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Preface

(Galvanomagnetic phenomena in solids have received attention since
before the turn of the century, with a significant event being the discovery
of the Hall effect in 1879 by E. H. Hall. Subsequent contributions due
to Drude and to Lorentz came in the early part of the present century,
By the third decade, after significant work of men such as Pauli, Bloch,
and Sommerfeld, the basic foundations for electrical transport phenomena
in solids were well established, and detailed accounts can be found in
such treatises as those by Sommerfeld and Bethe {1933 “Handbuch"™),
Mott and Jones (1936), Seitz (1940), and Wilson (1953).

The past decade has witnessed greatly expanded activity, mostly in
the nature of refinements of the basic theory and application to specific
examples, with particular attention to special cases of band structure
and charge carrier interactions. The impetus for the accelerated activity
has probably been the rapid growth in semiconductor research, an
increased availability of good single erystals for measurements, and the
fléve!upment of a number of powerful tools {e.g., the cyclotron resonance)
for establishing band structure and scattering mechanisms. As a result
of the extensive activity, this monograph contains more than 1000 ref-
erences published within the last decade.

The purposes in writing this velome are severalfold. The first and
foremost objective is to provide a reasonably complete account of recent
developments in the field. In this case the book is primarily directed
to those readers who are active in solid state physics. It is especially
to be hoped that the work will stimulate further research in various
areas. A second group of readers are those physicists, chemists,
metallurgists, and electronics engineers who may have occasion to
interpret the results of galvanomagnetic measurements. For this group
the author has tried to emphasize the limitations of the simple formulas,
and to point out that unless the experimenter is familiar with the band
structure of the material under study, the actual facts may be far from
what a naive use of the simple relations for Hall effect or magneto-
resistance might suggest. It is for these readers that substantial coverage

L
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is given to the effects of complex band structure and unusual scattering
mechanisms, Finally, it is felt that the literature available to graduate
etydents in solid state science lacks a treatise which has the completeness
necessary for the student to gain adequate advantage of recent de-
ve]apm-:r.ﬁta in transport theory. Therefore, for the volume to be of effective
use to students, and to scientists and engineers specializing in other
fields, the author has included the development of basic equations,
specialized for the simple cases but with apparent applicability for the
more complex examples.

In a field where publications are forthcoming at a rapid pace, it is a
problem to keep a treatise up to date. The reader will note the large
number of 1962 references and the various 1963 references inserted at
the proof stage. It was felt that the appropriateness of these published
works was such as to justify the inconvenience of the large number of
letter suffixes — in one case extending into the second alphabet — and,
in the case of the latest insertions, the space-dictated omission of some
of the obvious English translations. Because of the volume of pertinent
literature, it was not feasible to achieve complete coverage of all the
areas encompassed in this monograph. For this reason, the author asks
understanding from anyone whose contributions were inadvertently
omitted.

In order that the book may be of greatest use to readers encompassing
the three categories outlined abowve, the author has attempted to carry
through a continuous and coherent development of the pertinent equa-
tions for transport phenomena, ranging from the simple cases of spherical
energy surfaces and the relaxation-time approximation to the more
complex examples involving various crystal symmetries, many-valley
band structures, degenerate bands, anmisotropic relaxation times, etc.
Included also are discussions of such effects as strong electric- and
magnetic-field phenomena, inhomogeneities, complex scattering processes,
inapplicability of the relaxation-time concept, literature dealing with
non-Boltzmann approaches to transport theory, and numerouns other items.
Many references are made to thermomagnetic phenomena, since data
of these kinds often provide a useful supplement to galvanomagnetic
measurements in furthering our understanding of the processes responsible
for the observed transport behavior in a semiconductor. In a number of
cases it has also been desirable to include information on conduction
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phenomena in metals, especially where the immediate concern has been
scattering, magnetoresistance, or other investigations delineating the
Fermi-surface topology.

There are many persons whose assistance and encouragement are
responsible {or making possible the writing of this volume. Besides those
whose scientific contributions are acknowledged at the conclusion of the
text, the writer wishes to express his indebtedness to the Battelle
Memorial Institute for providing the facilities and the environment which
made it possible to pursue the task. Thanks are also due the Air Force
Office of Scientific Research for their support of research which has
resulted in the contribution of a number of sections to this volume.
Special words of praise are warranted for the library staff at Battelle for
their patient untiring efforts and for the author's secretary {or her careful
checking of the proofs. Finally, the author wishes to mention his wife
and his uncle, Jesse Beer, whose varied contributions were equally
necessary to the achievement of this work.

ALeerT C. BreER
Battelle Memorial Fustrbuts
Codumbus, o
October, 1963
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GALVANOMAGNETIC EFFECTS
IN SEMICONDUCTORS






1.
Introduction

Studies of galvanomagnetic effects have been very helpful in furthering
our knowledge of conduction phenomena in semiconductors. Examples
of the use of the Hall effect to determine charge-carrier densities and of
transverse magnetoresistance to calculate mobilities are so well known
as to require no emphasis here. Advantages occurring from measurements
of the magnetic-ficld dependence of the galvanomagnetic effects, on the
other hand, are not so obvious. Yet such investigations can yield a variety
of information in the case of high-mobility semiconductors. This follows
from the fact that in the weak-field region, conductivity phenomena are
strongly influenced by the interactions of charge carriers and the lattice,
for example, by the nature of the scattering process and by the dependence
of the electron wave number on energy. In the region of strong magnetic
figlds, on the other hand, certain of the transport processes become
indicative of the charge-carrier characteristics per se, such as their density
and Fermi energy. The magnetic-field variation of the galvanomagnetic
elfects is expressed in terms of a dimensionless parameter involving the
product of the mobility and the magnetic field strength. As a result the
strong-field region can be achieved in high-mobility materials with normal
laboratory magnets.

For intrinsic semiconductors, magneto-experiments on a single spec-
imen can, in certain cases, give us information about both the conduction
and the valence bands. This is possible when electrons and holes have
widely differing mobilities. Examples of such matenals are indium
antimonide and indium arsenide, where the mobility due to lattice
scattering is over 80 times as large for electrons as for holes. At weak
magnetic fields, the galvanomagnetic and thermomagnetic characteristics
are predominantly representative of the conduction band. As the field is
increased, the electronic contributions to transport processes may saturate
or decrease monotonically so that, at high fields, the controlling effects
are due to the holes.



o INTRODUCTION

It is the intent of the author to devote most of the space in this book
to contributions coming in the last 15 years. The principal concern will
be with considerations occasioned by band structure and scattering
mechanisms exemplified by a number of the well-known semiconductors.
Nevertheless, the transport equations will be outlined quite generally, to
serve as a starting point for more specialized derivations. The basic
relationships are of course applicable to metals as well as semiconductors;
and for a thorough presentation of this phase, the reader is referred to
the article by Jan in Volume V of this series.!

Thermomagnetic phenomena — which would require the space of a
parallel article — are not considered in detail except in those cases
where they cause significant differences for isothermal and for adiabatic
conditions, In order that the magnitude of such differences can be
assessed for a given semiconductor, the temperature gradient terms will
be included in the basic transport equations.

—

U I P. Jan, Solid State Phys. &, 1 {1957,



1.
Transport Equations

1. PHEMOMENOLOGICAL EQUATIONS FOR GENERAL CASE OF ANISOTROPIC
SOLIDS

The density of the electric current J and that of the heat current g
may be written in terms of the gradients of the electrochemical potential
and the temperature as follows:2

o aam 2L
Ji= uBIE? + A4(H) 2 (1.1)

ar
g = A G(H)E* + &(H) Fr (L.2)

where the current and field vectors are represented by their components
in a Cartesian coordinate system (x,, x,, ©;). The electrochemical fields
£ *are related to the electric fields E? and to the electrochemical potential
A of the electrons as follows:

1 &
[ He=f e Bt
i E’_'_:ax{

1 & 1 ad
= — i ] s 5
—gax'{ ﬁP_H:]"sa-' e = 0 lor electrons

(1.3)

where —eis the charge on the electron, £ is the chemical potential or Fermi
energy, and g is the electrostatic potential. The tensor transport coeffi-
cients o, &, 47, and % are functions of the magnetic field vector.
Phenomenological relations such as Eqs. (1.1) and (1.2} are readily
established by use of the thermodynamics of irreversible processes. For
details, the reader may consult, for example, the Handbuch article of

2 This standard convention implying summation over repeated indices iz followed
throughout this book,



4 TRANSPORT EQUATIONS

Meixner and Reik,® or other literature to be cited subsequently n this
section.

A certain convenience is afforded by the inclusion of the spatial
derivative of the Fermi energy in the force terms, and results are consistent
with the interpretation of most standard measurements® The case of a
two-band semiconductor where the energy gap is a function of temperature
has been discussed by Tauc,® and the concept of an internal eleetric field
was introduced, Such a consideration was useful also in the theory of
photovoltaic effects when the band gap varied as a result of such factors
as external pressure, as in the so-called photopiezoelectric effect.™ The
case of strongly interacting particles in a strong magnetic field has been
discussed by Kasuya™ and Nakajima.® In such situations the electrical
currents due to the external electnic field and the gradient of the chemical
potential are different in general, and the Einstein relation between elec-
trical conductivity and charge-carrier diffusion coefficient is not in general
applicable — being in general valid only for the symmetric part of the
diffusion and electrical conductivity tensors ™"

Oar heat current density q (identical with Jan's w*) is defined in terms
of the entropy current density J, by the thermodynamic relationt

=TI, (1.4)

Assuming transport by charge carmers of a single sign, the quantity q
i5 related to the heat flow J; as used by de Groot,® Fieschi® and
Domenicali,? and the heat current densities J, of Kohler® and w of Wilsan®
as follows:

¥ ]. Meixner and H, G. Reik, in "Handboch der Physak” (5. Fliigge, ed.), Vol. 1112,
p. 418, Springer, Berlin, 1958,

! Bee H, B Callen, Phys. Rev. B, 10 (1082}

8 1. Taue, J. Phys. Soc. Japan 14, 1174 (1050).

T, Kasuya, J. Phys. Soc. fapan 14, 410 (1089),

B S, Nakajima, Progr. Theoret, Phys, (Kyolo) 20, D48 (1958).

 H. B Callen, Phys. Keo. 78, 1349 (1948), Callen uses Q and §, respectively, in his
notation,

* 5 R de Groot, "Thermodynamics of Irteversible Processes,” p. 152 Interscience,

New York, 1851,

Ser p. 12 of R, Fieschi, Nuovo cimento Suppl. [10] 1, | [1955).

C. A, Domenicali, Rees. Modern Phyo. 28, 237 (1054).

M. Kohler, Ann. Physik 40, 601 [1941),

A. H, Wilson, “The Theory of Metals," #nd ed. Cambridge Univ. Press, London
und New York, 1053,



l. GENERAL CASE OF ANISOTROPIC SOLIDS

o

1
dy=de=w=0q— —(J, e =10 for electrons {1.5)

where — (1/e}d is the particle [low density J; as used by de Groot and
Fieschi. Another quantity of interest, especially in connection with
thermoelectric phenomena, is the total energy flux density U, given by

o= S | (1.6)

£

U=y

It is important to note that in Eqgs. (1.1}, (1.5), and (1.6) the electric
current density J refers to transport by a single type of charged carrier.
Furthermore, if additional types of carriers of different signs are present,
the J in relations (1.5) and (L.6), in contrast to that in relation (1.1},
cannot in general be expressed as an algebraic sum of the partial electric
currents due to each type of carrier. In such cases, the individual particle
currents J;f/{— &) must be summed. The (—[fe)d term in (1.5) is thus
replaced by'® L&, Jy in de Groot's and Fieschi's notations where J; is a
particle current. The summation 15 done over the species of particles. As
i5 discussed in the next paragraph, these considerations are important
in the case of intrinsic semiconductors,

- Laboratory measurements of certain guantities, eg., thermal con-
ductivity, are made under conditions that J be zero. In such cases, for
extrinsic semiconductors (i.e., transport by charge carriers of a single sign),
the distinction among the different heat currents discussed above ceases
to exist,

When intrinsic conduction exists, however, both electrons and holes
can drift down the temperature gradient to recombine in the cooler region.
In such a process the total electric current vanishes when the individual
electron and hole currents are equal and opposite. However, particle
transport and energy transport are nonzerc, This effect can be quite
noticeable in intrinsic semiconductors.!!'~'

18 Ses Eq. IL.28 of reference 6.

11 P, ], Price, Phys. Rev. 95, 506 (1054); Phil, Mag. 46, 1252 (1955),

1t H, Frohlich and C. Kittel, Physica 20, 1086 [1054).

12 ], M. Thuillier, Compi. vend. acad, sci. (Paris) 241, 1121 (1955); 242, 2633 [1156),

W A, F, loffe, “Semiconductor Thermoelements,' translated edition, p. 4
Infosearch Limited, London, 1957,

15 H. ]. Goldsmid, Proc. Phys. Soc. (London) B8S, 203 (1056).
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Use of the heat current density q allows us to express relationships
(1.1) and {1.2) in a convenient form for application of the thermodynamics
of irreversible processes by the choice of grad A (= ¢E*) and grad T
as forces, Since [1/(— £)]J and J[= (1/T)q] are mass and entropy
flows, respectively, Omnsager's relations yield the following equalities!®*®
between the transport coefficients in a magnetic field H:

h'-:'r'[H:I = 1’!,'.{— H}
El'lli,H} — fr'l'l:_ H]. iI'T}
Ay(H) = — Tt y[— H).

The relationship between the transport tensors used in Eqs. (1.1) and
(1.2} and those of Kohler™'" are

o = 8

1 e 4
= e | B0 g
M= Thl ¢3|

)
AT = B8 "F sin (1.8)

1 .b- 2
F=— Tlﬁ“] + %—[E“” + 82y 4 (i) S"'l- ¢ =0 for electrons

By applying the Kohler symmetry relations, namely,
S =Sh{—H) m=14
SEH) = Sh— |

one also obtains Eqs. (1.7).

" Reference 6, p. 20, Note that Fieschi's f, is a particle flow. See also, K. Fieschi,
5 K. de Groot, and P Mazur, Physice 20, 67 (1954); S. R. de Groot and P, Mazur,
Phys, Rew. 4, 218 (1954},

"% For a moare general theory of irreversible processes of which Onsager's relations
are a special case, consult R, Zwanzig, Pkys. Fee, 124, 983 (1961).

1T Similar results are given by Wilsen® {p. 184) except that negative signg were
apparcntly inadvertently omitted from the terms involving the tensors §I2)
and 8 in Eqs (B.1.9) and (8.1,10).
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An obvious consequence of the Kohler-Onsager relations is that in the
absence of a magnetic field the conductivity tenzor @ and the thermal flow
tensor & be symmetric. When a field is present, it follows that all the
diagonal matrix components of these tensors are even functions of the
field; that is,

au(H) = ou{— H}, (1.9)
y(H) = #y(— H).

Corresponding statements about the cross-effect tensors .# and .47,
which are related to the thermoelectric processes, cannot apparently be
made without placing requirements on the symmetry of the crystal 1%

2, INVERSION OF FUNDAMENTAL TrRAnsPOrRT Eguartions

The basic transport relationships in the previous section present the
currents in terms of electric and thermal gradients. This approach is
very common in the literature. From a formalistic point of view, it has
advantages in that the transport tensors in such a representation are
more simply expressed in terms of matenal parameters such as Fermi
energies, charge-carrier densities and maobilities, and band structure
considerations. On the other hand, most measurements are carried out
under conditions such that the electric current is the independent variable,
For this reason, there i5 a practical advantage in inverting the basic
transport relations so that the electrochemical potential gradients are no
longer independent variables. This is done by multiplying Eq. (1.1} by
components of the resistivity tensor pj; and summing over 1. Since p and o

are reciprocal, one obtains
< dy=1 fotd=j
pui Ji = by E* + pui oAl (3T [ 82y), A =10 for s 29

or

E* = pu Ja— pii A (07 [8x). (=1

18 E. A Uehling, Phys. Rev. 89, 821 (1832).

19 M, Kohler, Aun. Phyvsik 27, 201 (1936},

80 ], Meixner, Ann. Physik 40, 165 (18941}

Bl Sep alag comments on p. 14 of reference 1. Note, however, reference 432a.
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Hence
§i = A pia Ju — (AN pin M — Fa) (8T [8x4);
that is,
E* = pi Jo— pij# (2T [02) (2.2)
i =A% pin Fx — (A po My — ) (8T [82,). (2.3)

We choose to write these relations in terms of tensors of resistivity p,
absolute thermoelectric power a, absolute Peltier coefficient m, and
thermal conductivity x, as follows:

ar
E®* = pa(l}]s + xalH) 5 (2.4)

=129
s = salH) Ts — waa(H) ;:'—; (@.5)

The relationship between the coefficients in the two representations
is as lollows:

Pii O = B, (2.8)

ax = — pyy -, {2.7)

Ta = Ay pa, (2.8)

kg =Nijpaln— Lo (2.9)

Application of the Kohler-Onsager relations (1.7) vields the following
reciprocal relations:

pa{H) = py(— H), (2.10)
win(H} = wp{— H), Etlu
Aa(H) = Tawu{— H). (2.12)

The last equation is the form of the Kelvin second relation for applied
magnetic fields**

18 The designation Kelvin secomd relation follows the practice employed by de Groot,

Fillﬁhi. and others. Some aothors, however, refer to the expression as the first
relation,
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The fundamental transport equations (1.1) and (1.2) are sometimes
expressed in terms of the measureable quantities =, 7, and x, namely,

Ji= ay(H}E* — ay(H)ay{H) 2:: ; (2.13)

g = mal W)oKV E* — [ma{H)one(H) o (H) 4 gy (H) ] ;3: o (2.14)

The sign convention adopted in Eqs. (2.4} and (2.5) is the same as
that used by Kohler? Wilson,®* Price,** Samoilowitsch and Korenblit,®
and others. The absolute thermoelectric power is positive for transport
by holes, negative for transport by electrons. The difference in absolute
Peltier coefficients for metals 4 and B, namely, m;, — 75, ® is defined as
the heat emitfed per second at the junction when a unit current is directed
from conductor 4 to conductor B. Then, g used by Callen,* by Fieschi,*
and by de Groot® is defined as the heat absorbed when current passes from
conductor 4 to conductor B. However, this relative coelficient 1s equiv-
alent to my; — 7, and, therefore, the sign convention is identical with ours.
A similar convention is used in Blatt's article.® The relative thermo-
electric power used by de Groot, namely, Ap/AT, is apparently defined
in terms of the absolute quantities as &, — =g, leading to the negative sign
in some of his relations as applied to couples.

(On the other hand, the sign convention for Ddomenicali's absolute
Peltier coefficient is opposite from ours,” inasmuch as he defines
Myp = M0 — sy This leads to a negative sign in his expression for the
Kelvin second relation, since his thermoelectric power 5™ is defined
similarly to our e.

The absolute thermoelectric coefficients are simply related to the
entropy of transfer or transport, 5%, which is the entropy carried by a
unit flow of particles at the isothermal state. The relation is

= — (T /e)Si", e = 0 for electrons. (2.15)

3 Reference §, p. 202

13 P, J. Price, Phys: Rer. 104, 1223 (1958),

W A G Samoilowitsch and L. L. Korenblit, Forfschr, Physik 1, 487 (1054},
25 Written as w4p in Wilson's notation; as mg? in Price's.

28 Reference 6, p. 4b.

17 F, ], Blatt, Solid Stafe Phys. 4, 118 (19469).
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Our thermoelectric tensor oy, is equivalent to — lle S of Wilson,®
and to the negative of Meixner's £, *** It is also seen that our x
is the negative transpose of Meixner's ™*  This definition is consistent
with his expression of the Kelvin second relation as Te,(H) = ol — H).20

3. ArPLICATION TO [SOTROPIC SOLIDS

Consider an isotropic medium® with the magnetic field vector along
the z-coordinate direction. Isotropy then requires that

golH) = gy (H),  ou(l) = — ,.(H) (3.1)
H = (0,0, H.)
TlH) = 03 (H) = 0,,(H) = 0.,(H) = 0 (3.2)

with similar expressions for #, 47, and 2.

The o (H} will, in general, be different from the other two diagonal
elements of the conductivity tensor except in the trivial case when H, = 0.
In the latter case, all off-diagonal elements will of course vamish in this
1sotropie example,

The symmetry considerations also require that the diagonal elements
of the transport tensors be even functions of magnetic field; the off-
diagonal elements, odd. Thus

'-TF'I'I:.H]' = ﬂ':i{— H-}.- 'J|';|'|:_H-] = ﬂ'a'_:l:— H] H= {'EL IZ}, H‘}
P=a,y (3.3
‘Un[H-:I - ﬂ-ﬂ{_ H-]' _.l = X, ¥,

with similar expressions for #, 47, and ¥,
The Kohler-Onsager relations, Eqs. (1.7) in conjunction with (3.1)

and (3.2), also yield the same relations. In addition, they supply the
further condition

BT, Meixner, Ann. Physik 85, 701 {1930,

i Ses reference 1, Jan also defines an absolute thermoelectric power 5 as the
negative of Meixner's (see p. 62 of reference 1).

" Actually, less restrictive conditions are sufficient if certain crystallographic
gymmetry exists, See comment by H. B, Callen? (p. 1356).
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"*FIF{HI = — v-‘.u{“I “ = {lL“, H;:I'
=1,y (3.4)

Hu(H) = — T . .(H) f == 9

Thus the use of the Kohler-Onsager relations and the isotropy of the
medium has reduced the large number of coefficients in Eqs. (1,1) and (1.2
to nine independent quantities, as seen below:

!

:lr

J: = o (H)E,* + 0, ,(H)E.* + _&,,(H) ::f 4 i . (H) g

H={00H,)

- ar a1
T — L] ®__ 2L e
Iy ay(H)E* + o (H)E,*— #,,(H) 3y + W as(H) 5
fs=— T. & (HEM — T £ ,HE* + &,.(H) gg 4+ () :_:IF
a T
iy = T (WE,® — Tl (HE,* — Z0(H) 2 4 #,.(H) = @8
and for the longitudinal effects, we have
ar
= W o
Jis = oa(H)E; #.(H) %
H={00H,)
ar
i = — T L(HE?* 4+ #.(H) = (3.4)

The inverted form, Eqs. (2.4) and (2.5), for the isotropic case is as
follows:

aT
E* = FHIH”II + an]f: +"-ln"ﬂ ;f + a2y (H) E

H=(0,0,H,)

Ey® = — por(H)a+ pus(B)T, — (M) G- i) 5,
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aT aT
g = Taa(H) J o + 7(H) ], — xsa(H) Tyl xny(H) ﬂ}_ 3.7)
ar al
= — -'|:|||.'1Inf| e -'T'rrl:“-],lrg + ":y{H} 'a.i_ = H'u-':H} E
al
-E.r == Fn':“].lri =t 1-.-1“] -ET
aT
§: = An(H) J; — xu(H) 2
where
a;i{H) = Ta,;(H) H= (0,0 H,)
b=X, Y (3.5)

7ulH) = Tau(H) = ¥, Y

In this example, with the transverse magnetic field, the existence of
relations (3.2) yields a simple relation between the conductivity and
resistivity tensors. In particular, relation (2.6) reduces to

Oy = Fn B Ty = —r H= [ﬂu 0, Hl}
Pua Pry = Pzy Prx Pas Pyy = Pay Pys

(3.9)

Due to isotropy in the xy-plane, ie., applicability of relations (3.1), the
following well-known expressions are obtained:

S S PR . o H=(0,0,H,). (3.10
pd L ot” 7 Pas’ + Pt ikl s

Ty =

4. PuvsicaL SiGNIFICANCE OF TrANSPORT COEFFICIENTS

The purpose of this section is to discuss the physical interpretation
of the transport coefficients in the fundamental equations when simple
boundary conditions are applied.
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a. One-Dimensional Case, Absence of Magnetic Field

Transport equations {3.7) reduce to

gl
Er* = Perfx T es T E
Prx fx + ax — {4.1)
al
I:|I'|: — “:;}r — Kgx E‘_“{' ' [423

Consider the system of Fig, 1, where element A is a p-type semicondue-
tor with ends at temperatures T, = T, and connecting leads of material B
going to contacts 0.3 at temperature 1

The charge carriers — in this case positive holes — drift down the
temperature gradient to produce an excess of positive charge at the lower
temperature end. If the potentials, under open circuit conditions, at the
respective contacts are g, and g, then, for the sign convention used by
Price,*® the thermoelectric power of the couple at temperature T is defined
as

(TEP)ogie = lim_ {.;fﬂ.:_‘f’j? = i = — (4.3)
P ¥
Ti TE
T+ A =
] Ta B
o 3

Fig, 1. Thermoclectric circuit with p-type semiconductor as element A.
Ty= T+ AT[2; T =7T—AT|2

It therefore follows that to obtain the thermoelectric power of semi-
conductor 4 at temperature T, one must determine

T — (4.4)

lim =ERd =04 — 4R

ar—o AT

where element B is chosen so that ey is known precisely or else is negligibly
small.
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We shall now show that (4.4) does yield the «,, in Eq. (41). By
summing potential drops in each section of the circuit of Fig. 1, one obtains
Fo— 2™ (4.5)

= (v — mln + (g — padr, + (pr — wada + (94 — wolr. + (7 — Faln.

At each junction, with no electric current, the electrochemical potential
A (= { = ep) must be continuous, Thus, with the additional use ol
Eq. (1.3), one oblains

[y
'ru—'r:=j =R .J”*;[:’_:‘}r’+ e
all} ¢
"H E.+%%ad1+ - (L4 — Co)r, + J[ E‘J_l?%'x:‘nh'
1 1“3” [

1
o i ($a0—Laa) + | Ex*dx + EE_.."'E: +lEg*Jx C(4T)
i il

Since points 0 and 3 are at the same temperature, the first term
vanishes, and use of {4.1) gives

Tl_TI=IIHuﬂ‘dT +J=l|JJT +’j'=n..ﬂd:r “-ﬂ-]
Te . 4
TLATR
= I{mu.ﬁ — By, ) dT, H.ﬂ-':
T—ATf
Thus
imﬁa-?f-ﬁ = Bgad = Rgal Q.ED. (4.10)

In order to examine the Peltier effect, terminals 0,3 are joined by a
resistance. For this power generation arrangement, heat is absorbed at
Ty and discharged at T). If the coordinate svstem is chosen so that
(3T (9x), > 0, then [, ;= 0 and ¢, , at each junction is negative. Also,
according to our sign convention, given in Section 2, it follows that
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Ry — A >0 at either junction. Thus, since 7, of the contacting metal
15 small, it follows that =, = 0. This is in agreement with the sign of
m.. 4 as given by (4.2).

If external power is applied to terminals 0.3 so that Ji 4> 0, then heat
is absorbed at T, and discharged at T,, such process being commonly
referred to as Peltier cooling. Inasmuch as both §eq and J have
changed signs, ., ; is still positive, as it should be, since it is represent-
ative of material A,

b. Isotropic Case, Transverse Magnetic Field, Absence of Thermal Gradients

The transport equations (3.5) assume the form
= 'JH{".:IEA* T ﬂl}'{H}ET‘
H = (0,0, H,). 4.11)
Sy = — 05H)E.* + o, (H)E,®

4 ————— R » 'jl 7~4' "“I:l'.
E E +
""L-7-%: Hz
8 Ex
Fig. 2. Hall field due to action of magnetic field on positive charge carriers (holes).

(Letters in the figures with overhead arrows are equivalent to boldface letters in
the foxt.)

Galvanomagnetic measurements are commonly carried out under the
conditions that jy be zero. It is customary to define a Hall angle, , by
the relation

tanll = E*E* = E,[E.. (4.12)
The equality of E and E* follows from the fact that the specimen is iso-
thermal and homogeneous.
From (4.11) it is seen that
tan § = ., (H)/a..(H), Ji=0. (4.13)

The Hall angle is simply illustrated by the free-particle example
shown in Fig. 2.
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Consider the motion of positive charges having velocities in the positive
direction due to the impressed electric field E,. In the absence of any
transverse electric field, the Lorentz force due to the positive magnetic
field vector H, (out of the page, in Fig. 2) would produce a deflection in
the negative y-direction, Therefore, to satisfy the boundary condition
that f, vanish, a transverse electric field must exist. This Hall field
assumes such a value that the force on a charge carrier having a certain
“average” velocity is zero in the crossed electric and magnetic fields,
If all the charge carriers had the same velocity, then the Hall field force
would exactly cancel the force due to the magnetic field on each moving
charge. Hence no charge carriers would be deflected, and there would
be no magnetoresistance. This 18 approximately the sitnation in an
isotropic degenerate metal 3 Here only those electrons of energy near {,
where { is the Fermi energy, contribute to the conduction. In this case,
as is shown in Section 14, the transverse magnetoresistance coefficient
is proportional to (dr/de)® _,, where 7 is the relaxation time and ¢ the
energy of the charge carriers, Thus the one-band model vields a very low
magnetoresistance for isotropic metals, This point has been discussed by
Coldwell-Horsfall and ter Haar #1*

In semiconductors, however, a distnibution of velocities exists. The
carriers with velocities larger or smaller than the “average"” referred to
above may be regarded pictorially as traversing lomger paths, thus
increasing the resistance of the conductor. It also follows that any
mechanism which tends to short out the Hall field — for example, shorting
contacts, inhomogeneities in the material, etc. — will increase the
magnetoresistance. More will be said of this point later.

Continuing a step further with our pictorial representation, the equality
of transverse electric and magnetic forces on the charge carriers for the
case of constant velocity, yvields the result that

E'=T'|H|;“'| {"-I"!

Gaussian units are implied, with ¢ the velocity of light.
Since, under the same restrictions,

Je= AUy = Fyy B, t“ﬁ]

A, Sommoerfeld and N. H. Frank, Revs. Moderm Phys. 8, 1 (1031),
s R, Coldwell-Horsfall and D. ter Haar, Phil, Mag. 48, 1140 (1955}, There i &
misprint in Eq. (2); the factor § should be a 2
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where g is the charge on the carrier and » the concentration, it follows that

EE, = g, Hnyc, H=H, {4.16)
Ty = |03 ngc) H, {4.17)
Also, since the Hall constant R is defined by the relation
E,=RI.H (4.18)
it is apparent that
R = 1nge, (4.19)

Although the above relations were established here using an extremely
restricted model, they can be shown rather simply to hold for the more
general case of isotropic scattering of the charge carriers characterized by
a relaxation time independent of the wvelocity of the carriers ™ *

It is apparent from Fig, 2, as well as from Eq. (4.17), for a magnetic
field vector in the positive z-direction in isotropic media that™

ey ({H) == 1 for holes,
dey{H) < 1 for electrons. (4209

It 1s also clear that ¢, (H) = 0 for either type of conduction.

31 William Shoclkley, "Electrons and Holes in Semiconductors,”” p. 208,
Yan Nuﬁlr;m‘i, Baw "!:rr.'prir.'l 1050,

83 Harvey Brooks, Advances in Electronics and Electron Phya: 7, 123 [1955].

¥ The relations may not necessarnly hold if anisstropy is present in the energy
surfaces (surfaces of constant enefgy in momentum space). Re-entrant energy
surfaces will reverse the signs in (4.20). See p. MO0 of reference 32



.
Expressions for Charge-Carrier
Transport Coefficients

5. GENErRAL TuHEOoRY — TuHE Bortzsasy EQUATION

The classical approach, as set forth by Lorentz and Sommerfeld,
involves the determination of the distribution of the charge carners
among the different states in the presence of applied electric, magnetic,
and thermal fields. If the states are expressed by the wave vectors k, then
the number of charge carriers in volume element 4% (= dx dy dz) char-
acterized by their wave vectors kK in the element 43k (= dk&, dk, dk,) is
given by

o K. ) Pk (5.0)

where f(k, r) is the distribution function for the charge carniers — that is,
the probability that a carrier exists in the state designated by wave vector
k and at position r. The above expression leads to a density of states
term, given by

2
(2
The term on the left is the number of energy levels per unit volume of
configuration space lying in the range ¢, ¢ + de. The integral is taken over
the volume in k-space lying between the surfaces of constant energy «

and e  de. The factor of 2 is included because of spin, and the (2x)-?

enters as a result of the use of the wave vector k, to designate the quantum
mechanical states .

wlelde =

Id‘k. (. Oa)

M2 See pp. 16 and 43 of Wilson's book.*

Wb Seo pp. B6-37 in N, F. Mott and H, Jones, “The Theory of the Propert
v . ' i ben of
Metuls and Alloys,” Oxford Univ, Press, London and New York, 1938,
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In the classical limit (free electrons represented by plane waves) the
momentum is related to the wave vector by the expression p = Ak, and
it is seen that Eq. (5.0a) is equivalent to saying that two quantum states
(including each direction of electron spin) exist in each volume A? in phase
space ¥c je,,

nie)de = %jd"p

Once j(k, r) is known, the electrical and thermal currents due to the
charge carriers are given by

.'l.:(— f_;a-)‘uulﬁ (5.1)
¢ = 1} for electrons
Yoy = ( #)‘[ vig — C)f d¥ (5.2)

where ¥ is the velocity of the charge carner, and ¢ — £ is its energy above
the Fermi energy.

In the absence of fields, the unction f(k, r) becomes the Fermi-Dirac
distribution fy(e), namely,

fale) = T e (5.3)

When fields exist, the usual procedure is to determine { by ebtaining a
solution of the Boltzmann equation. An alternative procedure, which
has been employed in special cases, is a pictorial kinetic method based
on calculations of the average drift velocity in the direction of the applied
electric field. Certain difficulties which can arise in such an approach are
discussed by Dingle™ To overcome these, he introduces a franspart
distrifbuéion fumction defined, for a drift velocity in the z-direction, by

r"l -y Efﬂl ﬂl.-‘,. {5'33']

M See for example, p. 335 of the article by A. Sommerfeld and H. Bethe in “Haad-
buch der Phyaik™ (H. Geiger and Karl Scheel, ods), Vol. 24, Part 2, p. 333,

Springer, Berlin, 1933,
M R, B. Dingle. Physica 22, 671 (1056).
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The use of this transport distribution function in obtaining results valid
for semiconductors ({/&T < 0, where [ is positive when measured upward
from the bottom of the conduction band), from relationships derived for
metals (Z/&T = 1)* is illustrated.

The Boltzmann equation referred to in the preceding paragraph is an
expression of the fact that at steady state df/df must vanish, The total
rate of change of f is expressed as the sum of a term due to the applied
fields and one due to collisions of the charge carriers with other particles,
imperfections, or lattice vibrations:

(8f {8t} tietas + (8f] ) = 0. (5.4

The first factor is commonly expressed in terms of applied fields and
the gradients of f as indicated below:

— (E+]—1':u: H)-gradkf+1'-gradrf=(if) ; (5.5)
h fe OF focm

g = 0 for electrons.

The second term in the above equation is concerned with spatial variation
in f, and in homogeneous materials it enters because of temperature
gradients,

In the case of perfectly free electrons, the representation of (/188 haas
in terms of the electric and magnetic field vectors is precisely given by
the first term of (5.5). The more realistic case of electrons Moving in a
periodic potential was studied by Jones and Zener 3™  More recently,
Adams and Argyres™ have also considered certain aspects of the problem.
These investigations have established for the periedic lattice, that starting
with (6.4}, the expression (5.5) is valid to first order in E and for values
of H and times sufficiently short, so that eHi[m* ¢ < 1. The quantity m*,
which is the “effective mass" of the electron in the periodic potential of
the solid, is discussed in more detail in Section 6a. Another consideration

% The symbol "&'" in the terms & T here, as well asin (5.3) is of course the Boltzmann
constant, not the magnitude of the wave vector.

¥ H. Jones and C. Zener, Proc. Roy. Soe. A144, 101 (1034).

M Reference O, p. 43 ff,

W E. N. Adams amd P. N, Argyres, Phys. Rev. 102, 605 (1960).
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which also requires that the accelerations be not too large is that interband
mixing of states does not oceur ™

The condition obtained from Jones and Zener's derivation, namely,
that eHijm® ¢ < |, appears to be more restrictive than is necessary. In
fact, as will be seen later in discussing measurements of the Hall effect
as a function of magnetic field in germanium and in indium antimonide,
conductivity coefficients based on the Boltzmann equation seem to be
reliable for values of «Hi/m* ¢ of 102 or 109, where ¢ here is interpreted
as the relaxation time. The principal restriction in the case of these high-
field measurements 15 that the energy separation between quantized
magnetic levels be significantly less than the Fermi energy, or than &T
in the case ol nondegenerate carriers, that is,

Mew <& { (degenerate charge carners ), or (5.6)
hew kT  (classical statistics).

In the above, & is the Boltzmann constant, T the absolute temperature,
and & (= ¢H{m* ¢} is the cycltron frequency. 1f condition (5.6) does not
hold, then orbit quantization ol the charge carriers becomes important.
These strong-field effects are discussed bnefly in Section 28. For further
ocomments on the Jones-Zener conditions, the reader i1s referred to a
discussion by Chambers.®™ Several articles by Kohn deal with the theory
of Bloch electrons in a magnetie field ** Pertinent comments also appear
in the treatise by Ziman.™" See also Section 284, namely footnote 498d.

The Boltzmann transport equation is, of course, a classical equation.
Recently, Van Hove,™ Kohn and Luttinger," and others have presented
quantum theories of transport. Special treatments, also taking into
account quantum effects, have been developed by a number of investiga-
tors for the strong-magnetic-field limit. These cases will be discussed in
maore detail later (Section I8).

Kohn and Luttinger” pointed out a number of weaknesses in a
conductivity theory based on relationships such as Eq. (5.4). These include

1 R, G, Chambers, Proc. Roy. Soc, AZEE, 344 (1D67)

#s W, Kohn, Proc. Phys. Soc. (Londow) 72, 1147 (1938); Phys. Rev. 115, 1400 (1959).

b | M. Ziman, “Electrons and Phonons.” Oxford Univ, (Clarendon) Press, Loadon
and New York, 1980, In particular pp. 98 and 512

1 Leon Van Hove, Physica 21, 517 (1955

@ W, Kohn and ], M, Luttinger, Phys. Rev. 108, 500 (195T7).
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the random-phase assumption discussed by Van Hove® in his investiga-
tions of the approach to equilibrium of a quantum many-body system, ™"
and the fact that in the usual form of (5.4) the collision interaction is
treated by the lowest order of perturbation theory.

Also, in the usual Boltzmann equation, the rate of change of the dis-
tribution function f at a given time depends only on the value of [ at that
time. In the more general case, the rate of change of f depends on all
previous values up to the time in question. A number of papers dealing
with the Boltzmann equation and with the transport of energy and matter
in nonequilibrium systems were presented at the Conference on Transport
Processes in Statistical Mechanics in 1956 in Brussels *™

In Kohn and Luttinger's quantum mechanical development, 3 a
density matrix®™ formulation of the problem is used. Expansions are
obtained in ascending powers of the strength of the scattering potential of
“random’’ rigid impurity centers. In the limiting case of very weak
interactions causing collisions, results reduce to the standard Boltzmann
equation. In a subsequent treatment, the same investigators®®* develop
the transport equation in powers of the density of scattering centers,
without restriction to weak scattering potentials. Again, the first-order
terms yield the Boltzmann equation. The density matrix approach has
also been nsed by Lifshitz%? in his development of a quantum theory of
the electrical conductivity in metals in magnetic fields. Expressions are
given for the asymptotic behavior of the conductivity tensor in strong
magnetic fields — i.e., wr 3% 1 — a region where results could be deduced
without special assumptions about the collision integral. These results
are given as series in the variable 1/wmd,, where {, is a relaxation time.
Comparisons are made between the quantum and the classical expressions.
Althoughthe treatment by Lifshitz includes oscillatory effects, the region of
the “quantum limit" effects in semiconductors (see Section 28) is excluded
in that the theory involves the assumption Fw < L

193 Tpon Van Hove, Physica 25, 268 (1059,

b1 Van Hove and E. Verboven, Physica 27, 418 [1061).

% Proceedings of the International Symposium on ""Transport Processes in Statis-
tical Mechanics™ (I, Prigogine, ed.). Interscience, New York, 18948

i Sep for example, I). ter Haar, "Elements of Statistical Mechanics,” p. 147
Kinehart, MNew E’l:lrl-l:, 1554,

i1 ). M. Luttinger and W. Kohn, Phys. Rev. 100, 1892 (1958),

2 1. M. Lifshitz, Phys. and Chem. Solids 4, 11 [1958),
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Since the solution of the Boltzmann equation is discussed rather
extensively in Wilson® and also by Fan'? and Blatt,% only a short discus-
sion is given here. The general treatment invelves putting

f= fo — Pk} (3f,/d). 3.7]

To first order in ¢, the collision term is given by

af L e : ;
[E)‘m - — o7 ] V(EK') {¢(k) — (k")) 2% (5.8)

where
Vik, k) = #7(k, K')f(k){1 — fi(k')} = VK’ k) (5.9)

and #°(k. k') 1s the probability per unit time that an electron makes a
transition from state k to state k"

The solution of (5.5) with (5.8) is somewhat involved and is usually
accomplished by variational methods (see Section 25). The problem is
greatly simplified when a relaxation time can be introduced such that

(B ) oas = — (f — folT. (5.10)

We shall discuss this case in the next section, returning later {Section 25)
to the more general approach.

6, Use oF A Reraxation Time 18 THE Bortzmasn EQuation

When the approach of the distribution function / to eguilibrium, after
the external fields are removed, can be expressed by

(F = foh = (f — fodemoe™ ™", (6.1)

then the integral equation (5.8) reduces to the simple relationship (5.10).
With this simplification, the Boltzmann equation can quite readily be
solved for a number of conditions of interest. In most cases, the relaxation
time 7 is considered as a function of the energy only of the charge carriers,

8 H. Y. Fan, Solid State Phys. 1, 283 (1955,
M F, 1. Blatt, Solid State Phys, 4, 190 (1957).
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that is, it is isotropic on a surface of constant energy. If the energy surfaces
have spherical symmetry, then 7 is a function only of |k|. In certain
anisotropic solids, directional effects may be so important that it is
desirable to take into account r{k).

The use of a relaxation time appears quite justified for elemental
semiconductors such as germanium and silicon, except perhaps at very low
temperatures. An important condition, pointed out by Howarth and
Sondheimer,*® is that the energy emitted or absorbed by a charge carrier
at collision must be small compared with its initial energy (see also
Section 25b).

With a relaxation time, the expressions for f, to a first order, are
relatively simple. It is convenient to distinguish two cases.

a. Quadratic Energy Surfaces

When the energy of the charge carriers is a quadratic function of their
wave number it is possible to obtain an exact solution of the Boltzmann
equation and to determine the distribution function [ to first order in ¢
[gee Eq. (5.7)] for small electric and thermal gradients.

A general quadratic expression, representing an expansion of the energy
to second degree terms in k about an energy minimum at k, may be written

&(k) = & (Ky) + (B42) (M1 (B — Rl (B — Ry)- (6.1a)

such an expansion is possible if the energy bands are not degenerate at
the minima.** Also there must be no combination of spin-orbit splitting
and lack of inversion symmetry in the sohd so that energy terms linear
in & can oceur.*™™* In cases involving such energy surfaces, the concept
of effective mass does not exist in the usual sense, as is considered below.

The tensor M1 in (6.la) is commonly termed the inverse mass

tensor or reciprocal mass tensor, and its components are

e (M=) = (1[R2) 3% (k)| 2k, Bb;, (6.1}

¥ 0. ], Howarth and E, H, Sondheimer, Proc. Koy, Soec. A210, 53 (10953).

M Bep, for example, the distussion on pp. 148 and 177 in the treatize, G. H. Wannier,
"Elements of Solid State Theory,” Cambridge Univ., Press, London and
MNew York, 1950

‘0 B, H. Parmenter, Phys. Ree. 100, 573 [1955).

H2 G, Dresselhaus, Phys. Rev. 100, 580 (1955).
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For spherical energy surfaces with the energy minimum at k = 0, the
reciprocal mass tensor reduces to a scalar, commonly known as the
“effective mass," m*;

‘H_l’u = “_IIH'I'} lLr- {“]f}

The effective mass differs from the free mass of the charge carrier because
of the potential energy in the erystal®™ [f this were constant, then m®
would be identical with the free electron mass my. When one considers
the relation between acceleration and force on an electron in a periodic
potential, it turns out that an electron in an energy band behaves in first
approximation as though it had an effective mass m* represented by the
Lensor

(m*)—1 = (1/h%) grady gradg £(k), (6.14)

an expression which is analogous to (6.1b). An equivalent way of express-
ing the difference between m, and m*, as pointed out by Kittel*™, is to
note that the latter takes into account the interaction of the electron and
the crystal lattice, For example, in the case of negative m*, the momentum
_ transfer to the lattice is opposite to and larger than that transferred to
the electron. That is, the Bragg reflections result in an actual decrease
in the momentum of the electron.

Where possible, one usually chooses a coordinate system such that the
inverse mass tensor is reduced to principal axes, thus'™

{H-IJﬂ:‘ {”""1.] Ii|f. (6. 1e)

where we have followed the customary policy of abbreviating m,* by m.*,
it being implied that these are the components of the diagonalized mass
tensor. For this specialized coordinate system, the quadratic relationship
between energy and wave number becomes

(k) = & (kg) + (N2} (1m*) (ks — ox)?. (6.11)

=

ad Spp pp. 141 and 817 in the treatise by F. Seitz.

e O Kittel, Am. J. Phys. 22, 350 (1954).

a8 [t is obvious that in an equation where indices are repeated on both sides, the
convention of summation over such ndices dors not apply.
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Finally, if the energy zero is at the minimum and if this point is taken as
the origin of the coordinate system, iLe., kg = 0, then (6.1f) assumes &
form which is frequently found in the literature, namely,

e(k) = BA2[R %y * + ho®(my® 4 fg®lmg*]. (6.2}

The expression which is commonly quoted for the distribution function
in the general case of quadratic energy surfaces is due to Bronstein'®
or to Blochinzev and Nordheim®. It was also developed by Jones* for
application to bismuth. The expression for ${k) when 7 is a function of
energy only is given in a number of review articles such as those by Fan®
and Blatt*$, and may be written in the form

& F — (ex/e)M=1F x H + {ex/c)}(F - HMH]/||M||
P == h {gradye} E 1+ (er/o)MH-H[M]) }

(6.2a)

The quantity M is the effective mass tensor and ||M|| is its determinant.
For the case of spherical energy surfaces, the mass tensor reduces to a
scalar, m*, and (6.2a) becomes

F— (exjm*c)F x H + (ex/m*c)*F- HH
$lk) = — = {gradue} - { i J+ o .;[}'i;qi'---—} (6.3)

where our sign convention is such that ¢ > 0 for electrons, and where F,
the apphed electrothermal field, is related to the P of Wilson®® as follows:

P=—eF=—¢eE+ Tgrade [[e— £)/T]. (6.4}

In terms of the gradients uwsed in Chapter II, the expression becomes
1
—_— *® B, —
F=E + o7 (g — L) grad, T. (6.5)

The eleéctrical and thermal current densities due to the charge carriers
can be written in terms of ¢ as follows:

& M. Bronstein, Physik, £ Soejetusion 2, 28 [18932).

" T Blochinzev and L. Novdheim, £, Physik 54, 168 (1833).
i H. Jones, Proc. Rojp. See. ALBR, 653 [1836).

¥ Refersnce B, p.- 224,
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This expression follows from (5.5) with the use of (5.7), (5.10), (6.5), and
(6.8) with neglect of terms invelving products of F and ¢. Equation (6.9)
is now solved by an iterative method to yield

T ? [P-gradt Sy (J‘F )I—I L2(F - grady £) +

2
- (ai :') H:-QtH- (F - grady )] + } (6. 10)
This expansion is valid when

erH [m*c = wr =< L. [, Iika)

The £ i1s an operator, usually written as

£} = grady & » grady (B.11)
or in tensor totation
de
=y — (6. 132
E.M'\f akr ﬂk[ L ¥

Summation over repeated indices is implied, and the permutation tensor g,

— not to be confused with the energy ¢ — is defined in the usual manner,

Eizg = Eay = Ega = 1, Eayg = Ega = gy — — 1 (6. 13)

with all other components being zero.

In evaluating (6.9), it is helpful to note that £2 commutes with any
parameter which is a function of energy only; that is if F(e} 1z an arbitrary
function of £(K), then

QF = FQ. (6.14)

This 15 easily established by operating on the function F(e)G(k) with £2,.
Thus,

ELi'_ E'E
%0 peFnG

= Fg;
TR
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since it is readily apparent that

de e

Eq a—kq E.k‘ =

ar in vector form,
(erade e x gradg ¢); = 0.

Expressions for the conductivity coefficients in ascending powers
of H are adequate for studying weak-magnetic-field phenomena but are
not very useful when it is desired to investigate the magnetic field depend-
ence of galvanomagnetic phenomena. Approximately at the point where
the experimental results become interesting, the power series in H
converges extremely slowly, or even begins to diverge. In sach cases it
may be advantageous to use a method discussed by Shockley® and
developed in more detail by Chambers™ and by McClure

In McClure's development, the companents of the conductivity tensor
are expressed as Fourier series expansions in harmonics of the frequency
of the charge carrier around the hodograph in the magnetic field, This
hodograph is the curve in k-space formed by the intersection of a surface

‘of constant energy with a plane perpendicular to the magnetic field.
In particular with H along the & -direction, the hodograph lies in the
k, k -plane, i.e.,, where k, is constant. The third term of the Boltzmann
equation, (6.9), expressed in terms of the velocity of the charge carrier,

v = h-1grad, ¢, is
le/Mc)H % v - grady . (6.15)

This may be written as

(ﬁ) Ho, 2 (6.10)

where v, is the magnitude of the velocity component perpendicular to H,
and 4k, is the component of the differential wave vector along the direc-
tion ¥ » H. Thus 4k, is an element of arc along the hodograph. Let us

8 W, Shockley, Fhys. Rev. 79, 181 (1960),
1 W, MeClure, Phys, Rev, 101, 1642 (1058),
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denote by £(k) the time at which an electron, precessing around the
hodograph, in the absence of the electric field, is at point k. Then the
classical equation of motion on the hodograph yields

dhk) _ (i) Hy | (6,17)

where magnitude of the momentum on the hodograph has been expressed
as fik,. Thus the term (6.15) is simply #¢/2f,, and the Boltzmann equation
takes the form

ot + it + eB ¥ = 0. (6.18)

Although here we have included only the electric field, results are readily
carried through for the electrothermal field vector F. Solution of the
above first-order differential equation is straightforward. The constant
of integration is determined by the condition that ¢ be a single-valued
function of k, i.e., it must be periodic in {, with a period equal to T, the
time for the charge carrier to go around the hodograph. Then, as can be
seen from 16.18), it follows that v and v are also periodic functions of £
with the same pericd, The expression for T, and the cyclotron frequency
rer, 15
2 e

e e e !i]%,q.lll'l = {ﬂ.]!}]l

m
L w el

The cyclotron frequency w is related to a mass parameter s, namely,
w = eH fmyc. (6.19a)

In the case of spherical energy surfaces, my; 1s identical with the effective
mass m*. In the general case, however, it will involve the components
of the effective mass tensor and will depend on the orientation of the
magnetic field relative to the energy surfaces™®

Because of the periodicity of v, it can be written as a Fourier series,

Y= 2:' wime)e™™s, (6.20)

A Sep, for example, p. 199 of the text by Wannier 482
Bl Sep, po 514 of the text by Ziman 15
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Using (6.20), and the assumption that r is constant on the hodograph,
McClure is able to write the solution of (6.18) as follows:

B 0 L 4
¢ i ...f; 1 4 imor (021

In determining the current density, the quantity dv(k) is first averaged
over the hodograph which passes through the point k,

T

{$v), = % Eﬁ' $v dl, (6.22)

T =
- S ) LA inat,
i = 43 ~ |+ impr - Yinle =
(] m

Because of the orthogonality of the exponentials, the above reduces to

L]

{gv); = — etk - ) :i e (6.23)
Here the magnetic field enters through the frequency w, which follows
from (6.19) once the shape of the energy surfaces is known. The Fourier
components are determined from the appropriate gradients of the energy.
Hence in principle, if (k) is known, the problem is solved. There is, of
course, the requirement that the relaxation time be a function of energy
only, a restriction which was assumed in the derivation of (6.23).
Since for complex energy surfaces, analytical determinations of the
Fourier components of the velocity can be very tedious, most evaluations
have involved specialized cases. Of course, where the surfaces are spheres,
the sequence of components terminates with m = + 1. Also, when the
surfaces can be approximated by a cube, exact calculations are readily
possible.®® Where the band is a warped sphere, in particular the heavy
mass valence band in germanium, Beer and Willardson®™ have obtained

B C, Goldberg, E. Adams. and K. Davis, Phys. Fev. 108, 865 (1057,
M A C, Beer and R. K. Willardson, Phys. Rev. 110, 1286 {1958
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good agreement with experiment by considering only two harmonics in
addition to the m = -+ 1 terms. Because of the cubic symmetry, only
terms with m odd occur. These two special cases are discussed in detail
later (Section 21).

The question of closed and open orbits in k-space formed by the
intersection of a surface of constant energy, namely, the Fermi surface,
with a plane normal to the direction of the magnetic field has been
discussed by a number of authors™"¥ in investigations of the gal-
vanomagnetic effects in metals (see also Section 26). Ziman™ has consid-
ered cylindrical Fermi surfaces — another example which can be treated
exactly — with axes in certain principal directions. In order to compare
results with some existing experimental data taken on polycrystalline
specimens, the conductivity tensor is averaged over all onentations of
the crystal axes relative to the magnetic feld.

7. Exrressions For TrRANSPORT COEFFICIENTS IN ISOTROPIC SOLIDS

a. Conductivity Coefficients

As a result of the isotropy, the transport tensors simplify greatly as
was seen in Section 3. Concise expressions can be obtained for the diagonal
elements, which are even functions of H. The same is true for the off-
diagonal elements, which are odd in H, and therefore vanish when the
magnetic field is zero.

In order to develop the explicit expressions we shall rewrite (0.0) and
(6.7) using the tensor notation implying summations over repeated indices
through the three coordinate directions:

e [
j'={,11l[ﬁ+%ﬂ* ¢ >0 for electrons (7.1)
1 & 9

8 L. M. Lifshitz, M, la. Acbel’, and M. I. Kaganov, J. Exptl. Theovet, Phys. (U S5R)
31, 63 (1058 [trunslation: Soviel Phys<JETFP 4, 41 [1857)].
B ). M. Ziman, Phil. Mag. [8] 0, 10117 (1668),
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where the superscript on the heat current denotes that contribution due
to the mobile charge carmiers. This distinction is made since it is necessary
to consider the heat transfer by other processes, for example by the lattice
phonons, to obtain the total thermal current.

Making use of the permutation tensor g, one can write Eq. (6.3)
as follows:

€T 1
M = = W T ferpme 0t HE V-4
de £t n" oE

"E.k, el T3 a‘k; ( el Hy Hl‘ }

where

I -

F=B*+ (e — b grade T. (14)

Hence

é de | et de er \* % :
' dadine 433".'[*[ ak; {aT, g S g e (m*_.:) ak le‘]r"r‘l L
ol e et
F'[1+(;'£) H!] ﬂfik‘
The conductivity tensor, as defined in Eq. (1.1}, is then given by

WH) == ‘:5'! ak, " (

A ot de er \" P l &
e R i S P e . — Hy Hjp —= d%.
{Ek, m* ¢ ahy A + (m" 1:) ok e

H"I (7.6)

For a Cartesian coordinate system with H along the z-axis, we obtain

n- - falf G o] e o

A (el | 2\ ev \* | e
ﬂn{H'I:d:I—-—:H—. T;;}(E.E,) [l+(lll.‘|‘..] b E:J.*' (7.8)

() = 1, (7.9)
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et ae)ﬂ af,
H = - —— Dol (b EE 58 T7.10
Gl ) a2 0| " \ok) e (7:10)

Part of the simplification of (7.6) has resulted from the fact that terms in
the first power of 8@k, vanish when integrated over A-space.
It is to be noted that

dulH) = oalll) = a0, H=H, (7.11)

This shows that the longitudinal magnetoresistance in an isotropic solid
15 ZEro.
The relationship between energy and wave number iz given by

elk) = (%/2m*) [&2 + &5+ &P] = B2 R 2m*, {7.12)

All terms in &2 in the integrands are replaced by £33, and the volume
element is 4k®dk. Thuos the integrals in (7.7) to (7.10) can be replaced
by integrals over energy, and the results written as follows:

au(H) =¥, axn(H) = — &, (7.13)
galH) =10, ga(H) = a..(0) (7. 14)
for which H = (0, 0, #) and where

oD

e 2mtE T af e
€= =gt il e L Gk
i
4 ﬂctiﬂm*}l"g T & o af
# == _ﬁ}}_ﬂ_ﬁ-‘!_[mﬁ S S

il

The cyclotron frequency is given by m = ¢H /m* ¢, and ¢ = 0 for electrons.

With the use of (1.1) and (7.1)—(7.4), the electronic contributions
to the other transport coefficients can be written down by inspection.
They are

|} | 1 E
M = (€ — 1€, A = —rl@ i3] ([

ix b :
A== (€16, AN =13, 19y), (7.18)
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R or (s
I = — = (6~ €, + 1, (7.19)

I:l I iy = =
EH:!! -"fu_TI.EE:_ ih&.:‘l' I""L?I.-' [T.m]:l

The superseripts are used to draw particular attention to the fact that
the above formulae yield only the electronic contributions, that is, those
due to the charge carriers. It is well known that in materials other than
the high conductivity metals, a significant thermal transport occurs
through the lattice. This phonon transport can contribute appreciably
to the thermal conductivity of the material. It can also affect the ther-
moelectric quantities through the phonon-drag effect, resulting from
electron-phonon coupling (see Section 20). A detailed discussion of these
phenomena is beyond the scope of this work. For orientation, the reader
may consult the literature — in particular, articles by Sondheimer, ™
ter Haar and Neaves,® and Herring o al ¥

b. Phenomenological Expression for Current Density Vector

In many instances it 15 customary to express the current density
vector in terms of componenis along E, H, and E x H. An expression
of this sort follows directly from (7.5):

& [ (2
Jim Erm!f(a_h) ' (7.21)

{r.,-_(m . );r « H), +( ) P IIH.“ ) mrﬂd-k.

de
In the above expression, the subscript 4, although repeated, is not a
summation index, but rather a component in the Cartesian coordinate
system. It thus follows that for the isothermal case of our isotropic solid,

we may write

J=agyB*+ayB* x H+ yu E*- HH (7.22)

2 E. H. Sondheimer, Proc. Roy. Soc. A28, 30] (1956),
0 [, ter Haar and A, Neaves, ddvances tn Phyr 5, 241 (13956).
8, Herring, T, Geballe, and J. Kungler, Phys, Rew, 111, 38 (1958),
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where

23 EE a-f L &1 * 2 =1 afﬂ g a3
B bl 4:;5}_Ejt(ﬂ_ih) ll 5 (-m‘i‘ r') 5 } 'a;j'd &, {529
- ae V21 er (!’-T ] e i
oo =g (an) () 1+ Gt ] w20

o ge it er er \* L 1"%a
— e e T e ! _dﬂ- e
== g a) (o) 11+ o) ] ew o

where ¢ = &, ¥, or 2. Also,

de i_ il 3_ de E__ 3
i e i el e

The factor ey is related to the Hall coefficient, and y. is one of the
magnetoresistance constants.

A relationship of the form (7.22) was established by Seitz® His
coefficients are given through second order terms in &, the development
being sufficiently general so that they ¢an be applied to solids of cubic
symmetry,

To first terms in & or H%in (7.22), our coefficients &, and y, become
identical with those of Seitz, and our gy is related to his o, and 8 by

ar = oy -+ SHE (7.26)

& TrRawsrorT COEFFICIENTS IN ANISOTROPIC [SOTHERMAL SOLIDS

a. Conductivity Tensors

The usual procedure in the case of anisotropic solids is to express the
transport coefficients in power series of the magnetic field intensity.
In this connection we note the fact that a second rank tensor is always
divisible into symmetric and antisymmetric parts. From the Kohler-
Onsager relation,

i\ H) = a;(— H), (8.1)

8% F. Beitz, Phys. Rev. 79, 372 (19560). For arbitrary H, consult Garcia-Moliner 2
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it follows that the symmetric tensor must contain only even powers of the
magnetic field, and the antisymmetric tensor only odd powers."™™ Qpe
may therefore write

oi(H) = oy:® + o Hy 4 B Hy Ho + Viiban Hi H o Hy (5.2)
':f_ﬁ!nm_ri M H., Hq HI" =+ i

where
®agt ( a:;}i#)ﬁ 22 (8.3a)
Lo :;1 (aﬂ?i::;‘f?m )H Su i

b1 #ayH) )
bt = ST\ aH, #H,, aH, 8H, |y oy

(8.41)

. The validity of the expansion is the same as for Eq. (6.10), namely, that
etHim*c = on < 1. In Eq. (8.2), a0 is the zero-magnetic-field condue-
tivity; the third and fifth rank tensors are associated with the Hall
conductivity, and the fourth and sixth rank tensors are associated with
the magnetoconductivity,

It is often customary to use the notation in which all the above
tensors are designated by o, their galvanomagnetic association being appar-
ént from the rank. Thus, the electric current density is written as

= .:,_'?JEJ. - ,:,.f“ E,H, + ﬂ?,-rm EHH, +gﬁ.]_1_ E;HH.H, + ..., [885)
T < 1.

We choose to use the superscript to differentiate these field-independent
tensors from the general transport coefficients o,(H) which appear
throughout this volume. It will be seen later that in cubic solids the

83 See po 12 of reference 1.
# W, Mason, W. Hewitt, and R. Wick, . Appl. Phys. 24, 166 (1853).
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ol are associated with the nondirectional Hall effect. The i LETTNS
give directional contributions to the Hall effect. From the use of (6.10),
(6.12), and (7.1), it is readily established that the tensors in (8.5) are

given by the following expressions;

e et oy de P a
T g hfj 2 o 2k ik
0 et dfy de 2 @ ( de P o
[ bl i FECTRE v e & R.
T faT A j 3 ok, Bk JE’” ; G
o g Hode e o[ % o[ 2 z
Tiite = — A EE R j B dk, ok, ok, [ dhy Bk, (r ak,-)] Firympy DR

g = 0 for electrons. (8.8)

In the last expression, the double permutation tensor is commeonly given
as the prodoct of two standard permutation tensors, namely,

gﬂrt_mp«g‘ = Elrs Empy: (8.8a)
It may, however, equally well be written as
'lfm.mr-q = Emx ﬂ_ﬂ-‘-ql- {Eﬂh?

The important point is that (8.8a) and (8.8b) yield different results when
{8.8) is evaluated for the expansion coefficient o, . This is readily
established by choosing a very simple case, namely, o7, ,. and spherical
energy surfaces,

The above situation does not cause errors in practice inasmuch as the
summation over indices [ and m causes (8.8a) and (8.8b) always to occur
in pairs, Nevertheless, from a formalistic standpoint, it appears preferable

to use coefficients in (8.5} which are symmetric in the indices Im. That is,
Tittw = T (8.9)

That such an arrangement is logically the most satisfactory follows from
direct inspection of such relations as (6.10}, (8.3b), or (8.5}, A number
of authors,"™® for example, have discussed the symmetry of the mag-

B8 C. Herring, Bell Systenr Tech, [. 84, 237 (1055).
B8 M. Eoller, dan. Fhysik 20, 801 [(1934).
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netoconductivity and magnetoresistivity tensors in the indices represent -
ing the components of the magnetic field, and have introduced the
symmetry condition explicitly in the expression for o, % This is readily
accomplished in (8.8) by expressing the double permutation tensor as
follows® !

d"".ﬂ'fﬁ = i [rll'l Fanpy v i - Erpf]' {H-“H

Symmetric and antisymmetric relationships with interchange of the
indices representing components of current and electric field also occur
as a result of the Kohler-Onsager reciprocity relations. For example, i
(8.1) s applied to (8.2), it is apparent from the required equality of
terms that

=0 Op=—dy dy=0 il i=j {
8.11)
ﬂﬂh == @ 11 the coetficients are symmetric in [ and m,

If symmetry in ! and m does not exist in the magnetoconductivity coeffi-
cients — that is, if (8.8a) or (8.8b) is used instead of (8.10) — then the
latter expression in (8.11) must be replaced by

O ™= O (8.11a)

This latter relation follows directly from Eq. (8.8), and is shown by
Jones™ through a transiormation of the integral. It also follows that
dhe and o, are always negative,

Much space in the literature is devoted to magnetoconductivity in
crystals possessing cubic symmetry.  For cubic group O, (point group
m3m) the different nonvanishing conductivity components through the
fourth rank tensors are given by™

Gyt O
ﬂf‘ﬂ; L (8.12)
ﬂﬂ!-: "ﬂilll'ﬁlﬂ' '-'-":Itl'

$* 1. R, Drabble and R. Wolfe, Proc. Phys. Soc. (London] BES, 1100 [1968),
23 . Jones, in “Handbuch der Physik'' (5. Flugge, ed.}, Vol 19, p. 304 Springer,
Barlin, 1854,
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All other components of these tensors are related as follows:
By=dy=dly, =0 i Q%]
IE"'::,:.: = By "ﬂ:ﬁ- (8.12a)

Because of the symmetry in indices df and /m, the fourth rank mag-
netoconductivity tensor can be displayed as a 6 » 6 matrix. Thus, the
values of all the elements are expressed in the following matrix®:

ity ole Me 00 0]
dis oy, oy 0 O O
P U R A R ¢
O e = O ) = {T : :}'I A b (8.12b)
0 0 6 0 Bl 0
L R
where
(=1 [(22)=2; {@FN=3: (8.12c)

(28] = (32) =4; (13)=(31)=5: (12)=(21)=6.

In addition to cabic group 0, (point group mim) the above representation

also applies to cubic systems 0 and T, (point groups 432 and 43m,
respectively). In the case of cubic groups T and T, {23 and w3, respec-
tively), there is an additional nonvanishing coefficient, namely, LH.“"'*
which is different from the three independent coefficients listed above.

An equation including second-order terms i magnetic field strength
often used in analyzing magnetoconductivity 1n cubic sohids 15 due to

Seitz" and can be written as follows:
d =0, B4 el x H)y 4 §HEE + 9(E - H)H 4 §TE, wr< 1l (8.13)

where the coordinate axes are coincident with the erystal axes, and where
T is a diagonal tepsor with the elements M2 H,2 H % In tensor nota-
tion, and taking account of the symmetry in I and #, this may be written

#b See, for example, Table VII1, in C. 5. Smith, in Solid Stafe Phys. 6, 175 (1058).
WL P Kao.and E. Katz, Phys. and Chem, Solids 6, 223 (1858),
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I = Og 0y E; + eqa E. H, + 84, Oy My H o (8.14)
i}l!l.. !'l] T ﬂ,; I"l..,,!f:'_. .H; H... e r!l'.'“ lﬂulﬂ'_ .E, Hi HI.
where summation is over all indices except 1, and where the coefficient 4

15 not to be confused with the Kronecker deltas,
A comparison of (8.5) and (8.13) reveals that

i = g by, Ty = &, (8.15)
i.[ﬂ':}“ + ﬂ‘l‘pﬂ:: — lﬂlll'I:'lgl dh il H i:' i.hnq '!.'iu "'I_ I:’.I.I f'..,] T Iﬁﬁ::|' l!:-I' dun‘ {H'lﬂj

The form of the expressions in brackets is chosen so that the symmetry
in the indices [ and m is explicitly expressed.

By using appropriate values for the indices in (8.16) one obtains the
following set of relations:

i =48+ v+ 8, Trys = B, e = P/2. (8.17)

L1 (8.16) and (8,16} are evaluated for all sets of indices, one obtains again
all the information presented in (8.12a) and (8.12h).

From (8,17) we see that the Seitz coefficients are related to the basie
conductivity components of (8.12) as follows:

Gy = oy, = Oz, B =y,
¥ = 20%ms, 8= )y — Oy — 21 (8.18)

In the case of isotropic materials,
§=0, fi4ym=o, (8.18a)

b. Resistimty Tensors

In many galvanomagnetic measurements, the current density is
maintained constant, and the electric field, which is permitied to adjust
itsell, is determined from measurements of potential differences.

In such cases, it 15 desirable to express electrical transport effects in
terms of the resistivity tensor p(H), as is done in (2.4). For the isothermal
case
* For homogeneous materials with zero tomperature gradients, it is to be noted

that E* = E. Since many of the sections to follow are concerned with such

cafes, the quantity E will appear in most equations.
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Ei = pa(H) s (8.19)

The above expression is often written in a way analogous to (8.5},
namely,

E1=P?t..lr.l.+P?Hf¢‘rfr+P?aemfAH¢Hm+ (8.20)
P?Hm:f*HleHq_F"" wr =< L.

The higher rank tensors pl, i - - - aré commonly known as galvano-
magnetic coefficients. They can be expressed explicitly in terms of the
conductivity coefficients of (8.5) through the nse of relation {2.6), namely,
Pul;H]ﬂﬂl:.H] o 'ﬁl't'

Another form of (8.19), given by Casimer,”™™ can be written as
fallows:

E, = pi{H)], + (R(H) x T, (8.21)

The sign convention used abowve is such that the first term in the R{H)
expansion for the isotropic case is RH, where R is precisely the ordinary
Hall coefficient. In (8.21) the resistivity tensor has been split into a
symmetrical part pl,(H), which is an even function of the magnetic field,
and an antisymmetrical part pf,(H) expressed in terms of a Hall veclor™
R{H). The Hall vector is an odd function of H, with components

Ry(H) = pi(H), Fy(H) = pis(H), Ry(H) = pg, (H).  (8.23)

In tensor notation, (8.23) and (8.21) may be written
R (H) = § &, pi(H], (8.24)
E;= pa(H)Jy + £ K,(H) T, (8.25)

"1 H. B. G. Casimer and A, N, Gerritsen, Physica B, 1107 (1841).

™ H B G Casimer;, fevs. Modern Phys, 17, 343 [1945).

M With B(H) defined asa Hall vector and the last term of (8.21) therefore represent-
ing the Hall field, it follows that the Hall effect thus defined is an odd functon
of magnetic field, This definition, although frequently adhered to, is not univer-
sally followed. Some authors adopt a more general definition, which permits
the occurrence of cven powers of H in the Hall terms, These considerations are
discussed in Chapter TV.
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Since R,(H) is odd in H, its general expansion is of the form
RMH)=ROH + R\ HH H ... wrel (8.26)

It is thus apparent that (8.25) and (8.26) are equivalent to (.20
provided that

Rﬂ = '&‘g-sw.! Pl‘r::rh I.'::;'ﬂ.ll T '& Lo P::..!run [HE'T.:I
or that
Eist RE.I - Pll:lin'J Eisk "lfllrmu — Iﬂlﬁ*I’mll' [HESJ

There is also the obvious relation that
FmHJ:PE&"‘PﬂhHrHM'I' ST T < L.

The factor of } appears in expressions (8.27) because the summations
there are over the two indices in which the tensors are antisymmetric.

c. Application of Phenomenological Relations to Various Crystal Svystems

(T} General systems. The number of nonvanishing independent compo-
nents of a given order galvanomagnetic coefficient is determined by
physical requirements such as expressed in (8.9) and (8.11) and by the
symmetry of the material. The application of group theory and direct in-
spection procedures has been applied by a number of investigators™ =7 -7
to establish these independent components and to determine the other
components of the tensors. Results are available for all of the crystallo-
graphic groups. Terms as high as the sixth order have been considered.

M, Hohler, Ann. Physik 20, 878, B0l (1834).

" 1. Shoenberg, FProc. Cambridge Phil. Soc. 81, 285 (1035)

™ H. J. Juretschke, Acte Crypstc & 148 [1952).

6 F, . Fomi, Acfa Cryzt. &, 44, 601 {E95I),

™ F, G Fumi, Muevo cimento 8 T30 (1953),

™ R. Fieschi and F, G, Fumi, Nuovo cimenfo 10, B85 (1953).

" H. B. Huntington, Sofd Stafe Phys ¥, 313 [1958),

"8 H. Bross, £, Naturforsch, 1aa, 850 [1960),

7ib . F. Koster, Sohd Siale Phys. &, 173 [1957).

e AV, Sokolov and V. P, Shirokovskii, Usgekhi Fiz. Nawk 71, 485 (1060) [transla-

tion: Sovdel Phys-Lspekhi B, 551 (1061}]
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(2) Cubic growps O, O, or T, (syslems of poini grouwp symmelry mim,
432, 43m). The five different nonvanishing conductivity components
through the terms involving second powers of the magnetic field, and
their relation to the constants in the equation of Seitz, have been given
in Subsection a. These conductivity coefficients may be transformed to
the galvanomagnetic coefficients in Eg, (8.20) by use of the reciprocal
relation

pi(Wjaip(H) = 8, (8.20)

In using this relation, care must be taken to take the interchange-
ability of the magnetic field indices into account. This is readily done by
writing a symmetric form whenever two or more such indices occur. This
procedure is outhned by the several steps below:

pylH) = _n___ .T__uim.q_ o » _—?:_.. T _u.:.._ HH, + .
Ol H) = 0l + Tl Ho + § (T + o} H H + o . (8.20a)

Carrying outl summations over j vields, for the prodoct (8.29),

H® terms: Py O1s + P2 Oap + Pis O3 = O
H terms: Pii Tige + Pz O + _u“nuf T n.qwh_m__: +nm‘1.P + o3 ply =0,
(m == 1)

H? terms:  §{pl1i 0 + Piiw Oipt) + $l0jn ol +
Pim ap) + Pt Tigm + Pl Topi) + 3002 {TTim + i) +
1Pi(02pia + Tami) + BPia(Fipim + Ohpmi) + 300 (Pl + Pl +
492 (P + Pz + 193 (Pliim + Plad) = 0. (8.20b)

The above relationships are completely general. For the basic components
of the cubic system, given in (5.12) they yield

= 1/py, O = — }!_____.: ' Ohin = I1__n:=___}_,_ v

H

Tl = = PimlPli — Pim 1P Time =— Plaalel + Fobeatlot  (8.20c)
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An inverted form of (8.13), again to second order in H, due to Pearson
and Suhl™ mav be written

E=pyld +al x H4+ bH* Y + o(J-HIH +dT ], wr=1, (8.30)

The constants in the above expression are related, to within 52 terms, to
those in (8.13) as follows:

fo = 1oy ¢ = — [y — oogm,
a = — ujm, d = — djay, (B.31)

b= — (f + a¥jay)/e,

=ome authors write the weak-field Hall coefficient, in place of the
factor apy, although others are inclined to interpret the Hall effect in a
more general manner.™ In our notation this would give

apy = — K. (H.31a)

The relationships between the constants in (8.30) and the galvano-
magnetic coefficients are similar to those given in (8.18), namely,

Po=pln  @=pislpp b= plulp, (8.31h)
| ¢ =2pmalpe: 4= [Pl — Plisz — 2p%slpe.
In the case of isotropic materials,

dull,  bde—0 (8.31¢)

Higher order terms in H, for Hall effect and for magnetoresistance,
have been taken into account by Mason ef al™ The effect of these terms
can be appreciable when the magnetic field is not along a crystallographic
axis of symmetry. It turns out that there are two independent constants
necessary to describe the second-order terms of the Hall effect (e, the
terms of the third power in H); and that =ix constants are required for a
complete description of the fourth power terms in H.

Considerable data on the determination of the galvanomagnetic
coefficients of germanium and silicon, including contributions by the
authors quoted in this section, are available. These will be discussed in
the sections dealing specifically with those semiconductors.

" G, L, Pearson and H. Sohl, Phys, Rew. 88, T68 [1951).
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(3) Svstem of pornt growp symmetry Im or 3m (frigonal system C,, or Dy}
In this case there are a total of 12 different nonzero components of the
tensors plh, plan Poms  €ach tensor requiring respectively 2, 2, and 8
different constants, A detailed study of the coefficients including those
for terms up to the fourth power in H has been presented by Juretschke ®
The third-power terms involve 6 constants, while those of the fourth
power in H require 18 constants for their specification. The 12 independent
lower order terms and their relation to the corresponding conductivity
coefficients are shown below for a Cartesian coordinate system with
direction 3 parallel to the threefold axis of the crystal and with the (2,3)
plane as one of the three equivalent planes of reflection, ie., coordinate
direction 1 is along one of the three twofold (binary) axes in the case of

G systems®

0 J [ 0 g O ani 1] i
P?u = 11":"?1- Paz = 1."F:|u= Priog == '5'?23 Tyg Pegp — — 'I-:aul"i'u"?'gar
(8.32)
i ! 3, o 0 g 0 202 0
funr = — lIfu;n." 1} 3 Priss = — ﬂimﬂfﬂ?! — g ."'5'[:1 Tys
1 I e fh e Vi 0 2 0 2;.03
PRy [, T4 T '711331'5?1 — =g J"i’? : (8.33)
[ il 3 TR 0z [ B
Prigg = — ﬂnzal'“"fa : Praiy = =— f'galtlrﬂ:tﬂ — g Ir“r:ll1 Tag

Pgau — *Ilﬂlmurﬂlill I:"Ia-::a.: Pages = — ﬂun:mﬁlﬂ'nll ":rgﬂ + iﬂ?ﬂ *Igaurﬂ%a ﬂga-

The above equalities hold if p® and g are interchanged throughout.
The other components of the resistivity and Hall effect tensors, not
given in (8.32), are as follows:

Pm=pm Pa=0 H ik (8.34)
pra=p, pu=0 i imkork=mloril=4d (835

All the components of the magnetoresistance tensor are displayed in
the matrix below:

B0 H, J. Jurctschke, Acta Cryst, 8, TI6 [19565).

El The statement in Jurstschlkes*2 article that the plane of (r, £} iz one of the thres
equivalent planes of reflection should be corrected to read the plane of [y, z)
[ Juretschke, private communication]. The expressions applicable when the [x, )
coordinate plane is a planes of reflection have been derived by Drablile, Growves,
and Wolfe, See po 442 in reference 87,
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oebs A8 Pis Pry O 0
Piz Pii Pis—pis O 0 _I
L Dl 00 e
Piik), i) = A _PE‘J 0 M, 0 8 (8.36)

0 6 0 0 By A

I_ﬂ 00 0 g, b —pls)
where, as in (8.12c),

(11} =1; (22) = 2; (33) =3
) =(32) =4, (1H=@1)=5  (12)=21)=6

The above relations have been used by Freedman and Juretschke®
in an investigation of antimony. All 12 independent compenents of the
resistivity tensor through second power terms in H were measured,
A theoretical treatment was then carried out using three—valleyed bands
for both valence and conduction bands and energy-independent isotropic
relaxatioh times. The theory contains § parameters: three principal
.mobilities for electrons and three for holes, an angle of tilt of one of the
principal axes of the electron energy ellipsoid out of the base plane, a
corresponding angle for holes, and the carrier density. The best values of
these parameters to fit the experimental data were obtained with the aid
of an 1BM 850 computer.

The preceding relationships have also been applied to investigations
of the galvanomagnetic coefficients of bismuth and of bismuth telluride,
Substantial experimental data on bismuth are presented by Okada **
Theoretical caleulations were made by Abeles and Meiboom®® by approx-
imating the band structure by a many-valley model in which the energy
surfaces are approximated by ellipsoids. These are arranged in momentum

8 5 J. Freedman and H. J. Juretschke, Tech. Rept. No. 6, Contract NONK §39(046)
{April 15, 1958). Subject report forms part of a FhD. thess presented by
5. ]. Freedman in the Physics Department of the Polytechmic Institute of
Brooklyn, Most of the work has subsequently appearsd in print: 5. ]. Freedman
and H. M. Juretschke, FPhys. Rer. 124, 137H (1961).

® T, Okada, J. Phys. Soc. Japan 11, 88 (1058).

M T, Okada, f. Phys. Soc. fapan 12, 1327 (1947).

B B Abeles and S, Meiboom, Phye. Rev. 101, Gdd (1058).
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space in configurations appropriate for the symmetry of the crystal,
A constant relaxation time is assumed. Low-temperature galvanomagnetic
data at intermediate field strengths are also available in a number of
publications ***

A similar model was used by Coldwell-Horsfall and ter Haar®® They,
however, choose a relaxation time proportional to &= "%, ie., a constant
mean free path. These anthors are careful to use the three-dimensional
transport equations in calculating the Hall effect. The point is made
that, although in the isotropic case with J normal to H it follows that
there is no component of E along H, the statement 1s not generally true
in the case of anisotropy. For bismuth, with H along the binary axis,
it iz caleulated that E in the direction of H might amount to the order
of 0.1% |E|, and should be measurable.

A similar procedure to that used for bismuth was adopted by Drabble
and Wolfe for bismuth telluride.™ Both the conduction® and valence®*™
bands are considered, and these anthors modify Eqs. (8.32) - (8.36) to
provide expressions which are applicable when one of the thrée equivalent
reflection planes of the crystal i1s coincident with the (x, z) coordinate
Flﬂ.l]ﬂ..‘

Further information on the many-valley model and its application to
a number of semiconductors, including a discussion of the results for
bismuth telluride, is given in Chapter VIIL

(4) Orthorhombic system (gromp D). For this system, the number of
independent components of the resistivity tensors are 3 for the zero-
magnetic-field resistivity, 3 for the first power Hall term, 12 for the
magnetoresistance terms, and 9 for the H* Hall term.*™*

The lower order galvanomagnetic coefficients are discussed in Kohler's
article.™ However, the number of independent relations for the linear
Hall term — namely, 6 as determined from the crystal symmetry — is

"2 R. A, Connell and J. A. Marcus, Phys, Hev. 107, D40 (1957}
8% S Mase and 5. Tanuma, Sei. Repts. Research Inats. Tokoks Usiv. 12, 33 (1960),
" R. Coldwell-Horsfall and D). ter Haar, Physica 28, 545 (1858),

#7 J. R. Dvabble. R. [ Groves and R. Wolle, Proc. Phys. Soc. [London) 71, 430
{185H],

"1 J. R, Dvabble, Proc. Phys, Soc. (Londom) 72, 380 (1858).
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halved as a result of the antisymmetry in electric field and current indices.
The Kohler-Onsager relations (2.10) had not vet been established in 1034
when the article in guestion was written.

Extensive data on a number of gallium erystals are available from
measurements by Yahia and Marcus®™ at several temperatures. At 2°K
and at 77°K, the galvanomagnetic properties are adequately described
by the phenomenological coefficients discussed. At 4°K, however,
results indicate an apparent reduction in the crystal symmetry, so that
a larger number of independent components are necessary to specify the
resistivity tensor, p(H). It is suggested that this might result from a sharp
structure of the Fermi surface existing at low temperatures. In cases
where high mobilities are encountered at low temperatures, it was noted
by Jain that additional components in the resistivity tensor can become
noticeable as a result of the weak-magnetic-field limit being exceeded ™

B | Yahia and ], A, Marcus, Phys. Rev. 110, 187 (1f64),
a4 A L, Jain, Phys. Hev. 114, 1518 (1850}



IV,
Experimental Determination of Transport
Coefficients in Isothermal Media

0, MeasurEMENTS ON IsoTROPIC MATERIALS

When the anisotropy of the crystal can be neglected, the transport
coefficients are specified if we know the conductivity (or resistivity) and
the Hall coefficient as functions of magnetic field. The resistivity is
determined with the magnetic field normal to the carrent — leading to
transverse magnetoresistance — and also with H parallel to J — leading
to longitudinal magnetoresistance. Actually, the longitudinal magneto-
resistance should vanish if complete isotropy occars. Thus, the relative
smallness of this quantity is an indication az to how well the idealized
conditions are realized.

In order to illustrate the contributions of the coefficients discussed
above, we shall derive a vector equation for J(E). Let us consider a
specimen which may deviate only slightly from isotropy, so that there is
a small but nonzero longitudinal magnetoresistance yet the theory for
i1sotropic systems can be used. The procedure is to express the conductivity
coefficients of (7.22) in terms of o (H), the conductivity in a transverse
magnetic field and o (M), the conductivity in a longitudinal magnetic
field.

Thus,

o (H) = (J/E)g 1 =op, (2.1)
ay(H) = (J/E)gyn = on + yuH?,
and Eq. (7.22) assumes the form

a  (H)
Ht

T—o, ()R xe B % 0 4 A = E-HH  (0.1a)

50
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The coefficient a, H is sometimes referred to as the Hall conductivity, i.e.,
ay H = g (H), (9.1h)
and with the customary choice of coordinate system
o"(H) = o,,(H). (9.1¢)
In the case of exact isotropy, o(H) = a(0) = ay.
The inverted form of (7.22) can be written as follows [cf. (8.30)]:
E=pud — RHWJ x H -+ C{H)J - HIL (9.1d)

In terms of resistivities in transverse and longitudinal magnetic fields,
one has

E=p, (H)J + RHEHH %I H"H PLy. HH. (9.1¢)

The term E(H) is the Hall coefficient, and R{H)H is the Hall resistivity
R{H)\H = p"(H),
= pys(H) if H = (0,0 H). (9. 11)
The latter equality applies for the customary choice of coordinate axes,
The above equations are similar to those given by Jan®" They are
mathematically exact in H, and are not expressions derived from expan-
sions valid to certain powers in H.

The relations between the conductivities and resistivities are as
fallows:

o (H) 1
) =y raar = feel

. R(H)
M HH) + [RIEDHE

The transverse relations include contributions from the Hall effect.
In determining the Hall coefficient, the common procedure is for § and H

#8h See pp. 15-17 of reference 1. The meaning of our o is identical with that of
Jan's 3, .
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to be normal to each other, and the Hall field is then measured in a
direction perpendicular to each. Variations of these phenomena, which
include magnetoconductivity, Corbino magnetoresistance, and planar
Hall effect, will be discussed later,

a@. Dhiscusstom of Transverse Magnetoresistance and Hall Effects

Consider H = (0, 0, &) and the current J to exist in the x-direction in
the isothermal solid. Then relations (1.1) and (2.4) become

Ji =0 {HE, + 0n|HE, + o.lHE, (9.2)
0 =g, lHE,+ Oy | HEy + o) E,, H=H, (9.3)
0 = g, (H\E, 4 e,|H)E, + o.(H)E, (0.4)

and
E- == Oy |{H}! e Ep - FjllH}fﬂl -E: = Fn{mf; lHH]

For the isotropic case, relation (3.2) requires that E, vanish® Hence,
using the symmetry expressed by (3.1), we may write

s = auH)E, + an(H)E,,
0= —an(HE, +o.(HE, J=]. (9.5)
and
E.= Fﬂ'n'-m.rrn Er = Pu{H-”t- (9.6)

In terms of the fields and current shown above, the Hall coefficient,
the conductivity, and the magnetoresistance are given by

RH- .E.,J'_,",H. 'H.T}
a{H) = ] JE,, (9.8)
Aplpe= [p(H) — p(O))fpo = [EMH)ELO)] —1, [, = const. (8.9)

¥ It is impottant to pote that according to (9.2)-(9.4), £, will vanish if and only
if E_!'.I‘H:Iulth] - ﬂ"{H}ﬂ,rEH:I = Therefore the candition _f._.. — _'"l =
iz not sufficient to allow ose of the two-dimensional relations (#.5) in the case
of anisotropic modia. This point, which has led to difficulties in the Eterature,
is emphasized by Coldwell-Horsfall and ter Haar ™
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In all of the above definitions, the boundary conditions are
Jym= 8T dx == 8T 3y =0, H = (0,0, H) {9.10)
along with the obvious fact, alluded to in connection with (9.5), that
Ey=J, = 8T]os =0, (911

The requirement that 3T /2y vanish s imposed by our consideration
of isothermal phenomena. It is possible, of course, to define adabatic
phenomena® These are discussed briefly in Section 28, Then the condition
that 27 /8y vanizh is usually replaced by the requirement that the trans-
verse heat current g, be zero. A great simplification results in the trans-
port equations, however, whenever the isothermal approximation can

[ﬁﬁ——?’
=

Fig. 3. Hlusteation of Hall -angle.

be used. As will be shown later, such a treatment is fairly good for a
number of semiconductors, even when measurements are taken under
conditions which are favorable to the adiabatic situation.

From (9.5) and (9.6) it follows that for isotropic systems with
H = (0,0, H)

pyslH) Ll A 0.12
RH - H - H?ﬂj.’[”} + 'uif'{m..‘ { l
1 ﬁ'uu{H} o 'm"l"{'Fﬂ i @13

o(H) = ol 0.\ H) i
pudf)] __ owlHlau®) 914

delpe= [p.;ra} ~ 1= GHH) + o XH) ik

# See p. @ of reference 1.
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Since the Hall phenomenon is essentially a rotation of the electric
field vector by the magnetic field, many authers have introdoced a Hall
angle® (Fig. 3), defined as

tanfl = EE,, H=1{0,0H). (9.15)

Although the Hall angle is most frequently employed in the weak-
magnetic-field region, we shall present general equations below, which
are valid for arbitrary values of H. These relations are

tan 0 = pyud H)psslH) = oulH)jomlH), H=(0,0,H). (9.18)
From (9.12) and (9.13} we see that
tan i = RyolH)H. (8.17)

Further relations involving the Hall angle are discussed in Section 124.

b. Experimental Determinations of Hall Coefficient and Magnetoresisiance

We shall omit a discussion of measurement techniques used in the
laboratory, Details can be found in a number of textbooks and articles,
several of which are referenced here.™* =% The specimens are usually
cut in the form of rectangular parallelepipeds or in the bridge s.hape.'“'“
The latter design has the advantage of providing large contact areas with
a reasonably small disturbance of the electric fields to be measured.

When, however, magnetoresistance is to be determined i high-
mobility materials (that is, where the Hall angle is relatively large], the
bridge samples with lateral arms may not be satisfactory. Ewven such a
small amount of disturbance of the Hall field cannot be tolerated. In

¥l Qe for example, p. 309 of reference 32; p. 18 of reference 1,

#3 1. Estermann and A. Foner, FPhys Reeo T 3465 (10560},

BOE. H. Putley, "The Hall Effect and Related Phenomena,' Butterworths,
Lomdon, 1980,

k2 Hefersnce 1, pp. 17-24,

W, O Dunlap, "An Introduction to Semiconductors)" ppo 178=104, Wiley,
Few Youk, 1957.

W 0. Lindberg, Proc. I, K. E. 40; 1414 (1052);

P P. Débye and E. M. Conwell, Phvs, Rev, B0, 608 (1934).
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those cases it is desirable to use only carefully fashioned point contacts
for the potential probes. This problem is discussed in more detail later.

In order to take advantage of the simplifications of rectangular
geometry it is essential that the current lines be parallel and that the
electric field which is being measured to determine the Hall effect
be normal to these lines. Misalignment in the Hall potential probes
will add an “IR drop™ to the transverse voltage. Since this spurious
voltage at weak magnetic fields is independent of H but proportional
to f,, it is usually eliminated by averaging data for opposite directions
of current and of magnetic field. Many problems are associated with
satisfying the boundary conditions (9.10). These are discussed in sub-
sequent paragraphs in this section.

It is also possible to determine certain galvanomagnetic coefficients
on samples of various other shapes, for example, those of circular
symmetry,"™ of infinite planes ¥ and of other shapes,”™ including arbitrary
two-dimensional geometry,™* By use of a “'clover-shaped” sample, the
influence of the contacts can be reduced considerably.® Such a design
has several advantages over the bridge shape, such as improved heat
dissipation’and mechanical strength. By cutting discs with planes normal
to the appropriate directions in the crystal, one can determine the direc-
tional resistivities of anisotropic conductors, as was shown by Hornstra
and van der Pauw ™ The disk technique has subsequently been extended
by van der Pauw™ to provide means for determining all the components
of the zero-magnetic-field resistivity tensor and also thoss of the weak-
field Hall tensor in an anisotropic solid™ In the most general case,
where the solid has no elements of symmetry, the six independent
resistivity constants are obtained from the sheet resistivites, at zero
magnetic field, of six plane-parallel samples through six linear equations.
The nine constants associated with the Hall effect are established throngh
measurements on three samples, combined with three different orienta-

#7 1. La Plume, L'Onde Elec. 86, 113 (1856); M. Wintenberger, Compt. rend. acad.
sci. {Paris) 2468, 2368 {1958),

#74 R, Jaggi and R. Sommerhalder, Helv. Phys. Acia 32, 167 (1958).

8 R. M. Broudy, [. Appl. Phys. 29, B53 (1958).

8 L. J. van der Pauw, Philips Research Repis. 18, 1 (1958).

#a | Hornstra and L. J. van der Pauw, [, Elecironics and Contral 7, 108 (1959).

#h 1 ], van der Pauw, Philips Research Repis. 16, 187 (1061).
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tions of the magnetic field. The measurement of weak-field magneto-
resistance coefficients of cubic materials, using two flat samples of
arbitrary shape, is discussed by Matthews and Doherty. ™

For determining resistivities alone, the four-point probe techniques,
discussed by Valdes™ and by Uhlir,"™ are sometimes employved. Applica-
tion te anisotropic media has been discussed by Airapetyants and
Bresler "

(1) Effect of transverse current on Hall voltage. It is apparent that a
shorting of the Hall field by any means such as area contacts, inhomoge-
neous sections in the material, or external circuitry will reduce the Hall
voltage, When area contacts are used at the ends, the length of the
specimen must be substantial compared to the width (the magnetic field
vector being along the thickness of the parallelepiped) so that the measured
Hall voltage is not reduced becaunse of the shorting at the ends. Another
possibility would be to uee point contacts at the ends. such an arrangement
however will produce nonparallel current lines near the ends, and the
specimen will still need to be long in order to assume parallel corrent
lines in the neighborhood of the Hall probes. The effects of end-contact
shorting where the Hall angle iz small have been studied by Isenberg
ef. al. .1 Volger, 1" and others. The relative decrease in the measured
Hall voltage is shown in Fig. 4.

Volger also uses his results to examine aspects of certain macroscopic
inhomogeneities in the specimens. Analysis of geometries other than
rectangular was made by Frank!®® who also examined the effects of pin
contacts for current electrodes. The case of a nonuniform magnetic field
was included in the investigations of Flanagan ef 2/.1% It is interesting
to note that for a flat-topped bell-shaped magnetic field variation in the

"t H. Matthews and W. K, Duoherty, f. Electronics and Conteol 10, 273 (196813

id | B, Valdes, Froe 1. R, E. 48, 490 [1954).

e A, Uhlir, Bell System Tech, [, 84, 106 (1955).

i £ ¥, Airapetyants and M. 5. Bresler, Fizs, Trerd. Téla 1, 152 (1958 [translation:
soviel Fhys. — Solid Stafe 1, 134 (1958 ],

140 1. Isenberg, B. R. Russel, and R. F. Greene, Rev, Sci. Inste, 19, 685 (1048),

1M 1. Volger, Phys. Hev, 79, 1023 (1950).

192 A, Frank, Appl. Sei. Reseavch BE, 129 (1058).

W, T, Flanagan, P, &, Flinn, and B. L. Averbach, Nevw, Sci. Tngitr, 25 593 | 1954) ;
2§, 233 (1955).
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a-direction, with H reduced to approximately 209, at the contacted ends
of the specimen, the V_/1. was found to be 0.74 for specimen with
L{W = 1.5, as compared to 0.85 when the magnetic field is uniform.
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Further information on the effects of inhomogeneous magnetic fields is
available in the article by Koppe and Bryan.'™ These authors also discuss
the effects of macroscopic inhomogeneities in the samples. The special
case of porous media has been treated by Juretschke et al.'® For a more
detailed discussion of the effects of inhomogeneities, both in sample and
in magnetic field, the reader is referred to Section 27.

The preceding articles have examined the effects of Hall field shorting
by the end contacts only for cases of small Hall angles. An analysis valid
for arbitrary values of Hall angle was made by Wick.!™® His treatment
is also applicable to the case of area-contact Hall probes, and results are
given for a number of geometries including polygons and circles. Geomet-
rical effects have been examined by Barron and MacDonald, who also
consider size effects.!™ These latter phenomena are important when the
mean free path of the charge carriers approaches that of specimen dimen-
sions, as in very pure metals at low temperatures. Interesting behavior
also results at strong magnetic field when the mean free path is large
compared to the radius of the cyclotron orbits of the charge carriers.

(2} Effect of transverse curvents on magnetoresistance. While we saw in
the preceding paragraphs that changes in Hall voltage may realistically
amount to say 20 or 30%, as a result of partial shorting of the Hall field,
the effect on the magnetoresistance can be more than an order of
magnitude in the case of semiconductors with high mobilities, where the
Hall angle — roughly proportional to the mobility at weak magnetic
fields — is relatively large. The augmented resistance, designated as the
“Hall resistance’” by some anthors,"® ' will be referred to here as the
"“Corbino effect.” More detailed discussion can be found in Section 108,
A quantitative treatment is also given in Section 124. The phenomenon
can be visualized qualitatively in several ways, For example, the shorting
of the Hall field causes a transverse current f. This current may be
regarded as producing a Hall field along [, in such a direction as to

1 H. Keppe and J. M. Bryan, Cen, J. Fhys. 20 274 (1851).

10k H, ]. Juretschke, K. Landauner, and . A. Swanson, [. A¢f Phys. 87, B39 (1958)
E, Goldin and H, ]. Juretschlke, Trans, ATME BI1E 357 (1958),

W8 R, F, Wick, J. Appl. Phys. 25, 741 (1954).

1o8s T, H. K. Barron and D, K, C, MacDonald, Physica 24 (Kamerlingh Onnes
Conference, Lesden), S102 (1958),

197 J. R. Drabble and R, Walfe, [. Electrowics and Conirol 8, 258 [18957).
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decrease f, — or increase E_, depending whether the driving power is
of constant voltage or of constant current — and therefore being reflected
as an increase in resistance. On the other hand, the result may be regarded
as a more general magnetoresistanes, where the baundary condition T
is relaxed and the general form of (9.5) is applied. It will be seen later
that in the limiting case where E is zero, the “magnetoresistance” in
first approximation increases proportional to A® and does not saturate.
This behavior can be anticipated from the simple physical picture
presented in Section 45, Without a Hall field to cancel the Lorentz force,
the charge carriers will be deflected at angles increasing with H, leading
to a monctonic incréase in resistance with magnetic field.

A mathematical treatment of the effect of shorting at the end contacts
on magnetoresistance is presented by Drabble and Wolfe, and results
are given for length/width ratios greater than two.!'” The results illustrate
quite vividly the problem that arises when the Hall angle becomes
appreciable, Experimental findings are given by Broom for GaAs and
In5h.'™  Frederikse and Hosler discuss the “geometry effect’ in InSh,
and alse point out the seriousness of having inhomogeneities in the
material '™

The measurements show that when measuring magnetoresistance
in a high-mobility semiconductor, all lateral contacts should be extremely
minute. Welded platinum wires of 3-mil diameter appeared permissible.
On the other hand, soldered probes of 0.25-mm diameter, or bridge-type
arms were not satisfactory.

(3) Nongeomeirical cawses of transverse curremis. An important con-
sideration here is the effect of inhomogeneities in impurity concentrations,
This matter is examined in considerable detail in Section 27. It is seen
that large influences on the galvanomagnetic effects can result from spatial
variations in carrier density. Either random fluctuations or monotonic
gradients can seriously affect the field dependence of the magneto-
resistance. A contributing factor which eccurs for most nonuniformities
ie a variation in current distribution in the specimen with magnetic field,
This rearrangement of the {low lines results from the boundary conditions

1% K. F. Broom, Proc. Phys. Soc. (London) 71, 500 (1858 4y
1% H. P. R. Frederikse and W, R. Hosler, Phys. Rev. 108, 1136 (1857).
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and the fact that E and J are, respectively, lamellar and solencidal vector
point functions.

In view of the complications that occur, it behooves the investigator
to check carefully the homogeneity of the specimens by measuring
potentials between various contacting points. Other techniques such as
resistivity probing, thermoelectric probing® and photoconductive meas-
urements with a traveling light spot are often employed. The latter
methed is often used to measure diffusion lengths of nonequilibnum

charge carriers.!" ~'"* An unnatural variation of the photovoltage with
position of the light spot could be indicative of nonuniformity in the
specimens,'1#

Analysee of bl photovoltaic phenomena (changes in impurity con-
centration occur over distances large compared with nonequilibrium
charge carrier diffusion lengths) and of karrier-layer photovoltaic phenom-
ena (abrupt changes in impurity density) have been made by Tauc.'®®
He also outlines a compenszation method, due to Frank,'™ for measuring
the bulk photovoltage, which provides a highly semsitive method for
detection of inhomogeneities in a semiconductor. Additional investiga-
tions of bulk photoeffects in inhomogeneous semiconducters, including
phenomena at an illaminated #-n junction, were done by Cox/!%
Expenimental data, taken on germanium filaments, are also supplied.

Thus far, we have dealt principally with transport by a single charge
carrier, choosing to introduce multiband contributions later. At this
point, however, it is important to censider the simultaneous presence of
electrons and holes — as, for example, in intrinsic semiconductors. The
boundary condition that J wvanish does not imply that the electron and
hole currents are individually zero, but rather that

I+ =0 (9.18)

In the magnetic field, both holes and electrons are directed to the same
side of the specimen, producing concentration gradients and diffusion

i F, 5. Goucher, Pyt Rev. 81, 475 (1981).

ItY [, B. Valdes, Pyoe. 7. B, E. 40, 14%D [ 100562,

13 T, 8. Moss, Proe. Phys. Soc. (London) B8, 003 (1053),

Haa . Arthur, W. Bardeley, A, Gibson, and C. Hogarth, Prog. Phys. Soc. (London)
BGR, 121 [1955).

U3 Jan Taue, Revs. Modern Phys, 28, 308 [1957).

14 M, Frank, Crechostov. [, Phys. 8, 438 (1058).

.0 T, Cox, ToN, J- Phys. 88, 1328 (1980,
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currents. The generation and recombination of carriers in the bulk may
often be neglected and one can consider hole-electron pairs to be contin-
uously generated at one surface and continuously recombined at the other,
A treatment of galvanomagnetic properties must therefore include a
description of these diffusion processes. Additional parameters of interest
are diffusion constants, sample width, lifetime of excess carriers in the
bulk, and surface recombination velocities.

An investigation of these phenomena was begun by Welker!®® after
he noticed a frequency effect in ac Hall measurements™™® on mixed fi.e.,
both electrons and holes are present) semiconductors, This behavior
comes about as a result of the hole-electron accumulations no longer being
able to follow the oscillations of the applied field.

When the lifetime of the excess carriers is very low, their concentra-
tions are everywhere near equilibrium and therefore concentration
gradients and diffusion currents are not significant. The effect is largest
m the case of infinite lifetimes. This example has been considered by
Fowler 117

Further analyses of the problem have been given by Landauer and
Swanson!® and by Banbury et &/ Explicit results are available for the
magnituces of the corrections to the Hall fields for most cases of interest.
Another complication is the fact that the measured transverse potentials
can be affected by the nature of the probes. In many cases rectifying
barriers will exist at the contacts and floating potentials!®? will be meas-
ured along with the other contributions to the Hall voltage.

The prominence of the effects discussed above is decreased when the
departures of the charge carrier concentrations from equilibrium are
reduced, as can be accomplished by increasing surface recombination
rates. Thus the surfaces of the specimens should be abraded rather than
etched,  Attempts should also be made to make ohmic contacts at the
voltage and current probes. This usually requires a specific treatment

nE H. Welker, £ Natwrforsck. Ga, 184 (1851),

HEH Welker, L'Onde Elge. 80, 30 {19540),

17 R, H. Fowler, “Statistical Mechanics,” p. 428, Cambridge Univ. Press,
{".at'ﬂbl‘i.l.lgnl 1056,

1% R, Landaver and J. Swanson, Phys. fex. 81, 555 (1953).

1# B, Banbury, H. K. Kenisch, and A. Many, Proc. Phys. Soc. (Lowdox] ABG,
753 (1953).

180 |, Bardeen, Hell System Teck. j. 28, 480 (1950).
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for each type semiconductor. Certain general procedures have been
described by Waltz'®! and the characteristics of certain metal contacts
on germanium have been given by Bocciarelli.'®® Thermocompression
bonding techniques have been described by Anderson & al.'* In many
cases useful information is given in the sections on 'Experimental
Details' in articles dealing with measurements of electrical properties of
given semiconductors. 124128

The careful investigator will usually repeat the galvanomagnetic
measurements for several different surface conditions, including the
extremes of sand blasting and etching.'® Checks between symmetrical
pairs of contacts are alsa desirable. If all of these operations reveal
negligible differences, then it is likely that the effects that have just been
discussed are not significant.

Another important phenomenon which can usually be detected when
measurements are taken under different surface conditions is that of
surface conduction. The existence of such processes can lead to serious
errors in the determination of galvanomagnetic coefficients. 1%

When measuring high-lifetime materials, it is desirable to take precau-
tions to ensure that errors are not introduced throogh occurrence of
minority carrier injection at the current contacts. [If possible, all voltage
probes should be located well over a diffusion length from these contacts.

i M, C, Walte, Bell Lab. Recosd 88, 280 (1055),

8 O V. Bocciarelli, Phyaica 20, 1020 (1954).

188 0. Anderdon, H. Christenzen, and P. Andreatch, J. Appl. Phys. 28, B23 {1857).

18 For germanium, see for exampls; ], B, Haynes and W. Shockley, Phys, Rev.
81, 35 (1961); F. J. Morin and J. P. Maita, ibid, 94, 1625 (1854); W, C. Dunlap,
Jr., ibid, BB, 40, {1054): . Herring, T, Geballe, and J. HKunszler, bid. 111,
B8 (105R).

1238 For wilicon, see, for example: F. ] Morin and ], P. Maita, Phys, Rer, W, 28
(1984}, G. W. Ludwig and R. L. Watters, bid, 101, 1800 (1058} Donald Long,
ibid. 197, 872 [1957); A. Gorodetskii, V. Mel'nik, and T. Mel'nik, Fiz, Toerd.
Tela 1, 173 (1959} [translation: Sevie Phyi.-S5olid Siafs 1, 153 (1039},

i E. H. Putley and W. H. Mitchell, Proc. Phys. Sor. (Lomdon) 72, 183 [ 1ss).

193 For certain III-V compounds, see, for example: (InP} W. Reynolds,
M. Lilburne, and R. Dell, Proc. Phys. Soe. (Londem) 71, 416 (1838} ; (Gaks)
J- M. Whelan and G. H. Wheatley, Phys. and Chem. Solidc 6, 180 [1958);
R. K. Willardson, /. Appl. Phys. 80, 1158{1958); (AlSb) H.-]. Henkel,
£, Matallh, 80, 51 [19458].

W See, for example, the results of Frederikse o al.: H, P. R. Frederikse, W, R,
Honler, and D. E. Hoberts, Phys. Rev, 104, 07 (1058),
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Another precaution is to maintain low current densities at the contacts.
As a matter of fact, the careful experimentalist will determine gal-
vanomagnetic voltages as a function of specimen current, generally over
ranges of 1 or 2 decades. If the voltages are not linear with the currents,
then the reason must be ascertained. Noticeable heating of the specimen
must of course be avoided, In addition, the electric field must not be so
high that the specimen becomes non-ohmie, This happens when the charge
carrier receives more power from the field than it can dissipate readily
by the usual interaction with the lattice. Such a situation is referred to
as the "hot-carrier case” Another non-ohmic phenomenon is charge
carrier multiplication through avalanche or breakdown processes. These
effects are discussed briefly in Section 32. In most semiconductors they
are not encountered at electric fields low enough to preclude heating,
except at temperatures of liquid helium.

Hunter e al'™* have discussed a scheme for determining charge-
carrier lifetimes from the changes in Hall coefficient produced by devia-
tions in carrier concentration from equilibrivm, 1t was suggested that
the method may be of especial advantage in measuring very short lifetimes,
1.e., those of the order of 0.1 u sec.

One may expect that the influence of transverse diffusion currents
will be especially great on the magnetoresistance effect. This premise
has been verified by the experiments done on the “magnetic barmer
layer” phenomena. In these experiments, dissymmetry is created by
using different surface treatments on the two sides of the specimen
normal to the Hall field 1 The roughened surface (Fig. 5) has a high
recombination velocity s, while the other surface is etched to produce low s,
Thus, for a preferred direction of current, recombination is facilitated,
With germanium, resistance ratios of the order of 10 were readily observed
for magnetic fields of 10 kgauss,

The effects of nonequilibrium carrier concentrations on galvano-
magnetic and thermomagnetic effects in semiconductors have been studied

137 . Hunter, E. Huibregtse, and K. Anderson, Phy:. Rev. 91, 1315 (1953},

19 See . Weisshaar and H. Welker, Z. Naturforsch, Sa, 851 (1953); 9a, 184 (10548);
0. Madelung, Natwrmiscenschafien 42, 408 (1955, O. Madelung, L. Tewaordt,
and H. Welker, Z. Natwrforsch. 10a, 476 (1985); E. Wetsshaar, Z. Naturforsch.
Litn, 488 (10558} T. 5. Moss in “Semiconductors and Phosphors™ (M. Schin
and H. Welker, eda), p- 108, Intersclence, New York, 1053,
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quite generally by Pikus. Both the cases of weak magnetic fields'™ and
strong magnetic fields™ are included. The expression for weak-field
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' G, E. Pikus, f. Tech. Phys. U.5.5.K. 28, 22 (1956) [transiation: Soviet Phys.-
Tesh. Phys. 1, 17 (1056)].

19 Gy B Pikus, . Teeh. Phys. US55 R. 96, 28 (1058) [translation: Sewied Phyi.-
Tech, Phys. 1, 32 (1856},
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magnetoresistance includes linear terms in H if the surface recombination
effects are different on the two surfaces normal to the Hall field. If the
width of the sample is small compared to a diffusion length, the linear
term may become relatively large at weak magnetic fields.

The influence of nonequilibrium charge carrier distributions on
thermoelectric and thermomagnetic elfects is also considered by Pikus,
The effects include electrical resistance in a temperature gradient, the
Ettingshausen effect, and thermal conduction by electrans and by phonons.
A discussion is also given of the measurement of thermaoelectric power
by point probes and how the results can depend on the radius of the tip
of the probe due to a buildup of excess charge carriers at the point contact
due to a large temperature gradient. This problem has been investigated
both theoretically and experimentally by Tauc and Trousil ™™ Additional
discussion of nonisothermal effects is given in Section 29,

The large effects on magnetoresistance resulting from assymmetry in
surface recombination rates in intrinsic semiconductors has been examined
by several investigators'™ as a means for measuring surface recombina-
tion velocities and bulk lifetimes. Under certain conditions, quantitative
agreement with results of other measurement techniques was obtained.

Another method for obtaining magnetoresistance data under the
conditions of zero Hall field is to measure a mixed semiconductor (i.e., both
electrons and holes are present) at the Hall effect null. In many p-type
materials it is possible to choose a temperature and a magnetic ficld i,
such that in Eq. (9.5) the absolute values of

elecifim hinl=s
{I_q.ytHlJ = ﬂ'r_i-!.H[] (B.15)
Under these conditions £, vanishes, and if ¢," = a.", the magnﬂtnruut-
ance will fail to Eatm'ate For the more general case where g st o ",
consult the equations given in Section 16,

ush | Taue and Z. Trowsil, Crechoslov. J. Phys. 8, 120 (1953]. See also Section 7
of reference 113 and literature cited therein: ], Taoc, fres. Afad. Nawk
SS5 K. 20, 1479 (1956) [translated by Columbia Technical Translations:
In. Tauts, Bull. Acad Sei. USSR, (Phys. Sev) 20, No. 12b, 1357 (1954)].

1% Seo for example: 5. A Poltinnikov and L. 5. Stil'bans, J. Tech. Phys. US.5.R,
27, 30 (1957) [translation: Soviel Phys, — Tech. Phys 2 23 (1857)). O. V.
Sorokin, . Tech. Phys. USSR, 27, 2774 (10567) [translation: Sewel Phys. —
Tach, Phys, 8, 2572 (1957}, A Rrhanov, 1. Arkhipova, and V. Biduba, f. Tech.
Phys. U,5.5. R, 28, 1051 (1958) [translation: Sowel Phys. — Tech, Phys. &,
078 (1058 ],
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(4) Temperature gradients. The interpretation of galvanomagnetic data
in terms of fundamental parameters of the semiconductor iz greatly
simplified if isothermal conditions are assumed. However, this state of
affairs will, for ordinary measurement techniques, exist precizely only for
materials with very special characteristics — as can be seen from Eqs. (3.5).
The other possibility of achieving isothermal environment is an exper-
imental setup involving complicated equipment for adding or removing
heat from various faces of the specimen so as to reduce the temperature
gradients. For these reasons, many investigators have resorted to the
use of ac measurements. These usually involve expensive instrumentation
equipment. A promising alternative is the Dauphinee-Mooser scheme in
which square wave currents of alternating polarity are produced by a
special chopper, 139 This arrangement combines the desirable features of
both the dc and the ac techniques.

In dc measurements, nonisothermal contributions can amse from
thermoelectric and thermomagnetic effects. These are sometimes con-
sidered separately as follows:

(i} Peltier effect; This phenomen iz associated with heat transport
across a junction, and it therefore causes a temperature gradient to
exist along the sample in which there iz an electric current. The Peltier
effect occurs becavse of a nonzero differential thermoelectric power
between the sample and the metal contacts,

(ii} Nermst effect (transverse): A longitudinal temperature gradient
or heat current gives rise to a transverse electric field in a crossed magnetic
field. Designation of this phenomenon by Nernst effect 1s used by a
number of authors ®¥A8SLIM=18 - alihough others prefer the term
Ettingshausen-Nernst " 1351358 The situation is complicated by the fact
that a longitudinal temperature gradient due to a longitudinal current
in a transverse magnetic tield 15 also known as the Nernst effect.

107, M. Dauphinee and E. Mososer, Rey. Sei. Pustr. 28, 660 1955).

181 R, Fieschi, 5, de Groot, and P, Mazuar, Physica 20, 250 [1954). Thess authors
use the term Effingshausen-Nernst to designate the thermoelectric power in a
magnetic field.

182 Bes p. B0 of the article by 0. Madelung in '"Handbuch der Physik'' (8. Fligge,
ed. ), Val, 20, p. 1. Springer, Berlin, 1957,

133 Epp p.. 230 of the article by Blatt ¥

134 P, |, Price, Phys, Rev. 108, 1245 [1956).

186 1, . Chambers, Proc. Phys. See. (London) AGS, D03 (1952).

13 Preference O, p. 200,
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[iii) Righi-Leduc effect: This designation refers to the transverse
temperature gradient resulting from a longitudinal temperature gradient,
or heat current, in a crossed magnetic field.

(iv) Ettingshausen effect: In this case, a longitudinal electric current
produces a transverse temperature gradient in a crossed magnetic field.

Both (1) and (iv) will produce spurious Hall voltages becanse of the
differential thermoelectric power of the specimen against the Hall probe
materials. This contribution could be minimized by making the Hall
leads of the same material as the specimen; but such a procedure is
hardly feasible in the case of semiconductors.

In general, measurements are taken for both directions of magnetic
field and of sample current. In this way, some of the spurious effects can
be reduced.® A point of caution should be injected, however, inasmuch
as there is a tendency among some experimenters to assume that since the
Nernst and the Righi-Leduc phenomena depend on temperature gradients,
they will remain unchanged with reversal of the electric current, This is
the state of affairs if the source of the thermal gradients is, for example,
nonelectrical, or results from nonuniform joule heating either in the
specimen or at the end contacts, Any contribution from the Peliier effect,
gr related irreversible phenomena, will, on the other hand, change sign
upen reversal of the electric current.

Other safeguards involve the use of isothermal baths for the specimen
and of observing whether there are discernible time lags in the approach
to the steady state voltage as the current is reversed. These would be
evidence of a reversal in thermal gradients. The magnetic field is usually
reversed by switching the polarity of the dc into the electromagnet.
It has been found, however, that unless demagnetization procedures were
used, differences in [H| of about 29, existed after such a reversal in a
12-inch magnet.™ Hence for precise measurements, the magnitude of H
is continuously monitored by a noclear magnetic resonance gaussmeter,
Upon reversal of the magnet current, an adjustment is made to maintain
|H| unchanged.

An important question is when are differences between isothermal
and adiabatic galvanomagnetic coefficients significant? This matter is
discussed in Section 29, where it is seen that an important consideration

13 R. T. Bate, Unpublished findings at the Battelle Memorial Institute,
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is the "thermoelectric figure of merit” Z*, defined in terms of thermo-
electric power, temperature, thermal conductivity, and electrical resistivity
as follows:

£2* =a Tlep. (9.18)

This point was recognized by Chambers'™ who showed that expressions
for adiabatic effects simplified considerably when the square of the
thermoelectric power was much smaller than the Lorenz number.

In wview of {0.1%) it appears likely that in matenials with the diamond
lattice or zincblende structure, where the lattice contribution to & 1s
relatively large, the corrections to the isothermal equations for specimens
measured under adiabatic conditions may be relatively small, at least
in the weak-magnetic-field region. This was found to be the case for the
Hall coefficient according to calculations by Stil'bans®™®® and by Johnson
and Shipley.1#® In the latter article, the results for materials such as
silicon and permanium showed differences well under 19, for a wide
variation of temperatures and carrier concentrations.

The problem is much more complicated when the weak magnetic
field approximation is not applicable, for then expansions utilizing powers
ap to H® are no longer adequate, The transport integrals must be
evaluated exactly. In addition, various product terms occur which
cannot be neglected, For this reason, certain investigators have carried
out experitnents on high-mobility semiconductors under the conditions
that E, and @1 /&y vanish, as is achieved with the Corbino dizk, rather
than for conditions such that [, and g, vanish.,'®

10, OTHER "HaLL"” AND MAGNETORESISTANCE PHENOMENA

a. Variots Hall Phenomena

(1) Quadratic “Hall" effect. Discussions of quadratic contributions to
the Hall effect can be found in early articles by Kohler'#® and by

13T L. 8. Gtil'bans; f. Teeh. Phyps. USSR 28, 77 (1952},

133 V. A. Johnson and F. M, Shipley, Phys. Rev. 90, 533 {1953).

ottt Rl T R R Armstrong, and I, N, Greenberg, Phys, Rev, 107, 1508 [1557)
14% M. Kohler, Awun. Physik 20, 881 (1054),
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Shoenberg. 1 Some of the equations need to be modified as a resalt
of the Kohler-Onsager relations — which at that time had not been
established. However, Shoenberg does present equations for a quadratic
“Hall” eifect which results from a component of E being perpendicular
to J in a crossed magnetic field, becanse of anisotropy of the medium.
such a situation can occur, for example, if the galvanomagnetic tensor
component py,, does not vanish., This is true in a erystal such as bismuth
[see Eq. (8.36)], but is not the case for the higher symmetry of the cubic
system [see Eq. (8.12b)] when the coordinate axes are along the axes
of cubic symmetry.

(2) Less comventional " Hall” phenomena. In the preceding paragraph,
we abandoned the requirement that the Hall field be an odd function
of H,M maintaining only the condition that Eg,, J, and H be mutually
orthogonal. We saw that in anisotropic media, terms involving even
powers of H could contribute to £, via the galvanomagnetic tensor Pliss:
If one goes a step further, and requires only that Ey, be normal to J,
then quadratic Hall terms can occur even in isefropic media. This general
definition is adopted by Kao and Katz.®* If E_, is normal to J, they
call the dependence E___. (3, H) a Hall effect; if K, 15 parallel to J,
then E,.. (4, H) is called the magnetoresistance. This extension in defini-
tion is illustrated by the “planar Hall effect,” which was investigated by
Goldberg and Davis.2#? It has also been relerred to as the "pseudo-
Hall-effect.”" 143

Consider an isotropic solid, or a cubic crystal with axes along the
coordinate axes, with J along the x,-direction and H in the x; xp-plane
at an angle @ with J (Fig. 6},

It is apparent that
EI'[P:m'l'Fgm”H: Hy = 2p},y, JH® sing cos g, (10.1)

E, = phy JH? sin 29, |10.2)
Wl b, Shoenberg, Proc, Cambrdge FPhil. Sec. 31, 271 (1935).

2 . Goldberg and R. E. Davis, Phys. Hev. 84, 1020 (1954).
14 K. M. Koch, Z. Natwrforsch. 10a, 406 [1855).
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The ph e can be expressed in terms of the constants in (8.30) by use
of relations (8.31b) to give
E, = (cpy/2) JH? sin 2¢. (10.3)

This is the expression given by Goldberg and Davis. They also show
another orientation of the cubic system which can be chosen so as to

Fig, #, 1llustration of planar Hall effect,

vield the constant 4, in the form of the coefficient (¢ + d)p,/2. Since d,
which vanishes in an isotropic erystal, is small in most cubic systems, it
is not very accurately determined by means of the above coefficient.
To obtain improved accuracy, the authors suggest a procedure which
involves determination of the coefficient of the quadratic term in the Hall
coefficient discussed in Subsection (1) above for a special orientation of
crystallographic and coordinate axes.

It is important to note that the simple form of Eqs. (10.1) - (10.3)
applies only if there is sufficient symmetry — as is true, for example,
in the cubic system and the trigonal system which were considered
previously — so that coefficients such as gi,, i1, pyy, Pojes, Vanish.

(3) Comcerning the definitions of the Hall effect. Tt is apparent that
various definitions of the Hall effect found in the literature can lead to
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different results, depending upon the contributions entering through the
tensors pl... When the results of the measurements are interpreted in
terms of fundamental characteristics of the semiconductors, the fields
resulting from the different resistivity tensor components will need to be
separated. The experimenter must therefore isolate the effects which are
even in A from those which are odd. In view of this, there would appear
to be advantages in defining the Hall effect as the antisymmetrical part
of the resistivity tensor p,(H), as is done by Jan "%  a¢ o recylt of
the Kohler-Onsager relations, the antisymmetrical part is that part
which changes its sign upon reversal of H. The Hall effect thus defined is
represented by the Hall vector R(H) in Eq. (8.21). It is approximated to
first order in H by the pl, tensors.

The magnetoresistance effects are then defined as those contributions
arising from the symmetric part of p,(H), Tt thus follows that magneto-
resistance is an even function of H — as is assumed in Section 115,

Regardless of the definition adopted for the Hall effect, it is necessary
for the person analyzing the data to recognize what baszic effects are
included in each measurement. In isotropic media where BE___ J, and H
are mutually orthogonal, there is no ambiguity, This, as we have seen,
is mot true when anisotropy exists.

In view of the problems discussed above, there is a growing tendency
to avoid use of the terms Hall effect and magnetoresistance when dealing
with weak-magnetic-field measurements in anisotropic crystals. Instead,
the basic galvanomagnetic coefficients are determined. In those cases
where stronger magnetic fields are used, however, expansions of the
components of p(H) in power series of H are not possible (see Section 65).
Then the galvanomagnetic coefficients as defined in Eq. (8.20) do not
exist. [For additional discussion of Hall phenomena, see Section 114 (2),]

b, Corbine Magneloresistance, Magnetoconductiviiy

We have seen that the ordinary magnetoresistance 15 measured under
the boundary condition that the transverse current be zero [Eq. (9.10)].
It is possible, however, to arrange a shorting of the Hall voltage, so that

M- See reference 1, p. 13
1443 Spch a point of view was adopted by Logan and Marcus. See |. K. Logan and

J. A. Marcus, Phys, Rev, 88, 1234 (1052).
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the transverse electric field is zero, Then, for isotropic media and iso-
thermal conditions, the following form of Eq. (9.5) applies:
T — ol HE, (10.4)
H=H, E,=0
Ir=—on(H)E, (10.5)

It is seen from the first equation that a measurement of the ratio of J,
and E, yields directly the conductivity tensor component o [H), since
the nondiagonal component «, (H) enters only via the shorting current T

] —
A ]
¢ [
L] [ L
¢ ]
5
] A
Carbing Disk Electrode Sharting
tal (o)

Fia. 7. Mechanisms to produce shorting of the Hall wvoltage,

In effect, then, we are determining directly the magnefoconductivity of the
specimen when we measure the ratio of currents appearing in the equation
below
Rk X KX H E"’ =
o) =y e ol Vg (10.6)
() (J )it = Trrl ) E, = const.
The above relation follows at once from (9.8) and (10.4).

The most effective arrangement for shorting the Hall field, so that
(10.4) and (10.5} apply, is by use of the Corbino disk geometry,'** having
highly conducting metal contacts at the center and along the periphery
(Fig. Ta).

e After O, M, Corbino whe invesbgated the circulating secondary currents in a
bismuth disk carrying a primary radial electric current in a magnetic field. 1%
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Originally, much interest centered around the circulating current,
called the Corbino effect. It has been determined by measuring the current

induced in a coil of wire placed paraliel to the disk when the radial current
was reversed about 20 cps  Further determinations of the Corbino
effect have been done by measuring the torque exerted on the current
carrying disk by the magnetic field, Adams“*™ "' established the rela-
tionship between the Corbino effect and the Hall effect.

With the use of Eq. (9.12) for weak magnetic fields, (10.5) may be
put in the form

fr=—RyaHJ,, wr<l (10.7)

where R, and o, are the zero magnetic field Hall coefficient and con-
ductivity, respectively. The total currents per unit thickness, circulating
and radial, are given in terms of the current densities as follows:

5 ta

I.= I Tir)dr, = j Julr)rdt (10.8)

Ty

where r, and r, are the inner and outer radii of the disk, and where
we have associated subscripts r and v with the radial and angular
components, respectively, of J.

Expression (10.7) thus becomes

o Ayl Ty
I, = 5 HIlog it (10.9)

an expression identical with that of Adams, The results given by Adams
for the Corbino magnetoresistance are

(dplpgle, =0 = (Ryay H)2. (10.10)
We shall see in Section 12 [Eq. (12.36)] that this result — derived before
1915 — applies precisely for the case of constant relaxation time, under

us L, L. Campbell, “Galvanomagnetic and Thermomagnetic Effects: The Hall
and Allied Phenomena,” p. 125. Longmans, Green, New York and London, 1023,
Wt g P Adams, Proc. Am. Phil, See, b4, 47 (1915).
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which condition the Hall coefficient and resistivity are independent of H.

Because of the fact that Corbino disk measurements yield directly
the value of ¢, (H) and that the Corbino magnetoresistance does not
saturate at higher fields, it is a wseful technique for studying the high-
mobility semiconducting materials such as those of the III-V com-
pounds, 1 144

Another means for shorting the Hall field is the use of area end contacts
with small length-width ratios of the specimen (Fig. 7b). It was found
by Welker that the Corbino magnetoresistance in n-type InSb at room
temperature could be approximated very closely up to 3500 gauss by
measurements on a specimen of such a rectangular geometry.’¥ Exper-
imental data on a number of length-width ratios for high purity InSb
are also presented by Beer'" Shorting effects can also be produced in a
long specimen by depositing thin metallic strips, or "shorting bars,”
across the surface.'™ This avoids the very low resistance which results
from small length-width ratios. The width-length ratio necessary to
approach the limiting case of the disk within a given percentage can of
course be calculated by the theory of Wick!™ [or an arbitrary Hall angle
(magnetic field intensity).

We have seen that with E| == 0, a "magnetoresistance’ measurement
vields the magnetoconductivity of the specimen. The distinction is that
in magnetoresistance measurements the direction of the current J is
fixed, independent of H, while the direction of E(H) is given by

EL|E, = owlH)|0(H) = tan B

in the two-dimensional case. The guantity 6 is the Hall angle. In
magnetoconductance measurements, the direction of the electric field E
is fixed, independent of H, and the direction of J{H) iz given by

j}'l'l.n.'rt o dn:H”ﬂn[H} = —tan{ Ilﬂ..’li‘{l

in the two-limensional case. Thus, in the Corbino disk, where the
equipotential curves are circles, the current lines spiral at the angles
— B with the normals to the equipotentials.'s

W H. Weisa and H. Welker, Z. Phyrik 188, 322 (1054).
0, Madelung, Nafurwissenschaften 48, 404 (1055),
W A C. Beer, f. Electrochem. Soc. 108, T43 {1858),
W8 H, Welker and H, Weiss, Solid State Phys, 8, 1 {1956); see especially pp, 38-30,
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Use of the Corbino disk for magnetoconductivity determinations is
feasible only for materials isotropic in the plane of the disk, Somewhat
greater flexibility is possible with the large-area-contact specimens.
Such a method has been used by Goldberg in studies on n-type ger-
manium 41 A serious experimental difficulty is the necessity for
effective low-resistance contacts, and the importance of ascertaining that
such conditions have been realized. The problem of contact resistance can
be alleviated, however, by using an array of four closely spaced contacts
at the center of an “infinite” sheet. Two of the contacts are for current
connections and two are potential probes, permitting a measurement of
potential difference with no voltage drop due to contact resistance. In
addition, there are no shorting electrodes which might introduce other
resistive losses. As long as the distance between the contacts is small
compared to the distances to the boundaries, a measurement of the ratio
V{0)/V{H) at constant current, where 1* is the voltage difference between
the potential probes, vields o, (H)fo, (0). For purposes of subsequent
identification we shall call this arrangement a “Corbino sheet."1%*
A conductivity measurement yields directly the magnetoconductivity
inasmuch as the equipotential curves are unaffected — and therefore so
is the direction of E — by the magnetic field. This is a result of the fact
that the boundary condition which involves the Hall angle, and therefore
the magnetic field, has been removed to infinity. The potential distribu-
tion is established simply by the solution of Laplace’s equation subject
to the boundary condition specifying fixed potentials at the two current
contacts. The solution for the potential does not therefore involve the
magnetic field, and the equipotential curves aré unchanged as the field
varies. A similar situation was encountered by Baker and Martyn in
studies of electric currents in the ionosphere when circumstances were
such that the Hall current built up no polarization.'™" It has been pointed
out by Barron and MacDonald that Corbino effects can occur when
measuring very low resistivity metals (for example, very pure sodium at

181 C, Goldberg, Buil. Am, Phys. Soc. 2, 85 (1957).

188 C. Goldberg, FPhys. fev. 108, 331 {1858},
183 The similarity between the Corbino sheet and the Corbino disk was first pointed

out to the author by Dr, 5. W. Kurnick ca, 1856, Salient featuresin the argument

that & = g,y are due to Dr, F. J. Milford.
168h W (G, Baker and D). F. Martyn, Phil. Trans, Ray. Soc., Londoe ARG, 2E1 ( 1BSY)

W. G. Baker, ifdid. ABd0, 285 [1953).
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liquid helium temperatures) where the contacting electrodes have higher
resistivities than do the samples '™

In spite of the experimental problems, Corbino measurements possess
a number of attractive features as tools for studying high-mobility
semiconductors — either through measurements of galvanomagnetic or
thermomagnetic properties ¥

11. MEASUREMENTS ON ANISOTROPIC MATERIALS

In anisotropic solids the transport properties are, in general, direc-
tional. Therefore it is necessary to specify the crystallographic directions
of the currents and the applied magnetic fields. For example, magneto-
resistance may be designated by J'rf[.!:—.r_l, which iz defined phenomenolog-
ically as follows: '

1 H o) o
gy (dp\T_ [E(H) —E{0)]-J
JHE.J: == ( P[i )IJI P ]E{EI] + 3 : {111}

The subscript gives the direction of the current and the superseript that
of the magnetic field. In general, measurements are taken for both
directions of magnetic field so that E(H) is even in H. This point is dis-
cussed in more detail in Section 1154, to follow. It is convenient to define
directional magnetoresistance coefficients for the crystallographic direc-
tions of the current and the magnetic field as follows:

B g (H) = M_:i*?{ﬁ} — (@__ﬂ)]“w' (11.2)

HE POV [y

For longitudinal magnetoresistance, where both sets of indices are
identical, it is customary to write only the lower set, In the transverse
magnetoresistance, H is of course normal to J. In both cases

B || 4. (11.2a)

In a following section (Subsection #) we shall discuss other galvano-
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magnetic effects which are even in H, but where E__, is normal to J,
These phenomena lead to quadratic “Hall” voltages.

a, Weak-Magnetic-Field Region

When wr — or uH e, where u is the mobility of the charge carrier in
the semiconductor — is less than unity, the transport coefficients can be
expanded in a power series in H, as was seen in Section 8. Thus the
electrical transport properties can be specified by the zero-magnetic-field
resistivity and by the galvanomagnetic coefficients, as is seen in Eq. (8.20),
This approach is preferable to that of classifying the experimental data
in the categories of Hall coefficients and magnetoresistance, inasmuch
as it avoids problems discussed in Section 10, which can arise as a result
of joint contributions to transverse electric fields from Hall and magneto-
resistance elfects, The number of independent measurements necessary
to determine the galvanomagnetic characteristics is dependent on the
erystal symmetry, as was illustrated in Section 8,

In the weak-field region, the magnetoresistance varies as H® Using
the notation of Eq. (11.2), we may therefore define weak-magnetic-field
directional magnetoresistance coefficients as follows:

—'-_JHE' " H:,{H}

P, e | .

= lim [ (H)].  (11.3)

N ==l

These quantities appear frequently in the literature dealing with meas-
urements on cubic systems.

(1) Diamond cubic symmetry. In cubic systems the zero-magnetic-field
resistivity and the weak-field Hall coefficient are isotropic. The customary
procedure is to determine the phenomenological weak-field magneto-
resistance coefficients of Eq. (8.30). From this relation and (11.1), together
with the requirement that E(H) be even in H, one obtains

ATy

(11.3a)

(J - H)®
T

-'df;bH‘+c
Po

Let us designate the direction cosines of J and H by ¢ and g, {j = 1‘. 2, .m'
respectively. Then i tg i are related to Akl by an ordinary normalization
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factor, as aleo are s, 0, 15, and mup. The weak-field directional magneto-
resistance coefficient can then be written

VR = b+ clymy)* + i (11.4)

where the summation is from | = 1 to | = 3,
The above form was given by Pearson and Suhl™ who present data
on #- and p-type germanium for the following directional coefficients:

Tiw=b+c+d Vi =b

Tmw=b+c+ |d
Tie=b. (11.5)
Tito =5+ 44

The absence of the upper indices indicates that H has the same direc-
tion as J.

In studies of materials with the many-valley type band structure, it is
of interest to know the ratio ¢/b reasonably accorately. For the model
usually used for n-type germanium, where the energy surfaces are approx-
imated by ellipsoids of revolution oriented along the [111] directions in
k-space, the ratio should be — 1. In order to determine this quantity
from (11.5), three coefficients must be measured. The values of the
weak-field plateaus of dp/p, H* are required, necessitating measurements
at small 4p and at small values of magnetic field, which enters as the
square, Usually extrapolations to H = 0 can amount to uncertainties
of the order of several per cent. Thus substantial experimental problems
are involved in obtaining c/b with good accuracy, Several useful techniques
are described by Goldberg and Howard,'™ which have enabled them to
secure improved results. Their findings give values of ¢/b within 3% of
the theoretical figure for m-type germanium of 6 x 10" carriers cm=?
and lower. Other measurements which have been used to provide informa-
tion on magnetoresistance or magnetoconductance coeificients are the
planar “Hall” effect (Section 10a) and magnetoconductivity (Section 108).
In the case of n-germanium, the planar “Hall” effect does not appear to
yield the accuracy of the more direct methods. ™ The magnetoconductivity

3 €. Goldberg and W. E. Howard, Phys. Rev. 110, 1035 [1958).
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technique is not capable of providing results on the off-diagonal compo-
nents of the conductivity tensor o(H).

Higher order galvanomagnetic coefficients for #-type germanium have
been evaluated by Mason ef al™ Using Pearson and Suhl's data, they
have determined four of the six coefficients of the B9 terms. To determine
the higher order terms in the Hall effect, they did measurements on two
cylindrical specimens, one with its axis along the [100] direction and the
other with the axis along a [110] direction. Hall coefficients were
determined as a function of magnetic field up to 22 kgauss, using the
following equation derived for the case of cylindrical geometry of
diameter d:

Vld Vipd
Ry = THHJIT =T (11.6)
where Vi3 the measured Hall voltage, [ the current density, and I the
total current. The authors illustrate the orientations necessary to ensure
4 zero cross magnetoresistance effect on the Hall voltage for the cubic
crystal. Using data obtained for such orientations, they determine the
two coefficients for the first order correction to B, [ie., the coefficients
of H? terms in the expression for p(H)] and three coefficients'™ for the
second-order correction [i.e., coefficients of the H® terms). From the
results, it is seen that the correction terms on Ry, are least if H is inclined
only slightly from the appropriate cubic axis. Since several errors exist
in the indices printed on Figs. 8 and 10 in the article, the text should be
consulted.

(2) Other crysial systems, In the crystal systems of lower symmetry,
many investigators prefer to carry out straightforward determinations
of the galvanomagnetic coefficients rather than to use the conventional
classifications, which can be ambiguous due to intermixing of voltages
from Hall effect and magnetoresistance. Experimental arrangements
which enable one to obtain the two resistivities and the 16 galvano-
magnetic coefficients (through H? terms) in a crystal such as antimony
have been outlined by Juretschke™™ and by Okada®™ There are three
sets of such measurements, defined by the orientations of J and H with

12334 According to the results obtained by Kao and Katz®™ four independent con-
stants are necessary to specify these terms in the general case
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respect to the principal crystallographic axis e, usually directed along the
g-coordinate axis. In each case the orientation of J with respect to the
crystallographic axes is fixed by the cut of the specimen.

Fio. &8 Muostration of arrangement where J Le and W1 3

As an illustration, consider the schemes discussed by Juretschke® and
outlined below.

Arrangement [, — 1 | ¢, H | J: I we desygnate by ¢ the angle
between H and e, and by § the angle between J and Ox — usually Ox
or Oy is chosen coincident with one of the binary axes of the crystal —
the relationship of the vectors is shown in Fig. 8. We may phrase the
preceding clanse more generally to include systems such as 3m, which
do not possess binary axes, by stating that the (v, z) or the (», z) coordinate
plane is made coincident with one of the three equivalent planes of
reflection of the crystal The angle 6, although arbitrary, is fixed by
the cut of the specimen, and the angle p 15 varied during measurements,
The fields, which are measured in the directions indicated by the
subscripts, are E,, E,, and E__,. By a choice of i appropriate for
the particular coefficients desired, 12 of the 16 galvanomagnetic
coelficients (including through the third order in the magnetic-field index)
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can be determined from this arrangement. Separation is accomplished
by means of the g-dependence. This takes account of the parity in H
if @ is varied between zero and 2o,

Arrangement II. — J|e, H | J: A measurement of E; yields a
value of pg,, in the notation of Eq. (8.36). Although measurements of
£y and E;y yield nothing which was not obtained in I, they are of
interest as checks. The variable angle is that between H and Ox.

Arvangement III. — J || H: An arbitrary angle with respect to ¢ is
necessary to include the determination of pj ,. Both # and ¢ are fixed,
and the only degree of freedom is the reversal of H. Relations connecting
the unknown coefficients py ,, pg 5, and pj | through the angle p with other
coefficients are obtained for Ej and Ey, (.5, . A measurement of E, _,
confirms preceding results. To separate the pi |, g} 4, and p} , it is desirable
to have data for @ = =/2, ¢ = 0, and @ arbitrary (approximately m/4).
Only one specimen needs to be fabricated for this arrangement, however,
since the first two values of ¢ are obtained from the specimens used in
arrangements I and II.

The specimen geometries are usually long thin cylindrical rods, or
parallelepipeds of square cross section. Since the current direction must
be along the length of the specimen, so as to avoid shorting effects
discussed im Section 0%, each orientation of J with respect to the
crystallographic directions requires a uniquely cut specimen, Thus three
different specimens are necessary to determine the galvanomagnetic
coefficients with the scheme outlined above. There is redundancy in the
set of measurements, however, so that a number of cross checks between
the different specimens are obtained,

A variation of the above scheme was used by Drabble®™ in determining
the 10 galvanomagnetic coefficients through H*® terms. This procedure,
in which the direction of H with respect to J was allowed to vary, has
the advantage that only two specimens are required in the three arrange-
ments. The system, again with the principal axis € in the coordinate
direction ¥z, is as follows:

Arvasgement I (* L specimen”) — J | e, H | e: The current J

is fixed at an arbitrary angle 8 with respect to the x-axis, where the orienta-
tion is such that the (x,:z) plane is coincident with one of the three
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equivalent planes of reflection of the crystal. The specimen is rotated about
the e axis, which is equivalent to varying 0 < ¢ < 27, where ¢ is the angle
between H and J. Measurements of E;, E, allow determination of pl,
and four galvanomagnetic coefficients; and E, ., gives a connecting
relation.

Arrangement IT (¢ | specimen™) — 4 | ¢, H | (e x J): Here the
crystal is rotated about the ¢ x J direction and therefore H is rotated
throughout the el-plane, Measurements of £,, E_, and E,_, provide
four additional galvanomagnetic coefficients.

Arrangement T ()| specimen’) — 3 || e: The crystal is rotated about
an axis normal to ¢, and H is of course perpendicular to this rotation axis.
Measurement of E; in this experiment allows determination of pﬂ., Phasin:
and pf,,. Connecting relations are obtained if E is measured parallel
to the rotation axis. The reader will note that the term rolafion axis is
used here to denote the axis about which the specimen is rotated dunng
measurements in the magnetic field. This is in contrast to the specifica-
tion of Drabble, *™ who uses the term to denote the trigonal axis of
the crystal.

In the caze of n-type bismuth telluride, measuremenis with J along ¢
were considered unreliable by Drabble #f al ® since their specimens were
highly subject to ¢racks in directions parallel to the cleavage planes,
Therefore arrangement [[1 was not used. This allowed determination of
nine of the 12 coefficients, and only one specimen was required.

b, Magnetic Frelds of Arbitrary Intensity

(1) General discussion of parameters of interest. In the cases where the
condition evH fm* ¢ < 1 is not fulfilled, expansion of the transport tensors
in powers of i is not possible. Therefore the directional properties cannot
be specified by a certain number of galvanomagnetic coefficients, and the
problem 18 more complicated.

Experimentally, one commonly determines directional magneto-
resistance coelficients "3 (H), operationally defined in (11.2), There are
also directional Hall coefficients written as ER"(H). It is now especially
important to pay attention to the intermixing ol contributions to E___,
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from the Hall field and from the magnetoresistance voltage. To illustrate,
we shall write the general form of the resistivity tensor, making use only
of the Kohler-Onsager reciprocal relations. We begin by writing the
second rank tensor as a sum of symmetric and antisymmetric parts

Pl = ply (M) - pfy(H), (11.7)
pu(H) = gl (H} = § [p},(H) + pj,(H)], (11.8)
pilH) = — pi,(H) = § [p}y(H) — pf,(H)].
Use of the Kohler-Onsager relations with (11.8) yields

palH) = p,(— H), (11.9)
pulH) = — gi(— H).
According to the last relation of (11.8), it is apparent that
pAH) =0, =k (11.10)

As a result ol the preceding, it follows that there are six independent
components in the resistivity tensor p(H). namely,

Py (H) pre(H) + pl(H) pia(H) + pis(H)
p(H) = | pi(H) — pl(H)  pu.(H) pea(H) + pis(H) | . (1L11)
pL(H) — piy(H)  ply(H) — piy(H) paal H)

Although the diagonal elements are even in H, the off-diagonal terms can
include phenomena having both even and odd dependencies on H. Thus,
unless highly symmetrical directions are chosen for H, J, and E, one may
expect complications from these cross effects. The simplification of doing
experiments which avoid the off-diagonal components is not useful, since
standard measurements vield directly the elements of the resistivaty
tensor. To compare with theory, it is desirable to obtain the comductinily,
or inverse tensor; and the inversion process requires a knowledge of all
the components,

Because of the cross effects, it seems desirable to adopt the definitions
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of Hall and magnetoresistance coefficients suggested in Section 10a(3),
namely, that the Hall phenomena are represented by the pf,(H} and the
magnetoresistance phenomena by the pL(H) of (11.11)."*" The Hall
and magnetoresistance fields are then given by

E*(H) = } [E(H) — B(— H)], (11.12)
E'(H) = } [E(H) + E(— H)], (11.13)

where E(H) is the electric field in the crystal when magnetic field H exists.

(2) Hall phenomena. The general Hall vector, R(H) of Eq. (8.21), is
defined by

E*{H) = R{H) = J. (11.14)

The general Hall lield is therefore perpendicular to J, but not necessarnily
to H,® and it is odd in H.

(i) Conventional Hall effect: Many authors adopt the convention that the
Hall field by definition is that field in the direction H x J. We shall
designate the quantity so defined by E;. It i= sometimes known as the
framsverse Hall field, in distinction to the lengiiudinal Hall field, which
will be discussed subsequently., The expression for the conventional Hall
field may therefore be written

'E-:_J H=xJ » EfH)-H x J
Ey = E*(H) Hod H o« d TR LR HxJ (1115

In this convention, the Hall field is expressed in terms of a Hall coefficient

Ry as follows'" "¢

Ey= RyH x J (11.16)

where the subscript / indicates a function of magnetic field. The weak-
field limit is written as R, where

Ky = lim Ry, (11.17)
M—sit

183k This is the convention adhered to by Jan®® and by Herring.%

188 Examples of the adoption of this convention in anisotropic solids for arbitrary
magnetic field strengths are found in references 154-158,

M M. Shibuya, Phyi. Rev. 96, 1385 (1954).
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From (11.12), (11.15), and (11.18) it follows that
Rurl (H)=Ry=4%[BEMH)-H x J —E(—H)-H x J]J(H % 412, (11.18)

Ta avoid duplication of subscripts, we are writing the directional Hall
coefficient Ky as RpnF(H). Since it is not a vector, there should be no
confusion with R(H) in (11.14). The expression (11.18) above is identical

with that given by Gold and Roth 15

(if) Lowgitudinal Hall effect: The general relation (11.14) can, of course,
specify a Hall field which is not collinear with H % J. In particular, we
may consider the direction J x (H % J). This direction is parallel to H
when H and J are perpendicular. The Hall field in question has been
called the longitudinal Hall field by Grabner.'"™ Its magnitude is given
by the relation

E*H)-J H:=J
il I:|J]:=-1 Ifl{bi-li{l ), (11.18)

The longitudinal Hall effect has been investigated both theoretically and
experimentally for s-type germanium by Grabner.'™ It vanishes for
spherical energy surfaces or when the magnetic field 15 parallel
to an axis of rotation of the crystal [t also approaches zero in
the limit of infinitely strong magnetic fields.

(i) Longitudinal magnetic field Hall phenomena The Hall field expres-
sion, Eq. (11.14), can formally vield a nonzero field when H iz parallel
to J, although such a situation is precluded for the conventional Hall field
defined by Eq. (11.16). In most measurements the existence of a Hall
voltage of this type iz ruled out by considerations of symmetry, It has
been pointed out, however, that such an effect, of third order in & or
higher, can occur even in a cubic crystal if J iz not along a direction of

symmetry,'*"

18 T, Gold and L. Roth, Pkys. Ree. 107, 3568 [1957).
18 W, M. Buallis, Phys, Rev. 108, 202 [1958],

1¥6a T Grabner, Phys. Hew. 117, 685 [1960].

Ll Son b 84 of the article by Garcia-Moliner. 428
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(3 Magnetoresistance phanomena. All galvanomagnetic effects which
are even in the magnetic field can be accounted for symbalically by the
following generalized magnetoresistivities:

wplss (H) (11.19)

where only even powers of H are involved and where the crystallographic
directions of E, J, and H are indicated. When E || J, the above quantity
represents the ordinary magnetoresistivity, designated as p(H) in
Eq. (11.2), and the advance subscript 1= omitted. For transverse direc-
tons of E, (11.19) will encompass resistivities leading to even-power
“Hall" terms [Section 10a(l}] and to planar “Hall" phenomena
[Section 10a(2)], Thus

eH-:zFE?;:[H}. respansible for even-power "Hall” terms, E normal
ta J and to H, (11.20)

1l o« H) x J,-pﬂ'ﬂ{ﬁ’}. responsible for even-power terms via planar *'Hall"
effect, E normal to J and coplanar with J and H.

(11.21)

The resistivities in (11.19) are even in i and are given in the usual way
by the double dot product of the symmetric part of the resistivity tensor
with unit vectors in the specified directions. Thus

el (H) = E-prm)d (11.22)

where E and J are unit vectors in the dicection of E and J, respectively.
Hence, for the even-power “Hall" phenomena, we have

M3 g < J-BH)
Hx I - Exa

M« ) .r-'u (H) = (11.23)

- (3 H) x 3@l (3 % H) x 3+ B'(H)
[ = W) = 21p{a) (H) = < H % cHl = ki K‘ﬁul__

(11.24)

where the E'(H) are given by (11.13).



uosuedwos ® 10f pansap ame sjuauoduwios asoys ()70 01 vopeuLiojsuen
a1 ‘()™ TeuosuaIp-oM] B AQ PIqLIDSIP 3G UED S10a1j3 PAAIISqO ay)
18] $¢ 05 BISOYD AlP SUOTAND jJUILINSEIW Y] J1 USAD "OF[Y “sjuawaD
reuoferp-jo a3 u syred sunawiuds osaruou jo asnednq (f)"d — £ (g)*d
‘eiaued up  payd saouAsajal M) Jo Jaqunu e oot pajussasd symsa
wordxe i woy pajou 3q [a se ‘Anammds ySng jo suondanp ut jou
are juaLmo ) pue splag My i xoapdwoos ;ymb aq wes suossasdxa sy
Trr ) wosuay Ayanssag sy jo sjusuodwod jo SwUS) Ul USLUM X ued
HOI}O9S 1] UI PISSOHOSTP SIUSOL[J300 31 JO [[& uayl "Wajsds J1eurpiocas
[Pucdoilo B 0] JANER poeuiisap aae [ opur Py 8101094 0 g
(M) Wiy suon
-nqijuos fue sapnpxa Apndxs vonmugep mo jey) Jdasxa o sng Agq
uaAld JEyl o) e[S ST juaaleod | ey, sewepd s sop voissadxe engp

(z11) H-tlell = p)e = (H > t)-(BA] =%
yey) ssoqop u (82 11) 01 (9F11) woryg

(gz11) e = (= 0] /(- )] Bae =Yg

apm Aew am ‘Ansunuds ajeudosdde jo swagsds sop ‘smyp
(Latr)  dsoadusgpf o= dsoodurs g f idg = Uy

' UL Japao 81 o)
‘(1'01) "by wox aaey am ‘sased yons uj ‘sixe plojaalgy M) o) [PULIOE &
H pue ‘p g jo sueld a3 uaym wasds peuoSin B urio ‘saxe aqGno duofe
aw p pue g uags [e3sAo ogno v m Cajdurexa 1o ‘angy stosig [(gdeol
uotpag] Juatiyfaos Jnauiewoueaed jo ady a3ws v wosy wue powosg
N4 o1 suonnquuod A e 08 Aneunuds jusoggns sel wagsds wp
Nqssod  sT woryeyuasasdar v yong T SE L [TRYS am UM JUSE] 00
IIvH seuepd e jo suay w pessaudxa saumauins st A almpoa sy

o _ufH X l']_ -
08T FEH*A = (=) -mal t
(6z11) v UM LS

t<Hr=n-Wal -
Aq w313 are spage | fivY,, 1amod-usaa asayy Jo) SppRY el

LR STVIEALYR J4OHLOSINY SO SINIRIUNSVIN °[|



bkt EXPERIMENTAL DETERMIMNATION IN ISOTHERMAL MEDIA

with theory, requires a knowledge of the other components of the p,(H)
tensor. Thus the simple results obtained in the isotropic case — e.g,
Eqs. (9.12) and (9.14) — represent a tremendous simplification from what
mayv be encountered in an anisotropic system.

() Tllustrative examples. By measuring a number of parameters from
among those given in (11.14) or (11.18), (11.18) — or in some cases, (11.29)
— it is possible to determine the components of the resistivity tensor
p(H) for specified directions of H. Through inversion of the resistivity
tensor the components of @(H) can be obtained for comparison with theory.

Most of the effort in this direction has been applied to cubic crystals,
in particular, the conduction bands of silicon and germanium, where the
many-valley approximation to the band structure is applicable. Since
mathematically exact evaluations of the transport coefficients for arbitrary
values of H are possible only for guadratic energy surfaces, treatment
of anisotropy by the ellipsoid model (dizcussed in detail in Section 23)
has an important advantage.

The method, nsing ellipsoids of revolution to express £(k), was applied
by Abeles and Meiboom'™ and by Shibuya'™ to germanium and silicon.
Explicit expressions are given for Hall and magnetoresistance coefficients,
in terms of the effective mass ratios which characterize the ellipsoids, for
several crystallographic directions of J and H. A relaxation time propor-
tional to ¢~ % was used, corresponding to scattering by acoustic phonons.
The expressions are easily evaluated in the weak and in the strong magnetic
field limits.

For intermediate field strengths, the formulae for the ¢~ dependence
of p, although tractable, are rather laborious to evaluate. Results are
greatly simplified in the constant-r treatment, which has been carried
out by Gold and Roth.'"™'™ Then the magnetic-field dependence enters
directly through the term wr, rather than via more complicated func-
tions of wr, It is of particular interest to note the large changes in the
Hall coefficients K, for the model representative of sa-type germanium
at intermediate field strengths as J and H are moved off the cube axes.

The experimental arrangements necessary to determine the components
of p(H) for an arbitrary direction of H are discussed by Broudy and

187 B. Abeles and 5. Meiboom, Phys, Rer, 96, 31 (1654,
15% I, Gold and L. Roth, Fhys. Nev, 108, 81 (1956).
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Venables'™ The authors point out the necessity for redundancy as a
check on the homogeneity of the sample. In the stronger magnetic field
regions, the effects from inhomogeneities can be pronounced. General
expressions are worked out, using spheroidal models representative of
the conduction bands of germanium and silicon, for the components of
the conductivity tensor,

Experimental data on Hall coefficient and magnetoresistance at room
temperature in #- and p-type germanium as a function of magnetic field
are given by Della Pergola and Sette '™ Results on the Hall coefficient
in n-type germanium at 77°K have been presented by Bullis and Krag 18!
These authors define a theoretical Ry in terms of E- J x H, where E
is the total electric field in the crystal, rather than the antisymmetric
field used in (11.18). Contributions to the R} defined above from the
symmetrical parts of the resistivity tensor are subsequently removed.
The magnitude of the cross effects at intermediate magnetic field strengths
can be substantial for the less highly symmetric directions, as is seen in
Fig. b.

Much more extensive data are available in subsequent articles by
Bullis'® on n-type germanium and by Krag' on s-type zilicon, Magneto-
resistance, Hall coefficients, and planar “Hall"” coefficients were measured
at 777 and at 300°K for a number of magnitudes and orientations of H.
A detailed investigation of the anisotropy of the Hall coefficient in
germanium containing 5 » 10% donorsfcm?® was done by Miyazawa and
Maeda.'™® A pumber of orientations were studied, and data were taken
over a range of temperatures and magnetic field strengths.

In the valence bands of germanium and silicon, the anisotropy is
much less pronounced than in the conduction bands. Experimental data
on the directional properties of the galvanomagnetic effects as a function
of magnetic field for p-type germanium and silicon are meager in the

1688 |2, M. Broudy and ], D. Venables, Phys, Kev. 1056, 1757 (1857); 108, 1128 (19546).

180 (G, C, Della Pergola and D. Sette, Nuovo cimenfo 5, 1670 [1957).

161 W M, Bullis and W, E. Krag, Phys. Kev. 100, G830 [18958).

162 W, M, Bullis, Phys. Few, 100, 292 [19358),

183 W, E. Krag, Phys, Fev. 118, 435 (1860).

1893 H, Miyarawa and H, Maeda, [. Phys. Soc. fapan 15, 1924 [1860); “'Proc.
of the Intern. Conf. on Semiconductor Physics, Prague, 1960, p. 168, Publishing
House Czech. Acad. Sci, Prague, 1961,
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literature. The orientations used by Della Pergola and Sette in germanium
show a negligible effect at room temperature.’® Results of investigations
by Beer and Willardson™ " reveal fine structure in the Hall coefficient

E H:!i}/ J:
D&
1 1 L L L 1 1 L
0 10 20
w T

Fra. & Relative ““theoreticil” Hall coefficlent [(see text) as a function of

wypt e elrfm  * c) for 3 an the [111] direction {after Bullis and Krag'*'), The

quantity s ® is the longitudinal mass (that associated with the axis of revolution
of the energy spheroad), and wm , * is the transverse mass

of p-type germanium and silicon at 77 °K. Data on germanium for H[100]
and H[111] suggest an enhancement of the structure in the latter case.
This enhancement of structure for Ri'Y was also observed by
Miyazawa'™ in his studies of the anisotropy of the Hall effect in p-type
germanium, using specimens containing acceptor densities ranging from
2% 10 to 1 » 10" cm—3. Magnetoresistance studies on p-type silicon
carried out by Long,'®® show the coefficient 110 to be several per cent
higher than |} at 77°K; at room temperature, however, the difference
is over 30%,. Considerable augmentation also occurs in the ratio of
longitudinal and transverse coefficients at the higher temperature. These
results suggest an anisotropy becoming more pronounced with increase in
temperature. At the higher temperature, however, transport may be
complicated by contributions from the split-off band {see Section 175).

4 A, C. Beer, Phys. and Chem. Sohds &, 507 (1050).
WS H. Miyarawa, in “Proc. of the Conl. on the Physics of Semiconductors,

Exeter, July, 1062," p. 838, The Institute of Physics and the Physical Society,
London, 1962,
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The band structure for p-type germanium and silicon cannot, of
course, be approximated by the ellipsoidal model since the band edge is
at k = 0. Instead, one must deal with degenerate bands, where one or
more is described as a “warped sphere” (Chapter VII).



V.
Transport Coefficients for Isothermal Solids Assuming a Single
Parabolic Energy Band and the Relaxation Time Approximation

This zection i5 devoted to transport by a single band having spherical
energy surfaces: first for exact gquantum (Fermi-Dirac) statistics, and
second for the classical (Maxwell-Boltzmann) approximation. In the
latter case, especially, results are obtained for a number of different
dependencies of the relaxation time on energy, including a mixed scattering
process. The limiting cases of weak and strong magnetic fields are con-
sidered in some detail; and for certain scattering mechanisms, solutions
are given for arbitrary values of magnetic field strength.

12. GENERAL CONSIDERATIONS — EXACT STATISTICS

. Expressipns for Conductinily Coefficrenis

It is instructive to express the conductivity coefficients in terms of
the charge carrier density #. This parameter is given by an integration
over energy of the product of the density of states by the Fermi-Dirac
distribution function, which expresses the probability of occupation of a
given state of energy, designated bye. Thus, using (5.0a) we may write

"= jﬂi_ﬁ}fut_ﬁj de — # J fole) d¥kie). (12.1)
o g=1

The Fermi-Dirac distribution fonction is given by

_I.
=41
iz

fole) = (12.2)
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where x is the reduced energy of the charge carrier and 7 is the reduced
Fermi energy!®s:

x=e[kT; 9 =ChkT. (12.3)
For spherical energy surfaces
A%k = 4xk® dk (12.4)
and
e(k) = [A%/2m*] [A,2 + A% 4 K2 = AT A2 2m®. (12.5)

The expression for the carrier density can therefore be put in the form

1 (:E.m"k'f'
o :

a2
i\ i ) Fialn). (12.6)

The quantity F,.(y) is the Fermi-Dirac function of order 1/2, defined
generally as

Filn) EL"ET ds. 1%.7)

The charactenistics of the Fermi-Dirac functions have been nves-
tigated by McDougall and Stoner'™ and values are tabulated for k= — 12,
1/2, and 3/2. Results were extended by Beer of al' to include & = 5/2,
7/2, 8/2, and 11/2. The behavior of the lunctions for even indices was
studied by Rhodes'®™® and he presents values for & = 1,2, 3, and 4.
Relationships of the Fermi-Dirac integrals to other functions have been
investigated by Dingle'™ and a number of expansions were developed,

Wi For sake of custom, it is desirable to use the same symbol for the Boltemann
constant in (123} as is used for the magnitude of the wave vector. It will be
apparent from the formulse which desgnation i3 meant Fuorthermore, the
Boltsmann constant usoally occurs in coBjunction with T. The exceptions will
be noted,

5% 1 McDoupgall and E. C. Stoner, Phail. Treang. Koy, Soc. London A2RT, 47 (11938).

wr A C. Beer, M. N, Chase, and P. F. Choquard, Hefo. Phys, Acta 25, 529 (1955),

d P Rhodes, Proc, Koy, Soc. AZ04, 306 (1080),

e R}, B, Dingle, Appl. Sei. Research B8, 225 (1057).
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These are sufficiently complete so that integrals of all orders can be
calculated without recourse to numerical integration. In his development,
Dingle introduces the function # (5}, where 3 (5} is defined as

Faln) = Faln)/kl. (12.8)

This representation has a number of mathematical advantages in connec-
tion with interpolation, classical limit as 4 < 0, etc. Also, unlike F,(n),
the function 5, (n) exists even for negative integer indices. Tabulated
values of #,(y) are given by Dingle for integer indices fram — 1 to 4.
A further tabulation of F,(n) by Madelung'® goes through Fi(y).

With use of relation (12.6), the expression (7.15) for the conductivity
coefficient o, (H) can be put in the form

2 1 T af
ki S e gE 10

3 Fualn) il Fofed ™ B '“l' =

i

To gain an insight into meaning of the expression in brackets, we
evaluate o, (H) for the case of constant r, i.e., r independent of &. After
an integration by parts, one obtains
ne T

1+ wied

In the general case, we may regard the bracketed factor in (12.9) as
an average of t/{l1 + o*1?) over the Fermi-Dirac distribution. Thus, for
a general function of energy, ¢le/kT), we define

Cull) = —

Il

H,.  (12.9)

Oulll) =

|. T = const. (12.10)

mE

d

(r-o=—5 5

gl ba

The concept of the average is also brought out by the observation that

Fedul =~ %] e %E d: (12.11a)
L]

The conductivity coefficients can now be written

T

Het
Tyl i) = !_H: <1+T") A H=H, “212}

WO, Madelung, pp. 58-62 of the 1987 “Handbuch, 132
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- 1 :
Tl H) = ( i } s (12.13)
= I}

m* 1+ w? gt
w o= el fm* ¢, and e = 0 for electrons.

In principle, o, (H) and &, (H) can be evaluated for arbitrary values
of i if £le) is known, However, numerical integrations are necessary
in most cases, and calculations are laborious even for simple ENETEY
dependencies such as v~ ", The problem is greatly simplified if one is
interested only in the behavior in the limiting cases of weak and strong
magnetic fields.

In dealing with transport problems, several investigators have found
it advantageous to introduce complex gradients.)™ '™  In fact, it is shown
by Dingle that it is possible to introduce simultaneously two complex
operators, one of spatial rotation around the z-axis to account for the two
orthogonal components of the electrical and thermal gradients in the
zy-plane, and another as a measure of phase lag for treating effects in
high-frequency electric fields. This technique has been used by Moore!™
to present in a concise manner general formulae describing both electrical
and thermal transport for the gradient vectors in the xy-plane with H
along the z-axis. Results are also given for the two-band model, ie.,
where both electrons and holes contribute to the transport process.
Explicit expressions are provided for most of the electrical and thermal
effects with and without magnetic fields.

b. Limiting Cases of Weak and of Stromg Magnelic Fields

For weak fields the denominators in (12.12) and (12.13) are usually
expanded in powers of w.!'™ The results, up to powers of H®, are

L E. H. Sondheimer, Flys. Hew, Bl 401 {1050},

17t K. B Dingle, Physica 28, TO1 {1858).

172 E. J. Moore, Australion S, Phys. 11, 235 (1058).

178 Although such expansicns are made to render evalvation of the integrals less
laboriows, certain mathematical difficulties can arise because of the fact that r
and powers thereof are averaged over energy from & =10 to ¢ = e, Thus
if ¢ iz approximated by an & dependence and 4 < 0, it is apparent that in
the neighborhood of & = 0, the term wr can actpally become very large for
any nonzero value of o, however small. The expanzion is thus invalid in this
region, [f A i3 sufficiently negative the contributions to the integrand from
this region can actually cause the integral to diverge. From a physical staticd-
paint, infinite relaxation times are not realistic; additional scatteming pro-
cesses come in for the low-energy electrons 78
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Ol i) = -li: {ryr-p—{P)r—nw®}, wr <1, (12.14)

2
U:}-tH] e :f: {:Ti}F—!} o, “.2.[5]

For strong fields, the denominator reduces to w®® and the result is

net f 1 1 I .
EF=1|:H-:| 2 F <?> F_um. wT 31 I:IE.]FI-]
ned 1 Hec o
Tay () B e i o =i {12.17)

In connection with the factor {l/t)s_, mathematical difficulties can
arise for T~ ¢, where i is positive.17

It is seen from the preceding development that at weak fields o,
dominates o,,, but at high fields the reverse occurs.

An especially interesting point is that the asymptotic form of o, (H)
iz independeni of the relaxation fime.  Although this fact is shown here
specifically for spherical energy surfaces, it is readily established for a
general quadratic relation, e(k), that of, (H) — the part of o, (H] which
is odd in H — behaves as does (12.17).% This independence of o} (H)
in the high-magnetic-field limit on the nature of the scattering mechanism
has in fact been shown to hold quite generally!™ — for all scattering
processes represented by the general collision integral, Eq. (5.8), with no
restriction on the shape of the energy surfaces other than that the hod-
ograph in the magnetic field (see Section 65) be a closed curvel™ A
similar result is obtained by Lifshitz from his gquantum-mechanical
treatment of conductivity in a magnetic field 42

178 The argument is similar to that advanced for the weak-field case!™ except

that here the divergences arise for sufficiently large positive values of 4.

1" 1. A, Swanson, Phys, Rev, 98, 17008 [1965).

177 I, Lafshitz, M, Azbel' and M. Kaganov, [. Esxpel. Theorst. Phys. U.5.5.E. 80,
230 (1956) [translation: Soviet Phys-JETP 8, 143 (1058)].
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For certain applications, the relaxation time can be approximated
by the simple power-law dependence on energyl’;

T=ast= g ah (1218}

In such cases the averages in (12.14) to (12.16) can be expressed in terms
of the Fermi-Dirac functions by means of an integration by parts to vield

D ?
0ol H) = m;i_.l#[”?} {Told + 8) Fispmin) — w® 1,334 + §) Fas +ilt

T oo (12.19)

2 net :
gulH) & = 3 m* Fisin) @24 + §)Faaailn), (12.20)

2 mel I 1

Ht.’l’{H} = E —m* FLE??] E E

(3 — AF g —aln), wrzl. (1221)

178 This approximation, while helpful in certain cases, must be gsed with castion,
Megative values of i, which are representative of many high-purity semicondue-
tors, yield values of ¥ which increase rapidly as ¢ approaches zero. I low-energy
charge carriers contribute too strongly to the integrals of the type {2} rF—_ p,
oot only will unrealistic contributions resalt, but the integrals may actually
diverge. This situation has been pointed out by a number of authors, '7* and
i% discussed in detail by Brooks. ' Two aspects are involved in the divergence
of the integrals: (1) The inadequacy of (12.18) to represent v satisfactorily
over the range of integration 0= & = oo and {2) the falure of the mathematical
expansion of [1 + @? r¥]7! over part of this region. In regard to (1), the
relaxation time for low-energy carmiers is actually limited by other scattering
processes such as these from neutral impurities, dislocations, and ionized
impurities. In semiconductors, the latter process, with ¢ & ¢92 is usually
the important one.  The difficulty introduced as a result of (1) can be corrected
by taking account of composite or mixed scattering — this preciudes nse of
the simple expression (12.18) — or by applying a suitable cutoff to the low
energy limit of the integral involving {12.18).1%

The difficulty 10 item (2} can, of course, be owvercome by avoiding the
expansion and obtaining numerical evalvations. Where classical statistics are
applicable, the integrals can sometimes be evaluated in terms of tabulited
functions (see Section 13).

Brooks points out that the factor determining which situation predominates
is whether w® v® is smaller or larger than unity at that energy for which ¥ reaches
ity maximum when the scattering process effective at low energies is taken
into account.

17¥ Ses for example, p. 2533 of reference 44.

188 See pp. 130-133 of reference 33; and, in particular, the article by Benadek ot al.*2"
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For the case of scattering in semiconductors by thermal lattice vibra-

tions through acoustic modes (i = — §), and scattering by lonized
impurities (4 — #), the weak-field expressions reduce to those given by
Madelung '™ For A = — }, the product (3% 4 §}Fy; 0() becomes

indeterminate. It can be shown that the limit is given by Dingle's function
F_,(n}, which is identical with (1 4 & ")~% One can, of course, insert
the specific value of 1 in (12.18) and evaluate directly the second term of
(12.14) by means of (12.11). Since the integrand contains no powers of
%, there is no partial integration and one obtains directly & dile). For
a scattering process approximated by (12.18) with & < — §, difficulties
can arise with expansions (12.19) and (12:20)."%'™ A similar situation
iz apparent with (12.21) for £ = §.17

Madelung also gives the form of the integrals when mixed scattering
by thermal lattice vibrations and jonized impurities is considered. For this
cage the relaxation time 15 approximated by

I == 1IIIT;__ b ity = |:T':_D:I_1 Al {I_rﬂ:l_j g HE, {12-33]

In the present case of exact statistics, the integrals must be evaluated
numerically.

¢, Comductivity Mobility

We shall define a general conductivity mobility, u, by the relation'®™

g(H}) = — mepln), ¢ =) for electrons. (12.23)

The quantity defined above is a function of the reduced Fermi energy
{measured from the bottom of the conduction band for electrons) and of
the magnetic field intensity H. The quantity y is often referred to as the

degeneracy parameter. The value of the conductivity mobility for

1808 The maobility, which is the charge carrier velacity {suitably averaged) per unit
electric field, should strictly carry a negative sign for electrons and a positive
gign for holes. This is the convention adopted in (1223}, There is considerable
tendency in the literature, however, to regard § asz a positive guantity and to
take careof the polarity of the charge carriers exphcitly by means of the algebraic
gigns preceding each terme. This latter convention will be adopted here whenesver

g 8 supplied with-a subscript to denote a particular band, especially the electron
or hole band,
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vanishing magnetic fields is denoted by pyln). In the limit of classical
statistics, # < 0, the mobility becomes independent of %, and is written
as u and p,, respectively.

By using (9.13), (12.12), and (12.13) we find that

Tana L T A A i T
= m* <] + et tj'!};:_]}T v <| +|'.!'.-|'.E-T.=;) [-'_|:|,-'II <i = E fLrﬂT:l}F—El r

(12.24)

Unless specified otherwise, it is the zero-magnetic-field mobility
which is usually quoted in the literature. Thus (12.24) zimplifies greatly
to give

pol) = — (efm*) {Thp_p,  e=0 for electrons.  (12.25)

d. Hall Coefficient, Hall Mobility, and Magneloresisiance

The expressions for the Hall coefficient, conductivity, and Hall angle
in isotropic media with H (0,0 H) and the boundary conditions
fy=0T|dx = aT|dy =0 and E = [ = 8Tf3: =0 were given in
(9.12) to (9.17), namely,

Ry = pyH)[H = g (H) H o.M H) + 0 {H]}], (12.26)
alH) = LplH) = (0. 2H) + out(H) o),  (12.27)
EyE,; =tan fl = g, (H) |0 (l) = Rya(H)H. {12.28)

It is not necessary to indicate antisymmetric parts of the p . and the p .
(see Section 11&) since in isotropic media there are no symmetric contribu-

tions to the off-diagonal elements.
It is customary, especially in the weak-magnetic-field case, to introduce
a Hall mobility, 8 defined by means of (12.28). Thus

pf Hic = tan f, (12.29)
) (12,20a)

181 Sea, for example, p. 208 of reference 32,
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We shall define this mobility parameter in a general manner for
arbitrary magnetic fields and degree ol degeneracy™:

w¥(n) = Ryo{H)e. (12.30)

A useful relationship follows fram (12.28) and (12.29), namely,
TuylH) = o.(H) tan § = (u¥ H[c)o,.(H) (12.30a)

= Ry alH )\ Ha.(H) {Gaussian units, H = H,).
The Hall mobility in the limit of vanishing magnetic field is designated by
i) = Ryo,c. (12.31)

In the case of classical statistics, the notation is g™ and uy”, respectively.
The transverse magnetoresistance, Eq. (9.14}, in an sotropic system
15 given by

dp o) _,_ @, _ OulH)onl0) — e NH) — ag¥H)
P P alH) au(H) + 6., *(H)

(12.32)

The Corbine magnetoresistance (see Section 106) is measored under the
conditions that the transverse electric field, rather than the transverse
electric current, be zero. Accordingly, we have

2ull)
e L .
(dpipele, = ol H) (12.33)
By means of relations (12.28), the Corbino magnetoresistance can be
written in terms of the ordinary transverse magnetoresistance and the
Hall angle, thus

19t |s important to keep in mind that the Hall mobility — cectainly, as the term
is commonly used — is indicative of the electronic processes in a given band,
If multiband comtributions to the tranaport occur, then there is associated
with sach band a Hall mohility — as there is also a conductivity mobility,
Il K is the measwred Hall coefficient of the material, then (12.30) and {1231}
cannot be gsed unless single band conduction occurs. To use these expressions
for multiband transport, requoires that we determune Ry or K, for the band in
guesfion. This sitnatyon has caused consderable confusion in the literature.
In particular, formuolae such as (12.31) have been used in cases whers intrinsic
conduction is significant {both electrons and holes present) and where thers
are degenerate valence bands (several types of holes having different effective
minsses and mobilities),
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(dplpole, -0 = (1 4 tan®#){dp/py) + tan®f (12.34)
= Adpjpy + [p(H)/py]| tan®f (12.35)
= Aplpy + Ru® o H)a(0)H? (12.36)
H 2
= Apfpy o 2ol (# tﬂ}H) : 1237
i) £

The relationship (12.34) has been given by Madelung 148

Although explicit expressions can be given for all of the above coeffi-
dients by means of (12.12) and (12.13), we shall discuss only the results
in the limits of low and high magnetic field strengths. For weak magnetic
fields, wr < 1, one obtains

; Ty ) 1 1 {r*¥%_p
Ry=1 E . o PR S A
o HJ_T"[ i P Ty v e =0} for electrons,
(12.38)
e e :
1) = S g {12.29)
po'l) _ (Fr-p (12.40)

g} . {1’}%—1’: '

a — (5
"dp = (r)r-p {T:_:F_.n (rh)r =B 2 wmT < 1, {12.41)

o {thi_p
(-‘51’3) B inf L TP 5 | (12.41a)
Po/E,~1 {Thr_p
Thus, in the weak-magnetic-field case,
(Aplpale, =0 = dplps + w* (+2)5 —pl{T)i - (12.42)
= Aplpg + L™ H{c)2 (12.43)

The above expression is obviously the weak-field version of (12.37). In
view of (12.25), the condition wr <1 is, for practical purposes, equiv-
alent to

g Hije < 1 (12.44)
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where the Gaussian system of units is implied. If laboratory units are
used where u is in cm?volt-sec and H in gauss, then the condition is

pig H 108 2 1. (12.45)

A sipnificant point, apparent from the preceding, is that the condue-
tivity mobility pg invelves an average of 7, the Hall mobility u,” includes
averages of 2, and the transverse magnetoresistance coefficients include
averages of 9,

[t is also possible to define a magnetoresistance mobility, inasmuch
as the dimensions of ApfaH? are those of a mobility squared. However,
the factor of proportionality is somewhat arbitrary. It is not possible to
adopt the same convention as that used for 4", which in the constant-r
approximation reduces to u,. The reason 15 that the magnetoresistance
vanishes for constant r in our isotropic model. It is necessary, therefore,
to base the definition on a model where 1 is a simple function of energy
— as, for example, the ¢ ' case representative of thermal scattering.
Becanse of this complication, further discussion of magnetoresistance
mobility will be deferred until later. It would be possible, of course, to
consider 4 mobility based on the Corbino magnetoresistance in connection
with the constant-r model. Howewver, it seems better to treat both types
of magnetoresistance together (see Section 154).

For the limiting values in strong magnetic fields, the following rela-
tionships develop:

N =H]im [V Ha[H)] = — 1/nee, ¢ =0 for electrons. (12.46)
This particular relationship, (12.46), holds not only for spherical energy
surfaces as derived here, but under quite general conditions (see discussion
in Section 125),

Where it is possible experimentally to reach the strong-magnetic-
field plateau, Eq. (12.46) is an extremely useful relation. For example,
we can obtain very simply the carrier concentration, without being
specifically concerned about the scattering mechanism or the shape of
the constant-energy surfaces. The conductivity mobility is obtained
directly through use of (12.23), namely,

pln) = RealH)e (12.47)
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and
() = Regge (12.48)

The latter expression was used by Harman ef al.’® to obtain mobilities in
f-type germanium.

Furthermore, by measuring both strong- and weak-field Hall plateans,
one has determined the ratio of Hall and conductivity mobilities for weal
fields, that is,

tg" () () = Ry/Ro,. (12.49)

The relation between Hall coefficient and carrier density for a single band
15 often written as'™?

Ky = — rfnec, # =1 for electrons (12.50)

where, in general, r depends on the scattering mechanism and on the
nature of the energy surfaces. The above expression can be generalized
to apply for arbitrary values of H and degeneracy, namely,

Ry = — ryln)inec, e =0 for electrons. (12.51)

The Hall coefficient factor r{n) depends on H, on the reduced Fermi
level % (except in the limit of classical statistics), and on the scattering
mechanism. In the general case, it also depends on the band structure.
Experimentally, however, it is determined by use of the relation

BylKw = ruln). (12.52)

For the ordinary transverse magnetoresistance we obtan in the
strong-magnetic-field limit

Aplpg = (Uthr_p{the_n—1, wril (12.53)

and for the Corbino effect,
(Aplpole, =0 = [@Xthr—pl{lfthe-p} = 1, or=l  (12.54)
= [{thr —p/{1/T}E - p}®. (12.55)

Thus, we see that the magnetoresistance becomes independent of w,
i.e., it safurates at high fields. The Corbino magnetoresistance, on the

other hand, goes as H? at large fields. This is to be expected becanse of

188 T, Harman; B, Willardson, and 4. Beer, Phys. Hee. 4, 1065 (1854},
15 Sea for example, V. A. Johnson and K. Lark-Horowvits, Phys Reoo 70, 178 (196,
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the loss of the Hall field in the Corbino experiments. Actually, at
extremely large values of wr, the Corbing effect 1s found to deviate from
the H? curve. Possible causes are influence of minority carriers (Sec-
tion 17a), inhomogeneities in specimen or magnetic field (Section 27},
or orbit quantization effects [Section 28).

D000 | T T T | | 1 T
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Fig. 10. Magnetic-field dependence of transverse magnetoresistance and Corbino
magnetoresistance in InSh specimen. Data are also plotted to provide an exper-
imental chick of the theoretical relationship, valid when Ry saturates

A | S Y | [ = 88
2[6)E-re -

The ordinary magnetoresistance was measured on a parallelepiped fabricated from
the Corbino disk (after Beerl®4),
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One can show quite generally that a deviation in the Corbino magneto-
resistance from the H® dependence at strong magnetic fields results from
4 nonsaturation of the ordinary transverse magnetoresistance, This can
be seen from the general relation given in Eq. (12.36) which, in the region
where the Hall coefficient saturates, can be put in the form

. sy
[(F‘f!} = (Eﬂ B (#ﬂ_‘r) , kA (12.55a)
Py E =0 fo/l Po & :

where the conductivity mobility is given by Eq. (12.48). If laboratory
units {u in em®volt-sec and H in gauss) are used, then the factor ¢ is
replaced by 108,

An experimental check on relation (12.55a) is available from some
unpublished measurements of Bate!™ The procedure was to measure
first the Corbino effect at 77°K as a function of magnetic field on a disk
with soldered annular electrodes. Since the disk was 12,9 mm in diameter
and 2.28 mm thick, with a hole 3.35 mm in diameter at the center, it
was subsequently possible to cut a sample in the shape of a rectangular
parallelepiped, and then to measure directly the Hall effect, resistivity,
and transverse magnetoresistance as functions of field at 77°K. A deter-
miination of the resistance of the contacts and connecting leads of the
original Corbino disk was then made by subtracting from its measured
resistance that resistance caleulated using its dimensions and the resist-
ivity measured on the parallelepiped. The total resistance of the contacts
and leads was about 35%, of the disk resistance at zero field. The Corbino
data were then corrected for contact effects by subtracting the confact
resistance (azsumed independent of magnetic field) from the resistance
of the disk in the field. The resulting data, along with those of the
traneverse mapgnetoresistance, are shown in Fig. 10. The fairly goad
coincidence of the circles and the theoretical line indicates a satisfying
verification of the relation between Corbino effect, transverse magneto-

registance, and conductivity mobility.

e, Arlbatrary Magnetic Field Stréngths

When H is arbitrary, expansions are not possible and the fractional
functions of the relaxation times shown in (12.12) and (12.13) must be

—r—

184 See A, C. Beer, f, Appl. Phys. 82, 2107 (1961).
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used. The expression for the conductivity coefficient o, (M) assumes the

following form for the simple power dependence of T, namely, T =1, %t

o
A T e I AU g

= Zo g H=H, (1256
3 m* Fysln) * l: )
[k

”::[H-:' - 1 _:"".i LT E’::I.-

where

¥y = mi (12.57)

It is to be noted that &f,/éx is a negative quantity.

It 15 convenient to express 7, in terms of the zero-magnetic-field

conductivity mobility uy(s), where o, = — newyln) [cf. Eq. (12.23)]:
e e B : .
tgln) = 3 3% Faaln) Fazielnitg g =0 for electrons. {12.58)
Thus
= e L wes gy )
o) = megoln)[(2+ D Fscian) | o ghds  (1250)
il
and
3F5zin) lyﬂm}lﬁ']*
= 20+ HF 5 12ln) i (12.94)
Similarly, for @, (H), we obtain'*
e Lo [

Oy (H) = — nepg{nlp 1* (& 4 3 Faq va[‘-’f]l"j T+y,+ ox dz,

H=H, (1281)

1848 In these expressions the sign conventions are: For electrons: ey ¥, Mt and w > 0
iy <= 0. For positive carriers ¢ 9,49, and w < 0y, > 0.
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13. CoMMoNLy ENCOUNTERED SCATTERING MECHANISMS — Exacr
STATISTICS

Appropriate descriptions of the scattering of charge carriers in solids,
even in the cases considered here where the processes can be represented
by relaxation times (Section 6), are complicated, and the transport
integrals have been evaluated principally for certain specialized cases.
We shall consider the effects of several of the more representative scatter-
ing mechanisms on the galvanomapnetic effects,

An analysis of the scattering process itself will not be presented.
For information on these aspects, the reader is referred to the review
articles by Brooks'® and by Blatt,'® to Wilson's book, ¥ and to literature
to be cited later (e.g., Sections 25, 30, and 31). The case of conduction
in thin wires and films of metals is included in an article by Sondheimer, 188
We shall discoss the energy dependence of the relaxation time char-
acteristic of the scattering mechanisms, and shall present explicit evalua-
tions of the transport parameters for each Tie).

a. Scatfering by Thermal Laltice Vibrations

At this point, it is desirable to restrict our scope to sermimetals and
semiconductors, Most of the preceding developmments have been sufficiently
general and would apply to metals, with 5 = 1. The interaction between
the charge carriers and the lattice vibrations, however, is very complex.
It therefore seems desirable to take advantage of the simplifications
which result from the lower concentration of charge carrers.

One of the simplest kinds of interactions between carriers and lattice
is the scattering by the longitudinal acoustic modes of the lattice vibra-
tions, i.e., by the emission or absorption of an acoustical phonon. In
such a case, the relaxation time is given by'™

Ml T A {13.1}

188 Sep p. ldd £f. of relerence 33,

I8¢ Tag p, ZRT i, of reference 44,

18T Sap . 251 H. of reference 9.

1 E.H. Sondheimer, ddvances in Phys, 1, 1 {1952),

1883 The designations T, amd 7% will be used interchangeably in this article to indicate
the energy-independent factor in the relaxation time, depending on' the
particular combinations of subscripts or superscripts.
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It will subsequently be shown that the above relation leads to a T
temperature dependence for the conductivity mobility,

Calculations based on (13.1) have been very useful in studying the
properties of semiconductors where the temperature and degree of purity
were high enough so that the scattering by ionized impurities was not
appreciable ™ 1*!  When fairly good quantitative agreement between
theory and experiment is desired, however, it is usually necessary to
consider additional mechanisms of interaction between the carriers and
the lattice for a number of semiconductors.™ ™  For example, in p-type
germanium the influence of the optical modes is significant; in semicon-
ductors with band structure described by the many-valley model, the
effect of intervalley scattering may be important. Finally, if there are
two unlike atoms in a unit cell so that optical vibrations can produce an
electric polarization (polar solids), then further complications occur.
These more sophisticated considerations will be discussed later in connec-
tion with the individual semiconductor, or class of semiconductors,
requiring such treatment.

The form of 1. in (13.1} for acoustical mode scattering has been
presented by a number of authors % The particular result we
shall quote here arizses most directly from caleulations based on the concept
of a deformation potential "™ This scheme is applicable when strains
vary slowly with interatomic distances so that the solid can be treated
as a continuum, and local deformations produced by the lattice waves
are similar to those in homogeneously deformed crystals. The mobilities
of the carriers are related to shifts of the band edges associated with
dilatations due to the longitudinal waves. The technique has been
extended by Hunter and Nabarro™ to include inhomogeneously deformed
lattices and also the changes in effective masses of the electrons with strain,

189 Eee, for example, the results given in Shockley's book.?®

180 G, L. Pearson and J. Bardeen, Phys, FKev. 70, B85 (1049).

ikt P. P. Debye and E. M. Conwell, Phys. Rev. B8, 693 {1854).

i E. M. Conwell, Proc, J.R.E. 48, 1281 (1988).

1#8 See p. H60 in the article by Sommerfeld and Bethe 84

M T Seitx, Phys. Hev. T8, 549 (1948},

18 W. Shockley and J. Bardeen, Phys. Rev. 77, 407 (1850).

i ]. Bardeen and W. Shockley, Phys, Kev. 80, 72 (1950).

181 5. C. Henter arnd F, R. N. Nabarro, Proc. Koy, Soc. A220, 542 (1053).
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The theory is used to analyze effects of edge and screw dislocations in
metals, with specifical calculations for copper and sodium.

The deformation potential calculation gives the following result:

Tre==1 0 x- 10 (13.2)

where

h® pug®
P l.l'_E lm-m:&?ﬁ (3.9

The parameter p is the density of the solid, w is the velocity of the
longitudinal sound waves, and E; is the change in band edge encrgy per
unit dilation. The energy E, i related by a numerical factor to the interac-
tion constant € appearing in the earlier theories of lattice mobility, ' 1919
It can be estimated from independent measurements such as changes in
energy gap with pressure and with temperature.'™ Since E, is essentially
constant with temperature, it is seen thal 1,9 varies as 7%,

When (13.2) is used to evaluate the coefficients defined in the preceding

section, one obtains for the conductivity mobility in the zero-magnetic-
field limit,

2 er® Foln) }2 ek pu F ofm)

L = k = 134
He (1) T8 m® Fialn) | 3E, S m*BRTYEF a(n) (13.4)

and for the corresponding Hall mobility

1 ﬂ"l'j_',u B |n{:lﬂ

ML\ o ; 0 for electrons. 13.5
g™ ) T2 mr E S B i iz

Thus, the mobilities have mass and temperature dependencies of m*~%*
and T, respectively, for scattering by acoustic mode lattice vibrations.

The other quantities in the zero-magnetic-field limit are

ulm) 3 F_ia(n)Fizn)
rokin) = T =L P (13.6)
4 ".. F_am) 1 F_:'_fﬂl]'r] o 13.7
(-an] S (an _Jd;i'r 4 Faln) ' el P
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where #_,(n) 1= Dingle's function, Eq. (12.8):
F_n) = (e~ + 1)L, (13.8)
The Corbino magnetoresistance 1s given by
{-:'1.P'|".Pg:|ﬁ =02 {wre)F_ (n)/F, (0], mr < 1. (13.0)

Both (13.7) and (13.9) can be expressed in terms of the conductivity
mobility, since with the use of (13.4) one obtains'™**

3 .'.1[!}] j-lll' H
~ W (13.10)

ELITL. =

In the limit of strong magnetic fields, the corresponding expressions
are

(Aplpolt = (B0} {Foln)Fyln)/ [Fialn)1®) — 1, wr1, (13.10a)
(AplpolE, -0~ @ T ¥ Foln)[2F,(n),  wr>1  (13.11)

9 Fis tH\?
~ if"uw;‘t’?;w(mr ) ,  wnsL (13.11a)

For the case of arbitrary magnetic field strengths, the expressions
(12.59 - 12.61) must be utilized. With i = — } for lattice scattering,
we obtain

- -1

aeil HY = nepg f*}}r i :I! W dx,  e>0 for electrons, (13.12)

yt 4 x 8x

12
oot = — nepgt) L L, s T ds (13124}
where

3Fyaln) |* [t ()i |
i | o B

It is to be noted that in the present sign convention u,"(n) is negative
for transport by electrons. '
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b, Scatfering by Tomized I'mpurities

The usual treatments of the scattering of carriers by an array of
ionized centers lead to a relaxation time given by an expression of the
following type 18

ol o P S O i

et Ny gint, T o) * [15:8)
where x is the reduced energy (¢ = x£T), g(n*, T, x) is a slowly varving
function, & 1s the dielectric constant, N, is the total density of ionized
impurities, and »* depends in general on both N, and the carrier con-
centration, 1.e., on the degree of compensation,

The problem was originally treated by Conwell and Weisskopf, 1%
who considered the Rutherford scattering of each ion independently. The
divergence arising from the increasing contributions at small angle
scattering was removed by arbitrarily cutting off the scattering cross
sections at an angle corresponding to a closest approach of half the average
distance between impurities. The Conwell-Weisskop! theory gives the
following result for g(x*, T, 2):

gln*, T, &) = In [1 + (KRT /e N2 22), (13.14)

In subsequent work by Brooks and Herring®® and by Dingle
a screened Coulomb potential was used. This screening, which takes care
of the divergence difficulty, arises from the fact that charge carriers
distribute themselves around the impurity and cancel its field at large
distances. Let us designate this screening distance, ‘or Debye-Hiickel
length, by a, defined in terms of the screened scattering potential

|Flr)| = (el Kr)e— . (13.15)

188 A faelor of 2 appears inadvertently to have entered the numerator of this
equation given in the articles by Brooks!'*® and by Blatt!®®, The result guoted
hers 1% in agresment with the results of other atnthors to be cited later. After
averaging over energy, (13.13) vields the same g7 as is quoted in all the lit-
erature examined.

19 E AL Conwell and V. F. Weisslkopl, Phys. Rev. 77, 383 (1950).

200 Son H, Brooks, Phys. Rev. 88, 879 (1951); see also references 183 and 191

Wi R, B, Dingle, Phil. Mag. [7] 48, B31 {1955).
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The slowly varying function g in Eq. (13.13) can then be written™: =
gln*, T, x)=1In(l + z) — 21 + =), z = (2ka)t (13.16)

where & 15 the magnmitude of the wave vector of the charge carrier; and the
screening distance "a” 15 a function of #*, T, and x. It is irnpu:u]'tant to
point out that assumptions inherent in the classical derivation, that is,
(13.14), require essentially that

ka3 1. (13.17)

The quantum-mechanical treatment, which leads to {13.16), is based on
the Born approximation, and it is pertinent to note that in this range of
validity, (13.17) is satisfied for representative values of the parame-
ters.!™*™® Hence we may state the range of validity of the treatments
discussed thus far to be given by

2 1. (13.18)

(ther considerations pertinent to the range of applicability of conventional
scattering theory are discussed in Section 31.

Consideration of the elastic displacements of the lattice as a result
of polarization of atoms surrounding the impurity ion was done by
Horie ®® His results give an equation identical to (13.13) except that the
slowly wvarying factor g(n*, T, x) is more complicated than is the
function in (13.14) or (13.16).

When only impurities of one sign are present in the crystal, the
screening distance is the same order as the mean distance between impu-
rities and the Conwell-Weisskopf and Brooks-Herring, Dingle treatments
give closely the same results. Where compensation cccurs, however,
and the charge-carrier density is less than the ionized impurity density,
the latter formula can give a lower mobility for the same N,, because
of the reduction in screening for smaller s,

By using the results obtained by Dingle, we can write an explicit

expression for z, which for a single type of charge carrier can be put in
the form

102 M. Sclar, Phys. Rev. 104, 1548 [ 1),
M3 C. Horie, Sei. Nepis. Téhoku Univ. B4, 29 {18850),
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. AEmr(RT)? [ Eupalr) (13.19)

where # is the density of charge carriers in the conduction band, Eq. (12.6).

Where both electrons and holes are present, the reference®™ should be
consulted.

In the limit of classical statistics, » < 0, relation (13.19) yields the
Brooks-Herring expression if » is replaced by #*. The density #* can
differ slightly from the carrier denzity » when compensation occurs. '™ 1%
The explicit expression will be given in the section dealing with classical
statistics.

Evaluation of the transport coefficients presents somewhat of a
problem since the integrals containing (13.13) cannot be evaluated
analytically. However, in view of the requirement that z 3% 1, it i5 seen
from (13.16) and (13.1%) that g(n*, T, x) i1s a slowly varying function
of x, so that fairly good approximations are possible. The procedure is
to evaluate the function g(n*® T, x) at an appropriately chosen value
of x, designated by #, and thus to take it outside the integral. One thereby
obtains

L]

] > af,
P 1T {1 E; dx.  [13.20)
i

2 1
f.:'l"‘.:}l_-_ R [ :-I' BT
3 Fiply)| gn®, I, 1)

The value of £ is commonly determined by the condition that the integrand
remaining after the removal of g(»* T, ) be a maximum at © = &
This technique was used in the original caleulations by Conwell and
Weisskopf. An alternative procedure, suggested by Dingle ®" is to
choose £ as that value which, when used as an upper limit cutoff for the
integral remaining after removal of g{n*, T, %), yields a median value,
Sinee the first method of determining % appears most consistently in the
literature, it will be considered further. It would, however, be interesting
to have a quantitative comparison of the two techniques.

For determining transport coefficients in the limiting cases of weak
and of strong magnetic fields — and because of the complicated integrals
these are the only examples which will be considered in the case where

an arbitrary degree of degeneracy exists — it is necessary to know averages
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of different powers of r,, These are given in (13.20), where 7is determined
by the condition
(a2l |0x) ]y = y = maximum, (13.21)
From the above, one obtains
[£—3s + 1)f2] = [ 4 3s + 1)/2] exp (y — 5. (13.22)

It is important to note that § depends on s and on 5y (except in the classical
limit). Thesignificance of this peint has been brought out by Mansfield * ##

Carrying out the integration in (13.20) gives

- . E 3—5-‘-3 f‘[].. 5.1!!'” =
(xr)r-p & E[ 2 ] Flﬂ{?ﬂ ﬂ.i’_.,j (3.5

where g(n*, T, £, ) is abbreviated by g(z, ) with £, given by the
solution of (13.22) for the appropnate values of & and 5. The quantity
7,? is defined in (13.13),

The mobilities and galvanomagnetic coefficients representative of
ionized impurity scattering are then given by

Hoy—  2haln) e 2F(y)| 2@KNRTPE }
Hg (1) F:,E{Tj} m® g %1.0) }'I.‘Il'ﬂ 8 el N‘ ﬂfLﬂ] . (13.24)
it _AF m{rﬂg'{u.,n[ 212 KR TN
He 1) = = 3 Folmei(fs,) |m@m* @8N (5] A3E8)
pg"t(m) B Fraln)Fusln)e®(iL,)
F 4 . — = i e
L o e NS 3P T iam.
(ﬂr) ds Iiﬂlrﬂﬂ"{xul EF_rgzﬂ_rJ]'!.'_‘_{fh-.l] ” " or®
Po Fyln)e(7as) 2F o(n)i*( f2) :i-ﬁ..}
(13.27)

iﬂ): EF!:;”gl{fH} wr® A P
(F- g0 Falnga,) el 5 i B

P8 R. Mansfield, Proe. Phys, Soc. (Lomdon) B8, To (1056).
8 K. Mansfield, Froc, Phys, Soc. (Lowdon) B89, 862 (1966).
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In the limit of strong magnetic fields, one obtains

o ?

('—!.E'); e ""F—I“H'F:t'fh_:r-'l f i) = 2 | {13.29)

e - L
Pa 3 Fyuln)]? gl %)

(i’f)’ ~ SFalnle(Fia)
E
Pa Ky=0 "F-:{f.i']ﬂ”—l.s.l]

(I A

Lee P g (a1, 1%, =1, (18.30)

The parameter x* | is introduced inasmuch as the treatment culminating
in Eq. (13.22) breaks down when s = — 1, since in such cases the integrand
with g(x) constant no longer possess a maximum. The designation .
therefore, has no meaning. The =*, can, however, be determined by the
method of Dingle [see discussion following (13.20)], or the complete
mtegrand including the g{x) can be handled by numerical methods.

The factor wr®/g can be expressed in terms of the conductivity
mobility at zero magnetic field by means of (13.24), thus

i 4
ﬁ;‘{—*.: - — [5}.‘%3—” IWI, g (n) < 0 for electrons. (13.31)
Several investigators have made studies of the range of validity of
the simplified treatment of the impurity scattering problem presented
in this section. Inasmuch as explicit results were obtained only for the
case of classical statistice, detailed discussion will be deferred ontil later,
We shall point out here, however, that it s generally desirable to take
aceount of the behavior of g(n®, T, Z, ) when plotting the temperature
dependence of uy'(y) and g™ (n). Also in calculating ry' (%) for relating
the Hall coefficient and carrier density, it is best to determine the values
of g(#y, ) and of g(%,, n), rather than to replace their ratio by unity **4%%
In any case, it appears quite essential that the theory be applied only
for those cases where z % 1, as specified in (13.18).
The general expressions (12.59) - (12.61) for the case of arbitrary
magnetic field strengths, when used with the relaxation times given in
this section, yield formaliy:

E(F1y) 7 % 1 o
“:‘{H""”'“r{’”sﬂhij T3 for e gl e 1O
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=

. Fizimet(#1) u' H I
g |H) = mepgl(n) F 2 (n) q p L + lerg(x)]® x® g¥(x) 22 o
L]

(13.33)

where ¢ > 0 and pu,'(y) < 0, for transport by electrons. The value of
£, , is given from (13.22) with & = 1; the g(x) is, of course, the function
written as g(n*, T, z) in (13.13).

In the above equations, g(x) now also occurs in the binomial denom-
inator. Therefore, the method for obtaining an approximate value of
the integral by replacing g{x) by a constant g{%), is not so simple as in
the case of (13.20), The value of # — that is, the value of ¥ which causes
the integrand with the g(x) replaced by g(i) to be a maximum — is now
a function of wr,%g{#) as well as of . For arbitrary values of », there
is not an overwhelming advantage in using this procedure, inasmuch as
a numerical integration is still necessary after the g(x) is replaced by g{£).
Therefore, one might as well work directly with the integrand containing
the g(x). This is obviously true if results are required for only one value
of n* and of T [see Eq. (13.16) and following] so that the other parameters
in g{x) are constant. Of course, if a number of values of n® and T are to be
used, the g(#) technique can save repeated numerical integrations. With
classical statistics, on the other hand, the ssmpler integral can be evaluated
in terms of tabulated functions, and numerical integrations are avoided.

The simplest approximation is to neglect the difference between
g% , ) and g(%, ). In such a case the g's drop out of (13.32) except
for the magnetic field parameter, which is then given by (13.31). In
{13.33), of course, the factor [g(7, )/g{% ) ]® will enter. No information
is available to the ervor introduced either by this approximation or by
the procedure involving determination of the # appropriate to the partic-
ular value of et ®/g(f).

c. Mixed Scattering

A more realistic treatment of the relaxation process involves considera-
tion of two or more scattering mechanisms, the effectiveness of each
being dependent on the energy of the charge carrier.'™ This requirement
becomes especially stringent when galvanomagnetic data are studied
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over a wide range of temperatures. For the two scattering mechanisms
discussed in the preceding sections, it is seen that at high temperatures
the relaxation time is limited principally by interaction of the charge
carriers with the lattice vibrations; at low temperatures, by the interac-
tion with ionized impurities. Inclusion of these particular processes in
the transport integrals provides a composite scattering system which has
been studied frequently in the literature.
since 1 fx; 1s proportional to the probability of scattering by mechanism
t, one obtains for the case of mixed scattering by lattice vibrations and
ionized 1mpurities
e =1t + 1fr;. (13.34)
This representation assumes, of course, that the two scattering processes

can be regarded as independent of each other. For a further discussion
of this peint, consult Section 306.

Hence, from (13.2) and (13.13),

:-LD .A:EI'E
T o= -l:fLI}I.'TIn::Ig{I':I + .1'2

(13.35)

where g is the slowly varying function of #, T, and x discussed previously.

Because of the complexity of the integrals, the application of (13.35)
is usually restricted to the limiting cases of weak or strong magnetic
fields or to where classical statistics are applicable. The transport coeffi-
cients in the former case will depend on averages of powers of T, thus:

o

2 () s 4112 By
(TIF-D= — 3 Fraln) j - dx. (13.36)

1]

To simplify the above integral by the g(#) technique requires that £ be
chosen so that

RS T g5 —H

e e maximum (13.37)

where
B = (" 7"el % q,0). (13.38)
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The solution for (13.37) is

@B—s)f+3s+ D8 V-1 -9
— BT S tanh 5 (13.39)

where £ = £, . A relation such as the above, for 5 = 1, has been given
by Mansfield ¥

It 15 seen that x 15 a function of 5, 5, and §. For § — ==, (13.39)
reduces to (13.22) as it should, since then r is determined by the 1onized
impurity scattering. For arbitrary values of #, if results are required only
for a single value of w* and T, it is probably expedient to do the numerical
mtegration on (13.36) directly, as was suggested in connection with (13.32).

It is often convement to express the “actual” mobility u,(n) when
mixed scattering occurs in terms of the mobility pug"{n), due to lattice
scattering and the mobility u,'(y) due to jonized impurities.

With the use of (12.25), (13.4), (13.24), (13.36), and (13.38) it s
seen that

pot(mh | et="
#1 = ) I Ly T 13.40
where
o HFaml Hy “n) glFm0) (13.41)

Folm) pg' ) BlF1mm)

Numerical integrations were done on Eq. (13.40) for a sequence of
values of 5, and results are presented in Fig. 11.

In the classical case, n <~ — 4, the integral can be evaluated exactly
in terms ol sine and cosine integrals, and the results have been plotted by
Conwell ® In the case of extreme degeneracy, the integrand is large only
for energies near the Fermi level, and hence the mobilities combine as
do the relaxation times; that is,

Vpg = Vug™ + Vng!, 530, (13.42)

It is seen from Fig. 11 that this relation is approximated quite closely
when 5 = 10. It is also evident that the use of (13.42) for semiconductors,

0% E. M. Conwell, Prog, [.R.E. 40, 1397 {1952),
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a5 was done in some of the early literature, can be a rather rough approx-
imation when the two mobilities are nearly equal.

A numerical evaluation of (13.40) has also been carried out by
Mansfield, ®™# His results are presented in a slightly different form, which
involves sums of partial resistivities. It is to be noted that Mansfield's

fog

]

E'u"ih |

H5imla (X p g )
pilmiat

Id:% 0] 02 03 04 05 D6 OF 08 0% 10 11 2
ol
Hag (M)

Fig. 11. Composition of mobilities for mixed scattering, The actual or resultant

conductivity mobdlity, at wmk-ma,gnmﬂ-ﬁelcll Et!{:ngihﬁ, i denoted IJ;’ t::,[:ﬂ-

The mobility due to scattering by lattice v:‘l.:mtmr.ts i5 phy l:.l:il:l; Lha_'f due tu.ul._.l. Fiig

by ionized impurities is gl (). The slowly varying functions g{x) are discussed in
the text,
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o, is equivalent to our g, multiplied by the factor g(£, , .)/g(%, , »)-
Solutions of (18.39), for 5 = 1, are also presented in graphical form so
that #, ,, is readily determined.

Other conductivity coelficients can be expressed through the use of
Eqs. (13.36)-(13.39) for higher values of s. The general form of the
relationship will not be given here; instead, the results for classical
statistics are presented in Section 156

14. ConpucTivity CoEFFICIENTS 1N THE LiviT oF EXTREME DEGENERACY

In the case of extreme degeneracy, the Fermi-Dhirac functions can be
replaced by asymptotic expressions due to Sommerfeld and others™":

+1
F*{ﬁ]m-;%i ﬂ':.%l—*lf-l'i"..., li'E“'i “."I'”
where y = [/&T, { being the Fermi energy. The above expansion can
be used with all the coefficients which were developed in terms of the
F,(n) in the preceding sections. The results will not be given here, however,
since most of those equations were applicable only in the weak-magnetic-
field region. Inasmuch as it readily is possible in the case of extreme
degeneracy to develop relationships which are valid for arbitrary values
of H, such development will be presented instead.

Consider integrals of the type

jsm "o 2 (14.2)

where ((e) is any well-behaved function of energy, and fy is the Fermi-
Dirac distribution function, [1 - «* =" ¥]-1 It was pointed out by
Sommerfeld and Bethe®™ that as the carriers become more degenerate
— that is, at larger values of [/kT — the derivative 3f,/% becomes

i See, for example, E. C. Stoner, Phal. Mag. (7] 21, 145 {1936). The result is given
in rederence 188, except lor & typographical eror in the Eq. (5.3).
8 Sen p. 344 of reference Be,
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increasingly larger and sharper in the neighborhood of e = £ In the
himiting case of T —- 0, it approaches a d-function. A good approximation
to (14.2) is, therefore, obtained by expanding G{e) about ¢ — n- Details
have been presented by Seitz® and more recently in other works,#9
The result to second-order terms, is

o
df d®
JG{;] s ;m*( "”)H i ST
|
(14.3)
or, since £ = xkT and [ = kT, we have
f @G (x)
jﬂ[.:]----'-'d':— — G{n) — — ( - )"H — o (14.4)

With the use of the first term in the above approximation, Eqs. (12.12)
and (12.13) become

__ met T(n) =
l-'l'u{'ﬁ'.I = a® I.—l-ﬂ.l'tl"l:l‘j}. u:ﬁ'-'l H=I0, {14.5)
ol = — 20 __*Nn) (14.6)

m* 1+ o ri{y)

where the first term of (14.1) has been used to approximate F, (). From
these results it is readily found [using Eqs. (12.28), (12.27), and (12.51)]
that

im [ruln)] = 1, (14.7)
A
him — =0, (E 8.
ql-mn Py . 5

Thus, for spherical energy surfaces and isotropic relaxation times, the
Hall coelficient factor is unity and the magnetoresistance vanishes, in

M See p. 147 in F. Seitz, "The Modern Theory of Sohda™ MeGraw-Hill, New

York, 1040,
B0 Sew p. 18 of reference 8; p. 205 of reference 44,
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the limit of extreme degeneracy, regandless of the magnetic ficld strength

and of the dependence of ¥ on energy

Actually, the relations (14.5)-(14.8) are obvious from physical con-
siderations. In the degenerate himit, only those charge carmiers having
energies of the Fernu surface contribute to transport. Therefore, insofar
as the integrals are concerned, the situation is one of constant r, with
T =m t'{l::|

To obtain a nontero magnetoresistance, we must consider higher
order terms in (14.3), that is derivatives of v with respect to energy.
From (12.12), (12.13), and (12.27) it is readily shown that the transverse
magnetoresistance can be written in the form

Aplpa = | — opfag = Eos? (14.9)

Apfpy = (ogjog) — 1 = Ex?([1 — Ew?) { 14,10

whers

{1"[1+mltﬂ] Lip o (el -+ wfe2]=1)p _ b — ({1 4 eIy
TP - u{rr1-| w? 'J"‘}F 5 —

(14.11)
In the above development, use was made of the identity

(T + ot Ve _p=(r)p-p— 0wl &« el 1% _n [14.12)

As we saw before, to obtain a nonvanishing F, we must include the
second term of the approximation (14.4). The algebra, which is somewhat
tedious, is simplified by a substitution such as

z = ta¥] 4 w1, (14.13)
Also from (12.11), (14.1), and (14.4) it 15 seen that

(g - |:r=‘i"|:‘ﬂ'+ -“\ﬂ““’ + .0 9L (1414)

1=y
The expression for E, to terms in ¢, is found to be

nt T'e

E=Tm#. B! (14.15)
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where t' = dr/dx. Hence

R L '
o = 3 1+ o ﬂ!'_E ,-;' b {H'] ]I
dp =% kTt [drV | At (kT 2wt {dr Y
— = e -_ﬂ st [ 1 b e W : }J,E, 1_
Pi 3 14 wre\def,_f 31+l \defons
{14.17)

It 15 sometimes customary to express results in terms of a mean free
path }{= vr), as has been done in discussions of (14.16).%=

15. CoNpucTIviTY COEFFICIENTS IN THE LIMIT OF CLASSICAL STATISTICS

When the temperature 1z relatively high and the charge-carrier
density sufficiently low so that there are a number of unoccupied energy
states at low energies, then Maxwell-Boltzmann or classical statistics
are applicable. In such cases, @f;/d looses its sharpness at g = {311
and contributions to the transport integrals cceur throughout a wide range
of £ In these cases, n <0, so that

A By fie = — efe— =, n <0 (15.1)
and it is readily established that!®®
Faln) = kl-e9, g0 (15.2)

It also follows from (12.6) that
1 (?,m- kT)m
en.

45 (15.3)

48 k2

All of the relationships developed in Sections 12-14 are readily applied

to the present case through the use of (15.2). However, becanse of the
simpler form of 3/,/dx for classical statistics, many of the developments
have been carried further. These will be discussed subsequently. The
average of a quantity over the classical distribution, cf. (12.11}, is given by

T

(g) = X F—— ] gx)2’® e~ = dx. (15.4)

211 Sep for example, Fig. 2, p. 145 of reference 205,



