19.8 Energy-band diagram for two uncoupled chirped quantum wells (QWs). The horizontal lines in the
wells indicate the �rst bound electronic state in the conduction band (CB), e1, and the �rst bound hole state in the
valence band (VB) for each QW separately. For the VB we restrict ourselves to the heavy hole band with its states hh1.
The arrows indicate the fundamental transition from the CB to the VB for both QWs. The electron–hole recombination
results in the emission of a long-wavelength photon with energy hν1 from the le� QW and a short-wavelength photon
with energy hν2 from the right QW.
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As mentioned earlier, ultrawide ASE spectra tend to exhibit a double-humped spectral shape. Such spec-
tra show their maximum spectral bandwidth when both humps are well balanced, i.e., for approximately
the same peak strength (the so-called �at-top condition). For a given chip design and a given heat-sink tem-
perature, this situation can be achieved only over a limited range of operation currents. This makes such
designs less �exible compared to single-transition designs. Moreover, the non-Gaussian spectral shape
is unfavorable with respect to the occurrence of side lobes in the coherence function as mentioned ear-
lier. The stronger the deviation from a Gaussian shape, the higher the side lobes are in the coherence
function.

Generally, the width of the ASE spectrum broadens with the energy separation between allowed transi-
tions to the heavy-hole VB. As a consequence of a greater spectral separation, �rst of all, the dip between
both humps obvious in the ASE spectra at �at-top condition increases yielding a negative impact on the
coherence function. And second, the SLED has to be driven at higher currents for operation at �at-top
condition. The reason is that higher carrier densities in the QWs are required in order to li� the energeti-
cally more distant transitions on the short-wavelength side. This might be used as a positive side e�ect or if
it is undesired, this e�ect can be compensated for by using chips with shorter active segment length. Nev-
ertheless, it is obvious that the approach described here is limited to �nding the best compromise between
spectral bandwidth and the depth of the spectral dip.

19.3.1.3 Flattening of M-Shaped ASE Spectra

The M-shape approach can be optimized by a �attening of the spectral dip (see Figure 19.1e). This requires
the use of at least one additional transition between QW states yielding photons with a wavelength some-
where around the spectral position of the dip. The additional transition �lls up the dip between both peaks
in the ASE spectrum. It can be realized in di�erent ways, as discussed in the following.

The �rst possibility is the use of a chirped MQW active region design with at least one of the chirped
QWs having its fundamental transition in the spectral range of the dip (Lin et al. 1996). For MQW struc-
tures consisting of a large number of QWs an elaborated approach is based on the continuous chirp of the
fundamental transition wavelength for each QW over a wide spectral range.

Another possibility is the utilization of coupled QWs, where the coupling is caused by the �nite potential
walls between the QWs. For a coupled DQW active region design, the coupling leads to a splitting of
the fundamental sub-band states, where the coupling strength, and thus, the splitting can be adjusted by
the thickness of the barrier layers between the QWs and/or the well depth. The latter can be adjusted
by the material composition of the barrier layers. If properly designed, the transition wavelength of the
short-wavelength photon appears in the spectral range of the dip.

A third possibility to reduce or even remove the dip is the combination of two or more SLEDs with
spectrally shi�ed ASE spectra. The SLEDs are designed so that the spectral peak of one SLED coincides
with the dip of the other SLED. The combined spectrum is �atter and potentially broader if the SLEDs
are appropriately designed. The �attening e�ect is demonstrated by the example of the M-shaped ASE
spectrum for the 1050-nm SLED shown in Figure 19.1d. We assume that a second SLED has been designed
with similar spectrum just shi�ed by 24 nm to shorter wavelengths. For simplicity reasons we take the
original spectrum (the dashed curve in Figure 19.9) and shi� it accordingly in order to obtain the dotted
curve. Now, we assume that the output spectra are combined via a dispersion-free 50:50 coupler. This
corresponds to a simple linear addition of both spectra with the same weight, resulting in the solid curve
shown in Figure 19.9. Obviously, the original dip at around 1050 nm is removed and the resulting spectrum
looks rather bell shaped. In the following section, the impact of the SLED combination on the coherence
function is discussed.

19.3.2 Coherence Function and Coherence Length

As mentioned earlier, for OCT applications, the coherence function is of major interest. It allows the
extraction of the coherence length, which determines the theoretical limit for the axial resolution of an
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with λ3dB being the 3-dB center wavelength andΔλ3dB the 3-dB bandwidth of the ASE spectrum. The factor
γ depends on the shape of the ASE spectrum. For an ideal Gaussian shape, the factor is unity, γ = 1, for
other shapes, γ > 1. For SLEDs with double-humped ASE spectra operating at �at-top condition, a value of
γ ≈ 1.19 is typically used. This yields a penalty of roughly 20% in coherence length caused by the deviation
from an ideal Gaussian shape. As an example, for the ASE spectrum shown in Figure 19.1e, we calculate
for the coherence length lcoh ≈ 7.4 μm using Equation 19.16 with λ3dB = 1300 nm, Δλ3dB = 120 nm, and
assuming a �at-top shape with γ = 1.19.

The coherence length can be directly determined from the coherence function, too. The latter is equiv-
alent to the SLED’s autocorrelation function, and thus, according to the Wiener–Khinchin theorem, the
Fourier transform of the ASE spectrum (Schmitt 1999). Figure 19.10 shows the coherence function as a
function of the OPD obtained for the ASE spectrum just discussed. The coherence function is symmetric
with respect to the OPD. Its drop-o� from the maximum value at zero OPD to 50% de�nes the coherence
length, that is, the coherence length is the half-width at half maximum (HWHM). From the coherence
function shown in Figure 19.10a near zero, we extract a coherence length of 7.9 μm. This value is close to
the value estimated from Equation 19.16. Moreover, side lobes are visible at an OPD of 20 μm with a side-
lobe suppression ratio (SLSR) of about 10 dB. The side lobes are caused by the non-Gaussian �at-top shape
of the ASE spectrum. For applications like OCT, those side lobes may generate imaging artifacts if they are
not suppressed by an additional windowing function in the OCT signal processing (Duelk and Hsu 2015).
Therefore, SLED designs with bell-shaped ASE spectra are preferred for such applications. Figure 19.11
shows the coherence functions, which correspond to the ASE spectra plotted in Figure 19.9 for module
EXS210010 and the combined SLED spectrum. Obviously, going from the M-shaped to the rather bell-
shaped ASE spectrum leads to a strong reduction of the side lobes with an increase of the SLSR from 7
to 13 dB. As a side e�ect, the coherence length decreases by almost 1 μm from 8.6 to 7.7 μm due to the
broadening of the combined SLED spectrum by 7 nm.

FIGURE 19.9 The dashed line shows the same ASE spectrum as plotted in Figure 19.1d for module EXS210010. The
dotted curve shows the same spectrum shi�ed by 24 nm to shorter wavelengths. The solid curve is obtained as the
linear superposition of both spectra. The FWHM bandwidth of the combined spectrum is 7 nm greater compared to
the width of each single spectrum.

OCT imaging system (Duelk and Hsu 2015). For a broadband light source, the coherence length can be
written as
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FIGURE 19.10 Coherence function versus optical path length di�erence (OPD) obtained for the ASE spectrum
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FIGURE 19.11 Coherence function in the near OPD range obtained for the ASE spectra plotted in Figure 19.9 for
module EXS210010 (dashed curve) and the combined SLED spectrum (solid curve). From the dashed curve an SLSR
of 7 dB and a coherence length of 8.6 μm is extracted, whereas the values found from the solid curve are 13 dB and
7.7 μm, respectively.

Periodic modulations in the ASE spectrum caused by the build-up of a resonant cavity, as discussed in
Section 19.2.4, may show up as secondary coherence subpeaks at an OPD of a few millimeters (see, e.g.,
Figure 18.1 in Duelk and Hsu 2015). Figure 19.10b is free of such secondary coherence peaks as the ASE
spectrum is smooth and free of spectral ripple. In order to avoid OCT imaging artifacts (so-called “ghost
lines”), a secondary peak suppression ratio (SPSR) of at least 25 dB is needed. The SPSR requirement de�nes
the tolerance for the maximum allowed spectral ripples in the ASE spectrum. As a consequence, this might
cause R-SLED designs to be impractical for OCT applications.

19.3.3 High-Power SLED Designs

In addition to the requirements for the ASE output spectrum, SLEDs should typically deliver a minimum
amount of output power at a given injection current. A variety of methods exist for increasing the SLED’s
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front-facet output power, and thus achieve a high-power design. In the following, we describe possible
approaches and discuss their advantages and drawbacks.

19.3.3.1 Increasing the Injection Current

The most obvious approach is just to increase the injection current. This is possible as long as the point for
the thermal roll-over is not reached. But one should take into account that the increasing carrier density
may have a strong in�uence on the shape of the ASE output spectrum. As discussed in Section 19.3.1, ASE
spectra resulting from a single optical transition will typically remain bell shaped with broader bandwidth.
However, for M-shaped ASE spectra, which may be well balanced for a lower injection current, as shown
in Figure 19.1d and e, the low-wavelength peak will strongly grow with increasing injection current. This
leads to an unfavorably strong reduction of the spectral bandwidth compared to the preferred �at-top
condition.

19.3.3.2 Increasing the Chip Length

The output power can be increased for a given injection current by increasing the active segment length,
that is, the length of the gain medium. This method works for operating currents su�ciently above the ASE
threshold level because the latter increases with increasing chip length. Longer chips lead to a reduction
of both the thermal resistance and the series resistance leading to lower junction temperatures for SLED
chips running in CW mode of operation. Moreover, the carrier density is reduced resulting in the opposite
e�ect on the ASE spectra, as explained in Section 19.3.3.1.

19.3.3.3 Using an R-SLED Design

As discussed in Section 19.2.3, a very e�cient way to design an ultimate high-power SLED structure is the
R-SLED approach. This allows for very high-output powers using relatively short chips. The main drawback
of this approach is the enhancement of spectral ripples or even worse the tendency to start lasing due to the
build-up of a resonant cavity. This may lead to an increase of the noise level in general and the appearance
of strong secondary coherence subpeaks. Hence, the R-SLED design might be the optimum choice for
insensitive applications with respect to resonant-cavity e�ects. For other applications, this approach might
not work or is not recommended.

19.3.3.4 High-Power SLEDs by Epitaxial Design

The epitaxial design of the active-region layers has a strong in�uence on the SLED’s L–I characteristic.
Typically, it is easier to design SLEDs delivering higher-output powers by increasing the number of QWs
and/or by increasing the thickness of the QW layers. Modifying the epitaxial design in this way has diverse
and complicated e�ects on the expected electro-optical performance. For example, the injection current
required for reaching ASE threshold increases in general with increasing total thickness of the active region.
Moreover, the carrier density is reduced, having a similar e�ect on the ASE spectrum as described earlier
in Section 19.3.3.2 for an extended chip length.

Therefore, the approach that has to be chosen for the realization of a speci�c SLED design depends on the
whole set of target speci�cation. The expected L–I characteristics and ASE spectra for a given active region
design �nally determine the appropriate chip length and injection current for device operation. There are
no simple and strictly valid rules for �nding the optimal SLED design. However, it can be approached using
the discussion presented in this section as a guideline.

19.4 Summary

SLEDs are employed over a wide range of di�erent applications with emitted ASE spectra covering the
wavelength range from the visible to the near infrared. The band-gap energy of available semiconductor
materials determines the appropriate choice of the substrate and epitaxial layer materials for the design
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of a speci�c SLED structure. Most SLEDs are realized in a tilted ridge-waveguide geometry similar to a
Fabry–Pérot LD, which allows for the formation of optical modes. The target speci�cations mainly on the
output power and the ASE spectrum determine the active-region design. SQW and MQW structures are
most commonly used to achieve material gain.

The performance of SLED structures can be simulated like other opto-electronic devices using full 3D
simulation tools. Such complex tools couple the di�erent problems involved in the physical device descrip-
tion (multiphysics treatment). The simulation results are rather accurate at the expense of analytical insight.
Analytical approaches based on traveling-wave equations describing the longitudinal propagation of light
reduce the dimensionality of the problem and the number of coupled equations. They are particularly use-
ful to derive an analytical expression for the SLED’s L–I characteristic. We have presented a simple model
that includes the in�uence of arbitrarily strong modal re�ectivities at both facets on the output power.
Using our analytical results, we have compared the performance of standard SLEDs with the new class of
so-called R-SLEDs. Furthermore, our model has been veri�ed by a comparison against experimental data
and results obtained from full 3D simulations.

The design of SLEDs with speci�c target requirements has been discussed. In particular, the appearance
of single-peaked (bell-shaped) and double-humped (M-shaped) ASE spectra for broad bandwidth SLED
structures and how it a�ects the corresponding coherence functions has been analyzed in detail. Various
methods for boosting the output power have been illustrated with their implications particularly on the
ASE spectra. These �ndings can be �nally used as a guideline for the design of a speci�c broad-bandwidth
high-power SLED structure.
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