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TRANSLATOR 'S PREFACE

This book 18 & translation of V.I. Tatarski's “'TeopEa SNyKTYRIEOEHEZ
fianenzii [Ipy PacnpocTpasensn Bonm B Typﬁynenéaoﬁ Aruocdeps™ ,
literally "The Theory of Fluctuation Phenomena in Propagation of Waves in a Tur-
buient Atmosphere". It is hoped that Tatarski’s bock, together with the Itranala—-
tion of L.A. Chernov's "Wave Propagation in a Random Medium" (McGraw-Eill Book Co.,
1960) will furnish a comprehensive and authoritative survey of the present state
of research in the field of wave propagation in turbulent media, with special .
emphasis on important Russian contributions.

For typogrephicel convenience, the numerous footnotes appearing in the Rus-

slan original have been collated in the Notes and Remarks section at the end of

the book; I have taken the liberty of adding some remarks of my own, all identi-
fied by the symbol T in parentheses. ' The Russian original has also been supple-
mented in two other ways: 1) Dr. R.H. Kraichnan has written an Am;endi.x qualifying
the material in Chapter 55 2) In the References section, I have cited some readily
avallsble English and Germen translations of Russian papers. (The origin of one
reference, No. 61, was not clear to me.)

T];ne time hes came to thank the team of Jacqueline Ellia and Maureen Kelly
.I for their expert performsnce in preparing the masters for both this book and the
Chernov translation. T also tslke this occasion to thank my wife for her pains-

teking proofreading of both books.



AUTHOR'S. PREFACE

In contemporary radiophysics, atmospheric optics and acoustics , one often studies the pro-
pagetion of electromag.;aetic and acoustic waves in the atmosphere; in doing s0,it is i_ncregsing-__
1y often necessary to teke into account the turbulent state of the atmosphere, a state which
produces fluctuations in the refractive index of the air. In some cases the turbulénce mani-
fests 1tself as atmospheric "polse", causing fluctuatione in the parameters of waves pﬁpaga-
ting through the atmosphere; in other cases the atmospheric turbulence behaves like a source of
inhomogeneities which produece scattering. This latter phenomenon -has attracted the attention
of numerous investigators, since it 1s connected with the long distance propagation of V.H.F.
and U.H.F. redio waves by scattering in the ionosphere and in the troposphere. Thus the prob-
lem of "waves and turbulence" is at present one of the important problems of radiophysics,
atmospheric optics and acoustics.

In the last.decade, a large number of papers pertsining to this problem have been published.
These papers are mviewedl in the special monograph by D.M. Vysokovski, .entitled "SomelTopics in
the Long Renge Tropospheric Propagation of U.H.F. Redio Waves" (Izdat. Aked. Nauk- SS8SR, ;ﬂoscow,
1958); this monograph is chiefly concerned 'w;‘bh pepers by foreign authors. Recently the:;:'e ﬁas
also sppeared a monograph by L.A. Chernov entitled "Wave Propegation in a Medium with Random
Inhomogeneities” (Izdat. Aked. Newk SSSR, Moscow, 1958)? However, the present monograph diffe:-s
from those cited in that the author has tried to make more complete and consistent use of the
results of turbulence theory. _

In recent years the study of turbulence (in particular, atmospheric turbulence) has ad-
vanced considerably. In Ith:l.s regard, a large role has been played by the work of Soviet seci-
el_atist_.s Ea.g. 8,9,11-15,17,21, 22, 503 . However, the results of turbulence theory are often not
used in solving problems related to wave propagation in a turbulent atmosphere. In & consider-

sble number of radiophysics and astronomy papers devoted to radio scattering, the twinkling and

Translated by R.A. Silverman as "Wave Propasgetion in a Rendom Medium", McGraw-Hill Book Co.,
New York, 1960. (T)
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of stellar mages in telascopes, ete., on.'l.y erude mdels, which do not correspond to -

£y a:re used to describe the atmospheric inhamogeneities. Naturally, the resu.'l.ta obtained

: spers can only be a wry rough and purely quelitative description of the pmpertias of
prnphgation in the atmosphere.

_the-pmsent monograph we try to glve a general treaﬁnent of the theory of scattering of
ctm-agnetic and acoustic waves and of the theory of parsmeter fluctustions of short waves
in a turbulent at:msphere. We teke as our starting point the Ko:l.mogomv theor,y of

1sot.ropic turbulence, which giwa a suﬁ‘iciently good description of th® tu.rhulmt

Qﬁere : In Part I we give a hrie:[‘ exposition of some toplics from the theory of random

elds: and turbulence theory which are neceass.ry to tmders‘t‘.and what follmrs . There we give
. _--at-t.e_nt:lon to the representation of random fields by using generalized spectral expan-
ons. : Spectral representations are very appropriate both for formally solving many problems

“the theory of wave propagetion in e turbulent medium and for interpreting these problems

PartII is devoted to the scattering of electromegnetic waves (Chapter 4) end acoustic
' (C'hapter 5) by turbulent stmospheric inhomogeneities. The radio scattering theories of
Mr ‘and Gordom, Villers and Weisskopf, snd Silverman are studied from a general poin® of o
ev, _as being different speclal ceses which follow from a general formila. In Part IIT we

mider' mnp]ituﬂe and phase fluctuations of short waves propagsl:ing in a turbulent atmnsphem,

_‘ ﬂnctuations of & plene wave (Chspters 6 and T), then awplitude and phase fluctuations
of a plm wave in a medium with a smoothly varying "intensity” of turbulence (chepter é),

ﬁnaJ_‘l;r fluctmtions of a spherical wave (Chapter 9). In Part IV we present some results of

expemtal studies of atmospheric turbulence (Chapter 10) and the results of experiments on

the' magxbion of sound and light in the layer of tbe atmosphere near the earth. The results
¢ obsemtions of tvinkling and quivering of stellar imagea in telescopes and the interpreta-
'bion' of theaa results are given in Chapt.er 13, In presenting experimental material we glve
the éomspmaing theoretical considerations. ' ' '

Sms ‘problems which hsve mnch in common with the foregoing heve not been conBidered in

th:l.s book roxwanolt amn.g thege 18 the question of radio scattering by the turbulent iono-

nphere d.espite the fact that 't.he mecha.nim for this effect has very much in common with that
for: rad:l.o scattering in the troposphere. We aid not think it possible to go into the specific

viil



details which would have to be considered in studylng this phenomenon. We have also not
included in this monogreph the interesting problem of radiation of sound by & turbulen'b flov,
considered in the papers of Lighthill.

T wish to express my deep gratitude to A.M. Obukhov and A.M. Yaglom for the helll;t they

gave me while I was writing this book.
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Part T

SOME TOPICS FROM THE THEORY OF RANDOM FIELDS

AND TURBULENCE THEORY

Introductory Remarks

The index of refraction of the atmosphere for electromegnetic waves is a funection of the
temperature and humidity of the air. Similarly, the velocity of sound in the stmosphere is .a
function of the temperature, wind velocity and h@idity. Therefore, in studying micrdfluctua-_
tions of the refractive index of electromagnetic and acoustic waves in the atmosphere,we nmslt.'
I first of all exﬁléin the basic laws governing the structure of meteofologica.l fields like the
temperature, humidity and wind velocity fields.

For us the most important fact sbout the atmosphere is that it is usually in a state of.
turbulent motion. The values of the wind veJ_.ocit.jr at every point of spgce undergo irregular
fluctuaetions; similarly, the velues of the wind velocity teken at different spatial pci:_:ts at

the same instant of time slso differ from one snother in e random fashion. What has been sald

Temperature

] . WAV aN' v M‘/\Wff W*\\/t/\ﬂ

1 y
Vertical component of M
the wind velocity
4 (}\5 m/sec
V /| e

™
mp | “7‘ 0010 i

Velocit l

0.1 sec
>

/

Fig. 1 Simltaneous record of temperature and wind velocity.



‘applies as well to all other meteorologicel quéntities, in particular .to temperature and humd&-
ity. In Fig. 1 we give as en example a sample of the record of the instantaneous velues of the
wind féiocity and the tempersture at one poigt, obtained by using & low inertie measuring
~device. We see thet both of these quantities undergo irregular oscillations, which differ in
amplitude and frequency and are superimposed in a random manner.. It i1s natural thet statis-
tical methods are used to describe the laws charactexlzing the structure of such fluctuating

quantities.



Chapter 1

METHODS FOR STATISTICAL DESCRIPTTON OF CONTINUOUS RANDOM FIELDS [a]

i.l Stationary random functions

The curves shown in Fig. 1 serve as examples of realizations of random ﬁmct:.ons.; Th.e
value of any such function f(t) at. & fixed instant of time is a random variable, i.e. can
assume a set of different values, ‘where there exis‘t;s a definite probability F(t f ) the.t.

f(t) < fl .
the probability F(tl, 1 ); one must also know all possible multidimensional probabil_ity di_:étri-- i

But to completely specify the random function £(t) it is not enougb. to know: only o

butions, i.e. all the probabilities '

-F(tl,tg,...,tn;fl,f2,...,fH] = - . -'(1’._1)_ i

- P[f(‘bl) <1),8(t,) < £y 08(ty) < fl;[
-

that the inequalities f(t ) < £ f(t ) < fe,...,f(t ) < f hold s:.multa.neonsly for all pos= _
sible N and t >t """tN’ l’ 2"'"’fH' However, in the applications it is uauaJJ.y difﬁcult
to determine all the- functions (1.1). Therefore in practice, instea.d of the distribution R
function (1.1), one ordinarily uses much more "meager" (but mich simpler) charactenatics of ko
the ra.ndom field. Of these statistical characteristics of the random function £t} which* .
are widely used in practice, the most important end simplest is t.he mean value i’(t) ®]-
 The next simplest e.nd very impurta.nt characteristic of the function is its correla.tion fu.nc- )

- tlon B.(t,,t,) [c].

Bolty,ty) = [2(ty) - T J[E*(t,) - 7¥(t,) 1. o T (L2}

It is clear thet the relation B{tl,t') =.B(t2,t ) holds for relal f\mcti.ons f. The coiu-eia-.,
tion function vanishes when the quentities f(t ) - 1’(1: ) and f(t ) - f(tz) are sta.tistica.uy _'
independent, i.¢., when the fluctuations of the quantity £(t) at the times t, and t, ave. not- _
‘Telated to each other. In this case the mean value of the product in the right hand side of



(1.2) factors into the product of the gquantities

f(trl) s f(tl) » f*(te) - f*(tg) »

each of which equals zero. Thus, the correlation function Bf{tl,ta) characterizes the mutual
relation between the fluctuations of the quantity f(t) et different instants of time. In
analogy to the correlation function Br(tl ,'c.z), one can also construct more complicated charac-

teristies of the random field f(t), for example, the quantities

By = f(tl} - ?(t_l):l [f{te) - f(t-g}]...]:f{tﬂ - f(tN)jI. e

However, we shall use only the mean value f(t) and the correlation function Bf(t]_’tg)‘

The mesn value of & function can be a constant or can change with time (for example, as

. —_— —
the wind gradueslly increases, the mean value of the wind velocity u(r,t) at any point r
increases ). Similarly, the correlation function B f(tl,te) can either depend only on the "dis-
teance" between the times %, and %, (in which case the statistical relation between the fluc-
tuations of the quantity f at different instants of time does not change in the course of
time) or else it can depend also on the positions of these pointé on the time axis. A random
function £(t) is called stationary [d] if its mean value f(t) does not depend on the time and

if its correletion function Bf(tl,te) depends only on the difference t, - by, iee. if
= = { - = - . 1.
£(t)_ = const, Bf(tl,tz) Bty t2} Bf(‘be tl) (1.3)

It is easy to show that Bf('r] satisfies the condition ]Bf(-r)i < Bf(o). We shall alweys
assume below that the meen value of & stationary random function £(t) is zero [e].

For stationary random functions f(t) there exist expansions similar to the expansions of
non-rendom functions in Fourier integrals, namely & stationary random function can be repre-

. sented in the form of a stochastic (ra.ndom) Fourier-Stieltjes integral with random complex B

amplitudes dp(w) [1]:

£(t) = feimtdtp(m). o (1.4)

-



Using the expansion (1.4) we ‘can obtain an expansion of the correlation function B f(tl - ta]
of the stationary random fuiactd.on £(t) in the form of a Fourier integral. In fact, substitu-

‘ting the expansion (1.%) in the left hand side of {1.2), we obtain

B(t, - t, ) = f(t )£¥(t,) ff exp[i @t 2)] dq:(m *(ase).

Since in the stationary case the correlation function must depend only on the difference

) - ty, the quantity do(w,)d¢*(w,) must have the following form [£]:

1
a0(a )ag* (w,) = 8w~ w,)W(w, )dm, da,, (1.5)
where, obviously, W(w) > 0. From this it follows that (e]

Bo(ty- t,) = f exp 1ot~ t,)] W(w)a, : (1.6)

-0

i.e., the functions B f('r) and W(w) are Fourier transforms of each other. Thus, the Fourier
transform of a correlation function B i,('t} mst be nonnegative; if it is negative at even one
point, this means that the function Bf('r) cannot be the correlation function of any statianery
random function £(t). Khinchin [6] showed that the converse assertion is also true: if 'Ehg
Fourier tx.'a.usfom of the function Bf(‘r) is nonnegstive, then there exiéts & stationary random .
function £(t) with Bf('r) as its correlation function. This fact, which we shall use below, .
makes it easy to construct examples of correlation functions. When the specified conditions
are met, the non-random function W(w) is called the spectral density of the stationary random
function f(t). |
e now explain the physical meaning of the spectral density. For e‘xam'ple , let £(t)

represent & current flowing through a unit resistance. Then [f(t}]2 is the instantan‘éous

power dissipated in this resistance, and the mean value of this power is [:E‘(t)]e = Bf{o).

Using Eq. (1.6), we obtain



TP = [ v :

e

‘Thus, in this cese W(w) represents ‘chg spectral density of the power, so that in the litera-
ture of radiophysics this function is often ealled the noise power spectrum. In the case
where f£(t) is the magnitude of the velocity vector of a fluid, W(w) represents the spectrall;
denaq.ty of the energy of a u_nit mass of fluid, so that in'the literature of turbulence theo;y
this fun.c_tion is cften called the spectral density of the energy distribution.

We now give some exsmples of correlation functions and their spectral densities.

a) The correlation function
B(7) = a”exp(- |t/ |) (x.7)

is often used in the applications. The corresponding spectral density is casily found to be

© ' 2
1 -iar 2 & o
W) = 3= f e ¥ a%exp(-| /7 |)ar = m . (1.8)

-0

Here W(w) > 0, so that the function a’?exp(- |-r/1:0|) can actually be the correlation function of
a stationary random process.

b) The correletion function
B(t) = aeexp-i:-ﬂ(’f/‘fo)e] (1.9)

corresponds to the spectral density

3,21 2

© exp(- w-u- Ti). (1.10)




c) To the spectral density

ENSE o
H(m] - \[_(v "')2 To i . 1 >0, v> = % ; s (l-u)
: * .Nv (1+o 2 ) t2 | i

corresponds the correlation function
2Vt r(v)

B(r) = =2 (5) K&, v>0, (B0) =), o (ra2)
, ° o. '

where K {x] is the Bessel function of the .second kind of imaginary argument. This cor::'e]_.'-atiq.;i:'!:

function is also used in some app]_ications.

In Fig. 2 we show how the correlation functions (1.7), (1.9) and (1.12) d.epend ‘on ':/-r  hE

and in Fig. 3 we show the corresponding spectral densities.

Fig. 2 The correlation functions
2/3 . 1/3
2 T .

1) T(1/3) (1'0} Kl/3('r/1:o)’

e (afs)?
2) eTTo;--E} ef‘:X.-ro
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Fig. 3 The spectral densities of the
correlation functions of Flg. 2.

i

_ The time 7 required for an appreciable decrease in the correlation function, for
example, the time in which B{t) falls to '0.5 or 0.1 of the value B(0), is called the correla-
- tion time. As can be seen from the examples considered, ‘the quantity 7 i:a related to the
"yidth" o of the spectrum (i.e. to the frequency at which tﬁe spectral density W(w) falls off

sppreciably) by the relation o T =~ s

-1.2 Random functions with stationary increments

I

Actual random processes can very often be described with sufficient accuracy by using

stationary random functions. An example of such a process 1is the fluctuating voltage appear-



ing across a resistaace in a state of themodqmemic equ:l.JJ.br:lmn v:l."bh the suﬁvunding mg,di
KWB:-, “the . opposite }:ase ‘can also oceur, where ‘bhe rand.aln pmcesses ca.nnot be reg

sta.tionary. ‘As an exan;ple of such a process in radiophysics we cite the phase- fluc'l:ua ons

of a vacuum tube osci].‘l.ator [7:] Such examplea &lso oceur very often in meteoi‘ology‘
exam}.e , as alread;y noted, as the strength of the. wind gmﬂually incres.aes, the man. 'va‘.l.ne of

Wlécity at mxy point increases, so tha.t Ln thia case “the wind 'velocity is not a
. ary random f‘tllpction. The mea.n values of othez- metenrologica.l vgriables of the atnosphem

e.g- , temper‘atu:r:e, j:reaaure and hmrldity, also -undergo comparatively slow a.nd amooth-clianges

In amalyzing ‘these veriables the same dirrieulty eontinual.Ly arises, i:e.; -which changeot

'bhe ﬂmcticn :B(t) are to be. rega.r\ied as changes of t.he meain va.lue and u‘.hich are to be ‘Te

as slow ﬂuctuationa? Such r-lamcteristics of a ra.nd.oni ﬂunction as the mean squa:e ﬂuctuﬁa
tion, 'I:he correlation 't.ime, the sh.ape of the correlation function B('r} and of the spec Thl.

densi'iby W(w), very often depend to a considerable ext.ent on the answer to 'bhis question .
'[‘o avoid. -I;lus difﬂculty ‘and to descri'be rand.am ﬁmct*tons which are more general_thnh
sta.tiona.ry ra.ndm funetions » in tu.rbulence Jtheory one uses instead of correlation i’unctions
“(1.2) the so-called stmcture ﬁmctions, first introduced in the papers of Ko]mogo:mv [8 9
" The basic :Ldea behind this method consists of the following. In the cgse 'brhere r(t) repre
" sents a non-stationary random’ function, i.e., where f(t) clmnges in the cou.rBe o:l’ 'Bime, e :
consider instead 01’ f(t) the difference F (t) f(t + %) - :l’(t) For va.lues of T 'which l.u'&
not too large, slow changes in the function r(t) do not a.fi’ec’c the va].ue. of this diﬁ‘erence,
and 1t can be 8 st‘.a.tionary random functiop of time, at least approximately. ‘In tl;e e;ase wheffa‘
F (t) is a stationa.ry rendom function, the function f(t) iz called a random function w:l'th
stationary first incremants, or simply a randca i‘lmcticm with ste.timm-y 1ncremgnts [h]

If we use 'the algebraic iﬁen'l:.ity
'(a-- b)_'(c - @) - (e - )% (h - c) . (a. . c]“- (b - 0%,

then we can represent the éorrelation.- function of the 1ncre;uu=pts inthe following form:

;;F(tl,-taj- - Fr(tllrttté) =‘% [fl(ti-!- ) - f(iia)]a +

S+ 3 T - el AT - § ftege ) - e 7 () - (a0




Thus B?{tl’ta) is expressed as a linear combination of the functions

yltyty) - [E(e) - £(¢,)]% | | | (1.13)

' The function (1.13) of the argument; t, end ty vhere t; and t, take the values t,+ 7, t,, t

1 2’

1:.2+ T, is called the structure function of the random process. In order for BF(":, ,1;2) to
- . NS

f"l\epe'r-xd only on tl_' ta, ‘it is sufficient that Df('bl,’cg) depend only on this difference, i.e.,

that the relation Df(tl,ta) = Df(tlT te) holds.

The structure function Df(‘r) = [f(t + 1) - f(t):|2 j.s the basic characteristic of a rapdom
process with stationary increments. Rlo_ughly speaking, the value of D i;('r): character.izés-the
;i:;teﬁsity of ‘Ithcse fluctuations of f(t_) with périods which are'smaller than or comparsble with
T. 0Of course, the function Df(T} can also be constructed i;or' OI'd.inaa'y Sta‘tiozilary' fu‘l;lction's,
which ere a special case of functions with stationary increments. If £(t) is a stationary ran-

dom function with mean value 0, then

.Bf('r) = [#(t + 1) - f(ﬂ]e = [£(t + -rﬂe + [f(t):|2 - 2r(t + 7)E(t).

‘It follaws from the stationsrity of £(t) that

-' _[f(t)]e = [#(t + -1:-)]2 - B,(0).

Thus, for a stationary process’
D7) = 2[Bf(o) - Bf('r):l. : _ : (1.1%)

In the cise where Bf(ao) = 0 (and in practice this condition is almost always met), we have

Df(w) = _QBf{Q). This relation allows us to éxpress the correlation function Bf(-r') in terms of

the structure function Di‘(T)‘ i.e. &
By(1) = 5 Dg(w) - 5 D(7). : _ (1.247)

‘ Thus, in the case of stationary random processes, the structure functions Df(':) can be used

a.loné with the correlation functions, and in some ceses their use is even more apprdpriate [i] .

10 -



'

As we heve already seen, the expansion

Bi.,(-r).= f eim'ﬂ(aa)dms f cos(ot)W(w)dw - : : '_ '(3_..6)._'

is va.]_id for the correlation :f'mmtion of a stationary ra.ndom process. From this we can.obtain

a similar expansion for the corresponding structure functicn. Indeed, - substitu‘bing <’1 6) in :
{1.14), we obtein

s _ : " “

Df(r) =.2 f (1 = cos 'm)w(w}dw

It turns out that the same expansion :Ls also valid for the structure function of the general

2
]

random function with stationary ‘increments , the only rlifference being that the spectral den- ) .'

-

: sity W(w) can now heve & singularity at the origin (in this regard see below)

Just as a sta.tiona:y random function can be represented as a stochastic Fourier—stielﬁ;]es

* integral s =

20 = [ & e, - - | aw

& random function with stationary increments can be r_epresénted in the form

2 ] ) oo

£(t) = £(0) + f (1 - %) ep(a),

- "

where £(0) 1s a random varisble, and the amplitudes -dp(w) obey the .condition

(o 80 (@) = Blay- o )W(w amday. e

11
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‘Substituting the expansion (1.16) in the right hand side of (1.13) end using the relation

{1.17), we obtein

D(t,- t,) = [£(t,) - f(te)le = [e(z)) - £(t,)] [e*() - *(t,)] =

1]

b, -wgt, it ——
f (o 2 S (T2 T gt Yag () -

f [ - cos (- ’ol}jW(m)dw. - . | (1.15") |

Thus, the expansion (1.15) for the structure function of a stationary random process is also

wvelid for e random process with stationary increments. Since che spectral density W(w) which
f‘igu.res in (1.15) aig:nifies the average spectral density of the power (or energy) of the fluc-
tuations, it is natural to assume that the spectral density W(r.u) figuring in (1 15') for pro-
cesses wif‘h stationary incmme_snts has the same physical meani:_zg. We note 'bha.t for convergence

of the integral (1.6). it -is necessary that the integrel

@

f W(w)dw

-0

exist, i.e., that the power 'of the fluctuations be finite. On the other hand the integral
(1.15) also converges when W(w) hs.s a singularity at zero of the form o % (a <.3) , i.e., when
the low frequency components of the Fluctuatior specétrum have infinite "energy" [3] .
We now consider_ some examples.
.a) We cons;t-ruct the structure i‘un_étion of the s‘ﬁa.tionary random process considered in

example ¢) on page 7. Using the formula Df('r)_ = 2[Bf{0) - Bf('rﬂ, we obtain

2 o1-

g(n) = 22°[1 - oy G 1,3



[}
C oy X "

For 1 << 1 we can use.the first two terms of the series expansion of the function I{ (x) Ik]

After some simple calculations we obtain _ ' R P

2y
22 D(1 = o e ‘ :
1,(ﬂ I+ (2T =) .

1.é, 'Df(r_} ~ 1, Fort~ 7, the growth of the function Df('r) slows down, and 1t appmmues

the constant 232. The spectral density corresponding to D-f('r is the ssme as in the emample

on pese Te ~ -
b)- Consid.er the spectral density W(m.) = Alw|” (p“l) (A >0, 0< p< 2). Substituting

this function in Eq. (1.15) and carrying out the in‘tegration [&] , we obtain L

" wad _2m D ' o A it
D (T)-= —_— —F. . i . : e Tl
£ sin —2’; (1 + p) CL ' : A

Thus to the structure function
3 L '
Df{-:} .—:-c_2 <P (0<p<?2)
corresponds the Bpecti'al funetion

.

W () = DELRL oo 22 G2l ~(PH), : A

With v = p/2 and

the structure function considered in the preceding example coincides with the structure f‘u.nc-

tion c2 ® for T << -r . The spectra of these atmcture fu.nctiona coincid.e 111 the reg:lon

. oty > 1. Fig. 4 ghows the structure functions of examples a) and b),. and Fig. 5 ghows. their '

-

Spectra.



: I L 1/t
OO . 1 > )

Fig. 4 The structure functions:
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Fig. 5 The spectral densities of the
structure functions of Fig. k4.
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1.% Homogeneous and isotrople rendom fields.

We turn now to random f‘unctions'of three varisbles (random f‘ielga} The concept of &  ran-. ? i3

dom field is oompletely analogouﬁ “to the concept of a random process. Examplea of rs.ndom - '; :
fields are the wind velocity field in the turbulent atmosphere (a vector rsnd.om field compri- -

sing three random velocity compunents) a.nd the ( scalar) ﬁeLds of temperature, _humidity and

dielectric constent. For e random field f(r we can also define the mean value f(r) a.nd the -

N

corréla.tion function . ' - ; r

~In the case of ra.nd.om flelds the concept of stationarity generalizes’ to the concept of homo—'

geneity. A random field ia called homogeneous if its mean value is constant and if :1.ta corre-.

latlon function does nqt change when the pair of points r emd're are ‘not;h displ_o.c_ed by -the

same amount in the same d.i_rection, i.e. if

f(r)=const,B(r,r)=B(r +r,r2+r) o .

‘Choosing ? = - ':?2 in the lest fomula, e find tha{-. B, (rl,r )= B (Y- 2, 0) in a hemgene;
ous field, 1. i€y t.he correlation function of & homogeneous random field depends on_ly on rl- r2
80 that B (r ,r ) = B (r - r2) A homogeneous random ﬂeld is called isotropic if B {'1"

depends onljr on Ir =_\Er| i.e. only on the distance between ‘the observation points.l Of oou:rse,_ '

a homogeneous field may also not be isotropic, fo:j examp_le, the field with correlation f‘u.nc— '

tion of the form

By(F)- :‘-'2). = BfE'.:(xl‘. x,) + Blyy- ¥p) + 7 (5 2Jh

N . - . ) g

i1s homogeneous, but not iaotropic.. s ) o . pet
Ifin e homogeneous end isotropic field we single out eny straight' line and consider t"he' 3

values of the field only along t‘his 1ine, then as a result we obtain a random function of one

varisble x, to which we cen apply all the results pertaining to stationery random funct}.ona.

15



In-perticular, we can expand the ‘correlation function &s a Fourier :T.htegra.l.

Bf(xi) = f cos (kx) V(k)ak. . ' o+ (1.19)
. -00

However it is more natural tc use three-dimensional expansions. A homogeneous random field

cen be repr'ese:_:t.éd in the form bf a three-dimensional stochastic Fourier-Stieltjes integral:

_f(':':) = ff\f é:iz';-éq:(xl,xa,;cy. . | | ' (i.ao)

Here the emplitudes dg(K) satisfy the relation [m]

=y S & _ :
ap(Ky Jap*(k,) = 8(k; - K, )Pk, )dk, K 2, : (1.21)
- where §(x) z 0. Substituting this expsnsion in the formule

™ f(x )f(r )

.

f(r'z

(assuming that £(T) = 0) and taking into account the relation (1.21), we obtain

-

- Bf(rl

N

jjf chpLIz-(;l; 7] 8(%)ax. ‘ . e

§(K) ), since ﬁ(;l-— ;2) = B(;Q- -1:1], 8o thet the formula can also be written in the form

f(r = fff cos (K 7) E(K)dﬂ(- | . | i (1.23)



L

The function B(k) can ﬁe-expre;fsed in terms of B(?):
3G - —Ls f_[ cos (i3, (I | L (m]

' Thus, the functions Bi,(?') and (k) are Fourier transforms of each other.
1If the random field '_f(-z") is isotropic, the function Bj,(':?') depends onl:)r-on ﬁ'l "Then in-

the integral (1.24) we cen int_roduce' spherical coordinates and carry out the angular integra-

!

tioms. As a result we obtaln the expression

by

: . ™ . 3 B
30 = 2 f xB,(r)sin (kr)ar, D 5 (1.25)
2n s¥ . ..
o) s . . .
L
vhere k = |K|. ':Fhus, in an isotropic random field the spectral density §(k) is a ﬁmction
of only one varisble, the m.agnitude of the vector k. This allows us to simplify the expres- .
sion (1.23) in the case of an isotropic field. Introducing sphérica.l cooi'dinates' in the space

of.thee vector ¥ and carrying out the sngular integrations, we obtain the relation

Bf(r)'n'l—;_i- f k@(k) sin (kr)dx. B - . . (1.26)
g ) _ . . _ e,

It should be noted that the "l'.hree—;d.imensional spectral density B(x) of an isotropic random

field is related to the one-dimensional spectral density V(K) by the simple_relatiion'
'g?(x) : —"i_ﬁl : R ¢ %)

-vhich cen be obtained by substituting (1 19) in the right hend side of. (J. 25) [u].

We now give some examples of spa.tial correlation. :f“unct:ions and their apectra.' <

—
r

a) Bf(r) b exp |-

AT



Using the results of example a) on page 6 and the fact thet the expansion ( 1.19) is cémpletﬂy :

analogous to the expansion (1.6) for a statiohary rendom process, we cen write down immediately

the one-dimensional spectral. density V(k):

¢

2
aTr

V) = e . .
b= n(1 + K“rg) ' b1-23)

We use Eq. (1.27) to determine §(«):

| 22 |
Hr) = ——= 5 - (1.30)
. 2 22 .
2 (1 + K ro)

. b) Similerly, for the correlation function

B(r) = a° exp[- (.;.1-"*}1 _' ' o (1.31)
. o )
we obtaiﬁ .
) e2r° - {: Jcaréi[ . )
Vik) = ~ eXp|- ,
- =5 _ | ‘
and
a2pD Br? ST
) = — 0.3.[- °J.' : :
@(K = xp -—r ‘ | (1.32)

¢) Finally, for the correlation function . - . B

: . 2 v y .
a r T : )
B Sy ) B . > o IR

we have
i) e’r(v + I§J . M o e
V(k) = - : . .
. Jr o(v) 22v+%, : (2-34)
{1+« :-D}
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. o 1.k, Loeell;r homogeneous. and isotropic rendom fields - e Al

It should be noted thet it 1s a very rough approximation to regard actual meteomloglonl

fields as homogeneous and isotropic ra.ndom f‘ields. Atmospherio turbulence alveys contains..' 3

1e:rge acale oom_ponents whioh usua.l_'ur dee;t:r-o},r the homogeneity and isotropy o‘f the field.s of .f‘he'.'
meteorological variables ; moreover, these components causé the meteorologieal fj.elds to be
non-.sta‘tionery Thus ’ there il a c’];ose rela.tion between the non-a*’atlonarlty, 1nhomogeneity
and tam.i:scrl:-'::'op:.lr of the meteorologioa:l. field of an atmospheric verisble; be.sically they, are due
to the same causes. Therefore, in analyzing the spatla.l structure of meteorologloal field.e
(énd some others} it is egain appropriate: to apply the method of structure functions. In : ':'-.. -
£ and :r2 is chiefly
affected only by inhomogeneitles of the field -f with dimensions which do y.ot exceed ‘the dis- -

fact, the d.ifference between the values of the field f(r) at two points r

If this da.stance is not too 1arge, the largest inhomogeneities have no. 31

. tance 17, - %l P

effect on f(:_z"l} - (T r2 and therefore the structure function

D, (rl,r = [f(r - f(;e)].e s ' e, ; ) » _ . (156)

“can depend only on T - 1. At the same -t,ime, the value of the correlation f‘unction B (rl,r )

T 2°
is effected hy inhomogeneities of all sealeo; so that for the same values rl and r the

fu.nction ij‘r ,r )} can depend on eech of the argwnents aeparately e.nd. not just on the differ—

ence T,~T,. Thus, we arrivé at the concept of local homogeneity [8] The random field f(_' )

is called locally homogeneous in the region G it the d.istribution functions of the rs.ndom vari-

’&ble f(rl) - r(rej are- inva.riant with raspect to ah:l.fts of the pair of points rl,ra, as’ 10115 as

* these points are located in the region G. Thus, the mean velue f(r } - f( 2} a.nd the Struc-

" ture function {1.36) of e locally homogemeous random field depend tml.‘;r on rl- r2

P |
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~ 2

-+ i .= T ot I, 2 b 3
Df(I‘l = TE} = [.fl-rl) - ‘:(rg-‘ ' . . ” (1'37)

o "o & 5 . ' \
A loeally homogeneous random f‘ield is called locally isotropic in the region G if the distri- *
‘bution functions of, the quanbity f{r ) - f(r are imrariant with respec‘t to rotations and
.mirror rEﬂectionB of the vector rl - re, as lon.g as the pomts rl and r2 are located in G [8]

ThE_ structure ‘function of a locally isotropic rendom fileld depends or_::ly on !rl- _r2} :

Dy(F) = [£(F + F)) - HEDI2 = D). | L )

-

A locally homogeneous random field f£(T) can be repreéented in a form similar to (1.16):

) = £0) + ﬁ[ -, - @)

- . g : . * '
Here f£(0) is a rendom varisble, and the random amplitudes eq:(-'rf) satisfy the relation

dﬁxdﬂ&)_ﬂx—x)ﬂ* )k ks . © T (o)

where §(k) 2 O is the spectral density of the random field f£. Substituting the expansion

(1.39) in Eq. (I.37) and using the relation (1.40), we obtain

D(F) = 2 fff (1-@5*.;@(2@&?{. 3 | L (1.42)

-

In the case where the field f is locally isotropic, Di'.t'“:'-) = D(r) end B(k) = B(x). 1In this '

-

case

Df(r) = Br f (1 - ﬂ%rjf_'-"'_) @fK)Ked;K- . . . {i.hé)_
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It should be noted that the integ:-a.L (1.42) also converges in the case where ﬁ(x) hes & singu 7
larity at zero of t.he type .-c (u. < 5), which corresponds to the case where the 1arge -séale ‘_-'
components of the turbulence have infinite energy [,j] ;

We can also examine & locally :ls'c_rt;ropic ﬁeld-along_anqr' line in 'ﬂ_pace.- The corresponding
expansion of the field f ﬁas a form similar to the expansion of a random funcfion ﬁ'l.fbh sta~
‘tionary increments. Iﬁ this case the expankion of the’ stmcfui-e function i§ similar to Eq.
(1.15): -

p
# .

b(r) = 2 [ @ - cos ) vipax. - ey

. The functions §( k) and V(k) are connécted by the same relation as in the case of an isotropic

random field:

K dk °

-

B = - X M . | ()

.
] .

In sddition to the expansions ‘(1.39) and (1.42) of a ].oca.‘t_ly 1sotropic random field and
1ts structure function as three-dimenaional Fourier integrals, we shall also use twn-dimsen- _

sional expansions in the plane X = const:

e

_r(x,y,z_} = f(;,o,o} +j\\f{l - e:_cﬁ[i(x,ay + xﬁ'z}]} .dv(Ke;xj,x) . . (1.k5)

Here f(x,0,0) is+a rendom function ‘and ‘#.(K2:K5:J£)_ obeys the relation

v ',

o

r” .
3, .l

d*( -‘C2, K ,x)d**(xas K

3dxat".ll(

= 8Ky~ k3)B(Kk5- KZ)F(KpyKs, |x - x'|)dx dx 3°

(1.46)




‘Consider the difference of the values of f(x,y,z} at two points of the plane X = const. Using

the expansion (1.43) we obtein e

o

2(x,¥,2) - T(x,y',2") = ff{exp[iixay‘ + kz2')] - exp[i(xyy + K3Z)]} (KK 5,%) -

We calculate the correlation function of two such differences teken in the planes x end x!:

Ef(x)}rtz) = f(x;?f':z')] [f{x_‘,y,z) o f(X',-Y",z')] - ‘

t . = [f(x,-:hZ) = f(x:yt:zt}][f*(x"}':z) - f*(xl:}")zl)] L

i f ]: ] .{e""’[”"e‘.’ ' )] - ey + x5231} {exp[-i(x'g?' +get)] -

- emplaliy + ypll} Wy WAV )

Using Eq. (1.46), we obtain

[:f(x:y‘vz) = f(x,y',z‘)][:f(x‘,y,z) - féx'_,y",z'):l .

=2 fjuf {1 - cos.[xa(y .- y') + K5(Z - z')]} X

X F(Kg’lelx - x'l}dxadx}- (1.47)
e £(x,¥,2) - _f(x,y',Z‘)n and £(x',¥,2) - £(x'5¥',2")

Clearly, correlation between the differenc
the distence |x - x'| between

those inhomogeneities with scales exceeding

is pmduced-only' by
wave mumber k ~ 2x/i{ corresponds to the sc

the plenes, i.e. ¢ 2 |x - x'[. Since the

ale L ,



-correlation between t.hesé differences is caused only by that parl: of the spectrum for Which
the wave numbers cbey the condition Klx - x'| S 1. Consequently, the fanction F(.tca,x.j,}x-x |}

which is the spectml density of t:he quantity

il
]

[f(xﬂf:z) = f(x’y'gz'}j [f(x')Y;z) - f(x';}",z‘)],_

s L

falls off rapidly for k|x - x'| >1. Using the algebreic identity : B
. 2.‘ N 2 2 ' .' ‘
(a-b)(c = ) = 3[(a - 0%+ (- 0 - (8- 0% - (- T,

we can express the left hand side of Eg, (1.47) in terms of the structure function of tue’

field f, with the result that the formule tekes the following form:

Dy(x - x', y-= ¥'; z - 2') - Dg(x - x', 0,0) =

=2 f?f (l - cos[xe(y - y;} + KE(Z - z'):D‘ X

s g .

(1.1+8)'_

X F(KE"%’ [x = x'|)dx2d¢c5.
Setting :c:-—.x'l, Y-y =1,2~-2"'=§, we obtain
Df(o,n,g).z 2 ff a- coa{xen' ¥ x5§)]F{x2;x ,0)dK dxi, - , ’ (l'h?.)'

S

tle. ., the function F(ka,xj,o} is the two- dimeasmnal sPectral density of the qua.ntity
Drto,q,;). In the case of local isotropy in the plane X = const, F'(K2,1c5, |x[) depends on_Lv

P
on k = \/x +x‘andthen [o]

nlf(p) = by f - Ja(xp)]F(x,odex . : : . - o {1.50)
J or | .
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Here 0% = 72 + ¢° and P(Ky0K590) = F( Vi3 + x§ , 0). In the case where the field £(T) is

homogeneous and isotropiec in the plane x = const, its correlation function in this plene can

be expressed in terms of F(k,0) by using the formula
@
Bf(ﬂ) = 2 f JO(KD)F(K,O}KdK- ‘ ' (1.51)
c .

The function Ff(;(,x) of a locally isotropic rapdom field cen be expressed in terms oi_‘ its
three-dimensional spectral density ﬁ(x}. Substituting the expansion (1.41) in the left hand
side of (1.48) and using the evenness of the function ﬁ(fcl,pce,xi) in k., we obtain the rela-

i1
tion

o

F(Ke,i(j,x) = f cos(xlx) @(Kl,xa,i%)dxl. (1.52)

=00

. Inverting this Fourier integral, we find

o

E(Kl,x?ﬂ(j) = %E f F(Ka,rcj,k}coa(;{lx)dx. . (1.53)

-0y

We now consider some examples of structure functions.

.a) The structure function of a homogeneous and isotropic random field can be expressed

in terms of its correlation function by using the formuls

Dy(r) = 28,(0) - 2B,(x). (1.54)

Setting (see example c on page 18)

" (X

—2 5
2v-l r(v) ro v ro

Bf(r) =
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g hefe", we obtain

Df(r)=2a.2|5- v'l[‘(v f ) I@(—{I

The sjaectra}._ density corresponding to (J_..__55} is
o 50 25 _
e Dvegy e e iR L
. B(x) = . e . o :
: : _ f(.rr(v) : vt % _ L
N (l+xrq)" ST s T el W

Forr<<r

b) —Consi_der the 'st_rupﬁure ﬂxﬁcﬁion ) i _ .

: _Df(rj =‘02rp (0-'< p < 2)

Hteys. B .(r.é_l.l stn _2 3 "f(;}f +1) =

~

~ We use the relation (1.41&). to find the threé'-diumenaional épectral density §(x):
E(_K).u _ m _ - m Bin _2 2’ -(_'p + 5} . "\ o .. .- 5y &




We also calculate the two-dimensionel spectrél denslit'y P(k,x) corresponding to the structure
sunction corP. Substituting the expression (1.58) in the right hand side of Eq. (1.52) and

carrying out the integration, we obtain [T-’] I. o

s _.2'_1' (Kx) Kl_'_g{ﬁcx)
= & sin -’522 2 r1+d £ = . (1.59)

Since _fcf'z >> 1, Kv(z] ol ,/ﬁ—/gz e %, for kx >> 1 the function (1.59) rapidly appreaches zero,
which cor-ésponds to the abovementioned property of the function F(x,x).
For . _
S , -2 az_ -22“'1r1+v)62
- =z 7 2v ™1 - v) d
the structure function of the preceding exsmple coinzides with the structure function cerp for

r<< T The spectra of these functions.agree for kr  >>1 (see Fig. 3).
: . 3 )
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Chapter 2
THE MICROSTRUCTURE OF TURBULENT FLOW -

Introduetory Remarks .

In -what follows we sha.u repeeted.‘ly neea basie information ahoutf the Btatisticel proper-
- ties of developed tuz'bulen‘b flow. ‘I'he statistical theory of 'I;u.r‘bulence 3 which was 1n1tiated
‘in the” papers of Friedmann ‘end Keller, has und.ergone gzeet. ﬂevelapnent 1n the last hro d.ecad

A very importen‘t advance’ wes achieved in 'bhe year lBlil, when- Kolmogomv and Obukhov estah]:l.shed

the laws’ vhich cha.racterize the basie prdpez'ties oi’ the mit:rostructu:e oi’ turbulent flow a'c
very 1a1-ge Reynold.s numbers; some yee::s later certain foreign seientiete (Dnseger, vo.n Heiz— _'
sec.ker, Helsenberg) arrived at the same results. In this chapter we present only ‘l;hose reeults
of the Kolmogorov theary which are most important for our purposes, a.nd refer to the original

eourcee [8 9,11-16_] fnr more detalled infoma‘hion.

2.1 ohse‘t and develojment of turbulence

"

Consider en initielly leminar flow of = viscous fluid. This flow cen be chai-a&teﬂ'zea 'hy__f_-v_:

the values of the kinematic visceeity v, the characteristic veloci'l‘.y scale v. and the charec-'

teristic 1engbh L. The quantity L che.recterizea the dimensions of the ﬂw as a whole end

arises from the boundary conditions of the fluid dynamics problem. The laminar flow of the =

fluid is stable only' in the case where the Reynolds number Re = vL/v does ﬁot exeeed a certai-n-"-f'_:-

eritical velue Re‘ As ihe number Re is incree.eed (e-g. by :I.nc:reesing the veloei‘t.y of the
_flow) the motion becomes unstable. This etabi]ity _criterion can be ex'pleined by -the. fo].‘l.m_riné_
simple consideretions. ' - - .

Suppose that for some’ ree.sqn or other a velodty ﬂuctua.tion vi occurs in a reg'ion of
size ¢ of ‘the basic laminar flow The characteristic period T = t/v} which corresponds to :

Y

" this fluctuation Bpecifies the order of me.gnitude of the time required for the occurrenee of

the i’luctuetion. _The energy (per un.tt mass) of the glven . fluctuatiﬂh is v'a._ Thus, when.-the

Velocity ‘fluctuation under eonsideration occure, the amount of ‘energy. per unit’ time vhich goes

over from the initial flow to the ﬂuct.ue.tionel mntiocn ie eq;ua.l in order of me;nitude to

-’, . . ) . ) . ) ?r




[ m 'v'?{z. On the other hand, the local velocity gradients of our fluctuation are given -
t‘he ratlo v'/#. » and therefore the energy dissipated a8 hest per unit mass of the fluld per.

uni_._t time is of the order -of mg;:ijtudse € = 2/& . If the velocity fluctuation which arises

& to exist, it is clearly necessary that the ineq_ue.lity vi3ﬂ >w£ /& hold, 1.e.

Vi3t o,

1 = v
wp v

= Re& > 1. -

'

ince all these calculations are acéurate only to within umie‘bermiu,ed numerical factors, it
‘would be more correct to write the relation we have just obtained in the form Re N > Recr

2 Here Re'- deno-t.es the "inner" Reynolds number cor'reéponding to fluctuations of size i, and '
.' :I__{eé :I.s some fixed number which ee.nnot be dete.tmined precisely These considerations ahow

. hs.t, generauy speaking, large perturbatiom, corresponding 'I:.o large values of the number

Re z, are most easily excited. But if the condition vL/v > Re,. is not met for the flov as a

", whole, then the laminar motion is stable.

5 ~'Let us assime that es the mumber Re is gradually .inc_::-eaaeii the leminar motion loses sta-
bility and there occur velocdty fluctustions v} with geometric dimensions ¢. If the initiel
“pumber Re = VL/v was toly s Mttle largsr than Re_, then the fluctustions which arise have

" ‘small velocities and Re, = vl&/v <Re_, 1i.e., tﬁe velocity flu.ctuations which occur are
.'s.t.ablg.‘ As Re = vL/v is increased- further, the velocities of the fluctuations which ocecur

iy i_ﬁcrease_ and t}aeir inner Reynolds mumber Re, may exceed the critical value. This means 'i;hat

_:;:?-'the *pirst order” velocity fluctuations which arise lose stability themselves end cen transfer .

energy to new "second order” fluctuations. 'As the number Re is increased further the "second,
' order” fluctugtions become unstsble; and so on. | _ _
‘Let the geometriéal. dimensions of the smallest fluctuations which occur be ¢ , end let

t.heir velocities b.e vo. For all the velocity fluctuatione with sizes !.)!. the inner n'lmber

8 Ret is large (exceedIs Re }.. It fo].‘l.m from this that their direct energy dissipation is
BmsJ.'I. compared to the energy which they receive from larger perturbatione; thus, these fluc-

R tuations tranafer elmost ell the energy they x’eceive to smaller perturbations. &:nsequently,
the quentity v'5fa which represents the energy per unit mess received per unit time by eddies

af the n'th ord.er from eddies of the (p—l)'th order and transferred by them to eddies of the

(n+1) 'th ordgr, ie constant for pertur‘bations of almost a.u sizes (w:l.th the exception
28
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of the very Bm.allestj_ . 1In the smallest velocity perturbations vith sizes t_.o',;thi's energy is'
co}:wer&ed into heat. The rate of dissipation of energy into heat is determined by ‘t';he local
velocity gradients in these smalleét perturbations, i.e. is of order ““ﬁ[‘i‘ ,Th'.u;s, i’:o:i:'
veioci‘!:y :l’luétuations of all scales, éxcept the very ama.‘l_'l.est, we have vijfﬂ ~ € aﬁd )

.

Cvy - (Y3, ‘ (2.2)

i.e., the size of the fluctuational energy belonging to perturbatioms with sizes of the order

¢ is proportional to r.l/ }. Moreover, for all scales the size of these fluctuations depends.

only on one parameter, the energy dissipation rate e.
We now calculate the dimension &O of the smallest inhomogeneities. For them the rela-

tions v_ ~ (eto_)lh" and wgfl.ce} ~¢ hold. Solving this system of equations, we find that

h . : -
RN PRy ey

The quantity ¢ cen also be e:qu-ea‘éed ‘in terms of the dimensions of the largest eddies L,
which are comparable with the dimension of the flow as a whole. Since vi/L ~ €, then substi-

tuting this expression for ¢ in Egq. (2.2) we obt_a:l.ﬁ .

L i A, '
L - . e . : _ 2.3
°  (pe)* °" (re) " : W)

Thus, the larger the Reynolds mmber of the flow as & whole, the smaller the size of the
velocity inhomogeneities which can arise.
The considerations glven sbove are essentlally only of & qualitative nature, but théy can’

be used aa. the basis for ccnst:méting a more rigorous theory.

2.2 Structure functions of the velocity field

in developed turbulent flow

The largest eddies which arise as a result of the instability of the basic flow are of

course not isctropic, since they ave influenced by the special geametric properties of the
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flow. However these speclal properties no longer influence the eddies of sufficlently high
c:_»di_er, end therefore there are good grounds for considering the latter to be isotropic. BSince
eddies with dimensions much larger than ['f'l— -'f'al do not influence the two point {rezlocity dif-
ference '{r('x'*l} e -\7(?-2}, then for values of |?-l- ?2| which are not very large, this difference
will depend onl‘j; on isotropic eddies. Thus, we arrive at the scheme of a locally isotropic
random field. Since the field '{'r(‘:") is a vector fiel:i, it is characterized by a set of nine
structure functions (instead of by one structure function) composed of the differee-nt components

of the wvector Vi

b, () = (v;- ] V- o | (2.4)

Here 1,k = 1,2,3, the A are the components with respect to the x,y,z axes of the velocity

vector at the point T., and the vi are the components of the velocity at the point T =T+ T

1’ Rl ¥
It follows from the local isotropy of the velocity field that Dik(?] has the form (see

e.g. [1%,15,16])
Dy, (F) =[0(x) - Dy (x)]oymy + DyyByys . (2.5)

where ﬁik =1fori=%k, Gﬂ_ = 0 for i # k, and the n, are the components of the unit vector

directed along *. Drr = (vr' vz'.)e, where ¥ is the projection of the velocity at the point

;l along the direction of -J;,. and v;_ is the same quantity at the polnt _1::'L = ;l + _r.; ’

Dtt = (vt - v%)z, where Vi 15 the projection of the velocity at the point ;]_ along some direc-

tion perpendicular to the vector _;, and v_;‘ is the same quantity at the point ;i Drr is called .
the longitudinal structure function and Dt + the transverse g'bmctu.re function of the veloelty
" Pi{eld. 1In the case where the velocities v are small compared to the ‘veloeity of sound, the
motion of the fluid can be regarded as incompressible. In this case div v = 0. It follows

from this relation that the tensor Dik(;) satisfles the condition

oD,y

=, =
i
where we sum from 1 to 3 with respect to repeated indices. Substituting from Eq. (2.5), we
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find that . ' ' ' ~

Blm

T

b, =EitB ). - : e ‘_(é_é-)-..-:

Thus, the temsor D,, is determined by the single function Dn_( r) (or Dtt(z-} ).. Fov values of T

ik
vhich are not very large, the form of the function Dn(r) can be established by using the =
quaJ_itative considerations developed sbove.

Let r be large compared to the inner scale t. of the turbulence (i.e. compared toc the .
size of the smallest eddies) and small compared with the outer scale L of the turbulence (i.e.
compared to the Bize of the largest, anisotropic eddies). Then the velocity difference- at the
points _;i and ;i = ;1 + T 18 mainly due to eddies with dimensions comparsble to r As
explained abc‘nre ; the only parameter which characterizes such eddies is thé energy _clissipatign. '_
rate €. Thus, we can assert that Dn_'(r) is a function only of r and €, i:e. D_(r) = F(r,e_')-' 2
But the_only combination of the gquantities r and ¢ vith the dimensions of velocity Sqtmred is - =
the quantity (EI;) 2/ 5,‘ and it is iﬁpcssi‘nle to construct dimensionless combinetions of these _I

quantities.  Thus, we arrive at the conclusion that D_.1is proportional to (er}e" 5, i.e.
b (r) = c(er)‘/5 (1. <r<< Yy B ' - _'(2—"_!_) i
) 3 i B

vhere C is a dimensionless constant of order unity [a].

We can arrive at the seme conclusion by starting Hif.h Eq. (2.1). In fact,

—.b - - 2

Dﬂ(r) = [vr(rl *r)- vr(rl}]

-y P T (er)™/3, _-
is mainly due to eddies with sizes r, i.e. D (r) ~ vy But by (2. 1) T, (er) whence we
again arrive at (2.7). Eq. (2:7) wes . first obteined by Kolmogorov aad Obukhiov [8,11] ena
bears the name of the "two-thirds law" " Using the relation (2.6) we can also obtain the quen-

t
; ity Dtt(r) :

Dtt('r) = % c(er)_abl (t.o << r << L).

3




We now consider the walue of the structure funetions for r << -t.o. In this case the
~ changes of veloeity occur smoothly, since now the relative motions are laminar. The velocity"
difference vr(-f-l) - v(;l + T) can therefore be expanded as a series of powers of the guentity

r. Retaining only ‘the first non-vanishing term of the expan¢ion, we obtain
v (F) - v (7 + F) =35
where o is a constant vector. From this we find that

Drr( r) = ar?

for r << &D, where a is some constant. The quantity‘a, can be related to the quantities v and

¢ by & more careful argument (see e.g. [8,14]). It turns out that .

D,..(r) =1L5%r2' (r << té)- _ (2.9)

It follows from (2.6) that in this case

2

D, (r) 1%‘ P (r<t)- . (2.10)

= [m

Ge2/5r2/3 (for r > LOJ,

Drr( r)

il
.

== (for r << &0),
(2.11)
. C€2/5r2/5 (for r >> r.o),

[
—~

Dy (r) =

£ £, (for r << &o).

In.Egs. (2.11) it is essumed that r << L, where L is the outer scale of the turbulence. Fur-
ther hypotheses are needed to determine the form of the functions Drr and D, for intermediate
values of the argument r (see [12] and [13]).
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When r 1is incressed, the condition r << L is violated. Then the large eddtes, which can:

not be regarded as isotropic and homogeneous, begin to influence the value -Of-vr(;l-)- vz;(?l-p-;

In this case, the structure functions D, and Dy, depend on the coordinetes of both cbserve-
tion points, and no mﬁ.versa.l 1enr can be given which describes the structure ﬁmctim ror
large velues of r. . We can only state that the growth of the structure functions D (r) and
Dtt(r) slows down for r >>L [b]. Fig. 6 shows the general shape of the function Dn-,(;']. For -
small values of r,the curve can be repléced by a parabola with great accuracy, then the '-pe.rt_'_ L
of ‘t.he curve corresponding to the "two-thirds law" begins, and £inally, in the region of the .
outer scale of the turbulence, the curve starts to satura.te .. The da.shed parts of t.he curve
show the asymptotic behavior of the f‘unction D (r) for r << t_ end r >> tye To meke more
precise the definition of & o’ the inner scs.le of the turbulence, we shall call the i,nner sca.‘be

of the turbulence that value of r for which the functions er /15v and Ce2/ 3 2/3 :Lntersect i.e.-

(2.12)

|

|

i

§ _ _ :

% 4 -

Fig. 6 General shape of the structure function Dﬂ_(r).
(L, 18 the outer scale end i the imner scale of the turbulence.)

7
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In many _applications of turbulence theory an important role is played by the isotropic
eddies described by the structure functions (2.11). In these cases, it is often expedient to
regard the values of r in Egs. (2.11) as not being bounded above by the value L. This is
almost always the case in. ‘the problems considered in this book. Hoﬁever, if we cannot meglect
the " saturatiod’ of the structure ﬁmction,wit is necessary to use interpolation formulas which
epproximately describe the behavior of the structure function for large values of r. For smell
values of r these formulas must reduce to the same values of Drr as given in the expression

(2.11). One of the functions satisfying the stipulated requirements is the function

—3 2/3 1/3
SORE SRS oL V] B (223

proposed by von Kérmén. Here v' is the mean square velocity fluctuation end L is the outer
scale of the turbulence. As shown in example &) on page 12, for r << L, the function (2.13) is
approximately equal to :

v w2 2/3

L iR i
Drr(r) W?E}‘ L—-éﬁ r » (2.1&;)
[+]

i.e. coincides for r << L with the "two-thirds law". We can also write down other functions

satisfying the same requirements.

2.3 Spectrum of the velocity field in turbulent flow

v
. We now study the spectrum of turbulence. As shown in Chapter 1, the structure function

: Df(;) of a locally isotropic scalar field can be represented in the form

el

Dfﬁ) =2 fjf [1 - cos(k-F)]JP(k)dk.



Similarly, the structure tensor Dik(?r') cen be repreaented in ‘the form -

P

i Dikﬁ") =2 ffj\@. - cos(?-r')j' lk(?)dz, | ' | : (_‘2...15;)_.'.

where ﬁik(?} is the spectral tensor of the velocity field. " The form of this t.ensb_r can be
determined from the incompressibility equation and the local isotropy condition, i.e.; the ten-

sor Iik(;a can be expressed in terms of the. vector k and the unit temsor 51): [16_1_ as

$,, () = 6k + E(K)B, _ a o (2.16).
where G(x) end E(k) are scaler functions of a single argument, the magnitude of the vector K.

It follows from the incompressiblility equation that
i .
oD, . e
3%

(see page 30). Taking the divergence of Eg. (2.l%), we obtain .

_ fff si?F?-;}Ki'-gk(E)azl; 0.

Thus the condition Kk, §ﬂ'{(;’c’1 = 0 mist be met. - Substituting Eq. (2.16) into this condition, .

we get'(};czxk + Erck = 0, whence G = - E/xg. Consequently we have
- K . | * + N
- 155 . . :
) Eik(-x.) = (Bik - ?)E(K)- a . X (2-1?)

Thus, Eq. (2.15) tekes the form

Ll
5 f

. ; o i .x Kk ] . 2 :
D, (F) = 2 fif [l - cos (pc.-r)]Eai# - -??E(K}dx. | G



To explain the physical meaning of the function E(k) let us essume temporarily thet the
velocity field is isotropic and that the. correlation tensor Bik{;) exists as well as the struc-

ture tensor Dik{;). Then we have

—. ) ~ - =, . KiKk -
Efik(r) = f-[f cos(x-r}(aik - 2 VE(k)dx.

- We contract this expression with respect to the indices 1 and k. Taking into aceount that

2 ;
Bii = 35 and Kixi = K , we obtain

B, () = fj‘f a,;(;.;m(gdz.

‘Setting r = 0 in this equation, we get

L }2‘::5 = fffﬂ(m)d}.

Thus, the quantity E(x) is the spectral density in three-dimensionel weve vector space of the
 distribution of the energy of the velocity fluctuations.
We now find the form of the function E(k) corresponding to the "two-thirds law'. To do

‘this we contract the expression (2.18) with respect to the indices i and k
! ©
- - = -
o Dﬁ_(r) =54 fff - cos(k-r)|E(x)dk. (2.19)
. ) -0 ’

It follows from (2.5) that

D, (r) =D _(x) + D, (r).



Setting

T B ’ 2 2 ) k 2 2 --
D (r) CE /51' /5 . » Di t ‘= -5..06 '/51' /3,
we _obt_ain

%L 062/.51:,2/3;’ . 14.. fff El _ 065'(2'?}]]3{’()&"

i
[

Comparing this expressidn with Egs. (1.56) and-(1.58) in examplé b) .on page 25, we find that:

E(k) = Aee/ax-_lllj, ' : . S (2.20) P
where ) . e ' . .o - ‘
llI‘(%) sin% . _ ' "
A= —2——2¢ = 0.061C. . ' S

oliye® . : .

Many pepers on turbulence theory use the one-dimensionel 'spectrs.l expamsion of the quantity

]'Jr with respect to the megnitude of the veetor X, 1.e.
™ R . ) . ) e s 5 e H
Drr(r)\'“_' 2. f Q.- -cos(xr)]El(K]dK, | . N oy o {2@1) .

instead of the thz'ee-dimenaional spectral expamsion of the stmcture tensor (2 18). Using. - -

Egs. (1. 56) and (1.57) of exmple b) on page 25, we obtain

El(x)l_a Aleef.:'xﬁ/?,' '_ ' ' L S : {'2.22:} j"_
" . where N
i ) (-—] sin & : : ' L : .. '
. i ﬂl = __.._._2 C. : : o : L.
e b _ !

The spectral _énergy densities -(é.eo) and_( _2.‘22_} _correspond to the struction flmc—

tion D= 052/-3:'2/ 3 end do fiet reflect the fact that the structure functions Drr( r) and
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D, t(;'), have a parabolic character for r << L because of the smoothing action of the viscous
forces. As we have already seen above B ‘t;he action of these force.s i_s. apj:arent from the fact .
that eddies with sizes of the order of & are stable. T}ms, in. a turbulent flow 't.here are no
inhomogeneities with sizes much smaller thean ."'o' This means that the spectral density E(k)
rapidly dies off to zero when K > 2n / i,o. The charac‘ber of this cutoff is r{_alated to the form
" of thé structure function D (r) in the transition region from r << ¢ "toT >> ¢, and at pre-
sent ha.s not yet been ascertained exactly. The spectral density (2.20) goes to infinity at

K = 0. This is related to the fact that the structure function D = ce2/3 2/3 goes to infin-
ity et r = . In all actual cases, of course, Drr(w < » and the growbh of the spectral den-
sity E(x) for k <k

min

the turbulence).  The form of the function E(k) for k < Kinin

concrete conditions which determine the formation of the largest eddies, and therefore it can-

slows down (the quantity « min 2x /Lo corresponds to the outer scale of

obviously has to depend on the

not be yniversal [c].
As an exsmple of a spectral density E(x) which is finite for Kk = 0, we can give the
spectrum of the von Kérmén function (2.13). Instead of the rather formideble expression for

E(k) we give here the relatively simple formula for El(.-c-):

: L v'
) = r(5/6) ° . ' (2.23)
N 3x (1/3) (1 + K%-OE)WG :

For k = 0, E, is finite end for kL >>1, E(k) ~ K'5’{3', i.e. coincides with the spectral den-

1
sity El(x) corresponding to the "two-thirds law". -

Numerous experimental. investigations of the form of structure functions in the atmosphere
(nainly in the layer of the atmosphere near the earth), where the Reymolds mumbers are very .
large [d], give good confirmation of the "two-thirds lawr' for df'stances of the order of centi-
meters and meters [.'LT]. These experiments also allow the constant c figuring in (2.11) to be
rather ac:curately d.etemined. Some as yet rather sparse measurements of the structure func-
tion in the lower troposphere also, sgree with this law foz_' distances of the order of tens of
meters [18] . One can arrive at a similar conclusion by_ s.ﬁal:.rzing the spectrum of airplane
im_i’feting [19_1 .-

We defer a more detailed presentation of the results of experimental investigation of
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the structure of the wind in the atmosphere until Part IV. We turr no% to the microstructure:

of the concentration of a passive sdditive in e turbulent flow.




‘Chepter 3
MICROSTRUCTURE OF THE CONCENTRATION OF A CONSERVATIVE
PASSIVE ADDITIVE IN A TURBULENT FLOW

%,1 Turbulent mixing of conservative passive additives

As. already noted above, the microstructure of the refractive index of the atmosphere is I

determined by the structure of the temperature, mmidity and wind velocity fields. The tem-

perature, humidity end some other characteristics of the atmosphere can very often be regarded

-.approximately (to a high degree of accuracy) as conservative passive additives.

s\

If a volume of air is characterized by a concentration § of additive, then by saying tha{.
the sdditive is comservative we mean that the quantity 9§ does not change when the volume ele-
ment is shifted sbout in space. By the additive being passive is meant that the quantity 3
does not affect the dynamicel regime of the turbulence [a]. The problem of the microstructure
of the concentration of a conservative passive additive was f‘irst considered by CObukhov and
Yeglom [21,22] for the case of e temperature field.

'We shall start from the equation of molecular diffusion
dd

3t + @v(- D gred 8) = 0, . ' (3.1)

"which must be obeyed by the concentration # of a passive conservative additive. Here D is the

molecular diffusion coefrj‘icien\t of the additive and
ad _ 98 -

a—:-g:-ai-t-v-gr&ﬂ‘ﬁ

is the total time derivative taken along the moving parcel of e:lr.' We shall assume that the

: - ) .
alr can be regarded as incompressible, i.e. that div v = 0. In this case

R

_W;.grad 4= div(%):

ko
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and Eq. (3.1) tekee the form

%‘% + d.iv(w'r'e - D grad 8) = 0,

or 3 . ) S 5

g%- + 33—1{"1*- - D%j-u 0. R * (3.2)

A8 usu.a.l,ue separate the value of the quantity 4 1nto the mean. value 9§ and the departure e'
~ from the meen velue, i.e. .e = e + 9'. Similarly, we set v, = vi + vj'_ Aversging Eq. (3.2), '

we obtain

- |
1

The e-xpréssion 1d parentheaes-ﬁprlesents the mean density of flow oi’lthe 'quéu:ftity 9.
tity qm =-D g'.r:ad. 3 repnsents ‘the mean flow of 6 ce&u.se*d by molecular aiffusion. The. qu'an; i
tity qa =V 8 1is connected with the trensport of 8 by the mean velocity of the flow; 11; 1% ‘
usually constant end drops out of the equation. ‘Finally, the quentity o= 710" represents
the density of 'burbu.'l.ent flcw of 4. It is n.a.tural ‘t:a assume ‘that U is proportional to the

gredient of the mean ooncen'l:ration [b], 1.e.
- - . . .' ) A ) . : : Eh !
gp = - K grad 3. . - (3.4)

The :[uantity K is called the coefficient of turbulent difhlsioﬁ a.ud usually exceeds the coe:t'-

. ficient of moléculer diffusion by several orders of maylitude 0f course, the value of X R

‘depends on the 1ntensity of the turhulence.- : o ' St

It should be remarked that there is en e.ssentia.l dii’ference- between the mechmisms of i

moleculer end turbulent diffusion, vhich the folloving example clarifiés. Let the mean va.lue

3 depend only on one cocrd:l.na.:e %z, 8ay. Assume for definiteness that e increases a.s Z in-- .
creases. con.sid.er the values or 9 at two different 1evels zZy and 22. Because of the turbu-u

lent mixing, parcels of air from the level EN vill arrive at the level Zy5 and converaely

‘ parcels of air from the level z, will arrive ot the level 2, Thus, at each of these: levels
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parcels of air chmctuiaed by the value 8 (z ) a.ppear next to parcels of a'r characterized
' by the value 3 {za)-. As a result, the mean concentrations taken over each level change in
o such & uay that the difference between them decreases, while the “yariegation" of the values
of ¢ at each lével ia greatly iﬁc'res.sed. Thus, s a result of turbulent mixing the inhomo-
geneity of the spatial distributioﬁ_ of 8 is increased end large "local" gradients of 9 are
created. Only after large local gradients of 9 have appeared does the process of molecular
' a1fruston play a significant role by smoothing out the spatiel distribution of 9.

The inhomogeneity of the spetial distribution of 9 can be characterized quentitatively

by the following measure ¢f inhomogeneity in the volume V: !

G=%f 2av, o =9-3. ' (3-5):

Clearly G = O only when 8' = 0 in the whole volume V. Subtracting Eg. (3.2) from Eq. (3.3),

we obtain an equetion which determines 39'/dt:

39! 3 ‘At i BB' .

e + W_l(viﬂ + ‘Viﬂ - Vie' - D E;(;:) = 0. ; (3.6)
Multiplying this equation by #' and using the obvious relations [e]

) , D y -tL 31,42 3.1
g . 8 Ei;(via ) =9 vy g{:: vy E{(E L] Fi(é Vi

: - 2
D ;v Ay d . 38", . 9 d8' t
AU AR A S &) - M)
i we obtaln
L k | . a eta "era . - - 2 -
. -+ ddv (X~ - D 9 grad ¢') + 9'v'.grad 3 + D(grad 8')%- #8' aiv(v'e') = 0.
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_ Averaging this e@ua‘tion a.nd wsing-the fact that

-

8 -d-.i-i- (vj9') = 0,

we have

2

1 - . . . .__
%—4-.:111:(%%3*2 - D 3 gred e') +3V . gred 3 +

o

+D (grad 4% = 0. — L em Y

Lol

The integral of the divergence can be t:ranéfomd -

We now integrate (3.7) over the volume V.
: 1

into a surface integral, vhich is small compared to the volume integrals. Neglecting the sm'h

face integral, we find

R " : - raT
: v ) . ’ . " : -

Substituting into (3.8) the value of the quantity v'® = E;'T from Eq. (3.4), we obtain.

C .

§%=f [K(grad _3)2 - D(gred a')la]av =0 . (3.9}_
v e e

he smount G 'of inhomogenelty increases due to the presence of turbulent mixi.ﬁg (" turbu

Thus, t
.lent flow").of the substance in question and decreases due to the presence of the process o

molecular diffusion. -In the ‘s'tétionary case, dG/glt = O and both processes must balance each -
other: ' ' ' ;o
f K(grad $)° av = f'D(gra.d a')-é av. o o (3.10)

If the inhomogeneity messure is Btationary not only for the volume as a whole'but for its .

»
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separste parts as well, then Eq. (3.10) cen be written in the form

—

K(grad 3)2 = D(grad e*)e. ' (3.11)

The quentity

N = D(gred e')a
represents the amount of inhomogeneity which diseppears per unit time due to molecular diffu-~
sion; this quantity is analogous to the energy dissipatiﬁn rate €. The qua.ntity_ K(gred 3)2
represents the amount of inhomogeneity which appears per unit time due to.the turbulence, and
is similar to v5/ ¢, the rate of production of the energy of the fluctustions. We can carry
" out an even more detailed enalogy between the veloeity fluctuations in a turbulent flow and

the concentration fluctuations of a conservative passive edditive 4.

3.2 Structure functions and spec't:rél functions

of the field of a conservative passive additive in a turbulent flow

Concentration :I.nh.omégenei‘l:ies 4; with geometrical dimensions { appear as & rém:lt of the
‘action of velocity field perturbations vitﬁ dimensions ¢ and characteristic velocitiles Vg
The smount of inhomogeneity appeering per unit time is cleerly equal to vteiaﬂ- (t/v, is the
time of formstion of the velocity fluctuetion v, and 0;'2 is the measure of inkomogeneity).
According to the second term on the right of Eq. (3.9), the rat.e of levelling out of the inho-
mogeneity 9} is of the order D«‘sia/ta. In the case where v,'ef/& >> Deieﬂa or tv, /D >>1, the
inhomogeneity '5;' which eppears is not dissipated by the action of molecular diffj.lﬂitm, but
rather has a stable existence and can subsequently subdivide into smaller eddies. This pro-
cess of subdivision proceeds until ihhnmgeﬁeities appear for which vl‘]_’a{fﬂi - DG'E/LE or
clval ~ D. These inhomogeneities are dissipated by the process of moleécular diffusion. It
follows from Eq. (3.10) that G, the‘ emount of inhomogeneity appearing per unit time due to
the largest eddies, is eqﬁal to N, the rate at which the inhomogeneity is levelled out in the
smallest eddies. . Thus, the amount of inhomogeneity transferred per unit time from the largest
to the smallest eddies is constant and is equal to the rate ¥ at which the inhomogeneity is
dissipated. Consequently, for inhomogenei:ties with t\r& > D {i.e. for all.inhomogeneities

Ly



._‘ =
N

The size of tha smallest inhomogaleities in the distribu'baon of . e is deﬁned by the re

Af,lv‘,' "D, whehce, sinr:ev e (el‘ ) f5, we o'b't,ain IR J

-\The quantity va/D, which deﬁbermines 'bhe "stahility" o‘f inhomgeneities 1‘3' v!.th di'

' sions t. 5 is analogous to ‘bhe Reyn(alds number vhich de'l:ermines the stahiltty of v,eﬂloc. Ty

turbations. ) Since the values of D are near v, the numbers Lv- /v and. L\r /D are: always R '

- sAme oz-der. (For air v = 0 15 cm fsar- the coefﬁcient of tempezr‘ature conﬁuctivity
¥ I

v D = 0. 19 em’ /sec, the diffusi"on caefficient for a.tmspherie igater vapor is D -_0 20 mQ

the difmsion coeffi\:ient for atnlospheric 002 :I-.B D -0 1’+ cm /ser: s, etc ) Thus, the

' of sizes wi‘thin vrhich t.he rela.ticms Y -~ '(EL }1/ 3 a.nd % e mzﬁ‘ 1/ 3 hold arg n.lwe.ys

. 'J.‘he size of the smllest edd.ies énd ‘t.he siae L of the Bmllest inhomngeneities :Ln th
- K 1)5/4 “1y3/s " :
g bution of 8 have: ‘the. ss.me ord.er c>:E mgni‘t:nde, 1 e. {v c ) oyl (D5 ) g Because '

r this, we aha.ll henceforth make nc: .d,istinction beWeen 'I:.hesa qzxnti‘ties.- it

s:bions. The 1argest inhomogeneit‘tes in the dist_ribution bf 'B oviginate' from the 1a.r

eddies tmd are not isotropiiz. Hmrever the ana:l.lest tnhomogeneita.es in the dj.st:ibuttan




D ﬂ( r) = F(¥, €, r). Dimensional considerstions lead to the formula [21]

2/3 (4, <r <L), (3.15)

Da(r} - :_%3 T
r . ' A ’
vhere a 1s a numerical constant. The expression (3.15), which corresponds to Eq. (3,12) and
:i.ls'derived on the basis of quelitetivé considerations, was first obtained in the paper of
. Obukhov [21] and is called the "two-thirds law" for the concentration of a conservative passive
additive. For r << co,the difference 13(;;-% r) - é(;l) i a smooth f‘u.m;:tion of r and can be
e-:&panded. in &.series beginning with the first power of r. -Codfsequently, Dé( r) ~ r2 for

r <<t . More detailed considerations lead to the formila [21] @

2 (r<< L) | _ o (3.16)

1¥
D ﬁ( r) = 557
We now r_dek_e more precise the definition of J', for 1nhomogeneii:ies in the distribution of
9. We shall assume that the guantity -‘, is defined as the point of intersection of the asymp-

. totie expa.n.aions (3.15) and (3.16), i.e.

. . -
h. fr—— .
6.3 - :
-/ 27a"D” - . :
b = \/_—_e. st _ | (3.17)

Thus, the structure function D 6(r} can be represented in the form

ci 'rg/ 3 for r > f.o,
- Dylx) = - : - : ~ (3.18)

2/3 {1—) for r << Lo



where’
.o c§=a -li':;; - - ey
€ . e o, s : .

and ¢ is defined by Eq. (3.17).
According to.the general formila (l 59); a locally isotropic random field can be repre

sented in the form of a stochastic integral

0@ =80+ [[[ - F i, o (320

LY

' where the rendom amplitudes d9(k) setisfy the relation

-

ag(R) )agr(R,) = 8(k, - K,) Ty(R)) &k, &, . . . Ga

The i’tmction'ﬁe(_f} is the spectral density of the structure function 'Do(;], i.e.

‘(r) fff(l - cos K- r)L(K} R L | (322) _

The expression (3.22) can also be written in the form . R

pe.= 8 [ (1 -SRI ke . o (3.23)

D : ‘
The function EO(K) is the apect.ral density in the three-dimensional space of wave numbers
Ky Ko Ky of the distribution of the amount of inhomogeneity in & unit volume. The form of

this function corresponding to the "two-thirds lew" for the concentration 9, wes given in
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example b) on page 25, i.e,

8 x
r(3z) sin & N
B) < ——-2 G/

and

y(x) = 0.033 c§ /3, o | (3.24)

© However, we note that for r << &0 f,he structure function D a( r) behaves quadratically, corre-
sponding tlo.a rapid.decrease c{f L(K) for k > l/lo (see page 38). At present, the exact cut-
off law of @:6(:() for k ~ l/r.o has not yet been ascertained exactly. In some celculations we
shall use a function ﬁa(x) which vanishes for k > K.+ OF course, suck a definition of L,(K)
is not rigorously founded, but is recommended by its simplicity; it simply means that a cer-

tein interpolation formule has been chosen for Dé( r). Thus we shall assume that

[} .
© 0.033 c‘f 1L/3 for k <k, :
ﬂ{x} = (3.25)

0 £ N
or K )Km

The quantity L c,aﬁ be related to the guantity Lo defined in Eq. (3.17). Substituting the

function (3.25) in the expression (3.23), we obtain

K

m . .
Dy(r) = 8x(0.033)C2 f (1 - 8ok 1752, - (3.26)
: p _

%

For x r>>1 the integral (3.26) is practically the same as the function (3.15). For K f <<1

sin rcr) - K2r2

(1 - KT

and - [3
: “m > _ . : N
Dy(r) = &(o.o;s}cf f e 32 - &'.f{o.oas)cg %% xm/3 :-2._
Q
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]

Compering this expmsss.on with the formula D (r) = Cy !.2/ 3(" ) s
m and "o

(et (oo wsde. s

The expression c§ 2 b 5-1/5 can be transformed into é.' form which pemiits this quntity :

to be caleula.ted in terms of data on the mean value profiles of the wind velocity end concen-

tra.tion_ 9. To do this we have to use the. :'elstion _ oy opte

K(grad 3)2 = D(grea 9')2 = ¥,

Tk

which expresses ‘the quantity N in terms of characteristics of the mear profile of 9. Asimii

lar relation holds for the quantity . : : _ -

@Y

Here :Ei is the average value of the wind velocity. Substituting the expressions (3.28) and

" (3.11) into the formule for 02, we obtain
: ) 'ﬁ

gl

All the quantities figuring in 'I:he right hand side of (3. 29") can be obtained from obaerva-

1/5 _ _ | o s
(graM) PR o ey

tions- of* the average a‘unosphseri.c profiles of the \d.nd, the t«mperature a.nd the quantity 0.

Methods of determining K from observations of vind. and. tempemture proﬂles in the atmsphere :




bed in [23-26] It should be noted thst a large amount. of observa.tional mteria.l
: :ced to check the ‘Pormulas meumended for calculation of K :.n the papers ci‘l:ed, “but
give the gorrect. o:de:r._' of.,mag_nitua.e. .
‘-(5 29' ]' can be'useﬂ to eaicu].é.t.é the. ranée of s:l.ze's within 'Hhich the "two-thirds law"

g:l_id. The. - mean square difference which the fluctuations produce in the difference of the
s: of LN at two points grows Jike :.2/ 3 (l'. is the d.:l.stanae between the observation points).
e sm time there exists 'betueén these t\ro observation points a syntematic d.tﬂ’erence in
_alueb or o, eq'ual to. ]graﬂ. o]:. , vith square lgmi a| . It is clear that for su:t‘f‘.‘l.-
t.].y mll values or &, the ﬂuetua.tional dii‘.ﬁpmnue in the va.lnes of 4 1s much larger than
aﬁtmntic diffemce (since x /3 is always >> 12 for x << 1).  Thus, over small distances :
pmasence of a systematic d:l.rremnce in 4 does.not affect the size of the fluctuations and
not ‘affect their homogeneity an& isotropy However, &s the distance ¢ is incmased., the .
-bml'.ie difference in the valwas of 9 becomes larger than 'I;he fluctuational dd.fferenae and
sueh- scales the ﬂem of ﬂuctuations of ¥ canmt be comaidered loca:l_ly isot-ro;pic. Let

d.elignatebyl.thed:lmion for'ﬂi:ich the relation fe
s .
" gubstituting Eq. (3.29') in this relstion, we obtain

(3.30) .

: shsJJ. call the mﬂty.r, = -Lla-jfa, vi:ich_differs'from L only by a numerical factor, the

scale of the tu.ﬂmlence. In the freé troposphm L ranges nm tens to hundreds of

(3.31)

Lo =



Using the quantity L, we can write Eq. (3.29') in the following cqnvenient'fom'

'cs - I.OW5 (grea 3)°. _ . | (3.29"9)
Experimental _1m|_'estigations. of concentration fluctuations clz-i‘ a conservative passive additive .
4 have been carried 'c;;ut mainly in the leyer ‘of the atmosphere near the earth (témperatuﬁ
fluctuations) and in the lower 'broppsphere (fluctustions of the alr's refractive index flor
centimeter radio waves) Measurements of the temperature fluctuations in the layer of the
stmosphere near the earth have confirmed the "two-thirds law' as well as the dependence (3.29)

of the quantity Ce on the mean conditions, and have permitted determination of the numerical

constant a figuring in (3.29') [e:[ Measurements of the spectrum of the air's refractive
index fluctuations in the free troposphere also agree very well with the "two-thirds lav",

according to which the one—dimensional spectral density of the fluctuations is proportioml

to KHD! 3 |:95196] .

v

- 3.3 Locelly isotropic turbulence with smoothly varying mean characteristics

So far we have considered the case of locally homogeneous and isotrbpic turbulence, where

the structure function -
- = - - 2
Df(rl,.ra) = [:E‘(rl) - :E(rg}]
aétisfies the condition
- - ) - -+
Df(rlirz) - Df( |r1 = r2[) :

1nside. some reglon G with dimensions of the order of magnitude of the outer scale of turbu-
len ’ : Bl - — ‘ 2 2/5 i N 3

ce Lo. In the casg where "o << irl :'2| <.< Lo’ Df(r) = Cfr. + - If we consider another
Tegion G' which also has dimen_sions of the order I'o and which is separated from G by a dis-
tance of order L., then the field f will also be locally homogeneous snd isotropic in G'.
The structure function Df(?'l’?e) in the region G' will also be expressed by a "two-thirds

lw", but in general with another value of the constant Cf,. ‘Thus, we can assume that the_
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quantity C? is a smooth function of the coordinates; which changes apprecisbly only in dis-

" “tances of‘ order L. It is ‘natural that Ce should depend.on the position .of the cemter of mass
. 4 N Wiy

_R'_ss -%' (;- + —1:2) of the_two observation points. Thus, we arrive at the formumla .

1
D (rl’r = cf( ) 13 - :ald(3 .

In the general case

nf(r,rJ ( ) (°)(11 I-' o  e®

The function Dgc)(r), which describes the local properties of the field f, 1s the sa:qé in ell

the regions G,G',... in which the turbulence differs only by its "in‘ténsity", characterized by

’ the size o'f cg. Just as we previously defined the spectral expansion

- Dy(Fy - -?2-) = 2 Jj:f {1.- éos[-’f"(’x’-l . '172)]} §.f(?<')d?<’ | o (3.33)

@

for points rl, r2 belonging to the regi'on'G, we can also define a similar expansion in each of
2 g
the regions G,G',..- DY t:msidnnring Gf ‘bo be constant in each such region. Thus, we obtain

the S‘peetra.'!_ expansion

-

.’_ : Df(;l’?‘?) =2 ffl\f‘ :{1 - eof; E!E- {_1:1 - ;2)]}ifé, __}______ )

VS 2+ - ‘ . - :
30 -2 e o

Hi
wf
H
Jdns
5

(3.34)

where [f]

Hi
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The functions Er(_")(x) end D'f(°‘)..(':'-) are comnected by tﬁ_e relation
" " \‘ .
2@ = 2 [ cos 2 Rrak G

Thus, the relative spectral distribution of the fluctuations of the quantity £ is identical in
_all the regions G,G',... and 1s described by the function §g°)('£),- only the overall intensity

of the fluctuations, expressed by the _quantit.j [e]-

. . W - ) . ) E _ S P . .'
g . 02 Bk * To . . LI _ .
£\ 2 : ’ . S AR el

!

) S ) i 2
_varies from region to region. As in Chepter 1 we cen introduce the two-dimensional spectral

-

density

wy r+r' .
re (ot e - 01, B35

. . ) - - - o . y .,' o
comnected with the functions D,(T,F') and J (K T %) by relations similer to (1.48), (1.52)

and (1.53), i.e.

o at BB P | - Eu% .
] - ' ;
Fy Ka,fcj,lx-x I, = = f cos k,(x - x")§, KyrKpiKzy =3 dey. - (3.37)
bd

. - 3 T+ T, _ -
(In Eqs. (3.34) = (3.37) we neglect the difference between .Cf, —i-é-—-?- - at two nearby

points which are separated from each other by the dista.nce' rz’-l - -’2| ';'.-CILO, 8ince this func- :

tion changes appreciably only when its a.rgtlment. changes by a qua.n_tiﬁy of order I.O.) M s
We now conéider- briefly the spectral expana‘ion of the ra.ud.om field £(*) itself. For

simplicity we consider an example where tﬁere eiists ‘a coxﬁ'elation famci_tion of the flucﬁ_:a—

tions of f, of the form - ' - * .t B - ’ :

> -

r, + S .
o 2(T1* % - s
Bo(ry5Tp) = “r( 7—) befiT) - Tpl)-
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e

(Similer questions were comsidered by Silvermen [92].) ILet £(T) be represented by a stochas-

" tic Fourler-Stieltjes integral [n]

(%) = fj f ef"5°? aplity ©

where it is assmﬁed thet T = 0. Consider ihe expreséion_ '
a3 = 5@ = [[[[[] 55T e

.and introduce the coordinates p = r - r' and i = —2-(1:' + r')., Then we heve

RF - e (- AR HR R B

and
P
)

3
ap(k)dg(K").

e [ 20085

‘By assumption
e P
£(r)e*(r') = uf(R)‘bf(Q),
whence it followe that dg(X)dg*(K') must have the form

-

(@ e (@) = u(F - PR ELE &% dkr,

(5.38)

(3.39)

(3.40)

(3.41)

where obviously M(0) 2 O end °](-r<'} 2 0. Bubstituting this expression in (3.40) and carry-

. ) . @
ing out the change of variables, we o_‘ntain
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L-CRNN Tf u(x)'e’;"ﬁ - ._ e (3:42)

o - [J[ 80 3a _<:>_~'i'+-sij

In the case where uf, = const, u(x - x ) = a a(x -k end Eq. (3.&1) reduces to (3.21). As '

follows from (3.41), in the case of varisble a?, correlation appears 'between the neighboring

~1

spectral components dp(K) and.-d.q;*_(-x'), 1.e. 12 |K - x‘| < I.0 ; then [_jj

ag(K)agH(k') # o. _ e .

(It. follows from (3.42) thet the function M(K) aiffers a.pprPciably from zero in an in‘berval '

of order 1/1. , since uf(R} changes apprecisbly in an interval of order L, .)

. 3,4 Microstructure of the refractive index in a turbulent flow )

The ::efrac‘lj.ive index n'for radio waves in the centimeter z;ange is a function of. the
ebsolute temperature T, the pressure p (in millibars) end the water vapor pressure e (in

millibars), i.e.
n-1=1200x2 (p+50), - - (3.5)

It is not hard to see that the qusntitiea T a.nd e ﬁguring in t.hia for:mla a.re not, strictly
3peak:!.1a.g, conser\rs.tive additives. In fact, it is well known that when small parcela of air -
ere displaced vertice.lly their pressure undergoes a continunus equaiization vith the pressure
of the stu-rounding alr at the given height. The changea i:n pressure produce changes in tem-

Derature sa.tistying the equation of the adisbat -
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Hl
n
~
=l
. L
“lg

vwhere 7 = cpf B is Poisson's constant, The quentity dp 1s related to the change in height Dby
“the 'ba:‘omat:d._c_forﬁmle. dp = -pgdz, vhere p is the density of the alr and g 1s the accelera-
tion due to gravity. Thus we have

.‘1-2:_.7'_'_3-.%a=.=-___.5.a5,

T e
© end .
dT. Y -1 ) '
il el R R . | (3:45)

The quantity Y, = 6.980/:‘.00 m 18 called the adisbatic temperature gradient (e rising parcel
of elr cools off 0.98°  for every 100 m of elevation). Integra_.tixi_g Eq. (3.45), we obtain

AR 7!.2_- const. Consequently, when parcels'of air are displaced vertically, the quantity
EaT4+72 - (3.46)

called 1n meteomlogy the po‘be-ntial tempera:bum, preserves 1ts value end mey be reg;arded as -
a eonsewativu edditive.

The water vapor pressure e which figures in Eq. (3. LU&) 18 also not a conservative quen-
-tit'y, since it depends on the pressure. It can be expressed in terms of the so-called specir:f.c

hlmid.ity g, which represenmts the concentration of water vapor in the air (i.e. the ratlo of the
mess of water vepor to the mess of moist air in a unit volume), by using the a.pprq:d.m_a‘he

.

formila ) . o=
en 1.62pg. . - | | y (3:47)

"The quantity g is a conservative additive. (It is assumed that while the moist elr is being
é-isplmd. there 18 no condensation of water vapor.) Replacing the guentities T and e in

Eq. (3.44) by B - 742 &nd 1.62 pg, we obtain the formula
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H - H-72

(n - 1) x 105 = ¥ = LB (s 73092—}, o e

S A

which expresses the refractive index in terms of the conservative passive additives H end q_.
The quentity N depends on z through p(z),'E(ﬁ'],'q(__.z) s well as on z directly, i.e. 5

%

N =Nz , p(z), EK(z), a(z).
. % ISujpbae a .pa:'rcell of alr frbm tﬁe level #- ' chdra.cteri‘zed by-' the fa.lue ;
'N = ]&(zl, p(z )s I{(z }, q(z }), eppesrs &t ‘the level z, aas a resu.lt of the action of turbu-.
lent lm.xing Since the quantities H(z) and a(z) 4o not change vhen the parcel 18 displa.ced.,
vhile the quantities z and p(z} tak.e ‘on the new values %z, and p(z ) at the l.evel Zy) the seme. . .
parcel will be ch.aracterized at the level z, by the value N} = H(za, p(z )5 E(zl), q(zl))

The value oi' Ni alffers from the "loca.l” value of N a:l'. the level z, by the quantity

8N = N( z B( zg); H(z:,-_): q('zli)- -

- u(z.a, :p(zzl,._h(zz};_ 1(52)‘) - (% g ? '%}82.

‘ -

Thus, the ﬂuctuati'o:_ss of N which appear are not proportional to the "Pull" gradient n, but.

rather to the quantity

M-(%%+%§§)xm

_zm d_ﬂ.-;._T___..._‘ES 2
%_2(14- ) iz 1__.,..1-2:.20_99.‘15

far 800 4 o
71_?_1(“_2;20.93; EE-”a‘-I'JIE'""'“”zgoogE&' &




“The expression (3.49) has to be used to find the size of the fluctuations of the refractive
index n.
T_he .gtzfuc'tu.re function of the refractive :I:nﬁex of the atmosphere can.be :wepresen{ed by

. Eqs. (3.18), i.e.

¢ 23 for L << r <KL,
Dn(r) ) cE £2/3(_I:_JE £ <« 1 . - (3.50) °
n o LO or & o’ CE St

~ where the quantity C, is defined by the expressions (3.29) end (3.49), i.e.

: 2 Ke 1}; . hx. 2 ) | :
CC=a|—|. Mz - a.|:| 3M . : _ (5'51)
n . E-I'_E - o )

.For the spectrum of the refractive index fluctuations we write the formula

g0 - 00 ( <k<k), - (3.52)
’ .

\

where K, e l/Lo and I.O' -is the outer scale of the turbulence. The formulas glven can be used

_ to calculate the size of the refractive index fluctustions.



' : . Par: II-

SCATTERING OF ELECTROMAGNETTC AND ACOUSTIC WAVES
- '

C'hapter L
SCATTERING OF E:E.EGI‘RGMAGNETIC WAVEEI IN 'EEE'" MBUIM‘I A‘JMOSPEERE
w

The problem of scattering of electromagnetic waves in the tu:%ulent a'lmosphere hes
nttra.ctecl' considerable attention, eince this phenomnon ig related to long-range atmospheric : I
propegation of sﬁort ‘waves beyond the J_Lmita of the "radio horizon'™ ﬁe cennot linger here on
all the numerous problems assoclated wi'bh the use of rad.io scattering for the purpose of lon.g !
‘range commica.tion. Insteed, we consider only tbeoretice.l aspecte and try to 1nd1cu.te 'bhe
pb@rsical content ar the problem. _

The pmhlem which we consider in this chapter cen be formulated as follows. A plaﬁe
monochrmtic electrmmgnetic wave is incident on a volume.V of a turbulent medium; because
“of turhulent mixing within the volume V, there appear 1rreguler :l:'e:fractive.index fluctuations,
which scatter the incldent electromsgnetic wave. it is required to find the mean deneii;j of';
the energy scattered iﬁ a given direction. 'l'o solve the problem, we shall assume that the .
re:t‘ra.ctive index ﬂeld ‘within the volume V 18 a random :hmction of the coordina‘t.es and does
not depend on time 'I‘.'I:le time changes in n which a.ctua.uy occur will simply be regarded as I
changes in the different realizeations of the random field n(r). Thus, we do not consider the
. problgm of frequency fluctuations and chenge of the frequency spectrum of the SQettered h
field [a:[ .- R

4.1 Solution of Maxwell's equations

We shall assume that the conductivity of the medfum is zero and that the ma’ighetic perme-
_ability is unity. Furthermore, we shall assume that the electromsghetic field under comsider-

ation he.s a time de;pend.ence given by the factor e “10%  1n this cese Mexwell's equations teke -
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the following form:

curl ¥ = 11!3,
curl B = - ikeE, (4.1)

div eE = O.

e =3
. -

Here k = w]c is the wave number of the electromagnetic wvave, € is the dielectric conatent (as
. already stated sbove, we regard € as time independent), and E and H are the amplitudes of ‘the
‘electrie and magnetic fields, so that the flelds th.emeljres are equal to Ee. and He-i“t

: respecfively. Teking the curl of the first of the equations (k.1) _aﬁd using the second equa-

tion, we have [b]

- A '+ grad AUvE = kaeﬁ. . (k.a)

' ;Since
d.i_ve_E':: € divﬁ-l-ﬁograde = 0,
_ie .'have .
div‘-E' = - f-grad log €.

Using this equality end setting e = n°, we obtain
2,2 ' '
ABe+ k°0E + 2 gred(E-gred log n) = 0. - (k.3)

We assuwe that the fluctuations of the refractive index n are small, i.e. that |a - 0] < 1.
Let nl d.enofe the deviation of n from its mean value, so that n = o+ nl. Since H is near
unity, we shall henceforth assume that & w-1 (if pecessary we can change k to kn in all the
results).

Substituting n = 1 + n, in Eq. (4.3), we obtain
2>

63+ 5% = - 2 grea(s- -gred log(1 +m))) - a0 E - %l E. | | (4.5)



To solve Eq. (ll- ll-), we can apply the mthod of small perburbe.tim, whereby a aolution is

.

.sought :Ln the form of a series

-y - - o . . Fel ey . i
"vE !=. EO + El + EE “‘ see 3 . 3
 where the k'th term of the series has the order of smallness nt.- Substimﬁiné “this series in

(4.4) and equating to zero esth group of terms of the seme order of smallness, we Obtain

- o=
AE +x2E =0,
o [+] ",
) "
"AE +k°E = - &0 E - 2 grad(E grad n.). '
L HE = XnE <2er (e grad n,).

- In a.eﬂving Eq. (ll- 6), the qum‘tity log(l + nl} has to be expand.ed in a series of povers of

n;, i.e. log(l + n ) - (n /2] ¥ eve o The qua.ntity E repreaents the amp]itud;e oi’ tha‘"

electric vector of the ine:id.ent wave." Assuming thxt the 1ndt1ent wave is plane [c] ; wWe set'_.

. Eo - 2 exp(ik r] The quantity ﬁ mpmaents the mplitude of the electric vector nf t:he

scattered wave. (The terms of the series Em E + El + E + e+ which come after El are

neglected beca.use of their smallness [d]. )

As is we:l_:l. k:nown, the wlution of the’ equa:bion

- -
‘Au+ kTu= f(r)

corresponding to outgoing waves is of the :l’bm_l

ik'r - r'l

u(r) = - h— f f(r ) (W',.'.

r-r[

wbe:-e r' is'a variable vector ranging over the scatte:ing volme V. Ve chnoae the ori'gin 'of g
aoordinateﬂ 1nside the scattezing volum. If the o‘bservation point F3 1s at‘. a grest d:l.ate.nce

from the scsttering volume V as compa:red to tha dimenaions of v, then for all r' the q;uantity



-

|* - ¥'| 1s almost comstent and close to r = |7]. 1In this cese, the quantity |7 --':7'] can be

expanded in a.serles of powers of r'/r,'i.e._

F-#ar-ad+ml?- @+,

I

where B = ¥/r 1s a unit vector directed from the origin of coordinates (chosen within the

seattering volume) to the observation point. If the inequality

%I:r‘e - (;1-;']2_1 < 1,

holds for all values of r', i.,e. if the dimensions L of the ‘scattering volume satisfy the

condition Ar >> 12, then

exp [(ik|T - ¥ |) ~ exp E:k(r - E-;'i' .

Moreover, in the denominator of Eq. (v) we cen replace I - | by r, Thus, the formula

is valid in the Fraunhofer zone. We use Eq. (c) to solve Eq. (4.6), obtaining

2 1kr - - -~
> = ke *y 7 iker!-ikm.r"' '
El(r) =& =7 f nl(r .) A e av' +
v

T -1y =Lk
f gred( e ¥ A gred nl{r'})e tave .,
¥ .
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‘e surface integral venishes, since the surface of imtegration can be moved beyond

4 Fe

limits of the volume V. Since

v

i [ GpeanE SO

Do

! 1 f (R - graa n (7)) T BT qye

av =

F




_where

cl = f (rl) ei(.'m) r' * )

]

: - -, =+
. - +y A(k-km)e =t oo,
c, = f A grad nl(r ) e av'.
v

Both terms in the right hend side of (4.8) rep::esen‘l; spherical waves whose emplitudes ‘andl
phases depend on the refractive index fluctuations 1nsiaé the volume V (through the random
varisbles cl and 02}. The second term is a longitudinel alternating electric field.” Trans-
forming the expression for c by using Gaus.s' theorem, we can show that the second term in
(k. B) cancels the longitudinal component of the field contained in the first term, so that
the scattered field is purely transverse [e]. Indeed, in calculsting iwhe flow of scattered

gnergy we can simply ignore the second term in (4.8). ' : "

4.2 The mean intensity of scattering

To calculate the density of flow of the scattered energy S = (c/8x) Re @l X ﬁ-i) - -
the average value of the density of energy flow during the period of one oscillation [£], we

need the quantity ﬁl’ vhich can be found by using the first of the equations (4.1)

I A K°c, / 1k7
Hl':&rik?ul T ‘o &rik&oxyad

keikr ikrmxﬂ-wkcle . .
Exik 2T bl (4.9)

‘We have neglected the rapldly decreasing term 7/2 gupstituting (4.8) and (.9) into the

‘formula for §, we obtain



s o ) ) ) ' H \ ‘
" N - \ . .
“ecc*a-x(m —3-——1 (m('ﬁ A)-A(m-A)) - (%.10) _

wi
|

_32:15r 1170 32 r

The density of energy flow in-the direction m 1s equal to

L 42 h

12 FO% 2 mainl Eh sinX |
8 =Bme—=2l 2 @319 C.o¥ , iy (%a11)
m 52’(31‘2 () o 3211:51'2 171 - o ey

where X 1s the &ngle between the vectors Ko end m. Substituting the 'é_xpression for Cl, we

find - . ' -

ck A s:l.nex @ i(k-lm] (r..L--J:'2 .
8, = f f nl(r dvld\'2.
- 52:( r .

The quantity S ig random. "Its mean value is equal fo

kA sina)( — i(k-lﬂn) (’lﬂ‘g : .
g ety ff (Fyn () e | awyary a2

Thus; §m is expressed in terms of the spatial correlatdon function -Bn(;l,.x"-z} of the refractive
index fluctuations. We aﬁsmné temporarily that the field of refractive index fluctuat;aﬁs is
hﬂmogeneoqs £ 1ater we shall extend our results to the case of locally homogeneous and iso-
tropie fieids. Then Bﬁ(r T ) =B (r -7 ) and the expression in the integrand of (ll- 12)

[P

depends only on the distance rl - r2 Introducing the change of variables r:L -r, = o,

T+ r = 2¢ in (k. 12], we carry out -the integra‘bion with respect to r, which gives as a

result the volume V. Then the expression for S takes the fom

o« . . N
ok 'V A° sin . a3 ot e 3 X
-Emu—j—i-é—-— ;15 f Bn(s:»)e"}:(.k k) "Jdvp. - N . (4.13)

v
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" We now use the expansion (1.22) of th_e ‘correlation function as a Fourier integral:

5,() = fj i cos(iP) T 000k = [ f [ B inaz)a:_z, (4.28)

. d ] .
Substituting this expreasion in the integral

1= $ f 'B,(3) ALEE 7]
" 5 v

we nbtain

. I= fff En(:c)d.'rc'-i3 f 'ei[('i-ﬁ-'i)-'ﬁ] avp.. e | : C(4.15)
let us ;xaminé the inn:e:- 1n‘h_égral

:

-Hhen the "'egion of integration is infinite, the :I.nner integral equals 8(1} = B(K -E+ hn)

and, therefore I = in(k -¥m). In the case of a finite vo:lme of integration the f\mction

_ NI
F() = _.1_3 f JXB &,
. &5 .

- has a sharp meximm ina rés[.on near the point A = 0 and outside th:_l.a region oscillates and

&



 falls off repidly [g], vhile o T g s -

. fj:f 1;'(13;3’ - fa@)d‘t? = 1. 
- . v

Moreowr, 51!10"’-"?(0) ='V/ (31':3), the funetion F(i} is 'Q.pprecﬁ.ubly -'differént from zerc;-i-n a.' b
' region of wave vector space which hes & volm oi’ o:r:d.er 8«5/?; of wurse, in each conerete
case the shape of this.volmne a.nd the behs.vior in 1t of the function F(l] d.epend on - thz g :

. d.inenaions and shape ‘of the spatia.l volume V. Thus

o
-

~'where T represents the region of wave vector space with volume T = &t}/‘l near the point-

- Ly - . -

K =% -G Therefore
e gEew, (h6)
'.‘fhem ﬁ(x} 13 ‘tbe mean velue of the fynction :'E(K) obtained by averay.n.g it over the region
- of vave vector space ‘' of volum: &15/\' surrounding the point Kj of cnu.rse, +this mean velue . '
‘8hould not be confused with the statistical average. . Su:bstituting the expression (l&.16] in

v

vE‘l- (4.13), we obtedn

A vl e L I : ' s i
.Sm = J+r2 . L(k . h’l)c . '. <. . ,- ( 017) .-
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If the function Eﬂ(}?) does not change much in ranging over the volume T = 8::5/1.?, then
B - ) ~ §,(F - 1) e [o]

C L et APt L
. o En(k - 1), : - (%.18)

. h-ra

Using the expression (4.17), we can find the formula for the effective scattering cross sec-
tion of the volume V. Denoting by o the effective cross section for scattering 1nto‘_-_the

solid engle dq in the direction with unit vector m, we obtain
. . ) ' o,
Emrgm L ~ - w
do = —5 = 2ak V Sinax @n(k - Jm)dQ . - . {l"'l9)
c-A -

[s] F

B

Tt follows from this formula that scattering at the angle 6(cos 6 = % E/k) is determined
only by a narrow portion of the turbulence spectrum near the point-é =X - lm, Thus, only a
"small group of spectral components of the turbulencé participate in the scattering at a given

angle 6; these components form a spatial diffraction graiing of fixed spacing t(6) which is

determined by the relation

5{9)= -'211' = 2 = 19
[k - km| 2xsing 2singz

3 | ) (k.20)

i.e., satisfies the well known Bragg condition. T.e directions of the vectors E - _]:Tﬁ, X and
ki are related by the "mirror reflection’ condition (the "nodel plames" of the spatial dif-
fraction grating are perpendicular to the vector K - km). If the dimensions of the volume V

i are of order H, i.e. V = _H3, then besides the spectral components of the turbulence corres-
L
2
contributed by spectral components corresponding to nearby periods in the interval

ponding to the spacing o) = l,/(2sin ), a part of the séattering at the angle 6 will be

L .= 2 =

1,2 8,2
: Eksinatn

. A
g . A
251:12:]1



sbout the point 1/(231:1 2) [i. Inevery ooncm-'te casé -it' is easy to evalue'l:.e tﬁe sizle o‘f;
£his interval, and 1ts size 1s usually small compared with z(e) f1]- ' Therefore, we shell
henceforth make no' distinction 'bet‘ween functions §n(x) and §n{x).

Eg. (%. 19) was obtained under the. assumption that the field of refractive ind.ex :L’luctue—
tions is homogeneous in the v‘blume V. Hovever, ‘t‘.his result can also be extended to 'bhe case
of locally homogeneous fieids. In fact, since the effective cross section fox' scattering a‘t a,
gi\ren angle reall;y depends only on cne spectml component" of the refract,ive inde.x inhomcse-' :
nei'bies 3 the relmining apectml ccmponents can be changed as one pleases; 1t is only :meor-
tant that the qu.antity iﬂ(k km) retsin its value for given k and m, - Consequently, we cen
also consider functions }n(l() which have a singularity at the origin, 1.e. which corx'espond. e
"to Tocally homogeneous randon flelds. Of course, in doing 8o we assume that we use Eq. (4.19)
only for values of ¥ -i& for which [§ - KB| > ac/i (L, 18 the outer scale of the turbulence;

see page 33), or [k] _ _ : ‘. . . _. PR

—-,—J—‘—Q-«L'. - . . . (e21) -
- [+] : . . ' z ¥

- 1,3 Scattering by inhomogeneous turbulence

We now consider the case where ‘the turbulence is not homogeneous inside the scattering

volume mﬁd {ts mean' characteristics. cha.nge amoothly [&]. The expréssion
- : “ - :

e c.k A sin2X ) 1('1:'—6)-(? -r,) . Lo
§ = —Cr e ff B 2) e Y2 qmav,, -  (4.12)
A | - | -

obtalned above' for the density of flow of 'bhe scattered energy, does no‘t: depend on the, aaamhp-
tion that the ﬁ.eld of the re:h-active index :Elucd:uatiom is hnmogeneoua m:ui can therefore also
be applied to this case. We use the formuila = . ’

- :




- -
T, + 1, ;
Bn(r ,2'2) = un. 5 'bn(rl - re), _ (k.22)

"and introduce the coordinates R = %(-1'-1 4 ;2} and P = _:'-l' - ;2. Then Eq. (4%.12) takes the form

JU4 2 .2 T
ck A” sin™X - -, = - !
o o T2 . -y ooy 4| (kelm)eS
Sm = ——-—;—&:-3-;‘?—- Un_(R)dvR fbn( p) e [ :] dvp - (l“-23)
v v

'Using Egs. (3.43) and (4.16), we can express the immer integral in this formila by

ﬁol(i'- k-ﬁ}, wvhere, as sbove, ~ d.ens:i_tes averaging over a volume 8:15/Y in wave mumber space.

Then we have

e
ck AQ sinax- -v{o)

e B [ e ; (+.24)

or,’ in‘.troducin\g %G:ﬁ) = Uﬁ(-ﬁ} E(]o) (®)2

8, = > f @n(k-_lm,R)dVR. o ; (4.25)
Ly ¥ i )

Egs. (4.24) and (k.25) are the genera.liz‘ation'of the expression (4.1T7) for the case of inhomo-

geneous turbulence.

b  Anelysis of verious scettering theories

1. In one of the first papers devoted to the problem of the scattering of radio waves

by etmospheric inhomogeneities (Booker and Gordon [27]), it wes essumed that the correlation

o

TO



- function of the refractive index inhqmogene:].tieslhas tke form

- ~|o/ : b S
Bn(_P)=n§elpr°}. D Lo (b26)

of E-.ourse, there is no serious justification for using this pax‘ticuiar eorrelation f‘unctioﬁ,
and it i‘s‘ used only because it is convenient for 'd_.oing- celculations. As.established in

. ‘ z . b . : T - s
example a) on page'18 (Egq. (1.30)),the spectral density §(«) corresponding to the function

(¥.26) has the form

_ z 3 _ ‘ _ -y . .
IL.LQ - .
9K = 555 S S (ha2p)
Enx st(l-!- 22)2 ' '_ ('

Substituting here Zk sin 3 instead of k, we obtain

kVn1r5
" 26 2
1+ kr sin z

for do(@). Eg. (4.28) 1s the basic result of the paper of Booker and Gordon, and has served

.d.o-(B) g -

sinx a0 ' (4.28)

for a long time as the starting point for numerous experimental investigations. 1In these

investigations, the results of medsurements of refractive index inhomogeneities were analysed
vith the ‘aim of determining the paremeters ni'

and T, figuring in the correlation i‘unctiog
(4.26); values of the order of €0 meters were usually obtained for the quahtity r, . For the

-usual value of k and 8, the quantity .Ekrosin % i1s mich larger than unity. In this case

T T S ' : . o -
. a rﬁ ain 5 -’ - )
]
i.e., in the Booker-—Gozﬁon theory do(6) does not depend on the frequency and is det.enﬂ.ned
by the single ‘parameter nl / Ty vhich charncterizes the refractive index 1nhmogeueit.1es of
the atmosphere. o



If we start from the besic formulas obtained in this chapter, it is nat hard to show the
:éu.ndamental defect of this series of papers. As we have already emphasized, the guantity |
do(9) is proportiona-.l to ﬁn(i - km), i.e.,it is proporticnsl to the "intensity" of the inhomo- l
geneities with sizes satisfying the Bragé condition. From this point of view, the most
naturel way to determine the function Eﬂ(f) ‘would be to measure it directly for the values of
' which may be of interest in the applications; these values of 'k usually correspond to
inhomogeneities with sizes renging from some tens of centimeters to some ‘tens of meters. How-
ever, in the Booker-Gordon ﬁheory and in the papers based on it, the value of the quantit'y
ﬁn(K correspcnding to comperatively small inhomogeneity gizes is determined from the outer
scale T, of the inhomogeneities and from the characteristic nf of the refractive index fluc-
tuations (which is also due to the most intense, large-scale inhomogeneities) by using the *
essentially arbitrary formula (4.27). We should also note thet it is hopeless to evaluate
small-scale fluctuations of the refracfive index by using the quantities n_f and r, charac-
terizing. large s:::ale i'nhomogeneities,' for_ the additional reason that the inhomoggneities_ of
the l&rgest. scale are always inhomogeneous and. anisotropic, so that thelr relaetion to the
small scale inhomogeneities cannot be universal and must change as tﬁe general mteoﬁlogicﬂ

. ,<

conditions change.

2. 7In some more recent papers [28], the expression

. 2
o _ |
B (r) = g_v"lé}'fﬁ (rlo)“xv(f;) - . (.30)

has been used as a correlation function. The spectral function

'

OW

(v + -5-)

’f\/_ T(v) (1+«

(4.31)

B (k) =

I‘\) 0—"3[\31

Ni
=

corresponding to (4.30) was considered on page 19. As already shown, for kr_ >>1, the ]

A ) .
function ﬁn(x) coincides with the spectral demsity corresponding to the structure function
D (r) = carev._, Thus, for v = 1/3, the function (4.31) coincides in the region kry >>1 with

the spec‘tra.l density En(x) - 11/5 which expresses the theoretical size distribution of

inhomogeneities in the concentratian of a conservative passive additive in a developed tur-

T2



bulent flow. Substituting Eq. (4.31) in (4.19), we obtain

( 2["(v+%} k\’n 39111 X _ L : : :
.do 9) = . - - —3 an . v - ) (h.52)
ﬁ r(v) ( + b T, sin2 g) v+s g .
For Ekr sin 3 &> 1, we obtaein from this 'bhat 5,
v +2) o2 - o . g
20(6) = oy WY S g N i
2= Vi r{v) 2 (sin E} _ ;

The quantity c_Ic( 9]. depends, on the frequency and on the parameter ;2' / z_-iv vhich chx_;re.cterizes
the refractive index fluctﬁ-at-ions; of coﬁse, Eq (4.33) for v ='1/3 is much more justiﬁed
then tﬁ_e expression (1&.29), becaﬁse._'the-'ﬂpectral density of _:‘efrective' index .fluetustions
(4.31) used to derive 1t t:orreaponds to the ref‘rac't.ive index spectnm; in g turbulent flow.
How important this fact is for the pmblem being considered can be seen from the foJ_loving
example. Since the correlation functions (4.26) and (%. 30) are mpresented by m:.hrardly very
.eimilar ‘curves (see Fig. 2), the parameters niand z, determined from them will hacve values '
which are very close together. aAt— the same time, the ratic of the quantity ds(e) 'ca.léula:bed
from Eq. (4.33) to the value of do(6) celculated from Eq. (4.29) is equal to o
1 - 2v II

(kr sin 3) _ ' - : ~

Fd

to within a. constant factor. For V= 1-/5--1:.1115' quantity is equal to
N
8
‘P kro-;sin 7z

Since we usually have k:r‘;- sin -g.‘>> 1, Egqs. (4.29) a.ud. (4.33) will give gri:et.flé-.éiﬁ‘erent :

velues for do(8). . Eq: (4.33), as well as Eq. (4.29), expresses the spectral couponent

-

El(ek sin s) which interests us in terms of the quantitiea B .and na depend.ing on the 1arge

_ﬂe&le 1nhomgene1tiea ;- end thererore 11: canno't. be :ﬂ.-li.ehle enough because the re:l.etion

a ) N . " . 75 -’. .. _. . ‘_.'-



between the small scale and the large scale inhomogeneities just cannot be universal. We re-
eall that for large r, or correspondingly for smal.l K, formulas of the type (4.30) or (4.31)
deseribe the structure ofl the random field only to a very crude approx:l.mation.

3. Villers and Welsskopf [29] have made en interesting attempt to explain the
scattering of e;ectromagnetic waves by a turbulent flow. Their theory also begins by assum-
ing that the deviation of the refractive index of the air from unity is proportional to the
quentity p/T. However, Villars and Weisskopf neglect temperature ﬂuctuatiamé caused by tur-
bulent mixing of the atmosphere end assume that the‘ refractive index fluctuations of 'bhl; atmo-
sphere are caused by pressﬁre ﬂuctuations [m] . Pressure fluctuations p in a turbulent flow -

" are caused by veloeity fluctuations v' and are related to them by the formuia
p~ Ao, _ (k.34)

whe:'e/p is the ;lénsi\t‘.y of the fluid. To expln;in the meaning of thi_s relation, we recall
| .that the Bermoulli equation p + pv2/2 = const is satisfied f_or stationary flow of a fluid.
| For non—st&tionﬁry’ flow, an expression similar to-(k.34) can be obtained from the equ-atioms
of motion (see [30,13]). Thus, the pressure field in a turbulent field is raﬁdom. Its
_structure function can ‘r.:e expressed in terms of the structure function of the velocity field

by using & relation similar to (4.34), nemely E}O,lj] : .

B + D) - 2] = 0@ = 5B 1% ' ()

where D is the longltudinal structure function of 'I:he velocity field. Since for . C s
1’.. S>r >0 o’ the ‘structure function of the velocity field has the form D {r} = C(er) 2/3

(see page 32), then
(r) 'c P (e:r)l*/3 - (¢, KT <L), _ ' . - (4.36)

where ¢ 1s the energy diasipation rate. _ _
| Tt follovs from the relation n - 1= coust B thet o' ~ 2’ (since 1t is assumed in this
" paper that. the temperature is emistant). Thus, accurding to Villars and Weisskopf, the .
S _ o . .



~ structure function of the refractive index must have the form . - o .

24/51.11-/5.' . - : ) (1,_;37)“

. _ 'Dn(r)' = const P e
. As shown in the example on page 25, the spectral density
L(K) = const ;anhb.*c“ly3 ' - ) ' - (%.38)

'corresj;ond.a to the structure function (ll-.j"r'). Substituting thisr'e_xpress-ion into Eq. (4.19).
“we obtain ’
-13/3 - S

a0(6) = const p2c*/3pcY/ J(sin %) sinX aq. . (4.39)

Villars end Welsskopf's basic assumption that refractive index fluctuations in a turbulent

flow are caused by pressure fluctuations [1_1] does not withstand serious criticism. Howe_vér,
this paper is interesting in that it applies turbulence theory considefations to the "prr._ablem
of scattering of radio waves. This feature is exﬁresaed by the fact that Eg. (4.39) contains
the persmeter ¢, which actually characterizes in_'homgene:_l.tiea- of the sizes which cause scat-

te'ring. ) _ ’
k. We now turn to the model which attributes the réfrac‘tive index fluctuations to

turbulent mixing (see Chapter '5) ) .'Asstmling that the potential temperaturé and Si)ecif_ic humi -
dity are conservative and passive, 'w'e obteined in Chepter 3 the following expression for the -

structure _:hmction’ of the refractive index of the alr:

" ,(x) =B« <Ih - S (4.50)
2L2X3(_z_'_)2 R S o iy
n() = ) r ey :

' The quantity cn depends on e, the energy dissipation rate in the turbx_ilent flow, and on the

rate of levelling out of the amount of refractive index inhomogeneity produced ?’3’. the
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processes; of molecular diffusion of water vapor and by ‘t’.he temperature condudtivity. In.
. the case where. the tuz‘bulent regime and the diatribution of T ere stable, to calculate the -
quantity 02 we can use the formulas (3. 51) which express 02 in terms of qua.utitiea character-'.

‘1zing the average ‘profiles oi' the wina, temperature and humidity, i.e.

1/3

- a& /%r? - - (k.h2)
@ |
.-6 . . . . -.., . - .
79 x 10 00 ' 180 :

The spectral demsity corresponding to the structure function (4.40) is equal to (cf. (3.52))

i

EJ(K)_ e 0.035c§k‘11_/3 i (il— KK << %-) i (4.4%)
Substituting this expression in Eq. (4.19), we obtain
o oo e ot L
do(g) = 0.016?cn “ ein™X (ein E). an , _ . (4.45)
. L_Jl:.<< (2 sin%) <<%0-. . .' . 8 "W

An.expression équivalent to Eq. (ﬁ ‘4-5;) was o.h'!".ained by Silverman [0s31]. \ Eq. (4.45). aiffers
from .all the previously considered expressions for do(@) in the Pirst pla.::e by the fact that
to derive it we: used the expression (% hh) for t.he spectral density of refractive index
-1nhomogeneit1es co:-responding to the law established in turhulence theoz:\r. In the second

. place, ‘bhe apectral d.ensity o |

T, -6 =T (ot ),
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pertaining to the smaJ_‘I. scale 1nhomogeneities ia now: no J.onger described by quantitles per-
“taining to the la.rge scale :I.nlwmogeneities, but rather directl:y by the qnantdty c o’ which

characterizes the 1ntensity of the amall scale refractive 1ndex inhomogeneities.

) Evaluation of the size of refractive index fluctuations

fmn dat.a on the sca’btering of radio vaves in the tro}_:roaphere % i

N, Boe et gmﬁpies w"hi_ch iuustrs._te the application of the théory .-
juat presente’d.' We compare the experimentally observed. values of electroﬁa;guefic fields 'seé.’q#_ :
tered by turbulerce uith ‘the values of the same qpantities inferred from Eq. (4. h5) It -is ._f
convenient to carry out 'bh.Ls comparinon for the ratio of the flux denaity Pp oi’ tHe scattered .
energy to the flux density P whic.h would be received at the same distance from the tranamit-— :
_ter to 'bhe receiver if they were }.oca.ted in free space. Let the dista.nee between the trans- _\_'; .-‘.
“mitter- and the receiw-r be equal to D._ If the transnﬂ.tter power is E and the gain of 1't.s
anten.na {s™G, then at the diat.a.nce D it produces an energy flux density P = GE /‘htD . The :
energy ﬂmc density at’ the distance D/2 where. the acattering volume is lo;ated, is _',_' asill

= 4E C—/h:rD - The amount of‘ power acattered into the solid angle an is Pldo =:(1I-E Gfil:rD )d.o;
At the d:l.stance D/2 from the scattering volume, this power is distributed over an area

(n/e) an , and therefore the fl'ux density of the scattered energy is P = (1§E G/lhm )(do/dn}

Thu.s we have

= i

Q

_ 1640
2

oI
o

=)

(4.46)
i -u .
To estimate the size of the scattering volume V, which figures in Eq: (4.19) for s

we use the approximate formula [p] .

. . 3.3 e
D _ .
v g (.47)
‘Vhere 7 is the effective angular wid-t.h of the 'gain pattern of the aﬁtenna. {It 'i.s-'as-fni'méd. L
that the receiving and transmitting a.ntenna.s are identical and have 1denticu1 gain pattem ot

;.

in the verbica.l end hoﬁ.zontal planes.) Using Eq (1& 1!-7}, we find - ‘e _ EPEEE .



B )
. 4 : .
-f;':- = bk’ sinX 72 En(zk sin %) %

for P /P . In the case where the receiving and transmitting entennas are directed at the
horizon, the guantity D/e is constant and is equal to the effective radius R of the earth.

Therefore we have

P . ; i
2 - bxk* sin™ 77 §(% sin 3). (4.48)

o
Substituting the expression
. -11/3
3 (2 sin §) = 0.033 ¢?(2x sin &) - 0.033 ¢2 k" 11/3 g"12/3
2 n 2 n
into Eq. (4.48) and noting thet 8inX ~ 1 for 8 << 1, we obtain

P - _ ’ _ :
?P' = 0.76 0121 m'1/5 7’ s"u/B. (4.49)
=2 : )

We uge Eq. (4.29) to estimate the values of C, which are necessary to explain the ob-
. served values of P /P In Fig. 7 we show & graph of the.seasonal trend of the monthly aver=

ages of the quentity P /P , which we have taken from the paper [34]. The path length was

'Pp __
-30

1 [HEN W TN N DN A N N |
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1953

Fig. T Sea.sonul tmnd of mesn received signal levels prod.uced. by

tropospheric scattering. Pp is in decibels relative to 1 nﬂ.u_'lwatt.



300 = (188 miles), the trensmitter frequency was 3600 Mcpa (1 8. 17 c'.m}, the width of the
gain pattem of the receiving and transmitting antenn.as was 0.012 ra.dians, and the scattezd.ng
angle was 0.048 raﬂia.ns In this experimnt, ¥y <6, 80 that we can use E4. (4. 1;7) and its cofis |
sequence (L. ug; Substituting the indicated values of 1, 7 and 8 into Eq. (L. hg),we find that
the values of C_ needed to explain the va.lues of 10 log (P /P ) renging from -67 to -95 decd="

8 to L. 5 X 10 1/5 The height

bels experimentally observed must lie in the range 8 x- 10
of the center of the sc-attering volume a];ové' the earth's surface was 1.5 lun, 80 that the _

values of C obtained pertain to this level. Itishould—be notéd that the size of the inhomo-',
gepeitiea t-esponsible for the scattering is in this case t(6) ~ 1/9 1.7 m. This size cer=. -
tainly satisfies the eondi‘tion L, << t(g) <L o :L.e. lies in the range where the “two-thirds T

law” cen be applied. _ )
In order to Jjudge whether these values are reslistic, we now consider the tanperatu.re

fluctuation pharactenstic Cq-which figures in the "two-thirds Llew" for the teuperature field: ~

-

-

Dp(¥) = [T('”)-Tm]? 22f3 :

3 E

If we assime that the refractive index fluctuations are caused only by temperature fluctua-
_tions, then from (3.44) we can obtain the following relatién between the "quantitie; C, and Cpi
. : o |
c, = 12,.!;2;0_2_%’ Y i S (4.50)
- 3 ) w
'.rhere p is the atmospheric pressure in miu_i‘bm and T is the absolute temperature If we
substitute here p = 850 b and T = 2’73 K (tlm approximate values of these quantities at the -
height 1.5 km),we ﬁnd that the value Cp = 0- 09 deg cm /3 corresponds to the valut '
= 8 X 10 en/3 ana that the valve Cp = 0.005 deg m‘lﬁ corresponds: to the value
Gy = 4, 5 X 1072 1/3_. An ana].ysis of the results of measurements carried out by Bullington
[35] at a n-eq&éncy of 3700 Mcps leads to approximately the same values of C_ and Cp, i.e.
Cp = 0.002 to 0.006 teg a5, | _ :
Direct measurements of the quantity Cy were first made by Krechmer [36]. The suthor of
this book has elso made numerous measurements in the layer of alr near the gim;'h and on &
f»ethered balloon’ ES?] . In the layer of air nea.r the earth, the value of GT'va.:l'ies‘ from zero



%0 0.2 deg em~L/> depending on the mebeorologicsl conditions, with the largest velues obteined
during the .n_oon hours. ' In the lower troposphere (up to a height of 500 m) the size of Cp

: __decrea.ées compared with its vélue at t.hé- earth's surface, end is of the order t‘::f 0.03 deg

;e L/3 apa 1eee [a] . Thus, it is appﬁrtent that the cbéerved velues of T, are sufﬁcient to

X explain thél magnitude of'the scattered signals. It should E;.lso be .noted thet the values of

: c, obtéine'd by anaiyzing the phenomena of twinkling and quivering of stellar images in '

telescopes have the same order of megnitude as those obtained above (see Cha,pfer 13).
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) Chapter 5
o =, THE SCATTERING OF SOUND WAVES
- IN A LOCALLY ISOTRO?IC TURBULENT FLOW [a_}_ :

The scattering of gound waves in a turbulent flow resembles in many ways ‘the -phenomenon: - ;
of- scattering of" electmmagﬂetic waves. The velocity of propagation of" sound. T.raves. depends
both on the wind velocity and on the temperature. Since in a turbulent flow both of these
quantitles undergo irreguler fluctuations, the velocit;v,r of sound is a random f‘lmction of coox;-
- "dinates end time, a fact vhiah leads to 'I:-he scattering of sound. waves. In this chapter we L
- shall. regard the quantity T :I.'c.self as a conser\rative a.tlditive rather than HE= T + 7 o Bincle
in what follo'nrs it is assumed that the results of calmxla‘tions of acoustic Bcattering are
used only in the layer of the atmospbere near the earth, ‘where the’ d.‘l.fference between H end ¢
T 18 unimportent. The scattering of sound vaves in a turbulent flow was firbt considered by .I
ébukhov [38] in the year 19h1; subsequently papers by othgr autl;ors [35,5_2, jﬁﬂ_have been
?ie_"?‘:"[':ed to the same p'roblem.! R ?

_ The basiec equetion for sound propegation in a moving medium can be written 1n the form

"

AP--- L (24 _'8. 2P.—.0-- ' e . ( Tl)
A\ ) FTY . & . 194
whére P is the potential of the sound wave,; the u, are the components of the velocity of
motion of the medium, end c is the velocity of sound. A derivafion of this equation with-
. Eome aimplifying a.saumpticns is given by Andreyev and Rusakov [1!0] Na‘turajﬂ.y in using'

Eq. (5. 1 we do not take into sccount the z-otational compunent of the acoustic ﬂeld. How—

ever, und.er atmospheric conditions y the size of this component is small ccmpared. to the poten-

H
G 2

tial component.

We ‘ssume that the mean flow velocity is equal to zero and that u u' represents the
instenteneous value of the fluctuational veloecity in the t\!rbulent ﬂow. Since the v-elocity
fluctuations are mll compared to the velocity of saund (u.nder the conﬁitions in_- the earth‘_s
atmosphere),” we shall retain only the lowest power of the quantity u‘fc (u‘ = iu'..|)_'i_n the .

BT . e



equatirl::ns. Squaring ‘the operator E- +u E—-— ) We obtaiﬁ

&--523—.%=1—2§--gmap+%'ﬁ'.gmd§ T (5.2)
¢ ot c _ c ) .
- with an accuracy up to terms of order u'/e. 'T_he first term. in the right hand si.de is of
order ::;o larger than _(1/_&2}9 ar. grad P (where 0 is the largest frequency of the fluctuestions
of flow 'velocity); the second term is of order (1/c2)w'ﬁ;grad P, where w is the angular
frequency of 'the"sound. In the case ﬁ<< w (and this condition is practically alweys met for

. all frequencies in the acoustic spectrum) we can neglect the first term in the right hand

. side of (5.2), obtaining.as a result the equation

ERE T8 St N (5:3)

) The velocity of sound ¢, which figures in Eq. (5.3), is a function of temperature.
For example, ¢ ~ \/T for an idesl ges. If we denote the mean temperature in the flow by T
and the temperature fluctuation by T', then we have .
. — ™ lil’ ) ) )
o(T) ~ o) (1+355) _ - - (54)

In the atmosphere the quantity TV T 1s of the seme order as u/c. Substituting the expression

(5.4) in Eq. (5.3) we obtain

"
¥
n
o
[
&
A

with an accuracy up to terms of order T'/ T, (I’.enceforth instead of T and c(T) we shall

write T and c, Lmderstanding these quantities to be the corresponding mean values.) Assuming

that the time agpenqence of P 18 given by the factor e ~“¥, 1.e. that P = T ™%, we obtain
the equation '
o ..
: = -
AT + K20 = - k--gadn+k2"—n , _ -~ {5.5)
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¥

for the amplitude potential II, where k = w/e 18 the wave number of the sound wave {b] .

1

We shall look. for a solution of Eg. (5.5) in the form of a series I =1 + 1 + 1, Heeay
where I, has the order of smallness of u'/c or T!'/T raised to the power of k. Then we have '

am,+ ¥ =0, o . (58
2 ey, 2o ' .
AT + K Hl._' <21k —.gred T+ k T 1. | _ (_5-7}

lIo' represents the emplitude of the acoustic wave potential incident on the scettering volume

V. Assuming that the incident wave is plene, we obtain

.I
- =+

no - Aol_!ik'r , - L ‘. | e g (5'.8]

vhere k is the wave vector of the incident we'vé. " Substituting this' expression in Eg. (5.7), -
we obtalin . ' '
: 2 2(aa . ), k7 , : S '
.énl+k T[]_-&(—c-—*-bﬁ AT, - o (5.9}
- vhere & 18 & unit vector in the direction of k (k= kn). Eq. (5.9) has the form of Eq. (&) on
page 61l. Consequently, its solution et large disténces from the écatturing volume {_)Lr >> Le,

where L5 =V) is

- ikr wr.-p - -y . -r.-u'- -'r--o-' . _' )
L) = -5 5 f 3:2[“—1‘%"—'14- -Ti(%;—'l] p GBI gy (5.10)
i : :

¥ 0
v

where m is a unit vector directe_d-ﬁom the center ef.'i_;he scattering volume to the nceiving"

‘point. Thus, ]Il('f-) represents a spherical ira:ve_I[l =Q eﬂ.“"fr .vi_th random complex emplitude

v

2 ) . . = . . I
e [[EEG, 2@ ] SEDF . Toan
g |. . L .. - . I.' b ) . 3
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As is wEll known [1&] the sverage velue of the flux density vector of ihe geattered

energy (‘_bai:en over the periud of one ogcillation) is equel to.

wp
S=7 Im(l'[’i grad 1'[1),

" where p is the density of the gas. Galeulating the gradien‘b of 1'[ , Wwe obtain

grpd]'[ gradQ—-——-——qé{r——-_—?—) ~

where it is essumed thet kr >> 1. Therefore we have

- "ik.r ikr L\ka " .
8 = --——-ik@,-—-—m -~2'Q_Q*m . (5.12)

The gquantity 3 , which depends (via Q) on the velocity and temperature fluctustions of the

flow within the scattering volume, is vandom. TIts meen velue equals [c] .
6 22
pck A
é = E’% QQ* ‘;1::: -1;1 —T% K
2r Bar

g n,u} 1-1) Y (‘ ) - nkuk(r ) ' (r 1x(n-m)- (F,-Fp) 3
X . e av.av.. (5.13)
. . c g 12
vy

1
We assume that the random fields 2t (7) end 71(7) are homogeneous and 1sotroplc; below it will
be possible to extend our results to the case of locally isotropic fields g5 well. In this
sase 1t follows from the incompressibllity condition for the turbulent flow of the fiuid

(velid for u << c) that fd]

wGr Gy - o



Cdné'equent_l‘y, we 'hm_re

< . pck A — 1x(3-m)- (F-7,) SRR
$=m-§:é_%[ n,n ff i(r )uk(ra} e . e av,av, +

"1 = ik(n-m)- (T,-7,) _ o o
+F Jvf' T._‘(rl)T (z,) e | 12 'Nl'we_ . | (5.11;)

’

SEACTERRENCER

1s the correlation temsor of the velocity field, aad

.' ~b. oy -+ _._—»
T (;‘l)T (r2) = BT(rl T,) o
is the correlation function of the field of temperature fluctuations. S:T.nce the integrnnds

inthe righthandsideofb.lit- depenﬂonlyen-f- -7 uecancw_foirboneoftheintegra-

2}
tions in doing the double integrals over tne volume, obtaini.ng as a result

BT, | nGEE L,
=m'__2'_pckA [1 N N O A
2 '
+ ::1;2‘ f Ar(r:) eik(n'm)‘l" dj;'"]- o y . ‘ 15‘15)

We now use the represen‘bation of correlation ﬂmctions m the “form o:r Fourier intemis

est.ab:u.shed in Part I, we have




.._BTt-r') - fj:f eﬁ’;ﬁwﬁz)&, - | & s

("‘}. rr A i'x'; "5 : Kixk E“‘ d}? . LI
Bik r) = ‘/ € 1k "~ _K'é"‘ (K] ' ] . (5'1'{)

&

= Here E(E) is the spectral demsity of the energy of the turbulence in wave number space, and
El,(x) is the spectml d.en.sity of the temperature fluctuations (more exactly, the spectral den-
-sity of the amount of inhmageneity in the temperature ﬂeld) Substituting the expressions

(5 16) and (5.17) into the intee;rsls in the right hand side of Eq. (5.15), we. obtain

_ f B, (F') e'i" A @k - -%’5 E(K)) - (5.18)
f By(E) e KT g e R, | o (59)

-

where the double overbar over a function like F(K) denotes the aversge of this function over
" the region in wave number épa.o,e_ of volume &:1:5/\7 gurrounding the point K. The derivation of

these formulas is analogous to the derivation of Eq. (4.16). Substituting the exp:?ssions' )

15.18) and (5.19) into Eq. (5.13), we obtain

I Rt Aev r ) (mem)\ . L
= 3 By = - E(k(n - m)
° . l:c_g'n"nk A X B@ER) @Ea) (ln =2} +



o ;—;—5 Byx(E - E))} . | . | (5.20)

In the case where the volume V is so large that averaging over the region 8::-5-’/1.' of wave num-
ber space does not substantislly change the averaged .flmctions,. Eq. (5.20) can be simplified

congiderably. In this case we have

-

(ay - m)(ny - =)

n 5. -
e (TG G-

b4 22‘(1 +270).

- . = "
But m-n = cos €, where @ isl the angle between the df{rection of the vector E and the vector‘;-
going from the center of the scattering volume to the observation point, i.e. the scattering.

engle, Therefore

é(l + RB) = cos>

]
E ’
and

'.rmcks.ﬁgv [

»
| <2 S ;%2- E(k(3 - &) cos® £ + 41? T (k@ - 1)) ] (5.21)

Since in the case of isotrople turbulence E(k) = E(k) and EI,{;} = :@I(K), it follows that

E(k(3 - @) = E(Zk sin g)

Ty(k(3 - 7)) = Gyl stn §).
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‘Thus ‘HE have
ng -——-r' —EE(& sin "') cos 'ﬁ""? %(aﬁ sin %]]' (5-22)

Eq. {5 22) cen be used to find the effective cross section for the scattering of sound

in the direction 6. The acoustic power scattered into the solid angle 4 is equal to Sradn.

- =
. The energy flux demsity in the incident wave 1‘[0 = Aceik ‘T s equal to
05 D i‘k ﬂ;' -.. B
. S Im Tk & r)y _ ':'Lg' Umo E,

and its absolute value is So = % cpk%iﬁ. Consequently, we have
.

i

a0() = 2ak'V [— E(2k sin &) cos %+:’Ta2- (2 sin %):I . . (5.23)

' ".Eq. {5.23) is completely analogous to Eg.- (4.19), which dseﬁnes. the effective cross section
for the Bcattering of electromaegnetic waves. (ﬂ:he expresﬁion.inside square bracke’c.s. in Eq.
(5.23) signifies the apectral density of the ref‘racti've index fluctuations.)
It follows from t.he expression (5.23) that the effective cross section for scattering at
the mgle e depen.d.s only on spectral coanponents of the turbulence with wave numbers Zk sin 92,

comaponding o sim:soidal space dii‘fraction gratings" with period -

Yo) = —H s - —2p | (5-24)
2 sin g 2sin gz

‘satisfying the Bragg condition. This fact allows us to extend Eq. (5.23), obtained by assum-
.in,g that the velocity snd temperature fluct:uations are- homogenemm and isotrople, to the case
of ].ocaJ_'Ly isotropic fields. In fact 1f £(6) << L , then the values of the functions

E(2k sin —-J and §T(2k sin —-) are determined only by the isotropic inhomogeneities (eddies)

and the and_.so‘bropy of the large scale inhomogeneities has no influence whataogver on these
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velues. In the case ! << tg) << I.o, i.e.

o

2 X . . ) _ “ L. T ;
i <2 un§<<-z:, : J : (5.25)

the quentities E(Ek sin -—-) and Er(ar. sin —) are determined hy the tun-thirds laws" for the
velocity and temperature ﬁelds-

- 2 2/3 "2 23

= G2, DpacpT (5.26) . .

/ 2/ - - . : : -
- Here cf = Ce /5, c; = a.2 Re l/? € 1s the energy dissipation rate of _the turbulence, and N.is ° -
the rate of levelling out of the temperature inhomogeneities. In this ca.ae,' we have '

B(x) = 0061 ¢ -1/3 o - , 0 (5.21)

ﬁmm - 0033 Gr2 - L (5.28)
(see (2.20) and.(3.24)). Substituting these expressions into Eq. (5.23), we obtain

T 2 2 Sy
c C -11/3 : : ]
“do(e). = 0.030 k1/3 v[—% cos® % + 0.13 FT}(ain -92-) o ae . A (5.29) -

" In the layer of the atmospiiere hasr the esth; the quantities O /c and C/T have the same

nrﬂer of magnitud.e so that the temperature and wind ﬂuctnations meke approximately the same .

contribution to the scattering of sound in the atmosphere [e]. An experimental imestigation._‘_‘?

of the scattering of sound in the atmosphere was carried out by Kallistratova [97].

results agree sa.tisfactorily with Bq. (5.29). . @ ol
Using the general formnla (5.23) we can_also eaail;r ﬁnd the quantity do(@) in cases

where t.he spectral densities of the ve:l.ocity and tem;:eraf.u:e fluctuations have a fo:m dtf- .

ferent from (5. 27) and (5. 28) Such expressions are given in the pepers [59:’*1_-] For

&xample, in the ‘case where 't:he correlart‘.ion fmetiona of “the ﬂuctuations of wind- w.lomlt:r and g

temperature have the exponential form



Br:;(r) =-§-v§ éxp(— |r]/t), BT(z-) . TE exp(- Er|;’i)', ' © (5.30).

‘the expression for 'a0(g) takes the form [£]

: 2 - ) III2
LY 2 o kaza o
‘du(9)=—-—— 25 8 8inp | -
. [33 . hkz sin % ;E 1+i+kr. sin

N

(5.31)

ml‘h

. It is intere&tin.lg to np'i;'.e ‘that in this case dd(0) depends only on the temperature fluctuationms,

{.e. the .wind inhomogeneities do not scatter at ‘zero angle [g].

I



Pa.rt III

PARAMEEI'ER FLUCTUATIONS OF ELECTROHAGHE‘I‘IC AND- ACOU'STIC WAVES’

Pmmnma IN A mmm mmggpm:aﬂ

Introductory Remarics
e

The influence of -atmospheric turbulence on the '-iu_'ojmga;bion of glédtrdmsgnétic and acous~-
ti¢ waves involves more than jécatt;eriﬁg of 'l;.he'wiwesa As the irav_es propa.ga.te thrw.gh 'the.' |
medium, there occur i’l‘i:ctuations of ampli'tude , phase, frequency snd other wave paramgters- .
These effects are of great. importance in & host of pmblema in atmospheric op'bics, acotmtics
&and radio meteorology. {For example one might mention the l‘luctuationa of freqpency and angle
of arrival of electromagnetic and acoustic vaves, ‘l:he twinkung and quiver:l.ng of stella.r :
images in telescc:pes, radio star scintille:tion, etc.) On. the other hand, the study o:t' pm— .-
meter l’luctuations oi’ eleetromagnetic and acofust;ic waves can give valuable information ebout’
the.astnt'ucture of atmospheric turbulence (see Part IV). The most recent papers’ devoted to

ampj_itude and phase fluctuatd.onu of electromagnetic wa.ves B:re concemed with the :phentmena of

twinkling and quivering of ste.llar images in telesco_pes. In recent years, interest in.

this p:roblem has increased g'eatly', end there @lready exist a large number of experimental and

theoretical papern dea]ing with these matters. .

_ The problem. oi’ paramater :l’luct.uations of waves pmpagzbing in the turbulent atmosyhaze
can be fomlated as follows (vith a viev to obtalning a tbwmtical aolution) Along the _
\rm p‘rapaga't‘.ion path from the source to the obsemtion point 'bhere occur refractive index -
fluctwatiqns produced by the turbulence_. _The wave source may be situated either outside t.he
region vhere the fluctuations 'dcmi_r or inside it. In the :f.‘!.rst Icas_e, we -can replace the

actual .saurde.of vaves by an 'equiva.lenf. source located on the b‘oundm df the 'reg"ion. (F_o:'
exwrle, a star lor:ated et & -great distance from the earth can be x-eplaced by a plane vave
ﬁloeated at the bcundary of the refracting atmmsphem.) In the second case, ‘we can generﬂll"
Usregard the part of space lying bem.nd ‘the vave source, sine:: 1ts influence dn the propasa- _'
ting vaves is negligibly small. '.'L'hus, in both cases we cen assume t.hat. 'I:he aource of uves




1ies on the boundary of the region occupled by the_refra.ctiye index fluctuations. We shall
vm assume. that the observation ﬁoiﬁt lies inside the reglon. -(I.f thé observation point

lies outside the region, the value of the field at the observation point can be determined
from the values of the fleld at the ‘bounda.ry of the region occupied by the 1nhmogeueities.)

_Just as in the prublem of wave acattering by refractive index inhomogeneities, we s_ha]_'[.
.assmne that the field of refractive index inhomogeneities is mai—étatiomry, B8O -t.ha-b we '
sha.ll nof' be concemed with freg.\.ency ﬂuctuations end the frequency spectrum of the ampli-
tude and phase fluctuation.s of the wave., (Eoue’vet the problem of the frequency spectrum of
the amplitude and phase fluctuations of the wave can be approached by starting with the spa-
. tial spectrum of the fluctuetions (in this regard, see Cha.p'b.er 12)).- The actual time changes
. of the refractive index field cen be regarded as changes of the realizations of the random
field. We shall consider thet the field of refractive im.iex fluctuations is a locally 1son
trople random ﬁeld. Our problem will be to d.e‘l:ernﬂ.ne the statistical p:mperties of the w ve
field at a distance L from the source of radiation (or from the boundary of the :'egion oce -
pled by the refractive index fluctuations).

In Part ITI we consider some methods for solving the problem just stated. We begin t .
presenting the simplest. method, which .is based on the equations of geometrical optics [152, 3,
| 5], P '
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S 'Chai:t?r 6 _
SOLUTION OF THE PROELEM OF AMPLITUDE' AND PHASE FLUCTUATIONS
OF A PLANE monocmmnc WAVE -
BY USING THE EQUATIONS OF GEOMETRICAL OPTICS

6.1 Derivation and solutic:m of the equations of Eemtzd.ca.l optlics
= - :

We consider first the problem of amplitude and phase fluctuu.tim of short electrmag—
netic waves.  As was shown in Part II, the process of scattermg of elactrma@.etic wa.ws 1n
an inhomogeneous medium can be deseribed by the equation (c£i {4.3))

- D2 - . . o
AR+ Xn" E + 2 grad(E-grad log n) = 0. (6.1)
We assume that the geometrieal dimensions of all the inhomogeneities in the spatial distribu-
tion of the refractive indekx are much greater then the wavelength.:A (i.e., that A << ¢ o’ Vhere
L- is the inner scale of the {:u:bulence} In this case we can neglect the last term of Eq.”

(6.1) [a]. Tmus, the pro;pagatioa of ~short waves (L <<t } 'in an inhcmogeneous medium 1s des-

eribed by the equatian
2+ K02 (PE=0. . o C (6.2)
The vector equation (6.2) reduces to three scalar qua'liions, having the form

pus BB(Fuso, o (6.3)

s, where A 1& the amplitude

¥here u can denoté aJ:LY of the field co‘mponent;a. ) We set u = Aei
Ond S is the phase of the wave. Substituting this expression in Eq. (6.3) end setting the
real and imaginery parts of this equation equa.l to zero, a:f'ter first representing Eq. (6 5)

ia the form
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Aa

—t kenz(_r') = A log u + (V log ﬁ)e & kana(;) =0

My

for convenience, we ‘obtein & system-of two equations equivalent to (6.3)
" A log & + (v Log A)2 - (v 8)% + KFn3(F) = 0, _ (6.4)
AS+ 2%V log A/V S8 = 0. (6.5)

To simplify Eq. (6.4) further, we note thet V 8 is of order k, e.g. (in a plene wave
S=krend V8 = ;}. Therefore the two last terms in Eq. (6.4) ere of order kg = hxaha.

Moreover, the wave amplitude A can change sppreciebly enly in distances of the order of the '

dimensions of the inhomogeneities in the wedium. Therefore

2
A log A+ (7 log A) 59-5&
is of order no greater than lﬂg. Since we have assumed thet A << Lo, the first two terms of
Eq. (6.4) ere small compared to the lest two terms end can be neglected. Thus, Eq. (6.4)

tekes the form
(v8)? = ¥n(F. - o N (6.6)

We shall now use the system of equations (6.5) end (6.6), 1.e. the equations of geometrical
opties, to solve the problem of amplitude and phase fluctuations of a plane wave piopa.ga‘ting
in & locally isotropic turbulent flmr._

Let the refracfiire index n(T) be a random function of the coordinates, with a mean value

equsl to 1 [b]. We denote the deviations of n(¥) from unity by n (), tee.

a(F) = 1 + n, (7). - . (6.7)

gl



~
' We esssume that '|nl-(':'-]|- < 1; this'conéition is eccurately met in all rea].- cases. The aiu.all4
ness of the vefra.ctiva index fluctustiona a.'.l.lm.’sus to use perturbation theory to so}.?e Eqs.

(6.5) and (6.6). We set S = 8, + 8, and log A = log A, + X, vhere X = log A/A is 'bhe "level"

of the amplitude fluctuations on ‘& logarithmic scale. Thml Egs. (6.5) end (6.6) teke the fom
- N « . 3 LA 1 % . LI .,
(vs)2+2vs Vs, +(Vs,) -k2+asn(r)+k2n2(¥) : . (68)
o’ o 1 X 1 g s

T~

AS +AS +EVlongVS +QVlogA VS +2?XVS +2VX'VS = 0.

1
(6 9)
_ Equating groups of terms _r.vf the zeroth order of smallness, we obtain
(ve )2 =2, - (6.10)
A8+ .2 v 1_og _Aé‘a Vs, = 0. N TR . : (6.1;)_ :
Subtracting these equations from_(ﬁ.B) and (6.9), we find

VSR VS +VS,) = & () + Kn(P), : " (6.12)

1 o p B4 1 P ) el : .
. . : .. ) ) ® ,

e.sl-l-avlogno-vs.-a-evX-vso'-:-evx-vsl-o. - - (6.13)

1
\ ;

In the case where |V sl| < |v s [ =k, i.e. 7|V sl| << 2,(, we ce.n neglect the term (V S, )
in Bg. (6.12). uoreeve:», in the r:.ght band side of (6.12) we can omit the tam k nl(r) of

' the second order of smallness. 'I‘hus ’ the linearized equa.tion

V5,98 =k S (6
"is valid for r|vs | << 2%, i.e. vhen the phase changes by a smell amount over the distance of
.a vs,velength JL (note that the smallness requirement is not imposed on the value of Sl itself),

If the same condition JLIV s [ << 2¢ is met, we can omit the last term in (6.15), vhich in ‘this

- . -,
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case is small compared to the third term of this .en;'uetinﬁ; the result is

'A_Sl-l-aVlong-VSl--t-_ 2vx-vso_='o. . _ _(6.15)_

13

- We now conslder the amplitude and phase fluctuations of a plane wave, choosing its direc-

tion of propagetion as the x-axis. Then S = kx end A = const. In this case, Egs. (6 1h4)

and (6.15) teke the form e

3s, . : ' _
6}" =, ml(r)s I . ' .(6‘16}

x e
&8, +2% 5= 0. (6.17)

Let the source of th¢ plane wave be located at the plane x =0 (this pla.ne can also be

= ‘nga:ded as the boundary of the region occupied by the refractive index fluctuations) , and

let the observation point have the coordinates (L,¥,2), 1.e. be located at a d.istance L from

the source of the wave. Integrating Eq. (6.16) and (6.17), we obtain

L & _ .
8,(L,¥,2) w'k_f n,(x,¥,2)ax, : _ =5 (6.18)
. A _ _
38 38 L /3 s, 38 :
X(L,y,z) = - 4 3 (2 + /. —-§— + ——5 dx] . (6.19)
: & 8;— {L)Y:_z') & "(OJY)Z} f ’

The quentity

/s \ : o
L 1 - 3 = i » yz) = n:(0,¥,2
& [ Ex_ (L.!Y)z) @ (o’y.’z)] ' EEnI(L e . nl(o Y )]

18 small compared to the integral figuring in Eq. (6.19). Therefore we heve approximately



X(I-,!hz)e-_—-g-ij'f [% + —%) f l(g,y,z)dg d.xs i -

\° N - - .,

I‘\)II—'

L 3 a n (§:T35) aan. (EI;Y:Z}' : - - : e
fdxfdg[ o la;.a :| ~en (6_.20_)""

Eqs. (6. 1B) ami (6. 20} express the em;p:li‘t:ude end pha.se fluctuatione at the point (L,y,z) in

terns. of the :wefract;!ve index fluctuations elong the pmpagation path. '

-

6.2 The structure function ‘end the spectrim

of the pl':mse. 'flucfuetiona of the wave.

Averaains Eqs. (6. 18) and (6 20) and taking into a.ccO‘Lmt +that nl =0, we obta.tn X = 81' o.;
" These equations allow us 'I:-o express the structure " correlation} fumctions oi’ the phaee and - >
emp].i.tude ﬂuctuations in tem of the etructure flmction of the rerrective index. For exem- -

ple, teking the difference of the va‘luee of sl at two points on the :pla.ne x =1L, we o'b-t.ain

8,(L,yy5%) - 8y(L,ypz,) = k f [y (%7 421) = By (%57, 2,)] dx. S (6.2 :

We square thie e_quetien and write the squm-e of the 1ntegra1 in the form of a double 1ntegra1.

i

Then performing the average, we find -

. ) 2
[Sl(L’ yl) zl) = SltL’ yai ""2):] =

"
Vo - ¥ f ax, f ax, [i:(xl,yl, -nl(xl,:ra, z,)] XEIl(xa,ri,z )= 1(x2,¥2,z )]
o

°e
- (6. 22]

[



Using the algebralc :I.den%ty

L

(e-v)e-a) =3[(a-a)®+ (- 0)f - (a-e)®- (0 - a)F

we express the integrand in terms of the structure function of the refractive index, i.e.

e [y (xyy 02y ) (057, 2,)] [nl(xe,yL,zl) - 1 (x¥,2,)] =

-

=% ' [nl(xl,:rl;zl) - nl(xeﬂzjzaﬂa +% [n'l(xl,ya,zé) - ﬁlﬁfe,yl,zl]]’g -

-3 Eloyy 7)) - my (v, 2)1° - 3 [y (%570 25) =y (%57 21" -

(6.23)

o

Si_née we assume thet the refractive index fileld is a locally isotrople random field, we have

LB

[ (x_v%,) : ﬁ(ﬁ:yu,vaj_E =

N (- 37+ (2, - 2,)7)

(6.24)

where the 1ndices a,eeesH;sve,v can take the values 1 and 2. Thus, the expression (6.23) is

équal to

* % Dy (‘/{:‘1 - "232 + (- ”'2}2 + (2 - ze)ED -

S ENCEEY) - 1o, G"l*‘?D i .
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D, (\/(xl - %)%+ (v, - &2},2: (2, - 22)23 -0, le -.xalja S (532?;)::_:

-

Substituting (6 25) into Eq. (6 22), we obtain

Ds(p) - [Sl(];,,yl,xl) - SI(I-,.YQ’EQHE =

| "kaj‘”‘lf""‘zl: (\/fxl xfﬂ’é ( %;D]’\' N (6.25")

where ¢ = J(ylf' y2)2+ (zl- ze}?' is the distance between the observation points. in the plane

x = L. It is easy to convince oneself thet the equality

L

fdxlfdx2 f(xl"‘z)“".é-.f(la.-x)f(x)ax . o .__.(‘6..2?5)"

holds for eny even function £(x). Applying this relation to (6.25'), we obtain

. ‘..n(p)-ak‘f(r.-x)[ (\/x +°)-D(x):| . o _ (6“._2'."_)

. The relation (6.27) can still be simplified & bit further. To do 80, we should consider the
fact that for x >> p, the expression Dn( Jx2+ p7) - D'n(x) i_s_’very smell, For exasmple, 1if '

Dy(x) = o (u < 2), then

: Cu 2. p-2
D, (\/x§+p§.)-n()~-—'ip 2



for x >> p. The chief contribution to the integral (6.27) occurs for x § p. If P<< L,
: ; _ \

then on the segment x S P, L - X~ L and ‘ .
* -

Dg(P) ~ 2, f I:Qn (J.xa-b pg) - Dn(x):ldx. F
_ A - ) .

Since the integrand is very smell for % >L, the upper limit of integration cen be replaced

by ©, and then we obtain the formuls '

nscp};aﬁ f i (\/x§+pz)..-nn(x):ldx, | (6.28)

vhich 1is valid for p << L.
Eq. (6.28) expresses the structure function of the phase fiuctustions of the wave in the -
glﬁa.e x = L in texms of the structure function Dn(x) of the refractive index. From Eq. (6.28)
we cen obtein e relstion between the spectra of the phese fluctuations and of the refractive
index. As was shown in Ichayte‘r 1,- e structure function given in scme plane can be :represénted

by the integral (cf. (1.149))

Dg(P) = 2 ff [3 - cos(x,n + "39:[?5("2”‘5’0)‘.1"2‘”‘3’ - (6.29)

vhere pa = qe + ;_2. Here Fs(nza,ks,o) represents the two-dimensional spectral density of the

gtructure function Ds(p); In Cheapter 1 we also derived the foramila (cf. (1.48))

L

Dﬁ (\/x! + p ) -'Dn(x) = 2 ff [1 - .coa(xan + xag):]yg’(xa,x},x.)_dxadxj,. (6.30)

where Pn('xa,xj,x) 41g related to the three dimensionsl spectral density in(xl, Ko xa) of the
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2 P ¥

refractive index ﬁuctﬁaﬁpng by the ﬁlutién (£, (_1.53))

- ‘ .
£ u ] B i '

o B yps) = [ B (kpuicgx)con(iyx)ax.

d -. . . - - w . ¢ . .

- '
‘It follows from (6. ) thu.t

fF (KE’KB’x}dx =% EI(O’ 27 5) o5 T X ~
o . e :

-~

We subs‘bitute the expen'sion {6.30) 1in-Eq. (6 EB) end change the ord.er of infegrat!.on with g Ex

respect to (:c K ) end X, i.e.

- né(n_) = _“l-kaL' ff - cos'(x'zn + xﬁt)]dkaﬁxj f ?n(Ké,ny)d:_'f;' :
) : C - A § ’ . 0 .

Bearing in mind the relation (6.32), we find

Dg(p) = 2 f f ; tl- - c_o"s(K-zft + _K3§7)J2n1_;% Q(Q’.“a”%)d’ce‘l’%_"' K ¥ e ('.6.-33.)’..

PR

.'Gnmparing the expansion (6.33) end Eq. (6. 29), we_convince ourselves thet the two-dimensional ES:

'spectm d.ensi'by (xa,x ;0)- Of the phase fluctustions 1is eq:u.al 'bo

-..._,_“'-_rscxa,xa,o)."m%.yn(o,xa,@. e e

Y, T




Since

. . N .

Eﬂ("l"‘?"li) -3, (F * “ . : T | -

in a locally isotropic turbulent flow, then E
- . :
L

-

. L(.o,xa,_xs}. = ﬁn (W(Z -l- K'j) :

r ("2"‘3’0) =F, (‘/ 2 + KE ) > % "
' 2. 2 - ' 8
Writing k = Vkj + K5y We finally obtein . I

6.3 Solution of 'the equatiuns of geometrical optica by

using spectral expa.nsic-m;
The :welation. (6.34") between the. spectral densities P, (K,O) and ﬁﬁ(x) 1s equivalent to
- the- relation (6 as) between the structure functions of the phase ﬂuct.ustions and the refrac-
- tive index" tluctmtions. The relation (6.34') can be obtained from Eq. (6. 16) by st111 an-
- other me‘l:hod., which does not require the introduction of s‘lmcture i'unctions As was shown in
~ Chapter 1, the locally isotropic random field nl(r) cen be represented in the form of the fol-

s lowing stochastic integral

.

1(::2:; + szi

(x’sz) =1 (51030} + ff(l }dvcxai'(j’x)' o 16035)
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Since n, 1s.a real quantity, we have ’ v
. . R
& . ) . - ,
= .dv#(-ga',.-xj,:.d = dv(KQ,xj',_x)»l . : . ' ."_'
The randm ampli tudes dv‘(xa,xa,x) setisfy the .re_':l,-ation'_ _ _
. : . = ) . et 1 4
d"(Kz’Kj’x)dV*{Kz’Ka—‘xl) = 5(:{2 - KL J&(K - _x%) X | .
R Fn("z”‘s’x - }'i“ed'"ﬁd"'dxi = BT o ps A e (6'36):.::
.WE_ shall look'f._u.r an ex.p.an'aion of the phaée fluctuation field Sl(;} vhich has the éhm_e form, .
t.e. ' o - '
e " AN S S B -
' 2 . : ;
Sl(x’y’!z) = Sltx,o,,_o) +. ff . [l -e ’ 3 }g“(f‘aa-‘fj;ﬂ?. . ! . (6.57)
The rendom amplitudes do(xa;r:cj,x) s&tisfy'the relation .
W 5 s p . f .«.‘__
.'dd(i&z,K?,_x]c_la*(rcé,x'i,x.') =
L= 8(x, - Ké).ﬁ(xj_- K%jFS(Ke’KS’ x - x')d.rc dxsdxadxj ' oy (6.38) -
Substituting the expansions (6.35)-and (6.37) in Eq. (6.16), ?B_Ob":-#n‘_
.Bﬂ'(xoo}' e 1(xéy+xz a _ . :
I At ff B J ao( e .
+ l1-e - do(kp,KyrX) =
T am . [ . _ &?. _2.3 e

) - 103



- knl(:),o,o) ik ff [1 pe ei(xa',\.r,.:. xﬁz)]dv(xa,xyx) SO (6.39).

" . Setting y = % = 0, we have

asl(xzo,o) :
—— k]ll( x,0,0).

Subtracting this equation from (6.39), velobtain the equation
. i(x.y + k,2) _ :
f f h-e 2" 5N[L aoteyugm) - Kv(kppkzx)] = 0,  (6.40)

satisfied for arbitrary y and z. Equating the integrand to zero, we cbtain the relation

% dcr(xa,x,j,x) = kdv(xz,lxj,x).

We integrate this equation with respect to x from 0 to L. Since da(Ka,Ka,O) ='0 (there are

. no fluctustions at the "input" to the turbulent region), we have [c]

tolgrpD) = [ axdvlcy ). (6.41)
/ |

Ve multiply Eq. (6.41) by 1ts complex conjugate equation

L -
du‘*(xé,xé,l.} =k f dx'_dv*(xé, Ké,x'),
8
o



written for the ‘point (xé,x;)' and everage. Taking into atcount. ‘the reletions (6.36) amd .

(xe,x ,0)5(::2 - ana(x - Kk} }dxadx dxacuc5 =

2. '-'
- f fdx?(xa, 3,x-xJB(x 2" 2)5(x -x)dxdxdxzdxi

whence K : + . s : ' U g
R RO TUTEE Y J _ ' ¥
lzstxa,xyo) =K f -dx j\» dx_'rn(xa;,xj,x -x') . . L0 (6ab)y .
L (o] [+] B : o .

/The function Fn(xe,xa,x - x') 18 even with respect to x - x'. Applying Eq. {6.26), we obtain .

Fy(Kkpyk,0) = 2 f (@ - )R (kpykgox)ax . e - (643) -
o : .

As shown in cha.:pter 1, the function F (Ka,:c x) falls off rapiu;rorx > 1/k.. m:emrore, o'n.'l.y i

the region x < 1/x cdntri‘butes substantially to (6.43). e 1/x < L, the chief contribution

~to the integral (6.&3) is obtai:_zed for x << L. In this region,I. ~ X% I, and . -

B . . L & "
FS(KQ,KBJ 0) ~ EkEL f Fn(!ca,x3,x)dx .
o .

A

- 2k_2L f Fn(xa..,xyx)dx B
. 5 :
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applylng Eq- (6.32), we obtaln the ;previaul relstion

I
\

¥, (x,o) axkal. }n(x],_ L PP S (6.44)
- from vhich i'ollm also the eqtﬂ.walent relation (6 28). ‘This spectral method of solving the

" problem is equivalent to. the method based on structure or correlation functions, but is in -

. many respects more eonveniant. T . ’ 5

We now apply the spectrnl method oi’ solution to determine the an:plitude fluc’cua.ti::ns.
Abcwe we obtained the relation (6. 20), which relates the fluctuations of the "level” '
X = log A/A %o “the refractive index fluctuations (7). Ve shall look for the locall.r 180~
" trople rsn_dm field x(r) in the form of an ex;pension . )

- i & & : - >

o xwo0 + [[h-o T Flatguga. 6

According to the general forsmla (1.46)

¢
L1

da(Ky, K x)a8*(k3,k3x') = B(k, - é)ﬂ(:v;3 - Kg)x

(“2"‘3’ Ix - x'|)axdxdxdx]

2 3 5} (6.%)

vhere F (KoK |x]) 1s 'bhe tvo—d:lmsional spectral aemity of the field of ﬂuetuations of the

level. Suhstituting the expansicms (6 35) end (6»&5) into Eq_. (6. 20), we obsain

.”"x(x..,-o,o) + f'}\ L- e.i(x;y + xss)] aaliy ) =



Il - X B . ) . i(K '..|,. K. z}_ - - .' | I g _ -. A “
el [T @ . e
o .I o - “. o . , ) ‘ . . . '. .‘-

&

Setting y = z = 0 in (6.47), we obtain the relation

L X -
X(£,0,0) = - & f ax f a f (2% )avcxa,xng
. . \ o 55 A K
_Sgbtmcting.mi equation from Eq. (6.47)," we £ind - :
\ Y Wy +wgzly = T
5 x - - ' K l
o A(ky + Kyz . : i
%f ax f as f (x + K ) l-e 27 5 Jdv(xa,xyﬁ), _ (6;1_;8}_ ._
[+ .0 - _ ) . :
whence : ' : : . ) " :
\:13(!{' KyL) = 1 f dxf dg(xa + an!ﬁfK K -.g)- ' o (6 1&9}- .
_.2J 3’ 2 . - 2 3 J 3} g = . _ . J
. - o o S 7
_'rle mltiply Ea. (6. 1+9) by. i‘bs complex con,juga.te, written for xa, 5,1., te. . PR i
d.n*(ic ,Jc',I.) =3 f ax' fdg (;ct +x‘2)dv*(x2, :E_'J : .
ang mrage‘. Teking into apcaz;omt Egs. (G.hé}_ end ('6._365, we' obtain



L i 4 !

. L
i Fylicgiks:0) =%; f ax f ax! f ag f dg’KhFﬁ(Ka:Sa;E - '), (6.50)
[+ : o o] 0 . .

s

. nﬂneré_lvc2 denotes the guentity .‘Cg + x%. _
Eq. (6.50),w.’nich relates the two-dimensional spectral density of the smplitude fluctue-

" tions of the wave to that of the refractive index fluctuations, can-l_ae simplified considerebly.

Consider the expression

x xt : '
f ag f ag'F (KKt = E1)- L _ (6.51)
(o] (o] 3

‘3?
A8 wes shown, the' function F, (kyicz&-t') 18 appreciebly different from zero only in the
regibn le-gt} s.l/x, adjacent to the line £ = E°. Therefore, in (6.51) we cen replace the
rectanguiar region of mtegz-atién by & squere region with side equal to the gmeller of the

: _'m:mbem_x,x', which we denote by' 7; thus we have

. X - x' o N 7 7 | _ :
f ag f AE'F (KprKgrE - E') ~g f a f A 'F, (KoK € = £'). _ (6.52)
o o o o

- Sinee the function Fn(xa,xj,g-'g') 18 even with respect to g-t', then, epplying Eq. (6.26), .

" se obtein the expresaion-

2 [ (7 - eyt - (6.53)
o : -

(3
L]

for the integral (6.51). In most of the region of integration with respect to x end x', the
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qmntity )' is af crder L. For values of xz,xj satisfying the inéquality l}x << I._. ¥e cED

© simplify the in'ceg:ral (6.53) further. The function F (K?,K”E) is appreciably different from .-

zero for ¢ < 1/x << L. Since ¥ ~ L, we have ¥ -~ £ ~ 7 i_n the region vhich_ contributes appreci- :

ably to the integrel, and the integral (6.53) takes the form ’ ) it

14 e '
2 f Fn(KQJ.'C}:EJdE ~ar f F (KE’KE’g)dg 2qy E{G;KZ:K ); (6-51")
) : &

e]

[
o

where §n is the ‘th:-'ee—dinensionall-BPEct_ral éeﬁgity of the _refrs.c‘bife index fluctuations. Sub- o7

stituting *(6.54) into (6.50), we obtain

Tl z0) = 5" G loscpky) [ ax [ axt mtn(xxn). o o (639)

3 : b . he .
The integral figuring in (6.55) can be calculsted in an elementary fashion and equels L/%.

Thus, the relation
:LI.5 ’ .
Taes0) = 75mx * 3,00 | _ . (6.56)

18 valid for k >> 1/L. We have teken into sccount that

En(o’xa’;cj} = 11\(\(’,(25“_;(3) .u L(K) .

and

T lpep0) = 2 (42,0 = 7,k,0)-




Eq. -(6 56) relates the two- dimensiona.l spectral density of the emplit‘l.tde ﬂuotuot;.ooa of
Ithe wave to the three-dimsional spectru.’l densi'b]r of the relfractive index fluctuations. It
follows from this formila that the amplitude fluctuations of the-wave do not depend on Lts._
_frequonoy- and are proportional to the cube of the aistance om;-mea by the wave in the in-
; 'honogenoouo medium. In a similar vo&, it follows from Eq. (6o4k) that the phase flnotuationo
are pmportional to the square of the frequency and to the distance trmrsed by the wave- in
i, 'the inhmngeneous medium. These renults do not depend on the form oi’ the spectral or strl;c-
3 W

: _tu_.re (eomlajtion) function _of the refractive index inhomogeneities.
ol ’ . 1 d :

(R tude and phase fluctuetions of & wave pro at
AmplLi _fluet .
in a locally isotropke turbulent £low

We use Eqgs. (6'}&1&) and (6. 56) to-calculate the amplitude and phase fluctustions of a wave
propagating in a locally isotropic turbulent flow. As was shown sbove (see page 58 ), in this

‘caBe the structure :E'unction of the refractive index has the form

[

L 1_.2/'3 B forr>> 1,
Dn(r).u - . . . )
2 ,2/3x _ - _ '
L0 (T,:) - for r <K:¢ . \ . % (6.57)

!

: The spectral density §,(k) corresponding to (6.57) equsls 0.033 c: 13 por ke < 1/t and.

© quiexy falls off to zero for k ~1/t . The vay § (K) falls off for k ~ 1/t is related to

" the form of the structure function D, (r) 1n the region T ~ L_ end at present has not yet been
'. '_.""ascertained m:actly We cen adduce d:l.fferent spectral functions §n(x} which correspond to the

fom (6 57) of the structure function i’or snall and. large T. One such function was introduced

onpage 48, 1i.e.

G- _ _ -10.033 cﬁ x'llb - for K < Ky, ‘
I X 9 IR G '_ | o (6.58)
' o ' for k > K, o S
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where k18 connected with L, by the relation

Knbo = 5_;1"8 S | . I _ (6-59)

Substitﬁting. the spectral demsity (6.58) 1nto Egs. ( 6.i+1|-) and ('6.56) fu:;' the spectral demsities:

of the emplitude and phase fluctustions, we obtain o U
0.21 xPrcBc /3 . for K < K_, _
FS(K,O) =\ . I ) (6'60)
o . t L ' for kK > K,
. m’
Ol'T L C ﬁ1[ > - for Kk < K, ,.
FA('.C’O) = { X B v ~ ' (6.61) .
o L for K > K . '

" The- Bpec‘bral density of the phase ﬂnc‘tuatiom has a non-integrable ningularity at zero.
Gonsequently, the field of phase. ﬂuctué.tiona in the plane X = I. is a lnca:l_'l.y :Lsotmpic m—
dom field and, 15 characterlzed. by a stmctum ﬁmcticm rather than by a comlation ﬁmction.

‘Using the foramle (see page 23)

D.(P} = kg f B -'.To(xp,}])?(x,o)xdx, ‘ ' ' (;6-.62}-
° ! . = .- l : i
we obtaln . ¢ . ' . ; ‘ o | . ) ’. ;
o . . : ’ 7

fbrthestmctmfunction (p) For K 0 <<1,1 J(xn-xo/hmrthemlengim

of variation or K, and tha mtegral reduces to the ronwla

”s(""'"""“af-ci"a‘o'l” BT R (X O

m



(We have used the relecuon (6 59) to exp:ress K in terms of & .) For K n? > 1 the 1n\begra-

tion in (6.63) can be extend.ed to =, a8 o result of which e obtain [a]

Dg(6) = 2.91 k%cﬁp"'_/ 35.. ' - (6.65)

A formle similar to (6.65) was first obtained by Krasilnikov [b2,44].

We. now turn to the amplitude fluctuations. The spectral density (6.61) of the amplitude

. fluctustions 18 finite for x = O. Therefore, t.he field of amplitude fluctuations in the plane

xe1 18 hamgeneo'us and iaotm'pd ¢ and the fluctuations have a coml&tien function B A( P).

fitls:lng the formla (see page 24)

35(5) = 2 f 3 (KP)F, (i, 0)kax, o : S (6.66)
. we obtain
. K .
B,(p) = 2;{0.017)L5c§ f ' Jo(xp)x"‘/:"ax, _ -_ (6.67).

- The value of 'I:he correlation function B (P} at p= 0 givea the mean square fluctuation of the

- logaritlm of the wave emplitude:

o . K
W m
X = (-103.1*;‘_..) =a¢|:o.017)1.5c§ f . xh/%c,
o : & _
i.e.
8% ors At T3 - |
(log 7)) = 2.46 C L7 : - (6.68)
e .

- (the velue of K 18 expressed in terms of t;). Thus, the meer square fluctustion of the
" logaritlm of the amplitude depends on the dimensions of the smallest 1Mme1ties of the

refractive index [e] (on the inner scale of turbulence ¢,) and 1s proportional to the



-
e

cheracteristic cﬁ of the structure function of the refractive index _ﬂuctuétions. ‘ According - .
i “to (6.67) and (6'.'68),. the correletion function of the fluctustions of the logarithm of the .

amplitude of the waveé in the plene x = L, normelized to unity, is equal to

__A(P) T k/3 ' : - _ ;s
b,(0) .'i&% 3 [ T (kpe)e ™" -ag, L (6.69)

vhere ¢ = rc/xm. The function (6.69) 1s shown in Fig. 8. The correlation distence of the
emplitude fluctuations in the plene x = L agrees in order of magnitude with the inner scale -

of turbulence ¢

Balp)
10

08
06
0.4

0.2

-0.2r

Fig. 8 The correlation coefficient of fluctuations of the
& B .
logarithm of the amplitude in the plane x = L under .
the condition VAL <<t [f].. . '

6.5 A consequence of the law of conservation of energy

It is appropriate to indicate an importént property of the funetion BA( p). " Tt follows T
from Eq. (6.61) that F,(0,0) = 0. Since the correlation function 18 the Fourier transform

of its spectral density, we have
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cos(kaq + K3§)3A(. n,¢)andt,

FA(’GIO) = A(KQ’K

and 1t follows from the equality F(0,0) = O that

B {q, )dnd§= 2| B (r;);;dp_o. IR ) L | (6.70)
ff [ |

Eq. (6.70) 18 a cconsequence of the law of energy conservetion which itself follows from
Eg. (6 1T}t

Asl+2k%=0- | . | ' - (6.17)

In fact, suppb&e that the region T containing the refractive index f.luct;_xations 18 bounded-
- by the _i)lanea X =0, x = L and some "lateral" surface located et a finite. d.iste.nt;:e from the
.orj_:g;_n of. ;céxqinates, ‘and suppose that n) =0 ol‘xf:sfrde of T Moreover, suppose that the
région T is imbedded in the ‘ngién T bounded by the planea X = =€ and X = .I. + €. We inte-
gra;('.e Eq. (6.17) (vhich can be written’ in the form aiv graﬁ. S, + 2 -& = 0) over the reglon

: ,"1'1. Applyj.ng Gauss' theorem, we obtain

gggma Bdu+2k ffxa;m Ekff){.ddeuQ, | , :\(6.;r1)

x‘.=l'-€

where dcr is an element of surface l}mmding the reg;ion T. BSince the quantity Sl 18 constent
outside the region.T (see Eq. (6 16)), then gred 8, = O on the boundary of the region T , and

L?
the su:r:['ace integral v&nish.es, i.e.

95\ gradn Sld?f 0,
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However, the values of X on the planes x = L and x = L + ¢ coincide. Since there are no

: & . o ] ’ ] 3 .
amplitude fluctuations et the "input" to the region occupled by the inhomogeneities, we have

ff ?lﬂvd’l.a.(.}.c,‘

' Then 1t follows from Eq. (6.71) that

[[ swyoaaco.  (672)

- We multiply Eq. (6.72) by (L,y',z') and average. 4s a result we obtailn the relation

-fy\-?‘(L,Y,z)x(L,nr'_,#').tivt_ii= f?_s#('n',gjd;‘&;g-o | . o ‘.._('6..?3}.

(Mey-3,t=z 2 z'), vhich agrees with '(6.70). m,' the relation (6. 70) mst 'bé. satis-
fied independently of the form of the structure function or the spectrum of the re:E“ractive ;
inaex fluctuations. It follows from Eq. (6 T3) that the @omlation :E‘lmctim of the fluctua-
tions of eny quentity X which aa.tis;ies a conservation lew o_r- the type (-6.-72) must change its

> .

sign et least once.

6.6 A:\I:phtutde-and.jphaae fluctuations of sound waves : e

We now consider the .problem of amp]itude and phase fluct:uations of sound'waves. As was

ahcnm in Chapter 5, the amp.'l_i.tude I of the acoustic wave potential satisﬂ.ea the eqLuation .

ole
algd -

AT+ %M+t V=0, S g o (6.74)

e

us



~Dividing this equation by I and teking into a._c;:oémt the identity
&l Alog T + (Y log m?2,

we obtain the equation

S 2 g . .
Adog T+ (V log 1'[_)2 +i-2-+ 21 %’% *Vleg Il = 0. - (6.75)

c

is

" We set T = Ae-~ or log I = log A + iS. Substituting this expression in (6.75) and equating

the real and imeginary parts to zero, we obtain two_equations

: 5 - -

A A 2 w W u . . .

—A'—-(VS) +:§-233'VS=0, v ) (6-76)
2w 1 ' B oot

-QS+2?103A'V54-?%'Vlogk=0. ; (6.77)

-Sinece [V S| ~ k = 2x/\ , then as A~ 0 we can neglect the term A A/A in Eq. (6.76)
(see page O4). Thus, Eq.' (6.76) tekes the form
. 5 : .
(v 8)? = —-2229s. I . (6.78)
e - ' .
The velocity of sound ¢ figuring in Egs. (6.77) and (6.78) is a function of the 'bempe'r-

ature T. Suppose the temperature T undergoes fluctuations T' sbout a mean temperature To’

i.e, T=T +T. Since the velocity of sound in the alr is proportional to T, we have

. mt ' i ] .
ce~e (1 +=) or -t 1-5) ) (6.
o- T’ SR g . 79)
vhere ¢ '=-‘c(.'1‘o) 18 the mean velue of the velocity of sound. We shall regard 'l”/_?.‘o and,
: u/ c, a8 quaiitities of the first order of smallness, afd we sgbt log A = log Ao' +%X,8= 8.+ Sy
where X end S, are the fluctuations of the logaritimic amplitude and phase of the wave,

: 1
" . Substituting these values of log A, S and ¢ in Egs. (6.78) and (6.77), we obtain
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\2
(v8))“+(2vs, +7s,) V8, =

2, w2y, M. & ' :
=k(l ) - H1.2) 2+ (vs +V8.) (6.80)
z e, T, e, ' O 1% o %
. aso+_asl+2(v1ogno+vx)--(;750+v513+.
i - . . s .
+§-"’—(1-§—}§—- (v 1og A°+vx)=0, o : (6.81)
4] "o [+] - . E . A

vhere k = w/ Cyr The quantities 80 and log -Ao'o_f the zemfh order of smallness satisfy the

equations

2 2
(vs,) =k,

. |
. v = 0.
.AS°+2.?109;A°_ So 0

Assuming: that the unperturbed wave 1s plane, we set A, = const and

VS°=k;, C . ) T . ' . (6'82)

where ; is a unit vector in the direction of propagation of the unperturbed wave. Equating .
to zero the terms of the first order of smallness in (6.80) and (6.81), we obtain the equa-

tions *

) X 2T 28E P | |
QVSO__ vSl=-k T—-.-& i o - (6.83)

] - T o
alvsq-vx+a.sl=o, _ E _ o _ .(6.8h)

for the validity of which it is necessary that the conditions

7



s > |vs)]or My | <ae . S (6.85)

‘e satisfied (see page 95). Eq. (6.84) agrees with Eq. (6.15), which was obtained for electro-
i 'mgnét_ié vaves (recall that V log A = 0). Ea. '(6.8;’)) cen be written in the form
V_so - Vs

i . c _ ' ' :

This equation a.greés with Eq. (6.1&} if we set

N LS SRR L iy | : : L
MEtE CRICSTE T | RN

o o - o - o

Al Bubsequent resulta can be obtained from the correspond.ing fornmlas for electmmagnetic
- waves if in them we take n, to be the expression (6.86).

By using (6.86), the structure function D (r} of the refractive index can be expressed in

terms of the temperature structure function D (r) Tr 2/3 {g] and the wind velocity structure
_function Dik(r), i.e.

D (r) = [n, (7)) 7..’11'(;2)12_= F Dy(r) + 2 mm Dy, (1, 7,) +
_ S % '

1 e : omif - ' - - '- -
+ -——-—-—Téco m .[T (rl) - T (ra)] [u].(;l) - "L.L(r2)] . (r N ra}.
£ ’ ’ -~
s But t:he cross correlation funetion of the ﬂuctuat’ibna of temperature and wind wveloecity.
 vanishes in a locally isotropic field (see note [e] %o Cha;ater 5), so that. the mt term’

_drops ‘out of the equation. Since
1.1:(") = D’ttaik [ e W . (s.87)
where 1 18 ‘& umit vector directed along T, we have

"‘1"‘-1:’511;_? btt +. (bﬂ_’ - Dtt).c"sa"f’- - _ e . ':(6’.83.'.)



where cos @ = m-a. In a locally isoyropic turbuleirb rlow, '=- c;er :re/5 and D, = 3 c

b2 2f3
Tttt v
Thuswehave

mimllr.nik. = % c:‘:_(h - r:f:asetx.)ra_/5

.
2 2 . - -
c ;
D_(r) = _CT_ P Y o, TR m) 2/5 . - (6.89)
n e 4T2 3 l_:2 . - - _ i
4T ° . .

Thus,’ it follows that the structure function of the refractive indmc ‘of sound waves 'depends

on the " angle be'l'.ween the direction- of ane propagation ancl the direction of the line Joini.ng

4

the observation points. “The expression (6 89) goes und.er ‘the: in.tegral sign in Eg. (6 28) and.

in the analegous formula for the- correlation hmc'hion of the amplitude fluctuations or the

"mve. chever, in most oi’ the region of integration cos a. « l for p << L. Therefore, wWe can.

[N

write appmimtely

D,(x) =.F§+c—‘£1~2’3 L o  (6.90)
L S : ' : . : '

Thus, the aﬁlplitud.e and- phase f’luctmtions of a plane sound. wave are approxjmtely d_eseribed

' -by the same final formulas as the corresponding fluctuations 01‘ an electrcungme‘bic wave, . if

Ve take. c %o be the ‘expression = -

2 2 . 3
3 -G C _
02 s T + v (6.91) .
n 2 2 .
4y c
<] o]

An exact calculation based on Eg. (6 89) gives the same formula (6. 65] ror t.he structure func-

tion of the phase fl‘llctuationa of & sound wave as for the fluctuations of an electram.gnetic

Vave, but with a value of the numerical coefficient which is changed by a few percent [hé] .

- The expression for the amplitude fluctuations of a sound wave agrees with Eq. (6.68) to an

< even higher degree of accuracy.
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6.7 Iimits of epplicability of geometrical optics

' The 'theo:ry -of amplitude and phaée fluctuations of electromagnetic and acoustic waves
" which we have just considered was based on the equationa of geometrical optics, which. are
_ valid when the condition

A << 'ao i : | . (6.92)
. / .

is aat_isﬁed. However it 18 easy to see that in some P T condition is not sufficient
for the solution obtained oz;,the basis of geometric.al opties to remain valid when diffraction
‘effects are teken into account. We can convince ourselves of this by ﬁing the following
simple argument [47]. '

Let an obstacle with geometrical dimensions ¢ be located on the propagation path of _a-
© plane wave. At a distence L from this obstacle we obtain its image (shadow) with the same
-_d.:l.-men.sions t. At the same time, diffraction of the wave by the obstacle will occur. The.
angle ‘of ‘diVergence of the diffrag:-t;ed (scattered) wave will be o:l'- order @ ~ A/t. At a dis-
tance L from the obstacle tﬁe size of the diffracted bundle will be of order oL ~ J;I./t..
- CYearly, in. order for the geometrical shadow of the obstacle not to be appreciably changed,
it is necessar_y for the relation E << { or J_ AL << { to hold. When there is =& wﬁole' set of
obsta.cles with different gemetrica.l sizes, it 1s obviously necessary that 't.hia relation be
satisfied for the smallest.obstacles, vhich have the size L . Appl;ying a similar argument to
the pmblm undexr considera‘bion, we coxrvince ourselves that the solutions we have -obtained

are valid only in the case where the inequality
VB <<t (6.93)

is se:hisfied where L 18 the inner scale of the .'burbulence.. In other words, the theory of
ampli'bude end phase fluctuations based on the equations of gemtﬂcal optics is valid only

- for limited distaneea L sat:isfying the condition

_ . 2 .

L<L, =5 _ ot (6.9%)

&~



A more detailed analysis shows that the conﬂitionls (6.92) and (6.93) a.r."é sufficient :I."oz‘ a.gree'-
-ment of the amplitudea and phases of the solutions obtalned by using the equations of geometri-

cel optics and these obteined by using the wave equation [48,49] . We shall also a::-z-J.ve at the

seme conclusion in Chapter 7.
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Chepter T
CALCULATION OF .AMPLITUDE AND PHASE ELUOIUATIONS
OF A PLANE MONOCHROMATIC WAVE FROM THE WAVE EQUATION

USING THE METHODS OF I"MII-“ AND "SMDO’.EE" PERTURBATIONS

7.1 Solution of the vave equation by the method of smell perturbations

As we have already seen in Cha‘.ﬁter'6, even .whén the coﬁ.d.ition .l << "'o is met, the sqlu‘t;-ion
of the problem of mpﬁt@e and phase fluctué‘tions of a wave which we obtained u.sing the equa~
tions of geometricel optics. becomes wnsuitable for large distances L, which exceed the critica.l
d.‘l.;itnm-e-l'. = taf A. At large distences one can no mﬁger neglect ‘the diffraction of the wave

by refractive ind.ex inhomogeneities, rega:ﬁless of the smallness of the diffraction angle. In.

"\ order to take account of diffraction effects in solving the problem: of pa.rameter ﬂuctuationa

'oi’ a wave traversing en inhomogeneous medium, it is necessa:ry ‘to start from the wave equation

(6.3), 1.e.

Au +_k2n2(;}u = 0. _ : _ . : o (7.1)
Sei_-.ting
a(r) =1+ nl(_x") - o . o o (7.2)
. .. - | .
as in Chapter 6, and assuming that [nl('f')] << 1, we apply the method of small perturbstions to
solve Eq. (7.1). To d:o so, we look for a solution in the f‘orml of the sum of an unperturbed

wave U, which satisfies the_eqwation A u, + kauo = 0, and & small pertuxhs.tion.ul, i.e.
usu k. o - : (7.3)

SubstiLtntina (7+2) and (T 3) into Eq. (T.l), and takins into account that A u  + kau =0, we

' obtain




&'ui--+ 'kaui + 'a;lka(to'_{ul} + k.ani(uo +w) =0.. e o (71;)
“The lest tem in the equation 18 of order nl and cen be mpitted. If we éesm-'that_|u-l|<<1u | PR
or more precisely thet ]ulfu l <ng, then in Eq. (7 1) we ‘can also neglect the term n (J:-)u:l

Then we obtain the equa:l-.ion_

aup v Py = -2 @y, . L (15)
which is valid vhen the condition
i“]_l = I“ I : B o . : ' {76)

wh:l.ch ex;presses the sm.allneas of the ﬂuctuartiona of the ﬂeld, is sa.tisf_iéd.

Letthemperturbedwmu havethefom-
u;)\.eo : N _ . . '.(7-7).

vhere A . and 5 are its mpmude and phase. - To £ind the amp.'litude and phase of the perturbed
\raveuw_uo+u1,uesetu=1kis. mnlogus:logA-biSandby(TE;)md(TT),-wehave

]

Ilog u=log A+ 18 = J_.og(uo + ul) = log u_ + log G.-l- :—1—3) &
. _ . )

Since . |u1/u | <1, then _ . ) : - _
; 1o'gn'+is=,1og'n + 18 +'u—1v. _ C y &
. : 0. o u, . _ .
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: St;paratins the real end imeginary parts. of t.he last equation, we find

P _ _ '.

o .
log — =¥ = Re — » - . (T-B)
AO uo'_ . - . : )
g . 'I..'I.l g : .
§-8 =8 =Inz=. R (7.9)

7.2 The equetions of the method of smopth perturbstions

_ The equation (7.5) end the fum.‘l.as (7.8) and (7.9) just obtained are valid in the case
of small emplitude end phase fluctustions, i.e. when |X| << 1 and ]si| << 1. These conditions
ire much more stringent than the condition Alv Sll << 2x, which wes needed in order to apply
. thé method of small pe_i"tufbations to the equations of geometrical optics. In order to avoid '
: this restriction, 1t is ﬁatural to try to epply the method of_sm.ell perturbations to the equa-

' ) B A

tion

_ 9-1-}4 .kena(;). = & 10g u + (¥ log w)? * Kn%(#) = o, | _ (7.10)
: _-__which contains onlyd.er%vativeﬂ ‘of log u, rather than direct:b,r to Eq. (7.1) [a.]. o
We set.log u=log A+18 =¢ (Re ¢y =log &, Im ¥ = S). EEl?en we‘.hé.ve

Av+ (02 4520+ f‘lé”-a —o. o (1:23)

We ﬂym ‘set ¥ = Y+ V¥ satisties f.i.m eqﬁatiog

. a-f; + (V. *6)'2 + %% = 0. . 3 | . (122)
Suhsti'futing} - i’o.-l- ¥, in Eq. (7;.1.1). and. teking 1n'tio'. account (7.12), we obtain

4

BN V(2 + V) Bt () 4 (F) 0. (7.13)



\

In.Eq. (7.13) we can omlt the term kani(;) which is of the second orde 6f‘sma]_1.nga-s. In the

case where |V *11 < |v toi, ‘or more precisely where |V *1] <n|v *61’ we can also neglect

]
the term (Vv #1)2_ in (7.13). PFinally we obtain the equation

AY 4299V + W (F) =0, | _ ()
wi_hich ie valid when the conditions . - . : . ..
(P <1, vl << I? LA = (‘7-_1_5)'

o

" are met. Since |V ¥,| = ¥ = 21/x , the second condition (7.15) can be written in the form
Alv tl] << ox

and expresses the smallness of the change of *l over dista.nces. of the order of a ?iweleﬁa'@h.
. - ) ‘ : N

By using the substitution *]'.

\ : .

=e O, Eq. (7.14) cen be reduced to the form

O . * . " B
AW+ Kow + 21;2n1("x’-)e °«o0. o - - (7.186)
*0 : _ o , . : .
Since e ° = u_, Eq. (7.16) coincides with Eq. (7.5) obtained by the method of small perturba=-
. - -y : - 3 . T
tions. Consequently, w = uy snd '*1 =e %= ul/uo. We now find expressions for the emplitude,
' and phase fluctuations of the wave. Since

N,

¥ = log A + i8 and. *o" 1pgno+1s°,

. A R
V=¥ ¥ u._l.og I;-+ .1(5_ 8,) = X+ 18,. .

Therefore

log-){"—-a){::ae"1= e-_?—,.' . .. . (7-1?)..
[+] [+] . S

5-8,=8

lnIll*l_ém:&';_- . . P (7'18)

T TR T T



“conditions - [b]

the quantity ¥, = w(T) /ﬁo(}’), we obtain

Eq. (7.16) and the fonuulas {7 17) end (7.18) sgree formally with Eq. (7. 5) and the formulas
(7-8) end (7. 9). ' However, for the ve.]_idit.y of these expz‘essioml the conditions Al 8| < 2
and 1]V X| << 1 have to be met, rather then requiring the gmellness of the pertwba.tionn X ‘and
8 themselves. As we shall see belw, the inequality. [x| < sy | 1e usually: satisfied. There-
fore, when the inequa.li‘t.y AV s | << 2 18 setisfied, the 1nequa.uty AV X| <118 satisﬁed

also. Tlma, to apply the ‘method of solv:lng ‘the wvave equa.tion presented above, the

| <1, VS| <2 ' P e (7.19)

'must be met; these conditions are the same as those for epplying the method of small pertur-

. - bations to the equations of geometrical optics. " A8 18 well known, the solution of Eq. (7.20)
" i x {

1

has the form

i.k|r - r'[

w(r} %."f nlfr')u @ -3 ol e

v T -7

n

(The integration in (7.20) extends over the reglon where n,(¥) is aifferent from zero.) For

@ - X i (3 () ek |
¥.(T) = ——— f r')u (x' - ave . (7.21)
1 20u (F) ) o |7 - #| . .
o)
L] _ .
The function (7.21) 18 the genars.'l. solution of Egq. (7.14) for any function §° which satisfies

'I;heaqu.a.tioth +(vw) +k2=0- T
We now r.-.onsiﬂ.er the problem of ﬂucmtions of a plane’ mnochma.tic vave, cdnfining our-
selven to the case whez-e the melengf.h A is small compared to the inner scale of tu.tbulence

"'6' we locate the origin of coordinates on the bo'cmduw' of the reglon occupled by the refrac-

i tive index in:amogeneities , and we direct the x-axis along -l-.hse directiou of propagatim of t.he
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incident wave. Then u () = Aoé-“f" and Eq. (7.21) takes the form <.

- 17 P
gy - K. -ik -
- 1}’1(1') = 5 f Ql(r"j (x x!) 'e ’l... _"'"'.,_.‘_""". -~ dy'. '
.. T AT R, = N . w o E -r i g 2 e
o L o ’ . r e : " o i .-'- -

In the case where \ << ¢ Eq. (7. 22) can be greatl;,r sintpliﬂeﬁ.. In this case,- {-,he_';hgle of <

acattering of the waves 'by refra.ctive inaex 1nhomgeneities is of o:ﬂer ‘no g:reater tha.n

=l/& and ia thus small 'l'herefore, 't.he va.lue o:t’ '?1(") can only beh appreciably ai’fected 'by

the inhumogeneities inclu&ed in & cone- w:.th vertex a'l; the cbservation point, vith axis direct__,:; .

ed t.cward.s the wave source, and 'uith angular aperl:ure 8 = x/:. << 1. In most of. th:l.s region

|x - x* |I > \/(Y -y (_#- - e )"‘2__‘_. -'
; . : S -.. : ‘._ .\9{ _ .\_: ..
__Thereforewehave CRMNETLES: eyt . :
|r-r'i=~/(xfx) +(§r y} -l-(z-z] SRR £
i L A
U st (y -3 ) + (z - zl) et
= (x’ xt) 1+ — . b
: 5 3 (x - x' ) - '

~ B . v

: [ (y-'y')""fj{z'-_fz-)?] R E
~(x = x')|1 +— . ___=-(x-x‘)+ - -«

2(x"- x")? 2(x - x')

\
b . : .
* d . T
. L

p et ¥t ; AT Do o~
Substituting th:l.s expansion in e’ lr Ty _and ‘retaining only the first term of the expansion in.

the aenmnatar of" (7 22), we obtain the approxmate fomula s

(7 .23) |




S

It is not hard to show that the’ function (7.23) is the exect solution of the equation

et

: R S P11 -2 +-2k2n1(-r) =0, e o (7.9
ax -:‘ " 3 . .' : :

.: ' J ._ .. by2 aza

obtaim-d from: Eq. (T.J.h-) by omittin,g the term d qu/ax . We no‘be -I;hat by retaining only the

' :t‘irs‘t. mo terms ocL’ the expansion i

k|7 - -i-"_]-;_ k(x - x') + ko®/2(x = x') :kp’_‘/_a(:_v—_ D L,

' we change the Me_of (7.21) by an amount ¢t order kph/-(x - x')°. Since p 6L ~ AL/t end

(x -x') ~ L in ﬁhe iﬁpofta:;t region of integration, then-the error pemitted bere- is small if

'L<<__:.th5. ; _ _ : (7.25)

‘Since by << o the quantity :.1*/15 1s much larger than the*‘aj sta.nce L ) /1, which deter-

[}

minea I:he limit.sr uf applicability of geometrical opties. -

-

R - . .
' : o : el
S :

Pl RS ;! Solut.ion of the Equations of the method of "smooth" _perturbations Lo

f by using spectral expanaions

; _ We shall begin with E_q. (T 21&) in order to so].ve ‘the problem qf‘:mputude and phase flue-

- tuntio;a.s of a su:rriciently Bhort (A << & ) plane wave. WB use a method of solving Eq. (T 2k4)
which Ls baaeﬂ. on' the use o:l.’ spectral expannions (just like the way ve solved the equations of
gembtrical optics in cha.pter 6} In & turbulent medim, x, (r) is a lr:n’.:a.'l.lz,ur :Lsotropic rendum
ﬁ.eld. '1'0 represent nl(r), we s:pply -I:.he repmsentation (6. 55) ¢

i " L

. ¥ 1(K +xz} e
nlfx:}':?-) = n]_(x;OsOJ + ff [1 - e ey ]dvfxa)xyx] ) " (7.26)



IR TP T e e

&
‘ We subtract Eq. (7.29) from Eq. (7.28), i.e.

We shall look for the same kind of expension for v, (%) i.e.

. . _ | R S, Cl
‘. o » G o +-K 5 o e
N qfl(;} '.'#1(350.,0} + ff [l - 23' 2 ]d@{xa,xb;x)'_ .

Substituting the expansions (7.26) and (7.27) into Eq. (7.24), we obtain_.

| 1( J - ay, { ,0,0)
ff (ﬁ:2 + K )e ol K.z dq:(xa,xyx} + ax_.}:‘?_....

+ 21k ff [ 1(x2y ® KBZJ] % 'dq,(xa,xz’,x) + 2 nl(x,o,O} +

. ot i(K + K2 -
+ Eke ff [1 - 8 zy 5 )]dV<K2)K3’x) = 0.
) -0 ’ S ’

Setting y=2 =0 in this equetion and _wri'ting Kg + xg = K2, we obtain

-

' dvltx.o 0
ff K aq;(xa,x5,=) R nl(x,o,o) -0

Rt S K?x.)]wtfaaxs'_xa "

-0
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L8

Sl St F TP
.
S (kY + Kez) : - ‘ L
+ 21;2 f[ E. -e ay_ 3 )]_av(xafx?,*x) = 0. '(7.50.)'_

- It follows. from Eg. (7.30) that the random émplitud.es_ élv(rca,;cj,xJ and dtp(xa,xj,xj are related
by the differential- equation ' ' .

21k % @(Kaixylx) - Kadq)cxa,xs,x) = ﬂad?(xé,xﬁ,x) =0. ¢ . . (7.31) .

. The solution of thie equation which goes to zero for x = 0 {the fluctuations of 'l:he field

- vanish at the boundary of the region Pilléd with the refractive index inhomogeneities) has the

form

Lo L - . . _ : .
L I | ) L N (1

i T - o . : o : . -7
¢ -.('l'he_integration in (7.32) is carried out with respect to x'; see note [c] to Chapter 6.)
Ve now_fina the relations between the 5pectral.am;p]_1.t:udes_ of. ti:e _f‘iel& Sl of the phase .
_fluctustions of the wave and the field lcg'(A/Ao) of the fluctuations of ioga:-itlﬁic mpnt{rae
of&hé waw_;-. Us.ing the formila X = R’e. ij.rl and the e.xpansit.:m ('r'.'a'r) , we obtain i
A . . ) |
. : ) . . N

: g v 1(ky + |
x(;} = Re *l(x’o"o). + Re ff [1" e (Key Kazjdq){xa”f5?x) =

%

~

13d



ST O 1 (5 S zl)“' ' i
= Re wl(x,o,o) + é'g ff E. -~e: 2 3 'Jd@(xa,xs,xj + '
-, k ) R I ' - ) #
U1 Cn ‘-'i(.tcey + a-:35] - -
B e |
: -0, : 22 ’ o ,-'
C'hang_igg variables from xe,_x3 to Ky —k5 in the lm;'b inf.egral, we find St
X(;) -= Re ﬁl(X,O;OJ + - - . 2 __' _. ’ : ’ g ..[
) . ° ' I had . . I H . ) .
- e f f [1 __ei(xzy_ + !_<32)] dw(xa,fj,x} ; ésp*l(-xeg-xj,x) ]
o - ﬂ . N ; i - ‘.
a * -....
Ir~a completely a.nalogqus- véy,.'ve obtain for él = Im 'wl the forﬁtﬂ.a. :
-
,Sl(;} = ®u ¥, (x;0,0) + .
. - i(ky + k,2) dme KxsX) —_d:.p*('-'x ) . L 3
_+-j‘f@_“e > .3]. 233!,_21 2T e (s

. g

Denoting the spectral ampitudes of the random fields X(F) and 8, (%) vy aa(kyk,¥x) and
(ks K5,x) ( @8 1n Chapter 6) and using (7.33) and (7.34), ve obtatn ”

- . : -

S §



L (k) 4 APk okgx) AE AN S
dalkgK5x) = — - : L 47.%)

LS (KpsKss ) - d@*(-x :' Jx) . - - . .
Vit o Tt g i) | T e

Su]iﬁ;bﬁu%ihg ‘the expression (7.32) for ti_q:(Ké, xj,x)' into these formulas, we obtain

P ' x

LT dg(_xa',xs,_x} =k ,‘f"ctx' sin[ﬂ%‘;—xl]dv'(xa,xyx’_) PR _ (7-37)

E O T " N i TR A - o o
2 RO _ .;-x . _' R N N '. s
du(@é,xj,x) =k f d.x' "coa[—-(-.—-—-l:ldv(xa,xj,x ) . : S _ (7.;8).

-z

The ;pmmical meaning ot Eq. 1"7 32} Br of. 't.ha equivalent Egs. (T 57} and. (7. 38) is. trans-

;pa.rent. Inhnmogeneities of the wave rield eharacteﬂzed ‘by the mwe numhﬁr K (i.e. hy geo-

~

natrical dinensions Lom an/x) are "made up by the superposition of refractive index :I.:Lhomo

- geneities dv(xa,x {x ) chara.ctermed by the same vave mmher K (i.e. havirg ‘the same geo="
iz _metrical d.tmensions ¢ m 2x/k). l(oreover, the refractive :I.ndex inhomgen!itiee with dim.enaion.s

L uhich are located at a d.istance x - x' from the observation ;point appear with weight

_,'sin(maﬂ. ) or cos(xA” /z '), Where A2 - A(x , x') iq the square of the redius of the first

3 Fresnel zone. In othaer words; ‘bhi’ 'ueigh‘l: of a refractive index inhmogeneity d&pends on-the’

2 relation 'between its dimnsions and 'hhe dimensions of the Fresnel zone. Using the relamions
(7 37) and. (7.38) 'between t]:ne ra.nclom spectral mnplitud.ea of the refract.ive index and of the

ﬂuctuations.)(‘ and- Sl, we can rincl-ths relations between the spectr*p. d.enaities of ‘the corre-

sponding structm or correlation 'mnctions. We multiply Eq- ('T 37] by 1its complex conjugate

.
=

da (x',xyx), i.e.



It . 2 . -
W . da*(.ica,x ,x) =k f ax" sin[—(%‘;-x—l]dv*(x' Lx).
Averaging, we '_obtain -
. S x X 2 "
7 . g 4 - L ’
y . ds(fxa,xa,x_}dg*(xé,xé,x) =_.k2'-f dx! f flx" aig[ﬁ_—(-’-‘-ﬁ-’—‘-_l] X
[ T r . o o )
o h- .
T sin{—-—-—(-’%-;—x’-—l] dv(xe,xj,x )dv*(fc ,x',:ﬂ"). ' o (7:39)
But accord:l.;aig to the gezlxeral- fémxla‘(é.ié)} we have
- .- ] . . - 4 .. v s
. dv(KQ,xs,_i]dv*(K'a,kg,x}._=' = ) 10 e g
] = 8(ky = kp)¥(ky - ”33_?:::('?2”‘5”‘""‘“ )“25“5‘”‘2‘1"5 E | L  (7.b0)
end
da(;cla', xj,x._)da*(xé,;c;,x)‘ - ’
= a:(kz - n_cé)e.-(fc5 3 ;%)FAfxa,xj,o)dxadx ax ! dx5, 1 - (7.41)
Vhere F (Ke,ﬁca,x - x") 18 the two-dimensional spectral function of the refractive index. end

a("y xyo) is the two-dimensional spectral density of 'I:he structure or correlation function v .
10? the fluctuations of X in -the plane X = cons'b. Substituting (7. kcr) end (7.41) into Eq,. (7 59),

i3 -



-~ we obtain

L

o - x.x '2 ' : 2 D
FA(“,e”fj'm_ =_k2_ ff gin{’.‘ ("‘ﬂ; X J] s'i-nl:"_ (%z;_x, }J x
. 0o : "

x‘Fn(xe,xyx_' - x")dax'ax" . ' ' _ (7.42)

Similerly, from Eq. (7.38) we cen obtain the relation

ey 22 [ o)) a2 «
' oo ‘ o

an(.-cz,Kj,x' - &' )ax'ax" . ¢ _ - (7.43)

The relations (7.42) and (7.43) can be greatly éimp].i-ﬂed. First of all*we note that
Fn(KQ’Ki’x' -x") = Fn(;ga,.xj, x - x'). Then,in (7.42) and (7.43) we introduce new varisbles
'a: integration £ = x! - x" and 21 = x" + x". The integration with respect to 7 can be cerried

.out explicitly, since Fn does - not depend on 7. As a result, we arrive st the formulas

FA(KE’KyO) =

¥

2 3 2 3 2 . .
= f {ka(L - &) cos KE{Q + Eﬁ sin 52'!;"5' - E§ sin 5—1-2%‘7'——5-1} Fn(xe,xyg]dg,
' . K K < ‘
e - ’ ) (T.M)
-

FB(IK21K5)0] =

Fle I S O A
= f k°(L - &) cos 2 ~—z'sin 3= + =5 sin o Fn(xa,xngdg.

¥ . K K .
° (7.45)
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'(:Esre we denote the coordinate x of the obaewa.tion point by L. ) M has a:l.na&y been repaat.ed—

1y polnted out, the function Fy(kpsk 3,5) falls off very rapldly to zero for k& 2 l.. 'l‘herefon,.' '
the important contri‘bution to the values of the integrau (T.MI-) and (7.45) occurs for 55 -l
In the region §$ i , we have _5. s, —E— J We assumed above that the wa\re,hnsthl ia much 1ess'
than the inner scale of turbulence ¢ . But ¢t = 1/, vhere K, 18 the largest wave number for .
viich F (k,8) still differs from zero. - ![‘hserefore we have 1/1: << 1,h<m end k/k <’ v(:fk <«<1l. -
Thus, Kot/ << 1 in the importent reg:l.on of integration and we can write ' )

con b -1, e - 8, S o0 L

Ve sml be 1nterested in the s‘tmctm-e (or comlation) "functions of X and s:l only’ :l’cr velues
'of the arguments which sre mu compared to L. This means thet 1n (7.44) and (7.45) we con-
‘sider only values of kK which satisfy the condition 1/:: < L. Since £ Slfk in the import:nt
region of .‘.J:tegration, than within th!.s region we have g << L. Tak:l.ns a:L:I. these smliﬁca-

tions into aceount, we o‘htain

' .FA(Ka,((j,Q) ~ f 6213 - k? sin '{cki) ?n(xz.vx.yl)dg » . (7.46)
5 s K
L o '
_ - 3 . _
_ Fstxa,xs,o) . f 621. +5—2- sin %) Fn(xé,xyg)dg . . (7.%7)
. K . .

"Since the function Fn(ica,ka,g) falle off rapidly to zero for large §, the integration in -
{7.46) and (7.47) cen be extended to infinity, without sppreciebly changing the values of the

. integrels. Since
o .

:_ Vhere ﬁn('x') is the thfee-dimensional spectral density of the refractive index structure func~



tion (sew Eq. (1.53)). Eqe. (T.l'a.-b’l) ‘and (7.47) take -.the form )

- Fﬂ"‘a:*;:o} - G "‘h—g;-’in %) 3 fo, "2:"5} 's - - (7.48)
FS(KQ’KB’O} = 7KL _ €_+ —i; sin EE- -En(o,-xe,xj) . o (7.49)
' . o K ; -

In the case where the refractive index field is a locally isotropic rendom field, we have
2 2 2, C e
. }Tn(xl,xe,.tcj} = 9 \/;cl + Ky + Ky )_. i
Therefore, recalling that

2 2. 2 ; —
. K =Ky + K} ’ EA{KEJKBJD) by FA(K,-O)' » FS_(KE’KZ)’O) = Fs(xﬁo).!

*

 we hﬁ-"e'i;n(ot"g";,) - Eﬁ{x),_ and Elis.' (7.48) and {7.49}, finally become

_F&_(x,o) ='ﬂk'3;, 1 - :i- ein 5;-1'-) L‘_"J , | . . 150
- .'fs(g,o) - 2L, G-y -E,,—L gin 5-1-:'- 3 (k) - _ ' ' - (7.51)
? ] K . - )
a -

o

Egs. (7;50) and (7.51) relate the two-dimensional spectrsl density of the struct
-(cdrz;elai;ioh) -funetions of the emplitude and phase f}.uctuationé- of the wave in ':‘;he plane x = L
_ to the 'bhree-d.i.me.n'sion:al s'pe.ctral density of the structure (correlation) function of the
refractive index. Using Eqs. (1.50) lmd_ (1.51) we can go from the spectral densities F,(x,0)
‘and FS‘(K,O), to *'bhe'._structure (comlutio;a) functions of the emplitude and phase of the wave

" in the plane x =L, i.e.
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Fi

% _t' T

| DA(Q) = |IX(L,;Y, z) - IX(I-'.!?}')Z’ |2 - lht f D'- JO(K#)]FA(K’O)’;&&
. 3 - _ s T i

2 Dg(e) = I8 (L5¥,2) - ;sl(x.,y',z")jg=:1+n f Q- .ro(xp}]Fs(x\,'-q)kdé, . (7.53) |

-"
aere. - fu(ray) Bty e T e

‘s

Tl Qualitative 'ma.lysis.of the solut.ions' '

Using Eqs. (7 50) and’ (T 51) , we can drew some general eonclusions about the cha.racter o:t'

B
I
T
-

s,thE mplitud.e nnél. phase ﬂuctua.tions of the wave, It ro:l_'l.cws ﬁ'om Eqs. ('r 50) and {7 51) mmt\
the phase ﬂuctuations are alveys la.rger than the fluctua‘bions of logarithmic amplitude [c]

L .

Aax-ro,:uehave i ‘

ok
3
oo
IR#‘
©®"
[1+]
J

mfore F {0 0) =0 if I (k) goes to infinity at K = 0 no faster ‘t‘.han x ., This implies the - .
-2 R S LT A

ntence of the r.-.omls.tion rlmction

i

‘ '.‘SBA(B) = ar-_f' T (kP)F,(k,0)kak, . L (75“)

.0

3. (7.55) 1s a';aoﬁneqmnce of the law of energy conservation (see the anelogous eg@_a%pi_on __(“6_25:?0)_)7-
b i, o



=

We. nmr consid.er the ganersl ehare.eter of the behavior o:t’ the correlation function of the

.ampntude ﬂuctuations. It follows from Eq. (7 50} that the two-dimensional spectra.l d.e:usi'by

or the correlation function 3 (p) 1s the product of two :hmetiome- 'I:he thz‘ee-dimensional spec-

I
"4

. tral densit.y ﬁ (x) of the stristure :ﬁmction of the refractive -index fluctuatinns and the"

1n? ::T'. " In the ge.neml case, § (x) has the form shown in Pl 2

:I:""rmeéion ( - s

' $alx)

s g et L e 2 R _-_;:_2rr/e,,"

= Ji

: Fig. ‘9 General form of the spectral c'iensity
of the.refractive index fluctuations..

£

the 'runc-_

" In the region of small scales which are mch 1esa than’ & o’ 1- e. for Kk >> 2:(/&
tlon [] 41() is equel to z&xo or 18 negligibly small,’ For smaller values of K, Mng be't.ween L
: 2::/1. and &/E (I.. is the outer scale of tu:bu.‘l.ence), ﬁ (x) grows as K d.ecrga.ses (since the
refractive 1nd.ex ﬂuctuations which are la:rger in size are rela.ted. to the large aca:l.e :I.nhemo
gmeitiea) ~ In the case where the refractive index fluctua.tiom obey the two-third.s 1a:w y
L(K) 48, proportioml to K J_1./ 3 in this ragion, but in the general case :Lts appearance in t‘.his
regd.on can be dif:l.’erent. For.k < a:/Lc,m “growth of § (k) slows down} this is connected with
the fact tha.t -I:he mrractive in&ex ﬂuct.ua.tiona are f:l.nite. Btrictl;y speeking, in this :-ange )
of s:l.ses the Mction E 1_l(ic) Mes 1t meaning‘, since the stmcture function D (rl, ra) thaen

d.epends on each oi' 't;he erguments r and P separately, and it 1s impossible to mp:esent it 1n

i 2
the fom of: a s;aectral expansion of the type (1.41) 'J:‘he fu.nction f(x) ( Tz)sin %‘ is
-2 : 2
1xL K =y 5 the nu:ction f(x) is equal

:-a;pprngmutely equal to g -—-é— for -—;<:< 1. Fo:r K = I n.

-



unity, and for large values or K, r(x) approaches wmity, mdsrgo!.ng maller ‘and muer oscil- }i

i lations. The characteristic scele of this function is 'l-.he qu.entity Ky ™ s . For ¥k << Ko

J.th VAL

(k) ~ E‘T and for K>>K, r(:c) ~ 1. Depending on the size of the parameter K = _%_t_',
: AT
the fo:l_lowing relative positians or the pointa .vc %’5- and %5- are possible:
: o o :
‘g5 L i1_ 2 %_<L<% v Lol
; 1/1_1- +] VAL ] VAL 0.
We comsider first the case where —— >>7- . In this case the relative position of the
' VAL o ' o T

curves En(x).’nd 2(x) 1is shown in Fig. 10.

i o I . :
27ero 8 - ] 217/&0 Ko «

Flg. 10 Relative position of the curves i (K) and (1 - —EL—- sin == xa‘!'
: K

in the case .f AL << "o'

- W
For all values of kK < 2::/!: R the function i'(x) is approximately equal to %-K—QI‘,'— . There-
'k

fore, we have

nwo = 3 ag0 . _ | (7-56)

rs(x,o) a aég% EL(;)', ) | - . : ('I-_S}‘i")

N

_ since in this case 1 + -—k‘q; sin —KE-L- ~ 2., Eqs. (7.56) and (7.57) are valid vhen the condition

i3 St e e T

kL. . . .
VAL << ¢_ 1s met, and agree with Eqs. (6.44) end (6. 56), islch vere cbtained in Chapter 6 by

using the eqnntiom of secuatrieal optics. In the case under consideration (see Feg. 10) the
product of the t\mctionlﬁ(:d end £(k) has aneximnearthewint a:/z ana'.u uquh:l.to zero
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(or negliglb.ly small) fo_rK‘ > &/&o. M, in the.caae where . ,/E << 50, ‘the spectrum of the- ‘
" correlation function of the up'ntuae fluctuations is concentmted near the point ax/:. (1.e., |
in this case re:l'ractive ind.ex inhomogeneities with scales of the onier & have the greatest
" influence on the amp]_itude fluctuations} It follows from genersl properti_es of the Fourier
“transform that the correlstion function B (p) has &8 characteristie scale (correlation di‘atance)

* of order &o. ![!his generdl conclusion is 1J_'Lustra{'.ed by the exsmple g:lvan in Cha.pter 6 (see

Fig. 8) . '
He now eonsid.er the case where the system of inequalities - << e << L or
I’o AT L

' & < Vf «L hnld.s ‘In this case the relative position of 'l:he curves E (K) end f(K) is

g shownin Fig. i’

ol_—or L :
PR . 21r/L'° Ko 2wfly kK
Ca _ ' ; x%.’.

Fig. 11 Helative position of the curves ﬁ (k) and (1 - —-—-% sin ~=
K

in the case ¢ <<‘,/_ M K L.
. The product of I.ntx). and (k) ha.s-‘amxl.mm near the point 2x/\/IX and goes to zero for
K2 2x/t . m_héhmt:r. of t'he function § (k) for k < 2¢/t_ has almost no effect on the char-
acter of the function F (x 0) = :tk I.f(x)]ﬁ (k), since in this region the function £(k) is near
) | Zero. m.ls, in the case where &D' << \/E << I‘o’ the spectrum o: t'.he correlatim function 01’_ the
amplitude fluctustions is concentrsted 'ﬁgu the point 2x/ VT (f.e., the -rerractj._ye *index inhomo-
geneities with scalés.of order ‘\/E' make the largest ‘contribution to the emplitude fluctuations
of the wave). It follows from _tl:d.e. that thé coml&tion.f‘lm_éti.on of tﬁe amplitude ﬂuétzutions
in theplm x=1L has a ccharacteristic scale (eox'-r?lation distance) of ordler \ﬁ'f. Below we '
shall give a.'eomre'te example of such a correlation function.
- : S

iy
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Finelly, we consider the third case, where the condition —— <<;'i—- or AL >> Lo'is-met..
: . _ : AT 5

. The relative ..positd'.bn of the curves th) and £(x) in this case is shown in l_i‘ig; 12.. As can
‘be Been from the figure, in the case under consideration the chief contributien to the Bpectrl.mi-
‘of the correlation function of the amplitude fluctuations is made by large scale inhomogeneit;iea
‘in the interval (L VAL ). I{mv’er, it must be pointed out at once that in the range of scale’s .
:.g;ceedin.g Lo ; the refractive index field is not a ;Locn]_ly hmogengmm and isotmpic random field.
‘ Therefore, _étrictly speaking, for such Bcaj.les' the structure function ofl the refra.cti;e index
field depends on the coordinates of. béth'poj.nts ofl obaeﬁaﬂm, and for it one- cu".nmt_ define a
spectral density Eﬂ(?) of one argument, even a vector a:rglmem;. The seme thing obvioﬁsly
Iappli.es as well to the spectral densities FA(x,O) and Fé(xfo) of the amplitude and phase fluc-
‘tuations of :t.he' wave, since the latter are proportional to ﬁn(x). The functions F (K, 0) and
-FS(K,O) hmre meaning only in the region k 2::]1. . Therefore, one can speak of the structure
‘.ﬁmctions D (p) a.mi Ds(p) of the amplitude and phase fluctuations of the wave only for p <- L.
IFor-la.rge'values of P, this function begins_ to d.ep&nd_ not only on the distsnce p between the

observation points, but also on the location of these points in the plane x = L.

10 —1\»—

_ . oL
o Ko ZF/LO . ) 2."./‘0 K

Fig. 12 The relative position of the curves
P (k) and (1 - N sin'l—{-i)inthecase,\fn. >>L .
n E K ' ‘o

@

Let us exemine the form of the spectral d.enni.ties F, (K,O) and P (x,o) for k 3 &(/L . In

thi' region the function (k) =1 - x. sin £2 ~ 1 and 1+ sin £2 . 3, "Iherefo:r.'e, we have
E; .-caL * E L < .
R (c0) - F(0) = L T (6) ok 3'1":‘-:). | L (7.58)

kA ]




'I'hus, for ./_ AL >> L, t.he tw-dimnaional spectra.l densities or the structzma ﬁmctions of the
“amplitude snd phase fluctustions of the wave are equal to ome another in the renge k 3 az/L
and pm]_:ortipnal to the three-dimenaional spectral density of the qtmcture function.of the
refragtiire index ﬂﬁc_t:u,ations.. cc_ms.equently, in the region P S L, thé s.tructure functions.

DA(P) am'_i_ Ds'(p}' are eqﬁal- to
I-’s_("j = D,(p) ~ b2 f -5 (ke)] §, (k)kax . ' ('f_;-593

In thia :.nse, the fluctuations of the ampl'l.tude and phase of the wave are proportional to t'.he
distance L traversed 'by the wave in the turbu:lgnt medium,
In the regilm p I’o‘ the form, or the structure functions DA and D d.epend.s :Ln an essen-
t1al way on the character of the largﬁst scale components- of - the turbulence, vhich are not
‘homogeneous and 1aotmpic and thare:l’ore can.not be universal. ‘H’e can un.ly assert that, since
A(O,O) = 0, thé mean square mnp];l.tude ﬂuct:nation of the wave 1s n‘l.ways finite and does not
¥, depend on refractive index inhomogeneities with scales PR, .
If-ile assume that the md.m ref‘ractive index field 1s statistically hmogemous and iso-
tmpic for all scales- (sw:h an assumption is m.sae 4in mény papers, despite the fact that 1t is '
"not adequately justiﬁed, because i'l: con.aid.ersbly simplifies the solution of the pro‘bl&m), then
- we can draw further conclusions ehout the character of the amlitude and phase ﬂuctuationa of
‘the wave. In this case, the fields of the mplituﬂ.e end phese fluctuations of the wave in ‘the'

plane x = L are also homogeneous and isot'rbpic, po that they have correlation functions

B,(p) = 2x f.Jo(xn}FA(x,O)xdx_, " _. R . " (1-60)

Bs(p) = a.(. f ) ..To(xpjrs(x,ojxdrc.'. _ . o '(7.6i) )

Suhstiwl.ing the expressim (7.50) and ('r 51) for F (x,o) and r (x,o) into Egs. (7. 60) and

(T 61), we obtain
A(n) - 2L f 3_(ke)(1 “':'i; sin é) [HQLT ' - (1.62) E
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' Bg(p) = 23 f 7 (k) (1 _‘*.K_k'c‘; =in KEL) I (x)xdx 5 _ - (_?;-63)
) o 3 ) . :

A8 cen be seen/from F:lg.' 12, foir VAL >>'L , the function (1‘-F —g sin '—ci) E (ic) ‘coincides with
K .
ﬁ (x) over aJ.most 811 of the region of integra.tion, with the exception of a small plece of the
 spectrum_ where K < 2x/ /3L Since the integrs.l over the segment 0 < K < Ehr/ VAL is small

compared to the in-t.egral over the whole range of K, we ha.ve apprmd.uctely

B,(p) = Bs(p) = erelsal.f .To(xp) ﬁn(x)_xdx : R ; ©(T7.64)
Hovever; it should be noted that 1f we discard the quantity —2~L-s1n é in Eq. (7.62‘),-‘ we
K

ohtain the expression th%. ﬁ n(x} for the spectral density of the correls,tion :E‘unc’cicm of the
amplitude ﬂuctuations of the ‘wave, an expreasion which does not go to zero &t K = 0. ThEre-'
fore, the expression for B (p) which vas obtained using Eq. (7-6’4-) will not in’ ‘general aatisfy
the relation (7.55), which is & consequence of the 1amr of conservation of emergy; this cen
sometimes lead to plursically meazzg.uglesa conclusiona _
In the case being considered, the functions B (:r:) and §n(x) are comnected by the relation

' (1.25), i.e.
2y 1 .
ﬁn(x) = ;—t-é—; ‘{:\ I;n(r) .é%n(xr);ar » .

 Substituting this expression into Eq. (7.64) and changing the order of ‘integration, we find.

L

: . ) PR . = ' d Y = &
_Bﬁ(p) = Bstp) - XL f . Bn(r}rd.r f Jo(rcp)sin(xr)dx'. ' : i !
. . 0 o : ) .
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-- . : B [0 : 'forr2<92;
f (Kp)sin(xr)@'{ d
o . . B l for ra > 92
: : (22
we Obtain the formula B
- B,(p) = By(p) = kaL_ j B, (ufo"’ + %) ax (VAT > L) 5 ~ (7.65)

_which relates the correlatfon ﬁmcbipns_of the amplitude and phase fluctuations of the wave in

the plame x = L to the correlation function of the refractive index fluctu_afioné. Setting

" p=01n Eq. 7.65), we obtain an expression for the mesn square amplitude end phase fluctua-

tions of the wave:

2 e e i f B (x)ax . v - (7.66)
: A _ . .
The quantity
‘ . ® . D i w :
L, = W f Bn(x)d.:l ==-;2—- fq'Bn(X)_ﬂx s - N . ) (7-67)
[} . o, o ' . : .

t

; which agrees in order of msmitwiﬂ with the outer scale of turbulence, is called the integra.l

of. the wave 18 determined by two pnrmters of the turbulence: 32

scale of turbulence [d] Subs‘bituﬂbing (7.67) into (7.66), we obtain the formula

“%“sz“-;\-“ R " . (7.68)

' __It follows from Eq. (7. 68) that for /AL AL >> L, the size of the empldtude a.'n.d pha.se fluctuations

1 2 the aize of the mean squere

refractive index fluctustions, end L, the integral scale of the turbulence.
. M %, )

1
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me eorrelat.ion d:lstance of the -amplitude and pha.se ﬂuctuaticms of ‘I:he me in the plme

-

Gaing over to polar coordinates in (7.69), we find

LS.= LA_=_2—E§%TIBH(1’}W.
L0 . : -

.

B (r)

I’sI'AE.';f :

Sinece Bn(r) is epprecisbly different from zero only in the interval (O’I'n) , we have .

r B(r)
n -l
f —T-}-Bnordr I'n’ .
[
80 that

Lg =Ly " Iy

;

A\
L = A “t‘)‘fB(p}d””if(a’Ldff B, (W40 -dxdp..

o0

' Finally, ‘setting BA(O] = kaﬂ.nahfo), we obtain the formula

‘X = L cen be characterized by the “integral seale” of these fluctustions, i.e.

(7-69)

('-1.71)

(7.72)

Thus, for /AL »L,mmmhumustmmummmmmmmmﬂmmm
s

pJLme x=1L agrael in order of msgnitude vith the onte:l- scale o:l’ turhulﬂnce [e]
Summarizing -the results of our qualitative analysis of the character of the -plituﬁe and _
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'plnse ﬂuctmtim of the wave, we come to the mclus!on that t.he :ro]_‘lming cases cal OCCUT,

-ds-pendingmthesizeorthepunem VAL :

(7.70) .
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v‘ < & - The empl‘ltude fluetu.ations of the wave do not depend on the ‘frequency and

= .gw with the diatance like IP w¥hile the phase ﬂuctuations are proportional to the squere of

the frequency and to the rlistance L. The ccrrelation distance of the amplitude fluctua.tious of

. the wave in the plane x =L 15 of orﬁer L .

2), L < AT << I. . The fomt of the cerrelation function cf the amp!l_ttude fluct;uations

dzpend.s on the cbncrete form of the spectra.l density E (x) of the refractive index fluctuations.

The oorrelation d.lstanoe of the mnplitude ﬂuctuations of the wave in the plane x =1L 18 of

order AT . LR . ' ]

3) WAL >>L - The fields of mp]itude a.nd pha.se fluctua'bions in the plane X = L are not

' locauy 1aotmpic randcm fields Forp g I.. »”we have D (p) = Ds(p) The amplitude and- pha.se

fluctuations a:.'e proportional to the square o:l’ the frequency and to the distance L.

-’4) VAL >> L end the field of refractive 1ndex fluctuations is homngeneoua and isobropic. )

Here the corx-ela‘bion Mctions of- the anrplitude and phase fluctuations of the wave in the plene

x=1L coincide. The correlation dis*bance of the amplitude and pha.se fluctuations of the wave

~in- this ‘plane agrees w.'l.th L In order of magnitude.

]

In all the cases ¢considered, the largest wave numbers which parti'cip'a.te in the spectral -

expansions of the aﬁplitud.e ‘and phase- ﬂuctue.tions of the wave are of order &r/t . It :l’oJ_lovs

.from this that the coz'relat;l.on and si.:mcture functions of thg amp].‘l.tude and phase fluctua1.ion3
. of the \rave change quite slowly over a éistance of order & . In particular, the :E'tmction D (p]

has a square law character 1n a regicn.n of order & near: the origin, ‘and in the same region B (p)-

has the fomB (01(1 -'ap /& Foaee)s

Eqs. (7. 50) and (7. 51) o'bte.ined above relate the spectral densities of ‘the amplitude and

" phase- ﬂuctua.tions of ‘the vave to the spectral density of the re:[’ractive index fluctuations.

Using. these fonmlas ;5 We can- o‘btain relations rela.ting the con-elation ;E‘unctian of the fluctua-

_ tions of mgmthmic amplitude and the struc‘t.ure i'imction of the pha.ne fluctuations of t:he wave

to. the structure f‘lmctinn of the refractive index fluctuations. Such relatio.ni have been

obtained in [5%55], but their form 1‘5 much more cm;:lica.‘l:ed (the formulas contain double Lnte-

grals) than the fom of Egs. (7. 50) and (7.51). This fact greatly h.amperﬂ the: application of

t'b,eae formilas. both for 'I:h.e purposea of qtmlitative stud;r of solutions a.nd for practical cal--

mz:l.a.tions with va:r.lous concm‘be corre, I.ation functians. Eqe. (7.50) and (7. 51] for the spectral

clemsities F (K 0) and ¥, (K 0) are much more convenient.
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l
We now coneider an example Let the field of refra.ctive index fluctua‘biona ‘be statisti- ;
cally homogeneous and 1sotropic and let it be described by the correlation function [ﬂ

: —~ 2,2 : - :
B(r) =n2 e T /& 4" 5o O (1.T3)

n . , 5 - . , 5,

The spectral density corresponding to the function (7.73) 1s equal to _(-ae.e page 18)

. n2ad 22, e : : Lt am g
) i - .--Ka/h- . o A )
W | e e

The functions (7.73) and (7.7h) a:r:e simple enough:to pennit -ccmjp,fl.et;.e cs.lculats.on of the coﬁ*e-._
lstion functions of the ;anJ;tﬁde_ and phase flucthations.' Hm’ver,' one should remark that
these functions are charaéteri;-;ed by only cne scale a, which can be regarded with equal Justi--
fication as..both the iﬁner ‘and the outer scal.le: ;of the turbulenc.:e [g] . -The:_réi’ox_'é, results .
obtained 'by.u_.si_.ng these “ftmctions ‘are in'_;uanj,; ;ea-lpec'_ts nét_ éﬁ;fﬁc:llently-genem;l.. !(oreover, -a8
we estéblishe_d in Chaptér'__l, the refractive index fluctuations in a turbulent atmosphere are -
quite accurately described by the "two-thirds m’r"' and not br.f the-cmezation'm-um f7.75).
Therefore, the present exa:n@le ia of a’ purely 11.’l.ustrative chara.cter and the fo:ulnlas obt.a.ined )
“below can be used only to the extent that their fom does not. depend on the form of the corre-
la.tion :t‘u.nction of the refra.ctive index (for.example, 'I:.he d.ependence- of Xa on L for VAL < &
and /AL >> a hes a universal &haracter, \rhich does not depend on B (r))

Substituting the f\mction (1. 'rl») into Eqs. (7.50) and (7 51), we obtain

2 ' "
F,(x,0) = s az'k% 1- —- sin ) ( < ) A(T75)
n ‘ i cLt
F4(k,0) i 8 J’k'zx. 1. + —— sin .'5-.) ( o (7.76)
. T

' ‘The mean square i‘luctuation. of logarithmic amplitude 1s equal to ('see (7.5!;}')

7 '
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' ?= &.f. F (K, 0)kak =
) ) o :

_.;.% 2 Jk%‘j G-—sm"aﬁ') ( 22)!(6:( ' (7-'??)

The integral ﬁ@lﬂﬂ% in (7.77) cen be calculated in an elementary way and equels

2 arc tan D L ki.

_E(!'__—_D_-)’. VhemD-_—a—é-.

a : : ) . ka~
Thug we heave

CH ,/" ' A _ '

x2 =g akzl.(l ere ten Dy, _ - . - (7.78).
and ecupletely anaipgomiy .

TS - _ : A . _

2. o ety iR | : (7-79)

. Eqe. (7. 78) and (7.79) vere obtained in the pag:er of Obukhov Lﬂ] without using spectrn.l ez;pan-

. slons of ‘the ﬂucl:'uatims. The qusntity D figuring in (7 78) -and (T. 79] (the so-called wave

- parmter} is proportimal to the square of the ratio of VAL (the radius of the first Frespel

mne) to a (the average size of the inhomgeneities) Depending on the value of this parameter,

~ the ro.u.ming limiting cases cen occur:

2 2
a) D<lar L<<E-=IL. Todn £ ave tan D'~ 1-9,-=mdzqa. (7.78) anﬂ.(? T9) teke
'x—z -
5

2
=
?-ﬁ%’.ﬁ.

148



These fomulas, which are va.lid. for L c< L - comspond to geometrieal o;ptics. y

b) In the opposite cese, whereD >>1 or L >> I‘cr’ the quantity L aretan D << 1 a.mi

'
- 3 VX 3. : - S :
NG . - .
Sy=7 m ke, _ . ~ (7-80)
which corresponds to the case considered above, where /AL >>1L . _ '

Using the relations

BA(P} _ * ni.k2831' f Jo(xp-) 1 - :k% sin % e_'K.B,_ /_]4' Kdx: , . (7.81)- |

: Vi =5 - 2\ 2.2 L
_ 2.2 ik K WL R : _
| ZBS(D] =0 K a L, f .To{xp) G+ E sin. k) e KdK_ 3 | (7.82)
. _ P . _ :
we cen also determine the correlation functions of the amplitnde and phase fluctuations of the

wave. The integrals appearing in (7.81) and (7.82) can be expressed in terms of 'I;he 1ntegral

exponential function Ei(z), so that Egs. (7.81) and (7.82) teke the form

Rad
®rol

(7;-.35}'

-

-1

- vz = [ 2 r2\2
2.2 P <] L L ;
B.(p) =—5n k aL e - o | — +.-mEj_
AlP) =7 ™y B Tt - .( g D
: % . A

ST (1.8

. [x 5 o - o2 (%2 1.
B BS(PJ=-—§-D11£81' .Erpi}?-_—:g - ImE

PTG T R P (2
»
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_._Eqs. (7.83) and’ (7 ah) were obtained by Chernov [56] . As p - 0, these axpreasiOns reduce
 to Egs. (7.78) and (7.79). Ve m:us'b bear in mind thet es z - O, the function Ei(z) has a

K logaritimic sinsulmty vi‘th Im Ei(z) -+ arg z. . An enalysis of Eqs. (7. 83) and (7.84) leads

. to the conclusion thet both for D << 1 end for D >> 1 the comlation distance of the sn-pjj.-
:-I.-.ude and phase fluct.uations of the wave is uf ord.er a &6] However, this result is caused by
,the special cl:u:)ice of the form of 1.he correlation function of the refractive’ :l.ndex fluc-tuations ;
l.e. the Geussien curve (7. 73). As. we heve shown ebove, when the condition VT << !. is met,
! .the correlation distance of the am;:litud.e ﬂuctuation.s in the plsne % = L. agrees in order of '
megritude with £ o’ in the case where \/-— A > L o’ it 18 of order L L while in the intemediate
case it equals ﬁf . However, since the values of "o and I‘o are of the same order of -msgui-
‘ “tude fur e Gaussian correlation function, i.e. L =~ .I'o ~ a [e] then in the.present case ghe
= correlation distance’ o_if thé amplitude fluctﬁatio_ns of thé wave in the plané x = L is of order-

"a for any velue of the parsmeter AL (i.e. both for D << 1 and for D >>1).

7.5 Amplitude and phase fluctuetions of a wave

propagating in a locally isotropic turbulent medium

‘We now consider another, mmch more realistic exemple. ILet the refractive index field be

locally homogeneous and iet_ it be described by the structure function

2 2/3 : L -
) .Cnr_ o for£°<<r€§Lo, :
8 By()= I (O
(&‘ forr. <<t .

5 . .
.In tl-ze Iregi;n of falues of r axeeedﬂ-'.hg Ly _the foz;m of fhe structu.re fzm"ction D (r) is not
" universal. However, this inﬂ.e‘l:ernﬂ.nacy does not affect the correlation function of the ampli-
tude fluctustions. In fact, a5 we have already seen abote (see Figs. 10,11), in the case -
where Vi << L - the behavior of the spectral de:nsity §,(x) for < 2¢/L has .almost no influ-
ence on thg' calculation of the com*ltl:biom f‘unct.ion of the amplitude fluc‘bue.tions of the wave.

. Thus, 1f we rest::d.ct ourselves to values of L which satisfy the condition \f < I'o’ we ca.n
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* specify the form of the function Dn(r} for r'}3 L, in an arbitrary way (it is only necessary

that D (r) does not'"'grow fPaster t'han'r for r >1L ) In particular', we can assume that for
r 2L, D (r) preser\res the seme form as for { << =x <<I. s 1.ea, we canomit the condition'._ .
r << L i_n Eq_. _(7.85). A similar situation also occurs in the case of the structure ﬁmction '
of the phasel fluctuations of the wave. Inhomcgenei't_:ies with dimensions mch ‘larger then p '
ha_ve little effect én_fhe va;ae of DS(D). Therefore s if p 1s mstr;;te_& by the c;.ondi:'bion
p << L., the form of the 'éti-uctm-e‘ f‘un.c;cion D ( r) for r 3 L hes no important bearing, and we
can also omit the condition r «< L, in Eq. ('? 85). '

As we have seen - abcve s the Btmcture function ('T 85) cen be associated with the spectra.l

1

density - . . . i

: 0.03% ci x'u/.3 'fof K < Ky 2 : . ’ L
Gf)= ¢ ; TR Pl
0 . ' " for k > Ky » ' E

where k= 5.48/1 . Substituting (7.86) into Egs. (7.50) and (7.51), we obtain the following

expressions
. 0 Othak%. 1 - X sin 5—2.% K-llf3 . ft:;r x'fc !;
LT ‘0 L Y _ e o Smto T
‘ Fy(k,0) = (. . - -  w. ' (7.87)
0. - & o : - .fqz-';c')xm,__;
0.0334"..(.:::21. €+ —-%—- sin .ic_:_J:_) : K-.fll/5 for -x*< Kp? o™
‘Fs;x,o) = . , ot - : (7.88)-

0 '. . I ) -fpri()..!cm-

We shall £ind the correlation and stmet.m f\metions aor:esponﬂins to these Bpectral densities

'.inthesepara.te canesvhere ./"«z, and F»a. For \/"<<b,x2L/k<x%/k<<1

_Optics. The correlation and structure functions of the 'mpld.h_nie and phase fluctustions of

and Eqs. (7 87) ancl (7.88) :reduce to Egs. (6.61) and (6. 60), vhich eorrespona to gemetrical

A}
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_the wave in this case were studied in Chapter 6.
‘We now cnnsider the case where VAL > ;'b In this'ca.se', in order to calculate the siruc- .
ture functions of the amputude and phase, it is necassary to use the u.nsim_pliﬁed. i’ommlas

(7.87) end (7.88). . For DA(p)_ve obtain the expression’

o - an s Ky . : o
D,(p) = !&1:2.'(0;'053)01";1:.21'.\[ -3, (ke)] ( - -5‘% sin EEL—) 83 a . (7.89)
' . o : K : v

';
" Firast we consider the behavior of the function D A( p) for p. << ':.O. In this case K P << 1 and .
_the- approximate éﬁua.]ity 1= .:I'o(xp) ~ %'xepe 16 ‘valid-in the whole range of imtegration (o,ncm).

‘Consequently, for p <<t we have

-0 |
20 = 3P0 E [ -2y e (0

o

Since we are con.sid.erin.g the case where VAL >> 1 o’ then xib/k >> 1 end, the integral appearing
~4n (7.90) 1is approxima‘bely equdl to 6(::2L/k)l/ 6 {h] Consequently,’ for_p_ X 4 o

[

D, (p) = 1. 72021;%. l/ 3.2, N S (7.91)

i.e., for sma.]_‘l. p, the structure function of the ampl‘l.ﬁud.e_:'ﬂuctjmtions has a parsbolic cﬁar—'
a.ét'er, and therei’oré for p <.t > the correlation funétion of the gmplitude :Eluctua:tionia of
-t.he wave has the form BA(p) ~B (0)(1 ap' ) (see page lllé). For p >> ¢ s the integration in
(7. 89) e.an be’ extended to’ infinity. Tl:bis only influenees the form of the ﬁmctiom D (D) for

small p, but ve . have e.onsid.ered this case separately (Eq. (7. 91)). We obtain the formla

.

B (n) 2¢2(0. 053)02“21'I g (Ko} ( - "‘n"i" Pac - (T.92)
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for the correlstion function B A( p) First we find the mean'square fluctustion of logerithmic

mitm, i.e.

.

¥ = 3,(0) = 2%(0.033)? ¥L f ( - —k{ sin 5-12;1'-) 8% a . (7.93)

.

Calculating the integral 'sppearing in this formula [i], we obtain
f=031c2k/6 u/6 | (VE>> ). (T9%)

ﬁawhave seen a‘bove (seepage lhg), the depend.enae of th.e quan‘tityxeonLhaB 't.he form |
X2 = 1.31n1-.he¢ase\/_<< ¢, end the forn X2 ~ L 1n the cs.se\/_ S>I. For &) VAL <L
the exponent o 1n the formula X = 1* has an intermediate value, detam.ned by the form o.f the.
structure nm.c‘b:lon o:l.’ the. :-emctive 1ndex fluctuations. If D (r) ~a?, the quantity a has the '
vame(p-n-a)/a;foro<u<1,wehm15<m<2. _ |

The correlation eoerﬁcient b jIL( p) = (p) /}3 (0) of the am;ﬂitude ﬂuctua:bions of the wave
in the plane x = L, determined by Eqs. (T 92) an.d (7.9%), can be found by. numerical integra-
tion, [.f_] By integrating along the contour . emsisting of the circumference of an inﬂnitely
large circle and. the rays Re K = Im Kk, Im K = 0, we can reduce the 1ntegral s.ppnz'ing in (7.92).
to a form suiteble for numeri cal integration. 'I'he :E‘unction b (p) obtained a8 & renult of the
_nmrical integration is ahaim in Fig. 13. The correlstion distance 'or +the amplitude fluctua-
‘t.iona of the wave sgrees in order of megnitude with the redius VT of the’ ﬂ‘mt Fresnel zone. .
A8 was to be expected (see Eq_. (7.55))., “the fgmtion b A(p) takes on negative values, since -
the relation ' | '

. o i

Bf }:A(-n)gia'a 0

-~ : '

mist be satistied [k].
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Fig. 13 The correlation coefficlent of the fluctuations
of logarithmic smplftude in the plane x = L, with
" the condition L'O < VAL < L. B

"

We now t.urn to the_ca.lculation of the stmctu_:re funetion of the phase fluctuations of the

[ Adatng Egs. (7.52) and (7.53), we obtain the formila o .
" BEXCEEYORL S 3 I R XTIk FCET )
. . J . o ) . N k.

Tt follows from this that 3
(6 +0g00) = 00z [ B -a ek Pac, o (196)
0 o N i .

" in the'case where 'En(k) 1s determined by Eq. (7.86). Iet p <<l  or k0 << 1. Then
_ . Py B ; . :
1-;_9(::9) Exnea_n_d.-

ik



D,(0) + Ds(\p)_ = 3.4k k.%.ci z;’“/ 32, (b ty) e (7.97).

(k 1s expressed 1n-terms of & by using.the i-elation Ky L = 5. 48). For k P >> 1, the integra-,_
5 :
tion in {7.96) ca.n be extended tc infinity and then (see note [d_l ’Go Chapter 6)

Dy(0) + Ds(p) 2.1 % P35, U0 m gl 2 (7.98)
Egs. (7 97) and (7. 98) allow us to find the function D (p) 1f we ‘Yriow the func'tion D (p) For :

small velues of p (Eq. (7. 91)}: A.( D) = 1.72 ‘32 1‘121- 5-1/5 6. Substituting this velue of Dg(p)

into Eq_. (7-97): we o'btain.

D_sf") = DA(p_) = 1.72 Ca LN /3 kL0 P Ao f« zo}._ : . (7.99)
| i ,
For p >> L, we tvan find D,(p) from the relation R i C L

2B,(0),- 2B,(p) = 2 X (1 - 5,(e))-

X )

Substituting this exp;-essidn into {?.98) and using Eq. (7.9%), we obtein
S(p) 2. 91 K7L, 02 95/5 0.62 ca L:”“/6 T/6[1 b (p)] ' (7-100)

- For P> v’-JLL, and actually even for p ~ /AL , the second term in (7.100) is smell compared '

‘to the first and -

p(e) =200k 2 @3, (2 VAD). - (7.01)
. For. values of p Bm.all compered to \/—— the aecond term :!.s of the same brder of magnitude as
the first. If we use the a.symptotic expansion of b (p] for ¢ << p <<\/— given in note [,1],

‘then we obtain a formula of the fom.(T-lOl)‘, but with a nvmerical coefficient which is half

Ay

a8 large, i.e.
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1_39;(9) = 1.46 k3, cﬁ 95/3" | - v (¢, < p << AT )s; (7.102)

Eq.'('r.'lol), vhich is valid under the condiéion\/ >> 1, agrees'with Eq. (6.65) which is
‘ valid when the comdition /AL << !. is met Thus, . thse chamcter of the phase fluctuations of
the wave does not chana;e when L goes through the critical value L b & /JL « However, in these

two cases the amplitude fluctuations are described by different formulas.

i

7.6 Relation between amplitude and phase fluctvations

and wave scertter:ln,g

As we have seen sbove, Eq. (7.21), which determines the #lze of the field fluctuations,

. .t;a.n.be obtainéfl both by using the équa‘hion
Awy + k.Eul = - _2!‘.2:1.11.(;)“0’ . . - »
.uhic:h.d.et-erm.jtneg. the vave scattering, and by usin-g tﬁe equation
,A'*l' + 2 V*O.v v +2k2n1(;) =

which describes the emplitude and phase fluctuations of the wave. In deriving Eq. (:r..zt) by
the first method, we added together the mciaent' veve u_ end the wave ul Bcattered by the
- inhomogeneities of the medium. The scattered wms, arr.‘l.ving at the observation point with
randmvalues oi’mplitude andphase, are aﬁ.ded.tothe unperturbed mea:ﬂ.pz\:duee amplitude
and phase ﬂuctua.tion.s of the to'tai wave. The rela.tion between the amplitude and phase ﬂuc-
t\mtimaoftbemeandthe scattering orthemes canbemm!uedinmredetail. As we have
- shown above, ;C-E- A(o}’ the meen square m].ttwie Tluctuation of* the me, can be e@mssed

in terms of the ﬁmction ﬁn(x) byming Eqs. (7.50) and (7 54), i.e.



I

~ B (o) aﬁsa f 6- o KEID [N (")m o L (7'-10'3.1_."'

-

The function § (k) also determines the effective scattering cross section of the volume V into

the solid angle dQ (see page 68), i.e.
ao(8) = e,f_agi*v (2 sin %Jd’_n i - (7.10%) -

where we have omitted the factor sin Xw’hic.h depends on the polaztlzation of 'l:he .tnaident wave. -
Introducing do o’ the effective sca.ttering CToss section of thé unit volume, we have
3 4ot 8 . ST . ' :
do_(e) = 2mk §n(25: sin 3)aQ . : _ _ (7.105)
. . l y = o ... - -

#

We meke the change of varisble’
k=2ksing . . (7-106)

"4n thé integral (7. 105). The v;ﬁahlé K in EQ. (7 103) rmgea ﬁ-aaio to o, At the seme ﬁm,-_
the quantity 2k sin % cen only take va.lues from 0 to Z for resl 6. The valhe of the rm:ticn'
§,(x) ie zero or negligibly small for k > K. Therefore, in the case K »xm considered in

'bhis section, 't.he upper limit of integration in (7.103) can be replaced by any mmber vhich is E
- much larger then. K. o 1B particular by. a:/ NER eorrespomding to the value 6= 1/2. Substit\:rlzing

(? 106) into (7. 103). we obtain the fomls.

a/2. 2é : _ _
5 sin(4kL sin” 3 e B ' :
= 2%° f 1-- (2 sin 3)k° singas . - (7.107)
26 - . e i e .
o : bxr, sin - e -
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x* mal [ [ L | _29- Bin 6 a9 . T T (7-108)
. o- 1. - b1, sina" a4 ' : o v

“olo

quantity d.a (9) /dn is equa.l to the effacti‘ve sca.tteriﬂg cross sec‘tion at 'bhse angle 8 in'bo
' solid. angle dn sin B ds dq:l. We denote by dg. (9] the e:{’i’ective Bc.at-tering cross section
to the so]id angle dﬁl &t sin e d.e 'bounded by the cones of aperture (2] a.nd 6 + ds. Siuce

(9) does no‘b depend on P 'l'.hen do /d.q> = do (9)/2« and dg (e)sineae/dspsineds = d.ali,e)/&t. )

Eq_. (7 108} ‘takes the rina.l fom g A 5,
‘) _2, "‘/2.._'" Bin(ll-kL BinQ%] ' p S e i
g a2 D gy o T ey
” - . N

Ttue expression Juat o‘btaineﬂ ha.s a sim;ple phyaical meaning. The a.n@litude ﬂuchmtions ¢

oi’ ‘I:h.e va:vé are ca.used b;r the superposi‘bd.on of 'bhe sca:ttered waves (the quan'bitqr dul({?) in the_

integrand) - The ra.ctor

1- : -
) 28 iy
‘ Lo gt 2

3

ﬂ.epends on’ 'I;he ratio be'hﬂeen 'I:.he dimensim of the Fmsnel zdne and. the, d.imenpions or the Bcat-

er:ﬁng. 1nhmogeneities.- In :Ea.ct, as shmm sbove, 'f.he quentity £{8), the s:l.ze of the {nhomo-
genem.es vhich lcatter af the. anngz.e 6, is equal to Ye) = 3/(2 sin —), jee 2 8in 2 e %). :

e 5 vt .




Therefore ,. the quantity

is proportional to the square of the ratio of the redius of the first Fresnel zone to the
_size of £(8). The function

sin(2n\/t2(9))
1l - _“""“"""""'"T—
2xAL/e(9)

hes & meximum for £(6) ~ AL . Thus, in forming the amplitude fluctuations of the wave,
"fullest" use is made of the energy scattei-ed by the :inhomogeneities whose dimensions are
close'fo the radius of the first Fresnel zone. in the casle where sll the inhomogeneities are
"largg"' compered to - VAL , they act like ‘coherent scatterers, and the effects of the different

Fresnel zones spasnned by the inhomogeneities cancel one another out to a considerable extent.

In this case

> ' sin(4kL sin® %J E ’
1-4 _9) sin E'QLI L ey (e 16k%.asinh L m

2m\L La(sj 58 [ 2

4%1, sin 5 i
and (7.109) reduces to the formula
- x/2 _
2 _k 23 be . : :
X" =3 kL f sin” 5 do,(6) , - (7.110)
. ! .

which corresponds to geometrical opties. In the opposite case, where the radius of -the first
Fresnel zone is much larger then the largest scele refractive index inhomogeneities, there are
2 lerge number of incohe_:'ent scatterers iﬁside each zone, and their'effe_cts .add up like energy

In this case /AL/¢(8) > 1, and Eq. (7.109) takes the especially simple form
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n/2 |

L 3 a
X“ =31 f dol(o.} =

o]

oL . | | 3 © o (7.11)

0=

--H.ere o is the eﬁ’ective sca‘ttez‘ing cross section of a unit. volme or the scattering coefficient
: (a has the qimensions of cm } This quantity determines the attenuation of the wave due to
: Scattering in going a u.uit dista.nce.

Eq. (7.111) and ‘the similar formula for phese fluctuations Iof the wave can be obtained
without recourse to the éxpression . (7- 104) d.efining the effective scattering eross section [59]
“To do this, we divide the whole reglon traversed by the wave in the inhomogéneous medium into
vollnne elements V » . whose 1inear dimensions are much larger than the correlation distance L of
.the refractive index ﬂuctuations. The field at. s point Mis 't:he sum of the field u of 'bhe
: incident wave and of the fields w scattered b;r the volumes vk in the direction of the point M,

7

“l.e.
.u.t.?-uo .+, Z uk . . : ' . : ' i (7.112)

We represent the field u_ in the form u = A exp(iso) end the fields w_ in the form A exp(isk)‘
Since the 'vnlme_s Vk are separated from one another by d:[étan_cea which are much larger 't'.han_Lo,
the waves u_ scattered by them will be statistically independent. We assume that the £luc-

' 1 -

tuations of the field are small, i.e. that [¢]

12 =<

Then we have _ . . . A ' . .

< Lo %\ L R ulh 'S
.1ogu=log11°-+105 G-}-ZQ .J.oguo+ Z.E;.'

PR



Separating the real and imeginary parts of this equation, we ‘obtain

log.&-logA-i-Z cos(sk-s), . _ - ' .'_(7.115)

s+Z sin(sk-s) | o raw

From this we obtain

—2=  i) - Z X

A e
}} cos(si- -_S‘__))'.tzms(s.k - So) . (7.115)

ain(s -8 ] s!:l.n(sk -8 ) (7.116}'

*=ts-s) ZZ

for the mean square fluctuations. Because of the Btatistic-al independ.ence of ’che waves scat-
tered by the diffgrenf. volumes V, & ‘only the terms with 1 =k are d.ifferent from zero in the

double sums. Therefore we hmne

a2 ﬂ(Sk-S) : §f= 2. Eom(s -8) - ' '(?r._u'r')

| o’*mlpé’m
o™l

Tt can be shown that the quantities Ak and Sk -~ SD are sta‘tistica]iy independent [60] . There-

fore

mll—-

(sk-s).—_

fml'

J&coa(sk-so)=

‘:a:\ .



: tributed in the in‘berva.'l. ( 0,25). smilarly

ﬂuin(%-ﬂ ih
5'_sothat
' o . :‘E
X '
Fadtal X % (7.118)
' [+

"The que.ntity Ak(e ) mpreaen‘ts the mean square modulus of the scattered field produced at
" the point M by the Bcattering volume V, (the sngle of sca.tterj.ng is denoted by 6, ) ‘The flux

©of scattered energy is pmportional to the qua.ntity Ak r dQl, vhere r is the diatance from the
]

- center of the volunIe V) to the point M. The density of the energy flux of the primery wave u

- incident on V.

- which we d@note by deuro(ek), is _equa'.l to

: de_‘ﬁc(gk)-“ ﬁ'—‘- > aq. 5

" 80 that

e

Substituting this expression in (7.118), we Sbiain

8

_— —, as (6,) V. : . ' ’
2 _ 2 12:-.-091; ko : _ .

X =5-3 Ta 2 - o R (7.119)

' Going from sumation to integration in this formula, we have

. ?,2 1 f as_(6) ' _ | - , .

=8 =3 o~ ....r2 . , _ (7.120)
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If we :Locate 'bhe or.tgin of spher.i.cal coordinatee at the o'nserva:bion point u, _the polar aagle
Wil equ.s.l ‘I:.he scattering engle 6 snd AV = radnd.r.- Therefore

- r do (@) : S R e R -.
_-EB ;f=% f drf ?19 - 49 "}2. oL, I T b i (7.121} '
: o S o Cle e T LS ek 5

and we aga.in mive at’ Eq. (7 :L'Ll). Since we assmned that’ the £1e1d at th.e p‘oint u is propor-
tional to 'Ak and does not c'l.epend. on the dimensions of the scat‘hering volume Vk, we hs.ve hereby :.
~assumed that. the linear dimensions of the vol\me Vk e.re much smaller than the rs.dius of the. .' :
#irst Fresnel zone, 1.¢. that L, <V /3« AT 'I'herefore, Eq. ('r 21), and Eq. (1- 11) as __
weu, 1s valid when the condi‘bion VAL >> 1 1s met. i
With th:l.a we finish our st'udy of ‘the problm of pa:rmeter ﬂuctuationa 0f a pla.ne mono- g
chiomatic wave:- In Part IV, e shell consider some applicationa of the theory presented sbove
(calaula‘bion of the frequency spectrum of the fluctuatd.ona, depend.ence of the ﬂucttmtions on .
parametera of _t;hg receiving appmtus) ‘and we ‘shall c.cmpare _the_theory-vith ex;:erimental da:l;laz':;
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_ Cha.pter 8 :
Ry PARMTER FLUCNA‘.L‘IONS OF A WAVE PROPAGATING IN & MBULERT HEDIUK
WIET[ smomx VAR'!'I]IG MCEERIBTICS

-,

_ Until now we have considered 'i:he ca.se of a 1ocaJ_1y iso‘bro;pi.c refra.c'bive index ﬁeld,

3 it hes been s.ssumcd evemhere that’ the etmcture c does not vary alo:ng 'bhe entire propagation

:"T':-I‘plth or the vave.- However, o’ prectice one m:st almoe-l-. alveare dea.'l. w:l.th inhouogeneous tm‘bu-

4 _;enee. a8 slready noted, the "m-mm o o‘btained. in Part I is valid only in the case

vhere the’ distance hetween the two obsérvation ;points does not exceed the outer scale of tur-

'-btﬂ.ence L » :L.e., 11: 15 va.ud in a region with dimensions: of the’ onle:r L « If we plece our pair
'.of Qbservation pointe 1in emo‘l:her Teglon with dimensions .of the order L}, which does not inter-
sect the ijirat region, the.n the two-third.s 1ev holds for it as well, but this time with
b-.amther va.lue c' _ nr the structure constant Therefore, ‘we cac assmne that c i8 a very. emooth

ftmct.ion or the coordinates, which changee eppreciably only 1n distances cf the or&er I. ]'59]
L (seeﬂhnptera) '. '_ o ot

;. _aj; |

.where ]r - 2] &<I- o “and c (r} changes n'.p;pnciahly onlywhen P chanses bym smount of order
¥ . . . '

Ir - 3,|%/3 ', S gy

L. ?orsme.].‘l.valuesor [r - 2],vehecve

as 'be!'om . _ :

_ The concept of the apectra:l. density § ("} ccmspomung to (8.1) end- (8.2) ves mtmduced

4n Chepter 3. we cen. imdia'bely write dovn an expression for §n("), hy chanstug the constent

Ce:lnEq. (T%Jtotheﬁmcuonc(* Then we have [a.] T TS '
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§EH -0 30%, L e,

where y _
- [ 0.033 .lc'll/3 ' ' for kK <K ,
. (0} - : e _ ; . “ 5 _

En () = . - . : . {a.k)

o] . o for_'._K>xm.

In the more géneral case, where we shall not use the "two-thiwds lew", but some other correia~
tion or structure ﬁmc’cion, we ahall always assume that Q (K,r} ca.n be represented :l.n The fom :

- (8.3), but with another nmction § (0}(1;') In enalogy to (8.3), we can also write the two-

-
4 7

') (see Chapter 3):

' : L e >, , . ' - o
Fn GE,Kj) ixl = :gcrr1’ .1._12'_.5_) = cs(i’__.g_l‘“.) rn(KE’KB’ |x| - I"“ : . (8:5)

As before, the functions Fn and ﬁn are connected by the relation (1.53). In particular, we have

dimenaional spectral density’ Fn(K2’K3’ [x' - x"|,

f fn(icaijyhg)dg = in(O)(otKQ’KE!)‘ * S ' | | (8.6) :

We now consider how to solve the problem of amp}:l.tud.e and phase fluctuations of a plane '.
wave propsgating in a medium with a smnothly varying "intensit}“ of turbulence. To sBolve this
problem we shall start vith Eq. (7:24) and we Bha.'l.l' use the seme kind of tvo—dimensional.apéc-".
tral expansions oi’ ‘the refractive 1ndex fluctuations. as 1n solving the prohlem for a homogeneuu.s
medium. TIn deriving Egs. (7.26) (7,1&5}, we never ﬁaed the assumption thet F (KE’K}'x %) de-

pends only on x' - x". Therefore Egs. (7. l+2) (7.1&5) continue to hold in the case where

.

B, (Kpskssx',x") hes the form (8.5), 1.e. )
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oy - Fy(KpsK5,0) = = ff E@F(E'rfl]_si-nlzg'%__&l] . et
. . ‘ 5 . O o‘.. . " . - . - @
F } ' . rrf ;"4- -I:ﬁ\ galm
X 2’-" PPN SR o _—é—_j dx'dx" =
k2 Lo . Kag . -Ka L -] 2 S \ .
=7 ff ["0" o~ o8 £Xr-n) T ]Cn(xr)fn(rg,ll_tl)dnde 3 _ (8.7)

vhereﬁa:.‘-x on = x' + x", 2t'=:r'+r".'Theregionbfinteg;'ationnisarhumbusvith

vertices at the points (0,0),. (L L/a), {o,L), ¢( -~L,L/2}. Similerly, we have'

] 2 S pi@ s -2 i -
£ K58 o KL = )

Fs{xe,rcj,o) -3 ff [ccs S + co8 ” ] X

P D ' .

Cx BB, ¢ Janat . o | o (8.8)

Bearing in mind that the 1ntegrend.s are even w:l.th respect to § y We need carry out the integra-

“ tion on.'l.y in the right hand half of the region D. Then we o‘btain _ ) . !

. o 2 . 2 i
RACYSOR K2 f cﬁ(;)dn f fn(K,E)[coa.ng - cos 5."(‘%;——4{'55 +
o - o 0. . ) ~ o
L 2L -n) ' .
£ %2 f *)an f £ (:c,g)[cos L '—C—-(-Ii—"-ﬂ}-:ldg - _ (8.9) .

c o1/



5 #:-_. o _
In the importent reglon of integration with respect to &, we have K& 1 (since £ (K,€) + 0
. for k& >> 1; ‘see page 23). Theiefm,n-egfk < K/k << 1'in this region. Consequently,
cos k%¢/2k * 1 and the imner integrals in (8,9) are approximately equal to = '
T P ,
I:l - cos —(—HJZI f z(x,8)ae
- _ J

>

" oL-n) o L RS

. 0

' However, in the larger part of the region of integration both 2n end 2(L - n) have the order 3

of magni;g@_e I....Therefort, we heve epproximstely

2y ” L :
f 2.(k,6)ag ~ f 7, 0c,8)8 = = 3, ()
o . 0. . .
end
2L - ")
. f IEACHLIES 5. , .
gl - o : i .

i.e., both inner integrals in (8.9) are approximetely equal to

R ST, PYSWARRE . S, PO

' Thus we ob-ba.in i
N L o ot P
rerp0) - 262 [ B T L) sme[ﬁ—%-ﬂl"]an_,_ (8.10)
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Fy(kpr50) = 2k” f E@ 3,00 "‘“2[5“(’155.41]&" O (8.11)

It follm n'cm Eq. (8.10} that 'I;he cont:d.bution to F (Ke,xyo) of :I.n.hc\mogeneities J.ocated. near
__'the olaservation point is zero [b], Bince the integrand. va.nishes for n = L. '_
" We now conaider the con'elstion ﬁmction of the amp:l_itude fluctuatidns of the wave in the

,plane x = L Aceording to the ganeral rormula (1.51) » we have

Ba(b) = 2x f JO(KQ)F“(K,O)KGK P)
e o b .
B Y .

B(6) = b [ B(Dag NEXDRUCY 'sma_["—%f'—’ll]m I (8:12)

By(o¥= 6081%) .-."l“'%‘,a f_c:(;},dq_ f 1(1-_}("?) '?’ne[ﬁ"_igl]m' (8.13)

‘Egs. (8.12) and (3.13) ‘solve; thu problem of amylitud.e fluctua:l:ions of the wave. . Consider the
“case m:.-e ‘the mfmtivn tndex fluctustions obey the "two-thirds lav". In this case § (°)(r) :

is - gi'mn by Eq. (B k) ané. _ o i
o — 1L L . (R
x—é, '603_ i‘_> = bx2(0.033)x2 f cﬁ(é}aﬂ f 11/ 3 sin [" L= ]xdx . (8.13)
S B T IR o
Yor k3L/k < 1(gecmetrtoal optics); ve obtain N T



o L m 4 e =
. . .0 2y o 2 i .

- by
s

= 7.37 z;m-f_ E@®H@-mn. - (8

° .

(Hehaveuaedthe relationx& =5.1b&, see page 49)._Forxal.fk>>l,ie.\ﬁ >> L, the

1ntegrat1,on in (8 13) can be extended to infinity, and then el
2 = 0.56 x1/6 f CE(_I—')(-L - xf" bax . ' . RS (8:15)

In the case 02 = const, ‘Egs. (8. 11+) end (8.15) {mply’ Eqs. (6. 68) and (7.9%) :E'or hmogeneous _
turbulence. Tt 18 convenient to chsn.ge Eqs. (8.1#) and (8.15) smewhe.t, by mmting the origin .

of -coordinates at the obaervation ;point. Then we have

X2 = 1.37 z:_TB f c:('z'-)xadx_ B A <)) (8.16)
. -
X2 = 0.56 k116 f ci(i):?/sdx ) (AT »>e) . o (8a7)
. @ s, T T '

. When the wave source is located at infinity, we cen get L = ® in Eqe. (8.16) and (B;l"f}.' ‘ Then, -
in estimeting the quantity yAL., it suffices to teke the distarce in which 'ci essentially falls
to zero instead of L. . ' - e

We now consider the phaae flictuations of'the weve. ' Adding (8.10) end (8.11), we obtatn k
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" Fp(Kprki50) + @g(Kyki5,0) = 206® T (k) f c;i(z);;,, , SN CET.)

: DA(Q) + Dy(p) = &rake f ci(r)dn f [ -_Jo_(k'g)_'] ﬁnc")(x}xag e © . (8.19)
- _ e o o . o e

: Eq. (8.19) replaces Eg. (7.95) for the case of hamgeneoua turbulencE. When, §n(‘_’)(x}_ is given

"by Eq. (8 k), we obtain en expression similar 'bo (7 98], i.we. .
v .

]

D (.o} + D, (p) = 2, 91 k 95/3 f c (r)d.x v ' ‘ _I | (82@}

_ I't fol.l.ows from (8, 20) (see the d.erivation of Egs. {'}' 101) and (7.102)), that in the region -
VAL > o’ Ve have -

o) =146 57 [ Eac 0 «p V), (say
‘ 5 - % -0 ‘ . L ) = . .

“\ . 4

.bs(é) =291 % 95/5 f A6 )dx N . (8.22)

The 1:l.tegration 1n Egs. (8 16) - {8 22) 18 carried out along the "ray" from the observatim
-point to '!'.he _Bource. Com;pa.rj.ng Eqs. (8.16) and (8.17) with Eqs. (8.21) and (8 22), we can
easily ﬁiscover an importent dii’rerence between them. I:n fact, all the inhomogeneities, rega.z-d-
less of” thei:- dis-banc-.e from the observa;tion point, have the same effect on the phase fluctua-
‘tions [.:1] - However, the inhomogeneitiea which aa:e furthest awey ‘from the observaton po:l.nt
hwe 'I:hs= g:reatest effect on the emplitude fluctuationa of the wave [b].

=
-
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Let us consider an example. In snalyzing the twinkling and quivering of stellar .-
-i.magés, ve encounter a very nomumiform dis¥ribution 1in height of the zemét;l.ve index ﬂ.ﬁétu&- _
tions. Usually, the strongest fluctuations are obumd. neer the surface of tha earth, and P
the fluctuations become veaker as the b&ig&t\increases. In +4his csie, the lower lsyars o:r tha

atmosphere will make the largest contribution to the imbegral

f Blz)az - -

0. .
which d.etennines D (9) However, hié_her layers will meke the basic contribution to the inte-

gral " _
f Ca(z)zjfs-dz
2.
-

vhich determines the a;lpliﬁude iflucfmatinns o:t’ the weve. : For exampll;e , let
| ¢ - cs;e-z./zo bt - B i e (8.23)
Then(assmins that ﬁ;-'» Lo)f-_we_l:l.ave..s
| ;ﬁg 0.56'.1:7./6' cﬁozilxsr‘(%) - o..55 cﬁo 1;7_,6 zf“fs ,I co - I(B.el;). :
Dé{p} 291.!; JD5/5 2 o . o | : ‘ .. ‘ ' .(8.2'5

£ c: 1s given in the form

2(z} =2 (8.26)

then

. i - H o



or -

X2 = 3.4 c-:o «7/6 zcl,l/e,', - . _ e

. nge) =2 5P /3 @ = bos7 2 ? 65/3.% . (8.28)

Eqs. (8.24), (B.é’r) and Eqs. (8.25), (8.28) have the same structure, but they have quite dif-

ferent values of the mumerical coefficients.
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_ cha;pter 9 ;
AMPLITUDE: mmmom OI;A smnxm. WAVE

N AT A

In aﬂ.dition to the problem of the m]_ttud.e a.nd phase ﬂuetuatims 01’ a Plane monochm-
‘matic wave cnnsid.ered in chapter 8, in mny cases 11; :Ls of 1n1:erest 1:0 congider the ;pmblem of
ﬂuctuations in 8 spherical wave [60] To solve ‘&h‘u pro‘blam, we she.'l_l sta:rt \d.th Ed.. (7. 21) PLe

vh.‘l.ch g!l.ves the. Bolution of Eq.- (7.14) :t'or the' case of ‘an arbitrary unpertu:,‘oed va:ve, 1.e.
A *.1-"" 2 v*o'v*_.'l + &eﬁ(-r.) L5 , . S T e e (9.1_}

ikt:r— r‘|

. = —— s, T LN 9.2)
y(7) 2ea (D { “1(:' SENELD (i I"I ‘.W T e -2 )

o
Let uo{ﬂ _mﬁre_sent a spherical wave propagsting from the origin of éooﬁin‘f‘tes_'..l_i‘e.'.. .

ug(;)ﬂﬁj .- - -' : E . | -. : " .(9'3).

r

‘Vhere Q is su_m: constant. Then we hm R L TN
g e T B 11:{:' -r} R S T T
'_'*1(;).,-1"71' f l('{- - ' _.\*_. ave . . R ¥ o

¥ ! o lr .;._rli

s :Ln Chepter 8, we um that A << ¢, where ¢ u the inner -ea:i.e of the tuz‘bulence. mm,
3.1 subsﬁb-ntial contribution 13 ma.d.e to. the 1ntagru1 (9 1&) only by, tha ragion of 1ntegration eon—
i‘cained m:!.de a cone uf apertm g~ J./& «< 1 We verbax :Ltes ‘at the obsemtien point and

v iR

\ﬁlose exis (vhich we mume to be the x—axis) is d:l.zected fm the ‘vave ‘source 'I:o tha obse:*vap-

57

15101-.1 :pt:int. Inside of this eono, Ve ha.ve "

Car

it .!‘mﬁ_ﬂ"“ﬁ'r
.




Jxt| 5> ]3], Ja') and fxext] >> fy-y'l, |e-z'] -
| In this case, the expensions

RCLIN SRR T P o o 5
Tt ow x! +}:-'—-—+-;z—'—- . I;—'-’}"ll a e g (y -y ) +.(z - 28)°
. ol oxt : . K - -2{3{-;')

-
“are _irgﬂi_d. - In addition to the values of the field at the point T = (x,0,0), we shell also be
in‘l:erestad in values of the field at points for Which +y~ + 2z~ 1s not zero but is much less
" than the dista.nce x to the wave source.' Therefqre, the field U, = 3 ikr of the incident wave

&

can also be represented in the form

g N . ) y . - 2 ) 3

g =8 te p

| ) o uo_ - expE.k é-!- B )] .

- -Substituting all these expansions into Eq. (9.4), we obvtain - -

ERAGE %}_‘- f ny (x',3'58") x

v

2

,. EI!C'(W';I'ZZ')-X (}' +z)_x(|+.zl
= 2xx! (x - x')

- ax'dy'dazt . (9.5)
x'(x-x')_- A e )

:W__e ailsﬁﬁme that the random field -ﬁlfx‘,'y!,z‘) 18 & homogeneous end isotropic random field

and. ¢an be represented in the form of a stochastic Fourler-Stieltjes inﬁegrgl:

| : -ﬁi(:lz’..;y',;?) = f:}q expEL (Cé}"-i- _xgzb IJd?(Ké,Ké,xr) ’ | S - (9.6)

vhere the quentities "av_(xe,xs,x'.)- satisfy the previous relation (7.40), i.e.

ATh



. .dv.(!(a, K;’ x)dv*(xé,‘ Kg, x!) =

- é(xe - k3)B(K5 - x;)Fﬁ(ké,Kg,lx = x‘}'}dxgdx dxgdx3 AN . (9

.(We heve assumed that the field nl(r) is homogeneous and - isotropic in order to s:l.mpl:[fr;r the
solution of the" mbMa However, in what fo]lmra it will not be difficult to extemi the
solution obtainecl to.the case of a locally hmogeneous and isotropic. field. nl(r) as well. } We

shall look for the :!‘lmction tl(x,y,z) in the form of the same kind of expansion, i.e.

_ wl(_x,y,z}'% f7 m[i@;‘f + K%’a ]dlq’(.!-cé,xg,x). | i .' | .o | (9-85 'ﬁ_‘:

Substituting the expansions (9.6) and (é..s) into Eq. (9.5), we ob.ta.-in'

w . ) . 2 i
JJ ool + dfamteprym - 5
r
( axx'(znf' + zz') - x! (:r d %) - & (3’ )
.exp ' '
“oxxt(x - x i3
.x - L . x :

x’(x_-; x*)

175 .



. L
, iky + Kiz)
He m:.ltiply th.'ls equ.ation by —é e and integra'!;e vs.th respect to y and z between

the Jimit.s - and @ . Bearing in mind that (1/2%) f exp(:l.)u.z}dz = B(}.) and thet the symbolic

-0

equality
s f f o, - K38k = K3)ap(x; ,Ka,x) - lieyry)

_ﬁolds el '-re. obtain -

ap(K K5, %) = Ay i-n-’—;- ff exp[-1(kyy + k3z)]aydz X

exx'(yy' + zz') - :c'e(y2 + 22) - xa(y"e_ -kz'a)

i : oxxt(x - x') : :

X fdv'_ : x
. : ' x'(x - x') )

exp \-ik

ff expl: (K,‘;{ + K z) :Idv(x2,x ,x') . | i (9:10}

The integration with respect to the variebles y! and 2! in (9.10) can be extended between the
Jimits < and ® . since in the reg:Lon where the va.lues of ¥y' and z' are large, the integrand
ascilla‘bes rapidly end the integral over this region is near zero. Changing the order of mte-l

gration in (9. 10) and also chazl.ging x to L (the distance to the wave source), we o‘btain

.

kQL t ot
dcp(xa,xB,L) = dk d.'c3 &5 _ x'(L - x') ff dv(v ,x ,x ) x
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x f.,fff eJﬁmE(KéY'..fxéz’ -KQFI%K'?Z):‘I.X | _ | | _ _

. 2Zx' (33" +22) - x %% 4 2B - 1Py _'}_Iz_.2j~‘ s
X exp|-ik ACSSST TRy T dydzdy'dz'. " (9.11)
2ZIx'(L - x') _I ' : . .

The inner fourfeld integral can be simply evaluated by contour integration in the complex plane

and is easily seen to equal

- 8L(L = x') -1L(L - x")(.-cg +. k) .' ' . S : :
. - exp . 3 5(!_ I-_'_) 5(:_ LT) . 9.12
ikx' . xp[ Okex! ) ] K-E ) K2 x' ) Kj, K5 x ) : ( ) .

.

Substitutin.g (9.12) in Eri. (9.11) and carrying out the integration with respect to x! end k!

2 5t
we obtam a aimple formule’ eon.necting ‘the spectral amplituﬂes of the field. fluctuations a.nd

those of the refractive index- fluc’cua‘biona H

_ : L. P :
ag(K K5, L) = -1k f ax ex‘p|} ( Yp + KB):IdvGE-

2kx
. ) [s]

R
-
o
N
R
-
3
N

(9.13)

Eq. (9.13) is similar to Eq. (7.32) for & plane wave [b] and has a simple physical mean-
ing: Fiéld.inhmnogene'ities characterized' by the wave number k (i .e. by the dimensions ¢ = é}
owe their origin to inhomogeneities of 'bhe medium with characteriatic wave number K L or with

)

ﬂimnsions v = &i- . These inb.omogeneities are at the distance x fram the wave source. The

Pactor x/L takes into account the megnification of the dimensions of the image .due to illumina-

tion by a divergent ray bundle. -The quantity L(L - x)xa/akx :Ln the argmnent of the exponential
is eqnal to x A / e . where A" . M ig the square of the radius of the Pirst Fresnel

»
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zZone for @ spherical wave, and’ L*, :l.sr ’bhe pize of the 1nhomogeneities in the x~plane which pro-

ﬁe].d inhmog&neitieg ofsize . Using relations similer to (? 35) and (7.36), we cen

nd: -the. spectral am;a:l_tud.es of the quan‘bit:.es X = 1qg(Aon) and S

1 s - So. Denoting them,

s before, by da and ag, we obta.in

. L : N2, L2 : .
o _ . |'1.(1. - x) (k5 + x3)] iy L _ o
@(K?: 3)1*) k 6[ ax _S.%nl_ | o : 'de@ax ’ K}_x ’ 39 s .(9-_1‘-!-)
du(Kaij,L) = -k f dx MBE(L _ X:z i ﬂ ( % , KB-% , :9 . (9.15) |

We'nmr turn to the spectral expansions of the comlation (structu.'re) functions of the

_ quantities X and S.- To do this, we form the expression

_2.
da(xe,xj,l.)da*(x ,K%,L] k= ff dx, dx,, .X.

. L - x, ](rc + K5 L(L - x,) (k.2 + <2y
3
.x sinL - sinL ; X,

2

e L . L L A ' : :
.X dv(gx—l'-,KB;;—-,xl)dV* Gé;; '?,xa) I e (9-16)

e.nd. tb.e analogoua expression for dodo* , which contains coainea instead of Bines. Using the

2 2 2 2

relation (9. 7], and writing K2‘= Ko+ K3 5. K'C = Ky + ic52_, we obtain

178



da( xa,xs,L) da*( hoK

)
5’1‘)’1‘%4.[[ - (ﬁ xl "1"2

t

'x sin

R RO
L 2"‘_"1 _] Eb‘a.J e -

% 1 ’ . ) " ’ :

Tt follows from the relation {9.17) that the fields of X and § are not statistiémy homogene-

ou.s in the plane x = L (for these field.s 1:.0 be statistica:l.‘ty hmogenetms, the f&c‘bors ﬁ(!ce = KQ)’.‘

' B(K - k! } would have to appear in ‘the right hand side of (9. 1’?) It is clear that theBe fields

then, setting y = z = 0, we obtain the formila

must ‘be homogeneous on the sphere r = I.. The departure from statis‘hicsl hmogeneity is rela— :

ted in the first place to the fact that we are exmﬂ.ning the field in the x = L plane s.nd not

onthe sphere r = L, and in the second place {'.othe fact thet the unperturbed wave appears in -

" our casé in the form : - 2

_ - TP - _ Iy
=§axpEk é-&%&)] ’ ) _ . B
sothatthe directinnyno, z=018 s:l.ngled out. . . ~

We nmr cealculate the meen squere fluctuation x2 nr the ].ogarlthnic amplitu.de Since

LR Ky + Ke2) - \
) = [[ 0T aatigryn
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St T et -

.Consequ&nfly, we have

_'XE(L,O-,_O) = X(1,,0,0)%%(1,0,0) =

f f f f lm("2'"3’1'}"“"""("2’"3’1'). v o 4 (9:28)

Using the expression (9.17), we £ind

xuk%h![ ffff ( i’lxl-x ‘BinL(L;;ll)K .><
L(L ;-‘:2}”2 iLﬂL) @ d"axax';lxg | | (9-19)

?aiing-mto account thet - A : | _ N _

DRI ED

" ve carry out the. integrs.tion with respect to’ x' and Ki, obtaining



) N - KL - x)e”
= ff S “’ff (,1 Ee) B

’ Lxe(L = xe}xz 7 . .,
xsin--—_-2—-——dxdx . . : (9.20)

el F 7

Since.

Pk, JE])= Fy (\/ +x Ig) ﬂF(fc,igl)

in the case of isut.mpic' turbulence, then in Eq. (9.2()} .we can go over to polar coordinates in
the (Ka,-‘( ) plane and carry out the integration over the snguler variable, on which the inte-

grand. does not depend. As a result, we obtain the fo:mmla

L(L - x )K2

o . ,I-.L. | y | 'I )
-3 atk%faofxmc ‘[;[‘ Fn(i—Ll;.lxl-an.sini_‘_E_i_%_-x.

L -x dx, ? : p
mxf‘e(. 22?" a""122 . (e

We designate the imner integral in (9.21) by P(k), i.e.

¢ (L ]x ._
P(k) = a2 ff ("1 , ixl x,a) sin —-—T&;‘l—-—— X
: : -
Lx (L - xa)xa ax, dx, -_ . : . .(9 22).
-z .z ° : g e

X sin



. .. . " . L I. ._ .. I. L - . ) 2 ._ q Y - i .. &
- P(k) a_]_;_aj:,.a f '%.Biﬁ. .(_aknﬂ_x f Fn(%’ i§D X
b el n-L .

o . ' o *

' L(n - E)(L - q + £k - :
% sin. - = - ae . » (9'25)

Consider now the inner integ:;al

R (“%; |§D_§in 2 e 5)(1-;1] : §)K a . S ‘ f9-21l) ;
L 2
Sixce the fu.nction F (x, |g|} is appreciably different from zero only for k¢ S 1, then ‘only the
pnrt of the region ot integration where [t|«h/n 51 or |¢] s q/ﬂ. contributes spprecisbly to
the integra.l (9.24) ‘Sinee KL > 1 (the chief :Lni'luence on the values of t:he fluctuation field
at 'I;he observation pain‘t is due to 1nhomogeneities with dimensions o:f the order \/JE ; 1.e.
'xz, VEA > (see page 1ho), then lg| << 1 1n the ‘importent region of imtegration. There- .
fore, weha.ve - g- N and L - n+ ¢ “L - M., It can be shown'bhat the discaz-rledtemsin
‘the a:rg-mmrb of the sine are: of ord.er no larger then VAL << 1. Therefore Eq. (9-24) takes

the :I‘.'nm

| .. _L.(L ) njx2 n . : e . . . .
- Q= sin —5 f F, é%‘- 5 [gD a . : - (9-25)
' SR S A R o

0

Since the function F (—-— s ]!] falls off quickly to zero even for Ig] << 7, the 1ntegration
e Ky

(9. ) can »e ext.énd.ed between the 1imits -w anaw. Te]ﬂ.ng :Lnto a.ccmmt that (see pa,ge o)

LN ay
-[Fn_(-,,_-, IgD-_dhauEn(T) ,

oA
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e T

s

we. obtain for‘Q the expression {c] '
) - .
. L(L - n)k . : S ’ :
Q= 2¢ sin — | En (KT .- nn Lt (9.2?).
Thus we have
. . . L 2 .
. (L= )K" - . e . ;
2 2 KLy & o
() = 2’ [ [—"‘eﬁ“—] G2 - Tl
Meking the chenge of variaﬁlea kL/n = i ﬁa (9.27)", we obtain
_ P(k) =—2"—'§E‘{‘- f_sin_al_:g'- (k' - x)].ﬁ'n(x")dx' . ' 5 3 (9.28) .
Substituting this expression in Eq. (9.21), we have
X2 = hRL dxf' s1a?|S2 (k' - K) ﬂﬂ-)w . Yoee s (9.29) -
o K e ) TR

Changing the order of integration with respect to k and k* in (9.29) and_simuitanemh_'relabe]_-'

" ing the variables of integrstion K and k', we obteln .

?ﬂ&%fﬁxm:_f smz[l-"'-—%k;—"-'l]axf e | T &

iThe inner integral in (9.30) reduces to the i'fresnel integrals
x - ‘ . x )
2 - ] 2. .
o(x) = f con!;—-_ at , 8(x) = f sin “—-2— at, -

o .0



-'a.ndequals g

nolx

' 80 that

=a2ﬁf f[;a Q/‘)

+BinT G/_)] [NGICT I | - (9.31)

i Eq. ( 9.31} gxpresées the mean square ﬂuct.uatioﬁ of the logarithmic amplitude of a spherical _
wave in the case A << & in terms of the spectral density § (K of the refractive index flue-~
_ tustions [d] A similar formulas exists for the mean square phase fluctuation of the wave,

+sin'!r‘ (\/—> ﬁ (K)kak . - - 3 . '(.9.32)

However, we nn.te that while Eq. (9. 31) can be extended to the case of 1ocally iaotropic turbu-~
lence {since the term in eurly brackets in (9 31) goes to zero like xll' a8 K~ 0}, Eg. (9 32) 18
valid only in t:he case of homogeneous and iaotropic turbulence.

' Gomid.er the case where the relation VAL << L holds. In ths.s case, i rela:bion 5-2—*" «<1
.holda for all values of k -:o:- uiaich [] £x) 18 aifferent from zero. Msking a series expansion of
. the integrand of (9.51) in powers of V‘x%/ , we obtain the formmla
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-E ¢ R : . L
= kAP f 3, (k0 S _ o (9.33).
For comparison, we give here the formule which _detemiﬁeé 'X.E for a plane wave when \/AT << i

' In Chapter 6, we obteined the ‘formila
7, (k,0) = £ x 1" T (k) ,
A\ [ +n ’

from which 11-,'.fp11cr_ws that
o «© . ] o ' ) . . . .
X% = 2¢ f . (k,0)Kax = % %L f _ _ﬁn(x}_iédx' '. - (9.34)
o - _ o - ' d o '

Comparing Eqs. (9. %3) and (9. 311- we convince ourselves fhat when AL << ¢, the meaa square
fluctuation of the logari‘bhmic an:litude dt a spherical wave ia ten times smaller tha.n the
corresponding quantity 'for e plane wave, and that this ratio does not depend on the. form of’
the s-pectra‘l density c;f the refr.active..index fluctuations {or on the form of itg' correlation

or structure function) [e]

We now consider the case where the eorrelaﬁion :f‘tmc'bion of the refractive :Lndex fluctua-

tions exists and hes the finite integral scale :r..n (see page 1hh}.

PR AT -
n = 'B'j'i')')' f By(r)ar ;-5;22{57 f $,{rwax < NG
o : : o .

For \/i >> 1, we cen neglect the repidly oscillating function in the integrals (9.31) and

(9.32) (see the Binﬂ.lar example for a plane wave on pagés 143-144), cbtaining the formila
Eor . ~ax‘°1;2L_f B (ke = ng K2, , , S (9-3)
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’

- which coincides wi't:h Eq. ('?.68) for a plane wave. Tbus, far VAL >>£ , the mean square
amplitude fluctuationa of a plnne vave end of & spherical wave are equal to each other. .

‘" We now consider two concrete examples.

.'L I.et the field of. refraetive index fluctustions be homogeneous and iaotropie and let

it be described by the cqrrelation fm:etion ' _ o = 9

s - .22 . ) :
2 B (r) =0 e /2, - | L (9.38)

The mean -square fluctuation of the log"aritimic amplitude of the wave for /AL << a can be

found by using Eq. (7.78) for a plane wave., Bearing in mind that for a spherical wave the

- quantity X2 is 10 times smaller than (7.78), we .obtain

B hEBLD ' _ : . .
=715 3 e T " A9-20)

This expression agrees with the quantity found in ;&er@mm’s ‘peper [¥5] vy using the equations

'.oi’ geometrical optica. If VAL >> a, the mean squaxe fluctuation of the logm'itbmic mnplitude

of the Bpherical wave agrees with the corresyonding ex_press:l.on for a plane wave. Using Eq.
(7.80), we cbtain ' '
2 W

*® = VX n® P, . | | | R SRR (9-38)

)—le

-

A more detailed investigation of the expi'essipns for X~ and Si 18 cerried out in the papers

|:58,6]J for the special case where the correlstion function of i-.hé refractive index fluctua-

: ﬂ:ions has 'che form of . the Gaussian cu.rme {9 26). Hawever, we sha]_'l. not give the expressions

appea:d.ng in these pa.pera, which ex_pm-ens x2 and 82 for an a.rbitrary value of the ratio \/ /a,

‘ because of ‘bheir excessive eamplexity- (In the Jimiting cases of smell and large values of

the paremeter \X /a, these formulss agree with the relations (9. 3'}'} and (9.38).) Moreover,
the applicability of Egs. (9. 57) and (9.38) in practice is quite dnubtful, since the correla- .
tion function of the refractive index fluctuatioms does not have the form c:f' a Gauasian curve

u.nder actual atmospheric conditions.
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2. We now consider a mich more realistic example, when the fleld of refractive index
fluctuations 1s locally isotropic and is described by the "two-thirds lew". As we have already
seen, the spectrel density ﬁn(.-c} corresponding to this law can be teken to be :

0.033 ci /3 _ _
8, (k) = -, ;. | S (9-39)

0 ) for Kk > K .
m "

fork <k_,
m

.

We calculate the size of 'I:.he aemplitude -fluctuationa separately for VAL << !. and’ ,;‘ >> & .

In the first’ case.we cen use “the expression X = 2.46 C ;7/3 which is va:L;d~ for a plane
" wave. Difid:_l.ng this expressi_dn by 10, we obtain ' ‘
)_(-é ::1..0-25. CE 1}_ 587/5 - ' A\ o . . ’ (9.’40) ]

For VAL >> ¢ (end et the same time /AL << LO) we have to use ‘the general formula (9.31):

'?_=2«(0035)02k21.f -11/3 i;'\/% cosT (f) +

o

+Bin—1;-—-8<.f ) .- B (9.41)

, For AL > ¢, the upper Lmit of integration 1in (9_.’4-1)' can be replaced by infinity. Making

in addition the change of variables VKQI./Q:H:IC = X, we obtain the expression

;(? = OJih 7/6 3_1/6 f '8/3 I:cos C(x) + 8in X S(x)] . d.x .

(9.42)



LBy mﬁga'l-integraﬁon, we find the integral in (9.42) to be equal o 0.90. Thus, for -

VRG> 1, e bave
N 0.13 0121 K7/6 22/6 o ' (9.43)
_',-_-The_é;xwres'sién (9.43) ﬁi‘ffers from the corresponding expression (7.9%) for a plane wave only .
~ by the numri'éal coefficient. The meen square- fluctuation of the logarithmic smplitude of a

spherical wave in the case \/AL >> i, is epproximately 2,4 times smaller then the correspond-

' ing quantity for a plaﬁe wave.



© Part IV

HPEBDAEB’.EAL DATA ON PARAMETER mcwmons OP I.Il.'EIi’LlJI

AHD SOIIED wm PROPAGATJIG 1N THE MBPEERE

Chapter 10
MGALDMOHHHCTUATIONSOFWANDW
WE[DCITIJITHELMOFTEEAMSPEERE |
mxmmmmmmm

EXPEI;imn‘tal investigat:l ons of the fluctuations or'meteerological ﬁ.elﬂ.s'have-‘héen _ |
:Lnitiated comratively recently, so that there is a la.ck of detailed data, wi‘bih 1.he ext:ep-
tion of some Investigations clevoted to the study of fluctuations of wind velocity and tem-
perature in the 1ayer of the etmosphere near the earth [17, 36, 37, 62, 63]. +It 18 charac- '
teristic of turbulence in the layer of the atnosphere near the earth that the turbulent
regime 1s strongly influenced by 'the'eart!_:'s surfacej thérérqre such tui-bulemce has 1ts own .
special peculiarifies. The leyer of air several tems of meters thick lying near the earth's .
surface 1s a turbulent boumiamy layer [14., 6k, 65]‘. In the simplest. case, wheze the alr
‘moves ovler a pléﬁe surface, its mean velocity a is a 'fﬁmctinn of the height. .-In t;h:e case .
where we can neglect the effect of the buoyancy forces on the motion (the buoyancy forces

appear when 'l:he mean alr temperature depends on the heigh‘l:} 3 the wind '\relocity vu'iea with

the height according to ‘the ].ogarithzlc Law [as, 6&, 65]
_ V* . . ) g . . . .‘-'
u(z) =71.os,—0,_ : . ‘ ~ (20.1)

vhich 1s valid for z > z. Here v, 18 & constant with the dimsnsions of velocﬂ.ty, Kis a
eon.etaz;t spproxinately equa.l to 0.1; and 2 is a heisht determined. by the roughnens of the _
underlying surface.

. Eq. (10.1) is valid up to heights or the oxder of several tens of meters (50- m);
for large valuss of’ 2, the growth of B(x) alows ‘downsv wi&nn the 1nsarithml.e hmm layer
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.of the atmosp'h:ere,' éhara.cteristics t:f the turbulenae 'JJ.ke the rate of energy dissipation e ,

i

‘the coefficient of turbulent d.irfusjon K, etc., also d.epend on the h.eigh‘t. To a first

s_ppro:dmatinn, the quan'cit:l.es K and € (see pages 29, 1:-1) are given by the fozmule.a ]:611- 65]

K=Kv2 .o R __ : ' (30.3)

In Part I, we obtained the expressitm D, {r) . c 23, where cf, = ce2/3, gor tre structure °

function of the wi_nd velec_:ity. Substituting Eq. (10.2) into this last formula, we obtain

: 2 : . .
2 c. - ¥ IR o ' : ) ) .
c\r = ;é-?-s- ;éﬁ - . . i . . . (J..O.h')‘

r
'

.Th:u.s, in t;he loga.rithmic boundary layer of the amoaphere » ‘the structure conBtent G falls
'orf with height ;L-Lke /3 [a]. :

Ve can also write a a.milar exjpresaion for the ooncentration fluctuations of a conser-
vative passive ad_ditive 4. In Part I we o‘ntained the following fozm:la for the structure

-~

function of §:
(r) =2 ¢ 2/3 where €2 = a® ‘ D (dﬂ)g - a2 L.h/s(d—a)e
'8 9 ‘8 du/az. o ‘dz
and I'o - [ ._K .
N / dy.:./d.z

Substituting the expressions (10.3) and (10.1), we obtain the formile

. c§=a(xz) /3( i o ) (10.5)
In the case of a logerithmic wind veloclty profile, the mean concentration 3§ of a passive
conservative additive 18 also distributed sccording to a logarithmic law [64, 65]:"

&
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9(z) = const + 0, log 2, T (20.6)
| . L

vhere 8, 1s a constant with the same dimensions es 9. Substituting (10.6) into Eq. (10.5),

we obtein the expression

: 2 - ) .

-similar to Eq. (10.¥) for 02.

Eqs. (10.6) end (10. T) can be e.pplied to describe the ‘.t‘om of the mesn temperature pm-'
i‘ile end the character of ‘I:he te.lqperatm ﬂuctua‘bions in the 1ayer of the a:tmosphere near %
the earth. Hmver, we should rema:'k s‘t once that in the case where. the mean tempera‘bure

of the air varies with height, in parbicular when -
T(z) = const + T, log = , . , : o ~ (10.8)
: A ) .

Eq. (10.1), wbich"describes‘ the wind profile, becdmes ~ina;:plicab1e. Eowever, when the ver-
tical gradients of the mean temperature heve am.a.ll values s the correction to Eq. (10 1) is -
also small, and to a first appro:d.ma‘tion we can _disreg_a.n'l it. In this caae, ‘we have approxi- '
ma'bel:{ D, (r) = CT 2/3 where'
2 2 bU/3 T-E : . e
= K N - N . N
. The qmmtit:l.es 02 and c defined 'by Egs. (J.o k) sna (10 7) depend on z end change aypmciably
vhen z 13 changed by an smount of the same crder of magnitude’ a.s t.he va.lue of z itself. -
Therefore, in 't_he ‘boundary layer, the "‘l:w-third.s lsw".holds: for distances r which are restric

ted by the condition

"5 s Lo t L P . (20.10):

_ (see page 50). For 1arge values of r, the structure famctiom D (r) and DT(r) fov more
slowly then 12/ [66, 67].
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In experimental investigations of the miqrostmcture. of the Fflelds of wind velocity,
'.'te-mp'.efai‘;t_l.re, midity, etc., in the atmosphere, one must use very miﬁm, low inertia .  *
'i_ngtnmientg. 'Ordi:ia:ri}.y, hot wire enemometers are used to measure wind velocity fluctuations

EL'?, 68], and resistence thermometers are used ts ma.si,u'e tamperatﬁ'e fluctuations @8_, 36, 57]-

There still do not exist sufficiently low inertia midity detectors, which satisfy the neces-

sary requirements (high sensitivity, small working volume) for measuring turbulent fluctuations.
A hot wire snemometer is a thin wire (u:s:uall;r'ﬂ of platimm), which is _hee.ted by an electrical
‘current to temperatures of several hundred degrees centigrade. The heat exchange of the wire,

" and ‘consequently its temperature, depends on the velocity of the wind flowing past i-t.,- this
"allows one to relate the electrical resistance of the ‘irire to the velocity of the flow incident
on it [v]. The :].nertia of the hot wire anemcmeter is very smell (for a wire of diameter 20 u,
it does not exceed 0.1 sec [63_]}, and its dimensions are of the order of ome or two centimeters.
To measure the structure function of th_e wind velocity, 'i:.yro hot wire anemometers are put in
opposite__amé ..of a ﬁheatstone bridge, so that the current through the galvanometer is a funetion
‘oe'f the diff‘erenee_ of the wind velocities at the points where the anemometers are located. For
a detailed description of the ai)pamtus, see the papers [17, 68]. .

Mewumments of wind velocity fluctuations in the atmosphere made "hy both Soviet [17]
end foreign workera [69] have con:f‘irned. the "'two-—thirds law" to a sufficient degree ¢t accu-
ra.cy In Fig. llt we show the empirical structu:e :E‘lmct!.ona o'ntained by Obukhov at various
heights sbove the eerth's surface [17]; the curves correapond to the "two-thirds law"., The -
d.epend.ence of the structure ccmstant G on height, expressed 'ny Eq. (10.4), agrees satisfac-
torily with theé expeﬂmn‘bal da.ta., where, according to Obukhov's data, the constant C. equals
1.2. Measurements performed b}r Townsend [70], leed to the value /C = L.k [e]. Thns , the
formiles D, (r) = 02 2/3 ana cY ova (ks }'1/5 bave been confirmed. experinantall;r This
a.'L'Laws us to mak.e q;uantita.tive estimo;l'.es of the fluctuations of wind. velocity using simple
' measurements of -I:.he p:mﬂle of ‘I:.he mean wind speed in the layer of the a‘hwsphere near the.
.earlsh. Mea.su:ring the m&an values 'ul and u2 of the wind speed at two helghts z and 7y wi‘bun
the layer of the atmosphere near the ea:rtih and applyina Eq. (10. 1), we can determine the
quantity Vi
Vy = __f.E..u!.-_'.'.i?z__ . _ e . .(lO-li)
log 2y - 108. Zy . .



Then the gquantity Cv cen be determined from the formula

VP -5y \
C =. - ’
_ v zlf!3 103(21/22)

-

' (1(_).1_2)

where k »=<0.k'and \/C ~ 1.4 [a]. In the leyer of the stmosphere near the earth, C_is equal

to & few cgs units in order of magnitude. ‘ _ ' ar
~ P
lavi/v
0.08

s

006/~ R
0.04 c/

& //0/ —

002

0 20 20 0 ZLom

' Fig. 14 Empirical structure functions of the wind’
‘field in the layer of the stmosphere near the earth [t.

We now consider measurements of temperature fluctustions in the layer of the atmosphen
near the earth. The difference betueen the temperatures at two points can be measured by usir.g
. 8 pair of low-inertia resistauae themometers. (:platinmn wires a few tens of micmnn in die- -
meter), included in the circult of an unbalenced Whestatone bridge. The vultage across the
galvanmter arm, which is proportional to the 'éemperature dirferenoe of the detectors, is
ampliﬂed and then subjected to statistics.l aa:a.lysia. (For a discussion of the appmtus, .
“the papers [%6, 57, 68].) Fig. 15 shows the enpir;cal structure function of the temperature



field obteined by Krechmer; the cuxve corresponds to the "two-thirds law”.

I_:}T'ITI,"C . | ' i , S .

0.08t-
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4 8 16 ' 32 £,cm
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Fig. 15 Ehrpirical stru.cture functions of the temperea~
ture ﬁeld in the layer of the atmosphere near the earth.

NMumerous measurements of t.he strt;cture :E‘\mé“bion.s of the temperztuze field in the layer
of the atmdsphere near the earth's surface have be made by the author of this book. [37] .
The measurements confirmed the "two-thirds law” for the temperature field and allowed the
intensity of the temperatu.re fluctuations to be related to the mean 'bempera‘bure profile. Flg.
16 shows the e@erimentm.y obtainea dependence of the g_uan‘bi‘by Cp o Ka/ 5 -1/ 51* (see Eq.
(10 9)); each point of the graph was obtained as a result of mea.surj.ng the structure function
D (r) for four valuea of r, beginning with r = 3 cm and ending with r = 1 m. The right hand
half of. -the greph coxwespond.s +o unstsble stratificetion of the atmosphere, i.e..to & decrease
of the mean temperature with height, while the left hand side correspond.s to steble stra‘hiﬁ-
_ cation (temperatu_fe inversion), i.e. to an increasse of the mean temperature with height. As
is eﬁdent from the graph, for unsteble stratification the empirical dependence of cT on
‘ 2/ 3,1/ 3n, corresponds to-Eq. (10.9), end the coefficient a turns out to be equal to 2.40.
. For sta.‘ble stra‘biﬂca‘bion (tempera:bure inversion), the growth of Cp lags behind the growth of

2/ 3 l/ 3-1: vhich 18 & consequence of the {nfluence of the tempersture stratification on the
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The graph in I‘ig 16, or Eq (10.9} in the' case of unsl'bable st:;a‘ﬁifi.cafion, allows us -
t.o mske qua.ntitative estima‘bes of the size of the j;empera.‘hnre fluctue.tions by uaing compara-
_ t.ively simple measurements of the mean ﬁmpera‘buz-e profile in the leyer of the atmosphere near
the earth. By measu.ring the vslues Tl and '1.'2 at two heights z:L and z2 aend applyling _Eq. (10._8),

we can detamine_ Tyt

- Tp

T
By = =X ; (10.13)

: _Thén the quantiﬁy CT ‘tan be determined in the case of unsteble stratiﬁ,éa‘tion by uéing the

- formula

pys =T T, -
cp=2bok?3 212 g4 L1 2 © (20.14)
' zl/5 log—l- z]'/3 log = & )
—52.. z

2

or by us;ng the ‘graph (Fig. 16) in the case of stable ﬁtmﬁiﬁeation. Tt 1s clear from the
g ﬁgu.re that the size of CT in 'bhe 1a.yer of the atmosphere near- the -earth varies :[‘rcm Zero .
" (for isothermal stratiﬁeation of tl'e sbﬂmsphem) to vulues ‘of the order of 0.2 d.eg om 1/3.'
"Fig. 17 shows tha mon‘l:hly—mraged diurnal trend :of _l*..he quantity CT (for August 1955); ‘t‘.hié
curve can also be used to éatim&fe the size of Coe
In addition %o measurements of the  temperature structure function in the layer of the
atmosphere near the earth, ‘weasuresents have also been made of the temperature fluctuations
in 'I:.he lower troposphere up to heights of the order of 50b-—706 m (.on tethered haJJ.ooﬁs)' [60] .
- These meaaurements have a.lso ‘confirmed t.he "tuo-thirds 1a:ir". The velues of cT BO abta:l.ned
e in the range 0 - 0.03 deg cm 1/5 . At night'bm, appreciable tmperatum fluctuationa
' (CT D Ol - 0.03 deg em i/5] are observed only in the 1nversion laarer near the earth, which
:U-Buaqur sxtends from the level ar the earth up to helghts of the or\ier of humdreds o:f meters.
'mme; the day when the stratification is unstable, temperature fluctuations in t.he lower

tm;poaphere are usua.uy o'bserved up to greater hgights [z]-

L ) »
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Fig. 17 Diurnal trend of cT in the layer of atmos-
phere near the earth {August 1955).
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:_':e near t.he aa:-th. The tine structure ﬁmc‘bion Ea(tm} - s(t}]2 af ‘the ;phase fJLuc--

'1ons and. the mean ue |:1og(Ale )} of the fluctua.tions o:t’ logarithmic amplitude r.-j? the .

'me Wn mea.a in Krasiluihov's ex'perimen‘bs. First we comsidsr the phue ﬂu('tua--_-'-
in!. o:t‘ the vave. In the case ‘where th.e inhomogeneities 1n 'I:.he distribu‘biom of wind w*loc-—."
: 't'.empe:n‘bm*e ﬂ.o not ha.ve ti.!ne ‘to change appreeiably in: the 'I:.ime -r, ve can a.ssume that

r :are mrely co.ﬂvected (Hithmd "evolution") b'y the megn vi.nd [a] If the direction-of i

wind'is pﬁrp&ndicular to the direc'bion of pmpagation bf the sounﬁ -and 1f ite. ve...os:i.‘l:y_

.-thhn the v‘alue S(t—l-r} of the phaae a.t the point H eoind.d.es vith the value at the tj_me

fthephase atthapointvhichisadistancewmmyfxmll..{ﬂms.uehav:e,, i
;-,'.Ei(t%;.e;._..s’(t)]av?st:m};.' G e T L TR gy

miing to . (7.200) | . |
f._'Dé(ID}. '=;j':e'._93_.‘-k%p§b5/ 5 » 2 |

o << P- T, the relation - .

Jcc ) -.__si'_cnjaz.- f wmfaws T i; )




obtained by Krasilnikov and Ivanov-Shyts I:"{l] 3 while Fig. 19 shows the dependence of 0g on

V13 the sound frequency 1s 3000 Keps, the distance L = 22, 45 end 67 m, v =5 m/sec, t = 0.0k,

~

1 0.08 and 0.2 sec. »
Og

40

T

30

20

o1 I ] b ] ] 1 2
0 2 4 6 g VoL

I‘ELg-. 18 Dependence of the phase fluctuations of
of a sound wave on distence. (The quantity I
is plotted as ebcissa, and the a.ver&.gé" velue of

<o for verious At is plotted as ordinste.

Os

40
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10}

.O A 1 i 1 - ] L (yr,dm)%6
0 M 2 - 4~ 5 6 7

¥
Fig. 19 Dependence of the fluctuations of the phase differ-’

_ence gy = \/Es(t:-\\--r) - 8(1;)]2 on t. (The quantity (?1)5/6
is plotted as sbeissa, and the average of Og for various
values of L is plotted as ordinate).
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“can'be’seen rmm ‘the f:l.gm-ee, the dependence of g on L and vt eg:rees eatisfectorily
:v.tth Eq. {:L'L 2} U:I.trasonic experimenta perfomed at frequenqiee up to 50 Iccpe a:l.so lead to
'eatisractory agmement between the experimental ard theoretica.l ‘results ]:?2_] Thus, the

5 dependence (11.2) hen been’ conﬁ.med experimentally over a frequency range from 1 to 50 Keps.
5 F‘ig. 20 ‘shows the depenaence of the quantity o, n,f [;qg(ﬁ._/ao)_]_a on the_ distence (all

. “the data ‘are z-eferred to the distance 22 m}. The dependence of 'o-‘ on L is satisfa.ctoﬂly

eppro:d.mated by the fbmz_'l.a A AL where a ~ 0.8. TNote -bhs:l: ve ought 1:0 have @~ 0.92,
sceording to Eq. (7. 9&} (In the experiments under con.eidere.tion VAL >> L .) Thus, the
experinents of Kraeilnikov and Ivenov-shyts ag;ree eetisfen-borﬂqr with the theoretical formula

C(7.94). ' > : "

(IO“ Aﬂ) . 08

04

0.3

P

0.2

L,m

Flg. 20 ' Dependence of the fluctuations of logerith~
mic emplitude of a sound wave qn the distance. (The
ratio of the fluctuations at the distance I to the
ﬂuctuatio‘s at the distance 22 m, averaged over
neerby ﬁ'eq_uenciee, is plotted as the crdinete.)

2]
tity C e.ppearing in Eqs. (11 2) and (7 914-), which chazacterizes th.e :Lntensi‘by of the fluc-

Using the resulte of meeeumnts of the quentities o, and UA’ we can estimate the quan—

tuations of the sound_ve:l_.ocity. If we use the fcmm:l.a
i

C. = =~ e
R 1k )8

to find C » Vith the values &- = 46° = 0.8 m,‘ k=580t (£a 5chs), Low 57 m Va5 m/uec,

Tm= 0.2 sec, then c tum cut to be equal.. to 0.0010 m 1/3. This seme quuntity, determined
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from the relation [b]

a
C = A
n ™ o6 £1/E [/

with the value’ o= 0.1@14- and the same values of k and L, turns out to 'be equal to 0.0016 :u':l'f3 .

(0, and oy are taken from the paper [71]). If we bear in mind thet the values of ¢

3 A and.ua

- were obtained es a result of a‘n'almng phase and amplitude ﬂuctustion records of dlfre:ﬁnt

lengthas, then the agremnt. we obta:!.n between the values of c must be regarded as Jsatisfactory

In Part III we ob'be.ined Eq. (6.91), which relates the quantity c :E'or a.ccmst:l.c waves to the.

~ quantities 02 and C determining the rluctustions of temperatm and wind speed, 1.@._

2 :
. C ' 3
Go . :

where ¢ is the mean sound veln:city [c] Using Egs. (10 12) anﬂ. (10.11;), which express Cyp
end - c in terms of the mean values of the temperature and wind speed at tw heights Zy -and z,

in 'I;he leyer of the a’hmosphare near _the earth, we obtain the romla

n
i h ._ |
. "1

where we have used the values T = 290°C end e, = ‘340 m/sec. Here AT = E‘(aQ) - E{zm) and
AV = w_.r'(za} - ?(r.lj are expressed in °C and m/sec, respectively. The value C, = 0.0010 m'.]‘/-s_
obteined sbove corresponds to a velocity d.ifference A for the heights z' = 8 m and ‘1 abm
equel to 1 m/sec [d], which represents a typtcal value. 'Thus, Eqs. (11.2) and (7.9%) aive m
correct results for the order of mgnituda both of the amplitude ﬂuctuaticms end of the pha.le
fluctuations of the wave.

Quite similar muumnttl of the mp:litude ﬂuctustiom of a so'und. wm were made by
Suchkov [73] in 195k, 'I‘he mumrmts of the fluctuations of acoustic anqa.utude were accom-

' -panied by simulteneous muuremnts of the profiles of mean tempenture ancl mean veJ.ocj.ty, vh.‘l.ch :

permitted the celeuletion of C, by uuing Eq. (11.4). Fig. 21 shows the dependence of

o, =\/ [log(AfA )]2 on L ob'bmled by Suchkov (for a frequency of 76 Keps). It 1s clear from tbe '
ﬂ.sure that the experimental msults are ve:l.‘l. described by the theoretieal romu:l.a. {7 9‘*); 1-“-
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=051 §7/6 (11/6 . (11.5)

(In all the experiments,the condition /AL >> ! wes satisfied.)

Ta .
' (o}
020
¥
S o
0.5
o
0.10
.0
- 0.05}
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0 -—-|_ 1 L LI R
0 -4 2 3 4 5 Lm

¥Fig. 21 Dependence of the ﬂuctue.tionﬁ__ of logardthmic emplitude
of en ultrasonic wave on the distance (f = 76 Kcps).

Suchkov carried out 28 series of measurements of the 'dependencé of the quantity uri = £(L)
: % . o

on frequencies from 3 to 76 Keps. The experimental data were a.ppcrmdma.ted"by the formula

9, = %, The mean velue of a for acoustic waves (18 se.r.l.es) was equal to 1.1, while the x.iwan

" velue of a for ultrasonic .m§5 (30-76 Kcps) was 0.95. T]éle values of o c;lﬁt_ained are close to
the theqmﬁ;cal value of o= 11/12 - 0.92. Suchkov calculated the fglue of the quantity o,
mng' Eqs.. {11.4) and (11.5) and measurments of the profiles of temperature and ind ve_lq-city-
Fig. 22 shows N com;p'a_rison of ‘t';he values of o, (denoted by a&c) obtéined as & result of direct
mggm:emept and the values '_o:j 0, (denoted by o m]_caléuléted from Egs. (11.4) and (11.5) by

using Bi,nﬁaltap.eoug 'méasments of the profiles of mean ‘temperature and mean wind velocity.
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The correlation coefficient between the quam;iues log o end 1og g, equals 0.90 (97 points - -
" _

'a.re plotted in th.e figure). In calculating C, the constant /C (Bee P. 190) was teken to

equ’al 1.k, If we teke C = 1.2 (see p. 192), then the whnle group of points is transleted up-

' \ie::’d, and the regression j.1.ne' doee not go through the origixi of coordinates. Thus, mgssmmeﬁts %

PR TR T

of the quantity o, lead to the same value JC = 1.k a8 obtained by Townsend using a wind tumnel. '

A

log o, meters __ -1.5 "0 . los s
T Rl B _ ) T ) 0

l0g Oac

Flg. 22 Comparison of measured values of the emplitude fluctuations of sound waves
(3.Kcps < £ < 76 Keps) with values calculated by using ma.suxements of the
proﬁlea of wind velocity and *tempera'bm. :
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Suchkov also made measu:ramenta or *&ha time amtocomlatian i\mc‘bion of the amp:u.tude fluo.-

tue.t:ions of a sound wave. In ths case. where the. directcl.on of 'bha wind. 18 perpendiculs.r 1o the

d.i.rection ef pmpage.tion of the sound and the correlation time is considersbly less than Kz /v,

La] . 'I:he z'elation

G vy S C SR e
N o . ‘ ' '

|

18 approximately vaﬁ.d. The i'!mction B (D) for f_ AL >> ¢ wes calculated above (see Fig. 15]
‘.I'he con‘elation diatance of the emplitude fluctuatiom is equ.al to /AL :Ln order of magnitude.
It follows frmn (1.1 6) that the mmlation time of the amplitude ﬂuctua-biona :I.s of orﬁer
VAT / v. PFig. 23 shows con'elation :E‘unctions obtsined 'b‘y Suchkov for the smplitud.e fluct'ua.-

“tions, where the vt/ \AL 1s plotted as s.‘ncisna

Ba

Fig. 23 Bupirical sautocorrelation ﬂmctio;_is of ‘the .fluctuations. of
logarithmic emplitude. (1, L= 4m; 2, L= 8 m; 3, L = 16 m)
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The different curves comspond to different distances be‘l:ween the . transmitter and th.e ::eceiver

(4, 8 and 16 m} If we plot the quantities log(A/A, }mg(A'fA Y = £(1) 1n natural‘uni‘bs, i.e.
a8 functions of 1, then the curves obtained fqr different L have a different a.ppea.rance. If
we plot the curves in-units of T, = \/'_ } ¥, all “three curves cqme closer together, especiauy'.
for smell velues of v-r/ ViE. .- ' _ . '

Suchkov's. experime:nts are in gnc;d- agreément- with the.mctu'ation ‘!:heor;;r presented in
Part III The comparison ‘of mea.sured and calculated va.lues of the quantity g O 1]."Lué‘trates the
possibility uf maeking quantitative estimateﬂ of the- size of the emplitud.e ﬂuatua‘bions of sm.md
wevés by us:l.ng simple_ meaauremgn‘t:s of the wind velocity anxl-te:qpe;gtu.re profiles :Ln the aimwg- _ .

phere.
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: . Chapter 12 .
'EDCPERIME:M‘AL INVESTIGATION OF THE ‘ECINTII.LATION
OF !I'ERRESTRIAI. LIGHT SOUR(ES

-Intmductory mu-ks

ey

An investiga‘tion of the seintillation of & terrestria.l ligh'l: source was ca.rried out

“during 1956 and 1957 at the Institute of Atmospheric Physics of the Academy .of Sciences
of the USSR [74,75]. Experiments in the layer of the atmosphere near the earth are very
a.ttmctive, gince in auch meriments, in a.ddition to measurements of the amount of sein-
'tilJJi‘biOil of the 1ight source, one can simxl‘baneously make measvrementa of the rei‘ractive
index fluctua.tions (i.e. detemine the size of Cy } ; moreover, one csn meke messurements
-for clifferent and accura.tely known values of L. Thus, terrestrial e:qperiments can glve-

: nm.ch more com;plete data 'than s'bellar scinti].‘l.a.tion exper:l.ments, data which can easily be
congpa.red H'ith the theoxy of the phencnnenon. '

A portion of steppe with a regular profile was aelec't;ed for meking the ex_per:].m&nt,
this guaranteed homogeneity o:t‘ the turbulent regime along the entire pmpagation path of
‘the ray. (The ugh‘t was propagated in ‘I:he horizontal direction at an appmxi.mntely uni-

_ :l’orm height above the u.nderlying surface.,) “The :Ltght source ccruld. be moved to different

points, located at distances of 250, 500, - 1000 -and 2000 meters from a ﬁxed. polnt. At
~ distances cloaer than 250 m, the effect of scintillation wes lower than the noise charac-

te:l'iz.ing the apparatus which was used, ami therefore mmtmenta were not made at such -
dj.stalnces. It was difficult to use dg[s-'bances greater then 2000 m,, because of irregular-.

itles of the profi-le of the terrain. The average height of the raar above the underlying °

surface was 1.5 m for operation of distances of 250 and 500 m, 2 m for operation at a

distance of 1000 m, md. omata Gis‘bance of 8000 m. i |

A% watt incandescen‘t lamp wes used as a primary light source. The Jight from it
waes, focused on a diephregm 0.5 mm in diameter by using a lﬂ'.ght—-concentrating objective.

Behind the dlaphragm wes placed a light chopper rotating at 100 revolutions per second,
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whose disc c.zontained' 150 slits. The diaphragm was located at th_é focus of the exit otlzjec-

7 fdve (with & focal distence of 250 m and diemeter of 100 mm) .of the light _s_c'm;-ce, out of
which mgnateé. a weakly divergent bundle of. light, modulated with a frequency of 15,000 ope. -
The modulation of the light, with subsequent resonant amplifi‘cati_on of the signh.l at t.he

: "ﬁa:r.ﬁ-ier" frequency, made 1t possible to evoid the influence of extraneous, unmodulated
light sources, and also _simpli_ﬁea the receiving apparetus (the need for using q..d.c'afmplii’i—.
fier disappeared). _ |

The 1ight receiver (Fig. 24) consisted .oi’ two type FEU-19 photomultipliers; the 1ight
incident on these tubes had first passed through two 'diaphra..gm.a located in tﬁe plane per-
pendicular to the ray end then through a system of pz'i_snis. The distance p bemén the
diaphragms could be varied over a range from 0.5 to 50 cm. The diameter of the r.ecgivins'
dia.phragms .m equal to 2 mm, which completely eliminated the effect of -"ob,jér;'.tive-aver-
aging‘;. (8ee below). The ac compoﬁents of the output voltages of the photomultipliers,
the emplitudes of which were .proi:orbiona.l to I(Ml) and I(_Ma), where I(M) ie the instan-
taneous value of the light current through the diam located at the point _K, ‘were
emplified by tuned emplifiers with pass bands of about 2000 cps, and then detected. Volt-
agesV, end V,, proportional to I(Hl) and I(MEJ, were formed at the detector oufp'uts. In -
the emplifiers there wes a special tracking system which assured that the relation V,=7,
was satisfied (with a constant averaging time of 100 sec). After subtracting out the de

components, vo_j.tages vi=V, - ?1 and V4 =V, - ?2 were formed, proportional to the 1light
current fluctuations I'(Mlj = I(Ml) - f(@ and I"(Me)'= (M) - f(i‘e')' , respectively., The

.voltages vl‘_ and V; were 'subje_ct_ed to automg.tic sta’histicgl analysis by using a apeu:l.al equip~

‘ment setup (see [76]). . . _

' The following were measured (in identicai unitse): thg. probaebility distribution of .

. > :
the fluctuations I'(Ml), the mean square fluctuation [I'(Hl)] , the mean value Ii}llj, the
correlation function I‘tmljz'tuej = B(MI,ME}, end the frequency spectrum of the :l.‘luctua;tions

' I'(M,) in the frequency range from 0.05 to 1000 cpB. At the same time that the measurements
of the seintilletion of the terrestrial light source were made , meteorclogical measuremr*’s'

were made along the propagation,path, which allowed the'_ quantity' 02

m t0 be caléulated. * Tem-

perature profiles were measured:in the layer from 0.5 to 12 m, a8 well as profiles of the
" wind velocity and wind direétion in the seme remge. By using these messurements, it was
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.poss_ible to determine It'he turbulence perameters €, K end Dye Since the experiment was
carried out over a very Ml_'po:tion of steppe and since the turbulent regime wgﬁ iden-

-~ tical over di.'lffere_n'b ja.rts-_ of thg propsga;tion peth, meteorologlcal méaamménts vere set
up only at. one poin£. | '

We now glve the basic results of the measurements.

Frequency | _|
analyzer Recorder
Amplifier | Amplitude | -
1 ond detector' [T T>] ‘onclyzer [ Recorder

 Photo- ‘ Squarer r—g
" multiplier ; !

1st diaphragm §

Light source . ] :

2nd diaphragm | _

'y
Photo-
“multiplier

Amplifier ‘L1 Subtracting '
7| ond detector ~ circuit _ Squarer

Fig. 24 Block diagram of apparatus for measuring
the scintillation of a terrestrial light source. -

Y

12.1 The probsbility distribution function of the

fluctuetione of light intensity

It :_?ollmrs from the theory of the phenomenon that the logarithm of the smplitude of
' the light wave is expressed in terms of the refractive- index 'fluc‘t-.u.at-ions along the pro-

.. pagation path b;sr using en integral of the type

- .

1oa(a/a)) = [ [ [ 2w
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I this int'egra.‘i. we cax,z 5“5‘1171‘15 the whole region of integration D into a ls:rge 'ﬁmﬁer o ..
reglons Di ﬂith 1inea:r tiimenaiom: of the order of the o‘l::ter seale of turbu.‘l.ene.e I. i‘bich .. :
under the eonditiona of the experiment are of the orﬁ.er of the h.eight: of the ray a.'bove 'bhe ' _
grounﬂ.. '.L'here :I.s no correlat:ion between the ﬂ.uctua.tions of u{r') in these regicms. : Theré- :
fore, we obt;s,in the i'o:'muls. S LT g =mt ) L

iogwic,);_; [T P (Fav
5, |

vm::n expreasea log(A/A ) as the sum of a 1a.rge mmber of tmmrz.'elated terms. Because of .
_the c'entral 1imit theom, the quanti’cy log(AfA ) must be dist:d.‘buted a.cco:ﬂing toa nor-
mal lew [a]. since log(I/1, ) = 2 log(A/A e the quantity 1og(r/I ) mmist alao be ustributea.'

nom.ad_ly, ‘and 'bhe quentity I mst ha:ve a log noz'mal distr!bution.

The experiment gives good conﬁmation of this fact. In B‘.Lg. 25 t.he quanti‘by § -1 [?(I)]

is pJ.otted as sbeissa, where I (x) is the function which 18 the 1nverse of.
- x ) N )
Flx) =—2— f exp(-t2/2)at
i : /2% 8 . -

. end. }r(]:) is the aupirical distribution funetion of I, while the quantity 1og(I/I ) :Ls plott,ed
es ordinste. In these coordinetes the log normal lew is indicsted by a stralght line LY P
. In aJLJ., sbout 100. empirica.l distribution func'bions P(I) were enalyzed.. !Lll of them are in.
good agneemen‘b with '!'.he hypothesis of a nomal distribution of 'the qu.antity log I.

Using the hypothesis that the q,_uantity 1og Ihes a mml distribution, we can rela.te'-_-' .

the experimentally measured quantities ul. = (I - I) and T to- the q;uantity

TN T e
o, [+3

vhich figures in-the theory. - We cen easily convince ‘ourselves that they are connected by

- the relation



H||-|

2 \2 -3 C & -
oo = Gog ) =lt->C2=:Log l+-:_}E_.
o (1)

This formula wes us_ed to further esnalyze the experimental data.

F(I)

0.970

0.920

0.800

0.600

0.400}

0.200

T

0.060

0.020

T

I

0.005

I | L 1

i 1 1

L1 11
-1 . 2 3. 4 5 6 7 8 910 15 20

Flg. 25 Probebility distribution of the intensity
fluctuations of light on & log normel scale.

12.2 Dependence of the amount of gcintillation

on the distance end on -the meteorologlical conditions

(12.1)

I/1e

As slreedy noted sbove, in the atmosphere the quantity J.o 18 a few millimeters in order

of megnitude. Therefore, the paremeter L . = 43/1 , which determines the limit of epplica-

-bility of geometricel optics, is 100 meters in order of magnitude. Consequently, in our
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. in meking ‘I:he caleula'&ions. A8 fo.'llouafran ("li‘.5)_,‘_ in the ca.se{mderconsimtd.on,

‘18 ‘expressed by the foxamila i e AL e g

6% = 1.23 cﬁ w1/6 31176 _
In 1 the experiments descri'bed smltsneuus n;.easurements of nr a‘!‘. diﬂ‘erent di.stmces _

be‘l;veen the, 1:I.gh1; so-u:rce and. the :reaeiver were nof. ms.c'l.e During the time necessa»ry .t‘or.'

' transporting the :L'Lght source frum one pgint to anothgr a‘nd for aiming the 11@11; scmrse
a-t-. t.he receiver, 'b_he meteomlogical conditions had tme 1;0 change suhstsntia]ly The
: rore, 1 order to oouware v J.ues of 2 obts.ined at different diﬂtances, 11-. 18 rirat nec
Bary to reduce 'them to id.en'tica.l meteorological oonditions 'l'he simplgst va'y of mak.'l.ng
such a reductd.on is 'I'.o mrag@ the valu;es of cr per'baining 'co .one" distanee over :EIJ. 'I:he
-meaaumnts; thia g;ives e value ¢ (I.) vhich pertains to the avez-age met.eorclogic'al ec

di'bion.s The averaged values of cr a.re given i‘.n Table l.

__mml

_t_xnita_J_. ‘The’ values or a :t‘o'l.md for dirfemt a.utames r. 'imxmd. mxt ta 'be qu.l 3



‘together. The average for_ the four dig-:tances was a = 0.2. Thus, for all the distances ,

the dependgnce n.f ‘g.on CT

can be approximeted by the same formula

o - K(LJC%'Q i
The va:l.ues of K(L) (sae Teble 2) cen now be determined for each distance as the regression
' 'coe:t’ﬁcient_ of the vsalues of ¢ on CT (the quantity CT is expmssed in degrees per c:ml/ 5)

The results given in Tsbles 1 and 2 are in good agreement with the theoretical .dependence
e L:.l/la_ . e _ _ _ ‘

TABLE 2

-
L, meters ..... 2000 1000 500 250
K (L) 1.3 0.86 - 0.32 0.14

If we spproximate the data of Teble 1 (Fig. 26) by the formila 62 = const I and find
the values of n and the constant by the method of least squares, then for n we ob'l;.ain the
value 1.96, which is ver}': close to the theoretical value of 11/6 = 1.83. A similar value
of n, 'detez;nﬂ.ned from the data of Teble 2, tu.'ma out to be equal to 2.1. This value of n
38 also clese to the theoretical value of 11/6. Thus, e can regard the dependence of the
amount of scintillation of light on the distance as agreeing aatiafactorﬂy with the theo-

retical formila 021:: I.ll/ 6.

 12.3 The correlestion function of the fluctuations of light

intensity :Ln ‘the plane perpendicula.r to the ray

As. already not;ad [c], fo;'ﬁ > Lo (for light this is practically always the csﬂe‘},

_ the correlation distance ﬁf the fl;.lctuétions of light intensity is of order /AL , and the

_correlation funetic_m of the intessity fluctuations depends on the argument p/ VAL . In the
eaperiments which were carried out, this similarity hypothesis wes immediately verified.

g[easmhts of the correlation coefficient R were made for different values of \AL, corre-
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spond:lmg. to L = 2000 » 1000 and- 500 meters. ]Iov\aver, the 'diataﬁces.p Setween the d.ia.phragms
g were set in such a way that the quamtity p/\/E ?.ltraw took the 1dent1ca{. va.'l.ues 0.25, -5,
J., 2, 4 ancl 8. The measuz-ements of R hed a rather la:rge acatter, caused by insufficient .
.accure.cy of measurement. Hmrever, the large mmber of measurements of R grea.tl,v d.ecreased
'_ the error, so that the mesn values of R obtained for the same o/ VAT \f"' but, alfferent VX
" agree arery s_atisfacto:_'ily wit:h each oth?r.. Table 3 givea the q_uant:l.ties ;{ obtai.ned for -
; .._' different values of .L, and also the awerage data for all L. .
mEE3
- : -
v ]  L=2000m| ‘L=1000m| L=500m

- Averages. for all L

1 P VT = 3.2 VAL = 2.2°cm | 2T = 1.6 cm . r e ln
J—XL I R R ) ' 1 : 5'1, confidence
. R -n R 2 n R n ‘ R n intervals
o2 058 | 8 [ok6{ 151 - | = o 23 0.05
0.5 o.21-.| 9 0.3L | 19 .| o0.27 12 0.29. |- ko 0.05
. 1.0 0.69 | 11 | 0.10 18 |. 0.16 15 0.12 43 0.06
- -0.05 7 |=0.05 |- 15 |. -0.07 1k -0.055 36 0.08
ok -0.08 6 | -0.09 13 | -0.0% | 1% .| -0.062 | .33 0.08
8 -0.08 7 | -0.03 i [ -0.13 9 -0.072 | 30 0.06

Fig. 27 glves a graph of the data of Teble 3. The values of R obteined for different

1 are tndicsted by différent #igns. It 1s clear from the Tgure that the diffexende’in tie

.va.lues' of R abtainé& far di fferent VAL 1ies w-j.'ﬂ‘n_:l.n ‘the limita of accuracy of t}:te. m.eaauré-
mr.:its- (The vertical line;s. in the figure represent.5 peréent confidence jj.mits - [d] .) . The \
results obta.ined. substantiate quite satisfactoﬁ.ly the theoretical conclusion that the

' correlation function of the ﬂuctuations dependﬂ on p/ VAT axid that. the correlation d.ts—

d ‘tance of the 1ntemity fluctustions is of order \[“ Thms, all attempts to deten:ine '
"thé average size of the inhomgeneities"in terms of the cor;elation distance of the fluc-
tuations of light intensity are doomed to fa:l.lure, since from theae measur&mnta one can -

onlyini‘er the quentit;r \/'_ Y AT o S
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12.f+ Frequency apec'bra of the fluctua.tionﬁ of the 1u§mthm

of the :L‘Lght intensity {theory)

. ' : .
Before presenting the results of measurements \of. the frequencj spectm of fhe inten-
sity fiuctuations , we cons:l.dér the problem theorétically. ' I.e‘b él:(_y, z) be t:he distribution
of the intensity of ligh't in the observation plane x = L. Let.the mean velocity .;.)f motion |
of the refractive index inhomogeneities be conatant and equal to V along “the entire wave
propa.gation path. We assume from the beginning that the refractive :Lndex inhomogeneities
are "frozen-in", i.e.; do not change during the process of convection. Below, we shall
. find the conditions whie.h nmst be satisfied if suc.h an approach to the pmblem is not to .
lead to appreciable errors. ‘
we reéolve the velocity of motion ¥ of the inhmn'geﬁill;;.ties into two components, i.e.
V= _?r ey #hﬂre Yo is perpendicl.l.‘!.ar to the direction o:f‘ wave propagatio.u and vt is
parallel to it. It is easy to convince oneself tha'b oonvection of the inhmogeneities
along the pmpagation direction does not lead to appreciable changes o:t‘ the field I(y,z),
provided on.ly that the angle o between the wind veloclty v a;:d the direction of wave propa-
gat:[.on sa:bisries the inequality o > \ﬁt.T [e] Therefore, we can assume that the field
_at the point (y 22, ) at the time t_ + T Coincides with the i‘leld at the point (y - VT
z, - vi-r) at the time to‘ Uaing this relastion, we cen express the tim_alrtocomlat_:l.on i
function R A( 7) of the fluctuations of logaﬁthmic m_plitude at the point {-yo,'zo) in terms

of the space correlation function Bh(p): ’
_ RA('I.') = Bn(fnt). . - . - | (12.2)-

.As shown above, the transverae correlation distance o:r the amp]i‘t‘.ud.e ﬂuchlations of the
wave 1s of order \}J\L. It fo].'l.o'ws from (12. 2) that ‘the comlation tim o:l’ the field :Ls of

order T_ = VAL/v, -

We no\r formulate the condition whic.‘n when sa‘.tiaﬁecl a.llm us to rega:ni 'I:.he refractive
1.nd.ex 1nh0mogeneities as ’Tfrozen-in . It is c:l.mn' that for t.his to be the case, it is

sufficient thet the inhomogeneities of size VAL, which are chiefly responsible.for producing
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the emplitude fluctuations’ of the weve, should not have time to chenge epprecisbly during e

the time 1&'. As shown sbove (see Chapter 2),.the "lifetime". of an inhomogeneity of size &

- is equal to T, ~ /v, ~ _f»/(ez)lb. For ¢ ~ \/iT we cbtain -.rJ__ NN A (e-\/ﬁj‘l/3_

This quantity must be iarge, compared to Ty whence A > (e \/}_L)l/ 3 . But Vi is in order of

. mgﬁituﬁ.é equal to.th_e velocity of the flof as a whole and can be expi-essed. in terms of the
outer scale of turbulence L, 1..e. L (eI.o-)J'/s. Therefore, the "f}c.)zen—in“. condition can
. .lﬁe used in ‘the casé.w.l'_lex"e JJL_I. << Lo" ('This condition is -pra,c'b.icaliy a.lwlays satigfied for
' iight propﬁgating i_n.the atmosphere. ) _ .
: - We now.calculaté the frequeney (time) spectrum of the a‘mplitﬁ&e fluctuations of the

wave. Denoting the spectral demnsity of the fluctuations by W(f), we have by definition [£]
e i is in order of magnitude equal to the velocity of the flow as a whole and can be expressed

in terms of the outer scale of turbulence L,y leec v =~ (eLo)l/ 3, Therefore, the "frozen-

- .

in" condition can be used in tﬁe ‘g@ge where AL << 'Lo. (This condition is practically
. B . . %

always satisfied for light propsgating in the atmosphere.) A '
‘We now calculate the frequency (time) spéctrum of the emplitude fluctuations of the

wave. Denoting the spectral demsity of the fluctustions by W(f), we have by definition [£]

W(e) =k [ cos(axtr)R,(v)ax
[

or
L]

w(r)_ﬂfcos(_a.rfi}nﬁcv;)ar. - | (12.3)

Uéin.g the expres_sion (&) .
e

B,(p) = 2« f f’A(k,O)JO(KP)KdK
B -

end. cheniglng the order of integration, we obtain the formila

. W) =8z | F (x,_b)'xdx ' J (kv _7)cos(2xfr)dr.
- -!- Al : 5[ o' ' 'n .

The inner integral is the well known discontimuous Weber integral [53):



/ 25
1 for x273_>ll~12£2

2 2
- _Kavn - kg
f IO(K?‘ﬁT)COB(&ﬁfT}&T = <
o ’ ; . )
o for xavi < b2,
\ .
Consequertly we have
W(£) = Bx f ?,(x,0) L .
22 2,
208 A
v
n

(12.%)

Eq. (12.4) relates the frequency (time) spectrum of the emplitude fluctuations of the wave
to the two-dimensional spectral density F,(K,0) of the smplitude fluctuations. For com—
paring the theory with experimental data it is convenient to comsider the dimensionless

[

.

quantity

' mwi(£)
WE) = —

f we)ar

o _ : ) ,

vhich satisfies the condition of being normelized in’logarithmic units, i.e.
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oo . ) : . ¥
g f U(f) dlogf = 1.

.0

o

- We use Eq. (7- 8’?) for F (K,O} and Eg. (7 o4) for Xa = I W(£)df, expressions which are.

valid for the case CE = congt. Then for U(f) we obtain the expression m]

SR @ : -1_1/6 .
u(z) = B _ g 55 f [ S—i—’%fi-iﬁ-l (+2 + 0 ) at , C (12.5)
_ XE 5 t ES ﬂ i
where - } -
. a ' vn . ' ) _
=_f/fo end £ = - \/; - — . (12.6)

'As gauoﬁa from Eq. (12.5), the éuantity ﬂ(f)f;é. 13. a :E‘w':lc'hi_t-m of Q = _f/fo', which does
not chenge its appearance when v, and L are changed.'.. (In .'Logarithmic units, chénge of v,
orlL correrspond.s to translation of the curve U(£) along the horizontal axis.) The function
£ W(f} / I W(£)ar 1s shown in Fig. 28, end the normalized function U(£) obteined oy numerd -

 cal in'begra.tion of (12.5) is shown in Fig. 31 [i].

foW(f)/X2.

' 04

0.2

1 . | e 1 .
-05 . 0 0.5 log (t/fo)

Fig. 28 Theoretical shape of the’ frequency spectrum
o:‘ the fluctuations of logarithmic lmpl.{tude for constant wind veloclity.
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_12.5 Frequency epectrum of fluctuations _of.ggh't intensity

The frequency spectrum of the fluctuations of light flux was measured by using & fre-

quency anelyzer consisting of 30 filters, each with 2 band.widtli of éne half octave

r/ flo‘w'er

80 seintillsetion spectre were ana.lyzed, obtained at distances L of 1000 a.‘n.d 2000 meters. _
The quantity v o the con;ponent of the mean wind velocity perpendicular to the ray, was cal—- '

wlated by using sync.hronons meteorological meesurements. The meggurements at each dis‘tance

{experimental results)

were divided into 3 groups depending on t:he size of v n? namel;.r

.1<v <2m/aec,2<v <5m/aec, and5<v <J+m/aec.

Average spectral densities W(:E) of the fluctuations werée obtained for each gmzp ('!;he aver-

aging wes carried out in logarithmic units)

w(g) / j H(f)di‘ were calculated. Fig. 29 gives the quantities u(£) = fw(r} / j' w(r]ar
o

. correﬂponding to the different wind velocities V. o vhich are the acveragea for the glven

group of measummnts; the abcissas. are measuxed in loga.rithmic units.

It is clear from the figure that when the mean wind velocity ig increased, the curves
of U(f) are shifl;ed in the high-frequency direction. We cen find the frequencies r coxre-
sponding to the meximm of the curve U(f); f 18 d.afined ‘@8 one half the sum of the :Ed:ﬁquency. ;

velues for which u(f) = _Q'EU(f)]max

_for groups of the quantities f and fm\/u. / Ve

" J2), érrenged in = bezk one half octave apart, from 0.05 to. 1.160 cps.

Then the "normalized" spectral denaities

.- .Table 4 givea the values of the meen wind veloelty Va

TARLE 4
L = 1000 m L = 2000 m
Yy m/secl;l Sesseens 1.46 2.18 3.46 l._61 2.59' - 3.01
:my CPE cosessvcsnsns 20 25-6 1.5.5.-"'? | 1801 25-6 59‘8
... fmmfvn scsansnns .. 0.31 0.26 : 0.30 0035 0-51 0.%
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F‘ig. 29 mxpirical mquenw spectrum of fluctuations of light intensity
for diﬁ’em‘t wind velocities (a, L = 2000 m; b, L = 1000 m).
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The quantity £ /AL i is spproximstely constent, ‘with mean value equel to 0.32.

.Thus, the frequencies g are connected with v end VAL by the relstion

h's ; Y
£o=0.%2 2. ' - - o (12.7)

We note that a calculation based on the hypothesis of " frozen-in" furbulence, s 1ead£ to the .
relation fm = 0.55 % / VAL, which differﬂ_f‘rm (12.7) by a mmerical cwffid.ent. However,
the. theoretical relation between the spatial correlation distence R B A(RO} = 0] end £,

which has the fonﬁ .

R - ok 2, S 2.0
H .
is met satisfactorily, since according to the experimeﬁtal data, R = 1.5 .\flL,'-wh:Lch

<

together with (12.7) leads to the formulae

n - _ : ‘
RO = 0.4_8 E:; . : ) o : 5 _(12.9).

Fig. 30 gives a more ae't.ailed verification of the similarii:y hqr;pothesis ex;pressed by
Eq. (12 5) In Fig. ‘30 &ll the frequency spectra represen‘ted in Fig. 29 are reduced to 'bhe
velues v, = 1 m/sec end L = 1000 m. As is clear from the ﬁgure, the spectra which are
.transromed in 'bhis wey differ very li'btle from one another. .This confirms }:he fact that

the function U{i’) depends only on the argmnent VL /v o2 Leee

(12.10)

) f W(.f]d_f \ n

o .. B R .

(L) (4' WAL
F q

A theoretical calculation of the function sppearing in the :r.f.gh‘t hand side of (12 10) L
-was m.ade above, - by using the hypothesis of ":E'rozen-in mrbulence.' Fig. 31 glves a com-
parisrm of the theoretical murve and the expenmental data obtained. by averaging 1.he grapha

in Flg. 30 [J]. It ise clear from the figure ths;b the theomtical eurve 15 "nmmm:" than
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Fig. 31 Comparison of the empd.rica.l spectnm of E’luctuations of ugﬁt
P - " intensity with the theoretical spectrum ll, 'bheoretica.l cu:'ve,
S5 e R .2, axperimental curve).
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v s . .

the éxpérimentgl curve; thu 18 evidently related to the fact that 1t is assumed 4n the -
' 'theory that the wind velocity ia constant along the entire propagation ps.‘bh.

In. conclusion, we state the basic results of. -bhe e:qaeriment'

1. The fluc‘buations of light - intensity ca‘uzed. by a.tmospheric turbulence have = log
normal distribution.. ' ' B

2. The dependence of T [log(I/I )] E onL 18 found to be in satisfactory agreement
with the theory of the phenonmnon, which leada 1:.0 the fomxle. 02 °=L / 6 .

e Diz'ec't measurements confirm ‘the theoretical concluﬁion that the con'elat:lon fune~
“tion of the fluctuetions of light intensity depends on p/ VAL and that the comj.ption
d.:.atance is of order \/—_ . ._ .

4, It is conﬂmsd “that the ﬁ'equency Bpec‘bmm of- ’c.he fluctustions of light intensity .-
d.epend.a on T \/—“ /v 0’ and good agreament is observed between the interva.ls of time corre—- .

lation and space ccmlation.
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'. | Chepter 13
TWINKLING AND szw:axm OF STELLAR TMAGES IN TELESCOPES

The first experimen;ts c;mcer-ned.' with the stud& ::;f fluctuatidhs of i_ntensity and angle
arr-i_val'of light waves were carried out while imir'estigé.ting _th@; twj_.;:rkling and quivering
of stellar images. in telescopes. Recently, lnterest in this problem has.:'_'ncres.aed,'_ this.

:i.é explained both by the requirements of observational astronomy and by the close rela-
tlon which exists between these phencmena and- certain features of radio propagation in the
troposphere. Here we shall -not glve a d.e'bailec‘t exposltion of all the known facts , mor
' :;]{:ua;l.‘il~ we present the numerous theories ‘which describe the phenomens. of twinkling and
qui.v;erin.g of ate]iar imeges in telescopes; we confine ourselves merely to a short account
of the besic facts and their interpretation. .
- When we mtke an obagrvation in a telescope, we see the diffrac:tion imagé of a star in

 the fpm@ of a lﬂnm core and a serles of ‘concentric rings. However, it is hardly the
case that such an ims.nge is seen all the time. Usually ‘Fhe gtellar imsge does not remain-
fixed in th_e field of vision, but rather experiences 1rreguiar d.isplacemen'ba.in all pos-
sible d_irecti-o'ns, which are called-"quiveriﬁg". At the seme time, some of the diffraction
rings are miss_;ing of ‘are-smare&.out. _Under esPeéiauy n.n.fé._w.ro_rable obse'rvationa_tl condi-
: tions, we see a "dancing” in‘egu.'l.a.f "patch”, which in no way recalls ;I;he difffaction image
-of the star. Simltaneously, one also observes "twinkling" of the star, i.e. irregular.
changes in.i‘ts- brightness. The astronomical “saeing (1. e. di:f‘fraction imge) and the
quivering of the image are intimately related (s:l.nce bot:h of -these effects are produced by
phase fluctuations of the wacve). When the “seeing is bad, one u.suau.y cbserves conslder-
able quivering of the images,
A large mmber of experimental papers are devoted to tha study of the phenomenon of
p ,'mﬂ.vering of images, a review of which is contained in the papers of Kolchinski [BO 81].
. !L‘hia au‘thnr a.z'r.‘l.ves at the basic conclusion that t:he meen squere fluctustion of the’ angle

~of arrivel of the li.ght from the sta.r is directly p:rapbz‘hional to the secant of the zenith
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distence @ of the star, i.e.

(2a)? = A2 gec 6. L. - A _ o . (13.1)

- The quankity A is a few fentha of an angular second in order of msgnituae, and depends on '
tize meteorological conditions. Fig. 32 glves the results of observations ‘of the quivering
of Btm, performed at the Central Astmnomical Obser\ratom' of the Academy of Sciences of
the USSR at Goloseyev [81] The rms values of the fluctuations of the propagation direc-
tion of the wave is plotted. along 'the vertical axis, while sec @ is plotted along the hoxi-.

A}

zontal axis.:

Vv S ; : | T ey

200"~

o] . 7
60° 65° T70° TSP TE°TI°T78° 79° 80°  B81° 82° 83 84° ¢
| 1 1 | L 1 3 1
]
2

- ¥ 1 | tn 1
3.0 4. .8 6 o T 8 9 secd

Fig. 32 Dependence of the amount of quivering of
. 8tellar images on the zenith distance.
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J_'he poin‘ts in Fig. 52 have a la.rge sca‘bter, ce.used by the fact tha.t the graph eom;prlses

?results of obsemtions made under different meteorological conditions. In order to. ahow

© the depenaence of the quantity (a cz) on sec 6', we must averege the quentities (& a,) which
belong to neighboring values of sec 6. One also obtain.a a similar result by cons‘bmcting the
regression line, whose equation has the fom (with a logarithmic sca_‘l.e):

. log (A Q) =-log AE + 2p log mec 6. g . s “(13.2) .

© " The'!quentities 22 and p, found by the method of least squares, turn out to be equel to
A= 0, 55 " end p= 0.47. This ~value of p-is in good agreement with Eq. (13.1).
' 'I‘he theoretical law (15 1) was first establ_ished by Krasilnikov [82] Suppose that

-two interferometer slits are located at '[:he points ﬁ and B at. a distence b from each other:

B the surface of the wave front is parallel to 4B, then the phases of the oscillations at
. Aand B are id_entical. Rotating the wave front by the angle Aa << l produces & phase dif-

'.ﬂerence AS between ‘the oacilla‘tion.a et A and B which 18 equal to'AS = kb Aa . It follows
! _.1.._._._

from this that the qua.ntity A @) can be expressed. in terms of (AS) = Ds(b) by using the
'fomu.‘l.a R '
—3 Dg4 b) S
(aa” == . - R _ (13.3)
s | - .

I£b > VAL , then D(b) is given by Eq. (8.22), and

B AL CL o wa

Bl

where the integration in (13. ll-) i8 carried mrt along the "ray" directed toward the 1ight.
source. We asgume that the q_uanti‘by 02 depend.s only on the height z above the earth's sur-

face. Setting x = z sec 6, we obtain from (13.4):

g

. . (Ac:,)a- = _2.91 b'1/3'5er.-. 2] f _Gﬁ(z)dz. ' ' L _. ' (13.5]_
. . o .
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In telescopic observations of the quivering of stars s t:he mle of the quantity b is pleyed
by the dia.meter D of the telescope In general, when b is changed to D, the velue of the .
numerd cel coerﬂcient in (13.5) can chenge e little. Ho'srever, the character of Eg. (13.5)

remaing the seme. It :E‘ollmre_ from (13.5) that the quantity (!.\.oa)g is proportional to sec 8,

which egrees with (13.1).' 'I‘he size of (Am]? decreases slowly as the diameter D of ._t.he‘ tele- :

scope 18 increased. - _ . | _ |
It is interesting to note -'i:hat Cg(z) usually takes its lergesf. valu_es .in the lower

layers of the atmosphere, whi ch :L:Le near the eert_‘h‘s surface. Therefore, the largest con- -

tribution to the. integral

L _ . | - -
f Gﬁ(Z)dz : .. ) ) . ' ‘ "
B o ) s
is maede by the louer layers of the stmosphere, which also play the basic role in the pheno- * _
mena of astronomical "seeing” and quivering of stellar images. ' .

As remarked in [81], the quentity Aa has ‘a Geussian distribution. This conclusion is
:I,ﬁ good aéx‘eement with the fact mentioned in Chapter 12 to the effect that the qus.r_ltity_
log’ (A/A ) has a Geussisd distribﬁtion,- since, e.s' follows from genera.l considerations,
log (A/A ) and 8, (the fluctuations of logarithmic a.lhplitude e:nﬂ. phase of the wave) nrust
obey ‘the seme custributicm law.. . '

We now turn to the problem of the ‘I:winkling of stars ( fluctuations of the ]ight inten- e
sity). In pract_ice, extensive meesu_rements of fluctuations of light intensity ere made _n;nch!
m.ore easily than measurements of the "quivering” of stellar imeges, se that there exist a
large mumber of experim.enta.l papers on thils problem [83-86,78]." By placing a photoeleefric
device in the :I.’ocal plane of the telescope, the light flux can be transformed into an elec-

‘tricel voltage, which is extremely sutteble for statisticel enalysis [81; 86,75] . M e |
reault of numerous ubseru-ations » it hes been established tha‘b‘ the size of the fluctuetions '
of the light flux pessing through the diephraa;m of 'I:.he telescope, depends significently on

' the dimensions of the -diaphregm, the zenith distance or the light source and its engula.r .
dimensions, end t:h.e 'meteomloglcel conditions. ~ The d.tmensions of the d.iaphragn of the tele—-
scope have a very. great’ influence both au"the sdze of the fluctustions (see Fig. 35] and -

on the way they' depend on the zenith distance.
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o 2 4 3 8 10 12 d, inches

Fig. 35 Empiriecal de.—pendence of the amownt
of twinkling on the diemter of the telescope:
diephregn (1, winter; 2, summer) [a,84].

Figs. 3 and 35 show how two samples ér;h? quantity a§= (P .-TD)'Q/?Q (wheze P is the
light flux through the telescope objective), cbtaimed for different values of s diameter
of the telescope diephragm, depend on .sec 0. The slope of the curves log o = £(log sec @)

for small values of 6, as well as the behavior of the curve log oy, = #{log sec 8) for large
¥ valuea of 8, depends Btromgly on the d.:lame‘ter of the dia@hragm. Therefoze, before proceed-
~ 1ing to a :E‘urt.her study of the experimental data and 'I:.Cheir in'l:erpre'bation, we investigate the

-theoretical role of the dimensions of the telescope diaphragm.

log op o ' ' ~ log op A-
) - 0.2 )
04 0 o
02 o -02
oF . -04
~02 N SN NSNS SRS NN SN -06l_1 1 1311
' 0 02 . 04 ..0.6 0.8 logsecd 0 . 02 04 06 logsec8
P ? % . .
“ Fig. 3% Dependence of the smount of twink- Fig. 35 Dependence of the amount of twink-
. ling on the zenith distance when ling on the zenith distance when
the telescope diaphragm has a dia=- the telescope diaphragm has a dia-
meter of three inches. . ‘meter of 12.5 inches.
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A photocell placed in the foeal plene of the telescope responds to the entire light
flux P through ‘the telescope diephragm. If I(y,z) is the intensity of the light wave on
- * ; . -

the surface of the objective "(the energy flow density), then
" . B =ff I(y,z)dydz, . - (13.6)
B ' . - - '

vhere T is the surface of the objective. The quantity I has a log normsl probability dis-
tribution law (see Chapter 12). If VE < VAL , f.6., if the dismeter of the objective is-
less then the correlation distance of the fluctuations of the 1ight intensity, end’ couse-
quently if changes in the light flux through different psr\ts of the objegtive~take place .
similteneously, then the quentity P also hes & log normal dstribution law. But 1f & 5> AL,
l.e., if & la'rlge nimber._of uug.:on‘eﬁted inhomogeneities of the light field can be found .

within the 1limits of the objective, then by the central limit theorar_l, the quantity P
has & normal distribution law, However, the telescopes used in practice usually have

dimensions such that mo more than 2 to 4 uncorrelated field imhomogeneities £it inside of
. »; for exm_nple,. for D = 40 cn and VAL = 10 em {sge below), % =k, In this case-the
‘distribution law of P is still very close to the log normal law. The experimental data
of Butler [87], obtained with a fifteen inch telescope, confirm this conclu-:_s:lon. Thus,
with a sufficiently high degnee of accuracy, we can assume that P, Just l.ike'.I, .has a
log normal distribution. We now find the Was oflthis_ distribution.

The quantity I can be represented in the form

I=T, exp[alcg E‘ﬂ =1, exp[X(y,2)], - - : (13.7)

wvhere X(y,z) = log ﬁiﬁ)- 1s the logaritimic smplitude of the light wave, distributed
o ‘ - : . :
according to the.normal law. Thus we have

@
s o

Pat jz‘f 252 .. | -. _ p ' _ (_1.‘5.._8}_
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* To determine the important quantity Gog 5--) '» where log P‘) = log P, it is sufficient
. K e ’ : . - To - ; )
to consider the first and second moments l&l and Me_of the quantity P.- Ml is defined by

_the equality

.,M1=..‘ﬁ_=l-l.zc ff mmz | | ' : (13‘-9)

i B'I.'l.t e?x = egxl N where -X-é = Qﬁg

ol

2 : T
;? ) , which is valid for eny normally distributed quan-
Q . . ) ’

. tity X. Thus we have

2 . - -
M = F= Iz e, ' . : o (13-10)
‘We now calculste My
e TEETET gogaeiasr. .
M;=P =1I] e dydzdy'dz'. (13.11).
: L I ' . . - . - .

-

Ifi':ue(assme thet the two-dimensional distribution of the quantity X 1s ‘also normal, then

1t 1s easy to show that

. ' - -,
e2’f(y,'z}+2‘>_{(y',z') = ell.[)c +BAG.-r )] ‘ (13.12)

or
: P R 4B (r-r') :| , ’ R
- - _ —J = — 2 A
BI(r - = (Il - Il](I2 - 12-) = (I) [g - I, .(15.15).
which is equivalent to (13.12); _here.BAG-' -T1) 1s the correlation function of the fluctua-
tions of logarithmic emplitude, considered sbove. To derive (13.32), it 1s sufficient to

‘consider the chavacteristic funetion of the two-dimensional normel distribution. Thus we

have
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If P has & log nomal distribution, then -I:.he lmantity Gog -—-—-) can be expressed in teims_,

of Ml and M, by u.aing the :E‘om.lla

y
T N2
€°g F'r;) N
0/
_ . ;
end thus- . PO _ ¥
T - . A o , ’ : e

. 5/ . hB(:-;-)'.' e -
N o . - Ve 5 ' . _ ' :

‘To evaluste this expression; we introduce the spectral expansion of the correlation -

-

L
function of the intensity fluctuations of the wave: '
BI(rl = 2) el E:(rl) = :ﬂ%(ra) - I] =
-] . : - . . .
: N ] (R A N N € -Z)l - o
: PANS RS A Nr-id _ . .
f f Pilkprg)e © 2 ac . . (13.a6)
2X(F, ) kB, (7%, s ey
Sinct= I(r ) = I e » the quant;ity e can be expressed in terms of FI(Ké,xj) by
using the formila - '
uB ( o) xfk (nr -7, am ezl
2 ffl? (xa,x ¢ 2t 1.2 kK5 (13.17)
) (1)2 I : % . _ .
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Then we have

ff I(Kz,xa)dxdx P

z (I) -®

__—..;..? X }
e
<]

f f f f e.i Eca(y}'-ya}'m}(zi-zaﬂ d“]__d-ag_ - | ' (13.18)
z z , o )

We introduce the function
- . L ]

.
i(k z) :
ﬁ. w R e (13.19)

z

-

which describes the Fraunhofer diffraction of the dlaphragm I [‘b]. Then (13.18) teakes the

- form

de.K

31 °
(13.20)

G.og!-—-) = log +--—- ff F (Ka,x }[ z(rca,ic )

a
: As £6llows from Eq. (13.19), the function V, (KQ’KZ') is apprecisbly different from zero bﬁl;_r
for k < — vhare D is the dimension of 'bhe diaphragm Z. Thus, the smail-scs.‘l.é components of
" the field (vith dimensions less then. D) do not ccatrimite to the Finetuwtions of P.
Hg consider the case where the teleslcope diaphragm is & circle of radius R. '.'[‘hen, as

18 easily seen *

g f o L1Kp cos @ 1("3) ' '
o 0 : : - - _ .




)

where K = xg + Ky - Subs't.ituting this expxeqsion in Eq. (15.20), tribrodtaling the. coor-

dinstes Ky =K ooa P, K = K 8in @ and mtegra.ting wj.th res:pect to P, we obta.tn the fomla

2 3

,_.,,,_____,( Y f*.(-,[arlcmr A e
log 5— | = log 1+ — F. (k KdK-p . . 13.22,
AL S @y TLe ] : SIREL

El:t is assnmdthat?(fce, 5| =F Gfxa-z-x) ] Tn Eq. (13.22) we can.gooverfrmthe
.spectral density F (x) of the fluetuations to the correlation “function BI( P) of 'l'.he ﬂuc—

t‘

'tuation.s. Imrerti.ng Eq.. (13 16) and taking into account the isotropy 01’ the ﬂuc‘i.uu.td.fm!
in the plene x = coust, we obtaln ' '

’

]

I;i(x) = %‘7 f )J (KD)]:dD- e ‘- ' _(.‘!5.»23)_

We substitute this expression in (13.22) and change. the order of integration:

-

) - o [ome [ 2 I

. ".'

[

‘The inner integral can be calculeted [c] and turns out to be equal to

’ ‘
. T . . . . 92 . ) .
. - a:moosaﬁ--ﬁ 1-1'.—32- -ror-pﬁzR, '

F TRt ¢

-
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o

T PN 4B (Dx) - L el -
s GQG%D ..105 ' %fe A g (arc co8 x - x A .__xﬁz Ytz § . (13.21)
TN R W SIS R T L AR T

M

ting D'='0 tere and recalling that 48,(0) = x® & %, ‘we obtain Clog§> =gt PO



D >0, G.og §P—-> < ue. We introduce the quantity G = —]-'é- Gog -g—) , which characterizes
[o] : o . "o R 2

" the decrease in twinkling due to the averaging action of the objectiﬁre. - Furthermore, setting
43,(p) = W b,(p) = o2 b,(p)
°A A AP/

"we obtain

[+

i 1 2 -
o b, (Dx)
Gz%log ﬂé'fe A larc cos x - x \/l—xa xdx ) . (13.28)
o . ' . '

For bA( p) we tske the function represented in .Fig. 13, which is applicsble in the case
where /AL >> f-o and CE = const. Numerical integration of the expression (13.28) for 02 =4
and 02-* 0 leads to the results shown in Fig. 36. As was to be expected, the function G

depends on the argument D /AL , i.e.

.G”G-L;U .
VAL

We remark thet
. -1/3
. G' i P o _.Il_.
VT VAL \

for D >> \/TL and ¢ = 0. - As can be seen from the figure, G is small eomﬁnred to unity when

D >> AL .. Thus, in the case vhere the diameter of the telescope diaphragm exceeds the .
cori-ela.tion di_stanc.:e \/YL of the fluctuaticns, the fluctuations of the total 'light flux through
the telescope diaphragm are weakened considerably. . This. is explained by the fact that for

D> AL, several field "inhomogeneities" with different signs can be found wi't.ﬁin the limits

of the telescope diaphragm, and therefore they partially compensate cne another.
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2 Ve now compare this d.ependence with the da.te. observed by the Pericins Obsemtory [81;]
Semi-annun.l averages of the frequency spectra of the fluctuations of the total ]:Lght flux
through-the telescope diaphragm are given belcrw (psge 2#7), for different sizes of ‘the

di aphragm. Integrating these spectra, ve can find the quantity a = (P -P) / 52

:E‘unction of ‘the diameter o:E' the dia.pcra.gm [a] The values of Op obtained in this m are

'_given in ‘I'a'ble 5.

o\
16

1
-, 2.0
13‘1'3.‘36 The theoretical dependence of the relative 'd.eciease

in the size of the totel Jight flux th:nfmgh an objective on the
d.imater of the. ob;ective, under the- condition & << \/ AL << I. -

Dlanter g .
. of the . ) )
minches' o Winter ) Smmae:-
y : I 0.476 | 0.373
5 7 0.346 04250
6 . 0.189 - 0.160
0.098 9.080'

FEVR




As shown sbove, the quantity - @og(?/?o)] is connected with c12, by the relation’

PN '
log ) « log(l + nra) o
Po - P

which 18 valid in the cese where the quentity log(P/P ) hes a normal dlstribution lav. We

can use this formula ‘Ibo go over from the values of org just obtained to values of E.og(PfPo)Ja.

As a result of these celculations, 'we obtain the following values (Teble 6).

TABLE 6
Dlemete =3
o;'m thér [log (P/ PO)']
D;m’ Winter | Bumer
1 . 0.205 | 0.130
3 0.110 0.061
6 .0.035 0.026
12.5 cl;:oogs 0.006k

Choosing an appropriate value of the parameter \/'iL, we can achieve very good a.grement

between the values of [lop(PfP )]2 - f(D) Just obtained and. the theore‘tical dependence. ‘The
data of Table & agree best with the curve in Fig. %6 (for 02 - 0) when f‘— 3.6 inches
(winter measurements) and VAL = 3.2 inchés (summer messurements). In Fig. 37 we compare
the quantities . [log(2/P, g (see Table 6) vith the velues of a(D / Vi) calculated % for

these velues of \/E and c. Even smell changes of the parmater VAL destroy the linaa.r :

reletion between E.og(P/P )]2 and G(D /\AL) . Thus, s comparison of the measured values

of [10;(?/? )] and G(D /\[—J allow us to determine the important parmter ,/E .
Direc-t. measurements of the comle.tion distence of tbe ﬂuetua.tiom of light 1ntemitr

made by Keller [98] by using two telescopes which could be aoved. apart, gave e value of

VAL *® of the order of 3.5 inches.
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Fie.. 37 Comparison of the. data of Figs. 33 and 36 (1, winter; 2, sumer).
(To the left and right of the points joined by the streight line
are points corresponding to the values of VAL changed by 1 cm.
_mese points no longer .'lie_on straight lines.)

X

We now turn to the dependence of the .amount’ of twinkling on the star's zenith angle 6.
It follows from-Eq. (8.17) that

L]

@ = wf oo 16 [ 2@y 56 o, e (13.29)
_ : o "

-

~ where the 1ntegra'hion in (13.29) is c‘zmied ouJ:. a.long the ray directed toward the light
source. Assming ‘that c depends only on the’ haight z ebove &he earth's surface, we carry :

out the change of verisbles X =2 gec @ in (15.29), where 8 iz the star's zenlth angle.

o



Then we obtain .

o & G.og -—) = 221+k/6(sec 9)11/6 f Ce(z)z5/6dz. - ' (;3-.30} '

Eq. - (15 30) gives the mean aq_u.sl.re fluctuation of th.e light in‘ben.aity. In order o obtain”
the mean squa.re fluctuation of the light ﬂ.ux P through & telescope; diaphragm of diameter
D, we must mxltd.ply -I;he right. hend side of (13. 20) bz,r the function G(D /\/ﬁ ) which depends
on the ratio D /\ﬁs— . Since L = ]1 sec 8, whe:'e E 15 the order of- ma.gnitud.e of the thick--
ness of the ntmospharic layer- in \mich appreciable rei’ract:ive 1ndex rluctu.ations ocwr, the .

function G (p/ VAL) alko depends on 6. Thus the formuila -

: 5 <1°5 'f') ——”) = 2. 2’4- k'”s(sec 9)11/6 ( ) f c (5):;5/6

; . , g (13.31)

cen lead to different type:i of d.epéndence on sec § for different relations between D and

VAE,. For example, in the case D >> \ffﬁo

7/3 T/3ag 17/6 /6.
().H sec 6)
<> <m> e e

| _Substit‘.uting this expression in (13.%1), we cbtain @
603 %) o= D"T/ 3 -EZ/ 6 sec® f c: ( 5)25'/ 645.'- o (13.32)
o = . S _
. - ) .

Thus, i:r we cbserve the de:pem:.ence of the amount of’ 't;\rlnk.'l.‘!.ng on the zenith anglg using &

large dlemeter telescope' (D > \/ﬁ— ), we should obtain the d.ependence [log(P/P )]2: secse



As ok svove, the qmintiti VAT, 18 of the order of 3 to 4 inches, i.e. 8 %0 10 em. There

fore, when the diameter of the telesco:pe dlephragn 1s of the order or ko | em (15 inches), .one
Im mgady ex;pect the dependence r.rgr-secr’e (for values of 8 which are not very large, the
relation \}ﬁ sec 6 << D 1s still valid). '

“In Fig. 38 we shaw (in logaritbmie u.n:l.ts) the function 02 = P(sec 6) obtained by
 Butler [89]. For 6 < 60°, the expertmental data afe well epproximated by the formile
o sac5 . The Perkins obsenrutory [84] obtained the same kind of dependence, using .
. 12.5 inch dimtar telescope (see Fig. 35) -

logop - _ - _ n;y _ .' ) "

L -0z R

~04f

=06

- I 1 I L. | .; 1. 1
q 0.2 04 06 08 1.0 12 72 rogsecs‘

~\.

Pig. 38 Depend.ence of the amount of twinkling’ on
- the génith distance, obtained by using a
15 inch diemeter telescope.

For lmu.u values of D << \/TH the function'- o( D/. \/T L) .chaﬁges ina.p:preciably ﬁhe;z

sec 6 is changéd. In this case, the dependence of [log(p/p )] on sec § is detemined by

' the factor (sec 9}11/6. For intamedia.te velues of the ratio D/ ﬁ_o » the function

) E.og(P/P )j = i‘(sec 8) can be ap;pu'oximted for small 6 by ‘the formula ELog(P{P )32- Atslec 9)®
w!m-a 1/6 < a<3. Fig, 3 shows the flmction a = r(sec ) obteined by the Perkins (bser-
vxtory u.sina a3 inch dlameter- te.].eacope; for smell @, a:g is satiﬂfactoﬁ.ly ap:pro:d.mted by

tha formula r.r (sec 9)1’8. This d.ependence is in good &g'reemen‘h with the value a = 11/6.
vhuh ought to be expected for D << \/ﬁ". According to the data of [84], & = 1.8 for

D- 1 ine.h, o = aforDa 3 i.nches, o = 2.4 for D'= 6 inches and o = 3 for D = 12 inches.

.
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i
e

- e " .
Fig. 39 shovs in 1oga.rithmic units the function [log(P/P, )] = f(see eJ, obta.ined. 'oy
Zlmkova. [88] uﬁing a 250 mm diameter telescope. The solid line indicates the theore'bical . '

curve calculated from Eg. (13 31) for JAE =9 cm. : L B

rIcpg (Iog%;} '
_ | -
o
: ! L 1t T ledsecd
0 02 04 - 06 . 08 oy aecd

Fig. 39 The dependence of the quantity log vV I:l_og'(.']':"/lf'o)]z

on the zenith distance, obtained by using a 250 mm
" diameter telescope. o R .

Thua , for zenith angies which are not very large, the dépendénee Qf the améﬁnt of twink-
1in.g on the zenith distence, obtalned as a result of observations, is we:L'L explained by Eq.
{15.51) . It should be noted that for 1a.rge zenith angles " the quantit.y GP depends stronglar'
on a.zimﬂ;h, vhich greatly fheresses ‘the sca‘tter of the points in graphs of the type o_f_li‘ig'..

- [e]- . Fhe  agreement which-ﬁe obtain between Eq. (13.31) and the function ai = 2(sec 6)
found es a Tesult of obser\ra'biona with various velues of D, asnuming that the quantity
\/—— 8 to 10 cm, once again confirms this estimate for ‘/.'_:' Below, we shall obtain a. ‘
Tew other estimates which also sgree with the first estimte. _

As follows from Eg. (13. 31), 'bhe :Lowe:r leyers oi’ the - etmosphere, 'where the quantity c:2
is largest, do not have an important effect: on the amount of twinkling,_ since’ the_produ_ct :
-55/’605(:) 18 small for small z. Therefore, highm' layers of the qtmsphére, wﬁe-rg the func-

. . i . _ _

P



.ti'ou: 25/ 6cE(z) "hair.es. larger '\;'aluezs., play the chief role in the phenomenon of tﬁinklina;.

l!oreovér, the h'eighﬁ et which-this :E\m'ct:l,on achieves 1ts mim can gerve as a more pre-’
cise definition of the quantity K . ' - '

. Wé'no_w consider the pz'ol?lem of ﬁhe freq}.lency spectrum of the fluctuations. Just as

in the calc.u.fl.atd.o..n o.f the size of -the fluctuations, here we-':_mst also take into accow_:i.t the
averaging action of the telescope oﬁ;}ective. A8 we have alreedy shown sbove, the small-

| scale -components of the fluctuation fleld, with a.imensions no g‘rea'.ter than R (the radius of
the telescope diaphragm) do not contribute epprecisbly to the quentity [oa(®/p,)] 2., There-

_fore, it can be stated that the l:ligﬁ frequency components of the flgc{uations of the light .
“flux will also be considez:ébly weakened. To calcul_s.j:é ‘the freq.lgncy spectrum o.f;' the flﬁh-
t'u.ati_on.a of the total iight flux through the telescope dlaphragm, we must calculate ;tﬁe t:l.ﬁ.e
sutocorrelation function of the. ifluc'l:;uations of this quantity. As was already shown in
Chapter 12, in considering the time ‘behavior of the fluctuations, one may take into account
o’nly'.the motion_ of the refrd..ctive! .1i1dex.inhomogeneities in the diréc‘bién pexjpendicular to
._Itha ray (if the angle « between the direction of the ray and the wind.veloclty is not too

' am.a;ll).. As pmved.iﬁ deriving Eq. (12.2), the field at the point (L,y,z) at the time t + ¢

can be ﬁgﬁed as beiﬁg the same as the field at the point (L,yhvy-r,z'-vz'r) at the time t.

Using this argument, .we can write a g'eneraliza.tion. of Bq. (13.6)

B(t) = ff I(y*,2t)ay*as!
z :

.in the fo_m
EP_(‘!: + 1) = ff I(y - VT2 - 1!".21]6,’3'&.2_. o L (13.33)
) . s .

. Averaging these equations, subtracting them from the unaveraged equations and dividing by

?:fE,Wob‘bein



P(t+7) -F Iy = v.5,2 - v,1) = I
_ _1 Yy z i,
7 z ff : T - ' :

Multiplying these expressions together and averaging, we obtain the ratio of the time auto-
correlation function of the fluctuations of the total light flux through the diaphragm of

the objective to its mean value, i.e.

RP(T);’ I 2 JfffBI(f- - +v n%)30, 80,50 | | : (13.31;).

: ’ Rgze . i 2
We use the spectral expansion (13.16) and chenge the order of integration in the expression

g0 obtalned:
#

Ry(®) =---— ff 7 (xa,xa)dx %

i[x (yy=y5tv 'r)-HC (z ~Z v, 'r}]
Al o.do
_ 1 2°
Using the definition (13.19) of the function Vs Ve obtain
:I.Ec v +.'c V2

nl,m-u— f [ Fy(kpoks) [Vy(kpk3) | @ Cacge.  (3m)
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We now £ind the time spectral density of the fluctustions s lae.

Wp(£) = b f cos(iaxr;j}a?(-r)auz f e 2 ET (r)ar.
; ' o :

Suhstituting thg expression (15.35} into the right. hend side of this fomnla. and bearing in’

mind that
-] _. N
lat :
f e dr = 2x8(a),
=0 .

©  we obtain

NPI#} = -E%’}-'-g ff FICKQ,KE') IVE(-Ka,xj)iE X

X 8(2nt i IASE KBVZ}GKEGKT ' _ ’ _ : _ “ (13.36)

' We now consider the case where the diaphragm has the fom- of a circle of radius R = D/2.
Using the expression (13 21) :l.’or v end. bearin.g in mind that F (Ka,K ) =F_ (V + K >
introduce new varisbles Ky = K co8 @, K 3 =K sin g. Moreover, writing vy =V, €08 9,

Ve =Yy 8in _cpo, we obtain )
' he [ o[ 25 (kR)j2 b o '

(e) = % %x}[ = ] kax f_&[arrf - kvycon(p - 9)]ag . .

o o £ ; o - s .

Bearing in mind that

2n T M — . for bnog® < k2 >
° i T 3. n
f 8[2xt - 'Kvncos(q: - q’o)]dq’ - kv, - Ly

2 it . ) 0 for bttt > xzvi P



: c : =3 !
we 6_btain the formula- .
8x 1 . Kkdk s
(%) @ f FI(K}[. = ] \/__t ) SR (Z!.ﬁ.j?}_
©s Bt VAR LB - .
¥ v . A S A
n

By the change of varia:bles \4’ K2v 11-12!2 = K'v o’ this fom.lla ﬂna.]_'ly reduces. to the

p—y

form _ _
.W(f)a—-— \j F(\/ )
5 x : /-.a. 22,2 '
2T, RV K° o+ x2S/ ce,
3 .r.' — _— . 3 (13_-58)
R k% + bnt" /vi ! T '

We consid.er the case where FI(K) is g'lven by Eq. (7.87), comsponding to '!;he "tw-__.-.

'I:hird.s la.w" for the re.frsctive index ﬂuct.ua.td.nns [f]:

FL(). ~ 4D, (k) = bn(0.033)(D? oL x

__-xe-i_sié%x‘.uﬁ; LT (15.39)

Then we have
Ciodnfi® AT - 2 4 42220
(f) : n 1 - 5 ka gt g L(R +.k._r/n}_.x
s o L(x +h";ﬁf’n} s g B



(13.40)

( k2e 2)'1” 6r @\/ K2+ hxéflahlra)
\/ K 4 li-nafefv _

'Instead of the function W ( f), it is more convenient to consider the ru.nction normalized
with respect to r:a, which characterizes the cha.nge in the r:wquency spectrum a8 a result
of the aversging sction of the objective. Dividing (13.50) by o2 = 1.25cn2x7/ 6.11/6 and

introducing the @aﬁtities

f=j2§_J_% ;éﬁf/fc: p=R\f—% E'ﬁd t=x\/—%f’

we obtaln

ol g™
[}
T
I
oM

a 2. 2
f _sint + Q (t+0)l'l./6
pd . ‘t-!-ﬂ

s, (VFTF)

o/t 40 o _ ' .

(13.41)

It follows from this expression that the dimensionless quantity

() T sin(t? + o° 2. 2 .-‘Li/é
= l. ﬂ t Q ’
e f _snt” + af) (2, g2)-11/6

t +Q

arl(p\/ 2 4 o ®

X “dt : : ' (13.42)

\/_‘T




‘eal :Lntegr:ation cf Eq. (13.42) It is clea.r Tmm 'bhe ﬁgure t.hat vhen p is incra 'ed

ma]_'L scale ccuuppnente of the rluctuat.ions o:l‘ I, _whoae d,imensiona sre less than _

Vo

owp( 1) /O‘
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‘To. compare the, 'bhaoretica.l fundtion W. p(£) with exberjmtal data, we have’ chosen the
frequency.zapecm, obtained ‘at the Perkine Gbsemtory, of the intensity fluctuations of
_thse light flux throu&h a teleswpe with different diaphragm sizes (Figa. 41 to b4). s _:Ls
" ¢lear from the figures, the experi:_nen‘bal data agrees qualitetively with the funetions

‘HB(:E) calculated sbove.

Fig. 41 Frequency spectrm of the fluctuations of
. total 1light flux through a telescope with
" a diaphragm of diameter 1 inch (1, winter;

2, - summer). : :

0.03

St 10 © 5% 100 500 f,cps

Fig. 42 Frequency spectrum of the fluctuations of
= total 1ight flux through actelescope with
a diaphragm of diameter 3 inches (1, win'her;
2, summer). :

a8
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Fig. 43 Frequency spectrum of the fluctuations of :
' total 1ight flux through a telescope with
. a diaphragn of diemeter 6 inches (1, winter;
2, sumer).
vWp
002f- 2,
| e x

0.01 —

0

Flg. ¥ Frequency spectrum of the fluctuations of -
. total light flux through e telescope with
a diaphra@l of d:;.angt’.er 12.5 inches -
(1, winter; 2, swmer).
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Fig.,45 Dependence of-the’ quasifrequency of

twizkling on the zenith distance.
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_ It ‘should be no'bed that the expertmental data pns ‘bed in Figs- 1I~l to ll-k re‘present
-values of W, (f) which are averaged over a ‘whole season and which pertain to dif.f‘exent Valuea
of v_, i.e. to different £ . It is casy to see that when the fimctions Wp(f) pertaining to 5
different. values of f are averaged., ve cbtain a spectrum vhich is vider in compu-.!.aon 'co

1.,(i’). 'I‘herefore, we ought not to ezperxt q;uantitative agreement between the theomtical
curve and average frequency spectra (or the type in Figs. 41 to 44). At the seme time, the
difference in wind speed 1s not reflectqd in 'I:he size of UP, which 1s t.he integre.l of W. ( £).

In some papers, in.stea.d of B.etailed mee.suremnts of the freq_uency spectnnn of fluctua-
tions of light intenaity, cruder. estimates are mn.d.e of the characteristic frequencies of
twinkling. (For example, the average number of intersections of the function P(t)hvith its
mean'lvalue or the é.ver_agé nutber of maxima of f(t) isdetenﬂ.nedJ Fig 45 shows the depen-

-dence obtained by Zthﬂ:qva- [88] for the mraée"ﬁtmbé:_‘ ‘(per second) v of maxima of the func-

tion P(t) a8 a function of sec 4. The observations were made during the course of one
night, when the wind velocity was 5 m/sec at the earth's surface and 36 m/sec at a height
of 11 km. We can see a regizla'r decreﬁse .'of 't.he quantity v as & sec 68 Inecreases. The
dependence V\u f( sec 9) shmm in Fig. h5, which ‘is well approximted by the curve

-1/2 (the solid. curve), can be simply acp.’:a.ined from the _point of view of

v. = const (sec 8)
‘the theory developed above. I‘t. can be shown (see [90}) that ‘t.he mmber of maxima of the
' curve P(t) is determined by the smal]_.est refractive index inhomogeneities. - chrever, u‘hen
t;he w:l.nd' speed is appreciable and when the dimensions of these inhomogeneities are sml_.ll,
the "wiggles" which they produce in'the curve P(f)' have a.very fine structure and ca.n.ﬁot. be
_ registered by the recording device [&]- The mmber of strong maxima of the curve under con--
sideration, which vere actuslly calculated in [88], is determined by the dimensions and
' speed of motion of the "running shadows', which have dimensions of the order of \/ﬁ_— _
(i e. the d.:l.mensions of the correlation distance of the mtensity :l’luctmtions) Therefore

v, the sverage rate of the maxima, 15 d.etez-mined. by the relation -
const. v, , S : ' .
L ) ] oLy ' ' (13.43)
mo sec @ . o

vhere v _1is the component of the uind velocity nome.'l. to the raw. Tt follows from Eq. (13.#3)
that the quantity v is inversely proportionel to \/ e, vhich i8 in good ag-eement with m :



~ curve of Fig. 15 [h:l TS, ‘the curve in Fig. 45 18 ome of the direct corroborations of
the fact that the quentity AL 1:: the com'elaticn aistence of th.g fluctus.tions of light
in.tenﬂity. _ s
Starting from Eq. (15.113) , we can once again estimate the quantity \/ro Since the
 constant in (13.43) 1s of order unlty, then teking v, = 20 m/sec and v = 70 cps, we obtain
,/ﬁ _~ const X 50 cm. © This value of \_/iﬁ—o sgrees in order of megnitude ﬁth the estimate
obteined previously. | 8 | o _
We now briefiy’ discu.as the dependence of the amount of twinkling on the a.ng.lla:r dimen-
} sions of the weve source. It is well known that the stars twinkle more than the_planets.
Thie fact can easily be explained with the help of the roumg-_'mle considerations.
The varigus points of. the surfade of a planet are i-ncohe;r:ent sources of light. As
is well Imown [52} , the intensity of the tota.l fleld of incoherent gources is equal to the
~ sum of the intensities of the separate sources. Denote by 1(8,9) the densi‘lsy of the light

flux in the direction ( o, up). Then the intensity of the total field is

I= 1(s,p)da, e | _ ' (1B.44) -

where the integratiom extendse over the solld a.'r_rgle subtended by the planet's disk. Aver-

. aging (13.14.1;}, we obtain

- [ %) an. _ o R (13.45)
Q _ . '

.
It is mtural to assume that 1 = const within the limits of the solid engle Q. Then
T =T 9, vhere the angular dimension of the planet is Q. The fluctuations of the quantity

I are given by the relation

1-1- [ [itew -1 - L wee
i Q . = ;
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" while the mean square intensity fluctuations are given by

(I -9)2 ff [1(9,(;:) - 1] [i(e',cp ) - i]smaa' | - (13.57)

It is convenient to evaluate the size of the fluctu.atidm by using the rela._t_i_vé quan-

tity

v . ) . p

— : P00 (6.59.) . ' . .
-(I—&é—) - 1% L qjl) (9% ag,da,, '  (13.48)
€ I * e

e .

where 1' denotes the quantity 1 - 1. We introduce the correlation coefficient b, (¥) of the
fluctuations of the flux density i' fof two directions (Gl,tpl) and ( 92,¢é) which make an °
N . - 7

‘angie ¥ with each other:

1'(e,,9,)17(0,,0,) s . .
22 G | ©(13.49)

bi(‘“ =
- (1)%

where cos ¥ = cos 8, cos 92+Bin.elsj.‘n92cos(¢l-tp2}..Thenwhave.

.

'I(;)fa o ff b, (¥)a0 R | iy (13-50)

It is obviocus that

(I = E) =. 1-;% L *
. @ 02

for a point source. Therefore , the fumction
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. ” 1 B ’ P . ] ‘. N ) ) } . - .
K@) =% [[ vnaam, -y . (a3
representa the relative decrease 1n tvink.‘u.ng af a planet of angu.‘l_a.r glze Q compared with
a point source. In order tc evaluate the function Kl(ﬂ), we can use the follcming srgu.ment.
. Suppose that & point source wof light is~located at the observation pc:Lnt. and that there

is a circular o‘bJEctive with area S = QI. at the boundary of the refracting atmosphere (L is

the thiclmesa of the refracting atmoaphere} 'Jihen the d.ependence of the fluctuations of the
- t,utal light flux through the objective on its dimensions is expressad. by the same Punction

.Kl(n).- On the other hand, this dependence is ‘expressed by the function G(D /\JAL) cal-
_ culated above (see Fig. 36} ' '
' Instead of thé solid a:ngle .ﬂ, it is convenient to introduce the angle'¥ subtended by
the pla.net'a diameter. Then the diameter D of the im?ginary o‘bjective will be equal to 7L

: 'and. the function 1(1(9) = K(1) takes the form
ot E'rz)- o/t 7) LT T e

vhere wis a nmerical coeffictent of order unity [1] As 18 well known, decrease in tink-
ling because of thse ﬁnitenesa of the angular dime.n.aions of the light sBource is an effect
. vhich can a.l.reedar be obaerved fo:ﬂ' sources vith angula.r d:lmen.ﬂions of the order of _
1" = 0.5 X 107 redlans. This means that 't.be argument of the function (13.52) 1s alresdy
of order unity for such a value of.> (see -l:.he curve in Fig. 36). Using this, we can make
st111 another estimate of the qusmity \/_;'. From the relation 0.5 107 f‘?i -1,
we obtain \/—71'-2 X 107 . Setting A = 0.5 x.lo"h om, we obtain \)Eo ~ 10 cm, which 1s
in good ag:et wi'bh all previcus estimates.:

_ In ‘conclusion, we ma.ke a mmerical estd.mte of -bhe parameter 02 which che.racteriz.es
'_ the atmospheric refractive 1ndex fluctuations for viad.ble JJ.ght. In order to be able to
timate c from data on the twink]ing and quivering of ste.'i_‘l..a.r images in telescopes, 1% 15
| necessary to specify ‘somehow the profile of the quantity c (z} According to some data on
aswnts of 02 in the mge t:f centimter radlo waves, this quantity fal.'l.s off with
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heigh'b__iike_ 5_'2. Therefore, we épedfy the profile of cﬁ{'z) in the form

B — . S gaxe
1+ %—) ' " ' i
)

Using Eqs. (8.27) and (8.28), we obteln - . A .

(Z;F = b6 02 no_b‘¥/_5. o ' . | (13.55)

8 . .
According to experimenta.l data, [log(P/P )] ‘= 0,205 for D= 0 and 8=0 (see Table 6).

T

According to Kol_c.fhinski’s data, at zenithV (A a.) = 0.35" = 1.7 X 10 -6 radians (this ‘figure
was obtained with 9'. telescope of diemeter b = 4o cm). Using 'th.e indicated data, and assuni.-
ing moreover that. ) = 0.5 microns, we can obtain Coo ™ 'r x 1077 1/5 from Eqs. (13.5%) and
(13.55); regarded. as a system of equations in 020 and E .

. It should be noted that the value of C 0 which i3 obtained is pmctica].ly :Lnd.ependen'h

~ of how the profile c:l’ 02(z is specified. For example, Bpecifying C (z] = Cnn exp( - ’/H ):
we obtain C = 3.7 X 10 -9 w™/3. mus, the indicated estimate of the order of 'the quntit.y |

13 reliable e.nuu.gh . _

It :Ls well known thet the air's mfmctive index fluctuations 1n the mgé of visihle

'L‘Lght are mninly ‘due to tempera‘bure fluctuations. c is connected. with the eharaeteﬂstic 3

2 2/5
T T12

Cp Of the temperature ﬂuctuatio:as (C ﬁgures in -t'.he "tvo-thirds lav”" (EL' = 2} =.

_ror the tempemture field.) by the relntion . .
= i 69 x 107° e SE R 156)
Gyt _2_?_2 - o _ _. WL . (13.!
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where T is expressed in degrees K, c in degrees cm l/ 5 and P :Ln ':uilliba;:-s'. ‘Using .this
fomla, we can estimte the quantity c For.z = 5 cm, for example, we ohtain c =8 xlO 3
' Gegrees an™/> (] Tme estimates of c vhich we obtain agree in order of it SAEh

’ -data b.ased on measm'em.ents of the inten'sity of scattering of UZEF waves, propagatiug beyond

. the hori.zon (see Chapter 4), where for heights of & few kilometers, ome obtains a value of
=5

CT ~ 5%t0lo x10

are in the nature of a rough guide, which enables us to determine only orders of magnitude.

degrees cm-l/ 3. or course, it should be noted that the estimates glven

' .Much better results could be achleved by analyzing measurements of 'I::he twinkling Is.mi quiver-
ing of stars together with simultaneous aerological measuvements, like those which vere
- made in the layer of the atmosphere near the earth. Such measurements would ﬂsu ensble us
to evaluate more reliably the roles played by different layers of the atmosphere in the .
phenomena of twinkling end quivering of Stars and other distant sources of radiation, and
would ensble us to solve a s-ex-ies of problems connected with long distence propegation of
UEF radte vaves in the troposphere. ' '
Byamq:aringthem-vesinngs 34, 35, 38and59witheachother, weaanobaerve
- 8t111 another characteristic feature of the dependence [j_og(p/p )J f(sec 8). Beginuning ¢
with velues of @ ~ 60°,' the power law growth of these fmctions slows dmg'n. I doing so,
the curves [log(P/PO)] o £(sec 6)' "saturate” - for values of the dlameter D of the telescope .
diaphragm which are hrge ocnpared to \/ﬁo, while for small D there even occurs a decrease
in the twinkling of light as the zenith distance increases (Fig. 34). This c':i.rmmsatanc_e A
which is at first glance extraordinmerily straﬁgé wes recently explained in the paper [99].
. The. igsue involved here is that all the date given in Figs. 3%, 55, 38 and 39 perbs.in to
'bwlnkling not of monochromatic but of pol;rchmtlc :L_-Lg,ht. i However, in point of fact,
because of -d.1._f1’erent shospiuerlc refraction for rays of _diffe?rent wavelengths, the rays éf
ai frerent colors arriving at the ssme observation point traverse different paths in the
‘atiosphere. The dist.ance'between .:r:a.s's of different wavelengths increases as the zenith dis-
- tance of the ].1.3}11: source 1ncrea.sea, and for 6 ~ 60° 18 of the order of 10 cm a‘b the bound-
ary of the :t!e:l‘ra.cting a'hmnsphe:e ‘l‘he fluctuations of :L'Lght intensity are mainly produced .
by the utmospheric _.inhomogeneities with sizes of order \/_: , located within the Mdﬁid
p%= Az sec § surrounding the Tay, which has a dlemeter of the order \[ﬁ: ~10 cm. Conse-
quantly,. if the distance between the rays exceeds | Jﬁ; ‘a5 & result of refractive aiffer-
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f aiicony. T ibe twinkling in aifferert parts of the spectm 18 unoorreln.ted. Therefore, :
for la.rge 6, the total intens:lLty of polychromatic 11gh1: eaxpeﬂences smalier relative :l’luc-
tuatinns thsn the inten.sity of monoch'mmtic light. Moreover, 1f due t.o thia "ch:rcmtic
effect,’ the twinkling of the ]Do)gfeln’cma‘tic light decreases more’ rapldly than it increases
due to growth of L = H  sec & (=2 18 the case for small D, where, as 6 increases,

[log(P/P )] grows comparatively alcwly), then the total effeet of the toinkl:l.ng decreases
as 6 grovs. ' '
Detailed calculations given in, [99] ensble one to completely explain the character of

the experimental curves in Tigs. 34, 35, 38 and 39, both for large and for small values of 6.

o ) ¥
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 APPENDIX"

Addendum to Chapter 5

Egs. (5:1) and (5.3) of the text follow from more exact relations if one neglects .
terms involving the spetisl derivatives of ' and T'. Treatments retaining such terms have
been given by Lighthill [1]'and Kraichnan [11], for the case T' = 0, and by Batchelor [iif

for the general case. For T' = 0, these suthors find -

du! ow

M'*;J%%fz*fa% aﬁa—‘l”'aa"-] ol

 whére p' and ¥ are the density variation snd particle velocity associated with a weak
gound. wave propagating in a medium of mean density po and turbulent velocity .’ In con-

trast, one obtains from Egq. (5.3)

. 2

2 05w o
v ap - aa: =—2pou;5—1.-ﬂ—i S R . (8)
_. 2 32 - | _

. The purt. of the ﬁght slde of Eq. (A) which is Tetsained in Eq. (B) and the pert which
is negle'cted give‘ eontributions to t.he scattering :i.n '!:he ‘first Born apﬁroximation whi'ch,
in genera.l, are of the seme order of magnitude. 'Ihis is beceuse the scattering a.rises ]prin-
“cipally from interaction with edd;,r stmctures of size ccn:gpa.rehle to the acoustic wave length..
" In pa:rt‘.imxlsr, the angular dependence of the scattering is '-strongly affected. Eg. (A)
implies & zero in scattered intensity at 90° which is lost in Eq. (B-)
Hhen the time dependence of ' is-neglected, and when the tu.rhulence is isotropic, one

ﬂnds from Eq. (A) the dirrerentia.L cmsa-aection \

* Bee Translstor's Preface.




do(0) = 2k Vo of S22 | g(z sin F)an, . R () 8
' _h.t sin 3 _ R S | '

which is to bé ‘contrasted with Eq. (5. 25) of the text, for the case ﬁr = 0. - (Cf: GL],_‘EQ.-'
(25), ana [ii], Eq. (5. 1&) The notation in Eq_. (c} a.g:neas with thaet in Eg. (5. '23) of the '
text; E(k) is identical with E(k /lmk of [i] and wlth E(k)/2 of [11] ) When the time o
dependence of u is teken into account E.:L] there result devistions from:Eq. (C) at very
emall Bcattering angles. A renen't investiga‘bion of a 'bime-depend.ent case ha.s been glven
b:.r Lyon [iv] (cf- also note [a] to G:h.a.pter L), _

" There is an analogous ch.a.nge in‘the - angular dependence of the scattering when the
tems invnlving apatial derivatives of T, which are neglected in deriving Eq. (5.23) of
the text, are reinstat_ed. Under conditions which are plausible for atmospheric scattering, .
Batchelor 4] ﬁuds- that the angular depg;ndence of do(6) 1is given by cos 9_, for the case.
A = O, in con‘brast to Eq. (5 2%), : - _ . . _

+ Tt should be emphesized that ‘all the corrections discu.ssed sbove are neglig‘].'hle vhen '
the sound wave length :[s ‘very sma]_l compared - to scales in which there is sppreciahle tur-
bulent excitation. In thig cese, however, the Born apprqximation no__longer pcrovide.s a.

valid description of the sound propasgation.
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ELi:[ R.H. Krelchnan, .T. Acoust. Soc. Am., gz, 1096-:.1.0& (1953); erratum, _a_g, 3111- (1956) -
[14] G.X. Batchelor, Symposium on Naval aydmmmcs (Editor, F.S. Sherman), Ch. XVI
_(Pu.blica.tion 515, National Acedemy of Sciences - National Research coum_:il, Ha.shing_-
ton, 1957T). | | ey T
[v] R-E. Iyom, J. Aboust. Soc, am., 31, 1176-1182 (1959)- I o Sl
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Part I

Chapter 1

& (p.3) A detailed exposition of the topics _&i.scusaed in this section can be found
in the pepers of Ya'glam-[:l,#,lﬂ and pbukhov [2,3]- ) .

b (p.3) Here and everywhere afterwards, the overbar denotes averaging over the whole
set of realizations of the function f(t); in the applications, this averaging is very often
ﬁplaced by time averaging or space ave:t:aging. '

(p.3) The asterisk denotes the complex conjugate. ()

le

(p.4) 1In addition to this definition of stationarity (stationarity in the wide

[f="

sense), there is elso another definition (stationarity in the nerrow sense), namely, £{t) is

_.caJJ.'ed stationary if the distribution f‘unc-:tion (l.ll) is invariant with respect to all shifts
'

of the set of pgints t 1:.2,...,1; by the same amount T. Hc_meirer, in practice, functions °

which are stationary in the wide sense are a.lmost-e.lways stationary in the narrow sense as

well, so that we need ﬁo‘o distinguish between these. two deﬁni_tions. Below we sheall need.

only the definition of stationarity in the wide sense; therefore, in the text of 'l:hi_a book -

we shall alwa@‘s omit the explanstory phra.se "in the wide sense"

(p.4) In cases where £(t) # 0, one can always introduce the new random function

§13

F(t). = £(t) - ¥, for which F(t) = 0.

I+

(p.5) (- ) denotes the Dirac delta fimction. ()

g (p.5) Since B ('r) B ( -1), then W(w) = W(-w), and the expa.nsion (1.6) cen also be '
written in the forms
] : : ]

Bf(-r)= f cos(wﬂr)w(w)ma:af cos(wr)W(w)dw .

- [+]

* . z -
‘See Translator's Preface.
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b (p.9) We note that 1t cen easily be shown that the meen value of £(t) e
linear funétion of time (in the case of a function with stationdry first increments). Thus, B
the assumption that f£(t) is a ._;'?_unction with stationary increments is valid-. only for time
intervals during which the law of change of the mean value ?[.1-;-)- can be conaid.ereﬁ to.be
approximately linear. However, this leads to a muéfl larger range of &féhcabili‘t‘.y 'l;han the
assmnption of stationarity, according to which the mean value caxmot ehange at all. In -
general in cases where 'bhe asmmption that the f‘ira'!: increments are stationary is not suf-
ficiently accurate, we can go :hzrther and assume that the increments of some higher orﬂer
are stationary [10] . In wh:at_foum,'ve shall assume that the Ffirst increments are sta-
tionary: | . . ) | _

i (p.10) 1In facf, in "\beginn'ing\ the stud,jr .of a random process which we are not sure
beforehand is. stationary, it ia more appropriate to construct its structure :ﬁmct;ion than
'it-s ccrrelation function. E‘urthemore , the practical construction of the structure func-
tion is always more relisble, since errors in the determination of the mean value ﬁ do-
not affect the value of_Dr(‘-ri. In the case where the consfructed s‘tm:_:tuie function turns.
out to be constant for large 1, we can £ind B (-r) as well by using eq. tl.lﬁ-’-}

d (pp 12,21) Of course, in all actual cases, the energr of the fluctuatmns is
finite: me this it 15 clear that in cases where the function w{m} becomes infinite st
w = 0, the function does not have the physical meaning of energy: .

_‘k'_.(p.13) Combine the formulas

n va



" to obtain

K,(2) =3 TNE™ - H M- NG + e, (] <De (@)
_ﬁ"(p_.n.) To caleulate the integral
.. f'w"(p”“)(i - cos u:tjdw ,

- one ¢en’start with the familiar expression for

f.mﬁ e™™ cos wt aw , (B >-1),
4 .

"and then apply the principle of analytic continuation with reé];ect to .. To obtain the '
. final result, one hes to pass to the limit a - O. _ '
m (p.16) Here a(xl —_K'Q} = «S(le - pcac)b(xly_- Key)ﬁ(ﬁclz - xaz) anq‘ ax E_dxxdxymcz.

n (p.17) Equivalently, differentiating

©
o) <2 [ o) cwsrer,
5 o .. P ’
we obtain
. o o
N0 _ 1 f r By(x) sin kr ar
" o i

so that (1.27) follous from (1.25). (T)

o (p.23)
. 2 B :
f cos(':; cos 6)d8 = 2x Jofx): :

o -

vhere .To("x] 1s the Bessel function of the first kind of order zero. (T)

"




p (p.26) Use the formula . - R

r(az =;1? 2@ I‘(z)l"(z+-) ' (1)

ki
-

Chapter 2

& (p.31) The velue of this constent must be found experimentally. In this regard see -
Part IV. ' ' " ' ‘ '

b (p.33) Some eonsidera'biona pertaining to the behsvior of D.. and Dyy for large T
are given at the end of Cha'pter e '

& (p-38) - If we asswme that the ed.cftes, even including inﬁnitely 1nrge ones, are 1so- y
tropie, then from the mccmpmssibi]ity condition ancl some supplementary hypo‘bheses we can

_obteain the following expansion for E(x) for small K [1.6]
: L
E(K) Crc + O(K ).

Ebwever, gince under actual conditions the 1arge scalea eddies are 1nhomngeneous and aniso-
trople, ‘the applicability of this result to atmospheﬂc turbulence is very dou.btful

d (p.38) In studylng the structure functions D'bt and D_. :Ln wind 'bunnela, one d,oes
not usually succeed in obtaining J.a.rge enrm.gh Reynolds mumbers to meake the 1ntewal (L ,L) — .

large. [fle recall thet ¢ ~ L/(Re )3/ I
Chapter 3

a (p.40) The assumption that the ;heinperitm ip passive is in general ot true,
‘since buoyancy forces are assoclated with the tmemture inhomogeneities [20] chever, _
_for a given'®dynamical reg-.lme of turbulence, which al:*eady takea into accouxii‘. the ac‘hion of
. the mean temperature profile, the ﬂuctuat:lma part ojt' the 'I:empera.ture can be conaid.ered to
be a passive sdditive. Recently, Obuk.hnv [94] imremhigated 'bhe departures from the "-t:m-

third.s law” i’or a tenpemtum ﬁeld., which are connecl:ed. with its lack of pmivity. M a -
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_result of an‘analysis of the influence of the buoyancy forces on’ the 'lnubulent regime, he
concludes =L¥1hthis paper that in regioné small compared to the czaracteﬂatic dimension L,
the temperature fluctuations obey. the game “WQ-thir\is law" (Bee P- h6} a8 obeyed by passive

additives. However, in the renge of sizes EI.k,L ), the "two-thirds law" is violated. The

 dimension L is defined by the relation I.K - Sl "5/1‘ -3/2 (where g = g/T, g 18 the
acceleration due to.gravity, T is ‘bhe mean 'ﬁmper&ture, and the symbol ]5[ is explained on
Pe M) In the free tmposphe;e, I‘k can'be several times smeller then L. (The ratio L/t
depends on the ‘meteorological conditiona and ‘turns out o ‘be equal to L /1.k (31)3/2 where
Ri is the Richerdson number; See note [e] to Chapter 10. )
b (p.+1) To mmtify Eq. (3.4), one can give ag: e.rgumant Bim:l.la.r to tha.t wade in deriv-
ing the fcm:la qm = =D gaﬂ ¥, by just replacing the prccess of tra.nsport of the property
8 due to molecular mn"ion by 'bhe transport of § aue to the chaotic motion of emsll parcela
of air. -
¢ (p.42) We recall that we consider the motion of the fluld to be incompressible, 1.e.,
vetaksecnvv_av/ax =0, whenceitfoumthatavfax =Oan&.av‘/axi=0.
N (p.hg) 'l‘he relation {3.28) can be obtained from -the Harler-stokas equation in. just
the same wuy as the relation {3.1_'_L} was obtai_.ned :E_rr.m_the ‘i ffusion ‘equation. E]!he relation
(3-28) is velid in ‘the _cs;sa of stationary 'hu;bulence and actually represents a condition for
the turbulence to be stationary. | )
e {p.51) For & more detallec. ;ccount of the results of'ﬁea_smts' of temperature
 fluctusticns in the atmosphere, see Part IV.- -

£ (p.52) We note that the constant n( }([r - 2]) is defined only rox- jr - 2] <<1. .

Mo 'mml_ct the spectral expansion (3.34), we mst specify the funetion D (]r - 2i) in

21

18 obtained es A result has meaning only for %] »I.;l,'”m_') that the way of specifying the

function D, does not influence the function J, in. the renge 4 »Lgl.

some feaﬂc:nablg fashion for large vlfa;l.uns of l_::"l -7 The function :ﬁf(_' A %_‘-(rl +T,)) vh:lch

The situation is
Just the same in deriving Eg. (3.33).

g (p.53) This is true only approximetely. Some details of 4the spectral dstribution
cnningm:erald.e'pendonca (For example, the quantity & aepezmonthemommmer)
“However, in the region L Lkt 1,' & universal’ spectral density °)(" ) can st111 be

_'g.a_ﬁned. [T_An exact mthenatica.l_ theory of rendom processes vith .noothl_y varying mean
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characteristics, has been given in [9] end in R.A. Silverman, "A matching theorem for loéaiill.sr -
stationary random processes”, Comm. Pure Appl. Math., 12, 373 (3'-959) (T}:l o
‘b (p.5%) Actually, as shown in the rei‘erence cited in note [g] above, in the casé of
a random process with smothly va.rying mesan chare,ctez-is-tica , there is no need for using
stochastic Fourier-Stieltj}es integrals, sinee in general ordinary {ndividual Fourier trens-
fc:rms of the sample ﬁmctions of the pmcesa exia't. with probebility one. (T} ' :.
. i i (p.55) This correlation ‘between neighboring .spectral components of the rand.om field
f(:?_) is simply related to the space correlation properties of rediation scattered by £(3),
"when the laﬁter is a rand.om refractive index ﬁéld. In 'bhis conh.Ection,' see R.A. E:L'L{remsn, -
"oeattering of plane waves by locally homogeneous dielectric noiae , Proc. Camb, Phil. Soc.,

zlg, 530 (1958). (T)

Part IT
\ _ Chapter 4

e (p.59) In Part IV, +ime changes of the refracjﬁive index field are tsken into account.
for the case of _]ine-—of-sight propegation. For the case of radic scatterihg, time changes
aaré taken into account in several pa;peﬁ, e.g., R.A. Silvermen, "Faﬁing of radlo waves scat-
tered by dielectric turb.zlance , J. Appl. Phys., 28, 506 {1§57); erratum, ibid., _29‘, 922 .
(1957) sand R.A- Silverman, "Bemﬁ.t‘.&s on the fading of scattered radio waves", IRE Trans.
Antennas and Pmpsga‘b:l.on, Vol. AP-6, 378 (1958). See also A;ipenaix. (1)

-

(p.60) A denotes the Leplace operator. ()

[L=2

(p.b']_.)' Thus we- nEglect the fluctustions produced in the ineident wave as a result

le -

of its propegation from the source of radiation to 'nhe Bcattering volume (see Part II1).

d (p.61) 1t follows from (4.13) thet

=3 4B
EX) < ke vz ;
B P~ w

where I, is the outer scale of the turbulence. Thus it 1s not just the smallness of ny
which justifies neglecting multiple seattering (1.e. the terms E, + ﬁ + «us)3 in fact, the
random nature of the geattering medium also helps. attenuate mltiple scattering, for other-

wise we would have V2 instead of ‘JIP in -bh:l.s estima‘i e. Fora detailed. ana.lyais of mltiph
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qttering 1n 8 one-dimensional ran&nm me&ium, Bee I. l(é;rand!l&. -Si'].\;eméh-; "ﬁulti‘pié_ Ty
apsttering by random staek. of aielectric nlaba : ﬂuow cmento, Vol. % Serie X, R
s-upp,lemto No. 2, 626 (1958) (‘1') ' % 3 x
) (p.sl;) In d.etail, = 1011 (B m) = ikCy i oI, (T} CERRE A
ot (p.sh) The velocit& of Light 13 denoted by c. (T) - -
- _g (p.s?) “When- the volme is a cube with side 2h, we have C

: - sinlh Binlah sin A.h

_3-(1) i 2
S .1‘1_11 ) .“.12-‘.‘- _.gzj )

mm T ("1”‘2”‘3) - For 3 = 0; F(O} - (h/x)3‘ for 2, = :r/h, F&) vanishes, a.nd. for
la:'ge 2, F(X) oscillates a.ud fe.lls ni‘f repldly. A8 h =+, F()L} +3(%).
‘h (p.SB) Rigorous. conaitions onr the va:ucuty of appro:ximations like En(:c) “ }Eﬂ(’ K)
:c + @ are gl.ven 4n the- one-dimenl!ional case by H.S ‘Shapiro .and: R.A. Silverman, "Sme
s:pectral pcmperbies of wighteq. mmiom psrncesses" IRE Trens Inform. Theory, Vol. 5, Ho'. 5,;
125 (1959). (m)
S (p.69) 48 18 well knova, - en nﬂinite simusoidal difffaction grating prod.uces atge
*:Era.ction of a plene’ monochrms:hic wave onl;r at one m:gla e (mom a.ccura:helar, e.t two equa.l
angles 19}, w!::!.ch sa.tisﬁea 8 mla‘!'.ion sim‘.'.lar to (h 20}). In the case of dirfra.ction 'by g
a a:lnu:soid.al diﬁ"raction grating o:r ﬂn.tte dimnsians L , ‘each of the diffra.cted ‘bundles
m e sln'ea.d. Ag lfL Th:l.s meens tha.t ﬁ.nite ‘aimensional sinuscidal diffra.ction -
grs-ungs with: neighboring periods can also participe:t—e in diffraction arb the angle e, since
these httices mcludc the’ direct.iccn 2] becme of the Bpread of their diffra.ctei ‘bund.les.

-

i | (p.69} ror exsmple, “for ). = 10 rm, 6= 0.033 end H = 2 km, the size of ¢ is
- I .

3mt05m. s i Min, i : _ _
. k (p.69) In the ma:lority of npplications, the eomiiti‘on (};_21)';13 met sqtisfactor«i.ij-.'

/

npparent.ly, the size. of-L in -hhe 1.mpoaphere 15 of- ‘l'.he onier of 100 m.
& (p-69) The stmcture of this kind of turbulence was deacri‘bed &t the end. of Ch‘a;rt.er 3
m (p.'?ll») Actua.'L‘l.y ‘pressure :Eluctusrt‘.ions ine. _turbulent flow lead to much smaller

& amctive index ﬂnt:tuatious than tmperature end mmidity- fluctuations. m eorrespou:.d.in.g

estmtu are essny can'ied ou‘b by using Eqs. (ll- 36) and (5.%) we do not eons.‘..der lu'ru
i t}he seeond. '_pa:pe:c ‘b:r the ssme mﬂwn [93], becme of its 1ncmpatab1nty with turbulem.e theo



n (p.75) Ineidentally, we note 'c.ha.t Villara and Waisskopt were a.ppamntly unfmlia.r
with the papers of Obukhov [50] and Of Obukhov and raglm [23] on pressure fluctuetions.
Therefore, their way of deriving Eq. (4.39) is much more complicated than the vay we glvg.

o (p.76) A similar expression for the effective scatterlng.' cross sectlon of -aoun;d,
waves in a turbulent flow wes obtained -by. Blokhihts& .[.’)'2; 351 in 1946. l . _

p (p.77) A more detailed inves‘tigst'ion shows that Eg. (4.47) 18 epplicsble only in
the case where the quantity 7 is small 'compa;‘ed with 6. In the case where 7 5.8_,_ the change
of @ within the sca.tteﬂng volume begins to play an important role. - In this éase, the. effec-
tive size of the scatte.zd.ng volm_is determined by the angle @ rather than 7, and V ~ D382.
[‘.’[‘akirig._thi‘s into account modifies the -analysi,s of the experiment of Bu.'llinston .et al.
given in [51] end the conclusion drawn from it; {T)j |

\_g' (p-80) A more detalled d.eseription of the results of measuremen‘bs of C., will be

T
give:n in Part I‘?.

Chapter 5

a (p.81) Seeﬂppendix (T)

o

b (p.83) We assume, therefore, that 3 (T) end '.'L"(r] do not depend on time. The actusal
changes of these qmtities,in time can be regerded as a change of the different realizations
of the rendom fields. . ' ' |
c (p.Bll-) At first glanee, ‘Egs. (5.13) to (5.15) differ from t.he con'esponding Eq. (%.12)
for electromegnetic waves by the presence of the factor k6 instead of kk. Hmver, this
difference is only epparent, since in (4.12), A represents the ampl:l.tud.e of the fleld E ,
vhéreas in (5.13) ,- A is the emplitude of the potential I " However, the amplitude of the

. ) 4 d
acoustic pressure or the acoustic velocity is proportional to kA, 80 that ks.ka a'k (kA )2.

4 (p.84%) In fact, in the case of isotropic turbulence, the quantity u'(r )T'(ra) can
depend only on the vector p = rl - ra, i.e. has the form A(p}n. Stnce div % = 0, then
atv(a(p)p) = 34 + pA'(p) = 0 also, whence A = c/p . Since for p = 0, A(P)B must be finite,
it follows that C = O, as was to be shown. .

e (p.89) In Part IV ve shall study this matter in more detail.
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E(K]=——-— fff exp(-—iicr)Bii(.')d\f= ) : .'.

- ! S - . . .
1 : ) e 5 . w18, =
= _l;é; f Bﬂ(r)r sin Kkr dr = m f r sin xr[;aﬂ e = (ran,)] dr =
y I . . K G
" g f é'rﬂ r 8in Kkr dr - K f _r/z' % cos Kr dr| . =
12x K o <o ’
' L 4
v 2 242 )
% (l + KL )3 : . ’.

g (p 90) This fact followe from the, genera.l expreasiml for E(ic) For small K which
is va:l_'Ld for homogenec_m.s :L-sot:ropic turbulence;, i.e. E(k) = u(l" + ... (see note [c] to
Chaﬁte:r 2) However, this.result i..s bhardly epplicsble to atmospheric turbulence. -

v

R . Chepter 6

. i . —- -
& (p.93) Let n =1+ n;, where |n, | <1 and ¥ = E_ 4 E,. Then

-;:- 2 4 2 =+ 2. . - ' :
AE; +k By + ZmE 4+ grad (EO grad nl) = 0.
The- last term of the equation is of order no greater: than kEnlﬂo and is alweys much less
then the third term of the eguetion when k¢ >>1. Since the term 2 gred (E-gred log n)
- in Eq. (6.1) is related to the change of polarization as the wave propegates, this effect

ise sma.]_'l. in the case A b .

b (p.91l) See pages 60 - 61. -
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c (p.204) To avotd confusion, we agree that the aifferential of the varisble which
is 1ntegrated will bé the first to appear after the integral s:l.gn. : .

4a (p J_'I.2) We have used 1.he formila

. © . . . ' =1 .
| 2 g
.o f [ -3 (x)]xPax = x 21’[? ; l)] sin 1(251-9- (L<p<3),
. o T . ' o '
wl__zid'h can be cbteined from the familier formula’
© . ; : l+gq .
. »1 r( 3 ) 1
fJ(ax)xQ‘d.x:—-’-‘-———-—-—_-—-—-- D (=1<qg<3)
J o ac,;-l-'_l. 'I‘(l - _g) \ 2

.'b:.r ana.lyt.-.l.c continuation with respect to q. . : . -
g (p.112) & fornmla similer to (6.68) was first obtained by Krasilnikov [h},ll—h]
However, in this work, instead of the"inmer scale”of t‘urbulen_ce_ L ‘he uses a "smoufbhingl
pa:_cemeter" which is a.se'.lﬁed.m be pmpoftional to the wavelength (withou'b sufficient Jus- -

tification). ' ) ' o
| £ (p.113) This is the condition for the applicebility of the geometrical optics
approximation; see section 6.7. (T) B .
g (p. 118) Ve assume here that®he "two-thinds lew” is satisfied for the temperature
"J! rether than for the potential temperature H; this is }ralid only in the lwer of the
atmosphere nesr the earth, where T and H are prs.cticany the same.

‘Chapter 7

a (p.12k) This way of appro:d.mately solving the vave equation was proposed by Rytov -

[50] and was used by Obukhov [51] to solve the problem of amplitude and phase fluctuations.
b (p.126 The quantity Q= k[_V Sl] is equaJ. to the deviation of the direc‘tmn of
propegation of the perturbed vave from the initial direction. Thua, the con.d.ition (7. 19}
imposes a restric‘bion on the size of the fluct.uations of the propagation direction of the

T wWave.,

269



e (p.lBT) m; assertion’ can be proved rigormmlar for umo‘hona decreasing hmct:l.om
XD o '
' a (p.lh#) The quantity I'n is finite onl:.r when the function B (r) decreases sufficient-

13' rqaid[ly 88 T = ., : _
' e {p.lhﬁ) If we bear in mind ‘that the spectral demsity of the oorrelsbion function of

the mp:l.itmie fluctuations of the wave is small in the regiom K.< 21t/ VAL, then we can con-

; clude thet -I:.he correlation function BA(O) must undergo mouth; oncilla.tions of small size,

\d.th pe:l'iod of order \AL. Because of these oscillat!.ons of the function B (p), ‘the rela-

tlon (7.55) 1s also satisfied.
- o lp.ll&"{) !Lhe function (7.73) was used in the paper of Obukhov [51] and in the

related papers of Chernov [56,57) and other suthors [58 61]
g (pp- 1h7,15o) If we d.efine, as uswal, the immer seale- L of the turbulence as

e L = _\'/_-23(0)_/3“(0)',"

o

‘and the outer scale L, of the turbulence as .

Ln : i%a f Beses,

then, using (7:73), ve obteln ¢ = & &nd L =3 V7 s

g
e
@

h (]';.;52')- It is ‘easy to show that
. Y DAY g, ol s s _ _
e pA® f (1 - BRX)PTar 21 4 o(aP) s .
: . > . ~ e " ) .o, '

for 0 < p <1l.
R 1 (p.155) n calculsting the integral, we used tue formle

o
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‘

which cen be cbtelned from the well-known formfla for - -

. T : i - _ L
f x""'h e P* gin x dx (a>2) o . e ®
i o— p B .
by enalytic continuation. vith respect to a and subsequent passage to the limit B = O
; T :
Eﬁ. more accurate value of 'I:he xmmer.i.cal constent in (T 9‘&) is 0.307- (’.Eﬂ _ =
‘ 3 (pp- 155,155} By \ming (7.92) we can obtain esymtotic expansim of b,(p) for large

et small values of the: pereneter p/ VAL, For 2, <5 p << VAL, we have \
v,(p) ~ 1 - 2.37(/1)M6 /3,
. For p >> \/ﬁ: Whm

5,(0) ~ - 0.18(1/k) /6 5T/3

s

. We recall t:h.at
b,(o)~ 1 - 2.80(k/1)>/® z;l/ 32

for p << :. e
k (p.155) % note that the q;u.entity VAL, for vhich the correletion function ('r 92)
.haa a negat:l.ve nﬂ.n:l.mm, eorrespond.s to the average nise of the "runnlng shnd.alr!" vhich
appear when one observes twinkling sources of 11@1-.. )
K3 _(p.lﬁo}. ;..As':v\_e hgir;e'se‘en 'a:bovse,l- this condition is mot -;eoensarg_ .(s_uf page 126).

chqltler 8-

a (p.lsh) Stncuy apeakins " the- nmction § (x,r) can be d.er:Lned uniquexy on:l.v m '

the region Kk >> 1/:. .



b (pp 168,170) As is well known, if the obsax;vation pcint. 18 located near 'bhe surfs.ce
of 'l:he lenn, then the intensity oi’ I:I.ght at the point is auat the same as in the absence ~
" of the le:_.u._-

¢ (p.169) We have -

2 1/6 20053) /Gf 11/6 sinx dx. °

To evaluate the integral, we use the fp;m:la_ . F . _—
@ . 5 P kK
r ; -2 .
f x'(p"l) sin’x dx = 2" x (o<p<2),
6 . s -gin 522 I'(p + 1)

i_yh:l.ch is obtained from the formule -

o : )
2 f (1 - cos m‘r)A'ul[,-(p"-l)dx;_.: ;2 -FP “(o<p<2),
- . -sin%f‘(p-ﬁ-l}
v . : s 28 e ) A o L
(see example b on page 13 and note. [4] to Chapter 1) by setting T = 1 and w = 2x. ()

- . -

4 (p.170) This remerk can be iJ_'Lustra-f:ed by the following example. If a plnne-_parmel
slub is placed on the Tay, path, then the phase Bhift produced by it does. not G-Epend on the -

. coordinate of the slab.
Chapter 9

& (p.176) This equality acquires preciée meaning after mﬁtiplying both sides by
f(xe,xs)' and. integrating with respect to Kla and Ko .

b (p._l'i'_'}'-j. Eq. (7.32) can be obtained from (9.13) if we cw out the integration in
(9.13) on the segment from L-RtoLand 1&. L go to infinity, keeping R :l‘.‘:l.ni'be . This case

corresponds to an infinitely remote source of spherical waves.
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" ¢ (p.183)" Ve note that the tremsition from Eq. (9.25) to (9.26) can oniy be eu-:-i;a

‘'out for a spherical wave. -Therefore, the’ suhseq;twnt rom.'l.a.s do not ga over to th.e corre-
.sponding fomlu for a plane wave (see ﬁ:]) _

4 (p.184) In g_eneral_,. 1t can not be asserted that the integrand in Egq. (9.3lj 18 the )

: ;speetm. density of the correlation function of the fluctustions of logaritimic amplitude,

' e (p.185) mhin effect can be explained with the help or the following simple consider-

a.tionu. Suppose that along the path -of the p.'lane nve, at & distence L from the wn‘blemtinn
".point ,them is loca'bed a converging 1ena uith a foeal dist.anee £ which gres.tl;r exaeedn L.

It can easily be. calculated. that &8 a resu.'l.t, the diemeter of the bundle 'baund.ad. by 'I:he con-
tour of the lens 1s reduced in the retio 11(1 + ?),,n. coupmd %o the diemeter of the sems
bﬁidla without the lens. The compmuion of the bundle had.a to an mcrea.se of light 1nte:n-
' sity in the ratio 1t (1 + —) ~2(1 + —). Carrying out a simtlar calculation for the case
where the source of light 18 located et the digtance L + & from the obs;ar\ration point (:L.e. »

-

at the dis'bance a from the J.uns) s whe:-e a<<f, we ﬁnﬁ. that the relative comp:emion of

L
ra+L' "‘I'

the re.}.a.tive change of light intensity of a spherieal wave is alvaarl less than the corre-

the diameter of the bundle is equal to 1 + Sint:e we always have —-—=

<1, then

sponding qua.ntity for a plane wave. Thus, the amplitude rlu_ctuationa of & sphe:'iwna.l wave

st be J.ens than thé¢ amplitude fluctuations of a plene wave.

Part IV

Chapter 10

a (p.190) Tl:l:u.s, fluctuations in the difference of velocities at two points which are a
fixed distance r from each other,decrease when the peir of points is translated mﬁwurdn -
However, wind velocity fluctuetions at one point do not depend on the’ height of t]:m point
and ha.ve the order of megnitude v « (Bee [14]}

b (p.192) We note that this rela.tion is non-l‘l.near, \ﬁ:ieh makes working with the appa- -
retus much more difﬁeult.

E’-(p.lE?E) Leter (see p.203) we cite a value of the ml‘hant Ve obta.ined from measure-
ﬁnhta of amplitude fluctuaticns of sound waves. It ia cloae to the value of 1-.14- ub_tained.

by Townsend.



. 4 (p.193) Ve glve preference to this velue of C, since 1t agrees better with numerous
measurements of amplitud.e fluctu.e.tiuna of smmd (see p. 203)
e (]:.195) By a more reﬁ.ned argtmen'h , ‘one can arrive at the e.onclus:!_on that for stable

stratiﬂ cation”
= f(Ri} 2

where Ri is the (dimensionless) Richardson mumber, which characterlzes the extent to which

+the temperature stratification influences the turbulent regime. The Richardson number

g(dT/oz) : :
i r=—— :
T(au/dz)
dePend.s both on the form of the tenmerature profile and on the form o:E the wind profilej
hereg=93m/sec. - : : . )
£ (p.196) The information cited sbove concerning temperature fluctuations in the lower

troposphere 18 of & preliminary nature and needs further elaboration.

Chapter 11

a (pp- 198,204) Tt ean be shown that this condition is satisfied in the layer of the
_ atﬁosphere near the earth if 1 << Kz/v*_'. For z of the order of a few meterﬁ , the quantity

xz[v 18 of, the order of a few seconds.

b (p.201) See Eq. ('r o). (1)
‘e (p.ao:L) Here T 18 written instead of T, (cf. Eq. (6.91)) (1)
4 (p.201) This is the oxder of nmagnitude obteined if w. set z =8 m (th.t_a value given
in [71]), BT = 0 in'Eq. (1L.4)e (1) o
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Chapter 12

a (p. 209} Another Justification of this conclusion-can be- given, based on the
1n§iependence of the different spectral components of the turbulence. (However, note that
the finite size of D leads to correlation between neighbor:’mg spectral componenta in the

harmonic analysis of 'bhe integral

J[f e

‘Thue, ‘for the integral to be epproximately normal, we must require that the volume in wave
number space which contribu‘bes most to the integral contain many "substa.ntially uncorre-
lated subvolumes". {Ihis is tantemount to the requirement ‘that D itself contain m.r "aub-
stantially uncorrelated subvolimes". (T)}

b (p-209) In Pig. 25 the function log x is marked off slong the horizontal sxis,
while the function E__l(x) is Jeaz-ked off along the vee:'ti-cal axis. Thus , the points in Fig.
25 are aetually'.a i:lot of [} _l{F(I)) va. log_(I/Io). If a random variable has a normal ‘
diﬂtribution (with mean zero and variance c.;ne, say.] ’ then' its e-mpirica,l distribution func-
~tion ‘G(x), which 1s itself a raandom va.-riable d.epend.ing on the aamle used, converges uni-

e

formly in probsbility to - T

B(x) = (1/ V&) f exp(-t2/2)at

-
as the sample size increases. Moreover, § _1( ﬁ(x}) = X, 50 that § _1((}(::)) is approxi-
mately x. Similarly, if a positive random varisble ¢ has & log normal distribution, then
its empirical aistribution funetion F(x) converges (in the ‘sense indicated) to the distri-

bution function

: ~logx - .
(1/V2x) f exp(-t%/2)at,
- a

-

since Prob(t < x) = Prob(log & < log x) and log ¢ 1s normally distributed. Thus, § “Lr(x))
is approximately log x and if' [} 'I(F(x)] is plotted against log {xfxo)-, the resulting curve

18 approximately a straight line. (™)
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ew v

‘e (p 212) Sea pagarlho, 153. (1-) . Y
ﬁ (3. 211+) Ve note that the theoretical curve of R = f(p/\/_) hes & zero for

'paoﬁ\/ ,whilethe e:penmtalcuﬂehasazemrorpslj\/ Thisdiscnpancy

- ecen evidlently be expluue& 'by the fact that in the experiment described we hed a geometri-

cal bundle in.ste»d o.? a plane vavfe. It is ea.a;r to see that this ought to lead to an
1ncrease- in the correlat;ion distance. ’

e (p. 215) A8 we eonvinced ourselves sbove, the ch:l.ei’ ccvntribution to the fluctua.tiqn.a
of I are prod.uced by the inhomogeneities of order \/ii.'_ | contenined fnside of the. paraboloid
o y2 + 22_ = Ax with vertex at the point of observation. Displacement of an inhcmogeneity
t.along the axis of the parsboloid can apprecisbly afi’ect the fleld T only in the case vhere
" as'a result of the diaplacemnt, -hhe ratio between the siza ::1’ the inhcmogeneity and the
. d.‘l.amate'r of the paraboloid changes apprecisbly. It 15 easy’ 1.0 see that such a displace:ment

il of order L. At the dame tm, a displacement of the 1nhomwgene1ty‘¥erpenﬁicular to the
- axis ofthcparaholoidhyanmnmmt AT , which tekes place in a time T = \/'—/v , &lso
appu‘_aifu.bly changua ‘the field I. The longitudinal diaplacmm‘t: in the time 7 is equal to
Ax = .-r" - (\r /v}\fl_‘ If Ax<<L, Ll.e. 1L G = ’vn/'\rt > \/}75, then the 1ongﬂ.'l::ud.tna.1
dilplacmnt cen be neglected. . _ )
\(p.ﬂ&} We use the frequency f instead of w end we make the earpansion with respect
“to positive frequanc.ies; this simplified ccmpa;rison ot the results of theory and experiment'
The relation mve:-aa to (1.23) has the form

.RA(.'rjuf m_(z:rr-r)w(r}af.

g (p.216) cf. Eq. (1.51). (1) ,

b (p.218) The condition ,[E >> 1 has been used to set the upper limit of integre-
tion in (12.5) equal tow. (T) . ._ .

i (p.218). The function rw(f)/x hasamximmforf-lsar-o.55v /\/ﬁ

4 (p.221) The poaitiom_;_ of the ma:g:lma of the theoretical end experimental curves in

Fig. 31 have been d.e:l.i.b_erétely made- to Eoincid.e. =



Chapter 13 _

a (p.228, 256) The dependence oﬁ the uount of twinkling on ‘the size of the diaphragm

glven in [Blﬂ has to be corrected, since this dependence wes, obtained by suming the ampn

tudes of the fluctuationﬂ at different frequenciea inﬁtead of anming the squu.res of the

mplitudes. Te.ble 5 was constructed by u.s:l.ng the 1n'begra.ls (g;i.ven in [8’1-] s PP la!d' 125} of !

the squares of the frequency spectra shown in Figa. ke - 45, The date presented 4n Flg. 33 -

. was constructed from Teble 6.

b (p.232} In.radiopwéi.cél applications VE is expressed in terms of the function
which describes the directiv:l_.t;.f pattern of the antenna. '

2 (p.253) For Re(v) >~ %, Re(u + v +2) >Re(A +1) >0, the formla

= ' - n 3 (at).]'v(bt).]’v(t;t) _ ,(b—z"- : DT iy
A:f = -'v;ﬂ.. — At = ——X . . et i
4 ..1; - Vxr(v + -2-) - :

n A 7 (a2)J, (Gt)e1n™o
X f f T - dpdt
: . w t
o0

2

1s valid [53], where © = \/b2+c - Zbc cos . Setting u =0, v =1, A =0, b=c=R,

a = p, we obtain

ffw J (xkp)d. (2xR sin SE'-) >

sin"p dpdk.
5 2R sin%



’ - — forv< u,
T e, max = P -
S p-1' .
. o . - ] forv> u.

. - 2
Consequently, A =0 for P > 2R and

;4

1 - 29 -1 p- P pe
As;\_- f cos ed?”,'{_'mcos'é'ﬁ'?ﬁ l_-'l-l.;é

2 arc sin(p/2R)

:fur p < ZR.

IE (p.234) Ve note that this formules could also have been obtained immedistely from
(_Jt}.‘]j] by in‘tro@‘t}cing_ the coordinates J, = R sin y, 2z, n,-.R coB ¥, J’l_- J, = p cos [

Zy =2y = p 8in ¢, and integratin;with respect to vb,- ¢ and R.

e (p.241) See also page 256.

£(p.245) The fomui_a iﬁ question describes the spectrum of the flucﬁatiom of.ligh:*..
1n'hensi:ty' only in the ce_uﬁe of small fluctuations, when we neglect the difference between 02
.. end log (1 o2). | ' '

g (p.251) The frequency of these "wiggles" is of the order of thousands of cycles per
second, whereas their.a:ﬁﬁzitme is negliéible. Therefore they do not-. register wh;en P(t) is
recorded by using a rel_at.tvely low frequency loop oscillograph. . ' )

_h_(lﬁ;252) The quantity v, generslly depezids on ¢ also, l.e. v, = v.\,"l - 51n29 0052¢ P
where @ 18 the engle between the azimith of the star and the ai_z-écﬁon of the wind. ﬂmw;,
the data of Fig. 45 apperently attests to the fact. thet st ‘the time pf the observations the
:g'manti_ty ¢ was close to 90°. . . T

1 (p.254) It should be noted that the function G(D [J'?Z) celeulated sbove was com- .
puﬁed for the case of fluctuations of a pia.np ve.ve, wvhereas in the case being c_:opsid.ered we
have & homoecentric bundle of incoherent waves. This dlfference can 8lightly modify the
function G(D /\/AL ). We can take account approximately of such a modification by introduc-

"ing-into the argument of the funetion some constant factor p of order un.t"ty.
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J (p.256) The estimates of the size of the temperature fluctuations made in [?l] 7 ER
were based on the errbﬁeous idea that under stmospheric conditions both-the case

\/ﬁo 8ec 6 << 4 (for small @) end the case \#ﬁo sec 6 > L (for large 8) can ocour.
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