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20.1 Introduction

The rapid growth in the development of optical networks requires small, inexpensive, and easy-to-integrate
optical ampli�ers for use as basic ampli�ers (power boosters, in-line ampli�ers to compensate for �ber loss,
and optical receiver preampli�ers) and also as optoelectronic signal processing devices such as wavelength
converters, optical switches, intensity and phase modulators, logic gates, and dispersion compensators.

There are two main classes of optical ampli�er: optical �ber ampli�ers (OFAs) and semiconductor opti-
cal ampli�ers (SOAs). OFAs are optical ampli�ers that use optical �ber as the gain medium, which in most
cases is a glass �ber doped with rare-earth ions such as erbium (for operation in the 1.55-μm telecommu-
nications band). The active dopant is supplied with energy by an external pump laser. OFAs are relatively
large devices, with advantages such as wide optical bandwidth (tens of nm), high gain (>20 dB), high sat-
uration output power (>20 dBm), de�ned as the output signal power at which the gain is half that of the
unsaturated gain, low-noise �gure, and low polarization sensitivity. When an OFA is used to amplify an
optical data signal, its slow gain dynamics (the lifetime of the excited energy levels are typically in the tens
of ms range) are a signi�cant advantage as the ampli�er only experiences the average power of the data
signal. This results in low intersymbol interference and, when used to amplify wavelength division multi-
plexed signals, low interchannel cross-talk. However, OFA’s slow dynamics preclude its use in optical signal
processing applications.

To achieve optical gain, an SOA uses an electrically pumped semiconductor material, as is the case
for a semiconductor laser, such that a population inversion occurs between the material conduction and
valence bands. An incoming light wave is ampli�ed when the resulting stimulated emission exceeds losses
due to stimulated absorption and other material or structural losses. By appropriate choice of the gain
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material and its bandgap energy, SOAs can be designed to operate in the wavelength region of choice,
typically the 1.3- and 1.55-μm optical communication windows (Connelly, 2002a; Dutta and Wang, 2013).
Various SOA designs have been shown to achieve gain, noise �gure, saturation output power, and optical
bandwidths comparable to those for OFAs; however, SOAs can exhibit signi�cant polarization sensitivity.
The main advantages of SOAs over �ber ampli�ers are their small size and compatibility with photonic
integrated circuit (PIC) technology. SOAs have much faster dynamics than OFAs, which can lead to data
signal distortion and interchannel cross-talk when operated in the gain-saturated regime. However, high-
speed dynamics and nonlinearities can be exploited to realize all-optical signal processing functions.

In this chapter, the basic principles and types of SOA are reviewed followed by descriptions and imple-
mentations of relatively simple models that are used to gain insight into important SOA static, dynamic, and
nonlinear behavior. The models described are (1) quasi-analytic static model, (2) bulk SOA static model
including ampli�ed spontaneous emission (ASE), (3) time-domain model including ASE, which is used to
simulate pattern e�ects and a cross-gain modulation (XGM)-based wavelength converter, (4) pulse ampli-
�cation analytic model, which is also used to simulate a cross-phase modulation (XPM)-based wavelength
converter, and (5) a four-wave mixing (FWM) analytic model. Further chapters describe more detailed
descriptions and models of particular types of SOA.

20.2 Basic Principles

The principle of operation of a traveling-wave SOA is shown in Figure 20.1. The ampli�er consists of an
electrically pumped active waveguide. An incoming light wave is ampli�ed as it propagates through the
waveguide. Antire�ection (AR) coatings are used to suppress the end facet re�ections, which are approxi-
mately 32% in uncoated devices. Through the use of AR coatings and optimized waveguide designs (such
as using a tilted waveguide geometry), re�ectivities as low as 10−5 or less can be achieved. The models
described in this chapter assume zero facet re�ectivities. The input signal experiences a single-pass power
gain G = exp(gL), where g is the gain coe�cient at the signal wavelength and L the ampli�er length.
Although SOA waveguides are designed to be single mode, they support two orthogonal polarization
modes, the transverse electric (TE) and transverse magnetic (TM) modes.

The ampli�cation process adds broadband noise (spontaneous emission) to the propagating signal,
caused by spontaneous recombination of conduction band electrons to valence band holes. This noise
is subsequently ampli�ed, leading to ASE. In the linear operating region, where the gain is constant and
the ASE statistics are not a�ected by the input signal, the output ASE power spectral density (W/Hz) in a
single polarization state at the signal energy Es is given by

ρASE = nspEs(G − 1), (20.1)

Active
waveguide

Optical field
profile

Input spectrum Output spectrum

ASE
(showing ripples
caused by nonzero
facet reflectivities)

Signal

λ λ0λ0 λ

Weak optical
signal in

Amplified optical
signal out

Electrical drive
currentAR

coating
AR
coating

FIGURE 20.1 Semiconductor optical ampli�er (SOA) basic structure.
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where nsp is the population inversion factor having a maximum possible value of 1. The ampli�er noise
factor F is de�ned as the ratio of the ampli�er input to output signal-to-noise ratios (SNRs). F quanti�es
the degradation of the SNR, as determined in terms of the signal and noise levels in the photocurrent of
an ideal photodetector placed in the signal path, due to the insertion of the ampli�er in a signal trans-
mission system (Baney et al., 2000; Kweon, 2002). The ideal photodetector responsivity R = e∕E (having
a quantum e�ciency equal to 1), where e and E are the electronic charge and light wave photon energy,
respectively. Assuming that the input signal is shot-noise limited, the input SNR is equal to Ps∕(2EsBe),
where Ps is the input signal power and Be the detector electrical bandwidth. In practical receivers, the
photodetector is preceded by an optical bandpass �lter of bandwidth Bo that passes the signal and greatly
reduces the ASE. The average signal and total ASE powers a�er the optical �lter are PsG and 2ρASEBo,
respectively, with corresponding photodetector shot-noise current variances (A2), a�er electrical �lter-
ing, of σ2

sig = 2eRGPsBe and σ2
sp = 2eRρASEBoBe (Olsson, 1989; Kweon, 2002). Since the photodetector is

a square-law type detector, the signal also beats with the ASE giving rise to a signal-spontaneous beat
noise current variance σ2

s-sp = 4R2GPsρASEBe. The beating of the ASE with itself leads to spontaneous–
spontaneous beat noise having a current variance σ2

sp-sp = 2R2ρ2
ASEBe(2Bo −Be). The output SNR, SNRout,

is the ratio of the square of the signal photocurrent (RGPs)2 to the sum of the noise variances. If the optical
�lter bandwidth is small enough such that σ2

sp-sp and σ2
sp are negligible compared to the other two noise

sources (the signal-spontaneous beat noise limit), then

SNRout =
(RGPs)2

4R2GPsρASEBe + 2eRGPsBe
. (20.2)

The noise factor is then

F =
2ρASE
GEs

+ 1
G
. (20.3)

The noise �gure (NF) is F expressed in decibel units, NF = 10 log10 F dB. For large gains, F ≈ 2nsp. Since
the maximum value of nsp is 1, the minimum noise �gure possible is 3 dB. Usually, the shot-noise term in
Equation 20.3 is much smaller than the signal-spontaneous beat noise term so

F =
2ρASE
GEs

. (20.4)

Nonzero re�ectivities lead to multiple passes of the signal and ASE, with constructive interference occur-
ring at discrete optical frequencies νq that are integer multiples r of the ratio of the speed of light in the
ampli�er c∕ne�, where ne� is the waveguide e�ective index (de�ned as the ratio of the propagation con-
stant in the waveguide to the free space propagation constant), to the round-trip distance 2L. As the latter
quantity is much greater than the wavelength, r is very large. The frequency spacing Δν between adjacent
resonances is Δν = c∕(2ne�L). For a typical SOA with L = 1 mm and ne� = 3.5 and operating in the
1.55-μm region, the wavelength spacing is 1.2 nm. When the e�ect of nonzero re�ectivities is signi�cant,
the SOA is termed a Fabry–Pérot SOA (FP-SOA) because of its similarity to a Fabry–Pérot resonator. The
signal gain of an FP-SOA at optical frequency ν is given by

GFP(ν) =
(1 − R1)(1 − R2)G

(1 −
√

R1R2G)2 + 4
√

R1R2G sin2[π(ν − νr)∕Δν]
, (20.5)

where R1 and R2 are the SOA input and output facet re�ectivities, respectively. FP resonances cause unde-
sirable ripples in the signal gain and ASE spectrums (Figure 20.1). If the single-pass gain is high enough
such that the denominator in Equation 20.5 approaches 0, GFP will become very large and the SOA will
begin to oscillate, at which point it behaves as a laser and not as an ampli�er.
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A re�ective semiconductor optical ampli�er (RSOA) can be formed by applying an AR coating to the
input facet and a highly re�ective coating to the opposite facet. RSOAs have applications such as modulators
in passive optical networks (Lee et al., 2005).

20.2.1 Typical Bulk SOA Structure

A bulk material SOA operating in the 1550-nm region is shown in Figure 20.2 (Connelly, 2007). The active
region is sandwiched between two separate con�nement heterostructure (SCH) layers, which have a lower
refractive index than the active region, and hence con�ne the light. The p–n junctions formed by the p-type
and n-type InP layers act as current blocks, thereby providing good con�nement of the injected carriers
in the active region. An important SOA geometrical parameter is the optical con�nement factor Γ de�ned
as the fraction of the transverse (to the propagation direction) optical intensity overlapping with the active
region. In general, Γ is polarization dependent, so the TE and TM con�nement factors ΓTE and ΓTM are
unequal. They are only equal in an unstrained bulk material SOA having a square cross-section waveguide.
Such SOAs are di�cult to fabricate as they require optical con�nement in both transverse directions. Most
commercial SOAs use rectangular cross-section waveguides and consequently, ΓTE ≠ ΓTM. Con�nement
factors can be determined using formulas (Chuang, 2009) or commercial mode solvers. If ΓTE ≠ ΓTM
and the material gain is polarization independent, then the SOA gain will be polarization dependent. In
Figure 20.2, the introduction of tensile strain between the active region and SCH layers is used to increase
the TM to TE material gain ratio, to compensate for the higherΓTE value caused by the waveguide asymme-
try, and thereby reduce polarization sensitivity. The tapered regions act as mode expanders that couple light
from the active waveguide to an underlying passive waveguide, thereby simplifying coupling to external
optical �bers.

20.2.2 Quantum Well, Dot and Dash SOAs

SOAs that use bulk materials require high transparency current densities (at which the SOA has unity
gain). The active layer in quantum well (QW) SOAs have much smaller thicknesses (~5–10 nm) than in
conventional bulk structures (~100 nm). In bulk material, the injected carriers can move in three dimen-
sions whereas in a QW they are con�ned to two dimensions. The enhanced quantum e�ects result in a
signi�cantly di�erent band structure and material gain compared to bulk material. The small thickness of
the QW allows many QWs to be stacked to form a multiple quantum well (MQW) active region. MQW
SOAs have a number of advantages compared to bulk SOAs. Because of the small active region volume
compared to bulk SOAs, a reduced injection current is su�cient to create a large carrier density in the
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FIGURE 20.2 Typical SOA structure (Connelly, 2007). The buried windows and 7° tilted waveguide (with respect to
the end facets) further reduce the e�ective facet re�ectivity.
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active region resulting in a broader gain spectrum and shorter carrier lifetime (related to the average time
for conduction band electrons to recombine with valence band holes). Shorter carrier lifetimes result in
shorter gain recovery times, which is of particular importance in reducing pattern e�ects when the SOA is
used to amplify high-speed data. Furthermore, the loss coe�cient in MQW active regions is signi�cantly
smaller than that in bulk devices, which leads to an improvement in noise performance. The polarization
sensitivity of QW structures can be reduced by using strained QWs. Strain-induced band structure modi-
�cations also result in a reduction in loss mechanisms such as Auger recombination and intervalence band
absorption (IVBA). The linewidth enhancement factor (LEF) is also reduced, which results in ampli�ed
pulses experiencing less spectral broadening, leading to superior high-speed performance as compared to
bulk and unstrained QW SOAs. Bulk and QW SOAs have typical gain recovery lifetimes in the range of
hundreds of picoseconds; so, when used to amplify data signals, signi�cant pattern e�ects can be present at
baud rates in the region of tens of Gbaud/s. Pattern e�ects also induce nonlinear phase noise through the
self-phase modulation (SPM) e�ect, which can be a more serious performance degradation factor when
advanced modulation formats are used. The amount of SPM is directly related to the LEF.

A quantum dot (QD) is a semiconductor nanostructure with dimensions that typically range from 2 to
10 nm, which con�nes the motion of injected carriers to all three spatial directions (Akiyama et al., 2007).
Compared to bulk and QW SOAs, QD SOAs have been shown to have improved gain bandwidth, noise
�gure, and saturation output power as well as enhanced nonlinear e�ects such as FWM. Polarization insen-
sitive QD SOAs have been realized using optimized QD shapes along with close stacking of the QD layers.
Of particular signi�cance is the ultrafast gain recovery lifetime, typically of the order of a few picoseconds,
a factor of ten lower than that for bulk and QW SOAs so that QD SOAs are capable of amplifying ultra-
fast data signals with little or no pattern e�ects (Ben-Ezra et al., 2005). QD SOA LEFs can be much lower
than for bulk and QW SOAs and so are particularly suitable for amplifying very high baud rate advanced
modulation data signals.

Quantum dash (QDash) SOAs are of interest as an alternative to QD SOAs, since they have some dot-
like properties and can more easily be made to operate in the 1.55-μm region, although they also have been
shown to have longer gain recovery times in the range of hundreds of picoseconds (Lelarge et al., 2007).

20.3 Quasi-Analytic Static Model

As the input signal power to an SOA is increased, the gain reduces as the electrically pumped conduction
band carriers (electrons) in the active material are depleted by stimulated recombination with holes in the
valence band. To determine the factors that in�uence SOA gain at high input powers, a simple traveling-
wave-based model can be used (Connelly, 2002a). The carrier density n dependent material gain gm per
unit length at the signal wavelength is assumed to be a linear function gm = a(n − nt), where a is the
di�erential of the material gain with respect to n and nt is the transparency carrier density. The carrier
density rate equation is

dn
dt
=
ηI
eV

− n
τc
−
Γa(n − nt)P

AEs
, (20.6)

where I is the bias current and Es the signal photon energy. The injection e�ciency η is the fraction of
the SOA current entering the active region. The active region cross-section area, A = dW, where d and
W are the active waveguide thickness and width, respectively, and the active region volume V = AL. τc
is the interband carrier lifetime due to nonradiative and radiative spontaneous recombination processes
including trap, Auger, and spontaneous emission. The propagation of the signal power P is described by
the traveling-wave equation

dP
dz

=
[

Γa(n − nt) − α
]

P, (20.7)
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where z is the propagation direction (along the ampli�er axis) measured from the input and α is
the loss coe�cient. Under steady-state conditions, the time di�erential in Equation 20.6 is zero, from
which

n =
(

τc η I
eV

)

Psat
P + Psat

+ nt
P

P + Psat
. (20.8)

The saturation power Psat is de�ned as

Psat =
AEs
Γaτc

, (20.9)

De�ning the spatially dependent normalized power p(z) = P(z)∕Psat, the unsaturated carrier density
n0 =τc ηI∕(eV) and the unsaturated gain coe�cient g0 =Γa (n0 − nt), Equation 20.8 can be written as

n(z) =
n0

1 + p
+

nt p
1 + p

. (20.10)

Inserting Equation 20.10 into Equation 20.7 gives

dp
dz

=
(

g0
1 + p

− α
)

p. (20.11)

The unsaturated gain G0 = exp[(g0 − α)L]. Equation 20.11 can be solved numerically, using, e.g., the
Runge–Kutta method, with the boundary condition p(0) = Pin∕Psat, where Pin is the input signal power.
The ampli�er gain G is calculated as the ratio of the output power Pout = p(L)Psat to the input power. The
calculated gain versus output power is shown in Figure 20.3a for various values of G0 with exp(αL) = 10.
The carrier density is calculated using Equation 20.10. For a given SOA, G0 corresponds to a particular
value of bias current. The normalized saturation output power po,sat is de�ned as the normalized out-
put power at which the ampli�er gain is half the unsaturated gain. From Figure 20.3a, it can be seen that
po,sat ≈ −3.8 dB for the 20 dB unsaturated gain curve and almost independent of G0. The saturation out-
put power Po,sat = po,satPsat, which from the form of Equation 20.9 can be increased by reducing a and τc.
In real SOAs, these two parameters are not constants but for a given structure and material depend on
wavelength and carrier density.

Consider a square cross-section bulk SOA with parameters W = d= 0.4 μm, L= 600 μm, Γ= 0.45,
τc = 0.5 ns, a= 1× 10−20 m2, nt = 2.5× 1024 m−3, and exp(αL) = 10. If the unsaturated gain is 20 dB
at a bias current of 150 mA and assuming 100% injection e�ciency, then no = 4.9× 1024 m−3,
g0 = 1.1× 104 m−1 and for a signal wavelength of 1550 nm, Psat = 9.6 dBm and so Po,sat = 5.8 dBm.
Figure 20.3b shows the signal power and carrier density distributions for various values of normalized
input power. At input powers ≪ Psat, the carrier density is uniform throughout the ampli�er. Models that
include ASE show that below saturation, the carrier density is not uniform but is symmetrical with minima
at the SOA ends and a maximum at the center. As the level of saturation increases, the carrier distribution
becomes less uniform, until the ampli�er is highly saturated, at which the carrier density throughout the
ampli�er approaches its transparency value. As Figure 20.3b shows, the spatial distribution of the carrier
density in a SOA can vary greatly. A further disadvantage of this model is that the spontaneous recom-
bination term in Equation 20.4 is assumed to be a linear function of n. In practice, spontaneous recom-
bination is more accurately modeled as a polynomial function of carrier density, so τc is actually carrier
dependent.
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FIGURE 20.3 (a) Gain characteristics for various unsaturated gains. (b) Carrier density and power distributions for
normalized input powers of 0.01, 0.1, 1, and 10. The unsaturated gain is 20 dB.

20.4 Bulk SOA Static Model Including ASE

The simple model described above illustrates SOA operational principles, in particular, saturation e�ects,
but it is of limited use in a real SOA analysis. Most importantly, it does not include gain coe�cient
wavelength dependency or ASE, which contributes to gain saturation and determines the ampli�er noise
performance. In this section, a modi�ed version of the wideband models for an unstrained bulk SOA that
includes ASE (Connelly, 2001, 2007) is considered. The SOA has the same active region geometry and
con�nement factor as used in the quasi-analytic static model. The bulk material is unstrained, and thereby
polarization independent. In the mathematical formulation, ΓTE and ΓTM are assumed to be di�erent but
are assumed to be equal in the simulations.

20.4.1 Material Gain

The material gain gm and spontaneous gain gsp (used to determine the additive spontaneous emission)
of the unstrained bulk material are calculated using methods detailed in Jones and O’Reilly (1993) and
Connelly (2007). Typical gain spectra are shown in Figure 20.4. The net gain coe�cient, at energy E and
polarization p (TE or TM), gp(n,E) = Γpgm,p − αp and the loss coe�cient αp(n) = α0 + Γp α1 n, where α0
is the waveguide scattering loss and α1 the IVBA coe�cient loss coe�cient (Suematsu and Adams, 1994),
with values of 3000 m−1 and 7500 × 10−24 m2, respectively (Connelly, 2001).

20.4.2 Traveling-Wave and Carrier Density Rate Equations

A traveling-wave approach is used to determine signal and the TE and TM ASE photon rates. Transverse
variations in the optical �eld are not considered, and as such, the model has a one-dimensional spatial
dependency. The traveling-wave equation for the forward propagating signal photon rate Ns is

dNs
dz

= gs Ns, (20.12)

where gs is the net gain coe�cient at the signal polarization and photon energy Es. The boundary condition
at the input Ns(z = 0) = Pin∕Es, where Pin is the input signal power. For a given carrier density spatial
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distribution, Equation 20.12 has the solution

Ns(z) =
Pin
Es

exp
⎛

⎜

⎜

⎝

z

∫
0

gsdz
⎞

⎟

⎟

⎠

, (20.13)

which can be calculated using numerical integration. To model ASE, a spectral slicing scheme is used in
which the ASE is split into M spectral slices, each of energy width ΔE. The traveling-wave equations for
the forward (+) and backward (−) propagating kth spectral slice N±

p,k with polarization p and centered at
energy Ek are given by

dN±
p,k

dz
= ±gp,kN±

p,k ± Γpgsp,p,kΔE, (20.14)

with boundary conditions N+
p,k(z = 0) = 0 and N−

p,k(z = L) = 0. The last term on the right-hand side (RHS)
of Equation 20.14 is the additive spontaneous emission into the kth spectral slice. For a given carrier density
spatial distribution, Equation 20.14 has the solution

N+
p,k(z) = exp

⎛

⎜

⎜

⎝

−

z

∫
0

gp,k dz
⎞

⎟

⎟

⎠

z

∫
0

⎡

⎢

⎢

⎣

exp
⎛

⎜

⎜

⎝

z

∫
0

gp,k dz
⎞

⎟

⎟

⎠

Γp gsp,p,kΔE
⎤

⎥

⎥

⎦

dz (20.15)

N−
p,k(z) = exp

⎛

⎜

⎜

⎝

−

L

∫
z

gp,k dz
⎞

⎟

⎟

⎠

L

∫
z

⎡

⎢

⎢

⎣

exp
⎛

⎜

⎜

⎝

L

∫
z

gp,k dz
⎞

⎟

⎟

⎠

Γp gsp,p,kΔE
⎤

⎥

⎥

⎦

dz, (20.16)
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which can be calculated using numerical integration. The carrier density rate equation is

dn
dt
=
η I
eV

− R(n) − 1
dW

[

Γs gm,pNs +
∑

p=TE,TM

M
∑

k=1
Γp gm,p,k(N+

p,k + N−
p,k)

]

. (20.17)

The �rst term on the RHS of Equation 20.17 is the carrier pumping due to the injected bias current. The
injection e�ciency η is assumed to be equal to 1. Γs is the con�nement factor of the signal polarization.
The nonstimulated emission recombination rate R(n) is given by

R(n) = Atrn + Rrad(n) + Cn3, (20.18)

where Atr and C are the trap and Auger coe�cients, respectively. Trap recombination is mainly caused by
Shockley–Read–Hall recombination at defects in the material (Fukuda, 1991). The spontaneous radiative
recombination rate Rrad(n) is commonly assumed to be a bimolecular process approximated by Rrad = Bn2,
where the bimolecular recombination coe�cient B is o�en taken to be a �tting parameter; however, it
can be directly calculated from the material gain (Chuang, 2009). For the material under consideration,
B ≈ 2.8× 10−16−0.24× 10−40n m3s−1. Auger recombination involves three carriers: an electron and hole,
which recombine in a band-to-band transition and give o� the resulting energy to another electron or
hole (Chuang, 2009). Because SOAs usually operate with high carrier (electron) densities, the hole density
is almost equal to the carrier density so the Auger recombination rate is proportional to n3. The Auger
coe�cient for a particular material or structure can be calculated from �rst principles, but this is di�cult
and there is o�en a high degree of uncertainty in values quoted in the literature. In most models, typical
values are used or it is treated as a �tting parameter. Here, C is taken to be equal to 3× 10−41 m6s−1. At the
high carrier densities present in SOAs and if the defect level is low, trap-induced recombination is o�en
assumed to be negligible compared to the other two processes and can be ignored, as is the case here. The
third term on the RHS of Equation 20.17 is the ampli�ed signal-induced carrier density depletion rate.
ΓsNs is the photon rate in the active region, which is multiplied by gm,p to obtain the conduction band
to valence band carrier recombination rate per unit length. Division by the active region cross-section
area results in the carrier density depletion rate. The fourth term on the RHS of Equation 20.17 is the
ASE-induced carrier density depletion rate, which is obtained in a similar fashion to that for the ampli�ed
signal.

20.4.3 Algorithm and Simulations

Under static conditions, the time di�erential in Equation 20.17 is equal to zero; the aim of the numerical
algorithm is to determine the signal, ASE photon rates, and the carrier density such that this is the case
(Connelly, 2007). The model equations cannot be solved analytically, thereby requiring a numerical solu-
tion (Connelly, 2001, 2007). Fi�y spatial points are used for numerical integration and 150 spectral slices
covering a range of 1250–1650 nm. First, the material gain and spontaneous gain are calculated for the
spectral slice energies and particular values of carrier density within the expected range. The bimolecular
recombination coe�cient is calculated for the same carrier density values. Initially, the carrier density in
the ampli�er is set to some reasonable value (e.g., 3×1024 m−3). The signal intensity and ASE photon rates
are then estimated using Equations 20.13, 20.15, and 20.16. An updated value for n at each spatial section
is then estimated using Equation 20.17 with the time derivative set to zero, and subsequently the gain and
spontaneous recombination rate throughout the ampli�er, using interpolation of the full calculations, fol-
lowed by the signal and ASE photon rates. This process is continued until the values of the ASE photon
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rates converge to a suitable tolerance (0.1%). Ampli�er characteristics such as gain, ASE spectrum, and
noise �gure can then be calculated. The polarization-dependent ASE output spectral density (W/Hz) at Ek
is given by

ρp,k =
h Ek
ΔE

N+
p,k(z = L). (20.19)

In the signal-spontaneous beat noise limit, the noise �gure spectrum is given by

NFp,k = 10 log10

(

2ρp,k

EkGp,k

)

, (20.20)

where Gp,k is the ampli�er gain at Ek (Baney et al., 2000; Olsson, 1989). The maximum gain achievable is
mainly limited by ASE. The small-signal gain and ASE spectra are shown in Figure 20.5 for bias currents
ranging from 40 to 100 mA. The gain and ASE spectrum peaks shi� to shorter wavelengths as the bias
current increases, an e�ect which is present in real SOAs, and they both saturate at high bias currents. The
3-dB optical gain bandwidth at a bias of 100 mA is 30.6 nm. The corresponding ASE spectrum has a 3-dB
bandwidth of 34.4 nm; in general, the ASE spectral width is a reasonably good measure of the ampli�er
gain bandwidth. Figure 20.6a shows the small-signal gain and noise �gure bias current dependency. The
gain begins to saturate at bias currents at which the ASE saturates; the noise �gure reaching a limiting value
of approximately 11.7 dB. The ASE and carrier density spatial distributions are shown on Figure 20.6b for
no input signal. The latter has a symmetrical pro�le with a maximum at the center, in contrast to the quasi-
analytic model, which does not include ASE. The gain, output signal, and ASE powers versus input power
characteristics are shown in Figure 20.7a for a bias current of 100 mA at which the unsaturated gain is 23.3
dB and Po,sat = 4.9 dBm. The reduction in ASE power is clearly seen as the ampli�er is driven into saturation
by the input signal. As the input power level is increased, the ampli�ed signal begins to compete for the
available gain and the carrier density distribution becomes more asymmetrical, as shown in Figure 20.7b
for a moderate saturation level.

The model can be used to investigate the e�ects of di�erent material and geometrical parameters on
SOA performance and is thereby useful in SOA design.
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FIGURE 20.5 (a) Gain spectra and (b) ampli�ed spontaneous emission (ASE) spectra (summed over both polariza-
tions) in the absence of an input signal for bias currents of 40–100 mA in increments of 10 mA.
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FIGURE20.6 Small-signal (a) gain and noise �gure versus bias current at 1550 nm, (b) ASE and carrier density spatial
distributions. The bias current and signal wavelength are 100 mA and 1550 nm, respectively.
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FIGURE 20.7 (a) Gain, output signal and ASE powers versus input power. (b) ASE and carrier density spatial distri-
butions for an input power of −15 dBm, at which the gain has been reduced from its unsaturated value of 23.3–20 dB.
The bias current and signal wavelength are 100 mA and 1550 nm, respectively.

20.5 Time-Domain Model Including ASE

The most common application of SOAs is for modulated signal ampli�cation, so it is of interest to model
time-domain behavior such as pattern e�ects, XGM, SPM, and XPM (Obermann et al., 1998; Durhuus
et al., 1992; Asghari et al., 1997; Occhi et al., 2003). By including the time di�erential term in Equation 20.17,
the static model described above can be used to model SOA dynamics having timescales as short as hun-
dreds of picoseconds (Connelly, 2002b). The carrier density is initialized to some suitable value and the
initial values of the signal and ASE photon rates are set to zero. The carrier density at the next time step
is determined by solving Equation 20.17 using the modi�ed Euler method, which is a second-order tech-
nique (Press et al., 2007) and for a given time step is signi�cantly more accurate than simply replacing
the time di�erential by a �rst-order �nite di�erence (Euler method). Nonetheless, an appropriate time-
step size must be chosen to prevent stability issues and ensure accuracy. Assuming that the propagation
time through the ampli�er is much less than the time variation of the optical input and current, the ASE
and signal photon rates can be determined using Equations 20.13, 20.15, and 20.16. The new values of the
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photon rates are then used in Equation 20.17 to determine the carrier density at the next time step until
the time span of interest is completed.

The carrier density rate Equation 20.17 can be expressed as

dn
dt
=
η I
eV

− n
(

1
τc
+ 1
τs

)

, (20.21)

where the inverse of the nonstimulated emission carrier lifetime τc is given by

1
τc
=

R(n)
n

, (20.22)

and the inverse of the stimulated recombination carrier lifetime τs is given by

1
τs
= 1

n dW

[

Γs gm,pNs +
∑

p=TE,TM

M
∑

k=1
Γp gm,p,k(N+

p,k + N−
p,k)

]

. (20.23)

The total e�ective carrier lifetime τe� is

τe� =
(

1
τc
+ 1
τs

)−1
, (20.24)

which depends on the ampli�er operating point and input optical power and also has a strong spatial depen-
dency. The smaller the τe�, the faster the gain recovery time. Figure 20.8 shows the output power, spatially
averaged e�ective carrier lifetime τe�,m, and instantaneous gain for an ampli�ed 5-Gb/s non-return-to-zero
(NRZ) data stream with high and low powers of 0.1 mW and 0.1 μW, respectively. The bias current, unsat-
urated gain, and signal wavelength are 100 mA, 23.3 dB, and 1550 nm, respectively. The ampli�ed data
distortion is due to the dynamic changes of the carrier and photon distributions causing pattern e�ects on
a timescale approximately given by τe�,m, which for the simulations shown in Figure 20.8 can vary between
370 and 850 ps. At higher bit rates the severity of pattern e�ects increases and consequently their e�ect on
system performance.

20.5.1 XGM Wavelength Converter

XGM occurs when an intensity-modulated input data signal (the pump) causes dynamic changes in the
carrier density and thereby the gain experienced by a copropagating or counter-propagating light wave (the
probe) at a di�erent wavelength to the data signal. Carrier density changes also cause changes in the active
region refractive index and thereby the phase of both the pump and probe leading to SPM and XPM. XGM
can be used to realize wavelength converters in which data is copied from an input pump data signal to an
input continuous wave (CW) probe. An XGM-based 2.5-Gb/s wavelength converter with copropagating
pump and probe light waves is shown in Figure 20.9. When the pump power is high, the gain experienced
by the probe is reduced and vice versa, hence the inverted pump data is transferred to the probe. The
above time-domain model is used to simulate the converter, as shown in Figure 20.9. The performance
degrades as the bit rate increases, as the dynamic gain is unable to follow the variations in the input pump
power. Because of their superior dynamics, compared to bulk or QW SOAs, QD SOAs can be used as XGM
wavelength converters at much higher bit rates.
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FIGURE 20.8 Simulated SOA output power, spatially averaged e�ective carrier lifetime, and instantaneous gain for
an input NRZ 5-Gb/s data sequence. The data high- and low-level powers are 0.1 mW and 0.1 μW, respectively. The
bias current, unsaturated gain, and signal wavelength are 100 mA, 23.3 dB, and 1550 nm, respectively. The simulation
time step is 2.5 ps.
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FIGURE 20.9 Cross-gain modulation (XGM)-based wavelength converter and simulated wavelength converted
probe output. The bandpass �lter is used to select the probe signal. The pump input is a 30-dB extinction ratio NRZ
2.5-Gb/s data sequence with a peak power and wavelength of 5 mW and 1550 nm, respectively. The input probe power
and wavelength are 10 μW and 1560 nm, respectively. The bias current is 100 mA.

20.6 Pulse Amplification Analytic Model

Because SOAs have wide optical bandwidths and fast gain recovery lifetimes, they can be used to amplify
optical pulses with full width at half-maximum (FWHM) pulse widths in the picosecond range. By exploit-
ing SOA nonlinearities using materials with intrinsically faster gain recovery times, it is possible to amplify
femtosecond pulses. Many pulse ampli�cation models are described in the literature; here a simple model
(Agrawal and Olsson, 1989), which does not include ASE, is described. The model is applicable to pulse
widths greater than the intraband relaxation time (typically <0.1 ps). The ampli�er is assumed to be polar-
ization independent. The optical �eld can be written as A(t) =

√

P(t) exp[jφ(t)], where P and φ are the
temporal power and phase. The gain coe�cient g at the signal wavelength is modeled as g = Γa (n − ntr).
The power, phase, and gain coe�cient dynamics are determined by solving

∂P
∂z
= (g − α)P (20.25)
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∂φ
∂z

= −1
2
αH g (20.26)

∂g
∂τ
=

(

g − g0
)

τc
−

gP
Esat

. (20.27)

τ is the pulse local time measured with respect to a time frame moving with the pulse. The temporal depen-
dence of g, induced by the propagating pulse power, leads to dynamic changes in the pulse phase, i.e., SPM.
τc is the interband carrier lifetime, which is typically the order of hundreds of picoseconds in bulk and QW
SOAs, and αH is the LEF—a proportionality factor relating phase changes to changes in the gain (Henry,
1982). αH is o�en taken to be a constant, but for a given material is carrier density and wavelength depen-
dent. The saturation energy Esat = EsWd∕(Γa). To determine the evolution of the pulse shape and phase,
a numerical solution of Equations 20.25 through 20.27 is required. However, if it is assumed that α << g
then Equations 20.23 through 20.25 can be solved to obtain a closed-set of equations for the output pulse
power and phase given by

Pout(τ) = G(τ)Pin(τ) (20.28)

φout(τ) = φin(τ) −
αH
2

h(τ), (20.29)

where the instantaneous gain G(τ) = exp[h(τ)]. If the input FWHM pulse width τp << τc, then the
integrated gain h(τ) is given by

h(τ) = − ln
{

1 −
(

1 − 1
G0

)

exp
[

−
Uin(τ)

Esat

]}

, (20.30)

where G0 = exp(g0 L) is the unsaturated gain, g0 is the unsaturated gain coe�cient, and

Uin(τ) =

τ

∫
−∞

Pin(τ′) dτ′. (20.31)

The output pulse frequency chirp, de�ned as the time derivative of its instantaneous phase divided by 2π,
is given by

Δνout(τ) = Δνin(τ) +
α(G0 − 1)

4πG0

Pout(τ)
Esat

exp
[

−Uin(τ)
Esat

]

, (20.32)

whereΔνin is the input pulse chirp. The model is applicable to pulse widths of the order of picoseconds to
tens of picoseconds. For pulse widths >1 ps, nonlinear intraband processes such as carrier heating (CH)
and spectral hole burning (SHB) that have characteristic time constants in the subpicosecond range are
important; so, models that take such e�ects into account are required (Hong et al., 1994; Mecozzi and
Mork, 1997). Once the output pulse power and phase are known, its power spectrum can be calculated. To
show the e�ects of an SOA on an ampli�ed pulse consider an unchirped zero phase Gaussian input pulse,

Pin(τ) =
Ein

τ0
√

π
exp

[

−
(

τ
τ0

)2
]

, (20.33)

where Ein is the pulse energy. τo is related to τp by τp ≈ 1.665τ0. Simulated ampli�ed pulse shape, chirp,
and spectrum are shown in Figure 20.10. The ampli�ed pulse is asymmetric because the leading edge of
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FIGURE 20.10 Ampli�ed pulse; (a) power, (b) chirp, and (c) spectrum. Δf is the frequency deviation from the
input light wave center frequency. The input is a zero-chirp Gaussian pulse with Ein∕Esat = 0.1. The parameter is the
unsaturated gain and αH = 5.

the pulse experiences a larger gain than the trailing edge. The ampli�ed pulse is chirped and its spectrum is
broader than the input spectrum. At high gains, the ampli�ed pulse spectrum exhibits a multipeak structure
caused by SPM-induced frequency chirp.

20.6.1 SOA XPM Mach–Zehnder Wavelength Converter

XGM-based wavelength converters su�er from the disadvantage that high-input pump powers are required
to obtain the large SOA gain modulation depth necessary to achieve a large converted signal extinction
ratio. The associated high-carrier depletion rates lead to a signi�cant increase in the gain recovery life-
time, which limits the data rates at which such converters can operate. To overcome the trade-o� between
speed and modulation depth SOA XPM can be used (Asghari et al., 1997). XPM occurs when an intensity-
modulated input data signal (the pump) causes dynamic changes in the carrier density and, consequently,
the active region refractive index and thereby the phase of a copropagating or counter-propagating probe
signal at a di�erent wavelength to the pump. In an SOA XPM-based wavelength converter, the probe phase
changes are converted into amplitude changes by incorporating one or two SOAs in an interferometric
structure such as the Mach–Zehnder interferometer (MZI) shown in Figure 20.11. If su�cient phase shi�
is achieved with a low-gain modulation index, and the interferometer visibility is high, then the XPM
converter performance will be superior to XGM-based converters. An optical delay line is used to adjust
the relative delay between the modulated input pump pulses reaching each SOA. The interferometer out-
put probe power, assuming that destructive interference occurs between the recombining probe light waves
when their relative phases are equal, is given by

p(t) =
Pprobe

4

[

G1(t) + G2(t) − 2
√

G1(t)G2(t) cos
(

φ1(t) − φ2(t)
)

]

, (20.34)
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FIGURE 20.11 SOA Mach–Zehnder interferometer (MZI) wavelength converter.
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FIGURE 20.12 SOA MZI wavelength converter simulations. (a) SOA input pump powers and dynamic gains,
(b) induced SOA probe phase shi�s and di�erence, (c) comparison between the input pump and converted probe
pulse shapes.

where Pprobe is the input CW probe power, G1(t), φ1(t), G2(t), and φ2(t) are the gain and phase changes of
the SOA in the upper and lower interferometer arms, respectively. The couplers have splitting and coupling
ratios of 3 dB. The pulse ampli�cation model described above can also be used to model XPM in the case
where the input pump pulse width is much less than the intraband lifetime and assuming that the gain
has fully recovered since the previous pulse. Including the e�ects of relatively slow interband processes
requires a numerical solution. In the following simulations, an MZI with two identical SOAs having gains
of 20 dB and αH = 5 is considered. The input pump is a zero-chirp Gaussian pulse with Ein∕Esat = 0.03.
The CW input probe power is−10 dBm. The delay between the pump pulses entering SOA-1 and SOA-2 is
equal to 0.6 of the input pump pulse width. These settings were chosen to obtain a converted probe pulse
shape similar to the input pump pulse, as shown in Figure 20.12. The input pump pulse causes dynamic
gain saturation and associated probe phase shi�s. In the unsaturated state, the phase di�erence between the
probe light waves in the interferometer arms is zero, leading to total destructive interference and thereby
a zero output probe signal. The arrival of the pump pulses in the SOAs creates a window in which the
magnitude of the phase di�erence increases, leading to constructive interference and thereby a nonzero
converted probe signal pulse.
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20.7 FWM Analytic Model

FWM is a coherent nonlinear process that can occur in an SOA between two copolarized input optical
�elds, a strong pump and a weaker probe at angular frequencies ω0 and ω0 − Ω, where Ω is the pump
and probe detuning Agrawal (1988). Beating between the optical �elds results in the establishment of gain
and refractive index pulsations in the SOA at the detuning frequency. In most practical applications of
FWM, in particular wavelength conversion, the detuning is much larger than the inverse of the interband
carrier lifetime (typically in the nanosecond range) and the pulsations are caused by fast intraband pro-
cesses, in particular CH and SHB. The gain and index pulsations result in nondegenerate FWM, in which
energy from the pump and probe is coupled into a new copropagating �eld at frequency ω0+Ω, called the
conjugate, so termed because its dynamic phase is the opposite of the signal phase.

SHB is caused by the injected pump signal creating a hole in the intraband carrier distribution. This
modulates the occupation probability of carriers within a band leading to fast gain modulation. CH is
caused by stimulated emission and free carrier absorption. Stimulated emission subtracts carriers that are
cooler than average while free carrier absorption moves carriers to higher-energy levels in the band. The
resulting increase in temperature decreases the gain. Two characteristic times are associated with CH: the
carrier–phonon scattering time τ1, which is the average time carriers require to cool down to the semi-
conductor lattice temperature, and the carrier–carrier scattering time τ2, which is the average time taken
by the carrier population to reach a heated equilibrium from the initial nonheated equilibrium. The latter
time constant is also associated with SHB. The characteristic times are of the order of tens to hundreds
of femtoseconds, so FWM-based wavelength converters can operate with detuning frequencies as high as
hundreds of GHz. A comprehensive analysis of FWM in SOAs requires a numerical solution to a set of
coupled-mode equations Agrawal (1988). The electric �eld in the SOA can be expressed as

E(z, t) = E1 exp
{

j[k1z − (ω0 − Ω)t]
}

+ E0 exp
[

j(k0z − ω0t)
]

+ E2 exp
{

j[k2z − (ω0 + Ω)t]
}

, (20.35)

where the copropagating and copolarized pump, probe, and conjugate �eld amplitudes are E0, E1, and E2,
respectively, with corresponding frequencies of ω0, ω0 − Ω, and ω0 + Ω, and propagation coe�cients k0,
k1, and k2. If it is assumed that the conjugate power is small relative to the copropagating input pump and
probe powers, then an analytic model can be used to predict the SOA FWM characteristics (Mecozzi et al.,
1995). In this model, the FWM conversion e�ciency η de�ned as the ratio of the output conjugate to input
probe powers is given by

η = G |

|

G1||
2 . (20.36)

G is the saturated ampli�er gain, which can be calculated using Equation 20.11, where p is taken to be the
sum of the pump and probe powers. The unsaturated gain G0 = exp[(g0 − α)L], where g0 and α are the
unsaturated gain and loss coe�cients, respectively.

G1 =
−1 + jαH
αH

exp
[

−1
2
σ Fcd(Ω)

]

sin
[αH

2
σ Fcd(Ω)

]

− 1
2
εshPsatHsh(Ω) σ Fsh −

1
2
εchPsatHch(Ω) σ Fch

(20.37)

Fcd(Ω) =
1

1 − jΩτc ζ

[

ln
(

1 + GPT∕Psat − jΩτc
1 + PT∕Psat − jΩτc

)

+ ζ ln
(

G0
G

)]

(20.38)

Fch = −
1
ζ

[

PT
Psat

(G − 1) − ln
(

G0
G

)]

(20.39)
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FIGURE 20.13 Four-wave mixing (FWM) e�ciency versus absolute value of frequency detuning for input pump and
probe powers of (a) 200 and 20 μm, and (b) 20 and 2 μm, respectively.

Fsh = ln
(

G0
G

)

(20.40)

S(0) = Psat

(

1 − ζ
ζ

)

1 − (G∕G0)ζ

G − (G∕G0)ζ
(20.41)

σ =
P0

P0 + P1
. (20.42)

εch and εsh are parameters characterizing the strengths of CH and SHB processes, respectively, and ζ =
α∕g0. P0 and P1 are the input pump and probe powers, respectively, and the total input power PT = P0+P1.
The Fourier transforms Hch and Hsh of the nonlinear gain responses due to CH and SHB, respectively, are
given by

Hch(Ω) =
1

(1 − jΩτ1)(1 − jΩτ2)
(20.43)

Hsh(Ω) =
1

1 − jΩτ2
. (20.44)

The spatial dependence of the saturated gain G can be determined using Equation 20.9, where p is taken to
be the sum of the normalized pump and probe powers. Figure 20.13 shows the calculated e�ciency for dif-
ferent values of ampli�er unsaturated gain and input pump/probe powers with model parameters: Psat = 10
mW, αH = 4.0, τc = 0.25 ns, τ1 = 750 ps, τ2 = 15 ps, εsh = 10.0 W−1, εch = 2.5 W−1, and exp(αL) = 5 dB.
The e�ciency characteristics are asymmetric and show a more peaked structure as the ampli�er gain
is increased. The e�ciency can be greater than unity for frequencies up to hundreds of GHz, i.e., fre-
quency conversion with gain, so FWM-based SOA wavelength converters are of particular importance in
wavelength division multiplexed systems with wide wavelength channel spacing.

20.8 Conclusion

SOAs have many uses in optical networks, not only as basic ampli�ers but also as fundamental compo-
nents in all-optical signal processing applications. Although SOAs have been investigated for many years,
the development of new SOA structures and incorporation in PICs, advanced materials such as QDs, and
exploitation of ultrafast nonlinearities make SOA research and development an exciting �eld of study.
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The successful advancement of SOA technology requires the development of accurate models, which can
be a signi�cant challenge requiring a deep knowledge and understanding of many diverse areas such as
photonic materials, device design, optoelectronic nonlinearities, noise modeling, and communication sys-
tems design. This chapter has given an overview of SOA basics and used relatively simple models to explain
important SOA characteristics and applications. Further chapters consider more advanced models applied
to particular types of SOAs.
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21.1 Introduction

Eras in modern human history have o�en been labeled by their most signi�cant and widely adopted
technological achievements. It is no wonder that the last several decades proudly bear the name “The
Information Age.” Information, in its many forms, is an invaluable asset and its dissemination, collec-
tion, storage, and analysis have been the primary focus of researchers in numerous �elds. Ever-increasing
hunger for information exchange has driven supporting technologies to new levels. The transition from
electric to optical domain has proved to be one of the most signi�cant milestones of modern communica-
tions. According to TeleGeography and Huawei Marine Networks, as of early 2017, it has been estimated
that close to 1.1 million kilometers of submarine optical cables exist, each bearing several optical �bers,
and approximately 99% of all international telecommunications tra�c is carried over this infrastructure.
Starting from the overloaded backbone links, optical technology was gradually implemented in the lower
levels of network hierarchy, with the ultimate goal of reaching individual users in the foreseeable future.
Decreasing attenuation, eliminating electromagnetic interference, reducing the power consumption, and

631
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diminishing the possibility of eavesdropping are just some of the advantages the new technology has real-
ized (Ramaswami, 2002). With advantages also come challenges, as we are gravitating toward increased
e�ciency, which includes increased capacity over larger distances with decreased signal degradation and
power consumption, and aggregation of �xed and mobile networks into a single network architecture
(Carapellese et al., 2014). Aside from information exchange, information processing and storage in the
optical domain remain in focus as we pursue all-optical solutions to mitigate unnecessary electro-optic
and opto-electric conversion (Ramaswami, 2002; Sygletos et al., 2008). Many steps have already been taken,
both in the physical layer, where new materials and production technologies signi�cantly in�uenced per-
formance, and in the higher levels of abstraction, where new modulation formats and protocols have been
introduced (Ramaswami, 2002; Gladisch et al., 2006; Sygletos et al., 2008). Devices that are simple, but can
perform multiple functions, have always been highly regarded. One example is the semiconductor optical
ampli�er (SOA)—a photonic device that under adequate conditions can amplify the input optical signal.
SOAs have been extensively studied and perfected over the past three decades. Similar to laser diodes,
they are compact and easy to produce and integrate with other photonic devices on a single chip (Xing
et al., 2004). Wide ampli�cation spectrum makes them suitable for use in wavelength-division multiplexed
(WDM) optical networks (Mecozzi and Wiesenfeld, 2001; Zimmerman and Spiekman, 2004; Kani, 2010).
SOAs consume relatively little power (Xing et al., 2004; Sygletos et al., 2008; Koenig et al., 2014), they are
transparent to the optical signal modulation format (Schmuck et al., 2013; Koenig et al., 2014), and they
can be designed to be polarization insensitive (Mathur and Dapkus, 1992; Carlo et al., 1998; Michie et al.,
2006).

Aside from being used as standalone ampli�ers, SOAs can be used for numerous other important
functions (Olsson, 1989; Mecozzi and Wiesenfeld, 2001), such as switching (Stabile and Williams, 2011;
Figueiredo et al., 2015), modulation/remodulation (Totović et al., 2011; Pham, 2014), wavelength conver-
sion (Joergensen et al., 1997; Dailey and Koch, 2009), signal regeneration (Sygletos et al., 2008), all-optical
�ip-�ops (Pitris et al., 2015), and all-optical random access memory (RAM) cells (Vyrsokinos et al., 2014),
to name just a few.

21.2 General Structure and Operation Principles of TW- and
R-SOA

Although SOAs come in many di�erent forms, they all share several common features. Each SOA con-
sists of an active region and a cladding and can have either highly re�ective or antire�ective facets, or a
combination of the two, as shown in Figure 21.1. The two most commonly used SOA structures are the
traveling-wave (TW) SOA and the re�ective (R) SOA.

In the TW-SOA, both facets are coated with an antire�ective layer, and the optical signal travels only
once through the active region. In other words, input and output ports of TW-SOA are on opposite
sides. This is preferable con�guration for using SOA as a standalone ampli�er, whether as a booster,
in-line, or preampli�er (Olsson, 1989; Xing et al., 2004). On the other hand, the R-SOA has one antire-
�ective and one highly re�ective facet, which causes the signal to be re�ected and travel through the active
region twice. Both input and output ports are on the same side, namely at the antire�ective facet. The rear
facet can be made semitransparent, rather than highly re�ective, which is usually the case if the interface
between the cleaved semiconductor facet and air is responsible for re�ection. This may be a useful feature,
since now two output signals can be used, one at the rear and one at the front facet. An SOA with both
facets highly re�ective is the Fabry–Pérot (FP) SOA (Adams et al., 1985; Thylén, 1988). Due to the feed-
back loop provided by the highly re�ective facets, the FP-SOA closely resembles a laser diode, although it
is not typically used to generate coherent signal by itself (Yariv and Yeh, 2007). Nevertheless, its spectrum
does exhibit pronounced resonances and antiresonances, unlike TW- and R-SOAs, where ripples in spec-
trum are much more subtle and are the result of residual re�ectivity of the antire�ective facets (Yariv and
Yeh, 2007).
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FIGURE 21.1 Schematic representation of the semiconductor optical ampli�er (SOA), with relevant geometrical
parameters and signals denoted. The active region is based on the unstrained bulk In0.53Ga0.47As and designed to
be polarization insensitive. (R-SOA, re�ective SOA; TW-SOA, traveling-wave SOA.)

The active region is responsible for the signal ampli�cation through the mechanism of stimulated emis-
sion, where the electric bias current is used to achieve population inversion. The purpose of the built-in
waveguide is to con�ne the optical signal that propagates along the SOA and prevent its leaking into
the cladding. The output signal of any SOA should ideally be an ampli�ed replica of the input signal,
although, in practice, a certain amount of noise is always superimposed, due to the always-present sponta-
neous emission. Aside from the photons initially generated through the process of spontaneous emission,
noise propagation leads to its ampli�cation, which �nally results in ampli�ed spontaneous emission (ASE)
noise. Although the noise is typically regarded as the unwanted by-product of the device operation, there
are numerous examples of using the noise either to generate or deliberately modify the optical signal
(Yamatoya and Koyama, 2004; de Oliveira Ribeiro et al., 2005; Kang et al., 2006; Gebrewold et al., 2015),
or enhance the overall SOA performance (Valiente et al., 1996).

SOAs can also be classi�ed based on the material used for the active region, where each material has
advantages and disadvantages. The simplest choice is bulk semiconductor (Michie et al., 2006; Connelly,
2007; Mazzucato et al., 2015; Totović et al., 2015). However, due to the several drawbacks of bulk SOA, such
as high recovery time (Zilkie et al., 2007), and broad ASE spectrum (Totović et al., 2013), other solutions
have emerged.

Depending on the desired improvement, di�erent materials with a higher degree of con�nement
can be used (Zilkie et al., 2007), starting from multiple quantum well (MQW) (Nagarajan et al., 1992;
Keating et al., 1999; Qin et al., 2012), and continuing to quantum dash (QDash) (Gioannini, 2004;
Reithmaier et al., 2005; Qasaimesh, 2013) and quantum dot (QD) materials (Berg et al., 2001; Qasaimesh,
2003; Kim et al., 2009). SOAs with the active region based on these materials usually exhibit better perfor-
mance in one or more aspects, at the expense of increased complexity and production cost. For example,
QD SOA has fast recovery time, which is crucial for ultrafast signal processing, but due to the dot size distri-
bution, it has moderate material gain and wide ASE spectrum, with full-width at half-maximum (FWHM)
reaching double the values reported for MQW and QDash SOAs (Zilkie et al., 2007). On the other hand,
QDash SOA has high di�erential gain and requires much lower driving currents in comparison with other
active region types and outperforms bulk SOA in terms of time needed for gain recovery (Reithmaier et al.,
2005).

21.3 Modeling of Material and Structural Parameters

Before proceeding to the SOA analysis, it is necessary to understand the physical principles responsible for
its operation and quantify them through the parameters typically used for description of photon–electron
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interaction in the active media. In addition, the waveguide should be optimized to provide polarization-
insensitive operation, and the parameters describing it should also be studied.

21.3.1 Material Gain, Radiative Spontaneous Recombination, and Refractive
Index Variation

Some of the most important optical properties of an SOA’s active layer, determining its functional perfor-
mance and parameters, are material gain, radiative spontaneous recombination (spontaneous emission)
rate, and refractive index. Material gain, or gain per unit length, together with several other structural
parameters, is responsible for de�ning the transmission (device) gain, i.e., the ratio of powers of the out-
put and input optical signals, which is a �gure of merit for the ampli�er’s capability to amplify the input
optical signal by stimulated emission of photons (Connelly, 2002). Radiative spontaneous recombination
rate and its spectral distribution represent the de�ning parameters that sculpt ASE spectrum and the SOA’s
noise (Silver et al., 2000; Connelly, 2002), whereas the refractive index variation directly a�ects the SOA
linewidth enhancement factor (LEF) (Wang et al., 2007), further in�uencing the SOA’s performance in
cross-phase modulation (XPM) systems and optical switching.

In SOAs, stimulated emission has interband character, meaning that it occurs between the conduction
band (CB) and the valence band (VB) of the semiconductor. Since these electronic bands consist of dis-
persed energy levels with di�erent density per unit energy and occupation probability, the material gain
signi�cantly di�ers from gain in other solid-state or gas optically active media, which have a few (usu-
ally three or four) energy levels involved in the process of stimulated emission and its provisioning. The
spreading of energy levels in the bands leads to a broad spectrum of material gain, which increases with the
increase of injected carrier density or, equivalently, the current density. The radiative stimulated recombi-
nation rate is generally proportional to material gain (Chuang, 1995; Coldren et al., 2012), similar to the
radiative spontaneous recombination rate (Chuang, 1995; Coldren et al., 2012). The material gain, as well
as the radiative spontaneous recombination rate and the refractive index change, is, generally speaking,
the function of three quantities: the joint density of states, electron/hole occupation probability, and a con-
stant corresponding to a single optical transition between the two energy levels, one in CB and the other
in VB.

The model of material gain, and the other two parameters, depends on the degree of carrier con�nement
in the active region of the SOA and the semiconductor strain introduced by the con�nement. However, the
models may di�er with respect to degree of accuracy, i.e., approximations adopted in the model. The com-
mon framework for calculating optical properties of semiconductor bulk and quantum con�ned structures
is the envelope function approximation (Meney et al., 1994). Within this framework, a relatively sim-
ple, so-called “two-band” model is used for material gain calculation (Chuang, 1995). It is based on the
assumption of parabolic band dependence E(k), where E is the energy and k is the wave vector of electron
(hole) in the conduction (valence) band. Each band is treated separately by the e�ective mass Schrödinger
equation (Chuang, 1995). More sophisticated multiband envelope function models account for the VB mix-
ing e�ect, which essentially means that the character of sub-bands is a mixture of heavy hole (HH), light
hole (LH), and split-o� (SO) band. This e�ect occurs as a result of quantum con�nement and becomes
more prominent as the degree of con�nement increases.

The most common multiband envelope function models are the Luttinger–Kohn (LK) 4 × 4 (Chuang,
1991) and 6× 6 models (Chao and Chuang, 1992). The former model (LK 4× 4) accounts for HH and LH
band mixing, whereas the latter (LK 6 × 6) includes SO band, in addition to HH and LH bands. A more
advanced multiband approach is based on the 8× 8 k⋅p model (Meney et al., 1994; Liu and Chuang, 2002;
Gvozdić and Ekenberg, 2006), which comprises all three VBs and the CB. In addition to nonparabolicity
of VB, this model accounts for nonparabolicity of CB as well. However, its fundamental drawback is the
occurrence of the spurious solutions, which can be avoided to some extent by various techniques (Foreman,
1997; Cartoixa et al., 2003; Kolokolov et al., 2003; Veprek et al., 2007).
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21.3.1.1 Two-Band Model

Although relatively rough, the two-band model might be used in case of bulk, and even other types of
quantum con�ned structures, but with modest accuracy. It is suitable for the unstrained bulk active region
since the optical matrix element is isotropic in this case (Chuang, 1995), which means that material gain
is the same for any direction of the ampli�ed light polarization. Contrarily, in case of quantum con�ned
semiconductor structures, material gain is polarization dependent. Nevertheless, the two-band model can
still be implemented even in the case of quantum wells. If the optical dipole matrix element is averaged
over the azimuthal angle corresponding to the plane of the quantum well, it is possible to derive its angular
dependence with respect to the con�nement direction of the quantum well (Chuang, 1995).

Here, the detailed expressions for material gain g, spontaneous emission rate per unit energy rsp and
refractive index variation Δnr are presented for the unstrained bulk active region, according to the two-
band model (Chuang, 1995). They are all functions of photon energy ℏω and carrier density n, which is
included in expressions through the carrier-dependent quasi-Fermi levels:

g (n, ℏω) = Cg
M2

b
4π2
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In previous equations, Cg = πq2∕(nrcε0m2
0ω), where q is the absolute electron charge, m0 is the free-

electron mass, nr is the refractive index of the active region, c is the speed of light in vacuum, ε0 is the
vacuum permittivity, ω = 2πν is the angular photon frequency, with ν being its frequency, and ℏ = h∕(2π)
is the reduced Planck’s constant, with h being the Planck’s constant. In Equations 21.1 through 21.3, M2

b =
m0Ep∕6 stands for the bulk momentum matrix element squared, where Ep is the interband matrix element,
μi = (m−1

e + m−1
i )−1 and Eg,i are the reduced e�ective mass and the energy gap between the CB bottom

Ec and the VB top Ev,i, respectively, where i stands for the HH, LH, and SO band. With f c
FD(E) = f c

FD[Ec +
μi∕me ⋅(x−Eg,i)] and f v

FD(E) = f v
FD[Ev,i−μi∕mi ⋅(x−Eg,i)] we denote the Fermi–Dirac distribution f (j)FD(E) =

{1 + exp[(E − E(j)f ∕kBT)]}−1 for the CB (j = c) and the VB (j = v), characterized by the corresponding
quasi-Fermi levels E(j)f , where kB is the Boltzmann constant and T is the temperature. The half linewidth
of the Lorentzian function is denoted by γ.

21.3.1.2 Multiband Model

The LK 4 × 4 and 6 × 6 Hamiltonians are usually implemented in the analysis of quantum con�ned
structures. However, this approach can be very useful in the calculation of gain of strained bulk mate-
rial (Connelly, 2007), which is polarization dependent in this case. As shown by Connelly (2007), and
Mazzucato et al. (2015), eigenvectors of multiband Hamiltonian can be used to �nd the components of the
optical matrix elements along the directions corresponding to polarizations of incoming light.

Totović et al. (2013) present an analysis of the material gain, radiative spontaneous recombination rate
spectrum, and refractive index variation in MQWs based on the 8 × 8 k⋅p method (Liu and Chuang,
2002; Gvozdić and Ekenberg, 2006). The analysis is done for an MQW active region consisting of six
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coupled 0.13% tensile-strained In0.516Ga0.484As quantum wells, which are strain-compensated by the
In0.9Ga0.1As0.3P0.7 0.26% compressively strained barriers. The well thickness is Lw = 19 nm, while the
barriers between the wells are Lb = 10 nm thick, making the total thickness of the structure Lz = 6Lw +
5Lb = 164 nm. The electronic band structure calculation accounts for Burt–Foreman Hermitianization
(Foreman, 1993) and biaxial strain generated by lattice-mismatched growth of the well-barrier layers. By
using an appropriate basis set, the 8×8 Hamiltonian is decoupled into two 4×4 Hamiltonians (HU and HL)
corresponding to the upper (U) and lower (L) block Hamiltonians (Liu and Chuang, 2002). In calculating
the band structure, the �nite di�erence method (FDM) is employed. For determining g, rsp, and Δnr, the
following relations are used (Chuang, 1995; Liu et al., 2001; Liu and Chuang, 2002):
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0Lz

∑

η=U,L

∑

σ=U,L

∑

n,m ∫
|

|

|

e ⋅Mησ
nm
|

|

|

2 Eησnm − ℏω
Eησnm ⋅

(

Eησnm + ℏω
)

f v
ηn − f c

σm
(

Eησnm − ℏω
)2 + γ2

ktdkt
2π

, (21.6)

where η and σ stand for one of the two 4 × 4 Hamiltonians (HU or HL) and corresponding to the nth con-
duction and the mth valence sub-band, respectively, and kt is the in-plane wave vector, while f c

ηn(kt) and
f v
σm(kt) are the Fermi–Dirac distributions for CB and VB, respectively. In these relations, Eησnm = Eησnm(kt)

is the energy di�erence between the eigenenergy of the nth conduction sub-band corresponding to the
η-Hamiltonian and mth valence sub-band of the σ-Hamiltonian, whereas Mησ

nm = Mησ
nm(kt) is the corre-

sponding momentum matrix element vector (Liu and Chuang, 2002). Depending on the unit polarization
vector e, the components of the Mησ

nm vector correspond to the transverse-electric (TE) mode (e = x or z)
or the transverse-magnetic (TM) mode (e= y). In the calculation of rsp, the average matrix element for the
three polarization directions is used, i.e., |Msp(kt)|2 = (2|MTE(kt)|2 + |MTM(kt)|2)∕3.

The spectral dependencies of material gain, radiative spontaneous recombination rate, and refractive
index variation are shown in Figure 21.2. In Figure 21.2a through c, the results are given for the bulk
unstrained In0.53Ga0.47As active region, calculated using the two-band model and the parameters listed
in Table 21.1. In Figure 21.2d through f, the same quantities, calculated using the multiband model, are
given for an MQW active region consisting of six coupled 0.13% tensile-strained In0.516Ga0.484As quantum
wells, which are strain-compensated by the In0.9Ga0.1As0.3P0.7 0.26% compressively strained barriers. The
spectral dependencies for the MQW active region are given only for TE polarization and are determined
based on the parameters given in Table 21.2.

In addition to bulk and QWs, the SOA’s active region o�en comprises self-assembled QDs. The calcu-
lation of the optical properties of QDs can be based on sophisticated k⋅p models, such as 8 × 8 k⋅p model
(Grundmann et al., 1995; Stier et al., 1999). However, due to the statistical nature of the QD size, very pre-
cise calculation is usually meaningless. Therefore, some simple methods can also be su�ciently e�ective
as in the two-band model (Kim and Chuang, 2006; Kim et al., 2008).

21.3.2 Waveguide Design and Polarization Insensitivity

In addition to high transmission gain, high optical output power, low-noise, and low-energy consump-
tion, in many SOA applications polarization insensitivity of modal gain is required. This demand can be
di�cult to ful�ll since polarization dependence of modal gain is caused by SOA’s waveguide geometry,
through con�nement factor, and material choice, through the optical transitions. Therefore, careful analy-
sis and design of the waveguide structure and material gain are needed (Labukhin and Li, 2006). Numerical
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TABLE 21.1 Material Parameters Used for Band Calculation for Bulk SOA

Symbol Quantity In0.53Ga0.47As In0.76Ga0.24As0.52P0.48

Eg Energy gap CB–VB (HH, LH) 748 meV 1001 meV
Eg,SO Energy gap CB–VB (SO) 1115 meV 1246 meV
ΔSO SO energy 367 meV 245.3 meV
Ep Interband matrix element 24.93 eV 23.26 eV
me

∗ Electron e�ective mass 0.0389 m0 0.0541 m0

mHH
∗ HH e�ective mass 0.3410 m0 0.4069 m0

mLH
∗ LH e�ective mass 0.0567 m0 0.0889 m0

mSO
∗ SO e�ective mass 0.1393 m0 0.1709 m0

SOA, semiconductor optical ampli�er; LH, light hole; HH, heavy hole; SO, split-o�; CB,
conduction band; VB, valence band.

modeling of the active region’s susceptibility, the real and imaginary parts of which correspond to refractive
index and material gain, in combination with the calculation of the waveguide propagation constant and
con�nement factor is an inevitable and important step in the quest for the optimal, polarization-insensitive
design of SOA. Waveguide polarization sensitivity comes from signi�cant disproportion of its cross-section
dimensions, where the width is usually one order of magnitude larger than its thickness, raising the di�er-
ence in TE and TM wave propagation and the corresponding con�nement factors. Moreover, as shown in
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TABLE 21.2 Material Parameters Used for Band Calculation for MQW SOA

Symbol Quantity In0.516Ga0.484As In0.9Ga0.1As0.3P0.7

Eg Energy gap 765.2 meV 1107.3 meV
Ev,av Average VB position −6.6689 eV −6.8986 eV
ΔSO SO energy 366.3 meV 189.2 meV
Ep Interband matrix element 25.03 eV 21.91 eV
m∗

e Electron e�ective mass 0.0395 m0 0.0617 m0

γ1 Luttinger parameters 10.1534 6.0906
γ2 3.6114 1.9545
γ3 4.5580 2.6785
c11 Elastic sti�ness constants 1020.7 GPa 996.79 GPa
c12 507.48 GPa 536.03 GPa
ac CB deformation potential −6.091 eV −5.941 eV
av VB deformation potential −1.077 eV −0.802 eV
b Shear deformation −1.897 eV −1.918 eV

SOA, semiconductor optical ampli�er; MQW, multiple quantum well; SO, split-o�; CB,
conduction band; VB, valence band.

Section 21.3.1, quantum-con�ned and stressed bulk semiconductors in active region exhibit polarization-
dependent dipole optical matrix elements, leading to additional variation of TE and TM modes. An
unstrained bulk material is polarization isotropic and in this case square waveguide cross-section may
provide SOA polarization insensitivity (Connelly, 2001; Michie et al., 2006). Unfortunately, such wave-
guide design is technologically very demanding (Connelly, 2001; Michie et al., 2006). Moreover, it leads
to large far-�eld divergence and consequently to poor coupling e�ciency from the SOA to optical �ber
(Connelly, 2002). This can be overcome by tapering the active waveguide near the ampli�er facets
(Connelly, 2002; Michie et al., 2006).

Nevertheless, there are other solutions for polarization-insensitive operation of SOA proposed in the
literature. The majority of these proposals concern MQW SOA and rely on any of the following concepts:
MQWs with tensile barriers (Magari et al., 1991, 1994), tensile-strained QWs (Ito et al., 1998; Carrère
et al., 2010), tensile-strained QWs with compressive barriers (Godefroy et al., 1995; Zhang and Ruden,
1999), alternation of tensile and compressive QWs (Mathur and Dapkus, 1992; Joma et al., 1993; Tiemeijer
et al., 1993; Tishinin et al., 1997; Silver et al., 2000), and the delta-strained QW (Carlo et al., 1998; Cho
and Choi, 2001). The concept based on MQWs with tensile barriers (Magari et al., 1991, 1994) essentially
relies on considerable increase of barrier refractive index for TM mode in comparison with TE mode, as
a consequence of LH band contribution, which modi�es the bandgap and shi�s the wavelength toward
the longer wavelength side due to the tensile strain. The approach based on tensile-strained MQWs with
compressive barriers, proposed by Zhang and Ruden (1999), involves the barrier width optimization such
that the HH sub-bands are grouped tightly and the LH sub-bands are widely separated in energy. The
uppermost valence sub-bands, which have large occupation probability and strongly contribute to the
gain, consist of a single LH sub-band and a group of coupled HH sub-bands, giving rise to balanced gains
for the TE and TM polarizations. The method of alternation of separate tensile and compressive QWs
(Silver et al., 2000) requires thick QWs (around 14 nm) and with high strain (around −0.8%). Due to the
thick tensile layers, the di�erence in density of states of the two types of wells leads to signi�cant charge
redistribution within the active region. The space charge modi�es the band pro�le and forces holes to
move from the tensile well to the compressive well, increasing TE gain. In order to compensate for hole
redistribution, the number of tensile wells can be increased so that they outnumber the compressive wells.
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Otherwise, the thickness of the compressive wells can be increased to minimize the charge redistribution
e�ects.

In unstrained MQWs, HH band sub-bands are usually higher than those of LH band, resulting in higher
TE gain than the TM one. In delta-strained QWs (Cho and Choi, 2001), the delta layer introduces larger
VB discontinuity for HH bands than LH bands, and the quantized energy levels for HH bands experience
a shi� downward, in contrast to those corresponding to LH bands, which shi� upward. As a consequence,
the TM transition strength for the transition between the �rst conduction sub-band and the top LH-like
valence sub-band is much larger than the TE transition strength.

In addition to polarization insensitivity, SOA has to provide as high as possible transmission gain.
Totović et al. (2013), presented a case study, where both design criteria have been implemented: high
device gain and polarization insensitivity. The study analyzes two types of SOA waveguides, with active
regions described in Section 21.3.1: unstrained bulk and tensile-strained MQWs, which are strain com-
pensated by compressively strained barriers. In order to satisfy the �rst design criterion, the upper limit
of the con�nement factor is set to approximately 30%, thereby preventing the strong in�uence of ASE on
SOA saturation (de Valicourt, 2012). Due to the gain isotropy, polarization-insensitive operation of bulk
SOA requires equal con�nement factors for both polarizations (ΓTE = ΓTM) (Connelly, 2001; Labukhin
and Li, 2006; Michie et al., 2006). This requires optimization of the waveguide structure since con�nement
factor ΓTE is usually larger than ΓTM (Connelly, 2002; Labukhin and Li, 2006; Michie et al., 2006). Instead
of using the unstrained, it is possible to implement a tensile-strained bulk active region, which leads to
the polarization and gain anisotropy (Michie et al., 2006; Connelly, 2007). If the di�erence between the
con�nement factors is su�ciently small, a carefully chosen amount of tensile strain (Michie et al., 2006;
Connelly, 2007) may compensate for the di�erence in the con�nement factors ΓTE and ΓTM without the
waveguide optimization. This can provide an e�cient way for polarization-insensitive operation of bulk
SOAs.

Similarly, tensile-strained MQWs in the active region, for which TM gain dominates over TE gain, may
compensate for the di�erence in con�nement factors ΓTE and ΓTM, leading to balanced modal gains for
both polarizations, ΓTEgTE = ΓTMgTM, in the wavelength range of interest. The design of the MQW active
region and the waveguide as a whole can be performed by a self-consistent iterative procedure involv-
ing calculation of the con�nement factors and material gain, which ultimately, should provide optimized
well/barrier dimensions, strain, number of wells, and waveguide cladding. The self-consistent procedure
becomes important if the calculation of the con�nement factor accounts for the refractive index variation
of the active region, associated with variation of the material gain, and caused by carrier injection into the
MQW structure (Totović et al., 2013). For the MQW active region from Section 21.3.1, the procedure leads
to the con�nement factor ratio ΓTM∕ΓTE = 0.806, with ΓTE = 22%. The same procedure is applied in the
optimization of the waveguide for unstrained bulk SOA. The optimization is performed for 1.55 μm and
an average carrier density of 2 × 1018 cm−3, for both bulk and MQW SOAs. The modal gains for TE and
TM polarization of the optimized MQW active region are compared in Figure 21.3 for a range of photon
energies and carrier densities.

It should be brought to attention that the temperature variation can signi�cantly a�ect the refractive
index and consequently the con�nement factor. If e�cient heat sink is not available for SOA, temperature
e�ects should be accounted for in the design of the waveguide. More details on temperature e�ects will be
given in Section 21.4.3.4.

The proposed design of the MQW waveguide is similar to those described by Wünstel et al. (1996) and
Wolfson (2001) in both optical con�nement and layer thicknesses. A rigorous treatment of the con�nement
factor should take into account the variation of the refractive index imaginary part, i.e., gain, in the active
region (Visser et al., 1997). However, in this case study, the focus was set only on the variation of the real
part of refractive index Δnr due to the carrier injection. Although for other carrier densities and photon
energies con�nement factors somewhat detune from the optimal values and ratio, they partially compen-
sate for the material gain ratio detuning, toning down the di�erence in modal gains for the TE and TM
modes.
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Distribution of the transversal components of the electric E(x, y) and magnetic H(x, y) �elds is deter-
mined by a system of Helmholtz equations (Kawano and Kitoh, 2001):

∇2
⊥E

(

x, y
)

+
[

(

nr + Δnr
)2 k2

0 − β
2
]

E
(

x, y
)

= 0, (21.7)

(

nr + Δnr
)2 (⊥

[

1
(
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)2 (⊥H

(

x, y
)
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+
[

(

nr + Δnr
)2 k2

0 − β
2
]

H
(

x, y
)

= 0, (21.8)

where Δnr = Δnr(n, ℏω) is the refractive index variation, which is nonzero only in the active region of
SOA, k0 is the wave vector, β = ne�k0 is the wave propagation constant, and ne� is the e�ective index
of refraction, also dependent on n and ℏω. Equations are solved using the �nite element method (FEM),
with all boundaries set to the Neumann boundary conditions, except for the top ridge, which is set to the
Dirichlet boundary condition.

Con�nement factors for TE and TM polarizations are de�ned as (Kawano and Kitoh, 2001)
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dxdy, (21.10)

where a.r. stands for the active region and i stands for each subdomain of the waveguide, including the
active region. It should be noted that the background part of the refractive index nr,i, with excludedΔnr for
the active region, is derived from Adachi’s interpolation formulas (Adachi, 1989), and it is consequently a
function of photon energy, i.e., nr,i = nr,i(ℏω). Since this dependence has abrupt changes, quantities shown
in Figure 21.4 cannot exhibit smooth behavior.
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Another important parameter for ASE noise modeling in SOAs is the spontaneous emission coupling
factor βsp(n, ℏω), which is de�ned as the spontaneous emission rate coupled to the one optical mode, rel-
ative to the total spontaneous emission rate, Rsp(n) = ∫ rsp(n, ℏω)d(ℏω), and can be calculated according
to the following expression (Coldren et al., 2012):

βsp =
Γvg

V
gnsp

Rsp
, (21.11)

where V is the active region volume and Γ and g are the averaged values of con�nement factor and material
gain over polarizations, respectively, obtained in the same way as the average optical matrix element for
radiative recombination rate. Here, nsp(n, ℏω) is the population inversion factor de�ned by (Coldren et al.,
2012)

nsp =
[

1 − exp
(

ℏω − ΔEf
kBT

)]−1
, (21.12)

whereΔEf = E(c)
f −E(v)

f is the di�erence between the quasi-Fermi levels of CB and VB. In order to calculate
βsp, in addition to con�nement factor, it is necessary to calculate the group velocity of the light vg(n, ℏω):

vg =
∂ω
∂β

= 1
ℏ
⋅
[

∂β
∂ (ℏω)

]−1
. (21.13)
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Spectral dependencies of the con�nement factor, group velocity, and spontaneous emission coupling
factor are shown in Figure 21.4, for both bulk and the MQW active region, optimized to be polarization
insensitive. Therefore, the quantities for the MQW active region are given only for TE polarization.

21.4 Rate Equations

In order to analyze the SOA’s performance, it is �rst necessary to identify the main physical processes
underlying its operation, which are related to the interaction mechanisms between photons and carriers.
These are then typically presented in the form of a coupled system of di�erential equations denoted as the
rate equation system. Optical signal can be described either in terms of complex electric �eld or in terms of
photon density and phase. On the other hand, carriers are modeled either via carrier density (Dailey and
Koch, 2007; Totović et al., 2013) or material gain (Shtaif et al., 1998), or, in some cases, using the integrated
material gain along the direction of signal propagation (Agrawal and Olsson, 1989; Cassioli et al., 2000;
Antonelli and Mecozzi, 2013).

For TW-SOA, it usually su�ces to analyze only the forward-propagating optical signal, with respect to
the longitudinal axis. However, for R-SOA, both forward and backward-propagating optical signals need
to be accounted for. Although the model’s complexity increases when counterpropagating optical signals
are analyzed, it is o�en good practice to develop the generalized model since it can easily be customized
to account for any SOA type by simply changing the power re�ectivity coe�cient of the front and/or rear
facet.

21.4.1 Basic Rate Equations

During the decades of SOA study, a variety of models of di�erent complexity emerged. Some of them
are based on signal power (Agrawal and Olsson, 1989), intensity (Adams et al., 1985), or photon density
analysis (Totović et al., 2014), which may or may not include a separate phase equation, whereas the others
treat the optical signal using the complex electric �eld envelope (Melo and Petermann, 2008; Schrenk,
2011; Antonelli and Mecozzi, 2013). In its basic form, the SOA model describes the interaction between
the carrier density n(z, t) and the two counterpropagating optical signals, forward (+) and backward (−),
with respect to the longitudinal z-axis, all of which are dependent on both time t and the z-coordinate.
For SOA operation, it is necessary to achieve population inversion, which is done using the electric (bias)
current I. When the bias current is low, carriers are mainly drained by spontaneous recombination, which
can be nonradiative, yielding phonons (Ghafouri-Shiraz, 2004), or radiative, which produces noncoherent
spectrally wide optical signal, regarded as noise. As the current increases beyond the transparency value,
enough carriers exist in the active region to make the stimulated emission the dominant process and the
input signal can be ampli�ed during propagation. For the simplest case of bulk SOA, carrier dynamics can
be described as follows (Coldren et al., 2012; Totović et al., 2013):

dn
dt
= I

qV
−
[

An + Rsp (n) + Cn3] − Rst (n) . (21.14)

The �rst term on the right-hand side (RHS) of Equation 21.14 describes the rate at which the carriers are
“pumped” into the active region, where q is the elementary charge, and V = WHL is the active region
volume, dependent on the active region width W, height H, and length L. The second term accounts for
the loss of carriers through spontaneous recombination, where Rsp(n) is the total radiative spontaneous
recombination rate, and A and C are the Shockley–Read–Hall and Auger coe�cients, respectively, related
to nonradiative spontaneous recombination (Coldren et al., 2012). In some instances, carrier loss due to
radiative and nonradiative spontaneous recombination is modeled as n∕τ, where τ is the carrier lifetime,
which is treated either as constant (Thylén, 1988; Shtaif et al., 1998; Totović et al., 2016) or dependent on
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carrier density (Melo and Petermann, 2008; Xia and Ghafouri-Shiraz, 2016). Finally, the last term on the
RHS of Equation 21.14, Rst(n), accounts for the loss of carriers due to stimulated emission, either through
the ampli�cation of the signal alone or the signal and noise combined.

21.4.1.1 Electric Field Envelope Model

Each optical signal can be represented by its electric �eld, which can be separated into the carrier signal and
the slowly varying envelope along the propagation direction. The complex envelope can then be analyzed
either as is (Loudon et al., 2005), or, more commonly, it can be normalized such that its squared magnitude
represents photon density (Connelly, 2007; Totović et al., 2011), power (Agrawal and Olsson, 1989; Cassioli
et al., 2000), or intensity (Henry, 1982). Regardless of the choice for normalization, the system of equations
remains the same since the underlying spatiotemporal dependence is unmodi�ed by the normalization
constants. The evolution of electric �eld envelopes E±(z, t), normalized such that their square magnitude
represents photon densities, |E±(z, t)|2 = S±(z, t), propagating forward (+) and backward (−) along the
longitudinal z-axis, is governed by the following system of equations (Agrawal and Olsson, 1989):

±
∂E±
∂z

+ 1
vg

∂E±
∂t

= 1
2
(

Γg − αi
)

E±. (21.15)

Here, vg is the group velocity, Γ stands for the optical con�nement factor, which determines the portion
of the signal propagating through the active region relative to the total photon density, and g is the mate-
rial gain of the active region, all given at the signal frequency ω. These quantities can be derived from the
models given in Section 21.3, and in Figures 21.2 and 21.4, by interpolation at the signal central energy ℏω.
With αi = K0+ΓK1n active region loss is denoted (Connelly, 2001), where K0 and K1 stand for the carrier-
independent and carrier-dependent loss coe�cients, respectively, which take into account the intrinsic
material loss and the free-carrier and inter-VB absorption (Dailey and Koch, 2009; Schrenk, 2011). It
should be noted that, in general, all parameters appearing in Equation 21.15, namely vg,Γ, g, andαi, depend
on carrier density n, and implicitly on t and z. This dependence notation is omitted from Equation 21.15
and the equations that will follow for compactness and clarity. Nevertheless, it is common to treat vg and/or
Γ as constants (Jin et al., 2003; Totović et al., 2014), which simpli�es the model at the expense of accuracy.

Input optical signal, given by its normalized envelope E0, is assumed to be entering the device at the
front facet (z = 0), with the amplitude re�ection coe�cient r1, and transmission coe�cient t1, as shown
in Figure 21.5. The front facet is usually coated with the antire�ective layer, and it is a common practice to
neglect any residual re�ectivity and assume r1 = 0 and t1 = 1, especially if the analytical or semianalytical
solution is sought (Antonelli and Mecozzi, 2013; Totović et al., 2014). On the other hand, the rear facet
(z = L) has the amplitude re�ection coe�cient r2, which can be neglected for TW-SOA, but needs to be
accounted for in the case of an R-SOA. If the cleaved facet is used as a high-re�ecting one, the amplitude
re�ection coe�cient can be determined as r2 = (1−nr)∕(1+nr) under the assumption of TE polarization,

zL0

E0 r1

nr n0 ≈ 1

r2SOAt1 E–(z)

E+(z)

FIGURE 21.5 Semiconductor optical ampli�er (SOA) structure with relevant optical signals, refractive indices, and
re�ection and transmission coe�cients denoted.
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where nr is the refractive index of the active region. Boundary conditions according to Figure 21.5 read
(Adams et al., 1985, Jin et al., 2003)

E+(0) = t1E0 + r1E−(0),

E−(L) = r2E+(L).
(21.16)

It is common practice to introduce the LEF α in Equation 21.15, which accounts for the phase modu-
lation due to variation of real and imaginary parts of susceptibility χ (Henry, 1982; Agrawal and Olsson,
1989; Dailey and Koch, 2009; Antonelli and Mecozzi, 2013). This variation can be induced by injection of
carriers, αN, and carrier heating (CH), αCH (Occhi et al., 2003). The total phase change will be the sum
of these two contributions since they can be treated as uncorrelated. Carrier-induced LEF is de�ned as
(Osinski and Buus, 1987; Occhi et al., 2003)

αN = −
∂Re {χ}∕∂n
∂Im {χ}∕∂n

= −2k0
∂nr∕∂n
∂g∕∂n

, (21.17)

where k0 = 2πν∕c is the wave vector. For a small change in carrier density, which usually is the case, the
derivatives in Equation 21.17 can be replaced with �nite di�erences, which leads to (Henry, 1982; Osinski
and Buus, 1987)

αN = −2k0
Δnr
Δg

, (21.18)

where Δnr and Δg are the di�erential change in refractive index and material gain, respectively, induced
by carrier density variation (Henry, 1982; Osinski and Buus, 1987; Agrawal, 1990). The deviation Δnr
is a result of several di�erent mechanisms, including dipole band-to-band transition (Dailey and Koch,
2009; Qin et al., 2012), band-�lling (Burstein–Moss e�ect), bandgap shrinkage, and free-carrier absorp-
tion (plasma e�ect) (Bennett et al., 1990). Band-�lling is related to the decrease in absorption for photon
energies slightly above nominal bandgap, caused by low density of states in CB that are easily �lled, and
is mostly pronounced for heavily doped semiconductors (Moss et al., 1973). Bandgap shrinkage is related
to large concentrations of electrons at the bottom of CB, which repel one another due to Coulomb force,
leading to the lowering of the energy of CB (Bennett et al., 1990). Finally, free-carrier absorption describes
transition of free carriers to the higher-energy level due to photon absorption, and the change in refractive
index can be described using the Drude model (Moss et al., 1973; Dailey and Koch, 2009; Qin et al., 2012).
These four e�ects are assumed to be independent, and the total refractive index deviation can be found as
a sum of their respective contributions.

Another contribution to LEF, caused by carrier temperature variation, is de�ned as (Occhi et al., 2003)

αCH = −2k0
∂nr∕∂T
∂g∕∂T

. (21.19)

However, this contribution is o�en neglected in SOA models, and LEF is assumed to be α ≈ αN.
Equation 21.15 now becomes

±
∂E±
∂z

+ 1
vg

∂E±
∂t

= 1
2
[

Γg (1 − iα) − αi
]

E±. (21.20)

It should be stressed that, depending on the sign convention adopted for the α-parameter, there may be
variation in the literature in the sign pre�xing α in Equation 21.20.
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Having de�ned the equations which govern spatiotemporal electric �eld envelope distribution of the
counterpropagating optical signals, it is possible to devise the stimulated emission rate in Equation 21.14,
which is proportional to the total photon density in the ampli�er’s active region, SΣ:

Rst (n) = vggSΣ = vgg |
|

E+ + E−||
2 . (21.21)

It can be seen from Equation 21.21 that the interference between the two counterpropagating optical signals
will cause the spatial grating in the carrier density distribution. However, characteristic grating length will
be of the order of the signal’s wavelength λ, and it will be easily washed out by the di�usion (Yacomotti et al.,
2004; Serrat and Masoller, 2006; Totović et al., 2013). This justi�es neglecting of all high-frequency terms,
keeping only the sum of the squared electric �eld magnitudes, i.e., photon densities, SΣ = |E+|2 + |E−|2 =
S+ + S−. Depending on the model complexity, SΣ can also include ASE noise.

21.4.1.2 Photon Density Model

By expressing the electric �eld envelope in terms of photon densities, S±, and phase, φ±:

E±(z, t) =
√

S±(z, t) exp
[

iφ±(z, t)
]

, (21.22)

Equation 21.20 can be reduced to the system of coupled TW equations for forward and backward
propagation directions, written with respect to photon densities (Qin et al., 2012):

±
∂S±
∂z

+ 1
vg

∂S±
∂t

=
(

Γg − αi
)

S±, (21.23)

and phase (Agrawal and Olsson, 1989):

±
∂φ±
∂z

+ 1
vg

∂φ±
∂t

= −1
2
Γgα. (21.24)

Using the de�nition of LEF, Equation 21.24 can be written in yet another form that emphasizes the
underlying cause of phase variation (Agrawal, 1990; Dailey and Koch, 2007; Qin et al., 2012):

±
∂φ±
∂z

+ 1
vg

∂φ±
∂t

= k0ΓΔnr. (21.25)

If the signal is assumed to preserve its coherence during propagation, both Equations 21.23 and 21.25 are
required; otherwise, it is su�cient to use only Equation 21.23 in modeling an SOA. Appending the phase
equation to the model is important especially if the input signal carries information encoded in its phase,
which is the case for many advanced modulation formats, such as phase shi� keying (PSK), quadrature
amplitude modulation (QAM), and quadrature phase shi� keying (QPSK), to name a few (Schmuck et al.,
2013; Koenig et al., 2014).

Assuming that the signal entering the device at the front facet (z = 0) is E0 =
√

S0 exp(iφ0), boundary
conditions given by Equation 21.16 can now be rewritten using Equation 21.22. Additionally, amplitude
re�ection and transmission coe�cients can be written as functions of the power re�ectivity coe�cients
R1 and R2, corresponding to front and rear facets, respectively. The input signal does not change the
propagation direction during transmission through the front facet, so no phase change is present, and
t1 =

√

(1 − R1) (Adams et al., 1985). On the other hand, during re�ection at any facet, the signal being
re�ected does change the propagation direction, and a phase change of π needs to be accounted for.
This can also be inferred from the de�nition of the amplitude re�ection coe�cient r2 for the cleaved
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facet, which is negative. Finally, amplitude re�ection coe�cients can be written as r1 =
√

R1 exp(iπ) and
r2 =

√

R2 exp(iπ). Substituting amplitude re�ection and transmission coe�cients in Equation 21.16, and
expressing electric �elds in terms of photon densities and phase, yields:

√

S+(0) exp[iφ+(0)] =
√

1 − R1
√

S0 exp(iφ0) +
√

R1 exp(iπ)
√

S−(0) exp[iφ−(0)],
√

S−(L) exp[iφ−(L)] =
√

R2 exp(iπ)
√

S+(L) exp[iφ+(L)].
(21.26)

By multiplying previous set of equations with their corresponding complex conjugates, the boundary
conditions for photon densities can be derived:

S+(0) = (1 − R1)S0 + R1S−(0) − 2
√

(1 − R1)S0
√

R1S−(0) cos[φ0 − φ−(0)],

S−(L) = R2S+(L).
(21.27)

Equating the arguments of the le�-hand side (LHS) and RHS of Equation 21.26, the following boundary
conditions for phases can be found (Totović et al., 2013):

φ+ (0) = arctan

⎡

⎢

⎢

⎢

⎣

√

(

1 − R1
)

S0 sinφ0 −
√

R1S− (0) sinφ− (0)
√

(

1 − R1
)

S0 cosφ0 −
√

R1S− (0) cosφ− (0)

⎤

⎥

⎥

⎥

⎦

,

φ− (L) = φ+ (L) + π.

(21.28)

Typically, the input optical signal is given in terms of power rather than photon density. For the input
optical power P0, the photon density can be determined as S0 = ΓP0∕(ℏωvgWH), where ℏω is the signal
energy.

21.4.1.3 Signal Spectral Dependence

Most of the parameters �guring in Equations 21.23 and 21.25 do exhibit spectral dependence, as shown in
Figures 21.2 and 21.4. When working with photon densities, signal is assumed to be in�nitely spectrally
narrow and centered at the energy corresponding to the maximum spectral photon density, ℏω0. This
assumption justi�es the usage of a simpli�ed model where the parameter values are given at the signal
central energy, as is the case with Equation 21.23. In practice, signal will always have a �nite spectral width,
which is not necessarily narrow and cannot always be neglected. This is especially important if SOAs are
used in WDM systems, where multiple signals at di�erent wavelengths travel through the active region. In
order to correctly model the signal propagation in this case, Equation 21.23 is rewritten in terms of spectral
photon density, s±(ℏω, z, t), for forward and backward propagation (Totović et al., 2013):

±
∂s±
∂z

+ 1
vg

∂s±
∂t

=
(

Γg − αi
)

s±. (21.29)

It should be stressed that now vg,Γ, g, and αi are spectrally dependent. Additionally, two more changes
to the model are required. The �rst is related to the carriers consumed by stimulated emission in
Equation 21.14, which can be determined using

Rst (n) =

∞

∫
0

vggsΣd (ℏω), (21.30)
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where sΣ = s+ + s−. The second is related to the boundary conditions given in Equation 21.27, which are
now written with respect to s± instead of S±. Finally, if no re�ection coating is used for the R-SOA’s rear
facet, the re�ection coe�cient R2 also becomes spectrally dependent through nr(ℏω).

21.4.2 Amplified Spontaneous Emission

Spontaneous recombination can usually be viewed as an undesirable side e�ect of SOA operation, from
several viewpoints. First, the carriers that should be reserved for signal ampli�cation are inde�nitely lost,
meaning that the higher bias currents are required to achieve the same material gain. Second, the ran-
dom nature of spontaneous recombination induces �uctuations in carrier density, which in turn causes
the material gain and refractive index to change. This leads to �uctuations in both intensity and phase of
the ampli�ed signal (Ghafouri-Shiraz, 2004). Finally, radiative spontaneous recombination generates wide-
band signal with random phase, polarization, and spatial orientation. Once these photons are generated,
they become impossible to separate from the signal, so they travel jointly through the active region and
become ampli�ed. Even if the signal is �ltered at the SOA’s output, a certain amount of noise will always be
present in the narrow band around the signal central energy (Yariv and Yeh, 2007). An additional draw-
back is that the noise will have higher optical power when the input signal is vague since more carriers
will be available for spontaneous recombination (Talli and Adams, 2003; Totović et al., 2013; Koenig et al.,
2014). As the signal becomes more ampli�ed, fewer carriers remain, and the ASE contribution becomes
less important in terms of power.

The process of spontaneous emission is at its core stochastic, and, within the framework of the semiclas-
sical approach, it can be modeled statistically in terms of its probability, similarly to the shot noise present
in electronic devices (Ghafouri-Shiraz, 2004). The nature of ASE noise led to the development of numerous
models of di�erent degree of complexity, which can be roughly divided into two categories: deterministic,
which do not require any random generators (Talli and Adams, 2003; Totović et al., 2013), and stochastic,
which require random sources with certain probability density functions (Marcuse, 1984; Cassioli et al.,
2000; Park et al., 2005; Melo and Petermann, 2008; Totović et al., 2011). In the semiclassical framework,
ASE is usually treated as white Gaussian noise process, or as Poisson process (Park et al., 2005), whereas in
the quantum mechanical formalism the noise is treated using the set of appropriate quantum noise oper-
ators, including spontaneous emission process, internal absorption, and vacuum �eld �uctuations (Shtaif
et al., 1998). It has been shown by Shtaif et al. (1998) that the semiclassical results are essentially the same
as the ones obtained using quantum description, with the exception of the shot noise term, which needs to
be explicitly added to the semiclassical intensity. However, for su�ciently small bandwidths, the shot noise
term can be ignored (Shtaif et al., 1998).

21.4.2.1 Deterministic Approach

It has already been pointed out that signal and noise travel together, which would justify modi�cation of
the photon density equation, either Equation 21.23 or Equation 21.29, to include another term modeling
the rate with which the spontaneous photons are generated (Park et al., 2005; Dailey and Koch, 2007;
Zhou et al., 2007; Totović et al., 2015). However, from the standpoint of detailed device analysis, it may be
useful to separate noise and signal equations, allowing them to be coupled through the carrier rate equation
since these two processes are uncorrelated (Ghafouri-Shiraz, 2004). ASE is known to have wide spectrum;
therefore, it is more appropriate to use spectral photon densities, a±(ℏω, z, t), rather than photon densities,
for its description. The system of equations for two counterpropagating ASE signals reads (Talli and Adams,
2003; Melo and Petermann, 2008; Totović et al., 2013):

±
∂a±
∂z

+ 1
vg

∂a±
∂t

=
(

Γg − αi
)

a± +
1

2vg
Γβsprsp, (21.31)

where rsp is the radiative spontaneous recombination rate per unit energy, given by Equation 21.2 or
Equation 21.5, depending on the active region type, and βsp is the spontaneous emission coupling factor
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given by Equation 21.11. Boundary conditions for noise are a+(0) = R1a−(0) and a−(L) = R2a+(L). Phase
is not analyzed since it is random and can be averaged to zero. In other words, under the usual operating
conditions, i.e., if no resonant cavity is present, ASE does not exhibit coherent behavior.

In order to have the complete model, it is necessary to include ASE together with the signal when cal-
culating total spectral photon density, sΣ = s+ + s− + a+ + a−, which further in�uences Rst(n), given by
Equation 21.30.

It should be noted that many other deterministic approaches for ASE analysis exist. The choice depends
on the desired model complexity and the tradeo� between accuracy and computational resource consump-
tion. These approaches include the photon statistic master equation method (Mukai and Yamamoto, 1982),
�eld beating (Olsson, 1989), the equivalent circuit model (Berglind and Gillner, 1994; Ghafouri-Shiraz,
2004), the semiclassical wave theory model (Donati and Giuliani, 1997).

21.4.2.2 Resonant Properties of the SOA Cavity

In the previous pages, during the discussion of facet’s power re�ectivities and boundary conditions, it
was assumed that all antire�ective facets have zero re�ectivity. Although this assumption can be helpful
for model simpli�cation, it can also mask some of the processes present in SOAs (Thylén, 1988; Zhou
et al., 2007). Residual re�ectivity, which always has some �nite value, provides a feedback loop that acts
as a �lter, giving rise to resonances and antiresonances (Adams et al., 1985; Schrenk, 2011). This e�ect
has been reported in both experimental (Olsson, 1989) and theoretical SOA analyses (Zhou et al., 2007;
Totović et al., 2013), mostly related to ASE noise. An example of the output spectrum of the signal and
noise combined, with visible resonant footprint of the cavity, calculated using the model presented by
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FIGURE 21.6 Total power spectral density at the semiconductor optical ampli�er’s (SOA’s) output for di�erent input
optical powers in the case of (a, c) re�ective (R) SOA at z = 0, and (b, d) traveling wave (TW) SOA at z = L, for (a, b)
bulk and (c, d) multiple quantum well (MQW) active region.
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Totović et al. (2013), is given in Figure 21.6. It can be seen that R-SOA, Figure 21.6a and c, exhibits more
pronounced resonances and antiresonances in comparison with TW-SOA, Figure 21.6b and d, which is a
consequence of the highly re�ective rear facet. The ASE noise spectrum profoundly depends on the opti-
cal power of the input signal and resonant pattern washes out as the input optical power increases. This is
to be expected since the strong signal easily depletes the carriers and suppresses the noise, consequently
reducing the e�ect of multiple round trips within the cavity on its spectrum. The di�erence between the
output spectrums for distinct active region types, bulk, Figure 21.6a and b, and MQW, Figure 21.6c and
d, is a result of di�erent spectrums of radiative spontaneous emission rate and material gain, given in
Figure 21.2.

In order to develop the model capable of capturing ripples in the ASE output spectrum, two approaches
can be used. One would require an equation for ASE phase evolution in addition to Equation 21.31, which
describes ASE spectral photon density. This would enable us to account for interference, and subsequently
�ltering property of the SOA cavity. However, due to the random nature of the ASE noise phase, this
approach would require a random number generator (Park et al., 2005) and could essentially be categorized
as a stochastic model. Another approach is based on spectrum slicing and analysis of photon density cor-
responding to each resonance, or mode, followed by photon redistribution over the energy range between
the two antiresonances according to the cavity transfer function. This has been shown to be equivalent to
the analysis of the electric �eld or the spectral photon density and phase (Adams et al., 1985). The phase
equation will be included implicitly during the assessment of resonant and antiresonant frequencies of the
mth cavity mode, ωr

m, and ωa
m, respectively. These can be derived by equating the phase accumulation dur-

ing the cavity round trip to 2mπ for resonant, or (2m− 1)π for antiresonant frequencies, where m is an
integer. The single-pass phase shi�,Φ, will be the same for either propagation direction and can be found
from Equation 21.25 as

Φ =

L

∫
0

∂φ+
∂z

dz =

L

∫
0

(

− 1
vg

∂φ+
∂t

+ k0ΓΔnr

)

dz = ω
vg

L + k0

L

∫
0

ΓΔnrdz. (21.32)

Here, ω∕vg = ne�,0k0 = β0 is the wave propagation constant for zero carrier density, where ne�,0 is the
e�ective index of refraction for zero carrier density or the background index of refraction. Resonant and
antiresonant frequencies are calculated from

2ω
c

⎛

⎜

⎜

⎝

ne�,0L +

L

∫
0

ΓΔnrdz
⎞

⎟

⎟

⎠

=
{

2mπ, for ωr
m

(2m − 1) π, for ωa
m
. (21.33)

Since both Γ and Δnr depend on photon energy, ℏω, resonant and antiresonant frequencies cannot be
expressed in a closed analytical form. Additionally, we can conclude thatωr

m andωa
m depend on carrier den-

sity through the second term in the LHS of Equation 21.33 since both Γ andΔnr depend on n. This implies
that the spectral output of either TW- or R-SOA will not be static; rather the frequencies corresponding to
resonances and antiresonances will be shi�ed in the presence of the optical signal (Schrenk, 2011; Totović
et al., 2013). However, comparing to the �rst term in the LHS of Equation 21.33, the contribution of the
second term is usually small and can be justi�ably neglected.

By integrating Equation 21.31 over the energy between each of the two antiresonances, ωa
m and ωa

m+1,
a system of equations can be developed, written with respect to noise photon densities of the mth mode,
Am
± (z, t), for forward (+) and backward (−) propagation directions (Schrenk, 2011; Totović et al., 2013):

±
∂Am

±
∂z

+ 1
vg

∂Am
±
∂t

=
(

Γmgm − αm
i
)

Am
± +

1
2vm

g
Γmβm

spRm
sp, (21.34)
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where the index m denotes the parameter values corresponding to the mth cavity resonance, and Rm
sp stands

for the fraction of radiative spontaneous recombination rate injected into the mth mode. This approach,
relying on separating ampli�cation and �ltering properties of the ampli�er cavity, reduces time, memory,
and processing resource consumption during simulation.

The �ltering function of the ampli�er is given in the form of an Airy function corresponding to the FP
cavity (Adams et al., 1985):

Gm (ℏω) =

(

1 − R1
) (

1 − R2
)

Gm
s

(

1 − Gm
s
√

R1R2

)2
+ 4Gm

s
√

R1R2 sin2 Φ (ℏω)
, (21.35)

where Φ is the single-pass phase shi�, de�ned by Equation 21.32, and Gm
s stands for the single-pass gain

at resonant energy ℏωr
m:

Gm
s = exp

⎡

⎢

⎢

⎣

L

∫
0

(

Γmgm − αm
i
)

dz
⎤

⎥

⎥

⎦

. (21.36)

The transmittance given by Equation 21.35 accounts for the signal ampli�cation, so care should be exer-
cised when using it with Equation 21.34. Prior to photon �ltering, the transmittance needs to be normalized
to unity over the mth mode energy range since the noise ampli�cation has already been accounted for using
Equation 21.34, and only photon redistribution is required. The normalized �ltering function Tm(ℏω) can
be found as

Tm (ℏω) =
Gm (ℏω)

(

ℏωa
m+1 − ℏωa

m
)−1 ∫

ℏωa
m+1

ℏωa
m

Gm (ℏω) d (ℏω)
, (21.37)

which is equivalent to

Tm (ℏω) =
Gm (ℏω)

π−1 ∫ π0 Gm (Φ) dΦ
=

√

1 + γm

1 + γm sin2 Φ
, (21.38)

where the γ-parameter is de�ned as follows:

γm =
4Gm

s
√

R1R2
(

1 − Gm
s
√

R1R2

)2 . (21.39)

The validity of the previous model can be easily checked by analysis of the corner case where any of R1
or R2 is equal to zero. This would yield γm = 0, and Tm = 1, which corresponds to the case of uniformly
distributed photons. This result is to be expected since for zero re�ectivity no feedback loop exists.

Finally, the spectral photon densities of the noise at the SOA’s output can be found using (Totović et al.,
2013)

a− (0, ℏω) =
∑

m

[

(

ℏωa
m+1 − ℏωa

m
)−1 Am

− (0)Tm (ℏω)
]

,

a+ (L, ℏω) =
∑

m

[

(

ℏωa
m+1 − ℏωa

m
)−1 Am

+ (L)Tm (ℏω)
]

,
(21.40)

where the summation is done over the modes m from 1 to the total number of accounted modes M.
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In order to increase the e�ciency of numerical calculations related to noise, an approach based on group-
ing of several adjacent modes into clusters was proposed by Totović et al. (2013). Although this degrades
the accuracy to a certain point, the small intermodal space between resonances, which is of the order of
Δν = 70 GHz, orΔλ = 0.54 nm for the active region length of 800 μm, ensures that no signi�cant changes
for any spectrally dependent parameter exist within the cluster. The proposed optimal number of modes
within one cluster is 5, based on the fact that material gain and stimulated emission rate do not change more
than 2% for bulk and 3% for MQW active region, within the cluster’s range of frequencies, for the most
part of the spectrum. In addition, the grouping of modes need not be uniform. In other words, clusters can
comprise a lower number of modes in the frequency range close to the signal central frequency and maxi-
mum spontaneous emission rate and that number can be increased approaching the edges of spontaneous
emission spectrum.

21.4.2.3 Stochastic Approach

Implementing any stochastic process relies on random number generators, or sources, meaning that only
numerical analysis is possible in this case. Nonetheless, this approach can be very useful for investigating
statistical properties of noise and signals. As both amplitude and phase of noise signal are random, it is
suitable to use the equation written with respect to the normalized electric �eld envelope Equation 21.20,
modi�ed such that it includes a noise generator:

±
∂E±
∂z

+ 1
vg

∂E±
∂t

= 1
2
[

Γg (1 − iα) − αi
]

E± + μ±. (21.41)

Here, the complex term μ±(z, t) stands for the random noise source, also known as the Langevin noise
source (Henry, 1986; Coldren et al., 2012), which can be modeled as the Poisson or Gaussian phase-
independent spatially uncorrelated white noise process (D’Ottavi et al., 1995; Cassioli et al., 2000; Park
et al., 2005), based on the �uctuation-dissipation theorem (Shtaif et al., 1998). This implies that the mean
value of μ±(z, t) is zero, whereas the autocorrelation function satis�es the following condition:

⟨⟨

μ± (z, t) μ∗±
(

z − z′, t − t′
)⟩⟩

= 1
v2

g
ΓβspRspLδ

(

z′
)

δ
(

t′
)

. (21.42)

Recalling that Equation 21.20 does not include spectrally dependent parameters, it can be seen that
the noise source de�ned in this manner has in�nite bandwidth and consequently in�nite power due to
neglected spectral dependence of material gain (Cassioli et al., 2000). In practice, material gain will have
�nite bandwidth and will limit the noise power to a �nite value. This e�ect can be included by passing
μ±(z, t) through the bandpass �lter, which will result in

⟨⟨

μF± (z, t) μ∗F±
(

z − z′, t − t′
)⟩⟩

= 1
v2

g
ΓβspRspLBFδ

(

z′
)

, (21.43)

where μF±(z, t) is the band-limited noise source and BF is the noise equivalent bandwidth (D’Ottavi et al.,
1995; Cassioli et al., 2000). If the segmentation along the spatial coordinate is small enough, such that
the carrier density can be considered constant, in numerical simulations the Dirac delta function can be
replaced with the inverse step size Δz (Marcuse, 1984):

⟨⟨

μF± (z, t) μ∗F±
(

z − z′, t − t′
)⟩⟩

= 1
v2

g
ΓβspRspLBF

1
Δz

. (21.44)
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Now the noise source can be expressed as follows (Marcuse, 1984; Cassioli et al., 2000; Melo and
Petermann, 2008):

μF± (z, t) = 1
vg

√

ΓβspRspBF
L
Δz

xe, (21.45)

where xe is the complex Gaussian random variable. According to the sampling theorem, the sampling
period, which is equivalent to the simulation time-step Δt, needs to be less than or equal to 1/(2BF). The
complex Gaussian random variable can be expressed in terms of its real and imaginary parts, which �nally
gives

μF± (z, t) =
√

1
2vg

ΓβspRsp
L
vg

1
ΔtΔz

x1 + ix2
√

2
, (21.46)

where x1 and x2 are independent and identically distributed numerically generated Gaussian random vari-
ables with zero mean and unit variance (Melo and Petermann, 2008). Similarly, xe can be expressed in
terms of magnitude and phase, also distributed according to the Gaussian statistics, with zero mean and
unit variance.

21.4.2.4 Noise Figure

The usual method of quantifying the noise is by determining the noise �gure (NF). It can be shown (Simon
et al., 1989) that the intrinsic NF of an SOA can be obtained using

NFdB = 10 log10

[

1
G
+ 2

(

Gs − 1
) (

1 + R1Gs
)

Gs
(

1 − R1
) nsp

Γg
Γg − αi

]

, (21.47)

where G stands for the device (transmission) gain and Gs for the single pass gain, de�ned by Equation 21.36.

21.4.3 Extended Rate Equation Model

Previous discussion on SOA modeling covered the most important aspects of the photon–carrier inter-
action dynamics. Nevertheless, many more upgrades to the model are possible, and the choice of the
model complexity mainly depends on the intended SOA usage. Whenever possible, it is good practice
to simplify the model and exclude the e�ects that bear little to no improvement to the results, in order to
reduce resource consumption during computation. Some of the upgrades are listed in the following pages,
but many more do exist, e.g., separate analysis of polarization components (Pillai et al., 2006; Melo and
Petermann, 2008), inclusion of nonlinearities, etc.

21.4.3.1 Carrier Diffusion

Although o�en omitted from consideration, carrier di�usion plays an important role in SOA modeling. It
provides the means for washing out the spatial grating in carrier density distribution caused by the interfer-
ence between the electric �elds of the counterpropagating optical signals (Yacomotti et al., 2004; Serrat and
Masoller, 2006; Totović et al., 2013). In this manner, its e�ects are implicitly accounted for by neglecting
the high frequency terms in carrier density spatial distribution and replacing |E++E−|2 with |E+|2+|E−|2.
This approach, however, has its limitations. It has been shown that only “fast” spatial grating, coming from
counterpropagating �elds of the same mode, can be neglected, whereas the “slow” one, resulting from
interference e�ects of the di�erent longitudinal modes, remains to a certain degree (Yacomotti et al., 2004;
Serrat and Masoller, 2006). In order to encompass all possible cases, the SOA model can be generalized by
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modifying the carrier density rate Equation 21.14 to include the term describing di�usion (Agrawal and
Olsson, 1989; Serrat and Masoller, 2006):

∂n
∂t
= D∂

2n
∂z2 +

I
qV

−
[

An + Rsp (n) + Cn3] − Rst (n) , (21.48)

where D stands for the di�usion coe�cient and Rst(n) includes the square magnitude of the sum of both
signal and noise counterpropagating electric �elds.

21.4.3.2 Nonlinear Gain Suppression

The two most important e�ects that can in�uence material gain on a short-term scale are spectral hole
burning (SHB) (Ahn and Chuang, 1990) and CH (Willatzen et al., 1991). The former represents formation
of frequency selective dip in the gain spectrum as a consequence of stimulated emission, whereas the latter
describes the fact that the temperature of carriers and lattice may di�er. Both can be phenomenologically
accounted for by introducing the nonlinear gain suppression factor, ε, which causes gain reduction pro-
portional to the photon density in the active region (Willatzen et al., 1991; Totović et al., 2013). Instead of
using the so-called linear gain g, which is dependent only on photon energy and carrier density, equations
should be modi�ed such that nonlinear gain is used gNL = g∕(1 + εSΣ), which also accounts for gain
dependence on photon density. The complete set of equations for wideband SOA modeling can now be
written in the following form (Totović et al., 2013):

dn
dt
= I

qV
−
(

An + Rsp + Cn3) −
Rst

1 + εSΣ
, (21.49)

±
∂s±
∂z

+ 1
vg

∂s±
∂t

=
(

Γg
1 + εSΣ

− αi

)

s±, (21.50)

±
∂φ±
∂z

+ 1
vg

∂φ±
∂t

=
k0ΓΔnr
1 + εSΣ

, (21.51)

±
∂a±
∂z

+ 1
vg

∂a±
∂t

=
(

Γg
1 + εSΣ

− αi

)

a± +
1

2vg
Γβsprsp. (21.52)

Presence of the nonlinear gain suppression also modi�es the position of resonant and antiresonant
frequencies, given by Equation 21.33, and the new condition can be derived from Equation 21.51:

2k0

⎛

⎜

⎜

⎝

ne�,0L +

L

∫
0

ΓΔnr
1 + εSΣ

dz
⎞

⎟

⎟

⎠

=
{

2mπ, for ωr
m

(2m − 1) π, for ωa
m
. (21.53)

21.4.3.3 Carrier Transport Model for MQW and QD SOAs

As previously discussed, materials with higher levels of con�nement can outperform bulk SOAs in many
aspects. The most common choice of active regions aside from bulk are the ones based on MQWs or QDs.
Due to the di�erent carrier dynamics, these devices usually require a more elaborate model of carrier rate
equations than the one introduced for bulk SOA.

The MQW region in lasers and SOAs is usually embedded into the separate con�nement heterostructure
(SCH) region. Injected carriers from the outer edges of the SCH region di�use across the region, leading
to the subsequent capture and emission of carriers by the quantum wells.

Figure 21.7 shows a typical SCH MQW active region. Carrier transport e�ects in MQW SOA can be
modeled by rate equations written with respect to the carrier density in the barrier (continuum) states,
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FIGURE 21.7 Band diagram of the multiple quantum well (MQW) semiconductor optical ampli�er’s (SOA’s) active
region and schematics showing carrier injection, transport, capture, escape and signal ampli�cation by stimulated
emission. (SCH, separate con�nement heterostructure; QW, quantum well.)

including the SCH region and active layers, nb, and the carrier density in the bound states of the well region,
nw, similar to SCH MQW lasers (Nagarajan et al., 1992; Keating et al., 1999; Totović et al., 2012). This model
is referred to as the reservoir model (Nagarajan et al., 1992; Keating et al., 1999) and is equivalent to models
that incorporate additional e�ects such as di�usive transport. Coupling of the carrier density in the barrier
states above the MQWs to the carrier density in the MQWs is modeled by two terms representing carrier
capture and escape into and from the wells, respectively:

dnb
dt

= ηinj
I

qVb
−

nb
τb
−

nb
τbw

+
nw
τwb

Vw
Vb

, (21.54)

dnw
dt

=
nb
τbw

Vb
Vw

−
nw
τw

−
nw
τwb

−
Rst

1 + εSΣ
. (21.55)

Here, ηinj is the injection e�ciency, Vb is the volume of the SCH and active region, Vw is the volume
of the well region, τb and τw are the carrier recombination lifetimes in the barrier and in the well region,
respectively, τbw is the e�ective carrier di�usion across the SCH region and capture time by the wells, and
τwb is the thermionic emission and carrier di�usion time from the well to the barrier states.

The TW equations for the counterpropagating optical photon densities retain the same form as in the
case of the bulk SOA, with the exception of material gain and internal loss of the active region, which now
dominantly depend on carrier density in the bound states of the well, nw:

±
∂S±
∂z

+ 1
vg

∂S±
∂t

=
(

Γg
1 + εSΣ

− αi

)

S±. (21.56)

A more detailed model of the MQW active region’s carrier dynamics may comprise additional rate
equations for the reservoir model. For example, in addition to barrier states, well states may be divided
into the excited state (ES) and the ground state (GS) (Qin et al., 2012). An even more elaborate approach
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is required for asymmetric MQW structures, where the tunneling e�ect of carriers through the barriers
needs to be accounted for (Lysak et al., 2005, 2006).

The basic rate equations for QD SOA are essentially the same as for the detailed model of the MQW
active region (Qin et al., 2012). The discrete energy levels in the well of QDs include the GS level and the
ES level, which is doubly degenerated. The populations of these two levels are described by separate carrier
densities, nG and nE, respectively, which are normalized with respect to the total dot volume VD. Dots are
interconnected by the wetting layer (WL), described by the carrier density, nW, which is normalized to the
WL volume,VW. It can be assumed that the carriers are injected directly from the contacts into the WL and
the barrier dynamics is thus ignored in the model (Berg et al., 2001; Qasaimesh, 2003). The rate equations
describing the carrier dynamics read

dnW
dt

= I
qVW

+
nE
τE

e

VD
VW

f
′

W −
nW
τc

f
′

E −
nW
τsp

, (21.57)

dnE
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=
nW
τc

VD
VW

f
′

E +
nG
τG

e
f
′

E −
nE
τE

e
f
′

W −
nE
τ0

f
′

G −
nE
τsp

, (21.58)

dnG
dt

=
nE
τ0

f
′

G −
nG
τG

e
f
′

E −
nG
τsp

−
Rst

1 + εSΣ
. (21.59)

Here, τE
e is the escape time of carriers from the ES level to WL, τc is the capture time of carriers from the WL

to the ES level, τsp is the spontaneous recombination time, which is assumed to be identical for all levels, τG
e

is the excitation time of carriers from the GS level to the ES level, and τ0 is the intradot relaxation time. In
Equations 21.57 through 21.59, f ′W,E,G = 1− fW,E,G denote the probabilities of �nding an empty carrier state
at the WL band edge, the ES and GS levels, respectively, which are closely related to the carrier densities of
the corresponding levels (Berg et al., 2001). Finally, material gain is now dependent on carrier density in
the GS state. A similar model can be implemented in the case of active regions based on QDashes.

Last, when QDs are embedded into the QW region, it is necessary to extend the model with an additional
rate equation that deals with the QW dynamics. Each additional state in QDs also requires a separate rate
equation (Kim et al., 2009).

21.4.3.4 Carrier Heating

During the discussion on e�ects that cause material gain to behave nonlinearly, CH was introduced. More-
over, CH is responsible for phase variation, through Equation 21.19. Depending on the SOA regime of
operation, CH might be accounted for phenomenologically, using the nonlinear gain suppression factor, ε,
and LEF, αCH, or, in the case of ultrafast applications, a more elaborate model can be used. The temperature
dynamics in SOAs can be described using the carrier temperature rate equation (Dailey and Koch, 2007,
2009; Xia and Ghafouri-Shiraz, 2015):

dT
dt

= 1
∂U∕∂T

(

dU
dt

− ∂U
∂n

dn
dt

)

−
T − T0
τ

, (21.60)

where T is the carrier temperature, T0 is the lattice temperature, U is the total carrier plasma energy density,
and τ is the electron–phonon interaction time. In this model, electron and hole plasmas are assumed to be
equal in both temperature, T, and density, n (Dailey and Koch, 2007). The rate of energy density change
can be found to be (Xia and Ghafouri-Shiraz, 2015)

dU
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∑
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(
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(
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−
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∑
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(
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∑
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(21.61)
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where summations are done over each mode l of the two counterpropagating signal photon densities Sl
±,

and each mode m of the two counterpropagating ASE noise photon densities Am
± . The free-carrier and

intravalence absorption is captured in ΓK1. The remaining derivatives, namely, ∂U∕∂T and ∂U∕∂n, can
be determined from the energy density distribution function (Xia and Ghafouri-Shiraz, 2015), given as
(Dailey and Koch, 2009; Coldren et al., 2012)

U = 2
√

π
kBT

(

NcFc
3∕2 + NvFv

3∕2

)

, (21.62)

where Nc and Nv stand for the e�ective densities of states for CB and VB, respectively, and Fc
3/2 and Fv

3/2 are
the Fermi–Dirac integrals of order 3/2 for CB and VB, respectively. Having determined the rate of tempera-
ture change, it is possible to account for its variation in calculating the material gain, radiative spontaneous
recombination rate, and variation of index of refraction, which are all temperature dependent through the
Fermi–Dirac functions, Equations 21.1 through 21.3, or Equations 21.4 through 21.6, depending on the
active region type. The analysis by Xia and Ghafouri-Shiraz (2015) con�rms that the di�erence in carrier
density and material gain caused by CH does in�uence the signal ampli�cation in the picosecond regime
of SOA operation.

21.4.3.5 Distributed Bias Current

It is common practice to assume that the driving current of SOA gets instantaneously uniformly distributed
along the active region. In practice, this lumped electrode model is not always appropriate. Electric current
does require a �nite amount of time to travel from the contact to the edges of the electrode, and model-
ing it as a traveling microwave (TMW) might be more suitable in some cases, especially when the time
delay is a signi�cant fraction of the modulation period (Tauber et al., 1994; Mørk et al., 1999; Totović
et al., 2015). This distributed nature of the current can have important implications on the results when
SOAs are directly modulated at high bitrates (Tauber et al., 1994; Wu et al., 1995; Liljeberg and Bowers,
1997). Moreover, the microwave will be attenuated during the propagation, and the loss can sometimes be
very high at typical modulation frequencies (Tauber et al., 1994). An additional point worth noting is that
the microwave can be re�ected at the end of an electrode, depending on the load impedance. When the
microwave re�ection coe�cient di�ers from zero, two counterpropagating microwaves will exist (Totović
et al., 2015):

I (z, t) = Ī + ΔIF (z) exp
[

i
(

2π� − βez
)]

+ ΔIB (z) exp
[

i
(

2π� + βez
)]

. (21.63)

Here Ī is the stationary value of bias current, ΔIF and ΔIB are the small-signal bias current amplitudes for
forward (F) and backward (B) propagation with respect to z-axis, which are de�ned by the spatially variable
voltage across the electrode, f is the modulation frequency, βe = 2πf ∕ve is the microwave propagation
constant, ve = c∕ne is the microwave velocity, and ne is the e�ective electric refractive index. Bias current
will induce carrier density change through the carrier rate Equation 21.49, which will lead to change in all
carrier-dependent parameters.

21.5 Overview of Steady-State and Dynamic TW- and R-SOA
Models

Both TW- and R-SOA have found their application niches within the optical networks and photonic cir-
cuits. In order to make the optimal choice regarding the SOA material and geometric properties, as well
as operating conditions, it is necessary to analyze their performance, in both the steady-state and dynamic
regimes. This can be done either experimentally or theoretically, using any of the models presented in
this section. Essentially, two borderline approaches can be used depending on required precision, available
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time, and computational resources. The �rst one is largely exploited in commercially available so�ware
for optical network analysis and relies on a signi�cant number of approximations that either allow for
analytical or semianalytical solutions or a relatively simple numerical approach using e�cient numerical
methods. The second one includes a detailed and comprehensive analysis and is mostly used in SOA design
and optimization.

Modeling of steady-state and dynamic properties of SOAs essentially reduces to e�cient and accurate
self-consistent solving of coupled rate equations written with respect to the counterpropagating signals
and noise, and carrier density, with imposed boundary and initial conditions. In the case of TW-SOA, the
equation system usually comprises only the forward-propagating TW equation, whereas in the case of R-
SOA both forward and backward TW equations are needed. The number of rate equations describing the
carrier density depends on the material used for the active region and anticipated model accuracy. A self-
consistent approach is required since the carrier depletion in the active region is caused by the stimulated
ampli�cation of the input optical signal, and this in turn modi�es the material gain and, consequently,
further ampli�cation of the signal. If the carrier depletion is weak and the carrier density is approxi-
mately uniformly distributed along the active region, the TW equation for the forward-propagating signal
(Equation 21.23) can be analytically solved. In the case of the continuous wave (CW), i.e., stationary input
optical signal Sin = S+(z = 0), the output photon density Sout = S+(z = L) is given by

Sout = GsSin = Sin exp
[(

Γg − αi
)

L
]

, (21.64)

where Gs is the single pass gain. An analogous relation can be written for the electric �eld, where the factor
1/2 should be accounted for in the argument of exponential function: exp[(Γg − αi)L/2]), or G1∕2

s . In the
case of the time-dependent (nonstationary) input optical signal, the solution of Equation 21.23 for the
forward-propagating photon density reads

Sout (t) = Sin

(

t − L
vg

)

exp
[(

Γg − αi
)

L
]

. (21.65)

Here, a reference frame traveling with the signal is used, and therefore the temporal dependence of the
input signal, Sin(t), is replaced with Sin(t − L∕vg). It can be seen that in both cases the output photon
density is proportional to Gs.

The above relations can be generalized and may also be applied for an SOA section in which the carrier
density is uniformly distributed. In this case, Sin and Sout represent the section’s input and output photon
densities, S+k−1 = S+(zk−1) and S+k = S+(zk) for forward propagation, and S−k = S−(zk) and S−k−1 =
S−(zk−1) for backward propagation, respectively, as shown in Figure 21.8. The decrease of the section length
makes the assumption of the uniform carrier distribution more justi�ed. This fact represents the basis for
the development of various methods, which can provide e�cient stationary and time-domain modeling of
TW- and R-SOA.

zzkzk–1

S+(zk)

S–(zk)S–(zk–1)

Δz

Section kSection
k – 1

Section
k + 1

S+(zk–1)

nk

FIGURE 21.8 Schematic representation of the semiconductor optical ampli�er (SOA) section with the relevant
carrier and photon densities.



9781498749466_C021 2017/8/29 15:49 Page 658 #28

658 Handbook of Optoelectronic Device Modeling and Simulation

21.5.1 Steady-State Models

One of the oldest methods used in modeling of SOAs, optical waveguides, and semiconductor lasers is
the transfer matrix method (TMM) (Chu and Ghafouri-Shiraz, 1994), which has long been regarded as an
e�cient and powerful numerical tool. The robustness and simplicity of its implementation on computer
platforms are the major reasons for its success and popularity in using it to analyze complex photonics
structures. The method assumes that the entire ampli�er is divided into p sections, each with a length of
Δz = L∕p, where L is the ampli�er length. Each section is labeled such that the kth section extends from
(k − 1)Δz to kΔz. The value of Δz is small enough such that the carrier density, material gain, and modal
gain can be assumed as uniform along each section. If only the forward-propagating wave is of interest, as
in TW-SOA, the output photon densities of subsequent sections, Sk−1

+ and Sk
+, satisfy the relation that is a

generalized form of Equation 21.64

Sk
+ = GkSk−1

+ = Sk−1
+ exp

[(

Γgk − αi,k
)

Δz
]

, (21.66)

where gk and αi,k are the material gain and active region loss corresponding to section k, respectively, and
Gk stands for the single pass gain of the kth section. In the case of bidirectional propagation (forward and
backward), as in R-SOA or FP-SOA, the matrix relating (k− 1)th and the kth section may be written in the
following form, based on Equation 21.66:

[

Sk
+

Sk
−

]

=
[

Gk 0
0 G−1

k

] [

Sk−1
+

Sk−1
−

]

. (21.67)

Same method can be applied when the TW equation is written with respect to the electric �eld enve-
lope (Equation 21.15) instead of photon density, intensity, or power. In this case, the transfer matrix may
comprise the information about phase (Chu and Ghafouri-Shiraz, 1994):

[

Ek
+

Ek
−

]

=

[

G1∕2
k exp (iβΔz) 0

0 G−1∕2
k exp (iβΔz)

]

[

Ek−1
+

Ek−1
−

]

. (21.68)

By using input parameters, namely, bias current I and injected optical power P0, or electric �eld
E0 = S1∕2

0 exp(iφ0), along with boundary conditions and transfer matrices, the carrier density for each
section can be found from the Equation 21.14. In the case of R-SOA, the carrier rate equation will be
converted into a p-dimensional system of transcendental equations with respect to carrier densities corre-
sponding to all sections (Totović et al., 2014). Once the carrier density in each section is known, the transfer
matrices can be used in the evaluation of the photon density or the corresponding electric �eld envelope
in each of the SOA sections.

In this consideration, it is assumed that the photon density, or the corresponding envelope of the electric
�eld, represents the signal. Most of the steady-state models do not account for the noise contribution to
the signal, assuming that its phase is uncorrelated to the signal’s phase. Therefore, some models neglect
the noise (Chu and Ghafouri-Shiraz, 1994), while others use separate TW equations for the signal and the
ASE (Jin et al., 2003; de Valicourt et al., 2010), which means that the signal and noise are generally treated
separately. However, coupling between the signal and noise is provided by the carrier rate equation that
accounts for both contributions, which �nally a�ects the carrier density in the active region and all car-
rier dependent parameters, and consequently, the photon density. In the case of steady-state analysis, it is
possible to solve the TW equation for ASE (Equation 21.31) on domain Δz of section k, and use it in the
TMM. The solution is given by

ak
+ = Gkak−1

+ + σk
Gk − 1
ln Gk

, (21.69)
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where ak−1
+ and ak

+ represent ASE spectral photon densities at the input and the output of the kth section,
respectively, whereas σk = 1∕(2vg)Γβsprk

spΔz is the contribution of the radiative spontaneous recombina-
tion rate spectral density in section k. If the ASE spectrum is uniform over an optical noise bandwidth BN,
the photon density corresponding to ASE can be obtained by multiplying Equation 21.69 by BN. Other-
wise, the total ASE photon density can be found by integrating Equation 21.69 over the ASE bandwidth.
The above result can be generalized for both propagation directions (de Valicourt et al., 2010) and written
in the following matrix form:

[

ak
+

ak
−

]

=
[

Gk 0
0 G−1

k

] [

ak−1
+

ak−1
−

]

+
σk

ln Gk

[

Gk − 1
G−1

k − 1

]

. (21.70)

This matrix form does not strictly �t into the standard transfer matrix form due to additional vector
representing the ASE contribution of the kth section. However, a considerable number of time-domain
multisection methods accounts for ASE by using the form de�ned by Equation 21.70 (Durhuus et al.,
1992; Davis and O’Dowd, 1994; Kim et al., 1999; Occhi et al., 2003; Park et al., 2005; Mathlouthi et al.,
2006; Morel and Sharaiha, 2009). Since these methods are not essentially di�erent from TMM, they can be
referred to as TMMs.

Although TMM is simple for implementation, it requires a signi�cant number of matrix multiplications,
increasing linearly with the number of sections. A large number of multiplications may cause error accu-
mulation and inaccuracy in the evaluation of photon density or the corresponding electric �eld envelope.
The TW equations can be solved by implementation of the FDM rather than the TMM (Connelly, 2001,
2002). Forward di�erences are used for forward-propagating TWs, and backward di�erences for backward-
propagating TWs. The carrier rate equation in each mesh point is used for determining the carrier density
value. Since the self-consistent method implementation is required, the process of calculation of carrier
and photon densities relies on iterative procedure, with adjustment of at least one variable in each iteration
step, usually the carrier density. However, the carrier density variation along the ampli�er is rather small
even for a wide range of the signal input powers (Totović et al., 2013). On the other hand, the photon den-
sity varies signi�cantly, up to several orders of magnitude. Therefore, the control of the iteration process
by the carrier density adjustments, as proposed by Connelly (2001, 2002), makes the process very sensitive
since the small variation of the carrier density leads to a large variation of the photon density. It is shown
by Jin et al. (2003) that iterations based on photon density may provide faster convergence and increased
stability of the iteration process.

21.5.2 Dynamic Models

Due to its simplicity and popularity, TMM has been modi�ed and implemented in the development of
the large-signal dynamic model (Davis and O’Dowd, 1994; Kim et al., 1999). The model is bidirectional,
which makes it suitable for both TW- and R-SOA time-domain simulations. Similar multisection time-
domain models, based on the time-dependent version of Equation 21.67 or Equations 21.68 and 21.70, can
also be found in the literature (Occhi et al., 2003; Park et al., 2005; Mathlouthi et al., 2006; Kim et al., 2009).
It has been shown by Park et al. (2005) that only the “fullwave” model, which accounts for the intensity and
phase of the superimposed electric �elds of the signal and noise, provides accurate results. The model based
solely on photon densities of signal and noise (or their optical powers) overestimates the in�uence of the
noise on the signal (Park et al., 2005). On the other hand, the model in which the signal is represented by
the electric �eld, and spontaneous emission noise by the photon density, underestimates the e�ect of noise
on the signal (Park et al., 2005).

Another time-domain multisection, wideband, and bidirectional method has been derived using the
inverse Fourier transform of the frequency-domain propagation equation (Durhuus et al., 1992). It is essen-
tially a type of TMM, comprising complex time delay. Due to included wideband spectral dependence, it is
suitable for simulation of multichannel ampli�cation. A similar method proposed by Morel and Sharaiha
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(2009) is implemented in a commercially available so�ware, Advanced Design System from Keysight Tech-
nologies (www.keysight.com), a�er conversion of transfer matrices, including complex time delay, into an
equivalent SOA circuit. Another recently developed equivalent circuit model, more precisely transmission
line model (TLM), was presented by Xia and Ghafouri-Shiraz (2016). A multisection wideband time-
domain method based on the �nite-impulse response (FIR) �lter scheme has been proposed by Toptchiyski
et al. (1999) and Runge et al. (2010). The method is based on two computational steps in each section.
The �rst step includes calculation of local gain with its linear and nonlinear components, as well as the
local nonlinear phase change. Then, the propagation equations for the forward- and backward-traveling
�elds are solved by accounting for the spectral pro�le of the gain through the implementation of an FIR
�lter. The FDM can also be applied in time-domain simulations of SOAs. A comprehensive improved
�nite-di�erence beam propagation model (IFD-BPM) (Razaghi et al., 2009) has been used for modeling
of temporal and spectral properties of copropagating and counterpropagating picosecond optical pulses
with di�erent wavelengths. The aforementioned model includes the following e�ects: interband gain and
refractive index dynamics, CH, SHB, two-photon absorption (TPA), ultrafast nonlinear refraction (UNR),
gain dispersion, gain peak shi� with carrier density variation, and group velocity dispersion (GVD).
Due to numerous linear and nonlinear e�ects, the forward and backward TW equations become essen-
tially nonlinear propagation equations, and are named modi�ed nonlinear Schrödinger equations. Solving
these equations is based on coordinate transformation, which can be successfully done by trapezoidal
integration and central di�erence technique. The same method has been also used in the development
of the R-SOA pulse propagation model (Connelly, 2012). An interesting method for modeling of SOA
time-domain response and four-wave mixing (FWM) was proposed by Mecozzi and Mørk (1997) and
Cassioli et al. (2000). The method assumes a relatively small variation of carrier density along the ampli�er
and consequently a small gain variation. It is based on the analytical integration of material gain over the
entire SOA length. This eliminates the spatial coordinate dependence and allows for the ampli�er dynam-
ics to be described by solving a set of ordinary di�erential equations for the complex gain. The ASE noise
is modeled by an equivalent noise source with appropriate statistical properties. When the internal loss is
included, the method’s complexity increases. The SOA simulator is implemented in the SimulinkⓇ so�-
ware, based on the MATLABⓇ engine and routines for numerical calculations, because of its capability to
deal with time-domain analysis of dynamical systems. A similar approach, based on the delayed di�er-
ential equation, has been used in the derivation of R-SOA’s time-domain transmission function, which is
then implemented in the semianalytical analysis of FWM in R-SOA (Antonelli and Mecozzi, 2013). The
fundamental condition for the method implementation is that the round-trip time of the pulse is small
compared to its duration. An improved version of this, the so-called reduced model, is proposed by Dúill
and Barry (2015), where the improvement is achieved by the inclusion of the internal losses.

If the dynamic e�ects of interest occur on a much larger time scale than the time required for the signal
to travel along the active region, a simpli�cation to the dynamic model can be introduced by assuming
instantaneous propagation of signals across the SOA length (Connelly, 2014, 2015). This assumption sig-
ni�cantly simpli�es the model by reducing the TW equations to their steady-state form, which can then
be solved using the corresponding �nite di�erences for each propagation direction. In this manner, spatial
distributions of photon and carrier densities are calculated at each point in time, under the quasi-steady-
state conditions. This approach might be helpful as a basis for the simple TW- and R-SOA models; however,
a detailed model does require accounting for the �nite time needed for wave propagation. In this case, the
system of coupled partial di�erential TW equations may be solved numerically using a �rst-order upwind
scheme based on the FDM (Totović et al., 2011) in order to obtain a full spatiotemporal distribution of all
relevant quantities.

21.5.3 Case Study: Steady-State Wideband Self-Consistent Numerical Model

In order to fully understand the mechanisms underlying SOA operation, the model needs to be designed
such that it accounts for spectral dependencies of all relevant parameters discussed in Section 21.3 and

www.keysight.com
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given in Figures 21.2 through 21.4. These models, typically referred to as wideband, are required to oper-
ate not with photon densities, but rather their spectral distributions. Additionally, it is good practice to
generalize the model such that it supports any facet re�ectivity. This makes the model transparent to the
SOA type and it can be further used to analyze TW-, FP-, or R-SOA simply by adjusting the facet re�ectiv-
ities to the desired value. For TW-SOA, the values can be chosen to be either zero, or, if higher precision is
required, some small, but �nite value, in the range of 10−3–10−5. In the case of FP- or R-SOA, the re�ec-
tivity of a highly re�ective facet is usually chosen to be equal to the re�ectivity of the interface between
cleaved semiconductor and air, R2 = (nr−1)2∕(nr+ 1)2, but it can be set to another value if re�ective layers
are used.

The full system of equations for a steady-state wideband model can be derived from Equations 21.49
through 21.52 by setting the time derivatives of carrier density and spectral photon densities to zero:

dn
dt
= I

qV
−
(

An + Rsp + Cn3) −
Rst

1 + εSΣ
= 0, (21.71)

±
ds±
dz

=
(

Γg
1 + εSΣ

− αi

)

s±, (21.72)

±
dφ±
dz

= β0 + k0
ΓΔnr

1 + εSΣ
, (21.73)

±
da±
dz

=
(

Γg
1 + εSΣ

− αi

)

a± +
1

2vg
Γβsprsp, (21.74)

where

SΣ (n) =

∞

∫
0

(

s+ + s− + a+ + a−
)

d (ℏω), (21.75)

Rst (n) =

∞

∫
0

vgg
(

s+ + s− + a+ + a−
)

d (ℏω). (21.76)

Boundary conditions for the signal can be derived from Equations 21.27 and 21.28 and are given by the
following set of equations at the front facet:

s+ (0) =
(

1 − R1
)

s0 + R1s− (0) − 2
√

(

1 − R1
)

s0
√

R1s− (0) cos
[

φ0 − φ− (0)
]

, (21.77)

φ+ (0) = arctan

⎡

⎢

⎢

⎢

⎣

√

(

1 − R1
)

s0 sinφ0 −
√

R1s− (0) sinφ− (0)
√

(

1 − R1
)

s0 cosφ0 −
√

R1s− (0) cosφ− (0)

⎤

⎥

⎥

⎥

⎦

, (21.78)

and by s−(L) = R2s+(L), and φ−(L) = φ+(L) + π at the rear facet. The input signal is assumed to have
Gaussian power spectral distribution σG(ℏω), with FWHM of 0.1 nm, which is a good approximation of
the signal generated by the distributed feedback (DFB) laser. Given the input optical power P0, input signal
spectral density can be found by multiplying the input signal photon density, S0, by the Gaussian function
normalized to unity with respect to energy:

s0 (ℏω) =
Γ (ℏω) P0

ℏωvg (ℏω)WH
σG (ℏω) . (21.79)



9781498749466_C021 2017/8/29 15:49 Page 662 #32

662 Handbook of Optoelectronic Device Modeling and Simulation

In analysis of ASE noise, phase is not included explicitly, and therefore no interference exists at either facet,
giving a+(0) = R1a−(0) and a−(L) = R2a+(L).

In order to account for the resonant properties of the SOA cavity, the procedure described in
Section 21.4.2 for deriving Equation 21.34 from Equation 21.31 can be employed, and Equation 21.74 can
be transformed into a system of steady-state equations written with respect to the noise photon densities
corresponding to each mode m:

±
dAm

±
dz

=
(

Γmgm − αm
i
)

Am
± +

1
2vm

g
Γmβm

spRm
sp, (21.80)

with boundary conditions Am
+ (0) = R1Am

− (0) and Am
− (L) = R2Am

+ (L). The system given by Equation 21.80
represents the steady-state form of Equation 21.34. Introducing the mode photon densities Am

± also implies
that modi�cation of Equations 21.75 and 21.76 is required, where the integral over energies for ASE noise
now becomes a sum over modes m:

SΣ (n) =

∞

∫
0

(

s+ + s−
)

d (ℏω) +
∑

m

(

Am
+ + Am

−
)

, (21.81)

Rst (n) =

∞

∫
0

vgg
(

s+ + s−
)

d (ℏω) +
∑

m
vm

g gm
(

Am
+ + Am

−
)

. (21.82)

In this manner, signal ampli�cation will be accounted for by TW Equation 21.80 and the photons will be
subsequently redistributed within the mode frequency range using the �ltering function (Equation 21.38).
The resonant and antiresonant frequencies are found by equating the noise phase accumulation to 2mπ
and (2m − 1)π, respectively, the same as in Equation 21.33:

2k0

⎛

⎜

⎜

⎝

ne�,0L +

L

∫
0

ΓΔnr
1 + εSΣ

dz
⎞

⎟

⎟

⎠

=
{

2mπ, for ωr
m

(2m − 1) π, for ωa
m

. (21.83)

In the pursuit of increased e�ciency, several adjacent modes can be grouped into clusters of 2l+1 mode,
spanning between two antiresonances, from ℏωa

m−l to ℏωa
m+l+1, where l stands for a small nonnegative

integer. All photons corresponding to one cluster are now treated with a single pair of photon densities
Am
± , centered at the mth mode resonance, ℏωr

m, where the values of all spectrally dependent parameters in
Equations 21.80 through 21.82 are given at ℏωr

m. In this manner, the number of equation pairs (comprising
one equation for each propagation direction) required for modeling the ASE noise is reduced from the
number of modes N to the number of clusters M = N∕(2l + 1). This method e�ectively reduces the
time and resource consumption at the cost of a modest decrease in accuracy. The error in calculating
the photon density corresponding to a cluster will be pronounced in the portions of the spectrum where
the ASE noise photon count reaches high values. Since the photon count depends on both the radiative
spontaneous recombination rate and the material gain among other parameters, this error can be alleviated
by nonuniform clustering of modes; the clusters can comprise only one mode in the vicinity of the signal
central frequency, where the material gain and stimulated emission rate are high and the number of modes
within the cluster can be increased further away in the spectrum.

21.5.3.1 Implementation of the Self-Consistent Method

As discussed earlier, the system of equations describing SOA needs to be solved in a self-consistent manner
due to the coupling between the signal and noise though the carrier rate equation. Numerical solving of
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the system requires discretization of the space-spectrum domain into a two-dimensional (2D) mesh, where
each point represents a unique pair of position along the longitudinal axis zi and energy ℏωj. The size of
the spectral domain should be chosen such that it covers the region where material gain is positive since
in the remaining regions spontaneously emitted photons will be attenuated during propagation and their
contribution to the ASE spectrum can be neglected. Step size along the spectral axis should be smaller
than the di�erence between two adjacent resonances of the cavity, which can roughly be estimated from
Equation 21.83 as Δ(ℏω) = πℏc∕(ne�,0L), whereas for the longitudinal axis no particular constraints exist
and the smaller step size simply enables a more accurate spatial distribution calculation. The choice of 1001
equidistant points zi along the longitudinal axis, where i spans from 0 (z = 0) to 1000 (z = L), provides
a quasi-continuous spatial domain, with the step length equal to Δz = L∕1000. An example of such 2D
mesh is given in Figure 21.9.

The derivatives over the z-coordinate in Equations 21.72 and 21.73 and Equation 21.80 can now be
replaced with �nite di�erences. Depending on the propagation direction of signal and ASE noise, forward
or backward, appropriate �nite di�erences are used, forward in the former, and backward in the latter case.
This approach allows for successive calculation of the variable values in the next point in space based on
the values from the previous one. For forward propagation, the equations can be written in the following
generalized form:

f+
(

zi+1
)

= f+
(

zi
)

+ F+
(

zi
)

Δz, (21.84)

where f+ stands for any forward-propagating variable, s+,φ+, or Am
+ , whereas F+ denotes the RHS of the

corresponding equations, evaluated at the ith point in space, zi. For backward propagation, using the same
generalized notation, the equations can be reduced to

f−
(

zi−1
)

= f−
(

zi
)

+ F−
(

zi
)

Δz, (21.85)
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FIGURE 21.9 Illustration of the two-dimensional space-spectrum mesh used in the wideband steady-state self-
consistent numerical method for modeling semiconductor optical ampli�ers (SOAs). The example includes spectral
photon density distribution for (a) forward and (b) backward propagations.
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where f− stands for any backward-propagating variable, s−,φ−, or Am
− , whereas F− denotes the RHS of the

corresponding equations, evaluated at the ith point in space, zi. The coupling between Equations 21.84 and
21.85 is provided by the boundary conditions at z = 0 and z = L. Carrier density in each point in space
can be found as a solution of the transcendental Equation 21.71, which is then followed by calculation of
resonant and antiresonant frequencies, using Equation 21.83.

The system given by Equations 21.71 through 21.73, 21.80, and 21.83 represents the basis of one iter-
ation step in the self-consistent numerical method (SCNM). Starting from the arbitrarily chosen carrier
density distribution, signal and noise for both propagation directions can be determined and subsequently
used for calculating the new carrier distribution. Assuming that the newly calculated carrier density dis-
tribution converges to the steady-state distribution, repeating this process should give improved results
with each iteration step. The process can be stopped when the di�erence between the values calculated
within two consecutive iteration steps reaches the tolerance point. Although this simpli�ed algorithm is
useful for conceptualization of iterative procedure, in practice it su�ers from severe instability, and rarely
converges. The instability is caused by signi�cant changes in photon spectral densities, up to several orders
of magnitude, for subtle changes in carrier density. An approach typically used to alleviate this issue relies
on self-consisting tuning of the carrier density (Connelly, 2001) or photon density (Jin et al., 2003) by
its averaging over the current and previous iteration step, with proper weight coe�cients. Although these
approaches have shown to be successful in modeling TW-SOA, in the case of an R-SOA they still diverge for
high driving currents and high input signal optical powers. Choosing to simultaneously tune all variables
of interest, namely s±,Am

± , and n, instead of just one, does increase stability, but not su�ciently enough to
provide a reliable algorithm. The main issue comes from the interplay between counterpropagating signals
and noise, where the backward-propagating ones are the delayed replicas of their forward-propagating
counterparts. This “echoing,” present whenever either facet re�ectivity is nonzero, destabilizes the algo-
rithm and raises the need for restraining the variables through the fading memory of previous iteration
steps. Instead of averaging the variables over the current and previous iteration steps, the generalized algo-
rithm assumes inclusion of k previous iteration steps, where k ≥ 1. In this manner, sudden changes are
prevented, and the system steadily converges toward the solution. The contribution of each iteration step
can be adjusted using the set of weight coe�cients wi, with a sum of unity, which ponder the results of the
ith iteration step during the averaging process. The updated (averaged) iteration variable that is passed to
the next iteration step, xi+1, can be found as

xi+1 = wixi + wi−1xi−1 + ... + wi−kxi−k. (21.86)

The optimal number of iteration steps included will depend on the device’s properties, mainly on the front
and rear facet re�ection coe�cients. It has been shown by Totović et al. (2013) that k = 3 previous iteration
steps, in addition to the current one, su�ce to provide a stable algorithm, with a set of weight coe�-
cients {wi,wi−1,wi−2,wi−3} = {0.4, 0.3, 0.2, 0.1}. The choice of weight coe�cients depends on desired
robustness of the algorithm and the convergence speed. By using higher pondering values for the current
iteration step relative to the previous ones, the iteration process becomes more time e�cient at the cost of
an increased risk for divergence. Inclusion of several previous iteration steps is required in modeling FP-
and R-SOA but can be relaxed to k = 1 for TW-SOA.

Prior to entering the iteration procedure, the maximum tolerable relative error δmax needs to be de�ned.
The error δ between the two consecutive iteration steps is calculated as a maximum value of relative errors
among all monitored variables, for each point in the mesh (zi, ℏωj):

δ = max
{

δ (n) , δ
(

s±
)

, δ
(

Am
±
)

, δ
(

ℏωr
m
)}

. (21.87)

The iteration procedure is stopped once the value of the current relative error δ drops below the de�ned
tolerance δmax. The meticulousness with which the iteration error δ is calculated during each iteration step
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ensures that all results consistently need to converge in order for the iteration procedure to end. Setting
δmax to 10−3 imposes very strict convergence requirements for all variables.

Aside from the input and control parameters, i.e., I, P0, weight coe�cients, and δmax, SCNM requires
a set of initial guess values (IGVs) for all variables. Since the spectral photon density of the input signal,
s0, depends on the con�nement factor as shown in Equation 21.79, its IGV is calculated for an arbitrary
carrier density between the transparency value ntr and the maximum allowed value, nmax, governed by the
bias current. The transparency value of the carrier density is determined by equating material gain to zero,
whereas the maximum allowed value can be found from Equation 21.71, under the assumption of zero
photon density in the active region:

I
qV

−
[

Anmax + Rsp
(

nmax
)

+ Cn3
max

]

= 0. (21.88)

The IGV of spectral photon density for the forward-propagating signal, s+, is then set to the input sig-
nal spectral photon density s0, whereas the IGV for s− is set either to zero, for TW-SOA, or to s0, for
FP- and R-SOA. The IGV for phase in both propagation directions, φ±, is chosen to be zero. Before setting
IGVs for ASE noise, it is necessary to determine the number of analyzed modes and the type of cluster-
ing. For a device length between 500 and 1000 μm, the intermodal space is of the order of 0.5 nm, and
N = 600 modes covers the portion of the spectrum where ASE is expected to be pronounced. For the
100 modes around the signal central frequency, clusters of 1 mode have been chosen, whereas in the rest
of the spectrum, clusters consist of 5 modes. This gives a total of M = 200 clusters to be analyzed. The
ASE noise is usually orders of magnitude lower than the signal, therefore IGVs for all clusters Am

± are set
to zero. The IGV for carrier density is calculated based on the IGVs for signal and noise photon densi-
ties by solving the transcendental Equation 21.71 with respect to n at each point zi along the discretized
longitudinal axis. Using Equation 21.83, IGVs for resonant and antiresonant frequencies are determined.
Finally, using the appropriate expressions depending on the active region type, bulk or MQW, all material
parameters dependent on carrier density can be determined. These include material gain (Equation 21.1
or Equation 21.4), radiative spontaneous recombination rate (Equation 21.2 or Equation 21.5), refrac-
tive index variation (Equation 21.3 or Equation 21.6), con�nement factor (Equation 21.9), group velocity
(Equation 21.13), and spontaneous emission coupling factor (Equation 21.11). Once all IGVs are de�ned,
the iteration procedure can be initialized.

As discussed earlier, the iteration procedure essentially relies on repeating one iteration step and updat-
ing variable values according to the current and k previous iteration steps using Equation 21.86. It should
be noted that until the number of completed iteration steps reaches k, corresponding IGVs are used as a
replacement for the missing previous iteration values. The iteration step starts with solving Equations 21.72,
21.73, and 21.80, for forward propagation and determining s+,φ+, and Am

+ , based on the initial conditions
at z = 0. This is followed by adjusting the variable values by averaging them over previous iteration steps
and applying boundary conditions at z = L. Next, using Equations 21.72, 21.73, and 21.80, backward prop-
agation is simulated and s−,φ−, and Am

− are determined, and subsequently adjusted by averaging their
values over k previous iteration steps. The total photon density in the active region, SΣ, and the rate of
stimulated emission, Rst, are found from Equations 21.81 and 21.82, respectively, which gives the basis for
determining carrier density distribution using Equation 21.71. A�er adjusting n by averaging it over pre-
vious iteration steps, all parameters dependent on carrier density can be calculated. Finally, at the end of
the iteration step, the maximum relative error between two consecutive iteration steps is calculated using
Equation 21.87 and compared with the tolerance δmax. If the tolerance is satis�ed, the iteration process has
successfully converged to the solution; otherwise the iteration process continues. The algorithm described
for SCNM is summarized in Figure 21.10.

When the iteration process successfully converges to the steady-state solution, normalized �ltering
function of the cavity Tm(ℏω) can be found from Equation 21.38, and the ASE noise spectral photon
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FIGURE 21.10 Flowchart of the steady-state wideband self-consistent numerical method (SCNM). FDM, �nite
di�erence method.

densities determined using

a+ (L, ℏω) =
M
∑

m=1

[

(

ℏωa
m+l+1 − ℏωa

m−l

)−1
Am
+ (L)Tm (ℏω)

]

, (21.89)

a− (0, ℏω) =
M
∑

m=1

[

(

ℏωa
m+l+1 − ℏωa

m−l

)−1
Am
− (0)Tm (ℏω)

]

. (21.90)

Finally, the output spectral power densities of signal and noise combined are calculated as

p+ (L, ℏω) =
[

1 − R2 (ℏω)
] [

s+ (L, ℏω) + a+ (L, ℏω)
]

vg (ℏω)WHℏω
/

Γ (ℏω) , (21.91)

p− (0, ℏω) =
[

1 − R1 (ℏω)
] [

s− (0, ℏω) + a− (0, ℏω)
]

vg (ℏω)WHℏω
/

Γ (ℏω) , (21.92)

where the signal spectral distribution is calculated using Equations 21.84 and 21.85, whereas the noise
spectral distribution is determined from Equations 21.89 and 21.90. It should be noted that, if re�ectivities
of both facets are chosen to be zero, which is an idealized case of TW-SOA, the previous algorithm can be
simpli�ed. A�er determining and adjusting the forward-propagating variables, the following step, related
to backward propagation, can be reduced to calculation and adjusting of only Am

− since the backward-
propagating signal will not exist.

One of the most valuable �gures of merit for SOA characterization is the device (transmission) gain G.
Strictly speaking, it is de�ned as the ratio of the signal’s output and input photon density, or their correspond-
ing powers, i.e., G = 10 log10(Pout∕P0). However, as the signal output photon density cannot be separated
from ASE noise in the signal’s wavelength range, the output photon density usually includes a small fraction
of ASE, which has a negligible e�ect on G, as long as the input optical power P0 is su�ciently high (above−40
dBm).ForTW-SOA, theoutputphotondensity is recordedat therear facet (z = L),Pout = ∫ p+(L, ℏω)d(ℏω),
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whereas for the R-SOA, at the front facet (z = 0), Pout = ∫ p−(0, ℏω)d(ℏω). For FP-SOA, either facet can be
regarded as the output one, depending on system con�guration. In the case when the SOA model bundles
up signal and the whole ASE noise spectrum into one quantity, the above de�nition of device gain G is
meaningful for somewhat larger input powers, which can be recognized by the relatively �at dependence
of G versus P0. For insu�cient input powers P0, the device gain tends to increase more rapidly as the input
optical power decreases, ultimately reaching the in�nite value for the zero-input signal.

21.5.3.2 Results and Discussion

Based on the wideband self-consistent numerical model presented in earlier section, a full analysis of
TW- and R-SOA is carried out under the steady-state operation regime. The list of parameters used in
the analysis is given in Table 21.3. The remaining parameters, which are both carrier and energy depen-
dent, including g, rsp,Δnr,Γ, vg, and βsp, are determined using the models presented in Section 21.3 and are
given in Figures 21.2 and 21.4. Both bulk and MQW-based active regions are optimized to be polarization
insensitive, as shown in Figure 21.3, so only TE polarization is analyzed.

21.5.3.2.1 Steady-State Signal and Carrier Densities Spatial Distribution
Figures 21.11 and 21.12 show spatial distribution of carrier densities, n(z), and photon densities of for-
ward and backward-propagating signal and ASE noise combined, ∫ [s+(z, ℏω) + a+(z, ℏω)]d(ℏω), and
∫ [s−(z, ℏω) + a−(z, ℏω)]d(ℏω), respectively, for di�erent input optical powers P0. In Figure 21.11, the dis-
tributions are shown for the active region based on the unstrained bulk In0.53Ga0.47As, with the parameters
listed in Table 21.1, whereas in Figure 21.12, the results are given for MQW consisting of six coupled 0.13%
tensile-strained In0.516Ga0.484As quantum wells, which are strain-compensated by the In0.9Ga0.1As0.3P0.7
0.26% compressively strained barriers, with the parameters given in Table 21.2. In both active region types,
carrier dynamics is treated using Equation 21.71. Although this is a somewhat simpli�ed model for MQW
SOA, its usage is justi�ed when the volumes of the well and barrier regions do not di�er signi�cantly.
Namely, the carrier recombination time in the barrier, τb, �guring in the full system of carrier rate equations
describing MQW active region, Equations 21.54 and 21.55, is of the order of nanoseconds, unlike the cap-
ture time by the wells τbw, which has the value between 25 and 55 ps (Keating et al., 1999). On the other
hand, it has been shown by Tsai et al. (1995) that the escape time from the wells, τwb, is one to two orders
of magnitude higher in comparison with τbw. Assuming that the volumes of the well and barrier regions,
Vw and Vb, respectively, are similar, the most signi�cant contribution to dnb/dt comes from the �rst and
the third terms on the RHS of Equation 21.54, whereas the second and fourth terms can be neglected. In

TABLE 21.3 SOA Material and Geometric Parameters

Symbol Quantity Value

W Active region width 2 μm
H Bulk active region height 140 nm
Lw MQW well thickness 19 nm
Lb MQW barrier thickness 10 nm
H MQW active region height for six QWs 114 nm
L Active region length 600 μm
K0 Carrier independent loss coe�cient 62 cm−1

K1 Carrier dependent loss coe�cient 7.5 × 10−17 cm2

A Shockley–Read–Hall coe�cient 1.1 × 108s−1

C Auger coe�cient 5.82 × 10−29 cm6∕s
ε Nonlinear gain suppression factor 1.5 × 10−17 cm3

ℏω0 Signal central energy 0.8 eV
R1 Antire�ective facet power re�ectivity 5 × 10−5

SOA, semiconductor optical ampli�er; MQW, multiple quantum well.
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FIGURE 21.11 Spatial distribution of (a), (d) carrier density, and total photon density (signal and ampli�ed sponta-
neous emission [ASE]) for (b), (e) forward, and (c), (f) backward propagation for di�erent input signal optical powers
(given in dBm) in the case of (a) through (c) traveling-wave semiconductor optical ampli�er (TW-SOA), and (d)
through (f) re�ective (R)-SOA, both with the active region based on the unstrained bulk material.

this manner, the generation term ηinjI/(qVb) directly in�uences the carrier density in the barrier states, nb,
which is further re�ected in the �rst term of Equation 21.55. This e�ect becomes even more pronounced
if the capture time is short and the steady-state value of nb is quickly reached.

It can be seen that for low input optical powers, up to −30 dBm, the carrier density has values close to
the maximum allowed by the available bias current, nmax, due to the low consumption by vague optical
signals. As P0 increases, it dumps the carrier density overall and leads to its nonuniform spatial distribu-
tion caused by the intensi�ed consumption of carriers. For both SOA types, forward-propagating photon
densities have similar values and spatial distributions, as shown in Figure 21.11b and e. The signals are
exponentially ampli�ed for low to moderate input optical powers, up to 5 dBm. A further increase of P0
leads to signi�cant carrier depletion close to the front facet, Figure 21.11a and d, and consequently expo-
nential signal attenuation. The backward-propagating photon densities, Figure 21.11c and f, are orders
of magnitude lower for TW-SOA than for R-SOA, which is expected due to very low residual re�ectiv-
ity of the rear facet. However, spatial distributions are qualitatively similar, and resemble the reversed
forward-propagating ones, exponentially ampli�ed for low P0, and attenuated as P0 increases. The exis-
tence of strong backward-propagating signal in the case of R-SOA leads to a di�erent distribution of n(z)
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FIGURE 21.12 Spatial distribution of (a, d) carrier density, and total photon density (signal and ampli�ed sponta-
neous emission [ASE]) for (b, e) forward and (c, f) backward propagation for di�erent input signal optical powers
(given in dBm) in the case of (a) through (c) traveling-wave semiconductor optical ampli�er (TW-SOA), and (d)
through (f) re�ective (R)-SOA, both with the active region based on the tensile-strained quantum wells, which are
strain-compensated by the compressively strained barriers.

for moderate P0, between−20 and 5 dBm, in comparison to TW-SOA. The carrier density is more severely
depleted closer to the front facet, by the ampli�ed S−(z), as shown in Figure 21.11d, and has a maximum
close to the rear facet, caused by the interplay of the counterpropagating signals.

Spatial distributions of carrier and photon densities for MQW-based SOAs, as shown in Figure 21.12,
resemble the ones shown for bulk SOAs, as shown in Figure 21.11, and same qualitative analysis can be
applied. The main di�erence comes from lower carrier density, and material gain, due to the polarization-
insensitive design and lower bias current. This leads to the more uniform carrier spatial distribution, as
shown in Figure 21.12c and d, and somewhat lower device gain, which can be inferred from the values of
the output photon densities, at z= L for TW-SOA, and z = 0 for R-SOA.

21.5.3.2.2 Steady-State Device Gain
One of the most valuable �gures-of-merit for SOA is its steady-state device (transmission) gain. As de�ned
in earlier section, it is the ratio of the output and input optical powers, or photon densities. Figures 21.13
and 21.14 show the dependence of device gain on operating conditions, i.e., bias current I, and input optical
power P0, for bulk, and MQW active region types, respectively, for both TW- and R-SOA.
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FIGURE 21.13 Device (transmission) gain for bulk active region versus (a), (c) input optical power, and (b), (d) bias
current, for (a), (b) traveling-wave semiconductor optical ampli�er (TW-SOA), and (c), (d) re�ective (R)-SOA.

Figure 21.13 shows that the increase in bias current leads to the higher gain in both SOA types since
more carriers are available to provide signal ampli�cation, whereas the increase in P0 leads to the gain
decrease due to excessive carrier consumption. For low to moderate P0, up to approximately −10 dBm,
the device gain does not change signi�cantly with input power and is limited by the length of the active
region that is responsible for ampli�cation. Additionally, R-SOA exhibits higher gain, Figure 21.13c and d
in comparison with TW-SOA, Figure 21.13a and b, for bias currents beyond 50 mA. In contrast, for the
currents below 50 mA, the gain is lower in R-SOA compared with TW-SOA. This comes from double signal
propagation through the active region in the case of R-SOA, which emphasizes either ampli�cation, when
carrier density is high, or attenuation, when n is low. The maximum operating current of SOA is limited
either by maximum bias current density, which provides long-term stable operation, or by the threshold
for stimulated emission. In the latter case, the threshold material gain gth can be determined from (Coldren
et al., 2012)

Γgth −
(

K0 + ΓK1nth
)

= 1
2L

ln 1
R1R2

. (21.93)

Having the value for gth, it is possible to determine nth, and using Equation 21.71, the corresponding thresh-
old current value. Since the product of the two re�ectivities is higher for R-SOA than for TW-SOA, the gth
will be lower, and, therefore, the current threshold value will also be lower.
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optical power, and (b), (d) bias current, for (a), (b) traveling-wave semiconductor optical ampli�er (TW-SOA), and (c),
(d) re�ective (R)-SOA.

An interesting feature in the R-SOA’s gain dependence on input optical power can be observed for high
bias currents, as shown in Figure 21.13c. As the saturation regime of operation approaches, when the gain
begins to decrease, an overshoot in device gain is visible. This e�ect has already been reported (Schrenk,
2011; Totović et al., 2013) and can be explained by the trade-o� between a sudden decrease in the sponta-
neous emission and ASE with the decrease of carrier density and the corresponding relatively slow decrease
in the material gain at the signal wavelength (Totović et al., 2013).

Figure 21.14 shows that MQW SOA provides somewhat lower gain in comparison with bulk, for the
same operating conditions. This can be attributed to the lower modal gain, coming from lower con�nement
factor at the signal central frequency, as shown in Figure 21.4, which is a consequence of the polarization-
insensitive design. Nevertheless, qualitatively, the two active regions give similar results, where the device
gain increases with bias current increase. For low input optical powers, gain does not vary with P0, and
as the input optical power increases and carrier consumption becomes prominent, the device enters the
saturation regime, and gain begins to decrease.

21.5.4 Case Study: Steady-State Semianalytical Model

When simulation time and computational resources are the priority, another approach can be used in SOA
analysis. The main underlying idea of the semianalytical approach is to harvest the insightfulness of analyt-
ical methods and the versatility of numerical methods to reach a fast and computationally e�cient model.
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It essentially relies on carefully chosen approximations that can reduce the model complexity but still keep
the accuracy at as high a level as possible. Since the carrier density usually does not vary signi�cantly
across the active region, it is common practice to model it as a constant, or a piecewise constant function.
This approximation is extensively used in TMM, and, as previously discussed, presents the basis for many
di�erent SOA models. Choosing a �xed value for n(z) simpli�es TW equations to the point where an ana-
lytical solution can be found, either in closed form, e.g., Equation 21.64, or in the form of a transcendental
equation. The carrier density’s spatial distribution can also be approximated by a linear function, but this
approach may give an analytical solution for photon densities only when nonlinear gain suppression is
neglected (Totović et al., 2014).

Unlike carrier density, signal and noise photon densities can vary up to several orders of magnitude
during the propagation from one SOA facet to the other. This implies that small variations in n can build up
to signi�cant changes in signal and noise, and special attention is required in selecting the adequate carrier
density value. For example, choosing the value at the front or rear facet, n0 = n(z = 0) or nL = n(z = L),
respectively, can signi�cantly over- or underestimate material gain and spontaneous emission rate and lead
to noticeable error in the output photon density, and, consequently, device gain. In order to alleviate this
discrepancy, an average value of these two carrier densities can be chosen, n̄ = (n0 + nL)∕2, and thus the
error caused by neglecting the spatial dependence of n can be partially compensated.

The requirements for increased model e�ciency can be met by yet another model approximation, where
the signal and noise spectral dependences are neglected and the total spontaneous emission and signal
are assigned to a single wavelength corresponding to signal peak, providing model analysis in terms of
photon densities rather than spectral photon densities. Since no spectral analysis is present, TW equations
written with respect to signal and noise can be wrapped up into a single equation that accounts for both
spontaneous and stimulated emission of photons. This equation can be derived as a sum of Equations 21.72
and 21.74, integrated over the whole spectrum, resulting in

±
dS±
dz

=

[

Γg
1 + ε

(

S+ + S−
) − αi

]

S± +
1

2vg
ΓβspRsp, (21.94)

where S± now stands for the photon density of the signal and noise combined, at the signal central fre-
quency ω0. All parameters that are dependent on carrier density and photon energy in Equation 21.94,
namely, Γ, g, αi, vg, and βsp, are now replaced with the corresponding numerical dependencies on n, inter-
polated from the full spectral and carrier dependent model presented in Figures 21.2 and 21.4, for the
energy of ℏω0. Additionally, for parameters that do not vary signi�cantly with n, i.e., Γ, αi, vg, and βsp, as
shown in Figure 21.4, a �xed value can be used, interpolated for an average carrier density, nav, between
the transparency, ntr, and maximum allowed value, nmax, given by Equation 21.88. The carrier density at
transparency will depend only on material gain, and not on operating conditions, whereas the maximum
allowed value for carrier density nmax will depend on the value of bias current. In order to choose the ade-
quate value of nav for parameter interpolation, it is useful to determine nmax for maximum allowed bias
current Imax. The value of Imax can be calculated as Imax = JmaxWL, for a cross-section area de�ned by the
active region’s width W and length L, given in Table 21.3, where Jmax is the maximum allowed bias current
density for the long-term stable operation, which is in the range of 25–35 kA/cm2. Under the listed condi-
tions, the chosen values for bulk and MQW-SOA are nav = 2.5 × 1018 cm−3 and nav = 2.1 × 1018 cm−3,
respectively. The interpolated values of Γ, vg, βsp, and additional parameters are listed in Table 21.4 for bulk
and MQW at the signal central energy of ℏω0 = 0.8 eV.

If a simpler model is used, particularly if an analytical solution is sought, it proves to be impractical to use
numerical dependencies of g and Rsp on n (Figure 21.2). Rather, numerical results can be �tted to analytical
functions, which further simpli�es calculation. The most common choice for g(n) dependence is a linear
one, g(n) = α(n− ntr), where α is the di�erential gain (Thylén, 1988; Shtaif et al., 1998; Mørk et al., 1999).
This approximation is justi�ed if the bias current is low enough to prevent a signi�cant increase in carrier
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TABLE 21.4 Interpolated Parameter Values for Bulk and Multiple Quantum Well (MQW) Active
Region at the Signal Central Energy ℏω0 = 0.8 eV and for the Average Carrier Density of nav = 2.5 ×
1018 cm−3 for Bulk and nav = 2.1 × 1018 cm−3 for MQW

Symbol Quantity Bulk MQW

Γ Optical con�nement factor 30.44% 21.62%
vg Group velocity 7.76 × 107 m/s 8.73 × 107 m/s
k0 Wave vector 4.05 × 106 m−1 4.05 × 106 m−1

nr Index of refraction 3.660 3.597
Δnr Variation of index of refraction 0.071 7.44 × 10−4

ne�,0 E�ective index of refraction for zero carrier density 3.405 3.291
ne� E�ective index of refraction 3.490 3.291
β0 Wave propagation constant for zero carrier density 1.38 × 107 m−1 1.33 × 107 m−1

R2 Highly re�ective facet power re�ectivity 0.3258 0.3192
nsp Inversion factor 1.035 1.055
βsp Spontaneous emission coupling factor 1.842 × 10−5 1.869 × 10−5

All values given are for transverse electric (TE) polarization.

TABLE 21.5 Bulk and Multiple Quantum Well (MQW) Active Region Fitting Parameters at the Signal
Central Energy ℏω0 = 0.8 eV for Material Gain and Spontaneous Emission Rate to the two-Parameter
Logarithmic and Second-Degree Polynomial Function of Carrier Density, Respectively

Symbol Quantity Bulk MQW

g0 Material gain �tting parameter 742.182 cm−1 669.205 cm−1

ntr Carrier density at transparency 1.38 × 1018 cm−3 1.15 × 1018 cm−3

B0 Spontaneous emission �tting parameter −8.375 × 1025 cm−3∕s −1.351 × 1026 cm−3∕s
B1 Spontaneous emission �tting parameter 1.344 × 108 s−1 1.975 × 108 s−1

B2 Spontaneous emission �tting parameter 2.790 × 10−11 cm3∕s 2.146 × 10−11 cm3∕s

density. However, a more suitable model relies on a two-parameter (g0, ntr) logarithmic dependence (Col-
dren et al., 2012), which provides gain saturation with carrier density increase, g(n) = g0 ln(n∕ntr), where
g0 is the material gain �tting parameter and ntr is the carrier density at transparency. It should be noted
that, although the two-parameter logarithmic gain does provide reasonably good results, for more linear-
like dependencies of gain on carrier density, such as for bulk materials, another model may be employed,
which includes a third parameter, ns. This model, g(n) = g0 ln[(n + ns)∕(ntr + ns)], prevents in�nite gain
value for zero carrier densities, and in the limiting case of ns → 0 reduces to the purely logarithmic model,
whereas for ns → ∞ reduces to purely linear model (Coldren et al., 2012). The model used in this case
study is a two-parameter logarithmic gain since it �ts well on numeric results.

The radiative spontaneous recombination rate is usually modeled via the quadratic function (Chu and
Ghafouri-Shiraz, 1994; Melo and Petermann, 2008). Although this function �ts actual dependence quite
well, a more detailed model would include a second-degree polynomial function, Rsp(n) = B0+B1n+B2n2,
where B0,B1, and B2 are the spontaneous emission rate �tting parameters. Table 21.5 shows a list of �t-
ting parameters at wavelength λ= 1.55 μm (ℏω0 = 0.8 eV), for active regions based on the unstrained bulk
In0.53Ga0.47As, and the MQW consisting of six coupled 0.13% tensile-strained In0.516Ga0.484As quantum
wells, which are strain-compensated by the In0.9Ga0.1As0.3P0.7 0.26% compressively strained barriers.

In a steady-state analysis, the input signal carries no information encoded in its amplitude or phase,
so the phase equation may be omitted from the model, in attempting to reduce the model’s complexity.
This simpli�cation is additionally supported by the fact that the carrier di�usion will wash out the spatial
grating in the carrier density produced by the interference between two counterpropagating optical �elds.
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For all antire�ective facets, residual re�ectivity can be neglected and equated with zero. Since the noise
power is usually several orders of magnitude lower than the signal power, zero re�ectivity implies that
in the case of TW-SOA, the signal can be assumed to travel only once through the active region in the
forward direction. On the other hand, in the case of R-SOA, the signal will pass through the active region
twice, forward and backward, as a consequence of re�ection at the rear facet. In other words, no multiple
re�ections are present, and the cavity does not exhibit resonant behavior. The boundary conditions for the
signal at the front and rear facets are S+(0) = S0 and S−(L) = R2S+(L), respectively, where S0 is the input
signal photon density. Depending on the SOA type, re�ectivity of the rear facet can have either some �nite
value, for R-SOA, or it can be zero, for TW-SOA, which essentially simpli�es the boundary condition to
S−(L) = 0.

The steady-state carrier density rate equation can be derived from Equations 21.71, 21.75, and 21.76,
under the previously listed assumptions:

I
qV

−
(

An + Rsp + Cn3) −
vgg

(

S+ + S−
)

1 + ε
(

S+ + S−
) = 0. (21.95)

This equation can be used for R-SOA modeling as is, whereas in the case of TW-SOA, it can be simpli�ed by
neglecting the backward-propagating noise contribution and setting the photon density of the backward-
propagating signal to zero (S− = 0). The system of coupled equations given by Equations 21.94 and 21.95
cannot be solved analytically unless the approximation regarding the carrier density’s spatial distribution is
introduced. Di�erent approximations require di�erent analytical treatments and implementations, which
are further discussed.

21.5.4.1 The Fundamentals of the Semianalytical Models

The starting point of semianalytical treatment is replacement of the carrier density spatial distribution with
a �xed value, equal to the arithmetic mean of the carrier density values at the edges of the SOA structure,
or the edges of its sections, namely, n(z) = n̄ = (n0 + nL)∕2. These carrier densities are deduced by
solving the carrier rate Equation 21.95, where photon density distributions are expressed as functions of
the �xed carrier density n̄. In other words, once the analytical dependence of S±(n̄, z) = S±(n0, nL, z) is
determined, it can be substituted in Equation 21.95 at z = 0 and z = L, which results in a system of
two coupled transcendental equations written with respect to n0 and nL. The di�erence between these two
carrier density equations comes from the spontaneous emission term Rsp(n) and material gain g(n), which
for z = 0 depend on n0, and for z = L depend on nL. Solving these equations provides the numerical value
of n̄, which is then returned to S±(n̄, z), and the output photon density can be evaluated.

The same method can be applied to an SOA section of length Δz = L∕p, given in Figure 21.15, where
p is the number of analyzed sections, and the method can be generalized to the piecewise constant carrier
density spatial distribution. The advantage of this approach over the TMM is the choice of the kth section
carrier density value, n̄k, as the mean value between the carrier densities at the section interfaces, n̄k =
(nk−1 + nk)∕2. In this manner, a higher degree of accuracy is provided for a smaller number of sections,
compared to the choice of carrier density at the edge of a section.

zzkzk−1

S+(zk)

S−(zk)S−(zk−1)

Δz

Section kSection
k – 1

Section
 k + 1

S+(zk−1)

S−k−1

S+k−1 S+k

S−k

nk = n(zk)nk−1 = n(zk−1) nk = (nk−1 + nk)/2

FIGURE 21.15 Schematic representation of the kth section in the segmented semiconductor optical ampli�er
structure with the relevant carrier and photon densities.
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Assuming that the carrier density has a known, �xed value n̄k at the kth section of an R-SOA,
Equation 21.94 needs to be solved analytically for both propagation directions, with initial condi-
tions imposed by the photon densities entering the kth section, which can be determined by solving
Equation 21.94 at section k− 1 for forward, and k+ 1 for backward propagation. However, the analyti-
cal solution of Equation 21.94 cannot be obtained for R-SOA without additional approximations, due to
the nonlinear coupling of S+ and S−. In the case of TW-SOA, only the forward-propagating photon density
S+ is included in Equation 21.94, providing an analytical solution and the corresponding initial conditions
for all sections along TW-SOA.

21.5.4.2 Approximate Solutions of Counterpropagating Photon Density Distributions and
Implementation of the Semianalytical Algorithm

In order to derive the photon density spatial distributions, S+ and S−, corresponding to R-SOA, the system
of Equation 21.94 needs to be decoupled, which can be done in two ways.

First, the nonlinear gain suppression can be neglected by setting ε= 0, which results in a linear decoupled
system with respect to S+ and S−:

±
dS±
dz

=
(

Γg − αi
)

S± +
1

2vg
ΓβspRsp. (21.96)

This assumption greatly simpli�es the system, and, for the bias currents and input optical powers that are
not too high, it does not degrade the model accuracy signi�cantly. The solution of Equation 21.96 for each
section can be found in closed analytical form, corresponding to the matrix form (Equation 21.70) used in
description of noise by TMM:

Sk
+ = Sk−1

+ Gk + σk
sp
(

Gk − 1
)/

ln Gk, (21.97)

Sk−1
− = Sk

−Gk + σk
sp
(

Gk − 1
)/

ln Gk, (21.98)

where Gk =G(n̄k) = exp{[Γg(n̄k) − αi(n̄k)]Δz} is the single-pass gain of the kth section and
σk

sp =σsp(n̄k) = 1∕(2vg)ΓβspRsp(n̄k)Δz is the single-pass generated spontaneous emission within the kth
section. Due to the cascading nature of sections, the output photon density of the (k − 1)th section,
Sk−1
+ = S+(zk−1), is the input photon density of the kth one for forward propagation, whereas for back-

ward propagation, the output photon density of the (k + 1)th section, Sk
− = S−(zk), is the input photon

density of the kth one, as shown in Figure 21.15. This chaining, along with the form of Equations 21.97
and 21.98, suggests that the photon densities at section interfaces are calculated by recursion. The
base cases in a recursive method for forward and backward propagation are de�ned by the bound-
ary conditions at the front (k= 1) and rear (k= p) facets, respectively, S0

+ = S0 and Sp
− =R2Sp

+. The
forward-propagating signal exiting the kth section will depend on carrier densities of all preceding
sections, Sk

+ = S+(zk, n̄1,… , n̄k) = S+(zk, n0,… , nk), whereas the backward-propagating signal will depend
on carrier densities in all sections, Sk

− = S−(zk, n̄1,… , n̄p) = S−(zk, n0,… , np), due to the imposed initial
condition at the rear facet, which assumes re�ection of S+(zp, n0,… , np). These analytical expressions can
now be returned to the carrier rate Equation 21.95 at each section interface located at zk

fk = 0 = I
qV

−
[

Ank + Rsp
(

nk
)

+ Cn3
k
]

− vgg
(

nk
)

[

S+
(

zk, n0, ..., nk
)

+ S−
(

zk, n0, ..., np

)]

, (21.99)

which forms a system of p + 1 transcendental equations, all of which are dependent on p + 1 carrier den-
sities, from n0 to np. This system cannot be solved analytically, so a numerical procedure is required. An
example of such a procedure, given by Totović et al. (2014), relies on numerically assisted elimination of
variables, where, in an iterative approach, the range of carrier densities in which the solution nk is expected
to be found is narrowed simultaneously for all k from 0 to p. The initial range for carrier densities at all
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interfaces is bounded by the carrier density at transparency, ntr, and the maximum carrier density, nmax,
limited by the available current (Equation 21.88). In each iteration step, the corresponding range of each
nk is reduced to one ��h of its previous size by the appropriate algorithm, still including the solution nk.
A�er a prede�ned number of iteration steps, the values for nk can be determined by evaluating the RHS
of the system (Equation 21.99) for the carrier densities in the narrowed ranges, giving a function fk(n),
and subsequent interpolation of the function fk(n) in search for nk which returns 0, i.e., the LHS value of
Equation 21.99. Usually, four iteration steps su�ce for the error coming from neglected gain suppression
to prevail over the error coming from the iteration process. Having the values for carrier densities at all
interfaces, it is possible to evaluate the photon densities at each zk using Equations 21.97 and 21.98, and
subsequently determine the device gain. Since this model treats the propagation of the signal and ASE
noise combined through Equation 21.96, or more generally Equation 21.94, the device gain is de�ned as
the ratio of the output signal power, along with the total ASE noise, and the input signal power. This def-
inition implies that in the limiting case of zero input signal, the device gain will asymptotically approach
in�nity due to division by zero.

Another approach that can be used for the decoupling of Equation 21.94 with respect to S±(z, n) is
to assume that the opposite-propagating photon density is spatially independent, i.e., S∓(z, n) = Scst

∓ (n).
Unlike the carrier density, which varies modestly across the active region, photon density exhibits expo-
nential increase or decrease from one section edge to the other, so a choice of geometric mean is a more
suitable one, which gives Scst,k

∓ (n) = [Sk−1
∓ (n)Sk

∓(n)]
1∕2. The term 1 + ε(S+ + S−) in Equation 21.94, which

is responsible for equation coupling, can now be replaced with 1 + ε(S± + Scst
∓ ), or, more generally, with a

sum of the spatially independent, and spatially dependent functions, θ± + εS±, where θ± = 1 + εScst
∓ . In

the case of TW-SOA, no backward-propagating signal exists and θ± = 1. Equation 21.94 now reads

±
dS±
dz

=
(

Γg
θ± + εS±

− αi

)

S± +
1

2vg
ΓβspRsp, (21.100)

and its solution for the kth section can be found in the implicit form from the transcendental equation

2αk
iΔz =

(

1
Tk
±
− 1

)

ln
|

|

|

|

|

|

θk
± + εS

out,k
± −

(

1 − Tk
±
)/

μk
±

θk
± + εS

in,k
± −

(

1 − Tk
±
)/

μk
±

|

|

|

|

|

|

−

(

1
Tk
±
+ 1

)

ln
|

|

|

|

|

|

θk
± + εS

out,k
± −

(

1 + Tk
±
)/

μk
±

θk
± + εS

in,k
± −

(

1 + Tk
±
)/

μk
±

|

|

|

|

|

|

,

(21.101)
where the auxiliary parameters μk

± and Tk
± are de�ned as follows:

μk
± =

2αk
i

Γgk + αk
i θ

k
± + εΓβspRk

sp

/(

2vg

) , (21.102)

(

Tk
±

)2
= 1 −

(

μk
±

)2
Γgkθk

±

/

αk
i . (21.103)

In Equation 21.101, Sin,k
± and Sout,k

± denote the input and output photon densities into and from the kth
section, respectively. For forward propagation, Sin,k

+ = Sk−1
+ and Sout,k

+ = Sk
+, whereas in the case of back-

ward propagation, Sin,k
− = Sk

− and Sout,k
− = Sk−1

− , according to Figure 21.15. Equation 21.101 is solved
with respect to Sout,k

± recursively, using the previously determined Sin,k
± , with the base cases in a recursive

method de�ned by the boundary conditions in sections k = 1 and k = p, for forward and backward propa-
gation, respectively. Just as in the previous model, where the nonlinear gain suppression was neglected, the
solutions of Equation 21.101 will depend either on carrier densities in all preceding sections for forward
propagation, Sout,k

+ = S+(zk, n̄1,… , n̄k) = S+(zk, n0,… , nk), or on all carrier densities in the case of back-
ward propagation, Sout,k

− = S−(zk−1, n̄1,… , n̄p) = S−(zk−1, n0,… , np). Substituting these dependencies
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into the carrier rate Equation 21.95 at each section interface, zk, gives the system of p + 1 transcendental
equations:

fk = 0 = I
qV

−
[

Ank + Rsp
(

nk
)

+ Cn3
k
]

−
vgg

(

nk
)

[

S+
(

zk, n0, ..., nk
)

+ S−
(

zk, n0, ..., np

)]

1 + ε
[

S+
(

zk, n0, ..., nk
)

+ S−
(

zk, n0, ..., np

)] . (21.104)

Unlike the previous model, for ε = 0, where the photon density dependencies on nk could be expressed
in closed analytical form, the solutions are now given in implicit form (Equation 21.101), which essentially
requires a numerical method. Moreover, in order to employ a numerical method, the values for carrier
densities in all sections need to be known. This raises the need for a self-consistent numerical approach
in solving the system given by Equations 21.101 and 21.104. The numerical method should comprise two
distinct steps. First, the IGVs need to be generated for carrier and photon densities at all section interfaces,
which is done using the model for ε = 0. Next, an iterative procedure is used, where carrier and photon
densities are alternately calculated, and carrier densities are subsequently updated based on the values
from the current and previous iteration steps until the prede�ned tolerance is satis�ed. The maximum
relative error between two consecutive iteration steps, δ, is calculated as the maximum relative error for all
monitored variables, at all interfaces, i.e., δ = max{δ(nk), δ(Sk

+), δ(S
k
−)}, and the tolerance is chosen to be

δmax = 10−6. The updating of nk is done using a set of weight coe�cients with a sum of unity for the current
and previous iteration steps, {wi,wi−1} = {0.1, 0.9}. The weight coe�cients are chosen such that they give
balance between the stability and speed of convergence, and usually no more than 100 iteration steps are
required for the procedure to reach a self-consistent solution. It should be noted that due to the nature of
the algorithm, the system of equations given by Equation 21.104 is not coupled since S+(zk, n0,… , nk) and
S−(zk, n0,… , np) are calculated for the carrier values from the previous iteration step and can be treated
as parameters. In other words, the current iteration variable nk is included in Equation 21.104 through the
spontaneous emission terms and material gain.

It has been shown by Totović et al. (2014) that depending on the number of chosen sections and the level
of approximation, the semianalytical model can be up to two orders of magnitude faster in comparison to
the numerical model based on SCNM. Meanwhile, the maximum absolute mismatch in the device gain
calculated by the numerical and semianalytical models does not exceed 1.6 dB even for only one section,
and neglected nonlinear gain suppression, whereas this mismatch drops to a maximum of 0.11 dB for three
sections with included gain suppression for a bulk R-SOA.

21.5.5 Case Study: Dynamic Propagation Model

When the input signal carries information encoded either in its amplitude, or phase, or both, a dynamic
approach in SOA modeling is required. The same model needs to be applied for modulation or remodula-
tion purposes, when the bias current is time dependent. The most general dynamic model, suitable for both
large- and small-signal modulation, includes spatiotemporal and spectral dependency of both forward-
and backward-propagating signals and noise, given by Equations 21.50 through 21.52, and, depending on
the active region type, one or several equations describing spatiotemporal carrier density distribution. For
bulk SOA, carrier density evolution can be described by Equation 21.49, for the MQW active region by
Equations 21.54 and 21.55, and for the QD-SOA by Equations 21.57 through 21.59. Due to the ampleness
and complexity of three-dimensional (3D) mesh (time-space-spectrum) implementation in the numeri-
cal algorithms, whenever the input signal is spectrally narrow, it is common practice to simplify the model
and perform the analysis for photon densities and not their spectral distributions. Similar to Section 21.5.4,
material gain and spontaneous emission rate can be approximated with the two-parameter logarithmic and
second-order polynomial function, respectively, g(n) = g0ln(n∕ntr) and Rsp(n) = B0 + B1n+ B2n2, where
the �tting parameters are given in Table 21.5 for the bulk and MQW active region, at the signal central



9781498749466_C021 2017/8/29 15:49 Page 678 #48

678 Handbook of Optoelectronic Device Modeling and Simulation

wavelength of 1.55 μm. All other parameters, which are dependent on photon energy and carrier density,
can be approximated by the corresponding �xed values given in Table 21.4, interpolated for the photon
energy of ℏω0 = 0.8 eV and an average carrier density nav, which depends on the active region type. Under
these assumptions, the signal can be described by the equation similar to Equation 21.23, with the addition
of nonlinear gain suppression:

±
∂S±
∂z

+ 1
vg

∂S±
∂t

=
(

Γg
1 + εSΣ

− αi

)

S±. (21.105)

The phase evolution for both propagating directions is given by Equation 21.51:

±
∂φ±
∂z

+ 1
vg

∂φ±
∂t

=
k0ΓΔnr
1 + εSΣ

. (21.106)

ASE noise is treated with a separate equation, resembling Equation 21.105, with the addition of the
spontaneous emission rate contribution:

±
∂A±
∂z

+ 1
vg

∂A±
∂t

=
(

Γg
1 + εSΣ

− αi

)

A± +
1

2vg
ΓβspRsp. (21.107)

It should be noted that by using Equation 21.107, spectral dependence of ASE is neglected and all noise
photons are treated at the single frequency. Boundary conditions are de�ned by the input signal, described
by its photon density S0(t) and phase φ0(t), and front and rear facet re�ectivities, R1 and R2, respectively.
For antire�ective facets, zero re�ectivity can be assumed, whereas for the highly re�ective ones, the re�ec-
tivity coe�cient can be calculated as R2 = (nr − 1)2∕(nr + 1)2, if no re�ective layer is placed. At the front
facet, which is antire�ective, the boundary conditions read S+(0) = S0,φ+(0) = φ0,A+(0) = 0, and
for the rear facet, which can be either highly- or antire�ective, S−(L) = R2S+(L),φ−(L) = φ+(L) + π,
and A−(L) = R2A+(L). In the case of TW-SOA, rear facet re�ectivity R2 will be zero, and no backward-
propagating signal will exist. However, since the noise is generated within the SOA, with equal prob-
ability of photon traveling in any direction, backward-propagating noise will exist, both for TW- and
R-SOA.

Carrier density distribution is described by Equation 21.49, where the current I can be time dependent:

dn
dt
= I

qV
−
(

An + Rsp + Cn3) −
vggSΣ

1 + εSΣ
. (21.108)

In Equations 21.105 through 21.108, SΣ stands for the total photon density in the SOA’s active region,
including both signal and noise, SΣ = S+ + S− + A+ + A−.

The system given by Equations 21.105 through 21.108 cannot be analytically solved, and several numer-
ical approaches are described in Section 21.5.2. Although TMM is widely used due to its simplicity, coarse
segmentation along the longitudinal axis might lead to an error in calculating the photon density dis-
tribution. Moreover, this error can be accumulated during matrix multiplication and can be even more
pronounced when two counterpropagating signals exist.

21.5.5.1 Upwind Scheme Numerical Implementation

In order to mitigate potential errors, a �rst-order upwind scheme numerical method based on FDM can
be developed, where the space and time axis are treated as quasi-continuous through �ne segmentation.
A�er choosing the number of points along the longitudinal axis, P, which de�ne the section length, Δz =
L∕(P − 1), segmentation of the temporal axis is done, such that Δt ≤ Δz∕vg, according to the Courant–
Friedrichs–Lewy stability condition. Depending on the length of the analyzed time interval, T, the number
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of points along the temporal axis is determined as Q = ⌈T∕Δt⌉ + 1. All derivatives in Equations 21.105
through 21.108 are replaced with �nite di�erences, such that for temporal derivatives forward di�erences
are used:

df
dt
≈

f
(

tj+1

)

− f
(

tj

)

Δt
, (21.109)

where f is any time-dependent variable, i.e., S±,φ±,A±, n, and for spatial derivatives, the choice is made
based on the propagation direction. For forward propagation

df+
dz

≈
f+
(

zi
)

− f+
(

zi−1
)

Δz
, (21.110)

where f+ denotes any of the following variables S+,φ+,A+, whereas for backward propagation

df−
dz

≈
f−
(

zi+1
)

− f−
(

zi
)

Δz
, (21.111)

where f− denotes any of the following variables: S−,φ−,A−. Using Equations 21.109 through 21.111,
a set of coupled partial di�erential equations describing signal and noise propagation along the SOA,
Equations 21.105 through 21.107, can be transformed into the set of coupled linear algebraic equations,
for forward

f+
(

zi, tj+1

)

= f+
(

zi, tj

)

+ Δtvg

⎡

⎢

⎢

⎢

⎣

F+
(

zi, tj
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−
f+
(

zi, tj

)

− f+
(

zi−1, tj

)

Δz

⎤

⎥

⎥

⎥

⎦

, (21.112)

and backward propagation

f−
(

zi, tj+1

)

= f−
(

zi, tj

)

+ Δtvg

⎡

⎢

⎢

⎢

⎣

F−
(

zi, tj

)

+
f−
(

zi+1, tj

)

− f−
(

zi, tj

)

Δz

⎤

⎥

⎥

⎥

⎦

, (21.113)

where f± stands for any variable S±,φ±, or A±, whereas F± stands for the RHS of the corresponding
equation evaluated at point (zi, tj) in the 2D spatiotemporal mesh. For carrier density equation, the
transformation yields

n
(

zi, tj+1

)

= n
(

zi, tj

)

+ ΔtF
(

zi, tj

)

, (21.114)

where F stands for the RHS of Equation 21.108, evaluated at point (zi, tj) in the 2D spatiotemporal mesh.
Forward di�erences for temporal derivatives enable calculation of all variables in the next point in time,
tj+1, based on the values from the current one tj, as shown in Equations 21.112 through 21.114, and
illustrated in Figure 21.16.

The numerical implementation of the discretized system (Equations 21.112 through 21.114) essentially
requires two distinctive iteration processes: one for the temporal and another for spatial evolution. For
every point j along the temporal axis, spatial distribution of carrier density for the next temporal point
(j+ 1) is determined using Equation 21.114, which is followed by simulation of forward and subsequently
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FIGURE 21.16 Illustration of two-dimensional (2D) spatiotemporal mesh with denoted relevant points for calcula-
tion of (a) forward- and (b) backward-propagating signal photon densities by upwind �nite di�erences scheme, and
(c) carrier densities by the forward �nite di�erences method. The same upwind scheme can be applied to the phase, or
noise photon density calculation. The example includes spatiotemporal distribution for (a) forward signal, (b) backward
signal, and (c) carrier density.

backward propagation of signal and noise along the SOA’s active region using Equations 21.112 and 21.113.
This process is repeated until the end of the temporal axis is reached, incrementing j by one, up to Q. Since
the results in the (j + 1)th point in time are dependent on the values from the previous jth point, initial
conditions for spatial distributions of all variables are required (for j = 0), in order to start the iteration
process over time by calculating the values in the point j = 1. Initial values will depend on the assumed
SOA state before the initialization of the simulation. If no input signal is present before t = 0, it can be
assumed that both S±(z, 0) and φ±(z, 0) are zero. The noise will exist regardless of the signal’s presence,
so stationary distributions can be assumed for A±(z, 0). Based on these values, using Equation 21.108,
stationary distribution for carrier density can also be determined and associated with n(z, 0). Within the
nested loop, for a �xed j, system (Equations 21.112 through 21.114) is solved for every point zi, from 1 to
P for forward-propagation, and P − 1 to 0 for backward propagation. The algorithm is summarized in the
�owchart given in Figure 21.17.

21.5.6 Case Study: TMW Small-Signal Model

A very valuable �gure-of-merit in using SOA for modulation purposes is its electro-optical (E/O) small-
signal −3dB modulation bandwidth Ω3dB. It is de�ned as the frequency of the modulation signal,
i.e., electric current, for which the output SOA small signal, i.e., photon density or optical power, drops
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j < Q
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i = 1

i ≤ P

i = i + 1

De�ne input parameters:
   2D mesh: Δz, Δt
   S0, φ0, I

Start

Enter temporal loop

Results printing:
   S±(z,t)
   φ±(z,t)
   A±(z,t)

Boundary conditions
at z = 0

i = 1

i ≤ P

Calculate S+(zi,tj+1),
φ+(zi,tj+1), A+(zi,tj+1)

i = i + 1

j = j + 1

i = i − 1

Calculate S–(zi,tj+1),
φ–(zi,tj+1), A–(zi,tj+1)

i ≥ 0

i = P − 1

Boundary conditions
at z = L

End

Calculate n(zi,tj+1)
Yes

j = 0

No

No

Yes

NoNoDetermine stationary 
distributions for

A+(z,0), A–(z,0), n(z,0)
Yes

Initialize variable values:
   S+(z,0) = S–(z,0) = 0
   φ+(z,0) = φ–(z,0) = 0

FIGURE 21.17 Flowchart of the upwind �nite di�erences algorithm for the calculation of carrier and photon density
spatiotemporal distributions, for both signal and noise.

to the half of its zero-frequency value. Knowing the in�uence of di�erent structural and material param-
eters, as well as operating conditions, on Ω3dB, provides the means for optimization of the modulation
response and increasing the bandwidth. Under the assumption that the input signal is spectrally narrow,
the analysis is based on photon densities for forward and backward propagation, which include both sig-
nal and noise. The TW equations have the form similar to Equation 21.105, with the addition of the term
describing spontaneous emission, as in Equation 21.107:

±
∂S±
∂z

+ 1
vg

∂S±
∂t

=
(

Γg
1 + εSΣ

− αi

)

S± +
1

2vg
ΓβspRsp, (21.115)

where SΣ = S+ + S−. Since the intensity modulation is of interest, the analysis of the signal phase is not
necessary. The carrier rate equation has the same form as Equation 21.108:

dn
dt
= J

qH
−
(

An + Rsp + Cn3) −
vggSΣ

1 + εSΣ
, (21.116)

where current density J = I/(WL) is used instead of current I. This choice stems from the fact that modu-
lation current I depends on device length, and the current density proves to be a more suitable parameter
for benchmarking the performance of SOAs with di�erent active region lengths. Generally, bias current
density will consist of the stationary component and a small signal, which will, through Equation 21.116,
lead to the carrier density modulation, and consequently to modulation of all carrier-dependent parame-
ters, namely, g,Rsp, αi, and S±. From this point onward, all stationary values will be denoted by an overline,
whereas all small-signals will be pre�xed with Δ.

For the stationary value of bias current density, J̄, all temporal derivatives will diminish from
Equations 21.115 and 21.116, and the system will reduce to its steady-state form, given by Equations 21.94
and 21.95. In order to determine the steady-state values of n̄ and S̄±, any of the previously discussed meth-
ods for steady-state analysis, given in Sections 21.5.1, 21.5.3, and 21.5.4, can be used. It is assumed that the
CW input signal enters the device at the front facet, giving S+(z = 0, t) = S̄+(z = 0) = S0. The boundary
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condition for the backward-propagating signal at the rear facet is given by S−(z = L, t) = R2S+(z = L, t),
where R2 can have either a �nite value, for R-SOA, or it can be zero, for TW-SOA.

The typical approach in small-signal analysis is to assume that the small-signal values are approximately
lower by an order of magnitude or more, in comparison to the stationary values, and can be treated as per-
turbation. This assumption enables linearization of the system given by Equations 21.115 and 21.116 with
respect to the small-signal quantities. As discussed in Section 21.4.3.5, bias current cannot instantaneously
reach a uniform spatial distribution across the electrode and should be treated as a harmonic TMW with
�nite velocity, ve. Moreover, due to re�ection at the end of microstrip electrode, the microwave will prop-
agate in both directions with respect to the longitudinal axis (Totović et al., 2015). This model becomes
very important for the frequencies exceeding ve/(2πL), when an entire electric pulse is accommodated in
the SOA’s active region. A general model of the small-signal bias current density with sinusoidal waveform,
de�ned by the spatially variable voltage across the electrode, can be written in the following form based on
Equation 21.63:

J (z, t) = J̄ + ΔJ (z) exp (iΩt)

= J̄ + ΔJF (z) exp
[

i
(

Ωt − βez
)]

+ ΔJB (z) exp
[

i
(

Ωt + βez
)]

,
(21.117)

whereΔJ(z) is the total small-signal bias current density spatial distribution, comprising both forward (F)-
and backward (B)-propagating microwaves, Ω = 2πf is the angular frequency, with f being the frequency
of the TMW, and βe is the microwave propagation constant.

21.5.6.1 Derivation of the Small-Signal Model

Modulation of the bias current density leads to the modulation of carrier density n, and all carrier-
dependent parameters, g,Rsp, αi, and S±, commonly denoted ξ, which will also have sinusoidal form

ξ (z, t) = ξ̄ (z) + Δξ (z) exp (iΩt)

= ξ̄ (z) + ΔξF (z) exp
[

i
(

Ωt − βez
)]

+ ΔξB (z) exp
[

i
(

Ωt + βez
)]

,
(21.118)

whereΔξ(z) is the total small-signal spatial distribution of the corresponding quantities. For known depen-
dencies of material gain, and spontaneous emission rate, on carrier density, g(n) = g0ln(n∕ntr), and
Rsp(n) = B0 + B1n + B2n2, respectively, it is possible to express small-signal values of ΔgF/B and ΔRF/B

sp
via ΔnF/B using the �rst derivatives of the corresponding functions, evaluated for the steady-state carrier
density. This gives

ΔgF/B =
(

dg∕dn
)

|

|

|n=n̄
ΔnF/B =

(

g0
/

n̄
)

ΔnF/B, (21.119)

ΔRF/B
sp =

(

dRsp
/

dn
)

|

|

|n=n̄
ΔnF/B =

(

B1 + 2B2n̄
)

ΔnF/B. (21.120)

Substituting Equations 21.117 through 21.120 into Equation 21.116, and separating the stationary, and
small signals, gives a system comprising a steady-state rate equation, given by Equation 21.95, and small-
signal equations for forward and backward TMW propagation. In order to linearize the small-signal
equations, two approximations are required. The �rst one is related to the term describing the stimu-
lated emission in Equation 21.116, namely, vggSΣ∕(1 + εSΣ), which is nonlinear due to the presence of
the small-signal photon densities both in numerator and denominator. The function

(

1 + εSΣ
)−1 =

[

1 + εS̄Σ + ε
(

ΔSF
+ + ΔSF

−
)

ei(Ωt−βez) + ε
(

ΔSB
+ + ΔSB

−
)

ei(Ωt+βez)
]−1

(21.121)
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can be rephrased as

(

1 + εSΣ
)−1 = 1

1 + εS̄Σ

[

1 +
ε
(

ΔSF
+ + ΔSF

−
)

1 + εS̄Σ
ei(Ωt−βez) +

ε
(

ΔSB
+ + ΔSB

−
)

1 + εS̄Σ
ei(Ωt+βez)

]−1

. (21.122)

The second term in the product of the RHS of Equation 21.122 can be treated as (1 + x)−1, where
x ≪ 1, and therefore approximated with 1 − x, which leads to

(

1 + εSΣ
)−1 ≈ 1

1 + εS̄Σ
−
ε
(

ΔSF
+ + ΔSF

−
)

(

1 + εS̄Σ
)2 ei(Ωt−βez) −

ε
(

ΔSB
+ + ΔSB

−
)

(

1 + εS̄Σ
)2 ei(Ωt+βez). (21.123)

The following step in linearization is applying the �rst-order approximation, i.e., neglecting of all small-
signal terms of the order higher than one. This gives the following system of small-signal rate equations
for forward and backward TMW propagation

iΩΔnF/B = ΔJF/B

qH
−
(

A + B1 + 2B2n̄ + 3Cn̄2)ΔnF/B −

[

g0
n̄

vgS̄Σ
1 + εS̄Σ

ΔnF/B + vg
ge�
Γ

(

ΔSF/B
+ + ΔSF/B

−
)

]

,

(21.124)

where ge� = Γḡ∕(1 + εS̄Σ)2. The previous system can be solved with respect to the small-signal carrier
densities resulting from forward (F)- and backward (B)-propagating microwaves:

ΔnF/B =
ΔJF/B/(qH

)

− vgge�
(

ΔSF/B
+ + ΔSF/B

−
)

/

Γ

A + B1 + 2B2n̄ + 3Cn̄2 +
g0
n̄

vgS̄Σ
1 + εS̄Σ

+ iΩ

. (21.125)

Substituting Equations 21.118 through 21.120 and Equation 21.125 into Equation 21.115, followed by
the linearization process, leads to the system of two steady-state TW equations given by Equation 21.94,
and four small-signal TW equations written with respect to the small-signal photon densities propagating
in any of the two directions (denoted by subscript sign ΔS±) and resulting from any of the microwave
propagation directions (denoted by the superscript ΔSF/B):

±
dΔSF

±
dz

=
Γγ±
qHvg

ΔJF −
(

εS̄± + γ±
)

ge�ΔSF
∓ +

[

ge�
(

1 + εS̄∓ − γ±
)

− ᾱi − i

(

Ω
vg
∓ βe

)]

ΔSF
±,

(21.126)

±
dΔSB

±
dz

=
Γγ±
qHvg

ΔJB −
(

εS̄± + γ±
)

ge�ΔSB
∓ +

[

ge�
(

1 + εS̄∓ − γ±
)

− ᾱi − i

(

Ω
vg
± βe

)]

ΔSB
±,

(21.127)

where

γ± =

vg

(

g0
/

n̄

1 + εS̄Σ
− K1

)

S̄± +
1
2
βsp

(

B1 + 2B2n̄
)

A + B1 + 2B2n̄ + 3Cn̄2 +
g0
n̄

vgS̄Σ
1 + εS̄Σ

+ iΩ

. (21.128)
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The γ-parameter is dimensionless, complex, and spatially and frequency dependent. It is responsible for
frequency dependence of small-signal photon density distributions and their sensitivity to the frequency
change for all other parameters �xed. In the case of zero frequency, γ± becomes purely real, whereas for high
frequencies, such as the ones close to the modulation bandwidth and beyond, its imaginary part becomes
dominant over the real one.

Since Equations 21.126 and 21.127 are derived from Equation 21.115, the boundary conditions for
small-signal equations are inherited from the ones corresponding to Equation 21.115. The input signal
is assumed to be CW, so ΔSF/B

+ (0) = 0. At the rear facet, the boundary conditions are conditioned by the
power re�ectivity coe�cient, ΔSF/B

− (L) = R2ΔSF/B
+ (L).

21.5.6.2 Numerical Implementation

In order to determine the−3dB bandwidth, f3dB = Ω3dB/(2π), it is necessary to calculate the output small-
signal photon density for a range of modulation frequencies, ΔSout(Ω), and determine the one for which
the condition |ΔSout(Ω3dB)∕ΔSout(0)| = 1∕2 is satis�ed. In the case of TW-SOA, the output signal will be
recorded at the rear facet, ΔSout = ΔS+(L) = ΔSF

+(L)exp(−iβeL) + ΔSB
+(L)exp(iβeL), whereas for R-SOA,

at the front facet, ΔSout = ΔS−(0) = ΔSF
−(0) + ΔSB

−(0). These signals can be found by solving the bound-
ary value problem given by Equations 21.126 and 21.127. In the case of an R-SOA, this system comprises
four coupled di�erential equations of the �rst order, with functional coe�cients, and can be solved using
any of the available numerical algorithms for boundary value problems, e.g., the FDM that implements
the three-stage Lobatto IIIA formula (Hairer and Wanner, 1996). For a TW-SOA, backward-propagating
signals can be neglected due to zero power re�ectivity, and very low contribution of the spontaneous
emission, so the system reduces to two noncoupled equations which can be solved with numerical
integration.

Prior to solving system of Equations 21.126 and 21.127, it is necessary to calculate spatial distributions of
the steady-state variables, n̄ and S̄±, and auxiliary parameters, ge� and γ±. As previously discussed, steady-
state values can be calculated by any of the models presented in earlier sections.

A�er the output small-signal variables are calculated, the −3dB bandwidth can be determined by inter-
polating the function |ΔSout(Ω)∕ΔSout(0)| in search of the value Ω3dB which gives 1/2 as a solution. For
rare, special cases, Ω3dB might be found in analytical form. In order to do this, usually a signi�cant num-
ber of approximations is required, and the resulting analytical expression might be very complex (Antonelli
et al., 2015), or the expression has a simpler form, but is valid under limited conditions.

21.5.6.3 Results and Discussion

Implementing the algorithm described in the previous pages provides the dependence of−3dB bandwidth,
f3dB, on the operating conditions, given in Figure 21.18.

The analysis is done for the microwave velocity of ve = 4.6×107 m/s (Tauber et al., 1994), and under the
assumption that the load and characteristic impedances of the transmission line, ZL and ZC, respectively,
are matched, which results in the microwave re�ection coe�cient ΓL = (ZL − ZC)∕(ZL + ZC) = 0. The
small signal bias current density, ΔJ, is assumed to be equal to 0.1J̄.

Comparing the two SOA types, TW-SOA, Figure 21.18a and b, and R-SOA, Figure 21.18c and d, it can
be concluded that, not only does the R-SOA provide higher bandwidths, but it does so for a much wider
range of input optical powers. Both SOA types exhibit an increase in f3dB with the increase of steady-state
bias current density, but the behavior with P0 variation di�ers signi�cantly. In the case of TW-SOA, the
bandwidth generally increases with the increase of P0, reaching its maximum for deep saturation, and
input optical powers between 20 and 25 dBm. Contrarily, R-SOA shows two maxima, providing the choice
between two operation regimes, one for the low input optical powers and high device gain, and one for the
deep saturation. It should be noted that −3dB bandwidth signi�cantly depends on device length (Totović
et al., 2015), which can be optimized to achieve maximum values of f3dB. Aside from changes in values
of f3dB with the length variation, the prominence of low- and high-power maxima in R-SOA can also be
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FIGURE 21.18 Bandwidth dependence on (a, c) the continuous wave (CW) input optical power P0 (dBm) and (b, d)
the bias current density J̄ (kA/cm2) for (a), (b) traveling-wave semiconductor optical ampli�er (TW-SOA), and (c), (d)
re�ective (R)-SOA in the case of L = 800 μm.

interchanged. It should be noted that calculated bandwidth is intrinsic, and that inclusion of parasitic e�ects
of the supporting circuit may modify the modulation response.

21.5.7 Case Study: Small-Signal Model for Transparent SOA

Transparent SOA has been repeatedly analyzed as a characteristic example of operating conditions under
which the analytical expression for −3dB E/O bandwidth may be obtained (Mørk et al., 1999; Antonelli
et al., 2015; Totović et al., 2016). By transparency, it is assumed that the steady-state modal gain is equal to
the loss of the ampli�er cavity, Γḡ = αi, and therefore the steady-state photon density remains unchanged
during its propagation. However, even under these circumstances, an analytical expression cannot be
obtained without a number of approximations which simplify the system.

21.5.7.1 Framework for the Small-Signal Analysis

In this case study, the expressions will be derived under the following assumptions (Totović et al., 2016):

1. Nonlinear gain suppression is neglected, εS̄Σ ≪ 1.
2. Contribution of ASE noise to the signal is neglected, βsp = 0.
3. Carrier loss due to the spontaneous emission is modeled via carrier lifetime, τs.
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4. Current is assumed to reach uniform distribution along the electrode instantaneously, i.e., small-
signal current density is assumed to be spatially independent, ΔJ(z) = ΔJ.

Within this framework, the system of equations governing signal and carrier dynamics can be derived
from Equations 21.115 and 21.116, and reads

±
∂S±
∂z

+ 1
vg

∂S±
∂t

=
(

Γg − αi
)

S±, (21.129)

dn
dt
= J

qH
− n
τs
− vggSΣ. (21.130)

Assuming that the bias current has the general form given by Equation 21.117, J(z, t) = J(t) = J̄ +
ΔJexp(iΩt), the system (Equations 21.129 and 21.130) can be decoupled to the steady-state and small-
signal equations. A�er linearization, small-signal carrier density has the form similar to Equation 21.125:

Δn =
ΔJ

/(

qH
)

− vgḡ
(

ΔS+ + ΔS−
)

1
/

τs + vgg0
/

n̄ ⋅ S̄Σ + iΩ
, (21.131)

and the system of equations written with respect to small-signal photon densities reads

±
dΔS±

dz
=
Γγ±
qHvg

ΔJ +

(

Γḡ − ᾱi − iΩ
vg

)

ΔS± − Γḡγ±
(

ΔS± + ΔS∓
)

, (21.132)

where

γ± =
vg
(

g0
/

n̄ − K1
)

1
/

τs + vgg0
/

n̄ ⋅ S̄Σ + iΩ
S̄± (21.133)

has a meaning similar to the γ-parameter de�ned by Equation 21.128. Although the system given by
Equation 21.132 is analytically solvable, the complexity of the solution undermines its bene�t, and prevents
us from determining the analytical solution for Ω3dB.

21.5.7.2 Employing the Transparency Condition

Choosing the transparency as the operating regime de�nes the steady-state values of carrier and photon
densities. From the condition Γḡ = ᾱi, the value for carrier density can be determined:

n̄ = −
g0
K1

WL

[

−
K1ntr

g0
exp

(

K0
Γg0

)]

, (21.134)

where WL(x) stands for the Lambert W (product-logarithm) function. Introducing the transparency condi-
tion in the steady-state form of Equation 21.129 results in dS±/dz = 0, meaning that the steady-state photon
density is not spatially dependent and is de�ned by the boundary conditions. For both TW- and R-SOA, the
forward-propagating steady-state photon density S̄+ will be equal to the input photon density S0, whereas
the backward-propagating photon density will either be zero, for TW-SOA, or S̄− = R2S̄+ = R2S0, for
R-SOA. Substituting S̄± in the steady-state form of Equation 21.130 gives correlation between the station-
ary bias current density and the input photon density, for which the transparency condition is met:

S0 =
1

vgg0 ln
(

n̄
/

ntr
) (

1 + R2
)

(

J̄
qH

− n̄
τs

)

. (21.135)
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Aside from the maximum value of bias current density, dictated by the long-term stable SOA operation,
Equation 21.135 gives a limit for the minimal value of J̄min = qHn̄∕τs since the input photon density cannot
be negative.

Introducing the transparency condition in Equation 21.132 gives

±
dΔS±

dz
=
Γγ±
qHvg

ΔJ − iΩ
vg
ΔS± − Γḡγ±

(

ΔS± + ΔS∓
)

. (21.136)

Moreover, having a �xed value for n̄ reduces the γ-parameter to a spatially independent value, meaning
that Equation 21.136 is the system of di�erential equations of the �rst order with �xed coe�cients. The
output small-signal photon density of TW-SOA has the following form

ΔS+ (L) =
Γ

qHvg
ΔJ

γ+
Γḡγ+ + iΩ∕vg

{

1 − exp

[

−

(

Γḡγ+ + iΩ
vg

)

L

]}

, (21.137)

whereas the output small-signal photon density of an R-SOA reads

ΔS− (0) = 2R2
Γγ+
qHvg

ΔJ ×

⎧

⎪

⎨

⎪

⎩

1 + 3R2
2

Γḡγ+ + iΩ
vg
+

√

√

√

√

(

1 − R2
2

Γḡγ+

)2
+

[

(

1 + R2
)

Γḡγ+ + iΩ
vg

]

iΩ
vg

× coth
⎡

⎢

⎢

⎣

L

√

√

√

√

(

1 − R2
2

Γḡγ+

)2
+

[

(

1 + R2
)

Γḡγ+ + iΩ
vg

]

iΩ
vg

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

−1

.

(21.138)

21.5.7.3 Analytical Formulae for Modulation Bandwidth

As previously discussed, the γ-parameter in�uences the SOA’s small-signal modulation response through
its dependence on Ω. For zero frequency, γ± becomes purely real, whereas for high frequencies, close to
Ω3dB and beyond, it can be approximated with purely imaginary parameter

γ±||Ω→Ω3dB
≈ vg

(

g0
/

n̄ − K1
)

S̄±
/

(iΩ). (21.139)

In addition, during the derivation of the analytical expression for Ω3dB, all trigonometric functions that
are encountered, namely sin(x) for x → 0 in case of TW-SOA and coth(x) for x → 0 in the case of R-SOA,
are approximated by the �rst term of their respective Maclaurin series expansion, sin(x) ≈ x and coth(x) ≈
1/x, respectively. This leads to the simpler form of Equations 21.137 and 21.138 in the vicinity ofΩ3dB. For
TW-SOA, the output small-signal photon density is

|

|

ΔS+ (L)||||Ω→Ω3dB
≈ ΓΔJ

qH

( g0
n̄
− K1

)

L
S0
Ω
, (21.140)

and for R-SOA

|

|

ΔS− (0)||||Ω→Ω3dB
≈ 2R2

ΓΔJ
qH

( g0
n̄
− K1

)

L
S0
Ω
. (21.141)
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Finally, from the condition |ΔSout(Ω3dB)∕ΔSout(0)| = 1∕2, the −3dB bandwidth can be found, under
the transparency regime. For TW-SOA, it is given by

Ω3dB = Γg0 ln n̄
ntr

Lvg

( g0
n̄
− K1

)

S0

{

1 + coth

[

Γg0 ln n̄
ntr

L
2

vg
(

g0
/

n̄ − K1
)

S0

1
/

τs + vgg0
/

n̄ ⋅ S0

]}

, (21.142)

and for R-SOA it has the form

Ω3dB = 2
[

1
τs
+ vg

g0
n̄
(

1 + R2
)

S0

]
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21.6 Conclusion

SOAs have been extensively studied ever since WDM networks became widely adopted. In order to enable
massive deployment of optical access networks, optical technologies, including SOAs, have expanded
toward the lower levels of network hierarchy, aiming to relieve �rst/last mile bottleneck. Due to their ver-
satility, SOAs are the key components in many of these levels. R-SOA has recently become one of the most
promising candidates for the next-generation wavelength division multiplexed passive optical networks
(WDM-PONs), representing the new Fiber-to-the-Home paradigm. Moreover, it is on its way to become a
crucial component in Worldwide Interoperability for Microwave Access (WiMAX) and Wireless-Fidelity
(Wi-Fi) Radio-over-Fiber (RoF) access network architecture. TW- and R-SOAs are devices of choice for
many nonlinear applications, including those related to FWM, wavelength conversion, and all optical signal
processing in general.

The choice of the SOA type for a speci�c purpose does not necessarily require better overall perfor-
mance but usually better performance in one or several aspects. Therefore, both TW- and R-SOA have
found their applications. However, optimization of the devices themselves, as well as the system as a whole,
should always be performed in order for the SOAs to reach their full potential. The optimization of the
device includes the choice of material, device geometry, and operating conditions, whereas the system
analysis involves many more aspects that need to be addressed. This process requires an elaborate, but
e�cient SOA model, which accounts for all relevant e�ects. In Section 21.5, various models have been pre-
sented for both the steady-state and dynamic operating regimes. All models are built starting from the rate
equations describing SOA dynamics, which can include multiple levels of approximation, as discussed in
Section 21.4. The basic model recognizes only the essential processes present in the SOAs, i.e., carrier injec-
tion, stimulated and spontaneous recombination, and signal ampli�cation. More realistic models comprise
additional e�ects, such as wideband ASE noise, carrier transport, nonlinear gain suppression, temperature
e�ects, and distributed bias current, all of which are discussed in detail. Moreover, in order for the model to
accurately represent the SOA’s performance, a detailed analysis of the optical properties of materials used
for the active region and the waveguide geometry should be performed, which can be done using the mod-
els presented in Section 21.3. This includes calculation of the full spectral pro�le of material gain, radiative
spontaneous recombination rate, refractive index variation, and optical con�nement factor, among other
parameters.

For SOA optimization in the steady-state operating regime, the wideband model, based on the self-
consistent iterative method, given in Section 21.5.3, can provide detailed results, but does consume a
signi�cant amount of computational resources. This method is mainly designed for the characterization
and optimization of the device itself. On the other hand, for quick assessment of the SOA’s performance,
especially in more complex network architectures, the semi-analytical model, presented in Section 21.5.4,
proves to be time and resource e�cient, at the expense of somewhat decreased precision. In the dynamic
operating regime, the upwind scheme �nite di�erence model can be used, as shown in Section 21.5.5, which
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is transparent to the modulation type, and designed to support even advanced modulation formats. For
SOAs used in direct E/O modulation, −3dB bandwidth is a good indicator of the SOAs’ performance, and
can be determined and optimized based on the detailed numerical model given in Section 21.5.6. When
resources are limited, and the SOA operates in the transparency regime, simple analytical solutions, derived
in Section 21.5.7, can be used for the same purpose.

The overview of various steady-state and dynamic models, as well as the case studies presented, provides
insight into the methods for numerically accurate and e�cient simulations of standalone and system-
embedded SOAs. These methods can help in the development of computational tools which can be used
for the optimization of SOA design based on the dependence of its performance on technological param-
eters and operating conditions. It should be noted that advanced SOA models, which deal with nonlinear
e�ects, are usually built upon the models which simulate standard SOA ampli�cation regime.
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22.1 Introduction

In recent years, the pervasive extension of semiconductor-based laser sources has been reaching application
domains, such as lidar, material processing, metrology, and frequency doubling, where other laser sources
are still prevalent because of the concurrent requirements of high power, high spectral purity, and high-
beam quality. Two slightly di�erent semiconductor devices are already in use for some of these applications:
tapered laser diodes (Walpole, 1996; Wenzel et al., 2003; Sumpf et al., 2009) and master-oscillator power-
ampli�ers (MOPAs) (O’Brien et al., 1993; Spreemann et al., 2009). A tapered MOPA consists of either a
distributed Bragg re�ector laser or a distributed feedback laser acting as the master oscillator (MO) and a
tapered semiconductor optical ampli�er (SOA) acting as the power ampli�er. Both hybrid and integrated
MOPAs are of great interest. In a hybrid MOPA, the MO and the SOA are coupled through additional
optics (Schwertfeger et al., 2011) with the advantage of separate fabrication of the components but at the
expense of a more complex set-up. The integrated MOPAs have the advantages of reduced total size but
the drawback of possible optical coupling between sections (Vilera et al., 2015).

The schematic of a typical tapered SOA is shown in Figure 22.1a. It is composed of a straight and narrow
index-guided section used to �lter the input beam and convert it into a single spatial mode, and a gain-
guided tapered section where the beam is ampli�ed while preserving its shape. The tapered SOA of an
integrated MOPA does not include an index-guided section since the MO provides a single spatial mode to
the tapered section. Cross-sectional views of the index and gain-guided sections are shown in Figure 22.1b.
The index-guided section is typically a ridge waveguide (RW) structure in which the etched regions (�lled
with an isolator) provide lateral optical con�nement. In the tapered gain-guided section, the injection area
is de�ned by a proton-implanted region.

697
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FIGURE 22.1 (a) Schematic planar view of a typical tapered SOA, consisting of a straight and narrow index-guided
section and a gain-guided tapered section. (b) Cross-sectional views of the index-guided section (1) and the gain-guided
section (2).

The characteristics of the output beam of a tapered SOA are very similar to those of tapered lasers which
have been studied in detail by simulations and experiments (Williams et al., 1999; Sujecki et al., 2003;
Borruel et al., 2004) and are reviewed in Volume 2 of this book (Chapter 28) (Esquivias et al., 2017). In
brief, the single spatial mode of the RW section is launched into the tapered region where it su�ers simul-
taneously di�raction, gain guiding, and index guiding (or antiguiding) due to the carrier and temperature
dependencies of the semiconductor refractive index. The full taper angle αtap is usually designed to match
the free di�raction angle at 1∕e2 (Borruel et al., 2008), and therefore it depends on the RW width and
the lateral index step. At low power, the beam is strongly astigmatic: the virtual source in the lateral axis
(x-axis) is located approximately at a distance from the output facet given by the taper section length
divided by the e�ective index ne�, while the virtual source in the vertical axis (y-axis) is at the output facet.
The far-�eld (FF) pattern is almost Gaussian in both axes and much narrower in the lateral axis. However,
when the output power increases, the beam quality degrades due to the combined e�ects of carrier and
thermal lensing, as shown in Section 22.4.

The optimization of the tapered SOA’s geometry and epitaxial design is a key point to improve the per-
formance of these devices. The complex interaction between the semiconductor media and the optical
�eld makes it extremely di�cult to advance meaningful predictions of the behavior of a speci�c design by
means of simple analytical calculations. Such di�culties together with the complex and costly fabrication
process make necessary the use of complete numerical simulation tools to help the analysis and design
of tapered SOAs to be used in hybrid or integrated MOPAs. Di�erent numerical models, with di�erent
degrees of complexity, have been proposed and used to predict the behavior of tapered SOAs. In the case of
the straight SOAs used in communications, the main emphasis has been placed on analyzing the dynamic
response and the role of the ampli�ed spontaneous emission in the noise characteristics (Razaghi et al.,
2009; Connelly, 2001, and references therein). In contrast, in the case of high-power tapered SOAs the
main performance characteristics are the maximum output power and the beam properties, and therefore
steady-state models including thermal equations have been employed (Lang et al., 1993; Lai and Lin, 1998;
Tijero et al., 2015).

In Section 22.2, we present a review of the di�erent modeling approaches that can be applied to tapered
SOAs; in Section 22.3, we explain the implementation of our numerical model; and in Section 22.4 we
present as an example the results of the simulations of a 1.5-μm tapered SOA, including the analysis of
the in�uence of some selected design parameters on the device performance. The Section 22.5 summary
concludes the chapter.

22.2 Modeling Approaches

There are many options for the modeling approaches needed to simulate tapered SOAs. The proper choice
depends on the degree of numerical complexity and on the performance characteristics of interest. In this
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section, we review the most common approaches, explain the main di�erences between them, and refer
the interested reader to the most important references for a detailed accounts. We will also use references
corresponding to tapered lasers and laser diodes in general, as most of the modeling approaches for high-
power SOAs are equally appropriate for high-power semiconductor lasers.

One of the main characteristics of tapered SOAs and lasers compared with other semiconductor
devices is the nonuniformity of the photon, carrier, and temperature pro�les along the longitudinal
(z-axis) and the lateral directions. This leads to the need to solve the coupled equations in at least two
dimensions and to use and using some approximation to solve the equations in the vertical direction
separately.

22.2.1 Carrier Transport Models

The main role of a carrier transport model is to provide the 2D carrier density distribution along the active
region, which is needed to calculate the main material parameters a�ecting the optical wave propagation
(optical gain and losses and refractive index variation), as well as to calculate the local heat sources required
by the thermal model. But, in turn, the knowledge of the local photon density and the temperature distri-
bution is needed for solving the electrical equations, and therefore iterative schemes are usually applied
(see Section 22.3). The external input is the applied voltage (V0), rather than the total current (I), which
is the usual input in experiments. In the RW section, the current �ow spreads out of the nominal con-
tact width. Furthermore, the local current density depends not only on the applied voltage but also on the
local temperature and stimulated recombination, and hence on the local photon density, which is strongly
dependent on the lateral and longitudinal position. In consequence, the current density J is not uniform,
but depends on the position in the x–z plane, J = J(x, z).

Most of the published tapered SOA models make use of the unipolar approximation assuming that the
electron (n) and hole (p) densities in the active layer are identical (Lang et al., 1993; Lai and Lin, 1998;
Spreemann et al., 2009). Under this approximation, which is also very common in laser diode models, the
carrier density in the active layer N(x, z) can be calculated using the simple rate equation:

dN(x, z)
dt

=
J(x, z)
qdact

− R(N) − Rstim(N, S) + De�∇2
x,zN(x, z), (22.1)

where q is the elementary charge, dact the active layer thickness, R(N) the carrier recombination rate
including nonradiative and spontaneous recombination, and Rstim(N, S) the stimulated recombination
rate, which depends on the local photon density S(x, z). Finally, �nally, De�∇2

x,zN(x, z) accounts for carrier
di�usion in the longitudinal and lateral directions and is perhaps the most important consideration. In
this expression, De� is an e�ective di�usion coe�cient accounting for both the carrier di�usion and the
current spreading. The local current density J(x, z) can be expressed in terms of the applied voltage, the
contact (and/or p-layer) resistivity, and the junction voltage VJ(x, z), which in turn depends on the carrier
density. Details on this formulation can be found in Lai and Lin (1998).

The unipolar approximation is a simple way to reduce the complexity of the carrier transport model and
provides very reasonable results, but the p–n junction is essentially a bipolar device, thus requiring the solu-
tion of the complete semiconductor dri�–di�usion equations. These equations can be expressed in terms
of three unknown variables, the electrostatic potential (ϕ) and the electron (n) and hole (p) concentrations.
In the steady state, the equations are (Selberherr, 1984)

∇
(

εS∇φ
)

+ q
(

p − n + Ci
)

= 0 (22.2)

∇jn − q
(

R(n, p) + Rstim(n, p, S)
)

= 0 (22.3)

∇jp + q
(

R(n, p) + Rstim(n, p, S)
)

= 0, (22.4)

where εS is the static dielectric constant, Ci is the charged impurity density (ionized donor density minus
ionized acceptor density), and jn (jp) is the electron (hole) current density. The current densities can be
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expressed as a function of the local variables ϕ, n, p, and temperature (T) using as local parameters the
electron and hole mobilities and thermal di�usivities.

The carrier transport models o�en consider the capture and escape of carriers into and out of the
quantum wells (QWs) (Nagarajan et al., 1992). This e�ect is well known in high-speed lasers, and it also
in�uences the steady-state emission properties. When the carrier capture time is not negligible, there is an
accumulation of carriers in the con�nement layers that can result in a reduction of the e�ciency (Borruel
et al., 2003). In the case of unipolar models using rate equations, the carrier capture/escape processes are
modeled by solving a second equation for the uncon�ned carriers. In the case of bipolar models of laser
diodes using the complete semiconductor equations, di�erent approaches have been proposed (Borruel
et al., 2003; Grote et al., 2005), but as far as we know the importance of these e�ects in the modeling of
SOAs has not been analyzed.

Bipolar carrier transport models require also appropriate boundary conditions at the metal–
semiconductor contacts (Selberherr, 1984) and at the abrupt heterojunctions, where thermionic emission
or tunneling-assisted thermionic emission should be considered instead of the standard dri�–di�usion
equations.

22.2.2 Optical Models

All optical models start from Maxwell equations and a description of the material susceptibility in the
frequency or time domain, leading to optical wave equations, which have to be solved numerically.
There are two main types of models: those solving the equations in the time domain, usually known
as traveling-wave models (TWM), and frequency domain models. TWM provide dynamic solutions as
well as spectral properties, and are appropriate for pulse propagation, beam �lamentation, transient phe-
nomena, and multifrequency devices. Frequency domain models are much simpler to implement and are
useful for steady-state studies where the overall behavior of the device can be described in terms of a single
frequency.

The beam propagation method (BPM) (Van Roey et al., 1981) is the most commonly used frequency
domain method for the �eld propagation in waveguide optoelectronic and �ber devices, thanks to its
low computational time demand. BPM calculates the propagation along the longitudinal direction of the
steady-state transverse �eld, verifying the Helmholtz equation:

∇2E⃗(x, y, z) + ñ2(x, y, z)k2
0E⃗(x, y, z) = 0, (22.5)

where E⃗(x, y, z) is the complex optical �eld vector, ñ(x, y, z) is the complex refractive index, and k0 is the
wavenumber in vacuum.

In order to obtain a solution for the Helmholtz equation, the scalar approximation is commonly used
in the study of tapered lasers and ampli�ers (Sujecki et al., 2003; Lang et al., 1993). This approximation
ignores the vectorial nature of the �eld, assuming continuity of the �eld and its derivatives through the
dielectric interfaces. The approximation implies that the optical polarization remains unchanged along
the device. The e�ective refractive index approximation is used to decrease the computational complexity
of the BPM (Buus, 1982). It consists of solving Equation 22.5 for the vertical axis at every lateral position,
taking into account the existence of etched regions and considering only a real index vertical pro�le (passive
approximation). This leads to an e�ective index lateral pro�le and a vertical distribution of the optical mode
f (y). The e�ective index pro�le is used for the beam propagation and the function f (y) is usually assumed
to be independent of the longitudinal and lateral positions. In this way, the original 3D problem becomes
a 2D problem in the x–z plane.

Dynamical TWMs naturally incorporate the spatial e�ects and the multifrequency character of the
�eld, with the geometry of the device being incorporated through the boundary conditions for the waves.
Although TWMs have long been applied to study laser physics (Lugiato and Narducci, 1985), application
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to semiconductor media requires a proper description in the time domain of the spectral dependence of
the gain and the index changes due to the injected carriers. TWMs are based on making the slowly varying
amplitude approximation or paraxial approximation of the electric �elds. Under this approximation, the
equations for the electric �eld of the optical wave can be written as

− i
2k0

∂2E±
∂x2 ±

∂E±
∂z

+ 1
vg

∂E±
∂t

= f (E+,E−, P+, P−), (22.6)

where E± are the complex counter propagating electric �elds, vg is the group velocity, and the func-
tion f contains di�erent terms describing the relationship of the �eld with the dielectric polarization
(P±) that includes gain, internal losses, Bragg couplings, etc. Several approaches have been used to solve
Equation 22.6, including �nite-di�erence time-domain (Fischer et al., 1996) and Fourier split-step meth-
ods (Spreemann et al., 2009; Pérez-Serrano et al., 2013). Although TWMs have been applied mainly for
describing laser dynamics, they have also been applied to tapered SOAs (Balsamo et al., 1996) and for the
analysis of coupled cavity e�ects in tapered MOPAs (Spreemann et al., 2009; Pérez-Serrano et al., 2013).

22.2.3 Thermal Models

The temperature distribution along the complete device is a relevant variable in the simulation of a tapered
SOA due to the dependence of the gain and refractive index on the local temperature. The 3D steady-state
heat equation is expressed as

∇ (κ∇T) + w(x, y, z) = 0, (22.7)

where κ is the temperature-dependent thermal conductivity and w(x, y, z) the local density of heat sources.
This term usually includes Joule, nonradiative recombination, and free-carrier absorption heat sources.
A complete description, based on a rigorous thermodynamic approach (Wachutka, 1990), can be found in
Bandelow et al. (2005). Two heat sources are usually not included in most of the laser and ampli�er models
due to the di�culties in the quanti�cation of their local distribution. These are the sources of heat arising
from the energy lost by the scattered stimulated photons and by the spontaneously emitted photons that do
not leave the device. A�er a photon recycling process, their energy ends up in heat transferred to the lattice
somewhere in the device. To account for this e�ect, as well as for other uncertainties in the expressions
and parameters for the local heat sources, an additional excess power Pexc shall be included (Borruel et al.,
2002). The amount of this power is calculated from the energy conservation expression:

Pexc = IV0 − (Pout − Pin) − ∫ w(x, y, z)dV, (22.8)

where Pout and Pin are the output and input powers, respectively, and the integration extends over the
entire device volume. A�er determining Pexc, the corresponding heat source wexc is either distributed uni-
formly over the whole device or weighted according to the di�erent absorption properties of the epitaxial
layers.

Thermal equations should be solved taking into account the boundary conditions imposed by the
thermal properties and the geometry of the mount and submount and the heatsink temperature.

22.2.4 Material Properties

22.2.4.1 Material Susceptibility

There are di�erent options to describe the interaction between the gain medium and the optical �eld. The
simplest approach, which is usually employed in rate equation models, is to consider a logarithmic or linear
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dependence of the material gain on the carrier density, together with a constant value for the linewidth
enhancement factor (LEF) (Lai and Lin, 1998). The gain spectra can be taken as Lorentzian (Spreemann
et al., 2009), although the most sophisticated models include a complete solution of the band dispersion
equations to calculate the material gain as a function of the local carrier densities, the wavelength, and
the temperature. A complete microscopic 8 × 8 k⋅p model for the semiconductor band structure implies
a large computational e�ort and even a more simpli�ed 4 × 4 valence band mixing model results in a
high computation time when repeated locally. Additionally, most of the input parameters for the complete
models are not well known. For these reasons, some modeling approaches perform initial complete or
semicomplete band structure calculations and either (1) use a parabolic band model previously �tted to
the results of the complete model (Borruel et al., 2004), (2) use curve �ts to a more sophisticated model
(Mariojouls et al., 2000), or (3) use precalculated look-up tables (Koch et al., 2005).

The refractive index’s dependence on the wavelength, carrier density, and temperature can also be cal-
culated using complete microscopic approaches (Koch et al., 2005) and then again using look-up tables to
decrease the computational cost. A simpler approach is to neglect the wavelength dependence of the index
and to use simple expressions for the carrier and temperature dependencies, i.e.,

δñ = δñT + δñN , (22.9)

where δñ is the variation of the active layer index with respect to its reference value at the heatsink tem-
perature and without injection, δñT is the thermally induced variation, and δñN is the carrier contribution
to the variation. δñT is usually considered a linear function of the local temperature increase while δñN
can be considered either as dependent on the carrier density (Connelly, 2001; Borruel et al., 2004) or it is
calculated from the gain variations using a constant LEF (Lang et al., 1993; Mariojouls et al., 2000).

Full space-time models require a good description of the material complex susceptibility, which has been
done in di�erent ways: at microscopic level (Gehrig and Hess, 2001), by using multiple Lorentzians �tted
either to experiments or to microscopic calculations (Moloney et al., 1997), and by a convolution integral
(Javaloyes and Balle, 2010).

22.2.4.2 Carrier Recombination

The unipolar models typically use a polynomial approximation for the carrier recombination rate in
Equation 22.1, which can be given by

R(n) = An + Bn2 + Cn3, (22.10)

where A, B, and C are the coe�cients corresponding to nonradiative trap recombination, spontaneous
recombination, and Auger recombination, respectively. It is important to remark that even in this simple
description, the dependence of the coe�cients on temperature, especially the dependence of C, should
be taken into account. Some other polynomial approaches have also been employed (Connelly, 2001). The
more complete bipolar models use the complete Shockley–Read–Hall (SRH) recombination expression for
the nonradiative trap recombination and the electron and hole Auger recombination rates and calculate the
spontaneous recombination rate from the complete energy band description by using the same approach
used for the optical gain.

22.2.4.3 Internal Losses Coefficient

The internal absorption losses have a dramatic e�ect on the ampli�er performance, and therefore the coef-
�cient accounting for them, αin, is an extremely important parameter for the simulation. It can be taken
as a constant value to be estimated from experiments in broad area lasers, or it can be considered the
result of two contributions: the scattering losses αscat, and the losses due to di�erent mechanism of photon
absorption by free carriers, the so-called free-carrier absorption losses αfc. In the approaches that solve the
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electrical equations in the vertical direction (Borruel et al., 2004; Grote et al., 2005), αfc is locally calculated
taking into account the carrier and photon distribution by

αfc(x, z) = ∫
Ly

[

κnn(x, y, z) + κpp(x, y, z)
]

S(x, y, z)dy, (22.11)

where Ly is the thickness of the epilayer structure, and κn(κp) is the electron (hole) free carrier absorp-
tion cross section. In most materials, the main contribution to αfc arises from the hole term due to the
mechanism of intervalence band absorption.

The most sophisticated ampli�er models, especially those solving the complete electro-thermal-optical
semiconductor equations, require many additional material parameters such as carrier mobilities, bandgap
narrowing coe�cients, energy band parameters, thermoelectric powers, thermal conductivities, etc.

22.3 Model Implementation

22.3.1 Overview of Solution Procedure

In this section, we describe the implementation of HAROLD 4.0, the model and code that we have devel-
oped for the simulation of tapered SOAs. Our approach is based on a previous model for tapered lasers
(Borruel et al., 2004; Sujecki et al., 2003). The original algorithm has been modi�ed slightly and a part of
it has been rewritten in order to consider a single pass ampli�er instead of a resonant cavity. HAROLD 4.0
solves self-consistently the steady-state partial di�erential equations describing the electrical, thermal, and
optical behavior of a tapered SOA. The simulator includes a 3D electrical solver for the Poisson and con-
tinuity equations (Equations 22.2 through 22.4) coupled to a 3D thermal solver for the heat-�ow equation
(Equation 22.7). The thermal solver uses the local heat sources provided by the electrical solution. On
the optical side, a wide-angle �nite-di�erence beam propagation method (WA-FDBPM) (Hadley, 1992),
under the e�ective index approximation, is used to propagate the optical �eld in the x–z plane. The optical
solution is not fully 3D, as the vertical direction and the x–z plane are solved separately, and therefore the
complete model is considered as quasi-3D.

Due to the large number of variables and iteration loops involved in the model, an important point is
how to initialize the solution. In order to provide a good initial guess to the quasi-3D algorithm, a 1D
laser simulator (Harold, 2001) is used for the initialization of the electrical, thermal, and optical variables.
Although the 1D laser simulator was not designed for ampli�ers, it provides useful initial guess values for
the electrothermal variables as well as some inputs for the quasi-3D algorithm such as the applied voltage
V0 and the optical �eld modal pro�le in the vertical direction f (y). The 1D simulator requires the electrical,
thermal, and optical properties of all the device materials. The user introduces a target bias current and the
1D simulator solves the electrothermal and optical equations for an equivalent broad area laser having the
same electrical injection area as the tapered SOA. The 1D simulator provides V0, as well as an initialization
for the vertical distribution of the electrostatic potential, the electron and hole concentrations, and the
temperature. The power, wavelength, and lateral pro�le of the input optical �eld are provided by the user
as inputs for the algorithm. The input optical �eld is symmetric and therefore only one half of the device
is considered in the simulations.

The main �ow of the quasi-3D algorithm is shown in Figure 22.2. It includes the following steps:
(1) the 1D simulator provides V0 and f (y), and initializes all unknown 2D variables according to the initial
1D solution for the target current; (2) the initial lateral optical �eld pro�le at the �rst longitudinal slice
(zi = 1) is either set by the user or calculated as the fundamental mode of the waveguide in the lateral
direction; (3) A 2D electrical solver is applied to the �rst slice in the x − y plane at zi = 1. It provides a
2D map of the electrical variables (n, p, and φ) and of the Joule (wjoule), the nonradiative (wnr), and the
free-carrier (wfc) heat sources. It also calculates the complex e�ective refractive index along the lateral axis



9781498749466_C022 2017/8/29 16:05 Page 704 #8

704 Handbook of Optoelectronic Device Modeling and Simulation

Read input
data

1D solver

2D thermal
solver @ zi

2D electrical
solver @ zi

2D electrical
solver @ zN

3D thermal
solver

Ite
ra

tio
n 

= 
Ite

ra
tio

n 
+ 

1

Convergence?

Finalize
quasi-3D
algorithm

Pout and Pexc
calculated

Init. quasi-3D
algorithm

Iteration = 1

2D WA-FDBPM
zi      zi + 1

i +1 = N ?

Yes

No

Yes No

Yes

No

Iteration = 1 ? i =
 1

i =
 i 

+ 
1

FIGURE 22.2 Main �ow of the quasi-3D algorithm HAROLD 4.0 (see text for details).

at zi = 1, thus providing the gain and refractive index variation due to the carriers. (4) The calculated
heat sources are used as inputs for a 2D thermal solver applied to the x–y plane at zi = 1. It should be
noted that the thermal and electrical meshes are di�erent and therefore some interpolation between the
meshes is used. The 2D thermal solver provides a map of the temperature in the x–y plane and the ther-
mally induced refractive index variation. This 2D thermal solver is only applied in the �rst iteration in
order to initialize the thermal solution. (5) The WA-FDBPM is used to propagate the optical �eld from
zi = 1 to zi = 2 using a �ne mesh in the x–z plane. It uses the gain and refractive index changes given by
the electrothermal solvers in the previous step and takes into account the geometry of the device. (6) Steps
(3)–(5) are repeated until the algorithm arrives to the output facet at zi = N. At this point, the output power
Pout is known and the excess power Pexc can be calculated. Then, a 3D thermal solver is applied allowing
heat �ow between the z-slices. (7) The process described in (3), (5), and (6) is repeated until convergence
is reached and a stable optical �eld, as well as stable temperature, carrier, and current distributions are
found.

In the following subsections, the solvers for the electrical, thermal, and optical equations are described
in more detail.

22.3.2 Solver for Electrical Equations

The electrical equations are solved in the volume de�ned by the total thickness of the epitaxial layers, the
ampli�er length, and the chip width. The input for the equations is taken from material databases according
to the epilayer structure. Etched and implanted regions are simulated by assuming negligible carrier mobil-
ity. The electrical equations are solved together with two capture–escape continuity equations for electrons
and holes at each QW, taking into account the nonequilibrium condition between the con�ned carriers
in the QWs and the uncon�ned carriers in the barriers. Nonradiative (SRH and Auger) and spontaneous
recombination terms are included along the complete device, in addition to the stimulated recombination
in the active region. The model also includes free carrier absorption and band gap renormalization with
standard dependencies and appropriate parameters.
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The material gain and spontaneous recombination rate in the QWs are calculated using the expressions
in Coldren and Corzine (1995), considering simple parabolic bands and Lorentzian broadening to decrease
the computational e�ort. The parameters for the gain calculations (energy levels, e�ective masses, and
intraband relaxation time) were previously �tted to yield similar results to those of a more sophisticated
gain model that takes into account the valence band mixing. The local material gain (or absorption) and
carrier-induced refractive index changes are calculated at the wavelength of the input power for each point
of the mesh, taking into account the local temperature and carrier concentrations. They are subsequently
used as inputs for the optical solver.

The equations are discretized using a �nite di�erence approach. Nonuniform, separate meshes are taken
for the vertical and lateral directions. The denser regions in the vertical and lateral directions correspond
to the QW and to the border of the implanted/etched areas, respectively. The lateral mesh depends on the
longitudinal position and typically contains around 40 mesh points. We chose 100 μm for the x–y slice
separation in the longitudinal direction, a�er making sure that the results in our structures were similar
when decreasing the longitudinal mesh size. The core of the numerical procedure is a Newton–Raphson
algorithm, which solves the coupled Equations 22.2 through 22.4 in 1D along the vertical direction. The
algorithm considers at each mesh point the in�uence of the next neighbors in the lateral and longitudinal
directions. The 1D solver scans iteratively the lateral direction until convergence, providing a 2D map of the
electrical variables at the z-slice i, zi. The electrical variables are used to calculate the heat sources needed
by the thermal solver, while the computed gain (or absorption) and the carrier-induced refractive index
changes will be used by the optical solver to propagate the electric �eld to the slice zi+1. In the resolution
of the zi+1 slice, the values of the electrical variables previously obtained for zi and zi+2 are considered
in order to account for the longitudinal current �ow. Finally, when convergence of the whole algorithm
is reached, a complete 3D map of the electrical variables (electrostatic potential and electron and hole
densities), consistent with the photon and temperature distributions, is produced.

22.3.3 Solver for Optical Equations

As mentioned above, the shape of the �eld at the ampli�er input (zi = 1) is either provided by the user
or obtained by solving the Helmholtz equation in the lateral direction making use of the e�ective index
approximation. Then, the WA-FDBPM is applied to propagate the �eld along a longitudinal optical mesh,
which is much denser than the electrothermal mesh. The method uses the modal complex index along the
lateral axis provided by the electrothermal solution of the initial slice. The WA-FDBPM uses the (1,1) Padé
approximant, allowing the propagation of the �eld a few degrees around the longitudinal direction (1◦–6◦).
The propagation continues until reaching the next slice of the electrothermal mesh, where the electrical and
thermal solvers update the modal complex index. In this way, the tapered section is considered a succession
of rectangular slices with increasing width.

To complete the optical solution, perfectly matched layers (PML) (Huang et al., 1996) are used as bound-
ary conditions. The PML method de�nes a lossy region to which the Helmholtz equation is mapped by an
anisotropic complex transformation. The PML attenuates the lateral traveling waves ensuring that the �eld
at the borders of the device in the lateral direction vanishes. Due to the lateral symmetry of the optical
�eld, a zero derivative is applied as the boundary condition at x = 0.

22.3.4 Solver for Thermal Equations

The heat �ow equation (Equation 22.7) is solved in a larger region and using a di�erent mesh than those
of the electrical solver. In addition to the epilayer, the substrate, the metal layers, and the heatsink are also
considered in the thermal solution. The boundary conditions for the heat-�ow equation in the case of a
p-down mounted device are negligible heat �ow at the n-metal and lateral chip external interfaces and
uniform temperature at the bottom of the heatsink. Etched regions are thermally simulated by introducing
the thermal conductivity of the planarization isolator.
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As mentioned in Section 22.3.1, during the �rst iteration of the Quasi-3D algorithm, the 2D heat �ow
equation is solved at each x–y slice with the local heat sources obtained from the electrical solver. The 2D
heat �ow equation is discretized with a �nite di�erence method, and the system of equations is solved by
using a stabilized biconjugate gradient method. The calculated temperature distribution replaces the ini-
tialization values provided by the 1D laser simulator. Once the electro-optical solution process has reached,
the output facet and the output power Pout has been calculated, the excess power Pexc is calculated using
Equation 22.8, and the excess power heat source is distributed along the complete device volume. Then, a
3D thermal solver is applied. The 3D thermal solver is based on scanning the 2D solver along the longitu-
dinal direction allowing the longitudinal heat �ow between slices until reaching convergence. Successive
iterations of the complete algorithm use this 3D thermal solver as indicated in Figure 22.2.

22.4 Simulation Example: 1.5-�m InGaAsP/InP Tapered Amplifier

As an illustrative example, in this section we analyze a typical 1.5-μm InGaAsP/InP tapered ampli�er with
the HAROLD 4.0 simulation tool. A�er a summary of the most relevant material, and geometrical and
simulation parameters, we present the simulation results of a reference device and based on these results,
we illustrate the potential of the simulation tools by analyzing the e�ect on the device performance of two
important design parameters: the taper angle α and the con�nement factor Γ. The analysis is presented
here only for the sake of illustration, so we will present an overview of some interesting e�ects without a
detailed analysis.

22.4.1 Device Geometry and Simulation Parameters

As a reference device, we have considered an SOA with an InGaAsP/InP multi-QW epitaxial structure
similar to that of the MOPA reported in Faugeron et al. (2015). It features an asymmetric cladding structure
especially conceived for shi�ing the broad vertical pro�le of the optical mode to the n-side of the diode, thus
minimizing the overlapping with the highly absorbing p-doped layers. Table 22.1 provides the geometrical
parameters of the device as well as a brief summary of the most in�uential material and device parameters
used in the simulation. The taper angle has been selected so as to �t the calculated free di�raction angle
assuming an index step Δne� = 7 × 10−3. We have considered a p-side down mounting con�guration
as more appropriate for the heat management required in a power device. For the Auger recombination

TABLE 22.1 Geometrical Parameters of the Reference SOA and Summary of the
Most Relevant Material and Device Parameters Used in the Simulation

Symbol Parameter Value Units

LRW Length of the ridge waveguide (RW) section 1 mm
WRW Width of the RW section 3.5 μm
LTap Length of the taper section 2 mm
αtap Taper angle 7 ◦

Δne� E�ective index step of the RW section 7 × 10−3 –
Mounting con�guration (p-up/p-down) p-Down –

THS Heatsink temperature 18 ◦C
Pin Input power 20 mW
Γ Con�nement factor 0.037
αscat Scattering losses coe�cient 0.5 cm−1

Cn(Cp) Electron (hole) Auger recombination coe�cient 8(8) × 10−29 cm6s−1

ke (kh) Electron (hole) free carrier absorption coe�cient 1(30) × 10−18 cm2

nI Di�erential refractive index coe�cient 10−1 cm3∕2
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coe�cients and the electron and hole free carrier absorption coe�cients, we have used judicious values
in the range of published values (Joindot and Beylat, 1993; Piprek et al., 2000). We have accounted for
the dependence of the refractive index on the carrier density by means of a square root function with a
coe�cient n1 (Borruel et al., 2004) such that it results in a value of about 5 for the LEF at the operating
wavelength and carrier densities. The value used for the internal scattering losses together with the free-
carrier absorption losses calculated using Equation 22.9 yield a total internal loss of approximately 8 cm−1

for a broad area laser with the same epitaxial structure.

22.4.2 Analysis of the Reference SOA

Figure 22.3 shows the simulated power–current (P–I) characteristics of the reference SOA together with
the evolution of the electrical-to-optical conversion e�ciency (ηE-O). For injection currents above a trans-
parency level (I ∼ 1.3 A) the device actually ampli�es with an increasing conversion e�ciency. The output
power shows an approximately linear increase in the current range 4 < I < 9.5 A. For higher injection
levels, both the output power and the conversion e�ciency start a saturation process.

The simulation provides the means to make a more in-depth analysis revealing details of the behavior
of relevant variables inside the SOA. As an example, Figure 22.4 shows 3D plots of several magnitudes
in the QW region for a relatively low injection current (I = 4 A). In the RW section, due to the index
guiding, the pro�le of the photon density (Figure 22.4a) is narrow and stable, and shows an increase of the
maximum along the longitudinal direction revealing the optical gain. The maximum drops and the pro�le
broadens when the tapered region starts, and from there up to the output facet, the photon pro�le evolves
smoothly. In this evolution, the maximum photon density increases and so does the pro�le width, following
the evolution of the width of the tapered section. For this relatively low injection level, the electron density
pro�le (Figure 22.4b) is almost �at inside the tapered section. In the RW section, the electron density
pro�le is broader than the width of the section due to the current spreading (not shown). The maximum
electron density in this section is lower than the density in the tapered section and decreases slightly along
the longitudinal direction. Both e�ects are a consequence of a higher stimulated recombination ratio in
the RW section. The hole density (not shown) is slightly di�erent but shows a similar pro�le. The mutual
dependence between carrier and photon densities is much more pronounced at high-injection levels as
explained below. The temperature pro�le in the lateral direction (Figure 22.4c) reminds the injection pro�le
showing higher values in the injected region and a fast variation at the edge of the region. In the RW section,
the lateral pro�le shows a small dip at the cavity center, whereas in the tapered section, the temperature
decreases smoothly from a maximum at the axis to a minimum at the edges of the injected region. In the
noninjected regions, the lateral evolution is smooth and shows a slow decrease toward the edges of the
chip. In the longitudinal direction, the temperature increases smoothly from the RW section to the output
facet. This increase is slow in the RW section and faster in the taper section (see also Figure 22.5b). At
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this relatively low-injection level, the evolution of the longitudinal temperature pro�les are similar in the
injected and in the noninjected regions. Finally, Figure 22.4d shows a 3D map of the QW refractive index
variation given by Equation 22.9. This variation is a balance between the positive thermal contribution and
the negative contribution of the excess carrier density. Therefore the pro�le is similar to the electron density
pro�le (Figure 22.4b) smoothly modi�ed by the temperature pro�le (Figure 22.4c). This index variation is
the way by which the density of carriers and the local temperature in�uence the photon density and, hence,
the beam pro�le.

More insight into the evolution of the optical power along the SOA can be provided by plots such as
the one in Figure 22.5a, where the internal optical power at each x–y slice is plotted along the longitudinal
direction in a logarithmic scale. The evolution of the internal optical power can be described in terms of
an e�ective optical gain ge� by P(z + Δz) = P(z)ege�Δz and therefore ge� is proportional to the slope of the
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curves in Figure 22.5a. In this description, ge� corresponds to the di�erence between the modal gain and
all the losses occurring in the beam propagation. For the low-injection level considered previously (4 A,
solid line), the e�ective gain is relatively low and slightly decreasing in the RW section and much higher in
the tapered section. This can be explained from the maps of photon and carrier densities in Figure 22.4a
and b: for approximately the same carrier density in both sections, the photon density is much higher in
the RW section and therefore the gain shows an increasing saturation e�ect which is absent in the tapered
section where the photon density is much lower. In a transition region, just at the beginning of the tapered
section, there is a dramatic drop of the gain corresponding to an increase of the losses due to the change
in the guiding mechanism from index guiding to gain guiding. This drop is due to the poor overlapping
of the mode and the injected region at the beginning of the tapered section since the external part of the
mode expands to unpumped and, therefore, absorbing regions. In this device, in which the taper angle
(and therefore the angle of the gain region) almost matches the free di�raction angle, the gain recovers
soon a�er the transition. For higher-injection levels, Figure 22.5a shows a qualitatively similar behavior of
the gain. In both sections, the gain is higher as corresponding to a higher carrier density and evidences
some saturation at the end of each section corresponding to a high photon density in these regions.

To complete the overview picture of the longitudinal evolution of internal variables, Figure 22.5b shows
the evolution of the maximum QW temperature for the same low-, intermediate-, and high-injection levels
of Figure 22.5a. As expected, the QW temperature evolves similarly for the three injection levels, showing
a faster increase in the taper section for the highest injection level.

More local details of the behavior of the photon and carrier densities when the injection increases are
provided by Figure 22.6. Figure 22.6a shows the electron and photon density pro�les along the lateral
direction at the output facet of the device. The mutual dependence between carrier and photons pointed
above for low injection is much more apparent at high-injection levels and can be explained as follows:
The density of carriers injected at these levels is high on average. In comparison with the outer regions, the
number of photons generated by stimulated recombination around the axis (x = 0) (where the optical mode
reaches the maximum) is higher, and therefore the carrier density locally decreases. This is the well-known
spatial hole burning (SHB) e�ect. Due to its negative dependence on the carrier density, the refractive index
locally increases in the places more a�ected by the SHB e�ect, giving rise to a more abrupt index pro�le.
In turn, the new index pro�le contributes to a higher con�nement of the optical mode in the axial region
in a feedback loop in which the local temperature also plays a role through the thermal dependence of the
refractive index. As a consequence, the smooth pro�le of the optical beam at low injection undergoes a
slight degradation when the injection increases as illustrated in Figure 22.6b, where the FF pro�les at the
three injection levels have been compared.
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22.4.3 Effect of the Confinement Factor and Taper Angle

The con�nement factor and the taper angle are two critical design parameters a�ecting the performance
of a tapered SOA. In order to illustrate the capabilities of the simulation tools for the analysis of the
in�uence of these parameters, we have compared the reference SOA (Γ = 3.7% and α = 7◦) with two
devices: (1) an SOA which epitaxial design has been carefully modi�ed so as to result in a con�nement
factor Γ = 5.6% without increasing the mode overlapping with the p-doped cladding (high Γ-SOA) and
(2) a device with α = 3◦ and the same RW and tapered section lengths as the reference SOA (3◦-SOA).
Figure 22.7 shows a comparison of the P–I characteristics, and the conversion e�ciency of the three
devices. In comparison with the reference SOA, the high Γ-SOA has a lower transparency current, a higher
slope of the P–I characteristics, and a higher conversion e�ciency. Therefore, at the highest current its
output power and conversion e�ciency are signi�cantly higher. This can be qualitatively understood just
taking into account the higher mode overlapping with the active region. The 3◦-SOA shows also a lower
transparency current, a higher slope of the P–I characteristics, and a higher conversion e�ciency. In this
case, the explanation is the higher current density corresponding to the same current as a consequence of
the lower area of the device.

Figure 22.8 shows the e�ective optical gain in the three devices at the highest injection level of around 13
A. Note that the output power of each device is di�erent (see Figure 22.7a). In the RW section, the e�ective
gain of the high Γ-SOA is only slightly higher than the e�ective gain of the reference SOA in spite of the
higher value of Γ. The reason for this is the material gain saturation due to the high photon density in this
section that makes the gain almost independent of Γ. The e�ective gain of the 3◦-SOA in this RW section
reaches higher values corresponding to the higher carrier injection. In the tapered section, the gain of the
high Γ-SOA is clearly superior to that of the reference SOA as can be expected from its higher value of Γ.
The di�erence is more apparent at the beginning of the section, where the photon densities are low, than at
the end, where the photon densities (and hence the saturation) become high. The most revealing di�erence
between the gain of the 3◦-SOA and the other devices is in the transition region at the beginning of the
taper section where the mismatch between the free di�raction angle and the taper angle in the 3◦-SOA
results in high losses evidenced as a low e�ective gain in this region.

The improved performance of the high Γ-SOA and the 3◦-SOA in terms of output power and conver-
sion e�ciency is, however, at the expense of a much faster beam degradation as revealed by the evolution
of the FF width and the beam propagation factor (M2) plotted in Figure 22.9 (see [Esquivias et al., 2017]
Chapter 28, Volume 2 of this book). In the case of the high Γ-SOA, the beam quality as revealed by M2

progressively worsens, reaching high values at relatively low currents. In the case of the 3◦-SOA, the degra-
dation takes place at intermediate values of the current whereas the reference SOA keeps a relatively low
value of M2 up to a high-injection level.
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As mentioned above, more detailed information of the mechanism underlying beam degradation is
brought by the plots in Figure 22.10a where the electron and photon density pro�les at the output facet
of the three devices are plotted for the highest injection level. The mutual dependence between carriers
and photons described in Section 22.4.2 for the reference SOA is much more apparent for the high Γ- and
the 3◦-SOAs and results in deep holes in the axial region of the electron density pro�les together with the
corresponding narrow peaks in the photon density. As a consequence, the beam quality severely degrades,
as revealed, for example, by the FF pro�les plotted in Figure 22.10c and d in comparison with the pro�le
of the reference SOA (Figure 22.10b).

The self-focusing is another manifestation of the beam degradation due to the interplay between car-
riers and photons. Figure 22.11 shows a comparison between the evolution of the beam pro�les in the
reference (Figure 22.11a and b) and the 3◦-SOA (Figure 22.11c and d) for low- (Figure 22.11a and c)
and high injection conditions (Figure 22.11b and d). In these plots, the photon density in each slice
perpendicular to the longitudinal axis has been normalized to its maximum value in order to visualize
the focusing. The white dashed lines show the borders of the injected region. In contrast with the vir-
tually absent focusing of the beam in the reference SOA, Figure 22.11d shows a strong self-focusing in
the 3◦-SOA at high current. As a consequence, the slightly increasing astigmatism in the reference SOA
when the injection increases (not shown) becomes abrupt and then drops down to negative values in the
3◦-SOA.
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far �eld pro�les for the reference SOA, the high Γ-SOA, and the 3◦-SOA, respectively.
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FIGURE 22.11 Maps of the normalized photon density of the reference SOA (top) and the 3◦-SOA (bottom) under
low-injection (le�) and high-injection conditions (right). The white dashed lines show the borders of the injected
region. For each value of the longitudinal coordinate z, the photon density was normalized to its maximum along
the corresponding lateral x-axis.

22.5 Summary

We have presented an overview of the current state of the art in the modeling of high-power tapered SOAs.
We have described the most relevant models used for the simulation of carrier transport, optical �eld, mate-
rial properties, and temperature distribution in this type of devices. The particular geometry of tapered
ampli�ers makes di�cult the reduction of the dimensionality of the problem, requiring relatively complex
numerical models. The implementation of a steady-state quasi-3D model has been explained in detail, with
emphasis on the interaction between the electrical, thermal, and optical solvers. For illustration, the model
has been applied to a 1.5-μm tapered SOA, showing the relation between internal carrier and photon dis-
tributions and the external measurable characteristics. The in�uence of the optical con�nement factor and
the taper angle in the output power and beam quality has also been analyzed.

The main limitation of the steady-state single-frequency models is that they cannot be used to analyze
the noise properties of the SOAs, as well as other complex nonlinear phenomena as cross-talk in wave-
length division multiplexing applications. Two- or quasi-3D TWMs, coupled to bipolar carrier and thermal
equations are the natural evolution of steady-state models to account for dynamical and spectral issues.
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23.1 Introduction

The rapidly increasing need for telecommunications and data-streaming applications within our society
still demands a deeper understanding of the physical processes behind this emerging technology. In the
last decades, there have been many attempts to optimize the performance of optoelectronic devices by
using innovative nanostructured semiconductor gain materials [1,2]. A lot of these innovative devices
already have found their way into photonic applications [3,4]. In particular, the demand for faster and
more energy-e�cient data transfer set the trend to replace the well-established cable-based data transmis-
sion with energy e�cient optical technologies [5]. As one example, optical ampli�ers are needed in optical
networks to raise the signal power level and compensate for the inevitable optical losses in glass–�ber
connections. Semiconductor-based optical ampli�ers (SOAs) are cheap, relatively easy to fabricate, and
consume only little energy within an electric circuit. They are structurally similar to semiconductor laser
devices, with the di�erence lying in the absence of an optical cavity (see Chapter 20 SOA Fundamentals).

In this chapter, we describe the modeling of optical ampli�ers that contain semiconductor quantum
dots (QDs) as active media. Those nearly zero-dimensional QD structures gained a lot of attention as the
material of choice for highly energy-e�cient and small-footprint optoelectronic devices [6]. The scatter-
ing mechanisms and the unique electronic structure of semiconductor QDs have been found to make such
devices prime candidates for the implementation of next-generation optoelectronic applications and novel
high-speed data transmission schemes. QDs are the �nal step in miniaturization of the optically active gain
material and thus in the con�nement of charge carriers below the de Broglie wavelength of electrons (a few
nanometers). In addition to the modeling of the quantum-dot semiconductor optical ampli�ers (QDSOAs)
as active media described within this chapter, other QD-based optical devices such as QD laser and QD

715
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light-emitting diodes are treated separately in a di�erent section of this book. Nevertheless, our micro-
scopically based material model for the QDs can equally be used as the building block in laser devices
[7,8].

Our main focus will be the characterization of both the performance and the special nonlinear features
of QDSOAs that are induced by the low dimensional and thus highly con�ned QD gain medium. While
linear ampli�cation with a low noise �gure is required, to ensure low distortion of the input signal for
data transmission [9–11], nonlinear optical applications, such as four-wave-mixing [12–15] and cross-gain
modulation [16–18] for wavelength conversion, as well as regenerative ampli�cation, require a nonlinear
response of the optical ampli�er. QDSOAs generally have a high gain bandwidth due to the growth-induced
inhomogeneity in the dot size and material composition. These �uctuations lead to an inhomogeneous
broadening of the localized QDs states and consequently allow for a broadband ampli�cation. Addition-
ally, due to the coupling to a charge-carrier reservoir with charge-carrier scattering times in the picosecond
range, ultrafast gain recovery [19–24] and nonlinear signal processing are possible [15,16,25]. The com-
parably slow dephasing time of the microscopic interband polarization in the localized QD states [26–28]
allows the possibility to directly observe quantum-mechanical e�ects, such as Rabi oscillations [29–33] or
self-induced transparency [34,35]. This could potentially open up new applications in the signal processing
of ultra-short, ultra-strong optical pulses.

The optical ampli�er devices we consider in this work are single-pass devices, where the optical signal
coupled into one side of the waveguide structure is ideally passing exactly once across the device. Thus, the
edge-emitting QDSOAs are longer than typical laser devices, in order to provide a long enough interaction
time between optical signal and the active medium. The model used for the numeric simulations is based
on a traveling-wave approach for the pulse propagation, using Maxwell’s wave equation in the slowly vary-
ing amplitude and rotating wave approximation. The polarization of the active medium is modeled using
microscopic considerations for the charge-carrier dynamics, i.e., the light–matter interaction is modeled
on the basis of Maxwell–Bloch equations, taking into account the microscopic polarization of the QD
medium.

The structure of the chapter is as follows. First, a delay-di�erential equation model for an e�cient and
accurate description of the electric �eld propagation through the QDSOA is presented (Section 23.2).
Subsequently, the charge-carrier dynamics is described in the framework of microscopically calculated
nonlinear charge-carrier scattering rates before our approach for a quantitative modeling of the ampli�ed
spontaneous emission (ASE) inside the QDSOA is discussed. In Section 23.3, we present exemplary results
on the performance of the QDSOA, focusing on the unique properties of semiconductor QDs as active
medium. A�er a static characterization of a chosen sample device, we discuss the ultrafast gain dynamics
of QDSOAs, identifying the main timescales that determine its gain recovery. We then present results on
the coherent propagation of strong optical pulses. The long dephasing time of QDs leads to strong signa-
tures of the coherent interaction, leading to modi�cations in the pulse shape and the gain dynamics due to
the appearance of Rabi oscillations. A brief conclusion is provided.

23.2 QD Semiconductor Optical Amplifier Model

QDSOAs di�er from conventional devices in the choice of active medium. The charge-carrier dynamics
in QDs can be very complex due to the localization of electrons within the QDs embedded in the sur-
rounding quantum-well or bulk material. In this chapter, we, therefore, aim to describe the charge-carrier
dynamics and derive a set of coupled di�erential equations for the electronic states involved. The strong
nonlinearity of the resulting equations leads to important di�erences in the performance of QDSOAs when
compared to conventional devices. It also opens up the possibility of novel applications, based on their
ultrafast gain recovery for linear applications, or their broad gain spectrum for nonlinear or wavelength
conversion applications.

In this section, we derive a QDSOA model, in which we focus on the unique dynamics of the QD gain
medium. The wave equation used for the propagation of the light will be similar to conventional SOA
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models (see Chapter 20 on SOA fundamentals in this book). In other works, models without spatial reso-
lution have been employed for the description of semiconductor ampli�ers [17,36–38]. As soon as strong
spatial inhomogeneities arise, such models are, however, bound to fail. On the other hand, numerically
solving the partial di�erential equation for the electric �eld propagation along the waveguide axis is com-
putationally very expensive[39]. We, therefore, develop a delay-di�erential equation model that combines
spatial resolution and reasonable computation time. The light–matter interaction will be described within
a Maxwell–Bloch framework, which couples the light propagation dynamics to the QD active medium.

In the following, we derive the electric �eld propagation equations and the material equations describ-
ing the active medium. Furthermore, we derive Boltzmann-like equations that govern the charge-carrier
scattering dynamics within a quantum-dot-in-a-well system. Spontaneous emission will be included in a
phenomenological way to yield stochastic di�erential equations.

23.2.1 Electric Field Propagation: Delay-Differential-Equation Model

In order to calculate the dynamics of the QDSOA device, we must solve the wave equation of the opti-
cal �eld inside the waveguide. Here we concentrate on narrow-area ridge waveguide structures where the
propagation along the longitudinal axis (labeled z) dominates, and the transverse mode pro�le is assumed
to be constant. The electric �eld is thus governed by the one-dimensional wave equation

∂2

∂t2
(r, t) − c0

2 ∂2

∂z2 (r, t) = −
1
ε0

∂2

∂t2
 (r, t) , (23.1)

where  and  denote the real electric �eld and polarization, respectively, and c0 and ε0 are the vacuum
speed of light and dielectric constant, respectively. The �eld quantities are expanded in terms of plane
waves,

(z, t) = 1
2

[

E+(z, t)eikz + E−(z, t)e−ikz
]

e−iωt + c.c. , (23.2)

where we have introduced the slowly varying �eld amplitudesE±, describing the forward (+) and backward
(−) propagating electric �eld. The wave number is given by k, andω is the optical frequency of the reference
frame. From Equation 23.1, we can derive the propagation equations for the electric �eld amplitudes within
the slowly varying envelope approximation (SVEA), neglecting all but the lowest order of derivatives. The
SVEA limits the description to �eld envelopes that change on time scales and lengths much larger than the
respective optical period and wavelength, respectively. The propagation equation for the slowly varying
�eld envelope is then written as

( ∂
∂t
± vg

∂
∂z

)

E±(z, t) =
iωΓ

2εbgε0
P±(z, t) =∶ S±(z, t) , (23.3)

with the group velocity vg ≡
c0

√εbg
, with the background permittivity εbg. P±(z, t) is the macroscopic slowly

varying polarization amplitude. The transverse optical con�nement factor Γ is introduced phenomeno-
logically to the above equation. It describes the overlap of the electric �eld mode with the active medium,
integrated over the transverse (x and y) coordinates. We summarize the right-hand side in a general source
term S±(z, t).

The numerical solution of the above partial di�erential equation using a �nite-di�erence method
requires a spatial discretization into very �ne sections of length vgdt, where dt is the numerical time-step, in
order to ensure numerical stability [41]. For common device lengths on the order of 1mm, a high number
of spatial discretization points is needed. The numerical integration, therefore, becomes very expensive in
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terms of computation time and memory requirements [42,43]. A more elegant approach is the formulation
of the problem as a delay-di�erential equation system [40,44], which we do in the following.

The partial di�erential equation Equation 23.3 can be formally solved by integrating along its charac-
teristic lines, given by

z = ±vg t + const. (23.4)

Expanding the total derivative d
dt =

∂z
∂t

∂
∂z +

∂
∂t , we can thus write

d
dt
E±(z, t) =

[

±vg
∂
∂z
+ ∂
∂t

]

E±(z, t) = S±(z, t) . (23.5)

Now we describe the optical ampli�er of length l by a number of Z sections along the propagation axis,
such that the distance between two discretization points is given byΔz ∶= l∕Z. Integrating Equation 23.5
over the time interval Δt = Δz

vg
thus yields

E±(z, t) = E±(z ∓ Δz, t − Δt) +

0

∫
−Δt

[ d
dt
E±

(

z ± vgτ, t + τ
)]

dτ′

= E±(z ∓ Δz, t − Δt) +

0

∫
−Δt

S±
(

z ± vgτ, t + τ
)

dτ

≈ E±(z ∓ Δz, t − Δt) +
Δt
2

[

S±(z, t) + S±(z ∓ Δz, t − Δt)
]

. (23.6)

The integral over the source term was approximated by its values at the end points of the integration inter-
val. This approximation is valid for negligible change of S± along the integration path, i.e., for a su�ciently
small space discretization step. The electric �eld at time t now depends on the values of E±, S± at time
t − Δt, which introduces a time delay into the equations.

The electric �eld in each of the spatial sections along the ampli�er device thus couples to the time-
delayed electric �eld in the neighboring sections, with the time Δt describing the time needed for the
electric �eld propagation along the length of one section [40,44]. The resulting discretization scheme is
illustrated in Figure 23.1. The advantage of this approach is the decoupling of the time and space discretiza-
tion steps, ensuring numerical stability even for Δz ≫ vgdt. The temporal dynamics at each point within
the ampli�er device is usually much faster than the characteristic timescale over which a propagating pulse
changes its shape. Thus, a reduced number of spatial discretization points can be chosen compared to the
�nite-di�erence method, which signi�cantly improves the simulation e�ciency. The implementation of
the delay-di�erential equations, however, means that the history of the electric �elds as well as the source
terms must be saved over a time interval Δt.

23.2.2 Quantum-Dot-in-a-Well Material Equations

The ampli�er active medium is composed of an ensemble of of semiconductor quantum dots. For InAs
quantum dots grown in the Stranski–Krastanov (SK) mode by molecular beam epitaxy (MBE), their areal
density is in the order of 2 – 5×1010 cm−2 [45]. The considered QDs are assumed to have two optically active
localized states. These are denoted by GS and ES, for the ground and �rst excited state, respectively, which
are located within the bands of the surrounding quantum well, as sketched in Figure 23.2. The resulting
energy structure is sketched in Figure 23.3.
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FIGURE 23.1 Electric �eld propagation schemes: (a) Traditional time-domain traveling-wave integration scheme.
The device is discretized into spatial sections with width dz, usually related to the numerical time step dt via the electric
�eld group velocity dz = vgdt. The �eld E(z, t) is then determined from the �eld in neighboring discretization points
at the previous time step E(z ± dz, t − dt). (b) The discretization into fewer spatial sections separated by Δz leads to a
coupling to neighboring points with a time delay Δt. The time evolution in each section is still calculated with a time
step dt, separating space and time discretization steps. (A�er J. Javaloyes and S. Balle, Opt. Express, 20, 8496–8502,
2012.)
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FIGURE 23.2 Sketch of the conduction band density of states of a quantum-dot-in-a-well material system. The QD
transitions are assumed to consist of a ground-state (GS) and excited-state (ES) transition, which are inhomogeneously
broadened with a full-width-at-half maximum (FWHM) of ΔEinh. The two-dimensional quantum-well (QW) states
act as a charge-carrier reservoir for the QD states.
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FIGURE 23.3 Energy scheme of the considered dot-in-a-well (DWELL) structure. The QD ground states (GS)
lie ΔEb below the quantum-well (QW) band edge, with an energy spacing of Δb between GS and �rst excited
state (ES).
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Due to �uctuations in QD size and composition, their emission spectrum is inhomogeneously broad-
ened around the central emission energy of ≈ 950 meV for InAs/InGaAs QDs. Typical inhomogeneous
linewidths lie around 30 meV—higher than their homogeneous linewidth [27,46]. An accurate descrip-
tion of the QD medium, therefore, requires a separate treatment of quantum dots in dependence of their
respective transition energy. Both the interaction with the optical �eld as well as the charge-carrier scat-
tering dynamics are in�uenced by the transition and localization energies. A natural way to deal with the
inhomogeneous broadening is, therefore, to distribute the whole QD ensemble into a number of subgroups,
characterized by their optical transition energy. This procedure is illustrated in Figure 23.4. We label each
subgroup by an index j and its respective mean transition energy ℏω j. We introduce the probability mass
function f (j) denoting the fraction of QDs within the jth subgroup. Following a Gaussian distribution with
an FWHM of ΔEinh, the distribution function f (j) is then given by

f (j) = 1


exp

(

−4 ln 2
[

ℏω j − ⟨ℏω⟩
ΔEinh

]2)

, (23.7)

with the normalization constant  chosen such that
∑

j f (j)
!
= 1, calculated numerically. The inhomo-

geneous broadening of the optical spectrum is given by the sum of the individual single-particle state
broadenings of electrons and holes (subscripts e and h, respectively),

ΔEinh = Δεe + Δεh , (23.8)

where Δεb, b ∈ {e, h} is the corresponding electron and hole state broadening. Only the total broadening
ΔEinh is experimentally readily accessible, e.g., by measurements of the QD luminescence spectra [47].
For the individual state broadening, we assume widths proportional to the localization energy of the given
state:

Δεb =ΔEinh
ΔEb

ΔEe + ΔEh
. (23.9)

We now proceed by deriving the dynamic equation for each of the QD subgroups within each ampli�er
section. In addition to the QD subgroup index j, we introduce the state index m∈{GS,ES}, distin-
guishing the charge carriers in the GS and �rst ES. The material dynamics are described within the
Maxwell–Bloch approach [48], characterizing the QD active medium by their occupation probabilities
ρ jm and the microscopic polarization amplitudes p j

m. The microscopic polarization is induced by the
electric �eld and describes the transition probability under emission of a photon, and thus couples the

–3

–2

–1

3

2

Energy

1

f(
j) j = 0

⟨ћωj ⟩m

FIGURE 23.4 Illustration of the QD subgroups to model inhomogeneous broadening. The QDs are distributed into
jmax subgroups, assumed to follow a Gaussian distribution around the mean transition energy ⟨ℏωm⟩. The probability
mass function f (j) gives the probability for a QD to be found in the jth subgroup.
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charge-carrier equations to the light �eld. Similar to the electric �eld, we expand p j
m in terms of forward

and backward propagating amplitudes,

p j
m(z, t) =

[

p j
m,+(z, t)e

ikz + p j
m,−(z, t)e

−ikz
]

e−iωt . (23.10)

We assume a coupling of the individual polarization amplitudes p j
m,± only to the corresponding co-

propagating part of the electric �eld. This is the rotating wave approximation, neglecting terms oscillating
with e±2ikz and e±2iωt , which would appear in the coupling of counter-propagating polarization and �eld
terms.

The Maxwell–Bloch equations of the QD active medium polarization amplitudes and occupation
probabilities then read [49,50]

d
dt
p j
m,±(z, t) = −

[

i(ω j
m − ω) +

1
τ2

]

p j
m,±(z, t) − i

μm
2ℏ

(

ρ je,m(z, t) + ρ
j
h,m(z, t) − 1

)

E±(z, t), (23.11)

d
dt
ρ jb,m(z, t) =

1
ℏ
Im

[

p j
m,+(z, t)μ

∗
mE

∗
+(z, t)

]

+ 1
ℏ
Im

[

p j
m,−(z, t)μ

∗
mE

∗
−(z, t)

]

−Wmρ
j
e,m(z, t)ρ

j
h,m(z, t) +

∂
∂t
ρ jb,m(z, t)

|

|

|sc
. (23.12)

Here, we again denote the localized QD states by m ∈ {GS,ES} and their subgroup index by j. The above
equations describe the micoscopic polarization amplitudes in the reference frame ofω, whereasω j

m denotes
the transition frequency of the respective optical transition. The polarization decays with the time constant
τ2. This dephasing time describes the loss of the quantum-mechanical coherence between di�erent QDs
due to scattering processes with other electrons or phonons. In semiconductors, these processes are usually
in the order of a few tens of femtoseconds, due to the high density of charge carriers as potential scatter-
ing partners. The polarization is driven by the electric �eld E±(z, t) and the carrier inversion, with the
interaction strength given by the transition dipole moment μm.

The QD charge-carrier dynamics is given by stimulated recombination induced by the microscopic
polarization, and bimolecular spontaneous recombination with a rateWm. The term ∂

∂t ρ
j
b,m(z, t)

|

|

|sc
denotes

charge-carrier scattering contributions, which we will address in the following section.
The above equations couple to the macroscopic light �eld via the macroscopic slowly varying polar-

ization amplitudes P±(z, t). These are given by the macroscopic sum over the individual microscopic
contributions:

P±(z, t) =
2NQD

hQW
2
∑

j,m
νm f (j)μ∗mp

j
m,±(z, t) , (23.13)

where NQD is the areal QD density per quantum-well layer and hQW the layer height. The sum
∑

j,m νm f (j)
gives the sum over all QD subgroups and con�ned states, with νm the degeneracy (excluding spin) of the
mth state and f (j) the distribution function as de�ned in Equation 23.7. The macroscopic polarization
couples back to the electric �eld equation as a source term, as shown in Equation 23.3:

d
dt
E±(z, t) = S±(z, t) =

iωΓ
2εbgε0

P±(z, t)

= 2NQD

hQW
iωΓ
εbgε0

∑

j,m
νm f (j)μ∗mp

j
m,±(z, t) . (23.14)
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It is tempting to identify a small-signal gain g(z, t,ω), as used in traditional rate equation models, from an
earlier equation:

g(z, t,ω) = iωΓ
2εbgε0

P±(z, t)
E±(z, t)

. (23.15)

However, the independent dynamics of the polarization would lead to a strongly varying (and even diverg-
ing) value of g(z, t,ω) in time. Nevertheless, in a static limit, by setting ∂

∂t p
j
m = 0, the adiabatic small-signal

gain can be calculated from Equation 23.11, which yields

g(z, t,ω) = ℏωΓ
ε0εbghQW

2NQD
∑

j,m
νm f (j)

τ2|μm|2

2ℏ2

[

ρ je,m(z, t) + ρ
j
h,m(z, t) − 1

]

1 + [τ2(ω − ω
j
m)]2

. (23.16)

This expression, however, neglects the dynamics of the polarization, assuming it to follow the incident elec-
tric �eld instanteously. For coherent interactions, such as Rabi oscillations discussed later in this chapter,
the above equation, therefore, cannot be applied. Furthermore, Equation 23.16 is strictly valid only for a
monochromatic electric �eld at a given frequency ω. When simulating broadband ampli�cation, such as
optical pulses, the full polarization dynamics must, therefore, be taken into account. For slowly varying
and near-monochromatic electric �eld envelopes, such as encountered in lasers, the adiabatic elimination
of the polarization equations is a valid and widely used approximation, and Equation 23.16 can be used to
calculate the optical gain.

The Maxwell–Bloch equations only describe the optically active QD states. In order to describe the
carrier dynamics in the surrounding charge-carrier reservoir, we model the quantum-well charge-carrier
density wb by a rate equation,

d
dt
wb(z, t) = η

J
e0
− AS√we(z, t)wh(z, t) − BSwe(z, t)wh(z, t) +

∂
∂t
wb(z, t)

|

|

|sc
, (23.17)

with the pump current density J, the electron charge −e0, and a pump current e�ciency η accounting
for losses in the surrounding semiconductor layers, as well as imperfect carrier injection into the active
region, which is not modeled explicitly. Linear and bimolecular recombination rates in the reservoir are
given by AS and BS, respectively, which are important to describe carrier losses over a wide range of cur-
rents. We neglect Auger recombination, as with typical values (C = 10−28 cm6 ⋅ s−1) the losses are found
to be dominated by AS and BS in the current ranges considered in this chapter. The term ∂

∂twb(z, t)
|

|

|sc
accounts for scattering of charge carriers into the QD states, which is derived in the next section. The
above equations are de�ned for each space discretization point along the ampli�er device, allowing for a
spatially inhomogeneous distribution of the charge-carrier distribution, as encountered in long ampli�er
devices [51,52].

23.2.3 QD Charge-Carrier Scattering

QDs di�er from conventional quantum-well or bulk gain media in the presence of localized states and
thus a strongly modi�ed density of states. Electrically injected charge carriers reach the active region
in high-energy states near the bulk material band edges. The optically active QD states must, there-
fore, be populated by means of scattering processes. While the charge-carrier distributions within the
quasi-continuous bulk and quantum-well bands quickly thermalize due to electron–phonon interaction
[53,54], an e�ective scattering of carriers into the QD states by scattering with phonons is limited due
to the existence of the “phonon bottleneck”[55]. Instead, at elevated charge-carrier densities, Coulomb-
mediated carrier-carrier scattering provides an ultrafast scattering mechanism between the QD states and
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the surrounding semiconductor material [56]. In the following, we derive expressions for the Coulomb
scattering mechanism.

The starting point for calculating the carrier-carrier scattering is the many-body Hamiltonian in second
quantization [49,57],

Hsys = Hkin +HC =
∑

a
s

εaa†asaas +
1
2
∑

abcd
ss′

Wabcd a†asa
†
bs′acs′ads , (23.18)

where ax, a†x are the electron annihilation and creation operators in the state x with the energy εx,
respectively. The Hamiltonian consists of the kinetic (free-carrier) contribution Hkin, and the Coulomb-
interaction Hamiltonian HC, which includes the many-body interaction between the charge carriers in the
semiconductor. In the sums, the labels a, b, c, d denote all possible electronic states, with s, s′ denoting their
spins. The occupation probability for a given state (ν, s) is given by

ρνs = ⟨a†νsaνs⟩ . (23.19)

The screened Coulomb interaction matrix element is given by

Wabcd = ∬ d3r d3r′ ϕ∗a(r)ϕ
∗
b(r

′)
e0

2

4πε0εbg
e−κ|r−r′|
|r − r′|

ϕc(r′)ϕd(r) , (23.20)

with the single-particle wave functions ϕx(r), approximated as harmonic oscillator wave functions, which
was shown to yield surprisingly accurate results [58]. The vacuum and background permittivity are given
by ε0 and εbg, respectively, and −e0 is the electron charge. The screening wave number κ describes the
screening of the Coulomb interaction potential by the surrounding charge-carrier plasma, which can be
calculated in a self-consistent way [57,59,60]. Here, we implement the screening wave number in the static
quasi-equilibrium limit as

κ =
e0

2

2ε0εbg

∑

b
∂wb

∂EeqF,b
=

e0
2

2ε0εbg

∑

b
Dbf (E

QW
b,0 ,EeqF,b, kBT

eq) , (23.21)

with the quasi-Fermi level EeqF,b, quasi-equilibrium temperature Teq, and 2D density of states Db of the
corresponding electron and hole plasma. Within the quasi-equilibrium approximation, the screening
can be expressed by the occupation probability at the band edge, EQWb,0 , increasing the screening of the
Coulomb interaction with increasing charge-carrier density. The screening becomes very important at ele-
vated charge-carrier densities where the unscreened Coulomb potential would greatly overestimate the
interaction between the charge carriers.

An exact numeric solution to Heisenberg’s equation of motion within the given problem is generally
not possible. The Coulomb interaction Hamiltonian couples the dynamic evolution of n-operator expec-
tation values to n+2-operator expectation values, leading to an in�nite number of coupled di�erential
equations. It is, therefore, necessary to apply further approximations. We truncate this in�nite chain of
dynamic equations by factorizing six-operator expectation values into factors of two-operator expectation
values, i.e., occupation probabilities. The Coulomb matrix elements thus enter the dynamic equations in up
to second order. First-order contributions lead to renormalization e�ects of the single-particle energies and
polarization amplitudes due to the Coulomb interaction with surrounding charge carriers [59,61]. These
e�ects do not lead to a net change in the charge-carrier distribution and are therefore neglected.

By applying the Markov approximation to the resulting equations of motion, the explicit time depen-
dence of four-operator expectation values is discarded. Instead, a quasi-static dependence of these expec-
tation values on the occupation probabilities is assumed, by setting their time derivative to zero in the
adiabatic limit. The scattering processes are thus assumed to follow any changes in the charge-carrier
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distribution instantaneously. The scattering contribution to the charge-carrier states then yields a
Boltzmann-type equation:

∂
∂t
ρνσ

|

|

|sc
= 2π

ℏ
∑

bcd
s′

Re
[

Wνbcd
(

W∗
νbcd −W∗

νbdc
)]

δ(εν + εb − εc − εd)

×
[

(1 − ρνσ)(1 − ρbs′ )ρcs′ρdσ − ρνσρbs′ (1 − ρcs′ )(1 − ρdσ)
]

, (23.22)

which describes the Coulomb scattering in the second-order Born–Markov approximation [23,62–64]. The
summation terms in Equation 23.22 describe the simultaneous scattering between states d ↔ ν and c ↔ b.
The delta function ensures energy conservation, such that the total energy of the �nal states equals that of
the initial states. The Coulomb scattering is thus revealed to be of Auger-type, requiring the simultaneous
scattering of two electrons, with no net change in the total charge-carrier energy. The individual scattering
processes are proportional to the occupation probabilities in the initial states c, d and proportional to the
probability to �nd vacant �nal states ν, b, accounting for Pauli blocking. The second term in the sum in
Equation 23.22 describes the reverse scattering processes, with electrons scattering out of the states ν, b.

Equation 23.22 can be written in the form of a Boltzmann equation for the occupation probability ρ(t)
of any given state in the system,

∂
∂t
ρ(t)||

|sc
= Sin[1 − ρ(t)] − Soutρ(t) , (23.23)

combining the summation terms into an in-scattering rate Sin and a corresponding out-scattering rate Sout .
These rates are calculated from the sums in Equation 23.22, which include all possible individual scat-
tering processes. An exact treatment of the scattering dynamics within the second-order Born–Markov
approximation would still require the dynamic tracking of the complete charge-carrier distribution, mak-
ing numerical treatment di�cult. Fortunately, the given QD-quantum-well system allows the distinction
between qualitatively di�erent scattering processes in order to break up the sums in Equation 23.22 into
di�erent parts which can be handled more easily.

For the dot-in-a-well (DWELL) structures considered in this chapter, two general classes of charge-
carrier scattering processes can be distinguished: the capture of a quantum-well electron into a con�ned
QD state, and the intradot electron relaxation, each with their respective inverse escape processes. This
is illustrated in Figure 23.5a and b, respectively. The accompanying Auger-electron can involve either
quantum-well states only, or transitions between quantum-well and other QD states. Note that depend-
ing on the involved energy di�erences, not all of these scattering channels are possible. For example, in
the depicted case of the intra-dot relaxation in Figure 23.5b, the Auger transition in the valence band from
the quantum well to the GS is not possible, as it would violate energy conservation. The possible scatter-
ing processes contributing to the total scattering rate thus strongly depend on the exact energy scheme
of the QD-quantum-well system. Note that throughout this work impact ionization and Auger-assisted
recombination, i.e., the direct scattering between conduction and valence bands, is not considered.

Following the earlier discussion, the scattering dynamics of the localized QD states are rewritten in the
electron–hole picture as

∂ρb,GS
∂t

|

|

|sc
= Scap,inb,GS ({ρQW})(1 − ρb,GS) − Scap,outb,GS ({ρQW})ρb,GS

+ Srel,inb,GS ({ρQW})ρb,ES(1 − ρb,GS) − Srel,outb,GS ({ρQW})(1 − ρb,ES)ρb,GS , (23.24)

∂ρb,ES
∂t

|

|

|sc
= Scap,inb,ES ({ρQW})(1 − ρb,ES) − Scap,outb,ES ({ρQW})ρb,ES

+ Srel,inb,ES ({ρQW})ρb,GS(1 − ρb,ES) − Srel,outb,ES ({ρQW})(1 − ρb,GS)ρb,ES . (23.25)
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FIGURE 23.5 Possible scattering channels in quantum-dot (QD) quantum-well (QW) systems. (a) Direct capture
into the QD ground state (GS). (b) Intradot relaxation from excited state (ES) to GS. The electron scattering process
considered is shown by the black arrow, with the white arrows denoting the possible Auger processes. For all processes
shown, the corresponding reverse scattering is also possible. Not shown is the direct capture into the QD ES, analogous
to (a).

Here, ρb denotes either electron or hole occupation probabilities for b∈{e, h}. The scattering rates Scap,in
denote the direct capture of quantum-well electrons into the QD states, Srel,in the intradot relaxation
between the QD states, with Sout the scattering rate of the respective reverse processes. We can relate the
relaxation processes of the ES to the corresponding GS terms,

Srel,inb,ES ({ρQW}) = −
1
2
Srel,outb,GS ({ρQW}) , (23.26)

Srel,outb,ES ({ρQW}) = −
1
2
Srel,inb,GS ({ρQW}) , (23.27)

with a factor 1
2 compared to the GS contribution, due to the twofold degeneracy of the ES. All scattering

rates in the above equations depend on the whole quantum-well distribution in both bands, denoted by
{ρQW}.

Thus far the derived scattering expressions only describe the dynamics of QD states and their interac-
tion with the quantum-well charge carriers. The dynamics of quantum-well carriers can in principle be
expressed by Equation 23.22 as well. However, this would require resolving all quantum-well states and
tracking their population distribution in time, which greatly increases the dimensionality of the system
state. This problem can be resolved by assuming a speci�c distribution of the carrier population within the
quantum well.

The intraband scattering between quantum-well states is typically in the order of ≈ 100 fs [65–69]. As
long as this scattering is faster than the charge-carrier exchange between the quantum well and QDs, the
quantum well can be assumed to be in quasi-equilibrium with good accuracy:

ρb,QW(ε2Db,k) ≈ f (ε2Db,k,E
eq
F,b,T

eq) ≡

[

1 + exp

(

ε2Db,k − EeqF,b
kBTeq

)]−1

, (23.28)

with the corresponding single-particle energies ε2Db,k and the quasi-Fermi level EeqF,b. From this quasi-Fermi
distribution the 2D-charge-carrier density wb in the quantum wells can be calculated by taking the density
of states in the quantum well as

b(E) = DbΘ(E − EQWb,0 ) =
m∗

b
πℏ2Θ(E − EQWb,0 ) , (23.29)
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under the assumption that the quantum-well sub-band spacing is large enough that only the lowest sub-
band needs to be taken into account. The energy EQWb,0 is the corresponding quantum-well band edge and
Θ is the Heaviside function. The quantum-well charge-carrier density can then be written as

wb =
2

Aact

∑

k2D

[

1 + exp

(

ε2Db,k − EeqF,b
kBTeq

)]−1

=

∞

∫
−∞

dε2Db,k b(ε2Db,k)

[

1 + exp

(

ε2Db,k − EeqF,b
kBTeq

)]−1

= DbkBTeq log
⎡

⎢

⎢

⎣

1 + exp
⎛

⎜

⎜

⎝

EeqF,b − EQWb,0
kBTeq

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

, (23.30)

where the sum over all quantum-well k-states was expressed as the integral over the charge-carrier energy.
Aact is the active region in-plane area, with the factor 2 accounting for spin degeneracy. By inverting the
above expression, the quasi-Fermi level EeqF,b can be expressed in terms of the charge-carrier density in the
quantum well,

EeqF,b = EQWb,0 + kBTeq log
[

exp
(

wb
DbkBTeq

)

− 1
]

. (23.31)

Thus, the quantum-well charge-carrier population can be expressed as a function of the carrier density and
the quasi-equilibrium temperature:

ρb,QW(ε2Db,k) ≡ ρb,QW(ε
2D
b,k,wb,Teq) =

[

1 + exp

(

ε2Db,k − EeqF,b(wb,Teq)

kBTeq

)]−1

. (23.32)

By entering this relation into the expressions for the scattering rates Equation 23.22, also the individual
scattering rates can be expressed as functions of only the 2D charge-carrier densities wb and their quasi-
equilibrium temperature Teq, eliminating the need to keep track of the microscopic carrier population
distribution.

Furthermore, it is now possible to relate the in- and out-scattering rates of a given scattering process
to each other [70,71]. The out-scattering contribution in Equation 23.22 is equivalent to the in-scattering
contribution under the replacement ρ → 1 − ρ, which for the quantum well in quasi-equilibrium can be
expressed as

1 − ρQW(ε2Db,k) = ρQW(ε
2D
b,k) exp

(

ε2Db,k − EeqF,b(wb,Teq)

kBTeq

)

. (23.33)

For the QD scattering processes the out-scattering rates can thus be written as [72]:

Scap,outb,m (we,wh,Teq) = Scap,inb,m (we,wh,Teq) exp
⎛

⎜

⎜

⎝

εQDb,m − EeqF,b
kBTeq

⎞

⎟

⎟

⎠

(23.34)
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Srel,outb (we,wh,Teq) = Srel,inb (we,wh,Teq) exp
⎛

⎜

⎜

⎝

εQDb,GS − ε
QD
b,ES

kBTeq
⎞

⎟

⎟

⎠

, (23.35)

where εQDb,m denotes the energy of the localized QD state, with m ∈ {GS,ES} distinguishing between
GS and ES. The out-scattering of charge carriers thus becomes more probable at elevated charge-carrier
temperatures [73,74]. Note that in the derivation of above expressions, only a quasi-equilibrium within the
quantum well must be assumed without making assumptions about the QD occupations. Equations 23.34
and 23.35 are therefore also valid in nonequilibrium situations between QD and quantum well.

The resulting scattering contribution to the dynamics of the QD occupation probability is, therefore,
written as

∂ρ jb,GS(z, t)

∂t
|

|

|sc
= Scap,inb,GS

[

1 − ρ jb,GS
]

− Scap,outb,GS ρ jb,GS

+ Srel,inb ρ jb,ES
[

1 − ρ jb,GS
]

− Srel,outb ρ jb,GS
[

1 − ρ jb,ES
]

(23.36)

∂ρ jb,ES(z, t)

∂t
|

|

|sc
= Scap,inb,ES

[

1 − ρ jb,ES
]

− Scap,outb,ES ρ jb,ES

− 1
2

{

Srel,inb ρ jb,ES
[

1 − ρ jb,GS
]

− Srel,outb ρ jb,GS
[

1 − ρ jb,ES
]}

. (23.37)

The scattering contribution to the quantum-well equations can be calculated from charge-carrier number
conservation. It is simply given by the total charge-carrier density captured in the QD states:

∂
∂t
wb(z, t)

|

|

|sc
= −2NQD

∑

j,m
νm f (j)

(

Scap,inb,m (z, t)
[

1 − ρ jb,m(z, t)
]

− Scap,outb,m (z, t)ρ jb,m(z, t)
)

. (23.38)

23.2.4 Fit Functions for Scattering Rates

The microscopic calculation of the QD charge-carrier scattering rates requires a summation over all pos-
sible electronic states in the DWELL system, and such a calculation is, therefore, quite expensive in terms
of computation time. While the scattering rates can be implemented by means of lookup tables, having a
simpler analytic expression would be advantageous.

A �rst look at the scattering rates in dependence of the reservoir densities wb reveals for the capture
rates a quadratic increase at low densities, and a transition to nearly linear increase at higher values of wb.
The relaxation rates, on the other hand, show a linear increase at �rst and subsequent saturation. This is
depicted in Figure 23.6 (circles). Taking these characteristics into account, we �t the scattering rates, using
the following functions

Scap,inb,m (wb) =
Awb

2

B + wb
(23.39)

Srel,inb,m (wb) =
Cwb

D + wb
. (23.40)

The corresponding out-scattering rates are calculated via Equations 23.34 and 23.35. Table 23.1 gives
the �tting parameters extracted from the microscopically calculated rates. The comparison shown in
Figure 23.6 shows good agreement between the microscopically calculated rates and the �t functions.
For high reservoir carrier densities the �ts show a slight deviation, especially pronounced in the hole
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FIGURE 23.6 Fits of the quantum-dot scattering rates. Shown are (a) the ground-state direct-capture and (b) the
intradot relaxation rate for electrons and holes, in dependence of the electron reservoir density wb at T = 300K. The
microscopically calculated rates (circles) are shown together with the simple �t functions (lines). The �t parameters are
given in Table 23.1.

TABLE 23.1 Fitting Parameters for the Scattering Rates

Electrons Holes
GS ES GS ES

A (10−11cm2⋅ns−1) 32 54 60 79
B (1011cm−2) 5.6 2.9 5.3 2.1
C (ns−1) 2400 3000
D (1011cm−2) 2.7 1.2

Con�nement energies: ΔEe = 95 meV, Δe = 60 meV,
ΔEh = 50 meV, Δh = 25 meV.

relaxation rate. These values, however, correspond to very strong electrical pumping. For currents typi-
cally used in these devices, the �t functions presented are in very good agreement with the microscopic
calculations.

The relatively simple expressions extracted from the �ts to the microscopically calculated scattering rates
show that the common approach of capture rates which are directly proportional to the reservoir charge-
carrier density [17,75] should even yield quantitatively acceptable results. The saturation of the intradot
relaxation rates at elevated carrier densities suggests the use of constant relaxation rates when simple QD
models are desired. Nevertheless, when the accurate description of dynamics over a large range of operating
conditions is required, the microscopic description of the QD scattering should be preferred.

23.2.5 Modeling of Spontaneous Emission

The spontaneous emission created in optical ampli�er devices will be subject to stimulated ampli�cation
when emitted along the propagation axis. This ASE can reach signi�cant optical power levels and is impor-
tant for the device characteristics and performance. Apart from adding an optical noise background to the
device output, it can o�en become strong enough to in�uence the charge-carrier dynamics [76–78]. These
e�ects will deteriorate the device performance and the optical signal quality.

A consistent description of the ASE is important. In general there exist two appropriate modeling
approaches: the deterministic description of the ASE power spectral density in the frequency space [17,79]
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and the stochastic description in timedomain [43,78]. Here, we will employ the stochastic description,
which simpli�es the inclusion of time-varying input signals.

We, therefore, phenomenologically add an additional source term on the right-hand side of Equation
23.5, modeling the stochastic spontaneous emission added to the propagating electric �eld:

d
dt
E±(z, t′) = S±(z, t′) + Ssp± (z, t

′) . (23.41)

The electric �eld propagation along the one space-discretization section is again determined by integration
of Equation 23.41 over the interval Δz:

E±(z, t) ≈ E±(z ∓Δz, t −Δt) +
Δt
2

[

S±(z, t) + S±(z ∓Δz, t −Δt)
]

+ ∫

0

−Δt
Ssp±

(

z ± vgτ, t + τ
)

dτ . (23.42)

The spontaneous emission source term must account for all optical transitions in the inhomogeneously
broadened QD ensemble. Let η jm(z, t) describe the spontaneous emission contribution of the jth subgroup
of the mth localized state. We write for the electric �eld spontaneously added to the propagating �eld
along Δz:

0

∫
−Δt

Ssp±
(

z ± vgτ, t + τ
)

dτ ≡
∑

m,j
η jm(z, t) . (23.43)

The spontaneous emission of an optical transition has a �nite linewidth given by its homogeneous broad-
ening. The homogeneous linewidth of a given transition is directly linked to the dephasing time τ2 of
the microscopic polarization, with the linewidth simply given by 2τ−1

2 . In order to correctly implement
the spectral properties of the ASE, the spontaneously emitted �eld η jm(z, t) must, therefore, have the cor-
rect linewidth and center frequency. It is thus not possible to describe the spontaneous emission by white
noise, which would produce a �at noise spectrum; it must instead be modeled using colored noise. We
implement this colored noise by two-dimensional Ornstein–Uhlenbeck processes [80], which describe
quantities which are driven by white noise but relax with a given rate γ toward zero. This relaxation rate
leads to a �nite “memory” of the process, which translates into a �nite spectral width around a center fre-
quency. The time evolution of each of the respective noise signals is modeled by the following stochastic
di�erential equation:

d
dt
η jm(z, t) = −(iω

j
m + γ)η

j
m(z, t) +

√

D j
sp,m(z, t) ξ̃

j
m(z, t) , (23.44)

where ξ̃(z, t) is a complex Gaussian white noise process, which is δ-correlated both in z and t. The relax-
ation rate of η jm is given by γ, and its center frequency by ω j

m. The noise signal then ful�lls the following
properties [80]:

⟨Re η jm(z, t)⟩ = ⟨Im η jm(z, t)⟩ = 0 (23.45)

⟨|η jm(z, t)|
2
⟩ =

D j
sp,m(z, t)
γ

(23.46)

⟨η jm(z, t)η
j
m
∗
(z′, t + τ)⟩ ≈

D j
sp,m(z, t)
γ

e−γ|τ|eiω
j
mτδz,z′ . (23.47)
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Equation 23.47 is valid only under the assumption of a slowly varying noise amplitude ∂tDsp(z, t) ≪ γ,
such that within one correlation time γ−1 the spontaneous emission amplitude can be assumed as constant.
We can use the Wiener–Khinchin-theorem [81] this relation can be used to calculate the power spectrum
η jm (z,ω) of η jm(z, t):

η jm (z,ω) =
1

2π ∫

∞

−∞
⟨η jm(z, t)η

j
m
∗
(z, t + τ)⟩e−iωτdτ (23.48)

=
D j
sp,m(z)
π

1
(ω j

m − ω)2 + γ2
, (23.49)

which yields a Lorentzian line shape with a FWHM of 2γ. We thus identify γ = (τ2)−1, such that the noise
linewidth equals the homogeneous linewidth of the QD transitions.

Using the noise correlation properties, the average power that is added to the electric �eld by the noise
can be calculated. Combining Equations 23.42 and 23.43 and summarizing the deterministic source terms
in a combined variable, S̃ stim± , yields for the electric �eld:

E±(z, t) = E±(z ∓ Δz, t − Δt) + S̃ stim± (z, t) +
∑

m,j
η jm(z, t) (23.50)

⟨

|

|

|

E±(z, t)
|

|

|

2⟩
= |

|

|

E±(z ∓ Δz, t − Δt) + S̃ stim± (z, t)||
|

2
+
∑

m,j

⟨

|

|

|

η jm(z, t)
|

|

|

2⟩

= |

|

|

E±(z ∓ Δz, t − Δt) + S̃ stim± (z, t)||
|

2
+
∑

m,j
τ2D

j
sp,m(z, t) , (23.51)

where we have used the zero mean property, ⟨η jm⟩ = 0. On average, the spontaneous emission thus
increases the squared modulus of the electric �eld along one space discretization step during the prop-
agation time Δt by

∑

m,j τ2D
j
sp,m(z, t). Or, written in terms of a time derivative,

∂
∂t
|E±(z, t)|2

|

|

|sp
=
τ2
Δt

∑

m,j
D j
sp,m(z, t) . (23.52)

In the photon picture, the average change of the electric �eld energy density due to the spontaneous
emission can be calculated:

∂
∂t
u(z, t)||

|sp
=
εbgε0

2
∂
∂t
|E±(z, t)|2

|

|

|sp

= β2NQDΓ
hQW

∑

m,j
νm f (j)ℏω j

mWmϱ
j
e,m(z, t)ϱ

j
h,m(z, t) . (23.53)

Here we model spontaneous emission by bimolecular recombination processes, given by the sum over all
QD states. The spontaneous emission ratio β gives the fraction of photons spontaneously emitted into the
waveguide mode. Comparing Equations 23.52 and 23.53 yields for the individual noise strengths

D j
sp,m(z, t) =

Δt
τ2

2βΓℏω j
m2NQD

εbgε0hQW
νm f (j)1

2

[

R j
sp,m(z, t) + R j

sp,m(z ∓ Δz, t − Δt)
]

, (23.54)
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where the average of the spontaneous emission rate at the endpoints of the integration interval [z, z ∓Δz]
was taken, de�ned by

R j
sp,m(z, t) ∶=Wmϱ

j
e,m(z, t)ϱ

j
h,m(z, t) . (23.55)

The spontaneous emission noise thus depends on the optical frequency and on the occupation of the
individual QD subgroups. The resulting propagation equation for the electric �eld is thus given by

E±(z, t) ≈ E±(z ∓ Δz, t − Δt) +
Δt
2

[

S±(z, t) + S±(z ∓ Δz, t − Δt)
]

+
∑

m,j
η jm(z, t) . (23.56)

23.3 Application Examples

The QDSOA model derived in the previous section will now be applied to an exemplary device. We imple-
ment Equations 23.11 through 23.17, which describe the active medium dynamics, along with Equation
23.56 to describe the electric �eld propagation including spontaneous emission noise. The charge-carrier
scattering is described within the full microscopic framework as described in Equations 23.36 through
23.38, with the individual scattering rates depending on the reservoir carrier densities as well as the device
temperature.

In this section we will at �rst investigate the static characteristics of the ampli�er, focusing on the unique
properties of the QD active medium. We thus calculate the pump-current dependent-gain spectra for the
sample device, along with ASE spectra. Our modeling approach allows for a characterization over a large
range of pump currents, accounting for the changing carrier dynamics by the nonlinear scattering rates.
We analyze the performance of the QDSOA for optical signals centered on either the GS or ES energies,
exploiting the broad gain spectrum due to the di�erent localized states. Subsequently, we characterize the
dynamic gain recovery a�er perturbation of the gain medium by a strong pulse. The gain recovery dynam-
ics provide an important insight into the ultrafast ampli�cation capabilities of an ampli�er. Furthermore,
we show how the internal charge-carrier dynamics imprint their signature onto the gain dynamics. The last
part of this section addresses the phenomenon of coherent pulse-shaping by Rabi oscillations in QDSOAs,
enabled by the comparably long dephasing time of the interband polarization. The interaction of ultra-
short pulses with the QD gain medium, therefore, leads to strong modi�cations of the pulse shape. These
modi�cations di�er from classical descriptions and can be very complex due to the individual dynamics
of QDs within the inhomogeneous ensemble.

23.3.1 Static Characterization of the QDSOA

In linear ampli�cation applications, the device performance of SOAs is generally limited by two competing
e�ects. On the one hand, the maximum achievable optical output power is limited by the charge carriers
available for stimulated emission. The gain of the ampli�er will, therefore, decrease when the optical power
becomes too large. This e�ect is known as gain saturation. On the other hand, a too small optical signal
will signi�cantly reduce the signal-to-noise ratio, as the spontaneous emission background will dominate
the output. Noise e�ects thus play an important role in the ampli�cation of optical data signals [82,83]. A
strong noise background will negatively impact the signal quality by distorting the corresponding optical
output, and potentially corrupting the transmitted data stream. It is, therefore, important to investigate the
ASE and gain of a given ampli�er device to assess its suitability in a given application.

We implement the previously derived QD ampli�er model to simulate the static characteristics of a
speci�c device. We solve the delay-di�erential equation system using the simple forward-Euler method.
The Gaussian white noise for implementing the spontaneous emission is generated by the Box–Muller
algorithm [84]. For each spatial section of the ampli�er device, we save a history array containing Δt∕dt
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entries (up to Δt before the current time t) of the electric �eld E±(z, t), the �eld source term S±(z, t), and
the spontaneous emission rate R j

sp,m(z, t).
The modeled ampli�er is a 3-mm-long DWELL structure, consisting of ten 5-nm-thick InGaAs quan-

tum wells, each embedding a density of 3 × 1010 cm−2 InAs QDs with a shallow-etched, 4-μ-wide ridge
waveguide. Refer to Figure 23.3 for an illustration of the modeled energy structure. The device parameters
that will be used here and in the following sections are given in Table 23.2, unless otherwise noted.

Additional phenomenological dependencies of the dephasing time and the device temperature on the
applied pump current are included to account for heating e�ects as well as carrier-induced dephasing. We
assume a temperature that increases linearly with the applied current,

Tl(j) = 295K +
j

14
K
mA

. (23.57)

The increase in temperature signi�cantly alters the detailed balance relationship, Equations 23.34 and
23.35, which determines the out-scattering rates out of the localized QD states. This, in turn, determines
the quasi-equilibrium distribution that is reached in the steady state. Furthermore, the dephasing time of
the QD interband polarization is known to decrease under strong excitation and with temperature [27,28].
We thus introduce a current-dependent dephasing time,

τ2(j) =
τ0

2

1 + j
300mA

, (23.58)

TABLE 23.2 Model Parameters Used in the Simulations, unless Otherwise Stated.

Symbol Value Meaning

NQD 3 × 1010 cm−2 QD density per layer
aL 10 Number of layers
hQW 5 nm QW layer height
wwg 4μ Waveguide width
nbg 3.77 Background index
ΔEinh 30meV QD inhomogeneous broadening FWHM
η 0.4 Current injection e�ciency
AS 0.7 ns−1 QW linear recombination rate
BS 50 nm2 ns−1 QW bimolecular recombination rate
Wm 1 ns−1 QD spontaneous recombination rate
β 3.5 × 10−4 Spontaneous emission ratio
⟨ℏωGS⟩ 963meV (1288 nm) QD GS center emission
⟨ℏωES⟩ 1048meV (1183 nm) QD ES center emission
μm 0.6 nm e0 QD transition dipole moment

τ2 200 fs ×
(

1 + j
300mA

)−1
QD polarization dephasing time

Tl 295K + j
14

K
mA

Lattice temperature

Γ 0.045 Geometric con�nement factor
ΔEe(ΔEh) 95meV (50meV) Electron (hole) QD GS localization energy
Δe(Δh) 60meV (25meV) Electron (hole) QD GS–ES energy spacing
Z 31 Number of space discretization steps
dt 1 fs Numeric time step

QW, quantum well; QD, quantum dot; GS, ground state; ES, excited state; FWHM, full-width
half maximum.
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where τ0
2 denotes the corresponding dephasing time at j = 0. The above e�ects lead to broadening and

subsequent decrease of the optical gain at high pump currents, as frequently observed in experiments
[85]. Note that the dephasing time can in principle be calculated from microscopic scattering processes
similar to the formalism presented in Section 23.2.3. A rigorous treatment of these e�ects, however, requires
microscopic approaches that go beyond the employed Born–Markov approximation [86–90], which are
beyond the scope of this chapter.

With the above additions, we calculate the key characteristics of the ampli�er device, starting with
the small-signal optical gain spectrum. The small-signal gain G(ω) is calculated from the stationary QD
distribution (i.e., without a disturbing optical signal) via

G(ω) = exp

⎡

⎢

⎢

⎢

⎣

2
vg

l

∫
0

g (z, t,ω) dz

⎤

⎥

⎥

⎥

⎦

, (23.59)

with the instantaneous amplitude gain

g(z, t,ω) = ℏωΓ
ε0εbghQW

2NQD
∑

j,m
νm f (j)

τ2|μm|2

2ℏ2

[

ρ je,m(z, t) + ρ
j
h,m(z, t) − 1

]

1 + [τ2(ω − ω
j
m)]2

(23.60)

determined from the steady-state solution to Equation 23.11. The resulting spectra are shown in Figure
23.7a, clearly showing the GS gain peak around 1300 nm, which saturates and decreases for higher pump
currents, at which the ES gain becomes dominant. We plot the optical gain at the GS and ES transitions, at
λ = 1288 nm and λ = 1183 nm, respectively, under the dependence of the pump current, shown in Figure
23.7b.
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FIGURE 23.7 (a) Static gain spectra of the quantum dot semiconductor optical ampli�er device for increasing pump
currents up to j = 1000mA in steps of 50mA. (b) Small-signal gain at the ground (solid) and excited state (dashed)
wavelengths (λGS = 1288 nm, λES = 1183 nm) under the dependence of the pump current.
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FIGURE 23.8 Simulated ampli�ed spontaneous emission (ASE) spectra for increasing pump currents up to
j= 1000mA in steps of 50mA.

Additionally, we can calculate the ASE spectra, shown in Figure 23.8. These are calculated by direct
integration of the dynamic equations and subsequent Fourier transform of the electric �eld time series at
the output facets. The resulting spectra can be used for a direct quantitative comparison with experimental
data. The output power at the corresponding end facets is related to the electric �eld via

Pout± = Abeam
ε0nbgc0

2
|Eout± |

2 , (23.61)

where Abeam =
aLhQWwwg

Γ is the beam area in the waveguide and Eout± =
{

E+(l),E−(0)
}

denotes the
forward- and back-propagating electric �elds at their respective end facets. The ASE spectra mimic the
qualitative behavior of the gain spectra, with clearly distinguishable GS and ES peaks and a saturation
for strong pump currents (see Figure 23.8, where increasing gray levels indicate higher pump current). In
addition, an initial blueshi� of the emission peaks is visible especially for the ES emission. This is due to
state �lling, i.e., the shi� of the quasi-Fermi levels toward higher energies with increasing carrier densities.
At low currents, only the lowest energy states are occupied by charge carriers, and only with increasing
current can the higher lying energy states be �lled. In the model, this is accounted for by the detailed
balance relation between the in- and out-scattering rates (Equations 23.34 and 23.35), which ensures the
relaxation toward a quasi-Fermi distribution in the steady state. The quasi-Fermi level shi�s toward higher
energies with increasing reservoir carrier density, thus leading to a higher occupation in higher energy
states.

When an optical signal of signi�cant power is ampli�ed by the gain medium, its charge-carrier distri-
bution can be substantially perturbed. This leads to a power-dependent response of the device and thus
induces nonlinearities. In order to quantify this response, we simulate the ampli�er under the injection of a
constant optical input signal with varying power. As we have seen previously, the existence of localized QD
states makes it possible for the ampli�er to work on GS and ES wavelengths. We will, therefore, investigate
the device performance under ampli�cation of signals at either of the two corresponding wavelengths. We
put in an electric �eld at the input facet as

E+(0, t) = Emine
−i(⟨ωm⟩−ω)t , (23.62)

with the frequency detuning (⟨ωm⟩−ω) (m ∈ {GS,ES}) of the input signal relative to the carrier frequency
chosen to yield signals centered on the energy of either QD state. A�er the propagation of the signal through
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the ampli�er device and a�er a steady state is reached, we can simply evaluate the power-dependent device
gain by the power ratio

G =
|E+(l, t)|2

|E+(0, t)|2
. (23.63)

Figure 23.9a shows the GS gain in dependence on the achievable optical output power for di�erent pump
currents. The small-signal gain, i.e., at low input powers, shows the behavior that we have seen before
in Figure 23.7, with a saturation and subsequent decrease of the gain for increasing current. In the lin-
ear ampli�cation regime, for lower optical power, the gain is �at. Under these small-signal conditions,
the optical power is not strong enough to perturb the gain medium appreciably. Once the optical power
becomes large enough, the nonlinear or gain saturation regime is reached [10,11,79]. In Figure 23.9,
the onset of the GS saturation regime increases from 18 dBm output power at j= 200mA to 25 dBm at
j= 1000mA. Here, the number of charge carriers injected into the optically active QD states is not suf-
�cient to replenish the QD states that are depleted by the signal, and the optical gain thus gradually
decreases.

A general trend toward higher achievable output power with increasing current and corresponding
shi� of the nonlinear regime toward higher optical power can be observed both in the GS and ES (see
Figure 23.9a and b). This is a direct consequence of the increased in-scattering rates and the higher reser-
voir charge-carrier density [10]. The faster and more e�cient re�lling of the QD states a�er depletion
by the optical signal shi�s the saturation regime toward higher power. The ES shows a transition to the
nonlinear gain regime at lower optical power than the GS, as shown in Figure 23.9b. This can be under-
stood by the weaker con�nement of the QD ES relative to the reservoir, which increases the sensitivity
of the ES occupation to changes in the reservoir charge-carrier density. Nevertheless, the ES allows a
high gain and a su�ciently high saturation power to allow for its application in optical communication
networks. Furthermore, the ultra-broad gain bandwidth of QDSOAs could be exploited for a simulta-
neous ampli�cation of data signals with wide wavelength spacing. The low cross-talk between the GS
and ES transitions makes an error-free ampli�cation of two suitable data signals possible, as was recently
shown [91].
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FIGURE 23.9 Optical gain G of the quantum-dot ampli�er in dependence of the optical output power Pmout for di�er-
ent pump currents j. Shown is the response to optical signals centered on (a) the ground state, and (b) the excited-state
wavelength.
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23.3.2 Gain Recovery Dynamics in QDSOAs

We now wish to characterize the dynamic performance of the modeled QD semiconductor ampli�er. When
optical ampli�ers are used in optical data signal transmission, e.g., for propagation loss compensation, their
dynamics must be fast enough to follow the signal symbol rate in order to minimize patterning e�ects
and reduce transmission errors, as detailed in Chapter 25 on patterning e�ects. In experimental setups
the gain recovery dynamics can be characterized by observing the time evolution of the optical gain a�er
a perturbation of the active medium. This is commonly done in a pump-probe setup [19,92–94]. The
principle is as follows: A strong and temporally narrow optical pump pulse is injected into the waveguide
and depletes charge carriers during its ampli�cation. A weaker probe pulse injected with a time delay
Δtp−p with respect to the pump pulse then experiences a di�erent gain, depending on the perturbation
of the carrier distribution a�er this delay time. By repeating the measurement for a range of Δtp−p and
measuring the probe pulse intensity, the time evolution of the gain a�er propagation of the pump pulse
can be extracted experimentally.

The gain-recovery dynamics is obtained from the QDSOA model by simulating the ampli�er in a pump-
probe experiment. The perturbation of the gain medium is induced by a strong Gaussian pump pulse
injected into the input facet at z = 0:

E+(0, t) = Ein exp

[

−4 ln 2
(

t − t0
ΔFWHM

)2
]

e−iδωt , (23.64)

with an input amplitude Ein, arrival time t0, and pulse widthΔFWHM. We additionally allow for a detuning
δω of the pump pulse with respect to the chosen optical reference frequency which we can use to tune
the pump wavelength. In order to probe the gain a�er the pump pulse has passed the active medium, the
probe pulse does not have to be modeled explicitly. Instead, we can directly calculate the gain that the probe
would experience along the device:

G(Δtp−p,ω) = exp

⎡

⎢

⎢

⎢

⎣

2
vg

l

∫
0

g

(

z, t0 + Δtp−p +
z
vg
,ω

)

dz

⎤

⎥

⎥

⎥

⎦

. (23.65)

Here, we used the instantaneous amplitude gain, as de�ned in Equation 23.60, integrated along the device
in a copropagating frame with a delay time Δtp−p relative to the pump pulse. Note that in pump-probe
experiments the temporal resolution is limited by the temporal width of the probe pulse. Measuring the
integrated probe pulse power averages the extracted gain over the pulse pro�le.

As an example, we simulate the ampli�er under the in�uence of a pump pulse with a width ofΔFWHM =
300 fs and a pulse energy of 1 pJ, centered on the GS gain peak. In Figure 23.10a the resulting gain recovery
curves are shown in dependence of the pump current. Here, we show the gain di�erence ΔG with respect
to the unperturbed case. A strong initial reduction in gain can be observed due to the depletion of charge
carriers by the pump pulse, with a subsequent recovery toward the unperturbed value on a picosecond
timescale. This fast recovery is the signature of the charge-carrier re�lling by carrier scattering, which as
a consequence is strongly current-dependent and mimics the current dependence of the scattering rates.
Pump-probe gain recovery measurements can, therefore, be used to extract e�ective charge-carrier scat-
tering timescales of the active QD medium [95]. In addition to the GS performance, we take a look at the
dynamics of the ES gain in Figure 23.10b. Here, for j= 100mA, the pump-pulse induces an initial increase
of the gain, as seen in the initially increasing light gray curve. At this current, the ES is below transparency,
and the pump pulse is absorbed, which increases the inversion and thus the gain. For higher pump currents
(increasing gray levels in Figure 23.10) the dynamics follows the same trends as the GS, albeit with a slower
recovery. Here again the less e�cient carrier re�lling of the ES becomes apparent. The intricate scattering
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FIGURE 23.10 Gain recovery a�er perturbation with a strong pump pulse at Δtp−p = 0. (a) Ground-state gain a�er
excitation at the ground-state wavelength centered at λ = 1288 nm, and (b) excited-state gain a�er excitation at the
excited-state wavelength centered at λ = 1183 nm. The current was increased from j = 100mA to j = 1000mA in steps
of 100mA. Shown is the gain di�erence with respect to the unperturbed case, with individual curves shi�ed vertically
by 3 dB for improved readability.

dynamics between the di�erent QD and reservoir states in the active medium, therefore, directly a�ects the
performance of QD optical ampli�ers, emphasizing the importance of its accurate modeling, as described
in Section 23.2.3.

With the QDSOA model at hand, we can take a closer look at the dynamics of the QD gain medium.
The gain recovery can be seen to consist of three main components, i.e., it can be �tted very accurately by a
triexponential recovery, as shown in Figure 23.11a. Here, we do not show the �t for t ≲ 0.1 ps as for small
times the pulse is still interacting with the medium, which the �t cannot describe. We can attribute the three
time constants to the intradot relaxation, being the fastest component, the charge-carrier capture from the
reservoir, and a slow recovery of the whole system, governed mainly by the reservoir carrier lifetime. An
experimental determination of the individual timescales, however, is usually di�cult due to their narrow
separation. This is already evident from the three e�ective timescales that determine the gain recovery. In
principle, we would expect at least seven di�erent timescales: GS and ES capture rates and intradot relax-
ation for both electrons and holes, along with the recovery of the reservoir. The three extracted timescales
must, therefore, be interpreted as e�ective values.

Our model also allows us to analyze the charge-carrier dynamics within the gain medium directly, which
is not possible within the experimental setup. We thus evaluate the variation of the carrier occupation in
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FIGURE 23.11 (a) Fit to the gain recovery a�er a perturbation of the ground state at j = 500mA. The three char-
acteristic timescales, τ1 = 0.49 ps, τ2 = 1.8 ps, τ3 = 750 ps, correspond to the intradot relaxation, charge-carrier
capture, and reservoir re�lling, respectively. (b) Time evolution of the normalized carrier variations with respect to
their respective steady-state values in the GS, ES, and reservoir states.

the QD GS and ES as well as in the reservoir states at the output facet, by de�ning a normalized carrier
variation,

δ̃ρm(t) =

∑

b

[

ρb,m(t) − ρ0
b,m

]

max
|

|

|

|

∑

b

[

ρb,m(t) − ρ0
b,m

]

|

|

|

|

, (23.66)

where ρ0
m denotes the corresponding QD occupation in the unperturbed steady state. A similar expres-

sion for the reservoir density variation, δ̃w, can be written down. During the perturbation the normalized
variations reach their minimum value of −1 and during recovery slowly grow back to a value of zero. The
variations of the GS, ES, and reservoir carriers are plotted in Figure 23.11b, as solid, dashed, and dotted
lines, respectively. We can clearly observe the three qualitative steps in the recovery of the gain medium we
discussed earlier. The GS occupation is minimal right a�er the pulse has passed the device. On a timescale
close to τ1, the GS starts a fast recovery under a reduction of the ES occupation, illustrating the intradot
relaxation from the ES states to the GS. These relaxation processes dominate the ultrafast gain recovery of
QDSOAs. The ES then starts to recover with a timescale≈ τ2 due to charge-carrier capture from the reser-
voir, which is subsequently depleted. The timescale τ3 then constitutes the recovery time of the reservoir,
which equilibrates the whole system again.

For the modeled device, the two fast timescales of the GS gain recovery decrease from τ1 = 1.4 ps,
τ2 = 7.5 ps at a current of 100mA to τ1 = 0.43 ps, τ2 = 1.2 ps at j = 1000mA (not shown here). Together
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with the increasing saturation power at higher currents, a high operating current could be seen as optimal
for high-power ultrafast applications. However, the saturation and decrease of the optical gain at elevated
pump currents limits the range of possible operating conditions.

23.3.3 Rabi Oscillations in QD Semiconductor Amplifiers

When the quantum-mechanic phase is maintained over macroscopically accessible timescales, coherent
e�ects can induce phenomena that signi�cantly di�er from classical predictions. The precondition for this
is a su�ciently long dephasing time of the quantum-mechanic coherence. The comparably long lifetime
of the interband polarization in semiconductor QDs makes them promising candidates for applications
in quantum-optics [96]. Recently, coherent pulse propagation in macroscopic semiconductor devices has
been observed in quantum-cascade lasers [97] and quantum-dash [30] and QD semiconductor ampli�ers
[32], relying on ultrashort, strong optical pulses. It is important to note that in the experiments using
optical ampli�ers, the measurements were performed at room temperature, opening up possible future
quantum-coherent applications using uncooled devices.

In this section, we present a theoretical description of Rabi oscillations induced by ultrashort pulses
in a QDSOA at room temperature [32]. Rabi oscillations denote a periodic exchange of energy between
the optical �eld and the active medium, which leads to characteristic modi�cations of the optical pulse
traveling through the ampli�er device. The principle of Rabi oscillations can be derived from the dynamic
equation for a single QD subgroup:

∂
∂t
p j
m(z, t) = −

[

i(ω j
m − ω) +

1
τ2

]

p j
m − i

μm
2ℏ

(

ρ je,m+ρ
j
h,m−1

)

E(z, t) , (23.67)

∂
∂t
ρ jb,m(z, t) =

1
ℏ
Im

[

p j
mμ

∗
mE

∗(z, t)
]

−Wmρ
j
e,mρ

j
h,m +

∂
∂t
ρ jb,m

|

|

|sc
. (23.68)

We reduce the above equations by introducing the inversion d = (ρ je,m+ρ
j
h,m−1) and neglecting losses. We

also limit ourselves to a resonant excitation, i.e., ω = ω j
m:

∂
∂t
p j
m(z, t) = −i

μm
2ℏ

d(z, t)E(z, t) , (23.69)

∂
∂t
d(z, t) = 2

ℏ
Im

[

μ∗mE
∗(z, t)p j

m(z, t)
]

. (23.70)

For an initial inversion of d0 and zero polarization, the above equations have the solution

p j
m(z, t) = −

i
2

sinΘ(z, t), (23.71)

d(z, t) = d0 cosΘ(z, t), (23.72)

with the pulse area de�ned as

Θ(z, t) =

t

∫
−∞

μGS
2ℏ

|

|

|

E(z, t′)||
|

dt′. (23.73)

Equation 23.72 shows that, with a proper choice of the pulse area, it is possible, e.g., to invert the charge-
carrier distribution by choosing Θ=π. When choosing Θ= n2π, n∈ℕ, i.e., integer multiples of 2π, the
system returns to its initial state a�er the exciting pulse has passed through. This important property shows
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that the coherent interaction between the optical �eld and the active material is a reversible process, as
long as the polarization dephasing time is much larger than the pulse width. In most cases, however, this
condition is not strictly ful�lled, leading to an additional damping of the Rabi oscillations[48].

We now apply our QD ampli�er model to the ampli�cation of strong optical pulses. We use the same
pulse width of 300 fs as in the previous section, but with higher input amplitudes and we evaluate the output
pulse shape as well as the integrated optical gain, as de�ned in Equation 23.65. For di�erent input pulse
areas Θ, the �eld amplitude at the output facet is shown in Figure 23.12a. At a small pulse area Θ = 0.1π
(23 fJ pulse energy, light gray line) the pulse retains its Gaussian shape during propagation. For increasing
pulse energies (darker lines in Figure 23.12), a pronounced shoulder at the leading edge of the pulse appears
and the pulse shape noticeable diverts from its original Gaussian envelope. For Θ = 2π a pronounced dip
in amplitude is visible, and a second dip appears for Θ = 5π (black line), where a complex pulse shape is
obtained. A look into the dynamics of the optical gain, shown in Figure 23.12b, reveals a strong decrease in
gain a�er injection of the optical pulse, as already seen in the previous section. For strong pulses, the gain
exhibits oscillations and intermittently becomes negative, i.e., absorbing (see black line in Figure 23.12).
This is a clear indication of the occurrence of Rabi oscillations, i.e., the coherent interaction between the
microscopic polarization and the inversion. For an incoherent interaction, i.e., neglecting the coherent
dynamics of the polarization, the optical gain cannot be reduced below transparency in optically pumped
media. The coherent dynamics thus imprints a clear signature onto the QD ampli�er behavior, which can
di�er strongly from conventional expectations.

We take a closer look at the dynamics of the ampli�er under the ampli�cation of strong pulses in Figure
23.13. The dynamics of the microscopic polarization and the carrier occupation across the inhomoge-
neously broadened QD GS at the output facet are visualized as gray scale values in Figure 23.13b and c,
respectively. The optical pulse can be seen to induce a complex response of the gain medium. The QD
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FIGURE 23.12 Rabi oscillations in the QD semiconductor optical ampli�er. (a) Output electric �eld amplitudes for
di�erent input pulse areas Θ ∈ {0.1π, 1π, 2π, 5π}, corresponding to pulse energies of 0.023, 2.3, 9.4, 58 pJ, respectively.
(b) Integrated optical gain in dependence of the time delay Δtp−p. The pump current was set to j = 200mA.
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FIGURE 23.13 Quantum-dot (QD) ground-state dynamics for an input pulse area Θ = 5π. (a) Output electric �eld
amplitude. (b) Time evolution of the microscopic polarization amplitude p j
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energy. The color code denotes the normalized polarization amplitude. (c) QD ground-state carrier dynamics in depen-
dence of the QD GS transition energy. The color code denotes the QD subgroup inversion. The pump current was set
to j = 200mA.

subgroups within the ensemble which are resonant to the pulse (detuning of 0meV), exhibit pronounced
Rabi oscillations visible in both the polarization and inversion. The outer subgroups show this behavior
to a lesser extent but with a di�erent temporal pro�le. The resulting macroscopic polarization that drives
the pulse is a superposition of the individual microscopic polarization amplitudes across the whole QD
ensemble (see Equation 23.13). The response of the gain medium to such strong optical pulses can, there-
fore, be very complex and go beyond what a simple two-level system would predict. This underlines the
importance of taking both homogeneous as well as inhomogeneous e�ects into account when modeling
light–matter interaction in QD devices in the high-power and ultrafast regime.

23.4 Conclusion

In this chapter, we have presented a model for QDSOAs that takes into account the intricate scattering
dynamics between the localized QD states and the surrounding carrier reservoir states. The Coulomb scat-
tering, which dominates the carrier dynamics, can be microscopically calculated to yield Boltzmann-like
terms describing the charge-carrier scattering, which can be implemented numerically in terms of lookup
tables, or approximated by simpli�ed �t functions. The description of the electric �eld propagation along
the device is modeled using a delay-di�erential equation approach, which allows a separation of numeric
time step and spatial discretization length for an e�cient integration algorithm.

The complex charge-carrier dynamics determine both the static and dynamic behavior of QDSOAs
and is responsible for their ultrafast gain recovery. An accurate modeling of these dynamics is, therefore,
necessary for a quantitatively accurate description of these optoelectronic devices. The simulations of an
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exemplary QDSOA device show that the signature of the internal charge-carrier dynamics can be directly
seen in dynamic gain recovery measurements. The strong pump-current dependence of the scattering
timescales lead to the existence of optimal operating conditions when either high gain or ultrafast gain
recovery is desired. The long dephasing time of QDs compared to other semiconductor materials leads
to a macroscopically accessible measurement of quantum-coherence manifesting itself in the break-up of
ultrashort strong optical pulses, even at room temperature. The induced Rabi oscillations lead to a com-
plex response of the QD gain medium which requires a detailed modeling of the polarization dynamics
across the inhomogeneously broadened QD ensemble. The thoroughly nonclassical response of the QD
medium to ultrashort pulses due to long-lived coherence might pave the way to novel quantum-optical
devices using semiconductor QDs as the medium of choice.
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24.1 Introduction

The growing demand for telecommunications services continues to push optical transmission rates
beyond 10 G-symbols/s and to use more e�cient modulation formats (e.g., quadrature phase shi� key-
ing [QPSK], di�erential QPSK [DQPSK]) to cope with the ever-increasing demand for bandwidth. The
growing demand for bandwidth is also driving a move to perform high bandwidth signal processing
functions directly in the optical domain. All-optical signal processing generally requires nonlinear opti-
cal functionality. Semiconductor optical ampli�ers (SOAs) are attractive for such functions because of
their strong nonlinear optical response. Optical signal processing applications that employ SOAs include
wavelength conversion, phase conjugation, optical switching, Boolean logic functions, all-optical recovery,
and all-optical demultiplexing. SOAs o�er large bandwidth, ease of integration, compactness, low power
consumption, electrical pumping/control, and potentially low cost. Interest in SOAs continues to grow
as photonic integrated circuit (PIC) integration densities continue to increase, with applications in signal
leveling and signal regeneration or integration with electronics as optical interconnects for high-speed
cross-chip communications. SOAs are also useful in electrically recon�gurable optical switching/routing
networks (Williams et al., 2008). For these applications, however, SOAs may introduce nonlinear signal
impairments that adversely a�ect system performance, and these impairments must be managed.

747
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This chapter focuses on the numerical modeling and simulation of carrier plasma–induced
nonlinear optical phenomena in SOAs. The chapter starts with a brief description of nonlinear processes
in SOAs and their applications. We then discuss SOA modeling, paying particular attention to challenges
encountered in the modeling and simulation of nonlinear e�ects. An e�cient optical model based on
a one-dimensional (1D) bidirectional traveling wave algorithm is then presented. The optical model is
coupled to the semiconductor material through light–matter interactions. The electrical properties are
simulated using a simpli�ed 1D (unipolar) electrical model, which only takes into account the dynam-
ics of the total carrier density in the active medium. The unipolar model assumes �at quasi-Fermi levels
and charge neutrality in order to remove the additional computational complexity associated with the
use of a self-consistent bipolar electrical model with band bending (due to charge imbalance in the well).
Nevertheless, while a bipolar model will certainly improve the overall accuracy of the model, the focus of
this work was the development and demonstration of an e�cient model for the nonlinear optical response.
For this purpose, the simplicity of the unipolar model is an advantage.

The material polarization is represented by an e�ective susceptibility that self-consistently includes the
carrier-induced perturbations of the net optical gain and refractive index spectra, both of which are func-
tions of the optical �eld. No particular functional dependence on the optical �eld is assumed. This allows a
general representation of the light–matter interaction under quasi-equilibrium conditions, which is appli-
cable for all optical intensity levels. The most widely used power series expansion of the polarization is
usually implemented with a single nonlinear term, which is only applicable when the optical intensity is
su�ciently weak. The gain and spontaneous emission spectra are calculated using the band structure details
of the semiconductor. These spectra were appropriately broadened to account for the spectral broadening
of the carrier energies in the bands due to carrier lifetime dependent dephasing and various scattering
events. The refractive index spectrum is obtained from the broadened gain spectrum using a nonlinear
Kramers–Kronig transformation.

The need to perform simulations in the time domain poses a particular challenge for the inclusion of
the frequency-dependent complex material polarization (i.e., gain and refractive index dispersion) and
spontaneous emission spectra. We use recursive digital �lter functions to accurately represent the spec-
trally dependent material quantities in the time-domain simulation. This method captures the asymmetric
nature of the spectral material response and can also be used to incorporate frequency responses obtained
from experimental measurements as well as complicated responses that cannot easily be represented ana-
lytically. The use of spatiotemporal �lter coe�cients ensures that physical e�ects such as spatial-hole
burning and spectral changes in the gain caused by band-�lling and bandgap renormalization e�ects are
correctly included. A further advantage of the recursive �lter method is that the �lter coe�cients can
be obtained o	ine from the main simulation engine and tabulated, improving the computational e�-
ciency and minimizing the resources required by the simulations. The refractive index spectra are also
represented more accurately than approaches using a constant linewidth enhancement factor (at best a
small-signal representation of the Kramers–Kronig relation, which ignores the spectral dependence of the
index changes).

The chapter concludes with a case study exploring carrier density modulation (CDM) caused by optical
wave beating in SOAs. We use the time-domain model developed to obtain an understanding of wave
mixing processes in SOAs and the dependence of CDM on di�erent operating parameters. The simulation
results are compared with experimental results from a commercial buried heterostructure (BH) 1550 nm
InGaAs multiple quantum well (MQW)-SOA made by the Centre for Integrated Photonics (SOA-NL-OEC-
1550).

24.2 Review of Nonlinear Phenomena in SOAs and Applications

Nonlinear optical processes occur when the complex dielectric response of the material depends on the
strength of the optical �eld passing through the medium (Boyd, 2007). When an optical wave interacts
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with the semiconductor gain medium, there is a shi� in the carriers of the gain medium, resulting in a
�eld-induced dipole moment that becomes the source of an electromagnetic �eld at the microscopic level.
This interaction between the optical �eld and the material is through the induced macroscopic material
polarization (the polarization term in the wave equation; see Section 24.4.1). This macroscopic polarization
is the sum of the distinct microscopic polarizations

P(r⃗, t) = 2
Vk

∑

k
dcv(k)p(k, r⃗, t), (24.1)

where Vk is the normalized volume, dcv(k) is the optical dipole matrix element, and p is the interband
polarization. k, r⃗, and t are the electron wave vector, position vector, and time, respectively. The random
high-speed temporal �uctuations of the microscopic dipole elements are eliminated by spatial averaging
over the incoherent dipole ensemble. Only coherent (i.e., externally driven) �uctuations remain and their
response can be described with a macroscopic polarization (Jackson, 1975). This induced macroscopic
polarization, P̃±, is a frequency-dependent quantity that is a function of the total optical �eld, Ẽ, interacting
with the medium via the time-varying carrier distributions. In the frequency domain, the polarization is
related to the total electric �eld by

P̃±(ω,N, Ẽ) = ε0χe�(ω,N, Ẽ)Ẽ±, (24.2)

where P̃(ω) and Ẽ(ω) are the Fourier transforms of P(t) and E(t), respectively, and ω is the angular fre-
quency. N is the total carrier density in the active region. The e�ective susceptibility, χe� takes into account
all processes, both linear and nonlinear. No particular functional dependence on the optical �eld is assumed
in Equation 24.2. When the optical �eld is small, the polarization can be expanded into a power series of
the optical �eld and the e�ective susceptibility is

χe� =
∑

n
χ(n+1)Ẽn ∶ n = 0, 1, 2… (24.3)

At low optical intensities, the optical properties of the material tend to behave in a linear manner. How-
ever, as the optical intensity increases, the strong nonlinear response, which results from the interaction
between strong optical signals and the gain medium, can manifest itself as self- and cross-gain modulation
(SGM/XGM), self-, and cross-phase modulation (SPM/XPM), and wave mixing. SOAs are optoelectronic
devices whose behavior is governed by the material properties of the amplifying medium and the light
propagation through it. These are strongly coupled and in�uenced by the operating conditions, e.g., input
power levels, pumping current and form of the input. The nonlinear processes arise because of the dynam-
ics of the excited carrier populations (and their distributions in real and momentum space) as the material
interacts with the optical radiation. These nonlinear phenomena are detrimental to applications that rely
on device linearity but can be exploited for optical signal processing and other applications requiring
all-optical functionality.

CDM, carrier heating (CH), and spectral hole burning (SHB) are the most important processes giving
rise to nonlinear optical phenomena in semiconductor devices.

24.2.1 Carrier Density Modulation

CDM is a coherent interband process that results from the dependence of the stimulated carrier recombi-
nation rate on the optical intensity. Stimulated emission and absorption processes, and to some extent the
(ampli�ed) spontaneous emission process, modify the total carrier densities in the gain medium, leading
to changes in the total gain spectrum and the refractive index of the semiconductor material. A strong
optical input signal will increase the stimulated emission rate and decrease the carrier density in the active
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material. This reduces the gain and perturbs the refractive index, which a�ect the propagation of both
the perturbing signal and other co-/counterpropagating signals. This is the basis for e�ects such as SGM,
XGM, SPM and XGM. When at least two waves distinguishable in frequency, polarization, or wave vector
propagate through the SOA, wave beating can excite the material by modulating the carrier density. This
modulation in turn creates dynamic gain and index gratings, which are responsible for creating new
frequency components.

24.2.2 Carrier Heating

Carrier heating (CH) results from modulation of the carrier energy distributions in the valence and/or con-
duction bands (sub-bands for quantum wells [QWs] and wires). CH is caused by processes that increase
the temperatures of the carrier distributions relative to the lattice temperature, including carrier injection,
stimulated emission, and free carrier absorption (FCA). Carrier injection adds high energy (“hot”) carri-
ers to the carrier plasma, while stimulated emission removes “cold” carriers close to the band edge. FCA
transfers energy from photons to carriers, moving them to higher energies within the bands. Such carriers
quickly thermalize and transfer energy to other carriers by carrier–carrier scattering, thereby increasing
the plasma energy density or temperature (Uskov et al., 1994).

24.2.3 Spectral Hole Burning

SHB is also a form of modulation of the energy distributions of the carriers within the valence and/or
conduction bands (or sub-bands for QWs and wires). While CH perturbs the entire carrier plasma, the
plasma can usually still be described with a quasi-equilibrium distribution with an increased plasma tem-
perature. SHB, on the other hand, is an energetically localized perturbation of the plasma, which cannot
be described with a quasi-equilibrium distribution. SHB occurs when carriers in the states supporting
stimulated recombination are consumed faster than they are replenished by intraband scattering. This
creates a spectral hole in the intraband carrier distribution relative to the corresponding thermal carrier
distribution.

In contrast to CDM, CH, and SHB are intraband processes. SHB is due to changes in the carrier distri-
bution away from Fermi–Dirac distributions and is responsible for gain saturation. (The gain compression
coe�cient, frequently used to describe gain saturation at high power, is a manifestation of SHB.) CH results
in a Fermi–Dirac distribution that has a higher temperature than that of the lattice. CDM, CH, and SBH
all create perturbations that result in the modulation of the gain/absorption and refractive index spectra,
whose dynamics also create spatiotemporal index and gain gratings that can di�ract waves propagating
in the medium to generate new frequency components. Although the gain and index gratings caused by
CDM are larger, CH and SHB contribute to the nonlinear optical response. CDM dominates up to frequen-
cies limited by the carrier replenishment rate. CH and SHB are important at higher frequencies, but CDM
remains important.

24.2.4 Other Nonlinear Effects

Other processes, e.g., optical Kerr e�ect, two-photon absorption (TPA), and second harmonic generation
(SHG), also contribute to the nonlinear optical response, but their contribution is smaller compared to that
of CDM and CH, and are neglected in this work. The inclusion of the Kerr e�ect in simulations is compli-
cated by the lack of causality. TPA is a multiphoton process that is resonantly enhanced for photon energies
of the order of half the bandgap of the semiconductor material. Instantaneous coherent processes like the
optical Kerr e�ect, TPA and SHG are not discussed further here, but are important for some applications
(e.g., all-optical gates) at high optical power densities. The reader is referred to Boyd (2007) or other texts
on nonlinear optics for more information.
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24.2.5 Summary of Important Nonlinear Applications

Optical nonlinearities cause signal impairments in linear applications, but have been exploited to great
bene�t in the �eld of functional photonics. SOA nonlinearities are used for all-optical signal processing to
eliminate the need for optical–electrical–optical (OEO) conversion in communication networks. Process-
ing tasks such as demultiplexing, clock recovery, regeneration, and routing can be undertaken entirely in
the optical domain at higher speeds than are possible with electronics (Manning et al., 1997). One of the
key applications of nonlinear processes in SOAs is wavelength conversion.

Wavelength converters increase the �exibility and performance of all-optical networks based on wave-
length division multiplexing (WDM) (Kovačević and Acampora, 1995). All-optical wavelength converters
are essential for coping with increasing data rates. They increase the network performance by reduc-
ing the e�ects of lightpath blocking due to the wavelength continuity constraints in optical packet and
optical circuit switching networks. Of the di�erent approaches to all-optical wavelength conversion,
SOA-based wavelength converters have attracted the greatest interest because of their compactness, easy
integration, and strong nonlinear response. Di�erent approaches have been used for SOA-based wave-
length conversion, including XGM, XPM, and four-wave mixing (FWM). FWM is the most �exible
approach because it has a large extinction ratio and retains the phase information of the carrier signal,
making it bitrate independent and intrinsically transparent to modulation format (a useful attribute in
optical networks). FWM-based SOA wavelength converters also have the potential for processing ultra-
high speed analog and digital signals using ultrafast processes like SHB and CH. Spectral inversion also
occurs during the FWM-conversion process. FWM-converted signals with inverted spectral distribution
have been used for dispersion compensation by positioning a nonlinear SOA at the center of the link
(Yanhua et al., 2003).

Another important application of nonlinear processes in SOA is optical performance monitoring in
optical networks. The increasing complexity of optical networks and the emergence of new types of tra�c
and data protocols have rendered digital signal monitoring in the electronic domain impractical (Dlubek,
2008). As a result, optical signal monitoring methods that measure the analogue parameters in the optical
domain are required for transparent optical networks. Optical sampling using FWM in SOAs has been
used to generate signal histograms for bit error rate (BER) estimation (Dlubek, 2008).

24.3 Challenges in Modeling Nonlinear Effects

SOA modeling is a sophisticated subject due to the number and complexity of processes that take place
simultaneously in the device. The dynamic nature of optical nonlinearities requires the use of time-domain
models. Time-domain simulations are needed to determine the carrier densities (i.e., dri�-di�usion,
generation/recombination e�ects, etc.), whereas the calculation of the complex index needs to be done
in the frequency domain. Optical propagation can be done in the frequency domain, but spatiotemporal
carrier density (and complex index) variations make time-domain models more tractable.

The challenge for time-domain simulations is the inclusion of the frequency-dependent complex mate-
rial polarization (gain and refractive index dispersion). Several attempts have been made to include
dispersion in time-domain simulations: single-pole Lorentzian �lter (Pratt and Carroll, 2000), �nite
impulse �lter (FIR) theory (Jones et al., 1995; Toptchiyski et al., 1999), a �rst-order (Durhuus et al., 1992)
and a second-order (Das et al., 2000) Taylor series expansion about the gain peak wavelength with con-
stant coe�cients. The second-order Taylor series expansion and the Lorentzian pro�le are both inadequate
for the asymmetric material gain spectrum. Furthermore, the use of constant �lter coe�cients is inade-
quate for representing carrier-induced shi�s in the gain spectrum. Other approaches include the spectrum
slicing technique (SSM) (Park et al., 2005) and e�ective Bloch equations (EBE). The SSM method can
handle the asymmetric gain spectrum, but is not suited to modeling nonlinear interactions (Park et al.,
2005). The EBE �ts the gain and refractive index spectra using a series of Lorentzians. A single Lorentzian
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is used in Ning et al. (1997), which is only useful for signals with a very narrow spectrum. Accurate
implementation for high bandwidth signals requires the inclusion of more Lorentzian terms, making the
model computationally intensive.

24.4 Improved Modeling of Nonlinear Phenomena in SOAs

The theoretical model described here is applied to an MQW SOA fabricated with a BH (Figure 24.1).
The operation of the SOA depends on the interaction of the optical waves with the material. Processes
such as optical gain, optical absorption, and changes in the refractive index must be appropriately coupled
to the optical model in order to develop numerical models that accurately represent the operation of the
actual device. This section describes the di�erent components of a coupled optoelectronic simulation tool
for nonlinear SOAs.

24.4.1 Optical Model

The optical �eld propagation in the SOA active region is described by Maxwell’s equations

∇ × ∇ × E⃗ + n2

c2
∂2E⃗
∂t2 = − 1

ε0c2

(

∂2P⃗
∂t2 +

∂⃗j
∂t

)

, (24.4)

where n is the refractive index of the unexcited material (background index), c is the speed of light in
vacuum, ε0 is the free-space permittivity, P⃗(x, y, z, t) is the macroscopic polarization of the medium, and
j⃗(x, y, z, t) is the current density. It is assumed that the SOA is designed to support only the fundamen-
tal mode with a transverse �eld distribution U(x, y), which is assumed to be wavelength independent
and normalized such that ∫ ∫ |

|

U(x, y)|
|

2 dxdy = 1. For simplicity, all e�ective and modal parameters (e.g.,
the transverse con�nement factor) are assumed to have been obtained at this point, so that only the lon-
gitudinal spatial direction needs to be considered. The strong waveguiding of the BHs further con�nes
the optical �eld in the transverse directions beyond the vertical con�nement of the separate con�nement
heterostructure (SCH) (Agrawal and Dutta, 1986).

The variation of the injection current with respect to time is very small compared to that of the optical
�elds, so it is justi�able to assume

∂j
∂t
=
∂ (σE)
∂t

≈ 0. (24.5)
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FIGURE 24.1 Schematic of a buried heterostructure (BH) semiconductor optical ampli�er (SOA).



9781498749466_C024 2017/8/29 16:12 Page 753 #7

Wave Mixing Effects in Semiconductor Optical Amplifiers 753

An alternative way of looking at this assumption is that optical �elds are not usually generated directly by
free currents and charges (Liu, 2005). Under these assumptions, the wave equations take the same form as
those in a medium free of sources. The assumption in Equation 24.5 is plausible at optical frequencies, but
this term may contribute in nonlinear optical beat-frequency devices, e.g., microwave and terahertz (THz)
devices. This assumption is also not a priori valid for plasmonic devices (i.e., metals). For a straight and
symmetric waveguide, the �elds can be assumed to remain linearly polarized during propagation through
the device. For a single polarization component, this implies that ∇ ⋅ E⃗ = ∇ ⋅ P⃗ = 0 and the le�-hand side
of Equation 24.1 is ∇ × ∇ × E⃗ = ∇

(

∇ ⋅ E⃗
)

− ∇2E⃗ = −∇2E⃗, so the scalar wave equation can be used.
Zero facet re�ectivities are the target in traveling-wave SOAs. However, facets with antire�ection (AR)

coatings still exhibit residual re�ectivities, which can result in the formation of an optical cavity with lon-
gitudinal resonances. Only real amplitude re�ection coe�cients are considered in this work. Although any
wave re�ected at the facet may initially be small, it will be ampli�ed as it back-propagates along the wave-
guide such that it is not negligible compared to the forward �eld. Thus, re�ected �elds contribute to carrier
depletion, gain compression, and refractive index change in the active medium. This a�ects the ampli�-
cation, pulse shape, and phase of the output �eld. Re�ected �elds can also give rise to delayed replicas or
echoes of the bits, which act as noise. Fields generated by ASE may also be nonnegligible compared to for-
ward travelling �elds. In the general case, the total optical �eld is comprised of both backward and forward
propagating �elds. Counterpropagating �elds are also used deliberately in some applications relying on
XGM and/or XPM.

Dropping the vector nature and using the slowly varying envelope approximation, the total optical �eld
in the active region can be written as

E(x, y, z, t) = 1
2

U(x, y)
{

ψ+(z, t) exp
[

i (ωt − kz)
]

+ ψ−(z, t) exp
[

i (ωt + kz)
]

+ c.c.
}

. (24.6)

Taking into account that multiple signals may be input into the SOA, this can be rewritten as

E(x, y, z, t) = U(x, y)
∑

q

{

ψ+q (z, t) exp
[

i
(

ωqt − kqz
)]

+ ψ−q (z, t) exp
[

i
(

ωqt + kqz
)]

+ c.c.
}

, (24.7)

where λq =
c
fq

is the center wavelength of the qth signal and ωq = 2πfq. From Equations 24.6 and 24.7, the
total forward and backward slowly varying components are

ψ+(z, t) =
∑

q
ψ+q (z, t) exp

{

i
[(

ωq − ωref

)

t −
(

kq − kref

)

z
]}

+ c.c. (24.8)

ψ−(z, t) =
∑

q
ψ−q (z, t) exp

{

i
[(

ωq − ωref

)

t +
(

kq − kref

)

z
]}

+ c.c., (24.9)

where kref =
nωref

c is the optical propagation constant in the longitudinal direction and ωref is a refer-
ence frequency for the baseband transformation of all the signals propagating through the active medium.
ψ+(z, t) and ψ−(z, t) are the forward and backward propagating complex envelopes of the optical �eld.
The induced polarization can be written in a similar form as the �eld

P(x, y, z, t) = 1
2

U(x, y)
{

P+(z, t) exp
[

i (ωt − kz)
]

+ P−(z, t) exp
[

i (ωt + kz)
]

+ c.c
}

, (24.10)

where P+(z, t) and P−(z, t) are the slowly varying forward and backward propagating complex polariza-
tions. Substitution of Equations 24.7 and 24.10 into the scalar version of the wave Equation 24.4 and
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applying the slowly varying envelope approximation (SVEA) and paraxial approximation leads to the
following propagation equations

n
c
∂ψ±

∂t
±
∂ψ±

∂z
= i
Γxykref

2ε0n2 P± + ψ±sp(z, t), (24.11)

which are subject to the boundary conditions

ψ+(0, t) =
√

R1ψ−(0, t) +
√

1 − R1ψin1(0, t) (24.12)

ψ− (L, t) =
√

R2ψ+ (L, t) +
√

1 − R2ψin2(L, t), (24.13)

where ψin1(0, t) and ψin2(L, t) are optical inputs injected through the end facets. These facets have power
re�ectivities R1 and R21, respectively. The last term in Equation 24.11 is the local spontaneous noise
contribution to the total propagating �eld. For simplicity, kref is referred to as k from here onward.

The transverse con�nement factor, Γxy, in 24.11 is given by

Γxy =
∫w∕2
−w∕2 ∫

d∕2
−d∕2

|

|

U(x, y)|
|

2 dydx

∫∞−∞ ∫∞−∞ |

|

U(x, y)|
|

2 dydx
, (24.14)

where w and d are the active region width and thickness, respectively.

24.4.2 Electrical Model

The carrier dynamics are calculated using a simpli�ed 1D carrier density model based on the evolution of
the total carrier density in the active region (White et al., 1998)

∂N(z, t)
∂t

=
η J(z, t)

ed
− γnr (N)N −

iΓxy

4ℏ

{

(

ψ+
) (

P+
)∗ + (ψ−) (P−)∗ − c.c.

}

, (24.15)

where J is the total injected current density, e is the electron charge, γnr represents nonradiative recombi-
nation (generally carrier dependent), and η is the current injection e�ciency. Carrier di�usion e�ects have
been neglected in Equation 24.15 since the longitudinal electrical mesh spacing is larger than the carrier
di�usion length. Thus, the total current density is only due to the external source from the electrodes. The
current density from the external source is determined as in Dai et al. (1997)

Jext(z, t) =
Vbias − Vjcn(z, t)

rs
, (24.16)

where rs is the series resistance (in units ofΩm−2) of the p- and n-layers on either side of the active region
and the p- and n-contact resistance. Vjcn is the voltage drop across the active layer (p–n junction) and
relates to the di�erence between the two quasi-Fermi levels as

Vjcn(z, t) =
EFn(z, t) − EFp(z, t)

e
, (24.17)

where EFn and EFp are the electron and hole quasi-Fermi levels, respectively. The quasi-Fermi levels are
calculated within the gain model under the commonly used assumption of charge neutrality. While charge
neutrality is a valid assumption in bulk material, it may not be a valid assumption for QWs, especially at
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high current pumping levels. A signi�cant charge imbalance in the QW may strongly a�ect the optical
properties of the surrounding optical guiding layers (SCH layers) and the entire waveguide due to the
carriers injected into the region (Tolstikhin, 2000). Nevertheless, charge neutrality is assumed in order to
use the unipolar model to simplify the analysis, which should be acceptable for moderate injection currents.
EFn and EFp are estimated using the Joyce–Dixon approximation (Joyce and Dixon, 1977)

EFn,p = kBT

[

ln
(

N
Nc,v

)

+ 1
2

(

N
Nc,v

)

+ 1
24

(

N
Nc,v

)2
− 0.0000347

(

N
Nc,v

)3
]

, (24.18)

where Nc and Nv are the e�ective densities of states for electrons and holes, kB is the Boltzmann constant,
and T is the temperature. The nonradiative processes considered in Equation 24.15 are Shockley–Read–
Hall (SRH) and Auger recombination. The recombination rates are calculated under the charge neutrality
condition.

24.4.3 Light–Matter Interactions

The interaction between light and the semiconductor gain medium is represented by the material (inter-
band) polarization through an e�ective susceptibility (Equation 24.2). A general description of the
polarization that is applicable for all levels of optical intensity is necessary. The e�ective susceptibility con-
sists of the carrier-dependent changes in net gain and refractive index, both of which are functions of the
optical �eld

χe�
(

ω,N, Ẽ
)

= −1
k

{

i

[

gnet
(

ω,N, Ẽ
)

−

(

1 − Γxy

Γxy

)

αconf

]

+ kΔn
(

ω,N, Ẽ
)

}

, (24.19)

where αconf represents the optical losses in the con�nement regions. αconf is needed because 1 − Γxy of
the optical energy is located in the con�nement layers outside the gain material. Equation 24.19 allows
the induced nonlinear polarization to be described in a general fashion, without any assumptions based
on its functional dependence on the optical �eld. This approach is more straightforward and physically
robust than the common truncated series expansion of the polarization based on Equation 24.3. With this
representation, the band structure is taken account of through the determination of the gain and refractive
index changes.

To complete the analysis, a model is required for the material gain, spontaneous emission, and refractive
index spectra. A parabolic model is used for the conduction band, while the valence band structure is
calculated using a four-band k⋅p-model (Vurga�man et al., 2001). The gain and spontaneous emission
rates are obtained using Equations 24.20 and 24.21, respectively (Zory, 1993),

g (ℏω) = 1
ℏω

n̄gπe2ℏ

n2cε0m2
0

∑

ic=iv

|

|

MT||
2ρmD

red

(

fn − fp
)

(24.20)

Rsp (ℏω) =
1
ℏω

πe2ℏ
n2ε0m2

0

∑

ic=iv

|

|

|

Mavg
|

|

|

2
ρmD

red fn
(

1 − fp
)

(24.21)

|

|

|

Mavg
|

|

|

2
= 1

3
∑

all 3
polarizations

|

|

MT||
2. (24.22)

fn,p (E) is a Fermi–Dirac distribution function and gives the occupational probability of the electron of
energy state E. ρmD

red is the reduced density of states, with m = 2 for QW material, and m = 3 for bulk.
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|

|

MT||
2 is the transition matrix element and determines the probability and hence strength of interaction

between the states at energy Ee and Eh in the presence of an electromagnetic �eld.
Carrier lifetime dependent dephasing and intraband scattering processes (carrier–carrier, carrier–

phonon, etc.) broaden the range of energy states that may participate in the optical transitions. This
energy broadening is taken into account phenomenologically by directly broadening the optical spectra
(Zory, 1993). Instead of broadening the gain spectrum directly, the spontaneous emission spectrum was
broadened using a hyperbolic secant lineshape function (Lim et al., 2007)

L
(

Eeh − ℏω
)

=
τin
ℏπ

sec h
(

Eeh − ℏω
ℏ∕τin

)

, (24.23)

where τin is the intraband relaxation time mainly due to scattering processes, and Eeh is the transition
energy. The gain spectrum is obtained from the broadened spontaneous emission spectrum, Rsp,broad (ℏω),
through

g (ℏω) = 1
(ℏω)2

3π2ℏ3c2

2n̄2 Rsp,broad (ℏω)
[

1 − exp
(

ℏω − ΔEF
kBT

)]

. (24.24)

The form of Equation 24.24 ensures that the gain passes through zero exactly at the quasi-Fermi level
separation ΔEF.

Gain compression due to SHB is included phenomenologically by introducing a constant gain compres-
sion factor, εshb

g (ℏω) =
g (N,T)

1 + εshbS (ℏω)
, (24.25)

where S (ℏω) is the density of photons with energy ℏω.
The carrier-induced changes in the refractive index spectrum are calculated from the changes in the

gain/absorption spectrum through the nonlinear Kramers–Kronig relations (Hutchings et al., 1992) to
ensure that the absorption and index changes are self-consistent. This is expressed as

Δn (ℏω; ξ) = − c
2πω

∞

∫
−∞

Δg (ℏω′; ξ)
ω′ − ω

dω′, (24.26)

where ξ is the external excitation, e.g., an electromagnetic �eld or temperature. This form is appropriate for
di�erent nonlinear processes, e.g., self-action e�ects (nonlinear refraction) and cascaded processes (Boyd,
2007). In this work, the carrier-induced changes in the gain/absorption spectrum only include band-�lling
e�ects and bandgap renormalization, but CH and SHB e�ects can also be included.

24.4.4 Inclusion of Material Dispersion in the Time-Domain Model

The challenge for time-domain simulations is the inclusion of the frequency-dependent complex mate-
rial polarization (i.e., gain and refractive index dispersion). In this work, recursive digital �lters are used
to accurately represent the spectrally dependent material quantities in the time-domain model (Kaunga-
Nyirenda et al., 2010). The most general linear digital �lter takes a sequence of input points and produces
a sequence of output points by the following di�erence equation (Smith, 2002):

y [n] = a0x [n] + a1x [n − 1] + a2x [n − 2] +⋯ + b1y [n − 1] + b2y [n − 2] +… , (24.27)

where n is the time index, and x[] and y[] represent the input and output, respectively. The a’s and b’s that
de�ne the �lter are called recursive coe�cients, with b0 ≡ 1 corresponding to the sample being calculated.
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Digital �ltering allows the computation of long convolution integrals of two functions in the time domain
for discretely sampled signals. The optimization of the �lter coe�cients involves the fast Fourier trans-
form. Hence, it can be argued that the overhead incurred in obtaining the �lter coe�cients at every spatial
point and time step is much larger than Fourier transforming the �eld and multiplying by the frequency
dependent quantities directly, followed by inverse Fourier transforming back into the time domain. This
computational overhead is, however, avoided by obtaining the �lter coe�cients o	ine from the main sim-
ulation and storing them in tables. For a given set of parameters (e.g., carrier density and temperature),
the gain and refractive index changes can be calculated and the �lter coe�cients obtained for each case
and stored in tables. The �lter coe�cients can then be retrieved during simulation with negligible addi-
tional computational burden. This approach is not possible with the direct energy–time transformation
approach, which must be done during the simulation.

Figure 24.2 shows the �tted gain and refractive index spectra for an eight-pole �lter a�er applying the
�lter to an impulse input and taking the Fourier transform of the resulting impulse response. A good �t
is observed between the �lter response and the desired response. The number of poles is dictated by the
index spectrum, which has a sharp turning point and is less smooth than the gain spectrum. The number
of poles for the �lters for both spectra has to be the same for ease of implementation in the �eld update
equation. Therefore, the number of poles chosen was one that gave a satisfactory �t for the index spectral
pro�le, i.e., 8 (Figure 24.2).

This method accurately captures the asymmetric spectral response of the material polarization
(Figure 24.2) and can be used to incorporate frequency responses from experimental measurements as
well as complicated responses, not easily represented analytically. The use of spatiotemporal �lter coe�-
cients allows correct inclusion of spatial-hole burning and shi�s of the gain spectrum due to band-�lling
and bandgap renormalization.

24.4.5 Numerical Implementation

The optical propagation (Equation 24.11) and carrier density (Equation 24.15) are coupled through the
material Equations 24.19 through 24.21. These two equations are solved self-consistently by dividing the
active region into small enough (shorter than the di�usion length) sections, such that quantities can be
considered constant within each section. The �eld propagation equations are marched in time using the
Lax di�erencing scheme, which allows use of a larger time step than is allowed by the explicit di�erenc-
ing scheme. The stability condition of the Lax di�erencing scheme is given by the Courant condition
(cΔt∕nΔz) ≤ 1 (Press et al., 2002). The carrier density equation is integrated using a fourth-order Runga–
Kutta method. All carrier-dependent quantities are estimated at the midpoint of each section, while the
optical �elds are evaluated at the section boundaries (Kaunga-Nyirenda et al., 2010). This ensures that
the photons traveling to the right and to the le� in a particular section both interact with the same
carrier-related quantities (Wong and Carroll, 1987).

24.5 Case Study: FWM

FWM studies in nonlinear media have focused largely on the optical characteristics of mixing processes
and experimental observations in the optical domain (Agrawal, 1988; Mukai and Saitoh, 1990; Uskov et al.,
1994; Darwish et al., 1996; Gong et al., 2004), with emphasis mainly on the issue of conversion e�ciency
(Mukai and Saitoh, 1990). Very little attention has been paid to the characteristics of wave mixing in
the electrical domain. Electrical measurements have been reported before for semiconductor laser diodes
(SLDs) and a simpli�ed model based on frequency modulation was presented in Nietzke et al. (1989).
Although the operational characteristics of SLDs and SOAs are di�erent, the material physics is the same,
so that CDM and resulting wave mixing have their origins in the same physical processes. The carrier den-
sity is usually clamped to its threshold value in SLDs, limiting the modulation depth. On the other hand,
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FIGURE 24.2 Fits for (a) gain spectrum, (b) refractive index change, and (c) spontaneous emission rate using recur-
sive �lters. The solid lines are the spectral quantity to be �tted, while the dotted lines are �ts using the recursive �lter.
Number of poles for the �lter is 8. Fits are obtained from the impulse responses of the �lters.

large carrier density excursions are common in SOAs. In SLDs, the presence of strong optical feedback (i.e.,
large re�ections at the facets) complicates the carrier density dynamics by introducing relaxation oscilla-
tions (Nietzke et al., 1989). A proper understanding of the characteristics of CDM is, therefore, likely to be
stronger and clearer with SOAs (Dlubek et al., 2010). The model developed in Section 24.4 is used to study
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the characteristics of CDM over di�erent operating conditions. No a priori assumptions are made about
the existence or form of the CDM—it is obtained directly from the physics.

24.5.1 CDM Characteristics

The CDM characteristics in wave mixing in SOAs are studied using the model developed earlier. The input
to the SOA is of the form

Ein(0, t) =
{

ψp(0, t) + ψs(0, t) exp
(

−jΩt
)}

exp
(

−jωreft
)

, (24.28)

where Ω = 2π fd and fd = |

|

|

fp − fs
|

|

|

is the detuning frequency between the inputs (referred to as pump
and probe). The pump and probe laser frequencies are fp = ωp∕2π and fs = ωs∕2π, respectively. The time
dependence of the pump and probe slowly varying �elds is a general form and allows the use of modulated
input signals. The input (Equation 24.28) enters through the boundary conditions (Equations 24.12 and
24.13).

The parameters used in the simulations are given in Table 24.1.
Indium gallium arsenide (InGaAs) was used as the active material for the quantum wells. The barrier

material was strained InGaAs (−0.67% strain) (Kelly et al., 1996). This matches the material system for the
device used in the experiments reported in Dlubek et al. (2010). The indium composition in the InGaAs
active material was taken to be 0.62. This reproduced the device characteristics as reported in its data sheet
and Kelly et al. (1996). This device has a nonlinear geometry, (Figure 24.3) so an e�ective length with a

TABLE 24.1 Simulation Parameters Used in the Study of Wave Mixing

Symbol Description Value (Units)

L SOA length 1.1 mm (Lealman, 2009)
W SOA width 1.3 μm (Lealman, 2009)
D SOA thickness 0.1 μm (Lealman, 2009)
Δz Longitudinal grid spacing 10 μm
Γxy Optical con�nement factor 0.18 (Lealman, 2009)
R1 Input facet re�ectivity 0.05% (Kelly et al., 1996)
R2 Output facet re�ectivity 0.05% (Kelly et al., 1996)
αint Internal loss 2.0 cm−1

A Linear gain coe�cient 2.0 × 10−20 m2

N0 Carrier density at transparency 1.7521 × 1024 m−3

τs E�ective carrier lifetime 0.7 ns
αLWEF Linewidth enhancement factor −3
A Linear radiative recombination coe�cient 1.0 × 107 s−1

B Bimolecular recombination coe�cient 5.6 × 10−16 m3s−1

C Auger recombination coe�cient 3.0 × 10−41 m6s−1

n̄g Group index of refraction for the mode 3.6
n Index of refraction of active region 3.3
H Current injection e�ciency 0.7
εshb Gain compression factor 5.0 × 10−17 cm3

τin Intraband relaxation time 0.2 ps

Source: Agrawal, G.P., Journal of the Optical Society of America B, 5, 147–159, 1988.
Note: Some phenomenological parameters (carrier density at transparency, linear gain
coe�cient, e�ective carrier lifetime, linewidth enhancement factor, internal loss) are
required as input to Agrawal’s truncated series approximation (TSA) model.
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FIGURE 24.3 Sketch of the nonlinear geometry of a large spot semiconductor optical ampli�er (SOA).

con�nement factor equal to that of the untapered region was used in the simulations. All simulations were
performed at 300 K. The carrier temperature was assumed to remain constant and equal to that of the
lattice.

The CDM amplitude is obtained from the solution of the carrier density equation. A measurable quantity
related to this is the variation in the injection current or voltage across the device, since the temporal
�uctuations in the stimulated recombination rate result in temporal �uctuations in the current to resupply
the carriers. The time series for the CDM amplitude is obtained at any spatial point along the longitudinal
propagation direction as

ΔN(z, t) = N(z, t) − NSS (z) , (24.29)

where NSS is the carrier density determined by the carrier injection, nonradiative recombination, and the
ampli�ed spontaneous emission (ASE) rates in the absence of external optical injection. The spectrum
of the CDM amplitude is obtained by taking the discrete Fourier transform of Equation 24.29. Modu-
lation of the carrier density results in modulation of the quasi-Fermi levels—and hence of the voltage
drop across the active region (Equation 24.17). The spectrum of the injection current comes from DFT
of Equation 24.16, while that of the voltage from Equation 24.17.

Simulated input and output optical spectra (from discrete Fourier transforms of the optical wave time
series), and carrier density spectra (from discrete Fourier transform of Equation 24.29) are shown in
Figure 24.4. The detuning of the two input signals was 2 GHz and the bias voltage was adjusted so that
the current was 150 mA. The CW input optical �elds had power levels of −0.7 and −0.8 dBm, respec-
tively. The reference frequency was taken as the average of the pump and probe frequencies. An identical
CDM spectra to Figure 24.4c was obtained when the reference frequency coincided with the pump fre-
quency, con�rming that the CDM spectra do not depend on the choice of the reference frequency used
for the slowly varying envelope approximation. For the rest of the results presented below, the reference
frequency coincided with the frequency of the pump. Figure 24.4 shows that the carrier density pulsates
at the detuning frequency (beat frequency) of the pump and probe. The central peak in the carrier den-
sity spectrum is the static carrier density. The carrier population pulsations observed in Figure 24.4 are
consistent with the experimental results (Nietzke et al., 1989).

The earlier simulations were repeated but with one of the optical input signals increased from−0.8 dBm
to +4.7 dBm. Smaller secondary peaks are now also observed in Figure 24.4c at the multiples of the
detuning frequency and these are enhanced as one of the input powers is increased (Figure 24.5).

The higher-order components (small secondary peaks at multiples of the detuning frequency) in
Figure 24.5 are due to beating between the newly generated FWM products and the input beams or to
higher-order harmonics in the CDM due to the nonlinearity of the carrier equation. Nonlinearities in
the carrier equation are caused by the carrier density-dependent carrier lifetime and the saturation of the
stimulated recombination rate. The peaks at the detuning frequency disappeared in the carrier density
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FIGURE 24.4 Simulated spectra (a), input optical �eld (b), output optical �eld, and (c) carrier density. Parameters:
detuning 2 GHz, pump power −0.7 dBm, probe power −0.8 dBm, bias current 150 mA.

spectrum when one of the input signals was set to zero, con�rming that the CDM is caused by the interac-
tion of the input waves. This is consistent with the experimental results reported in (Dlubek et al., 2010).
In addition to the primary peak, a weaker peak was observed in the measured CDM spectrum at twice the
detuning frequency. This second harmonic had a bandwidth larger than the primary harmonic by a factor
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FIGURE24.6 Carrier density modulation (CDM) measurement setup. ISO, isolator; ATT, variable optical attenuator;
PC, polarization controller; 3 dB–50:50 coupler; OSA, optical spectrum analyzer; RFSA, radio frequency spectrum
analyzer (From Dlubek, M.P. et al., Optics Communications, 283, 1481–1484, 2010).

of 1.5, indicating that it is the result of beating between the original waves and a new wave, which is itself
broadened compared to the input waves.

24.5.2 Experimental Procedure for Measuring CDM

The experimental setup is shown in Figure 24.6 (Dlubek et al., 2010). The SOA used in the experiment was
a nonlinear SOA from Centre of Integrated Photonics (CIP) (SOA-NL-OEC-1550 operating in 1550 nm
region) with an active region consisting of InGaAs unstrained quantum wells and InGaAs barriers (Kelly
et al., 1996). Two standard telecommunications diode lasers, LD1 and LD2, both a nominal wavelength of
1547.02 nm, were used as probe and pump, respectively. The frequency detuning between the two lasers was
obtained by temperature tuning, so that it did not exceed 3 GHz (the bandwidth of the radio frequency (RF)
spectrum analyzer). An optical spectrum analyzer was used to monitor the frequency detuning. A BiasT
connector was used to uncouple the constant bias current to the SOA from the RF component from the
device. Polarization controllers were used to adjust the polarization states of the interacting waves. Further
experimental details are reported in Dlubek et al. (2010).
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Before measuring the CDM spectrum, the reference beating spectrum of the two lasers (LD1 and LD2)
was measured by heterodyning them on a standard 10 Gb/s photodetector. The 3 dB bandwidth of the
heterodyne spectrum was ~40 MHz, suggesting that the laser linewidths were ~20 MHz. The spectral
shape was approximately Lorentzian, as expected (Dlubek et al., 2010).

24.5.3 Dependence on Operating Conditions

The strength of interband e�ects depends on the rate of carrier replenishment into the active region. Thus,
the CDM amplitude should decrease as the frequency detuning increases, since the carrier density cannot
follow the fast oscillations of the stimulated emission rate. This was tested by simulating the FWM in the
SOA for detuning frequencies up to 1 THz (by varying fd in Equation 24.28), with all other parameters
the same as in earlier simulations. Figure 24.7 shows the CDM spectra for di�erent detunings. The peak at
2 GHz is a second harmonic for the 1 GHz detuning.

To obtain a clearer view of the frequency dependence of the CDM amplitude, the information in
Figure 24.7 is extracted by obtaining the amplitude of the �rst harmonic (indicated against the detun-
ing in Figure 24.7b) and plotting it against the detuning frequency (log scale), as shown in Figure 24.8.
The CDM amplitude decreases sharply as the detuning frequency increases. The CDM amplitude at 1 THz
is almost three orders of magnitude smaller than the value for a few GHz. The stimulated emission rate
�uctuates at a much faster rate than the carriers injected into the active region. As a result, the carrier den-
sity cannot respond and the modulation e�ciency decreases as the frequency detuning increases. Bream
(2006) has also shown that the contribution of CDM to the refractive index perturbation is still signi�cant
even at frequencies well above the modulation bandwidths of the QW carrier distributions. As observed in
Figure 24.8, although CDM continues to decrease with increasing detuning, it still contributes signi�cantly
to very fast nonlinear optical processes (even for detuning up to 1 THz) (Bream, 2006). Dynamic CH and
SHB have not been taken into account in the model. It is interesting to note the similarity in the dependence
of the CDM amplitude on detuning frequency and the dependence of amplitude of the conjugate signal on
the detuning frequency observed in Figure 24.5a of Uskov et al. (1994). However, it is also worth noting
that above 1 THz (~4 meV), acoustic phonon scattering should become relevant, while longitudinal optical
(LO) phonon scattering should also be important above 9 THz. Thus, care is needed when extrapolating
results to 1 THz and beyond, as other carrier scattering mechanisms can be resonantly excited.

Figure 24.9 shows the variation of the normalized CDM amplitude with bias current. The CDM in
each case were normalized with respect to their maximum amplitude. As expected, the CDM amplitude
increases with bias current. The detuning was adjusted to 1.23 GHz to match the experiments. In Agrawal’s
seminal paper on FWM (Agrawal, 1988), the carrier density rate equation is expressed as a power series
involving the harmonics of the frequency detuning. The truncated series approximation (TSA1) curve in
Figure 24.9 was calculated using Agrawal’s model, where the power series is truncated at the �rst har-
monic (Agrawal, 1988). The simulated and the experimental results both show that the CDM amplitude
saturates as the bias current is increased further. Furthermore, a comparison of the experimental and sim-
ulated curves shows that the CDM approaches saturation at a faster rate in the experimental measurements
than is observed in simulations. The CDM from measurements and truncated series assumption show the
largest amplitude at 0 mA (experiment) and very close to 0 mA (TSA1).

The qualitative behavior is similar in both experiment and simulation. The model predicts the behav-
ior of CDM better than the TSA1 in the gain region. At 0 mA, the rate of absorption is at its maximum
and the net gain is equal to the absorption coe�cient. The SOA behaves like an unbiased diode with an
internal �eld and hence acts as a square-law detector. As the bias current increases from 0 mA toward
transparency at around 35 mA, the rate of absorption decreases while the rate of emission increases. This
results in an overall decrease in the net absorption and explains why the CDM amplitude decreases as the
current increases from 0 mA toward transparency. Above transparency, the net gain increases. This leads
to an increased rate of stimulated emission relative to absorption, which results in an increase in the CDM
amplitude, saturating at about 150 mA. This is consistent with the measured gain-current dependence
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FIGURE 24.7 Normalized CDM amplitude for di�erent detunings (a) full spectra and (b) positive spectra (log scale).

shown in Figure 24.10. The discrepancy between simulations and experiments in the absorption region
and low bias current above transparency (0–50 mA) in Figure 24.9 can be attributed to the use of the
unipolar model and the e�ects of ASE. The I–V characteristics of a diode appear most nonlinear near zero
bias. The unipolar model is based on the linear approximation of the current injection (Equations 24.16
and 24.17), which does not include the nonlinear I–V characteristics, hence in the deviation for currents
between zero and transparency. Spontaneous emission, and the subsequent ASE, have not been included
in the propagating �eld. The e�ects of ASE on carrier dynamics are more pronounced at low (electrical)
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bias and optical input power level, since the rate of spontaneous emission can be comparable to the rate of
stimulated emission.

The absence of experimental data points between 0 and approximately 50 mA in Figure 24.9 can be
attributed to the low level of CDM, such that its amplitude was below the noise level. Although there is
signi�cant CDM in the absorption regime, it is not useful for many applications (apart from heterodyne
detection, as discussed in Section 24.5.2) and both experiments and simulations con�rm that there are no
detectable/measurable optical mixing products.
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The e�ectiveness of CDM is expected to increase with input power, as the interaction between the dif-
ferent signals should be enhanced. As the optical power intensity increases in the active region, carrier
depletion, and gain saturation e�ects should ultimately prevent any further increase in the CDM ampli-
tude. (Signal distortion due to clipping as the carrier density approaches its transparency value should also
create more signal components in the frequency spectrum.) Figure 24.11a and b show the simulated and
measured CDM amplitude dependence on pump power for two probe powers (−0.8 dBm and +4.7 dBm).
The detuning between the pump and probe was 1.23 GHz and the bias voltage was adjusted to give a bias
current of 150 mA. The CDM amplitude increased with input power up to a point. The �gures also reveal
that the largest CDM is produced when the pump and probe signals have approximately equal power. This
is a key result that cannot be determined from previous works, which rely on the assumption that the pump
power is much larger than the probe power.

There is good qualitative agreement between simulation and experiment. However, there is some
discrepancy in the amplitude of the CDM obtained using simulations and experiment, as shown in
Figures 24.9 and 24.11. Apart from the limitations of the unipolar electrical and 1D traveling wave optical
models, some of these di�erences are due to errors in the material parameters of the SOA, as these were not
provided by the manufacturer. This discrepancy may also result from a lack of knowledge of the device’s
parasitic impedances and layer resistivities, which will also a�ect the RF signal measured at the device
terminals (a�er the BiasT in Figure 24.6).

The normalized CDM amplitude is generally higher for the lower probe power (−0.8 dBm), as shown in
Figure 24.12, where the dependence of the simulated CDM amplitude on the pump power is plotted for two
probe powers (−0.8 dBm, +4.7 dBm). The other parameters are the same as those used in the simulations
for Figure 24.11. When one beam is much weaker than the other, the CDM amplitude decreases as the
beating is reduced due to carrier depletion and gain saturation by the strong beam.

24.6 Summary and Conclusions

We have developed a suitable time-domain model to investigate dynamic nonlinear optical e�ects in SOAs.
The model takes into account the most important interband processes and minimizes the number of phe-
nomenological parameters. This simulation tool was used to show how wave mixing processes manifest
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power −0.8 dBm and (b) probe power +4.7 dBm. Detuning 1.23 GHz, bias current 150 mA.

themselves in SOAs, and discuss their impact on existing and potential applications. This is key to under-
standing and modeling nonlinear optical signal impairments. Furthermore, the knowledge obtained from
these studies can be used in the design of new devices and/or for optimizing existing ones that rely on
similar nonlinear optical e�ects, e.g., high-density PICs. The nonlinear phenomena are also accessible
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through electrical measurements, as well as through FWM and SHG measurements, providing additional
opportunities for the validation of the simulation tool.

Other key outcomes of this work are the general description of the nonlinear polarization and the
demonstration of the inclusion of nonlinear optical e�ects using the recursive �lter functions. These can be
used in more advanced tools, such as those with higher dimensionality (2D or 3D), those with a dynamic
bipolar electrical model, and those with more accurate time domain-optical models (e.g., which properly
include the spectral e�ects in the propagation and waveguiding). Finally, the general description of the
nonlinear polarization means this approach can be readily adapted to include other contributions to the
nonlinear polarization.
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25.1 Introduction

Since their advent in the second half of the 1980s (O’Mahony, 1988), semiconductor optical ampli�ers
(SOAs) have evolved technologically to the point that they have become key elements for the development
of optical communications circuits, systems, and networks. Due to their attractive features of low power
consumption, compactness, broad gain bandwidth, and ability for integration with a�ordable cost, the
multifunctional potential of SOAs has been exploited in data ampli�cation (Zimmerman and Spiekman,
2004) and processing (Mørk et al., 2003) in the optical domain and, more recently, for data encoding as
well (Udvary and Berceli, 2010).

Motivated by the widespread employment of SOAs and the concomitant need to assist their design and
support the implementation of the diverse applications they are destined to serve, the purpose of this chap-
ter is to present in a concise and comprehensible manner the basic processes which govern the dynamic
behavior of SOAs. Furthermore, it aims at describing how these processes can theoretically be taken into
account in order to model their impact on the SOA response. It is concerned with the signi�cant phe-
nomenon of the pattern e�ect which manifests when the SOA gain is modulated, either optically by a single
data pulse train or electrically by digital information superimposed on the SOA current. More speci�cally,
the chapter topics which are addressed with regard to the SOA dynamics are outlined as follows:

Section 25.2: SOA Dynamics Background—Types, physical origin, conditions for manifestation, and qual-
itative impact on SOA response.

Section 25.3: SOA Model Formulation—SOA gain dynamics modeling theoretical formulation and numer-
ical/closed form solutions.

Section 25.4: SOA Model Simpli�cation—Ways of simpli�cation and implications.
Section 25.5: SOA Optical Gain Modulation—Characterization and implications.
Section 25.6: Pattern E�ect I—Direct Optical Ampli�cation: Performance limitations and methods for

mitigation.

771
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Section 25.7: SOA Electrical Gain Modulation—Characterization and implications.
Section 25.8: Pattern E�ect II—Direct Current Modulation: Performance limitations and methods for

mitigation.

25.2 SOA Dynamics Background

Figure 25.1a depicts the standard con�guration of an SOA (Mørk et al., 2003). Light is coupled via one of the
facets into an intrinsic region of semiconductor material, which is sandwiched between a hole-dominant,
that is, p-doped, and electron-dominant, that is, n-doped, cladding layer of higher bandgap energy and
slightly lower refractive index. This structure allows con�nement of a large number of free carriers in a
small active volume, which hence exhibit a large density. By forward biasing the heterojunction through
the injection of an electric current being below the lasing threshold point, the population of the carriers
can be su�ciently inverted so that optical gain is established at a rate that prevails absorption. Then when
signal photons of suitable energy travel through the active area, they stimulate radiative recombinations of
electrons and holes and are coherently (i.e., with the same polarization, frequency, and phase) ampli�ed as
they propagate along the formed waveguide and exit from the other side of the device. In order to avoid
unwanted back re�ections and oscillations inside the cavity, the re�ectivity of the SOA facets is reduced to
very low values of less than 1×10−5 using antire�ection coatings, tilted waveguides and tapered waveguides
(Connelly, 2002). These technological means allow us to achieve a single-pass controllable ampli�cation
as high as 30 dB and with ripples-free parabolic-like spectrum pro�le, which can extend from 1300 to
1600 nm by changing the chemical composition of III–V group semiconductor materials. In particular,
in this chapter we consider InGaAsP/InP-based SOAs, which operate in the 1550 nm telecommunications
window where the attenuation of signals transmitted via optical �bers is lowest.

When a lightwave beam of optical frequency ν is injected into an SOA with a photon energy, hν, being
larger than the bandgap energy, Eg = Ec-Ev, which, as shown in Figure 25.1b, separates the conduction
and valence bands having energy at their bottom and top Ec and Ev, respectively, it triggers through band-
to-band transitions stimulated emission and depletes the pumped carriers (Diez, 2000; Vacondio, 2011).

The reduction in the density of the excited carriers has then two consequences. First, the produced
gain is reduced up to the point where it becomes saturated. Second, a set of dynamic processes tend to
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FIGURE25.1 (a) Schematic representation of typical semiconductor optical ampli�er (SOA) structure. (b) Simpli�ed
band diagram of semiconductor material. Eg, bandgap energy given by the di�erence between the energy at the bottom
of the conduction band, Ec, and the energy at the top of the valence band, Ev; Efc, quasi-Fermi level in the conduction
band, and Efv, quasi-Fermi level in the valence band.
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bring the SOA gain back to its original level. These processes, which govern the SOA gain recovery, can be
categorized in two cases of transitions (Occhi, 2002):

• Intraband transitions, which a�ect the distribution of carriers in the energy bands but leave the
overall carrier concentrations unchanged. Varying the carrier density a�ects this distribution, which
is further modi�ed by spectral hole burning (SHB), free carrier absorption (FCA), carrier heating
(CH), and carrier cooling.

• Interband transitions, which are related to the exchange of carriers between the energy bands
and hence result in changes in the carrier density. These transitions are determined by electrical
pumping, stimulated emission, absorption, spontaneous emission, nonradiative recombinations and
two-photon absorption (TPA).

As electrons need not change band but are rearranged within the latter, the time constants of intraband
transitions are much shorter than those of interband transitions. For this reason, the former are referred
to as ultrafast e�ects. Given the time constants of these e�ects, they tend to be important compared with
interband dynamics when the spectrum of the input signal is very wide, as in short pulse ampli�cation, or
when many channels are ampli�ed in the context of wavelength division multiplexing (WDM) (Vacondio,
2011).

The SOA gain dynamics are directly coupled with those of free carriers (Occhi, 2002). Figure 25.2 qual-
itatively illustrates the temporal evolution of the free carrier distribution (energy versus density) in the
conduction band (CB) of an SOA, which operates in the gain regime (Hall et al., 1994) subject to an ultra-
short optical pulse that belongs to a time-varying signal (Occhi, 2002; Mørk et al., 2003; Wang, 2008). Prior
to the pulse arrival, the carrier density within the CB is in quasi-equilibrium (Saleh and Teich, 1991), which
occurs when the relaxation times for transitions within an energy band are much shorter than the relax-
ation time versus the other energy band. In this situation, the carrier distribution within the considered
band is graphically shown in Figure 25.2a and is described by the product of the density of states, which is
increased away from the band edge (E = Ec) at a rate that depends on the e�ective masses of electrons, with
the probability that a given energy level, E > Ec, is occupied by an electron (Diez, 2000; Connelly, 2002).
This probability is described by the Fermi function, 1∕

[

exp
(

(E-Efc)∕kBT
)

+ 1
]

, where Efc is the quasi-
Fermi level, T is the temperature of the medium at thermal equilibrium and kB is Boltzmann’s constant
(so that kBT de�nes the thermal energy, which equals 26 meV at T = 300 K). The position of the quasi-
Fermi levels in the conduction and valence bands, Efc and Efv, respectively, is determined by the pumping
rate (current injection), and if the latter is su�ciently large so that their separation exceeds the bandgap
energy then the semiconductor medium provides gain and hence acts as an ampli�er (Diez, 2000). Such a
condition can be satis�ed only if the quasi-Fermi levels lie, as shown in Figure 25.1, inside the conduction
and valence bands, respectively, which for a semiconductor happens only under strong biasing (Vacondio,
2011). Note here that since the electrons and holes in the SOA are interrelated because of charge neutrality,
it is su�cient to refer only to the conduction band (Schubert, 2004).

The natural quasi-equilibrium state is altered when pulses of duration in a subpicosecond timescale
enter the SOA. This happens due to intraband e�ects which manifest according to the following phenom-
ena: First, the induced stimulated emission responsible for signal ampli�cation causes carriers to recombine
around a narrow range of energies de�ned by pulse photon energy. This opens a hole in the carrier dis-
tribution, which is referred to as “SHB” and provokes a deviation from the normal Fermi distribution
(Figure 25.2b). As a consequence, a localized reduction in the number of carriers at the transition energies
occurs, while the total (electron/hole) carrier density within the band is reduced by the stimulated emis-
sion. For high-input pulse energies (>1 pJ) (Tang and Shore, 1998) TPA may also take place where, as the
name implies, two photons are simultaneously absorbed and an electron is transferred from the valence
band to a high energy level in the conduction band due to the high photon density in the active region (Hall
et al., 1994; Mørk et al., 2003). In addition, a free carrier absorbs a photon and moves to a higher energy
within the same band, according to the so-called FCA (Hall et al., 1994). A�er these e�ects have mani-
fested on a timescale practically of few tens of femtoseconds (fs) (Diez, 2000) and the optical pulse has le�
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FIGURE 25.2 Evolution of carrier distribution induced in the conduction band (CB) of SOA by an ultrashort strong
optical pulse. The shaded areas under the solid lines are proportional to the total carrier concentration in the CB
(Wiesenfeld, 1996). The quasi-equilibrium is described by a Fermi distribution of quasi-Fermi level Efc, which exceeds
the minimum energy of the CB, Ec, in accordance with Figure 25.1b. SHB, spectral hole burning; CH, carrier heating;
FCA, free carrier absorption; TPA, two-photon absorption, which occurs only for high pulse energies. The time con-
stants values are typical for bulk SOAs, and may vary by more than a factor of two. (From Diez S, 2000, All-optical
signal processing by gain-transparent semiconductor switches. PhD dissertation, Technical University of Berlin.)

the SOA, the Fermi distribution is restored via a process known as carrier–carrier scattering (Mørk et al.,
2003), and the time required for this to happen is determined by the constant τSHB, which is known as SHB
relaxation time, with values typically several tens of femtoseconds (50–100 fs). Since this parameter is �nite,
the governing SHB essentially sets the timescale during which the quasi-equilibrium Fermi distribution is
established among the carriers in a band. Additionally, free carriers at energy levels lower than the average
carrier density in the band are removed by stimulated emission or are transferred to higher levels due to
the contribution of FCA and (possibly) TPA. As a result, the average carrier temperature is elevated and
becomes higher than before the pulse arrival (Hall et al., 1994; Mørk et al., 2003). This transient increase
of the electron and hole temperatures is called “CH” and impacts the carrier distribution (Figure 25.2c).
The characteristic time, τCH, required for carriers to release their excess energy through phonon emission
and cool down to the lattice temperature is of the order of several hundred femtoseconds (700–1300 fs).
A�er this temperature relaxation time has elapsed, the starting Fermi distribution has been reestablished
(Figure 25.2d), but the carrier density is still reduced compared to the stationary state (Figure 25.2a). Then
the interband e�ect of carrier density pulsation (CDP) takes the lead and lasts between some hundreds
of picoseconds and a few nanoseconds, depending on the dimensions and material of the active region
as well as the SOA operating conditions. During this interval, which is de�ned by the respective time
constant, τCDP, the carrier density, which had been decaying due to the stimulated emission, is increased
again toward its original level owing to the resupply of electrons to the SOA via electrical pumping and the
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re�lling of the respective bands. Finally, the carrier distribution is recovered to the quasi-equilibrium state
(Figure 25.2a).

The distinctive evolution of the above processes can be conveniently viewed on the temporal pro�le of
the SOA gain response, which is coupled to the carrier density. In practice, the SOA intraband and inter-
band gain dynamics temporal characteristics and their dependence on operating parameters are directly
disclosed by means of the pump-probe technique (Hall et al., 1994). This is a time-domain measurement
technique where the SOA gain is perturbed by a strong optical pulse called “pump” and sampled at di�erent
delays, τdelay, by a weak pulse called “probe,” as illustrated in Figure 25.3a. The strong pump pulse drives the
SOA under test into nonlinearity. The weak probe pulse cannot a�ect but instead experiences the altered
SOA properties (Vallaitis, 2010). In order to capture the full extent of the SOA gain dynamics, the pulse
repetition rate is of the order of several tens of MHz so that only one pump pulse at a time travels through
the SOA and the gain of the latter is fully recovered before the arrival of the next pulse. Furthermore,
ultrashort, that is, femtosecond-wide (Mørk et al., 2003) optical pulses are employed because their width
determines the measurement’s temporal resolution, which must be as high as possible to be able to extract
the maximum information. A typical outcome of such measurement is graphically shown in Figure 25.3b,
where the probe transmission has been plotted against the pump–probe delay, which is varied between a
few ps to a few hundreds of ps (positive delay means that the pump precedes the probe pulse) [Occhi, 2002;
Mørk et al., 2003; Wang, 2008; Vacondio, 2011]. The probe transmission is proportional to the SOA gain,
so the curve monitors the SOA gain dynamic behavior.
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FIGURE25.3 (a) Pump-probe technique. (From Vallaitis T., Ultrafast Nonlinear Silicon Waveguides and Quantum Dot
Semiconductor Optical Ampli�ers, Germany: Univ Karlsruhe, 2010.) (b) SOA typical evolution of (normalized) probe
transmission as a function of pump–probe delay. The depicted curve does not represent exactly the de�ned SOA gain
but rather its convolution with the pump and probe pulses. The timescale of the intraband gain dynamics is depicted
in the zoomed-in inset. (From Occhi L, Semiconductor optical ampli�ers made of ridge waveguide bulk InGaAsP/InP:
Experimental characterisation and numerical modelling of gain, phase, and noise, PhD dissertation, Swiss Federal Institute
of Technology in Zurich, 2002)
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Initially, the pump pulse compresses the gain by an amount de�ned by the ratio of the unsaturated
to the minimum level of the probe transmission, which occurs at the point where the carrier depletion
is maximized by the pump peak power (Occhi, 2002). This gain compression is governed by SHB and (if
enough photons are present in the SOA) TPA (Hall et al., 1994). Due to the �nite resolution of the employed
measurement technique (Hall et al., 1994), these ultrafast physical mechanisms are interpreted as instanta-
neous and thus overlap at zero time delay in the probe transmission (Schreieck, 2001). A�erward, the gain
recovers within the interval required for the probe transmission to rise from 10% to 90% of the asymp-
totically approached maximum level. This recovery occurs according to the following separate processes.
More speci�cally, in the �rst hundred femtoseconds timescale a�er the lowest compressed gain point SHB
becomes the dominant nonlinear e�ect. Then CH takes over for a timescale of ~1 ps, which reestablishes
the Fermi carrier distribution in the two energy bands. In the last time regime, the interband e�ects become
pronounced and lead to slow gain compression de�ned by the unsaturated probe level, which is restored
due to the applied electrical pumping, divided by the long-lasting probe transmission level (Occhi, 2002).

The impact of di�erent SOA and signal operating conditions on the aforementioned gain dynamics has
been investigated and assessed through experimental observations and numerical simulations. From the
interpretation and analysis of the results obtained from both approaches, the following conclusions have
been drawn (Occhi, 2002):

1. Both total and slow gain compression increase with the pump energy. For the total gain compression,
this happens because the lattice temperature in the active region is elevated with higher pump energy.
For the slow gain compression on the other hand, this variation is attributed to the reduction of
the free carrier density as a by-product of the increased stimulated emission. Moreover, when the
pulse energy is increased, it takes longer time for the gain compression associated with the intraband
e�ects to recover.

2. The magnitudes of the two de�ned types of gain compression are a�ected di�erently by the width
of the pump pulses. More speci�cally, the narrower the pump pulses, the larger the compression
associated with the intraband e�ects. In contrast, the slow gain compression becomes smaller, even
for input pulse energies higher than the SOA input saturation energy, for which the SOA gain is
dropped by 3 dB against the small-signal gain. However, this is not possible for wider pulses, for
example in the 100 ps range, since then the slow gain compression is much larger due to the much
higher contribution of the interband e�ects to the SOA saturation.

3. Both gain compressions increase with current density because of the corresponding increase in gain.
However, the fast gain recovery time behaves di�erently from the recovery time resulting from inter-
band mechanisms. In fact, the former becomes longer for higher bias currents, while the latter is
decreased.

4. The total gain compression is practically the same for all investigated device lengths in the case of
an input energy equal to the SOA input saturation energy. The increase of the input energy beyond
this point causes a larger gain reduction in longer SOAs, since their gain is higher compared to the
shorter ones, and accordingly results in higher total gain compression. On the contrary, the fast gain
recovery time is not in�uenced by the SOA longitudinal dimension. This �nding does not hold too
for the recovery time associated with the interband dynamics, since it decreases appreciably with the
increase of the SOA length (Girardin et al., 1998).

25.3 SOA Model Formulation

Many theoretical treatments have been conducted aiming at explaining the operation, understanding the
dynamics, predicting the behavior, evaluating the performance, and optimizing the working conditions
of SOAs. For this purpose, both analytical and numerical models of di�erent complexity level have been
formulated. The more elaborate ones provide a thorough insight into what happens inside the SOA. This
is done by microscopically describing the propagation of optical pulses and the change of the SOA carrier
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dynamics due to interaction with light. This approach provides extensive information at the expense of
increased hardware and so�ware resources. On the other hand, it is also practically desirable to maintain a
good balance between mathematics and computer power. This can be achieved by viewing and treating the
physical processes that manifest within an SOA from a phenomenological perspective (Toptchiyski, 2002).

The theoretical description of the operation of an SOA that is driven by a strong, ultrafast data pulse
stream should be as realistic as possible while simultaneously being characterized by versatility and com-
putational e�ciency. In this e�ort, it is necessary to set the valid framework within which this task will
be accomplished, which is based on the following key points. First, for SOA applications in which the
employed pulse widths are below the critical value of 10 ps the in�uence of the intraband carrier processes
on nonlinear gain compression is signi�cant and must be included in the description of the SOA saturation
under pulsed operation (Borri et al., 1999). Moreover, of the possible relevant phenomena, the e�ect of
TPA can be disregarded because it becomes signi�cant for pulses that are hundreds of femtoseconds wide
and have energy larger than 1 pJ (Tang and Shore, 1998). In fact, in most cases of interest the width and
energy of pulses launched into an SOA >0.1 ps and <1 pJ, respectively. For this reason, the main e�ects
whose contribution is taken into account are CH and SHB. Second, the SOA small-signal gain, internal
loss, and saturation energy are treated as wavelength independent parameters, since usually the spectral
width of picosecond optical pulses is at least two orders of magnitude smaller than the gain bandwidth
(Ning et al., 1997). The wavelength dependence of these SOA parameters must be taken into account
when SOAs are employed for multichannel ampli�cation (Jennen et al., 2001) or for nonlinear optical
signal processing purposes, where more than one signal propagates and/or interacts within the active
medium (Gutiérrez-Castrejón et al., 2000). The modeling approach that is usually adopted in this case is
to approximate the spectral pro�le of the material gain coe�cient per unit length with a parabolic function
of wavelength, where the peak of the latter is a linear function of the carrier density (O’Mahony, 1988).
The scope of this chapter, however, concerns single signal ampli�cation and SOA linear applications, so
high-order polynomial approximations of the gain spectrum would only increase the complexity of SOA
modeling without o�ering essential information for the SOA performance. In addition to this reasoning,
the central wavelength of the input signal launched into the SOA is assumed to be set at the peak of the
SOA gain spectrum (in the vicinity of 1550 nm), which renders the modal gain (de�ned in Equation 25.2)
independent of the wavelength. Third, the gain and group-velocity dispersion are neglected for pulse
widths in the picosecond range and SOAs that are several hundreds of micrometers long (Agrawal and
Olsson, 1989a; Tang and Shore, 1998). Fourth, the polarization of the input light is linear and preserved
during propagation through the SOA, which is treated as a polarization independent element since the
polarization sensitivity of practical devices is below 0.5 dB (Morito et al., 2003). Fi�h, the residual facet
re�ectivities are practically negligible and cannot cause gain ripples, as enabled by the relevant techno-
logical evolution in the design and fabrication of SOAs devices (Zimmerman and Spiekman, 2004). Sixth,
the SOA has the form of a traveling wave ampli�er whose active region dimensions allow the support
of only a single wave-guide, while it behaves as an isotropic device, which means that the susceptibility
tensor is scalar (Gutiérrez-Castrejón et al., 2000).

The SOA response to an optical beam of electrical �eld E⃗ that propagates along the SOA largest dimen-
sion (that is, its length), which de�nes the z-axis in a Cartesian system of coordinates, is described by the
carrier density rate equation (Tang and Shore, 1998)

∂N
∂τ

= I
qV

− N
τcarrier

− 1
Γσh∕ω

g ||
|

E⃗||
|

2

1 + ε ||
|

E⃗||
|

2 , (25.1)

where N =N(z, τ) is the carrier density, I is the injection current, q is the electron charge, V =wdL is the
volume of the active region whose characteristic geometries have a cross section (wd) of the order of 1 μm2

and a length (L) of 0.5 to 2 mm, τcarrier is the carrier lifetime that is linked to the total recombination rate
of carriers as speci�ed in Gutiérrez-Castrejón and Duelk (2007), Γ is the con�nement factor that accounts
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for the transverse character of the optical waves and the spread of the optical mode outside the active
region of the ampli�er (Agrawal and Olsson, 1989a), σ is the mode cross section (= wd∕Γ), h∕is the reduced
Planck’s constant,ω is the angular frequency of the electromagnetic radiation, and ε is the gain compression
factor, described right below in Equation 25.13. The parameter g = g(z, τ) stands for the modal gain that is
assumed to vary linearly with N as

g = ΓaN
(

N − Ntr
)

, (25.2)

where aN is the SOA di�erential gain and Ntr is the carrier density at transparency. Since, from
Equation 25.2, N = g∕ΓaN + Ntr, Equation 25.1 can be transformed, a�er some algebraic manipulations,
into the following gain equation

∂g
∂τ
=

gss − g
τcarrier

−
g ||
|

E⃗||
|

2

Usat

(

1 + ε ||
|

E⃗||
|

2) , (25.3)

where gss = ΓaNNtr(I∕Itr−1) = ln(Gss)
L is the coe�cient of the nominal SOA small-signal power gain, Gss,

per unit length, Itr = qVNtr
/

τcarrier is the injected current required for transparency, and Usat = �hωσ∕aN
is the SOA intrinsic saturation energy, which for typical values d = 250 nm, w = 2 μm, Γ = 0.48 and
aN = 3.3 × 10−20 m2 at an operating wavelength λ = 1550 nm is approximately 1 pJ. Alternatively,
Usat = Psatτcarrier, where Psat is the saturation power of the SOA material, which in steady-state operation
mode is approximately 0.7 times the SOA output saturation power (Connelly, 2002).

The dynamical evolution of an input light whose polarization is linear and maintained as it traverses the
SOA obeys Maxwell’s wave equation

∇2 ⃖⃗E − 1
c2

(

n2
b + χ

) ∂2 ⃖⃗E
∂τ2 = 0 (25.4)

where c is the speed of light in vacuum, and n2
b ≈ 1 + ℜ

{

χ0
}

is the background refractive index, with
ℜ
{

χ0
}

denoting the real part of the medium susceptibility in the absence of external pumping by current
injection so that it accounts for material absorption (Schubert, 2004), while

χ = − n̄ c
ωΓ

g
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⎜
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⎟
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(25.5)

is the susceptibility parameter (Gutiérrez-Castrejón et al., 2000), which represents the contribution of the
charge carriers inside the active region, where n̄ is the e�ective mode index, ι =

√

−1 is the imaginary
number, and the parameters αCDP and αCH are described below in Equation 25.22.

The electrical �eld of the linearly polarized light that is inserted in the SOA and propagates along its
longitudinal axis, z, is E(x, y, z, τ) = ⌢x 1

2 F(x, y)A(z, τ) exp
[

ι(βz − ωτ)
]

, where ⌢x is the polarization unit vec-
tor, F(x, y) is the transverse mode distribution, A(z, τ) is the complex envelope of the optical pulse and
β= n̄ω∕c represents the propagation constant. According to the procedure in Tang and Shore (1998) and
Gutiérrez-Castrejón et al. (2000), which is based on the slowly varying envelope approximation and the
integration over the transverse dimensions, an equation that describes the propagation of the optical pulse
in the SOA can be obtained from Equations 25.4 and 25.5

∂A(z, τ)
∂z

+ 1
υSOA

∂A(z, τ)
∂τ

= 1
2

gA(z, τ)
1 + ε |A|2

− ι
2

[

αCDPg − αCH
εg |A|2

1 + ε |A|2

]

A(z, τ). (25.6)

This equation has actually been derived from semiclassical density-matrix equations by adiabatical
approximation of the interband polarization dynamics (Mørk and Mecozzi, 1996).
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The time measured in a static reference (laboratory) coordinate system, τ, is transformed into the local
time t measured in a reference frame moving with the pulse at the group velocity inside the ampli�er, υSOA:

t = τ − z
υSOA

. (25.7)

Thus, in this moving coordinate system, the pulse is centered on t = 0 at every plane along the ampli�er.
According to Equation 25.7, the transformation of a general function f(z, τ) to f(z, t) leads to the following
expressions for the time and spatial derivatives (Jennen et al., 2001):

∂f(z, τ)
∂τ

=
∂f(z, t)
∂t

⋅
∂t
∂τ
=
∂f(z, t)
∂t

(25.8)

∂f(z, τ)
∂z

=
∂f(z, t)
∂z

+
∂f(z, t)
∂t

⋅
∂t
∂z

=
∂f(z, t)
∂z

− 1
υSOA

⋅
∂f(z, t)
∂t

. (25.9)

Separating further “A” into amplitude and phase terms,

A =
√

Const × Pexp(ιφ) ⇒ P = |A|2
/

Const. (25.10)

“Const” is a normalization coe�cient that relates the units between amplitude and power so that A(z, t) is
expressed in units of W1/2, while P = P(z, t) and φ = φ(z, t) are the power and the phase of the traveling
optical pulse, respectively. Applying Equations 25.8 and 25.9 together in Equation 25.6 and replacing in
Equations 25.3 and 25.6 the squared modulus of the total electrical �eld, |A⃗|2 = E⃗ ⋅ E⃗

∗
= |A|2, where

the symbol ∗ denotes the complex conjugate, the following set of partial coupled di�erential equations
that govern the power, P, gain, g, and phase, φ, evolution of a strong optical signal that propagates and is
ampli�ed in an SOA is obtained (Tang and Shore, 1998)

∂P(z, t)
∂z

=
g(z, t)

1 + εP(z, t)
P(z, t) (25.11)

∂g (z, t)
∂t

=
gss − g (z, t)
τcarrier

−
g (z, t)

1 + εP (z, t)
P (z, t)

Usat
(25.12)

∂φ(z, t)
∂z

= −1
2

[

αCDPg(z, t) − αCH
εg(z, t)P(z, t)
1 + εP(z, t)

]

(25.13)

The term ε = εCH + εSHB combines the contribution to the SOA gain compression from CH and
SHB when these two e�ects are considered instantaneous. This assumption holds when the width of the
launched optical pulses exceeds 1 ps, and is therefore valid under most practical situations encountered
in optical communications. In this case, the impact of CH and SHB on the gain compression is taken into
account through the term 1 + εP, where the factor εP is connected to a stationary carrier density above
transparency, at which the SOA gain is unity and hence leaves intact a signal that passes through (Occhi,
2002; Wang, 2008).

Equations 25.11 and 25.12 form a system with unknowns the power and gain of the signal that perturbs
the SOA nonlinear optical properties. This system cannot be solved in closed form, but only numerically.
For this purpose, and in order to account for the spatial and temporal dependence denoted by the variables
(z, t), L is divided into discrete segments, each of lengthΔz = L

m , as shown in Figure 25.4, while the pulses

are sliced over their period, τperiod, at uniform intervals Δt =
τperiod

k , where k is a non-zero integer so
that their pro�le can be reconstructed at the output. Now, since the driving signal propagates through one
ampli�er segment during the sampling time, the space and time in�nitesimal elements are linked to each
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FIGURE 25.4 Dividing the SOA into discrete longitudinal (i) sections and calculating in each one of them the value
of the signal power (P) and gain (g) for each sample of the pulse (j) based on the knowledge of the preceding value.
This stepwise process is repeated in the formed spatio-temporal grid in an iterative manner until all required values are
calculated.

other through Δz = υSOAΔt (Toptchiyski, 2002). The direct expansion gives

Δt = Δz
υSOA

= L
m ⋅ υSOA

=
τtransit

m
=
τperiod

k
⇒

k
m
=
τperiod

τtransit
, (25.14)

which means that the number k cannot be chosen independently from m. For example, if τperiod = 100 ps
and τtransit =

L
υSOA

= 12 ps, the speci�c ratio equals 100:12. This means that the combination of k and
m, or their selection, in order to satisfy this requirement, is not unique. Still, this task can be facilitated by
taking into account that the number of the longitudinal sections must be larger than 10 (Wong and Blow,
2003). Otherwise, the SOA gain dynamics induced by the input lightwave signal are erroneously quanti�ed.
Thus, if m = 120, which is a more than su�cient value, then k = 1000. This pair allows obtaining a fairly
accurate solution of the above equations with the use of simple �rst-order Euler di�erentiation. The latter
is an e�cient arithmetic method when studying in the time domain the nonlinear interactions between
picosecond optical pulses whose envelope has a piecewise varying nature, as is the case for a Gaussian
shape, and semiconductor active waveguide devices, provided that the sampling rate is high enough (Chi
et al., 2001). More precisely, for each discrete space, i, and time section, j, the solution is expressed by

Pi+1,j = Pi,j + Δz dP
dz

|

|

|

i, j , for i = 0, 1, 2,… ,m − 1 and j = 0, 1, 2,… , k − 1 (25.15)

gi,j+1 = gi,j + Δt
dg
dt

|

|

|

i,j , for i = 0, 1, 2,… ,m − 1 and j = 0, 1, 2,… , k − 1. (25.16)

In other words, for an incoming signal traveling in the longitudinal direction measured from the le�
facet of the SOA, the knowledge of the values of P(z, t) and g(z, t) as well as of their derivatives (denoted by
|i,j) at a given step (i, j) of the algorithm, together with the fact that Equations 25.11 and 25.12 are essentially
coupled in terms of the power and gain, allows us to calculate the next values P(z +Δz, t) and g(z, t +Δt)
required at steps (i+ 1, j) and (i, j+ 1), respectively. This process is depicted in Figure 25.4 and is repeated
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in an iterative manner until all values are calculated in the spatio-temporal grid i (Δz)× j (Δt). For this pur-
pose, it is necessary to de�ne and apply the appropriate boundary and initial conditions. The setting of the
boundary condition is straightforward since the pro�le of the launched optical power is expressed in analyt-
ical form depending on the particular pulse data format and shape. For example, for a return-to-zero on-o�
keying signal, the power of each temporal sample at the SOA input facet is given by (Pauer et al., 2001)
P0,j = P(t) =

∑

n

{

Cn
}

p
(

jΔt − nτperiod
)

, where n is the number of bits contained in the data sequence

length, the code
{

Cn
}

is either “1” or “0” with equal probability ½, and p(t) is the pulse shape. For Gaussian
pulses (Agrawal and Olsson, 1989a), for example, p(t) = Ppeak exp

[

−4 ln 2(t − τperiod∕2)2∕τ2
FWHM

]

,
where Ppeak is the peak power and τFWHM is the full-width at half-maximum (FWHM), which occupies
some fraction of the operating period that de�nes the duty cycle (Pauer et al., 2001). The setting of the
initial condition, on the other hand, is more elaborate, since it requires considering the �ow of the SOA
gain dynamics change by the continuously arriving optical pulses (Tang et al., 2000). More speci�cally, in
each distance segment of the SOA, the �rst temporal segment in the leading edge of the �rst arriving pulse
experiences an unsaturated, small-signal gain, so that gi,0 ||1 = gss. Then, by induction, in each distance
segment, the �rst temporal segment in the leading edge of the following pulse, which reaches the SOA
a�er τperiod, sees an initial, recovered gain given by gi,0 ||n = gss +

(

gi,k−1 ||n−1 − gss
)

exp
(

−
τperiod
τcarrier

)

, where
gi,k−1

|

|n−1 is the gain perturbed by the last temporal segment in the trailing edge of the preceding pulse at
the same distance segment.

Apart from this arithmetic procedure, other more elaborate techniques can also be employed for numer-
ically solving modi�ed-type nonlinear Schrödinger equations as Equation 25.6, such as the well-known
fourth-order Runge-Kutta, or the �nite-di�erence beam propagation method (FDBPM), where the central-
di�erence approximation is applied in the time domain and trapezoidal integration is executed over the
spatial section in an iterative manner (Razaghi et al., 2009). This method has enabled us to accurately
acquire information for the SOA characteristics, which include the pulse shape, spectrum, and chirp, in the
presence of the main ultrafast nonlinear phenomena that critically a�ect the SOA gain dynamics (Hosseini
et al., 2011).

25.4 SOA Model Simplification

The model deployed for simulating the operation of an SOA has been formulated on the basis of the
partial coupled di�erential Equations 25.11 through 25.13. These constitute a system which, due to the
existence of the temporal and longitudinal variables, t and z, respectively, is two-dimensional (2D) so
that its solution is rather cumbersome from a computational standpoint. However, if the SOA is treated
as a “black box” characterized by its impulse response to any arbitrary input optical signal, the depen-
dence on the spatial variable can be dropped and the problem can be reduced to a one-dimensional
(1D) one described by an ordinary di�erential equation in which time is the only independent vari-
able, enabling us to greatly simplify the computational complexity (Cassioli et al., 2000). This reduction
is realized starting from the local changes of the carrier density distribution, which occur due to the inter-
action between the propagating �eld and the semiconductor material. These changes are the result of
the intraband (CH and SHB) and interband (CDP) e�ects, while nonlinear processes with characteris-
tic times shorter than SHB, such as TPA, are ignored because their e�ect is comparatively not signi�cant.
The gain and the refractive index of the semiconductor depend on these locally perturbed densities, so
each local density distribution is associated with a distinct term that contributes to the total gain. The
gain then can be expanded to the sum of the respective contributions of the three di�erent physical pro-
cesses considered. The temporal evolution of the three quantities is described by equal number of rate
equations, which in turn depend on the photon density pro�le and therefore are coupled to the equation
that describes the propagation of the �eld along the waveguide. The key thus for reducing the order of
the modeling system to 1D is the integration of both sides of the partial di�erential equations over the
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entire SOA length. This transformation leads to the following compact expression for the total device gain
(Cassioli et al., 2000)

G(t) = exp[h(t)], (25.17)

where at each point of the pulse pro�le, h(z, t) = ∫ z
0

g(z′,t)
1+εP(z′,t)dz′ represents the power gain integrated

over the length of the SOA, which hence is treated as a spatially concentrated device. This dimensionless
coe�cient incorporates the contribution of each mechanism that a�ects the SOA gain:

h(t) = hCDP(t) + hCH(t) + hSHB(t). (25.18)

More speci�cally, hCDP represents the gain associated with the interband e�ects and its temporal
evolution is described by the following �rst-order ordinary di�erential equation

dhCDP
dt

= −
hCDP
τcarrier

− 1
Psatτcarrier

[G(t) − 1] P(t) +
ln Gss
τcarrier

. (25.19)

hCH is the gain associated with CH, which means that it describes the gain variation due to the mechanisms
that heat up the carrier distribution in the conduction band, such as FCA and TPA, as well as due to changes
of the carrier density. The relevant rate equation has the form

dhCH
dt

= −
hCH
τCH

−
εCH
τCH

[G(t) − 1] P(t) (25.20)

where εCH is the CH nonlinear gain compression factor. The �rst term on the right-hand side characterizes
the relaxation to the lattice temperature once the exciting pulse has le� the SOA and before the arrival of
the next pulse. The second term combines all the e�ects that heat-up the carrier distribution. The typical
values of τCH for InGaAsP/InP-based SOAs with gain peak around 1.55 μm lie between 0.5 and 1 ps, while
εCH is between 0.28 × 10−23 and 4.4 × 10−23 m3 (Occhi, 2002).

Finally, the rate equation for the SHB contribution is

dhSHB
dt

= −
hSHB
τSHB

−
εSHB
τSHB

[G(t) − 1] P(t) −
dhCH

dt
−

dhCDP
dt

, (25.21)

where εSHB is the SHB nonlinear gain compression factor. Reported values of τSHB in the conduction band
for InGaAsP/InP-based SOAs with maximum gain centered around 1.55 μm are between 30 and 250 fs,
while εSHB has been found to be between 0.14 × 10−23 and 1.7 × 10−23 m3 (Occhi, 2002).

The above dynamic processes a�ect not only the gain properties but also the refractive index of the SOA
within the active region (Wiesenfeld, 1996). This happens because the free carriers contribute substan-
tially to the SOA optical susceptibility, which is complex in nature. The imaginary part of this parameter
is related to the gain of the SOA, and the real part is related to the refractive index (Eiselt et al., 1995).
The gain and refractive index variations are not independent but coupled via the Kramers–Kronig rela-
tionship, according to which the refractive index modulation can be calculated from the gain variation
(Hutchings et al., 1992). However, this calculation requires us to integrate over the whole wavelength spec-
trum the gain coe�cient, which means that the latter must be known for a wide range of optical frequencies.
Furthermore, the speci�c integral must be solved numerically, which increases the model computational
time signi�cantly. A more convenient manner to describe the refractive index behavior relies on the alpha
factor, also known as the Henry factor (Henry, 1982), which links the changes of the active layer refrac-
tive index to those of the gain when the carrier density is varied. The important bene�t o�ered by the
employment of this factor is that the refractive index dynamics are given directly by the gain dynamics
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and hence are quanti�ed much faster than with the Kramers–Kronig relations. Moreover, the adoption of
the alpha-factor approach is practically realizable since it links the gain and the phase variations associ-
ated with the changes of the refractive index, where both are directly measurable. The phase of the optical
�eld at the SOA output can be expressed as a linear function of the same variables which describe the
optical gain:

φ(t) = − 0.5 [αCDPhCDP (t) + αCH hCH(t) + αSHB hSHB(t)], (25.22)

where αCDP , αCH, and αSHB are the phase-amplitude coupling coe�cients of CDP, CH, and SHB, respec-
tively. Among these alpha factors,αCDP is the traditional linewidth enhancement factor related to CDP, with
typical values 3–12 (Agrawal and Olsson, 1989a). αCH is the alpha factor associated with CH and varies
especially near the band edge, where the depletion of cooler carriers takes place (Giller et al., 2006). How-
ever, usually signal photon energies in�uence carriers well inside the band and so,αCH can be approximated
by a constant with indicative values ranging between 1 and 4.5, as reported in the literature. Finally, αSHB is
the alpha factor linked to SHB and is nearly zero because SHB happens symmetrically around the central
wavelength (Mecozzi and Mørk, 1997). Thus, the Kramers–Krönig integral over the whole spectrum is
nearly zero and the change of the refractive index is very small near the peak wavelength.

Every phase variation at the SOA output is always accompanied by a certain amount of chirp (Agrawal
and Olsson, 1989a). This is the instantaneous frequency deviation relative to the optical beam frequency,
Δν, which is provoked because the phase,φ, of the ampli�ed signal is not constant in time. Mathematically,
it is given by

Δν(t) = − 1
2π
∂φ
∂t

. (25.23)

The set of rate Equations 25.19 through 25.21 for the hj (j = CDP, CH, SHB) functions is numerically
solved for a given optical power to the SOA input, P(t), which is the only excitation of the system. Then,
Equations 25.17, 25.22 and 25.23 give the overall power gain, phase variation, and chirp that the input signal
experiences through the SOA, respectively. In this manner, results have been obtained for the temporal,
spectral, and chirp pro�le of the ampli�ed pulses (Hussain et al., 2010).

Equations 25.11 through 25.13 can be further combined and reduced for optical pulses going into the
SOA, whose width exceeds the critical limit of 10 ps, above which the in�uence of the CH and the SHB
e�ects is not signi�cant (Borri et al., 1999). This means that in this case it is not necessary to take into
account these intraband processes. Then, by following the algebraic steps detailed in Mecozzi and Mørk
(1997), but setting, ε to null and hCDP ≡ h(t), the di�erential equation for the SOA response is simpli�ed
to the well-known form that holds when the SOA gain saturation is caused only by the depletion of the
carrier density due to stimulated emission (Agrawal and Olsson, 1989a)

dh(t)
dt

=
ln(Gss) − h(t)

τcarrier
−

P(t)
Usat

{

exp
[

h(t)
]

− 1
}

. (25.24)

This equation can be solved analytically, provided that the width of the launched optical pulses is much
shorter than the SOA carrier lifetime. This condition holds in practice, since in real SOA devices, the values
of the latter parameter are typically of the order of 100 ps and above. Thus, closed-form expressions can
be obtained for the variation of the SOA gain in the rapid saturation and slow recovery regions. These
expressions allow us to explicitly describe the pulse pro�le at the SOA output when this element is driven
by multiple pulses of alternating binary content, as it happens in real optical networks that are based on
optical time division multiplexing (OTDM) (Hamilton et al., 2002).
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25.5 SOA Optical Gain Modulation

The in�uence of critical parameters, which include the SOA small-signal gain and carrier lifetime as well
as the FWHM and energy of the input pulses, on the SOA output characteristics has been investigated
and evaluated for the case where the change of the SOA gain dynamics is provoked by a 10-Gb/s data-
modulated signal onto itself in the context of straightforward ampli�cation (Zoiros et al., 2007). The results
reveal that due to the continuous arrival of pulses, which cause the SOA saturation properties to be more
strongly modi�ed than for a single pulse, the requirements for the SOA small-signal gain and the input
pulse energy are more stringent than those for the isolated pulse ampli�cation studied elsewhere (Agrawal
and Olsson, 1989a), while those for the FWHM and carrier lifetime are also tight but to a lesser extent. For
example, Figure 25.5 shows that the SOA small-signal gain must be an order of magnitude lower than that
for a single pulse or else the output pulse deviates from its normal symmetrical form (Zoiros et al., 2007).
Moreover, Figure 25.6 shows that the pulse energy, Uin, must be a small fraction of the SOA saturation
energy, Usat (Zoiros et al., 2007). These trends together suggest that the SOA must be biased to operate in
the low-saturation regime in order to preserve the shape of the input signal at the SOA exit. This condition
essentially determines the dynamic range of the inserted optical signal, which is allowed for distortionless
pulse ampli�cation, and its validity is further supported by evidence given in Section 25.6. In contrast,
when the focus is on the chirp and how it can be tailored in order to be exploited for pulse compression
(Agrawal and Olsson, 1989b; Zoiros et al., 2005), the investigation that was conducted reveals that the
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FIGURE 25.5 Shape of ampli�ed pulses versus SOA small-signal gain, Gss. The arrow indicates the Gss direction of
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SOA small-signal gain and the energy of the incoming pulses must be increased to such extent so that
together they heavily saturate the SOA. Then, the reduction of the instantaneous phase shi� (Ueno et al.,
2002) and of the accompanying chirp due to the alternating bit pulses and the concomitant inability of the
SOA to timely recover between them can be e�ciently mitigated. In this case, the chirp acquires the form
shown in Figure 25.7, which is the required one for the intended purpose (Agrawal and Olsson, 1989a;
Zoiros et al., 2007). In fact, the linearly increasing part of the chirp curve in the time domain is situated
in the center of the pulse where most of its power is contained, while the chirp magnitude is su�ciently
enhanced. Therefore, if the SOA is operated according to these conditions, then it can be ensured that the
ampli�ed optical pulses exhibit an appropriate power and chirp pro�le.

On the other hand, if the FWHM is such that its di�erence from the pulses repetition interval is smaller
than the SOA gain recovery time, then the strain imposed on the SOA gain dynamics is heavier. This hap-
pens because the SOA responds more slowly to the rapidly varying logical content of the wider pulses,
which worsens the pattern e�ect described in the next section (Kim et al., 2007). In this demanding
case, Equation 25.24 must obligatorily be solved by a numerical approach. This can be done in a step-
wise manner by sampling the optical pulse over its period at discrete temporal intervals, approximating
the time derivative by a �nite di�erence and applying the appropriate initial conditions to account for
the di�erent gain at the beginning of each new bit depending on how it has been perturbed during the
previous one (Botsiaris et al., 2007). The knowledge then of h(t) allows us to calculate the electric �eld
of the ampli�ed data, ESOA(t) =Edata(t) exp

[

1
2

(

1 − jαCDP
)

h(t)
]

, where, according to Equation 25.10,
|ESOA(t)|2 = PSOA(t) and |Edata(t)|2 = P(t) (Agrawal and Olsson, 1989a), as well as the chirp from
Δν(t) = − (1∕4π)

[

αCDPdh(t)
/

dtdt
]

, where the derivative of h(t) is directly taken from the right-hand
of Equation 25.24. With this approach, the changes that are incurred on the ampli�ed pulse trains and eye
diagrams for di�erent SOA saturation conditions can be correctly captured, as veri�ed by comparison to
experiments. For this purpose, the degree of pattern e�ect is modi�ed by altering the maximum launched
signal power and the SOA small-signal gain. Figure 25.8 depicts the ampli�ed pulse patterns when the peak
power of the marks successively drives the SOA into the low, medium, and deep saturation region, respec-
tively. As the input peak power is progressively doubled, the peak amplitude �uctuations become more
pronounced to an extent that depends on whether the marks are preceded either by one or more spaces
or by other marks (Zoiros et al., 2008). In contrast, as the input peak power is decreased, these variations
are smoothed and the associated pattern e�ect de-escalates. Similarly, when the SOA small-signal gain is
halved, the peak amplitudes become less uneven, as illustrated by comparing Figure 25.9 to Figure 25.8c.
The accurate reproduction of the form of the pattern e�ect which manifests on RZ pulses (Zoiros et al.,
2009, 2010a,b), together with the good qualitative matching between the le�- and right-hand sides of these
�gures, designates that the experimental trend for the SOA response is properly modeled. This also holds
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FIGURE 25.8 Experimental (le�) and theoretical (right) ampli�ed data pulse trains for (a) low, (b) medium, and (c)
deep SOA saturation.
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FIGURE 25.9 Experimental (a) and theoretical (b) ampli�ed data pulse trains for halved SOA small-signal gain
compared to Figure 25.8(c).

for the respective eye diagrams shown in Figure 25.10. In this case, the asymmetric subenvelopes that occur
for a high-input peak power in Figure 25.10c gradually disappear as this parameter is decreased, in Figure
25.10a and b, and the eye diagrams become more uniform, which is an improvement that can be monitored
too in the simulated pseudo-eye diagrams obtained as detailed in Gutiérrez-Castrejón et al. (2001).
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FIGURE 25.10 Experimental (top) and theoretical (bottom) eye diagrams at SOA output for (a) low, (b) medium,
and (c) deep SOA saturation.

25.6 Pattern Effect I: Direct Optical Amplification

The distinctive properties of SOAs have revived interest for direct signal ampli�cation purposes, which
have traditionally been the primary target of SOAs (Connelly, 2002). As shown in Figure 25.11, the inten-
tion is to exploit SOAs as booster ampli�ers to enhance the signal power before being launched into an
optical link (Kim et al., 2003) as in-line ampli�ers to compensate for transmission losses along the link (Bos-
colo et al., 2006) and as preampli�ers so that the received signal has su�cient power and can be correctly
detected (Mynbaev and Scheiner, 2001; Singh, 2011).

In these applications, the pro�le of the output signal should ideally be an ampli�ed replica of the input
signal. In practice, the combination of the power and duration of the input data signal can be such that
the SOA is heavily saturated. Concurrently, the SOA gain recovery time is �nite with typical values of the
order of few hundreds of picoseconds. Thus, in most practical cases, it exceeds the pulses repetition period,
which scales inversely with the data rate. Under these driving conditions, the SOA gain is not perturbed
in a regular fashion but according to the binary content of each bit slot. As can be schematically seen in
Figure 25.12, if the SOA is excited by a train of distinguishable pulses, that is, “1” and “0,” whose period,
τperiod, is such that they arrive faster than the interval available for carrier replenishment, τrecovery, then
the gain variation is not uniform since it is dropped for a “1” and partially recovered for a “0” (Manning
et al., 1997). This mode of operation has a negative impact on the SOA response, as it can be highlighted by
means of the following representative scenarios which concern two “1”s which are separated by a “0.” First,
in case of a row of marks, the “1” which follows immediately a�er the “1” that has initially been inserted
in the SOA and hence modi�ed its optical properties from a higher level, su�ers a reduced gain and this
continues to happen for every subsequent “1” with respect to the preceding “1” until an equilibrium is
reached or the sequence is broken by a “0.” Second, in case of multiple “0”s, which allow the gain to rise
substantially, the leading “1” experiences a higher gain than the trailing “1,” given that the latter is preceded
by only one “0,” while it encounters a comparatively lower gain if there are continuous “1”s that prevent the
gain from completely recovering. In either case, the ampli�ed output su�ers from peak-to-peak amplitude
�uctuations, as can characteristically be seen in Figure 25.13.
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FIGURE 25.13 Data ampli�cation in SOA and pattern-dependent output distortion, with amplitude modulation
(AM) de�nition.

This undesirable phenomenon is called “pattern e�ect” (Manning et al., 1997) and constitutes a major
obstacle in the e�ort to employ conventional SOAs in their classical role. This happens due to the signi�cant
deterioration of several metrics that characterize the quality of the ampli�ed signal, which include the
amplitude modulation (AM), the extinction ratio (ER), and the input power dynamic range (IPDR). The
AM is de�ned as AM (dB) = 10log

(

P1
max

/

P1
min

)

, where P1
max and P1

min are the maximum and minimum
peak power of the marks in the ampli�ed data stream, respectively (Figure 25.13). The AM quanti�es the
degree of uniformity of the marks and should be as low as possible but it is considered acceptable for
lightwave telecommunications systems if it is lower than 1 dB (Zoiros et al., 2008). The ER is de�ned as
ER (dB) = 10log

(

P1
avg

/

P0
avg

)

, where P1
avg and P0

avg are the average power of the marks and spaces in the
ampli�ed data stream, respectively (Figure 25.16). The ER quanti�es how distinct the marks are from the
spaces and it should be as high as possible but it is considered acceptable if it is well over 10 dB (Hinton
et al., 2008). Finally, the IPDR is de�ned as the range where the Q-factor, which in the thermal noise limit,
where the amplitude �uctuations due to the pattern e�ect act as noise variance on the marks, is de�ned
as Q = P1

avg

/

σ1
std, with σ1

std being the standard deviation of the peak powers of the marks, is over six
(Agrawal, 2002). The negative impact of the SOA pattern e�ect on these metrics has been investigated and
evaluated and the main outcome is compiled and presented in the following in Figures 25.14 and 25.15
(Rizou et al., 2015a). In Figure 25.14, the SOA output su�ers from intense peak amplitude �uctuations
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FIGURE25.14 (a) SOA input data pattern with initial AM = 0.35 dB (le�) and corresponding output (right). (b) SOA
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FIGURE 25.15 Corresponding experimental patterns of Figure 25.14.

both when the framed input data waveform has an initial AM = 0.35 dB (Figure 25.14a, le�) or contains
a string of consecutive “0”s (Figure 25.14b, le�). In both cases, the AM level at the SOA exit is intolerable,
as it amounts to AM = 1.3 dB (Figure 25.14, right). This behavior is comparable to the experimental one
in Figure 25.15 with regard to pulse pro�le and amplitude wandering. Moreover, in Figure 25.16, the eye
diagram at the SOA output is degenerated into secondary traces whose borders deviate from the principal
one both in magnitude and shape, while the baseline de�ned by the spaces is less than 11 dB away from
the average level of the marks (Rizou et al., 2013).

In Figure 25.17, on the other hand, the part of the chirp at the SOA output which is negative at the
leading edge of each mark, that is, ‘red chirp’ (Agrawal and Olsson, 1989a), su�ers from strong peak-to-
peak excursions similar to those observed at the corresponding pulse positions, while the part of the chirp
which is positive at the trailing edge of each mark, that is, ‘blue chirp’, exhibits a much weaker dependence
than its red chirp counterpart. Physically, this happens because the red chirp is related to carrier depletion
and gain compression, while the blue chirp is linked to carrier regeneration and gain recovery (Girault
et al., 2008). This means that the magnitude of the induced chirp is proportional to the rate of change of
the carrier concentration and subsequently of the gain. For this reason, it would be rationally expectable
that the pattern e�ect due to the irregular gain variation would be imposed on both types of chirp. However,
as can be seen in Figure 25.17, this holds almost exclusively for the red chirp, which exhibits strong peak
�uctuations. For the blue chirp, in contrast, an increase in the peaks occurs only for successive “1”s, since
then the carrier recombination rate is enhanced due to the weaker carrier depletion, but still this increase
is so small that it is hardly noticed. This pronounced discrepancy in the pattern dependence is attributed to
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the di�erent timescale on which the two chirp phenomena take place. In fact, the carrier depletion and the
accompanying phase increase in the leading edge of the pulse is somewhat faster compared to the much
slower carrier replenishment and the concomitant phase decrease in its trailing edge, which gives rise to an
approximately constant amount of blue chirp. Therefore, the explanation of the pattern e�ect can also be
given in the frequency domain through the red chirp. For this purpose, its form in Figure 25.17 is correlated
(Wang et al., 2007) with the corresponding gain change in Figure 25.18.

More speci�cally, the rising edge of the �rst “1” at the le�-most edge of the pattern window acquires the
largest red chirp among all the marks owing to the fact that, for the same energy, its gain is dropped from
the maximum possible level, that is, that of the unsaturated state, and as a by-product the incurred gain dif-
ference is highest. Similarly, the next largest peak is that of the third “1,” since it is preceded by a run of three
“0”s. In contrast, the lower the carrier density, or equivalently the greater the extent of gain compression,
the slower the additional carriers are depleted, thereby resulting in decreased gain variation and accord-
ingly less red chirp, as it is the case for consecutive “1”s where the SOA cannot fully recover in between
them. Finally, in Figure 25.19, the Q-factor is permissible only in saturation region A, where the SOA gain
(inset) is reduced up to just 3 dB (Rizou et al., 2013). Thus, the IPDR cannot be extended to regions B and
C, since the SOA pattern e�ect is aggravated as the gain is decreased by more than 3 and 6 dB, respec-
tively. This limitation deteriorates the optical signal-to-noise ratio (OSNR), impedes the maximization of
the output power and results in closer ampli�er spacings. In order to combat all these pattern-induced
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performance degradations and restore the quality of the ampli�ed signal, various methods have been pro-
posed and employed. These methods involve intervening on the SOA design, material, and structure and
applying sophisticated line coding and interferometric and �ltering con�gurations (see relevant references
in Rizou et al., 2013). However, this is a special subject that should be separately addressed elsewhere.

25.7 SOA Electrical Gain Modulation

In addition to straightforward ampli�cation and all-optical signal processing, there has recently been
intense research interest in SOAs for use as external modulators. The motivation behind this activity is to
be able to provide both data ampli�cation and modulation so as to overcome limitations imposed by other
optical modulators (Udvary and Berceli, 2010) while enabling the implementation of various applications
(see relevant references in Zoiros et al., 2015). The basic con�guration that is exploited for this purpose
is shown in Figure 25.20 (Rizou et al., 2015b). The SOA bias current, which is �xed at some point where
the P–I curve is linear (Udvary and Berceli, 2010), is modulated by an electrical data signal. This modula-
tion alters the SOA gain analogously, which is perceived by a lightwave beam of constant power over time
(CW). In this manner, the SOA current modulation is mapped on the CW signal, which thus carries the
original information that has now been converted into optical form. According to this physical process, an
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exact copy of the applied electrical signal should be transferred at the SOA output. However, this does not
happen when the SOA modulation bandwidth, Bmod, is smaller than the bandwidth that corresponds to
the rate and format of the applied excitation, Bexc. More speci�cally, due to the SOA �nite di�erential car-
rier lifetime, τd, Bmod is limited to the order of 1 GHz. In fact, the small-signal frequency response analysis
procedure, where the SOA rate equations are linearized and solved analytically by assuming that there are
only small perturbations around an operating point (König, 2014), reveals that Bmod scales inversely with
τd according to Bmod = 1/(2πτd) and the SOA electrical response exhibits the low-pass �lter characteris-
tic qualitatively shown in Figure 25.21 (Wang, 2008). On the other hand, the latter parameter depends on
the data format (Agrawal, 2002), and for non-return-to-zero (NRZ) pulses is Bexc = Brep∕2, where Brep
is the repetition rate. Thus, if Brep is increased so that Bexc exceeds Bmod, the performance of the directly
modulated SOA becomes progressively pattern-dependent and eventually poor.

25.8 Pattern Effect II: Direct Current Modulation

The characteristics of the encoded pulse stream are degraded as the rate of SOA direct modulation is
increased due to the concomitant aggravation of the associated pattern e�ect. In fact, Figure 25.22 shows
that with a �ve-fold increase from 1 Gb/s to 5 Gb/s the amplitude deviations between marks, between
spaces, and between marks and spaces are intensi�ed (compare le�- to right-hand side). Moreover, the
pseudo-eye diagram becomes asymmetrical due to the long rise and fall times and tends to close (com-
pare le� to right-hand side of Figure 25.23). Finally, the chirp su�ers from analogous peak amplitude
�uctuations and transient distortions (compare le� to right-hand side of Figure 25.24). Nevertheless, these
impairments can be mitigated and the SOA be directly modulated at an extended data rate than that enabled



9781498749466_C025 2017/8/29 16:27 Page 793 #23

Semiconductor Optical Amplifier Dynamics and Pattern Effects 793

0 1 2 3 54
Time (ps) × 104

0 2000 4000 6000 8000 10,000
Time (ps)

In
te

ns
ity

 (a
.u

.)

(b)(a)

FIGURE 25.22 Encoded data pattern at directly modulated SOA output for (a) 1 Gb/s, (b) 5 Gb/s.

30000 1000 2000
Time (ps)Time (ps)

6004002000

(b)(a)

In
te

ns
ity

 (a
.u

.)

FIGURE 25.23 Pseudo-eye diagram of encoded signal at directly modulated SOA output for (a) 1 Gb/s, (b) 5 Gb/s.

0–15

–15

–5

0

5

10

15

1 2 3
Time (ps)

Ch
irp

 (G
H

z)

× 104 Time (ps)
(a) (b)

Red
chirp

Blue
chirp

4 5 0 2000 4000 6000 8000 10,000

FIGURE 25.24 Chirp of encoded signal at directly modulated SOA output for (a) 1 Gb/s, (b) 5 Gb/s.

by its limited modulation bandwidth by means of post optical notch �ltering. This technique can be imple-
mented with di�erent technologies (see relevant references in Zoiros and Morel, 2014), which have in
common the fact that they produce a �lter characteristic whose slope is in the opposite direction to that of
the SOA, as seen in Figure 25.21. This counteracts the SOA response and so the combined transfer func-
tion becomes independent of the direct modulation frequency for a wider range than for the SOA only. In
this manner, the quality characteristics of the encoded signal at the directly modulated SOA output can be
signi�cantly improved so that they are appropriate for supporting the target applications.
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wavelength, 434–437
CdSe QD arrays, charge carrier mobility, 442–443
correlation energy, 438–441
equivalent CdTe and CdTe/CdSe QD, absorption

spectra, 441–442
CDM, see Correlated disorder model
CDP, see Carrier density pulsation
CdSe/CdTe CQDs, radiative lifetimes in, 437–438
CdSe/CdTe Type II CQDs, absorption edge wavelength,

434–437
CdSe quantum dot arrays, charge carrier mobility,

442–443
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CdTe/CdSe quantum dot
electron shell localization e�ect, 438
equivalent, absorption spectra, 441–442
hole shell localization e�ect, 438–441

CdTe quantum dot, equivalent, absorption spectra,
441–442

Centre of Integrated Photonics (CIP), 762
Charge-carrier distributions, 722
Charge-carrier dynamics, 716
Charge carrier mobility, in CdSe quantum dot arrays,

442–443
Charge conservation, for OLED, 478–479
Charge Extraction by Linearly Increasing Voltage

(CELIV) measurement, 213
Charges from electrostatic potentials using a grid-based

method (CHELPG) scheme, 489
Charge transfer (CT) rate, for OLED, 476, 483–484
Charge transport layers, OLED working principle,

475–476
CHCC Auger recombination, 461
“CHCC” pathway, 279
CHSH Auger recombination mechanism, 279, 283
“CHSH” pathway, 279
CIP, see Centre of Integrated Photonics
Circular optical waveguide, 110–112
Classical force �elds, in OLED, 489
Classical particle densities, 552
Coherence function, 602–604
Coherent pulse propagation in macroscopic

semiconductor devices, 739
Collision operator, 139

generation-recombination, 141
Colloidal nanocrystal quantum dots (NQD), 420
Colloidal quantum dots (CQDs), 420

CdSe/CdTe CQDs, radiative lifetimes in, 437–438
CdSe/CdTe Type II CQDs, absorption edge

wavelength, 434–437
Color rendering index (CRI), of white light source,

468–470
Composition-dependent band gap, 255

bowing, in GaNxAs1−x, 256
Computer-aided design (CAD) tool, 167
Conduction band (CB), strained-layer QW

wurtzite semiconductors, 375–376
zinc-blende semiconductors, 371

Con�guration interaction (CI) method, 420
Con�nement factor and taper angle, 710–712
Continuity equation, in superlattices, 236–237
Conventional InP-based lasers, nonradiative

recombination processes in, 277
Conventional semiconductor alloys, 254

alloy composition in, 255
versus highly mismatched alloys, 256

Core-shell NW, see Radial semiconductor NW
heterostructures

Core/shell QD structures, 420–421
Corpuscular theory of light, 81
Correlated color temperature (CCT), white light source,

468–470
Correlated disorder model (CDM), 486
Coulomb integrals

NQD, con�guration interaction Hamiltonian,
429–430

PW implementation, quantum dots, 423–424
Coulomb interaction, 8, 9

matrix element, 723
Coulomb repulsion, 245
Counter propagating photon density distributions,

675–677
Courant–Friedrichs–Lewy (CFL) condition, 151, 678
Covariance matrix, 41
C-plane Hamiltonian, wurtzite semiconductors, 368–370
c-plane LED, simulation result of, 576
Cross-gain modulation (XGM)-based wavelength

converter, 623
Crystal

�rst Brillouin zone, 6
photonic, 116
temperature, 131
vibrations and phonons, 131–136

Crystal coordinate system (CCS), of light-emitting
diodes, 453

Crystal lattice, 129–131
Lagrangian of, 133

Crystalline semiconductors, 191–193, 480
Crystal-phase bandgap engineering, semiconductor

nanowires, 410–412
Crystal-phase quantum structures, 410, 412
Crystals

vector, 223
wurtzite

crystal direction, 224
piezoelectric tensor in, 223

zincblende
crystal direction, 224
piezoelectric tensor in, 223

CSUPREM process simulation, 178, 186
Current crowding, in LED dice, 466–467
Current spreading, in LED dice, 464–466
Current-voltage characteristics, OLED case studies, 495

D

DBRs, see Distributed Bragg re�ectors
DCV4T, see Dicyanovinyl-substituted quaterthiophe
DD, see Dri�-di�usion
DDM, see Dri�-di�usion one
Deal–Grove model, oxidation, 184
Delay-di�erential-equation model, 716, 717–718, 731
Density functional perturbation theory (DFPT), 232
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Density functional theory (DFT), 8–9, 16,
195, 254

Density gradient quantum correction model, 543
Density matrix (DM), 36, 59
Density of states (DOS)

in dilute nitride alloys, 287
Anderson impurity model, 288–296
electron transport in GaNxAs1−x alloys, 296–303

MQW model, 525
for OLED, 485–487

Desorption reaction, 173
Deterministic approach, 647–648
Detuning frequency, 759
Device geometry and simulation parameters, 706–707
DFB laser, see Distributed feedback laser
DFT, see Density functional theory
Dicyanovinyl-substituted quaterthiophe (DCV4T), 493,

494
Dielectric con�nement e�ect, quantum dots, 420,

424–426
Dielectric constant, of cubic crystals, 458
Di�usion constant, OLED master equation, 481–482
Di�usion model, impurity, 181
Dilute nitride alloys, 252–254, 303–305

alternative applications of, 281
avalanche photodiodes, 283–285
electro-absorption modulators, 283–285
GaAs-based 1.55-μm quantum well lasers,

281–283
III-V lasers on silicon, monolithic integration,

286–287
semiconductor optical ampli�ers, 283–285

density of states and carrier transport theory in, 287
Anderson impurity model, 288–296
electron transport in GaNxAs1−x alloys, 296–303

electronic structure theory of
band-anticrossing, 259–264
�rst principles and empirical pseudopotential

calculations, 254–258
tight-binding and alloy disorder, 264–269

TB model for, 261
Dilute nitride quantum well lasers, theoretical model for,

270–271
Dirac delta function, 651
Dirac equation, Foldy–Wouthuysen transformation of, 26
Direct current modulation, 792–793
Direct �nite-di�erence time domain (FDTD)

simulations, 466
Direct optical ampli�cation

applications, 787–788
chirp variation, 789–790
gain variation, 790–791
optical signal-to-noise ratio, 790
pattern-dependent output distortion, 787–788

pattern e�ect, 788
pulse pro�le and amplitude wandering, 789
Q-factor, 790–791
SOA gain in response to data train input,

787–788
Direct Simulation Monte Carlo scheme (DSMC), 160
Dirichlet boundary condition, 49, 51, 640
Discrete Fourier transform, 760
Distributed bias current, 656
Distributed Bragg re�ectors (DBRs), 50, 315, 697
Distributed feedback (DFB) laser, 661, 697
Dopant di�usion, 181

active impurities, 183
inactive impurities, 183
interstitials, 182
neutral impurities, 183
vacancies, 181–182

Dopants
dielectrically enhanced ionization energies of,

409–410
nanowires, discrete nature of, 407–409

Doping, semiconductor nanowires
continuous, homogeneous doping-related

background charge, 406–407
dielectrically enhanced ionization energies of

dopants, 409–410
random dopant �uctuations, 407–409

DOS, see Density of states
Dot-in-a-well (DWELL) structures, 719, 724
Dri�-di�usion (DD)

carrier transport, 39
equations, for OLED, 478–480
model, 58, 142, 546, 549, 551

Boltzmann transport equation, 47–48
energy balance, 46–47
generation–recombination models, 48–49

quantum-corrected, see Quantum-corrected
dri�-di�usion

Dri�-di�usion one (DDM), 456–457
Dri�-di�usion solver, random alloy �uctuation with, 568
Drude model, 644
DSMC, see Direct Simulation Monte Carlo scheme
Dual Pearson model, ion implantation, 180–181
Dynamic models, 659–660
Dynamic Monte Carlo, see Kinetic Monte Carlo method
Dynamic propagation model, 677–678

upwind scheme numerical implementation, 678–680
Dynamics and pattern e�ects, SOA

free carrier distribution, 773–774
interband transitions, 773
pump-probe technique, 775
schematic representation of, 772
and signal operating conditions, 776

Dynamic TW-SOA models, 656–657, 659–660
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E

EAMs, see Electro-absorption modulators
EBE, see E�ective Bloch equations
EBL region, see Electron-blocking layer region
ECDM, see Extended correlated disorder model
EET, see Electronic excitation (energy) transfer
EFA, see Envelope function approximation
E�ective Bloch equations (EBE), 751–752
E�ective di�usion coe�cient, 699
E�ective index method (EIM), 114, 115, 117
E�ective-mass approximation, 92
EGDM, see Extended Gaussian disorder model
EIM, see E�ective index method
Einstein coe�cients, 82–84
Elasticity, linear, 239, 242, 542
Electrical equations, solver for, 704–705
Electrical gain modulation, 791–792
Electrical-to-optical conversion e�ciency, 707
Electric �eld energy density, 730
Electric �eld envelope model, 643–645
Electric �eld propagation, 717–718, 719, 729
Electric potential distribution, in LED structure, 457
Electro-absorption modulators (EAMs), 283–285
Electrodes, OLED working principle, 474–475
Electroluminescence, of white OLED, 503–506
Electromagnetic environment role, 99–101
Electromechanical coupling

light-emitting diodes, 454–456
in wurtzite semiconductors, 239–240

Electron-blocking layer (EBL) region, 458, 504, 530, 561
Electron density, periodic, 5
Electron-electron interaction, 9, 15
Electron gas, dri�ed Gaussian distribution, 41
Electron-hole pair, 35, 141, 205–206, 271, 274, 315, 425,

504
Electron-hole recombination, for OLED, 484–485, 601
Electronic band, 634

materials, 8–9
structure, 5–7
wurtzite InN, 25

Electronic coupling elements, for OLED, 488, 491
Electronic excitation (energy) transfer (EET), 485
Electronic materials, piezoelectricity in, 220–222
Electronic polarization, tunnel-junction light-emitting

diodes, 527
Electronic structure, organic semiconductors, 194–196
Electronic transport in NW LED, 551
Electron orbital of fullerene cage, 197
Electron-photon interaction

electromagnetic environment, 99–101
light �eld, quantization of, 97–99
solid-state system, 90–97
in two-level system, 82–90

Electron quantum densities, 549, 550

Electrons, in valence bands, 138
Electron temperature, 41
Electron transporting layers (ETLs), 474
Emission

layer, OLED working principle, 476–477
spectrum

in�uence of indium �uctuation on,
574–576

shi�, 561
stimulated, 83
wavelength, 4

Empirical pseudopotential method (EPM), 28–29, 254,
259–264

spin-orbit coupling, 29–30
Empirical TB (ETB) model, 21, 22, 25, 26, 28
Empirical tight-binding (ETB) method, 20–26,

543, 548
approach, 547–549
Hamiltonian of periodic system, 20
matrix elements, 23–24
model, 21, 22, 25, 26
Slater and Koster approach, 23
spin-orbit coupling, 26–28

Empty lattice model, 5, 6
Energetic disorder, 486, 492, 493, 504
Energy balance (EB) model, Boltzmann transport

equation, 45–47
Energy bands, in silicon, 138–139
Energy conservation expression, 701
Energy-dependent resonant scattering rate, GaNxAs1−x

alloys, electron transport in, 298
Energy model, 142
Energy transfer, for OLED, 485
Energy-transport model, and numerical discretization,

146–152
Envelope-function approaches, 17–20
Envelope function approximation (EFA), 543, 545–547
Epitaxial coordinate system (ECS), of light-emitting

diodes, 453
EPM, see Empirical pseudopotential method
Equilibrium equations, 565–566
Equilibrium Green’s function (EGF) theory, 60
ER, see Extinction ratio
ETB, see Empirical tight-binding method
Ethene molecule, wave functions of, 195, 196
ETLs, see Electron transporting layers
Excitons, 214, 215

for OLED, 479–480
Extended correlated disorder model (ECDM), 486,

493, 494
Extended Gaussian disorder model (EGDM), 486,

494, 497
Extended rate equation model, 652–656
Extended zone scheme, electron band structure, 6
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External quantum e�ciency (EQE), of light-emitting
diodes, 452–453

Extinction ratio (ER), 284, 591, 625, 751, 788, 790

F

Fabry–Pérot resonators, 116
Fabry–Pérot SOA (FP-SOA), 613, 632
Far-�eld (FF) pattern, 698
FCA, see Free carrier absorption
FDBPM, see Finite-di�erence beam propagation method
FDCNP-BPM, see Finite di�erence, Crank–Nicholson

paraxial BPM algorithm
FDCNWA-BPM, see Finite di�erence Crank–Nicolson

wide angle beam propagation method
FDTDM, see Finite di�erence time domain method
Fermi–Dirac distribution function, 96, 208, 299, 569,

635, 636, 755
Fermi–Dirac integrals, 48, 656
Fermi distributions, 553, 774
Fermi’s Golden Rule, 37, 45, 196
FF pattern, see Far-�eld pattern
Finite-box (FB) approach, 50
Finite charge-carrier densities, 481
Finite-di�erence beam propagation method (FDBPM),

781
Finite di�erence, Crank–Nicholson paraxial BPM

algorithm (FDCNP-BPM), 120
Finite di�erence Crank–Nicolson wide angle beam

propagation method (FDCNWA-BPM), 122
Finite di�erence method (FDM), 107
Finite-di�erence (FD) technique, 49–50
Finite di�erence time domain method (FDTDM), 117
Finite-element (FE) technique, 49–50
Finite impulse �lter (FIR) theory, 751–752
Finite-impulse response (FIR) �lter scheme, 660
First-principles molecular dynamics (FPMD), 199
Fit functions for scattering rates, 727–728
Fluctuation-dissipation theorem, 651
Foldy–Wouthuysen transformation, of Dirac equation, 26
Förster theory, 45
Fourier transform (FT), 424, 603, 628, 659, 734, 757, 760
Four-wave mixing (FWM)

analytic model, 627–628
CDM characteristics, 758–762
e�ciency, 628
experimental procedure, CDM measurement,

762–763
operating conditions, 763–766
semiconductor laser diodes (SLDs), 757

FPMD, see First-principles molecular dynamics
Franck–Condon principle, 199
Free carrier absorption (FCA), 627, 750, 773–774
Free-carrier absorption losses, 702
Free-standing semiconductor NWs, 397

Fullerene, 196
delocalized electron orbital of, 197
electron-conducting, 202, 203

Full second-order piezoelectric tensor formalism,
229–232

“Fullwave” model, 659
Full width at half-maximum (FWHM), 576, 603, 624,

633, 711, 784
of emission spectrum, 575
pulse, 623

FWHM, see Full width at half-maximum
FWM, see Four-wave mixing

G

GaAs-based laser structure, 7–8, 252
GaAs-based 1.3-μm InGaNAs quantum well lasers

theory, 269–270
dilute nitride quantum well lasers theoretical model,

270–271
nitrogen incorporation impact on

band structure and gain of quantum wells,
271–277

on carrier recombination, 277–281
GaAs-based 1.55-μm quantum well lasers, 281–283
GaAs/GaP core-shell NWs, 401
Gain and group-velocity dispersion, 777
Gain compression, 756, 776–777, 779, 782
Galliumarsenide (GaAs)/Aluminiumarsenide (AlAs)

microcavity, 100
Gallium nitride (GaN) growth, gas phase reaction, 171,

172
GaN-based LEDs, e�ciency droop IN, 524
GaN-based visible light-emitting diodes, 58
GaN NW, 403–405
GaNxAs1−x

bond lengths analysis in, 257
CB structure in, 259
composition-dependent band gap bowing in, 256
electronic properties of, 265
electronic structure analysis of, 257
N-related localized states in, 257
theoretical model of, 267
unusual pressure dependence of, 257

GaNxAs1−x alloys, electron transport in
Boltzmann (Fermi-Dirac) distribution, 299
carrier distribution functions, 301–302
energy-dependent resonant scattering rate, 298
negative di�erential velocity, 296–297
N-related localized states, 297–299
quantitative analysis of, 300–301
single-electron Monte Carlo model, 302–303

GaNxAs1−xPx
bond lengths analysis in, 257
electronic structure analysis of, 257
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Gap materials, semiconductor band structure,
7–8

Gas, viscosity and thermal conductivity, 173
Gaussian broadening coe�cient, 563
Gaussian disorder model (GDM), 486

parametrization of, 491–493
Gaussian distribution, 720

of energy levels, 486
of states, 204–205

Gaussian noise process, 647
Gaussian random variable, 652
Gauss model, ion implantation, 179
Gauss’s law, 104
GDM, see Gaussian disorder model
GEA, see Gradient expansion approximation
Gell–Mann and Low theorem, 59
Geminate recombination, electron, 214
Generalized gradient approximation (GGA), 14
Generation-recombination (GR)

model, dri�-di�usion, 48–49
transitions, 48

Generation–recombination collision operator, 141
Genuine quantum approach, 58–59

contour-ordered NEGF, 59–67
self-energies

boundary, 68–69
scattering, 69–72

Geometry and epitaxial design, SLED, 591–592
Ge-Si core-shell nanowire (NW), 401
GGA, see Generalized gradient approximation
Gillespie algorithm, see Kinetic Monte Carlo method
Gradient expansion approximation (GEA), 13
Graphene, thermal properties

numerical results, 160–163
semiclassical description, 152–159
simulation scheme, 159–160

Green LEDs, carrier transport in, 580–584
Green’s function, 59, 60

chronological and antichronological, 65
with self-energies, 72
two-particle, 64
in weakly con�ned systems decay, 69

Green’s theorem, 39
Green tunnel-junction LED, 535–538
Gummel’s method, 215

H

Half-width at half maximum (HWHM), 603, 604
Hamiltonian matrix, 21, 266, 267

element, ETB method, 24
Hamiltonian of solid-state system, 91
Hamiltonian of two-level system, 86–87
HAROLD 4.0, 703, 704, 706
Hartree–Fock approximation, 94–96

Hartree–Fock (HF) theory, 11, 14, 56
HD model, see Hydrodynamic model
Heat �ow equation, 705
Heat transfer, in LED dice, 464–466
Heat transport

macroscopic balance equation for, 142–144
in semiconductor, 140

Heavy-hole (HH) band, 19, 262, 379, 461
Heisenberg equation

motion, 56, 64, 86, 94
polarization, 87

Heisenberg picture, two-level system in, 86–90
“HELLISH” devices, 284
Helmholtz equations, 593, 597, 640, 700
Henderson theorem, 491
Henyey–Greenstein scattering functions, 469
Heyd–Scuseria–Ernzerhof hybrid functional approach,

8, 16
HF theory, see Hartree–Fock theory
HH band sub-bands, 639
Highest occupied molecular orbital (HOMO), 203, 204,

207, 476, 505
Highly mismatched semiconductor alloys, 255

conventional semiconductor alloy versus, 256
High-power SLED designs, 604–605
Hohenberg–Kohn theorem, for nondegenerate ground

states, 9–10, 31
Hole/electron blocking layers, OLED working principle,

476
Hole transporting layer (HTL), 474
HOMO, see Highest occupied molecular orbital
Homogeneous Neumann boundary condition, 49
Homogeneous wave equation, 99
Hondros–Debye equation, 110, 112
Hopping matrix element, 23, 24
HSE, see Screened hybrid functional
HTL, see Hole transporting layer
Huawei Marine Networks, 631
HWHM, see Half-width at half maximum
Hybrid approaches, 487
Hybrid functionals approach, 14–16
“Hybrid” OLED, 503
Hydrodynamic (HD) model

Boltzmann transport equation, 44–45
nonstationary e�ects, 39

Hydrogen atom, 194

I

Ideal QW, 279, 333, 576, 580
Ideal R-SLED, 596–597
Ideal standard SLED, 596
IFD-BPM, see Improved �nite-di�erence beam

propagation model
IGVs, see Initial guess values
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Impedance spectroscopy, OLED case studies,
496–498

Improved �nite-di�erence beam propagation model
(IFD-BPM), 660

Impurities, incomplete ionization of,
526–527

Impurity di�usion model, 181
Index guiding waveguides, 113
In-di�used waveguide, 114
Indium, composition distribution of the InGaNMQW,

174–176
Indium �uctuation

on emission spectrum, in�uence of, 574–576
in�uence of, 576

Indium gallium arsenide (InGaAs), 759
In�nite hierarchy problem, 94
In-�uctuation QW, 580
Infrared (IR) LEDs, 452, 453
InGaAs quantum dot (QD) lasers, development of, 252
InGaNAs/GaAs alloys, limitations of, 282
InGaN-based LEDs, 452, 462, 463, 467, 528
InGaN multiple quantum well growth stimulation,

174–178
(In)GaNxAs1−x

band structure calculation, 259–260
CB structure of, 264

Initial guess values (IGVs), 665, 703
Inorganic semiconductors, 91

band structure, 203, 204
versus organic semiconductors, 193, 214

Input power dynamic range (IPDR), 788
Integrated MOPAs, 697, 698
Interface charges, tunnel-junction light-emitting diodes,

527
Internal losses coe�cient, 702–703
Internal quantum e�ciency (IQE), 560

curves, 579
droop behavior of, 578–580
in LEDs, 232–233

Intervalence band absorption (IVBA), InGaNAs lasers,
283

Intraband transitions approximation, 92
Inverse Fourier transform, 659, 757
Inverse Monte Carlo, 491
Ion implant models, 178–179

Gauss model, 179
Pearson model, 179–180

dual, 180–181
IPDR, see Input power dynamic range
IQE, see Internal quantum e�ciency
Isolated nitrogen states, linear combination of,

264–269
Isotropic quadratic approximation, 138
I-V curve, 570–573, 576–578, 582, 583, 585

J

Jaynes–Cummings model, 98, 99
Jellium model, 92–93

K

Kinetic Monte Carlo (KMC) method, 482–483
Kinetic theory, 173
KMC lifetime simulations, 507, 509–511
KMC method, see Kinetic Monte Carlo method
Kohn–Sham equation, 9, 12, 13
Kohn–Sham theory, 10–14
k⋅p Hamiltonian, PW implementation, 423–424
k⋅p method for SP electronic structure, quantum dots,

421–423
k⋅p models, 52, 259–264
k⋅p theory, 17–20, 274, 422
Kramers–Kronig transformation, 748, 756, 783

L

Lagrange equation motion, 133
Lagrangian of crystal lattice, 133
Landé e�ective g factor, 267, 323
Langevin noise source, 651
Laser operation, 86, 315, 338
Lattice

commensurability constraint, 384
crystal, 129–131

Lattice-mismatched heteroepitaxy, 221
Lattice-mismatched heterostructures, 403, 404
Lattice temperature, 776
Layer transitionmetal dichalcogenides (TMDCs), 152
LCAO, see Linear combination of atomic orbitals
LCINS approach, see Linear combination of the isolated

nitrogen states approach
LDA, see Local density approximation
LDOS, see Local density of states
Leaky mode, optical waveguide, 116
LEDs, see Light-emitting diodes
LEE, see Light extraction e�ency
LEF, See Linewidth enhancement factor
Lennard–Jones potential model, simulation, 169
L-I characteristics of re�ecting SLEDs, 593–597
Light conversion, by phosphor, 468–470
Light emission e�ciency, light-emitting diodes,

462–463
Light-emitting devices, carrier transport and optical

transition, 35
Light-emitting diode (LED) dice

current spreading, heat transfer, and light extraction
in, 464–466

current crowding, 466–467
surface recombination, 467
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phosphor-converted white light emission,
467–468

light conversion by phosphor,
468–470

white light characteristics, 468
Light-emitting diodes (LEDs), 35, 219

carrier transport and recombination in,
453–454

electromechanical coupling,
454–456

light emission e�ciency, 462–463
recombination models, 458–461
transport equations, 456–458

fabrication of, 237
family of, 452–453
GaN-based visible, 58
multiple quantum well, 174
simulation of, 451

Light extraction e�ciency (LEE), 462, 464
Light extraction, in LED dice, 464–466
Light-hole (LH) band, 19, 262, 321
Light–matter coupling, in semiconductor, 92
Light–matter interaction, 81, 86, 101, 154, 717, 748,

755–756
Light, quantization, 97–99
Linear ampli�cation applications, 731
Linear chain, monoatomic and biatomic, 132
Linear combination of atomic orbitals (LCAO), 543
Linear combination of the isolated nitrogen states

(LCINS) approach, 254, 265–269
Linear continuum elasticity theory, 399–400
Linear elasticity, 239, 242
Linear piezoelectric coe�cients, of III-N

semiconductors, 227–228
Linear piezoelectricity, electromechanical coupling with,

240–243
Linewidth enhancement factor (LEF), 615, 702,

748, 783
Lobatto IIIA formula, 684
Local density approximation (LDA), 8–9

generalized gradient approximation approach, 14
gradient expansion approximation approach, 13
Hedin’s GW approximation approach, 16
hybrid functionals approach, 14–16
Kohn–Sham theory and, 10–13

Local density of states (LDOS), 59, 552
Longitudinal waves, 131
Löwdin orbitals, 21, 22
Löwdin transformation, 21
Lowest unoccupied molecular orbital (LUMO), 203, 204,

207, 476
Luttinger–Kohn Hamiltonian, zinc-blende

semiconductors, 366–368
Luttinger–Kohn perturbation theory, 51

M

Macroscopic balance equation, for heat transport,
142–144

Macroscopic evolution equation, closure of system of,
144–146

Macroscopic material polarization, 749
Many-body e�ects, non-Markovian gain model with,

387–389
Many-body perturbation theory (MBPT), 16
Marcus theory, 197
Martin–Schwinger hierarchy, 64
Master oscillator (MO), 697
Material gain, 634–636
Material parameters, sensitivity to geometrical and,

553–556
Material susceptibility, 701–702
Matsubara Green’s function, 60, 289
Maximum entropy principle (MEP), 144–145
Maxwell–Bloch approach, 720
Maxwell–Bloch equations, 88, 716, 721, 722
Maxwell–Bloch framework, 717
Maxwell’s equation, 35, 90, 103, 466, 752
Maxwell’s wave equation, 716
MBPT, see Many-body perturbation theory
MEP, see Maximum entropy principle
Merz–Singh–Kollman scheme, 489
Metalorganic chemical vapor deposition (MOCVD),

reactor simulation, 167–168
chemical reaction, 170–172
inGaN multiple quantum well growth stimulation,

174–178
surface-gas reactions and �lm deposition, 172–173
transport equation, 168–170

Method of moments (MOM), partial di�erential
equation, 38

Microscopic Auger recombination processes, 461
Microscopic charge transport, in organic

semiconductors, 196–199
Microscopic polarizations, 749
Mie theory, 468–469
Miller–Abrahams rates, 486
MO, see Master oscillator; Molecular orbital
Mobility

OLED master equation, 481–482
in organic semiconductors, 205–206

Model formulation, SOA
carrier dynamics, 776–777
�nite-di�erence beam propagation method, 781
linearly polarized light, electrical �eld, 778
normalization coe�cient, 779
picosecond optical pulses, 780
spatio-temporal grid, 780–781
traveling wave ampli�er, 777

Modeling nonlinear e�ects, challenges, 751–752
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Modeling of surface states, 552–553
Model simpli�cation, SOA, 781–783
Modi�ed Euler method, 621
Modulation bandwidth, analytical formulae for,

687–688
Molecular dynamics (MD), organic semiconductors,

199–201
Molecular orbital (MO), 195
Møller–Plesset perturbation theory, 15
Monomolecular degradation, OLED, 507
Monte Carlo simulation technique, 37–38, 178, 287
Morphology simulations, in OLED, 490
Motion

Heisenberg equation, 56, 86, 94
Lagrange equation, 133

MQW SOA, 671
carrier transport e�ects in, 653

M-shaped ASE spectra, �attening of, 602
M-shaped (Double-Humped) ASE spectra , SLEDs with,

601–602
Multiband e�ective mass approximation, 19
Multiband envelope function method, 19, 52
Multiband kxp method, see kxp perturbation theory
Multiband model, 635–636
Multiple quantum well (MQW), 633

active region, 614
carrier transport model for, 653–655
InGaN, growth stimulation, 174–178
LEDs, 462, 463
model, e�ective mass approximation, 525–526
structure, 374

Multi-QW NW heterostructures, 402–403

N

Nanocrystal quantum dots (NQD), con�guration
interaction Hamiltonian, 426–430

Nanorods, 397, 541
Nanoscale random alloy �uctuations, 571
Newton–Raphson algorithm, 705
Newton–Richardson approach, 49
Newton’s method, 215
n-fold way algorithm, see Kinetic Monte Carlo method
n-GaN/i-InGaN/n-GaN structures, electron transport in,

569–573
n-GaN/InGaN/p-GaN tunnel-junction structures,

528–530
n-GaN/p-GaN tunnel-junction structures, 528–530
Nitride-based blue LED, 560
Nitride LEDs, 452, 453, 462
Nitride SQW LED structures, 463
Noise correlation properties, 730
Noise �gure (NF), 652
Nondegenerate ground states, Hohenberg–Kohn

theorem for, 9–10

Nonequilibrium Green’s function (NEGF)
algorithm, 72
contour-ordered, 59–60

Dyson’s equation, 65, 67
Schwinger–Keldysh contour, 63
S-matrix operator, 61

theory, 36, 59
Nonlinear gain suppression, 653, 675, 678
Nonlinear intraband processes, 624
Nonlinearities in III-N semiconductors, 228–229
Nonlinear phenomena in SOAs

and applications
bit error rate estimation, 751
carrier density modulation, 749–750
carrier heating, 750
optical–electrical–optical conversion, 751
optical Kerr e�ect, 750
optical performance monitoring, 751
second harmonic generation, 750
spectral hole burning, 750
two-photon absorption, 750
wavelength conversion, 751

improved modeling of
dielectric response, 748–749
electrical model, 754–755
light–matter interactions, 755–756
numerical implementation, 757
optical model, 752–754
time-domain model, material dispersion in,

756–757
Nonlinear piezoelectricity, electromechanical coupling

with, 243–245
Non-Markovian gain model, with many-body e�ects,

387–389
Nonpolar orientations, in wurtzite semiconductors, 245
Nonradiative Auger recombination, 354, 453, 460–461,

560
Nonradiative decay, 500, 506
Nonradiative recombination, 461, 463, 760
Nonradiative recombination processes, in conventional

InP-based lasers, 277
Nonradiative Shockley–Read–Hall (SRH)

recombination, 458–459
Nonstationary e�ects, HD model, 39
Normalized �ltering function, 650
Numerical discretization, energy-transport model and,

146–152

O

OED, see Oxidation enhanced di�usion
OFAs, see Optical �ber ampli�ers
OLEDs, see Organic light-emitting diodes
One dimensional (1D) oxidation model, 184, 185
One-dimensional wave equation, 717
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1.5-μ InGaAsP/InP tapered ampli�er, 706–712
OPD, see Optical path length di�erence
OPLS, see Optimized potential for liquid simulations
Optical ampli�er devices, 716–717
Optical anisotropy of semiconductor nanowires, 412–413
Optical Bloch equations, 88, 95
Optical–electrical–optical (OEO) conversion, 751
Optical emission spectra, 553, 554
Optical equations, solver for, 705
Optical �ber ampli�ers (OFAs), 611, 612
Optical gain model, with many-body e�ects, 387–389
Optical gain modulation, SOA

ampli�ed data pulse trains, 785–786
chirp magnitude, 785
eye diagrams, 786–787
pulse energy, 784
small-signal gain, 784

Optical Kerr e�ect, 750
Optical models, 700–701
Optical momentum matrix elements, 377, 378
Optical path length di�erence (OPD), 601, 604
Optical performance monitoring, 751
Optical process, in two-level system, 82–84
Optical solvers, coupling carrier transport models with,

53–55
Optical waveguide, 103

antire�ection resonant, 116
beam propagation method application to, 117, 118
circular, 110–112
e�ective index method, 114, 115, 117
modeling, 107
in rectangular coordinate system, 104
rib-loaded, 114
slab, 108–110, 115, 122
theory, 103

Optimized potential for liquid simulations (OPLS), 200,
489

Optoelectronic devices, carrier transport in, 35
Optoelectronics, 4, 90, 220
Orbitals, Löwdin, 21, 22
Organic devices

models, carrier trapping in, 208–210
role of excitons in, 214–215
simulations, numerical aspects, 215–216

Organic light-emitting diodes (OLEDs), 192, 193,
473–474

case studies
current-voltage characteristics, 495
degradation, 506–511
e�ciency, 499–502
electroluminescence of white OLED, 503–506
impedance spectroscopy, 496–498

density of states, 485–487
dri�-di�usion equations, 478–480
electronic coupling elements, 488

kinetic Monte Carlo, 482–483
master equation, 480–482
morphology, 488–490
rates

charge transfer, 483–484
electron-hole recombination, 484–485
energy transfer, 485

reorganization energy, 487–488
scale bridging

Gaussian disorder models, parametrization of,
491–493

stochastic models, 490–491
tabulated mobilities, 493–494

working principles of
blocking layers, 476
charge transport layers, 475–476
electrodes, 474–475
emission layer, 476–477

Organic materials, band structure, 203–205
Organic semiconductors, 191–193

charge generation process in, 215
device models for, 207
electronic structure, 194–196
inorganic semiconductors versus, 193, 214
microscopic charge transport in, 196–199, 207
mobility in, 205–206
molecular dynamics, 199–201
purity and doping, 201

Organic solar cell device models, 208
Ornstein–Uhlenbeck processes, 729
Oxidation enhanced di�usion (OED), 185
Oxidation model, 184–185

P

Partial di�erential equations (PDEs), 717
energy, momentum, and density, 44
in�nite hierarchy of, 39
method of moments, 38

Pauli exclusion principle, 160, 206, 483
PC-LEDs, see Phosphor-converted LEDs
PCW, see Photonic crystal waveguide
PDEs, see Partial di�erential equations
Pearson model, ion implantation, 179–180
Perfectly matched layers (PML), 705
Periodic electron density, 5
Perturbative approach, 487
Phonon(s), 70, 129

crystal vibrations and, 131–136
interactions of, 137
momentum densities, 143
transport equation, 136

Phonon–carrier interaction, 138–140
Phonon–electron scatterings, 139
Phosphide LEDs, 452, 453, 462
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Phosphor-converted LEDs (PC-LEDs), 467–468
Phosphor-converted white light emission, 467–468

light conversion by phosphor, 468–470
white light characteristics, 468

Photon, 70, 81, 86, 141, 215
Photon densities for MQW-based SOAs, spatial

distributions of, 669
Photon density model, 645–646
Photonic crystal (PC), 116
Photonic crystal waveguide (PCW), 116
Photonic integrated circuit (PIC) technology, 612
Photonics-based approach, 286
Photon momentum approximation, 92
Photon recycling process, 701
Picosecond optical pulses, 660, 777, 780
Piezoelectric coe�cient, of wurtzite III-N

semiconductors, 226
Piezoelectricity

e�ect, 220
in electronic materials, 220–222
linear, electromechanical coupling with, 240–243
nonlinear, electromechanical coupling with, 243–245

Piezoelectric polarization, 219, 382, 544, 567
alloys, 239
of semiconductor nanowires, 405–406

Piezoelectric tensor, 222–223
formalism, full second-order, 229–232
in zincblende crystals, 223

Planar heterostructures, 398, 402, 403, 405
Planck’s law, 84
Plane wave (PW) implementation, k⋅p Hamiltonian and

Coulomb integrals, 423–424
PLED, see Polymer LED
PML, see Perfectly matched layers
Poisson/dri�-di�usion calculation, 547
Poisson e�ect, 403
Poisson–Schrödinger solver, 50
Polarization

Heisenberg equation, 87
piezoelectric, 219

alloys, 239
spontaneous

alloys, 238
III-N semiconductors, 233–236
wurtzite crystals, 226

strain-induced, 224–226
wurtzite crystals, 225–226
zincblende crystals, 224–225

Polarization-assisted tunneling e�ect, 523–524
Polarization controllers, 762
Polarization-dependent ASE output spectral density, 620
Polarization-induced electric �eld, 555
Polarization insensitivity, 636–642
Poly(3-hexylthiophene-2,5-diyl) (P3HT), 202
Polyaniline, 192, 194

Polymer LED (PLED), 473–474
P-orbitals, 195–196
Primitive cell, for two-dimensional lattice, 130, 131
PROCOM simulation, 167, 170
Propagators, 59
p-type doping, 476, 530
Pulse ampli�cation analytic model, 623–626
Pulse photon energy, 773
Pump and probe, 622, 627–628, 759, 766
Pump peak power, 776
Pump-probe technique, 775

Q

QCSE, see Quantum-con�ned Stark e�ect
QDash, see Quantum dash
QDSOAs, see Quantum-dot semiconductor optical

ampli�ers
QD SOAs, carrier transport model for, 653–655
Quantization of light �eld, 97–99
Quantum-con�ned Stark e�ect (QCSE), 284–285, 405,

547
Quantum-corrected dri�-di�usion, 50–52

capture and escape process, 52–53
coupling carrier transport model, 53–55
semiconductor Bloch equation, 55–57

Quantum corrections, 50, 58, 549, 552
Quantum dash (QDash), 633

SOAs, 615
Quantum disk nanowire light-emitting diodes

EFA models, 545–547
empirical tight-binding approach, 547–549
light-emitting nanorod arrays, 541
modeling of surface states, 552–553
multiscale simulation approach, 542
nanostructure based emerging electronic device,

541–542
numerical methods, 542–543
self-consistent calculations, 549–552
sensitivity to geometrical and material parameters,

553–556
strain maps, 543–545
transport properties, 545

Quantum-dot charge-carrier
dynamics, 721
scattering, 722–727

Quantum-dot epi structures for SLEDs, 591
Quantum-dot ground-state dynamics, 741
Quantum-dot-in-a-well material equations, 718–722
Quantum dots (QDs), 397, 419–420, 550, 551, 615

Cd-based chalcogenide QDs
CdSe/CdTe CQDs, radiative lifetimes in, 437–438
CdSe/CdTe Type II CQDs, absorption edge

wavelength, 434–437
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CdSe QD arrays, charge carrier mobility, 442–443
correlation energy, 438–441
equivalent CdTe and CdTe/CdSe QD, absorption

spectra, 441–442
con�guration interaction Hamiltonian for NQD,

426–430
core/shell QD structure, 420–421
dielectric con�nement e�ect, 424–426
k⋅p Hamiltonian and Coulomb integrals, PW

implementation, 423–424
k⋅p method, for SP electronic structure, 421–423
materials, 633
nanocrystal arrays, transport properties, 430–434

Quantum-dot scattering rates, 728
Quantum-dot semiconductor ampli�ers, rabi oscillations

in, 739–741
Quantum-dot semiconductor optical ampli�ers

(QDSOAs), 715–716, 716
delay-di�erential-equation model, 717–718
�t functions for scattering rates, 727–728
gain recovery dynamics in, 736–739
modeling of spontaneous emission, 728–731
QD charge-carrier scattering, 722–727
quantum-dot-in-a-well material equations, 718–722
rabi oscillations in QD semiconductor ampli�ers,

739–741
static characterization of, 731–735

Quantum mechanical
e�ects, 716
electron, 549
models, 543

Quantum model, 543
Quantum-well charge-carrier density, 722, 726
Quantum wells (QWs), 4, 19, 50, 365, 389–395, 397, 591,

759
band structures

bulk semiconductors, 366–370, 379–387
of strained-layer QW, 371–376

in Green LEDs, 582
imperfect, 582–584
in�uence of possible imperfection in, 580–584
optical gain model with many-body e�ects, 387–389
optical matrix elements, 377–378

Quasi-analytic static model, 615–617
Quasi-3D algorithm, 703, 704, 706
Quasi-Fermi distribution, 725
QWs, see Quantum wells

R

Rabi �ops, 85
Rabi oscillations, 739, 740

in QD semiconductor ampli�ers, 739–741
Radial semiconductor NW heterostructures, 400–401
Radiation, blackbody, 82

Radiation mode, optical waveguide, 115
Radiative recombination, 459–460
Radiative spontaneous recombination, 634–636

rate, 634, 673
Radiative stimulated recombination rate, 634
Random alloy

approach, 548, 549
�uctuation with dri�-di�usion solver, 568
modeling, 562–569
unipolar transport for, 569–573

Random alloy distribution, 559–562, 563–564
carrier transport in Green LEDs, 580–584
MQW InGaN LED and comparison to traditional

model, 573–580
random alloy modeling, 562–569
unipolar transport for random alloy system, 569–573

Random dopant �uctuations (RDFs), 407–409
Random indium �uctuations model, 582–584
Rate equations

ampli�ed spontaneous emission, 647–652
basic, 642–647
extended rate equation model, 652–656

Rayleigh–Ritz variation principle, 10
Ray tracing, in LED dice, 466
RDFs, see Random dopant �uctuations
Reactor simulation, MOCVD, 167–168
Reciprocal lattice, Wigner–Seitz cell of, 131
Recombination models, of light-emitting diodes,

458–461
Recombination rate for OLED, 479
Recombination reaction, 173
Rectangular dielectric waveguide, 113
Recursive coe�cients, 756–757
Red/amber AlGaInP LEDs, 462, 467
Red LED structure, 462, 463

near-�eld emission intensity distribution, 465, 466
Reduced zone scheme, electron band structure, 6
Re�ecting SLEDs (R-SLEDs)

design, 605
L-I characteristics of, 593–597

Re�ective semiconductor optical ampli�er (RSOA), 614,
632–633

Refractive index, 105, 108, 110–113, 123, 591–592, 644,
700, 752

Refractive index variation, 634–636
Reorganization energy, for OLED, 487–488
Repeated zone scheme, electron band structure, 6
Residence-time algorithm, see Kinetic Monte Carlo

method
Residual facet re�ectivities, 777
Resonant energy transfer (RET), see Electronic excitation

(energy) transfer
Resonant frequencies, 649
Rib-loaded optical waveguide, 114
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Rotating wave approximation (RWA), 85, 716, 721
RSOA, see Re�ective semiconductor optical ampli�er
RWA, see Rotating wave approximation

S

Scattering self-energies, 69–72
SCGF approach, see Self-consistent Green’s function

approach
SCGF-LCINS approach, 293–294
SCH, see Separate con�nement heterostructure
Scharfetter and Gummel-�nite-box (SG-FB) scheme, 50
Scharfetter–Gummel scheme, 146, 149
Schrödinger equation, 8–13, 17, 19, 20, 634

and emission rate, 568–569
Schrödinger picture, two-level system in, 84–86
Schrödinger’s equation, in inde�nite potential well, 194
Schwinger–Keldysh contour, 62, 63
SCNM, see Self-consistent numerical method
SCR, see Strong con�nement regime
Screened hybrid functional (HSE), 16
Secondary ion mass spectrometry (SIMS)-interpolation

approach, 178
Secondary peak suppression ratio (SPSR), 604
Second harmonic generation (SHG), 750
Second order perturbation theory, 18, 290
Seebeck e�ect, 143
Self-and cross-gain modulation (SGM/XGM), 749
Self-and cross-phase modulation (SPM/XPM), 749
Self-consistent approach, 543, 657
Self-consistent band pro�les, 550
Self-consistent calculations, 549–552
Self-consistent classical/quantum calculation, 551
Self-consistent Green’s function (SCGF) approach,

288–296
Self-consistent numerical method (SCNM), 660,

664, 677
Self-consistent quantum densities, 553
Self-consistent quantum/dri�-di�usion coupling, 554
Self-energies

boundary, 68–69
Green’s function with, 72
scattering, 69–72

Self-phase modulation (SPM) e�ect, 615
Semianalytical algorithm, implementation of, 675–677
Semiconductor(s)

band structure, 7–8
Bloch equations, 55–57, 95
crystalline, 191–193
deep-level impurities in, 256
devices, 697
direct band-gap, 141
heat transport in, 140, 142–144
inorganic, 91
lasers, development of, 251

light-matter coupling in, 92
materials, 3–4

tetrahedrally bonded, 8
modeling technology, 167
organic, see Organic semiconductors
two-band direct-gap, 90
wurtzite, electromechanical coupling in, 239–240

Semiconductor-based optical ampli�ers (SOAs), 715
Semiconductor-light interaction, 90
Semiconductor nanocrystals, see Quantum dots (QDs)
Semiconductor nanowires (NWs), 397–398

charge con�ning mechanisms in
approaches to compute elastic properties, 399–400
bulk electronic properties, 398
elastic properties of, 400–405
piezoelectric and spontaneous polarization,

405–406
continuous, homogeneous doping-related

background charge, 406–407
crystal-phase bandgap engineering, 410–412
dielectrically enhanced ionization energies of

dopants, 409–410
heterostructures in, 397, 398
optical anisotropy of, 412–413
random dopant �uctuations, 407–409

Semiconductor optical ampli�ers (SOAs), 283–285, 612,
632, 633, 697

analysis of reference, 707–709
basic principles, 612–615
basic structure, 612
bulk SOA static model including ASE, 617–621
carrier density excursions, 758
dynamics and pattern e�ects, 772–776
electrical gain modulation, 791–792
FWM analytic model, 627–628, 751
model formulation, 776–781
model simpli�cation, 781–783
nonlinear phenomena in, 748–751, see also Nonlinear

phenomena in SOAs
optical �ber ampli�ers, 611
optical gain modulation, 784–787
pulse ampli�cation analytic model,

623–626
quasi-analytic static model, 615–617
structure, 643
time-domain model including ASE, 621–623
wave mixing in, 759

Semiempirical model, 8, 17, 19–20
Sensitivity to geometrical and material parameters,

553–556
Separate con�nement heterostructure (SCH), 752
SHB, see Spectral hole burning
SHB e�ect, see Spatial hole burning e�ect
Shear deformation, 222
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Shockley–Read–Hall (SRH), 479, 568, 642
and Auger recombination, 755
generation/recombination, 141
recombination, 210–214
surface recombination model, 552
trapping and recombination, 208, 619, 702

Si-based APDs, 285
Si-compatible group-IV materials, 286
Si-compatible III-V materials, 286
Signal distortion, 766
Signal spectral dependence, 646–647
Signal-to-noise ratios (SNRs), 613
Silicon

band structure, 7–8, 203, 204
energy bands in, 139
�rst Brillouin zone of, 138–139

Simple predictor-corrector scheme, 549
Simulation, 167

CSUPREM, 178, 186
MOCVD reactor, 167–168
PROCOM, 167, 170

SimulinkⓇ so�ware, 660
Single-carrier charge transport, 481
Single-electron Monte Carlo model, 302–303
Single LED, 530–532
Single-material spherical QDs, 420
Single-particle (SP) electronic structure, k⋅p method for,

421–423
Single-particle Hamiltonian of periodic system, 20
Single-quantum well (SQW)

epitaxy, 592
LED structures, 458

Six-band Pikus–Bir Hamiltonian, 399
SK mode, see Stranski–Krastanov mode
Slab optical waveguide, 108–110, 115, 122
Slater and Koster approach, ETB method, 23
SLED, see Superluminescent light-emitting diode
Slowly varying envelope approximation (SVEA),

717, 754
Small-signal analysis, framework for, 685–686
Small-signal carrier density, 686
Small-signal model for transparent SOA, 685–688
SNRs, see Signal-to-noise ratios
SOA cavity, resonant properties of, 648–651
SOAs, see Semiconductor optical ampli�ers
SOA XPM-based wavelength converter, 625
SOA XPM Mach-Zehnder wavelength converter,

625–626
SOC, see Spin-orbit coupling
Solid-state lighting, 219, 467, 524
Solid-state system, 90–97
Solids, thermal e�ects in, 129
Spatial hole burning (SHB) e�ect, 709, 748
Spatio-temporal grid, 780–781

Spectral hole burning (SHB), 624, 627, 628,
653, 750

gain compression, 77
nonlinear gain compression factor, 782
relaxation time, 774

Spectral photon density, 646, 649, 650, 659, 665
Spectrum broadening e�ect, 560
Spectrum slicing technique (SSM), 751–752
Spin-orbit coupling (SOC)

empirical pseudopotential method, 29–30
empirical tight-binding method, 26–28

Spin-orbit interaction, 7
Split-o� (SO) band, 19
Spontaneous emission, 82

rate contribution, 678
Spontaneous emission (SE) spectra, dilute nitride

quantum well lasers, 271
Spontaneous polarization

alloys, 238
of semiconductor nanowires, 405–406
III-N semiconductors, 233–236
wurtzite crystals, 226

SPSR, see Secondary peak suppression ratio
Square optical waveguide, 115
SSM, see Spectrum slicing technique
Steady-state carrier density rate equation, 674
Steady-state conditions, 185, 464, 616
Steady-state device gain, 669–671
Steady-state models, 658–659
Steady-state semianalytical model, 671–674

counter propagating photon density distributions,
675–677

fundamentals of, 674–675
Steady-state signal, 667–669
Steady-state TW-SOA models, 656–657
Steady-state wideband model, 661
Steady-state wideband self-consistent numerical model

(SCNM), 660–662, 666
implementation of, 662–667
results and discussion, 667–671

Stimulated emission, 83, 84
Stochastic approach, 651–652
Stochastic models, for OLED, 490–491
Strain, 542–543
Strained-layer quantum wells

wurtzite semiconductor, 373–376
zinc-blende semiconductor, 371–373

Strain-induced polarization, 224–226
in wurtzite crystals, 225–226
in zincblende crystals, 224–225

Strain maps, 543–545
Strain modeling, 564–567
Stranski–Krastanov (SK) mode, 718
Stress-strain-displacement relations, 566–567
Strong con�nement regime (SCR), 440–441
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Superlattices, continuity equation in, 236–237
Superluminescence regime, 589
Superluminescent light-emitting diode (SLED), 589

design and modeling of, 591–600
designs with speci�ed targets, 600–605
development of, 590

Surface-gas reactions, 172–173
Surface recombination, 461

in LED dice, 467
SVEA, see Slowly varying envelope approximation
Synopsys Sentaurus Device simulator, 54
Sze–Bethe thermionic-dri� di�usion model, 49

T

Tabulated mobilities, OLED, 493–494
TADF, see Thermally activated delayed �uorescence
Taper angle, con�nement factor and, 710–712
Tapered semiconductor optical ampli�ers

far-�eld (FF) pattern, 698
model implementation, 703–706
modeling approaches, 698–703
1.5-μ InGaAsP/InP tapered ampli�er, 706–712
semiconductor devices, 697

Tapered waveguides, 121–122, 772
TB, see Tight-binding
TB model, for dilute nitride alloys, 261, 263
TCAD, see Technology computer-aided design
TDs, see Threading dislocations
Technology computer-aided design (TCAD) process

simulation, 167, 181
TeleGeography, 631
TE polarization, see Transverse electric polarization
Tetrahedrally bonded semiconductor materials, 8
Thermal conductivity, gas, 173
Thermal e�ects, in solids, 129
Thermal equations, solver for, 705–706
Thermally activated delayed �uorescence (TADF), 477
Thermal models, 701
Thermoelectric model, 47
Thin �lms, transport, trapping, and recombination in,

202–203
“Thinning of a Poisson process”, 491
Threading dislocations (TDs), 561
3D dri�-di�usion charge control (3D-DDCC)

program, 562
3D examination of Green LEDs, 582–384
3D FEM method, calculation of strain with, 564–567
Three-dimensional (3D) atom probe tomography, 560
Three-dimensional (3D) con�ned systems, 420
3D vectorial model of VCSELs, 54
Three-dimensional (3D) simulation, 167
3D crystal lattice, 129–130
3D KMC OLED lifetime simulations, 507
3D random alloy �uctuation model, 580

3D steady-state heat equation, 701
III-nitride LEDs, e�ciency droop IN, 524
III-nitride semiconductor, electronic polarization and

interface charges, 527
III-nitride tunnel junction, 528–530
III-N semiconductors

continuity equation and quantum well structures,
236–237

dealing with alloys, 237–239
nonlinearities in, 228–229
piezoelectric coe�cients

linear, 227–228
second-order, 232–233

spontaneous polarization, 233–236
wurtzite

numerical approaches, 232–233
piezoelectric coe�cients, 226
proper versus improper coe�cients, 226–227

III-V lasers on silicon, monolithic integration, 286–287
III-V semiconductor NWs, 398
Tight-binding (TB) method, 259–264, 264–269
Time-dependent (nonstationary) input optical

signal, 657
Time-domain model including ASE, 621–623
Time-domain simulations, 751–752
Time-independent Schrödinger equation, 9, 19, 28, 568
TLM, see Transmission line model
TMM, see Transfer matrix method
TM polarization, see Transverse magnetic polarization
TMW, see Traveling microwave
TMW small-signal model, 680–684
Transfer matrix method (TMM), 658, 659
Transition energy, photons, 141
Transmission line model (TLM), 660
Transport

of electrons, 543
equations, of light-emitting diodes, 456–458
in organic semiconductors, 196–199
properties, 545

Transversal waves, 131
Transverse electric (TE) polarization

wurtzite structure, 378
zinc-blende structure, 377

Transverse electric (TE)-polarized optical gain, dilute
nitride quantum well lasers, 271

Transverse magnetic (TM) polarization
wurtzite structure, 378
zinc-blende structure, 377–378

Transverse optical con�nement factor, 717
Trap-assisted recombination, see Shockley–Read–Hall
Traveling microwave (TMW), 656
Traveling-wave approach, 617–619
Traveling-wave models (TWM), 700, 701
Triplet–polaron quenching (TPQ), 477, 500, 507, 509
Triplet–triplet annihilation (TTA), 500
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Triplet–triplet quenching, 477
Tunnel-junction light-emitting diodes

blue tunnel-junction LED, 532–536
green tunnel-junction LED, 535–538
physical models and simulation parameters

bulk band structure, 524–525
electronic polarization and interface charges, 527
impurities, incomplete ionization, 526–527
interband tunneling model, 527–528
MQW model, 525–526

polarization-assisted tunneling e�ect, 523–524
single LED, 530–533
III-nitride LEDs, e�ciency droop, 524
III-nitride tunnel junction, 527–530

TWM, see Traveling-wave models
Two-band direct-gap semiconductor, 90
“Two-band” model, 634, 635
Two-dimensional lattice, primitive cell for, 130, 131
Two-dimensional (2D) simulation, 167
Two-dimensional space-spectrum mesh, 663
Two-dimensional (2D) spatiotemporal mesh, 680
Two-level system

in Heisenberg picture, 86–90
optical process in, 82–84
in Schrödinger picture, 84–86

Two-photon absorption (TPA), 750, 773
TW-SOA, operation principles of, 632–633

U

Ultraviolet (UV) LEDs, 453
Unipolar models, 700, 702, 748, 764
Upwind scheme numerical implementation, 678–680

V

Vacuum stability condition, 60
Valence bands

electrons in, 138
strained-layer QW

wurtzite semiconductors, 375–376
zinc-blende semiconductors, 371–373

Valence force �eld (VFF) method, 399, 401, 543, 548, 551
Variable step size method (VSSM), 482, 483
VCA, see Virtual crystal approximation
VCSELs, see Vertical-cavity surface emitting lasers
VCSOAs, see Vertical-cavity semiconductor optical

ampli�ers
VECSELs, see Vertical-external-cavity surface-emitting

lasers
Vector, crystals, 223
Vegard’s law, 228, 237, 239, 254, 255, 548
Vertical-cavity devices, 281
Vertical-cavity semiconductor optical ampli�ers

(VCSOAs), 281, 284

Vertical-cavity surface emitting lasers (VCSELs), 35, 50,
116, 252

resonance frequency, 53–54
3D vectorial model, 54

Vertical-external-cavity surface-emitting lasers
(VECSELs), 281, 282

VFF method, see Valence force �eld method
Virtual crystal approximation (VCA), 548
Viscosity, gas, 173
VSSM, see Variable step size method

W

WA-FDBPM, see Wide-angle �nite-di�erence beam
propagation method

Wall-plug e�ciency (WPE)
of blue light-emitting diode structures, 535
droop of, 532
of green single light-emitting diode, 535, 537, 538

Wave functions, of ethene molecule, 195, 196
Waveguide

bent, 123–124
in-di�used, 114
optical, see Optical waveguide
photonic crystal, 116
rectangular dielectric, 113
tapered, 121–122

Waveguide design, 635–636–642
Waveguide polarization sensitivity, 637
Wave-guiding mechanism, 116
Wavelength

conversion, 751
emission, 4

Wavelength division multiplexing (WDM), 632, 751, 773
Wavelength independent parameters, 777
Wave mixing e�ects, in SOA, 747–748

CDM measurement, 762
simulation parameters, 759
time-domain model, 748, 751, 756–757

Wave vector-dependent deformation potentials, 38
WDM, see Wavelength division multiplexing
Wentzel–Kramers–Brillouin (WKB) tunneling, 577
Wide ampli�cation spectrum, 632
Wide-angle �nite-di�erence beam propagation method

(WA-FDBPM), 703, 704
Wiener–Khinchin theorem, 603, 730
Wigner–Seitz cell, 130

of reciprocal lattice, 131
WPE, see Wall-plug e�ciency
Wurtzite crystals, 221

crystal directions in, 224
piezoelectric coe�cients, second-order, 231
piezoelectric tensor in, 223
spontaneous polarization in, 226
strain-induced polarization in, 225–226
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Wurtzite III-N semiconductors
numerical approaches, 232–233
piezoelectric coe�cients of, 226
proper versus improper coe�cients, 226–227

Wurtzite InN, electronic band structure, 25
Wurtzite nanostructure, multiband envelope-function

model for, 52
Wurtzite semiconductors

with arbitrary crystal orientation, 383–385, 386–387
electromechanical coupling, 239–240

with linear piezoelectricity, 240–243
with nonlinear piezoelectricity, 243–245

examples of, 392–395
Luttinger–Kohn Hamiltonian

block-diagonalized 3 × 3 Hamiltonian,
369–370

6 × 6 Hamiltonian for valence band, 368–369
nonpolar orientations in, 245
strained-layer QW

eigenvalues and eigenfunctions screening,
375–376

energy splitting, 374–375
internal �eld, 373–374

structure, optical matrix elements, 378
WZ III-V semiconductors, 412

X

XGM wavelength converter, 622–623

Z

Zerner’s intermediate neglect of di�erential overlap
(ZINDO), 198, 488

Zero facet re�ectivities, 612, 753
Zincblende crystals, 221

crystal directions in, 224
piezoelectric coe�cients, second-order, 231
piezoelectric tensor in, 223
strain-induced polarization in, 224–225

Zinc-blende semiconductors
with arbitrary crystal orientation, 379–383, 386
examples of, 387–392
Luttinger–Kohn Hamiltonian

block-diagonalized 3 × 3 Hamiltonian, 367–369
6 × 6 Hamiltonian for valence band, 366–367

strained-layer QW
conduction band, 371
valence band, 371–373

structure, optical matrix elements, 377–378
ZINDO, see Zerner’s intermediate neglect of di�erential

overlap
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