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Cartesian Coordinate Expansions of Common
Vector Differential Operators

Conversions from generalized orthogonal curvilinear coordinates (GOCCs) to Cartesian:
=X, G, =y G=zadh=1h=1 h=1
First-Order Vector Differential Operators (Div, Curl & Grad)

Div vector [Eq. (4.4-22)]

_ d
| A, oA a scalar field
Cartwan aX ay az
Div dyadic [Eq. (B.1-5)]
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y avector field
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Curl vector [Eq. (4.5-12)]
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Grad scalar [EqQ. (4.3-18)]

~ o0V, . o0V, .oV _
V| = U —+ u,—+ u,— avector field
Cartesian oX ay 0z

Grad vector [Eq. (4.3-20)]

adyadic field

Second-Order Vector Differential Operators (Laplacians)

Scalar Laplacian [Eq. (4.7-4)]

oV oV oV
OV, S0~ — — ascalar field
Cartesian aX ay 62
Vector Laplacian [Eq. (4.7-11)]
Dzﬂ‘cmmn‘m =A M, fA0G+°AD 4, °A avector field

See the ingde back cover for the cylindrical coordinate expansions of these operators and
Appendix D for other vector differential operator expansions.
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I ntroduction to the Series

Since its conception in 1989, the Tutorial Texts series has grown to more than 60
titles covering many diverse fields of science and engineering. When the series
was started, the goa of the series was to provide a way to make the material
presented in SPIE short courses available to those who could not attend, and to
provide a reference text for those who could. Many of the texts in this series are
generated from notes that were presented during these short courses. But as
stand-alone documents, short course notes do not generally serve the student or
reader well. Short course notes typically are developed on the assumption that
supporting material will be presented verbally to complement the notes, which
are generally written in summary form to highlight key technical topics and
therefore are not intended as stand-alone documents. Additionally, the figures,
tables, and other graphically formatted information accompanying the notes
require the further explanation given during the instructor’s lecture. Thus, by
adding the appropriate detail presented during the lecture, the course material can
be read and used independently in atutorial fashion.

What separates the books in this series from other technical monographs and
textbooks is the way in which the material is presented. To keep in line with the
tutoria nature of the series, many of the topics presented in these texts are
followed by detailed examples that further explain the concepts presented. Many
pictures and illustrations are included with each text and, where appropriate,
tabular reference data are also included.

The topics within the series have grown from the initial areas of geometrical
optics, optical detectors, and image processing to include the emerging fields of
nanotechnology, biomedical optics, and micromachining. When a proposal for a
text is received, each proposa is evaluated to determine the relevance of the
proposed topic. This initia reviewing process has been very helpful to authorsin
identifying, early in the writing process, the need for additional material or other
changes in approach that would serve to strengthen the text. Once a manuscript is
completed, it is peer reviewed to ensure that chapters communicate accurately the
essential ingredients of the processes and technol ogies under discussion.

It is my goal to maintain the style and quality of books in the series, and to
further expand the topic areas to include new emerging fields as they become of
interest to our reading audience.

Arthur R. Weeks, Jr.
University of Central Florida
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Preface

The overriding objective of this book is to offer a review of vector calculus
needed for the physical sciences and engineering. This review includes necessary
excursions into tensor analysis intended as the reader’s first exposure to tensors,
making aspects of them understandable at the undergraduate level. A secondary
objective of this book is to prepare the reader for more advanced studies in these
areas.

As the world embarks on new horizons in photonics and materials science,
honing one’s skills in vector calculus and learning the essential role that tensors
play are paramount. New inroads in engineering are driving the need for a
revamp of engineering mathematics in these areas. Profound new paradigms in
optical engineering and new advances in composites are necessitating these
changes. The author has found that there is an ever-increasing need for vector
calculus concepts to be extended to tensors and that his undergraduates can
indeed grasp tensorial concepts if taught following the lines of thinking presented
here.

Whereas the classical approach to teaching electromagnetics at the junior
level has been to avoid any mention of tensors, the high-tech world entering the
third millennium warrants a rethinking of this practice. This is especially true as
nonlinear optical effects become more common in the design of optical systems.
Advanced materials, especially composites and nanodesigned materials, provide
further evidence supporting the teaching of tensor fundamentals to upper-
division* students. Even for isotropic materials, the fundamental relationship
between stress, strain, and elastic modulus—which are rank-two and rank-four
tensors—requires a fundamental understanding of tensor analysis. For
anisotropic materials such as composites, piezoelectric materials, and
magnetostrictive materials, tensorial relationships are unavoidable even in the
linear regime.

Furthermore, the development of new photonics devices in optoelectronics,
acousto-optics, magneto-optics, and fiber optics is playing an ever-increasing
role in contemporary communications system design.*** Pollock states

*  University-level juniors and seniors.
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The drive for faster systems has led to... [an] electronic speed
bottleneck...This has motivated the study of integrated optics, where
light, which has a much higher implicit frequency limit, is used to control
light... Without a doubt the biggest research task...will be the
development of optical switches and devices, and better communication
architectures.

These devices include laser sources,® optical switches, rare-earth-doped fiber
amplifiers,® nonlinear-effect fiber amplifiers,’ nonlinear-effect fiber soliton
waves,® optical detectors,? and new dispersion-managed optical fibers.

Uses of this Guide

This is a guide, and was not planned as a text book. As such, it is intended for
multiple uses, including its use as a

1. reference to salient differential and integral forms for problem
solving,

2. supplement to an engineering or science course, used in

conjunction with and as a counterpart to it,

study guide before entering such courses,

reference manual in an R&D laboratory or design group,

complement to required or elective math courses, or just as a

refresher and reference source to vector calculus and an

introduction to tensor analysis, or a

7. text, provided the instructor devises problem sets to provide the
usual practical experience with numerical examples.

2

Who is this guide written for?

Many students and working professionals experience a new awakening when
they see and feel first-hand how complex mathematical concepts are applied to
understanding real-world challenges. It is the intent of this guide to provide some
of the mathematical prowess to facilitate reaching this level of professional
elation. Other ways to state this are

Mathematics is fun!
or
Knowledge is power!
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Courses such as electromagnetics (commonly called “fields”) are often
viewed by students as tough and something to be avoided until late in their
program. Such postponement is not advised. Other courses, such as quantum
physics, fiber optic communications, nonlinear fiber optics, structural analysis,
materials science or any of a number of other engineering and physical science
courses are understood through exposure to the concepts of vector and tensor
calculus. It is hoped that this type of exposure will provide the confidence needed
to encourage students to complete mathematically intensive courses earlier in
their programs by allaying their fear of an imagined mathematical abyss. In this
way they will be better prepared for more advanced studies.

John R. Whinnery in his classic paper® “The Teaching of Electromag-
netics” states

The set of four equations we know as “Maxwell’s equations,” in
modern notation, is simple enough to imprint on a T-shirt, and yet
rich enough to provide new insights throughout a lifetime of study.
Some students grasp the clarity, power and excitement on first
introduction while others have a very rough time with the concepts.

Whinnery’s paper is intended to give students encouragement in approaching
electromagnetics with clarity and excitement and to seek its power. His remarks
might also be applied in varying degrees to other areas of physics as well,
especially with regard to the mathematical constructs of Schrodinger, which are
necessary for understanding the quantum physics inherent in the optical devices
cited above as well as in nonlinear optical constructs.

Other challenging areas contributing to new millennium technology
include

e optical communications,

o homeland security sensor systems,

e optical materials design,

e new applications of bi-anisotropic materials,

e optically based computer design for ultra-high speed and data
throughput,

e space-based materials development,

e new innovations in medical imaging.,

o the design of ultra-high-bandwidth ultra-dense multi-access networks
and their associated components, and

e crystal physics.
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These are but few of many that could be listed.

This guide is also for anyone who is, or endeavors to be, involved in
research, development, or education relating to these and other new frontiers in
science and engineering. Although this guide is written with explanations and
examples intended for the upper-division and first-year graduate student in
science or engineering, it is also intended for those engaged in graduate research
and in industrial research and development who have already been exposed to
some of the concepts.

While excursions into tensors were originally written with undergraduates
in mind, the author has discovered that many professionals, including academics,
have a restricted understanding of tensors. A glimpse of the tensor-dyadic issue
in the introduction to Chapter 3 and the rank-order issue in Section 3.1 (including
the footnote), a study of Table 3-1 (at the end of Chapter 3), Table 4-1 (in Section
4.6), and especially Table 4-2 in Section 4.7 may open doors for some and
provide good instructional fodder for anyone who uses tensors in their upper-
division or introductory graduate courses.

Content

This guide consists of five chapters and four appendices. As an introduction,
Chapter 1 deals with a suggested notation that distinguishes between scalars,
vectors, phasors, dyadics, and higher rank tensors, without the use of boldface
characters. In so doing, it briefly covers other typical notational forms that are
used in this book or that one may encounter in the literature. It also covers spatial
differentials and the concept, definition, and use of partial derivatives. This
includes the general formulation of partial derivatives of unit vectors with respect
to coordinates—a factor often neglected in undergraduate instruction leading to
incorrect answers. A simple example of this concept is provided.

Chapter 2 provides a review of vector algebra covering variant and
invariant scalars, scalar and vector fields, the notation and utility of phasor
scalars, phasor vectors, phasor dyadics, and phasor tensors in general. Classical
arithmetic vector operations of addition, subtraction, and dot-, cross-, and direct-
product operations are discussed along with physical applications of these. Open
and closed line and surface integrals of vector fields are cited as being potent
uses of dot products in integral calculus covered in Chapter 5. Vector field
direction lines and equivalue surfaces of scalar fields are also developed as
further examples of the power of cross- and dot-product operations. In the
process, the need for metric coefficients in coordinate expansions is introduced.
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Chapter 3 gives an introduction to tensors, and the power of the use of
tensor analysis is explained at a level intended for the junior, senior, or early
graduate student, who may not have been previously exposed to dyadics or other
tensors beyond scalars and vectors. The concept of inner product—a term used
synonymously with dot product—is discussed. The dot products of a dyadic with
a vector and a vector with a dyadic are carried out in detail, and in the process the
adjective “inner” is made apparent. The dot and double-dot products of two
dyadics are also detailed. These inner-product operations are expressed in their
considerably more simplified tensor notation in order to illustrate the value and
power of the latter.

The chapter introduces tensors of higher rank (through examples in the
mechanics of materials and nonlinear optics) and the interpretation of rank in
terms of “directional compoundedness”—a term coined by the author to help
those unfamiliar with tensors to overcome the idea that a quantity can have more
than one direction at every point in space and time. The rudiments of tensor
analysis include rules for term-by-term rank consistency and rules for
determining the resulting rank after performing certain product operations. This
concept is detailed and tabulated in Chapter 4.

Chapter 4 is a review of vector calculus differential forms with excursions
into tensor analysis. First-order vector differential operators are introduced with a
historical perspective on the use of the “del” operator. Scalar differential
operators, differential equations, and eigenvalues are generally discussed. The
concepts of gradient, divergence, and curl are described in physical terms and
developed from their basic definitions without the use of coordinate systems. The
rank of the resultants of these first-order vector differential operators is tabulated
in Table 4-1.

Vector operators of vector operators, such as the Laplacian of scalar and
vector fields and six others that are commonly used in junior-level courses, are
also explained in terms that conjure up images of the fields and the effects of
these operators on those fields. These second-order operations are tabulated in
Table 4-2 and developed in generalized orthogonal curvilinear coordinates. These
are then reduced to cylindrical coordinates (rather than the usual rush to
Cartesian) in order to illustrate certain terms that otherwise disappear when
Cartesian coordinates are used—cylindrical being the simplest of the non-
Cartesian systems, and also coincidentally being the most appropriate in the
analyses of optical fibers.
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Chapter 5 deals with integral forms of vector calculus and also with
excursions into tensor calculus. It first delineates line and surface integrals of
scalar, vector, and tensor fields with dot-, cross-, and direct-product integrands. It
then covers Gauss’ divergence theorem and Stokes’ curl theorem with examples
of their applications. These are first explained in physical terms and then
developed mathematically. Four of the most common forms of Green’s identities
are then presented, and Green’s functions are offered as a powerful approach to
solving inhomogeneous partial differential equations.

Appendices

A. This appendix serves as a supplement to the vector arithmetics* covered
in Section 2.4. The commutative and associative laws of vector addition
and subtraction cited in Section 2.4 are demonstrated. As an application,
these laws are used to show graphically and mathematically how vectors
may be bisected. (Other applications of vector arithmetics can be found
in Chapter 2.)

B. In this appendix divergence and curl are developed from their definitions
in the more conventional Cartesian coordinates for further clarity of the
concepts covered in Sections 4.4 and 4.5. The divergence is developed
again in cylindrical coordinates as a first-level generalization towards
curvilinear coordinates taking into account that the azimuthal ¢
coordinate is the sole curvilinear coordinate in the cylindrical system.
Coordinate conversions and differentials, metric coefficients, differential
elements of length, and equations of coordinate surfaces are tabulated for
various orthogonal coordinate systems. Finally, graphical representations
of the coordinate surfaces for each specific coordinate system are
displayed in perspective view following each table.

C. Intermediate-level tensor calculus is used in this appendix for the purpose
of demonstrating several issues and rules cited in Chapter 3 and for
providing proofs of several important postulations used in Chapter 4,
especially in Tables 4.1 and 4.2. At this level we intended it for those who
have learned the concepts in the earlier chapters or for those already
familiar with the area. These include the proof of the Lagrange identity
[Eq. (4.7-15)] that is often presented to upper-division students without
such a proof. The appendix also demonstrates that the divergence operator
cited by Eq. (4.7-7) is not only valid when applied to vector and dyadic

* Pronounced arith-met’ics
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operands [given by Egs. (4.4-22) and (4.7-9), respectively] but also to any
tensor of general rank. Finally, to offset the tendency to treat the
divergence, curl, and gradient as analogous to the dot, cross, and direct
products, we emphasize that there are two properties of the nabla vector
differential operator that must both be taken into account. That is, for all
but Cartesian coordinates, the analogy is false.

D. Appendix D provides Cartesian and cylindrical coordinate expansions of
first- and second-order vector differential operators acting on scalar
(where appropriate), vector, and dyadic operands. Two applications from
materials science are presented that require the taking of the curl of the
dyadic strain and the gradient of the dyadic stress. The first yields another
dyadic, which in turn is an application of the dyadic line integral Eq.
(5.1-4). The second yields a 27-term triadic, which is explicitly provided
in Cartesian coordinates [Eqg. (D.1-10)] and cylindrical coordinates [Eq.
(D.2-10)]. Several of the more common Cartesian and cylindrical
coordinate expansions presented in this appendix are listed on the inside
front and back covers of this book for the readers’ convenience.

Glossary

A glossary of the acronyms, terms, and definitions used in this book precedes the
index.
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Chapter 1
Introduction

As an introduction to this guide, three topics are briefly reviewed. First, a
convenient, consistent, and pedagogically functional notation is provided and
various other notational approaches that the reader may encounter in the
literature are summarized. Secondly, spatia differentials of length, area, and
volume are examined. Finaly, the concept and definition of partial and total
derivatives are given for scalar as well as vector functions. In this latter regard,
the idea that derivatives of unit vectors must in general take into account changes
in direction and therefore may not be zero is developed for later use.

1.1 Notation

A consistent notation, which we will refer to as explicit standard notation, that
can be used for handwritten or electronic communication between researchers,
innovators, designers, and academics (including, of course, students and
instructors) is suggested. Therefore, this notation eschews the use of boldface
that is common in the literature for denoting quantities that have direction, such
as vectors. Scalars, vectors, dyadics, and other tensors, as well as phasors, are
cited in explicit standard notation in Sections 1.1.1 through 1.1.7(a) below.
Explicit standard notation uses the multiple overbar to denote tensors of varying
rank. Rank is a property of a quantity that signifies directional
compoundedness—a term that will be used throughout this guide. This multiple
overbar notation isin frequent usein current texts in fields and photonics.*

Another common notation called tensor notation,? which uses multi-
subscripts to denote multiple directivity of tensors, is listed in Section 1.1.7(b).
Tensor notation is perhaps the most thorough because the ordering of its
subscripts denotes the internal structure of the tensor that it depicts. For that
reason, tensor notation is used in this guide whenever appropriate.

Various other notational representations that the user may encounter are
listed in Sections 1.1.7(c) through 1.1.7(e). Finally, the description of another
notation called order notation, which is aso in common use®” is postponed until
Chapter 3 because it is quite another matter.

1-1
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1-2 Chapter 1: Introduction

1.1.1 Scalars

Quantities that have a magnitude but no directionality are scalars and can be
written as, for example,

a A 1l or27,

without any over- or undermarkings. Quantities such as pressure, temperature,
voltage (electric potential), entropy, and work or energy are scalars because they
have no directionality, only magnitude. Other quantities, such as components of
vectors, current, and flux, may vary with coordinate rotations—a topic discussed
in Chapter 2—but are also scalars by definition.

1.1.2 Vectors

A quantity that has a magnitude and an inherent single* direction is referred to as
a vector. In explicit standard notation, a 3-space vector, that is, a vector quantity
in three-dimensional (3D) space, having a magnitude a is written with an overbar
and is commonly expanded into three orthogonal coordinates, such as

a = aa + O0a, + Ua, (1.1-1)

in Cartesian coordinates, where a, is the component of a in the x direction, a,
is the component of a in the y direction, a, is the component of a in the z
direction, and where G,, G,, and 0, are unit vectors aligned along orthogonal
Cartesian coordinate axes (in this case). Unit vector notation with the hat
overmarkings is discussed in Section 1.1.3. In many texts, lowercase vowels a, €,
i, or uarereserved for unit vectors. In Eqg. (1.1-1), “a” is used in contrast as a
full vector with all three components, a, a, axda,. In other books,
a,, a, anda, in bold lowercase represent unit vectors.**° Thus, by using the
overbar exclusively for vectors of general magnitude and the “u-hat” for unit
vectors, the door is open for multiple overmarkings to dencte dyadics and other
tensors.

Another vector having a magnitude A will contain the overbar as before
and, if expanded in generalized coordinates, is written as

*  Theword single is emphasized here because vectors are not the only quantities
that have direction. As we will soon learn, quantities can have multiple
directionality and, thus, are not vectors. But, since vectors inherently have only
one direction, we insert the word single to make that distinction.
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1.1: Notation 1-3

A= GA + GA + (0,A (1.1-2)

where subscripts 1, 2, and 3 represent three distinct orthogonal directions in
3-space. Quantities such as force, veocity, acceleration, flow field, current
density, electric and magnetic field intensities, flux densities, and polarization
fields each have a magnitude and an inherent single direction. These are therefore
expressed as vectors.

Vector components are inherently scalars but can be made to show
direction by including their associated unit vector. For example, the scalar A
above may be depicted as a vector by attaching a unit vector to it: E = UA.
Current | and flux w , which are scalars by definition, are often vectorized by
incorporating a unit vector in their assumed direction. Although care must be
taken when doing this, current and flux as vectors would be written as
Gl and Gy, orjust I and . However, it is generally better to work with the
densities, such as current density or flux density, which are inherently vector
fields and are given units of the flux per meter squared (in Sl units).* For
example, current density J istheflux density of current | (amps), and is given in
units of amps per square meter.

1.1.3 Unit vectors

A unit vector is a quantity that has a magnitude of one and has an inherent single
direction associated with it. In our explicit standard notation, a unit vector is
written asa“u” with a hat or single chevron overmarking, such as

A

U

where the subscript is used to indicate a direction—in this case, theith direction.
Unit vectors are not confined to coordinate directions, although it is common to

*  The standard of units called the “SI” system is now managed by the U.S.
National Institute of Standards and Technology (NIST). See special publication
#330, 1971. In 1907, it was first proposed by Giorgi, who named it MKS (for
meter-kilogram-second) and later, rationalized MKS. Sl is the acronym for
Systéme internationale d' unités. Whereas the Sl system is the common standard
in engineering literature, it is becoming prevalent in the scientific literature as
well. Nevertheless, the reader should become familiar with the “Gaussian”
system as well. The Gaussian system is a combination between the earlier emu
(electromagnetic, meaning magnetostatic, units) and esu (electrostatic units)
systems. It has a mathematical purity that renders the eectric and magnetic
fieldsin Maxwell’ s equations similar in form and units, for example.
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1-4 Chapter 1: Introduction

do so. Other symbols (usually lowercase) are often used for unit vectors.
However, the author recommends the above redundant use of both the single
chevron and the lowercase u in student-instructor exchanges to make it clear that
aunit vector is intended.

1.1.4 T - space notation: the vector-like I used in the argument of a
field function

It is common in mathematical literature of science and engineering to see field
functions that contain a vector-like looking symbol T in their functional
arguments. We will refer to this usage as r-space notation. For example, the
electric potential V at a point in space called the field point due to a system of
charges denoted by p located at source points would typically be written as

V() =—— | L) 4 (1.1-3)
4re Source£|r I I|

wherethe volume is taken over all of the positions where sources are present.

Here the symbaol T in the argument of V represents a shorthand notation
for the spatial position of the field point, where the unknown eectric potential
field is being determined. Likewise, the T' in the argument of o represents the
gpatial position of the known charge sources. The integration is being taken over
the volume elements dv' where the charge sources are known to be located. The
prime denotes source positions while the lack of a prime denotes field positions.
Thus, whenever thesymbols T or 7' are used in the argument of afunction, it is
meant simply as a shorthand for coordinates separated by commas or is used
where no coordinates are implied at all. For example, in Cartesian coordinates, T
and T' ae xVy,z and x,y',z'. Likewise, in cylindrica or spherical
coordinates, ¥ and 7' ae r,¢,z and r'¢',z' or r,0,¢ andr' 69",
respectively. For generalized coordinates, 7 and 7' are q,0,,0, and
0,0, 0" . Thisiswhat we mean by T-space notation. The symbols T and T
in the argument of a function represent a point in space, with or without regard to
a coordinate system.

However, having said that, ™ and 7' do, in fact, have a physical
interpretation. See Fig. 1.1-1. In the case of T, for example, the symbol can
represent the vector from an arbitrarily selected point in space designated as the
origin O to the point P in space wherethefield V isto be determined. In the case
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region of sourcesS

Field point P
differentid volumeat S
ahitray origin O

5
Figure 1.1-1 Notational representation of source and field points in
T —space notation.

of 7', this symbol represents the vector from the same origin to the source points
S ove which the integration takes place. In both cases, however, this
terminology is used independently of any specific coordinate system. We will
refer to fields written this way as fields in T space. The vector drawn from the
source element to the field point is T —T '. This can be written as capital R
vector, sothat R=T —T". See Fig. 1.1-1 for the geometry associated with T,
T,adT —T".

1.1.5 Phasors

In engineering and physics, quantities frequently vary in time as well as space.
Whenever quantities vary sinusoidally in time at a monochromatic frequency,
they are referred to as time harmonic. Further, it is customary to depict the time-
harmonic time variation as

e’ or e

where @ is the monochromatic radian frequency. In physics, the first
exponential is commonly used, whereas in engineering, the second one is the
more common. There is no substantive advantage of one over the other and one
can easily convert analyses done in one to that of the other by replacing j with
—i or viceversa.

A time-harmonic scalar quantity f(X,y,zt) would then be written as
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1-6 Chapter 1: Introduction

f(xy.zt) = f(xy,2) e (1.1-4)

The remaining analysis is then performed with the exponential factor suppressed.
Thefunction

f(xy.2)

is then referred to as a phasor and can be denoted as such by the underscore
either in eectronic or handwritten communication. Any quantity that is dealt with
in this manner with the time exponential suppressed, whether a scalar, vector, or
other, isreferred to as a phasor. The above function f isthen ascalar phasor.

A time-harmonic time-varying vector would be written as
Ay, zt) = Alxy,2) e (1.1-5)

where A(X, Y, z)is avector phasor denoted by an overbar as well as an underbar.
Phasor scalars and phasor vectors are discussed in greater detail in Section 2.5.
Dyadics, which are discussed in Section 1.1.6 below and in Chapter 3, can also
be phasors, as can tensors in general. See Section 2.5 for tensor phasor notation.

1.1.6 Dyadics

One'sfirst step in understanding dyadics is to overcome the misconception that
all quantities either have a direction or not. The emphasis here is on the word a,
meaning a single direction or not. A student learning about vector fields finds
that they are not overly difficult to visualize once scalar fields are understood.
Vector fields are commonly described as quantities that have a direction (as well
as magnitude) at every point in space (as well as at every moment in time). Such
quantities are spatial and temporal. Implied in that first exposure to vectors was
the word “single” meaning single direction, even though this distinction was
probably not mentioned at thetime.

The extension of the concept of vector fields to ancther type of quantity
called dyadics is to understand that quantities can have two directions at every
point in space and at every moment in time. Some examples below will aid in the
understanding of this concept. We will refer to such quantities as having dual
directional compoundedness and, as we just stated, name such quantities as
dyadics. This dual directivity should not be construed as a simple combination of
two three-component vectors. Rather, each of the three components of one vector
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1.1: Notation 1-7

acts linearly on each of the three components of the other yielding nine
components that fully describe the dyadic. That is,

each of the nine components of the dyadic has a magnitude and a
dually directed unitary dyadic called a unit dyad just as does each
component of a vector have a magnitude and a singly directed
unitary vector called a unit vector.

While the following discussion is focused on notation and most of the
examplesin this section are for quantities with dual directional compoundedness,
the reader should keep in mind that tensors in general can have multiple
directional compoundedness beyond two. The general term for such quantities,
where the multiplicity of the directional compoundedness is unspecified, is
tensor. In Section 1.1.7, we list several common notational representations for
tensors to prepare the reader for more detailed discussions in subsequent chapters
about tensors and special cases of tensors, such as dyadics.

Although junior-level (third-year) engineering or physics students have not
necessarily been required to take a formal course in tensor analysis, they
frequently have been exposed to quantities that have multiple directionality, often
without being told so. However, in recent years more attention is being devoted
to dyadics and other tensors because of the recognition of their importance, even
at thislevel.

Example 1: piezoelectric transducers and other crystalline materials

In the study of anisotropic dielectrics, the dielectric properties cannot be fully
described without the use of dyadics. That is, a dyadic is needed to express the
constitutive relation between the eectric flux in a crystalline dielectric and the
applied dectric field. For such materials, the flux density vector is not necessarily
paralld with the applied eectric field intensity vector because the crystalline
material has different didectric properties in different directions. Thus, the
didlectric must be described by a dyadic. This feature has a practica and
necessary application not only to crystalline dielectrics, but also to piezoelectric
materials commonly used for sonar transmitters and receivers. The piezoelectric
phenomenon found in certain special anisotropic materials is used in the design
of transducers to convert between acoustic waves and electric fields.
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1-8 Chapter 1: Introduction

Example 2: Magnetostrictive transducers

Ancther example of the need for dyadics is in the use of magnetostrictive
materials, which serve as converters between acoustic waves and magnetic fields.
In these materials, the magnetic properties must be described by a dyadic in order
to properly account for the magnetic flux density vector field that results from an
applied magnetic field intensity vector field.

Example 3: Stress and strain mechanics of materials

Static and dynamic analyses of the mechanics of materials are typical in many
engineering curricula. The stress and strain quantities covered in these courses
are, in fact, dyadics. Each of these dyadic entities serves as a transformation
between two vector fields that are not necessarily parald in the material.
Because these courses are usually taken at the sophomore (second-year) level, the
tensorial nature of these quantities is usually not mentioned.

Example 4: Conversion between coordinate systems

In Appendix B, various 3 x 3 matrix transformations between orthogonal
coordinate systems (in 3D space) are presented along with certain other
coordinate system properties. These nine-component transformations between
coordinate systems can be, and often are, viewed as dyadics.

Example 5: The Jacobian differential operator

Yet another example of the utility of dyadics is in humerical analysis. When
studying Newton's method of locating roots of systems of nonlinear equations,
students come across the Jacobian matrix. The Jacobian is the determinant of the
resultant components of an n-dimensional vector differential operator operating
on an n-dimensional vector. It therefore has a dual directionality—one implicit
from the vector operator (which we will later discover is the gradient operator)
and one given by the vector upon which it operates. It is described by n?
components and is therefore not a scalar or vector, yet it has magnitude and
direction. The key hereisthat it has two directions.

Quantities that have dual directionality are referred to as dyadics as stated
earlier. Philosophically, this duality of direction can be considered from a
causality viewpoint, that is, cause-and-effect. The cause is a forcing function,
which can have direction, and the effect is the resultant, which can also have
direction, but not necessarily parallél to the causal direction. Thus, at every point
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1.1: Notation 1-9

in space and at every moment in time, there are causal and resultant directions.
The transformation matrix between these two quantities is the dyadic, if the
causal and resultant quantities are vector fields. The mathematical expression
rdating resultant field to the causal fidd through the dyadic matrix
transformation is referred to as a constitutive relationship.

(Having said that, we hasten to point out the if in the italicized sentence
above, for such constitutive relationships are not always fully describable by
dyadic tensors. A case will be shown in Chapter 3 where the causal and resultant
fields are themselves the stress and strain dyadics mentioned in Example 3. In
this case, the congtitutive relation involves a tensor having a four-level
directional compoundedness. Therefore, the tensor that describes this is not a
dyadic but is a rank-four tensor. It may surprise the student contemplating such a
concept for the first time that we are talking about the eastic modulus. This
oh-by-the-way parenthetical comment is made at this point in our discussion as a
caution to the reader not to think of tensors as just being dyadics. Dyadics are
special cases of tensors, but tensors are not necessarily dyadics. This point will
berestated at various strategic places in this mathematical guide.)

Rank: The quantitative property of a tensor that specifies its
directional compoundednessis “ rank.” Thus, dyadics are tensors of
“rank two,” because of their dual directivity. Smilarly, vectors and
scalars are also tensors but of rank one and zero, respectively,
because vectors have single directivity and scalars have no
directivity.

We will discuss dyadics and other tensors of higher directional
compoundedness (higher rank) in more detail in Chapter 3. For now, since our
purpose here is notation, we will denote the dual directionality of dyadics with a
double overbar, such as

A (1.1-6a)
and its associated unit dyad as a u with a double hat or double chevron, such as
a (1.1-6b)

where each has dual directionality. In 3D space, therefore, these quantities have
nine components, as previously stated.
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1-10 Chapter 1: Introduction

In this guide, we have been referring to the notation of using overbars,
underbars, and chevrons, such as in Egs. (1.1-1) through (1.1-6b), as explicit
standard notation. Many other notations are summarized below so as to acquaint
the reader with various other forms encountered in the literature.

1.1.7 Tensors

Having just taken the “uninitiated” (to tensors) through the concept of dyadics,
which are rank-two tensors, we will leave further extension of this concept to
quantities having multiple directional compoundedness greater than two to
Chapter 3, Section 4.7, and Chapter 5. Such quantities in general are called
tensors, as stated earlier. Various authors use a variety of notational techniques
for denoting tensors. One of the most common is the multiple-subscript method
called tensor notation.

Tensor notation has a great deal of utility in that it explicitly allows
for the proper ordering of tensor components in performing various
operations, such as single or multiple dot-, cross-, or direct-product
operations. Therefore, tensor notation is the preferred formulation
whenever these operations areimportant to the devel opment at hand.

Other notational techniques for representing tensors (besides explicit
standard notation and tensor notation) that may be encountered in the literature
include the use of pre-subscripts, pre-superscripts, various arrow overbar
symbols, as well as post-subscript and post-superscript methods. Finally, thereis
the so-called order method. Each method has its own utility with its respective
advantages and disadvantages.

Explicit standard notation is illustrated for rank-three tensors in Section
1.1.7(@ bedow. Tensor notation is denoted in Section 1.1.7(b), pre-
subscript/superscript methods in Section 1.1.7(c), and the double-pointed arrow
in Section 1.1.7(d). Post-subscript and post-superscript methods for depicting
tensors are mentioned in Section 1.1.7(€).

In the following synopsis of notation used for tensors, the examples are
given first for dyadics and then for triadics, the latter being added for generality,
so that the newcomer to tensors (as well as those with a restricted understanding
of tensors) will garner the impression that there are tensors beyond dyadics. This
is done without regard for what exactly dyadics and triadics actually are. The
what-are-dyadics-and-triadics discussion will come later. For now, we are just
dealing with the names of things and their notations.
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1.1: Notation 1-11

Finally, the order method, which is common in recent usage in nonlinear
optics,*” is discussed in Section 3.1. For the reasons discussed at the end of the
preceding paragraph, the notational approach for the order method is not included
here, asit differs somewhat from the other methods.

1.1.7(a) Explicit standard notation for tensors

In Section 1.1.6 wecited A and U asthe notational representations of the dyadic
and unit dyad as shown in Egs. (1.1-6a) and (1.1-6b). This is what we call
explicit standard notation for quantities that have dua directional
compoundedness.

Quantities that have triple directional compoundedness are called triadics.
In explicit standard notation, triadics are given the notational representation of
three overbars, as

ol

(1.1-738)
and their associated unit triads as a u with a triple chevron:
a (1.1-7b)

This process, of course, would continue with further increase in directional
compoundedness. (See Appendix C.)

1.1.7(b) Multiple-subscript notation for tensors

It is often more convenient to use tensor notation when expressing quantities
having multiple directivity. Tensor notation is a method of denoting tensors with
a series of integer subscripts called indices. The number of indices corresponds to
the directional compoundedness level of the tensor quantity, which will be
covered in Section 3.1. Therefore, our dyadic A and unit dyad O of expressions
(1.1-6a) and (1.1-6b), which are rank-two tensors, would appear simply with
double indices when written in (multisubscript) tensor notation, as

A (1.1-8a)
and

u, (1.1-8b)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1-12 Chapter 1: Introduction

respectively. Noticethat it is not necessary to use the double hat (chevron), since
the double indices denote the rank-two unit dyadic.

In tensor notation vectors would be written with asingleindex, suchas A .
However, since the symbol A, written to represent a vector in tensor notation,
cannot be distinguished from A as the ith scalar component of that vector, it is
necessary to clarify whenever tensor notation is being used in order to make the
distinction.

Triadics, or rank-three tensors, are written with three indices such as

Ti (1.1-9q)

and theunit triad as
Ui (1.1-9b)
Again, the unit triad may or may not contain chevrons.

1.1.7(c) Pre-subscript, pre-superscript notation for tensors

The dyadic and unit dyad of expressions (1.1-6a) and (1.1-6b) are expressed in
pre-subscript notation as

2Aor [LA] (1.1-10a)
and

L;uor [,ul (1.1-10b)
respectively, where the pre-subscript denotes the directional compoundedness of
the quantity. The unit dyads may or may not be wearing a hat or a double
chevron; however, such redundancy is not necessary when the pre-subscript is
used as shown in expressions (1.1-10a) and (1.1-10b).

In pre-subscript notation, triadics would appear as

T o [,T] (1.1-11a)

and the unit triad as
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1.1: Notation 1-13

suor [,u] (1.1-11b)

Alternatively, the dyadic and the unit dyad of expressions (1.1-6a) and
(1.1-6b) are expressed in pre-superscript notation as

*Aor [ *A] (1.1-12b)

2 or | u] (1.1-12b)

respectively, where the pre-superscript denotes the directional compoundedness
and the unit dyads may or may not have a hat or chevrons.

In pre-superscript notation triadics would appear as
T or [ °T] (1.1-13a)
and the unit triad as
*u or [ *u] (1.1-13b)
again, where the unit triads may redundantly be given the chevron.

1.1.7(d) Arrow notation for tensors

The use of arrows is another method for denoting quantities that have
directionality. In this notation, the vector appears with an overarrow having a
single arrowhead as

—

A (1.1-14)

and the dyadic appears with an arrow having arrowheads at both ends as

>

A (1.1-15)

The overarrow can be split with a number inserted indicating the directional
compoundedness. Thus for atriadic, the overarrow would have a 3 inserted in the
overarrow as
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«3-

T (1.1-16)

Unit vectors, unit dyads and unit triads in this notation either use the chevrons or
the arrows as in expressions (1.1-14), (1.1-15) and (1.1-16) with the lowercase u
or other vowel.

1.1.7(e) Post-subscript, post-superscript notation for tensors

The reader should also be aware of post-subscripts and post-superscripts being
used to denote tensor directional compoundedness. Post-subscripts are commonly
used to distinguish one quantity from another. For example, using the notation of
expression (1.1-10a), the dyadic [,A,] could be distinguished from another
dyadic [,A,] by the use of the post-subscript in the same way that vector A
might be distinguished from another vector ﬂz In the case of post-superscripts,
there is possible confusion with degrees of power, such as the squaring or cubing
of a quantity.

Nevertheless, authors use both of these methods to denote tensor
directional compoundedness. In each case, however, authors are usually careful
to specify at the outset what is meant by such notation in order to distinguish it
from these other uses. Although some have parenthesized post-subscripting, the
use of parentheses in post-superscripting is currently reserved (by recent common
usage)®” to order notation. In any case, authors are careful to specify their
notation, and the reader new to tensors should watch carefully for thisin order to
avoid ambiguity in interpretation of the author’s meaning.*

At the risk of having left out someone's favorite notation, we have
endeavored to cite some of the common notations used in the tensor literature.
The reader should redlize, however, that there are no standards for these things,
and that authors have the freedom to set up any notation that they please.

1.2 Spatial Differentials

Differential lengths, areas, and volume are discussed in the subsections that
follow.

*  The use of the post-superscript to denote tensor rank is, however, sufficiently
common that it is felt worthy of mention, if for no other reason then to caution
those new to tensorsto such use.
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1.2: Spatial Differentials 1-15

1.2.1 Differential length vectors

Differential lengths are the building blocks to differential areas (Section 1.2.2)
and differential volumes (Section 1.2.3). For this reason the tables in Appendix B
focus on differential lengths. These tables provide explicit differential lengths for
several orthogonal coordinate systems. Perspective views of orthogonal
coordinate surfaces graphically depict the product of these building blocks.

A differential length de in any orthogonal coordinate system can be
written as the vector

d¢ = Gde,+ G,d/, + G.de, (1.2-1)

or alternatively, as a summation over the dimensionality of the space, such as
— 3
d¢ = >0 d¢, (1.2-2)
i=1

for 3D space, where 0, 0,, 0, arethree orthogonal unit vectorsin that space. The
unit for differential length in the SI system is meters.

As stated earlier, vectors are a special case of tensors. It is often more
convenient, especially when working with generalized tensors in conjunction
with vectors, to omit (or suppress) the details of Egs. (1.2-1) and (1.2-2) for
simplicity in notation. Using such tensor notation, our differential length vector
may be written simply as

d’, (1.2-3)
where the summation, unit vectors, and overbar are implied. It is necessary to
clarify when tensor notation is being used in order to distinguish, for example,
the difference in the meaning of d/; in Eq. (1.2-2) and in the expression (1.2-3).
In (1.2-2), d/, represents the scalar magnitudes of the components of d/,
whereasin (1.2-3), d/. isthevector d’ .

1.2.2 Differential area

A differential area may be defined as the area subtended by two orthogonal
differential lengths asillustrated in Fig. 1.2-1. It is given by
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\%I
N\
/ 2

Figure 1.2-1 Differential area as a scalar.

da = |d/ ||d/, | (1.2-4)
which is a scalar. Its (SI) units are meters squared.

However, differential area can be given a direction. Two vectors not in the
same direction define a surface. Thus, a unit vector Gn normal to that surface
may be constructed as shown in Fig. 1.2-2. Notice that there are two possible unit
normals, one shown by the solid line and one by the dashed line in Fig. 1.2-2.
Thus, a convention must be established to remove this two-to-one ambiguity. The
one that is chosen depends on the nature of the problem. The usual convention is
to use the right-hand rule by pointing the fingers of the right hand in the direction
of U, and then rolling them into the direction U,. The thumb will then point in
the “normal” direction. On a closed surface, it is customary to construct
d, and U, such that the normal will be directed outward. The important point to
remember here is that differential area is inherently a vector that can be
represented by

da = d, |d¢,||d, | (1.2-5)

Conveniently, the unit normal given in Eqg. (1.2-5) can be expressed in terms of
the cross product between d¢, and d/,, as covered in Eq. (2.4-30). Therefore,
vector differential area is also given another useful form in that section.
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1.2: Spatial Differentials 1-17

Figure 1.2-2 Differential area as a vector.

1.2.3 Differential volume

Three orthogonal differential lengths df,,d(,,d(, define a differential volume
dv. Given three generalized orthogonal coordinates g,,q,.q; as shown in
Fig. 1.2-3, differential volume is the generalized volume parallelepiped shown. It
is

dv =\dt\d,\de,| (1.2-6)

in meters cubed (SI units). Because there is no directionality associated with a
mathematical differential volume, dv is a scalar.
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Figure 1.2-3 Differential volume.

1.3 Partial and Total Derivatives

Since the vector differential operators we deal with in the mathematics of fields
and photonics (especially in Chapter 4) consist of various combinations of partial
derivatives of scalars, vectors, dyadics and, in general, tensors, a short review of
partial derivatives is in order.

Definition of a partial derivative: A partial derivative is the result of
taking a derivative of a function of multiple independent variables
with respect to one of the variables while holding all of the other
Independent variables constant.

Therefore, the partial derivative represents the rate of change of a function of
multiple variables only along one of the variables, that is, while the other
variables are unchanged. We first discuss the case of a partial derivative of a
scalar function and then do the same for vector fields, ending with a mention of
extending this to higher-rank tensors.

In the event that the total rate of change is required allowing all of the
variables to change, the total derivative is needed. We therefore examine the
chain rule for determining the total derivative of a multivariate function. We shall
see that the chain rule requires the partial derivatives with respect to each of the
variables.
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1.3: Partial and Total Derivatives 1-19

1.3.1 Partial derivative of a scalar function

The partial derivative of the scalar function f(q,,q,,9,) with respect to q, is
defined as

O i TG+ AG,, G5, 05) — T(G, G, 9)

(1.3-1)
oq,  Aa—0 Ag,
which is often written in shorthand simply as
ﬂ = f, (1.3-2)
0q, '
Likewise, the partial derivative of f(q,,q,,q;) with respectto g, is
O i S0 G, +A0;,G5) — (01,95, 9) (13-3)
aq, A0 AQ,
which can be written more conveniently as
i = f, (1.3-4)
aq, -~
Finally, the partial derivative of f(q,,q,,q,) with respectto g, is
i: lim f(Qsz’q3+Aq3)_ f(Qsz’qs) (1.3-5)
aq3 Ag—0 Aq3
which can be expressed as
ﬂ = f, (1.3-6)
g, ¢
Second-order partial derivatives are defined by
o°f  of [ of
> = = fqlq (1.3-7)
oo, o0, \ oG, '
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2

ot _of [Jf | (13-8)
0g,00, dqldg, )

o2f  of ( of

= =f 1.3-9

a2 quaqzj s (39
2

ot _Jf [of)_q (13-10)
00,0q, dg,\dg )

The mixed derivative theorem states that if f(q,q,,0,) and its
partial derivatives f,, f,,and f  existand are continuous, then
fq alSOexistsand

foo, = Tog (1.3-11)

1.3.2 Total derivative of a scalar function: chain rules

First, we describe the total differential df as

of of of
df =—dq, +—dq, +—d 1312

This represents the change produced in f by changesin q,, g,, and d,.
1.3.2(a) Chain rule for functions of three independent variables

If f=1f(q,0,,0,) and q,, q,, and g, are functions of an independent variable t
(and al are differentiable), then the total derivative of f with respect tot is

i _of dq, of d,  Of do,

(1.3-13)
dt oJq dt odg, dt dg, dt
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1.3.2(b) Chain rule for surface functions

If f=1f(q,0,,0,) isadifferentiable scalar function that is confined to a surface
(for example, the surface of a sphere) described by two independent variables 6
and ¢ ataconstant r=r_, then ¢, q,,and g, arefunctionsof ¢ and ¢ (andall
are differentiable), and the partial derivatives of f with respect to ¢ and ¢ are

of of aoﬂ of aq2 df dq,

(1.3-14)
6 aoﬂae aq2 060 8q3 2060

and

of of aq1 of aq2 df dg,

(1.3-15)
8¢ aq1 00 aq2 00 aq3 00

1.3.3 A dimensionally consistent formulation of partial derivatives

Whereas Egs. (1.3-1) through (1.3-15) provide the mathematical definitions of
partial derivatives of the scalar function f with respect to the generalized
orthogonal coordinates, ¢, q,, and q,, it should be recognized that these
coordinates are not necessarily dimensionally consistent. Some may be in units of
length (meters) while others are in units of angle (radians), which are unitless.
Therefore, in order for al of the partial derivatives to be dimensionally
consistent, scale factors (otherwise known as metric coefficients) are used. These
factors are discussed in greater detail in Section 2.6, but for now we will just cite
an example of how they are used for cylindrical coordinates.

The scale factors h, h,, and h, are used to relate the differential length
components d/; in Eq. (1.2-1) to the differential coordinates dg, by d/, =hddq .
In cylindrical coordinates, q,, d,, and g, are r, ¢, and z. Thus, h, h,, and h,
are 1 r, and 1, respectively, and d/,=dr, d/,=rd¢, and d/,=dz. Notice
that each of the differentials has units of length once the scale factor r isincluded
in the second differential length.

In this way a dimensionally consistent formulation for partial derivativesin
generalized orthogonal curvilinear coordinates (GOCCs) may be constructed.
Therefore,

af — ||m f (Q. + AQ. ! qi+1’ qi+2) B f (q| ! qi+1’ qi+2) (13-16)
hog ~ 4a-0 hAg,
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A surface in 3D space given in generalized orthogonal curvilinear
coordinates q,,0,,0, is described as h,q, = f (hda,, h,dg,) . Then the changein f
with respect to d/, = hdg, , for example, is

of _ of _o(hg,) _h,0g , g 0h, (1.3-17)
d, hdg hdg, hoadg hdg

where the metric coefficients are in general functions of all three coordinates
h=h(q,q,,0;) and therefore must be included in the derivative when
applying the product rule.

1.3.4 Partial derivative of a vector function

By the time students in the physical sciences or engineering enter upper-division
courses (junior and senior years of a bachelor’s program), they will have been
exposed to the partial derivative. However, this introduction was invariably done
in Cartesian coordinates with Cartesian-coordinate examples. This was fine when
the partial derivative being explained was taken on a scalar function. However,
problems can arise if the partial derivative is taken of a vector function (or of any
tensor of rank greater than zero) and the physical problem leads naturally into
curvilinear coordinates, such as cylindrical coordinates. We will therefore discuss
partial derivatives of vectorsin generalized orthogonal curvilinear coordinates.

Leg us examine the partia derivative of a vector fied

Al % %) = 4A (0, G, G) + 0, A (0, G, &) + G A (G, 0,,%) . The  partial
derivative of A with respect to one of the coordinates ¢, is

IA _IGA)  AGA)  AEHA)
aq aQI aq| aq|
L 0A - 0A . 0A

=Ula—qi+ u28_qi+ U, aql
+A18qi+A28qi+ dq,

(1.3-18)

where the first three terms on the right-hand side involve partial derivatives of
the scalar components A(0;,0,,0), A(Gh,0,0), and A(q,0,.q,) of the
vector field, each in their respective unit-vector direction. These terms are
therefore handled as in Egs. (1.3-1), (1.3-3), and (1.3-5). The last three terms
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1.3: Partial and Total Derivatives 1-23

involve coordinate derivatives of unit vectors and must be considered—a point
entirely missed when the Cartesian system is used.

The vital difference is that spatial derivatives of unit vectors in Cartesian
coordinates are all zero, but that derivatives of unit vectors with respect to
coordinates that are curved in space often are not. One might think that the
derivative of a vector whose length is constant has to be zero. However, this is
not the case.

In general it can be shown'™ that

a_ai OJ’ ah ljk ah

=70 T (1.3-19)
Jdg,  hydgq, h dg,
and
9, _ 0 ohy (1.3-20)
dq; h dq

where i=12,3 j=231land k=312, inthat order. Further, if the derivative of
aunit vector is not zero, it will always be at right angles to that unit vector. Thus,

0-—=0 (1.3-21)

Example: The movement of a clock hand to illustrate the need for
coordinate derivative of a unit vector.

Think of the hand of a clock. In a cylindrical coordinate system (or just a polar
coordinate system because the problem is just 2D), our coordinates ¢, and g, are
rand ¢, and the metric coefficients h and h, are landr, respectively.
Representing the clock hand as G, , the ¢ — coordinatepartial derivative of U, can
be found from (1.3-20):

(1.3-22)
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Therefore, the rate of change of the clock hand, represented by the unit
vector in the r-direction with respect to the azimuthal ¢ direction is equal to the
unit vector in the ¢ direction. Further, by applying this result to (1.3-21), we see
that

i
U b —
r a¢

a,-i,=0 (1.3-23)

Thus, the derivative of the unit vector that is always pointing in the direction of
the clock hand, i.e. &,, with respect to ¢ is at right angles to &, and, in fact, is in
the 4, direction. This orthogonal result will always be so because the unit vector
being differentiated does not change length.
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Chapter 2
Vector Algebra Review

The purpose of this chapter is to review some of the salient operations involving
scalar and vector fields and to broaden these concepts to dyadics and tensors in
general. Here we briefly discuss variant and invariant scalars, the concept of
scalar and vector fields, and the utility of phasor forms of these quantities.
Classica arithmetic vector operations of addition, subtraction, and dot and cross
products are discussed along with physical applications of these. The direct
vector-vector product is mentioned in Section 2.4.3 as having a dyadic resultant;
however, the details of this process are | ft to later chapters.

The basic building blocks of open and closed line and surface integrals of
vector fields are discussed. These are essential for both the definitions of vector
differential operators, covered in Chapter 4, and the integral forms that shape the
basis of divergence, Stokes', and Green’s theorems covered in Chapter 5. Other
highly useful applications of dot- and cross-product operations conclude the
sections of this chapter. These are vector field direction lines and equivalue
surfaces of scalar fields.

2.1 Variant and Invariant Scalars

A quantity is said to be a scalar if it has only magnitude, that is, no inherent
direction. Quantities such as time, mass, distance, temperature, entropy, energy,
electric potential, and pressure have a value at every position in space but lack
directionality. These are scalars. Because such quantities are independent of the
orientation of a coordinate system, they are called invariant scalars. Coordinates
of a point and components of a vector are also scalars;, however, these quantities
change with coordinate displacements and rotations and therefore are variant
scalars.

2.2 Scalar Fields

In general, scalar fields are quantities that can be represented by functions of
space and time. For example, a quantity might be described as a function of four
independent variables, such as three orthogonal coordinates ¢,,0,,09, and timet.
That is, at every point in space described uniquely by g, q,,d,and at each instant
of time described by t, a field, such as electric potential (frequently written as

2-1
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2-2 Chapter 2: Vector Algebra Review

V or @) can be described by a single-valued scalar function of these four
independent variables as

V(q,,0,,0,t)=V(T,t) vdlts (2.2-19)
or aternatively,’

@(q,,0,,0;,t) =@(T,t) volts (2.2-1b)

The right-hand side of these expressions incorporates T -space notation
described in Section 1.1.4—a shorthand notation where the coordinates q,,4d,, 0,
are represented by ™ —which denotes a point in space with or without regard to a
coordinate system as shown in Fig. 1.1-1. For Cartesian, cylindrical or spherical
coordinates, thearguments x,y,z or r,@,z or r,8,¢, respectively, are replaced
by T, for example.

Thus, dectric potential is a scalar field—or more specifically, an electric
potential field in space andtime. V (or @) isan invariant scalar sinceits value at
a specific point in space and at a specific time is independent of any chosen
coordinate system and independent of any rotation or displacement of a
coordinate system. See Fig. 2.2-1(a).

2.3 Vector Fields

Quantities such as force, veocity, displacement, eectric and magnetic field
intensities, and electric and magnetic flux densities are vectors because each of
these has a magnitude and a single direction.* The magnitude and direction of
each of these can vary in space and time. In 3D space, vectors can be described
by three scalar magnitudes that represent components in some orthogonal
coordinate system. Although a vector may be invariant to a coordinate
transformation, its component magnitudes are, in general, not. Since each
component is a scalar field that varies in space and time asin Egs. [2.2-1(a)—(b)],
the entire vector is a function of space and time.

*  Other quantities have magnitude and direction, which are not vectors. For
example, stress has dual directional compoundedness—not a “single’ direction
as emphasized in this definition. Such quantities are dyadics, not vectors.
Dyadics and other tensors are discussed in greater detail in Chapters 3 and 4.
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2.3: Vector Fields 2-3

q,
P(9.9.9)
q,
q,
(a) Scalar field V (0, d,,0,,1) at the coordinate point in space P(Q,,0,,0,)
and at time t.

Ag,q,,9)= 0 A(9,9,9)
+U0A(q,q,.9)
+U,A(q.9,.9,)

(b) Vector field Z(ql, 0,,0,,t) atthe coordinate point in space P(0,,0,,d,)
and at time t.

Figure 2.2-1 The concept of (a) scalar and (b) vector fields.
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2-4 Chapter 2: Vector Algebra Review

Thus, the vector function of spatial coordinates ¢,,0,,q, can be thought gf
as a vector field. As with scalars, a vector field such as dectric field intensity E
can be described as a function of space and time as

E(q,,d,, G, t) = E(T,1) volts/m (2.3-1)

where the right-hand side of (2.3-1) uses the same shorthand T -space notation as
described earlier for scalar fields. In electromagnetics, the symbol E is used for
the dectric field intensity. Thus, the eectric field intensity is a vector field in
space and time.

In our 3D space E is customarily expanded into three orthogonal
components

E = GE + G,E, + GE, (2.3-2)
where each component E isascalar function of our four independent variables
Ei (Ou’ q21 %’t) (2-3'3)

where i = 1, 2, 3. Figure 2.2-1(b) illustrates a vector field A at the point
0,,0,,0; at timet. Notice that the vector direction is entirely independent of the
position in space.

2.4 Arithmetic Vector Operations

This section briefly deals with arithmetic analyses involving vector addition,
subtraction, dot and cross products, and certain allowable division operations.
Some of the more elementary applications of vector addition and subtraction can
befound in Appendix A.

2.4.1 Commutative and associative laws in vector addition and
subtraction

Consider two vectors A and B at a point in space. When added, we find (in
Appendix A) that the sum of vectors is independent of the order in which they

are added. Thus, vector addition obeys the commutative law:.

A+B=B+A (2.4-1)
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2.4: Arithmetic Vector Operations 2-5

When a third vector C is added to A+B, the resultant vector
—(A+ B)+C. As is shown graphically in Appendix A, if A is added to
B+C, the result is the same vector H = A+ (B+C). That is, regardless of
whether B is first associated with A or first associated with C, the same
resultant vector H is obtained. This feature of vector addition is referred to as
the associative law:

(A+B)+C=A+(B+C) (2.4-2)

Alternatively, if C is added to A first and then B is added to the result, we
obtain the same vector H.

Subtraction follows these laws as well. Consider A—B=D. In order to
test commutative and associative laws, let us alternatively consider —B+ A. As
graphically shown in Appendix A, this latter commutation of vectors yields the
same vector D . Thus, subtraction of vectorsis both commutative

A-B=-B+A (2.4-3)

and associative
(A-B)+C=A+(-B+C) (2.4-4)

These conclusions are to be expected, since subtraction is a special case of
addition.

2.4.2 Multiplication or division of a vector by a scalar

When a vector is multiplied by a scalar, the resultant vector is in the same
direction but its magnitude is simply the product of the magnitude of the original
vector multiplied by the scalar. The vector @ when multiplied by the scalar m
yields another vector F whose magnitude is the product of m and |a| and

whose direction is that of a. Thus, in the case of force-mass-acceleration
rdation,

F=ma (2.4-5)

notice that the magnitude of the resultant vector will depend upon that of the
scalar. For example, if a is acceleration (m/sec?) and m is mass (kg), the
resultant is force F (kg m/s® or newtons). To illustrate, if the acceleration is
4m/s’ in the G direction and m is 2.25 kg, then F = 90, newtons. Note that
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2-6 Chapter 2: Vector Algebra Review

the acceleration and force are in the same direction, that of the unit vector 0, .
We will see later that when the vectors on the right and left are differently
directed, the multiplicative factor cannot be a simple scalar [such as in Eg.
(2.4-9) below].

The distributative laws of algebra also apply to scalar-vector products.
Namely

n(A+B+C)=nA+nB+nC (2.4-6)
and
(n+m)A=nA+mA (2.4-7)

It goes without saying that when a vector is divided by a scalar, the
expression D =¢E canjust aswell bewritten as

E=

o | Ol

(2.4-8)

In the latter expression, each of the three components of D aresimply divided by
£ to obtain the three components of E. Thus, in Eq. (24-8) E and D are
everywhere paralldl.

However, we cannot simply divide by a vector or any other tensor [unless,
of course, thetensor isascalar asin Eq. (2.4-8)]. For example, in electrostatics or
electromagnetics, the flux density vector field D induced in an anisotropic
dielectric by an applied electric field intensity E is given by the constitutive
relation

E (2.4-9)

el

D=

where g is a dyadic. The dot product operation in Eq. (2.4-9)—namely the dot
product of a dyadic with a vector—is carried out in detail in the next Chapter
(Section 3.4). For now, suffice it to say that E and D are not necessarily
everywhere paralld for the case of anisotropic media. The divide-by operation

for the case of a dyadic requires that the inverse of £ be first taken and then
E determined by

E=(Z) "D (2.4-10)
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2.4: Arithmetic Vector Operations 2-7

where the inverse (?)71 is performed the same as the_: inverse of a 3 x 3 matrix,

[except that the unit dyads in £ are transposed in (g)fl]. See Sections 3.3 and
3.4.

2.4.3 Vector-vector products

We next look at vector-vector products in orthogonal systems. There are three
fundamentally distinct ways to perform product operations between two vectors.
Each has an entirely different result. The first is the vector dot product. The
second is the vector cross product, and the third we will call a direct product.*
Since the vector-vector dot product always yields a directionless scalar, it is also
called a scalar product. Similarly, since the vector-vector cross product always
yields a vector, it is also referred to as a vector product. The “direct product” of
two vectors yields a dyadic, which is described in Chapter 3 and applied in
Chapter 4. Cantrell® and many other cutting edge references on tensor calculus
include this latter product—first between vectors and then involving tensors in
general.

2.4.3(a) Restricted use of the terms “scalar product” and “vector product”

Part (b) below equates the operations “dot product” with “scalar product” and
“inner product.” Also, Part (C) equates “cross product” with “vector product,”
“external product,” and “outer product.” However, it should be emphasized that
the expressions “scalar product” and “vector product” are suitable only for the
case of the dot or cross products being taken between quantities that are both
vectors. If either or both of the quantities are tensors having a directional
compoundedness greater than one, then the dot product no longer yields a scalar
and the cross product no longer yields a vector. Further, dot- and cross-product
operations are both undefined and unnecessary when scalars are involved.

*  Theterm “direct product” is used here to mean that the operation is conducted
without a dot- or cross-product type of a process. That is, each component of the
first vector individually multiplies each component of the second vector. Thus,
there are nine such multiplication operations each with two directions inherent
within their respective operation—one associated with the first vector and the
other associated with the second. The resultant of a “direct product” between
two vectors is not a scalar nor a vector because of this dual-directional nature
This is a dyadic. For those already familiar with tensors, the term “direct
product” is used here synonymously with “tensor product,” which uses the
symbol ® to denote a product between all combinations of the components
each vector (in our case) or between two tensors, in general, as we shall see
later.
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2-8 Chapter 2: Vector Algebra Review

Therefore, the expressions “scalar product” and ““vector product”
should be dropped from our nomenclature when scalars, dyadics,
triadics, etc. are involved. They are accurate expressions only when
both quantities are vectors and should be avoided for all other
quantities. In general the terms “inner product” and “dot product”
may be interchanged®®’. “Exterior product”, “outer product” and
“cross product” are occasionally used interchangeably®***;

however, in broader contexts these terms are distinct>***4,
2.4.3(b) Dot product and the Kronecker delta

The dot product between two vectors A and B is spoken as “ A dot B,” written
as A-B, and in elementary texts on vector analysis is defined by*®

A-B=|A||B|cosb,, =B-A (2.4-11)

where 6,, is the angle between A and B. Notice that if the two vectors are at
right angles, 6,, =90", and the dot product equals zero. As stated in the previous
paragraph, the dot product between two vectors is also known as the scalar
product, because the resultant is a scalar.

Another name for this operator is inner product, a term used historically in
mathematical parlance between real or complex vectors,®™® especially when the
operation deals with tensors in general. Furthermore, we will find that there can
be multiple inner-product operations, like double-dot product and triple-dot
product operations when dealing with tensors."“** This will be discussed in
Chapter 3, where more general concepts of vector analysis are applied in the
context of tensors.

In any generalized orthogonal right-hand coordinate system having
coordinates q,,0,,0,, where the right-hand rule applies in the order 1, 2, 3, 1, 2,
unit vectors in each of the three directions U,, U,, U, have well-determined dot
product relationships. The nine combinations of dot product operations can all be
accounted for with the convenient Kronecker delta & notation'® (valid for
orthogonal systems) by

G,-0; =5, ={1 fori=] (2.4-12)

i 0 fori=j

where i=1,2,3 and j=1,2,3.
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2.4: Arithmetic Vector Operations 2-9

Let usillustrate the inner-product nature of the dot-product operation taken
between two vectors. Let A=(,A +0,A +0,A, and B=0B +0,B, +0,B,,
where A, A, A,and B, B,, B, are the scalar components of the two vectors,
respectively. These can be written A =G, A and B=(,B, in shortened tensor
notation, such as in Eq. (1.2-3), where the summation from one to three is
suppressed. The dot product of A and B when expanded in explicit standard
notation becomes

A-B= (-0,AB + (-0,AB, + (-0, AB,
+ 0,70, AB + (,70,AB, + 0,70, AB, (2413
+ 00, AB + 0,70, AB, + 05705 AB,

Applying Eq. (2.4-12) results in six of the above nine terms going to zero,
namely the off-diagonal terms, and the diagonal unit vector dot products equaling
unity. Therefore, only the diagonal terms of Eq. (2.4-13) survive, and A-B
becomes

A-B=AB +AB,+AB,

S (2.4-14)
i=1
which is, of course, a scalar.
In tensor notation, A- B iswritten as
(GA) (G;B)=AB;5; =AB (24-15)

where the six off-diagonal zeros and the three diagonal ones from the Kronecker
ddta of Eq. (2.4-12) applied to Eg. (2.4-13) and the summation in Eq. (2.4-14)
areimplied. In fact, more fundamental than Eq. (2.4-11) for the definition of the
inner-product operation between two vectors is the definition given in Eq.
(2.4-15), because this latter form is a special case of a dot product between
tensorsin general, as we shall see in Section 3.4. First, we show two examples of
the use of the dot product—one from vector algebra and the other from vector
calculus.
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2-10 Chapter 2: Vector Algebra Review

Application from vector algebra: Projection of one vector onto another.

The projection of one vector onto another can readily be obtained with the
application of the dot product. Let us define a unit vector d, in the direction of
A as

>
| >

a,= A (2.4-16)

2|

The projection of a second vector B onto a line containing A is the scalar
component of B in the direction of A. Thus, the scalar projection of B onto A
is

B, =|B|cosb,, (2.4-17)
asshowninFig. 2.4-1.
Multiplying by | A |/| A| does not change the result:

5 _|AlIBIcos 6,
= |AlBIC
Al

Since the numerator is the dot product A-B by definition, we may write the
scalar projection of B onto vector A as
AB - . . =
BA:ﬁ: B'UA:UA'B (24-18)

|

Figure 2.4.1 Scalar projection of vector B onto vector A .
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The projection or component of a vector onto a line containing
another vector can be determined by taking the dot product of the
first vector with the unit vector in the direction of the second. The
result isa scalar.

Furthermore, the vector projection of B, onto the line containing A may
be shown simply by including the unit vector in the direction of A in the
expression for the scalar projection. The vector projection of B, onto A isthen

B,=0,B,=0,(B-G,) (2.4-19)
Other applications of the dot product are provided in Appendix A.

Applications from vector calculus: Dot products in line and surface
integrands.

Other important applications of the dot product deal with line and surface
integrals. It is frequently important to integrate a vector field F aong a path
defined by d¢ or over a surface da. The vector fild F may, of course, have
any directional orientation, not necessarily in the same direction as d/ or in the
same direction as the surface normal da. Whenever the component of the field
along the path or normal to the surface needs to be summed differentially—that
is, integrated—the dot product is used.

Let usfirst take the case of the lineintegral. In many applications, we wish
to know the potential of a vector field between two points in space along a given
path (such as work in the case of aforcefield or dectric potential in the case of
an dectric field). In this case, we are looking for the sum of all tangential
components of the vector field along all differential elements of length along the
given path. Thisisthe lineintegral. Thus, we apply the dot product of the vector
field and the vector differential lengths in order to accumulate just the tangential
components along the path. By integrating, we then obtain the potential of the
field from a point ato a point b. For any vector field F thisis obtained by

j "E.ar (2.4-20)

a

which is referred to as an open line integral. This is an example of the use of the
dot product in vector calculus. Before providing other such applications, the
utility of an open lineintegral isillustrated by the following example.
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2-12 Chapter 2: Vector Algebra Review

Example: Potential energy and electric potential.

If F is aforce field (in newtons), Eq. (2.4-20) represents joules of potential
energy—a scalar—between points a and b. If F is eectric field intensity (in
newtons per coulomb), Eq. (2.4-20) is volts of eectric potential—also a scalar—
between points a and b. More will be said about this important integral in Section
5.1. Two numerical examples are given in Subsection 5.1.1. The first is for a
path-independent case. The second is for a path-dependent case.

When the lineintegral is closed to form aloop, Eq. (2.4-20) takes the form
of aclosed line integral

<_[> F.d/¢ (2.4-21)
Thisintegral is called the circulation of the vector field F and is written as

circ(F)= cﬁ F-d¢ (2.4-22)

If the circulation is zero, the vector field F is said to be conser\Lative or
irrotational. When the circulation is not equal to zero, the vector field F issaid
to be solenoidal or rotational.

Example: Ampere’s circuital law.

An example of the utility of Egs. (2.4-21) and (2.4-22) is Ampere s circuital law,
which states that the integration of the tangential component of the magnetic field
intensity H around any closed path is equal to the total electric current enclosed
by that path. Thisis described in Section 5.4, especially by Eq. 5.4-1.

Two other common applications of the use of the dot product are in open
and closed surface integrals. Again, the vector fild F may have any directional
orientation, not necessarily in the same direction as the surface normal da.
Whenever the component of the field normal to the surface needs to be summed
differentially (integrated), the dot product is used. This is the case, for example,
when the vector field F isaflux density and the total flux is desired. The flux of
the vector field F through an area A is determined by integrating the dot product
of the flux density over every differential vector element of area da defined by
Eg. (1.2-5) and Fig. 1.2-2:
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J' F-da (2.4-23)

wherethe area A is bounded (by a closed line).

When the surface integral is closed to enclose a volume, Eq. (2.4-23) takes
theform

<_[> F-da (2.4-24)

These integrals with dot products in the integrand are frequently used in
disciplines of mathematical physics, such as quantum physics and
electromagnetics. The dot product in the integrand is simply a convenient way to
sum only the component of F at each differential dement of surface over which
the integration takes place that lies normal to that surface element.

Examples of Egs. (2.4-23) and (2.4-24) can be found in Sections 5.2.2,
5.3.1, and 5.3.4.

2.4.3(c) Cross product and the Levi-Civita symbol

The “cross’ product of vector A with another vector B is spoken as
“ A crossB” and writtenas A x B. The cross product is defined by

AxB =10, |AlB]sing,, (2.4-25)

where OLAHB is a unit vector normal to the plane containing B and A andisina
direction given in a right-hand sense—namely by aligning the fingers of your
right hand along the direction of A and turning them into the direction of B so
that your thumb points in the direction of i, . Theangle 6, istheangle made
in so doing.

() Commutative and distributive laws for cross products
From Eq. (2.4-25), note that AxB =-BxA. Thus, the commutative law does

not hold for the cross product operation. However, the distributive law does hold.
Namely,
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(i) Vector cross products and the Levi-Civita symbol

Unit vectors in each of three orthogonal directions U, U,, U, have well-
determined cross-product redationships. These relationships are described
conventionally in the following paragraph and described with the elegance of the
Levi-Civita symbol in the subsequent paragraph.

The cross product of unit vectors in 3D space becomes trivalued, namely,
—1, 0, and +1. The usual process used in sophomore-level texts to explain this
trivalued system is to first point out that G x( =0 because 6, =0 and the
sing, =0 inEq. (2.4-25). Further, G, X G ,, =+ 0, , wherei=1,2,3;i+1=
2,3, landi+2=3, 1,2, because ¢, ,, =7/2 and sin 6, =1. Theright-
hand rule specifies that direction 1 crossed into direction 2 yields positive
direction 3, or direction 2 crossed into direction 3 yields positive direction 1, and
direction 3 crossed into direction 1 yields positive direction 2. However,
ax G, =—0_,,wherei=1,23;i+2=3,1,2,andi +1=2, 3, 1. Theminus
sign is needed because when direction 1 is crossed into direction 3 the thumb
points opposite to (or the negative of) direction 2. Likewise, 2 into 1 yields the
negative of direction 3 and 3 into 2 yields the negative of direction 1. The angle
from 1 to 3 may be taken as —z/2 since the angle from 3 to 1 is /2. Thus,

e(i)(i +2) =-z/2 and Sil’lg(i)( ) =-1.

i+ 2

However, the Levi-Civita symbol €, shortcuts the discussion in the
preceding paragraph. If one calls the sequence 1,2,3,1,2 cyclic, the sequence
3,2,1,3,2 acyclic, and cases where any two adjacent indices are the same
noncyclic, we define the L evi-Civita symbol as™

1 cyclic
€x=7 0 noncyclic (2.4-27)
-1 acyclic
and therefore,
U XU; =€, U, (2.4-28)
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which is atensor notation formulation with the unit vector hats implied.

The cross product of our vector A with B in tensor notation can then be
defined as
Au xBju; = AB, €, U, (2.4-29)

(iif) Area formulas using cross products

In Section 1.2 differential area was defined and discussed without the benefit of
the cross product. A description of the vector differential area [Eq. (1.2-5)] can

now be expressed as
d@-g, m\m\:%m\w 2430)
or more simply in tensor notation as
da=d/ uxdl,u =ds de e, u, (2.4-31)

Note also that the area of the paralld ogram with adjacent sidesA and B is
the magnitude of the cross product where

Area=| A||B|sind,, =| AxB| (2.4-32)

Thisisillustrated in Fig. 2.4-2.
Other applications of the cross product include finding the moment of a
force acting at a distance, finding the force on a current-carrying conductor in a

magnetic field, and dealing with the mechanics of gyroscopes, among many
others.

Area

>|

Figure 2.4-2 The area of a parallelogram as \Ax I§‘ .
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(iv) Cross product coordinate expansion

Using the same vectors A=0,A and B=0,B, as before, but using tensor
notation, the cross product takes the form

A8 < A, S 3.
A,B, +MAB +AZBs

+
E. E.AB +m3AB

(2.4-33)

From Eq. (2.4-28), the cross product factors become 0, U,,or —U,, where
= 1, 2, 3, asshownin Eq. (2.4-33).

Collecting terms in each of the three coordinate directions,

AxB= (,(AB;—AB)
+0,(AB - AB;) (2.4-34)
+0;(AB, - AB)

Notice that this can also be represented in determinate form as

(2.4-35)

Nm I\;> I\)‘Z)
wm (}> wC)

Gy

AxB=|A

B

Alternatively, tensor notation can be used in conjunction with the
Levi-Civita symbol to express AXB as

(GA)x(0;B) =0, €, AB, (2.4-36)

in its ultimate beauty and simplicity, but still preserving all of the operations of
Eq. (2.4-33) resulting in the six nonzero terms of (2.4-34), including the three
minus signs.
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Whereas Eqs. (2.4-15) and (2.4-33) have an elegance in their exquisite
simplicity when applied to vector operations, their real power and attractiveness
comes in dealing with inner and external products of tensors.

2.4.3(d) Triple vector products

Two identities involving vector-vector-vector products are useful in vector
algebra problems. These are

(AxB)-C=(BxC)-A=(Cx A)*B (2.4-37)
and
Ax(BxC)=(A-C)B — (A-B)C (2.4-38)
or alternatively,
(AxB)xC=(A-C)B-(B-C)A (2.4-39)

It is left as a problem for the student to derive the above expressions. These can
be done by expansion into components as in Eqs. (2.4-14) and (2.4-34).
Alternatively, however, after demonstrating these three identities using Egs.
(2.4-14) and (2.4-34), it would be beneficial to the student to repeat these
exercises by applying Eqgs. (2.4-15) and (2.4-36), and to repeat this process until
the true elegance of the latter is felt.

2.5 Scalars, Vectors, Dyadics, and Tensors as Phasors

Recall from Section 1.1.4 that whenever fields of any rank vary time
harmonically, namely as €, the fields may be written with this time harmonic
factor suppressed. We set up the underscore as a notational technique to denote
this action. Thus, we have scalar phasors, @(g.q,,q,) and vector phasors,
E(q,,q,,q,) . This, of course, can be extended to dyadics, written as

A>3 9) (2.5-1)

which is a dyadic phasor field. Continuing this generalization, tensors written as
phasors also appear with the underscore

0 L(G59,5 ;) (2.5-2)
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where the presubscript n, denotes the tensor rank. This is a tensor phasor field,
where ¢ is implied and suppressed as before.

The phasor notation in £(q,,¢:,¢,), A(q.4,.q,), and .1(q,.9,.9,)
implies that each component must be treated as scalar phasors. Therefore,
E(q,,q,,q,) would be expanded as

E(:9::4:0=0E(q, 95,90+ 06,E (.95, 6,0+ 5,E(q 55 G )
=0E(q,q.¢)e"" +,E(q,q,q)e"" +,E(q.q,q)e"™

or just

-

E(q.9,3) = 4.5 + 0B, + i, E, (253)
where
E=E(9,%,9), i=12,3 (2.5-4)
are the phasor scalar components of the phasor vector E .

This complex formulation is artificial. It provides a convenient
methodology for keeping track of the phases between quantities. In the end, the
comparison between the mathematical expectation and measured quantities
requires taking only one of the complex parts of the solution. The real part is
customarily taken for comparison with measurements.

2.6 Vector Field Direction Lines
Suppose we wish to draw a line whose tangent dT is everywhere parallel to a
known vector field in space. Such a line is referred to as vector field direction

line or flow line. Assuming that the vector field is £ and is known everywhere in
space,

E(Q]s@:sqs):&1a+&:ﬁ':+a_‘,£‘3 (2.6-1)

Expanding the unknown differential vector d7 in the same generalized
orthogonal coordinates,

dT = bdl, + o,dl, + D,dl, (2.62)
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2.6: Vector Field Direction Lines 2-19

where q, g,, andq, are orthogonal coordinates and d/,d/,, andd/, are
differential lengths in each of the coordinate directions, respectively. For
example, in spherical coordinates g, ,, and g, are

q=r (2.6-33)
qg,=6 (2.6-3b)
G =9 (2.6-3¢)
d,=dr (2.6-4q)
d,=r do (2.6-4b)
d,=rsng d¢ (2.6-4¢)

In general, the differential lengths may be expressed in terms of differential
coordinates by

d. =hdg (2.6-5)

where the h values are referred to as metric coefficients, otherwise known as
scale factors. In the case of spherical coordinates we see from Egs. (2.6-3a)

through (2.6-5) that
h=1 (2.6-6a)
h,=r (2.6-6b)
h,=rsing (2.6-6¢)

Substituting Eq. (2.6-5) into Eq. (2.6-1) yields

dT =G,hdq, +G,h,da, + G,h,da, (2.6-7)
Our task is to determine the differential vector dT such that it is everywhere
tangent to E . This can be accomplished by noting the following:
Any two vectors are parallel when their cross product is zero.
That is, by restricting their cross product to be zero, we have the necessary

mathematical construct to find dT in terms of the given vector field E . Thus, if
the expression
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dTxE=0 (2.6-9)

is everywhere satisfied, dT is everywheretangent to E . Equation (2.6-8) may be
expanded in matrix form as

~ ~ ~

ul u2 u3
hdg hdg, hdg| =0 (26-9)
E E g
In order for Eq. (2.6-9) to be satisfied, each component must be zero. In general,
hqul +1_h +1dqi +1Ei :0 (26-108')
Rearranging,
I’\dq — h + 1dqi +1 (26-10b)
Ei E\ +1

which is the general differential equation for field-direction lines in generalized
curvilinear coordinates. Equation (2.6-10b) is actualy three differential equations
wherei = 1,2,3and wherei +1 = 2,31, respectively.

2.6.1 Cartesian (rectangular) coordinates

In Cartesian coordinates the metric coefficients are unity and the system of
coordinates and metric coefficients become

g =X (2.6-119)
Q=Y (2.6-11b)
0=z (2.6-11¢)
h =1 (2.6-12a)
h =1 (2.6-12b)
hy =1 (2.6-12¢)
and Eg. (2.6-10b) becomes

% = ﬂ (2.6-133)
E, E
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dy gz (2.6-13b)
E, E
% = % (2.6-13c)

That is, when E,, E, and E, are known, the simultaneous solution to the three
differential equations (2.6-13a)—(2.6-13c) describes the equations in (X, Y, )
space of lines everywhere paralld tothefidd E.

2.6.2 Cylindrical coordinates

In cylindrical coordinates we may use (r,@, z) ; however, sincer is also used for
the spherical radius coordinate, which is not the same, it is necessary to
distinguish one from the other in problems where both coordinate systems are
being used simultaneously. In such cases, we use different symbols in the
analysis, such as r, and rg, for the cylindrical and spherical coordinate radii,
respectively. However, since we are treating the coordinates separatdy, we will
just use the symbol “r” for each. Thus, for cylindrical coordinates we specify
our coordinates and metric coefficients as

q=r (2.6-149)
Q,=¢ (2.6-14b)
=z (2.6-14c)
h=1 (2.6-154)
h=r (2.6-15b)
h,=1 (2.6-15¢)
and Eg. (2.6-10b) becomes

dr _rdg (2.6-163)
E E

rdg _dz (2.6-16b)

E, FE
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—=— (2.6-16¢)

Again, when E, E,, and E, are known, the simultaneous solution to the three
differential equations (2.6-16a)—(2.6-16¢) describes the equations in (r,9,2)
space of lines everywhere paralld tothefidd E.

2.6.3 Spherical coordinates

For spherical coordinates, we specify our coordinates and metric coefficients (as

stated earlier) as
4 =r (2.6-17a)
o =0 (2.6-17b)
o =0 (2.6-170)
h=1 (2.6-18a)
h =1 (2.6-18b)
h=rsing (2.6-18¢)
and Eq. (2.6-10b) becomes
dr _rdé (2.6-19)
E. E
rdg _rsingdg (2.6-19b)
Ee E¢
rsinédg _ dr (2.6-190)
E E

() T

Once more, when E, E,, andE, are known, the simultaneous solution to the
three differential equations (2.6-19a) through (2.6-19c) describes the equationsin
(r,8,0) spaceof lines everywhere paralle to thefield E .

2.6.4 Example of field direction lines

Let us apply these concepts to the case of a uniformly charged straight line of
finite length, where the charge density is p, coulombs per meter lying on the z
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axis in the range —a < z< a. The geometry for this configuration is shown in Fig.
2.6-1. The field point expressed in cylindrical coordinates is at P(r,z). The
electric field intensity E(r,z) is readily found as"

= P, |l~|l2z+ta z—a)| .(r r
E= | — S :
4;:51‘{“’[ R R, J UZ{R R’ﬂ e

R =/r’ +(z+a) (2.6-21a)

where

and

R =\ +(z-a)’ (2.6-21b)
Note that the £ field is not a function of the azimuthal coordinate ¢ nor does it
have a ¢ component, as expected from the symmetry. Therefore, the field

direction lines will lie on surfaces of revolution about the z axis.

From Egs. (2.6-16¢) and (2.6-20), the field direction lines must satisfy the
differential equation

Ar, 2)

—a

Figure 2.6-1 Geometry for the field from a uniform, straight line charge p,
of finite length 2a in cylindrical coordinates.
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—=—_L= (2.6-22)

where E, and E, are the r and z components from Eq. (2.6-20), respectively.
Rogers shows™ that the solution to Eq. (2.6-22) is

R-R,=C (2.6-23)

where R, and R, are defined in Fig. 2.6-1. The constant of integration C can be
any positive or negative real value including zero. Equation (2.6-23) represents a
family of confocal hyperbolas with foci at z=+a, that is, at the ends of the
charged line.

A map of the E field direction lines is shown in Fig. 2.6-2 for
C=+/3a, a, 0, —a, —+/3a. These are hyperbolas with asymptotes at 30, 60, 90,
120, and 150 degrees from the positive z axis, respectively. Rogers™ (Fig. 2.10)
cleverly includes a circle of radius a centered at the center of the charged line
from which construction lines may be drawn that define the apexes and
asymptotes of each hyperbola. Thus, with the apex and asymptotes known, one
can fairly accurately sketch the hyperbolas without the need for detailed
calculations.

In 3D space, surfaces on which field direction lines fall can be shown by
the simultaneous solution of the differential equations (2.6-16a) and (2.6-16c).
We have already discussed the solution of the latter. Let us next examine Eqg.
(2.6-16a).

—C = (2.6-24)
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Figure 2.6-2 Field direction lines of a uniformly charged straight line of
length 2a.

However, from Eq. (2.6-20), E, =0since r #0, d¢ must equal zero. Integrating
we find that ¢ equals a constant—independent of the constant of integration
given in Eq. (2.6-23). Thus, in 3D space, the equations for the field direction
lines must satisfy™

=

R-R,=
-6-5
(2.6-25)

C
C

N

The 3D depiction of Eq. (2.6-23) is the hyperboloids of revolution shown in Fig.
2.6-3. For C=0, the surface is in the z=0 plane. For C>0, the surfaces are
hyperboloids in the positive z half space, and for C< 0, the hyperboloids fall in
the negative z half space. Figure 2.6-3 shows the hyperboloids for the four cases,
C=+J3aand ta. The surfaces that satisfy Eq. (2.6-25) are confocal
hyperboloids of revolution with foci at z=+a asshownin Fig. 2.6-3. Thus,

the field direction lines are the lines of inter section between these
hyperboloids and any plane containing the z axis.

2.7 Scalar Field Equivalue Surfaces

In the previous section, we developed the process for determining the surfaces of
vector field direction lines and illustrated how this works for the case of the

dectric field E from a uniformly charged straight line of finite length. Recall
that we did this by forcing an unknown differential tangent vector dT to be

parale to E by setting dT xE to be zero and solving for dT . In this section,
we consider the orthogonal problem, namely that of equivalue surfaces.
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Figure 2.6-3 Confocal hyperboloids of revolution for the field of a
uniformly charged straight line of finite length. The ends of the line
charge lie at the foci of the hyperboloids.

If afield source, such as atest mass in a gravitational force field, or a test
charge in an eectrostatic field (as in the illustration of the previous section), is
caused to move in a direction perpendicular to the field direction lines, no work
is done. This is because F-d/ is zero when d¢ is perpendicular to F . Thus, in
any conservative field [see the discussion of EqQ. (2.4-22)] there exist surfaces of
equal potential energy that are orthogonal to the vector field flow lines. The same
can be said of equal eectric potential surfaces in the case of eectric field
intensity E . Both are called equipotential surfaces, one referring to surfaces of
equal potential energy and the other referring to surfaces of equal dectric
potential. We may refer to such surfaces as equivalue surfaces in order to
generalize our discussion to any conservative vector field.

These equivalue surfaces may be found by first defining a differential path
dP that is everywhere perpendicular to the vector field, E , for example. Our task
is to determine the differential vector dP such that it is everywhere orthogonal to
E . This can be accomplished by noting the following:

Any two vectors are perpendicular when their dot product is zero.
That is, by restricting their dot product to be zero, we have the necessary

mathematical construct to find dP in terms of the given vector field E. Thus, if
the expression
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dP-E =0 (2.7-1)

is everywhere satisfied, dP is everywhere orthogonal to £ . Rogers' solves this
for the case of the uniformly charged straight line charge of finite length simply
as

R+R,=C (2.7-2)

where R, and R, are defined in Fig. 2.6-1. This simple solution is the form of
confocal ellipsoids with foci at the ends of the line at z==a, as shown in
Fig. 2.7-1. These ellipses are everywhere orthogonal to the confocal hyperbolas
shown in Fig. 2.6-2. As was the case there, the solutions are surfaces of
revolution about the z axis and, thus, are confocal ellipsoids, as shown in Fig.
2.7-2, that are everywhere orthogonal to the confocal hyperboloids of Fig. 2.6-3.
These ellipsoids are the desired equivalue surfaces.

A
r

Figure 2.7-1 Confocal equipotential ellipses for the case of a uniformly charged
straight line charge of finite length, where the ends of the line charge lie on the
foci of the ellipses.

Figure 2.7-2 Equipotential ellipsoidal surfaces of revolution for the case
of Fig. 2.6-1.
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Chapter 3
Elementary Tensor Analysis

In keeping with the theme of this book, this chapter is presented for the
undergraduate-level student and those who teach undergraduates. The author has
found that the average electrical engineering junior can begin his or her excursion
into tensors if the concepts are presented at the level given here. (It is assumed
that a EE junior will have successfully completed 16 to 18 units of math from
Calculus | through differential equations and linear algebra.) There is no reason
why students of this caliber should not be shown the power of tensors, especialy
in light of the inevitable shift into photonics for the design of ultrahigh-speed
devices and transmission systems. Students of civil and mechanical engineering
can also utilize these concepts in their investigation of composite materials, as
can their instructors. In fact, one could take the position that there is an even
greater need for tensors in these disciplines because stress, strain, and elastic
modulus are tensors even for linear isotropic materials.

Many introductory electromagnetics texts, especially those published more
recently, make some mention of tensors when discussing anisotropic media’™
For example, some authors use the term “dyadic,” the more precise expression
for the particular tensor that provides the needed parameters for linear anisotropic
media’ The mention of tensors is also included in discussions of linear
bianisotropic media, especially composite materials, covered in more advanced
treatises.” In addition, the scattering of electromagnetic waves from objects is
skillfully treated in texts by the use of the scattering dyadic.®

Others use the less precise term “tensor,” and define it with the nine
components of a dyadic. Yet others, especially in earlier works, discuss the nine-
component expansion of the anisotropic media without mentioning either tensors
or dyadics.* The more advanced a text in electromagnetics is, the more probable
it isthat dyadic tensors are used to formulate the mathematical description of the
physics, regardless of the whether the text is a classic”® or written more
recently.>'°

* In al fairness, however, most of these were written in the days when tensor
analysis was found in only the more advanced texts and was deemed out of
reach of the undergraduate student. This guide is intended to help bridge this

gap.
3-1
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The tensor/dyadic issue

Those new to tensors will find a possible confusion in the use of the terms
“tensor” and “dyadic” in the literature. In some references, the terms are used
synonymously. In others, the two terms are very distinct. The bottom line is that
dyadics are special cases of tensors, as will become clear in this and later
chapters. Since there are many examples where tensors are needed that are not
dyadics, it is more common in recent literature to use the term “dyadic” for the
nine-component tensor. These comments are made so that those new to tensors
(or wanting to brush up on tensors) may understand the variations in terminol ogy
found in the literature.

This chapter strives to make the upper-division student more comfortable
with the power and value of tensors in situations where the medium is not
necessarily “linear, isotropic and homogeneous,” as assumed in conventional,
more simplistic analyses in physics and engineering. Section 3.1 deals with
directional compoundedness, rank, and order of tensors and is intended to give
an appreciation for the handling of higher-rank tensors with tensor notation. This
is followed in Section 3.2 by a discussion and determination of the number of
components of a tensor. For example, the dyadic (which has a rank of 2) will
contain n; components, where n, refers to the dimensionality of the space. We
usually work in 3D or 3-space, so n, =3. Therefore, we find that the dyadic has
nine components, which are expanded in Section 3.3.

The dyadic dot product with a vector and the vector dot product with a
dyadic arethen carried out in Section 3.4. Thefirst is shown to be consistent with
matrix multiplication. The second is not. The dot product and double dot product
of two dyadics is performed so that the reader may understand the inner-product
nature of the dot-product operation and so that the nonreciprocity of some of the
operations becomes evident.

The new paradigm of composite materials can properly be studied and
analyzed only with the appropriate use of tensor relationships. Section 3.5
illustrates the fundamental relationship between stress and strain (rank-two
tensors) and the modulus of dasticity (a rank-four tensor having 81 components
in 3D space). Except for the most simplified cases of linear isotropic materials
wheretheforces are aligned in very specific orientations, tensors are essential.

Further, as the discipline of eectrical engineering undergoes a profound
new paradigm into optical engineering and photonics (fiber optics, acousto-
optics, eectro-optics, magneto-optics and optoe ectronics), the use of tensors has
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3.1: Directional Compoundedness, Rank, and Order 3-3

become prevalent. Moreover, as nonlinear optical effects become more common
in the design of photonic systems, tensor analysis is essential.'™™’ This is
illustrated in Section 3.6.

3.1 Directional Compoundedness, Rank, and Order of Tensors

A quantity can have multiple levels of directionality inherent within itself. The
level or compoundedness of the directionality of a quantity can be enumerated.
For example, since a scalar, such as temperature, pressure, or potential, has no
directionality, it can be said to have a zero directional compoundedness.*
Likewise, a vector quantity such as velocity or acceleration inherently has a
single direction associated with it, such as (i or E, and thusit is said to have a
directional compoundedness of one. As described in the previous chapter, a
dyadic requires a two-level directionality. For example, the two-directional-level
permittivity dyadic £ is required for anisotropic media and each of its nine
components require the two-directional-level unit dyad G0, . Thus, we say that a
dyadic has a directional compoundedness of two.

Another term for directional compoundedness is “rank.” Thus, a
dyadic isatensor of rank = 2, a vector isatensor of rank = 1, and a
scalar isatensor of rank = 0.

Further, it is important to realize at this juncture that tensors do exist that
are neither scalars, vectors, nor dyadics. These are tensors having a directional
compoundedness greater than two. For example, as mentioned in the introductory
comments to this chapter, students of mechanics of materials where stress and
strain are studied will be dealing with the modulus of easticity, whichis atensor
of rank four (even though they may not betold this in their sophomore coursesin
statics and dynamics). This topic is briefly discussed in Section 3.5. An
additional example of the need for tensors of rank greater than two is in the study
of how optical signals are amplified. Here one needs to know that nonlinear
optical effects play an important role in optical amplification. Therefore, it is
important to know how to deal with optical waves that drive diglectric materials
into the nonlinear regime. To do so requires analyses that use tensors of a higher
rank than two, as we will seein Section 3.6.

*  “Directional compoundedness,” aterm coined by the author, is intended to give
those new to tensors a more intuitive feel for the concept of “rank.”
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3-4 Chapter 3: Elementary Tensor Analysis

The rank/order issue

In earlier works dealing with rank-two tensors—that is, dyadics—it was not
uncommon to see the term order used interchangeably with rank.’® However,
modern usage of the term enumerates order as one less than the rank, especially
in photonics, optoelectronics, and nonlinear optics.*

Tensor order = tensor rank minus one. (3.1-1)

Order is not normally used in referring to a vector; however, if it were
used, the vector would be said to have an order of zero. Such a designation would
have no useful meaning. (Of course, order would not apply to a scalar.) Thus, the
lowest-rank tensor to which order is normally ascribed is a dyadic. A dyadic,
therefore, has an order of one. The table at the end of this chapter summarizes
rank and order of various tensors.

3.2 Tensor Components

In general, the number of components that it takes to describe a tensorial quantity
is related to the dimensionality of the problem and the rank of the quantity in
accordance with the expression

* This use of the term “order” as being one less than the rank is explicit in

References [15] page 17, [14] page 16, and [13] page 190, for example.
However, it isimplicit in most other modern treatments of optics and photonics
as though it were sdlf-understood. For example, in Reference [11] pages 25 ff.,
Reference [12] pages 19 ff., Reference [14] pages 13 ff., Reference [17] pages
5-7, 341-2, and many others, the order denoted in the superscript (in
parentheses) is always one less than the rank denoted in tensor notation by the
number of indicesin the subscript. Furthermore,

enumerating order as being one lessthan the rank affordsa more
natural description of the physicsaswell asthe mathematics.

For instance, the so-called third-order susceptibility, which is a tensor of
rank 4, as shown in Section 3.6, in fact, operates on the cube of the vector
dectricfield E® (which isarank-thr ee tensor) creating a thir d-harmonic signal
coming from cos®wt through a triple dot-product operation { See References
[11] Eqg. (2.66), p. 40; [12] Eq. (1.4.5), p. 31; [13] Eqg. (7.12), p. 190 and Eq.
(7.36), p. 200; [14] Section 2.1.3, Eq. (2.19), pp. 16 ff.; [15] Eqg. (1.3.1), p. 18,
Section 2.3.1 pp. 39 ff.; [16] Eqg. (2.39), p. 39; [17] Egs. 1.2.8 and 1.2.11, pp.6
and 7}.

Since thisguideis directed toward photonics and material s science that use
these higher-rank tensors, this author opts for the generally acceptable use of the
term order as described by Eq. (3.1-1).
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3.2: Tensor Components 3-5

n = n® (32-1)

where n, is the number of components, n, is the dimensionality of the space,
and n, istherank number. Thus, in 3D space, scalars have

n =3=1 (3.2-2)
one component. Vectors have

n =3=3 (3.2-3)
three components. Dyadics have

n =3=09 (3.2-4)
nine components, triadics have

n =3 =27 (3.2-5)
27 components, and quadadics, that is, tensors of rank four, have

n =3 =81 (3.2-6)
81 components, etc.

Therefore, the eastic modulus (Section 3.5) and the third-order

susceptibility (Section 3.6), then, have in general 81 components, since they are
quadadics.

3.3 Dyadics and the Unit Dyad

In many physical problems a congtitutive relation is used to relate an intensity
field vector with a flux density vector field by a material-dependent parameter.
An example of thisis the relation between the eectric flux density vector D and
the eectric fidld intensity E as

D = ¢E (3.3-1)

where ¢ is the material parameter. In this case, ¢ is referred to as the electric
permittivity. In this formulation, it is assumed that the permittivity ¢ is an
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3-6 Chapter 3: Elementary Tensor Analysis

invariant scalar independent of the direction of the applied field. That is, the
above expression is for the case of an isotropic medium. In addition, Eq. (3.3-1)
also assumes that linear conditions are at play. That is, the material properties do
not change with the amplitude of the applied field and are therefore linear as well
asisotropic.

However, if the medium is anisotropic (nonisotropic), that is, its dielectric
properties differ with respect to direction, the constitutive relation becomes

E (3.3-2)

el

D =

where £ is the anisotropic permittivity and is a dyadic, which, in general, has
nine components ¢ ; wherei =1, 2, 3andj =1, 2, 3. Again, Eq. (3.3-2) implies
linearity. The details of the operation represented by the right-hand side of Eq.
(3.3-2) lie in the mathematical description of a dyadic dot product with a vector.
This and other dyadic dot products are given in Section 3.4. The case in which
material properties vary with the applied field amplitude is the subject of
nonlinear analyses and is outlined in Section 3.6.

The dyadic £ in Eq. (3.3-2) can bewritten as

el
=
=
.:(‘f)

030,65, (333

Il
DM
o
S
™

The nine components ¢ ; are scalars representing the proportionality constant
between the applied field component E; in the (, direction and the resultant
displacement (flux) component D, inthe U direction. The unit dyads G,d; depict
the nine combinations of applied and resultant field direction components.

In writing the bidirectional dyad 4., , there are no operations (such as dot
or cross product operations) implied between the unit vectors G, and G,. One
should think of the unit dyad as a single entity and might prefer to writeit as G
to emphasize that situation. Thus,

(3.3-4)

)
o
Il

(b Pt
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3.3: Dyadics and the Unit Dyad 3-7

The explicit representation of the nine dyads ﬁi | & represents the components
of the dyadic £ by the scalar magnitude & ; in thebidirection G, .

However, as discussed in Section 1.1.7(b), in tensor analysis it is
customary to streamline the notation by dropping the unit dyad and summation
signs. Thus, the dyadic [Eq. (3.3-3)] of theform > > 0 &, is written in tensor
notation just as

and the tensor notation for Eq. (3.3-2) iswritten simply as

D =¢ E (3.3-5)
where the double summation and dot product are implied. Note ¢ ;, as scalar
components of the dyadic €, is written in this text differently from ¢; to
distinguish the scalar component & ; from the dyadic ¢; itself by the spacing
between the subscripts. In handwritten communication, however, this distinction
would not be obvious. In addition, vectors (such as D) written in tensor notation
are expressed simply as D, (with only one subscript denoting a rank-one tensor)
and are indistinguishable from the scalar components, D, . Thus, the distinction
between the vector component in explicit standard notation and the whole vector
in tensor notation—both being D,—is not apparent even in electronic
communication depicting vectors.

Therefore, when encountering variables that are presented with
subscripted indices, in order to distinguish between their scalar
components and actual tensors themselves, it is necessary to specify
at the outset whether an analysis is being performed in tensor
notation or in explicit standard notation.

This caution assumes that such an analysis does not contain both the
components of the tensor and the tensor written in tensor notation (with its multi-
subscripted indices). Except when the user is being exposed to tensor analysis for
thefirst time, asis assumed in this guide, it is usually not necessary to be dealing
with both. Tensor notation is sufficiently powerful and accurate that the
expansion into components is implied (and becomes obvious). Thus, the
experienced analyst performs tensor analysis operations with much greater ease
using tensor notation with no loss in generality. Nevertheless, in this introduction
to tensors, we will show the component details of the common tensor operations
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3-8 Chapter 3: Elementary Tensor Analysis

as a pedagogical tool to help the new tensor analyst garner an appreciation for the
use and power of tensors.

The detailed expansion implied by the dot product operation of Eg. (3.3-2),
or equivalently, the inner-product operation implied by the right-hand side of Eq.
(3.3-5), is made in the next section, where we will find that in performing inner-
product operations as in Eq. (3.3-5), the inner subscript j disappears and we are
left only with a single subscript i. Thus, the result is the quantity D, , which hasa
single directional compoundedness implied by the single subscript, and therefore
arank of one, yielding D asa vector.

3.4 Dyadic Dot Products

In Section 2.4.3(b) the dot-product operation between two vectors was expanded
in explicit standard notation [Eq. (2.4.13)] illustrating the “inner-product” nature
of the dot product. This operation was also carried out in tensor notation, which
(in conjunction with the Kronecker delta) yielded the same scalar result with
greater elegance.

In this section we apply the dot product to four combinations involving
dyadics. In Section 3.4.1, the two combinations of dot products between a vector
and a dyadic are presented—first the dyadic dot product with a vector and then
the vector dot product with a dyadic. Both have a vector resultant. The details of
the dyadic dot product with a vector are given in explicit standard notation in
order to illustrate that the inner-product nature of the dot product also applies
when dyadics or tensors of general rank areinvolved. Again, these operations are
done with the elegance of tensor notation. The results are then applied to Eg.
(3.3-2), which is the constitutive relation between the electric field intensity E
and the resultant electric flux density D in an anisotropic medium described by
the electric permittivity dyadic € .

The remaining two dot-product operations are the dot and double-dot
product of two dyadics. These are carried out in Sections 3.4.2 and 3.4.3,
respectively. We will find that the former yields another dyadic and the latter
yields ascalar.

3.4.1 Vector-dyadic dot products
In Part (a) we expand on the dyadic dot product with a vector for the case of

electric fields in an anisotropic dielectric and illustrate the tensorial properties
involved. In part (b) we generalize this case and compare it with the case of a
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3.4: Dyadic Dot Products 3-9

vector dot product with a dyadic. This part concludes with a discussion of the
conditions where the two are and are not equal.

3.4.1(a) Application of the dyadic-vector dot product for anisotropic
dielectrics

In performing the dyadic dot product with the vector, let us take the case of Eq.
(3.3-2) as an example. Expanding the right-hand-side of Eq. (3.3-2), we
incorporate Eq. (3.3-3) into Eq. (3.3-2) to yield

U, U, Ule; | [ULE
Ulhey  UplpEny  UplsEys || Uy E, (3.4-1)

O
I
o
m
I

UsUiEyy  UgUyEs,  Uglgéns | | U,

There are 27 dot-product terms resulting from each of the nine components of the
dyadic operating on the three components of the vector. However, applying the
Kronecker delta [Eq. (2.4-12)] diminates 18 of these terms, yielding the nine
terms shown below. Therefore, this dot product operation can be correctly
formulated by following the same rules as the matrix multiplication of a 3 x 3
matrix with a 3 x 1 column matrix with careful attention given to the order of the
unit vector dot products. Thus, we have

+ +
G,0,-Ue,E  + 0,0, 0,e,E, + 0,0, -O,e.E, (342
a4, -a + 00, -G,e,E, + G0

Notice that the interior dot products of unit vectors are al unity (with the
application of the Kronecker delta). Thus, the result of the dot product operation
leaves single directionality in each of the nineterms.

However, before performing this step, it is instructive to point out that the
form of Eq. (3.4-2) explicitly illustrates the key tensor algebraissues of theright-
hand side of Eq. (3.4-2) asfollows:

1. First, each term of Eq. (3.4-2) displays the two-leve
directionality of the dyadic, the single directionality of the
vector, and the dot operation between these quantities.
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3-10 Chapter 3: Elementary Tensor Analysis

2. The nature of the inner product is explicitly displayed,
thereby illustrating why the mathematical term “inner
product” isused to depict the vector dot-product operation.

3. The application of the inner product eiminates two of the
unit vectors in each term, thereby reducing the sum of the
ranks of the two quantitiesinvolved by two.

These observations are aso valid for tensors of any rank and for multiple inner
products.

Combining theterms in Eq. (3.4-2) for each unit vector 0,0, ,0, yields

D = G(esE +&,E +&,E)
+ U,(e4E, +e,E, + &4E) (3.4-3)
+ 03(831E1 + &, +exE)

Equation (3.4-3) then is the result of our explicit expansion of the dyadic
dot product with a vector, which yields another vector D, and, of course, is
generally not oriented in the same direction as the force field E . Equation (3.4-
3) is the form generally given in eectromagnetic texts for the constitutive
relation between the electric flux density and the electric field intensity for
anisotropic diglectrics.

The entire process described in the development of Egs. (3.4-1) through
(3.4-3), when written in tensor notation, is simply

D = &E, (3.4-9)

wherei =1, 2, 3;j =1, 2, 3. Notice that the inner product index j is eliminated in
the dot product operation and the only remaining index is i, leaving the resultant
guantity D as a rank-one tensor—or a vector—as stated before.

3.4.1(b) Comparison of the dyadic-vector dot product with the vector-
dyadic dot product

In general the inner product between a dyadic A and a vector B in explicit
standard notation takes the form of Eq. (3.4-3)
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3.4: Dyadic Dot Products 3-11

E' § = 01('Ai131 + Aisz + AlsBs)
+ 0,(AyB +A,B, + A;B;) (3.4-5)
+ 0,(AB +A,B, +A;B)

whichis, of courseavector. Intensor notation, Eq. (3.4-5) is
A-B=ABJ, =AB,=C (3.4-6)
whereits vector form is denoted by the single subscript of the resultant C .

However, in reversing the operation—that is, taking the inner product
between the vector B and the dyadic A —in explicit standard notation, the setup

is different:
o |GB [ GGA;, 40,A, G0A;
B-A = lj2 Bz ’ lj201A21 OzazAzz OzasAzs (3.4-7)
lj3B3, lj301A3,1 lj302 A, lj3113'6‘33

Here, the matrix multiplication analogy cited after Eq. (3.4-1) is invalid.
Examination of Eq. (3.4-7) shows that of the 27 dot product combinations, only
the row-by-row dot products survive. These are then

>

é/& = 1"\1’\181'611 +0 AlAzBl'Alz +01 l,']1’\381'63
+0,-0,0B,A, +0,-0,0,B,A, +0, 0,i,BA, (348)
+0,-G0BA, +0,-00BA, +0, 00,BA,

Notice that after applying the Kronecker deltato Eq. (3.4-8), thus eliminating the
inner products and reducing the rank of each term from three to one as before, the
resultant vector components are collected by columns in Eq. (3.4-8). That is, the
first column is the G, component, etc. Collecting components, we have

B- K: Ol(BLAll +BA, + BzAs,l)
+ az(Bl'Alz +B,A, + BsAs,z) (34-9)
+0(BA, +BA, +BA)
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3-12 Chapter 3: Elementary Tensor Analysis

which is definitely not the same as Eq. (3.4-5), unless the components of A are
symmetrical.

In tensor notation B - A is more simply determined by

B-A=B/A,J; =BA, =D, (3.4-10)
which is a different vector D, =D from the result C, =C of Eq. (3.4-6).
Therefore,
A-B=B-A if A
- A=A (3.4-11)
A-B=B-A if A=A
That is,

If the dyadic components are symmetrical, the dyadic-vector dot
product is commutative; otherwise, it is not.

3.4.2 Dyadic-dyadic dot and double-dot products

The inner product between two dyadics A and B then becomes

A-B=AB,5, =AB, =E, (3.4-12)

which is a new dyadic E;, = E . However, the reverse operation B - A is
B-A=B,AJ, =B A, =F, (3.4-13)
which is a dyadic F; = F but not the same as in Eq. (3.4-12).
The double inner product between A and B becomes
A:B=AB5,5,=AB, =G (3.4-14)

where all unit vectors drop out ending with a scalar G. The details of this in
explicit standard notation follow.
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— 3 3

E:§=ZZAiji =

= AlBll;_ Az B, + AsBy (3.4-15)
+ Ay B, + ABy, + AsBy
+AyB+ ALBy + ABy =G

which is a scalar. It is apparent from Eqg. (3.4-15) that the double-dot product
between two dyadics is commutative:

A:B=B:A (3.4-16)
3.5 The Rank-Four Elastic Modulus Tensor

In order to illustrate the importance of tensors of varying rank in science and
engineering, especially where tensors having ranks higher than dyadics are
needed, we will briefly discuss a case in structural properties of materials. In
mechanics, stress—which represents force per unit area throughout the
material—can have one set of values in tension and another set of values in
shear. This is true even for isotropic materials. Therefore, stress S must in
general be represented by a dyadic. The resulting deformati on—strain—that
ensues is also dependent on whether the force isin tension or shear. Thus, strain
0 is aso a dyadic. The necessity for the dual directional compoundedness is
even more apparent when one considers stress and strain being applied to
anisotropic materials.

As with vector force fields being applied to materials and their
corresponding flux fields, a congtitutive relation exits between stress and strain.
The components of stress are determined by multiplicative operations of the
elastic modulus £ on the strain. Stress and strain being tensors of rank two, the
modulus is a tensor of rank four, which we will call a quadadic.® Thus, for a
complex crystalline material and arbitrarily directed applied forces, the elastic
modulus must be described in terms of atensor of rank four (a quantity that has a
directional compoundedness of four). The components of this rank-four tensor
are separated into 81 components each having a magnitude and a unique rank-
four unitary tensor. Since unit tensors of rank two are called dyads, and unit
tensors of rank three are triads, we refer to the unit tensor of rank four as a
quadad. Thus, a quadad consists of four unit vectors 4,0,0,0, run together (not
separated by dot or cross operations). To punctuate the concept that quadads are
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3-14 Chapter 3: Elementary Tensor Analysis

single quantities with four inherent directions at every point in space, we may
aternatively express the quadad as a u with four hats or chevrons:

CH

i ke

The tensor notation that fully represents this rank-four unitary quantity is, as one
might expect from Section 3.3, more simply written as

Ujjie

without the cumbersomeness of the chevrons and the implied quadruple
summations. The latter representation is customarily used in tensor analysis. In
this example, one can begin to see the great utility and simplicity in using tensor
notation, although, in doing so one must be careful to order any inner-product
operations properly.

Now that the unit quadads are described, we may then express the classical
constitutive relation between stress and strain and elastic modulus as

vl
f"}llll
|

= (3.5-1)
where S isthe stress dyadic, é:‘ isthe strain dyadic, £ istherank-four quadadic
tensor modulus of elasticity, and the “:” represents a double dot product
(Section 3.4.2) or two “inner product” operations of the elastic modulus upon the
strain. Tensor notation for Eq. (3.5-1) is

S; = E"ijkfafk (352

Note that the first dot or inner-product operation eliminates the inside index /¢
and the second dot or inner-product operation eliminates the next inside index k.
The resulting quantity is therefore left with the double indices ij, and, thus, the
stress dyadic §; hasadual directional compoundedness or rank of two.

With the tensor notation of Eq. (3.5-2), the double dot product, dyads, and
quadads are implied, greatly simplifying the appearance of the operation but
maintaining its internal richness.

In the most general case, namely where the material is anisotropic and the
stress is applied generally, al 81 components are nonzero. However, even in this
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3.5: The Rank-Four Elastic Modulus Tensor 3-15

most general case, only 21 of the 81 components have different values. For the
case of isotropic materials, 60 components are zero and the stress/strain
relationship reduces to a six-dimensional vector. This, in turn, reduces to six
scalar equations, which are often presented to sophomores without mention of the
tensorial origin.

3.6 The Use of Tensors in Nonlinear Optics

Another example of the power of tensors is in nonlinear optics. In linear optics
(and dectromagnetics), the constitutive relation describing the electric flux
vector D in terms of the applied dectric field intensity E is given by Eq. (3.3-
2), namey D = £-E It is clear from Eq. (3.3-2) that, if E doubles, D aso
doubles (even though two fields are not necessarily paralld). In other words,
none of the nine components of £ change with E. This is what is meant in
describing the medium as being linear.

In contrast the term nonlinear is used in optics when the magnitude of the
E field is high enough to drive the medium into nonlinearity. That is, if the
strength of the E field is sufficient to change at least one component of £ , the
medium is said to be nonlinear. Nonlinearities in materials take on many forms.
These can be grouped into two categories. those that cause permanent changes to
the material and those that retain their original properties after the force field—in
this casethe E field—is removed.

The phenomenon of dielectric breakdown is an example of the first
category. In this case, the E field exceeds the dielectric strength® of a material,
thus permanently and deleteriously breaking down the dielectric material and
changing its properties in such a way as to render the material ineffective as a
didectric insulator. Another example is the case of an optical fiber becoming
irradiated with excessively strong x-rays—the fiber becomes “gray” and its
attenuation properties are increased to the point of rendering the fiber inoperable.

The second category of nonlinearities in optical materials occurs whenever
the applied E field has sufficient strength to change the properties of the
material, without the strength to prevent the material from returning to its
original nonstressed state. In nonlinear optics, the eectric flux density D field is
given as a series of increasing powers of E . With each additional term, higher
rank permittivity tensors operate on the powers of E with increasing inner
product operations:

D=2 E+z:EE+2:EEE+--- (3.6-1)

Rl
mi
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3-16 Chapter 3: Elementary Tensor Analysis

The first term on the right-hand side of Eq. (3.6-1) represents the linear part of
the D field consistent with Eq. (3.3-2). This term is also referred to as the first
order contribution to the constitutive relation for two reasons. First, the E field
is raised to thefirst power. Secondly, there is a single inner product. Thirdly, the
(rank-two) permittivity dyadic £ is of first order as defined by Eq. (3.1-1). See
the footnote for the usual nonlinear optics representations in terms of
susceptibility tensors.*

As in the discussion following Eq. (3.3-3) regarding the bidirectional dyad
0,0, , we note that there is no dot or cross product operation implied between the
two electric field intensities in the second term of the right-hand side of
Eq. (3.6-1). Therefore, the quantity EE is a dyadic or tensor of rank two.
Furthermore, the two electric fields in the dyadic EE are in general not
necessarily in the same direction. Likewise, the EEE term of Eq. (3.6-1) is a
triadic or tensor of rank three.

Beyond the linear, first-order term of the right-hand side of Eq. (3.6-1), the
remaining terms represent the optical nonlinearity and are given in terms of
increasing powers of E . The coefficients of these higher powers of E are the
increasing order permittivities operating on the E"s (where n=2,3,---) through
N inner-product operations. For example, in the second term of the right-hand
side of Eq. (3.6-1), the triadic permittivity

=e® (3.6-2)

|

operates on the EE dyadic through a double dot-product operation denoted by
“:" asin Eg. (3.5-1) between the quadadic modulus and the dyadic strain. This
second term is referred to as the second-order nonlinearity or the second-order
permittivity. This term is important for materials that lack molecular inversion
symmetry, also known as non-centrosymmetric materials. Notice that the second-

* In nonlinear optics, it more convenient to expand the polarization vector P
rather than the flux-density vector as in Eq. (3.6-1). Thus, D=¢E+P +P_,
where P is the linear polarization vector given by P, /e, =7 -E, where 7 is
the linear anisotropic electric susceptibility dyadic, called the first-order
susceptability. P is the nonlinear polarization given by

NL

P./e,=7:EE+y EEE+ -, where 7 and 7 are the second- and third-order
nonlinear susceptibilities which are tensors of rank 3 and 4, respectively.
Nevertheless, Eq. (3.6-1) illugrates the methodology for dealing with nonlinear
phenomena and the need and power of using dyadics and tensors of higher rank
than dyadics.
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3.6: The Use of Tensors in Nonlinear Optics 3-17

order nonlinearity is the result of a second-order permittivity &£ operating
through a double dot product on E raised to the power of two.
In the third term of Eq. (3.6-1), the quadadic permittivity % operates on

the EEE triadic through the triple-dot product operation denoted by “:”. Thus,
this third term is referred to as the third-order nonlinearity. Notice further that
the third-order nonlinearity is the result of a third-order permittivity, which is a
tensor of rank four, shown as

™Il

=e® (3.6-3)

operating through a triple-dot product on E raised to the third power. The third-
order nonlinearity plays an important role for all dielectric materials operating in
the nonlinear regime whether the material is centrosymmetric or not.

Applications: Optical amplification and soliton waves

Whereas nonlinear operation can have several deleterious effects on optical
signals, not all effects are negative. For example, Raman amplification, which is
a method for directly amplifying optical signals, occurs when the information-
carrying signal interacts through weak nonlinear coupling with a strong pumping
signa of higher quantum energy (higher frequency). Another example of
favorable nonlinear effects is in soliton wave propagation. Solitons are special
kinds of wave packets that can travel undistorted over long distances as a result
of two offsetting effects: A nonlinear effect called self-phase modulation (SPM)
tends to offset a linear effect called group velocity dispersion (GVD) under
special conditions that can be designed into an optical communication system by
the lightwave systems designer.

Nonlinear effects, desired or not, occur in optical fibers in the natural
process of the design of lightwave systems. On the one hand, there is a need to
have enough signal strength so that the signal can be detected at the receiving end
of the fiber after the inevitable attenuation (small asit is). On the other hand, the
medium through which this signal must propagate is restricted in size by the fiber
size, typically 8 um (microns or micrometers) in diameter. These two factors in
the design usually lead to signal intensities that cause the material properties to
vary. The designer must avoid at all costs the breakdown phenomenon mentioned
in the third paragraph of this section. Since there are usually two or so orders of
magnitude between the onset of nonlinearities and actual material breakdown,
there is a possibility that higher-order terms of Eqg. (3.6-1) may need to be

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3-18 Chapter 3: Elementary Tensor Analysis

considered although each term falls off in strength quite rapidly. Again, if the
material is noncentrosymmetric, the fourth-order nonlinearity is the next term to
be considered. However, for centrosymmetric materials, such as the silica glass
typically used in optical fibers, the next higher-order term of Eq. (3.6-1) would
be the fifth-order nonlinearity. That is, for silica glass, only the odd-order terms
of Eg. (3.6-1) need to be considered.

From the above discussion, which recognizes that the order of a tensor is
one less than its rank by definition [see 3.1-1], we can express Eq. (3.6-1) in
order notation alittle moresimply as

D=ePE+£?E>+®E%+... (3.6-4)
or even moresimply as
D= > e"E" (3.6-5)
n=12,-

In doing so, however, one must realize that there are inner-product operations
implicit between the permittivity tensors and the E-field powers, and that the
latter are true tensors.

Thetensor notation for Eq. (3.6-1) is
D, =g, EJ. +5ijkEkEj +gijk£E£EkEj +-- (3.6-6)

where, again, the inner-product operations are implied. As usual, the number of
subscripts denotes the rank of the respective tensor; however, the order of the
subscripts on the E-field vectors is carefully chosen to denote the order of the
inner-product operations. The disappearance of the inner indices in inner-product
operations was illustrated in detail in Eq. (3.4-2) in the development of the linear
term of Eq. (3.6-6), namely Eq. (3.3-5), where the j index was diminated as a
result of the single inner-product operation.

The same phenomenon takes place in the second-order nonlinear term in
Eqg. (3.6-6) with the elimination of the k index, and then, the j index from the
double inner product leaving only the i index. In the third-order nonlinear term,
the inner indices are again eiminated—first the £ index, then the k index, and
finally thej index, resulting from the triple inner-product operation, leaving only
thei index again. The process continues if higher-order nonlinearities are used. In
all cases, al inner-product indices are eliminated leaving only the i index, which
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3.6: The Use of Tensors in Nonlinear Optics 3-19

is consistent with the vector form of the left-hand side of Eq. (3.6-6). Equations
(3.6-1) and (3.6-4) through (3.6-6) are formulations of the same constitutive
relation, the first term of each representing the linear component and the
remaining terms representing the nonlinear components.

Summary of the use of tensors for nonlinear optics:

Once the nonlinear formulation is set up, the remaining task is to establish the
components of the tensorial coefficients &™. This is usualy accomplished
empiricaly by carefully constructed experimental procedures. The resulting
values are dependent upon the material. For example, for the case of silica (SiO5)
fiber, the second-order permittivity vanishes, that is, £ =% =¢, =0, leaving
the third-order permittivity as the lowest-order nonlinearity.

3.7 Term-by-Term Rank Consistency and the Rules for
Determining Rank after Performing Inner-Product
Operations with Tensors

Every scientist and engineer knows that each term of an equation must have
consistent units. You cannot add volts and amps. The same rule applies to rank.
Each term of an equation must have the same rank. In order to determine the rank
of a quantity involving multiplications of tensors, the rule is to add the ranks of
each tensor being multiplied. If the tensors are undergoing inner-product
operations, the rule isto subtract two in rank* for each inner-product operation.

Example 1: The electric field constitutive relation

To find the resultant rank after performing the single inner product operation on
the right side of Eq. (3.3-5), one must first add the ranks of the tensors, namely
two and one for the dyadic and vector, respectively, and subtract two for the
single inner product. Thus, we have 2+1—2=1 and our resultant parameter D
isatensor of rank one, which is a vector.

Example 2: Materials mechanics constitutive relation

Likewise, the resultant from our double-dot product operation on the right side of
Eq. (3.5-1) is4 + 2: the quadadic (tensor of rank four) modulus of elasticity plus

*  Another ruleisto subtract one in rank for each cross-product operation in the term;
however, since this introductory chapter on tensors omits such operations, examples
of thisrule are given in Chapters 4 and 5.
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3-20 Chapter 3: Elementary Tensor Analysis

dyadic strain (tensor of rank two) minus two for each of the two inner products.
Thus, 4+ 2—2—2=2 and our resultant is therefore a tensor of rank two, which,
in this example, is the stress dyadic.

Example 3: Nonlinear optics

Further, as implied in the discussion of the eimination of inner indices of Eq.
(3.6-6), the second term involves a triadic and a dyadic, having combined ranks
of 3+2, with two inner products reducing the rank by —-2-2, or
3+2—-2-2=1. Thethird terminvolves a quadadic and a triadic less three inner
products yielding 4+ 3—2—-2—-2=1. Thus, each term of Eq. (3.6-6) reduces to
tensors of rank one, i.e. each term reduces to a vector—compatible with the
vector fidld D on the left-hand side.

3.8 Summary of Tensors

The objective of this chapter has been to introduce some of the basic elements of
tensor analysis to those who are new to tensors and their uses in describing
phenomena that otherwise cannot be properly described by using ordinary vector
formulations. When first introduced to vectors, students are told that, whereas

scalars are quantities that have magnitude but no direction,

a gquantity that has magnitude and direction is a vector. We now find that
guantities that have magnitude and direction may, in fact, not be vectors but may
be tensors having multiple directional compoundedness. Thus, the definition of a
vector must have the word “single” inserted, to wit:

A guantity that has magnitude and a single direction is a vector.

The same kind of philosophical leap in contemplating a vector field after
understanding a scalar field is needed in order to contemplate a dyadic field after
understanding a vector field—namely the concept of two inherent directions at
every point in the field from the concept of one inherent direction. Those new to
tensors are cautioned not to stop there, because, by so doing one might be lead to
the conclusion that tensors are dyadics. Whereas dyadics are tensors (of rank two,
specifically) tensors are not in general dyadics. The terms are not synonymous.
Dyadics are quantities that have two directions associated with each point in the
field. Triadics havethree directions, quadadics have four, ec. Thus,
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A tensor is a quantity that has multiple directionality at each point in
gpace and at each moment intime. The“ rank” of a tensor
enumer ates that multiplicity.

Therefore,
a scalar isa tensor of rank zero,
a vector isatensor of rank one,
a dyadic isatensor of rank two,
atriadicisatensor of rank three,
a quadadic is a tensor of rank four,
etc.
Furthermore, tensors can be operated upon like the familiar vector
arithmetic operations, such as dot, cross, and direct products.* The resultant

quantity after performing such operations between them can be summarized as

a direct product of two tensorsyields another tensor of rank
equaling the sum of the ranks of the two tensors,

the cross product of two tensors yields a tensor of rank one less than
the sum of the ranks of the two tensors,

the dot product of two tensors yields a tensor of rank two less than
the sum of the ranks of the two tensors, and

the multiple dot product of two tensors yields a tensor of rank
equaling the sum of the ranks of the two tensors less two for each
multiple dot product.

The following table summarizes tensor terminology and some of the topics
covered in this chapter.

*  Seefootnote on page 2-7.
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Table 3-1 Tensor Nomenclature and Applications

Fied Alternative Unit Tensor Tensor Applications
name Name name Rank Order (selected examples)
temperature;
scalar 0 na pressure;
voltage; current; flux
velocity;
acceleration;
vector unit 1 (not used) electric, magnetic
vector - :
field intengity;

electric, magnetic
flux density

stress; dtrain;
linear anisotropic,

“ » bianisotropic
tensor dyad 5 1st . op
(poor usage) permittivity;

permeability; electric,
magnetic
susceptibilities
lowest-order
nonlinear

_— 2

triadic triad 3 2nd susceptibility ( 7,”)
for non-

centrosymmetric
materials

Elastic modulus;

|owest-order
nonlinear

susceptibility (
for centrosymmetric
materials
al of the above and
more

dyadic

quadadic tetradic quadad 4 3rd 3) )

general unit _
oneor tensor tonsor Ny n,—1
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Chapter 4
Vector Calculus Differential Forms

WITH EXCURSIONS INTO TENSOR CALCULUS

The first step in understanding vector calculus is the comprehension of scalar and
vector differential operators—the subject of this chapter. The next step is
becoming comfortable with the various integral forms to be able to convert
between the differential and integral forms—the subject of the next chapter.
Vector differential operators can be made to operate on scalar and vector fieldsin
differing ways yielding other scalar, vector, and dyadic fields. Whereas a scalar
differential operator operating on a scalar or vector field will yield another scalar
or vector field, respectively, a vector differential operator can yield scalar, vector,
or tensor fields depending on its formulative properties and depending upon the
tensor rank of the operand—the field upon which the operator acts.

A brief introduction to the first-order vector differential operators of
gradient, curl, and divergence is given in Section 4.1. In addition, since these
operators can be applied to tensors in general, some introductory rules of the
gradient, divergence, and curl being applied to tensors are also discussed in this
section.

In Section 4.2, scalar differential operators are discussed in general terms,
as ae ordinary and partia differential  equations, eigenvalues, and
eigenfunctions. In pointing out that these topics are discussed in genera terms,
we mean that it is not the intent here to provide a comprehensive study of
differential equations. There are many excellent texts that cover these topics quite
adequately, such as references 1 through 6, to cite but afew. Besides providing a
brief summary of differential equations and their corresponding eigenfunctions,
Section 4.2 is intended to paint a picture of scalar differential operators in
preparation for an understanding of the directional nature of vector differential
operators in contrast with their scalar counterparts.

The first-order* vector differential operator, known as the gradient, is
covered in Section 4.3. Two other first-order vector differential operators,

*  Theterm order is used in mathematics in differing ways. In Chapter 3 we used
“order” to refer to the directional compoundedness of a tensor less one. (See
Eqg. 3.1-1). In this chapter, the “order” of differential operators and differential

4-1
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4-2 Chapter 4: Vector Calculus Differential Forms

namely the divergence and curl, are covered in Sections 4.4 and 4.5, respectively.
Section 4.6 provides some introductory tensor rules for those uninitiated to
tensors. These rules are tabulated to show the resulting tensor rank from the
application of first-order vector differential operators on tensors of varying rank.
Second-order differential vector operators include various combinations of the
gradient, divergence, and curl, such as the Laplacian. These are covered in
Section 4.7. In each case of these first- and second-order operators, the operators
are described in physical terms and then are expanded in generalized orthogonal
curvilinear coordinates (GOCCs) with explanations for their use.

Some of the operations are also expanded in cylindrical coordinates for
two principle reasons. Oneisthat cylindrical coordinates are the simplest of all of
the curvilinear orthogonal systems and yet still have properties that require
coordinate derivatives of unit vectors to be taken into account. This important
point is missed in the usual rush to Cartesian coordinates.

The second and perhaps more important reason for expressing vector
operations in cylindrical coordinates is in the photonics objective of this book.
Photonics includes the vast and highly timely field of optical fibers, which are
typically cylindrical in structure and therefore are most naturally analyzed in
cylindrical coordinates.

4.1 Introduction to Differential Operators
AND SOME ADDITIONAL TENSOR RULES

As physical sciences began to take a gargantuan leap forward in the mid-1800s,
the corresponding mathematical developments took on extreme complexity, often
involving ten, twenty, or more coupled, simultaneous, partial differential
equations. In these early days before the introduction of the del (also called
nabla) vector differential operators, the reduction of large systems of equations
to formulate practical solutions to science and engineering questions eluded all
but the most proficient scholars. However, with the subsequent development of

equations refers to the highest-order derivative in the operator or differential
equation, where 3"@/aq" is the nth-order partial derivative of the function
@(p,q,r) with respect to g. The order of an)/(apaq), for example, would be
two. Thus if this derivative were to be part of a differential equation that
contained no higher-order derivatives, the order of the differentia eguation
would be ascribed two or second order. Likewise, if the differential 92/(dpoq)
were to be the highest-order differential used in a differential operator, the
differential operator would be said to be a second-order differential operator or
have an order of two.
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4.1: Introduction to Differential Operators 4-3

vector calculus methods that are del-operator based, many of the mysteries of
science and the tools of engineering could then be described, understood and
applied by the average science or engineering student. These methods, concepts
and theorems are reviewed in this and the next chapter.

The glue that has made this somewhat magical transition possible stems, at
least in part, from the three basic building block del operators denoted by the
inverted, uppercase Greek delta with the truncated name del. The first of these,
denoted by “ V" which directly operates* on its operand, is named the gradient.
The next two are the del-dot operator, denoted by “V.” and named the
divergence, and the del-cross operator, denoted by “ Vx” and named the curl.
Finally, there are various combinations of these first-order operators resulting in
higher-order vector differential operators.

As mentioned earlier, another name given to the del operator is “nabla.”
According to Knott,” this term was used by Peter Guthrie Tait in personal
correspondence with his colleague James Clerk Maxwell in 1870 and perhaps
even before then by Robertson Smith who noticed that there was a resemblance
of this inverted delta to the shape of an Assyrian harp used by the Hebrews called
the nebel . **

Before delving into the concepts of gradient, divergence, curl, and their
many combinations, it is good for the student to garner an appreciation for the
power of these operators to abridge complex mathematical formulations in
describing physical phenomena. Further, before examining scalar and vector
differential operators, it is beneficial to realize that differential operators can be
tensor operators in general. That is, the operator itself can have properties of
tensors of any rank. These generalized-rank tensor operators can in turn operate
on tensors also having generalized rank. The rules of rank consistency described
in Section 3.7 apply for differential operators also. For example, the direct vector
del operator, which is the gradient, operating on atensor of rank N; will yield a

*  The term directly operates or direct operator means that the operation is
conducted without the dot- or cross-product type of a process. Thisis to be used
synonymoudly with tensor product for those already familiar with tensors. The
tensor product symbol ® is used to denote a product between all combinations
of the components of each tensor being multiplied resulting in atensor having a
rank equaling the sum of the ranks of the two tensors being multiplied.

**  \Webster’s Third New International Dictionary defines nabla as “an ancient
stringed ingtrument probably like a Hebrew harp of 10 or 12 strings—also called
nebel.” It is triangular in shape and is held like a harp, thus of the shape of

HVH-
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resultant tensor of N, + 1 rank—the same as if a vector were directly multiplying
the same N, rank tensor (without the dot- or cross-product operations). The del
dot operator—the divergence—operating on a tensor of rank N, will yield a new
tensor of rank N, —1. This is also analogous* to the dot product between a
vector and a tensor of rank N, namely, adding the tensor ranks and subtracting
two for the inner-product operation (dot product) becomes 1+n, =2 =n_ -1,

The rule for the cross-product operation was mentioned in Section 3.8,
namely, to subtract one for each cross product from the sum of the ranks of the
two tensors. That is, tensor one of rank N, crossed (once) with tensor two of
rank N, results in a new tensor of rank N, +N, —1. Thus,
[, T] [, T] [(n an 1 T.], where the presubscript refers to the rank and the
postsubscrlpt dlstlngmshes among the three tensors involved. In particular, if

Ny =1, [,T] is a vector and  the  resultant  tensor
[TIx[, T,1=[,., ,T.1=[, T.] has the same rank as [, T,]. Further, if the
tensor two is also a vector, i.e., n, =n, =1, then we have the cross product of
two vectors yielding a vector resultant, as expected. That s,
[LIx[T,]1=[ 0.1 =111, which in vector notation is T,xT, =T, or
AxB=C.

The same rule applies to the curl operator. The curl is a vector operator
with an exterior-product-type operation, namely V x. If the curl operates on
tensor two [ T ] the result is a new tensor [(1+n 1) ] having the same rank as
[ T] That is, Vx[, T,]=[, T,]. Thus, if the curl acts on a vector, then

o« =1,and Vx T, = f|'4, or VZXT =T,, or VxA =B, resulting in another
vector as expected.*

Although we will cover the gradient of a vector, which yields a dyadic (in
Section 4.3.2), and the divergence of a dyadic, which yields a vector [in Section
4.7.4(a)], we will not delve more deeply into tensorial operations in this chapter.
These are developed here because of their importance to subjects like
electromagnetics, fiber optics, and materials science (which are often taken in the
junior or senior years) and because they serve as practical examples of the

*  Although the rules of tensor rank consistency apply to the del-dot and del-cross
vector operators as they do to the vector dot- and cross-product operations, it is
incorrect to apply this reasoning to the operations themselves. As we will see in
Sections 4.4 and 4.5, the divergence and curl operations are more involved than
just accounting for variations in components of the field upon which it operates,
that is, the operand field. Another example of this distinction is in Eq. (4.7-14)
and the discussion that follows that equation.
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necessity and power of tensor calculus. Instead, we take the position that, except
where such operations help in the understanding of the concepts at this level, the
main body of this book merely introduces the rules of tensor calculus.®®

4.2 Scalar Differential Operators, Differential Equations, and
Eigenvalues

Differential operators can be scalar or vector in their nature. For example, a
scalar operator L operating on a scalar field f(q;,,,0,,t) would be expressed
as Lf . Here 0,,0,,0, are generalized orthogonal coordinates in 3D space and
t is time, which is mathematically orthogonal to the spatial coordinates. The
homogeneous form of the differential equation utilizing this differential operator
is

Li+Af=0 (4.2-1)

where ﬂ, represents the eigenvalue. Although the eigenvalueis not a function of
the independent variables ¢, q,,0;,t, it should not be considered a constant,
necessarily. It is a function of the physical parameters and boundary and initial
conditions that determine the form of the operator L and constraints on the
values of f . For this reason ﬂ, is often referred to as the eigenfunction.
Frequently, a great deal can be learned about the solution function
f(0,0,,0;t) by a detailed study of the eigenfunction. For example, if Eq.
(4.2-1) is a wave equation, describes the dispersion relation, which portrays
how various components of a signal travel at different velocities and usually
degrade the received signal from that which was transmitted. More will be said
about this later in this section. First, let us examine some simple scalar operators
and their corresponding eigenparameters.

Suppose the scalar function f(X) is a function of a single independent
variable X, and suppose L takes theform

L= % (4.2-2)

Here L is a first derivative and is therefore referred to as a first-order scalar
differential operator. The differential equation (4.2-1) isthen
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LUy S (4.2-3)
dx

Of course, the solution to Eq. (4.2-3) is of theform
f=e™ (4.2-4)

where a is not a function of x. The eigenvalue is determined by first
differentiating Eq. (4.2-4) and then substituting this into Eqg. (4.2-3) yielding
—af + Af =0. Since f cannot be zero for al x (otherwise it would be of no
use), we may cancedl it out, leaving —a+ﬂ,= 0, or

A=a (4.2-5)

Notice that since a is not a function of x, neither is ﬂ, In fact ﬂ, represents a
damping factor, which is a physical factor of the given problem. Notice also that
the above case of a first-order scalar differential operator L operating on the
scalar function f (X) yielded a scalar solution of theform e .

Next, let us consider a second-order scalar differential operator

L= % (4.2-6)

Then the differential equation (4.2-1) becomes

2
O;XZ +Af=0 (4.2-7)

Second-order differential equations have two solutions (third-order have three
solutions, fourth-order have four solutions, etc.). The solutions to Eq. (4.2-7) take
theform

f =€ (4.2-8a)
and
f,=e™ (4.2-8b)
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4.2: Scalar Differential Operators, Differential Equations, and Eigenvalues 4-7

The eigenvalues /A, and A, are determined by twice differentiating f, or f,
and solving for and , respectively. Since the second derivatives of Egs.
(4.2-8a-b) are f,"=—a2f, and f,"=—a’f,, respectively, A, and A, takethe
same value, namely

A=A =2 (4.2-9)

In such cases ﬁ is said to have a second-order degeneracy. Notice again that
since a is not a function of x, neither are the eigenvalues. In fact, since the
solution Egs. [4.2-8(a—h)] are sinusoidal, ﬁ represents a periodicity factor,
which is a physical factor of the given problem usually associated with the
boundary conditions. Notice also that the above case is that of a second-order
scalar differential operator L operating on the scalar function f(Xx) yielding
scalar solutions €.

In many cases, such as in fiber optics, where the fiber core radius varies
dightly (either in the manufacturing process or by bending), small perturbations
in the solution take place resulting in the dight splitting of the otherwise
degenerate eigenvalues. This splitting is referred to as birefringence. There are
many uses for birefringence in optics and fiber optics including measurements of
the order of tens or hundreds of angstroms using interferometer setups wherethe
beat lengths between birefringent signals of the order of millimeters or
centimeters can readily be measured. The detailed treatment of second-order
degeneracy and birefringence is left for texts in fiber optic communications and
nonlinear optics.'***

In the case of our scalar operator L operating on a vector fied
F(0,,0,,0,,t), our result is, of course, a vector field. This is obvious when one
expands F =(,F, +0,F, +(,F,, where G, (,, and G, are orthogonal unit
vectors. Then LF = LaF, + La,F, + La,F,, whichis of course vectorial in
form. Although tempting, the student is cautioned not to assume that the unit
vectors are necessarily constants under the differential operator L. in other
words, since

Lar =aLr+FLa (4.2-10)
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4-8 Chapter 4: Vector Calculus Differential Forms

it is not necessarily correct to assume that Lﬁi is zero. Even though the
magnitude of U, is a constant, namely unity, its direction may not be. In spherical
coordinates, for example, if L =8/06, then LG =0,, which is clearly not
equal to zero, and therefore in this case LG.F, =G LF,. Although L, =0 in
Cartesian coordinates and the longitudinal component of any of the cylindrical
coordinate systems, it is not so in general, and both terms of Eq. (4.2-10) must be
used.

4.3 The Gradient Differential Operator

The gradient operator is one of three commonly used first-order vector
differential operators. As was pointed out in Section 4.1, its resultant is a tensor
of rank one greater than the quantity upon which it operates. Section 4.3.1
provides a physical description of the gradient of a scalar field, derives the
gradient from the physical definition,> and then expands the gradient into
GOCCs. Since the gradient adds one to the rank of the field upon which it
operates, the gradient of a scalar field is a vector field.

Likewise, if the gradient operates on a vector field (with a rank of one), the
resultant is a tensor of rank two, that is, the resultant is a quantity having a dual
directional compoundedness—a dyadic. (See Section 3.7 for rank consistency in
equations). One direction is inherent in the vector form of the operator and the
other in the vector upon which the operation is being performed. This dual
directional compoundedness applies at every point T in 3D space and at all
times t. This dyadic is also presented in GOCCs. Section 4.3.2 thus covers the
gradient of a vector field.

4.3.1 The gradient of a scalar field—a physical description

Every truck driver knows what it means to enter a grade on the road. The grade
can be positive or negative, that is, an uphill grade is considered positive because
potential energy increases and a downhill grade is considered negative because
the potential energy of the truck decreases. In either case, the driver gears down.
In the case of a positive grade, more revolutions of the engine are needed in order
to increase the torque on the drive wheels and thus to overcome the increased
gravitational force of going uphill—the steeper the hill, the greater is the force
and lower is the needed gear. In the case of a negative grade, the driver is even
more concerned because the decreasing potential energy is being converted into
kinetic energy, which will dangerously increase the speed if action is not taken to
absorb that energy. Therefore, the trucker gears down to engage compression
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4.3: The Gradient Differential Operator 4-9

braking. In fact, considerable engineering design has gone into designing the
compression braking methods to absorb the added energy and prevent it from
being converted to its dangerous kinetic form.

Quantitatively, in the definition of the gradient vector differential operator,
the direction of the gradient is defined as that of maximal increase of the field
upon which it operates. In the above example the field upon which the gradient
operates is the scalar gravitational potential energy field. The civil engineer who
designs a road to go over a mountain range is, of course, confined to the terrain
surface. Although the direction of maximal increase of this potential energy field
is straight up, under the constraint of being confined to the terrain surface, the
direction of maximal increase is along the steepest slope of the terrain. The
engineer knows that vehicles can handle a limited grade. For trucks, that limit is
about 6% grade, which means that for every 100 feet of horizontal run theriseis
6 feet or the vertical angle 6 = tan™"0.06 = 3.4° . If the natural slope has places
exceeding that limit, the engineer lays out the road at an angle from the direction
of steepest ascent thereby limiting the grade of the road to this design limit. The
above example is that of a gradient of the gravitational potential energy scalar
field on the surface of the earth. Other examples of scalar fidds would include
temperature, dectric potential or voltage, and pressure, to name but a few.
Inherent in any of these scalar fidlds is a gradient. Theresultant is a vector field.

Let us next acquire a physical understanding of this vector field that we
call the gradient of a scalar field from the definition given in Bevc,™ which was
cited as “ memorable’ by the editor of American Journal of Physics, Romer:*

The gradient of a scalar field is a vector field oriented in the
direction in which the scalar field increases most rapidly. Its
magnitude is the derivative of the scalar field in the direction of its
maximal increase.

Suppose V(q,,0,,0,,t) isascalar field. Then the gradient vector G of Vis
by this definition determined by

G=Grad V=0__ lim A~ (4.3-1)

where |im_o(AV/Al), ., is the maximum rate of increase of V at P(q,,q,,0;)
and at timet, and where U, is the direction of maximal increase. Shorthand
notation for the gradient is given by the use of the del operator as
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4-10 Chapter 4: Vector Calculus Differential Forms

G=VV (4.3-2)

First we postulate that the direction of maximal increase is normal to the
local surface of constant value of V containing P. This postulation is
demonstrated in Part (a) below. Next let us construct equivalue surfaces of
V(q,,0,,0,,t), using the techniques of Section 2.7, and then construct a unit
vector normal to that surface at point P as shown in Fig. 4.3-1. The gradient G at
point P(q,,0,,0;) andtimet of thescalar fild V(q,,,,0,,t) may bewritten as

G=0G, (4.3-3)

where G,_lim(4v/4¢),, and 4, istheunit normal at P(q,,0,,0,) -
4.3.1(a) Why the unit normal is the direction of maximal increase
In order to ascertain why the unit normal is the direction of the maximal increase,
let us first construct three surfaces each with equal but adjacent values of the
scalar fidd, as shown in Figure 4.3-2. Let the values of the three equivalue
surfacesbe V =V,, V,, and V,, respectively, such that

V<V, <V, (4.3-4)

A unit norma may be constructed
U normal to the equalvalue surface

\

Equivalue surfaces

Figure 4.3-1 Three equivalue surfaces of the scalar field V (g, d,,0s,t) with
a unit normal constructed at a point P on one of the surfaces.
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4.3: The Gradient Differential Operator 4-11

Asin Fig. 4.3-1, let us again construct the unit normal vector U, but this
time specifically normal to the equivalue surface V =V, at the point A on 'V, as
shown in Fig. 4.3-2. Let us construct another unit vector U, also from the point
A but not normal to the equivalue surface. Let 6 be the angle between G, and
a,. Let O, intersect the adjacent surface V =V, at point B and let 0, intersect
the same surface V =V, a point C .

Now let us examinetheratio AV/A¢ in Eq. (4.3-1) before taking the limit.
The value of the numerator AV from point A on equivalue surface V =V, to
point B on equivaluesurface V =V, is
AV, =V; -V, (4.3-5)
Thevalueof AV frompoint A topoint C is

AV,. =V, -V, (4.3-6)

Since V. and V; are on the same equivalue surface V, , they are equal. Thus,

Equivalue surfaces

Figure 4.3-2 Equivalue surfaces of V =V,, V,, and V, with two unit
vectors constructed from a point A on equivalue surface V =V, , where
4, isnormal to V, and U, is not.

n
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4-12 Chapter 4: Vector Calculus Differential Forms

AV =AV,; =AV,. =AV,=V,-V,>0 (4.3-7)
which is positive because of the condition (4.3-4).
Next, let us look at the denominator A¢ . Since
Al g = AL . COSO (4.3-8)

andsince 8#0, Al ;< Al .. and

av
AL

AV

> = (4.3-9)
AtoB AE

AtoC

Further, the minimum of 4¢, ., occursat 8 =0, thus AV/M|n is maximal and in
passing to the limit, we have

AV

. av
lim—| =
Al=0 A/

T

(4.3-10)

n

Thus, the direction of maximal increase is the direction of the unit
normal to the surface of equivalue of V(q,,q,,0;,t) .

4.3.1(b) Expansion of the gradient of a scalar field in GOCCs

Before taking the limit in Eq. (4.3-1), we note that

n

G, = % for small 4/ (4.3-112)

max

Multiplying both sides of Eq. (4.3-11) by A/, we have AV =Al G, . After
taking the limit, we have dV =(dV/o/)d/, where the total differential
d€=d€‘ *0,,. Thus, we may write dV as

dv =d/-G. (4.3-12)
Expanding d¢ =,d/, +a,d¢, +0,d/,, where d/, =hdg,

d( =G,hdg, +0,h,da, + G;h.dg, (4.3-13)
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4.3: The Gradient Differential Operator 4-13

and
G=0G,+0,G,+0,G, (4.3-14)

Combining Egs. (4.3-12), (4.3-13), and (4.3-14) we have
dV =Ghdq,+G,h,dg,+G;h,dag, (4.3-15)

Since V =V(q,,0,,0;) , @ mathematical representation of dV in terms of
partia differentialsis

oV oV oV oV
dvV=—dl{=—dq,+—dg,+—d 4.3-16

Equating coefficients of dg , we have
G = 19V

== (4.3-17)
h dq

for eachi = 1, 2, 3. Thus, all three components of the gradient G; may be found

from this expression, and therefore

Gogldv, 1oV 1oV _

= ——+U0,——+U,——=VV (4.3-18)
hog °“hag, ~hog

is the expansion of the gradient of a scalar function V =V(q,q,,0;) in

generalized orthogonal curvilinear coordinates.

Whereas equating the coefficients of dg in Egs. (4.3-15) and (4.3-16) in
arriving at Eq. (4.3-17) does not demonstrate uniqueness, Bevc does so with
elegance in his memorable paper.*?

4.3.1(c) The directional derivative nature of the gradient of a scalar field

Another insight into the physical description of the gradient of a scalar fidd is
given in the concept of the directional derivative. Thomas and Finney [Ref. 4, pp
869ff] and Stewart [Ref. 5, pp 756ff] provide mathematical devel opments of this
concept. Although these references develop the directional derivative in
rectangular coordinates, we will summarize this in GOCCs. The approach is to
find the rate of change of the scalar field (function) V(q,,q,,0;,t) at a point
P(q,,9,,9;) in space in the three orthogonal directions 0,,U,, and U, and obtain
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4-14 Chapter 4: Vector Calculus Differential Forms

the gradient by vectorially adding these three components. Once oV /o, is
determined in each orthogonal direction G, and after expressing the differential
lengths in terms of the metric coefficients h. and coordinates oqg,, we have
o, =hoqg; and

which, of course, is the same as Eq. (4.3-18). By summing the orthogonal
derivatives, we have a rate of change of V(q,,0,,0,,t) in the direction of
maximal increase.

4.3.2 The gradient of a vector field

Since the gradient operator does not involve dot- or cross-product operation types
(as does the divergence and curl) and since the gradient is itself a vector operator,
the gradient of a vector field is a dyadic field. That is, the direct product of two
tensors, each with rank one, results in a tensor whose rank is the sum of the ranks
of the tensors, in this case, two. This is also true for the case of a vector direct-
product operator operating on a vector field, i.e., BA and VA are both dyadics.

4.3.2(a) The gradient of a vector field in GOCCs

Let us determine the gradient of the vector field A=0d,A +0,A, +U,A, . At first
glance, the uninitiated might try applying the gradient to each of the scalar
components of the vector field A, and then carry the unit vectors into the vector
components of the gradient operator, thus forming nine unit dyads with their
appropriate scalar coefficients. However, let us not forget the lesson learned in
Eqg. (4.2-10), namely that the spatial derivatives of the unit vectors are not zero
whenever the direction varies with change in that particular coordinate direction.
Therefore, applying Egs. (4.2-10) and (4.3-16) to each of the vector components
of A, including the unit vectors, we have

(4.3-20)
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4.3: The Gradient Differential Operator 4-15

which is clearly a dyadic. In general, Eg. (4.3-20) contains 18 terms—nine for
each of the double summations above. Notice that the second set of nine terms
contains all combinations of the three coordinate partial derivatives of each of the
three unit vectors. Whereas these nine coordinate derivatives of unit vectors can
be expanded with the use of Egs. (1.3-19) and (1.3-20), we will not do so here
because it unnecessarily complicates the efficient form of our dyadic gradient of
a vector. Instead, we find it much less cumbersome to perform this expansion
once a particular coordinate system is assigned. In either case, the unit vector
derivatives on the right may be carried out and the terms collected into
components of the resulting nine dyads GG, or ﬁij ,where i=1,2,3andj=12,3.

4.3.2(b) The gradient of a vector field in cylindrical coordinates

In cylindrical coordinates, for example, seven of the nine unit vector derivatives
are zero. First, G, does not change direction and all three partial derivatives of 4,
are therefore zero. Secondly, G, and d, do not change direction with changes in r
and z, thus derivatives with respect to r and z of G, and Gq, are also zero. The
only nonzero derivatives are /04 of U, and u, . Thus from Eqg. (1.3-21)

‘2‘; -4, (4.3-21)

which was derived in Eq.(1.3-22). Further, from Eqg. (1.3-20) we have

o, _ G _ G or
o¢ h, or 1or
o¢

(4.3-22)

Equations (4.3-21) and (4.3-22) are compatible with Ramo, Whinnery, and Van
Duzer, (p. 819), for example.* Therefore, substituting the subscripts r,¢4,z for
q,,9,,9, and Lr,1forh,h, h, in Eq. (4.3-20), we have the expansion of the
gradient of the vector field A in cylindrical coordinates using Egs. (4.3-18a and
b):
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) G,
+- W_,%)Jr#(—a?h/\} ‘ %% (4.3-23)

which is a dyadic (with its nine unit dyads and their respective scalar
coefficients). Notice that two of the nine components, namely the fourth and
fifth, each contain two terms stemming from Egs. (4.3-20) through (4.3-22). The
remaining seven do not.

4.4 The Divergence Differential Operator

In the introductory paragraph of this chapter, it was stated that vector differential
operators can yield scalar, vector, or tensor fields depending on their formulative
properties and depending upon the rank of the operand field. In the previous
section, we determined that the result of a gradient operation added one to the
rank of operand—the gradient of a scalar is a vector, the gradient of a vector isa
dyadic, ec. In this section, we review another first-order vector differential
operator called the divergence operator. The divergence operator is also known
as the del-dot operator, because it is denoted by the del differential operator
followed by dot-product symbol, namey, “V.”. This operator is entirely
different from the gradient operator, even though there are some similarities.
They arealikein that both are of first order, both are vectorial in nature, and both
use the inverted Greek capital |etter delta in their notation. However, they have
entirely different properties. In fact, their differences far exceed their similarities.
Their inherent definitions are based on entirdy different geometries—the
gradient on a differential length tends to zero in the limit and the divergence on a
differential volumetends to zero in the limit, as we will soon see.

Whereas the divergence operator is not properly formed by simply taking
the dot product of the operator with the field that follows, the rules for change in
tensor rank do indeed act like the dot product between a vector and the field that
follows. That is, the dot (or inner) product, subtracts two from the sum of the
ranks. Thus, since the divergence is a vector operator, it has the character of a
rank-one tensor. When it operates on a tensor of rank n, the result is a new
tensor of rank 1+ny,—-2=n,—-1 consistent with the rules of Section 3.7.
Therefore, the lowest rank tensor that the divergence can operate upon is a
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4.4: The Divergence Differential Operator 4-17

vector. From these rules, the divergence of avector is a scalar and the divergence
of adyadic is avector, etc.

4.4.1 The divergence of a vector field—a physical description

Let us next acquire a physical understanding of this scalar field that results from
the divergence of a vector field from its definition:

The divergence of a vector field at a point in space is the ratio of the
net outward flux through an infinitesimal closed surface
surrounding the point to the volume enclosed by that surface.

In mathematical terms, the divergence of the vector field A is

Div A= lim (}S—=V-ﬂ (4.4-1)
Av—0 AV

The numerator represents the net outward flux of A through the closed surface
and Av is the volume enclosed by the closed surface. This is graphically
depicted in Fig. 4.4-1.

Before attempting to convey a physical understanding of the concept of
divergence, we need to first garner the concept of the flux of avector field. Every
vector field can be thought of as afield of fluxes. Thetotal flux passing through a
surface S is determinable by taking the dot product of the vector field at every
differential element of areaon S with the vector differential surface area da and
integrating over S. Thus, the flux ¥, of the vector field A through the surface
Sis

da
\ /\, closed surface

A v volumewithin closed surface

4

Figure 4.4-1 The geometry associated with the definition of divergence.
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Y, = I A-da (4.4-2)
S

It is worthwhile to note that since da is everywhere Eerpendicular to S, any
portion of the surface S that is parallel with the field A makes no contribution
to the flux because of the dot product.

Further, whenever the surface S is a completely closed surface, the
integral represents the total outward flux given by

¥, = <j> A-da (4.4-3)
Therefore the numerator of Eq. (4.4-1) represents the total outward flux.

4.4.1(a) Vector-field flux tubes and sources

Vector fields exist because of a source. For example, a gravitational force field
exists because of the presence of mass. A static eectric field exists because of the
presence of charge. A fluid flow field exists because an external drive, such as a
pump, a fan, or a turbine causes fluid (either gas or liquid) to move. A static
magnetic field exists because of the presence of a steady current or because of the
presence of a magnetized object. In every case, the vector field is the effect of
some external source, and in every case, the field exists beyond the boundaries of
the source. That is, these vector fields are present at points in space for which
there are no sources as long as at least one source at another position in space
exists to cause the field in the first place. The shape of the field depends on the
placement and distribution of the sources, the properties of the medium hosting
the field, and the boundary constraints or boundary conditions.

/_\\,—\
A—/_\\

B

Figure 4.4-2 Graphical representation of a generalized vector field flux tube with
nine field direction lines defining the side of the tube and three field direction lines
shown in the interior of the flux tube.
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Consider a given vector field F . Applying the techniques of Section 2.6,
vector field direction lines (also called flow lines) can be graphed. Consider
collecting an imaginary bundle of these flow lines into a tube whose sides are
everywhere paralld to the flow lines truncated at ends by two surfaces A and B
that intersect the bundle of flow lines not necessarily at right angles to them.
Such a tube can be thought of as afied of flux flow lines or a flux tube. Figure
4.4-2 provides a pictorial representation of a vector field flux tube.

Flux tubes have the characteristic that no flux penetrates the sides of the
tube. Consider a volume to be made up of a section of a flux tube as shown.
Therefore, the only flux entering or leaving the volume are through the cross-
sectional end caps of the flux tube. If the same amount of flux enters the volume
through end-cap A that leaves through end-cap B, then by the definition above,
the divergence is said to be zero even though the field direction lines may be
physically diverging or converging. It is possible for the divergence of a given
vector field F not to be zero, that is, more flux enters through end cap A than
leaves through end cap B, or vice versa. This can happen only if there is a
distribution of sources in the volume of the tube, aswe will observe.

4.4.1(b) Examples of zero and nonzero divergence

In order to provide an understanding of divergence from its definition above, we
will postulate some simple vector fields and derive the divergence from their
corresponding flux tubes without the use of a coordinate system. Of these
examples, some will have zero and some nonzero divergence despite whether the
flux lines physically diverge. In Part (c), we will discuss the significance of the
nonzero divergence on the distribution of sources within the volume of the closed
surface.

Example (1a):

Given a vector field that is of constant magnitude everywhere but directed
outward from a point P in space,

A=k (4.4-4)

where k is a constant and U, is a unit vector directed away from P. Next let us
construct a flux tube that consists of a conical section of arbitrary cross-sectional
shapeand of end capsat R=R and R=R,, where R is measured from P, as
shown in Fig. 4.4-3 and where R and R, are constantswith R <R, .
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The end caps are surfaces of spheres having radii R and R,. The areas of
the two surfacesat R and R, are S = 2R? and S, = 2R’ respectively, where
£ isthe solid angle subtended by the generalized cone (expressed in units of
steradians). Since the field is uniform throughout from Eq. (4.4-4), the flux
entering the R=R surface is ¥, =k®R’ and the flux leaving the R=R,
surfaceis ¥, = k2R’ . Since no flux penetrates the conical surface on the sides,
the total outward flux is k(R - R?) .

The volume of the closed surface is 2 2(R’ - R’) . Before passing to the
limit in EQ. (4.4-1), we can examine the ratio of the outward flux to the volume,
specifically

kR -RY) _ 3k(R-R) (4.4-5)
12R-R) (R-R)

In anticipation of passing to thelimit as Av — 0, weneedtolet R, approach R .
This can be accomplished by letting R, =R + 4R and solving Eq. (4.4-5) as
AR — 0. Normally in thelimit as Av — 0 we would have to simultaneously let
both AR — 0 aswell as 2 — 0. But since £2 dropped out of our ratio, it is not
necessary to imposethelimit 2 — 0.

/ —
/_/ Ra

Y

Figure 4.4-3 Closed-surface flux tube for Eqgs. (4.4-4), (4.4-7) and (4.4-9).
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Let us expand the numerator and denominator of Eq. (4.4-5) in a Taylor
series. The numerator becomes R: —R? = 2R AR +O(4R)* and the denominator
becomes R; - R’ =3R’AR+O(4R)*, where O(4R)* refers to a term of the
order of (AR)?. In passing to the limit as AR — 0, the terms O(4R)? are
negligible with respect to the terms that vary as AR . The ratio, then, is the
divergence of Eq. (4.4-4), namely

2k

V-A=— 4.4-6
- (4.4-6)

which was determined for Example (1a) from the definition without the use of a
coordinate system.

Example (1b):
Next, let us consider another vector field
A=kRip (4.4-7)

The flux tube for this field is also represented by Fig. 4.4-3. However, the field in
this case grows in magnitude uniformly with R . The areas of the two surfaces at
R and R, are unchanged, being S, = 2R’ and S, = QR ; however, the flux
entering the R=R  surface is A(R)-SU;, and therefore
Y, =kR.QR’ =kQR’. Likewise, the flux leaving the R=R, surface is
¥, =kQR], and the total outward flux is kK2(RS —R’) . The volume is the
same as in the previous example giving us the resultant divergence of Eq. (4.4-5)
as

KQRE=RY) g

V-A= -
10Q(R}-R))

(4.4-8)

In this case, the ratio became a constant without actually having to pass to the
limit of infinitesimal AR .

Example (1c):
Let us generalize the prior two examples by letting the vector fields be

A =kRP(, (4.4-9)
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where pis any general power. Note that p=0and 1 for Examples (1a) and
(1b), respectively. Again, we will find the divergence from the definition.

Again, the flux tube for this field is represented by Fig. 4.4-3. However, the
field in this case changes in magnitude uniformly with R”. The areas of the two
surfaces at R and R, are again unchanged and the flux entering at R, and
leaving at R, are ¥,, =kQR[”, respectively. The total outward flux is
k.Q(R2p+2 - Rf”z) . The volume is unchanged from the previous two examples.

As in the first example, we let R, =R + 4R and expand R, in a Taylor
series. AR then takes the form R; —R’=(p+2)R""AR+O(4R)*. As before,
the volume expanded in a Taylor series is R; — R’ =3R’4R +O(4R)?, yielding
the resultant divergence of Eg. (4.4-9) as AR - 0 as

V-A=k(p+2)R"* (4.4-10)

Notice that Eq. (4.4-10) reduces to 2k/R for p =0, consistent with Eq. (4.4-6)
and to 3k for p=1, consistent with Eq. (4.4-8).

More importantly, however, is the case of p =-2. Here the vector field is

A= %Gr (4.4-11)

From Eq. (4.4-10), the divergence is therefore
V:-A=0 (4.4-12)

This result is also evident when one realizes that the surface increases as R?,
whereas the field drops off as R . Therefore, the flux entering the end cap S, is
equal to the flux leaving the end cap S, and therefore the numerator is always
zero. There are many examples of vector fields that behave as Eq. (4.4-11). The
gravitational field in the space external to a mass falls off as R™, where R is
the distance from the center of gravity of the mass. The electric flux density
external to a charge falls off as R, where R is the distance from the charge.
Each of these fields has a zero divergence even though the field direction lines
appear to be diverging.
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Example (2a):

In examples (1a), (1b), and (1c), vector fields were mathemeatically created to be
physically diverging from a point, whereas the divergence was positive, negative,
or even zero. Therefore, whether a field has a divergence is not necessarily
related to whether it in fact diverges (or converges) physically. To further
illustrate this lack of connection between appearance of the field lines and the
existence of a divergence value, we will create two additional examples of fields
that have parallel field lines, that is, direction field lines that are not converging
or diverging. One of these will have a nonzero divergence, the other will have a
zero value.

Suppose A= XU, . For our closed surface, |et us create a cube in the region
1< x,y,z<2. Thefidd flow lines of A are paralle to four of the six surfaces,
namely the two that are parallel to the x-y plane and the two that are parallel to
the x-z plane. The total outward flux is calculated as the flux leaving the surface
at x=2 lesstheflux enteringat x=1, whichis 2—1=1. Therefore, V- A=1,
even though the flux lines are not diverging physically.

Example (2b):

Again, let us pick a field where all flux lines are not physically diverging.
Suppose A=yl and, again, let us reconstruct the same cube. The flux lines are
paralld to the same four sides and penetrate the same two sides as before. In this
case, however, the flux entering at X=1 is 13 and theflux leaving at x=2 is
also 12 . Thus, total outward flux is 14 —13=0,and V- A=0.

In these last two examples, neither field was physically diverging or
converging, yet one was zero and one nonzero. Therefore, whether there is an
appearance of divergence or convergence in the field flow lines is uncorrelated
with whether the divergence of thefieldis zero.

4.4.1(c) Significance of a nonzero divergence
In the prior examples we found no relationship between the physical appearance
of vector flux lines diverging and the value of the divergence of vector the field.

So, we ask the following:

On what does the divergence depend?

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4-24 Chapter 4: Vector Calculus Differential Forms

The answer is sources. That is, if the divergence is nonzero in any region in
space, there must be a distribution of sources in that region. In particular, the
divergence is equal to the volume density of the source. For example, in any
region where there is a distribution of mass, such as in the interior of the Earth,
there is a mass density throughout the volume of that region. Thus, at every point
in the interior of the earth there is a mass density in kg/m®. This mass density is
the source of the divergence, and is, in fact, equal to the divergence.

In the case of electric flux density D, its source is electric charge density
o in coulombs per meter cubed (C/m®). From the definition of divergence, Eq.
(4.4-1), the divergence is the limit of the ratio of the net outward flux through an
infinitesimal closed surface to the volume enclosed by that surface as the volume
goes to zero. The total charge enclosed within the infinitesimal closed surface is
the volume integral

Qo = | UV (4.4-13)

Av

4.4.2 The divergence in GOCCs

The expansion of the divergence of a vector field A=0,A +3,A +G,A in
generalized orthogonal curvilinear coordinates is accomplished by carefully
adding the net outward flux through the six orthogonal differential surfaces that
bound an infinitesimal volume. The sides lie on surfaces of constant value of
each of the coordinates in three pairs each separated by differential amounts. The
three pairs are front-back, right-left, and top-bottom. This volume is pictorially
represented in Figure 4.4-4.

The total outward flux of A is accomplished by summing the following six
integrals

Vs ZCJS'K"%:J- front T+ Iback
+[og + [ (4.4-14)

+ J. top + bottom
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A=0A+0A+0A
dv=hh h dgdg, da,

3

d¢ =hdq, P(a,,q,,4,)

Figure 4.4-4 Volume element used in V- A derivation in GOCCs.

In performing these integrations it is necessary to account for variations in
surface elements as well as the vector components when one changes a
coordinate. We will first examine the first pair. The front integral is over an
elemental surfaceat q +Aq having an area of A?,A’; andinthe 4, direction.
Therefore, the vector representation for the differential area at the front e ement
is da,. Here the subscript denotes the vectorial direction of the elemental
surface, da, = Olequ .. - Similarly, the flux through the front surfaceis

da,

- I o AG udal‘ = AAGAL| (4.4-15)

front

To complete the first pair, we note that the back integral is over an demental
surfacelocated at q_, except that the outward direction is —U, . Thus, we labd the
vector differential areaas da , . With these changes, the procedurefor finding the
outward flux through the back surface is otherwise the same, yielding

da
-1

A A
¥, = [ A 8)da| | = A, (4416
back il

The net of the flux front and back is
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g = AALAL,

Ay
front+back

— AALAL (4.4-17)

G, +Ad

Variations in the surface element A/,A/, as well as variations in the vector
component A from g, to g +Aqg must both be taken into account with respect
to the differential lengths A¢,, Al,, and Afl,. This is expected for the
component but the variations in the surface elements may be overlooked by the
less mathematically discerning. Length variations are related to coordinate
variations by A/, =hAq from Eq. (2.6-5), where the metric coefficients in
general are functions of the coordinates, i.e., h =h(q,,q,,q,).

Before passing to the limit, we note that the differential volume is given by
Egs. (1.2-6) and (2.6-5)

Av=hhh,4q 4q,4q,. (4.4-18)
Therefore,
. 1 hzhsAQZAqs'Al aray hzhsAQZAqs'Al o
AIlIn}JA_[J‘ front +I back:| =
V-0 Av hhh,Aq,.40,40,

(4.4-19)

As stated before, it is necessary to account for variations in surface
elements, such as hh4ag,4q,, as well as the vector components, which in this
case is A, as we vary from g to g +Aq . Since there is no variation in
coordinates ¢, and g, with respect to q , because they are orthogonal, the
necessity to account for variations in surface elements leaves only variations in
the metric coefficients, h, and h,, which are, in general, functions of
coordinates, as pointed out above. Therefore, the Aqg,4q, factorsin Eq. (4.4-18)
cancel in the numerator and denominator, leaving variations in the component
and metric coefficients to be considered. Thus, Eg. (4.4-18) becomes

_ hhA| . -hhA|
lim 11

- 1
L'VTOEU front +f back} = A, o 10, (4.4-20)

Noting that the right-hand factor is precisely the definition of the partia
derivative, we have
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im L 1 0
L!,TOE[I front+_[ back:| = hlhzhg (%EA) (4.4-21)

for one of the three scalar terms making up the divergence of the vector field A .

The same process may be repeated for the other two pairs of integrals;
however, this tedious procedure is not necessary because we may simply roll the
subscripts* to obtain the remaining two terms of the divergence. The rall
sequenceisl — 2 —» 3 — 1 — 2. Therefore, the divergence of our vector field
Ais

v.A-_L {a(hzmma(mmua(n%)}

hh,h, aaoa - Jq, 90, 4422
1 3
-méa—q(T’*j

This equation is specialized for Cartesian coordinates in Appendix B, Eq. (B.1-3)
and for cylindrical coordinatesin Eq. (B.3-9).

4.5 The Curl Differential Operator

The curl operator is the third of the three first-order vector differential operators
introduced in Section 4.1. Whereas the gradient employed the del operator (V)
directly and the divergence employed the del-dot operator (V -), the curl employs
the del-cross operator, denoted by “ Vx”. In the previous section, we found that
divergence of a vector could not in general be found by simply taking the dot
product of the del operator with the vector because it was necessary to account
for variations in surface elements as well as the vector components. Here we will
find a similar admonition. The curl of a vector field is not simply the cross
product of the del operator with the vector for a similar reason. Although one can
validly get by with this misleading approach when expanding the curl in

*  One of the paramount advantages of using generalized coordinates (GOCCs)
is the ability to roll subscripts. When expanding vector operatorsinto GOCCs
in 3D space, it is necessary to do so for one third of the problem. The
remaining two-thirds may be deduced by simply rolling the subscripts. This
procedureisinvalid in al specific (nongeneralized) coordinate systems except
Cartesian coordinates. In Cartesian coordinates, it is permissible because all
three metric coefficients, h ,h ,h,, are unity and thus do not have variations
with respect to coordinate directions. In this specia case, the roll sequenceis
XY —>Zo>X>Y.
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Cartesian coordinates, it is invalid to do so in any other coordinate system. Many
texts that first introduce the student to vector differential operators immediately
fall into this oversimplistic approach of expanding these operators in rectangular
coordinates, no doubt because to immediately expand into GOCCs exposes the
student to an inordinate complexity of calculative rules before providing a
perception of the nature of the operator. In the case of the curl, Bevc states this
with his usual insight and precision:*

To be sure, such rules are useful in actual calculations but they
hardly provide any physical insight into the nature of the curl and
moreover depend on coordinate systems.

In this section we find that the curl does not change the rank of the field
upon which it operates. This is in contrast to the previous two operators in that
the result of a gradient operation added one to the rank and the divergence
subtracted one from the rank of field that was operated upon. Therefore, if the
three operators act on a vector field, the divergence will yield a scalar, the curl
will yield a vector, and the gradient will yield a dyadic.

Like the gradient and the divergence, the curl is a first-order vector
operator using the del notation; however, the similarities end there. The curl
operator is entirely different from the two just previously reviewed. The inherent
definitions are based on three entirdy different geometries—the gradient on a
differential length going to zero in the limit, the curl on a differential area going
to zero in the limit (as we will soon see), and the divergence on a differential
volume going to zero in the limit. In addition, the curl operates transversely,
whereas the divergence operates tangentially and the gradient operates omni-
versely, so-to-speak. By this, we do not mean that the resultant is transverse,
tangential, etc.—just the operand acts in these ways.

4.5.1 The curl of a vector field—a physical description

Let us next acquire a physical understanding of this vector field that we call the
curl of a vector field from the definition (outside of the context of coordinates).
Again, the definition of this vector operation is given by Bevc® (with emphasis
added):

The curl of a vector field A at a point is a vector pointing in the
direction of a normal to an infinitesimal surface which is so oriented
in space that the limit of the ratio of the line integral of the vector
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fidld A around the perimeter of that surface to the area enclosed is
maximal. The magnitude of the curl is the value of that limit.

Mathematically, the curl vector C of the vector field A is by this definition

determined by
A
C=curl A=lim u, (4.5-1)
Aa—0  AQ
where
lim (circ(A)/ Aa)|
Aa—0 max

is the maximum of the ratio of the circulation of A(T,t), defined by Eq.
(2.4-22), about the point P located at T in space and at time t to the enclosed
area, and where U isthe normal to that surface at P in the right-hand sense with
respect to the direction of the closed-line integration. Shorthand notation for the
curl is given by the use of the del-cross operator as

C=VxA (4.5-2)

Since there are a triply infinite number of closed paths about a point—an
infinite number of paths about each of the three orthogonal axes passing through
the point P—it may seem that finding the maximal ratio would be a formidable
task. However, a perfectly straightforward procedure is taken to resolve this
difficulty.

First, a component of the curl in an arbitrary direction, say G,, is found
from the above definition. That is, an arbitrarily selected infinitesimal surface,
Aa,, is chosen with U, asits normal. This surfaceis planar and is bounded by an
infinitesimal closed path d¢, whose direction is taken in the right-hand sense
(that is, with the thumb of the right hand in the direction of U, the fingers give
the direction of the closed path). It is chosen such that the plane of the path
contains the point P at which the curl of A is desired. In performing the limit,
namely lim(circ(A)/Aa), the vector component of the curl of A in the G,
direction is determined:
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infinitesimal surface
\/_\ d¢ isadifferential element of length
on aclosed path surrounding the surface

U is L tosurface

Figure 4.5-1 The geometry associated with the definition of curl.

,3\ d¢
curl Al —ulj;irgo ™ (4.5-3)

A second direction, say U,, is taken orthogonal to the first but otherwise
arbitrary, and the procedure is repeated to obtain the second component. Finally,
athird component is taken orthogonal to the first two by the right-hand rule (and,
thus, is uniquely determined). We assign its direction as 0,, and repeat the
procedure again. Summing the three orthogonal components, the resulting vector
is the desired maximal ratio and is the curl of A:

3
Vx A= > curl A|i
= (4.5-4)

Note that this expression was determined from the definition without the
need for any coordinate system.

4.5.2 The curl as a vorticity vector
In order to give further physical interpretation of the curl operator we need to
garner a physical understanding of the circulation integral, Eg. (4.5-1) — an

intimate part of the definition of the curl. As first presented in Eq. (2.4-22), the
circulation of thevector fidd A is

circ(A) = Cﬁ A-d! (4.5-5)
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From [Morse & Feshbach, pp 18ff]™ thisintegral is a measure of the tendency of
the field’'s flow lines to “ curl up.” In cases such as magnetic fields or fluid flow
fields where the field direction lines either close on themselves or circulate as in
a hdix, the circulation of the field, circ(A), will not be zero. As defined in the
discussion following Eq. (2.4-22), such fields are referred to as rotational,
solenoidal, or nonconservative. Other terms expressing this circulatory nature of
some fields are paddle-wheeling*® (Thomas & Finney, p. 992 and Schwarz, p.
154ff), swirl? (O’Neil, p. 972), and vorticity' (Rogers, p. 275). Each of these
terms conjures up theimage of circulating or twirling fields.

The paddle-wheel concept is perhaps the easiest to understand for the
student’ s initial exposureto curl. Suppose that a small paddle wheel consisting of
symmetrical, uniform, planar fins on an axial shaft is placed in a fluid that is
flowing. If the flow lines are uniform, that is, having constant direction and
strength, the paddie whed will not rotate no matter what the direction of its axis
is. However, if there is a variation in the flow field, either in magnitude or
direction or both, there will be orientations of the axis in which the paddle wheel
will rotate. The rotational speed of the paddie wheel is a measure of the
magnitude of the vector component of the curl. The axis is the direction of the
component, where the thumb of the right hand gives the orientation of the
direction when the fingers are orientated in the direction of rotation. As the axis
is adjusted for maximum rotation, the ultimate curl vector is empirically
determined. This postulation may be tested by rotating the axis in each of two
orthogonal directions and noting that the paddlie whedl does not turn in either of
these orientations. Thus, the component of the curl that exhibits maximum
circulation where the other two orthogonal components are zero is the curl.

Such a gedanken experiment (German for “thought experiment”) may be
tested by the construction of a curl meter, which consists of a small paddle wheel
metered to display its angular velocity. As with most such instruments, the
presence of the probe may affect the field that it measures, however, the
instrument can often be oriented to minimize such errors.

The curl operator is a measure of the circulation density or vorticity of a
vector field">—that is, the circulation per unit cross-sectional area—which is
precisdly given in the definition of the curl, Eq. (4.5-1). As Morse & Feshbach
point out, the limiting process of Eq. (4.5-1) “is more complicated than that used
to define the divergence, for the results obtained depend on the orientation of the
element of area,” another way of pointing out the ultimate task of determining the
maximal ratio specified by the definition. In their ensuing discussion Morse &
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Feshbach elegantly demonstrate the validity of this task by simply determining
the three orthogonal vector components of the curl, aswas done in Section 4.5.1.

4.5.3 The expansion of the curl in GOCCs

The expansion of the curl of a vector field A=UA +U,A +U0,A in
generalized orthogonal curvilinear coordinates is derived from the physical
definition by carefully accounting for the circulation density about three
orthogonal surfaces da,, da,, and da, in each orthogonal direction in the
generalized system ¢}, 0,, 0. Thefirst of these surfaces, namely da, , is depicted
in Figure 4.5-2 in order to determine the first component of the curl, given by

<j>A d¢
(VxA), =0 lim<Z——
Aa—0 Aai

(4.5-6)

The circulation of da, is carefully determined while accounting for
variations in the differential lengths as well as vector components while changing
coordinates. To accentuate these variations, we will again represent the
differential lengths as Af; and, thus, the circulation integral around surface
ﬁwill involve the sum of four integrals—first from 1 to 2, then from 2 to 3,
then 3 to 4, and finally from 4 back to 1. Theintegral from 1 to 2 is taken along
AL, at q,, while the integral from 3 to 4 is taken along —4¢, at q, + 4q,. The
integral from 2 to 3istakenalong A¢, at q, + 4q,, and theintegral from4to1is
taken along -4/, at g, .

The circulation integral in Eq. (4.5-6) is the sum of four integrals as
described in the paragraph above. Therefore, the first component of the curl may
be written as

2 3 4 1
(VX'&h:‘jljgirﬂofl +J.2A—;.1[3 +.[4 (45_7)

Since the first and third integrals are taken along 4/, and -A/,at g, and
q, + Aqg,, respectively, and the second and fourth integrals are taken along 4/,

and —-A/, at q,+Aq, and q,, respectively, we organize these into two separate
limits as follows:
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q,

Figure 4.5-2 Surface element use in the derivation of
the first component of the curl (V x A), in GOCCs.

R NP

(4.5-8)
Ay -0 Ag

(VxA), =0, im

where da, = 47,4(, = h,h, 40,405 . Since the first limit above is taken over
variationsin g, and the second limit above is taken over variationsin g,, limits
occur first in Eq. (4.5-8) as 4q, — 0 and then as 4q, — 0. Thus, component
one of the curl is found by the following process:

N I
3 A
[Azuz ) Uzhz] & 40, + [Azuz ) (_uz)hz] a+AGs 40,

h,h,Aq, A,
I I,

T 3

im [As,us ) (_us)ha] @ Aq, +[A3,u3 ) ushs] +AG Aq,

+0, li
46, =0 hzhsquAqs

(VxA), =0 lim
4g3—0
(4.5-9)
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where the variations in lengths reduce to variations in metric coefficients. Since
the coordinates are orthogonal, there are no variations in coordinates ¢, and g,
and therefore these may be cancelled in the numerators and denominators. Thus,
we have

(sz\)lzﬁ lim [%hz]%_[%hz]%+m)@ + lim _[A3h3]q2 +[A3hs]qz+Aq2
hyh, | 4%-0 Aq, 49,0 Aq,

(4.5-10)

which are readily recogonized as partia derivatives. Therefore, the first
component of the curl of A is

(VxA), = h‘j& {a (a':gfb) - a(aAEhZ)} (4.5-11)

This is the component of the curl in the U, direction. The next two components
are determined in the same manner; however, these may be written out simply by
“rolling” the subscripts. Summing the components, we have

aqj (hA) ——(h A ):l (4.5-124)

VxA—mz hl:

where j=i+1=2,31 and k= j+1=31,2. Another convenient form (often
preferred by students) for the curl of avector is

a G G
hh,hh hh

VxA= % aiqz aiqa (4.5-12b)
hA hA hA

which can be readily expanded to arrive at Eq. (4.5-12a) after expanding the
summation.
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4.5.4 The expansion of the curl in cylindrical coordinates

Substituting r, ¢,z for ¢,,0,,d, and L,r,1for h,h,, h, in Eq. (4.5-128) we have

A —g 1oA_9A A{%_f’i} 1 1/ 00A) oA |, o
XA‘cyl‘”{r 39 az}”“’ az o U Tar o |41

or aternatively in determinant form, we have

i, o
r o

Vxﬂ‘ |99 9 (4.5-13h)
o |or ¢ oz
A TA A

4.6 Tensorial Resultants of First-Order Vector Differential
Operators

To summarize, let us tabulate the resultant quantities from the three first-order
vector differential operators developed in the preceding three sections. We will
first establish single-character symbols—D, C and G—to denote divergence, curl
and gradient, respectively. This ordering is chosen in increasing order of resultant
tensor rank. That is, the divergence, curl, and gradient change the rank of the
operand—the quantity upon which they operate—by -1, 0, +1, respectively. As
stated in Section 4.1, a vector differential operator can yield scalar, vector, or
tensor fields depending on its properties and depending upon the rank of the
operand. Table 4-1 summarizes, encapsulates, and generalizes this statement for
the divergence, curl, and gradient of scalars, vectors, dyadics and tensors in
general.

Since there can be no quantity with negative rank, the divergence cannot
operate on a scalar. Also, by careful inspection of Eq. (4.5-12a), the curl cannot
operate on a scalar either. These observations are consistent with the rules for the
dot and cross products between vectors. One cannot take a dot or cross product of
a vector with a scalar. For the same reason, one cannot take the divergence or
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Table 4-1 Resultant tensor rank from three first-order vector differential

operators.
Diff. with a with a with a with atensor
Vector | scalar(ng =0) | vector (N =1) dyadic of rank Ny
Operator operand s operand vV (n=2) operand
operand d el
D X s (ng=0) v(n,=1) neal
C X v(ng=1) d(ng=2) 0T
G v(ng=1) d(ny=2) t (n,=3) -
Key: X = nonexistent d = diadic (n, = 2) D=divergence
sS=scalar (n,=0) t=triadic (n, =3) C=curl
V= vector (n,=1) T = tensor of rank n, G=gradient

curl* of a scalar. Therefore, these two operations are noted as “nonexistent” in
Table4-1.

Note that resultant quantities align diagonally in Table 4-1. For example, the
operations Gs, Cv, and Dd result in vectors, which line up diagonally. Likewise,
Gv, Cd, and Dt (the latter, D operating on a triadic, tensor of rank n, =3) aso
line up diagonally, each having dyadic resultants.

4.7 Second-Order Vector Differential Operators—Differential
Operators of Differential Operators

Thus far we have been dealing with the three classical first-order vector
differential operators—divergence, curl, and gradient. In this section, we will
cover some of the combinations of these. There are logically nine combinations
of these three operators, although some may be nonexistent and some may be
zero depending upon the quantity being operated on, which we call the operand.
Again, in order to list and sort these nine combinations, let us use the same
single-character symbals, namely D, C, and G, that we use in building the above
table, to denote divergence, curl, and gradient, respectively. This ordering is

* Although the curl of a scalar is considered nonexistent, if such an operation did exigt in
some sense—a pure abstraction—it would be a scalar, since the curl does not change the
rank of the quantity upon which it operates.
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chosen because resultant tensor rank from these operators changes in upward
steps, namely -1, 0, +1, respectively, as previously pointed out.

In Section 4.7.1 the various combinations of second-order vector
differential operators and operands are tabulated in terms of their respective
resultant forms. This exercise in tabulating the nature of the resultant forms from
second-order operations before studying the details of these operations is
intended to provide focus to the understanding of the operations and garner an
appreciation for their significant features.

The subsequent sections provide detailed explanations of six of the
commonly used second-order combinations. In Section 4.7.2 two combinations
that involve the curl become zero. These are shown to have considerable
significance in formulating real-world solutions to abstract physical phenomena
using the tools of vector calculus, such as Maxwel's eguations in
electromagnetics and Schrodinger’s equations in quantum physics and nonlinear
optics. Sections 4.7.3 and 4.7.4 cover combinations leading to the scalar and
vector Laplacian operators and 4.7.5 and 4.7.6 round off our detailing of the
commonly used second-order operators.

4.7.1 Resultant forms from second-order vector differential
operators—a tabular summary of tensorial resultants

The nine combinations of second-order differential operations taken in D,C,G
order would be DD, DC, DG, CD, CC, CG, GD, GC, and GG, each operating
on scalars, vectors, dyadics, and general rank tensor operands. Because there are
nine resultant quantities potentially for each of the four operands, we will create
four tables. Each table lists “first operator” in columns and “second operator” in
rows, where first and second refer to the steps that one takes in performing the
differential operations. For example, “DGs,” which denotes the divergence of the
gradient of a scalar, such as V-VV, is peformed by first executing the Gs
operation. That is, the gradient of the scalar, for our example VV , is performed
first (as it must, because the divergence could not be done first). Tables 4-2(a),
(b), (c), and (d) list the nine resultant operations on scalars (s), vectors (v),
dyadics (d), and general rank tensor | T operands, respectively. Since there are
nine combinations, we give the designation PQ to denote any one of the nine.

The key at the end of the tables should be used in order to garner
their full impact and to follow the explanations of the information.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4-38 Chapter 4: Vector Calculus Differential Forms

In our example above DGs is be found on Table 4-2(a) (because the
operand s is a scalar), in the third column (because the first operation Gs is the
gradient G), and in the first row, (because the second operation is the divergence
D). The resultant of DGs is ascaar listed as“s” on Table 4-2(a), G column, D
row. Further, since DGs is a common operation (called the Laplacian of a
scalar), areferenceis given to Section 4.7.3 where DGs is covered.

The principal features of each of these tables are described in the five
paragraphs that follow.

In Table 4-2(a) six of the nine second-order operators are nonexistent since
neither the divergence nor the curl can have scalar operands. Only the gradient
can. Thus, DG, CG, and GG vyield scalar, vector, and dyadic resultants,
respectively. DGs is the scalar Laplacian and is discussed in Section 4.7.3 and
CGs isone of the operations involving the curl that becomes identically zero as
shown in Section 4.7.2. These section references are indicated in the table. GGs
has a dyadic resultant; however, it is not generally used in upper-division
engineering and physical science courses. Therefore, we give no further detailsin
this guide.

In Table 4-2(b) two of the nine combinations are nonexistent because the
divergence of avector isascalar and a scalar cannot be an operand of divergence
or curl. Four of the nine combinations have referrals to subsequent sections. DCv
refers to Section 4.7.2, since it is another important second-order operator that
becomes zero. In addition CGv is zero, which means that al nine components of
the dyadic are zero.* DGv, which is the vector Laplacian, is referenced to
Section4.7.4. CCv and GDv are referenced to Sections 4.7.5, and 4.7.6,
respectively.

Table 4.2(c) provides the resultants for the nine second-order differential
operators with dyadic operands. All nine resultants exist (or are zero) starting
with a scalar in the upper left, two vectors on the next diagonal, then three
dyadics on the next diagonal, followed by two triadics, and finaly by one
guadadic in the lower right. However, two of these—DCd and CGd—are zero,
meaning that the three components of the vector resultant of DCd and the 27
components of the triadic resultant of CGd are zero.*

* The fact that second-order differential operators DC and CG are zero for any operand
regardless of rank is demonstrated (at an intermediate tensor calculus level) in Appendix
C, Sections C.2-2 and C.2-3, respectively.
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Table 4-2 Second-order vector differential operator resultant forms with four
operands—scalars, vectors, dyadics and generalized tensors.

€)) Scalar operand s (b) Vector operand v
(nR = O) (nR = 1)
PQs First operation Q PQv First operation Q
(2™ symbol) (2™ symbol)
D C G D C G
a S s=0* v
= |D] X X [4.7.3] = D| x [472] | [474]
=N S
® O ®|/O
ol v=0* D E v d=0*
ga|C| X X | 472 Se |C| X | 415 | ;-2
23 24
c% d § t
v
G X X (n,=2) G [4.7.6] (n,=2) (n,=3)
(© Dyadic operand d (d)  Tensor operand
(N,=2) generalized rank: n,>2
PQd First operation Q PQn, First operation Q
(2™ symbol) (2™ symbol)
D C G D C G
o D s v=0* d o D T 4 =0 T
c (n,=2) c R x=n-1 R
S - S -
B B
T E d t=0* T E J=0
ga | C v (n,=2) | (=9 ga |C| nil Wl xengel*
=) 23
5 a | 5
q
Sl -2 | -9 | (-4 Gl T | el ezl
Key:
X = nonexistent t = triadic (n, =93 D=divergence
S = scalar (n, =0) g = quadadic (n, =4) C=curl
V = vector (n_ =1) n, = tensor rank G=gradient
d = diadic (n, = 2) o1 = tensor of rank n P=D,Cor G
* o1 =0= all tensor components are zero Q=D,Co G
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Table 4.2(d) generalizes the first three for all existent cases, including
those that are zero. All nine second-order operators are assumed to operate on a
tensor | T (of rank ng) called the operand. The upper-left resultant is a tensor
— (of rank n,—2). The two resultants in the next diagonal are tensors | T
(of rank n,—1), although all components of the divergence of the curl turn out to
be zero.* Thethree resultants in the next diagonal are different tensors, but of the
same rank as the operand, and are different from their operand, in general. On the
next diagonal, the two resultant tensors | T areof rank ng+1; however, again,
one has components that are all zero,* namely the curl of the gradient. Finally,
the gradient of the gradient (lower right corner) yields aresultant | T tensor (of
rank n;+2).

Of the 36 combinations of three operators taken two at a time with four
operands, eight are non-nonexistent, six are detailed in the subsequent section
because of their importance to juniors and seniors, and the remaining cite only
their respective resultants for further study. Of these 36 combinations, seven are
identically zero, meaning that all tensor components of these seven are zero.
These are denoted by the asterisks in Table 4-2.

4.7.2 Two important second-order vector differential operators that
vanish

As stated above and referenced in Tables 4-2(a) and (b), CGs and DCv become
zero. We will demonstrate these two identities and discuss the significance of
their vanishing, which is more than the casual observer might expect. First,
CGs =V xVV . Comhining Egs. (4.5-12a) and (4.3-19), we have

1 oV 1 oV
VxVV —mz h |:aq,+1 (hﬂ h+2 aqsz aq+2 (hﬂ I‘\Jrl mj}

Notice that the metric coefficients h,, and h,, cancel. Also canceling are the
resulting second derivatives, which from Eq. (1.3-11) are independent of the
differentiation order, that is, 9°/(9q,,,9q,,,) = 9°/(0q,,99,,) . Thus, the contents
of the square brackets vanish and we have a vector identity

VxVV =0 (4.7-1)

Therefore, since CGs = 0 from Eq. (4.7-1), we show this result in Table 4-2(a),
column G, row C asv=0, sincethe gradient of a scalar isa vector and in turn the
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curl of that vector is another vector. This means that all three components of v
areidentically zero.

Sgnificance: This says that anytime we have a conservative vector field—a field
whose curl is zero—that field may be represented by the gradient of a scalar. For
example, Maxwell’s curl equation for the electric field intensity is zero in
electrostatics, meaning that the electric field intensity is conservative: VXE =0.
The implication of Eq. (4.7-1) isthat the electric field intensity may be written as
E=-VV. (The minus sign originates from the sign of the charge of the
electron). In this example, V is the eectric scalar potentia (voltsin Sl units) and
E isthe (vector) dectric field intensity (volts per meter in Sl units).

Next let us explore DCv =V - Vx A. The divergence of the curl of a vector
field can befound by combining Egs. (4.4-22) and (4.5-12a):

2 (Ah) (AR
{hzhs hzhi 2, I }}
1 2 (Ah) (AR
V.VxA= _ 7.
At {mmn_ , o }} @2
3 (Ah) (AN
aqg{hlhz | o og, }}

Notice again that the metric coefficient combinations cancel and the resulting six
second derivatives, which from the mixed derivative theorem Eq. (1.3-11) are
independent of the differentiation order, also cancel. Thus, the contents of the
large parentheses vanish and we have the vector identity

V.-VxA=0 (4.7-3)

Therefore, since DCv = 0 from Eq. (4.7-3), we display this result in Table 4-2(b),
column C, row D as s = 0, since the curl of a vector is a vector, and the
divergence of that vector isascalar.

Sgnificance: This shows that anytime we have a vector field with a zero
divergence, that vector field can be represented by the curl of another vector
field. For example, Maxwell’s equation for the magnetic flux density is V-B =0
in electromagnetics, which says that there are no magnetic monopoles in physics.
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Therefore, from Eqg. (4.7-3), the magnetic flux density vector field B may be
writtenas B = Vx A. Inthisexample, A isthe magnetic vector potential.

4.7.3 The divergence of the gradient of a scalar field—the scalar
Laplacian

One of the more commonly used second-order vector differential operators is the
divergence of the gradient of ascalar fidd (V-VV ). Theresult isascalar, asone
can see by first taking the gradient of the scalar field V(q,,q,,0,), which is a
vector, and in turn taking the divergence of that vector yielding a scalar.

4.7.3(a) The scalar Laplacian in GOCCs

Using Eq. (4.3-18), we determined the gradient of V in GOCCs. Substituting this
result for the vector A in Eq. (4.4-22), one obtains

V.W:i{i(%al}i(mal}i(ﬂﬂﬂ 014
hhh,| dg\ h dg ) dg,\ h, 99, ) dg;\ hy dg,

The detailed development of the above expression is left as an exercise for the
student. There being only scalars and vectors involved, it should be a perfectly
straightforward process for students at the junior or senior level.

This second-order vector differential operation is used so frequently in physics
and engineering that a special symboal is used to simplify the notation, like so:

V-VV =V¥ (4.7-5)

Note that the shorthand notation for the divergence of the gradient operator
DG =V -V =V?, where V? is called the del-squared operator. This operator was
first introduced by Maxwell as Laplace’ s operator. In modern parlance, we call it
the Laplacian. We have already pointed out that the Laplacian of a scalar (DGs)
is a scalar and noted it in Table 4.2(a), column G, row D. Moreover, since both
the resultant and the operand are scalars, DGs = V?V is also called the scalar
Laplacian.

It is noteworthy that the Laplacian does not change the rank of the operand in
general. This is evident from column G, row D in Tables 4-2(b), (c), and (d),
each of which has a resultant with the same rank as its operand. In Section 4.7.4
we will deal with another extremely important and frequently used case, namely,
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the Laplacian of a vector. First, however, we will express Eqg. (4.7-4) in
cylindrical coordinates.

4.7.3(b) The scalar Laplacian in cylindrical coordinates

Substituting r,¢, z for q,,9,,q, and Lr,1 for h,h,,h, in Eq. (4.7-4) we have

VV| =V.-VV

:}i(ravj 10V oV (4.7-6)
oo ror

o ) r?o¢* o7
which isthe cylindrical coordinate expansion of the scalar Laplacian.

4.7.4 The divergence of the gradient of a vector field—the vector
Laplacian

Perhaps equally as common as the scalar Laplacian, if not more so, is the vector
Laplacian. This second-order vector differential operator is the divergence of the
gradient of a vector field (DGv =V -VA). The result is a vector, as was noted
earlier. There is, however, a crucia difference in its implementation compared
with the scalar Laplacian. One can see by first taking the gradient of the vector
field A(g,,q,,q,) that the resultant is a dyadic. The case of the gradient of a
vector field was developed in Section 4.3.2 and resulted in the dyadic given by
Eq. (4.3-20). However, we cannot smply substitute this into Eq. (4.4-22), since
we are dealing here with the divergence of a dyadic and Eq. (4.4-22) aready has
had the inner-product operation on a vector built into it. The resulting scalar form
of Eq. (4.4-22) has no provision for the insertion of the nine dyadic components.

Therefore, in Part (a) of this section, we develop the divergence of a
dyadic. The vector Laplacian is built upon this result, first in GOCCs [Part (b)],
and, then, to illustrate the process of having to take the spatial derivatives of the
unit vectors, expanded in cylindrical coordinates in Part (c).

4.7.4(a) The divergence of a dyadic in GOCCs

Since the inner-product operation involved in the divergence of a vector was
aready implemented in the development of Eq. (4.4-22) resulting in ascalar, it is
of little use to usin setting up the operator in aform that can be applied to tensors
of higher rank. Let usfirst look at the nature of the divergence operator in such a
form that it may be applied to any tensor operand:
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1 &0

= hhh 23 —(hh.20- ) (4.7-7)

where the blank spaces after the dots are left for insertion of the tensor
components, including the unit tensors in each component. Notice the position of
the unit vector U, and the position of the dot operator. Since the unit vector in
general can vary with changes in coordinates, it would be improper to place the
unit vector to the left of the derivative. This statement can be tested by treating
the divergence of a vector operand and checking whether Eq. (4.7-7) reduces to
Eq. (4.4-22). Let A=0,A +0,A +0,A and insert this into Eq. (4.7-7). One can
readily show that this results in Eq (4.4-22). However, if Eq. (4.7-7) were
written in the form G d(h h,-GA)/aq or =i -[9(hh,dA)/dq], the
derivative would have to be taken on the internal unit vector and the resultant
scalar would not be Eq. (4.4-22).

Next, to determine the divergence of a dyadic, consider the dyadic G in
generalized coordinates

— 3 3
6=3Y44,G, (4.7-8)

i=1 j=1

Notice the dual directional compoundedness of the unit dyads g, and the nine
scalar components G;; . Substituting thisinto Eqg. (4.7-7), we have

szg]z_laql (ththrZ i u|u j

Since U, -0, =1, we have

G.0
R g )

and separating the derivative of a product by a[ﬁi(ql,qz,qg)f(qi,qz,qg)]/aqi =
G (3f /3q,) +(ad, /aq ) f

V~C:5:i23:23:[01 a(h+1h+2Gij)+[gl;j j(ththrzGiJ)] (4.7-9)

Jq

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4.7: Second-Order Vector Differential Operators 4-45

This, then, is the general form for the divergence of the dyadic 5 , Which we will
use in formulating the vector Laplacian. Equations (4.7-8) and (4.7-9) are
specialized for the case of Cartesian coordinates in Appendix B, Egs. (B.1-5) and
(B.1-4).

4.7.4(b) The vector Laplacian in GOCCs

Two features of the divergence of a dyadic must be considered. First, the inner-
product rules illustrated in Egs. (3.4-7)—(3.4-10) are applicable when applying
the divergence; however, care must be taken to account for variations in both
magnitude as well as direction of coordinate variables. Since the gradient of our

vector field K(ql,qz,q3) is given by the two double summations of Eq. (4.3-20),
after some collection of common factors we have

VA 23: G, {z[ ATy Z—?ﬂ (4.7-10)

i= i aql

Substituting Eq. (4.7-10) into Eq. (4.7-7), we have

) Lo 1 oA, ou
ViVAS hh,h, ;am{ a0 )h {Z(U o A a_q'ﬂ}

and taking the inner product U, -u, =1 we have the vectorial resultant of the
divergence of our dyadic gradient of the vector field A(q,,q,,q,):

_ 3 A _
vvA=—1 % O hah, Z AT IO
hhh =00, | h og, Y ag

(4.7-11)

This is an expression for the vector Laplacian in GOCCs.

Because of the double summation above and the two terms of one of the
summations, there are 18 terms that will need to be collected to determine the
three vector components of the resultant. The second term inside of the
parentheses represents the nine coordinate derivatives of unit vectors. Whereas
these nine derivatives can be expanded with the use of Egs. (1.3-19) and (1.3-20),
we will not do so here because it unnecessarily complicates the analysis. Instead,
we will illustrate how Eq. (4.7-11) is used in a specific coordinate system,
namely cylindrical coordinates.
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4.7.4(c) The vector Laplacian in cylindrical coordinates

As was pointed out in Section 4.3.2, there are nine unit vector derivatives. In
cylindrical coordinates, seven of these nine are zero. The only nonzero
derivatives are from Eq. (4.3-21) and Eq. (4.3-22), namely a0 /¢ =0, and
ali, /o¢ = -G, . Substituting r,¢,z for q,,q,,q, and Lr,1for h,h,,h, wehave

18(u ) 0

Ve |, ===(rG,- )+ -y +—(G,- ) (4.7-12)

The 1/(hhh,)=1/r factor in Eq. (4.7-7) appears in al three terms:
however, the hh, =r factor in the argument of the third differential cancels
since the coordinate r is orthogonal to z. We next rearrange Eq. (4.3-23), the
dyadic gradient of the vector A(r,¢,z) in cylindrical coordinates, for insertion
into Eq. (4.7-10) by carefully orienting the nine unit dyads as follows:

Vﬂ‘m =+U [A E)§+u ?+OZ§§}

A~

ur. . (0
ol (Ba)o] e

+U [ —aé+u —?+OZ—%}

Equation (4.7-13) is now ready for inclusion into Eq. (4.7-12). Notice that
al we need to do is to insert the first, second and third terms of Eq. (4.7-13) into
the first, second and third terms of Eq. (4.7-12), respectively, because the
resulting unit vector dot products otherwise go to zero. This process resultsin

= 19| -~ . (- oA .
V-VA‘W,:F§{ru ur( ri—)?+u —?+uz—%ﬂ

10 . ~1[- (oA ~ (97, 5 A

+?@{U¢'“¢F[U,(W A¢)+u¢(W+Aj+qu

+%{O -0 ( —?+u —agﬂjz—a%ﬂ

Before rushing into replacing the G, - U, factors with unity, the student new
to the tensor world should take note that in performing the U, -0, =1 process the
rank is reduced by two. This means that the dot in the divergence operator has the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4.7: Second-Order Vector Differential Operators 4-47

same effect in the determination of the rank of the resultant as it has in the dot-
product operation between any two tensors. In this case, we have a vector
operator acting on a dyadic through a dot-product type of an operation, called the
divergence, having the same effect of a vector dotted with a dyadic as far as the
resultant rank is concerned. Before taking the unit vector dot products, one
should realize that there were 27 unit triads U; - U, (, . Eighteen of these go to zero
when i# ] and the remaining nine are left as noted above. Now letting
U -0 =1, we have nine remaining terms, which after performing the appropriate
unit vector derivatives, can be compiled into three components making up the
resultant vector form of our vector Laplacian.

Since the unit vectors are invariant to differentiation with respect tor and z,
they may be taken out of the differential arguments of the first and third major
terms of Eq. (4.7-12). Thisis aso true of the U, component of the second major
term. Therefore, our vector Laplacian takes the intermediate form

A St i
+r1 aip[ (- (T%J’AH ﬁzizﬁ

where the ¢ derivatives of U and u in the square brackets above need to be
treated carefully. Substituting a0 /E)q) G, and 90, /d¢ = -0 , the ¢ derivative

becomes
e 8a) (5300
(-2) 020 (B 3

Collecting vector components and applying Eq. (4.7-6) to the scalar
Laplacian of the scalar component of the operand vector A=0,A +3,A +0,A,,
we obtain the vector Laplacian in cylindrical coordinates:
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2= ~ [ o2 29 - [ o2 20 P
\% A‘Cw =Uu, [V A—ja—g—%j+u¢[v @,+F£—%j+uzv A

(4.7-14)

consistent with Ramo, Whinnery, and Van Duzer (inside the front cover),* for
example. Notice that this expansion is not simply the vector sum of the
individually formed Laplacians of the scalar components of the vector A in
cylindrical coordinates. Since the usual approach in presenting the vector
Laplacian to undergraduate students is to use Cartesian coordinates, where
VIA=0V’A +0 V’A +0 V’A , the extra terms in the radial and azimuthal
components of Eq. (4.7-14) that stem from the coordinate derivatives of the unit
vectors would not at all be evident. This is a common mistake by students when
the expansion is carried out in other than Cartesian coordinates.

4.7.5 The curl of the curl of a vector field and the Lagrange identity

There are two additional second-order vector differential operators, both of
which have vector operands, that are commonly used in upper-division courses.
These are the curl of the curl (CCv =VxVxA) and the gradient of the
divergence (GDv =VV-A). CCv is discussed in this section, while GDv is
discussed in the next. These two are important because of the Lagrange vector
identity:

VZA=V(V-A)-VxVxA (4.7-15)

The left-hand side of Eq. (4.7-15)—the vector Laplacian—is essential in
the formulation of vector wave equations used in junior-level electromagnetics,
guantum physics, and other similar courses. This identity is presented to the
undergraduate student in lieu of having to deal with the dyadic gradient of a
vector as well as the divergence of the resulting dyadic, which, as we saw from
the previous section, were used in determining the vector Laplacian. Since none
of the operations on the right side of Eq. (4.7-15) require any consideration of
tensors of higher rank than unity, namely a scalar and three vector operands, the
vector Laplacian can be determined without the need for dyadics by using this
identity.

The pedagogica problem with this approach, however, is that (4.7-15)
cannot be proven, even in Cartesian coordinates (which would be quite
adequate), without dealing with the dyadic operations discussed above.
Therefore, we will develop the right side of Eq. (4.7-15) and show that it equals
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Eq. (4.7-11). In this way, arigorous proof of Eq. (4.7-15) is provided. Although
mathematical identities may be proven in any coordinate system without loss of
generality, we conduct this proof in GOCCs* since our objective here is
primarily to develop first- and second-order expansions of our del operators for
conversion to any other orthogonal system appropriate to the natural geometry of
the problem. However, before expanding the curl of the curl needed for the last
term of Eq. (4.7-15) wefirst provide a physical description.

4.7.5(a) A physical description of the curl of the curl

In describing the curl operator (in Section 4.5.2) as a measure of the circulation
density or vorticity of a vector field, we expand on that description in giving a
physical description of the curl of the curl as follows:

The curl of the curl of a vector fidld is the circulation density of the
vorticity of that field, which can be thought of as the rotational
gpatial change of vorticity in the cross-product direction.

What is meant by the “cross-product direction” is that its direction is
generally at a large acute angle (nearly orthogonal, but not necessarily at right
angles) to the vorticity, which in turn may either be in the direction of the
original vector field or “nearly orthogonal” to both.

Let us illustrate this concept by two simple hypothetical examples, both
dealing with friction-free circulating liquids in an upright cylindrical tub. The
first has a uniform circulating density field, that is, it has no variation in its
circulation. Thus, it has a constant curl and therefore a zero curl curl. In the
second example, the circulation density in the center is greater than on the
outside, as if the liquid were draining from a hole in the center of the tub,
forming a cyclonic-type of a vortex hole in the flow field. We will oversimplify
the vector fields involved in this example to illustrate the point of a nonzero curl
curl.

Example 1: Vorticity in a uniform angular velocity field
Suppose the velocity of the liquid is represented by the vector field

v =0,ar (4.7-16)

* Sections 4.7.5(b) and 4.7.7 outline the process of this proof; however, the rigorous
proof is left to Appendix C.
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4-50 Chapter 4: Vector Calculus Differential Forms

where a is a constant and r and ¢ are the radial and azimuthal cylindrical
coordinates, with the z-coordinate falling on the axis of the cylinder in the right-
hand sense. This says that the entire body of liquid rotates in unison (as if the
liguid were stationary and the tub were rotating). The curl of V is

2
@Eﬂﬂﬂzgl%ﬂlzqm, (4.7-17)
r or r or

Vxv =
which is a vector with constant direction (U,) and magnitude (2a) everywherein
the region. That is, if a curl meter [described in the third paragraph of
Section (4.5.2)] were placed in the rotating fluid with its axis paralel to the z
axis, it will rotate counterclockwise with the same rotational velocity @ at al
positions in the region. The direction of the vector field @ is, of course, that of
the axis of the curl meter in the right-hand sense, namely, U, .

The vector @ is called the vorticity vector and is defined as half of the curl
of the velacity field:

B=3Vxv=0,a (4.7-18)

N

which says that the vorticity is uniform everywhere in the region, as anticipated
by our gedanken experiment of the previous paragraph. Next, we take the curl of
@ and find that it is zero because it has no variation. Thus,

VxVxV=0 (4.7-19)

which serves as our example of nonrotational vorticity, in other words,
nonvarying vorticity.

Example 2: Vorticity in a nonuniform angular velocity field
Let us next express the velocity field for our rotating liquid by

v=0,2a (4.7-20)

Here the azimuthal velocity is the same no matter the radius. This means that
angular velocity must vary as 1r , i.e, at haf of the radius, the angular velocity
doubles in order for the linear velocity Vv, to remain constant. (This simplistic
example ignores the centripetal behavior of the mass of the liquid as the radius
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4.7: Second-Order Vector Differential Operators 4-51

goes to zero, but is used to illustrate the basic nature of finite curl curl). The curl
of Eq. (4.7-20) is
19(rv,) . 2a

VxV=0-—2%=0,— (4.7-21)
r or r

which is everywhere directed axially (U,) but varies with radius hyperbolically,
namely as 2a/r. The vorticity, then, is @=0,a/r, which increases in
magnitude toward the center. Taking the curl again, we have a description of the
circulation density of the vortex field
2a
ol =2
[ r j . 2a

0, = (4.7-22)

VxVxV=-0 =
o ’r2

which clearly is not zero. Thus, the curl of the vorticity is Vx@ = 4, a/r2 , which
increases quadratically with decreasing radius, giving the semblance (but not the
exact formulation) of a cyclonic-type of avortex holein theflow field.

4.7.5(b) The curl of the curl in GOCCs

By applying Eq. (4.5-12a) twice we have

vaxgzalhzlm(a?qz{ni_ (hA) d(h }}
aq{ (hA a(h, M

' mh(aqs{&%_a(aqz }} (4.7-23a)
(thz a(h M

+ﬁi{i{ {am mAs)
“hh, | 0q, [heh | 9g g,

)
_aiqz{h?m F(aqz % M
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or alternatively, by applying Eqg. (4.5-12b) twice, the curl of the curl becomes

G
i
VxVxA= 9
le}
AR
hzdaqzm) a%(thz)}
)
9
o0,
AR NT)
m{a%(m\) aaﬂ(%)}
o
hh,
0
o (4.7-230)
ISR )
hhiaqlmm a%(w}

where the expansion of Eq. (4.7-23Db) is readily shown to become Eq. (4.7-233).
Equation (4.7-23b) is consistent with Stratton [page 50]."

4.7.6 The gradient of the divergence of a vector field

Recall that the impetus for exploring the curl of the curl in the previous section
(and the gradient of the divergence in this section) was in part due to the
Lagrange identity, Eq. (4.7-15), V’A=V(V-A)-VxVxA that is, (DGv =
GDv-CCv). The l€ft-hand side was developed in detail in Section 4.7.4. This
required that one determine the gradient of a vector (Gv) and take the divergence
of the resulting dyadic. The right-hand side of this identity provides the vector
Laplacian entirely by the use of vector differential operators with only scalar and
vector operands.
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However, a usual approach (especially at the undergraduate level) is to use
this identity without proof. Even if the proof is conducted in Cartesian
coordinates, which would be quite adequate, the dyadic resultant from the Gv
operation and the divergence of the resulting dyadic are still heeded. In the past,
the undergraduate has not been expected to deal with such matters. Thus, as a
first step toward the proof and in the interest of completeness, in Section 4.7.5 we
developed the second term on the right-hand side of this identity, CCv. Here we
will explorethefirst term, GDv.

4.7.6(a) A physical description of the gradient of the divergence

First, the divergence of a vector field is equal to the net outward flux from
infinitesimal closed surfaces at every point in space where the divergence is
desired. Since that value is the volume source distribution density at each said
point,

then the gradient of the divergence of a vector field is another vector
field oriented in the direction in which the volume source
distribution density increases most rapidly. Its magnitude is the
derivative of that volume density distribution in the direction of its
maximal increase.

The existence of the gradient of the divergence is dependent upon the existence
of such adirectional derivative. If there are no sources at the point in space where
the grad-div is being calculated, then GDv=0.

4.7.6(b) The gradient of the divergence in GOCCs

By replacing the scalar V in Eq. (4.3-19) with the scalar divergence of Eq.
(4.4-22), we have

VV-A= 3 aiii i 1 9 [hlhzm Ajj (4.7-24)
= hoq| T hhhdg | h

]

4.7.7 The gradient of the divergence minus the curl of the
curl—the vector Laplacian

Subtracting Eq. (4.7-23) from Eq. (4.7-24) leads to Eq. (4.7-11) after some
development:
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VW A-VxVxA=—— 3 9 [ Malle {i[aj%mj %ﬂ
hhhiZog [ h [550 dq " dq

=V?A

(4.7-25)
Thisis demonstrated in Appendix C.
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Chapter 5
Vector Calculus Integral Forms

There is an intimate relationship between differential and integral forms in vector
calculus (and tensor calculus as well). For example, Maxwell’s curl equations for
time-varying electric and magnetic field intensities, which are vector differential
operators, convert to circulations of these time-varying fields, which are integral
forms that describe the electromotive and magnetomotive force (volts and amps),
respectively. Further, Maxwell’s divergence equations for the electric and
magnetic flux densities (differential forms) convert to closed-surface integral
forms. These conversion relationships can be developed from a series of
theorems from the mathematics of George Green (1828) called Green’s
identities.

Other mathematicians of the 1800s contributed various forms of
identities—such as Gauss’ and Stokes’ theorems, discussed in Sections 5.3 and
5.4, respectively—that significantly add to the tools for converting between
differential and integral forms. Since Gauss’ work preceded Green’s, it would be
accurate to describe the relevant Green’s forms as generalizations of Gauss’; and
since Stokes’ theorem followed Green’s, one could take the position that Stokes’
theorem is a special case of one of Green’s identities.

Green’s mathematics also included the Green’s function, which provides
an effective method for determining solutions to inhomogeneous differential
equations. This process will be covered in Section 5.5; for now, it is sufficient to
say that this tool further provides evidence of this differential-integral
relationship.

Before probing into the powerful mathematics of these forms and
theorems, we first elaborate on line and surface integrals for two reasons. First,
all of the aforementioned theorems involve line or surface integrals or both.
Secondly, this elaboration will provide comprehensiveness so that the breadth of
physical applications may be described. In Section 2.4, line and surface integrals
were introduced as examples of integrands made up of the vector dot product of a
vector field with the vector line and surface differentials d¢ and da [see Egs.
(2.4-20)-(2.4-23)]. In Sections 5.1 and 5.2, line and surface integrals,
respectively, are covered more generally.

5-1
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5-2 Chapter 5: Vector Calculus Integral Forms

Volume integrals are, of course, involved in the 3D forms of Green’s
identities, including Gauss’ theorem, a special case of one of the Green’s
identities. However, since differential volume is inherently scalar (see Section
1.2.3), volume integrals do not modify the rank. By that, we mean that the
resultant quantity after performing the integration has the same rank as the
integrand because the differential element of the integration dv is a scalar. For
this reason, we choose not to expand on volume integrals as we have in the next
two sections for line and surface integrals, which have vector differentials drs
and da and can indeed change the resultant rank.

5.1 Line Integrals of Vector (and Other Tensor) Fields

Whereas Ilf-df [Eq. (2.4-20)] is the specific line integral of the tangential
component of a vector field along a prespecified line in 3D space, many other
line integrals exist. These are shown in the subsection below for thoroughness.
Examples are then given for the specific form of Eq. (2.4-20).

5.1.1 Line integrals of scalar, vector, and tensor fields with dot-,
cross-, and direct-product integrands

A general definition of a line integral:

An integral of a field quantity taken over a vector differential length
d/ that is everywhere tangent to a general line L in space is a line
integral.

Notice that the “tangent” in this definition refers to the line segment d/
and not to the field, the latter of which may have general direction and be of
general rank. There are several line integral forms of scalar-, vector- and tensor-
field integrands, each with three types of product operations. Several of these
line-integral forms are shown below in the order of their resultant rank, noted to
the right of each form.

IL F(r)-d/ scalar, ng =0 (5.1-1)
IL f(r)d/ vector, N, =1 (5.1-2)
IL F(r)xd/ vector, n, =1 (5.1-3)
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5.1: Line Integrals of Vector (and Other Tensor) Fields 5-3

where the fields F(F)and f(F) are written here in generalized F-space notation
as described is Section 1.1.4. We will next discuss these first three line-integral
forms and then continue with the list ending in three line-integral forms involving
tensor integrands in general.

Expression (5.1-1) is of the form of Eq. (2.4-20) cited earlier. This integral
is the sum of the tangential components of F along L through the dot-product
operation. This particular operation yields a scalar field commonly referred to as
the potential field. This form is a major part of this section because of its
frequency of use in electromagnetics, photonics, and materials science. As such,
this form will be covered in greater depth with examples in Section 5.1.2.

Line-integral forms (5.1-2) and (5.1-3) are also commonly used in fields
and photonics. These are the vector sum of the direct product of a scalar field
f (7) with each vector differential element d¢ along the path L—form (5.1-2),
and vector sum of perpendicular components of a vector field F along L through
the cross-product operation—form (5.1-3). Both of these forms result in vector
fields. Section 5.1.3 provides examples of the utility of these forms for the case

of the magnetic vector potential and the magnetic field intensity H , respectively,
resulting from a filamentary electric current source.

Before listing several other line-integral forms, it should be pointed out that
integrals (5.1-1) through (5.1-3) are presented by McQuistan® with several
examples of their use in Cartesian coordinates. We will use a variation of one of
these examples in describing the properties of expression (5.1-1). (See Section
5.1.2.) A study of McQuistan’s examples of forms (5.1-2) and (5.1-3) are highly
recommended because they provide further examples with excellent physical
interpretations.

The remaining line-integral forms are listed here for completeness and for
citing further examples.

Whereas the first example [expression (5.1-1)] has a scalar-field resultant,
the next three, expressions (5.1-2) through (5.1-4), have vector-field resultants.
The first two of these vector-resultant forms, namely expressions (5.1-2) and
(5.1-3), have already been listed above with references cited to examples given in
the following two subsections. The third is

IL A(F)-d? vector, n, =1 (5.1-4)
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5-4 Chapter 5: Vector Calculus Integral Forms

where nine inner-product operations of each of the components of the dyadic
field A(T), including their unit dyads, are taken with the vector components of
d¢ before the nine integral operations are made. This process in the integrand is
identical to the process described in Section 3.4.1(a)—the dyadic dot product
with a vector—resulting in a vector field. Recall that this process illustrated the
nature of the “inner (dot) product” in that the “application of the inner product
eliminates two of the three unit vectors thereby reducing the sum of the ranks of
the two quantities involved by two.” See rule #3 in Section 3.4.1(a). An
application of Eq. (5.1-4) is presented in Appendix D following Eq. (D.1-5).

As with expression (5.1-1), the “dot d¢” in expression (5.1-4) also implies
that the tangential components of the dyadic A are taken along the path L.
However, the components of a dyadic are dual directional. So naturally, one new
to tensors might ask what is meant by “tangential component” in the context of
dyadics (or tensors in general). Recall that the unit dyads ﬁij were introduced in
Eg. (1.1-6b), but before they could be viewed explicitly as an inner-product
operation [Eq. (3.4-1)], they had to be expanded as U,4; per Eq. (3.3-4). The
order of this expansion was important because the latter unit vector, namely U
(and notd, ), was dotted with the vector components in the process of obtaining
the vector result [Eq. (3.4-3)]. Therefore, when we say that the tangential
components of A are taken along the path L, we are referring to the latter unit
vector in the nine unit dyads. The resultant is a vector that in general is not
aligned with d¢.

Further, for tensors of higher rank, such as in form (5.1-7), where we are
taking the inner product of a triad T with the vector differential length segment
d ¢, in each of the 27 components the unit triad Gijk must be expanded as Gijﬁk or
UG, . In this way, the last unit vector, namely 4, , is ready for the inner-product
operation with the vector d/. Incidentally, the opposite is the case if the vector
and tensor are interchanged. That is, in A-T the first unit vector in Gijk must be
isolated, namely (i, , in preparation for the inner-product operation of A with
T . This point was made explicitly in Section 3.4.1(b).

Following the three vector-resultant line-integral forms, the next three
forms result in dyadic fields, expressions (5.1-5) through (5.1-7). The first of
these is the integral of the “direct” product of the vector field F(F) with the
vector differential d¢ over the path L, which of course, is a dyadic field.
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[ F(mdi=[ Fmedi  dyadic n, =2 (5.1-5)

(See the first footnote on page 4-3 for an explanation of the equivalence between
“direct product” and “tensor product.”) The next two line integrals deal with
integrands that also result in dyadics following the rules outlined in the fifth
paragraph of Section 4.1. These are the dyadic cross product (external product)
and the triadic dot product (inner product) each with our vector differential d¢ as
follows

[ A(F)xd/ dyadic n, =2 (5.1-6)

jLTz (r)-d/ dyadic n, =2 (5.1-7)

This process continues, but in general we can summarize all line-integral forms
by taking the dot-, cross-, and (tensor-) direct-product operations of general rank

tensors as
fL[nRTo(F)] e = T (5.1-8)
[[ToMxde = T (5.1-9)
[[Tomed = | T, (5.1-10)

where the post-subscripts “O” and “R” simply distinguish the operand tensor
from the three resultant tensors. Thus, [, T,] is an operand tensor of rank n,
and [[T;] is a resultant tensor of rank i =n_ -1, n_, or n. +1 for dot-, cross-, or
direct-product integral operators, respectively.

5.1.2 Examples of for_m (5.1-1): Line integral of the tangential
component of F along path L

The open line integral [expression (5.1-1)] was touched upon in Eq. (2.4-20) as
an example of the application of dot product between a vector field and a
differential line element used as an integrand. This integral takes the form | F-d/
and is commonly referred to as the line integral in common vector-calculus
parlance. However, as one can see from expressions (5.1-3) and (5.1-5), there are
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other line integrals involving vector fields. Whereas expression (5.1-1) yields a
scalar field, expression (5.1-3) yields another vector field and expression (5.1-5)
yields a dyadic field. Thus, the typical use of the term “line integral” to mean
expression (5.1-1) without mention of these other two vector-field line-integral
operators is incomplete. It is mentioned here because it is in fact useful for
particular applications that the scientist or engineer using this guide will
encounter. It is also mentioned here for completeness.

In Egs. (5.1-1), (5.1-3), and (5.1-5) F is a “force” field in a general sense.
Generally speaking, a force field is a vector field that is causal. Its effect can be a
scalar field as in Eqg. (5.1-1), another vector field as in Eq. (5.1-3), or a dyadic
field as in Eqg. (5.1-5). In the case of Eq. (5.1-1), its scalar effect is that of a
generalized potential. The examples below will clarify this point.

5.1.2(a) Examples in mechanics—force and work

In mechanics, including gravitational mechanics, F is a force field and is given
the units of force, such as newtons in Sl units. If d/ is a differential line segment
tangent to a predetermined line or path L of action, then the differential work
done by the force field is the scalar dW = F-d¢ (N-m or J). The total work
between two pointsaand b on L is

b — -
W, = j F(r)-d/ joules (5.1-11)
aL

where all differential line segments d’ lie on L, which, in general, is an
arbitrary continuous line in 3D space. By “continuous,” we mean that the
directional derivative is piecewise determinable. If there is a discontinuity in the
directional derivative at a finite number of points b,,b,,b,,---,b, on L, between
aand b, Eq. (5.1-11) must be broken into N +1 integrals as follows

W, = I;L FD-die Y, jbbL Fr)-di+[ F()dl (5112

NL

Equations (5.1-11) and (5.1-12) represent the work (energy) done by the force
field F on an object in moving that object along the path L from a to b. This is
the decrease in potential energy and is referred to as the potential energy
difference. By conservation of energy laws, this decrease in potential energy is
transferred to the kinetic energy of the object less losses.
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Figure 5.1-1 Two integration paths, L[1<x<2,y=0,z=0] and
L[l<x<2,y=1-(3-2x)*z=0] taken in a tangential-component-line integral
from point a(1,0,0) to point b(2,0,0) in two force fields.

Two examples follow. The first example, although trivial, shows how
Eqg. (5.1-11) can be applied and illustrates a path-independent case. The second
example is also simple, but illustrates path dependence. For both examples, let us
pick two paths L and L, each starting at a(1,0,0) (meters) and ending at
b(2,0,0) (meters) as shown in Figure 5.1-1. Path L, lies on the x axis and can be
expressed as L[1<x<2,y=0,z=0]. Path L, is described as
L[l<x<2,y=1-(3-2x)*z=0], which takes a parabolic route in the z=0
plane in going from a to b.

Example 1: Path-independent case

Suppose F, is a uniform force field of one Newton in the x direction, i.e., F =0,
then W, would be one N-m (or one J) by inspection. In this specific example, this
result is independent of the path taken to get from a(1,0,0) to b(2,0,0), as will
be shown next.

In general, d¢=0,dx+0,dy . Then, F-d¢=0,-d,dx+0,-G,dy=dx and

W, =W, = J'lzdx:ljoule (5.1-13)

abL1 ab|_2

in both cases. Thus, only the x component of d¢ matters in this example.
Further, the result is independent of the path taken.
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Example 2: Path-dependent case

Suppose F, varies with y but retains its x direction as F =0 (1-y).At y=0,
F, =0, which is the same as F,. Therefore, the work done on path L, is the
same as in Example 1, namely one joule as before:

W, = [ ax=1 (5.1-14)

This is not the case along the path L, shown in Figure 5.1-1(b). Since
L[l<x<2,y=1-(3-2x)*2=0], L, reaches the apogee of its trajectory at
x=1%, y=1as F,, which varies as 0 (1Y), decreases linearly from a value of
one at y=0 to a value of zero at y=1. The differential work is
F, de= (- y)dx. Our line integral of the form of Eq. (5.1-1) then reduces to the
scalar integral

W, =| (A= y)dx (5.1-15)

over the path L,.

There are two approaches to integrating Eq. (5.1-15), since the integrand
must either be of the form f(x)dx or g(y)dy. In this example, the first one is
the more straightforward for three reasons. First, f(x) is single-valued over the
range from a to b. Secondly, y is explicitly given in terms of x, namely
y=1—(3-2x)°. Finally, the limits are given over the dx integration from a to b
as 1to 2, respectively. Thus, WabLz becomes

2 -
W, :L (3—2x)%dx =1 joule (5.1-16)

which is clearly different from Eq. (5.1-13).

The other way to evaluate Eq. (5.1-15) is more involved, but is given here
for its instructional value. This approach is to solve for W, by the use of the
second form of the integrand, namely g(y)dy. There are ihree steps to this
approach. The first is to realize that g(y) is double-valued. Therefore, the y
integration must be broken into two regions—one for the rising part of the path
(region 1) and the other for the falling part (region I1). The second is to determine
g(y) . The third is to determine the y limits for each of the regional integrations.
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Here,

2

where the upper and lower signs are used for region | and region 11, respectively.
Taking the differential of our path L, equation and solving for dx yields
dx = +dy /(41— y) for region I, and dx = —dy /(4/1— y) for region II. Thus,
the two integrations become

1 0 .
W, 2%10 Ji-y dy —%jl JI-ydy=%+¥% = %joule (5.1-17)
| 1

which, of course, yields the same answer as Eq. (5.1-16) as it must, since we
solved the same problem by two different methods. In the first integral, the y
limits are 0 and 1 corresponding to x = 1 and 3/2, respectively. In the second
integral, the y limits are 1 and 0 corresponding to x = 3/2 and 2, respectively.

5.1.2(b) Electrostatics—electric field intensity and electric potential
Electric field intensity

An electric vector force field F exists on an isolated test charge Q, as a result of
the presence of a nearby system of electric charges. The force acting on Q, is
proportional to the magnitude of Q,. Electric field intensity, commonly denoted
by the symbol E is also a force field except that it is referenced to a test charge
upon which the force is acting so that it does not depend on the magnitude of the
charge upon which it acts. This vector field is called the electric field intensity. In
fact, the electric field intensity is present even if the test charge is not. It has units
of newtons per coulomb in Sl units, which is equivalent to volts per meter. By
this definition the electric field intensity is

newtons per coulomb. (5.1-18)

Electric potential

If an electric field exists, then the differential work done per unit test charge by
the electric field on the test charge when the test charge is displaced by the
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5-10 Chapter 5: Vector Calculus Integral Forms

differential amount and direction of d/ is, by definition, the differential electric
potential dV , and is determined by

_dw _ F.d/

= =E.d/s (5.1-19)
Q Q

dv

In allowing the test charge to move from point a to point b on L, the work per
unit charge is

W b — _ —
V,=—2=| E(F)-d/ (5.1-20)
" Q J.E‘L

N-m/C or V. However, the work done by the forces of the field is equal to the
decrease in potential energy of field. In the conventional definition of electric
potential, the quantity dV represents the differential increase in potential energy
per unit charge done by an external forcing system on the test charge against the
forces of the field. Therefore, the sign is reversed and thus, dV becomes
—E-d/ and

Y :—IE-@H: (5.1-21)

where C represents the constant of integration of the indefinite integral
[Eq. (5.1-21)].

5.1.2(c) Path dependence of tangential line integrals

One key point of the examples in Part (a) was to point out that for some fields the
tangential line integral [Eq. (5.1-11)] is independent of the path taken and for
others it is not. The general way to determine what vector-field line integrals are
independent of the path is to ascertain whether the field is conservative. This is
readily done by noting whether the curl of F is zero. Using IE1 and If2 from Part
(a), we have VxF, =0. Therefore, F, is deemed conservative and its tangential
line integral is path-independent. Further, since VxF, #0, IE2 is rotational and
not conservative, and its tangential line integral depends upon the path taken.

Thus far we have confined our discussion to open line integrals. Open line
integrals are bounded by two points that designate the terminus at each end of the
line over which the integration takes place. These two points a and b must not be
the same in order for the line integral to be considered open. Although there can
be coincident intermediate points, the line is considered open as long as the end
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5.1: Line Integrals of Vector (and Other Tensor) Fields 5-11

points are different. If the end points are at the same position in space, the line
integral is said to be closed.

We will discuss the closed line integral of Eq. (2.4-21) (tangential form) in
the context of Stokes’ theorem in Section 5.4. Whereas Stokes’ theorem deals
with a closed line integral of the form <J'>|f«d7, a special case of expression
(5.1-1), closed line integrals may take on any of the forms (5.1-1) through
(5.1-10).

5.1.3 Other line integral examples

Two additional examples of line integral forms are given in this section. These
deal with line-integral forms (5.1-2) and (5.1-3), which are also common in fields
and photonics. Although both of these forms yield vector field resultants, the
integrands are quite different. One deals with a scalar field f(r) along a path L.
The other deals with a vector field F along L through a cross-product operation.
These examples provide different vector fields arising from a filamentary electric
current source.

Example of form (5.1-2): Magnetic vector potential from a filamentary
current source

In this case we let the scalar field in Eq. (5.1-2) be

f(r)= % (5.1-22)

Then the magnetic vector potential K(F) takes the form of expression (5.1-2) as
X ul (F) =,

Ar)=| ——=d/ 5.1-23

(M=) 5 (5.1-23)

where the vector potential is determined at the field point T due to an electric
current source I(F") on d/' along the filamentary line path L designated by the
source point at T'. Here p is the magnetic permeability of the surrounding space
and R= |?—T'| is the distance from the field point at T to the source pointat 7'
in T -space notation [Section 1.1.4].

Example of form (5.1-3): Magnetic field intensity from a filamentary
current source
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5-12 Chapter 5: Vector Calculus Integral Forms

In this case we let the vector field in expression (5.1-3) be

F(F)=- LL(;R)Z Ur (5.1-24)

Then the magnetic field intensity I-_I(F) takes the form of expression (5.1-3) as

(") (,xde’ (5.1-25)

A0 =] r

L

This is frequently portrayed as the Biot-Savart law that describes the magnetic
field intensity H resulting from a filamentary electric current source 1(T') on
d/' along the filamentary_line path L designa’@d by the source point at 7' . Here

Uy isa lgnit vector inthe R direction, where R=T —T" in T -space notation and
R* =|R[".

5.2 Surface Integrals of Vector (and Other Tensor) Fields

As was the case with line integrals, surface integrals were introduced in Section
2.4 to illustrate further examples of the dot-product operation—in that case, of a
vector field with vector surface differentials in the integrand of an integral
operation. In this section surface integrals are discussed in greater detail.
Whereas L lf-d_g [Eq. (2.4-23)] is the specific surface integral of the orthogonal
component of F over the surface A, we will discuss other surface integrals as
well.

5.2.1 Surface integrals of scalar, vector and other tensor fields with
dot-, cross-, and direct-product integrands

A general definition of a surface integral:

An integral of a field quantity taken over a vector differential area
da that is everywhere normal to a general surface S in space is a
surface integral.

Again, the word “normal” in this definition refers to the surface segment da and
not to the field, the latter of which may have general direction and be of general
rank. In this way, any of the three product operators—dot, cross, or direct—may
be applied in the integrand, and any field for which these operations are defined
is applicable regardless of rank.
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5.2: Surface Integrals of Vector (and Other Tensor) Fields 5-13

Surface integrals are similar to line integrals in that they have integrands
that consist of any of these three operations between scalar, vector or tensor
fields, in general, and a differential vector. The principal difference is in the
differential vector. Whereas the line-integral differential vector d/ is one-
dimensional, the surface-integral differential vector da in the integrand is two-
dimensional. Thus, in a coordinate system the surface integrals are double
integrals and the differential da= a.de, dﬁ is a double differential, where
a, _(dé xd/ )/‘dz xd/ ‘ There are numerous forms of surface integrals as
there are for Ime integrals.

In fact, the same ten forms given in Egs. (5.1-1) through (5.1-10) can
represent the different forms of surface integrals. By replacing the d/s with das
and the Ls with Ss in Egs. (5.1-1) through (5.1-10), we have a similar
compendium of surface integral forms as we had with line-integral forms in the
previous section, where the S designation in the integral denotes a surface in 3D

space.
JS F(r)-da scalar, n, =0 (5.2-1)
js f(F)da= js f(F)®da vector, n, =1 (5.2-2)
L F(r)xda vector, N, =1 (5.2-3)
L K(F) -da vector, n, =1 (5.2-4)
js F(r)da=[ F(r®da dyadic, n, =2 (5.2-5)
L A(T)x da dyadic, n, =2 (5.2-6)
LTE (F)-da dyadic, n, =2 (5.2-7)

This process continues, but in general we can summarize all surface-integral
forms by taking the dot- cross- and (tensor-) direct-product operations of general
rank tensors as we did with line integrals in the prior section.
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,[ S [ nRTO (M] a = 4k (5.2-8)
[[ToMlxda = T, (5.2:9)
[LMled = . (5.2-10)

where the post-subscripts “O” and “R” denote the operand and resultant tensors
as before.

Again, as with the tangential line integral, the most commonly used surface
integral form is Eq. (5.2-1), namely I F(r)-da, except that the component of F
that is summed is the component that is normal to the surface. Since the da in
the integrand of forms (5.2-1) through (5.2-10) and the S as the integral region
designators are used only for surfaces, contemporary practice is to use the single
integral symbol until coordinates and their respective limits of integration are
specified. For example, in Cartesian coordinates () =(x,y,z) and if the surface
is parallel to the xy-plane, da =U,dxdy, and Eq. (5.2-1) would be written

Y2 %o
.Hlf(x, y,z)-G,dxdy (5.2-11)
V1%
where the outside integral goes with the outside differential and the inside
integral with the inside differential.

5.2.2 Surface integral applications
In Section 4.4 the concept of vector flux was introduced. The flux ¥ of a
vector field F over a surface in space S was found by taking the dot product of

each vector surface element da with the vector field evaluated at each element
over the surface. This process is given by 4.4-2 (also 2.4-26) as

W = L F.da (5.2-12)

For example, if the vector field is electric current density J in amps per
square meter, the current | passing through S is the flux of J given by

| =LJ‘-£ (5.2-13)
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in amps. Further, if the vector field is electric flux density D in coulombs per
square meter, the electric flux ¥, passing through S is the flux of D given by

Y = L D-da (5.2-14)
in coulombs. Likewise, the magnetic flux ¥, through S is given by
W = L B-da (5.2-15)

where B is the magnetic flux density in webers per square meter and ¥, is the
magnetic flux in webers.

Yet another example is the energy flow (flux) through a surface. The
instantaneous power density of an electromagnetic wave is given by the Poynting
vector P=ExH , where E is the electric field intensity (volts per meter) and
H is the magnetic field intensity (amps per meter), the power density P is in
watts per m?. The energy flow is then

W=[P da (5.2-16)
watts of power through a surface S.
5.3 Gauss’ (Divergence) Theorem

German mathematician and physicist Johann Karl Friedrich Gauss (1777-1855)
first developed and proved a theorem that is a mathematical statement that the
density of matter in a volumetric region of space can change only if it flows out
of or into the region through its boundary that encloses the volume. This concept
was touched upon in Section 4.4.1(c) in the discussion of the significance of zero
and nonzero divergence. This theorem has become a useful tool in converting
volume integrals of densities of quantities into closed surface integrals of the
fluxes of those quantities.

As a precursor to the development of the divergence theorem, also known
as Gauss’ theorem, we first discuss another major contribution of Gauss known
as Gauss’ law (Section 5.3.1), which states that the total outward flux of a vector
guantity is equal to the total quantity of the enclosed source of that vector field.
This leads into the divergence theorem of Gauss (Section 5.3.2).
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5.3.1 Gauss’ law

In the definition of divergence, the total outward flux through a closed surface
was needed, as given by Eq. (4.4-1). This expression involved the limit of the
ratio of that total outward flux ¥, to the enclosed volume as the volume was
shrunk to zero about the point in space at which the divergence was to be
determined. The numerator of that ratio (namely, the closed-surface integral) has
another important interpretation, for example, in Gauss’ law:

Gauss’ law for electrostatics states that the total electric flux
emanating outwardly through a closed surface is equal to the total
charge enclosed within.

Here the closed surface and enclosed volume refer to any volume and associated
surface, not just the limiting volume in Eq. (4.4-1). Mathematically, Gauss’ law
is expressed as

¢, D-da=Qyu (5.3-1)

where D is the electric flux density in coulombs per square meter, and S, is a
generalized closed surface called a Gaussian surface.

We know from the above discussion that the left-hand side of Eq. (5.3-1) is
also

€ total

<ﬁs D.da=¥ (5.3-2)

where ¥ is the total outward electric flux in coulombs. Further, the total

€ total

charge enclosed within the volume v is
Q= j odv (5.3-3)

where the volume integral J- pdv is taken over any volume v enclosed by the
Gaussian surface of all chargves represented by the electric charge density p in
C/m°. Eq. (5.3-3) is a generalization of Eq. (4.4-13) for any volume. The result of
the volume integral, then, is the total charge Q enclosed within the Gaussian
surface, which, of course, has units of coulombs of charge. Thus, the total flux is
the total charge
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Te = Qtotal (53'4)

total

Therefore, another mathematical statement of Gauss’ law is
Cﬁs D.da= j pdv (5.3-5)

Written in this way, the volume charge density p includes point charges
Q, (where n is summed over all point charges), line charges (densities pL),
surface charges (densities p,), as well as any volumes that contain distribution
of charges (densities p, ). Thus,

N, N, N, Ny
[ pdv=> Q.+ [ pdt,+D [ pds;+> [ p.dv, (6536)
n=1 i=1 " j=1 771 k=1 "k

where all point charges N, line charges N,, surface charges N, and volume
charges N, within v are summed and included in the generalized volume charge
distribution o and integrated over v, which includes all regions in space
containing the above charge distributions.

5.3.2 Derivation of Gauss’ divergence theorem

Equation (5.3-5) is valid for all closed surfaces and corresponding enclosed
volumes, provided D is continuous in the region. In particular it can be applied
to a vanishing small volume Av. Dividing both sides of Eq. (5.3-5) by Av, we
have

§,

0

D-da
a_ [, pav
AV AV

(5.3-7)

Taking the limit as Av — 0, the left side is the divergence of D by definition as
given in Eq. 4.4-1. The right side is p. Thus,

V-D=p (5.3-8)

Equations (5.3-5) and (5.3-8) represent Maxwell’s equations from Gauss’
law in integral and differential forms, respectively. Equation (5.3-8) is also called
Maxwell’s Divergence equation for the electric flux density. This result was
alluded to in Section 4.4.1(c). Substituting Eq. (5.3-8) into Eg. (5.3-5), we have
the divergence theorem
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3530 5.£=LV~ D dv (5.3-9)

which is valid for all vector fields under the condition that D and V-D are
continuous in the region. This theorem is also known as Gauss’ theorem, not to
be confused with Gauss’ law, which was given in Eq. (5.3-1).

Proof of the divergence theorem can be argued by subdividing the volume
v into small volumes Av, each bounded by a closed surface S, , where all of the
volume v is taken up by a finite but large number of differential volumes. The
outward flux of one differential volume is the inward flux to neighboring
differential volumes except where there is no neighboring volume. Thus, the flux
cancels at all common surfaces (in the interior) and the only remaining outward
flux is through the original surface S . If we multiply and divide the left-hand
side of Eq. (5.3-9) by Av, and sum over i, we have

. (5.3-10)

o 95 D-da
D.da= lim lim 22— |Av
So Avi—0 4= Avi»0 AV

V-D

Taking the limit as Av, -0, the ratio is the divergence by definition
[Eq. (4.4-1)] and the limit of the summation over Av, is the volume integral.
This yields the divergence equation (5.3-9), quod erat demonstradum (QED).

5.3.3 Implications of the divergence theorem on the source
distribution

Section 4.4-1(c) provided a quantitative description of the relationship between
source distributions and the divergence. Now that we have added the divergence
theorem to our medley of mathematical tools we may provide a quantitative
description of this relationship. Although we have approached the divergence
theorem from the viewpoint of electrostatics, we next generalize this discussion
to examine the implications of the divergence theorem on source distributions.

Let us re-examine Eq. (5.3-1). The total amount of outward flux ¥, from
the vector field A emanating from the closed surface S, that encloses the volume
v is due to a distribution of sources p, in the interior of that volume and is
described by
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P, = @AS A-da= Lv p,av (5.3-11)
Applying Eq. (5.3-9) to the surface integral of Eq. (5.3-11), we have
¥, = j V-Adv (5.3-12)

The surface integral in Eq. (5.3-11) represents the total outward flux of the vector
field A, whereas the volume integral of Eq. (5.3-12) in conjunction with Eq.
(5.3-8) represents the decrease of the source density p,. Equation (5.3-9) says
that these two quantities are the same. Thus, the divergence is given the
interpretation of a source density distribution, such as mass per unit volume or
charge per unit volume.

5.3.4 Application: The energy in electromagnetic fields—
Poynting’s theorem

An elegant application of the divergence theorem is in the classical determination
of the energy in an electromagnetic field.? We begin with Maxwell’s curl
equations for the electric and magnetic field intensities E and H :

VxE = _B (5.3-13)
ot
and
VxH=1J, +J_CV+%D (5.3-14)

where D and B are the electric and magnetic flux densities, respectively. Here
the usual current density J is broken out into conduction and convection current
densities, J_, and J_,, respectively, because each has its unique energy. Thus,
J=J,+J, . Taking the dot products of H with Eq. (5.3-13) and E with Eq.
(5.3-14) we have

H_-VxI§=—I-_I-§ (5.3-15)

and
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= = = = =\ =D
E-VxH=E-(J,+J,)+E-— 5.3-16
( cd cv) ot ( )
Subtracting Eq. (5.3-16) from Eq. (5.3-15) we have
H-VxE-E-VxH=-H- B g (3 +5CV)—E-@ (5.3-17)
ot ot
Applying the vector identity
H-VxE-E-VxH=V-(ExH) (5.3-18)

to the left-hand side of Eq. (5.3-17) and integrating over the volume in which the
energy is to be determined yields

oD oB _
{(E E+H E+E dev:—.\[v-(ExH)dv. (5.3-19)

Here we apply the divergence theorem Eq. (5.3-9) to the right-hand side of Eqg.
(5.3-19) to obtain

D B =, - o
j{E EJFH =t (ch+va)}dv:—§f(ExH)-da. (5.3-20)

\

This is the classical Poynting’s theorem,® and is valid for general media,
which may be anisotropic, bianisotropic,*> nonlinear, inhomogeneous and/or
time variant. The first two terms on the left-hand side of Eq. (5.3-20) represent
the time rate of increase of the stored energy of the electromagnetic field in the
volume v. The third term represents energy per unit time lost to heat (the ohmic
power) in the case of the conduction current, and the energy per unit time
required to accelerate charges in the case of convection current.?

In the event that the volume has energy sources, either electric charge or
current sources, the terms on the left would be negative representing power flow
out of the region. All of the net energy must be supplied externally. Thus the term
on the right represents the energy flow into the volume per unit time. Reversing
the sign of the right side signifies outward power flow through the surface S that
bounds the volume v. The pointing vector P=ExH may replace the cross
product term on the right-hand integrand yielding the total outward power flow
435 P.da (watts).?
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5.4 Stokes’ (Curl) Theorem

Sir George Stokes (1819 — 1903) occupied the University of Cambridge Lucasian
Chair of Mathematics for the last 54 years of his life. (Once occupied by Isaac
Newton before Stokes and now occupied by Stephen Hawking, this is one of the
most prestigious chairs in academe). At his death in 1903, the London Times
gave this accolade: “Sir G. Stokes was remarkable... for his freedom from all
personal ambitions and petty jealousies.” The theorem that bears his name is the
subject of this section.

In the prior section on the development of Gauss’ divergence theorem, we
found that Gauss’ law was fundamental to the definition of divergence. There we
were dealing prima facie with conservative fields—where the curl is zero and
where nonzero divergence had the interpretation of sources within the region.
Here we are dealing with the opposite situation, namely where the curl is nonzero
and the divergence is zero. This is the case for example with magnetic fields.
Before, Gauss’ law lead us to the Divergence theorem. Similarly, we find that
Ampere’s circuital law leads us to Stokes’ theorem.

5.4.1 Ampere’s circuital law

In the definition of the curl of a vector field, the circulation of the field was
needed, as given by Egs. (4.5-1), (4.5-4), and (4.5-5). This expression involved
the limit of the ratio of that circulation to the area of a surface bounded by the
closed path as the enclosed surface was shrunk to zero about the point in space at
which the curl was to be determined. The numerator of that ratio, namely the
closed-line integral, has another important interpretation in Ampere’s circuital
law:

Ampere’s circuital law states that the circulation of the magnetic
field intensity H about any closed path is equal to the total electric
current passing through any surface bounded by that closed path.

Here the closed line and the enclosed surface refer to any surface and associated

closed line, not just the limiting surface in Eq. (4.5-1). Mathematically, Ampere’s
circuital law is expressed as

gSLO H.dr=1 (5.4-1)
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where H is the magnetic field intensity in amps per meter (Sl units), and L, is a
generalized closed line over which the circulation is determined.

From the discussion surrounding Eq. (5.2-13), the current is the flux of the
current density J given by
| :L J.da (5.4-2)

where J represents all free current passing through S, bounded by the closed
line L, of Eq. (5.4-1). Therefore, another mathematical statement of Ampere’s
circuital law is

gSLO H.di= Lo 7.da (5.4-3)

5.4.2 Derivation of Stokes’ theorem

Equation (5.4-3) is valid for all surfaces S, bounded by L, . In particular, it can
be applied to a vanishing small surface As. Dividing both sides of Eq. (5.4-3) by
As , we have

quLAHS.dg _ J.As JAS da (5.4-4)

where AL is the closed line that bounds As. Taking the limit as As — 0, the left
side is the definition of the curl as given in Eq. (4.5-1). The right side is J . Thus,

VxH=J (5.4-5)

Equations (5.4-3) and (5.4-5) represent Maxwell’s magnetostatic equations from
Ampere’s circuital law in integral and differential forms, respectively. Equation
(5.4-5) is also called Maxwell’s curl equations for the static magnetic field. The
concept of a vector field that has a nonzero curl as having flow lines that tend to
curl up was discussed in Section 4.5.2. Such fields are then referred to as
rotational, solenoidal, or nonconservative.

Substituting Eq. (5.4-5) into Eq. (5.4-3) we have Stokes’ theorem

CJS%H_.&:J'SVxH-da (5.4-6)
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which is valid for all vector fields under the condition that H and VxH are
continuous on the surface S, . This theorem is also known as the curl theorem
because of its obvious use of the curl vector differential operator.

Proof of Stokes’ theorem can be argued by subdividing the surface S, into
small surfaces As; each bounded by a closed line AL, where all of the surface
S, is taken up by a finite but large number of differential surfaces. The line
integral of one differential surface is the negative of the line integral to
neighboring differential surfaces except where there is no neighboring surface,
namely on L,. Thus, the line integral cancels at all common surface borders (in
the interior) and the only remaining outward contribution is at the original closed
line L,. If we multiply and divide the left-hand side of Eq. (5.4-6) by As, and

sum over i, we have

H-dv
CJS H- dz—AlslToz AIS!TO— As, . (5.4-7)

(VxH),

Taking the limit as Av;, — 0O, the ratio in the parentheses is the component of the
curl normal to each differential surface As; by definition [Eq. (4.5-3)]. The limit
of the summation over As; is the surface integral of that component of the vector
field given by (VxH),. This yields Stokes’ theorem [Eq. (5.4-6)], and again,
QED.

5.4.3 Implications of Stokes’ theorem

If a vector field is solenoidal, i.e., if it has a nonzero curl over a region in space,
then from Stokes’ theorem, Eq. (5.4-6), the flux of the curl through any bounded
surface is equal to the circulation of the tangential component of the original field
about the closed path that bounds the surface. This assumes that the surface and
its boundary are piecewise continuous. From Ampere’s circuital law [Eq. (5.4-1)]
this flux is the total current flowing through the closed path. From Eq. (5.4-2)
this is the same current that can be determined by integrating the normal
component of current density [Eq. (5.4-2)] over any surface bounded by the
closed path.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5-24 Chapter 5: Vector Calculus Integral Forms

5.5 Green’'s Mathematics

George Green (1793-1841) was a self-taught English mathematician who became
interested in electricity and magnetism. In the course of applying potential theory
to this area of interest, he developed several integral identities. In March 1828 he
privately published (in the Nottingham Subscription Library with only 51
subscribers) his first and perhaps most important paper, “An Essay on the
Applications of Mathematical Analysis to the Theories of Electricity and
Magnetism.” This paper included his later-to-be-appreciated lemma shown in
Fig. 5.5-1.”% In this paper, Green presented not only his lemma, which we now
refer to as Green’s theorem, but also other variations of these identities, which
are discussed in this section. Various names have been attached to Green’s
mathematics. Besides Green’s lemma, these include Green’s formulas, Green’s
identities, Green’s first and second theorems (of scalar form) and Green’s first
and second theorems of vector form.

j dO'V j dxdydzV 6U = j dO'U j dxdydzU 6V

Figure 5.5-1 Green’s original lemma

Green is also accredited with the concept of the potential function, using
the term potential to describe gravitational potential from the addition of masses
in a system weighted by the magnitude of each mass and inversely with the
distance to a point where the gravitational potential is being determined. In this
book, potential was first mentioned in Section 2.2 and Fig. 2.2-1(a) as an
example of a scalar field, then in Section 4.7.2 in the context of scalar and vector
potential, and then again in Section 5.1.2 in the context of (a) work or potential
energy from a gravitational or mechanical force field and (b) electrostatic
potential in conjunction with electric field intensity.

5.5.1 Green’s identities

Green’s first identity for scalar fields W(r) and ®(T) is

$¥Vae-da=[(V¥-VO+PV’D)dv (5.5-1)

which is referred to as the asymmetric scalar form. Green’s second identity for
scalar fields is
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$(PVO-OVY)-da = [(PV'D-OV*F)dv (5.5-2)

which is the symmetric scalar form for obvious reasons. The first vector Green’s
identity for vector fields A and B is

$(AxVxB)-da=[[(VxA)-(VxB)-A-VxVxBldv  (55-3)

which is the asymmetric vector form. The second vector Green’s identity is

(ﬁ(/&xVx I§—ngxK)-ﬁ:I[E-VxVxK—K-VxVx Bldv (5.5-4)

which is the symmetric vector form.

5.5.2 Green’s function

In Section 4.2 we discussed scalar differential operators and presented some
simple differential equations stemming from such operators and discussed their
solutions. In Section 4.7.3 we developed a second-order scalar differential
operator called the scalar Laplacian. Combining these, we have a frequently used
partial differential equation where the operator is L =v?2+k?. The differential
equation for the unknown scalar function y is therefore of the form

Ll//szl//+k2l//=0. (5.5-5)

This form is the homogeneous Helmholtz scalar wave equation where k? = yew®
is the temporal eigenvalue—k being the radian wave number, i.e., the number of
radians of phase per unit length at the time-harmonic (e'") radian frequency w
for an infinite plane wave in a linear isotropic homogeneous medium having
material parameters of permeability ¢ and permittivity & .*

The partial differential equation known as the inhomogeneous Helmholtz
scalar wave equation can be conveniently solved by means of the Green’s
function. The Green’s function is the response to a unit impulse. It is extensively
used in the solution to partial differential equations. The idea is this. The
inhomogeneous form of Ly (7) = p(7") for the case of Eq. (5.5-5) is

*  This description of k as a wave number is more physical than the often used
term propagation constant—reserving the term propagation constant for y
where y=a+ jf, a is the attenuation constant, and £ is the phase
constant.®
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Ly (r) = V2 (r) + Ky (F) = o(T), (5.5-6)

where ¢(T") is a known source function located at source positions T'. The
solution y(T) located at T is found by first finding the solution to

Lerm)=vierm)+kerr=sr-r), (657

where the inhomogeneity term on the right-hand side of Eq. (5.5-7) is the Dirac
delta function that has the properties

o 0 wherer =71
o(r-1) ={ _, (5.5-8)
oo wherer =T
and where
ja(r—r')dv' =1 (5.5-9)

where the integration over v' includes the source point 7'. For this reason, the
Dirac delta function is referred to as a unit impulse. It is an impulse because of
Eqg. (5.5-8) and unit because of Eq. (5.5-9). Once G is determined, the solution to
Eq. (5.5-6) is determined by

w(F) = j G(F,T)o(F )dv' (5.5-10)

The point here is that because of the nature of the right-hand side of Eq. (5.5-7)
given by Eg. (5.5-8) and Eg. (5.5-9), Eq. (5.5-7) is easier to solve than Eq.
(5.5-6). Once G is determined, the product of G with the given source function
(") becomes the integrand of Eq. (5.5-10), which can readily be integrated for
the solution /(7).

5.5.3 Applications of Green’s mathematics

In electromagnetics and structural dynamics, we often deal with a time lag
between the cause and effect. That is, a stimulus occurs at one point in space and
at a given instance in time that results in a field at another point in space and at a
later time. In the case of electromagnetic effects, the field that results from a
stimulating source must travel at a finite velocity before its effects are observed
at a remote location. A stellar example is a supernova—through high-power
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telescopes, we can currently observe what actually took place perhaps millions or
even billions of years ago. Another example occurs every day when we observe
and hear a conversation on television with someone on the other side of the earth,
especially when a stationary satellite is used to relay the signal. There is a
noticeable time delay between the narrator’s question and the responder’s
answer. In fact we viewers have had to become accustomed to the annoyance
because of this time lag.

There are many other examples of this retardation in time between stimuli
and the resulting field. The thunder heard from a bolt of lightning is the acoustic
response that arrives much later than the observed lightning, because the sound
travels at approximately one one-millionth that of the light. Acoustic waves are
longitudinal waves in the sense that vibrations of the medium are aligned with
the direction of travel through the medium. Both longitudinal (acoustic) waves as
well as transverse (shear and torsional) waves can exist in solid materials. Each
have independent velocities of travel and, thus, each experience a time
retardation between their stimulating event and the observed stress and strain
fields downstream from the stimulus.

We will see in the following examples that Green’s functions and Green’s
identities are indispensable in describing the resulting retarded fields for
electromagnetic and structural dynamics fields eluded to above.

5.5.3(a) Retarded electric scalar potential

The inhomogeneous Helmholtz wave equation for the electric scalar potential
V(r,t) at T in 3-space (See Section 1.1.4 and Figure 1.1-1) called the field
point and at time t, due to sources depicted by the volume charge density
p(T',t") at positions T' in space called source points and at an earlier time t',
is

VAV (T, t)— ue

VEY __pTY) (55-11)
ot

g

where z and & are the permeability and permittivity of the medium assumed to
be homogeneous, i.e., uniform in space and not varying in time. Following the
method of RWV?, let us take the Fourier transform of Eq. (5.5-11):

VAV_ (T, @)+’ uV_ (T,1) =

_pa(T0) (5.5-12)
&
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where the transforms are defined by the Fourier integrals

V. (T, )= j V (T, t)e “dt (5.5-13)
and
P (FLo)= j (T, t)e dt’ (5.5-14)

with inverse transforms given by

V(F,t) = = [V, (T o) do (5.5-15)
2r 7,
and
p(T't) _1 I p. (T w)e do (5.5-16)
2r ?,

A solution to Eq. (5.5-12) may be found by Green’s function methods,
where the Green’s function is the solution to

VAG(F,T)+k’G(F,F)=—56(F T (6:5-17)

where k®’=w’us and &(r—7") is the Dirac delta function defined in Eq.
(5.5-8) and Eq. (5.5-9). The minus sign is used to be consistent with Eq. (5.5-12).
RWV® shows that the solution to the above differential equation is

Taking the symmetrical form of Green’s scalar identity [Eqg. (5.5-2)], letting
¥ =G and @ =V_(T,w) we have

[G(F, TV, (T,0)-V, (T,0)V’G(T,T) |dv’

<e—

_ 5.5-19
:Cﬁ[G(T,T')VVFT(T,a))—VFT(T,a))VG(T,T')]-da ( :
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We let the surface S go to infinity to include all sources. G and V fall off as 1/R
and the gradients GVV and VVG fall off as 1/ R?, whereas da increases as
R?. Therefore, GVV -da and VVG-da vary as 1/R and therefore the right-hand
side of Eq. (5.5-19) vanishes. Equation (5.5-19) then becomes

j [G(F, TV, (T,0)-V, (T,0)V’G(T,T) [dv'=0  (55-20)

v

From Eq. (5.5-12),

V(1 0) = kA (7 1) 2T2 @) (5.5-21)
&
and from Eq. (5.5-17),
V’G(T,T) =—k*G(F,T)-o(T-T)) (5.5-22)
Substituting Eq. (5.5-21) and Eq. (5.5-22) into Eqg. (5.5-20), we have
[ KN, (o) dv - jG(— ry La(i0) g,
v ¢ (5.5-23)

[V, (T 0)K*G(T, —')dv+jv (T )s(F —T)dv'=0

The first and third terms cancel and the fourth term is V_ (F,») through the
properties of the Dirac delta function by Eq. (5.5-9). Thus, Eq. (5.5-23) becomes

V__(F,0) = jG(r Fy L) g (5.5-24)
&

Substituting Eq. (5.5-18) for G in Eq. (5.5-24), we have

(T, w)e*®

V,, (F,0) =] Pr el (5.5-25)

Applying Eq. (5.5-15), we have the inverse Fourier transform

P pl(@tHkR) .
V(F,t) = j[MgR | P (T ;’7)[ do |dv (5.5-26)
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With a time shift t'=t+k R/®, the argument of the exponential of Eq. (5.5-26)
becomes e, Applying the inverse transform defined by Eq. (5.5-16) the
integral in Eq. (5.5-26) becomes

jot'
j de o(T' 1) = p(T', t £ kv) (5.5-27)
and the unknown V (T,t) is
V(F,t) = jMd (5.5-28)
4reR

where v = w/k =1/\/E which is the velocity of propagation of an infinite plane
wave in the linear isotropic homogeneous medium having material parameters of
permeability 4 and permittivity ¢. In free space, of course, v=c, the free-
space velocity of light. Homogeneity refers to material that is not only uniform in
space but also is not varying in time.

Whereas the plus sign in Egs. (5.5-25)-(5.5-28) does indeed lead to a
mathematically valid solution to Eq. (5.5-11), namely the plus sign variation of
Eq. (5.5-28), such a solution would imply that the response V (T,t) at T
happens in advance of the stimulus p(r',t+kv) at T"'. Feynman refers to these
solutions as advanced potentials.'® Since this is akin to causality, practicalities of
the real world compel us toward the solution with the minus sign, which implies
that the response takes place at a later time or is retarded in time. Thus, we have
the retarded potential or the retarded electric scalar potential

(r't-— kv)d

V(F,t) = j P g (5.5-29)

5.5.3(b) Retarded magnetic vector potential

A similar development takes place for the magnetic vector potential. The
inhomogeneous vector Helmholtz wave equation for the magnetic vector
potential A(T,t) at the field point T in 3-space and at time t, due to sources
depicted by the current density vector field J(7',t) at positions 7' in space
called source points and at an earlier time t', is

2N f—
LN

V2A(T,t)—
(.0 ot?

—ud (Tt (5.5-30)
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The usual procedure for finding the resulting vector field A(F,t) in terms of the
causal stimulus vector field J(F',t) is to reduce Eq. (5.5-30) to Cartesian
coordinates and to notice that each of the three components take the same form as
Eq. (5.5-11) except that the inhomogeneous term is xJ(F't) instead of

p(r'\t)/e.

However, the case must be argued differently for other coordinate systems
because components of the vector Laplacian of Eq. (5.5-30) are not simply the
scalar Laplacians of the vector field components as they are in Cartesian
coordinates. See the vector Laplacian in cylindrical coordinates [Eq. (4.7-14), for
example].

Nevertheless, the power of Green’s mathematics again is our panacea. A
generalized form of Green’s identity [Eq. (5.5-2)] is given by Blokh'

$[G(r,T)VA, (T,0)- A, (T,0)VG(F,T) |- da

5.5-31
= j[G(r,r')VZRT (F,0)- A (T,0)V°G(T, r')] v’ ( )

Again, we let the surface S go to infinity to include all sources. G and A fall off
as 1/R and the gradients GVA and AVG fall off as 1/R2 , Whereas da increases
as R?. Therefore, GVV -da and VVG-da vary as 1/R and therefore the left-
hand side of Eq. (5.5-31) vanishes as R— <, becoming

J-[G(T,T')VZKFT (T,0)- A, (F,o)V’G(T,T)]dv'=0 (5532

which, by a parallel path from which we developed Eq. (5.5-29), leads to

J(F' t—kv) v

5.5-33
47R ( )

A(T 1) =qu

which is retarded potential or the retarded magnetic vector potential .
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Appendix A

Vector Arithmetics and
Applications

As a supplement to the vector arithmetics covered in Section 2.4.1, this appendix
serves two purposes. First, the commutative and associative laws of vector
addition and subtraction are demonstrated. Secondly, these laws may be used to
graphically and mathematically bisect vectors. Other vector arithmetic, such as
multiplication and division issues, vector-vector dot, cross, and direct products
are covered in Sections 2.4.2 and 2.4.3.

Consider two vectors A and B as shown

>|
os]]

These can be added to yield G as shown

When the order is changed, namely A being added to B, the same vector G
results A
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A-2 Appendix A: Vector Arithmetics and Applications

Alternatively A and B may be added by the following construction

Thus, vector addition of two vectors is commutative, namely the sum of vectors
isindependent of the order in which they are added.

A+B=B+A (A-1)

supporting Eq. 2.4-1.

When athird vector C
&

isaddedto A + B, theresultant vector H = (A + B) + C = G+ C asshown

0l

(A+B)+C=H
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Alternatively, if C isaddedto A first and then B added to the result, we obtain
the same vector H.

(A+C)+B=H

>|

Subtraction works the same. Consider A — B =D

>|
o]

(A-B)=D

or alternatively, consider - B+ A as

5 / \§+K=5

AN

A

which yields the same result D

Noticethat G + D = 2A graphically
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and arithmetically

G+D=A+B+A-B=2A (A-2)

Also noticethat G - D = 2B graphically

and arithmetically
G-D=A+B-(A-B)=2B (A-3)

Notice that if we define E=2A andF=2B, the point of the vector
A bisects F and B bisects E.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Appendix B
Vector Calculus in Orthogonal

Coordinate Systems

This appendix first provides a graphica development of first-order vector
differential operators in conventional Cartesian and cylindrical coordinates. The
focus is in the use made of differential elements of length (DLs) and how DLs
become the building blocks for the differential elements of area and volume used
in the definitions of gradient, curl, and divergence (and, of course, any
combination of these operators). Once this concept is established several tables
are presented for detailing the salient parameters associated with other orthogonal
coordinate systems. Perspective views of coordinate surfaces are then provided to
give graphical views of the coordinate systems.

The divergence and curl of a vector field are respectively defined in terms
of a net outward flux as a differential volume approaches zero and a circulation
as three orthogonal differential areas go to zero. These geometries involve the
products of orthogonal differential lengths. Therefore, Sections B.1 and B.2 tie
differential lengths in Cartesian coordinates to the volumes and areas associated
with the divergence and curl, respectively. Section B.3 repeats Section B.1 for
cylindrical coordinates as a first step towards curvilinear coordinates from the
simplistic Cartesian—cylindrical being the only orthogonal system having only
one curvilinear coordinate.

Since the gradient is defined in terms of orthogonal differential lengths, it
is already cast into an appropriate form for use with the differential-length tables
that follow. Section B.4 summarizes the first three sections and provides a
description of the geometry for the gradient differential operator.

Section B.5 provides tables of the working parameters associated with
these and several other orthogonal coordinate systems.*® Since the prior sections
culminate with the expansions for DLs, these tables are therefore focused on the
detailed expansion of differential lengths and are presented in each of the
orthogonal coordinate systems with their respective transformations to Cartesian
coordinates. Such expansions are essential in many practical applications
involving vector fields, aswell as for other fields regardless of tensor rank.

B-1
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B.1 Cartesian Coordinate Geometry for the Divergence

Figure B-1 provides the detailed Cartesian coordinate geometry for the
differential volume involved in the mathematical description of the divergence.
There are six surfaces making up the differential volume. These are described as
Front, Back, Right, Left, Top, and Bottom, as shown in the figure. Each of the
differential vector surfaces is defined by its respective corners and normal
directions as

da=0Gd¢ dl., (B.1-1)

i+1

and the differential volumeis

dv=dcs des, de., (B.1-2)

i+1
wherei=1,2,3, i+1=2,3,1 and i+2=3,1,2.

In the case of Cartesian coordinates, i = x,y,z i+1 = y,zx and i+2 = zX,y,
respectively. In Fig. B-1 the arbitrary spatial point P is located at (x,y,z), which
congtitutes the origin “0” of the differential volume involved in the construction
of the divergence [Eq. (4.4-1)]. From “0” the three differential lengths dx, dy and
dz establish the points a, b and c, respectively. The points diagonal to “0” in the
x-y, y-z and z-x planes are labeled d, e, and f, respectively, and the point P+dP
located at x+dx, y+dy, z+dz is labeled g, to finish out the eight corners of our
differential volume dv.

Therefore the Front surface adgf located at x+dx is denoted as
daaiy = dydz| , Where the outward normal is in the pasitive x-direction and
dydz| .o ISthe magnltude of thearea at x+dx. (In Cartesian coordinates dydz is
invariant, but in al other coordinate systems the differential area may change.)
Likewise the Back surface oceb located at x, is denoted as daoes =—0, dydZ |,
where the outward normal is in the negative x-direction. The remaining four
surfaces are  similarly  constructed  yielding dabega = u, dxd ,
Gl =0, B0, , Toge = 0, dxcly, ., aNd Gaos =0, Al for the RIght,
Left, Top, and Bottom respectively. These are detailed in Fig. B-1. Finally the
differential volume dv is denoted as dv =dxdydz.
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B-3

/L point P (X, y, 2)
ST L displaced point P+dP

\ at (x+dx, y+dy, z+dz)
-
X N
C €
P+dP at ¢ A
(x+dx, y+dy, z+dz) < g

/Z/\)r N b :
df, =0,d0, =0
Pat (XY, 2) L = L 2=, df, =0, dy
L df,=0,d¢, =G dx

Front f

/43

/g (_d  outwardnormal U, =0,
Back
o e//

57 08, =0, d¢,d;| =—0, dydd,

A~ A~

o b outward normal —-U, =-uU

X

Figure B-1. Differential volume in Cartesian coordinates used in the
development of the divergence (two pages).
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Right € L
outward normal U, =U,
9 _
U8y =0, d0,d L =0, dxdz "
b
d
L eft ¢
outward normal —0, =0,
f
da, =-0,d/,d0y], =~0, dxdZ
o]
a
Top ‘; outward normal U, =,
da,, =0, d€1d€2|q3+dq3 =0, dxdy|
C €
f g
Bottom ¢ b outward normal 0, = -0,
] / da,, =-0, d£1d£2|08 =0, dxdy]_
: dv=d¢,d¢,dr, = dxdydz
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B.1: Cartesian Coordinate Geometry for the Divergence B-5

Following the procedure of Section 4.4.2 the divergence of a vector field
A=0,A +0,A +0,A, in Cartesian coordinates becomes

_A + aAV + oA (B.1-3)

V-A

which is a scalar as expected from Table 4-1, row D, column v.

Further, following the procedure of Section 4.7.4(a) a dyadic field

0,0.G (B.1-4)

has a divergence in Cartesian coordinates given by

V-G =0, aGXX+aGy"+aGZX
Cartesian ox ay 0z
G, dG
+0 Gy WY (B.1-5)
I ox 9y oz
_[aG, 3G, oG,
‘Il ox 9y oz

which is a vector consistent with the rules of Table 4-1, row D, column d.
Equation (B.1-5) follows from Eq. (4.7-9) whee i,j=123=X,Y,z,
respectively, al three metric coefficients, hy, hy, and hs, are unity, and all unit
vector derivatives in the second term of the square brackets of Eq. (4.7-9) are
zero.

B.2 Cartesian Coordinate Geometry for the Curl

Figure B-2 provides the detailed Cartesian coordinate geometry for the
differential surfaces involved in the mathematical description of each of the
vector components of the curl [Eq. (4.5-1)]. There are three such orthogonal
surfaces used in the definition of the components of the curl. These are the same
as the Back, Left, and Bottom surfaces with the same corner labels asin Fig. B-1,
except that their vector directions are all positive. As before, each of the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



B-6 Appendix B: Vector Calculus in Orthogonal Coordinate Systems

differential vector surfaces are defined by their respective corners and normal

directions as
dawe: = dax =0, dydz , (B.2-1)
daoa = day =4, dzdx\y (B.2-2)
and
dacas = da, =U, dxdy], (B.2-3)

From these the curl is determined in Cartesian coordinates following the
procedure of Section 4.5.3 and outlined in Fig. B-2.

Following the procedure of Section 4.5.3 the curl of a vector field
A=0,A +0,A +0,A, in Cartesian coordinates becomes

A —olA_A
o [9A_9A ]

+Gz[ai_a_A<j

ox oy

whichis avector as expected from Table 4-1, row C, columnv.

Further following the procedure of Section 4.7.4(a) the curl of a dyadic
field given by Eq. (B.1-4) in Cartesian coordinates is

VxG =l:JXX aG”—aG—W +0 aG—Z”—aG—W +ﬁxz aGZZ—aGVZ
Cart oy 90z | Y| dy oz | 0 0z |
» [0G, 090G, ] = [0G, 0G,| =[0G, oG,
P Pom Py Py e 2| (B25
+ny_ 0z  oX _+ W{ 0z  oX _+Uyz[ 0z ox | ( )
b, | 2w 9Cu |, |9y 9By | g [9Ce_9G,
| ox a9y | Y| ox oy | ox  ady |

which is a dyadic consistent with the rules of Table 4-1, row C, column d.
Equation (B.2-5) is a special case of Eq. (C.2-6) in the next appendix for a dyadic
(second-rank tensor). An application of Eg. (B.2-5) can be found in Appendix D
on page D-2.
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X
C e
P(x,y,2) b
in back corner
labeled "0" a d

@1=Qd€2d€3=@$=@dydz|x

lim
Aa—0

o+l 4+
A,

_ 0
Pz ' (VxA)e%—a—?

(VXA), =(VXA),

Figure B-2 Differential surfaces in Cartesian coordinates used in the
development of the curl (two pages).
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(VXA),=(VxA),

(,d¢,df,=da_, =0,dxdy,

Bl

a d

(VXA =(VxA),

lim

Aa,—0

Lo+l 0+
Aa,

VxR, =294
b9z ox

lim
Aag—0

INEI NI N
A,

(VXK)Z =ai_ai
ox  ady
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B.3: Cylindrical Coordinate Geometry for the Divergence B-9

B.3 Cylindrical Coordinate Geometry for the Divergence

In the previous two sections the differential lengths were invariant with changes
in coordinate position. This is because the metric coefficients h;, h,, and h; are
unity in the Cartesian system, and, thus, are not functions of the coordinate
positions x,y,z. However, this simplicity is not the case in any other orthogonal
coordinate system. The simplest generalization of this effect is seen in cylindrical
coordinates, since the second metric coefficient h, is not unity, but is given by

h,=h,=r (B.3-1)

whereas, h; and h; remain unity. In fact it can be stated that

Thecircular cylindrical coordinate systemis the only non-
Cartesian orthogonal system having only one curvilinear
coordinate, namely the azimuthal coordinate ¢ .

Figure B-3 repeats the development of Fig. B-1 with the effects of Eq.
(B.3-1) carefully taken into account in its development for the cylindrical system.
In Fig. B-3 the arbitrary spatial point P is located at (r,¢,z), which constitutes
the origin “0” of the differential volume involved in the construction of the
divergence from Eq. (4.4-1). From “0” thethree differential lengths d/,,d/,, and
d/, are dr, rd¢, and dz, respectively. These establish the points a, b, and c,
respectively, where

d/,=h,dg, =rd¢ (B.3-2)

specifies the second differential length. The points diagonal to “0” in the
r-¢, ¢-z, and z-r planes arelabeled d, e, and f, respectively, and the point P+dP
located at r +dr, ¢+ dg, z+ dz islabeled g, to finish out the eight corners of dv.

Notice that because of Eq. (B.3-2) all six of surfaces are affected by Eq.
(B.3-1); however, two pairs of surfaces have the same area and one pair does not.
Notice also that two pairs are rectangles and one pair is not. The pair that does
not have the same areais ther coordinate pair as seen by

d_aadgf = d_ar+ = l]r r d¢dZ| (B3-3)

r+dr

which islabeled as the Front in Fig. B-3, and
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B-10 Appendix B: Vector Calculus in Orthogonal Coordinate Systems

d_aoceb = d_ar’ = _Or r d¢dZ|r (B3'4)

which is labeled Back, and where da~ and dar- are the positively and
negatively directed vector areas at r and r+dr, respectively. Although the
Front and Back surfaces arerectangles, da,- > dar because (r +dr)>dr .

The other rectangular pair of surfaces is made up of the Left and Right
sides. Whereas the scalar areas are equal, their directions are not, as seen by

dacse = day =0, dr dz], (B.3-5)
and
dawegs = day =0, dr dz,.,, (B.3-6)
because dr and dz arethe same at ¢ and ¢+dg, that is, ‘@I:‘@ - but day
at ¢ isnot collinear with day,- at ¢+d¢ asevident fromthe Fig. B-3.
Theremaining pair is the Top and Bottom. These are
dacge = das =0, drrdg|, (B.3-7)
and
daca = da, =—0,drrdg], (B.3-8)

which are equal in area but are not rectangles.

Following the procedure of Section 4.4.2 the divergence of a vector field
A=0,A +0,A, +0,A incylindrical coordinates becomes

x _1[9(rA) dA I(rA) ]
V'A‘cyl_r = +8¢+ ~ (B.3-9)

whichis a scalar as expected from Table 4-1, row D, columnv.

Further following the procedure of Section 4.7.4(a) the divergence of a
dyadic field given by
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B.3: Cylindrical Coordinate Geometry for the Divergence B-11

d¢,=(1)dg, =dz

(P+dP)=P'(r +dr,¢+dg, z+d2)
e
ﬂ—/—/ d¢, =(1)dqg, =dr

H‘““"-py

-/l\_‘ dqz =d¢

da, =0,d¢, d¢
3 A3 1 2 TOp
=u,rdrdg
z+dz

da, =0,d¢, d¢
2oy Right side
=u¢drdz o

=0 rdegdz
Back da, =0, rdgdz|,
Left side da, =0, rdrdz,
Bottom da, =-0, rdr dg|,

dv=d¢, d¢,d¢, =hhh,dgdg,dg, =rdrdgdz

X=rcosg, y=rsing, z=z

Figure B-3 Geometrical construct for the divergence in circular cylindrical
coordinates.
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B-12 Appendix B: Vector Calculus in Orthogonal Coordinate Systems

G = ur ur Grr + ur ¢Gr¢ + ruzGrz
+U,U.G, +Uu,u,G,, +U,u,G,, (B.3-10)
+0.0G, +0.0.G,. +0.0G

_ 9(rG,,) oG G
v.al =1l ( r‘”)+ L e +r—””] (B.3-11)

which is a vector consistent with the rules of Table 4-1, row D, column d.
Equation (B.3-11) follows from Eq. (4.7-9) where i,j=12,3=r,¢,2,
respectively, with two metric coefficients, h, and h; being set to unity and h,
being set to r. Further, two of the coordinate unit vectors in the second term of
the square brackets of Eq. (4.7-9) are nonzero as given by Eq. (4.3-21) and Eq.
(4.3-22) resulting in the two terms of Eq. (B.3-11) that are shown without the
partial derivatives, i.e., G¢r and Gw- Without these terms the divergence would,
of course, be incorrect.

When dealing with any orthogonal coordinate system other than
Cartesian, coordinate derivatives of unit vectors must be taken
into account in determining vector differential operator
expansions.

B.4 Summary of the Geometries for Divergence, Curl, and
Gradient

In the first three sections of this Appendix we have focused on the geometries of
the divergence and curl that require the determination of differential lengths in
order to obtain their respective volumes and areas. Since the gradient is already
defined in terms of differential lengths, it was not necessary to provide the
graphic details of the geometry for this vector differential operator; however, itis
described below.
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B.4: Summary of the Geometries for Divergence, Curl, and Gradient B-13

Sections B.1 and B.2 provided Cartesian coordinate geometries for the
volume and areas needed for the divergence and curl differential operators. In
Section B.1 six surfaces were used for the construction of the closed surface
integral that made up the differential volume needed for the divergence In
Section B.2 only the back three surfaces were needed. These three surfaces made
up the orthogonal bounded surfaces needed for the closed line integrals required
for the three components of the curl. These geometrical areas and volume were
broken down into products of two differential lengths for the surfaces and three
differential lengths for the volume.

The geometry for the gradient was considered unnecessary to develop
because the three components of gradient would just be derived from three
orthogonal differential vectors dx from “o” to point a, dy from “o” to point b
and dz from“o” to point ¢, referring to Figs. B-1, B-2, or B-3.

Section B.3 provided the cylindrical coordinate geometry for divergence as
afirst step into considerations that come into play when dealing with curvilinear
coordinates, since its azimuthal coordinate is curvilinear. In order to obtain the
cylindrical coordinate geometry for the curl the three open surfaces needed
would be obec for the r-component, ocfa for the ¢ -component and oadb for the
z-component of the curl, referring to Fig. B-3.

In each case the order taken leads to closed line integrals in the direction
such that the vector components are positive by the right-hand rule. Finally, we
may mentally construct the cylindrical coordinate geometry for the gradient by
noting that the three components of the gradient in cylindrical coordinates would
be derived from three orthogonal differential vectors dr from “o” to point a,
rd¢ from*“o” to point b and dz from“o” to point c.

B.5 Orthogonal Coordinate System Parameters and Surface
Graphics

Since the above developments for divergence, curl, and gradient (and all of their
combinations) stem from a precise description of differential elements of length,
we next provide useful tables of several orthogonal coordinate systems that lead
to differential elements of length and other parameters unique to each coordinate
system. Finally, we graphically present the orthogonal coordinate surfaces for
these systems.

For each orthogonal coordinate system the tables that follow specify
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B-14 Appendix B: Vector Calculus in Orthogonal Coordinate Systems

e coordinates,

o (ifferentials of coordinates,

o transformations from curvilinear to Cartesian coordinates,
e unit vectors,

e vector components,

o metric coefficients leading to

o (differential elements of length, and

e equations of coordinate surfaces.

From such tables al of the vector differential operators discussed in this guide
may be applied to any of these orthogonal coordinate systems that one may
choose. Following each table, perspective graphical views of selected orthogonal
surfaces are shown for each specific coordinate system

The common four orthogonal systems—generalized orthogonal curvilinear
coordinates (GOCCs), Cartesian (rectangular) coordinates, circular cylindrical
coordinates, and spherical coordinates are presented Table B-1. The most general
system of orthogonal coordinates is GOCCs shown in the first column of
coordinates. Here all three metric coefficients are functions of all three
coordinates. All orthogonal coordinate systems stem from GOCCs. Therefore,
once any vector differential operator is determined in GOCCs it may readily be
expressed in any orthogonal coordinate system by the proper substitution of
coordinate variables and metric coefficients as specified by the tables.

At the other end of the generalization spectrum is Cartesian coordinates,
shown in the second column of coordinates in Table B-1. The Cartesian system
contains zero curvilinearity, that is, al three metric coefficients are unity and the
DLsarejust dx, dy, and dz as noted in Sections B.1 and B.2 above. Thefirst level
of curvilinearity is circular cylindrical coordinates, having only one nonunity
metric coefficient as explained in Section B.3. Spherical coordinates comprise
the last column of the table, having two curvilinear coordinates. Figures B-4
through B-6 graphically present coordinate surfaces for these three coordinate
systems, namely Cartesian, cylindrical, and spherical, respectively.

Table B-2 compares three other cylindrical systems—elliptic cylindrical,
parabolic cylindrical, and bipolar cylindrical. Bipolar cylindrical is extremely
useful in describing the fields associated with two-wire transmission lines.
Coordinate surfaces for these three systems are shown in Figs. B-7 through B-9.

Table B-3 provides two spheroidal systems—prolate and oblate—as
graphically depicted in Figs. B-10 and B-11. Figures B-10(a) and B-11(a) first
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B.5: Orthogonal Coordinate System Parameters and Surface Graphics B-15

show their respective spheroids alone. Figure B-10(b) displays two-sheeted
hyperboloids that have the same foci as does the prolate spheroid. In contrast,
Fig. B-11(b) displays the one-sheeted hyperboloid whose foci constitutes a
concentric circle around the girth of the hyperboloid. This same circle is the foci
of the oblate spheroid. Finaly, the spheroid and hyperboloid surfaces are
combined together with their respective ¢ planes, that are paralle with the z
axes, to form the orthogonal systems.

Tables B-4 and B-5 and Figs. B-12 and B-13 present coordinate parameters
and surfaces, respectively, for sphero-conal and toroidal systems.

Although there are hundreds of orthogonal coordinate systems, this brief
review is intended to provide selected examples that range from the common to
the more esoteric.
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Table B-1 The Common Four Orthogonal Coordinate Systems

Coordinate
., Generalized . Circular :
Systems Curvilinear Cartesian Cylindrical Spherica
& Parameters|
Coordinates a, o< x<oo |OSTOMT)< ] ooy (or ry)<ee
and their a, —c0 < Y < oo O<g<or 0<f<rm
range of values ds o< Z<oo | CSES 0<¢<2rx
Trensformation | x =g X=rCcos¢ | x=r sin 6 cos ¢
to _ . . .
= =r sin =r sin @ sin
Cartesian Z— . ’ z=2 ’ yz—rcose ’
coordinates =% B B
Orthogonal Unit | ~ ~ = NN P P
sgectors 0,,0,,0, | 0,.0,,0, |0,.0,.0, 0,.0,.0,
Differentials of dr.dg,dzor | dr,dg,dgor
Coordinates | 4999109 | dx.dy,dz dr.,d¢,dz dr,,d6,d¢
Components of
v | AAA | AAA | AAA | AR
Metric, Lamé | h(0,.0,.95) 1 1 1
Coefficients, or | h,(q,,0,,0) 1 r r
scalefactors | hy(q,0,,0;) 1 1 rsind
Differentiad | dl, =hdg, dx dr dr
Elementsof | dl, =h,dg, dy r de rde
Length di, = hyda, dz dz rsinfddg
(e x D+ =r | Xy =r
Y=y cylinders; spheres,
= -1y _ 1z _
Description of z=7 tan "5 =¢ €oS 7 0
Coordinate three halfplanes Z-axis cones
Surfaces thooond fromthe tanty=¢
orthogo zaxis, halfplanes
planes | z=zplanes|  fromthe
1 zaxis. z axis.
Coordinate
Surface Fig. B-4 Fig. B-5 Fig. B-6
Graphics
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Figure B-4
Cartesian coordinate surfaces
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Figure B-5
Cylindrical coordinate surfaces

Figure B-6
Spherical coordinate surfaces
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Table B-2 Other Cylindrically based Coordinate Systems
St Elliptic Parabolic Bipolar
& Parameters| cylindrical Cylindrica cylindrical
and their -1<np<1 —0o << oo 0<n<2rx
range of values —c0< 7< 00 —0< 7< 0 —0< 7< 0
= sinh
Transformation X= o x=¢n = o;:gf—g
to y=c, (52_1)(1_772) _ 1 ) ) o .—COS n
Cartesian y=2(5"-1) __G&sny
=1z 2 Y= Cosh - cos
coordinates z=z2 COM 6 ~C0ST
Orthogonal Unit N N ~A s
Voctors G..0,,0, G..0,,0, G..0,,0,
Differentias of
. y ] Z ] ] Z L) L) Z
Coordinates dé,dnd dé,dn.d dé,dn.d
Components of the A A A
vector A Ay Ay atat
22 G,
MetriC Ce 5 77 2 2 - . <
Coefficients, Lamé -1 &+ cosh & —cos 77
Coefficients, or c £ —n? E+n? G
scale factors N\ 1-7? 1 cosh £ —cos 77
1 1
§2 _772 Cb
C d [e2 | 2 _
Differential N &1 d g+ dg cosh £—cos 77
Elements of 2 2 [g2 | 2
Length C i/, dn s+ dn #dﬂ
*\ 1-7? dz cosh £—cos 77
dz dZ
X_2+ y: 22 (x—G,cothg)? + y?
2 52_1 §2= X2+y2_y :wa:h§2
Description of ellizptic C)glinders; hyperboliccylinders; | x axiscircular cylind;ars;
Coordinate X_ Y _p | M=yl +y?+y | X+ (y-gcotn)
Surfaces n* 1-n hyperboliccylinders; = ¢, csen?
hyperboliccylinders; =12 y axiscircular cylinders;
z=2 planes L zaxis. z7=7

planes 1 zaxis.

planes L zaxis.

Coordinate Surface
Graphics

Fig. B-7

Fig. B-8

Fig B-9
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Parabolic cylindrical surfaces

Figure B-8
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Elliptic cylindrical surfaces

Figure B-7

Bipolar cylindrical surfaces

Figure B-9
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Table B-3 Spheroidal Coordinate Systems
Coordinat
53,03;{2_? Confocal prolate Confocal oblate
& Parameters| spheroidal spheroidal
Coordinates ¢=1 ¢=1
and their O<n<rx O<n<rx
range of values 0<¢<2r 0<¢<2r
Transformation X =C,sinhg sinzy cosg X= ¢, coshg cosry cos¢g
to y=c,sinh¢ siny sing y=c,cosh& cosyy sing
Cartesian . .
coordinates z=c,cosh¢ cosn z=c,sinh¢ siny
Orthogonal PPN PP
Unit Vectors Ug Uy U, Ug Uy U,
Differentids of
Coordinates dg.dn.dg d¢’dn.d¢
Components of
the vector A Ah By Aty Ay
Metri ; ; - -
Cosfficients Cpysinh’g —sins C,/sinh*¢ —sin’y
Lamé Ch2E_ Gn ) )
c_/Sinh’E—din [ _
Cosfficients, or Py 5 _ g Coysinh™e —siny
scale factors c,sinhg siny ¢, coshé cosny
C_/SNh’¢ —sin’y d C,A/SNh*E —sin’y d
Differential P s 7de ? d 7 do
Elﬁmen:ﬁ o C,/Sinh*¢ —sin7 dy Co/SIN*S —sin’yy diy
eng . .
¢, sSinhg sinzy d¢ ¢, cosh& cosn dg
2 2 2 X2 + 2 Z2
X.+2y+ z2 :sz . 2y+ _ =002
snh’¢  cosh’¢ snh“¢  cosh*¢
prolate ellipsoids; oblate elipsoids;
2 2 2 X2 + 2 Z2
Description of x.+2y _2_2:_sz - 2y - > =—002
Coordinate sn7pcosn sinp  cos7y
Surfaces 2-sheet hyperboloids; 1-sheet hyperboloids;
tan' Y =9 tan' Y =9
halfplanes halfplanes
from the from the
Z axis. Z axis.
Coordinate
Surface Fig. B-10 Fig. B-11
Graphics
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(a) Oblate spheroid

(a) Prolate spheroid

(b) One-sheet hyperboloids

(b) Two-sheet hyperboloids

Figure B-11
Oblate spheroidal surfaces

Figure B-10
Prolate spheroidal surfaces
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Table B-4 Sphero-conal Coordinate System

Coordinate Systems—

& Parameters| Sphero-conal
Coordinates r=>0 0<k<1
and their 0<9<rzm 0<k'<1
range of values 0<p<2r Krk'?=1

Transformation X=rsn @ cos ¢

to y = rsingy1- k’cos’@
Cartesian
coordinates z=rcosf\1-k'*sin’p
Orthogonal Unit Vectors u,,a,,q,
Differentials of Coordinates dr,de,d¢
Components of the vector A AALA,
1
k’sin’6+k'? cos®
Metric Coefficients, Lamé r\/ 1 KecoZd s
Cosfficients, or scale factors —Ke
. k’sin®6+k'? cos’¢
1-k'?sinp
dr
r\/kzsin29+k'2cosz¢dg
Differential Elements of Length 1-k’cos’d
2@in2 12
. [K’sin ¢9+2k. 2cosz¢d¢
1-k'“sin“g

‘/XZ +Y +7Z =r sheeswithradiusr =r;

2 2 2

X y z - .

Description of Coordinate 7 g 7 =0 dlipticoones 7=7,;
Surfaces 2 v 2

Z
TS oS ) =0 dlILIICCOI’IeS;L:/ib,
A b-4 -2
¢ > >b > 1" >0.

Coordinate Surface Graphics Fig. 12
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Figure B-12 Sphero-conal coordinate surfaces
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Table B-5 Toroidal Coordinate System

Coordinate Systems—

& Parametersi Toroida
Coordinates —0 2§ 200
and their 0<n<2r
range of values 0<g<2r

Transformation

X = ¢, cosh¢ cosr cosg

o y=c,cosh& cosn sing
Cartesian . .
coordinates z=c,sinh& siny
Orthogonal Unit A~ A A
Vectors Uug,u, U,
Differentias of
Coordinates dg,dz,d¢

Components of the
vector A

Achy A,

Metric Coefficients,
Lamé Coefficients, or
scale factors

C,/SINN’E —sin’p
C,+/SiNh?E —sin’y

c, coshé cosny

Differential Elements

C,\/sinh*é —sin’y d&

Coordinate Surfaces

of Length C,ySnh’s —sin’y dn
¢, coshé cosn dg
sinzry[(x2 + yz)—(z-acotry)2}=ct2
spheres;
Description of

sinh?& [\/x2 +y2— acothé‘}2 +72°=¢’
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Figure B-13 Toroidal coordinate surfaces

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



B-26 Appendix B: Vector Calculus in Orthogonal Coordinate Systems

References

1. Granino A. Korn and Theresa M. Korn, Mathematical Handbook for
Scientists and Engineers, 2™ ed., McGraw-Hill, New Y ork (1968).

2. Parry Moon and Domina Eberlie Spencer, Field Theory for Engineers, D.
Van Nostrand Co., Inc., New Y ork (1961).

3. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea
Pub. Co., New York (1955).

4. J. H. Henbocke, Introduction to Tensor Calculus and Continuum
Mechanics, Sdf-published through Trafford Pub. (2001).

5. Julius Adams Stratton, Electromagnetic Theory, McGraw-Hill, New Y ork
(1941).

6. Philip M. Morse and Herman Feshbach, Methods of Theoretical Physics,
Vols. | and Il (1953).

7. Parry Moon and Domina Eberlie Spencer, Field Theory Handbook, Springer-
Verlag, Berlin (1961).

8. A. N. Tikhonov, A. A. Samarskii, Uravneniya Matematicheskoy Phizki
(Moscow: Nauka Publisher, 1966).

9. V. |. Blokh, Teoriya Uprugosti (Ukraine: Harkov Unibersitet |zdateitvo,

1964).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Appendix C
Intermediate Tensor Calculus in

Support of Chapters 3 and 4

Andrey Beyle” and Bernard Maxum

This appendix details the proofs of several important postulations used in
Chapters 3 and 4. Each of these proofs is performed for tensors of general rank
expressed in explicit standard notation.” Section C.1 provides the precise
formulation of the use of this notation for general rank tensors. In addition the
dot-, cross-, and tensor-product operations are shown for general rank tensors
with the introduction of a generalized operator symbol denoted by an asterisk
“*” used to denote any one of these three operators.

Section C.2 dedls with properties of vector differential operators of first
and second order. It has six subsections. In Section C.2.1 the rank progression,
cited at the bottom of page 3-21 for dot-, cross-, and tensor-product operators, is
demonstrated for vectors and general-rank tensors. The subsequent four
subsections provide proofs pertaining to crucial properties of first- and second-
order vector differential operations on general rank tensor operands used
throughout Chapter 4, including Tables 4-1 and 4-2. Finally, Section C.2.6 gives
aproof of the Lagrange identity [Eq. (4.7-25)] for tensors of general rank.

The divergence operator of Eq. (4.7-7) in Section 4.7.4(a) was developed
inductively. It was applied to a vector [EQ. (4.4-22)] and a dyadic [Eq. (4.7-9)]
and cited for application to any tensor. Section C.3 gives a deductive proof of its
general application to atensor.

Finaly, in Section C.4 we demonstrate that for all but Cartesian
coordinates it is hecessary to consider the derivative nature of the nabla operator
as well as its dot-, cross, and tensor-product nature. Thus, the tendency of
depicting the divergence, curl, and gradient operators as analogous to dot, cross,
and tensor products is shown to be false (except for Cartesian coordinates).

Co-author for this appendix
See Section 1.1 for adescription of various notational forms. Explicit standard
notation is described in Section 1.1.7(a) on page 1-11.

C-1
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C-2  Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

C.1 Explicit Standard Notation for General Rank Tensors

Wefirst represent atensor of general rank in explicit standard notation as

3
=2

1=1]

—|IIIE

e G0G ) (C.1-1)

lkl

M
Moo

The general rank tensor F is shown with three overbars and the ellipsis “ - -”
overmarking indicating a general number of overbars corresponding to the tensor
rank. Since three overbars are explicitly depicted, three summations are shown
followed by an dlipsis indicating the number of summations corresponding to
the rank. The summations are taken from 1 to 3 for 3D space. The symbol T”k
represents the i jk--" scalar component of the tensor T . The “ (; U uk o
represents the generalized unitary tensor and are shown as “direct” products
Another form of Eq. (C.1-1) can show the “tensor” products explicitly. Thus

(C.1-1) isequivaently expressed as

(Tije. G0 ©0, ©-) (C1-2)

Il
=
Il
=

=i
[l
M
oo
e

Using the so-called Rule of Einstein,' the summations over repeated
indices areimplied and are omitted for simplicity. Therefore Eq. (C.1-2) could be
written as

=T, 0®0 ®0® (C.1-3)

=i

j

Equation (C.1-1), when combined with the Rule of Einstein, yields an even
more concise form to express our general rank tensor -? as

F=T, GGG, (C.1-4)

In order to operate on general rank tensors, bo’_t_h the beginning and the end

indices need to be explicit. Thus a zrank tensor T operating on an @-rank
tensor |3 could be expressed as

See the footnote on page 2-7 from Section 2.4.3 describing the “direct” product as
synonymous with “tensor” product, denoted with the symbol ® , which implies that
all possible combinations of components are taken.
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C.1: Explicit Standard Notation for General Rank Tensors C-3

[T. ke-xyz Ut "'uXuyqu*[Uaﬂ;ﬂ--zwwu‘)’uﬂu?"“ulu“’u“’j (C.1-5)
= (T xy2Yuasy ppo 40000y ) (0% O ) G0, -0, G, 0,
where the asterisk “*” denotes either a dot-, cross-, or tensor-product operation.

In other words, the last unit vector of the first tensor operates on the first unit
vector of the second tensor.

Application to the dyadic-dyadic dot product

As an example, let usfirst apply Eg. (C.1-5) to the case of the dyadic dot product
with another dyadic that was covered in Section 3.4.2. In this case Eq. (C.1-5) is
written as

(T..a.a.)(umnaman) T Umn0 e =T;U; (G0,  (C.1-6)

Jml

where the Kronecker delta & jm Was defined by EqQ. (2.4-12). This expression is
equivalent to Eq. (3.4-12), which is apparent after substituting T for A, U for B
and adjusting for the change to tensor notation. That is, the tensor notation
representation for Eq. (C.1-6) is

Tij 'an =Vi, (C.17)

where the three double-subscripted quantities are tensors of rank two, i.e
dyadics, and where V;, in tensor notation is T;;U; (iU, in explicit standard
notation. Notealsothat the T;; inEq. (C.1-6) isascalar component of the dyadic
tensor T wheress T, inEq. (C 1-7) isthe dyadic tensor T . As explained in the

paragraph following Eq. (3.3-5), these are distinguishable by the spacing of the
subscripts.

If we repeat the above exercise by first applying the form (C.1-1), the
manipulation of the summation signs becomes explicit. Thus the dot product
takestheform
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i=1 j=1 m=1 n=1 €19
3 3 3 3 o 3 3 3 o
:Zzzz-r'lumné‘jmuiun :ZZZTIJUJnqun
i=1 j=1m=1n=1 i=1 =1 n=1

One can see how the dot product subtracts two from the sum of the ranks
of the two dyadics That is, T and U each have arank of two depicted by the
unit dyads u u and umun, r&pectlvely, and of the resulting 81 components, 54
are zero due to the inside dot products U, -U,, when j#m. The remaining 27
terms survive when j=m. The Kronecker delta ¢, defined by Eq. (2.4-12),
essentially says all of this in one convenient symbol. Of the surviving 27 unit
dyads G U,, only nine are unique, namely the nine combinations of i and n
running from 1 to 3. Thus from ther.h.s. of Eq. (C.1- 8) the resultant has a rank
of two. Notice how the Kronecker delta “kills” the m" summation sign leaving
the inner j summation to be taken over both Tij and U, in: Notice also that the
r.h.s. denotes a dyadic with nine components arising from the i and n
summations. Notice also that each of the nine components contains three scalar

terms arising from thej summation.

The above discussion may become more apparent for those new to tensors,
by expanding Eqg. (C.1-8) into its terms and components as

00(T U 4T U, 4T U, ) 40,

1 11 12721 13731

TU T U TU,) 00T U +TU,+T.U.)

1712 13732 1 117137 "12723 7 "137 33

0,
(T UL+T U 4T, U.)
(

T0=

0 0 (T21U 11+T U 21+T23U 31 ) a2a 21712 23732 a20 (T21U 13+T U +T23U 33 )
l’:1301( T31U 11+T32U 21+T33U 31 ) 0302 T31U 12+T32U 22+T33U R ) 0303( T31U 13+T U +T33U 33 )
0 (V) G0, (Vi) 805 (Vis)
= 02[11 (V21) 0 u (sz ) Dz lA"a (st)
Ol (Vi) G0, (Vi) 05805 (Vi)

(C.1-9)

where the scalar components of V arerelated to the scalar components of T and
U through Eq. (C.1-7) as

(C.1-10)
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C.2: Properties of 1st and 2nd-Order Vector Diff. Operators on Tensors C-5

C.2 Properties of First- and Second-Order Vector Differential
Operators on Tensors

This section demonstrates key properties of first- and second-order vector
differential operations on scalars, vectors, dyadics, and general-rank tensors cited
in Tables 4-1 and 4-2 and used throughout Chapter 4. In the first subsection
(Section C.2.1) the rank progression cited in Table 4-1 resulting from div, curl,
and grad is shown. The zero values postulated in the table of second-order
differential operator resultant forms given in Table 4-2 are developed in the next
two subsections. That the divergence of the curl is zero (DCT = 0) and the curl of
the gradient is zero (CGT = 0) are shown in Sections C.2.2 and C.2.3,
respectively. The reverse of these operations, however, are, in general, nonzero,
namely (CDT # 0) and (GCT # 0). These are demonstrated in Sections C.2.4 and
C.2.5, respectively. Finally, the application of the Lagrange identity to general-
rank tensors is demonstrated in Section C.2.6.

These demonstrations and proofs are made for the general-rank tensor.
However, even though the operand is generalized, the coordinate system need not
be, for if we can show these proofs in one orthogonal coordinate system it must
be so for all orthogonal systems. We choose to do these proofs in Cartesian
coordinates to avoid the cumbersomeness of having to deal with coordinate
derivatives of unit vectors. In doing so, there is no loss in generality for the
purpose of these proofs.

C.2.1 First-order vector differential operators with vector and
generalized tensor operands

In Cartesian coordinates the nabla operator can be written using Einstein Rule®
. . 0
V=G4V, =0—— (C.2-1)
' OX;

and follows the same rules as a vector. Therefore the divergence and curl of the
vector A become

O P L
V-A (u }A(uk ox —X(G;-0,)= o S5, ox (C.2-2)
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C-6_ Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

_ 0 R
VxA:[uiaXJ AQ, = Ak( uk)_a—i*feiklul (C.2-3)

where the Levi-Civita symbol €, , which was defined in Eq. (2.4-27), is critical
to the “cross’ operation used in cross products and curl operators. Finally, the
gradient of the vector A becomes

% [~ 0 . _0d -
(C.2-4)
-vA=2(qq,)

where the second line is depicted in “direct” product form (without the tensor-
product symbal). In the above three expressions the Cartesian coordinate
derivatives of Cartesian unit vectors are all zero and thus are omitted. This is the
advantage of performing this development in Cartesian coordinates.”

Next the divergence, curl, and gradient vector operators are developed for
general rank tensors. Expressions similar to Eq. (C.2-2) through (C.2-4) can be
obtained for the results of application of the nabla operator to general rank
tensors because only the first unit vector of the tensor will be participating in the
operation. Using the form (C.1-4) to express the generalized tensor E and
replacing the first tensor with the vector nabla operator (C.2-1), we may apply
Eg. (C.1-5) to obtain the divergence, curl, and gradient operations on a

generalized tensor. Thus, the divergence of a generalized tensor in Cartesian

coordinatesis
5|~ 0 n o A
V-B= uivx]-Bjklmujukul---
a
Jk| ( j (C.2-5)
aBjkl... oB

=_W5ijakal...=_%akal...

Caution! This procedure is valid only when Cartesian coordinates are being used
because only in Cartesian coordinates are al coordinate derivatives of unit vectors
zero. For any curvilinear coordinate system, even cylindrical coordinates, coordinate
derivatives of unit vectors must be considered.
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C.2: Properties of 1st and 2nd-Order Vector Diff. Operators on Tensors Cc-7

Likewise, the curl of a generalized tensor in Cartesian coordinates is

'aXi -k
(C.2-6)
B ooy B
and the gradient of a generalized tensor in Cartesian coordinatesis
= |~ 0 A
VB:( X Bjy..0;0G
(C.2-7)
By 0.0:)a.a —aBjk""aaa G
a)(i(lj)kl axl Uiy -

By taking careful notice of the final forms of each of the three vector differential
operators above, it is readily determined that

e Thedivergence decreases the rank of the operand tensor by one,
e Thecurl conservestherank of the operand tensor, and
e Thegradient increases the rank of the operand tensor by one.

Thus, the right-hand column of Table 4-1 is demonstrated (as are the preceding
columns, which are special cases of the right-hand column).

C.2.2 Proof that the divergence of the curl of any tensor is zero

By performing proofs of the zeros that appear in Table 4-2 for DC and CG
operations on the generalized tensor operand, we not only demonstrate the zeros
of part (d) of that table, but also the zeros in parts (¢) and (b) and the zero in (a)
as well. This is because the operands for these earlier parts are special cases of
tensors. In this subsection we show that the divergence of the curl of any tensor is
zero. This applies to tensors having a rank ng =1, which excludes scalars, since
the curl of a scalar is nonexistent. See Table 4-2(a).

Let’'s replace the dummy index i in Eq. (C.2-6), the expression for the curl
of a general-rank tensor, by another symbol “g.” This is necessary because we
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C-8  Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

will reserve the index i for the second operation, namely the divergence. The

ol

result of the curl operation can be denoted as a new tensor ~. Thus from Eq.
(C.2-6),
= = aBjkl. N A A

which, of course, is a different tensor but having the same rank as the operand

tensor §

Next, we express the divergence of 5 using Eq. (C.2-5) as

v.C=v.|vxg |-y | ik
.C=V. X =V. axg th u ukul...
0°B.
jkl ~
o, (01 Oh) g -
228 (C.2-9)
_ R LA
aX Gxi ih gjh k I
| By
=V:|VxB|= 8Xg8X STLAURE
Expanding Eqg. (C.2-9) we have
82
OXgOX
02 0? 02
__ + n C.2-10
{axlasz {8x26xj [axlaxJ ( )

0?2 0?2 0?2
_[8x38x1}[6x26x3]+[6x38x2}:O
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C.2: Properties of 1st and 2nd-Order Vector Diff. Operators on Tensors Cc-9

Because of the mixed derivative theorem [Eq. (1.3-11), p. 1-20] each of the first-
second, third-fourth and fifth-sixth paired terms cancel. Therefore

Dc§ :V-{Vx EJ_O (C.2-11)

C.2.3 Proof that the curl of the gradient of any tensor is zero

Somewhat in parallel with the procedure in the preceding proof, we next show
that the curl of the gradient of a tensor vanishes. Since the first operation is the
gradient of a generalized tensor § let us define a new tensor = from
Eq. (C.2-7) as

Qi

W[l
[l
<
oo ]f]
[l

" 040,06, (C2-12)

0,0, - (C.2-13)
v Oy Sigh Ynlil

Again, expanding Eq. (C.2-13) we have second-order derivatives
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C-10 Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

82
Sigh (axga)ﬁ J
82 82 82
:+(axlax2}(axzaxj_(axlaxJ (€214
02 02 02
+(8><38>a]+(8><28><3H8x38><2J:°

and, again, because of the mixed derivative theorem all of the terms cancel.
Therefore

CG E = VX{VBJ =0 (C.2-15)

This applies to tensors having arank n, =0, which comprises of all tensors. This
includes scalars (and vectors), since the gradient of a scalar is a vector and the
curl of that vector may be taken.

C.2.4 Demonstration that the curl of the divergence of any tensor is
in general nonzero

In Section C.2.2 it was shown that the divergence of the curl of a general-rank
tensor is always zero. The physical rationale for such aresult might be argued in
the following manner: Since the curl of a vector field behaves somewhat like a
cross product, i.e, it is primarily a property mainly transverse to the vector field,
and since the divergence of that resulting vector field is a measure of the net
outward flux of that new field, it is not entirely surprising that that net flux would
be zero. That argument can be extended to tensor fields with the exception that
the “transverse’ nature of the curl would be with respect to the directivity of the
first unit vector of the multiply directed tensor.

This section deals with the reverse operation — the curl of the divergence.
Although similar arguments may be made with respect to the transverse nature of
the curl, we are dealing here with the second directional unit vector of the tensor,
not the first. This is due to the fact that the first directional unit vector is
annihilated by the dot-product nature of the divergence operation. Since this
second-level directionality is arbitrary, thereis no reason to expect that taking the
curl after the divergence would have a vanishing result. Further, the curl of the
divergence of a vector is honexistent because the divergence yields a scalar, and
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C.2: Properties of 1st and 2nd-Order Vector Diff. Operators on Tensors Cc-11

one cannot take the curl of a scalar. Therefore Table 4-2(b) is marked
accordingly. [The operation on a scalar is, of course, nonexistent because the
divergence operation is nonexistent in the first place. See Table 4-2(a)].

The above argument becomes apparent mathematically. We first construct
a tensor E defined as the divergence of our operand tensor E We will use
Eq. (C.2-5) for thefirst operation; however, with a view toward using Eqg. (C.2-6)
for the second operation, we will change theindex i in Eq. (C.2-5) to g as before.

rm:
W]

—V.

oB.
jkl--- 5gj G, - (C.2-16)

where E isatensor of therank n, =2 for reasons given in the second paragraph

of this section. After substitution into Eq. (C.2-6) for the curl of the tensor of
rank ng =1, we have

VXEZVX V-E =
0%B. o
(_9)(91(_!;)!q (G0, ) G- = (C.2-17)
9°B.,,... .
Wg)lg%j €1y U0y Oy -+

Since our objective is to show that the curl div isin general not zero, we need
only show that one term is not zero. To do this we arbitrarily pick a combination
of indices. If we examine the 0x0X, and sum over k, then we let g=1, j=1, i=2
and Eq. (C.2-17) becomes
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C-12  Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

0°B

3>&<19k>l<2 O € o Ul O+ =
0°By... azBul a lag =19
X, 1 x84

Next let g=2, j=2, i=1. Again summing over k we obtain

0°B

8X2J5)|<1 O, i €11 Uy G G ==

, , (C.2-19)
d°B,, _8 823""0 .

axzaxl B T, 2

Employing the mixed-derivative theorem [Eq. (1.3-11)], summing Egs. (C.2-18)
and (C.2-19), and collecting the U, term gives

axlaxz ( B22I Blll - )030| l]m‘ . (C.2-20)

It is clear that unless o aa (B,,, —B,, ) is zero, the u3 term is not zero.
Therefore

DB =Vx {V é}ﬁo (C.2-21)

ingeneral. Thisisin contrast to (DC E = 0), which was shown in Section C.2.2.

C.2.5 Demonstration that the gradient of the curl of any tensor is in
general nonzero

Sincethefirst operation is the curl of E , which we have already expressed in Eq.

(C.2-8), we may express the gradient of the curl of E as

= aZBjkl_,,
VI VXB|=——-5— XN € gjh G 00y Oy + (C.2-22)
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C.2: Properties of 1st and 2nd-Order Vector Diff. Operators on Tensors C-13

Again, since our objectiveisto show that the grad curl isin general not zero, we
need only show that oneterm is not zero. To do this we arbitrarily pick a
combination of indices. If we examinethe dx0X, and sum over j, then we let

g=1,i=2, then
aZBJ'|(|... P
OXI%, €qjh UUplh Yy ==

az Bai... - azBSkI--- A
axlaxz - 0,050, G —8X18X2

(C.2-23)

Next let g=2, i=1, then
aZBJ'|(|... n A A A
mezjh Uyl Uy Uy -
2 2
aB3k| ~ aB_I.kI-AAAA

a u1u3uku|

axzaxl 1U1ukul"' 8x2 X,

Again it is clear that even after application of the mixed-derivative theorem,
cancellation of terms does not take place. Therefore

(C.2-24)

cB =V VxB £0 (C.2-25)

ingeneral. Thisisin contrast to (CG E = 0), which was shown in Section C.2.3.

C.2.6 Demonstration of the Lagrange identity applied to tensors.

In Sections 4.7.3 and 4.7.4 the scalar and vector Laplacian operators were
developed in GOCCs and cylindrical coordinates. Here we take the opportunity
to examine this second-order differential operator in association with general-
rank tensors, especialy as it relates to the Lagrange identity. This subsection, as
in all of Section C.2, is donein Cartesian coordinates for simplicity and with the
assurance that there is no loss in generality in using Cartesian coordinates when
proving vector and tensor identities. However, there are some issues with
Cartesian coordinate differential operator expansions that were addressed in
Chapters 1 and 4 and are addressed again in Sections C.3 and C.4.
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C-14 Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

First we define the Laplacian operator to be the divergence of the gradient of any
tensor quantity, which, of course, may include scalars, vectors, or dyadics. This
operator may be defined as

V3()=V-V() (C.2-26)

Since the gradient of a tensor has a resultant rank that is one greater than
the rank of the tensor upon which it operates, and the divergence has a resultant
one less than its operand, the Laplacian does not change the rank. Thus the
Laplacian of a dyadic is a dyadic and the Laplacian of a general-rank tensor is
another tensor of the same rank.

After developing the vector Laplacian in Section 4.7.4, which first required
the development of the gradient of a vector and then the development of the
divergence of the resulting dyadic, the Lagrange vector identity

VZA=V(V-A)-VxVxA (4.7-15)

was presented without proof. It was pointed out that this identity is usually
presented to undergraduate students as a means of avoiding the dyadic gradient
of a vector as well as the divergence of the resulting dyadic. By the use of the
right-hand side of Eq. (4.7-15) it is clearly seen that all operations are performed
with vector and scalar operands. These are the curl of the curl (CCv =VxV x A)
and the gradient of the divergence (GDv =VV - A). CCv was covered in Section
4.7.5 and GDv was developed in Section 4.7.6.

By applying Egs. (C.2-7) and (C.2-5) to Eq. (C.2-26) we may write the
tensor Laplacian as

—(0g-0G)0;0,G, - (C2:27)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



C.2: Properties of 1st and 2nd-Order Vector Diff. Operators on Tensors C-15

Thus the expanded form of the left-hand side of Eq. (4.7-15) is
VPB=—_1"g6.q-- (C.2-28)

Next, let us work the right-hand side of Eq. (4.7-15). The first term is the
gradient of the divergence, whichis

= [~ 319k .
V(V-B)= ug% —x &l
j (C.2-29)
2
ACTEY
Xg0X;

and the second term is the negative of the curl of the curl, expanded as

=) (209 ) 9By
Vx| VxB|= Ug an X eijhuhukul'“

0%
(C.2-30)
——axgaxi Eijh( g X h)ukul"'_meijheghf U Uy Ly ==
This becomes
= oB
VX(VXBJz{Oga%J a’):' (G <G, )G G,
¢]
0°B.y (.. . A A\~ -
= axgg)lg |: g (leuh)]ukl,h
-
B an18>§ |G, (0g-G;)-0; (05 -G) JaG, (C2-31)
0°B.,, . N T a
_ axgjakiq [ , ,—5giuj]ukuI
’B. ’B.
_9 B G,G.G ’ LG,
0X; 0 ox
V(VE) V2§)
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C-16 Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

Note that the step from the second to the third line of Eq. (C.2-31) made
use of the following vector identity

G, x (G x0,)=0 (G, 06,)-0 (4,-G) (C.2-32)

The final two terms of the curl curl are seen from Egs. (C.2-29) and
(C.2-28) to be the grad div minus the Laplacian. Rearranging terms, we have

VZB=V(V.B)-VxVxB (C.2-33)

and therefore we have shown that the Lagrangian identity may be applied to a
general rank tensor.

C.3 Generalization of the Divergence Operator of Eq. (4.7-7)

The divergence operator of Eq. (4.7-7) was developed inductively and is repeated
here for convenience.

S N
hlhzh;,;aql h+1h+2ui' ) (47'7)

It was applied to a vector [EQ. (4.4-22)] and a dyadic [Eq. (4.7-9)] and cited for
application to any tensor. This section gives a deductive proof of its general
application to a tensor. Because of the necessity of accounting for coordinate
derivatives of unit vectors, this development is made in generalized orthogonal
curvilinear coordinates (GOCCs).

Throughout the main chapters of this guide the importance of dealing with
derivatives of unit vectors was emphasized. It was pointed out that although unit
vectors do not change in magnitude as coordinate positions change, they can
change direction. This fact is important for all coordinates that are curvilinear.
Another way to state this is in terms of the Lamé coefficients h (also named
scale factors and often named metric coefficients). That is, for any coordinate
that has a nonunity Lamé coefficient, derivatives of unit vectors with respect to
that coordinate will not in general be zero. Egs. (1.3-19) and (1.3-20) providethe
explicit prescription for determining such derivatives. Again these are repested
from page 1-23 for convenience.
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C.3: Generalization of the Divergence Operator of Eq. (4.7-7) Cc-17

a_ai OJ’ ah ljk ah

=7V A Th (1.3-19)
Jdg,  hydq, h dg,
and
oG, _ U, ohy (1.3-20)
dq; h dq

wherei=123 j=2,31and k=312 inthat order.

Equations (1.3-19) and (1.3-20) may be combined with the use of the
Kronecker delta as

aﬁa_(l_é‘aﬂ)aﬂ ahﬂ 3 0, 9
o, h 2, 20 (1_5“y)5y3_qy

(C.3-1)

where o, ,7=1,2,3 replacei, j, kin (1.3-19) and (1.3-20) above.

The nabla operator in the orthogonal curvilinear coordinates can be written

_wy 9
‘V—E}ﬁéa- (C.3-2)

Notice that Eq. (C.3-2) reduces to Cartesian form [Eq. (C.2-1)] when the Lamé
coefficients h =1. Let us apply this operator to tensor fields.

Our objective in this section is to develop the divergence of a general-rank
tensor which is expressed in explicit standard notation as

A=A, GG0 - (C.3-3)
where A, are the scalar components of the tensor. The operator in
Eqg. (C.3-2) may be applied to the general-rank tensor in Eq. (C.3-3) by a
generalized product operator “ *” as a generalized vector differential operator.
Thus we have a generalized vector differential operator acting on a general rank
tensor in GOCCs as

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



C-18 Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

Ajk|r~0j0k0| )}
G *aj)akq..}+
e e
| hj qj g=1 ’ ? hg aqg
FRA
Tq[“i]
G, . e
—U - +0,—U0 - +---
Jq Jq

wherethe sign * denotes dot (- ), cross (X) or tensor (® ) multiplication.

(C.3-4)

Although the nabla vector operator of Eqg. (C.3-2) has similarities
with a vector when performing the product forms above, there are
substantive differences. It is of paramount importance to stress that

the derivative must be taken not only on the tensor component

A

and the first unit vector Gj but also on all of the remaining unit
vectors as well. If the nabla operator were treated as if it were just a
vector, the expression written above would contain the two curly

bracketed terms {} only.

This is more precisely demonstrated in Section C.4. Notice that the bracketed
factor in thethird term of Eq. (C.3-4) isreplaced by Eq. (C.3-1).

Whereas Eq. (C.3-4) can be used for curl and gradient applications, we
make use of it here only for the divergence application. Therefore, the divergence
of ageneral-rank tensor in GOCCsis
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= 31333 aAjkI--- L
V-A=Y =3 > —=6,00,...
o N j=1 k=1 1=1 aqj
(1-6)on
313 .3 3 hj aqj L
| 36, (1-8, )8, = 2 e
= ji R ig hg aqg
313,33 (aaA ., . ﬂ
+ — kO _kul... +uk_|um +
A well-known vector identity

may readily be checked by testing all possible combinations of indices. Thus, the
second term in the second curly brackets is zero as shown. In addition the
Kronecker delta in the first and third terms eliminates the i summation signs.
Therefore Eg. (C.3-5) becomes

3 3 3 3 (1-6, -
+ZZZ Ajkl--- Z( hhj )a—h uu... (C.3-7)

A=A i1 aq;

1 ahj+1 1 ah|+2
hjhj+1 an h; h|+2 aq]

+i%§i%k...@—‘iq---+uk%a +H

Since EQ. (4.7-7) uses the index rolling rule, namely when =123,
j+1=2,31, and j+2=231,2, respectively, we can express the derivative

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



C-20 Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

factor in the second term of Eq. (C.3-7) as shown. Further noting from the rule of
derivatives of multiple variables that

1 ahj+1+ 1 ahj+2 1 a<h1+1h1+2>

MR 995 AR 99 hhh,  og, 28

— l a( j+1 J+2>

hhh, g,
and thus Eq. (C.3-7) becomes
= 333 A p
V'A=ZZZ~--[$—aag' Gl A ném—( = g ]

j=1k=11=1 i j j

(C.3-9)

a0, . au
+h_[Ajkl»--ﬁulm +Ak| ukaq|u .. +}

Again from the rule of derivatives of multiple variables all three terms of
Eq. (C.3-9) may be combined simplifying the divergence of A as

= 3 3 3 1 8( K- hthJJrzukuI )
VA= 2 R, aq

i

(C.3-10)
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At the third equality above, a dummy index i was introduced. In prior
sections of this appendix the index g was used for this purpose, however, to
demonstrate the generality of Eq. (4.7-7), which contains the i, we use this as our
dummy index. This should not be confused with the i index in Egs. (C.3-4) and
(C.3-5).

Notice also that the last equality is precisely the form of Eq. (4.7-7) and
thus we have our QED (quod erat demonstrandum). Namely we have shown that
the divergence operator of Eq. (4.7-7) is applicable to tensors of general rank.
The last equality is another equivalent form of Eq. (4.7-7).

C.4 The Dual Nature of the Nabla Operator

The generalized form of the vector Laplacian [Eq. (4.7-11)] was obtained by first
taking the gradient of the vector and then taking the divergence of the resulting
dyadic. The Lagrange vector identity, EQ. (4.7-15), provided a means of
determining the vector Laplacian without resorting to dyadics, however it is
customarily cited without proof. This identity was proven for generalized rank
tensors in Section C.2.6. Although performed in Cartesian coordinates, its
validity isindependent of the coordinate system.

The process of demonstrating such relationships in Cartesian coordinates
has led many to believe that the nabla operators (V-,V x, and V) are analogous
to the vector dot-, cross- and direct-product® operations (A-, Ax, and A). Such
a supposition is very dangerous and will lead to erroneous results in all but
Cartesian coordinates.

Therefore, we find that it is necessary to take into account the derivative
nature of the nabla operator and not just its dot-, cross-, or direct-product nature.
The necessity of using both characteristics of the nabla operator is brought out
quite effectively by proving the Lagrange vector identity in generalized
orthogonal curvilinear coordinates (GOCCs). That is, the demonstration that the
vector Laplacian as determined from the I.h.s. of the Lagrange identity is equated
to the vector Laplacian from ther.h.s. in GOCCs requires the use of both natures
of the nabla operator. Confirmation of this in GOCCs proved to be quite
protracted. So, in the interest of brevity we omit this proof (of the Lagrange
vector identity in GOCCs) and simply show that the dot, cross, and direct product
of a vector with a general-rank tensor yields different resultant forms from the
counterpart nabla operations on the same tensor.
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C-22 Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4

Again, as introduced in Section C.1, the generalized-product operator—the
asterisk “*” operator—is used to denote either a dot-, cross-, or tensor-product
operation. We show thaL extra terms come into play with the V*% operation as
compared with the A&? operation. In particular the latter operation takes the
form

j=1 k=1 I=1 pee K (C4'1)

In contrast to Eq. (C.4-1) the generalized-nabla-product operating on the same
tensor takes the form

E 3 0 8 3 3 3 o
V*ng(ﬁa_q]*(;;; T 0,60, }
:23:23:23: aTjkl (0 *l] )fj 0
T i1k hog A
S 3bs oA ).
i=1 j=1 k=1 .00,
SIS T (6 +0,) g
i-1 -1 k-1 I (i J) h.oq, I

Notice that the first term of Eq. (C.4-2) is analogous to Eq. (C.4-1) but that
the second, third and subsequent terms are entirely missed in Eq. (C.4-1).
Therefore, the popular statement that nabla operator is analogous to the vector
operator is not valid in cases where these latter terms come into play.

To illustrate where it is va;l,id and where it is not, let us take the case of a
rank-one operand, namely, let -? be the vector B. Then Eq. (C.4-1) becomes
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- = (C.4-3)

and Eq. (C.4-2) becomes

=ZS:ZS:—{(Q *0,) (C.4-4)

It is clear that forms (C.4-3) and (C.4-4) are not analogous unless all of the
coordinate derivatives of unit vectors di;/dq are zero. This is the case only in
Cartesian coordinates.

For the case of a rank-two operand, we let % be the dyadic D. Then
Eqg. (C.4-1) becomes

ZAG*2.2.D,
:1 j=1 k=1 (C4-5)
2

and Eq. (C.4-2) becomes
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(C.4-6)

Again the analogy does not hold unless the second and third terms go to zero. In
Cartesian coordinates the unit vector coordinate derivatives in these terms will be
zero and, therefore, the analogy holds in this case. In any other coordinate
system, it does not. By induction the same conclusion can be made for all higher-
rank tensors. Therefore, we have demonstrated the following axioms:

Nabla operators have two natures: a product nature
and a derivative nature.

Vector operators have one nature: product nature.

Nabla operators are not in general analogous to vector operators,
except in Cartesian coordinates.

In Cartesian coordinates, nabla operators are analogous to
vector operators.

Reference

1. David C. Kay, “The Einstein Summation Convention,” in Theory and
Problems of Tensor Calculus, Schaum’s Outline Series, McGraw-Hill
(1988).
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Appendix D
Coordinate Expansions of Vector

Differential Operators

This appendix provides Cartesian and cylindrical coordinate expansions of first-
and second-order vector differential operators acting on scalar, vector, and dyadic
operands. The divergence and curl of vector and dyadic fields and the gradient of
scalar, vector, and dyadic fields are provided with applications cited for the curl
of the strain dyadic and the gradient of the stress dyadic. In addition the scalar
and vector Laplacian expansions are listed.

D.1 Cartesian Coordinate Expansions

The conversion from generalized orthogonal curvilinear coordinates (GOCCs) to
Cartesian coordinatesis

=X, =Y, =2 (D.1-1ab,c)
and

h=1h=1h=1 (D.1-2ab,c)

D.1.1 Cartesian coordinate expansions of first-order vector
differential operators

First-order vector differential operators are expanded in Cartesian coordinates in
the order of increasing resultant rank. Thus divergence is done first because the
resultant rank is one less than the rank of the operand. Next, the curl is shown
because the resultant rank is unchanged. Lastly, the gradient is displayed because
the resultant rank isincreased by one.

D.1.1(a) The divergence of vector and dyadic fields

The divergence of avector field [from Eq. (4.4-22)] isthe scalar field

D-1
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V-A

= oA + aAV + oA (D.1-3)
Cartesian aX ay az

The divergence of adyadic field [ref: Eq. (B.1-5)] isthe vector field

V.G

_[aG, G, oG,
=Uu, + +
Cartesian oX ay 0z

3G, 9G, oG 3G 44
+Oy{ 2 2+ ZV}HJZFGXZ yz+aGZZ}

+ +
oX oy 0z oX oy 0z

D.1.1(b) The curl of vector and dyadic fields

Thecurl of avector field A [from Eq. (4.5-12)] isthe vector fiedd

3 _a[9A _9A A[%_%J - [9A _9A i
VxNCaman—ux(ay azj+uy > o +U, x dy (D.1-5)

Application: The curl of the strain dyadic

The curl of a dyadic field is useful in advanced studies of mechanics of solids.
For example, the displacement vector d is determined by integrating the
tangential component of the curl of the strain over the path, namely
d= I(ng)-dz. Since the resultant of the curl of a dyadic is another dyadic,
this line integral takes the form of Eq. (5.1-4), and is thus an application of that
line-integral form.

Here we display the curl of the strain dyadic é:‘ in Cartesian coordinates as
an example of the curl of adyadic field in general.

ng

Cartesian
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D-3

which, when expanded [using Eq. (3.3-4)], becomes the dyadic with its nine

components as

99,

2
| oz

2,
1 ox

b}

Vxéz‘

Cart

+
b}

b Pt

+

a9, |

¥

0z
_8
ox
_8
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99y |

ay |

99.
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90,
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>

+

+

<

0z
20,
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oX
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_w

a4, |

—_W

0z
20,

ox

o, |
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ay |
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+

+

+

b}

Xz

>

)

135, _
dy

0z

o

(96,

(965,

94, |

¥z

0z

0
ox

d

99, |
39 |

y |

(D.1-7)

D.1.1(c) The gradient of scalar, vector, and dyadic fields

The gradient of a scalar field [from Eq. (4.3-18)] is the vector field

-V . oV
0, —+0,—+
yay

. oV
. a
oX

— D.1-8
P (D.1-8)

|Carte£ian

In Section 4.3 we determined the vector Laplacian by first finding the gradient of
avector fieldin GOCCs. Here we expand that operation in Cartesian coordinates.
Thus the gradient of a vector field from Eq. (4.3-20) is the nine-term dyadic field

Vz\‘ Cartesian

A

+Uu,

2 9 oA 2 9A

Uoe o+ Uy 5 + b ¢
2 5 2

+uw—$+uw—$+uﬂ—$
+uzx%+u %+ﬁﬂ%

A
N

A

>

(D.1-9)

A

A
N ~

Application: The gradient of the stress dyadic

In advanced mechanics of solids, the theory of moments in general necessitates
the determination of the gradient of the stress dyadic S. Therefore, we show the
expansion of the gradient of the stress dyadic as an application for the gradient of
adyadic field in general.

The gradient of a dyadic field" is the 27-term triadic field
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—= _;’: 0Sx 2 as(y 2 0Sy
Vs o = U - Uy 35 + U

2 0Sy A 0Sy A 0S,
+uxyx—87+uxyy—87+uxyz—87

5 0sx, & OSy A 0s,
PlocTx ey Ix Tl ox

oy | ve gy

10 O § 9y G 9 (D.1-10)

dsy A 0S,
o9z U5z Tl
+ U, Z+uzz—a?+um—a?

+
>
g’f
)

D.1.2 Cartesian coordinate expansions of second-order vector
differential operators

D.1.2(a) The scalar and vector Laplacian

The scalar Laplacian from Eq. (4.7-4) isthe scalar field

V| =V.VV= 5 oz (D.1-11)

The vector Laplacian from Eq. (4.7-11) is the vector field
2N _ R v ~ 72 ~ 72
VPA__=V-VA=QV’A +0,V’°A +0V’A  (D.1-12)
D.1.2(b) The curl of the curl of a vector field
In Section 4.7.5 the curl of the curl of a vector field was determined in order to
provide the reader with a methodology of determining the vector Laplacian

without resorting to dyadic operations. That is, with the use of the right-hand side
of the Lagrange identity [EQ. (4.7-15)], the curl of the curl of a vector field was
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needed. Here we provided the curl of the curl of a vector field from Eq. (4.7-23),
which is the vector field

2 2 2 2
VxVxA| g T _TA (TA A
Cart dyox oy 0z~ dz0x |
e , 22 N
+0, aAZ—a? - A}—a& (D.1-13)
020y 0z ox~  oxay

col[PAC_A) [°A A
‘Il oxdz  ox® dy’ 9yoz

D.1.2(c) The gradient of the divergence

In Section 4.7.6 other terms in the right-hand side of the Lagrange identity,
namely the gradient of the divergence, were needed to complete the exercise.
Here we provide the Cartesian expansion of the gradient of the divergence of a
vector field from Eq. (4.7-24):

- S[PA A PA
VV. =
L — ”X[ 2 oy | oxaz
2 2 2 2 2 2
+0 J A‘+a ?+8AZ +, J A‘+a'%+a éz
Yl oyox 9y*  0yoz 020X 020y 0z

(D.1-14)

which againis a vector field.

The inside front cover provides some of the more common first- and second-
order vector differential operator expansions in Cartesian coordinates for the
reader’ s fingertip reference.

D.2 Cylindrical Coordinate Expansions

The conversion from generalized orthogonal curvilinear coordinates (GOCCs) to
cylindrical coordinates is

q=r, p=90,04=2 (D.2-1a,b,c)

and
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h’l 211 h2 =r, h3 =1 (D2—2a,b,C)

D.2.1 Cylindrical coordinate expansions of first-order vector
differential operators

First-order vector differential operators are expanded in cylindrical coordinatesin
the order of increasing resultant rank. As in the Cartesian expansions, the
divergence is done first because the resultant rank is one less than the rank of the
operand, followed by the curl because the resultant rank is unchanged, and then
the gradient because the resultant rank is increased by one.

D.2.1(a) The divergence of vector and dyadic fields

The divergence of avector field [from Eq. (4.4-22)] is the scalar field

_19(A) 1A oA (D.2-3)
o r or rodg oz '

The divergence of adyadic field [ref: Eq. (B.3-11)] is the vector field

-G, +r—=

1/ 9(rG,) 9G,, dG
= + +r
or 9 oz
(D.2-4)

D.2.1(b) The curl of vector and dyadic fields
Thecurl of avector field [ref: Eq. (4.5-13)] is the vector field

_q Faﬁ_aﬁ}r% {%_3&}0 E{M_aﬁ} (D.2-5)

VxA =
8 rdg oz 0z or ‘r| or  d¢

‘cyl

Thecurl of adyadic field [ref: Eq. (B.2-5)] isthe dyadic field
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[Notice that by replacing the r and ¢ coordinates with x and y, and by
replacing (D.2-2b) with (D.1-2b), that is, by letting the r and Lr coefficients
become unity, Equations (D.2-1) through (D.2-6) become (D.1-1) through
(D.1-6).]

When the derivative operators of (D.2-6) are taken, the curl of the dyadic
[using Eg. (3.3-4)] becomes the nine-dyadic component expansion

vxE| =G |19 _%Cx _Cu
oyt r d¢p oz r
~ [10G oG - oG
+ar¢ }_w+£__¢¢ +arz la&__m
ropg r 0z r d¢ oz
2 [BG” BGZ} ~ |G, dG, 2 [BG,Z BGE}
+0, — + @ -—2 |+ 0, —
“l 9z or “l 9z or “| 9z  or
+0

19(1G,) 136, G,
“Ir o or r d¢ r

[ab )
(e

|:1a(rG¢¢) 1aGf¢ Grr:|
| - - +

|:la(rG¢Z) _EaGrz:|
“I'r

+ —_—
ror r d¢ r or r do
(D.2-7)
D.2.1(c) The gradient of scalar, vector, and dyadic fields
The gradient of a scalar field [from Eq. (4.3-18)] is the vector field
W, = Ora_v+ O¢ga_v+ aza_v (D.2-8)
o or r oo 0z

The gradient of avector field [ref: Eq. (4.3-23)] isthe dyadic field
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Appendix D: Coordinate Expansions of Vector Differential Operators

VA‘QA—+G”—8§+U ?gﬂﬁr}%
B pYp (T+A>++”£—?% (D.2-9)
2 aA A, 2 A

+U T+U T+UZZT

The gradient of the dyadic is used in the theory of elasticity. See an application
of this in Section D.1.1(c). The cylindrical-coordinate expansion of the gradient
of adyadic field isthe 27-term triadic field

V5|

2 | 9ds, s 2 | 0s 2 |os, s
gro o o 00, — (24 z
+a [WJF : rs¢¢)}+uw¢[—w+r(sw+s¢r)}+uwZ a5+ r}
G [0 J i % S| § 9,
+u¢m[ 2 1S, +uw[ 5t [ * U g
2 JS: A asf¢ A JS,
+0,, S+ 0, +0,,5F
2 08, 2 0s, 2 0
5% 4 YSw & %S
+ Oy o+ Uy ot + Uy
2 9s, (A 98, 2 9
+um(-9—S§'+uzz¢,—s';“’+uzzza—séZ
(D.2-10)
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D.2: Cylindrical Coordinate Expansions D-9

D.2.2 Cylindrical coordinate expansions of second-order vector
differential operators

D.2.2(a) The scalar and vector Laplacian

The scalar Laplacian [ref: Eq. (4.7-6)] isthe scalar field
Vzv\ =V. vv_li( a_vj+iza_2\£+az\£
ror\" oar ) r°dg° o9z

(D.2-11)

The vector Laplacian [ref: Eq. (4.7-14)] is the vector field

(D.2-12)
D.2.2(b) The curl of the curl of a vector field

The curl of the curl of avector field [from: Eq. (4.7-23)] is the vector field

VXVXA‘ _ 1 aZ(rA)_aZA _ aZA_azAz
2l agor 94 07"  9zor

J 1A A [19°(rA) 19(rA) 19°A 10A
“I| r0z0¢ 97 roor2 o’ ar raxa¢ r’ 9¢

v, PA 1A _PA _10A 1825 L19°A
Braz roz or®> ror r?o¢ ra¢az

(D.2-13)
D.2.2(c) The gradient of the divergence

The gradient of the divergence of a vector field in cylindrical coordinates from
Eq. (4.7-24) isthe vector field
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D-10 Appendix D: Coordinate Expansions of Vector Differential Operators

1 a(rA) a(rd) 9’4 aAo
V.= ”r{r oF  or omg 3 8182}
[ 8,4@
i ;{ Y Y a@z]+
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(D.2-14)
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See the inside back cover as a quick reference for some of the more common
first- and second-order vector differential operator expansions in cylindrical
coordinates. The inside front cover displays the same selected common vector
operator expansions in Cartesian Coordinates.

Reference

1. A. 1, Lure, Three-Diminsional Problems of the Theory of Elasticity, D. B.
MacVean, Trans., Wiley Interscience, Hoboken, NJ (1964), p. 53.
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Glossary

Ampere's circuital law: The circulation of the magnetic field intensity H
about any closed path is equal to the total electric current passing through
any surface bounded by that closed path.

curl of a vector field at a point: A vector pointing in the direction of a normal
to an infinitesimal surface which is so oriented in space that the limit of the
ratio of the line integral of the vector field around the perimeter of that
surface to the area enclosed is maximal. The magnitude of the curl is the
value of that limit.

curl of the curl of a vector field: The circulation density of the vorticity of that
field, which can be thought of as the rotational spatial change of vorticity
in the cross-product direction.

divergence of a vector field: A scalar field whose magnitude at any point in
space is determined by taking the ratio of the net outward flux of the vector
field through an infinitesimal closed surface surrounding the point to the
volume enclosed by that surface as the volume tends to zero.

directional compoundedness: An integer that denotes the level of directionality
of afield quantity. The tensor rank of that quantity. A term coined by the
author intended to give those new to tensor fields a more intuitive feel for
tensor rank.

dyad: Seeunit dyad.

dyadic: A quantity that has two directions associated with each point in the
field. A tensor of rank two.

dyadic field: A field quantity that has a dual directiona compoundedness. A
quantity that has two directions associated with each point in space. A
tensor field of rank two.

field: A quantity that isafunction of spatial coordinates.

Gauss law for electrostatics: The total eectric flux emanating outwardly
through a closed surface is equal to the total charge enclosed within.

GOCCs: generalized orthogonal curvilinear coordinates.

gradient of a scalar field: A vector field oriented in the direction in which the
scalar field increases most rapidly. Its magnitude is the derivative of the
scalar field in the direction of its maximal increase.

Glossary-1
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Glossary-2

gradient of a vector field: A dyadic field found by taking the nabla differential
operation on each of the vector field components.

gradient of the divergence of a vector field: Another vector field oriented in
the direction in which the volume source distribution density increases
most rapidly. Its magnitude is the derivative of that volume density
distribution in the direction of its maximal increase.

line integral: The integral of a field quantity taken over a vector differential
length d¢ that is everywhere tangent to ageneral line L in space.

mixed derivative theorem: Statesthat if f(q,,q,,0;) and its partial derivatives
fqu fqu and f(,thz exist and are continuous, then fqqu aso exists and

f=f .

order o1cEll qé tengzoo?: In modern photonics (and in this book) the order of atensor

field is one less than the rank. In other treatments order is sometimes used
synonymously with rank.

partial derivative: The result of taking a derivative of a function of multiple
independent variables with respect to one of the variables while holding all
of the other independent variables constant.

guadad: See unit quadadic.

guadadic: A quantity that has four directions associated with each point in the
field. A tensor of rank four.

guadadic field: A field quantity that has quadruple directional compoundedness.
A quantity that has four directions associated with each point in space. A
tensor field of rank four.

T -space notation: A vector-like symbol T used in the functional argument of
a field quantity to denote the coordinates at which function is being
represented. A shorthand notation for those coordinates, e. g., T is short
for x,y,z.

rank: The quantitative (integer) property of atensor that specifiesits directional
compoundedness or the multiplicity of its directionality.

scalar: A quantity that has a magnitude but no directionality. A tensor of rank
zero.

surface integral: theintegral of afield quantity taken over a vector differential
area da that is everywhere normal to ageneral surface Sin space.

tensor: A quantity that has multiple directionality at each point in space and at
each moment in time. The “rank” of atensor enumerates that multiplicity.

tensor field: A quantity that has multiple directionality at each point in space.
A quantity with arbitrary (integer) directional compoundedness. The
“rank” of atensor enumerates that multiplicity.
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Glossary-3

triad: Seeunit triad.
triadic: A quantity that has three directions associated with each point in the
field. A tensor of rank three.
triadic field: A field quantity that has a triple directional compoundedness. A
quantity that has three directions associated with each point in the field. A
tensor field of rank three.
unit dyad: A dually directed unitary dyadic. A quantity that has a magnitude of
one, and two directions at every point in space. A unitary tensor of rank two.
unit quadad: A quadruply directed unitary quadadic. A quantity that has a
magnitude of one, and four directions at every point in space. A unitary
tensor of rank four.
unit triad: A triply directed unitary triadic. A quantity that has a magnitude of
one, and three directions at every point in space. A unitary tensor of rank
three.
unit vector: A singly directed unitary vector. A quantity that has a magnitude
of one, and a single direction at every point in space. A unitary tensor of
rank one.
vector: A quantity that has a magnitude and an inherent single direction. A
tensor of rank one.
vector field: A quantity that has a magnitude and an inherent single direction at
every point in the field. A tensor field of rank one.
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Index

3-space vector, 1-2

A

acousto-optics, 3-2

advanced potentials, 5-30

Ampere' scircuita law, 2-12, 5-21

anisotropic dielectric, 3-6, 3-9

anisotropic media, 2-6, 3-1

anisotropic permittivity, 3-6

area formulas using cross
products, 2-15

area of aparallelogram, 2-15

associative law, 2-5

attenuation constant, 5-25

B

bianisotropic media, 3-1
birefringence, 4-7
boundary conditions, 4-18
building blocks, 1-15

C
chainrule
functions of three independent
variables, 1-20
surface functions, 1-21
circulation integral, 4-30, B-1
clock example, 1-23
closed lineintegral, 2-12, 5-11, B-13
commutative law, 2-4, 2-5
for cross products, 2-13
composite materials, 3-1, 3-2
confoca ellipsoids, 2-27
confocal hyperboloids, 2-26
coordinate derivatives of unit vectors,
1-23, B-12
coordinate systems
bipolar cylindrical, B-14, B-18, B-19
Cartesian, B-14, B-16, B-17

Index-1
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circular cylindrical, 4-2, B-13, B-14,
B-16, B-17
confocal oblate spheroidal, B-14,
B-20, B-21
confocal prolate spheroidal, B-14,
B-20, B-21
dliptic cylindrical, B-14, B-18, B-19
GOCCs, B-14, B-16
one-sheet hyperboloid, B-15
parabolic cylindrical, B-14, B-18,
B-19
spherical, B-14, B-16, B-17
sphero-conal, B-1, B-22, B-23
toroidal, B-1, B-24, B-25
two-sheet hyperboloid, B-15
cross product, 2-7, 2-13, 2-15
crystalline materials, 1-7
curl, 4-3, 4-27, B-1, C-5
Cartesian coordinate geometry, B-5—
B-8
circulation density, 4-31
curling up, 4-31
geometry, B-12
maximal ratio, 4-31
meter, 4-31
of adyadic, in cylindrical coordinates,
D-7
of ageneralized tensor, C-7
of avector, Cartesian coordinates, B-6
of the curl of avector field, 4-48, C-14
in Cartesian coordinates, D-4
in cylindrical coordinates, D-9
in GOCCs, 4-51
physical description, 4-49
of the divergence of atensor, C-10
of the gradient of atensor, C-9
of the strain dyadic, D-2
paddie whesel, 4-31
physical description, 4-28
resultant field, 4-28
swirl, 4-31



Index-2

theorem (See Stokes' theorem) differential volume, 1-17, 1-18, B-2—
transverse nature, 4-28 B-4
vorticity, 4-31, 4-49 Dirac deltafunction, 5-26, 5-29
direct operator, 4-3
D direct product, 2-7, 5-5
del operator, 4-9 directional compoundedness, 3-3
derivative nature, C-21 of four, 3-13
in Cartesian coordinates, C-5 directional derivative, 4-13
in GOCCs, C-17 dispersion relation, 4-5
product nature, C-21 displacement, 2-2
del vector differential operators, 4-2, displacement vector
4-3 electric, D-2, D-4, D-5, D-9
del-cross operator, 4-3, 4-27, 4-29 mechanics, D-2
del-dot operator, 4-3, 4-16 distributive law
del-squared operator, 4-42 for cross products, 2-13

derivatives divergence, 4-3, B-1, B-2, C-5
of multiple variables, C-20 Cartesian coordinate geometry, B-2—
partial, 1-18 B-5
partial of ascalar function, 1-19 cylindrical coordinate geometry, B-9—
total, 1-18 B-12

dielectric breakdown, 3-15 geometry, B-12

dielectric strength, 3-15
differential areaasascalar, 1-16
differential areaasavector, 1-17
differential elements, B-1

of area, B-1

of length, B-1, B-9

of volume, B-1

orthogonal, B-1
differential equations, 4-5

inhomogenous, 5-1

order, 4-1, 4-2
differential equations for vector field

flow lines

in GOCC, 4-24, C-17, C-18

of adyadic, 4-43, B-10

of ageneralized tensor, C-6, C-17,
C-18

of avector field, cylindrical
coordinates, B-10

of the curl atensor, C-7

of the gradient of a vector field, 4-43

operator, 4-16, 4-43, C-16

physical description, 4-17

resultant field, 4-28

tangential nature, 4-28

theorem (see Gauss' theorem)

in Cartesian coordinates, 2-20

in cylindrical coordinates, 2-21

in GOCCs, 2-20

in spherical coordinates, 2-22
differentia forms, 4-1

dot product, 2-7

dot productsin line and surface
integrands, 2-11

double dot product, 2-8, 3-14, 3-17

dual directional compoundedness, 1-6,

differentia length vectors, 1-15 2-2

differential operator dummy index, C-7, C-11
first-order scalar, 4-5 dyad, 3-13
first-order vector, 4-8, 4-35, B-1 dyadic field, 4-14

order, 4-1, 4-2
second-order scalar, 4-6
second-order vector, 4-36
second-order vector, Cartesian
expansion, D-4
differential surfaces, B-7-B-9
differential vector surfaces, B-2

divergence of, in cylindrical
coordinates, D-6
dyadic phasor field, 2-17
dyadics, 1-6, 1-11, 1-12, 3-20
arrow notation, 1-13
cause and effect nature, 1-8
coordinate transformation matrix, 1-8
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Index-3

cross product, 5-5
directional compoundedness of two,
33
magnetostrictive materials, 1-8
n-dimensional Jacobian differential
operator, 1-8
piezoelectric materias, 1-8
pre-subscript notation, 1-12
pre-superscript notation, 1-12
strain dyadic, 1-8
stress dyadic, 1-8
tangential components, 5-4
dyadic-dyadic dot product, 3-12, C-3
dyadic-dyadic double dot product, 3-12
dyadic-vector dot product, 2-6, 3-2, 3-9,
3-10

E
eigenfunction, 4-5
eigenvalue, 4-5
degenerate, 4-7
elastic modulus, 3-13
electric displacement vector (See
electric flux density vector)
electric field intensity, 2-2, 2-12, 5-9
electric flux density, 2-2
electric flux density vector, 3-5
anisotropic media, 3-6, 3-9
isotropic media, 3-5
nonlinear media, 3-15
electric permittivity dyadic, 3-8
electric potential, 1-2, 2-2, 2-12, 4-9,
5-9
electric potentia field, 2-2
electric scalar potential, 5-27
retarded, 5-27, 5-30
electric susceptibility, 3-16
electro-optics, 3-2
electromagnetic fields
energy in, 5-19
electromagnetic waves
scattering of, 3-1
energy, 1-2
entropy, 1-2
equipotential surfaces, 2-26
equivalue surfaces, 2-26
explicit standard notation, 1-1
exterior product, 4-4
external product, 2-7
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F

fiber optics, 3-2

fields, 2-17
in T space, 1-5
nonconservative, 4-31
rotational, 4-31, 5-10
solenoidal, 4-31

fifth-order nonlinearity, 3-18

filamentary current source, 5-11

finite straight line charge, 2-25

flow line, 2-18

flux density, 2-12

flux tubes, 4-18

force, 2-2

Fourier transform, 5-27

fourth-order nonlinearity, 3-18

G
Gauss law, 5-16
Maxwell’ s equations from, 5-17
Gauss theorem, 5-1, 5-15, 5-18
Gaussian surface, 5-16
gedanken experiment
curl meter, 4-31
generalized operator, C-1
generalized orthogonal curvilinear
coordinates (GOCCs), 4-2
generalized vector operator on
generalized tensor in GOCCs,
C-18
gradient, 4-1, 4-3, B-1, C-6
geometry, B-12, B-13
of adyadic field, in Cartesian
coordinates, D-3
of adyadic field, in cylindrical
coordinates, D-8
of ageneralized tensor, C-7
of ascalar field, in Cartesian
coordinates, D-3
of ascalar field, in cylindrical
coordinates, D-7
of ascalar field, physical description,
4-8
of avector field, 4-8, 4-14
of avector field, in Cartesian
coordinates, D-3
of avector field, in cylindrical
coordinates, 4-15, D-7
of avector field, in GOCCs, 4-14
of the curl of atensor, C-12



Index-4

of the divergence, 4-48
of the divergence, in Cartesian
coordinates, D-5
of the divergence, in cylindrical
coordinates, D-9
of the divergence, physica
description, 4-53
of the stress dyadic, D-3
omniverse nature, 4-28
operator, 4-8
resultant field, 4-28
gravitational potential energy, 4-9
Green'sfunction, 5-1, 5-25
Green' sidentities, 5-1, 5-24, 5-31
scalar form, 5-24, 5-28
vector form, 5-25
Green'slemma, 5-24
Green’ stheorems, 5-24
group velocity dispersion, 3-17

H

harmonic time variation, 2-17

Helmholtz scalar wave equation
homogenous, 5-25
inhomogenous, 5-25, 5-27

I

inner product, 3-10
multiple, 3-10

integral forms, 5-1

integral operators
cross-product, 5-5
direct-product, 5-5
dot-product, 5-5

inverse, 2-7
transforms, 5-28

J
Jacobian differentia operator, 1-8

K
Kronecker delta, 2-8, 3-9, C-3, C-5,
C-19

L

Lagrange vector identity, 4-48, 4-52,

C-5
applied to tensors, C-13
Lamé coefficients, C-16
Laplacian
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del-squared operator, 4-42, C-14
scalar, 4-38, 4-42
in cylindrical coordinates, D-9
in GOCCs, 4-42
tensor, C-14
vector, 4-38, 4-43, 4-53
in cylindrical coordinates, 4-46, D-9
in GOCCs, 4-45
Levi-Civitasymbol, 2-13, 2-14, C-6
linear isotropic materias, 3-1
linear medium, 3-15

M
magnetic field intensity, 2-2, 5-11
magnetic flux density, 2-2
magnetic vector potential, 5-11, 5-30
retarded, 5-30, 5-31
magneto-optics, 3-2
magnetostrictive transducers, 1-8
matrix multiplication analogy
invalid, 3-11
valid, 3-9
maximal increase, 4-9
direction of, 4-12
Maxwell’s divergence equation for the
electric flux density, 5-17
Maxwell’s equations, 5-17
mechanics of materials, 1-8
metric coefficients, 2-19
mixed derivative theorem, 1-20, C-9,
C-10
modulus of elasticity, 3-2, 3-3
molecular inversion symmetry, 3-16
multiple directional compoundedness,
1-7
multiple dot product, 3-21

N

nabla operator (See del operator)

nabla vector differential operators, 4-2,
4-3,C-18

analogy with vector operators, C-24

nebel, 4-3

Newton, Isaac, 5-21

non-centrosymmetric materials, 3-16,
3-18

nonlinear medium, 3-15

nonlinear optical effects, 3-3
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@]
open lineintegral, 2-11, 5-10
open surfaces, B-13
operand
dyadic, 4-38
scalar, 4-38
tensor, 5-5, 5-14
tensor, generalized, 4-38
vector, 4-38
operand field, 4-4
optical engineering
paradigm into, 3-2
optoelectronics, 3-2
order notation, 1-14, 3-18
orthogonal coordinate surfaces, 1-15
orthogonal coordinate systems, B-1
parameters, B-13
surface graphics, B-13
outer product, 2-7, 4-4

P
partial derivatives

dimensionally consistent formulation,

1-21

vector function, 1-22
path dependence, 5-7

of tangential lineintegrals, 5-10
path independence, 5-7
permittivity tensors, 3-15
phase constant, 5-25
phasors, 1-5
photonics, 3-1, 4-2

paradigm into, 3-2
piezoelectric transducers, 1-7
potential energy difference, 5-6
potential function, 5-24
power of tensors, 3-1
Poynting’' s theorem, 5-19
pressure, 1-2, 4-9
projection of one vector onto another,

2-10

propagation constant, 5-25

Q
quadad, 3-13
quadadic, 3-13, 3-20

R
T -space notation, 1-4
physical interpretation, 1-4
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Raman amplification, 3-17
rank, 3-3
rank/order issue, 3-4
rank-four unitary quantity, 3-14
resultant
field, 4-28
forms, 4-37
forms, dyadic, 4-38
forms, generalized tensor, 4-38
forms, quadadic, 4-38
forms, scalar, 4-38
forms, second-order vector differential
operator, 4-39
forms, triadic, 4-38
forms, vector, 4-38
tensor, 4-36
rolling of coordinates
validity in Cartesian coordinates, 4-27
validity in GOCCs, 4-27

S
scalar differential operators, 4-5
scalar field equivalue surfaces, 2-25
scalar fields, 2-1, 2-3
scalar function
total derivative of, 1-20
scalar phasor, 1-6, 2-17
scalar product, 2-7
restricted use of, 2-7
scalars, 1-2
zero directional compoundedness, 3-3
scale factors, 2-19
scattering dyadic, 3-1
second-order degeneracy, 4-7
second-order nonlinearity, 3-16
self-phase modulation, 3-17
shear, 3-13
soliton wave propagation, 3-17
sonar
receivers, 1-7
transmitters, 1-7
source distribution, 5-18
sources, 4-24
charge density, 4-24
mass density, 4-24
Stokes' theorem, 5-1, 5-21
derivation of, 5-22
implications of, 5-23
proof of, 5-23
strain, 1-8, 3-2
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strain dyadic
curl of, D-2

stress, 1-8, 3-2, 3-13

susceptibility
second-order, 3-16
third-order, 3-16

T
temperature, 1-2, 4-9
tension, 3-13
tensor, 1-7
arrow hotation, 1-13
calculus, 4-1
components, 3-4
directional compoundedness of, 3-2
explicit standard notation, 1-11

general rank, explicit standard notation

for, C-2
Laplacian, C-14
multiple-subscript notation, 1-11
notation, 1-1, 1-11, 3-7, 3-14, 3-18
operands, 4-37
order notation, 1-14
order of, 3-2, 3-4
post-subscript notation, 1-14
post-superscript notation, 1-14
pre-subscript notation, 1-12
pre-superscript notation, 1-12
product, 4-3, 5-5
product, general, C-3
rank of, 3-2, 3-4
rank rules, 4-16
rank-four, 3-3, 3-13
resultant, 4-36, 5-5, 5-14
tensor-tensor cross product, 3-21
tensor-tensor direct product, 3-21
tensor-tensor dot product, 3-21
tensor/dyadic issue, 3-2
tensor field
lineintegrals, 5-2
tensor operators, 4-3
tensor phasor, 1-6
tensor phasor field, 2-18
tensorial resultants, 4-35
third-harmonic signal, 3-4
third-order nonlinearity, 3-17
third-order permittivity, 3-17
third-order susceptibility, 3-4
time harmonic, 1-5
total flux, 2-12
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triad, 3-13
triadics, 1-11, 3-16, 3-20, D-8
arrow notation, 1-13
dot product, 5-5
explicit standard notation, 1-11
pre-subscript notation, 1-12
pre-superscript notation, 1-13
tensor notation, 1-12
triads, 1-11
inner product with differential length
segment, 5-4
triple dot product, 2-8, 3-4
triple vector product, 2-17

U
unit dyad, 1-7, 1-12, 3-6
pre-subscript notation, 1-12
pre-superscript notation, 1-13
unit impulse, 5-26
unit triad, 1-12
pre-subscript notation, 1-13
pre-superscript notation, 1-13
unit vector, 1-3
coordinate derivatives of, 1-23

Vv
vector, 1-2
arrow notation, 1-13
single directional compoundedness,
33
six-dimensional, 3-15
vector addition, 2-4, 2-5, A-1-A-3
vector differential operator
first-order, 4-1
n-dimensional, 1-8
second-order, 4-2
tensor notation, 1-12
vector dot product with adyadic, 3-2
vector field direction line (See flow
line)
vector fields, 2-2, 2-3, 4-18
circulation of, 2-12, 4-29
conservative, 2-12
current density, 5-30
divergence of, in cylindrical
coordinates, D-6
irrotational, 2-12
lineintegrals, 5-2
rotational, 2-12
solenoidal, 2-12
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vector function
partia derivative of, 1-22
vector phasor, 1-6, 2-17
vector product, 2-7
restricted use of, 2-7
triple, 2-17
vector subtraction, 2-5, A-3, A-4
vector-dyadic dot products, 3-8
vector-vector products, 2-7
velocity, 2-2
voltage, 1-2
volume charge density, 5-27
vortex field
circulation density, 4-51
vortex hole, 4-51
cyclonic type, 4-51
vorticity, 4-31, 4-49
nonrotational, 4-50
nonvarying, 4-50
vector, 4-50

w
wave number, 5-25
work, 1-2, 5-6
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Cylindrical Coordinate Expansions of Common
Vector Differential Operators

Conversions from generalized orthogonal curvilinear coordinates (GOCCs) to cylindrical:
G=r G=¢ G=zadh=1h=r, h=1
First-Order Vector Differential Operators (Div, Curl & Grad)

Div vector [Eq. (4.4-22)]
_19(rA) 19A oA

A= a scalar field
o v o rd¢ oz
Div dyadic [Eq. (B.1-5)]
= 1| 9(rG oG
V-G zar_ M.F_M_GM_Fra&
o r or ¢ 0z
avector fied
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Curl vector [Eq. (4.5-13)]
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Grad scalar [EQ. (4.3-18)]
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Grad vector [Eq. (4.3-23)]
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Second-Order Vector Differential Operators (Laplacians)
Scalar Laplacian [Eq. (4.7-6)]

ascalar fidd
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ror or
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Vector Laplacian [Eq. (4.7-14)]
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See theinside front cover for the Cartesian coordinate expansions of these operators and
Appendix D for other vector differential operator expansions.
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