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Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover
many diverse fields of science and engineering. The initial idea for the series
was to make material presented in SPIE short courses available to those who
could not attend and to provide a reference text for those who could. Thus,
many of the texts in this series are generated by augmenting course notes with
descriptive text that further illuminates the subject. In this way, the TT
becomes an excellent stand-alone reference that finds a much wider audience
than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material
covered since 1989. They no longer necessarily stem from short courses;
rather, they are often generated independently by experts in the field. They are
popular because they provide a ready reference to those wishing to learn
about emerging technologies or the latest information within their field. The
topics within the series have grown from the initial areas of geometrical optics,
optical detectors, and image processing to include the emerging fields of
nanotechnology, biomedical optics, fiber optics, and laser technologies.
Authors contributing to the TT series are instructed to provide introductory
material so that those new to the field may use the book as a starting point to
get a basic grasp of the material. It is hoped that some readers may develop
sufficient interest to take a short course by the author or pursue further
research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical
monographs and textbooks in the way in which the material is presented.
In keeping with the tutorial nature of the series, there is an emphasis on the
use of graphical and illustrative material to better elucidate basic and
advanced concepts. There is also heavy use of tabular reference data and
numerous examples to further explain the concepts presented. The publishing
time for the books is kept to a minimum so that the books will be as timely
and up-to-date as possible. Furthermore, these introductory books are
competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to
determine the relevance of the proposed topic. This initial reviewing process
has been very helpful to authors in identifying, early in the writing process, the
need for additional material or other changes in approach that would serve to
strengthen the text. Once a manuscript is completed, it is peer reviewed to
ensure that chapters communicate accurately the essential ingredients of the
science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to
further expand the topic areas to include new emerging fields as they become
of interest to our reading audience.

James A. Harrington
Rutgers University
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Foreword

Light sustains life. It enthralls, captivates, and provides immense pleasure. It
connects cultures and establishes vocal and visual communication among
different life forms. We admire the beauty of flowers, of butterflies, and of the
feathers of a peacock. There is something mystical about light, with even the
ancients speculating on its nature. Although we now accept its dual nature, we
continue to explore its other hidden features.

Diffractive optical elements (DOEs) essentially function due to the
interplay of the phenomena of diffraction and interference that often display
vivid colors. Diffraction of light takes place when a wavefront is limited in
space; the limitation may be imposed either by the mountings of the optics or
by the apertures. Therefore, diffraction of light always takes place, and its
effects become significant when an aperture allows only a tiny portion of the
wavefront to pass. Grimaldi (1618–1663) carried out extensive experimental
investigations on diffraction, although the term diffraction is attributed to
Leonardo da Vinci (1452–1519). In 1818 Fresnel (1788–1827) wrote a memoir
on diffraction that is fundamental to the theory of diffraction of light. While
making a presentation to the French Academy of Sciences, Fresnel showed
the appearance of a bright spot in the shadow of a round object. Not believing
the theory, Arago rushed to the laboratory and indeed found that it is true,
and the spot became known as an Arago spot. Kirchhoff (1824–1887) put the
theory of diffraction of light on sound mathematical footing. Thereafter, it
became known that light could be bent either by reflection, refraction, or
diffraction; hence, devices based on diffraction—like those based on reflection
and refraction—could be conceived. Fresnel indeed showed that an interesting
planar artifact, when properly fabricated, would act as a positive lens, a
negative lens, and a plate; this artifact is known as a Fresnel zone plate.

DOEs can have both scientific and nonscientific applications. Nonscien-
tific applications include security holograms and elements for amusement.
These are used on bank notes and on products as a sign of authenticity. This
particular application has, in fact, spread to many marketable products.

Scientific applications of DOEs lie in beam manipulation and the
miniaturization of instruments for imaging and sensing. Gratings were the
earliest DOEs and were painstakingly fabricating by drawing lines with a

xiii
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diamond tip on speculum metal. With the invention of holography by Gabor
(1900–1979), gratings could be made with considerable ease: the gratings were
the record of the interference pattern between two plane waves or between a
spherical wave and a plane wave on a light-sensitive material. With an
understanding of the holographic principle in place, methods to record
amplitude and phase of the light reflected/transmitted by works of art were
developed. The phase detour method attributed to Lohmann (1926–2013) was
used to record both the amplitude and phase of an object wave in the artwork
created by the computer-controlled plotter. These computer-generated
holograms (CGHs) were used as filters for optical processing in photoreduc-
tion, making it much easier to draw line artwork, i.e., by skeletonizing the
interferogram. These same elements were used for testing optical surfaces and
systems. Following the work of Wyant, in 1976 I made the CGH for testing a
planoconvex lens. One of authors (SB in 1996) of this tutorial made a checker
grating on a desktop-controlled plotter for splitting the wavefront into a large
number of spots. After photoreduction and on illumination, the checker
grating produced spots that were surprisingly of almost equal intensities.
Many different types of elements, all of them line elements, were made on this
plotter for several other applications. It is worth mentioning that all CGHs
are DOEs. On the contrary, all DOEs are not CGHs.

Coming to this book, the authors present the art and technology of
making DOEs using MATLAB® and have simulated the results. They
successfully explain the transition from 3D optics to 2D optics, taking the
example of a Fresnel lens used even today in lighthouses. The transition from
3D to 2D is important in understanding the functioning of DOEs. The
authors develop the topic by starting with a 1D binary grating. In order to
direct diffracted light into a single order, usually the first order, the grating is
blazed. The book moves to a discussion of 2D elements, such as the Fresnel
zone plate. Methods to improve efficiency are also discussed. For example,
multilevel zone plates provide high diffraction efficiency. An array of such
zone plates constitutes the Hartman sensor used in adaptive optics
applications. Other 2D diffractive optical elements include circular gratings
or axicons, axilenses, spiral phase plates, cross binary gratings, and their
combinations. These elements and their combinations having interesting,
multifunctional properties are all discussed in the book. The design of DOEs
in Fresnel and Fraunhofer regions is explained separately. These designs are
based on the scalar theory of diffraction, and a ray-tracing approach is
followed. Because the DOEs are written on refracting surfaces in order to
compensate for certain aberrations, MATLAB codes for the aberration
evaluation are also provided.

CGHs are the interference record between a reference and object wave; a
reference wave is usually a plane wave, while the object wave at the plane of
recording is obtained by use of a Fresnel propagator. In some cases, Fourier/

xiv Foreword
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Fraunhofer holograms are also recorded. The transmittance of the hologram
is usually linearly related to the intensity distribution in the interference
pattern. When illuminated with the reference wave, the CGH generates the
desired object wave. A CGH with a mathematically defined wavefront or a
picture as input can be designed.

This book provides MATLAB codes for almost all of the examples
described, be they DOEs or CGHs. It is therefore a ‘must-have’ book for a
person intent on carrying out DOE design for research or economic reasons.
Because detailed theory of the functioning of these elements is not provided,
the Ph.D. thesis* by one of the authors (VK) is also a ‘must read.’ The
fabrication procedures of these DOEs/CGHs using electron beam lithogra-
phy, ion beam lithography, and photolithography are described. The exercises
provided at the end of the chapters add value in the way of beneficial practice
afforded to the readers.

Needless to say, this tutorial will be useful to students, teachers, and
optical designers. Diffraction patterns of complex apertures can be visualized
using the knowledge acquired by attempting the codes provided in the book.

R. S. Sirohi
Tezpur, Assam, India

*doi: 10.13140/RG.2.2.25996.51847
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Preface

Diffractive optics, if not yet a household word, is certainly a household
phenomenon. Many systems encountered in our everyday world contain or
use diffractive optics. A good example is DVD players or barcode scanners.
Elements that work on the principles of diffraction, or diffractive optical
elements (DOEs), can successfully replace refractive elements used in different
systems. This is because DOEs are capable of manipulating light in ways not
possible by conventional refractive optical elements. In addition, DOEs are
light in weight and compact compared to their refractive counterparts. The
development of this technology will encourage the conversion of bulky
refractive optical systems into highly compact, lightweight diffractive optical
systems. It is our belief that fabrication of diffractive optics needs to be further
developed and simplified so that more diffractive elements replace refractive
elements in the future. We hope that this book will ease this transition.

Several excellent books* already exist that explain the basics and
important concepts in the field of DOEs. This book does not intend to
replace them. Rather, the idea is to supplement the available information with
a text that will equip one with the skills required to start designing, simulating,
and even fabricating diffractive optics. Given the many different applications
and uses of diffractive optics, the importance of this field cannot be
underestimated. Surprisingly, there are only a few books that provide a
hands-on approach to the field. The lacuna of such information from a single
source motivated us to create a resource based on our practical experience. In
this book, learning occurs with assistive MATLAB® codes that enable
visualization of the ideas presented and a better understanding of the
parameters controlling different aspects of light. We believe that this manner
of treatment will enable a new graduate student to quickly grasp the
fundamentals of diffractive optics, beginning with the design of simple DOEs
and moving to more complex ones.

We hope the reader will benefit from this practical approach to designing and
fabricating diffractive optical elements. Experimentalists will be able to design
appropriate structures that can be used in many different applications such as

*See Chapter 1, Refs. 6, 33, and 57–59.
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spectroscopy, optical trapping, or beam shaping. The design of DOEs is presented
with simple equations and step-by-step procedures for simulation—from the
simplest 1D grating to the more-complex multifunctional DOEs—along with
analysis of their diffraction patterns using MATLAB. The fundamentals of
fabrication techniques such as photolithography, electron beam lithography, and
focused ion beam lithography with basic instructions for the beginner are
presented. Basic error analysis and error-correction techniques for a few cases are
also discussed. It must be noted that this book will focus only on passive DOEs;
SLMs are not required for demonstration. However, the MATLAB codes
provided can be used for displayingDOE designs on SLMs as well. Thus, we hope
that this book will help not only new students but also scientists in the industry to
quickly learn techniques to help with the design, simulation, and testing of DOEs.

The book consists of eight chapters. A brief summary of the content of
each chapter is as follows:

Chapter 1 introduces the fundamentals of diffractive optics and compares
diffractive and refractive optics. A quick review of the theoretical formulation
of diffraction are presented, along with different theoretical approximations
and their validity regimes.

Chapter 2 presents the fundamentals of design and far-field analysis of
simple binary DOEs such as 1D and 2D gratings, axicons, and Fresnel zone
plates (FZPs). It shows the beginner how to make simple calculations to extract
the intensity values and spacing between the different diffraction maxima.

Chapter 3 discusses the design, simulation aspects, and far-field analysis of
multilevel and blazed DOEs such as multilevel gratings, diffractive axicons,
blazed FZPs, axilenses, spiral phase plates, etc. It also discusses the basic
algorithms for designing DOEs to obtain any desired intensity profile.

Chapter 4 describes the design and analysis of DOEs in the Fresnel diffraction
regime to simulate diffraction patterns at different planes in the propagation
direction. It also discusses some interesting phenomena such as the Talbot effect.

Chapter 5 presents the basic aberration correction techniques used to
reduce and avoid errors while designing DOEs.

Chapter 6 introduces the art of creating different advanced multifunc-
tional DOEs, along with their design, simulation, and analysis. The important
properties of multifunctional DOEs are also discussed.

Chapter 7 describes the design and analysis of holographic optical
elements for different applications. Computer-generated Fourier and Fresnel
holography techniques are also discussed.

Chapter 8 presents the fundamentals of designing lithography files and the
fabrication of DOEs using photolithography, electron beam lithography, and
focused ion beam lithography, with basic fabrication recipes provided.

The content of the chapters is supported throughout by clearly commented
MATLAB codes, making this book useful even to a novice programmer.

Happy Diffracting!

A. Vijayakumar and Shanti Bhattacharya
November 2016

xviii Preface
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Symbols and Notation

A Aperture function
d Distance
d Lateral feature
Dm Fourier coefficients of order m
E Optical field (complex amplitude)
f Focal length
f0 Focal length of axilens
fx Spatial frequency along x direction
fx Focal length along x direction
fy Spatial frequency along y direction
fy Focal length along y direction
g Number of levels
Im Relative intensity for diffraction order m with respect to incident

intensity
I0 On-axis intensity
k Wave vector (2p/l)
kc(ū) Phase of beam
L Topological charge
m Order of diffraction
mx Order of diffraction along x direction
mx Order of diffraction along y direction
M Magnification
Mr Radial magnification
n Order of zones of FZP/mesh
n Refractive index
n1 Number of rings in mesh
ng Refractive index of glass medium
nr Refractive index of resist
N Number of sampling points
Pr Power in a circle of radius r
PTOT Power over the entire beam
rn Radius of nth zone
R Radius of diffractive optical element
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t Thickness/height of resist/substrate
T Transmittance value
u Object distance
v Image distance
w0 Waist of the Gaussian beam
zT Talbot distance
a Base angle of prism
b Deviation/diffraction angle
D Sampling period
Df Focal depth
l Wavelength
L Period of the grating
Lx Period of the grating along x direction
Ly Period of the grating along y direction
F Phase
F1D Phase of 1D binary phase grating
F2D Phase of 2D binary phase grating
FA Phase aberration
FAxilens Phase of axilens
FFZP Phase of Fresnel zone plate
FG Phase of grating
Fin Phase of input wave
Fm Phase of multifunctional diffractive optical element
Fout Phase of output wave
FR Phase of reference wave
FRing lens Phase of ring lens
FSPP Phase of spiral phase plate
c Complex amplitude of a wave
∇c Gradient of a wavefront
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Acronyms and Abbreviations

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
BPSE Beam path steering element
CAD Computer-aided design
CCD Charge-coupled device
CGH Computer-generated hologram
CIF Caltech Intermediate Format
DFT Discretized Fourier transform
DI De-ionized
DOE Diffractive optical element
DXF™ Drawing Exchange Format
EBL Electron beam lithography
FBMS Fixed-beam moving stage
FF Fill factor
FFT Fast Fourier transform
FIB Focused ion beam
FT Fourier transform
FZA Fresnel zone axilens
FZP Fresnel zone plate
GDS Graphic Data System
HF Hydrofluoric acid
HMDS Hexamethyldisilizane
HOBB Higher-order Bessel beam
HOE Holographic optical element
ICP Inductively coupled plasma
IFTA Iterative Fourier transform algorithm
IPA Isopropyl alcohol
ITO Indium tin oxide
KOH Potassium hydroxide
MEMS Micro-electromechanical system
MIBK Methyl isobutyl ketone
NDF Neutral density filter
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PMMA Poly methyl methacrylate
RCWA Rigorous coupled-wave analysis
ROE Refractive optical element
SEM Scanning electron microscope
SLM Spatial light modulator
SMF Single-mode fiber
SPP Spiral phase plate
STL STereoLithography
UV Ultraviolet
X-OR Exclusive OR
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Chapter 1

Introduction

This chapter introduces the fundamentals of diffractive optics, the similarities
and differences between diffractive and refractive optics, the advantages of
diffractive optics, and current challenges in this field. A quick review of the
theoretical formulation of diffraction is presented, along with different
theoretical approximations and their validity regimes.

1.1 Fundamentals of Diffractive Optics

1.1.1 Introduction

Diffraction was first observed by Francesco Maria Grimaldi in the year 1665.
It was Grimaldi who first coined the term diffraction.1 The study of
diffraction was continued by Sir Isaac Newton,2 James Gregory,3 Thomas
Young, etc.4 Later, Augustin-Jean Fresnel used Huygens’ wave principle to
explain the diffraction phenomenon. Much later, scientists such as Poincaré,
Sommerfeld, Kirchhoff, and Kottler, to name a few, added to the knowledge
of the field.5 Sommerfeld himself defined diffraction by what it was not,
stating that diffraction could be considered to be any bending of rays not
caused by refraction or reflection. Optical elements, surfaces, or interfaces
change the behavior of light, or, in other words, change the basic properties of
light, such as its amplitude, phase, direction, and polarization. These changes
are brought about through the optical processes of refraction, reflection,
interference, and diffraction. However, the amount of control and the ease of
fabricating an element that exploits one or more of these processes vary. This
book is about how to design diffractive elements that will modify some or all
of these properties to create a desired behavior. The elements can be either
reflective or transmissive in nature.

Diffraction, or, more correctly, diffractive optics, are now commonly used
in many experimental and commercial systems.6 The reasons for this are
several: our use of light has gone far beyond illumination and communication.
These, as well as the many other applications, such as imaging and sensing,
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require light to be manipulated in complicated ways, yet in compact systems.
Diffractive optical elements (DOEs) are able to address both of these
requirements simultaneously. With diffractive optics, as the name suggests,
the main phenomenon used is diffraction rather than refraction. In this first
chapter, we look at the transition between these effects. We examine the
specific circumstances in which optics can be considered refractive or
diffractive. This is important because the manner of describing them will be
quite different. Most optical elements will exhibit a combination of refractive
and diffractive properties. However, the dimensions of the element will
determine the dominating phenomenon. By dimensions, we mean both the
overall dimensions as well as the feature sizes. When feature sizes approach
several wavelengths, an extended scalar theory is required, while for
subwavelength features, a rigorous vector theory will be required to describe
the element and its effect on light.7

In this book, we focus on elements that can be described by geometric
optics and the scalar theory. No special software is required, and because
feature sizes are relatively large, fabrication, too, is often simple. However,
more importantly, scalar theory suffices in many situations and allows one to
achieve fairly complex operations. The user will be introduced to different
techniques that can be used to design and fabricate diffractive elements for
specific applications. Special attention has been taken to present practical
guidelines for fabrication. Since fabrication often requires the use of
sophisticated, expensive equipment and consumables, it is prudent to carry
out detailed simulations before actually fabricating. We also present well-
commented programs in MATLAB® for direct use.

1.1.2 Refractive and diffractive optics

Diffraction is present in almost all phenomena involving light, although it
may not always be dominant. Consider the case of focusing light with the aid
of a refractive lens. Assuming the lens to be aberration-free, the smallest spot
size obtained at the focal plane is called a diffraction-limited spot. This is
because using conventional means it is impossible to focus light to a spot
smaller than the diffraction-limited spot due to diffraction at the edges of the
lens. With a refractive lens, image parameters are calculated based on
geometric laws instead of diffractive principles as most of the incident light
undergoes refraction, while only a small fraction of the input light undergoes
diffraction. This is true with slits of dimensions much larger than the incident
wavelength, as well. When the slit opening is large, it is a refraction-
dominated system, and when it is smaller (with respect to the wavelength), it is
a diffraction-dominated system, as shown in Fig. 1.1.

Diffraction can be qualitatively explained using Huygens’ wave principle.
Let us consider a plane wave. By Huygens’ principle, every point on a
wavefront acts as a source of secondary wavelets generating another plane
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wavefront. However, when part of the wavefront is blocked by a slit, the
wavefront bends at the edges, as shown in Fig. 1.2.

In refraction, light can be thought of as traveling in straight lines in a
medium of constant refractive index. Snell’s law applies at interfaces (surfaces
where the refractive index changes) and can be used to determine the new
direction. Refractive elements, in general, consist of a single bulk unit, whose
shape and refractive index determine its imaging properties. Diffractive
elements, unlike their refractive counterparts, are made of many different
zones. The final image is a coherent superposition of light diffracted from the
various zones. Every point on the aperture contributes to the intensity at one
location of the output. Of course, refraction will also take place. The resulting
behavior will, therefore, be a combination of both effects. For example, the
0th diffraction order of a reflection grating is nothing but the light that obeys

Figure 1.1 Diffraction of light in slits with different widths: (a)–(c) decreasing slit widths
show increasing domination of diffraction.

Figure 1.2 Diffraction of a plane wavefront with a Gaussian intensity profile at a single-slit
aperture.
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geometric optics laws. It should be clear that although diffraction is an
interference effect, these two effects are distinguished from each other by the
number of interacting beams. Most interferometers, for example, will create
two beams that interfere later in the optical path. In diffraction, an infinite
number of beams play a role.

The well-known Fresnel lens was invented by Augustin-Jean Fresnel in
1822 to replace the heavy, conventional spherical lenses used in lighthouses.7

Fresnel converted the bulk conventional spherical lens shown in Fig. 1.3(a) into
a thin Fresnel lens by arranging different sections of the conventional lens in a
plane, as shown in Fig. 1.3(b). The curvature of the material at the glass–air
interface and the refractive index of the glass material govern the light-bending
profile; hence, the inactive glass material present in the conventional lens can be
removed without altering the function of the device. In this example, the Fresnel
lens has been made by sectioning the original lens into three horizontal parts. It
behaves almost like the conventional lens except for extra diffraction effects
occurring at the boundaries between its different sections. What is important is
that the Fresnel lens is still a refractive optical element with dimensions of t and
d much greater than l, the wavelength of the incident light. However, if the
same element were to be designed with feature sizes closer to the wavelength of
light, then the resulting element would be predominantly diffractive.8 In the
latter case, even though the function of the lens remains the same, wavefront
control is achieved by diffraction rather than refraction.

From the above discussion, it seems that it is relatively easy to design a
diffractive element from the shape information of an equivalent refractive
optical element (ROE), assuming that such an element exists. Let us study this
concept in some more detail.

In refractive optics, the bending of light occurs due to the geometry of the
structure and the index of refraction, while in diffractive optics, bending of
light occurs due to the features and the aperture edges. Given a particular
intensity distribution across an aperture, it is possible to design the features

Figure 1.3 Scheme showing the generation of a Fresnel lens from a conventional plano-
convex lens: (a) conventional lens and (b) Fresnel lens. If t and d≫ l, the lens is refractive. If
t and d are on the order of, or less than, the wavelength, the element is diffractive.
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that will fill the aperture to obtain a desired intensity distribution at an output
plane. The first DOEs were modified versions of refractive elements with
feature sizes on the order of the incident wavelength. To understand the above
statement, let us consider the conversion of a prism into a diffraction grating.
In the refractive regime, a prism can be used to disperse light or change the
direction of an incident monochromatic light. A similar element in the
diffractive regime is a grating.

The construction of a diffraction grating from a prism is shown in Fig. 1.4.
The base angle of the prism and its refractive index are given by a and ng,
respectively. The refractive bulk prism is converted into a thin element using
Fresnel’s technique, as shown in Figs. 1.4(a) and (b). Figure 1.4(c) shows a
diffraction grating, which is similar to Fig. 1.4(b), except that the feature sizes
are closer to the wavelength of light with a period L and thickness t. A Fresnel
prism is a refraction-dominated system, while a diffraction grating is a
diffraction-dominated one. A major difference arising because of this is the
fact that the former will bend the incident beam into one direction, while the
latter will generate multiple orders. The shape of the diffraction grating will
determine the number of orders and will be discussed in more detail in later
chapters. In order to force most of the diffracted light into a single diffraction
order, the diffraction grating must be blazed (i.e., have a triangular shape)
with a height or thickness t given by

t ¼ l

ðng � 1Þ , (1.1)

which corresponds to a phase difference of 2p.9 Hence, the relationship between
a of the prism and L of the grating for normal incidence of light is given by

Figure 1.4 (a) Refractive prism and (b) generation of a Fresnel prism from it. (c) Blazed
diffraction grating with dimensions on the order of the wavelength.
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a ¼ tan�1

�
l

Lðng � 1Þ
�
: (1.2)

Equation (1.2) shows that the geometrical profile of the prism is related to the
period of the diffraction grating.

The deviation angle b of the prism with a base angle of a and refractive
index ng can be calculated using trigonometry as

b ¼ sin�1ðng sinaÞ � a: (1.3)

In order to become familiar with the terms and the language of diffractive
optics, we briefly introduce the amplitude grating here. Many of the concepts
will directly hold true for a phase grating as well. The second chapter provides
a much more detailed look at gratings and methods by which to design and
simulate their behavior.

Imagine a structure comprising a number of reflective slits surrounded by
opaque regions, as shown in Fig. 1.5. The slits are periodically spaced with a
distance L. This structure defines a basic diffraction grating. Light is incident
at an angle of bi with respect to the grating normal, which is indicated as
vertical dashed lines in the figure. The question is what determines the angle(s)
br of the beam after incidence on this surface? Since we have chosen reflective
slits, the light will travel back into the region of incidence, but we will not call
this reflection as the resulting intensity is due to the superposition of many
beams. For a more detailed description, we refer readers to a number of books
that discuss Huygens’ principle (every point in the slit acts a secondary source)
and scalar diffraction.1–5 Suffice to say that the multitudes of beams from each
slit interact with each other and result in an intensity pattern in the far field.
This pattern is not uniform, and the goal is to determine the locations of the
intensity peaks.

To arrive at the pattern, we look at two rays AB and A0B0 that both
originated from the wavefront AA0. In other words, at the plane AA0, both
rays started with the same phase. For the diffracted wave shown in the figure,
to represent an actual wave, BB0 should be a wavefront. That is, the path

Figure 1.5 Schematic of light diffraction in a reflective amplitude grating.
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length difference between AB and A0B0 must be equal to a multiple of the
wavelength l, as described in

n1A0B0 � n2AB ¼ ml0, (1.4)

where, n1 and n2 are the refractive indices seen by the incident and reflected
rays, respectively. Since both are in the same medium, n1¼ n2. With this
information, and comparing the triangles AA0B0 and BB0A, the equation can
be rewritten as

Lðsinbi � sinbrÞ ¼ ml0, (1.5)

where, l¼ l0/n1, and m is the order number. The implication of the order
parameter m is that Eq. (1.5) is satisfied for different values of br. Therefore,
the equation could be more accurately be written as

Lðsinbi � sinbmrÞ ¼ ml, (1.6)

where, bmr represents the mth diffraction order. Thus, a picture of what is
happening after diffraction from the grating slowly emerges. Unlike specular
reflection, where the reflected light travels in one direction only, or scattered
light disperses into a solid angle from a surface, several ‘diffraction’ orders
exist. One could think of this as reflection occurring in a finite number of
preferred directions. If the grating had been a transmissive one, then
refraction would occur in more than one direction. The condition m¼ 0
represents the classical optics case. For example, in the above grating, the
condition m¼ 0 results in bi¼ br, which is the law of reflection. For a
transmission grating, m¼ 0 would reduce the equation to Snell’s law. While
the equation allows us to predict the possible directions of travel, it gives us no
information about how much light travels in each order. This means that we
cannot predict the efficiency of the diffractive structure. Obviously, efficiency
is important, and later chapters will include further equations that can be used
during the design stage to maximize it. The convention used to name the
various orders of a grating is indicated in Fig. 1.6. The figure can be used for
either a transmission or reflection grating. Angles are always measured from
the grating normal. The sign of the angle depends on the direction of rotation
of the ray from the normal (indicated by � signs in the figure). On the other
hand, the sign of the order parameter m depends on the direction from the 0th

order. For example, for the reflected m¼þ1 order in the figure, angle b1 is
positive but would have been negative if the ray happened to lie on the other
side of the normal.

For simplicity, normal incidence is considered, and for the 1st diffraction
order, Eq. (1.6) can be simplified. The diffraction angle b1 of the 1st

diffraction order of the diffraction grating with a period of L is given by
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b1 ¼ sin�1

�
l

L

�
: (1.7)

By substituting Eqs. (1.1) and (1.2) in (1.7), b1 can be expressed as

b1 ¼ sin�1½ðng � 1Þ tana�: (1.8)

From Eqs. (1.3) and (1.8), for cases where the base angle of prism a and the
refractive index ng are small, or where the period of the diffraction grating L is
large, Eqs. (1.3) and (1.8) reduce to a simpler equation:

b1 ¼ b ¼ ðng � 1Þa: (1.9)

This is an interesting result. When the period of the diffraction grating is large,
it behaves more like a refractive element; however, its behavior is different
when L approaches l. To quantitatively understand this, a few typical cases
are considered with ng¼ 1.1, 1.5, and 1.9. The deviation angles b of a prism
and diffraction angles b1 of a grating were calculated using Eqs. (1.3) and
(1.4), respectively, and plotted against base angles a of a prism, as shown in
Fig. 1.7.

For smaller values of a, there is good overlap between b and b1.
Therefore, for DOEs with small diffraction angles, it is possible to derive the
profile blueprint from a ROE with an equivalent function. Examples of some
other elements that can be achieved in a similar way are the axicon,9 circular
grating,10 ring lens,11 and diffractive ring lens.12 We must however, always
keep in mind that in any optical element, both refraction and diffraction
coexist. The dominating effect, dictated by the feature sizes, decides whether
the element is diffractive or refractive.

Several researchers have studied the transition between refractive and
diffractive elements quite extensively.13,14 As discussed, this can be done by

Figure 1.6 Orders of a grating.
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changing the feature sizes of an element and studying its behavior as the size
changes. In particular, the dispersive nature will vary depending on the feature
size. Again, let us take the examples of a lens and a prism. In the latter case,
we will compare a 1D (diffractive) grating and a (refractive) prism, as both
result in an off-axis deflection of the incident beam.14 In both cases, the
refractive index and, hence, the wavelength plays a role in the amount of
deflection. It is shown in Ref. 14 that the nature of dispersion is quite different
for the refractive and diffractive cases, with the latter experiencing much
greater dispersion for the same angle of deflection. Even more interesting is
the negative sign of the grating dispersion compared to that of the prism. In
other words, when light bends, different wavelengths bend by different
amounts, and the direction of bending is determined by the base optical
behavior of the element. The opposite signs of the dispersion of refraction and
diffraction have been used from very early on to provide some amount of
achromatization.15 Recent publications show that this concept is still being
manipulated for achromatization.16,17 In the refractive case, dispersion caused
by the material dominates, whereas, the structure of the element controls the
diffractive dispersion. Given these two very different causes, diffraction and
refraction cannot be balanced in a single element. Researchers are now
studying harmonic DOEs that lie somewhere between these two distinct
effects.18 In conclusion, it is clear that the structure of a DOE can be deduced
from the structure of a ROE that performs a similar optical operation.

1.1.3 Scalar diffraction formulation

Diffraction is a phenomenon that is observable due to the wave nature of light.
The effects of diffraction are more noticeable when light interacts with an

Figure 1.7 Plot of deviation angle b of a prism (solid line) and diffraction angle b1 of
a grating (dashed line) versus variations in the base angle a of the prism for ng¼ 1.1, 1.5,
and 1.9.
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interface or an optical element whose dimensions are close to that of the incident
wavelength. Diffraction theory allows one to calculate how wavefronts change
and how they travel after interaction with such an element. A complete analysis
of a diffractive system can be carried out using the vector diffraction
equations.19,20 Vector diffraction formulation can be used to understand the
behavior of DOEs with features both superwavelength as well as subwavelength.
This formulation can determine not only the intensity and phase profiles at
different planes, but also the state of polarization at these planes. However, the
formulation is quite difficult to implement and also to simulate. For most of the
analysis, which does not involve DOEs with features smaller than or equal to
the wavelength of light, and does not need to explain the polarization state of the
diffracted field, the simpler scalar diffraction formulation is sufficient. The focus
of this text book is only on superwavelength DOEs; therefore, the discussion is
limited only to the scalar diffraction formulation. Few models have been
developed that can explain the polarization state of a diffracted field using only
scalar diffraction formulation.21 The scalar diffraction formulation is described
in numerous text books.4,5 With the assumption that the features of the DOE are
larger than the wavelength of the source, and for spherical wavefronts, the scalar
diffraction formula based on Huygens–Fresnel theory is given by

Eðu,vÞ ¼ z
lj

ð ð
PAðx,yÞ expðjkrÞ

r2
dxdy, (1.10)

where (x, y) is the diffraction plane, and (u, v) is the observation plane. The
radius r can be given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ðu� xÞ2 þ ðv� yÞ2

q
: (1.11)

For smaller angles, spherical wavefronts can be approximated as
parabolic wavefronts, which results in the Fresnel approximation formula.
Now the radius can be approximated as

r � z
�
1þ 1

2

�
u� x
z

�
2
þ 1

2

�
v� y
z

�
2
�
: (1.12)

The Fresnel diffraction formula is given by

Eðu,vÞ ¼ ejkzej
k
2zðx2þy2Þ

jlz

ðþ`

�`

ðþ`

�`

�
Aðx,yÞ exp

�
j
k
2z

ðx2 þ y2Þ
��

� exp
�
�j

2p
lz

ðxuþ yvÞ
�
dxdy:

(1.13)

It can be seen that the Fresnel diffraction formula is relatively simpler
to solve (as is simulating the diffraction field) compared to the prior
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Huygens–Fresnel approximation. However, this approximation will fail in the
region closer to the diffraction plane and for large diffraction angles.
Equation (1.13) is valid only when

z3 ≫
p

4l

h
ðx� uÞ2 þ ðy� vÞ2

i
2

max
: (1.14)

Equation (1.13) for large values of z reduces to just a Fourier transform
operation, which is called the far-field approximation. This approximation,
also known as the Fraunhofer approximation, is valid only for very large
distances given by

z ≫
kðu2 þ v2Þ

2
: (1.15)

At these distances, the radius of the spherical wavefront is large, so a section
of the spherical wavefront can be approximated to be a plane wavefront.
A summary of the approximations of the scalar diffraction formulation is shown
in Fig. 1.8. In this book, only the Fresnel and Fraunhofer approximations are
used for analysis of DOEs. The scalar diffraction integrals can be thought of as

Figure 1.8 Depiction of the validity of different approximations of the scalar diffraction
formula.
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scalar diffraction propagators. In other words, they are a means to find the
diffraction amplitude and phase at any plane, given these values at an earlier
plane. These integral equations are used in their analog continuous form
only when analytic solutions for the diffraction problem being studied exist.
For all other cases, different techniques can be used to solve them to
determine the diffraction field at some plane. While the similarity to a
Fourier transform (FT) is clear when studying Fraunhofer diffraction, even
diffraction at closer planes can use the FT concept, as is obvious from
Eq. (1.13). (Further details are provided in Chapter 4.) Therefore, one
common method to solve scalar diffraction integral equations uses
discretized Fourier transforms (DFTs). One particularly efficient and fast
algorithm that implements a DFT is known as the fast Fourier transform
(FFT). This algorithm carries out the FT operation for N discrete samples in
O(N log N) steps, rather than the O(N2) steps of a standard FT operation.
Algorithms that carry out a DFT with O(N2) steps can also be used. These
algorithms have other benefits; for example: the size of the matrices (arrays)
used does not need to be powers of 2; there is more freedom in choosing
matrix sizes (hence, more freedom in fixing resolution at the diffraction
plane); they can tackle problems that cannot be handled by the FFT
algorithm, etc. While these benefits may seem attractive, they come at the
price of longer computation times. In addition to techniques that use the FT
as a basis for a diffraction solution, other beam propagation techniques such
as wavelets,22 finite element methods,23 etc.,24–26 can be used.

1.2 Software for Designing Diffractive Optics

In the preface, the importance of diffractive optics was discussed. Given its
many uses, clearly, the ability to design and simulate DOEs is critical. Most
researchers use their own programming scripts to do this. And, of course, the
goal of this book is to help such a researcher. For the sake of completeness,
however, we mention other resources57–59 that are available.

The company Wyrowski Photonics UG27 markets a software package
called VirtualLab Fusion.28 Its diffractive optics toolbox can be used for the
generation of micro- and diffractive optical elements. With this software, a
variety of DOEs such as beam shapers, splitters, and diffusers can be
designed. It also has a grating toolbox with which rigorous analysis of grating
can be carried out. VirtualLab Fusion can then be used to analyze imaging in
systems containing gratings and diffractive or hybrid lenses.

GSolver,29 on the other hand, is a software that allows rigorous analysis
of all types of diffractive gratings. It provides a vector solution for complex
periodic grating structures.

DiffractMOD™
30 is used to model a wide range of devices including

diffractive optics, such as diffractive optical elements, subwavelength periodic
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structures, and photonic bandgap crystals. It is based on rigorous coupled-
wave analysis (RCWA) and can handle both metallic and dielectric materials,
allowing for the inclusion of plasmonic effects as well.

Even software like OSLO31 and Zemax32 that typically are used for
modeling and designing refractive optics allow some amount of diffractive
modeling. They do so without using any of the diffraction equations and,
therefore, can most easily deal with relatively simple periodic diffractive
elements. Diffraction is included, taking into account the fact that a diffractive
surface introduces additional ray bending over what a refractive element
would achieve.

While a variety of software tools exist, the authors believe that much of
the required modeling can be done by the users themselves, with software such
as MATLAB, Scilab, Python, or C. This is especially true for scalar diffractive
optics. The advantage, apart from cost, is that design and simulation
programs can be tuned exactly to the users’ requirements.

1.3 Concluding Remarks

A brief history of diffraction and the similarities and differences between
DOEs and ROEs are presented in the previous sections with a glimpse of the
fundamental scalar diffraction formula. In this concluding section, the scope
of research and development in diffractive optics is summarized followed by
the contents of the following chapters.

DOEs in general are smaller and thinner compared to their refractive
equivalents.33 Additionally, DOEs can be engineered to nanometer accuracy
due to the remarkable growth in the field of micro/nanolithography and
fabrication techniques.34 DOEs can be fabricated with feature sizes from few
hundreds of nanometers to few millimeters. Extremely fine features smaller
than the diffraction limit of light can be achieved using extreme ultraviolet
lithography,35 electron beam lithography,36,37 and focused ion beam
lithography.38,39 The transfer of smaller features to glass and hard substrates
can be carried out using sophisticated etching processes;40,41 therefore,
elements that can withstand higher optical powers can be fabricated. DOEs
can also be designed and implemented for other parts of the electromagnetic
spectrum, such as x rays, etc.42,43 Hence, DOEs can replace refractive optics
in various applications.44

In many optical setups with refractive optical elements,45 some elements
are paired without any relative motion between them. In such cases, it is often
convenient to replace these elements with one DOE with equivalent
functionality (of the replaced elements).46 Multiple functions such as beam
re-orientation, focusing, and splitting have been reported.47,48 Hence, it is
possible to convert bulky optical systems into lightweight, compact systems
with high-quality beam profiles in less space. In the case of DOEs, the
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resolution of the element can be less than 10 nm, which is at least three orders
of magnitude higher than that of conventional spatial light modulators; in
addition, DOEs are lighter. Clearly, one can obtain a resolution better than
that of refractive elements while maintaining a compact optics configuration.
Besides the above advantages, some beam profiles, such as vortex beams,
chiral beams, etc.,49–52 cannot be generated using ROEs. Therefore, it is
possible to revolutionize the field of optical instrumentation by replacing
ROEs with equivalent lightweight DOEs and DOE- based optical instru-
ments. Recent research reports the fabrication of DOEs on the tip of optical
fiber, where the patterned fiber can be attached directly to a fiber laser to
achieve high-power beam shaping.53 These results could be useful for a wide
variety of biomedical applications such as laser-based surgery,54 endoscopy,55

laparoscopy,56 etc.
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Chapter 2

Design of Diffractive Optical
Elements

Diffractive optical elements tailor optical fields via diffraction.1 The
diffraction patterns of standard apertures such as single slit, double slit,
circular aperture, and square slit are well known.2 However, for applications,
apertures with higher levels of complexity may be required. A DOE can be
thought of as a special aperture and can be engineered to obtain a desired
intensity and phase profile at the plane of interest. Therefore, it is necessary to
be familiar with such aperture functions and their respective diffracted fields,
and to reconstruct the aperture function from the intensity and phase profile
required at the plane of interest. DOEs can be of different versions,3 such as
amplitude-only and phase-only, as well as hybrid types4 containing both
amplitude and phase components in the same DOE. Phase DOEs possess
higher efficiency than their amplitude counterparts. Hence, for most
applications, phase-only DOEs are preferred, while in a few cases hybrid
DOEs with both phase and amplitude profiles are used. This chapter presents
step-by-step procedures for designing amplitude-only, phase-only, and hybrid
DOEs with MATLAB® codes.

2.1 Design of Simple Diffractive Optical Elements

This section presents the design of three basic diffractive optical elements,
namely, a grating, a Fresnel zone plate (FZP), and an axicon.

2.1.1 Design and analysis of 1D gratings

The fundamental theory of gratings is presented in numerous research papers
and text books.2,3,5–9 A 1D binary phase grating has phase variations in only
one direction, as shown in Fig. 2.1. Three design parameters are used in the
design of a binary phase grating: the period of the grating L; the phase
difference F between the ridge (of width d) and the groove regions of the
grating; and the fill factor (FF) d/L. The phase difference itself is controlled by
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two parameters: the physical height or thickness t of the ridge and the
refractive index of the material of which the grating is made. In general, the
material is either glass or resist, which means that the refractive index is fixed,
and the design parameter used is only the thickness. To start, we look only at
gratings with a FF of 0.5, as this value provides the maximum efficiency.
(It is left to the readers to prove this using the MATLAB codes given in this
chapter.) The phase profile of the 1D binary phase grating with a FF of 0.5 is
given by

F1D ðxÞ ¼
(
F 0 ≤ x ≤ L

2
0 L

2 ≤ x ≤ L
F1D ðxÞ ¼ F1D ðxþ LÞ: (2.1)

The period of the grating controls the diffraction angle and, hence, the
spacing between the diffraction spots at the plane of interest. On the other
hand, the FF and the phase height F control the distribution of intensities in
different orders. The basic grating equation relating the wavelength of light l,
the period of the grating L, and the diffraction angle can be derived from
Fig. 2.2.

Using Fourier analysis,2 a binary phase 1D grating of period L can be
considered as a sum of many sinusoidal gratings of different amplitudes,
phases, and periods, namely, L, L/2, L/3, and so on. However, for a binary
phase grating with a FF of 0.5, the even diffraction orders vanish,10 and only

Figure 2.1 Phase profile of a 1D binary diffraction grating with period L and FF¼ 0.5.

Figure 2.2 Schematic of diffraction of light by a 1D diffraction grating.
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odd diffraction orders m¼ 1, 3, 5,. . . appear, as shown in Fig. 2.3. As with
any infinite series, an accurate profile of the binary phase grating can be
generated by adding more terms. From Fig. 2.3, it can also be noted that the
contributions of the sinusoidal gratings in the formation of the binary phase
grating are not equal.

The amplitude values of the different-order sinusoidal gratings are given
by Fourier coefficients, which are also the measure of relative intensity in
various diffraction orders. The Fourier coefficients for the 0th and mth

diffraction orders are shown in Eqs. (2.2) and (2.3), respectively:11

D0 ¼ ej
F
2 cos

�
F

2

�
, (2.2)

Dm ¼ 2
jmp

ejðFþmp
2 Þ sin

�
F

2

�
sin

�
mp

2

�
: (2.3)

From Eq. (2.3) it can be noted that Dm¼ 0 for all even values of m. The
diffracted beams’ intensity values Im relative to the incident beam can be
obtained from the square of the absolute values of the Fourier coefficients.
The relative intensity for diffraction orders m¼ 0, �1, and �3 are given by
Eqs. (2.4), (2.5), and (2.6), respectively:

I0 ¼ jD0j2 ¼
�
cos

�
F

2

��
2
: (2.4)

Figure 2.3 Sinusoidal grating components with periods (L, L/3, L/5, . . . ) of the binary 1D
grating with period L.
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I�1 ¼ jD�1j2 ¼
�
2
p
sin

�
F

2

��
2
, (2.5)

I�3 ¼ jD�3j2 ¼
�
2
3p

sin
�
F

2

��
2
: (2.6)

Diffraction can be thought of as controlling the direction and amount of
light in higher orders. Any light that does not get diffracted ends up in the 0th

order, which can be considered to be the direction taken by light traveling in
ways expected by refraction and classical optics alone. The Fourier transform
of the grating gives rise to a number of orders and a Dirac delta function in
the Fourier plane, which represents the 0th order of the grating. The �1
diffraction orders arise due to diffraction by a sinusoidal grating with period
L. The �3 diffraction orders arise due to diffraction by a sinusoidal grating
with period L/3, and so on. The values of Fourier coefficients of different
diffraction orders can be used to control the intensity distribution in different
orders. Let us consider two design examples for generation of intensity
profiles for specific applications.

Case 1: To generate maximum intensity in the 1st order.
From Eq. (2.5) the maximum intensity in the 1st order arises when F¼p

with a value of 40.5% of the input intensity. The thickness of the resist for the
case of binary grating is given by l/[2(nr – 1)]. The thickness of the resist for a
wavelength of l¼ 633 nm and refractive index of resist nr¼ 1.5 is t¼ 633 nm.
Substituting the corresponding phase value in Eq. (2.4) shows that the
intensity in the 0th order is zero when the 1st orders have maximum intensity.
In other words, only when there is destructive interference in the 0th

diffraction order is there maximum intensity in the 1st order. It should also be
noted that the intensity in the �1 orders are equal due to the symmetric phase
profile of the binary grating. Hence, the total intensity in both of the 1st orders
is 81%.

Case 2: To generate �1st and 0th order diffraction with equal intensity
values.

This can be done by equating Eqs. (2.4) and (2.5). The phase value is
F¼ 2.01, and the corresponding resist thickness value is t¼ 405 nm. A plot of
the intensity values of the 0th, �1st, and �3rd diffraction orders with respect
to the resist thickness for a binary grating is shown in Fig. 2.4. The study of
variation in efficiency for variation in phase or resist thickness is equivalent to
the study of the variation in the wavelength of light. At a resist thickness of
633 nm for wavelength l¼ 633 nm, the curve for the 0th diffraction order
becomes 0, confirming Case 1. The points of intersection of the curves for the
0th and the �1st diffraction orders confirm the results of Case 2. The points of
intersection of the curves for the 0th and the �3rd diffraction order show the
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wavelength for which the intensity of the 0th diffraction order is same as that
of the �3rd diffraction order. The maximum efficiency for the �3rd diffraction
order is 4.5%.

This technique can be used to engineer 1D gratings to obtain the essential
intensity profiles at the application plane. In many cases, the grating is used in
conjunction with a focusing lens having a focal length f as shown in Fig. 2.5.
The spacing between the 0th diffraction order and the mth diffraction order can
be estimated using trigonometry as f tan b.

In general, the diffraction pattern in the far field is estimated by
calculation of the Fourier transform of the aperture function.2,3 If A(x, y) is
the aperture function, then the amplitude profile of the diffraction pattern in
the Fourier domain (spatial frequency domain) E(u, v) is given by

Figure 2.4 Plot of the normalized relative intensity values for 0th, �1st and �3rd diffraction
orders with a variation in wavelength (or phase) for a binary grating with a resist thickness of
633 nm.

Figure 2.5 Optics configuration for focusing the diffraction orders generated by a binary
phase grating (BPG) with a convex lens.
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Eðu,vÞ ¼ ejkf ej
k
2f ðu2þv2Þ

jlf

ðþ`

�`

ðþ`

�`

Aðx,yÞ exp
�
�j

2p
lf

ðxuþ yvÞ
�
dxdy, (2.7)

where f is the focal length of the lens used to cancel the quadratic phase factor
of the Fresnel diffraction integral.2,3 The spatial frequencies along the x and y
directions are fx¼ x/lf and fy¼ y/lf, respectively.

2.1.2 Design of 1D gratings with MATLAB®

The basic algorithm for design and far-field analysis of simple DOEs with
known amplitude and phase profiles of the aperture is shown in Fig. 2.6.

In general, there are four basic steps. In the first step, the constant terms
are defined; these include matrix size (size of the DOE) in pixels� pixels,
period of the grating, wavelength, fill factor, etc. The design of the DOE is
carried out in the second step, which is the most crucial part of the algorithm.
This is done by assigning values of complex amplitude (AeiF) to each pixel of
the matrix, where A is the amplitude transmittance, and F is the phase value.
In the case of amplitude-only and phase-only DOEs, F¼ 0 or a constant, and
A¼ 1, respectively. In the case of hybrid DOEs, it is necessary to assign both
transmittance as well as phase values to each pixel of the matrix. The third
step is the analysis step, in which the diffraction pattern of the DOE is
calculated using scalar diffraction formulae. The final step is the display step,
in which the DOE amplitude or phase profile and its diffraction patterns are
displayed to verify the accuracy of the code is. It is always a good habit to
evaluate the code at each step to make sure that it is proceeding in the correct

Figure 2.6 Algorithm for design and analysis of a DOE. The algorithm uses analytic
expressions and is applicable to any software.

24 Chapter 2

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



direction, instead of writing the full code and verifying later. In this book, the
design and analysis is performed using MATLAB. For SCILAB users, the
MATLAB code can be easily converted into SCILAB code.12 Schemes for
converting MATLAB code to C, Cþþ, Mathcad, and Python codes are
available in numerous websites.

1D gratings are designed as matrices of size N�M, where N and M are
the number of pixels along x and y axes, respectively. In most of the examples
in this book, N¼M. For simulation of diffraction patterns, the matrix size
has been chosen as 500� 500 to minimize the computation time. However,
the choice of the value of N and M depends on various factors, such as the
overall size of the element, the resolution with which it needs to be described,
and even the resolution of the tool that will be used to actually fabricate the
element. The fundamentals of sampling are discussed in various text books13

and research papers.14,15 The values stored in each pixel represent a sampled
version of the structure to be designed. The amplitude and phase values are
assigned assuming the size of each pixel to be 1 mm. The far-field diffraction
pattern can be calculated by performing a Fourier transform of the aperture
profile generated in MATLAB.15,16 In particular, the Fourier transform for a
2D matrix is calculated using the ‘fft2’ function in MATLAB.

2.1.2.1 Design of 1D amplitude gratings with MATLAB

In the case of amplitude gratings, the transmittance values T¼ 0 and T¼ 1
are assigned to the two binary levels of the grating. The phase value F is
assumed to constant throughout and is normally set to zero. Hence, the time-
frozen wave equation reduces from T exp (iF) to just T. The MATLAB code
for simulation and analysis of a 1D amplitude grating is given Table 2.1.

It should be noted that the module titled ‘Constructing the grating’ in
Table 2.1 has been written using for and if loops. In terms of programming,
this is not the best way to create the desired matrix, especially for large matrix
sizes, as such loops are computationally intensive. MATLAB has inbuilt
functions that will perform these operations in more efficient ways. However,
the for and if functions have been used here because they are easy to
understand, and some similar form of these functions exists in all
programming languages. Examples of programs with more efficient codes
are included throughout the book.

One other method of making codes more efficient is to create functions
out of segments of code that repeat either within a program or across
programs. For example, in Table 2.1, the last part of the code with the
heading ‘Observing the grating output in the far field’ appears in almost all
programs, as it generates the observable output of the program. We
recommend creating a function with this code and then calling the function
every time this output is to be generated. User-defined functions can be saved
by going to the File tab and then pressing the ‘setpath’ button. Click on ‘add
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folder’ and then choose the folder that contains the functions that need to be
permanently available, similar to inbuilt MATLAB commands. Each
function must be saved as an individual file with the name that will be used
to call it. We have created a set of functions that use either normalized
intensity or the intensity values as directly calculated. These functions are
provided in the Appendix.

After executing the program, the grating profile is visible in the first figure
window [Fig. 2.7(a)], while the diffraction spots will be seen in the second one
[Fig. 2.7(b)]. In the latter case, one should “zoom in” until the spots are clear.
Now, by selecting the ‘data cursor’ icon in the figure and clicking on the
diffraction spots, the relative intensity directed in that particular order will be
displayed. It can be noted that the efficiency of the �1st order is only 10.14%,
which is only 1/4 of the maximum intensity in the case of 1D grating profile
arising due to blocking of 50% of the light input at the grating plane. The
MATLAB code of Table 2.1 can be implemented for different FFs by
assigning different values to the parameter FF. Figure 2.1 can be generated
using the command ‘meshz(A)’.

Table 2.1 MATLAB code for design and analysis of 1D binary amplitude grating.

%%1D Amplitude grating%%
clear %Clear all memory
% Defining Grating Parameters

N¼500; %Define Matrix size
A¼zeros(1,N); %Define a row Matrix by assigning 0 to all pixels
P¼100; %Define the period of the grating
FF¼0.5; %Define fill factor

% Constructing the Grating
for q¼1:N;

if rem(q,P),P*FF; %Use remainder function ‘rem’ to construct
%the grating
A(1,q)¼1;

end
end
A¼repmat(A,N,1); %replicate the row to create a 2D grating
% Alternative code for constructing the grating

O¼ones(N,FF*P);
Z¼zeros(N, P-FF*P);
unit¼[O Z];
A¼repmat(unit,1,N/P); %replicate to create a 1D grating

%Observing the grating output in the far field
E¼fftshift(fft2(A)); %fftshift is used to re-order the terms
%in their natural order
IN¼(abs(E)/(N*N)).*(abs(E)/(N*N)); % Calculating intensity
figure (1)
colormap(gray); %colormap(gray) is used to display grayscale
%image
imagesc(A);% imagesc is used to display a high constrast image
figure (2)
colormap(gray);
imagesc(IN);
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In order to compare simulation results with experimental results, it is
important to relate pixel information to the physical dimensions. This can be
done using the grating diffraction equation and trigonometry. First, let us
assume the pixel size in the DOE matrix to be a square of side DDOE. Hence,
in the DOE plane, x¼ (x pixels)�DDOE [mm], and y¼ (y pixels)�DDOE

[mm]. Considering the relationship between continuous and discrete Fourier
transforms, at a distance z and sampling size N�N in the DOE plane,
the pixel size in the observation window during simulation is given by
DI¼ (lz/NDDOE).

The spacing between the 0th and 1st order diffraction spots seen in
Fig. 2.7(b) is Fx¼ 5 pixels, which corresponds to a physical spacing of
6.33 mm (recalling that DI¼ lz/NDDOE) for N¼ 500, z¼ 1 m, l¼ 633 nm,
and DDOE¼ 1 mm. From the sampling relation, it is possible to connect the
pixel information in the output figure [e.g., Fig. 2.7(b)] to actual dimensions.
The above result can be verified using the grating diffraction equation and
trigonometric relations.

Numerous sampling criteria can be used to obtain simulation results that
will accurately predict the experimental results.17–19 Some of the most
important requirements are presented in the following paragraph. The first
and foremost requirement for sampling is that it must satisfy the Nyquist
criterion; i.e., the sampling frequency must be at least twice that of the
maximum frequency of the signal.20 This criterion can be verified by choosing
a period that is twice the sampling period in Table 2.1. In this case, sampling is
at its limit when the 0th diffraction order is at the center of the observation
window and the 1st diffraction order is at the edge of the observation window,

Figure 2.7 Output of the code shown in Table 2.1 (a) Profile of the 1D amplitude grating
and (b) diffraction patterns at the Fourier plane. The latter image was obtained by zooming in
on the generated output figure.
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as shown in Fig. 2.8(a). Since the central peak is located at pixel number 251,
only one of the orders is visible on one side, while the other order is out of
range (by one pixel). The aliasing effects are clearly visible when the DOE
period is smaller than the sampling period.21,22 For instance, let us consider
the case where the sampling period is 10 mm but the period is 12 mm for a
circular grating (generating by running the code of Table 2.8). Instead of a
circle, the pattern in Fig. 2.8(b) is obtained.

The second requirement is zero padding of the diffraction plane. Zero
padding is the process of adding zeros around a matrix such that the
information-carrying part actually occupies a smaller (central) area of the
matrix. The use of this technique always involves some trade-offs, as must be
obvious from the fact that useful resolution in the DOE plane is being
sacrificed. For instance, in the case of Fresnel diffraction, which we will
introduce in Chapter 4, zero padding is used to provide more information at
the observation plane.23 While this can be thought of as an improvement in
resolution in the far-field pattern, one has to be careful with that statement, as
zero padding cannot improve resolution beyond what is provided at the DOE
plane.24,25 The only way to do that would be to increase the spatial size rather
than decrease it. The higher level of detail at the observation plane with zero
padding is therefore obtained at the cost of resolution at the DOE plane itself.

Let us once again consider the simulation of a 1D amplitude grating. This
time, let us zero pad the grating structure and repeat the calculation. Images
of the diffraction patterns when the diffraction grating is zero padded by 125
pixels and 200 pixels are shown in Figs. 2.9(a) and (b), respectively.
This means that for a 500� 500 pixel matrix, the grating occupies an area
corresponding to 250� 250 pixels and 100� 100 pixels, respectively, for these

Figure 2.8 (a) Output figure for diffraction by an amplitude grating with a period twice that
of the sampling period and (b) output figure for diffraction by a circular grating (Table 2.8)
when the period is 12 mm sampled at a rate of 10 mm/pixel.
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two cases. The result is that at the observation plane, an increase in resolution
of the diffraction patterns is observed, resulting in a better match between
simulation and experimental results. However, for analysis of efficiency, the
case without zero padding is convenient, as it is easy to extract the
information about the efficiency by just clicking on the spot. In Section 2.1.4
a similar analysis is shown for a circular grating.

2.1.2.2 Design of 1D phase gratings with MATLAB

A constant transmittance value (T¼ 1) is assigned to all the pixels, while the
phase values F¼ 0 and F¼p are assigned to the two binary levels of the
grating, respectively. The MATLAB code for simulation and analysis of a 1D
phase grating is similar to that of the previous MATLAB code given for 1D
amplitude grating, except for a few changes, as shown in Table 2.2.

In earlier versions of MATLAB, one may have to use ‘exp (i*pi)’. If
the MATLAB code line was ‘imagesc(A)’, then a gray image with a size
500� 500 will be displayed as T¼ 1. The ‘angle’ function is used to display
the phase values. The image of the phase grating and the zoomed-in image of
the diffraction pattern are shown in Figs. 2.10(a) and (b), respectively.

A ‘data cursor’ click on the black regions of Fig. 2.10(a) displays a
value of 0, while a click on the white regions displays a value of 3.142. In
Fig. 2.10(b), the normalized values displayed for the diffraction orders �1st,
�3rd, and �5th were 0.405, 0.045, and 0.016, respectively. It can also be noted
that the 0th diffraction order is completely cancelled, as it should be, according
to the explanation given in Case 1 of Section 2.1.1. A follow-up exercise would
be to simulate the phase grating and its diffraction pattern for a phase value of
F¼ 2.01 and verify the results shown in Fig. 2.4. In this case, the 0th and �1st

Figure 2.9 Images of the diffraction patterns when the diffraction grating is zero padded by
(a) 125 pixels and (b) 200 pixels.
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diffraction orders will display the same value: 0.29. One can repeat the
exercise for the case to equalize the intensity of the 0th diffraction order with
that of �3rd diffraction orders. Once again, the exercise may be repeated by
varying the FF of the grating.

Table 2.2 MATLAB code for design and analysis of a 1D binary phase grating.

%%1D Phase grating%%
clear; %Clear all memory
% Defining Grating Parameters

N¼500; %Define Matrix size
A¼ones(1,N); %Define a Matrix by assigning 1 to all pixels
P¼100; %Define the period of the grating
FF¼0.5; %Define fill factor

% Constructing the Grating
for q¼1:N; %Scan pixel by pixel

if rem(q,P),P*FF; %Use remainder function ‘rem’ to construct
%the grating

A(1,q)¼exp(1i*pi);
end

end
A¼repmat(A,N,1); %replicate the row to create a 2D grating

%Observing the grating output in the far-field
E¼fftshift(fft2(A)); %fftshift is used to re-order the terms
in their natural order
IN¼(abs(E)/(N*N)).*(abs(E)/(N*N)); % Calculating intensity
figure(1)
colormap(gray);
imagesc(angle(A))
figure(2)
colormap(gray);
imagesc(IN);

Figure 2.10 Output of the code shown in Table 2.2. (a) Profile of the 1D phase grating and
(b) diffraction patterns at the Fourier plane. The latter image was obtained by zooming in on
the generated output figure.
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2.1.2.3 Design of 1D amplitude and phase sinusoidal gratings with MATLAB

The above procedure and MATLAB simulation can be extended to other
interesting 1D gratings such as sinusoidal amplitude and phase gratings.26 The
maximum efficiency in the �1st order is only 6.25% for the amplitude
sinusoidal grating and 33.8% for the phase sinusoidal grating with a phase of
0.59p.2,26 For amplitude sinusoidal gratings, the module ‘Constructing the
grating’ in Table 2.1 is replaced by the code shown in the upper part of
Table 2.3. The image of the grating profile and the zoomed-in diffraction
screen are shown in Figs. 2.11(a) and (b), respectively. A simpler version of
the code is shown in the lower part of Table 2.3. Here, the for loop is not used.
In the second line, ‘A’ will be calculated for every value in the matrix ‘q’.

For phase sinusoidal gratings, the MATLAB code in Table 2.4 is modified
by replacing code lines as follows in Table 2.4. The other code modifications
in Table 2.2 for phase type must also be included.

The output generated when running the full code will be as shown in
Figs. 2.11(a) and (b), with the latter showing diffraction spots corresponding

Table 2.3 MATLAB code for design of 1D sinusoidal amplitude grating.

%%1D sinusoidal amplitude grating%%
for q¼1:N;

A(1,q)¼(1þsin(rem(q,P)*(2*pi)/P))/2;
end
A¼repmat(A,N,1);
%% Simpler code
q¼1:N;
A¼(1þsin(rem(q,P)*(2*pi)/P))/2;
A¼repmat(A,N,1);

Figure 2.11 Output of the code shown in Table 2.3 (a) Profile of the 1D sinusoidal
amplitude grating and (b) diffraction patterns at the Fourier plane. The latter image was
obtained by zooming in on the generated output figure.
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to 0th, �1st, �2nd, and �3rd diffraction orders with efficiency values of 1%,
33.9%, 10%, and 1%, respectively.

2.1.3 Design of 2D gratings

A 2D binary phase grating has phase variations in both x and y directions.
The phase profile of a 2D grating with periods of Lx and Ly along the x and y
directions, respectively, is given by

F2D ðx,yÞ ¼
(
F, 0 ≤ x ≤ Lx

2 , 0 ≤ y ≤ Ly

2 ,F2D ðxÞ ¼ F2D ðxþ LxÞ,
0, Lx

2 ≤ x ≤ Lx,
Ly

2 ≤ y ≤ Ly,F2D ðyÞ ¼ F2D ðyþ LyÞ:
(2.8)

The periodicity along the x and y directions gives rise to diffraction spots
along those directions. The relative intensity in various diffraction orders can
be calculated using Eqs. (2.4)–(2.6). The �mx diffraction orders generated by
x periodicity of the 2D binary phase grating is divided further into �my

diffraction orders due to periodicity along the y direction. The relative
intensity in (mx, my) diffraction orders can be calculated by multiplication of
the respective relative intensities in different orders along the x and y
directions. For instance, the relative intensity in (mx¼�1, my¼�1) and
(mx¼�1, my¼�3) can be calculated using Eqs. (2.9) and (2.10), respectively:

I�1,�1 ¼ jD�1j2jD�1j2 ¼
�
2
p
sin

�
F

2

��
2
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2
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2
, (2.9)

I�1,�3 ¼ jD�1j2jD�3j2 ¼
�
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p
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2
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2
3p

sin
�
F

2

��
2
: (2.10)

Hence, the maximum possible efficiency in the (mx¼�1, my¼�1) and
(mx¼�1, my¼�3) diffraction orders are only 16% and 1.8%, respectively.
The image of a 2D grating seen in many text books13 and literature27–32 is
shown in Fig. 2.12. The grating has periodicity in both the x and y directions.

In the former case (amplitude elements), the white and black portions
represent areas with transmittance ‘1’ and ‘0’, respectively. For the latter case
(phase elements), the entire area has transmittance ‘1’, but the white regions
all have a constant phase difference with respect to the black regions, which
can be considered to have phase ‘0’.

Table 2.4 MATLAB code for design of a 1D sinusoidal phase grating.

%%1D sinusoidal phase grating%%
for q¼1:N;

A(1,q)¼ exp(1i*0.59*pi*(sin(rem(q,P)*(2*pi)/P)));
end
A¼repmat(A,N,1);
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The MATLAB code for generation of a 2D amplitude grating is given in
Table 2.5.

Once again, a 2D phase grating can be designed with slight modifications
of the above MATLAB code, as described in Table 2.2. The orders of a 2D
phase grating are shown in Fig. 2.13. A closer evaluation shows that the
efficiency values obtained from the figure do not match the values estimated
using Eqs. (2.9) and (2.10). The 0th diffraction order is expected to completely
vanish when F¼p. Instead, the 0th diffraction order is stronger with 23% of
the input light. Why is this? It may seem that there is some problem with the
MATLAB code. A deeper look reveals the problem associated with 2D
gratings available in many text books. Yes, the image seen in Fig. 2.12 has
periodicity along both the x and y directions. But a closer look reveals that the

Figure 2.12 Amplitude or phase profile of a 2D grating.

Table 2.5 MATLAB code for design of a 2D binary amplitude grating.

%%2D Amplitude grating%%
clear; %Clear all memory
% Defining Grating Parameters

N¼500; %Define Matrix size
A¼zeros(N,N); %Define a Matrix by assigning 0 to all pixels
Px¼100; Py¼100; %Define the period of the grating
FFx¼0.5; FFy¼0.5; %Define fill factor

% Constructing the Grating
for p¼1:N; %Scan pixel by pixel using for loops and construct
%grating using ‘rem’

for q¼1:N;
if rem(q,Px),Px*FFx && rem(p,Py),Py*FFy;

A(p,q)¼1;
end

end
end
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grating to be evaluated with Eqs. (2.9) and (2.10) is not the grating shown in
Fig. 2.12.

Let us consider the fundamental building unit (Fig. 2.14) of the 2D grating
shown in Fig. 2.12. It can be noted that 75% of the unit has a phase value of 0,
while only 25% of the unit has a phase value of p. In that sense, the actual FF
of this grating is 0.25. The Fourier coefficients for F¼p yield the values
corresponding to Eqs. (2.4)–(2.6) only when the FF is 0.5. This can easily be
tested by designing a 1D phase grating such that the FF is not 0.5. The FF can
be modified in the MATLAB code shown in Table 2.2. Another way to
understand this effect by recalling the fact that the 1st diffraction order has
maximum efficiency only when the 0th diffraction order is completely
cancelled. This can only happen when the light emanating from the 0 phase
regions and the p phase regions are equal. Hence, the areas of the two binary
phase regions must be always equal to each other in order to extract the
maximum efficiency values. Therefore, the grating that more accurately
describes the 2D version of the 1D grating with a FF of 0.5 is known as a
checkerboard grating and is shown in Fig. 2.15.

The checkerboard grating27,28 can be generated by many methods;
MATLAB even has a function named ‘checkerboard’. MATLAB codes
for designing a checkerboard phase grating are presented Tables 2.6 and 2.7.
Once again, we present two versions. One using for and if loops, which is easy
to understand, and a second version, which is much more compact and

Figure 2.13 Diffraction pattern of the 2D phase grating with F¼p.

Figure 2.14 Fundamental building block of the 2D grating shown in Fig. 2.12.
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elegant. Using the command ‘tic-toc’, one can determine how long the
‘Constructing the grating’ module runs in both cases. The version without the
for and if loops is already an order of magnitude faster for this file size. The
module ‘Observing the grating output in the far field’ is not shown, as it is
identical to the corresponding module in Table 2.2.

Figure 2.15 Profile of a checkerboard grating.

Table 2.6 MATLAB code for design of a checkerboard grating (version 1).

% Version 1
%%Checkerboard phase grating%%
clear; %Clear all memory
% Defining Grating Parameters

N¼500; %Define Matrix size
A1¼zeros(N,N); %Define Matrices by assigning 0 to all pixels
A2¼ zeros (N,N);
A¼ zeros (N,N);
Px¼100; %Define the periods of the gratings
Py¼100;
FFx¼0.5; %Define fill factors
FFy¼0.5;

% Constructing the grating
tic
for p¼1:N;

for q¼1:N;
if rem(q,Px),Px*FFx;

A1(p,q)¼1;
end
if rem(p,Py),Py*FFy;

A2(p,q)¼1;
end

end
end
A¼exp(1i*pi*xor(A1,A2));%% XOR operation between A1 and A2
toc
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When either version of the codes from Table 2.6 and Table 2.7 is run,
along with the part that generates the output, the diffraction orders will
appear as seen in Fig. 2.16. The efficiency values displayed in the figure
window are in complete agreement with the values calculated using Eqs. (2.9)
and (2.10).

Hence, from the above discussions, care must be taken when designing
elements in MATLAB in order to obtain the correct simulation results.

Table 2.7 MATLAB code for design of a checkerboard grating (version 2).

% Version 2: Checker pattern created without loops
%%Checkerboard phase grating%%

clear; %Clear all memory
% Defining Grating Parameters
N¼500; %Define Matrix size
Px¼100; %Define the periods of the gratings
Py¼100;
FFx¼0.5; %Define fill factors
FFy¼0.5;

%Define one unit of the grating
tic
O¼ones(FFy*Py, FFx*Px)*exp(1i*pi);
Z¼ones(FFy*Py, Px-FFx*Px);
O1¼ones(FFy*Py, Px-FFx*Px)*exp(1i*pi);
Z1¼ones(FFy*Py, FFx*Px);
unit¼[Z O; O1 Z1];
s¼size(unit)

%Constructing the entire grating
A¼repmat(unit,N/s(1),N/s(2)); %replicate to create a 2D
grating
toc

Figure 2.16 Diffraction pattern of the checkerboard grating with F¼ p.

36 Chapter 2

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.1.4 Binary circular gratings

Circular gratings, also called diffractive axicons, have periodicity along the
radial direction.33,34 The far-field diffraction pattern of a circular grating is a
ring and is utilized in various applications such micro-drilling.35 Unlike the
1D phase gratings discussed earlier, which have an efficiency of 40.5% in
each of the þ1st and –1st orders, circular gratings have an efficiency of
approximately 50%.

From Fig. 2.17 it is clear that the þ1st and –1st diffraction orders are
combined in the ring diffraction pattern. However, a redistribution along the
radial direction yields an efficiency of approximately 50% instead of 81%. The
MATLAB code for design and analysis of binary phase circular gratings is
shown in Table 2.8.

The output of the code, i.e., the grating profile and diffraction orders,
are shown in Figs 2.18(a) and (b), respectively. The design of the binary
axicon is zero padded in order to improve the resolution of the diffraction
pattern.23 The design in Table 2.8, without zero padding, is also shown in
Fig. 2.18(b).

2.1.5 Fresnel zone plates

The amplitude version of the FZP was invented as early as 1871 by Lord
Rayleigh.36 The phase version of the FZP is one of the most useful inventions
and is present in many different current applications.37–39 The basic design of
the FZP has been discussed in numerous books.2,40 The optics configuration
for focusing a parallel beam of light using a 1D FZP is shown in Fig. 2.19.

Light diffracted from consecutive zones of the FZP are out of phase by p,
which corresponds to a path difference of l/2. Hence, in the amplitude FZP,
the zones with odd zone numbers are blocked to remove the light that is out of

Figure 2.17 Diffraction of light from a binary circular grating.
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phase with respect to the light diffracted by the zones with even zone numbers.
Such an FZP has only 10% efficiency. This disadvantage can be overcome by
making a phase element, with the addition of phase p to either the even or odd
zones using a refractive material of calculated thickness and refractive index
(such as photo resist or electron beam resist). Such binary phase FZPs have a
relatively higher efficiency of 40%.

The path difference equation for the design of a 1D FZP is given in by

Table 2.8 MATLAB code for design of a diffractive axicon.

%%Diffractive axicon%%
clear; %Clear all memory
% Defining Grating Parameters

N¼500; %Define Matrix sizes
A¼ones(N,N); %Define Matrices by assigning 1 to all pixels
r¼ones(N,N);
P¼50;%Define the period of the grating
FFr¼0.5;%Define fill factor for radial periodicity

% Constructing the grating
x¼1:N;
y¼1:N;
del¼5;
[X,Y]¼meshgrid(x*del,y*del);
r¼sqrt((X-N/2*del).*(X-N/2*del)þ(Y-N/2*del).*(Y-N/
2*del));
A(rem(r,P),P/2)¼exp(1i*pi);
A(r.N/2-2)¼0;

%Observing the grating output in the far-field
%See appendix for function definition

Norm_outputP(A,N)

Figure 2.18 (a) Image of the circular grating and (b) the ring diffraction patterns with and
without zero padding.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ x2n

q
� f ¼ nl: (2.11)

Solving Eq. (2.11) and rearranging the terms, we obtain the width of the
grating lines xn as

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2

4
þ nf l

r
: (2.12)

The first term inside the square root is negligible compared to the second
term. Hence, the approximate value of the widths of the grating lines is
given by

xn ≅
ffiffiffiffiffiffiffiffi
nf l

p
: (2.13)

The 1D FZP has a line focus similar to that of a cylindrical lens.29 The
MATLAB code for simulation and analysis of a 1D phase FZP is shown in
Table 2.9. The image of the 1D FZP and its diffraction pattern are shown in
Figs. 2.20(a) and (b), respectively. The same MATLAB code with some
modifications described in the previous cases can be used for the design of the
amplitude version of the grating. A 2D FZP can be constructed by designing
two FZPs orthogonal to each other and combining them using the XOR
operation discussed in Section 2.1.3.

A circular FZP can be designed using a similar procedure. In that case, the
radius rn of each zone will be defined instead of the distance away from the
axis in one direction:

rn ≅
ffiffiffiffiffiffiffiffi
nf l

p
: (2.14)

The MATLAB code for a circular FZP can be designed by replacing the
x or y coordinate in the nested-for-loop section using radial coordinates.
The circular FZP design part using nested-for-loops is shown in Table 2.10.
The M value is modified from 50 to 32 in order to fit the circular FZP to the
matrix size.

Figure 2.19 Optics configuration for focusing light using a 1D FZP.
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The image of the generated circular FZP is shown in Fig. 2.21. In the case
of a circular FZP, the first diffraction order (either þ1st or –1st) is the center
spot, while the other diffraction orders (�3rd, �5th) with larger diffraction
angles appear as circles around the central diffraction order.

The MATLAB code can be modified to design FZPs with other
geometries such as elliptical FZPs, 2D FZPs, etc., or even elements with
sinusoidal phase variations.

Table 2.9 MATLAB code for design of a 1D binary phase FZP.

%%1-d FZP%%
clear; %Clear all memory
%Defining FZP parameters

N¼500; %Define Matrix sizes
M¼50;%Define the number of grating lines
A¼ones(N,N); %Define Matrices by assigning 1 to all pixels
x¼zeros(M,M);
f¼3000;%Define the focal length of FZP in micrometers
lambda¼0.633;%Define wavelength in micrometers

% Constructing the FZP
for n¼1:M;

x(n)¼sqrt(n*f*lambda);
end
for n¼1:2:M;

for q¼1:N;
if abs(q-N/2). x(n) && abs(q-N/2), x(nþ1);
A(:,q)¼exp(1i*pi);
end

end
end

Figure 2.20 (a) Image of the 1D FZP and (b) its diffraction pattern.
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2.2 Conclusions

In this chapter, the designs of basic DOEs such as different types of gratings
and FZPs have been presented. In each case, the fundamental concepts are
introduced in such a way that a novice programmer can begin making his or
her own DOE designs almost immediately. The MATLAB codes are
discussed in detail so that each line of code makes sense. After completing
the chapter, the reader is encouraged to design other complex periodic
structures as well.

Table 2.10 MATLAB code for design of a circular binary phase FZP.

%%Circular FZP%%
% Constructing the FZP
for n¼1:M; %Calculate the width of the grating lines

r1(n)¼sqrt(n*f*lambda);
end
for n¼1:2:M;

for p¼1:N;
for q¼1:N;

r(p,q)¼sqrt((p-N/2)*(p-N/2)þ(q-N/2)*(q-N/2));
if r(p,q). r1(n) && r(p,q), r1(nþ1);
A(p,q)¼exp(1i*pi);

end
end

end
end

Figure 2.21 Image of the circular FZP with a focal length of 3 mm generated using the
MATLAB code in Table 2.10.
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2.3 Exercises

E.2.1 Design a 1D phase grating to generate diffraction spots such that the
relative intensity of 1st diffraction order is only 50% that of the 0th diffraction
order. Verify the result by estimating the efficiency values.

E.2.2 Design a 2D grating to generate 3� 3 diffraction spots of equal
intensity. Verify the result with MATLAB.

E.2.3 Design a triangular grating array with a period of 100 mm along both
the x and y directions and calculate its far-field diffraction pattern using
MATLAB.

E.2.4 Design a 2D phase FZP with a focal length of 3000 mm along the
x direction and 6000 mm along the y direction.

E.2.5 Design an elliptical FZP with a 1.5 ratio of maximum to minimum focal
length values.41,42

E.2.6Design an amplitude axicon array in which the diameter of each element
is 100 mm and the period is 10 mm.43,44
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Chapter 3

Design and Analysis of
Advanced Diffractive Optical
Elements

In Chapter 2, we discussed how to design some basic DOEs, such as binary
phase gratings, amplitude gratings, and FZPs, as well as how to simulate their
far-field diffraction patterns. In this chapter, the discussion has been extended
to multilevel and grayscale DOEs. In the previous chapter, designing DOEs
for generation of a few interesting phase profiles such as 2� 2, 3� 3 spots
with desired intensity ratios were presented. In this chapter, we present the
procedure for designing DOEs that generate any desired intensity profile using
the well-known iterative Fourier transform algorithm (IFTA).

3.1 Design of Multilevel and Grayscale DOEs

In Chapter 2, the design and analysis of both binary amplitude and phase
DOEs were presented. Due to the poor efficiency of amplitude DOEs, they
are not used in commercial systems. DOEs are, however, very useful in
educational applications to demonstrate the effects of diffraction. They can
easily be fabricated on transparency sheets using inkjet printers, and their
diffraction patterns can be studied using low-cost diode lasers. Although
binary phase elements have higher efficiency than amplitude ones, the
efficiency is still not adequate. Except for the binary axicon, binary phase
elements can have a maximum efficiency of only 40%. In order to achieve high
efficiencies (.90%) on par with ROEs, multilevel or grayscale versions of
DOEs are necessary. Unfortunately, such elements are rather difficult to
fabricate.

3.1.1 Design procedure for multilevel and grayscale gratings

In Chapter 1, the resemblances between the behavior of a ROE and DOE
were presented. Grayscale DOEs are nothing but miniature versions of
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equivalent ROEs as presented in Chapter 1. Multilevel DOEs are designed to
generate a shape as close as possible to that of an equivalent ROE to achieve
high efficiency. Binary phase gratings are symmetric, resulting in equal
intensity values for both �m orders. In the case of multilevel and blazed
gratings, the grating’s phase profile is asymmetric, directing most of the light
to either the þ1 or the –1 diffraction order.1–3 The efficiency of light in the
first diffraction order depends on the number of steps used to construct the
phase profile. The efficiency of the mth diffraction order from a grating with g
levels is given by3

hg
m ¼

�������
sin

�
mp
g

�
mp
g

�������

2

: (3.1)

Hence, from Eq. (3.1), the efficiency of phase gratings with g¼ 2, 4, 8, 16, 32,
etc., levels are 41%, 81%, 95%, 99%, and .99%, respectively.

However, the height of each phase level is crucial in achieving the
calculated efficiency values. As was done in the binary case, designing the
multilevel structure for maximum efficiency will be done by cancelling the 0th

diffraction order. Hence, it is necessary to carefully choose the parameters
relating to the areas of different phase values in the element.

3.1.1.1 Design of a 4-level 1D phase grating with MATLAB

In the case of a 4-level 1D phase grating, if the phase levels are selected
correctly, the maximum efficiency is 81%. The phase levels are selected as
shown in Fig. 3.1(a), and the corresponding resist thickness values for l¼
633 nm (nr¼ 1.5) are shown in Fig. 3.1(b). These phase levels were selected
with the assumptions that the areas of each phase level are equal, and there is
uniform illumination such that they follow (2p/g)q, where q is the phase level
number.4,5

Figure 3.1 (a) Phase values of the 4-level 1D phase grating and (b) their corresponding
resist thickness values for l¼ 633 nm.
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The phase values 2p (or 0) and p/2 have opposite orientations with respect
to the phase values p and 3p/2, respectively. Hence, light emanating at these
phase levels cancel each other at the 0th diffraction order. Let us verify the
efficiency values obtained from Eq. (3.1) with MATLAB simulation. The
MATLAB code for design of a 4-level phase grating is shown in Table 3.1.

The profile of the 1D 4-level phase grating and the diffraction spots can be
displayed using the standard MATLAB codes presented in Chapter 2. The
image of the phase variation of the 1D 4-level phase grating and the zoomed-
in figure of the diffraction spots are shown in Figs. 3.2(a) and (b), respectively.
By clicking on the diffraction spot using the data cursor of the MATLAB
window, the efficiency value can be read as 81%, matching the value
calculated using Eq. (3.1). Varying the period of the grating such that the
areas of the four levels are not equal will give a lower efficiency value
depending upon the discrepancy. In multilevel structures it might be useful to

Figure 3.2 (a) Phase profile of a 4-level 1D phase grating generated by the output function.
(b) Diffraction spots in the zoomed image.

Table 3.1 MATLAB code for design and analysis of a 4-level phase grating.

%% 4-level 1D grating
clear %Clear all memory
%% Defining grating parameters

N¼500; % Matrix size
P¼100; % Grating period
A1¼ones(P,N); % Size of fundamental building block of grating
g¼4; % Number of phase levels
delphase¼ 2*pi/g; %Phase step size

% Constructing one n-level section of the phase grating
sub ¼round(P/g)-1;
for count¼ 1:g;

A1((count -1)*subþ1:count*sub,:)¼exp(1i*(count-1)*delphase);
end
%Constructing the full grating

A2¼repmat(A1,N/P,1);
%Observation of the diffraction pattern
%See appendix for function definition

Norm_outputP(A2, N)
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plot the phase variation using ‘plot(angle(A(:,M/2)))’. The plot of the
phase profile along the y direction is shown in Fig. 3.3. The phase value above
p radians will be converted into the equivalent negative phase in MATLAB.
The selected phase value is 1.5p, but the value displayed in MATLAB is –p/2,
which is equivalent to 1.5p.

3.1.1.2 Design of an 8-level 1D phase grating with MATLAB

The maximum efficiency possible with an 8-level 1D phase grating is 95%.
The phase levels were selected with the basic assumption that the areas of the
phase levels are equal. The phase levels are selected in steps of 2p/g, where
g¼ 8, as shown in Fig. 3.4 and the corresponding resist thickness values for
l¼ 633 nm (nr¼ 1.5) are given in boxes. The MATLAB code for the design of
an 8-level 1D phase grating will be identical to that given in Table 3.1, except
that the value of g will now be 8 instead of 4.

The code can be easily adapted to any 1D phase grating with a higher
number of phase levels. The phase profile of the 8-level 1D phase grating and
the zoomed-in figure of the diffraction spots are shown in Figs. 3.5(a) and (b),
respectively. The diffraction spot shows an efficiency of 95%, matching the
calculated value. The MATLAB code and analysis in Table 3.1 can be
extended for simulation and analysis of 1D gratings with higher numbers of
phase levels, such as g¼ 16, 32, 64, etc.

Figure 3.3 Phase profile of a 4-level phase grating plotted across the y direction.

Figure 3.4 Phase values and resist thickness values of an 8-level 1D phase grating.

48 Chapter 3

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3.1.1.3 Design of a blazed 1D phase grating with MATLAB

Blazed 1D phase gratings have a high efficiency of 100%. Such gratings have a
linear phase variation from 0 to 2p across the period of the grating. A blazed
grating can be considered to be a multilevel grating with large number of
phase steps. For example, a grating with a period of 100 mm and a pixel size of
1 mm would have 100 phase levels. The MATLAB code for design of a blazed
grating is shown in Table 3.2. The profile of the grating is plotted in Fig. 3.6.
The blazed grating is equivalent to a Fresnel prism and, hence, has a high
efficiency, which can be verified when running the code and checking the
efficiency.

Figure 3.5 (a) Plot of an 8-level 1D phase grating and (b) the zoomed-in diffraction pattern.

Table 3.2 MATLAB code for design of a blazed phase grating.

%%Blazed 1D grating
clear; %Clear all memory
% Defining grating parameters

N¼500; % Matrix size
P¼100; % Grating period
A1¼ones(P,N); % Size of fundamental building block of grating

% Constructing the fundamental block of the blazed grating
for p¼1:P;

A1(p,:)¼exp(1i*(p/P)*2*pi);
end
%Constructing the full grating

A2¼repmat(A1,N/P,1);

Figure 3.6 Plot of phase profile of a blazed grating.
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3.1.1.4 Design of an 8-level axicon with MATLAB

In the discussion in Chapter 2 on binary axicons,6,7 it was observed that the
efficiency of a binary axicon is approximately 50%, which is relatively high to
start with. In order to improve the efficiency, we therefore begin with an
8-level axicon. The expected efficiency of the 8-level axicon is 95%. The
MATLAB code for the design of an 8-level axicon is shown in Table 3.3. The
codes were designed to be easily extendable to other higher numbers of phase
levels. The phase profile of the 8-level axicon and the zoomed-in diffraction
pattern are shown in Figs. 3.7(a) and (b), respectively. It can be noted that the
0th diffraction order is not cancelled completely due to the unequal areas of
different phase levels. Summation of the pixels around the ring pattern shows
an efficiency of 93%, which is close to the calculated value of 95%.

3.1.1.5 Design of a blazed axicon with MATLAB

Blazed axicons are designed with phase values varying between 0 and 2p. The
expected efficiency is 100%. The MATLAB code for design of a blazed axicon

Table 3.3 MATLAB code for design of a 8-level diffractive axicon.

%% 8-level axicon
clear; %Clear all memory
%Defining axicon parameters

N¼480; % Matrix size
A¼zeros(N,N);
P¼40; % Grating period
g¼8; %Define the number of phase levels in each period
w¼P/g; %Define the width of each phase levels
delphase¼2*pi/g;

%Constructing the 8-level axicon
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));

for n¼1:g;
A(rem(rþ(n-2)*w,P),P/g)¼exp(1i*(w-(n))*delphase);

end
A(r.N/2)¼0;

Figure 3.7 (a) Phase profile of the 8-level axicon and (b) its diffraction pattern.
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is given in Table 3.4. The phase profile of the blazed grating is shown in
Fig. 3.8. The diffraction pattern is a ring pattern, and the efficiency was
measured to be 98%, which is close to the expected 100%. The phase profile in
the figure may seem incorrect, but, as discussed earlier, in MATLAB, phase
values above p will be converted to a negative phase, resulting in a phase
profile range [–p, p].

3.1.2 Design procedure for multilevel and grayscale FZPs

Fresnel zone plates are used for focusing light at a point. In Chapter 2, the
design and analysis of a binary FZP was presented. The efficiency of a binary
FZP is limited to only 40%; hence, for any real application, multilevel or
grayscale versions of the FZP are preferred. The design of a grayscale FZP8–10

is relatively simple, as the phase profile can be directly generated using the
following equation [which is similar to Eq. (2.11)]:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ r2

q
� f ¼ nl, (3.2)

where f is the focal length of the FZP, and l is the wavelength. The phase
profile is given by

Table 3.4 MATLAB code for design of a blazed axicon.

%%Blazed axicon
clear;%Clear all memory
%Define axicon parameters

N¼500; % Matrix size
P¼100; % Grating period
A¼ones(N,N); % Set up matrix, assigning 1’s to all pixels

%Constructing the blazed axicon
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A¼exp(1i*(rem(r,P))*(2*pi)/P);
A(r.N/2)¼0;

Figure 3.8 Plot of phase profile of a blazed axicon.
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FFZPðrÞ ¼
�
2p
l

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ r2

q
� f

�	
2p
: (3.3)

The modulo-2p operation converts the continuous phase profile of FZP
into discrete zones whose phase variation lies between [0, 2p]. The plot of the
continuous phase profile and the FZP phase profile are shown in Fig. 3.9.

The design and fabrication of a multilevel FZP11,12 is challenging
compared to the gratings described earlier because the periods of the FZP
gradually decrease as one moves away from the center. This results in more
closely spaced phase levels at the outermost parts of the FZP. Even within a
zone of a FZP, the widths of the phase levels decrease away from the center.

3.1.2.1 MATLAB simulation of a blazed FZP

The MATLAB code for the simulation of a blazed FZP is shown in Table 3.5.
The modulo-2p phase profile of the FZP is designed using Eq. (3.3).

Figure 3.9 Phase profile of a FZP (a) before (dashed line) and (b) after discretizing into
modulo-2p zones (solid line).

Table 3.5 MATLAB code for design of a blazed FZP.

%% Blazed FZP
clear; %Clear all memory
% Defining FZP parameters

N¼500; % Matrix size
f¼10000; % focal length in microns
lambda¼0.632; % Wavelength in microns

% Constructing the blazed FZP
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A¼exp(1i*(f-sqrt(f*fþr.*r))*(2*pi)/(0.632));
A(r.N/2)¼0;
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The image of the phase profile of the FZP is shown in Fig. 3.10. The code can
be modified for an elliptical FZP, as presented in Chapter 2, by stretching
either the x or the y coordinate with respect to the other.

3.1.2.2 MATLAB simulation of a four-level FZP

A 4-level FZP can be designed for the phase values 0, p/2, p, and 3p/2, as was
done for the 1D phase grating. But due to the circular nature of this element,
the area of each segment varies. However, the phase profile of the FZP is not
linear like a grating’s phase profile, resulting in unequal widths of the different
phase levels. The MATLAB code for design of a 4-level FZP is given in
Table 3.6. The phase profiles of a 4-level FZP and a blazed FZP are shown in
Fig. 3.11. Once again, the profiles seem different because the range of phase
values in MATLAB are brought within [–p, p]. This procedure may be
extended to the design and simulation of 8- and 16-level FZPs.

3.1.3 Design procedure for multilevel and grayscale spiral phase
plates

Spiral phase plates (SPPs) are used for the generation of beams with helical
wavefronts.13,14 The phase profile of a SPP varies along the azimuthal
direction. When a plane wavefront is incident on a SPP, it delivers a spiral
phase lag to the wavefront, resulting in a helical wavefront and a donut
intensity profile.15 Helical wavefronts can be generated using different types of
DOEs.16–19

Due to their azimuthal variation, SPPs are relatively difficult to fabricate
but can provide a high efficiency close to 100%. SPPs are characterized by a
term called the topological charge of the element, which is usually denoted by

Figure 3.10 Image of the phase profile of a blazed FZP generated using MATLAB.
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L and represents the number of spiral cycles the beam makes within a distance
of the wavelength of light l. The charge L equals 1, 2, 3, . . . p, depending on
whether the beam’s phase varies by 2p, 4p, 6p, . . . 2pp along the distance l.
The diameter of the donut beam increases with increasing topological charge
value.20,21 Recently, SPPs with fractional topological charges have attracted
attention due to their generated asymmetric donut patterns, which are useful
for optical trapping applications.22–24

When a plane wave is incident on the SPP, it generates a helical beam with
a number of azimuthal rotations matching L. The fabrication of a grayscale

Table 3.6 MATLAB code for design of a 4-level FZP.

%% 4-level FZP
clear;%Clear all memory
%Define FZP parameters

N¼500; % Matrix size
f¼10000; % Focal length in microns
lambda¼0.632;% Wavelength in microns
g¼4; % Number of phase levels
step¼(2*pi)/g;

% Set up matrices, assigning 0’s or 1’s to all pixels
C¼ones(N,N);
% Constructing the FZP

x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A¼(f-sqrt(f*fþr.*r))*(2*pi)/(0.632);
B¼rem(A,2*pi);
B(r.N/2)¼0;

for p¼1:N;%Construct the n-level FZP
for q¼1:N;
for n1¼1:g;

if B(p,q). (-2*piþ(n1-1)*step) && B(p,q) ,¼ (-3*pi/2þ
(n1-1)*step);
C(p,q)¼exp(1i*(-2*piþ(n1-1)*pi/2));

end
end

end
end

Figure 3.11 Phase profile of (a) a blazed FZP (dashed line) and its (b) 4-level
approximation (solid line).
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SPP is a challenge; hence, in most cases, only multilevel SPPs have been
designed and fabricated.20,21 The design of such elements is similar to that of
gratings except that the multiple levels are made along the azimuthal
direction. The phase profile of a SPP with topological charge L is given by

FSPPðuÞ ¼ ½Lu�2p: (3.4)

The phase step size of a multilevel SPP with g phase levels is given by

DFSPPðuÞ ¼
�
2p
g

�
L: (3.5)

The phase profile of a multilevel SPP can be expressed as

FSPPðuÞ ¼ DF floor
�
g
2p

u

	
: (3.6)

3.1.3.1 MATLAB simulation of a grayscale SPP

The MATLAB code for the design of a grayscale SPP is shown in Table 3.7.
The SPP is designed with a radius of 30 pixels in this case to magnify the
diffraction pattern. The images of the phase profile of SPPs with L¼ 1 are
shown in Fig. 3.12.

The SPP has been designed for L¼ 1, 2, 3, and 4. The donut patterns
generated by a SPP with L¼ 1, 2, 3, and 4 are shown in Figs. 3.13(a)–(d),
respectively. It can clearly be seen that the diameter of the donut beam
increases with the increasing L value.

The MATLAB code can be easily extended to other higher phase levels as
well as for fractional topological charges23,24 by modifying the value of L.

Table 3.7 MATLAB code for the design of a grayscale SPP.

%Grayscale SPP
clear; %Clear all memory
%Defining SPP parameters

N¼500; % Matrix size
L¼1;% Topological charge number

%Constructing the SPP
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
theta¼atan2((X-N/2),(Y-N/2));
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A1¼exp(1i*L*(theta));
A1(r.30)¼0;

%Observation of the far-field pattern
E¼fftshift(fft2(A1)); %Calculate the Fourier transform and
rearrange terms
I¼abs(E).*abs(E);
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Figure 3.12 Image of the phase profile of a grayscale SPP with L¼ 1.

Figure 3.13 Image of the donut patterns generated for (a) L¼ 1, (b) L¼ 2, (c) L¼ 3, and
(d) L¼ 4.
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The images of the asymmetric donut beams generated for L¼ 0.25, 0.5, 0.75,
1, 1.25, 1.5, 1.75 and 2 are shown in Fig. 3.14.

3.1.3.2 MATLAB simulation of a multilevel SPP

The phase profile of a multilevel SPP can be described by Eq. (3.6). The
MATLAB code for design of a 4-level SPP is given in Table 3.8. The images

Figure 3.14 Diffraction patterns of spiral phase plates with topological charges L¼ 0.25 to
2 in steps of 0.25.

Table 3.8 MATLAB code for design of a multilevel SPP.

%Multilevel SPP
clear;%Clear all memory
%Define SPP parameters

N¼500; % Matrix size
L¼1; % Topological charge number
g¼5; % Number of phase levels
delphase¼(L*2*pi)/g; % Phase increment

% Constructing the SPP
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
theta¼atan2((X-N/2),(Y-N/2));
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A1¼L*(theta)þL*pi;
A1(r.30)¼0;

for n¼1:g;
for p¼1:N;
for q¼1:N;

if A1(p,q) . (delphase*(n-1)) && A1(p,q) ,¼ (delphase*n)
A1(p,q)¼ exp(1i*delphase*(n-1));

end
end

end
end

57Design and Analysis of Advanced Diffractive Optical Elements

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



of the diffraction patterns corresponding to charge L¼ 1 and phase levels
g¼ 2, 3, 4, and 5 are shown in Figs. 3.15(a)–(d), respectively.25 The number of
phase levels can be varied by changing the variable g in the code.

3.1.4 Design procedure for a gradient axilens

An axilens, as the name suggests, is a DOE that is intermediate between a lens
and an axicon. The design of a holographic axilens was first reported in 1991
by Davidson et al.26 The axilens was found to possess interesting focusing
properties27 that are useful for different applications.28,29 In the case of an
axicon, the focal depth extends from the location of the axicon to a particular
distance. It is difficult to make use of the section of the focal region in the
vicinity of the axicon in many applications, including imaging. In the case of a
lens, the focal depth is short. In the case of an axilens, the focal depth and its
location can be precisely engineered, making it superior to both a lens and an
axicon in many applications.

The optics configuration for focusing light using an axilens in the finite
conjugate mode is shown in Fig. 3.16. Unlike a FZP, which has a single focal
length associated with it, an axilens has a radially dependent focal length,
given by

f ðrÞ ¼ f 0 þ
�
Df
R

�
r, (3.7)

where f0 is the focal length, Δf is the focal depth, and R is the radius of the
element. The phase profile of an axilens can be then given by

Figure 3.15 Diffraction patterns of spiral phase plates with topological charge L¼ 1 and
phase levels (a) g¼ 2, (b) g¼ 3, (c) g¼ 4, and (d) g¼ 5.

Figure 3.16 Optics configuration for focusing a plane wavefront using an axilens.
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FAxilensðrÞ ¼


2p
l

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðrÞ2 þ r2

q
� f ðrÞ

	�
2p
: (3.8)

The MATLAB code for design of a blazed axilens is given in Table 3.9.
The element was designed with f0¼ 5 mm, Df¼ 1 mm, and radius R¼ 1 mm.
The image and phase profile of an axilens are shown in Figs. 3.17(a) and (b),
respectively.

3.2 Design of DOEs using Algorithms

Chapter 2 and the first section of Chapter 3 introduced methods and codes
that can be used to design DOEs that generate some specific intensity patterns
and required efficiency values. However, these methods cannot be applied to
the design of DOEs that generate any arbitrary intensity profile at the Fourier

Table 3.9 MATLAB code for design of a blazed axilens.

%% Blazed axilens
clear; % Clear all memory
% Define axilens parameters
% All lengths in microns

N¼500; % Matrix size
f0¼5000;% focal length
delf¼1000;% focal depth
R¼1000;% radius of the element
lambda¼0.632;% wavelength

%Constructing the axilens
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
f¼f0þ(delf/R)*r; % Focal length equation
A¼(f-sqrt(f.*fþr.*r))*(2*pi)/(0.632);
B¼exp(1i*rem(A,2*pi));
B(r.N/2)¼0;

Figure 3.17 (a) Image and (b) plot of the phase profile of an axilens.
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plane. In order to do so, algorithms such as the Gerchberg–Saxton algorithm,
also known as the inverse Fourier transform algorithm,30 are used. In this
section, the IFTA is presented with MATLAB codes. Other algorithms such
as the optimal rotation angle method,31 the adaptive weight iterative
algorithm,32 etc., can also be used for the design of arbitrary-intensity DOEs.

3.2.1 Design procedure of DOEs using the IFTA

The idea of the IFTA and similar algorithms is to use known input
information at the source plane and calculate the (grayscale) phase of a DOE
that will generate a desired intensity pattern at the target plane. The algorithm
alternates between the source and target planes using the Fourier and inverse
Fourier transform operations. This process is iteratively repeated until the
target image is met, as quantified by some predefined metric. The inverse
Fourier transform of the required intensity profile will result in amplitude and
phase profiles that do not match the actual input at the source plane.
Therefore, as the algorithm progresses, the amplitude profile generated by the
Fourier and inverse Fourier transform operations will be replaced by the input
source and desired target amplitudes at the respective planes.

A flow chart of the algorithm is given in Fig. 3.18. A random phase profile
is generated at the source plane, while the amplitude at the same plane is
considered to be either Gaussian or uniform. This phase–amplitude profile is
Fourier transformed, and the corresponding phase values are extracted. The
extracted phase values are assigned to the corresponding pixel locations of the
necessary target intensity profile, and its inverse Fourier transform is
calculated. The resulting phase profile replaces the phase profile at the source
plane. This is one cycle or iteration. The accuracy of the phase profile

Figure 3.18 Flow chart of the IFTA.
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calculation increases with the number of iterations until it reaches a constant
value. The number of iterations may be reduced by proper choice of the initial
phase profile. However, an initial constant phase profile will fail the algorithm
because the intensity patterns at the source and target planes are
centrosymmetric.

For demonstration purposes, the image of the logo of our institution,
Indian Institute of Technology Madras, is selected and inverted to have a
black background. The image is then resized to fit into the defined matrix.
This is followed by a normalization step that sets the amplitude values
between 0 and 1. Then the procedure described above is followed in steps. The
metric chosen is the difference between the normalized intensity profile
generated by the calculated phase profile and the desired intensity profile
required at the target plane. The MATLAB code for the IFTA is shown in
Table 3.10. The images of the logo generated using the IFTA after 10

Table 3.10 MATLAB code for implementing the IFTA.

%% Iterative Fourier Transform Algorithm%
clear; % Clear all memory
% Loading the target image

N¼500;% Matrix size
target¼imread(‘File location’); % Read image from file
m¼size(target,1); % Size of the image
scale¼N/m; % Estimate the necessary scaling factor
target¼imresize(target,scale); % Resize image to the matrix
%size
target¼double(target); % Convert symbolic object to a numeric
%object
target¼target/(max(max(target))); % Normalize matrix

% Defining DOE phase
DOE¼2*pi*rand(N,N); % Generate a N x N matrix of random phase
%between 0 and 2p
s¼5;

% IFTA algorithm
for t¼1:s; %Iterate to calculate the phase value

DOEphase¼exp(1i*DOE);
% Forward iteration

iterf¼fft2(DOEphase);
intf¼abs(iterf);
angf¼angle(iterf);
A¼target.*exp(1i*angf);

% Backward iteration
iterb¼ifft2(A);
angb¼angle(iterb);
DOE¼angb;
error¼target-intf/max(max(intf)); %Calculate error
E¼sum(sum(abs(error)))/(N*N);
if E,0.05;
iteration¼t;
break

end
end
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iterations before and after binarization of the phase profile are shown in
Figs. 3.19(a) and (b), respectively. The loop termination can be specified by
the number of iterations or by the average error between the ideal and iterated
images.

In Fig. 3.19(b), twin images of the logo are formed as the DOE has
centrosymmetric support.33 The twin image is flipped along both the
horizontal and vertical direction, as expected. The lateral shift is not seen
because the object is aligned with the optical axis. If an object that is not
collinear with the optical axis is used, the twin image will occur laterally
shifted along the horizontal and vertical directions. The twin image can be
removed by approximating the grayscale DOE with a 4-level DOE or with a
higher number of phase levels. The problem of twin images arises in many
different fields. Research is still ongoing in this area, and several ways of
removing one of the twin images have been reported.34–37 Higher diffraction
orders can be seen by zero padding the image and calculating the phase using
the algorithm. However, the efficiency of these higher orders is poor (only
4.5% distributed over the entire image).38

Although the IFTA and similar algorithms are very powerful (they can be
used to create DOES that generate almost any intensity pattern), their main
problem is that there is no specific phase relationship from one pixel to
another. This leads to scattering and, hence, an overall decrease in efficiency
and contrast of the final image.

Alternate techniques that avoid these problems can be used at least for
generation of specific intensity profiles. One such technique is described in the
next section.

3.3 Design Procedure of Beam-Shaping DOEs using
a Simplified Mesh Technique

In order to avoid the scattering caused by the random phase variation across
the element, the calculated phase distribution should be continuous.39 Such a
distribution can be achieved by the finite element method. Eikonal equations

Figure 3.19 Images of the logo generated from (a) a grayscale DOE and (b) a binary DOE.
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are used to connect the input beam with the desired output beam. The
fundamental postulate of geometric optics is the Eikonal equation:40

ð∇SÞ2 ¼ n2, (3.9)

where n is the refractive index. The surfaces S(r)¼ constant are called the
geometrical wavefronts. Geometrical light rays are perpendicular to the
wavefronts and indicate the direction of flow of energy. Initially, the areas
over the incident and output beams are divided into a mesh, i.e., a number of
zones of equal power. The input and output mesh nodes are connected using
Eikonal equations. The phase distribution required to produce the desired
output is obtained by solving these equations.41

The basic idea of this technique is that the energy in each zone in the input
plane is redirected to a similarly located zone in the output plane. Since the
equations are solved simultaneously for the entire DOE, the obtained phase is
continuous.

3.3.1 Mesh generation method

The complexity of the mesh generation technique depends greatly on the
intensity distribution over which the mesh is being created. In the case of a
circular symmetric Gaussian beam, mesh generation is fairly simple, as the
inherent symmetry of the beam is used to generate it. Initially, the power over
the entire beam is calculated as

PTOT ¼ p
w2
0

2
I0, (3.10)

where w0 is the beam waist of the Gaussian beam, and I0 is the on-axis
intensity. Therefore, the power in a circle of radius r is

Pr ¼
�
1� exp

�
�2

r2

w2
0

�	
PTOT : (3.11)

The beam is then split into a number of rings of equal power. If there are
n1 (¼ I/2) rings, the power in each ring will be Pr/n1. Normalizing the power
such that PTOT¼ 1, the radius of the nth ring is given by

rn ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ln
�

1
1� nPr∕n1

�s
, (3.12)

where, n varies from 1 to n1. Figure 3.20 shows a Gaussian beam with annular
rings of equal power. [This is the output curve obtained as ‘figure(2)’ in
the MATLAB code given in Table 3.11.] These rings will eventually form part
of the mesh and, hence, are plotted only from the starting node to the final
node, which is the reason for the apparent gap near 0 on the y axis.
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Figure 3.20 Creating the input mesh. Step One: annular rings (reprinted from Ref. 41).

Table 3.11 Creating the input mesh for the Eikonal technique when the incident light is
Gaussian.

%program creates a mesh of zones of equal energy for a Gaussian
%beam
%mesh is rotated away from axes to avoid zeros

clear all
close all
% all units in mm
global I J R xh yh sigma
sigma¼0.8; % Gaussian spot size
R¼1; % radius of beam
%mesh co-ordinates
I¼20; %related to rows and therefore also to y coords
J¼20; %related to columns and therefore also to x coords
N¼(I*J); %total number of zones
TP¼pi*sigma*sigma/2; %total power
P¼(1-exp(-2*R*R/(sigma*sigma)))*TP; %total power in radius R
rings¼I/2; %no of rings
Pring¼P/rings; %Power per ring

%calculating radii of rings
n¼1:rings;
r¼sigma*sqrt(0.5*log(1./(1-n.*Pring)));

%%add very small value for first ring (close to zero)
rad(1)¼1e-10;

i¼1:n(end);
rad(iþ1)¼r(i);
r¼rad;

% number of zones in a ring-decided by angles chosen
angle_step¼pi/I;
angle_shift¼pi/100;

(Continued )
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In order to obtain areas of equal power, the annular rings are further
divided into zones. These zones can easily be made to have equal power by
drawing radial lines from the origin. In these few steps, the Gaussian circle has
now been divided into a number of zones of unequal area but equal power.
Table 3.11 gives the code that carries out this operation for a Gaussian beam.
Figure 3.21 shows a Gaussian beam that has been divided using this technique.

The black points in Fig. 3.21 indicate the corners or nodes of each zone.
In order to program the Eikonal technique correctly, certain factors must be
taken into account. Firstly, no zeros should occur in the x and y coordinates,

Table 3.11. Continued

count1¼0;
for theta¼pi-angle_shift:-angle_step:-angle_shift,

count1¼count1þ1;
if theta¼¼(pi-angle_shift)
xh¼[r.*cos(theta)];
yh¼[r.*sin(theta)];

else
xh¼[xh;r.*cos(theta)];
yh¼[yh;r.*sin(theta)];
end

end
xh¼flipud(xh’);
yh¼flipud(yh’);
theta¼(pi-angle_shift)þangle_step;
for count2¼1:count1,

if theta¼¼((pi-angle_shift)þangle_step)
xh1¼[r.*cos(theta)];
yh1¼[r.*sin(theta)];

else
xh1¼[xh1;r.*cos(theta)];
yh1¼[yh1;r.*sin(theta)];end
theta¼thetaþangle_step;

end
xh1¼(xh1’);
yh1¼(yh1’);
xh¼[xh(1:end-1,:);xh1];
yh¼[yh(1:end-1,:);yh1];
figure(1)
plot(xh,yh,’k.’)
title(‘Locations of nodes of a Gaussian input’)
xlabel(‘X-direction (arb. units)’)
ylabel(‘Y-direction (arb. units)’)
figure(2)
plot(xh’,yh’)
title(‘Annular rings of a Gaussian input’)
xlabel(‘X-direction (arb. units)’)
ylabel(‘Y-direction (arb. units)’)
% Saves mesh details and variables in a file called
%GaussianMesh
% for use by further programs
save GaussianMesh I J R sigma xh yh
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as they appear in the denominator of the expression for calculating the
phase. Therefore, the annular zones are formed by rotating the first zone
position by a small angle da as shown on the left side of the figure. Secondly,
each zone should have four corner points. This is satisfied by all of the zones
except those in the ring closest to the origin, which appear to have triangular
zones with one node at the origin. This problem can be overcome by
replacing the origin with a ring of very small radius. Doing so ensures that
every zone in that ring has four corners. In order for the Eikonal method to
work, the location of the zones on the input plane should match as closely as
possible the location on the output plane. Therefore, the method by which
the area is divided into zones and numbered is crucial for obtaining a
continuous phase function that can carry out the conversion. The numbering
is done so that the upper half of the outermost ring is taken to be the first
row, and the lower half is the last row. Each set of points from the outer ring
to the center specifies a column. As an example, two zones are drawn as
shaded: one lies in the fourth column, first row; the second lies in the
sixteenth column, fifteenth row.

In the case of a flat-top intensity output, themesh is generated by dividing the
desired shape into zones of equal area. This is relatively easy to do. For example,
a circle could be divided in exactly the manner described above. However,
initially, the circle would be divided into annular rings of equal area instead of
equal power. It is important that the number of rows and columns in the output
mesh—and hence, the number of nodes in the output mesh—match that of the
input mesh. Table 3.12 provides the MATLAB code that creates a flat-top
intensity in the shape of a square. The output mesh is shown in Fig. 3.22.

3.3.2 Determination of the phase element

The phase can now be determined using the Eikonal method and the two
meshes that have been obtained.42 The phase of the beam behind the beam-
shaping element is

Figure 3.21 A Gaussian beam divided into 20� 20 nodes (reprinted from Ref. 41).
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kcðuÞ ¼ kc0ðuÞ þFðuÞ, (3.13)

where k¼ 2p/l, F(u) is the phase of the DOE, and kc0(u) is the phase of the
incident beam. The node position is given by u ¼ ðu,vÞ and refers to the

Table 3.12 Creating a square output mesh with a flat-top intensity.

% I, J will be available since defined as global variables
% if memory was cleared, their values must be entered
% creation of image plane co-ordinates for a square

S¼2; %size of square at image plane is 2S
stepx¼2*S/J;
stepy¼2*S/I;
X¼-S:stepx:S;
Y¼-S:stepy:S;
[xsq,ysq]¼meshgrid(X,Y);
xsq¼flipud(xsq);
ysq¼flipud(ysq);
figure(2)
plot(xsq,ysq,’b.’)
xlabel(‘X-direction (arb. units)’)
ylabel(‘Y-direction (arb. units)’)
clear X Y stepx stepy
bits¼512;
stepx¼2*S/bits;
indexx¼-S:stepx:S; %regular spaced points
indexx¼indexx(1:end-1); %even number of points
indexy¼-Sy:stepy:Sy;; %regular spaced points
indexy¼indexy(1:end-1); %even number of points
[XS,YS]¼ meshgrid(indexx,indexx); %creates grid of points
with limits given by index

% Saves mesh details and variables in a file called square
% for use by further programs

save square xsq ysq XS YS

Figure 3.22 Output mesh consisting of 20� 20 nodes. All zones have equal area
(reprinted from Ref. 41).
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coordinates over the DOE. The corresponding coordinates at the image plane
are a function of ū and are given by x(ū). If the distance between the DOE and
image plane is d, then the gradient of the wavefront will be given by

∇c ¼ u� xðuÞ
d

: (3.14)

The function c is fitted with a polynomial. A function can be defined in
terms of the gradient of cpoly and the coordinates u and xðuÞ given by
Eq. (3.14). The total number of mesh nodes and the degree of the polynomial
can be varied in order to get better results. The code for extracting the phase is
shown in Table 3.13.

Table 3.13 Using the Eikonal method to generate the DOE phase.

%This program reads mesh data from the files GaussianMesh and
%square
%Phase over the hologram is calculated using the Eikonal technique
%Phase is calculated at a limited number of irregularly spaced
%data points

close all
clear all
load GaussianMesh
load square
bits¼512;
x¼xsq;
y¼ysq;

%inputs
f¼300; %distance between input and output planes in mm
lambda¼0.000633; %wavelength in mm
figure(1)
plot(xh,yh,’r.’)
title(‘Mesh over hologram plane’)
%Eikonal retrieval
%delta psi

del_psix¼(x-xh)./f;
del_psiy¼(y-yh)./f;

%polynomial calculation to obtain phase of hologram
D¼5; %polynomial of degree D
M¼(Dþ2)*(Dþ1)/2;
%calculates k and l values for each m value
count¼0;
for k¼0:D

for l¼0:D-k
count¼countþ1;
m¼k*((2*D-kþ3)/2)þlþ1;
indices(count,1)¼m;
indices(count,2)¼k;
indices(count,3)¼l;

end
end

(Continued )
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Table 3.13. Continued

for n¼2:M
for m¼2:M
m1¼m-1;
n1¼n-1;
c(n1,m1)¼0;
b(n1,1)¼0;
for j1¼1:Jþ1

for i1¼1:Iþ1
k¼indices(m,2);
k1¼indices(n,2);
l¼indices(m,3);
l1¼indices(n,3);
c(n1,m1)¼c(n1,m1)þ(k*k1*(xh(j1,i1)^(kþk1-2))*(yh(j1,
i1)^(lþl1)))þ(l*l1*(xh(j1,i1)^(kþk1))*(yh(j1,i1)^
(lþl1-2)));
b(n1,1)=b(n1,1)þdel_psix(j1,i1)*k1*(xh(j1,i1)^(k1-
1))*(yh(j1,i1)^l1)þdel_psiy(j1,i1)*l1*(xh(j1,i1)^k1)
*(yh(j1,i1)^(l1-1));

end
end

end
end
%coefficients
a¼c\b;
clear del_psix del_psiy x y
% eikonal -psi
for j1¼1:Jþ1

for i1¼1:Iþ1
psi(j1,i1)¼0;
for m¼2:M

psi(j1,i1)¼psi(j1,i1)þa(m-1)*(xh(j1,i1)^indices(m,2))*
(yh(j1,i1)^indices(m,3));

end
end

end
clear a b c

k¼2*pi/lambda;
psi¼k*psi%phase of hologram
colormap(gray)
figure(3)
surf(xh,yh,psi)
title(‘Phase of hologram’)
xlabel(‘X-cordinate in units of length’)
ylabel(‘Y-cordinate in units of length’)
zlabel(‘Phase (radians)’)
%save phase psi xh yh
step=R*2/bits;

—————————————————————————————————————
%converting arrays to vectors – required for fit process

[m,n]¼size(xh);
xh1¼xh(:,1);
yh1¼yh(:,1);
psi1¼psi(:,1);

for i¼2:n

(Continued )
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The output of the code given in Table 3.13 is the phase of the hologram that
will carry out the conversion from a Gaussian beam to a square-shaped beam
with constant intensity. The final figure of this code is shown in Fig. 3.23.

The phase retrieved using the polynomial method only gives discrete
values at the specified mesh nodes. For the circular Gaussian input, the nodes
are not equidistant and the number of nodes is also quite small. The phase will
not provide enough data with which to write the DOE. Also, to simulate the
output, we will be using a Fourier transform technique and, hence, need
evenly spaced points. Therefore, phase values at many more equidistant
points are required. There are several ways this can be achieved. MATLAB

Table 3.13. Continued

xh1¼[xh1;xh(:,i)];
yh1¼[yh1;yh(:,i)];
psi1¼[psi1;psi(:,i)];

end
%saves data in files that can be retrieved by software that will
%carry out regression
% and generate coefficients to help generate phase at equidistant
%points
output¼[xh1 yh1 psi1];
save save(‘testdata.txt’, ‘output’, ‘-ascii’)
%—————————————————————————————————————
index¼-R:step:R; %regular spaced points
index¼index(1:end-1); %even number of points
[XH1,YH1]¼ meshgrid(index,index); %creates grid of points with
limits given by index
%store regularly spaced points and phase for later use
save phase_circle XH1 YH1 sigma k f lambda xh1 yh1 psi1

Figure 3.23 Phase that converts a circular Gaussian beam into a flat-top intensity beam
with a square shape (reprinted from Ref. 21).
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surface-fitting commands can be used to generate a fit to the existing data.
The fit coefficients can then be used to generate phase at evenly spaced points.
Alternatively, the nodal phase information can be used with a regressive
calculation to evaluate the coefficients of the polynomial that will generate the
continuous phase.

If the latter method is chosen, ‘testdata.txt’ should be opened with
software (such as Excel) and regression used to generate coefficients. The
coefficients, irrespective of how they were generated, are used to calculate
phase information at the evenly spaced X and Y coordinates (i.e., XH1 and
YH1 coordinates saved in the file ‘phase_circle’). The MATLAB code with
both of these options is given in Table 3.14. This program also simulates the
output. The simulated output intensity is shown in Fig. 3.24.

Table 3.14 Creating phase information at equally spaced points and simulating the output
intensity.

% This program calculates the phase over a grid
%loads uniformly spaced x and y coordinates
%calculates coefficients using Matlab fit
clear all
close all
load phase_circle %contains regularly spaced grid points
choice¼ input(‘Enter 1 to generate fit coefficients in matlab and
2 to upload coefficients from other programme: ‘);
if choice ¼¼ 1

ft¼ fittype(‘poly55’);
dataFit¼ fit([xh1,yh1],psi1, ft);
coeff1¼coeffvalues(dataFit);
coeffN¼coeffnames(ft);
R¼confint(dataFit);
c¼size(coeff1);
psi1¼0;
for count¼1:c(2)
coeffI¼coeffN(count);
coeffI¼coeffI{:};
m¼str2double(coeffI(2));
n¼str2double(coeffI(3));
psi1¼psi1þcoeff1(count).*(XH1.^m).*(YH1.^n);

end
elseif choice ¼¼2
%coefficients obtained with R¼1, sigma¼0.8 and I¼J¼20, S¼2 from
%a data handling software such as excel
%SQUARE

a0¼ 0.106394007
a1¼ -0.836150168
a2¼ 0.020604165
a3¼ 17.61722947
a4¼ 15.83427723
a5¼ -7.266911537
a6¼ -4.752015829

(Continued )
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Table 3.14. Continued

% Calculating phase at regularly spaced points
psi1¼a0þa1*XH1þa2*YH1þa3*XH1.^2þa4*YH1.^2þa5*XH1.^4þa6*YH1.
^4;
end
% Output
figure(1)
surf(XH1,YH1,psi1)
title(‘Phase over DOE’)
% to simulate output intensity
i¼sqrt(-1);
g¼exp(-((XH1).^2þ(YH1).^2)/(sigma^2)); %Gaussian beam
amp1¼exp(i*psi1).*g; %Amplitude just after hologram
sing¼find(isnan(amp1)); %locates singularities
amp1(sing)¼zeros(size(sing)); %replaces singularities with
zeros
amp1¼amp1.*exp(i*(k/(2*f))*(XH1.^2þYH1.^2));
figure(2)
colormap(gray)
imagesc(amp1.*conj(amp1))
contour(XH1,YH1,amp1.*conj(amp1))
title(‘Intensity just after DOE’)
xlabel(‘X-direction’)
ylabel(‘Y-direction’)
amp2¼fft2((amp1));
amp2¼fftshift(amp2);
figure(3)
colormap(gray)
contour(abs(amp2)/max(max(abs(amp2))))
title(‘Output intensity - Gaussian to square’)
xlabel(‘X-direction’)
ylabel(‘Y-direction’)

Figure 3.24 Simulated intensity at output plane. The phase used to create this was
generated using choice 2 in the code of Table 3.14 (reprinted from Ref. 41).
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3.4 Conclusions

In this chapter, the design, simulation, and analysis of simple multilevel and
grayscale elements are discussed with MATLAB codes. We have introduced
some methods to design diffractive optics for the generation of any arbitrary
intensity profile at a plane of interest. We have also discussed the creation of
special beams, such as donut beams, and beam-shaping fundamentals.43 In
addition to designing the diffractive element, in every case the output is also
simulated.

The types of diffractive optics presented in this chapter are by no means
comprehensive. There are many other interesting and useful DOEs such as
Dammann gratings, harmonic gratings, and spot array generators, to name a
few. However, the techniques introduced here can be adapted to any type of
binary or multilevel DOE.

3.5 Exercises

E.3.1 Design a 16-level 1D phase grating using MATLAB and estimate the
efficiency in the 1st diffraction order.

E.3.2 Design a negative 4-level FZP and simulate its far-field diffraction
pattern.

E.3.3Design a binary spiral phase plate with L¼ 5 and simulate its diffraction
pattern.

E.3.4 Design a 3-level DOE from an object of your choice and simulate its
diffraction pattern.

E.3.5 Design a gradient ring lens with a focal length f¼ 2 mm and a ring
diameter r0¼ 0.1 mm.
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Chapter 4

Analysis of DOEs in the Fresnel
Diffraction Regimes

In earlier chapters, the design of DOEs and the simulation of their far-field
diffraction patterns using Fraunhofer diffraction formula were presented.
However, to characterize a DOE, it is necessary to analyze phase and intensity
profiles at different propagation distances. For instance, the binary axicon or
circular grating generates a ring-like pattern in its far field, and it generates a
Bessel-like beam closer to the element.1 With its large focal length, the Bessel-
like beam, is used for many applications. Hence, it is necessary to simulate
and understand the field variations at several planes of interest. In this
chapter, a MATLAB® simulation of diffraction patterns in the Fresnel regime
is presented. The analysis and simulation presented here are not suitable for
planes very close to the DOE.

4.1 Analysis of DOEs with the Fresnel Diffraction Formula

For small angles, a spherical wavefront can be approximated by a parabolic
wavefront. This is called the Fresnel or paraxial approximation.2 Fresnel
diffraction has been extensively discussed in literature.2–4 The description of
Fresnel diffraction formulae and their applicability are discussed in Chapter 1.
Various computer simulation techniques for calculation of Fresnel diffraction
patterns can be used.5–10 In this section, one of the simplest techniques for
implementation of the Fresnel diffraction integral is discussed.

Once again, the Fresnel diffraction formula is given by

Eðu,vÞ ¼ ejkzej
k
2zðx2þy2Þ

jlz

ðþ`

�`

ðþ`

�`

(
Aðx,yÞ exp

�
j
k
2z

ðx2 þ y2Þ
�)

� exp
�
�j

2p
lz

ðxuþ yvÞ
�
dxdy: (4.1)
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From this equation it can be noted that the parabolic phase factor
ðk∕2zÞðx2 þ y2Þ is multiplied with every pixel of the DOE function A(x, y) and
Fourier transformed. The equation is different from a pure Fourier transform
because of the parabolic phase factor ej

k
2zðx2þy2Þ and constant phase ejkz outside

of the integral. If we consider a point object in A(x, y), the resulting phase in
the plane (u, v) from Eq. (4.1) is nothing but a FZP.2 Hence, it can be
understood that, for any arbitrary object, the field in the observation plane is
nothing but a collection of FZPs. Since the parabolic phase factor for large
values of z reduces to 1, the equation reduces to a Fourier transform
operation, which is the far-field approximation (large z) of the scalar
diffraction formula.

As explained in Chapter 1, the Fresnel approximation is valid only when

z3 ≫
p

4l

�
ðx� uÞ2 þ ðy� vÞ2

�
2

max
: (4.2)

Hence, this approximation is not suitable for studying the field extremely close
to the diffraction element. A deeper look at the approximation reveals that it
is valid only over a smaller area (in the transverse plane) for shorter distances,
while it is valid over a larger area at longer distances. In other words, the
Fresnel approximation can be valid for distances very close to the diffraction
plane, but this validity is limited to a transverse area proportional to the
distance. The far-field approximation, also known as the Fraunhofer
approximation, is valid only for very large distances given by

z ≫
k
�
u2 þ v2

�
2

, (4.3)

where k¼ 2p/l. For analysis of diffraction patterns extremely close to the
diffraction plane, vector diffraction formula must be used.11

For simple designs such as circular and rectangular apertures, it is easier
to calculate the Fresnel diffraction pattern analytically. For complex designs,
however, simulation is the easiest way to study the diffraction patterns. In the
latter case, two important steps are involved: sampling and scaling. The
sampling presented in Chapter 2 is the way the diffraction plane is sampled
with respect to the wavelength of light. The sizes of the matrices used for the
design of the DOE in the diffraction plane and the observation plane are same
in most of the cases. Hence, it is necessary to relate the sampling periods of the
diffraction plane and the observation plane. Considering the relationship
between continuous and discrete Fourier transforms, for a distance z and
sampling size N�N in the DOE plane, the pixel size in the observation plane
is given by DI¼ (lz/NDDOE), where DDOE is the sampling period at the
diffraction plane, and z is the propagation distance.10
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An alternative way of scaling is uses zero padding of the diffraction plane,
as discussed in various literature.12,13 An interesting relationship, lz¼N,
arises when the analog Fourier transform is converted into the discrete
Fourier transform. This equation tells us that by varying the size of the matrix
using zero padding, the propagation distance can be varied. A detailed
analysis of different techniques such as the angular spectrum method, the
convolution method, and the fractional Fourier transform, along with their
their validity in space are given in Ref 10. In this chapter, only the basic
method using FFT propagators for simulation of Fresnel diffraction patterns
is presented.

4.1.1 Fresnel diffraction pattern of a circular aperture

The MATLAB code for design and analysis of a circular aperture can be
constructed using the procedure discussed earlier. The parabolic phase factor
ðk∕2zÞðx2 þ y2Þ is rewritten as ðp∕lzÞðx2 þ y2Þ. The distances are specified in
meters. The same code can easily be modified to simulate the diffraction
patterns of other DOEs. In this case, a circular aperture with a radius of 1 mm
is designed. The Fresnel diffraction patterns are simulated at four distances,
namely, 20 mm, 50 mm, 100 mm and 50 m. The pixel size (sampling period) is
selected as 10l. This value is suitable for planes close to the DOE, such as the
first three distances. However, for larger distances such as 50 m, the simulated
pattern will not be visible in the diffraction window. To shrink the far-field
diffraction pattern, it is necessary to increase the sampling period. Hence, the
sampling period is selected to be 100l for simulation at 50 m. In the codes
given in the previous chapters, the pixel size was set as 1 mm. The code for
simulation of Fresnel diffraction patterns is given in Table 4.1. The diffraction
images at distances 20 mm, 50 mm, 100 mm with sampling period of 10l; and
50 m with a sampling period of 100l are shown in Figs. 4.1(a)–(d),
respectively.

4.1.2 MATLAB simulations of the Fresnel diffraction pattern
of a binary phase axicon

A binary axicon is designed as shown in Chapter 2. Fresnel diffraction of a
binary axicon yields a Bessel-like intensity profile, which is maintained over its
large focal depth.1 The MATLAB code for analysis of the axicon is presented
in Table 4.2. The images of the diffraction pattern simulated at z¼ 25 mm and
z¼ 50 m are shown in Figs. 4.2(a) and (c), respectively.14 A line scan through
the center of the intensity pattern given in Fig. 4.2(a) has an approximate
Bessel-like intensity profile as shown in Fig. 4.2(b). The far-field diffraction
pattern is a ring pattern, which matches the far-field patterns simulated in
Chapter 2. The first and higher (3rd order) diffraction order ring patterns are
visible in Fig. 4.2(c). It should be noted that in this case, the sampling period is
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not increased at large distances, as the period of the binary axicon itself was
selected to obtain larger ring patterns. However, if the period of the binary
axicon were larger, i.e., generating a smaller ring pattern, then the sampling
period would need to be increased in order to see the diffraction pattern.

The codes given in Tables 4.1 and 4.2 can be modified to simulate the
Fresnel diffraction patterns of any type of amplitude or phase DOE. For
example, the DOE design scripts presented in Chapter 2 and in the first
section of Chapter 3 can be easily integrated into these codes and the Fresnel
diffraction patterns simulated at different planes.

Table 4.1 MATLAB code for simulation of Fresnel diffraction of a circular aperture.

%Fresnel diffraction of a circular aperture%
clear; %Clear all memory
%Defining the parameters

N¼500;% Define the matrix size
lambda¼0.633*10^-6;%Define wavelength in meters
z¼0.02;%Propagation distance¼ 20 mm
r¼10^-3;%Radius of aperture¼ 1 mm
wsamp¼10*lambda;%sampling period or width

%Creating sampled space
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);%Sampling
Rsamp¼sqrt((X-N/2).^2þ(Y-N/2).^2).*wsamp;%Define sampled
%radius

%Constructing the aperture
A¼ones(N,N);%Define matrix by assigning zeros to all pixels
A(Rsamp.¼r)¼0;

% Calculating the Fresnel diffraction pattern
PPF¼exp(1i*pi/(lambda*z).*Rsamp.*Rsamp); %Calculate the
%parabolic phase factor
A1¼A.*PPF;%Multiply the circular aperture function with the
parabolic phase factor
E¼abs(fftshift(fft2(fftshift(A1)))); %Calculate Fourier
%Transform

%Observation of the diffraction pattern
colormap(gray)%Display greyscale image
imagesc(E)%Display scaled image

Figure 4.1 Fresnel diffraction patterns for circular aperture at distances (a) z¼ 20 mm,
(b) z¼ 50 mm (c), z¼ 100 mm, and (d) z¼ 50 m.
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4.1.3 MATLAB simulations of the Fresnel diffraction pattern of an
axilens

An axilens15,16 is a hybrid DOE made up of an FZP and an axicon. By
varying the design parameters of an axilens, its optical behavior can be tuned
to vary between that of an FZP and that of an axicon. The theory and design
of an axilens are presented in detail in Chapter 3. Let us consider the following
design parameters to study the Fresnel diffraction pattern of an axilens: focal
length f¼ 5 mm, focal depth Df¼ 0 mm to 2 mm, radius of DOE R¼ 1 mm,
and l¼ 0.633 mm. When Df¼ 0, the axilens acts as a FZL, and when f¼ 0, it
acts as an axicon.

Table 4.2 MATLAB code for simulation of Fresnel diffraction of a binary phase axicon.

%Fresnel diffraction of binary axicon%
clear; %Clear all memory
% Defining the parameters

N¼500;% Define the matrix size
lambda¼0.633*10^-6;%Define wavelength in meters
z¼0.025;%Propagation distance¼ 25mm and 50 m
P¼10^-4;%Radius of aperture¼ 0.1 mm
wsamp¼10*lambda;%sampling period or width

%Creating sampled space
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);%Sampling
Rsamp¼sqrt((X-N/2).^2þ(Y-N/2).^2).*wsamp;%Define sampled
%radius

%Constructing the DOE
A¼ones(N,N);%Define matrix by assigning ones to all pixels
A(rem(Rsamp,P) , P/2)¼exp(1i*pi);

%Calculating the Fresnel diffraction pattern
PPF¼exp(1i*pi/(lambda*z).*Rsamp.*Rsamp); %Calculate the
parabolic phase factor
A1¼A.*PPF; %Multiply the circular aperture function with the
%parabolic phase factor
E¼abs(fftshift(fft2(fftshift(A1)))); %Calculate Fourier
%Transform

Figure 4.2 (a) Fresnel diffraction pattern of a binary phase axicon at z¼ 25 mm, (b) its
intensity profile, and (c) the Fresnel diffraction pattern at z¼ 50 m.
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The axial Fresnel diffraction pattern for the above design values and focal
depth values of 0 mm, 1 mm, 2 mm, and 3 mm are shown in Figs. 4.3 (a)–(d),
respectively. They were simulated using the code in Table 4.3. The design
concept of the axilens has been utilized to design DOEs with interesting
characteristics.17–19

4.1.4 MATLAB simulations of the Fresnel diffraction pattern of
nonperiodic DOEs

Nonperiodic DOEs arise when algorithms such as the Gerchberg–Saxton
algorithm20 are used to generate them. This particular algorithm has been
discussed in Chapter 3. Let us assume that the goal of the DOE is to generate

Table 4.3 MATLAB code for design of a blazed axilens.

% Fresnel diffraction of an axilens
clear; %Clear all memory
%Defining all parameters and sampling

N¼500; %Matrix size
lambda¼0.633e-6; %Wavelength
wsamp¼1e-6;%sampling period
x¼-N/2:N/2-1;
y¼-N/2:N/2-1;
[X,Y]¼meshgrid(x*wsamp,y*wsamp);
Rsamp¼sqrt(X.^2þY.^2);
f0¼0.005;%Focal length
delf¼0.001;%Focal depth
R¼10^-3;%Radius of the axilens

%Design of axilens
f¼(f0þ(delf/R)*sqrt(X.^2þY.^2));%Focal length calculation
FZA¼exp(-1i*(pi/(lambda))*((X.^2þY.^2)./f));%Phase
profile of Axilens

%Calculation of Fresnel diffraction pattern
m¼100;
n¼1:m;
zs2¼0.003þ(0.005/m).*n; % Propagation distance
PPF¼zeros(N,N,m);
A1¼zeros(N,N,m);
E¼zeros(N,N,m);
Field1¼zeros(100,m);

for counter1¼1:1:m;
PPF(:,:,counter1)¼exp(1i*pi/(lambda*zs2(counter1)).
*Rsamp.*Rsamp); % Parabolic phase factor
A1(:,:,counter1)¼FZA.*PPF(:,:,counter1); %Multiply the
axilens function with parabolic phase factor
E(:,:,counter1)¼abs(fftshift(fft2(fftshift(A1(:,:,
counter1)))));
%Calculate Fourier Transform
% imagesc(E(201:300,201:300,counter1));
% pause(1.0)
Field1(:,counter1)¼E(N/2þ1,201:300,counter1); %Accumulate
the intensity profile

end
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a certain intensity pattern. For example, we can consider an object such as the
logo of Indian Institute of Technology Madras. The phase of the object is
calculated using the MATLAB code given in Table 3.10, assuming input light
with uniform illumination. The object and the phase of the DOE designed
using the algorithm are shown in Figs. 4.4(a) and (b), respectively.

Now, let us study the Fresnel diffraction pattern of the phase-only DOE,
assuming uniform illumination. Due to the very different nature of the DOE,
the Fresnel diffraction pattern is quite different from any of the patterns seen
in earlier sections. Another difference is the manner in which the Fresnel
images need to be obtained, which is akin to imaging an object and studying
the image at different planes. In order to carry out this experiment, it is
necessary to multiply the phase function generated by the algorithm by a lens
function. The resulting DOE when subjected to Fresnel diffraction analysis
will yield the correct image at a plane corresponding to the focal plane of the
lens, while the image will be blurred elsewhere. Hence, in the first step, the
phase function shown in Fig. 4.5(b) is multiplied by a lens function of focal

Figure 4.3 Images of Fresnel diffraction along the axial direction for an axilens of f¼ 5 mm
and (a) Df¼ 0 mm, (b) Df¼ 1 mm, (c) Df¼ 2 mm, and (d) Df¼ 3 mm.

Figure 4.4 Images of the (a) object and (b) phase matrix generated using the Gerchberg–
Saxton algorithm.
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length (20 cm in this case) followed by application of the Fresnel diffraction
formula. The MATLAB code is given in Table 4.4.

The lens function that is multiplied by the phase function actually cancels the
quadratic phase function of Eq. (4.1) at the plane corresponding to the focal
plane. Hence, the Fresnel diffraction, in this case, reduces to a Fourier transform
operation. In this example, the cancellation occurs at z¼ 0.2, which is the focal
length of the lens. Therefore, in the other planes (where z ≠ 0.2), the phase due to
the difference between z and the focal length of the lens function introduces
defocusing in the image. In this way, a simple imaging experiment can be carried
out using the Fresnel diffraction formula. Images of the object at z¼ 0.02 m,
0.05 m, 0.15 m, and 0.2 m are shown in Figs. 4.5(a)–(d), respectively.

4.2 Talbot Imaging

The Talbot effect is an interesting phenomenon that occurs in the Fresnel
diffraction region for periodic structures with large periods.21–25 When a plane

Table 4.4 MATLAB code for analyzing a DOE generated by Gerchberg–Saxton algorithm.

%% Fresnel diffraction of a DOE designed by Gerchberg-Saxton
%algorithm
%% Use table 3.10 to obtain the “DOE phase”
% Multiply the “DOE phase” with a lens function

d¼0.2;
Q¼exp(-1i*(pi/(lambda*d))*(X.^2þY.^2));
DOEphase¼DOEphase.*Q;

%Defining all parameters and sampling
lambda¼0.633e-6; %Wavelength
wsamp¼1e-6;%sampling period
x¼-N/2:N/2-1;
y¼-N/2:N/2-1;
[X,Y]¼meshgrid(x*wsamp,y*wsamp);
Rsamp¼sqrt(X.^2þY.^2);

%Calculation of Fresnel diffraction pattern
m¼100;
n¼1:m;
zs2¼0.1þ(0.2/m).*n; % Propagation distance
PPF¼zeros(N,N,m);
A1¼zeros(N,N,m);
E¼zeros(N,N,m);
Field1¼zeros(100,m);
for counter1¼1:10:m;
PPF(:,:,counter1)¼exp(1i*pi/(lambda*zs2(counter1)).
*Rsamp.*Rsamp); % Parabolic phase factor
A1(:,:,counter1)¼DOEphase.*PPF(:,:,counter1); %Multiply
%the axilens function with the parabolic phase factor
E(:,:,counter1)¼abs((fft2((A1(:,:,counter1)))));
%Calculate Fourier Transform
imagesc(E(:,:,counter1)); title (zs2)
pause(1.0)

end
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wave illuminates a diffraction grating, an image of the grating occurs at
periodic distances along the optical axis. The effect is visible for both
amplitude and phase diffraction gratings. Since the image is a copy of the
original grating, it is also called a self-image. The distance at which the image
repeats is known as the Talbot distance and is given by

zT ¼ 2L2

l
, (4.4)

where, L is the period of the grating. The pattern also repeats at the distance
zT/2 but is shifted laterally by a distance equal to half the period of the grating.
The MATLAB code for simulation of the Talbot effect, as seen with an
amplitude grating, is shown in Table 4.5.

An image of the simulated grating is shown in Fig. 4.6(a). The intensity at
the quarter, half and full Talbot planes can be seen in Figs. 4.6(b), (c,) and (d),
respectively.

At fractional Talbot distances, the grating pattern repeats, albeit with
different frequencies. This gives rise to a very beautiful phenomenon called the
Talbot carpet.26,27 The program in Table 4.4 can be modified to calculate and
create a Talbot carpet. The authors leave this to the readers as an exercise. It is
interesting to play with some of the parameters in the program to see how this
Fresnel diffraction changes. For example, decreasing the period makes the
Talbot effect difficult to observe, as the overlap of orders happens only very
close to the grating. This is schematically shown in Fig. 4.7.

The shaded triangles in Fig. 4.7 indicate the regions of overlap between
the first orders. It is clear that there is a larger overlap in the case of the second
grating, as L2 is larger; therefore, the diffraction angles are smaller. The
decreasing area of overlap at distances farther from the grating can be seen in
Figs. 4.6(b), (c), and (d).

Clearly, the Talbot effect will be easier to observe for gratings with large
periods. However, when simulating a grating with a large period, the matrix
has to be large enough that an adequate number of periods occurs in the

Figure 4.5 Images of the Fresnel diffraction pattern of a DOE generated using Gerchberg-
Saxton algorithm with a lensing function of focal length 0.2 m recorded at (a) z¼ 0.02 m,
(b) z¼ 0.05 m (c) z¼ 0.15 m and (d) z¼ 0.2 m.
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grating, yet the window around the grating has to be large enough to simulate
the diffraction at different distances along the optical axis. Readers are
encouraged to vary the parameters P, N, and w in the code of Table 4.4, and
to observe the resulting changes to the Talbot pattern. The same code can also
be modified to simulate the Talbot effect with a phase grating.28

Table 4.5 MATLAB code for studying the Talbot effect.

%program to generate Talbot images of amplitude grating
%Output of this file is very dependent on values of r0, P, N, w
clear all
%constants

lambda¼600e-9; %in m
k¼2*pi/lambda;

% Defining Grating Parameters
N¼2000; %Define Matrix size
P¼75; %Define the period of the grating in pixels
FF¼0.25; %Define fill factor
period¼P*1e-6; %period in distance units
A¼ones(1,N); %Define a Matrix by assigning 1 to all pixels

% Constructing the Grating
q¼1:N;
A(rem(q,P),P*FF)¼0;
A¼repmat(A,N,1); %replicate the row to create a 2-d grating

% Create a window around the grating of pixel width w
w¼500;
A(1:w,:)¼0;
A(N-w:N,:)¼0;
A(:,1:w)¼0;
A(:,N-w:N)¼0;

% Talbot Distance
zT¼(2*period^2)/lambda;%Talbot distance

%Creating sampled space
r0¼(N/P)*period/2; %radius of input beam
step¼2*r0/(N-1);
index¼-r0:step:r0; %regular spaced points
[XH,YH]¼ meshgrid(index,index); %creates grid of points with
%limits given by index

%run this program at various distances
dist¼[zT/ 4 zT/ 2 zT];
[m,n]¼size(dist);

for count¼ 1:n
z¼dist(count);
z0¼z/zT; %distance in terms of Talbot distance
a¼num2str(z0); %used to label figures

%Observing the grating output in the near-field
E¼(A.*exp((1i*k/(2*z))*(XH.^2þYH.^2)))/(lambda*z);
E¼fftshift(fft2(E));
I¼(abs(E)/(N*N)).*(abs(E)/(N*N)); % Calculating intensity
figure(count)
colormap(gray)
imagesc(I);

end
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4.3 Conclusions

This chapter describes how to model diffraction in regions other than the far
field. Although the programs presented cannot be used to study the region
immediately following the DOEs, they can be used to model the diffraction
field in an intermediate region (see Chapter 1 for validity of approximations at
different axial positions). Two other useful ideas are also discussed, namely,
the concept of simulating the axial intensity profiles and the analysis of
nonperiodic structures. The technique and procedure presented here can be
used for the analysis of the axial intensity profiles for any DOE in the region
of the validity of the approximation.

Figure 4.6 (a) Image of the amplitude diffraction grating and its diffraction pattern
simulated at (b) z¼ 0.25 zT (c) z¼ 0.5 zT, and (d) z¼ zT.

Figure 4.7 Schematic depiction of first orders from gratings with period (a) L1 and (b) L2.
The periods are sized such that L1 , L2.
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4.4 Exercises

E.4.1 Calculate the Fresnel diffraction pattern of a blazed axicon at z¼ 50 m
with a sampling period of 10l.

E.4.2 Construct a DOE whose phase profile is given by

F ¼ exp
�
j
�
xþN

2

�
3
� 2pK

�
,

where N is the size of the matrix used for simulation, and K¼ 5�1011. Plot
the cross section of the intensity at z¼ 5 mm, 10 mm, and 50 mm in the same
figure.

E.4.3 Construct a DOE with the linear phase profile of

F ¼ exp
�
j
�
xþN

2

�
� 2p

�
,

where N is the size of the matrix used for simulation, and plot the cross section
of the intensity at z¼ 5 mm, 10 mm, and 50 mm in the same figure. What do
you observe?
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Chapter 5

Substrate Aberration
Correction Techniques and
Error Analysis

Aberrations such as spherical aberration, coma, astigmatism, etc., are
inevitable in optical systems.1–3 Hence, numerous aberration correction
schemes have been developed to cancel or minimize them.4–9 Diffractive
optical systems are also susceptible to aberrations arising due to inaccurate
design and fabrication errors.10–13 In this chapter, we present a ray tracing
procedure that can be used to characterize and correct aberrations. This is
followed by two basic aberration correction techniques to cancel the
aberration introduced by the thickness of the substrate.

5.1 FZP in Finite Conjugate Mode

The design of a FZP for focusing a plane wavefront to a point, discussed in
Chapter 2, is an approximate one based on many assumptions. The accurate
expression for the radii of the FZP zones can be obtained from Eq. (3.2) of
Chapter 3. By re-arranging the terms in the equation, the radii for an element
with a focal length of f is given by

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2 þ 2nf l

q
, (5.1)

where n is the order of each zone, and l is the wavelength. In the case of a
binary FZP, the zones are full period zones; hence, n has to be incremented
from 0 in steps of ½.

In many ray optics experiments, it is very common to use the lens equation
given by

1
f
¼ 1

u
þ 1

v
, (5.2)

where f is the focal length of the lens, and u and v are the object and image
distances, respectively. However, this equation was arrived at assuming that
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the angles involved are small, which makes it applicable only in the paraxial
case. Therefore, this equation is not valid for larger angles, which arise when
the radius of the beam equals the radius of the lens, or for optical systems with
small object and image distances.

In other words, a FZP designed for focusing a plane wavefront (infinite
conjugate mode) cannot be used for focusing a diverging wavefront (finite
conjugate mode) without aberration. In such cases where the paraxial case is
violated, it is necessary to design a FZP for the finite conjugate mode.

Finite conjugate mode elements have additional advantages when compared
to infinite conjugate mode ones. Most light sources emit diverging wavefronts
and will need additional lenses for collimation. By designing the FZP for finite
conjugate mode, it is possible to avoid using these additional lenses.

5.1.1 Design of FZPs in finite conjugate mode

The optics configuration for focusing a diverging wavefront is shown in
Fig. 5.1. The optical path length equation is given by

ðun þ vnÞ � ðuþ vÞ ¼ nl, (5.3)

where

un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ r2n

q
, (5.4)

vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ r2n

q
: (5.5)

From Eqs. (5.3)–(5.5), the radii of zones of the FZP designed in finite
conjugate mode are given by

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
1 � 4u2v2

4ðu2 þ v2 þ C1Þ

s
, (5.6)

where C1 ¼ n2l2 þ 2nlðuþ vÞ þ 2uv. Now let us try to verify the above
description of the problems associated with employing a FZP designed
for infinite conjugate mode in a finite conjugate system. Two cases are
considered with focal distances u¼ 1 mm, v¼ 5 mm and f¼ 0.83 mm; and

Figure 5.1 Optics configuration for focusing a diverging wavefront using a FZP (reprinted
from Ref. 26).
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u¼ 5 mm, v¼ 30 mm and f¼ 4.3 mm, respectively. The focal length value
is estimated using Eq. (5.2). The radii of zones are plotted for the two cases
for n varying from 0 to 1000, as shown in Fig. 5.2.

From Fig. 5.2, it can be noted that there is good overlap between the radii
of zones of the FZPs designed for both finite and infinite conjugate modes in
the paraxial region, i.e., for small values of the radial coordinate. However, in
the nonparaxial case, the two curves separate, showing the possible aberration
that could occur if the FZP is designed using Eq. (5.1). In the image plane, the
above discrepancy will be reflected as a spot blur and shift of focal plane.

Let us verify this by tracing the rays of light in the image plane for the two
cases. The procedure is as follows. Equation (5.1) is substituted in Eq. (5.2) to
obtain

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2 þ 2n

�
uv

uþ v

�
l

s
: (5.7)

Equations (5.6) and (5.7) are rearranged to calculate the image distance v as a
function of the other parameters, as shown in Eqs. (5.8) and (5.9), respec-
tively. In other words, given a FZP with zones located at specific radii and an
object distance, the image is located using

v1 ¼
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
, (5.8)

Figure 5.2 Plot of the radii of zones of a FZP as a function of its zone number for
finite conjugate mode (solid line) and infinite conjugate mode (dashed line) for u¼ 1 mm,
v¼ 5 mm, and f¼ 0.83 mm (bottom lines); and u¼ 5 mm, v¼ 30 mm, and f¼ 4.3 mm
(top lines) (reprinted from Ref. 26).
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A ¼ 4n2l2 þ 8unl� 4r2n,

B ¼ 12un2l2 þ 4n3l3 þ 8u2nl� 8r2nu� 8r2nln,

C ¼ n4l4 þ 4u2n2l2 þ 4un3l3 � 4r2nn2l2 � 8r2nunl� 4r2nu2;

v2 ¼
uðr2n � n2l2Þ�

n2l2 þ 2nlu� r2n
� : (5.9)

The MATLAB® code for performing the ray tracing is given in Table 5.1.
The ray tracing images for the above two cases (i.e., with and without

paraxial approximation) are shown in Figs. 5.3 and 5.4, respectively.

Table 5.1 MATLAB code for comparing focusing properties of FZP designed with and
without paraxial approximation.

%%program to compare the FZPs designed with and without paraxial
%%approximation
% Input parameters

u¼5000; % Object distance
v¼30000; % Image distance
l¼0.632; % Lambda-wavelength

% Designing FZPs with n zones
n¼1:200;
a¼n.*n.*l*lþ2.*n.*l*(uþv)þ2*u*v;
r¼sqrt(((a(n).*a(n))-4*u*u*v*v)./(4.*(a(n)þu*uþv*v)));
%Radius of zones
A¼(4.*n.*n.*l*lþ8.*n*l*u-4.*r(n).*r(n));
B¼(4.*n.^3*l^3þ12.*n.*n.*l*l*uþ8.*n.*l*u*u-8.*r(n).*r
(n).*n.*l-8.*r(n).*r(n).*u);
C¼(n.^4.*l.^4þ4.*n.*n.*l*l*u*uþ4.*n.^3*l^3*u-4.*r(n).*r
(n)*u*u-4.*r(n).*r(n).*n.*n*l*l-8.*r(n).*r(n).*n*l*u);
v1¼(-B(n)þsqrt(B(n).*B(n)-4.*A(n).*C(n)))./(2.*A(n));%
%Image distance
the1¼atan(r(n)./v1(n));%Angle theta
v2¼u.*(r(n).*r(n)-n.*n.*l*l)./(2.*n.*l*uþn.*n.*l*l-r(n).
*r(n));
the2¼atan(r(n)./v2(n));%Angle theta

% Ray tracing
for m¼1:100; %Ray tracing with 100 points on each ray

n¼m*2;
for p¼1:11;
v3(p)¼(p-1)*3000;
rr1(p,n)¼(v1(n)-v3(p))*tan(the1(n));
rr2(p,n)¼(v2(n)-v3(p))*tan(the2(n));

end
end
% Display results
n¼10:10:200; % Ray tracing display
plot(v3,rr1(:,n),’k’,’LineWidth’,1)
hold on
plot(v3,rr2(:,n),’b’,’LineWidth’,1)
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The magnified images of the focal regions are shown indicating the aberration
in the image plane. It can clearly be seen that the FZP designed using Eq. (5.7)
has aberrations in the focal plane, resulting in a shift in its image distance and
blurring of the spot. If neglected, this one common aberration will result in
substantial aberration in the focal plane for a FZP, resulting in focal spot blur
and shift in focal plane.

Figure 5.3 Image of the ray tracing at the image plane for a FZP designed using
Eq. (5.6).

Figure 5.4 Image of the ray tracing at the image plane for a FZP designed using Eq. (5.7).
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5.2 Characterization of Substrate Aberrations

The glass substrates on which the DOEs are fabricated can normally be
ignored during design. In many cases, the FZPs have been designed for
focusing a plane wavefront to a point (infinite conjugate mode).14–18 In those
cases, the aberration introduced by the glass substrate can be easily avoided
by making the incident parallel rays of light traverse through the glass
substrate first and having the DOE on the other side of the substrate. As the
parallel rays are incident normally on the glass substrate, the effect of the
substrate can be neglected. However, if the incident parallel rays encounter
the DOE (for instance, a FZP) first, followed by the glass substrate, the rays
are incident on the glass substrate at different angles and, hence, traverse
different optical paths within it. This results in spherical aberration causing a
shift of the image plane and blurring of the image. Even then, the aberration is
negligible if the thickness of the glass substrate is very small compared to the
focal length of the FZP.

As described in the previous section, a FZP designed for infinite conjugate
mode requires an additional lens to collimate the light from the source. Hence,
the infinite conjugate mode is not suitable for highly compact systems.19,20 In
this case, the above idea of reversing the FZP such that the light rays see the
glass substrate first will not help to solve the aberration problem, as the light
rays traveling with different angles travel different optical paths within the
glass substrate. The propagation of parallel rays and diverging rays through a
parallel glass plate is shown in Figs. 5.5(a) and (b), respectively. One
technique to solve the aberration problem is to use an ultrathin glass
substrate. But, such substrates are extremely difficult to handle during the
various fabrication processes such as spin coating, metallization and even
optical testing. Therefore, the use of thin substrates is not a very practical
solution.

Before solving the aberration problem, it is necessary to understand the
effects of the glass substrate. Hence, in this section, the aberration introduced
by the glass substrate is characterized first. The effect of the glass substrate is
analyzed by designing a FZP for a focal distance without taking into account
the thickness of the substrate and then studying its focal properties. Two
different design cases of focal distances are considered to understand the
magnitude of the aberrations in each case. In case 1, the object distance is
larger than the image distance, while in case 2, the image distance is larger
than the object distance.

A FZP with a thick glass substrate and illuminated in the finite conjugate
mode is shown in Fig. 5.6. Diverging rays of light emanating from the source
are incident on the front surface of the glass substrate with refractive index ng
(air–glass interface) at different angles and locations. The angles of refraction
inside the glass substrate can be calculated using Snell’s law. The angles of
refraction are different at different locations, resulting in the rays traversing
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different optical paths within the glass substrate. The light rays exit the glass–
air interface with angles equal to the angles of incidence at the air–glass
interface. Hence, the presence of the glass plate only shifts the location of the
incident rays depending on their angles of incidence.

Figure 5.5 (a) Parallel rays and (b) diverging rays propagating through a glass substrate.

Figure 5.6 Optics configuration for focusing a diverging wavefront using a FZP fabricated
on a thick glass substrate (reprinted from Ref. 26).
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The variable r1n is the distance from the optical axis to the position where
the ray emanating from the source with an angle u1n meets the front surface of
the glass substrate. The variable r2n is the distance from the optical axis to the
point where the ray emanating from the source with an angle u1n meets the
back surface of the glass substrate. The variable r02n is the distance from the
optical axis to the point where the ray emanating from the source with an
angle u1n would meet the back surface of the glass substrate if it were not
present.

From trigonometry we know that

tan u1n ¼
r1n
u� t

¼ r02n
u

: (5.10)

Applying Snell’s law of refraction at the air–glass interface, we obtain

na sin u1n ¼ ng sin u2n: (5.11)

From Fig. 5.6, we can write

r2n ¼ r1n þ t tan u2n: (5.12)

From Eqs. (5.10), (5.11), and (5.12),

r2n ¼ r02n

�
u� t
u

�
þ t tan

	
sin�1

�
na

ngð1þ u2∕r022nÞ1∕2
�


: (5.13)

As discussed earlier, the presence of the glass substrate does not alter the
direction of propagation but shifts the point at which the ray is incident on the
FZP. The shift in radial direction at the FZP plane is given by

Dr ¼ r02n � r2n: (5.14)

Preserving the angle u1n, the distance between the FZP plane and the
source has to be different from u. As a consequence, the presence of the glass
substrate generates a virtual source that is shifted from the real source and has
a finite spread. The position of the different virtual sources depends on the
direction of the rays. The position of the virtual source is given by

u0ðr02nÞ ¼
r2n
r02n

u: (5.15)

This is an interesting result. From Eq. (5.15), it can be noted that the presence
of the glass substrate generates a virtual source that is shifted away from the
source and has a finite blur.

Substituting Eq. (5.13) in Eq. (5.15), the limiting value of u0 for u1n!0 is
given by
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lim
u1!0

u0ðr02nÞ ¼ u� tþ t
na
ng

: (5.16)

When na¼ ng, u0 ¼ u. From Eqs. (5.15) and (5.16), it is found that:

(a) The presence of the glass substrate generates a virtual source that is
spatially away from the real source and has a finite spread. However,
for the ray collinear with the optical axis, u1n¼ 0, we have a
discontinuity where u0 ¼ u.

(b) The virtual source’s spatial shift (u – u0) depends only on the thickness
and refractive index of the glass substrate.

The aberration in the wavefront at the FZP plane can be quantized as

Uðr02nÞ ¼
���u� u0ðr02nÞ þ ðu02 þ r22nÞ1∕2 � ðu2 þ r022nÞ1∕2

���: (5.17)

Typical cases were considered as discussed earlier. The element was
designed for a wavelength l¼ 633 nm, a substrate thickness t¼ 1050 mm, and
refractive index ng¼ 1.5. In case 1, u¼ 5 mm and v¼ 30 mm, while in case 2,
u¼ 30 mm and v¼ 5 mm. A plot of the wavefront shape just before entering
the glass substrate, the wavefront shape at the FZL plane in the presence and
absence of glass substrate, and the aberration function U as a function of its
radial coordinate are shown in Figs. 5.7(a) and (b) for cases 1 and 2,
respectively. From Fig. 5.7, it is found that the wavefront with aberration
diverges more than the wavefront without aberration.

Figure 5.7 Plot of wavefront shapes at z¼ –t (solid line), z¼ 0 without glass substrate
(dashed line), z¼ 0 with glass substrate (dotted line), and aberration function U (dashed
and dotted line) for (a) u¼ 5 mm and v¼ 30 mm and (b) u¼ 30 mm and v¼ 5 mm
[part (a) reprinted from Ref. 26].
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From Figs. 5.7(a) and (b) it can be noted that the wavefront aberration is
severe in the case where the object distance is closer to the thickness value of
glass substrate, and vice versa. Hence, the wavefront aberration will be much
higher when the optics configuration is more compact with u¼ 1 mm and
v¼ 5 mm.19,20 The plots of the locations of the virtual sources as a function of
the radial distances for case 1 and case 2 are shown in Figs. 5.8(a) and (b),
respectively. The virtual source is not only shifted from the real source, but it
also has a finite spread. The limiting value of the shift occurs at r¼ 0, which
can be obtained from Eq. (5.16). The limiting values for case 1 and case 2 are
4.650 mm and 29.650 mm, respectively. The spatial spread of the virtual
sources for case 1 and case 2 are 7.65 mm and 0.22 mm, respectively. Once
again, it is shown that when the focal distances are much larger than the
thickness of glass plate, the introduced error is less.

Ray tracing was carried out for these two cases. The MATLAB code for
performing the ray tracing is given in Table 5.2. The ray tracing figures are
shown in Figs. 5.9 and 5.10 for case 1 and case 2, respectively. The magnified
images of the focusing regions are shown and indicate the spread of the virtual
sources.

By comparing Fig. 5.9 with Fig. 5.10, it is clear that the effect of
aberration is less when the object distance is much larger than the thickness of
glass plate, and vice versa. By using Eq. (5.8), it is possible to locate the
position of the images for the cases with and without the glass substrate. To
estimate the location of the image in the presence of the glass substrate, the
variable u can be replaced by the location of the virtual source u0. Plots of the
variation in the image distance as a function of the radial distance are shown
in Fig. 5.11 and Fig. 5.12 for case 1 and case 2, respectively.

The aberration measured as the shift in the image plane is around 14 mm
in case 1, amounting to an error of 46% in the location of the image, while it is

Figure 5.8 Plot of the locations of virtual sources as a function of radial distance for
(a) case 1 and (b) case 2 [part (a) reprinted from Ref. 26].
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only 10 mm with negligible error in case 2. The spreads of the image points in
case 1 and case 2 are 350 mm and 0.3 mm, respectively. The analysis can be
repeated by performing ray tracing for both cases. Ray tracing is repeated
using the procedures shown in Tables 5.1 and 5.2. Results with and without
the glass substrate for case 1 and case 2 are shown in Figs. 5.13 and 5.14,
respectively. It can be seen that the second case the shift in the image plane is
very small (10 mm). The spread is also relatively smaller.

Table 5.2 MATLAB code for ray tracing from the real and virtual source to the FZP plane.

%%program to perform ray tracing from the real and virtual source
%to the FZP plane
% Input Parameters

u¼5000;%Object distance
t¼1050;%Thickness of glass plate
ng¼1.5;%Refractive index of glass plate
na¼1;%Refractive index of air
N¼na/ng;%Refractive index ratio
U¼u*u;

% Calculating the angles of rays and location of real/virtual
%source
for r¼1:1000;

RR(r)¼r*r;
D(r)¼(sqrt(1þ(U/RR(r))));
A(r)¼(((u-t)/u)*r);
B(r)¼asin(N/D(r));
r1(r)¼A(r)þt*tan(B(r));
u1(r)¼u*(r1(r)/r);
R1(r)¼sqrt(u*uþr*r)-u;
R3(r)¼sqrt((u-t)*(u-t)þr*r)-(u-t);
R2(r)¼sqrt(u1(r)*u1(r)þr1(r)*r1(r))-u1(r);
delR(r)¼R1(r)-R2(r);
delu(r)¼(u-u1(r));
ratio(r)¼r1(r)/r;
theta(r)¼r1(r)/u1(r);
theta1(r)¼r/u;

end
% Ray Tracing and plotting of results
for r¼1:100:1000;
for x¼1:u1(r)þ1;

y(x)¼x-1;
r11(x)¼(x-1)*tan(theta(r));

end
plot(yþ(u-u1(r)),r11,’k’,’LineWidth’,1)
hold on
end
for r¼1:100:1000;
for x¼1:uþ1;

y(x)¼x-1;
r12(x)¼(x-1)*tan(theta1(r));

end
plot(y,r12,’–k’)
hold on
end
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From the above observations it can be noted that for larger optics
configurations with object and image distances much larger than the thickness
of glass substrate, aberrations are less pronounced, while aberrations are quite
severe in compact optics configurations. Aberrations can also be studied in an
alternative way by fixing the object and image distances and varying the
refractive index or the thickness of the glass plate. Using this method will
result in the same conclusion. However, in real applications, it is necessary to
design FZPs with compact optics configurations. In such cases, if the glass
substrate is not taken into account, the DOE may introduce severe

Figure 5.9 Ray tracing of the rays emanating from the real source (dashed line) and virtual
source (solid line) generated due to the glass substrate for case 1 (reprinted from Ref. 26).

Figure 5.10 Ray tracing of the rays emanating from the real source (dashed line) and
virtual source (solid line) generated due to the glass substrate for case 2.
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aberrations in the system, severely affecting performance. In such cases, it is
necessary to cancel the aberrations introduced by the glass substrate.

5.3 Aberration Correction Schemes

Numerous correction schemes are available to overcome the aberrations due
to a glass substrate. A pre-distortion pattern can be used to compensate for
this type of aberration.21,22 Alternatively, the pupil size of the objective lens
can be varied.23 In Refs. 21 and 22, the aberration correction was carried out
using low-resolution spatial light modulators (SLMs), while in Ref. 23, the
corrections was carried out using objective lenses and a variable pupil.

Figure 5.11 Plot of the position of the image for different radial distances in case 1
(reprinted from Ref. 26).

Figure 5.12 Plot of the position of the image for different radial distances in case 2.
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In some cases, a deformable mirror membrane may be used to correct the
aberration.24 In Ref. 24, the type of aberrations introduced are not anticipated
and, therefore, require real-time correction techniques using SLMs or other
active devices. In the case of a glass substrate, the aberration is quantifiable
a priori and can be dealt with in a passive manner. Several simple techniques
to compensate such aberrations exist.25–27

In this section, two schemes for cancellation of aberrations introduced due
to the finite thickness of the glass substrate are presented. In the first scheme,

Figure 5.13 Ray tracing of the rays from the FZP plane without the glass plate (dashed
line) and with the glass plate (solid line) for case 1 (reprinted from Ref. 26).

Figure 5.14 Ray tracing of the rays from the FZP plane without the glass plate (dashed
line) and with the glass plate (solid line) for case 2.
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the thickness and refractive index of the glass substrate are included in the
design of FZP. In the second scheme, a pre-calculated magnification error is
deliberately added during fabrication to compensate for the effect of the
substrate.

5.3.1 Aberration correction by inclusion of a glass substrate

The presence of a glass substrate generates a virtual source that is spatially
shifted from the real source and also has a finite spread, whose position is
related to the radial distance in the FZP. A closer look at Figs. 5.6, 5.9, and
5.10 shows that in the finite conjugate mode, the presence of the substrate
imitates the action of an axilens (described in Chapter 3 and further discussed
in Chapter 7). In the case of an axilens, a plane wave is brought to focus at
different focal planes, whose positions depend on the radial distances of the
incident beam. Hence, if an axilens is designed for the finite conjugate mode,
its behavior will imitate the above case of a FZP with a glass substrate.

In the first scheme, the aberration correction will be carried out by
designing an axilens whose object planes are given by u0 [Eq. (5.16)].
Therefore, the equation of radii of the zones of the aberration-corrected FZP
can be given by Eq. (5.6) by replacing the location of the real source u with the
virtual source u0. The modified equation of radii of zones is given by

r0n ¼
	

C0
1
2 � 4u0ðrnÞ2v2

4½u0ðrnÞ2 þ v2 þ C0
1�



1∕2
, (5.18)

where C0
1 ¼ n2l2 þ 2nlu0ðrnÞ þ 2nlvþ 2u0ðrnÞv.

The radii of zones of the FZP are calculated for the design values u, v,
and l. The location of the virtual source u0 is calculated from Eq. (5.16),
which is substituted in Eq. (5.18). The radii of the FZP are calculated for the
above two sets of design values. The plots of the radii of a FZP with and
without aberration correction are shown in Figs. 5.15 and 5.16 for case 1 and
case 2, respectively.

The radii of zones of the FZP whose design includes the thickness and
refractive index of the glass substrate are smaller than those of the zones of the
FZP designed without inclusion of glass substrate. In a FZP, the widths of the
zones radially decrease away from the center. So rays of light incident away
from the axis (i.e., with larger angles) require smaller widths of zones to
diffract and bring them to focus at one location. An essential point to be noted
is that it appears that the rays passing through the glass substrate have smaller
angles compared to the rays passing through air if the glass plate is not
present. Therefore, it is expected that the FZP will have larger widths of zones
compared to the FZP designed without inclusion of glass substrate. On the
contrary, the glass substrate shifts the rays toward the center; as a result,
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smaller widths of zones are required compared to the case when the glass plate
is not present.

Figure 5.16 shows a good overlap between the plots of the radii of zones
of the FZP designed with and without inclusion of the glass substrate, as the
aberration introduced in this case is much smaller. The rays are traced from
the FZP plane to the image plane. After aberration correction, the magnified
image of the image plane shows no aberration, as expected. The ray tracing

Figure 5.15 Plot of the radii of zones of a FZP designed without (solid line) and with
(dashed line) inclusion of a glass plate for case 1 (u¼ 5 mm and v¼ 30 mm) (reprinted from
Ref. 26).

Figure 5.16 Plot of the radii of zones of a FZP designed without (gray line) and with
(dashed line) inclusion of a glass plate for case 2 (u¼ 30 mm and v¼ 5 mm).
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image with higher magnification (as seen in the horizontal axis) is shown in
Figs. 5.17 and 5.18 for case 1 and case 2, respectively. The above results
indicate that this aberration correction method has completely cancelled the
aberration introduced by the glass substrate.

5.3.2 Aberration correction during fabrication

In an alternative method, aberration correction is carried out by deliberately
introducing pre-calculated fabrication errors. FZPs can be fabricated using
different lithography techniques such as photolithography,18 electron beam
lithography,19,20 and ion beam lithography.28 Different fabrication errors are

Figure 5.17 Ray tracing of the rays from the FZP plane with a glass plate after aberration
correction for case 1 (reprinted from Ref. 26).

Figure 5.18 Ray tracing of the rays from the FZP plane with a glass plate after aberration
correction for case 2.
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associated with each of these techniques. One of the most common errors
occurring during fabrication when using photolithography is the magnifica-
tion error, which results from the gap between the mask plate and the
substrate during exposure.29

From Eqs. (5.3), (5.4), and (5.5), the phase of the FZP can be given as

FFZP ¼ Fout �Fin ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ v2

p
þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ u2

p
¼ constþ 2 mp, (5.19)

where k¼ 2p/l. The constant can be estimated by substituting m¼ r¼ 0:

FFZP ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ v2

p
þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ u2

p
¼ kðuþ vÞ þ 2 mp: (5.20)

In an ideal situation, i.e., in the absence of any errors in design,
fabrication, and testing, the phases of the input and output waves are the same
as those of Fin and Fout, respectively. However, in a practical system, this will
not be the case. The aberrations or errors can be measured with respect to an
output reference wave given by

FRðx,yÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ v2

q
: (5.21)

The phase aberration function is defined as the difference between the phase
of the reference and the phase of the output waves, and is given by

FA ¼ Fout �FR ¼ FFZP þFin �FR

¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrMrÞ2 þ v2

q
þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrMrÞ2 þ u2

q
� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ u2

p
� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ v2

p
,

(5.22)

where, Mr¼R0/R is the radial magnification, R0 is the radius of the fabricated
device, and R is the expected radius of the device. This aberration function can
be used for calculating the fabrication error. The phase aberration function
for different values of radial magnification Mr (0.9 to 1.1 in steps of 0.05) is
plotted in Fig. 5.19. The phases of the reference wave and the wave with
aberration are plotted in Fig. 5.20.

From Figs. 5.7, 5.19, and 5.20, it can be seen that a wavefront with radial
magnification error less than 1 has aberration opposite to that introduced by
the glass substrate. It therefore ought to be possible to cancel the substrate
aberration by introducing a specific magnification error during fabrication of
the device. This can be achieved with the introduction of a pre-calculated gap
between the substrate and the mask plate. The phase aberration function
becomes

FA ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrMrÞ2 þ v2

q
þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrMrÞ2 þ u2

q
� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ u02

p
� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ v2

p
: (5.23)

Equation (5.23) is minimized and the value of Mr is calculated as 0.969 for
case 1. Ray tracing is performed again to verify the degree of aberration
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correction, as shown in Fig. 5.21. It can be noted from this figure that
this aberration correction scheme (i.e., introduction of magnification error
during fabrication) prevents only the shift of the image plane and not the
spatial spread, which is approximately 200 mm for the given experimental
parameters. This scheme can be applied to case 2 as well, and a similar effect
will be observed.

Figure 5.19 Phase aberration function plotted as a function of radial distance for radial
magnifications Mr¼ 0.9 (solid line), Mr¼ 0.95 (dashed and dotted), Mr¼ 1.05 (dashed line),
and Mr¼ 1.1 (dotted line) (reprinted from Ref. 26).

Figure 5.20 Phase of the wave plotted as a function of radial distance for radial
magnifications Mr¼ 0.9 (solid line), Mr¼ 0.95 (dashed and dotted line), Mr¼ 1 (thick line),
Mr¼ 1.05 (dashed line), and Mr¼ 1.1 (dotted line) (reprinted from Ref. 26).
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5.3.3 Discussion

From the above observations, it is obvious that the aberration introduced by a
glass substrate is more pronounced when the thickness of the glass plate is on
the order of the front focal distance. This aberration is, of course, negligible in
the infinite conjugate mode or when the front focal distance is much larger
than the thickness of the substrate. While this correction may seem attractive,
one should keep in mind that configurations with higher magnification will
also have larger aberration. The optics configuration given in case 1 is more
practical and at the same time has a high magnification of 6 (v/u). This results
in an image plane shift of 14 mm. If the magnification of the system were
reduced, say from 6 to 1 (i.e., u¼ v), the aberration would also reduce. If u¼
v¼ 5 mm, the image plane shift would be less than 500 mm, which has only
10% error; if u¼ v¼ 30 mm, the image plane shift would be only 350 mm,
which is only 1% error. Hence, by suitable choice of the front focal distance
and the magnification of the system, it is possible to make the aberration
effect almost negligible.

5.4 Aberration Analysis in Fabrication and Experiments for FZPs

The aberration characterization described in Section 5.2 can also be used to
characterize other aberrations that may occur during experiments. A few of the
common errors that occur during experiments are considered for evaluation.

5.4.1 Error in object location along the z direction

The variation in the image location and size due to an error in the location of
the object along the z direction is considered. Using Eq. (5.22), the shift in the

Figure 5.21 Ray tracing of rays emanating from the FZP plane to the image plane for case
1 (reprinted from Ref. 26).
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location of the image plane is plotted for an error of �500 mm in object
distance, as shown in Fig. 5.22 for case 1. The FZP with aberration correction
for the glass substrate is designed and the radii of zones are calculated. The
error in the image distance is calculated by solving v for different values of the
object distances u and for the radii of zones calculated for u¼ 5 mm. The
MATLAB code for this aberration correction is given in Table 5.3.

Figure 5.22, shows that the optics configuration is highly sensitive to
errors. For an error of –500 mm, the image location varies as much as 70 mm,
while for an error of þ500 mm, the image location shifts by only 10 mm. This
asymmetry can be easily understood from the basic thin lens equation (1/uþ
1/v¼ 1/f), which is a rough approximation (paraxial) of the design. Assuming
that the translational stage has a resolution of 10 mm along all the three axes,
the expected error in the location of image plane is ,0.5 mm. The variation in
magnification (v/u) of the system due to the change in image distance and an
error in object distance is plotted as shown in Fig. 5.23. The 1/e2 diameter of
the spot varies with the error in the magnification of the system and the
diffraction-limited spot. The variation of the 1/e2 diameter of the spot for an
error in the object position is plotted as shown in Fig. 5.24, assuming that the
1/e2 diameter at the waist is 5.5 mm. The spot size varies from 72 mm to
279 mm for an error of –500 mm, while it varies from 42 mm to 72 mm for an
error of þ500 mm. For an error of a 10-mm shift that can occur with the 3-axis
stages, the error in the spot size is around 1 mm.

The above analysis was repeated for a case without a glass plate and
aberration correction. It was found that the aberration-corrected system is
more sensitive to errors compared to the case without a glass plate. As
discussed earlier, the high sensitivity is due to the facts that (1) the object
distance is closer to the thickness of glass plate and (2) the magnification of

Figure 5.22 Plot of the location of the image plane (solid line) and error in image plane
(dotted line) for variation in object distances.
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the system is high. The same procedure may be repeated for case 2, and the
effect of aberration with variations in image distance, magnification, and 1/e2

diameter of the beam may be studied.
In the above cases, only one variation was estimated: the variation in

image location and size due to an error in the object position. It is however
necessary to include the aberration introduced in the system, as the system
was designed for one set of u and v values but was implemented using a
different set of u and v values. This not only causes a shift but also introduces
a blur that can be understood from the earlier descriptions. The ray tracing at
the image plane for errors of –500 mm and 500 mm are shown in Figs. 5.25(a)
and (b), respectively.

Table 5.3 MATLAB code for analysis of aberration due to error in object location along the
z direction.

%%program to analyze the aberration due to error in object
%location in z direction
% Input Parameters

u1¼5000; % Object distance in micrometers
v¼30000; % Image distance in micrometers
l¼0.632; % Wavelength in micrometers
t¼1050; % Thickness of glass substrate in micrometers
na¼1; % Refractive index of air
ng¼1.5; % Refractive index of glass
n¼1; % Zone number
a¼n*n*l*lþ2*n*l*(u1þv)þ2*u1*v;
r¼sqrt(((a*a)-4*u1*u1*v*v)/(4*(aþu1*u1þv*v))); %Radius of
first zone before aberration correction
theta¼atan(r/u1);
rr¼r*((u1-t)/u1);
r1¼rrþt*tan(asin(na/ng*(sin(atan(r/u1)))));
u2¼u1*(r1/r);
a1¼n*n*l*lþ2*n*l*(u2þv)þ2*u2*v;
rr¼sqrt(((a1*a1)-4*u2*u2*v*v)/(4*(a1þu2*u2þv*v)));
% Radius of first zone after aberration correction

%Error calculation
s¼1:1000;
u4¼s-501;
u¼5000þu4(s);
u3¼u(s).*(r1/r);
b¼(4*n*n*l*lþ8*n*l.*u3(s)-4*rr*rr);
c¼(4*n^3*l^3þ12*n*n*l*l.*u3(s)þ8*n*l.*u3(s).*u3(s)-
8*rr*rr*n*l-8*rr*rr.*u3(s));
d¼(n^4*l^4þ4*n*n*l*l.*u3(s).*u3(s)þ4*n^.3*l^3.*u3(s)-
4*rr*rr.*u3(s).*u3(s)-4*rr*rr*n*n*l*l-8*rr*rr*n*l.*u3(s));
v1¼(-c(s)þsqrt(c(s).*c(s)-4.*b(s).*d(s)))./(2.*b(s));
ve¼abs(v1(s)-v);

%Display results
plot(u4,v1/1000)
hold on
plot(u4,ve/1000,’r’)
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5.4.2 Error due to a shift in the location of zones

A FZP is designed using computer-aided design (CAD) software and later
fabricated using a lithography system. Let us consider the case when the radii
of zones are radially shifted inward or outward. We assume that the average
shift in the location of zones introduced in the system during design and
fabrication is around 100 nm. The simulation is carried out assuming that the
zones are randomly shifted inward or outward by 100 nm while some zones
are not shifted. Ray tracing was performed to understand the aberration in the
image plane, as shown in Fig. 5.26. The ray tracing image is shown in
Fig. 5.26. There is a shift of 2 mm on either side, corresponding to the shift in

Figure 5.23 Plot of the magnification of the optics configuration for variation in object
distances.

Figure 5.24 Plot of the location of the 1/e2 diameter (solid line) and error in the 1/e2

diameter (dotted line) for variation in object distances.
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location of zones by �100 nm. This aberration will result in increase of spot
size in the image plane, resulting in a blur.

5.4.3 Error due to a lateral shift in the object location

Ideally, during evaluation of the element, the element’s center is aligned with
the center of the source. In this section, the effect of misalignment of the
source’s center with the element’s center in the image location is analyzed.
There is definitely a spot blur at the image plane, but in this section, only the
shift in location of the image in the image plane is considered. The object
position is shifted as high as �500 mm and the impact on the image plane is
analyzed. The magnification of the system is 6.4 (v/u0). The image shift is given

Figure 5.25 Ray tracing of rays emanating from the FZP plane when the object distance
has an error of (a) –500 mm and (b) 500 mm.

Figure 5.26 Ray tracing of rays emanating from the FZP plane when the zones are radially
shifted by �100 nm with random zone number.
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by the product of the object location shift and the magnification of the system,
which gives an approximately linear relationship between the image and
object location shift, as plotted in Fig. 5.27.

5.4.4 Error in resist thickness and duty ratio

In earlier sections, errors relating to the image size and image profile, and the
transverse and longitudinal shift in the location of the image were analyzed. In
particular, we looked at errors caused by the location of the object and a
mismatch between design and fabrication. In this section, the variation in the
efficiency values due to an error in the thickness of the resist is analyzed. The
efficiency of a diffractive system is defined as the ratio of the optical power in
the first diffraction order to the total optical power incident on the system.
The diameter of the device is selected such that there is .98% throughput
(neglecting Fresnel reflection losses). The efficiency of the system can be
estimated for different values of phase height using the Fourier coefficients of
the system, as was described in previous chapters. A plot of the normalized
intensity in the 0th, 1st, and 2nd diffraction orders as a function of the error in
resist thickness is shown in Fig. 5.28.

Another error in fabrication that is highly sensitive to the development
time and the electron beam dose is the duty ratio. The effect of the duty ratio
error on the efficiency of the 1st diffraction order is shown in Fig. 5.29. The
duty ratio error is varied from 0% to 20%, and the efficiency in the 1st

diffraction order is calculated. It is found that for an error of 10%, the
efficiency drops by 2.5%, while it drops by 10% for an error of 20% in the duty
ratio. The simulation was carried out assuming no error in the resist thickness
value. The MATLAB codes for design of DOEs with varying duty ratio are
given in Chapter 2.

Figure 5.27 Plot of image shift from the optical axis in the image plane for a variation in the
object shift from the optical axis in the object plane.

115Substrate Aberration Correction Techniques and Error Analysis

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5.5 Conclusions

In the above analysis, different types of errors and their influence on various
parameters are studied independently. To characterize an optics configura-
tion, it is necessary to understand the cumulative effect of all of the above
errors.

For instance, the thickness of the resist and the element duty ratio control
only the efficiency of light in various diffraction orders but do not have any
influence on the shift of image plane or blur of spot. The location of zones and
experimental errors do not affect the efficiency of the device but introduce
aberrations such as image plane shift along the longitudinal or transverse
directions and blur.

Figure 5.28 Plot of the normalized relative intensity of the 0th (dashed line), 1st (solid line),
and 2nd (dotted line) diffraction orders as a function of error in resist thickness.

Figure 5.29 Plot of the normalized relative intensity of the 1st diffraction order for different
percentages of error in the duty ratio of the resist.
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The above procedure has been used to demonstrate different types of
errors in a simple FZP designed in finite conjugate mode. Most of the
discussion on error analysis of FZPs, such as fabrication errors, applies to
other DOEs as well. One of the parameters to be analyzed in the case of a
simple DOE such as a grating or an axicon is the error in the period of the
element. This simple analysis can be carried out using the grating equation
and trigonometry. By applying the same method and modification of
MATLAB codes, the aberration analysis can be easily extended to analyze
a FZP in other configurations, such as the infinite conjugate mode, as well as
other DOEs. By using the techniques described, it is possible to characterize
and correct most of the anticipated errors during design, fabrication, and
evaluation. Some of the aberrations such as the magnification error during
fabrication can be used to our advantage to cancel other aberrations present
in the system. There are other aberrations as well that are opposite to another
and that can be engineered for perfect cancellation.

5.6 Exercises

E.5.1 Design a ring FZP in finite conjugate mode and perform the aberration
correction for the glass substrate on which it is fabricated.

E.5.2 Design an FZP that includes aberration correction to compensate for
the ring holder (made from a polymer) on which it is mounted. The polymer
ring has a thickness of 2000 mm, refractive index of 1.5, and radii of
r1¼ 500 mm and r1¼ 700 mm. The FZP has dimensions of u¼ 30 mm and
v¼ 5 mm, and the glass substrate thickness is t¼ 1 mm. The schematic is
shown below.

E.5.3 Design an FZP to be fabricated on a glass substrate, whose thickness
varies from 1 mm to 2 mm over a radial distance of 1 mm. Compare the radii
of zones with those of an FZP designed to be fabricated on a glass substrate
with a constant thickness of 1 mm. Note: In this way, it is possible to include a
refractive phase with a diffractive element.
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Chapter 6

Multifunctional Diffractive
Optical Elements

Multifunctional DOEs are elements that can simultaneously perform various
optical operations. The terms multifunctional and multiplexed diffractive
optics come under the same category. Multiplexing refers primarily to spatial
as well as wavelength multiplexing, where it is possible to encode several
functions on the same element but extract one specific behavior at a time. In
the case of phase multiplexing, however, rather than extracting one single
behavior from the element independently, several functions can be combined
and accessed simultaneously. Although, the above definition is used more
commonly in computer-generated holograms (CGHs), we will use the same
terminology to talk about diffractive optical elements.1,2 Multifunctionality
due to tenability—achievable, for example, when the DOE is created with a
SLM or using micro-electromechanical systems (MEMSs)—was not taken
into account in this chapter. However, all of the multifunctional static DOEs
described in this chapter can also be created using a SLM.

There are various types of phase-multiplexed DOEs. One well-known
multiplexing technique is to use multiple DOEs or ROEs with different
functions.3 Reports of beam shaping using multiple DOEs have been
published.4,5 Bandpass filters with two DOEs fabricated as two layers have
also been reported.6 In some cases, it is necessary to construct hybrid optical
elements such as refractive–diffractive7–9 or reflective–diffractive10 combina-
tions for different applications. While the above constructions are possible,
there are many concerns that must be duly noted. In the case of multiple
DOEs or ROEs, the optics configuration becomes bulky. The many optical
components introduce problems during optical alignment and increase the
overall weight of the system. In the case of hybrid DOEs, fabrication of the
device is quite complex, as it involves fabricating high-resolution DOEs on
curved surfaces.

Alternative techniques were developed to create multiplexed DOEs
by combining the phase functions of two DOEs or a DOE and a ROE.11–15
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In this case, the device is designed and fabricated as a single element,
thereby, reducing the size and weight of the system and eliminating the
problems associated with optical alignment. However, the efficiency of the
multiplexed DOE is diminished when it is designed using certain techniques.
The practice of combining two functions in a composite DOE leads to the
development of some interesting properties, which will be discussed in detail
in this chapter.

Two techniques, namely, the modulo-2p phase addition technique and the
analog technique for designing multifunctional or composite DOEs are
presented. These are used for design of amplitude-only DOEs,12,13 phase-only
DOEs,11 and hybrid DOEs with both amplitude as well as phase variations.15

Structures can be either binary or have blazed phase profiles.

6.1 Modulo-2p Phase Addition Technique

As the name suggests, the modulo-2p phase addition technique is a simple
technique for combining two phase functions. The phase addition of two
phase functions, F1 and F2, using modulo-2p phase addition technique is
given by

F ¼ ½F1 þF2�2p. (6.1)

Considering two binary phase profiles, phase addition can be achieved by the
well-known X-OR (exclusive OR) binary operation. You may recall that this
technique was introduced in Chapter 2 for construction of a checkerboard
phase grating. The simplest multifunctional DOE is a checkerboard grating,
which can simultaneously split light in both the x and y directions. Using the
X-OR technique, any two binary DOEs can be combined. Before applying
this technique to other DOEs, we present the procedure for combining DOEs
using the modulo-2p phase addition method and the advantages of this
method.

6.1.1 Comparison of a multifunctional binary DOE with two binary
DOEs in tandem

In order to understand the advantages of the modulo-2p phase addition
method, we compare the functioning of two DOEs in tandem with that of a
multifunctional DOE. The basic differences between two DOEs and a single
DOE can be easily realized. Advantages such as reduced space requirements
and optical alignment are obvious. A deeper analysis, however, reveals
additional advantages.

A 2D grating, denoted by F1Dþ1D, was created by placing two 1D
gratings FG1 and FG2 one after the other but orthogonal to each other. The
period of both the gratings is assumed to be equal. The phase of the 2D
grating is then given by
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F1Dþ1D ¼ FG1 þFG2, (6.2)

where the phase functions of the two gratings are given by

FG1ðx,yÞ ¼
(
F1 0 ≤ x ≤ L

2

0 L
2 ≤ x ≤ L

FG1ðxÞ ¼ FG1ðxþ LÞ, (6.3)

FG2ðx,yÞ ¼
(
F2 0 ≤ y ≤ L

2

0 L
2 ≤ y ≤ L

FG2ðyÞ ¼ FG2ðyþ LÞ, (6.4)

where L is the period of the grating.
In general, F1,2¼pþ d1,2, where d1,2 denotes the phase error in gratings

FG1 and FG2, respectively. For simplicity, let us assume that d1� d2¼ d. This
is not an unreasonable assumption, as such phase errors occur due to resist
thickness, which is calibrated and fairly uniform. In this case, it is assumed
that the regions corresponding to a phase value of 0 have no resist remaining
after exposure of the resist to e-beam or ultraviolet (UV) light and after
development of the resist. The phase addition of the fundamental units of two
1D gratings with orthogonal periodicity given by Eq. (6.2) can be understood
from Fig. 6.1. The phase profiles have four combinations, namely, C1, C2,
C3, and C4. Phase addition shows that the resulting element has three distinct
phase values in its fundamental building block. The four combinations are
given in Table 6.1.

Let us consider the case with the modulo-2p phase addition method. The
phase profile of a 2D grating generated by modulo-2p phase addition of two
1D gratings with orthogonal periodicity can be given by

F2DG ¼ ½FG1 þFG2�2p. (6.5)

The phase profile of a 2D grating (checker board grating) has only two phase
values, 0 and pþd. The fundamental building blocks of a 2D checkerboard

Figure 6.1 Phase addition of two orthogonal 1D gratings in tandem each with an error of d
in their phase heights (reprinted from Ref. 16).
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grating after design and after fabrication are shown in Figs. 6.2(a) and (b),
respectively.

Let us now compare the fundamental building blocks for the two cases in
Figs. 6.1 and 6.2. In the first case, it can be observed that the design procedure
of modulo-2p phase addition indirectly masks 25% of the area of the
fundamental building block from any phase error.16,17 In the case of a 2D
grating, from the Fourier coefficients calculation shown in Chapter 2, we have
seen that the maximum efficiency possible in the (�1, �1) diffraction order is
16%. The relative intensity is the ratio of the intensity of light in a particular
diffraction order to the intensity of the incident light, and in this case it can be
given by (I�1/Ii). The relative intensity of the (�1, �1) diffraction order is
plotted as a function of phase error in Fig. 6.3 for the above two cases.

A third case is considered that involves two 1D gratings with orthogonal
periodicity in tandem, but it is assumed that the phase error is 0 in only one of
the gratings. The other useful advantage of having a single DOE generated via
the modulo-2p phase addition method over having two independent DOEs is
now clearly visible. The variation in the relative intensity in the (�1, �1)
diffraction order is relatively slower for the multifunctional DOE compared to
two independent DOEs. It is seen from Fig. 6.3 that the 2D grating generated
by modulo-2p phase addition method behaves like two 1D gratings with
phase error in only one of the gratings. This is a consequence of masking off
regions by the design used in the modulo-2p phase addition method.

In the above analysis, the performance of two binary DOEs in tandem
was compared to a single binary DOE generated by the modulo-2p phase
addition of the phase profiles of the two binary DOEs. Although the

Table 6.1 Phase values of the fundamental building blocks of two 1D
gratings with orthogonal periodicity in tandem.

Combination FG1 FG1 F2D

C1 0 0 0
C2 0 pþ d pþ d

C3 pþ d 0 pþ d

C4 pþ d pþ d 2d

Figure 6.2 Phase profiles of the fundamental building blocks of a 2D grating (a) after
design and (b) after fabrication (reprinted from Ref. 16).
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comparison was made with binary DOEs, the modulo-2p technique can be
utilized to combine the functions of two or more binary DOEs, one binary
DOE with a blazed DOE, two blazed DOEs, as well as phase and amplitude
DOEs. In the following sections, the techniques and MATLAB® codes for
combining the aforementioned types of DOEs are discussed.

6.1.2 Design of multifunctional DOEs

In this section, we look at the design procedure for designing multifunctional
DOEs by combining DOEs with different functions using modulo-2p phase
addition method. To begin, let us consider the simplest case, similar to the one
shown in Section 6.1.1 for combining two binary DOEs using the modulo-2p
phase addition technique to generate a multifunctional binary DOE. The
procedure, in fact, is similar to the design procedure given in Chapter 2 for
designing a checkerboard grating. In this case, let us consider combining a
circular grating with a 1D grating. The phase profile of circular grating (with
period L1) and a 1D grating with periodicity L2 along the y direction are given
by Eqs. (6.6) and (6.7), respectively:

FCGðrÞ ¼
(
p 0 ≤ r ≤ L1

2

0 L1
2 ≤ r ≤ L1

FCGðrÞ ¼ FCGðrþ L1Þ, (6.6)

F1Dðx,yÞ ¼
(
p 0 ≤ y ≤ L2

2

0 L2
2 ≤ y ≤ L2

FG2ðyÞ ¼ FG2ðyþ L2Þ. (6.7)

Figure 6.3 Plot of relative intensity in the (�1, �1) diffraction order for different phase errors
in the gratings for three cases: case 1 is two orthogonal binary gratings in tandem with phase
error in both gratings; case 2 is a 2D checkerboard binary grating; and case 3 is two orthogonal
binary gratings in tandem with phase error in one of the gratings (reprinted from Ref. 16).
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The phase of the multifunctional DOE can be given by

Fm ¼ ½FCG þF1D�2p. (6.8)

Let us consider the design of a multifunctional DOE containing the
functions of a binary circular grating with period L1¼ 50 mm and a binary
1D grating with periodicity along the y direction with a period L2¼ 25 mm.
The MATLAB code for designing this multifunctional DOE is given in
Table 6.2.

The phase profile of the multifunctional DOE is shown in Fig. 6.4(a).
The far-field diffraction pattern—calculated as discussed in earlier
chapters using the fft2 command—is shown in Fig. 6.4(b). The far-field
diffraction pattern of a circular grating is a ring pattern due to circular
symmetry. The 1D grating acts as a beamsplitter splitting light into
different orders. When these two DOEs are combined, the resulting
multifunctional DOE generates multiple ring patterns with intensity values
corresponding to the intensity values of the diffraction spots of the 1D
grating. The 1D grating directs 40% of the light into each of the two first
diffraction orders, and the rest of the light is directed into the higher orders
for F1D ¼p. Now, with the presence of the circular grating, the diffraction
spots are rings with �50% of the light in the 1st order. Hence, for the
combined element, the final efficiency is the product of the individual
efficiencies; i.e., 40%��50% of the light gets distributed along the

Table 6.2 MATLAB code for design of a multifunctional DOE from a circular grating and a
1D grating.

%Multifunctional DOE – CG and 1D grating
clear; %Clear all memory
% Defining Grating Parameters

N=500; %Define Matrix sizes
A1=zeros(N,N); %Define Matrices by assigning 1 to all pixels
A2=zeros(N,N);
P1=50;%Define the period of the binary axicon grating
P2=25;%Define the period of the 1D grating
FFr=0.5;%Define fill factor for radial periodicity
FFy=0.5;%Define fill factor for periodicity along y direction

% Constructing the grating
x=1:N;
y=1:N;
[X,Y]=meshgrid(x,y);
r=sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A1(rem(r,P1),P1*FFr)=1;
A2(rem(Y,P2),P2*FFy)=1;
A3=exp(1i*pi*xor(A1,A2));
A3(r.150)=0;

%Observing the grating output in the far-field
E=fftshift(fft2(A3));
I=(abs(E)/(N*N)).*(abs(E)/(N*N));
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circumference of the ring for FCG ¼p. In other words, the combined DOE
has an effective efficiency of only �20%.

The ring patterns having the same radii and with varying intensity values
correspond to the different diffraction orders of the 1D grating. The larger
ring patterns [seen as faint circles in Fig. 6.4(b)] surrounding the first ring
patterns are the higher orders of the circular grating. Higher orders are not
visible when using ‘colormap (gray)’ due to their poor intensity. However, it
is possible to view even the lower-intensity profiles by choosing a different
colormap.

In the above case, only two DOEs were combined. However, the same
procedure can be extended to combine more DOEs. For instance, one could
combine two orthogonal 1D gratings and a circular grating. This is same as
combining a 2D grating (checkerboard) with a circular grating. The
MATLAB code can be modified to first generate the binary phase profile
of a 2D grating from two binary 1D gratings, followed by the generation of
the phase profile of the binary multifunctional DOE from the phase profiles of
the binary 2D grating and the circular grating. In this combination, the
multifunctional DOE will generate four ring patterns along both the x and y
directions, each with an intensity of 16% � �50% of the input light and ring
patterns with less intensity corresponding to the higher diffraction orders of
the 2D grating. Hence, the effective efficiency in the (�1, �1) order of the 2D
grating and 1st order (þ1 and –1 combined) of the circular grating is only
�8%. The circular grating has a period L1¼ 50 mm, and the binary 1D
gratings have periodicity L2x¼ 25 mm and L2y¼ 25 mm in the x and y
directions, respectively. An image of the phase profile of the 2D phase-
modulated circular grating and its far-field diffraction pattern are shown in
Figs. 6.5(a) and (b), respectively. The four ring patterns correspond to the

Figure 6.4 (a) Image of the phase profile of the multifunctional DOE designed by modulo-
2p phase addition of a 1D grating (period¼ 25 mm) with a circular grating (period¼ 50 mm).
(b) Far-field diffraction pattern of the multifunctional DOE designed by modulo-2p phase
addition of a 1D grating with a circular grating.
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(�1, �1) diffraction orders of the 2D grating and the þ1 and –1 combined
order of the circular grating.

The radius of the ring pattern and the spacing between the ring patterns
can be determined in both of the above cases using the grating equation and
trigonometry, as discussed in Chapter 2. The radius of the ring pattern is
given by

r ¼ z tan
�
sin�1

�
l

L1

��
. (6.9)

Equation (6.9) can be used to determine the spacing between the spots by
replacing L1 with L2. The radius of the ring pattern and the spacing between
the ring patterns at a distance of 50 mm is found to be 632 mm and 2.5 mm,
respectively.

The above procedure can also be extended to combine two binary DOEs
such as an FZP and different gratings, which can be used to generate 2� 2,
3� 3 arrays of focused spots, etc., using the modulo-2p phase addition
method. Array generation is required in applications that demand identical
spots or patterns repeated along the x and y directions. One such application
is micro-drilling using an axicon array.18 A well-known element used for array
generation is the Dammann grating.19,20

Using the above technique, it is also possible to tailor the intensity of
different spots. Arrays of focused spots and ring patterns can also be easily
generated by using an array of identical FZPs and circular gratings,
respectively. However, there are many advantages to using a multifunctional
DOE to generate the array compared to using an array of identical DOEs.
First, in the case of DOEs containing an array of elements, different sections
of the input beam are incident upon different elements, which may result

Figure 6.5 Image of the phase profile of the multifunctional DOE designed by modulo-2p
phase addition of two orthogonal 1D gratings (period¼ 25 mm) and a circular grating
(period¼ 50 mm). (b) Far-field diffraction pattern of the multifunctional DOE designed by
modulo-2p phase addition of two orthogonal 1D gratings with a circular grating.
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in discrepancy, as most light sources have a Gaussian intensity profile. Secondly,
in the case of micro-lenses, the field of view is decreased, and the spot size
increases. Lastly, it is difficult to fabricate such arrays with high precision in their
relative positions due to the drift that is inherent in electron beam and focused ion
beam systems. Hence, in many applications it is advantageous to use
multifunctional DOEs instead of DOE arrays. However, multifunctional DOEs
generate arrays whose direction of propagation is not parallel to one another but
at some angle, which may introduce some asymmetry in the outermost spots.

From the above presentation and MATLAB code, we can see that it is
easy to design a binary multifunctional DOE from the phase profiles of two or
more binary DOEs. One of the main disadvantages is the decrease in efficiency
with the increase in the number of elements. In case 1, where a 1D grating is
combined with a circular grating, the effective efficiency is �20%, which
reduced to �8% when another 1D grating is added. One method to solve the
efficiency problem is to use blazed versions of the devices instead of binary
ones.

Let us consider combining a binary DOE with a blazed DOE. The
procedure is similar to the one given in the previous section except that the
multifunctional DOE cannot be designed by a simple X-OR operation. The
combination of the two DOEs still follows Eq. (6.1). Consider the addition of
a blazed FZP and a binary 1D grating.21 The phase profile of the blazed FZP
is given by

FFZPðrÞ ¼
�
2p
l

�
f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � r2

q ��
2p
, (6.10)

while the phase profile of a binary 1D grating is given by Eq. (6.3).
The phase of the multifunctional DOE can be generated by the modulo-

2p phase addition of Eqs. (6.10) and (6.3), as given by Eq. (6.2) or Eq. (6.8).
The FZP is designed with a focal length of f¼ 10 mm with l¼ 633 nm, and
the period of the 1D grating is Lx¼ 200 mm. The MATLAB code for
designing a multifunctional DOE containing the functions of a blazed FZP
and a binary 1D grating is shown in Table 6.3.

The phase profile of (1) a blazed FZP, (2) a binary 1D grating, (3) a
multifunctional DOE after normal addition of phase profiles of a FZP and
a binary 1D grating, and (4) a multifunctional DOE after modulo-2p
addition of phase profiles of a FZP and a binary 1D grating are shown in
Figs. 6.6(a)–(d), respectively.

In this case, the resulting multifunctional DOE is expected to have a
higher efficiency compared to its binary version. The FZP has a blazed phase
profile; hence, only one diffraction order has 100% theoretical efficiency,
while the binary grating has an efficiency of 40% in its �1 diffraction order.
Therefore, the effective efficiencies in the 1st diffraction order of the FZP and
the �1 diffraction order of the 1D binary grating are 40% each.
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Figure 6.6 Plot of phase profiles of (a) a blazed FZP, (b) a binary 1D grating, (c) a
multifunctional DOE after normal addition of phase profiles of FZP and 1D grating, and
(d) binary 1D grating and multifunctional DOE after modulo-2p addition of phase profiles of
FZP and binary 1D grating at y¼ 250 (adapted from Ref. 21).

Table 6.3 MATLAB code for design of a multifunctional DOE from a blazed FZP and a 1D
grating.

%Multifunctional DOE – Blazed FZP and 1D grating
clear;%Clear all memory
%Define grating and FZP parameters

N=500;%Define Matrix size
f=10000;
lambda=0.632;
P=200;
FFy=0.5;
A1=zeros(N,N);%Define the matrices assigning ones to all pixels
A2=zeros(N,N);
A3=zeros(N,N);

%Grating and FZP construction
x=1:N;
y=1:N;
[X,Y]=meshgrid(x,y);
r=sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A1=(f-sqrt(f*fþr.*r))*(2*pi)/(0.632);
A2(rem(Y,P),P*FFy)=pi;
A=rem(A1þA2,2*pi);
B1=exp(1i*A1);
B2=exp(1i*A2);
B3=exp(1i*A);
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Let us now repeat the procedure to combine a binary 2D checkerboard
grating with a blazed circular grating.22 The periods of the blazed circular
grating and 2D checkerboard gratings are L1¼ 50 mm and L2¼ 200 mm,
respectively. The MATLAB code is similar to the code shown in Table 6.3,
except that the phase profile of the FZP must be replaced with that of a blazed
circular grating, and the phase profile of 1D grating must be replaced with
that of a checkerboard grating. An image of the phase profile of a
multifunctional DOE containing the functions of a blazed circular grating
with a checkerboard grating is shown in Fig. 6.7(a). The far-field diffraction
pattern of the multifunctional DOE generates 4 ring patterns with 16%
efficiency each, as shown in Fig. 6.7(b). The ring pattern does not have the
multiple diffraction orders of the pattern in Fig. 6.5, as the axicon is blazed in
this case. However, there are multiple ring patterns due to the 2D grating.

This procedure can be repeated to combine any blazed DOE with one or
more binary DOEs. In this way, high-efficiency, multifunctional DOEs can be
generated.

When combining two blazed DOEs, the procedure is similar to the design
procedure given in the previous section. However, the output of the DOE is
very different, as there is only one diffraction order for both of the DOEs; as a
result, the multifunctional DOE also has only one diffraction order. Hence, it
is possible to obtain a high efficiency close to 100%. The MATLAB code for
combining a blazed circular grating with a blazed 1D grating with periods
L1¼ 25 mm and L2¼ 10 mm, respectively, is shown in Table 6.4. Phase
profiles of the blazed circular grating, the 1D blazed grating, and the
multifunctional DOE are shown in Figs. 6.8(a)–(c), respectively. An image of
the phase profile of the multifunctional DOE is shown in Fig. 6.9(a), and the
far-field diffraction pattern is shown in Fig. 6.9(b).

Figure 6.7 (a) Image of the phase profile of a multifunctional DOE generated by combining
the phase functions of a blazed circular grating and a 2D binary checkerboard grating.
(b) Far-field diffraction pattern of the same multifunctional DOE.
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The multifunctional DOE generates tilted Bessel-like beams in its near
field and a shifted ring pattern in its far field.23,24 If the multifunctional DOE
is binarized, multiple ring patterns will be generated corresponding to the
various diffraction orders of the circular and 1D gratings.

Finally, let us consider the design of multifunctional DOEs that contain
the functions of a blazed and an amplitude DOE. Such elements have proven
to be useful for some applications.25,26 In this case, let us consider combining

Figure 6.8 Phase profiles of (a) a blazed circular grating, (b) a blazed 1D grating, and (c) a
multifunctional DOE.

Table 6.4 MATLAB code for design of a multifunctional DOE from a blazed circular grating
and a blazed 1D grating.

%Multifunctional DOE – Blazed circular grating and blazed 1D
%grating clear
% Clear all memory
%Define grating parameters

N=500;%Define Matrix size
Pr=25;
Px=10;

%Blazed axicon and grating construction
x=1:N;%Sampling
y=1:N;
[X,Y]=meshgrid(x,y);
r=sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
P1=rem(r,Pr); %Construction of blazed axicon
A1=(P1/Pr)*2*pi;
P2=rem(X,Px);%Construction of blazed 1D grating
A2=(P2/Px)*2*pi;
A=rem(A1þA2,2*pi); %Modulo-2pi phase addition of the two phase
%profiles
B=exp(1i*A);
B(r.150)=0;
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the functions of an amplitude FZP with a blazed spiral phase plate. The
MATLAB code for generation of the phase profile of this multifunctional
DOE is shown in Table 6.5. The image of the phase profile of the
multifunctional DOE is shown in Fig. 6.10.

Figure 6.9 (a) Image of the phase profile of the multifunctional blazed DOE containing the
functions of a blazed circular grating and a blazed 1D grating. (b) Far-field diffraction pattern
of the same multifunctional blazed DOE.

Table 6.5 MATLAB code for design of a multifunctional DOE from a blazed spiral phase
plate and an amplitude FZP.

%Multifunctional DOE – Blazed circular grating and blazed 1D
%grating clear;
%Clear all memory
%Define grating parameters

N=500; %Define Matrix size
M=32; %Define number of zones
A1=zeros(N,N); %Define Matrices by assigning 0 or 1 to all
%elements
r1=zeros(M,M);
r=zeros(N,N);
f=3000; %Define focal length and wavelength (in micrometers)
lambda=0.633;
L=1;%Define topological charge

% Construction of the spiral FZP
for n=1:M; %Calculate the widths of the zones

r1(n)=sqrt(n*f*lambda);
end
for n=1:2:M; %Scan element by element using two for loops

for p=1:N;
for q=1:N;

r(p,q)=sqrt((p-N/2)*(p-N/2)þ(q-N/2)*(q-N/2));
if r(p,q) . r1(n) && r(p,q) , r1(nþ1);

A1(p,q)=exp(1i*L*(atan2((q-N/2),(p-N/2))));
end

end
end

end
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6.1.3 The composite effect of multifunctional DOEs

In the previous section, the design of different types of multifunctional DOEs
was discussed in detail. The number of orders and, therefore, the maximum
efficiency, was different in each case, depending on the profiles of the input
functions. In Section 6.6.1, the advantages of multifunctional DOEs in terms
of space, efficiency, resistance to errors, etc., are discussed. It is interesting to
look at the other effects that arise due to combining two DOEs using the
modulo-2p phase addition method. For example, we know that, individually,
each DOE is highly sensitive to changes in wavelength. What happens to the
combined element? To answer this, we will look at the combination of a FZP
with a 1D grating and study the combined DOE and each individual DOE
separately.

When light is incident on a multifunctional DOE, the DOE focuses light
at a distance that is the focal length of the FZP and simultaneously splits light
into spots corresponding to the different diffraction orders, namely, �1, �3,
etc., of the grating. From the grating diffraction equation and trigonometry,
the spacing between the 0th diffraction order and the �1st diffraction order is
given by

dðlÞ ¼ lf ðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � l2

p . (6.11)

The variation in the focal length f of the FZP with variation in wavelength is
given by

f ðlÞ ¼ r2n � n2l2

2nl
. (6.12)

Assuming that L≫ l, the spacing between the spots is directly
proportional to the variation in wavelength per Eq. (6.11). This means that

Figure 6.10 Image of the phase profile of a multifunctional DOE containing the functions of
an amplitude FZP and a blazed spiral phase plate.
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at a particular plane, when the wavelength varies, the spacing between the
diffraction spots varies linearly with wavelength. According to Eq. (6.12),
assuming that r2n ≫ n2l2, the focal length is inversely proportional to the
variation in wavelength. These equations, therefore, tell us that d and f change
in opposite ways with respect to the wavelength. Now let us combine
Eqs. (6.11) and (6.12) by substituting Eq. (6.12) in Eq. (6.11), giving rise to

dðlÞ ¼
�

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � l2

p
��

r2n � n2l2

2nl

�
. (6.13)

After applying the assumptions that L≫ l and r2n ≫ n2l2, Eq. (6.13)
reduces to

dðlÞ ¼
�

r2n
2nL

�
. (6.14)

Equation (6.14) does not depend on the wavelength. In other words, the
spacing between the spots is independent of the wavelength. How does this
independence come about? When the wavelength of light increases, the
spacing between the diffraction spots increases at the plane that is a focal
length distance away. On the other hand, when the wavelength of light
increases, the focal length of the multifunctional DOE decreases. This results
in the diffraction spots being focused at a plane that is closer to the DOE
plane when compared to the situation before the wavelength change. Hence,
these two effects cancel each other out, rendering a wavelength-independent
spot spacing. There is an alternate way to think about this effect. In the case of
a diffraction grating, when wavelength increases, the spacing between the
spots increases, and vice versa, at a particular plane of interest. However,
when the diffraction grating is used together with a FZP, the location of the
plane of interest is controlled by the FZP and varies to compensate for the
change in the spot spacing. This effect, when regarded from the application
point of view, proves quite useful. If the 1D grating is replaced by a binary
axicon in the multifunctional DOE, a focused ring pattern will be generated at
the focal plane of FZP. The ring pattern with a static ring diameter can be
moved in space just by varying the wavelength of light. Although the ring
diameter stays constant, the focal plane position changes; therefore, such
combined elements can be said to be quasi-achromatic.

The above effect is valid only when the features of the grating and the
FZP are much larger than the wavelength of light used, or in other words,
when both of the DOEs are scalar (refer to Chapter 1). It is also useful to note
that the above effect is true for only the 1st diffraction order.

What happens for the higher diffraction orders? Modifying Eq. (6.11) to
represent the 2nd and 3rd orders yields Eqs. (6.15) and (6.16), respectively:
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dðlÞ ¼ 2lf ðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 4l2

p , (6.15)

dðlÞ ¼ 3lf ðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 9l2

p , (6.16)

When the diffraction order increases, the denominator becomes more
dependent on the wavelength of the light. As a result, the wavelength
dependence cannot be neglected as before. However, for gratings with very
large periods, the abovementioned quasi-achromatic behaviour can be found.
Another way to understand this is that the higher order corresponds to higher
diffraction angles that arise only from narrower periods. Hence, in a way, a
higher diffraction order of a grating with a larger period is equivalent to the 1st

diffraction order of a grating with a smaller period.
Let us consider a FZP designed with a focal length of f¼ 30 mm and a 1D

grating with a period of L¼ 50 mm. Using Eq. (6.12), the variation in focal
length is plotted as a function of wavelength, as shown in Fig. 6.11. A plot of
the spacing between the spots for the same wavelength range for the 1D
grating alone and the multifunctional DOE is shown in Fig. 6.12. This plot
shows that in the case of the multifunctional DOE, the variation in the spacing
between the diffraction spots increases only by a few nanometers, while the
variation is closer to 0.5 mm for the 1D grating.

Figure 6.11 Plot of the focal length of the FZP with variation in the wavelength of light
(Reprinted from Ref. 29).

136 Chapter 6

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



6.1.4 Conclusion

In Section 6.1, different types of multifunctional DOEs generated by the
modulo-2p phase addition are presented, and different diffractive features of
the combined DOEs are analyzed. The efficiency of binary multifunctional
DOEs is found to be less sensitive to phase errors. In the last section, the
wavelength-independent property arising due to combining two DOEs is
discussed. These interesting features can be used to our advantage in the design
and fabrication of DOEs for different applications. One important point should
not be overlooked when dealing with multifunctional DOEs: In the generation
of the phase profile of the multifunctional DOE, modulo-2p phase addition is
carried out on the phase profiles of the two or more independent DOEs. This
can give rise to subwavelength features, as seen in Figs. 6.4, 6.6, and 6.9. Such
features are quite difficult to fabricate, and diffraction by such features cannot
be explained by scalar diffraction formulation.

6.2 Analog Method

The analog method is similar to the technique described in Chapter 5 for
aberration correction in the design of a FZP. This section presents a way to use
the technique to design DOEs with multiple functions. This procedure is
equivalent to that presented in Section 6.1.4, where two blazed DOEs are
combined using the modulo-2p phase addition method. The principle can be
understood in the following way: In a diffractive element with circular symmetry,
the locations of the zones of the element control its behavior. Combining
functions can be thought of as changing the locations of the zones in a particular
way. In the aberration correction procedure, after inclusion of the glass substrate,
the efficiency of the FZP did not decrease. Hence, by using this technique, it is
possible to design binary multifunctional DOEs with higher efficiencies.

Figure 6.12 Plot of the spacing between the 0th and 1st diffraction order for the
multifunctional DOE (black line) and the 1D binary grating (gray line) with variation in
wavelength of light (reprinted from Ref. 29).
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To understand this technique, let us consider combining a refractive
negative axicon with a FZP. The path difference equation of a FZP in infinite
conjugate mode can be given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ r2

q
� f ¼ nl: (6.17)

When another function is added to this—for example, that of the negative
axicon X shown in Fig. 6.13—the equation will change to include the
additional phase provided by the axicon.

By combining the path difference profile of the negative axicon X with a
FZP, Eq. (6.17) can be modified as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ r2

q
� f ¼ nlþ Xlr

R
. (6.18)

The maximum path difference introduced by the negative axicon is Xl¼ (ng –
1)t, where ng is the refractive index of the negative axicon, and t is the
maximum thickness at r¼R.

The radii of the zones calculated using Eq. (6.18) is given as

rnDOE ¼ �B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
, (6.19)

where

A ¼
�
l2X 2 � R2

R2

�
,B ¼ 2lX

R
ðf þ nlÞ, and C ¼ ð2nlf þ n2l2Þ.

Let us consider a case where f¼ 5 mm and X¼ 5. The modulo-2p phase
profile of the multifunctional DOE is plotted in Fig. 6.14. The radius of zones
of the multifunctional DOE and the FZP are plotted as a function of zone
number in Fig. 6.15. From this figure it can be seen that the addition of the
phase profile of the negative axicon shifts the location of the zones of the FZP.
Equation (6.18) shows that the shift in the location of zones increases with the
path difference introduced by the negative axicon.

In the case of the modulo-2p phase addition method, subwavelength
features were introduced into the DOE; however, in the analog method, it is

Figure 6.13 Path difference profile of a negative axicon (reprinted from Ref. 16).
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noted that the presence of the DOE increases the zone width within the
diameter of the device. A closer look will reveal that this facility of larger
zone width at the outermost region has been created at the expense of the
f-number of the DOE. Therefore, after addition of the phase, if the device is
fabricated with the previous radius R, then the f-number of the device is less
than that of the FZP alone. Secondly, the efficiency of the DOE is preserved
as in the case of the aberration correction technique. The effective efficiency
of the binary multifunctional DOE is 40% (32% if it is through the modulo-
2p phase addition technique). When light is incident on the multifunctional
DOE, a focused ring pattern is formed at the focal plane of the FZP
function. The width of the ring pattern is given by 1.65� the diffraction-
limited spot size.27,28

The same procedure can be used to combine any refractive phase with any
DOE to generate a multifunctional DOE.

Figure 6.14 Phase profile of the multifunctional DOE containing the functions of a negative
axicon and a FZP.

Figure 6.15 Plot of the radius of zones of the multifunctional DOE with an FZP and a
negative axicon (solid line) and the FZP alone (dashed line) (reprinted from Ref. 16).
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6.3 Conclusions

In this chapter, the art of designing a multifunctional DOE by combining
one or more DOE functions is presented in detail. Two schemes, namely,
the modulo-2p phase addition method and the analog method, are
presented to combine two or more DOEs. The two main disadvantages
associated with the modulo-2p phase addition method are the poor
efficiency and the fine features that are generated during design. The fine
features decrease the focal depth of the device, and if they are
subwavelength, they introduce polarization effects as well. The analog
method seems to have higher efficiency and results in relatively easier
fabrication. This is because the feature sizes increase within the radius of
the element after inclusion of the refractive phase, although at the expense
of the f-number of the DOE. This increases the focal depth of the device
with an increase in the ring width. The width of the ring pattern is 1.65�
the diffraction-limited spot size.27,28

Table 6.6 provides a comparison of the characteristics of multifunctional
DOE created by three different techniques: (1) a circular grating (or axicon)
and a FZP in tandem, (2) a circular grating and a FZP combined by the
modulo-2p phase addition method, and (3) a circular grating and an FZP
combined by the analog method.

6.4 Exercises

E.6.1 Design a multifunctional DOE to generate a focused ring pattern with a
diameter of 1 mm at a distance of 30 mm from the DOE using both the
modulo-2p phase addition method29 and the analog method. Extract some
useful parameters. Assume that the fabrication system is capable of
fabricating DOEs with a maximum size of 2 mm� 2 mm.

E.6.2 Design a multifunctional DOE to make two signals with wavelengths of
l1¼ 600 nm and l2¼ 604 nm (with Gaussian profiles) that are propagating at
an angle of u¼þ5 deg and u¼ –5 deg with respect to the optical axis, to be
focused as Bessel intensity profiles with the central maximum half-width of

Table 6.6 Comparison of the characteristics of multifunctional DOEs created by three
different techniques: (1) a circular grating and a FZP in tandem, (2) a circular grating and a
FZP combined by the modulo-2p phase addition method, and (3) a circular grating and a
FZP combined by the analog method.

Multifunctionality achieved by
Maximum

Efficiency (%)
Fabrication

Ease Focal Depth
Ring width

size25

Two Independent Binary Elements 32 Easy Focal depth of FZP 1.65w
Modulo-2p phase addition 32 Difficult Less due to fine features 1.65w
Analog Addition 40 Easier Larger than FZP .1.65w

140 Chapter 6

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



20 mm, and propagating along the same direction from the DOE plane as
shown in the optical configuration given in the figure below.

E.6.3 Design a helical axicon containing the functions of a spiral phase plate
with charge L¼ 10 and an amplitude binary axicon with a period L¼ 10 mm
using the modulo-2p phase addition method. Calculate the far-field
diffraction pattern with an aperture having a 100-mm diameter.

E.6.4 Design a binary multifunctional DOE to generate a 2� 2 array of ring
patterns with a diameter of 200 mm and a 758-mm spacing between the centers
of the �1st diffraction order ring patterns. Choose the DOE and the
integration method to obtain a wavelength-independent ring diameter and
spot spacing when a shift in the focal plane is permitted.30,31
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Chapter 7

Computer-Generated
Holographic Optical Elements

In earlier chapters, designs of simple binary, multilevel, and blazed DOEs
using basic diffraction equations were presented. The proposed techniques
were suitable for design of DOEs only for simple applications such as array
generation, focusing, etc. On the other hand, DOEs generating arbitrary
intensity profiles at the Fourier plane can be designed using the IFTA. In this
chapter, an alternative method for beam shaping is presented using computer-
generated holographic (CGH) optical elements. The design of simple to
complex beam-shaping HOEs (holographic optical elements) is presented.

7.1 Fundamentals of CGHs

The name CGH arises from the holographic technique used to design these
elements. CGHs are nothing but processed interferograms obtained by the
superposition of two beams.1–3 In general, for the recording and reconstruc-
tion of HOEs, an object needs to be physically present.4–7 However, in the
case of CGHs, the interference experiment is simulated on a computer by
superposing two wavefields. The resulting interferogram is processed and used
for beam-shaping applications.

Holography was invented in 1948 by Dennis Gabor.1 It involves two
steps: recording and reconstruction. In the first step, the light diffracted from
an object is made to interfere with a reference wave, which in most cases is a
plane wave. The interference pattern is recorded on a photosensitive film. In
the second step, the developed photosensitive film (hologram), is illuminated
by the reference wave to generate the object wave. In this way, it is possible to
record and reconstruct 3D information of the object, unlike photography.
This technique can also be used to generate waves with interesting and useful
amplitude and phase profiles.5 The technical difficulties in recording a
hologram are similar to those of arranging any interferometer setup with
additional spatial filtering and intensity-controlling components such as
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neutral density filters (NDFs). CGHs can overcome the difficulties faced
when physically recording a hologram.8–11

The basic principle of the generation of any HOE involves the
superposition of two optical waves A1exp(jF1) and A2exp(jF2), and the
resulting interference pattern modulated as 2A1A2 cos(F1 –F2) is a HOE.1,8,9

In the case of CGHs, this interference is simulated, and the resulting fringe
pattern is processed and fabricated using lithography techniques or is printed
out on transparent sheets. The basic optics configuration for recording and
reconstructing a HOE is shown in Figs. 7.1 and 7.2, respectively.

The intensity of the interference pattern created by the superposition of
the object wave A1exp(iF1) and the reference wave A2exp(iF2) is given by

Figure 7.1 Optics configuration for recording the interference pattern (hologram) formed by
the superposition of an object wave with a reference wave.

Figure 7.2 Optics configuration for reconstruction of the object wave by illuminating the
hologram with the reference wave.
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Iðx,yÞ ¼ jA1ðx,yÞj2 þ jA2ðx,yÞj2 þ 2jA1ðx,yÞjjA2ðx,yÞj cos½F1ðx,yÞ �F2ðx,yÞ�.
(7.1)

The interference pattern is incident on a photosensitive recording medium,
and, upon development, the amplitude transmittance profile of the hologram
will match the intensity profile of the interference pattern. When illuminated
with the reference wave A2exp(iF2), the hologram generates the object wave
A1exp(iF1), and vice versa. During reconstruction, the object wave (real) and
its complex conjugate (virtual) are generated.

In the case of CGHs, the interference pattern generated by the computer is
converted into an equivalent phase profile and can be transformed into a
binary, multilevel, or grayscale profile that can be fabricated using
lithography techniques.

7.2 Design of Simple CGHs with MATLAB

The design of CGHs for simple cases such as 1D gratings to complex cases
such as forked gratings is presented. Unlike the design of DOEs discussed in
previous chapters, the design of CGHs is relatively simpler involving only
three steps, irrespective of the element’s complexity. The design algorithm of a
CGH is shown in Fig. 7.3.

There are, of course, other steps, such as binarization (or quadruplication,
etc.) and the verification step, where the diffraction pattern of the CGH is
simulated. The critical step is designing the amplitude and phase profile of
object and reference waves.

Figure 7.3 Algorithm for the design of a CGH.
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7.2.1 Design of 1D gratings

When two plane waves with uniform amplitude profiles—one propagating
along the direction of the optical axis and the other at an angle—are
superposed, the resulting interference fringes are a set of parallel lines,12

similar to the pattern of a 1D grating. These waves can be considered to be the
reference and object waves of the hologram, and a DOE can be designed with
a phase profile that matches their interference profile. When the resulting
hologram is illuminated with one of the plane waves, the other is generated.
The reference and object waves are assumed to have a constant amplitude
profile, and their equations at the interference plane are given by Eqs. (7.2)
and (7.3), respectively:

C1ðx,yÞ ¼ exp½2pj�, (7.2)

C2ðx,yÞ ¼ exp
�
j
�
x
l

�
tanðuÞ�2p

�
. (7.3)

As both waves are considered at a specific plane, the z dependence need not
appear in the equation. The plane wave propagates at an angle of u with the
z direction, so the tilted-plane wavefront makes an angle of u with the
x direction. Hence, the phase of the wave varies linearly along the x direction.
In the discussion presented in Chapter 2 on the refractive equivalents of DOEs,
it was shown that the refractive prism is equivalent to a diffractive grating.
A similar connection may be found in CGHs as well. To generate a 1D grating,
the phase profile variation along the x direction is the phase of a refractive
prism. The optics configuration is shown in Fig. 7.4, and the MATLAB code is
given in Table 7.1.

It can be noted from Eq. (7.3) that for larger values of u, it may be difficult
to view the fringe patterns, as the width of the fringe pattern can be less than
the smallest currently available pixel size of approximately 1 mm. Hence, in
order to expand the fringe pattern, the pixel size is decreased by several
factors. From Eq. (1.7) we find that the period of the grating corresponding to

Figure 7.4 Optics configuration for superposition of two plane waves propagating in
different directions.
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a diffraction angle u¼ 1 deg for the 1st diffraction order is L¼ 36.2 mm. The
period of the sinusoidal grating obtained from the MATLAB program is
36 pixels, which matches the calculated value.

The period of the grating is 3.6 mm if the angle between the two plane
waves is 10 deg. However, it is not possible to view 3.6 mm accurately with a
mesh of pixel size 1 mm. Hence, the sampling period must be decreased 10�,
resulting in a magnification of the fringe pattern. The nonbinarized
hologram (fringe pattern) generated due to the interference between two
plane waves, with an angle of 10 deg between them, and a cross section of its
intensity profile are shown in Figs. 7.5(a) and (b), respectively. The period of
the grating generated by MATLAB is 36 pixels. This has to be multiplied by
the sampling period, 0.1 mm in this case, to obtain 3.6 mm. The orientation
of the grating can be modified by changing the object waves’ propagation
direction.

7.2.2 Design of FZPs

A FZP is used for focusing light to a point. Hence, a hologram can be
generated by superposing a spherical wavefront with a plane wavefront,
similar to the method used in experiments involving Newton’s rings.12 The
reference and object waves are assumed to have a constant amplitude profile,
and their equations at the interference plane are given by Eqs. (7.4) and (7.5),
respectively:

C1ðx,yÞ ¼ exp½j2p�, (7.4)

Table 7.1 MATLAB code for the design of a 1D grating using the computer-generated
holographic method.

%%1D grating
%Define parameters
N=500;%%Define size of the matrix

Angle=1;%Define angle of the second plane wave
V=0.5;%%Visibility controller
lambda=0.632*1e-6;%Define wavelength

%Create sampled space
del=1*1e-6;%sampling
x=-N/2:N/2-1;
y=-N/2:N/2-1;
[X,Y]=meshgrid(x*del,y*del);

%Simulate interference
A=V*exp(1i*(Y/lambda)*tand(Angle)*2*pi);
B=V*exp(1i*2*pi);
D=A+B;%Interference of the object and reference wave
I=abs(D).*abs(D);

%%Construct grating
I1=im2bw(I);%Binarize the matrix
Grating=exp(1i*pi*I1);%Generate the phase grating
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C2ðx,yÞ ¼ exp
�
j
�
2p
l

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ ðx2 þ y2Þ

q �
. (7.5)

The optics configuration is shown in Fig. 7.6, and the MATLAB code is given
in Table 7.2.

The binarized hologram (fringe pattern) generated due to the interference
between a plane wave and a spherical wave, and a plot of its binary phase
profile are shown in Figs. 7.7(a) and (b), respectively. The radius of the first
zone is measured to be 154 mm, which matches the value calculated using the
formula given in Eq. (2.14). The same procedure can be used to design an FZP
for off-axis focusing light.

7.2.3 Design of diffractive axicons

A binary diffractive axicon can be designed by superposing a conical
wavefront with a plane wavefront. Once again, the reference and object waves

Figure 7.5 (a) Image and (b) intensity profile of the 1D sinusoidal grating.

Figure 7.6 Optics configuration for superposition of a plane wave with a spherical wave.
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are assumed to have a constant amplitude profile. The conical wave is
generated when a plane wave is incident normally on a refractive axicon. In
this case, a negative refractive axicon is considered. This conical wavefront
has linear variation of phase along the radial direction, resulting in an equally

Table 7.2 MATLAB code for design of a FZP using the computer-generated holographic
method.

%%Fresnel zone plate
%Define parameters

N=500;%%Define size of the matrix
Angle=1;%Define angle of the second plane wave
V=0.5;%%Visibility controller
lambda=0.632*1e-6;%Define wavelength

%Create sampled space
del=1*1e-6;%sampling
x=-N/2:N/2-1;
y=-N/2:N/2-1;
[X,Y]=meshgrid(x*del,y*del);
f=0.01; %Focal length of 1 cm

%Simulate interference
A=V*exp(1i*((2*pi)/(lambda))*sqrt(X.^2+Y.^2+f*f));
B=V*exp(1i*2*pi);
D=A+B;%Interference of the object and reference wave
I=abs(D).*abs(D);
figure (2)
colormap gray
imagesc(IN)

%%Construct FZP
I1=im2bw(I);%Binarize the matrix
Grating=exp(1i*pi*I1);%Generate the FZP

Figure 7.7 (a) Binarized fringe pattern and (b) plot of the phase profile of the FZP.
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spaced fringe pattern in this direction. The reference wave is identical to that
given in Eq. (7.4), and the equation for the conical wave at the interference
plane is given by

C2ðx,yÞ ¼ exp
�
j
�
2p
l

�
tanðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q �
. (7.6)

The optics configuration for superposition of a conical wave with a plane
wave is shown in Fig. 7.8. The MATLAB code is similar to that given in
Table 7.1 for a 1D grating, except that the object wave must be generated with
radial instead of linear (x or y) dependence. The code for design of the object
wave is shown in Table 7.3. In this case, it is necessary to increase the
sampling period to view the fringe pattern with larger diffraction angles,
similar to the procedure shown in the case of a 1D grating.

The image of the generated sinusoidal axicon is shown in Fig. 7.9. The
period of the measured grating is 36 mm, which matches the calculation result
for a diffraction angle of 1 deg.

The procedure presented here can be used to design any CGH, irrespective
of its phase profile, and the design section of the MATLAB code can be
modified to generate the fringe pattern.

7.3 Design of Multifunctional CGHs with MATLAB

The design and analysis of multifunctional DOEs are presented in
Chapter 5. This section will show that multifunctional DOEs can be

Figure 7.8 Optics configuration for superposition of a plane wave with a conical wave.

Table 7.3 MATLAB code for design of a diffractive axicon using the computer-generated
holographic method.

%Diffractive axicon
%Simulate interference
A=V* exp(1i*(sqrt(X.^2+Y.^2)/lambda)*tand(Angle)*2*pi);
B=V*exp(1i*2*pi);
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designed more easily using a holographic method. In the case of CGHs,
multifunctional elements can be realized by generating the interference
pattern between two object waves and reconstructing them using a plane
wave with uniform intensity.1,3 Figure 7.10 demonstrates this idea for a
hologram constructed by the interference of two tilted plane waves.
Reconstruction by an untilted plane wave generates a wave at an angle that
equals the sum of the angles of the two original tilted waves. From the
basic interference equation [Eq. (7.1)], let us consider the term of interest,
i.e., 2A1A2cos(F1 –F2), where F1 and F1 are the phase functions of the two
tilted plane waves. During reconstruction, if an untilted plane wave (F¼ 0)
is used, it generates a tilted plane wave whose phase profile is given by
(F1þF2). Using this method, CGHs can be used to generate interesting
integrated wavefronts. This idea of linearity can be used in numerous ways
in the design of CGHs.

The integrated field information can be extracted by reconstruction using
a constant phase and uniform intensity. A simple scenario has been illustrated
to explain the extraction of multifunctionality from a CGH. However, the
idea can be applied to different cases with varied geometries of recording and
reconstruction.

7.3.1 Design of 1D gratings

Two plane waves at angles �1 deg with respect to the propagation
direction are considered. The two plane waves at the interference plane are
given by

Figure 7.9 Image of the sinusoidal axicon generated by the superposition of a plane wave
with a conical wave of having a diffraction angle of 1 deg (reprinted from Ref. 33).
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C1ðx,yÞ ¼ exp
�
j
�
2p
l

�
tanðuÞx

�
, (7.7)

C2ðx,yÞ ¼ exp
�
j
�
2p
l

�
tanð�uÞx

�
. (7.8)

The MATLAB code given in Table 7.1 can be modified by replacing the
equation of the reference wave with that given in Eq. (7.8). The resulting
fringe pattern has a period of 18 mm, which will be the same when a plane
wave tilted 2 deg is superposed with a plane wave with no tilt.

7.3.2 Design of off-axis axicons

An off-axis axicon is used for the generating off-axis Bessel beams in the near
field and a tilted ring pattern in the far field.13,14 Upon binarization, the CGH
generates two ring patterns at �u in its far field. Using the same linearity

Figure 7.10 Hologram recording and reconstruction using a reference wave and a plane
wave.
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property, a CGH off-axis axicon can be designed by superimposing a conical
wave with a tilted plane wave. When the CGH is illuminated with an untilted
plane wave, it generates a tilted conical wave. The conical wave and tilted
plane wave can be described by Eqs. (7.6) and (7.3), respectively, at the
interference plane.

The MATLAB code is similar to that described earlier. The axicon is
designed for a diffraction angle of 1 deg. The tilt angles of the plane wave are
selected as 1 deg and 2 deg. Images of the binary off-axis axicons designed for
these tilt angles are shown in Figs. 7.11(a) and (b), respectively, and their
respective far-field diffraction patterns are shown in Figs. 7.11(c) and (d). The
distance between the two ring patterns indicates the diffraction angle; hence,
the distance is larger for a tilt angle of 2 deg compared to the distance with a
tilt angle of 1 deg.

Figure 7.11 Images of the off-axis binary axicons with tilt angles of (a) 1 deg and (b) 2 deg,
and (c), (d), their respective far-field diffraction patterns (reprinted from Ref. 33).
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The same procedure can be used to generate the phase profile of off-axis
axicons with different orientations. The same procedure can also be used
for generation of tilted beams with other types of CGHs such as an
off-axis FZP. The twin images occur because the phase profile is binary
(or sinusoidal) and can be reduced to one image by modifying the profile to a
blazed one.

7.3.3 Design of forked gratings

A spiral phase plate is used for generation of donut beams with helical
wavefronts as discussed in Chapter 3.15–17 However, manufacturing a spiral
phase plate is a challenging task; hence, in many cases, a CGH such as a forked
grating is used instead.18 Forked gratings are designed by the interference of a
helical wave with that of a tilted plane wave, given by Eq. (7.7). A helical wave
with uniform amplitude can be described at the interference plane by

C1ðx,yÞ ¼ exp½jLu�, (7.9)

where L is the topological charge, which is defined as the number of 2p phase
changes along the azimuthal direction within a distance of l. The MATLAB
code for generation of the phase profile of a binary forked grating is similar to
the codes given in Tables 7.1 and 7.2. The design of helical and reference
waves is given in Table 7.4. The images of the binary forked gratings for L¼ 1
and L¼ 3 are shown in Figs. 7.12(a) and (b), respectively. The charge number
is reflected in the number of lines in the fork, and the tilt angle is reflected in
the period of the grating. Binary forked gratings generate donut beams of
different diffraction orders in the far field. The zoomed-in far-field diffraction
patterns of forked gratings with topological charges L¼ 1 and L¼ 3 are
shown in Figs. 7.12(c) and (d), respectively. The higher orders are clearly
visible, while the 0th diffraction order is completely cancelled. The size of the
donut beam increases with the charge number, as expected.

7.3.4 Design of binary helical axicons

Helical axicons are used for the generation of higher-order Bessel beams
(HOBBs).19–21 A helical axicon can be generated by the interference between a
helical wave and a conical wave. Helical axicons can be designed as either
amplitude or phase HOEs, both yielding interesting results. When a

Table 7.4 MATLAB code for the design of a binary forked grating using the computer
generated-holographic method.

%Forked grating
L=1;
A=V*exp(1i*L*(atan2(Y,X)));
B=V*exp(1i*(2*pi/lambda)*tand(Angle)*Y);
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Laguerre–Gaussian beam generated by a spiral phase plate is incident on an
axicon, a HOBB can be generated.19,20 Hence, by generating a composite
element that has the functions of both the spiral phase plate and axicon, a
HOBB can be generated in just one pass. In the case of a phase CGH, the odd
and even zones are out of phase by p, generating a flower-shaped intensity
profile in its far field.22,23 As with the spiraling wavefront in the case of
HOBBs, the flower-shaped intensity profile rotates along the optical axis with
propagation distance. The helical wave and conical wave are given in
Eqs. (7.9) and (7.6), respectively. The MATLAB code is similar to the codes
for the above cases. The phase profile of a helical axicon (tilt angle u¼ 1 deg)
with topological charges L¼ 3 and L¼ 5 are shown in Figs. 7.13(a) and (b),
respectively. The corresponding far-field diffraction patterns are shown
in Figs. 7.13(c) and (d), from which it can be noted that the number of
petals corresponds to twice the topological charge L, as explained in
literature.24,25

Figure 7.12 Images of the binary forked gratings with tilt angle u¼ 1 deg and topological
charge (a) L¼ 1 and (b) L¼ 3, and (c), (d) their respective far-field diffraction patterns.
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7.3.5 Design of off-axis axilenses

As the name suggests, an axilens is an optical element whose behavior lies
between a FZP and an axicon, as discussed in Chapter 3.26,27 An axilens is
useful as it has a tailored focal depth with high lateral resolution. This is
unlike both the FZP, which has a point focus with a short focal depth, and an
axicon, which has a large focal depth. An off-axis axilens is designed by
superposition of a wave generated by an axilens with that of a tilted plane
wave. The equation of a wave generated by an axilens with a focal length of f0,
focal depth of Df, and radius of R is given by

C2ðx,yÞ ¼ exp
�
j
�
2p
l

��
f ðx,yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðx,yÞ2 � ðx2 þ y2Þ

q ��
, (7.10)

where

Figure 7.13 Images of the phase profile of the helical axicon with topological charges
(a) L¼ 3 and (b) L¼ 5, and (c), (d) their respective far-field diffraction patterns.
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f ðx,yÞ ¼ f 0 þ
�
Df
R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
. (7.11)

The equation of a tilted plane wave is given in Eq. (7.7). The MATLAB code
for design of the axilens is given in Table 7.5. The element is designed with
f0¼ 10 mm and Df¼ 3 mm, and the tilt angle u¼ 1 deg.

The binary phase profile of the generated CGH is shown in Fig. 7.14(a), and
its diffraction pattern is shown in Fig. 7.14(b). The diffraction pattern shows twin

Table 7.5 MATLAB code for design of an off-axis axilens using the holographic method.

%Off axis axilens
%Define parameters

N=500;%%Define size of the matrix
Angle=1;%Define angle of the second plane wave
V=0.5;%%Visibility controller
lambda=0.632*1e-6;%Define wavelength
L=3;
f0=0.01;
delf=0.003;

%Create sampled space
del=1*1e-6;%sampling
x=-N/2:N/2-1;
y=-N/2:N/2-1;
[X,Y]=meshgrid(x*del,y*del);
f=f0+delf*sqrt(X.^2+Y.^2);

%Simulate interference
A=V*exp(1i*((2*pi)/lambda)*(f-sqrt(f.*f-(X.^2+Y.^2))));
B=V*exp(1i*(2*pi/lambda)*tand(Angle)*Y);
D=A+B;%Interference of the object and reference wave
IN=abs(D).*abs(D);

(Continued )

Figure 7.14 (a) Phase profile of an off-axis binary axilens and (b) the far-field diffraction
pattern of the axilens.
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beams, as the phase profile of the CGH is either binary or sinusoidal. Otherwise,
the diffraction pattern is similar to that of an off-axis axicon, as expected.

7.3.6 Accelerating beams

Recently, beams that can propagate along curved paths (hence, known as
accelerating beams) have attracted attention due to their interesting properties
and prospective applications.28–31 The geometrical optics technique for design of
CGHs that generate accelerating Airy beams is presented in this section.32,33

An axicon is a conical prism that generates a 0th order Bessel-like beam.34,35

When an additional optical element is attached to the front surface of the axicon,
the path direction can be precisely controlled by the thickness or refractive index
profile of the beam path steering element (BPSE). The optics configuration for
focusing light propagating along the z direction using a refractive axicon is shown
in Fig. 7.15. The base angle and refractive index of the axicon are denoted as a1
and ng, respectively. The divergence angle b1 is estimated using trigonometry as

b1 ¼ ðng � 1Þa1. (7.12)

Figure 7.15 Optics configuration for focusing light using a refractive axicon (reprinted from
Ref. 33).

Table 7.5. Continued

figure (2)
colormap gray
imagesc(IN)

%%Construct FZP
IN1=im2bw(IN);%Binarize the matrix
Grating=exp(1i*pi*IN1);%Generate the Axicon
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The depth of focus is given as

DOF ¼ R tanb. (7.13)

If the BPSE is a thin prism with an angle a2 and refractive index ng as shown
in Fig. 7.16, then the input light is converted into a tilted 0th order Bessel-like
beam.

The path of the beam is precisely controlled by the properties (a1, ng, etc.)
of the thin prism. The thickness profile of a thin prism is given as

t1ðx,yÞ ¼ a1xþ b1y, (7.14)

where, a1 and b1 are the coefficients of the thickness profile of the thin prism.
The direction of propagation of the 0th order Bessel-like beam is then

given as

b2 ¼ ðng � 1Þa2. (7.15)

This case is similar to that presented in Section 7.3.2 on off-axis axicons,
where the CGH was designed by the interference of a conical wave with a
tilted-plane-wave CGH.

It is interesting to see what happens when the BPSE is a curved element, as
shown in Fig. 7.17. The thickness profile of the BPSE is given as

t2ðx,yÞ ¼ f 1ðxÞ þ f 2ðyÞ. (7.16)

A CGH for generation of accelerating Airy beams can be designed by
generating the interference between a conical wave and a curved wave with a
profile similar to that of the BPSE shown in Fig. 7.17. For demonstration,

Figure 7.16 Optics configuration for generation of a tilted Bessel-like beam using a
refractive axicon and a thin prism (BPSE) in tandem (reprinted from Ref. 33).
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the angle of the axicon is selected as 0.1 deg, and the thickness profile of the
BPSE is selected as

t2ðx,yÞ ¼ 10x0.5 þ 10y0.5. (7.17)

The MATLAB code is similar to that given in Tables 7.1 and 7.2. The design
section of the MATLAB code is shown in Table 7.6. The phase profile of the
CGH is shown in Fig. 7.18(a), and the far-field diffraction pattern is shown in
Fig. 7.18(b).

The two first diffraction orders result due to the binary or sinusoidal phase
profile of the CGH. The above procedure can be repeated to generate
accelerating Airy beams with interesting path profiles. As with any diffractive
element, the beam very close to the element is not easily accessible and hence
is not useful for many applications. Additionally, the intensity at each plane is
less because the light intensity is spread over the entire focal depth. These
issues can be resolved by replacing the axicon with an axilens.

Figure 7.17 Optics configuration for generation of an accelerating Airy beam using a
refractive axicon and a thin prism (BPSE) in tandem (reprinted from Ref. 33).

Table 7.6 MATLAB code for design of a CGH for generating accelerating beams.

%Accelerating beams
%Define parameters

N=500;%%Define size of the matrix
Angle=0.1;%Define angle of the second plane wave
V=0.5;%%Visibility controller
lambda=0.632*1e-6;%Define wavelength

%Create sampled space
del=1*1e-6;%sampling
x=-N/2:N/2-1;
y=-N/2:N/2-1;

(Continued )
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7.4 Multiple-Beam Interference CGH

Multiple-beam interference has many advantages, including its extremely
narrow interference maxima compared to that of two-beam interference.36

Fabrication of large-area devices using electron beam lithography, focused
ion beam lithography, and photolithography is difficult. In such cases, laser-
based multiple-beam or multiple-exposure interferometry is a viable solution
as long as the pattern is periodic.37 The technique described here is not for
fabrication but to verify the pattern generated by the different optical beams.
In general, for generation of an interference pattern with periodicity along one
direction, two optical waves are required. To generate a pattern with
periodicity along two directions, three optical waves are required, and so on.
Interference of four tilted plane waves is carried out to obtain periodicity
along two directions in this case. The four tilted waves are expressed by

Figure 7.18 (a) Image of the binary phase profile of the CGH generated by the interference
of a conical wave and a BPSE and (b) its far-field diffraction pattern (reprinted from Ref. 33).

Table 7.6. Continued

[X,Y]=meshgrid(x*del,y*del);
r=sqrt(X.^2+Y.^2);
A=V*exp(1i*(r/lambda)*tand(Angle)*2*pi);
B=V*exp(1i*(10*sqrt(Y/del+N/2)+10*sqrt(X/del+N/2)));
D=A+B;%Interference of the object and reference wave

%%Intensity profile
I=abs(D).*abs(D);
I1=im2bw(I);
AB=exp(1i*pi*I1);
% AB(r.100*del)=0;
E=fftshift(fft2(AB));
I2=(abs(E).*abs(E));
colormap(gray);%%Display result
imagesc(I2);
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C1ðx,yÞ ¼ exp
�
i
�
x
l

�
tanðuÞ�2p

�
, (7.18)

C2ðx,yÞ ¼ exp
�
i
�
x
l

�
tanð�uÞ�2p

�
, (7.19)

C3ðx,yÞ ¼ exp
�
i
�
y
l

�
tanðuÞ�2p

�
, (7.20)

C4ðx,yÞ ¼ exp
�
i
�
y
l

�
tanð�uÞ�2p

�
. (7.21)

For normalizing the matrices, a visibility factor of 0.25 is selected for each
optical wave. The MATLAB code for generation of an interference pattern
with 2D periodicity by the superposition of the above four optical wavefronts
is given in Table 7.7. The image of the interference pattern is shown in
Fig. 7.19(a). The procedure can be repeated by replacing the tilted-plane
wavefronts by other wavefronts with interesting profiles.38–41 The change in
the interference pattern when the orientation of two of the tilted plane waves
is varied is shown in Fig. 7.19(b). These interference patterns can have
subwavelength features and, hence, are useful as antireflection coatings and in
photonic crystal waveguide fabrication.42

Table 7.7 MATLAB code for generation of multiple-beam interference patterns.

%%Multiple beam interference
%Define parameters

N=500;%%Define size of the matrix
Angle=1;%Define angle of the second plane wave
V=0.25;%%Visibility controller
lambda=0.632*1e-6;%Define wavelength

%Sampling
del=1*1e-6;%sampling
x=-N/2:N/2-1;
y=-N/2:N/2-1;
[X,Y]=meshgrid(x*del,y*del);

%Simulate interference
A=V*exp(1i*(Y/lambda)*tand(Angle)*2*pi);
B=V*exp(1i*(X/lambda)*tand(-Angle)*2*pi);
C=V*exp(1i*(X/lambda)*tand(Angle)*2*pi);
D=V*exp(1i*(Y/lambda)*tand(-Angle)*2*pi);
I=A+B+C+D;%Interference of the object and reference wave

%%Intensity profile
IN=abs(I).*abs(I);
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7.5 Computer-Generated Amplitude Fourier Holograms

In earlier sections, the design of CGHs for different beam-shaping
applications was discussed. This section presents the design of a computer-
generated Fourier amplitude hologram to generate any arbitrary intensity
pattern. Let the object be a planar amplitude mask (j, h) plane called the
object plane. Let (x, y) be the hologram plane, which is at a distance f from the
object plane, where f is the focal plane of the lens. The amplitude
transmittance functions for the object and the reference waves are To(j, h)
and Tr(j, h) respectively. By applying the linearity theorem of Fourier
transforms, the two transmission functions can be added first, and the sum of
their wave fields at the image plane can be calculated as

Uðx,yÞ ¼ ejkf ej
k
2f ðx2þy2Þ

jlf

ðþ`

�`

ðþ`

�`

�
Toðj,hÞ þ Trðj,hÞ

�
exp

�
�j

2p
lf

ðxjþ yhÞ
�
djdh.

(7.22)
The reference beam is considered to be a plane wave with uniform

intensity in the hologram plane. The setup for recording and reconstruction of
a Fourier hologram includes a convex lens such that the hologram/image
plane is at the focal plane of the lens, as shown in Fig. 7.20. A point source is
chosen as the reference, which, upon Fourier transformation, yields uniform
illumination in the image plane.

The intensity distribution in the hologram plane is given by

I ¼ UU�. (7.23)

Figure 7.19 (a) Interference pattern obtained by the superposition of four tilted plane
waves described by Eqs. (7.18)–(7.21). (b) Interference pattern obtained by the
superposition of four tilted plane waves with different orientations.
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The transmission function T(x, y) of the hologram is proportional to the
intensity distribution. The reconstruction is performed by evaluating the
function T(x, y) using the Fraunhofer diffraction formula:

Uðx,yÞ ¼ ejkf ej
k
2f ðx2þy2Þ

jlf

ðþ`

�`

ðþ`

�`

�
Tðj,hÞ� exp

�
�j

2p
lf

ðxjþ yhÞ
�
djdh (7.24)

The result of the integration yields four terms. The first term corresponds
to the Fourier transform of a constant. The second term is the
autocorrelation function of the object wave with itself. The third and fourth
terms are of interest and correspond to the interference between the object
and reference waves from the point source.1 The steps for simulating the
recording and reconstruction of a Fourier hologram are presented in
Fig. 7.21.

Figure 7.21 Flow chart for simulating the recording and reconstruction of a Fourier
hologram.

Figure 7.20 Hologram recording setup (reprinted from Ref. 43).
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The reconstructed image shows two images of the object, one of which is
inverted, as expected. The image of the object can be easily created in
Microsoft PowerPoint or Paint. The MATLAB code for design of Fourier
holograms and their reconstruction is given in Table 7.8. The image of the
object is shown in Fig. 7.22(a). The image of the hologram is shown in
Fig. 7.22(b). The reconstructed images without and with filtering are shown in
Figs. 7.23(a) and (b), respectively.

The hologram can be used for the study of low- and high-pass filtering
computational experiments. In the hologram, the high spatial frequencies
of the object are at the outer parts due to high diffraction angles, and the
low spatial frequencies of the object are at the center. Hence, by zero
padding either the outer or inner regions of the hologram before
reconstruction, the areas of different frequency content can be identified.
The center part of the hologram (100 pixels� 100 pixels) is zero padded in
the first case, and the outer parts with length of 100 pixels are zero padded
in the second case. The results of reconstruction in each case are shown in
Figs. 7.24(a) and (b).

For the high-pass-filtered case, it can be seen that only the edges of the
letters are visible, indicating that light is diffracted at higher angles at the
edges and at lower angles in the center. In the case of low-pass filtering, the

Table 7.8 MATLAB code for the design of computer-generated Fourier holograms.

%Fourier Hologram
% Load the object and create the object and reference matrices

N=500;%Define the size of the matrix
A=imread(‘F:\IITM.jpg’,’jpg’);%Loading the image
A=double(A);
A=A(1:N,1:N);
A=imresize(A,[N,N]);
B=zeros(N,N);%Dirac delta function
B(250,250)=100;

%Calculate the far field diffraction patterns of the object and
%reference

A1=fftshift(fft2(A));%Calculate the diffraction pattern for
the object
I1=abs(A1).*abs(A1);
B1=fftshift(fft2(B));%Calculate the diffraction pattern for
the reference
I2=abs(B1).*abs(B1);

%Create the hologram by interfering the far field diffracted
%fields of object and reference

D1=A1+B1;
I3=abs(D1).*abs(D1);

%Filtering
I4=(I3-I1);%Filtering of autocorrelation term

%Hologram reconstruction
D2=fftshift(fft2(I4));
I5=abs(D2).*abs(D2);
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reconstructed image is slightly blurred, as the higher-frequency components
responsible for sharpness in the image are filtered out. The experiment can be
repeated by zero padding different regions of the hologram before
reconstruction. These experiments highlight a significant difference between
photography and holography. In photography, removal of a portion means
loss of information. However, in holography, all of the information can be
reconstructed with only a part of the hologram. Optical reconstruction of the
same can be carried out by binarizing the hologram, printing the hologram on
transparent sheets, and illuminating the sheets with the light from a laser
source in an optics configuration similar to that in Fig. 7.20.43,44

Figure 7.23 Reconstruction of the hologram (a) without filtering and (b) with filtering of the
autocorrelation factor.

Figure 7.22 (a) Image of the object used for the generation of the computer-generated
Fourier hologram and (b) image of the Fourier hologram obtained by the interference of the
object and reference waves.
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7.6 Computer-Generated Amplitude Fresnel Holograms

Fresnel holograms can be considered to be the superposition of multiple
FZPs. Hence, unlike Fourier holograms, Fresnel holograms do not require a
lens for reconstruction. They can be designed in a manner similar to that
presented in Chapter 3. The object plane is described using (j, h)
coordinates, while the hologram plane, which is at a distance z from the
object plane, has (x, y) coordinates. The amplitude transmittance functions
for the object and the reference waves are To(j, h) and Tr(j, h), respectively.
The diffracted light from the object plane can be described by the Fresnel
diffraction integral:

Uðx,yÞ ¼ ejkzej
k
2zðx2þy2Þ

jlz

ðþ`

�`

ðþ`

�`
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�
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(7.25)

Even though this equation is analytical, the calculation of the field is
achieved by a discrete or a fast Fourier transform. The diffraction field can be
written as

Uðx,yÞ ¼ 1
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(7.26)

Figure 7.24 Reconstructed images from the hologram after (a) high-pass and (b) low-pass
filtering.
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Comparing Eqs. (7.25) and (7.26) results in an interesting relationship:

N ¼ lz. (7.27)

Equation 7.28 shows that the distance z can be controlled by varying the
matrix size N. This also solves the problem of scaling, as Eqs. (7.25) and (7.26)
are equal. From Eq. (7.25), it can be understood that the Fresnel diffraction
calculation involves three steps. The object matrix must be multiplied by the
parabolic phase factor in the first step, followed by the Fourier transform
operation, and once again multiplication by the parabolic phase factor. The
reference wave is a plane wave; hence, a matrix with constant values can be
used to represent it. The hologram can be generated by adding the two
matrices and performing the filtering operations discussed in Section 7.3. The
computer reconstruction has to be done in the same sequence to obtain the
reconstructed image. The MATLAB code for the design of a Fresnel
hologram is given in Table 7.9. The image of the object is shown in Fig. 7.25.

Table 7.9 MATLAB code for the design of computer-generated Fresnel holograms.

%Fresnel Hologram
%Load object and create the object and reference matrices

N=500;% Define the matrix size
B=ones(N,N);%Reference wave
A=imread(‘C:\Vijayakumar\mesh.jpg’,’jpg’);%Loading the
%image
A=double(A);%Convert symbolic object to numeric object
A=A(1:N,1:N);
A=A/max(max(A));%Normalizing the matrix

%Sampling
del=1;%
x=-N/2:N/2-1;
y=-N/2:N/2-1;
[X,Y]=meshgrid(x*del,y*del);

%Calculate the Fresnel diffraction pattern of the object
A1=A.*exp(-1i*(pi/N)*(X.^2+Y.^2));
A2=fftshift(fft2(fftshift(A1)));
A3=A2.*exp(1i*(pi/N)*(X.^2+Y.^2));

%Create interference between the object and reference waves
H1=B+A3;%Interference pattern

%Filtering
I1=abs(A3).*abs(A3);
I2=abs(H1).*abs(H1);
H2=I2-I1;%Filtering
H2=H2/max(max(H2));%Normalizing the hologram

%Reconstruct the hologram
H3=H2.*exp(-1i*(pi/N)*(X.^2+Y.^2));
H4=fftshift(fft2(fftshift(H3)));
H5=H4.*exp(1i*(pi/N)*(X.^2+Y.^2));
H6=(abs(H5).*abs(H5));
H7=rot90(H6,2);
colormap(gray)%Display reconstructed image
imagesc(H7)
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The image of the hologram and the reconstructed image are shown in
Figs. 7.26(a) and (b), respectively. Using the same method, it is also possible
to design holograms for objects with depth information. Objects at different
distances can be realized by constructing them in matrices with different
numbers of pixels.45 During reconstruction, different objects will be
reconstructed at different distances.

7.7 Conclusions

The design of DOEs using the computer-generated holographic method is
discussed in detail. CGHs ranging from simple 1D gratings to recently
developed elements that generate accelerating Airy beams are covered. The
procedures discussed in this chapter can be used for designing CGHs to be

Figure 7.26 (a) Image of the hologram and (b) reconstructed image of the object.

Figure 7.25 Image of the object used for generation of the Fresnel hologram.
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used in a computational optics lab, to understand interferometers without any
physical optical setup, and for research or industry applications. A variety of
interesting experiments are possible using the given MATLAB codes. The
elements designs use only binary phase profiles. However, it is possible to
redesign the elements as multilevel or grayscale patterns in MATLAB.
Designs were presented with matrix sizes of only 500 pixels. Larger matrices
must be employed to achieve higher resolution. Computer-generated Fresnel
and Fourier holograms can be designed with minimal facilities. Amplitude
versions can be printed on transparent sheets for optical reconstruction at
low cost.

7.8 Exercises

E.7.1 Design a CGH that focusus a diverging wavefront with a wavelength of
633 nm emanating from a point source a distance 10 mm away from the CGH
plane to a point a distance 20 mm from the FZP plane.

E.7.2 Design an off-axis FZP with a focal length of 25 mm and a tilt angle of
3 deg for a wavelength of 633 nm.

E.7.3 Using the holographic method, design a modified axicon with two
angles a1 and a2 such that a1 is twice that of a2 as shown in the figure below.

E.7.4 Design a CGH that can generate a focused ring pattern with a radius of
100 mm at a distance of 5 mm when illuminated by a uniform plane wave.

E.7.5 Design a CGH that can generate a helical wave front with topological
charge L¼ 5 and focus it at a distance of 5 mm from the CGH plane.
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Chapter 8

Fabrication of Diffractive
Optical Elements

In earlier chapters, the design and analysis of simple and multifunctional
DOEs using different techniques are presented. In this chapter, pre-fabrication
techniques such as designing the lithography files, etc., and fabrication
techniques with basic fabrication recipes are presented. The fabrication of
micro-optical elements using photolithography has been studied for almost a
century, while electron beam lithography (EBL) and focused ion beam (FIB)
lithography are relatively new. Hence, for photolithography, only fabrication
recipes are provided with a brief explanation of the fundamentals.

The chapter is divided into four sections. In Section 8.1, the different
methods for designing lithography files are presented. The procedure for
fabrication of DOEs using photolithography, EBL, and FIB systems are
presented in Sections 8.2, 8.3, and 8.4, respectively.

8.1 Design of Lithography Files

Once the DOE is designed using the techniques described in the previous
chapters, the next step is to convert the DOE design data into the file format
that will be understood by the fabrication tool to be used. There are different
types of lithography file formats, such as Graphic Data System (GDSII™),
Drawing Exchange Format (DXF™), STereoLithography (STL), Caltech
Intermediate Format (CIF), etc., for fabrication of DOEs using the various
lithography systems.1 In most photolithography, EBL, and FIB lithography
systems, it is possible to create the DOE lithography files within the CAD
software provided with the system. This can be done using built-in basic
structures such as lines, boxes, and circles provided by the software. This
manual drawing method is easier if the DOE is a simple periodic structure such
as a grating. However, if the design is not linear, even something as simple as a
FZP becomes difficult to achieve. In a FZP, for example, the circular zones
have to be drawn one by one with different widths. If the FZP has a large
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number of zones, say, around 1000, then the procedure becomes tiresome and
time consuming, and the chances of making an error during design are high. In
some cases, such as multifunctional DOEs, it is not possible to create the DOE’s
design with the basic structures available in the software.

In advanced lithography systems such as the RAITH150TWO, Quanta™
400F (FEI), or the Quanta 3D FEG (FEI), to name a few, the CAD software
is fairly sophisticated. For example, it is possible to generate matrix copies in
the RAITH150TWO, which makes the design of periodic structures possible
with a single command. Additional Boolean operations such as OR, AND,
etc., also exist and are useful for designing multifunctional DOEs. In the case
of the Quanta 3D FEG, there is provision to load a bitmap file of a DOE
generated using another source, and this file can be scaled in the software
before fabrication. In older versions of some lithography systems, the DOE
design can be broken down and can be fabricated in sections. For instance, a
grating can be fabricated line-by-line. This technique is quite useful, as the
DOE patterning is possible with limited computational space and at the same
time with high resolution. The same technique can be extended to
multifunctional DOEs as well, by breaking them into a set of line data.

A major difference between a DOE design file created as an image file and
one created using CAD software is that in the former the circular objects are
piece-wise continuous, while in the latter they are polygons. As a result, the
file sizes are larger when they are created as image files. It is not
straightforward to create lithography files within MATLAB®. Hence, the
image files created using MATLAB are converted into lithography files using
software such as LinkCAD™. However, in software such as Python™, it is
possible to directly create output files in a lithography format such as GDSII.

8.1.1 Lithography file generation with LinkCAD

The MATLAB codes given in the earlier chapters for the design of binary
DOEs can be used to design DOEs for lithography as well. The MATLAB
codes given earlier had a matrix size of 500 pixels� 500 pixels, and the
dimensions of the physical quantities are given in micrometers. Using such a
file would mean that the size of the DOE is also 500 mm� 500 mm with a pixel
size of 1 mm. Theoretically, this pixel size is sufficient, as this is a super-
wavelength DOE. However, when a circular DOE is designed, because it is
piece-wise continuous, it has many sharp edges that result in diffraction
patterns with errors. The images of rings with a width of 10 mm created using
matrices with pixel sizes of 1 mm and 0.01 mm are shown in Figs. 8.1(a)
and (b), respectively.

The rough-edge effect is not present if the DOE is a simple 1D or 2D
grating with periods L that are integral multiples n of the pixel size D (L¼ nD).
However, this is not always the case. Hence, it is necessary to design DOEs with
a higher resolution to eliminate or reduce this effect.
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The same equations that were used for simulation can be employed again
for designing the DOEs but with an increased spatial resolution for the
lithography processes. The resolution of a design is given by the ratio of the
physical lengths of the pattern to the number of pixels in the length design.
For instance, if the length of a design file is 1000 pixels, and the physical
dimension is 10 mm, then the resolution of the design is 10 nm. In our designs,
most of the elements2,3 were generated with a matrix size of 20,000� 20,000
corresponding to a device size of 2 mm� 2 mm and, hence, a resolution of
100 nm. In some lithography systems such as the Quanta 3D FEG, the bitmap
file can be directly used for fabrication. The physical dimension of each pixel
of a bitmap file can be defined within the system. However, in most
lithography systems, including mask writers for photolithography, the input
design file must be in specific CAD formats such as DXF, GDSII, etc., as
discussed earlier.

For complex structures such as HOEs or IFTA-based DOEs, which
cannot be designed with CAD software, the following procedure can be used.
The DOE is designed as a bitmap file and converted to either DXF or GDSII
formats using LinkCAD software. The time of execution of the MATLAB
codes with a computer with a 3.4-GHz processor and a RAM of 16 GB varied
from few minutes to a couple of hours, depending on the different operations
involved. The choice of the scheme for designing DOEs depends on the
geometric composition of the structure and the required resolution.

For most of the examples in this book, the designs were generated using
MATLAB and converted to GDSII or DXF formats using LinkCAD. This
method of generating the design in a format accepted by the lithography
system may not be required when using advanced software that can be
purchased separately with systems like the RAITH150TWO. This software
accepts many file formats and allows one to create designs with high
resolution. However, such software is quite expensive. Therefore, alternative
procedures are needed. One such procedure for converting a matrix
representing a DOE to a GDSII file using LinkCAD is shown in Fig. 8.2.

Figure 8.1 Images of rings with a width of 10 mm with (a) pixel size of 1 mm and (b) pixel
size of 0.01 mm.
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The pixel size of the element is the ratio of the element’s length in millimeters
to the size of the matrix. The pixel size is the same as the user units in this case.

Using LinkCAD is easy. The import format can be selected as ‘Image’,
and the export format can be selected as ‘GDSII’. There are a wide variety of
export formats such as DXF, CIF, etc. Next, the pixel size is selected. If the
matrix size is 20,000� 20,000 for a device of size 2 mm� 2 mm, then the pixel
size is 100 nm. The scaling factor can be selected, which in this case is 1. Then
the file can be loaded and converted. There are numerous other facilities
within the software that are useful for conversion. The converted file can be
viewed either in LinkCAD or with any other CAD software before patterning.
The output from LinkCAD can be directly used with any lithography system.
This is a far less expensive method of creating lithography files than using the
in-built special software available with some e-beam systems.

8.1.2 Special lithography files

As discussed in Section 8.1, in some lithography systems, it is possible to
create the DOE design in the form of lines. In other words, the entire DOE is
broken down into data that includes the starting and the ending point of each
line. This is advantageous for the design of periodic rectilinear structures, as
the file size can be considerably reduced. Let us consider the design of a 1D
grating with 20,000 points in each line. In the vector method, the 20,000 points
that make up a line can be replaced in the design file by just two points (x1, y1)
and (x2, y2) that are the starting and the ending point of the line. The data
points can be stored in a text file, and the size will be three to four orders of
magnitude smaller than the corresponding bitmap file.

However, two important points need to be considered. For a HOE or
DOE generated using the IFTA, there are few or no lines connecting points.
This means that the data size generated using this method will equal the data

Figure 8.2 Schematic of the procedure for converting a matrix or image generated in
MATLAB into a GDSII file using LinkCAD.
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size generated as image file. Secondly, some analysis is needed before
converting an image into a text file containing line data. For instance, if the
image data of a 1D grating is converted into line data along the direction
orthogonal to the direction of periodicity, then the file size will be smaller than
if converting along the direction of periodicity. The MATLAB code for
converting a 1D grating into line data and saving it as a text file is given in
Table 8.1. The starting point and ending point of the line are calculated,
assuming that the physical dimension of the DOE is 200 mm and the pixel size
or spot size is 100 nm.

The size of the text file is only 40 kB, while the file size when generated as
a bitmap file is 3.8 MB. Hence, it is advantageous to create a lithography file
as a set of lines. This is the format used in most CAD software. As discussed
earlier, this technique is not suitable for DOEs generated using the IFTA. It is
also not suitable for patterning circular elements such as a circular grating or a
FZP. Hence, in those cases, the data for points on the circle (polygon) must be
generated and fabricated circle-by-circle or zone-by-zone, depending on the
memory size of the lithography system. The MATLAB code for generation of
the polygon point data of a circular grating is given in Table 8.2. The radial
pixel size or the spot size is assumed to be 100 nm.

The image of a circular grating with three periods that was drawn with
polygonal path scanning is shown in Fig. 8.3(a). A magnified image of the
central part of Fig. 8.3(a) is shown in Fig. 8.3(b), where the polygon
approximation is clearly visible.

Table 8.1 MATLAB code for generating lithography data of a grating as lines.

%Generating line data for lithography
N=2000; % Size of the matrix
A=zeros(N,N); % Define matrices
B=zeros(N,N);
P=100; % Define period of the grating
p1=0; % Initialize line number
for q=1:N;

if rem(q,P),=P/2;
p1=p1þ1;
X1(p1)=1;
Y1(p1)=q;
X2(p1)=N;
Y2(p1)=q;

end
end
fid¼ fopen(‘F:\1D grating.txt’,’wt’);%Open a text file
for s=1:p1;

fprintf(fid,’Draw Line %d,%d’,X1(s),Y1(s));
fprintf(fid,’\n’);
fprintf(fid,’ %d,%d’,X2(s),Y2(s));
fprintf(fid,’\n’);

end
fclose(fid);%Close the text file
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In this case, the DOE has been designed with 1000 points for each circle.
However, the number of points needs to be optimized based on the element
radius and the memory limit of the system. The central parts of polygonal-
approximated circular gratings with 10 and 25 vertices are shown in Figs. 8.4(a)
and (b), respectively.

The MATLAB code given in Table 8.1 for 1D gratings follows raster
scanning. The MATLAB code given in Table 8.2 for circular gratings follows

Table 8.2 MATLAB code for generating lithography data of a circular grating as polygon-
approximated circles.

%Generating polygon data for lithography
N=2000; % Size of the DOE
A=zeros(N,N); % Define matrices
B=zeros(N,N);
theta1=zeros(M);
P=100; % Define period of the grating
M=1000; % Define the number of points in the circle
p1=0; % Initialize the iteration variable
for r=1:300; % Generate point data of every circle

for theta=1:M;
if rem(r,P),P/2;
theta1(theta)=((2*pi)/M)*theta;
p1=p1þ1;
X1(p1)=(r-1)*cos(theta1(theta));
Y1(p1)=(r-1)*sin(theta1(theta));
end

end
end
fid = fopen(‘F:\circular grating.txt’,’wt’);%Open text file
for s=1:p1;
fprintf(fid,’Draw Line %d,%d’,X1(s),Y1(s));
fprintf(fid,’\n’);
end
fclose(fid);%Close text file

Figure 8.3 (a) Plot of the points of the polygons approximated on the circles with 1000
vertices for a circular grating. (b) Magnified central portion of the image in part (a).

182 Chapter 8

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



outward circular scanning. By modifying the MATLAB code given in
Table 8.1, the scanning type can be modified to time-effective serpentine
scanning. Similarly, the code given in Table 8.2 can be modified to perform
inward circular scanning. Additionally, any DOE (single or multifunctional)
can be converted to a set of lines or circles by advanced MATLAB coding.

In advanced lithography systems such as RAITH150TWO, during
fabrication it is possible to choose the type of scanning from a list that
includes: raster, serpentine, circular inward, circular outward, and combina-
tions of these scanning types. For instance, in the fabrication of a grating,
serpentine scanning takes about half the time compared to the time needed for
raster scanning. Every type of scanning has its own advantages and
disadvantages, depending on the lithography technique being used.

8.2 Photolithography

A brief description of the fabrication of devices using photolithography4,5

with basic fabrication recipes is presented in this section. A mask writer such
as Heidelberg Instruments DWL66 is used to prepare the mask pattern on a
glass plate with a chromium layer and a resist layer. The laser head can be
selected based on the minimum feature of the design, which is created using
MATLAB and then converted into a GDSII file using LinkCAD. The GDSII
file is converted into a binary file within the system for patterning.6,7 The
pattern is transferred to the resist layer of the mask plate by laser exposure.
The mask plate is developed using potassium hydroxide solution, during
which, the regions of the resist layer exposed to laser are removed. The mask
plate is then immersed in chrome etchant solution to remove the chromium
layer in the regions where the resist is removed. The chrome etchant is
prepared by combining a solution made from ammonium ceric nitrate and
acetic acid in de-ionized (DI) water. The mask plate is then rinsed in acetone
(80 °C) to remove the unexposed and undeveloped resist layer.

Figure 8.4 Plot of the polygonal path scanning of circular gratings with (a) 10 vertices and
(b) 25 vertices.
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The mask plate can now be used for fabrication of a device on a resist-
coated glass plate. The size and shape of the glass substrate can be customized,
but in most cases the substrates used are ready-made large circular wafers. The
wafer can be diced into smaller sizes as required. In our case, we used
borosilicate glass wafers with a refractive index of 1.5 and with a diameter and
thickness of 3 inches and 500 mm, respectively. The glass wafer is diced using
diamond cutters or a dicing machine (Ultratec’s ULTRASLICE). The diced
glass wafer is cleaned in an ultrasonic bath in isopropyl alcohol (IPA) and
acetone for 2 min each to remove any chemical contaminants and dust
particles, followed by a rinse in DI water. It is then dried with nitrogen gas.
S1813 (Microchem) photoresist is used for fabrication of the device. The resist is
spin-coated on the glass substrate with a thickness of 1.5 mm. It is prebaked,
followed by an exposure in the UV lithography system (l¼ 365 nm). The resist
is developed with sodium hydroxide developer and post-baked. The baking
conditions are optimized to harden the S1813 resist for etching processes.

The pattern in the resist layer can be transferred to the glass substrate by
wet8 or dry etching.9 Wet etching can be done using hydrofluoric acid (HF)
with the etch rates controlled by the concentration of the acid. The plasma
etching is carried out using Ar and SF6 gases. The etch rate in this case can be
precisely controlled by controlling the temperature, pressure, and power of the
system. If the period of the DOE is uniform throughout the pattern, then
constant etch depth can be obtained. However, this is not the scenario for
many DOEs. Let us consider a DOE such as a FZP, where the period of the
structure decreases radially outward with the minimum features occurring at
the outermost edges of the device. In this case, the etch rate will be higher for
larger openings than that for smaller ones. There is a strong etch depth
dependence with feature size. For demonstration purposes, a FZP with a
negative axicon phase is considered.

The DOE is designed for a wavelength of l¼ 1064 nm to generate a ring
pattern with a radius of r0¼ 25 mm. The DOE is designed with a diameter of
8 mm. The inner maximum zone width and outermost minimum zone width
of the DOE are 67 mm and 4 mm, respectively. The optical microscope
images of the central and outermost parts of the DOE in chromium mask are
shown in Figs. 8.5(a) and (b), respectively. In this case, due to a slight
overdevelopment of resist in the mask plate, an error of �7% was found in the
width of the zones. The piece-wise continuous approximation of circles is
visible in the outermost zones in Fig. 8.5(b). The thickness of the chromium
pattern is measured using a confocal microscope (Olympus) as shown in
Fig. 8.6. This is the first evaluation step. The image of the DOE on the resist is
shown in Fig. 8.7(a). The profile of the DOE after wet etching with 10% HF
with an etch rate of 12.2 nm/min is shown in Fig. 8.7(b). The profile of the
DOE after plasma etching is shown in Fig. 8.7(c). In wet etching the control of
the thickness is not very accurate and besides it gives isotropic etching.
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In the case of wet as well as dry etching, S1813 was used as the mask. The
experiment was repeated to etch a larger depth of 1064 nm. The etch depth
was 1034 nm at the central part and 930 nm for the outermost part of the

Figure 8.5 Optical microscope images of the (a) central part and (b) outermost part of the
DOE on a chromium layer.

Figure 8.6 Profile of the pattern measured using the Olympus confocal microscope
system.

Figure 8.7 (a) Optical microscope image of the DOE in the resist (S1813) layer, (b) profile
of the DOE fabricated using wet etching with 10% hydrofluoric acid, and (c) profile of the
DOE fabricated using plasma etching with Ar and SF6 (reprinted from Ref. 7).
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device, with corresponding maximum errors of 3% and 12.5%, respectively.
The verticality was not very high, as seen in Fig. 8.8. By varying the plasma
etching parameters, different results can be obtained. In many cases of plasma
etching, instead of a resist mask, a metal mask is used, particularly if
larger etch depth are required.10 This would involve two additional steps,
namely, metallization after development of resist and removal of resist by
ultrasonification of the substrate in acetone. The complete process flow is
given in Table 8.3.

Figure 8.8 Profile of the outermost part of the DOE after plasma etching with a recipe for
etching 1064 nm (reprinted from Ref. 7).

Table 8.3 Process flow for fabrication using photolithography.

Step No. Process Description

1 Lithography File
Generation

The DOE pattern is generated in MATLAB as an image file and is
converted to GDSII format using LinkCAD software.

2 Mask Preparation (a) The GDSII file is loaded, and the pattern is fabricated using the
Heidelberg Mask Writer.
(b) The resist layer of the mask plate is developed in KOH solution for 40 s.
(c) The chrome layer is etched using chrome etchant (10 g of H8N8CeO18 in
36 ml of DI water þ4 ml of CH3COOH in 45 ml of DI water) for 60–90 s.

3 Substrate Cleaning The borosilicate glass wafer is diced and cleaned in acetone, IPA and DI
water for 2 min each in ultrasonic bath and dried in nitrogen gas.

4 Spin Coating The resist is spin coated with an rpm of 5000 and an acceleration of
600 rpm/s for 45 s to obtain a thickness of 1.5 mm.

5 Exposure The resist is prebaked at 80 °C for 17 min, followed by an exposure in the
UV lithography system (l¼ 365 nm) for 12 s. The post-exposure bake is
carried out at 90 °C for 10 min.

6 Development The resist is developed with NaOH developer for 40 s and post-baked at
120 °C for more than 45 min.

7 Etching The plasma etching is carried out using Ar and SF6 gases with a pressure of
20 mT, a forward power of 200 W, and an inductively coupled plasma (ICP)
power of 50 W, resulting in an etch rate of 60 nm/s.

8 Cleaning The substrate is rinsed in acetone at 80 °C for 30 min to remove the S1813
resist.
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This discussion has been limited to binary DOEs. Many publications are
available that address fabrication of multilevel DOEs using photolithography
with multiple masks using alignment markers and consecutive expo-
sures.1,11–13

After fabrication on resist and etching, the element must be characterized
using an optical microscope and a surface profiler for feature measurements
along the x, y, and z directions. The surface profile images obtained from an
interferometry-based profiler (such as one from Veeco Instruments) of sections
of a FZP, a fractal zone plate, and a photon sieve soon after development and
UV exposure are shown in Figs. 8.9(a)–(c), respectively.6,14,15 The final
investigation is performed through optical means by passing light through the
DOE and observing its diffraction pattern at the plane of interest using a 2D
detector such as a CCD.

Employing an interferometer-based surface profiler for characterization of
fabricated DOEs requires a certain level of expertise in optical alignment to
obtain the fringe pattern. Additionally, it is not possible to view features
smaller than the wavelength of light. In the recent advanced profilers such as
Olympus confocal microscopes, most of the features are automated, enabling
high precision and at the same time allowing a layman to analyze fabricated
devices. Apart from these profilers, there are mechanical contact stylus
profilers that can measure the profile of the fabricated DOEs by moving a pin
head over the surface of the DOE. (Pin heads with 0.1-mm diameter are
available.) However, this method of measurement can damage the DOE
pattern, and give only one line of data at a time. Hence, it is advantageous to
use optical surface profilers that can obtain the 3D information of the pattern
in a short duration.

8.3 Electron Beam Lithography

In the case of EBL,16–22 exposure is carried out using an electron beam instead
of light, and a polymer layer that is sensitive to electrons is used for the
fabrication of DOEs. With EBL it is possible to fabricate features as low as
tens of nanometers. EBL does not require any mask, but the entire pattern
cannot be transferred at once. This imposes a limit on the total size of the

Figure 8.9 Surface profile images of sections of (a) a FZP, (b) a fractal zone plate, and
(c) a photon sieve after development and UV exposure (reprinted from Ref. 6).
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pattern, as it is time consuming to fabricate DOEs with large areas. In the case
of EBL, DOEs are fabricated by deflection of the electron beam using electric
and magnetic fields. The spot size of the electron beam is controlled by the
different apertures in the lithography system. Aberrations such as astigma-
tism, etc., that are present in optical systems also exist in EBL systems.
However, most of the recently developed EBL systems have built-in tools to
minimize such aberrations. The results presented are from DOEs fabricated
with a RAITH150TWO EBL system. Most other EBL systems will have
similar procedures and operations.

8.3.1 Substrate selection

Transparent substrates such as glass plates with high transmittivity are
required for fabrication of DOEs. For DOE fabrication using EBL, the
substrate must possess some conductivity! Why? The electrons emitted by the
electron gun are focused by the electric and magnetic field lenses onto the
substrate. The electrons break the polymer chains of the resist wherever they
are incident on the resist layer if they have sufficient energy. These electrons
generate secondary electrons that must be grounded. If they are not grounded,
there is an accumulation of charge on the surface of the substrate, creating a
negative potential that deflects the incoming electrons. Hence, when a
dielectric substrate such as glass is used, there will be an accumulation of
electrons, and the incoming electrons cannot be used to pattern or image the
substrate.

The most common way of overcoming the charging problem is to coat a
thin metallic layer of gold or silver directly on the substrate or the resist.19 In
the latter case, after patterning, the metallic layer is etched in a chemical
solution, followed by development in the resist development solution.
Although the charging problem is now solved, the etching of the gold layer
prior to development of the resist affects the uniformity of the resist layer.
This is a problem especially if the element is to be used in the resist itself and is
not going to be further transferred to the glass substrate. In order to avoid this
problem, glass substrates with an indium tin oxide (ITO) layer are used for
fabrication. The ITO layer offers high electrical conductivity and at the same
time transmittivity of around 85% (at l¼ 633 nm). By using ITO-coated
substrates, the fabrication process can be made simpler, as metallization and
etching are no longer necessary (if pre-coated substrates are used).

8.3.2 Resist selection and thickness optimization

As with photolithography, EBL can also be carried out using positive as well
as negative photoresist. In this book, the discussion is limited to only positive
photoresists. A positive resist, poly methyl methacrylate (PMMA), with
anisole concentrations of A4 and A8, corresponding to 4% and 8% anisole,
were used. DOEs for low-power applications need not be transferred to a
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harder substrate and can be used in the resist layer itself. As discussed in
earlier chapters, the phase (relating to the height of the DOE features) is
crucial when obtaining maximum efficiency in the 1st diffraction order. The
phase corresponds to a particular optical path length. For example, the
thickness of a resist layer that is equivalent to a phase value of p is given by
l/2(nr – 1), where nr is the refractive index of the resist. The refractive index of
the resist layer can be calculated from Cauchy’s coefficients, which are
provided in the resist data sheet or obtained by ellipsometry measurements.

The anisole concentration of the resist must be selected such that the spin-
coating speed for obtaining the necessary resist thickness is higher than
1000 rpm. This is necessary to obtain good uniformity of the resist layer. For a
large sample, a spin speed .5000 rpm requires higher pressure in the chuck to
hold the sample. High speeds may result in the sample been thrown from the
chuck. Given these constraints, PMMA A8 was selected, as the spin-coating
speed decreases to the desired range for l¼ 633 nm and for binary DOEs. For
PMMA A8, the refractive index is such that the resist thickness value is
approximately the wavelength of the source used. Hence, for a wavelength of
633 nm, the resist height required is also 633 nm. PMMA A4 can be used in a
two-step spin-coating process. However, in this case, a resist layer with one-
half the thickness value is coated and baked, and the process is repeated to
obtain the full thickness value. There is no measurable difference between the
output intensity profiles achieved using A4 twice and A8 once, but the latter is
preferred due to the reduced number of steps required.

In order to repeatedly obtain the desired resist height, a calibration chart for
spin speed versus resist thickness (and acceleration) needs to be generated for
each resist to be used. One such graph for PMMA A8 is shown in Fig. 8.10.
The system was set at a fixed acceleration of 300 rpm/s and a coating duration
of 45 s. The thickness of the resist was measured using a confocal microscope.

Figure 8.10 Plot of resist thickness measured using a confocal microscope versus coating
speed. Acceleration was fixed at 300 rpm/s and spin coating time at 45 s.

189Fabrication of Diffractive Optical Elements

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 8.10 is an initial crude estimate of the resist thickness versus spin
speed. However, since phase is very sensitive to errors in height, a finer
calibration curve is required. The range chosen for the more accurate calibration
is shown in the dashed box. The experiment is repeated, varying the spin speed in
steps of 100 rpm from 3500 rpm to 4500 rpm with constant acceleration, resist
quantity, resist temperature, and baking temperature. The spin speed that
generates a resist thickness of 633 nm was found to be 4300 rpm. The resist
thickness measurement values were found to have an error of �10 nm.

During electron beam patterning, some of the ITO layer needs to be
exposed to enable grounding and avoid charging effects. Therefore, after
baking, a section of the resist at the edge of the substrate was removed using
acetone. However, this method was found to affect other parts of the substrate
as well, causing some parts of the patterned region to peel off during
development. In order to avoid this problem, a region of the top of the sample
was masked using adhesive tape prior to spin coating the resist. The bottom of
the sample was also completely masked using tape to avoid any resist getting
coated on the back of the substrate due to suction because of the pressure in
the chuck. Both pieces of tape were removed immediately after spin coating
and prior to baking.

8.3.3 Electron beam lithography optimization

The DOEs described in this book were fabricated using the RAITH150TWO

system. Figure 8.11 is a schematic showing the loading of the glass sample
with the metal contact.23 Other EBL systems will have similar processes. The
metal clip of the sample holder was brought into contact with the exposed
ITO layer of the substrate. Connecting the metal clip to the resist layer, as is
done for semiconductor samples, led to charging, and the resulting image was
grainy. The EBL system was then operated at lower acceleration voltages
(10 kV) to further reduce the charging problem.

The main parameters that determine the result of patterning in EBL
fabrication are focus adjustment, stigmation adjustment, aperture alignment,

Figure 8.11 Schematic of the ITO sample mounted in the RAITH150TWO system (HMDS is
hexamethyldisilizane, an adhesion promoter) (adapted from Ref. 23).
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write-field alignment, working distance, etc. Most of the DOEs discussed in
this book were fabricated with an acceleration voltage of 10 kV, 30-mm
aperture, and a working distance of 10 mm. Focus and stigmation correction
were achieved by burning a contamination spot on the substrate. An
alternative and relatively easier method—recommended for beginners—is to
use polystyrene beads to adjust the focus and stigmation of the system.

For ITO glass substrates, the focus is initially corrected systematically in
steps from lower magnification to higher magnification until the view region
size is around 1 mm� 1 mm. Once the best focus is set, stigmation is corrected
along the x and y directions until the ITO layer is visible, as shown in the
scanning electron microscope (SEM) image in Fig. 8.12. This image indicates
that the focus and stigmation are well corrected. If either the focus or the
stigmation is not corrected, the structure of the ITO layer will not be visible. A
second test to check the focus and stigmation setting involves burning a
contamination spot on the substrate. The image of the contamination pillar
must be circular for a perfectly focused and stigmation-corrected beam. The
SEM images of the cases with and without perfect stigmation correction are
shown in Figs. 8.13(a) and (b), respectively.

The contamination spots cannot be burnt for other electron beam settings
of larger apertures (60 mm or 120 mm) of the electron beam system. In such
cases, the second test can be carried out using polystyrene beads; the working
distance must be set to these focus and stigmation correction settings.

The data buses used in RAITH150TWO are 16-bit buses. Hence, 216

(= 65,536) pixels of data can be transferred at a time. This sets a limit on the
pixel size of the write field. For example, if a write field of size 2 mm� 2 mm
is selected, the pixel size is given by (2000 mm / 65,536)¼ 30 nm. If the selected
write field (with size M�M) is larger than the design size (N�N), the
resolution of the system is wasted. If the write field is smaller than the design

Figure 8.12 SEM image of the ITO layer after focus and stigmation correction.
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size, the resolution is higher, but stitching with adjacent fields is required,
resulting in stitching error. If the write field equals the design size, the
maximum resolution of the system can be utilized without any stitching. These
three cases are shown in Figs. 8.14(a), (b), and (c), respectively. A FZP
designed with front and back focal distances of 5 mm and 30 mm,
respectively, and l¼ 633 nm is considered for analysis.

In the first case [Fig. 8.14(a)], it is clear that the resolution of the system is
wasted by choosing a larger write field. The possible resolution of patterning
in this case is N/65536, which is higher than the available resolution of
M/65,536. Therefore, this case should not be used to write any structures. In
the second case [Fig. 8.14(b)], the resolution is higher, as the write field is
much smaller than the design size. However, stitching is required, and the
stitching error was found to increase with the size of the write field. An
alternative method of increasing the resolution is to design different sections
of the element and then integrate during fabrication. However, this procedure
may not be successful due to the drift error present in the stage, as will be
further discussed in the following sections. Hence, the best scenario for
fabrication of DOEs is to exactly match the write field to the design size.
Whichever method is chosen, exposure and development times need to be

Figure 8.13 SEM images of the contamination spot burnt on the ITO layer with: (a) perfect
focus and stigmation correction, and (b) perfect focus without stigmation correction.

Figure 8.14 Write field with size M�M and design size N�N configuration for three
cases: (a) M.N, (b) M,N, and (c) M¼N.
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optimized, as certain settings make the pattern more sensitive to these
parameters. For example, the outer parts of the device were overdeveloped
and removed during development for a write field of 20 mm. Elements of
2-mm diameter written with write fields of 20 mm and 4 mm are shown in
Figs. 8.15(a) and (b), respectively.

Write-field alignment was carried out to calibrate the deflection of the
electron beam with the stage deflection. The error in write-field alignment can
be read in RAITH150TWO and was found to be less than 10 nm. The next
parameter that must be optimized is the electron beam dose (mC/cm2).
Clearing dose is defined as the dose value for which the resist layer in the
exposed regions is completely removed after a particular duration of
development. The dose value was determined as 55 mC/cm2 for a development
time of 50 s in methyl isobutyl ketone (MIBK):IPA in a ratio of 1:3 followed
by a 20-s rinse in IPA. When the development time was increased beyond
1 min and rinse time in IPA was.40 s, it was found that even unexposed parts
of the resist were affected, resulting in a decrease in the resist height and an
increase in surface roughness. Figure 8.16 is an image of a section of a FZP
fabricated with RAITH150TWO and overdeveloped.

The adhesion between the PMMA and ITO layer was found to be poor;
hence, the adhesion promoter HMDS was used prior to coating the PMMA
resist on the substrate. An alternative method was attempted (to avoid using
HMDS) by varying the baking temperatures before and after spin coating, but
the adhesion did not improve very much. The optical microscope images of
the DOE fabricated with no HMDS prime layer and with and without
modified baking temperatures are shown in Figs. 8.17(a) and (b), respectively.

From Fig. 8.17 it can be seen that the adhesion between the resist and the
substrate is poor, causing the resist to peel off during development. The duty
ratio of the central zones clearly indicates the correct values of electron beam
dose and development duration. Examples of the nonuniform dose profile
over the area of the pattern due to varying electron beam current and focus at

Figure 8.15 Optical microscope images of the DOEs fabricated using electron beam direct
writing with (a) write field¼ 20 mm and design size¼ 2 mm, and (b) write field¼ 4 mm and
design size¼ 8 mm.

193Fabrication of Diffractive Optical Elements

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



the outermost part of the device are shown in Fig. 8.18. This problem was
solved by improving the manual focus and stigmation correction procedure.
Optical microscope images of the outermost part of the device and the full
device fabricated with optimized conditions are shown in Figs. 8.19(a) and (b),
respectively.

Naturally, when optimizing the fabrication procedure using EBL, users
will need to follow a version of this procedure that helps optimize fabrication
based on the system and resist that they are using. An example of a repeatable,
high-resolution fabrication technique developed after optimization of EBL
(RAITH150TWO) is given in Table 8.4. The outermost zones of a 2-mm device
are found to have a slight zig-zag of around 50 nm due to high beam
deflection [Fig. 8.19(a)] that cannot not be solved. In the RAITH150TWO

system, the smaller displacements of the stage are controlled by piezoelectric
devices. When glass substrates were used, it was noted that some charge
accumulation in that device resulted in a slight drift that was corrected by

Figure 8.17 Optical microscope images of the DOEs fabricated using electron beam direct
writing with no HMDS layer: (a) with modified baking temperatures and (b) without modified
baking temperatures.

Figure 8.16 Optical microscope image of a DOE fabricated using electron beam direct
writing and overdeveloped.
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turning off the joystick controller during patterning. There were other minor
technical problems due to the varying life of the chemicals, varying
temperature and humidity conditions, etc., that varied the fabrication results.
In most cases, the glass sample was not reused, as the quality of the resist layer
deteriorated with each re-use. The process flow for fabrication of DOEs using
EBL (RAITH150TWO) is given in Table 8.4.

There are different modes for patterning. For small patterns, the stage
must be kept fixed and the beam is deflected using electric and magnetic fields
(high resolution). For large patterns, the beam is kept fixed and the stage is
moved (low resolution) in what is called the fixed-beam moving stage (FBMS)
mode. In the DOEs presented in this book, the patterns were written with a
single write field without stitching and without FBMS. The acceleration
voltage, which controls the sharpness of the electron beam spot, the aperture,
which controls the electron beam spot size, and the working distance (the
distance between the column and the substrate), which controls the
magnification of the system, are set to the optimized values. The dose values
are optimized to calculate the clearing dose for every resist thickness for

Figure 8.19 Optical microscope images of the (a) outermost part of the DOE and (b) the
full device fabricated using electron beam direct writing with optimized fabrication
parameters (reprinted from Ref. 2).

Figure 8.18 Optical microscope images of the DOEs fabricated using electron beam direct
writing when the dose value was decreased at the outermost part of the devices.
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binary patterns. For gradient patterns, the resist thickness is optimized for
different values of electron beam dose. Further fabrication of DOEs using
RAITH150TWO reveals that it is possible to fabricate elements with diameters
≤ 6.66 mm� 6.66 mm without stitching and with a minimum feature of
$50 nm. The patterning time was reasonable, with 30–40 min for pattern sizes
of 2 mm� 2 mm for a 120-mm aperture and 10-kV acceleration voltage.

8.3.4 Fabrication of multilevel structures

Fabrication of multilevel structures using an electron beam system has been
reported.24–26 One method to carry out this type of fabrication is to use a
grayscale resist such as PMMA 35K, which has a linear dose-to-resist-
thickness profile. In this section, we present techniques to fabricate multilevel
structures with a binary electron beam resist. The design of multilevel
structures and the calculation of resist thickness have already been presented
in detail in previous chapters.

Four-level and eight-level circular gratings with a period of 250 mm were
fabricated using electron beam direct writing in the RAITH150TWO system
using the fabrication parameters given in Table 8.4. The spin-coating
conditions and baking temperatures were optimized to obtain a resist

Table 8.4 Process flow for fabrication using EBL.

Step No. Process Description

1 Lithography File
Generation

The DOE pattern is generated in MATLAB as an image file and converted
to GDSII format using LinkCAD software.

2 Substrate Cleaning The ITO-coated borosilicate glass wafer is cleaned in acetone, IPA, and DI
water for 2 min each in an ultrasonic bath and dried in N2 gas.

3 Baking The wafer is baked at 80 °C for 30 min to remove the residual IPA and
acetone.

4 Spin Coating Adhesive tape is used to mask the edges of the ITO-coated glass substrate
prior to spin coating. The tape is attached at the bottom of the substrate as
well to avoid any resist getting coated on the back side of the substrate.
First, HMDS is coated with an rpm of 2000 and a spin duration of less
than 30 s. PMMA is immediately applied on the substrate and spun with
the calculated rpm (4300 rpm for A8 resist) for 45 s. The masked region
will be connected to the metal clip during fabrication in electron beam
system.

5 Baking The sample is baked at 180 °C for 3 min or 120 °C for 5 min.
6 Initial Adjustments The initial adjustments, such as setting the aperture and focus, stigmation

correction, write-field alignment, etc., are carried out. For patterning
2 mm� 2 mm patterns, an aperture of 30 mm and acceleration voltage of
10 kV are used. For patterning larger patterns with low resolution
(.500 nm features), 60 mm or 120 mm aperture is used.

7 Dose Settings Electron beam current is measured by moving the electron beam to the
Faraday cup. The dwell time of the electron beam at each pixel can be
calculated by entering the clearing dose.

8 Development Patterns are developed using MIBK:IPA (1:3) at 24 °C for a duration of
30 s (600-nm thick resist), then are rinsed with IPA for 10 s to remove the
developer residues, followed by rinsing in deionized water. The developed
patterns are dried in N2 gas.
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thickness as close as possible to the calculated value of 1266 nm. The electron
beam resist selected for use is a binary resist with a very sharp resist-thickness-
versus-dose profile. The profile is also very sensitive to temperature variations
during processing. To improve the accuracy of the height, the resist-thickness-
versus-dose characterization must be carried out immediately before device
fabrication. Dose optimization is carried out by varying the dose from
10 mC/cm2 to 50 mC/cm2 in steps of 0.5 mC/cm2. In each case, the
development time is kept at 5 min. With such a high developing time, the dose
requirement is less, and the patterning time is considerably reduced. The
resist-thickness-versus-dose profile is plotted in Fig. 8.20.

The dose values corresponding to the different resist thickness values for a
four-level and an eight-level structure are noted from the graph. The device is
fabricated using two schemes. In the first scheme, the design is generated using
MATLAB, a much faster technique than the second scheme, where the design
is directly made using RAITH design software. In the first scheme, the design
is split into different layers with different dose values as a stack. During
fabrication, these layers are combined by assigning the same location. For the
four-level and eight-level circular gratings, the stack consists of four and eight
images, respectively. The images are generated for each dose value, as shown
in Fig. 8.21 for a four-level grating. During fabrication these images are

Figure 8.20 Plot of resist thickness after developing for different values of electron beam
dose.

Figure 8.21 Images of sections of four-level axicons with different dose values.
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stacked at the same location. A similar procedure is carried out for the
fabrication of the eight-level grating.

Optical microscope images of the four- and eight-level circular gratings
fabricated by the stack method are shown in Figs. 8.22(a) and (b), respectively.
Due to a stage error of few microns, the stack’s center shifted by a fixed amount
in the same direction for every layer of the stack. This stage error is prevalent in
many electron beam systems. Many lithography systems possess an in-built
correction for this error. In FEI systems, which we will discuss in the final
section, it can be noted that the drift correction can be completely nullified.

In the second method, the design is created in RAITH design software.
Each ring is designed individually with a different dose factor. The design was
initially carried out with no spacing between the two levels, resulting in
proximity errors,27 as shown in Fig. 8.23.

These proximity errors are minimized by giving spaces with a dose value
of 0 between each level. The optimized value of the manual proximity
correction space is 100 nm between every level. Optical microscope images of
the four- and eight-level circular gratings are shown in Figs. 8.24(a) and (b),
respectively. Resist profiles of the four- and eight-level axicons measured
using a confocal microscope are shown in Figs. 8.25(a) and (b), respectively.

The profiles clearly show that the proximity errors were reduced. The
roughness measurement using a profiler show a roughness variation from

Figure 8.22 Optical microscope images of the fabricated (a) four-level and (b) eight-level
axicons using the stack method.

Figure 8.23 Resist thickness profile variation over the period of the circular grating.
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23 nm to 47 nm across the resist profile. The roughness value is higher for the
levels fabricated with higher electron beam dose. An average resist height
error of ,11% was obtained. The four-level and eight-level axicons were
evaluated using a diode laser with a wavelength of 633 nm. The light from the
laser source was collimated using a 10X objective. The Bessel beams generated
by the four-level and eight-level axicons and their corresponding intensity
profiles are shown in Figs. 8.26 and 8.27, respectively.

The calculated value of the 1/e2 diameter was 150 mm, while the
experimental value was found to be 162 mm. The average transmittivity of the
ITO layer is 85% for l¼ 633 nm. The efficiencies of the four-level and
eight-level circular grating were found to be 41% and 75%, respectively.

Figure 8.24 Optical microscope images of the fabricated (a) four-level and (b) eight-level
circular gratings designed using RAITH design software.

Figure 8.25 Resist profiles of (a) an eight-level and (b) a four-level circular grating
measured using a confocal microscope.

Figure 8.26 (a) Image of the Bessel beam and its (b) intensity profile generated by a four-
level circular grating.
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The decrease in efficiency was partly due to the transmittivity of the ITO layer
and partly due to the resist height errors.

Multilevel axicons with four and eight levels were designed and fabricated
using electron beam direct writing. The fabrication was carried out using a
binary electron beam resist with a very steep resist-thickness-versus-dose
profile. The evaluation results show the generation of Bessel beams within the
focal depth of the devices. The efficiency of the eight-level structure was close
to the theoretical efficiency, although this was not the case for the four-level
structure. The repeatability in fabrication was improved, as the fabrication
was carried out immediately after dose calculation. Some other possible
reasons for the decrease in repeatability might be the life of the developer
solution, variation in electron beam current, manual errors in fabrication
processes with identical conditions, etc. Also, color changes in the resist were
noted; these changes corresponded to different thicknesses of the resist, which
might be an additional reason for the decrease in efficiency.

8.3.5 Fabrication and testing results

This section presents the optical microscope images and optical testing results
for some of the binary DOEs whose design and analysis was presented in
previous chapters. The testing setup involves a fiber-coupled diode laser, a
collimator, a DOE, and a CCD. We use a CCD (Thorlabs) with 1024� 768
pixels corresponding to a size of 4.76 mm� 3.57 mm with a pixel size of
4.64 mm. All of these components are mounted on two- and three-axis stages
with a mechanical stage resolution of 10 mm for fine adjustments. A schematic
of the optical testing configuration is shown in Fig. 8.28.

An optical microscope image of the FZP designed in finite conjugate
mode with u¼ 5 mm, v¼ 30 mm, and t¼ 1 mm after aberration correction
using the scheme discussed in Section 5.3.1 is shown in Fig. 8.29.2

The FZPs fabricated with and without aberration correction are evaluated
at the image plane v¼ 30 mm. The intensity profiles at the image plane are
plotted for the FZPs without any aberration correction, with aberration

Figure 8.27 (a) Image of the Bessel beam and its (b) intensity profile generated by an
eight-level circular grating.
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correction scheme 1 (Section 5.3.1), and with aberration correction scheme 2
(Section 5.3.2), as shown in Fig. 8.30.

An optical microscope image of the multifunctional DOE containing
the functions of a binary FZP (f¼ 30 mm) and a binary circular grating
(L¼ 50 mm) designed using the modulo-2p phase addition method (Exercise
E.6.1) and fabricated using RAITH 150TWO is shown in Fig. 8.31(a). The
element was evaluated using light from l1¼ 633 nm and l2¼ 532 nm, and it was
found to generate ring patterns with equal diameters but at two focal lengths
f1¼ 30 mm and f2¼ 36 mm for the two wavelengths, respectively.3 The ring
patterns recorded by the CCD are shown in Figs. 8.31(b) and (c), respectively.

An optical microscope image of the multifunctional DOE with a ring
FZP28 (f¼ 30 mm, r0¼ 100 mm) and 1D and 2D binary gratings (L¼ 50 mm)
(Exercise E.6.4) generated by the modulo-2p phase addition method is shown
in Figs. 8.32(a) and (b), respectively. The diffraction patterns recorded at a

Figure 8.28 Schematic of the optical testing set up for evaluation of DOEs.

Figure 8.29 Optical microscope image of the FZP designed in finite conjugate mode after
aberration correction (reprinted from Ref. 2).
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Figure 8.30 Normalized intensity profile at the image plane for the FZP without aberration
correction (dotted line), with aberration correction using scheme 1 (solid line), and with
aberration correction using scheme 2 (dashed line) (reprinted from Ref. 2).

Figure 8.31 (a) Optical microscopic image of the multifunctional DOE containing the
functions of a binary FZP and a binary circular grating, and images of the ring pattern
generated by the DOE for the wavelengths (b) 635 nm and (c) 532 nm (reprinted from
Ref. 2).

Figure 8.32 Optical microscope images of the multifunctional DOE containing the
functions of a ring FZP (f¼ 30 mm, r0¼ 100 mm) with (a) a 1D grating and (b) a 2D
checkerboard grating (L¼ 50 mm).
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distance of 30 mm from the DOEs in Figs. 8.32(a) and (b) are shown in
Figs. 8.33(a) and (b), respectively.

Optical microscope images of the multifunctional DOE designed by
combining a binary circular grating and a binary 1D grating and 2D grating
(Section 6.1.2) are shown in Figs. 8.34(a) and (b), respectively. The far-field
diffraction patterns of Figs. 8.34(a) and (b) measured at a distance of 200 mm
are shown in Figs. 8.35(a) and (b), respectively.

Figure 8.33 Images of the diffraction patterns of the ring pattern arrays generated by the
DOEs shown in (a) Fig. 8.32(a) and (b) Fig. 8.32(b).

Figure 8.34 Optical microscope images of the multifunctional DOE containing the
functions of a circular grating (L¼ 200 mm) and a (a) 1D grating and (b) 2D checkerboard
grating (L¼ 100 mm).

Figure 8.35 Image of the 1st and 3rd order diffraction patterns of the ring pattern arrays
generated from the DOEs shown in (a) Fig. 8.34(a) and (b) Fig. 8.34(b) recorded in a CCD.
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Optical microscope images of the fabrication results for the circular
grating array that generates 3� 3 Bessel intensity profiles discussed in
Section 6.1.2 and an image of the Bessel intensity profile array are shown in
Figs. 8.36(a) and (b), respectively.

Optical microscope images of the sections of the binary multifunctional
DOE generated by combining the FZP (f¼ 30 mm) containing the phase of a
negative axicon29 (X¼ 1.32 and 2.64) (Exercise E.6.1) for generation of ring
patterns with radius r0¼ 25 mm and 50 mm are shown in Figs. 8.37(a) and (c),
respectively. The ring patterns recorded at a distance of 30 mm from the DOE
plane are shown in Figs. 8.37(b) and (d), respectively.

An optical microscope image of the central part of a binary HOE
(Section 7.3.6) used for generating an accelerating Airy beam30 with a path
profile of t2 (x, y)¼ 10(x)0.5þ 10(y)0.5 is shown in Fig. 8.38(a), and its far-field
diffraction patterns are shown in Figs. 8.38(b) and (c).

Figure 8.36 (a) Optical microscope image of the 3� 3 circular grating array and (b) the
Bessel intensity interference pattern recorded using a CCD.

Figure 8.37 Optical microscope images of the binary multifunctional DOE generated
by combining the FZP (f¼ 30 mm) containing the phase of a negative axicon with
(a) X¼ 1.32 and (c) X¼ 2.64. (b) Image of the ring patterns generated by the same DOE
radius values of r0¼ 25 mm and (d) r0 ¼ 25 mm recorded by a CCD (reprinted from
Ref. 29).
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8.4 Focused Ion Beam Lithography

This section presents the fabrication of DOEs using FIB lithography.31–33 Unlike
photolithography and EBL, FIB does not require a resist and can be used to
directly mill a pattern on a substrate. Hence, fabrication of elements using FIB
involves almost no pre-processing steps except for cleaning the substrates.

8.4.1 FIB milling on substrates

Fabrication of DOEs on substrates was carried out using the Quanta 3D FEG
system with a gallium source. The Quanta 3D FEG is a dual-beam system
consisting of a FIB system for milling and a SEM for real-time monitoring of
the milling. In this FIB system, a binary or grayscale (24 bit) bitmap file of the
DOE can be directly loaded and can be scaled to any physical dimension
within the system. CAD files are also accepted in this system. However, unlike
many other lithography systems, the files do not have to be in this particular
format. Hence, the bitmap files were generated in MATLAB as presented in
previous chapters, and used directly. The substrate requirements for FIB are
similar to those of the electron beam system. Therefore, ITO-coated glass
substrates were used for fabrication. Cleaning of the substrates is similar to
the process given in Table 8.4. The mounting of the sample is slightly different
from that of an EBL system. In the Quanta 3D FEG, the holders are
aluminum stubs with a circular shape. The mounting of the ITO glass
substrates on the holders is shown in Fig. 8.39(a). A conducting tape (such as
double-sided adhesive carbon tape) provides an electrical connection between
the aluminum stub and the ITO layer of the substrate. A photograph of the
fabrication chamber in a Quanta 3D FEG is shown in Fig. 8.39(b).

The entire basis of diffractive optics involves the phase changes encountered
by an incident beam at the DOE. Therefore, depth optimization34 is crucial in

Figure 8.38 (a) Optical microscope image of a HOE used for the generation of an
accelerating Airy beam with a path profile of t2(x, y)¼ 10(x)0.5þ 10(y)0.5. (b) Far-field
diffraction pattern of the HOE generated by the superposition of a curved plane wavefront
and a conical wavefront with t2(x, y)¼ 10(x)0.5þ 10(y)0.5. (c) A magnified version of the far-
field diffraction pattern in (b) (reprinted from Ref. 30).
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order to obtain the correct functionality. The FIB system consists of different
application files containing material parameters corresponding to substrates
such as silicon, gold, etc. However, there is no built-in application file for glass
or for the ITO-coated substrates. Hence, the system is optimized by varying the
current, while maintaining the parameters acceleration voltage, volume per
dose, and dwell time at 30kV, 0.02 mm3/nC, and 1 ms, respectively. The
software of the FIB converts the 24-bit bitmap files into dwell time and beam
position information. White pixels correspond to the user-defined dwell time,
while black pixels correspond to a minimum dwell time of 100 ns. The current is
varied between 0.1 and 1 nA, with 1 nA providing good results.

These numbers can be taken as a guide as to where to begin the
optimization of the milling process. However, in general, optimization of
milling take into account the material being milled and the structure sizes. For
example, re-deposition will be a major problem, especially with finer features.35

Most researchers will carry out an extensive optimization36–38 before
fabricating the final structures. In this system, multilevel structures are possible
using the stack method (Fig. 8.21), which failed with the electron beam system.
The stack method was employed for fabrication of multilevel spiral phase plates
(SSPs).39 An electron beam image of the fabricated FZP is shown in Fig. 8.40.

The design files of the stack for fabrication of a four-level SPP and the
electron beam image of the fabricated device are shown in Figs. 8.41(a)
and (b), respectively. The design files of a blazed 1D grating and a SPP along
with their respective electron beam images are shown in Fig. 8.42. The
parameters for the blazed structures are 30 kV, 3 nA, set depth of 3 mm, and
volume per dose of 0.15 mm3/nC. For the four-level SPP, the values are 30 kV,
0.3 nA, set depth varying in each wedge pattern, and 0.15 mm3/nC. Both
elements were fabricated using the Si application file.

FIB milling has many advantages over EBL and photolithography in
terms of the number of processing steps involved. However, FIB milling has

Figure 8.39 (a) Schematic of ITO-coated samples mounted in a Quanta 3D FEG system
and (b) photograph of the fabrication chamber of a Quanta 3D FEG.
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other technical difficulties. One serious problem is re-deposition, wherein the
milled material gets re-deposited in another area of the substrate. Secondly,
after milling a particular depth, charging may occur, which introduces
deflection of the ion beam and leads to fabrication errors.

Figure 8.40 Electron beam image of the FZP fabricated using Quanta 3D FEG.

Figure 8.41 (a) Images of the stack files for fabrication of four-level SPP and (b) electron
beam image of the fabricated four-level SPP.

Figure 8.42 (a) Image of the blazed grating, (b) electron beam image of the fabricated
blazed grating, (c) Image of the gradient SPP, and (d) electron beam image of the fabricated
gradient SPP.
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8.4.2 FIB milling on a fiber tip

FIB systems are the simplest way of directly creating a DOE on a fiber tip. The
advantage of doing so means that light leaves the fiber in the desired shape
without the need for further elements or alignment. In addition, the special
beam can reach otherwise inaccessible areas. Fabrication of DOEs on a fiber tip
was carried out using a Nova Nanolab™ 600 from FEI. FIB milling on a fiber
tip is relatively a complex procedure when compared to fabrication on ITO
glass substrates. For this reason, only a few research groups have reported on
the fabrication of DOEs on fiber tip.30–43 However, the impact of fabrication of
DOEs on the tip of optical fiber is reflected in the unique applications that are
possible only using them.44–49 In this section, step-by-step procedures for fiber
processing and FIB milling are presented, along with results of the fabrication.

8.4.2.1 Fiber processing

Single-mode fibers (SMF 28e® from Corning®) of approximately 20–25 cm in
length are cleaned with IPA before cleaving with a Fujikura fiber cleaver
(Cleaver MAX CL-01A company: ILSINTECH). The fiber tip is inspected
using the camera in the fiber splicing machine (Fitel S175 V2000). Images of
the fiber tip along the x and y directions before and after cleaving are shown
in Figs. 8.43(a) and (b), respectively.

The cleaved fibers are again cleaned in IPA and dried using N2 gas. The
fibers are then loaded using a specially designed mount in a sputter-coating
(metallization) unit for coating a thin metallic layer of gold (around 100 nm).
One of the problems associated with fibers is the contamination that occurs
during their handling. Since the core is about 8 mm in diameter, even small dust
particles can completely cover it, making the sample unusable. Therefore, to
reduce the amount of handling, a specially designed mount is made that fits in
the sputtering unit as well as in the FIB system. With this mount, the fibers after
metallization can be loaded immediately into the FIB system. The mount is
designed such that four fibers can be loaded simultaneously and milled without
any extra handling. A photograph of the mount is shown in Fig. 8.44(a).
The electron beam image of a fiber (loaded in the FIB system) is shown in

Figure 8.43 Images of the fiber tip along the x and y directions (a) after stripping the buffer
layer and (b) after cleaving.
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Fig. 8.44(b). The processing steps before FIB milling are shown in Fig. 8.45.
Electron beam images of the fiber tip with and without contamination are
shown in Figs. 8.46(a) and (b), respectively.

A unique problem faced when milling fiber relates to the placement of the
structure with respect to the core of the fiber. The structure must be milled over
the core. However, due to the thin metal coating, the core may not be visible.
If the patterns of the structure vary only in one direction or two orthogonal

Figure 8.44 (a) Holder with v-grooves to hold four fibers. The top part (shown in the
dashed rectangle) fits into the FIB system. When coating the fibers, the top part along with
the holder, sit in the coating chamber of the sputtering unit. (b) Close-up SEM photograph of
one fiber in the FIB system (reprinted from Ref. 45).

Figure 8.45 Images of the fiber (a) before processing, (b) after stripping away its buffer
layer, (c) after cleaving, and (d) after metallization. (Figures not drawn to scale.)

Figure 8.46 Electron beam images of the fiber tip (a) with and (b) without contamination.
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directions, one can overcome the problem of locating the center in the following
way. Initially, the center of the fiber can be geometrically located and a structure
larger than the core can be written. However, for structures with circular
symmetry, it is important for the center of the structure to match the center of
the core, which is difficult to achieve when the core is not visible. One way to
solve this problem is to etch the fiber tip before metallization.44 The slightly
higher etch rate of the core compared to that of the cladding creates a step that is
visible even after metallization. The center of the step can then be geometrically
located. Cross sections of the core and cladding are shown in Fig. 8.47.

Alternatively, the gold layer around the core region can be removed by
milling a circle of 20 mmwith an ion beam current of 3 nA for 4 min. This initial
patterning exposes the core, which helps to accurately position the pattern.
Depth optimization is achieved as before. The parameters acceleration voltage,
volume per dose, and dwell time are kept constant at 30 kV, 0.15 mm3/nC, and
1 ms, respectively. The current is varied between 0.1 and 0.3 nA, with 0.3 nA
providing good results. The set depth is varied for these parameters from 0.5 to
1.5 mm. To test the depth obtained in each case, an extra line of platinum is
deposited using the gas injector needle available with the system. An extra
portion of the milled structure is removed by further milling in order to measure
the cross section (and thereby obtain the actual depth milled). A SEM image of
the structure from which the cross section can be measured is shown in Fig. 8.48.

For the actual fabrication of the structures on the fiber tips, 300 pA of
beam current and 30-kV acceleration voltage with a maximum dwell time of
1 ms, 10-nm steps, and an antiparallel beam movement are utilized. Since the
substrate is a dielectric, accumulation of charge is possible, especially if
the core is exposed by milling out a circle. This, in turn, can cause a drift of the
ion beam during the milling process. The effects are clear in Fig. 8.49(a),
which shows a 1D grating milled with no drift correction applied. With each
layer milled, the beam position changes slightly, and the final grating appears
to be smeared out. In contrast, the grating is written without this error when
drift correction is applied, as seen in Fig. 8.49(b).

Drift correction is carried out by first milling a pattern that will act as an
alignment marker. Typically, a cross with good contrast is milled as shown in

Figure 8.47 Cross section of a length of fiber (a) before and (b) after etching and
metallization. The central lighter color represents the core.
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Fig. 8.50. In order to achieve the better contrast, a region of platinum is deposited
and the cross milled into that area. A binary axicon (of diameter 10 mm with a
period of 1 mm and fill factor of 50%) written on the core of a fiber is shown in
Fig. 8.51. Drift correction is applied, and the obtained pattern is clear.

Recent research by Juodkazis et al. shows that illumination of the
substrate with UV light can help to discharge ions from the surface, indicating

Figure 8.48 SEM image showing the depth milled for a structure consisting of four parallel
lines (reprinted from Ref. 45).

Figure 8.49 Image of a 1D grating milled (a) with beam drift and (b) with drift correction.

Figure 8.50 Image of a fiber with an alignment mark (to the left of the core) that
subsequently will have a diffractive structure written on it. The alignment mark is shown
enclosed within the dashed ellipse.
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that FIB milling can be done even without a metal coating.50 This would be
extremely useful when working with fibers.

8.5 Conclusions

This chapter studies the fabrication of DOEs using photolithography, EBL,
and FIB lithography. Of particular importance is the transition from the
diffraction equations to a design (CAD file) that can be understood by the
writing tool. The simplest methods for generating the CAD files required for
fabrication are discussed in detail. The basic recipes for fabrication of DOEs
with all three types of lithography tools are also presented. As there is
already a lot of literature on photolithography, the focus of this chapter was
more on fabrication using electron beam and focused ion beam lithography
systems.

Fabrication of DOEs using FIB is a relatively new area compared to
photolithography and EBL. However, the advantages of fabrication of DOEs
using FIB are enormous. In particular, FIB makes it almost easy to fabricate
elements on a fiber tip, which has immense potential in the newly evolving
fields of nanophotonics, plasmonics, and biomedicine. The different problems
associated with the fabrication of DOEs using FIB are addressed, and step-by-
step procedures for such are presented.
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Appendix

MATLAB® Functions

Table A.1 MATLAB function to generate normalized output for amplitude structures.

function Norm_outputA(x, N)
% This function generates the output intensity pattern with
%intensity normalized for amplitude DOEs
% function arguments (required when calling the function) are
% DOE amplitude (x) and matrix size (N)
E¼fftshift(fft2(A)); %fftshift is used to re-order the terms in
%their natural order
IN¼(abs(E)/(N*N)).*(abs(E)/(N*N)); % Calculating intensity
figure (1)
colormap(gray); %colormap(gray) is used to display grayscale
%image
imagesc(A);% imagesc is used to display a high constrast image
figure (2)
colormap(gray);
imagesc(IN);

Table A.2 MATLAB function to generate output for amplitude structures.

function outputA(x)
% This function generates the output intensity pattern for
%amplitude structures
% DOE amplitude is the only function argument
E¼fftshift(fft2(x));

I¼abs(E).*abs(E);
figure(1)
colormap(gray)
imagesc(x)
figure(2)
colormap(gray)
imagesc(I)

end
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Table A.3 MATLAB function to generate normalized output for phase structures.

function Norm_outputP(x, N)
% This function generates the output intensity pattern with
%intensity normalized for phase DOEs
% function arguments (required when calling the function) are
% DOE amplitude (x) and matrix size (N)
E¼fftshift(fft2(x)); %fftshift is used to re-order the terms in
%their natural order
IN¼(abs(E)/(N*N)).*(abs(E)/(N*N)); % Calculating intensity
figure (1)
colormap(gray); %colormap(gray) is used to display grayscale
%image
imagesc(angle(x));% imagesc is used to display a high constrast
%image
figure (2)
colormap(gray);
imagesc(IN);

Table A.4 MATLAB function to generate output for phase structures.

function outputP(x)
% This function generates the output intensity pattern for phase
%structures
% DOE amplitude is the only function argument
E¼fftshift(fft2(x));

I¼abs(E).*abs(E);
figure(1)
colormap(gray)
imagesc(angle(x))
figure(2)
colormap(gray)
imagesc(I)

End

218 Appendix

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

A. Vijayakumar and Shanti Bhattacharya,  

Design and Fabrication of Diffractive Optic Elements              

with MATLAB® 

SPIE Press, Bellingham, Washington (2017). 

 

 

 

In case the above button does not work, the supplemental files for this eBook are 

also available for download by copying and pasting the following link to a 

browser: 

 

http:/spie.org/Samples/Pressbook_Supplemental/TT109_sup.zip 

 

Click here to download supplementary material. 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Solutions to the Exercises

Chapter 2 Solutions

E.2.1 Equate Eqs. (2.4) and (2.5).

I�1 ¼ 0.5I0,

4
p2 sin

2

�
F

2

�
¼ 0.5cos2

�
F

2

�
,

F ¼ 1.67 rad:

Displayed values in figure window 2 are 0.22 and 0.45 for the �1 and 0th

diffraction orders, respectively.

E.2.2 Equate Eqs. (2.9) and (2.10).
�
2
p
sin

�
F

2

��
2
�
2
p
sin

�
F

2

��
2
¼

�
2
p
sin

�
F

2

��
2
�
2
3p

sin
�
F

2

��
2
,

F ¼ 2.01:

Verification of the result cannot be carried out by substitution of the phase
value alone, in the MATLAB® code for checkerboard phase grating. In this
case, the XOR operation will not work. Instead, it is necessary to add the
angle matrices corresponding to two orthogonal 1D gratings with phase
values of 2.01 and 0. The resulting grating has 3 phase values: 0, 2.01, and
4.02. The displayed value in figure window 2 is 8.3% for all 3� 3 diffraction
spots. Figure window 2 is shown in Fig. E.2.2.
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E.2.3 The simplest method is to draw a triangle of size 100� 100 pixels and
generate the full matrix with the ‘repmat’ command.

E.2.4 Define two focal length values fx¼ 3000 mm and fy¼ 6000 mm for the
grating lines along the x and y directions, respectively, in MATLAB code.
The MATLAB code for generation of a 2D FZP is shown in Table E.2.4. The
image of the 2D grating seen in figure window 1 is shown in Fig. E.2.4.

Figure E.2.2 Image of the diffraction spots seen by zooming in on figure window 2.

Table E.2.4 MATLAB code for design of a 2D binary FZP.

%%2-d FZP%%
clear; %Clear all memory

N¼500; %Define Matrix sizes
M¼50;%Define the number of grating lines
A1¼zeros(N,N);%Define Matrices by assigning zeros to all

%pixels
A2¼zeros(N,N);
x¼zeros(M,M);
y¼zeros(M,M);
fx¼3000; %Define focal lengths (in micrometers)
fy¼6000;
lambda¼0.633; %Define wavelength (in micrometers)

for n¼1:M; %Calculate the width of the grating lines
x(n)¼sqrt(n*fx*lambda);
y(n)¼sqrt(n*fx*lambda);

end
for n¼1:2:M;

for p¼1:N;
for q¼1:N;

if abs(q-N/2). x(n) && abs(q-N/2), x(nþ1);
A1(p,q)¼1;
end

(Continued )
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E.2.5 The elliptical FZP behaves similar to a FZP.41,42 In the case of an
elliptical FZP, the focal lengths are different along the x and y directions,
resulting in elliptical spots at the two focal planes. In many semiconductor
lasers [distributed Bragg reflector (DBR), distributed feedback (DFB)], the
beam waist is elliptical, resulting in an elliptical spot when focused. By using
an elliptical FZP of suitable focal length ratio along the x and y directions, the
elliptical wavefront can be compensated and converted into a spherical
wavefront. The MATLAB code given for design of a FZP is modified with the
equation of the ellipse with two radius values along the x and y directions. The
MATLAB code for design of an elliptical FZP is shown in Table E.2.5. The
image of the elliptical FZP is shown in the Fig. E.2.5.

Table E.2.4. Continued

if abs(p-N/2). y(n) && abs(p-N/2), y(nþ1);
A2(p,q)¼1;
end

end
end

end
A3¼exp(1i*pi*xor(A1,A2));

Figure E.2.4 Image of the 2D FZP seen in figure window 1.
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E.2.6 An axicon array is used for the generation of an array of Bessel-like
beams in the near field and a ring pattern array in the far field. Such elements
are useful for micro-drilling applications.43,44 The MATLAB code for design of
a micro-axicon array is similar to the array generation code given in Tables 2.7

Table E.2.5 MATLAB code for design of an elliptical FZP.

%%Elliptical FZP%%
clear; %Clear all memory

N¼500; %Define Matrix sizes
M¼25;%Define the number of grating lines
A¼ones(N,N);%Define Matrices by assigning zeros to all pixels
rx¼zeros(M,M);
r¼zeros(N,N);
fx¼3000; %Define focal lengths (in micrometers)
fy¼4500;
lambda¼0.633; %Define wavelength (in micrometers)

for n¼1:M; %Calculate the width of the grating lines
rx(n)¼sqrt((n-1)*fx*lambda);

end
for n¼1:2:M;%Construct elliptical FZP

for p¼1:N;
for q¼1:N;

r(p,q)¼sqrt(((p-N/2)*(p-N/2))*(fx/fy)þ((q-N/2)*(q-N/
2)));
if r(p,q). rx(n) && r(p,q), rx(nþ1);
A(p,q)¼exp(1i*pi);
end

end
end

end

Figure E.2.5 Image of the elliptical FZP generated with focal length values fx¼ 3000 mm
and fy¼ 4500 mm.
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and 2.8. A single axicon is designed and is subsequently replicated to form the
complete device. The MATLAB code is given in Table E.2.6. The image of the
axicon array generated using MATLAB is shown in Fig. E.2.6.

Table E.2.6 MATLAB code for design of an axicon array.

%Axicon array
clear; %Clear all memory
N1¼100; %Define matrix sizes
N2¼500;
ratio¼N2/N1;
A1¼zeros(N1,N1); %Define a Matrix by assigning 0 to all

%elements
r¼zeros(N1,N1);
P¼10; %Define the period of the axicon

for p¼1:N1; %Generate the fundamental building block – single
%axicon

for q¼1:N1;
r(p,q)¼sqrt((p-N1/2)*(p-N1/2)þ(q-N1/2)*(q-N1/2));
if r(p,q),N1/2;
if rem(r(p,q),P),P/2;

A1(p,q)¼1;
end

end
end

end
A2¼repmat(A1,ratio); %Generate the full grating

Figure E.2.6 Image of the axicon array generated with a period of L¼ 100 mm.
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Chapter 3 Solutions

E.3.1 Calculate the phase values in steps of p/8 and the corresponding resist
thickness values. The values are shown in Fig. E.3.1a.

The MATLAB code shown in Table 3.2 can be modified by changing the
number of phase levels and the phase increment as given in Table E.3.1. The
phase profile of the 16-level 1D phase grating is shown in Fig. E.3.1b. The
displayed efficiency value is 0.987, which matches with the value (0.987)
calculated using Eq. 3.1. The image of the phase profile looks similar to that
of a blazed grating.

Table E.3.1 MATLAB code for design of a 16-level 1D phase grating.

%%16-level 1D grating
g¼16;%Define the number of phase levels
delphase¼pi/8;%Define the phase step size

Figure E.3.1a Phase values and resist thickness values of a 16-level 1D phase grating.

Figure E.3.1b Plot of the phase profile of a 16-level 1D phase grating.
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E.3.2 The phase profile of a negative FZP is given by

FFZPðrÞ ¼
�
2p
l

�
f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ r2

q ��
2p
: (E.3.2)

The MATLAB code for design of a four-level negative FZP is given in
Table E.3.2.

The image of the phase profile of a negative blazed FZP and a four-level FZP
are shown in Fig. E.3.2.

Table E.3.2 MATLAB code for design of a four-level negative FZP.

%%4-level 1D FZP
clear;%Clear all memory
%Define the FZP parameters

N¼500;%Define Matrix size
f¼10000;%Define the focal length in mm
lambda¼0.632;%Define the wavelength in mm
C¼ones(N,N);
g¼4;

%Constructing the negative FZP
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A¼(fþsqrt(f*fþr.*r))*(2*pi)/(0.632);
B¼rem(A,2*pi);
B1¼exp(1i*B);
B(r.N/2)¼0;

for p¼1:N;%Construct the 4-level FZP
for q¼1:N;
for n¼1:g;

if B(p,q). (n-1)*pi/2 && B(p,q) ,¼ n*pi/2;
C(p,q)¼exp(1i*n*pi/2);

end
end

end
end

Figure E.3.2 Phase profile of (a) a blazed negative FZP (dotted line) and (b) its four-level
approximation (solid line).
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E.3.3 A binary SPP with topological charge L¼ 5 can be constructed by
designing a SPP with charge L¼ 5 followed by the binarization step. The
MATLAB code for design of a binary SPP is shown in Table E.3.3.

The phase profile of the binary SPP with charge L¼ 5 before applying
radius constraint and its far-field diffraction pattern are shown in Figs. E.3.3
(a) and (b), respectively.

Table E.3.3 MATLAB code for design of a binary SPP with L¼ 5.

%%Binary SPP with L¼5
clear;
%Defining the SPP parameters

N¼500;%Define the matrix size
L¼5;%Define the topological charge number

%Constructing the SPP
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
theta¼atan2((X-N/2),(Y-N/2));
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A1¼L*(thetaþpi);
A2¼rem(A1,2*pi);

for p¼1:N;%Construct the SPP using atan2 function and binarize
for q¼1:N;
if rem(A2(p,q),2*pi),¼pi;

A3(p,q)¼exp(1i*pi);
else

A3(p,q)¼exp(1i*0);
end

end
end
A3(r.30)¼0;
%Observation of far field pattern
E¼fftshift(fft2(A3));%Calculate the Fourier transform and
%rearrange terms
I¼abs(E).*abs(E);

Figure E.3.3 (a) Phase profile of a binary SPP with topological charge of L¼ 5 and (b) its
far-field diffraction pattern.

226 Solutions to the Exercises

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



E.3.4 To design the three-level DOE, the same logo was considered with ten
iterations. The MATLAB code is same as that given in Table 3.9 except that
the grayscale phase profile of the DOE has to be converted into a three-level
phase profile. The MATLAB code for design of a three-level DOE is shown in
Table E.3.4.

The image of the logo generated by the three-level DOE is shown in
Fig. E.3.4. It can be noted that the twin image is removed. Three-level DOEs
have an efficiency close to 70%. By designing three-level DOEs, the twin
image problem can be solved with reasonably high efficiency. Besides, it is
relatively easier to fabricate a three-level DOE compared to a grayscale DOE.

Table E.3.4 MATLAB code for design of a three-level DOE using the IFTA.

DOE1¼zeros(N,N);
g¼3;%Define the number of phase levels
delphase¼2*pi/3;%Define the phase increment
for p¼1:N;%Convert the greyscale phase profile into a 3-level
%phase profile

for q¼1:N;
for n¼1:g;
if DOE(p,q).-piþ(n-1)*delphase && DOE(p,q),¼-piþ(n)*
delphase;

DOE1(p,q)¼(n-1)*delphase;
end
end

end
end
%Verification of result

DOE2¼exp(1i*DOE1);
I¼abs(fft2(DOE2)); %Calculate the Fourier transform
colormap(gray)
Imagesc(I)

Figure E.3.4 Image of the logo generated from the three-level DOE.
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E.3.5 The design of a ring lens is similar to that described in Chapter 2. The
optics configuration for focusing light on a ring using a ring lens is shown in
Fig. E.3.5a.

The phase equation of a ring lens is given by

FRing lensðrÞ ¼
�
2p
l

�
f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ ðr� r0Þ2

q ��
2p
: (E.3.5)

The MATLAB code is similar to that of a gradient FZP with the replacement
of the phase equation, as shown in Table E.3.5. The image of the ring lens and
the plot of its phase profile are shown in Figs. E.3.5b and Fig. E.3.5c,
respectively.

Figure E.3.5a Optics configuration for focusing a plane wave on a ring.

Table E.3.5 MATLAB code for design of a grayscale ring lens.

%%Greyscale ring lens
clear;%Clear all memory
%Define lens parameters
N¼500;%Define Matrix size
f¼2000;%Define the focal length in um
r0¼100;%Define radius of ring in um
lambda¼0.632;%Define the wavelength in um

%Constructing the lens
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
A¼(f-sqrt(f*fþ(r-r0).*(r-r0)))*(2*pi)/(0.632);
B¼rem(A,2*pi);
B1¼exp(1i*B);
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Chapter 4 Solutions

E.4.1 The MATLAB code is similar to that shown in Table 4.2 while the DOE
design script has to be replaced with that in Table E.4.1.

The diffraction pattern at z¼ 50 m is shown in Fig. E.4.1. It can be noted
that the other higher-order ring patterns vanished, with only a high-efficiency
first-order ring pattern remaining.

Figure E.3.5b Image of the phase profile of the gradient ring lens.

Figure E.3.5c Plot of the phase profile of the gradient ring lens at y¼ 250 pixels.
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Table E.4.1 MATLAB code for design and analysis of blazed axicon using the Fresnel
diffraction formula.

%Fresnel diffraction of blazed axicon%
clear; %Clear all memory

% Defining the parameters
N¼500;% Define the matrix size
lambda¼0.633*10^-6;%Define wavelength in meters
z¼50;%Propagation distance¼ 50 m
P¼10^-4;%Period of axicon¼ 0.1 mm
wsamp¼10*lambda;%sampling period or width

%Sampling the space
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);%Sampling
Rsamp¼sqrt((X-N/2).^2þ(Y-N/2).^2).*wsamp;%Define sampled
%radius
%Constructing the DOE

A¼ones(N,N);%Define matrix by assigning ones to all pixels
A¼exp(1i*(rem(Rsamp,P))*(2*pi)/P);
A(Rsamp.N/2*wsamp)¼0;

% Calculating the Fresnel diffraction
PPF¼exp(1i*pi/(lambda*z).*Rsamp.*Rsamp); %Calculate the
%parabolic phase factor
A1¼A.*PPF; %Multiply the circular aperture function with
%the parabolic phase factor

E¼abs(fftshift(fft2(fftshift(A1)))); %Calculate Fourier
%transform

Figure E.4.1 Fresnel diffraction pattern of a blazed axicon at a distance of z¼ 50 m.
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E.4.2 The MATLAB code for designing the phase element is given in
Table E.4.2. The images of the diffracted fields at z¼ 5 mm, 10 mm, 20 mm,
and 50 mm are shown in Fig. E.4.2a, and the plots of the cross section in the
same figure are shown in Fig. E.4.2b. There is a shift in the location of the
maximum intensity. The shift in the peaks shows a nonlinear response that
matches the phase profile of the DOE.

Table E.4.2 MATLAB code for design and analysis of a DOE using the Fresnel diffraction
formula.

%Fresnel diffraction of DOE%
%clear; %Clear all memory
% Defining the parameters

N¼500;% Define the matrix size
lambda¼0.633*10^-6;%Define wavelength in meters
z¼10*1e-3;%Propagation distance
del¼1*1e-6;%sampling period or width

%Sampling the space
x¼-N/2:N/2-1;
y¼-N/2:N/2-1;
[X,Y]¼meshgrid(x*del,y*del);%Sampling
R¼sqrt(X.^2þY.^2);%Define sampled radius

%Constructing the DOE
A¼exp(1i*(Xþ250*1e-6).^3*2*pi*5*10^11);

% Calculating the Fresnel diffraction
PPF¼exp(1i*pi/(lambda*z)*R.*R); %Calculate the parabolic
%phase factor
A1¼A.*PPF; %Multiply the circular aperture function with
%the parabolic phase factor
E¼abs(fftshift(fft2(fftshift(A1)))); %Calculate Fourier
%transform
E¼E/max(max(E));
figure (1)
imagesc(E);
figure (2)

%plot(E(N/2,:)/(max(max(E(N/2,:)))))
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Figure E.4.2a Images of the intensity profile at z¼ 5 mm, 10 mm, 20 mm, and 50 mm.

Figure E.4.2b Plots of the intensity profile at z¼ 5 mm (solid line), 10 mm (dashed line),
20 mm (dotted line), and 50 mm (dashed and dotted line).
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E.4.3 When a linear phase is used, there is no shift of the maximum intensity
with respect to the propagation distance due to the scaling factor that
compensates for the shift that appears in a lab experiment.

Chapter 5 Solutions

E.5.1 The optical path length equation for focusing a diverging wave on a ring
of radius r0 is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ r2n

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ ðrn � r0Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ r20

q
� v ¼ nl, (E.5.1)

where, u and v are the object and image distances, respectively. Assuming that
r0 ,, (r, u and v), Eq. (E.5.1) can be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ r2n

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ ðrn � r0Þ2

q
� u

�
1þ r20

2u2

�
� v ¼ nl: (E.5.2)

For (r0
2/2u2) ,,1, using binomial expansion,

u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20

u2

s
≅ u

�
1þ r20

2u2

�
: (E.5.3)

Solving Eq. (E.5.3) for rn yields

rn ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
, (E.5.4)

where

a ¼ u2 þ v2 þ n2l2 þ 2uvþ 2nlðuþ vÞ þ r04

4u2
þ r02

u
ðvþ nlÞ,

b ¼ �r0

�
n2l2 þ r04

4u2
þ 2uvþ 2nlðuþ vÞ þ r02

u
ðvþ nlÞ þ 2u2

�
,

c ¼ � 1
4

�
n2l2 þ r04

4u2
þ 2uvþ 2nlðuþ vÞ þ r02

u
ðvþ nlÞ

�2
þ u2ðv2 þ r02Þ:

The technique discussed in Section 5.2 is used to find the location of the
virtual sources u’ generated by the glass substrate:

r0n ¼
�b0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 � 4a0c0

p

2a0
, (E.5.5)
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where

a0 ¼ u02 þ v2 þ n2l2 þ 2u0vþ 2nlðu0 þ vÞ þ r04

4u02
þ r02

u0
ðvþ nlÞ,

b0 ¼ �r0

�
n2l2 þ r04

4u02
þ 2u0vþ 2nlðu0 þ vÞ þ r02

u0
ðvþ nlÞ þ 2u02

�
,

c0 ¼ � 1
4

�
n2l2 þ r04

4u02
þ 2u0vþ 2nlðu0 þ vÞ þ r02

u0
ðvþ nlÞ

�2
þ u02ðv2 þ r02Þ:

E.5.2 The radius of a FZP can be calculated with the inclusion of the glass
substrate and the additional polymer holder using Eq. (5.18). The thickness
function is not constant as in the earlier case, but is binary with two values,
namely, 1 mm and 3 mm, respectively at different radial sections. The plot of
the radii of zones as a function of zone number for case 1, t¼ 1 mm (constant)
and case 2, t¼ 3 mm (0.5 mm, r, 0.7 mm), and t¼ 1 mm elsewhere is
shown in Fig. E.5.2. The radii values are different in the region (0.5 mm, r,
0.7 mm), as expected.

E.5.3 The radius of a FZP can be calculated with the inclusion of the glass
substrate whose thickness varies with respect to the radial coordinate. The
radii values are plotted as a function of zone number for two cases—case 1:
t¼ 1 mm and case 2: t¼ 1 þ r, as shown in Fig. E.5.3.

Figure E.5.2 Plot of the radii of zones for case 1: t¼ 1 mm (solid line) and case 2: t¼ 3 mm
(0.5 mm, r, 0.7 mm), and t¼ 1 mm elsewhere (dotted line).
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Chapter 6 Solutions

E.6.1 The two DOEs of choice are a FZP and a circular grating or axicon to
generate a focused ring pattern with a diameter of 1 mm at a distance of
30 mm. A circular grating generates a ring pattern in its far field and when it is
used together with a FZP, and it generates a focused ring pattern at the focal
plane of the FZP. Hence, the focal length of f¼ 30 mm and the period of the
circular grating can be estimated from the diameter of the ring pattern, which
is 1 mm.

Case 1: Modulo-2p Phase Addition Method
The period of the grating necessary to generate a ring pattern with a diameter
of 1 mm at a distance of 30 mm is given by Eq. (6.11):

sinu ¼ l

L
¼

d
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2

4 þ f 2
q : (E.6.1a)

After simplification,

L ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4f 2

p
d

¼ 38mm: (E.6.1b)

The MATLAB code for generation of the binary phase profile of a FZP
and a circular grating using the modulo-2p phase addition method for
generation of the multifunctional DOE are given in Table E.6.1.

Figure E.5.3 Plot of the radii of zones for case 1: t¼ 1 mm (dotted line) and case 2: t¼ 1 þ
r (solid line).
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Table E.6.1 MATLAB code for design of a multifunctional DOE from a binary circular
grating and a binary FZP using the modulo-2p phase addition method.

%Multifunctional DOE – Circular grating and FZP – Modulo-2p phase
%addition method
clear; %Clear all memory
%Define grating parameters

N¼1000;%Define matrix size
M¼10;%Define number of half period zones of FZP
f¼30000; %Define focal length of FZP
lambda¼0.633;%Define wavelength
A1¼zeros(N,N); %Define a Matrix by assigning 0 to all
%elements
A2¼zeros(N,N);
r¼zeros(N,N);
r1¼zeros(M);
Pr¼38; %Define the period of the grating
FFr¼0.5; %Define fill factors for x and y periodicity

%Construct the binary FZP and binary circular grating
for n¼1:M;

r1(n)¼sqrt(n*f*lambda);
end
for n¼1:2:M;
for p¼1:N;

for q¼1:N;
r(p,q)¼sqrt((p-N/2)*(p-N/2)þ(q-N/2)*(q-N/2));
if r(p,q),N/2;

if rem(r(p,q),Pr),Pr*FFr;
A1(p,q)¼1;

end
if r(p,q). r1(n) && r(p,q), r1(nþ1);
A2(p,q)¼1;

end
end

end
end
end
A3¼exp(1i*pi*xor(A1,A2)); %XOR operation between A1 and A2
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The image of the multifunctional DOE is shown in Fig. E.6.1a.

Case 2: Analog Method
The base angle of the negative axicon necessary to generate a ring pattern with
a diameter of 1 mm at a distance of 30 mm can be calculated as follows. The
divergence angle required is given by

b ¼ sin�1ðngsinaÞ � a ¼ d∕2
f

¼ 0.0167 rad: (E.6.1c)

Assuming that ng¼ 1.5, the base angle of the axicon is given by 0.0335 rad.
Hence, from the relationship between the thickness and X, we find that X¼
26.5. The radii of zones of the multifunctional DOE can be estimated using
Eq. (6.19).

The MATLAB code for designing the multifunctional DOE using the
analog method is similar to the code given in Table E.6.1. However, the
equation of radii of zones must be replaced by Eq. (6.19). The plot of radii of
zones as a function of zone number is shown in Fig. E.6.1b. It can be noted
that the radius of the first zone is . 1 mm. Hence, it is not possible to design
the element using the analog method for the above design values.

Figure E.6.1a Image of the phase profile of the multifunctional DOE containing the
functions of a circular grating with a period of 38 mm and a FZP with a focal length of
f¼ 30 mm.
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E.6.2 There are many interesting optics configurations for superposing two
signals with slightly different wavelengths. A simple configuration is as
follows. The multifunctional DOE needs to have an axicon and a grating. The
axicon converts the Gaussian intensity profile into a Bessel intensity profile,
while the grating can be used for beam combining. The period of the grating
must be selected to obtain a diffraction angle of 5 deg (0.0872 rad). As the
wavelengths are close to one another, a grating with same period can be used
for the average wavelength lavg¼ 602 nm. The period of the grating is
estimated as L1¼ 7 mm. The distance between the central maximum and the
first minimum is given by

r0 ¼
1.22l
psinb

: (E.6.2)

Hence, the period of the axicon is L1¼ 51 mm. The element can be designed
using the MATLAB code given in Table E.6.2.

Figure E.6.1b Plot of the radii of zones of the multifunctional DOE as a function of the zone
number.
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The grating needs to be binarized such that the þ1st diffraction order of
one of the beams will superpose the –1st diffraction order of the other beam, as
shown in Fig. E.6.2a. The magnified central region of the DOE is shown in
Fig. 6.2b.

Table E.6.2 MATLAB code for design of multifunctional DOE from a blazed axicon and a
1D grating.

%%Multifunctional DOE- Blazed axicon and binary grating
clear;%Clear all memory
%Define grating parameters

N¼500;%Define Matrix size
Pr¼51;
Px¼7;
FFx¼0.5;
A2¼zeros(N,N);%Define the matrices assigning ones to all
%pixels

%Construction of blazed axicon and binary grating
x¼1:N;
y¼1:N;
[X,Y]¼meshgrid(x,y);
r¼sqrt((X-N/2).*(X-N/2)þ(Y-N/2).*(Y-N/2));
P1¼rem(r,Pr);
A1¼(P1/Pr)*2*pi;
A2(rem(X,Px),Px*FFx)¼pi;
A¼exp(1i*rem(A1þA2,2*pi));

Figure E.6.2a Optics configuration for superposing light beams with slightly different
wavelengths propagating at þ5 deg and –5 deg.
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E.6.3 The phase profiles of a blazed spiral phase plate with charge L¼ 10 and
a binary amplitude axicon with period L¼ 10 mm are added. The MATLAB
code is similar to that given in Table 6.5, and the FZP phase profile must be
replaced by the phase profile of a binary axicon or a circular grating. The
image of the multifunctional DOE and its far-field diffraction pattern are
shown in Fig. E.6.3(a) and (b), respectively.

Figure E.6.2b Image of the phase profile of a multifunctional DOE containing the functions
of a blazed axicon and a binary grating used for converting a Gaussian intensity profile into a
Bessel intensity profile and for beam combining.

Figure E.6.3 (a) Image of the phase profile of a helical axicon and (b) the far-field
diffraction pattern of a helical axicon.
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E.6.4 Two DOEs, namely, a ring lens29,30 and a checkerboard grating, are
selected for generation of 2� 2 ring patterns. The period of the grating
calculated using trigonometry and the diffraction equation for generation of
ring patterns with a spacing of 758 mm is 50 mm. The binary phase profile of
the ring FZP can be generated using the path length equation, given by27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrn � r0Þ2 þ f 2

q
� f ¼ nl: (E.6.4a)

The equation of the zones of the ring FZP is given by

rn ¼ r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2 þ 2nf l

q
: (E.6.4b)

The MATLAB code is similar to Table 6.2, where the phase profiles of the
binary axicon and 1D grating must be replaced by those of the ring FZP and
the 2D checkerboard grating. The image of the DOE is shown in Fig. E.6.4. It
can be observed that the diameter of the ring pattern is independent of
wavelength, as the element is a ring lens. The distance between the rings is also
independent of wavelength, as the variation in the focal length of the ring lens
due to wavelength variation compensates for the variation in distance between
the ring patterns due to wavelength variation.

Chapter 7 Solutions

E.7.1 The CGH that focuses a diverging wavefront into a point is nothing but
a FZP designed in finite conjugate mode. The object and image distances are
10 mm and 20 mm, respectively. This CGH can be designed by superposition

Figure E.6.4 Image of a multifunctional DOE containing the functions of a binary ring FZP
and a binary checkerboard grating.
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of the two wavefronts described by Eqs. (E.7.1.a) and (E.7.1.b). The design
part of the MATLAB code is given in Table E.7.1. The image of the FZP
generated using the above MATLAB code is given in Fig. E.7.1.

C1ðx,yÞ ¼ exp
�
j
�
2p
l

��
u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � ðx2 þ y2Þ

q ��
, (E.7.1.a)

C2ðx,yÞ ¼ exp
�
j
�
2p
l

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ðx2 þ y2Þ

q
� v

��
: (E.7.1.b)

E.7.2 An off-axis FZP-type CGH can be designed by superposing a spherical
wavefront with a tilted-plane wavefront. The MATLAB code is similar to that

Table E.7.1 MATLAB code for design of a FZP in finite conjugate mode.

%FZP finite conjugate mode
u¼0.01;%Define object distance
v¼0.02;%Define image distance
A¼V*exp(1i*((2*pi)/lambda)*(u-sqrt(u*u-sqrt(X.^2þY.
^2))));
B¼V*exp(1i*((2*pi)/lambda)*(-vþsqrt(v*v-(X.^2þY.^2);
D¼AþB;%Interference

Figure E.7.1 Image of the sinusoidal phase profile of a CGH that can focus a diverging
wavefront at a distance of 10 mm from a FZP plane to a point a distance of 20 mm from the
FZP plane.
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of Table 7.5; the wavefront profile of the axilens must be replaced by the
wavefront profile of a FZP. The image of the off-axis FZP with a tilt angle of
3 deg and focal length of 25 mm is shown in Fig. E.7.2.

E.7.3 An axicon is designed with a1¼ 2 deg and a1¼ 1 deg. The MATLAB
code is similar to that of Table 7.3 with slight modifications, as shown in
Table E.7.3. The image of the resulting CGH is shown in Fig. E.7.3.

Figure E.7.2 Image of the sinusoidal phase profile of a CGH that can focus a plane
wavefront a distance of 25 mm from the FZP plane with an angle of 3 deg.

Table E.7.3 MATLAB code for the design of an axicon with two base angles.

%Axicon with two base angles
N¼500;
Angle¼1;
V¼0.5;
lambda¼0.632;

for p¼1:N;%%Design of a conical wave with two angles and a plane
%reference wave

for q¼1:N;
r(p,q)¼sqrt((p-N/2)*(p-N/2)þ(q-N/2)*(q-N/2));
if r(p,q),125;
A(p,q)¼V*exp(1i*(r(p,q)/lambda)*tand(Angle*2)*2*pi);
else
A(p,q)¼V*exp(1i*(((125/lambda)*tand(Angle*2)*2*pi)þ
(((r(p,q)- 125)/lambda)*tand(Angle)*2*pi)));
end
B(p,q)¼V*exp(1i*0);

end
end
D¼AþB;%Interference
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E.7.4 An optical element that generates a ring pattern in its far field is an
axicon. If this axicon is used together with a FZP, then it generates a focused
ring pattern at the focal plane of the FZP. The divergence angle of the axicon
necessary to generate a ring pattern of radius 100 mm at the focal plane at a
distance of 5 mm is given by

b ¼ tan�1

�
r
f

�
¼ tan�1

�
100
5000

�
≅ 1.15 deg :

The CGH can be designed by superposing a spherical wavefront emanating
from a distance of 5 mm with a conical wave. The MATLAB code for design
of the CGH is given in Table E.7.4.

Figure E.7.3 Image of a binarized CGH generated by superposing a plane wave with a
wave generated by an axicon with two base angles.

Table E.7.4 MATLAB code for design of a CGH for generation of a focused ring pattern.

%CGH with ring focus
N¼500;
Angle¼1.15;%Define divergence angle
V¼0.5;%%Visibility controller
lambda¼0.632*1e-6;%Define wavelength
f¼0.005;%Define wavelength
del¼1*1e-6;%
x¼-N/2:N/2-1;
y¼-N/2:N/2-1;
[X,Y]¼meshgrid(x*del,y*del);
R¼sqrt(X.^2þY.^2);
A¼V*exp(1i*((2*pi)/lambda)*(f-sqrt(f*f-R.*R)));
B¼V*exp(1i*(R/lambda)*tand(Angle)*2*pi);
D¼AþB;%Interference of the object and reference wave
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The image of the interference pattern is similar to that of the profile of a
ring lens capable of generating a focused ring pattern at the focal plane, as
shown in Fig. E.7.4. The radius of the ring measured from Fig. E.7.4 shows
100 mm, which matches the calculated value.

E.7.5 The CGH can be designed by superposition of a helical wavefront with
charge L¼ 5 with a spherical wave emanating from a point a distance of
5 mm from the CGH plane. The MATLAB code for design of the CGH is
given in Table E.7.5. The image of the CGH is shown in Fig. E.7.5.

Figure E.7.4 Image of a sinusoidal CGH that can focus light on a ring with a radius of
100 mm at a distance of 5 mm.

Table E.7.5 MATLAB code for design of a CGH for generation of a helical wavefront with
L¼ 5 and focused at a distance of 5 mm.

%CGH for generation and focusing of a helical wavefront
N¼500;
L¼5;
V¼0.5;%%Visibility controller
lambda¼0.632*1e-6;%Define wavelength
f¼0.005;%Define wavelength
del¼1*1e-6;%
x¼-N/2:N/2-1;
y¼-N/2:N/2-1;
[X,Y]¼meshgrid(x*del,y*del);
R¼sqrt(X.^2þY.^2);
B¼V*exp(1i*((2*pi)/lambda)*(f-sqrt(f*f-R.*R)));
A¼V*exp(1i*L*(atan2(X,Y)));
D¼AþB;%Interference of the object and reference wave
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Figure E.7.5 Image of a sinusoidal CGH that can focus a helical wavefront with L¼ 5 at a
distance of 5 mm.
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0th order, 22
0th order Bessel-like beam, 161
1D amplitude grating, 25
1D gratings, 147
2D binary phase grating, 32
2D phase grating, 33
4-level and 8-level axicons, 198
4-level and 8-level circular
gratings, 196

4-level FZP, 53
4-level phase grating, 47
4-level SPP, 206
8-level 1D phase grating, 48
8-level axicon, 50

A
aberration-corrected FZP, 105
aberration correction techniques, 90
aberration introduced by glass
substrate, 96

aberrations, 90
accelerating Airy beams, 160, 204
accelerating beams, 160
achromatization, 9
amplitude FZP, 133
amplitude grating, 6
amplitude-only DOEs, 122
analog method, 137
aperture function, 17
array of ring patterns, 141
astigmatism, 188
autocorrelation function, 166
axicon, 131

axilens, 58, 81, 158
azimuthal rotations, 54

B
beam path steering element, 160
beam shaping, 143
Bessel beams, 199
Bessel intensity profiles, 140
Bessel-like beam, 76, 160
binary 1D grating, 129
binary axicon, 79
binary spiral phase plate, 73
blazed 1D grating, 206
blazed 1D phase gratings, 49
blazed axicons, 50
blazed axilens, 59
blazed FZP, 129
blazed gratings, 5, 46
blazed spiral phase plate, 133

C
characterization of fabricated
DOEs, 187

charging problem, 188
checkerboard grating, 34, 127, 131
circle-by-circle fabrication, 181
circular aperture, 79
circular grating array, 204
circular gratings, 37
computer-generated Fourier
amplitude hologram, 165

computer-generated holographic
optical elements, 143
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computer reconstruction, 171
conical wavefront, 150
contamination pillar, 191
contamination spots, 191
continuous and discrete Fourier
transforms, 27

D
diffraction, 1
diffraction-limited spot, 2
diffraction order, 23
diffraction pattern, 23, 29
diffractive axicons, 37
diffractive optical elements, 2, 17
diffractive optics, 1
discretized Fourier transform, 12
dispersive nature, 9
DOE on a fiber tip, 208
donut beam diameter, 54
donut beams, 156
donut intensity profile, 53
drift correction, 210
duty ratio error, 115

E
effective efficiency, 139
efficiency of light, 46
Eikonal equations, 62, 63
electron beam lithography, 175
elliptical FZPs, 40

F
fabrication recipes, 175
fabrication techniques, 175
far-field analysis, 24
far-field approximation, 78
far-field diffraction pattern, 126,
156, 203

fill factor, 24
finite conjugate mode, 92
flower-shaped intensity profile, 157
focal depth, 58
focused ion beam, 175

focused ion beam lithography, 205
focused ion beam milling, 208
focused ring pattern, 140, 172
for and if loops, 25
forked gratings, 147
Fourier analysis, 20
Fourier coefficients, 21
Fourier hologram, 165
Fourier transform, 12, 25
fractal zone plate, 187
fractional topological charges, 55
Fraunhofer approximation, 11, 78
Fraunhofer diffraction
formula, 166

Fresnel approximation, 78
Fresnel diffraction integral, 24, 76
Fresnel diffraction, 79
Fresnel holograms, 169
Fresnel lens, 4
Fresnel regime, 76
Fresnel zone plate, 17, 175
fringe patterns, 148

G
Gerchberg–Saxton algorithm, 60
gradient ring lens, 73
grating, 3
grating convention, 7
grating equation, 20
grating shape, 5
grayscale DOEs, 44
grayscale FZP, 51
grayscale SPP, 55

H
helical axicon, 141, 156
helical wave, 156
helical wavefronts, 53
higher-order Bessel beams, 156
Huygens–Fresnel theory, 10
Huygens’ principle, 2
hybrid DOEs, 17, 122
hybrid optical elements, 119
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I
infinite conjugate mode, 92
interferograms, 143
inverse Fourier transform
algorithm, 60

iterative Fourier transform
algorithm, 44

L
Laguerre–Gaussian beam, 157
line focus, 39
lithography file design, 175
low- and high-pass filtering, 167

M
MATLAB®, 2, 17, 48, 76, 94, 127,
148, 178

maximum efficiency, 31
mesh generation technique, 63
mesh nodes, 63, 68, 70
metallization, 188
micro-optical element
fabrication, 175

modulo-2p phase addition
technique, 122

multifunctional DOEs, 119, 134,
152, 203

multilevel DOEs, 46
multilevel FZP, 52
multilevel SPP, 55, 57, 206
multilevel structure fabrication, 196
multiple-beam interference, 163
multiplexed diffractive
optics, 119

N
negative axicon, 138

O
off-axis axicon, 154
off-axis axilens, 158
off-axis Bessel beams, 154
optical microscope, 187

P
paraxial approximation, 76
phase grating, 29
phase multiplexing, 119
phase-only DOEs, 122
photolithography, 175
photon sieve, 187
pixel size, 27
plasma etching, 186
polygon approximation, 181
polygonal path scanning, 181
prism, 8

Q
Quanta 3D FEG (FEI), 178
Quanta™ 400F (FEI), 178
quasi-achromatic, 135

R
RAITH150TWO, 178
raster scanning, 182
ray tracing, 94
reflective–diffractive
combinations, 119

refractive–diffractive
combinations, 119

resist thickness error, 115
resist-thickness-versus-dose
characterization, 197

ring pattern, 128

S
sampling criteria, 27
sampling periods, 78
scalar diffraction, 24
scalar theory, 2
scanning electron microscope, 191
self-image, 85
serpentine scanning, 183
sinusoidal axicon, 152
sinusoidal grating, 31, 149
Snell’s law, 3, 96
spatial frequencies, 24

249Index

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



spherical aberration, 90
spherical wavefront, 149
spiral phase plates, 53
stack method, 206
stigmation correction, 191
stitching error, 192
substrate aberration, 108
surface profiler, 187

T
tailored focal depth, 158
Talbot carpet, 85
Talbot effect, 84
Talbot planes, 85
tilted-plane wavefront, 148
tilted ring pattern, 154

topological charge, 53, 156
transition between refraction and
diffraction, 2

transition between refractive and
diffractive elements, 8

twin images, 62

V
vector method, 180

W
wet etching, 184

Z
zero padding, 28, 167–168
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