DISTR[BUTE'




DISTRIBUTED FEEDBACK
LASER DIODES

Principles and Physical Modelling

H. Ghafouri-Shiraz
B.S.K. Lo

University of Birmingham, UK

JOHN WILEY & SONS

Chichester « New York « Brisbane « Toronto  Singapore



CONTENTS

Preface

Glossary of Abbreviations

Glossary of Symbols

Introduction
1.1 Historical Progress
1.2 Optical Fibre Communication Systems
1.2.1 Intensity modulation with a direct detection
scheme
1.2.2 Coherent detection scheme
1.3 System Requirements for High-speed Optical Coherent
Communications
1.3.1 Spectral purity requirements
1.3.2 Spectral linewidth requirements
1.4 Summary
1.5 References

Principles of Distributed Feedback
Semiconductor Lasers: Coupled-Wave Theory

2.1
22

23

Introduction

Basic Principle of Lasers

2.2.1 Absorption and emission of radiation

2.2.2 The Einstein relations and the concept of
population inversion

2.2.3 Dispersive properties of atomic transitions

Basic Principles of Semiconductor Lasers

2.3.1 Population inversion in semiconductor junctions

2.3.2 Principle of the Fabry-Perot etalon

2.3.3 Structural improvements in semiconductor lasers

Xi
XV

xvii

19
28
28

33

33
34
34

36
38
40
41
43
46



viii

CONTENTS

2.3.4 Material gain in semiconductor lasers
2.3.5 Total radiative recombination rate in
semiconductors
2.4 Coupled-wave Equations in Distributed Feedback
(DFB) Semiconductor Laser Diodes
2.4.1 A purely index-coupled DFB laser diode (LD)
2.4.2 A mixed-coupled DFB LD
2.4.3 A gain-coupled or loss-coupled DFB LD
2.5 The Coupling Coefficient
2.5.1 A structural definition of the coupling coefficient
for DFB semiconductor laser diodes
2.5.2 The effect of corrugation shape on the coupling
coefficient
2.5.3 Transverse field distribution in an unperturbed
waveguide
2.5.4 Results based upon the trapezoidal corrugation
2.6 Summary
2.7 References

Structural Impacts on the Solutions of Coupled-wave
Equations: an Overview

3.1 Introduction
3.2 Solutions of the Coupled-wave Equations
3.3 Solutions of Complex Transcendental Equations using
the Newton-Raphson Approximation
3.4 Concepts of Mode Discrimination and Gain Margin
3.5 Threshold Analysis of a Conventional DFB Laser
Diode
3.6 Impact of the Corrugation Phase at Laser Facets
3.7 The Effects of Phase Discontinuity along the DFB
Laser Cavity
3.7.1 Effects of phase shifts on the lasing
characteristics of a 1PS LD
3.7.2 Effects of PSP on the lasing characteristics of a
1PS DFB LD
3.8 Advantages and Disadvantages of a Quarterly
Wavelength Shifted (QWS) DFB LD
3.9 Summary
3.10 References

Transfer Matrix Modelling in DFB Semiconductor
Lasers
4.1 Introduction
4.2 Brief Review of Matrix Methods
4.2.1 Formulation of transfer matrices

48

51

55
60

61
63

63

66

70
74
80
81

83

83
84

87
88

90
91

93
97
98
100

102
103

105

105
106
108



4.3
4.4

4.5
4.6

CONTENTS

4.2.2 Introduction of the phase shift (or phase
discontinuity)

4.2.3 Effects of finite facet reflectivities

Threshold Condition for the N-section Laser Cavity

Formulation of the Amplified Spontaneous Emission

Spectrum using the transfer matrix method (TMM)

4.4.1 Green’s function method based on the transfer
matrix formulation

4.4.2 Determination of below-threshold spontaneous
emission power

4.4.3 Numerical results from various DFB LDs

Summary

References

Threshold Analysis and Optimisation of Various
DFB LDs using the Transfer Matrix Method

51
5.2

53

5.4

5.5

5.6
5.7

Introduction

Threshold Analysis of the Three-Phase-Shift (3PS)

DFB Laser

5.2.1 Effects of a phase shift on the lasing
characteristics

5.2.2 Effects of the phase shift position (PSP) on the
lasing characteristics

Optimum Design of a 3PS DFB Laser Structure

5.3.1 Structural impacts on the gain margin

5.3.2 Structural impacts on the uniformity of the
internal field distribution

Threshold Analysis of the Distributed Coupling

Coefficient (DCC) DFB LD

5.4.1 Effects of the coupling ratio on the threshold
characteristics

5.4.2 Effects of the position of the corrugation

5.4.3 Optimisation of the DCC DFB laser structure

Threshold Analysis of the DCC + 3PS DFB Laser

Structure

Summary

References

Above-threshold Characteristics of DFB Laser Diodes:

A TMM Approach
6.1 Introduction
6.2 Determination of the Above-threshold Lasing Mode

6.3

using the TMM
Features of Numerical Processing

110
114
115

117
117
120
122

125
126

129
129

130
132
133
134
135
138
142
143
144
145
148

151
153

155
155

156
160



X

CONTENTS

7

6.4

6.5
6.6

Numerical Results

6.4.1 Quarterly wavelength shifted (QWS) DFB LD

6.4.2 Three phase shift (3PS) DFB LD

6.4.3 Distributed coupling coefficient with a quarterly
phase-shifted (DCC 4+ QWS) DFB LD

6.4.4 Distributed coupling coefficient with a three
phase shift (DCC + 3PS) DFB LD

Summary

References

Above-threshold Analysis of Various DFB Laser
Structures using the TMM

7.1
72
7.3
7.4
7.5

7.6
7.7

Introduction

Single Mode Stability in a DFB LD

Numerical Results on the Gain Margin of DFB LDs
Above-threshold Spontaneous Emission Spectrum
Spectral Linewidth

7.5.1 Numerical results on the spectral linewidth
Summary

References

Conclusions

8.1
8.2
8.3

8.4

Index

Conclusions

Limitations on the TMM Analysis

Future Research

8.3.1 Extension to the analysis of quantum well (QW)
devices

8.3.2 Extension to gain coupling devices

8.3.3 Further investigation of optical devices to be
used in the wavelength division multiplexing
(WDM)

8.3.4 Switching phenomena

References

163
164
167

170

173
175
176

177

177
178
181
188
191
196
198
199

203

203
206
206

206
206

207
207
207

211



GLOSSARY OF
ABBREVIATIONS

1PS
3PS
ASK
AlGaAs
BER
BC
BH

CP
CPM
CSP
CW
DBR
DCC
DD
DFB
DPSK
EDFA
EIM
FDM
FP
FSK
GaAs
GP
HE/CP
HE/IP
IF

IM
InGaAsP

single phase shift

three phase shift

amplitude-shift keying

aluminium gallium arsenide

bit error rate

buried crescent

buried heterostructure

corrugation position
continuous-pitch-modulated
channelled substrate planar
continuous wave

distributed Bragg reflector
distributed coupling coefficient
direct detection

distributed feedback

differential phase shift keying
erbium-doped fibre amplifier
effective index method

frequency division multiplexing
Fabry-Perot

frequency-shift keying

gallium arsenide

geometric progression

heterodyne receiver with coherent post-detection
heterodyne receiver with incoherent post-detection
intermediate frequency

intensity modulation

indium gallium arsenide phosphide



xvi  GLOSSARY OF ABBREVIATIONS

InP
ISDN
ISI
LD
MOCVD
MPS
MQW
NRZ
OEIC
PS
PSK
PSP
Qw
QWS
RG
RW
RZ
SCH
SHB
SLA
SLM
SMF
SMSR
TG
TLM
TE
™
T™MM
WDM
WG

indium phosphide

integrated service digital network
inter-symbolic interference

laser diode

metal-organic chemical vapour deposition
multiple-phase shift

multiple quantum well
non-return to zero

optoelectronic integrated circuit
phase-shifted

phase-shift keying

phase-shift position

quantum well

quarterly wavelength shifted
rectangular grating

ridge waveguide

return to zero

separate confinement heterostructure
spatial hole burning
semiconductor amplifiers

single longitudinal mode

single mode fibre

side mode suppression ratio
triangular grating

transmission line matrix
transverse electric field
transverse magnetic field

transfer matrix method
wavelength division multiplex
waveguide




GLOSSARY OF SYMBOLS

Azl

By,

¢

c.c.

C

Cn

Cs

d
dn/dN
D, Dgg+
e or exp

differential gain

parameters governing the base width of the gain
spectrum or the gain curvature

wavelength shifting coefficient or differential peak
wavelength

radiative bimolecular recombination

Einstein coefficient of spontaneous emission
Einstein coefficient of stimulated emission

free space velocity

complex conjugate

Auger recombination coefficient

weighted function

weighted function

active layer thickness

differential index

diffusion coefficient

exponential

electric field vector

self-explanatory parameters

occupied conduction band at energy E,
occupied valence band at energy Ey,
equilibrium Fermi level

conduction and valence band edge, respectively
quasi-Fermi levels in the conduction band and valence
band, respectively

energy gap

complex forward propagating wave at 2
complex backward propagating wave at z
intrinsic Fermi level

occupied valence band at energy E;

occupied conduction band at energy E;



xvili

Eu(2)
f
f(E)
F
Fo(2)

fij
F

Flkl

8
g(Ey)
Bpeak
Sih

8i

G
le)
G
Gz 7
h

hf = hc/A
I

1

favg
I
1(z)

J

Jin
H,(2)
k

K’

ko

k

n = ./(e/en)

GLOSSARY OF SYMBOLS

complex Fourier component of the electric field
optical frequency

Fermi-Dirac distribution function

flatness

Langevin noise term

matrix elements (for i, j = 1, 2) of the matrix F
forward transfer matrix

(k =1 to N) forward transfer matrix = TP
material gain

gain parameter

peak material gain

threshold gain

matrix elements (for i, j = 1, 2) of the matrix G
backward transfer matrix

(k =1 to N) backward transfer matrix
amplifying term

Green’s function

Planck’s constant (6.63 x 1073 J s)

photon energy

identity matrix

injection current

average field intensity

threshold current

local field intensity

V=1

nominal threshold current density

complex Fourier component of the magnetic field
propagation constant

complex propagation constant

free space propagation constant

Boltzmann's constant (1.38 x 1072* J/K )
complex propagation constant for unperturbed structure
self-explained parameter

self-explained parameter

self-explained parameter

local frequency tuning efficiency

overall laser cavity length

order of Bragg diffraction

mass of electron

effective mass of electron

effective mass of hole

average matrix element of the Bloch states
slowing varying envelope function

momentum matrix of the carrier transition
refractive index



no
ny
n2
Nact
Nelad

Rini

N

Ptm]
Pnum
Pmut

Px

q

r
ry,rn

i, Fz

rspoa(EZI)
rsim(E21)
R

R(N)

R(2)
R!

RH

Ry, R;
Ry
R
Ra—ob
Rb—~a
R._.p(net)
S

S!

SH'
S(z)

GLOSSARY OF SYMBOLS xix

steady-state refractive index at threshold

active layer refractive index

cladding layer refractive index

active layer refractive index

cladding layer refractive index

group refractive index

refractive index at zero current injection

population inversion factor

carrier concentration (or electron density)

carrier concentration at transparency

carrier concentration at energy E; inside the valence
band

carrier concentration at energy E> inside the
conduction band

carrier concentration or density at threshold

optical power

phase shift matrix

total number of photons found inside the laser cavity
mutual interaction between the coupled waves R(z)
and §(z)

amplified spontaneous emission power

electronic charge

coupling ratio k;/k2

complex reflection coefficients at the left and right facets,
respectively

amplitude reflection coefficients at the left and right
facets, respectively

spontaneous emission rate

stimulated emission rate

rate of non-coherent carrier recombination

carrier recombination rate excluding stimulated
emission

complex amplitude term

first-order derivative of R(z)

second-order derivative of R(z)

complex coefficients

rate of spontaneous emission

rate of stimulated emission

overall downward transition between two energy bands
overall upward transition between two energy bands
net downward transition between two energy bands
photon density

first-order derivative of S(z)

second-order derivative of S(z)

complex amplitude term



X

GLOSSARY OF SYMBOLS

51.52
f.1 s l"z
tij

T
lel
T
Uij
U
U{k:
4

Ve

w

Zy(x), Zy(x)
Zy(2), Z2(2)

Aeff

R R
§':‘:

A
[

Rl RI RI R
~

£

X>®=

complex coefficients

amplitude transmission coefficients at laser facets
matrix elements (for i, j = 1, 2) of the matrix T
forward transfer matrix

(k =1 to N) forward transfer matrix

temperature in degrees Kelvin

matrix elements (for i, j = 1, 2) of the matrix U
backward transfer matrix

(k =1 to N) backward transfer matrix

volume of the active volume

group velocity

active layer width

Wronskian term

distance spans by the rising and the dropping edges of
the corrugation

distance spans by the bottom width of the corrugation
distance spans by the top width of the corrugation
transverse direction

lateral direction

matrix elements (for i, j = 1, 2) of the matrix Y
overall transfer matrix chain using the forward propa-
gation matrix

longitudinal direction

corrugation functions

solutions of the homogeneous wave equation satisfying
the boundary conditions at the left and right facets,
respectively

matrix elements (for i, j = 1, 2) of the matrix Z
overall transfer matrix chain using backward propagation
matrix

amplitude gain coefficient

steady-state amplitude gain

absorption loss in the active layer

absorption loss in the cladding layer

effective linewidth enhancement factor

intrinsic linewidth enhancement factor

internal cavity loss

scattering loss at heterostructure interface

average amplitude gain

average amplitude gain for the lasing mode

average amplitude gain for the most probable side mode
propagation constant

the Bragg propagation constant

complex propagation constant



GLOSSARY OF SYMBOLS xxi

r optical confinement factor

b detuning coefficient

8ij Kronecker delta function

H) average detuning coefficient gain

5L average detuning coefficient for the lasing mode

SsM average detuning coefficient for the most probable side
mode

A spin-orbit splitting

Aa gain margin

Ag perturbed relative permittivity induced by the
corrugation

£ non-linear gain coefficient

Eini average relative permittivity

&' complex permittivity

£0 permittivity of free space (8.854 x 10~'? F/m)

ni internal quantum efficiency

6 relative phase difference between perturbation of the
refractive index and the amplitude gain

6; effective phase shift

6 complex electric field phase shift between section k and
(k—1)

K coupling coefficient

Kavg average coupling coefficient used in a DCC laser
Structure

Ki index coupling coefficient

Kg gain coupling coefficient

KRS forward coupling coefficient

KSR backward coupling coefficient

A lasing wavelength

AB the Bragg wavelength

Ac complex wavelength A. = A + A;

Aj imaginary wavelength

Ath lasing wavelength at threshold

Ao peak wavelength at zero gain transparency

A corrugation period

Av spectral linewidth

Avgp spectral linewidth due to spontaneous emission

AUNN spectral linewidth due to local fluctuation of the carrier
density

Avuns spectral linewidth due to the correlation between the
local carrier and photon changes

b g mathematical constant

self-explained parameter, p = jk/(a — jé + y)
linear recombination lifetime

“



xxii  GLOSSARY OF SYMBOLS

™ carrier recombination lifetime

v position factor

vy, W, complex corrugation phase terms associated with r;
and r;

w angular frequency
Q corrugation phase at z origin



1

INTRODUCTION

Communication is a process in which messages, ideas and information are
exchanged between two individuals. From the early days when languages
were developed, the methods people use to communicate have experienced
a dramatic evolution. Nowadays, the rapid transmission of information over
long distances and instant access to various information sources have become
conspicuous and important features of our society.

The rapidly growing information era has been augmented by a global
network of optical fibres [1]. By offering an enormous transmission bandwidth
of about 10" Hz and a low signal attenuation, the low-cost, glass-based,
single-mode optical fibre (SMF) provides an ideal transmission medium. In
order that information can be carried along the SMF, information at the
transmitter side is first converted into a stream of coherent photons. Using a
specially designed semiconductor junction diode with heavy doping concen-
tration, semiconductor lasers have been used to provide a reliable optical
source required in fibre-based lightwave communication. With its miniature
size — compatible with the SMF — the semiconductor laser diode has played
a crucial role in the success of optical fibre communication systems.

This chapter is organised as follows: In section 1.1, the historical
progress of optical communication is presented. Before exploring the
characteristics of semiconductor lasers, various configurations of optical-fibre-
based communication systems are discussed in section 1.2. Depending on the
type of detection method used, both direct and coherent detection schemes
are discussed. On the basis of the characteristics of the coherent optical
communication systems, the performance requirements of semiconductor
lasers are presented at the end of the chapter. In particular, the significance
of having an optical source that oscillates at a single frequency while having
a narrow spectral linewidth is reviewed.

1.1 HISTORICAL PROGRESS

In the early days of human civilisation, simple optical communication in terms
of signal fires and smoke was used. In those days, only limited information
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could be transferred within line of sight distances. And of course, the trans-
mission quality was strongly restricted by atmospheric disturbances. This
form of visual communication was extended and used in the form of flags and
signal lamps until the early 1790s, when a French scientist, Claude Chappe
[2], suggested a system of semaphore stations. Messages were first trans-
lated into a sequence of visual telegraphs. The message was then transmitted
between tall towers each perhaps 32 km apart. These towers acted as regener-
ators or repeaters so that messages could be transmitted over a longer distance.
However, this method was slow and costly since messages had to be verified
between each tower.

With the beginning of the modern understanding of electricity in the
nineteenth century, scientists started to investigate how electricity might be
used in long distance communication. The invention of the telegraph [3]
and the telephone [4] in the nineteenth century were the two products that
best represent this early stage of the electrical communication era. During
that period of time, optical communication in the atmosphere received less
attention and any systems that were developed were slow and inefficient.
The lack of suitable optical sources and transmission mediums were two
factors that hindered the development of optical communication. It was not
until the early 1960s that the invention of the laser [5] once again stimulated
interest in optical communication. A laser source provides a highly directional
light source in which photons generated are in phase with one another. By
modulating the laser, the coherent, low divergence laser beam elevates the
development of optical communication. Owing to atmospheric attenuation,
however, laser use is restricted to short distance applications.

Long distance communication employing a laser source became feasible
after a breakthrough was reached in 1966, when Kao and Hockham [6] and
Werf [7] discovered the use of a glass-based optical waveguide. By trapping
light along the central core of the cylindrical waveguide, light confined along
the optical fibre could travel a longer distance as compared with atmospheric
propagation. Despite the fact that the attenuation of the optical fibre used was
so high and with virtually no practical application at that time, this new way
to carry an optical signal then received world-wide attention. With improved
manufacturing techniques and intensive research, the attenuation of optical
fibres continued to drop. A fibre loss of about 4.2 dB/km was reported [8] for
wavelengths around 1 um, while at the same time a low-loss fibre jointing
technique became available.

To build an optical communication system based on optical fibres,
research in the 1960s started focusing on the development of other optical
components, including optical sources and detectors [9-11]. A new family of
optical devices based on semiconductor junction diodes were developed. By
converting an electrical current directly into a stream of coherent photons,
semiconductor lasers are considered to be a reliable optical laser source. On
the basis of similar working principles, efficient photo-detectors based on the
junction diode were developed. By responding to optical power, rather than
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optical electromagnetic fields, optical signals received are converted back
into electrical signals. In this early phase of development, the semiconductor
lasers used were restricted to pulse operation at very low temperatures. It was
not until the 1970s when practical devices, operating in continuous wave at
room temperature, became feasible [12].

The availability of both low-loss optical fibres and reliable semiconductor
based optical devices laid the cornerstone for modern lightwave communi-
cation systems. In the late 1970s, lightwave systems were operated at 0.8 um
[13]. The semiconductor lasers and detectors employed in these system were
fabricated using a gallium arsenide alloy (AlGaAs) [14]. The optical fibres
used had a large core of diameter between 50 and 400 um, while the typical
attenuation was about 4 dB/km. At the receiver side of the system, direct
detection was used in which optical signals were directly converted into
baseband optical signals. The overall system performance was limited by
the relatively larger attenuation and inter-model dispersion of the optical
fibre used.

To reduce the cost associated with the installation and maintainence of
the electrical repeaters used in lightwave communication systems, it was
clear that the repeater spacing could be improved by extending the operating
wavelength to a new region between 1.1 and 1.6 um where the attenuation
of the optical fibre is found to be smaller. Figure 1.1 shows the relationship
between the attenuation of a typical SMF and the optical wavelength. For
systems operating at longer wavelengths, semiconductor optical devices were

10-0 /
5.0

1IN /
N1/

05 P\

Attenuation (dB/km)

0.2

0.1
06 08 1.0 1.2 1.4 1.6 1.8 20

Wavelength (um)

Figure 1.1 Attenuation of silica-based optical fibre with wavelength (after [44]).
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fabricated using a quaternary (InGaAsP) alloy. To avoid inter-model compe-
tition associated with high order oscillation modes inside the optical fibre,
optical fibres having a smaller core diameter of about 8 um were used. In
this way, the oscillation in an optical fibre was reduced to a single mode. For
systems operating in such a longer wavelength region, both wavelengths at
1.3 um and 1.55 pm have received much attention. For wavelengths operating
near 1.3 um, it was found that the SMF has a minimum dispersion, and hence
a maximum bandwidth could be achieved. In the early 1980s, many systems
were built using an SMF at around the 1.3 um wavelength. An even lower
fibre attenuation of about 0.2 dB/km was found at around 1.55 um. However,
the deployment of a lightwave system in the 1.55 um region was delayed
owing to the intrinsic fibre dispersion which limits the maximum bit rate
which the system can support. The problem was later alleviated by adopting a
dispersion shifted or dispersion flattened fibre [15,16). Alternatively, semicon-
ductor lasers oscillating in single longitudinal modes were developed [17,18].
By limiting the spread of the laser spectrum, this type of laser was widely
used in upgrading the 1.3 um lightwave system to the 1.55 pm wavelength in
which conventional SMF were used. Since 1988, field trial tests for coherent
lightwave communication systems have been carried out [19-21].

To improve the bit rate of the present lightwave system so that the
available fibre bandwidth could be utilised in a better way, frequency division
multiplexing (FDM) schemes [22] were implemented. Before information
is converted into optical signals, electronic multiplexing is often applied
to mix the signals. Such a system is normally referred to as coherent
optical communication since heterodyne or homodyne detection is used at
the receiver end. By mixing the incoming optical signal with an optical local
oscillator, coherent detection employed a different technique compared with
the direct detection method. In the 1980s, the development of coherent optical
communications were hindered owing to poor spectral purity and frequency
instability in semiconductor lasers. Owing to the advancement in fabrication
techniques, currently, semiconductor lasers show improved performance.

In long-haul optical fibre communication systems, fibre dispersion and
intrinsic attenuation are two major obstacles that affect system performance.
In the 1990s, optical fibre communication systems that tackle these obstacles
continue to develop. To circumvent fibre dispersion, the non-linear optical
soliton, which is able to travel extremely long distances, has been proven both
theoretically [23,24] and experimentally [25,26]. By using optical amplifiers
[27,28] as pre-amplifiers, post-amplifiers and optical repeaters, these wide
band amplifiers have been deployed in optical communication networks.
In the future, networks employing a densely spaced wavelength division
multiplexing (WDM) scheme [29] are expected. As a result, more channels,
and hence more information, can be transmitted over a single optical fibre
link. There is no doubt that a new paradigm of communication comprising
an optically transparent network is already on the way [30].
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1.2 OPTICAL FIBRE COMMUNICATION SYSTEMS

By transferring information in the form of light along an optical fibre, a
communication system based on optical fibres starts to grow rapidly. This
system, like other communication systems, consists of many different compo-
nents. A simple block diagram, as shown in Figure 1.2, represents the various
components required in an optical fibre communication system. At the trans-
mitter side, information is encoded, modulated and is then converted into a
stream of optical signals. At the receiver side, the optical signals received
are filtered and demodulated into the original information. For long distance
applications, repeaters or regenerators have to be used to compensate for
the intrinsic attenuation of the optical fibre. To maximise the amount of
information that can be transferred over a single optical fibre link, various
multiplexing schemes might also be applied.

To ensure the successful implementation of optical fibre communication
links, careful planning and system consideration is necessary. Apart from
the performance characteristics of every component used within the system,
it is also necessary to consider the interactions and compatibility between
various components. Depending on the system requirements, the type of trans-
mission (analogue or digital), the transmission bandwidth required, the cost
and reliability, may vary from one system to another. According to the type of
detection scheme method used at the receiver end, it is common to categorise
an optical fibre system into either a direct detection scheme or a coherent
detection scheme.

Information in Information out
Decoder Decoder
3 | ¥

{ lectrical signal
Demodulator St Demodulator
v Optical signal 1
Multiplexer Bandpass
: : filter
v *
source #| Optical fibre { detector
Transmitter Receiver
side side

Figure 1.2 Simple block diagram showing the various components of an optical fibre commu-
nication system.
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1.2.1 Intensity modulation with a direct detection scheme

By simply varying the biasing current injected into a semiconductor laser
diode at the transmitter, the so-called intensity modulation with direct
detection (IM/DD) scheme was widely adopted. The expression “intensity
modulation” derives from the fact that the intensity of the light emitted at the
transmitter side is linearly modulated with respect to the input signal for either
the digital or the analogue system. The expression “direct detection” is used
because the optical detector at the receiver end responds to optical power,
rather than the electromagnetic field, as compared with radio or microwave
links. In other words, all optical signals received at the optical detector are
demodulated into baseband electrical signals. Owing to its simplicity and
low cost, the IM/DD transmission scheme has had great success, especially
in point-to-point transmission systems. To explore the potential of the optical
spectrum, however, coherent detection has to be used.

1.2.2 Coherent detection scheme

Compared with the IM/DD transmission scheme, coherent optical communi-
cation [31-33] is characterised by mixing the incoming optical signal with
the local oscillator so that the baseband signal (for homodyne detection) or
an intermediate frequency (IF) signal (for heterodyne detection) is generated
at the receiver. Since spatial coherence of the carriers and local oscillators
are exploited, the expression “coherent” is used to describe such a system
configuration. The advantages of coherent detection have long been inves-
tigated and were recognised in the 1960s [34], but it was not until in the
late 1970s that single mode transmission from an AlGaAs semiconductor
laser was demonstrated [35,36). With a narrower spectral output, fibre-based
lightwave systems employing coherent detection became feasible.

Various digital modulation methods have been used in coherent optical
communication, including amplitude-shift keying (ASK), frequency-shift
keying (FSK) and phase-shift keying (PSK) [37,38). They differ from one
another in the way that digital messages can be transmitted by variations in
amplitude, frequency and phase, respectively. For any digital transmission
scheme and receiver architecture, a bit error rate (BER) in the region
between 10~? and 10~'? must be achieved at the receiver side for satisfactory
transmission.

A coherent optical communication system using homodyne/heterodyne
detection has several advantages over the IM/DD transmission scheme
[39,40]. First, coherent detection can improve the receiver sensitivity by about
15-20 dB, which depends on the modulation scheme adopted. As a result,
the spacing between repeaters is improved for long distance communication,
while the transmission rate can be increased in existing long distance links
without reducing the repeater distance. Moreover, by using a modulation like
PSK or FSK, which is well known in communication theory, the receiver can
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Figure 1.3 Schematic diagram of a coherent optical fibre communication system.

push to reach the ideal quantum noise detection limit. In addition, by adopting
densely spaced FDM or WDM, a wider fibre bandwidth can be utilised. In
practice, however, the coherent optical system has a stringent requirement
in device performance. A general block diagram for the coherent optical
communication system is shown in Figure 1.3.

As illustrated in Figure 1.3, two injection lasers are involved in the system.
One acts as a transmitter and the other as a local oscillator. The laser trans-
mitter, which acts as an optical frequency oscillator, can be used directly
in the FSK transmission. An external modulator is optional for the ASK
and the PSK transmission before the optical signals are launched into the
SME. Optical amplifiers like semiconductor amplifiers (SLA) or erbium-
doped fibre amplifiers (EDFA) are used in long distance transmission to boost
the signal.

Under the heterodyne receiver category with a non-zero IF, two different
types of post-detection processes have been adopted. The name heterodyne
receiver with coherent post-detection processing (HE/CP) is usually given to
the one that has an IF carrier recovered at the receiver. Similarly, heterodyne
receiver with incoherent post-detection processing (HE/IP) describes the
system that has no IF carrier recovered. Comparatively, the HE/IP receiver
configuration is the simplest, because IF carrier reconstruction is unnecessary.
However, it shows the weakest receiver sensitivity among the three receiver
designs. Incoherent post-detection processes could be used in conjunction
with several modulation schemes such as ASK, FSK and differential
phase shift keying (DPSK). In the HE/CP receiver design, IF signals are
recovered at the receiver stage for further signal processing. Coherent post-
detection processes can improve the receiver performance and so they are
applicable to any modulation method. However, they are substantially more
complicated than the incoherent method, and stringent device performance
is required.

For zero IF, the homodyne receiver has the best receiver sensitivity because
data are recovered directly from the optical mixing process at the receiver.
A narrower receiver bandwidth and only baseband electronic processing are
required. These offer significant advantages over the heterodyne receivers. In
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practice, however, the technologies required to achieve these advantages in
the homodyne receiver are demanding. An effective synchronous demod-
ulation process is essential in phase-locking the local oscillator and the
received optical signal. Phase jitters caused by phase noise and shot noise
could easily impair the system performance. It has been evaluated that the
phase variance [41] must be limited to within ~ 10° to ensure a lower power
penalty for a BER < 10~°. This sets an upper limit on the permissible laser
spectral linewidth and other laser performance characteristics. In the following
sections, we discuss some fundamental device characteristics and their impact
on system performance.

1.3 SYSTEM REQUIREMENTS FOR HIGH-SPEED OPTICAL

COHERENT COMMUNICATIONS

1.3.1 Spectral purity requirements

An ideal monochromatic laser source has been needed for some time. As a
result, the spectral purity of the laser source has often been the first issue
confronting semiconductor lasers used in coherent optical communications.
Owing to the dispersive nature of the optical fibres used, digital pulses are
broadened as they propagate along the optical fibre. Such pulse spreading
causes adjacent pulses to overlap so that errors occur as a result of intersym-
bolic interference (ISI). Thus, apart from the power limitation due to intrinsic
fibre attenuation, the transmission distance is also limited by dispersion.

The use of SMF has eliminated the severe intermodal dispersion of
multimode fibres. However, because of the finite spectral width of the optical
sources, SMF are limited by chromatic dispersion (or intramodal dispersion).
Because the laser sources do not emit a single frequency but rather a band
of frequencies, each frequency component of the field propagates with a
different time delay in the SMF, causing a broadening of the initial pulse
width and hence intramodel dispersion. The delay differences in SMF may
be caused by the dispersive properties of the material through a variation
in the cladding refractive index (material dispersion) and also the guidance
effects within the structure (waveguide dispersion). To minimise the effect
of dispersion in SMF and hence improve the transmission distance, there are
two different approaches. The first method involves the use of a dispersion
shifted or dispersion flattened fibre. With a distinctive refractive index
profile, these fibres can significantly reduce the effect of dispersion at the
1.55 um wavelength. Another possible way involves improvement of the
semiconductor laser sources. The ability to lase in single mode and a narrow
linewidth can circumvent the effect of dispersion. In the rest of this section,
the concept of single mode operation, especially the possibility of a single
longitudinal mode, will be discussed, while the impact and the control of
spectral linewidth will be left for later sections.
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Single mode along the transverse plane

It was shown in the previous section that a coherent optical communication
system requires semiconductor lasers that can emit at a monochromatic
frequency in order to achieve the required system BER. As a result, it is
necessary to achieve a single mode oscillation in each of the orthogonal
directions inside the laser cavity.

To understand the transverse waveguiding problem of semiconductor lasers,
we start with the time-independent scalar wave equation which can be derived
from the Maxwell equations [42]

VXxE = —jouH (1.3.1)
VxH = jwesE (1.3.2)

where ¢ and pu are the permittivity and permeability of the medium, respec-
tively. The above equations are expressed in time harmonic form (with
the time variation term as e/“') and is true for source-free and lossless
mediums. By using the vector identity and taking the curl on both sides
of equation (1.3.1), we arrive at the scalar wave equation for the electric
field E such that
V’E = —k’E = —w*u¢E
(1.3.3)
= —kénz(.r. y)E

where k is the propagation constant in the medium with the refractive index
distribution of n(x, y) and kg is the free space propagation constant.

Similarly, by taking the curl on both sides of equation (1.3.2), we end up
with the scalar wave equation for the magnetic field H:

V2H + kin*(x, yH =0 (1.3.4)

Either equations (1.3.3) or (1.3.4) can be used to determine the field compo-
nents because they are related to one another by the Maxwell equations.
Nevertheless, the scalar wave equation for the electric field is often used
because electric field is responsible for most physical processes and is the
principal field used by photodetectors.

To determine the transverse modal field of the semiconductor laser, we
must first find the thickness and the refractive indices of the materials used
in the fabrication process. Depending on the specific laser structure, it is
quite possible to have three or four epitaxial layers lying on top of and
below the active layer of the semiconductor laser. These laser structures may
look complicated at first glance. In fact, their waveguiding properties can be
explained with the use of a three-layer dielectric slab (or planar) waveguide.
As shown in Figure 1.4, the asymmetric waveguide consists of three layers.
The active layer, with a refractive index n; and thickness d, is sandwiched
between the substrate and the cladding of the waveguide.
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Figure 1.4 Schematic cross-section of a slab dielectric waveguide. The refractive indices for
different regions are shown.

Without loss of generality, it is assumed that the refractive indices of the
slab waveguide obey the following inequality:

ny > ny > ns3 (1.3.5)

where the equal sign implies a symmetric waveguiding structure. With such
a planar structure, the field variation along the y axis can be ignored and so
d/0y = 0. By separating the Maxwell equations into different field compo-
nents, the following equations are obtained [42]:

E
— = jopH, (1.3.6a)
0z
oE, OE, .
- — == H 1.3.6b
o JouH ( )
E
a—y = —jouH, (1.3.6¢)
ox
oH
w7 = jweE, (1.3.6d)
0z
oH oH .
Bzx - sz = jweE, (1.3.6¢)
% = jweE, (1.3.6f)
ox

The direction of wave propagation has always been assumed to be the
longitudinal z direction. By inspecting the above equations carefully, we can
separate them into two groups. The first group includes E,, H, and H,
from equations (1.3.6a), (1.3.6¢c) and (1.3.6e). The results generated from
these equations are referred to as the transverse electric, TE, mode since the
electric field is found along the transverse y axis (normal to the propagation
direction). The other group includes H y, Ex and E,, which generates solutions
for the transverse magnetic, TM, mode. An inspection of the structure shows
that either the TE or the TM mode is supported, but not both simultaneously.
Since there is no physical boundary along the y direction, the continuity
condition allows only H, or E, to exist.
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For a travelling wave propagating along the z direction, the electric field
takes the form

E(x,y,z,1) = E(x,y)e/®—F3 (1.3.7)

where the time harmonic term is omitted here for the sake of simplicity. B,
is the propagation constant at a fixed angular frequency @ which can also be
written as

B: = kones (1.3.8)

with n.g being the effective refractive index.

By substituting equation (1.3.7) into the scalar wave equation and putting
d/dy = 0, we end up with the following scalar wave equations for different
layers found in the slab dielectric waveguide:

0 2.2 _ g2 — 2 .

@Ey(x) = —(kgn7 = B)Ey(x) = =h°Ey(x); —d<x<0 (1.3.92)
2 = —(kjn3 — B2 = p’Ey(x); 0<x< 1.3.9
@Ey(x)—_( nnz_ﬁz)Ey(x)—pEy(x)’ =SX=00 (1.3.9b)

2

9 _
S3Ey0 = —(kin3 — BHE,(x) = ¢’Ey(x); —o0 <x < —d (1.3.9¢)

where h, p and ¢ are constants defined as
WR=kni-ph  pPP=p-knk  F=p-kni (13.10)

Depending on the relative values of ny, na, ns, kg and 8,, there are different
regimes for the propagation constant, as shown in Figure 1.5.

If p? and ¢° are negative while h? is positive (i.e. 0 < B, < kon3), then
the propagation is said to be in the continuous radiation regime and the field

Region (I) <

Ex)
2 X=0
. 1 -
Region (I1) < f n, — 7
- X=-t

Region (111 <
g

Figure 1.5 Different types of modal solutions determined by the constants p, g and h (after

[44]).
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solutions show sinusoidal behaviour in all three layers. For a guided mode to
occur, the constants pz. q2 and A% must all be positive. In other words, the
inequality kon; < B. < kon; holds so that sinusoidal oscillation is restricted
to the central active layer while the electric field is decaying exponentially
in the other layers. For the TE mode, a general formulation of E,(x) takes
the form:

Ae 9%, 0<x<o
Eyx) = {Acos(hx)+85in(hx): —-d<x<0 (1.3.11)
(A cos(hx) + Bsin(hx))e?**);  —o0 <x < —d
where the constants A and B are two arbitrary constants that are related to the
power of the propagating mode. Since the tangential fields must be continuous
at the dielectric interface, by rearranging equation (1.3.6¢) such that
Jj OE,
i Ix

(1.3.12)

the boundary conditions of the magnetic field H. at x =0 and x = —d
become

Ag+Bh=0 (1.3.13a)
Alhsin(hd) — pcos(hd)] + B[ psin(hd) + hcos(hd)] =0 (1.3.13b)

By combining the above equations and eliminating the arbitrary constants A
and B, we arrive at the eigenvalue equation for the guided mode [43]:

(p+qh
h* — pq

From the above equation it is clear that the active layer thickness d is decisive
in determining the guided mode. By replacing n3 with n; (hence g = p),
the slab waveguide becomes symmetric and the above eigenvalue equation

becomes 2o 2p/h
_ p _ P
tan(hd) = W =1 ey

tan(hd) = (1.3.14a)

(1.3.14b)

By equating the last eigenvalue equation with the half angle trigonometric
identity of
2tan(x/2)

Earen (1.3.15)

tan(x) =

we can solve the quadratic equation in terms of tan(hd/2) such that

hd p
t — ] == 1.3.16
an( 3 ) h ( a)
and d "
tan(-—) = —— (1.3.16b)
2 p
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Equations (1.3.16a) and (1.3.16b) represent the even and odd TE modes of
the slab dielectric waveguide. To solve the eigenvalue equation for the TE
mode, an extra equation is necessary. By equating the propagating constants
in equations (1.3.10), we obtain [44]

2 2 2
(%’) +(%) = (n? — )i (g) =D? (1.3.17)

where D is defined as the normalised waveguide thickness.

Therefore, for a guided mode the constants p and h must satisfy both
equations (1.3.14b) and (1.3.17). These equations can be solved using a
graphical method. Clearly, equation (1.3.17) represents a circle with radius
D on the (hd/2)-(pd/2) plane. By putting in the odd and the even TE
mode eigenvalue equations in the same (hd/2)-(pd/2) plane, we obtain the
plot shown in Figure 1.6. Each intersection (or solution) with p > 0 and
h > 0 between the circles and the tangential function corresponds to a guided
mode, from which the propagation constant could be determined according
to equation (1.3.15).

Owing to the periodicity of the trigonometric function, multiple modes
may occur as the frequency and hence the radius of the circle keep increasing.
From Figure 1.6 there is only one intersection point between the circle and

¢ 4—m=1——o:+—m-2—.:¢—m-3 '4—m=4]—o
L | |+ ‘pd‘a“‘-f)l |
Sl le— I 1 | — n h—azl‘
§f—---..__|et— pd=hdtan’d) — | | —
.. I ? | |
o | .. | |
| N | |
| AR |
a4 <] | 1 [ | 7
~d 1% |
e | | | |
3 oy :
] I I | [ [
- l 5 |
\ I ] Yo /
| I . l I
[ S N s
[ ’ I M I .
| e I \
o I I h [
*l / v "
| | Il’ .
I [ K
| / v 1 f
I A . l I Al
/5 v i
4 | ] | L1 |
2 3 4 5 6

hd/2

Figure 1.6 Graphical method to solve the eigenequation for a symmetrical three-layer dielectric
waveguide (after [44]).
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the tangential functions when the normalised waveguide thickness D has the
value: -

0<D< 5 (1.3.18)
This mode designated TE; is the fundamental mode excited in the slab
dielectric waveguide. By expanding D according to equation (1.3.17), the
equation shown above becomes:

0<d< %(n‘}—n%)'”‘" (1.3.19)

This equation limits the maximum active layer thickness for single transverse
mode excitation.

Similarly, by equating the boundary conditions for the TM mode, we end
up with the following eigenvalue equations for the asymmetric waveguide:

Zh 2 2
tan(hd) = "L 0P+ 139) (1.3.20)
nynsh® —nipq
and -
h
tan(hd) = —21n2hP_ (1.3.21)

n3h? — n}p?

Following the analysis of the TE mode, the even and odd TM eigenvalue
equation can be written as:

hd ni\ p
t —_— === ] - )
an( 2) (n%) p (1.3.22a)

h 2
tan (ﬁ) =- (i‘_g) h (1.3.22b)
2 ni) p

Using the same graphical technique, the same limitation for the active layer
thickness is obtained for single transverse mode excitation in the TM mode.
The only difference between the TE and TM modes is the refractive index
correction term added to the TM mode eigenvalue equation for the symmetric
slab waveguide.

For most semiconductor lasers that have a lateral confinement, the width
of the active layer W is finite. With the width dimension found to be compa-
rable with the active layer thickness, a rectangular waveguide is formed.
Nevertheless, we can still follow a similar procedure to that applied to the
slab waveguide to solve the field solution of the rectangular waveguide. The
schematic cross-section of a rectangular waveguide is shown in Figure 1.7.
The central core region, which is surrounded by four cladding regions, has
the highest refractive index (n,). With the propagation mode mainly confined
in the central core, the field penetration in the corners (the shaded regions in
the figure) of the structure can be ignored [45].

and
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Figure 1.7 Schematic cross-section of a rectangular waveguide. The refractive indices of the
different regions are indicated.
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Figure 1.8 Procedures for analysing the rectangular waveguide using EIM. (a) The first slab
approximation along the x axis (b) The second slab approximation along the y axis
where neg is used.

An exact analytical solution for the propagation characteristics of the strip
waveguide is not possible and a certain degree of approximation is necessary.
A convenient technique, known as the effective index method (EIM), can be
used to provide an accurate analytical solution for the rectangular waveguide.
In this method, the equivalent slab waveguide in one direction is solved first
(see Figure 1.8) so that the effective refractive index of the central slab can
be generated. This effective refractive index is then used to solve the other
slab waveguide which is found perpendicular to the original one. In this way
the solutions of the two slab waveguides are coupled. Similar to the slab
waveguide analysis, the number of excited transverse modes is determined
by both the active thickness (d) and width (w) of the central core region.
Therefore, it can be shown that proper controls over the active thickness and
width are necessary for single transverse mode operation.

To show how the EIM works, a symmetric rectangular waveguide is used
instead. With n3 = ny and ns = n4, we can solve the central slab first by
using the graphical approach as shown earlier in the TE mode of the slab
waveguide. For a single transverse mode, along the x axis, we end up with
the following inequality [44]:

d
D =kos(n}—nd)'? < % (1.3.23a)
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or
A
d < E(nf —n3)"172 (1.3.23b)

where D is the normalised waveguide thickness, as defined earlier. Then, the
second slab waveguide analysis is carried out along the perpendicular y axis.
On the basis of the TM mode analysis of the slab waveguide, we end up
with [46]

b1

w. 2 24172
w=k05("eﬁx_"4); < 2

(1.3.24a)

or
A
w < E(nfﬂm —n3)71/2 (1.3.24b)

where W is the normalised waveguide width. In equation (1.3.24), the
effective refractive index negx, which was derived earlier from the first slab
approximation, is used instead. So far, a purely index guided structure has
been used where all possible gains or losses in the structure have been
ignored. Nevertheless, the single mode operating conditions are still feasible
since the imaginary part of the refractive index, owing to gains or losses,
has a much smaller magnitude when compared with the corresponding real
refractive indices. As a result, there is a slight difference between the field
solutions of the purely index guided structure and the one that processes the
gains/losses [28].

The description of the waveguiding properties in the indexed guided
waveguide is now complete. If the active region dimensions are chosen to
satisfy both equations (1.3.23b) and (1.3.24b), only a single mode along the
transverse plane is supported.

Single longitudinal mode (SLM)

In semiconductor lasers, electron transport occurs between two energy bands
that consist of a finite number of discrete energy levels. Rather than a discrete
energy transfer like the gaseous laser, semiconductor lasers are characterised
by a wider gain spectrum. In an inhomogeneously broadened laser, the gain
spectrum may be found to be several times wider than the longitudinal
mode spacing. In the simplest type of optical resonator, better described
as the Fabry-Perot (FP) cavity, photons escape from a cavity which has
two partially reflected mirrors facing each another. Without any frequency
discrimination, photons at any frequency could escape the cavity. As a result,
it is common that several oscillation modes, as depicted in Figure 1.9, are
observed, especially when they are under rapidly pulsed operation.

As will be shown in detail in Chapter 2, the longitudinal mode spacing
between each frequency component in the FP semiconductor laser cavity is
given as

¢

= 1.3.25
2nglL ( )

8f
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Figure 1.9 (a) Possible gain profile of an inhomogeneously broadened laser. (b) The resulting
intensity spectrum (after [44]).

where c is the free space velocity, ng is the group refractive index and L is
the laser cavity length. To have better control over the longitudinal modes in
the FP cavity, several methods have been proposed. By using a shorter cavity,
we can increase the mode spacing. However, a higher threshold current is
expected and several longitudinal modes may occur at severe modulation.
Moreover, as we will discuss later, such a shorter cavity will lead to a
wider spectral width [17]. A different method involves the injection of an
external light from another laser [47]. In this way, an SLM oscillation can
be achieved. However, careful tuning is essential so that the lasing modes
of the two lasers are matched [48]. By adding a reflecting surface outside
the FP cavity, an external coupled cavity has also been used [49]. Owing
to the interference with the external cavity, the overall modal loss becomes
frequency dependent and hence limits the oscillation mode from the FP laser
cavity. However, both the external light injection method and the external
coupled cavity laser lack long-term stability. These devices are vulnerable to
mechanical vibration, temperature and pressure changes and hence the lasing
mode tends to shift from time to time. While they are useful in coherent
system experiments, it has becomes evident that they are difficult to realise
as commercial products.

To include a wavelength or frequency selective mechanism, one popular
technique is to include an etched diffraction grating within the laser waveguide
structure. The gratings, based single frequency lasers, are classified into two
categories. If the active layer and the grating extend along the whole length
of the laser cavity, the device is known as a distributed feedback (DFB)
laser. If the grating or feedback sections are passive such that the gain region
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Figure 1.10 Schematic diagrams of a uniform grating (a) DFB laser diode and (b) a DBR laser doide.

is located in a separate planar gain section, a distributed Bragg reflector
(DBR) laser structure is formed. Figure 1.10 illustrates the structural differ-
ences between the DFB and DBR lasers. One of the most convenient methods
of generating gratings is to use the holographic exposure technique [12]. With
a two arm interferometer set-up, the interference pattern of two coherent
lightwaves cross each other at a predetermined angle, and a periodic grating
is formed. Other methods, like electron beam lithography, are also possible.
Then, followed by the conventional wet chemical etching or the dry ion-beam
etching process, the grating pattern is delineated on the substrate. In general,
the grating can be placed below the active layer or in the upper cladding layer.

In DBR lasers, the Bragg grating sections are separated from the active
section where major carrier recombination occurs. In other words, the
frequency at which the grating section reflects does not depend on the bias
current, and so a non-linear influence on the guided refractive index (due
to injected carriers) is rare. However, the use of end passive gratings in
DBR lasers implies extra etching processes during fabrication. Moreover,
the effective length of the planar section, which is crucial in deciding the
oscillation frequency of DBR lasers, is difficult to control precisely. Owing
to the tolerance inherited in fabrication, the relative grating phases of the
two Bragg reflectors become unpredictable. In general, DBR lasers are more
complex, and effective measures are needed to tackle the problem of yield
and reliability. To suppress any possible FP mode in the grating structures,
it is quite usual to have anti-reflective coatings on the laser facets of DFB or
DBR lasers.

The working principle of a uniform-grating DFB laser with perfectly anti-
reflective facet coatings (sometimes called a conventional DFB laser) was first
explained by Kogelnik and Shank in 1971 [50] using coupled wave theory, but
it was not until 1974 [51] that the first DFB laser operating at room temper-
ature (300 K) under continuous wave (CW) operation was built. Details of the
coupled wave theory will be covered in Chapter 2. Normally, in DFB lasers
the grating period A must be carefully chosen to satisfy the Bragg condition:

A
=D (1.3.26)
2ng
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Figure 1.11 The typical gain, loss and spectral profiles of (a) a Fabry-Perot laser diode, and (b) a distributed
feedback (DFB) laser diode.

where n, is the usual group refractive index and Ap is sometimes called the
Bragg wavelength. For a 1.55 um InGaAsP laser, with a first-order grating
(m = 1), typical values of ng are 3.4 and A is 0.23 um. Figure 1.11 shows
the difference between the operation of FP and DFB lasers. For DFB lasers,
the longitudinal mode, which is found closest to the Bragg wavelength, will
lase, while other side modes that have larger losses are severely suppressed as
a wavelength/frequency dependent loss is introduced. The net gain difference
(or gain margin) between the dominant lasing mode and the most probable
side mode is found to be much higher compared with the FP lasers.

1.3.2 Spectral linewidth requirements

Origin of phase noise and the formulation of the spectral linewidth

Owing to the dispersive nature of the optical fibre, laser sources that operate
at a single frequency will be necessary for long-haul transmission at speeds
higher than a few GHz. However, even the output spectrum of a single
frequency semiconductor laser (like DFB semiconductor lasers) is never
“pure” but is always contaminated by a finite spectral width. The finite
spectral width is mainly due to the random phase of the spontaneous emission
that couples into the lasing mode. Consequently, the fluctuation in gain
broadens the spectral linewidth as a result of a lasing frequency shift [52]. To
measure the spread of the laser spectrum, the spectral linewidth (Av), which
is defined as the full width half maximum (FWHM) of the optical power
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spectrum, is used. On the basis of the delayed self-heterodyne technique
[53], the spectral linewidth can be measured easily.

To understand the spectral behaviour of the laser light, we can use the
classical description [54]. Consider a laser with a spatial mode ®(x). The
transverse optical field of the laser (which is a real quantity) could be
expressed as

E(x,1) = B[B(1)®(x) + B(1)* ®(x)*] (1.3.27)

where f(t) is the time-dependent complex wave amplitude and B is a constant.
An asterisk indicates a complex conjugate. Usually, the complex amplitude
B(r) can be expressed in terms of two real quantities: intensity /(¢) and phase
¢(r) such that [54,55]

B(t) = I(1)"/%e/ (1.3.28)

where the time harmonic term exp(jwygt) is omitted. The real factor B is
chosen such that the energy term, which is found to be proportional to the
product BB*, is determined by the expression hwol(t). As a result, I(r), as
shown in the previous equation, corresponds to the total number of photons
found inside the laser cavity.

To understand the origin of phase noise, we must understand the nature
of spontaneous emission. There are mainly two mechanisms that lead to a
change of phase in a semiconductor laser.

(1) The first contribution of phase noise (A¢’) comes when a spontaneous
photon is injected into the lasing mode. Then both the intensity and
phase of the optical field in the mode undergo changes. These fluctu-
ations of field due to spontaneous emission will contribute directly to
phase noise.

(2) In semiconductor lasers there is a second contribution of phase noise
(Ag¢") associated with the intensity change, as described in mechanism
(1) above. According to the Kramer-Kroenig relation [56], any change
of gain inside a semiconductor will alter the refractive index of the
semiconductor. Consequently, the optical field experiences an additional
phase change, which induces extra linewidth broadening. Note that this
is not readily observed in a stable CW gas laser, because the time taken
for the intensity to return to its initial steady-state value is shorter than
that of the semiconductor laser (of the order of 10~? s). Within such
a short period of time, the above processes rarely happen in gas lasers
and so the spectral linewidth of the gas laser is narrower than that of
the semiconductor laser.

In Figure 1.12, a phasor diagram that follows Henry’s works [54,55] is
included to show how an arbitrary ith spontaneous emission can produce a
change Al in the intensity (or photon number) and a phase change of A¢!
as described by mechanism (1) above.
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Figure 1.12 The spontaneous change of phase and intensity of the optical field induced by the
ith spontaneous event (after [46,47]).

Using simple geometrical considerations, it can be shown that the changes
of intensity and phase can be written as

A¢; = 1""?sing, (1.3.29)
Al =1+ 21'? cos 6, (1.3.30)

where the ith spontaneous photon changes the complex wave amplitude S(r)
by AB(r), where ApB(r) is represented by a unit magnitude and a random
phase of 6;. In this simple analysis it is assumed that a single photon is
emitted for each spontaneous emission. Moreover, the average phase change
is assumed to be zero over a large number of spontaneous events.

To understand the contribution of phase noise owing to a second contri-
bution of phase noise, A¢”, it is necessary to determine the mutual coupling
between the intensity and the phase of the optical mode. From the time-
dependent wave equation, we end up with the following rate equation for a
complex wave amplitude [54,55]:

Ei_é _ vg(T'g — )

= > (1 + jay)p (1.3.31)

where vg is the group velocity, I' is the optical confinement factor, g is
the amplitude gain coefficient due to material gain and g is the cavity
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absorption. In the above equation, ay is the intrinsic linewidth enhancement
factor defined as [57-59)

A W)/dN

(1.3.32
dx (N)/aN )

where x’ and x” are the real and imaginary parts of the susceptibility, respec-
tively, while N is the injected carrier concentration. In all practical cases
both the carrier-induced refractive index change as well as that induced by
the imaginary part of the permittivity are much smaller than the intrinsic
refractive index of the semiconductor. As a result, the intrinsic linewidth
enhancement factor can also be expressed as

dn/dN
dg/dN

where the relative change in the refractive index (n) and gain (g) due to varia-
tions in the injected carrier concentration (N) are considered. The negative
sign included in the above equations is important in keeping ay positive
because the refractive index is found to have a negative change with increasing
carrier concentration [58] (i.e. dn/dN is negative). The intrinsic linewidth
enhancement factor was first introduced by Henry [54] and used to explain
the experimental results of Fleming and Mooradin [60] on AlGaAs semicon-
ductor lasers. In the case of InGaAsP/InP devices, the value of ay ranges
from 4.5 to 7 [58,61].

By examining equation (1.3.32), it is obvious that the intrinsic linewidth
enhancement factor depends on several parameters of the medium. The ay
dependence on carrier concentration and photon density was first suggested
by Vahala er al. [57]. At a fixed carrier concentration, they found that ay
decreases with increasing photon energy, while ay increases with carrier
concentration at a fixed photon energy. On the other hand, ay remains
constant at the peak gain for different values of carrier concentration and
photon energies. The results for the quaternary InGaAsP with a bandgap of
~ 0.8 eV (or A ~ 1.55 pm) are shown in Figure 1.13. It is interesting to see
how ay will change when the lasing wavelength of a single frequency laser
(e.g. a DFB laser) is allowed to shift with respect to the peak gain. It can be
seen from Figure 1.13 that ay would become larger at wavelengths longer
than the peak gain, and become smaller on the shorter wavelength side of the
spectrum. The detuning effect of the DFB laser was confirmed by Ogita et al.
[62] and a narrower spectral linewidth was found at the shorter wavelength
side of the gain peak.

Besides carrier concentration and photon energies, the intrinsic linewidth
enhancement factor also depends on temperature. With decreasing temper-
ature, the change in refractive index with carrier concentration is large, and
so is the gain variation. However, the gain variation is faster than that of the
refractive index, and consequently ay decreases as the temperature drops.
Since there is no possible way to measure ay directly, it is still not clear to

ay = —2kp - (1.3.33)
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Figure 1.13 Dependence of linewidth enhancement factor @ on photon energy for undoped
1.55 um InGaAsP at various levels of electron concentration, n, indicated in units
of 10'® cm™=? (after [49]).

what extent the linewidth enhancement factor is related to structural change
and other experimental uncertainties. Various methods, like the AM/FM noise
spectrum measurement [61], and the spectral linewidth measurement [63],
have been used to find the value of ay for DFB semiconductor lasers.
However, the relative merits of these methods are still uncertain and so it
is difficult to make any direct comparison between these results. On the other
hand, it is believed that the intrinsic linewidth enhancement factor ay is
less structurally dependent for a purely index-guided structure as compared
with the gain-guided structure. Owing to the lateral guiding characteristics
of the gain-guided structure, the variation in the real and imaginary part of
the permittivity will not be the same in the lateral direction. In that case,
an effective linewidth enhancement factor is used instead [64]. A detailed
analysis of the effective linewidth enhancement factor will be given in later
chapters.

Similar to equation (1.3.31), the conjugate of the complex wave amplitude
also satisfies the following equation:

dB* _ ve(Tg — o)
dr 2

From equation (1.3.28) and its complex conjugate, we can express the
intensity and phase in terms of the complex wave amplitude such that

1=8-§

(1= jon)p* (1.3.34)

1 (1.3.35)
¢ = 5;In(B/B")
J
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Therefore, by taking the derivative of equation (1.3.35) and using equations
(1.3.31) and (1.3.34), we obtain

d/

R = vg(lg — ap)! (1.3.36a)
dp ay

a — ?vg(rg e ﬂ'(]) (1.3.36'))

Combining equations (1.3.36a) and (1.3.36b) gives

d¢ oy d/
_— . — 1 e e Y
de 21 dt ( )

From equation (1.3.37) it is clear that a change in intensity due to spontaneous
emission will induce a second phase alternation. If the change in intensity
and phase occurs within a short period of time, the second phase change A¢”
could be determined by taking an integral so that equation (1.3.37) becomes

CIHAI;

a’-’ (1.3.38)
- —2—‘;(1+2r”2cosa,-)

A¢l =

For a laser operating at above threshold, the intensity changes instantly from
I to I + Al; and then drops back to a final value of / after the relaxation
oscillation has died out. Thus, a minus sign is included in the above equation
as the intensity change becomes —Al;. As a result, the total change in phase
due to the ith spontaneous emission becomes

A¢ — A¢f + A¢H

(1.3.39)
= . +I""2(sin9,- — oy cos ;)

21

So far, we have considered the total phase change due to a single spontaneous

photon. Suppose that the total number of M spontaneous emission events

happen within a period of time. Then the total phase fluctuation is obtained

by summing equation (1.3.39) over M events such that

M
agM | _ip ;
A¢=-——§-—+! /2% "(sin6; — ay cos6;) (1.3.40)

i=1

Sometimes, instead of using the total number of spontaneous events, it is

more convenient to use the spontaneous emission rate Ry,. By replacing M

with Rgpt, the first term of the above equation will result in an average phase
change of

ayRgpt

1.3.41
37 ( )

(Ag) =
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or a frequency shift of

aHRsp
21
This frequency shift is caused solely by the spontaneous emission.

From the summation term as shown in equation (1.3.40), the mean square
phase variation term can be determined as

Aw = i(.&dﬁ) = - (1.3.42)
dr

Ryp(1 + o)t
21

because all phase crossing terms vanish. With a Gaussian probability distri-
bution assumed for the phase change, the power spectrum of the laser becomes
Lorentzian in shape [55]. As a result, the spectral linewidth Av becomes

(&¢2) Rsp 2
v = =—(1+4+ ay 3.44
2mt 4.‘1"[!(1 ) (l )

(AP?) = (1.3.43)

To facilitate experimental measurements on the spectral linewidth of semicon-
ductor lasers, it is better to express the intensity in terms of optical power

such that
_(Pi+P) A
- VgQm he

1 (1.3.45)

where P, and P, are the optical power output from the laser facets, while
ap, is the mirror loss of the laser cavity. For a closed cavity, such as a FP
laser with high reflecting ends, the total spontaneous emission rate can be
expressed as

Ry = vgl'gngp = vg@unnsp (1.3.46)
where gy is the threshold gain and ng, is the population inversion factor
defined as 5 .

1/ngg =1—exp (%;-L) (1.3.47)

where eV is the separation of the quasi-Fermi levels of the conduction band
and the valence band of the semiconductor lasers. In the above equation,
nsp characterises the incomplete inversion of the laser transition. If there is
complete population inversion, then ng, will become unity.

On substituting equations (1.3.44) and (1.3.45) into equation (1.3.43), the
spectral linewidth becomes

Av = Vg"spgmam h_C

=& —(1+ad? 1.3.48
anP + Py A LHow (1.3.48)

where the intrinsic linewidth enhancement and the inversion factor ng, are
assumed constant and homogeneous’ at least over the active region of the
laser. Although the spectral linewidth formula above is derived for the FP type
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laser, it also holds for the index-guided DFB semiconductor lasers [63,65],
provided that the loss term ay, is interpreted as the output loss. In the gain-
guided lasers, the maximum gain is found along the centre of the active
layer. Rather than having a plane phase front, the phase fronts of gain-guided
lasers are curved and so a wider far field spread is expected. Therefore, it is
intuitively reasonable to assume that the lasing mode of gain-guided lasers
may capture a larger fraction of spontaneous emission than the lasing mode
of the index-guided lasers. Such an enhancement in spontaneous emission
K, in a transversely single-mode gain-guided laser was first proposed by
Petermann [56] and is given here as

]/ B2l dxdy |
K, = (1.3.49)

where B, is the transverse electric field distribution of the lasing mode. Most
often, Ky, is defined as the Petermann gain guiding factor. For index-guided
semiconductor lasers having plane phase fronts, the transverse electric field
is purely real and so K, becomes unity. Meanwhile, it was also shown that
the spontaneous emission coupled to the lasing mode is also enhanced by
output coupling, due to the low facet reflectivities in semiconductor lasers.
This oscillator loading effect was first noticed by Ujihara [66] and later by
Henry [67], but in a different format. According to Wang er al. [68], such a
longitudinal correction factor K is defined as

L 2
flﬁ:ldz
K=& (1.3.50)

L
L
0

where B. is the longitudinal electric field distribution of the lasing mode and
L is the laser cavity length. In defining equations (1.3.49) and (1.3.50), the
laser itself must show a constant transverse mode pattern along the longitu-
dinal direction so that the electric field can be separated into the transverse
and longitudinal factors. Finally, the corrected spectral linewidth of equation
(1.3.48) becomes

2
VgMsp&th@m he

Av= 8270
4n(P, + P2) X

(1+af) K- K- (1.3.51)

System requirements

In general, the requirements of a spectral linewidth depend on the modulation
scheme, receiver design and transmission bit rate (R,) of the system. A
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Table 1.1 Laser spectral linewidth requirements for a coherent
optical communication system. Ry, is the transmission bit
rate. One dB power penalty is assumed at the receiver
(after [60])

Receiver type IF processing Modulation Av /Ry (%)

Heterodyne incoherent ASK 9%
Heterodyne incoherent FSK 2-9%
Heterodyne incoherent DPSK 0.165%
Heterodyne coherent PSK 0.226%
Homodyne coherent PSK 0.031%

detailed analysis was carried out by Kazovsky [69] in which the maximum
permissible laser linewidths for various coherent communication systems
were reported. Both heterodyne and homodyne systems were considered.
Table 1.1 summarises the results, and different receiver designs are compared.

From Table 1.1 it is clear that the homodyne system, which provides the
best receiver sensitivity, requires a laser linewidth of 0.031% R,,. With such
a demanding spectral linewidth, it will be more practical to switch to another
scheme like the FSK system in which the linewidth requirement is more
flexible. Inspection of Table 1.1 also reveals that the HE/IP type receivers
are most robust (which permits the largest laser linewidth), followed by the
HE/CP type receivers and then by the homodyne receivers.

Limitations of the linewidth formula

According to equation (1.3.51), the spectral linewidth formula for a single
mode semiconductor laser is inversely proportional to the total output power.
However, experimental results reveal that even in a single frequency laser
like a DFB laser, the spectral linewidth tends to saturate or rebroaden at
high output power when the laser is severely biased [65,70]. These results
were difficult to understand on the basis of Henry’s linewidth formula. It was
suggested [71,72] that the presence of other non-lasing side modes might
contribute to the spectral linewidth for the single mode DFB semiconductor
laser. At above threshold bias, a gain depression in the lasing main mode
and hopping in the lasing wavelength have also been observed [73,74]. The
longitudinal correction term as shown in equation (1.3.51) may not be a
constant but may be sensitive to a biasing current and the structural design
of laser diodes. For DFB laser diodes operating at a high biasing current,
such linewidth saturation or rebroadening phenomena have to be considered
since the performance and reliability of a coherent optical fibre communi-
cation system depends heavily on the spectral linewidth of the laser source.
A more comprehensive approach, which includes the variation due to struc-
tural changes, longitudinal variations of both carrier and photon densities will
be discussed in a later chapter.
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1.4 SUMMARY

The development of optical communications, in particular fibre-based
communication systems, have been reviewed from a historical perspective.
By trapping light inside the core of a cylindrical fibre as a result of total
internal reflection, optical fibres having a low attenuation loss serve as an
ideal medium for optical communication. At the transmitter side, information
is first converted into a stream of photons before they are launched into the
optical fibre. Compact size semiconductor laser diodes served this purpose
by generating coherent photons. The availability of both single mode optical
fibres and reliable semiconductor optical devices paved the way towards
widespread global optical fibre networks.

According to the type of detection method used at the receiver end, an
optical fibre system could be categorised into either a direct or a coherent
detection scheme. For limited peer to peer application, a direct detection
scheme could be very simple. However, with the increased demand in wide
bandwidth, long-haul application, the coherent detection scheme is a better
alternative. Using the spatial coherence of the optical carriers, a coherent
detection scheme shows improved receiver sensitivity, while the available
optical spectrum of optical fibre could be utilised in a better way. Using an
appropriate multiplexing scheme such as FDM or WDM, more information
could be loaded into a single fibre link. In practice, however, optical fibre
communication systems using the coherent detection scheme require a more
careful design and stringent requirements in device performances.

From the system requirements of coherent optical communication systems,
the device characteristics of optical devices, especially semiconductor laser
diodes, were briefly reviewed. To minimise the effect caused by the dispersive
property of optical fibres, semiconductor laser diodes should have a stable
single mode oscillation. By controlling the width and thickness of the active
layer, a transverse single mode oscillation could be controlled easily. However,
a single longitudinal mode oscillation requires special attention. With the gain
spectrum in semiconductors usually found to be broader than the longitu-
dinal mode spacing, multiple mode oscillation in the conventional FP cavity
is common. By incorporating a specially designed grating inside the laser
cavity, a built-in wavelength selective mechanism is built. This wavelength
filtering effect forms the core of the distributed feedback laser diodes. Owing
to the characteristics of semiconductors, a laser diode oscillating at a single
mode does not generate a pure monochromatic spectrum. The finite spectral
spread, formally known as the spectral linewidth, has to be considered in high-
speed optical links. The origin and system requirements of spectral linewidths
inherent in semiconductor lasers are reviewed at the end of the chapter.
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2

PRINCIPLES OF DISTRIBUTED
FEEDBACK SEMICONDUCTOR
LASERS: COUPLED-WAVE
THEORY

2.1 INTRODUCTION

The rapid development of both terrestrial and undersea optical fibre commu-
nication networks has paved the way for a global communication network.
Highly efficient semiconductor injection lasers have played a leading role in
facing the challenges of the information era.

This chapter is organised as follows. Before discussing the operating
principle of the semiconductor distributed feedback (DFB) laser diode (LD),
general concepts with regard to the principles of lasers will first be presented.
In section 2.2.1, the general absorption and emission of radiation will be
discussed with the help of a simple two-level system. In order that any
travelling wave is amplified along a two-level system, the condition of
population inversion has to be satisfied; details are presented in section 2.2.2.
Owing to the dispersive nature of the material, any amplification has to be
accompanied by a finite change in phase. Such dispersive properties of the
atomic transition are discussed in section 2.2.3.

In semiconductor lasers, rather than two discrete energy levels, electrons
jump between two energy bands which consist of a finite number of
energy levels closely packed together. Following the Fermi-Dirac distribution
function, the population inversion in semiconductor lasers will be explained
in section 2.3.1. Even though the population inversion condition is satisfied,
it is still necessary to form an optical resonator within the laser structure. In
section 2.3.2 the simplest Fabry-Perot (FP) etalon, which consists of two
partially reflecting mirrors facing one another, is investigated. To reduce
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the lasing threshold current of the simplest p-n junction, a brief historical
development of semiconductor lasers is reviewed in section 2.3.3. The
improvement in both the lateral and transverse carrier confinements will be
highlighted. In semiconductor lasers, energy comes in the form of an external
current injection. It is important to understand how the injection current can
affect the gain spectrum. In section 2.3.4, various aspects affect the material
gain of the semiconductor are discussed. In particular, the dependence of the
carrier concentration on both the material gain and refractive index will be
emphasised. On the basis of the Einstein relation for absorption, spontaneous
emission and stimulated emission rates, the carrier recombination rate in
semiconductors is presented in section 2.3.5.

The FP etalon, characterised by its wide gain spectrum and multimode
oscillation, has limited use in the application of coherent optical commu-
nication. On the other hand, a single longitudinal mode (SLM) oscillation
becomes feasible by introducing a periodic corrugation along the propagation
path. The periodic corrugation, which backscatters all waves propagating
along one direction, is the working principle of a DFB semiconductor
laser. The periodic Bragg waveguide acts as an optical bandpass filter
so that only frequency components close to the Bragg frequency will be
coherently reinforced. Other frequency terms are effectively cut off as a
result of destructive interference. In section 2.4 this physical phenomena
is explained in terms of a pair of coupled wave equations. Based on the
nature of the coupling coefficient, DFB semiconductor lasers are classified
into purely index-coupled, mixed-coupled as well as purely gain- or loss-
coupled structures. The periodic corrugations fabricated along the laser cavity
play a crucial role since they strongly affect the coupling coefficient and
the strength of the optical feedback. In section 2.5 the impact due to the
shape of various corrugations will be discussed. Results based on a five-layer
separate confinement structure and a general trapezoidal corrugation function
are presented. A summary is given at the end of this chapter.

2.2 BASIC PRINCIPLE OF LASERS
2.2.1 Absorption and emission of radiation

From quantum theory, electrons can only exist in discrete energy states such
that the absorption or emission of light is caused by the transition of electrons
from one energy state to another. The frequency of the absorbed or emitted
radiation, f, is related to the energy difference between the higher energy
state, £>, and the lower energy state, E,, by Planck’s equation such that

E=E,—E,=hf (2.2.1)

where h = 6.63 x 1073 J s is Planck’s constant. In an atom, the energy state
corresponds to the energy level of an electron with respect to the nucleus,
which is usually marked as the ground state. Generally, energy states may
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represent the energy of excited atoms, molecules (in gas lasers) or carriers
like electrons or holes in semiconductors.

To explain the transitions between energy states, modern quantum
mechanics should be used. This gives a probabilistic description in which
atoms, molecules or carriers at specific energy levels are most likely to
be found. Nevertheless, the concept of stable energy states and electron
transitions between two energy states is sufficient in most situations.

Photons have always been used to describe the discrete packets of energy
released or absorbed by a system when there is an interaction between light
and matter. Suppose a photon of energy (E; — E;) is incident upon an atomic
system, as shown in Figure 2.1 with two energy levels along the longitudinal
z direction. An electron found at the lower energy state £, may be excited to a
higher energy state E; through absorption of the incident photon. This process
is called an induced absorption. If the two-level system is considered to be
a closed system, then the induced absorption process results in a net energy
loss. Alternatively, an electron found initially at the higher energy level E;
may be induced by the incident photon to jump back to the lower energy
state. Such a change of energy will cause the release of a single photon at a
frequency f according to Planck’s equation. This process is called stimulated
emission. The emitted photon created by stimulated emission has the same
frequency as the incident initiator. Moreover, the output light associated with
the incident and stimulated photons shares the same phase and polarisation
state. In this way, coherent radiation is achieved. Contrary to the absorption
process, there is an energy gain for stimulated emissions.

Apart from induced absorption and stimulated emissions, there is another
type of transition within the two-level system. An electron may jump from the
higher energy state, E», to the lower energy state, E| without the presence of

N W—
(a) Absorption
—_——
(b) Spontaneous emission Non-coherent photons

—_——
(c) Stimulated emission Coherent photons

Figure 2.1 Different recombination mechanisms found in a two-energy-level-system.
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an incident photon. This type of transition is called a spontaneous emission.
Just like stimulated emissions, there will be a net energy gain at the system
output. However, spontaneous emission is a random process and the output
photons show variations in phase and polarisation state. This non-coherent
radiation, created by spontaneous emission, is important to the noise charac-
teristics in semiconductor lasers.

2.2.2 The Einstein relations and the concept of population inversion

To create a coherent optical light source, it is necessary to increase the rate of
stimulated emission while minimising the rate of absorption and spontaneous
emission. By examining the change in field intensity along the longitudinal
direction, a necessary condition will be established.

Let Ny and N3 be the electron populations found in the lower and higher
energy states of the two-level system, respectively. For uniform incident
radiation with energy spectral density py, the total induced upward transition
rate Ry, (the subscript 12 indicates the transition from the lower energy level
1 to the higher energy level 2) can be written as

Ry2 = N\Bi2ps = WiaN, (2.2.2)

where B, is the constant of proportionality, known as the Einstein’s coeffi-
cient of absorption. The product Bj;p¢ is commonly known as the induced
upward transition rate, W ;.

For an excited electron in the higher energy state, it can undergo a
downward transition through either spontaneous or stimulated emission. Since
the rate of the spontaneous emission is directly proportional to the population
N>, the overall downward transition rate R,; becomes

R21 = A21N2 + N2By ps
=A)yN>+ Wy N> (2.2.3)

where the stimulated emission rate is expressed in a similar manner as the rate
of absorption. A3, is the Einstein coefficient of spontaneous emission and B5,
is the Einstein coefficient of stimulated emission. The subscript 21 indicates
a downward transition from the higher energy state 2 to the lower energy
state 1. Correspondingly, W) = B> ps is known as the induced downward
transition.

For a system at thermal equilibrium, the total upward transition rate must
equal the total downward transition rate, and therefore R;> = R»;, or alterna-
tively

NiBi2ps = Au1N2 + N2Ba ps (2.2.4)

By rearranging the previous equation, it follows that

P A21/B2
' [B.ZN. - 1]
BN,

(2.2.5)
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At thermal equilibrium, the population distribution in the two-level system is
described by the Boltzmann statistics such that

N2 _em (2.2.6)
N,
where k =1.381 x 1072 J K~! is the Boltzmann constant. Substituting
equation (2.2.6) into (2.2.5) gives

A21/Bx

By ]
eE/kT — 1
[321

Since the two-level system is in thermal equilibrium, it is usual to compare
the above equations with a blackbody radiation field at temperature T, which
is given as [1]

(22.7)

_ 8mndhfd 1

c3 eE;’kT -1 (2.2.8)

where n is the refractive index and c is the free space velocity. By equating
(2.2.7) with (2.2.8), we can derive the following relations:

Bp=Bp=>Wip=W; =W (2.2.9)

and 3

Ay _ 8an"hf” (2.2.10)

Ba 3

From equation (2.2.7) it is clear that the upward and downward induced
transition rates are identical at thermal equilibrium. Then, using equation
(2.2.9), the final induced transition rate, W, becomes

A21€3 _ A21CZ

- - 2.2.11
8rndh 3"t = Ban2hfd (22.11)

where I = cpg/n is the intensity (W m~?) of the optical wave.

Since an energy gain is associated with the downward transitions of
electrons from a higher energy state to a lower energy state, the net induced
downward transition rate of the two-level system becomes (N, — N)W.
Therefore, the net power generated per unit volume, V, can be written as

dP
av

In the absence of a dissipation mechanism, the power change per unit of
volume is equivalent to the intensity change per unit of longitudinal length.
Substituting equation (2.2.12) into (2.2.11) will generate

=(N2—-N)W -hf (2.2.12)

dl  dP Anc?
=y =M -Ng o

dz  dv anif2 1(2) (2.2.13)
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The general solution of the above first-order differential equation is given as
I(z) = loe™ (2.2.14)

where 2
21¢°
a;(f)= (N> N])Srmlfz (2.2.15)

In the above equation, o;(f) is the frequency-dependent intensity gain
coefficient. Hence, if a;(f) is greater than zero, the incident wave will
grow exponentially and there will be an amplification. However, recalling
the Boltzmann statistics from equation (2.2.6), the electron population N> in
the higher energy state is always less than N; found in the lower energy
state at a positive physical temperature. As a result, energy is absorbed
at thermal equilibrium for the two-level system. Moreover, according to
equations (2.2.8) and (2.2.10), the rate of spontaneous emission (A;;) always
dominates the rate of stimulated emission (B;) p¢) at thermal equilibrium.

Mathematically, there are two possible ways we can create a stable stream
of coherent photons. One method involves a negative temperature, which
is physically impossible. The other method is to create a non-equilibrium
distribution of electrons so that N, > N,. This condition is known as
population inversion. To fulfil the requirement of the population inversion,
it is necessary to excite some electrons to the higher energy state. An
external energy source, commonly known as “pumping”, is thus required.
In a semiconductor injection laser, the external energy source is in the form
of an electric current.

2.2.3 Dispersive properties of atomic transitions

Physically, an atom in a dielectric acts like a small oscillating dipole when
it is under the influence of an incident oscillating electric field. When the
frequency of the incident wave is close to that of the atomic transition, the
dipole will oscillate at the same frequency as the incident field. Therefore, the
total transmitted field will be the sum of the incident field and the radiated
fields from the dipole. However, due to spontaneous emissions, the radiated
field may not be in phase with the incident field. As we shall discuss, such a
phase difference will alter the propagation constant as well as the amplitude
of the incident field. Hence, apart from induced transitions and photonic
emissions, dispersive effects should also be considered.

Classically, for a simple two-level system with two discrete energy levels,
the problem of dipole moments can be represented by a electron oscillator
model [2]. This model is a well-established method and was used long before
the advent of quantum mechanics. On the basis of the electron oscillator
model, an oscillating dipole in a dielectric is replaced by an electron oscil-
lating in a harmonic potential well.

The effect of dispersion is measured by a change in the relative permit-
tivity with respect to frequency. In the electron oscillator model, any electric
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radiation at an angular frequency close to the resonant angular frequency wy
is characterised by a frequency-dependent complex electronic susceptibility
x(w) which relates with the polarisation vector P (w) such that

P(w) = gox(w)E (2.2.16)

where
x() = x' (@) — jx" () (2.2.17)

in which x" and x” are the real and imaginary components of the electronic
susceptibility y, respectively.

We start by considering a plane electric wave propagating in a medium with
a complex permittivity of ¢'(w). The wave travelling along the longitudinal
z direction can be expressed in phasor form such that

E(z) = Ege/“e /K (@x (2.2.18)

where Ej is the complex amplitude coefficient and k'(w), the propagation
constant, can be expressed as

kK(w) = w\/ e (2.2.19)
From Maxwell’s equations, the complex permittivity of an isotropic
medium, &', is given as

dw)=¢ (1 + Z—nx(w)) (2.2.20)

where ¢ is the relative permittivity of the medium when there is no incident
field. x is the same complex electronic susceptibility mentioned earlier. Using
the above equation in (2.2.20) and assuming (gy/€)|x| < 1, we obtain

K (w) ~ k (1 + f‘lx(w)) (2.2.21)
2¢e
where
k= w. /e (2.2.22)
By expanding x(w) with equation (2.2.21), the propagation constant k’
becomes @) k(@)
/ X (w [ kx (w
k ~k(1 -—jl = 2.
(w) ( + In? ) J( 2n2 ) (2.2.23)

where n = (8/80)”2 is the refractive index of the medium at a frequency far
from the resonant angular frequency wy. Substituting equation (2.2.21) back
into (2.2.18), the electric plane wave becomes

E(Z) — Eoejwle—jl’('Fﬂk]Zelg—ﬂim )z/2 (2’2.24)

where a;y, is introduced to include any internal cavity loss and
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Ak(@) = kX2 (2.2.25)
2n
X' (@)
g(@) = kX (2.2.26)
n

In semiconductor lasers it is likely that free carrier absorption and scattering
at the heterostructure interface may contribute to the internal losses. In the
above equation, Ak corresponds to a shift in the propagation constant, which
is frequency dependent. Unless the electric field oscillates at the resonant
angular frequency wy, there will be a finite phase delay and the new phase
velocity of the incident wave will become w/(k + Ak).

Apart from the phase velocity change, the last exponential term in equation
(2.2.24) indicates an amplitude variation with g as the power gain coefficient.
When (g — ajy) is greater than zero, the electric plane wave will be amplified.
Rather than the population inversion condition relating the population density
at the two energy levels as in equation (2.2.14), the imaginary part of the
electronic susceptibility x”(w) is used to establish the amplifying condition.
Sometimes, the net amplitude gain coefficient, e, is used to represent the
necessary amplifying condition such that

8 — Uim

2

>0 (2.2.27)

Uper =

2.3 BASIC PRINCIPLES OF SEMICONDUCTOR LASERS

Before the principles of the semiconductor laser are introduced, some basic
concepts of the energy transition between energy states will be discussed.
When there is an interaction between light and matter, photons are used to
explain discrete packets of energy that may be released or absorbed by the
system. Suppose a photon of energy (E, — E;) is incident upon an atomic
system with two energy levels, E| and E; along the longitudinal z direction.
An electron at the lower energy state E| may be excited to a higher energy
state E, through the absorption of the incident photon. This process is called
induced absorption. If the two-level system is considered as a closed system,
the induced absorption process results in a net energy loss. Alternatively, an
electron found initially at the higher energy level E; may be induced by the
incident photon to jump back to the lower energy state. Such a change of
energy will cause the release of a single photon at a frequency f according
to Planck’s equation. This process is called stimulated emission. The emitted
photon created by stimulated emission has the same frequency as the incident
initiator. Furthermore, the incident and stimulated photons share the same
phase and polarisation state. In this way, coherent radiation is achieved.
Contrary to the absorption process, there is an energy gain for stimulated
emissions.

Apart from induced absorption and stimulated emissions, an electron may
jump from the higher energy state to the lower energy state without the



BASIC PRINCIPLES OF SEMICONDUCTOR LASERS 41

presence of an incident photon. This type of transition is called a spontaneous
emission and a net energy gain results at the system output. However, sponta-
neous emission is a random process and the output photons show variations
in phase and polarisation state. This non-coherent radiation created by sponta-
neous emission is important to noise characteristics in semiconductor lasers.

2.3.1 Population inversion in semiconductor junctions

In gaseous lasers, like CO, or He-Ne lasers, an energy transition occurs
between two discrete energy levels. In semiconductor lasers these energy
levels cluster together to form energy bands. Energy transitions between these
bands are separated from one another by an energy barrier known as an energy
gap (or forbidden gap). With electrons topping up the ground states, the
uppermost filled band is called the valence band and the next highest energy
band is called the conduction band. The probability of an electronic state
at energy E being occupied by an electron is governed by the Fermi-Dirac
distribution function, f(E), such that [3]

) =1/ [¢E-ENT 41] 2.3.1)

where k is the Boltzmann constant, T is the temperature in degrees K and Ex is
the Fermi level. The concept of the Fermi level is important in characterising
the behaviour of semiconductors. By putting E = Ey in the above equation,
the Fermi-Dirac distribution function f(E¢) becomes 1/2. In other words, an
energy state at the Fermi level has half the chance of being occupied. The
basic properties of an equilibrium p-n junction will not be covered because
they can be found in almost any solid state electronics textbook [4]. Only
some important characteristics of the p-n junction will be discussed here.

According to Einstein’s relationship on the two-level system, the
population of electrons in the higher energy state greatly exceeds that of
clectrons found in the lower energy state before any passing wave can be
amplified. Such a condition is known as population inversion. At thermal
equilibrium, however, this condition cannot be satisfied. To form a population
inversion along a semiconductor p-n junction, both the p- and n-type
materials must be heavily doped (degenerative doping) so that the doping
concentration exceeds the density of states of the band. The doping is so
heavy that the Fermi level is forced into the energy band. As a result,
the upper part of the valence band of the p-type material (from the Fermi
level E¢ to the valence band edge E,) remains empty. Similarly, the lower
part of the conduction band is also filled with electrons owing to heavy
doping. Figure 2.2(a) shows the energy band diagram for such a heavily
doped p-n junction. At thermal equilibrium, any energy transition between
the conduction and valence bands is rare.

Using an external energy source, the equilibrium is disturbed. External
energy comes in the form of external biasing, which enables more electrons
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Figure 2.2 Schematic illustration of a degenerate homojunction. (a) Typical energy level diagram at
equilibrium with no biasing voltage. (b) The same homojunction under a strong forward bias
voltage.

to be pumped into the higher energy state; population inversion is then said
to be achieved. When a forward bias voltage close to the bandgap energy is
applied across the junction, the depletion layer formed across the p-n junction
collapses. As shown in Figure 2.1(b), the quasi-Fermi level in the conduction
band, Ef., and that in the valence band, EF,, are separated from one another
under forward biasing. Quantitatively, Ex. and Ep, could be described in
terms of the carrier concentrations such that

N = njeEre=ED/AT (2.3.2)

and
P = n;e Ei—ERI/KT (2.3.3)

where E; is the intrinsic Fermi level, n; is the intrinsic carrier concentration,
and N and P are the concentration of electrons and holes, respectively. Along
the p—n junction, there exists a narrow active region that contains simulta-
neously the degenerate populations of electrons and holes. Here, population
inversion is satisfied and carrier recombination starts to occur.

Since the population distribution in a semiconductor follows the
Fermi-Dirac distribution function, the probability of an occupied conduction
band at energy E, can be described by

fc(Ea) = mfa—_—‘gm where Ea => Ef-‘c (234)
Similarly, the probability of an occupied valence band at energy Ey, can be
written as

fc(Eb) = where £y, < Epy (2.3.5)

1 + eEb—Erv)/kT
Since any downward transition implies that an electron jumps from the
conduction band to the valence band with the release of a single photon,
the total downward transition rate, R,_p, is proportional to the probability
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that the conduction band is occupied whilst the valence band is vacant. In
other words, it can be expressed as

Rasp  fc(Ea)(1 = fu(Ev)) (2.3.6)
Similarly, the total upward transition rate, Ry_., becomes
Ro—a o< fu(Ep)(1 — fc(Eq)) (2.3.7)
As a result, the net effective downward transition rate becomes
Ra_p(net) = Ry—.p — Rp—s
~ fc(Ea) — fv(Ep)

To satisfy population inversion, the above relationship must remain positive.
In other words, it is necessary to have

fe(Ea) > fy(Ep) (2.3.9)

Putting E, — Ep = hf and using the Fermi-Dirac distribution function, the
above equation becomes

(2.3.8)

Epc —Epy > hf (2.3.10)

which is known as the Bernard-Duraffourg condition [3]. Since the energy
of the radiated photon must exceed or equal that of the energy gap, Eg, the
final condition for amplification in a semiconductor becomes

Erc — Epy > hf > Eg (2.3.11)

From a simple two-level system to the semiconductor p-n junction, a
necessary condition for light amplification is established. However, this
condition is not sufficient to provide lasing, as we discuss in the next
section. To sustain laser oscillation, certain optical feedback mechanisms are
necessary.

2.3.2 Principle of the Fabry-Perot etalon

We briefly mentioned the FP laser cavity in Chapter 1. In this section the
details of this LD are given. By facing two partially reflected mirrors towards
one another, a simple optical resonator is formed. Let L be the separation
between the two mirrors. If the spacing between the two mirrors is filled
with a medium that possesses gain, a FP etalon is formed. Because an
electric field bounces back and forth between the partially reflected mirrors,
the wave is amplified as it passes through the laser medium. If the ampli-
fication exceeds other cavity losses owing to imperfect reflection from the
mirrors or scattering in the laser medium, the field energy inside the cavity
will continue to build up. This process will continue until the single pass
gain balances the loss. When this occurs, a self-sustained oscillator or a laser
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Figure 2.3 A simplified Fabry -Perot cavity.

cavity is formed. Hence, optical feedback is important in building up the
internal field energy so that lasing can be achieved. A simplified FP etalon
is shown in Figure 2.3.

In Figure 2.3, | and 7, are the amplitude reflection coefficients of the input
(left) and output (right) mirrors, respectively. Similarly, 7; and 7, represent
the amplitude transmission coefficients of the mirrors. Suppose an incident
wave with complex propagation constant k” enters the etalon from z = 0.
After a series of parallel reflections, the number of transmitted waves at the
output plane (z = L) becomes [5]

Ey= Ei?ﬁze_jk"'[l + Fﬁze_zﬂ"i’ + Pf?ge_”“ + - } (2.3.12)

Using an infinite sum for a geometric progression (GP) series, the above
equation becomes

P T

h!’ze_"k L

Eg= —————E;
1 — 7y e UKL

(2.3.13)

By expanding the propagation constant k" as in equation (2.2.24), equation
(2.3.13) can also be expressed as

;l ;2c—j(t+ak ]LeanuL

Ey=E; (2.3.14)

1-# er —2j(k+Ak)Lganel

where aye is the net loss. When aye > 0, and the numerator of the above
equation becomes very small such that the term in square brackets is larger
than unity, amplification will occur.

To obtain the self-sustained oscillation, the denominator of the above
equation must be zero, i.e.

Fiie KL = (2.3.15)

This is the threshold condition of a FP laser as the ratio E,/E; becomes
infinite. Physically, this corresponds to a finite transmitted wave at the output
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with a zero incident wave. With the amplitude and the phase term separated,

we obtain
el = 1 (2.3.16)

and
2(k + AK)L = 2mn (2.3.17)

Equation (2.3.16) represents a case in which a wave making a round trip
inside the resonator will return with the same amplitude at the same plane.
Similarly, the phase change after a roundtrip must be an integer of 27 to
maintain a constructive phase interference. By rearranging equations (2.3.16)
and (2.2.24), the threshold gain of the FP laser becomes

2 1
ah =ag+ —In :—) with g = ay, (2.3.18)
L rr
where
1 1
Um = — In e (2319)
L rr

is the amplitude mirror loss which accounts for the radiation escaping from
the FP cavity owing to finite facet reflections. Hence, the threshold gains
of FP semiconductor lasers can be determined once the physical structures
are known.

From equation (2.3.17), we can determine the lasing frequency. Owing to
the dispersive properties, as shown in section 2.2, the frequency-dependent
propagation constant (k + Ak) is replaced by a group refractive index, ng,
such that

Re(k') = kong = koc/vg (2.3.20)

where ko is the free space propagation constant. Replacing kg with 27 f/c and
rearranging equation (2.3.17), the cavity-resonance frequency f, becomes

fm=mc/2ngL (2.3.21)

where m is an arbitrary integer. When m increases, it can be seen that there is
an infinite number of longitudinal modes. In practice, however, the number of
longitudinal modes depends on the width of the material gain spectrum. From
the equation shown above, it is also confirmed that the longitudinal mode
spacing is the one shown in equation (1.3.25) in Chapter 1. The gain value
of all probable modes increases with pumping until the threshold condition
is finally attained. The mode with the minimum threshold gain becomes the
lasing mode whilst others become non-lasing side modes. After the threshold
condition is reached, the laser gain spectrum does not stay at a fixed value
like gaseous lasers. Instead, the lasing gain spectrum keeps changing with
the biasing current. Such an inhomogeneous broadening effect becomes so
complicated that multimode oscillation and mode hopping become common
in FP semiconductor lasers.
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The lasing spectrum and the spectral properties of the FP laser cavity are
important in the field of semiconductor lasers, because other semiconductor
lasers resemble its basic design. Simplicity may be an advantage for FP
lasers. However, owing to the broad and unstable spectral characteristics, it
has limited application in coherent optical communication systems in which
a single longitudinal mode is a requirement.

2.3.3 Structural improvements in semiconductor lasers

In section 2.3.1 population inversion in a heavily-doped p-n junction (or
diode) was discussed. The so-called homojunction is characterised by having
a single type of material found across the p-n junction. When a forward bias
voltage is applied across the junction, the contact potential between the p and
n junction is lowered. With the energy gap remaining constant throughout the
junction, the majority of carriers tend to diffuse easily across the junction. As
a result, carrier recombination along the p-n junction becomes less efficient.
A typical current density required to achieve lasing in this early diode is of the
order of 10° A/cm? [6]. With such a high current density, continuous wave
(CW) operation at room temperature is impossible. Pulse mode operation is
allowed at extremely low temperatures only. With such a low efficiency and
high threshold current, the homojunction structure was later replaced by more
effective structures.

Improvements in transverse carrier confinement

In 1963, it was discovered that the threshold current of semiconductor lasers
could be reduced significantly if carriers were confined along the active
region. A three-layer structure, which consisted of a thin layer of lower
energy gap material sandwiched between two layers of higher energy gap
materials, was proposed. However, it was not until 1969 that the liquid
phase epitaxy (LPE) growth of AlGaAs on a GaAs homojunction became
available. Since two different materials were involved, an additional energy
barrier was formed alongside the homogeneous p-n junction. As a result, the
chance of carrier diffusion was reduced. The name single heterostructure was
given [3] and is shown in Figure 2.4(a). Apart from the difference in energy
gaps, the p-GaAs active layer has a higher refractive index than the n-region.
Moreover, with the p-AlGaAs cladding having a considerably lower refractive
index, an asymmetric three-layer waveguide was formed within the single
heterostructure and the highest refractive index was found along the active
region. The asymmetric waveguide confined the optical intensity largely to
the active region and so the optical loss due to evanescent mode propa-
gation was reduced. However, the best room temperature threshold current
density for a single heterostructure device is still too high for CW operation
(typical value of 8.6 kA/cm?). Nevertheless, it is a great improvement on the
homostructure.
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Figure 2.4 Schematic illustration of a single heterojunction [4]. (a) Typical energy level diagram at equilibrium
with no biasing voltage. (b) The same heterojunction under a strong forward bias voltage.
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Figure 2.5 Schematic illustration of a double heterojunction [4]. (a) Typical energy level diagram at
equilibrium with no bias voltage. (b) Under a strong bias voltage.

The establishment of CW operation at room temperature was finally
achieved in the 1970s. As shown in Figure 2.5, the thin active layer is
now sandwiched between two layers of a higher energy gap material, and
hence a double heterostructure is formed. Along the boundary where two
different materials are used, an energy barrier is formed. Carriers find it
so difficult to diffuse across the active region that they are trapped. By
using a higher refractive index material at the centre, photons are also
confined in a similar way. This type of structure is known as the separate
confinement heterostructure (SCH). The combined effects of carrier and
optical confinement help to bring the threshold current density down to
approximately 1.6 kA/cm?. Operation at CW becomes feasible provided that
the laser itself is mounted on a suitable heat sink.

Improvements in lateral carrier confinement

Continuous wave operation at room temperature was a significant achievement
and currently the double heterostructure design is more or less standard. So
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far, the structures we have discussed belong to the broad-strip laser family
since they do not incorporate any mechanism for the lateral (parallel to the
junction plane) confinement of the injected current or the optical mode. By
adopting a strip geometry, carriers are injected over a narrow central region
using a strip contact. With carrier recombination restricted to the narrow
strip (a typical width ranging from 1 pm to 10 pum), the threshold current is
reduced significantly. Such lasers are also referred to as gain-guided because
it is the lateral variation of the optical gain that confines the optical mode
to the strip vicinity. On the other hand, lasers in which the optical modes
are confined because of lateral variations of refractive index are known as
index-guided lasers.

Comparatively, gain-guided lasers are simple to make, but their weak
optical confinement limits the beam quality [5]. Moreover, it is difficult to
obtain a stable output in an SLM. As a result, the index-guiding mechanism
has become the main stream in semiconductor laser development and a large
number of index-guided structures have been proposed in the past decade.
Basically, a lateral variation of refractive indices is used to confine the optical
energy. Various index-guided structures like the buried heterostructure (BH),
channelled substrate planar (CSP), buried crescent (BC), ridge waveguide
(RW) and dual-channel planar buried heterostructure (DCPBH) have been
used. A survey of recent research revealed many other types of lasers,
but basically they are alternatives of these basic structural designs. The
structural improvement in the development of semiconductor lasers reduces
the threshold current density whilst CW single transverse mode operation
becomes feasible.

2.3.4 Material gain in semiconductor lasers

Suppose a medium with a complex permittivity £’ is used to build an infinitely
long waveguide and an input signal is injected into it. After travelling a
distance L, the power gain of the signal can be defined by an amplifying
term, G, such that

G = ¥ %ot (23.22)

where g is the material gain (or the power gain coefficient) and oo is the
internal cavity loss. It is important that (g — @jess) > O for an amplified signal.

In an index-guided semiconductor laser, the refractive index of the active
region (n) is higher than the surrounding cladding (n2) so that a dielectric
waveguide is formed. In practice, however, the dielectric waveguide formed
is far from ideal. Under the weakly guiding condition where (n| — n3) < ny,
some energy leaks out into the cladding as a result of the evanescent field.
To take into account the power leakage, a weighting factor I" is introduced
in equation (2.3.22) such that

G = ell&—aa)—(1-Tac+ascall (2.3.23)
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where «, and «. are the absorption losses of the active and cladding layers,
respectively, and ay, is the scattering loss at the heterostructure interface.
The weighting factor I', known as the optical confinement factor, defines the
ratio of the optical power confined in the active region to the total optical
power flowing across the structure.

To determine the optical gain, various approaches have been used. In this
section a phenomenological approach [6] will be introduced whilst another
approach using Einstein’s coefficients [7] will be discussed in the next section.
The phenomenological approach is based on experimental observations that
the peak material gain varies almost linearly with the injected carrier concen-
tration. Such an observation leads to a linear approximation of [8]:

8peak = Ao(N — No) (2.3.24)

where Ay is the differential gain and Ny is the carrier concentration at zero
material gain, and is commonly known as the transparency carrier concen-
tration. The above relation gives only a reasonable approximation in a small
biasing range when the carrier concentration is comparable with the trans-
parency carrier concentration. The range of accuracy is extended by adopting
a parabolic model such that [9]

8peak = aN? + bN + ¢ (2.3.25)

where a, b and ¢ are constants determined by fitting the available exact
solutions using the least-squares technique.

Owing to the dispersive properties of the semiconductor, the actual material
gain is also affected by the optical frequency f, and hence the wavelength A.
So far, the gain value is assumed to be at the resonant frequency. However,
if the optical frequency is tuned away from the resonant peak, the exact value
of the gain becomes different from that of gpea-

On the basis of experimental observation, Westbrook [10] extended the
linear peak gain model further so that

g(N, 1) = Ag(N — No) — Aj[A — (X — A2(N — No))J? (2.3.26)

where A is the wavelength of the peak gain at transparency gain (i.e. g = 0)
and A, governs the base width of the gain spectrum. The wavelength shifting
coefficient A, takes into account the change in the peak wavelength with
respect to the carrier concentration. Notice that the negative sign in front of
A; indicates a negative wavelength shift in the peak gain wavelength.

In semiconductor lasers, energy enters in the form of an external biasing
current. To determine the material gain, we must determine the relationship
between the carrier concentration N and the injection current /. This is accom-
plished through the carrier rate equation, which includes the generation and
decay carriers found in the active region. In its general form, the equation is
given as [4,11]

oN

/ 5
= — D(V°N 2.3.27
or qV 14 &S Lt ) ( )
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where g is the electronic charge and V = dwL is the volume of the active
layer, with d, w and L being the thickness, the width and the length of the
active layer, respectively. / is the injection current, R(N) is the total (i.e.
both radiative and non-radiative) carrier recombination process, and the term
vg8(N, 1)S/(1 + £5), as shown in the above equation, takes into account the
carrier loss as a result of stimulated emission. Here, vy is the group velocity
and § is the photon density of the lasing mode. The effect of photon non-
linearity is included in the non-linear coefficient £. In the above equation, the
final term, D(V2N), represents the carrier diffusion with D representing the
diffusion coefficient.

In R(N), shown in the above equation, the non-radiative carrier
recombination implies those processes will not generate any photons. For
semiconductor lasers operating at a shorter wavelength (A < 1 um), the
effects of non-radiative recombination are small. However, non-radiative
recombination becomes more important in long-wavelength semiconductor
lasers. In quaternary InGaAsP materials operating in the 1.30 um and 1.55 um
regions, the total carrier recombination rate can be written as

N
R(N) = -t BN? + CN? (2.3.28)

where t is the linear recombination lifetime, B is radiative spontaneous
emission coefficient and C is the Auger recombination coefficient. The linear
recombination lifetime t includes recombination at defects or surface recom-
bination at the laser facet. With improvements in fabrication techniques,
the number of defects and the chances of surface recombination have been
reduced significantly. In long-wavelength semiconductor lasers, the cubic
term CN? takes into account the non-radiative Auger recombination process.
Owing to the Coulomb interaction between carriers of the same energy band,
each Auger recombination involves four carriers. According to the origins
of these carriers, the Auger recombination is classified into band-to-band,
photon-assisted and the trap-assisted processes. Details of different types of
Auger processes are clearly beyond the scope of the present investigation,
though the interested reader may refer to reference [4]. Some typical values
of r, B and C for the quaternary III-V materials at 1.30 um and 1.55 pm
are listed in Table 2.1. On the basis of the simplified carrier rate equation, all
these parameters can be measured in a simple way, as explained in a recent
paper by Chu and Ghafouri-Shiraz [12].

In an index-guided semiconductor laser where the active layer width and
thickness are small compared with the carrier diffusion length of 1-3 um,
the diffusion effect becomes of secondary importance and can be neglected
hereafter. At the lasing threshold, the semiconductor laser begins to lase. With
aN /ot = 0, the steady-state solution of the carrier rate equation becomes

Iy = qVR(Nw)/n;i (2.3.29)
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Table 2.1 Coefficients for the total recombination of quaternary materials at
1.3 um and 1.55 um (after reference [4])

In,_,Ga,As,P,_, at A = 1.30 pm withy = 0.61,.x =0.28 at T = 300 K

r=10.0 ns
B=12x10"" cm?/s
C=15x10%cmé s
Iny_»Ga,As,Py_, at A =1.55 yum withy =090, x =042 at T =300 K

T=4ns
B =10x10" cm¥/s
C =30x10"2 cmf/s

where Iy, is the threshold current and Ny, is the threshold carrier density.
The internal quantum efficiency, n;, gives the ratio of the radiative recom-
bination to the total carrier recombination. In deriving the above equation,
S is assumed to be zero at the lasing threshold condition. Sometimes, rather
than the threshold current, a nominal threshold current density Jy, (in A}"l’l‘l:}
is used which relates to the threshold current 7, as

Ind/V =Jy (2.3.30)

In semiconductors, any change in the material gain is accompanied by a
change in the refractive index as a result of the Kramer-Kroenig relationship
[1]. Any change in the carrier density will induce changes in the refractive
index [13,14] as

dn
n(N)=n+ FEN (2.3.31)

where n;,; is the refractive index of the semiconductor when no current is
injected dn/dN and is the differential index of the semiconductor. It should
be noted that the value of dn/dN is usually negative. The refractive index
becomes smaller as the injection current increases. As we discuss in a later
chapter, any variation in the carrier density will affect the spectral behaviour
of the laser because the lasing wavelength is very sensitive to any variation
in the refractive index.

Both the Fermi-Dirac distribution and the material gain are found to be
sensitive to temperature change. In practice, the operating temperature of
the semiconductor lasers is usually stabilised by a temperature control unit.
Moreover, it is also known that a change in optical gain due to a variation in
the injected carrier is more significant than that due to temperature [15]. As
a result, the temperature dependence of the material gain has been neglected
in the analysis.

2.3.5 Total radiative recombination rate in semiconductors

The theory for all classes of laser can also be represented by the Einstein
relation for absorption, spontaneous emission and stimulated emission rates.
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In semiconductors, optical transitions are between energy bands, whilst other
laser transitions are between discrete energy levels. Nevertheless, the Einstein
relations are still applicable. The major differences between various material
systems are contained in the Einstein coefficient (or transition probabilities)
which can only be determined by quantum mechanics. Transitions between
any pair of discrete energy levels are separated by hf (or E3;). The gain
coefficient g(E;;) and emission rates rgpon(E21) and rgim(E2;) are related to
one another by [3,7]

h3¢?

Es) = ——rgim(E 2.3.32
g(E2) 8nn§E§lrsum( 21) ( )

nnZE3, FED1 = fu(ED)]
(Ezy) = —E-= 05, (E3) ) — Y 2.3.33)

rspon Zl} h3C2 82I( 2]) fC(EZ)—fV(E]) (
and '

rsim(E21) = (1 - ﬁelgﬂ—‘f“‘fﬁ”) Fspon(E21) (2.3.34)

where h is the Planck constant, k is the Boltzmann constant, ¢ is the free
space velocity, ng is the group refractive index, and f.(E;) and f(E,) are
the occupation probabilities of electrons in the conduction and valence bands,
respectively. Ef. and Ey, are the quasi-Fermi levels. It should be noted that
the unit of the gain coefficient is cm~' whilst the units of the emission rate
rspon and ryim are in number of photons per unit volume per second per energy
interval.

Equations (2.3.32) to (2.3.34) demonstrate how g(E3;), rspon(E2)) and
rsim(E21) are related to one another. To evaluate these expressions, one
parameter, such as the spontaneous emission rate, rspon(E2; ), must be obtained
experimentally. Alternatively, they are all related to the Einstein coefficients
such that

8(Ex) = B[ f(Ez) — fu(Ey)]ng/c (2.3.35)
rspon(EZI) = A f(E)[1 — fu(EY)] (2.3.36)
rsim(E21) = A fc(Ey) — fu(EY)] (2.3.37)
with
B?nggl
Ay = BMW (2.3.38)

at thermal equilibrium. With a known doping concentration, the unknown
parameters g, repon and rgim in equations (2.3.35) to (2.3.37) can then be
fixed after determining either A2, or Bs).

Without any preference, B is chosen to be the key parameter. As
expected, the coefficient B,; takes into account the interaction between
electrons and holes in the presence of electromagnetic radiation. To
understand the interaction between them, quantum mechanics should be used.
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Rather than going through the lengthy analysis, some important results will be
shown. Starting with the time-dependent Schrodinger equation, the coefficient
B>, is given as [3]

q*h
By = —— M 2.3.39
21 2m§£gn§Ezll 21] ( )
so that 4 £
TtngqL2)
Ay = —2_ M 2.3.40

where & is the free space permittivity, g is the electronic charge, my is the
mass of an electron and M3; is the momentum matrix element between the
initial (subscript 2) and final (subscript 1) electron state.

With the actual transition involving various energy states between the
conduction band and the valence band of the semiconductor, the analysis
will not be complete without the inclusion of density of state functions. It is
necessary to determine the momentum matrix element as well as the density
of states.

The density of state function is not difficult for the parabolic band model.
From Yariv [1], it is clear that the density of states in the conduction band is

2,"“ 372
p(E —E.) =4r - ( 3 ) (E — Ec)'? (2.3.41)
where E. is the conduction band edge and m, is the effective electron mass.
Similarly, the density of states in the valence band can be written as

h2

where E, is the valence band edge and my is the effective mass of the hole.

The momentum matrix element may be determined empirically from the
wave function. For the localised state, the wave function of the band is
modified by a slowly varying envelope function which represents the influence
of impurities. As a result, the momentum matrix becomes

M21 = M = Mb . Mcnv (2.343)

3/2
ov(Ey —E)=4n- (zﬂ) (Ey - E)'/? (2.3.42)

where M, is the average matrix element of the Bloch state for an
intrinsic situation and M.,, represents the slowly varying envelope function
with impurities present. For III-V quaternary semiconductors, M, can be
expressed as
miEg(Eg + A)
Mp?= 8¢ 23.44
Vel = T B, + 2/G38)) (2349

where Eg = E. — E, is the energy gap, and A is the spin-orbit splitting.
For transition under the k-selection rule, the wave vector difference
between the valence and conduction bands must be equal to that of the emitted
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photon. In other words, momentum is conserved and the momentum matrix
element is given as [3]

Mt T D) @y
12m,(Eg +2/(3A))  V

(2.3.45)

where (27)*/V is the unit volume in k-space.

However, when the semiconductor is biased with a high injection current,
or it is heavily doped, the density of states will be modified. The randomly
distributed impurities (from current injection or heavy doping) tend to create
an additional continuum of states near the band edge, which is known as the
band-tail state. Since momentum will no longer be conserved, one needs to
use the relaxed k-selection rule so that the band-tailing effect can be included.
Neglecting the band-tailing effect first but including the density of states, the
spontaneous emission rate rspo, at photon energy E;; can be written as

rspon(EN) = A f pe(E —~ Ec)fc(E) - ov(Ey — E)[l — fv(E)] dE

(2.3.46)
The integral shown above takes into account various states in the conduction
band and the valence band, which are separated by the photon energy E3).
With such a clumsy notation, it is common to shift the valence band edge,
E,, by the photon energy, E>;. In this way, E’ becomes the energy variable.
At the conduction band edge, E’ becomes 0 and so we can define E” = E" —
E»). As a result, p.(E — E.) becomes p.(E’), while py(E, — E) is shifted to
become py(E”). By substituting A;; into the above equation, the spontaneous
emission becomes
2 oc
1?%83—25?[ pe(ENF(E') - p(E)1 = f(E")]IM|*dE’
mieoh®c® J-x
(2.3.47)
Under the relaxed k-selection rule, the momentum matrix M can be
considered as energy independent and so it is taken out of the integration.
What remains in the integration is the density of holes (P) and electrons (N).
Therefore, equation (2.3.47) is simplified to give

rspon(E21) =

4]’!’"8(]'2521

2
m§£ghzc3 IM|“PN (2.3.48)

Ispon(E21) =

Within a narrow range of photon energy, £3; = Ej is fairly constant. As a
result, the total spontaneous emission rate (Rsp) can be written as

Ryp = frspon(E)dE

_ 4rmgq2Eu
~ m2egh?c3
=B-NP

IM|2PN (2.3.49)
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Here, B is commonly known as the radiative recombination coefficient. In
most cases the density of electrons and holes are the same and hence equation
(2.3.49) can be written as

R, = BN? (2.3.50)

2.4 COUPLED-WAVE EQUATIONS IN DISTRIBUTED FEEDBACK
(DFB) SEMICONDUCTOR LASER DIODES

To understand the operational characteristics of a DFB semiconductor laser,
it is necessary to consider wave propagation in periodic structures. Grating
or corrugation-induced dielectric perturbation leads to coupling between the
forward and backward propagating waves. Historically, various approaches
like coupled-wave theory [16,17] and Bloch wave analysis [18] have
been adopted. Although these methods were proven to be equivalent [19],
researchers have been keen on the coupled-wave theory because of its ease
of understanding, and numerical algorithms could be implemented to solve
the equations [20].

In a homogeneous, source-free and lossless medium, any time harmonic
electric field must satisfy the vector wave equation [21]

VZE + kin’E =0 (2.4.1)

where the time dependence of the electric field is assumed to be e/“, n is
the refractive index and kg is the free space propagation constant.

In a semiconductor laser which has a transversely and laterally confined
structure, the electric field must satisfy the one-dimensional homogeneous
wave equation such that

d? ’
a;i + k“(2)
We consider a multi-dielectric stack in which periodic corrugations are formed
along one boundary, as illustrated in Figure 2.6.

The material complex permittivity in each layer is denoted ¢, while g and
A are the height and the period of corrugation, respectively. With corrugations
extending along the longitudinal direction, the wave propagation constant,
k(z), can be written as

E@z)=0 (24.2)

K2(z) = w?pe’ (2.4.3)

where w is the angular frequency and &’ is the complex permittivity. When the
radiation frequency is sufficiently close to the resonance frequency, equation
(2.4.3) becomes [1]

(2.4.4)

kg _ 2"2(2) (l +j 20(3))

Jkon(z)

where n(z) and a(z) are the refractive index and the amplitude gain coefficient,
respectively. Within the grating region (d, < x < d, + g), a perturbation is
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Figure 2.6 General multi-dielectric layers used to show the perturbation of the refractive index and amplitude
gain. Z(x) and Z>(x) are two corrugation functions.

introduced so that the refractive index and the amplitude gain coefficient
become [16,20])

n(z) = no+ Ancos(2fpz + ) (2.4.5a)

and
a(z) =ap + Aacos(2Bpz + 2+ 6) (2.4.5b)

Here, ny and ap are the steady-state values of the refractive index and
amplitude gain, respectively, An and A« are the amplitude modulation
terms, €2 is the non-zero residue phase at the z-axis origin and Sy is
the propagation constant. In the above equation, ¢ takes into account the
relative phase difference between perturbations of the refractive index and
the amplitude gain.

Suppose there is an incident plane wave entering the periodic, lossless
waveguide at an angle ®, as shown in Figure 2.7. The propagation constant of
the wave is assumed to be fy. At every periodic interval A, the incident wave
will experience the same degree of refractive index change so that the incident
wave will be reflected in the same direction. For a waveguide that consists
of N periodic corrugations, there will be N reflected wavelets. In order that
any two reflected wavelets add up in phase or interfere constructively, the
phase difference between the reflected wavelets must be an integer of 2. In
other words,

Bo(AB + BC) = By(2A sin ®) = 2mm (2.4.6)

where m is an integer. If the incident wave now approaches more or less at
a right angle to the wavefront (i.e. &~ 7/2), equation (2.4.6) becomes

2B0A = 2mn (2.4.7)
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Path difference = AB + BC
AB = BC = Asin®

vz

Figure 2.7 The simple model used to explain Bragg conditions in a periodic waveguide.

This is known as the Bragg condition and B becomes the Bragg propagation
constant. The integer m shown in the above equation defines the order of
the Bragg diffraction. Unless otherwise stated, first-order Bragg resonance
(m = 1) is assumed. Since a laser forms a self-sustained resonant cavity, the
Bragg condition must be satisfied [16]. Rearranging equation (2.4.7) gives

2rng  nows _ n (2.4.8)

ho= AB c A

where Ag and wp are the Bragg wavelength and the Bragg frequency, respec-
tively. From equation (2.4.8), it is clear that the Bragg propagation constant is
related to the period of the physical grating, A . By altering the grating period
A, the Bragg wavelength can be shifted according to the specific application.

Using the small signal analysis, the perturbations of the refractive index
and gain are always smaller than their average values, i.e.

An &< ng, Aa < ag (2.4.9)

Using the above assumption and substituting equation (2.4.5) into (2.4.4),
will generate

k*(z) = kgnj + j2konoatg + 2ko[kono + jao)An cos(2Boz + Q)
+ 2jkonoAa cos(2pz + Q2+ 6) (2.4.10)
With kgng replaced by B and ay < B, the above equation becomes
A Aa -
K@) ~ B +2jBag + 2 [J‘rln +}.Tﬁe,e] oI 2Roz+)

oy [m:n +j%c—j8] =i (2Boz+ ) (2.4.11)
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For the case when # = 0, we can simplify equation (2.4.10) to [20]

5 > TAn A
k= ""*-“ﬁ'+2jﬁan+4ﬂ[T +j70}cos{23t|:+§2) (2.4.12)

By collecting all the perturbed terms, we can define a parameter x such that

[16,22,23]
TAn Aa

+ j— =K + jK (2.4.13)
A J 2 i T JKg
Here «; includes all contributions from the refractive index perturbation whilst
kg covers all contributions from the gain perturbation. The parameter x intro-
duced in the above equation is known as the coupling coefficient. After a
series of simplifications, equation (2.4.12) becomes

K=

k>~ B2 + 2jBag + 4kBcos(2Bpz + Q) (2.4.14)
On substituting the above equation back into the wave equation, we end
up with

-

E 2 i(2f0= (2B

oz B +2ja+ 2ce/ PP 4 oy e PRI E = 0 (24.15)
where the cosine function shown in equation (2.4.14) has been expressed in
phasor form. A trial solution of the scalar wave equation could be a linear
superimposition of two opposing travelling waves such that

E(z) = A(z)e ki 4 B(z)e/kun (2.4.16)

with R R
kin = B° + 2jBay

N (2.4.17)
X (B+ jag) (. ap K B)

In the above equation, A(2) and B(z) are complex amplitudes of the forward
and backward propagating waves [20]. «,, is the complex propagation
constant for the unperturbed structure with An = Aa = 0 (i.e. x = 0). Since
kyn = B + jap, the trial solution of the scalar wave equation can also be
expressed in terms of the real propagation constant, 8, such that

E(z) = A(z)e™%e ™% 4 B(z)e “0e/P:
o | (2.4.18)
= C(x)e /% + D(z)e’™

To satisfy the Bragg condition, as shown earlier in equation (2.4.7), the actual
propagation constant, 8, should be sufficiently close to the Bragg propagation
constant, f, so that the absolute difference between them should be much
smaller than the Bragg propagation constant. In other words,

B — Bol < Bu (2.4.19)
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Such a difference between the two propagation constants is commonly known
as the detuning factor or detuning coefficient, §, which is defined as

§=p- B (2.4.20)

In other words, the trial solution can also be expressed in terms of the Bragg
propagation constant, i.e.
E(z) = C(z)e~%e~ /P07 4 D(z)e% e/
, , (2.4.21)
= R(z)e /% + S(z)e/H-

where R(z) and S(z) are complex amplitude terms. Since the grating period,
A, in a DFB semiconductor laser is usually fixed, and so is the Bragg propa-
gation constant, it is more convenient to consider equation (2.4.21) as the
trial solution of the scalar wave equation. By substituting equation (2.4.21)
into (2.4.15), we end up with the following equation:

(R" — 2jBoR — BSR + B°R + 2jBagR)e /Fo:
+ (5" 4 2jBoS — BES + B*S + 2jBagS)e’P*
+ 2cP(e*/PoiesR 4 e~ 2iPoie=JR) . (Re~IP0: 4 Selfoty = (0 (2.4.22)

where R’ and R” are the first- and second-order derivatives of R, respec-
tively. Similarly, $" and S” represent the first- and second-order derivatives
of §, respectively. With a “slow” amplitude approximation, high order deriva-
tives like R” and S” become negligible when compared with their first-
order terms. By separating the above equation into two groups, each having
similar exponential dependence, we obtain the following pair of coupled wave
equations:

dR _
=t (atg — jOR = jkSe /% (2.4.23)

ds ,

ot (ctp — j8)S = jkRe'? (2.4.24)

Equation (2.4.23) collects all the exp(— jBoz) phase terms propagating along
the positive z direction, whilst equation (2.4.24) gathers all the exp(jBoz)
phase terms propagating along the negative direction. Since |§| < B, other
rapid changing phase terms such as exp(%;3Bpz) have been dropped. In
deriving the above equations, the following approximation has been assumed

B -85 .
2o
Following the above procedures, we end up with a similar pair of coupled

wave equations for a non-zero relative phase difference between the refractive
index and the gain perturbation (i.e. € # 0) such that

B—Bo=24 (2.4.25)

dR ;
~ < + (@~ jOR = jkgsSe /7 (2.4.26)
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ds ,
5 (@@= joSs= jkspRe’® (2.4.27)
Z

where
Krs = Ki + jicge™° (2.4.28)

is the general form [24] known as the forward coupling coefficient and
Ksp = Ki + jxgeje (2.4.29)

is the backward coupling coefficient.

From the scalar wave equation, a pair of coupled wave equations have been
established. The forward coupling coefficient xgs in equation (2.4.26) induces
the negative travelling electric field S(z) to couple in the counter propagating
one R(z), and vice versa for equation (2.4.27). Contrary to FP lasers, where
optical feedback is originated from the laser facets, optical feedback in DFB
semiconductor lasers occurs continuously along the active layer where corru-
gations are fabricated. On the basis of the nature of the coupling coefficient,
DFB semiconductor lasers are classified into three different groups: (a) purely
index-coupled DFB semiconductor lasers; (b) mixed-coupled DFB semicon-
ductor lasers; and (c) purely gain- or loss-coupled DFB semiconductor lasers.

2.4.1 A purely index-coupled DFB laser diode (LD)

Most practical DFB semiconductor lasers belong to this type, where coupling
is solely generated by the refractive index perturbation. A single layer of
corrugation is fabricated above (or below) the active layer, as shown in
Figure 2.8.

Since most carrier recombinations are confined along the active layer, the
amplitude gain of the DFB laser will not be affected. Therefore, with kg =0,
the index coupling coefficient k; (which is purely real) is related to xgs and
ksr by the expression [20]

KRS = KSR = Kj (24.30)

Refractive index profile
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Figure 2.8 A simplified schematic diagram for a purely index-coupled DFB semiconductor
laser.
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Refractive index profile
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Figure 2.9 A simplified schematic diagram showing a mixed-coupled DFB semiconductor laser
diode.

2.4.2 A mixed-coupled DFB LD

If the corrugation layer is fabricated on the upper part of the active layer,
as shown in Figure 2.9, the DFB semiconductor laser will show a mixed
coupling characteristic [24-26].

Owing to the variation in the refractive index along the corrugation
layer, index-coupling is induced. However, the occurrence of gain-coupling
needs further explanation. As illustrated in Figure 2.9, the active layer
thickness becomes a periodic function along the longitudinal direction and
thus is the optical confinement factor. Such a periodic modulation of the
optical confinement factor modifies the amplitude gain along the longitudinal
direction and so gain-coupling is induced [27]. Since both refractive index
and gain-coupling are induced by the same corrugation, the corresponding
phases of the «; and «; are assumed to be equal. For a zero relative phase
difference (6 = 0), we end up with the following identity:

Krs = Ksp = Ki + jkg (2.4.31)

2.4.3 A gain-coupled or loss-coupled DFB LD

With only one single layer of grating, it is difficult to achieve a purely gain-
coupled DFB device. However, by fabricating a second layer of grating on
top of the original one, as shown earlier in the mixed-coupled DFB laser, the
effect of index-coupling can be cancelled out.

As illustrated in Figure 2.10, the second corrugation demonstrates an
inverse corrugation phase with respect to the first layer of grating. Utilising
the metal-organic chemical vapour deposition (MOCVD) technique, the first
purely gained DFB laser based on this double grating structure was made in
1989 by Luo et al. [28]. GaAs was used as the active layer of the laser and
the lasing wavelength was about 877 nm. Owing to the direct modulation of
the active layer thickness, the actual gain-coupling coefficient of this structure
may fluctuate according to the strength of the injection current. For such a
purely gain-coupled structure having «; = 0, both the forward and backward
coupling coefficients become purely imaginary and so
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KRS = KSR = JKg (2.4.32)

The relative phase difference between the index and gain-coupling becomes
insignificant as the index-coupling is cancelled.

Apart from the possibility shown in Figure 2.10, a second way to realise
purely gain-coupled characteristics is to fabricate a periodic variation of loss,
as sketched in Figure 2.11. The optical confinement factor remains constant
whilst the cavity loss becomes a periodic function of z. With such a loss-
coupling structure, the strength of the gain-coupling will not be affected by
any change in the injection current. However, owing to the additional loss,
the loss-coupling structure results in a higher threshold current.

Comparatively, the design of purely index-coupled DFB semiconductor
lasers has received significant attention in the past decade. There are reasons
why the development of mixed- or gain-coupled DFB lasers were hindered.
In a mixed-coupled DFB laser, a large number of non-radiative recombination
centres were introduced during the fabrication of the corrugation layer. Since
the corrugation layer has direct contact with the active layer, such an increase
in non-radiative recombination centres implies an enormous increase in the
threshold current. The performance of the laser also deteriorates rapidly as
the temperature increases. Moreover, the change in amplitude gain becomes
complicated since the gain always depends on the injection current. Even
though the loss-coupling structure proposed [29] may ease the problem, it is

Refractive index profile
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Figure 2.10 A simplified schematic diagram showing a purely gain-coupled DFB semiconductor
laser diode.
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Figure 2.11 A simplified schematic diagram showing a purely loss-coupled DFB semiconductor
laser diode.
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limited by a higher threshold current. In the manufacture of the double grating
structure the alignment between the first and the second corrugations must be
considered because this is crucial in the cancellation of the index-coupling
effect.

From the pair of coupled wave equations shown earlier, i.e. equations
(2.4.26) and (2.4.27), we can also obtain the net power change experienced by
both counter-running waves travelling along the laser cavity. By considering
the conjugate pairs of equations (2.4.26) and (2.4.27), the rate of total power
change is found [30]:

%[RR* — 855*] = 2a9[RR" + SS*] + Pmu (2.4.33)
where an asterisk is used to represent the complex conjugate and
Pru = j(kgg — ksp)RS* e/ — j(kgs — K*sg)R* Se /%
=2 {lm (Krs — Kgg )R‘Se"'*"n}
= —2{Im (ks — xspIRS"e/? | (2.4.34)

The first term on the right-hand side of equation (2.4.33) describes the total
power change experienced by each individual coupled wave, while the second
term, Py, describes the mutual interaction between the coupled waves. For
a purely index-coupled DFB laser, both the forward and backward coupling
coefficients are real and equal. As a result, the mutual interaction term
becomes negligible. However, we must take into account the mutual inter-
action term when purely gain-coupled, purely loss-coupled or mixed-coupled
DFB lasers are used.

The pair of coupled-wave equations that characterise the interaction of
electric fields are general. With modification, the pair can be used in other
applications which may involve wave or mode interaction. The complex
permittivity, i.e. the refractive index and amplitude gain, may change in a
different way according to various applications. On the basis of the coupled
wave analysis, equations that describe other physical processes like the
electro-optic modulation, the magneto-optic modulation or the non-linear
interaction can be found in other references like Yariv [2].

2.5 THE COUPLING COEFFICIENT

2.5.1 A structural definition of the coupling coefficient for DFB
semiconductor lasers

Depending on the position of the corrugation relative to the active layer, both
the refractive index and/or gain vary along the longitudinal direction, z. By
solving the coupled-wave equations, we can solve the threshold conditions
of the conventional DFB semiconductor lasers. The coupling coefficients xrs
and ksg play an important role because they measure the wave feedback
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capability due to the presence of the corrugation. So far, the coupling
coefficient has been defined with respect to the changes in the refractive
index and gain such that

K= — + j— (2.5.1)

In this section, on the basis of a general perturbation of the relative permit-
tivity, the coupling coefficient is found to be related to the shape, depth and
period of the corrugation. To build such a structural definition for the coupling
coefficient, we start again with the time harmonic vector wave equation:

VZE + k’E =0 (2.5.2)

By expanding the propagation constant to include the relative permittivity,
the above wave equation becomes

V2E +e(x. y, kE =0 (2.5.3)

where ¢ is the relative permittivity and kyp = w/c is the free space propa-
gation constant. There is a major difference between a normal dielectric
planar waveguide and a corrugated waveguide. Provided that the corrugation
is extended in the longitudinal direction, we can express the relative permit-
tivity of the corrugated region of the laser as

e(x, y,2) = €inilx, y) + Ace(x, ¥, 2) (2.5.4)

where &5i(x, y) is the average relative permittivity of the transverse x-y
plane, and Ae is a perturbation term which is zero everywhere except for
the corrugated region, the thickness of which is equivalent to the corrugation
depth. Assuming TE mode excitation only and following equation (2.4.18),
a general solution of the vector wave solution may take the form

E = U(x, y)[Ce % + De/’)j = E, ] (2.5.5)

where j is the unit vector along the junction plane for the TE mode, B is
the mode propagating constant and Ul(x, y) is the field solution along the
transverse x-y plane. The trial solution shown above is slightly different
from the one we used in the previous section. For a specific waveguiding
structure, the field distribution can be obtained by solving

VR

RY® 2 —
Py + ‘3‘7 - [Eini(x. _\)ku - B ]U =0 (2.5.6)

with appropriate boundary conditions.

With careful control over the active layer width and the active layer
thickness, a single mode oscillation along the transverse plane is assumed.
Under the influence of the perturbation term Ag, the amplitude coefficients
C and D become z-dependent. Assuming only a small perturbation, i.e.
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Ag K &jpj, it is unlikely that the field distribution U(x, y) will be affected
and so it is made separable from the longitudinal component of the field
solution. We then substitute equation (2.5.5) into (2.5.3) and allow a “slow”
variation of C and D. By multiplying the resulting equation by U(x, v) and
integrating over the transverse x-y plane, we end up with

2
dC —ife _ Q;sz ﬂ‘o/ Ae(x, v, 2)U(x, y)

& & ° 2BV (2.5.7)
[Ce 7% 4 De/P ) dxdy
where
- / U3(x, y) dxdy (2.5.8)

is the mode intensity for the unperturbed planar waveguide. For simplicity,
only index coupling is assumed so that Ae is real. Since the perturbed term
Ae is a periodic function of z, it could be expanded in Fourier series such
that [31,32]

Ae(x, y,2) = Z Agzo(x, \,)exp( qu') (2.5.9)

g=-oc

where Agxo(x, y) is the gth harmonic Fourier coefficient that depends on the
shape, depth and period of the corrugation. When ¢ = 0, a z-independent
function is formed which equals the average relative permittivity term, &i;.
Now, by substituting the above equation into equation (2.5.7) and equating
coefficients with exponential terms e*/% we obtain:

%= — jk* Del%: (2.5.10)
D g
‘:i—z = jkCe /** (2.5.11)
where 5=p— B
- 5 0 A (2.5.12)
= - mi

in which § is the same detuning factor and m is the order of the Bragg
diffraction. Usually, the smallest detuning factor is found by allowing ¢ = m
in equation (2.5.9). In the analysis, other higher order phase terms have been
neglected. k and x* are complex conjugate pairs that can be written as

2 / / Agzo(x, Y)UA(x, v) dxdy

K= —

26 / U3(x, y)dxdy

When the corrugation is removed or the grating depth is diminished to
become zero, a planar waveguide is formed. With the coupling coefficient k

(2.5.13)
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vanished, the coupled-wave equations could be satisfied by any z-independent
function. However, owing to the material gain characteristics inside the laser
cavity, an additional term is added to equations (2.5.10) and (2.5.11). As
a result, the independent solutions C and D correspond respectively to the
exponentially growing waves along the +z and —: directions when x = 0.
To fulfil the physical requirement, equations (2.5.10) and (2.5.11) become

dC

= = —jk*De’** 4 a,C (2.5.14)
dD .
i jkCe™* —a D (2.5.15)

where the amplitude gain coefficient, «s, is appended.

Unsurprisingly, a similar pair of coupled-wave equations have been
derived. Compared with equations (2.4.23) and (2.4.24), the pair of equations
shown above look distinctive because a different trial solution has been
used in solving the wave equation. By replacing B with By + 4§ in the
above equations, the original coupled-wave equations can be recovered. The
parameter «, as shown in equation (2.5.13), is the coupling coefficient as
defined earlier for the purely index-coupled DFB lasers.

2.5.2 The effect of corrugation shape on the coupling coefficient

Since the coupling coefficient is associated with the perturbed relative permit-
tivity, the numerical value of « depends on the shape, depth and period of
the corrugation. Moreover, the composition and thickness of the active and
cladding layers will also affect the coupling coefficient because « involves
calculating the transverse mode energy. Evaluation of the coupling coefficient
and the impact on the corrugation shape of the three-layer GaAs DFB lasers
have been discussed extensively [31,32]. However, little work [33) has been
done on the five-layer InGaAsP DFB semiconductor lasers.

In a BH, where the active layer thickness is much narrower than its
width, we assume that the corrugation is laterally uniform so that the relative
permittivity term Aef is independent of v. As a result, equation (2.5.4) is
simplified to

e(x, ¥) = €ini(x) + Ae(x, v) (2.5.16)

and the coupling coefficient for the purely index-coupled DFB laser becomes

_ ki corrugation ) (2.5.17)

K =
2p / E2(x)dx

where E(x) is the transverse field component of the TE mode which satisfies
the wave equation (2.5.3). The integral in the numerator is restricted to the
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corrugated layer only because the perturbed relative permittivity Ae (or the
Fourier coefficient A;) is not defined in any other layer.

To investigate the effect of different periodic grating shapes, a general
multi-layer model, as illustrated in Figure 2.12 is used. Similar to the one
shown in Figure 2.6, the cosinusoidal corrugation is now replaced by two
discontinuous arbitrary functions Z;(x) + pA and Z,(x) + pA, where p is
any integer. For any periodic corrugation shape, it is important that the sum
of the corrugation functions Z;(x) + pA and Z,(x) + pA will span a longitu-
dinal distance of A, the period of the corrugation. For simplicity, the integer
p is set to zero for the first corrugation function found on the positive x-z
plane as the corrugation is extended along the positive z direction. Then, we
can express the relative permittivity £(x, z) analytically as

=n,2; di-1>x>dx+g T
3 (2.5.18)

=np.y dy>x>diy

2 .
=ny_;; dn-2>x>dyN_
=ﬂiri dN_] > X

for layers found outside the corrugated layer. For the relative permittivity of
the corrugated layer, we can write [31]

n,
X‘d| T 5
d, .

<
di'—1 my
deg | 2100 Zi+A A
\WANAAVAVAVAVA
dq |
Z(x) n
d’” . . 1+1
‘.b c — Z
[/ : =
dN-! N-1
Ny

Figure 2.12 A general multi-dielectric stack used to evaluate the coupling coefficient of DFB
semiconductor laser diodes.
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0

£(x.2) = Z niulz — Z,(z) — pA) — ulz — Z2(z) — pA))
P (2.5.19)

+ni{ulz = Z2(2) = pA) = ulz = Z1(2) — (p+ DA))

where :
u(§) = {0' i o (2.5.20)

is the unit step function in £. By equating equation (2.5.9) with (2.5.19) and
setting p = 0, we can express the harmonic Fourier coefficient as

1 )
Ag=o =Ag =nf,  + 7 (2200 - Z,()n} - nt,, (2.5.21)
for ¢ =0 and
1 Z(2)+A - —j2my:
Aggo = — n“(x,z)e A dz
AJzi
’ | | (2.5.22)
B ni,, - ";2 [e:iz;rhgzu_n e_[h,\gzl{'”]
~ 2jnq

for ¢ # 0. The last equation is justified because the integral can be separated

into
Z1(x)+A Zy(x) Zix)+A
[ 252
Zi(x) Z(x) JZ5(x)

The relative permittivities at different integral ranges can be expressed as

(2.5.24)

ni(x.z) = ni.  Zax)>z>Zy(x)
R ";2+1 Zi\x)+ A >z2>2Z-5(x)

Since Z(x) + Z2(x) = A, equation (2.5.22) is simplified to become [33]

2 —n? 2m
Aggo = 1" gip [—’le(:)J . dy<x<di+g  (2.525)
mim A

where ¢ = m is assumed for the smallest detuning factor. The corrugation
functions Z,(x) for trapezoidal, rectangular, triangular and sinusoidal corru-
gations are listed in Table 2.2. For the trapezoidal shape, W and Wg denoted
the top width and the bottom width of the corrugation. For simplicity, the
rising edge and the dropping edge are assumed to occupy the same widths
of W. Finally, on combining equation (2.5.25) with (2.5.17), we end up with
the following expression for the coupling coefficients of the purely indexed-
coupled DFB LDs [34]:

2 ) 2
ky(niyy —nj)

2mnp / Ef.(.r} dx

2mnZ,(
/ sin [M] E%.(.r)dx1 (2.5.26)
corrugation A '
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Table 2.2 Various grating shapes and the corresponding corrugation fuctions Z;(x)
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where an absolute sign is used to make sure a positive value for the coupling
coefficient.

2.5.3 Transverse field distribution in an unperturbed waveguide

From equation (2.5.26) in the previous section, the coupling coefficients of the
purely index-coupled DFB LDs were expressed. With a specific corrugation
function and a given refractive index distribution, we still need to determine
the propagation constant 8 and the mode energy of the unperturbed waveguide
before the value of the coupling coefficient can be evaluated.

Figure 2.13 shows the structure of the five-layer SCH DFB LD used in
the analysis. It consists of a thin optical confinement region, itself divided
into three parts that include the active layer and two waveguiding layers.
[I-V InGaAsP compounds are used to fabricate the optical confinement
region. The refractive indices of the waveguiding layers (n, and n4) are
slightly smaller than that of the active layer (n3) so that photons are confined
in the active layer. Optical feedback provided by a layer of trapezoidal
corrugation is fabricated within the upper waveguiding layer. The optical
confinement region is bounded by two thick cladding layers with a higher
bandgap material used, the cladding layers act as optical barriers. Since the
active layer thickness remains constant along the longitudinal direction, any
gain- or loss-coupling can be neglected and only pure index-coupling is
allowed.

To compute the unperturbed transverse electric field E,(x) in the five-
layer SCH, the effect due to the presence of corrugations cannot be ignored.
One method, which was proposed by Handa er al. [35], is to replace the

X ny= 37
A InP A
X-dz
X-fa
InGaAsP (A = 1.30 um)
x=0
InGaAsP (A = 1.55 um) e = 3.553
X-—da 3 )
InGaAsP (A = 1.30 um)
ng = 3.405
X==(dy+dy)
InP ng=3.17

Figure 2.13 A simplified five-layer DFB structure with trapezoidal corrugation.
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corrugation layer that has an additional layer with an intermediate refractive
index. However, the waveguiding properties become more complicated as
one extra layer is added. Another method [31,32] that enables us to obtain
adequate accuracy without excessive complexity is to choose the unperturbed
waveguide boundary at x = d5 < d as shown in Figure 2.13. Since the corru-
gation depth g is found to be much smaller than the actual lasing wavelength,
the unperturbed waveguide boundary at d5 is chosen such that the volume
of the n; material extending into the upper cladding layer equals the volume
of n, extending into the upper waveguiding layer. As a result, the contri-
bution due to the refractive index changes above the unperturbed waveguide
boundary will be the same as the one below. Since the active layer thickness,
d3, is usually smaller than the active layer width, the transverse field along
the y direction becomes negligible. As a result, the corresponding boundary
is determined by equating the area bounded by the upper part of the corru-
gation (Arear) to that of the area (Areag) bounded below. This method, that
involves a dynamic shifting of one of the waveguide boundaries, is simpler
and more effective than the one proposed by Handa et al. [35]. On the other
hand, we must take care when choosing the unperturbed waveguide boundary
because it is sensitive to a change of corrugation shape. Mathematically, the
boundary of the corresponding unperturbed waveguide can be expressed as

: e
g=dry—t= —/ [Z2(x) — Z(x)] dx (2.5.27)
A Jay-g

where g is the depth of the corrugation and g = d; —r; is the boundary
shift measured from the top of the corrugation to the new boundary of the
corresponding unperturbed waveguide. The upper surface of the active layer
is fixed at x = 0. Then, Maxwell’s wave equations in each of the five layers
may be written as [36)

—> +hEy=0; j=1,..., 5 (2.5.28)

where j is an integer used to represent different layers and h; is the propa-
gation constant of the jth layer. For the structure shown, it is assumed that the
unperturbed transverse electric field is exponentially decaying in the cladding
layers while it is sinusoidal in the other. Then, the propagation constant h;

can be written as [6,21]
B —kin2, j=1and5
hy={ s 0 (2.5.29)
koni = Bes Jj=2,3and 4

where Best = konegs = B in equation (2.5.26) and n.g is denoted the effective
refractive index. Because the transverse electric field is propagating along the
waveguiding layers as well as the active layer, the refractive index distribution
must satisfy the following relation [37]:

Ns < Ny < Neff < Ng < N3 < N3 (2.5.30)
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For the TE mode excitation in the five-layer SCH laser structure, the trans-
verse electric field in each layer can be written as [36]

Aj explh(r; — x)), forx > 1
Aj cos(hyx — a3), 0<x=<n

E}- = ¢ Ajcos(hyx — a3), —dy<x<0 (2.5.31)
Ay cos(hyx — ay), —(dy+dy) <x < —dj

As explhs(ds + ds + x)], x < —(d3+dy)

where A to As are the leading coefficients of the transverse electric field
in various layers, t> is the boundary separation for the corresponding unper-
turbed waveguide and «, a3 and a4 are three constants. Because the field
components E, and dE,/dx must be continuous at various boundaries for TE
mode excitation, we end up with the following equations for the TE mode:
Atx =1

hatan(hat, — az) = hy (2.5.32a)
Atx =0
h3 tan(a3) = hytan(az) (2.5.32b)
At x = —d;
hitan(hidsy + a3) = hgtan(hydy + ay) (2.5.32¢)
At x = —(d3y + dy)
hstan[hs(ds + dy) + 4] = hs (2.5.32d)
where the constants «, a3 and a4 can then be determined as
wr = hatr — tan~! (;ﬂ) (2.5.33a)
ha
-1 hy
o3 = tan — tan(aa) (2.5.33b)
hy
and .
ay = —hg(dy +ds) + lan" (;'—5) (2.5.33¢)
4

To reduce the number of variables used, it is easier to select one of them as
a common variable so that others can then be written in terms of it. From the
boundary conditions for the E, field component, we can express the leading
coefficients of the electric field in terms of the common coefficient A, such
that

A
Ay= — 1 (2.5.34a)
cos(haty — a2)
A cos
Ay = 1 cos(az) (2.5.34b)

cos(hatr — as) cos(az)
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_ A cos(az)cos(hids + a3)

47 cos(hads + as) cos(hats — @) cos(a3)

Ac = Aj cos(az)cos(hids + a3)cos[ha(dy + ds) + a4
5T cos(hads + as) cos(hats — az) cos(asz)

where the constants >, @3 and a4 have been fixed in equation (2.5.33). By
joining all the equations in (2.5.32), an eigenvalue equation for the even TE
mode is found which [36] can be expressed as

—(14AB)+ [(1+ A>)(1 4+ BH)]'/2

(2.5.34¢)

(2.5.34d)

tan(hidz/2) = 1-B (2.5.35a)

where
A = hgtan(hsds + a4)/h3 (2.5.35b)
B = tan(az) = hytan(az)/h; (2.5.35¢)

In finding the effective refractive index, the method of bisection is
employed to solve the above eigenequation. The total number of iteration
steps used is usually smaller than 10 and an error of less than 10~° may be
achieved. After fixing the effective refractive index, the propagation constants
h; in each layer can readily be found using equation (2.5.29). Then, following
equations (2.5.33), a;, a3 and a4 are determined.

The transverse electric field in the five-layer laser structure can be obtained
after solving the eigenequation. However, in evaluating the coupling coeffi-
cient, we must determine the total mode energy confined in the five-layer
structure. From the proposed transverse electric field distribution, we end up
with [34]

o —(d3+dy) —d3 0
= f EX(x)dx = / E2(x)dx +] Elx)dx+ | E}(x)dv
—0oC —0C

—(dy+dg) -d3
rn o0
+/ﬂ Ef.(x)dx+f EXx)dx=1Is+1s+ 13+ +1)
.
’ (2.5.36)
where
Iy = A7/2h, (2.5.37a)

- 1 1
I, = —23 hr;_ + 7 sin(2hat; — 2a3) + T Sin(Zotz)] (2.5.37b)

AT 1 1

I3 = ?3 -dj + 2—}13 sin(2hyds + 2a3) — 5}!—3 sin(2a;)] (2.5.37c)
AT 1 .

Is=— d4+-—-—5]l‘l[2h4(d3+d4)+204]

2 2hy

1
— = sin(2h4d3 + 2a3) (2.5.37d)
2hy
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Is = A3/2hs (2.5.37¢)

By choosing A, as the common variable, the total mode energy confined in
the five-layer waveguide is finalised after the effective refractive index, the
propagation constants h, to hs as well as the constants «y, a> and a3 have been
confirmed from the eigenequation for a particular corrugation function. The
integral /5, which is a function of 1, depends on the shape of the corrugation.

2.5.4 Results based upon the trapezoidal corrugation

In this section the coupling coefficient values based on the five-layer DFB
lasers are evaluated for the trapezoidal corrugation. From the previous section,
the total mode energy found inside the five-layer waveguide is expressed in
terms of the leading coefficient A;. Before the Fourier coefficient A,, and
hence the coupling coefficients, are determined, the corrugation functions
Z(x) and Z;(x) of the trapezoidal corrugation must be defined. According
to Figure 2.13, we end up with

Wr W
Z1(x) = — 4+ ——(d2 — x) (2.5.38a)

2 g

W W

Therefore, the unperturbed boundary ¢, for the equivalent unperturbed planar
waveguide can be determined after following equation (2.5.27) since

- 1 fd2
g=dy~t=— [Z2(x) = Z)(x)] dx
A Jdy—¢
_ _"Y_B + W
A

where W and Wy are the top width and the bottom width of the trapezoidal
corrugation, respectively. The variable W denotes the longitudinal distance
spanned by the rise and fall of the corrugation. As a result, the coupling
coefficient of the trapezoidal corrugation becomes

(2.5.39)

_ k§(n3 —ni)

2mnp / E}(x)dx

K=

d> -
/ sinfa + b(d, — x)] EJ(x) dx (2.5.40)
dr—g

where m is the order of the Bragg diffraction, B is the propagation constant
determined from the effective refractive index and

W
a= 7T (2.5.41a)
A
dmr W
p="7 1 (2.5.41b)

A‘g
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Extracting from equation (2.5.31), the proposed transverse electric field found
along the corrugated layer (d2 > x > d3 — g) can be written as

hy(ta=x). N ; =
Ey(x) = {A‘e ' d2zx21n (2.5.42)

>t
Aj cos[hax — a3); h>x>d

Then, by joining equations (2.5.40), (2.5.41) and (2.5.42), and after substantial
simplification, the coupling coefficient of the trapezoidal corrugation
becomes [33]

ki(n3 = n}) (h»)z 0> (hl)z Qs M
- —_ 1 - ot 1] - — —_— 4 —
e A Ll Ll O B s n) |2 T
(2.5.43)
where
0 = (hgsinc — b) — exp(~23:§) ‘fhlgsina — bcosa) (2.5.442)
(h1g)* + b-
b(cosT — cosccosv) — hag(sincsiny)
= 2.5.44
o b* — (hag)? ( ©
hag(sinccosv — sinc) — b(coscsinv)
= = 2.5.44d
Qs B2 — (ag)? ( )
and
¢ =a+ bg; ¢=a+ bg; v=2h(g—g) (2.5.45)

Trapezoidal corrugation for first-order Bragg diffraction (m = 1)

In our calculations, we have considered only the TEy mode. The structural
parameters used are given in Table 2.3. By setting m = 1 in equation (2.5.41),
the coupling coefficient of the first-order trapezoidal corrugation can be

Table 2.3 Structural parameters used in
determining the coupling coeffi-
cient of the first-order trapezoidal

corrugation

m=1

dz= d4 = 200 um
dy= 100 um

m= ﬂ5 = 317
ny=ny = 3.405
ny= 3.553

g=75nm




76

PRINCIPLES OF DISTRIBUTED FEEDBACK SEMICONDUCTOR LASERS

25
- d,=200 nm, ny=n3=3.17
- d,=100 nm, ny=n4=3.405
"~ d4=200 nm, n,=3.553
20 ~ g,~75.0nm - =~
= ',. - - .‘-\"o
— . - -~ -~ . '\.\
E B v . ' NN
E - 2, 7 S, NERNEL]
= 15 |- . \
P L . .
2 & N\
8 Wy/a<0'
'A=0.6
o 10 5”
£ -
g "4 0.25%
8 - .
5 "
- 0.00
0‘-11_11l|1111111111|11||111
0 0.2 0.4 0.6 08 1

Normalised bottom width of corrugation, Wg/A

Figure 2.14 The change in the first-order coupling coefficient with Wg/A for different values
of W/A.

determined. The effects of different corrugation shapes are illustrated in
Figure 2.14, where the coupling coefficient is plotted against the bottom width
of the corrugation, Wg, while different values of W (the top width of the
corrugation) are used for comparison. Both Wt and W are normalised with
respect to the corrugation period A. As observed in Figure 2.14, for each
selected value of Wt/A there exists a peak coupling coefficient where the
largest possible optical feedback can be achieved. For instance, the triangular
corrugation (with Wt /A = 0) tends to show a peak coupling coefficient of
about 15/mm when the normalised bottom width Wg/A = 0.25. With the
normalised top width W /A increasing from 0.0 to 0.9, the associated Wg/A
values of the peak coupling coefficients also increase. The largest coupling
coefficient found near Wg/A = W¢/A = 0.5 has a value of 20.9/mm. This
is the place where the symmetric rectangular corrugation is found.

So far, discrete values of W /A have been used. By expanding the results
into a contour map, as shown in Figure 2.15, the structural impact due to
variations in the corrugation shapes can be examined comprehensively. In
fact, the trapezoidal corrugation we examined is so general that other shapes
like the triangular and rectangular corrugations, are included. At the origin,
where Wt/A = Wg/A = 0, the symmetric triangular corrugation is located.
With a corrugation depth g = 75 nm, the coupling coefficient is found to be
about 13.0/mm. Other asymmetric triangular corrugations are included along
the Wg/A axis when Wy /A is forced to become zero. Similarly, the inverted
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Figure 2.15 Contour map showing the coupling coefficient x for the first-order trapezoidal
corrugation.

triangular corrugation (see Table 2.2 for the exact corrugation shapes) is found
along the W /A axis as Wg/A drops to zero. For the rectangular corrugation,
W/A =0 and Wt + Wg = A. Therefore, by joining the point W/A =0,
Wg/A = 1 to the opposite diagonal of the contour (i.e. Wr/A =1, Wg/A =
0), we can evaluate the coupling coefficients for the rectangular corrugation.
The symmetric rectangular corrugation, which is included as a special case,
is located at the centre of the contour with Wr/A = Wg/A = 0.5. Similarly,
by joining the origin with the other extreme end where Wt/A = W1/A =
1, the coupling coefficient of the symmetric trapezoidal corrugation can be
determined.

Owing to the presence of the corrugation and the use of the boundary
shifting method, the calculated boundary at x =1, for the corresponding
unperturbed waveguiding structure is expected to be smaller than the actual
thickness of the upper waveguiding layer d>. As a result, the DFB wave-
guiding structure is no longer symmetric. The thickness of the upper cladding
layer, that depends on the corrugation shape, is found to be thinner than the
lower waveguiding layer. Thus, the maximum coupling coefficient is found
to be slightly displaced from the centre of the contour where the symmetric
rectangular corrugation is located. The maximum coupling coefficient found
is about 20.5/mm.
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Trapezoidal corrugation for second-order Bragg diffraction (m = 2)

To compare the coupling coefficients of the DFB LDs having different orders
of Bragg diffraction, the effective refractive index and thus the boundary
shift g of the DFB structures must be identical. For the mth order Bragg
diffraction, the Bragg propagation constant is defined as

mrm
- — 2

bo=~ (2.5.46)
To maintain the Bragg propagation constant at the second-order corrugation
(m = 2), the second-order grating period must be doubled. Meanwhile, the
corrugation depth g is also increased to twice that of the first-order value
so that the boundary of the unperturbed waveguide g of equation (2.5.39) is
maintained.

The parameters used to determine the coupling coefficient of the second-
order trapezoidal corrugation can be found in Table 2.4.

By inserting the above parameters into equations (2.5.43), (2.5.44) and
(2.5.45), the effect of the corrugation shapes on the second-order coupling
coefficient is investigated, and illustrated in Figure 2.16. Just like the first-
order plot shown in Figure 2.14, the coupling coefficient is shown as a
function of Wg for various values of Wt. Both Wg and W are normalised
with respect to the second-order corrugation period, A. As observed in
Figure 2.16, there exist two peak values of coupling coefficients along
the Wg/A axis for each selected value of Wy/A chosen. In between
the peaks there are places where the coupling coefficient drops to zero
value. It is believed that the electric field diffracted by the second-order
corrugation is completely out of phase with the incident wave. Therefore,
zero coupling coefficients follow at that particular corrugation shape. The
maximum coupling coefficient value of about 26.9/mm is located near the
point when Wg/A = 0.25 and W/A = 0.75. Compared with the results
from the first-order coupling coefficient, we can see significant changes in
the magnitude of the maximum coupling coefficient as well as the normalised
corrugation width associated with it.

Table 2.4 Structural parameters
used in determining the
coupling coefficient of
the second-order trape-
zoidal corrugation

m=2

dp,=ds = 200 um
dg: 100 um
m=nNs = 3.17
Na=nNg4 = 3.405
nz= 3.553

g =150 nm




THE COUPLING COEFFICIENT 79

dy=200 nm,ny=ny=3.17
d,=100 nm, ny=n,=3.405
d4=200 nm, ny=3.553
g4=150.0 nm

Wy

8 8
lﬁ_l_]_lTl_T_]—T"l—I_l_
N
NS
2 "N
Fd
-~
.I
~
~
/
%
g’
®

=}
[TT TR TTTT[T
-
~
-
~
o
-4
o

/ L .

\ioS s 0o
o L1 11 7/ NI W N
0 0.2 0.4 0.6 08 1

Normalised bottom width of corrugation, Wg/A

L
-
~

Figure 2.16 The change in the second-order coupling coefficient with Wg /A for different values
of Wy/A.
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Figure 2.17 Contour map showing the coupling coefficient x for the second-order trapezoidal
corrugation.
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From the contour map as shown in Figure 2.17, we can obtain a better
understanding of the change in the coupling coefficient with a continuous
change of corrugation shapes. Rather than a single peak, as seen earlier in
the first-order contour map, two outstanding peaks can be observed. For an
effective optical feedback in DFB lasers, a device engineer must be aware of
the specific corrugation shapes in second-order corrugation design that may
lead to extremely low values of the coupling coefficient. The FP effect due to
non-zero facet reflection has to be considered in DFB lasers when the value
of the coupling coefficient becomes small.

The corrugation of both the first- and second-order gratings has been
computed for the fundamental TE mode in a five-layer slab waveguide
structure. It has been found that a larger value of the coupling coefficient
can be obtained when second-order corrugation is used. However, the design
of the second-order grating requires precise control of the grating parameters.
It is shown in the contour that certain corrugation shapes may lead to very
low values of the coupling coefficient. Impacts due to variations in the
lateral electric field [31,38], any misalignment or curvature [39], and any
deformation [40] of corrugations which may form during the fabrication
process, have been explored in other references and will not be discussed
further.

2.6 SUMMARY

In this chapter, the operational principles of lasers, in particular the
semiconductor laser, are presented. To build a self-sustained oscillator like
a laser, it is important that the condition of population inversion is satisfied
and an optical resonator is formed. The FP semiconductor laser, which forms
the simplest optical resonant cavity, has limited applications owing to its
broad gain spectrum. Multimode oscillations and unstable mode hopping are
common in this type of laser. In optical coherent communication systems it is
important that the optical source generates a single stable longitudinal mode
output, With built-in periodic corrugations along the direction of propagation,
an SLM operation becomes feasible in the DFB semiconductor laser. The built-
in corrugation acts as an optical bandpass filter so that only frequencies with
components near the Bragg frequency are allowed to pass. The operational
principles of DFB LDs was explained with the help of coupled-wave equations.
From the nature of the coupling coefficient, DFB semiconductor lasers can
be classified into purely index-coupled, mixed-coupled and purely gain- or
loss-coupled structures. The magnitude of the coupling coefficient, and hence
the optical feedback, depends on the corrugation. Using the Fourier series
technique, the coupling coefficient of a five-layer SCH structure was computed.
Contours showing the relationship between the coupling coefficient and the
physical dimensions of the corrugation were shown for both first- and second-
order Bragg diffraction.
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3

STRUCTURAL IMPACTS

ON THE SOLUTIONS OF
COUPLED-WAVE EQUATIONS:
AN OVERVIEW

3.1 INTRODUCTION

The introduction of semiconductor lasers has boosted the development
of coherent optical communication systems. With the built-in wavelength
selection mechanism, distributed feedback (DFB) semiconductor laser diodes
(LDs) having a higher gain margin are superior to the Fabry-Perot (FP)
laser in such a way that a single longitudinal mode (SLM) of lasing can be
achieved.

In this chapter, results obtained from the threshold analysis of the
conventional and single-phase shifted DFB lasers will be discussed. In
particular, structural impacts on the threshold characteristic will be discussed
in a systematic way. In section 3.4, the lasing characteristic of the conven-
tional DFB LD will be presented, whilst the effects of the residue corrugation
phase at the laser facets will be discussed in section 3.5. By introducing a
phase shift along the corrugations of DFB LDs, the degenerate oscillating
characteristic of the conventional DFB LD can be removed. In section 3.6,
structural impacts due to the phase shift and the corresponding phase shift
position (PSP) will be considered.

As mentioned in Chapter 2, the introduction of the coupling coefficient
k in the coupled wave equations plays a vital role because it measures the
strength of feedback provided by the corrugation. In section 3.7 the effect of
corrugation shape on the magnitude of x will be presented. With a /2 phase
shift fabricated at the centre of the DFB cavity, the quarterly wavelength
shifted (QWS) DFB LD oscillates at the Bragg wavelength. However, the
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deterioration of the gain margin limits its use as the current injection increases.
This phenomenon, induced by the spatial hole burning effect, which is the
major drawback of the QWS laser structure, will be examined at the end of
the chapter. The limited application of the eigenvalue equation in solving the
coupled-wave equations will also be considered.

3.2 SOLUTIONS OF THE COUPLED-WAVE EQUATIONS

From Chapter 2 we know that the characteristics of DFB LDs can be described
by a pair of coupled-wave equations. The strength of the feedback induced by
the perturbed refractive index or gain is measured by the coupling coefficient.
Relationships between the forward and the backward coupling coefficients,
krs and ksg, were derived for the purely index-coupled, mixed-coupled and
the purely gain-coupled structures. By assuming a zero phase difference
between the index and the gain term, the complex coupling coefficient could
be expressed as

Krs = KgRr =Ki+jxg=k’ (3-2-1)

where « becomes a complex coupling coefficient. According to equation
(2.4.21) in Chapter 2, a trial solution of the coupled-wave equation can be
expressed in terms of the Bragg propagation constant such that

E(z) = R(z)e™ /P07 4 §(z)e’Po* (3.2.2)
where the leading coefficients, R(z) and S(z) are reported as [1]
R(z) = Rie"™ 4 Rye ™" (3.2.3a)

and
S(z) = §1e"P 4 Spe M (3.2.3b)

In the above equations, Ry, R, §| and S are complex coefficients and y is the
complex propagation constant to be determined from the boundary conditions
at the laser facets. Without loss of generality, we can assume Re (y) > 0. As
a result, those terms with leading coefficients R; and S> become amplified
as the waves propagate along the cavity. On the contrary, those terms with
R; and §, as leading coefficients are attenuated. By combining the above
equations with (3.2.2), we can easily show that the propagation constant of the
amplified waves becomes By — Im (y), whilst the decaying waves propagate
at Bo + Im (y).

By substituting equations (3.2.3a) and (3.2.3b) into the coupled-waves
equations, the following relations are obtained by collecting identical
exponential terms [2]:

IR, = jke /98, (3.2.4a)
IRy = jke /%S, (3.2.4b)
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r's; = jke’*R, (3.2.4c)
'S, = jke/*R, (3.2.4d)
where
F=a,—js—y (3.2.5a)
F=a;— jé+y (3.2.5b)

By comparing the equations (3.2.4a) and (3.2.4¢), a non-trivial solution
exists if the following equation is satisfied:
I Jk
=== 3.2.6
p - T ( )
On the basis of the equation shown above, equation (3.2.4) is simplified to
become:

1

R = ;e—f'“sl (3.2.7a)
Ry = pe™ /95, (3.2.7b)

Similarly, by equating equations (3.2.4a) with (3.2.4c), we obtain:
Y: = (as — j8) + k* (3.2.8)

It is important that the dispersion equation shown above is independent of
the residue corrugation phase, €.

With a finite laser cavity length of L extending from z =2z, to z =12
(where both z; and z; are assumed to be greater than zero), the boundary
conditions at the terminating facets become

R(z1)e™ /P01 = 7,§(z;)e/Po71 (3.2.9a)
S(z2)e’P02 = })R(z3)e P02 (3.2.9b)

where 7, and 7, are amplitude reflection coefficients at the laser facets z)
and z, respectively. According to equations (3.2.3) and (3.2.4), the above
equations could be expanded in such a way that

1— 2y
- U—pr)e™ (3.2.10a)
n/p—1
— 2y
R, = 2P o (3.2.10b)
1/p—r:

In the above equation, all the R(z) and S(z) terms are expressed in terms of
R, and R, whilst r| and r; are the complex field reflectivity of the left and
the right facets, respectively, such that

r = fe2Pot1e/ =} el¥n (3.2.11a)

ry = P~ 2iP02e=IR — jreiV2 (3.2.11b)
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where Y and Y, are the corresponding corrugation phase at the facets.

Equations (3.2.10a) and (3.2.10b) are homogeneous in R; and R,. To obtain

a non-trivial solution, the following solution must be satisfied:
(1= pr)e?™ _ (ry = p)er=

n-p 1—pr,

(3.2.12)

Then, the above equation can be solved for p and 1/p whilst employing the
relation

y=— (,0 = —) (3.2.13)

derived from equations (3.2.5a) and (3.2.5b). After some lengthy manipu-
lation [2], we end up with an eigenvalue equation:

i sinh(v
yL = _E‘;:—EQ : {(n + r2)(1 = rir)cosh(yL) £ (1 + ’I’Z)A”z}

(3.2.14)

where
A = (ry — ry)*sinh®(yL) + (1 — ryr2)? (3.2.15a)
D = (14 ryry)* — 4ryry cosh?(yL) (3.2.15b)
r = re2Ponei — ¢ eV (3.2.15¢)
r, = ;ze-ljﬁuzze—fn = ,f‘zeNZ (3.2.15d)

By squaring equation (3.2.1) and after some simplification, we end up with
a transcendental function:

(VL) + (kL)? sinh®(yL)(1 — r2)(1 — r3)
+ 2jkL(ry 4 r2)*(1 — ryra)yLsinh(yL) cosh(yL) = 0 (3.2.16)

In the above equation there are four parameters which govern the threshold
characteristics of DFB laser structures. These include the coupling coeffi-
cient «, the laser cavity length L and the complex facet reflectivities r; and
r>. Owing to the complex nature of the above equation, numerical methods
like the Newton-Raphson iteration technique can be used provided that the
Cauchy-Riemann condition on complex analytical functions is satisfied.
Before stating the Newton-Raphson iteration, an initial value of (a, 8)ini
is chosen from a selected range of (a, §) values. Usually, the first selected
guess will not be a solution of the threshold equation and hence the iteration
continues. At the end of the first iteration, a new pair of (', &) will be
generated and checked to see if they satisfy the threshold equation. The
iteration will continue until the newly generated (o', ') pair satisfy the
threshold equation within a reasonable range of error. Starting with different
initial guesses of (e, &)ini, other oscillating modes can also be determined in a
similar way. By collecting all (o', §') pairs that satisfy the threshold equation,
the one that shows the smallest amplitude gain will then become the lasing
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mode. The final value (a, 8)fina is then stored up for later use, in which the
threshold current and the lasing wavelength of the LD are to be decided. In
general, equation (3.2.16) characterises all conventional DFB semiconductor
LDs with continuous corrugations fabricated along the laser cavity.

3.3 SOLUTIONS OF COMPLEX TRANSCENDENTAL EQUATIONS
USING THE NEWTON-RAPHSON APPROXIMATION

All complex transcendental equations can be expressed in a general form
such that

W) =U(z)+ jV(z) =0 (3.3.1)

where z =x+ jy is a complex number and U(z) and V(z) are, respec-
tively, the real and imaginary parts of the complex function. From the above
equation, we can deduce the following equality easily such that

U=V =0 (3.3.2)

By taking the first-order derivative of equation (3.3.1) with respect to z, we
obtain
oW 9U 3V U = 3V
e T w
The second equality sign can be obtained using the chain rule. Using the
Taylor series, the functions U(z) and V(z) can be approximated about the
exact solution (xreq, Yreq) such that

(3.3.3)

aUu alU
U(Ireq- yrcq) =U(x, y)+ a(xreq - x)+ a—y{)’req -y (3.3.4)

av av
V(Xteqs Yreq) = Vix, y)+ E(xrcq - x)+ a_y(}'req ) (3.3.5)
where the (x, y) chosen are sufficiently closed to the exact solutions. Other
higher derivative terms from the Taylor series have been ignored. We can

obtain the following equations from the above simultaneous equations for
Xreq and Yreq such that [2]

alU aV
Vix, )— = Ulx, y)—
dy dy

Xreq =X+ Det (3.3.6)
av aU
Ulx, y)g - Vi(x, }‘)a—
Yeeq =Y+ et X (3.3.7)
where s s
%
Det = (QE) - (3_) (3.3.8)
ax ay
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Terms like aU /ox, dV /ox, aU/dy and dV /dy are the first derivatives of the
functions U(z) and V(z2).

For an analytical complex function W(z), the Cauchy-Riemann condition
must be satisfied, which states that [3]

W v U v

—_ =, — == 339
ax ay dy ax ( )

On replacing all the d/dy terms with d/dx using the above Cauchy-Riemann
condition, equations (3.3.6) and (3.3.8) can be simplified such that

X

3 2
D=2 (%) 5110

av U

V » . . =

(x, ¥) . + Ul(x, y) m
Det

Here, only the first-order derivatives dU /dx and dV /dx are used where they
can be determined from the complex function of equation (3.3.3).

Given an initial guess of (x, y), the numerical iteration process will then
start. A new guess is generated after following equations (3.3.7), (3.3.10)
and (3.3.11). Unless the new guess is sufficiently close to the exact solution
(within 107%, say), the new guess solutions formed will become the initial
guess for the next iteration. The iteration process continues until the approx-
imated solutions of (xeq. yreq) appear.

The advantages of this method are its speed and flexibility. The derivative
term dW /9z is found analytically first before any numerical iteration is started.
Using this method, we can avoid any errors associated with other numerical
methods such as numerical differentiation.

(3.3.11)

xreq =X-=

3.4 CONCEPTS OF MODE DISCRIMINATION AND GAIN MARGIN

At a fixed value of «, the pair (8, &)fina; can be determined following the
method as shown in the previous section. Each (8, a)gaal pair, which repre-
sents an oscillation mode, is plotted on the §-a plane. Similarly, (8, a)fipal
values can be obtained by changing the values of k. By plotting all (8, )ginal
points on the §-« plane, the mode spectrum of the DFB LD is formed. A
simplified 8-« plot is shown in Figure 3.1. Different symbols shown represent
various longitudinal modes obtained for various coupling coefficient while the
solid curve shows how longitudinal modes join to form an oscillating mode.

As the biasing current increases, the longitudinal mode showing the
smallest amplitude gain will reach the threshold condition first and begin
to lase. Other modes that fail to reach the threshold condition will then be
suppressed and become non-lasing side modes. On the -« plane, the § =0
line, or the Bragg wavelength, splits the -« plane into two halves. As we
move along the positive §-axis, any oscillation modes encountered will be
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Figure 3.1 A simplified § — a plot showing the mode spectrum and the oscillating mode of
a DFB LD. Different symbols are used to show longitudinal modes obtained from
various  values.

denoted as the +1, +2 modes, and so on. Similarly, negative modes such as
—1, —2 are used for those found on the negative é-axis.

The importance of the SLM in coherent optical communications was
discussed in Chapter 1. To measure the stability of the lasing spectrum, we
need to determine the amplitude gain difference between the lasing mode
and the most probable side mode of the DFB laser [4,5]. A larger amplitude
gain difference, better known as the gain margin (Ac«), implies a better
mode discrimination. In other words, the SLM oscillation in the DFB LD
involved is said to be more stable. In practice, the actual requirement of Aa
may vary from one system to another depending on the encoding format
(return to zero, RZ, or non-return to zero, NRZ), transmission rate, the
biasing condition of the laser sources, and the length and the character-
istics of the single mode fibre (SMF) used. A simulation based on a 20 km
dispersive SMF [6] indicated that a Aa of 5/cm is required for a 2.4 Gb/s in
order that a bit error rate, BER < 107 can be achieved. A detailed analysis
on the requirement of A« under different system configurations is clearly
beyond the scope of the present analysis. However, we get some idea of the
typical value of gain margins required in a coherent optical communication
system.

The value of the gain margin, however, is difficult to measure directly
from an experiment. An alternative method is to measure the spontaneous
emission spectrum. For a stable SLM source, a minimum of 25 dB side
mode suppression ratio (SMSR) [7] between the power of the lasing mode
and the most probable side mode is necessary.
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3.5 THRESHOLD ANALYSIS OF A CONVENTIONAL DFB LASER

DIODE

For a conventional DFB laser with a zero facet reflection, the threshold
equation (3.2.16) becomes

JyL = xkLsinh(yL) (3.5.1)

Using the Newton-Raphson iteration approach, the eigenvalue equation can
be solved as a fixed coupling coefficient. Results obtained for the above
equation are shown in Figure 3.2. All parameters used have been normalised
with respect to the overall cavity length L. Discrete values of L have been
selected between 0.25 and 10.0. As shown in the inset of Figure 3.2, solutions
obtained from various «L products are shown using different symbols. Oscil-
lation modes are then formed by joining the appropriate solutions together.
Solid lines have been used to represent the —4 to +4 modes. From the figure,
it is clear that oscillating modes distribute symmetrically with respect to the
Bragg wavelength whilst no oscillation is found at the Bragg wavelength.
Furthermore, it can be seen that the +1 and —1 modes with different lasing
wavelengths will share the same amplitude gain. As a result, degenerate
oscillation occurs and these modes will have the same chance to lase once
the lasing condition is reached. Figure 3.2 also reveals that the amplitude
threshold gain decreases with increasing values of xL. Since a larger value
of x implies a stronger optical feedback, a smaller threshold gain results.
Similarly, lasers with a long cavity length help to reduce the amplitude gain
because a larger single pass gain can be achieved.

Sr rn‘-(} xL =
Ao X025 ®3
e ®05 ¥4
:: ) @5
+ 2 ® 10

Amplitude threshold gain, al

0
-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14
Detuning coefficient, dL

Figure 3.2 Relationship between the amplitude threshold gain and the detuning coefficient of a
mirrorless index-coupled DFB LD.
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Figure 3.3 Relationship between the amplitude threshold gain and the detuning coefficient of a
DFB LD with finite reflectivities.

With no oscillation found at the Bragg wavelength, a stopband region
is formed between the +1 and —1 modes of the conventional mirrorless
DFB LD. From Figure 3.2, we conclude that the normalised stopband width
is a function of «L. Although the change in stopband width becomes less
noticeable at lower values of «L, the measurement of the stopband width has
been used to determine the coupling coefficient of DFB LDs [8). Figure 3.3
shows the characteristic of a DFB LD with finite facet reflections. It is shown
in the figure that the mode distribution is no longer symmetric and no oscil-
lation is found at the Bragg wavelength. The —1 mode with the smallest
amplitude gain becomes the lasing mode.

3.6 IMPACT OF THE CORRUGATION PHASE AT LASER FACETS

So far, symmetric laser cavities that share identical facet reflectivities have
been used. To understand the effects of the residue phases at the facets |2,
9], asymmetric cavities are considered. The threshold characteristic of one of
these asymmetric DFB LDs is shown in Figure 3.4. The amplitude reflectivity
r; = 0.0343 is assumed, whilst the other facet is assumed to be naturally
cleaved such that 7, = 0.535. Discrete values of xL have been chosen. In
the figure, the corrugation phase v is fixed at m whilst yr> changes in steps
of m/2. Different symbol markers have been used to represent different .
Solutions obtained from the same «L product are joined together as usual to
form the oscillation mode. Let us consider kL = 1.0 as an example. It can be
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Figure 3.4 The lasing characteristic of a DFB LD having asymmetric facet reflection. The
corrugation phase y, is fixed while ¥ is allowed to change. Results obtained for
various xL products are compared.

seen that the lasing mode changes from the negative to the positive mode as
the facet phase y; changes from —m/2 to mr. For kL > 1.0, the amplitude gain
at the Bragg wavelength remains so high that it never reaches the threshold
condition. The —1 mode showing the smallest amplitude gain becomes the
dominant lasing mode.

By replacing the natural cleaved facet with a highly reflective surface
such that 7, = 1.0, the lasing characteristic of the new structure is shown in
Figure 3.5. Various values of kL have been used for comparison. Similar to
the one shown in Figure 3.4, the oscillation mode shifts from the —1 to the
+1 mode when y; changes from —n/2 to 74. From both Figures 3.4 and 3.5
it is clear that SLM operation depends on both the facet reflectivity and the
associated phase. However, due to tolerances inherent during the fabrication
process, it is difficult to control accurately the corrugation phase at the laser
facets [10].

Various methods have been proposed for adjusting the corrugation phase.
One such method is to use the ion beam etching technique [11,12]. A
continuous flux of neutralised argon gas, which acts as an abrasive tool,
is targeted at one laser facet. By abrading the facet slowly across the beam at
a constant rate, a 20-50 nm depth can be etched away at the laser facet
in a single process. An annealing process is usually applied afterwards.
Experimental results [11,12] also show that the annealing process has no
significant variation in the threshold and the external quantum efficiency in
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r's; = jke’*R, (3.2.4c)
'S, = jke/*R, (3.2.4d)
where
F=a,—js—y (3.2.5a)
F=a;— jé+y (3.2.5b)

By comparing the equations (3.2.4a) and (3.2.4¢), a non-trivial solution
exists if the following equation is satisfied:
I Jk
=== 3.2.6
p - T ( )
On the basis of the equation shown above, equation (3.2.4) is simplified to
become:

1

R = ;e—f'“sl (3.2.7a)
Ry = pe™ /95, (3.2.7b)

Similarly, by equating equations (3.2.4a) with (3.2.4c), we obtain:
Y: = (as — j8) + k* (3.2.8)

It is important that the dispersion equation shown above is independent of
the residue corrugation phase, €.

With a finite laser cavity length of L extending from z =2z, to z =12
(where both z; and z; are assumed to be greater than zero), the boundary
conditions at the terminating facets become

R(z1)e™ /P01 = 7,§(z;)e/Po71 (3.2.9a)
S(z2)e’P02 = })R(z3)e P02 (3.2.9b)

where 7, and 7, are amplitude reflection coefficients at the laser facets z)
and z, respectively. According to equations (3.2.3) and (3.2.4), the above
equations could be expanded in such a way that

1— 2y
- U—pr)e™ (3.2.10a)
n/p—1
— 2y
R, = 2P o (3.2.10b)
1/p—r:

In the above equation, all the R(z) and S(z) terms are expressed in terms of
R, and R, whilst r| and r; are the complex field reflectivity of the left and
the right facets, respectively, such that

r = fe2Pot1e/ =} el¥n (3.2.11a)

ry = P~ 2iP02e=IR — jreiV2 (3.2.11b)
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where Y and Y, are the corresponding corrugation phase at the facets.

Equations (3.2.10a) and (3.2.10b) are homogeneous in R; and R,. To obtain

a non-trivial solution, the following solution must be satisfied:
(1= pr)e?™ _ (ry = p)er=

n-p 1—pr,

(3.2.12)

Then, the above equation can be solved for p and 1/p whilst employing the
relation

y=— (,0 = —) (3.2.13)

derived from equations (3.2.5a) and (3.2.5b). After some lengthy manipu-
lation [2], we end up with an eigenvalue equation:

i sinh(v
yL = _E‘;:—EQ : {(n + r2)(1 = rir)cosh(yL) £ (1 + ’I’Z)A”z}

(3.2.14)

where
A = (ry — ry)*sinh®(yL) + (1 — ryr2)? (3.2.15a)
D = (14 ryry)* — 4ryry cosh?(yL) (3.2.15b)
r = re2Ponei — ¢ eV (3.2.15¢)
r, = ;ze-ljﬁuzze—fn = ,f‘zeNZ (3.2.15d)

By squaring equation (3.2.1) and after some simplification, we end up with
a transcendental function:

(VL) + (kL)? sinh®(yL)(1 — r2)(1 — r3)
+ 2jkL(ry 4 r2)*(1 — ryra)yLsinh(yL) cosh(yL) = 0 (3.2.16)

In the above equation there are four parameters which govern the threshold
characteristics of DFB laser structures. These include the coupling coeffi-
cient «, the laser cavity length L and the complex facet reflectivities r; and
r>. Owing to the complex nature of the above equation, numerical methods
like the Newton-Raphson iteration technique can be used provided that the
Cauchy-Riemann condition on complex analytical functions is satisfied.
Before stating the Newton-Raphson iteration, an initial value of (a, 8)ini
is chosen from a selected range of (a, §) values. Usually, the first selected
guess will not be a solution of the threshold equation and hence the iteration
continues. At the end of the first iteration, a new pair of (', &) will be
generated and checked to see if they satisfy the threshold equation. The
iteration will continue until the newly generated (o', ') pair satisfy the
threshold equation within a reasonable range of error. Starting with different
initial guesses of (e, &)ini, other oscillating modes can also be determined in a
similar way. By collecting all (o', §') pairs that satisfy the threshold equation,
the one that shows the smallest amplitude gain will then become the lasing
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mode. The final value (a, 8)fina is then stored up for later use, in which the
threshold current and the lasing wavelength of the LD are to be decided. In
general, equation (3.2.16) characterises all conventional DFB semiconductor
LDs with continuous corrugations fabricated along the laser cavity.

3.3 SOLUTIONS OF COMPLEX TRANSCENDENTAL EQUATIONS
USING THE NEWTON-RAPHSON APPROXIMATION

All complex transcendental equations can be expressed in a general form
such that

W) =U(z)+ jV(z) =0 (3.3.1)

where z =x+ jy is a complex number and U(z) and V(z) are, respec-
tively, the real and imaginary parts of the complex function. From the above
equation, we can deduce the following equality easily such that

U=V =0 (3.3.2)

By taking the first-order derivative of equation (3.3.1) with respect to z, we
obtain
oW 9U 3V U = 3V
e T w
The second equality sign can be obtained using the chain rule. Using the
Taylor series, the functions U(z) and V(z) can be approximated about the
exact solution (xreq, Yreq) such that

(3.3.3)

aUu alU
U(Ireq- yrcq) =U(x, y)+ a(xreq - x)+ a—y{)’req -y (3.3.4)

av av
V(Xteqs Yreq) = Vix, y)+ E(xrcq - x)+ a_y(}'req ) (3.3.5)
where the (x, y) chosen are sufficiently closed to the exact solutions. Other
higher derivative terms from the Taylor series have been ignored. We can

obtain the following equations from the above simultaneous equations for
Xreq and Yreq such that [2]

alU aV
Vix, )— = Ulx, y)—
dy dy

Xreq =X+ Det (3.3.6)
av aU
Ulx, y)g - Vi(x, }‘)a—
Yeeq =Y+ et X (3.3.7)
where s s
%
Det = (QE) - (3_) (3.3.8)
ax ay
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Terms like aU /ox, dV /ox, aU/dy and dV /dy are the first derivatives of the
functions U(z) and V(z2).

For an analytical complex function W(z), the Cauchy-Riemann condition
must be satisfied, which states that [3]

W v U v

—_ =, — == 339
ax ay dy ax ( )

On replacing all the d/dy terms with d/dx using the above Cauchy-Riemann
condition, equations (3.3.6) and (3.3.8) can be simplified such that

X

3 2
D=2 (%) 5110

av U

V » . . =

(x, ¥) . + Ul(x, y) m
Det

Here, only the first-order derivatives dU /dx and dV /dx are used where they
can be determined from the complex function of equation (3.3.3).

Given an initial guess of (x, y), the numerical iteration process will then
start. A new guess is generated after following equations (3.3.7), (3.3.10)
and (3.3.11). Unless the new guess is sufficiently close to the exact solution
(within 107%, say), the new guess solutions formed will become the initial
guess for the next iteration. The iteration process continues until the approx-
imated solutions of (xeq. yreq) appear.

The advantages of this method are its speed and flexibility. The derivative
term dW /9z is found analytically first before any numerical iteration is started.
Using this method, we can avoid any errors associated with other numerical
methods such as numerical differentiation.

(3.3.11)

xreq =X-=

3.4 CONCEPTS OF MODE DISCRIMINATION AND GAIN MARGIN

At a fixed value of «, the pair (8, &)fina; can be determined following the
method as shown in the previous section. Each (8, a)gaal pair, which repre-
sents an oscillation mode, is plotted on the §-a plane. Similarly, (8, a)fipal
values can be obtained by changing the values of k. By plotting all (8, )ginal
points on the §-« plane, the mode spectrum of the DFB LD is formed. A
simplified 8-« plot is shown in Figure 3.1. Different symbols shown represent
various longitudinal modes obtained for various coupling coefficient while the
solid curve shows how longitudinal modes join to form an oscillating mode.

As the biasing current increases, the longitudinal mode showing the
smallest amplitude gain will reach the threshold condition first and begin
to lase. Other modes that fail to reach the threshold condition will then be
suppressed and become non-lasing side modes. On the -« plane, the § =0
line, or the Bragg wavelength, splits the -« plane into two halves. As we
move along the positive §-axis, any oscillation modes encountered will be
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Figure 3.1 A simplified § — a plot showing the mode spectrum and the oscillating mode of
a DFB LD. Different symbols are used to show longitudinal modes obtained from
various  values.

denoted as the +1, +2 modes, and so on. Similarly, negative modes such as
—1, —2 are used for those found on the negative é-axis.

The importance of the SLM in coherent optical communications was
discussed in Chapter 1. To measure the stability of the lasing spectrum, we
need to determine the amplitude gain difference between the lasing mode
and the most probable side mode of the DFB laser [4,5]. A larger amplitude
gain difference, better known as the gain margin (Ac«), implies a better
mode discrimination. In other words, the SLM oscillation in the DFB LD
involved is said to be more stable. In practice, the actual requirement of Aa
may vary from one system to another depending on the encoding format
(return to zero, RZ, or non-return to zero, NRZ), transmission rate, the
biasing condition of the laser sources, and the length and the character-
istics of the single mode fibre (SMF) used. A simulation based on a 20 km
dispersive SMF [6] indicated that a Aa of 5/cm is required for a 2.4 Gb/s in
order that a bit error rate, BER < 107 can be achieved. A detailed analysis
on the requirement of A« under different system configurations is clearly
beyond the scope of the present analysis. However, we get some idea of the
typical value of gain margins required in a coherent optical communication
system.

The value of the gain margin, however, is difficult to measure directly
from an experiment. An alternative method is to measure the spontaneous
emission spectrum. For a stable SLM source, a minimum of 25 dB side
mode suppression ratio (SMSR) [7] between the power of the lasing mode
and the most probable side mode is necessary.



STRUCTURAL IMPACTS ON THE SOLUTIONS OF COUPLED-WAVE EQUATIONS

3.5 THRESHOLD ANALYSIS OF A CONVENTIONAL DFB LASER

DIODE

For a conventional DFB laser with a zero facet reflection, the threshold
equation (3.2.16) becomes

JyL = xkLsinh(yL) (3.5.1)

Using the Newton-Raphson iteration approach, the eigenvalue equation can
be solved as a fixed coupling coefficient. Results obtained for the above
equation are shown in Figure 3.2. All parameters used have been normalised
with respect to the overall cavity length L. Discrete values of L have been
selected between 0.25 and 10.0. As shown in the inset of Figure 3.2, solutions
obtained from various «L products are shown using different symbols. Oscil-
lation modes are then formed by joining the appropriate solutions together.
Solid lines have been used to represent the —4 to +4 modes. From the figure,
it is clear that oscillating modes distribute symmetrically with respect to the
Bragg wavelength whilst no oscillation is found at the Bragg wavelength.
Furthermore, it can be seen that the +1 and —1 modes with different lasing
wavelengths will share the same amplitude gain. As a result, degenerate
oscillation occurs and these modes will have the same chance to lase once
the lasing condition is reached. Figure 3.2 also reveals that the amplitude
threshold gain decreases with increasing values of xL. Since a larger value
of x implies a stronger optical feedback, a smaller threshold gain results.
Similarly, lasers with a long cavity length help to reduce the amplitude gain
because a larger single pass gain can be achieved.

Sr rn‘-(} xL =
Ao X025 ®3
e ®05 ¥4
:: ) @5
+ 2 ® 10

Amplitude threshold gain, al

0
-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14
Detuning coefficient, dL

Figure 3.2 Relationship between the amplitude threshold gain and the detuning coefficient of a
mirrorless index-coupled DFB LD.
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Figure 3.3 Relationship between the amplitude threshold gain and the detuning coefficient of a
DFB LD with finite reflectivities.

With no oscillation found at the Bragg wavelength, a stopband region
is formed between the +1 and —1 modes of the conventional mirrorless
DFB LD. From Figure 3.2, we conclude that the normalised stopband width
is a function of «L. Although the change in stopband width becomes less
noticeable at lower values of «L, the measurement of the stopband width has
been used to determine the coupling coefficient of DFB LDs [8). Figure 3.3
shows the characteristic of a DFB LD with finite facet reflections. It is shown
in the figure that the mode distribution is no longer symmetric and no oscil-
lation is found at the Bragg wavelength. The —1 mode with the smallest
amplitude gain becomes the lasing mode.

3.6 IMPACT OF THE CORRUGATION PHASE AT LASER FACETS

So far, symmetric laser cavities that share identical facet reflectivities have
been used. To understand the effects of the residue phases at the facets |2,
9], asymmetric cavities are considered. The threshold characteristic of one of
these asymmetric DFB LDs is shown in Figure 3.4. The amplitude reflectivity
r; = 0.0343 is assumed, whilst the other facet is assumed to be naturally
cleaved such that 7, = 0.535. Discrete values of xL have been chosen. In
the figure, the corrugation phase v is fixed at m whilst yr> changes in steps
of m/2. Different symbol markers have been used to represent different .
Solutions obtained from the same «L product are joined together as usual to
form the oscillation mode. Let us consider kL = 1.0 as an example. It can be
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Figure 3.4 The lasing characteristic of a DFB LD having asymmetric facet reflection. The
corrugation phase y, is fixed while ¥ is allowed to change. Results obtained for
various xL products are compared.

seen that the lasing mode changes from the negative to the positive mode as
the facet phase y; changes from —m/2 to mr. For kL > 1.0, the amplitude gain
at the Bragg wavelength remains so high that it never reaches the threshold
condition. The —1 mode showing the smallest amplitude gain becomes the
dominant lasing mode.

By replacing the natural cleaved facet with a highly reflective surface
such that 7, = 1.0, the lasing characteristic of the new structure is shown in
Figure 3.5. Various values of kL have been used for comparison. Similar to
the one shown in Figure 3.4, the oscillation mode shifts from the —1 to the
+1 mode when y; changes from —n/2 to 74. From both Figures 3.4 and 3.5
it is clear that SLM operation depends on both the facet reflectivity and the
associated phase. However, due to tolerances inherent during the fabrication
process, it is difficult to control accurately the corrugation phase at the laser
facets [10].

Various methods have been proposed for adjusting the corrugation phase.
One such method is to use the ion beam etching technique [11,12]. A
continuous flux of neutralised argon gas, which acts as an abrasive tool,
is targeted at one laser facet. By abrading the facet slowly across the beam at
a constant rate, a 20-50 nm depth can be etched away at the laser facet
in a single process. An annealing process is usually applied afterwards.
Experimental results [11,12] also show that the annealing process has no
significant variation in the threshold and the external quantum efficiency in
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Figure 3.5 The lasing characteristic of a DFB LD having asymmetric facet reflection. The
corrugation phase yr is fixed whilst v, is allowed to change. Results obtained from
various «[. products are compared.

DFB lasers. Apart from the extra annealing process required, the ion beam
etching technique is effective in adjusting the position of the facets and thus
the associated corrugation phases.

Since the etching depth required may vary from one DFB laser to another,
the ion beam etching technique is classified as a chip-by-chip optimisation
method. To improve the efficiency, other methods like the phase control
technique [13] can be used. Basically, a multi-layer coating with precise
refractive indices and thicknesses is applied to the laser facets so that the
overall facet phase and the amplitude reflection can be controlled and deter-
mined easily.

3.7 THE EFFECTS OF PHASE DISCONTINUITY ALONG THE DFB
LASER CAVITY

In the previous section the threshold analysis of conventional DFB lasers
comprising uniform corrugations was presented. The SLM operation can
be achieved when different values of the facet reflectivity are employed.
However, owing to the randomness of the corrugation phase at the laser
facet, stable SLM oscillation is not guaranteed. To improve the single mode
performance of DFB lasers, phase discontinuity or phase shift is introduced
[14] along the corrugation. As shown in Figure 3.6, phase shifts along the
corrugation can be introduced by two methods. As shown in Figure 3.6(a), the
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Figure 3.6 Phase discontinuity that may be introduced along a DFB laser cavity. (a) Phase shift
with uniform corrugation but non-uniform active layer dimension. (b) Phase shift
with uniform active layer dimension but discontinuous corrugation.

width of the active layer is not uniform while the shape and the dimension
of the corrugation remain constant [15,16]. In Figure 3.6(b), on the other
hand, the corrugation shows a phase slip whilst the active layer dimensions
remain uniform [17,18]. Using method (a), the actual phase shift depends on
the length of the phase-adjustment region and the difference in strip width
(W2 — W)). Precise control over the active layer width is required. Using
method (b), phase discontinuity is introduced during fabrication in which the
slip is written directly along the corrugation. In our analysis, we adopted the
latter method in preparing phase shifts in a DFB laser.

We consider a single phase-shifted (1PS) DFB laser as shown in Figure 3.7.
A phase slip of 26 is fabricated along the corrugation at the z origin so that
the cavity is subdivided into two sections. As can be seen, these sections may
have a different length and each resembles a conventional DFB laser cavity
with uniform corrugation. In the analysis, zero facet reflectivity is assumed.
Following the argument presented in Chapter 2, the refractive index of each
section can be written as

n'V(z) = ng + An cos(2Bpz + @) (3.7.1a)
n?(z) = ng + An cos(2Boz — ) (3.7.1b)

where the superscripts (1) and (2) correspond to sections 1 and 2, respectively.
In the above equations it is assumed that the phase shift is equally split
between sections 1 and 2.

On the basis of the coupled wave theory, counter-running waves are built
up in each section such that the following equations can be derived for each
section of the laser:

RIIJ

+ (@ — jORY = jksPe/® (3.7.2a)

-
i
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Figure 3.7 Schematic representation of a single phase-shifted (1PS) DFB LD. The phase shift

is represented by ¢.

ds®

- te- j8)SM = jkRMel?® (3.7.2b)
Z
) R )
rry + (@ — j&R? = jk§Pei® (3.7.2¢)
ds(Z) )
—+ (a — j&)SP = jkRPe=1® (3.7.2d)

where RV, S and R, §@ are the counter-running waves propagating in
sections (1) and (2), respectively. In both sections, the corrugation shape and
grating depth are assumed to be equal. As a result, the coupling coefficient
remains constant throughout. Following equation (2.4.21), the solution of the
coupled wave equations can be written as

E®(2) = R®(z)e~7Po: 4 50 (g)e/P0 (3.7.3)

where
R®(z) = RYe” 4+ RPe 7 (3.7.4a)
§S®(z) = sPer 4 567 (3.7.4b)

and k =1 and 2 for sections (1) and (2), respectively. Here, R(]*', R‘;"', S(l“
and S(Zk' are the complex leading coefficients associated with the particular
section. Since the discontinuity caused by the phase slip is assumed to be
very small, the waves in the two sections can be considered to be continuous
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at z = 0. In other words,
RV (z=0)=R?(z=0) (3.7.5a)
sWz=0)=5%z=0) (3.7.5b)

By allowing both 7| and 7; to be the respective amplitude facet reflection
coefficients at the left and right laser facets, the boundary conditions of the
1PS DFB laser become

RD(=Ly)ePolt = 7§V (—Ly)e~7Polr (3.7.5¢)
SA(Ly)e’Pol2 = 7R (Ly)e~Pol2 (3.7.5d)

By matching all the boundary conditions, non-trivial solutions exist if and
only if the following eigenvalue equation is satisfied [17]:

j\p{llrl + eMm j"l-"[mfz + e 26
: = —¢f
O, + T j@@+T® ~ ¢

(3.7.6)

where
q,(f(] — f‘z + KZCZyL(k,
O® = k(1 — e?tw) (3.7.7)
T(*} = K2 + f\zezyf-{h
with k = 1 and 2, and
Lay =L, Loy =L (3.7.8)

In the above equation, r; and r; are the complex field reflectivities and [ are
defined as

r = ?|e_ﬂ2§u'{'l -9

rn= ?‘20_}(2’60'['1_¢] (3.7.9)
f=a—ﬁ—y
Compared with the conventional DFB laser, the boundary conditions at the
phase shift have to be matched for the mirrorless 1PS DFB laser structure.
Nevertheless, it was pointed out by Utaka er al. [17] that the use of non-zero
facet reflection may not be desirable. This is because the random corrugation
phases at the laser facets will cause extra difficulty in controlling the lasing
characteristic. Therefore, it is best to have AR coatings applied to both facets
of the 1PS DFB laser. For a mirrorless, symmetric 1PS DFB laser cavity with
Ly = L, = L/2, the phase shift is located at the centre of the cavity. As a
result, equation (3.7.6) can be simplified further such that [19]:

P -]’
(k2 + Ferk)

= ¢%/? (3.7.10)
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3.7.1 Effects of phase shifts on the lasing characteristics of a
1PS DFB LD

To investigate the effects of phase shifts on the lasing characteristic of 1PS
DFB lasers, a symmetric laser cavity is assumed with a single phase shift
fabricated at the centre of the DFB laser. Using a numerical method such as
the Newton-Raphson method, the eigenvalue equation (3.7.10) can be solved
numerically for the normalised amplitude threshold gain oL (amplitude gain
of the lasing mode) and the lasing wavelength at specific values of x and phase
shift.

Figure 3.8 illustrates how the variation of phase shift value affects oL
for the mirrorless 1PS DFB LD. All parameters used are normalised with
respect to the overall cavity length L. Three different L values are plotted
in the figure for comparison. All curves in Figure 3.8 are symmetric and
have a minimum amplitude threshold gain at ¢ = 90° (or /2 in radians) as
can be seen. This phase change corresponds to a quarter wavelength shift
and so the name single X/4-shifted DFB or quarterly wavelength shifted
(QWS) DFB laser is usually used to represent this laser structure. When the
phase shift approaches zero or 7, the phase-shifted structure is reduced to the
conventional, mirrorless DFB laser in which degenerate oscillation results.

Figure 3.9 shows the variation of the lasing wavelength with respect to
the phase shift. As in Figure 3.8, the results of three sets of L products
are shown and compared. In this case, the Bragg wavelength Ag is assumed
to be 1330 nm and the actual wavelength is shown on the left y-axis. The
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Figure 3.8 The variation of the amplitude threshold gain with the phase shift of a 1PS DFB LD.
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Figure 3.9 The variation of the lasing wavelength with the phase shift of a 1PS DFB LD.

corresponding normalised detuning coefficient §L is shown on the right-
hand side. At ¢ = /2, the lasing wavelength of all three kL values coincide
at the Bragg wavelength. This reveals an important characteristic of the
symmetric 1PS DFB laser. A QWS DFB LD always oscillates at the Bragg
wavelength irrespective of the xL chosen. When «L increases, the range of
the lasing wavelength also increases with varying phase shift. At kL = 2.0,
the wavelength range is found to be 10.8 nm whilst it is about 7.4 nm for
kL = 0.50. So far, the phase shift is assumed to be at the centre of the laser
cavity. In the next section, the effects of the PSP on the lasing characteristics
of 1PS DFB lasers will be discussed.

3.7.2 Effects of PSP on the lasing characteristics of a 1PS DFB LD

To investigate the effect of the location of the phase shift [20], a parameter
known as the PSP is introduced along the asymmetric laser cavity such that

PSP = L,/L (3.7.11)

The variations of the amplitude gain and gain margin obtained from a 500 um
long DFB laser cavity with x = 2/mm (i.e. kL = 1) are shown in Figures 3.10
and 3.11, respectively. In the analysis, the Bragg wavelength is assumed to
be at 1330 nm and the phase shift is fixed at 7/2. Both Figures 3.10 and 3.11
show a symmetric distribution of curves at PSP = 0.5, where the phase shift
is found. When the phase shift moves from the centre towards the laser facets,
the effect of the phase shift becomes less influential. Solutions obtained from



THE EFFECTS OF PHASE DISCONTINUITY ALONG THE DFB LASER CAVITY 99

1.6
—— SWMat )y
— — degeneracy occurs
141
} K = 2/mm
c |_ L =500 um
g hg=1.33 um
g 12~ _ —
£ 3
@
2 .1
=
£
08}
06 P | L 1 1 1 L 1 L 1 ]

0 01 02 03 04 05 06 07 08 08 1
Phase shift position (PSP)
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Figure 3.11 The variation of the gain margin with the PSP of a 1PS DFB LD. The phase shift
is fixed at m/2.
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the threshold equation indicate that degenerate oscillation begins to occur
at PSP = 0.26 and PSP = 0.74. In this situation, the QWS DFB laser is
reduced to a conventional one. The dramatic fall in the gain margin shown in
Figure 3.11 confirms the above argument. When the position of the phase shift
moves from the centre (PSP = 0.5) to the laser facets, the gain margin drops
from a peak value of 14.7/cm to zero value at PSP = 0.26 and PSP = 0.74.
Provided the phase shift is fabricated near the centre of the cavity, a QWS
DFB laser can operate at the Bragg wavelength.

3.8 ADVANTAGES AND DISADVANTAGES OF A QUARTERLY
WAVELENGTH SHIFTED (QWS) DFB LD

By introducing a QWS at the centre of the DFB laser cavity, SLM operation
at the Bragg wavelength can be achieved. However, it was first discussed
by Soda et al. [16] that for a high xL QWS DFB LD, the gain margin
drops drastically with increasing biasing current. Multimode oscillation at two
distant wavelengths is observed when the optical output power increases. Such
a reduction in gain margin is thought to be induced by the longitudinal spatial
hole burning effect [21]. When DFB LDs are biased below the threshold
current, where spontaneous emission is still dominant, the longitudinal carrier
and the field intensity distributions are relatively uniform. However, when the
bias current exceeds that of the threshold value, the optical field inside the
laser cavity becomes intensified at places where corrugation reflections occur
[22]. For a QWS DFB LD, the field intensity is so intense at the PSP that the
rate of spontaneous recombination increases near the phase shift. To maintain
a unity round-trip gain, carriers located near to the phase shift will move
to fill the carrier depletion. From Chapter 2, we know that the refractive
index of the semiconductor depends on the carrier injection. Such a local
variation of carrier concentration will result in a non-uniform distribution of
refractive indices along the laser cavity. The situation is made worse by the
fact that the gain and refractive index are related to one another as a result
of the Kramer-Kroenig relationship [23]. When the biasing current changes,
the gain in the lasing mode and other non-lasing side modes will change
in such a way that the gain margin reduces and consequently, multimode
oscillation occurs.

Owing to the deterioration of single mode stability, the longitudinal spatial
hole burning effect limits the QWS DFB LD to a lower power of operation.
Although laser structures with a smaller kL value are found to be less
vulnerable to the longitudinal spatial hole burning effect, these structures are
characterised by larger amplitude gain values and relatively large threshold
currents. To suppress the spatial hole burning whilst improving the maximum
single mode output power available, it was proposed that a laser structure
with a flatter field intensity may be used [24]. To optimise the structure with
respect to the intensity distribution, a parameter known as the flatness (F) is
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defined as

1
F= Ef (@) — Tavg)* dz (3.8.1)
cavity

where [(z) is the local field intensity and /. is the average field intensity.
In the QWS DFB laser, an optimum value of flatness is found when kL =
1.25 [16].

In flattening the field intensity whilst improving the optimum «L value
that can be used in QWS DFB lasers, a three-electrode QWS DFB laser
structure, as shown in Figure 3.12 was proposed [25]. By passing a larger
biasing current into the central electrode, carriers lost due to the spatial hole
burning are compensated for [26]. An alternative approach that retains the
uniform current injection is also used. By introducing more phase shifts along
the DFB laser cavity, a multiple phase shift (MPS) structure can flatten the
field distribution [27]. Figure 3.13 shows a three-phase-shift (3PS) DFB LD.

Longitudinal spatial hole burning must be considered when the LD operates
in the above threshold condition. To decide the above threshold charac-
teristics, we must take into account the local carrier concentration. Using
the perturbation method [27] or the quasi-uniform gain assumption [16],
the characteristics of QWS DFB LDs operating slightly above the threshold
current are predicted. However, these methods may not be appropriate when
the injection current becomes high and other non-linear effects such as the
gain saturation [28] must be considered.
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Figure 3.12 A three-electrode QWS DFB LD (after [29]).
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Figure 3.13 Schematic representation of a three phase shift (3PS) DFB LD (after [30]).

Throughout the analysis, the derivation of the eigenvalue equation becomes
tedious as the laser structure becomes more and more complex. The use of a
numerical analysis like the Newton-Raphson method becomes impracticable
since a first-order derivative is required. A new model that can cope with
various designs of DFB LDs such as the three-electrode (QWS) [29] and/or
the 3PS DFB LD structures [30] while maintaining a wider range of injection
current is necessary. With increasing output power, any local variation and
the gain saturation effect can be considered.

3.9 SUMMARY

In this chapter the coupled-wave equations are solved under various structural
configurations. By matching all boundary conditions, eigenvalue equations
were derived. From the solutions of the eigenvalue equations, the threshold
current and the lasing wavelength are determined. Impacts due to the coupling
coefficient, the laser cavity length, the facet reflectivities, the residue corru-
gation phases and phase discontinuities are discussed in a systematic way on
behalf of the lasing threshold characteristics. With a single QWS fabricated
at the centre of the DFB cavity, the QWS DFB LD oscillates at the Bragg
wavelength. Owing to a non-uniform field distribution, however, the single
mode stability is threatened by the spatial hole burning effect. To extend
the analysis to the above threshold operation, a new model is required such
that all localised effects and other non-linear effects can be included in the
analysis.
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TRANSFER MATRIX
MODELLING IN DFB
SEMICONDUCTOR LASERS

4.1 INTRODUCTION

In Chapter 3 we derived eigenvalue equations by matching boundary condi-
tions inside distributed feedback (DFB) laser cavities. From the eigenvalue
problem, the lasing threshold characteristic of DFB lasers is determined. The
single /2 phase-shifted (PS) DFB laser is fabricated with a phase disconti-
nuity of m/2 at or near the centre of the laser cavity. It is characterised by
the Bragg oscillation and the high gain margin value. On the other hand, the
single longitudinal mode (SLM) deteriorates quickly when the optical power
of the laser diode (LD) increases. This phenomenon, known as the spatial
hole burning, limits the maximum single mode optical power and, conse-
quently, the spectral linewidth. Using a multiple-phase-shift (MPS) DFB laser
structure, the electric field distribution is flattened and hence the spatial hole
burning is suppressed.

In dealing with such a complicated DFB laser structure, it is tedious
to match all the boundary conditions. A more flexible method capable of
handling different types of DFB laser structures is necessary. In section 4.2
the transfer matrix method (TMM) [1-4] will be introduced and explored
comprehensively. From the coupled wave equations, it is found that the field
propagation inside a corrugated waveguide (e.g. the DFB laser cavity) can be
represented by a transfer matrix. Provided that the electric fields at the input
plane are known, the matrix acts as a transfer function so that electric fields at
the output plane can be determined. Similarly, other structures like the active
planar Fabry-Perot (FP) section, the passive corrugated distributed Bragg
reflector (DBR) section and the passive planar waveguide (WG) section can
also be expressed using the idea of a transfer matrix. By joining these transfer
matrices as a building block, a general N-section laser cavity model will be
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presented. Since the outputs from a transfer matrix automatically become the
inputs of the following matrix, all boundary conditions inside the composite
cavity are matched. The unsolved boundary conditions are those at the left
and right facets. In section 4.3 the threshold equation for the N-section laser
cavity model will be determined and the use of TMM in other semiconductor
laser devices will be discussed.

An adequate treatment of the amplified spontaneous emission spectrum
(Py) is very important in the analysis of semiconductor lasers [5], optical
amplifiers [6-8] and optical filters [9,10]. In semiconductor lasers, Py is
important for both the estimation of linewidth [11] and the estimation of
single mode stability in DFB LDs [12]. In optical amplifiers and filters,
Py has also been used to simulate the bandwidth, tunability and the signal
gain characteristic. In section 4.3 the TMM formulation will be extended
to include the below-threshold spontaneous emission spectrum of the N-
section DFB laser structure. Numerical results based on 3PS DFB LDs will
be presented.

4.2 BRIEF REVIEW OF MATRIX METHODS

By matching boundary conditions at the facets and the phase shift position,
the threshold condition of the single PS DFB LD can be determined from the
eigenvalue equations, However, this approach lacks the flexibility required
in the structural design of DFB LDs. Whenever a new structural design
is involved, a new eigenvalue equation has to be derived by matching all
boundary conditions. For lasers with the MPS DFB structure, the formation
of the eigenvalue equation becomes tedious since it may involve a large
number of boundary conditions.

One possible approach to simplifying the analysis, whilst improving the
flexibility and robustness, is to employ matrix methods. Matrices have been
used extensively in engineering problems which are highly numerical in
nature. In microwave engineering [13], matrices are used to find the electric
and magnetic fields inside various microwave waveguides and devices. One
major advantage of the matrix method is its flexibility. Instead of repeatedly
finding complicated analytical eigenvalue equations for each laser structure,
a general matrix equation is derived. A threshold analysis of various laser
structures, including planar sections, corrugated sections or a combination of
them, can be carried out in a systematic way. Since the laser structures can
be represented by the same general matrix equation, the algorithm derived
can be applied to various laser structures. However, because of the numerical
nature of the matrix method, it cannot be used to verify the existence of
analytical expressions in a particular problem.

In all matrix methods the structures involved will first be divided into a
number of smaller sections. In each section, all physical parameters, like the
injection current and material gain, are assumed to be homogeneous. As a
result, the total number of smaller sections used varies and mostly depends
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on the type of problem. For a problem like the analysis of transient responses
in LDs [14], a fairly large number of sections are needed since a highly
non-uniform process is involved. On the other hand, only a few sections
are required for the threshold analysis of DFB lasers since a fairly uniform
process is concerned.

For an arbitrary one-dimensional laser structure as shown in Figure 4.1,
the wave propagation is modelled by a 2 x 2 matrix A such that any electric
field leaving (i.e. Er(zi+1) and Es(z;)) and those entering (i.e. Egr(z;) and
Es(zi+1)) that section are related to one another as

U=AV (4.2.1)

where U and V are two column matrices each containing two electric wave
components. Depending on the type of matrix method, the contents of U and
V may vary.

In the scattering matrix method, the matrix U includes all electric waves
leaving the arbitrary section whilst the matrix V contains those entering the
section. In both the transmission line matrix (TLM) and the TMM, the matrix
U represents the electric wave components from one side of the section whilst
wave components from the other side are included in the matrix V. For the
analysis of semiconductor laser devices, both TLM and TMM have been used.
The difference between TLM and TMM lies in the domain of analysis. TLM
is performed in the time domain, whereas TMM works extremely well in
the frequency domain. Table 4.1 summarises the characteristics of the matrix
methods.

Entzll Eﬁlz; “)
—> —_—
< <
Esz) Eslz .y)
| |
1 >
Z; Z; .1

Figure 4.1 Wave propagation in a general one-dimensional laser diode structure.

Table 4.1 Different types of matrix methods

Name U \' Domain
Scattering matrix Er(z;+1) and Es(z;) Eg(z;) and Es(z;.1) frequency
LM Er(zi,1) and Es(z;.+) Er(z;) and Es(2;) time

T™MM Er(z;,1) and Es(z;,1) Er(z,) and Es(z;) frequency
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Using the time-domain-based TLM, transient responses like switching in
semiconductor laser devices can be analysed. Steady-state values may then
be determined from the asymptotic approximation. However, it is difficult to
use TLM to determine noise characteristics and hence the spectral linewidth
of semiconductor lasers. Owing to the fact that most noise-related phenomena
are time-averaged stochastic processes, a long sampling time will be necessary
if TLM is used. In general, TLM is not suitable for the analysis of noise
characteristics in semiconductor laser devices.

The TMM was first proposed in 1987 by Yamada and Suematsu to analyse
the transmission and reflection gains of laser amplifiers with corrugated struc-
tures. This frequency-domain-based method works extremely well for both
steady-state and noise analysis [6,9]. In the present study, we are interested
in the steady-state and noise characteristics of DFB lasers. Hence, the use of
TMM will be more appropriate.

4.2.1 Formulation of transfer matrices

On the basis of the coupled wave equations, we can derive the transfer matrix
for a corrugated DFB laser section. From the solution of the coupled wave

equations, we can write
E(z) = Er(2) + Es(2) )
= R(z)e /P 4 §(z)e/Por -

where ER(z) and Es(z) are the complex electric fields of the wave solutions,
R(z) and S(z) are two slow varying complex amplitude terms and Sy is
the Bragg propagation constant. From equation (3.2.3), R(z) and S5(z) have
proposed solutions of the form

R(z) = Rje” + Rye™ " (4.2.3a)
S(2) = S.e”': -+ S;e’“ (4.2.3b)

where Ry, Ry, §; and S» are complex coefficients which are found to be
related to one another as [15]

S = I,1!1)(.3}91?1 (4.2.4a)
Ry = pe /95, (4.2.4b)

where and p = jx/(a — jé+ y) and Q is the residue corrugation phase at
the origin. By substituting equation (4.2.4) into (4.2.3), we obtain

R(z) = Rie”™ + pSze'fﬂe"‘ (4.2.5a)
S(z) = pRye’%e” + SHe 1" (4.2.5b)

Instead of four variables, the solution of the coupled wave equations is
simplified to functions of two coefficients, R, and S>. Suppose the corrugation
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Figure 4.2 A simplified schematic diagram for a one-dimensional corrugated DFB laser diode
section.

inside the DFB laser extends from z = z; to z = 25, as shown in Figure 4.2,
the amplitude coefficients at the left and right facets can then be written as

R(z)) = Rje”™ + pSie /e 1 (4.2.6a)
S(z1) = pR1e/%e”! + Sye 7 (4.2.6b)
R(z2) = Rie"2 + pS,e /%e~ 722 (4.2.6¢)
S(z2) = pR1e/Te”2 4 Sre 772 (4.2.6d)

From equations (4.2.6a) and (4.2.6b) we can express Ry and S; such that

_ pS(z1)e™ /% — R(z))
T (PP = Der

R] (42?3)

and .
_ PR(z1)e’® — S(z1)

- 4270
2= T e 270

By substituting the above equations back into equations (4.2.6¢) and (4.2.6d),
we obtain

E - p’E”! E—E")e /%
R(z2) = %R(Zl) _ A ,) S(z1) (4.2.8a)
1-p 1-—p°
and 110/92 2 1
E—E ")/ E—-E-
Sy =25 E I Ry - P2 sy (4.2.8b)
1—-p 1—-p
where
E =273 E~l = e Ma2=31) (4.2.8¢)

From the above equations it is clear that the electric fields at the output
plane z; can be expressed in terms of the electric waves at the input plane.
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By combining the above equations with equation (4.2.2) we can relate the
output and input electric fields through the following matrix equation [6]:

Er(z2) | _mio oy, [ERG@D | _ [tn ti2|  [Er(z1)
[Es(zz)]-T(QI"” [Es(a) _[le fzz} [Es(:ll] (4.29)

where the matrix T(z2|z;) represents any wave propagation from z = z; to
2 =22 and its elements 1;;(i, j = 1, 2) are given as

t = (E — p?E~ ") . e /Po2=2) /(1 = p?) (4.2.10a)
tiy = —p(E — E™") . e /Re~tPo2t0) (1 = p?) (4.2.10b)
ta = p(E — E7V) . e/%e/Pol2t2) (1 - p2) (4.2.10¢)
tyy = —(p*E — E7') . efPo2=20) /(1 = p?) (4.2.10d)

For convenience, the matrix written in this way is called the forward
transfer matrix because the output plane at z = z; is located farther away
from the origin. Similarly, waves propagating inside the corrugated structure
can also be expressed as the backward transfer matrix such that [16]

Er(z1) — > |79) - ER(ZZ) _|un up2 . ER{ZZ)
[55(31)]_U(~1L') [ES(ZZJ]-[”ZI uzz] [Es(zz)] (4.211)

where the matrix U(z;|z2) represents any field propagation inside the section
from z = z; to z = z;. By comparing equation (4.2.9) with equation (4.2.11),
it is obvious that

U(zi]22) = [T(z2lz))] ™! (4.2.12)

where the superscript —1 shown denotes the inverse of the matrix. Owing to
the conservation of energy, both matrices T(z2|z;) and U(z;|z2) must satisfy
the reciprocity rule such that their determinants always give unity value [4].
In other words,
IT| = tntz — tiatz; = 1
(4.2.13)
Ul = upuz2 = upuz; =1

4.2.2 Introduction of the phase shift (or phase discontinuity)

For a single PS DFB laser cavity, as shown in Figure 4.3, the PS at z = 2
divides the laser cavity into two sections.

The field discontinuity is usually small along the plane of phase shift and
any wave travelling across the PS is assumed to be continuous. As a result,
the transfer matrices are linked at the PS position (PSP) as

ErG) | _ py [ ER(z2) _[ef"? 0 ] Er(z3)
Es(z¥)

- - jBy -
0 e =] [Esz)
where P?) is the PS matrix at z = z5; z3 and z; are the greater and the lesser

- (4.2.14)
ES(ZZ ) ]
values of z,, respectively, and 6, corresponds to the phase change experienced
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Figure 4.3 Schematic diagram showing a 1PS DFB laser diode section.

by the electric waves Egr(z) and Es(z). Alternatively, the physical phase shift
of the corrugation may be used [9]. To avoid any confusion, in what follows
we will use the phase shift of the electric wave.

On combining equation (4.2.14) with the transfer matrix as shown earlier
in equation (4.2.9), the overall transfer matrix chain of a single PS DFB laser

becomes
@ L@ . M
[ER(ZJ)] _ | he | [c"”z 0 ] e he | [ER(:l)}
Es(z3) "2211 fgzz’ 0 e/ ff}"]’ ,'2'2’ Es(z1)
_ @ p2  pm | Er@1) 4
T P T [Es(zt) (4.2.15)

Without affecting the results of the above equations, we can multiply the
matrix T by the unity matrix I. The matrix I behaves as if an imaginary
PS of zero or a multiple of 27 has been introduced. As a result, the above
matrix equation can be simplified such that

Er(z3) | _ | Er(z1)
[55(23)] = Y(z3]z1) [ES(Z:)] (4.2.16)
where
1
Y(zilz) = [T F™ = [)’11(23|z1) )’I2(23|21)] 4217
S Ez m@la)  ya@sl) @217
(m) (m) (m)  jom (M) — jbm
(m) _ p(m) plm) _ n Sz | _|me hye
F™ =T™.P™ = (m) (m) (M) jO (M) — jOm (4.2.17b)
21 2 e I e
PO == [[1] (1}] (4.2.17¢)

In the above equation the overall matrix Y(z3|z)) comprises the characteristics
of the field propagation inside the DFB laser cavity, whilst the corrugated
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matrix T and the PS matrix P (m = 1, 2) are combined to form the
matrix F™.

The use of the TMM is not restricted to the corrugated DFB laser structure.
By modifying the values of « and « in the elements of the transfer matrix,
other structures like the planar FP structure, the planar WG structure and the
corrugated DBR structure can also be represented using the transfer matrix.
A DBR structure is different from the DFB structure because DBR structures
have no underlying active region. The corrugated DBR structure simply acts
as a partially reflecting mirror that depends on the wavelength. The maximum
reflection occurs near the central Bragg wavelength. Table 4.2 summarises all
laser structures that can be represented by transfer matrices. The differences
between them are also listed.

When the grating height g reduces to zero and the grating period A
approaches infinity, the feedback caused by the presence of corrugations
becomes less important. At g = 0, ¥ becomes zero as does the variable p.
When A becomes infinite, the detuning coefficient & is reduced to the propa-
gation constant 2n /A. In this case, the DFB corrugated structure becomes a
planar structure. Following equations (4.2.9) and (4.2.10), the transfer matrix
equation of the planar structure becomes

| 1
I:ER(zz)] =T‘“' [ER(Z]):I — '[lll) ‘(12} . [ER(ZI) {4218)
Es(z2) Es(z)) ;'2'1’ ;‘212’ Es(z1) o
where
!(]l]l = ea(:z—:ne—jﬂ!:z—:ﬂ
Itllzlzrtzlll -0 (4.2.19)

r(212l = e—at:;—:ne;’ﬂi:z—:n
In the above equation the amplitude gain term a decides the characteristics
of the planar structure. For & > 0, the amplitude of the electric wave passing
through will be amplified and the structure will behave as if it is a laser
amplifier. For a < 0, the amplitude of the electric wave will either remain
constant or be attenuated because the planar structure becomes a passive WG.
Similarly, the sign of o will decide whether a corrugated structure belongs
to the DFB or DBR structure. By joining these matrices together as building

Table 4.2  Laser structures that can be represented using the TMM

Structure Active layer Corrugation Comments

FP . X k=0ande >0
WG X X k=0anda <0
DFB v N fintex and ¢ > 0
DBR X ~ finte x and @ < 0
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Figure 4.4 Schematic diagram of a general N-section laser cavity. The phase shifts
{61.6a,..., 6y} are shown. The active regions along the laser cavity are shaded.

blocks, we can extend the idea further to form a general N-section composite
laser cavity, as shown in Figure 4.4.

Laser structures that comprise different combinations of the sections shown
in Table 4.2 can be modelled. By joining these matrices together appropri-
ately, we end up with

ER(ZNH)] N) p(N=1) @) w) [En(a)}
— F™ V- . F® .
{ES(ZN-H) Es(z1)

= Yvla)- [{gggg;; ] (4.2.20)

where the matrix Y(zy+1|z1) becomes the overall transfer matrix for the
N-section laser cavity. Using the backward transfer matrix together with
equations (4.2.11) and (4.2.14), we obtain

N
Er(z1) | _ (m) . [ER(ZN+1)] _ [ER(ZN+1)]
[Es(zl)] - EIG Es(zns1) | — Z(z11zn+1) Es(zyv+1) (4.2.21)

where

_ [ (m) (m) (m) .—j6 (m) .~ j6m
G = [P(m)] ! LU = 811 82 _ uppe M upye
(m)  (m) uKZT)ejem ug;)ejam

[ 8210 82
(4.2.22a)
Z(lznat) = [z11z1lzv+1)  z12(zalav+1) (4.2.22b)
* | z21(21l2av41)  222(zilav+1) -

In the above equation, [P™]~! is the inverse of the PS matrix P™
and Z(zj|zy+1) is the overall backward transfer matrix. Comparing
equations (4.2.20) with (4.2.21), it is clear that the matrices Y(zy+1/z1) and
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Z(z1|zy+1) are inverse to one another such that

Z(z1lzn+1) = [Y(znv4alz)] ™ (4.2.23)

where the superscript —1 indicates the inverse of the matrix. From the
property of the inverse of matrix products, the individual transfer matrices
G and F™ are related to one another. That is

G™ =[F™]! form=1toN (4.2.24)

The above equation shows the equivalence between the forward and the
backward transfer matrices in the general N-section laser cavity. Unless stated
otherwise, the forward transfer matrix is assumed hereafter.

4.2.3 Effects of finite facet reflectivities

In Chapter 3 we stated that the lasing characteristic of the DFB laser
depend on the facet reflectivity. In this section the facet reflectivity will be
implemented using the TMM. In Figure 4.5 we show a simplified schematic
diagram for the reflections at the facets of the N-section laser cavity.

In Figure 4.5, 7| and 7, are the amplitude reflections at the left and right
facets, respectively, and medium 1 is the active region of the LD. In most
practical cases, medium 2 is air. Owing to the finite thickness of the coating
on the laser facets, any electric field passing through may suffer a phase
change of ¢;(i =1, 2). Depending on the direction of propagation, all the
outgoing electric fields at the left facet (i.e. Ep,(z;’) and Eg(z;) can be
expressed in terms of the incoming waves as

Er(z)) = \/1 — #e M ER(z]) + 1 Es(z)) (4.2.25a)

Es(z7) = MER(zy) + /1 — P2/ Es(z]) (4.2.26b)

e-ity .L En(z7) En(zﬁald'z -L et

Ep(Z) PP = = = = o PP F (21

Medium 2 Medium1 Medium 2
Egle) e = = = = . ——|—— £
B'K’l* - e
Es(z:) 8“' ES{zNﬂ) *

_?,> <F, r‘2> < :

» z

z, ZNs1

Figure 4.5 Schematic diagram showing reflections at the facets of a DFB LD.
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Rearranging the above equations for the electric fields at z = z;, we obtain

Er(ch) =~ _E he 4227
R(‘:l )= R(:I_)+ s(z)) (4.2.27)
V1-7 V1-7
Fremion - i1
Es(z}) = Er(zy) + ———Es(3}) (4.2.28)

Vi

In matrix form, the above equations shown can be written as:

ER(:T)] 1 [ 1 ;,] lfa(:;)]
= — | . . _ (4.2293)
[Es(:?} et /1 — 72 no1 Es(zy)
Similarly, the reflection at the right facet can be written as
Er(zy 1 -] [ErGry)
R( f*') S [ L l'-] | e (4.2.29b)
Es(zy4y) et /1 -7 L7712 Es(zyyy)

On combining the propagation matrix Y(zy+1/z;) with the reflections at the
laser facets, the overall transfer function of the N-section DFB laser structure
becomes

Er(zy4) 1 [ 1 -;.]
= —. = “1-Y(nsrlz)
[ES(3§+1) eit2 /1 — -i'g —r 1 +112

) 1 [1 ;'1] ER(:]-)
eior /172 L7 1

Es(z))
It will be easier to simplify the above matrix equation by an overall transfer
matrix H such that

Ea(zfm _n. |ErGD =[h“ h.z]_ EGD| 4241
Es(z,1) Es(z)) hay ha | | Es(zy)

where h; (i, j = 1, 2) are the elements of the overall transfer matrix H.

(4.2.30)

4.3 THRESHOLD CONDITION FOR THE N-SECTION
LASER CAVITY

Since the laser itself is an oscillatory device, the output waves Eg(zy . ,) and
Es(z; ) denoted in the N-section laser cavity should have finite values even
though there are no incoming waves [9]. Suppose one of the incoming waves,
Er(z; ), becomes zero, then equation (4.2.31) is simplified to become

Er(zf.)) = hi2Es(z)) (4.3.1)
ES(Z;H) = hnEs(z)) (4.3.2)
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The transmission gain A, of the backward travelling wave can then be
expressed as [2]

_ Esz) 1

= = — (4.3.3)
Es(zy,,) h2z

r

When the matrix element h3; approaches zero, the transmission gain becomes
infinite and a resonant cavity is formed. Physically, a laser that operates in this
condition is said to have the threshold condition satisfied. After substantial
manipulation of equation (4.2.30), the threshold condition becomes

va(an+1121) + Py @nvsalan) = Payiz@evsalz) = Afayn(aveilz) =0
(4.3.4)
For DFB semiconductor lasers with finite facet reflections, we need to find
all the elements of the propagation matrix Y(zy+1|z1). For a mirrorless DFB
laser cavity where 7y = 7, = 0, the above-threshold equation is simplified
such that

ya(zv+1lz)) =0 (4.3.5)

Table 4.3 Semiconductor laser diode structures that can be analysed using the TMM (after [27])

Laser structures Number of Phase Remarks
transfer matrices shifts
FP lasers 1 — k=0 A— o
Conventional DFB LD 1 — r=r=0fora
mirrorless cavity
Single PS DFB 2 0, 6, is always zero
Multiple PS DFB N +1 Bz...0n.1 6, is always zero
Multiple electrodes N = laser medium is
DFB — non-uniform homogeneous
current injection within a single
section only
Corrugation-pitch- 3 - Bo changes in
modulated DFB — each section

different corrugation
period in each section

Linear chirped large number - Bo varies along
corrugation — continuous the laser cavity
change in corrugation

period

Tapered corrugation — large number — x varies along
continuous change in the laser cavity
corrugation depth g

N -layer surface emitting N — -

laser
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In fact, equation (4.3.4) is a general expression that can be used to
determine the lasing threshold characteristics of semiconductor laser devices.
These include FP lasers, conventional DFB lasers (both mirrorless and
those with finite facet reflections), single PS DFB laser structures, multiple
PS DFB laser structures [17-19] as well as multiple electrode DFB laser
structures [16,20-23]. By increasing the number of sections, TMM is
also used to represent a tapered or chirped DFB laser structure [3,4,24].
Similarly, a transfer matrix has also been used in the surface-emitting devices
[25,26] which have received worldwide attention in recent years. Table 4.3
summarises the minimum number of transfer matrices and PS required in the
threshold analysis of some popular semiconductor laser structures [27].

4.4 FORMULATION OF THE AMPLIFIED SPONTANEOUS
EMISSION SPECTRUM USING THE TRANSFER MATRIX
METHOD (TMM)

In the previous section the threshold equation for the N-section laser cavity
was defined using the transfer matrix. In fact, the TMM can also be applied to
the below-threshold analysis. In semiconductor-based optical amplifiers and
filters, the spontaneous emission spectrum has been used to determine the
bandwidth, tunability and signal gain characteristics. On the basis of the use
of Green’s function [28] for the noise calculation of the open resonator, the
transfer matrix formulation will be extended to include the output spontaneous
emission spectrum taken from the right laser facet.

4.4.1 Green's function method based on the transfer matrix formulation

In this section we refer once again to the general N-section laser cavity as
shown earlier in Figure 4.4. The amplitude reflections at the left and right
laser facets are r; and r,, respectively, and perfect index-coupling is assumed.
Following Henry [28], the one-dimensional inhomogeneous wave equation of
a transversely and laterally confined laser mode in the composite longitudinal
structure can be expressed as

dz

5t ﬁ(z)zl E,(2) = Fu(2) 4.4.1)
dz

where B(z) is the propagation constant, E,(z) is the complex Fourier
component of the electric wave and F,(z) is the Langevin force term
which accounts for the distributed spontaneous emission noise inside the
semiconductor laser [28,29]. In the above equation, B(z) includes any spatial
variation in the physical systems that may affect the propagation constant.
The electric field E(z) in the time domain is determined from the inverse
Fourier transform such that

x .
E(z) = f E (2)e’” dw + c.c. (4.4.2)
0
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where c.c. is the complex conjugate. Using Green’s function [30,31], the
general solution of equation (4.4.1) can be written as

E,= fG(z. 7 )Fo(2')dZ’ (4.4.3)
2

where z’ locates the spontaneous noise source and G(z, z') is Green’s function.
In the above equation the integral sums up the impulse responses of the
spontaneous emission noise source that originates from the left facet at z = z,
to that at the observation point, z. The function G(z, z') is given as [32]

Z1(2)Z(2)/W, forz <7
Z,(2)Z2(2)/W, forz> 7
where Z,(z) and Z»(z) are two independent solutions of the homogeneous

wave equation (with F,(z) = 0) that satisfy the boundary conditions at z = z,
and z = zZy4, respectively. The Wronskian term W is defined as

dZ,(z) dZ(z)
- Z
dz 2(2) dz

From the above equation it is obvious that W is finite if and only if Z,(z) and
Z>(z) are two independent functions. According to the solution of the coupled-
wave equations, the normalised electric field at an arbitrary point z; < 7’ <
Znv+1 inside a general N-section DFB laser cavity can be expressed as

E(Z') = Er(Z) + Es(Z)
= R(Z)e /% + 5 )e/Po

Gz, 7)) = { (4.4.4)

W =2Z(2) (44.5)

(4.4.6)

where Z' is an arbitrary point lying within the transfer matrix section F**’

such that zx <z’ < zx41. Using the forward transfer matrix as shown in the
previous section, the complex electric fields Er(z’) and Eg(z’) become

Er(@)| _ [Er(I21) ] _ gy, ). l ul_[ER(ZlJ]
[Es(z’)] - [Es(z’lu)] =FO 1) H ¥ Es(z1)

J=k—l

_ w(/1... | Er(z1)
= Y(Z'|z1) [Es(m) (4.4.7)
where the transfer matrix F""(z’lzk) has taken into account any wave propa-
gation between z =z and z =7’ in section k. In simplifying the matrix
representation, a matrix is used to represent any wave change between the
input plane at z = z; and the output at z = z'. Similarly, the complex electric
fields at z = zy41 can be expressed in terms of the complex electric field at
z = Z’ such that

k+1
Er(aner) | _ (), gk J [ER(Z')} _ S . [ER(:’)]
[Es(:~+1}] - J_I:LF F" @) Es(z') | — Y(an+lz) Es(Z")

(4.4.8)
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where the same forward transfer matrix technique has been used. Similar
to equation (4.4.7), the matrix representation is simplified by the matrix
Y(zy4112") which corresponds to any wave change between z = 2 and z =
Zn+1. By multiplying both sides of equation (4.4.8) by the the inverse matrix
[Y(zy+112)]"", we obtain

®, o= [ ER@N+D | _ rwr, . an1-1 .y 1y, | EREZD
[Y («.N+IJ~ )] [ES(ZN+I)] — [Y (~N+I|~ )] Y (LN+1|~ )' [ES(:'):I
k+1 ’
DRk N ER(Z~+1)] _ [En(z )]
I1 FOrOensaie) [P R v

G(k](:"

j=k+1 Es(zy+1)

' [ErGznv+1) | _ [ERGE) | _ [ Er(Zlzv+1)
Z(lan+1) [Es(z~+1)] = [Es(z')] = [Es(:'lzml)]

N
i Er(zn+1) Er(Z)
H GH| . [EREN+1D | _ [ ER !
1) ] [ ] [Es(z')] S,

where equation (4.2.24) has been used to establish the last equality. In the
above equation, backward transfer matrices have been used in which the
complex electric fields at the right laser facets are used as inputs. Following
the matrix equations (4.4.7) and (4.4.9), Z,(z) and Z;(z) can be written in
term of the elements of the transfer matrix as

Z,(z) = Er(z|z1) + Es(z|z1)
= [Fiyn@lz) + y2zlz1)] + [F1ya1(zlz1) + y22(2]21)] (4.4.10a)
Zy(2) = Er(zn+1121) - [Er(zlzn41) + Es(zlav41)]
= Er(av+1l21) - {[zn@lanv41) + F2212(2lzv41)]
+ [221(zlzv+1) + F2222(Zlzn+1)]) (4.4.10b)
In equation (4.4.10b), the elements of the backward transfer matrix have
been used. Since y;;(z1]21) = zij(znv+1lzv+1) = 8;;(i, j = 1, 2), the Kronecker
delta function [30], it is straightforward to verify that Z,(z) and Z;(z) satisfy

the boundary conditions at the left and the right laser facets, respectively,
such that

Er(z1) _ Er(zilz1)
Es(z1)  Es(zilz1)
Es(zv+1) _ Es(zv+1l2nv+1)
Er(zn+1)  Er(znsilznsr)

= # (4.4.11)

=r (4.4.12)
Finally, by substituting equations (4.4.10a) and (4.4.10b) into equation (4.4.5),

the Wronskian term becomes

W = 2jBoERr(zn+1121) - {ER(z]21)Es(zlzn+1) — Es(z)21)ER(Zzv+1))
(4.4.13)
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where the leading coefficient, jfBy, is obtained from the exponential
expression, as shown in equation (4.4.6). By expanding the above equation
with the matrix equations (4.4.7) and (4.4.9), we end up with

W = 2jBoEr(zv+1121) - {z21(zlav+ 1) 312(221) — zn(zlav+1) y22(zlzr)
+ F[z21levs )y @lz) — 2 @lav ) nz(zla)]
+ Fafz2(zlave )y (zlar) — zi2(@lan+1)v22(zlz))
+ rif2[z22(zlav+ 1) yn (zlzn) = 22l ) n2(zlz)]) (4.4.14)

On the other hand, the elements of the matrix Y(z|z;) and those of the matrix
Z(z|zn+1) obey the following quality after equation (4.4.9) such that

(Z(zlzn4+1)]) 7!

Il

[:II(Z|CN+I) le(r.lz.\.ru)]—l _ [ 222(zlav+1) —2i2(2lzv+r)
21(2lzv+1) 222(2lzv+1) —221(zlav+1) zn(zlav+r)

vir(zv4112) V12(2~+]|;)]
= ' = YGnalz 4.4.15
[.*?l(mnlz) y22(2n+112) (av+112) ( )

As a result, the Wronskian term is simplified to become
W = =2jBoEr(zn+1120)[y22 + Frya — Fayi2 — Fifayn] (4.4.16)

where the term in brackets in the above equation is the threshold equation
of the N-section laser cavity, as shown in equation (4.3.4). In deriving the
above equation, the following identities were used:

y22 = ya2(av+1lz1) = yalav+112)vi2(2lz)) + y2(av 1|2 y22(zlz1)

ya = v(av+lz) = yaav+112)ynzlzr) + y2(ava12)yazlz)
(4.4.17)
yiz = yiz(avslz) = ynavs ) yvizzlz) + yviz(avsi oy zlz)

yir = yulav+tlz) = ynlavaldynzlz) + yizavsloyazlz)

When the threshold condition is reached, the term in brackets in (4.4.16)
becomes zero and, hence, so does the Wronskian term. In other words, the
proposed solutions Z;(z) and Z,(z) of the wave equation become dependent
upon one another. In fact, it was shown by Makino [2] that they are identical
at threshold.

4.4.2 Determination of below-threshold spontaneous emission power

When a LD is biased in the below-threshold regime, there is finite optical
power output due to spontaneous emission. From the Poynting vector of the
propagating field, the spontaneous emission power Py(z) within an angular
frequency bandwidth Aw can be written as [28]

A oc z ) ,
PN = / dw’ f (Eo(H%(2) -/ yceydz  (4.4.18)
0 <

I
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where c.c. is the complex conjugate of the integrand. For a laterally confined
structure, the magnetic field H,, be expressed as
] aEw Z
Hy=J . LB (4.4.19)
Wi az

At the below-threshold biasing condition, there is no stimulated emission.
Variables such as the optical gain (g) and the refractive index (n) remain
homogeneous along the laser cavity. As a result, by replacing E,,, with Green’s
function and the Wronskian, equation (4.4.18) becomes

AAw 2Dgpe dZ3(z) & >
P = . | —=jZs(z 2°° . )] Z,(2)|"dz
N (2) e WP ( JZ2(2) il :|| 12|
(4.4.20)

-
o

where D« is the diffusion coefficient given as [28]
Dpre = 20°hngng/c? (4.4.21)

where h = h/2x is the angular Planck constant and ng, is the population
inversion factor defined as [33]

Nep = [1 _ e(hw—dfl/kT]-—l (4.4.22)

In the above equation, AE is the energy separation of the quasi-Fermi level
between the conduction band and the valence band, & is Boltzmann's constant
and T is the temperature in degrees Kelvin.

By replacing the Wronskian term and Dgg- with the appropriate transfer
matrix elements in the N-section laser cavity, equation (4.4.11) finally
becomes [6]

+1 R
[Z)(2)|"dz

(4.4.23)
where Z(z) is the solution of the homogeneous wave equation as defined in
equation (4.4.10a). Using the transfer matrix, the above equation agrees with
the one obtained using the multiple reflection inside the DFB laser cavity
[7]. To evaluate the integral shown above, a numerical technique such as the
trapezoidal rule can be applied. For below-threshold and threshold analyses
when g is assumed to be independent of z, an analytical expression was
proposed [2]. Basically, the integral is broken up first and the contribution
from each transfer matrix is then found. In other words, we obtain

IN+1 2 N Zk+1 N2t
[Tzere=3 [T ziers: (4.4.24)

4 k=1"%

heAw (1 = #2)n, N
Pn(zns1) = 2 "sp8 /

A |y22 + Frya = Fayia — Fikayn? J,

where

Zk+1 , , edvribi _‘ 1 — e~ 2rli
f 1Zy(2)dZ = A+ o)} lal - | ——— | + Iu]* - | ———
%@ 2y, 2y,

ezj?}Ll' — ]
+2Re( (p+ pY)ayb; | ——— (4.4.25)
2jvi
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where an asterisk indicates the complex conjugate and

_ ER(:JtI:.l )e"jﬁn:kcjg —_— pES(:-kkl ]c‘jﬁﬂzl

a e (4.4.26a)
1— p-
E lz "a'.ﬁtl:& — E Zklz Jiﬁll-',k J'Q
by = s(zklz)e : p ,R( klz1)e e (4.4.26b)
— p..

In the above equations, L; = zx4+; — 2z is the length of the section k;
¥: and y; are the real and imaginary parts of the complex propagation
constant y, respectively, and p = jx/(a — jé + y). In the above threshold
operation, when the spatial hole-burning effect becomes dominant, the
carrier distribution along the laser cavity becomes non-uniform. As a result,
the refractive index and, consequently, the propagation constant, become
spatially dependent. These variations violate the assumption of the analytical
expression in which g is homogeneous along the z direction. Hence, it can
be shown that the analytical expression is restricted to the below-threshold
condition, when uniformity can still be maintained along the laser cavity. A
different technique is required in the above-threshold since variables become
longitudinally (i.e. z) dependent.

4.4.3 Numerical results from various DFB LDs

In this section the below-threshold Py of various DFB LDs will be presented.
Results obtained from a conventional, a quarterly wavelength shifted (QWS)
and a 3PS DFB LD will be compared. In all these lasers a laser cavity
length of 500 um and zero facet reflection are assumed. Therefore, any
difference between Py in these lasers is caused solely by the structural
variation between them. From the threshold equation of the N-section laser
cavity, the normalised amplitude gains oL of these lasers are determined
first. Under the below-threshold condition, the refractive index and hence the
propagation constant are assumed to be constant along the cavity.

Figure 4.6 shows a schematic diagram of the 3PS used in the analysis. The
PS 65 shown in the figure has been fixed at the centre of the structure, whilst
the positions of the PS ¢, and 64 are allowed to move along the cavity. Their
relative position is defined by a position parameter, ¥, as

It should be noticed that when ¢ = 0 or 1, the structure becomes a single PS
laser.

Figure 4.7 shows the variation of the normalised intensity Py/hfng, as
a function of the detuning coefficient L for three DFB LDs. These include
conventional, QWS and 3PS DFB LDs. Degenerate oscillation is observed for
the conventional case. Compared with the QWS LD, the lasing mode of the
3PS LD is characterised by a detuned oscillation from the Bragg wavelength.
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Figure 4.6 A simplified schematic diagram showing a 3PS DFB laser diode structure.

Normalised emission, W/(J-Hz)

Detuning coefficient, L

Figure 4.7 Below-threshold spectra of various DFB semiconductor laser diodes (after [32]).

Figures 4.8 and 4.9 show results obtained from 3PS DFB LDs under
different values of the amplitude threshold gain ay,L. Other parameters used
in the analysis are listed in the figures. The values of the PS used in the
calculations are fixed at m/3 whilst y is assumed to be 0.50 and 0.75,
respectively. By increasing the amplitude gain from 0.5anL to apl. the
normalised intensity shows a substantial increase across the spectrum. The
peak showing the largest intensity will become the lasing mode when the
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Figure 4.8 Below-threshold spectra of 3PS DFB laser diodes with y = 0.5 (after [32]).
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Figure 4.9 Below-threshold spectra of 3PS DFB laser diodes with ¥ = .75 (after [32]).
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threshold condition is reached. Other smaller peaks shown become the non-
lasing side modes. From Figures 4.8 and 4.9, it can be seen that both spectra
shown are asymmetric with respect to the Bragg wavelength (§ = 0). Such
an uneven mode distribution is a well-known characteristic of a 3PS DFB
laser [19]. By measuring the intensity difference between the major lasing
mode and the next highest potential side mode in the spontaneous emission
spectrum, a side mode suppression ratio (SMSR) is used to measure the single
mode stability [5]. At the lasing threshold, an SMSR of 30 dB is achieved
in the structure, as shown in Figure 4.8, while a 20 dB SMSR is observed
in Figure 4.9. Comparing these figures, our results reveal that the below-
threshold output spectrum is very sensitive to the PSP. Fewer modes are
excited in the structure shown in Figure 4.9 as compared with the one shown
in Figure 4.8, where y has changed from 0.5 to 0.75. Other structural varia-
tions and impacts induced by variations in the PS and PSP can be found in a
recent paper by Ghafouri-Shiraz and Lo [34]. From the spectral measurement
of the Py, information such as the coupling coefficient, the reflection at laser
facets and the PS may also be evaluated [7]. By testing various samples
obtained from a wafer, the measurement of Py plays an important role in the
quality control of the fabrication process.

4.5 SUMMARY

In this chapter the idea of the transfer matrix is introduced and explored.
Compared with the boundary matching approach, the TMM is more robust
and flexible. By converting the coupled-wave equations into a matrix equation,
the wave-propagating characteristics of the corrugated DFB section can be
represented using a transfer matrix. The transfer matrix approach has been
extended to include phase discontinuity and the residue reflection at the facets.
By modifying the elements of the transfer matrix, it can be used to represent
other planar and corrugated structures, including passive WGs, passive DBRs
and planar FP sections. By joining these transfer matrices as building blocks,
a general N-section laser cavity model was constructed and the threshold
equation associated with this laser mode was determined.

The use of the transfer matrix is not restricted to threshold analysis.
Combining the Poynting vector with Green’s function method, the TMM can
also be implemented to evaluate the below-threshold spontaneous emission
power spectrum, Py. Results obtained from conventional, QWS and 3PS
DFB LDs are presented and compared. From the results of 3PS DFB LDs,
it is shown that Py is sensitive to any structural variation. As a result, by
comparing Py measured from a batch of LDs, PN can be used for quality
control over the fabrication process. In the next chapter the use of the TMM
in both the threshold and the below-threshold applications will be explored
further. In particular, the structural design and optimisation of DFB LDs will
be discussed.
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THRESHOLD ANALYSIS AND
OPTIMISATION OF VARIOUS

DFB LDs USING THE
TRANSFER MATRIX METHOD

5.1 INTRODUCTION

In the previous chapter the transfer matrix method (TMM) was introduced to
solve the coupled-wave equations in distributed feedback (DFB) laser struc-
tures. The method’s efficiency and flexibility in aiding the analysis of DFB
semiconductor laser diodes (LDs) has been explored theoretically. A general
N-section DFB laser model was built comprised of active/passive and corru-
gated/planar sections. In this chapter the N-section laser model will be used
in the practical design of the DFB laser.

The spatial hole-burning effect (SHB) [1] has been known to limit the
performance of DFB LDs. As the biasing current of a single quarterly
wavelength shifted (QWS) DFB LD increases, the gain margin reduces.
Therefore, the maximum single mode output power of the QWS DFB LD is
restricted to a relatively low power operation. The SHB phenomena caused
by the intense electric field leads to a local carrier depletion at the centre of
the cavity. Such a change in carrier distribution alters the refractive index
along the laser cavity and ultimately affects the lasing characteristics. By
changing the structural parameters inside the DFB LD, an attempt will be
made to reduce the effect of the SHB. As a result, a larger single mode
power, and consequently a narrower spectral linewidth, may be achieved. A
full structural optimisation will often involve the examination of all possible
structural combinations in the above-threshold regime. On the other hand,
the analysis of the structural design may be simplified, in terms of time and
effort, by optimising the threshold gain margin and the field uniformity.
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The structural changes and their impact on the characteristics of DFB LDs
will now be presented. By introducing more phase shifts along the laser
cavity, a three-phase shift (3PS) DFB LD will be investigated in section 5.2.
In particular, impacts due to the variation of both phase shifts and their
positions on the lasing characteristics of the 3PS DFB LD will be discussed.
To reduce the SHB effect, it is necessary to obtain a more uniform field
distribution, while maintaining a large gain margin (AaL). On the basis of
the values of AalL and the flatness (F') of the field distribution, the optimised
structural design for the 3PS DFB laser will be discussed in section 5.3 [2].

By changing the height of the corrugation and thus the coupling coefficient
along a DFB laser cavity, a distributed coupling coefficient (DCC) DFB laser
is built. In section 5.4 the threshold characteristics of this structure will be
shown. In particular, the effects due to the variation of the coupling ratio
and the position of the corrugation change will be investigated. To maintain
a single mode oscillation, a single phase shift has been introduced at the
centre of the cavity. By changing the value of the phase shift, the combined
effect with the non-uniform coupling coefficient will be presented. Optimised
structural combinations that satisfy both a high gain margin and a low value
of flatness will be selected for later use in the above-threshold analysis.

In section 5.5 the combined effect of both multiple phase shifts (MPS) and
non-uniform coupling coefficients will be investigated using a DCC + 3PS
DFB laser structure. Finally, a summary will be presented at the end of
the chapter.

5.2 THRESHOLD ANALYSIS OF THE THREE-PHASE-SHIFT (3PS)
DFB LASER

By introducing more phase shifts along the laser cavity, it has been shown
[3-5] that the SHB effect can be reduced in a 3PS DFB LD which is
characterised by a more uniform internal field distribution. Experimental
measurements have been carried out [5] using a fixed value of the phase shift.
However, independent changes over the value of the phase shift have not been
fully explored. Using the TMM, it was shown in Table 4.1 of the previous
chapter that four transfer matrices are necessary to determine the threshold
condition of 3PS DFB lasers. In Figure 5.1 a schematic diagram of the 3PS
DFB laser structure is shown. In the figure, 65, 6; and 64 represent phase
shifts, whereas the length of each smaller section is labelled as L; (j = 1., 2).
In the analysis, zero facet reflection at the laser facets is assumed. Following
the formulation of the TMM, the overall transfer matrix of the 3PS DFB laser
becomes

yn(zslz)  ya(zslzy)

Y(zs5lz1) = FYFYFPFY = (5.2.1)

va(zslzr)  y2a(zslzy)

where F(j) (j = | to 4) corresponds to the transfer matrix of each smaller
section. For a mirrorless cavity, the threshold condition can be found by
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Figure 5.1 Schematic diagram showing a 3PS DFB LD.

solving the following equation:
y2(z5121) = 0 (5.2.2)

Using a numerical approach such as the Newton-Raphson method [6] for
analytical complex equations, the above-threshold equation may be solved.
Figure 5.2 shows the resonance modes obtained from a symmetric 3PS DFB
laser where 6, = 63 =64 = nr/2 and L, = L; are assumed. For comparison
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Figure 5.2 Resonance modes of various DFBs that include: (a) a conventional DFB laser diode;
(b) a single QWS DFB laser diode; and (c) a three x/2 phase-shifted DFB laser
diode.
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purposes, results obtained from a mirrorless conventional DFB laser and a
single /2 phase-shifted DFB laser are also included. In all three cases the
coupling coefficient and the overall laser cavity length L are fixed at 4/mm
and 500 um, respectively. Oscillation modes at the Bragg wavelength are
found for both the single 7/2 and a 3PS DFB structure. However, the Bragg
resonance mode of the 3PS DFB laser does not show the smallest amplitude
threshold gain. Instead, degenerate oscillation occurs since it is shown that
both the —1 and +1 modes share the same value of the amplitude threshold
gain. It is interesting to see how a single m/2 phase shift enables single
longitudinal mode (SLM) operation whilst multi-mode oscillation occurs in
the case where there are three phase shifts, i.e. (7/2, n/2, #/2}. In what
follows the braces will indicate a phase combination in the 3PS structure, i.e.
(62, 63, 64).

5.2.1 Effects of a phase shift on the lasing characteristics

In order that stable SLM operation can be achieved in the 3PS DFB laser, we
must change the value or the position of the phase shift. Figure 5.3 shows the
oscillation modes of various 3PS DFB laser structures. In the analysis, the
value of the three phase shifts are assumed to be equal and the phase shift
positions are the same as in Figure 5.2. A shift of resonance mode can be
seen when all phase shifts change from 7/2 to 2x/5. The +1 mode, which
demonstrates the smallest amplitude threshold gain, will become the lasing

‘r + (@

@ (b)

* (©

K = 4/mm
L =500 um

w
L
+
@
*

Amplitude threshold gain, al
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Figure 5.3 Resonance modes in various 3PS DFBs that include: (a) a{m/2. 7/2.7/2} 3PS
DFB laser diode; (b) a[2x/5. 2n/5, 2r/5) 3PS DFB laser diode: (c¢) a{3n/S. 37/5,
3x/5. ) laser diode.
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mode after the lasing threshold is reached. On the other hand, the —1 mode
will become the lasing mode when the three phase shifts change from /2 to
3m/5. With all three phase shifts displaced from the usual 7/2 values, SLM
can be achieved in the 3PS DFB LD.

5.2.2 Effects of the phase shift position (PSP) on the lasing
characteristics

The 3PS DFB laser structure we have discussed so far is said to be symmetric.
For a cavity length of L, the position of the phase shifts is assumed in such a
way that L; = L, = L/4. To investigate the effect of the phase shift position
(PSP) on the threshold characteristics, a position factor v is introduced
such that

L 2L

= = D23
L+l L ( )

14

where 63 is assumed to be located at the centre of the cavity. Using the
above equation, it should be noted that both ¥ =0 or 1 corresponds to a
single phase-shifted DFB laser structure.

In Figure 5.4 the variation in the amplitude threshold gain is shown with
the position factor  for different values of the normalised coupling coeffi-
cient kL. All the phase shifts are fixed at 6, =63 = 6, = /3. At a fixed
value of y, the figure shows a decrease in the amplitude threshold gain
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Figure 5.4 The change of amplitude threshold gain with respect to the phase shift position for
different values of the coupling coefficient «.
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Figure 5.5 The variation of detuning coefficient with respect to the phase shift position for the
coupling coefficient «.

as «L increases. Along the curve xL = 1.0, discontinuities at ¥ = 0.12 and
¥ = 0.41 indicate a possible change in the oscillation mode.

Such a change in oscillation is confirmed when the relationship between
the detuning coefficient and the position factor is as shown in Figure 5.5.
Along «L = 1.0 it is shown that the —1 mode remains as the oscillation
mode when ¥ increases from zero. When y = 0.12 is reached, however, a
sudden change in the oscillation mode is observed. Similar mode jumping
occurs at ¥ = 0.41. When the PSP shifts, there is a continuous change in the
resonant cavity formed by the DFB laser such that the actual lasing mode
may alter. At ¥ = 0.77 it is interesting to see how all kL values converge to
the same lasing wavelength. It appears that at this particular PSP the effect
due to the variation in kL is irrelevant and the lasing characteristic depends
on the presence of the /3 phase shifts.

5.3 OPTIMUM DESIGN OF A 3PS DFB LASER STRUCTURE

A complete structural optimisation of 3PS DFB lasers cannot be achieved
without analysing the above threshold performances. This involves solving
the carrier rate equation, which is a fairly complex process and needs intensive
computation. However, it is believed that the complexity of the structural
design in the 3PS DFB laser can be reduced by optimising the threshold
amplitude gain difference and the flatness of the field distribution. Hence,
we can then simply concentrate on those structures that satisfy these design
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criteria. For a high performance DFB LD, both a stable single mode oscil-
lation and a uniform field distribution are important to prevent LDs from
being affected by the SHB effect. In our analysis, DFB laser structures
with a high gain margin (AaL) are considered while the SHB effect is
included by analysing the corresponding effects on field uniformity. Reports
by Kimura and Sugimura [3,4] as well as Ogita er al. [5] suggest that the
lasing characteristics are strongly influenced by both ¢ and 6. To maintain
a stable SLM oscillation, and consequently improve the performance of the
spectral linewidth, these structural parameters need to be optimised.

5.3.1 Structural impacts on the gain margin

To achieve a stable laser source that oscillates at an SLM, it is important
that there is a gain margin of AaL > 0.25 [1]. In the analysis we assumed
the length of the laser L to be 500 um. For a 3PS DFB LD, Figure 5.6
shows the relationship between the gain margin and the phase shift # in
a symmetric structure for different values of xL ranging from 1 to 3. The
position factor y» = 0.5 corresponds to the case where L; =L; =L/4. In
all cases the degenerate oscillations occur at # =0, 7/2 and 7, and the
distributions of the gain margins are symmetric with respect to 6 = /2. It
is also shown that the variation in «L has little effect on the gain margin of
the 3PS laser structure. Along the kL = 1 line it is found that a stable laser

06 | 500 um

8,=0;=0,=0

=]
-9
T
=
r
"
W =N
o oo
-

o
n
T

Threshold gain difference, AaL

0.0 R N SRS W S Smre—ra—

Phase shift, 6

Figure 5.6 Variation in the threshold gain difference versus the phase shift for different coupling
coefficients.
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with AaL > 0.25 can be obtained provided that 47° < 8 < 73° or 107° <
6 < 133°.

In Figure 5.7 a contour map is shown which relates the gain margin to the
values of the phase shifts in the 3PS {6, 63, 63} DFB LDs. In the calcula-
tions, kL = 2 and ¢ = 0.5 are assumed. The phase shift 63 introduced at the
centre of the cavity is separated from the rest so that its value can be selected
independently. Other phase shifts are assumed to be equal as 6; = 65 = ;4.
As stated earlier, to satisfy the requirement of AaL > 0.25, it is shown that
Bside must either be greater than 105° or less than 80° if 63 can be varied
freely between 0 and 7. A maximum value of AaL = 0.73 is obtained at
{0, /2, 0} and {7, /2, 7}, which corresponds to a single /2 phase-shifted
DFB laser.

The variation in AaL with respect to the position factor y is shown in
Figure 5.8. In this figure the values of the phase shifts are equal (i.e. 6; =
63 = 64 = ) and three different sets of results are calculated with 8 = /2,
2m/5 and /3. By changing the values of the phase shifts, AxL also changes
for each particular value of . At a fixed phase shift 6 = 7/2 (solid line), it is
shown that a non-zero value of the gain margin is observed where ¢ < 0.13
and ¥ > 0.725. As ¢ approaches zero, the phase shifts 6, and 6; move
towards the laser facets and their contributions become less influential. Also,
as ¥ approaches unity, both 8> and 65 move towards the central phase shift,
5. In this case the 3PS laser structure is reduced to a single phase-shifted
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Figure 5.7 Relationship between the gain margin (Awxl) and phase shifts for a 3PS DFB laser
diode.
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Figure 5.9 Variations in the threshold gain difference versus  for different coupling coeffi-
cients.

structure and the lasing characteristic is described by an effective phase shift
of 6, = 6, + 63 + 0.

Figure 5.9 shows the dependence of AaL upon y for different values of
kL. In the analysis, all phase shifts are assumed to be identical (i.e. # = 7/3).
From this figure it is clear that xL has little effect on AaL in 3PS DFB lasers.
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5.3.2 Structural impacts on the uniformity of the internal field
distribution

In this section we discuss the structural impact on the internal field distri-
bution. To quantify the uniformity of the field distribution, we showed in
Chapter 3 that the flatness (F) of the internal field of a general N-section
DFB laser cavity is defined as

1 N+ .
F= Z/ (I(2) — Ivg)* dz (5.3.1)
<1

where /(z) is the electric field intensity along the longitudinal axis and /.
is its average value. In the above equation, a zero value of F corresponds to
a complete uniform field.

To minimize the effects of longitudinal SHB, it has been shown experimen-
tally [1,7] that a DFB laser cavity with F < 0.05 is necessary for stable SLM
oscillation. To optimise the structural design of 3PS DFB lasers, F < 0.05
will be used as one of the design criteria. To evaluate the flatness of the
internal field distribution, the threshold equation of the 3PS DFB laser will be
solved first. The normalised amplitude threshold gain «y,L and the normalised
detuning coefficient §;,L of the lasing mode are then used to determine the
field distribution. In our analysis, a 500 um long DFB laser is subdivided into
a substantial number of small sections with equal length. From the output of
each transfer matrix, both the forward and the backward propagating electric
fields can be determined, and the electric field intensity at an arbitrary position
7' is found as

1) = |ER@)I + |Es(2)? (53.2)

In Figure 5.10 the internal field distributions of three different structures
are shown. These structures include a conventional mirrorless, a single /2
phase-shifted and a 3PS (n/3,7/3, 7/3}) DFB laser. All the electric field
distributions have been normalised so that the intensity at the laser facets is
unity. It is shown that the single 7/2 phase-shifted DFB laser has a flatness
value of F = 0.301. Such a high value of F (which means that the field is
highly non-uniform) induces a local carrier escalation near the centre of the
cavity after the laser threshold is reached, consequently affecting the single
mode stability of the laser device. With three phase shifts incorporated into
the cavity, the intensity distribution spreads out and the overall distribution
becomes more uniform (see the solid line with F = 0.012). By optimising
the values and the positions of the phase shifts with respect to the flatness, a
3PS DFB laser can maintain a uniform field distribution even at a high value
of kL, which is necessary to reduce the spectral linewidth of the laser.

The effect of  on F is shown in Figure 5.11 for different combinations of
kL. When small values of «L (< 1.5) are used, the field intensity distribution
becomes less uniform when the phase shifts 6, and 6, shift towards the laser
facets (i.e. as ¥ tends to 0). As the optical feedback becomes stronger with
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Figure 5.10 Field distribution in various DFB laser diode structures.
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Figure 5.11 Variations in flatness versus ¢ for different coupling coefficients .

increasing «L, the field intensity distribution becomes more intense near the
centre of the laser cavity where ¢ is found to be about 0.77.

The contour map shown in Figure 5.12 can be used to optimise the value
of the phase shifts with respect to F. Similar to Figure 5.7, the central phase
shift 65 is used as the x-axis where other phase shifts are represented on the
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Figure 5.12 Relationship between the flatness and the phase shift for a 3PS DFB LD.

y-axis. In this figure, all phase combinations with F < 0.05 form a ribbon
shape stretching from the lower left-hand corner to the upper right-hand
corner of the contour. The worst case, which leads to the largest value of
F, can be found at phase combinations of {0, 7/2,0} and {m, /2, w}. For
F < 0.05, 6ig. must lie in the range of 67.5° < 4. < 112.5° for unrestricted
values of 63. By comparing Figure 5.12 with Figure 5.7, it can be seen that a
trade-off exists in selecting the appropriate phase shift value for the optimum
values of AxL and F. On the one hand, phases should be chosen such that
the gain margin is large enough to avoid mode hopping. On the other hand,
the corresponding combination of phase shifts will result in a relatively large
value of F. Owing to the SHB effect, the associated single mode stability
deteriorates with increasing output power. As a result, a compromise has
to be made in selecting the phase shifts in 3PS DFB lasers such that high
performance LDs with high Aa (> 0.05 cm) values and small F (< 0.05)
can be obtained. Figure 5.13 is a combination of the region AaL > 0.25 in
Figure 5.8 and the region F < 0.05 from Figure 5.12. In the shaded area of
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Figure 5.14 Relationship between the gain margin and the phase shift for a 3PS DFB laser
diode. #3 = 20° and ¥ = 0.3 are assumed.
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Figure 5.15 Relationship between the flatness and the phase shift for a 3PS DFB laser diode.
6y = 20° and ¢ = 0.3 are assumed.

this figure it can be seen that a phase combination of {r/3, 7/3, n/3} will
satisfy the design criteria of both the gain margin and flatness.

So far, the values of the phase shifts 6, and 6, are assumed to be identical.
By varying 6, and 64 from 0° to 180°, the contour map of both the gain
margin and the flatness of the 3PS DFB LD can be plotted, as shown in
Figures 5.14 and 5.15, respectively [8]. In the analysis, the PSP is fixed at
0.3 and 65 is fixed at /9 (or 20°). Contours shown are for AaL > 0.25 and
F < 0.05. As expected, both contours show a symmetric distribution along
the line where 6> = 6. From Figures 5.14 and 5.15 it can be seen that most
of the region that satisfies AaL > 0.25 does not match with the region for
F < 0.05. The only area that matches both selection criteria is found when
40° < 6, < 90° and 40° < 64 < 80°.

5.4 THRESHOLD ANALYSIS OF THE DISTRIBUTED COUPLING

COEFFICIENT (DCC) DFB LD

By incorporating more phase shifts along the DFB laser cavity, 3PS DFB
LDs show an improved performance in maintaining the single mode stability.
With a flatter internal field distribution, the SHB effect is suppressed. The
gain margin of the 3PS DFB laser diode, however, is reduced as compared
with the QWS DFB laser diode, while oscillation at the Bragg wavelength
cannot be maintained. To improve the lasing characteristics of the QWS
DFB laser diode, a novel structure with a non-uniform coupling coefficient
has been proposed [9]. Basically, a corrugation having a non-uniform depth
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Figure 5.16 Schematic diagram of a single phase-shifted distributed coupling coefficient (DCC)
DFB LD.

is fabricated along the laser cavity. Since the coupling coefficient depends on
the height of the corrugation, lasers employing this structural configuration
are better known as DCC DFB LDs.

Figure 5.16 shows the schematic diagram of a DCC DFB LD. The height
of the corrugations fabricated near the centre of the cavity are different from
those located near the laser facets. As a result, a laser cavity with a longitu-
dinal variation of « is achieved. With a 7r/2 phase shift fabricated at the centre
of the cavity, oscillation at the Bragg wavelength is ensured. In the analysis,
a constant corrugation period of A and hence a fixed Bragg wavelength Ap
are assumed. The DCC laser structure used is different from the continuous-
pitch-modulated (CPM) DFB laser [10] in which A varies along the laser
cavity. In a DCC DFB laser, it is important that the corrugations change
smoothly from one height to another, and that there is no change in the corru-
gation phase along with the position of the corrugation change. To obtain the
best performance from the DCC DFB structure, it is necessary to investigate
the structural impact of DCC LDs on the threshold characteristics. In the
following sections the structural design, and in particular, the effects of the
coupling ratio and the position of the corrugation change, will be discussed.
Both the gain margin and the field uniformity reduce the complexity of the
structural design. Optimised structures that satisfy the selection criteria will
be presented.

5.4.1 Effects of the coupling ratio on the threshold characteristics

In the structural design of DCC DFB lasers both the coupling ratio (x/x2)
and the position of the corrugation play a crucial role in the threshold charac-
teristics. To determine the position of the corrugation change, a parameter
known as the corrugation position (CP) is defined such that [11]
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Figure 5.17 Variations in both the amplitude threshold gain and the gain margin are shown with
respect to coupling coefficient ;.

CP=2L,/L (5.4.1)

In Figure 5.17 the variations in both the amplitude threshold gain (awL) and
the gain margin (AaL) are shown with respect to the coupling coefficient «;.
In the analysis, k2 = 2/mm, 63 = n/2 and CP = 0.5 are assumed. When
k) increases, both oL and AaL show a monotonic decrease in values.
The reduction in oyl is obvious since a larger k; implies a stronger
optical feedback and consequently a smaller amplitude threshold gain. At
k1 = 2.0/mm, the corrugation becomes uniform and the DCC laser is reduced
to a uniform QWS DFB laser.

5.4.2 Effects of the position of the corrugation

At a fixed coupling ratio, the effects due to a variation in the corrugation
position (CP) will be investigated in this section. In Figure 5.18 the variation
of the field uniformity (F) as well as the gain margin are shown for different
values of CP. In the analysis, a fixed value of x; = 2.0/mm and 63 = m/2 are
assumed. Results obtained from various coupling ratios are compared. The
other parameters used are listed in the inset of the figure. When CP increases,
with the ratio k;/k; having the value of 2, we see a substantial increase in
flatness. Structures showing such a high flatness value are undesirable since
they are vulnerable to SHB. Near to a CP value of 0.78, results from the
gain margin revealed that all DCC structures show characteristics similar to
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Figure 5.18 Variations in the flatness and the gain margin with respect to the corrugation position
for various DCC laser diode structures.

those of the uniform QWS structure. It is believed that at this particular corru-
gation position (CP) value, the characteristics of the non-uniform corrugations
become irrelevant and the effect of using the DCC becomes less efficient. As
far as single mode stability is concerned, trade-offs exist in selecting the
optimum position of the corrugation change and the coupling ratio.

5.4.3 Optimisation of the DCC DFB laser structure

On the basis of the threshold characteristic, we attempt to optimise the DCC
DFB laser structure. In order that the results obtained can be compared
with QWS and 3PS DFB LDs, a parameter known as the averaged coupling
coefficient, kayg, is introduced in the DCC laser structure such that

Kavg = K1(CP) 4+ k2(1 — (CP)) (5.4.2)

where «; and «; are the coupling coefficients inside the DCC laser cavity
and CP is the position of the corrugation change. For a 500 um long laser
cavity, kavg is assumed to be 4.0/mm so that the value kagL = 2.0 can be
maintained. At a fixed value of Kavg, Other variables like xy, x2 and CP are
allowed to change. At a fixed value of k| /x> = r, the above equation becomes

Ky =1 Kag/[1 + (r = 1)CP] (5.4.3)

where x; can be determined.
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Figure 5.19 demonstrates the variation in the gain margin with the
position factor CP. Results obtained from various coupling ratios, k}/«2, are
compared. At CP =0 and CP = 1 it can be seen that a uniform QWS DFB
laser is formed. For a DCC laser structure with a coupling ratio «{/«; > 1,
the gain margin reduces as CP increases from zero. On the other hand,
results obtained from «;/k3 < 1 indicate a significant improvement in the
gain margin. At k;/k; = 1/3, a normalised gain margin value of 1.69 is
found at CP = 0.46.

Figure 5.20 shows the dependence of the flatness on the variation in
CP. Among the various «;/k; ratios used, those with «,/k; < 1 show an
improvement in the field uniformity. At low values of k;/x2, however, the
differences in F due to the variation in ) /k2 becomes less obvious. Such a
phenomenon can be explained by the presence of the 7/2 phase shift. Owing
to the intense electrical field associated with the phase shift, the change in
the distribution of flatness becomes less prominent.

From the results obtained in Figures 5.19 and 5.20, a DCC DFB with
k1/k2 < 1 seems desirable since a high gain margin and a relatively flat field
distribution can be achieved. Owing to the intense electrical field at the centre
of the DCC DFB LD, it is difficult to achieve a very low flatness value (i.e.
F < 0.05). On the other hand, the significant improvement in the gain margin
should relax the constraints on flatness. Along the line at k; /x> = 1/3, the
optimised design is located at CP = 0.46, where the gain margin and the
flatness are found to be 1.69 and 0.17, respectively.

Throughout the analysis, the phase shift 63 has been fixed at 7/2. By
changing the value of the phase shift, the variation in the gain margin and

1.8

L = 500 um

Gain margin

0.2t

0 0.2 0.4 0.6 0.8 1
Corrugation position (CP)

Figure 5.19 Variations in the gain margin versus CP for different coupling ratios.
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Figure 5.20 Variations in the flatness versus CP for different coupling coefficients.
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Figure 5.21 Variations in the gain margin versus CP for different values of the phase
shift 6.
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Figure 5.22 Variations in the flatness versus CP for different values of phase shift, 6.

the flatness are shown in Figures 5.21 and 5.22, respectively. In the analysis,
k1/k2 = 1/3 and k4g = 4.0 mm are assumed.

5.5 THRESHOLD ANALYSIS OF THE DCC + 3PS DFB LASER
STRUCTURE

From the previous section, the single QWS DFB laser with a non-uniform
coupling coefficient shows significant improvement in both the threshold gain
margin and flatness when compared with the uniform x QWS DFB laser.
With «;/k2 = 1/3 and CP = 0.46, oscillation at the Bragg wavelength is
achieved when the lasing condition is reached. Despite the fact that there is
a slight improvement in the flatness value, the large threshold gain margin
strengthens the single mode oscillation in DCC DFB LDs. With more phase
shifts introduced along the laser cavity, the 3PS structure was shown to have
an improved field uniformity. In this section, the combined effect of both
non-uniform « and 3PS on the threshold characteristics of DFB LDs will be
investigated.

A schematic diagram of such a combined DCC + 3PS DFB laser structure
is shown in Figure 5.23. Bearing in mind that the use of the TMM in the
threshold analysis requires all the physical parameters to be uniform within
each transfer matrix section, six transfer matrices have to be used in this
new structure. The three phase shifts shown in the figure have been defined
following the N-section laser cavity model discussed in Chapter 4. In the
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Figure 5.23 Schematic diagram of a distributed coupling coefficient DFB LD with three phase
shifts (DCC + 3PS).

analysis, the overall laser cavity length is assumed to be 500 um and kg =
4/mm. The phase shift 64 is always fixed at the centre of the cavity while
positions of #3 and 65 are allowed to change such that their actual phase shift
positions (PSP) are defined as

¥ = PSP = 2Ly/L (5.5.1)

Similarly, the change in the corrugation position follows the definition used
in the DCC + QWS structure such that

CP=2L,/L (5.5.2)

To find a suitable value for both the position and the value of the phase
shift in the DCC + 3PS laser structure, the optimised design obtained from
the uniform « 3PS DFB laser was used. From the hatched areas shown in
Figure 5.13, all phase shifts are assumed to be /3, and PSP = 0.5 will be
used in the analysis of the DCC + 3PS laser structure.

The variation in the normalised gain margin AaL with respect to the CP
is shown in Figure 5.24. In this figure, the values of the phase shifts are equal
(63 = 64 = 65 = /3) and three different sets of results are calculated with
k1/ka = 1/3.5, 1/3 and 1/2.5. In all three cases the highest gain margin is
found at around CP = 0.40. As compared with the uniformly corrugated 3PS
DFB laser (where CP = 0 and 1), the improvement in AL corresponds to a
positive effect due to the presence of the non-uniform corrugation. At around
CP = 0.4, the non-lasing side modes are suppressed to such an extent that an
improved value of the gain margin (AaL) results. There are other regions of
CP for which its corresponding gain margin is not as good as the uniformly
corrugated 3PS structure. At CP = 0.5, where the place of corrugation change
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Figure 5.24 Variations in the gain margin versus CP for different values of x;/x3.

coincides with the position of the phase shift, it is interesting to show how
Aal drops to a local minimum.

Figure 5.25 shows the dependence of the flatness upon the corrugation
position for different values of «y/k;. Similar to Figure 5.24, kayg = 4/mm
and 03 = 64 = 65 are assumed. By changing the value of CP, the flatness of all
three DCC + 3PS LDs used falls within the selection criterion of F < 0.05.
There is only a minor change in F when the coupling ratio «; /k2 changes.

So far, the phase shifts used in the DCC + 3PS DFB LD have been fixed
at /3, and ¢ = 0.5 is assumed. By changing the values of 63 and 65 as

0.06
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Figure 5.25 Variations in the flatness versus CP for different values of x /2.
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Figure 5.26 Variations in the gain margin for two DCC + 3PS DFB LDs. (a) 63 = 65 = /3,
By =n/9and Y =0.3;(b) 83 =63 =65 = x/3 and ¥ = 0.5.

well as the PSP, the variation in the normalised gain margin of one of these
configurations is shown in Figure 5.26. In this configuration, 5 = 65 = /6
and ¢ = 0.3 are assumed [11]. For comparison purposes, the results obtained
from a DCC + 3PS DFB LD with 63 = 64 = 6s = /3 and ¥ = 0.5 are also
shown. By altering both the position as well as the values of 63 and 65 along
the laser cavity, DFB lasers show that there is an improvement in the threshold
gain margin. A comprehensive optimisation on the DCC + 3PS structure is
challenging since it involves the optimum design of five variables, namely
the corrugation position, the PSP, the phase shifts, «;/k2 and ;. On the other
hand, it is shown here that the N-section laser cavity model can be applied
to the design of such a complicated structure. Of course, the use of the TMM
has played a crucial role throughout the analysis.

The DCC + 3PS DFB laser structure, with 63 =604 = 6s = /3, CP =
0.39, k1 /k2 = 1/3 and ¢ = 0.5, satisfies the threshold selection criteria on
both Aa > 0.25 and F < 0.05 for a 500 pm length cavity. This structure will
be used in the next chapter to evaluate the above-threshold performance.

5.6 SUMMARY

In revealing the potential use of the TMM in the practical design of DFB
LDs, the threshold analysis of various DFB laser structures, including the
3PS, DCC and DCC + 3PS, have been carried out. In an attempt to minimise
the effects of SHB and hence to improve the maximum available single mode
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output power, it is necessary that a stable SLM LD shows a high normalised
gain margin (AalL) as well as a uniform field intensity (i.e. small value of F).
On the basis of the lasing performance at threshold, selection criteria were
set at AaL > 0.25 and F < 0.05 for a 500 um length laser cavity.

With more phase shifts introduced along the laser cavity, a 3PS DFB LD
was shown to have an improved field uniformity. By changing the corrugation
height along the laser cavity, the DCC + QWS DFB LD showed an improved
threshold gain and field flatness. The combined effect of having 3PS and a
non-uniform coupling coefficient was investigated in a novel DCC + 3PS
DFB laser structure. By changing the value of the phase shifts, the coupling
coefficient and its corresponding positions, the gain margin (AaL) and the
uniformity of the field distribution (F) of various DFB laser structures were
evaluated. On the basis of the selection criteria AaL > 0.25 and F < 0.05
at the lasing threshold condition, optimised structures in the 3PS, DCC +
QWS and DCC + 3PS DFB lasers were presented. Table 5.1 summarises the
results obtained from the threshold characteristics of various DFB LDs. For
comparison purposes, Figure 5.27 shows the field distribution of the DFB
structures at threshold.

A conventional single QWS DFB was selected as standard for comparison
purposes. This structure is characterised by an intense electric field at the
centre of the cavity. Owing to the effects of SHB, the single mode oscillation
deteriorates quickly as the biasing current increases. For the 3PS DFB LD,
three /3 phase shifts with a PSP factor of 0.5 fall within the selection criteria
of AaL and F. For the DCC + QWS DFB LD, a coupling ratio of x| /k2 =
1/3 and a corrugation change at 0.46 appears to be promising. This structure
is characterised by a large threshold gain margin. In using both a non-uniform
coupling coefficient and a 3PS laser structure, a DCC + 3PS DFB LD with
CP = 0.39 and PSP = 0.5 satisfies the design criteria at threshold.

Throughout the analysis it was shown that the N-section laser cavity mode
derived using the TMM facilitates both at and below-threshold (Chapter 3)

Table 5.1 Comparison of the threshold characteristics of various DFB LDs

DFB LD PSP CcP Ki/kp ol dnl Aal F lag
QwWs = - - 070 0.0 0.73 03006 1.43
3PS 0.5 - - 098 0.91 034 0.0122 1.02
DCC +Qws = 0.46 1/3 093 0.0 169 0.1678 1.08

DCC + 3PS 0.5 0.39 1/3 154 035 049 0.0164 0.65

3PS structure assumed 6, = 3 = g = /3.

DCC + 3PS structure assumed 63 = 84 = s = /3.

Laser structure:
QWS = quarterly wavelength shifted
3PS = three phase shift
DCC = distributed coupling coefficient

Other parameters:
CP = corrugation position, PSP = phase shift position, x1/x2 = coupling ratio,
aml = normalised amplitude threshold gain, &nL = normalised detuning coeffi-
cient, AalL = threshold gain margin, F = flatness, /g = average intensity.
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Figure 5.27 The internal field distribution of various DFB LDs as presented in Table 5.1.

analysis of DFB LDs. However, the TMM becomes inadequate in the above-
threshold biasing regime when stimulated emission becomes dominant. For
above-threshold analysis, such as the single mode stability and the spectral
linewidth, the carrier rate equation must be considered. In the next chapter
a new technique that combines the TMM with the carrier rate equation will
be introduced and the above-threshold characteristics of those DFB laser
structures summarised in Table 5.1 will be investigated.
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6

ABOVE-THRESHOLD
CHARACTERISTICS OF DFB
LASER DIODES: A TMM
APPROACH

6.1 INTRODUCTION

The flexibility of the transfer matrix method (TMM) allows us to evaluate the
spectral behaviour of a corrugated optical filter/amplifier and the threshold
characteristic of a laser source. To extend the analysis into the above-threshold
biasing regime, the transfer matrix has to be modified to include the dominant
stimulated emission.

On the basis of a novel numerical technique, the above-threshold
distributed feedback (DFB) laser model will be presented. Using a modified
transfer matrix, the lasing mode characteristics of DFB laser diodes (LDs) will
be determined. The new algorithm is different from many other numerical
methods in that no first-order derivative of the transfer matrix equation is
necessary. As a result, the same algorithm can be applied easily to other
DFB laser structures with only minor modification.

In section 6.2 the details of the above-threshold laser model will be
presented. Taking into account the carrier rate equation, the dominant
stimulated emission will be considered in building the transfer matrix. The
numerical algorithm behind the lasing model will be discussed in section 6.3.
Using the newly developed laser model, numerical results obtained from
various DFB lasers including the quarterly wavelength shifted (QWS), three
phase shift (3PS) and the distributed coupling coefficient (DCC) structures
will be shown in section 6.4. Longitudinal varying parameters such as the
carrier concentration, photon density, refractive index and the internal field
intensity distributions will be presented with respect to biasing current
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changes. Impacts due to the structural variation, in particular, will be
discussed.

6.2 DETERMINATION OF THE ABOVE-THRESHOLD LASING
MODE USING THE TMM

In above-threshold analysis, the lasing wavelength and the optical output
power are important. For laser devices to be used in coherent communication
systems, the single mode stability and the spectral linewidth should also be
considered. Provided that the longitudinal distributions of the carrier, photon
and other parameters are known, we can include the spatial hole-burning
(SHB) effect as well as the non-linear gain [1] in the above-threshold analysis.

From the threshold characteristic of a DFB LD, a quasi-uniform gain
model has been proposed that uses the perturbation technique [2]. However,
in the analysis, a uniform gain profile along the cavity and a linear peak
gain model were assumed. Using the TMM [3], the uniform gain profile was
later improved by introducing a longitudinal dependence of gain along the
cavity and an approximated carrier density was obtained for each subsection
under a fixed biasing current. With the laser cavity represented by such
a small number of subsections, impacts due to the localised SHB effect
can only be shown in an approximate manner. For a more realistic laser
model, the effects of SHB and any other non-linear gain saturation have to
be considered.

In the previous chapter the flexibility of the TMM allowed us to evaluate
a DFB laser design quickly, based on the threshold analysis. However, TMM
fails to predict the above-threshold lasing characteristics after the lasing
threshold condition is reached and stimulated photons become dominant.
To take into account any change in the injection current, it is necessary to
include the carrier rate equation in the analysis. In this section the relationship
between the injection current (or carrier concentration) and the elements of
the transfer matrix (mainly the amplitude gain « and the detuning factor §)
will be presented. From the output electric field obtained from the overall
transfer matrix, the optical output power will then be evaluated. To include
the localised effect in the TMM, a larger number of transfer matrices have
to be used so that the length represented by each transfer matrix becomes
much smaller. From the N-section DFB laser model, the physical parameters
such as the carrier concentration and photon concentration are assumed to be
homogeneous within an arbitrary subsection. As a result, information such as
the localised carrier and photon concentration are obtained from each transfer
matrix. Consequently, longitudinal distributions of the lasing mode carrier
density, photon density, refractive index and the internal field distribution
are obtained.

According to Chapter 4, the transfer matrix of an arbitrary section k, as
shown in Figure 6.1, can be expressed as
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Z, Ziy1

Figure 6.1 Schematic diagram showing a general section in a DFB LD cavity. #; shows the
phase shift between sections k and & — 1.

ER(zk+1) | _ 5. Er(z)| _ | fn f]:} . [ER(;,\_)]
[Es(Zk+1)] = F@s1lz0). [ES(ZI:}} = [f.‘!l 2 Es(z) (6.2.1)

where F(zi+1lzx) is the transfer matrix of the corrugated section between
2 = zx and zx4) whilst its elements f;; (i, j = 1, 2) are given as

fu1=(E—p*E™"). e Poan1=eif (1 — p?) (6.2.2a)
f12=—p(E —E7"). e 1% TAGkatile=l% /(1 — p?)  (6.2.2b)
fa1 = p(E — E™). e/Re/Po@1t0)es% /(1 — p?) (6.2.2¢)
f22=—(pE — E7"). ePoCts1=0e=0% /(1 — p?) (6.2.2d)

where Q is the residue corrugation phase at z =0 and 6; is the phase
discontinuity between sections k and k — 1. The other parameters used are
represented as

E = e"&+17%), E!' = e %1~ (6.2.3a)
p=jk/la—jé+y) (6.2.3b)

For DFB lasers with a fixed cavity length, we must determine both the
amplitude gain coefficient o and the detuning coefficient & of the section & in
order that the matrix element f;; (i, j = 1, 2), as shown in equation (6.2.2),
can be determined. For first-order Bragg diffraction, it was shown in Chapter 2
that & and 8§ can be expressed as

o = (g — aoss)/2 (6.2.4)
2 2mn b4

§="n- E(A=2g)- — 6.2.5
3 n v ( B) A ( )

where I' is the optical confinement factor, g is the material gain, «j,s includes
the absorption in both the active and the cladding layers as well as any
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scattering loss. In equation (6.2.5), n is the refractive index of section k and
Ap is the Bragg wavelength. To take into account any dispersion due to the
difference between the actual wavelength and the Bragg wavelength [4], the
group refractive index n, is included in equation (6.2.5). From Chapter 2 that
the material gain g of a bulk semiconductor device can be expressed as

g =Ao(N — No) — Aj[A — (Ao — A2(N — No)))? (6.2.6)

where a parabolic model is assumed. In the above equation, Ap is the
differential gain, Ny is the transparency carrier concentration and X is the
wavelength of the peak gain at the transparency gain (i.e. g = 0). In the above
equation, the variable A, determines the base width of the gain spectrum
and A; corresponds to any change associated with the shift of the peak
wavelength. Using a first-order approximation for the refractive index n,
we obtain
= Rigj an 6.2.7
n_n.m+l"3NN (6.2.7)
In the above equation, nj,; is the effective refractive index at zero carrier
injection, I' is the optical confinement factor and dn/dN is the differential
index. For a symmetric double heterostructure laser with an active laser width
of w and thickness d [5], n,; is approximated as

Mii ~ iy — Xlogo[1 + (nicl — nl.)/X] (6.2.8)

where
X = a3/2n%d? (6.2.9)

In the above equation a single transverse and lateral mode are assumed
and n,q and ng,g are the refractive indices of the active and the cladding
layers, respectively. From equations (6.2.6) and (6.2.7) it is clear that both g
and n are related to the carrier concentration N. As mentioned in Chapter 2,
the carrier concentration N and the stimulated photon density S are coupled
together through the steady-state carrier rate equation (dN/dr = 0) which is
shown here as

!
L —R+R (6.2.10)
qV

where

R=N/t+4BN*+CN? (6.2.11a)
vg8S

= 852 6.2.11b

T 1+6S ( )

In the above equations Ry, is the stimulated emission rate per unit volume
and R is the rate of other non-coherent carrier recombinations. Other param-
eters used are listed as follows: / is the injection current, g is the electronic
charge, V is the volume of the active layer, 7 is the linear recombination
lifetime, B is radiative spontaneous emission coefficient, C is the Auger
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recombination coefficient and vy = ¢/ng is the group velocity. To include
any non-linearity and saturation effects, a non-linear coefficient £ has been
introduced [6]. For strongly index-guided semiconductor structures like the
buried heterostructure, the lasing mode is confined through the total internal
reflection that occurs at the active and cladding layer interfaces. Both the
active layer width w and thickness d are usually small compared with the
diffusion length. As a result, the carrier density does not vary significantly
along the transverse plane of the active layer dimensions and the carrier
diffusion term in the carrier rate equation has been neglected [7]. In an index-
coupled DFB laser cavity, the local photon density inside the cavity can be
expressed as [8]

__ 2&n(2)ngh
hc

where g9 = 8.854 x 1072 F/m is the free space electric constant. From
the escaping photon density at the output facet, the output power is then
determined as

5(2) - lIER () + |Es(2)?) (6.2.12)

dw h
P(zj) = ?wvsrcS(z}-) (6.2.13)

According to the general N-section DFB laser cavity model, j = 1 and
J=N+1 in the above equation correspond to the power output at the
left and right facets, respectively. In equation (6.2.12), ¢¢ is a dimensionless
coefficient that determines the total electric field E(z) as

E(z) = coE(z) = co[ERr(z) + Es(2)] (6.2.14)

where Eg(z) and Es(z) are the normalised electric field components as shown
in equation (4.4.6). Using the forward transfer matrix, it is important that
both travelling electric fields Er(z) and Es(z) are normalised at the left facet
(z=121) as

|Er(21)1> + |Es(z1)* = 1 (6.2.15)

Of course, both Eg(z;) and Es(z;) should satisfy the boundary conditions at
the left facet such that
Er(z21)/Es(z1) = 1y (6.2.16)

Both the amplitude threshold gain a,, and the detuning coefficient &, are
determined from the threshold analysis. With virtually negligible numbers of
coherent photons at the laser threshold, the threshold carrier concentration
N can be determined from equations (6.2.4) and (6.2.6) such that

N = No + (@joss + 2a)/TA (6.2.17)

where the peak gain is assumed at the threshold with A; = A; = 0. Conse-
quently, the refractive index at the threshold can be found as

on
Ny = Nini + rﬁNth (6.2.18)
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By substituting § = 4y in equation (6.2.5) at the threshold condition, the
threshold wavelength Ay, can be obtained as

_ 2rhg(nwm + ng)
"~ dmAp + 2mng + Agm/A

Consequently, the peak gain wavelength at zero gain transparency is found
from equation (6.2.6) as

Ath (6.2.19)

ko = A +A2(Nih — No) (6.2.20)

In the next section the features of the numerical process that help
to determine the above-threshold characteristics will be discussed in a
systematic way.

6.3 FEATURES OF NUMERICAL PROCESSING

To evaluate the longitudinal distribution of the carriers and the photons in the
analysis, a large number of transfer matrices have been used. For a 500 um
length long QWS DFB laser, at least 5000 transfer matrices have been adopted
to evaluate the above-threshold characteristics. To characterise the oscil-
lation mode for such a non-uniform system, a numerical method such as the
Newton-Raphson method will not be appropriate since it is almost impossible
to find the required first-order derivative. The situation becomes worse when
we realise that the oscillation characteristic depends on the laser structure.

In our analysis a novel numerical technique has been developed. Using
this numerical technique it is not necessary to find a first-order derivative.
Moreover, the algorithm has been designed such that with only minor changes
it can be implemented easily in the design of various DFB laser structures.
At a fixed above-threshold current, initial guesses on the lasing wavelength A
and the dimensionless coefficient ¢ are given. By matching the boundary
condition at the right facet, the lasing characteristics such as the carrier
density, photon density, refractive index distribution, optical output power
and the lasing wavelength can be evaluated. Consequently, information such
as the single mode stability and the spectral linewidth can be determined.

Figure 6.2 is a flow chart that helps to explain the numerical procedure.
Features with regard to the novel numerical techniques will be highlighted
as follows [9]:

(1) For a DFB LD with a specific structural design (e.g. a QWS, 3PS or a
DCC DFB LD), the oscillation condition at the lasing threshold is first
determined. A numerical method like the Newton-Raphson method is
applied to determine the threshold characteristic. A reasonable number
of roots near the Bragg wavelength are found on the complex plane.
Each root (ay, ., §in) that represents an oscillation mode is sorted in
rising order of ay,. The one showing the smallest ay, will become the
lasing mode after the threshold condition is reached.

(2) Using equations (6.2.17)-(6.2.20), Ny, np, Ap and Ay are evaluated
from the threshold value of (o, &). Since there are virtually no
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Figure 6.2 Flow chart showing the procedures in the numerical algorithm.
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3

4

&)

(6)

(7

stimulated photons at the lasing threshold condition, the threshold
current /y, is determined using equation (6.2.10).

The DFB laser cavity is then subdivided into a large number of sections,
each represented by a transfer matrix.

An injection current that is normalised with respect to the threshold
current is specified. To start the iteration, values of A and ¢ are given as
initial guesses such that a mathematical grid as shown in Figure 6.3,
is built. Each intersection point on the grid (25 points all together)
represents a pair of (cg, A) that will be used in the iteration.

Using the forward transfer matrix, the photon density at the inner
left facet is first determined. With no information on the carrier
concentration, the threshold refractive index ny, is assumed. The carrier
concentration N at the left facet is then found using equation (6.2.10),
and subsequently the input components Er(z;) and Es(z;) are obtained
according to equations (6.2.15) and (6.2.16).

At this stage the photon density at the left facet can be found
using equation (6.2.12). The carrier concentration is then evaluated
by solving the carrier rate equation that includes the multi-carrier
recombination. Subsequently, both @ and & of the first section and
matrix elements f;; (i, j = 1. 2) of the first matrix are determined.

Using the newly formed transfer matrix, the electric field at the output
plane can be evaluated and hence the output photon density found.
Both « and § of the following section are then found and a new transfer
matrix is formed. The whole process is then repeated until the output
plane of the transfer matrix has reached the right facet. The discrepancy
with the boundary condition is evaluated and stored (min_err).

h
(co.2)
Prnd

»._max

................................................

h_min E H i Co
Cg_min Cg_max

Figure 6.3 A 5 x 5 mathematical grid used in the above-threshold analysis.
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(8) By repeating the same calculation for all other (co, A) pairs obtained
from the mathematical grid, the pair showing the smallest discrepancy
will be selected. Depending on its position of the final point on
the mathematical grid (it may be along the boundary, at the corner
or near the centre), a new mathematical grid will be created. A
possible quantization error must be considered when forming the new
mathematical grid.

(9) Procedures (5)-(8) should be repeated until the boundary condition
falls within a discrepancy of < 107'* or the iterative change of
wavelength (AX) falls below < 10~'7 m. The final pair (co, A)gpal is
then stored.

(10) The above-threshold characteristic of the DFB laser is determined by
passing the (co, A)final pair once again through the transfer matrix
chain. From the photon density obtained at both facets, the output
optical power is obtained. From each transfer matrix, the lasing mode
distribution of the carrier concentration, N(z), photon density, S(z),
refractive index, n(z), amplitude gain, «(z), and detuning coefficient,
8(z), can be evaluated.

(11) The average values of @ and 8 associated with the lasing mode are
then obtained from the corresponding longitudinal distribution as

N

a =)y a;/N (6.3.1)
j=1
N

du=)_8;/N (6.3.2)
j=1

where N is the total number of transfer matrices used and «; and
d; (j=1to N) are the amplitude gain and the detuning coefficients
obtained from each transfer matrix, respectively.

(12) The whole iteration procedure is then repeated for other biasing current.

Using the numerical process described, the above-threshold lasing mode
characteristics of various DFB LDs can be obtained. In the analysis, localised
effects such as SHB have been included. With minor modifications, the same
algorithm shown above can be implemented easily to find the above-threshold
characteristics of various DFB laser designs. In the next section the lasing
characteristics of various DFB laser structures including the QWS, the 3PS
and DCC DFB LDs will be presented using the above-threshold model.

6.4 NUMERICAL RESULTS

The above-threshold model based on the TMM is applicable to various types
of DFB laser structures. In this section, results obtained from the QWS,
3PS and the DCC DFB LDs are presented. Distributions of the spatially
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Table 6.1 Parameters used in modelling the DFB laser diode.

Parameter Symbol Value Unit
a) Material Parameters
Spontaneous emission rate T 2.5 x 10" s
Bimolecular recombination coefficient B 1x107'6 m3/s
Auger recombination coefficient c 3 x 1074 mé/s
Ditferential gain Ay 27 x10% m?
Gain curvature A, 0.15 x 10%° m3
Differential peak wavelength A, 27 x10°% m?
Internal cavity loss Qioss 4 x10° m-!
Refractive index at zero injection No 3.41351524
Carrier concentration at transparency No 1.5 x 10% m-?
Carrier concentration at threshold N -
Differential index dn/dN -1.8x10"2% m3
Group velocity at Bragg wavelength Vg 3 x 108/3.7 m/s
Nonlinear gain coefficient & 15x 102 m?
Peak gain wavelength at transparency Ao 1.63 x 10°¢ m
Lasing wavelength A - m
Lasing wavelength at threshold Ath — m

b) Structural Parameters

Active layer width d 1.2x 107 m
Active layer thickness w 1.5x10°€ m
Coupling coefficient K 4 x10° m-!
Laser cavity length L 500 x 10-6 m
Optical confinement factor r 0.35

Grating period A 2.27039 x 1077 m
Grating phase at the left facet Q - rad
Bragg wavelength is = 2Ang 1.55 x 1078 m
Threshold current density Jin - A/m?
Threshold current I — A
Injection current / - A

dependent parameters like the photon density and the carrier density will be
shown. In Table 6.1 we summarise both the material and the structural param-
eters used in the analysis. These parameters are valid for bulk semiconductor
lasing at around 1.55 um. Unless otherwise stated, these parameters will be
used throughout the analysis. Other structural parameters associated with each
specific design (i.e. the plane of corrugation change, the phase shifts and their
positions) will be listed accordingly.

6.4.1 Quarterly wavelength shifted (QWS) DFB LD

The QWS DFB LD with a uniform coupling coefficient has been used for
some time because of its ease of fabrication, and because the Bragg oscillation
can be achieved readily with a single 7/2 phase shift [10]. From the threshold
analysis, this DFB laser structure is characterised by a non-uniform field
intensity which is vulnerable to the SHB effect. Experimental results [2]
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have demonstrated that the gain margin deteriorates quickly when the biasing
current increases. For a strongly coupled device (i.e. kL > 2), the side mode
on the shorter wavelength side (+1 mode) becomes dominant. For a 300 pm
length cavity, two-mode operation at an output power of around 7.5 mW was
observed at a biasing current of 2.25/,.

The SHB effect alters the lasing characteristics of the QWS DFB LD
by changing the refractive index along the cavity. Under a uniform current
injection, the light intensity inside the laser structure increases with biasing
current. For strongly coupled laser devices, most light concentrates at the
centre of the cavity. The carrier density at the centre is reduced remarkably
as a result of stimulated recombination. Such a depleted carrier concentration
induces the escalation of nearby injected carriers and consequently a spatially
varying refractive index results.

Using the TMM based model, the above-threshold characteristics of the
QWS DFB LD can be verified. In the analysis, a 500 um long laser cavity
with kL = 2 is assumed and a phase shift of 7/2 is located at the centre
of the cavity. In Figure 6.4 the carrier concentration profile is shown with
different injection currents. The depleted carrier concentration observed near
the centre of the cavity arises from the severe SHB. It is also shown that the
dynamic range of the carrier concentration increases with biasing current.

Figure 6.5 shows the spatial dependence of the photon density with biasing
current changes. The photon distribution is fairly uniform when the biasing
current is close to its threshold value. On the other hand, an overall increase in

QWS DFB LD /
L = 500 um = xly,
K = 4/mm — 1 5
Iy, = 19.79 mA —_—
- e=1.5x10"""cm? - -3
asp === 4

Carrier density (x10%m™)
w

N
o

Zinpum

Figure 6.4 Longitudinal distribution of the carrier density in a QWS DFB LD for different
injection currents.
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Figure 6.7 Longitudinal distribution of the normalised intensity in a QWS DFB LD for different
injection currents.

the photon density is observed with increasing biasing current. At the centre
of the cavity, in particular, a peak value of the photon density is expected
in such a strongly coupled device. An increase in the dynamic range of the
photon density is also shown when the biasing current increases.

The variations in the spatially distributed refractive index are shown in
Figure 6.6. When the biasing current increases, the longitudinal span of the
refractive index also increases. As we will discuss in the next chapter, this
phenomena has a strong impact on the lasing mode characteristics and hence
on the single mode stability of the QWS DFB LD. From Figure 6.6 it is
also shown that the spatially distributed refractive index becomes saturated
near the centre of the cavity at a high biasing current. As the photon density
increases with biasing current, the photon density at the centre of the cavity
becomes so high that the non-linear gain coefficient becomes dominant.

Figure 6.7 shows the dependence of the internal field intensity distribution
with the biasing current changes. As the optical power increases, it is shown
that the distribution profile becomes flattened.

6.4.2 Three phase shift (3PS) DFB LD

With more than a single phase shift introduced along the laser cavity, a
3PS DFB structure is characterised by a relatively more uniform field distri-
bution. From the threshold analysis we know that a reasonable value of the
gain margin (AaL > 0.25) as well as a relatively low value of the flatness
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Table 6.2 Structural parameters used in the analysis
of the 3PS DFB LD

Kk = 4/mm
Oy =03 =64 =m/3
PSP =05

(F < 0.05) can be achieved for a 500 um length cavity. Using the TMM
based above-threshold model, the above-threshold characteristics of 3PS DFB
LDs will be presented. Table 6.2 listed the structural parameters used in the
3PS laser structure.

The variations in the carrier density distribution along the laser cavity are
shown in Figure 6.8 for various biasing currents. Compared with the QWS
DFB structure, the carrier density profile appears to be more uniform. An
increase in the biasing current shows little change in the spatially distributed
carrier distribution. Local minima can be seen at 125, 250 and 375 um along
the cavity, which correspond to the location of the three /3 phase shifts.

The spatial dependences of the photon density, refractive index and the
internal field distribution of the 3PS DFB LD are shown in Figures 6.9, 6.10
and 6.11, respectively. Similar to those obtained from the QWS structures,
the averaged photon density increases with the biasing current. However, it
can be seen that the introduction of more phase shifts flattens out the photon
distribution. Rather than a single peak found at the centre of the cavity, local
maxima can be seen in Figure 6.9 along with the phase shift position. The
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Figure 6.8 Longitudinal distribution of the carrier density in a 3PS DFB LD under different
injection currents.
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Figure 6.9 Longitudinal distribution of the photon density in a 3PS DFB LD for different
injection currents.
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Figure 6.10 Longitudinal distribution of the refractive index inside a 3PS DFB LD under
different injection currents.
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Figure 6.11 Longitudinal distribution of the normalised intensity inside a 3PS DFB LD under
different injection currents.

uniform photon distribution also reduces the difference between the central
photon density and the escaping photon density at the facet, especially at a
high biasing current.

Compared with the QWS laser structure, a more uniform distribution can
be seen in the case of the 3PS DFB structure. As shown in Figure 6.10, the
refractive index at the phase shift position becomes saturated at high biasing
currents. In Figure 6.11, the internal field distribution shows little change
with increasing biasing current.

To summarise, the use of an optimised 3PS laser structure appears to be
promising. With biasing current increases, the narrower span of the longitu-
dinally distributed refractive index strengthens the single mode stability of
the 3PS structure and hence reduces the threat from the SHB effect. This will
be discussed further in the next chapter.

6.4.3 Distributed coupling coefficient with a quarterly phase-shifted
(DCC + QWS) DFB LD

From the threshold analysis presented in the previous chapter we know
that the introduction of a non-uniform coupling coefficient in the DCC +
QWS structure can improve both the gain margin and the field uniformity
when compared with the QWS structure having a uniform coupling coeffi-
cient. In this section the above-threshold characteristics of DCC + QWS laser
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Table 6.3 Structural parameters used in the analysis
of the DCC+QWS DFB LD

Kavg = 4/mm
6y =m/2
Corrugation Position (CP) = 0.46
Kki1/k2 =1/3
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Figure 6.12 Longitudinal distribution of the carrier density in a DCC 4+ QWS DFB LD under
different injection currents.

structures, especially the longitudinally varying parameters, will be shown.
Table 6.3 gives the structural parameters used.

The spatial dependence of the carrier concentration is shown in Figure 6.12
with respect to the biasing current. Compared with the QWS DFB LD with
uniform «, the DCC + QWS laser structure shows a comparable distribution.
It can be seen that the carrier density near 115 and 385 um along the laser
cavity were boosted, especially at high injection currents. Such a change in
carrier concentration is believed to be caused by a sudden change in the
coupling coefficient.

The distributions of the photon density, refractive index and the internal
field intensity are shown in Figures 6.13, 6.14 and 6.15, respectively, versus
different biasing currents. As expected, all the figures show a similar
distribution to the DFB LD except for the abrupt change seen near the plane of
the corrugation change. In the photon density profile shown in Figure 6.13, the
use of a smaller coupling coefficient near the facet has reduced the dynamic
span of the photon density along the laser cavity.
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Figure 6.13 Longitudinal distribution of the photon density in a DCC + QWS DFB LD under
different injection currents.
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Figure 6.14 Longitudinal distribution of the refractive index in a DCC + QWS DFB LD under
different injection currents.

Owing to the effects of SHB, it is evident that the refractive index distri-
bution shows a larger dynamic range with increasing biasing current. On the
other hand, it is demonstrated in the threshold analysis that the DCC + QWS
laser structure is characterised by an improved threshold gain margin. As
a result, the single mode stability of this structure could be maintained.
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Figure 6.15 Longitudinal distribution of the normalised intensity in a DCC + QWS DFB LD
under different injection currents.

The above-threshold single mode stability of this structure will be discussed
further in the next chapter.

6.4.4 Distributed coupling coefficient with a three phase shift
(DCC + 3PS) DFB LD

It is shown that both the carrier and photon densities are flattened when
multiple phase shifts are introduced along the corrugation. Alternatively,
the use of non-uniform coupling coefficients improves the value of the gain
margin while a smaller value of « near the facets reduces the dynamic change
in the photon density.

In this section the above-threshold characteristics of the combined DCC
with 3PS structure will be investigated. On the basis of the 3PS laser
structure, a longitudinal variation in the coupling coefficient is introduced.
In the analysis, the DFB laser diode structure used was exactly the same
as the one presented in Chapter 5 with 63 = 64 = 65 = /3, CP = 0.39,
k1/k2 = 1/3 and ¢ = 0.5. Discontinuities associated with both the phase shift
and the corrugation change enhance the spontaneous emission and hence a
larger threshold current is expected. On the other hand, the potential and
the capability of the above-threshold model can be demonstrated from the
design of such a complicated device. Comparatively, the effect of the non-
uniform coupling coefficient is expected to dominate since « is one of the
major parameters associated with coupled-wave equations. Table 6.4 lists the
structural parameters used.
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Figure 6.16 Longitudinal distribution of the carrier density in a DCC + 3PS DFB LD under
different injection currents.

3.384r

DCC+3PS DFB LD loxly
L = 500 pm
Kayg = 4/Mmm ——gg
Iy, = 26.19 mA ——20 [
3.382 "\ e=15x10"cm co=e.d8 A
L]
AN il
N 77
<338k % \ /¢
E l.\ \\- -// N
2 .! -"-— - ’:
_ﬁ ‘\ — )
£33 N 7}
L] \ , ]
« “ -— - ""
. N~ K
- -

3.386

)
.
-

3.384 1 A 1 1

Zinum
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Table 6.4 Structural parameters used in the analysis
of the DCC+3PS DFB LD

Kavg = 4/mm

92 :93 =94 = JT;’S
CP =0.39

PSP =05

K1/k2 =1/3

Figures 6.16 and 6.17 show the variations in the spatially distributed carrier
density and refractive index with biasing current changes, respectively. It can
be seen from both figures that the uniform distribution of curves deteriorates
quickly when the biasing current increases from 2.5/.

6.5 SUMMARY

In this chapter the above-threshold characteristics of various DFB LDs were
investigated using a newly developed model based on the TMM. To take
into account any changes in the biasing current, the carrier rate equation was
included. In the analysis, multi-carrier recombination and a parabolic gain
model were assumed. To include any gain saturation effects, a non-linear
gain coefficient was introduced in the analysis. The algorithm used in the
model was developed in such a way so that, with minor modifications, it can
be applied to various laser structures.

The TMM based above-threshold laser model was applied to several DFB
laser structures, including the QWS, 3PS and the DCC DFB LDs. The QWS
DFB laser structure, which is characterised by its non-uniform field distri-
bution, was shown to have a large dynamic change in the spatially distributed
refractive index. Along the carrier concentration profile, a dip was shown at
the centre of the cavity where the largest stimulated photon density is found.

The field distribution in the QWS DFB LD can be improved by introducing
more phase shifts along the corrugation. In the analysis, a 3PS DFB LD with
6, =63y =64 =m/3 and PSP = 0.5 were used. As compared with the QWS
structure, uniform distributions were observed in the carrier density, photon
density and the refractive index profiles.

With an improved threshold gain margin, the above-threshold character-
istics of a QWS LD having non-uniform coupling coefficient were presented.
As compared with the QWS structure, the introduction of the non-uniform
coupling coefficient with k;/x; = 1/3 and CP = 0.46 induced an increase
in the localised carrier concentration near the corrugation change. We also
found a significant reduction in the photon density difference between the
central peak and the escaping photon density near the facet. Such a reduction
improved the single mode stability of the DCC + QWS structure. This will
be discussed in the next chapter.

The above-threshold lasing mode characteristics of a DCC + 3PS LD were
also shown. As compared with the multiple phase shifts laser structure, it
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was shown that the effect of the longitudinally varying coupling coefficient
becomes dominant when the biasing current increases. In the next chapter the
lasing mode characteristics obtained will be used to evaluate other charac-
teristics such as the gain margin, the spontaneous emission spectrum and the
spectral linewidth,
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ABOVE-THRESHOLD
ANALYSIS OF VARIOUS DFB
LASER STRUCTURES USING

THE TMM

7.1 INTRODUCTION

The above-threshold lasing characteristics of distributed feedback (DFB)
semiconductor laser diodes (LDs) were presented in the previous chapter
using a modified transfer matrix. Instead of using an average carrier
concentration, the inclusion of the actual carrier distribution allows
phenomena such as the spatial hole-burning effect (SHB) and the non-linear
gain to be included. In the analysis, a parabolic gain model and high-order
carrier recombination were assumed. The lasing mode characteristics such
as the longitudinal distribution of the carrier density, the photon density,
the refractive index and the internal field intensity were shown for various
laser structures. In this chapter we use results obtained from the lasing
mode characteristics to determine the mode stability and noise characteristics
of DFB LDs.

For a coherent optical communication system, it is essential that the LD
used oscillates at a stable single mode so that a narrow spectral linewidth is
achieved. Using the information obtained for the lasing mode characteristics, a
method derived from the above-threshold transfer matrix model is introduced
in section 7.2, which allows the gain margin to be evaluated. By introducing
an imaginary wavelength into the transfer matrix equation, the characteristics
of other non-lasing side modes, can be evaluated and hence the single mode
stability found. Numerical results obtained using this method are presented
in section 7.3.
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In section 7.4, an alternative method that allows the theoretical prediction
of the above-threshold spontaneous emission will be presented. On the basis
of the method of Green’s function, transfer matrices help to determine the
single mode stability of a DFB laser structure by inspecting the spectral
components of the oscillating modes.

The transfer matrix method (TMM) also allows the noise¢ characteristics
of the DFB LD to be evaluated. In section 7.5 we show that various
contributions to the spectral linewidth could be determined using the
information obtained from the above-threshold transfer matrices. In the
analysis, the effective linewidth enhancement factor [1] is used instead of the
material-based linewidth enhancement [2]. Using a more realistic effective
linewidth enhancement factor, impacts caused by structural changes can be
investigated in a systematic way.

7.2 SINGLE MODE STABILITY IN A DFB LD

Using the TMM based above-threshold laser cavity model presented in the
previous chapter, distributions of the carrier density, the photon density, the
refractive index and the normalised internal field intensity were obtained
from various DFB laser structures. From the emitting photon density at
the facet, the output optical power is evaluated. Figure 7.1 summarises the
results obtained for quarterly wavelength shifted (QWS), three phase shift
(3PS) and distributed coupling coefficient with quarterly wavelength shifted
(DCC + QWS) LDs with the biasing current as a parameter. Within the

14— e QWS, /i = 19.79 mA

- — = 3PS, /n=2182mA s
,
2 cea.. DCC+QWS, /in = 21.41 mA ’
- L =500um ',
10l e =4/mm '
£=15x102m? £

Optical output power (mW)
(=]
1

0 RN S SR NN S N B | R R T |
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Figure 7.1 Variations in the optical output power versus /Iy, for three different types of DFB LDs.
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range of the biasing current that we are interested in, no kink is observed in
all three cases. Compared with the QWS structure, it seems that the intro-
duction of multiple phase shifts along the 3PS laser cavity increases the
overall cavity loss. It is also shown in the figure that the 3PS laser structure
having the largest amplitude threshold gain has a relatively larger value of
the threshold current. Among them, both the 3PS and the DCC + QWS struc-
tures appear to have relatively larger output power under the same normalised
biasing current.

Semiconductor lasers having stable single longitudinal outputs and narrow
spectral linewidths are indispensable in coherent optical communication
systems. With a built-in wavelength selective corrugation, a DFB LD has
a single longitudinal output. Other oscillation modes that fail to reach the
threshold condition become non-lasing side modes. As the biasing current
increases, the SHB effect becomes significant and mode competition between
the lasing mode and the most probable non-lasing side mode may occur. Mode
competition was observed from a QWS DFB laser [3-5], which resulted in
multiple mode oscillations as the biasing current increased. In this section
a numerical method that allows theoretical prediction of the above-threshold
single mode stability of DFB LDs will be presented. In the analysis, it is
assumed that the detailed lasing mode characteristics have been obtained
from the above-threshold TMM, as discussed in the previous chapter.

Single mode stability implies suppression of the non-lasing side modes.
There are two possible ways to demonstrate single mode stability in DFB
LDs. The first approach involves evaluating the normalised gain margin AaL
between the lasing mode and the probable non-lasing side modes. The single
mode stability is said to be threatened if the gain margin, Aa, drops below
5/cm for a 500 um length laser cavity. An alternative way to check the
stability of the device involves the measurement of the spectral character-
istics. With the help of an optical spectrum analyser, the measured intensity
difference between the lasing mode and the side modes will give single mode
stability. The second approach is often used to measure the single mode
stability of DFB LDs. In this section we concentrate on the first approach
which leads to the evaluation of the above-threshold gain margin.

From the numerical method discussed in the previous chapter, the oscil-
lation characteristics of the lasing mode were obtained at a fixed biasing
current. By dividing the DFB laser into a large number of smaller sections,
longitudinal distributions like the carrier and photon densities were deter-
mined. Since the laser cavity is now dominated by the lasing mode, the
characteristics of other non-lasing side modes should be derived from the
lasing mode. To evaluate the characteristics of other non-lasing side modes,
the dominant lasing mode has to suppressed in a mathematical way. In the
analysis, an imaginary wavelength A; is introduced [6]. As a result, the
complex wavelength A, of an unknown side mode becomes

Ac = A+ jAj (7.2.1)
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where A; takes into account the mathematical gain the side mode may need
to reach its threshold value and A becomes the actual wavelength of the side
mode. By changing the values of both A and A;, the wavelengths of other
non-lasing side modes can be evaluated

The numerical procedure involved in determining the characteristics of

other non-lasing side modes is summarised as follows:

(1

(2)

3

C))

(5)

(6)

(7

A numerical procedure similar to the one discussed in section 6.2 is
adopted. To initialise the iteration process, a 5 x 5 mathematical grid
which consists of (A, ;) is formed. Each of the (A, A;) points will be
used as an initial guess. Since the most probable non-lasing side mode
is usually found near the lasing mode, it is advisable to start with those
wavelengths that are close to that of the lasing mode.

Lasing mode characteristics like the longitudinal distribution of the
carrier, the photon density and the refractive index are retrieved from the
data files obtained earlier. The matrix elements of each transfer matrix
are then determined.

From the boundary condition at the left facet, the electric fields Eg(z;)
and Es(z)) at the left facet are found and serve as the input electric field
to the transfer matrix chain.

By passing the electric field through the transfer matrix chain, the output
electric field at the right laser facet is determined. The discrepancy with
the right facet boundary condition is then evaluated and stored.

Steps (2)-(4) are then repeated with other pairs of (A, A;) obtained from
the 5 x 5 mathematical grid. By comparing the discrepancy obtained
from each of the (A, 4;) pairs, the one showing the minimum discrepancy
is then selected. Depending on the position of the selected (A, A;) found
on the mathematical grid, a new mathematical grid is formed ready for
the next iteration.

The procedures shown above are then repeated until the discrepancy with
the right facet boundary condition falls below 10~'#. The final A obtained
becomes the non-lasing side mode and the distributions of the amplitude
gain «(z) and the detuning coefficient §(z) are stored.

The average values of @gy and Ssum associated with the side mode are
evaluated from the corresponding longitudinal distribution as

N
asm =y _a;/N (7.2.2)
j=1

N

dsm =) _8;/N (7.2.3)
where «; and §; (j =1 to N) are the amplitude gain value and the
detuning value obtained from each transfer matrix, respectively, and N
is the total number of transfer matrices.
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(8) The whole numerical procedure can be repeated for other non-lasing side
modes. All @sy obtained are then sorted in increasing order. The one
showing the smallest value becomes the most probable side mode. The
characteristics of the new dominant lasing mode must be loaded every
time a new injection current is used.

From the result obtained, the gain margin between the lasing mode and
the most probable non-lasing side mode can be evaluated as

Aa = ap — asy (7.2.4)

To maintain a stable single mode oscillation, we need Aal > 0.25 for a
500 um length laser cavity.

7.3 NUMERICAL RESULTS ON THE GAIN MARGIN OF DFB LDs

In this section we present the numerical results obtained from various DFB
LDs including QWS, 3PS and DCC + QWS laser structures. Figure 7.2 shows
the characteristics of the lasing mode (0) and side modes (1) in the (5L, @L)
plane. In the analysis, an anti-reflection coated QWS DFB structure with kL =
2 is assumed for a 500 um length cavity. For each oscillating mode shown in
Figure 7.2, the cross and the black circle correspond to the oscillating mode at
threshold and at 5/, respectively. When the biasing current increases from
the threshold value, an increase in the lasing mode amplitude gain and a
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Figure 7.2 Lasing characteristics for the QWS DFB laser structure in the (5L. &L ) plane showing
two values of the normalised injection current.
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Figure 7.3 Average amplitude gain &L of the QWS DFB laser structure versus the normalised
injection current. Results for the lasing and non-lasing side modes (+1) are shown.

corresponding reduction in the gain margin between the lasing mode and the
+1 side mode can be seen. Such a phenomenon is well known to be induced
by the SHB effect [5].

Figure 7.3 shows the normalised amplitude gain change in the QWS DFB
LD with respect to the biasing current. The amplitude gain distribution for the
lasing mode as well as for the non-lasing side modes are shown. It is obvious
that the @L value of each mode varies in a different way. When the biasing
current increases from threshold, it is clear that the amplitude gain of the +1
mode reduces remarkably and approaches that of the lasing mode. However,
the amplitude gain of the —1 mode becomes larger and hence becomes less
significant. In Figure 7.4, for the same QWS structure, the variations in the
normalised detuning coefficient 8L are shown. In such a strongly coupled
LD, both the lasing mode and the +1 side mode shift towards the shorter
wavelength side (negative L) with increasing biasing current. Among the
different modes shown, the shift in the lasing mode is stronger since it is
found closer to the gain peak.

With multiple phase shifts introduced along the corrugation, the character-
istics of the 3PS structure are as shown in Figure 7.5. In the analysis, the 3PS
DFB is assumed to be anti-reflection coated. Phase shifts 0 = 6; = 6, = /3
and position factor ¥ = 0.5 (see equation 5.2.3) are assumed for the 500 um
long cavity. Compared with the QWS structure, the 3PS structure shows a
smaller shift in the mode characteristics. This will be clear when the varia-
tions in both the amplitude gain and the detuning coefficient are shown as
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Figure 7.5 Lasing characteristics of the 3PS DFB laser structure in the (3L, @L) plane showing

values of the normalised injection current.
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Figure 7.6 Average amplitude gain @L for the 3PS DFB laser structure versus the normalised
injection current. Results for the lasing and the non-lasing side modes (1) are
shown.
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Figure 7.7 Average detuning coefficient 3L of the 3PS DFB laser structure versus the normalised
injection current. Results for both the lasing and the non-lasing side modes (+1) are
shown.
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functions of the normalised injection current. From Figure 7.6, where the
amplitude gain change is shown, the injection current alters the oscillating
mode in a different way. It can be observed that the gain margin between
the lasing mode and the most probable side mode (+1) shows little change.
A similar situation can be seen in Figure 7.7, where the variations in the
detuning coefficient are demonstrated. The lasing mode shown has a milder
shift with increasing biasing current. On combining the results from both
Figures 7.6 and 7.7 it appears that the 3PS laser structure is not seriously
affected by the SHB effect. No severe reduction in the gain margin and only
a fairly mild shift in the detuning coefficient are observed.

Results obtained from a DCC + QWS laser structure for the lasing
characteristics, amplitude gain and the detuning coefficient are shown in
Figures 7.8-7.10, respectively. A 500 um length cavity is assumed. The
other parameters used follow those adopted in the TMM based laser model
discussed in the previous chapter. These parameters include k) /x> = 1/3,
Kavgl = 2 and CP = 0.46. Owing to the effects of SHB, all figures appear to
have a similar trend in the shape of their curve. However, the single mode
stability in the DCC 4+ QWS structure is improved owing to the presence of
the DCC. As shown in Figure 7.9, the amplitude gain difference between the
lasing mode and the +1 mode remains at a high value even at a high biasing
current.

Figure 7.11 shows the normalised gain margin (A«L) between the lasing
mode and the most probable side mode. Results obtained from QWS, 3PS and
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Figure 7.8 Lasing characteristics of the DCC + QWS DFB laser structure in the (5L, @L) plane
showing two values of the normalised injection current.



186  ABOVE-THRESHOLD ANALYSIS OF VARIOUS DFB LASER STRUCTURES

4 — DCC+QWSDFBLD
L =500 um
K = 4/mm
s e=15x102m°
Ag=1.55 um
y=05
. 3 ly=21.41mA I
11
§ 25
é 2 +1 mode
§- 15
2 lasing mode
1
0.5
o | 1 ! | ! J
1 2 3 4

Normalised injection current ///y,

Figure 7.9 Normalised amplitude gain @L of the DCC + QWS DFB laser structure versus the
normalised injection current. Results for both the lasing and the non-lasing side
modes (£1) are shown.
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Figure 7.10 Normalised amplitude gain 3L of the DCC + QWS DFB laser structure versus the
normalised injection current. Results for both the lasing and the non-lasing side
modes (1) are shown.
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Figure 7.11 Variation in the gain margin with respect to changes in the injection current for
different DFB LD structures.

the DCC + QWS structures are shown. The gain margin of both the QWS
and the DCC + QWS structures reduce when the biasing current increases.
From the above-threshold analysis, these structures were characterised by an
intense electric field located at the centre of the cavity, and hence are affected
by SHB. Nevertheless, the DCC + QWS laser structure can maintain the gain
margin at a sufficiently high level, even under large biasing conditions. On
the contrary, the gain margin of the 3PS shows little change over the range of
biasing current. In all three cases the most dramatic change in the gain margin
occurs when the biasing current is still close to that of the threshold value.
At this biasing current, the photon density (as shown in the previous chapter)
is still fairly uniform and the non-linear gain effect is still far from mature. It
is believed that it is the dominant SHB effect that alters the characteristics of
the oscillating modes. When the biasing current increases, the average photon
density inside the laser cavity increases and so does its value found along
the plane phase or corrugation discontinuities. Under such a high current
injection, the non-linear gain effect becomes dominant.

A change in the lasing wavelength with respect to the injection current
change is shown in Figure 7.12. Results obtained from the QWS, 3PS and
the DCC + QWS structures are also shown. Among them, the 3PS structure
shows relatively minor changes (~ 0.07 nm) with the biasing current. The
introduction of multiple phase shifts along the corrugation suppresses the SHB
effect to such an extent that the injection current hardly changes the refractive
index and hence a less gradual change in the lasing wavelength is obtained.
With such a stable output, it appears that the 3PS structure has potential use
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Figure 7.12 Variation in the lasing wavelength with respect to the injection current for different
DFB LD structures.

as an optical carrier. On the contrary, structures like the DCC + QWS show
a larger dynamic change in the lasing wavelength. A single mode continuous
tuning of about 0.16 nm is achieved. It appears that this structure has potential
application in the WDM optical network.

7.4 ABOVE-THRESHOLD SPONTANEOUS EMISSION SPECTRUM

By measuring the mode intensity difference from the spectrum, single mode
stability can be determined. A minimum side mode suppression ratio of 25 dB
is necessary for a stable single mode [7]. With the help of the method using
Green'’s function, as discussed in Chapter 4, the above-threshold spontaneous
emission spectrum can be evaluated using the transfer matrices. From the
output of an individual transfer matrix, the contribution due to the distributed
noise source is found.

From equation (4.4.8) in Chapter 4, the spontaneous emission power
emitted for unity bandwidth (Aw = 1) at the right laser facet of an N-section
mirrorless DFB laser cavity could be expressed in terms of the elements of
the overall transfer matrix as

he 1
Pn(ive) = —

N+ 5 5
: m/ nspglly22(zlz)I° + Iym2(zl21))7] dz
y22(zn+112

2l
(7.4.1)
where y23(zy+1)z1) is a matrix element obtained from the overall transfer
matrix Y(zy+1)z1) while y22(z|z;) and y)2(z|z;) are elements of the matrix
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Y(z|zy) at arbitrary z. In the above equation, ng, is the local population
inversion factor which is usually approximated as [8]

nsp(z) = N(2)/(N(z) — No) (7.4.2)

with N being the carrier concentration at zero gain transparency. In equation
(7.4.1), the material gain term g becomes longitudinally dependent at the
above-threshold biasing regime. In cases of below-threshold and at-threshold
biasing conditions, a uniform distribution is expected. Using a sufficiently
large number of transfer matrices, a numerical method such as the trapezoidal
rule was applied to evaluate the above integral. As a result, the above integral
can be approximated as

N+ ) AL Y
[ nepslivalant + yalPlde = S 37100) + QG + 1)
H| Jj=1
(7.4.3)
where  Q(j) = ngp(2;)8(z)) [1y22(zlz)I* + Iyi2(z51z0)1°], N is the total
number of transfer matrix used and AL = L/N is the length of each transfer
matrix represented. From the matrices the matrix elements y»2(z;|z;) and
v12(zjlz1) at an arbitrary matrix output plane of z =z, can always be
determined from those at z =z as

[:;1 ylz]t:;l:n= fn fIZ] _{.\'11 .\:12] (1.4.4)
ya oy fa f2lg ) L y2)e e

where f;;(i, j = 1, 2) are the matrix elements of the transfer matrix F. When
the biasing current increases, it is shown in the QWS DFB laser structure that
the gain margin reduces significantly and the non-lasing side mode becomes
significant. Mode competition is also revealed from the above-threshold
spontaneous spectrum. Figure 7.13 shows the spectral characteristics of the
QWS DFB laser structure with biasing current changes. In the analysis, a
unity bandwidth is assumed. Along a fixed biasing current, distinct peaks can
be seen along the spectrum which correspond to different oscillating modes.
The lasing mode shown near 1546.85 nm becomes the lasing mode after the
threshold condition is reached. When the biasing current increases, it can
be seen that all peak wavelengths shift towards the shorter wavelength. The
so-called “blue shift” in the wavelength follows the change in material gain
with carrier concentration which has been demonstrated experimentally using
a QWS DFB LD [9]. Apart from that, a reduction in the spectral amplitude
difference is also shown between the lasing mode and the +1 mode which
is located at the shorter wavelength side. At a biasing current of 5/, the
side mode suppression ratio (SMSR) is reduced to less than 25 dB. At such
a SMSR value, the stability of the single mode oscillation is weakened and
the presence of the +1 mode becomes significant in the case of a QWS DFB
LD [10].

Figure 7.14 shows the spontaneous emission spectrum of a 3PS DFB LD.
In the analysis, the 3PS laser structure used has phase shifts #; = 6; = 6; =



190 ABOVE-THRESHOLD ANALYSIS OF VARIOUS DFB LASER STRUCTURES

9
10 QWS DFB LD 1= % I
L =500 pm -_ 20
. x=4mm' 0 —m—— 10
10 W= 17T mA e 40
£=1.5x10""em - 50

Normalised spontaneous emission spectrum

10" po ot e bega s by gyl
15455 1546 1546.5 1547 1547.5 1548

wavelength in nm

Figure 7.13 Normalised spontaneous emission spectra of a QWS DFB LD.
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Figure 7.15 Normalised spontaneous emission spectra of a DCC + QWS DFB LD.

/3 and PSP = 0.5 is assumed. The other parameters used are listed in the
inset. Similar to the QWS laser structure, distinct peaks that correspond to
different oscillating modes are observed along the spectrum. When the biasing
current increases, the spectral amplitude of the dominant lasing mode found
near 1546.6 nm shows no sign of a reduction and remains at a high value
near 10%. Compared with the QWS structure, the 3PS laser structure shows
no severe mode competition and a SMSR of at least 25 dB is maintained
throughout the range of biasing current.

The spectral characteristics of a DCC DFB LD with a single QWS are
shown in Figure 7.15 under various biasing conditions. At a fixed biasing
current, the central peak shown corresponds to the dominant lasing mode.
Owing to the introduction of the DCC, mode competition has been reduced
significantly with an improved SMSR between the lasing mode and the most
probable non-lasing side mode [11]. Compared with the QWS and the 3PS
LD, the DCC + QWS laser structure appears to have a more stable single
mode oscillation and a SMSR of at least 35 dB.

7.5 SPECTRAL LINEWIDTH

In coherent optical communication systems it is important that the
semiconductor laser LDs have narrow spectral linewidths. The finite spectral
width measured at the output of a semiconductor laser [12] is the result
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of spontaneous emission [13] which alters both the intensity and the
phase components of the lasing mode. The mutual coupling between the
intensity and the phase has been included by using an intrinsic linewidth
enhancement factor, ay [13]. Using the self-heterodyne method [14], the
spectral linewidths of DFB LDs were measured [15]. Without including
the SHB effect, their formulae, which is based on the ay failed to predict
the actual spectral linewidth when the biasing current increased. To obtain
a more accurate linewidth prediction and hence a better understanding of
the linewidth saturation and rebroadening effects [16,17], formulations based
on an equivalent circuit theory were proposed [18,19]. On the basis of the
scattering parameters commonly used in microwave engineering, the spectral
linewidths of DFB LDs were determined. However, it is not straightforward
to compare this approach with the carrier rate equation widely adopted in
semiconductor lasers. Moreover, these analyses are only concerned with the
above-threshold spectral linewidth and there is no formulation for any of the
other characteristics. Another theory based on the open resonator has also
been proposed [20]. Using the method of Green’s function, the spontaneous
emission rate and hence the spectral linewidths of DFB LDs were determined
[21-24]. In this analysis the effective linewidth enhancement factor () was
considered; however, the analysis was limited to simple DFB laser structures.
For complicated designs like the 3PS and DCC laser structures, it would be
difficult to find the Green’s function because of the mathematical complexity
involved. In this section, results obtained from the TMM will be applied to
evaluate the noise characteristics of the DFB LD. The linewidth formulae
we have adopted are those obtained by Trombrog et al. [21,25]. The spectral
linewidth (Av) for a single frequency semiconductor laser is given as

where Aug, is the contribution owing to the spontaneous emission, Aunn is
the contribution due to the fluctuation of the local carrier density and Auns
is due to the cross-correlation term between the fluctuation of the photon
number and the carrier density. In the analysis a nearly single mode laser
source is assumed and the effects due to the presence of other non-lasing
side modes [26,27] have been ignored. For spontaneous emission, it is clear
that [20]

RSP 2

where Ry, is the spontaneous emission factor, a.s is the effective linewidth
enhancement factor and Py, is the total number of photons found inside the
DFB laser cavity.

According to Henry [20], the spontaneous emission rate Ry, of an open
re:;onator like the DFB LD can be expressed in terms of the field intensity
|E“(2)| as
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402 / nepgn|E (z)ldz-/:I ngn|E*(z)| dz
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where ngp, is the population inversion factor, g is the material gain, n is
the refractive index, ng is the group refractive index and dW /dw is the
derivative of the Wronskian term. According to equation (4.4.16), dW /dw
can be expressed in terms of the transfer matrix such that

L Oy . dyi2 .. dyn

3)’22+r r -nr
%0 lﬁw 23(1) 1230)

aw

— = -2jBoE 754

™ JBoER(zn+112) [ ] (7.5.4)
Owing to the fact that the matrix Y(zy41(z1) = F¥ . FN-D . F¥-2).. . F@.
F, where F') (j = 1 to N) is the transfer matrix of each smaller subsection,
we can define 3Y(zy41/21)/0w as

Y (zv+11z1) _ [dyn /0w  dy12/dw 15.5)
dw T 921/ dyn/dw -
where
Y (zn+1lz1)  OFM _ .
— _F(N l)_FIN 2}_”F(2]_Fll)
o ™ + +
F(N) .F(N—l] . F(N-Z]_”FIZ] . 3;:)“ (7.5.6)

The individual transfer matrix dF")/dw (i = 1 to N) is then obtained as

aF®O  [3f\])/0w af)/dw
- [af‘;.’/aw af‘;z’/aw] 737
where
Af 11 /80 = — je P BISPOK 1) fve (1 — piy* vy (7.5.8a)

Af 5/ = je P Zar+t8de=1ie 1K 5 /v (1 = piy*) vy (7.5.8b)
3f 51 /0w = — je TP+ BIeMire/ UK 5 vy (1 - piy*Vyiy  (7.5.8¢)

Af 53 /0w = jelPoBIe=IPK 3 /ve(1 — piy2) Vi (7.5.8d)
with
Kay=(1- P(z.‘))(E(n + Py Ea) ey — j8i)(Az) — 2p0(Eiy — E))
(7.5.9a)

K@) = piy(1 = piy’ N Ey + Eqy” ey — j8i)(A2)
- oy (1 + pi)(Ewiy — Eiy™") (7.5.9b)



194  ABOVE-THRESHOLD ANALYSIS OF VARIOUS DFB LASER STRUCTURES

K@y = (1= pi NEG + ptyEi)ad) — jdiy)(Az) — 295 (Eiy — E))
(7.5.9¢)
Py = jkay/(@uy — jday + Yay) (7.5.9d)
}’(” (a{tl — J'a(r)) + K(,) (7.5.9¢)
E ) = e/Y0i: (7.5.9f)
E(_'}l = e~ Jrid: (7.5.9g)

In the above equations, Az is the length of each transfer matrix represented.
For a mirrorless DFB laser cavity with 7, = r, =0 the spontaneous
emission rate Ry, in equation (7.5.3) is simplified to become

IN+1 ) IN+1 2
4An / gn|E (z)ldz-f n|E“(z)|dz
P .= 2l (7.5.10)

VgA2 |y12 - dy22/0w|?

sp =

where v, is the group velocity. The denominator |y; - Ziy;»,z/iiwl2 in
equation (7.5.10) is determined using the transfer matrices after following
equations (7.5.5)-(7.5.9). Other integrals shown in the numerator can be
found numerically from discrete sets of n(z;) and g(z;), and |E%(z)| (i = 1
to N + 1) are obtained from the above-threshold lasing cavity model as
discussed in the previous chapter.

The effective linewidth enhancement factor a.g used in the spontaneous
emission linewidth is different from the intrinsic material linewidth
enhancement factor [13,28]. By considering the effects due to the structural
change [29] as well as the photon and carrier distributions [30-32], the
effective linewidth enhancement factor is given as [25]

et = Im{X}/ Re{X) (7.5.11)

where

el 3R
X = f " [chN-—sl—cs] dz (1.5.12)

In the above equation, 7y = d(R + Ry)/0N is the carrier recombination
lifetime that includes spontaneous emission, stimulated emission and other
non-radiative recombination; S is the photon distribution of the lasing mode.
The parameter 9dR/0S is the rate of stimulated emission (5") and is
defined as

IR ve&
=88 _(1+es-5 75.13
s~ (1+ S)"-( R (7219




SPECTRAL LINEWIDTH 195

The weighted functions Cy and Cs used in equation (7.5.12) are defined
as [21]

veE2(2) Jay

cnr= D (1, o)
N( ) /w..,; EZ dz 1+ ES(Z]
bl
.Ao—ZApﬁz[l—lu'f‘Az(N(Z)_Nn)] (7.5.14a)
2(1 + £5(2)) o
2 —iol>

Cs(x) = —2E @ J8(2) (7.5.14b)

IN+1 ’ -})2
-/ E2 dz 2(1 + £5(2))
2
where the intrinsic linewidth enhancement factor (aryy) can be expressed as

47 on/oN
W= i Ao
From the set of discrete values E(z;) (i =1 to N + 1) obtained from the
TMM, the integral in both equations (7.5.14a) and (7.5.14b) is obtained and
hence the value of a.g can be evaluated. In a similar way, the total number
of photons inside the laser cavity can be found as

(7.5.15)

Poum = E/M Sdz (7.5.16)
r J;
where the integral is found numerically from the discrete set of S(z;) (i =1
toN+1).

There are other components, Auyn and Auns, which contribute to the
spectral linewidth as well. Suppose we define the local frequency tuning
efficiency Ky, as

Kin(2) = tn(2){Im (Cn(2)) — aesf Re (Cn(2))) (7.5.17)
With no pump noise suppression, Auyy and Auns can be written as
1 IN+1 5
AVin = — i (nspvegS + R + RyK |, dz (7.5.18)
R IN+1
AVys = 22t / " SKipdz (7.5.19)
P pum 2

where the integrals can be determined numerically using the discrete infor-
mation provided by the TMM.

On the basis of the lasing mode characteristics obtained from the TMM
of a DFB LD, sets of discrete values obtained on the carrier distribution, the
photon distribution and refractive index distribution are applied in evaluating
the spectral linewidth. The use of a transfer matrix enables spatially dependent
factors such as the SHB effect and other longitudinally dependent parameters
to be included in the analysis.
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7.5.1 Numerical results on the spectral linewidth

For a QWS laser structure, the variations in the spectral linewidth with respect
to the biasing current are shown in Figure 7.16. Changes in various compo-
nents, including Avgp, Aunn and Avys, are also shown. In the analysis, a
500 pm long cavity and kL = 2.0 are assumed. The other parameters used
are listed in the inset of the figure. When the biasing current is still close to
the threshold value, the dominant spontaneous emission remains the major
contributor. When the biasing current increases, the value of Avg, decreases
dramatically, owing to the dominant stimulated emission, and the contribution
of Aunn becomes significant. Comparatively, the magnitude of Aung remains
at a small value and can be neglected throughout the range of biasing currents.

By introducing multiple phase shifts along the corrugation of the laser
cavity, a 3PS DFB LD is characterised by a relatively uniform field
distribution and a reasonably stable single mode oscillation. Figure 7.17
demonstrates the variations in the spectral linewidth in a 3PS DFB LD.
All structural parameters used in the analysis are identical to those for the
QWS DFB laser except the phase shifts, which are assumed to be m/3
and PSP = 0.5. Compared with the QWS laser structure, the 3PS DFB LD
shows a broader spectral linewidth under the same biasing condition. It was
revealed in the threshold analysis that the 3PS DFB LD has a relatively
larger amplitude threshold gain. As a result, a larger threshold current and
hence a larger number of injected carriers are required before the threshold

Av,
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Figure 7.16 Variations in the spectral linewidth with respect to injection current for a QWS
DFB LD.
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Figure 7.17 Variations in the spectral linewidth with respect to the injection current for a 3PS
DFB LD.

condition is reached. In other words, a larger spontaneous emission rate, and
consequently a larger Avp, is expected. With increasing biasing current, the
contribution of Auvgp, is reduced and the Aunn becomes influential.

By adopting a longitudinally dependent coupling coefficient «, the gain
margin and the field uniformity of the DCC 4+ QWS DFB LD were shown
to improve. Continuous tuning as far as 0.16 nm can be achieved with fairly
stable single mode oscillations. The variations of the spectral linewidth of
such a DCC 4+ QWS structure are shown in Figure 7.18. In the analysis, we
have used those structural parameters as presented in the previous chapter
with x1/k2 = 1/3. A cavity length of 500 um is assumed with ka L = 2.
Compared with other structures, the introduction of the longitudinally DCC
is characterised by an overall increase in Avgp. The changes in the coupling
coefficient along the corrugation result in an increase in the amplitude
threshold gain and hence the spontaneous emission rate. Compared with the
QWS structure, the influence of Auyn becomes significant in the case of
the DCC structure. When the biasing current increases, it is shown in the
carrier density distribution that the carrier density increases near the plane of
corrugation change. As a result, a stronger local carrier fluctuation is expected
in this structure. With a further increase in the biasing current, the saturation
of Aunn may be a result of the non-linear gain effect. It is useful to mention
that the validity of the TMM technique used to evaluate the spectral linewidth
has been confirmed with experimental data reported for a single 7/2 DFB
laser structure [32].
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Figure 7.18 Variations in the spectral linewidth with respect to the injection current for a DCC +
QWS DFB LD.

7.6 SUMMARY

In this chapter we applied the TMM based above-threshold model to evaluate
the performance of various DFB LDs, including the QWS, 3PS and the
DCC + QWS structures. From the lasing mode distributions of the carrier
density, photon density, refractive index and the field intensity, character-
istics like the single mode stability, the spontaneous emission spectrum and
the spectral linewidth have been investigated. Throughout the analysis, all
laser structures adopted are assumed to have a laser cavity length of 500 um
with kL or kgL = 2. Table 7.1 summarises the results obtained for all three
structures at a fixed biasing current of 4/y,.

Table 7.1 Summary of results obtained from three DFB laser structures
used at a biasing current of 4/,

Qws 3PS DCC + QWS

In (MA) 19.79 21.82 21.41
Power (mW) 10.79 13.13 13.10
Aal 0.1863 0.2452 0.8129
SMSR (dB) 22 28 45
Tuning range (nm) 0.14 0.07 0.16
Auvoral(MHZ) 27.04 44.57 64.28
Avgp(MHZ) 12.51 30.78 26.90

Auvnyn(MH2) 13.19 12.71 33.55
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At a fixed biasing current, it was shown that the QWS structure showing
the smallest threshold gain has the smallest spectral linewidth. However, this
structure has a very poor single mode stability and the +1 non-lasing side
mode becomes influential when the biasing current increases. From Table 7.1.
the 3PS structure is shown to have one of the smallest changes in the lasing
wavelength. With the introduction of multiple phase shifts along the corru-
gation, the internal field distribution becomes more uniform and hence a
stable single mode oscillation results. Results obtained from the DCC + QWS
structure show the largest gain margin. The introduction of the DCC has
improved the single mode stability in such a way that the SMSR remained
at a high value. A single mode continuous tuning as wide as 0.16 nm is
achieved using the DCC + QWS laser structure. In this chapter, we showed
that the complexity in the design of the DFB laser is apparent and it may
well be that different designs are required for various applications. On the
other hand, the TMM has proven to be a useful tool in handling such a
problem.
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8.1 CONCLUSIONS

In this book the performance characteristics of distributed feedback (DFB)
semiconductor laser diodes (LDs) have been investigated. As discussed in
Chapter 1, these lasers can be used as optical sources and local oscillators
in coherent optical communication networks in which a stable single
mode (in both the transverse plane and the longitudinal direction) and a
narrow spectral linewidth become crucial. On the basis of the interaction
of electromagnetic radiation with a two-energy-band system, the operating
principles of semiconductor lasers were reviewed in Chapter 2. With partially
reflecting mirrors located at the laser facets, a Fabry-Perot (FP) laser forms
the simplest type of optical resonator. However, owing to the broad gain
spectrum, multi-mode oscillations and mode hopping are common in this
type of laser. Nevertheless, single longitudinal mode operation becomes
feasible with the use of a DFB LD. The characteristics of the DFB laser
were explained using the coupled-wave equations. With a built-in periodic
corrugation, travelling waves are formed along the direction of propagation in
which a perturbed refractive index and/or gain are introduced. In fact, DFB
lasers act as an optical bandpass filter so that only frequency components
near the Bragg frequency are allowed to pass. The strength of the optical
feedback is measured by the strength of the coupling coefficient. Based
on the nature of the coupling coefficient, DFB semiconductor lasers can
be classified into purely index-coupled, mixed-coupled and purely gain- or
loss-coupled structures.

The discussion focused on the coupled-wave equations in Chapter 3. In
the analysis, eigenvalue equations were derived for various structural config-
urations, and consequently their threshold currents and lasing wavelength
were determined. From the lasing threshold characteristics, impacts due to
the coupling coefficient, the laser cavity length, the facet reflectivities, the
residue corrugation phases and the phase discontinuities were discussed in
a systematic way. With a single m/2 phase shift introduced at the centre of
the DFB cavity, the quarterly wavelength shifted (QWS) DFB LD oscillates
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at the Bragg wavelength. However, owing to a non-uniform field distri-
bution, the single mode stability of this structure deteriorates quickly when
the biasing current increases. On the basis of a five-layer separate confinement
heterostructure (SCH), the coupling coefficient of a trapezoidal corrugation
was computed from which the coupling coefficients of other corrugation
shapes, like the triangular and rectangular gratings, were also evaluated [1].

In Chapter 4 the idea of a transfer matrix (TM) was introduced and
explored. Compared with the boundary matching approach in deriving the
eigenvalue equation, the transfer matrix method (TMM) is more robust and
flexible. By converting the coupled-wave equations into a matrix formation,
the characteristics of a corrugated DFB laser section can be represented by a
2 x 2 matrix. This approach was extended to include phase discontinuity and
the effect of residue reflection at the facets. By modifying the elements of
the TM, TMM can also be used to represent other planar and corrugated
structures including passive waveguides, the distributed Bragg reflector
(DBR) and planar FP sections. Using the TMs as building blocks, a general
N-section laser cavity model was constructed and the threshold analysis
for such a laser model was discussed. With perfectly matched boundaries
between consecutive TMs, the number of boundary conditions was reduced
significantly. Only the boundary condition located at the laser facet remains to
be matched. As compared with the eigenvalue equation, the TMM simplified
the threshold analysis dramatically. In a similar way, the TM was also
implemented to evaluate the below-threshold spontaneous emission power
spectrum, Pn. By combining the Poynting vector with Green’s function
method, numerical results obtained from the three phase shift (3PS) DFB
LD were presented and the structural impact on the spectral behaviour
discussed [2].

In revealing the potential use of the TMM in the practical design of DFB
LDs, the threshold analysis of various DFB laser structures, including the
3PS [3] and distributed coupling coefficient (DCC) [4], were carried out in
Chapter 5. In an attempt to minimise the spatial hole-burning (SHB) effect
and hence improve the maximum available single mode output power, it is
necessary that a stable single longitudinal mode (SLM) LD shows a high
normalised gain margin (AaL) and a uniform field intensity (i.e. a small
flatness value, F). On the basis of the lasing performance at threshold,
selection criteria were set at AaL > 0.25 and F < 0.05 for a 500 um length
laser cavity. Using these optimised structures, the complexities with respect to
the design of DFB lasers may be reduced. By changing the value of the phase
shifts, the coupling coefficient and their corresponding positions, results such
as the gain margin (AaL) and the uniformity of the field distribution (F) were
presented. A conventional single QWS DFB was selected for comparison
purposes. This structure is characterised by an intense electric field at the
centre of the cavity. With the introduction of multiple phase shifts along the
laser cavity, a 3PS DFB LD with three /3 phase shifts and a position factor
of 0.5 falls within the selection criteria of AaL and F. In an alternative
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approach, the introduction of the DCC also appears to be promising. An
improvement in the gain margin was shown for a DCC+QWS DFB laser
structure with a coupling ratio of x;/k2 = 1/3 and a corrugation change
at 0.46. Despite the fact that the flatness of this design does not match the
requirements of the selection criteria, a high gain margin and oscillation at the
Bragg wavelength still count as an advantage in the DCC DFB laser design.

The N-section laser cavity model was used to determine both the threshold
and the below-threshold performance of DFB LDs. However, the TMM
used had to be modified when the stimulated emission became dominant
in the above-threshold biasing regime. In Chapter 6, a new technique [5]
which combines the TMM with the carrier rate equation was introduced.
In the model, multiple carrier recombination and a parabolic gain model
were assumed. To include any gain saturation effects, a non-linear gain
coefficient was introduced. The algorithm needed no first-order derivative
and was developed in such a way that with minor modifications, the same
algorithm could be applied to various laser structures. The TMM based
above-threshold laser model was applied to several DFB laser structures
including the QWS, 3PS and the DCC DFB LDs. The QWS DFB laser
structure, which is characterised by its non-uniform field distribution was
shown to have a large dynamic range of spatially distributed refractive index.
Along the carrier concentration profile, a dip was shown at the centre of
the cavity where the largest stimulated photon density was found. By intro-
ducing more phase shifts along the corrugation, results from a 3PS DFB LD
with 6, = 63 = 04 = /3 and PSP = 0.5 were presented. Uniform distribu-
tions were observed in the carrier density, photon density and the refractive
index profile. With an improved threshold gain margin, the above-threshold
characteristics of a QWS LD having a non-uniform coupling coefficient were
also shown. As compared with the QWS structure, the introduction of a non-
uniform coupling coefficient with «;/k; = 1/3 and CP = 0.46 increased the
localised carrier concentration near the plane of the corrugation change. A
significant reduction in the photon density difference between the central peak
and the emitting photon density near the facet was also found.

On the basis of the TMM, in Chapter 7, the above-threshold model was
extended and applied to evaluate the spectral and noise properties of DFB
LDs. Based on the lasing mode distributions obtained for the carrier density,
the photon density, the refractive index and the field intensity, characteristics
like the single mode stability, the spontaneous emission spectrum and the
spectral linewidth were investigated. At a fixed biasing current, the QWS
structure having the smallest threshold gain was shown to have the smallest
linewidth. On the other hand, the non-lasing +1 side mode became stronger
with increased bias current. Comparatively, the 3PS structure was shown to
show the smallest change in the lasing wavelength. With the introduction
of multiple phase shifts along the corrugation, the internal field distribution
became more uniform and hence a stable single mode oscillation resulted. It
was shown that the DCC+QWS structure has the largest gain margin. The
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introduction of a distributed coupling coefficient improved the single mode
stability in such a way that the side mode suppression ratio (SMSR) remained
at a high value. Wavelength tunability was also improved in this structure.
From these results, it is apparent that the design of the DFB LD depends
much on its applications. On the other hand, the TMM has proved to be a
powerful tool when dealing with such a problem.

8.2 LIMITATIONS ON THE TMM ANALYSIS

In the analysis, the most important characteristics, namely the single mode
stability, the spectral linewidth and the spectral behaviour of the DFB LDs,
were investigated using the QWS, 3PS and DCC laser structures. The TMM
has provided the flexibility we need in the design of DFB LDs. There are
other dynamic characteristics, such as AM and FM responses [6-9] or the
use of multiple electrode configuration [10,11], which are also important in
the characterization of laser devices.

8.3 FUTURE RESEARCH

On the basis of the TMM, the characteristics of DFB LDs were investigated.
Detailed analyses covering both below- and above-threshold biasing regimes
were presented. There are at least three possible research directions which
may be worth further investigation.

8.3.1 Extension to the analysis of quantum well (QW) devices

In this work, we have concentrated on bulk devices only. There is a potential
to apply the same TMM technique to QW structures [12]. The major differ-
ences between QW lasers and bulk lasers, which we have been examining
so far, will be on the recombination mechanism [13], material gain charac-
teristics, band structure [14] and confinement factor [15]. We can replace
some of the equations used in the bulk model with those appropriate for QW
structures. The analysis and the algorithm will remain the same as for the
bulk devices described earlier.

8.3.2 Extension to gain coupling devices

DFB LDs used in this work belong to the group of purely index-coupled
devices. The wavelength filtering mechanism is solely caused by the pertur-
bation of the refractive index. In recent years there has been a growing interest
in the use of mixed-coupled and purely gain coupled devices [16-20]. With
the coupling coefficient dependent on the material gain, it has been shown
both in theory [21] and experiment [22] that these devices exhibit stable
single mode oscillation at the Bragg wavelength. Even for a small degree of
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gain coupling, a mixed coupled device shows an improvement in the gain
margin. By introducing an imaginary term into the coupling coefficient used
in the model, the characteristics of these devices could be investigated using
the same methodology.

8.3.3 Further investigation of optical devices to be used in the
wavelength division multiplex (WDM)

In this book, much of the analysis has been on the threshold and above-
threshold analysis of various DFB laser structures. With the deployment of
WDM techniques in optical communication networks [23], there is a growing
demand for different types of optical devices. Optical filters that allow the
end-user easy access to various information like TV or interactive digital
services [24] are important. Recently, a four-channel notch filter based on a
DCC DFB laser structure was demonstrated [25]. Channel cross-talk levels
between 9 dB and 20 dB were obtained. In this area of application, the
flexible and robust TMM may be used in the design of these devices.

8.3.4 Switching phenomena

In high-speed optical communication networks that employ a single mode
semiconductor laser like the DFB LD, there is increasing attention towards
phenomena associated with high-speed switching [26-28]. One of the system
limitations is known to be the chirping effect induced by semiconductor
lasers [29]. Owing to the strong coupling between the gain and the refractive
index in the semiconductor, any switching in the form of an injection current
results in a variation in the optical gain, and hence the refractive index of
a semiconductor laser. A dynamic shift in the operating wavelength and
the broadening of the spectral linewidth has been observed as a result of
frequency chirping [29]. Owing to the dispersive nature of optical fibres,
such a spectral broadening affects the pulse shape at the fibre output, and
consequently degrades the overall system performance.

To overcome the problem of frequency chirping, a number of methods have
been proposed, including the use of an external modulator [30], pre-shaping of
the electrical signals [30], injection locking [31] and improvements in device
structures [5]. Using the flexible TMM as a design tool, different structural
designs of LDs can be tested systematically, and thus we can improve the
performance of laser devices.
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