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Introduction to the Series

Welcome to the SPIE Field Guides—a series of publications
written directly for the practicing engineer or scientist.
Many textbooks and professional reference books cover
optical principles and techniques in depth. The aim of
the SPIE Field Guides is to distill this information,
providing readers with a handy desk or briefcase reference
that provides basic, essential information about optical
principles, techniques, or phenomena, including definitions and
descriptions, key equations, illustrations, application examples,
design considerations, and additional resources. A significant
effort will be made to provide a consistent notation and style
between volumes in the series.

Each SPIE Field Guide addresses a major field of optical
science and technology. The concept of these Field Guides is a
format-intensive presentation based on figures and equations
supplemented by concise explanations. In most cases, this
modular approach places a single topic on a page, and provides
full coverage of that topic on that page. Highlights, insights,
and rules of thumb are displayed in sidebars to the main
text. The appendices at the end of each Field Guide provide
additional information such as related material outside the
main scope of the volume, key mathematical relationships,
and alternative methods. While complete in their coverage, the
concise presentation may not be appropriate for those new to
the field.

The SPIE Field Guides are intended to be living documents.
The modular page-based presentation format allows them
to be easily updated and expanded. We are interested in
your suggestions for new Field Guide topics as well as what
material should be added to an individual volume to make
these Field Guides more useful to you. Please contact us at
fieldguides@SPIE.org.

John E. Greivenkamp, Series Editor
Optical Sciences Center

The University of Arizona
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The Field Guide Series
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Field Guide to Diffractive Optics

Recent advancements in microfabrication technologies as well
as the development of powerful simulation tools have led to a
significant expansion of diffractive optics and the commercial
availability of cost-effective diffractive optical components.
Instrument developers can choose from a broad range of
diffractive optical elements to complement refractive and
reflective components in achieving a desired control of the
optical field.

Material required for understanding the diffractive phe-
nomenon is widely dispersed throughout numerous literature
sources. This Field Guide offers scientists and engineers a com-
prehensive reference in the field of diffractive optics. College
students and photonics enthusiasts will broaden their knowl-
edge and understanding of diffractive optics phenomena.

The primary objectives of this Field Guide are to familiarize the
reader with operational principles and established terminology
in the field of diffractive optics, as well as to provide a
comprehensive overview of the main types of diffractive
optics components. An emphasis is placed on the qualitative
explanation of the diffraction phenomenon by the use of field
distributions and graphs, providing the basis for understanding
the fundamental relations and the important trends.

I would like to thank SPIE Press Manager Timothy Lamkins
and Series Editor John Greivenkamp for the opportunity to
write a Field Guide for one of the most fundamental physical
optics phenomena, as well as SPIE Press Senior Editor Dara
Burrows for her help.

My endless gratitude goes to my family: to my wife Eleanora,
who had to bear additional duties during my work on this book,
as well as to my children, Rose and Michael, who learned the
material while helping with proofreading the manuscript.

Yakov G. Soskind
August 2011
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ASMA aperiodically spaced multiple apertures
B base length of a PRISM
CR incident wave obliquity factor
CS diffracted wave obliquity factor
CGH computer-generated hologram
d diameter of central obscuration
dB Bragg plane spacing
dg grating period or groove spacing
di step width of ith zone
D aperture diameter or lateral size
DA Airy disk diameter
Dn material dispersion
D0 lens clear aperture diameter
DC duty cycle
DDO digital diffractive optics
DLS diffractive lens surface
e aperture obscuration
E(ρ,ϕ) complex electric field in polar coordinates
E⊥ electric field normal to the grating grooves
E∥ electric field parallel to the grating grooves
f focal length of a lens
f D
0 nominal focal length of a diffractive surface

FDTD finite difference time domain
FWHM full width at half maximum
FPP Fresnel phase plate
FZP Fresnel zone plate
h grating profile depth or height
hi step height of ith zone
hm profile height of a multi-order diffractive lens
hopt optimum grating profile depth (height)
hSDS step height of SDS
HOE holographic optical element→
i unit vector codirectional with x axis
I(r) radial intensity distribution
IR infrared→
j unit vector codirectional with y axis

J0(ρ) Bessel function of the first kind of the zero order
J1(ρ) Bessel function of the first kind of the first order

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



xii

Glossary of Symbols and Acronyms

→
k unit vector codirectional with z axis
k(x, y) wave vector of the propagating wavefront
k0 wavenumber
L observation distance
Lm

T Talbot distance of order m
LED light-emitting diode
m diffraction order
n refractive index of optical material
n1 refractive index before optical interface
n2 refractive index after optical interface
nd refractive index of diffraction grating layer
np refractive index of prism material
n⊥ effective index for the electric field E⊥
n∥ effective index for the electric field E∥
N number of binary levels
NF Fresnel zone number
Ng number of grating (groove) facets
Nk number of kinoform zones
OPD optical path difference
PSF point spread function
→q vector orthogonal to the grating plane of

symmetry at the point of intersection
Q grating “thickness” parameter
→r vector normal to the grating surface at the

incoming ray intersection point
→r12 vector connecting points in two lateral planes
R0 substrate radius of curvature→
S propagation direction vector before

diffractive surface→
S′ propagation direction vector after

diffractive surface
SDS stepped diffractive surface
SPDT single point diamond turning
t axial spacing of a grating doublet
T effective thickness of volume phase grating
tb thickness of a binary lens level
Tg geometrical transmission pattern of a facet
TE transverse electric
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xiii
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TM transverse magnetic
U(x, y, z) complex field amplitude
UV ultraviolet
VBG volume Bragg grating
VLSI very large-scale integration
W(x, y) propagating wavefront
Wg grating width
→z vector normal to the two reference planes
α coefficient of thermal expansion
αB angle of the incident light after refraction into the

volume phase medium
αd deflection angle
β diffracted angle inside the volume phase medium
γ angle between the Bragg planes and the incident

light
δ minimum feature size of the diffractive

component
ε grating minor (secondary) facet angle
ζ fill factor of radiation
η normalized diffraction efficiency
ηm diffraction efficiency in mth diffraction order
ηM diffraction efficiency of a grating with M facets
ηP diffraction efficiency of P-polarized light
ηS diffraction efficiency of S-polarized light
θd diffraction angle
θi angle of incidence
θm mth order diffraction angle
θL

m mth order diffraction angle in Littrow mount
θ
λl
m mth order diffraction angle of the wavelength λl

θ
λs
m mth order diffraction angle of the wavelength λs

θϕ incidence angle with respect to the grating facet
λ wavelength of light
λb blazing wavelength
λL

b blazing wavelength in Littrow configuration
(mount)

λs the shortest wavelength within the spectral range
λl the longest wavelength within the spectral range
λ0 design wavelength
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Glossary of Symbols and Acronyms

ξ opto-thermal coefficient of a surface
ρ radial coordinate
υ volume phase grating parameter
ϕ grating primary facet angle
ϕb grating facet blaze angle
ϕi facet angle of ith kinoform zone
ϕp grating passive facet angle
ϕmax maximum value of facet blazed angle
φ optical path difference
ΦAH optical power of an achromatic hybrid
ΦD optical power of a diffractive surface or lens
ΦH optical power of a hybrid surface or lens
ΦR optical power of a refractive surface or lens
ΦSDS optical power of SDS
ΦSDS

ef f effective optical power of SDS

ψ(r) radial phase profile of a diffractive surface
ψ(x, y) phase profile of a diffractive surface
∆ fchr axial or longitudinal chromatic aberration
∆Hchr lateral or transverse chromatic aberration
∆λ spectral bandwidth
∆λFSR free spectral range of a grating
∆n refractive index modulation
Λ grating parameter
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Diffraction Fundamentals 1

The Diffraction Phenomenon

Diffraction is a fundamental wave phenomenon that explains
numerous spatial radiation propagation effects that cannot be
explained by geomet-
rical optics, includ-
ing the “bending” of
light that leads to
light presence in geo-
metrical shade be-
hind opaque objects.
It also describes the
propagation of waves
with a finite spatial
extent.

Diffraction imposes fundamental limits to the resolution and
to the power density at the focus of an optical system. The
diffraction phenomenon occurs over a broad range of the
electromagnetic spectrum, including ultraviolet (UV), visible,
infrared (IR), and radio waves. Therefore, in this field guide the
terms “light” and “radiation” will be used interchangeably.

The term “diffraction” originates from the Latin word diffrin-
gere meaning “to break into pieces” and refers to wave
fragmentation after interaction with
objects. The diffraction phenomenon is
often manifested by intensity ripples in
the propagating field due to the coherent
superposition of the diffracted and non-
diffracted fractions of the propagating
radiation. Diffraction has been studied
by several prominent physicists, includ-
ing Isaac Newton, Augustin-Jean Fres-
nel, Christiaan Huygens, Thomas Young,
and Joseph von Fraunhofer.
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2 Diffraction Fundamentals

Scalar Diffraction

From experimental observations it is known that longer
wavelengths are diffracted at larger angles, and that tighter
focal spots are obtained from larger-aperture lenses. This
has led to the formulation of the fundamental relation for a
diffraction angle θd being proportional to the wavelength of
light λ, and inversely proportional to the lateral dimension D
of the propagating wave:

θd ∝ λ/D

Solutions to a diffraction problem consider the spatial evolution
of finite-sized waves and waves whose propagation was
disrupted by amplitude or phase objects. Rigorous solutions
to diffraction problems satisfy Maxwell’s equations and
the appropriate boundary conditions. A simpler approach is
based on the Huygens-Fresnel principle, which defines the
foundation for scalar diffraction theory.

Scalar diffraction theory assumes that the propagating field
can be treated as a scalar field. The propagation of a field
described by its complex amplitude U (x, y, z) in free space
from the object plane (z = 0) to the observation plane is governed
by the Helmholtz equation:

∇2U (x, y, z)+k2
0U (x, y, z)= 0

in which k0 = |k0| = 2π/λ0 is
the free space wave number.
According to Huygens’ principle, the
propagating field at the aperture
is considered as a superposition
of several secondary point sources
with spherical wavefronts. Fresnel
stated that intensity distribution
after the aperture is the result of
interferometric interaction between
the Huygens point sources.
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Diffraction Fundamentals 3

Paraxial Approximation

Monochromatic field dis-
tribution at the output
plane U(x2, y2) in accord-
ance with the Huygens-
Fresnel principle is cal-
culated based on the field
at the input plane U(x1,
y1, z1) employing Kirch-
hoff’s diffraction inte-
gral:

U (x2, y2, z2)∝
Ï

1+cos(z, r12)
2iλr12

exp(ikr12)U (x1, y1, z1)dx1d y1

where z is the vector normal to the two reference planes, and
r12 is a vector connecting the points (x1, y1, z1) and (x2, y2, z2) in
the two planes.

The paraxial approximation assumes small propagation
angles. In the case of the paraxial approximation, cos(z, r12)∼= 1,
and |r12| ∼= z12 yield the Fresnel diffraction integral:

U (x2, y2, z2) ∝ exp(ikz12)
iλz12

Ï
exp

{
ik

2z12

[
(x2 − x1)2 + (y2 − y1)2

]}
×U (x1, y1, z1)dx1d y1

The sufficient condition for the above Fresnel approximation
is defined as

(z2 − z1)3 Àπ/4λ
[
(x2 − x1)3 + (y2 − y1)3

]2
max

Large propagation distances of z12 À π
(
x2

2 + y2
2)

/λ0 lead to
Fraunhofer approximations as a Fourier transform of the
object field, also called Fraunhofer diffraction or far-field
distribution:

U (x2, y2, z2)∝ exp(ikz12)
iλz12

exp

[
ik

(
x1

2 + y1
2)

2z12

]
×Ï

exp
[

ik (x2x1 + y2 y1)
2z12

]
U (x1, y1, z1)dx1d y1
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4 Fresnel Diffraction

Fresnel Diffraction

The Fresnel diffraction phenomenon is observed at finite
distances from the objects that interact with the propagating
field. For fields with circular symmetry, the on-axis intensity
distribution depends on the number of Fresnel zones
contained in the propagating field, as observed from the given
on-axis observation point.

The Fresnel zone number NF contained within the emitting
aperture as viewed from the observation point at distance Lz is
defined as a number of half waves contained in the optical path
difference between the outer and inner margins of the emitting
structure with respective radii rm and r0:

NF = 2
λ

(√
Lz

2 + rm
2 −

√
Lz

2 + r0
2
)
∼= rm

2 − r0
2

λLz

The number of Fresnel zones in an unobstructed circular
emitting aperture (r0 = 0) with outer diameter D is

NF
∼= D2/4λLz

The outer diameter D of a circular unobstructed emitting
aperture (r0 = 0) containing NF Fresnel zones, as well as the
inner diameter for a Fresnel zone with respective index (NF +1)
for the observation point at a distance Lz is

D =
√

NFλ (4Lz +NFλ)∼=
√

4NFλLz
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Fresnel Diffraction 5

Apertures with Integer Number of Fresnel Zones

The axial distance from an unobstructed circular emitting
aperture with the outer diameter D containing NF Fresnel
zones is found by

Lz =
[
D2 − (NFλ)2

]/
4NFλ

Fresnel diffraction patterns produced by emitting apertures
with an odd number of zones exhibit characteristic on-axis
maxima:

Fresnel diffraction patterns produced by emitting apertures
with an even number of zones exhibit characteristic on-axis
minima:

In the presence of a central obscuration, the distance to
the observation point depends on the number of Fresnel zones
contained in the emitting aperture:
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6 Fresnel Diffraction

Fresnel Zone Plates

A Fresnel zone plate (FZP) represents an amplitude mask
that consists of alternating opaque and transparent rings. Each
ring size corresponds to a Fresnel zone as defined by the
observation point. FZPs are often employed in lieu of lenses to
concentrate the propagating field into a tight on-axis spot.

Increasing the number of zones progressively reduces the width,
as well as increases the peak intensity and the total power
contained in the central peak of the diffraction pattern.

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Fresnel Diffraction 7

Fresnel Zone Plate Properties

The increase in peak on-axis intensity for FZPs occurs for every
two consecutive Fresnel numbers NF .

Zone plates with an equal number of transparent zones and the
same aperture size produce an on-axis distribution with equal
intensity and different width.

For the number of transparent FZP zones exceeding 5 and
the total number of zones NF over 11, the width value of the
intensity distribution stabilizes around the Airy distribution
width produced by an ideal lens:
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8 Fresnel Diffraction

Fresnel Phase Plates

A Fresnel phase plate (FPP) represents a phase mask that
consists of transparent ring-shaped zones
with alternating phase shifts by half a
wavelength. Each ring size corresponds
to a Fresnel zone as defined from the
observation point. The zone sizes of FPPs
and FZPs are identical. FPPs may be
employed in lieu of lenses to concentrate
the propagating field into a tight on-axis
spot.

Increasing the number of zones progressively reduces the width
and increases the peak intensity and the total power contained
in the central peak of the pattern.
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Fresnel Diffraction 9

Comparing Fresnel Plates and Ideal Lenses

When the number of zones in the Fresnel plates exceeds 10,
the relative shape of the central peak in the normalized field
distributions of the Fresnel plates and an equivalent ideal lens
producing Airy distribution are comparable with each other, as
shown for the case of Fresnel number NF = 12:

The main difference between the three distributions is in the
fraction of the radiation contained outside the central peak.
This is shown in logarithmic scale for the above case of NF = 12
over a broader radial distance range:

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



10 Fresnel Diffraction

Efficiency of Fresnel Plates and Ideal Lenses

FPPs concentrate significantly more energy in the central
peak than do amplitude FZPs containing the same number of
zones. The improvement in diffraction efficiency comes with
increased fabrication complexity of the phase plates. At the
same time, FPPs are less efficient than focusing lenses with
equal apertures and F-numbers. In the case of FZPs and FPPs,
the light outside the central peak is spread over a broad area:

The central peaks of FZP, FPP, and an ideal lens contain 7.8%,
34.1%, and 83.8% of the total radiation power propagating
through the aperture, respectively.

The differences between Fresnel plates and an ideal lens are
summarized in the following table:
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Fresnel Diffraction 11

Talbot Effect

The Talbot effect, often called Talbot imaging, occurs when
a periodic array of apertures is illuminated with a coherent
source. The Talbot effect is observed in the Fresnel domain and
was discovered in 1836 by Henry Talbot.

Observation planes that contain Talbot images are called
Talbot planes. An array of apertures with spacing d produces
Talbot images of integer order m at Talbot distances Lm

T ,
defined as Lm

T = 2md2/λ.

The figure shows the initial near-field array (left), the phase
(center), and intensity distribution (right) of an image located
at a Talbot distance of L1

T = 2d2/λ.

Fractional Talbot distributions are produced at particular
fractional Talbot distances.

Talbot half distributions with intensity maxima laterally
shifted by d/2 from the original array are observed at the
distances

L0.5m
T = Lm

T −d2/λ= 2(m−0.5)d2/λ

The figure below shows the initial near-field array (left), the
phase (center), and the intensity distribution (right) of an image
at a half Talbot distance L0.5

T = d2/λ:
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12 Fresnel Diffraction

Fractional Talbot Distributions

Fractional Talbot distributions with higher spacing fre-
quencies in the image planes can be produced. Two sets of
double-frequency distributions with spacing of d/2 are produced
at quarter distances:

L0.25
T = L0.5

T ±d2/2λ.

The first figure shows the phase (center graph) and intensity
distribution (right graph) of a double-frequency image with d/2
spacing at a quarter Talbot distance L0.25

T = d2/2λ.

The second figure shows a quadruple-frequency distribution at
the Talbot distance L0.125

T = d2/4λ with d/4 intensity maxima
spacing.

In practical applications, the finite-aperture size and spacing
in the array leads to spatial degradation of the Talbot images,
which is especially noticeable at the margins of the field
distributions.
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Fraunhofer Diffraction 13

Fraunhofer Diffraction

Far-field distribution can be conveniently observed in the
vicinity of the focal plane of a lens.

The lens transfer function is defined as the following phase
factor:

U (x1, y1, z1)l = exp
[
−i

k
2 f

(
x1

2 + y1
2)]

The field in the back focal plane of a lens is found by
substituting the above phase factor into the Fresnel diffraction
integral:

U (x2, y2, f )∝ exp(ik f )
iλ f

exp
[

i
k

2 f

(
x2

2 + y2
2)]×Ï

exp
[
− ik (x2x1 + y2 y1)

2 f

]
U (x1, y1, z1)dx1d y1

The shape and size of the Fraunhofer diffraction patterns
depend on the transfer function of a lens and are used in optical
metrology for alignment purposes, as well as to identify lens
imperfections. During a star test, an image of a source located
at infinity, such as a star, produces a point spread function
(PSF) in the focal plane of a lens.

The PSF size and shape from a well-corrected lens are
dominated by diffraction effects, and the lens performance is
called diffraction limited. The PSF produced by a diffraction-
limited lens is called an Airy pattern.
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14 Fraunhofer Diffraction

Diffraction of Waves with Finite Sizes

Propagating wavefronts with finite lateral dimensions produce
Fraunhofer diffraction patterns that are observed in the far
field and depend on the pattern shape and size. The amplitude
and phase of the field in the Fraunhofer zone are defined by a
Fourier transform of the propagating field.

One of the most common Fraunhofer diffraction patterns is
produced by circular apertures. The field distribution is called
an Airy pattern after George Airy, who was the first to
analytically define the intensity distribution.

A plane wave with diameter D, intensity I0, and wavelength λ

produces an Airy pattern in the focal plane of a lens with focal
length f , whose radial intensity is

I (r)= I0

(
πD2

2λ f

)2
 J1

(
πD
λ f r

)
(
πD
λ f r

)
2

Parameter r is the radial coordinate, and the peak value of
the above distribution I (0) = I0

(
πD2/4λ f

)2 is found on axis.
The near-field aperture distribution and the corresponding Airy
pattern are shown below:

The central disk of the pattern, the Airy disk, has a size of
DA

∼= 2.44λ f /D and contains about 84% of the total pattern
energy. A fraction of the total energy contained within a circle
of radius ρ=πDr/λ f is calculated as

E (ρ)= 1− [J0 (ρ)]2 − [J1 (ρ)]2

where J0 (ρ) and J1 (ρ) are Bessel functions of the first kind, of
the zero and the first order, respectively.

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Fraunhofer Diffraction 15

Diffraction on Ring-Shaped Apertures

Central beam obscuration reduces the width of the central
lobe of the diffracted pattern and may be employed to improve
the resolution of an optical system. For an aperture diameter
D and the central beam obscuration diameter d, the aperture
obscuration value can be defined as e = d/D.

The graph below shows changes in the total field power, the
relative size of the central core, and the relative fraction of the
total power diffracted outside the central core.

The reduction in power contained in the central core of the
diffracted pattern significantly outpaces the reduction in the
central core size.

For example, when the obscuration is e = 0.7, the fraction of the
total incident energy in the diffraction rings outside the central
core is 73.3%, and the width of the central lobe is 0.73DA ,
where DA was defined earlier as the Airy disk diameter for an
unobstructed aperture.
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16 Fraunhofer Diffraction

Energy Redistribution within Diffraction Rings

The Fraunhofer diffraction pattern for a circular aperture with
central obscuration e is defined analytically as

I (q)= I0

[(
1− e2) qD

2

]2 [
J1 (q)

q
− e

J1 (eq)
q

]2

With an increase in obscuration e, the peak intensity in the
first diffraction ring increases, and the maxima shift toward the
center:

Intensity in the higher-order diffraction rings depends on the
obscuration e and is not monotonic. For obscurations e < 0.3,
the peak intensity of the second ring is reduced, while the
peak intensity of the third ring is increased with an increase
in obscuration:

For high obscuration values (e > 0.7), the peak intensity in the
diffraction rings is reduced with the ring order.
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Fraunhofer Diffraction 17

Diffraction on Noncircular Apertures

For near-field elliptical distributions, the respective Fraun-
hofer pattern is also elliptical, with the longer ellipse axis in the
diffraction pattern orthogonal to the longer aperture axis in the
near field:

Deviation of the aperture shape from circular symmetry
manifests as a distortion of the Fraunhofer pattern and may
be effectively used during the inspection process.

The offset of the obscuration also causes Fraunhofer pattern
distortions.

Decentering of the obscuration is manifested by contrast
reduction between the central core and the first diffraction
ring.
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18 Fraunhofer Diffraction

Rectangular and Diamond-Shaped Apertures

The lateral size of the far-field diffraction pattern is inversely
proportional to the size of the near-field distribution. A
diffraction pattern produced in the focal plane of a lens by
a rectangular aperture with lateral dimensions a and b is
defined as

U (x2, y2, f )= (ab)2 sinc2
(
i
kax2

2 f

)
sinc2

(
i
kay2

2 f

)

Radiation in the Fraunhofer pattern is spread in directions
normal to the edges of the near-field apertures, as shown in the
following graphs:
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Apodized Apertures 19

Apodized Apertures

Diffraction on a finite-sized aperture causes a fraction of the
propagating energy to spread outside the central core of the
Fraunhofer diffraction pattern into the outside rings or nodes.
In many applications, this may also lead to adverse effects
such as difficulties in detecting weak signals, channel crosstalk,
changes in photodetector responsivity, etc.

Apodization is an important technique employed to reduce
the amount of light diffracted into the diffraction rings or
nodes. Soft-edge apertures with the amplitude transmission
function gradually changing in the vicinity of the edge from
100% transmissive to completely opaque are commonly used as
apodizing structures. The following figures show a reduction in
the number of diffraction rings with an increase in width of the
transition edge zone of the soft-edge aperture.

Soft-edge apertures with different transition widths:

Corresponding far-field patterns:
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20 Apodized Apertures

Apodized Apertures with Central Obscuration

Apodized apertures with central obscuration significantly
reduce both the amount of light outside the central core and the
central core diameter.

Apodized apertures Far-field patterns

An increase in central obscuration leads to a reduction in the
central core size and an increase in the relative amount of
energy in the diffraction rings. For a given obscuration value
e, the energy outside the central core of the soft-edge apodized
apertures is significantly lower than for the apodized shapes.
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Field Obstruction by an Opaque Semiplane

Diffraction of a field obstructed by an opaque semiplane with
a straight edge occurs in numerous devices, including beam
profilers, variable attenuators, and optical shutters. Replacing
the sharp hard edge with a soft apodized edge significantly
reduces diffractive energy spread orthogonal to the edge.

Apodizers with soft edges can significantly reduce the energy
spread outside the central core into diffraction rings and nodes.
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22 Apodized Apertures

Apodization with Serrated Edges

Serrated edges can be effectively used for suppressing
diffracted light in the vicinity of the central core of far-field
diffraction patterns obstructed by opaque objects. Serrated
edges can be employed in high-power laser applications,
whereas absorbing soft-edge apodizers can be easily damaged
under similar conditions.

The figures below show the influence of edge serration on
Fraunhofer diffraction patterns for apertures with 50% obstruc-
tion. A diffraction pattern for an aperture with a straight edge
(left column) is compared to the respective diffractive patterns
produced by two different serrated edges.

Near-field distributions

Straight edge

Far-field distributions

Saw-tooth 
serration

Sinusodial 
serration

The saw-tooth-shaped serrations produce the least amount of
light diffracted in the direction normal to the semi-aperture
edge.
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Serrated Apertures as Apodizers

Serrated apertures can also be employed to suppress the
diffraction of light outside the central core of the far-field
diffraction pattern. This technique is especially important
in high-power laser applications, when absorbing grayscale
apodizers with soft edges can no longer be employed.
Serrations may take various shapes, and radial serrations are
most common.

The figures below present the field distributions for circular
apertures with progressively increasing radial serration depths.

Near-field distributions

Far-field distributions

Two effects are noticeable. An increase in the serration depth
leads to a significant reduction of light diffracted outside the
central core. At the same time, the increase in the serration
depth causes an increase in the diameter of the central core in
the Fraunhofer diffraction pattern.
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24 Diffraction by Multiple Apertures

Diffraction by Multiple Apertures

Far-field patterns produced by diffraction on multiple aper-
tures depend on the size, shape, and quantity of the apertures.

Fraunhofer diffraction by multiple rectangular slits
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Effects of Aperture Spacing

Effects of aperture spacing between multiple apertures are
illustrated by observing diffraction on five identical rectangular
apertures with width w and height h. The aperture centers are
spaced a distance d from each other.

An increase in the aperture spacing d is associated with a
respective increase in the number of maxima in the diffraction
pattern. The spacing between the maxima and the lateral
maxima widths is inversely proportional to the aperture
spacing.

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



26 Diffraction by Multiple Apertures

Aperture Fill Factor

The near-field aperture duty cycle, also known as a fill factor
ζ, is defined as the ratio of the aperture width w to the aperture
spacing value d (ζ= w/d). The effects of the duty cycle changes
on the shape of a diffraction pattern are shown for three
rectangular apertures:

An increase in the duty cycle leads to a reduction in the number
of high-peak-intensity nodes, as well as an increase in the
energy concentration in the central diffraction spot.

In the limiting case of ζ= 1, the pattern becomes identical to an
entirely filled single rectangular aperture with a width of 3w
and a height h.
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Aperiodically Spaced Apertures

Aperiodically spaced apertures (ASAs) represent an
ensemble of apertures with a variable duty cycle. ASAs are
employed to suppress secondary radiation maxima in the far
field.

An exemplary ASA structure consisting of 10 apertures with
constant aperture width and gradually varying spacing as well
as the associated far-field distribution is shown below.

Respective field distributions from a periodic structure consist-
ing of 10 equally spaced apertures:
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28 Resolution Limit in Optical Instruments

Resolution Limit in Optical Instruments

An extended object can be considered a superposition of
individual points with varying intensities across the object. For
a diffraction-limited lens, each object point produces a PSF
in the image plane. Intensity distribution in the image plane
produced by incoherent illumination represents a convolution
of the object intensity and the PSF.

The Rayleigh resolution criterion is based on distinguishing
two closely spaced point objects of equal intensity when the PSF
maximum of one object coincides with the first PSF minimum
of the second object. The minimum separation between the two
resolvable incoherent sources at the focal plane of a diffraction-
limited optical system based on the Rayleigh criterion can be
described as

dR
min = 1.22λ f /D

The Sparrow resolution criterion is based on an intensity
minimum appearing in the joint intensity function between the
two objects. It can be applied to visual observations based on
the high sensitivity of the human eye to intensity differences,
and in the case of two objects with equal intensity, is defined as

dS
min = 0.95λ f /D

In the case of coherent illumination, the combined field
distribution is defined based on amplitude addition of the PSFs.
The resolution of two objects now depends on the phase delay
between the objects. For the two in-phase objects (zero phase
delay) with equal intensity, the Rayleigh criterion no longer
resolves the objects. The Sparrow criterion requires 1.5 times
larger separation and is defined as

dS
min = 1.46λ f /D

For two objects with a phase delay of λ/2, the coherently added
pattern has the minimum intensity value between the objects,
regardless of the separation d. Phase masks are commonly
employed to improve resolution in applications using coherent
illumination, such as projection lithography.
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Superresolution Phenomenon

Resolution enhancements in the far field are commonly
achieved using pupil filters or pupil masks. The pupil filters
are located at the lens aperture stop, or at the entrance or exit
pupil locations of the lens.

Lenses employing apertures with central obscuration reduce
the width of the PSF central peak below the width of the central
peak in the Airy pattern (also known as the Airy disk). PSFs
with central peak width lower than the widths of the Airy disc
are referred to as superresolved PSFs.

Optical system employing a phase pupil filter

Amplitude masks, phase masks, and their combinations are
employed to produce superresolved PSFs. The idea of using
pupil phase masks with alternating phase delays between the
neighboring ring zones to reduce the PSF width was proposed
by Toraldo di Francia in 1952.

Reduction in the PSF central peak width is associated with a
reduction in the Strehl ratio, which is defined as the ratio
of the PSF peak value to the PSF peak value of a diffraction-
limited distribution. Reduction in the PSF central peak width
is also associated with diffraction of a significant fraction of the
propagating energy to the outside of the central peak and an
increase in the peak intensity of the diffraction rings.
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Superresolution with Two-Zone Phase Masks

The simplest phase mask consists of two transparent circular
zones with a relative phase delay.

PSF shapes produced by a two-zone pupil phase mask with a
relative phase delay of π producing an optical path difference
(OPD) of λ/2 are shown in the figure below for different
normalized inner-zone radii R. Airy distribution corresponds
to the inner-zone radius R = 0. The figure shows the tradeoff
between the central peak width and the relative energy
contained in the diffraction rings.

Reduction in the PSF central peak width is associated with
reduction in the Strehl ratio, defined as the ratio of the PSF
peak intensity to the peak intensity of the Airy disc.
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Point Spread Function Engineering

The intensity in the first diffraction ring reaches the intensity
of the central peak when the zone radius R = 0.569. When the
relative zone size reaches R ∼= 0.7, the central peak vanishes,
and the PSF becomes ring shaped. For relative zone sizes over
0.84, the PSF no longer has a depression in the center of the
distribution, and instead produces a flattened central peak.

Instrumentation fields that benefit from superresolved PSFs
include confocal scanning microscopy and optical data storage.
In the case of scanning confocal microscopy, a desirable increase
in the axial resolution is achieved by producing PSFs with
reduced axial extent as compared to diffraction-limited PSFs.

Resolution-enhancement techniques constitute a subset of more
general point spread function engineering techniques that
represent an active topic in contemporary optical research. A
variety of specially designed PSFs are used in both imaging and
nonimaging instruments.

Vortex phase masks have been employed in solar corona-
graphs, in high-resolution fluorescent depletion microscopy, and
in optical tweezers for particle trapping and manipulation.

Another use of phase structures was found in extended depth
of field imaging systems as well as for producing a special class
of asymmetric Airy beams.
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Adjusting Diffraction-Ring Intensity

It is often desirable to reduce the peak intensity in the PSF
diffraction rings. In the case of two-zone phase masks,
the reduction in core width is inevitably associated with an
intensity increase of the first diffraction ring.

Increasing the number of the phase mask zones provides
additional degrees of freedom in PSF design. A three-zone phase
mask can significantly reduce the peak intensity in the first
diffraction ring of a superresolved PSF.

PSF engineering can significantly reduce the peak intensities
in the diffraction rings. For a three-zone phase mask with the
second radius R2= 0.886 and Strehl ratio of 0.5, a 3× reduction
in the secondary peak intensity values is achieved. The peak
intensity in the diffraction rings is below 0.6% of the central
peak intensity value.
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Amplitude and Phase Filter Comparison

The changes in PSF shape over the inner zone radius occur
more rapidly in the case of phase pupil filters. The following
figure presents the power contained in the PSF central core as
a function of the inner zone radius:

When differences in the rate of change in the PSF central
core power are accounted for, the PSF widths produced using
both pupil amplitude filters and phase filters result in
comparable performance:
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Vortex Phase Masks

Vortex phase masks are extensively employed with coherent
radiation to produce doughnut-shaped beams in optical
tweezers and in fluorescence depletion microscopy.
Vortex masks are also employed as pupil phase filters to alter
the PSF of an optical system.

For an optical system with a uniformly illuminated vortex phase
mask located at the pupil, the field distribution can be written
as

E (ρ,φ)=
{

E0eimφ, when ρ≤ Rmax

0, when ρ> Rmax

where ρ is the radial coordinate, φ is the azimuthal coordinate
in the transverse plane, m is the topological charge, Rmax is the
maximum pupil radius, and E0 is the pupil amplitude.

The pupil phase profiles and the respective doughnut-shaped
far-field intensity distributions for topological charges m = 1
and m = 2 are shown below:
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Combining Amplitude and Vortex Phase Masks

The doughnut-shaped field size gradually increases with an
increase in the topological charge of the vortex phase mask:

The combination of a vortex phase mask with topological charge
m = 2 and an elliptical amplitude mask at the pupil of an
optical system produces elongated superresolved PSFs. The
figure below shows the transition from a doughnut-shaped PSF
with circular amplitude mask (ellipticity ε= 1) to an elongated
superresolved PSF (ε= 10):

The top, central, and bottom rows correspond respectively to the
amplitude masks, combinations of the two masks, and the PSFs
for the ellipticities ε= 1, ε= 2, and ε= 10.
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Diffraction Gratings

Diffraction gratings are periodic diffractive structures that
modify the amplitude or phase of a propagating field. Linear
gratings represent the simplest periodic diffractive structures.

Amplitude gratings are based on the amplitude modulation
of the incident wavefront and are employed in spectral regions
where nonabsorbing optical materials are not available. The
amplitude modulation is associated with transmission losses
introduced by the grating.

Phase gratings are based on the phase modulation of the
incident wavefront by introducing a periodic phase delay to
the individual portions of the propagating wavefront. Phase
gratings are designed to work in transmission, reflection, or
in a bidirectional manner.

Surface-relief phase gratings are based on wavefront-division
interference principles and introduce periodic phase delays to
the fractions of the incident wavefront due to periodic changes
of the substrate thickness.

Reflective surface-relief phase grating with
sinusoidal profile

Transmissive surface- 
relief phase grating  
with triangular profile

Reflective surface-relief  
phase grating with  

triangular profile
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Volume Bragg Gratings

Volume Bragg gratings
(VBGs) are based on ampli-
tude division interference
and are designed to perform in
reflection or in transmission.
VBGs introduce a periodic
phase delay to the propagating
wavefronts associated with the
periodic modulation ∆n of the
refractive index of the grating material. VBG diffraction effici-
encies of S-polarized (TE-polarized) and P-polarized (TM-
polarized) light are calculated as

ηS = [sin(υ)]2

ηP = {sin[υcos(2γ)]}2

where the angle 2γ is between the incident light and diffracted
light inside the volume phase medium, and the parameter υ is
defined as υ= π∆nT

λ
p

CRCS
.

T is the effective grating thickness, CR is the incident wave
obliquity factor, and CS is the diffracted wave obliquity factor:

CR = cos(2γ)

CS = cos(2γ)− λ

ndB
tan

(
β−αB

2

)
where dB is the Bragg plane spacing, αB is the incidence angle
after refraction into the phase medium, and β is the angle after
refraction into the volume phase medium.
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Polarization Dependency of Volume Bragg Gratings

VBGs can be designed to operate either as polarization-inde-
pendent or polarizing components, depending on the relation
between the peak diffraction efficiency of the S-polarization
and P-polarization states.

The polarization-independent operating condition is

cos(2γ)=−2p−1
2s−1

The S-polarizing operating condition is

cos(2γ)=− 2p
2s−1

The P-polarizing operating condition is

cos(2γ)=−2p−1
2s

The refractive index modulation ∆n corresponding to the
S-polarization peak is calculated as

∆n = λ (s−0.5)
T

√
cos(2γ)

[
cos(2γ)− λ

ndB
tan

(
β−αB

2

)]
The relation between the angles αB and β is found from the
grating equation

sin(αB)+sin(β)= λ

ndB

The peak efficiency maxima for the S- and P-polarization states
are satisfied when either of the following two possible conditions
is valid:

β= cos−1
(

2p−1
2s−1

)
−αB

β= 180−cos−1
(

2p−1
2s−1

)
−αB
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One-Dimensional Surface-Relief Gratings

The evolution of diffraction grating technology has led to a
variety of grating profiles and structures. The choice of a
specific profile or structure is governed by fabrication costs and
performance requirements.

Surface-relief gratings with
triangular grooves are form-
ed on top of aluminum- or
gold-coated substrates by a di-
amond tool of a ruling engine.
The grooves are defined by the
groove spacing dg and the facet angle ϕ. Alternatively, tri-
angular grooves are fabricated by using a grayscale mask pho-
toresist exposure and a subsequent transfer etching into the
grating substrate.

Lamellar gratings are com-
posed of rectangular ridges of
width w and height h spaced at
a distance dg from each other.
They are well suited for fab-
rication using well-established
lithographic techniques. Lamel-
lar grating structures often
have ridges that are compara-
ble with the operational wave-
length λ and are therefore designed using rigorous diffraction
techniques.

Sinusoidal grating profiles
are usually etched into the
substrate after being exposed
to a pattern produced by two-
beam interference.
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GRISM Elements

The term GRISM refers to an inte-
grated optical component that combines a
diffraction grating and a prism in a single
element. Direct-view GRISM spectrome-
ters with constant dispersion combine the
grating and the prism dispersions while
providing a cancellation of the dispersion
slopes.

The GRISM can be designed to satisfy
the zero-deflection condition and to
avoid deflection of the propagating ra-
diation. The zero-deflection condition
is found for the grating blazing con-
dition when θi =ϕ. The deflection an-
gle αd at the exit of a planar grating with the substrate refrac-
tive index nd is

αd = sin−1[nd sin(ϕ)]−ϕ
The optimum step height hopt of the grating facet for the blazed
wavelength λb in the mth diffraction order is

hopt = mλb

(nd −1)

A zero-deflection GRISM is pro-
duced when the grating interface is
applied to a surface of a prism with
a properly defined vertex angle ϕp.
The vertex angle of a prismϕp for a
zero-deflection GRISM is calculated
as

tan
(
ϕp

)= nsin(ϕ)−sin(ϕ)√(
np

)2 − [nd sin(ϕ)]2 −cos(ϕ)
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Two-Dimensional Diffractive Structures

Two-dimensional diffractive structures are composed of
two-dimensional arrays of microstructures. The shape, size, and
spacing may differ in the two lateral directions. Fabrication
of two-dimensional gratings is performed using lithographic
techniques.

Two-dimensional diffraction gratings are
often made with feature sizes smaller
than the operating wavelengths and are
called photonic crystals or artificial
dielectrics. The features may be in the
form of cavities etched into the substrate or
pillars elevated above the substrate level.

Rigorous diffraction techniques, such as
finite difference time domain (FDTD),

are commonly employed to simulate the performance of
photonic crystals. The two most common applications of
two-dimensional gratings include antireflection surface-relief
microstructures and microstructured surfaces for increased
light-emitting diode (LED) light extraction and increased
photovoltaic cell efficiency.

The figure shows an example of a two-dimensional diffractive
structure that has antireflection properties when the feature
size is less than the wave-
length. An effective refrac-
tive index increases gradu-
ally from the index of air to
the index of the substrate.
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Holographic Diffusers

Holographic diffusers (or diffractive homogenizers) are
employed to control light distribution in illumination and laser
systems. Diffusers represent far-field shaping components
designed to transform coherent and incoherent radiation using
multiple diffraction orders. Traditional opal glass or ground
diffusers are limited to Lambertian scatter. Holographic
diffusers allow substantial flexibility in controlling spatial
illumination patterns, producing nonrotationally symmetric
spatial shapes as well as desired angular distributions.

Diffusion angles can be selected within a broad range of
0.5–80 deg. Circular, oval, square, and line-shaped patterns are
common. More than 90% of the incident light can be directed
into the specified illumination pattern.

Holographic diffusers are cost-effectively replicated in high
volume using injection or compression molding or can be
embossed onto surfaces of other optical components. A master
mold for a holographic diffuser is produced as a surface-
relief structure by holographic recording with subsequent
lithographic fabrication.

Illumination patterns produced by 10 LEDs

Illumination patterns produced by 10 LEDs with a 
holographic diffuser
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Multispot Beam Generators

Multispot beam generators, also known as array beam
generators or fan-out elements, are diffractive elements
that split an incoming laser beam into a finite number of
beams with a specific intensity distribution. They belong to the
class of diffractive far-field shaping components, or Fourier
gratings. The field distribution in the angular space θx after
the fan-out element is given by

U (θx)=
N∑

n=1
An exp(iφn)δ (θx −θn)

where An is the amplitude, φn is the phase, and θn is the
angular coordinate of a one-dimensional spot array.

Far-field beam shapers are composed of multiple diffractive
phase cells significantly smaller than the size of the laser
beam employed during multispot beam generation. The fan-out
elements are relatively insensitive to the size and position of
the laser beam at the diffractive element.

Due to the small size of the phase cells, the far-field condition
is satisfied starting from distances close to the multispot
generator. The formed multispot pattern will scale in the far
field based on the divergence angles of the generated beams.

Multispot beam generators are used as image replicators, as
beam splitters or beam combiners, and as spatial multiplexors
in multichannel optical interconnects.
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Design of Fan-Out Elements

The design of fan-out elements is based on multiple approaches,
including Dammann gratings and multilevel binary and
kinoform structures.

Dammann gratings represent binary phase grating struc-
tures. Each grating period is divided into multiple segments
with phase shifts of 0 and π. The fan-out elements based
on Dammann gratings are simple and require only a single
mask during the fabrication process. However, the diffraction
efficiency of fan-out elements based on Dammann gratings is
around 80%. The figures below show the phase profile and field
distribution of a three-beam fan-out element with transition
points at 0.47 and 0.70.

Kinoform structures with continuous profiles produce fan-
out elements with the highest diffraction efficiencies. Fan-
out elements designed to achieve uniformity of the resulting
beam intensities at <1% have efficiency over 92%. Diffraction
efficiencies of 98–99% are achieved when the intensity
uniformity requirement can be relaxed. The profile shape of
a kinoform fan-out element designed to split the propagating
beam into nine beams is shown.
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Diffractive Beam-Shaping Components

Diffractive beam-shaping components are employed to
modify the field distribution of coherent radiation. Diffractive
near-field shaping components introduce spatially varying
phase delay across the propagating laser beam and remap the
beam onto a plane of regard using a single diffractive order.
Field distributions produced with the near-field diffractive
beam-shaping technique are sensitive to variations in phase
and intensity of the input beam. A phase corrector placed in the
plane of the remapped distribution combined with a Fourier
transform lens is employed to extend the axial range of the
shaped field along the propagation direction.

Far-field shaping components can be made as pixilated
phase structures. They are referred to as digital diffractive
optical elements and can produce intricate radiation patterns.
Local intensity variations due to interference effects, known
as speckle, are present in the field distributions generated
using diffractive beam shapers. The average speckle size d at
the observation plane located a distance L from the diffuser is
estimated to be

d = L
λ

D

where λ is the wavelength of the propagating radiation, and D
is the input beam diameter. Speckle reduction in the generated
pattern is achieved by employing input radiation with reduced
coherence and by translating the input beam across the diffuser
surface, as well as by performing spatial filtering of the pattern.

The figures below show diffractive beam shaping of a Gaussian
laser beam into a square-shaped beam with uniform intensity
distribution.
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Digital Diffractive Optics

Digital diffractive optical (DDO) elements represent
periodic two-dimensional discrete phase structures that are
designed using iterative procedures. Digital diffractive optical
elements are also called computer-generated holograms
and represent versatile structures, allowing for the creation
of arbitrarily shaped field distributions. The phase profile of
a DDO is found by solving an inverse problem wherein the
input beam and the desired field distribution are used as input
parameters.

Compared to holographic optical elements, which represent
diffractive structures with continuous changes in phase profile
and are recorded through interference of at least two beams,
DDOs provide significantly higher flexibility in defining
complex diffraction patterns.

DDOs are made by fabrication of the designed diffraction
pattern onto the element substrate. The patterns are often
transferred into the substrate during lithographic fabrication
using a mask set. DDOs are widely used for pattern generation
and beam shaping and can be cost-effectively replicated in high
volumes.

The figure below shows a phase-distribution fragment of a DDO
(left) employed to produce a square-shaped Fraunhofer field
distribution (right).
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Three-Dimensional Diffractive Structures

Three-dimensional diffractive structures represent the
most complex microstruc-
tures that exhibit volu-
metric anisotropy.

Photonic crystals and
volume Bragg gratings
(VBGs) are produced by
multiple exposures to the
substrate and are two
examples of three-dimen-
sional diffractive struc-
tures. In both cases,
diffraction is caused by the
Bragg phenomenon.

Three-dimensional diffractive structures present significant
challenges with respect to analysis and fabrication. Simulation
techniques developed for photonic crystals, such as band dia-
grams, Bloch states, and Brillouin zones, are incompatible
with ray-tracing techniques commonly used in optical design.
Isofrequency diagrams, or wave vector diagrams, can be
employed only to define the number of propagating diffraction
orders. Photonic crystal designs are concerned with confinement
of the propagating field. The operating wavelength and the rel-
ative feature size of the crystal, known as the lattice constant,
are selected below the photonic bandgap, ensuring an evanes-
cent nature of all diffraction orders in reflection and in trans-
mission.

The volumetric anisotropy of photonic crystals leads to several
“unusual” propagation phenomena, such as the superprism
effect, supercollimation, and negative refraction.
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Grating Equation

The grating equation defines the propagation directions of
radiation after interaction
with the grating structure.
For a plane wave incident
onto the grating structure
at an angle θi, the diffrac-
tion angle θm is found from
the following general equa-
tion:

n2 sinθm = n1 sinθi +mλ/dg

where n1 and n2 define the refractive indices of the material
before and after the grating interface. When the diffraction
order is zero (m = 0), the grating equation reduces to the well-
known Snell’s law. For a reflection grating located in air (n1 =
−n2

∼= 1),

sinθm +sinθi = mλ/dg

When the grating structure is applied to one of the surfaces of a
plane-parallel plate made of refractive material, the diffraction
angle at the plate exit θm is

sinθm = sinθi +mλ/dg

Littrow mounting, also known as
autocollimation, is a specific condition
in which the incidence and diffraction
angles of a reflection grating are equal
(θi = θL

m). The grating equation for auto-
collimation is

sinθL
m = mλ/2dg

The grating classical mount corresponds to the incident plane
being normal to the grating grooves. The conical mount occurs
when the incident plane is at an angle to the grating grooves so
that diffraction orders deviate from the incident plane, forming
a cone.
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Grating Properties

The grazing incidence mount
corresponds to steep angles of in-
cidence required to achieve higher
resolution. Grazing mounts are
often used in autocollimation.

For a constant angle of incidence, the grating angular
dispersion is inversely proportional to the cosine of the
diffracted angle θm:

∂θm

∂λ
= m

dgn2 cosθm

The angular dispersion of a blazed reflective grating in Littrow
mounting is reduced by half. The dispersion is a function of
the blaze angle ϕb and is no longer dependent on the order of
diffraction m:

∂θL
m

∂λ
= m

2dg cosθL
m

= tan(ϕb)

λL
b

Linear dispersion at the focal plane of a focusing objective
with a focal length f is the product of the focal length and the
angular dispersion of the grating.

An alternative form of grating angular dispersion is obtained
using the incidence and diffraction angles:

∂θm

∂λ
= n2 sinθm −n1 sinθi

λn2 cosθm

When accounting for the blazing condition, the angular
dispersion becomes

∂θm

∂λ
= 1[

dgn1 cos(θi)
m − λb

tan(ϕb)

]
From the grating equation it follows that longer
wavelengths are diffracted at larger angles.
For the two wavelengths λs < λl , the relation
between the respective diffraction angles is
θ
λs
m < θλl

m .
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Free Spectral Range and Resolution

The free spectral range
∆λFSR of a grating in a given
diffraction order m defines
the largest bandwidth that
does not overlap with the
same bandwidth in adjacent
orders:

∆λFSR = λs

m
= λl

m+1

For gratings operating in higher orders, the free spectral range
∆λFSR is significantly reduced.

Grating resolution is proportional to the product of the
diffraction order m and the total number of illuminated grating
grooves Ng:

λ

dλ
= |m|Ng

The resolution of a uniformly illuminated grating is propor-
tional to the grating width Wg:

λ

dλ
= |m| Wg

dg
= Wg

λ
|sinθm +sinθi|

For a given grating groove spacing dg, the resolution can be
increased either by increasing the order m, or by enlarging the
grating width Wg. The upper limit of the grating resolution is
defined as the number of half-wavelengths contained within the
grating width: (

λ

dλ

)
max

= 2W g

λ

For a given diffraction order, the grating resolution is constant
across the working spectral range. A coarse grating with a few
grooves designed to work in a high diffraction order may have
the same resolution as a fine grating with a large number of
grooves working in a low diffraction order.
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Grating Anomalies

Diffraction orders m satisfying the condition |sinθm| < 1
are called propagating orders. When varying the angle of
incidence, some of the diffraction orders, called passing-off
orders or cut-off orders, may propagate along the grating
substrate. This is called the threshold condition:∣∣∣∣ 1

n2

(
n1 sinθi + mλ

dg

)∣∣∣∣= 1

Small changes in the angle of incidence lead to the anomalies
associated with the appearance or disappearance of the cut-off
order and cause abrupt changes in the diffraction efficiency of
the propagating orders. The disappearing orders that satisfy the
condition |sinθm| > 1 are called evanescent orders.

Grating anomalies, also known as Wood anomalies, manifest
as rapid variations in efficiency that occur within either narrow
spectral or angular intervals. The wavelengths for the cut-off
order are

λ= d
m

[sgn(m)−sin(θi)]

The figure below shows the strong anomalous behavior of a
sinusoidal reflective grating at a 30-deg angle of incidence
for TM (S-polarized) light diffraction efficiency. The anomaly
is caused by the emergence of the m = −3 order and the
disappearance of the order m = 1.

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



52 Grating Properties

Polarization Dependency of Grating Anomalies

Rayleigh anomalies represent resonance phenomena due to
the simultaneous occurrence of positive and negative diffractive
orders propagating in opposite directions along the grating
surface.

Grating anomalies have strong polarization dependency
or polarization anisotropy. For reflective gratings, the
anomalies are most prominent in transverse-magnetic or TM-
polarized light. TM-polarized light has the electric field vec-
tor oriented parallel to the incident plane, also known as the
tangential plane, and is therefore called P-polarized light.
Anomalies for transverse-electric, or TE-polarized light, occur-
ring when the electric vector is oriented in the sagittal plane
(S-polarized) perpendicular to the incident plane, are observed
in gratings with small groove spacing and deep grooves.

The first figure shows strong TM-polarized anomalies in the
first diffraction order for a gold-coated grating at an incidence
angle of 20 deg.

Grating anomalies can be observed in any diffraction order. The
second figure shows 0th-order diffraction anomalies for a gold-
coated grating at a 20-deg angle of incidence with two efficiency
“notches” around 1.15 µm and 1.24 µm.

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Grating Properties 53

Gratings as Angular Switches

Binary phase gratings can be em-
ployed to spatially redirect incoming ra-
diation. The figure shows two binary
gratings with a duty cycle of 0.5 later-
ally shifted by half of the grating pe-
riod with respect to each other. The grat-
ing combination is equivalent to a plane-
parallel plate, and the incoming radia-
tion propagates unaltered through the
grating pair.

When the two gratings are relatively off-
set in the lateral direction by a quarter
of the grating period, the grating combi-
nation becomes equivalent to a grating
with triangular grooves. The incoming
radiation is split into two beams at the
exit of the grating pair.

Resonance phenomena can be effectively employed to perform
angular switching of radiation. The following figure presents
angular switching between the zero and first diffraction orders
of a reflective grating as a function of the incidence angle. By
rotating the grating, the output of TM-polarized light can be
rapidly switched between the two diffraction states.

A change in the grat-
ing angular orienta-
tion by 1 deg causes
a change in the first
diffraction order from
an evanescent state
to 75% output effi-
ciency.
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Gratings as Optical Filters

The resonance phenomenon of grating anomalies can be
effectively employed to alter grating properties. One practical
outcome of using grating anomalies that is not obvious from
grating behavior is the design of efficient band-pass filters.

The following figure shows the efficiency graph for TM-pol-
arized light reflected into the first diffraction order with a
full width at half maximum (FWHM) bandwidth of 0.54 µm
centered at 1.6 µm.
Reflection of TE-pol-
arized light into the
first diffraction order
is also shown for com-
parison.

Resonance anomalies
in subwavelength
transmission gratings
allow for the design of
sharp notch filters working in the 0th diffraction order. The
following graph shows a grating structure producing a narrow-
band etalon effect in reflection to block the transmission of a
laser beam at 1.06 µm, while transmitting neighboring wave-
lengths. The theoretical pass-band FWHM of the notch reso-
nance is 0.14 nm.
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Gratings as Polarizing Components

The design of reflective diffractive polarizers employs
anomalous grating behavior. The figures below present a
polarization grating performance designed at ∼1.4 µm.

The grating effectively reflects TM polarization into the
diffraction order m = 1 and reflects TE polarization into the
diffraction order m = 0.

The polarization extinction ratio for TE-polarized radiation
exceeds 200, and for TM-polarized radiation is greater than
1000.
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Blazing Condition

Blazed gratings are composed
of individual grooves that are
shaped to concentrate the inci-
dent radiation into the diffraction
order of interest.

The blazing condition occurs
when the propagation direction
θm of the diffracted radiation
coincides with the propagation direction through the grating
microstructure defined by the laws of reflection or refraction.
The blazing condition for a grating comprises grooves with a
blazed facet angle ϕb is defined by a system of two equations:{

n1 sin(θi +ϕ)= n2 sin(θm +ϕb)
n2 sin(θm)= n1 sin(θi)+mλ/dg

The angle of diffraction into the mth diffraction order θm can be
found by

n2 cos(θm)= n1 cos(θi)−mλ/[dg tan(ϕb)]

The blazing wavelength λb is calculated as

λb = dg

m

(
n2 sin

{
sin−1

[
n2

n1
sin(θi +ϕb)

]
−ϕb

}
−n1 sin(θi)

)
The angle ϕp is the passive facet angle. For reflective
gratings located in air, the blazing wavelength λb is found by

λb = 2dg

m
sin(ϕb)sin(θi +ϕb)

In Littrow mounting, the incident wave propagates at normal
incidence to the grating facet, so that ϕb =−θi, and the blazing
condition becomes

λL
b = 2dg

m
sin(ϕb)
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Blazed Angle Calculation

The blazed facet angle at a given blazing wavelength λb, into
a diffraction order m, and with a groove spacing dg, is a function
of the angle of incidence θi:

tan(ϕb)=
(
mλb/dg

)
n1 cos(θi)−

√
(n2)2 − [

n1 sin(θi)+
(
mλb/dg

)]2

The following graph shows the blazed angle ϕb as a function
of the incidence angle θi for different diffraction orders
propagating from a medium with a lower refractive index into a
medium with a higher refractive index.

When propagating from a medium with a higher refractive
index into a medium with a lower refractive index, the absolute
blazed angle values ϕb as a function of the incident angle θi
exhibit higher values:
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Optimum Blazed Profile Height

The optical path differenceφ between the neighboring facets
of a blazed transmission grating produced as an interface
between two materials with indices of refraction n1 and n2 is
defined as

φ= dg [n2 sin(θm)−n1 sin(θi)]= mλb

The optimum profile height hopt of a blazed grating surface
operating in the mth diffraction order is derived as

hopt =
∣∣∣∣mλb

/{√
(n2)2 − [

n1 sin(θi)+
(
mλb/dg

)]2 −n1 cos(θi)
}∣∣∣∣

The first graph shows the optimum profile height as a func-
tion of the incidence angle for m = 1, λ = 0.5 µm, and three
different grating peri-
ods when propagating
from a less dense op-
tical medium into a
medium with a higher
density when n1 < n2.

The optimum profile
height as a function of
the incidence angle for
m = 1, dg = 10 µm,
and three different blazing wavelengths when n1 < n2 is shown
in this graph:

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Blazing Condition 59

Optimum Blazed Profile Height (cont.)

The first graph shows
the optimum profile
height hopt for m = 1,
λ = 0.5 µm, and three
different grating peri-
ods when propagating
from a higher to a lower
density optical medium,
such that n1 > n2.

The optimum profile
height as a function
of the incidence angle
for m = 1, dg = 10
µm, and three blazing
wavelengths is shown
in the second graph.

The optimum profile
height at a normal
angle of incidence for
a blazed grating in the
mth diffraction order is simplified to

hopt =
∣∣∣∣mλb

/[√
(n2)2 − (

mλb/dg
)2 −n1

]∣∣∣∣
The optimum angle of the passive facet angle ϕp must be
parallel to the direction of the diffracted field θm:

ϕp = cos−1 [
n1 sin(θi) /n2 +mλb/

(
n2dg

)]
This requirement cannot al-
ways be satisfied due to lim-
itations associated with the
grating profile fabrication pro-
cesses.
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Scalar Diffraction Theory of a Grating

Scalar diffraction theory enables an accurate definition
of the propagation directions of diffracted light based on
the grating equation. It also permits diffraction efficiency
calculations when the grating period d significantly exceeds
the operating wavelength λ. The gratings described by scalar
diffraction theory have shallow facet angles. Therefore, the
condition d À h and the scalar diffraction theory are often
referred to as the thin-element approximation. Diffractive
optics that satisfy the condition d À h belong to the scalar
domain.

Scalar diffraction theory allows for the transition from a partial
differential wave equation to an integral equation form.
Diffraction efficiency in the mth transmitted order for gratings
in the scalar domain can be defined as

ηm =
∣∣∣∣ 1
dg

∫ dg

0
t (x) e

i 2π
λ

{
[n1 cos(θi)−n2 cos(θm)] f (x)− mλ

dg
x
}
dx

∣∣∣∣2
where f (x) is the grating profile function, t (x) is the local
transmission Fresnel coefficient, and x is the coordinate along
the grating surface normal to the facets.

The relative grating facet size in the scalar domain is typically
d/λ ≥ 15. Polarization and shadowing effects on the grating
facets are ignored in the thin-element approximation.

The grating period in general is a function of the lateral
coordinates d(x, y). The wavefront quality of a grating in the
scalar domain is determined by the accuracy with which the
spacing d(x, y) is reproduced and is usually very good. In
many cases the optical quality is limited by the quality of the
substrate rather than by the errors associated with the groove
spacing d(x, y). Even for gratings with large apertures that have
stitching errors, the wavefront quality is usually good, and the
errors manifest in the presence of weak “ghost” orders.
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Diffraction Efficiency

Diffraction efficiency in a given propagating order represents
a fraction of the incident power contained within the order. The
relative diffraction efficiency of a diffraction grating in the
scalar domain is defined with respect to a perfectly reflecting
or transmitting substrate. The diffraction efficiency ηm of an
ideal blazed grating with blazing wavelength λb corresponding
to the diffraction efficiency peak value depends on the operating
wavelength λ and the diffraction order m:

ηm =
{

sin
[
mπ

(
λb

λ
−1

)]/[
mπ

(
λb

λ
−1

)]}2

The figure shows changes in diffraction efficiency as a function
of the operating wavelength for diffraction gratings optimized
at 500 nm and three different diffraction orders.

The normalized diffraction efficiency of a grating consisting
of a finite number M of identical facets is a product of an
interference term H from M beams and an intensity term Id
of a single facet with width d:

ηM = HIS =
 sin

(
M kdp

2

)
M sin

(
kdp

2

)
2 sin

(
kdp

2

)
kdp

2

2

where p = n2 sinθm −n1 sinθi.
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Blaze Profile Approximation

The fabrication of high-fidelity triangular profile blazed grat-
ings is costly and time consuming. Reduction in manufacturing
costs is achieved by employ-
ing grating structures with
approximated blazed pro-
file shapes. Lithographic
techniques are often em-
ployed to reduce grating
fabrication costs. Binary gratings approximate a continuous
grating profile with a staircase shape and are fabricated using
a succession of lithographic etching steps. The diffraction effi-
ciency η of a multilevel binary grating that employs N binary
steps is calculated as

η=
sin

[
mπ

(
λb
λ −1

)]
mπ

(
λb
λ −1

)


2 sin
(
πλb
λN

)
(
πλb
λN

)
2

The peak diffraction efficiency depends on the number of binary
steps approximating the blazed profile:

Diffraction efficiency as a function of the operating wavelength
for diffraction gratings optimized at 500 nm with differing
numbers of binary steps is shown below:
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Extended Scalar Diffraction Theory

Extended scalar diffraction theory improves the accuracy
of efficiency calculations by accounting for the shadowing
effects, the fill factor of the propagating field after diffraction
(also called the duty cycle ζ of the diffracted field), and the
Fresnel reflections at the substrate interfaces. The figure
shows the appearance of gaps in the propagating wavefront and
the reduction in fill factor after diffraction.

The field shadowing by the grating profile reduces the duty cycle
ζ and diffraction efficiency. Changes in diffraction efficiency due
to shadowing are accounted for by introducing the duty cycle ζ
into the diffraction efficiency calculations:

ηFF ≈ ζηscalar

The duty cycle of a transmission grating is found by

ζ= dm

dg
= 1−

[
n1 sin(θi)+mλ/dg

]
tan(ϕ)√

(n2)2 − (
n1 sinθi +mλ/dg

)2

Accounting for the blaze angle ϕ, the shadowing becomes

ζ = 1− 1√
(n2)2 − (

n1 sinθi +mλ/dg
)2

×
[
n1 sin(θi)+mλ/dg

](
mλ/dg

)(∣∣∣∣n1 cos(θi)−
√

(n2)2 − [
n1 sin(θi)+mλ/dg

]2
∣∣∣∣)
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Duty Cycle and Ghost Orders

When propagating from the substrate into air at normal
incidence θi = 0, the duty cycle due to shadowing is

ζ= 1−
(
mλ/dg

)2√
(n2)2 − (

mλ/dg
)2

(∣∣∣∣n1 −
√

(n2)2 − (
mλ/dg

)2
∣∣∣∣)

The influence of the shadowing on the diffraction efficiency of
the propagating field can be explained by observing the far
field of the diffracted radiation. Shadowing effects lead to the
appearance of several secondary ghost orders in the vicinity
of the primary diffraction order, as shown below for the duty
cycle ζ ranging from 0.25 to 0.95.
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Extended Scalar versus Rigorous Analysis

Extended scalar diffraction theory provides an express
calculation technique for the amount of light directed into dif-
ferent diffraction orders without the need for computationally
extensive rigorous algorithms. The following graph compares
the diffraction efficiencies of a blazed transmission grating in
the first diffraction order as a function of the relative feature
size d/λ for both the extended scalar and rigorous diffraction
analysis techniques.

For a relative feature size of d/λ > 15, the difference in
the diffraction efficiency calculated using both techniques is
practically unnoticeable. For a feature size of 2.5 < d/λ < 15,
the diffraction efficiency calculated using the extended scalar
theory provides optimistic efficiency results, while diffraction
efficiency predictions for the feature size d/λ < 2.5 become
overly pessimistic.

Diffraction efficiency of gratings with a feature size d/λ< 15 are
approximated using the following equation:

ηrig ≈ ηscalar [1−Cm (n,θ)λB/d]

where ηscalar is the maximum efficiency in scalar domain,
and the coefficient Cm (n,θ) is a function of both the index of
refraction and the angle of incidence.
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Gratings with Subwavelength Structures

Advancements in high-resolution lithography and microfabri-
cation have enabled diffractive structures with subwavelength
feature sizes. As the period-to-wavelength ratio decreases, the
diffraction efficiency predictions based on scalar diffraction be-
come inaccurate. When the feature size is of the order of the
wavelength or less, the scalar diffraction theory is no longer
valid.

The design of subwavelength diffraction structures often
employs rigorous electromagnetic propagation techniques that
are based on the solution to Maxwell’s equations. Rigorous
diffraction analysis techniques can accurately account for the
diffraction efficiency and polarization states of the propagating
radiation.

In the case of both transmission and reflection gratings
designed to blaze in TM polarization, the efficiency in the
TE polarization state is always less than 100%. The blazing
condition for both polarizations may occur when one of the
polarization states propagates in transmission while the other
state propagates in reflection.

These grating structures are
employed as polarizing com-
ponents in visible and IR
photonics applications.

The size of the subwave-
length grating period dg is
often selected to be smaller
than the structural cutoff
dc, which is defined as the period below which all nonzero re-
flected and transmitted diffraction orders become evanescent.
The necessary condition for the structural cutoff is

d
λ
< 1√

max(n1,n2)+n1 sin(θi)

Field Guide to Diffractive OpticsDownloaded From: https://www.spiedigitallibrary.org/ebooks on 14 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Gratings with Subwavelength Structures 67

Blazed Binary Gratings

Due to practical limitations associated with mask misalign-
ments and etching depth nonuniformity, an increased number
of binary levels does not necessarily lead to improved grating
performance. For example, a 32-level binary grating may have
lower efficiency and higher scattering as compared to a 16-level
grating.

Blazed binary grating pro-
files define surface-relief struc-
tures approximating the blaze
profiles and requiring a single
lithographic step for their fab-
rication. Blazed binary gratings
have features smaller than the
structural cutoff, defined as a feature size below which the
grating behaves as a homogeneous layer.

Blazed binary gratings represent artificial dielectrics and are
designed using the effective medium theory. They operate
in the resonant domain, where the grating period is equal to
only a few wavelengths. Each grating period contains a series of
ridges with continuously varying widths that change the local
fill factor. When properly fabricated, the efficiency of the blazed
binary gratings may exceed the efficiency of the blazed gratings
operating in the scalar domain.

An alternate design for a blazed
binary grating consisting of a
number of individual “pillars”
with progressively decreasing
lateral dimensions is shown in
the figure.
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Relative Feature Size in the Resonant Domain

The grating performance in the resonant domain, when the
grating period d is comparable to the operating wavelength λ,
rapidly changes with the relative feature size d/λ. In the
case of a gold-coated reflection grating with a groove spacing of
1.42 µm and TE-polarized light propagating at a 20-deg angle
of incidence, several diffraction orders coexist when the relative
feature size d/λ> 1.5:

For the relative feature sizes 0.75 < d/λ < 1.5, only the zero
and negative first diffraction orders coexist, and the total
reflected energy is redistributed between the two orders. For
subwavelength feature sizes d/λ< 0.75, the negative first order
vanishes, and the grating performs as a mirror.
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Effective Medium Theory

As shown earlier, for a gold-coated grating with subwavelength
features, the structural cut-off condition for TE-polarized light
is satisfied when dg/λ< 0.75 and the grating surface behaves as
a mirror. Similarly, for a transmission grating operating below
the structural cutoff, all propagating diffraction orders except
the zero order become evanescent. These types of gratings are
called zero-order gratings. Zero-order gratings are employed
as antireflection coatings, wave plates, and artificial distributed
index media.

Based on effective medium theory, the effective index of
refraction n⊥ for a subwavelength binary surface structure
and the electric field E⊥ orthogonal to the grating grooves is
defined as

n⊥ = n1n1√
(n1)2 ζg + (n2)2

(
1−ζg

)
where n1 and n2 are the refractive indices of the grating
substrate material and the medium surrounding the grooves,
respectively; w is the groove width, and ζg = w/dg is the grating
duty cycle. The effective index of refraction n∥ for the electric
field E∥ parallel to the grating grooves is defined as

n∥ =
√

(n1)2 ζg + (n2)2
(
1−ζg

)
The difference between the two effective
indices of refraction 4n = n⊥ − n∥
depends on the profile of the diffractive
structure, which behaves as an artificial
dielectric material that exhibits form
birefringence.

The figure shows a grating profile with
the effective index gradually changing
over the grating period dg.
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Scalar Diffraction Limitations and Rigorous Theory

Fresnel reflections at the air–grating interface cause the for-
mation of forward- and backward-propagating diffraction or-
ders, limiting the theoretically achievable diffraction efficiency
in the blazed transmission order. In practice, uncoated trans-
mission gratings transfer no more than 90% of the propagating
radiation in the first diffraction order and about 80% in the sec-
ond order. With a reduction in groove spacing, scalar theory be-
comes progressively less accurate, and rigorous simulation tech-
niques are applied to optimize the grating structure.

Limitations of scalar diffraction theory become apparent
when accurate efficiency calculations are required for gratings
with smaller periods, or when changes in the polarization
states of propagating light need to be accounted for.
Larger discrepancies in efficiency predictions are observed for
propagating light with the electric vector orthogonal to the
grating grooves.

Rigorous diffraction analysis techniques produce accurate
diffraction efficiency calculation results and are based on
solving Maxwell’s equations. Major rigorous techniques include
coupled wave analysis based on space-harmonic expansion,
modal analysis based on modal expansion, finite difference
methods, as well as integral methods. With continuous
advancements in computer speed, the finite difference time
domain (FDTD) technique is establishing its place as a
powerful practical technique for rigorous diffraction analysis.

The figure shows a high-
aspect-ratio grating struc-
ture requiring rigorous
diffraction analysis tech-
niques for performance
evaluation.
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Analysis of Blazed Transmission Gratings

Rigorous analysis of transmission gratings provides valuable
insight into the physics of diffraction phenomena. The
diffraction efficiency of blazed transmission gratings
gradually decreases with a reduction in the grating period dg.
When the grating profile height h is set to be constant, the peak
diffraction efficiency shifts toward the shorter wavelengths, as
shown in the following figure for TM-polarized radiation in the
first diffraction order m = 1:

Even for grating feature sizes as small as 0.6 µm, the peak
diffraction efficiency remains above 30%.

For the diffraction order m = 2, the respective efficiency graphs
are shifted toward the shorter wavelength:
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Polarization Dependency and Peak Efficiencies

For gratings with periods of dg ≥ 1.0 µm at normal incidence,
the relative difference in the peak diffraction efficiencies for
TM- and TE-polarization states does not exceed 2.4%. In
general, at normal incidence a transmission grating diffraction
efficiency has low polarization dependency, as shown in the
following graph for the grating period dg = 3.0 µm in the first
diffraction order:

When the grating profile height is adjusted in accordance with
the optimum height value hopt defined based on extended scalar
theory, the diffraction efficiency curves no longer shift toward
the shorter wavelengths with a reduction in the grating period
dg. This is shown in the following figure for TM-polarized
radiation:
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Peak Efficiency of Blazed Profiles

Changes in the peak diffraction efficiency of a blazed
transmission grating as a function of the feature size are shown
in the next graph.

In the so-called scalar domain, when the relative feature
size d/λ > 10, the peak diffraction efficiency variation is less
than 2%.

Outside of the scalar domain, the diffraction efficiency of a
blazed transmission grating rapidly degrades with a reduction
in the relative feature size.

The peak diffraction efficiency and position of the peak wave-
length as a function of the grating facet spacing change as
follows:
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Wavelength Dependency of Efficiency

The diffraction efficiency of blazed transmission gratings in a
scalar domain (d/λ > 10) exhibits a characteristic red spectral
shift as a function of the incidence angle. The figure shows
the diffraction efficiency of a blazed transmission grating with
feature size d = 50 µm and TM-polarized light at several angles
of incidence as a function of the operating wavelength λ. The
peak diffraction efficiency for TM-polarized radiation remains
practically unchanged over a wide range of incidence angles
(+/−60 deg).

The peak diffraction efficiency for TE-polarized radiation
gradually diminishes with an increase in the angle of incidence,
as shown in this figure:
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Efficiency Changes with Incident Angle

Diffraction efficiency as a function of the incident angle of TM-
polarized light for blazed transmission gratings in a scalar
domain (groove spacing d = 50) at several discrete wavelengths
is shown in the following figure:

An increase in the operating wavelength above 400 nm leads to
significant diffraction efficiency enhancements over the range
of the incident angles, forming the batwing-shaped efficiency
curves.

Diffraction efficiency curves may also exhibit polarization
anisotropy at higher angles of incidence, as shown in the figure
for a wavelength of 700 nm:
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Diffraction Efficiency for Small Feature Sizes

In the case of blazed gratings with small feature sizes (d/λ< 15),
the facet angle is relatively steep, and the peak diffraction
efficiency depends on both the angle of incidence and the
wavelength of the incident light. The figure presents TM-
polarized light diffraction efficiency for a blazed transmission
grating with feature size d = 3 µm as a function of the operating
wavelength λ:

Diffraction efficiency curves exhibit asymmetry with respect
to the angle of incidence, as shown for TM-polarized light
diffracted by a blazed transmission grating with feature size
d = 3 µm:

An increase in the operating wavelength leads to a peak
efficiency angular shift.
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Polychromatic Diffraction Efficiency

The diffraction efficiency of a single grating surface (diffrac-
tive singlet) in a given diffraction order can be maximized only
at a single operating wavelength, where the in-phase condition
for the individual diffracted fragments of the propagating wave-
front is satisfied.

An appropriately designed diffractive doublet based on
the combination of two grating surfaces can produce high
polychromatic diffraction efficiency over an extended
operating spectral range, known as broadband blazing,
shown for the wavelength range 350 nm< λ< 650 nm:

The polychromatic diffraction efficiency of the grating doublet
shown in the graph is 98.7% over the spectral range from 350 to
650 nm, as compared to the polychromatic diffraction efficiency
of 88.8% for a single diffraction structure with efficiency
maximum at 480 nm.

The employment of diffractive singlets in imaging systems
operating over an extended spectral range offers significant
benefits in correcting the system’s aberrations. These benefits
are often outweighed by the image contrast degradation
associated with reduced polychromatic diffraction efficiency of
a diffractive singlet. Diffractive doublets can provide similar
aberration correction benefits with higher image contrast.
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Monolithic Grating Doublet

In the case of a diffractive singlet, the blazing condition is
satisfied only for a single wavelength λb, and the polychromatic
diffraction efficiency is reduced.
The broadband blazing condition
can be achieved by employing a com-
bination of two diffractive structures
that form a grating doublet, either
monolithic or spaced. A monolithic
grating doublet is shown in the
figure.

The optical path difference (OPD) introduced by a mono-
lithic grating doublet with spacing dg and step height h made
of optical materials with refractive indices n1 (λ) and n2 (λ) is
found based on the blazing condition

OPD= mλb = h [n2 (λ)cos(θm)−n1 (λ)cos(θi)]

The broadband blazing condition requires the OPD to be
proportional to the individual wavelengths over the extended
spectral range. Provided that the incident angle does not
change, the broadband blazing condition for the monolithic
grating doublet is defined as

d
dλ

[n2 (λ)]cos(θm)− d
dλ

[n1 (λ)]cos(θi)= m

Grating doublets can be made with various profiles, including
triangular, lamellar, sinusoidal, etc.

While monolithic grating doublets are relatively insensitive
to fabrication errors, the broadband blazing condition for a
monolithic grating doublet is difficult to satisfy due to the
limited choice of materials satisfying the blazing requirements.
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Spaced Grating Doublet

Material constraints are
greatly relaxed for spaced
grating doublets. The OPD
introduced by grating step
heights h1 and h2 made of
optical materials with refrac-
tive indices n1(λ) and n2(λ)
and a spacer with index n3(λ)
is defined as

OPD = mλbl = h1 [n3 (λ)cos(θm1)−n1 (λ)cos(θi1)]+
h2 [n2 (λ)cos(θm2)−n3 (λ)cos(θi2)]

Broadband blazing for the spaced grating doublet is defined as

h1

{
d

dλ
[n3 (λ)]cos(θm1)− d

dλ
[n1 (λ)]cos(θi1)

}
+

h2

{
d

dλ
[n2 (λ)]cos(θm2)− d

dλ
[n3 (λ)]cos(θi2)

}
= m

For an air-spaced grating doublet with d [n3 (λ)] /dλ∼= 0, the
broadband blazing condition is reduced to

d
dλ

[n2 (λ)]h2 cos(θm2)− d
dλ

[n1 (λ)]h1 cos(θi1)= m

The broadband blazing condition is satisfied for at least two
operating wavelengths. A grating doublet significantly extends
the broadband diffraction efficiency as compared to a grating
singlet:
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Monolithic Grating Doublet with Two Profiles

In order to eliminate the material constraints associated with
monolithic grating doublets while maintaining the low
doublet sensitivity to variations in the profile height, a second
diffraction profile is formed at the doublet exterior. The second
exterior profile can be formed, for example, by compression
molding or etching.

A dual-profile monolithic grating doublet has a significantly
lower sensitivity to fabrication errors as compared to an air-
spaced grating doublet. The depth errors ∆h1 in the grating
substrate structure with refractive index n1 (λ) lead to OPD
errors proportional to the refractive index difference between
the two doublet materials:

∆OPD=∆h1 [n1 (λ)−n2 (λ)]

These OPD errors are several times smaller than similar
errors of an air-spaced doublet, which are proportional to
the difference between the refractive index of the substrate
material and that of air:

∆OPD=∆h1 [n1 (λ)−1]

The exterior profile of the monolithic grating doublet is usually
shallower than the substrate profile(s) employed in air-spaced
grating doublets.

The dual-profile monolithic grating doublet provides an
additional benefit of reduced Fresnel losses due to a reduced
number of optical interfaces.
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Diffractive and Refractive Doublets: Comparison

There is a similarity between diffractive and refractive
doublets. Both types of doublets are intended to reduce the
spectral dependency of one of the key performance parameters.
In the case of a diffractive doublet, this parameter is the
polychromatic diffraction efficiency, while in the case of
a refractive doublet, it is the size of the polychromatic point
spread function.

The net refractive optical power of a refractive doublet is
the sum of the positive and the negative optical powers of the
two refractive elements composing the refractive doublet. The
net optical power of a refractive doublet is less than the optical
power magnitude of the two lens components.

Diffractive optical power is proportional to the spectral
dispersion of the propagating field. For the diffractive doublet,
the net diffractive power is the difference of the powers of
the two diffractive components. The net diffractive power in
the diffractive doublet with high polychromatic diffraction
efficiency is lower than the powers of the individual diffractive
components.

The axial thickness of a refractive doublet and the sensitivity of
its components to surface shape variations significantly exceed
those of a refractive singlet of equal optical power.

The diffractive profile heights and the sensitivity to profile
height variations of the doublet grating components consider-
ably exceed those of a diffractive singlet of equal diffractive
power.

Surface profile errors in the refractive components cause
distortions that lead to an increase in the refractive doublet
PSF. Surface profile height errors in diffractive doublets lead
to reduced polychromatic diffraction efficiency in the working
order.
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Efficiency of Spaced Grating Doublets

The diffraction efficiency of a spaced grating doublet
is a function of several parameters, including polarization,
wavelength, angle of incidence, material properties, step
heights, and the grating spacing.

In most cases, a rigorous diffraction analysis technique
is required to design and optimize the performance of
grating doublet structures. The following analysis shows the
performance of an air-spaced grating doublet designed to
operate in the visible spectrum and made of two dissimilar
materials with refractive indices n1 = 1.4623 and n2 = 1.6588.
Diffraction efficiency exhibits a strong asymmetric angular
dependency, as shown in the following graphs for TE-polarized
light and positive and negative angles of incidence.
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Sensitivity to Fabrication Errors

The fabrication of spaced grating doublets with broadband
diffraction efficiency requires a relatively high fabrication
accuracy of individual grating components constituting the
doublet. The following graphs show the grating doublet
diffraction efficiency sensitivity to changes in step height of
one of the grating components for TE- and TM-polarized light,
respectively.
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Facet Width and Polarization Dependency

The broadband diffraction efficiency of air-spaced grating
doublets depends on the facet width of the gratings composing
the doublet. For grating doublets with a broadband diffraction
efficiency optimized over the visible range, significant efficiency
degradation is observed for the facet widths of less than 50 µm.

The broadband diffraction efficiency of air-spaced grating
doublets has a significant polarization dependency. TE-
polarized light has higher diffraction efficiency than TM-
polarized light over the operating spectral range. This can be
explained qualitatively by the differences in Fresnel reflection
losses of the two polarization states.
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Sensitivity to Axial Component Spacing

Polychromatic diffraction efficiency of an air-spaced
diffraction doublet depends on the axial spacing between the
doublet components. Changes in axial spacing t between the
diffraction doublet components cause lateral shifts of the
propagating field fragments diffracted by the first grating with
respect to the facets of the second grating.

An increase in the axial spacing t between the two grating
components leads to an oscillatory spectral response of
the doublet. The polychromatic efficiency modulation
increases with an increase in the axial spacing t, as shown in
the figure for TE-polarized light.
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Frequency Comb Formation

The lateral shift of the field diffracted by the first grating in
the doublet leads to wavefront division by the facets of the
second grating. Interference of the wavefront fragments after
the second grating causes formation of a frequency comb in
the spectral response of the doublet, as shown in the figure for
two different values of the axial spacing.

Nodal locations in the transmitted frequency comb do not
change with adjustments in the axial separation between the
doublet components. The oscillatory spectral response of the
grating doublet is observed in different diffraction orders. The
figure shows alternating extrema locations for the spectral
efficiency of TE-polarized light diffracted by the doublet with
an air gap of 250 µm into the orders 0, 1, and 2.
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Diffractive Components with Axial Symmetry

Diffractive components with axial symmetry constitute one of
the largest groups of diffractive structures and include am-
plitude masks, phase plates, diffractive lens surfaces, stepped
diffractive surfaces (SDSs), hybrid diffractive-refractive struc-
tures, as well as lens diffractive doublets. Axially symmetric
diffractive components are found in a variety of applications,
including imaging objectives operating in the UV, visible, and
IR, as well as intra-ocular lenses for vision correction and in
illumination and laser systems.

Amplitude masks with axial symmetry, such as Fresnel zone
plates, are based on amplitude modulation of the incident
radiation. Amplitude masks are employed in the spectral
regions where nonabsorbing optical materials are not readily
available, such as in the extreme UV. Employment of amplitude
masks is associated with net transmission losses introduced by
the masks.

Annular phase plates, such as Fresnel phase plates, are
based on the phase modulation of the incident wavefront
by introducing phase delay to the different portions of the
propagating wavefront. Phase plates are designed to work
in transmission or reflection, or to produce bidirectional
propagation. With an appropriate choice of coatings and phase
plate material, minimal transmission losses are introduced into
the system.

Diffractive lens surfaces include kinoform, binary, and multi-
order diffractive lenses and represent phase structures that
contribute to the net optical power of their optical systems.

Stepped diffractive surfaces (SDSs) represent diffractive
phase structures with axially symmetric zones and zero optical
power at the design wavelength. An SDS cross section is shaped
like a staircase. Each SDS zone produces a phase delay that is
an integer multiple of 2π.
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Diffractive Lens Surfaces

Diffractive lens surfaces (DLSs) are composed of annular
grooves and contribute to the net optical power in an opti-
cal system. The group of DLSs includes diffractive kino-
forms and binary surface structures, as well as refractive-
diffractive and reflective-diffractive hybrid structures fabri-
cated into a curved substrate.

Diffractive kinoforms are grating phase structures consisting
of circular phase zones with radially varying blazed facet
angles. Diffractive kinoforms are based on the phase modula-
tion of the incident wavefront by introducing a radially variable
phase delay to the different portions of the propagating
wavefront.

Longer wavelengths focus closer
to the diffractive surface.

Locations of the focal points for
three wavelengths

λr > λg > λb

satisfy the inequality

fr < fg < fb

Binary surface structures are made as multistep approxima-
tions to the kinoform zone profiles. Each binary level produces
a phase delay that is a fraction of a 2π kinoform zone delay
(usually ranging from π/32 to π).

The hybrid refractive-diffractive and reflective-diffractive sur-
face structures combine the properties of diffractive kinoforms
with the refractive or reflective properties of the substrate.

Diffractive lens surfaces are designed for use in imaging
and nonimaging applications, including illumination and laser
optics.
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Diffractive Kinoforms

Diffractive kinoforms are surface-relief struc-
tures fabricated on a planar substrate that com-
prise several concentric zones with continuous
profiles. The term “kinoform” was introduced
in 1969 by researchers from IBM. The optical
power of a kinoform is proportional to the num-
ber of zones Nk and the design wavelength λ0 and
is inversely proportional to the square of the clear
aperture diameter D0:

ΦD (λ)= 8Nkλ0/ (D0)2

A diffractive kinoform resembles the shape of a conventional
Fresnel lens, and its cross section looks like a series of
sawtooth-shaped ridges with variable radial spacing di and
facet angle ϕi. In contrast with Fresnel lenses, diffractive
kinoforms precisely control the OPD introduced by the zones
and are composed of a significantly larger number of zones.

The OPD φ between two neighboring kinoform zones is a
product of the diffraction order m and the design wavelength
λ0:

φ= mλ0

For a given design wavelength λ0 and refractive index n0 of
the substrate, the optimum zone height h of the diffractive
kinoform operating in the first diffraction order m = 1 is a
function of the incident angle θi:

h (θi)= λ0√
(n0)2 − (sinθi)2 −cosθi

The kinoform zone thickness profile t (r,θi) is found by

t (r,θi)= h (θi) (φ (r) mod 2π)

For on-axis propagation (θi = 0), the zone height is

h0 = λ0/ (n0 −1)
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Binary Diffractive Lenses

Binary diffractive lenses are surface-relief structures that
are fabricated based on very large-scale integration (VLSI)
lithographic techniques. The name “binary” reflects the coding
scheme employed to create the sequence of photolithographic
masks for fabrication. Binary lens coding provides a step-wise
approximation to the radial phase profile ψ (r) of a diffractive
kinoform.

The figure compares a three-zone diffractive kinoform and
the respective three-zone binary lens with four binary levels
approximating the diffractive kinoform.

To reduce the number N of processing cycles and the respective
number of masks required during binary lens fabrication, a
binary coding scheme is used. The number of binary levels is
defined as 2N , and the thickness tb of each binary lens level for
the design wavelength λ0, zone height h0, and refractive index
n0 is found by

tb = h0

2N
= λ0

(n0 −1)2N

The diffraction efficiency of binary lenses is less than the
efficiency of the respective kinoforms. Efficiency reduction is
caused by profile approximations, additional losses associated
with interfacial roughness, and fabrication imperfections of the
binary steps. Increasing the number of binary steps to greater
than 32 may not necessarily produce a binary lens with higher
efficiency, due to increased interfacial roughness, etch depth
variations, and mask misalignments.
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Optical Power of a Diffractive Lens Surface

The optical power ΦD of a diffractive lens surface at any
operating wavelength λ is related to the nominal optical power
ΦD

0 at the design wavelength λ0 as

ΦD (λ)=ΦD
0

λ
λ0

The focal plane locations for
the wavelengths

λr > λg > λb

satisfy the inequality

fr < fg < fb

The difference ∆ fchr = fb − fr is called longitudinal or axial
chromatic aberration. The change in image size at the
different wavelengths ∆Hchr = Hb −Hr is called transverse or
lateral chromatic aberration.

Axial chromatic aberration of a diffractive surface ∆ f D
chr is

proportional to the spectral bandwidth ∆λ = λ− λ0 of the
propagating field and can be expressed as

∆ f D
chr =∆λ/

(
ΦD

0 λ0

)
For comparison, the optical power ΦR of a refractive surface can
be defined as

ΦR (λ)= n (λ)−1
R0

=ΦR
0

[
1+ Dn (λ)∆λ

n0 (λ)−1

]
where ΦR

0 = [n0 (λ)−1]/R0 is the nominal refractive surface
power corresponding to the substrate radius R0 with refractive
index n0 at the design wavelength λ0. The lens material
dispersion Dn (λ) is calculated as

Dn (λ)= n (λ)−n0 (λ)
λ−λ0
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Diffractive Surfaces as Phase Elements

For raytracing purposes, it is convenient to represent diffractive
surfaces as phase elements with respective phase profiles
ψ (x, y) that depend on the surface lateral coordinates x and y.

A phase profile ψ (x, y) of a diffractive lens surface forming an
image I(xi, yi, zi) of a point O(xo, yo, zo) in the object space at the
design wavelength λ0 is defined as

ψ (x, y) = 2π
λ0

{[√
(x− xo)2 + (y− yo)2 + (zo)2 − zo

]
−

[√
(x− xi)2 + (y− yi)2 + (zi)2 − zi

]}
The axial distances zo and zi satisfy the sign convention and
are positive to the right of the surface. The optical power ΦD (λ)
of the surface is then given by the Gaussian lens formula

ΦD = 1/zi −1/zo

In many practical applications, including aberration correction,
beam shaping, and athermalization, the diffractive surface does
not form images of an object. For surfaces without rotational
symmetry, the phase is

ψ (x, y)= m
K∑

k=0

L∑
l=0

Akl (x)k (y)l

For axially symmetric diffractive surfaces, the phase is a
function of the radial coordinate r and order m:

ψ (r)= m
N∑

i=0
A i (r)2i
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Stepped Diffractive Surfaces

Stepped diffractive surfaces (SDSs) are powerless surface-
relief diffractive phase structures fabricated as a set of
concentric circular zones with planar interfaces, also referred
to as “steps.” Components employing SDSs are sometimes called
staircase lenses.

The steps are bounded by cylindrical sections. Each zone is
characterized by a width di and is axially offset from the
neighboring zone by a distance hi.

The nominal optical power of an SDS at the design wave-
length λ0 is zero. Therefore, SDSs can be added to optical sys-
tems without altering the first-order properties.

The shadowing effects produced by stepped diffractive
surfaces at the zone boundaries are significantly smaller as
compared to diffractive lens surfaces with the same apertures
and dispersion values, leading to increased diffraction efficiency.

While complex diffractive lens profiles require radially vary-
ing facet angles with sharp corners that are difficult to repro-
duce, SDS staircase profiles are easier to fabricate using direct
single-point diamond turning (SPDT) or replication tech-
niques.
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Properties of Stepped Diffractive Surfaces

The optical power of an SDS depends on the operating
wavelength λ and the refractive indices n1 (λ) and n2 (λ) of the
materials before and after the interface, respectively:

ΦSDS (λ)=
∣∣∣∣ n2 (λ)−n1 (λ)

R0

∣∣∣∣( λλ0
−1

)
SDS optical power at the design wavelength λ0 is zero.

SDSs have several advantages over blazed diffractive kinoforms
and their binary approximations:

1. An SDS can be added to any optical system without
changing the paraxial optical power of the system. It can
be employed in an optical system to correct for chromatic
and/or monochromatic aberrations or to provide passive
athermalization of the system.

2. The simple staircase zone geometry of an SDS allows for
accurate microstructure fabrication by using the SPDT
technique, leading to reduced aberrations caused by
fabrication errors as compared to a diffractive lens surface
with an equal aperture and power.

3. Compared to a binary diffractive surface, an SDS does not
involve an approximation of the microstructure’s shape
and therefore produces higher diffraction efficiencies than
binary diffractive lenses.

The optimum step height hSDS of an SDS is a function of the
incident angle θi, the working diffraction order m, and the
design wavelength λ0, and is found by

hSDS =

∣∣∣∣∣∣∣
mλ0√

(n2)2 − [sin(θi)]2 −n1 cos(θi)

∣∣∣∣∣∣∣
In the case of a normal-incidence SDS, the step height becomes

hSDS =
∣∣∣∣ mλ0

n2 −n1

∣∣∣∣
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Multi-order Diffractive Lenses

Multi-order diffractive lenses are designed to produce OPDs
between the zones that are a multiple m of the operating
wavelengths. Multi-order diffractive lenses are similar to
echelle diffractive gratings with high-profile depths and are
designed to work in high diffraction orders. For a multi-order
diffractive lens designed to operate at an infinite conjugate in
the mth diffraction order, the profile height can be defined as

hm = mλ0

n (λ0)−1

Multi-order diffractive lenses are often designed to blaze in
more than a single operating wavelength. For a multi-order lens
designed to operate at wavelengths λB and λR in respective
orders m and k, the blaze condition becomes

mλB

n (λB)−1
= kλR

n (λR)−1

The above blaze condition may be difficult to satisfy while
achieving reasonably shallow depths of the diffractive zones. In
that case, the profile depth is designed to blaze at the shorter
wavelength λB. The graph presents changes in the diffraction
efficiency for a multi-order diffraction lens designed to operate
in the order m = 3 for the visible wavelength λB = 0.532 µm,
as well as in the order k = 1 at a longer infrared wavelength
λR = 1.55 µm.
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Diffractive Lens Doublets

High diffraction efficiency for a single diffractive surface
is achieved only over a narrow spectral bandwidth ∆λ. In
applications with broad radiation bandwidth, a significant
fraction of radiation is directed into the spurious diffraction
orders and causes a degradation of the system performance by
reducing the system’s resolution and image contrast, as well as
by increasing the crosstalk in the detection channels.

Increased polychromatic diffraction efficiency is achieved
by designing diffractive lens doublets consisting of two
diffractive surfaces with opposite powers. The lens doublets are
made as monolithic or air spaced:

The following figure shows theoretical diffraction efficiencies
for three air-spaced diffractive lens doublets made of different
material pairs and designed to operate over an extended
spectral range in the visible spectrum. All three doublets have
efficiency maxima at 400 and 550 nm. The material choice
plays an insignificant role in the achieved diffraction efficiency.
Instead, other factors such as manufacturability, material cost,
and required etch depth of the phase zones play dominant roles.
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Diffractive Lens Surfaces in Optical Systems

The small surface-relief thickness of diffractive lens surfaces
makes them well suited for integration into optical systems.
A surface-relief diffractive structure can be combined with a
refractive or reflective surface to attain additional degrees of
freedom in optical design.

Hybrid components combine diffractive surfaces with refrac-
tive or reflective counterparts. Hybrid structures integrate
diffractive structures into refractive or reflective surfaces.

The total optical power of the hybrid structure ΦH containing
diffractive as well as reflective or refractive surfaces is found
as the sum of the diffractive power ΦD and the respective
substrate power ΦR :

ΦH (λ)=ΦR (λ)+ΦD (λ)=ΦR
0

[
1+ Dn (λ)∆λ

n0 (λ)−1

]
+ΦD

0

(
1+ ∆λ

λ0

)
Material dispersion Dn (λ) depends on the operating spectral
range λ−λ0 as well as on the material’s refractive index change
with wavelength, as shown below:
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Achromatic Hybrid Structures

An achromatic condition for a hybrid doublet structure
∆ΦH =ΦH (λ)−ΦH (λ0) = 0 is satisfied when the relative power
of the refractive surface equals

ΦR
0

ΦD
0

= ∆λ [n0 (λ)−1]
λ0 [n0 (λ)−n (λ)]

=− [n0 (λ)−1]
λ0Dn (λ)

The relative power of the refractive surface required to satisfy
the achromatic condition ∆ΦH = 0 is shown in the graph for
different substrate materials:

The relative diffractive power in a hybrid achromat is reduced
with an increase in the operating wavelength.

The total power of the achromatic hybrid structure ΦAH ,
found as the sum of the refractive and diffractive powers, is
higher than the power of the diffractive ΦD

0 or refractive ΦR
0

surfaces of the doublet:

ΦAH =ΦD
0

{
1− [n0 (λ)−1]

λ0Dn (λ)

}
=ΦR

0

{
1− λ0Dn (λ)

[n0 (λ)−1]

}
In the case of an achromatic refractive doublet the two
refractive lenses have opposite powers, and the net optical
power of a refractive achromat is reduced. Therefore,
hybrid achromats yield lower monochromatic aberrations, axial
thickness, and weight than respective refractive achromats.
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Opto-thermal Properties of Optical Components

The thermal behavior of an optical surface can be described
in terms of an opto-thermal coefficient (OTC) ξ. An OTC
defines the thermally induced relative rate of change in optical
power over the temperature range ∆T:

ξ=∆Φ/ (Φ∆T)

Thermally induced changes in the kinoform optical power are
caused by changes in the zone spacing. Respective changes
in the substrate refractive index affect only the diffraction
efficiency of the lens.

The OTC of a kinoform ξK depends only on the substrate
coefficient of thermal expansion (CTE) α:

ξK =−2α

Changes in the optical power of a refractive interface are due
to changes in the surface radius and in the substrate refractive
index. The OTC of a refractive interface ξR is calculated as

ξR (λ)= 1

[n2 (λ)−n1 (λ)]

[
dn2 (λ)

dT
− dn1 (λ)

dT

]
−α

Changes in the optical power of an SDS are due to changes in
the zone spacing and in the refractive indices n1 (λ) and n2 (λ) of
the media before and after the interface, respectively. The opto-
thermal coefficient of an SDS depends on both the CTE of the
substrate material and the thermally induced changes in the
refractive indices dn/dT:

ξSDS (λ)= 1

[n2 (λ)−n1 (λ)]

[
dn2 (λ)

dT
− dn1 (λ)

dT

]
+α

The OTC sign of an SDS is positive when the SDS is convex and
negative when the SDS is concave.

The opto-thermal coefficients of an SDS, a refractive surface,
and a diffractive kinoform are related as follows:

ξSDS (λ)=± [ξR (λ)−ξK ]
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Athermalization with Diffractive Components

Thermally induced relative changes in power Φ of an optical
surface are proportional to the temperature changes ∆T and
the surface opto-thermal coefficient ξ:

∆Φ

Φ
= ξ∆T

Diffractive components provide additional degrees of freedom
in designing athermal lens solutions. During athermal lens
design it is also necessary to account for the optical component
mounting scheme and the relative component shifts based on
the CTE of the housing material.

For an optical system containing N optical interfaces, the
athermal condition occurs when the net change in optical
power of the lens system, defined based on the contribution ∆Φi

from all of the optical interfaces, is zero:

N∑
i=1

(∆Φi)= 0

The athermal condition for a hybrid refractive–diffractive
kinoform singlet lens and for thermally invariant housing can
be written as

ξKΦ
K =−ξRΦ

R

The ratio of the optical powers of the kinoform ΦK and the
refractive ΦR surfaces in the athermal singlet is

ΦK

ΦR
=

{
d

dT [n2 (λ)]− d
dT [n1 (λ)]

}
2α [n2 (λ)−n1 (λ)]

− 1
2

An athermal achromat can be constructed based on a single
hybrid lens element and an appropriate selection of mounting
material.
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Athermalization with SDSs

Opto-thermal coefficients for refractive, diffractive, and SDS
surfaces depend on the substrate material.

The opto-thermal coefficients of diffractive components have
negative values, while the OTCs of refractive and SDS
components can be either positive or negative.

The nominal optical power of an SDS is equal to zero. Thermally
induced changes in SDS optical power are calculated based on
effective optical power ΦSDS

eff , defined by the SDS substrate
radius R0 and the refractive indices of the materials:

ΦSDS
eff (λ)=−

[
n2 (λ)−n1 (λ)

R0

]
The figure shows an example of an
athermal hybrid singlet composed of the
front aspheric surface shaped to correct
for spherical aberrations, and the back
SDS surface designed to reduce the
singlet dependency on changes in the
ambient temperature.
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Appendix: Diffractive Raytrace

The diffraction of a single ray after encountering a grating
surface can be described in vector form as

n2

(
S′×r

)
= n1

(
S×r

)
+Λq (A1)

where the unit vectors S, S′, r, and q are composed of their
respective components in Cartesian coordinates:

S′ = L′
Si+M′

S j+N ′
Sk

S= LSi+MS j+NSk
r= Lri+Mr j+Nrk
q= Lqi+Mq j+Nqk

(A2)

Unit vectors S and S′ define the ray propagation direction
before and after encountering the grating surface; vector r
defines the local normal to the grating surface; q is a vector
parallel to the grating grooves at the ray intersection point.

The term Λq in Eq. (A1) is responsible for the diffraction
phenomenon. For a purely refractive case, the term vanishes,
and Eq. (A1) reduces to Snell’s law. The grating parameter Λ
in Eq. (A1) is a function of the working diffraction order m, the
local groove spacing dg, and the design wavelength λ0:

Λ= mλ0/dg (A3)

Equation (A1) can be rearranged as(
n2S′−n1S+Λp

)
×r= 0 (A4)

where p = ui+ vj+wk is a unit vector parallel to the grating
substrate and normal to the grating grooves at the ray
intersection point P(x, y).

Because the vectors q and p are orthogonal, we can write

q=−p×r (A5)

The vector S′ defining the propagation direction of a ray after
diffraction on the grating surface is found from Eq. (A4) in the
following form:

S′ =
(
n1S−Λp+ΓDr

)
/n2 (A6)
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Appendix: Diffractive Raytrace (cont.)

Individual components of the vector S′ are found from the
following equations:

L′
S =

(
n1LS −Λu+ΓDLr

)/
n2

M′
S =

(
n1MS −Λv+ΓD Mr

)/
n2

N ′
S =

(
n1NS −Λw+ΓD Nr

)/
n2

(A7)

If R = xi+ yj is a radial vector at the intersection point normal
to the optical axis, then for any axially symmetric diffractive
structure, vectors p and r are coplanar with vector R. Therefore,
we can write

u
v
= Lr

Mr
= x

y
(A8)

Components of vector p in Cartesian coordinates can be found
by 

u = xNr√
x2 + y2

v = yNr√
x2 + y2

w = xLr + yMr√
x2 + y2

= cos
(
R,r

) (A9)

From Eq. (A9), it follows that sin
(
R,r

)
= ±Nr. The factor ΓD

in Eqs. (A6) and (A7) depends on the grating type. For the
transmission grating, the factor ΓD is

ΓD =−a+
√

(a)2 −b (A10)

For the reflection grating, the factor ΓD is

ΓD =−a−
√

(a)2 −b (A11)

Parameters a and b in Eqs. (A10) and (A11) are defined as

a = n1 cos
(
r,S

)
= n1 (LrLS +MrMS +NrNS) (A12)

b = (n1)2 − [
(n2)2 + (Λ)2

]−2n1Λ (LSu+MSv+NSw) (A13)

In the case of diffractive lenses, the grating spacing dg (r) is
a function of the local radial coordinate r. The local grating
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Appendix: Diffractive Raytrace (cont.)

spacing dg (r) can be used during the analysis of complex
multi-element optical systems containing diffractive optics
components.

The explicit use of the local grating spacing dg (r) during
diffraction raytrace allows extending the local grating theory
to optimize performance of an optical system with respect to
aberrations, diffraction efficiency, and image contrast.

In the case of diffractive propagation, vectors S, r, and S′ are no
longer coplanar, and the diffracted ray does not lie in the inci-
dent plane defined by the incident ray and the surface normal
at the point of intersection. This is fundamentally different from
the refraction or reflection propagation phenomenon, where the
incident ray, the surface normal at the point of the ray intersec-
tion, and the outgoing ray are always coplanar.

The local zone spacing of SDSs dSDS = d (r, t0) depends on both
the radial coordinate r and the step height t0 and can be found
by

dSDS (r, t0)=
∂Φ(r,z)

∂r
∂Φ(r,z)

∂z

t0 (A14)

The function Φ (r, z) is the analytical definition of the SDS
substrate. When the SDS substrate is explicitly defined as a
rotationally symmetric even polynomial aspheric surface with
N aspheric terms, vertex curvature c, and conic constant k, the
local zone spacing as a function of the radial coordinate can be
written as

dSDS (r, t0)= t0

crp
1−(1+k)(cr)2

+2
N∑

i=1
iA i (r)2i−1

(A15)

The local grating parameter Λ, necessary during a diffractive
raytrace, is calculated as

ΛSDS (r, t0)= mλ0

t0

(
cr√

1− (1+k) (cr)2
+2

N∑
i=1

iA i (r)2i−1

)
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Equation Summary

Diffraction fundamentals:

θd ∝ λ/D ∇2U (x, y, z)+k2
0U (x, y, z)= 0

U (x2, y2, z2)∝
Ï

1+cos(z, r12)
2iλr12

exp(ikr12)U (x1, y1, z1)dx1d y1

Fresnel diffraction:

U (x2, y2, z2) ∝ exp(ikz12)
iλz12

Ï
exp

{
ik

2z12

[
(x2 − x1)2 + (y2 − y1)2

]}
×U (x1, y1, z1)dx1d y1

NF
∼= D2

4λLz
D =

√
NFλ (4Lz +NFλ) Lz =

[
D2 − (NFλ)2

]
4NFλ

Lm
T = 2md2

λ
L0.5m

T = Lm
T −d2/λ= 2(m−0.5)d2/λ

Fraunhofer diffraction:

U (x2, y2, z2)∝ exp(ikz12)
iλz12

exp

[
ik

(
x1

2 + y1
2)

2z12

]
×Ï

exp
[

ik (x2x1 + y2 y1)
2z12

]
U (x1, y1, z1)dx1d y1

U (x2, y2, f )∝ exp(ik f )
iλ f

exp
[

i
k

2 f

(
x2

2 + y2
2)]×Ï

exp
[
− ik (x2x1 + y2 y1)

2 f

]
U (x1, y1, z1)dx1d y1

I (r)= I0

(
πD2

2λ f

)2 [
J1

(
πD
λ f

r
)/(

πD
λ f

r
)]2

DA
∼= 2.44λ f /D

I (q)= I0

[(
1− e2) qD

2

]2 [
J1 (q)

q
− e

J1 (eq)
q

]2

U (x2, y2, f )= (ab)2 sinc2
(
i
kax2

2 f

)
sinc2

(
i
kay2

2 f

)
Volume Bragg gratings:

ηS = [sin(υ)]2 ηP = {sin[υcos(2γ)]}2 υ= π∆nT

λ
√

CRCS

CR = cos(2γ) CS = cos(2γ)− λ

ndB
tan

(
β−αB

2

)
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∆n = λ (s−0.5)
T

√
cos(2γ)

[
cos(2γ)− λ

ndB
tan

(
β−αB

2

)]
β= cos−1

(
2p−1
2s−1

)
−αB β= 180−cos−1

(
2p−1
2s−1

)
−αB

Grating equation:

n2 sinθm = n1 sinθi +mλ/dg sinθm +sinθi = mλ/dg

sinθL
m = mλ/2dg

Grating properties:

∂θm

∂λ
= m

dgn2 cosθm

∂θL
m

∂λ
= m

2dg cosθL
m

= tan(ϕb)

λL
b

∂θm

∂λ
= n2 sinθm −n1 sinθi

λn2 cosθm
= 1[

dgn1 cos(θi)
m − λb

tan(ϕb)

]
Free spectral range:

∆λFSR = λs

m
= λl

m+1
λ

dλ
= |m|Ng

(
λ

dλ

)
max

= 2W g

λ

λ

dλ
= |m| Wg

dg
= Wg

λ
|sinθm +sinθi|

Grating anomalies:∣∣∣∣ 1
n2

(
n1 sinθi + mλ

dg

)∣∣∣∣= 1 λ= d
m

[sgn(m)−sin(θi)]

Blazing condition:{
n1 sin(θi +ϕ)= n2 sin(θm +ϕb)
n2 sin(θm)= n1 sin(θi)+mλ/dg

λb = dg

m

(
n2 sin

{
sin−1

[
n2

n1
sin(θi +ϕb)

]
−ϕb

}
−n1 sin(θi)

)
λb = 2dg

m
sin(ϕb)sin(θi +ϕb) λL

b = 2dg

m
sin(ϕb)
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Blazed facet angle and height:

tan(ϕb)=
(
mλb/dg

)
n1 cos(θi)−

√
(n2)2 − [

n1 sin(θi)+
(
mλb/dg

)]2

φ= dg [n2 sin(θm)−n1 sin(θi)]= mλb

hopt =
∣∣∣∣mλb

/{√
(n2)2 − [

n1 sin(θi)+
(
mλb/dg

)]2 −n1 cos(θi)
}∣∣∣∣

hopt =
∣∣∣∣mλb

/[√
(n2)2 − (

mλb/dg
)2 −n1

]∣∣∣∣
ϕp = cos−1 [

n1 sin(θi) /n2 +mλb/
(
n2dg

)]
Scalar grating theory:

ηm =
∣∣∣∣ 1
dg

∫ dg

0
t (x) e

i 2π
λ

{
[n1 cos(θi)−n2 cos(θm)] f (x)− mλ

dg
x
}
dx

∣∣∣∣2
ηm =

{
sin

[
mπ

(
λb

λ
−1

)]/[
mπ

(
λb

λ
−1

)]}2

ηM = HIS =
[
sin

(
M

kdp
2

)/
M sin

(
kdp

2

)]2[
sin

(
kdp

2

)/
kdp

2

]2

η=
{

sin
[
mπ

(
λb

λ
−1

)]/
mπ

(
λb

λ
−1

)}2 [
sin

(
πλb

λN

)/(
πλb

λN

)]2

Extended scalar theory:

ηFF ≈ ζηscalar ζ= dm

dg
= 1−

[
n1 sin(θi)+mλ/dg

]
tan(ϕ)√

(n2)2 − (
n1 sinθi +mλ/dg

)2

ζ = 1− 1√
(n2)2 − (

n1 sinθi +mλ/dg
)2

×
[
n1 sin(θi)+mλ/dg

](
mλ/dg

)(∣∣∣∣n1 cos(θi)−
√

(n2)2 − [
n1 sin(θi)+mλ/dg

]2
∣∣∣∣)

ζ= 1−
(
mλ/dg

)2√
(n2)2 − (

mλ/dg
)2

(∣∣∣∣n1 −
√

(n2)2 − (
mλ/dg

)2
∣∣∣∣)
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Rigorous analysis:

ηrig ≈ ηscalar

[
1−Cm (n,θ)

λB

d

]
d
λ
< 1√

max(n1,n2)+n1 sin(θi)

Effective medium theory:

n⊥ = n1n1√
(n1)2ζg + (n2)2

(
1−ζg

)
n∥ =

√
(n1)2ζg + (n2)2

(
1−ζg

)
Grating doublets:

OPD= mλb = h [n2 (λ)cos(θm)−n1 (λ)cos(θi)]
d

dλ
[n2 (λ)]cos(θm)− d

dλ
[n1 (λ)]cos(θi)= m

OPD = mλbl = h1 [n3 (λ)cos(θm1)−n1 (λ)cos(θi1)]+
h2 [n2 (λ)cos(θm2)−n3 (λ)cos(θi2)]

h1

{
d

dλ
[n3 (λ)]cos(θm1)− d

dλ
[n1 (λ)]cos(θi1)

}
+

h2

{
d

dλ
[n2 (λ)]cos(θm2)− d

dλ
[n3 (λ)]cos(θi2)

}
= m

d
dλ

[n2 (λ)]h2 cos(θm2)− d
dλ

[n1 (λ)]h1 cos(θi1)= m

∆OPD=∆h1 [n1 (λ)−n2 (λ)] ∆OPD=∆h1 [n1 (λ)−1]

Diffractive lens surfaces:

ΦD (λ)= 8Nkλ0/ (D0)2 φ= mλ0 ΦD (λ)=ΦD
0
λ

λ0

h (θi)= λ0√
(n0)2 − (sinθi)2 −cosθi

t (r,θi)= h (θi) [φ (r) mod 2π] h0 = λ0/ (n0 −1)

tb = h0

2N
= λ0

(n0 −1)2N
∆ f D

chr =∆λ/
(
ΦD

0 λ0

)
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ψ (x, y) = 2π
λ0

{[√
(x− xo)2 + (y− yo)2 + (zo)2 − zo

]
−

[√
(x− xi)2 + (y− yi)2 + (zi)2 − zi

]}
ψ (x, y)= m

K∑
k=0

L∑
l=0

Akl (x)k (y)l ψ (r)= m
N∑

i=0
A i (r)2i

Stepped diffractive surfaces:

ΦSDS (λ)=
∣∣∣∣ n2 (λ)−n1 (λ)

R0

∣∣∣∣( λλ0
−1

)

hSDS =

∣∣∣∣∣∣∣
mλ0√

(n2)2 − [sin(θi)]2 −n1 cos(θi)

∣∣∣∣∣∣∣ hSDS =
∣∣∣∣ mλ0

n2 −n1

∣∣∣∣
Multi-order diffractive lenses:

hm = mλ0

n (λ0)−1
mλB

n (λB)−1
= kλR

n (λR)−1

Hybrid diffractive lenses:

ΦH (λ)=ΦR (λ)+ΦD (λ)=ΦR
0

[
1+ Dn (λ)∆λ

n0 (λ)−1

]
+ΦD

0

(
1+ ∆λ

λ0

)
ΦR

0

ΦD
0

= ∆λ [n0 (λ)−1]
λ0 [n0 (λ)−n (λ)]

=− [n0 (λ)−1]
λ0Dn (λ)

ΦAH =ΦD
0

{
1− [n0 (λ)−1]

λ0Dn (λ)

}
=ΦR

0

{
1− λ0Dn (λ)

[n0 (λ)−1]

}

Opto-thermal properties:

ξK =−2α ξSDS (λ)=± [ξR (λ)−ξK ]

ξR (λ)= 1

[n2 (λ)−n1 (λ)]

[
dn2 (λ)

dT
− dn1 (λ)

dT

]
−α

ξSDS (λ)= 1

[n2 (λ)−n1 (λ)]

[
dn2 (λ)

dT
− dn1 (λ)

dT

]
+α
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Athermalization with diffractive components:

∆Φ

Φ
= ξ∆T

ΦK

ΦR
=

{
d

dT [n2 (λ)]− d
dT [n1 (λ)]

}
2α [n2 (λ)−n1 (λ)]

− 1
2

ΦSDS
eff (λ)=−

[
n2 (λ)−n1 (λ)

R0

]
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Index

achromatic condition, 98
achromatic hybrid structure,

98
achromatic refractive

doublet, 98
air-spaced grating doublet,

79
Airy beams, 31
Airy disk, 14, 29
Airy distribution, 7
Airy pattern, 13, 14
amplitude division, 37
amplitude filters, 33
amplitude gratings, 36
amplitude masks, 29, 87
angular dispersion, 49
angular switching, 53
annular phase plates, 87
aperiodically spaced

aperture (ASA), 27
aperture spacing, 25
apertures with central

obscuration, 20
apodization, 19
array beam generators, 43
artificial dielectrics, 41, 67,

69
athermal achromat, 100
athermal condition, 100
athermal lens, 100
athermalization, 94
autocollimation, 48, 49
axial chromatic aberration,

91

band diagram, 47
band-pass filter, 54
beam obscuration, 15
bidirectional propagation, 87

binary diffractive lenses, 90
binary level, 88
binary phase gratings, 44,

53, 62
binary surface structures,

69, 88
blazed binary grating, 67
blazed facet angle, 56, 57, 88
blazed gratings, 56
blazed transmission

gratings, 71
blazing condition, 40, 49, 56
blazing wavelength, 56
Bloch states, 47
Bragg phenomenon, 47
Bragg plane, 37
Brillouin zones, 47
broadband blazing, 77, 78
broadband diffraction

efficiency, 83, 84

central core, 15
central obscuration, 5, 16
classical mount, 48
coefficient of thermal

expansion (CTE), 99
coherent illumination, 28
complex amplitude, 2
computer-generated

hologram, 46
conical mount, 48
contrast reduction, 17
convolution, 28
coupled wave analysis, 70
cut-off orders, 51

Dammann grating, 44, 53
design wavelength, 89, 94
diffraction, 1
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Index

diffraction efficiency, 10, 61
diffraction gratings, 3, 36
diffraction-limited (lens

performance), 13
diffraction rings, 32
diffractive beam-shaping

components, 45
diffractive doublet, 77
diffractive homogenizers, 42
diffractive kinoforms, 88, 89
diffractive lens doublet, 96
diffractive lens surface

(DLS), 87, 88
diffractive optical power, 81
diffractive phase cells, 43
diffractive polarizer, 55
diffractive singlet, 77, 78
digital diffractive optical

element, 45, 46
doughnut-shaped field, 35
duty cycle, 26, 63, 64

echelle, 95
effective medium theory, 67,

69
effective optical power, 101
effective refractive index, 41
efficiency angular shift, 76
elliptical distribution, 17
etalon effect, 54
etching, 89
evanescent orders, 51
extended depth of field, 31
extended object, 28
extended scalar diffraction

theory, 63, 65

facet angle, 39
facet width, 84

fan-out elements, 43
far field, 3, 14
far-field shaping

components, 42, 43, 45
fill factor, 26, 63
finite difference method, 70
finite difference time

domain (FDTD), 41, 70
fluorescence depiction

microscopy, 34
focus, 1
form birefringence, 69, 73
Fourier grating, 43
Fourier transform lens, 45
fractional Talbot

distributions, 11, 12
Fraunhofer approximation,

3
Fraunhofer diffraction, 3, 14
free spectral range, 50
frequency comb, 86
Fresnel approximation, 3
Fresnel diffraction integral,

3
Fresnel lens, 89
Fresnel phase plate (FPP), 8
Fresnel reflections, 63, 70
Fresnel zone number, 4
Fresnel zone plate (FZP), 6
Fresnel zones, 4

Gaussian lens formula, 92
ghost orders, 64
grating doublet, 77, 78
grating equation, 48
grating parameter, 102
grating resolution, 50
grayscale apodizer, 23
grazing incidence, 49
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grazing mount, 49
GRISM, 40
groove spacing, 39

Helmholtz equation, 2
holographic diffuser, 42
holographic optical element,

46
holographic recording, 42
Huygens-Fresnel principle,

2, 3
hybrid achromat, 98
hybrid components, 97
hybrid structures, 88, 97

ideal lens, 9
incoherent illumination, 28
incident plane, 52, 104
integral method, 70
interference, 37
isofrequency diagram, 47

kinoform, 43, 88
Kirchhoff’s diffraction

integral, 3

Lambertian scatter, 42
lamellar grating, 39
lateral chromatic

aberration, 91
lattice constant, 47
lens transfer function, 13
linear dispersion, 49
linear gratings, 36
lithographic techniques, 62
Littrow mounting, 48, 56
local grating theory, 104
local groove spacing, 102
longitudinal chromatic

aberration, 91

material dispersion, 91
Maxwell’s equations, 2, 66
modal analysis, 70
monolithic grating doublet,

80
multi-order diffractve

lenses, 95
multiple apertures, 25
multispot beam generator,

43

near-field shaping
components, 45

negative refraction, 47

observation point, 4
opaque semiplane, 21
optical path difference

(OPD), 30, 58, 78, 80
optical power, 88, 89, 91, 93,

94
optical tweezers, 34
optimum profile height, 58,

59
optimum zone height, 89
opto-thermal coefficient

(OTC), 99

P-polarized (light), 37, 38, 52
paraxial approximation, 3
passing-off orders, 51
passive facet angle, 56, 59
pattern distortion, 17
peak diffraction efficiency,

73
phase delay, 88
phase filters, 33
phase gratings, 36
phase mask, 28, 29
phase profile, 92
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Index

photonic bandgap, 47
photonic crystal, 41, 47
photoresist, 39
point spread function (PSF),

13
point spread function

engineering, 31
polarization anisotropy, 52,

75
polarization dependency, 52,

72, 84
polarization extinction ratio,

55
polychromatic diffraction

efficiency, 77, 81, 85
polychromatic efficiency

modulation, 85
polychromatic point spread

function, 81
propagating orders, 51
pupil filter, 29, 33
pupil mask, 29

Rayleigh anomalies, 52
Rayleigh resolution

criterion, 28
rectangular aperture, 18
reflection, 36, 87
refractive achromat, 98
refractive doublet, 81
refractive optical power, 81
relative diffraction

efficiency, 61
relative feature size, 68
resolution, 1, 15
resonant domain, 67, 68
rigorous diffraction analysis,

65, 66, 70

S-polarized (light), 37, 38, 52

sagittal plane, 52
scalar diffraction theory, 2,

60, 70
scalar domain, 60, 73
serrated aperture, 23
serrated edge, 22
shadowing effect, 63, 93
single-point diamond

turning (SPDT), 93
sinusoidal grating, 39
Snell’s Law, 48
soft-edge aperture, 19
soft-edge apodizer, 22
spaced grating doublet, 79,

82
Sparrow resolution

criterion, 28
speckle, 45
spectral bandwidth, 91
spectral shift, 74
spurious diffraction orders,

96
staircase lenses, 93
star test, 13
stepped diffractive surface

(SDS), 87, 93
Strehl ratio, 29, 30
structural cutoff, 67
supercollimation, 47
superprism effect, 47
superresolved PSF, 29, 35
surface relief, 36

Talbot distance, 11
Talbot effect, 11
Talbot image, 11
Talbot plane, 11
tangential plane, 52
TE-polarized (light), 37, 52
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thin-element approximation,
60

three-dimensional
diffractive structures, 47

threshold condition, 51
TM-polarized (light), 37, 52
topological charge, 34
Toraldo di Francia, 29
transfer etching, 39
transmission, 36, 87
transverse chromatic

aberration, 91
triangular grooves, 39
two-dimensional diffractive

structures, 41

very large-scale integration
(VLSI), 90

volume Bragg gratings
(VBG), 37, 47

volumetric anisotropy, 47
vortex phase masks, 31, 34

wave equation, 60
wave vector diagrams, 47
wavenumber, 2
Wood anomalies, 51

zero deflection, 40
zero-order gratings, 69
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the technical committees of two international conferences.
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Recent advancements in microfabrication technologies 
and the development of powerful simulation tools have 
led to a signifi cant expansion of diffractive optics and 
diffractive optical components. Instrument developers can 
choose from a broad range of diffractive optics elements 
to complement refractive and refl ective components in 
achieving a desired control of the optical fi eld. This Field 
Guide provides the operational principles and established 
terminology of diffractive optics as well as a comprehensive 
overview of the main types of diffractive optics components. 
An emphasis is placed on the qualitative explanation of the 
diffraction phenomenon by the use of fi eld distributions 
and graphs, providing the basis for understanding the 
fundamental relations and important trends.
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