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Chapter 1

Introduction

Over recent decades the role of images in the communication of informa-
tion has grown steadily. Advances in technologies underlying the capture,
transfer, storage, and display of images have created a situation in which
the use of images as a means of communicating information has become
technologically and economically feasible. More importantly, however, im-
ages are in many situations an extremely efficient means to communicate
information, as may be witnessed by the proverb “a picture is worth a thou-
sand words.” Without a doubt, this has been the most prominent factor
pushing the technological development.

Notwithstanding these technological advances, the current state of the art
still requires that certain compromises be made in the design of algorithms
and devices for capture, transfer, storage, and display of images. Examples
of such compromises are temporal resolution versus noise sensitivity (for
capture), spatial resolution versus image size (for transfer and storage), and
luminance range versus gamut (for displays). These and similar choices
will, when made, affect the appearance of reproduced images, as well as
the impression of how well the images are reproduced. To make optimal
choices, it is therefore necessary to have knowledge of how particular de-
sign choices translate into the appearance of images and subsequently into
the impression of how well these images are reproduced. In a nutshell, this
is the central question of all image quality research.

Current image quality research can be divided into two fundamentally dif-
ferent approaches. The first approach focuses on experimental evaluation
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1. Introduction

(Roufs 1993). A typical setup would include a small group of human sub-
jects judging quality, and possibly some related attributes such as sharp-
ness, contrast, or colorfulness, of a set of displayed images that are ma-
nipulated to simulate the effects of several different design choices. In this
way, the influence of these design choices on image quality can be mea-
sured and, by means of interpolation, approximately optimal choices can be
made. Two serious drawbacks of this approach are (1) it is extremely time
consuming, as well as tiresome for the participating subjects; and (2) the
obtained knowledge cannot easily be generalized, since all relations found
between design choice and image quality are descriptive rather than based
on an understanding. As a result, in a single series of experiments only a
small fraction of the possible design space can be investigated, and in prac-
tice the experimental procedure must be repeated for almost every possible
set of design choices.

The second approach tries to address these drawbacks by means of the de-
velopment of models that describe the influences of several physical image
characteristics on image quality, usually through a set of image attributes
thought to determine image quality. When the influence of a set of design
choices on physical image characteristics is known, these models can be
used to predict image quality instead of having to measure image quality
experimentally. Two different types of models can be distinguished here.
Both types share the common characteristic that image quality is expressed
in terms of the visibility of distortions, or artifacts, introduced in the image
as a result of certain design choices. Examples of such distortions are flick-
ering, blockiness, noisiness, or color shifts. A hypothetical version of the
image devoid of any such visible distortions is regarded as the “original,”
that is, the version of the image assumed to be of highest quality; and the
visibility of distortions in the image, referred to as impairment, is used as
a measure of quality degradation. The fundamental difference between the
two types of model lies in how this impairment is calculated.

In the first type of model, physiologically or psychophysically inspired
models of early visual processing are used to calculate impairment from
a difference between two versions of an image, for example the “input”
or “unprocessed” version, which is substituted for the original, and the
“output” or “processed” version of a certain device or image processing
algorithm. A well-known example of this approach is the JND map (just-
noticeable differences map) presented by Daly (1993). The two most im-
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portant drawbacks of this approach are (1) it is unclear what exactly the
“unprocessed” version of an image is; and (2) what in fact is calculated here
is the visible difference between two versions of an image, not image qual-
ity itself, and it remains unclear how the translation from visible difference
to image quality should be performed. Usually this translation is made by
means of fitting certain model parameters to experimentally obtained qual-
ity judgments of human subjects.

The second type of model differs from the first type in the sense that it tries
to estimate visibility of distortions directly from the image instead of using a
visible difference with an original. In this type of model, visible distortions
of an image, such as unsharpness or noisiness, are predicted by estimat-
ing relevant physical attributes of the image, such as blur and noise spread.
Using psychophysically established relations, these estimated physical at-
tributes are then translated to visibility of distortions in the image. Finally,
image quality is expressed in terms of these visible distortions using some
kind of combination rule. The work presented by Nijenhuis & Blommaert
(1997) is a good example of this approach. The uncertain translation from
visibility of distortions to image quality, which usually must be fitted to
experimentally obtained data, remains an important drawback of this ap-
proach.

As may be concluded from the above description of the state of the art in
image quality modeling, images are regarded primarily as two-dimensional
signals. Similarly, early visual processing is regarded as signal processing,
with image quality being determined by a set of characteristics of the result-
ing output signal. There are a few serious shortcomings to this view, the
most important of which is the fact that the fundamental question “What
is image quality?” is never asked, nor answered. To give an answer to this
question, based on a thorough understanding of visuo-cognitive processing
and the role of images therein, is the very aim of this book.

The approach we will pursue in this book distinguishes itself from the
above approaches in four fundamental ways:

e We will regard images not as signals but instead as carriers of visual
information. Since an image is the result of the optical imaging pro-
cess, which maps physical scene properties onto a two-dimensional
luminance distribution, it encodes important and useful information

3
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1. Introduction

about the geometry of the scene and the properties of the objects lo-
cated within this scene.

We will regard visuo-cognitive processing not as signal processing but
instead as information processing. Following Marr (1982) and Newell
(1990), we will regard vision and cognition as the processes in which,
first, physical object properties, or correlates of these, are recon-
structed from a two-dimensional luminance distribution using a set of
dedicated computational algorithms and, second, resulting descrip-
tions are interpreted by comparing them with descriptions stored in
memory.

We will regard visuo-cognitive processing not as an isolated process but
instead as an essential stage in human interaction with the environ-
ment. Descriptions of scene content, as produced by visuo-cognitive
processing, are used as input to subsequent stages in the process of
interaction with the environment, such as semantic processing and
action. Hence, visuo-cognitive processing plays a vital role within the
interaction process.

We will regard the quality of an image not in terms of the visibility
of distortions in this image but instead in terms of the adequacy of this
image as input to the vision stage of the interaction process. The basic
definition of quality we will use is formulated in terms of the degree
to which imposed requirements are satisfied. When images are con-
sidered to be input to the interaction process, requirements must be
imposed on these images to guarantee the successfulness of the inter-
action process. In this view, the degree to which an image satisfies
these requirements determines the quality of this image.

The structure of this book is as follows. In Chapter 2 “Approaches to Image
Quality,” we start by introducing some of the most prominent approaches
to image quality modeling and prediction. In this chapter, we will briefly
discuss these approaches and the philosophies behind them, and conclude
with a discussion of the similarities and dissimilarities with the approach
presented in this book.

In Chapter 3 “Image Quality Semantics,” we formulate an answer to the
question “What is image quality?” based on the philosophy outlined in the

4
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above four points. In this chapter, we give a description of image quality
in terms of two components: usefulness, that is, the precision of the internal
representation of the image; and naturalness, that is, the degree of match
between the internal representation of the image and representations stored
in memory. The results of two series of experiments are used to demonstrate
the validity of this concept.

Chapter 4 “Visual Metrics: Discriminative Power through Flexibility” fo-
cuses on the internal quantification of outside world attributes. Using a
rather technical view on visual processing, we regard vision primarily as
a process in which attributes of items in the outside world are measured
and internally quantified with the aim to discriminate and /or identify these
items. In Chapter 4 we show that the scale function of metrics optimized
with respect to these tasks should be (partially) flexible. Furthermore, we
show that such metrics exhibit properties resembling phenomena such as
adaptation, crispening, and constancy.

A straightforward implementation of the image quality concept of Chap-
ter 3 using the partially flexible metrics of Chapter 4 is the topic of Chap-
ter 5 “Predicting the Usefulness and Naturalness of Color Reproductions.”
In Chapter 5 a measure for usefulness is developed, based on the overall
discriminability of the items in the image. Furthermore, a measure for nat-
uralness of the grass, skin, and sky areas of the image is developed, based
on memory standards for grass, skin, and sky color. These memory stan-
dards are themselves constructed from the grass, skin, and sky areas of a
large set of images.

As its title suggests, Chapter 6 “Image Quality Revisited” returns to the
concept for image quality introduced in Chapter 3. Following a strict, top-
down analysis the entire trajectory is completed, from the semantics of im-
age quality down to the development of algorithms for the prediction of
usefulness, naturalness, and image quality. Chapter 6 therefore contains a
thorough and explicit description of image quality according to the four-
point philosophy outlined above.
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Chapter 2

Approaches to Image Quality

In this chapter we will introduce some of the most prominent approaches
to image quality modeling and prediction, namely statistical measures, mea-
sures using visual front-end models, measures incorporating modulation trans-
fer functions, multidimensional impairment measures, task performance measures,
and measures for color reproduction quality. We will briefly discuss these ap-
proaches and the philosophies behind them, and conclude with a short dis-
cussion of the approach presented in this book.

2.1 Statistical measures

This class of image quality measures originates from signal processing ap-
plications, where in some situations the need arises to compare an original
signal with a distorted version. For example, a transmitted signal has to
be compared with a received version, such that conclusions can be drawn
about the reliability of the transmission medium. Image quality measures
of this type use no characteristics of human visual processing whatsoever.
Instead, they compare the luminance patterns of the original and distorted
images on a pixel-by-pixel basis, and subsequently calculate statistical mea-
sures from this comparison. They therefore can be characterized as statisti-
cal signal-distortion measures.

One measure is used especially widely: the mean square error (MSE). For an
image I and its reproduced version I’, the MSE is calculated as follows:

7
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2. Approaches to Image Quality

1 N M
MSE(I,T') = 77> D ' (05) = 16, 5)), @1)
i=1j=1

where I(i,7) and I'(, j) represent the luminances of the original and dis-
torted images for the pixel located at row 7 and column j, and where N and
M represent the number of rows and columns of the images.

As can be concluded from Eq. (2.1), the MSE is symmetric for I and I’, that
is, MSE(1,I') = MSE(I’,I). In other words, the references “original” and
“distorted version” can be chosen arbitrarily without influencing the value
of the MSE. Therefore, the MSE is a measure for image quality difference
only, and it cannot be used to predict which of the two versions of the im-
age is better. Usually a “common sense” approach is followed, in which
the original or transmitted image is regarded as the better image and any
nonzero MSE is regarded as a loss in image quality. This assumption may
sometimes be incorrect, for example in situations where the difference be-
tween the original and distorted versions of an image is the result of image
processing stages explicitly aimed at image quality improvement.

A second widely known statistical image quality measure is the peak signal-
to-noise ratio (PSNR). The PSNR is in fact a normalization of the MSE and
is obtained by dividing the square of the luminance range R of the display
device by the MSE and expressing the result in decibels:

2

The foremost advantages of the PSNR with respect to the MSE are, first, that
it is a dimensionless and normalized quantity and, second, that it increases
monotonically with the “lack of difference,” or image fidelity, between the
original and distorted versions of the image. However, since it is based on
the MSE it does share the above-mentioned disadvantage of being symmet-
ric.

MSE and PSNR are among the first widely used image quality mea-
sures. Remarkably, opinions about their usefulness for image quality pre-
diction differ to date. Although MSE and PSNR are often considered
in the image quality literature as being inadequate measures (Cosman,

8
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2.2. Measures using visual front-end models

Gray & Olshen 1994, Eckert & Bradley 1998, Lubin 1995, Nijenhuis &
Blommaert 1997, Winkler 1999, Zetzsche & Hauske 1989), experimental re-
sults presented by Martens & Meesters (1999) suggest that the MSE, when
applied to CIE 1976 lightness (L*) images instead of plain luminance im-
ages, performs equally well as a highly sophisticated model such as the
Sarnoff Visual Discrimination Model (VDM) (Lubin 1995). These results were
obtained for the case of images degraded by noise and blur and for the case
of JPEG-coded images. Considering the amount of knowledge about the
human visual system put into models such as the VDM, and considering
that the VDM is explicitly designed to predict the quality of JPEG-coded
images, this evidence is surprising at least.

2.2 Measures using visual front-end models

The statistical measures from the previous section incorporate no knowl-
edge of human visual processing whatsoever, which has been the primary
reason for the development of visual front-end models for image quality
prediction. The rationale for the development of this type of model is
straightforward: the more characteristics of human visual processing are
incorporated into image quality models, the better these models are likely
to be at predicting the perceived difference between a reproduced image
and its original, and hence the better these models should be able to predict
image fidelity. This development has led to several highly complex, phys-
iologically and psychophysically inspired models (Daly 1993, Lubin 1995,
Zetzsche & Hauske 1989), of which the VDM and the Visual Differences Pre-
dictor (VDP) (Daly 1993) are the most widely known.

Visual front-end models for image quality prediction usually incorporate
a wide range of physiologically and psychophysically established mecha-
nisms of human visual processing. Typical components include

o optical blurring, to model the effect of the imperfect optics of the eye;

¢ luminance adaptation, to account for the variation in visual sensitivity
as a function of light level;

e contrast sensitivity function, to account for the variation in visual sen-
sitivity as a function of angular frequency;

9
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2. Approaches to Image Quality

e decomposition into multiple frequency bands, to model the spatial
frequency selectivity of the human visual system;

o filtering by orientation-selective filters, to model the orientation selec-
tivity of the human visual system;

¢ luminance and contrast masking, to account for the variation in visual
sensitivity as a function of background structure.

Most models furthermore include a rather ad-hoc error summation stage
to obtain a visible differences image from the scale-space descriptions of
the original and distorted images generated at earlier stages. The visible
differences image indicates, for each location in the image, the probability
of seeing a difference between the original and distorted images. In some
models the visible differences image is collapsed into a single number.

To conclude, it is important to note that front-end models are in fact thresh-
old metrics; that is, they are designed to predict the visibility of distortions
near the visual threshold level. When distortions are near the threshold
level, their predictions are usually more consistent with observer ratings
than the statistical measures. However, for suprathreshold distortion levels
performance is often less good (Eckert & Bradley 1998), possibly due to the
lack of modeling of higher-level visual processing.

2.3 Measures incorporating modulation transfer
functions

This class of measures uses the modulation transfer function (MTF) of the
display system in combination with the contrast sensitivity function (CSF)
of the eye to predict the effects of, primarily, resolution and luminance con-
trast of a display device on image quality. Perhaps the best-known example
of this type of measure is the square-root integral (SQRI) (Barten 1990).

The MTF of a display system expresses the modulation transfer of a dis-
played one-dimensional sinusoidal pattern as a function of spatial fre-
quency. A typical MTF shows the characteristics of a low-pass filter, with a
relatively constant modulation transfer for frequencies lower than the cutoff

10
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2.3. Measures incorporating modulation transfer functions

frequency, and rapidly decreasing modulation transfer for higher frequen-
cies. Two properties of the MTF are especially important for the quality of
displayed images. First, higher values of the modulation transfer lead to
higher luminance contrast of the displayed pattern. Second, higher values
of the cutoff frequency allow for higher-frequency patterns to be displayed.
Both properties together generally result in higher contrast and sharper de-
tail in displayed images, and therefore to higher image quality. An obvious
way to characterize the quality of a display system therefore is the area un-
der its MTF curve.

However, the sensitivity of the human eye varies with angular frequency
and with average luminance level. The function expressing the contrast
sensitivity of the human eye as a function of angular frequency is known as
the contrast sensitivity function (CSF). In measures such as the SQRI, the CSF
is therefore used as a weighting function to the MTFE. Barten (1990) uses the
following analytical expression to approximate the CSF:

CSF(u) = aue "1 + cebu, (2.3)

with ¢, b, and c given by

540(1 +0.7/L) =02

= , (2.4)
1+ siarmye

b = 0.3(1+100/L)%, (2.5)

c = 0.06, (2.6)

where u is the angular frequency in cycles per degree, w is the angular size
in degrees, and L is the average luminance in candelas per square meter.
Since the CSF expresses contrast sensitivity as a function of angular fre-
quency and the MTF expresses modulation transfer as a function of spatial
frequency, a conversion must be made between spatial frequency and cor-
responding angular frequency. This can be done easily once the viewing
distance is known.

Barten (1990) argues that nonlinear behavior of the human eye must be
taken into account; first, by using the square root of the weighted MTF and,

11
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2. Approaches to Image Quality

second, by using logarithmic integration. The SQRI is therefore calculated
as

1022 /0 "\ JCSF(u)MTF(u) (%”) , 2.7)

where scaling by the factor 1/log 2 is done to yield results in units of 1 JND.

J=

MTF methods like the SQRI are used primarily to predict the effects of dis-
play system parameters such as resolution, average luminance, luminance
contrast, display size, and viewing distance. Barten (1990) reports good
linear correlations between SQRI predictions and quality judgments by hu-
man observers for situations in which one or more of these parameters are
systematically varied. However, since MTF measures only consider the dis-
play system and not the image itself, they cannot be used to predict image
quality when factors other than those directly related to the display system
are involved.

2.4 Multidimensional impairment measures

The quality of an image can be affected by a large variety of distortions.
Some distortions can be one-to-one related to a visually distinguishable ef-
fect they have on the appearance of the image. For example, blurring of the
two-dimensional image signal will lead to an unsharp image, and adding
noise to the image signal will result in a noisy image. Other distortions can
be related to more than one visually distinguishable effect. For example,
blockiness and ringing are two visually distinguishable effects caused by
JPEG compression of the image signal.

A visually distinguishable effect caused by a distortion of the image signal
is usually referred to as an impairment, whereas the perceived magnitude of
the effect is referred to as the impairment strength. The central assumption
used in the multidimensional impairment approach is that image quality is
inversely related to total impairment strength I;,; (Nijenhuis & Blommaert
1997); that is,

Q=1— L. (2.8)

12
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2.4. Multidimensional impairment measures

Hence, when image quality is affected by more than one impairment, total
impairment strength must be calculated from the individual impairment
strengths. Usually, this is done by Minkowski summation of the individual
impairment strengths (de Ridder 1992):

N
L= I, (2.9)
i=1

where I; is an individual impairment’s strength, IV the number of impair-
ments, and o the Minkowski exponent. For visually clearly distinguish-
able impairments, « is approximately two, whereas for impairments that
are hardly distinguishable, o is approximately one. By using Minkowski
summation, the location of a degraded image may be specified in a mul-
tidimensional impairment space of which the individual impairments are
the dimensions, such that the distance (Euclidean for oo = 2 or City-block
for a = 1) of the image to the origin of the multidimensional space corre-
sponds to total impairment strength.

An important aim of the multidimensional impairment approach is to find
(psychophysical) relations between, on the one hand, physical parameters
specifying the distortion of the image signal (for example, spread of a blur-
ring kernel) and, on the other hand, the perceived strength of the result-
ing impairment (unsharpness). Typical examples of the multidimensional
impairment approach in the literature are Kayargadde & Martens (1996a)
and Kayargadde & Martens (1996b), who consider images degraded by
noise and blur, and Nijenhuis & Blommaert (1997), who consider images
degraded by sampling and interpolation artifacts. For example, the fol-
lowing relation can be used to predict unsharpness I, from estimated blur
kernel spread o (Nijenhuis & Blommaert 1997):

1

Tpocl— [(0/00)2 + 1025

(2.10)

where oy represents the intrinsic blur due to optical and physiological prop-
erties of the human eye.

The multidimensional impairment approach has one clear advantage over
“difference measures” like the statistical measures and the visual front-end
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2. Approaches to Image Quality

measures: there is no need to consider the original version of an image. Im-
pairment strength can be calculated directly from the image by estimating
relevant physical parameters, such as blur kernel spread or noise variance,
and by relating these parameters to perceptually relevant attributes, such
as unsharpness or noisiness, using psychophysically established relations
such as Eq. (2.10). Disadvantages of this approach are that it is still un-
clear whether a hypothetical “unimpaired” version of an image is indeed
the version with the highest possible image quality. Furthermore, quite a
large set of impairment measures may be necessary to adequately predict
image quality in “real life” situations, where the image may be distorted by
a complex ensemble of influences.

2.5 Task performance measures

The approach followed here differs significantly from the other approaches.
Here, image quality is defined in terms of task performance. The image is con-
sidered to be of good quality when a well-defined task, such as detection of
a certain lesion in an x ray scan, can be performed correctly. This approach
is primarily used in three situations. First, it is used for medical applica-
tions, where diagnostic accuracy is a highly important issue. Second, it is
used for military applications, where object detection and recognition are
important for reconnaissance tasks. Last, it is used in office applications
where readability of displayed text is important.

At the present, no adequate models exist that can reliably predict diagnostic
accuracy, object detection and recognition, or text readability directly from
the properties of the image. This is the main reason why task performance
measures are usually derived during experiments. To this end, each field
(medical, military, office) has developed its own methodology. We will dis-
cuss these methodologies briefly.

2.5.1 Diagnostic accuracy

In the medical field, the receiver-operating characteristic (ROC) is often used
as a measure for diagnostic accuracy (Cosman et al. 1994). The ROC can
be traced back to signal detection theory, where a detector must decide
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2.5. Task performance measures

Table 2.1: The four situations that can arise when a signal detector must
decide whether a signal is present in background noise. The two decisions
on the diagonal correspond to correct decisions, the other two correspond
to incorrect decisions.

| | Signal present | Signal absent |
Signal detected Hit False alarm
Signal not detected Miss Correct rejection

whether or not a signal is present in background noise. When detection is
performed by comparing the input to a fixed threshold, the four situations
listed in Table 2.1 can arise.

An important way to characterize the detector performance is to systemat-
ically vary the detector threshold and to plot the hit rate versus the false
alarm rate for several threshold settings. The resulting curve, which is
known as the ROC curve, connects the points (100%,100%) (for an ex-
tremely low threshold) and (0%,0%) (extremely high threshold). The area
under the ROC curve is used as a measure for detector performance.

In medical situations, the radiologist typically assumes the role of the de-
tector, while the signal to be detected often is a certain type of lesion in an
x ray or MRI scan. The quality of the medical image is characterized by
the area under the experimentally measured ROC curve for the radiologist.
The “detector threshold” of the radiologist is varied indirectly; for exam-
ple, by systematic manipulation of a reward—penalty system on correct and
incorrect decisions. Measuring the quality of medical images using ROC
analysis therefore is a highly labor-intensive task.

2.5.2 Reconnaissance

In the military field, the National Image Interpretability Rating Scale (NIIRS) is
well established (Hermiston & Booth 1999, Leachtenauer 2000). The NIIRS
is a 10-level numerical scale. At each level, reconnaissance tasks (“criteria”)
are defined for target types such as vehicles, ships, and electronics. The
higher the NIIRS level, the more demanding these criteria become with re-
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2. Approaches to Image Quality

spect to the amount of information that must be extracted from the image.
NIIRS ratings are given by certified image analysts. When rating an image,
the image analyst indicates the highest NIIRS level that is satisfied by the
image. In other words, the image analyst estimates the most difficult task
that he or she believes can be performed using the image.

2.5.3 Text readability

In the office environment, reading speed and reading comfort are most often
used to characterize the quality of displayed text. Roufs & Boschman (1997)
and Boschman & Roufs (1997) give a comprehensive overview of method-
ological and experimental issues related to the measurement of readability
of text displayed on a video display unit (VDU). Among the experimental
variables they consider are ratings of reading comfort as reported by human
subjects, reading performance as measured in terms of reciprocal search
time in a letter-search task, and eye movements as measured in terms of fix-
ation duration and saccade length. None of these measures shows a clear
advantage over the others, which is why the authors conclude that ratings
of reading comfort are probably sufficient.

2.6 Measures for color reproduction quality

Basically all approaches mentioned in the preceding sections can be ex-
tended to predict the quality of color reproductions. For example, statis-
tical measures such as MSE can be defined using the CIELAB or CIELUV
AFE color difference metrics recommended in 1976 by the Commission In-
ternationale de ’Eclairage (CIE). These metrics use the difference between
the CIELAB (L*, a*,b*) or CIELUV (L*,u*,v*) color coordinates of a pixel
in the original and reproduced images to calculate a color difference AE
using a simple Euclidean distance metric:

AEw = \/(AL*)?+ (Aa*)2 + (A2, 2.11)
AEu = \J(AL¥)? + (Aut)? + (Avt)2, (2.12)
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2.6. Measures for color reproduction quality

A well-known improvement on the CIELAB AE metric is the S-CIELAB
AFE metric proposed by Zhang, Setiawan & Wandell (1997) and Zhang
& Wandell (1998). S-CIELAB AFE is a spatial extension of CIELAB AE
that aims to include the spatial-color sensitivity of human color vision.
S-CIELAB AFE values can be thought of as CIELAB AFE values calcu-
lated for spatially filtered versions of the original and reproduced im-
ages.

A very different approach to modeling the quality of color reproductions,
one which takes into account explicitly the influence of higher-level visual
processing, is known as the naturalness constraint (de Ridder 1996). The nat-
uralness constraint expresses the idea that an image of high quality should
at least be perceived as realistic, or natural. For color reproductions this im-
plies that an object’s color as reproduced in an image should resemble the
object’s prototypical color as remembered from past observations in real
life. Experimental data indeed support this idea: image quality judgments
of human observers were found to be highly correlated with naturalness
judgments (de Ridder 1996, Fedorovskaya, de Ridder & Blommaert 1997).
In these and similar experiments, a second factor that was found to influ-
ence the quality of color reproductions is colorfulness, that is, the vividness
of the colors in the reproduction. It was found that, in general, observers
show a clear preference for more colorful, yet slightly unnatural reproduc-
tions (de Ridder 1996).

Yendrikhovskij, Blommaert & de Ridder (1999a) have taken this approach
one step further by developing algorithms to predict naturalness and col-
orfulness from the color statistics of the image. In the proposed algorithms,
colorfulness is estimated from statistical properties of the saturation of the
colors in the image, whereas naturalness is estimated by comparing the
color coordinates of the image areas representing grass, skin, or sky with
experimentally measured prototypical color coordinates for grass, skin, or
sky. Image quality can be obtained from colorfulness and naturalness esti-
mates by means of a linear combination; that is,

Q=wN+ (1 —-w)C, (2.13)

where @ is image quality, w is a weighting factor between zero and one,
and N and C are the estimates for naturalness and colorfulness, respec-
tively.
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2. Approaches to Image Quality

2.7 The approach presented in this book

The approach presented in this book can be thought of as a theoretical un-
derpinning of the approach followed by Yendrikhovskij et al. (1999a). To
start, image quality is regarded as the degree to which the visual and cog-
nitive systems are able to use the information presented in the image. Two
criteria are derived for this: discriminability and identifiability of image con-
tent. Discriminability is related to the average difference between the colors
in the image (and hence related to colorfulness), whereas identifiability is
related to the similarity between object colors in the image and object col-
ors in memory (and hence related to naturalness). Since image quality is
defined here in terms of the performance of visuo-cognitive processes, this
approach may also be thought of as a task-performance approach.

The aim of this approach is not just to model or predict image quality. In-
stead, the aim is to understand what image quality is. To this end, our default
assumption is that visual processing of images is a goal-directed process.
To successfully achieve the goal of visual processing, requirements must
be imposed on the image. The logical consequence of this view is that the
quality of the image is defined by the degree to which these requirements
are satisfied.
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Chapter 3

Image Quality Semantics

In this chapter we will discuss image quality in the context of the visuo-
cognitive system as an information-processing system. To this end, we sub-
divide the information processing as performed by the visuo-cognitive sys-
tem into three distinct processes: (1) the construction of a internal represen-
tation of the image; (2) the interpretation of this representation by means of
a confrontation with memory; and (3) task-directed semantic processing of
the interpreted scene in order to formulate a proper response.

A successful completion of these processes can be ensured only when two
main requirements are satisfied: (1) the internal representation of the image
is sufficiently precise; and (2) the degree of correspondence between the
internal representation and “knowledge of reality” as stored in memory is
high.

We then relate these requirements to the attributes “usefulness” and “nat-
uralness” of the image, and give a functional description of image quality
in terms of naturalness and usefulness. To conclude, experimental results
supporting this description of image quality will be discussed.

This chapter is a slightly modified version of Janssen & Blommaert (1997), Image quality
semantics, Journal of Imaging Science and Technology, vol. 41, no. 5, pp. 555-560. Reprinted
with permission of IS&T, The Society for Imaging Science and Technology, Springfield, VA,
USA.
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3. Image Quality Semantics

3.1 Introduction

A major part of research activity in the field of image quality is directed
toward the development of reliable, widely applicable, instrumental im-
age quality measures. There are two important reasons for developing
instrumental measures: (1) quality evaluation by means of subjective as-
sessment tests is quite expensive and time consuming; and (2) a posteriori
assessment of the image quality of a given design does not allow for an a
priori optimization of this design, thus condemning the design of image
(re)production systems to remain an iterative procedure.

At present, much of the research concerning instrumental image quality
measures is based upon an approach that can be characterized as a “signal
evaluation” approach. In this approach, the image is regarded as a complex
signal that deviates more or less from the complex signal that represents
the ideal or “original” image. Images are defined in the physical or percep-
tual domain, in the latter case using models of the earliest stages of visual
perception, and quality measures are defined as distances in an appropriate
function space, for example, Euclidean distance between actual and origi-
nal image.

In contrast to this approach, we regard the processing of images by the
visuo-cognitive system not as the evaluation of complex signals but in-
stead as the processing of visual information. Realizing that this informa-
tion processing is an essential part of an observer’s interaction with his
environment, we characterize the quality of an image in a more mean-
ingful manner as the degree to which the image can be successfully ex-
ploited by the observer. We will therefore consider the visuo-cognitive
system as (1) an information processing system (Marr 1982, Barrow &
Tenenbaum 1986, Eimer 1990, Watt 1991); and (2) an integral part of an
observer’s interaction with his environment (Bruce & Green 1985, Gibson
1950, Gibson 1966, Gibson 1979).

3.2 Quality and information processing

3.2.1 Understanding information-processing systems

We adopt the general viewpoint in computational cognition (Newell &
Simon 1972, Newell 1990) that (1) the visuo-cognitive system can be con-
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3.2. Quality and information processing

sidered to be an information-processing system; and (2) information-
processing systems can only be completely understood when they are un-
derstood at three distinct levels. These levels are (1) the semantic level;
that is, the level describing the system in terms of computational goals and
strategies; (2) the algorithmic level; that is, the level describing the imple-
mentation of the computational theory into algorithms and associated rep-
resentations; and (3) the level of physical implementation; that is, the level
describing the physical implementation of these algorithms and represen-
tations.!

As stated above, any information-processing system can only be completely
understood when it can be appropriately described at all three levels, which
for reasons of simplicity may be designated as the levels of “what and why,”
“how,” and “where.” The approach we choose to pursue here is strictly
top-down; that is, we first try to gain a fundamental understanding of the
“what and why” of the processing of images by the visuo-cognitive system
in order to arrive at an understanding of what image quality is, and then
proceed with the “how” and “where.” Our present purposes are therefore
served best with a description of visuo-cognitive information processing at
the semantic level.

3.2.2 The quality of information

At a semantic level, the interaction of an observer with his environment can
be described by a cycle consisting of three activities: (1) perception; that is,
acquiring information from the environment and constructing an internal
representation from it; (2) cognition; that is, interpreting the obtained inter-
nal representation; and (3) action; that is, responding appropriately to this
interpretation.

At this point, we may already infer that in order to ensure a proper response
to occurrences in the outside world, certain requirements must be imposed
upon the information that is acquired from the environment. When the

"Marr (1982) refers to these levels as the level of the computational theory, the level of
representation and algorithm, and the level of the hardware implementation, respectively. The
semantic level therefore corresponds to Marr’s computational level.

*Throughout this book we will use the term cognition rather loosely to refer to almost
the entire set of processes following perception and preceding action. Note, however, that
action may depend on other inputs as well, such as emotions.
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3. Image Quality Semantics

quality of information is considered to be the degree to which these require-
ments are satisfied, we arrive at two important conclusions: (1) the quality
of information can be defined only within the context of an observer inter-
acting with his or her environment; and (2) the quality of information refers
to the appropriateness of this information as a basis for a proper response
to outside world occurrences.

3.2.3 The quality of images

Realizing that images are the medium for visual information, we now fo-
cus our attention on the question of what requirements should be imposed
upon an image. At first thought, the requirements that a “good” image
should satisfty would seem to be precision and reliability. The above out-
lined ideas, however, lead to a somewhat more complicated requirement:
for an image to be of “good” quality, the observer’s interpretation of this im-
age should be successful; that is, it should with high probability be correct.
The imposition of this requirement is justified by realizing that it is of vital
importance that there is no discrepancy between “what really is there” and what
the observer assumes is there. The next section will focus on the question how
this can be optimally secured.

3.3 Image quality semantics

3.3.1 Image processing by the visuo-cognitive system

We will subdivide the processing of images by the visuo-cognitive system
in three distinct processes (Marr 1982, Barrow & Tenenbaum 1986): (1) per-
ception, that is, the construction of a internal representation of the image
using primarily low-level knowledge of the visual world; (2) interpretation,
that is, the confrontation (“matching”) of this internal representation with
memory representations; and (3) task-directed semantic processing of the
interpreted scene in order to formulate a response. A diagrammatical de-
piction of the processing of images by the visuo-cognitive system is shown
in Fig. 3.1.

The collection of memory representations of the outside world, which we
will from this point onward refer to as “knowledge of reality,” we regard as
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perception

internal

representation interpretation

representations

interpreted

scene

semantic
processing

response

Figure 3.1: A diagrammatical depiction of visuo-cognitive processing of im-
ages. In this diagram, ellipses denote representations of information, and
rectangles denote processes transforming one representation into another.
Note that we consider the “response” to be a formulated sequence of ac-
tions, not its manifestation in terms of motoric events.
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3. Image Quality Semantics

well defined but nevertheless fuzzy. As an example of this, consider that al-
though observers “know” what the prototypical characteristics of a certain
object are, they usually are unable to define a clear distinction between pro-
totypical and nonprototypical object characteristics. Knowledge of reality
therefore may be thought of as accumulated knowledge of (the behavior of)
outside world statistics. Instead of referring to a match between the internal
representation and a memory representation, we will henceforth refer more
appropriately to a match between the internal representation and knowl-
edge of reality.

3.3.2 Naturalness, usefulness, and quality

Given the visuo-cognitive processes as outlined above, we now ask how
a successful interpretation of an image can be best secured. Returning to
Fig. 3.1, we may readily conclude that for a successful interpretation of an
image, the interpretation process should result in a satisfactory match be-
tween the internal representation and knowledge of reality. We therefore
arrive quite directly at two principal requirements that an image of “good”
quality should satisfy: (1) the internal representation of the image should
be sufficiently precise; and (2) the degree of correspondence between the in-

ternal representation and knowledge of reality as stored in memory should
be high.

We are now able to formalize the preceding discussion by defining (1) the
usefulness of an image to be the precision® of the internal representation of
the image; and (2) the naturalness of an image to be the degree of correspon-
dence between the internal representation of the image and knowledge of
reality as stored in memory. Using these definitions, we define the quality
of an image to be the degree to which the image is both useful and natural.

The sets of requirements that one needs to impose upon an image in order
to maximize the usefulness or the naturalness of this image will in general
not coincide. For example, detection or discrimination of objects in an im-
age may require “exaggeration” of certain features of this image, resulting
in a less natural reproduction of the image. Therefore, given the above def-

3We use the term precision here to refer to a kind of internal signal-to-noise ratio. Preci-
sion therefore does not necessarily mean a one-to-one correspondence with reality.
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3.4. Experiments

inition of image quality, we postulate that the quality of an image will be
given by a compromise resulting from simultaneously evaluating to what
degree the image satisfies the sets of requirements that lead to maximizing
the usefulness or the naturalness of the image.

3.4 Experiments

3.4.1 Experiment 1: Influences of naturalness and usefulness on
image quality

Aim

In order to test the semantic description of image quality as given above,
we performed an experiment allowing us to measure the influences of nat-
uralness and usefulness upon image quality. To this end, we selected two
kinds of manipulation; that is, varying the color temperature of the refer-
ence white* and varying chroma® (Hunt 1992), which we expected to affect
naturalness and usefulness in distinctly different ways. The first manipula-
tion was expected to influence only the naturalness of the image, whereas
the second manipulation was expected to influence both the naturalness
and the usefulness of the image.

Description

The experiment, similar to experiments described by Fedorovskaya et al.
(1997), de Ridder, Fedorovskaya & Blommaert (1993), and de Ridder (1996),
was performed using four color images of natural scenes taken from a Ko-
dak Photo CD. The color temperature of the reference white was varied
between 4,650 K and 10,300 K—6,500 K being the original—in seven steps
of perceptually equal size, and chroma was scaled by a constant ranging
from 0.5 to 2.0 in seven steps.

“Defined as “the temperature of a Planckian radiator whose radiation has the same chro-
maticity as that of a given stimulus.” Unit: Kelvin (K).

>Defined as “the colorfulness of an area judged as a proportion of the brightness of a sim-
ilarly illuminated area that appears to be white or highly transmitting.” In the experiments
C», a correlate of chroma in the CIELUV color space, was scaled.
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Seven subjects participated in the experiment. In three separate sessions
they were shown on a CRT (cathode ray tube) the complete set of images,
in random order, with three replications. In the first session, the subjects’
task was to judge the quality® of the images, in the second session to judge
the colorfulness” of the images, and in the third session to judge the natural-
ness® of the images. Subjects were instructed to use an 11-point numerical
scale ranging from 0 (“bad” or “weak”) to 10 (“excellent” or “strong”).

Results

Colorfulness judgments (averaged over subjects and scenes) versus chroma
(diamonds) and color temperature of the reference white (triangles) are
shown in Fig. 3.2. The effect of scaling chroma on judged colorfulness
is clearly visible. Less clear, although still significant, is the influence
of color temperature of the reference white on judged colorfulness; im-
ages are judged less colorful for higher temperatures of the reference
white.

Quality judgments (diamonds) and naturalness judgments (triangles) ver-
sus colorfulness judgments, all averaged over subjects and scenes, are
shown in Fig. 3.3 for the conditions chroma (solid curves) and color tem-
perature of the reference white (dashed curves). The figure shows that, as
expected, quality correlates well with naturalness, although for the condi-
tion chroma the curve for quality is shifted with respect to the curve for
naturalness toward higher values of colorfulness (and hence toward higher
values of chroma). Note that a similar shift does not occur for the condi-
tion color temperature of the reference white. This seems to dismiss the
possibility of a straightforward “preference” for images with higher color-
fulness.

Quality judgments versus naturalness judgments, depicted in Fig. 3.4, again
show that the quality—naturalness curve for the condition chroma deviates
significantly from a linear relation. The curve has a U-formed shape result-
ing from the above-mentioned shift between quality judgments and natu-
ralness judgments.

®Defined as “the degree to which you like the colors in the image.”
"Defined as “the presence and vividness of the colors in the image.”
8Defined as “the degree to which the colors in the image seem realistic to you.”
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Figure 3.2: Colorfulness judgments (averaged over subjects and scenes) for
the conditions chroma (diamonds) and color temperature of the reference
white (triangles). The error-bar denotes a distance of two average stan-
dard errors in the mean. The numbers 1-7 on the horizontal axis denote,
for chroma, scaling by 0.50, 0.63, 0.79, 1.00, 1.26, 1.59 and 2.00, and for the
reference white a color temperature of 4,650 K; 5,150 K; 5,800 K; 6,500 K;
7,400 K; 8,650 K; and 10,300 K.
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Figure 3.3: Quality judgments (diamonds) and naturalness judgments
(triangles) versus colorfulness judgments (all averaged over subjects and
scenes) for the conditions chroma (solid lines) and color temperature of the
reference white (dashed curves). The error-cross denotes a distance of two
average standard errors in the mean, and the arrows denote the images
with lowest chroma and lowest color temperature of the reference white,
respectively.
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Figure 3.4: Quality judgments versus naturalness judgments (both aver-
aged over subjects and scenes) for the conditions chroma (diamonds) and
color temperature of the reference white (triangles). The error-cross denotes
a distance of two average standard errors in the mean, and the arrows de-
note the images with lowest chroma and lowest color temperature of the
reference white, respectively.
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Interpretation

The first-order effect—that is, the high correlation (r = 0.93) between natu-
ralness judgments and quality judgments for both conditions—can readily
be interpreted in terms of the outlined semantic theory of image quality.
In order to interpret the second-order effect—that is, the shift between nat-
uralness judgments and quality judgments for the condition chroma—we
adopt the CIELUYV color space (recommended in 1979 by the Commission
Internationale de I’ Eclairage) as an appropriate, perceptually uniform color
space.

In CIELUYV, the image can be thought of as a cloud of dots, with each dot
corresponding to one pixel in the image. Scaling chroma can be described
as a radial contraction or expansion of the cloud of dots toward or away
from the reference white, while changing the color temperature of the ref-
erence white can be described by a displacement of the entire cloud along
the yellow-blue direction. The relevant difference between the two manip-
ulations follows quite directly from their descriptions in CIELUV: changing
chroma results in increased or decreased distances in color space between
any pair of dots of which the members do not represent exactly the same
color, while changing the color temperature of the reference white has no
effect on these distances.

Contrary to manipulations that preserve distances in color space, manip-
ulations that do affect distances in color space will also affect the pre-
cision with which the image can be represented internally (since at a
presumed, constant level of internal noise, affecting distances in a per-
ceptually uniform space is equivalent to affecting an internal “signal-to-
noise ratio”), and hence the usefulness of the image. This discussion can
therefore be concluded as follows: manipulations that do not affect the
usefulness of an image—for example, changing the color temperature of
the reference white—will have approximately identical parameter settings
for optimizing the naturalness and the quality of the image. Manipula-
tions that do affect the usefulness of an image—for example, changing
chroma—will have different parameter settings for optimizing the natu-
ralness or the quality of an image. In the latter situation, the parameter
settings optimizing quality will tend to deviate with respect to those op-
timizing naturalness toward values that increase the usefulness of the im-
age.
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3.4.2 Experiment 2: Image quality regarded as a compromise
between naturalness and usefulness

Aim

In order to test the description of image quality in terms of a compromise
between naturalness and usefulness, we devised an experiment in which
we manipulated the brightness contrast of black-and-white images of nat-
ural scenes. Assuming that (1) usefulness is linearly related to perceived
brightness contrast; and (2) the compromise can be adequately described
by a linear combination of naturalness and usefulness, we may write image
quality @ in terms of naturalness /N and brightness contrast C' as

Q= MN + X0 + s, (3.1)

and fit the vector X to subjects” judgments of quality, naturalness and con-
trast as obtained in the experiment.

Description

The experiment was performed using four black-and-white images of nat-
ural scenes, obtained by transforming images from a Kodak Photo CD to
the CIELUV color space and setting u* and v* to zero. We then applied the
global, pixelwise transformation:

« L* — L;knm ! * * *
L" = |\ 7] @ave Limin) + Linin
min

ave

(for Ly, < L* < L%.)

ave

« L* - L* v * * *
L = (ﬁj) (Lave - Lmax) + Lmax
max ave

(for L, < L* <L), (3.2)
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3. Image Quality Semantics

(where L* represents the original lightness value of a pixel, L*' its new
value, and the subscripts “min,” “max,” and “ave” indicate the minimum,
maximum, and average lightness values of the original image) on the im-
age using for v the values 0.25, 0.35, 0.50, 0.71, 1.00, 1.41, 2.00, 2.82, and 4.00.
Applying this transformation will for v < 1 decrease, and for v > 1 increase
the brightness contrast of the image. The minimum and maximum light-
ness of the image are not affected, while in general the average lightness
will remain at approximately the same lightness value.

Eight subjects participated in the experiment. In three separate sessions
they were shown on a CRT the complete set of images, in random order,
with three replications. In the first session, the subjects’ task was to judge
the quality® of the image, in the second to judge the brightness contrast!? of
the images, and in the third session to judge the naturalness'! of the images.
Subjects were instructed to use an 11-point numerical scale ranging from 0
(“bad” or “low”) to 10 (“excellent” or “high”).

Results

Contrast judgments (averaged over subjects and scenes) versus the param-
eter v are shown in Fig. 3.5. The figure shows that, as expected, contrast
increases for increasing values of . Figure 3.6 shows quality judgments
(diamonds, averaged over subjects and scenes) and naturalness judgments
(triangles, also averaged) versus contrast judgments (also averaged). The
curve for quality is shifted with respect to the curve for naturalness toward
higher values of contrast; a result that is similar to the results for the con-
dition chroma in experiment 1. To conclude, Fig. 3.7 shows quality judg-
ments versus naturalness judgments. The U-formed shape already found
in experiment 1 is clearly visible.

Interpretation

We again find a high (r = 0.95) correlation between naturalness judgments
and quality judgments, confirming that naturalness is a principal factor

’Defined as “the degree to which you like the image.”
Defined as “apparent light-density differences.”
"Defined as “the degree to which the image seems realistic to you.”
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Figure 3.5: Contrast judgments (averaged over subjects and scenes) versus
the parameter v. The error-bar denotes a distance of two average standard
errors in the mean.

constituting image quality. The shift of the curve for quality with respect
to the curve for naturalness toward higher values of contrast can readily
be interpreted when realizing that higher contrast allows for more accurate
detection and localization of edges in the image, and thus for a more precise
internal representation of the image.

The least-squares fit of our model to the quality judgments obtained in the
experiment is given by
— >\1N + )\20 + )\3

X = (0.90,0.25,—1.08). (3.3)

Figure 3.8 shows this fit (circles), together with the quality (diamonds) and
naturalness (triangles) judgments. The correlation between the fit and the
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Figure 3.6: Quality judgments (diamonds) and naturalness judgments (tri-
angles) versus contrast judgments (all averaged over subjects and scenes).
The error cross denotes a distance of two average standard errors in the
mean, and the arrow denotes the image with lowest .
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Figure 3.7: Quality judgments versus naturalness judgments (both aver-
aged over subjects and scenes). The error-cross denotes a distance of two
average standard errors in the mean, and the arrow denotes the image with
lowest .
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Figure 3.8: Quality judgments (diamonds) and naturalness judgments (tri-
angles) versus contrast judgments (all averaged over subjects and scenes).
The figure also shows the model fit (circles). The error cross denotes a dis-
tance of two average standard errors in the mean, and the arrow denotes
the image with lowest ~.

quality judgments is very high (r = 0.99). Considering (1) the primitive
nature of the model; and (2) the strong nonlinearity of the correlation co-
efficient as a measure for goodness-of-fit (that is, goodness-of-fit increases
strongly for correlation r approaching one), we may conclude that our de-
scription of image quality in terms of a compromise between naturalness
and usefulness fits the data very well.

3.5 Concluding remarks

In pursuing a top-down, analytical approach, we have achieved a funda-
mental interpretation of the processes that play a role in the estimation of
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the attribute “quality” of an image. We have argued that image quality
is, to the observer, a useful attribute of an image, expressing how well the
observer is able to employ the image as a source of information about the
outside world; a view of image quality that is strikingly different from the
“perceived distance to the original” philosophy often employed in image
quality research.

The results of the experiments discussed in the previous sections support
the concept developed here that the quality of an image can be described
in terms of a compromise between the naturalness and the usefulness of
that image. A logical next step to proceed from this point onward would
be to more thoroughly specify the naturalness and usefulness requirements
imposed upon an image, for example, by means of formulating algorithms.
Implementations of such algorithms will enable (1) the development of in-
strumental measures for the prediction of image quality; and (2) estimation
of parameter settings optimizing the quality of images.

At this point, two generalizations of the ideas discussed here may be in-
teresting to note. First, our description of quality is essentially formulated
independently of modality, suggesting (1) the possibility of simply applying
the same ideas to, for example, the fields of sound or speech quality; and
(2) the possibility to generalize the current description of image quality to
a multimodal semantic description of perceived quality of information pre-
sentation. It is highly likely that such a description will prove valuable in
the design and evaluation of applications in which a multimodal presenta-
tion of information plays a central role.

Second, in our description of image quality we have concentrated on the
requirements imposed upon the information that is acquired from the en-
vironment. However, requirements ensuring a proper interaction between
observer and environment should necessarily include requirements that en-
sure the ability to adequately respond to the environment. These require-
ments may then, in general, be imposed upon the means the observer is
employing to control his environment. Such an approach is likely to result
in a general theory of the quality of man-machine interaction.!?

12See Chapter 7 for a short discussion of two philosophical issues involved in this.
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Chapter 4

Visual Metrics: Discriminative Power through
Flexibility

An important stage in visual processing is the quantification of optical at-
tributes of the outside world. We argue that the metrics used for this quan-
tification are flexible, and that this flexibility is exploited to optimize the
discriminative power of the metrics. We derive mathematical expressions
for such optimal metrics and show that they exhibit properties resembling
well-known visual phenomena. To conclude, we discuss some of the impli-
cations of flexible metrics for visual identification.

4.1 Introduction

Vision is often referred to as “inverse optics” (Poggio & Koch 1985), that is,
the process of measuring the characteristics of an optical image of the en-
vironment and reconstructing the material properties of this environment.
Defined this way, vision involves a stage in which optical attributes of the
outside world and the objects located within it are measured and internally
quantified. Examples of such internally quantified measures are position,
shape, size, texture, color, and brightness. The metrics used for this quan-
tification, in particular the metrics used for the quantification of color and
brightness, will be the main topic of our discussion.

This chapter is a slightly modified version of Janssen & Blommaert (2000c), Visual
metrics: discriminative power through flexibility, Perception, vol. 29, no. 8, pp. 965-980.
Reprinted with permission of Pion Limited, London, UK.
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4. Visual Metrics: Discriminative Power through Flexibility

First, to clarify what we mean here by the term metric, we will consider
the measurement process.! To enable the measurement of the strength of a
certain attribute, an origin and a unit must first be selected. For example,
to measure temperature one might select the melting point of water for the
origin, and select one hundredth of the temperature difference between the
boiling point and the melting point of water for the unit. Unit and origin
together define a scale, in this case the Celsius temperature scale. Thus, to
measure the temperature of an item one would take the temperature differ-
ence between the item and the origin of the scale and express this difference
in the number of temperature units. The number obtained in this way is the
Celsius scale value for this particular temperature.

In the above example, equal differences in the attribute strength will lead
to equal differences in the scale value. Scales having this property are re-
ferred to as linear scales, since the relation between attribute strength and
scale value is linear. Most familiar scales are of this type; however, some
well-known scales are not. Take, for example, the dB scale for sound pres-
sure or the pH scale for the degree of acidity. These scales are known as
logarithmic scales, since their unit is not defined in terms of a difference
but instead in terms of a ratio. For logarithmic scales, equal ratios in the at-
tribute strength lead to equal differences in the scale value, and the relation
between attribute strength and scale value is therefore logarithmic. For a
certain scale, the exact relation between attribute strength and scale value
is made explicit by the scale function. The scale function, together with the
scale, the origin, and the unit, constitutes what is called a metric (Watt 1989).

Standardized metrics as the Celsius, dB, or pH metrics share one important
and useful property: rigidity. Rigidity refers to the property that the scale
function is uniquely defined and constant throughout time. For most mea-
surements this property is essential. The Celsius temperature scale would
be of little value when a temperature of 37°C as measured today would be
different from a temperature of 37°C as measured tomorrow. At least, pre-
dicting tomorrow’s temperature in terms of the Celsius temperature scale

!Throughout this chapter we will use the following definition of the term metric: a metric
is the instrument for the quantification of measurement results. Another widely known definition
of the term metric, one which we will not be using, is given in terms of a non-negative, real-
valued distance function d(.) [this distance function must satisfy the three requirements
d(z,z) =0, d(z,y) = d(y,z), and d(z, 2) < d(z,y) + d(y, 2)].
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4.1. Introduction

would make little sense. Rigidity of a metric allows for a unique specifica-
tion of the attribute strength in terms of the scale value; 37°C is one and the
same temperature, whenever and wherever you measure it.

We now return to vision and visual metrics.? Traditionally, the view in vi-
sual research has been that visual metrics, such as the brightness metric,
are essentially rigid (Weber 1846, Fechner 1860, Riesz 1933, Stevens 1957).
Several exceptions to this rigidity are well known, for instance dark and
light adaptation (Cohn & Lasley 1986) and crispening (Takasaki 1966) for
the case of brightness; however, each of these phenomena has traditionally
been described and modeled separately. As far as we know, there have been
few attempts to unify these phenomena into one consistent description.

What we will try to do here is to follow an approach in which we will regard
visual metrics no longer as being rigid.> More specifically, we will assume
that visual metrics are (1) limited in range; that is, the scale has fixed lower
and upper bounds; (2) limited in accuracy; that is, scale values cannot be
represented with arbitrary precision due to the presence of noise; (3) in-
trinsically flexible (Blommaert 1995), which means that the scale function is
allowed to vary in time; and (4) optimized with respect to overall discrimi-
native power (Blommaert 1995, Watt 1989, Watt 1991), which means that the
scale function is chosen such that the ability to discriminate between items
in the outside world using the scale values of their measured attributes, is
maximized.

We will divide our discussion of flexible metrics into four parts. First,
we will consider the above four assumptions and discuss how and under

2Visual metrics, and sensory metrics in general, are often referred to as sensory scales. The
topic of sensory scales has traditionally generated a large amount of literature; for some
recent work see Falmagne (1985), Laming (1986), Luce & Narens (1987), and Gescheider
(1988). Some monumental contributions are by Weber (1846), Fechner (1860), and Stevens
(1957). Assuming that the scale function is rigid, much attention has been given to the
exact shape of the scale function; in particular, whether this shape can be described by a
logarithm (Weber 1846, Fechner 1860) or by a power-law (Stevens 1957). In a nutshell, the
question we try to address in this manuscript is the following: given that visual metrics
serve the purpose of quantifying outside world attributes, and given that the aim of this
quantification is to discriminate items in the outside world, what would be the optimal shape
of the scale function? As will be shown, this optimal shape requires the scale function to be
flexible.

3A classical example of this approach, applied to the metrics of visual space, is given by
Andrews (1964). A similar approach is also followed by Watt (1989).
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4. Visual Metrics: Discriminative Power through Flexibility

what circumstances flexibility can be exploited to improve the discrimina-
tive power of a metric. Second, we will derive mathematical expressions
for metrics satisfying the above assumptions. Third, using the obtained ex-
pressions we will explore some of the properties of these metrics, and relate
these properties to well-known visual phenomena, namely brightness con-
stancy (Wallach 1948) and crispening (Takasaki 1966). Last, we will consider
some of the consequences of flexibility for the process of visual identifica-
tion.

4.2 The usefulness of flexibility

We have assumed that visual metrics are limited in range and accuracy and,
most importantly, that they are flexible and optimal with respect to discrim-
inative power. The assumptions of limited range and limited accuracy seem
straightforward, certainly when the constraints imposed by physical or bio-
logical implementations of these metrics are taken into account. Flexibility,
however, is a less straightforward assumption. Flexibility may or may not
prove useful, depending on the type of measurement that is performed.
Noticeably, a measure requiring a strict one-to-one correspondence of scale
value to attribute strength, as in the example of the temperature scale, will
leave little space for flexibility of the metric.

The goal of early visual processing, however, is to extract the maximum
possible amount of the information contained within the optical image, and
to represent this information in a way that maximizes its usefulness to the
organism. Here, usefulness does not necessarily imply a one-to-one corre-
spondence with reality. Instead, a more meaningful criterion for usefulness
is often the ability to discriminate between items in the outside world based
on information about these items as it is represented internally. For exam-
ple, the ability to discriminate between items on the basis of their colors
may often be more important than establishing the exact colors of these
items. For the aim of discriminative power, a one-to-one correspondence
between internal representation and outside world is unnecessary. In fact,
it is likely that such strict correspondence only decreases the ability to dis-
criminate.

How can flexibility be exploited to improve discriminative power? To an-
swer this question we will consider the assumptions of limited range and
accuracy again. When scale values cannot be represented with arbitrary
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precision, for example, due to the presence of noise, the ability to discrim-
inate items in the outside world using their scale values will be essentially
limited by the noise level. Items will be discriminable only when their scale
values are at least on the order of one noise level apart, and, assuming the
noise level to be constant, discriminability will increase monotonically with
scale value difference. Ultimately, to increase the overall discriminative
power of a metric all scale value differences should be increased. Again
assuming the noise level to be constant, this could be done by “stretching”
the entire scale to a larger range. However, this range was assumed to be
limited and constant.

Alternatively, overall discriminative power may be increased by locally
stretching the scale, by means of locally increasing the derivative of the scale
function, and by compressing the scale elsewhere. Such a mechanism al-
lows for increased scale value differences while it simultaneously preserves
the range of the metric. When the locations where the scale is stretched or
compressed are carefully chosen, this may lead to a significant increase in
overall discriminative power. This principle is illustrated in Fig. 4.1. The
figure shows a simplified situation for the example of brightness (the inter-
nal measure) versus luminance (the attribute strength, given on a logarith-
mic scale). The situations for rigid and flexible metrics are shown in the
left and right panel, respectively. The open circles on the luminance axes
denote the luminances of a set of items under daylight illumination. The
filled circles denote the luminances of the same set of items, this time under
nocturnal illumination conditions.

First, consider the left panel of Fig. 4.1. For a rigid metric to be able to
represent all possible attribute strengths, the entire range of the attribute
strength somehow has to be mapped onto the internal scale. For the case of
luminance, the range of the attribute strength is estimated to be 10 orders of
magnitude; however, at any particular moment the luminance range found
is typically only a small fraction of this entire possible range, usually only
about three orders of magnitude (McCann 1988). Thus, even if the scale
function of our rigid metric was logarithmic, only about 30 percent of the
metric would really be used at any particular moment. Boldly stated, this
would be a waste of resources.

By locally stretching the scale we might increase all scale value differences
by a factor of up to three, thereby significantly increasing overall discrim-
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Figure 4.1: Rigid metric versus flexible metric. Simplified case for bright-
ness (internal measure) versus luminance (physical attribute, on a logarith-
mic scale). Shown are the luminances and corresponding brightnesses of a
set of items under daylight (open circles) and nocturnal (filled circles) illu-

mination conditions.
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4.2. The usefulness of flexibility

inative power at any particular moment. However, to do this effectively,
the locations where to stretch the scale need to depend on the current range
of the attribute strength. Intuitively, the conclusion may already be that
the amount of stretching of the scale must be closely related to the momen-
tary distribution of the attribute strength, as shown in the right panel of
Fig. 4.1. Here we encounter flexibility again, since in this case the scale
function must be allowed to “follow” fluctuations in the momentary distri-
bution of the attribute strength.

In the above discussion we have assumed the presence of noise, and it is
therefore important to characterize the sources of this noise in more de-
tail. First, we distinguish noise sources acting directly upon the attribute
strength. For the case of luminance such a noise source would be photon
noise. Second, we distinguish noise sources acting directly upon the scale
value. When scale values are assumed to be encoded in neuronal impulse
rates, random variability in these rates may be regarded as such a noise
source. The first type of noise typically originates outside of the “measur-
ing device,” whereas the second type is generated by the measuring device
itself. We will therefore refer to the first and second type of noise as exter-
nal and internal noise, respectively. Figure 4.2 gives a graphical summary of
this. Both internal and external types of noise can be regarded as compound
noise; that is, each type can be thought to consist of a number of indepen-
dent contributions from different sources. Usually, compound noise can
be adequately modeled by assuming that the noise has Gaussian proper-
ties. This assumption will also facilitate the mathematical description in the
next section, since Gaussian noise can be completely specified in terms of
the two parameters mean and standard deviation.

Before we can start to derive mathematical expressions for optimal met-
rics, we will need to define a measure for overall discriminative power. The
measure we will use here is the total number of topological errors made in the
mapping of attribute strength onto scale value. Such topological errors oc-
cur when the ordering of a set of items by their scale values differs from the
ordering of this same set of items by their attribute strength. For example, if
x1 <z < x3 < x4 < x5 were to be the result of ordering a set of five items by
their attribute strengths ; (where: =1,...,5), and if 51 < s4 < 53 < 52 < 85
were to be the result of ordering the same set of items by their scale val-
ues s;, the resulting number of topological errors would be three (s4 < s3,
83 < 89, and s4 < so; Whereas r3 < x4, T2 < x3, and z2 < x4). The main
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external noise internal noise

attribute scale
strength value

scale function

Figure 4.2: Block diagram showing the definitions we use here of external
and internal noise.

justifications for choosing the number of topological errors to be our dis-
criminability measure are (1) the number of topological errors is likely to be
highly correlated with discriminative power, since when topological errors
occur, discriminative power must be poor; and (2) the number of topologi-
cal errors is an intuitive and clear measure to calculate. To conclude, note
that the exact shape of the discriminability measure is not very important,
provided that (1) discriminability is poor for scale value differences on the
order of one noise level or less; and (2) the noise level is small compared to
the range of the scale.

4.3 Recipe for an optimal metric

43.1 Problem specification

Assume that, at some moment in time, the values of the attribute strength «
(for example, luminance) are measured for a given set of NV items, where the
set of IV items is chosen as an abstraction for the environment. If the set of
items is large, we may approximate the momentary distribution of the mea-
sured attribute strengths for the set by a continuous function x(x), such that
the number of measured attribute strengths d/NV within an arbitrary small
interval [z,z + dx] is given by dN = u(xz)dz. Note that, according to this
definition, [y p(x)dz = N, where X is the range of the attribute strength.
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4.3. Recipe for an optimal metric

For the example of luminance, the N items can be thought of as the pix-
els constituting an image, while p(x) can be thought of as the luminance
frequency distribution of the image, scaled with a factor V.

Furthermore, assume that the measurement results are represented by scale
values on an internal scale s that is monotonic with z; that is, s = s(z) and
ds(z)/dx > 0 for all z, where s(z) is the scale function. Notice that mono-
tonicity is required here, since any deviations from monotonicity will in-
evitably result in topological errors being made in the mapping from z to s.
The momentary distribution of the scale values on s for a given distribu-
tion p(x) of the attribute strengths and for a given scale function s(z) will
be referred to as n(s). If we want to optimize the scale s such that overall
discriminability of the items on s is maximized, an obvious strategy here
is to find the scale function s(z) that minimizes the number of topological
errors.

The solution to this problem is as follows. Consider a small interval [s, s +
ds] on the scale s; the number of scale values in the interval [s, s + ds] is
then given by dN = n(s)ds. When the probability of a topological error is
written as a function of s, that is, p. = pe(s), we may write the number of
topological errors in the interval [s, s + ds] as

dN. = pe(s)n(s)ds. 4.1)

The total number of topological errors, N, is found by integrating this ex-
pression along the entire scale. Assuming that the range of the scale is given
by S, we thus find

N, = /S pe(s)(s)ds. 42)

Based on the assumption that the noise limiting the precision with which
scale values can be represented is Gaussian, we show in Appendix 4.A that
the probability of a topological error can be expressed as a monotonic func-
tion? of the total noise level o(s) times the item density 7(s):

1 1 1

Pe(s) =

*Figure 5.4 in Chapter 5 shows a plot of pe(s) versus d/a(s) [where d = 1/n(s)].

47

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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Assuming Gaussian noise propagation, the total noise level in Eq. (4.3) can
be expressed in terms of the internal noise level o;(s) and the external noise
level o.[z(s)] as:

2
0(5)? = 04(s)% + oefz(s)]? [dil—(;)] . (4.4)

Finally, the link between 7(s) and y(z) has to be made to solve the problem.
This link follows from s(x) being monotonic and the number of items being
preserved from an interval [z, z + dz] to the corresponding interval [s,s +
ds), that is:

n(s)ds = p(z)dz. 4.5)

The optimal scale s is found by substituting Eqs. (4.3), (4.4), and (4.5) into
Eq. (4.2) and minimizing the resulting equation for ds(x)/dx.

Before trying to solve the set of Egs. (4.2)—(4.5), we will first consider an
important consequence of Eq. (4.4). We have argued that locally stretching
the scale can be used to increase discriminability. By regarding Eq. (4.4) we
may investigate under what circumstances this mechanism will work. To
this end, consider that the derivative of the scale function, ds(z)/dz, is used
here as the instrument to increase the scale value difference ds of two items
with attribute strength difference du:

ds = [ds(w)] de. (4.6)

dx

Discriminability of these two items will be determined by the ratio of scale
value difference to the total noise level (SNR):

ds
1 Jds(x)
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4.3. Recipe for an optimal metric

where o(s) is given by Eq. (4.4). We now distinguish between two extreme
cases: (1) external noise dominant; and (2) internal noise dominant. For the
first case, Eq. (4.4) can be approximated by

ds(z
o(s) = aules) [ 22 @8)
The ratio of scale value difference to total noise level then reduces to
dz
SNR = , 4.9)
oe[z(s)]

which is independent of ds(x)/dx. Therefore, when the influence of external
noise is dominant, discriminability cannot be improved by stretching of the
scale.

For the second case, Eq. (4.4) can be approximated by

o(s) =o(s), (4.10)
and Eq. (4.7) reduces to
_ [ds(z)] dx
SNR = [ I ] i) (4.11)

Here, SNR increases proportionally with the amount of stretching of the
scale, and therefore stretching of the scale can indeed be used as a mech-
anism to improve discriminability. Having observed this, we will in the
remainder of our discussion assume that the influence of internal noise is
dominant; that is, we will assume that Eq. (4.4) can be approximated by
Eq. (4.10). In some situations this assumption may not be true, for example,
at very low illumination levels where photon noise becomes important.

4.3.2 Solution

We start deriving the solution to our problem by regarding the Maclaurin
series of the error function:

92 X Z2m+1
fr=— _. 4.12
e ﬁmzzo ml(2m + 1) “12)
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4. Visual Metrics: Discriminative Power through Flexibility

Substituting z = 1/[2n(s)o(s)] in Eq. (4.12) and substituting the result in
Eq. (4.3), we get:

1 1 & [2n(s)o(s)]@mtD)
Pele) =5~ w2 [ n<m?!(§ni]+ o (4.13)

Substituting the obtained expression for p.(s) in Eq. (4.2), we find for the
total number of topological errors N.:

L1 & Pals)ols)Em
Ne = [5{5_\/_%20 ml@m + 1) }”(s)ds

_ 1 1 & [ [2n(s)o(s)]Bmtlin(s)
— 5/5n<s>ds_\/_EmZ:0/S lm 1) ds. (4.14)

The first term of Eq. (4.14) is constant, since 7(s) integrated over the range
S should always be equal to IV, the number of items. As can be concluded
from Eq. (4.14), the contribution dN, of each individual term in the sum of
Eq. (4.14) to the total number of errors NN, has the general form

dN, = cn/sn(s)nﬂa(s)”ds, (4.15)

where n = —(2m + 1) and all ¢, are negative. We will first concentrate
on finding a solution for this general form, and then infer the solution of
Eq. (4.14) from it. When Eq. (4.5) is substituted in Eq. (4.15), the latter can
be written as

-n
dN, = cn/ ols(@)] u(x)™ [ds_(:c)] dz, (4.16)
X dx
where X is the range of the attribute strength. Assuming that internal and
external noise are additive, the noise levels will be constant; that is, o;(s) =
o; and o¢(x) = 0. Using Eq. (4.4), we obtain:

dN, = ¢, /X {aiz + [dz—f)] i af}n/Q p(z)" [dii—f)] - dz, (4.17)
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4.3. Recipe for an optimal metric

which should be minimized for ds(z)/dx. As discussed at the end of the
previous section, we will look at the solution of Eq. (4.17) for the case that
internal noise is dominant; that is, we assume that o; > [ds(x)/dz]o. and
approximate Eq. (4.4) by Eq. (4.10). For Eq. (4.17) we then find

ds (w)] " i

N, = n ntl
dN, cn/Xal p(zx) o

ds <"’)] - dz, (4.18)

_ n n+1
= o [ uleyt |2

since o; was assumed to be constant. The problem of minimizing Eq. (4.18)
is an example of the general problem of finding the extremes of the integral

J= / " oz, y,9)de, (4.19)

where y = y(z) is some function of z, ¥’ = dy(z)/dz, and ¢ is a function
of the variables z, y, and 3. The integral of Eq. (4.19) can be interpreted
as a line integral along some path I = y(z) joining the points (z1,y;) and
(w2,y2), see, for example, Irving & Mullineux (1959, pp. 362 ff.). Therefore,
the problem is to find the path I'y = yo(z) that extremizes the integral J.
The solution to this problem is given by the Euler-Lagrange equation:

g_zj _ % (g_j) 0, (4.20)

which, when ¢ does not contain y explicitly, reduces to

2(3)-

Integrating Eq. (4.21) with respect to z yields

06
oy = (4.22)

51

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4. Visual Metrics: Discriminative Power through Flexibility

where k is a constant. After substitution of y' = ds(x)/dx and of ¢ =
p(x)"*[ds(x)/dx]~™ into Eq. (4.22), we obtain the solution to our problem:

=K u(z). (4.23)

By integrating Eq. (4.23) over the range X, it can easily be shown that the
constant &’ must be equal to S/N. Interestingly, the solution we have found
is independent of the value of n, which means that we have found one so-
lution that extremizes every individual term in the sum of Eq. (4.14). The
entire sum will therefore be extremized as well, and Eq. (4.23) represents
the solution to the overall problem of minimizing N, in Eq. (4.14).

The solution we have found here resembles histogram equalization of u(x)
since, substituting Eq. (4.23) into Eq. (4.5):

o) = w207

N

S
= constant. (4.24)

Histogram equalization is a well-known image processing tool used to in-
crease image contrast or detectability of image features; see, for example,
Ballard & Brown (1982, pp. 70-72). The principal difference between the
solution we find here and standard histogram equalization is that here the
characteristics of a flexible “measuring” device are adapted to the charac-
teristics of the input signal, whereas in histogram equalization the charac-
teristics of the input signal are adapted to a supposedly rigid measuring
device.

Furthermore, it is a well-known result from information theory that the en-
tropy of a range-limited stochastic signal is maximal when the probability
density function of this signal is uniform; see, for example, Thomas (1969,
pp. 561-563). It is interesting to note that an optimal scale function s(z),
as defined by us in terms of discriminability, maps an arbitrary distribu-
tion () to a uniform distribution n(s), thereby maximizing the entropy of
the distribution. In other words, the scale function that optimizes the dis-
criminative power of a metric is the same as the mapping function needed
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4.3. Recipe for an optimal metric

in nonlinear recoding to optimize the amount of transmitted information.
Barlow (1961) discusses such redundancy-reducing recoding of sensory in-
formation as one of the hypothetical functions of the sensory systems.

4.3.3 Flexibility versus rigidity: performances compared

How much can be gained by using flexible metrics? To obtain an impres-
sion of this, we used for the momentary distribution p(z) the calculated
luminance distributions of 40 digitized images of natural scenes taken from
a Kodak Photo CD, assuming that these images were to be displayed on
a CRT with v = 2.5. We then assumed three types of brightness metric:
(1) a linear metric; that is, a metric of the type s(z) = x/zo, where zy is an
arbitrary reference value such that z/zo < 1; (2) a compressive metric; that
is, a metric of the type s(z) = (1+ 3)(x/x0)'/® — 8 [which for 8 = 0.16 is pro-
portional to CIE 1976 lightness L*; see Hunt (1992, p. 72)]; (3) an optimal
metric; that is, a metric according to Eq. (4.23). The optimal metric therefore
varied from image to image, whereas the other metrics remained invariant.
To facilitate a comparison of the performances of the three metric types,
their ranges were chosen such that s(z) € S = [0,1] for all x € X = [0, z].

We then calculated, using Egs. (4.2), (4.3), and (4.5), for each image and
each type of metric the number of topological errors N,. To this end, we
assumed that the total noise level o(s) is dominated by a constant internal
noise level o; equal to one percent of the range of the metric; that is, we
assumed that o(s) = 0; = 0.01LS = 0.01 (corresponding to a dynamic range
of approximately 100 JNDs). Furthermore, we scaled the distributions 7(s)
by a factor of 100, thereby assuming that each image contained exactly 100
items to be discriminated.

Figure 4.3 shows frequency distributions of the number of topological er-
rors for the linear, compressive, and optimal metrics. Note that the number
of topological errors for the optimal metric is the same for all images, some-
thing that is explained by 7(s) being constant and independent of u(x) for
optimal metrics. Figure 4.3 shows that, as expected, the optimal metric out
performs the two rigid metrics; the average number of topological errors
for the linear, compressive, and optimal metrics is 34.0 + 3.8, 29.3 + 2.2,
and 24.0, respectively.
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Figure 4.3: Discriminability, expressed in the number of topological errors,
calculated for 40 images of natural scenes and for three types of metric:
linear, compressive and optimal.

It is important to realize here that the above performance difference as
calculated for digitized images is still relatively low, since the luminance
ranges of the individual images are mapped into approximately the same
range as a result of nearly optimal choices for diaphragm and exposure
times when the images were taken. It is in everyday situations, where lumi-
nance ranges differ enormously, where the improved performance of flexi-
ble metrics becomes a distinct advantage.

43.4 Concluding remarks

Two important issues relating to the momentary distribution z(x) of the at-
tribute strength 2 have so far not been addressed. The first issue is related
to the influence of the factors time and location on x(z). Consider, for ex-
ample, the influence of time. According to the ideas we have forwarded,
the scale function of a flexible metric should instantaneously follow any
changes in the momentary distribution of the attribute strength. However,
adaptation in real vision is known to be much faster when the illumina-
tion level increases than when the illumination level decreases. Although
this asymmetry may simply be due to constraints in the biological imple-
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4.3. Recipe for an optimal metric

mentation of the adaptation process, it may also serve to reduce the risk of
physical damage resulting from exposure to high illumination levels.

The second issue is related to the concept of 1(x) itself, which is ill defined
in the context of real vision. We have introduced x(x) as the momentary
distribution of the attribute strength of “a set of items.” The question arises
what the correlate of 1(x) may be in real vision. Considering that flexibil-
ity can be most successfully exploited during the earliest stages of visual
processing, where measures of attribute strength are least affected by the
cumulative influence of internal noise, we may conclude that it would have
to be a very early visual property.

Notwithstanding these issues, many well-known properties of vision fit in
very well with the description of optimal visual metrics we have derived.
For example, it can easily be shown that optimal metrics as specified by
Eq. (4.23) exhibit properties that resemble phenomena such as dark and
light adaptation (Cohn & Lasley 1986), brightness constancy (Wallach 1948),
and crispening (Takasaki 1966). First, to demonstrate the case for bright-
ness constancy, consider that when the momentary luminance distribution
is given by u(z), the brightness so of an item with luminance z is given by

50 = /"Mdm

—0o dx
S [0
= N / w(zx)dz. (4.25)

When the illumination level changes by a factor ¢, all luminances will in-
crease by this factor, since luminance is the product of illuminance and sur-
face reflectance, and surface reflectance remains constant. We therefore find
that the new luminance x;, of our item will be equal to czo, and, in analogy,
that the new luminance distribution y/(x) will be equal to 1/c¢ - u(z/c). The
new brightness s;, of our item is given by

S [0
s = N/_oo//(x)dx
S [l [z
= 220 (%)a
N/—oo CM<C> *

- =/ " )
50, (4.26)

55

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4. Visual Metrics: Discriminative Power through Flexibility

that is, the brightness of our item is not influenced by the illumination
level.

Second, to demonstrate the case for crispening, consider that for a small
luminance difference dx the corresponding brightness difference ds is given

by

ds = [ds(x>]dx

dz

Nu(:r)dw. (4.27)
The background luminance x¢ will usually appear in the luminance dis-
tribution p(z) as a distinct peak for = . We therefore find that for a
constant luminance difference dz, the associated brightness difference ds
will also peak around = = zo. In other words, we find that sensitivity for
luminance differences is highest around the background luminance.

To conclude this discussion, we would like to stress that the above phe-
nomena can now be understood as the logical consequences of visual metrics
having one essential property which itself is extremely useful: continuous
optimization of discriminative power by exploiting flexibility.

4.4 Vision and visual memory

4.4.1 Visual identification: vision versus memory

The ability to discriminate between items based on their visual attributes is
essential to any seeing organism. However, advanced vision is also charac-
terized by the ability to identify or recognize items or item properties using
past observations of these items. For this process we will assume the simple
model shown in Fig. 4.4, in which identification is performed by compar-
ing, or matching, scale values of measured item attributes with “standards”
stored in memory.

The obvious way in which these standards are themselves constructed in
memory is by the accumulation of past observations of the items. Such a
long-term temporal integration will inevitably result in memory standards
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attribute strength

scale function

scale value

matching

accumulation

memory standards

Figure 4.4: A simple model for the identification of items in the outside
world. Identification is assumed to be performed by means of matching
scale values with standards stored in memory. The memory standards
themselves are assumed to be constructed by means of accumulation of

scale values of past observations.
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4. Visual Metrics: Discriminative Power through Flexibility

that are essentially rigid, at least when regarded in short-term intervals.
This finding immediately raises an interesting question: how are observa-
tions, represented by scale values on a flexible visual metric, to be compared
with standards that are essentially rigid?

4.4.2 Calibrating visual metrics

One way to cope with the above problem of comparing measurements rep-
resented on a flexible visual metric with rigid memory standards is to “cali-
brate” the visual metric. Such calibration can be performed in several ways.
We distinguish four possible calibration methods:

o First, the visual metric can be calibrated when the noise properties, or
estimates of these, are known. Referring to Eq. (4.4), the metric can be
found using

ds(z)7? _o(s)? —oy(s)?
[ e ] O (4.28)

e Second, the attributes of already recognized items can be used to es-
timate the current visual metric. This method explicitly requires that
other item attributes be used to recognize these items first. For exam-
ple, shape might be used to identify several items first, after which
their “known” colors could be used to calibrate the metric for color.

o Third, statistical properties of the momentary attribute strength distri-
bution, such as mean and variance, can be used to estimate the metric.

e Last, invariants in the momentary distribution of the attribute
strength can be used to estimate roughly the current metric. Well-
known invariants include the gray-world assumption (Hurlbert 1986)
and the assumption that the brightest item is perfectly white.

It is highly likely that other ways of calibrating the visual metric exist, in-
cluding combinations of the above calibration methods. However, another,
perhaps more interesting situation occurs when the visual metric is left un-
calibrated.
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443 Uncalibrated visual metrics: partial flexibility

The only information available for the accumulation and matching pro-
cesses mentioned above is the measured attribute as represented by its scale
value on the visual metric. When this metric is left uncalibrated, memory
standards inevitably become fuzzy due to variability in the scale value as
caused by the flexibility of the visual metric. Therefore, besides the dif-
ficulties that arise when this scale value is to be compared with memory
standards, these memory standards themselves become less precise. It may
therefore be useful to restrict the flexibility of the visual metric.

Assume that such restricted, or partial, flexibility can be formalized by in-
troducing the eternal distribution . (z), that is, the momentary distribution
p(z) integrated over a long-term interval. We can now introduce a weight-
ing parameter 0 < X\ < 1 expressing the relative importances of y(r) and
pe(z) for the current visual metric s(z). When Eq. (4.23) is generalized to

) = 3 Do) + (1~ Vel 429)

A can be regarded as the degree of flexibility of the visual metric. The influence
of flexibility on the variability in the scale value is now easily shown to be
proportional to the degree of flexibility, since

so = /0 ds(x)dm

—oo dx

_ % / ZM"”) + (1= Npe(a)]de

Zo

= %)\ /j: p(z)dr + %(1 - )\)/ pe(z)dz, (4.30)

—00

where the first term represents the variability in the scale value s for a
given attribute strength zo. This variability, together with variability in xq
itself and together with the influences of external and internal noise, will
be the main source of fuzziness of memory standards when the latter are
assumed to be constructed by accumulation of scale values of past observa-
tions. Therefore, although partial flexibility will result in reduced discrimi-
native power, memory standards will be less fuzzy and the comparison of
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4. Visual Metrics: Discriminative Power through Flexibility

scale values with these standards will be facilitated. The degree of flexibility
of the visual metric then becomes the subject of optimization in which both
discriminability and identifiability play a role.

To conclude, the combination of an uncalibrated flexible metric with rigid
memory standards should lead to contextual effects when what is observed
is judged in relation to what is represented in memory. Interestingly, Yen-
drikhovskij, Blommaert & de Ridder (1999b) found such contextual effects.
In a series of experiments, subjects were asked to judge the similarity of the
object color of a banana located on differently colored backgrounds and dis-
played on a CRT to what they thought was the color of a prototypical ripe
banana. Subjects’ judgments showed a significant influence of the color
of the background. This influence suggests that what is compared to the
memory prototype is the apparent object color, that is, the object color as it is
observed without correction for the color of the surroundings. This is an impor-
tant experimental result that seems to indicate that visual metrics are not
calibrated.

4.5 Conclusions

We have shown that flexibility of a metric can be exploited to optimize the
overall discriminative power of this metric. We have derived mathematical
expressions for optimal metrics, and we have shown that such optimal met-
rics exhibit properties that correspond to well-known visual phenomena,
such as brightness constancy and crispening. We have argued that these
phenomena can therefore be understood as logical consequences of visual
metrics being flexible and optimal with respect to discriminative power.

Furthermore, we have briefly investigated some of the consequences of flex-
ible visual metrics for the process of visual identification. We have exam-
ined the problems that arise when observations represented on a flexible
visual metric are compared to memory, and we have proposed two mech-
anisms for dealing with these problems. The first proposed mechanism is
based on calibrating the visual metric. The second proposed mechanism
leaves the visual metric uncalibrated and instead restricts the flexibility of
the visual metric.
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4.A Appendix. Probability of a topological error

Consider the mapping from attribute strength « to scale value s. Ideally, for
two items i and j this mapping will be given by s; = s(z;) and s; = s(x;).
However, due to the presence of noise we need a statistical description of
this mapping:

si = N{s(zi),ols(zi)]}

sj = N{s(z;),o[s(z;)]}, (4.31)

where N is the normal probability density function, x is the ideal noise-
less attribute strength, s(x) the scale function, and o(s) the total noise level.
Now, if we assume that item j is the successor of item ¢ in terms of or-
dering the items by attribute strength, we may use the approximations
xj—x;=1/p(x), s(xj) — s(x;) = 1/n(s) and o[s(x;)] = o[s(x;)] = o(s), where
p(z) and n(s) are the momentary distributions of attribute strength and as-
sociated scale value, respectively. We may now write the probability den-
sity function for the scale value difference ds = s; — s; as

ds = N[1/n(s),o(s)V2]. (4.32)

A topological error occurs when item j becomes the predecessor of item i
in terms of ordering the items by scale value, that is, when ds < 0. To find
the probability of a topological error, we must therefore integrate Eq. (4.32)

from ds = —oco to ds = 0:
pelo)= [ NTU/ns), o)), 439
Using the linear transformation v = [ds — 1/7(s)]/o(s), this can be expressed
as
po(s) = /_ 17,(3)0@)@]—1 N(0,1)du, (4.34)
or, equivalently, as
Pe(s) = Doleg 1 (4.35)

2 27 2n(s)o(s)
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Chapter 5

Predicting the Usefulness and Naturalness of
Color Reproductions

We present algorithms for predicting the usefulness and naturalness of
color reproductions of natural scenes. The algorithms are based on a com-
putational model of the stages that lead to an observer’s impression of the
usefulness and naturalness of an image. These stages are (1) the percep-
tion, or internal quantification, of color; (2) the construction of a memory
standard for an object’s color based on its color as observed in the past;
and (3) matching of observed object colors with memory standards. In the
first of the above stages, the internal quantification of color, the concept of
(partially) flexible metrics (Chapter 4) plays a central role.

To test the usefulness algorithm, it was used to predict the discriminability
of detail in black-and-white images of which the contrast was manipulated
by applying an s-shaped transform on CIE 1976 lightness L*. The natu-
ralness algorithm was tested by using it to predict the naturalness of the
grass, skin, or sky areas of images of which the color was manipulated by
shifting CIE 1976 hue angle h,,, and scaling CIE 1976 saturation s,,, of the
grass, skin, or sky areas of the images. The predictions produced in these
tests correspond quite well to experimentally obtained judgments of human
subjects.

This chapter is a slightly modified version of Janssen & Blommaert (2000b), Predicting
the usefulness and naturalness of color reproductions, Journal of Imaging Science and Technol-
ogy, vol. 44, no. 2, pp. 93-104. Reprinted with permission of IS&T, The Society for Imaging
Science and Technology, Springfield, VA, USA.
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5. Predicting the Usefulness and Naturalness of Color Reproductions

5.1 Introduction

Image quality is often considered in terms of a difference signal between
the current, reproduced image and its “unprocessed” or “original” ver-
sion. Well-known examples of this approach include JND (just-noticeable
difference) maps (Daly 1993) and SQRI (square root integral) measures
(Barten 1990), both of which are based on processing of the image and its
original by implementations of visual front-end models and subsequent cal-
culation of a difference measure from the two processed images. A serious
drawback of this approach is that the fundamental question of what image
quality is remains unanswered, as is the related question of what exactly the
“original” of an image is. Thus, measures for differences between two ver-
sions of an image can be calculated; however, what this tells about image
quality remains unclear. Fitting the predictions of such models to experi-
mentally obtained quality judgments of human subjects is usually the only
means of attempting to make this translation.

We will follow a different approach here that does not suffer from this draw-
back. Essential to this approach is that we regard the quality of an image
as its adequacy as an input to visuo-cognitive information processing (Chap-
ter 3). The output of this visuo-cognitive processing determines in turn how
well an observer is able to respond to occurrences in the outside world.
Thus, in this view, the quality of an image becomes indeed a meaningful at-
tribute of an image, telling how well the image can be employed as a source
of information about the outside world.

When looking more closely at visuo-cognitive processing of images (see
Fig. 5.1), we can discern three processing stages: (1) the construction of an
internal representation of the image; (2) the interpretation of this represen-
tation by means of matching it with representations stored in memory; and
(3) semantic processing of the interpreted scene to formulate a proper re-
sponse. For these stages to be completed successfully, the image should in
general satisfy two main requirements: (1) the internal representation of the
image should be precise; and (2) the match between the representation of
the image and memory should be close. We refer to the degree to which an
image satisfies these two requirements as the usefulness and the naturalness
of the image, respectively.

Evidence for the appropriateness of the above description of image quality
in terms of usefulness and naturalness was found in a series of experiments
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perception

internal

representation interpretation

representations

interpreted

scene
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Figure 5.1: Visuo-cognitive processing of images. In this diagram, el-
lipses denote representations of information, and rectangles denote pro-
cesses transforming one representation into another.
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(see Chapter 3). In these experiments, the separate influences of usefulness
and naturalness on image quality were revealed by varying color tempera-
ture and chroma of a set of images of natural scenes and asking subjects to
judge the quality and naturalness of the manipulated images. Manipulating
color temperature was expected to influence only the naturalness of the im-
ages, whereas manipulating chroma was expected to influence both natu-
ralness and usefulness. Indeed, quality was found to have a one-to-one rela-
tionship to naturalness when color temperature was manipulated, whereas
systematic differences between quality and naturalness were found when
chroma was manipulated.

To predict the usefulness and naturalness of an image, we need to know
what the internal representation of an image looks like. In other words, we
need to know which attributes are represented and what metrics® are used
to quantify these attributes. Here, we will simply assume that the structure
of the internal representation can be adequately described as a set of mea-
sured attributes such as position, shape, size, texture, brightness, and color.
When we focus on the attributes brightness and color, as we will do in the
remainder of this chapter, we may conclude that the metrics used to quan-
tify these attributes need not be rigid; that is, the scale function need not be
constant over time. Moreover, when the scale function of these metrics is
allowed to vary in time, this flexibility can be used to improve the discrim-
inative power of the metric (Watt 1989, Watt 1991). Extending this idea, it
is possible to find expressions for metrics that are optimal with respect to
discriminative power (Chapter 4). Interestingly, such optimal metrics ex-
hibit properties resembling several well-known characteristics of color vi-
sion, such as adaptation, crispening, and brightness and color constancy.

Our aim here is to show how the ideas about visuo-cognitive processing
of images, combined with the ideas about flexible metrics, can be used to
implement algorithms for predicting the usefulness and naturalness of re-
productions of color images of natural scenes. The proposed usefulness
algorithm is first presented with a set of images from which it calculates
the luminance and chromaticity distributions of the pixels of the entire set

! A metric is a system used for the quantification of measurements. A metric is defined
by its origin, unit, scale, and scale function. Origin and unit together constitute the scale,
upon which measurements of the strength of a certain attribute are represented by their
scale values. The exact relation between attribute strength and corresponding scale value is
given by the scale function.
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5.2. Metrics for brightness and color

of images, as well as the luminance and chromaticity distributions of the
pixels of the image of interest. These distributions are used to calculate the
(partially) flexible metrics upon which the brightness and color distribu-
tions of the image of interest are represented. The algorithm then calculates
overall discriminability from these distributions.

Besides the above steps, the naturalness algorithm also calculates the
brightness and color distributions of the areas of each image containing
grass, (Caucasian) skin, and sky. Averaged over the entire set of images, the
brightness and color distributions of the grass, skin, and sky areas represent
the algorithm’s “memory standards” for grass, skin, and sky. The algorithm
calculates naturalness by comparing the brightness and color distributions
of the grass, skin, or sky areas of the image of interest with these memory
standards. As we will show, the predictions produced by the usefulness
and naturalness algorithms correspond well with experimentally obtained
judgments of human subjects.

5.2 Metrics for brightness and color

The concept of (partially) flexible metrics plays a central role in the algo-
rithms we present here, and we will therefore start by introducing this
concept. A metric is the instrument to quantify the measurement of an at-
tribute’s strength. The constituents of a metric are its scale, defined by an
origin and a unit, and its scale function, which defines the relation between
attribute strength and corresponding scale value (Watt 1989, Watt 1991). For
physical (or biological) implementations of metrics, we may assume that
the range of the metric is finite—that is, the scale has fixed lower and upper
bounds—and that the precision with which scale values can be represented
is limited, for example due to the presence of noise in the system that en-
codes the scale values. Therefore, when objects are to be discriminated by
measurements of their attribute strengths, we find that the discriminative
power is essentially determined by the ratio of scale value difference to noise
level.

The central assumption we will make here is that the metrics used for the
quantification of brightness and color are optimal with respect to their dis-
criminative power. Assuming a constant noise level, discriminative power
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5. Predicting the Usefulness and Naturalness of Color Reproductions

can be increased by increasing scale value differences. One way to accom-
plish this would be to simply stretch the scale to a larger range. This, how-
evet, is no solution here since the range of the scale was assumed to be lim-
ited and constant. Another, slightly more complicated way to increase scale
value differences is to locally stretch the scale at those locations where an in-
crease in discriminative power is desired, by locally increasing the deriva-
tive of the scale function, and to compress the scale elsewhere. In this way,
the range of the scale can be preserved while scale value differences can be
selectively increased. An example of this principle is shown in Fig. 5.2.

Extending this idea, it can be shown that to optimize overall discrimina-
tive power, the derivative of the scale function should be proportional to
the momentary distribution of the attribute strength, as explained in Chap-
ter 4. This result, which is found under the conditions of an internal noise
level (due to, for example, random variability in neuronal response rates)
that is constant and an external noise level (due to, for example, photon
noise) that is negligibly small, can intuitively be understood by realiz-
ing that to optimize overall discriminative power, the amount of stretch-
ing of the scale should be largest for those ranges of attribute strength
that occur most frequently. Such a mechanism bears a close resemblance
to the image processing tool known as histogram equalization (Ballard &
Brown 1982) and, most importantly, requires the scale function to be flex-
ible. Interestingly, such flexible, optimal metrics exhibit properties resem-
bling some well-known visual phenomena, such as dark and light adap-
tation, crispening (Whittle 1994a, Whittle 1994b), and brightness and color
constancy.

The above type of metric is optimal with respect to discriminative power.
However, for the aim of identification a metric must satisfy other, partially
conflicting requirements. Most notably, identification requires that the scale
function be rigid, to facilitate the comparison of what is observed at the
present with what has been observed in the past. To satisfy this require-
ment and to simultaneously preserve discriminative power, the degree of
flexibility of the metric must be restricted, yet not reduced to zero. We will
therefore use the concept of partially flexible metrics (Chapter 4). Mathe-
matically, such metrics can be specified by

ds(e)

7y < A(@) + (1= Ape(2), (5.1)
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Figure 5.2: An example of how discriminative power can be increased by
locally stretching the scale. For the thermometer, the scale function relates
the attribute strength “temperature” to the measure “length of a mercury
column.” The exact relation between temperature and column length is de-
termined by the amount of mercury in the reservoir and the diameter of the
glass tube. For the thermometer at the right, discriminative power in the
range 35° to 45° has been increased by locally reducing the diameter of the
glass tube. The range of the scale, that is, the maximum length of the mer-
cury column, has nevertheless been preserved by increasing the diameter
of the glass tube elsewhere.
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5. Predicting the Usefulness and Naturalness of Color Reproductions

where z is the attribute strength, s(z) the scale function, x(x) the momen-
tary distribution of the attribute strength,2 te(z) the “eternal” distribution
of the attribute strength, and 0 < A <1 the degree of flexibility of the met-
ric. Here, the eternal distribution y. (z) can be thought of as the momentary
distribution x(x) integrated over a long-term interval.

Measurement usually involves a stage in which a sensor converts the at-
tribute to be quantified into another attribute that is more accessible for
quantification. For example, the thermometer of Fig. 5.2 converts the at-
tribute “temperature” into the attribute “length of a mercury column,”
which can be quantified easily. The receptors in the retina perform a sim-
ilar task by converting a complex spectrum of radiated or reflected energy
into the set of three values we experience as a color. These three values can
be regarded as three separate dimensions, with each having its own met-
ric assigned to it, which make up the attribute color. In the algorithms we
present here, we have chosen to use luminance Y and CIE 1976 chromatic-
ity coordinates v’ and v’ for these dimensions. We have made this choice
for two reasons: (1) the dimensions Y, «/, and v’ resemble the early-visual
dimensions of color, namely brightness, red-green, and yellow-blue; and
(2) Y, «/, and v’ coordinates can be calculated relatively easily for digitized
images displayed on a CRT.

In practice, to calculate what the metrics for Y, «/, and v’ look like for a par-
ticular image we therefore need to perform the following two steps. First,
the momentary and eternal distributions ; and 1. must be calculated sep-
arately for Y, «/, and v/. To model the eternal distribution z. we calculated
the frequency distributions of the Y, v/, and v’ coordinates of the pixels of
a set of 77 images of natural scenes taken from two Kodak photo CDs; and
to model the momentary distribution y we calculated the frequency distri-
butions of the Y, «/, and v’ coordinates of the pixels of the image of interest.
For these calculations we assumed that the images were to be displayed on
a PAL (European color television) compliant CRT with v corrected to the
value 2.5. Second, the metrics for Y, ¢/, and v/ were calculated from the
above distributions for a particular degree of flexibility A by calculating the
weighted sum Ay + (1 — \) . and integrating the result. Figure 5.3 summa-
rizes this procedure with an example.

’In this chapter, u(z) is defined such that [, u(z)dz = 1, where X is the range of the
attribute strength x. Note that this definition differs from the one used in Chapter 4, where
u(z) was defined such that f « M(@)dz = N, where N is the number of items.
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Figure 5.3: A calculated set of (Y, /,v") metrics for an image. The upper left
panel shows calculated (Y,,v’) frequency distributions for the entire set
of 77 images, representing the eternal distributions. The upper right panel
shows calculated (Y, «, v) frequency distributions for one particular image,
representing the momentary distributions. The lower left panel shows the
weighted sum of momentary and eternal distributions for A = 0.5. Inte-
grating these distributions yields the set of metrics for Y, v/, and ' for this
image. Note that the ranges of «’ and v’ on the horizontal axes are set to
[0,1] and that the range of Y is normalized to fit in this range. Plots for ¥’
are drawn with solid lines, those for v/ with dotted lines, and those for v/

with dashed lines.
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5. Predicting the Usefulness and Naturalness of Color Reproductions

5.3 Predicting usefulness

In the introduction we defined usefulness in terms of the degree of pre-
cision of the internal representation of an image. Here, precision does not
necessarily imply that an item’s attributes as they are represented internally
should correspond one-to-one to the physical characteristics of the item. In-
stead, the ability to discriminate between items in the outside world on the
basis of their internally quantified attributes is likely to be a more meaning-
ful criterion for precision. In this section we will therefore define a measure
for usefulness that is based on the idea that the usefulness of an image is
essentially determined by the overall discriminability of the items in the
image. An essential stage in the definition of such a measure is the internal
quantification of attribute strength. For this we will use the concept of (par-
tially) flexible metrics presented in the previous section, and limit ourselves
to the attributes brightness and color.

5.3.1 Discriminability

In the previous section we have assumed that scale values can only be rep-
resented with a limited precision, for example due to the presence of noise
in the system encoding these scale values. Discriminability of two items by
their measured attribute strengths will therefore be essentially determined
by (1) the scale value difference between the items; and (2) the noise level.
The measure for discriminability that we will use here is the probability of
a topological error. Topological errors occur when the ordering of a set of
items by their scale values differs from the ordering of the same set of items
by their physical attribute strengths, and the occurrence of topological er-
rors therefore is a strong indicator that discriminability is poor. Assuming
Gaussian noise properties, the probability of a topological error, pe,,, can be
shown (see Chapter 4) to be given by

1 1 d
5 — 5 erf %, (52)

Perr =

where d is the ideal, noiseless scale value difference between any pair of
items and o the noise level. In Fig. 5.4, pe,, is plotted versus d/o on a
logarithmic scale. The figure shows that p.,, increases asymptotically to
a maximum value of 0.5 when d/o approaches zero, and that pe,, remains
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Figure 5.4: The probability of a topological error, pe,,, versus the ratio of
scale value distance d to noise level o (on a logarithmic scale).

essentially constant when d/o decreases below 107! or when d/o increases
beyond 10*.

When the attribute strength distribution of the set of items is given by p(x),
the associated scale value distribution 7n(s) on the metric s(x) will be given
by
B ds(z)]™!
s =) |52 3

where ds(z)/dx is the derivative of the scale function, which for a (partially)
flexible metric is given by Eq. (5.1). The probability of a topological error
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5. Predicting the Usefulness and Naturalness of Color Reproductions

will be highest for neighboring items. For neighboring items on the metric,
the scale value difference d will in close approximation be given by 1/Nn(s),
where N is the number of items in the set. We may therefore approximate
Eq. (5.2) by

1 1

1
Perr(8) = 3 3 erf IN()o(s) (54)

To obtain the overall probability of a topological error, we must integrate
this expression along the entire range S of the metric

Perr=/5pe,~r(s)n(s)ds. (5.5)

The measure P,,, must be calculated for each dimension separately. For
multidimensional attributes like color, overall discriminability D must
somehow be derived from the values found for P.,, along the n individ-
ual dimensions. Since there is no obvious way in which this can be done,
we will decrease the set of possible solutions by imposing some desired
characteristics. Assuming that overall discriminability D is normalized to
the range zero to one, these characteristics are (1) when P.,, increases for
one or more dimensions, then overall discriminability D should decrease;
(2) when P,,, = 0 (that is, discriminability is perfect) for at least one di-
mension, then overall discriminability D = 1; and (3) when P.,, = 1/2 (that
is, discriminability is poorest) for all n dimensions, then discriminability
D = 0. Perhaps the simplest way to satisfy these characteristics is when

D=1-2"]] Perrs. (5.6)

To conclude, the measure we now have was derived for a set of IV items.
Although for Mondrian-like images the individual patches composing such
images may be regarded as the items, for the category of natural images it
is unclear what exactly these items are and, therefore, what the value of N
is for a particular image. In our calculations we have made the arbitrary
choice to set IV to the value 100. Furthermore, assuming approximately 100
JNDs (just-noticeable differences) along each dimension, we have set o to
the value 0.01 and S to the range [0, 1]. For the ratio d/o these choices lead
to an average value of exactly one, which in Fig. 5.4 lies in the center of the
interval where P,,, is most sensitive to changes in d/o. In general, although
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5.3. Predicting usefulness

absolute values found for D will depend on the choices made for N, S,
and o, we have found that when ratios of D values are used to compare
different images or different versions of one image, results are quite robust
to changes in d/o of up to one order of magnitude from the value we have
used here.

In practice, calculation of the usefulness of an image can now be performed
as follows. First, the metrics for Y, «/, and v/ must be calculated for the im-
age following the procedure discussed in the previous section. Next, using
Eq. (5.3), the scale value distributions 7(s) can be calculated from the mo-
mentary distributions p(z) and the scale functions s(x) for the dimensions
Y, «/, and ¢/, separately. From the obtained scale value distributions, P,
can then be calculated for the individual dimensions using Egs. (5.4) and
(5.5). Finally, overall discriminability D is found by substituting the ob-
tained results in Eq. (5.6). Part of this procedure is summarized in Fig. 5.5
with an example.

5.3.2 Results and discussion

In this subsection we will compare predictions of the above algorithm with
experimentally obtained judgments of human subjects. To this end, we ma-
nipulated the brightness contrast of four digitized black-and-white images
of natural scenes by applying a pixelwise, s-shaped transformation on CIE

1976 lightness L*:
*/ L*— Ly ! * * *
L = <ﬁ> (Lave = Lumin) + Linin
ave min
(fOI‘ L;knm < L < L:ve)
* Liax — L \7 * * *
L = ( *max_ L= ) (Lave - Lmax) +Lmax
max ave
(for Lave < L™ < Linax), (5.7)

where L* represents the original lightness of a pixel, L* the new value, and

where L ., L% ., and L7 . represent the minimum, maximum, and average
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Figure 5.5: Summary of the procedure to obtain the probability of a topo-
logical error, P.,,, for an image. The upper panels show the momentary
distributions 1 (left) and scale functions s for Y, v/ and v/ (right) for the im-
age of interest (note that we again used A = 0.50; these plots are identical
to the ones shown in Fig. 5.3 in the upper right and lower right panels).
The lower left panel shows the associated scale value distributions 7, and
the lower right panel shows p.,, for these distributions, assuming that NV is
100 and ¢ is 0.01. Integrating the areas under the curves yields P.,,. In this
particular case P.,, is 0.23, 0.20, and 0.23 for Y, v’ and ¢/, respectively. Plots
for Y are drawn with solid lines, those for v’ with dotted lines, and those
for o' with dashed lines.
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lightness of the pixels in the original image, respectively. Furthermore, the
parameter + is specified in terms of a gain factor g as

~ = 109. (.8)

The transformation is shown in Fig. 5.6. Applying this transformation will
for g < 0 decrease the brightness contrast, and for g > 0 increase the bright-
ness contrast of the image. Minimum and maximum lightness of the image
remain at their original values, while the average lightness value in the im-
age remains at approximately the same level. We used nine versions of
each scene, with gain factor values of —0.60, —0.45, —0.30, —0.15, 0, 0.15,
0.30, 0.45, and 0.60.

Eight subjects were instructed to judge overall visibility of detail of the re-
sulting images, which were shown in random order, with three replications,
on a PAL-compliant CRT. For their judgments, subjects used an 11-point nu-
merical scale ranging from 0 (“bad”) to 10 (“excellent”). Results, averaged
over subjects and replications, are shown as the solid curves in Fig. 5.7.
Furthermore, results produced by the algorithm are shown as dotted, short-
dashed, and long-dashed curves for A = 0, A = 0.25, and A = 0.50, respec-
tively. Note that to facilitate a comparison, all curves in the figure were
z-scored.

Figure 5.7 shows that subjects” judgments of visibility of detail are slightly
asymmetrical around g = 0, with visibility of detail being maximal for g =0
(images 1 and 4) to g = 0.15 (images 2 and 3). For predictions made by the
algorithm this asymmetry is more pronounced, with maximum discrim-
inability occurring for g = 0 (image 4), g = 0.15 (image 1), and g = 0.30
(images 2 and 3). In general, predictions made by the algorithm corre-
spond well to subjects” judgments of visibility of detail for values of g
below zero. For values of g above zero, the algorithm tends to overes-
timate discriminability compared to subjects” judgments. Subjects report
that decreased visibility of detail for g smaller than zero is due primar-
ily to decreased contrast of the manipulated images. Likewise, for values
of g slightly larger than zero, subjects report increased visibility of detail
due to increased contrast. For higher values of g, however, subjects re-
port that visibility of detail is decreased, due to the existence of areas in
the manipulated images where detail is lost due to clipping to either black
or white. Apparently, the algorithm is underestimating the impact of this
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Figure 5.6: The s-shaped transformation we applied to CIE 1976 lightness
L*. On the horizontal axis the original lightness, and on the vertical axis the
lightness after applying the s-shaped transformation. Curves shown are for
g = —0.60, g = —0.45, g = —0.30, and g = —0.15 (dotted curves, with de-
creasing dot gap for increasing g), g = 0 (solid curve), g = 0.15, g = 0.30,
g = 0.45, and g = 0.60 (dashed curves, with increasing dash length for in-
creasing g). Minimum, average, and maximum values for L* are 0, 40, and
100 in this example.
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Figure 5.7: Visibility of detail as judged by human subjects (solid lines, the
error bars denote a distance of two standard errors in the mean) and overall
discriminability D (short-dashed lines for A = 0, medium-dashed lines for
A = 0.25, and long-dashed lines for A = 0.5) versus the gain factor of the s-
shaped transformation on lightness. Results have been z-scored to facilitate
a comparison.
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effect on overall visibility of detail. Such underestimation is probably due
to the fact that the algorithm is analyzing luminance statistics only glob-
ally, that is, without taking into account how these statistics vary from one
location in the image to another. Alternatively, subjects” attention may be
drawn to areas where clipping occurs, resulting in an overproportional in-
fluence of clipping on their judgments. Nevertheless, overall correspon-
dence between model predictions and subjects” judgments is quite good,
certainly given the assumptions and simplifications that underlie the algo-
rithm.

5.4 Predicting naturalness

In the introduction we defined naturalness in terms of the degree of match
between the internal representation of an image and memory. Realizing
that the content of images is usually made up of objects that are more or
less familiar, we may specify this further as the degree to which perceived
object attributes match remembered object attributes, or memory standards.
As stated in the introduction, in the algorithm we present here we will re-
strict ourselves to the attributes color and brightness. To predict natural-
ness, we therefore need to specify (1) how colors are internally quantified;
(2) how the memory standard for a particular object’s color is constructed;
and (3) how the perceived color of an object is matched with the memory
standard for that object’s color. We will address the second and third issue
here, since the first issue has already been addressed in the section about
metrics for brightness and color.

5.4.1 The construction of memory standards

When observing a particular scene, the scale function of a partially flexible
metric will be determined by the distribution of the attribute strength for
that scene (the momentary distribution) and by the distribution of the at-
tribute strength for all scenes observed in the past (the eternal distribution).
Observation of a particular object in this scene will therefore result in a scale
value for that object that is determined by, first, the attribute strength for
that object and, second, the scale function at the moment of observation. For
a given attribute strength  and scale function s(z), the corresponding scale
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value s is given simply by s = s(xz). However, the attribute strength mea-
sured for a particular object at a particular moment will usually be given by
a distribution of values instead of one unique value. For example, the color
of grass in a particular scene is not uniform but instead varies from location
tolocation. This attribute strength distribution will have its associated scale
value distribution on the metric. The relation between the attribute strength
distribution y, () and the associated scale value distribution 7,(s) is simple
and given by

(s) = o) [ 2] 69)

where ds(x)/dz is given by Eq. (5.1). The scale value distribution 7, for an
individual object will therefore depend not only on the attribute strength
distribution of the object itself but also on the attribute strength distribution
of the scene in which it is located.

We will assume that the memory standard for an object is constructed by the
accumulation of past observations of that object; see Fig. 5.8. As explained
above, the observation of an object will result in a distribution of scale val-
ues on the metric. Scale value distributions of past observations therefore
constitute the information from which memory standards are constructed.
How this accumulation is performed is unclear. Here, we will simply as-
sume that the memory standard for a particular object is constructed by
a long-term integration of the scale value distributions observed for this
object. Alternatively, accumulation may also be performed by calculation
and storage in memory of parameters such as mean and standard deviation
of observed scale value distributions. We have chosen not to pursue this
approach to avoid making assumptions about the shapes of the observed
distributions.

Figure 5.9 shows calculated memory standards for the objects grass, skin,
and sky. These standards were obtained by calculating the Y, v/, and v’ dis-
tributions of the image areas containing grass, skin, and sky. The associated
scale value distributions were then calculated using Eq. (5.3). Finally, the
memory standards were constructed by averaging the obtained scale value
distributions over the sets of images containing grass, skin, or sky. This
procedure was repeated for three degrees of flexibility: A = 0, A = 0.25, and
A=0.5.
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Figure 5.8: A simple model for the accumulation and matching processes.
Matching is performed by means of comparing scale value distributions
with standards stored in memory. The memory standards themselves are
assumed to be constructed by means of accumulation of scale value distri-
butions of past observations.
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Figure 5.9: Calculated memory standards 7, (s) for grass (upper row), skin
(middle row), and sky (lower row) for degree of flexibility 0 (left column),
0.25 (middle column), and 0.5 (right column). Plots for Y are drawn with
solid lines, those for v’ with dotted lines, and those for v' with dashed lines.
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5. Predicting the Usefulness and Naturalness of Color Reproductions

5.4.2 Matching perceived object colors with memory standards

The aim of the matching process is to identify an object using its observed
scale value distribution. The obvious way in which this task can be accom-
plished is by matching the observed scale value distribution with memory
standards and selecting the memory standard for which the degree of match
is highest. The performance of such a mechanism may be judged by three
main criteria: (1) success; that is, the overall probability of identifying an ob-
ject correctly; (2) sensitivity; that is, the degree to which distinctions can be
made in the identification of objects; and (3) robustness; that is, the degree
to which the identification of an object remains stable under small varia-
tions in the observed scale value distribution as caused by, for example,
noise.

There is no unique solution to this problem, and for the algorithm we
present here we have made the rather arbitrary choice to express the de-
gree of match between an observed scale value distribution and a memory
standard by a normalized correlation measure:

mln,(s $) = S no(s)np(s)ds
[770< )7 77]’( )] \/fng(s)dsfng(s)ds, (5.10)

where m(.) is the degree of match, 7, the observed scale value distribution,
and 7,(s) the memory standard. The main advantage of this measure is its
robustness, specifically its independence of assumptions about the shape of
the distributions that are to be matched. It produces results that lie in the
range zero (perfect mismatch) to one [perfect match, when 7,(s) = n,(s)].
However, since we have to deal with three dimensions, a measure of over-
all match must be derived from the degrees of match along the individ-
ual dimensions. The criteria that may be imposed on such a measure are
(1) overall match should increase monotonically with the degree of match
in the individual dimensions; (2) overall match should be zero when there is
at least one dimension for which the degree of match is zero; and (3) overall
match should be one only when the degree of match is one for all individual
dimensions. The obvious candidate for this measure is a simple product of
the degrees of match along the individual dimensions:

M =1y - My * My, (511)
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5.4. Predicting naturalness

where m is the overall degree of match, and where my-, m,/, and m,, are the
degree of match along the dimensions Y, «/, and v/, respectively.

To conclude, we have defined naturalness as the degree of match between
perceived object attributes and memory standards. Assuming that an object
has already been identified by selection of the memory standard for which
the degree of match is highest, this degree of match represents the natural-
ness of that object. With m we have a measure for predicting the naturalness
of the grass, skin, and sky areas of color reproductions of natural scenes. To
predict the naturalness of the entire image, the above predictions should
in principle be calculated for each individual object depicted in the image.
However, since most color manipulations applied to images are global, that
is, not restricted to specific locations in the image, a weighted average of
naturalness predictions for a limited set of objects depicted in the image
will usually be sufficient to predict the naturalness of the entire image. Yen-
drikhovskij et al. (1999a) have shown that such an approach can indeed be
used successfully to predict the naturalness of an entire image from natu-
ralness predictions for the grass, skin, and sky areas of this image.

5.4.3 Results and discussion

In this subsection we compare naturalness predictions produced by the
above algorithm with experimental results reported by Yendrikhovskij et al.
(1999a). In these experiments, human subjects had to judge the naturalness
of manipulated color reproductions of natural scenes that were displayed
on a CRT. To this end, the portions of the images showing grass, skin, or
sky were manipulated by shifting CIE 1976 hue angle h,, and by scaling
CIE 1976 saturation s,,. The obtained naturalness judgments, averaged
over subjects and scenes, were then plotted versus the average v’ and v’ co-
ordinates of the manipulated grass, skin, or sky areas, and subsequently a
two-dimensional Gaussian f(u/,v’) was fitted to this data:

1 2 roJg 12
f@,v) o« exp———au—u,” — 2pupu,vl, +v),°)
2(1 _pi/v/) n n-n n
o = u/_ﬂu’
n O-/u/
/_ /
,U/
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5. Predicting the Usefulness and Naturalness of Color Reproductions

where (i, 0w/, o, 0w, and py,y Were the free parameters to be fitted. Fi-
nally, the authors plotted what they referred to as “one-sigma ellipses” in
the (u/,v") plane. These ellipses, which connect locations of equal natural-
ness in the (v/,v’) plane, are given by the equation

1 ’2 1o /2 1
—_—— — 200 + = ——. 5.13
ST—72) (up, Pl Un Uy, + V), 5 (5.13)

To compare the naturalness predictions as produced by the algorithm with
the data of Yendrikhovskij et al., we applied the same manipulations to the
grass, skin, or sky areas of twelve images that were selected from the set

of 77 images.? In particular, hue angle h,,, was shifted by —ar, —37, — 27,

- %w, 0, %w, %77, %w, and %w, and saturation s, was scaled by 0.41, 0.51, 0.64,
0.80, 1.00, 1.25, 1.56, 1.95, and 2.44. Naturalness of the manipulated grass,
skin, or sky areas was then predicted using the algorithm, and a Gaussian
fit was made for each image separately. Resulting one-sigma ellipses for
these fits are shown in Fig. 5.10 for four images of which the grass areas
were manipulated, in Fig. 5.11 for four images of which the skin areas were
manipulated, and in Fig. 5.12 for four images of which the sky areas were

manipulated.

In general, locations, sizes, and orientations of the one-sigma ellipses fit-
ted to the algorithm’s predictions correspond well to the one-sigma ellipses
found by Yendrikhovskij et al. A degree of flexibility A = 0.25 produces best
results for grass, A = 0 produces best results for skin, and A = 0.50 produces
best results for sky. This seems to indicate that some degree of flexibility is
needed to produce best overall results. It would nevertheless be too strong
to conclude this, since the validity of such a conclusion is strongly influ-
enced by the characteristics of the set of 77 images that were used to “train”
the algorithm. This influence is difficult to estimate since there is no set of
images that can be called representative for what humans observe in every-
day life. Nevertheless, given the constraints imposed by having to use a

*We are aware that by selecting our test images from the set of images used to construct
memory standards, we are introducing some unwanted correlation between the test images
and the memory standards. For the construction of one-sigma ellipses we expect this effect
to be negligibly small, since the one-sigma ellipses are constructed<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>