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SERIES INTRODUCTION

The Tutorial Texts series was begun in response to requests for copies of SPIE
short course notes by those who were not able to attend a course. By policy the
notes are the property of the instructors and are not available for sale. Since
short course notes are intended only to guide the discussion, supplement the
presentation, and relieve the lecturer of generating complicated graphics on the
spot, they cannot substitute for a text. As one who has evaluated many sets of
course notes for possible use in this series, I have found that material
unsupported by the lecture is not very useful. The notes provide more
frustration than illumination.

What the Tutorial Texts series does is to fill in the gaps, establish the
continuity, and clarify the arguments that can only be glimpsed in the notes.
When topics are evaluated for this series, the paramount concemn in
determining whether to proceed with the project is whether it effectively
addresses the basic concepts of the topic. Each manuscript is reviewed at the
initial state when the material is in the form of notes and then later at the final
draft. Always, the text is evaluated to ensure that it presents sufficient theory to
build a basic understanding and then uses this understanding to give the reader
a practical working knowledge of the topic. References are included as an
essential part of each text for the reader requiring more in-depth study.

One advantage of the Tutorial Texts series is our ability to cover new fields as
they are developing. In fields such as sensor fusion, morphological image
processing, and digital compression techniques, the textbooks on these topics
were limited or unavailable. Since 1989 the Tutorial Texts have provided an
introduction to those seeking to understand these and other equally exciting
technologies. We have expanded the series beyond topics covered by the short
course program to encompass contributions from experts in their field who can
write with authority and clarity at an introductory level. The emphasis is
always on the tutorial nature of the text. It is my hope that over the next few
years there will be as many additional titles with the quality and breadth of the
first ten years.

Donald C. O’Shea
Georgia Institute of Technology
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PREFACE

Machine vision has many definitions and is called by various names, often
depending on the discipline that one practices. Computer vision, image
understanding, scene analysis, and robot vision are some of the terms encountered.
These terms are derived from computer science, signal processing, pattern
recognition, and robotics studies, respectively. In this text, machine vision is
explicitly defined as the study and implementation of systems that allow machines to
recognize objects from acquired image data and perform useful tasks from that
recognition. The term systems in this definition includes both hardware and software,
with the restrictions that the hardware is constrained to acquisition and processing
equipment and that the algorithms perform recognition and reasoning only. This
eliminates issues of robots or vehicles, which are best left to other studies. The
concept of a useful task helps confine the definition to a manageable level, yet be
expandable to include large-scale general purpose vision systems.

Although intended as a supplement to a classroom short-course, the book stands
alone as a useful self-study guide and is certainly usable as a primary text or
supplement for a more extensive course offering. The organization is novel in that
machine vision has essentially come of age and we may now view it (no pun
intended) as an established and respected field of research and application with a
strong theoretical foundation. Without foundation we simply cannot predict
outcomes. Fortunately, it is now possible to engage in machine vision design with
high probability of success. Because of this, the text takes the reader from
fundamentals drawn from image processing and computer graphics to the methods of
applied machine vision techniques. This background is then applied to the largely
theoretical basis of human vision, which is, of course, the ultimate measure against
which a machine vision system is compared.

There is a tendency for writers to feel that "more is better" and to burden a book
with excessive coverage to the extent that the reader is overwhelmed. Since the
literature on machine vision is so extensive, including a large number of texts, I have
restricted the content to include only what is necessary to allow the reader to
understand and construct machine vision systems that perform, once again, useful
tasks based on the current state of the art. Additionally, I have prepared an Annotated
Bibliography as an assist in navigating a sampling of this vast literature.

To fail to include open-ended discussion would expose the book to speedy
decline with respect to a rapidly evolving area, so I have endeavored to leave some
discussion without closure so as to stimulate new and creative work in this
fascinating and dynamic field. As life-long learners we must strive to advance and
grow, and it is my sincere hope that this book assists you in that process.

H. R. Myler
August 1998

xlii
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CHAPTER 1
VISION IN HUMANS AND MACHINES

In order to address the development of advanced vision capability in the
machine, it is useful to begin with an examination of the visual systems of
humans and animals. The complexity of these systems illustrates what is
possible, and in some instances has shown us how we can construct machine
vision systems with the efficiency and capabilities that nature has employed.
There are, however, limitations on natural systems that can be overcome with
machines, as there are capabilities that exist in biological systems that we have
yet to duplicate in the artificial.

1.1 VISUAL SYSTEM MECHANICS

The human visual system (HVS) begins with the eye and ends in the mind,
but where exactly is the mind? This question must be left to further study;
however, it is possible to trace the neural pathways from the eye to the brain.
The human eye is an extension of our nervous systems unlike many lower
animals where the eye(s) evolved from the skin. Because of this, the human
eye performs a substantial amount of preprocessing before the final signal
arrives at the brain. Modern electronic cameras are now being produced with
processing capabilities for image filtering, data reduction, and enhancement,
much in the same way that the biological eye preprocesses image data.

The human eye is a complex organ of signal detection that supplies the
brain with a high-resolution color image. A simple diagram of the human eye
is shown in Figure 1-1. Light enters the eye through the cornea, a clear, dome-
shaped lens. Here the light undergoes an initial refraction before it reaches the
pupil, which acts as a variable aperture to control the amount of light entering
the interior of the organ. The focusing lens is a bean-shaped bundle of
transparent protein fibers. Muscles surrounding the lens distort it and thus
control the focus of light onto the light sensitive nerve layer, the retina, at the
back inner surface of the ¢ye. The retina consists of approximately 100 million
sensors whose outputs are summed and thresholded by cell junctions called
ganglia. The output of the ganglia, the nerve fibers, pass over the surface of the
retina and may be seen by using an ophthalmoscope, a special monocular
viewer designed to allow easy examination of the interior of the eye. The nerve

1
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2 CHAPTER 1

visual axis

retina

fovea optic nerve

Figure 1-1. Cross-section schematic of the human eye.

fibers appear as wispy blue strands that meet to form the optic nerve, the
output channel of visual data leaving the eye. The optic nerve consists of
approximately 800,000 nerve fibers and so the reduction from number of light-
sensing cells to transmission cells is roughly ten to one. This factor is
important to visual perception and is discussed later. At the point where the
nerve fibers leave the back of the eye to form the optic nerve there are no light
sensors. This causes the so-called “blind spot,” and this region of the retina is
known clinically as the “optic disk.” You can experience the lack of perception
at the blind spot by closing your right eye and focusing on the plus symbol

shown in the graphic below:

As you vary the distance of your left eye to the page, at some point the star
will disappear. At that distance the star is being imaged onto the blind spot of
your left eye. One question that has been raised asks why we do not have holes
in our visual field. The answer is that we do, but the brain compensates for the
lack of sensors and fills in the images received from the eyes to give us a
homogeneous panoramic view.

The light-sensing cells fall into one of two classes: cones, for color or
photopic vision, and rods, for monochromatic or scotopic vision. These cells
are directed towards the back of the eye because the evolution of the organ
caused an inversion to take place such that the nerves travel across the surface

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 05 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



VISION IN HUMANS AND MACHINES 3

of the retina to the exit point at the optic disk. The blind spot would not occur
if the light-sensing cells did not have this orientation.

The distribution of sensors at the back surface of the eye is shown in
Figure 1-2. As the optical axis is approached from either side, the
concentration of cones increases and the number of rods decreases to zero. The
peak of the cone distribution is the fovea, as indicated on the eye schematic
(Figure 1-1). On the right side of the distribution diagram, the nasal side, at
approximately 15° is a region with no sensors at all. This is the blind spot. The
sensor distribution diagram shown in Figure 1-2 represents a cross-section
taken horizontally and through the center of both the fovea and blind spot.
These elements of eye structure are important in that the neural processing
eliminates any missing area in our visual field caused by the blind spot. This
distribution of sensor density prompted the use of dynamic variable resolution
in high-speed aircraft simulation display systems. In these systems, the pilot is
fitted with an eye-tracking device that informs the graphics-generating
computer where the pilot is looking. The computer then generates a highly
detailed image in this region and a less detailed image elsewhere, thus
conserving computer resources.

180K ef\

sensors/mm

cones
S —————

70° 30° 0° 30° 80°
Perimetric Angle in Degrees

Figure 1-2. Sensor distribution in human retina.

After leaving the back of the eyes, each of the optic nerves split near the
base of the brain and rejoin at a nerve center called the optic chiasm. This
splitting gives rise, in part, to the right-brain, left-brain phenomena, where half
of the image of each eye is interpreted by the left half of the brain and half by
the right. Specifically why this occurs and what ultimate role it plays in visual
perception is not completely known. For the interested reader, a thorough
treatment of the structure and physiology of the human visual system may be
found in Zeki’s monograph.'

In addition to the complexity that arises from the multiple neural pathways
from the eye to the brain, another complexity is introduced because the eye is
in constant motion. This occurs because the light- sensing cells are differential
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4 CHAPTER 1

in action and therefore react only to changes in light intensity. To form an
image, the light must be scanned across the retinal surface. This function is
performed by a set of six muscles that attach to each eye and are anchored to
the interior surface of the eye socket in the skull. The eye floats in the socket
surrounded by soft tissues and gimbaled by the muscles. The small involuntary
eye movements that serve to fine position the eye and to track objects are
called saccades. Microsaccades are even smaller movements that produce the
necessary motion to refresh the image. This is discussed further in Section 1.4,
Motion Perception.

1.2 VISUAL PERCEPTION

The image formed on the retina has persistence within the HVS on the
order of milliseconds. This delay is due to the slow reaction of the chemical-
based sensors (cones and rods) and in the time it takes data to be transmitted to
the visual cortex in the brain. This delay establishes the basis of our perception
of moving pictures produced by films or television. The rate at which we
establish continuity between frames of image sequences is known as the
critical fusion frequency or alternately as the flicker fusion rate. For humans,
the actual rate varies among individuals and is coupled to visual acuity and
other factors. Generally, 24 frames per second are required to achieve image
fusion and remove flicker. One often hears the value of 30 frames per second
(fps) as the rate for "real-time" video. This is an artifact of technology where
the 30-fps refresh rate of television was established from the alternating current
frequency of 60 Hz in the United States. This rate is more than adequate to
allow humans even with hyperacuity to achieve fusion of video images. The
fact that our visual systems process a sequence of images means that a degree
of noise filtering is possible. The frame-to-frame sequence is averaged by the
system, allowing any noise of duration less than the flicker fusion rate to be
averaged out. The phenomenon is easy to observe by using the frame pause or
slow motion effect on a VCR. The still image of a single frame appears grainy
without the picture clarity seen when the tape is played at normal speed. This,
of course, also establishes an upper limit on the detection of a fast-moving
object.

Surprisingly, few objects in nature are undetectable to our visual system
because of system response time. However, we cannot see many human-
fabricated objects that move at high speeds. The in-flight trajectories of bullets
fired from weapons, for example, are invisible to us. Nevertheless, these flights
are not beyond the detection and tracking ability of our machines. This is an
important factor to consider in the design of machine vision systems. The
machine can see far more than we humans can. There is a tendency to try to
model the machine's perception based on our own perception—and this is
certainly an important and valid area of research; however, keep in mind that
there are things a machine can detect and process that we cannot. Machine
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VISION IN HUMANS AND MACHINES 5

vision can be approached as a study in giving the machine the perceptual
powers of human vision (along with the limitations), or as a method of
allowing the machine to see only what it needs to see (as in factory
automation). The problem of emulating human perception in the machine is far
from being solved in any general sense, but machine vision systems designed
to operate in well-defined domains are often solvable by well-chosen
hardware, work cell environments, and software.

In HVS terms, we can define brightness as the degree of light stimulus.
Brightness is perceived by the HVS as a logarithmic function of light intensity
incident on the eye. Contrast is defined as the difference in light intensity
between perceived objects. Contrast threshold is a just noticeable difference
that is dependent on previous (or current) stimulus. This dependence is termed
adaptation. The adaptation threshold affects the detection power of the eye and
is also a function of sensor density; for example, the threshold is lower at the
periphery of the retina.

In Figure 1-3 the subjective brightness is plotted as a function of intensity.
A simple example of adaptation effects occurs when one views automobile
headlights at night and during the day. At night, the eyes are dark adapted and
headlights appear close to the glare limit. During the day, when we are light
adapted, headlights left on in a parking lot, for example, are perceived as dim
because the brightness adaptation range is low on the actual intensity curve.

A
glare limit

" %— Erighness
Adaptation Fange

Subjective
Erightness

Intensity

Figure 1-3. Brightness adaptation range.

At very low intensity, we cannot detect an object at all, and at very high
intensity detection is restricted by the glare limit. The upper and lower limits
will vary between individuals. On the side of the main curve is a secondary
curve, the brightness adaptation range. This range (the short crossing line)
moves up and down the main curve as our eyes adapt to the ambient light
intensity. The dotted portion of the adaptation curve is such because we cannot
actually detect intensity beyond the main curve, but it is shown to illustrate the
variation of subjective brightness. The slope of the brightness adaptation range
is not as steep as the actual brightness detected. A number of explanations have
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6 CHAPTER 1

been given for why these effects occur, and their discussion is beyond the
scope of this book; however, we examine two approaches to the explanation,
spatial frequency filtering and neural network processing, later in this section.

Perceptual psychologists, using diagrams similar to those shown in Figure
1-4, measure brightness adaptation and contrast effects. The intensity of the
center circle with respect to the rectangular background is varied, and the
images are evaluated across a population of human subjects. Under varying
lighting conditions, the subjective contrast will vary from individual to
individual. For example, an individual may not be able to detect that a circle is
present in the center graphic while another does. This is because human visual
perception varies across the population and is affected by age, eye color, and
race, whereas the machine has no such restrictions. A machine would detect
the existence of the circles as long as a differential in brightness is detectable
by the sensor employed.

Figure 1-4. Evaluation diagrams for contrast effects.

Adaptations that occur after perceptions of a series of flash illuminations
are called metacontrast effects. The contrast threshold rises before the
perception of a subsequent flash. This effect is best noticed with cameras that
feature "red eye reduction” flash mode. The camera generates a fast sequence
of flashes to constrict the pupil and thus reduce the likelihood of a red
reflection from the retina. This staged constriction of the pupil gives rise to
metacontrast effects.

If background illumination is uniform and extensive, a contrast threshold
AB is approximately proportional to an illumination B over a wide range. This
is known as Weber’s Law. Because brightness adaptation is simply a change in
overall brightness sensitivity, similarly contrast sensitivity is a measure of
brightness level discrimination. Using evaluation diagrams like those depicted
in Figure 1-4, it is possible to show Weber’s ratio graphically. Figure 1-5
shows two plots in the right column that were determined by varying
brightness values in the test images shown in the left column. In both cases, the
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VISION IN HUMANS AND MACHINES 7

value AB/B yields the Weber ratio, which is approximately 20%. The upper
plot shows the Weber ratio as background brightness B is varied.

B
B
20

B+AB

AB
B

20

By

Figure 1-5. Weber ratio, brightness constancy.

The second plot shows what happens for varying values of Bg. This family
of curves, each representing a different background By intensity, illustrates

what is called brightness constancy, or when object and background retain
constant contrast, and an object varies in intensity but appears as a constant
intensity.

These contrast effects can be attributed, in part, to the logarithmic response
of the HVS. This is understandable because of the inherent time delays of the
system and the integrations that occur as a function of biological sensor
response. Consider two images of circular patterns, Figure 1-6(a) and 1-6(b),
and the images that result when the log of brightness values is taken, 1-6(c)
and 1-6(d). The (a) image center is substantially lighter than (b). In the log
result, the difference is less pronounced, which is a form of brightness
constancy. This may be somewhat easier to see in Figure 1-7, where the cross-
section profiles of 1-6 (a-d) have been plotted.

The brightness contrast processing that takes place in the HVS may be
used in machine vision processing to enhance images prior to higher level
object processing. The application of a log function to an image will perform
an enhancement in some applications and can be used to compensate for poor
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8 CHAPTER 1

lighting. Brightness adaptation techniques have been employed to reduce the
“blooming” effect that can occur in night vision systems that have been
overcome by an intense light source, as in the case of a flare. Essentially, these
systems perform an automatic gain control on the image data acquired.

(b)

(©) @

Figure 1-6. Logarithmic response.

I_I_I—‘

l.6(a) 1.6(b) 1.6(c) 1.6(d)

Figure 1-7. Logarithmic response plots.

Resolution of the HVS can be described by a Modulation Transfer
Function (MTF) that describes an optical system as a bandpass filter. This
shape can be observed in sinusoidally modulated patterns such as that shown in
Figure 1-8. Note how the density of the lines increases from the left of the
figure to the right. The lines-per-area of this figure is representative of how we
define spatial frequency. If you examine the region of highest spatial frequency
(greatest density of lines) using your peripheral vision, you will notice a
blurring that takes on a distinctive shape. This blurring is a result of your visual
system reaching its capacity with respect to resolving, i.e., distinguishing, the
high spatial frequencies of the closely spaced lines. This defines the spatial
frequency response of the HVS at the periphery of your vision, where the
number of image sensors in the retina is lower (see Figure 1-2). When the gaze
is directed at the close-spaced lines they are resolved because of the greater
density of sensors at the focal point (the fovea) at the back of the retina.
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VISION IN HUMANS AND MACHINES 9

Figure 1-8 also shows moiré patterns, which are a function of spatial
aliasing. Here you see swirled line patterns as the spacing of the sinusoidal
lines gets closer as the spatial frequency increases. This is not an illusion, but a
consequence of trying to print an image requiring greater resolution than the
output media can provide. In this case, the media is a 600 dpi laser printer. The
point here is that either the acquisition or display mechanism must have
enough resolution to accommodate the smallest line in the image.

Figure 1-8. Sinusoidally-modulated pattern.

Figure 1-9 shows a column of black dots with horizontal lines extending
from the dot edges. To the right of this column are three columns of shaded
dots that represent large, medium, and small sensors. The large sensors are the
size of two of the black dots, the medium sensors are the same size as the dots,
and the small sensors are one-half the size of the dots. What the sensors detect
is shown to the right of the arrow in the figure, where the column of black dots
has been overlayed onto the sensors. The large sensors will not be able to
resolve the size of the dots, the medium and small sensors, however, will be
able to. The medium sensors are at twice the spatial frequency of the dots—
those readers with a signal processing background will recognize this as the
Nyquist rate. Selection of sensors is critical to machine vision applications,
because the number of sensors is directly proportional to cost. Too few sensors
will not do the job, too many will be overkill and add unnecessary cost to the
system.

Now consider Figure 1-10. Assume that we are looking at a graphic similar
to one of the squares in Figure 1-4 where a light circle appears on a dark
background. If we polled a row of sensors on the retina that were located
across the center of the figure as it was imaged by the eye (ignoring motion
and other effects) and then plotted the light intensity at those sensors as a
function of position, we would have a plot similar to Figure 1-10(a). Now
apply a signal processing technique, such as the Fourier transform, that
determines the frequency components of the curve. This we plot as Figure
1-10(b), where the x-axis is now frequency of sinusoidal components and the
y~-axis is their magnitudes. Since this is an imaging activity, one can label the
frequency axis as spatial frequency with no loss of generality. This transition is
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10 CHAPTER 1

possible because our data originally represented one dimension of a lines-per-
area, or image, data set. In Section 2.3 we examine the Fourier transform in
more detail as it applies to images, but for now it is sufficient to use a one-
dimensional transform and treat the data as a single-dimensional signal for
purposes of discussion.

Figure 1-9. Resolution of sensors.

Those familiar with signal analysis will recognize Figure 1-10(b) as a
crude attempt at depicting the positive values of a sinc function drawn by hand.
Now consider Figure 1-10(c), the MTE, or modulation transfer function. This
curve represents the proportion of spatial frequencies that the visual system is
allowing to pass. At the low end there is truncation as well as at the high end—
a bandpass filter.

Now apply the filter, Figure 1-10(c), to the frequency spectrum, Figure
1-10(b). The result will be a new spatial frequency spectrum where only what
is below the MTF filter line is permitted to remain, as shown in Figure 1-10(d).
If we then perform an inverse operation on just the magnitude data below the
filter line, the inverse Fourier transform, we will return to the "position”
domain as before, but our result will look as shown in Figure 1-10(e). Note that
the sharp corners that we had before are now rounded, but peaked both in a
negative direction as at the base of the rectangle and positively at the top. In
essence, the filtering has enhanced the edges of the figure. In other words, the
edges are brighter with respect to the rest of the image.

One explanation of this phenomenon is found in neurophysiology. Earlier
it was shown that the number of actual light sensors in the retina outnumbered
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VISION IN HUMANS AND MACHINES 1

the channels within the optic nerve carrying the image signals to the brain and
that the detectors were grouped by ganglia cells. This reduction in data has a
low pass filtering effect on the data, giving rise to the low-end attenuation of
the MTF, and the corresponding rounding and depression in the output curve.
On the high end, there is a general property of nerve cells known as lateral
inhibition. When two adjacent cells receive stimulation, they will laterally
inhibit the output of their neighbors proportional to the input that they
themselves are receiving. If two cells receive the same amount of stimulation,
the effect of their inhibitory behavior on each other will effectively cancel.
However, when one cell receives more stimulation than another, the effective
output of the cell receiving less stimulation will be suppressed!

Intensity

Relative
Amplitude

> . >
position spatial frequency

MTF @) ®)

Relative
Amplitude

>
spatial frequency spatial frequency

(© (d)

Intensity \J\/L

position

(¢)

Figure 1-10. Filtering effect of HVS.
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12 CHAPTER 1

To see this more clearly, consider Figure 1-11. Two adjacent cells are
represented by circles, and the relative strengths of their input and output
signals are indicated by the arrowhead lines. On the left, equal input, equal
inhibition, equal output. On the right, unequal input. Now the cell on the left
not only inhibits more, but also the cell on the right inhibits less, causing a
substantial variance in outputs compared to inputs. With a row of cells, such as
that shown in Figure 1-12, the effect will be roughly equivalent to the effect
shown in Figure 1-10(e), edge enhancement brought on by MTF filtering. The
final visualization is, of course, when there is a two-dimensional array of cells.
Now the effect will enhance edges in all directions. One can consider this a
biological method of edge detection. The importance of edge enhancement and
detection will show up later when we discuss the evaluation and
implementation of algorithms to achieve this by electronic imagery.

Equal Input Unequal Input

s K o

Figure 1-11. Two cell effects of lateral inhibition.
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Figure 1-12. Lateral inhibition on a linear array of cells.

Spatial filtering in the HVS gives rise to a number of optical illusions—
one of the most famous being the Hermann Grid Illusion, shown here in
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VISION IN HUMANS AND MACHINES 13

Figure 1-13. The actual illusion is shown in Figure 1-13(a) and a bandpass-
filtered version using the MTF function from Figure 1-10(c) is shown in Figure
1-13(b). The illusion is the appearance of ghostly gray squares at the white
crossways of the grid (you get the same illusion with white squares on black).
The filtered version shows that the ghosts are really there. But why do they
disappear when you look directly at them?

(a) (b)

Figure 1-13. Hermann grid illusion,
(a) the illusion, (b) after bandpass filtering,.

The "ghostly" squares are a result of the sparse number of sensors that are
present at the periphery of your vision. Recall that the density of sensors falls
as we move away from the fovea (see Figure 1-2). Think of this in terms of
information. As the number of possible values of representation is reduced, the
information capacity is correspondingly reduced. Since the squares represent
sequences of rectangular spatial frequency, the lower sampling ability at the
periphery of the retina allows artifacts to appear between the squares. These
artifacts are due to the lack of high spatial frequency sensing needed to
produce the sharp corners of the squares. This is the filtering effect discussed
earlier. When you look directly at the space between squares, the high sensor
density of the fovea resolves the high spatial frequencies and the ghostly
artifact disappears.

The higher the resolution that an image has, the more information it
conveys. Figure 1-14 below shows two examples of the same image of a
collection of office tools against the cooling vents of a display monitor. The
first image [1-14(a)] has twice the resolution as the second [1-14(b)]. We say
that the first image has been sampled at a higher spatial frequency than the
second. Notice the loss in spatial detail between the images; this is a result of
the subsampling that has occurred in the second image. Subsampling refers to
less than desirable sampling, although in some applications subsampling is
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14 CHAPTER 1

used to reduce the amount of data processed. Also note that the images are the
same size, indicating that the sensors used to produce the first image are
smaller (and more numerous) than those used to produce the second image. In
Chapter 2, Image Processing, we explore the issue of sampling further.

Figure 1-14. Loss of spatial detail from subsampling.

1.3 COLOR PERCEPTION

Color perception in humans is often misunderstood. Because of this the
transition from monochromatic imaging to color imaging is sometimes
misrepresented. Qur visual system processes three bands of the
electromagnetic spectrum independently and so the system incorporates a type
of multisensor fusion. The region that these (contiguous) bands cover
constitutes the visible spectrum for humans, which extends roughly from 700
nanometers of wavelength to 400. At the short end of wavelength we see
shades of blue; at the long end we see red. Going further on the short end leads
us into ultraviolet and on the long end to infrared. The photopic response
curves for humans is shown in Figure 1-15. Researchers believe that this
response is best to maximum contrast of yellow and red objects against the
green hues of the tropical forest canopy.

We see colors as additive color mixtures of the primary colors red, green,
and blue. The color bands mix to yield variations in color perception across the
set of red, orange, yellow, green, blue, indigo, and violet—the colors of the
rainbow. The limits of our perception in this regard are clear from the so-called
tri-stimulus diagram, shown in Figure 1-16. The diagram represents all
additive mixtures of colors using equal intensities of red, green, and blue light.
At each vertex is a pure color, and points within the triangle represent mixtures
of the three. Points on the sides of the triangle are combinations of two colors.
The area under the curve shows what we are capable of perceiving based on
our response curves (Fig. 1-15), while the crosshatched area is the region of
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VISION IN HUMANS AND MACHINES 15

physically realizable colors that we cannot see. The bisecting lines meeting at
the center show the point of white light perception. You may have been in a
theater and observed that the white light on stage has been generated by a set
of red, green, and blue floodlights.

Intensity Green
1.0

| IR

400 200 600 700 nm
Wavelength

Figure 1-15. Human color response.

Green

Blue Red

Figure 1-16. Human color perception tri-stimulus diagram.

For machine vision, color processing is only useful as a means of acquiring
greater information beyond monochromatic imagery. Few algorithms extend
directly from grayscale to color, and the restrictions on color processing
because of specialized equipment and substantially increased computational
demands add to the overall concern about its usefulness. From a multisensor
fusion standpoint, however, color processing is invaluable in many recognition
tasks, particularly when color yields a strong feature invariant. Because of the
information richness that color imaging can provide, we, and ultimately the
machine, can distinguish more objects or regions in a color image than a
monochromatic one.
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1.4 MOTION PERCEPTION

The perception of moving objects, tracking of moving objects, and the
ability to see still scenes from moving image sequences are all related to
motion perception. The idea of flicker fusion and critical fusion frequency
were discussed earlier. If you have movie or animation software, you can
determine your rate of fusion by varying the frame rate, or frames-per-second
(fps) speed, of a movie that you produce. When you stop seeing individual
frames, you have reached your fusion rate. The fusion rate is a function of time
delays and integrations that occur within the HVS. Machines have no fusion
rate; the frames in an image sequence are acquired at a rate determined by the
hardware. One can purchase hardware that will acquire images fast enough to
stop the flight of bullets. Processing the images at the same rate, however, is
another matter entirely. High-speed image sequences are processed off-line,
one frame at a time. Some operations can be processed in real time, but they
are limited.

The detectors in the retina are chemical-based and have low persistence. If
this were not the case, we would maintain the same image longer and so miss a
large amount of motion that takes place in the natural world. The sensing
system acts something like a CCD in that the image must be continuously
refreshed and sampled. As previously mentioned, the eye is in constant motion
due to involuntary movements called saccades, and these motions yield the
necessary sampling rates. In short, the HVS is a dynamic variable-rate
sampling system. This form of sampling implies that the system changes its
rate of data acquisition based on the information content of the signal. The
most compelling reason to use this approach is to gain greater processing
capability given limited processing resources. Therefore, the HVS uses
autonomic musculature and structure to reduce processing load on the brain
when information is scant and increases data flow where information content is
rich. To understand this more clearly, recall that the sensor density is greatest
at the fovea, at the optical center of the eye. The HVS uses a combination of
mechanical positioning, variable sensor density and data reduction at the
sensor (the ganglia of the retina) to form a complex coded image that is
transmitted to the visual cortex of the brain. Thus, the complexity of this
system illustrates the difficulty of producing a machine vision system similar
in capabilities to that of the human. This is not to say that we should seek a full
biomimetic duplication of the HVS because compromises were made as a
result of developmental optimization and sequencing. Hence, the system is not
perfect and in many cases will not be the optimal model for a machine system.
Nevertheless, we may learn a great deal of what is possible in a machine vision
system from study and observation of the biological.
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CHAPTER 2
IMAGE PROCESSING

Image processing is the manipulation of images using computer algorithms
to enhance, restore, and understand the information contained in them. Images
can be treated as two-dimensional signals, so a large number of signal-
processing algorithms may be employed. To study image processing, we start
by defining the characterization of images as two- dimensional signals and
conclude with how these signals can be parameterized in preparation for
machine vision analysis.

2.7 IMAGE CHARACTERIZATION

An image, in the context of image processing and machine vision, is a two-
dimensional array of picture elements, or pixels. These elements are typically
derived from the sensing of scene data using a camera or scanner. The value of
a pixel is determined by the system used to sense the object. For example, in a
visible spectrum, monochromatic camera, the pixel represents light intensity
data reflected from objects within the scene. A laser radar supplies pixels that
represent the reflected energy of the laser employed in the radar, pixels that
represent range to objects, or, in the case of the Doppler shift of the returning
radar beam, pixels that represent the motion of objects. The pixels of an image
can be indexed as values of a two-dimensional function, f{x,y), as shown in
Figure 2-1.

Typically, the upper left-hand corner of the image is taken as the origin,
with x identifying the row and y the column indices for a pixel. Each pixel,
fix,y), represents an irradiance as reflected from the various objects and regions
seen in the picture. The total number of pixels in the picture is determined by
the sampling of the image while the range of values that a pixel can take is
determined from the quantization. Both of these terms, sampling and
quantization, are discussed in the next section. Any process such that g(x,y) =
Olf(x,y)], where O[¢] is some operation, will produce a new image.
Determining what O[] will produce the required result is the basis of image
processing.

19
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X

Figure 2-1. Image function and geometry.

2.2 SAMPLING AND QUANTIZATION

The number of pixels in a given area defines the resolution of the image.
The more pixels per unit area, the higher the resolution. However, the actual
size of a pixel is determined by the medium used to display it. For example,
consider pixels that represent a single value of one or zero. A black and white
printer can print pixels of this sort easily by printing a black dot when the pixel
is zero or leave a blank when it is one. The higher resolution printer will print
finer lines and consequently be capable of greater detail. Alternately, the same
image can be printed with different resolutions with the same printer. The
sentence below on the left is twice the resolution in dpi than that on the right.

The quick brown fox The quick brown fox
jumped over the Tazy dog. jurnped over the lazy dog.

Sampling loosely refers to the number of pixels in a given image. The
terminology may be somewhat misleading because in signal processing
sampling means "samples per unit time." In the same sense, the image is
"samples per unit distance.” However, as shown above, the resolution of the
display is what will determine the resolution of the image that is output—in this
case the resolution of the printer used to produce this page. Images are
described in terms of row-column dimension and these dimensions generally
follow binary conventions such as 256 x 256, 1024 x 1024, etc. Images that are
512 x 512 are popular because they are close to the resolution of NTSC
television in the United States.

Figure 2-2a shows a 256 x 256 pixel monochrome image printed at 300 dpi.
Figure 2-2b shows a subpicture that is 64 x 64 pixels printed at the same
resolution, 300 dpi; however, the actual resolution of the larger subimage is 150
dpi. In other words, the smallest black dot that can be resolved from the first
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IMAGE PROCESSING 21

picture is 1/300th of an inch, whereas the smallest dot resolvable from the
second picture is 1/150th of an inch.

(b)

Figure 2-2. (a) 256 x 256 image, 300 dpi,
(b) 64 x 64 image, 150 dpi.

The range of values for a pixel is determined by its quantization.
Quantization of monochrome images is described as grayscale, or the scale of
values that represents a pixel range of grays that take it from white to black. A
grayscale with a span of 0 (black) to 255 (white) is given in Figure 2-3 below.
A pixel takes on a graylevel, from the grayscale, which is the intensity value of
the pixel.

255

Figure 2-3. Grayscale.

For a grayscale of O to 255, one 8-bit byte of computer memory is required
to store the pixel value. For a grayscale image of 512 x 512 pixels, 262,144
bytes, or 256K are needed. If we have only one bit per pixel to work with
(black or white), we can synthesize grayscale using either a dithering process or
half-toning. An image that is represented by single-bit pixels is called a binary
image. All of the images in this text have been produced by half-toning, which
is where the “darkness” of a pixel is determined either by size or by clustering.
Dithering is a technique by which a grayscale pixel is represented as a cluster of
binary pixels in patterns of varying density. The eye integrates these patterns to
yield variations of gray. Dithered and halftone images are not used for machine
vision analysis because information is lost in the process and pseudocontours
may be introduced into the image. A pseudocontour is an edge that appears
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because there is not enough sampling to accommodate a smooth transition of
graylevels.

Images can have greater quantization and hence a wider range of grayscale.
This depends on the digitizer used to evaluate the input signal forming the
picture. The 8-bit (single byte) pixel is used because of our human limitations;
we cannot distinguish between two adjacent pixels that differ by one graylevel.
In some applications, a 12-bit per pixel quantization is warranted. The
computer can certainly analyze this entire range, so caution must be exercised
when developing a system to prevent human limitations from distorting the
design.

Color images can be represented in various ways and are usually
constrained by the display or print system being used. Of interest to machine
vision are true-color images, also called 24-bit color or RGB images. A pixel in
a true-color image is actually represented by three pixels: one red, one green,
and one blue (see Figure 2-4). Each of these pixels has a range of intensity like
the grayscale, but instead we might say "redscale” or "bluescale.” When the
three pixels appear on a display, the additive color mixture (see Section 1.3)
allows the eye to perceive a unique color. When printed, the mixing of primary
color inks to yield color is called subtractive color mixture. With additive color
mixture the primaries were red-green-blue (RGB) while the primaries for
subtractive color mixture are cyan-yellow-magenta (CYM). Machine vision
treats color images of this sort as multispectral representations. A unique color
to a human is simply a vector of values to the computer. The computer can
identify objects with specific colors rapidly, as we shall see in Chapter 5.

red p
Color

@@ =
-~

-,

Figure 2-4. Color pixel formation.

True color image files can be huge. For example, a 640 x 480 picture
consumes 900K of storage. Various techniques of compressing image files are
available, but for machine vision purposes, lossless schemes are recommended.
For example, JPEG compression uses a lossy method that takes advantage of
the human inability to discern small color variations in high-resolution pictures.
As a consequence, JPEG compression discards this data and so a compression
is achieved. The discarded data would be perceived by a machine vision system
(the JPEG algorithm detected it!) and may have importance to the program
goal.
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2.3 SPATIAL FREQUENCY PROCESSES

In the previous section we discussed sampling and resolution and stated
that an accurate description of these would include the concept of "samples per
unit distance.” When we discuss single-dimensional signals, we typically speak
in terms of frequency that is measured in cycles-per-second, or Hz. Similarly,
we can describe images in terms of spatial frequency. To see this, consider
Figure 2-5. The sinusoid on the left is half the frequency but the same
magnitude of the sinusoid on the right.

U AVAVA

Figure 2-5. Single-dimension sinusoids.

Now consider a sinusoid in three dimensions by letting the magnitude of
the sinusoid be represented by brightness, such as illustrated in Figure 2-6. The
graphic of a three-dimensional sinusoid in the left column of the figure is
mapped to the two-dimensional image on the right, so that in this form the
peaks of the sinusoid will appear as light lines and the troughs as dark. Now we
can discuss images in terms of spatial frequency. Recall that the thinner the line
in an image, the higher the resolution and the spatial frequency. Since lines in
an image can run in all directions, it is sometimes difficult to visualize the
spatial frequency content of a picture. The more detailed an image is, the higher
the spatial frequency content it will have and the more resolution a system
(acquisition, storage, or display) will need to resolve the image completely.

Intensity

Figure 2-6. Three-dimensional sinusoid as image.
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For a one-dimensional signal in-time, we can decompose the signal into
signals of fundamental frequencies. The set of fundamental frequencies must
have the mathematical characteristic of being a basis set. One such basis set is
comprised of sines and cosines and the method by which a set of coefficients is
resolved is called the Fourier transform. The two-dimensional (2-D) Fourier
transform can be applied to images to resolve the spatial frequency spectrum.
Conversely, the spectrum can be reconstituted back to the original image using
the inverse Fourier transform. The usefulness of the 2-D Fourier transform to
machine vision work is somewhat limited to filtering operations to improve
image quality prior to higher-level processing, although some techniques exist
that use the transform for specialized feature extraction. For more complete
discussions of the transform, a number of good treatments can be found in the
literature. ">

2.4 NEIGHBORHOOD PROCESSES

As discussed, the Fourier transform is very useful in the filtering of images,
or when one wishes to extract or detect features that are characterized by spatial
frequency. For example, recall that thin lines in an image are represented by a
high-spatial frequency. If we can remove the low spatial frequencies from an
image, the high frequency lines should be enhanced. The watch image on the
left in Figure 2-7 was Fourier transformed. The components corresponding to
low spatial frequencies were removed and the filtered result was thresholded;
pixel values below a particular level were discarded. The edge image to the
right was obtained. Now consider the watch image of Figure 2-8, where the
edges have been enhanced by the use of a spatial filter mask by employing a
discrete convolution operation.

Convolution means “to wind or coil together” and the algorithm basically
does that between two images. The convolving occurs as a sum-of-products
operation between the pixels of one image and that of another. Application of a
discrete convolution algorithm yields a spatial filtering operation. The
algorithm performs a multiplication in the spatial frequency domain between
two functions without requiring a Fourier transform. The Fourier transform is
computationally complex and places great demand on computing resources.
The discrete convolution can achieve similar effects to the transform at a
substantially reduced computational cost. One of the properties of the Fourier
transform is that multiplication of two transformed functions yields a
convolution when the result is inverse transformed. This convolution takes
place in the spatial domain (not the spatial frequency domain), hence a discrete
convolution results in a spatial filter. Spatial filters use a mask, or small image,
that is convolved across the target image to achieve the desired effects. The
values of the mask elements determine what effect the mask will have on the -
image.
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Figure 2-8. Edge detection/enhancement using spatial filter.

In Figure 2-9 an image is shown with a mask superimposed on it and the
detail of a 3 x 3 mask with the mask values (pixels) identified by the variables
a-i. Assume that when the mask is aligned over an area of the image that the
image pixels are identified by the variables a, to i. To compute the discrete

convolution, we use the following expression,
e.=aa;+ bb, +cc+ dd, + e-¢; +fﬁ +g28 + hh, + ll,

where e, is the pixel in the resulting convolution at the same index as the image
pixel under the center of the mask. Note that the equation computes the sum-of-
products between the mask and the image pixels below it. The summing and
shifting can be thought of as a copying operation where the mask is copied at
each pixel of the image and weighted by the values of the image pixels in the
neighborhood where it is applied. As seen in Figure 2-8, the extraction of the
edges of the objects in the image is of great value in machine vision work when
one is trying to determine which objects are being seen by a system and where
those objects are in the field of view.
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Figure 2-9. Convolution mask.

The discrete convolution is a neighborhood process, in contrast with a point
process. The distinction is shown in Figure 2-10, below, where (a) shows that a
point process effects an operation, P[¢], that maps pixel to pixel, while (b)
shows a neighborhood process where an operation, O[¢], combines a clustering
of pixels to produce a result.

Pl

YT

(a)
Figure 2-10. (a) Point and (b) Neighborhood processes.

Of+

b)

There are basically three types of spatial filters:

a) Low pass,
b) High pass, and
¢) Nonlinear.

Low- and-high pass filters are easily characterized. They are applied using
the discrete convolution described above. A low-pass filter mask will have only
positive values and a high pass will have negative values. This is easily
explained intuitively by the fact that the discrete convolution operation is a
spatial sum-of-products (see equation above for e;). Recall that the operation
copies the mask across the image, weighted by the image pixels. If the mask is
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positive, it will increase the overall pixel values and tend to spread the effect of
cach pixel, thus widening lines and decreasing the overall spatial frequency—
which is the definition of a low-pass filter. To see this, consider Figure 2-11
below. The figure shows three images, the first is a conch shell rendered in
grayscale, the second the shell after a low-pass spatial filter has been applied,
and the third is a three-dimensional rendering of what the filter looks like—
something of a peak. This filter uses a 7 x 7 mask with the following values:
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From the figure you can readily see that the effect is one of smoothing. The
filtered conch is very fuzzy and indistinct.

Figure 2-11. Conch shell, low-pass filtered conch, low-pass filter.

Now consider the same conch filtered with a high-pass mask, as shown in
Figure 2-12. Now the edges, the strongest edges, have been isolated and
enhanced. These edges constitute the outer contour of the shell. The filter used
is a 5 X 5 mask, but now the mask has negative values, as shown below:

0 0 -1 0 0
o -1 -2 -1 0
-1 -2 16 -2 -1
o -1 -2 -1 0
0 0o -1 0 0

This mask can remove values, thus accenting regions of rapid change in the
image, such as at the boundary of edges. At this point it should be clear that a
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mask can be of any size and the mask need not be symmetric or odd.
Symmetric masks act in all directions with respect to edges in the image and
odd-dimensioned masks make for simpler programming. The following masks
are nonsymmetric and will enhance diagonal edges:

-2 -1 0 0 -1 -2
-1 0 +1 +1 0 -1
0 +1 +2 +2 +1 0

Figure 2-12. Conch, high-pass filtered conch, high-pass filter.

Nonlinear spatial filters do not utilize the discrete convolution algorithm.
Instead, they generally involve a statistical operation (such as computation of
the median) or are decision directed. A decision-directed filter is one that
changes filtering behavior based on what it senses in the content of the image as
it is processed. Nonlinear filters are most useful in the enhancement of images,
so it might be assumed that they are not of much use in machine vision. This is
somewhat true; however, many images require preprocessing to remove noise
that might otherwise disturb the analysis. The dilemma in filtering noise is, of
course, not to filter information necessary to the recognition. This topic will be
revisited later when we discuss objects and regions in Chapter 5.

2.5 POINT PROCESSES

Recall Figure 2-10(b), the diagram illustrating the nature of a point process.
Here, pixel values are operated on by P(*) and are mapped to single
corresponding pixels in the resultant image. The most common of the point
processes is histogram equalization. The histogram of an image 1is the
probability distribution of its pixel values. To generate a histogram, we count
the number of pixels at grayscale zero, then the number at grayscale one, etc.,
until we have counted the number of occurrences throughout the entire range of
values. We then normalize the counts by dividing each by the total number of
pixels in the image. Figure 2-13 shows a mountain with snow and shadowy
trees in the foreground. Also given is the histogram. Note that the majority of
pixels have a value of less than 128, indicating a "dark" image, as we see.
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255

Figure 2-13. Mountain image and histogram.

Histogram equalization is a process by which we treat the histogram as a
probability distribution and convert it to a uniform distribution by integrating.
This is a well-known result from statistics, but for our purposes we simply
accumulate histogram values and use the accumulations to remap the pixel
intensities. This process has the effect of "flattening” the histogram, thus
increasing the contrast of the image. Figure 2-14 illustrates this process with the
mountain image. Note that the sky is considerably lighter and the trees are
somewhat more distinct.

m|||||\||\\|IIIH\Imu||||H|||mp||-.....un||||I|||||||||| IH.’
0 128 255

Figure 2-14. Equalized mountain image and histogram.
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The equalized histogram is not completely flat due to accumulated errors in
the summing of the discrete levels (integration). Nevertheless, a contrast
enhancement was achieved. When operating with hardware, the equalization
can be applied to a look-up table, or LUT. A LUT maps a pixel
value to a display value. For example, if our equalization (or

0 0 other histogram operation) called for pixels of value 254 to map
25 to pixels of value 200, the value of the LUT at location 254

1 would be displayed as 200. Think of the LUT as a single-
dimensional array with elements corresponding to the number of

2 2 graylevels possible, as depicted in the graphic to the left. Here

. we see that the LUT maps input pixels of value 0, 2, 253, and
255 to the same value on output, but pixels of value 1 are
mapped to value 25 and pixels of value 254 are mapped to value
253 | 253 | 200. What this implies is that by changing the mapping values,
we can redistribute the grayscale values of pixels in an image in
254 | 200 [ any way that we choose. Mappings of this sort can be inverted—
we can simply map the pixels back through the LUT to return to
255 | 255 the original distribution for point operations. This is not the case
with the neighborhood operations in which the operation cannot
be reversed. From the standpoint of machine vision, a point
process can be a useful preprocess step before more complex analysis routines.
We will see in Chapter 5 how histograms play an important role in the
thresholding of objects and regions.

2.6 IMAGE PROCESSING AND MACHINE VISION

To try and cover all areas of image processing in one short chapter of a
machine vision text would be foolhardy. The annotated bibliography contains a
number of excellent references to expand on what has been discussed here. One
need not be an expert in all aspects of image processing to be successful in
addressing machine vision problems. Machine vision is used to understand the
content of images while image processing improves them. This is an important
distinction, because for almost all applications, unless one has control of image
capture, one can ignore compression, restoration, and reconstruction

algorithms.
Image processing can be partitioned into three levels, as listed in the chart
below:
Low Level Mid-Level High Level
histogramming edge detection representation
filtering thresholding recognition
warping and registration segmentation interpretation
reconstruction
compression/decompression
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The distinguishing factor in this partitioning is that processing at each level
results in a unique outcome if we restrict the definition of an image to that of a
natural scene. The output of low level operations is an image— hopefully an
improved image—but an image nevertheless. At this level, histogramming can
take a poor contrast image and improve the effects of bad lighting; warping and
registration algorithms can compensate for poor camera placement or the
curvature of the earth in images taken from satellites; and filtering can remove
noise. Mid-level operations produce a two-dimensional data structure. For
example, the result of edge detection may look like an image, but it is no longer
a natural scene. Finally, high- level operations discard the image completely
and generate a data structure that describes the content of the scene—this is the
basis of machine vision.

In summary, the following two points can be made: (1) image processing is
useful for the preprocessing of images to enhance the later stages of processing
for machine vision purposes, and (2) one must use caution when preprocessing
so that data are not lost. An example of these issues is shown in Figure 2-15.
Since machine vision problems typically involve locating an object and making
a decision of some sort about it, the image processing operations shown in the
figure could either enhance or detract from a recognition operation. The edge
detection of the sharpened image (bottom, middle) gives the least fragmented
result, particularly in the case of the bolt at the bottom of the image and the nut
to the left of it. It should also be clear from this processing that resolving the
difference between the three bolts is nontrivial. If we measure the length of
each bolt in terms of pixels, we will discover that each differs only by two
pixels. Lighting can cause a difference of this many pixels in a recognition
scheme. Since the two nuts are oriented the same way, it is very simple to find
them by using a correlation mask. However, if they were not oriented alike then
their recognition would require more processing in an attempt to detect and
identify all possible orientations.

The final point that must be made is that image processing techniques can
be used in a great number of ways to extract information from a given scene so
that the machine vision algorithm can discriminate between objects the scene
contains. Nevertheless, the outcome of processing is highly dependent on
lighting conditions, resolution, and complexity of the objects that must be
recognized. These issues and others will be explored in Chapter 4 along with
approaches that can be used for machine vision processing.
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Figure 2-15. Upper row: (left) original image, (middle) image after
sharpening filter, (right) image after smoothing filter. Bottom row: edge
detection results for each of the upper-row images. Note improvement
after sharpening and loss of detail after smoothing.
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CHAPTER 3
COMPUTER GRAPHICS

The field of computer graphics involves the creation of images and image
sequences from data descriptions and is closely allied with fine arts and media
studies. The importance of computer graphics to machine vision is that the
reduction of a natural or real-world scene to a graphic representation can be a
powerful step toward the understanding of the scene content by the computer.

3.1 DEFINITION

Where image processing seeks to evaluate and process images of scenes
and objects derived from data sensed in the real environment, computer
graphics attempts to create scenes and environments from synthetic data
structures. Consider a sequence of image processing activities, where a natural
scene is processed, such as in Figure 3-1(a). Here the image is that of an aircraft
landing. We see the sun and a portion of the top of a security fence. In 3.1(b),
the image has been edge detected (see Section 2.4) and is no longer an image of
a “natural scene,” but has become a two-dimensional data structure that
identifies the spatial position of important edges in the image.

i!i»" B ! R B e i

Figure 3-1. a) 727 jet landing, b) edge-detected jet.

With further work, we can process the image to the point where all that is
left is a data structure, such as the one listed in Figure 3-2. Here the content of
the image has been reduced so that we no longer have an image at all

33
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However, when given the description, we can, with some imagination, visualize
the original scene. Of course, if all one has is the description below, one might
construct an image of a 727 with a horizontal view and at the coordinates
specified, but the image created would not be the same as the one we started
with. We have neglected to describe the exact orientation of the jet, the shading
and lighting conditions, the fence description, etc. One of the major goals of
machine vision study is to be able to reduce an image to a description such as
that given in Figure 3-2. In contrast, computer graphics seeks to take a
description and derive a realistic scene.

Image: 640 x 480 pixels, 256 graylevels

Object A: JTet, 727 ObjectB: Sun

View: horizontal View:  direct
Coord: (365, 276) Coord:  (188,23)
Area; 16,815 pixels Area: 1,334 pixels
Mean: 203.77 Mean: 255

Figure 3-2. 727 Image description.

This is the contrast between image processing and computer graphics. With
image processing, one starts with a natural scene derived from a sensor system
and produces a transformation. In the case of machine vision, the ultimate goal
is to produce a data structure that describes the natural scene so that some sort
of intelligence can be derived from the description. In contrast, computer
graphics starts with a description and attempts to derive a realistic-looking
natural scene. It is because of this duality of purpose, albeit in different
directions, that an understanding of computer graphics terminology and
methods is important to the student of machine vision.

3.2 GRAPHIC OBJECTS AND PROCEDURES

Graphic objects are formed by drawing, or by recreating, a pixel value over
a path or contour. The simplest graphic object is a point, and this, of course,
leads to the next object, a ling, and so on. In the early days of computer
graphics, just plotting data on a raster screen was difficult. Today most word
processors contain graphics editors so that a drawing can be created and placed
during document creation. To produce overlay graphics on a computer image,
the pixels of the image that will represent the graphic objects must be modified.
Consider the image of the jet in Figure 3-1(a). Let’s say that we want to show a
line that goes from the center of the jet towards the edge of the image at the
angle of approach, as shown in Figure 3-3. The line is drawn by changing
pixels starting at the coordinates of the center of the aircraft and leading in a
straight line to the edge of the image to white. This is easily accomplished with
a line drawing routine based on the two-point form for the equation of a line.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 05 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



COMPUTER GRAPHICS 35

There is a slight dilemma in drawing lines that is readily seen in the figure.
We are dealing with a discrete coordinate system and lines may not appear
smooth if the sampling is coarse. The jaggedness of the line is called aliasing,
in the same way that the term is used when discussing sampling. This effect can
be minimized by algorithms that compute the best fit of the given pixel
sampling to the ideal line between two points. These algorithms are called
antialiasing or dejagging techniques.

Figure 3-3. Graphic line overlay.

The fundamental graphic objects are points, lines, ellipses, rectangles,
polygons, and free-form contours. Ellipses and squares are special cases of
circles and rectangles. Just as we established images as represented on a
Cartesian plane, so also can computer graphics be represented. Any geometric
object that can be mathematically represented on that plane can be recreated by
the computer using pixels as points.

When perspective is incorporated into line drawings, three-dimensional
representations can be created. Consider a circle that is extruded along a line
passing through its center creating a cylinder, as shown in Figure 3-4. When the
cylinder is viewed at an angle, the circular ends become ellipses. As one end of
the cylinder recedes from the viewer, that end collapses to a point. It is beyond
the scope of this book to explore 3-D methods in graphics; however, 3-D plays
an important role in machine vision analysis as revealed in Section 3.3.

Figure 3-4. Extruded circle and receding cylinder.
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Image processing hardware often includes a graphic overlay channel. This
is an extra frame buffer that overrides the pixel values of the main buffer when
the image is displayed. Thus, graphic objects can be used over the image being
worked without disturbing the pixels of the image. This permits the graphics to
be changed or animated without having to restore the original pixels.

3.3 USEFULNESS TO MACHINE VISION

The relationship of computer graphics to the field of machine vision is
found in the correspondence between the geometric properties of computer
graphics and the geometry of objects in scenes. If an object in a real scene can
be reduced to a simple graphic object, or collection of graphic objects, then the
identification of the original object can, in most cases, be greatly simplified.
Consider the barn and silo image of Figure 3-5(a). The silo is essentially a
cylinder with a hemisphere on top. In 2-D, it can be represented as shown in
Figure 3-5(b), a rectangle and a half-circle.

v

(a) (b)

Figure 3-5. Barn and silo.

For now, we can dispense with the difficulty of extracting the graphic of
the silo from the farm scene as that is covered later. Instead, we can concentrate
on the problems of scale and rotation. It is relatively simple to look for a
particular shape at a specific size and orientation, but the search becomes
difficult if the objects can have large variances in these parameters. When the
problem is one of factory automation, where the area of operation is fixed, then
these problems are of less consequence. In factory automation the ability to
control the lighting, camera position, orientation, and the positioning of the
objects under scrutiny, is a distinct advantage.

Figure 3-6 shows the setup for a factory inspection system of parts on an
assembly line. One can control the following:

* Camera: position, lens, filters, and resolution.

* Lighting: eliminate shadows and enhance contrast to camera.
* Conveyor: background and travel speed of parts under camera.
* Parts: orientation.
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This short list of controlled parameters can greatly simplify the machine
vision task by constraining the geometry of the problem. In short, controlling
the environment of the machine vision problem reduces it to a graphics
problem. Increasing control of the image acquisition parameters, if you will,
from the graphic representation to the actual scene perceived by the camera
decreases the perceptual “distance.” Standard and well-studied algorithms can
then be employed to evaluate the acquired image.

Camera T Lighting

g Assembly
L Line

O -

Figure 3-6. Assembly line set-up.

In the scenario of Figure 3-6, the only parameters not mentioned are speed
and computing power. The speed of task accomplishment will depend directly
on the resolution needed and the amount of detail in subtasks that the machine
vision algorithm suite must evaluate. These issues are covered in greater detail
in later chapters. To summarize the importance of computer graphics
processing to machine vision: the reduction of real scenes (whether from
factory assembly lines or military surveillance cameras) to graphic
representations is a powerful methodology for machine comprehension of
images.

The intersection between computer graphics and machine vision narrows as
time passes. Large-scale vision systems employed in factory automation
scenarios have major components such as graphical user interfaces (GUIs) that
are developed from computer graphics methods. These systems also use
geometric constraints such as view and perspective in the analysis and
evaluation of moving objects, making the understanding of computer graphics
processes a necessary element of machine vision study. Finally, machine vision
systems are increasingly being paired with robots. This requires a high degree
of coordination between the internal geometric representations of the
workspace in the vision system and the actual geometry of the workspace that
the robot is embedded in. The vision system is operating with a virtual space
that must correlate closely to the actual space if the decisions made by the
vision system are to be effective in controlling the robot.
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CHAPTER 4
MACHINE VISION

Machine vision is the computer analysis of images with the intent to
discover what information the images contain. Other terms such as image
understanding and computer and robot vision are synonymous with machine
vision. If any differentiation exists, it is related only to a source research area.
For example, the term image understanding is typically used by image and
signal processing researchers. Computer vision hails from computer science and
artificial intelligence studies, and the term robot vision comes, naturally, from
robotics.

4.1 GOALS
Ideally, we would like to have a machine vision system that displays the

same capabilities as the human visual system. These capabilities can be
summarized as follows:

+ perceive lightness and color of surfaces under a variety of
illuminations.

* detect significant changes in intensity and perform 2-D
segmentation into useful regions.

» infer 3-D structure of scene surfaces from a variety of
monocular cues and from a sequence of stereo or motion
images.

* organize the surfaces and regions into objects of interest.

» generate descriptions of objects and recognize them among
a potentially large class of objects.

» make nonvisual intelligent inferences about the scene based on the
visual processing (abstraction).

39
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In previous chapters, we discussed the problem of uneven illumination and
how the human visual system adapts to a wide range of lighting conditions. We
also mentioned briefly the complexity of 3-D representations and have loosely
discussed the concepts of object and region extraction. Nonvisual inference is
more closely aligned with machine intelligence studies. However, since the
sensory system of the human is dominated by the visual subsystem,' the
importance of drawing inference from visual cues is equally at home in
machine vision. Overall, in machine vision we strive to generate a complete
understanding of the target image and what it contains, and so the methods of
machine reasoning play an important role in this study.

All that is required for the study and application of machine vision is a
computer system. Ideally, however, we want to have image capture and display
facilities. These capabilities increase the cost and complexity of the system but
are requirements of modern-day machine vision analysis. If image sequences
are needed, then the cost and complexity rises significantly. The issues
surrounding image sequence study are discussed in Chapter 7.

Before selecting specific machine vision goals, it is necessary to establish a
domain of operation for the analysis. This domain can be as restricted as the
factory assembly line scenario shown in Figure 3-6, or as unrestricted as a
camera mounted to a completely autonomous robot. In the case of an
autonomous vehicle, one can retract the visual domain to paved roads with the
assumption that the vehicle will not operate on other surfaces. Even this
simplification adds to the success probability of the overall system. Domain
constraint may also include the image sensor parameters such as sampling,
quantization, field of view, and wavelength (or band). In complex systems,
multiple wavelengths are used and the result is a system that incorporates
multisensor fusion. The constraint in these systems is the synergy and contrast
that often exist between different sensor wavelengths as applied to specific
problems.

The goals of a machine vision system will become, whether the user wants
them to or not, tightly coupled to the technology of both the target application
and the requirements of analysis. For example, the speed of analysis of the
system, which becomes very important in many factory scenarios and critical in
a high-performance aircraft, will limit resolution of the system, increase
complexity of the subunits, and require large computing resources. The
complexity of the objects that the system must evaluate will also drive the
resolution demands. A system can detect and evaluate wrenches on a conveyor
belt much easier than it can detect anomalies on a printed circuit card. Also, if
the target objects and/or the system itself are moving, the vision system will be
constrained by the amount of time needed to acquire a useable image and by the
time that it has to make a decision or issue a report to another system. These
issues are somewhat empirical, however, good design planning can prevent
complications that arisc because of hardware limitations. Appendixes A and B
review software and hardware needs for machine vision and offer hints on
selection of packages and equipment.
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4.2 FINITE IMAGE SPACES

Consider a 512 x 512 monochrome image in which each pixel value has
been determined from a random number generator in the range of 0 (black) to
255 (white). Such an image would look like Figure 4-1. This is a noise image.
The histogram for this image is almost completely flat, showing that the pixel
value distribution is uniform, because of the probability distribution of the
random number generator. Other distributions are possible, and distributions
can be changed on a per pixel basis. If we process the image with a 3 X 3 mean
filter, as shown in Figure 4-2, we see that some of the randomness is gone. The
mean filter replaces each pixel with the average value of the pixels that
surround it in a 3 X 3 neighborhood. Because of the averaging effect, pixels
have been smeared into larger, homogeneous globs. The image now looks more
like a texture, or pattern. The histogram is no longer flat, but Gaussian (or
normal) in shape. What we have done, in effect, is to generate Gaussian noise.

Figure 4-1. Noise image and histogram.
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Figure 4-2. Mean filtered noise and histogram.

Now examine Figure 4-3(a) and 4-3(b). In (a) there is a grayscale picture of
a locomotive rounding a curve and (b) the same scene is shown with noise
overlayed. The noise image is similar to that of a noisy television channel if we
were to capture a single frame from it. The point is that once a sampling and a
quantization have been selected for an image set, that set is constrained and will
contain a finite number of images, although that number is huge. The resolution
512 x 512 was chosen because it approximates the resolution of a television
picture. Imagine every image you have ever seen on a black and white
television—each of those images is within the set just described. The
membership of images in the set is a permutation of 262,244 pixels taken 256
different ways. The total number of images is then immense, on the order of
262,244 factorial.

(a) (b)

Figure 4-3. (a) Locomotive, (b) with noise added.
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In general, the less randomness an image has, the more likely the image
will be recognizable as a natural scene. In this sense, machine vision can be
thought of in terms of a search through the space of all images within a set as
described above. Think of the last movie that you saw in black and white.
Every frame of that movie is contained within the set of 512 x 512 x 8-bit
monochrome images. A standard movie lasts about two hours. At 16 frames per
second, that comes to a little over 100,000 frames. If we took a vision system
and put a random number generator on every pixel of the image display so that
all of the images possible in the set would eventually appear, you would see
every frame in your movie...eventually. The idea is to reduce the set by
constraining it in some way that is pertinent to the application. Part of the
constraining can be in knowing what you are looking for in the vast ensemble
of images in the set. Another way to constrain the set is to control the
environment in which the set is acquired. This is particularly easy to do in a
factory environment where lighting, speed of conveyor systems, and the
identity of the objects being looked for is known.

In some situations, we must enlarge the set in order to include an object or
feature. For example, if the camera chosen for a task cannot resolve an object of
interest, such as a tumor on an X-ray photograph, then the resolution must be
increased and the set of possible images enlarged. In this case the enlargement
of the space may be offset by having a specific region in which to look. With a
mammogram, for instance, the system would only look in the central portion of
the image. We conclude this section by noting that it is useful to think of
images in terms of sets of possible scenes based on the constraints established
by the application or task to be performed. We show this in greater detail in the
next section.

4.3 APPLICATIONS

Although many applications for machine vision exist, it will be useful to
review the limits of the field. At the lower end is the problem of the conveyor
belt in the factory. There, a camera images parts and a vision system is used to
reject a part or accept it, which was shown in Chapter 3. At the outer reaches of
the field there is a human-level vision process driving a robot. At the low end,
the conveyor belt problem has been solved and machine vision systems are in
place in many factories and industrial sites. The conveyor belt problem requires
pattern recognition, object registration, alignment, and, in some cases, tracking.
Algorithms to perform these functions are well known and available in
commercial packages. For now we will examine a number of machine vision
packages that are in place and have been tested in the field. This will complete
the chapter. In Chapter 7 the discussion will be on how to process objects and
regions and we will save the discussion of human-level machine vision for
Chapter 8.
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4.3.1 IDENTIFICATION AND SORTING OF FISH

A system for the automatic identification of fish species for shipboard
processing was developed by Scotland’s Torry Research Station in Granite
City, Scotland.” Netted fish enter a conveyor belt system and are imaged in 24-
bit RGB. Silhouettes of the fish are also imaged by a fluorescent light box
under the transparent conveyor belt. After image acquisition and processing, the
fish proceed to a series of diverters (pneumatic arms that direct the fish into sort
bins) that are controlled by the vision system.

The vision processing first determines the orientation of the fish. Fish
appear randomly oriented on the conveyor, although the feed system guarantees
that only one fish will be present in an acquired image. A color thresholding
(Section 5.1) and chain linking (Section 6.1) algorithm are used to develop an
outline of the fish shape. First-order moments (Section 5.3) are then employed
to determine the principal axis of the fish. The width of the fish is then
calculated at 10% of overall length from each end and the wider end is
identified as the head, establishing orientation.

The individual species of fish are determined by using a template matching
scheme (Section 6.2) and mensuration (Section 5.3). In template matching, the
first-order moments are computed and aspect and area ratios are calculated.
These ratios are then compared to standard templates of the species known to
the system. The mensuration scheme determines the width of the fish at equal
distances along their length and compares this data to standard distributions.
This scheme is illustrated by Figure 4-4. The vision system would determine
the fish widths at each of the positions W, through W,. The widths determined
are then compared against a database of average widths at these points from
various species. The closest match is then judged to be from that species.

+—
X w,
]
W2
+—
w3
—— Wa

sample points

Figure 4-4. Fish identification system width measurements.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 05 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



MACHINE VISION 45

In both approaches, when a fish is curled in the image, both the ratio and
width measurements produce inaccurate results as they assume that the fish is
lying flat. To work around this, normals are computed from the main axis of
each fish species to the edge of the body to allow detection of a curled fish,
which might be identified incorrectly using the previous methods. The width
feature is made invariant by this step and the problem of curling is minimized.

As a final processing step, the color and shape of the fish are compared to a
database as a final discriminant. The system has been shown to be 99%
accurate in sorting at a rate of 60 fish per minute. It should be clear that this
system uses an ensemble of methods to achieve the goal of identifying fish
species. Each processing step is given a vote in the final decision of which
species the fish is. The determination of how much a vote should count is often
based on heuristics, or rules-of-thumb. Heuristics are largely determined from
experience or common sense and are sometimes difficult to express
empirically. In the case of the fish, the color attribute may have a stronger vote
in the case of a fish that is brightly and uniformly colored. It would contribute
less to a decision between two plain-colored species.

4.3.2 OBJECT COUNTING

The counting of randomly-scattered objects on a conveyor system can be
considered as an exercise in constraining the geometry of the machine vision
problem, as we discussed in Section 3.3. The Sci-Agra Company of Fort
Wayne, Indiana, has developed one such approach.? Their census system uses a
linear infrared (IR) emitter/detector array to develop a 3-D representation of
what passes beneath it on a conveyor belt, as illustrated in Figure 4-5. The
intensity of the reflected IR beam is proportional to the distance of the object
from the emitter/detector pair.

MVAVAVAVAVAVAVAVAVAVS

/ Objects
Sensor Array O (a/__'

Figure 4-5. Census IR counting system.

The output of the array at any moment in time is illustrated by the plot in
Figure 4-6(a). As the conveyor moves and the array is sampled, a 3-D
representation is created, Figure 4-6(b). Custom software is developed
depending on the complexity of the object or objects that must be counted. The
systern has been used successfully on eggs, baked goods, and frozen foods. The
primary algorithm used is surface-area calculation (Section 6.2).
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Intensity

Time
(@) (b)

Figure 4-6. (a) Sensor output. Vertical axis is reflected IR intensity, while
horizontal axis is position; (b) 3-D representation showing multiple sensor
outputs in time-revealing egg shapes.

4.3.3 VEHICLE LICENSE PLATE NUMBER SENSING

The last application is that of automated detection and evaluation of vehicle
license plate numbers. A system was developed by the Perceptics Corporation
of Knoxville, Tennessee, to locate and read the license plate numbers of
vehicles entering Canada at the Rainbow or Whirlpool bridge border crossings
in Niagra Falls, Ontario.* When a vehicle is sensed at the crossing point by
breaking an infrared (IR) beam, a flash of near-IR light is fired in conjunction
with the electronic shutter of an IR CCD camera aimed at the rear of the
vehicle. The image is digitized and the license number evaluated in a matter of
seconds.

The first stage of the processing is to resolve the location of the license
plate from numerous other rectangular objects in the image such as bumper
stickers, manufacturer logos, parking permits and the like. Location of the plate
is determined using a decision tree structure that applies a number of different
tests to the image. These tests are proprietary to Perceptics, but one can surmise
that they consist primarily of edge detection and shape locating. Once the plate
is located, the characters on the plate are separated from the background and
analyzed using a structural analysis approach.

Structural analysis requires that the geometry of the target object is
determined, in this case letters and numbers. This is distinct from template
matching approaches that try to correlate unknown objects that have been
extracted from an image to a database of known objects. The domain of the
identification is somewhat restricted as the system knows information such as
fonts and syntax for Canadian and U.S. plates, which make up the bulk of the
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plates that the system sees. Because the domain is restricted and the evaluation
is constrained to the area of the plate handed off from the initial processing
step, the system is very robust and highly accurate. Exact figures are not
known, but the Canadian government has equipped most of its 120 land-based
ports of entry with the system. In Section 6.2 we will examine representation
methods that include structural approaches used in this system.
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CHAPTER 5
OBJECTS AND REGIONS

In Chapter 4 we studied the problem of machine vision and concluded the
chapter with a brief look at three interesting applications. With this chapter we
begin to examine the fundamental methods of machine vision processing—the
breakdown of an image into objects and regions.

5.1 THRESHOLDING

Thresholding is the separation of objects or regions in an image based on
pixel graylevels above or below a selected (threshold) value. A simple
mathematical definition of thresholding is given by

(x )= Goif fx,n>T
Y6 ey <T

where G, is the replacement value for the object, G, is the replacement value
for the background and T is the threshold value. This is best illustrated by an
example. Consider Figure 5-1, the image of a cruise ship and Figure 5-2, the
histogram of this image. If we let T=200 (as indicated on the histogram),
G, =255 and G, =0, the result is illustrated in Figure 5-3.

Figure 5-3 reveals an object, a cruise ship, that is the result of simple
thresholding. This tells us that the small peak at the far right of the histogram is
comprised of pixel values from the ship object. We might speculate that the
large peak represents sky pixels. In this case, we can employ a technique
known as density slicing or multiple thresholds. We can replace all pixels
below value 200 and above value 160 (the range of values of the large peak in
the histogram) with 253, the object value, and all other pixels with zero, the
background value. This operation yields the region of sky as shown in
Figure 5-4.

49
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Figure 5-1. Cruise ship.

200

Figure 5-2, Cruise ship histogram.

Figure 5-3. Cruise ship thresholded to level 64.
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Figure 5-4. Density slice of cruise ship yielding sky region.

The question that must now be answered is, “How do we choose the
threshold values?” This is a difficult problem and a great deal of research has
been undertaken to find automated methods of thresholding. We will now look
at two techniques of automated thresholding: optimum and class variance.

5.1.1 OPTIMUM THRESHOLDING

Optimum thresholding assumes a bimodal histogram and seeks the minima
as the threshold point. For example, consider Figure 5-5(a), an image of small
parts, and its histogram, 5-5(b). The parts in the image, from left to right, are: a
small toy pot, open-end down; the metal clip from a key chain, the clip is open;
a Hall Effect Gear Tooth Sensor, this item is black plastic and has a cylindrical
shape, one end has a mounting tab where the connection wires are attached
(these are visible in the picture); and lastly, a large paper clip. This image was
used for a project in a machine perception course that the author teaches. It is a
good example of an image that might be encountered in machine vision
problems where objects must be located and identified. A histogram is almost
always the first data extraction that is made on an image prior to further
processing (see Section 2.5, Point Processes). The histogram can reveal a great
deal about the objects in an image, but the interpretation of a histogram is not
always straightforward or useful. Note that the histogram for the parts image is
bimodal, meaning that it has two distinct peaks.

Figure 5-5. (a) Image of small parts.
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Intensity

I ' ‘ I | I | L bl

Figure 5-5. (b) histogram.

If we convert the histogram into a piecewise-linear function, and then seek
the transition point of the modes, we get the following:

v

Optimal Threshold (pixel value 220)

We call this transition point the “optimal threshold,” which in this case
turns out to be 220. This is the threshold where the bimodal distributions meet.
If we threshold the small parts image [Figure 5-5(a)] to this level, the result
will be as shown in Figure 5-6. The algorithm that performs optimal
thresholding is the same as the algorithm for determining the minima of a
function while excluding the end points. The algorithm assumes that the
histogram is bimodal and that the objects of interest lie to one side of the
minima. The underlying assumption here is that the background pixels (pixels
not belonging to the objects of interest) will be uniform and make up the bulk
of the image pixels. Generally, this can be controlled through proper lighting of
the workspace. In situations where the system encounters shadows and variable
lighting conditions, this approach fails and more sophisticated techniques must
be employed.

Figure 5-6. Optimal thresholding (level 220) of Figure 5-5(a).
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5.1.2 CLASS VARIANCE THRESHOLDING

Class variance thresholding was first proposed by Otsu and is sometimes
called Otsu’s method.! The algorithm maximizes the separation of classes
using a discriminant criterion based on zero and first-order moments of the
histogram. The method is nontrivial and is best explained in terms of the
expression used to evaluate it, the between-class variance. This is given by the
following expression:

2 (o) r @k )= ()}
73(K)= cu(k(l)ﬁ—g((:))] '

The components of the between-class variance are as follows:

L
Mean value of image My = ,u(L): Zipi
i=1
k
First-order cumulative moment ulk)= Zipi
i=1
k
Zeroth-order cumulative moment a)(k): 2 D; s

where L is the number of graylevels in the image and p, is the number of pixels
at graylevel i. These equations may appear intimidating, but the simple
explanation of the moments is that they provide a scalar value that summarizes
the relationship between pixel values and spatial position. This makes sense
heuristically when you consider that we are attempting to find a threshold that
yields the best separation between objects in the image.

In Otsu’s method, the optimal threshold &* is the graylevel when the
between-class variance is maximized. This will occur (theoretically) when the
squared error developed between the image mean scaled by the zeroth- order
moment (a measure of dispersion of the histogram) and the first- order moment
(a measure of dispersion weighted by the grayscale value) is large. This means
that a threshold that divides the pixel values into maximally-unequal portions
will evaluate to the maximum between-class variance. The idea is that objects
will be minimally dispersed in grayscale whereas background will be
maximally dispersed. We can express the computation of the optimal
threshold, k*, as:

O'f,(k*)z max o2 (k).

1eksL

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 05 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



54 CHAPTER 5

An example of Otsu’s method is shown in Figures 5-7, 5-8 and 5-9(a)
and (b).

Figure 5-7. Screwdrivers.

Examination of Figure 5-8, the histogram of the screwdrivers image,
indicates that Otsu’s method found a prominent minima in the histogram that
adequately thresholded the key features of the screwdrivers from the
background. If we used the bimodal thresholding algorithm of Section 5.1.1, it
would have selected a threshold in the neighborhood of 190. The results of
applying these thresholds to the screwdrivers image are shown in Figure 5-9.
Figure 5-9(a) shows the Otsu threshold of 170 and Figure 5-9(b) shows the
bimodal of 190. The Otsu threshold removed more of the background than the
bimodal, which would simplify the automated recognition of the screwdrivers.

170

Figure 5-8. Histogram of screwdrivers image (Figure 5-7) with notation of
threshold from application of Otsu’s class variance thresholding.
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Figure 5-9. (a) Results of Otsu’s method applied
to screwdrivers image, optimal threshold of 170.
(b) Results of using a bimodal threshold of 190.
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5.2 SEGMENTATION

Segmentation is the process of separating objects and regions from images.
Although we did not mention it earlier, thresholding is the simplest form of
segmentation. It should be clear at this point that the fundamental problem in
thresholding is the selection of a threshold that will reveal the best
segmentation. Since segmentation is defined in terms of objects and regions,
the accurate separation of these elements from an image is often used as a
measure of the success of a segmentation scheme. Segmentation can get very
complex and involves a sequence of steps. For our purposes, we will tie
segmentation to thresholding by considering segmentation as a feedback
process, as illustrated by the diagram in Figure 5-10. The input image, f{x,y), is
thresholded to threshold T and evaluated yielding a segmentation g(x,y).

Sxy) —>®_’ Evaluation > g(x,y)
‘\

Figure 5-10. Segmentation process.

If the evaluation is unsatisfactory or insufficient in terms of number of
objects revealed or identified, the threshold is adjusted. Multiple thresholds
may be necessary in order to resolve all of the objects and regions from the
image, hence the result g(x,y) follows the evaluation process.

As an example, the evaluation process might be the segmentation of a
single object. The segmentation would proceed with various thresholds up
through the grayscale until the evaluation process detected a single object. This
is shown in Figure 5-11, where the first image (a) is that of a pair of pliers, 256
graylevels; the second image (b) is the pliers image thresholded to level 150;
while the third image (c) is the threshold at 187. All of the white pixels in
Figure 5-11(b) belong to the pliers object, while those in (c) belong to a
number of independent regions. All of the pixels in (c) are part of the pliers,
but they are fragmented.

The algorithm to do this detection is simple. At every threshold we
determine whether or not each pixel above the threshold has a neighbor. If this
test passes, then we have a single object. One might argue that the threshold in
Figure 5-11(b) is probably not unique, and that other thresholds may exist that
also reveal the pliers as a single object. We can add a test to require that the
final threshold reveals the single object with the maximum number of
contiguous pixels. A problem that can arise is that at some point there might be
a threshold that has a contiguous object that contains the pliers and also
portions of the background. With this logic, eventually we will come to the
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zero threshold, which will be the largest single object in the image because all
pixels will be included! To avoid this we can place an upper limit on the
number of object pixels, based on a priori knowledge about the object. The
evaluation process can contain other, more sophisticated, means for setting the
threshold. Many of these fall under the category of mensuration, which we
discuss in the next section.

(a) (b) (©)
Figure 5-11. (a) pliers, (b) threshold at 150, (c) threshold at 187.

To continue this line of reasoning regarding the setting of a threshold for a
single object, we can extend the concept to deal with multiple objects. If we are
aware that we have acquired two or more objects, or should have acquired this
number, then the evaluation process must be increased in sophistication. To
determine multiple objects in a thresholded image, the algorithm can mark
pixels that are members of unique objects by setting the thresholded pixels to
specific grayscale vales. An example of this is illustrated in Figure 5-12. Here,
the first image is that of a hammer and a pair of pliers. The second image is
after thresholding. The square area near the hammer head and the tips of the
pliers has been expanded to show detail. The pixels from the hammer are set to
one gray value while the pixels from the pliers are set to another. In later
operations on the image, this distribution “marks” the coordinates of object
pixels. This marking operation can be performed by a clustering algorithm, one
of which is discussed in detail in Section 7.2.

~~~~~~~~~~ pixels from hammer

Figure 5-12. Multiple object marking.
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5.3 MENSURATION

Mensuration is the act or process of measuring. In machine vision, we are
interested in making measurements of image objects and regions for the
purpose of segmentation and recognition. Once objects have been segmented,
measurements are taken. These measurements may then be used in recognition
algorithms to identify the object or region. The segmented image provides a
template, or coordinate list, of thresholded objects. From this list of
coordinates, the pixel values from the original image can be analyzed for
statistical features such as density and standard deviation, or minimum and
maximum values. The number of pixels in an object represents the area of the
object. If the pixels have been calibrated to actual distance measure, an
accurate assessment of actual object size can be determined. The pixel
coordinates can be processed for centroid (or x-y center), perimeter length, and
major and minor axes. Other measurements are possible, as well as
combinations of measurements. An example of measurement is shown in
Figure 5-13. In this example, an image of nuts and bolts against a black
background has been analyzed, 5-13(a). The image has been thresholded and
the objects located and identified by numbers, 5-13(b). The table at the bottom
of the figure, 5-13(c), shows the area of each object and the mean.

The area values are computed by counting the number of pixels in each
object that exceeds the threshold. The mean is evaluated from the set of
original pixel values that exceed the threshold. From the table, we can state
that “If an object has an area greater than 300, then it is a nut, else it is a bolt.”
We can also state that “If the mean value of the object is greater than 40 and
less than 50, then the object is a nut, else it is a bolt.” A potential problem with
this reasoning is that the measurements are dependent on the threshold.
Consider Figure 5-14(a), the thresholded objects from Figure 5-13(b), and
compare this to 5-14(b), an alternate threshold. The area values for the objects
will be different and it is unlikely that we could apply the same reasoning from
before to the identification of the objects. In other words, an area greater than
300 might now be a bolt instead of a nut.

If the objects are not positioned consistently, for example, if the nut object
was on end instead of lying flat, measurement will be affected. In the industrial
environment, positioning can be controlled by using vibration tables, variable-
width transport channels, and other devices to control and guarantee object
presentation to the imaging system.
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(a) (b)
Object Area  Mean
1. (bolt) 264 66.79
2. (bolt) 289 70.66
3. (nut) 319 47.13
4. (nut) 376 49.22
5. (bolt) 257 33.44

(©)

Figure 5-13. (a) nuts and bolts, (b) thresholded objects,
(c) table of area and mean measurements on objects.

(a) (b)
Figure 5-14. (a) threshold for 5-13(h), (b) alternate threshold.
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The sensitivity of mensuration to threshold cannot be underestimated. To
achieve consistent thresholding, the lighting and background variables are the
most important. Once again, in the industrial environment, the control of these
elements is relatively easy. Lighting should be selected to have an emission
wavelength consistent with the camera sensitivity. Intensity should be adjusted
to minimize or eliminate shadows. The background should enhance the
contrast of the objects as much as possible.

To conclude this section and chapter, we give a table of measurements and
their descriptions. The same reasoning that was applied in Figure 5-13 for area
and mean can also be used with all of the measures listed. There is a direct
correlation between the robustness of an object recognition system and the
number of measures it employs. However, there is a corresponding increase in
the computational resources needed by the machine.

This is by no means an exhaustive list. A major facet of machine vision
research is the discovery of new features of objects that can be evaluated from
an image for the purpose of object recognition. Specific algorithms, examples,
and computer code for the measures listed in the table can be found in Ref. 2

below.
Measure Description

Area Count of pixels in object.

Mean Mean value (average pixel value)

Variance Variance of pixel values—measure of deviation from the
average.

Standard Deviation Standard deviation of pixel values—measure of
dispersion, root of variance.

Centroid Coordinates of the center of pixel “mass.” Identifies the
location of the object in the image.

Modal Density Most frequently-occurring pixel value in the object.

Perimeter Number of pixels in the perimeter or outline of the object.
For a circle object, this would correspond to the
circumference.

Maximum Axis The axis of minimum dispersion passing through the
centroid.

Measure Description.

Minimum Axis The axis of maximum dispersion passing through the
centroid.

Angle The angle of the maximum axis with the horizontal (x)
axis of the image.

Min/Max Minimum and maximum pixel value of the objects.
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CHAPTER 6
RECOGNITION

Recognition is the core of machine vision. Algorithms are used to
determine the identity of objects and regions that are segmented from scenes.
The discussion of mensuration in Section 5.3 was a prelude to object
recognition and it explained how measures could be used to discriminate
between objects in a scene. In some sense mensuration belongs with
recognition, but in this chapter we will explore the more advanced concepts of
representation and feature analysis.

6.1 REPRESENTATION

Representation is the process of determining a description for an object or
region. Many representation schemes have been proposed over the years and
the classical descriptors can be classified as either boundary or regional
descriptors. The descriptors to be discussed are:

¢ boundary: chain coding

¢ boundary: polygonal approximation (curve fit)
® boundary: signatures

* region: skeleton

¢ region: topology

* region: texture

Advanced descriptors such as 3-D and surface volumes will also be discussed.

6.1.1 BOUNDARY DESCRIPTOR: CHAIN CODING

Chain codes were first introduced by Freeman' and are sometimes called
"Freeman chain codes." The chain code is a way of directionally encoding a
pixel boundary. A set of directions is employed that can be four, eight or more
directions. To visualize this one can think in terms of the compass points
NSEW. Two forms of these codes are shown below:

63
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0 0
3 1 2
2 514
four directions eight directions

To represent a contour, the direction from the first pixel to the second is
determined and recorded. Then the direction from the second to the third, and
so on. Consider the example shown in Figure 6-1.

contour \

AN

Figure 6-1. Contour magnified to illustrate pixel directions.

The 8-direction chain code for the contour in Figure 6-1 would be:
0000000112022222224424442424242424222(02220000

From just looking at the code we can see that this is just a contour and not a
closed boundary. In Figure 6-2, we show a simple closed boundary.

__qi e

Figure 6-2. Simple closed boundary.

If we start the code at pixel A, then the 8-direction code is:
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233355771701

and if we start at pixel B, the code becomes:

557777012333

To select a consistently unique code for a contour, we can compute the
smallest integer code. In this case, the code 012333557777 would be used.
Whether the contour is closed or not depends on what is being looked for. Once
the codes are processed, they must be evaluated according to some criteria that
is determined from the application. If the application involves looking for
tumors in x-rays, then the contours will most likely be closed and circular
(although some tumors are randomly shaped). Likewise, if the application is
evaluating microscopic images of chromosomes, the contours will have shapes
more like those in Figure 6-1. Chain codes can be computed using sampling
grids, an example of which is shown in Figure 6-3. The problem with grids is
that they are sensitive to contour rotation, position, and scale. Obviously the
finest grid possible is that of the image sampling itself.

[l

Figure 6-3. Chain code sampling grid.

Problems can arise when contours and boundaries are not smooth or have
missing pieces. This problem is called fragmentation and many techniques have
been employed to overcome the problem. Figure 6-4 shows the contour of
Figure 6-2 with fragmentation. The judicious selection of a sampling grid can
sometimes overcome the effects of noisy contours. Additionally, the chain code
can be treated as a single-dimensional signal and processed using filters,
correlation algorithms, and spectral analysis to fill in or smooth the contour.

ot

Figure 6-4. Chain code with fragmentation.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 05 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



66 CHAPTER 6

The chain code as a representation is useful primarily to confirm other
schemes used in a recognition algorithm suite or to compress boundary and
contour data. The chain code can adequately represent a complex contour in
much less data space than the contour data present in an image. An upper
bound on the length of the code (assuming maximum sampling) is the number
of pixels in the contour. This is always one half of the number of Cartesian
coordinates needed to represent any given contour. To see this, consider the
contour under the sample grid in Figure 6-3. Each pixel in the contour requires
a set of coordinate pairs to identify it in the grid. Using a chain code, only one
datum is required per pixel-—the direction. The chain code, however, does not
locate the contour in the grid. This can be specified using the centroid of the
object producing the contour (Sections 6.3 and 7.2.3).

6.1.2 BOUNDARY DESCRIPTOR: BOUNDARY SPLITTING

Boundaries and contours are treated as points on the Cartesian plane (see
Section 6.1.7 for volumetric treatments) so that polygons or curves can be fitted
to them. In the simplest case, we can fit a polygon to a boundary using the
boundary splitting technique. Here the two farthest pixels are determined and a
line is drawn between them. These pixels constitute two initial vertices of the
polygon. The two pixels farthest from the bisecting line are then computed.
This determines the vertices of a four-sided polygon. The farthest pixel from
each of the four sides to the boundary is computed and new vertices are found.
This continues until a polygon of the desired order is computed, a minimal
distance threshold is reached, or the polygon consists of all pixels in the
contour.

Some preprocessing is necessary prior to the splitting sequence and this is
illustrated in Figure 6-5. The original object (image at far left of figure) is that
of a small fastening nut. It was thresholded, the center pixels removed, and the
outline processed. The algorithms needed to process this sequence consist of a
thresholder (optimal or class variance would work), an erosion scheme, and an
outline process. The thresholding produces a binary image where pixels are
either white or black. The center erosion process begins with the determination
of the centroid of the thresholded object (Sections 5.3 and 7.2.3). Pixels are
then processed from the center pixel out towards the boundary of the object.

O

Original Thresholded Center-eroded Outline

Figure 6-5. Polygon extraction sequence,
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Black pixels are changed to white pixels until no change occurs between
two adjacent pixels. The outline is produced by subtracting the center-eroded
image from a single-pixel erosion of the center-eroded image. Erosion removes
one pixel all along the edge of an object while the complementary operation,
dilation, adds a pixel to the edge of an object. These processes are known as
morphological processes and further discussion of them is beyond the scope of
this book. The interested reader should consult the Dougherty’ text for an
exhaustive treatment of morphology in general and the Myler and Weeks” text
for the algorithms to perform morphological filtering.

Figure 6-6 shows a set of six figures that illustrates the sequence of splitting
the outline figure into an irregular hexagon. The process follows from the
upper-left figure, left-to-right, to the lower-right corner. If the problem consists
of searching for fastening nuts, then the process can be halted once a hexagon is
generated. The hexagon will be well-formed (although irregular in almost all
cases) because the process is based on maximal pixel distances. The most
difficult part of the process shown here is the preprocessing. If the threshold
operation does not reveal the six sides of the fastener, then the process will
break down. Setting up consistent lighting conditions can produce a workable
threshold.

Boundary splitting is a powerful and easily-implemented representation for
closed contours. It is most useful when the objects to be represented have a
fixed polygonal shape, such as boxes, pyramids, or the fasteners in our
example.

Figure 6-6. Polygon splitting sequence.

6.1.3 BOUNDARY DESCRIPTOR: CURVE FITTING

In the previous section we saw how polygons could be fitted to contours
using the splitting technique. Elegantly simple to implement, the splitting
technique has the primary disadvantage of generating, in most cases, irregular
polygons. Additionally, the representation is not analytic, but consists of a table
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of vertices. The analytical result produced by curve fitting may be more useful
for later processing because of accuracy considerations. Because of this, for
more complex shapes, curve fitting is often the representation of choice. The
most popular of curve-fitting algorithms is the ellipse fit. Although
computationally intense, the fitting of an ellipse to a cluster of points can lead
to unique features for recognition.

A conic section is described by the following equation:

ax’* +bxy+cy’ +dx+ey+ f =0

and the section will be an ellipse if #°-4ac < 0. The section will be a circle if b
= 4ac. An ellipse can be fitted to a collection of five points by using their
coordinates in the equation above and solving the five simultaneous equations
for the coefficients. Ellipses are characterized by the lengths of their minor and
major axes. The ratio of the axes lengths is called the circularity. When this
ratio is one, the ellipse is a circle.

One can fit an ellipse to an object using an alternate approach to the direct
fit method outlined above. Consider Figure 6-7 below for the discussion that
follows.

minor axis

centroid

oo major axis |
1

Figure 6-7. Ellipse parameters.

The length of the major axis is given by 2a, and that of the minor axis by
2b. The eccentricity is given by

S_c_\/az—bz
a a ’

where ¢ is the distance from the centroid to the foci, ¢=+/a’>-b>. The

eccentricity, unlike the circularity, will be zero when the circle is an ellipse.
The equation of the ellipse in terms of «, b and the centroid (xo, o) is:
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(x—'ZO) +(y;2’o)2 Zl.
a

The value of 2a and 2b (i.e., the lengths of the axes) is easily determined
from computation of the object’s smallest and largest axes using moments.”
Figure 6-8 illustrates the ellipse-fitting operation on the thresholded image of
the head of a hammer. The curvefitting of an ellipse is far simpler
computationally than the polygon fitting discussed in Section 6.1.2. The result
is also more compact to store (centroid and ellipse shape parameters).

Figure 6-8. Ellipse fitting to thresholded side
view of ball-peen hammer head.

6.1.4 BOUNDARY DESCRIPTOR: SIGNATURES

If we process the pixels of a boundary or contour from their two-
dimensional coordinates into a single-dimensional representation, we have what
is called a signature. The chain code can be classified as a signature, however,
the term signature is most often applied to closed contours or object boundaries.
There are many ways to compute signatures, the simplest being a plot of
distance from the centroid of the object to each boundary pixel as a function of
angle. Consider the simple example below, Figure 6-9, where the signature is
plotted every 45°.

Objects with regular-shaped boundaries and large numbers of pixels will
produce signatures that are easily recognizable, as illustrated in Figure 6-10.

Signatures can be analyzed in various ways. The amplitude of the signature
is directly proportional to the object size, but the shape is dependent on the
contour itself. Hence, all circles will have a flat pixel distance signature, all
rectangles will have four peaks, etc. Noise in the contour will affect the
signature, but the noise can be easily filtered using single-dimensional signal
processing techniques prior to analysis.
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11

0 90 180 270

Figure 6-9. Contour and signature.

e

Figure 6-10. (top) Circle, square and ellipse contours;
(bottom) signatures.

6.1.5 REGION DESCRIPTOR: TOPOLOGY

Region descriptors require characteristics that reflect the interior features of
objects. Topological features are those features unaffected by deformations. For
example, one of the simplest of the topological descriptors is the number of
holes in the object. Two different objects with the same number of holes are
shown in Figure 6-11(a). If we compute the number of connected components,
which in both cases above is one, then we can compute the so-called Euler
Number as:

Euler Number =C - H,

where C is the number of connected components and H is the number of holes.
Both of the objects above have Euler Number equal to -1. An object with two
connected components is shown in Figure 6-11(b). The Euler Number for
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this object is 1. Algorithms exist to extract connected components from objects
as well as to determine the number of holes.” Topological features can also be
extracted using polygon splitting and curve fit techniques.

The simplest of algorithms works on binary objects like those shown in
Figure 6-11. The Euler number is found by tabulating the coordinates of all
pixels in the image and determining connectivity with respect to background. In
the case of 6-11(a) and 6-11(b), there would be three classes of pixels in
addition to the background pixels: those connected that form the figure (black)
and those that form the holes (white). A binary image of an object can be
formed using thresholding techniques as discussed in the previous chapter.

)

Figure 6-11. (a) Objects with two holes, £ = -1,
(b) object with one hole, E=1.

6.1.6 REGION DESCRIPTOR: TEXTURE

Texture is the property of regions (and objects) that yields a description of
their interior characteristics. These characteristics can be defined in terms of
repetitive or patterned pixel values, or by the randomness of pixel values. There
are three classifications of texture properties: statistical, structural, and spectral.
Examples of texture are easy to generate. Figure 6-12 shows three examples of
texture: noise, repetitive (brick) graphic, and canvas cloth.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 05 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



72 CHAPTER 6

(noise) (brick pattern) (canvas)

Figure 6-12. Textures.

Statistical representations of patterns attempt to describe the aggregate of
pixel values using statistics. Statistics are useful in texture analysis if the
statistics take into consideration the pixel spatial distribution. It is the spatial
distribution that creates the texture. For this reason, second- and higher-order
moments are employed. When working with noise textures, the first-order
statistics can be very useful as the resulting probability distributions of spatial
noise are often well known.

Structural techniques attempt to characterize a “texture primitive,” or base
element that is repeated to create the texture. This approach works well for
repetitive textures like that of the brick wall shown in Figure 6-12. The texture
primitive for this texture is given by the pattern below, which is repeated to
create the texture pattern.

Determining the texture primitive is a nontrivial task. Among the methods
proposed has been the application of production rules to create the texture. This
approach has origins in computer language theory. It is easy to generate a set of
rules to create a texture, but to determine the rule set that generates a given
texture is a problem that has yet to be solved for complex patterns.

Possibly the most useful and successful of the pattern representation
approaches is that of spectral analysis. Here the pattern is analyzed from its
Fourier transform. Figure 6-13 shows the transforms of the patterns illustrated
in Figure 6-12. Each of the spectra shows distinct patterns, so from the spectra
it is possible to easily characterize the texture. The noise spectra is uniform and
has no specific features whereas the pattern spectra reflects the pattern in that it
has a tile-like repetition that is repeated equally over the entire field. Likewise
the canvas, but the repeated tile pattern is more subtle.
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(noise) (pattern) (canvas)

Figure 6-13. Fourier transforms (spatial)
of Fig. 6.12 textures.

The optimal thresholding of the Fourier transforms in Figure 6-13 yields
the binary images shown in Figure 6-14. These thresholded patterns will occur
regardless of the size of the object (with the pattern). Discriminating between
these can be as simple as assigning the “pattern” label to the thresholded
transform image with the most white pixels and the “noise” label to the
transform with the fewest. The one left must be the “canvas.”

Bans

L - * *
L + 1 o
* * r *
I S — _J
(noise) (pattern) (canvas)

Figure 6-14. Optimal thresholding of Fourier
transforms of Fig. 6.12 textures.

6.1.7 VOLUME DESCRIPTORS

Volumetric descriptors are very similar to the curve-fitting boundary
descriptors discussed earlier except that the object is a three-dimensional object
in three dimensions (3-D). There are two fundamental approaches to this type
of description. The first approach considers the intensity of the image to be the
third dimension with the pixel spatial position coordinates being the first two.
The foundation of this approach has been illustrated in Figure 6-15. The
graphic on the left was used in Section 6.1.5 during the topology discussions
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while the 3-D view on the right considers a black pixel to be high in vertical
distance and white pixels to be low to form a volume plot. Transitions between
levels (there are only two in this example) have been enhanced by a gradual
grayscale transition to give a smoother 3-D effect. Of course, the goal of this
approach is to determine the analytic expression for the volume of an object.
There are algorithms to perform this function on unknown objects but they are
beyond the scope of this text.* Most high-end image processing software
programs include the functionality to produce the 3-D plot shown in Figure 6-
15. This type of processing can be useful early on in selecting approaches to
use in the analysis of the problem.

Figure 6-15. Volumetric plot.

The second approach to volumetric descriptors looks at objects as three-
dimensional entities. For example, consider the images in Figure 6-16. Figure
6-16(a) is a 3-D rendered graphic of a water tumbler, while (b) is the edge-
detected version. In both cases we have a slightly tapered cylinder that is
viewed in perspective and exhibits volume properties in spite of the fact that the
representation is 2-I. Both images can be stored in two ways: (1) as images,
where pixel values represent grayscale, and (2) as graphic objects. As a graphic
object, Figure 6-16(b) is called a wireframe representation of a tapered
cylinder. The computer stores the wireframe object as a set of connected
primitives. Most graphics programs include a cylinder primitive, so all that
need be stored is the height and diameters of the ends.

(a) (b)

Figure 6-16. Water tumblers.
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Figure 6-16(a) is the wireframe object after color and shading have been
applied. Both processes, the derivation of a wireframe representation for a real
object and the coloring, or rendering, of a wireframe object are exceedingly
difficult and the exact techniques are far beyond the scope of this text. As
discussed in Chapter 3, the usefulness of computer graphics techniques to
machine vision cannot be underestimated. Further, large-scale vision systems
that incorporate algorithms for volumetric representation are discussed in
Chapter 8, Vision Systems.

6.2 PATTERN AND FEATURE ANALYSIS

Once an adequate representation has been achieved, pattern and feature
analysis are employed to analyze the image for information content. From our
earlier discussion, it should be clear that representation methods are nothing
more than feature extraction techniques. We can distinguish between pattern
and feature analysis by defining terms:

pattern analysis—a process of defining unique sets of features, called
patterns, from a data set whose features or patterns are unknown.

feature analysis—a process where known features are looked for within a
data set for the purpose of recognition and identification.

To distinguish between what is considered a pattern and what is a feature,
think of patterns as sets of features. The simplest and most fundamental of
pattern analysis techniques is cluster analysis, which is the process of counting
and labeling objects and/or regions within an image. Clusters consist of pixel
groupings that are related to one another by some predetermined measure. For
example, in an image of solid-colored marbles, all red pixels could be a cluster,
all blue, etc. Furthermore, the clusters could be pixels of a particular color and
pixels of that color that are adjacent. This would cluster pixels by marble and
permit multiple marbles of the same color to be in separate clusters. Clearly, the
clustering measure can be just pixel values or a complex set of identifiers or
features. A simple clustering algorithm is given below:

Simple Clustering Algorithm

» Specify a size in pixels that the cluster should be.

+ Assuming a binary image, use a raster scan to locate the first image
pixel.

» Mark the pixel as belonging to cluster number 1.

* Find the next pixel adjacent to the marked pixel, mark it as
belonging to cluster 1.

» When no adjacent pixel is found or the cluster size is
reached, begin searching for pixels in cluster 2, etc.
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The implementation of a clustering algorithm for grayscale images is not
difficult. As the algorithm scans the image, pixel by pixel, it marks membership
of a pixel in a cluster by changing the pixels value to the cluster number. For an
image with 256 levels of gray, a cluster analysis program based on the
algorithm above can identify 255 clusters (plus a background). The clustered
image can then be displayed using color to highlight the different clusters
found. Figure 6-17 shows the results of running a clustering algorithm on the
thresholded image of a set of small objects. This image was introduced in
Section 5.1.1 as Figure 5-5. Recall that the parts in the image, from left to right,
are:

1. a small toy pot, open-end down,
the metal clip from a key chain, the clip is open,

3. a Hall Effect Gear Tooth Sensor, this item is black plastic and has a
cylindrical shape, one end has a mounting tab where the connection
wires are attached (these are visible in the picture) and,

4. alarge paper clip.

The original image is at the top and the thresholded image that was cluster
analyzed is below it followed by the results of a feature analysis.

The clustering algorithm employed for the example of Figure 6-17 marks
each cluster found with a small number. Cluster number 3 corresponds to the
pan or club-shaped object at the far left of the original image. Clusters 1, 2 and
8 are part of the cylindrical black object (a Hall Effect sensor) at the center,
while clusters 4, 5, 6 and 7 are part of the paper clip to the far right. Note that
the key chain clip did not make it past the threshold operation.

Below Figure 6-17 are the tabulated results of a mensuration performed on
the clusters as image objects. The features extracted were cluster area (a count
of the number of pixels in the cluster), centroid of the cluster in X-Y
coordinates, and length of the cluster (measured on the maximal axis). These
features can now be used for a feature analysis to identify which real objects the
clusters represent. Assume that these objects are moving on an assembly line.
We control lighting (shadows are consistent or eliminated), exposure time
(image contrast is constant), threshold (the same objects appear in each frame)
and magnification (the size of the objects is constant). From the table we can
establish that a cluster with area >3000 pixels will most likely be the Hall
Effect sensor. We certainly could add other features to the table to try to
distinguish the other objects as well. Another term widely used for clustering is
region growing. To avoid confusion, understand that clustering originated from
pattern analysis and region growing was coined by image processing
researchers. Clustering is highly dependent on threshold. Figure 6-18 illustrates
two different thresholds on the same image. Notice the difference in number of
objects discernible.
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Cluster Area X Y  Length
1. 486 214 118 237
2. /3353 355 84 401
3. 2507 91 58 268
4 622 4717 71 131
5. 84 457 65 35
6. 764 479 48 121
7 107 452 52 38
8. 30 308 54 19

Figure 6-17. Clustering algorithm example.

77

In practice, the goal is often to select as many features as possible from an
image and to select them in such a way that they maximize the ability of the
computer to distinguish between objects. A major consideration is often the
speed of process time, which in military flight hardware can be more important
than 100% accuracy of identification if the system is supplemented by human
supervision. The opposite is generally the case in a factory environment where
the system has more time to process, but the lack of human supervision (which

is why the machine vision system was specified) demands a higher level of

identification accuracy.
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Figure 6-18. Cluster variations from threshold. Top: original image;
Middle and bottom left: two different thresholds; Middle and bottom
right: results of cluster analysis.
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CHAPTER 7
IMAGE SEQUENCES

In this chapter we examine the processing of image sequences. Image
sequence processing is important in robot vision, where the imaging is often
done from a mobile platform.

7.1 FRAME-TO-FRAME ANALYSIS

When discussing image sequences, we progress from the realm of image
processing that, for the most part, is concerned with still images, and enter the
realm of video processing. Video refers to image sequences that are described
in terms of frames, the video term for images. A set of frames with an
associated rate constitutes a video clip and a set of clips makes up a movie.
Movies, clips, and frames first existed on photographic film and later were
captured electronically by analog television cameras. Television established
the first medium for image sequence processing, so we will begin this section
with a discussion of it.

Historically, television signals began as analog scans of image data
detected by a vidicon tube. The vidicon processes image data as a continuous
signal in time by scanning the image focused onto a target screen with an
electron beam. Scanning starts at the upper-left corner of the image and scans
across one row (or line) at a time. This scanning is called rasterizing and the
analog signal produced—image intensity in time—is decoded with timing
signals that indicate end-of-ling and end-of-frame. The frame rate is the
number of frames per second (fps). For television, the frame rate is roughly 30
frames per second. It should be noted, however, that television consists of two
interlaced frames. The total number of lines in a television image is 480. Each
interlaced frame, consisting of 240 lines, is output at a rate of 63.5
microseconds. The fusion rate of the eyes and the persistence of the television
receiver phosphors combine to yield a continuous image sequence in time with
no flicker.

Color television cameras employ three vidicons, one each for the red,
green, and blue components of visible light. The color television signal,
however, is not as simple as three red, green, and blue vidicon signals in
tandem. Instead, color television separates the color, or chroma, information
from the intensity, or luminance, information. This format was determined by
the National Television Standards Committee so that color television signals
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would be compatible with monochrome signals, hence the color television
signal is called NTSC. The standard for the monochrome signal previously
described is RS-170."

RS-170 and NTSC signals can be digitized into individual frames and
stored. Formats exist for the generation and storage of digital movies and these
will be discussed in Section 7.2, Data Management. All of the previously
discussed algorithms for machine vision can be applied to digital movies.
However, a number of algorithms exist that take advantage of the fact that
movie sequences contain objects that change position from frame to frame and
the special class of information that motion conveys. The most popular of the
image sequence algorithms, and potentially the most important to machine
vision applications, are the tracking algorithms, which are covered in the next
section.

There are three methods of digital image sequence acquisition: flying- spot
scanning, line scanning, and imaging arrays. The flying-spot scanner has
limited and specialized application and consists of a single detector that is
mounted to a gimbal mechanism that allows it to scan horizontally and
vertically. Line scanning is the mechanical analog to electron-beam scanning
where the image data is acquired one line at a time. Like the flying-spot
scanner, line scanning has specialized applications, primarily in high-
resolution imaging, and will also be covered no further. Unlike the vidicons
discussed earlier, imaging arrays capture and digitize an entire image at once.
The pixel data is collected from individual sensors in the imaging array and
delivered directly to memory. Nevertheless, each of the sensors is polled for its
associated image data value and transferred to memory one pixel at a time,
much like the analog scanning that takes place in the vidicon. It is possible to
combine image memory and imaging sensors as one unit and by doing so the
camera avoids the necessity to serially scan for the data transfer from sensor to
memory.

Frame rates for digital cameras are determined from the speed of the
hardware, which includes both the imaging array and the frame memory. Early
high-resolution cameras had fairly slow frame rates due to the bandwidth of the
data channels connecting them to the computer and the large amount of pixel
data that had to be transferred. As with other applications, the use of image
sequences in machine vision problems is highly dependent on the imaging
hardware. In order for the vision system to detect features necessary for the
application, it is important that the resolution required for spatial sampling and
pixel quantization be specified adequately. This is no different from the
specifications on still image analysis, but now the processing capabilities of the
computer and the amount of data (roughly proportional to the number of
pixels) that can pass through the system will impact how many frames can be
processed in an image sequence. Depending on the hardware, processing the
desired frame rate for the required resolution and pixel depth may or may not
be possible.

Whether or not image sequence processing is needed at all will be
determined from the overall goal of the system and whether or not it must
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track, follow, and/or navigate in real time. The frame rate necessary for these
activities will depend on the speed of the object(s) being tracked and the
motion of the camera platform. For example, when building autonomous,
walking, robots the frame rate is substantially less than that required by the
aircraft tracking systems in high performance aircraft. These items

¢ resolution (sampling, image size)
» quantization (pixel depth)

* frame rate

must be considered when designing or specifying a machine vision system that
must analyze image sequences. If the algorithms developed for the system
require 50 milliseconds to process an image, then the maximum frame rate
possible will be 20 frames per second. This may be acceptable to the walking
robot that crawls like a chameleon, but the aircraft system will demand better
performance. If the designer opts for lesser resolution and quantization, then
the system processing time per frame will decrease and the frame rate will
increase. However, less resolution may mean that features, and ultimately
objects, will be unresolved. This will decrease system performance. Some
applications must be content to just wait for the technology of image
processing hardware to improve.

7.2 IMAGING TRACKERS

The tracking of objects is an important component of a machine vision
system and is one of the fundamental methods of image sequence processing.
There are many different kinds of digital imaging trackers, and we will discuss
four of them in this section: differencing, correlation, centroiding, and gated
video. Trackers not covered here are the reticle, scanning, and pulsed laser
trackers. An excellent treatment of these can be found in Ref. 2.

The goal of imaging trackers is to follow an object’s position from frame to
frame. It is important for the tracker to first acquire the object. Sometimes this
task is performed by a human operator. It is equally important for the tracker to
locate the object in the next frame. If the object moves too quickly, the tracker
can lose the location of the object. In military terminology, we say that the
tracker has lost lock. When lock on an object has been lost, the tracker enters a
search mode as it tries to acquire the object again. If the tracker searches
aimlessly, it is said to be hunting. Frame rate and the frame processing rate will
determine how fast an object can move and still be tracked. For example, the
frame rate of a camcorder (30 frames/second) would not permit tracking of a
bullet fired from a pistol. Additionally, if you have the frame rate needed to
keep up with a given object, but processing of each frame requires so much
time that multiple frames have been generated, then the data in those frames
will be lost.
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7.2.1 DIFFERENCING TRACKERS

The simplest and easiest to implement of the imaging trackers are the
differencing trackers. The basic idea is to subtract two sequential frames and
note the difference. If the frames are identical, then the difference image will
be zero and nothing has moved from the first frame to the next. Of course,
something could have moved in between the time taken to digitize the first
frame and to digitize the second, but that is a problem of selecting adequate
hardware to accommodate the speed of objects to be detected.

Figure 7-1 illustrates the basic principle of differencing an image sequence.
The first six frames are part of a movie clip of the author blinking slowly. The
frames were captured at 15 per second, a resolution of 200 x 120 pixels, with
16 levels of grayscale. The frames are sequenced starting in the upper left and
moving from left to right. The five frames at the bottom of the figure, labeled
difference sequence, are the result of subtracting each of the frames from the
previous frame. Each difference frame shows varying amounts of motion from
the previous frame. No motion occurred between the last two frames, so the
difference is blank. This type of differencing is used by security firms to
monitor warehouses and other facilities as a motion detection method. It is a
simple algorithm to evaluate the difference frame to determine if motion has
occurred. It consists of looking at every pixel to determine if it is other than
white. The algorithm can get more complicated if vibration causes motion
errors. This problem can be overcome by applying thresholds to the difference
values. Also, if the imaging hardware includes a real-time histogram generator,
then the histogram of the difference image can be used to detect motion.

To extend the concept to tracking, we need only compute the centroid
(Section 5.3, Mensuration) of the entire difference image. This will yield the
X-Y coordinates of the moving object. The advantage of differencing prior to
tracking is that the background is eliminated. Of course, this assumes that the
camera and background are not moving and that the frame-to-frame correlation
of the background is maximum. What this means is that if the camera is noisy,
then a difference operation will produce data that represents the noise and the
tracking will be disturbed.

7.2.2 CORRELATION TRACKERS

The simplest way to think of correlation trackers, unlike differencing
trackers, is that they seck to detect similarity from frame to frame. A
correlation tracker computes the object displacement as it moves within the
frame by computing the correlation between a reference frame and the current
frame. The reference frame must contain the object being tracked.

The 2-D discrete correlation equation is given by:

M-l N-1

g(x, y)= Z z::frm(m,n)ref(x+m, y +n),
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where g(x,y) is the result, frm(x,y) is the current frame, ref(x,y) is the reference
and M and N are the dimensions of the images. The correlation process is also
called template matching, where the reference image is the template to be
matched in the current frame.

[Cmovie cip ]~/

)?wk; st
-
difference
sequence

Prary

Figure 7-1. Difference frames.

Figure 7-2 shows a set of correlation results. The first column shows two
planes displaced from each other. The second column shows the
autocorrelation of each of the planes, respectively. Autocorrelation means that
the image was correlated with itself. This image has important usage in laser
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Autocorrelation Correlation
Plane 1 Plane 1 Plane 1—Plane 2

Autocorrelation Correlation
Plane 2 Plane 2 Plane 2—Plane 1

Figure 7-2. Correlations of two images of an

airplane shifted in position.

imaging studies, but here we show it to illustrate that the autocorrelations of
the two planes is identical, in spite of the displacements. The final column
shows the correlation of Plane 1 with Plane 2, then the correlation of Plane 2
with Plane 1. In both cases, the correlation "finds" the first image within the
second; i.e., the upper correlation (last column) finds the location of Plane 1 in
the Plane 2 image, and vice versa with the second correlation below it. This
illustrates well the mechanism of the correlation tracker. By thresholding the
correlation we determine the pixel coordinates of the object and thus achieve
tracking.

Correlation trackers have two distinct advantages: (1) they track well in
noisy environments and (2) they track while field of view is expanding. Both
of the advantages are in contrast with the centroiding, or gated trackers, which
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are discussed in the section to follow. The disadvantage of the correlation
tracker is that it requires an external agent to designate the object to be tracked.

7.2.3 CENTROID TRACKERS

The centroid of objects computed from frame to frame can be tracked to
determine the positional behavior of an object. The centroid can be computed
following a cluster analysis (Section 6.2) and multiple objects within a set of
frames can be tracked. Trackers that operate in this fashion do not require
designation by an operator. The tracking will be optimal, however, whether or
not the object being tracked is desirable to the user will depend on how robust
the segmentation and recognition processes are.

The centroid algorithm has been shown’ to be optimal with respect to
tracking capability using maximum likelihood arguments. The reader is left to
seek the proof in the reference, however, it is easy to see that an empirical
argument can be employed to demonstrate that the centroid algorithm is
optimal in finding the center of an object. Consider a flat plate of some stiff
material of uniform thickness and density. Balance the plate on a fulcrum. The
balance point of the plate will be at the center. Now apply a small weight to
some point other than the center. To maintain balance you must shift the
fulecrum towards the weight. Now think of the weighted plate as an image,
where the weight (or weights) is proportional to grayscale levels. The centroid
algorithm finds the fulcrum point of the weighted image.

To compute the centroid, the first and second moments of the object must
be determined. This is done with the following formula:

mu:E Z <y flxy)

and the centroid coordinates are then:

=l o

Figure 7-3 shows an object against a grid. If we compute the moments on
the object (assuming a value of | for a black pixel and zero for white) the value
of my, is 33 (there are 33 black pixels in the object), m,, is 210 (sum all the x
coordinates of black pixels) and m,, is 121 (sum all the y coordinates of black
pixels). The centroid coordinates are then (6,4). This may appear inconsistent,
but the result is normalized to the object’s origin which is at coordinates
(20,11).

The algorithm to determine the centroid of an object is fast and simple, yet
it does not always reveal the geographic center of an object, which may be
preferred for targeting applications. In this case, the computation of maximum
and minimum axes will locate the geographic center. This value can also be
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tracked, however, the computations are substantially more complex than those
for the centroid.

01234567890123456783012345678901234567683012345

SPEZTO6BLASPEZTOE8LASFEZTO6BLASPFEZTD

Figure 7-3. Centroid.

7.2.4 GATED VIDEO TRACKERS

Gated video tracker algorithms were first implemented in analog hardware,
hence the name. They were developed to process peaks detected by scanners,
where the “gate” was a threshold level indicating the presence or absence of
the target. Although computer algorithms for the gated video tracker exist in
many variations, they all have two primary components in common, the image
frame and the gate. The gate is also known as the tracking window. An
illustration of these parts is shown in Figure 7-4.
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gate —

Figure 7-4. Gated Video Tracker components.

The gate changes in size to accommodate the size variations of the target.
Geometry of the gate can vary and algorithms controlling the gate try to exploit
various features of the target or the hardware, or to reject noise. The algorithm
starts either by searching for a target or by being positioned over the target by
a human operator, or by receiving target coordinates from another source. A
system can have different search modes—the simplest puts the gate in a corner
of the image and causes it to scan back and forth until a target is located.
Another option is to have the gate start at the center of view and move in a
circular pattern outward towards the edge of the image frame. A third pattern is
one in which the gate samples image pixels randomly.

The tracker tracks by comparing statistics of the target (or the object that it
perceives to be the target) with those of the image frame, or background. The
goal of the algorithm is to maximize the number of pixels within the gate with
target statistics. These statistics can be as simple as binary values or as
complex as multiple features. Figure 7-5 shows three binary images of an
object (not moving) and the corresponding value of target pixels in the gate
computed by a gated video tracker. The gate depicted in the center frame is on
target. As the target moves under the gate in the next frame, the pixels in the
vicinity of the gate are analyzed and the gate is moved to keep the maximum
number of target pixels within it. Although we imply a gate that is fixed in
size, it can be made to change in size to keep the target centered. The location
of the gate in the image frame indicates the geographic center of the target.

A more advanced configuration used in gated video tracking is shown in
Figure 7-6. Here the gatc has been partitioned into a target window, a
background window, and corner windows. Statistics are computed for pixels
within the different windows and compared against prior frame statistics.
These statistics include background pixels (pixels that are completely outside
of the windows and contain no target pixels) and target pixels that are both in
and out of the target window. In this system, the gate has been replaced by the
windows. The window is resized as these statistics change while the algorithm
seeks to keep pixels with target statistics in the target window and pixels with
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background statistics in the background windows. The corner windows are
used to rapidly detect direction changes of the target while the background
window’s function is to size the target within the target window. The location
of this window in the image frame yields track location data.

The gated video tracker is easy to implement in real time and is used in
high-performance aircraft targeting systems. The principal drawback of the
tracker is that it is highly susceptible to noise and distraction (track can easily
shift to an object passing in front of the tracked object).

20 pixels 37 pixels 13 pixels

Figure 7-5. Gated Video Tracker gate values. (numbers under each frame

indicate number of target pixels in each gate).

background window \

AN
N

target window N

k!

\ corner window

Figure 7-6. Gated video tracker with
target/background window geometry.
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7.3 DATA MANAGEMENT

The volume of data to be managed when working with image sequences is
large, particularly during development efforts. Once a system has been
developed, the need for storing image sequences is generally over. Image
sequences are stored as movies and because of the huge amount of data, a
number of storage schemes with compression have been implemented. The
most popular of these are MPEG, QuickTime™ and VEW™,

MPEG is an acronym for the Motion Pictures Experts Group. This is an
independent standards committee that has established the MPEG video format
which defines a bit-stream representation for synchronized digital video and
audio, compressed to fit into a bandwidth of 1.5 Mbit/sec. The following are
MPEG features:

* Corresponds to the data retrieval speed from CD ROM and DAT,
and a major application of MPEG is the storage of audio visual
information on this media.

* The MPEG standard is the three parts—video encoding, audio
encoding, and "systems" which include information about the
synchronization of the audio and video streams. The video stream
takes about 1.15 Mbit/sec, and the remaining bandwidth is used by
the audio and system data streams.

* MPEG video encoding starts with a fairly low-resolution (352 x

240 pixels x 30 frames/s) video picture. RGB pixel information is
converted to chrominance/luminance and a complex, lossy
compression algorithm is applied. The algorithm takes the time
axis as well as spatial axes into account, so a good compression
ration is achieved when the picture is relatively unchanging (and
vice versa).

» Compressed data contains three types of frames: I (intra) frames
are coded as still images; P (predicted) frames are deltas from the
most recent past [ or P frame; and B (bi-directional) frames are
interpolations between I and P frames. I frames are sent once every
10 or 12 frames. Reconstructing a B frame for display requires the
I and/or P frames, so these are sent out of time-order.

= Substantial computing power is required to encode MPEG data in
real time—perhaps several hundred MIPS to encode 25
frames/second. Decoding is not quite so demanding.
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* The quality of MPEG-encoded video has been compared to that of
a VHS video recording.

QuickTime™ is Apple Computer's video format. QuickTime™ version 2.0
supports time-code, 60 fields per second video (640 x 480) and high-data
throughput greater than 3 MB per second. This represents a 300% increase
over previous versions of QuickTime. The implementation of QuickTime™ on
the Macintosh platform makes it much easier for computer users to create, edit,
play back, and synchronize music with video—all without a technical
understanding of the “Musical Instrument Digital Interface,” or MIDI,
technology. The ability to store the musical scores for instruments saves disk
space for users, because QuickTime™ music tracks are much smaller than
digital audio. For example, Beethoven's 5th Symphony requires 300 MB if
stored as CD-quality audio, but when represented as a QuickTime™ music
track, it needs just 800 K. The compression-decompression (CODEC) scheme
used by QuickTime™, as with Video For Windows™ (discussed below), is
user selectable.

Audio Video Interleaved (AVI) files constitute Microsoft's Video for
Windows (VFWT™) video data format. Microsoft Video 1, Microsoft RLE,
Microsoft Full Frame, and Cinepak by SuperMatch CODECs are supported.
Video for Windows creates CD-ROM movie files that play back at 150 KB per
second, the standard CD-ROM data transfer rate for multimedia personal
computers. Video for Windows normally interleaves audio with every frame of
video.

MPEG, QuickTime™ and VFW™ are video storage standards that are
continually being improved. Although MPEG video is compressed to a specific
CODEC, the QuickTime™ and VFW™ formats use CODECs that are user
selectable. A listing of various CODECs for Microsoft and Apple platforms is
given in Figure 7-6. There are a number of approaches that can be taken to the
image compression. These are:

» wavelet—basically a windowed transform (Hartley) method.

® DCT—Discrete Cosine Transform.

* V(Q—video quantization, a subsampling method.

» Fractal—uses geometric primitives derived from Mandelbrot sets.
¢ RLE—Run Length Encoding.

Using the video storage schemes outlined here requires specialized
software to extract the image data one frame at a time. Software is available
that allows processing of individual image frames in movies. One major
consideration when using video storage methods for machine vision work is
whether or not the compression method is lossy. This means that when the
image is decompressed, some data from the original frame is lost as it is judged
redundant by the compression algorithm. This redundant data may not be
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redundant to the vision algorithm and indeed may contain critical information.
Therefore, caution must be taken when using lossy CODECs. Most software
offers the user a choice of compression and software that has variable
lossiness, such as Cinepak, can be set for no loss at all. Of course, the
compression efficiency will suffer. QuickTime and AVI formats allow storage
of image sequences as individual JPEG compressed files. JPEG permits
lossless compression at a substantial penalty over the lossy mode.

The computational burden of compression algorithms has given rise to
specialized hardware that compresses and decompresses in real-time (30 fps or
better) rates. CODECs that are hardware-based are indicated in Figure 7-7 as
those without a bullet in the "software play” column. Note that none of the
CODECSs that exceed 30 fps are capable of software playback. Also note that
the maximum size (pixels) of the images can be restrictive. All of the CODECs
and listed data are based on color images.

Soft-

CCDEC Campany  Approach — Platform ‘gi‘zg Size Rate
Captain Crunch| Media Vision Wavelet 5 3200240 | 30
Cinepak SuperMac VO Mac,BC o [2omeoan | 15
DVI-RTV Intel Ao} PC 256240 1 15
VI-PLV Intel A9} EC ga0xAgn | 30
Indeo Intel VD Mac, FC * 13200240 | 15
Motion~JPEG n/a LCT Mac, BC 540x480 | 60
MotiVE Media Visionl VO EC *l160x120. 1 12
MPEG 1 n/a DCT BC 320x240. 115
MPRG 2 n/a OCT EC 704x480 | 60
Px64 n/a ICT Mac, PC 352288 | 15
Pro-Frac TMM Fractal Dos ¢ 1320200 1 30
SoftVideo ™M RIE BC « | s40x480. 1 15
Ultimation TBM n/a 0s/2 * | 320x240 | 30
Video Aople e} Mac *160x120 § 15
VideoCube InMIX/Aware | Wavelet | Proprietary caowaan | 60

Figure 7-7. Common CODEC table,

If consideration for the issues mentioned above is taken into account,
machine vision systems can find video compression useful in applications
where the loss of image data is not critical. A new research area has been
developed that seeks algorithms that can process images in their compressed
state. Computing in compression algorithms shows promise in that the
compressed image sequence has, by definition, had unnecessary or redundant
data removed. If an algorithm can process the reduced data, then a substantial
improvement in process time can be achieved assuming that the image was
compressed in real time (a feat easily done using hardware compression units).
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CHAPTER 8
VISION SYSTEMS

It is appropriate that this final chapter is dedicated to exploring general-
and special-purpose vision systems. These systems attempt to incorporate all
that is known about machine vision (at the time of their development) and they
have all been successful in some way. Certainly they have added to the
collective knowledge of vision systems in general. The first section of this
chapter is a general survey of systems that have been constructed to do
complex machine vision tasks followed by a section on model-based vision
systems, followed by a discussion of two advanced systems that incorporate
recognition by components theory. The chapter concludes with a discussion on
the development of vision systems.

8.1 SURVEY

The survey of vision systems dates back to the mid-1970s when image
processing algorithms were well established and computer hardware had
become sophisticated enough to handle complex algorithm suites. The survey
is presented as a chronological list with the important features or discoveries of
the systems tabulated. The number of systems that has been constructed since
the 70’s is legion and this survey is more historical than taxonomically
complete. The literature abounds with complex and detailed descriptions of the
attempts of research groups to solve the general machine vision problem. This
survey will provide the reader with a chronology of complexity and an idea of
the depth of knowledge required to construct a general purpose system.
Appendix A provides a source of software and resources on the World Wide
Web where many parts of the listed systems may be found in one form or
another.

Garvey and Tenenbaum' (1974)

» goal was to locate objects in an office environment where
all objects were known to the system

* data input:
* range to object
» reflectivity at one wavelength

95
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* RGB images
* strategy was to:

* acquire image samples that might belong to the object

» validate the hypothesis for which object was being viewed
» used simple local features and contextual relations

Bolles® (1977)

Verification Vision (VV)

+ used image and object models

* was intended for inspection and visual control in repetitive
manufacturing tasks

* made use of 3-D models

* objects could not have major shifts in appearance or
be occluded by other objects

Shirai’ (1978)

« heavily dependent on edges

» straight lines and ellipses were used to describe edges

* edges classified as line, circle, or ellipse

= small gaps filled (defragmentation)

* analysis began with most obvious object, next most obvious, etc,

* found most obvious feature, etc.

* e.g., for lamp-> finds lamp shade -> looks for trunk-> looks for base

Ballard’ (1978)
» used image models to locate ribs in chest x-rays
* system structured in three levels:
* the model
* the sketch map synthesized during image analysis that
related the model and the image
e image data structures
» similar to VISIONS (see below), except segmentation level was
established by query
* was not intended as a general vision system
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Nagao and Matsuyama’® (1980)
» goal was processing of aerial photos
*» edge-preserving smoothing (defragmentation)
* regions of continuous spectral properties located
« extracted "cue"” regions (clusters):
* large homogeneous regions
* elongated regions
*» shadow/shadow making regions
* water regions
= high-contrast texture regions
* shadow detection
* brightness histogram processed
* used bimodal threshold
* homogeneous regions that were less than the threshold and
were classified as shadows
* shadow-making regions adjacent to shadows and away from sun
* elongated objects were detected from skeletons
* houses/manmade structures—recognition was based on
rectangularity, roof detection, location cues

The common element among each of the systems listed is that they
perform the sequence of thresholding, segmentation, representation, and
classification as described in this book.

8.2 KNOWLEDGE-BASED VISION: VISIONS, ACRONYM, AND SCERPO

Knowledge-based approaches to machine vision, particularly expert
systems, became popular in the late 70’s and 80’s during the heyday of
artificial intelligence. Knowledge-based systems are computer programs that
access a database of knowledge. Knowledge in this context can be loosely
defined as facts about facts. For example, a system may have concluded that an
object is a small lamp but it is not clear as to what the object is that the lamp is
sitting on. A knowledge base may have data that indicates that small lamps
(generally) sit on tables. A knowledge-based system can use this knowledge to
conclude that the object the lamp is sitting on is a table. Of course, the
dilemma is the generally modifier in the statement "small lamps sit on tables."

The difficulty that knowledge-based systems face is the size of their
domains. If we include all of the possible images that can be observed, the size
of the domain becomes astronomical. Consider the following thought
experiment using Figure 8-1. The image shown in the figure is 320 x 240
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pixels at 16 levels of grayscale. Even after laser printer dithering, the image
clearly shows detail and complexity. It is not difficult, however, for the adult
human to see that there are three simple wooden shapes in the foreground,
sitting on a cluttered desk. One can make some simple deductions about the
scene such as the fact that the objects are illuminated from the left, there are
pictures on the wall mounted in glass frames, etc. The "knowledge" here is that
the swirled patterns we detect on the shapes lead us to conclude that they are
wooden, the bright reflections on the pictures tells us that the frames have glass
covers, and the piles of papers reveal the cluttered aspect of the desk. These
deductions may seem simple to us, but to include them in a vision system is no
simple task.

sy

Figure 8-1. Objects on desk.

The extraction of objects is understandably difficult, but when you
consider the range of possible knowledge facts that pertain to office
environments, then extend that thought to all possible image scene contents,
the size and complexity of the knowledge base required becomes staggering.
Three systems, VISIONS, ACRONYM and SCERPO, will be examined by
virtue of their popularity, complexity, and their hubris in attempting to
interpret any natural scene. SCERPO is also model-based in that it attempts to
identify objects by matching their component parts to models of objects stored
in a database. It is included here (instead of the next section) because it is
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typically listed as a knowledge-based approach and does not use a component-
based modeling scheme.

Hanson and Riseman’ (1978) VISIONS

(Visual Integration by Semantic Interpretation of Natural Scenes)

* multiple levels of interpretation of information on particular images and
data stored in a long-term knowledge base.

* modular knowledge sources that transform information from
one level to another.

* hierarchical structure.

* bottom-up and top-down reasoning paths.

* operates on outdoor scenes and maintains partial models of previously-
observed objects.

Brooks’ (1981) ACRONYM

(ACRONYM is not an acronym, just a play on systems with acronyms!)

* reasons from first principles

* based on algebra and projective geometry

* uses viewpoint-independent 3-D object models in the form of symbolic
expressions with numeric type.

» searches for instances of models in images.

» predicts appearances of models in terms of ribbons and ellipses.

* high resolution imagery.

Lowe’ (1987) SCERPO

(Spatial Correspondence, Evidential Reasoning
and Perceptual Organization)

* model-based recognition.

* 3-D shapes of objects are directly obtained from features of their 2-D
shapes.

* Objects described by polyhedral parts.

* Recognition achieved by matching.

Knowledge-based systems have given way to model-based approaches.
Knowledge-based systems operate on the assumption that knowledge (facts
about facts) can be encoded in a database and applied to situations in order to
reason about what is happening. Model-based methods are linked to perceptual
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studies of humans. These studies have suggested that humans use 3-D
component groupings to identify complex objects. Model-based vision is in an
infant stage because the systems that employ it seek to identify objects rather
than scenes.

8.3 MODEL-BASED VISION: VITREQ AND PARVO

Model-based vision systems process image data and then try to fit a model
of known objects to what has been extracted from the unknown scene. There
are various ways to do this—possibly the most popular are systems that extract
Computer Aided Design (CAD) data from images in the form of perspective
views—SCERPO being the most well known. The extracted data is then
rotated, distorted, or resized to try and match objects stored in a database.
Model-based systems can also seek to relate other forms of data such as
features of known objects. We discuss two very complex and powerful model-
based systems that are predicated on recognition by components theory.

Recognition by components (RBC) theory was first proposed by
Biederman® as a means of modeling the human visual system. RBC models
vision as a 3-D system that decomposes objects into unique components that
Biederman called geons, for geometric objects. Geons are constructed from
surfaces of revolution and have specific properties. There are 36 geons (see
Figure 8-2 for two examples), and from these Biederman has estimated that the
number of objects possible would exceed two million. Two systems have been
constructed using RBC theory, VITREO and PARVO.

i E CURYED E :
CYLINDER CYLINDER

Figure 8-2. Geons with object created from them.

VITREO" or Viewpoint Independent 3-D Recognition and Extraction of
Objects is a model-based general purpose vision system that is based on RBC
theory. VITREO incorporates multiple processing stages via a bottom-up
analysis meaning that it processes the object image for lines and then attempts
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unique object recognition by non-accidental view and restoration of occluded
parts. A major feature of VITREQ is that it uses grayscale images for input.

PARVO" or Primal Access Recognition of Visual Objects, preceded
VITREO and also uses RBC theory. Like VITREO, PARVO incorporates
multiple processing stages but proceeds from a top-down analysis and uses line
drawings of objects for input. Both PARVO and VITREO can be classified as
model-based systems because they access a database of object models after
decomposition of unknown objects into components. The model-based
approach is an outgrowth of knowledge-based methods and is believed to be
the fundamental mechanism of human perception of objects.

8.4 BUILDING A MACHINE VISION SYSTEM

We now list a set of vision system objectives:

High-performance:
* complex scenes with many objects, high detail, accuracy,
resolution, and speed.

Generality:
* generic with respect to object class and observation.

Completeness:
* should span all application tasks.
» implies requirement for powerful perceptual mechanisms.

Intelligence:
* reasoning in the domains of images and surfaces,
* similar to a human observer or analyst.

These objectives describe, in essence, the capabilities of the human visual
system. To try to emulate and reproduce them is the ultimate goal of machine
vision. Of course, from our earlier summaries we have found that this has not
been accomplished. Although it may not have been clear from those
summaries, no machine vision system yet developed incorporates all of the
objectives listed above. Our final discussion will focus on the answer to two
questions. First, "Is there a clear explanation as to why machine vision systems
have not reached human-level capabilities?" and second, "What is needed to
achieve this level?"

To determine why a machine vision system of human-level capability has
not been devised we first have to examine the nature of the problem. When
computer systems are designed to tackle engineering problems, one starts with
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a mathematical model. The closer this model is to the underlying mechanisms
of the problem, the more robust the computer system solving it will be. For
example, computer programs for the design of computer circuits are so robust
that no modern computer can be designed without them because of the level of
complexity of the circuitry. When we look at what is known about the
workings of the human mind, which, from Section 1.1 we know is directly
coupled to our visual system, the information is sadly lacking. Exact
mechanisms of processes are simply not known. The RBC theory proposed by
Biederman, although attractive on the surface for componential recognition, is
based on observation of psychoperceptual behaviors, not on specific neural
circuitry studies. There are ongoing debates within the artificial intelligence
research community regarding mechanisms and no clear theory has emerged.
Right now no model exists that exactly reproduces the human visual system.

From the previous paragraph the reader may surmise that the answer to the
second question is that we need a better model. A more appropriate answer to
the individual who needs sophisticated vision now is that the problem needs
clarity of definition. By this we mean that until a more robust model of human
vision has been determined, we must satisfy ourselves with analyzing pieces of
the problem. The fundamental problem that co-exists with the lack of a robust
model is the fact that basic Von-Neumann architectures simply cannot process
the vast amount of data that must be addressed within a complex visual scene.
If the domain of the vision system is sufficiently restricted, then it is entirely
possible to develop machine vision systems that in some cases exceed the
capabilities of human vision.

We are far from developing a completely generic vision system that will
emulate the human visual system in capability. For one thing, the computer
hardware will have to be substantially faster and capable of more data
bandwidth than it is now. Nevertheless, it is possible to develop robust and
powerful vision systems for specific tasks by judicious modeling of the
problem, restricting the domains, and choosing algorithms carefully.
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APPENDIX A
SOFTWARE

There is a large amount of image processing software available. Some of it
is appropriate for machine vision tasks and some isn’t. This appendix is
intended for those who are evaluating imaging software for use in their lab or
facility. The most prudent strategy is to become knowledgeable about
algorithms and imaging using low-cost or free software before investing in a
commercial package. There are three major software "platforms" or operating
systems. Almost all others are too specialized for consideration here. These
platforms are Unix, MSDOS/Windows and Macintosh (MacOS). The software
that is available free of charge and that performs a large range of image
processing functions will now be discussed. This discussion was culled
primarily from an article by the author entitled "How to choose image
processing software for your application,” which appeared in the September
1994 issue of Laser Focus World. Although the article was aimed at users
interested in image processing rather than machine vision, it is also useful for
machine vision requirements.

Image processing may have first begun with the coding and transmission
of newspaper images across transatlantic cable in the early 1900s. The field has
grown in complexity and breadth since then with a dizzying array of hardware
and software options available to the engineer or scientist in need of imaging
support for an application or research effort. Image processing implies digital
image processing, or the processing of images by a computer. Most everyone
knows what a digital image is, but relatively few understand the complexities
that surround its acquisition, verification, validation, manipulation, and
storage. We want to reduce this complexity by defining image processing in
general and by helping you define your needs. At the end you should be
familiar with sophisticated image processing software for very little financial
outlay.

Acquisition of images can be as simple as downloading files from the
Internet or as complex as high-speed imagers attached to expensive digitization
equipment. If you simply need images to experiment with, all the public
domain and commercial image processing systems come with sample images
as part of the package. Image scts are also available on CD-ROM or from
national dial-up services such as America Online, Compuserve and Prodigy.

The verification and validation of image applies to the source of the data
and what the conditions of acquisition were. Manipulation is where most of the
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complexity arises because here we are primarily within the software domain,
with few exceptions. Because of the large variety of algorithms available, this
aspect of imaging can be quite difficult to navigate. Storage issues are, in
actuality, very straightforward unless you are involved in compression
algorithm research. The decision of whether to compress or not to compress is
fundamentally a cost issue in terms of time, quality, and dollars. The issue of
primary concern is the software for manipulation. This software can be
intimidating but it is my personal contention that anyone with basic skills in
math and engineering can come to grips with image processing techniques. The
real danger lies in making the wrong choices for what can rapidly escalate into
a major investment of your time and money.

At some point you have to determine what your application or application
area is. This may be the least of your problems because this deals with what
you are trying to do in an area you are most familiar with—your own. The real
issue is whether image processing is needed at all. Technology, as we well
know, exhibits a bandwagon effect on occasion and image processing is driven
by technology. As computers become faster and less expensive, and display
and storage capabilities follow with increasing resolution and size, the
availability and feasibility of imaging for a broader range of applications
occurs. Here is where your personal sense of caution versus risk-taking comes
into play. You have to determine what advantages image processing may bring
to your work, if any.

Image processing is a catchall term that actually comes from the more
encompassing field of computer imaging. The four fundamental areas of
imaging are image processing, computer graphics, machine vision, and
multimedia. There are fine lines of distinction between these, and these lines
are becoming blurred as the areas mature and the technology improves. To see
where your work lies, let's look at the basic definitions of these fields:

Image Processing: traditionally works with real scenes and two-
dimensional signal data. The image is treated as a 2-D sampled signal
and algorithms are applied to enhance, restore, code, or understand the
data. Enhancement refers to the improvement of an image for human use
whereas restoration is the removal of image degradation. Coding is the
reduction of the data by information-theoretic means and is the area
where image compression is studied. Image understanding (see
Computer Vision, below) seeks to process the real scene into a
descriptive data structure.

Computer Graphics: basically the inverse of image processing and
computer vision where one attempts to computer-create a real scene
from a data structure or description. A side aspect of computer graphics
is computer art, which seeks to reveal artistic expression using computer
graphics as a medium.
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Machine Vision: fundamentally, machine vision is image understanding.
The area has become so complex and distinct from image processing that
it has splintered off into an area of its own. Most image processing texts
end with a small section on computer vision (read image understanding)
while computer vision texts start with a brief section on image
processing.

Multimedia: a hot buzzword of the 90’s, Multimedia is easily defined as
the use of imaging, sound and text (or other media) concurrently as a
coordinated entity. Most modern music videos are good examples of
multimedia techniques. The popular morphing process, which maps the
spatial distribution of one image into another over time, incorporates the
well-known image processing technique of warping or coordinate
translation which was claimed by computer graphics some time ago.

Independent of which area of imaging your application falls into, the
underlying thread of all of these areas is image processing. The impact of
software on image processing cannot be understated. The selection of software
will be influenced directly by the kind of image data that you are processing.

If you are working with multisensor fusion of multiple wavelength spatial
sensor data, your attention will not be on multimedia or computer graphics, but
on signal-based image processing that leads to computer vision. Specialized
data requires specialized equipment and software, but you can still develop
expertise and experiment with one of the three public domain packages we will
cover later. Each of them reads raw data. This means the image data stored in a
file directly from the acquisition system can be read in and manipulated. Since
the systems store data in a variety of formats, you can perform file conversion
on your data and make it more easily transported by saving it in a well-known
format, like TIFF or GIF.

A major assumption of this discussion is that you probably don't have
much of a budget to get familiar with computer image processing or it may be
that you are not yet ready to commit a major segment of your budget to an
unfamiliar area. Just look around the lab for a handy PC, Mac, or UNIX
workstation and pull down one of the software packages we describe below off
the Net. Once you are past the learning curve using the public domain imaging
software, you will probably need to give some hard consideration to the
purchase of a specialized system, at least in terms of software. The public
domain software can only go so far (you get what you pay for) and ultimately a
major imaging project will require investment into a commercially distributed
and supported imaging software system. After negotiating the morass of image
processing terms, methods, approaches, and theories using the free software,
you'll be ready to tackle the marketing side of image processing head on. At
least when the salesperson says, "This baby can handle a 3 x 3 unsharp mask in
2 milliseconds" you may know whether or not that capability is necessary to
your application.
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Three image processing software packages stand out above the rest
because of one major factor, price. They are available free and offer an
excellent way to prepare to make hard decisions on image processing needs.
The packages run on three different hardware platforms and can be accessed
using anonymous FTP on the Internet and from other sources.

For the PC, the UCFImage®© package written by Harley Myler and Art
Weeks at the University of Central Florida runs under MS-DOS and requires a
color VGA monitor. The package was developed and released as "imaging for
the masses” because it will run (fast) on computer hardware that costs less than
$1,000. The program is included in the back of the introductory imaging text,
Computer Imaging Recipes in C, published by Prentice-Hall. UCFImage®©
allows spatial, frequency, nonlinear and adaptive filtering, warping, split-
screen, object recognition, morphological operations, pseudocoloring, noise
generation, and histogram operations (see Figure 1). Although substantially
more modest in capability than Khoros, which is discussed below,
UCFImage®© allows very sophisticated image processing anywhere you have a
PC that supports GIF, TIFF, BMP, and PCX image file formats.

L praty-

Figure 1. UCFImage®© main screen with image display.

For the Apple Macintosh™, NIH Image, written by Wayne Rasband at the
National Institutes of Health, was once compared favorably in a MacWorld
review, to commercial imaging software costing hundreds of dollars. NIH
Image uses the friendly and intuitive Macintosh graphical user interface (see
Figure 2) and allows a wide range of image processing operations from spatial
filtering to multiple-feature object analysis and mensuration. The program is
geared towards medical image analysis but anyone doing basic image
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processing research and development on a Macintosh will find it invaluable.
NIH Image supports PICT, MCID, and TIFF image file formats.
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Figure 2. NIH Image main screen,

For X Windows systems, the Khoros package originally developed at the
University of New Mexico is an outstanding package. The Khoros system
consists of individual routines that run under the UNIX operating system.
There are over 260 programs that perform arithmetic, classification, color
conversion, data conversion, file format conversion, feature extraction,
frequency filtering, spatial filtering, morphological filtering, geometric
manipulation, histogram manipulation, statistics, signal generation, linear
operations, segmentation, spectral estimation, and transforms. Khoros supports
TIFE, pbm, BIG, DEM, DLG, ELAS, FITS, MATLAB, Sun raster, TGA, and
xbm image and data file formats.

Most labs have at least one of the computers needed to run this software.
This makes it easy to try image processing approaches before you commit to a
sophisticated, and potentially costly, image processing system. Using free
image processing software packages can meet the immediate need of running
up the learning curve of image processing development, but in most cases it
will be inadequate for the actual work. Each of the packages mentioned,
Khoros, NIH Image, and UCFImage®©, although fairly complete, have
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drawbacks and limitations not explored in this article. Also, they do not come
with the support that you normally expect when you buy something, which is a
feature that deserves careful consideration when you do commit to a
commercial software system. In general, software developers want you to use
their systems and be happy with them, so look for a strong support structure
before you buy and ask to try an evaluation copy before you commit to a
program.

HOW TO OBTAIN FREE IMAGING SOFTWARE:

UCFKFImage is included on diskette in the back of the book Computer
Imaging Recipes in C (ISBN 0-13-189879-5). Although not technically
free (since you have to purchase the book), the UCFImage executable
is in the public domain.

NIH Image is available via anonymous FTP from zippy.nimh.nih.gov
in the /pub/image directory. It may also be downloaded from America
Online (order an access diskette by calling 1-800-827-6364) or
CompuServe (order an access diskette by calling 1-800-848-8199).

Khoros is a huge system that is available via anonymous FTP from
various authorized distribution sites under an "open access” policy.
One of these is ftp.khoral.com in the pub/khoros directory. The
Khoros open access policy, which is distinct from public domain
systems like UCFImage and NTH Image, means that it can be used and
modified only for intermal use in the organization obtaining it. The
user cannot redistribute the system, any derivative works from Khoros,
the Khoros documentation or any binaries or libraries which include
Khoros object or source code unless the user is a member of the
Khoros Consortium and has signed a redistribution license agreement.
Documentation regarding how to contact the consortium is included in
the software distribution, or you can email a note to khoros-
request @khoros.unm.edu and they will send you information and
pricing.

THE COMPUTER VISION HOMEPAGE

The Computer Vision Homepage at Carnegie Mellon University is one of the
most comprehensive sources of information about computer vision research
activities on the World Wide Web. Its address is:

http://www.cs.cmu.edw/~cil/vision.html

The site consists of nine major sub-sections:
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Vision Groups, Hardware (Research Systems, Commercial Products), Software
(Research Code, Image Processing Toolkits, Display Tools, Synthetic Data
Generators, Math Toolkits), Demos, Test Images, Conferences, Publications
(References, Papers and Proceedings, Books and Tutorials, Journals, Other),
General Info (Newsgroups, FAQ's, Archives, Misc.) and Related Links.
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APPENDIX B
HARDWARE

This appendix focuses on hardware issues that arise in the setting up of
machine vision systems. Like software, poor selection of hardware can be
costly. It is very important to establish a needs analysis up front before any
purchases are made. In the case of high-end imaging, the equipment needed
may well run into the hundreds of thousands of dollars. What follows is a
checklist format listing (with comments) of hardware consideration issues. The
discussions that follow refer to an expanded imaging system (as opposed to
just a PC with an imaging display), as shown in Figure 1. The expanded system
illustrates all the components of a complete imaging system. In some high-end
systems, each of the components is a separate printed circuit card or chassis.
Smaller systems combine the frame grabber, frame buffer, digital video
processor, and video output controller onto one printed circuit card that fits
into the host computer.,

1
frame :
"] grabber || mass
| ! single-board | storage
' frame |/_
! buffer !
'
! 121 1
i video r hostte
' | processor || computer
: | :
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harOCORY e output I video cgnsole
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Figure 1. Expanded imaging system
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The table below lists the components of the expanded imaging system with
a short definition of their functions:

Component Function
Camera Captures image data and outputs a video signal (RS-
170, NTSC, RGB, PAL, SECAM, etc.) to frame
grabber.
Frame Grabber Digitizes video signal and outputs digital data to

frame buffer.

Frame Buffer

Stores 1mage as two-dimensional data array

(sometimes called image buffer or image memory).

Digital Video (DVP) Performs processing on the digital image
Processor under direction from the host computer.

Video Output (VOC) Performs digital to analog (video) conversion
Controller and routes video signals.

Hardcopy Device Video printer.

Video Monitor Displays image output from DVP,

Host Computer Orchestrates operation of image system under

operator or program control.

Operator Console Keyboard/monitor allows operator control of

computer and system.

Mass Storage Device Disk to store programs and images.

In some systems hardcopy devices are attached to the computer and
process digital data instead of video. Most PC-based systems use the operator
console display (computer monitor) to display the image in the frame buffer.
High-speed systems for capturing digital movies connect the mass storage
device directly to the frame grabber or digital video processor (DVP). The
DVP in many systems is a programmable digital signal processor—or the host
computer serves as the processor. No matter what the configuration, the
components shown above will exist in one form or another in the imaging
system.

Cameras: There are a number of video output standards for cameras.
Inexpensive monochrome cameras that output RS-170/CCIR (B/W TV quality)
video are suitable for many assembly line tasks. High- performance imaging
hardware at competitive prices is available for almost any computer platform.
For standard color, one must choose either NTSC/PAL/SECAM color TV or
RGB cameras. RGB cameras are typically tri-output RS-170 systems. One
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must be cautious about sync requirements with any camera. The strategy is to
couple the selection of camera to the selection of the imaging system and be
sure that the interfaces are compatible.

Cameras for most machine vision tasks can be classified as analog, digital-
analog, or digital. An analog camera uses a vidicon to capture an image, which
is an electronic tube that outputs an analog signal with the necessary
synchronization signals. The camera outputs an analog video signal that must
be digitized (by a frame grabber). A digital-analog camera captures the image
using a semiconductor chip. Most common is a charge-coupled device, or
CCD. The CCD is scanned and an analog video signal is output. A digital
camera uses a semiconductor chip but outputs digital data. These cameras do
not require digitization and generally have specialized high-speed bus-like
interfaces.

The most important parameters to consider when purchasing a camera are the
spatial resolution and the pixel sensitivity and wavelength. The spatial
resolution is most often expressed as lines, which indicates how many rows of
pixel data the camera will output. Low-resolution cameras are typically 200
lines, while high-resolution cameras can have 4000 lines. What the pixel
actually resolves in terms of spatial resolution will depend on the lens system.
Of course, no lens can give more resolution than is actually available at the
sensor. As the number of lines increases, so does the cost and the processing
demands. The frame grabber will also affect the resolution. If the grabber can
only digitize a 256 x 256 pixel image, then a camera with 1024 x 1024
resolution will be overspecified. Digital cameras are simpler in that they output
exactly the resolution they are designed to. For example, a 1024 x 1024 digital
camera outputs the data for a 1024 x 1024 image. The lens system and the size
of the imaging chip in the camera will determine how much of an object can be
resolved (see the discussion on lenses below).

The camera wavelength and sensitivity required are dependent primarily on
lighting conditions. Most cameras are manufactured for visible light conditions
with some sensitivity into the infrared. Filters can be employed to restrict
sensitivity and recommendations are readily available from the camera
manufacturers.

Lens: Must be specified depending upon the object size to be viewed, the
distance from the camera to the object, and the size of the imaging surface. The
necessary parameters are shown in Figure 2.
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Figure 2. Lens and object parameters.

The resolution per pixel can be computed by dividing the field of view with the
number of vertical pixels. The relationships between lens focal length and
object/image distances is:

1.1
o

1
f

where f'= focal length, o = object distance to lens, and / = image distance to
lens. Magnification can be computed from:

oy x

where M = magnification, y = y dimension of object(x) and y' = dimension of
1mage(x).

Extension Tubes: Devices resembling washers or cylinders that fit between
the lens and the camera. They increase the image distance () to the lens and
allow the lens to focus in closer to the object. Charts are available (example
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below) that show the effect of focusing distance, FOV, and the resolution of
different length extension tubes.

focusing
distance
(inches)

minimum maximum

Frame Grabber: This component is used to digitize the image from an analog
video signal. The frame grabber may be just a video analog to digital (A/D)
converter chip on a single-board system. The input to the simplest
configuration monochrome frame grabber is typically an RS-170 BNC or RCA
connector with the sync signal overlaid onto the video. More sophisticated
systems break out the horizontal and vertical sync signals to allow for greater
flexibility in video input. Color frame grabbers can have a BNC or RCA
connector for NTSC color (the color TV standard) or individual red, green, and
blue (RGB) connectors. Sync for RGB signals can be overlaid onto the green
channel or be broken out separately.

No frame grabber is used for a digital camera. Instead, a digital camera uses a
digital input port that puts image data directly into the frame buffer or into the
host computer memory. The frame grabber can restrict data entering the
system. For example, if the camera sensitivity and system design requirements
are such that 12 bits per pixel of quantization is required and the frame grabber
digitizes to 8 bits, then data is lost.

Frame Buffer: A memory that reccives the digitized data from the frame
grabber or from the interface for a digital camera. The frame buffer in small
systems may be the host computer memory. Typically, however, the frame
buffer is very high-speed memory that is directly connected to either the frame
grabber or digital camera interface, even in small systems. If no frame buffer
exists then 1mage acquisition speed will be dependent on the speed of the host
computer bus and memory. Some systems bypass this problem using Direct
Memory Access (DMA) from the frame grabber or digital camera interface
into computer memory. Once the image is in memory, if the host computer
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must access it, then a DMA system will have speed advantages over a separate
frame buffer.

Color images are buffered as RGB so three frame buffers are required. Often
systems will include a fourth buffer for graphic overlay purposes. High-end
systems provide programmable buffers that allow the user to specify spatial
resolution and pixel quantization. An important feature is the ability to increase
frame buffer size as system requirements change.

Digital Video Processor (DVP): A processor that is specialized for image
algorithms. The DVP is typically a set of specialized circuits that have been
optimized for histogramming, discrete convolutions, pixel processes and, in
some cases, Fourler or cosine transforms. Most DVPs are pipeline processors
that perform a sequence of user-programmable operations on streams of pixel
data. Some DVPs are parallel processors that divide the image data into
segments and process the segments independently. Other DVPs are nothing
more than simple serial interfaces to a Digital Signal Processor (DSP) chip,
selection of which can incur sophisticated programming demands.

The primary considerations regarding the DVP section of the imaging system
are speed and programmability. Almost any DVP configuration will be faster
than a host computer used for algorithms, but DVPs can have severe
processing restrictions on what algorithms they can perform. Also,
programmability can be a major issue. The software provided with the system
should be examined carefully for range of capability and ease of
implementation. It is very important to have a good system requirement
analysis with respect to algorithms needed. This will help avoid the problem of
purchasing a system with a DVP that cannot perform the necessary algorithms
within the system timing constraints.

Video Output Controller (VOC): Converts digital image data from the frame
buffer into analog video for display. The VOC may also perform
programmable routing functions to multiple displays from multiple frame
buffers. With single board systems the VOC functions may be limited to a
single set of NTSC and RGB outputs. Some single board systems have no
VOC type outputs and use the computer console display as the output device.
In these systems the image data from the frame buffer is transferred to display
memory and placed within a window on the computer display.

Single-board System: Combines the frame grabber, frame buffer, digital
video processor, and video-output controller onto a single printed circuit board
that plugs into the host computer system bus. See the dotted-line region of
Figure 1. Single-board systems are typically very cost effective, but can have
poor performance and limited capability. The size of the host computer’s plug-
in cards are what limit single-board systems. Manufacturers have circumvented
this problem with multiple-board systems that use a specialized data bus
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between them for high-speed image data transfer and a host computer bus for
control signals.

Video Display: Typically television monitors that are used to display RS-170
or NTSC analog video data. Higher-end monitors display RGB video. Monitors
are specified in terms of diagonal size (inches), dot pitch, or distance from one
phosphor dot to the next, and phosphor array size, such as 640 x 480 or 800 x
600, etc. Selection of the proper video display can be critical in medical
applications where high resolution is generally necessary. For other systems,
the display may only be used during system development and programming
and so be a less critical consideration.

Hardcopy Device: Used to provide paper output of imagery. This component
is more for reporting and archival purposes than it is a critical element of the
machine vision system. Hardcopy devices span a wide range of capability and
cost. The simplest hardcopy unit is the host computer’s printer. Almost all
systems include a black and white laser printer and images can be dithered and
output to them at minimal cost. Color printers are considerably more
expensive, followed by continuous- tone printers that output photographic-
quality prints. Cost and image quality are the two driving factors that will
determine which printer should be acquired, and vendors will be happy to print
a sample image from your data. A secondary consideration is interfaces—be
sure that the printer is compatible with the data output that is to be printed.

Host Computer/Operator Console: The computer platform used for the
imaging system is possibly the most critical component of all. The host
orchestrates the imaging system operation and in complex systems the host is
used for programming the imaging algorithms. Larger imaging hardware
vendors will have systems that are compatible with multiple platforms. Smaller
vendors that address specialized markets or who restrict their markets may
build hardware only for specific computers. The selection of which computer
to purchase is a major one and the programmability and ease of use of the
proposed system should be weighed heavily in the decision to acquire.
Software and hardware should be considered concurrently as both will
constrain the type and range of algorithms that the system can run as well as
performance and efficiency.

Mass Storage: The disk or other media used to store images or image
sequences. Various options exist from just sharing the host computer disk a to
specialized high-speed, high-volume disks for image sequence processing.
Imaging disks attach directly to the imaging system hardware and are capable
of real-time acquisition and storage. A simple rule of thumb is that one should
always buy as much storage as can be afforded.

Sources for intelligent decisions on imaging hardware abound. One of the
best is the numerous imaging conferences and symposia that are held each year
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by SPIE (The International Society for Optical Engineering), IEEE (Institute of
Electrical and Electronics Engineers) and IS&T (Society for Imaging Science
and Technology) where imaging vendors exhibit their wares. It is strongly
recommended, however, that software be examined first and algorithm
requirements be established. This involves the careful selection of a platform
(see Host Computer, above). Once this selection is made, use free imaging
software, as discussed in Appendix A, to evaluate needs. Then concentrate on
the imaging hardware and software that will be needed for your application.
Vendors are more than happy to assist you, but get multiple opinions before
you buy.
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APPENDIX C
TEN COMMON MISCONCEPTIONS OF MACHINE VISION

This appendix responds to an article that was published in the October
1995 issue of Advanced Imaging, a trade journal for electronic imaging
professionals, entitled "Ten Common Misconceptions Corrected” by Peter
Eggleston. The article offers corrections to misunderstandings that have
plagued machine vision and image processing researchers and developers for
years. Here the misconceptions have been listed, along with a subset of
Eggleston’s comments, in italics. The author’s comments follow in plain text.

1. If you can't see it, a computer can.
* Image processing can be used to enhance data being viewed, but it
can't perform magic. If the data was not captured, no amount of
processing will "bring it out.”

This is often a misconception and goes along with the old saw "you
don’t get anything for nothing." The solution to a potential problem
here is to make sure the sensing system captures the data that you
need. The reverse of the statement above is not true either. There are
cases where you, the human, will not be able to see data but the
computer will be able to. This is generally the case where computer
data is beyond eight bits of quantization or where very poor contrast
masks the presence of objects in shadow.

2. If you can see it, your image analysis software must be able to as well.
* Often, you can clearly see objects of interest in your data, but when
you apply some image processing to extract them, the objects are not
found or single objects are extracted as multiple parts.

This misconception states one of the fundamental problems of machine
vision, which is getting a machine to see what you do! The sections on
thresholding (5.1), segmentation (5.2), and representation (6.1) all
discuss aspects of looking at data and then trying to get an algorithm to
extract and recognize what you can clearly see. Consider the graphic
below, which illustrates a well-known optical illusion. The figure on
the left is the illusion—a bright white square is seen over a black
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122 APPENDIX C

background of circles. Qur minds want to see a square, so the visual
system completes the edges for us. The figure to the right is the figure
after an edge tracing algorithm has been applied—the machine does
not see the square and forces the notched circles to be more
pronounced. In this example one might argue that the machine is
seeing what we should be seeing.

¢y
¢

3. Segmentation is a one-step process.
» The success of an image segmentation technique often relies on
adequate preparation of the data. Proper resolution control, noise
suppression, and feature space transformation are important first steps
before applying a segmentation technique.

In Section 5.2, Segmentation, techniques were cvaluated and the
follow-up, which is Representation (Section 6.1), was discussed as a
means of classifying segmented objects. The textbook examples
always show easily-segmented objects, so it is natural to conclude that
segmentation is a one-step process. Consider the images of pliers on
the next page.

The image of the pliers at the top left was degraded with white pepper
noise (top center) and a median filter was applied (top right). Each
image was then thresholded to graylevel 180 and a cluster analysis
performed with a minimum cluster diameter of 2 pixels. The first
cluster analysis (bottom left) found three objects. The second found
hundreds and overloaded the system (bottom center) and the last
analysis performed on the filtered image found the same three clusters
as the first (bottom right).
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COMMON MISCONCEPTIONS 123

4. Youneed a CAD model to use model-based vision.
» When they hear the term "model-based vision," many assume the use
of computer generated geometric models, otherwise called graphics, to
perform matches with image data. However, a model is simply a
description or example of an object or system.

This misconception arises primarily because of issues of semantics
with respect to the meaning of model-based. The simplest definition of
the term implies any system that stores a representation or model of
what it is looking for. The format or nature of that model is open to
almost anything. In Section 8.3, Model-Based Vision Systems, we
discussed VITREO and PARVO, systems that are model-based on
object components called geons.

5. Commercial image analysis software is still expensive, even
overpriced.
* ...image analysis is a relatively small market, with most companies
only selling a few thousand or even a few hundred copies over the
lifetime of a specialized product. Image analysis tools are relatively
complex, and very good engineers are needed to develop high-quality
tools. And technical support is expensive.

Part of the problem has to do with the fact that the machine vision
problem is far from being solved (see Section 8.4). When it is (if and
when!) then machine vision software will become as inexpensive as
word processors or spreadsheets. Until that time, "you get what you
pay for" will be the watchword of image processing software systems.
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Appendix A discusses machine vision software issues and addresses
the process of how to proceed in the acquisition of skills and
development software (also note that Appendix B provides a
complementary discussion of hardware).

6. Image processing is pixel processing.
o ...once we start to segment the (image) data and extract attributes of
these segments, arrays cease to be the most efficient method for storing
and processing this information.

Although it is very important to learn methods of "grappling with the
pixels,” the very process of analyzing an image for machine vision
purposes is a process of getting away from pixel data. The entirety of
image processing and machine vision can be summarized as three
algorithmic stages:

Low Level Mid Level High Level
* point processes * edge detection * representation
« histogramming —>. thresholding . recognition
« filtering * segmentation » interpretation

The input to these three stages is an image. The output of the low level
stage is another image, albeit processed. The output of the second stage
is better described as a two-dimensional data structure although it may
retain features of an image. The output of the final stage is a data
structure or description of what was in the input image and where. Of
course, the better the description, the more effective the algorithm was.

7. Image processing reduces data.
» Eggleston quotes John C. Russ from The Image Processing Handbook
(see bibliography): "Image processing does not reduce the amount of
data, it just rearranges it. Its goal is to give more meaning to the
data.”

It is very important to understand that one need never lose the original
image data. Many algorithms process the image and reduce data, but
these processes need not be in place such that original data is
overwritten. It is sometimes misunderstood that once processing takes
place one cannot also use the original information in the ensemble of
processes leading to conclusions about image content.

The argument Eggleston and Russ are making is that, if anything, an
image processing operation may create more data. Now, this is not to
say that more information has been created—that cannot happen. What
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COMMON MISCONCEPTIONS 125

it does say is that a presentation of the data to reveal information
present has been accomplished.

8. Color processing means processing red, green, and blue channels.
* Color is a characteristic of grabbed image data. Red, green and blue
(RGB) are merely samplings of the color space.

Color processing is often confusing and gives rise to misconceptions
because the greater bulk of image processing has taken place on
monochromatic images because of hardware costs. With the advance
of technology, color processing has become cost manageable both
from a research perspective and industrial implementation.
Nevertheless, one must understand that an RGB image is a multisensor
representation. There are three images involved and their independent
processing gives credence to the above misconception. Processing
RGB imagery is a multisensor fusion process. When RGB is
transformed into other color spaces, such as hue saturation intensity
(HSI) or C-Y, then the processing is color processing.

9. You can tell the power of an image processing system by the number
of operations it has.
* Since it can be difficult to get a good understanding of a product's
capabilities from the marketing literature, counting up the number of
operations provided may seem like a good approach to determining the
power or value of a software package...

Well, this misconception arises in many different fields. For example,
keep in mind the day you discovered that a dime was worth more than
a nickel! Eggleston illuminates two important points: (1) the
algorithms supplied in an imaging system may not be the ones you
need, and (2) some algorithms are packaged differently between
different systems. Therefore, number of algorithms is not a good
measure of a system. Also, some systems are designed to address
specific applications, such as medical or aerospace. A good measure of
a system is who uses it and the successes that have been achieved.
These are well documented in the literature.

10. The ideal image analysis tool could be used by anybody.
¢ Even if we limit it (image analysis tools) to anybody who has images
to analyze the reality is that we are all not the same; we all have
different experiences, training, expectations, prejudices and skill
levels.

Let’s at least say that it certainly hasnt been developed yet! This
misconception stresses the importance of careful evaluation and the
understanding that image processing and machine vision are
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non-trivial areas of development—whether research or industrial
application. The key to overcoming any bias you may have regarding
this misconception is education.
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ANNOTATED BIBLIOGRAPHY

The books listed in this bibliography range from the classic to the most
recently published on image processing and machine vision. They are listed in
order of publication year and include notes regarding their content.

Digital Image Processing

K. Castleman, Prentice Hall, 1996
Senior/graduate level imaging text with problems and projects.
Excellent coverage with signal analysis, wavelets, optics, 3-D imaging
and machine vision topics.

Two-Dimensional Imaging

R. C. Bracewell, Prentice Hall, 1995
Senior/graduate level imaging text with problems. Heavy emphasis on
signal analysis. Chapter on synthetic aperture radar.

Pocket Handbook of Image Processing Algorithms in C

H. R. Myler and A. R. Weeks, Prentice Hall, 1993
Reference for a wide range of imaging algorithms. Tested C code for
algorithms with cross-reference by class, subject, and algorithm name.

Computer Imaging Recipes in C

H. R. Myler and A. R. Weeks, Prentice Hall, 1993
Senior level imaging reference text with examples and emphasis on
computer implementation. Book includes diskette with UCFImage©
image processing software (DOS).

Digital Image Processing, 2nd Edition

R .C. Gonzalez and R. E. Woods, Addison-Wesley, 1992
Classic and widely used senior/graduate level imaging text with
problems. Signal processing emphasis with good coverage of
segmentation, representation, and recognition techniques.

Computer and Robot Vision, Volumes I and II

R. M. Haralick and L. G. Shapiro, Addison-Wesley, 1992
Graduate level machine vision text with problems. Extensive coverage
of all aspects of machine vision.

The Image Processing Handbook

J. C. Russ, CRC Press, 1992
Reference imaging text with large number of continuous-tone images.
Excellent coverage of color image processing and numerous examples
of algorithms throughout book.
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128 ANNOTATED BIBLIOGRAPHY

Vision, Instruction and Action

D. Chapman, MIT Press, 1991
MIT doctoral thesis in Artificial Intelligence. Describes a sophisticated
integrated system that takes instruction, interprets its environment
visually and plays video games on its own. Provides an implementation
of a unified visual architecture in the machine.

Artificial Vision for Mobile Robots

N. Ayache, MIT Press, 1991
Research monograph on research into 2 and 3-D robot vision at
INRIA. Complete coverage of 3-D vision system algorithms for sensing,
representation, interpretation, and guidance.

Machine Vision and Digital Image Processing Fundamentals

L. Galbiati, Prentice Hall, 1990
Senior/vocational-level imaging text with problems. Good coverage of
basic techniques with system design examples. Chapter on barcode
analysis.

Nonlinear Digital Filters

I. Pitas and A. N. Venetsanopoulous, Kluwer Academic, 1990
Graduate level imaging text and reference. Extensive and thorough
coverage of nonlinear digital filters. Performance evaluation of various
filters described.

Digital Image Processing and Computer Vision

R. J. Schalkoff, John Wiley & Sons, 1989
Graduate level imaging text and reference. Strong math emphasis with
artificial intelligence approaches to machine vision.

Digital Image Processing

W.K. Pratt, John Wiley & Sons, 1978

Third Edition, 1989
Classic graduate level imaging text and reference with problems.
Extensive and thorough coverage of all aspects of image processing
with emphasis on stochastic modeling.

The IR Handbock
W. Wolfe and G. Zeiss, eds., Office of Naval Research, U. S. Navy
3rd Printing, 1989
Classic reference book with sections on imaging and tracking systems.

Structured Matrix Image Processing

E. R. Dougherty and C. R. Giardina, Prentice Hall, 1987
Graduate level imaging text with problems. Matrix approach to
imaging with strong math emphasis. Extensive coverage of
morphological and topological operations.
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Intelligence: The Eye, the Brain and the Computer

M. A. Fischler and O. Firshein, Addison-Wesley, 1987
Graduate level imaging text and reference. Extensive and thorough
coverage of non-linear digital filters. Performance evaluation of
various filters described.

Fundamentals of Interactive Computer Graphics

J. D. Foley and A. Van Dam, Addison-Wesley, 1984
Graduate level computer graphics text and reference. Extensive and
thorough coverage of fundamentals of advanced computer graphics
algorithms.

Computer Vision

D. H. Ballard and C. M. Brown, Prentice-Hall, 1982
Classic graduate level machine vision text and reference with
problems. Math intensive with some emphasis on medical imagery. Has
become somewhat dated and superseded by Haralick and Shapiro (see
above).

Machine Perception

R. Nevatia, Prentice-Hall, 1982
Senior/graduate level machine vision text. Very well written and easy
to follow.

Computer Image Processing and Recognition
E.L.Hall, Academic Press, 1979

Graduate level imaging text with problems. Somewhat math intensive with

emphasis on photometric (physics-based) imaging,

Pattern Recognition and Scene Analysis

R. O. Duda and P. E. Hart, John Wiley & Sons, 1978
Classic graduate level machine vision text and reference with
problems. Merged pattern recognition principles with machine vision
techniques.

Digital Picture Processing, Vols. I and II

A. Rosenfeld & A. C. Kak, Academic Press, 1976
Graduate level imaging and machine vision texts and references with
problems. Very math intensive with emphasis on images represented as
stochastic processes. Volume I is image processing and Volume Il
concentrates on machine vision algorithms.

An Introduction to Morphological Image Processing

E. R. Dougherty, SPIE Press, 1993.
A general treatment of morphological image processing written for the
practicing engineer. This book covers the classical techniques of
morphological processing in an easy to read and understand fashion.
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ACRONYM, 97, 99 dejagging, 35

adaptation, 5 density slicing, 49

additive color mixture, 22 differencing, 84

antialiasing, 35 discrete convolution, 24
autocorrelation, 85 Discrete Cosine Transform, 93

Doppler shift, 19

B

E
blooming, 8
boundary, 63 ellipse, 68, 70
boundary splitting, 66 Euler Number, 70
brightness constancy, 7 eye, |
C F
camera, 114 feature analysis, 73
Cartesian plane, 35 flattening, 37
centroid, 68, 87 flicker-fusion rate, 4
chain codes, 63 see critical fusion Fourier
circularity, 68 Transform, 24
class variance thresholding, 51 fovea, 8
clustering, 75 frame buffer, 113
CODEC, 92 frame, 81
color perception, 14 Freeman chain codes,
compression, 39, 92 see chain codes
cones, 3
correlation, 84
cornea, | G
critical fusion frequency, 4 .
computer graphics, 106 ganglia, 1

gated video tracker, 88, 90
Gaussian, 41

geometry, 37, 45

geons, 100

glare limit, 5

graphic objects, 35
graphic overlay, 36
grayscale, 21

contour, 70
curve fitting, 67
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H Moiré patterns, 9
monochromatic, 20
Hermann Grid Illusion, 12 movie, 91
histogram, 28 MPEG, 91
human visual system (HVS), 12, 16 multimedia, 107
multiple thresholds, see density
I slicing

multisensor fusion, 40

image processing, 106

image sequences, see video N
image understanding, 39

infrared, 57 natural scene, 33
neighborhood process, 24

J noise image, 41
NTSC, 82

IPEG, 22 nyquist rate, 9
0

K

object counting, 45
optic nerve, 2
optimum thresholding, 51

knowledge-based, 97

L
. P
lateral inhibition, 11
look—up table, 30 PARVO, 100

lossy compression, 92 pattern analysis, 75

pel, see pixel

M photopic, 2
piecewise-linear, 52

machine intelligence, 40 pixel, 19

machine vision, 106 point processes, 28

mask, 26 polygonal approximation, 63

mensuration, 58 pseudocontours, 21

metacontrast effects, 6
microsaccades, 4 Q
model-based, 100

Modulation Transfer Function

(MTF), 8 quantization, 20

QuickTime(tm), 91
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R T
RGB, 22 television, 82
Recognition by Components texture, 71
(RBC), 95, 100 threshold, 52
reconstruction, 30 thresholding, 49
regional descriptors, see boundary topology, 70
representation, 63 tracking, 83
resolution, 20 true-color, 22

restoration, 30
robot vision, 106

rods, 2 v

RS-170, 82 . . ™
Video For Windows , 91
video, 81

S visible spectrum, 14
vision systems, 95

saccades, 4 VISIONS, 97, 99

sampling, 13, 20 VITREO, 100

scanner, 82 volumetric descriptors, 73

SCERPO, 97, 99

scotopic, 2

segmentation, 56 w

signature, 63, 69

skeleton, 63 Weber’s Law, 6

spatial filtering masks, see mask window, 90

spatial frequency, 8, 13, 27
statistical texture, 72
structural texture, 72
subtractive color mixture, 22
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