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Cartesian Coordinate Expansions of Common 
Vector Differential Operators 

 
Conversions from generalized orthogonal curvilinear coordinates (GOCCs) to Cartesian: 
  

1q x= , 2q y= , 3q z=  and 1 1h = , 2 1h = , 3 1h =  
 

First-Order Vector Differential Operators (Div, Curl & Grad) 
 
Div vector [Eq. (4.4-22)] 
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Div dyadic [Eq. (B.1-5)] 
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Curl vector [Eq. (4.5-12)] 
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Grad scalar [Eq. (4.3-18)] 
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Grad vector [Eq. (4.3-20)] 
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Second-Order Vector Differential Operators (Laplacians) 

 
Scalar Laplacian [Eq. (4.7-4)] 
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Vector Laplacian [Eq. (4.7-11)] 
2 2 2 2ˆ ˆ ˆ

x x y y z zCartesian
A A u A u A u A∇ = ∇ ⋅ ∇ = ∇ + ∇ + ∇     a vector field 

 
See the inside back cover for the cylindrical coordinate expansions of these operators and 
Appendix D for other vector differential operator expansions. 
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Introduction to the Series 
 
Since its conception in 1989, the Tutorial Texts series has grown to more than 60 
titles covering many diverse fields of science and engineering. When the series 
was started, the goal of the series was to provide a way to make the material 
presented in SPIE short courses available to those who could not attend, and to 
provide a reference text for those who could. Many of the texts in this series are 
generated from notes that were presented during these short courses. But as 
stand-alone documents, short course notes do not generally serve the student or 
reader well. Short course notes typically are developed on the assumption that 
supporting material will be presented verbally to complement the notes, which 
are generally written in summary form to highlight key technical topics and 
therefore are not intended as stand-alone documents. Additionally, the figures, 
tables, and other graphically formatted information accompanying the notes 
require the further explanation given during the instructor’s lecture. Thus, by 
adding the appropriate detail presented during the lecture, the course material can 
be read and used independently in a tutorial fashion. 
 
What separates the books in this series from other technical monographs and 
textbooks is the way in which the material is presented. To keep in line with the 
tutorial nature of the series, many of the topics presented in these texts are 
followed by detailed examples that further explain the concepts presented. Many 
pictures and illustrations are included with each text and, where appropriate, 
tabular reference data are also included. 
 
The topics within the series have grown from the initial areas of geometrical 
optics, optical detectors, and image processing to include the emerging fields of 
nanotechnology, biomedical optics, and micromachining. When a proposal for a 
text is received, each proposal is evaluated to determine the relevance of the 
proposed topic. This initial reviewing process has been very helpful to authors in 
identifying, early in the writing process, the need for additional material or other 
changes in approach that would serve to strengthen the text. Once a manuscript is 
completed, it is peer reviewed to ensure that chapters communicate accurately the 
essential ingredients of the processes and technologies under discussion.  
 
It is my goal to maintain the style and quality of books in the series, and to 
further expand the topic areas to include new emerging fields as they become of 
interest to our reading audience. 
 
 

Arthur R. Weeks, Jr. 
University of Central Florida 
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Preface 
 
The overriding objective of this book is to offer a review of vector calculus 
needed for the physical sciences and engineering. This review includes necessary 
excursions into tensor analysis intended as the reader’s first exposure to tensors, 
making aspects of them understandable at the undergraduate level. A secondary 
objective of this book is to prepare the reader for more advanced studies in these 
areas. 
 

As the world embarks on new horizons in photonics and materials science, 
honing one’s skills in vector calculus and learning the essential role that tensors 
play are paramount. New inroads in engineering are driving the need for a 
revamp of engineering mathematics in these areas. Profound new paradigms in 
optical engineering and new advances in composites are necessitating these 
changes. The author has found that there is an ever-increasing need for vector 
calculus concepts to be extended to tensors and that his undergraduates can 
indeed grasp tensorial concepts if taught following the lines of thinking presented 
here. 
 

Whereas the classical approach to teaching electromagnetics at the junior 
level has been to avoid any mention of tensors, the high-tech world entering the 
third millennium warrants a rethinking of this practice. This is especially true as 
nonlinear optical effects become more common in the design of optical systems. 
Advanced materials, especially composites and nanodesigned materials, provide 
further evidence supporting the teaching of tensor fundamentals to upper-
division* students. Even for isotropic materials, the fundamental relationship 
between stress, strain, and elastic modulus—which are rank-two and rank-four 
tensors—requires a fundamental understanding of tensor analysis. For 
anisotropic materials such as composites, piezoelectric materials, and 
magnetostrictive materials, tensorial relationships are unavoidable even in the 
linear regime. 
 

 

                                                

Furthermore, the development of new photonics devices in optoelectronics, 
acousto-optics, magneto-optics, and fiber optics is playing an ever-increasing 
role in contemporary communications system design.1,2,3,4 Pollock states 

 
* University-level juniors and seniors. 
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The drive for faster systems has led to… [an] electronic speed 
bottleneck…This has motivated the study of integrated optics, where 
light, which has a much higher implicit frequency limit, is used to control 
light… Without a doubt the biggest research task…will be the 
development of optical switches and devices, and better communication 
architectures. 

 
These devices include laser sources,5 optical switches, rare-earth-doped fiber 
amplifiers,6 nonlinear-effect fiber amplifiers,7 nonlinear-effect fiber soliton 
waves,8 optical detectors,9 and new dispersion-managed optical fibers. 
 
Uses of this Guide 
 
This is a guide, and was not planned as a text book. As such, it is intended for 
multiple uses, including its use as a 
 

1. reference to salient differential and integral forms for problem 
solving, 

2. supplement to an engineering or science course, used in 
conjunction with and as a counterpart to it, 

3. study guide before entering such courses, 
4. reference manual in an R&D laboratory or design group, 
5. complement to required or elective math courses, or just as a 
6. refresher and reference source to vector calculus and an 

introduction to tensor analysis, or a 
7. text, provided the instructor devises problem sets to provide the 

usual practical experience with numerical examples. 
 
Who is this guide written for?  
 
Many students and working professionals experience a new awakening when 
they see and feel first-hand how complex mathematical concepts are applied to 
understanding real-world challenges. It is the intent of this guide to provide some 
of the mathematical prowess to facilitate reaching this level of professional 
elation. Other ways to state this are 
 

Mathematics is fun! 
or 

Knowledge is power! 
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Courses such as electromagnetics (commonly called “fields”) are often 
viewed by students as tough and something to be avoided until late in their 
program. Such postponement is not advised. Other courses, such as quantum 
physics, fiber optic communications, nonlinear fiber optics, structural analysis, 
materials science or any of a number of other engineering and physical science 
courses are understood through exposure to the concepts of vector and tensor 
calculus. It is hoped that this type of exposure will provide the confidence needed 
to encourage students to complete mathematically intensive courses earlier in 
their programs by allaying their fear of an imagined mathematical abyss. In this 
way they will be better prepared for more advanced studies. 
 

John R. Whinnery in his classic paper10 “The Teaching of Electromag-
netics” states 
 

The set of four equations we know as “Maxwell’s equations,” in 
modern notation, is simple enough to imprint on a T-shirt, and yet 
rich enough to provide new insights throughout a lifetime of study. 
Some students grasp the clarity, power and excitement on first 
introduction while others have a very rough time with the concepts. 

 
Whinnery’s paper is intended to give students encouragement in approaching 
electromagnetics with clarity and excitement and to seek its power. His remarks 
might also be applied in varying degrees to other areas of physics as well, 
especially with regard to the mathematical constructs of Sc , which are 
necessary for understanding the quantum physics inherent in the optical devices 
cited above as well as in nonlinear optical constructs. 

hrodinger

 
Other challenging areas contributing to new millennium technology 

include 
 
• optical communications, 
• homeland security sensor systems, 
• optical materials design, 
• new applications of bi-anisotropic materials, 
• optically based computer design for ultra-high speed and data 

throughput, 
• space-based materials development, 
• new innovations in medical imaging., 
• the design of ultra-high-bandwidth ultra-dense multi-access networks 

and their associated components, and 
• crystal physics. 
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These are but few of many that could be listed. 
 

This guide is also for anyone who is, or endeavors to be, involved in 
research, development, or education relating to these and other new frontiers in 
science and engineering. Although this guide is written with explanations and 
examples intended for the upper-division and first-year graduate student in 
science or engineering, it is also intended for those engaged in graduate research 
and in industrial research and development who have already been exposed to 
some of the concepts.  
 

While excursions into tensors were originally written with undergraduates 
in mind, the author has discovered that many professionals, including academics, 
have a restricted understanding of tensors. A glimpse of the tensor-dyadic issue 
in the introduction to Chapter 3 and the rank-order issue in Section 3.1 (including 
the footnote), a study of Table 3-1 (at the end of Chapter 3), Table 4-1 (in Section 
4.6), and especially Table 4-2 in Section 4.7 may open doors for some and 
provide good instructional fodder for anyone who uses tensors in their upper-
division or introductory graduate courses. 
 
Content 
 
This guide consists of five chapters and four appendices. As an introduction, 
Chapter 1 deals with a suggested notation that distinguishes between scalars, 
vectors, phasors, dyadics, and higher rank tensors, without the use of boldface 
characters. In so doing, it briefly covers other typical notational forms that are 
used in this book or that one may encounter in the literature. It also covers spatial 
differentials and the concept, definition, and use of partial derivatives. This 
includes the general formulation of partial derivatives of unit vectors with respect 
to coordinates—a factor often neglected in undergraduate instruction leading to 
incorrect answers. A simple example of this concept is provided. 
 

Chapter 2 provides a review of vector algebra covering variant and 
invariant scalars, scalar and vector fields, the notation and utility of phasor 
scalars, phasor vectors, phasor dyadics, and phasor tensors in general. Classical 
arithmetic vector operations of addition, subtraction, and dot-, cross-, and direct-
product operations are discussed along with physical applications of these. Open 
and closed line and surface integrals of vector fields are cited as being potent 
uses of dot products in integral calculus covered in Chapter 5. Vector field 
direction lines and equivalue surfaces of scalar fields are also developed as 
further examples of the power of cross- and dot-product operations. In the 
process, the need for metric coefficients in coordinate expansions is introduced. 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Preface                                                                                                              xxix 

Chapter 3 gives an introduction to tensors, and the power of the use of 
tensor analysis is explained at a level intended for the junior, senior, or early 
graduate student, who may not have been previously exposed to dyadics or other 
tensors beyond scalars and vectors. The concept of inner product—a term used 
synonymously with dot product—is discussed. The dot products of a dyadic with 
a vector and a vector with a dyadic are carried out in detail, and in the process the 
adjective “inner” is made apparent. The dot and double-dot products of two 
dyadics are also detailed. These inner-product operations are expressed in their 
considerably more simplified tensor notation in order to illustrate the value and 
power of the latter. 
 

The chapter introduces tensors of higher rank (through examples in the 
mechanics of materials and nonlinear optics) and the interpretation of rank in 
terms of “directional compoundedness”—a term coined by the author to help 
those unfamiliar with tensors to overcome the idea that a quantity can have more 
than one direction at every point in space and time. The rudiments of tensor 
analysis include rules for term-by-term rank consistency and rules for 
determining the resulting rank after performing certain product operations. This 
concept is detailed and tabulated in Chapter 4. 
 

Chapter 4 is a review of vector calculus differential forms with excursions 
into tensor analysis. First-order vector differential operators are introduced with a 
historical perspective on the use of the “del” operator. Scalar differential 
operators, differential equations, and eigenvalues are generally discussed. The 
concepts of gradient, divergence, and curl are described in physical terms and 
developed from their basic definitions without the use of coordinate systems. The 
rank of the resultants of these first-order vector differential operators is tabulated 
in Table 4-1. 
 

Vector operators of vector operators, such as the Laplacian of scalar and 
vector fields and six others that are commonly used in junior-level courses, are 
also explained in terms that conjure up images of the fields and the effects of 
these operators on those fields. These second-order operations are tabulated in 
Table 4-2 and developed in generalized orthogonal curvilinear coordinates. These 
are then reduced to cylindrical coordinates (rather than the usual rush to 
Cartesian) in order to illustrate certain terms that otherwise disappear when 
Cartesian coordinates are used—cylindrical being the simplest of the non-
Cartesian systems, and also coincidentally being the most appropriate in the 
analyses of optical fibers. 
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Chapter 5 deals with integral forms of vector calculus and also with 
excursions into tensor calculus. It first delineates line and surface integrals of 
scalar, vector, and tensor fields with dot-, cross-, and direct-product integrands. It 
then covers Gauss’ divergence theorem and Stokes’ curl theorem with examples 
of their applications. These are first explained in physical terms and then 
developed mathematically. Four of the most common forms of Green’s identities 
are then presented, and Green’s functions are offered as a powerful approach to 
solving inhomogeneous partial differential equations. 
 
Appendices 

 
A. This appendix serves as a supplement to the vector arithmetics* covered 

in Section 2.4. The commutative and associative laws of vector addition 
and subtraction cited in Section 2.4 are demonstrated. As an application, 
these laws are used to show graphically and mathematically how vectors 
may be bisected. (Other applications of vector arithmetics can be found 
in Chapter 2.) 

 
B. In this appendix divergence and curl are developed from their definitions 

in the more conventional Cartesian coordinates for further clarity of the 
concepts covered in Sections 4.4 and 4.5. The divergence is developed 
again in cylindrical coordinates as a first-level generalization towards 
curvilinear coordinates taking into account that the azimuthal φ  
coordinate is the sole curvilinear coordinate in the cylindrical system. 
Coordinate conversions and differentials, metric coefficients, differential 
elements of length, and equations of coordinate surfaces are tabulated for 
various orthogonal coordinate systems. Finally, graphical representations 
of the coordinate surfaces for each specific coordinate system are 
displayed in perspective view following each table. 

 
C. Intermediate-level tensor calculus is used in this appendix for the purpose 

of demonstrating several issues and rules cited in Chapter 3 and for 
providing proofs of several important postulations used in Chapter 4, 
especially in Tables 4.1 and 4.2. At this level we intended it for those who 
have learned the concepts in the earlier chapters or for those already 
familiar with the area. These include the proof of the Lagrange identity 
[Eq. (4.7-15)] that is often presented to upper-division students without 
such a proof. The appendix also demonstrates that the divergence operator 
cited by Eq. (4.7-7) is not only valid when applied to vector and dyadic 

                                                 
* Pronounced arith·met′ics 
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operands [given by Eqs. (4.4-22) and (4.7-9), respectively] but also to any 
tensor of general rank. Finally, to offset the tendency to treat the 
divergence, curl, and gradient as analogous to the dot, cross, and direct 
products, we emphasize that there are two properties of the nabla vector 
differential operator that must both be taken into account. That is, for all 
but Cartesian coordinates, the analogy is false. 

 
D. Appendix D provides Cartesian and cylindrical coordinate expansions of 

first- and second-order vector differential operators acting on scalar 
(where appropriate), vector, and dyadic operands. Two applications from 
materials science are presented that require the taking of the curl of the 
dyadic strain and the gradient of the dyadic stress. The first yields another 
dyadic, which in turn is an application of the dyadic line integral Eq. 
(5.1-4). The second yields a 27-term triadic, which is explicitly provided 
in Cartesian coordinates [Eq. (D.1-10)] and cylindrical coordinates [Eq. 
(D.2-10)]. Several of the more common Cartesian and cylindrical 
coordinate expansions presented in this appendix are listed on the inside 
front and back covers of this book for the readers’ convenience. 

 
Glossary 
 
A glossary of the acronyms, terms, and definitions used in this book precedes the 
index. 
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Chapter 1 

Introduction 
 
As an introduction to this guide, three topics are briefly reviewed. First, a 
convenient, consistent, and pedagogically functional notation is provided and 
various other notational approaches that the reader may encounter in the 
literature are summarized. Secondly, spatial differentials of length, area, and 
volume are examined. Finally, the concept and definition of partial and total 
derivatives are given for scalar as well as vector functions. In this latter regard, 
the idea that derivatives of unit vectors must in general take into account changes 
in direction and therefore may not be zero is developed for later use. 
 
1.1  Notation 
 
A consistent notation, which we will refer to as explicit standard notation, that 
can be used for handwritten or electronic communication between researchers, 
innovators, designers, and academics (including, of course, students and 
instructors) is suggested. Therefore, this notation eschews the use of boldface 
that is common in the literature for denoting quantities that have direction, such 
as vectors. Scalars, vectors, dyadics, and other tensors, as well as phasors, are 
cited in explicit standard notation in Sections 1.1.1 through 1.1.7(a) below. 
Explicit standard notation uses the multiple overbar to denote tensors of varying 
rank. Rank is a property of a quantity that signifies directional 
compoundedness—a term that will be used throughout this guide. This multiple 
overbar notation is in frequent use in current texts in fields and photonics.1 

 
Another common notation called tensor notation,2 which uses multi-

subscripts to denote multiple directivity of tensors, is listed in Section 1.1.7(b). 
Tensor notation is perhaps the most thorough because the ordering of its 
subscripts denotes the internal structure of the tensor that it depicts. For that 
reason, tensor notation is used in this guide whenever appropriate. 
 

Various other notational representations that the user may encounter are 
listed in Sections 1.1.7(c) through 1.1.7(e). Finally, the description of another 
notation called order notation, which is also in common use3–7 is postponed until 
Chapter 3 because it is quite another matter. 
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1.1.1  Scalars 
 
Quantities that have a magnitude but no directionality are scalars and can be 
written as, for example, 
 

a, A, 1, or 27, 
 
without any over- or undermarkings. Quantities such as pressure, temperature, 
voltage (electric potential), entropy, and work or energy are scalars because they 
have no directionality, only magnitude. Other quantities, such as components of 
vectors, current, and flux, may vary with coordinate rotations—a topic discussed 
in Chapter 2—but are also scalars by definition. 
 
1.1.2  Vectors 
 
A quantity that has a magnitude and an inherent single* direction is referred to as 
a vector. In explicit standard notation, a 3-space vector, that is, a vector quantity 
in three-dimensional (3D) space, having a magnitude a is written with an overbar 
and is commonly expanded into three orthogonal coordinates, such as  
 
 ˆ ˆ ˆ            x x y y z za u a u a u a= + +  (1.1-1) 

 
in Cartesian coordinates, where xa  is the component of a  in the x direction, ya  
is the component of a  in the y direction, za  is the component of a  in the z 
direction, and where ˆ ˆ ˆ, , and x y zu u u are unit vectors aligned along orthogonal 
Cartesian coordinate axes (in this case). Unit vector notation with the hat 
overmarkings is discussed in Section 1.1.3. In many texts, lowercase vowels a, e, 
i, or u are reserved for unit vectors. In Eq. (1.1-1), “ a ” is used in contrast as a 
full vector with all three components, ,  ,  and x y za a a . In other books, 

,  ,  and x y za a a  in bold lowercase represent unit vectors.8–10 Thus, by using the 
overbar exclusively for vectors of general magnitude and the “u-hat” for unit 
vectors, the door is open for multiple overmarkings to denote dyadics and other 
tensors. 
 

Another vector having a magnitude A will contain the overbar as before 
and, if expanded in generalized coordinates, is written as 
 

                                                
* The word single is emphasized here because vectors are not the only quantities 

that have direction. As we will soon learn, quantities can have multiple 
directionality and, thus, are not vectors. But, since vectors inherently have only 
one direction, we insert the word single to make that distinction. 
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 1 1 2 2 3 3ˆ ˆ ˆ      A u A u A u A= + +   (1.1-2) 

 
where subscripts 1, 2, and 3 represent three distinct orthogonal directions in 
3-space. Quantities such as force, velocity, acceleration, flow field, current 
density, electric and magnetic field intensities, flux densities, and polarization 
fields each have a magnitude and an inherent single direction. These are therefore 
expressed as vectors. 

Vector components are inherently scalars but can be made to show 
direction by including their associated unit vector. For example, the scalar 1A  
above may be depicted as a vector by attaching a unit vector to it: 1 1 1

ˆ  A u A= . 
Current I and flux ψ , which are scalars by definition, are often vectorized by 
incorporating a unit vector in their assumed direction. Although care must be 
taken when doing this, current and flux as vectors would be written as 

 ˆ ˆ and  i i iu I uψ  or just I  and .ψ  However, it is generally better to work with the 
densities, such as current density or flux density, which are inherently vector 
fields and are given units of the flux per meter squared (in SI units).* For 
example, current density J  is the flux density of current I (amps), and is given in 
units of amps per square meter. 
 
1.1.3  Unit vectors 
 
A unit vector is a quantity that has a magnitude of one and has an inherent single 
direction associated with it. In our explicit standard notation, a unit vector is 
written as a “u” with a hat or single chevron overmarking, such as 
 

ˆiu  

 
where the subscript is used to indicate a direction—in this case, the ith direction. 
Unit vectors are not confined to coordinate directions, although it is common to 

                                                
* The standard of units called the “SI” system is now managed by the U.S. 

National Institute of Standards and Technology (NIST). See special publication 
#330, 1971. In 1907, it was first proposed by Giorgi, who named it MKS (for 
meter-kilogram-second) and later, rationalized MKS. SI is the acronym for 
Système internationale d’unités. Whereas the SI system is the common standard 
in engineering literature, it is becoming prevalent in the scientific literature as 
well. Nevertheless, the reader should become familiar with the “Gaussian” 
system as well. The Gaussian system is a combination between the earlier emu 
(electromagnetic, meaning magnetostatic, units) and esu (electrostatic units) 
systems. It has a mathematical purity that renders the electric and magnetic 
fields in Maxwell’s equations similar in form and units, for example. 
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do so. Other symbols (usually lowercase) are often used for unit vectors. 
However, the author recommends the above redundant use of both the single 
chevron and the lowercase u in student-instructor exchanges to make it clear that 
a unit vector is intended. 
 
1.1.4  r - space notation: the vector-like r  used in the argument of a 
field function 
 
It is common in mathematical literature of science and engineering to see field 
functions that contain a vector-like looking symbol r  in their functional 
arguments. We will refer to this usage as -r space notation. For example, the 
electric potential V  at a point in space called the field point due to a system of 
charges denoted by ρ  located at source points would typically be written as 
 

 
1 ( ')

( ) v'
4 'Sources

r
V r d

r r

ρ
πε

=
−∫  (1.1-3) 

 
where the volume is taken over all of the positions where sources are present. 
 

Here the symbol r  in the argument of V  represents a shorthand notation 
for the spatial position of the field point, where the unknown electric potential 
field is being determined. Likewise, the 'r  in the argument of ρ  represents the 
spatial position of the known charge sources. The integration is being taken over 
the volume elements v 'd  where the charge sources are known to be located. The 
prime denotes source positions while the lack of a prime denotes field positions. 
Thus, whenever the symbols r  or 'r  are used in the argument of a function, it is 
meant simply as a shorthand for coordinates separated by commas or is used 
where no coordinates are implied at all. For example, in Cartesian coordinates, r  
and 'r  are , ,x y z  and ', ', 'x y z . Likewise, in cylindrical or spherical 
coordinates, r  and 'r  are , ,r zφ  and ', ', 'r zφ  or     , , and ', ', 'r rθ φ θ φ , 
respectively. For generalized coordinates, r  and 'r  are 1 2 3, ,q q q  and 

1 2 3, ,' ' 'q q q . This is what we mean by -r space notation. The symbols r  and 'r  
in the argument of a function represent a point in space, with or without regard to 
a coordinate system. 
 

However, having said that, r  and 'r  do, in fact, have a physical 
interpretation. See Fig. 1.1-1. In the case of r , for example, the symbol can 
represent the vector from an arbitrarily selected point in space designated as the 
origin O to the point P in space where the field V  is to be determined. In the case  
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Figure 1.1-1  Notational representation of source and field points in 
r − space notation. 

 
of 'r , this symbol represents the vector from the same origin to the source points 
S, over which the integration takes place. In both cases, however, this 
terminology is used independently of any specific coordinate system. We will 
refer to fields written this way as fields in r  space. The vector drawn from the 
source element to the field point is 'r r− . This can be written as capital R 
vector, so that 'R r r= − . See Fig. 1.1-1 for the geometry associated with r , 

'r , and 'r r− . 
 
1.1.5  Phasors  
 
In engineering and physics, quantities frequently vary in time as well as space. 
Whenever quantities vary sinusoidally in time at a monochromatic frequency, 
they are referred to as time harmonic. Further, it is customary to depict the time-
harmonic time variation as 
 

 or  i t j te eω ω−  
 
where ω  is the monochromatic radian frequency. In physics, the first 
exponential is commonly used, whereas in engineering, the second one is the 
more common. There is no substantive advantage of one over the other and one 
can easily convert analyses done in one to that of the other by replacing j  with 

i−  or vice versa.  
 

A time-harmonic scalar quantity ( , , , )f x y z t  would then be written as 
 

region of sources S

Field point 
differential volume at 
arbitrary origin 

P
S

O

r

'r

'−r r

P

O

S
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 ( , , , )    ( , , ) = j tf x y z t f x y z e ω  (1.1-4) 

 
The remaining analysis is then performed with the exponential factor suppressed. 
The function 
 

( , , )f x y z  

 
is then referred to as a phasor and can be denoted as such by the underscore 
either in electronic or handwritten communication. Any quantity that is dealt with 
in this manner with the time exponential suppressed, whether a scalar, vector, or 
other, is referred to as a phasor. The above function f  is then a scalar phasor. 
 

A time-harmonic time-varying vector would be written as 
 

 -( , , , )    ( , , ) = i tA x y z t A x y z e ω  (1.1-5) 
 
where ( , , )A x y z is a vector phasor denoted by an overbar as well as an underbar. 
Phasor scalars and phasor vectors are discussed in greater detail in Section 2.5. 
Dyadics, which are discussed in Section 1.1.6 below and in Chapter 3, can also 
be phasors, as can tensors in general. See Section 2.5 for tensor phasor notation. 
 
1.1.6  Dyadics  
 
One’s first step in understanding dyadics is to overcome the misconception that 
all quantities either have a direction or not. The emphasis here is on the word a, 
meaning a single direction or not. A student learning about vector fields finds 
that they are not overly difficult to visualize once scalar fields are understood. 
Vector fields are commonly described as quantities that have a direction (as well 
as magnitude) at every point in space (as well as at every moment in time). Such 
quantities are spatial and temporal. Implied in that first exposure to vectors was 
the word “single,” meaning single direction, even though this distinction was 
probably not mentioned at the time. 
 

The extension of the concept of vector fields to another type of quantity 
called dyadics is to understand that quantities can have two directions at every 
point in space and at every moment in time. Some examples below will aid in the 
understanding of this concept. We will refer to such quantities as having dual 
directional compoundedness and, as we just stated, name such quantities as 
dyadics. This dual directivity should not be construed as a simple combination of 
two three-component vectors. Rather, each of the three components of one vector 
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acts linearly on each of the three components of the other yielding nine 
components that fully describe the dyadic. That is,  
 

each of the nine components of the dyadic has a magnitude and a 
dually directed unitary dyadic called a unit dyad just as does each 
component of a vector have a magnitude and a singly directed 
unitary vector called a unit vector. 

 
While the following discussion is focused on notation and most of the 

examples in this section are for quantities with dual directional compoundedness, 
the reader should keep in mind that tensors in general can have multiple 
directional compoundedness beyond two. The general term for such quantities, 
where the multiplicity of the directional compoundedness is unspecified, is 
tensor. In Section 1.1.7, we list several common notational representations for 
tensors to prepare the reader for more detailed discussions in subsequent chapters 
about tensors and special cases of tensors, such as dyadics. 
 

Although junior-level (third-year) engineering or physics students have not 
necessarily been required to take a formal course in tensor analysis, they 
frequently have been exposed to quantities that have multiple directionality, often 
without being told so. However, in recent years more attention is being devoted 
to dyadics and other tensors because of the recognition of their importance, even 
at this level. 
 
Example 1: piezoelectric transducers and other crystalline materials  
 
In the study of anisotropic dielectrics, the dielectric properties cannot be fully 
described without the use of dyadics. That is, a dyadic is needed to express the 
constitutive relation between the electric flux in a crystalline dielectric and the 
applied electric field. For such materials, the flux density vector is not necessarily 
parallel with the applied electric field intensity vector because the crystalline 
material has different dielectric properties in different directions. Thus, the 
dielectric must be described by a dyadic. This feature has a practical and 
necessary application not only to crystalline dielectrics, but also to piezoelectric 
materials commonly used for sonar transmitters and receivers. The piezoelectric 
phenomenon found in certain special anisotropic materials is used in the design 
of transducers to convert between acoustic waves and electric fields. 
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Example 2: Magnetostrictive transducers  
 
Another example of the need for dyadics is in the use of magnetostrictive 
materials, which serve as converters between acoustic waves and magnetic fields. 
In these materials, the magnetic properties must be described by a dyadic in order 
to properly account for the magnetic flux density vector field that results from an 
applied magnetic field intensity vector field. 
 
Example 3: Stress and strain mechanics of materials  

 
Static and dynamic analyses of the mechanics of materials are typical in many 
engineering curricula. The stress and strain quantities covered in these courses 
are, in fact, dyadics. Each of these dyadic entities serves as a transformation 
between two vector fields that are not necessarily parallel in the material. 
Because these courses are usually taken at the sophomore (second-year) level, the 
tensorial nature of these quantities is usually not mentioned. 
 
Example 4: Conversion between coordinate systems  

 
In Appendix B, various 3 × 3 matrix transformations between orthogonal 
coordinate systems (in 3D space) are presented along with certain other 
coordinate system properties. These nine-component transformations between 
coordinate systems can be, and often are, viewed as dyadics. 
 
Example 5: The Jacobian differential operator  

 
Yet another example of the utility of dyadics is in numerical analysis. When 
studying Newton’s method of locating roots of systems of nonlinear equations, 
students come across the Jacobian matrix. The Jacobian is the determinant of the 
resultant components of an n-dimensional vector differential operator operating 
on an n-dimensional vector. It therefore has a dual directionality—one implicit 
from the vector operator (which we will later discover is the gradient operator) 
and one given by the vector upon which it operates. It is described by 2n  
components and is therefore not a scalar or vector, yet it has magnitude and 
direction. The key here is that it has two directions. 
 

Quantities that have dual directionality are referred to as dyadics as stated 
earlier. Philosophically, this duality of direction can be considered from a 
causality viewpoint, that is, cause-and-effect. The cause is a forcing function, 
which can have direction, and the effect is the resultant, which can also have 
direction, but not necessarily parallel to the causal direction. Thus, at every point 
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in space and at every moment in time, there are causal and resultant directions. 
The transformation matrix between these two quantities is the dyadic, if the 
causal and resultant quantities are vector fields. The mathematical expression 
relating resultant field to the causal field through the dyadic matrix 
transformation is referred to as a constitutive relationship. 
 

(Having said that, we hasten to point out the if in the italicized sentence 
above, for such constitutive relationships are not always fully describable by 
dyadic tensors. A case will be shown in Chapter 3 where the causal and resultant 
fields are themselves the stress and strain dyadics mentioned in Example 3. In 
this case, the constitutive relation involves a tensor having a four-level 
directional compoundedness. Therefore, the tensor that describes this is not a 
dyadic but is a rank-four tensor. It may surprise the student contemplating such a 
concept for the first time that we are talking about the elastic modulus. This 
oh-by-the-way parenthetical comment is made at this point in our discussion as a 
caution to the reader not to think of tensors as just being dyadics. Dyadics are 
special cases of tensors, but tensors are not necessarily dyadics. This point will 
be restated at various strategic places in this mathematical guide.) 
 

Rank: The quantitative property of a tensor that specifies its 
directional compoundedness is “rank.” Thus, dyadics are tensors of 
“rank two,” because of their dual directivity. Similarly, vectors and 
scalars are also tensors but of rank one and zero, respectively, 
because vectors have single directivity and scalars have no 
directivity. 

 
We will discuss dyadics and other tensors of higher directional 

compoundedness (higher rank) in more detail in Chapter 3. For now, since our 
purpose here is notation, we will denote the dual directionality of dyadics with a 
double overbar, such as 
 

A  (1.1-6a) 
 
and its associated unit dyad as a u with a double hat or double chevron, such as 
 

ˆ̂u                 (1.1-6b) 
 
where each has dual directionality. In 3D space, therefore, these quantities have 
nine components, as previously stated. 
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In this guide, we have been referring to the notation of using overbars, 
underbars, and chevrons, such as in Eqs. (1.1-1) through (1.1-6b), as explicit 
standard notation. Many other notations are summarized below so as to acquaint 
the reader with various other forms encountered in the literature. 

 
1.1.7  Tensors 
 
Having just taken the “uninitiated” (to tensors) through the concept of dyadics, 
which are rank-two tensors, we will leave further extension of this concept to 
quantities having multiple directional compoundedness greater than two to 
Chapter 3, Section 4.7, and Chapter 5. Such quantities in general are called 
tensors, as stated earlier. Various authors use a variety of notational techniques 
for denoting tensors. One of the most common is the multiple-subscript method 
called tensor notation.  
 

Tensor notation has a great deal of utility in that it explicitly allows 
for the proper ordering of tensor components in performing various 
operations, such as single or multiple dot-, cross-, or direct-product 
operations. Therefore, tensor notation is the preferred formulation 
whenever these operations are important to the development at hand. 

 
Other notational techniques for representing tensors (besides explicit 

standard notation and tensor notation) that may be encountered in the literature 
include the use of pre-subscripts, pre-superscripts, various arrow overbar 
symbols, as well as post-subscript and post-superscript methods. Finally, there is 
the so-called order method. Each method has its own utility with its respective 
advantages and disadvantages. 
 

Explicit standard notation is illustrated for rank-three tensors in Section 
1.1.7(a) below. Tensor notation is denoted in Section 1.1.7(b), pre-
subscript/superscript methods in Section 1.1.7(c), and the double-pointed arrow 
in Section 1.1.7(d). Post-subscript and post-superscript methods for depicting 
tensors are mentioned in Section 1.1.7(e). 
 

In the following synopsis of notation used for tensors, the examples are 
given first for dyadics and then for triadics, the latter being added for generality, 
so that the newcomer to tensors (as well as those with a restricted understanding 
of tensors) will garner the impression that there are tensors beyond dyadics. This 
is done without regard for what exactly dyadics and triadics actually are. The 
what-are-dyadics-and-triadics discussion will come later. For now, we are just 
dealing with the names of things and their notations. 
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Finally, the order method, which is common in recent usage in nonlinear 
optics,3–7 is discussed in Section 3.1. For the reasons discussed at the end of the 
preceding paragraph, the notational approach for the order method is not included 
here, as it differs somewhat from the other methods. 

 
1.1.7(a)  Explicit standard notation for tensors 
 
In Section 1.1.6 we cited A  and ˆ̂u  as the notational representations of the dyadic 
and unit dyad as shown in Eqs. (1.1-6a) and (1.1-6b). This is what we call 
explicit standard notation for quantities that have dual directional 
compoundedness. 
 

Quantities that have triple directional compoundedness are called triadics. 
In explicit standard notation, triadics are given the notational representation of 
three overbars, as 
 

A  (1.1-7a) 
 
and their associated unit triads as a u with a triple chevron: 
 

ˆ̂
û                  (1.1-7b) 

 
This process, of course, would continue with further increase in directional 
compoundedness. (See Appendix C.) 

 
1.1.7(b)  Multiple-subscript notation for tensors 
 
It is often more convenient to use tensor notation when expressing quantities 
having multiple directivity. Tensor notation is a method of denoting tensors with 
a series of integer subscripts called indices. The number of indices corresponds to 
the directional compoundedness level of the tensor quantity, which will be 
covered in Section 3.1. Therefore, our dyadic A  and unit dyad ˆ̂u  of expressions 
(1.1-6a) and (1.1-6b), which are rank-two tensors, would appear simply with 
double indices when written in (multisubscript) tensor notation, as 
 

ijA  (1.1-8a) 

 
and 
 

iju     (1.1-8b) 
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respectively. Notice that it is not necessary to use the double hat (chevron), since 
the double indices denote the rank-two unit dyadic. 
 

In tensor notation vectors would be written with a single index, such as iA . 
However, since the symbol iA , written to represent a vector in tensor notation, 
cannot be distinguished from iA  as the ith scalar component of that vector, it is 
necessary to clarify whenever tensor notation is being used in order to make the 
distinction. 
 

Triadics, or rank-three tensors, are written with three indices such as  
 
 ijkT  (1.1-9a) 

 
and the unit triad as 
 

ijku        (1.1-9b) 

 
Again, the unit triad may or may not contain chevrons. 
 
1.1.7(c)  Pre-subscript, pre-superscript notation for tensors 
 
The dyadic and unit dyad of expressions (1.1-6a) and (1.1-6b) are expressed in 
pre-subscript notation as 
 
 [ ]2 2 or A A  (1.1-10a) 

 
and 
 

[ ]2 2 or  u u              (1.1-10b) 
 
respectively, where the pre-subscript denotes the directional compoundedness of 
the quantity. The unit dyads may or may not be wearing a hat or a double 
chevron; however, such redundancy is not necessary when the pre-subscript is 
used as shown in expressions (1.1-10a) and (1.1-10b). 
 

In pre-subscript notation, triadics would appear as  
 

 3T  or [ ]3T  (1.1-11a) 

 
and the unit triad as 
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  [ ]3 3 or u u              (1.1-11b) 
 

Alternatively, the dyadic and the unit dyad of expressions (1.1-6a) and 
(1.1-6b) are expressed in pre-superscript notation as 
 

 2 2 or A A    (1.1-12b) 

 
 

   2u  or 2u                 (1.1-12b) 

 
respectively, where the pre-superscript denotes the directional compoundedness 
and the unit dyads may or may not have a hat or chevrons. 
 

In pre-superscript notation triadics would appear as  
 

 3T  or 3T    (1.1-13a) 

 
and the unit triad as 
 

  3u  or 3u                (1.1-13b) 

 
again, where the unit triads may redundantly be given the chevron. 
 
1.1.7(d)  Arrow notation for tensors 
 
The use of arrows is another method for denoting quantities that have 
directionality. In this notation, the vector appears with an overarrow having a 
single arrowhead as  
 

 A
��

 (1.1-14) 
 
and the dyadic appears with an arrow having arrowheads at both ends as 
 

 A
��

 (1.1-15) 
 
The overarrow can be split with a number inserted indicating the directional 
compoundedness. Thus for a triadic, the overarrow would have a 3 inserted in the 
overarrow as 
 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1-14                                                                          Chapter 1: Introduction  

 

 
3

T
← →

 (1.1-16) 
 
Unit vectors, unit dyads and unit triads in this notation either use the chevrons or 
the arrows as in expressions (1.1-14), (1.1-15) and (1.1-16) with the lowercase u 
or other vowel. 
 
1.1.7(e)  Post-subscript, post-superscript notation for tensors 
 
The reader should also be aware of post-subscripts and post-superscripts being 
used to denote tensor directional compoundedness. Post-subscripts are commonly 
used to distinguish one quantity from another. For example, using the notation of 
expression (1.1-10a), the dyadic [ ]

 2 1A  could be distinguished from another 
dyadic [ ]2 2A  by the use of the post-subscript in the same way that vector 

 1A  
might be distinguished from another vector 2A . In the case of post-superscripts, 
there is possible confusion with degrees of power, such as the squaring or cubing 
of a quantity. 
 

Nevertheless, authors use both of these methods to denote tensor 
directional compoundedness. In each case, however, authors are usually careful 
to specify at the outset what is meant by such notation in order to distinguish it 
from these other uses. Although some have parenthesized post-subscripting, the 
use of parentheses in post-superscripting is currently reserved (by recent common 
usage)3–7 to order notation. In any case, authors are careful to specify their 
notation, and the reader new to tensors should watch carefully for this in order to 
avoid ambiguity in interpretation of the author’s meaning.* 
 

At the risk of having left out someone’s favorite notation, we have 
endeavored to cite some of the common notations used in the tensor literature. 
The reader should realize, however, that there are no standards for these things, 
and that authors have the freedom to set up any notation that they please. 
 
1.2  Spatial Differentials 
 
Differential lengths, areas, and volume are discussed in the subsections that 
follow. 

                                                
* The use of the post-superscript to denote tensor rank is, however, sufficiently 

common that it is felt worthy of mention, if for no other reason then to caution 
those new to tensors to such use. 
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1.2.1  Differential length vectors 
 
Differential lengths are the building blocks to differential areas (Section 1.2.2) 
and differential volumes (Section 1.2.3). For this reason the tables in Appendix B 
focus on differential lengths. These tables provide explicit differential lengths for 
several orthogonal coordinate systems. Perspective views of orthogonal 
coordinate surfaces graphically depict the product of these building blocks. 
 

A differential length d�  in any orthogonal coordinate system can be 
written as the vector 
 
 

 1 1 2 2 3 3ˆ ˆ ˆ    d u d u d u d= + +� � � �  (1.2-1) 

 
or alternatively, as a summation over the dimensionality of the space, such as 
 

 
3

1

ˆ   i i
i

d u d
=

= ∑� �  (1.2-2) 

 
for 3D space, where 1 2 3

ˆ ˆ ˆ, ,u u u  are three orthogonal unit vectors in that space. The 
unit for differential length in the SI system is meters. 
 

As stated earlier, vectors are a special case of tensors. It is often more 
convenient, especially when working with generalized tensors in conjunction 
with vectors, to omit (or suppress) the details of Eqs. (1.2-1) and (1.2-2) for 
simplicity in notation. Using such tensor notation, our differential length vector 
may be written simply as 
 
 id�  (1.2-3) 

 
where the summation, unit vectors, and overbar are implied. It is necessary to 
clarify when tensor notation is being used in order to distinguish, for example, 
the difference in the meaning of id�  in Eq. (1.2-2) and in the expression (1.2-3). 
In (1.2-2), id�  represents the scalar magnitudes of the components of d� , 
whereas in (1.2-3), id�  is the vector d� . 
 
1.2.2  Differential area 
 
A differential area may be defined as the area subtended by two orthogonal 
differential lengths as illustrated in Fig. 1.2-1. It is given by 
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2d 1d

da 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2-1  Differential area as a scalar. 
 
 
 
 |1 2 | ||da d d=

u

û

 (1.2-4) 

 
which is a scalar. Its (SI) units are meters squared. 
 

However, differential area can be given a direction. Two vectors not in the 
same direction define a surface. Thus, a unit vector n  normal to that surface 
may be constructed as shown in Fig. 1.2-2. Notice that there are two possible unit 
normals, one shown by the solid line and one by the dashed line in Fig. 1.2-2. 
Thus, a convention must be established to remove this two-to-one ambiguity. The 
one that is chosen depends on the nature of the problem. The usual convention is 
to use the right-hand rule by pointing the fingers of the right hand in the direction 
of 1  and then rolling them into the direction 2u . The thumb will then point in 
the “normal” direction. On a closed surface, it is customary to construct 

1 2  such that the normal will be directed outward. The important point to 
remember here is that differential area is inherently a vector that can be 
represented by 

ˆ

û ˆ

ˆ  and  u

 1 2ˆ | ||nda u d d= |  (1.2-5) 

 
Conveniently, the unit normal given in Eq. (1.2-5) can be expressed in terms of 

the cross product between 1d  and 2d , as covered in Eq. (2.4-30). Therefore, 

vector differential area is also given another useful form in that section. 
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1.3.1  Partial derivative of a scalar function 
 
The partial derivative of the scalar function 1 2 3( , , )f q q q  with respect to  is 
defined as 

1q

 

 
1

1 1 2 3 1 2 3

0
1 1

( , , ) ( , , )
lim
q

f f q q q q f q q q
q q∆ →

∂ + ∆ −
=

∂ ∆
 (1.3-1) 

 
which is often written in shorthand simply as 
 

 
1

1
q

f f
q
∂

=
∂

 (1.3-2) 

 
Likewise, the partial derivative of 1 2 3( , , )f q q q  with respect to  is  2q
 

 
2

1 2 2 3 1 2 3

0
2 2

( , , ) ( , , )
lim
q

f f q q q q f q q q
q q∆ →

∂ + ∆ −
=

∂ ∆
 (1.3-3) 

 
which can be written more conveniently as 
 

 
2

2
q

f f
q
∂

=
∂

 (1.3-4) 

 
Finally, the partial derivative of 1 2 3( , , )f q q q  with respect to  is  3q
 

 
3

1 2 3 3 1 2 3

0
3 3

( , , ) ( , , )
lim
q

f f q q q q f q q q
q q∆ →

∂ + ∆ −
=

∂ ∆
 (1.3-5) 

 
which can be expressed as 
 

 
3

3
q

f f
q
∂

=
∂

 (1.3-6) 

 
Second-order partial derivatives are defined by  
 

 
1 1

2

2
1 1 1

q q
f f f f

q q q
⎛ ⎞∂ ∂ ∂

= =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (1.3-7) 
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1 2

2

1 2 1 2
q q

f f f
f

q q q q

 ∂ ∂ ∂= = ∂ ∂ ∂ ∂ 
 (1.3-8) 

 

 
2 2

2

2
2 2 2

q q

f f f
f

q q q

 ∂ ∂ ∂= = ∂ ∂ ∂ 
 (1.3-9) 

 

 
2 1

2

2 1 2 1
q q

f f f
f

q q q q

 ∂ ∂ ∂= = ∂ ∂ ∂ ∂ 
 (1.3-10) 

 
The mixed derivative theorem states that if 1 2 3( , , )f q q q  and its 
partial derivatives 

1qf , 
1qf , and 

1 2q qf  exist and are continuous, then 

2 1q qf  also exists and 

 
 

1 2 2 1q q q qf f=  (1.3-11) 

 
 
 
1.3.2  Total derivative of a scalar function: chain rules 
 
First, we describe the total differential df as 
 

 1 2 3
1 2 3

f f f
df dq dq dq

q q q

∂ ∂ ∂= + +
∂ ∂ ∂

 (1.3-12) 

 
This represents the change produced in  f  by changes in 1q , 2q , and 3q . 

 
1.3.2(a)  Chain rule for functions of three independent variables 
 
If 1 2 3( , , )f f q q q=  and 1q , 2q , and 3q  are functions of an independent variable t 
(and all are differentiable), then the total derivative of f with respect to t is 
 

 1 2 3

1 2 3

df f dq f dq f dq

dt q dt q dt q dt

∂ ∂ ∂= + +
∂ ∂ ∂

 (1.3-13) 

 
 
 
 
 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1.3: Partial and Total Derivatives  1-21 

1.3.2(b)  Chain rule for surface functions 
 
If 1 2 3( , , )f f q q q=  is a differentiable scalar function that is confined to a surface 
(for example, the surface of a sphere) described by two independent variables θ  
and φ  at a constant or r= , then 1q , 2q , and 3q  are functions of θ  and φ  (and all 
are differentiable), and the partial derivatives of f with respect to θ  and φ  are 
 

 1 2 3

1 2 3

f f q f q f q

q q qθ θ θ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (1.3-14) 

 
and 
 

 1 2 3

1 2 3

f f q f q f q

q q qφ φ φ φ
∂ ∂ ∂ ∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (1.3-15) 

 
1.3.3  A dimensionally consistent formulation of partial derivatives 
 
Whereas Eqs. (1.3-1) through (1.3-15) provide the mathematical definitions of 
partial derivatives of the scalar function f with respect to the generalized 
orthogonal coordinates, 1q , 2q , and 3q , it should be recognized that these 
coordinates are not necessarily dimensionally consistent. Some may be in units of 
length (meters) while others are in units of angle (radians), which are unitless. 
Therefore, in order for all of the partial derivatives to be dimensionally 
consistent, scale factors (otherwise known as metric coefficients) are used. These 
factors are discussed in greater detail in Section 2.6, but for now we will just cite 
an example of how they are used for cylindrical coordinates. 
 

The scale factors 1 2 3,  , and h h h  are used to relate the differential length 
components id�  in Eq. (1.2-1) to the differential coordinates idq  by i i id h dq=� . 
In cylindrical coordinates, 1q , 2q , and 3q  are ,  ,  and r zφ . Thus, 1 2 3,  , and h h h  
are 1,  ,  and 1r , respectively, and 1d dr=� , 2d rdφ=� , and 3d dz=� . Notice 
that each of the differentials has units of length once the scale factor r is included 
in the second differential length. 
 

In this way a dimensionally consistent formulation for partial derivatives in 
generalized orthogonal curvilinear coordinates (GOCCs) may be constructed. 
Therefore,  
 

 1 2 1 2

0

( , , ) ( , , )
lim

i

i i i i i i i

q
i i i i

f f q q q q f q q q

h q h q
+ + + +

∆ →

∂ + ∆ −=
∂ ∆

 (1.3-16) 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1-22                                                                          Chapter 1: Introduction  

 

A surface in 3D space given in generalized orthogonal curvilinear 
coordinates 1 2 3, ,q q q  is described as 3 3 1 1 2 2( , )h q f h dq h dq= . Then the change in f 
with respect to 1 1 1d h dq=� , for example, is 

 

 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1

( )f f h q h q q h

d h q h q h q h q

∂ ∂ ∂ ∂ ∂= = = +
∂ ∂ ∂ ∂�

 (1.3-17) 

 
where the metric coefficients are in general functions of all three coordinates 

1 2 3( , , )i ih h q q q=  and therefore must be included in the derivative when 
applying the product rule. 
 
1.3.4  Partial derivative of a vector function 
 
By the time students in the physical sciences or engineering enter upper-division 
courses (junior and senior years of a bachelor’s program), they will have been 
exposed to the partial derivative. However, this introduction was invariably done 
in Cartesian coordinates with Cartesian-coordinate examples. This was fine when 
the partial derivative being explained was taken on a scalar function. However, 
problems can arise if the partial derivative is taken of a vector function (or of any 
tensor of rank greater than zero) and the physical problem leads naturally into 
curvilinear coordinates, such as cylindrical coordinates. We will therefore discuss 
partial derivatives of vectors in generalized orthogonal curvilinear coordinates. 
 

Let us examine the partial derivative of a vector field 

1 2 3 1 1 1 2 3 2 2 1 2 3 3 3 1 2 3ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )A q q q u A q q q u A q q q u A q q q= + + . The partial 
derivative of A  with respect to one of the coordinates iq  is  
 

 

3 31 1 2 2

31 2
1 2 3

31 2
1 2 3

    

ˆˆ ˆ ( )( ) ( )

ˆ ˆ ˆ    

ˆˆ ˆ
      

i i i i

i i i

i i i

u AA u A u A

q q q q

AA A
u u u

q q q

uu u
A A A

q q q

∂∂ ∂ ∂= + +
∂ ∂ ∂ ∂

∂∂ ∂= + +
∂ ∂ ∂

∂∂ ∂+ + +
∂ ∂ ∂

 (1.3-18) 

 
where the first three terms on the right-hand side involve partial derivatives of 
the scalar components 1 1 2 3 2 1 2 3 3 1 2 3( , , ),   ( , , ),   and  ( , , )A q q q A q q q A q q q  of the 
vector field, each in their respective unit-vector direction. These terms are 
therefore handled as in Eqs. (1.3-1), (1.3-3), and (1.3-5). The last three terms 
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involve coordinate derivatives of unit vectors and must be considered—a point 
entirely missed when the Cartesian system is used. 
 

The vital difference is that spatial derivatives of unit vectors in Cartesian 
coordinates are all zero, but that derivatives of unit vectors with respect to 
coordinates that are curved in space often are not. One might think that the 
derivative of a vector whose length is constant has to be zero. However, this is 
not the case. 
 

In general it can be shown11 that  
 

 
ˆˆ ˆji i k i

i j j k k

uu h u h

q h q h q

∂ ∂ ∂= − −
∂ ∂ ∂

 (1.3-19) 

 
and 
 

 
ˆˆ j ji

j i i

u hu

q h q

∂∂ =
∂ ∂

 (1.3-20) 

 
where 1,2,3;  2,3,1 and 3,1,2i j k= = = , in that order. Further, if the derivative of 
a unit vector is not zero, it will always be at right angles to that unit vector. Thus, 
 

 
ˆ

ˆ 0i
i

j

u
u

q

∂⋅ =
∂

 (1.3-21) 

 
Example: The movement of a clock hand to illustrate the need for 
coordinate derivative of a unit vector.  
 
Think of the hand of a clock. In a cylindrical coordinate system (or just a polar 
coordinate system because the problem is just 2D), our coordinates 1 2 and q q  are 

 and r φ , and the metric coefficients 1 2 and  h h  are 1 and r , respectively. 
Representing the clock hand as ˆru , the coordinateφ − partial derivative of ˆru  can 
be found from (1.3-20): 
 

 

ˆ ˆˆ

1

ˆ
ˆ        

r

r

r

u h uu r

q h r r

u
u

φ φ φ

φ

φφ

∂∂ ∂= =
∂ ∂ ∂

∂ =
∂

 (1.3-22) 
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Chapter 2 

Vector Algebra Review 
 
The purpose of this chapter is to review some of the salient operations involving 
scalar and vector fields and to broaden these concepts to dyadics and tensors in 
general. Here we briefly discuss variant and invariant scalars, the concept of 
scalar and vector fields, and the utility of phasor forms of these quantities. 
Classical arithmetic vector operations of addition, subtraction, and dot and cross 
products are discussed along with physical applications of these. The direct 
vector-vector product is mentioned in Section 2.4.3 as having a dyadic resultant; 
however, the details of this process are left to later chapters. 
 

The basic building blocks of open and closed line and surface integrals of 
vector fields are discussed. These are essential for both the definitions of vector 
differential operators, covered in Chapter 4, and the integral forms that shape the 
basis of divergence, Stokes’, and Green’s theorems covered in Chapter 5. Other 
highly useful applications of dot- and cross-product operations conclude the 
sections of this chapter. These are vector field direction lines and equivalue 
surfaces of scalar fields. 
 
2.1  Variant and Invariant Scalars 
 
A quantity is said to be a scalar if it has only magnitude, that is, no inherent 
direction. Quantities such as time, mass, distance, temperature, entropy, energy, 
electric potential, and pressure have a value at every position in space but lack 
directionality. These are scalars. Because such quantities are independent of the 
orientation of a coordinate system, they are called invariant scalars. Coordinates 
of a point and components of a vector are also scalars; however, these quantities 
change with coordinate displacements and rotations and therefore are variant 
scalars. 
 
2.2  Scalar Fields 
 
In general, scalar fields are quantities that can be represented by functions of 
space and time. For example, a quantity might be described as a function of four 
independent variables, such as three orthogonal coordinates 1 2 3, ,q q q  and time t. 
That is, at every point in space described uniquely by 1 2 3, ,q q q and at each instant 
of time described by t, a field, such as electric potential (frequently written as 
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 or V Φ ) can be described by a single-valued scalar function of these four 
independent variables as  
 

1 2 3( , , , )  ( , )V q q q t V r t=     volts   (2.2-1a) 

 
or alternatively,1 
 

1 2 3( , , , ) ( , )q q q t r tΦ Φ=   volts   (2.2-1b) 

 
The right-hand side of these expressions incorporates -r space notation 

described in Section 1.1.4—a shorthand notation where the coordinates 1 2 3, ,q q q  
are represented by r —which denotes a point in space with or without regard to a 
coordinate system as shown in Fig. 1.1-1. For Cartesian, cylindrical or spherical 
coordinates, the arguments , ,   or  , ,   or  , ,x y z r z rφ θ φ , respectively, are replaced 
by r , for example. 

 
Thus, electric potential is a scalar field—or more specifically, an electric 

potential field in space and time. V (or Φ ) is an invariant scalar since its value at 
a specific point in space and at a specific time is independent of any chosen 
coordinate system and independent of any rotation or displacement of a 
coordinate system. See Fig. 2.2-1(a). 

2.3  Vector Fields 
 
Quantities such as force, velocity, displacement, electric and magnetic field 
intensities, and electric and magnetic flux densities are vectors because each of 
these has a magnitude and a single direction.* The magnitude and direction of 
each of these can vary in space and time. In 3D space, vectors can be described 
by three scalar magnitudes that represent components in some orthogonal 
coordinate system. Although a vector may be invariant to a coordinate 
transformation, its component magnitudes are, in general, not. Since each 
component is a scalar field that varies in space and time as in Eqs. [2.2-1(a)–(b)], 
the entire vector is a function of space and time. 
 
 
 

                                                
* Other quantities have magnitude and direction, which are not vectors. For 

example, stress has dual directional compoundedness—not a “single” direction 
as emphasized in this definition. Such quantities are dyadics, not vectors. 
Dyadics and other tensors are discussed in greater detail in Chapters 3 and 4. 
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(a) Scalar field 1 2 3( ), , ,V q q q t  at the coordinate point in space 1 2 3( ), ,P q q q  
and at time t. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Vector field 1 2 3( , , ),A q q q t  at the coordinate point in space 1 2 3( ), ,P q q q  
and at time t. 

 
Figure 2.2-1  The concept of (a) scalar and (b) vector fields. 

1 2 3 1 1 1 2 3

2 2 1 2 3
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ˆ                      +  ( , , )
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=

1
q

2
q

3
q

1 2 3
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3
q

1
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Thus, the vector function of spatial coordinates 1 2 3, ,q q q  can be thought of 
as a vector field. As with scalars, a vector field such as electric field intensity E  
can be described as a function of space and time as 
 

1 2 3( , , , ) ( , )E q q q t   E r t=   volts/m  (2.3-1) 

 
where the right-hand side of (2.3-1) uses the same shorthand -r space notation as 
described earlier for scalar fields. In electromagnetics, the symbol E  is used for 
the electric field intensity. Thus, the electric field intensity is a vector field in 
space and time. 
 

In our 3D space E  is customarily expanded into three orthogonal 
components 
 

1 1 2 2 3 3ˆ ˆ ˆ      E u E u E u E= + +      (2.3-2) 

 
where each component E  is a scalar function of our four independent variables 
 
 1 2 3( , , , )iE q q q t  (2.3-3) 

 
where i = 1, 2, 3. Figure 2.2-1(b) illustrates a vector field A  at the point 

1 2 3, ,q q q  at time t. Notice that the vector direction is entirely independent of the 
position in space. 

2.4  Arithmetic Vector Operations 
 
This section briefly deals with arithmetic analyses involving vector addition, 
subtraction, dot and cross products, and certain allowable division operations. 
Some of the more elementary applications of vector addition and subtraction can 
be found in Appendix A. 
 
2.4.1 Commutative and associative laws in vector addition and 
subtraction 
 
Consider two vectors A  and B  at a point in space. When added, we find (in 
Appendix A) that the sum of vectors is independent of the order in which they 
are added. Thus, vector addition obeys the commutative law: 
 

 A B B A+ = +  (2.4-1) 
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When a third vector C  is added to ,A B+  the resultant vector 
( )H A B C= + + . As is shown graphically in Appendix A, if A  is added to 

B C+ , the result is the same vector ( ).H A B C= + +  That is, regardless of 
whether B  is first associated with A  or first associated with C , the same 
resultant vector H  is obtained. This feature of vector addition is referred to as 
the associative law: 
 

 ( ) ( )A B C A B C+ + = + +  (2.4-2) 
 
Alternatively, if C  is added to A  first and then B  is added to the result, we 
obtain the same vector .H  
 

Subtraction follows these laws as well. Consider A B D− = . In order to 
test commutative and associative laws, let us alternatively consider B A− + . As 
graphically shown in Appendix A, this latter commutation of vectors yields the 
same vector D . Thus, subtraction of vectors is both commutative 
 
 A B B A− = − +  (2.4-3) 
 
and associative 
 

 ( ) ( )A B C A B C− + = + − +  (2.4-4) 
 
These conclusions are to be expected, since subtraction is a special case of 
addition. 
 
2.4.2  Multiplication or division of a vector by a scalar 
 
When a vector is multiplied by a scalar, the resultant vector is in the same 
direction but its magnitude is simply the product of the magnitude of the original 
vector multiplied by the scalar. The vector a  when multiplied by the scalar m 
yields another vector F  whose magnitude is the product of m and | |a  and 
whose direction is that of a . Thus, in the case of force-mass-acceleration 
relation, 
 

   F ma=  (2.4-5) 
 
notice that the magnitude of the resultant vector will depend upon that of the 
scalar. For example, if a  is acceleration (m/sec2) and m is mass (kg), the 
resultant is force F  (kg m/s2 or newtons). To illustrate, if the acceleration is 
4 m/s2 in the ˆxu  direction and m is 2.25 kg, then ˆ  9 xF u=  newtons. Note that 
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the acceleration and force are in the same direction, that of the unit vector ˆxu . 
We will see later that when the vectors on the right and left are differently 
directed, the multiplicative factor cannot be a simple scalar [such as in Eq. 
(2.4-9) below]. 
 

The distributative laws of algebra also apply to scalar-vector products. 
Namely 
 

 ( )n A B C nA nB nC+ + = + +  (2.4-6) 
 
and 
 

 ( )n m A nA mA+ = +  (2.4-7) 
 

It goes without saying that when a vector is divided by a scalar, the 
expression D Eε=  can just as well be written as 
 

 
D

E
ε

=  (2.4-8) 

 
In the latter expression, each of the three components of D  are simply divided by 
ε  to obtain the three components of E . Thus, in Eq. (2.4-8) E  and D  are 
everywhere parallel. 
 

However, we cannot simply divide by a vector or any other tensor [unless, 
of course, the tensor is a scalar as in Eq. (2.4-8)]. For example, in electrostatics or 
electromagnetics, the flux density vector field D  induced in an anisotropic 
dielectric by an applied electric field intensity E  is given by the constitutive 
relation 
 

 D Eε= ⋅  (2.4-9) 
 
where ε  is a dyadic. The dot product operation in Eq. (2.4-9)—namely the dot 
product of a dyadic with a vector—is carried out in detail in the next Chapter 
(Section 3.4). For now, suffice it to say that E  and D  are not necessarily 
everywhere parallel for the case of anisotropic media. The divide-by operation 
for the case of a dyadic requires that the inverse of ε  be first taken and then 
E  determined by 
 

 ( ) 1
E Dε

−
= ⋅  (2.4-10) 
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where the inverse ( ) 1
ε

−
 is performed the same as the inverse of a 3 × 3 matrix, 

[except that the unit dyads in ε  are transposed in ( ) 1
ε

−
]. See Sections 3.3 and 

3.4. 
 
2.4.3  Vector-vector products 
 
We next look at vector-vector products in orthogonal systems. There are three 
fundamentally distinct ways to perform product operations between two vectors. 
Each has an entirely different result. The first is the vector dot product. The 
second is the vector cross product, and the third we will call a direct product.* 
Since the vector-vector dot product always yields a directionless scalar, it is also 
called a scalar product. Similarly, since the vector-vector cross product always 
yields a vector, it is also referred to as a vector product. The “direct product” of 
two vectors yields a dyadic, which is described in Chapter 3 and applied in 
Chapter 4. Cantrell2 and many other cutting edge references on tensor calculus 
include this latter product—first between vectors and then involving tensors in 
general. 

2.4.3(a)  Restricted use of the terms “scalar product” and “vector product” 
 
Part (b) below equates the operations “dot product” with “scalar product” and 
“inner product.” Also, Part (c) equates “cross product” with “vector product,” 
“external product,” and “outer product.” However, it should be emphasized that 
the expressions “scalar product” and “vector product” are suitable only for the 
case of the dot or cross products being taken between quantities that are both 
vectors. If either or both of the quantities are tensors having a directional 
compoundedness greater than one, then the dot product no longer yields a scalar 
and the cross product no longer yields a vector. Further, dot- and cross-product 
operations are both undefined and unnecessary when scalars are involved. 
 

                                                
* The term “direct product” is used here to mean that the operation is conducted 

without a dot- or cross-product type of a process. That is, each component of the 
first vector individually multiplies each component of the second vector. Thus, 
there are nine such multiplication operations each with two directions inherent 
within their respective operation—one associated with the first vector and the 
other associated with the second. The resultant of a “direct product” between 
two vectors is not a scalar nor a vector because of this dual-directional nature. 
This is a dyadic. For those already familiar with tensors, the term “direct 
product” is used here synonymously with “tensor product,” which uses the 
symbol ⊗  to denote a product between all combinations of the components 
each vector (in our case) or between two tensors, in general, as we shall see 
later. 
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Therefore, the expressions “scalar product” and “vector product” 
should be dropped from our nomenclature when scalars, dyadics, 
triadics, etc. are involved. They are accurate expressions only when 
both quantities are vectors and should be avoided for all other 
quantities. In general the terms “inner product” and “dot product” 
may be interchanged3,6,7. “Exterior product”, “outer product” and 
“cross product” are occasionally used interchangeably13,14; 
however, in broader contexts these terms are distinct2,13,14. 

 
2.4.3(b)  Dot product and the Kronecker delta 
 
The dot product between two vectors and A B  is spoken as “ A  dot B ,” written 
as A · B , and in elementary texts on vector analysis is defined by3–5  
 

 | | | | cos ABA B A  B  B Aθ= =⋅ ⋅  (2.4-11) 

 
where ABθ  is the angle between and A B . Notice that if the two vectors are at 
right angles, 90ABθ = , and the dot product equals zero. As stated in the previous 
paragraph, the dot product between two vectors is also known as the scalar 
product, because the resultant is a scalar. 
 

Another name for this operator is inner product, a term used historically in 
mathematical parlance between real or complex vectors,6–10 especially when the 
operation deals with tensors in general. Furthermore, we will find that there can 
be multiple inner-product operations, like double-dot product and triple-dot 
product operations when dealing with tensors.11,12 This will be discussed in 
Chapter 3, where more general concepts of vector analysis are applied in the 
context of tensors. 
 

In any generalized orthogonal right-hand coordinate system having 
coordinates 1 2 3, , ,q q q  where the right-hand rule applies in the order 1, 2, 3, 1, 2, 
unit vectors in each of the three directions 1 2 3ˆ ˆ ˆ,  ,  u u u  have well-determined dot 
product relationships. The nine combinations of dot product operations can all be 
accounted for with the convenient Kronecker delta ijδ  notation13 (valid for 
orthogonal systems) by 
 

 {1 for 
0 for ˆ ˆi j ij

i j
i ju u δ =
≠⋅ = =  (2.4-12) 

 
where 1,2,3i =  and 1,2,3j = . 
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Let us illustrate the inner-product nature of the dot-product operation taken 
between two vectors. Let 1 1 2 2 3 3ˆ ˆ ˆA u A u A u A= + +  and 1 1 2 2 3 3ˆ ˆ ˆB u B u B u B= + + , 
where 1 2 3 1 2 3, , , and , ,A A A B B B  are the scalar components of the two vectors, 
respectively. These can be written ˆ ˆ   and  i i j jA u A B u B= =  in shortened tensor 
notation, such as in Eq. (1.2-3), where the summation from one to three is 
suppressed. The dot product of  and A B  when expanded in explicit standard 
notation becomes 
 

 
1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ           

ˆ ˆ ˆ ˆ ˆ ˆ                   

ˆ ˆ ˆ ˆ ˆ ˆ                   

A B u u A B u u A B u u A B

u u A B u u A B u u A B

u u A B u u A B u u A B

⋅ = + +
+ + +
+ + +

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

 (2.4-13) 

 
Applying Eq. (2.4-12) results in six of the above nine terms going to zero, 
namely the off-diagonal terms, and the diagonal unit vector dot products equaling 
unity. Therefore, only the diagonal terms of Eq. (2.4-13) survive, and A B⋅  
becomes 
 

 
1 1 2 2 3 3

3

1
i i

i

A B A B A B A B

A B
=

⋅ = + +

=∑
 (2.4-14) 

 
which is, of course, a scalar. 
 

In tensor notation, A B⋅  is written as 
 
 ˆ ˆ( ) ( )i i j j i j i j i iu A u B A B A Bδ⋅ = =  (2.4-15) 

 
where the six off-diagonal zeros and the three diagonal ones from the Kronecker 
delta of Eq. (2.4-12) applied to Eq. (2.4-13) and the summation in Eq. (2.4-14) 
are implied. In fact, more fundamental than Eq. (2.4-11) for the definition of the 
inner-product operation between two vectors is the definition given in Eq. 
(2.4-15), because this latter form is a special case of a dot product between 
tensors in general, as we shall see in Section 3.4. First, we show two examples of 
the use of the dot product—one from vector algebra and the other from vector 
calculus. 
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B

A
B

A

θ
AB

Application from vector algebra: Projection of one vector onto another.  
 
The projection of one vector onto another can readily be obtained with the 
application of the dot product. Let us define a unit vector ˆ

Au  in the direction of 
A  as 
 

 ˆ
| |A

A
u

A
=  (2.4-16) 

 
The projection of a second vector B  onto a line containing A  is the scalar 
component of B  in the direction of A . Thus, the scalar projection of B onto A  
is 
 

 | | cosA ABB B θ=  (2.4-17) 
 
as shown in Fig. 2.4-1. 
  
Multiplying by | | | |A A  does not change the result: 
 

| || | cos  

| |
AB

A

A B
B

A

θ=  

 
Since the numerator is the dot product A B⋅  by definition, we may write the 
scalar projection of B  onto vector A  as 
 

 ˆ ˆ 
| |A A A

A B
B B u u B

A

⋅= = ⋅ = ⋅  (2.4-18) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.1  Scalar projection of vector B  onto vector A . 
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The projection or component of a vector onto a line containing 
another vector can be determined by taking the dot product of the 
first vector with the unit vector in the direction of the second. The 
result is a scalar. 
 
Furthermore, the vector projection of AB  onto the line containing A  may 

be shown simply by including the unit vector in the direction of A  in the 
expression for the scalar projection. The vector projection of AB  onto A  is then 
 

 ˆ ˆ ˆ( )A A A A AB u B u B u= = ⋅  (2.4-19) 

 
Other applications of the dot product are provided in Appendix A. 
 
Applications from vector calculus: Dot products in line and surface 
integrands.  
 
Other important applications of the dot product deal with line and surface 
integrals. It is frequently important to integrate a vector field F  along a path 
defined by d�  or over a surface da . The vector field F  may, of course, have 
any directional orientation, not necessarily in the same direction as d�  or in the 
same direction as the surface normal da . Whenever the component of the field 
along the path or normal to the surface needs to be summed differentially—that 
is, integrated—the dot product is used. 
 

Let us first take the case of the line integral. In many applications, we wish 
to know the potential of a vector field between two points in space along a given 
path (such as work in the case of a force field or electric potential in the case of 
an electric field). In this case, we are looking for the sum of all tangential 
components of the vector field along all differential elements of length along the 
given path. This is the line integral. Thus, we apply the dot product of the vector 
field and the vector differential lengths in order to accumulate just the tangential 
components along the path. By integrating, we then obtain the potential of the 
field from a point a to a point b. For any vector field F  this is obtained by 
 

 
b

a
dF ⋅∫ �  (2.4-20) 

 
which is referred to as an open line integral. This is an example of the use of the 
dot product in vector calculus. Before providing other such applications, the 
utility of an open line integral is illustrated by the following example. 
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Example: Potential energy and electric potential.  
 
If F  is a force field (in newtons), Eq. (2.4-20) represents joules of potential 
energy—a scalar—between points a and b. If F  is electric field intensity (in 
newtons per coulomb), Eq. (2.4-20) is volts of electric potential—also a scalar—
between points a and b. More will be said about this important integral in Section 
5.1. Two numerical examples are given in Subsection 5.1.1. The first is for a 
path-independent case. The second is for a path-dependent case. 
 

When the line integral is closed to form a loop, Eq. (2.4-20) takes the form 
of a closed line integral 
 

 F d⋅∫ �
�

 (2.4-21) 

 
This integral is called the circulation of the vector field F  and is written as 
 

 circ( )F F d= ⋅∫ �
�

 (2.4-22) 

 
If the circulation is zero, the vector field F  is said to be conservative or 
irrotational. When the circulation is not equal to zero, the vector field F  is said 
to be solenoidal or rotational. 
 
Example: Ampere’s circuital law.  
 
An example of the utility of Eqs. (2.4-21) and (2.4-22) is Ampere’s circuital law, 
which states that the integration of the tangential component of the magnetic field 
intensity H  around any closed path is equal to the total electric current enclosed 
by that path. This is described in Section 5.4, especially by Eq. 5.4-1. 
 

Two other common applications of the use of the dot product are in open 
and closed surface integrals. Again, the vector field F  may have any directional 
orientation, not necessarily in the same direction as the surface normal da . 
Whenever the component of the field normal to the surface needs to be summed 
differentially (integrated), the dot product is used. This is the case, for example, 
when the vector field F  is a flux density and the total flux is desired. The flux of 
the vector field F  through an area A is determined by integrating the dot product 
of the flux density over every differential vector element of area da  defined by 
Eq. (1.2-5) and Fig. 1.2-2: 
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A

F da⋅∫  (2.4-23) 

 
where the area A is bounded (by a closed line). 
 

When the surface integral is closed to enclose a volume, Eq. (2.4-23) takes 
the form 
 

   F da⋅∫�  (2.4-24) 

 
These integrals with dot products in the integrand are frequently used in 
disciplines of mathematical physics, such as quantum physics and 
electromagnetics. The dot product in the integrand is simply a convenient way to 
sum only the component of F  at each differential element of surface over which 
the integration takes place that lies normal to that surface element. 
 

Examples of Eqs. (2.4-23) and (2.4-24) can be found in Sections 5.2.2, 
5.3.1, and 5.3.4. 

 
2.4.3(c)  Cross product and the Levi-Civita symbol 
 
The “cross” product of vector A  with another vector B  is spoken as 
“  cross A B ” and written as   .A B×  The cross product is defined by 
 

 ˆ | || | sin
A B

A B u A B θ
→⊥ ΑΒ× =     (2.4-25) 

 
where ˆ

A B
u

→⊥  is a unit vector normal to the plane containing B  and A  and is in a 
direction given in a right-hand sense—namely by aligning the fingers of your 
right hand along the direction of A  and turning them into the direction of B  so 
that your thumb points in the direction of ˆ

A B
u

→⊥ . The angle ABθ  is the angle made 
in so doing. 
 
(i)  Commutative and distributive laws for cross products 
 
From Eq. (2.4-25), note that A B B A× = − × . Thus, the commutative law does 
not hold for the cross product operation. However, the distributive law does hold. 
Namely, 
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( ) ( )

        

         

                  

A B M N

A M A N

B M B N

+ + × + +
= × + × +
+ × + × +

+

� �

�

�

�

 (2.4-26) 

 
(ii)  Vector cross products and the Levi-Civita symbol 
 
Unit vectors in each of three orthogonal directions 1 2 3ˆ ˆ ˆ,  ,  u u u  have well-
determined cross-product relationships. These relationships are described 
conventionally in the following paragraph and described with the elegance of the 
Levi-Civita symbol in the subsequent paragraph. 
 

The cross product of unit vectors in 3D space becomes trivalued, namely, 
− 1, 0, and +1. The usual process used in sophomore-level texts to explain this 
trivalued system is to first point out that ˆ ˆ 0i iu u× =  because 0i jθ =  and the 
sin 0i jθ =  in Eq. (2.4-25). Further,   1   2ˆ ˆ ˆ  i i iu u u+ +× = +  where i = 1, 2, 3; i + 1 = 
2, 3, 1 and i + 2 = 3, 1, 2, because ( )(   1) / 2i iθ π+ =  and (i)(i 1)sin 1θ + = . The right-
hand rule specifies that direction 1 crossed into direction 2 yields positive 
direction 3, or direction 2 crossed into direction 3 yields positive direction 1, and 
direction 3 crossed into direction 1 yields positive direction 2. However, 

2 1ˆ ˆ ˆ  i i iu u u+ +× = − , where i = 1, 2, 3; i + 2 = 3, 1, 2; and i + 1 = 2, 3, 1. The minus 
sign is needed because when direction 1 is crossed into direction 3 the thumb 
points opposite to (or the negative of) direction 2. Likewise, 2 into 1 yields the 
negative of direction 3 and 3 into 2 yields the negative of direction 1. The angle 
from 1 to 3 may be taken as 2π−  since the angle from 3 to 1 is 2π . Thus, 

( )(   2) / 2i iθ π+ = −  and ( )(   2)sin 1i iθ + = − . 
 

However, the Levi-Civita symbol ijk∈
 

shortcuts the discussion in the 
preceding paragraph. If one calls the sequence 1,2,3,1,2 cyclic, the sequence 
3,2,1,3,2 acyclic, and cases where any two adjacent indices are the same 
noncyclic, we define the Levi-Civita symbol as14 
 

 

1

0

1
ijk

cyclic

noncyclic

acyclic


∈ = 
 −

 (2.4-27) 

 
and therefore, 
 
 i j ijk ku u u× =∈  (2.4-28) 
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θ
AB

B

A

Area

which is a tensor notation formulation with the unit vector hats implied. 
 

The cross product of our vector A  with B  in tensor notation can then be 
defined as 
 i i j j i j ijk kAu B u A B u× = ∈  (2.4-29) 

 
(iii)  Area formulas using cross products 
 
In Section 1.2 differential area was defined and discussed without the benefit of 
the cross product. A description of the vector differential area [Eq. (1.2-5)] can 
now be expressed as 
 

 ˆ i j
i j i jk

i j

d d
da u d d d d

d d

×= =
×

� �
� � � �

� �

 (2.4-30) 

 
or more simply in tensor notation as 
 

 i i j j i j ijk kda d u d u d d u= × = ∈� � � �  (2.4-31) 

 
Note also that the area of the parallelogram with adjacent sides A  and B  is 

the magnitude of the cross product where 
 

 Area | | | | sin | |ABA  B   A Bθ= = ×  (2.4-32) 

 
This is illustrated in Fig. 2.4-2. 
 

Other applications of the cross product include finding the moment of a 
force acting at a distance, finding the force on a current-carrying conductor in a 
magnetic field, and dealing with the mechanics of gyroscopes, among many 
others. 
 
 
 
 
 
 
 

 
 

Figure 2.4-2  The area of a parallelogram as A B× . 
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B A    u ˆ    u ˆ    

0           

B A    u ˆ    u ˆ    

u ˆ      -    

B A    u ˆ    u ˆ                 

u ˆ                      

B A    u ˆ    u ˆ    

u ˆ           

B A    u ˆ    u ˆ    

0           

B A    u ˆ    u ˆ                 

u ˆ                    

B A    u ˆ    u ˆ    

u ˆ -        

B A    u ˆ    u ˆ    

u ˆ          

B A    u     u ˆ     B A 

0                         

3 3 3 3 2 3 2 3 

1 

1 3 1 3 

2 

3 2 3 2 

1 

2 2 2 2 1 2 1 2 

3 

3 1 3 1 

2 

2 1 2 1 

3 

1 1 1 1 

× + × + × + 

× + × + × + 

− 

× + × + × = × 

(iv)  Cross product coordinate expansion 
 
Using the same vectors ˆ ˆ  and  i i j jA u A B u B= =  as before, but using tensor 
notation, the cross product takes the form 
 

 
 
 
 
 
 
                                  
   

 
(2.4-33) 

 
 
From Eq. (2.4-28), the cross product factors become 0, ˆ ,ku or ˆ ,ku−  where 

  1,  2,  3,k =  as shown in Eq. (2.4-33). 
 

Collecting terms in each of the three coordinate directions, 
 

 
1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

ˆ   ( )

ˆ            ( )

ˆ            ( )

A B u A B A B

u A B A B

u A B A B

× = −
+ −
+ −

 (2.4-34) 

 
Notice that this can also be represented in determinate form as 
 

 
1 2 3

1 2 3

1 2 3

ˆ ˆ ˆu u u

A B A A A

B B B

× =  (2.4-35) 

 
Alternatively, tensor notation can be used in conjunction with the 

Levi-Civita symbol to express A B×  as 
 
 ˆ ˆ ˆ( ) ( )i i j j k ijk i ju A u B u A B× = ∈  (2.4-36) 

 
in its ultimate beauty and simplicity, but still preserving all of the operations of 
Eq. (2.4-33) resulting in the six nonzero terms of (2.4-34), including the three 
minus signs. 
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where 1 2 3,  ,  and q q q  are orthogonal coordinates and 1 2 3, and , d d d� � �  are 
differential lengths in each of the coordinate directions, respectively. For 
example, in spherical coordinates 1 2 3,  ,  and q q q  are  
 

1q r=  (2.6-3a) 

2q θ=  (2.6-3b) 

3q φ=  (2.6-3c) 

 

1dl dr=  (2.6-4a) 

2  dl r dθ=  (2.6-4b) 

3 sin  dl r dθ φ=  (2.6-4c) 

 
In general, the differential lengths may be expressed in terms of differential 
coordinates by 
 

i i idl h dq=  (2.6-5) 

 
where the ih  values are referred to as metric coefficients, otherwise known as 
scale factors. In the case of spherical coordinates we see from Eqs. (2.6-3a) 
through (2.6-5) that 
 

1 1h =  (2.6-6a) 

2h r=  (2.6-6b) 

3 sinh r θ=  (2.6-6c) 

 
Substituting Eq. (2.6-5) into Eq. (2.6-1) yields 

 

1 1 1 2 2 2 3 3 3ˆ ˆ ˆdT u h dq u h dq u h dq= + +  (2.6-7) 

 
 
Our task is to determine the differential vector dT  such that it is everywhere 
tangent to E . This can be accomplished by noting the following: 
 

Any two vectors are parallel when their cross product is zero. 
 
That is, by restricting their cross product to be zero, we have the necessary 
mathematical construct to find dT  in terms of the given vector field E . Thus, if 
the expression 
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0dT E× =  (2.6-8) 
 
is everywhere satisfied, dT is everywhere tangent to E . Equation (2.6-8) may be 
expanded in matrix form as 
 

1 2 3

1 1 2 2 3 3

1 2 3

ˆ ˆ ˆ

   0

u u u

h dq h dq h dq

E E E

=  (2.6-9) 

 
In order for Eq. (2.6-9) to be satisfied, each component must be zero. In general, 
 

  1   1   1 0i i i i i ih dq E h dq E+ + +− =  (2.6-10a) 

 
Rearranging, 
 

  1   1

  1

i i i i

i i

h dq h dq

E E
+ +

+

=  (2.6-10b) 

 
which is the general differential equation for field-direction lines in generalized 
curvilinear coordinates. Equation (2.6-10b) is actually three differential equations 
where i = 1,2,3 and where i +1 = 2,3,1, respectively. 
 
2.6.1  Cartesian (rectangular) coordinates 
 
In Cartesian coordinates the metric coefficients are unity and the system of 
coordinates and metric coefficients become 
 

 1q x=  (2.6-11a) 

2q y=  (2.6-11b) 

3q z=  (2.6-11c) 

 

1  1 h =  (2.6-12a) 

2   1h =  (2.6-12b) 

3   1h =  (2.6-12c) 

and Eq. (2.6-10b) becomes 
 

x y

dx dy

E E
=  (2.6-13a) 
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y z

dy dz

E E
=  (2.6-13b) 

 

z x

dz dx

E E
=  (2.6-13c) 

 
That is, when ,  ,  and x y zE E E  are known, the simultaneous solution to the three 
differential equations (2.6-13a)–(2.6-13c) describes the equations in ( , , )x y z  
space of lines everywhere parallel to the field E . 
 
2.6.2  Cylindrical coordinates 
 
In cylindrical coordinates we may use ( , , )r zφ ; however, since r is also used for 
the spherical radius coordinate, which is not the same, it is necessary to 
distinguish one from the other in problems where both coordinate systems are 
being used simultaneously. In such cases, we use different symbols in the 
analysis, such as cr  and sr , for the cylindrical and spherical coordinate radii, 
respectively. However, since we are treating the coordinates separately, we will 
just use the symbol “ r ” for each. Thus, for cylindrical coordinates we specify 
our coordinates and metric coefficients as 
 
 

1q r=     (2.6-14a) 

2q φ=     (2.6-14b) 

3q z=     (2.6-14c) 

 

1 1h =    (2.6-15a) 

2h r=   (2.6-15b) 

3 1h =    (2.6-15c) 

 
and Eq. (2.6-10b) becomes 
 

r

dr rd

E Eφ

φ=    (2.6-16a) 

 

z

rd dz

E Eφ

φ =    (2.6-16b) 
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z r

dz dr

E E
=    (2.6-16c) 

 
Again, when ,  ,  and r zE E Eφ  are known, the simultaneous solution to the three 
differential equations (2.6-16a)–(2.6-16c) describes the equations in ( , , )r zφ  
space of lines everywhere parallel to the field E . 
 
2.6.3  Spherical coordinates 
 
For spherical coordinates, we specify our coordinates and metric coefficients (as 
stated earlier) as 

1q r=   (2.6-17a) 

2q θ=   (2.6-17b) 

3q φ=   (2.6-17c) 

 

1 1h =   (2.6-18a) 

2h r=   (2.6-18b) 

3 sinh r θ=   (2.6-18c) 

 
and Eq. (2.6-10b) becomes 
 

r

dr rd

E Eθ

θ=  (2.6-19a) 

 
sinrd r d

E Eθ φ

θ θ φ=  (2.6-19b) 

 
sin

r

r d dr

E Eφ

θ φ =  (2.6-19c) 

 
Once more, when ,  ,  and rE E Eθ φ  are known, the simultaneous solution to the 
three differential equations (2.6-19a) through (2.6-19c) describes the equations in 
( , , )r θ φ  space of lines everywhere parallel to the field E . 
 
2.6.4  Example of field direction lines 
 
Let us apply these concepts to the case of a uniformly charged straight line of 
finite length, where the charge density is Lρ  coulombs per meter lying on the z 
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 1 2

2 1

r

z

z a z a
R REdr

dz E r r
R R

⎛ ⎞+ −
−⎜ ⎟

⎝ ⎠= =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 (2.6-22) 

 
where rE  and zE  are the r and z components from Eq. (2.6-20), respectively. 
Rogers shows15 that the solution to Eq. (2.6-22) is 
 
 1 2R R C− =  (2.6-23) 

 
where 1R  and 2R  are defined in Fig. 2.6-1. The constant of integration C can be 
any positive or negative real value including zero. Equation (2.6-23) represents a 
family of confocal hyperbolas with foci at z a= ± , that is, at the ends of the 
charged line. 
 

A map of the E  field direction lines is shown in Fig. 2.6-2 for 
3 , , 0, , 3C a a a a= − − . These are hyperbolas with asymptotes at 30, 60, 90, 

120, and 150 degrees from the positive z axis, respectively. Rogers15 (Fig. 2.10) 
cleverly includes a circle of radius a centered at the center of the charged line 
from which construction lines may be drawn that define the apexes and 
asymptotes of each hyperbola. Thus, with the apex and asymptotes known, one 
can fairly accurately sketch the hyperbolas without the need for detailed 
calculations. 
 

In 3D space, surfaces on which field direction lines fall can be shown by 
the simultaneous solution of the differential equations (2.6-16a) and (2.6-16c). 
We have already discussed the solution of the latter. Let us next examine Eq. 
(2.6-16a). 
 

r

r d dr
E Eφ

φ
=  (2.6-24) 

 
 
 
 
 
 
 
 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.6: Vector Field Direction Lines                                                                       2-25 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.6-2  Field direction lines of a uniformly charged straight line of 
length 2a. 

 
However, from Eq. (2.6-20), 0Eφ = since 0r ≠ , dφ  must equal zero. Integrating 
we find that φ  equals a constant—independent of the constant of integration 
given in Eq. (2.6-23). Thus, in 3D space, the equations for the field direction 
lines must satisfy15 
 

 1 2 1

2

R R C

Cφ
− =

=
 (2.6-25) 

 
The 3D depiction of Eq. (2.6-23) is the hyperboloids of revolution shown in Fig. 
2.6-3. For 0C = , the surface is in the 0z =  plane. For >0C , the surfaces are 
hyperboloids in the positive z half space, and for 0C < , the hyperboloids fall in 
the negative z half space. Figure 2.6-3 shows the hyperboloids for the four cases, 

3  and C a a= ± ± . The surfaces that satisfy Eq. (2.6-25) are confocal 
hyperboloids of revolution with foci at z a= ±  as shown in Fig. 2.6-3. Thus, 
 

the field direction lines are the lines of intersection between these 
hyperboloids and any plane containing the z axis. 

 
2.7  Scalar Field Equivalue Surfaces 
 
In the previous section, we developed the process for determining the surfaces of 
vector field direction lines and illustrated how this works for the case of the 

electric field E  from a uniformly charged straight line of finite length. Recall 

that we did this by forcing an unknown differential tangent vector dT  to be 

parallel to E  by setting dT E×  to be zero and solving for dT . In this section, 
we consider the orthogonal problem, namely that of equivalue surfaces. 
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Figure 2.6-3  Confocal hyperboloids of revolution for the field of a 
uniformly charged straight line of finite length. The ends of the line 

charge lie at the foci of the hyperboloids. 
 
If a field source, such as a test mass in a gravitational force field, or a test 

charge in an electrostatic field (as in the illustration of the previous section), is 
caused to move in a direction perpendicular to the field direction lines, no work 
is done. This is because F d⋅ �  is zero when d�  is perpendicular to F . Thus, in 
any conservative field [see the discussion of Eq. (2.4-22)] there exist surfaces of 
equal potential energy that are orthogonal to the vector field flow lines. The same 
can be said of equal electric potential surfaces in the case of electric field 
intensity E . Both are called equipotential surfaces, one referring to surfaces of 
equal potential energy and the other referring to surfaces of equal electric 
potential. We may refer to such surfaces as equivalue surfaces in order to 
generalize our discussion to any conservative vector field. 

 
These equivalue surfaces may be found by first defining a differential path 

dP  that is everywhere perpendicular to the vector field, E , for example. Our task 
is to determine the differential vector dP  such that it is everywhere orthogonal to 
E . This can be accomplished by noting the following: 
 

Any two vectors are perpendicular when their dot product is zero. 
 
That is, by restricting their dot product to be zero, we have the necessary 
mathematical construct to find dP  in terms of the given vector field E . Thus, if 
the expression 
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Chapter 3 

Elementary Tensor Analysis 
 
In keeping with the theme of this book, this chapter is presented for the 
undergraduate-level student and those who teach undergraduates. The author has 
found that the average electrical engineering junior can begin his or her excursion 
into tensors if the concepts are presented at the level given here. (It is assumed 
that a EE junior will have successfully completed 16 to 18 units of math from 
Calculus I through differential equations and linear algebra.) There is no reason 
why students of this caliber should not be shown the power of tensors, especially 
in light of the inevitable shift into photonics for the design of ultrahigh-speed 
devices and transmission systems. Students of civil and mechanical engineering 
can also utilize these concepts in their investigation of composite materials, as 
can their instructors. In fact, one could take the position that there is an even 
greater need for tensors in these disciplines because stress, strain, and elastic 
modulus are tensors even for linear isotropic materials. 
 

Many introductory electromagnetics texts, especially those published more 
recently, make some mention of tensors when discussing anisotropic media.1–3 
For example, some authors use the term “dyadic,” the more precise expression 
for the particular tensor that provides the needed parameters for linear anisotropic 
media.4 The mention of tensors is also included in discussions of linear 
bianisotropic media, especially composite materials, covered in more advanced 
treatises.5 In addition, the scattering of electromagnetic waves from objects is 
skillfully treated in texts by the use of the scattering dyadic.6 
 

Others use the less precise term “tensor,” and define it with the nine 
components of a dyadic. Yet others, especially in earlier works, discuss the nine-
component expansion of the anisotropic media without mentioning either tensors 
or dyadics.* The more advanced a text in electromagnetics is, the more probable 
it is that dyadic tensors are used to formulate the mathematical description of the 
physics, regardless of the whether the text is a classic7,8 or written more 
recently.9,10 

                                                 
* In all fairness, however, most of these were written in the days when tensor 

analysis was found in only the more advanced texts and was deemed out of 
reach of the undergraduate student. This guide is intended to help bridge this 
gap. 
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The tensor/dyadic issue 
 
Those new to tensors will find a possible confusion in the use of the terms 
“tensor” and “dyadic” in the literature. In some references, the terms are used 
synonymously. In others, the two terms are very distinct. The bottom line is that 
dyadics are special cases of tensors, as will become clear in this and later 
chapters. Since there are many examples where tensors are needed that are not 
dyadics, it is more common in recent literature to use the term “dyadic” for the 
nine-component tensor. These comments are made so that those new to tensors 
(or wanting to brush up on tensors) may understand the variations in terminology 
found in the literature. 
 

This chapter strives to make the upper-division student more comfortable 
with the power and value of tensors in situations where the medium is not 
necessarily “linear, isotropic and homogeneous,” as assumed in conventional, 
more simplistic analyses in physics and engineering. Section 3.1 deals with 
directional compoundedness, rank, and order of tensors and is intended to give 
an appreciation for the handling of higher-rank tensors with tensor notation. This 
is followed in Section 3.2 by a discussion and determination of the number of 
components of a tensor. For example, the dyadic (which has a rank of 2) will 
contain 2

dn  components, where dn  refers to the dimensionality of the space. We 
usually work in 3D or 3-space, so 3dn = . Therefore, we find that the dyadic has 
nine components, which are expanded in Section 3.3. 
 

The dyadic dot product with a vector and the vector dot product with a 
dyadic are then carried out in Section 3.4. The first is shown to be consistent with 
matrix multiplication. The second is not. The dot product and double dot product 
of two dyadics is performed so that the reader may understand the inner-product 
nature of the dot-product operation and so that the nonreciprocity of some of the 
operations becomes evident. 
 

The new paradigm of composite materials can properly be studied and 
analyzed only with the appropriate use of tensor relationships. Section 3.5 
illustrates the fundamental relationship between stress and strain (rank-two 
tensors) and the modulus of elasticity (a rank-four tensor having 81 components 
in 3D space). Except for the most simplified cases of linear isotropic materials 
where the forces are aligned in very specific orientations, tensors are essential. 
 

Further, as the discipline of electrical engineering undergoes a profound 
new paradigm into optical engineering and photonics (fiber optics, acousto-
optics, electro-optics, magneto-optics and optoelectronics), the use of tensors has 
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become prevalent. Moreover, as nonlinear optical effects become more common 
in the design of photonic systems, tensor analysis is essential.11–17 This is 
illustrated in Section 3.6. 
 
3.1  Directional Compoundedness, Rank, and Order of Tensors 
 
A quantity can have multiple levels of directionality inherent within itself. The 
level or compoundedness of the directionality of a quantity can be enumerated. 
For example, since a scalar, such as temperature, pressure, or potential, has no 
directionality, it can be said to have a zero directional compoundedness.* 
Likewise, a vector quantity such as velocity or acceleration inherently has a 
single direction associated with it, such as ˆiu  or E , and thus it is said to have a 
directional compoundedness of one. As described in the previous chapter, a 
dyadic requires a two-level directionality. For example, the two-directional-level 
permittivity dyadic ε  is required for anisotropic media and each of its nine 
components require the two-directional-level unit dyad ˆ ˆi ju u . Thus, we say that a 
dyadic has a directional compoundedness of two. 
 

Another term for directional compoundedness is “rank.” Thus, a 
dyadic is a tensor of rank = 2, a vector is a tensor of rank = 1, and a 
scalar is a tensor of rank = 0. 

 
Further, it is important to realize at this juncture that tensors do exist that 

are neither scalars, vectors, nor dyadics. These are tensors having a directional 
compoundedness greater than two. For example, as mentioned in the introductory 
comments to this chapter, students of mechanics of materials where stress and 
strain are studied will be dealing with the modulus of elasticity, which is a tensor 
of rank four (even though they may not be told this in their sophomore courses in 
statics and dynamics). This topic is briefly discussed in Section 3.5. An 
additional example of the need for tensors of rank greater than two is in the study 
of how optical signals are amplified. Here one needs to know that nonlinear 
optical effects play an important role in optical amplification. Therefore, it is 
important to know how to deal with optical waves that drive dielectric materials 
into the nonlinear regime. To do so requires analyses that use tensors of a higher 
rank than two, as we will see in Section 3.6. 
 
 
 

                                                
* “Directional compoundedness,” a term coined by the author, is intended to give 

those new to tensors a more intuitive feel for the concept of “rank.” 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3-4                                                             Chapter 3: Elementary Tensor Analysis 

The rank/order issue  
 
In earlier works dealing with rank-two tensors—that is, dyadics—it was not 
uncommon to see the term order used interchangeably with rank.18 However, 
modern usage of the term enumerates order as one less than the rank, especially 
in photonics, optoelectronics, and nonlinear optics.* 
 
 Tensor order = tensor rank minus one. (3.1-1) 
 

Order is not normally used in referring to a vector; however, if it were 
used, the vector would be said to have an order of zero. Such a designation would 
have no useful meaning. (Of course, order would not apply to a scalar.) Thus, the 
lowest-rank tensor to which order is normally ascribed is a dyadic. A dyadic, 
therefore, has an order of one. The table at the end of this chapter summarizes 
rank and order of various tensors. 
 
3.2  Tensor Components 
 
In general, the number of components that it takes to describe a tensorial quantity 
is related to the dimensionality of the problem and the rank of the quantity in 
accordance with the expression 

                                                
*  This use of the term “order” as being one less than the rank is explicit in 

References [15] page 17, [14] page 16, and [13] page 190, for example. 
However, it is implicit in most other modern treatments of optics and photonics 
as though it were self-understood. For example, in Reference [11] pages 25 ff., 
Reference [12] pages 19 ff., Reference [14] pages 13 ff., Reference [17] pages 
5-7, 341-2, and many others, the order denoted in the superscript (in 
parentheses) is always one less than the rank denoted in tensor notation by the 
number of indices in the subscript. Furthermore, 

 
enumerating order as being one less than the rank affords a more 

natural description of the physics as well as the mathematics. 
 

For instance, the so-called third-order susceptibility, which is a tensor of 
rank 4, as shown in Section 3.6, in fact, operates on the cube of the vector 
electric field 3E  (which is a rank-three tensor) creating a third-harmonic signal 
coming from 3cos tω  through a triple dot-product operation {See References 
[11] Eq. (2.66), p. 40; [12] Eq. (1.4.5), p. 31; [13] Eq. (7.12), p. 190 and Eq. 
(7.36), p. 200; [14] Section 2.1.3, Eq. (2.19), pp. 16 ff.; [15] Eq. (1.3.1), p. 18, 
Section 2.3.1 pp. 39 ff.; [16] Eq. (2.39), p. 39; [17] Eqs. 1.2.8 and 1.2.11, pp.6 
and 7}. 

 
Since this guide is directed toward photonics and materials science that use 

these higher-rank tensors, this author opts for the generally acceptable use of the 
term order as described by Eq. (3.1-1). 
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  R
c d

nn n=     (3.2-1) 
 
where cn  is the number of components, dn  is the dimensionality of the space, 
and Rn  is the rank number. Thus, in 3D space, scalars have 
 
 0  3   1cn = =  (3.2-2) 

 
one component. Vectors have  
 

 1  3   3cn = =  (3.2-3) 

 
three components. Dyadics have  
 

 2  3   9cn = =  (3.2-4) 

 
nine components, triadics have 
 
 3  3   27cn = =  (3.2-5) 

 
27 components, and quadadics, that is, tensors of rank four, have 
 

 4  3   81cn = =  (3.2-6) 

 
81 components, etc.  
 

Therefore, the elastic modulus (Section 3.5) and the third-order 
susceptibility (Section 3.6), then, have in general 81 components, since they are 
quadadics. 
 
3.3  Dyadics and the Unit Dyad 
 
In many physical problems a constitutive relation is used to relate an intensity 
field vector with a flux density vector field by a material-dependent parameter. 
An example of this is the relation between the electric flux density vector D  and 
the electric field intensity E  as  
 

   D Eε=  (3.3-1) 
 
where ε  is the material parameter. In this case, ε  is referred to as the electric 
permittivity. In this formulation, it is assumed that the permittivity ε  is an 
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invariant scalar independent of the direction of the applied field. That is, the 
above expression is for the case of an isotropic medium. In addition, Eq. (3.3-1) 
also assumes that linear conditions are at play. That is, the material properties do 
not change with the amplitude of the applied field and are therefore linear as well 
as isotropic. 
 

However, if the medium is anisotropic (nonisotropic), that is, its dielectric 
properties differ with respect to direction, the constitutive relation becomes 
 
   D Eε= ⋅  (3.3-2) 
 
where ε  is the anisotropic permittivity and is a dyadic, which, in general, has 
nine components  i jε  where i = 1, 2, 3 and j = 1, 2, 3. Again, Eq. (3.3-2) implies 
linearity. The details of the operation represented by the right-hand side of Eq. 
(3.3-2) lie in the mathematical description of a dyadic dot product with a vector. 
This and other dyadic dot products are given in Section 3.4. The case in which 
material properties vary with the applied field amplitude is the subject of 
nonlinear analyses and is outlined in Section 3.6. 
 

The dyadic ε  in Eq. (3.3-2) can be written as  
 

 

1 1 11 1 2 12 1 3 13

2 1 21 2 2 22 2 3 23

3 1 31 3 2 32 3 3 33

3 3

 
1 1

ˆ ˆ ˆ ˆ ˆ ˆ       

ˆ ˆ ˆ ˆ ˆ ˆ          

ˆ ˆ ˆ ˆ ˆ ˆ          

ˆ ˆ         i j i j
i j

u u u u u u

u u u u u u

u u u u u u

u u

ε ε ε ε
ε ε ε
ε ε ε

ε
= =

= + +
+ + +
+ + +

= ∑∑

 (3.3-3) 

 
The nine components  i jε  are scalars representing the proportionality constant 
between the applied field component jE  in the ˆ ju  direction and the resultant 
displacement (flux) component iD  in the ˆiu  direction. The unit dyads ˆ ˆi ju u  depict 
the nine combinations of applied and resultant field direction components. 
 

In writing the bidirectional dyad ˆ ˆi ju u , there are no operations (such as dot 
or cross product operations) implied between the unit vectors ˆiu  and ˆ ju . One 
should think of the unit dyad as a single entity and might prefer to write it as  

ˆ̂
i ju  

to emphasize that situation. Thus, 
 

  
ˆˆ ˆ ˆ  i j i ju u u≡  (3.3-4) 
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The explicit representation of the nine dyads    
ˆ̂

i j i ju ε  represents the components 
of the dyadic ε  by the scalar magnitude  i jε  in the bidirection  

ˆ̂
i ju . 

 
However, as discussed in Section 1.1.7(b), in tensor analysis it is 

customary to streamline the notation by dropping the unit dyad and summation 
signs. Thus, the dyadic [Eq. (3.3-3)] of the form ˆ̂

i j i ju ε∑∑  is written in tensor 
notation just as 
 

ijε  
 
and the tensor notation for Eq. (3.3-2) is written simply as 
 
    i ij jD Eε=  (3.3-5) 
 
where the double summation and dot product are implied. Note  i jε , as scalar 
components of the dyadic ε , is written in this text differently from ijε  to 
distinguish the scalar component  i jε  from the dyadic ijε  itself by the spacing 
between the subscripts. In handwritten communication, however, this distinction 
would not be obvious. In addition, vectors (such as D ) written in tensor notation 
are expressed simply as iD  (with only one subscript denoting a rank-one tensor) 
and are indistinguishable from the scalar components, iD . Thus, the distinction 
between the vector component in explicit standard notation and the whole vector 
in tensor notation—both being iD —is not apparent even in electronic 
communication depicting vectors. 
 

Therefore, when encountering variables that are presented with 
subscripted indices, in order to distinguish between their scalar 
components and actual tensors themselves, it is necessary to specify 
at the outset whether an analysis is being performed in tensor 
notation or in explicit standard notation. 

 
This caution assumes that such an analysis does not contain both the 

components of the tensor and the tensor written in tensor notation (with its multi-
subscripted indices). Except when the user is being exposed to tensor analysis for 
the first time, as is assumed in this guide, it is usually not necessary to be dealing 
with both. Tensor notation is sufficiently powerful and accurate that the 
expansion into components is implied (and becomes obvious). Thus, the 
experienced analyst performs tensor analysis operations with much greater ease 
using tensor notation with no loss in generality. Nevertheless, in this introduction 
to tensors, we will show the component details of the common tensor operations 
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as a pedagogical tool to help the new tensor analyst garner an appreciation for the 
use and power of tensors. 
 

The detailed expansion implied by the dot product operation of Eq. (3.3-2), 
or equivalently, the inner-product operation implied by the right-hand side of Eq. 
(3.3-5), is made in the next section, where we will find that in performing inner-
product operations as in Eq. (3.3-5), the inner subscript  j disappears and we are 
left only with a single subscript i. Thus, the result is the quantity iD , which has a 
single directional compoundedness implied by the single subscript, and therefore 
a rank of one, yielding D  as a vector. 
 
3.4  Dyadic Dot Products 
 
In Section 2.4.3(b) the dot-product operation between two vectors was expanded 
in explicit standard notation [Eq. (2.4.13)] illustrating the “inner-product” nature 
of the dot product. This operation was also carried out in tensor notation, which 
(in conjunction with the Kronecker delta) yielded the same scalar result with 
greater elegance. 
 

In this section we apply the dot product to four combinations involving 
dyadics. In Section 3.4.1, the two combinations of dot products between a vector 
and a dyadic are presented—first the dyadic dot product with a vector and then 
the vector dot product with a dyadic. Both have a vector resultant. The details of 
the dyadic dot product with a vector are given in explicit standard notation in 
order to illustrate that the inner-product nature of the dot product also applies 
when dyadics or tensors of general rank are involved. Again, these operations are 
done with the elegance of tensor notation. The results are then applied to Eq. 
(3.3-2), which is the constitutive relation between the electric field intensity E  
and the resultant electric flux density D  in an anisotropic medium described by 
the electric permittivity dyadic ε . 
 

The remaining two dot-product operations are the dot and double-dot 
product of two dyadics. These are carried out in Sections 3.4.2 and 3.4.3, 
respectively. We will find that the former yields another dyadic and the latter 
yields a scalar. 
 
3.4.1  Vector-dyadic dot products 
 
In Part (a) we expand on the dyadic dot product with a vector for the case of 
electric fields in an anisotropic dielectric and illustrate the tensorial properties 
involved. In part (b) we generalize this case and compare it with the case of a 
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vector dot product with a dyadic. This part concludes with a discussion of the 
conditions where the two are and are not equal. 
 
3.4.1(a)  Application of the dyadic-vector dot product for anisotropic  
 dielectrics 
 
In performing the dyadic dot product with the vector, let us take the case of Eq. 
(3.3-2) as an example. Expanding the right-hand-side of Eq. (3.3-2), we 
incorporate Eq. (3.3-3) into Eq. (3.3-2) to yield 
 

 
1 1 11 1 2 12 1 3 13 1 1

2 1 21 2 2 22 2 3 23 2 2

3 1 31 3 2 32 3 3 33 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ    

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

u u u u u u u E

D E u u u u u u u E

u u u u u u u E

ε ε ε
ε ε ε
ε ε ε

ε
   
   = = ⋅   
      

⋅  (3.4-1) 

 
There are 27 dot-product terms resulting from each of the nine components of the 
dyadic operating on the three components of the vector. However, applying the 
Kronecker delta [Eq. (2.4-12)] eliminates 18 of these terms, yielding the nine 
terms shown below. Therefore, this dot product operation can be correctly 
formulated by following the same rules as the matrix multiplication of a 3 × 3 
matrix with a 3 × 1 column matrix with careful attention given to the order of the 
unit vector dot products. Thus, we have 
 

 
1 1 1 11 1 1 2 2 12 2 1 3 3 13 3

2 1 1 21 1 2 2 2 22 2 2 3 3 23 3

3 1 1 31 1 3 2 2 32 2 3 3 3 33 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ          

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ          

D u u u E u u u E u u u E

u u u E u u u E u u u E

u u u E u u u E u u u E

ε ε ε
ε ε ε
ε ε ε

= ⋅ + ⋅ + ⋅
+ ⋅ + ⋅ + ⋅
+ ⋅ + ⋅ + ⋅

 (3.4-2) 

 
Notice that the interior dot products of unit vectors are all unity (with the 
application of the Kronecker delta). Thus, the result of the dot product operation 
leaves single directionality in each of the nine terms. 
 

However, before performing this step, it is instructive to point out that the 
form of Eq. (3.4-2) explicitly illustrates the key tensor algebra issues of the right-
hand side of Eq. (3.4-2) as follows: 
 

1. First, each term of Eq. (3.4-2) displays the two-level 
directionality of the dyadic, the single directionality of the 
vector, and the dot operation between these quantities. 
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2. The nature of the inner product is explicitly displayed, 
thereby illustrating why the mathematical term “inner 
product” is used to depict the vector dot-product operation. 

 
3. The application of the inner product eliminates two of the 

unit vectors in each term, thereby reducing the sum of the 
ranks of the two quantities involved by two. 

 
These observations are also valid for tensors of any rank and for multiple inner 
products. 
 

Combining the terms in Eq. (3.4-2) for each unit vector 1 2 3ˆ ˆ ˆ, ,u u u  yields 
 

 
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

ˆ     (   )

ˆ         (   )

ˆ         (   )

D u E E E

u E E E

u E E E

ε ε ε
ε ε ε
ε ε ε

= + +
+ + +
+ + +

 (3.4-3) 

 
Equation (3.4-3) then is the result of our explicit expansion of the dyadic 

dot product with a vector, which yields another vector D , and, of course, is 
generally not oriented in the same direction as the force field E . Equation (3.4-
3) is the form generally given in electromagnetic texts for the constitutive 
relation between the electric flux density and the electric field intensity for 
anisotropic dielectrics. 
 

The entire process described in the development of Eqs. (3.4-1) through 
(3.4-3), when written in tensor notation, is simply 
 
    i ij jD Eε=  (3.4-4) 

 
where i = 1, 2, 3; j = 1, 2, 3. Notice that the inner product index j is eliminated in 
the dot product operation and the only remaining index is i, leaving the resultant 
quantity D as a rank-one tensor—or a vector—as stated before. 
 
3.4.1(b)  Comparison of the dyadic-vector dot product with the vector- 
 dyadic dot product 
 
In general the inner product between a dyadic A  and a vector B  in explicit 
standard notation takes the form of Eq. (3.4-3) 
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1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

ˆ (   )

ˆ         (   )

ˆ         (   )

A B u A B A B A B

u A B A B A B

u A B A B A B

⋅ = + +
+ + +
+ + +

 (3.4-5) 

 
which is, of course a vector. In tensor notation, Eq. (3.4-5) is 
 

 ij k jk ij j iA B A B A B Cδ⋅ = = =  (3.4-6) 

 
where its vector form is denoted by the single subscript of the resultant iC . 
 

However, in reversing the operation—that is, taking the inner product 
between the vector B  and the dyadic A —in explicit standard notation, the setup 
is different: 
 

 
1 1 1 1 11 1 2 12 1 3 13

2 2 2 1 21 2 2 22 2 3 23

3 3 3 1 31 3 2 32 3 3 33

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

u B u u A u u A u u A

B A u B u u A u u A u u A

u B u u A u u A u u A

   
   ⋅ = ⋅   
      

 (3.4-7) 

 
Here, the matrix multiplication analogy cited after Eq. (3.4-1) is invalid. 
Examination of Eq. (3.4-7) shows that of the 27 dot product combinations, only 
the row-by-row dot products survive. These are then 
 

 
1 1 1 1 11 1 1 2 1 12 1 1 3 1 13

2 2 1 2 21 2 2 2 2 22 2 2 3 2 23

3 3 1 3 31 3 3 2 3 32 3 3 3 3 33

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ               

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ               

B A u u u B A u u u B A u u u B A

u u u B A u u u B A u u u B A

u u u B A u u u B A u u u B A

⋅ = ⋅ + ⋅ + ⋅
+ ⋅ + ⋅ + ⋅
+ ⋅ + ⋅ + ⋅

 (3.4-8) 

 
Notice that after applying the Kronecker delta to Eq. (3.4-8), thus eliminating the 
inner products and reducing the rank of each term from three to one as before, the 
resultant vector components are collected by columns in Eq. (3.4-8). That is, the 
first column is the 1̂u  component, etc. Collecting components, we have 
 
 

 
1 1 11 2 21 3 31

2 1 12 2 22 3 32

3 1 13 2 23 3 33

ˆ (   )

ˆ         (   )

ˆ         (   )

B A u B A B A B A

u B A B A B A

u B A B A B A

⋅ = + +
+ + +
+ + +

 (3.4-9) 
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which is definitely not the same as Eq. (3.4-5), unless the components of A  are 
symmetrical. 
 

In tensor notation B A⋅  is more simply determined by 
 

 i jk ij i ik kB A B A B A Dδ⋅ = = =  (3.4-10) 

 
which is a different vector kD D=  from the result iC C=  of Eq. (3.4-6). 
Therefore, 

 
  if  

  if  

i j j i

i j j i

A B B A A A

A B B A A A

⋅ ≠ ⋅ ≠

⋅ = ⋅ =
 (3.4-11) 

 
That is, 
 

If the dyadic components are symmetrical, the dyadic-vector dot 
product is commutative; otherwise, it is not. 

 
3.4.2  Dyadic-dyadic dot and double-dot products 
 
The inner product between two dyadics A  and B  then becomes  
 

 ij k jk ij j iA B A B A B Eδ⋅ = = =  (3.4-12) 

 
which is a new dyadic iE E= . However, the reverse operation B A⋅  is 
 

 k ij i k j kjB A B A B A Fδ⋅ = = =  (3.4-13) 

 
which is a dyadic kjF F=  but not the same as in Eq. (3.4-12). 
 

The double inner product between A  and B  becomes 
 

 : ij k jk i ij jiA B A B A B Gδ δ= = =  (3.4-14) 

 
where all unit vectors drop out ending with a scalar G. The details of this in 
explicit standard notation follow. 
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3 3

1 1

11 11 12 21 13 31

21 12 22 22 23 32

31 13 32 23 33 33

:

 

ij ji
i j

A B A B

A B A B A B

A B A B A B

A B A B A B G

= =
= =

= + +
+ + +
+ + + =

∑∑

 (3.4-15) 

 
which is a scalar. It is apparent from Eq. (3.4-15) that the double-dot product 
between two dyadics is commutative: 
 

 : :A B B A=  (3.4-16) 
 
3.5  The Rank-Four Elastic Modulus Tensor 
 
In order to illustrate the importance of tensors of varying rank in science and 
engineering, especially where tensors having ranks higher than dyadics are 
needed, we will briefly discuss a case in structural properties of materials. In 
mechanics, stress—which represents force per unit area throughout the 
material—can have one set of values in tension and another set of values in 
shear. This is true even for isotropic materials. Therefore, stress s  must in 
general be represented by a dyadic. The resulting deformation—strain—that 
ensues is also dependent on whether the force is in tension or shear. Thus, strain 
δ  is also a dyadic. The necessity for the dual directional compoundedness is 
even more apparent when one considers stress and strain being applied to 
anisotropic materials. 
 

As with vector force fields being applied to materials and their 
corresponding flux fields, a constitutive relation exits between stress and strain. 
The components of stress are determined by multiplicative operations of the 
elastic modulus ε  on the strain. Stress and strain being tensors of rank two, the 
modulus is a tensor of rank four, which we will call a quadadic.19 Thus, for a 
complex crystalline material and arbitrarily directed applied forces, the elastic 
modulus must be described in terms of a tensor of rank four (a quantity that has a 
directional compoundedness of four). The components of this rank-four tensor 
are separated into 81 components each having a magnitude and a unique rank-
four unitary tensor.  Since unit tensors of rank two are called dyads, and unit 
tensors of rank three are triads, we refer to the unit tensor of rank four as a 
quadad. Thus, a quadad consists of four unit vectors ˆ ˆ ˆ ˆi j ku u u u

�
 run together (not 

separated by dot or cross operations). To punctuate the concept that quadads are 
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single quantities with four inherent directions at every point in space, we may 
alternatively express the quadad as a u with four hats or chevrons: 
 

ˆ̂
ˆ̂

i j ku
�

 

 
The tensor notation that fully represents this rank-four unitary quantity is, as one 
might expect from Section 3.3, more simply written as 
 

ijku
�
 

 
without the cumbersomeness of the chevrons and the implied quadruple 
summations. The latter representation is customarily used in tensor analysis. In 
this example, one can begin to see the great utility and simplicity in using tensor 
notation, although, in doing so one must be careful to order any inner-product 
operations properly. 
 

Now that the unit quadads are described, we may then express the classical 
constitutive relation between stress and strain and elastic modulus as  
 

     :s δε=  (3.5-1) 
 
where s  is the stress dyadic, δ  is the strain dyadic, ε  is the rank-four quadadic 
tensor modulus of elasticity, and the “:” represents a double dot product 
(Section 3.4.2) or two “inner product” operations of the elastic modulus upon the 
strain. Tensor notation for Eq. (3.5-1) is  
 
   ij ijk ks δε=

� �
 (3.5-2) 

 
Note that the first dot or inner-product operation eliminates the inside index �  
and the second dot or inner-product operation eliminates the next inside index k. 
The resulting quantity is therefore left with the double indices ij, and, thus, the 
stress dyadic ijs  has a dual directional compoundedness or rank of two.  
 

With the tensor notation of Eq. (3.5-2), the double dot product, dyads, and 
quadads are implied, greatly simplifying the appearance of the operation but 
maintaining its internal richness. 
 

In the most general case, namely where the material is anisotropic and the 
stress is applied generally, all 81 components are nonzero. However, even in this 
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most general case, only 21 of the 81 components have different values. For the 
case of isotropic materials, 60 components are zero and the stress/strain 
relationship reduces to a six-dimensional vector. This, in turn, reduces to six 
scalar equations, which are often presented to sophomores without mention of the 
tensorial origin. 
 
3.6  The Use of Tensors in Nonlinear Optics 
 
Another example of the power of tensors is in nonlinear optics. In linear optics 
(and electromagnetics), the constitutive relation describing the electric flux 
vector D  in terms of the applied electric field intensity E  is given by Eq. (3.3-
2), namely   D Eε= ⋅  It is clear from Eq. (3.3-2) that, if E  doubles, D  also 
doubles (even though two fields are not necessarily parallel). In other words, 
none of the nine components of ε  change with E . This is what is meant in 
describing the medium as being linear. 
 

In contrast the term nonlinear is used in optics when the magnitude of the 
E  field is high enough to drive the medium into nonlinearity. That is, if the 
strength of the E  field is sufficient to change at least one component of ε , the 
medium is said to be nonlinear. Nonlinearities in materials take on many forms. 
These can be grouped into two categories: those that cause permanent changes to 
the material and those that retain their original properties after the force field—in 
this case the E  field—is removed. 
 

The phenomenon of dielectric breakdown is an example of the first 
category. In this case, the E  field exceeds the dielectric strength20 of a material, 
thus permanently and deleteriously breaking down the dielectric material and 
changing its properties in such a way as to render the material ineffective as a 
dielectric insulator.  Another example is the case of an optical fiber becoming 
irradiated with excessively strong x-rays—the fiber becomes “gray” and its 
attenuation properties are increased to the point of rendering the fiber inoperable. 
 

The second category of nonlinearities in optical materials occurs whenever 
the applied E  field has sufficient strength to change the properties of the 
material, without the strength to prevent the material from returning to its 
original nonstressed state. In nonlinear optics, the electric flux density D  field is 
given as a series of increasing powers of E . With each additional term, higher 
rank permittivity tensors operate on the powers of E  with increasing inner 
product operations: 

   :D E EE EEEε ε ε= ⋅ + + + ⋅⋅⋅�  (3.6-1) 
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The first term on the right-hand side of Eq. (3.6-1) represents the linear part of 
the D  field consistent with Eq. (3.3-2). This term is also referred to as the first 
order contribution to the constitutive relation for two reasons. First, the E  field 
is raised to the first power. Secondly, there is a single inner product. Thirdly, the 
(rank-two) permittivity dyadic ε  is of first order as defined by Eq. (3.1-1). See 
the footnote for the usual nonlinear optics representations in terms of 
susceptibility tensors.* 
 

As in the discussion following Eq. (3.3-3) regarding the bidirectional dyad 
ˆ ˆi ju u , we note that there is no dot or cross product operation implied between the 

two electric field intensities in the second term of the right-hand side of 
Eq. (3.6-1). Therefore, the quantity EE  is a dyadic or tensor of rank two. 
Furthermore, the two electric fields in the dyadic EE  are in general not 
necessarily in the same direction. Likewise, the EEE  term of Eq. (3.6-1) is a 
triadic or tensor of rank three. 
 

Beyond the linear, first-order term of the right-hand side of Eq. (3.6-1), the 
remaining terms represent the optical nonlinearity and are given in terms of 
increasing powers of E . The coefficients of these higher powers of E  are the 
increasing order permittivities operating on the snE  (where 2,3,n = ⋅ ⋅⋅ ) through 
n  inner-product operations. For example, in the second term of the right-hand 
side of Eq. (3.6-1), the triadic permittivity 
 

 (2)ε ε=  (3.6-2) 
 
operates on the EE  dyadic through a double dot-product operation denoted by 
“ : ” as in Eq. (3.5-1) between the quadadic modulus and the dyadic strain. This 
second term is referred to as the second-order nonlinearity or the second-order 
permittivity. This term is important for materials that lack molecular inversion 
symmetry, also known as non-centrosymmetric materials. Notice that the second-
                                                
* In nonlinear optics, it more convenient to expand the polarization vector P  

rather than the flux-density vector as in Eq. (3.6-1). Thus, 
0 L NL
E P PD ε= + + , 

where 
L

P  is the linear polarization vector given by 0LP Eε χ= ⋅ , where χ  is 

the linear anisotropic electric susceptibility dyadic, called the first-order 
susceptability. 

NL
P  is the nonlinear polarization given by 

  0 :NLP EE EEEε χ χ= + + ⋅ ⋅ ⋅� , where χ  and χ  are the second- and third-order 

nonlinear susceptibilities which are tensors of rank 3 and 4, respectively. 
Nevertheless, Eq. (3.6-1) illustrates the methodology for dealing with nonlinear 
phenomena and the need and power of using dyadics and tensors of higher rank 

than dyadics. 
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order nonlinearity is the result of a second-order permittivity (2)ε  operating 
through a double dot product on E  raised to the power of two. 
 

In the third term of Eq. (3.6-1), the quadadic permittivity ε  operates on 
the EEE  triadic through the triple-dot product operation denoted by “ � ”. Thus, 
this third term is referred to as the third-order nonlinearity. Notice further that 
the third-order nonlinearity is the result of a third-order permittivity, which is a 
tensor of rank four, shown as 
 

 (3)ε ε=  (3.6-3) 
 
operating through a triple-dot product on E  raised to the third power. The third-
order nonlinearity plays an important role for all dielectric materials operating in 
the nonlinear regime whether the material is centrosymmetric or not. 
 
Applications: Optical amplification and soliton waves 
 

Whereas nonlinear operation can have several deleterious effects on optical 
signals, not all effects are negative. For example, Raman amplification, which is 
a method for directly amplifying optical signals, occurs when the information-
carrying signal interacts through weak nonlinear coupling with a strong pumping 
signal of higher quantum energy (higher frequency). Another example of 
favorable nonlinear effects is in soliton wave propagation. Solitons are special 
kinds of wave packets that can travel undistorted over long distances as a result 
of two offsetting effects: A nonlinear effect called self-phase modulation (SPM) 
tends to offset a linear effect called group velocity dispersion (GVD) under 
special conditions that can be designed into an optical communication system by 
the lightwave systems designer. 
 

Nonlinear effects, desired or not, occur in optical fibers in the natural 
process of the design of lightwave systems. On the one hand, there is a need to 
have enough signal strength so that the signal can be detected at the receiving end 
of the fiber after the inevitable attenuation (small as it is). On the other hand, the 
medium through which this signal must propagate is restricted in size by the fiber 
size, typically 8 µm (microns or micrometers) in diameter. These two factors in 
the design usually lead to signal intensities that cause the material properties to 
vary. The designer must avoid at all costs the breakdown phenomenon mentioned 
in the third paragraph of this section. Since there are usually two or so orders of 
magnitude between the onset of nonlinearities and actual material breakdown, 
there is a possibility that higher-order terms of Eq. (3.6-1) may need to be 
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considered although each term falls off in strength quite rapidly. Again, if the 
material is noncentrosymmetric, the fourth-order nonlinearity is the next term to 
be considered. However, for centrosymmetric materials, such as the silica glass 
typically used in optical fibers, the next higher-order term of Eq. (3.6-1) would 
be the fifth-order nonlinearity. That is, for silica glass, only the odd-order terms 
of Eq. (3.6-1) need to be considered. 
 

From the above discussion, which recognizes that the order of a tensor is 
one less than its rank by definition [see 3.1-1], we can express Eq. (3.6-1) in 
order notation a little more simply as 
 

 (1) (2) 2 (3) 3D E E Eε ε ε= + + + ⋅⋅⋅  (3.6-4) 
 
or even more simply as 
 

 ( )

1,2,

n n

n

D Eε
= ⋅⋅⋅

= ∑  (3.6-5) 

 
In doing so, however, one must realize that there are inner-product operations 
implicit between the permittivity tensors and the E-field powers, and that the 
latter are true tensors. 
 

The tensor notation for Eq. (3.6-1) is 
 
 i ij j ijk k j ijk k jD E E E E E Eε ε ε= + + + ⋅⋅⋅

� �
 (3.6-6) 

 
where, again, the inner-product operations are implied. As usual, the number of 
subscripts denotes the rank of the respective tensor; however, the order of the 
subscripts on the E-field vectors is carefully chosen to denote the order of the 
inner-product operations. The disappearance of the inner indices in inner-product 
operations was illustrated in detail in Eq. (3.4-2) in the development of the linear 
term of Eq. (3.6-6), namely Eq. (3.3-5), where the j index was eliminated as a 
result of the single inner-product operation. 
 

The same phenomenon takes place in the second-order nonlinear term in 
Eq. (3.6-6) with the elimination of the k index, and then, the j index from the 
double inner product leaving only the i index. In the third-order nonlinear term, 
the inner indices are again eliminated—first the �  index, then the k index, and 
finally the j index, resulting from the triple inner-product operation, leaving only 
the i index again. The process continues if higher-order nonlinearities are used. In 
all cases, all inner-product indices are eliminated leaving only the i index, which 
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is consistent with the vector form of the left-hand side of Eq. (3.6-6). Equations 
(3.6-1) and (3.6-4) through (3.6-6) are formulations of the same constitutive 
relation, the first term of each representing the linear component and the 
remaining terms representing the nonlinear components. 
 
Summary of the use of tensors for nonlinear optics:  
 
Once the nonlinear formulation is set up, the remaining task is to establish the 
components of the tensorial coefficients ( )nε . This is usually accomplished 
empirically by carefully constructed experimental procedures. The resulting 
values are dependent upon the material. For example, for the case of silica (SiO2) 
fiber, the second-order permittivity vanishes, that is, (2) 0ijkε ε ε= = = , leaving 
the third-order permittivity as the lowest-order nonlinearity. 
 
3.7  Term-by-Term Rank Consistency and the Rules for 

Determining Rank after Performing Inner-Product 
Operations with Tensors 

 
Every scientist and engineer knows that each term of an equation must have 
consistent units. You cannot add volts and amps. The same rule applies to rank. 
Each term of an equation must have the same rank. In order to determine the rank 
of a quantity involving multiplications of tensors, the rule is to add the ranks of 
each tensor being multiplied. If the tensors are undergoing inner-product 
operations, the rule is to subtract two in rank* for each inner-product operation. 
 
Example 1: The electric field constitutive relation  
 
To find the resultant rank after performing the single inner product operation on 
the right side of Eq. (3.3-5), one must first add the ranks of the tensors, namely 
two and one for the dyadic and vector, respectively, and subtract two for the 
single inner product. Thus, we have 2 1 2 1+ − =  and our resultant parameter D  
is a tensor of rank one, which is a vector. 
 
Example 2: Materials mechanics constitutive relation  
 
Likewise, the resultant from our double-dot product operation on the right side of 
Eq. (3.5-1) is 4 + 2: the quadadic (tensor of rank four) modulus of elasticity plus 

                                                 
* Another rule is to subtract one in rank for each cross-product operation in the term; 

however, since this introductory chapter on tensors omits such operations, examples 
of this rule are given in Chapters 4 and 5. 
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dyadic strain (tensor of rank two) minus two for each of the two inner products. 
Thus, 4 2 2 2 2+ − − =  and our resultant is therefore a tensor of rank two, which, 
in this example, is the stress dyadic. 
 
Example 3: Nonlinear optics  
 
Further, as implied in the discussion of the elimination of inner indices of Eq. 
(3.6-6), the second term involves a triadic and a dyadic, having combined ranks 
of 3 2+ , with two inner products reducing the rank by 2 2− − , or 
3 2 2 2 1+ − − = . The third term involves a quadadic and a triadic less three inner 
products yielding 4 3 2 2 2 1+ − − − = . Thus, each term of Eq. (3.6-6) reduces to 
tensors of rank one, i.e. each term reduces to a vector—compatible with the 
vector field D  on the left-hand side. 
 
3.8  Summary of Tensors 
 
The objective of this chapter has been to introduce some of the basic elements of 
tensor analysis to those who are new to tensors and their uses in describing 
phenomena that otherwise cannot be properly described by using ordinary vector 
formulations. When first introduced to vectors, students are told that, whereas  

 
scalars are quantities that have magnitude but no direction, 

 
a quantity that has magnitude and direction is a vector. We now find that 
quantities that have magnitude and direction may, in fact, not be vectors but may 
be tensors having multiple directional compoundedness. Thus, the definition of a 
vector must have the word “single” inserted, to wit:  

 
A quantity that has magnitude and a single direction is a vector. 

 
The same kind of philosophical leap in contemplating a vector field after 

understanding a scalar field is needed in order to contemplate a dyadic field after 
understanding a vector field—namely the concept of two inherent directions at 
every point in the field from the concept of one inherent direction. Those new to 
tensors are cautioned not to stop there, because, by so doing one might be lead to 
the conclusion that tensors are dyadics. Whereas dyadics are tensors (of rank two, 
specifically) tensors are not in general dyadics. The terms are not synonymous. 
Dyadics are quantities that have two directions associated with each point in the 
field. Triadics have three directions, quadadics have four, etc. Thus, 
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A tensor is a quantity that has multiple directionality at each point in 
space and at each moment in time. The “rank” of a tensor 

enumerates that multiplicity. 
 
 
Therefore, 

a scalar is a tensor of rank zero, 
 

a vector is a tensor of rank one, 
 

a dyadic is a tensor of rank two, 
 

a triadic is a tensor of rank three, 
 

a quadadic is a tensor of rank four, 
 

etc. 
 

Furthermore, tensors can be operated upon like the familiar vector 
arithmetic operations, such as dot, cross, and direct products.* The resultant 
quantity after performing such operations between them can be summarized as 

 
a direct product of two tensors yields another tensor of rank 

equaling the sum of the ranks of the two tensors, 
 

the cross product of two tensors yields a tensor of rank one less than 
the sum of the ranks of the two tensors, 

 
the dot product of two tensors yields a tensor of rank two less than 

the sum of the ranks of the two tensors, and 
 

the multiple dot product of two tensors yields a tensor of rank 
equaling the sum of the ranks of the two tensors less two for each 

multiple dot product. 
 

The following table summarizes tensor terminology and some of the topics 
covered in this chapter. 

 
 

                                                
* See footnote on page 2-7. 
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Table 3-1  Tensor Nomenclature and Applications 
 

Field 
name 

Alternative 

Name 

Unit 

name 

Tensor 

Rank 

Tensor 

Order 
Applications 

(selected examples) 

scalar   0 n/a 
temperature; 

pressure; 
voltage; current; flux 

vector  unit 
vector 

1 (not used) 

velocity; 

acceleration; 

electric, magnetic 

field intensity; 
electric, magnetic 

flux density 

dyadic 
“tensor”  

(poor usage) dyad 2 1st 

stress; strain; 

linear anisotropic, 

bianisotropic 

permittivity; 
permeability; electric, 

magnetic 
susceptibilities 

triadic  triad 3 2nd 

lowest-order 
nonlinear 

susceptibility (
(2)
eχ ) 

for non-
centrosymmetric 

materials 

quadadic tetradic quadad 4 3rd 

Elastic modulus; 
lowest-order 

nonlinear 

susceptibility (
(3)
eχ ) 

for centrosymmetric 
materials 

general 
tensor 

tensor unit 
tensor Rn  1Rn −  

all of the above and 
more 
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4-1 

Chapter 4 

Vector Calculus Differential Forms 
WITH EXCURSIONS INTO TENSOR CALCULUS 
 
The first step in understanding vector calculus is the comprehension of scalar and 
vector differential operators—the subject of this chapter. The next step is  
becoming comfortable with the various integral forms to be able to convert 
between the differential and integral forms—the subject of the next chapter. 
Vector differential operators can be made to operate on scalar and vector fields in 
differing ways yielding other scalar, vector, and dyadic fields. Whereas a scalar 
differential operator operating on a scalar or vector field will yield another scalar 
or vector field, respectively, a vector differential operator can yield scalar, vector, 
or tensor fields depending on its formulative properties and depending upon the 
tensor rank of the operand—the field upon which the operator acts. 
 

A brief introduction to the first-order vector differential operators of 
gradient, curl, and divergence is given in Section 4.1. In addition, since these 
operators can be applied to tensors in general, some introductory rules of the 
gradient, divergence, and curl being applied to tensors are also discussed in this 
section. 
 

In Section 4.2, scalar differential operators are discussed in general terms, 
as are ordinary and partial differential equations, eigenvalues, and 
eigenfunctions. In pointing out that these topics are discussed in general terms, 
we mean that it is not the intent here to provide a comprehensive study of 
differential equations. There are many excellent texts that cover these topics quite 
adequately, such as references 1 through 6, to cite but a few. Besides providing a 
brief summary of differential equations and their corresponding eigenfunctions, 
Section 4.2 is intended to paint a picture of scalar differential operators in 
preparation for an understanding of the directional nature of vector differential 
operators in contrast with their scalar counterparts. 

 
The first-order* vector differential operator, known as the gradient, is 

covered in Section 4.3. Two other first-order vector differential operators, 

                                                 
* The term order is used in mathematics in differing ways. In Chapter 3 we used 

“order” to refer to the directional compoundedness of a tensor less one. (See 
Eq. 3.1-1). In this chapter, the “order” of differential operators and differential 
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namely the divergence and curl, are covered in Sections 4.4 and 4.5, respectively. 
Section 4.6 provides some introductory tensor rules for those uninitiated to 
tensors. These rules are tabulated to show the resulting tensor rank from the 
application of first-order vector differential operators on tensors of varying rank. 
Second-order differential vector operators include various combinations of the 
gradient, divergence, and curl, such as the Laplacian. These are covered in 
Section 4.7. In each case of these first- and second-order operators, the operators 
are described in physical terms and then are expanded in generalized orthogonal 
curvilinear coordinates (GOCCs) with explanations for their use. 
 

Some of the operations are also expanded in cylindrical coordinates for 
two principle reasons. One is that cylindrical coordinates are the simplest of all of 
the curvilinear orthogonal systems and yet still have properties that require 
coordinate derivatives of unit vectors to be taken into account. This important 
point is missed in the usual rush to Cartesian coordinates. 
 

The second and perhaps more important reason for expressing vector 
operations in cylindrical coordinates is in the photonics objective of this book. 
Photonics includes the vast and highly timely field of optical fibers, which are 
typically cylindrical in structure and therefore are most naturally analyzed in 
cylindrical coordinates. 

 
4.1 Introduction to Differential Operators 

AND SOME ADDITIONAL TENSOR RULES 
 
As physical sciences began to take a gargantuan leap forward in the mid-1800s, 
the corresponding mathematical developments took on extreme complexity, often 
involving ten, twenty, or more coupled, simultaneous, partial differential 
equations. In these early days before the introduction of the del (also called 
nabla) vector differential operators, the reduction of large systems of equations 
to formulate practical solutions to science and engineering questions eluded all 
but the most proficient scholars. However, with the subsequent development of 

                                                                                                                     
equations refers to the highest-order derivative in the operator or differential 
equation, where ∂ ∂n nqΦ  is the nth-order partial derivative of the function 

( , , )p q rΦ  with respect to q. The order of  2 ( )∂ ∂ ∂p qΦ , for example, would be 
two. Thus, if this derivative were to be part of a differential equation that 
contained no higher-order derivatives, the order of the differential equation 
would be ascribed two or second order. Likewise, if the differential 2 ( )∂ ∂ ∂p q  
were to be the highest-order differential used in a differential operator, the 
differential operator would be said to be a second-order differential operator or 
have an order of two. 
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vector calculus methods that are del-operator based, many of the mysteries of 
science and the tools of engineering could then be described, understood and 
applied by the average science or engineering student. These methods, concepts 
and theorems are reviewed in this and the next chapter. 
 

The glue that has made this somewhat magical transition possible stems, at 
least in part, from the three basic building block del operators denoted by the 
inverted, uppercase Greek delta with the truncated name del. The first of these, 
denoted by “ ∇ ” which directly operates* on its operand, is named the gradient. 
The next two are the del-dot operator, denoted by “ ∇ ⋅ ” and named the 
divergence, and the del-cross operator, denoted by “ ∇× ” and named the curl. 
Finally, there are various combinations of these first-order operators resulting in 
higher-order vector differential operators. 
 

As mentioned earlier, another name given to the del operator is “nabla.” 
According to Knott,7 this term was used by Peter Guthrie Tait in personal 
correspondence with his colleague James Clerk Maxwell in 1870 and perhaps 
even before then by Robertson Smith who noticed that there was a resemblance 
of this inverted delta to the shape of an Assyrian harp used by the Hebrews called 
the nebel.** 
 

Before delving into the concepts of gradient, divergence, curl, and their 
many combinations, it is good for the student to garner an appreciation for the 
power of these operators to abridge complex mathematical formulations in 
describing physical phenomena. Further, before examining scalar and vector 
differential operators, it is beneficial to realize that differential operators can be 
tensor operators in general. That is, the operator itself can have properties of 
tensors of any rank. These generalized-rank tensor operators can in turn operate 
on tensors also having generalized rank. The rules of rank consistency described 
in Section 3.7 apply for differential operators also. For example, the direct vector 
del operator, which is the gradient, operating on a tensor of rank Rn  will yield a 

                                                
* The term directly operates or direct operator means that the operation is 

conducted without the dot- or cross-product type of a process. This is to be used 
synonymously with tensor product for those already familiar with tensors. The 
tensor product symbol ⊗  is used to denote a product between all combinations 
of the components of each tensor being multiplied resulting in a tensor having a 
rank equaling the sum of the ranks of the two tensors being multiplied. 

** Webster’s Third New International Dictionary defines nabla as “an ancient 
stringed instrument probably like a Hebrew harp of 10 or 12 strings – also called 
nebel.” It is triangular in shape and is held like a harp, thus of the shape of 
“∇ ”. 
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resultant tensor of Rn + 1 rank—the same as if a vector were directly multiplying 
the same Rn  rank tensor (without the dot- or cross-product operations). The del 
dot operator—the divergence—operating on a tensor of rank Rn  will yield a new 
tensor of rank 1Rn − . This is also analogous* to the dot product between a 
vector and a tensor of rank Rn , namely, adding the tensor ranks and subtracting 
two for the inner-product operation (dot product) becomes 1 2 1R Rn n+ − = − . 
 

The rule for the cross-product operation was mentioned in Section 3.8, 
namely, to subtract one for each cross product from the sum of the ranks of the 
two tensors. That is, tensor one of rank 

1Rn  crossed (once) with tensor two of 
rank 

2Rn  results in a new tensor of rank 
 1 2

1R Rn n+ − . Thus, 

 1 2  1 2
1 2 ( 1) 3

[ ] [ ] [ ]
R R R Rn n n nT T T

+ −
× = , where the presubscript refers to the rank and the 

postsubscript distinguishes among the three tensors involved. In particular, if 

1
1Rn = , 1 1

[ ]T  is a vector and the resultant tensor 

2 2 2
1 1 2 (1 1) 3 3

[ ] [ ] [ ] [ ]
R R Rn n nT T T T

+ −
× = =  has the same rank as 

2
2[ ]

Rn T . Further, if the 
tensor two is also a vector, i.e., 

 1 2

1R Rn n= = , then we have the cross product of 
two vectors yielding a vector resultant, as expected. That is, 

1 1 1 2 (1 1 1) 3 1 3[ ] [ ] [ ] [ ]T T T T+ −× = = , which in vector notation is 1 2 3T T T× =  or 
A B C× = . 

 
The same rule applies to the curl operator. The curl is a vector operator 

with an exterior-product-type operation, namely ∇× . If the curl operates on 
tensor two 

2
2[ ]

Rn T , the result is a new tensor 
2

(1 1) 4[ ]
Rn T+ −  having the same rank as 

2
2[ ]

Rn T . That is, 
2 2

2 4[ ] [ ]
R Rn nT T∇× = . Thus, if the curl acts on a vector, then 

2
1Rn = , and 1 2 1 4 ,T T∇× =  or 2 4T T∇× = , or A B∇× = , resulting in another 

vector as expected.* 
 

Although we will cover the gradient of a vector, which yields a dyadic (in 
Section 4.3.2), and the divergence of a dyadic, which yields a vector [in Section 
4.7.4(a)], we will not delve more deeply into tensorial operations in this chapter. 
These are developed here because of their importance to subjects like 
electromagnetics, fiber optics, and materials science (which are often taken in the 
junior or senior years) and because they serve as practical examples of the 

                                                 
* Although the rules of tensor rank consistency apply to the del-dot and del-cross 

vector operators as they do to the vector dot- and cross-product operations, it is 
incorrect to apply this reasoning to the operations themselves. As we will see in 
Sections 4.4 and 4.5, the divergence and curl operations are more involved than 
just accounting for variations in components of the field upon which it operates, 
that is, the operand field. Another example of this distinction is in Eq. (4.7-14) 
and the discussion that follows that equation. 
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necessity and power of tensor calculus. Instead, we take the position that, except 
where such operations help in the understanding of the concepts at this level, the 
main body of this book merely introduces the rules of tensor calculus.8,9 
 
4.2 Scalar Differential Operators, Differential Equations, and   

Eigenvalues 
 
Differential operators can be scalar or vector in their nature. For example, a 
scalar operator L  operating on a scalar field 1 2 3( , , , )f q q q t  would be expressed 
as fL . Here 1 2 3, ,q q q  are generalized orthogonal coordinates in 3D space and 
t  is time, which is mathematically orthogonal to the spatial coordinates. The 
homogeneous form of the differential equation utilizing this differential operator 
is 

 

 0+ =f fL λ  (4.2-1) 

 
where λ  represents the eigenvalue. Although the eigenvalue is not a function of 
the independent variables 1 2 3, , ,q q q t , it should not be considered a constant, 
necessarily. It is a function of the physical parameters and boundary and initial 
conditions that determine the form of the operator L  and constraints on the 
values of f . For this reason λ  is often referred to as the eigenfunction. 
Frequently, a great deal can be learned about the solution function 

1 2 3( , , , )f q q q t  by a detailed study of the eigenfunction. For example, if Eq.  
(4.2-1) is a wave equation, λ  describes the dispersion relation, which portrays 
how various components of a signal travel at different velocities and usually 
degrade the received signal from that which was transmitted. More will be said 
about this later in this section. First, let us examine some simple scalar operators 
and their corresponding eigenparameters. 

 
Suppose the scalar function ( )f x  is a function of a single independent 

variable x , and suppose L  takes the form 
 

 = d

dx
L  (4.2-2) 

 
Here L  is a first derivative and is therefore referred to as a first-order scalar 
differential operator. The differential equation (4.2-1) is then  
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 0+ =df
f

dx
λ  (4.2-3) 

 

Of course, the solution to Eq. (4.2-3) is of the form 

 

 −= axf e  (4.2-4) 

 
where a is not a function of x. The eigenvalue is determined by first 
differentiating Eq. (4.2-4) and then substituting this into Eq. (4.2-3) yielding 

0af fλ− + = . Since f  cannot be zero for all x  (otherwise it would be of no 
use), we may cancel it out, leaving 0a λ− + = , or 

 

 = aλ  (4.2-5) 

 
Notice that since a is not a function of x, neither is λ . In fact λ  represents a 
damping factor, which is a physical factor of the given problem. Notice also that 
the above case of a first-order scalar differential operator L  operating on the 
scalar function ( )f x  yielded a scalar solution of the form axe− . 

 

Next, let us consider a second-order scalar differential operator 
 

 
2

2
= d

dx
L  (4.2-6) 

 
Then the differential equation (4.2-1) becomes 
 

 
2

2
0+ =d f

f
dx

λ  (4.2-7) 

 
Second-order differential equations have two solutions (third-order have three 
solutions, fourth-order have four solutions, etc.). The solutions to Eq. (4.2-7) take 
the form  
 

 1
iaxf e=  (4.2-8a) 

and  

 2   iaxf e−=  (4.2-8b) 
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4.2: Scalar Differential Operators, Differential Equations, and Eigenvalues       4-7 

The eigenvalues 1λ  and 2λ  are determined by twice differentiating 1f  or 2f  
and solving for 1λ  and 2λ , respectively. Since the second derivatives of Eqs. 
(4.2-8a–b) are 2

1 1"f a f= −  and 2
2 2"f a f= − , respectively, 1λ  and 2λ  take the 

same value, namely 

 

 2
1 2 aλ λ= =  (4.2-9)  

 
In such cases λ  is said to have a second-order degeneracy. Notice again that 
since a is not a function of x, neither are the eigenvalues. In fact, since the 
solution Eqs. [4.2-8(a–b)] are sinusoidal, λ  represents a periodicity factor, 
which is a physical factor of the given problem usually associated with the 
boundary conditions. Notice also that the above case is that of a second-order 
scalar differential operator L  operating on the scalar function ( )f x  yielding 
scalar solutions iaxe± . 
 

In many cases, such as in fiber optics, where the fiber core radius varies 
slightly (either in the manufacturing process or by bending), small perturbations 
in the solution take place resulting in the slight splitting of the otherwise 
degenerate eigenvalues. This splitting is referred to as birefringence. There are 
many uses for birefringence in optics and fiber optics including measurements of 
the order of tens or hundreds of angstroms using interferometer setups where the 
beat lengths between birefringent signals of the order of millimeters or 
centimeters can readily be measured. The detailed treatment of second-order 
degeneracy and birefringence is left for texts in fiber optic communications and 
nonlinear optics.10,11 
 

In the case of our scalar operator L  operating on a vector field 

1 2 3( , , , )F q q q t , our result is, of course, a vector field. This is obvious when one 

expands 1 1 2 2 3 3ˆ ˆ ˆF u F u F u F= + + , where 1û , 2û , and 3û  are orthogonal unit 

vectors.  Then 1 1 2 2 3 3ˆ ˆ ˆF u F u F u FL L L L= + + , which is of course vectorial in 

form. Although tempting, the student is cautioned not to assume that the unit 

vectors are necessarily constants under the differential operator L . In other 

words, since 

 

 ˆ ˆ ˆi i i i i iu F u F F uL L L= +  (4.2-10) 
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4-8                                                   Chapter 4: Vector Calculus Differential Forms        

it is not necessarily correct to assume that ˆ
iuL  is zero. Even though the 

magnitude of ˆiu  is a constant, namely unity, its direction may not be. In spherical 
coordinates, for example, if L θ= ∂ ∂ , then ˆ ˆru uL θ= , which is clearly not 
equal to zero, and therefore in this case ˆ ˆi i i iu F u FL L≠ . Although ˆ 0iuL =  in 
Cartesian coordinates and the longitudinal component of any of the cylindrical 
coordinate systems, it is not so in general, and both terms of Eq. (4.2-10) must be 
used. 
 
4.3   The Gradient Differential Operator 
 
The gradient operator is one of three commonly used first-order vector 
differential operators. As was pointed out in Section 4.1, its resultant is a tensor 
of rank one greater than the quantity upon which it operates. Section 4.3.1 
provides a physical description of the gradient of a scalar field, derives the 
gradient from the physical definition,12 and then expands the gradient into 
GOCCs. Since the gradient adds one to the rank of the field upon which it 
operates, the gradient of a scalar field is a vector field. 
 

Likewise, if the gradient operates on a vector field (with a rank of one), the 
resultant is a tensor of rank two, that is, the resultant is a quantity having a dual 
directional compoundedness—a dyadic. (See Section 3.7 for rank consistency in 
equations). One direction is inherent in the vector form of the operator and the 
other in the vector upon which the operation is being performed. This dual 
directional compoundedness applies at every point r  in 3D space and at all 
times t. This dyadic is also presented in GOCCs. Section 4.3.2 thus covers the 
gradient of a vector field. 
 
4.3.1  The gradient of a scalar field—a physical description 
 
Every truck driver knows what it means to enter a grade on the road. The grade 
can be positive or negative, that is, an uphill grade is considered positive because 
potential energy increases and a downhill grade is considered negative because 
the potential energy of the truck decreases. In either case, the driver gears down. 
In the case of a positive grade, more revolutions of the engine are needed in order 
to increase the torque on the drive wheels and thus to overcome the increased 
gravitational force of going uphill—the steeper the hill, the greater is the force 
and lower is the needed gear. In the case of a negative grade, the driver is even 
more concerned because the decreasing potential energy is being converted into 
kinetic energy, which will dangerously increase the speed if action is not taken to 
absorb that energy. Therefore, the trucker gears down to engage compression 
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braking. In fact, considerable engineering design has gone into designing the 
compression braking methods to absorb the added energy and prevent it from 
being converted to its dangerous kinetic form.  
 

Quantitatively, in the definition of the gradient vector differential operator, 
the direction of the gradient is defined as that of maximal increase of the field 
upon which it operates. In the above example the field upon which the gradient 
operates is the scalar gravitational potential energy field. The civil engineer who 
designs a road to go over a mountain range is, of course, confined to the terrain 
surface. Although the direction of maximal increase of this potential energy field 
is straight up, under the constraint of being confined to the terrain surface, the 
direction of maximal increase is along the steepest slope of the terrain. The 
engineer knows that vehicles can handle a limited grade. For trucks, that limit is 
about 6% grade, which means that for every 100 feet of horizontal run the rise is 
6 feet or the vertical angle 1tan 0.06 3.4θ −= ≈ ° . If the natural slope has places 
exceeding that limit, the engineer lays out the road at an angle from the direction 
of steepest ascent thereby limiting the grade of the road to this design limit. The 
above example is that of a gradient of the gravitational potential energy scalar 
field on the surface of the earth. Other examples of scalar fields would include 
temperature, electric potential or voltage, and pressure, to name but a few. 
Inherent in any of these scalar fields is a gradient. The resultant is a vector field. 
 

Let us next acquire a physical understanding of this vector field that we 
call the gradient of a scalar field from the definition given in Bevc,11 which was 
cited as “memorable” by the editor of American Journal of Physics, Romer:13 
 

The gradient of a scalar field is a vector field oriented in the 
direction in which the scalar field increases most rapidly. Its 
magnitude is the derivative of the scalar field in the direction of its 
maximal increase. 

 
Suppose 1 2 3( , , , )V q q q t  is a scalar field. Then the gradient vector G  of V is 

by this definition determined by 
 

 max 0
max

ˆ = lim
V

G Grad V u
∆

∆
∆→

=
� �

 (4.3-1) 

 
where 0 maxlim ( )V∆ ∆ ∆→� � is the maximum rate of increase of V at 1 2 3( , , )P q q q  
and at time t, and where maxû  is the direction of maximal increase. Shorthand 
notation for the gradient is given by the use of the del operator as 
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A unit normal may be constructed
normal to the equalvalue surface

Equivalue surfaces

ˆ
n

u

 G V= ∇  (4.3-2) 
 

First we postulate that the direction of maximal increase is normal to the 
local surface of constant value of V containing P. This postulation is 
demonstrated in Part (a) below. Next let us construct equivalue surfaces of 

1 2 3( , , , )V q q q t , using the techniques of Section 2.7, and then construct a unit 
vector normal to that surface at point P as shown in Fig. 4.3-1. The gradient G  at 
point 1 2 3( , , )P q q q  and time t of the scalar field 1 2 3( , , , )V q q q t  may be written as  
 
 ˆn nG u G=  (4.3-3) 

 
where max

0
lim ( )nG V
∆

∆ ∆= →�
� and ˆnu  is the unit normal at 1 2 3( , , )P q q q . 

 
4.3.1(a)  Why the unit normal is the direction of maximal increase 
 
In order to ascertain why the unit normal is the direction of the maximal increase, 
let us first construct three surfaces each with equal but adjacent values of the 
scalar field, as shown in Figure 4.3-2. Let the values of the three equivalue 
surfaces be 1 2 3and,  ,   V V V V= , respectively, such that  
 
                                                 1 2 3V V V< <                                               (4.3-4) 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4.3-1  Three equivalue surfaces of the scalar field 1 2 3( , , , )V q q q t with 

a unit normal constructed at a point P on one of the surfaces. 

P 
.
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1V 2V 3V

1
ûA

B

C

θ

Equivalue surfaces

ˆ
nu

As in Fig. 4.3-1, let us again construct the unit normal vector ˆnu , but this 
time specifically normal to the equivalue surface 1V V=  at the point A  on 1V  as 
shown in Fig. 4.3-2. Let us construct another unit vector 1̂u  also from the point 
A  but not normal to the equivalue surface. Let θ  be the angle between 1̂u  and 
ˆnu . Let ˆnu  intersect the adjacent surface 2V V=  at point B  and let 1̂u  intersect 

the same surface 2V V=  at point C . 
 

Now let us examine the ratio V∆ ∆�  in Eq. (4.3-1) before taking the limit. 
The value of the numerator V∆  from point A  on equivalue surface 1V V=  to 
point B  on equivalue surface 2V V=  is  
 
 AB B AV V V∆ = −  (4.3-5) 
 
The value of V∆  from point A  to point C  is  
 
 AC C AV V V∆ = −  (4.3-6) 
 
Since  and C BV V are on the same equivalue surface 2V , they are equal. Thus, 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 4.3-2  Equivalue surfaces of 1 2,  ,V V V=  and 3V  with two unit 

vectors constructed from a point A  on equivalue surface 1V V= , where 
ˆnu  is normal to 1V  and 1̂u  is not. 
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12 2 1 0AB ACV V V V V V∆ = ∆ = ∆ = ∆ = − >                        (4.3-7) 

 
which is positive because of the condition (4.3-4). 
 

Next, let us look at the denominator ∆� . Since 
 

cosAB AC∆ ∆ θ=� �        (4.3-8) 
 
and since 0θ ≠ , AB AC∆ ∆<� �  and 
 

 

 to B  to CA A

V V∆ ∆>
∆ ∆� �

                                         (4.3-9)  
 

   
Further, the minimum of 1 to 2∆�  occurs at 0θ = , thus 

n
V∆ ∆�  is maximal and in 

passing to the limit, we have 

 
0

max

lim
l

n

V dV

d∆ →

∆ =
∆� �

 (4.3-10) 

 
Thus, the direction of maximal increase is the direction of the unit 
normal to the surface of equivalue of 1 2 3( , , , )V q q q t . 

 
4.3.1(b)  Expansion of the gradient of a scalar field in GOCCs 
 
Before taking the limit in Eq. (4.3-1), we note that 
 

 
max

for small  n

V
G

∆ ∆
∆

≈ �
�

 (4.3-11) 

 
Multiplying both sides of Eq. (4.3-11) by ∆� , we have n nV G∆ ≈ ∆� . After 
taking the limit, we have ( )dV V d= ∂ ∂� � , where the total differential 

ˆn
n

d d u= ⋅� � . Thus, we may write dV  as 
 

 dV d G= ⋅� . (4.3-12) 
 
Expanding 1 1 2 2 3 3

ˆ ˆ ˆd u d u d u d= + +� � � � , where i i id h dq=� , 
 

 1 1 1 2 2 2 3 3 3ˆ ˆ ˆd u h dq u h dq u h dq= + +�  (4.3-13) 
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and 

 1 1 2 2 3 3ˆ ˆ ˆG u G u G u G= + +  (4.3-14) 

 
Combining Eqs. (4.3-12), (4.3-13), and (4.3-14) we have 
 
 1 1 1 2 2 2 3 3 3+ +dV G h dq G h dq G h dq=  (4.3-15) 

 
Since 1 2 3( , , )V V q q q= , a mathematical representation of dV  in terms of 

partial differentials is 
 

 1 2 3
1 2 3

V V V V
dV d dq dq dq

q q q

∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂

�
�

 (4.3-16) 

 
Equating coefficients of idq , we have 

 
1

i
i i

V
G

h q

∂=
∂

 (4.3-17) 

 
for each i = 1, 2, 3. Thus, all three components of the gradient Gi may be found 
from this expression, and therefore 
 

 1 2 3
1 1 2 2 3 3

1 1 1
ˆ ˆ ˆ

V V V
G u u u V

h q h q h q

∂ ∂ ∂= + + ≡ ∇
∂ ∂ ∂

 (4.3-18) 

 
is the expansion of the gradient of a scalar function 1 2 3( , , )V V q q q=  in 
generalized orthogonal curvilinear coordinates. 
 

Whereas equating the coefficients of idq  in Eqs. (4.3-15) and (4.3-16) in 
arriving at Eq. (4.3-17) does not demonstrate uniqueness, Bevc does so with 
elegance in his memorable paper.12 
 
4.3.1(c)  The directional derivative nature of the gradient of a scalar field 
 
Another insight into the physical description of the gradient of a scalar field is 
given in the concept of the directional derivative. Thomas and Finney [Ref. 4, pp 
869ff] and Stewart [Ref. 5, pp 756ff] provide mathematical developments of this 
concept. Although these references develop the directional derivative in 
rectangular coordinates, we will summarize this in GOCCs. The approach is to 
find the rate of change of the scalar field (function) 1 2 3( , , , )V q q q t  at a point 

1 2 3( , , )P q q q  in space in the three orthogonal directions 1 2 3
ˆ ˆ ˆ,  and ,u u u  and obtain 
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the gradient by vectorially adding these three components. Once iV∂ ∂  is 
determined in each orthogonal direction ˆiu  and after expressing the differential 
lengths in terms of the metric coefficients ih  and coordinates iq∂ , we have 

i i ih q∂ = ∂  and 
 

 
3

1

1
ˆi

i i i

VV u
h q=

∂
∇ =

∂∑  (4.3-19) 

 
which, of course, is the same as Eq. (4.3-18). By summing the orthogonal 
derivatives, we have a rate of change of 1 2 3( , , , )V q q q t  in the direction of 
maximal increase. 
 
4.3.2  The gradient of a vector field 
 
Since the gradient operator does not involve dot- or cross-product operation types 
(as does the divergence and curl) and since the gradient is itself a vector operator, 
the gradient of a vector field is a dyadic field. That is, the direct product of two 
tensors, each with rank one, results in a tensor whose rank is the sum of the ranks 
of the tensors, in this case, two. This is also true for the case of a vector direct-
product operator operating on a vector field, i.e., BA  and A∇  are both dyadics. 
 
4.3.2(a)  The gradient of a vector field in GOCCs 
 
Let us determine the gradient of the vector field 1 1 2 2 3 3ˆ ˆ ˆA u A u A u A= + + . At first 
glance, the uninitiated might try applying the gradient to each of the scalar 
components of the vector field A , and then carry the unit vectors into the vector 
components of the gradient operator, thus forming nine unit dyads with their 
appropriate scalar coefficients. However, let us not forget the lesson learned in 
Eq. (4.2-10), namely that the spatial derivatives of the unit vectors are not zero 
whenever the direction varies with change in that particular coordinate direction. 
Therefore, applying Eqs. (4.2-10) and (4.3-16) to each of the vector components 
of A , including the unit vectors, we have 
 

 

3 3

1

3 3 3 3

1 1 1 1

ˆ
ˆ( )

ˆ ˆ ˆ ˆ
    

i
j j

i j i i i

i j j i j j

i j i ji i i i

uA u A
h q

u u A u A u
h q h q

= =

= = = =

∂
∇ =

∂

∂ ∂
= +

∂ ∂

∑∑

∑∑ ∑∑
 (4.3-20) 
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which is clearly a dyadic. In general, Eq. (4.3-20) contains 18 terms—nine for 
each of the double summations above. Notice that the second set of nine terms 
contains all combinations of the three coordinate partial derivatives of each of the 
three unit vectors. Whereas these nine coordinate derivatives of unit vectors can 
be expanded with the use of Eqs. (1.3-19) and (1.3-20), we will not do so here 
because it unnecessarily complicates the efficient form of our dyadic gradient of 
a vector. Instead, we find it much less cumbersome to perform this expansion 
once a particular coordinate system is assigned. In either case, the unit vector 
derivatives on the right may be carried out and the terms collected into 
components of the resulting nine dyads ˆˆ ˆ ˆor i j i ju u u , where 1,2,3 and 1, 2,3i j= = . 
 
4.3.2(b)  The gradient of a vector field in cylindrical coordinates 
 
In cylindrical coordinates, for example, seven of the nine unit vector derivatives 
are zero. First, ˆzu  does not change direction and all three partial derivatives of ˆzu  
are therefore zero. Secondly, ˆru  and ûφ  do not change direction with changes in r 
and z, thus derivatives with respect to r and z of ˆru  and ûφ  are also zero. The 
only nonzero derivatives are φ∂ ∂ of ˆru and ûφ . Thus from Eq. (1.3-21) 
 

 
ˆ

ˆru
uφφ

∂
=

∂
 (4.3-21) 

 
which was derived in Eq.(1.3-22). Further, from Eq. (1.3-20) we have 
 

 

ˆ

ˆ
ˆ

ˆ ˆ

1

r

r r

r

u

u
u

hu u r
h r r

φ

φ

φ

φ

φ

∂

∂

∂
= −

∂

∂ ∂
= − = −

∂ ∂
 (4.3-22) 

 
Equations (4.3-21) and (4.3-22) are compatible with Ramo, Whinnery, and Van 
Duzer, (p. 819), for example.14 Therefore, substituting the subscripts , ,r zφ  for 

1 2 3
, ,q q q  and 1 2 31, ,1 for , ,r h h h  in Eq. (4.3-20), we have the expansion of the 

gradient of the vector field A  in cylindrical coordinates using Eqs. (4.3-18a and 
b): 
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 ( )ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

          

ˆ ˆ ˆˆ ˆ ˆ          

  

  

cyl rr r rz

r

zr z zz

r z

r zr z

r z

AA A
r r r

u u uAA A
r r r

AA A
z z z

A u u u

A A

u u u

φ

φ

φ

φ

φ φφ φ φ

φ

φ φ φ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∇ = + + +

 + − + + + 
 

+ + +

 (4.3-23) 

 
which is a dyadic (with its nine unit dyads and their respective scalar 
coefficients). Notice that two of the nine components, namely the fourth and 
fifth, each contain two terms stemming from Eqs. (4.3-20) through (4.3-22). The 
remaining seven do not. 
 
4.4 The Divergence Differential Operator 
 
In the introductory paragraph of this chapter, it was stated that vector differential 
operators can yield scalar, vector, or tensor fields depending on their formulative 
properties and depending upon the rank of the operand field. In the previous 
section, we determined that the result of a gradient operation added one to the 
rank of operand—the gradient of a scalar is a vector, the gradient of a vector is a 
dyadic, etc. In this section, we review another first-order vector differential 
operator called the divergence operator. The divergence operator is also known 
as the del-dot operator, because it is denoted by the del differential operator 
followed by dot-product symbol, namely, “ ∇ ⋅”. This operator is entirely 
different from the gradient operator, even though there are some similarities. 
They are alike in that both are of first order, both are vectorial in nature, and both 
use the inverted Greek capital letter delta in their notation. However, they have 
entirely different properties. In fact, their differences far exceed their similarities. 
Their inherent definitions are based on entirely different geometries—the 
gradient on a differential length tends to zero in the limit and the divergence on a 
differential volume tends to zero in the limit, as we will soon see. 
 

Whereas the divergence operator is not properly formed by simply taking 
the dot product of the operator with the field that follows, the rules for change in 
tensor rank do indeed act like the dot product between a vector and the field that 
follows. That is, the dot (or inner) product, subtracts two from the sum of the 
ranks. Thus, since the divergence is a vector operator, it has the character of a 
rank-one tensor. When it operates on a tensor of rank Rn , the result is a new 
tensor of rank 1 2 1R Rn n+ − = −  consistent with the rules of Section 3.7. 
Therefore, the lowest rank tensor that the divergence can operate upon is a 
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v   volume within closed surface∆

closed surface
da

vector. From these rules, the divergence of a vector is a scalar and the divergence 
of a dyadic is a vector, etc. 
 
4.4.1  The divergence of a vector field—a physical description 
 
Let us next acquire a physical understanding of this scalar field that results from 
the divergence of a vector field from its definition: 
 

The divergence of a vector field at a point in space is the ratio of the 
net outward flux through an infinitesimal closed surface 
surrounding the point to the volume enclosed by that surface. 

 
In mathematical terms, the divergence of the vector field A  is 
 

 
v 0

 lim  
v

A da
Div A A

∆ →
≡ = ∇

∆

⋅ ⋅∫�
 (4.4-1) 

 
The numerator represents the net outward flux of A  through the closed surface 
and v∆  is the volume enclosed by the closed surface. This is graphically 
depicted in Fig. 4.4-1. 
 

Before attempting to convey a physical understanding of the concept of 
divergence, we need to first garner the concept of the flux of a vector field. Every 
vector field can be thought of as a field of fluxes. The total flux passing through a 
surface S  is determinable by taking the dot product of the vector field at every 
differential element of area on S  with the vector differential surface area da  and 
integrating over S . Thus, the flux AΨ  of the vector field A  through the surface 
S  is 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.4-1  The geometry associated with the definition of divergence. 
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 A

S

A daΨ = ⋅∫  (4.4-2) 

 
It is worthwhile to note that since da  is everywhere perpendicular to S , any 
portion of the surface S  that is parallel with the field A  makes no contribution 
to the flux because of the dot product. 
 

Further, whenever the surface S  is a completely closed surface, the 
integral represents the total outward flux given by 
 

 
 outA A daΨ = ⋅∫�  (4.4-3) 

 
Therefore the numerator of Eq. (4.4-1) represents the total outward flux. 
 
4.4.1(a)  Vector-field flux tubes and sources 
 
Vector fields exist because of a source. For example, a gravitational force field 
exists because of the presence of mass. A static electric field exists because of the 
presence of charge. A fluid flow field exists because an external drive, such as a 
pump, a fan, or a turbine causes fluid (either gas or liquid) to move. A static 
magnetic field exists because of the presence of a steady current or because of the 
presence of a magnetized object. In every case, the vector field is the effect of 
some external source, and in every case, the field exists beyond the boundaries of 
the source. That is, these vector fields are present at points in space for which 
there are no sources as long as at least one source at another position in space 
exists to cause the field in the first place. The shape of the field depends on the 
placement and distribution of the sources, the properties of the medium hosting 
the field, and the boundary constraints or boundary conditions. 
  

 
Figure 4.4-2  Graphical representation of a generalized vector field flux tube with 
nine field direction lines defining the side of the tube and three field direction lines 

shown in the interior of the flux tube. 

  

A
B
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Consider a given vector field F . Applying the techniques of Section 2.6, 
vector field direction lines (also called flow lines) can be graphed. Consider 
collecting an imaginary bundle of these flow lines into a tube whose sides are 
everywhere parallel to the flow lines truncated at ends by two surfaces A and B 
that intersect the bundle of flow lines not necessarily at right angles to them. 
Such a tube can be thought of as a field of flux flow lines or a flux tube. Figure 
4.4-2 provides a pictorial representation of a vector field flux tube. 
 

Flux tubes have the characteristic that no flux penetrates the sides of the 
tube. Consider a volume to be made up of a section of a flux tube as shown. 
Therefore, the only flux entering or leaving the volume are through the cross-
sectional end caps of the flux tube. If the same amount of flux enters the volume 
through end-cap A  that leaves through end-cap B , then by the definition above, 
the divergence is said to be zero even though the field direction lines may be 
physically diverging or converging. It is possible for the divergence of a given 
vector field F  not to be zero, that is, more flux enters through end cap A than 
leaves through end cap B, or vice versa. This can happen only if there is a 
distribution of sources in the volume of the tube, as we will observe. 
 
4.4.1(b)  Examples of zero and nonzero divergence 
 
In order to provide an understanding of divergence from its definition above, we 
will postulate some simple vector fields and derive the divergence from their 
corresponding flux tubes without the use of a coordinate system. Of these 
examples, some will have zero and some nonzero divergence despite whether the 
flux lines physically diverge. In Part (c), we will discuss the significance of the 
nonzero divergence on the distribution of sources within the volume of the closed 
surface. 
 
Example (1a):  
 
Given a vector field that is of constant magnitude everywhere but directed 
outward from a point P  in space, 
 
 ˆRA ku=  (4.4-4) 
 
where k is a constant and ˆ

ru  is a unit vector directed away from P . Next let us 
construct a flux tube that consists of a conical section of arbitrary cross-sectional 
shape and of end caps at 1R R= and 2R R= , where R  is measured from P , as 
shown in Fig. 4.4-3 and where 1R and 2R are constants with 1 2R R< . 
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The end caps are surfaces of spheres having radii 1R and 2R . The areas of 
the two surfaces at 1R and 2R  are 2

1 1S RΩ=  and 2

2 2S RΩ= , respectively, where 
Ω  is the solid angle subtended by the generalized cone (expressed in units of 
steradians). Since the field is uniform throughout from Eq. (4.4-4), the flux 
entering the 1R R=  surface is 2

1 1k RΨ Ω=  and the flux leaving the 2R R=  
surface is 2

2 2k RΨ Ω= . Since no flux penetrates the conical surface on the sides, 
the total outward flux is 2 2

2 1( )k R RΩ − . 
 

The volume of the closed surface is 3 3

2 1
1
3 ( )R RΩ − . Before passing to the 

limit in Eq. (4.4-1), we can examine the ratio of the outward flux to the volume, 
specifically 
 

 
2 2 2 2
2 1 2 1
3 3 3 31

3 2 1 2 1

( ) 3 ( )

( ) ( )

k R R k R R

R R R R

Ω
Ω

− −=
− −

. (4.4-5) 

 
In anticipation of passing to the limit as 0v →∆ , we need to let 2R  approach 1R . 
This can be accomplished by letting 2 1R R R∆= +  and solving Eq. (4.4-5) as 

0R∆ → . Normally in the limit as 0v →∆  we would have to simultaneously let 
both 0R∆ →  as well as 0Ω → . But since Ω  dropped out of our ratio, it is not 
necessary to impose the limit 0Ω → .  
 
 

 
Figure 4.4-3  Closed-surface flux tube for Eqs. (4.4-4), (4.4-7) and (4.4-9). 

R1 
R2 

0 
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Let us expand the numerator and denominator of Eq. (4.4-5) in a Taylor 
series. The numerator becomes 2 2 2

2 1 12 ( )R R R R R∆ ∆− = +○  and the denominator 
becomes 3 3 2 2

2 1 13 ( )R R R R R∆ ∆− = +○ , where 2( )R∆○  refers to a term of the 
order of 2( )R∆ . In passing to the limit as 0R∆ → , the terms 

2( )R∆○  are 
negligible with respect to the terms that vary as R∆ . The ratio, then, is the 
divergence of Eq. (4.4-4), namely 
 

 
2kA
R

∇⋅ =  (4.4-6) 

 
which was determined for Example (1a) from the definition without the use of a 
coordinate system. 
 
Example (1b):  
 
Next, let us consider another vector field 
 

 ˆRA kRu=  (4.4-7) 

 
The flux tube for this field is also represented by Fig. 4.4-3. However, the field in 
this case grows in magnitude uniformly with R . The areas of the two surfaces at 

1R and 2R  are unchanged, being 
2

1 1S RΩ=  and 
2

2 2S RΩ= ; however, the flux 
entering the 1R R=  surface is 1 1 ˆ( ) RA R S u⋅ , and therefore 

2 3

1 1 1 1kR R k RΨ Ω Ω= = . Likewise, the flux leaving the 2R R=  surface is 
3

2 2k RΨ Ω= , and the total outward flux is 
3 3

2 1( )k R RΩ − . The volume is the 
same as in the previous example giving us the resultant divergence of Eq. (4.4-5) 
as 
 

 
3 3
2 1
3 3
2 1

1
3

( )
3

( )

k R RA k
R R

Ω
Ω

−
∇ = =

−
⋅  (4.4-8) 

 
In this case, the ratio became a constant without actually having to pass to the 
limit of infinitesimal R∆ . 
 
Example (1c):  
 
Let us generalize the prior two examples by letting the vector fields be 
 

 ˆp
RA kR u=  (4.4-9) 
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where p is any general power. Note that 0 and 1p =  for Examples (1a) and 
(1b), respectively. Again, we will find the divergence from the definition. 
 

Again, the flux tube for this field is represented by Fig. 4.4-3. However, the 
field in this case changes in magnitude uniformly with pR . The areas of the two 
surfaces at 1R and 2R  are again unchanged and the flux entering at 1R  and 
leaving at 2R  are 

2

1,2 1,2

pk RΨ Ω += , respectively. The total outward flux is 
2 2

2 1( )p pk R RΩ + +− . The volume is unchanged from the previous two examples. 
 

As in the first example, we let 2 1R R R∆= +  and expand 2R  in a Taylor 
series. R∆  then takes the form 3 3 1 2

2 1 1( 2) ( )pR R p R R R∆ ∆+− = + +○ . As before, 
the volume expanded in a Taylor series is 3 3 2 2

2 1 13 ( )R R R R R∆ ∆− = +○ , yielding 
the resultant divergence of Eq. (4.4-9) as 0R∆ →  as 
 

 1( 2) pA k p R −∇ = +⋅  (4.4-10) 

 
Notice that Eq. (4.4-10) reduces to 2k R  for 0p = , consistent with Eq. (4.4-6) 
and to 3k  for 1p = , consistent with Eq. (4.4-8). 
 

More importantly, however, is the case of 2p = − . Here the vector field is 
 

 
2

ˆr
kA u
R

=  (4.4-11) 

From Eq. (4.4-10), the divergence is therefore 
 

 0A∇ =⋅  (4.4-12) 
 
This result is also evident when one realizes that the surface increases as 2R , 
whereas the field drops off as 2R− . Therefore, the flux entering the end cap 1S  is 
equal to the flux leaving the end cap 2S  and therefore the numerator is always 
zero. There are many examples of vector fields that behave as Eq. (4.4-11). The 
gravitational field in the space external to a mass falls off as 2R− , where R  is 
the distance from the center of gravity of the mass. The electric flux density 
external to a charge falls off as 2R− , where R  is the distance from the charge. 
Each of these fields has a zero divergence even though the field direction lines 
appear to be diverging. 
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Example (2a):  
 
In examples (1a), (1b), and (1c), vector fields were mathematically created to be 
physically diverging from a point, whereas the divergence was positive, negative, 
or even zero. Therefore, whether a field has a divergence is not necessarily 
related to whether it in fact diverges (or converges) physically. To further 
illustrate this lack of connection between appearance of the field lines and the 
existence of a divergence value, we will create two additional examples of fields 
that have parallel field lines, that is, direction field lines that are not converging 
or diverging. One of these will have a nonzero divergence, the other will have a 
zero value. 
 

Suppose ˆ= xA xu . For our closed surface, let us create a cube in the region 
1 , , 2x y z≤ ≤ . The field flow lines of A  are parallel to four of the six surfaces, 
namely the two that are parallel to the x-y plane and the two that are parallel to 
the x-z plane. The total outward flux is calculated as the flux leaving the surface 
at 2x =  less the flux entering at 1x = , which is 2 1 1− = . Therefore, 1A∇ ⋅ = , 
even though the flux lines are not diverging physically. 
 
Example (2b):  
 
Again, let us pick a field where all flux lines are not physically diverging. 
Suppose ˆxA yu=  and, again, let us reconstruct the same cube. The flux lines are 
parallel to the same four sides and penetrate the same two sides as before. In this 
case, however, the flux entering at 1x =  is 1

21  and the flux leaving at 2x =  is 
also 1

21 . Thus, total outward flux is 1 1
2 21 1 0− = , and 0A∇ ⋅ = . 

 
In these last two examples, neither field was physically diverging or 

converging, yet one was zero and one nonzero. Therefore, whether there is an 
appearance of divergence or convergence in the field flow lines is uncorrelated 
with whether the divergence of the field is zero. 

 
4.4.1(c)  Significance of a nonzero divergence 
 
In the prior examples we found no relationship between the physical appearance 
of vector flux lines diverging and the value of the divergence of vector the field. 
So, we ask the following: 
 

On what does the divergence depend? 
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The answer is sources. That is, if the divergence is nonzero in any region in 
space, there must be a distribution of sources in that region. In particular, the 
divergence is equal to the volume density of the source. For example, in any 
region where there is a distribution of mass, such as in the interior of the Earth, 
there is a mass density throughout the volume of that region. Thus, at every point 
in the interior of the earth there is a mass density in kg/m3. This mass density is 
the source of the divergence, and is, in fact, equal to the divergence. 
 

In the case of electric flux density D , its source is electric charge density 
ρ  in coulombs per meter cubed (C/m3). From the definition of divergence, Eq. 
(4.4-1), the divergence is the limit of the ratio of the net outward flux through an 
infinitesimal closed surface to the volume enclosed by that surface as the volume 
goes to zero. The total charge enclosed within the infinitesimal closed surface is 
the volume integral  
 

 
v

vtotalQ dρ
∆

= ∫  (4.4-13) 

 
4.4.2  The divergence in GOCCs 
 
The expansion of the divergence of a vector field 1 1 2 2 3 3

ˆ ˆ ˆA u A u A u A= + +  in 
generalized orthogonal curvilinear coordinates is accomplished by carefully 
adding the net outward flux through the six orthogonal differential surfaces that 
bound an infinitesimal volume. The sides lie on surfaces of constant value of 
each of the coordinates in three pairs each separated by differential amounts. The 
three pairs are front-back, right-left, and top-bottom. This volume is pictorially 
represented in Figure 4.4-4. 
 

The total outward flux of A  is accomplished by summing the following six 
integrals 
 

  

  

                        

                        

front backA

right left

top bottom

A daΨ = = +

+ +

+ +

⋅∫ ∫ ∫
∫ ∫
∫ ∫

v
 (4.4-14) 
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1 1 2 2 3 3
ˆ ˆ ˆA u A u A u A= + +

1 2 3 1 2 3
v= h h q q qd h d d d

2 2 2
= � h qd d

3 3 3
= � h qd d

1 2 3
( ), ,q q qP

1 1 1
= � h qd d

1 1 1
| +q dqA

1 1
|qA

2
q

1
q

3
q

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.4-4  Volume element used in A∇ ⋅  derivation in GOCCs. 
 

In performing these integrations it is necessary to account for variations in 
surface elements as well as the vector components when one changes a 
coordinate. We will first examine the first pair. The front integral is over an 
elemental surface at 

1 1
q q+ ∆  having an area of 2 3∆ ∆� �  and in the 1û  direction. 

Therefore, the vector representation for the differential area at the front element 
is 1da . Here the subscript denotes the vectorial direction of the elemental 
surface, 

1 1
1 1 2 3

ˆ .
q q

uda
+∆

= ∆ ∆� �  Similarly, the flux through the front surface is  
 

 
�

 

1

1
1 1 1 1

1 1 1 1 1 2 3ˆ ˆ
q q q qfront

A front

da

Au u da AΨ
+∆ +∆

= = ∆ ∆⋅∫ � �  (4.4-15) 

 
To complete the first pair, we note that the back integral is over an elemental 
surface located at 

1
q , except that the outward direction is 1̂u− . Thus, we label the 

vector differential area as 1da − . With these changes, the procedure for finding the 
outward flux through the back surface is otherwise the same, yielding 
 

 
 

1

1 1 1
1 1 1 1 1 2 3ˆ ˆ( )

q qback
A back

da

Au u da AΨ
−

= − = ∆ ∆⋅∫
�����

� �  (4.4-16) 

 
The net of the flux front and back is 
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 1

1 1 1
1 2 3 1 2 3q q qfront back

A A AΨ
+∆+

= ∆ ∆ − ∆ ∆� � � �  (4.4-17) 

 
Variations in the surface element 2 3∆ ∆� �  as well as variations in the vector 
component 1A  from 

1
q  to 

1 1
q q+ ∆  must both be taken into account with respect 

to the differential lengths 1∆� , 2∆� , and 3∆� . This is expected for the 
component but the variations in the surface elements may be overlooked by the 
less mathematically discerning. Length variations are related to coordinate 
variations by i i ih q∆ = ∆�  from Eq. (2.6-5), where the metric coefficients in 
general are functions of the coordinates, i.e., 1 2 3( , , )i ih h q q q= . 
 

Before passing to the limit, we note that the differential volume is given by 
Eqs. (1.2-6) and (2.6-5) 
 
 1 2 3 1 2 3v= h h q q qh ∆ ∆ ∆∆ . (4.4-18) 

 
Therefore, 
 

1 1 1
2 3 2 3 1 2 3 2 3 1

0
1 2 3 1 2 3

1
lim

v

q q q

front back
v

h h q q A h h q q A

h h h q q q∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆
+∆

→

−
 + = ∫ ∫  

 (4.4-19) 
 

As stated before, it is necessary to account for variations in surface 
elements, such as 2 3 2 3h h q q∆ ∆ , as well as the vector components, which in this 
case is 1A , as we vary from 

1
q  to 

1 1
q q+ ∆ . Since there is no variation in 

coordinates 2q  and 3q  with respect to 
1

q , because they are orthogonal, the 
necessity to account for variations in surface elements leaves only variations in 
the metric coefficients, 2h  and 3h , which are, in general, functions of 
coordinates, as pointed out above. Therefore, the 2 3q q∆ ∆  factors in Eq. (4.4-18) 
cancel in the numerator and denominator, leaving variations in the component 
and metric coefficients to be considered. Thus, Eq. (4.4-18) becomes 

 

 11 1

1

2 3 1 2 3 1

0 0
1 2 3 1

1 1
lim lim

v

q q q

front back
v q

h h A h h A

h h h q∆ ∆∆ ∆
+∆

→ →

−
 + = ∫ ∫  (4.4-20) 

 
Noting that the right-hand factor is precisely the definition of the partial 
derivative, we have 
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 2 3 1

0
1 2 3 1

1 1 ( )
lim

v front back
v

h h A

h h h q∆ ∆→

∂ + =  ∂∫ ∫  (4.4-21) 

for one of the three scalar terms making up the divergence of the vector field A . 
 

The same process may be repeated for the other two pairs of integrals; 
however, this tedious procedure is not necessary because we may simply roll the 
subscripts* to obtain the remaining two terms of the divergence. The roll 
sequence is 1 Æ 2 Æ 3 Æ 1 Æ 2. Therefore, the divergence of our vector field 
A  is 
 

 

2 3 1 3 1 2 1 2 3

1 2 3 1 2 3

3
1 2 3

i=11 2 3

( ) ( ) ( )1

1
       i

i i

h h A h h A h h A
A

h h h q q q

h h h
A

h h h q h

 ∂ ∂ ∂∇ ⋅ = + + ∂ ∂ ∂ 

 ∂=  ∂  
∑

 (4.4-22) 

 
This equation is specialized for Cartesian coordinates in Appendix B, Eq. (B.1-3) 
and for cylindrical coordinates in Eq. (B.3-9). 
 
4.5   The Curl Differential Operator 
 
The curl operator is the third of the three first-order vector differential operators 
introduced in Section 4.1. Whereas the gradient employed the del operator ( ∇ ) 
directly and the divergence employed the del-dot operator ( ∇ ⋅ ), the curl employs 
the del-cross operator, denoted by “ ∇ × ”. In the previous section, we found that 
divergence of a vector could not in general be found by simply taking the dot 
product of the del operator with the vector because it was necessary to account 
for variations in surface elements as well as the vector components. Here we will 
find a similar admonition. The curl of a vector field is not simply the cross 
product of the del operator with the vector for a similar reason. Although one can 
validly get by with this misleading approach when expanding the curl in 

                                                
*  One of the paramount advantages of using generalized coordinates (GOCCs) 

is the ability to roll subscripts. When expanding vector operators into GOCCs 
in 3D space, it is necessary to do so for one third of the problem. The 
remaining two-thirds may be deduced by simply rolling the subscripts. This 
procedure is invalid in all specific (nongeneralized) coordinate systems except 
Cartesian coordinates. In Cartesian coordinates, it is permissible because all 
three metric coefficients, , ,

x y z
h h h , are unity and thus do not have variations 

with respect to coordinate directions. In this special case, the roll sequence is 
x y z x y→ → → → . 
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Cartesian coordinates, it is invalid to do so in any other coordinate system. Many 
texts that first introduce the student to vector differential operators immediately 
fall into this oversimplistic approach of expanding these operators in rectangular 
coordinates, no doubt because to immediately expand into GOCCs exposes the 
student to an inordinate complexity of calculative rules before providing a 
perception of the nature of the operator. In the case of the curl, Bevc states this 
with his usual insight and precision:12 
 

To be sure, such rules are useful in actual calculations but they 
hardly provide any physical insight into the nature of the curl and 
moreover depend on coordinate systems. 

 
In this section we find that the curl does not change the rank of the field 

upon which it operates. This is in contrast to the previous two operators in that 
the result of a gradient operation added one to the rank and the divergence 
subtracted one from the rank of field that was operated upon. Therefore, if the 
three operators act on a vector field, the divergence will yield a scalar, the curl 
will yield a vector, and the gradient will yield a dyadic. 
 

Like the gradient and the divergence, the curl is a first-order vector 
operator using the del notation; however, the similarities end there. The curl 
operator is entirely different from the two just previously reviewed. The inherent 
definitions are based on three entirely different geometries—the gradient on a 
differential length going to zero in the limit, the curl on a differential area going 
to zero in the limit (as we will soon see), and the divergence on a differential 
volume going to zero in the limit. In addition, the curl operates transversely, 
whereas the divergence operates tangentially and the gradient operates omni-
versely, so-to-speak. By this, we do not mean that the resultant is transverse, 
tangential, etc.—just the operand acts in these ways. 
 
4.5.1  The curl of a vector field—a physical description 
 
Let us next acquire a physical understanding of this vector field that we call the 
curl of a vector field from the definition (outside of the context of coordinates). 
Again, the definition of this vector operation is given by Bevc12 (with emphasis 
added): 
 

The curl of a vector field A  at a point is a vector pointing in the 
direction of a normal to an infinitesimal surface which is so oriented 
in space that the limit of the ratio of the line integral of the vector 
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field A  around the perimeter of that surface to the area enclosed is 
maximal. The magnitude of the curl is the value of that limit. 

 
Mathematically, the curl vector C  of the vector field A  is by this definition 
determined by 
 

 
0

max

ˆ lim n
a

A d
C curl A u

a∆ →
= ≡

∆

⋅∫ �
�  (4.5-1) 

 

where  

( )
max0

lim circ( )
a

A a
∆ →

∆  

 
is the maximum of the ratio of the circulation of ( , )A r t , defined by Eq. 
(2.4-22), about the point P  located at r  in space and at time t to the enclosed 
area, and where ˆnu  is the normal to that surface at P  in the right-hand sense with 
respect to the direction of the closed-line integration. Shorthand notation for the 
curl is given by the use of the del-cross operator as 
 

 C A= ∇×  (4.5-2) 
 

Since there are a triply infinite number of closed paths about a point—an 
 infinite number of paths about each of the three orthogonal axes passing through 
the point P —it may seem that finding the maximal ratio would be a formidable 
task. However, a perfectly straightforward procedure is taken to resolve this 
difficulty. 
 

First, a component of the curl in an arbitrary direction, say 1û , is found 
from the above definition. That is, an arbitrarily selected infinitesimal surface, 

1a∆ , is chosen with 1û  as its normal. This surface is planar and is bounded by an 
infinitesimal closed path d� , whose direction is taken in the right-hand sense 
(that is, with the thumb of the right hand in the direction of 1û , the fingers give 
the direction of the closed path). It is chosen such that the plane of the path 
contains the point P  at which the curl of A  is desired. In performing the limit, 
namely ( )

0
lim circ( )
a

A a
∆ →

∆ , the vector component of the curl of A  in the 1û  
direction is determined: 
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Figure 4.5-1  The geometry associated with the definition of curl. 
 

 

 1

1
11 0

1

ˆ lim a

a

A d
curl A u

a
∆

∆ ∆→
=

⋅∫ �
�

 (4.5-3) 

 
A second direction, say 2û , is taken orthogonal to the first but otherwise 

arbitrary, and the procedure is repeated to obtain the second component. Finally, 
a third component is taken orthogonal to the first two by the right-hand rule (and, 
thus, is uniquely determined). We assign its direction as 3û , and repeat the 
procedure again. Summing the three orthogonal components, the resulting vector 
is the desired maximal ratio and is the curl of A : 
 

 

3

i 1

3

0
1

A

ˆ        lim i

i

i

a
i

a
i i

A curl

A d
u

a
∆

∆ ∆

=

→=

∇× =

=
⋅

∑

∫
∑

�
�

 (4.5-4) 

 
Note that this expression was determined from the definition without the 

need for any coordinate system. 
 
4.5.2  The curl as a vorticity vector 
 
In order to give further physical interpretation of the curl operator we need to 
garner a physical understanding of the circulation integral, Eq. (4.5-1) — an 
intimate part of the definition of the curl. As first presented in Eq. (2.4-22), the 
circulation of the vector field A  is 
 

 ( )circ A A d= ⋅∫ �
�

 (4.5-5) 

 is  to surfaceˆ ⊥nu

infinitesimal surface

 is a differential element of length
on a closed path surrounding the surface
�d
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From [Morse & Feshbach, pp 18ff]15 this integral is a measure of the tendency of 
the field’s flow lines to “curl up.” In cases such as magnetic fields or fluid flow 
fields where the field direction lines either close on themselves or circulate as in 
a helix, the circulation of the field, ( )circ A , will not be zero. As defined in the 
discussion following Eq. (2.4-22), such fields are referred to as rotational, 
solenoidal, or nonconservative. Other terms expressing this circulatory nature of 
some fields are paddle-wheeling4,5 (Thomas & Finney, p. 992 and Schwarz, p. 
154ff), swirl2 (O’Neil, p. 972), and vorticity16 (Rogers, p. 275).  Each of these 
terms conjures up the image of circulating or twirling fields. 
 

The paddle-wheel concept is perhaps the easiest to understand for the 
student’s initial exposure to curl. Suppose that a small paddle wheel consisting of 
symmetrical, uniform, planar fins on an axial shaft is placed in a fluid that is 
flowing. If the flow lines are uniform, that is, having constant direction and 
strength, the paddle wheel will not rotate no matter what the direction of its axis 
is. However, if there is a variation in the flow field, either in magnitude or 
direction or both, there will be orientations of the axis in which the paddle wheel 
will rotate. The rotational speed of the paddle wheel is a measure of the 
magnitude of the vector component of the curl. The axis is the direction of the 
component, where the thumb of the right hand gives the orientation of the 
direction when the fingers are orientated in the direction of rotation. As the axis 
is adjusted for maximum rotation, the ultimate curl vector is empirically 
determined. This postulation may be tested by rotating the axis in each of two 
orthogonal directions and noting that the paddle wheel does not turn in either of 
these orientations. Thus, the component of the curl that exhibits maximum 
circulation where the other two orthogonal components are zero is the curl. 
 

Such a gedanken experiment (German for “thought experiment”) may be 
tested by the construction of a curl meter, which consists of a small paddle wheel 
metered to display its angular velocity. As with most such instruments, the 
presence of the probe may affect the field that it measures; however, the 
instrument can often be oriented to minimize such errors. 
 

The curl operator is a measure of the circulation density or vorticity of a 
vector field15—that is, the circulation per unit cross-sectional area—which is 
precisely given in the definition of the curl, Eq. (4.5-1). As Morse & Feshbach 
point out, the limiting process of Eq. (4.5-1) “is more complicated than that used 
to define the divergence, for the results obtained depend on the orientation of the 
element of area,” another way of pointing out the ultimate task of determining the 
maximal ratio specified by the definition. In their ensuing discussion Morse & 
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Feshbach elegantly demonstrate the validity of this task by simply determining 
the three orthogonal vector components of the curl, as was done in Section 4.5.1. 
 
4.5.3  The expansion of the curl in GOCCs 
 
The expansion of the curl of a vector field 1 1 2 2 3 3

ˆ ˆ ˆA u A u A u A= + +  in 
generalized orthogonal curvilinear coordinates is derived from the physical 
definition11 by carefully accounting for the circulation density about three 
orthogonal surfaces 1da , 2da , and 3da  in each orthogonal direction in the 
generalized system 1 2 3, ,q q q . The first of these surfaces, namely 1da , is depicted 
in Figure 4.5-2 in order to determine the first component of the curl, given by 
 

 
1

1 1 0
1

ˆ( ) lim
a

A d
A u

a∆ ∆→
∇ × =

⋅∫ �
�  (4.5-6) 

 
 The circulation of 1da  is carefully determined while accounting for 

variations in the differential lengths as well as vector components while changing 
coordinates. To accentuate these variations, we will again represent the 
differential lengths as i∆�  and, thus, the circulation integral around surface 

1da will involve the sum of four integrals—first from 1 to 2, then from 2 to 3, 
then 3 to 4, and finally from 4 back to 1. The integral from 1 to 2 is taken along 

2∆�  at 3q , while the integral from 3 to 4 is taken along 2∆− �  at 
3 3

q q∆+ . The 
integral from 2 to 3 is taken along 3∆�  at 

2 2
q q∆+ , and the integral from 4 to 1 is 

taken along 3∆− �  at 
2

q . 
 

The circulation integral in Eq. (4.5-6) is the sum of four integrals as 
described in the paragraph above. Therefore, the first component of the curl may 
be written as 

 
 

1

 2  3  4  1

 1  2  3  4
1 1 0

1

   
ˆ( ) lim

a
A u

a∆ ∆→

+ + +
∇ × = ∫ ∫ ∫ ∫  (4.5-7) 

 
 
 
Since the first and third integrals are taken along 2∆�  and 2−∆� at 3q  and 

3 3
q q+ ∆ , respectively, and the second and fourth integrals are taken along 3∆�  

and 3−∆�  at 
2 2

q q+ ∆  and 
2

q , respectively, we organize these into two separate 
limits as follows: 
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1 1 2 2 3 3
ˆ ˆ ˆA u A u A u A= + +

1 2 3
( ), ,q q qP

2
2 2 2

ˆ= u h qd d�

2
q

1
q

3
q

3
3 3 3

ˆ= u h qd d�
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ˆ
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Figure 4.5-2  Surface element use in the derivation of 

the first component of the curl 1( )A∇ ×  in GOCCs. 

 
 
 

 
1 1

 2  4  3  1

 1  3  2  4
1 1 10 0

1 1

  
ˆ ˆ( ) lim lim

a a
A u u

a a∆ ∆∆ ∆→ →

+ +
∇ × = +∫ ∫ ∫ ∫

 (4.5-8) 

 
where 1 2 3 2 3 2 3a h h q q∆ ∆ ∆ ∆ ∆= =� � . Since the first limit above is taken over 
variations in 3q  and the second limit above is taken over variations in 2

q , limits 
occur first in Eq. (4.5-8) as 3 0q∆ →  and then as 2 0q∆ → . Thus, component 
one of the curl is found by the following process: 
 

 

[ ] [ ]

[ ] [ ]
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ˆ ˆ ˆ ˆ( )
ˆ( ) lim

ˆ ˆ ˆ ˆ( )
ˆ              lim

q q q

q

q q q

q

A u u h q A u u h q
A u

h h q q

A u u h q A u u h q
u

h h q q

∆

∆

∆ ∆
∆ ∆

∆ ∆
∆ ∆

+∆

→

+∆

→

∫∫

+ −
∇ × =

∫ ∫

− +
+

⋅ ⋅

⋅ ⋅

����� �������

������� �����

 (4.5-9) 
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where the variations in lengths reduce to variations in metric coefficients. Since 
the coordinates are orthogonal, there are no variations in coordinates 2q  and 3q , 
and therefore these may be cancelled in the numerators and denominators. Thus, 
we have 
 

[ ] [ ] [ ] [ ]
3 3 3 2 2 2

3 2

2 2 2 2 3 3 3 3    1
1 0 0

2 3 3 2

ˆ
( ) lim limq q q q q q

q q

A h A h A h A huA
h h q qΔ ΔΔ Δ

+Δ +Δ

→ →

⎛ ⎞− − +
⎜ ⎟∇× = +
⎜ ⎟
⎝ ⎠

  

(4.5-10) 
 
which are readily recogonized as partial derivatives. Therefore, the first 
component of the curl of A  is 

 1 3 3 2 2
1

2 3 2 3

ˆ ( ) ( )( ) u A h A hA
h h q q

⎡ ⎤∂ ∂∇× = −⎢ ⎥∂ ∂⎣ ⎦
 (4.5-11) 

 
This is the component of the curl in the 1̂u  direction. The next two components 
are determined in the same manner; however, these may be written out simply by 
“rolling” the subscripts. Summing the components, we have 
 

 
3

11 2 3

1 ˆ ( ) ( )i i k k j j
i j k

A u h h A h A
h h h q q=

⎡ ⎤∂ ∂∇× = −⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦
∑  (4.5-12a) 

 
where 1 2,3,1j i  = + =  and 1 3,1, 2k j   = + = . Another convenient form (often 
preferred by students) for the curl of a vector is  
 

31 2

2 3 3 1 1 2

1 2 3

1 1 2 2 3 3

ˆˆ ˆ uu u
h h h h h h

A
q q q

h A h A h A

∂ ∂ ∂∇× =
∂ ∂ ∂

  (4.5-12b) 

 
which can be readily expanded to arrive at Eq. (4.5-12a) after expanding the 
summation. 
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4.5.4  The expansion of the curl in cylindrical coordinates 
 
Substituting , ,r zφ  for 1 2 3

, ,q q q  and 1 2 31, ,1 for , ,r h h h  in Eq. (4.5-12a) we have  
 

 
( )1 1

ˆ ˆ ˆz r z r
r zcyl

A rAA A A A
A u u u

r z z r r r
φ φ

φφ φ
∂ ∂   ∂ ∂ ∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

(4.5-13a) 

 
 
or alternatively in determinant form, we have 
 

ˆ ˆ
ˆr z

cyl

r z

u u
u

r r

A
r z

A rA A

φ

φ

φ
∂ ∂ ∂∇× =
∂ ∂ ∂

   (4.5-13b) 

 
4.6 Tensorial Resultants of First-Order Vector Differential  

Operators 
 
To summarize, let us tabulate the resultant quantities from the three first-order 
vector differential operators developed in the preceding three sections. We will 
first establish single-character symbols—D, C and G—to denote divergence, curl 
and gradient, respectively. This ordering is chosen in increasing order of resultant 
tensor rank. That is, the divergence, curl, and gradient change the rank of the 
operand—the quantity upon which they operate—by 1, 0, +1− , respectively. As 
stated in Section 4.1, a vector differential operator can yield scalar, vector, or 
tensor fields depending on its properties and depending upon the rank of the 
operand. Table 4-1 summarizes, encapsulates, and generalizes this statement for 
the divergence, curl, and gradient of scalars, vectors, dyadics and tensors in 
general. 
 

Since there can be no quantity with negative rank, the divergence cannot 
operate on a scalar. Also, by careful inspection of Eq. (4.5-12a), the curl cannot 
operate on a scalar either. These observations are consistent with the rules for the 
dot and cross products between vectors. One cannot take a dot or cross product of 
a vector with a scalar. For the same reason, one cannot take the divergence or 
  
 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4-36                                                 Chapter 4: Vector Calculus Differential Forms  

Table 4-1  Resultant tensor rank from three first-order vector differential 
operators. 

 

 
Key:  x nonexistent⇒  d  ( 2)

R
diadic n⇒ =   D=divergence 

 s  ( 0)
R

scalar n⇒ =   t  ( 3)
R

triadic n⇒ =   C=curl 
 v  ( 1)

R
vector n⇒ =   tensor of rank 

RRn nT ⇒   G=gradient 
 
curl* of a scalar. Therefore, these two operations are noted as “nonexistent” in 
Table 4-1. 
 
Note that resultant quantities align diagonally in Table 4-1. For example, the 
operations Gs, Cv, and Dd result in vectors, which line up diagonally. Likewise, 
Gv, Cd, and Dt (the latter, D operating on a triadic, tensor of rank 3Rn = ) also 
line up diagonally, each having dyadic resultants. 
 
4.7 Second-Order Vector Differential Operators—Differential 

Operators of Differential Operators 
 
Thus far we have been dealing with the three classical first-order vector 
differential operators—divergence, curl, and gradient. In this section, we will 
cover some of the combinations of these. There are logically nine combinations 
of these three operators, although some may be nonexistent and some may be 
zero depending upon the quantity being operated on, which we call the operand. 
Again, in order to list and sort these nine combinations, let us use the same 
single-character symbols, namely D, C, and G, that we use in building the above 
table, to denote divergence, curl, and gradient, respectively. This ordering is 
                                                
* Although the curl of a scalar is considered nonexistent, if such an operation did exist in 
some sense—a pure abstraction—it would be a scalar, since the curl does not change the 
rank of the quantity upon which it operates. 

Diff. 
Vector 

Operator 

with a 
scalar ( 0)Rn =

operand s 

with a 
vector ( 1)Rn =

operand v 

with a 
dyadic

( 2)Rn =  
operand d 

with a tensor 
of rank Rn  

operand 

Rn T  

D x s ( 0)Rn =  v ( 1Rn = ) 1Rn T−  
 

C x v ( 1Rn = ) d ( 2Rn = ) 
Rn T  
 

G v ( 1Rn = ) d ( 2Rn = ) t ( 3)Rn =  1Rn T+  
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chosen because resultant tensor rank from these operators changes in upward 
steps, namely 1, 0, +1− , respectively, as previously pointed out. 
 

In Section 4.7.1 the various combinations of second-order vector 
differential operators and operands are tabulated in terms of their respective 
resultant forms. This exercise in tabulating the nature of the resultant forms from 
second-order operations before studying the details of these operations is 
intended to provide focus to the understanding of the operations and garner an 
appreciation for their significant features. 
 

The subsequent sections provide detailed explanations of six of the 
commonly used second-order combinations. In Section 4.7.2 two combinations 
that involve the curl become zero. These are shown to have considerable 
significance in formulating real-world solutions to abstract physical phenomena 
using the tools of vector calculus, such as Maxwell’s equations in 
electromagnetics and Schrödinger’s equations in quantum physics and nonlinear 
optics. Sections 4.7.3 and 4.7.4 cover combinations leading to the scalar and 
vector Laplacian operators and 4.7.5 and 4.7.6 round off our detailing of the 
commonly used second-order operators. 
 
4.7.1  Resultant forms from second-order vector differential 

operators—a tabular summary of tensorial resultants 
 
The nine combinations of second-order differential operations taken in D,C,G 
order would be DD, DC, DG, CD, CC, CG, GD, GC, and GG, each operating 
on scalars, vectors, dyadics, and general rank tensor operands. Because there are 
nine resultant quantities potentially for each of the four operands, we will create 
four tables. Each table lists “first operator” in columns and “second operator” in 
rows, where first and second refer to the steps that one takes in performing the 
differential operations. For example, “DGs,” which denotes the divergence of the 
gradient of a scalar, such as V∇ ⋅∇ , is performed by first executing the Gs 
operation. That is, the gradient of the scalar, for our example V∇ , is performed 
first (as it must, because the divergence could not be done first). Tables 4-2(a), 
(b), (c), and (d) list the nine resultant operations on scalars (s), vectors (v), 
dyadics (d), and general rank tensor 

Rn T  operands, respectively. Since there are 
nine combinations, we give the designation PQ to denote any one of the nine. 
 

The key at the end of the tables should be used in order to garner 
their full impact and to follow the explanations of the information. 
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In our example above DGs is be found on Table 4-2(a) (because the 
operand s is a scalar), in the third column (because the first operation Gs is the 
gradient G), and in the first row, (because the second operation is the divergence 
D). The resultant of DGs is a scalar listed as “s” on Table 4-2(a), G column, D 
row. Further, since DGs is a common operation (called the Laplacian of a 
scalar), a reference is given to Section 4.7.3 where DGs is covered. 
 

The principal features of each of these tables are described in the five 
paragraphs that follow. 
 
 In Table 4-2(a) six of the nine second-order operators are nonexistent since 
neither the divergence nor the curl can have scalar operands. Only the gradient 
can. Thus, DG, CG, and GG yield scalar, vector, and dyadic resultants, 
respectively. DGs is the scalar Laplacian and is discussed in Section 4.7.3 and 
CGs is one of the operations involving the curl that becomes identically zero as 
shown in Section 4.7.2. These section references are indicated in the table. GGs 
has a dyadic resultant; however, it is not generally used in upper-division 
engineering and physical science courses. Therefore, we give no further details in 
this guide. 
 

In Table 4-2(b) two of the nine combinations are nonexistent because the 
divergence of a vector is a scalar and a scalar cannot be an operand of divergence 
or curl. Four of the nine combinations have referrals to subsequent sections. DCv 
refers to Section 4.7.2, since it is another important second-order operator that 
becomes zero. In addition CGv is zero, which means that all nine components of 
the dyadic are zero.* DGv, which is the vector Laplacian, is referenced to 
Section 4.7.4. CCv and GDv are referenced to Sections 4.7.5, and 4.7.6, 
respectively. 
 

Table 4.2(c) provides the resultants for the nine second-order differential 
operators with dyadic operands. All nine resultants exist (or are zero) starting 
with a scalar in the upper left, two vectors on the next diagonal, then three 
dyadics on the next diagonal, followed by two triadics, and finally by one 
quadadic in the lower right. However, two of these—DCd and CGd—are zero, 
meaning that the three components of the vector resultant of DCd and the 27 
components of the triadic resultant of CGd are zero.* 

 

                                                 
* The fact that second-order differential operators DC and CG are zero for any operand 
regardless of rank is demonstrated (at an intermediate tensor calculus level) in Appendix 
C, Sections C.2-2 and C.2-3, respectively. 
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Table 4-2 Second-order vector differential operator resultant forms with four 
operands—scalars, vectors, dyadics and generalized tensors. 

 

(a) Scalar operand s 
( 0)Rn =  

First operation Q 
(2nd symbol) 

PQs 

D C G 

D x x s  
[4.7.3] 

C x x v=0* 
[4.7.2] 

S
ec

on
d 

op
er

at
io

n 
P

 
(1

st
 s

ym
bo

l)
 

G x x d 
( 2)

R
n =  

 

Key: 
   x nonexistent⇒   t  ( 3)

R
triadic n⇒ =  D=divergence 

   s  ( 0)
R

scalar n⇒ =  q ( 4)Rquadadic n⇒ =  C=curl 
   v  ( 1)

R
vector n⇒ =  

R
n tensor rank⇒  G=gradient 

   d  ( 2)
R

diadic n⇒ =       
R Rn T tensor of rank n⇒   P=D,C or G 

  * 0     
Rn T all tensor components are zero= ⇒   Q=D,C or G 

(b) Vector operand v 
( 1)Rn =  

First operation Q 
(2nd symbol) 

PQv 

D C G 

D x s=0* 
[4.7.2] 

v 
[4.7.4] 

C x v 
[4.7.5] 

d=0* 
( 2)

R
n =  

S
ec

on
d 

op
er

at
io

n 
P

 
(1

st
 s

ym
bo

l)
 

G v 
[4.7.6] 

d 
( 2)

R
n =  

t 
( 3)

R
n =  

(c) Dyadic operand d 
( 2)Rn =  

First operation Q 
(2nd symbol) 

PQd 

D C G 

D s v=0* d 
( 2)

R
n =  

C v d 
( 2)

R
n =  

t=0* 
( 3)

R
n =  

S
ec

on
d 

op
er

at
io

n 
P

 
(1

st
 s

ym
bo

l)
 

G d 
( 2)

R
n =  

t 
( 3)

R
n =  

q 
( 4)

R
n =  

(d) Tensor operand 
generalized rank: 2Rn ≥  

First operation Q 
(2nd symbol) 

PQ
R

n  

D C G 

D 2Rn T−  0*xT =
1

R
x n= −  Rn T  

C 1Rn T−  
Rn T  

0*xT =
1

R
x n= + * 

S
ec

on
d 

op
er

at
io

n 
P

 
(1

st
 s

ym
bo

l)
 

G 
Rn T  1Rn T+  2Rn T+  
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Table 4.2(d) generalizes the first three for all existent cases, including 
those that are zero. All nine second-order operators are assumed to operate on a 
tensor 

Rn T  (of rank Rn ) called the operand. The upper-left resultant is a tensor 

2Rn T−  (of rank 2Rn − ). The two resultants in the next diagonal are tensors 1Rn T−  
(of rank 1Rn − ), although all components of the divergence of the curl turn out to 
be zero.* The three resultants in the next diagonal are different tensors, but of the 
same rank as the operand, and are different from their operand, in general. On the 
next diagonal, the two resultant tensors 1Rn T+  are of rank 1Rn + ; however, again, 
one has components that are all zero,* namely the curl of the gradient. Finally, 
the gradient of the gradient (lower right corner) yields a resultant 2Rn T+  tensor (of 
rank 2Rn + ). 

 
Of the 36 combinations of three operators taken two at a time with four 

operands, eight are non-nonexistent, six are detailed in the subsequent section 
because of their importance to juniors and seniors, and the remaining cite only 
their respective resultants for further study. Of these 36 combinations, seven are 
identically zero, meaning that all tensor components of these seven are zero. 
These are denoted by the asterisks in Table 4-2. 
 
4.7.2  Two important second-order vector differential operators that 

vanish 
 
As stated above and referenced in Tables 4-2(a) and (b), CGs and DCv become 
zero. We will demonstrate these two identities and discuss the significance of 
their vanishing, which is more than the casual observer might expect. First,  
CGs = V∇ × ∇ . Combining Eqs. (4.5-12a) and (4.3-19), we have 
 

3

2 1
11 2 3 1 2 2 2 1 1

1 1 1
ˆi i i i

i i i i i i i

V V
V u h h h

h h h q h q q h q+ +
= + + + + + +

    ∂ ∂ ∂ ∂∇×∇ = −    ∂ ∂ ∂ ∂    
∑  

 
Notice that the metric coefficients 1ih +  and 2ih +  cancel. Also canceling are the 
resulting second derivatives, which from Eq. (1.3-11) are independent of the 
differentiation order, that is, 2 2

1 2 2 1( ) ( )i i i iq q q q+ + + +∂ ∂ ∂ = ∂ ∂ ∂ . Thus, the contents 
of the square brackets vanish and we have a vector identity  
 
 0V∇ ×∇ =  (4.7-1) 
 
Therefore, since CGs = 0 from Eq. (4.7-1), we show this result in Table 4-2(a), 
column G, row C as v=0, since the gradient of a scalar is a vector and in turn the 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4.7: Second-Order Vector Differential Operators                                              4-41 

curl of that vector is another vector. This means that all three components of v 
are identically zero. 
 
Significance: This says that anytime we have a conservative vector field—a field 
whose curl is zero—that field may be represented by the gradient of a scalar. For 
example, Maxwell’s curl equation for the electric field intensity is zero in 
electrostatics, meaning that the electric field intensity is conservative: 0E∇ × = . 
The implication of Eq. (4.7-1) is that the electric field intensity may be written as 
E V= −∇ . (The minus sign originates from the sign of the charge of the 
electron). In this example, V is the electric scalar potential (volts in SI units) and 
E  is the (vector) electric field intensity (volts per meter in SI units). 
 

Next let us explore DCv = A∇ ⋅∇× . The divergence of the curl of a vector 
field can be found by combining Eqs. (4.4-22) and (4.5-12a): 
 

  

3 3 2 2
2 3

1 2 3 2 3

1 1 3 3
3 1

1 2 3 2 3 1 3 1

2 2 1 1
1 2

3 1 2 1 2

1  ( ) ( )
  

1 1  ( ) ( )

1  ( ) ( )

A h A h
h h

q h h q q

A h A h
A h h

h h h q h h q q

A h A h
h h

q h h q q

   ∂ ∂ ∂ −   ∂ ∂ ∂    
 

  ∂ ∂ ∂  ∇ ⋅∇ × = + −   ∂ ∂ ∂    
   ∂ ∂ ∂ 
 + −   ∂ ∂ ∂    

 (4.7-2) 

 
Notice again that the metric coefficient combinations cancel and the resulting six 
second derivatives, which from the mixed derivative theorem Eq. (1.3-11) are 
independent of the differentiation order, also cancel. Thus, the contents of the 
large parentheses vanish and we have the vector identity 
 
 0A∇⋅∇× =  (4.7-3) 
 
Therefore, since DCv = 0 from Eq. (4.7-3), we display this result in Table 4-2(b), 
column C, row D as s = 0, since the curl of a vector is a vector, and the 
divergence of that vector is a scalar. 
 
Significance: This shows that anytime we have a vector field with a zero 
divergence, that vector field can be represented by the curl of another vector 
field. For example, Maxwell’s equation for the magnetic flux density is 0B∇ ⋅ =  
in electromagnetics, which says that there are no magnetic monopoles in physics. 
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Therefore, from Eq. (4.7-3), the magnetic flux density vector field B  may be 
written as B A= ∇ × . In this example, A  is the magnetic vector potential. 
 
4.7.3   The divergence of the gradient of a scalar field—the scalar 

Laplacian 
 
One of the more commonly used second-order vector differential operators is the 
divergence of the gradient of a scalar field ( V∇ ∇⋅ ). The result is a scalar, as one 
can see by first taking the gradient of the scalar field 1 2 3( , , )V q q q , which is a 
vector, and in turn taking the divergence of that vector yielding a scalar. 
 
4.7.3(a)  The scalar Laplacian in GOCCs 
 
Using Eq. (4.3-18), we determined the gradient of V  in GOCCs. Substituting this 
result for the vector A  in Eq. (4.4-22), one obtains 
 

2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h V h h V h h V
V

h h h q h q q h q q h q

     ∂ ∂ ∂ ∂ ∂ ∂∇ = + +      ∂ ∂ ∂ ∂ ∂ ∂      
∇⋅  (4.7-4) 

 
The detailed development of the above expression is left as an exercise for the 
student. There being only scalars and vectors involved, it should be a perfectly 
straightforward process for students at the junior or senior level. 
 
This second-order vector differential operation is used so frequently in physics 
and engineering that a special symbol is used to simplify the notation, like so: 
 

 2V V∇ ≡ ∇∇⋅  (4.7-5) 
 
Note that the shorthand notation for the divergence of the gradient operator 
DG = 2∇ ∇ = ∇⋅ , where 2∇  is called the del-squared operator. This operator was 
first introduced by Maxwell as Laplace’s operator. In modern parlance, we call it 
the Laplacian. We have already pointed out that the Laplacian of a scalar (DGs) 
is a scalar and noted it in Table 4.2(a), column G, row D. Moreover, since both 
the resultant and the operand are scalars, DGs = 2V∇  is also called the scalar 
Laplacian. 
 
It is noteworthy that the Laplacian does not change the rank of the operand in 
general. This is evident from column G, row D in Tables 4-2(b), (c), and (d), 
each of which has a resultant with the same rank as its operand. In Section 4.7.4 
we will deal with another extremely important and frequently used case, namely, 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4.7: Second-Order Vector Differential Operators                                              4-43 

the Laplacian of a vector. First, however, we will express Eq. (4.7-4) in 
cylindrical coordinates. 
 
4.7.3(b)  The scalar Laplacian in cylindrical coordinates 
 
Substituting , ,r zφ  for 1 2 3, ,q q q  and 1, ,1r  for 1 2 3, ,h h h  in Eq. (4.7-4) we have  
 

 
2 2

2
2 2 2

1 1
cyl

V V VV V r
r r r r zφ

∂ ∂ ∂ ∂⎛ ⎞∇ = ∇ ⋅ ∇ = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (4.7-6) 

 
which is the cylindrical coordinate expansion of the scalar Laplacian. 
 
4.7.4 The divergence of the gradient of a vector field—the vector 

Laplacian 
 
Perhaps equally as common as the scalar Laplacian, if not more so, is the vector 
Laplacian. This second-order vector differential operator is the divergence of the 
gradient of a vector field (DGv = A∇ ∇⋅ ). The result is a vector, as was noted 
earlier. There is, however, a crucial difference in its implementation compared 
with the scalar Laplacian. One can see by first taking the gradient of the vector 
field 1 2 3( , , )A q q q  that the resultant is a dyadic. The case of the gradient of a 
vector field was developed in Section 4.3.2 and resulted in the dyadic given by 
Eq. (4.3-20). However, we cannot simply substitute this into Eq. (4.4-22), since 
we are dealing here with the divergence of a dyadic and Eq. (4.4-22) already has 
had the inner-product operation on a vector built into it. The resulting scalar form 
of Eq. (4.4-22) has no provision for the insertion of the nine dyadic components.  
 

Therefore, in Part (a) of this section, we develop the divergence of a 
dyadic. The vector Laplacian is built upon this result, first in GOCCs [Part (b)], 
and, then, to illustrate the process of having to take the spatial derivatives of the 
unit vectors, expanded in cylindrical coordinates in Part (c). 
 
4.7.4(a)  The divergence of a dyadic in GOCCs 
 
Since the inner-product operation involved in the divergence of a vector was 
already implemented in the development of Eq. (4.4-22) resulting in a scalar, it is 
of little use to us in setting up the operator in a form that can be applied to tensors 
of higher rank. Let us first look at the nature of the divergence operator in such a 
form that it may be applied to any tensor operand: 
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 ( )
3

1 2
i=11 2 3

1
ˆ    i i i

i

h h u
h h h q + +

∂∇ ⋅ = ⋅
∂∑

 (4.7-7) 

 
where the blank spaces after the dots are left for insertion of the tensor 
components, including the unit tensors in each component. Notice the position of 
the unit vector ˆ

iu  and the position of the dot operator. Since the unit vector in 
general can vary with changes in coordinates, it would be improper to place the 
unit vector to the left of the derivative. This statement can be tested by treating 
the divergence of a vector operand and checking whether Eq. (4.7-7) reduces to 
Eq. (4.4-22). Let 1 1 2 2 3 3

ˆ ˆ ˆA u A u A u A= + +  and insert this into Eq. (4.7-7). One can 
readily show that this results in Eq. (4.4-22). However, if Eq. (4.7-7) were 
written in the form ( )1 2

ˆ ˆ
i i i i i i

u h h u A q+ +∂ ⋅ ∂∑  or ( )[ ]1 2
ˆ ˆ

i i i i i i
u h h u A q+ +⋅ ∂ ∂∑ , the 

derivative would have to be taken on the internal unit vector and the resultant 
scalar would not be Eq. (4.4-22). 
 

Next, to determine the divergence of a dyadic, consider the dyadic G  in 
generalized coordinates  
 

 
3 3

1 1

ˆ ˆi j i j
i j

G u u G
= =

=∑∑  (4.7-8) 

 
Notice the dual directional compoundedness of the unit dyads ˆ ˆ

i ju u  and the nine 
scalar components i jG . Substituting this into Eq. (4.7-7), we have 
 

�
13 3

1 2
i=1 11 2 3

1
ˆ ˆ ˆi i i i j i j

j i

G h h u u u G
h h h q + +

=

 ∂∇ ⋅ = ⋅ 
 ∂  

∑∑     

 
Since ˆ ˆ 1i iu u⋅ = , we have 

 

( )
3 3

1 2
i=1 11 2 3

1
ˆi i i j j

j i

G h h G u
h h h q + +

=

∂∇ ⋅ =
∂∑∑     

 
and separating the derivative of a product by [ ]1 2 3 1 2 3

ˆ ( , , ) ( , , )
i j

u q q q f q q q q∂ ∂ =  
ˆ ˆ( ) ( )

i j i j
u f q u q f∂ ∂ + ∂ ∂ , 
 

 
( ) ( )

3 3
1 2

1 2
1 11 2 3

ˆ1
ˆ i i i j j

j i i i j
i j i i

h h G u
G u h h G

h h h q q
+ +

+ +
= =

 ∂ ∂ 
 ∇ ⋅ = +  ∂ ∂   

∑∑   (4.7-9) 
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This, then, is the general form for the divergence of the dyadic G , which we will 
use in formulating the vector Laplacian. Equations (4.7-8) and (4.7-9) are 
specialized for the case of Cartesian coordinates in Appendix B, Eqs. (B.1-5) and 
(B.1-4). 
 
4.7.4(b)  The vector Laplacian in GOCCs 
 
Two features of the divergence of a dyadic must be considered. First, the inner-
product rules illustrated in Eqs. (3.4-7)–(3.4-10) are applicable when applying 
the divergence; however, care must be taken to account for variations in both 
magnitude as well as direction of coordinate variables. Since the gradient of our 
vector field 1 2 3( , , )A q q q  is given by the two double summations of Eq. (4.3-20), 
after some collection of common factors we have  
 

 
3 3

1 1

ˆˆ
ˆ j ji

j j
i ji i i

A uuA u A
h q q= =

⎡ ⎤∂ ∂⎛ ⎞
∇ = +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

∑ ∑  (4.7-10) 

 
Substituting Eq. (4.7-10) into Eq. (4.7-7), we have 
 

3 3

1 2
i=1 11 2 3

ˆ1 1
ˆ ˆ ˆ( ) j j

i i i i j j
ji i i i

A u
A h h u u u A

h h h q h q q+ +
=

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞∂ ⎪ ⎪∇ ⋅∇ = ⋅ +⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑   

 
and taking the inner product ˆ ˆ 1i iu u⋅ =  we have the vectorial resultant of the 
divergence of our dyadic gradient of the vector field 1 2 3( , , )A q q q : 
 

3 3
21 2

i=1 11 2 3

ˆ1
ˆ j ji i

j j
ji i i i

A uh hA u A A
h h h q h q q

+ +

=

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞∂ ⎪ ⎪∇ ⋅∇ = + ≡ ∇⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑   

 (4.7-11) 
 
This is an expression for the vector Laplacian in GOCCs. 
 

Because of the double summation above and the two terms of one of the 
summations, there are 18 terms that will need to be collected to determine the 
three vector components of the resultant. The second term inside of the 
parentheses represents the nine coordinate derivatives of unit vectors. Whereas 
these nine derivatives can be expanded with the use of Eqs. (1.3-19) and (1.3-20), 
we will not do so here because it unnecessarily complicates the analysis. Instead, 
we will illustrate how Eq. (4.7-11) is used in a specific coordinate system, 
namely cylindrical coordinates. 
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4.7.4(c)  The vector Laplacian in cylindrical coordinates 
 
As was pointed out in Section 4.3.2, there are nine unit vector derivatives. In 
cylindrical coordinates, seven of these nine are zero. The only nonzero 
derivatives are from Eq. (4.3-21) and Eq. (4.3-22), namely ˆ ˆ

r
u uφφ∂ ∂ =  and 

ˆˆ
r

uuφ φ = −∂ ∂ . Substituting , ,r zφ  for 
1 2 3
, ,q q q  and 1 2 31, ,1 for , ,r h h h  we have  

 

 ( ) ( ) ( )1 1
ˆ ˆ ˆ        r zcyl

ru u u
r r r zφφ

∂ ∂ ∂∇⋅ = ⋅ + ⋅ + ⋅
∂ ∂ ∂

 (4.7-12) 

 
The 1 2 31 ( ) 1h h h r=  factor in Eq. (4.7-7) appears in all three terms: 

however, the 1 2h h r=  factor in the argument of the third differential cancels 
since the coordinate r is orthogonal to z. We next rearrange Eq. (4.3-23), the 
dyadic gradient of the vector ( , , )A r zφ  in cylindrical coordinates, for insertion 
into Eq. (4.7-10) by carefully orienting the nine unit dyads as follows: 
 

 ( )
ˆ ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ       

ˆ ˆ ˆ ˆ            

r z

r

cyl r r z

r

z z

r z

r z

r z

AA A
r r r

AA A

AA A
z z z

A u u u u

u
u A u A u

r

u u u u

φ

φ

φ

φ

φ

φ

φ

φ

φ φ φ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

 ∇ = + + +  

  + − + + +    

 + + +  

 (4.7-13) 

 
Equation (4.7-13) is now ready for inclusion into Eq. (4.7-12). Notice that 

all we need to do is to insert the first, second and third terms of Eq. (4.7-13) into 
the first, second and third terms of Eq. (4.7-12), respectively, because the 
resulting unit vector dot products otherwise go to zero. This process results in 
 

( )
 

1
ˆ ˆ ˆ ˆ ˆ

1 1
ˆ ˆ ˆ ˆ ˆ      

ˆ ˆ ˆ ˆ ˆ      

r z

r

cyl r r r z

r

z z z

r z

r z

r z

AA A
r r r

AA A

AA A
z z z

A r u u u u u
r r

u u u A u A u
r r

u u u u u
z

φ

φ

φ φ φ

φ

φ

φ

φ

φ φ φφ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂   ∇ ⋅∇ = ⋅ + +  ∂   

 ∂   + ⋅ − + + +   ∂    

∂   + ⋅ + +  ∂   

  

 
Before rushing into replacing the ˆ ˆ

i iu u⋅  factors with unity, the student new 
to the tensor world should take note that in performing the ˆ ˆ 1i iu u⋅ =  process the 
rank is reduced by two. This means that the dot in the divergence operator has the 
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same effect in the determination of the rank of the resultant as it has in the dot-
product operation between any two tensors. In this case, we have a vector 
operator acting on a dyadic through a dot-product type of an operation, called the 
divergence, having the same effect of a vector dotted with a dyadic as far as the 
resultant rank is concerned. Before taking the unit vector dot products, one 
should realize that there were 27 unit triads ˆ ˆ ˆi j ku u u⋅ . Eighteen of these go to zero 
when i j≠  and the remaining nine are left as noted above. Now letting 
ˆ ˆ 1i iu u⋅ = , we have nine remaining terms, which after performing the appropriate 

unit vector derivatives, can be compiled into three components making up the 
resultant vector form of our vector Laplacian. 
 

Since the unit vectors are invariant to differentiation with respect to r and z, 
they may be taken out of the differential arguments of the first and third major 
terms of Eq. (4.7-12). This is also true of the ˆzu  component of the second major 
term. Therefore, our vector Laplacian takes the intermediate form 
 

( ) ( )
( ) 2

2

22 2

2 2 2

2 2

1 1 1ˆ ˆ ˆ

1 1ˆ ˆ ˆ      

ˆ ˆ ˆ      

r z

r

cyl r z

r

z

r z

r z

r z

AA A
r r r

AA A

AA A
z z z

A u r u r u r
r r r r r r

u A u A u
r r

u u u

φ

φ

φ

φ

φ

φ

φ

φ φ φφ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂ ∂ ∂⎛ ⎞∇ ⋅∇ = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ⎡ ⎤⎛ ⎞+ − + + +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

+ + +

  

 
where the φ  derivatives of ˆru  and ûφ  in the square brackets above need to be 
treated carefully. Substituting ˆ ˆ

ru uφφ∂ ∂ =  and ˆˆ
r

uuφ φ = −∂ ∂ , the φ  derivative 
becomes 
 

( )
( ) 22

2 2

ˆ ˆ

ˆ ˆ

ˆˆ
ˆ ˆ

r

r

r

r

r

r

u u

r

r r r

AA

A A AA A A

u A u A

uu
u A u A

φ

φ

φ

φ

φ

φ

φ

φ φ φ

φ φ

φ φ φ φ φ φ

φ

φ φ
−

∂∂
∂ ∂

∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ⎡ ⎤⎛ ⎞− + + =⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
∂∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  

 
Collecting vector components and applying Eq. (4.7-6) to the scalar 

Laplacian of the scalar component of the operand vector 1 1 2 2 3 3ˆ ˆ ˆA u u uA A A= + + , 
we obtain the vector Laplacian in cylindrical coordinates: 
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2 2 2 2
2 2 2 2

2 2
ˆ ˆ ˆr r

r r z zcyl

A AA A
A u A u A u A

r r r r
φ φ

φ φφ φ
∂   ∂∇ = ∇ − − + ∇ + − + ∇   ∂ ∂   

 

 (4.7-14) 
  
consistent with Ramo, Whinnery, and Van Duzer (inside the front cover),14 for 
example. Notice that this expansion is not simply the vector sum of the 
individually formed Laplacians of the scalar components of the vector A  in 
cylindrical coordinates. Since the usual approach in presenting the vector 
Laplacian to undergraduate students is to use Cartesian coordinates, where 

2 2 2 2ˆ ˆ ˆ
x x y y z z

A u A u A u A∇ = ∇ + ∇ + ∇ , the extra terms in the radial and azimuthal 
components of Eq. (4.7-14) that stem from the coordinate derivatives of the unit 
vectors would not at all be evident. This is a common mistake by students when 
the expansion is carried out in other than Cartesian coordinates. 
 
4.7.5  The curl of the curl of a vector field and the Lagrange identity 
 
There are two additional second-order vector differential operators, both of 
which have vector operands, that are commonly used in upper-division courses. 
These are the curl of the curl (CCv = A∇ ×∇ × ) and the gradient of the 
divergence (GDv = A∇∇ ⋅ ). CCv is discussed in this section, while GDv is 
discussed in the next. These two are important because of the Lagrange vector 
identity: 
 

 2 ( )A A A∇ = ∇ ∇ ⋅ − ∇ ×∇×  (4.7-15) 
 

The left-hand side of Eq. (4.7-15)—the vector Laplacian—is essential in 
the formulation of vector wave equations used in junior-level electromagnetics, 
quantum physics, and other similar courses. This identity is presented to the 
undergraduate student in lieu of having to deal with the dyadic gradient of a 
vector as well as the divergence of the resulting dyadic, which, as we saw from 
the previous section, were used in determining the vector Laplacian. Since none 
of the operations on the right side of Eq. (4.7-15) require any consideration of 
tensors of higher rank than unity, namely a scalar and three vector operands, the 
vector Laplacian can be determined without the need for dyadics by using this 
identity. 
 

The pedagogical problem with this approach, however, is that (4.7-15) 
cannot be proven, even in Cartesian coordinates (which would be quite 
adequate), without dealing with the dyadic operations discussed above. 
Therefore, we will develop the right side of Eq. (4.7-15) and show that it equals 
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Eq. (4.7-11). In this way, a rigorous proof of Eq. (4.7-15) is provided. Although 
mathematical identities may be proven in any coordinate system without loss of 
generality, we conduct this proof in GOCCs* since our objective here is 
primarily to develop first- and second-order expansions of our del operators for 
conversion to any other orthogonal system appropriate to the natural geometry of 
the problem. However, before expanding the curl of the curl needed for the last 
term of Eq. (4.7-15) we first provide a physical description. 
 
4.7.5(a)  A physical description of the curl of the curl 
 
In describing the curl operator (in Section 4.5.2) as a measure of the circulation 
density or vorticity of a vector field, we expand on that description in giving a 
physical description of the curl of the curl as follows: 
 

The curl of the curl of a vector field is the circulation density of the 
vorticity of that field, which can be thought of as the rotational 
spatial change of vorticity in the cross-product direction.  

 
What is meant by the “cross-product direction” is that its direction is 

generally at a large acute angle (nearly orthogonal, but not necessarily at right 
angles) to the vorticity, which in turn may either be in the direction of the 
original vector field or “nearly orthogonal” to both. 
 

Let us illustrate this concept by two simple hypothetical examples, both 
dealing with friction-free circulating liquids in an upright cylindrical tub. The 
first has a uniform circulating density field, that is, it has no variation in its 
circulation. Thus, it has a constant curl and therefore a zero curl curl. In the 
second example, the circulation density in the center is greater than on the 
outside, as if the liquid were draining from a hole in the center of the tub, 
forming a cyclonic-type of a vortex hole in the flow field. We will oversimplify 
the vector fields involved in this example to illustrate the point of a nonzero curl 
curl. 
 
Example 1: Vorticity in a uniform angular velocity field  
 
Suppose the velocity of the liquid is represented by the vector field 
 
 ˆv u arφ=  (4.7-16) 

                                                
* Sections 4.7.5(b) and 4.7.7 outline the process of this proof; however, the rigorous 
proof is left to Appendix C. 
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where a is a constant and r and φ  are the radial and azimuthal cylindrical 
coordinates, with the z-coordinate falling on the axis of the cylinder in the right-
hand sense. This says that the entire body of liquid rotates in unison (as if the 
liquid were stationary and the tub were rotating). The curl of v  is  
 

 
2

ˆ ˆ ˆ
( )1 1 ( ) 2z z zv u u u
rv ar a

r r r r
φ∇ ×

∂ ∂= = =
∂ ∂

 (4.7-17) 

 
which is a vector with constant direction ( ˆzu ) and magnitude (2a) everywhere in 
the region. That is, if a curl meter [described in the third paragraph of 
Section (4.5.2)] were placed in the rotating fluid with its axis parallel to the z 
axis, it will rotate counterclockwise with the same rotational velocity ω  at all 
positions in the region. The direction of the vector field ω  is, of course, that of 
the axis of the curl meter in the right-hand sense, namely, ˆzu . 
 

The vector ω  is called the vorticity vector and is defined as half of the curl 
of the velocity field: 
 
 1

2 ˆzv u aω ∇ ×= =  (4.7-18) 
 
which says that the vorticity is uniform everywhere in the region, as anticipated 
by our gedanken experiment of the previous paragraph. Next, we take the curl of 
ω  and find that it is zero because it has no variation. Thus, 
 
 0v∇ × ∇ × =  (4.7-19) 
 
which serves as our example of nonrotational vorticity, in other words, 
nonvarying vorticity. 
 
Example 2: Vorticity in a nonuniform angular velocity field 
 
Let us next express the velocity field for our rotating liquid by 
 
 ˆ 2v u aφ=  (4.7-20) 

 
Here the azimuthal velocity is the same no matter the radius. This means that 
angular velocity must vary as 1/r , i.e., at half of the radius, the angular velocity 
doubles in order for the linear velocity vφ  to remain constant. (This simplistic 
example ignores the centripetal behavior of the mass of the liquid as the radius 
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goes to zero, but is used to illustrate the basic nature of finite curl curl). The curl 
of Eq. (4.7-20) is 

 ˆ ˆ
( )1 2

z zv u u
rv a

r r r
φ∇ ×

∂
= =

∂
 (4.7-21) 

 
which is everywhere directed axially ( ˆ

zu ) but varies with radius hyperbolically, 
namely as 2a r . The vorticity, then, is ˆ

zu a rω = , which increases in 
magnitude toward the center. Taking the curl again, we have a description of the 
circulation density of the vortex field 
 

 
2

ˆ ˆ

2
2

v u u

a
ar

r rφ φ∇ × ∇ ×

 ∂  
 = − =
∂

 (4.7-22) 

 
which clearly is not zero. Thus, the curl of the vorticity is 2û a rφω∇ × = , which 
increases quadratically with decreasing radius, giving the semblance (but not the 
exact formulation) of a cyclonic-type of a vortex hole in the flow field. 
 
4.7.5(b)  The curl of the curl in GOCCs 
 
By applying Eq. (4.5-12a) twice we have 
 

 

( ) ( )

( ) ( )

( ) ( )

2 2 1 13
1

2 3 2 1 2 1 2

1 1 3 32

3 3 1 3 1

3 3 2 21
2

3 1 3 2 3 2 3

1
ˆ

                            

1
ˆ              

h A h Ah
A u

h h q h h q q

h A h Ah

q h h q q

h A h Ah
u

h h q h h q q

=
 ∂ ∂ ∂ ∇×∇ × −    ∂ ∂ ∂   

∂ ∂ ∂ − −    ∂ ∂ ∂   

 ∂ ∂ ∂ + −   ∂ ∂ ∂   

( ) ( )

( ) ( )

( )
 

2 2 1 13

1 1 2 1 2

1 1 3 32
3

1 2 1 3 1 3 1

3 3 21

2 2 3 2

  

1
ˆ                  

                          

 

                            

h A h Ah
u

h h q h h q q

h A hh

q h h q

h A h Ah

q h h q q

∂ ∂∂
+

∂ ∂ ∂

∂ ∂∂
∂ ∂



∂ ∂ ∂ − −    ∂ ∂ ∂   

   
−   

  

− −


( )2

3

A

q∂

 
 

 

 (4.7-23a) 
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or alternatively, by applying Eq. (4.5-12b) twice, the curl of the curl becomes 
 

( ) ( )

( ) ( )

1

2 3

1

1
3 3 2 2

2 3 2 3

2

3 1

2

2
1 1 3 3

3 1 3 1

ˆ
       

        

ˆ
       

                                                  

                                          

u

h h

A
q

h
h A h A

h h q q

u

h h

q

h
h A h A

h h q q

∂∇×∇ × =
∂

 ∂ ∂− ∂ ∂ 

∂
∂

 ∂ ∂− ∂ ∂ 

( ) ( )

3

1 2

3

3
2 2 1 1

1 2 1 2

ˆ
       

                   

u

h h

q

h
h A h A

h h q q

∂
∂

 ∂ ∂− ∂ ∂ 

 (4.7-23b) 

 
where the expansion of Eq. (4.7-23b) is readily shown to become Eq. (4.7-23a). 
Equation (4.7-23b) is consistent with Stratton [page 50].17 
 
4.7.6  The gradient of the divergence of a vector field 
 
Recall that the impetus for exploring the curl of the curl in the previous section 
(and the gradient of the divergence in this section) was in part due to the 
Lagrange identity, Eq. (4.7-15), 2 ( )A A A∇ = ∇ ∇ ⋅ − ∇ × ∇×  that is, (DGv = 
GDv-CCv). The left-hand side was developed in detail in Section 4.7.4. This 
required that one determine the gradient of a vector (Gv) and take the divergence 
of the resulting dyadic. The right-hand side of this identity provides the vector 
Laplacian entirely by the use of vector differential operators with only scalar and 
vector operands. 
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However, a usual approach (especially at the undergraduate level) is to use 
this identity without proof. Even if the proof is conducted in Cartesian 
coordinates, which would be quite adequate, the dyadic resultant from the Gv 
operation and the divergence of the resulting dyadic are still needed. In the past, 
the undergraduate has not been expected to deal with such matters. Thus, as a 
first step toward the proof and in the interest of completeness, in Section 4.7.5 we 
developed the second term on the right-hand side of this identity, CCv. Here we 
will explore the first term, GDv. 
 
4.7.6(a)  A physical description of the gradient of the divergence 
 
First, the divergence of a vector field is equal to the net outward flux from 
infinitesimal closed surfaces at every point in space where the divergence is 
desired. Since that value is the volume source distribution density at each said 
point,  
 

then the gradient of the divergence of a vector field is another vector 
field oriented in the direction in which the volume source 
distribution density increases most rapidly. Its magnitude is the 
derivative of that volume density distribution in the direction of its 
maximal increase.  

 
The existence of the gradient of the divergence is dependent upon the existence 
of such a directional derivative. If there are no sources at the point in space where 
the grad-div is being calculated, then GDv=0. 
 
4.7.6(b)  The gradient of the divergence in GOCCs 
 
By replacing the scalar V in Eq. (4.3-19) with the scalar divergence of Eq. 
(4.4-22), we have 
 

 
3 3

1 2 3

1 1 1 2 3

1 1
ˆi j

i ji i j j

h h h
A u A

h q h h h q h= =

  ∂ ∂∇∇ ⋅ =    ∂ ∂   
∑ ∑  (4.7-24) 

 
4.7.7 The gradient of the divergence minus the curl of the 

curl—the vector Laplacian 
 
Subtracting Eq. (4.7-23) from Eq. (4.7-24) leads to Eq. (4.7-11) after some 
development: 
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3 3
1 2

i=1 11 2 3

2

ˆ1
ˆ j ji i

j j
ji i i i

A uh h
A A u A

h h h q h q q

A

+ +

=

  ∂ ∂ ∂  ∇∇ ⋅ − ∇ ×∇ × = +   ∂ ∂ ∂    

= ∇

∑ ∑
 

 (4.7-25) 
This is demonstrated in Appendix C. 
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Chapter 5 

Vector Calculus Integral Forms 
 
There is an intimate relationship between differential and integral forms in vector 
calculus (and tensor calculus as well). For example, Maxwell’s curl equations for 
time-varying electric and magnetic field intensities, which are vector differential 
operators, convert to circulations of these time-varying fields, which are integral 
forms that describe the electromotive and magnetomotive force (volts and amps), 
respectively. Further, Maxwell’s divergence equations for the electric and 
magnetic flux densities (differential forms) convert to closed-surface integral 
forms. These conversion relationships can be developed from a series of 
theorems from the mathematics of George Green (1828) called Green’s 
identities. 
 

Other mathematicians of the 1800s contributed various forms of 
identities—such as Gauss’ and Stokes’ theorems, discussed in Sections 5.3 and 
5.4, respectively—that significantly add to the tools for converting between 
differential and integral forms. Since Gauss’ work preceded Green’s, it would be 
accurate to describe the relevant Green’s forms as generalizations of Gauss’; and 
since Stokes’ theorem followed Green’s, one could take the position that Stokes’ 
theorem is a special case of one of Green’s identities. 
 

Green’s mathematics also included the Green’s function, which provides 
an effective method for determining solutions to inhomogeneous differential 
equations. This process will be covered in Section 5.5; for now, it is sufficient to 
say that this tool further provides evidence of this differential-integral 
relationship. 
 

Before probing into the powerful mathematics of these forms and 
theorems, we first elaborate on line and surface integrals for two reasons. First, 
all of the aforementioned theorems involve line or surface integrals or both. 
Secondly, this elaboration will provide comprehensiveness so that the breadth of 
physical applications may be described. In Section 2.4, line and surface integrals 
were introduced as examples of integrands made up of the vector dot product of a 
vector field with the vector line and surface differentials Ad  and da  [see Eqs. 
(2.4-20)–(2.4-23)]. In Sections 5.1 and 5.2, line and surface integrals, 
respectively, are covered more generally. 

5-1 
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Volume integrals are, of course, involved in the 3D forms of Green’s 
identities, including Gauss’ theorem, a special case of one of the Green’s 
identities. However, since differential volume is inherently scalar (see Section 
1.2.3), volume integrals do not modify the rank. By that, we mean that the 
resultant quantity after performing the integration has the same rank as the 
integrand because the differential element of the integration dv is a scalar. For 
this reason, we choose not to expand on volume integrals as we have in the next 
two sections for line and surface integrals, which have vector differentials Ad  
and da  and can indeed change the resultant rank. 
 
5.1  Line Integrals of Vector (and Other Tensor) Fields 
 
Whereas F d⋅∫ A  [Eq. (2.4-20)] is the specific line integral of the tangential 
component of a vector field along a prespecified line in 3D space, many other 
line integrals exist. These are shown in the subsection below for thoroughness. 
Examples are then given for the specific form of Eq. (2.4-20). 
 
5.1.1 Line integrals of scalar, vector, and tensor fields with dot-, 

cross-, and direct-product integrands 
 
A general definition of a line integral: 
 

An integral of a field quantity taken over a vector differential length 
dA  that is everywhere tangent to a general line  in space is a line 

integral. 
L

 
Notice that the “tangent” in this definition refers to the line segment dA  

and not to the field, the latter of which may have general direction and be of 
general rank. There are several line integral forms of scalar-, vector- and tensor-
field integrands, each with three types of product operations. Several of these 
line-integral forms are shown below in the order of their resultant rank, noted to 
the right of each form. 
 

( )
L
F r d⋅∫ A    scalar, 0Rn =   (5.1-1) 

 

  ( )
L

f r d∫ A    vector, 1Rn =  (5.1-2) 

 

  ( )
L
F r d×∫ A    vector, 1Rn =  (5.1-3) 
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where the fields ( )F r and ( )f r  are written here in generalized -spacer  notation 
as described is Section 1.1.4. We will next discuss these first three line-integral 
forms and then continue with the list ending in three line-integral forms involving 
tensor integrands in general. 
 

Expression (5.1-1) is of the form of Eq. (2.4-20) cited earlier. This integral 
is the sum of the tangential components of F  along  through the dot-product 
operation. This particular operation yields a scalar field commonly referred to as 
the potential field. This form is a major part of this section because of its 
frequency of use in electromagnetics, photonics, and materials science. As such, 
this form will be covered in greater depth with examples in Section 5.1.2. 

L

 
Line-integral forms (5.1-2) and (5.1-3) are also commonly used in fields 

and photonics. These are the vector sum of the direct product of a scalar field 
( )f r  with each vector differential element dA  along the path L—form (5.1-2), 

and vector sum of perpendicular components of a vector field F  along L through 
the cross-product operation—form (5.1-3). Both of these forms result in vector 
fields. Section 5.1.3 provides examples of the utility of these forms for the case 
of the magnetic vector potential and the magnetic field intensity H , respectively, 
resulting from a filamentary electric current source. 
 

Before listing several other line-integral forms, it should be pointed out that 
integrals (5.1-1) through (5.1-3) are presented by McQuistan1 with several 
examples of their use in Cartesian coordinates. We will use a variation of one of 
these examples in describing the properties of expression (5.1-1). (See Section 
5.1.2.) A study of McQuistan’s examples of forms (5.1-2) and (5.1-3) are highly 
recommended because they provide further examples with excellent physical 
interpretations. 
 

The remaining line-integral forms are listed here for completeness and for 
citing further examples. 
 

Whereas the first example [expression (5.1-1)] has a scalar-field resultant, 
the next three, expressions (5.1-2) through (5.1-4), have vector-field resultants. 
The first two of these vector-resultant forms, namely expressions (5.1-2) and 
(5.1-3), have already been listed above with references cited to examples given in 
the following two subsections. The third is  
 

( )
L

A r d⋅∫ A  vector, 1Rn =  (5.1-4) 
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where nine inner-product operations of each of the components of the dyadic 
field ( )A r , including their unit dyads, are taken with the vector components of 
dA  before the nine integral operations are made. This process in the integrand is 
identical to the process described in Section 3.4.1(a)—the dyadic dot product 
with a vector—resulting in a vector field. Recall that this process illustrated the 
nature of the “inner (dot) product” in that the “application of the inner product 
eliminates two of the three unit vectors thereby reducing the sum of the ranks of 
the two quantities involved by two.” See rule #3 in Section 3.4.1(a). An 
application of Eq. (5.1-4) is presented in Appendix D following Eq. (D.1-5). 
 

As with expression (5.1-1), the “dot dA ” in expression (5.1-4) also implies 

that the tangential components of the dyadic A  are taken along the path . 

However, the components of a dyadic are dual directional. So naturally, one new 

to tensors might ask what is meant by “tangential component” in the context of 

dyadics (or tensors in general). Recall that the unit dyads 
 
were introduced in 

Eq. (1.1-6b), but before they could be viewed explicitly as an inner-product 

operation [Eq. (3.4-1)], they had to be expanded as  per Eq.  (3.3-4). The 

order of this expansion was important because the latter unit vector, namely 

L

ˆ̂
iju

ˆ ˆi ju u
ˆ ju  

(and not ), was dotted with the vector components in the process of obtaining 

the vector result [Eq. (3.4-3)]. Therefore, when we say that the tangential 

components of 

ˆiu

A  are taken along the path , we are referring to the latter unit 

vector in the nine unit dyads. The resultant is a vector that in general is not 

aligned with 

L

dA . 

 

Further, for tensors of higher rank, such as in form (5.1-7), where we are 

taking the inner product of a triad T  with the vector differential length segment 

dA , in each of the 27 components the unit triad  must be expanded as  or 

. In this way, the last unit vector, namely , is ready for the inner-product 

operation with the vector 

ˆ̂
ˆijku ˆ̂ ˆij ku u

ˆ ˆ ˆi j ku u u ˆku
dA . Incidentally, the opposite is the case if the vector 

and tensor are interchanged. That is, in A T⋅  the first unit vector in  must be 

isolated, namely 

ˆ̂
ˆijku

ˆ̂ˆ jkiuu , in preparation for the inner-product operation of A  with 

T . This point was made explicitly in Section 3.4.1(b). 
 

Following the three vector-resultant line-integral forms, the next three 
forms result in dyadic fields, expressions (5.1-5) through (5.1-7). The first of 
these is the integral of the “direct” product of the vector field ( )F r  with the 
vector differential dA  over the path , which of course, is a dyadic field. L
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( )( )
LL
F r dF r d ≡ ⊗∫∫ AA  dyadic 2Rn =  (5.1-5) 

 
(See the first footnote on page 4-3 for an explanation of the equivalence between 
“direct product” and “tensor product.”) The next two line integrals deal with 
integrands that also result in dyadics following the rules outlined in the fifth 
paragraph of Section 4.1. These are the dyadic cross product (external product) 
and the triadic dot product (inner product) each with our vector differential dA  as 
follows 
 

( )
L

A r d×∫ A  dyadic 2Rn =  (5.1-6) 

 
 

( )
L
T r d⋅∫ A  dyadic 2Rn =  (5.1-7) 

 
This process continues, but in general we can summarize all line-integral forms 
by taking the dot-, cross-, and (tensor-) direct-product operations of general rank 
tensors as 
 

 1[ ( )]           
RL n T r d T−⋅ ⇒∫ AO Rn R  (5.1-8) 

 

 [ ( )]           
RL n T r d T× ⇒∫ AO Rn R  (5.1-9) 

 

    1[ ( )]           
RL n T r d T+⊗ ⇒∫ AO Rn R  (5.1-10) 

 
where the post-subscripts “O” and “R” simply distinguish the operand tensor 
from the three resultant tensors. Thus, [  is an operand tensor of rank ]

Rn TO Rn  
and [  is a resultant tensor of rank ]iTR 1Ri n= − , Rn , or 1Rn +  for dot-, cross-, or 
direct-product integral operators, respectively. 
 
5.1.2 Examples of form (5.1-1): Line integral of the tangential 

component of F  along path L 
 
The open line integral [expression (5.1-1)] was touched upon in Eq. (2.4-20) as 
an example of the application of dot product between a vector field and a 
differential line element used as an integrand. This integral takes the form F d⋅∫ A  
and is commonly referred to as the line integral in common vector-calculus 
parlance. However, as one can see from expressions (5.1-3) and (5.1-5), there are 
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other line integrals involving vector fields. Whereas expression (5.1-1) yields a 
scalar field, expression (5.1-3) yields another vector field and expression (5.1-5) 
yields a dyadic field. Thus, the typical use of the term “line integral” to mean 
expression (5.1-1) without mention of these other two vector-field line-integral 
operators is incomplete. It is mentioned here because it is in fact useful for 
particular applications that the scientist or engineer using this guide will 
encounter. It is also mentioned here for completeness. 
 

In Eqs. (5.1-1), (5.1-3), and (5.1-5) F  is a “force” field in a general sense. 
Generally speaking, a force field is a vector field that is causal. Its effect can be a 
scalar field as in Eq. (5.1-1), another vector field as in Eq. (5.1-3), or a dyadic 
field as in Eq. (5.1-5). In the case of Eq. (5.1-1), its scalar effect is that of a 
generalized potential. The examples below will clarify this point.  
 
5.1.2(a)  Examples in mechanics—force and work 
 
In mechanics, including gravitational mechanics, F  is a force field and is given 
the units of force, such as newtons in SI units. If dA  is a differential line segment 
tangent to a predetermined line or path  of action, then the differential work 
done by the force field is the scalar 

L
dW F d= ⋅ A  (N·m or J). The total work 

between two points a and b on  is L
 

( )ab

b

a L
W F r d= ⋅∫ A   joules (5.1-11) 

 
where all differential line segments dA  lie on , which, in general, is an 
arbitrary continuous line in 3D space. By “continuous,” we mean that the 
directional derivative is piecewise determinable. If there is a discontinuity in the 
directional derivative at a finite number of points 1 2 3  on , between 
a and b, Eq. (5.1-11) must be broken into 

L

, , , , Nb b b b" L
1N +  integrals as follows 

 

 
1 1

1

1

( ) ( ) ( )
i

i N

N

ab
i

b b b

b ba L L L

W F r d F r d F r d+
−

=

= ⋅ + ⋅ +∑∫ ∫ ∫A A ⋅ A  (5.1-12) 

 
Equations (5.1-11) and (5.1-12) represent the work (energy) done by the force 
field F  on an object in moving that object along the path  from a to b. This is 
the decrease in potential energy and is referred to as the potential energy 
difference. By conservation of energy laws, this decrease in potential energy is 
transferred to the kinetic energy of the object less losses. 

L
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1F 2F

2L
P ath

1P ath  L

y

xO
21

 
 
 
 
 
 
 
 
 
 

 
Figure 5.1-1  Two integration paths, 1[1 2, 0, 0]L x y z≤ ≤ = =  and 

 taken in a tangential-component-line integral 

from point a(1,0,0) to point b(2,0,0) in two force fields. 
2

2[1 2, 1 (3 2 ) , 0]L x y x z≤ ≤ = − − =

 
Two examples follow. The first example, although trivial, shows how 

Eq. (5.1-11) can be applied and illustrates a path-independent case. The second 
example is also simple, but illustrates path dependence. For both examples, let us 
pick two paths 1  and 2  each starting at  (meters) and ending at 

(meters) as shown in Figure 5.1-1. Path 1  lies on the x axis and can be 
expressed as . Path 2  is described as 

2 , which takes a parabolic route in the  
plane in going from a to b. 

L L (1,0,0)a
(2, 0, 0)b L

1[1 2, 0, 0]L x y z≤ ≤ = = L
2[1 2, 1 (3 2 ) , 0]L x y x z≤ ≤ = − − = 0z =

 
Example 1: Path-independent case 
 
Suppose 1F  is a uniform force field of one Newton in the x direction, i.e., ˆxF u= , 
then abW  would be one N·m (or one J) by inspection. In this specific example, this 
result is independent of the path taken to get from  to , as will 
be shown next. 

(1,0,0)a (2, 0, 0)b

 
In general, ˆ ˆx yd u dx u dy= +A . Then, 1 ˆ ˆ ˆ ˆx x x yF d u u dx u u dy dx⋅ = ⋅ + ⋅ =A  and  

 

 
2

11 2
1 ab abL L

W W dx= = =∫  joule (5.1-13) 

 
in both cases. Thus, only the x component of dA  matters in this example. 
Further, the result is independent of the path taken. 
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Example 2: Path-dependent case  
 
Suppose 2F  varies with y but retains its x direction as 2 ˆ (1 )xF u y= − . At , 0y =

2 ˆxF u= , which is the same as 1F . Therefore, the work done on path  is the 
same as in Example 1, namely one joule as before: 

1L

 

 
2

11
1 abL

W dx= =∫  (5.1-14) 

 
This is not the case along the path 2  shown in Figure 5.1-1(b). Since 

,  reaches the apogee of its trajectory at 
L

2

2[1 2, 1 (3 2 ) , 0]L x y x z≤ ≤ = − − = 2L
1

21x = ,  as 1y = 2F , which varies as ˆ (1 )xu y− , decreases linearly from a value of 
one at  to a value of zero at 0y = 1y = . The differential work is 

2 (1 )F d y⋅ = −A dx . Our line integral of the form of Eq. (5.1-1) then reduces to the 
scalar integral 
 

  (5.1-15) 
22
(1 )

Lab L
W y dx= −∫

 
over the path . 2L
 

There are two approaches to integrating Eq. (5.1-15), since the integrand 
must either be of the form ( )f x dx  or ( )g y dy . In this example, the first one is 
the more straightforward for three reasons. First, ( )f x  is single-valued over the 
range from a to b. Secondly, y is explicitly given in terms of x, namely 

21 (3 2 )y x= − − . Finally, the limits are given over the dx integration from a to b 
as 1 to 2, respectively. Thus, 

2LabW  becomes 
 

 
2

2 2 1
31

(3 2 )
LabW x dx= − =∫  joule  (5.1-16) 

 
which is clearly different from Eq. (5.1-13). 
 

The other way to evaluate Eq. (5.1-15) is more involved, but is given here 
for its instructional value. This approach is to solve for 

2LabW by the use of the 
second form of the integrand, namely ( )g y dy . There are three steps to this 
approach. The first is to realize that ( )g y  is double-valued. Therefore, the y 
integration must be broken into two regions—one for the rising part of the path 
(region I) and the other for the falling part (region II). The second is to determine 

( )g y . The third is to determine the y limits for each of the regional integrations. 
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Here, 

3 1
( )

2

y
g y

−
=
∓

 

 
where the upper and lower signs are used for region I and region II, respectively. 
Taking the differential of our path  equation and solving for dx yields 2L

+ /(4 1dx dy y= )−  for region I, and /(4 1 )dx dy y= − − for region II. Thus, 
the two integrations become 
 

   
 1

3
2

1 1 1 1
6 64 4

0 1

1 0
1   1  abL

III
W y dy y dy= − − − = + =∫ ∫ joule     (5.1-17) 

 
which, of course, yields the same answer as Eq. (5.1-16) as it must, since we 
solved the same problem by two different methods. In the first integral, the y 
limits are 0 and 1 corresponding to x = 1 and 3/2, respectively. In the second 
integral, the y limits are 1 and 0 corresponding to x = 3/2 and 2, respectively. 
 
5.1.2(b)  Electrostatics—electric field intensity and electric potential 
 
Electric field intensity  
 
An electric vector force field F  exists on an isolated test charge  as a result of 
the presence of a nearby system of electric charges. The force acting on  is 
proportional to the magnitude of . Electric field intensity, commonly denoted 
by the symbol 

tQ
tQ

tQ
E  is also a force field except that it is referenced to a test charge 

upon which the force is acting so that it does not depend on the magnitude of the 
charge upon which it acts. This vector field is called the electric field intensity. In 
fact, the electric field intensity is present even if the test charge is not. It has units 
of newtons per coulomb in SI units, which is equivalent to volts per meter. By 
this definition the electric field intensity is 
 

 
t

FE
Q

=    newtons per coulomb. (5.1-18)

 
Electric potential  
 
If an electric field exists, then the differential work done per unit test charge by 
the electric field on the test charge when the test charge is displaced by the 
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differential amount and direction of dA  is, by definition, the differential electric 
potential , and is determined by dV
 

 
t t

dW F ddV E d
Q Q

⋅
= = = ⋅

A A  (5.1-19) 

 
In allowing the test charge to move from point a to point b on L, the work per 
unit charge is 
 

( )ab
ab

t

b

a L

W
V E r d

Q
= = ⋅∫ A     (5.1-20) 

 
N·m/C or V. However, the work done by the forces of the field is equal to the 
decrease in potential energy of field. In the conventional definition of electric 
potential, the quantity dV represents the differential increase in potential energy 
per unit charge done by an external forcing system on the test charge against the 
forces of the field. Therefore, the sign is reversed and thus, dV becomes 

E d− ⋅ A  and 

 V E d C= − ⋅ +∫ A  (5.1-21) 

 
where C represents the constant of integration of the indefinite integral 
[Eq. (5.1-21)]. 
 
5.1.2(c)  Path dependence of tangential line integrals 
 
One key point of the examples in Part (a) was to point out that for some fields the 
tangential line integral [Eq. (5.1-11)] is independent of the path taken and for 
others it is not. The general way to determine what vector-field line integrals are 
independent of the path is to ascertain whether the field is conservative. This is 
readily done by noting whether the curl of F is zero. Using 1F  and 2F  from Part 
(a), we have 1 . Therefore, 0F∇× = 1F  is deemed conservative and its tangential 
line integral is path-independent. Further, since 2 0F∇× ≠ , 2F  is rotational and 
not conservative, and its tangential line integral depends upon the path taken. 
 

Thus far we have confined our discussion to open line integrals. Open line 
integrals are bounded by two points that designate the terminus at each end of the 
line over which the integration takes place. These two points a and b must not be 
the same in order for the line integral to be considered open. Although there can 
be coincident intermediate points, the line is considered open as long as the end 
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points are different. If the end points are at the same position in space, the line 
integral is said to be closed. 
 

We will discuss the closed line integral of Eq. (2.4-21) (tangential form) in 
the context of Stokes’ theorem in Section 5.4. Whereas Stokes’ theorem deals 
with a closed line integral of the form F d⋅∫ Av , a special case of expression 
(5.1-1), closed line integrals may take on any of the forms (5.1-1) through 
(5.1-10). 

 
5.1.3  Other line integral examples 
 
Two additional examples of line integral forms are given in this section. These 
deal with line-integral forms (5.1-2) and (5.1-3), which are also common in fields 
and photonics. Although both of these forms yield vector field resultants, the 
integrands are quite different. One deals with a scalar field ( )f r  along a path L. 
The other deals with a vector field F  along L through a cross-product operation. 
These examples provide different vector fields arising from a filamentary electric 
current source. 
 
Example of form (5.1-2): Magnetic vector potential from a filamentary 
current source  
 
In this case we let the scalar field in Eq. (5.1-2) be 
 

 
( ')

( ')
4

I rf r
R

µ
π

=  (5.1-22) 

 

Then the magnetic vector potential ( )A r  takes the form of expression (5.1-2) as 
 

 
( ')

( ) '
4L

I rA r d
R

µ
π

= ∫ A  (5.1-23) 

 
where the vector potential is determined at the field point r  due to an electric 
current source ( ')I r  on 'dA  along the filamentary line path L designated by the 
source point at 'r . Here µ is the magnetic permeability of the surrounding space 
and R r r '= −  is the distance from the field point at r  to the source point at 'r  
in r -space notation [Section 1.1.4]. 
 
Example of form (5.1-3): Magnetic field intensity from a filamentary 
current source 
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In this case we let the vector field in expression (5.1-3) be 
 

 
2

( ')
ˆ( ')

4 R
I rF r u

Rπ
= −  (5.1-24) 

 

Then the magnetic field intensity ( )H r  takes the form of expression (5.1-3) as 

 

 
2

( ')
ˆ( ) '

4 R
L

I rH r u
Rπ

= − ×∫ Ad  (5.1-25) 

 
This is frequently portrayed as the Biot-Savart law that describes the magnetic 
field intensity H  resulting from a filamentary electric current source ( ')I r  on 
d 'A  along the filamentary line path L designated by the source point at r ' . Here 

Rû  is a unit vector in the R  direction, where 'R r r= −  in r -space notation and 
22R R= . 

 
5.2  Surface Integrals of Vector (and Other Tensor) Fields 
 
As was the case with line integrals, surface integrals were introduced in Section 
2.4 to illustrate further examples of the dot-product operation—in that case, of a 
vector field with vector surface differentials in the integrand of an integral 
operation. In this section surface integrals are discussed in greater detail. 
Whereas 

S
F da⋅∫  [Eq. (2.4-23)] is the specific surface integral of the orthogonal 

component of F  over the surface A, we will discuss other surface integrals as 
well. 
 
5.2.1  Surface integrals of scalar, vector and other tensor fields with 
dot-, cross-, and direct-product integrands 
 
A general definition of a surface integral: 
 

An integral of a field quantity taken over a vector differential area 
da  that is everywhere normal to a general surface S in space is a 

surface integral. 
 
Again, the word “normal” in this definition refers to the surface segment da  and 
not to the field, the latter of which may have general direction and be of general 
rank. In this way, any of the three product operators—dot, cross, or direct—may 
be applied in the integrand, and any field for which these operations are defined 
is applicable regardless of rank. 
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Surface integrals are similar to line integrals in that they have integrands 
that consist of any of these three operations between scalar, vector or tensor 
fields, in general, and a differential vector. The principal difference is in the 
differential vector. Whereas the line-integral differential vector dA  is one-
dimensional, the surface-integral differential vector da  in the integrand is two-
dimensional. Thus, in a coordinate system, the surface integrals are double 
integrals and the differential ˆk i jda  is a double differential, where u d d= A A

( )ˆk i j i j . There are numerous forms of surface integrals as 
there are for line integrals. 
u d d d d= × ×A A A A

 
In fact, the same ten forms given in Eqs. (5.1-1) through (5.1-10) can 

represent the different forms of surface integrals. By replacing the dA s with da s 
and the s with s in Eqs. (5.1-1) through (5.1-10), we have a similar 
compendium of surface integral forms as we had with line-integral forms in the 
previous section, where the  designation in the integral denotes a surface in 3D 
space. 

L S

S

 

  
( )

S
F r da⋅∫  scalar, 0Rn =                 (5.2-1)  

 

 
( ) ( )

S S
f r f rda da≡ ⊗∫ ∫   vector, 1Rn =    (5.2-2) 

 

  
( )

S
F r da×∫   vector, 1Rn =  (5.2-3) 

 

  
( )

S
A r da⋅∫   vector, 1Rn =  (5.2-4) 

 

  
( )( )

SS
F r daF r da ≡ ⊗∫∫    dyadic, 2Rn =  (5.2-5) 

 

  
( )

S
A r da×∫   dyadic, 2Rn =                (5.2-6) 

 

  
( )

S
T r da⋅∫   dyadic, 2Rn =                (5.2-7) 

 
This process continues, but in general we can summarize all surface-integral 
forms by taking the dot- cross- and (tensor-) direct-product operations of general 
rank tensors as we did with line integrals in the prior section. 
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1[ ( )]           
RS n T r da T−⋅ ⇒∫ O Rn R  (5.2-8) 

[ ( )]           
RS n T r da T× ⇒∫ O Rn R  (5.2-9) 

 

1[ ( )]           
RS n T r da T+⊗ ⇒∫ O Rn R    (5.2-10) 

 
where the post-subscripts “O” and “R” denote the operand and resultant tensors 
as before.  
 

Again, as with the tangential line integral, the most commonly used surface 
integral form is Eq. (5.2-1), namely ( )

s
F r da⋅∫ , except that the component of F  

that is summed is the component that is normal to the surface. Since the da  in 
the integrand of forms (5.2-1) through (5.2-10) and the S as the integral region 
designators are used only for surfaces, contemporary practice is to use the single 
integral symbol until coordinates and their respective limits of integration are 
specified. For example, in Cartesian coordinates ( ) ( , , )r x y z=  and if the surface 
is parallel to the xy-plane, ˆzda u dxdy= , and Eq. (5.2-1) would be written 
 

 
2 2

1 1

ˆ( , , )
y x

z
y x

F x y z u dxdy⋅∫ ∫  (5.2-11) 

where the outside integral goes with the outside differential and the inside 
integral with the inside differential. 
 
5.2.2  Surface integral applications 
 
In Section 4.4 the concept of vector flux was introduced. The flux FΨ  of a 
vector field F  over a surface in space S was found by taking the dot product of 
each vector surface element da  with the vector field evaluated at each element 
over the surface. This process is given by 4.4-2 (also 2.4-26) as 
 

 F S
F daΨ = ⋅∫  (5.2-12) 

 
For example, if the vector field is electric current density J  in amps per 

square meter, the current I passing through S is the flux of J  given by 
 

 
S

I J da= ⋅∫  (5.2-13) 
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in amps. Further, if the vector field is electric flux density D  in coulombs per 
square meter, the electric flux eΨ  passing through S is the flux of D  given by 
 

 e S
D daΨ = ⋅∫  (5.2-14) 

 
in coulombs. Likewise, the magnetic flux mΨ  through S is given by  
 

 m S
B daΨ = ⋅∫  (5.2-15) 

 
where B  is the magnetic flux density in webers per square meter and mΨ  is the 
magnetic flux in webers. 
 

Yet another example is the energy flow (flux) through a surface. The 
instantaneous power density of an electromagnetic wave is given by the Poynting 
vector P E H= × , where E  is the electric field intensity (volts per meter) and 
H  is the magnetic field intensity (amps per meter), the power density P  is in 
watts per . The energy flow is then  2m

 

S
W P da= ⋅∫                 (5.2-16) 

 
watts of power through a surface S. 
 
5.3  Gauss’ (Divergence) Theorem 
 
German mathematician and physicist Johann Karl Friedrich Gauss (1777–1855) 
first developed and proved a theorem that is a mathematical statement that the 
density of matter in a volumetric region of space can change only if it flows out 
of or into the region through its boundary that encloses the volume. This concept 
was touched upon in Section 4.4.1(c) in the discussion of the significance of zero 
and nonzero divergence. This theorem has become a useful tool in converting 
volume integrals of densities of quantities into closed surface integrals of the 
fluxes of those quantities. 
 

As a precursor to the development of the divergence theorem, also known 
as Gauss’ theorem, we first discuss another major contribution of Gauss known 
as Gauss’ law (Section 5.3.1), which states that the total outward flux of a vector 
quantity is equal to the total quantity of the enclosed source of that vector field. 
This leads into the divergence theorem of Gauss (Section 5.3.2). 
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5.3.1  Gauss’ law 
 
In the definition of divergence, the total outward flux through a closed surface 
was needed, as given by Eq. (4.4-1). This expression involved the limit of the 
ratio of that total outward flux 

 totaleΨ  to the enclosed volume as the volume was 
shrunk to zero about the point in space at which the divergence was to be 
determined. The numerator of that ratio (namely, the closed-surface integral) has 
another important interpretation, for example, in Gauss’ law: 
 

Gauss’ law for electrostatics states that the total electric flux 
emanating outwardly through a closed surface is equal to the total 
charge enclosed within. 

 
Here the closed surface and enclosed volume refer to any volume and associated 
surface, not just the limiting volume in Eq. (4.4-1). Mathematically, Gauss’ law 
is expressed as  
 

 
o

totalS
daD Q⋅ =∫v  (5.3-1) 

 
where D  is the electric flux density in coulombs per square meter, and So is a 
generalized closed surface called a Gaussian surface. 
 

We know from the above discussion that the left-hand side of Eq. (5.3-1) is 
also 
 

 
 total

oS edaD Ψ⋅ =∫v  (5.3-2) 

 
where 

 totaleΨ  is the total outward electric flux in coulombs. Further, the total 
charge enclosed within the volume v is 
 

 
v

vQ dρ= ∫  (5.3-3) 

 
where the volume integral 

v
vdρ∫  is taken over any volume v enclosed by the 

Gaussian surface of all charges represented by the electric charge density ρ  in 
C/m3. Eq. (5.3-3) is a generalization of Eq. (4.4-13) for any volume. The result of 
the volume integral, then, is the total charge  enclosed within the Gaussian 
surface, which, of course, has units of coulombs of charge. Thus, the total flux is 
the total charge 

Q

 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5.3: Gauss’ (Divergence) Theorem                                                                   5-17 

 
 totale toQ talΨ =  (5.3-4) 

 
Therefore, another mathematical statement of Gauss’ law is 
 

 
v

v
oS

daD dρ⋅ =∫ ∫v  (5.3-5) 

Written in this way, the volume charge density ρ  includes point charges 

n  (where n is summed over all point charges), line charges (densities Q
L

ρ ), 
surface charges (densities sρ ), as well as any volumes that contain distribution 
of charges (densities vρ ). Thus,  
 

  (5.3-6) 
v

kv kv
1 1 1 1

v v
p s

i j
i j k

N N NN

n i s js s
n i j k

d Q d ds dρ ρ ρ
= = = =

= + + +∑ ∑ ∑ ∑∫ ∫ ∫ ∫
A

AA
A ρ

 
where all point charges

 pN , line charges , surface charges NA sN , and volume 
charges v  within v are summed and included in the generalized volume charge 
distribution 

N
ρ  and integrated over v, which includes all regions in space 

containing the above charge distributions. 
 
5.3.2  Derivation of Gauss’ divergence theorem 
 
Equation (5.3-5) is valid for all closed surfaces and corresponding enclosed 
volumes, provided D  is continuous in the region. In particular it can be applied 
to a vanishing small volume v∆ . Dividing both sides of Eq. (5.3-5) by , we 
have 

v∆

 

 v
v

v v
oS

daD dρ
∆

⋅
=

∆ ∆
∫ ∫v

 (5.3-7) 

 
Taking the limit as , the left side is the divergence of v 0∆ → D  by definition as 
given in Eq. 4.4-1. The right side is ρ . Thus, 
 

 D ρ∇ ⋅ =  (5.3-8) 
 

Equations (5.3-5) and (5.3-8) represent Maxwell’s equations from Gauss’ 
law in integral and differential forms, respectively. Equation (5.3-8) is also called 
Maxwell’s Divergence equation for the electric flux density. This result was 
alluded to in Section 4.4.1(c). Substituting Eq. (5.3-8) into Eq. (5.3-5), we have 
the divergence theorem 
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v

v
oS

daD ⋅ = ∇ ⋅∫ ∫ D dv  (5.3-9) 

 
which is valid for all vector fields under the condition that D  and D∇⋅  are 
continuous in the region. This theorem is also known as Gauss’ theorem, not to 
be confused with Gauss’ law, which was given in Eq. (5.3-1). 
 

Proof of the divergence theorem can be argued by subdividing the volume 
v into small volumes  each bounded by a closed surface i , where all of the 
volume v is taken up by a finite but large number of differential volumes. The 
outward flux of one differential volume is the inward flux to neighboring 
differential volumes except where there is no neighboring volume. Thus, the flux 
cancels at all common surfaces (in the interior) and the only remaining outward 
flux is through the original surface o . If we multiply and divide the left-hand 
side of Eq. (5.3-9) by  and sum over i, we have  

vi∆ S

S
vi∆

 

 
i iv 0 v 0

lim lim v
v

i

o

S
iS

i i

D

da
da

D
D

∆ → ∆ →

∇⋅

⋅
⋅

⎛ ⎞
⎜ ⎟= ∆
⎜ ∆
⎝ ⎠

∫
∑∫
���	��


⎟
v

v  (5.3-10) 

 
Taking the limit as , the ratio is the divergence by definition 
[Eq. (4.4-1)] and the limit of the summation over 

vi∆ → 0
vi∆  is the volume integral. 

This yields the divergence equation (5.3-9), quod erat demonstradum (QED). 
 
5.3.3 Implications of the divergence theorem on the source 

distribution 
 
Section 4.4-1(c) provided a quantitative description of the relationship between 
source distributions and the divergence. Now that we have added the divergence 
theorem to our medley of mathematical tools we may provide a quantitative 
description of this relationship. Although we have approached the divergence 
theorem from the viewpoint of electrostatics, we next generalize this discussion 
to examine the implications of the divergence theorem on source distributions. 
 

Let us re-examine Eq. (5.3-1). The total amount of outward flux AΨ  from 
the vector field A  emanating from the closed surface So that encloses the volume 
v is due to a distribution of sources Aρ  in the interior of that volume and is 
described by 
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v

vA S AA da dΨ ρ
∆ ∆

= ⋅ =∫ ∫v  (5.3-11) 

 
Applying Eq. (5.3-9) to the surface integral of Eq. (5.3-11), we have 
 

 
v

vA A dΨ = ∇⋅∫  (5.3-12) 

 
The surface integral in Eq. (5.3-11) represents the total outward flux of the vector 
field A , whereas the volume integral of Eq. (5.3-12) in conjunction with Eq. 
(5.3-8) represents the decrease of the source density Aρ . Equation (5.3-9) says 
that these two quantities are the same. Thus, the divergence is given the 
interpretation of a source density distribution, such as mass per unit volume or 
charge per unit volume. 
 
5.3.4 Application: The energy in electromagnetic fields—

Poynting’s theorem 
 
An elegant application of the divergence theorem is in the classical determination 
of the energy in an electromagnetic field.2 We begin with Maxwell’s curl 
equations for the electric and magnetic field intensities E  and H : 
 

 
BE
t

∂
∇× = −

∂
 (5.3-13) 

 
and 
 

 cd cv
DH J J
t

∂
∇× = + +

∂
 (5.3-14) 

 
where D  and B  are the electric and magnetic flux densities, respectively. Here 
the usual current density J  is broken out into conduction and convection current 
densities, cdJ  and cvJ , respectively, because each has its unique energy. Thus, 

cd cvJ J J= + . Taking the dot products of H  with Eq. (5.3-13) and E  with Eq. 
(5.3-14) we have 
 

 
BH E H
t

∂
⋅∇× = − ⋅

∂
 (5.3-15) 

 
and 
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 ( )cd cv
DE H E J J E
t

∂
⋅∇× = ⋅ + + ⋅

∂
 (5.3-16) 

 
Subtracting Eq. (5.3-16) from Eq. (5.3-15) we have 
 

 ( )cd cv
B DH E E H H E J J E
t t

∂ ∂
⋅∇× − ⋅∇× = − ⋅ − ⋅ + − ⋅

∂ ∂
 (5.3-17) 

Applying the vector identity 
 

 ( )H E E H E H⋅∇× − ⋅∇× = ∇ ⋅ ×  (5.3-18) 

 
to the left-hand side of Eq. (5.3-17) and integrating over the volume in which the 
energy is to be determined yields 
 

 ( )
v v

v
⎛ ⎞∂ ∂

⋅ + ⋅ + ⋅ = − ∇ ⋅ ×⎜ ⎟∂ ∂⎝ ⎠
∫

D B
v∫E H E J d E H

t t
d . (5.3-19) 

 
Here we apply the divergence theorem Eq. (5.3-9) to the right-hand side of Eq. 
(5.3-19) to obtain 
 

 ( ) ( )
v

vcd cv
S

D BE H E J J d E H
t t

⎡ ⎤∂ ∂
⋅ + ⋅ + ⋅ + = − × ⋅⎢ ⎥∂ ∂⎣ ⎦

∫ ∫v da . (5.3-20) 

 
This is the classical Poynting’s theorem,3 and is valid for general media, 

which may be anisotropic, bianisotropic,4,5 nonlinear, inhomogeneous and/or 
time variant. The first two terms on the left-hand side of Eq. (5.3-20) represent 
the time rate of increase of the stored energy of the electromagnetic field in the 
volume v. The third term represents energy per unit time lost to heat (the ohmic 
power) in the case of the conduction current, and the energy per unit time 
required to accelerate charges in the case of convection current.2

 
In the event that the volume has energy sources, either electric charge or 

current sources, the terms on the left would be negative representing power flow 
out of the region. All of the net energy must be supplied externally. Thus the term 
on the right represents the energy flow into the volume per unit time. Reversing 
the sign of the right side signifies outward power flow through the surface S that 
bounds the volume v. The pointing vector P E H= ×  may replace the cross 
product term on the right-hand integrand yielding the total outward power flow 

S
P da⋅∫v  (watts).2
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5.4  Stokes’ (Curl) Theorem 
 
Sir George Stokes (1819 – 1903) occupied the University of Cambridge Lucasian 
Chair of Mathematics for the last 54 years of his life. (Once occupied by Isaac 
Newton before Stokes and now occupied by Stephen Hawking, this is one of the 
most prestigious chairs in academe). At his death in 1903, the London Times 
gave this accolade: “Sir G. Stokes was remarkable… for his freedom from all 
personal ambitions and petty jealousies.”6 The theorem that bears his name is the 
subject of this section. 
 

In the prior section on the development of Gauss’ divergence theorem, we 
found that Gauss’ law was fundamental to the definition of divergence. There we 
were dealing prima facie with conservative fields—where the curl is zero and 
where nonzero divergence had the interpretation of sources within the region. 
Here we are dealing with the opposite situation, namely where the curl is nonzero 
and the divergence is zero. This is the case for example with magnetic fields. 
Before, Gauss’ law lead us to the Divergence theorem. Similarly, we find that 
Ampere’s circuital law leads us to Stokes’ theorem. 
 
5.4.1  Ampere’s circuital law 
 
In the definition of the curl of a vector field, the circulation of the field was 
needed, as given by Eqs. (4.5-1), (4.5-4), and (4.5-5). This expression involved 
the limit of the ratio of that circulation to the area of a surface bounded by the 
closed path as the enclosed surface was shrunk to zero about the point in space at 
which the curl was to be determined. The numerator of that ratio, namely the 
closed-line integral, has another important interpretation in Ampere’s circuital 
law: 
 

Ampere’s circuital law states that the circulation of the magnetic 
field intensity H  about any closed path is equal to the total electric 
current passing through any surface bounded by that closed path. 

 
Here the closed line and the enclosed surface refer to any surface and associated 
closed line, not just the limiting surface in Eq. (4.5-1). Mathematically, Ampere’s 
circuital law is expressed as  
 

 
oL

dH I⋅ =∫ Av  (5.4-1) 
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where H  is the magnetic field intensity in amps per meter (SI units), and Lo is a 
generalized closed line over which the circulation is determined. 
 

From the discussion surrounding Eq. (5.2-13), the current is the flux of the 
current density J  given by 
 

 
oS

I J da= ⋅∫  (5.4-2) 

where J  represents all free current passing through  bounded by the closed 
line  of Eq. (5.4-1). Therefore, another mathematical statement of Ampere’s 
circuital law is 

oS
oL

 

 
oo SL

d JH da⋅ = ⋅∫∫ Av  (5.4-3) 

 
5.4.2  Derivation of Stokes’ theorem 
 
Equation (5.4-3) is valid for all surfaces  bounded by . In particular, it can 
be applied to a vanishing small surface 

oS oL
s∆ . Dividing both sides of Eq. (5.4-3) by 

s∆ , we have 
 

 sL
d J daH

s s
∆∆

⋅ ⋅
=

∆ ∆
∫∫ Av

 (5.4-4) 

 
where  is the closed line that bounds L∆ s∆ . Taking the limit as 0s∆ → , the left 
side is the definition of the curl as given in Eq. (4.5-1). The right side is J . Thus, 
 

 H J∇× =  (5.4-5) 
 
Equations (5.4-3) and (5.4-5) represent Maxwell’s magnetostatic equations from 
Ampere’s circuital law in integral and differential forms, respectively. Equation 
(5.4-5) is also called Maxwell’s curl equations for the static magnetic field. The 
concept of a vector field that has a nonzero curl as having flow lines that tend to 
curl up was discussed in Section 4.5.2. Such fields are then referred to as 
rotational, solenoidal, or nonconservative. 
 

Substituting Eq. (5.4-5) into Eq. (5.4-3) we have Stokes’ theorem 
 

 
oo SL

d HH da⋅ = ∇× ⋅∫∫ Av  (5.4-6) 
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which is valid for all vector fields under the condition that H  and H∇×  are 
continuous on the surface o . This theorem is also known as the curl theorem 
because of its obvious use of the curl vector differential operator. 

S

 
Proof of Stokes’ theorem can be argued by subdividing the surface o  into 

small surfaces i

S
s∆  each bounded by a closed line iL∆ , where all of the surface 

o  is taken up by a finite but large number of differential surfaces. The line 
integral of one differential surface is the negative of the line integral to 
neighboring differential surfaces except where there is no neighboring surface, 
namely on o . Thus, the line integral cancels at all common surface borders (in 
the interior) and the only remaining outward contribution is at the original closed 
line o . If we multiply and divide the left-hand side of Eq. (5.4-6) by 

S

L

L is∆  and 
sum over i, we have  
 

 
i i0 0

( )

lim lim i

o

i

L
iL s si i

H

d
d

H
H s

s
∆

∆ → ∆ →

∇×

⋅
⋅

⎛ ⎞
⎜ ⎟= ∆
⎜ ∆
⎝ ⎠

∫
∑∫

A
A

���	��

⎟

v
v . (5.4-7) 

 
Taking the limit as , the ratio in the parentheses is the component of the 
curl normal to each differential surface 

vi∆ → 0

is∆  by definition [Eq. (4.5-3)]. The limit 
of the summation over is∆  is the surface integral of that component of the vector 
field given by ( iH∇× ) . This yields Stokes’ theorem [Eq. (5.4-6)], and again, 
QED. 
 
5.4.3  Implications of Stokes’ theorem 
 
If a vector field is solenoidal, i.e., if it has a nonzero curl over a region in space, 
then from Stokes’ theorem, Eq. (5.4-6), the flux of the curl through any bounded 
surface is equal to the circulation of the tangential component of the original field 
about the closed path that bounds the surface. This assumes that the surface and 
its boundary are piecewise continuous. From Ampere’s circuital law [Eq. (5.4-1)] 
this flux is the total current flowing through the closed path. From Eq. (5.4-2) 
this is the same current that can be determined by integrating the normal 
component of current density [Eq. (5.4-2)] over any surface bounded by the 
closed path. 
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5.5  Green’s Mathematics 
 
George Green (1793-1841) was a self-taught English mathematician who became 
interested in electricity and magnetism. In the course of applying potential theory 
to this area of interest, he developed several integral identities. In March 1828 he 
privately published (in the Nottingham Subscription Library with only 51 
subscribers) his first and perhaps most important paper, “An Essay on the 
Applications of Mathematical Analysis to the Theories of Electricity and 
Magnetism.” This paper included his later-to-be-appreciated lemma shown in 
Fig. 5.5-1.7,8 In this paper, Green presented not only his lemma, which we now 
refer to as Green’s theorem, but also other variations of these identities, which 
are discussed in this section. Various names have been attached to Green’s 
mathematics. Besides Green’s lemma, these include Green’s formulas, Green’s 
identities, Green’s first and second theorems (of scalar form) and Green’s first 
and second theorems of vector form. 
 

dU dVd V dxdydzV U d U dxdydzU V
dw dw

σ δ σ+ = +∫ ∫ ∫ ∫ δ  

 
Figure 5.5-1  Green’s original lemma 

 
 

Green is also accredited with the concept of the potential function, using 
the term potential to describe gravitational potential from the addition of masses 
in a system weighted by the magnitude of each mass and inversely with the 
distance to a point where the gravitational potential is being determined. In this 
book, potential was first mentioned in Section 2.2 and Fig. 2.2-1(a) as an 
example of a scalar field, then in Section 4.7.2 in the context of scalar and vector 
potential, and then again in Section 5.1.2 in the context of (a) work or potential 
energy from a gravitational or mechanical force field and (b) electrostatic 
potential in conjunction with electric field intensity. 
 
5.5.1  Green’s identities 
 
Green’s first identity for scalar fields ( )rΨ  and ( )rΦ  is 

 

 2

v

(
s

da dΨ∇Φ⋅ = ∇Ψ ⋅∇Φ+Ψ∇ Φ∫ ∫v ) v  (5.5-1) 

 
which is referred to as the asymmetric scalar form. Green’s second identity for 
scalar fields is 
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 2 2

v

( ) (
s

da dΨ∇Φ−Φ∇Ψ ⋅ = Ψ∇ Φ−Φ∇ Ψ∫ ∫v ) v  (5.5-2) 

 
which is the symmetric scalar form for obvious reasons. The first vector Green’s 
identity for vector fields A  and B  is 
 

 
v

( ) [( ) ( )
s

A B da A B A B d×∇× ⋅ = ∇× ⋅ ∇× − ⋅∇×∇×∫ ∫v ] v  (5.5-3) 

 
which is the asymmetric vector form. The second vector Green’s identity is 
 

v

( ) [
s

A B B A da B A A B d×∇× − ×∇× ⋅ = ⋅∇×∇× − ⋅∇×∇×∫ ∫v ] v

2

 (5.5-4) 

 
which is the symmetric vector form. 
 
5.5.2  Green’s function 
 
In Section 4.2 we discussed scalar differential operators and presented some 
simple differential equations stemming from such operators and discussed their 
solutions. In Section 4.7.3 we developed a second-order scalar differential 
operator called the scalar Laplacian. Combining these, we have a frequently used 
partial differential equation where the operator is 2 kL = ∇ + . The differential 
equation for the unknown scalar function ψ  is therefore of the form 
 

 2 2 0kLψ ψ ψ= ∇ + = . (5.5-5) 

 
This form is the homogeneous Helmholtz scalar wave equation where 2 2k µεω=  
is the temporal eigenvalue—k being the radian wave number, i.e., the number of 
radians of phase per unit length at the time-harmonic ( j te ω ) radian frequency ω  
for an infinite plane wave in a linear isotropic homogeneous medium having 
material parameters of permeability µ  and permittivityε .*

The partial differential equation known as the inhomogeneous Helmholtz 
scalar wave equation can be conveniently solved by means of the Green’s 
function. The Green’s function is the response to a unit impulse. It is extensively 
used in the solution to partial differential equations. The idea is this. The 
inhomogeneous form of ( ) ( ')r rLψ ϕ=  for the case of Eq. (5.5-5) is 
                                                 

*  This description of k as a wave number is more physical than the often used 
term propagation constant—reserving the term propagation constant for γ  
where jγ α β= + , α  is the attenuation constant, and β  is the phase 
constant.3
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 2 2( ) ( ) ( ) ( ')r r k r rLψ ψ ψ ϕ= ∇ + = , (5.5-6) 
 
where ( ')rϕ  is a known source function located at source positions 'r . The 
solution ( )rψ  located at r  is found by first finding the solution to 
 

 2 2( , ') ( , ') ( , ') ( ')G r r G r r k G r r r rL δ= ∇ + = − , (5.5-7) 

 
where the inhomogeneity term on the right-hand side of Eq. (5.5-7) is the Dirac 
delta function that has the properties 
 

 
0   where '  

( ')
 where '

r r
r r

r r
δ

≠⎧
− = ⎨ ∞ =⎩

 (5.5-8) 

 
and where 
 

 
v'

( ') v' =r r dδ −∫ 1  (5.5-9) 

 
where the integration over v' includes the source point 'r . For this reason, the 
Dirac delta function is referred to as a unit impulse. It is an impulse because of 
Eq. (5.5-8) and unit because of Eq. (5.5-9). Once G is determined, the solution to 
Eq. (5.5-6) is determined by 
 

 
v'

( ) ( , ') ( ') v'r G r r r dψ ϕ= ∫  (5.5-10) 

 
The point here is that because of the nature of the right-hand side of Eq. (5.5-7) 
given by Eq. (5.5-8) and Eq. (5.5-9), Eq. (5.5-7) is easier to solve than Eq. 
(5.5-6). Once G is determined, the product of G with the given source function 

( ')rϕ  becomes the integrand of Eq. (5.5-10), which can readily be integrated for 
the solution ( )rψ . 
 
5.5.3  Applications of Green’s mathematics 
 
In electromagnetics and structural dynamics, we often deal with a time lag 
between the cause and effect. That is, a stimulus occurs at one point in space and 
at a given instance in time that results in a field at another point in space and at a 
later time. In the case of electromagnetic effects, the field that results from a 
stimulating source must travel at a finite velocity before its effects are observed 
at a remote location. A stellar example is a supernova—through high-power 
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telescopes, we can currently observe what actually took place perhaps millions or 
even billions of years ago. Another example occurs every day when we observe 
and hear a conversation on television with someone on the other side of the earth, 
especially when a stationary satellite is used to relay the signal. There is a 
noticeable time delay between the narrator’s question and the responder’s 
answer. In fact we viewers have had to become accustomed to the annoyance 
because of this time lag. 
 

There are many other examples of this retardation in time between stimuli 
and the resulting field. The thunder heard from a bolt of lightning is the acoustic 
response that arrives much later than the observed lightning, because the sound 
travels at approximately one one-millionth that of the light. Acoustic waves are 
longitudinal waves in the sense that vibrations of the medium are aligned with 
the direction of travel through the medium. Both longitudinal (acoustic) waves as 
well as transverse (shear and torsional) waves can exist in solid materials. Each 
have independent velocities of travel and, thus, each experience a time 
retardation between their stimulating event and the observed stress and strain 
fields downstream from the stimulus. 
 

We will see in the following examples that Green’s functions and Green’s 
identities are indispensable in describing the resulting retarded fields for 
electromagnetic and structural dynamics fields eluded to above. 
 
5.5.3(a)  Retarded electric scalar potential 
 
The inhomogeneous Helmholtz wave equation for the electric scalar potential 

( , )V r t  at r  in 3-space (See Section 1.1.4 and Figure 1.1-1) called the field 
point and at time t, due to sources depicted by the volume charge density 

( ', ')r tρ  at positions 'r  in space called source points and at an earlier time , 
is 

't

 

 
2

2
2

( , ) ( ', ')
( , )

V r t r tV r t
t

ρµε
ε

∂
∇ − = −

∂
 (5.5-11) 

 
where µ  and ε  are the permeability and permittivity of the medium assumed to 
be homogeneous, i.e., uniform in space and not varying in time. Following the 
method of RWV9, let us take the Fourier transform of Eq. (5.5-11): 
 

 2 2 ( ', ')
( , ) ( , ) FT

FT FT

rV r V r t ρ ωω ω µε
ε

∇ + = −  (5.5-12) 
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where the transforms are defined by the Fourier integrals 
 

 ( , ) ( , )FT

j tV r V r t e dtωω
∞

−

−∞

= ∫  (5.5-13) 

 
and 

 '( ', ) ( ', ') 'FT

j tr r t e ωρ ω ρ
∞

−

−∞

= ∫ dt  (5.5-14) 

 
with inverse transforms given by 
 

 
1

( , ) ( , )
2 FT

j tV r t V r e dωω ω
π

∞

−∞

= ∫  (5.5-15) 

 
and 

 '1
( ', ') ( ', )

2 FT

j tr t r e dωρ ρ ω
π

∞

−∞

= ∫ ω  (5.5-16) 

 
A solution to Eq. (5.5-12) may be found by Green’s function methods, 

where the Green’s function is the solution to  
 

 2 2( , ') ( , ') ( ')G r r k G r r r rδ∇ + = − −  (5.5-17) 

 
where 2 2k ω µε=  and (r r ')δ −  is the Dirac delta function defined in Eq. 
(5.5-8) and Eq. (5.5-9). The minus sign is used to be consistent with Eq. (5.5-12). 
RWV5 shows that the solution to the above differential equation is 
 

 
'

( , ')
4 '

jk r reG r r
r rπ

± −

=
−

 (5.5-18) 

 
Taking the symmetrical form of Green’s scalar identity [Eq. (5.5-2)], letting 

GΨ =  and ( , )FTV rΦ = ω  we have 
 

                    
[ ]

2 2

v'

( , ') ( , ) ( , ) ( , ') v '

( , ') ( , ) ( , ) ( , ')

FT FT

FT FT

s

G r r V r V r G r r d

G r r V r V r G r r da

ω ω

ω ω

⎡ ⎤∇ − ∇⎣ ⎦

= ∇ − ∇

∫

∫v ⋅
       (5.5-19) 
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We let the surface S go to infinity to include all sources. G and V fall off as 1/R 
and the gradients  and VG V∇ G∇  fall off as 21 R , whereas da  increases as 

2R . Therefore, G V da∇ ⋅  and V G da∇ ⋅  vary as 1/R and therefore the right-hand 
side of Eq. (5.5-19) vanishes. Equation (5.5-19) then becomes 
 

 2 2

v'

( , ') ( , ) ( , ) ( , ') v ' 0FT FTG r r V r V r G r r dω ω⎡ ⎤∇ − ∇⎣ ⎦∫ =  (5.5-20) 

 
From Eq. (5.5-12), 
 

 2 2 ( ', )
( , ) ( , ) FT

FT FT

rV r k V r t ρ ωω
ε

∇ = − −  (5.5-21) 

 
and from Eq. (5.5-17), 
 

 2 2( , ') ( , ') ( ')G r r k G r r r rδ∇ = − − −  (5.5-22) 
 
Substituting Eq. (5.5-21) and Eq. (5.5-22) into Eq. (5.5-20), we have 
 

         

2

v' v'

2

v' v'

( ', )
( , ') ( ', ) v' ( , ') v'

( ', ) ( , ') v' ( ', ) ( ') v'= 0

FT
FT

FT FT

rG r r k V r d G r r d

V r k G r r d V r r r d

ρ ωω
ε

ω ω δ

− −

+ +

∫ ∫

∫ ∫ −
           (5.5-23) 

 
The first and third terms cancel and the fourth term is ( , )FTV r ω  through the 
properties of the Dirac delta function by Eq. (5.5-9). Thus, Eq. (5.5-23) becomes 
 

 
v'

( ', )
( , ) ( , ') v'FT

FT

rV r G r r dρ ωω
ε

= ∫  (5.5-24) 

 
Substituting Eq. (5.5-18) for G in Eq. (5.5-24), we have 
 

 
v'

( ', )
( , ) v'

4
FT

FT

jkRr eV r d
R

ρ ωω
πε

±

= ∫  (5.5-25) 

 
Applying Eq. (5.5-15), we have the inverse Fourier transform 
 

 
( )

v'

1 ( ', )
( , ) v'

4 2
FT

j t kRr eV r t d d
R

ωρ ω ω
πε π

∞ ±

−∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ ∫  (5.5-26) 
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With a time shift 't t k R ω= ± , the argument of the exponential of Eq. (5.5-26) 
becomes 'j te ω . Applying the inverse transform defined by Eq. (5.5-16) the 
integral in Eq. (5.5-26) becomes 
 

 
'( ', )

( ', ') ( ', )
2

FT

j tr e d r t r t k
ωρ ω ω ρ ρ

π

∞

−∞

≡ = ±∫ v  (5.5-27) 

 
and the unknown ( , )V r t  is 
 

 
v'

( ', )
( , ) v'

4

r t kvV r t d
R

ρ
πε
±

= ∫  (5.5-28) 

 
where 1v kω µε= = , which is the velocity of propagation of an infinite plane 
wave in the linear isotropic homogeneous medium having material parameters of 
permeability µ  and  permittivity .ε  In free space, of course, v c= , the free-
space velocity of light. Homogeneity refers to material that is not only uniform in 
space but also is not varying in time. 
 

Whereas the plus sign in Eqs. (5.5-25)–(5.5-28) does indeed lead to a 
mathematically valid solution to Eq. (5.5-11), namely the plus sign variation of 
Eq. (5.5-28), such a solution would imply that the response ( , )V r t  at r  
happens in advance of the stimulus ( ', )r t kvρ +  at 'r . Feynman refers to these 
solutions as advanced potentials.10 Since this is akin to causality, practicalities of 
the real world compel us toward the solution with the minus sign, which implies 
that the response takes place at a later time or is retarded in time. Thus, we have 
the retarded potential or the retarded electric scalar potential  
 

 
v'

( ', )
( , ) v'

4

r t kvV r t d
R

ρ
πε
−

= ∫  (5.5-29) 

 
5.5.3(b)  Retarded magnetic vector potential 
 
A similar development takes place for the magnetic vector potential. The 
inhomogeneous vector Helmholtz wave equation for the magnetic vector 
potential ( , )A r t  at the field point r  in 3-space and at time t, due to sources 
depicted by the current density vector field ( ', ')J r t  at positions 'r  in space 
called source points and at an earlier time , is 't
 
 

2
2

2

( , )
( , ) ( ', ')

A r tA r t J r t
t

µε µ∂
∇ − = −

∂
 (5.5-30) 
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The usual procedure for finding the resulting vector field ( , )A r t  in terms of the 
causal stimulus vector field ( ', ')J r t  is to reduce Eq. (5.5-30) to Cartesian 
coordinates and to notice that each of the three components take the same form as 
Eq. (5.5-11) except that the inhomogeneous term is ( ', ')J r tµ  instead of 

( ', ')r tρ ε .  
 

However, the case must be argued differently for other coordinate systems 
because components of the vector Laplacian of Eq. (5.5-30) are not simply the 
scalar Laplacians of the vector field components as they are in Cartesian 
coordinates. See the vector Laplacian in cylindrical coordinates [Eq. (4.7-14), for 
example]. 
 

Nevertheless, the power of Green’s mathematics again is our panacea. A 
generalized form of Green’s identity [Eq. (5.5-2)] is given by Blokh11

 

 
2 2

v'

( , ') ( , ) ( , ) ( , ')

( , ') ( , ) ( , ) ( , ') v '

FT FT

FT FT

s

G r r A r A r G r r da

G r r A r A r G r r d

ω ω

ω ω

⎡ ⎤∇ − ∇ ⋅⎣ ⎦

⎡ ⎤= ∇ − ∇⎣ ⎦

∫

∫

v
 (5.5-31) 

 
Again, we let the surface S go to infinity to include all sources. G and A  fall off 
as 1/R and the gradients G A∇  and A G∇  fall off as 21 R , whereas da  increases 
as 2R . Therefore, G V da∇ ⋅  and V G da∇ ⋅  vary as 1/R and therefore the left-
hand side of Eq. (5.5-31) vanishes as R→ ∞, becoming 
 

 2 2

v'

( , ') ( , ) ( , ) ( , ') v ' 0FT FTG r r A r A r G r r dω ω⎡ ⎤∇ − ∇⎣ ⎦∫ =  (5.5-32) 

 
which, by a parallel path from which we developed Eq. (5.5-29), leads to 
 

 
v'

( ', )
( , ) v'

4

J r t kvA r t d
R

µ
π
−

= ∫  (5.5-33) 

 
which is retarded potential or the retarded magnetic vector potential . 
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A-1 

A
B

A

B

A+B=G

B

A

B+A=G

 
 
Appendix A 

Vector Arithmetics and 
Applications 
  
As a supplement to the vector arithmetics covered in Section 2.4.1, this appendix 
serves two purposes. First, the commutative and associative laws of vector 
addition and subtraction are demonstrated. Secondly, these laws may be used to 
graphically and mathematically bisect vectors. Other vector arithmetic, such as 
multiplication and division issues, vector-vector dot, cross, and direct products 
are covered in Sections 2.4.2 and 2.4.3. 
 
Consider two vectors A  and B  as shown  
 
 
 
 
 
 
 
  
These can be added to yield G  as shown 
 
 
 
 
 
 
 
 
 
 
When the order is changed, namely A  being added to B , the same vector G  
results 
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C

(A+B)+C=H
G

C

A

C

B
(B+C)+A=H

Alternatively A and B  may be added by the following construction 
 
 
 
 
 
 
 
 
 
 
Thus, vector addition of two vectors is commutative, namely the sum of vectors 
is independent of the order in which they are added. 
 

                             ABBA +=+       (A-1) 
 

supporting Eq. 2.4-1. 
 

When a third vector C  
 
 
 
 
 
 

is added to ,BA +  the resultant vector CGC)BA(H +=++=  as shown 
 
 
 
 
 
 
 
 
 

This is the same as if C  were added to B  first and then A  added to the result 
 
 
 
 
 
 

B

A

A + B = G
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(A+C)+B=H B

C

A

-B
-B+A=D

A

G

A+B

A A
-B

B
D

A-B

Alternatively, if C  is added to A  first and then B  added to the result, we obtain 
the same vector .H  
 
 
 
 
 

 
 
 
 
 
Subtraction works the same. Consider DBA =−  

 
 
 
 
 
 
 
 
 
 
 
or alternatively, consider AB- +  as 
 
 
 
 
 
 
 
which yields the same result D  
 

Notice that A2  D  G =+  graphically 
 
 
 
  
 
 
 
 
 

(A-B)=D -B

A
B
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2B

G

-D

B

B

A

F=2B

B

B

-D

D

A A
E

and arithmetically 
 
 A2  B - A  B  A  D  G =++=+                             (A-2) 

 
 
Also notice that B2  D - G =  graphically 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
and arithmetically 
 

 B2  )B - A( - B  A  D - G =+=                           (A-3) 
 
Notice that if we define ,B2F and A2E ==  the point of the vector 

.E  B and F  A bisectsbisects  
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Appendix B 

Vector Calculus in Orthogonal 
Coordinate Systems 
 
This appendix first provides a graphical development of first-order vector 
differential operators in conventional Cartesian and cylindrical coordinates. The 
focus is in the use made of differential elements of length (DLs) and how DLs 
become the building blocks for the differential elements of area and volume used 
in the definitions of gradient, curl, and divergence (and, of course, any 
combination of these operators). Once this concept is established several tables 
are presented for detailing the salient parameters associated with other orthogonal 
coordinate systems. Perspective views of coordinate surfaces are then provided to 
give graphical views of the coordinate systems. 
 

The divergence and curl of a vector field are respectively defined in terms 
of a net outward flux as a differential volume approaches zero and a circulation 
as three orthogonal differential areas go to zero. These geometries involve the 
products of orthogonal differential lengths. Therefore, Sections B.1 and B.2 tie 
differential lengths in Cartesian coordinates to the volumes and areas associated 
with the divergence and curl, respectively. Section B.3 repeats Section B.1 for 
cylindrical coordinates as a first step towards curvilinear coordinates from the 
simplistic Cartesian—cylindrical being the only orthogonal system having only 
one curvilinear coordinate. 
 

Since the gradient is defined in terms of orthogonal differential lengths, it 
is already cast into an appropriate form for use with the differential-length tables 
that follow. Section B.4 summarizes the first three sections and provides a 
description of the geometry for the gradient differential operator. 
 

Section B.5 provides tables of the working parameters associated with 
these and several other orthogonal coordinate systems.1-9 Since the prior sections 
culminate with the expansions for DLs, these tables are therefore focused on the 
detailed expansion of differential lengths and are presented in each of the 
orthogonal coordinate systems with their respective transformations to Cartesian 
coordinates. Such expansions are essential in many practical applications 
involving vector fields, as well as for other fields regardless of tensor rank.  
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B.1 Cartesian Coordinate Geometry for the Divergence 
 
Figure B-1 provides the detailed Cartesian coordinate geometry for the 
differential volume involved in the mathematical description of the divergence. 
There are six surfaces making up the differential volume. These are described as 
Front, Back, Right, Left, Top, and Bottom, as shown in the figure. Each of the 
differential vector surfaces is defined by its respective corners and normal 
directions as 
 

 1 2ˆi i i ida u d d+ += � �  (B.1-1) 

 
and the differential volume is 
 
 1 2v i i id d d d+ += � � �  (B.1-2) 

 
where i=1,2,3, i+1=2,3,1 and i+2=3,1,2. 
 

In the case of Cartesian coordinates, i = x,y,z, i+1 = y,z,x and i+2 = z,x,y, 
respectively. In Fig. B-1 the arbitrary spatial point P is located at (x,y,z), which 
constitutes the origin “o” of the differential volume involved in the construction 
of the divergence [Eq. (4.4-1)]. From “o” the three differential lengths dx, dy and 
dz establish the points a, b and c, respectively. The points diagonal to “o” in the 
x-y, y-z and z-x planes are labeled d, e, and f, respectively, and the point P+dP 
located at , ,x dx y dy z dz+ + +  is labeled g, to finish out the eight corners of our 
differential volume dv. 
 

Therefore the Front surface adgf located at x+dx is denoted as 
ˆadgf x x dx

da u dy dz
+

= , where the outward normal is in the positive x-direction and 

x dx
dy dz

+
 is the magnitude of the area at x+dx. (In Cartesian coordinates dy dz  is 

invariant, but in all other coordinate systems the differential area may change.) 
Likewise the Back surface oceb located at x, is denoted as ˆoceb x x

da u dy dz= − , 
where the outward normal is in the negative x-direction. The remaining four 
surfaces are similarly constructed yielding ˆbegd y y dy

da u dx dz
+

= , 
ˆoafc y y

da u dx dz= − , ˆcfge z z dz
da u dx dy

+
= , and ˆobda z z

da u dx dy= − , for the Right, 
Left, Top, and Bottom, respectively. These are detailed in Fig. B-1. Finally the 
differential volume dv is denoted as vd dx dy dz= . 
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P+dP at

2 2 2ˆ ˆyd u d u dy= =� �

1 1 1ˆ ˆxd u d u dx= =� �

3 3 3ˆ ˆzd u d u dz= =� �

( , , )x dx y dy z dz+ + +

P at ( , , )x y z

g 

a 

b 

c 

d 

e 

f 

o 

point P ( , , )x y z

displaced point P+dP

at ( , , )x dx y dy z dz+ + +

y 

z 

x 

Front 

a d 

f g 

1 1
1 2 3ˆ ˆxq dq x dxadgfda u d d u dydz

+ +
= =� �

1ˆ ˆxu u=outward normal

outward normal 1ˆ ˆxu u− = −

Back 

o b 

c e 

1
1 2 3ˆ ˆxq xocebda u d d u dydz= − = −� �

 

Figure B-1.  Differential volume in Cartesian coordinates used in the 
development of the divergence (two pages). 
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Right 
outward normal 2ˆ ˆyu u=

2 2
2 1 3ˆ ˆyq dq y dybegdda u d d u dxdz

+ +
= =� �

b 

d

e 

g

outward normal 2ˆ ˆyu u− = −
Left 

2
2 1 3ˆ ˆyq yoafcda u d d u dxdz= − = −� �

o 

a 

c 

f 

Top outward normal 3ˆ ˆzu u=

3 3
3 1 2ˆ ˆzq dq z dzcfgeda u d d u dxdy+ += =� �

c e 

f g

Bottom outward normal 3ˆ ˆzu u− = −

3
3 1 2ˆ ˆzq zobdada u d d u dxdy= − = −� �

o

a

b

d

1 2 3vd d d d dxdydz= =� � �
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Following the procedure of Section 4.4.2 the divergence of a vector field 
ˆ ˆ ˆx x y y z zA u A u A u A= + +  in Cartesian coordinates becomes 

 

 yx z

Cartesian

AA A
A

x y z

∂∂ ∂∇ ⋅ = + +
∂ ∂ ∂

 (B.1-3) 

 
which is a scalar as expected from Table 4-1, row D, column v. 
 

Further, following the procedure of Section 4.7.4(a) a dyadic field 
 

 

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

x x xx x y xy x z xz

y x yx y y yy y z yz

z x zx z y zy z z zz

G u u G u u G u u G

u u G u u G u u G

u u G u u G u u G

= + +

+ + +

+ + +

 (B.1-4) 

 
has a divergence in Cartesian coordinates given by 
 

 

ˆ

ˆ

ˆ

yxxx zx
x

Cartesian

xy yy zy
y

yzxz zz
z

GG G
G u

x y z

G G G
u

x y z

GG G
u

x y z

∂ ∂ ∂∇ ⋅ = + + ∂ ∂ ∂ 

∂ ∂ ∂ + + + ∂ ∂ ∂ 

∂ ∂ ∂+ + + ∂ ∂ ∂ 

 (B.1-5) 

 
which is a vector consistent with the rules of Table 4-1, row D, column d. 
Equation (B.1-5) follows from Eq. (4.7-9) where , 1,2,3 , ,i j x y z= = , 
respectively, all three metric coefficients, h1, h2, and h3, are unity, and all unit 
vector derivatives in the second term of the square brackets of Eq. (4.7-9) are 
zero. 
 
B.2  Cartesian Coordinate Geometry for the Curl 
 
Figure B-2 provides the detailed Cartesian coordinate geometry for the 
differential surfaces involved in the mathematical description of each of the 
vector components of the curl [Eq. (4.5-1)]. There are three such orthogonal 
surfaces used in the definition of the components of the curl. These are the same 
as the Back, Left, and Bottom surfaces with the same corner labels as in Fig. B-1, 
except that their vector directions are all positive. As before, each of the 
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differential vector surfaces are defined by their respective corners and normal 
directions as 

 ˆobec x x x
da da u dy dz= = , (B.2-1) 

 

 ˆocfa y y y
da da u dz dx= =  (B.2-2) 

and 

 ˆoadb z z z
da da u dx dy= =  (B.2-3) 

 
From these the curl is determined in Cartesian coordinates following the 
procedure of Section 4.5.3 and outlined in Fig. B-2. 
 

Following the procedure of Section 4.5.3 the curl of a vector field 
ˆ ˆ ˆx x y y z zA u A u A u A= + +  in Cartesian coordinates becomes 

 

 

ˆ

ˆ

ˆ

yz
xCartesian

x z
y

y x
z

AA
A u

y z

A A
u

z x

A A
u

x y

∂ ∂∇ × = − ∂ ∂ 

∂ ∂ + − ∂ ∂ 

∂ ∂+ − ∂ ∂ 

 (B.2-4) 

 
which is a vector as expected from Table 4-1, row C, column v. 
 

Further following the procedure of Section 4.7.4(a) the curl of a dyadic 
field given by Eq. (B.1-4) in Cartesian coordinates is 
 

 

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

yx zy yy yzzx zz
xx xy xz

Cart

xy zyxx zx xz zz
yx yy yz

yx yy xyxx
zx zy

G G G GG G
G u u u

y z y z y z

G GG G G G
u u u

z x z x z x

G G GG
u u

x y x

∂ ∂ ∂ ∂     ∂ ∂∇ × = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     

∂ ∂ ∂ ∂ ∂ ∂   + − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂ ∂ ∂+ − + − ∂ ∂ ∂ ∂ 

ˆ̂ yz xz
zz

G G
u

y x y

∂   ∂+ −   ∂ ∂   

 (B.2-5) 

 
which is a dyadic consistent with the rules of Table 4-1, row C, column d. 
Equation (B.2-5) is a special case of Eq. (C.2-6) in the next appendix for a dyadic 
(second-rank tensor). An application of Eq. (B.2-5) can be found in Appendix D 
on page D-2. 
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y 

z 

x 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-2  Differential surfaces in Cartesian coordinates used in the 
development of the curl (two pages). 

 

o b

c e

1 2 31 ˆ ˆobec x x
da u d d da u dydz= = =� �

1( x ) ( x )xA A∇ = ∇

1 0
1

lim

b e c o

o b e c

a a∆ →

 + + +
 
 ∆
  

∫ ∫ ∫ ∫

( x ) yz
x
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A

y z

∂∂∇ = −
∂ ∂
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a 

o 

d 

b 

e c 
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dz
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in back corner
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o 

a 

f 

c 

o 

a 

b 

d 

 
 
 
 
 
 
 
 
 

2( x ) ( x ) yA A∇ = ∇

2 1 32
ˆ ˆy yocfada u d d da u dxdz= = =� �

2 0
2

lim

c f a o

o c f a

a a∆ →

 + + +
 
 ∆
  

∫ ∫ ∫ ∫

( x ) x z
y

A A
A

z x

∂ ∂∇ = −
∂ ∂

3( x ) ( x ) zA A∇ = ∇

3 0
3

lim

a d b o

o a d b

a a∆ →

 + + +
 
 ∆
  

∫ ∫ ∫ ∫

( x ) y x
z

A A
A

x y

∂ ∂∇ = −
∂ ∂

3 1 23 ˆ ẑ zoadbda u d d da u dxdy= = =� �
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B.3 Cylindrical Coordinate Geometry for the Divergence 
 
In the previous two sections the differential lengths were invariant with changes 
in coordinate position. This is because the metric coefficients h1, h2, and h3 are 
unity in the Cartesian system, and, thus, are not functions of the coordinate 
positions x,y,z. However, this simplicity is not the case in any other orthogonal 
coordinate system. The simplest generalization of this effect is seen in cylindrical 
coordinates, since the second metric coefficient h2 is not unity, but is given by 
 
 2h h rφ= =  (B.3-1) 

 
whereas, h1 and h3 remain unity. In fact it can be stated that  
 

The circular cylindrical coordinate system is the only non-
Cartesian orthogonal system having only one curvilinear 

coordinate, namely the azimuthal coordinate φ . 
 

Figure B-3 repeats the development of Fig. B-1 with the effects of Eq. 
(B.3-1) carefully taken into account in its development for the cylindrical system. 
In Fig. B-3 the arbitrary spatial point P is located at ( , , )r zφ , which constitutes 
the origin “o” of the differential volume involved in the construction of the 
divergence from Eq. (4.4-1). From “o” the three differential lengths 1 2,d d� � , and 

3d�  are ,dr r dφ , and dz , respectively. These establish the points a, b, and c, 
respectively, where  
 
 2 2 2d h dq r dφ= =�  (B.3-2) 

 
specifies the second differential length. The points diagonal to “o” in the 

- , - ,  and  -  planesr z z rφ φ  are labeled d, e, and f, respectively, and the point P+dP 
located at , ,r dr d z dzφ φ+ + +  is labeled g, to finish out the eight corners of dv.  
 

Notice that because of Eq. (B.3-2) all six of surfaces are affected by Eq. 
(B.3-1); however, two pairs of surfaces have the same area and one pair does not. 
Notice also that two pairs are rectangles and one pair is not. The pair that does 
not have the same area is the r coordinate pair as seen by 
 

 ˆadgf r r r dr
da da u r d dzφ+

+
= =  (B.3-3) 

 
which is labeled as the Front in Fig. B-3, and 
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 ˆoceb r r r
da da u r d dzφ−= = −  (B.3-4) 

which is labeled Back, and where rda +  and rda −  are the positively and 
negatively directed vector areas at r  and r dr+ , respectively. Although the 
Front and Back surfaces are rectangles, >r rda da+ −  because ( )r dr dr+ > . 
 

The other rectangular pair of surfaces is made up of the Left and Right 
sides. Whereas the scalar areas are equal, their directions are not, as seen by 
 

 ˆoafcda da u dr dzφ φ φ
−= = −  (B.3-5) 

 
and 
 

 ˆbegd
d

da da u dr dzφ φ φ φ
+

+
= =  (B.3-6) 

 
because dr and dz are the same at φ  and dφ φ+ , that is, da daφ φ− += ; but daφ −  
at φ is not collinear with daφ +  at dφ φ+  as evident from the Fig. B-3. 
 

The remaining pair is the Top and Bottom. These are  
 

 ˆcfge z z z dz
da da u dr r dφ+

+
= =  (B.3-7) 

 
and 

 

 ˆobda z z z
da da u dr r dφ−= = −  (B.3-8) 

 
which are equal in area but are not rectangles. 
 

Following the procedure of Section 4.4.2 the divergence of a vector field 
ˆ ˆ ˆr r z zA u A u A u Aφ φ= + +  in cylindrical coordinates becomes 

 

 
( ) ( )1 r z

cyl

ArA rA
A

r r z
φ

φ
∂∂ ∂ 

∇ ⋅ = + + ∂ ∂ ∂ 
 (B.3-9) 

 
which is a scalar as expected from Table 4-1, row D, column v. 
 

Further following the procedure of Section 4.7.4(a) the divergence of a 
dyadic field given by 

 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



B.3: Cylindrical Coordinate Geometry for the Divergence                                B-11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure B-3  Geometrical construct for the divergence in circular cylindrical 

coordinates. 
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ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

r r rr r r r z rz

r r z z

z r zr z z z z zz

G u u G u u G u u G
u u G u u G u u G
u u G u u G u u G

φ φ

φ φ φ φ φφ φ φ

φ φ

= + +

+ + +

+ + +

                         (B.3-10) 

 
in cylindrical coordinates is 
 

 

( )

( )

( )

ˆ

1 ˆ

ˆ

rrr zr
r

r z
r

cyl

zrz zz
z

GrG Gu G r
r z

rG G G
G u G r

r r z

GrG Gu r
r z

φ
φφ

φ φφ φ
φ φ

φ

φ

φ

φ

⎧ ⎫∂∂⎡ ⎤∂+ − +⎪ ⎪⎢ ⎥∂ ∂ ∂⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤∂ ∂ ∂⎪ ⎪∇ ⋅ = + + + +⎢ ⎥⎨ ⎬∂ ∂ ∂⎢ ⎥⎪ ⎪⎣ ⎦
⎪ ⎪∂∂⎡ ⎤∂⎪ ⎪+ + +⎢ ⎥⎪ ⎪∂ ∂ ∂⎣ ⎦⎩ ⎭

 (B.3-11) 

 
which is a vector consistent with the rules of Table 4-1, row D, column d. 
Equation (B.3-11) follows from Eq. (4.7-9) where , 1,2,3 , ,i j r zφ= = , 
respectively, with two metric coefficients, h1 and h3 being set to unity and 2h  
being set to r. Further, two of the coordinate unit vectors in the second term of 
the square brackets of Eq. (4.7-9) are nonzero as given by Eq. (4.3-21) and Eq. 
(4.3-22) resulting in the two terms of Eq. (B.3-11) that are shown without the 
partial derivatives, i.e., and rG Gφ φφ . Without these terms the divergence would, 
of course, be incorrect. 
 

When dealing with any orthogonal coordinate system other than 
Cartesian, coordinate derivatives of unit vectors must be taken 

into account in determining vector differential operator 
expansions. 

 
B.4 Summary of the Geometries for Divergence, Curl, and 

Gradient 
 
In the first three sections of this Appendix we have focused on the geometries of 
the divergence and curl that require the determination of differential lengths in 
order to obtain their respective volumes and areas. Since the gradient is already 
defined in terms of differential lengths, it was not necessary to provide the 
graphic details of the geometry for this vector differential operator; however, it is 
described below. 
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Sections B.1 and B.2 provided Cartesian coordinate geometries for the 
volume and areas needed for the divergence and curl differential operators. In 
Section B.1 six surfaces were used for the construction of the closed surface 
integral that made up the differential volume needed for the divergence. In 
Section B.2 only the back three surfaces were needed. These three surfaces made 
up the orthogonal bounded surfaces needed for the closed line integrals required 
for the three components of the curl. These geometrical areas and volume were 
broken down into products of two differential lengths for the surfaces and three 
differential lengths for the volume. 
 

The geometry for the gradient was considered unnecessary to develop 
because the three components of gradient would just be derived from three 
orthogonal differential vectors dx  from “o” to point a, dy  from “o” to point b 
and dz  from “o” to point c, referring to Figs. B-1, B-2, or B-3. 
 

Section B.3 provided the cylindrical coordinate geometry for divergence as 
a first step into considerations that come into play when dealing with curvilinear 
coordinates, since its azimuthal coordinate is curvilinear. In order to obtain the 
cylindrical coordinate geometry for the curl the three open surfaces needed 
would be obec for the r-component, ocfa for the φ -component and oadb for the 
z-component of the curl, referring to Fig. B-3. 
 

In each case the order taken leads to closed line integrals in the direction 
such that the vector components are positive by the right-hand rule. Finally, we 
may mentally construct the cylindrical coordinate geometry for the gradient by 
noting that the three components of the gradient in cylindrical coordinates would 
be derived from three orthogonal differential vectors dr  from “o” to point a, 
rdφ  from “o” to point b and dz  from “o” to point c. 
 
B.5 Orthogonal Coordinate System Parameters and Surface 

Graphics 
 
Since the above developments for divergence, curl, and gradient (and all of their 
combinations) stem from a precise description of differential elements of length, 
we next provide useful tables of several orthogonal coordinate systems that lead 
to differential elements of length and other parameters unique to each coordinate 
system. Finally, we graphically present the orthogonal coordinate surfaces for 
these systems. 

 
For each orthogonal coordinate system the tables that follow specify 
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• coordinates,  
• differentials of coordinates,  
• transformations from curvilinear to Cartesian coordinates,  
• unit vectors,  
• vector components,  
• metric coefficients leading to  
• differential elements of length, and 
• equations of coordinate surfaces. 

 
From such tables all of the vector differential operators discussed in this guide 
may be applied to any of these orthogonal coordinate systems that one may 
choose. Following each table, perspective graphical views of selected orthogonal 
surfaces are shown for each specific coordinate system 
 

The common four orthogonal systems—generalized orthogonal curvilinear 
coordinates (GOCCs), Cartesian (rectangular) coordinates, circular cylindrical 
coordinates, and spherical coordinates are presented Table B-1. The most general 
system of orthogonal coordinates is GOCCs shown in the first column of 
coordinates. Here all three metric coefficients are functions of all three 
coordinates. All orthogonal coordinate systems stem from GOCCs. Therefore, 
once any vector differential operator is determined in GOCCs it may readily be 
expressed in any orthogonal coordinate system by the proper substitution of 
coordinate variables and metric coefficients as specified by the tables. 
 

At the other end of the generalization spectrum is Cartesian coordinates, 
shown in the second column of coordinates in Table B-1. The Cartesian system 
contains zero curvilinearity, that is, all three metric coefficients are unity and the 
DLs are just dx, dy, and dz as noted in Sections B.1 and B.2 above. The first level 
of curvilinearity is circular cylindrical coordinates, having only one nonunity 
metric coefficient as explained in Section B.3. Spherical coordinates comprise 
the last column of the table, having two curvilinear coordinates. Figures B-4 
through B-6 graphically present coordinate surfaces for these three coordinate 
systems, namely Cartesian, cylindrical, and spherical, respectively. 

 
Table B-2 compares three other cylindrical systems—elliptic cylindrical, 

parabolic cylindrical, and bipolar cylindrical. Bipolar cylindrical is extremely 
useful in describing the fields associated with two-wire transmission lines. 
Coordinate surfaces for these three systems are shown in Figs. B-7 through B-9. 
 

Table B-3 provides two spheroidal systems—prolate and oblate—as 
graphically depicted in Figs. B-10 and B-11. Figures B-10(a) and B-11(a) first 
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show their respective spheroids alone. Figure B-10(b) displays two-sheeted 
hyperboloids that have the same foci as does the prolate spheroid. In contrast, 
Fig. B-11(b) displays the one-sheeted hyperboloid whose foci constitutes a 
concentric circle around the girth of the hyperboloid. This same circle is the foci 
of the oblate spheroid. Finally, the spheroid and hyperboloid surfaces are 
combined together with their respective φ planes, that are parallel with the z 
axes, to form the orthogonal systems. 
 

Tables B-4 and B-5 and Figs. B-12 and B-13 present coordinate parameters 
and surfaces, respectively, for sphero-conal and toroidal systems.  
 

Although there are hundreds of orthogonal coordinate systems, this brief 
review is intended to provide selected examples that range from the common to 
the more esoteric. 
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Table B-1  The Common Four Orthogonal Coordinate Systems 
 

Coordinate 
Systems→ 

& Parameters↓ 

Generalized 
Curvilinear 

Cartesian 
Circular 

Cylindrical 
Spherical 

Coordinates 

and their 

range of values 

1

2

3

q
q
q

 
x
y
z

−∞ < < ∞
−∞ < < ∞
−∞ < < ∞

 

0 (or )
0 2

cr r

z

φ π
≤ <∞

≤ ≤
−∞ < < ∞

 

0 (or )
0
0 2

sr r
θ π
φ π

≤ <∞
≤ ≤
≤ ≤

 

Transformation 
to 

Cartesian 
coordinates 

1

2

3

x q
y q
z q

=
=
=

  
 cos 
 sin 

x r
y r

z z

φ
φ

=
=

=
 

 sin  cos 
 sin  sin 

 cos  

x r
y r

z r

θ φ
θ φ

θ

=
=

=
 

Orthogonal Unit 
Vectors 1 2 3ˆ ˆ ˆu ,u ,u  x y zˆ ˆ ˆu ,u ,u  r zˆ ˆ ˆu ,u ,uφ  rˆ ˆ ˆu ,u ,uθ φ  

Differentials of 
Coordinates 1 2 3d q d q q, ,d  dx,dy,dz  

,  or
,c

dr d ,dz
dr d ,dz

φ
φ  

, or
,s

dr d ,d
dr d ,d

θ φ
θ φ  

Components of 
the vector A  1 2 3A ,A ,A  x y zA ,A ,A  r zA ,A ,Aφ  rA ,A ,Aθ φ  

Metric, Lamé 
Coefficients, or 

scale factors 

1 1 2 3

2 1 2 3

3 1 2 3

h ( q ,q ,q )
h ( q ,q ,q )
h ( q ,q ,q )

 
1
1
1

 
1

1
r  

1

sin
r

r θ
 

Differential 
Elements of 

Length 

1 1 1

2 2 2

3 3 3

dl h dq
dl h dq
dl h dq

=
=
=

 
dx
dy
dz

  
dr

r d
dz

φ  
sin

dr
r d

r d
θ

θ φ
 

Description of 
Coordinate 
Surfaces 

 three
orthogonal

planes

x x
y y
z z

=
=
=

 

2 2

1

cylinders;
tan
halfplanes 
from the 
   z axis;

planes
z axis.

y
x

x y r

z z,

φ−

+ =

=

=
⊥

 

2 2 2

1

1

 spheres;
cos

 z-axis cones
tan
halfplanes 

   from the
z axis.

z
r

y
x

x y z r

θ

φ

−

−

+ + =

=

=
 

Coordinate 
Surface 

Graphics 
 Fig. B-4 Fig. B-5 Fig. B-6 
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x

y

z

x

y

z

x

y

z

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure B-4   
Cartesian coordinate surfaces 
 

 
 
 
 
 
 
 

                                                                               Figure B-5 
                   Cylindrical coordinate surfaces 

 
 
 
 
 
 
 
 
 
 
 
 

Figure B-6                                                                                          
Spherical coordinate surfaces                               
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Table B-2  Other Cylindrically based Coordinate Systems 
 

Coordinate 
Systems→ 

& Parameters↓ 

Elliptic 
cylindrical 

Parabolic 
Cylindrical 

Bipolar 
cylindrical 

Coordinates 
and their 

range of values 

1
1 1

z

ξ
η
≥

− ≤ ≤
−∞≤ ≤∞

 
z

ξ
η

−∞ ≤ ≤ ∞
−∞ ≤ ≤ ∞
−∞ ≤ ≤ ∞

 0 2
z

ξ
η π

−∞ ≤ ≤ ∞
≤ ≤

−∞ ≤ ≤ ∞
 

Transformation 
to 

Cartesian 
coordinates 

( )( )2 21 1

e

e

x c

y c

z z

ξη
ξ η
=

= − −
=
 

2 21

2

x

y ( )

z z

ξη

ξ η

=

= −

=

 

 sinh 

cosh cos 
 sin 

cosh cos 

b

b

c
x

c
y

z z

ξ
ξ η

η
ξ η

=
−

=
−

=

 

Orthogonal Unit 
Vectors zˆ ˆ ˆu ,u ,uξ η  zˆ ˆ ˆu ,u ,uξ η  zˆ ˆ ˆu ,u ,uξ η  

Differentials of 
Coordinates 

d ,d ,dzξ η  d ,d ,dzξ η  d ,d ,dzξ η  

Components of the 
vector A  zA ,A ,Aξ η  zA ,A ,Aξ η  zA ,A ,Aξ η  

Metric 
Coefficients, Lamé 

Coefficients, or 
scale factors 

2 2

2

2 2

2

1

1
1

e

e

c

c

ξ η
ξ

ξ η
η

−
−

−
−

 

2 2

2 2

1

ξ η

ξ η

+

+  

cosh cos 

cosh cos 
1

b

b

c

c
ξ η

ξ η

−

−
 

Differential 
Elements of 

Length 

2 2

2

2 2

2

1

1

e

e

c d

c d

dz

ξ η ξ
ξ

ξ η η
η

−
−

−
−

 

2 2

2 2

d

d

dz

ξ η ξ

ξ η η

+

+  

cosh cos 

cosh cos 

b

b

c
d

c
d

dz

ξ
ξ η

η
ξ η

−

−
 

Description of 
Coordinate 

Surfaces 

2 2
2

2 2

2 2
2

2 2

hyperbolic cylinders;

1
elliptic cylinders;

1

planes  z axis.

x y
a

x y
a

z z

ξ ξ

η η

+ =
−

− =
−

=
⊥

 

2 2 2

2 2 2

hyperbolic cylinders;

hyperbolic cylinders;

planes  z axis.

x y y

x y y

z z

ξ

η

= + −

= + +

=
⊥

 

( )

( )

2 2

2

22

2

 x axis circular cylinders;

y axis circular cylinders;

coth
csch

cot
csc

planes  z axis.

b

b

b

b

x c y
c

x y c
c

z z

ξ
ξ

η
η

− +
=

+ −
=

=
⊥

 

Coordinate Surface 
Graphics Fig. B-7 Fig. B-8 Fig B-9 
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x

y

z

x

y

z

x

y

z

 
 
 
 
 
 
 
 
 
 
 

Figure B-7 
Elliptic cylindrical surfaces 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
                                                    Figure B-8 

Parabolic cylindrical surfaces 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure B-9 
Bipolar cylindrical surfaces 
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Table B-3  Spheroidal Coordinate Systems 
 

Coordinate 
Systems→ 

& Parameters↓ 

 
Confocal prolate 

spheroidal 

 
Confocal oblate 

spheroidal 

Coordinates 
and their 

range of values 

1

0

0 2

ξ
η π
φ π

≥
≤ ≤
≤ ≤

 

1

0

0 2

ξ
η π
φ π

≥
≤ ≤
≤ ≤

 

Transformation 
to 

Cartesian 
coordinates 

sinh sin cos

sinh sin sin

cosh cos

p

p

p

x c

y c

z c

ξ η φ

ξ η φ

ξ η

=

=

=

 

cosh cos cos

cosh cos sin

sinh sin

o

o

o

x c

y c

z c

ξ η φ

ξ η φ

ξ η

=

=

=

 

Orthogonal 
Unit Vectors 

ˆ ˆ ˆu ,u ,uξ η φ  ˆ ˆ ˆu ,u ,uξ η φ  

Differentials of 
Coordinates 

d ,d ,dξ η φ  d ,d ,dξ η φ  

Components of 
the vector A  

A ,A .Aξ η φ  A ,A .Aξ η φ  

Metric 
Coefficients, 

Lamé 
Coefficients, or 

scale factors 

2 2

2 2

sinh sin

sinh sin

sinh sin

p

p

p

c

c

c

ξ η

ξ η
ξ η

−

−  

2 2

2 2

sinh sin

sinh sin

cosh cos

o

o

o

c

c

c

ξ η

ξ η
ξ η

−

−  

Differential 
Elements of 

Length 

2 2

2 2

sinh sin

sinh sin

sinh sin

p

p

p

d

d

d

c

c

c

ξ

η

φ

ξ η

ξ η
ξ η

−

−  

2 2

2 2

sinh sin

sinh sin

cosh cos

o

o

o

c d

c d

c d

ξ η ξ

ξ η η

ξ η φ

−

−  

Description of 
Coordinate 

Surfaces 

2 2 2
2

2 2

2 2 2
2

2 2

1

z

sinh cosh

z

sin cos

tan

prolate ellipsoids;

2-sheet hyperboloids;

halfplanes 
         from the

z axis.

p

p

y
x

x y
c

x y
c

ξ ξ

η η

φ−

+
+ =

+
− = −

=

 

1

2 2 2
2

2 2

2 2 2
2

2 2

tan

z

sinh cosh
oblate ellipsoids;

z

sin cos
1-sheet hyperboloids;

halfplanes 
         from the

z axis.

o

o

y
x

x y
c

x y
c

φ

ξ ξ

η η

− =

+ + =

+ − = −
 

Coordinate 
Surface 

Graphics 
Fig. B-10 Fig. B-11 
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(b)  One-sheet hyperboloids 

x

y

z

Figure B-11 
Oblate spheroidal surfaces 

(a)  Oblate spheroid 
 

(b) Two-sheet hyperboloids 

(a) Prolate spheroid 

x
y

z

Figure B-10 
Prolate spheroidal surfaces 
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Table B-4  Sphero-conal Coordinate System 
 

Coordinate Systems→ 
& Parameters↓ 

 
Sphero-conal 

Coordinates 
and their 

range of values 2 2

0           0 1

0    0 1

0 2 1

r k

k'

k k '

θ π
φ π

≥ ≤ ≤
≤ ≤ ≤ ≤

≤ ≤ + =

 

Transformation 
to 

Cartesian 
coordinates 

2 2

2 2

 sin  cos 

sin 1 cos

cos 1 sin

x r

y r k

z r k '

θ φ

φ θ

θ φ

=

= −

= −

 

Orthogonal Unit Vectors rˆ ˆ ˆu ,u ,uθ φ  

Differentials of Coordinates dr,d ,dθ φ  

Components of the vector A  rA ,A ,Aθ φ  

Metric Coefficients, Lamé 
Coefficients, or scale factors 

2 2 2 2

2 2

2 2 2 2

2 2

1

sin cos

1 cos

sin cos

1 sin

k k '
r

k

k k '
r

k '

θ φ
θ

θ φ
φ

+
−

+
−

 

Differential Elements of Length 

2 2 2 2

2 2

2 2 2 2

2 2

sin cos

1 cos

sin cos

1 sin

dr

k k'
r d

k

k k'
r d

k '

θ φ θ
θ

θ φ φ
φ

+
−

+
−

 

Description of Coordinate 
Surfaces 

2 2 2

0

2 2 2

02 2 2 2 2

2 2 2

02 2 2 2 2

2 2 2 2

spheres with radius ;

z
0   elliptic cones ;

z
0     elliptic cones ;

0

x y z r r r

x y

b c
x y

b c
c b .

τ τ
τ τ τ

λ λ
λ λ λ

τ λ

+ + = =

+ − = =
− −

− − = =
− −

> > > >

 

Coordinate Surface Graphics Fig. 12 
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Figure B-12  Sphero-conal coordinate surfaces 
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Table B-5  Toroidal Coordinate System 
 

Coordinate Systems→ 
& Parameters↓ 

 
Toroidal 

Coordinates 
and their 

range of values 
0 2

0 2

ξ
η π
φ π

−∞ ≥ ≥ ∞
≤ ≤
≤ ≤

 

Transformation 
to 

Cartesian 
coordinates 

cosh cos cos

cosh cos sin

sinh sin

o

o

o

x c

y c

z c

ξ η φ

ξ η φ

ξ η

=

=

=

 

Orthogonal Unit 
Vectors 

ˆ ˆ ˆu ,u ,uξ η φ  

Differentials of 
Coordinates 

d ,d ,dξ η φ  

Components of the 
vector A  

A ,A .Aξ η φ  

Metric Coefficients, 
Lamé Coefficients, or 

scale factors 

2 2

2 2

sinh sin

sinh sin

cosh cos

o

o

o

c

c

c

ξ η

ξ η
ξ η

−

−  

Differential Elements 
of Length 

2 2

2 2

sinh sin

sinh sin

cosh cos

o

o

o

c d

c d

c d

ξ η ξ

ξ η η

ξ η φ

−

−  

Description of 
Coordinate Surfaces 

( ) ( )

1

2 22 2 2

2
22 2 2 2

tan

sin cot

spheres;

sinh coth z

tores or anchor rings;

   halfplanes from the z axis.

t

t

y
x

x y z - a c

x y a c

φ

η η

ξ ξ

− =

 + − =
 

 + − + =
   

Coordinate Surface 
Graphics Fig. 13 
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Figure B-13  Toroidal coordinate surfaces 
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C-1 

 
 
Appendix C   

Intermediate Tensor Calculus in 
Support of Chapters 3 and 4 
Andrey Beyle* and Bernard Maxum 
 
This appendix details the proofs of several important postulations used in 
Chapters 3 and 4. Each of these proofs is performed for tensors of general rank 
expressed in explicit standard notation.** Section C.1 provides the precise 
formulation of the use of this notation for general rank tensors. In addition the 
dot-, cross-, and tensor-product operations are shown for general rank tensors 
with the introduction of a generalized operator symbol denoted by an asterisk 
“*” used to denote any one of these three operators. 
 

Section C.2 deals with properties of vector differential operators of first 
and second order. It has six subsections. In Section C.2.1 the rank progression, 
cited at the bottom of page 3-21 for dot-, cross-, and tensor-product operators, is 
demonstrated for vectors and general-rank tensors. The subsequent four 
subsections provide proofs pertaining to crucial properties of first- and second-
order vector differential operations on general rank tensor operands used 
throughout Chapter 4, including Tables 4-1 and 4-2. Finally, Section C.2.6 gives 
a proof of the Lagrange identity [Eq. (4.7-25)] for tensors of general rank. 
 

The divergence operator of Eq. (4.7-7) in Section 4.7.4(a) was developed 
inductively. It was applied to a vector [Eq. (4.4-22)] and a dyadic [Eq. (4.7-9)] 
and cited for application to any tensor. Section C.3 gives a deductive proof of its 
general application to a tensor. 
 

Finally, in Section C.4 we demonstrate that for all but Cartesian 
coordinates it is necessary to consider the derivative nature of the nabla operator 
as well as its dot-, cross-, and tensor-product nature. Thus, the tendency of 
depicting the divergence, curl, and gradient operators as analogous to dot, cross, 
and tensor products is shown to be false (except for Cartesian coordinates). 

                                                 
* Co-author for this appendix 
**   See Section 1.1 for a description of various notational forms. Explicit standard 

notation is described in Section 1.1.7(a) on page 1-11. 
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C-2      Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4 
 

 

C.1  Explicit Standard Notation for General Rank Tensors  
 
We first represent a tensor of general rank in explicit standard notation as 
 

 ( )3 3 3

1 1 1

…
ˆ ˆ ˆi ji jk k

i j k
T T u u u

= = =
∑ ∑ ∑=

�

� �   (C.1-1) 

 
The general rank tensor 

…

T  is shown with three overbars and the ellipsis “�” 
overmarking indicating a general number of overbars corresponding to the tensor 
rank. Since three overbars are explicitly depicted, three summations are shown 
followed by an ellipsis indicating the number of summations corresponding to 
the rank. The summations are taken from 1 to 3 for 3D space. The symbol i jkT

�

 
represents the thi j k�  scalar component of the tensor 

…

T . The “ ˆ ˆ ˆi j ku u u � ” 
represents the generalized unitary tensor and are shown as “direct” products.* 
Another form of Eq. (C.1-1) can show the “tensor” products explicitly. Thus 
(C.1-1) is equivalently expressed as 

 

 ( )3 3 3

1 1 1

…
ˆ ˆ ˆi ji jk k

i j k
T T u u u

= = =
⊗ ⊗ ⊗∑ ∑ ∑=

�

� �   (C.1-2) 

 
Using the so-called Rule of Einstein,1 the summations over repeated 

indices are implied and are omitted for simplicity. Therefore Eq. (C.1-2) could be 
written as 

 
…

ˆ ˆ ˆi j k i j kT u u uT ⊗ ⊗ ⊗=
�

�  (C.1-3) 

 
Equation (C.1-1), when combined with the Rule of Einstein, yields an even 

more concise form to express our general rank tensor 
…

T  as 
 

…
ˆ ˆ ˆi j k i j kT u u uT =

�

�    (C.1-4) 

 
In order to operate on general rank tensors, both the beginning and the end 

indices need to be explicit. Thus a z-rank tensor 
…

T  operating on an ω -rank 
tensor 

…

U  could be expressed as 

                                                
*  See the footnote on page 2-7 from Section 2.4.3 describing the “direct” product as 

synonymous with “tensor” product, denoted with the symbol ⊗ , which implies that 
all possible combinations of components are taken. 
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( )( )

*ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ*

ˆ ˆ ˆ ˆ ˆ ˆ

x yi ji j k x y z k

i j ki jk x y z

z

zx yu u u u u u

T U u u u u u u u u u u u u

u u u u u uT U χ ψ ω

γ χ ψ ωαβ γ χψ ω β

α γβαβ γ χψ ω

α

   
   
   

=
� �

� �

� �

� �

 (C.1-5) 

 
where the asterisk “ * ” denotes either a dot-, cross-, or tensor-product operation. 
In other words, the last unit vector of the first tensor operates on the first unit 
vector of the second tensor. 
 
Application to the dyadic-dyadic dot product 
 
As an example, let us first apply Eq. (C.1-5) to the case of the dyadic dot product 
with another dyadic that was covered in Section 3.4.2. In this case Eq. (C.1-5) is 
written as 
 

 ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆj m n m n m n n ni j i i j jm i i j j n iu u u u u uT U T U T U u uδ⋅ = =  (C.1-6) 

 
where the Kronecker delta jmδ  was defined by Eq. (2.4-12). This expression is 
equivalent to Eq. (3.4-12), which is apparent after substituting T for A, U for B 
and adjusting for the change to tensor notation. That is, the tensor notation 
representation for Eq. (C.1-6) is 
 

ij jn inT U V⋅ =  (C.1-7) 

 
where the three double-subscripted quantities are tensors of rank two, i.e. 
dyadics, and where inV  in tensor notation is ˆ ˆni j j n iT U u u  in explicit standard 
notation. Note also that the i jT  in Eq. (C.1-6) is a scalar component of the dyadic 
tensor T  whereas ijT  in Eq. (C.1-7) is the dyadic tensor T . As explained in the 
paragraph following Eq. (3.3-5), these are distinguishable by the spacing of the 
subscripts. 
 

If we repeat the above exercise by first applying the form (C.1-1), the 
manipulation of the summation signs becomes explicit. Thus the dot product 
takes the form 
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( ) ( )
3 3 3 3

1 1 1 1

3 3 3 3 3 33

11 1 1 1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

i j i j m n m n
i j m n

i j m n jm i n i j j n i n
ni j m i j n

T u u U u u

T U u u T U u u

T U

δ

= = = =

== = = = = =

   
   

  
⋅ = ⋅

= =∑

∑∑ ∑∑

∑∑∑ ∑∑∑

 (C.1-8) 

 
One can see how the dot product subtracts two from the sum of the ranks 

of the two dyadics. That is, T  and U  each have a rank of two depicted by the 
unit dyads ˆ ˆi ju u  and ˆ ˆm nu u , respectively, and of the resulting 81 components, 54 
are zero due to the inside dot products ˆ ˆmju u⋅  when j m≠ . The remaining 27 
terms survive when j m= . The Kronecker delta jmδ , defined by Eq. (2.4-12), 
essentially says all of this in one convenient symbol. Of the surviving 27 unit 
dyads ˆ ˆniu u , only nine are unique, namely the nine combinations of i and n 
running from 1 to 3. Thus from the r.h.s. of Eq. (C.1-8), the resultant has a rank 
of two. Notice how the Kronecker delta “kills” the mth summation sign leaving 
the inner j summation to be taken over both i jT  and j nU . Notice also that the 
r.h.s. denotes a dyadic with nine components arising from the i and n 
summations. Notice also that each of the nine components contains three scalar 
terms arising from the j summation. 
 

The above discussion may become more apparent for those new to tensors, 
by expanding Eq. (C.1-8) into its terms and components as 
 

( ) ( ) ( )
( ) ( ) ( )
( )

1 1 11 11 12 21 13 31 1 2 11 12 12 22 13 32 1 3 11 13 12 23 13 33

2 1 21 11 22 21 23 31 2 2 21 12 22 22 23 32 2 3 21 13 22 23 23 33

3 1 31 11 32 21 33 31 3 2 31 12

ˆ ˆ ˆ ˆ ˆ ˆu u T U T U T U u u T U T U T U u u T U T U T U

ˆ ˆ ˆ ˆ ˆ ˆu u T U T U T U u u T U T U T U u u T U T U T U

ˆ ˆ ˆ ˆu u T U T U T U u u T U T

T U
+ + + + + +

+ + + + + +

+ + +

⋅ =
( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

32 22 33 32 3 3 31 13 32 23 33 33

1 1 11 1 2 12 1 3 13

2 1 21 2 2 22 2 3 23

3 1 31 3 2 32 3 3 33

ˆ ˆU T U u u T U T U T U

ˆ ˆ ˆ ˆ ˆ ˆu u V u u V u u V

ˆ ˆ ˆ ˆ ˆ ˆu u V u u V u u V

ˆ ˆ ˆ ˆ ˆ ˆu u V u u V u u V

+ + +

 
 
 
  

 
 =  
  

 (C.1-9) 
 
where the scalar components of V  are related to the scalar components of T  and 
U  through Eq. (C.1-7) as 
 

3

1
i j jkik

j
T UV =

=
∑  (C.1-10) 
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C.2 Properties of First- and Second-Order Vector Differential 
Operators on Tensors 

 
This section demonstrates key properties of first- and second-order vector 
differential operations on scalars, vectors, dyadics, and general-rank tensors cited 
in Tables 4-1 and 4-2 and used throughout Chapter 4. In the first subsection 
(Section C.2.1) the rank progression cited in Table 4-1 resulting from div, curl, 
and grad is shown. The zero values postulated in the table of second-order 
differential operator resultant forms given in Table 4-2 are developed in the next 
two subsections. That the divergence of the curl is zero (DCT = 0) and the curl of 
the gradient is zero (CGT = 0) are shown in Sections C.2.2 and C.2.3, 
respectively. The reverse of these operations, however, are, in general, nonzero, 
namely (CDT ≠ 0) and (GCT ≠ 0). These are demonstrated in Sections C.2.4 and 
C.2.5, respectively. Finally, the application of the Lagrange identity to general-
rank tensors is demonstrated in Section C.2.6. 

 
These demonstrations and proofs are made for the general-rank tensor. 

However, even though the operand is generalized, the coordinate system need not 
be, for if we can show these proofs in one orthogonal coordinate system it must 
be so for all orthogonal systems. We choose to do these proofs in Cartesian 
coordinates to avoid the cumbersomeness of having to deal with coordinate 
derivatives of unit vectors. In doing so, there is no loss in generality for the 
purpose of these proofs. 
 
C.2.1   First-order vector differential operators with vector and 

generalized tensor operands 
 
In Cartesian coordinates the nabla operator can be written using Einstein Rule1

 

ˆ ˆi i i
i

u u
x
∂∇ = ∇ =
∂

    (C.2-1) 

 
and follows the same rules as a vector. Therefore the divergence and curl of the 
vector A  become 
 

( )ˆˆ ˆ ˆk k
i ik k k ik

i i i
u

A A i

i

AA u A u u
x x x

δ
⎛ ⎞

⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∂ ∂
x
∂∂∇⋅ = ⋅ = = =

∂ ∂ ∂ ∂
 (C.2-2) 
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( )ˆ ˆˆ ˆ ˆk k
i ik k k ikl l

i i i

u u
A A

A u A u u
x x x

 
  
 

∂ ∂∂∇× = × = × = ∈
∂ ∂ ∂

 (C.2-3) 

 
where the Levi-Civita symbol ikl∈ , which was defined in Eq. (2.4-27), is critical 
to the “cross” operation used in cross products and curl operators. Finally, the 
gradient of the vector A  becomes 
 

( )

( )

ˆˆ ˆ ˆ

ˆ ˆ      

k
i ik k k

i i

k
i k

i

u
A

A u A u u
x x

A
A u u

x

 
  
 

∂∂∇ ⊗ = ⊗ = ⊗∂ ∂
∂= ∇ =
∂

  (C.2-4) 

 
where the second line is depicted in “direct” product form (without the tensor-
product symbol). In the above three expressions the Cartesian coordinate 
derivatives of Cartesian unit vectors are all zero and thus are omitted. This is the 
advantage of performing this development in Cartesian coordinates.* 
 

Next the divergence, curl, and gradient vector operators are developed for 
general rank tensors. Expressions similar to Eq. (C.2-2) through (C.2-4) can be 
obtained for the results of application of the nabla operator to general rank 
tensors because only the first unit vector of the tensor will be participating in the 
operation. Using the form (C.1-4) to express the generalized tensor 

…

B  and 
replacing the first tensor with the vector nabla operator (C.2-1), we may apply 
Eq. (C.1-5) to obtain the divergence, curl, and gradient operations on a 
generalized tensor. Thus, the divergence of a generalized tensor in Cartesian 
coordinates is 

...

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ

i jjk l k l
i

jk l
i j k l

i

jk l ik l
ij k l k l

i i

u u u

u u

u u u u

B u B
x

B
u u

x

B B
x x

 
 
 
 

 
 
 

⋅

∂∇⋅ = ⋅∂
∂

= ∂
∂ ∂

= =∂ ∂

�

�

�
�

�

�

� �δ

        (C.2-5) 

                                                
*  Caution! This procedure is valid only when Cartesian coordinates are being used 

because only in Cartesian coordinates are all coordinate derivatives of unit vectors 
zero. For any curvilinear coordinate system, even cylindrical coordinates, coordinate 
derivatives of unit vectors must be considered. 
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Likewise, the curl of a generalized tensor in Cartesian coordinates is 
 

( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ

i jj kl k l
i

jk l jk l
i j k l ijh h k l

i i

u u u

u u u u u

B u B
x

B B
u u

x x

×

×

 
 
 
 

∈

∂∇× = ∂
∂ ∂

= =∂ ∂

�

� �

�

� �

 (C.2-6) 

 
and the gradient of a generalized tensor in Cartesian coordinates is 
 

( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ i j

i jjkl k l
i

jk l jk l
i j k l k l

i i

u u u

u u u u u u

B u B
x

B B
u u

x x

 
 
 
 

∂∇ = ∂
∂ ∂

= =∂ ∂

�

� �

�

� �

 (C.2-7) 

 
By taking careful notice of the final forms of each of the three vector differential 
operators above, it is readily determined that  
 

• The divergence decreases the rank of the operand tensor by one, 
• The curl conserves the rank of the operand tensor, and 
• The gradient increases the rank of the operand tensor by one. 

 
Thus, the right-hand column of Table 4-1 is demonstrated (as are the preceding 
columns, which are special cases of the right-hand column). 
 
C.2.2 Proof that the divergence of the curl of any tensor is zero 
 

By performing proofs of the zeros that appear in Table 4-2 for DC and CG 

operations on the generalized tensor operand, we not only demonstrate the zeros 

of part (d) of that table, but also the zeros in parts (c) and (b) and the zero in (a) 

as well. This is because the operands for these earlier parts are special cases of 

tensors. In this subsection we show that the divergence of the curl of any tensor is 

zero. This applies to tensors having a rank 1Rn ≥ , which excludes scalars, since 

the curl of a scalar is nonexistent. See Table 4-2(a). 

 

Let’s replace the dummy index i in Eq. (C.2-6), the expression for the curl 

of a general-rank tensor, by another symbol “g.” This is necessary because we 

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



C-8      Appendix C: Intermediate Tensor Calculus in Support of Chapters 3 and 4 

will reserve the index i for the second operation, namely the divergence. The 

result of the curl operation can be denoted as a new tensor 
…

C . Thus from Eq. 

(C.2-6), 
 

ˆ ˆ ˆjk l
gjh h k l

g
u u u

B
C B x ∈

∂
=∇× =

∂
" "   (C.2-8) 

 
which, of course, is a different tensor but having the same rank as the operand 

tensor 
…

B . 

 
Next, we express the divergence of 

…

C , using Eq. (C.2-5) as 
 

( )

... ...

...

2

2

2
...

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

jk l
gjh h k lg

jk l
i h gjh k lg i

jk l
ih gjh k lg i

jk l
gji k lg i

u u u

u u

u u

u u

B

B

B
C x

B
u ux x

B
x x

B
x x

δ

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∈

⋅ ∈

∈

= ∈

∂
∇⋅ =∇⋅ ∇× =∇⋅ ∂

∂
= ∂ ∂

∂
= ∂ ∂

∂
=∇⋅ ∇× ∂ ∂

"

"

"

"

"

"

"

      (C.2-9) 

 
Expanding Eq. (C.2-9) we have 
 

2

2 2 2

1 2 2 1 1 3

2 2 2

3 1 2 3 3 2
0

gji
g ix x

x x x x x x

x x x x x x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − + +

− + =

∂∈
∂ ∂

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂− ∂ ∂ ∂ ∂ ∂ ∂

  (C.2-10) 
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Because of the mixed derivative theorem [Eq. (1.3-11), p. 1-20] each of the first-
second, third-fourth and fifth-sixth paired terms cancel. Therefore 
 

  

 0B B =
 
 
 
 

∇= ∇⋅ ×
… …

DC   (C.2-11) 

 
C.2.3 Proof that the curl of the gradient of any tensor is zero 
 
Somewhat in parallel with the procedure in the preceding proof, we next show 

that the curl of the gradient of a tensor vanishes. Since the first operation is the 

gradient of a generalized tensor 
…

B , let us define a new tensor 
…

D  from 

Eq. (C.2-7) as 

 

ˆ ˆ ˆ ˆj
j k l

g k l
g

u u u u
B

D B
x

∂
= ∇ = ∂

�

�   (C.2-12) 

 

Then applying Eq. (C.2-6) we express the curl of 
…

D  as 
 
 

( )

  

2

2

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ j

j

j k l
gi k

g i

jkl
igh h k

g i

u u

u u u

D B

B
u u

x x

B

x x

×

 
 
 
 

∈

∇× = ∇× ∇

∂
= ∂ ∂

∂
= ∂ ∂

… …

�

�

�

�

  (C.2-13) 

 
Again, expanding Eq. (C.2-13) we have second-order derivatives  
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2

2 2 2

1 2 2 1 1 3

2 2 2

3 1 2 3 3 2
0

igh
g ix x

x x x x x x

x x x x x x

 
 
 
 

    
    

     
     

     
     
     
     

= + − −

+ − =

∂∈ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂+ ∂ ∂ ∂ ∂ ∂ ∂

                     (C.2-14) 

 
and, again, because of the mixed derivative theorem all of the terms cancel. 
Therefore 

  

 0B B =
 
 
 
 

= ∇× ∇
… …

CG           (C.2-15) 

 
This applies to tensors having a rank 0Rn ≥ , which comprises of all tensors. This 
includes scalars (and vectors), since the gradient of a scalar is a vector and the 
curl of that vector may be taken. 
 
C.2.4 Demonstration that the curl of the divergence of any tensor is 

in general nonzero 
 
In Section C.2.2 it was shown that the divergence of the curl of a general-rank 
tensor is always zero. The physical rationale for such a result might be argued in 
the following manner: Since the curl of a vector field behaves somewhat like a 
cross product, i.e., it is primarily a property mainly transverse to the vector field, 
and since the divergence of that resulting vector field is a measure of the net 
outward flux of that new field, it is not entirely surprising that that net flux would 
be zero. That argument can be extended to tensor fields with the exception that 
the “transverse” nature of the curl would be with respect to the directivity of the 
first unit vector of the multiply directed tensor. 
 

This section deals with the reverse operation — the curl of the divergence. 
Although similar arguments may be made with respect to the transverse nature of 
the curl, we are dealing here with the second directional unit vector of the tensor, 
not the first. This is due to the fact that the first directional unit vector is 
annihilated by the dot-product nature of the divergence operation. Since this 
second-level directionality is arbitrary, there is no reason to expect that taking the 
curl after the divergence would have a vanishing result. Further, the curl of the 
divergence of a vector is nonexistent because the divergence yields a scalar, and 
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one cannot take the curl of a scalar. Therefore Table 4-2(b) is marked 
accordingly. [The operation on a scalar is, of course, nonexistent because the 
divergence operation is nonexistent in the first place. See Table 4-2(a)]. 
 

The above argument becomes apparent mathematically. We first construct 

a tensor 
…

E  defined as the divergence of our operand tensor 
…

B . We will use 

Eq. (C.2-5) for the first operation; however, with a view toward using Eq. (C.2-6) 

for the second operation, we will change the index i in Eq. (C.2-5) to g as before. 
 

...

ˆ ˆ

ˆ ˆ

j kl
gj k l

g

gk l
k l

g

u u

u u

E B
B

x

B

x

δ

= ∇⋅ =
∂

∂
∂

= ∂

�

�

�

�

 (C.2-16) 

 

where 
…

B  is a tensor of the rank 2Rn ≥  for reasons given in the second paragraph 

of this section. After substitution into Eq. (C.2-6) for the curl of the tensor of 
rank 1Rn ≥ , we have 
 

( )

 

2

2

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆjk l
mgj i k l

g i

jk l
mgj ikh h l

g i

E

u u

u u u

B

B
u u

x x

B

x x

δ

δ

×

 
 
 
 

∈

∇× = ∇× ∇⋅ =

∂
=∂ ∂

∂
∂ ∂

…

�

�

�

�

  (C.2-17) 

 
Since our objective is to show that the curl div is in general not zero, we need 
only show that one term is not zero. To do this we arbitrarily pick a combination 
of indices. If we examine the 1 2x x∂ ∂  and sum over k, then we let g=1, j=1, i=2 
and Eq. (C.2-17) becomes 
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2

2 2

1 2
1 2

13 11
1 3

1 2 1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

jk l
mj kh h l

l l
ml

u u u

u u u u

B

x x

B B
x x x x

δ

 
 
 
 

∈ =

−

∂
∂ ∂

∂ ∂
∂ ∂ ∂ ∂

�

� �

�

�

                  (C.2-18) 

 
Next let g=2, j=2, i=1. Again summing over k we obtain 
 

2

2 2

2 1
2 1

22 23
3 2

2 1 2 1

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

jk l
mj kh h l

l l
ml

u u u

u u u u

B

x x

B B
x x x x

δ

 
 
 
 

∈ =

−

∂
∂ ∂

∂ ∂
∂ ∂ ∂ ∂

�

� �

�

�

                 (C.2-19) 

 
Employing the mixed-derivative theorem [Eq. (1.3-11)], summing Eqs. (C.2-18) 
and (C.2-19), and collecting the 3û  term gives 
 

( )
2

22 11 3
1 2

ˆ ˆ ˆl l mlu u uB B
x x
∂

∂ ∂ −
� �

�                    (C.2-20) 

 

It is clear that unless ( )
2

2 2 11

1 2
l lB B

x x

∂
∂ ∂

−
� �

 is zero, the 3û  term is not zero. 

Therefore 
 

  

 0B B ≠
 
 
 
 

= ∇× ∇⋅
… …

CD  (C.2-21) 

in general. This is in contrast to (DC
…

B  = 0), which was shown in Section C.2.2. 

 
C.2.5 Demonstration that the gradient of the curl of any tensor is in 

general nonzero 
 
Since the first operation is the curl of 

…

B , which we have already expressed in Eq. 

(C.2-8), we may express the gradient of the curl of 
…

B  as 
 

    

2

ˆ ˆ ˆ ˆjk l
migjh h k

g i
u u u u

B
B

x x

 
 
 
 

∈
∂

∇ ∇× = ∂ ∂
�

�           (C.2-22) 
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Again, since our objective is to show that the grad curl is in general not zero, we 
need only show that one term is not zero. To do this we arbitrarily pick a 
combination of indices. If we examine the 1 2x x∂ ∂  and sum over j, then we let 

g=1, i=2, then 
 

2

2 3 2 2

2

1
1 2
2 2

2 3

1 2 1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

jk l
jh h k l

k l k l
k l k l

u u u u

u u u u u u u u

B
x x

B B
x x x x

∈

= −

∂
∂ ∂
∂ ∂
∂ ∂ ∂ ∂

�

� �

�

� �

 (C.2-23) 

 
Next let g=2, i=1, then 
 

1

1 1 1 3

2

2
2 1
2 2

3 1

2 1 2 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

jk l
jh h k l

k l k l
k l k l

u u u u

u u u u u u u u

B
x x

B B
x x x x

∈

= −

∂
∂ ∂
∂ ∂
∂ ∂ ∂ ∂

�
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  (C.2-24) 

 
Again it is clear that even after application of the mixed-derivative theorem, 
cancellation of terms does not take place. Therefore 
 

  

 0B B ≠
 
 
 
 

= ∇ ∇×
… …

GC   (C.2-25) 

 

in general. This is in contrast to (CG
…

B  = 0), which was shown in Section C.2.3. 

 
C.2.6 Demonstration of the Lagrange identity applied to tensors. 
 
In Sections 4.7.3 and 4.7.4 the scalar and vector Laplacian operators were 
developed in GOCCs and cylindrical coordinates. Here we take the opportunity 
to examine this second-order differential operator in association with general-
rank tensors, especially as it relates to the Lagrange identity. This subsection, as 
in all of Section C.2, is done in Cartesian coordinates for simplicity and with the 
assurance that there is no loss in generality in using Cartesian coordinates when 
proving vector and tensor identities. However, there are some issues with 
Cartesian coordinate differential operator expansions that were addressed in 
Chapters 1 and 4 and are addressed again in Sections C.3 and C.4. 
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First we define the Laplacian operator to be the divergence of the gradient of any 
tensor quantity, which, of course, may include scalars, vectors, or dyadics. This 
operator may be defined as 

 

 2( ) ( )∇ = ∇ ⋅ ∇                                        (C.2-26) 
 

Since the gradient of a tensor has a resultant rank that is one greater than 
the rank of the tensor upon which it operates, and the divergence has a resultant 
one less than its operand, the Laplacian does not change the rank. Thus the 
Laplacian of a dyadic is a dyadic and the Laplacian of a general-rank tensor is 
another tensor of the same rank. 
 

After developing the vector Laplacian in Section 4.7.4, which first required 
the development of the gradient of a vector and then the development of the 
divergence of the resulting dyadic, the Lagrange vector identity  
 

 2 ( )A A A∇ = ∇ ∇ ⋅ − ∇ ×∇×                              (4.7-15) 
 
was presented without proof. It was pointed out that this identity is usually 
presented to undergraduate students as a means of avoiding the dyadic gradient 
of a vector as well as the divergence of the resulting dyadic. By the use of the 
right-hand side of Eq. (4.7-15) it is clearly seen that all operations are performed 
with vector and scalar operands. These are the curl of the curl (CCv = A∇ ×∇ × ) 
and the gradient of the divergence (GDv = A∇∇ ⋅ ). CCv was covered in Section 
4.7.5 and GDv was developed in Section 4.7.6. 
 

By applying Eqs. (C.2-7) and (C.2-5) to Eq. (C.2-26) we may write the 
tensor Laplacian as 
 

 ( )

( )
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2
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u u u

u u u

u u u

B
B u

x x

B
u u

x x

B
x x

B
B

x

   
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=

=

= =
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∂∂= ⋅∂ ∂

∂
⋅∂ ∂

∂
∂ ∂

∂
∇ ∇
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δ

                    (C.2-27) 
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Thus the expanded form of the left-hand side of Eq. (4.7-15) is 
 

 

 
2

2

2
ˆ ˆ ˆj

j k l
k l

i

u u u
B

B
x

∂
∇ =

∂

…

�

�                                  (C.2-28) 

 
Next, let us work the right-hand side of Eq. (4.7-15). The first term is the 

gradient of the divergence, which is 
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ˆ ˆ
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k l
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=

=

∇ ∇⋅
∂∂

∂ ∂

∂
∂ ∂

…

�

�

�

�

               (C.2-29) 

 
and the second term is the negative of the curl of the curl, expanded as 
 

( )

 

2 2
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∂∂∇× ∇× = ∈∂ ∂

∂ ∂
= = ∈ ∈∂ ∂ ∂ ∂

…

�

� �

�

� �

(C.2-30) 

 
This becomes 

     

( )

( )

( ) ( )
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  (C.2-31) 
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Note that the step from the second to the third line of Eq. (C.2-31) made 
use of the following vector identity 
 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆg i h i g j j g iu u u u u u u u u× × = ⋅ − ⋅                    (C.2-32) 

 
The final two terms of the curl curl are seen from Eqs. (C.2-29) and 

(C.2-28) to be the grad div minus the Laplacian. Rearranging terms, we have  
 

 

   

2 ( )B B B∇ = ∇ ∇ ⋅ − ∇ × ∇ ×
… … …

                          (C.2-33) 
 
and therefore we have shown that the Lagrangian identity may be applied to a 
general rank tensor. 
 
C.3  Generalization of the Divergence Operator of Eq. (4.7-7) 
 
The divergence operator of Eq. (4.7-7) was developed inductively and is repeated 
here for convenience. 
 

 ( )
3

1 2
i=11 2 3

1
ˆ    i i i

i

h h u
h h h q + +

∂∇ ⋅ = ⋅
∂∑

                        (4.7-7) 

 
It was applied to a vector [Eq. (4.4-22)] and a dyadic [Eq. (4.7-9)] and cited for 
application to any tensor. This section gives a deductive proof of its general 
application to a tensor. Because of the necessity of accounting for coordinate 
derivatives of unit vectors, this development is made in generalized orthogonal 
curvilinear coordinates (GOCCs). 
 

Throughout the main chapters of this guide the importance of dealing with 
derivatives of unit vectors was emphasized. It was pointed out that although unit 
vectors do not change in magnitude as coordinate positions change, they can 
change direction. This fact is important for all coordinates that are curvilinear. 
Another way to state this is in terms of the Lamé coefficients ih  (also named 
scale factors and often named metric coefficients). That is, for any coordinate 
that has a nonunity Lamé coefficient, derivatives of unit vectors with respect to 
that coordinate will not in general be zero. Eqs. (1.3-19) and (1.3-20) provide the 
explicit prescription for determining such derivatives. Again these are repeated 
from page 1-23 for convenience. 
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ˆˆ ˆji i k i

i j j k k

uu h u h

q h q h q

∂ ∂ ∂= − −
∂ ∂ ∂

                              (1.3-19) 

 
and 

 
ˆˆ j ji

j i i

u hu

q h q

∂∂ =
∂ ∂

                                       (1.3-20) 

 
where 1,2,3;  2,3,1 and 3,1,2i j k= = =  in that order. 
 

Equations (1.3-19) and (1.3-20) may be combined with the use of the 
Kronecker delta as 
 
  

 
( ) ( )

3

1

ˆ1 ˆˆ 1
u h uu h

q h q h q
αβ β β γα α

αγαβ
α α γ γγβ

δ
δ δ

=

− ∂∂ ∂= − −∂ ∂ ∂∑        (C.3-1) 

 
where , , 1,2,3α β γ =  replace i, j, k in (1.3-19) and (1.3-20) above. 
 

The nabla operator in the orthogonal curvilinear coordinates can be written 
as 
 

 
3

1

î

i i i

u
h q=

∂∇ = ∂∑                                         (C.3-2) 

 
Notice that Eq. (C.3-2) reduces to Cartesian form [Eq. (C.2-1)] when the Lamé 
coefficients 1ih = . Let us apply this operator to tensor fields. 
 

Our objective in this section is to develop the divergence of a general-rank 
tensor which is expressed in explicit standard notation as 
 

 

 

ˆ ˆ ˆj k l j k lA A u u u=
…

�

�                                   (C.3-3) 
 
where j k lA

�

 are the scalar components of the tensor. The operator in 
Eq. (C.3-2) may be applied to the general-rank tensor in Eq. (C.3-3) by a 
generalized product operator “ * ” as a generalized vector differential operator. 
Thus we have a generalized vector differential operator acting on a general rank 
tensor in GOCCs as 
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� � �

 (C.3-4) 
 
where the sign * denotes dot ( ⋅ ), cross (× ) or tensor ( ⊗ ) multiplication. 
 

Although the nabla vector operator of Eq. (C.3-2) has similarities 
with a vector when performing the product forms above, there are 
substantive differences. It is of paramount importance to stress that 
the derivative must be taken not only on the tensor component j k lA

�

 
and the first unit vector ˆ ju  but also on all of the remaining unit 
vectors as well. If the nabla operator were treated as if it were just a 
vector, the expression written above would contain the two curly 
bracketed terms {} only. 

 
This is more precisely demonstrated in Section C.4. Notice that the bracketed 
factor in the third term of Eq. (C.3-4) is replaced by Eq. (C.3-1). 
 

Whereas Eq. (C.3-4) can be used for curl and gradient applications, we 
make use of it here only for the divergence application. Therefore, the divergence 
of a general-rank tensor in GOCCs is 
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      (C.3-5) 

A well-known vector identity 
 

 ( ) 01ji jg igδ δ δ =−                                     (C.3-6) 

 
may readily be checked by testing all possible combinations of indices. Thus, the 
second term in the second curly brackets is zero as shown. In addition the 
Kronecker delta in the first and third terms eliminates the i summation signs. 
Therefore Eq. (C.3-5) becomes  
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(C.3-7) 

 
Since Eq. (4.7-7) uses the index rolling rule, namely when 1,2,3j = , 

1 2,3,1j + = , and 2 3,1,2j + = , respectively, we can express the derivative 
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factor in the second term of Eq. (C.3-7) as shown. Further noting from the rule of 
derivatives of multiple variables that 
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           (C.3-8) 

and thus Eq. (C.3-7) becomes 
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  (C.3-9) 

 
Again from the rule of derivatives of multiple variables all three terms of 

Eq. (C.3-9) may be combined simplifying the divergence of A  as 
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At the third equality above, a dummy index i was introduced. In prior 
sections of this appendix the index g was used for this purpose, however, to 
demonstrate the generality of Eq. (4.7-7), which contains the i, we use this as our 
dummy index. This should not be confused with the i index in Eqs. (C.3-4) and 
(C.3-5). 
 

Notice also that the last equality is precisely the form of Eq. (4.7-7) and 
thus we have our QED (quod erat demonstrandum). Namely we have shown that 
the divergence operator of Eq. (4.7-7) is applicable to tensors of general rank. 
The last equality is another equivalent form of Eq. (4.7-7). 
 
C.4  The Dual Nature of the Nabla Operator 
 
The generalized form of the vector Laplacian [Eq. (4.7-11)] was obtained by first 
taking the gradient of the vector and then taking the divergence of the resulting 
dyadic. The Lagrange vector identity, Eq. (4.7-15), provided a means of 
determining the vector Laplacian without resorting to dyadics; however it is 
customarily cited without proof. This identity was proven for generalized rank 
tensors in Section C.2.6. Although performed in Cartesian coordinates, its 
validity is independent of the coordinate system. 
 

The process of demonstrating such relationships in Cartesian coordinates 
has led many to believe that the nabla operators ( ∇⋅ , ∇ × , and ∇ ) are analogous 
to the vector dot-, cross- and direct-product3 operations ( A ⋅ , A × , and A ). Such 
a supposition is very dangerous and will lead to erroneous results in all but 
Cartesian coordinates. 
 

Therefore, we find that it is necessary to take into account the derivative 
nature of the nabla operator and not just its dot-, cross-, or direct-product nature. 
The necessity of using both characteristics of the nabla operator is brought out 
quite effectively by proving the Lagrange vector identity in generalized 
orthogonal curvilinear coordinates (GOCCs). That is, the demonstration that the 
vector Laplacian as determined from the l.h.s. of the Lagrange identity is equated 
to the vector Laplacian from the r.h.s. in GOCCs requires the use of both natures 
of the nabla operator. Confirmation of this in GOCCs proved to be quite 
protracted. So, in the interest of brevity we omit this proof (of the Lagrange 
vector identity in GOCCs) and simply show that the dot, cross, and direct product 
of a vector with a general-rank tensor yields different resultant forms from the 
counterpart nabla operations on the same tensor. 
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Again, as introduced in Section C.1, the generalized-product operator—the 

asterisk “ * ” operator—is used to denote either a dot-, cross-, or tensor-product 

operation. We show that extra terms come into play with the 
…

*T∇  operation as 

compared with the 
…

*A T  operation. In particular the latter operation takes the 

form 

 

( )

3 3 3 3

1 1 1 1

3 3 3

1 1 1

ˆ ˆ* *

ˆ ˆ ˆ ˆ*

i i j k l j k l
i j k l

i j k l i j k l
i j k

A T Au T u u uˆ ˆ

AT u u u u

= = = =

= = =

=

=

∑ ∑∑∑

∑∑∑

…

"

"

…

…

"

"
   (C.4-1) 

 
In contrast to Eq. (C.4-1) the generalized-nabla-product operating on the same 
tensor takes the form 

 

( )

( )

3 3 3 3

1 1 1 1

3 3 3

1 1 1

3 3 3

1 1 1

3 3 3

1 1 1

ˆ
ˆ ˆ ˆ* *

ˆ ˆ ˆ ˆ*

ˆ
ˆ ˆ ˆ*

ˆ
ˆ ˆ ˆ*

i
j k l j k l

i j k li i

j k l
i j k l

i j k i i

j
j k l i k l

i j k i i

k
j k l i j l

i j k i i

uT T
h q

T
u u u u

h q

u
T u u u

h q

uT u u u
h q

= = = =

= = =

= = =

= = =

⎛ ⎞⎛ ⎞∂
∇ = ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠

∂
=

∂

∂⎛ ⎞
+ ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
+ ⎜ ⎟∂⎝ ⎠

∑ ∑∑∑

∑∑∑

∑∑∑

∑∑∑

…

"

"

"

"

…

…

…

…

"

"

"

+

"

"

u u u

 (C.4-2) 

 
Notice that the first term of Eq. (C.4-2) is analogous to Eq. (C.4-1) but that 

the second, third and subsequent terms are entirely missed in Eq. (C.4-1). 
Therefore, the popular statement that nabla operator is analogous to the vector 
operator is not valid in cases where these latter terms come into play. 
 

To illustrate where it is valid and where it is not, let us take the case of a 
rank-one operand, namely, let 

…

T  be the vector B . Then Eq. (C.4-1) becomes 
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( )

3 3

1 1

3 3

1 1

ˆ ˆ* *

ˆ ˆ*

i i j j
i j

i j i j
i j

A B Au B u

A B u u

= =

= =

=

=

∑ ∑

∑∑

   (C.4-3) 

and Eq. (C.4-2) becomes 
 

( )

3 3

1 1

3 3

1 1

3 3

1 1

ˆ
ˆ* *

ˆ ˆ*

ˆ
ˆ *

i
j j

i ji i

j
i j

i j i i

j
j i

i j i i

u
B B u

h q

B
u u

h q

u
B u

h q

= =

= =

= =

  ∂∇ =   ∂   

∂
=

∂

∂ 
+  ∂ 

∑ ∑

∑∑

∑∑

  (C.4-4) 

 

 
It is clear that forms (C.4-3) and (C.4-4) are not analogous unless all of the 
coordinate derivatives of unit vectors j iû q∂ ∂  are zero. This is the case only in 
Cartesian coordinates. 
 

For the case of a rank-two operand, we let 
…

T  be the dyadic D . Then 
Eq. (C.4-1) becomes 
 

( )

3 3 3

1 1 1

3 3 3

1 1 1

ˆ ˆ ˆ* *

ˆ ˆ ˆ*

i i j k j k
i j k

i j k i j k
i j k

A D Au D u u

A D u u u

= = =

= = =

=

=

∑ ∑∑

∑∑∑

  (C.4-5) 

 
and Eq. (C.4-2) becomes 
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( )

3 3 3

1 1 1

3 3 3

1 1 1

3 3 3

1 1 1

3 3 3

1 1 1

ˆ
ˆ ˆ* *

ˆ ˆ ˆ*

ˆ
ˆ ˆ*

ˆ
ˆ ˆ*

i
j k j k

i j ki i

j k
i j k

i j k i i

j
j k i k

i j k i i

k
j k i j

i j k i i

uD D
h q

D
u u u

h q

u
D u u

h q

uD u u
h q

= = =

= = =

= = =

= = =

⎛ ⎞⎛ ⎞∂
∇ = ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠

∂
=

∂

∂⎛ ⎞
+ ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
+ ⎜ ⎟∂⎝ ⎠

∑ ∑∑

∑∑∑

∑∑∑

∑∑∑

u u

  (C.4-6) 

 
Again the analogy does not hold unless the second and third terms go to zero. In 
Cartesian coordinates the unit vector coordinate derivatives in these terms will be 
zero and, therefore, the analogy holds in this case. In any other coordinate 
system, it does not. By induction the same conclusion can be made for all higher-
rank tensors. Therefore, we have demonstrated the following axioms: 
 

Nabla operators have two natures: a product nature  
and a derivative nature. 

 
Vector operators have one nature: product nature. 

 
Nabla operators are not in general analogous to vector operators, 

except in Cartesian coordinates.  
 

In Cartesian coordinates, nabla operators are analogous to  
vector operators. 

 
Reference 
 
1.  David C. Kay, “The Einstein Summation Convention,” in Theory and 

Problems of Tensor Calculus, Schaum’s Outline Series, McGraw-Hill 
(1988). 
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D-1 

 
 
Appendix D 

Coordinate Expansions of Vector 
Differential Operators 

 
This appendix provides Cartesian and cylindrical coordinate expansions of first- 
and second-order vector differential operators acting on scalar, vector, and dyadic 
operands. The divergence and curl of vector and dyadic fields and the gradient of 
scalar, vector, and dyadic fields are provided with applications cited for the curl 
of the strain dyadic and the gradient of the stress dyadic. In addition the scalar 
and vector Laplacian expansions are listed. 
 
D.1  Cartesian Coordinate Expansions 
 
The conversion from generalized orthogonal curvilinear coordinates (GOCCs) to 
Cartesian coordinates is 
 

1q x= , 2q y= , 3q z=  (D.1-1a,b,c) 
 
and 
 

1 1h = , 2 1h = , 3 1h =  (D.1-2a,b,c) 
 
 
D.1.1 Cartesian coordinate expansions of first-order vector 

differential operators  
 
First-order vector differential operators are expanded in Cartesian coordinates in 
the order of increasing resultant rank. Thus divergence is done first because the 
resultant rank is one less than the rank of the operand. Next, the curl is shown 
because the resultant rank is unchanged. Lastly, the gradient is displayed because 
the resultant rank is increased by one. 
 
D.1.1(a)  The divergence of vector and dyadic fields 
 
The divergence of a vector field [from Eq. (4.4-22)] is the scalar field 
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yx z

Cartesian

AA A
A

x y z

∂∂ ∂∇ ⋅ = + +
∂ ∂ ∂

   (D.1-3) 

 
The divergence of a dyadic field [ref: Eq. (B.1-5)] is the vector field 
 

ˆ

ˆ ˆ

yxxx zx
x

Cartesian

xy yy zy yzxz zz
y z

GG G
G u

x y z

G G G GG G
u u

x y z x y z

∂ ∂ ∂∇ ⋅ = + + ∂ ∂ ∂ 

∂ ∂ ∂ ∂   ∂ ∂+ + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

 (D.1-4) 

 
D.1.1(b)  The curl of vector and dyadic fields 
 
The curl of a vector field A  [from Eq. (4.5-12)] is the vector field 
 

ˆ ˆ ˆy yz x z x
x y zCartesian

A AA A A A
A u u u

y z z x x y

∂ ∂   ∂ ∂ ∂ ∂ ∇ × = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
 (D.1-5) 

 
 
Application: The curl of the strain dyadic 
 
The curl of a dyadic field is useful in advanced studies of mechanics of solids. 
For example, the displacement vector d  is determined by integrating the 
tangential component of the curl of the strain over the path, namely 

( )d dδ= ∇ × ⋅∫ � . Since the resultant of the curl of a dyadic is another dyadic, 
this line integral takes the form of Eq. (5.1-4), and is thus an application of that 
line-integral form. 
 

Here we display the curl of the strain dyadic δ  in Cartesian coordinates as 
an example of the curl of a dyadic field in general. 
 

( )

( )

( )

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

y z xx x xy y xz z
Cartesian

z x yx x yy y yz z

x y zx x zy y zz z

u u u u u
z y

u u u u u
x z

u u u u u
y x

δ δ δ δ

δ δ δ

δ δ δ

 ∂ ∂∇ × = − + + ∂ ∂ 

∂ ∂ + − + + ∂ ∂ 

 ∂ ∂+ − + + ∂ ∂ 

 (D.1-6) 
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which, when expanded [using Eq. (3.3-4)], becomes the dyadic with its nine 
components as 
 

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

yx zy yy yzzx zz
xx xy xz

Cart

xy zyxx zx xz zz
yx yy yz

yx yy xyxx
zx zy

u u u
y z y z y z

u u u
z x z x z x

u u
x y x

δ δ δ δδ δδ

δ δδ δ δ δ

δ δ δδ

∂ ∂ ∂ ∂     ∂ ∂∇ × = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     

∂ ∂ ∂ ∂ ∂ ∂   + − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂ ∂ ∂+ − + − ∂ ∂ ∂ ∂ 

ˆ̂ yz xz
zzu

y x y

δ δ∂   ∂+ −   ∂ ∂   

(D.1-7) 

 
 
D.1.1(c)  The gradient of scalar, vector, and dyadic fields 
 

The gradient of a scalar field [from Eq. (4.3-18)] is the vector field 
 

ˆ ˆ ˆx y zCartesian

V V V
V u u u

x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

   (D.1-8) 

 
In Section 4.3 we determined the vector Laplacian by first finding the gradient of 
a vector field in GOCCs. Here we expand that operation in Cartesian coordinates. 
Thus the gradient of a vector field from Eq. (4.3-20) is the nine-term dyadic field 
 

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

xx xy xzCartesian

yx yy yz

zx zy zz

yx z

yx z

yx z

AA A
x x x

AA A
y y y

AA A
z z z

A u u u

u u u

u u u

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∇ = + +

+ + +

+ + +

  (D.1-9) 

 
Application: The gradient of the stress dyadic 
 
In advanced mechanics of solids, the theory of moments in general necessitates 
the determination of the gradient of the stress dyadic s . Therefore, we show the 
expansion of the gradient of the stress dyadic as an application for the gradient of 
a dyadic field in general. 
 

The gradient of a dyadic field1 is the 27-term triadic field  
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ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ
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ˆ ˆˆ ˆˆ ˆ
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xyx xyy xyz

xzx xzy xzz

yxx yxy yxz

yyx yyy

xyxx xz

yx yy yz

zyzx zz

xyxx xz

yx yy

ss s
x x x

s s s
x x x

ss s
x x x

ss s
y y y

s s
y

s u u u

u u u

u u u

u u u

u u

∂∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂ ∂
∂ ∂

∇ = + +

+ + +

+ + +

+ + +

+ + ˆ̂
ˆ

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ

yyz

yzx yzy yzz

zxx zxy zxz

zyx zyy zyz

zzx zzy zzz

yz

zyzx zz

xyxx xz

yx yy yz

zyzx zz

s
y y

ss s
y y y

ss s
z z z

s s s
z z z

ss s
z z z

u

u u u

u u u

u u u

u u u

∂
∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

+

+ + +

+ + +

+ + +

+ + +

  (D.1-10) 

 
 
D.1.2 Cartesian coordinate expansions of second-order vector 

differential operators 
 
D.1.2(a)  The scalar and vector Laplacian  
 
The scalar Laplacian from Eq. (4.7-4) is the scalar field 
 

2 2 2
2

2 2 2Cartesian

V V V
V V

x y z

∂ ∂ ∂∇ = ∇ ⋅∇ = + +
∂ ∂ ∂

  (D.1-11) 

 
The vector Laplacian from Eq. (4.7-11) is the vector field 
 

2 2 2 2ˆ ˆ ˆx x y y z zCartesian
A A u A u A u A∇ = ∇ ⋅ ∇ = ∇ + ∇ + ∇  (D.1-12) 

 
D.1.2(b)  The curl of the curl of a vector field  
 
In Section 4.7.5 the curl of the curl of a vector field was determined in order to 
provide the reader with a methodology of determining the vector Laplacian 
without resorting to dyadic operations. That is, with the use of the right-hand side 
of the Lagrange identity [Eq. (4.7-15)], the curl of the curl of a vector field was 
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needed. Here we provided the curl of the curl of a vector field from Eq. (4.7-23), 
which is the vector field 
 

2 2 2 2

2 2

2 22 2

2 2

22 2 2

2 2

ˆ

ˆ

ˆ

y x x z
xCart

y yz x
y

yx z z
z

A A A A
A u

y x y z z x

A AA A
u

z y z x x y

AA A A
u

x z x y y z

=
  ∂  ∂ ∂ ∂∇ × ∇ × − − −    ∂ ∂ ∂ ∂ ∂ ∂    

    ∂ ∂∂ ∂+ − − −    ∂ ∂ ∂ ∂ ∂ ∂     

  ∂ ∂ ∂ ∂+ − − −   ∂ ∂ ∂ ∂ ∂ ∂    

 (D.1-13) 

 
D.1.2(c)  The gradient of the divergence  
 
In Section 4.7.6 other terms in the right-hand side of the Lagrange identity, 
namely the gradient of the divergence, were needed to complete the exercise. 
Here we provide the Cartesian expansion of the gradient of the divergence of a 
vector field from Eq. (4.7-24): 
 

22 2

2

2 22 2 2 2

2 2

ˆ

ˆ ˆ

yx z
xCartesian

y yx z x z
y z

AA A
A u

x x y x z

A AA A A A
u u

y x y y z z x z y z

 ∂∂ ∂∇∇ ⋅ = + + ∂ ∂ ∂ ∂ ∂ 

   ∂ ∂∂ ∂ ∂ ∂+ + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (D.1-14) 

 
which again is a vector field. 
 
The inside front cover provides some of the more common first- and second-
order vector differential operator expansions in Cartesian coordinates for the 
reader’s fingertip reference. 
 
D.2  Cylindrical Coordinate Expansions 
 
The conversion from generalized orthogonal curvilinear coordinates (GOCCs) to 
cylindrical coordinates is 
 

1q r= , 2q φ= , 3q z=  (D.2-1a,b,c) 

 
and 
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1 1h = , 2h r= , 3 1h =  (D.2-2a,b,c) 

 
D.2.1 Cylindrical coordinate expansions of first-order vector 

differential operators  
 
First-order vector differential operators are expanded in cylindrical coordinates in 
the order of increasing resultant rank. As in the Cartesian expansions, the 
divergence is done first because the resultant rank is one less than the rank of the 
operand, followed by the curl because the resultant rank is unchanged, and then 
the gradient because the resultant rank is increased by one. 
 
D.2.1(a)  The divergence of vector and dyadic fields 
 
The divergence of a vector field [from Eq. (4.4-22)] is the scalar field 
 

( )1 1r z

cyl

ArA A
A

r r r z
φ

φ
∂∂ ∂∇ ⋅ = + +

∂ ∂ ∂
   (D.2-3) 

 
The divergence of a dyadic field [ref: Eq. (B.3-11)] is the vector field 
 

( )

( ) ( )

1
ˆ

1 1
ˆ ˆ

rrr zr
r

cyl

r z zrz zz
r z

GrG G
G u G r

r r z

rG G G GrG G
u G r u r

r r z r r z

φ
φφ

φ φφ φ φ
φ φ

φ

φ φ

∂∂ ∂∇ ⋅ = + − + ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂∂ ∂+ + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 (D.2-4) 

 
D.2.1(b)  The curl of vector and dyadic fields 
 
The curl of a vector field [ref: Eq. (4.5-13)] is the vector field 
 

( )1 1
ˆ ˆ ˆz r z r

r zcyl

A rAA A A A
A u u u

r z z r r r
φ φ

φφ φ
∂ ∂   ∂ ∂ ∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

 (D.2-5) 

 
The curl of a dyadic field [ref: Eq. (B.2-5)] is the dyadic field 
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 ∂ ∂∇ × = − + + ∂ ∂ 

∂ ∂ + − + + ∂ ∂ 

 ∂ ∂+ − + + ∂ ∂ 

 (D.2-6) 

 
[Notice that by replacing the r and φ  coordinates with x and y, and by 

replacing (D.2-2b) with (D.1-2b), that is, by letting the r and 1/r coefficients 
become unity, Equations (D.2-1) through (D.2-6) become (D.1-1) through 
(D.1-6).] 

 
When the derivative operators of (D.2-6) are taken, the curl of the dyadic 

[using Eq. (3.3-4)] becomes the nine-dyadic component expansion 
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∂ ∂ ∂ ∂ ∂ ∂   + − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
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(D.2-7) 
 
D.2.1(c)  The gradient of scalar, vector, and dyadic fields 
 
The gradient of a scalar field [from Eq. (4.3-18)] is the vector field 
 

1
ˆ ˆ ˆr zcyl

V V V
V u u u

r r zφ φ
∂ ∂ ∂∇ = + +
∂ ∂ ∂

   (D.2-8) 

 
The gradient of a vector field [ref: Eq. (4.3-23)] is the dyadic field 
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 (D.2-9) 

 
The gradient of the dyadic is used in the theory of elasticity. See an application 
of this in Section D.1.1(c). The cylindrical-coordinate expansion of the gradient 
of a dyadic field is the 27-term triadic field  
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D.2.2 Cylindrical coordinate expansions of second-order vector 
differential operators 

 
D.2.2(a)  The scalar and vector Laplacian 
 
The scalar Laplacian [ref: Eq. (4.7-6)] is the scalar field 

2 2
2

2 2 2

1 1
cyl

V V VV V r
r r r r zφ

∂ ∂ ∂ ∂⎛ ⎞∇ = ∇ ⋅∇ = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (D.2-11) 

 
The vector Laplacian [ref: Eq. (4.7-14)] is the vector field 
 

2 2 2 2
2 2 2 2

2 2ˆ ˆ ˆr r
r r z zcyl

A AA AA u A u A u A
r r r r

φ φ
φ φφ φ

∂⎛ ⎞ ⎛ ⎞∂∇ = ∇ − − + ∇ + − + ∇⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

(D.2-12) 
 
D.2.2(b)  The curl of the curl of a vector field
 
The curl of the curl of a vector field [from: Eq. (4.7-23)] is the vector field 
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 (D.2-13) 
 
D.2.2(c)  The gradient of the divergence 
 
The gradient of the divergence of a vector field in cylindrical coordinates from 
Eq. (4.7-24) is the vector field 
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Glossary-1 

 

 
 
Glossary 
 
Ampere’s circuital law:  The circulation of the magnetic field intensity H  

about any closed path is equal to the total electric current passing through 
any surface bounded by that closed path. 

curl of a vector field at a point:  A vector pointing in the direction of a normal 
to an infinitesimal surface which is so oriented in space that the limit of the 
ratio of the line integral of the vector field around the perimeter of that 
surface to the area enclosed is maximal. The magnitude of the curl is the 
value of that limit. 

curl of the curl of a vector field:  The circulation density of the vorticity of that 
field, which can be thought of as the rotational spatial change of vorticity 
in the cross-product direction. 

divergence of a vector field:  A scalar field whose magnitude at any point in 
space is determined by taking the ratio of the net outward flux of the vector 
field through an infinitesimal closed surface surrounding the point to the 
volume enclosed by that surface as the volume tends to zero. 

directional compoundedness:  An integer that denotes the level of directionality 
of a field quantity. The tensor rank of that quantity. A term coined by the 
author intended to give those new to tensor fields a more intuitive feel for 
tensor rank. 

dyad:   See unit dyad. 
dyadic:  A quantity that has two directions associated with each point in the 

field. A tensor of rank two. 
dyadic field:   A field quantity that has a dual directional compoundedness. A 

quantity that has two directions associated with each point in space. A 
tensor field of rank two. 

field:   A quantity that is a function of spatial coordinates. 
Gauss’ law for electrostatics:  The total electric flux emanating outwardly 

through a closed surface is equal to the total charge enclosed within. 
GOCCs:  generalized orthogonal curvilinear coordinates. 
gradient of a scalar field:  A vector field oriented in the direction in which the 

scalar field increases most rapidly. Its magnitude is the derivative of the 
scalar field in the direction of its maximal increase. 
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gradient of a vector field:   A dyadic field found by taking the nabla differential 
operation on each of the vector field components. 

gradient of the divergence of a vector field:  Another vector field oriented in 
the direction in which the volume source distribution density increases 
most rapidly. Its magnitude is the derivative of that volume density 
distribution in the direction of its maximal increase. 

line integral:  The integral of a field quantity taken over a vector differential 
length d  that is everywhere tangent to a general line L  in space. 

mixed derivative theorem:  States that if 1 2 3( , , )f q q q  and its partial derivatives 

1qf , 
1qf , and 

1 2q qf  exist and are continuous, then 
2 1q qf  also exists and 

1 2 2 1q q q qf f= .  
order of a tensor:   In modern photonics (and in this book) the order of a tensor 

field is one less than the rank. In other treatments order is sometimes used 
synonymously with rank. 

partial derivative:  The result of taking a derivative of a function of multiple 
independent variables with respect to one of the variables while holding all 
of the other independent variables constant. 

quadad:   See unit quadadic. 
quadadic:  A quantity that has four directions associated with each point in the 

field. A tensor of rank four. 
quadadic field: A field quantity that has quadruple directional compoundedness. 

A quantity that has four directions associated with each point in space. A 
tensor field of rank four. 

r -space notation:   A vector-like symbol r  used in the functional argument of 
a field quantity to denote the coordinates at which function is being 
represented. A shorthand notation for those coordinates, e. g., r  is short 
for x, y,z . 

rank:   The quantitative (integer) property of a tensor that specifies its directional 
compoundedness or the multiplicity of its directionality. 

scalar:  A quantity that has a magnitude but no directionality. A tensor of rank 
zero. 

surface integral:  the integral of a field quantity taken over a vector differential 
area da  that is everywhere normal to a general surface S in space. 

tensor:  A quantity that has multiple directionality at each point in space and at 
each moment in time. The “rank” of a tensor enumerates that multiplicity. 

tensor field:   A quantity that has multiple directionality at each point in space.  
A quantity with arbitrary (integer) directional compoundedness. The 
“rank” of a tensor enumerates that multiplicity. 
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triad:   See unit triad. 
triadic:  A quantity that has three directions associated with each point in the 

field. A tensor of rank three. 
triadic field:   A field quantity that has a triple directional compoundedness. A 

quantity that has three directions associated with each point in the field. A 
tensor field of rank three. 

unit dyad:   A dually directed unitary dyadic. A quantity that has a magnitude of 
one, and two directions at every point in space. A unitary tensor of rank two. 

unit quadad:   A quadruply directed unitary quadadic. A quantity that has a 
magnitude of one, and four directions at every point in space. A unitary 
tensor of rank four. 

unit triad:   A triply directed unitary triadic. A quantity that has a magnitude of  
one, and three directions at every point in space. A unitary tensor of rank 
three. 

unit vector:   A singly directed unitary vector. A quantity that has a magnitude 
of one, and a single direction at every point in space. A unitary tensor of 
rank one. 

vector:  A quantity that has a magnitude and an inherent single direction. A 
tensor of rank one. 

vector field:   A quantity that has a magnitude and an inherent single direction at 
every point in the field. A tensor field of rank one. 
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Index 
 
3-space vector, 1-2 
 
A 
acousto-optics, 3-2 
advanced potentials, 5-30 
Ampere’s circuital law, 2-12, 5-21 
anisotropic dielectric, 3-6, 3-9 
anisotropic media, 2-6, 3-1 
anisotropic permittivity, 3-6 
area formulas using cross  
  products, 2-15 
area of a parallelogram, 2-15 
associative law, 2-5 
attenuation constant, 5-25 
 
B 
bianisotropic media, 3-1 
birefringence, 4-7 
boundary conditions, 4-18 
building blocks, 1-15 
 
C 
chain rule  
  functions of three independent 

variables, 1-20 
  surface functions, 1-21 
circulation integral, 4-30, B-1 
clock example, 1-23 
closed line integral, 2-12, 5-11, B-13 
commutative law, 2-4, 2-5 
  for cross products, 2-13 
composite materials, 3-1, 3-2 
confocal ellipsoids, 2-27 
confocal hyperboloids, 2-26 
coordinate derivatives of unit vectors, 

1-23, B-12 
coordinate systems 
  bipolar cylindrical, B-14, B-18, B-19 
  Cartesian, B-14, B-16, B-17 
   

 
 
 
 
 
 
 
 
   
  circular cylindrical, 4-2, B-13, B-14,   
               B-16, B-17  
  confocal oblate spheroidal, B-14, 

B-20, B-21 
  confocal prolate spheroidal, B-14, 

B-20, B-21  
  elliptic cylindrical, B-14, B-18, B-19 
  GOCCs, B-14, B-16   
  one-sheet hyperboloid, B-15 
  parabolic cylindrical, B-14, B-18, 

B-19 
  spherical, B-14, B-16, B-17 
  sphero-conal, B-1, B-22, B-23 
  toroidal, B-1, B-24, B-25 
  two-sheet hyperboloid, B-15  
cross product, 2-7, 2-13, 2-15 
crystalline materials, 1-7 
curl, 4-3, 4-27, B-1, C-5 
  Cartesian coordinate geometry, B-5–

B-8  
  circulation density, 4-31 
  curling up, 4-31 
  geometry, B-12 
  maximal ratio, 4-31 
  meter, 4-31 
  of a dyadic, in cylindrical coordinates, 

D-7 
  of a generalized tensor, C-7 
  of a vector, Cartesian coordinates, B-6 
  of the curl of a vector field, 4-48, C-14 
    in Cartesian coordinates, D-4 
    in cylindrical coordinates, D-9 
    in GOCCs, 4-51 
    physical description, 4-49 
  of the divergence of a tensor, C-10 
  of the gradient of a tensor, C-9  
  of the strain dyadic, D-2 
  paddle wheel, 4-31 
  physical description, 4-28 
  resultant field, 4-28 
  swirl, 4-31 
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  theorem (See Stokes’ theorem) 
  transverse nature, 4-28 
  vorticity, 4-31, 4-49 
 
D 
del operator, 4-9 
  derivative nature, C-21 
  in Cartesian coordinates, C-5 
  in GOCCs, C-17 
  product nature, C-21 
del vector differential operators, 4-2, 

4-3 
del-cross operator, 4-3, 4-27, 4-29 
del-dot operator, 4-3, 4-16 
del-squared operator, 4-42 
derivatives 
  of multiple variables, C-20 
  partial, 1-18 
  partial of a scalar function, 1-19 
  total, 1-18 
dielectric breakdown, 3-15 
dielectric strength, 3-15 
differential area as a scalar, 1-16 
differential area as a vector, 1-17 
differential elements, B-1 
  of area, B-1 
  of length, B-1, B-9 
  of volume, B-1 
  orthogonal, B-1 
differential equations, 4-5 
  inhomogenous, 5-1 
  order, 4-1, 4-2 
differential equations for vector field 

flow lines 
  in Cartesian coordinates, 2-20 
  in cylindrical coordinates, 2-21 
  in GOCCs, 2-20 
  in spherical coordinates, 2-22 
differential forms, 4-1 
differential length vectors, 1-15 
differential operator 
  first-order scalar, 4-5 
  first-order vector, 4-8, 4-35, B-1 
  order, 4-1, 4-2 
  second-order scalar, 4-6 
  second-order vector, 4-36 
  second-order vector, Cartesian 

expansion, D-4 
differential surfaces, B-7–B-9 
differential vector surfaces, B-2 

differential volume, 1-17, 1-18, B-2–
B-4 

Dirac delta function, 5-26, 5-29 
direct operator, 4-3 
direct product, 2-7, 5-5 
directional compoundedness, 3-3 
  of four, 3-13 
directional derivative, 4-13 
dispersion relation, 4-5 
displacement, 2-2 
displacement vector 
  electric, D-2, D-4, D-5, D-9 
  mechanics, D-2 
distributive law  
  for cross products, 2-13 
divergence, 4-3, B-1, B-2, C-5 
  Cartesian coordinate geometry, B-2–

B-5 
  cylindrical coordinate geometry, B-9–

B-12 
  geometry, B-12 
  in GOCC, 4-24, C-17, C-18 
  of a dyadic, 4-43, B-10 
  of a generalized tensor, C-6, C-17, 

C-18 
  of a vector field, cylindrical 

coordinates, B-10 
  of the curl a tensor, C-7 
  of the gradient of a vector field, 4-43 
  operator, 4-16, 4-43, C-16 
  physical description, 4-17 
  resultant field, 4-28 
  tangential nature, 4-28 
  theorem (see Gauss' theorem) 
dot product, 2-7 
dot products in line and surface 

integrands, 2-11 
double dot product, 2-8, 3-14, 3-17 
dual directional compoundedness, 1-6, 

2-2 
dummy index, C-7, C-11 
dyad, 3-13 
dyadic field, 4-14 
  divergence of, in cylindrical 

coordinates, D-6 
dyadic phasor field, 2-17 
dyadics, 1-6, 1-11, 1-12, 3-20 
  arrow notation, 1-13 
  cause and effect nature, 1-8 
  coordinate transformation matrix, 1-8 
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  cross product, 5-5 
  directional compoundedness of two, 

3-3 
  magnetostrictive materials, 1-8 
  n-dimensional Jacobian differential 

operator, 1-8 
  piezoelectric materials, 1-8 
  pre-subscript notation, 1-12 
  pre-superscript notation, 1-12 
  strain dyadic, 1-8 
  stress dyadic, 1-8 
  tangential components, 5-4 
dyadic-dyadic dot product, 3-12, C-3 
dyadic-dyadic double dot product, 3-12 
dyadic-vector dot product, 2-6, 3-2, 3-9, 

3-10 
 
E 
eigenfunction, 4-5 
eigenvalue, 4-5 
  degenerate, 4-7 
elastic modulus, 3-13 
electric displacement vector (See 

electric flux density vector) 
electric field intensity, 2-2, 2-12, 5-9 
electric flux density, 2-2 
electric flux density vector, 3-5 
  anisotropic media, 3-6, 3-9 
  isotropic media, 3-5 
  nonlinear media, 3-15 
electric permittivity dyadic, 3-8 
electric potential, 1-2, 2-2, 2-12, 4-9, 

5-9 
electric potential field, 2-2 
electric scalar potential, 5-27 
  retarded, 5-27, 5-30 
electric susceptibility, 3-16 
electro-optics, 3-2 
electromagnetic fields 
  energy in, 5-19 
electromagnetic waves  
  scattering of, 3-1 
energy, 1-2 
entropy, 1-2 
equipotential surfaces, 2-26 
equivalue surfaces, 2-26 
explicit standard notation, 1-1 
exterior product, 4-4 
external product, 2-7 
 

F 
fiber optics, 3-2 
fields, 2-17 
  in r  space, 1-5 
  nonconservative, 4-31 
  rotational,  4-31, 5-10 
  solenoidal, 4-31 
fifth-order nonlinearity, 3-18 
filamentary current source, 5-11 
finite straight line charge, 2-25 
flow line, 2-18 
flux density, 2-12 
flux tubes, 4-18 
force, 2-2 
Fourier transform, 5-27 
fourth-order nonlinearity, 3-18 
 
G 
Gauss’ law, 5-16 
  Maxwell’s equations from, 5-17 
Gauss’ theorem, 5-1, 5-15, 5-18 
Gaussian surface, 5-16 
gedanken experiment  
  curl meter, 4-31 
generalized operator, C-1 
generalized orthogonal curvilinear 

coordinates (GOCCs), 4-2 
generalized vector operator on 

generalized tensor in GOCCs, 
C-18 

gradient, 4-1, 4-3, B-1, C-6 
  geometry, B-12, B-13 
  of a dyadic field, in Cartesian 

coordinates, D-3 
  of a dyadic field, in cylindrical 

coordinates, D-8 
  of a generalized tensor, C-7 
  of a scalar field, in Cartesian 

coordinates, D-3 
  of a scalar field, in cylindrical 

coordinates, D-7 
  of a scalar field, physical description, 

4-8 
  of a vector field, 4-8, 4-14 
  of a vector field, in Cartesian 

coordinates, D-3 
  of a vector field, in cylindrical 

coordinates, 4-15, D-7 
  of a vector field, in GOCCs, 4-14 
  of the curl of a tensor, C-12 
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  of the divergence, 4-48 
  of the divergence, in Cartesian 

coordinates, D-5 
  of the divergence, in cylindrical 

coordinates, D-9 
  of the divergence, physical 

description, 4-53 
  of the stress dyadic, D-3 
  omniverse nature, 4-28 
  operator, 4-8 
  resultant field, 4-28 
gravitational potential energy, 4-9 
Green’s function, 5-1, 5-25 
Green’s identities, 5-1, 5-24, 5-31 
  scalar form, 5-24, 5-28 
  vector form, 5-25 
Green’s lemma, 5-24 
Green’s theorems, 5-24 
group velocity dispersion, 3-17 
 
H 
harmonic time variation, 2-17 
Helmholtz scalar wave equation 
  homogenous, 5-25 
  inhomogenous, 5-25, 5-27 
 
I 
inner product, 3-10 
  multiple, 3-10 
integral forms, 5-1 
integral operators 
  cross-product, 5-5 
  direct-product, 5-5 
  dot-product, 5-5 
inverse, 2-7 
  transforms, 5-28 
 
J 
Jacobian differential operator, 1-8 
 
K 
Kronecker delta, 2-8, 3-9, C-3, C-5, 

C-19 
 
L 
Lagrange vector identity, 4-48, 4-52, 

C-5 
  applied to tensors, C-13 
Lamé coefficients, C-16 
Laplacian 

  del-squared operator, 4-42, C-14 
  scalar, 4-38, 4-42 
    in cylindrical coordinates, D-9 
    in GOCCs, 4-42 
  tensor, C-14 
  vector, 4-38, 4-43, 4-53 
    in cylindrical coordinates, 4-46, D-9 
    in GOCCs, 4-45 
Levi-Civita symbol, 2-13, 2-14, C-6 
linear isotropic materials, 3-1 
linear medium, 3-15 
 
M 
magnetic field intensity, 2-2, 5-11 
magnetic flux density, 2-2 
magnetic vector potential, 5-11, 5-30 
  retarded, 5-30, 5-31 
magneto-optics, 3-2 
magnetostrictive transducers, 1-8 
matrix multiplication analogy 
  invalid, 3-11 
  valid, 3-9 
maximal increase, 4-9 
  direction of, 4-12 
Maxwell’s divergence equation for the 

electric flux density, 5-17 
Maxwell’s equations, 5-17 
mechanics of materials, 1-8 
metric coefficients, 2-19 
mixed derivative theorem, 1-20, C-9, 

C-10 
modulus of elasticity, 3-2, 3-3 
molecular inversion symmetry, 3-16 
multiple directional compoundedness, 

1-7 
multiple dot product, 3-21 
 
N 
nabla operator (See del operator) 
nabla vector differential operators, 4-2, 

4-3, C-18 
  analogy with vector operators, C-24 
nebel, 4-3 
Newton, Isaac, 5-21 
non-centrosymmetric materials, 3-16, 

3-18 
nonlinear medium, 3-15 
nonlinear optical effects, 3-3 
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O 
open line integral, 2-11, 5-10 
open surfaces, B-13 
operand 
  dyadic, 4-38 
  scalar, 4-38 
  tensor, 5-5, 5-14 
  tensor, generalized, 4-38 
  vector, 4-38 
operand field, 4-4 
optical engineering 
  paradigm into, 3-2 
optoelectronics, 3-2 
order notation, 1-14, 3-18 
orthogonal coordinate surfaces, 1-15 
orthogonal coordinate systems,  B-1 
  parameters, B-13 
  surface graphics, B-13 
outer product, 2-7, 4-4 
 
P 
partial derivatives 
  dimensionally consistent formulation, 

1-21 
  vector function, 1-22 
path dependence, 5-7 
  of tangential line integrals, 5-10 
path independence, 5-7 
permittivity tensors, 3-15 
phase constant, 5-25 
phasors, 1-5 
photonics, 3-1, 4-2 
  paradigm into, 3-2 
piezoelectric transducers, 1-7 
potential energy difference, 5-6 
potential function, 5-24 
power of tensors, 3-1 
Poynting’s theorem, 5-19 
pressure, 1-2, 4-9 
projection of one vector onto another, 

2-10 
propagation constant, 5-25 
 
Q 
quadad, 3-13 
quadadic, 3-13, 3-20 
 
R 
 r -space notation, 1-4 
  physical interpretation, 1-4 

Raman amplification, 3-17 
rank, 3-3 
rank/order issue, 3-4 
rank-four unitary quantity, 3-14 
resultant  
  field, 4-28 
  forms, 4-37 
  forms, dyadic, 4-38 
  forms, generalized tensor, 4-38 
  forms, quadadic, 4-38 
  forms, scalar, 4-38 
  forms, second-order vector differential 

operator, 4-39 
  forms, triadic, 4-38 
  forms, vector, 4-38 
  tensor, 4-36 
rolling of coordinates 
  validity in Cartesian coordinates, 4-27 
  validity in GOCCs, 4-27 
 
S 
scalar differential operators, 4-5 
scalar field equivalue surfaces, 2-25 
scalar fields, 2-1, 2-3 
scalar function 
  total derivative of, 1-20 
scalar phasor, 1-6, 2-17 
scalar product, 2-7 
  restricted use of, 2-7 
scalars, 1-2 
  zero directional compoundedness, 3-3 
scale factors, 2-19 
scattering dyadic, 3-1 
second-order degeneracy, 4-7 
second-order nonlinearity, 3-16 
self-phase modulation, 3-17 
shear, 3-13 
soliton wave propagation, 3-17 
sonar  
  receivers, 1-7 
  transmitters, 1-7 
source distribution, 5-18 
sources, 4-24 
  charge density, 4-24 
  mass density, 4-24 
Stokes’ theorem, 5-1, 5-21 
  derivation of, 5-22 
  implications of, 5-23 
  proof of, 5-23 
strain, 1-8, 3-2 
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strain dyadic 
  curl of, D-2 
stress, 1-8, 3-2, 3-13   
susceptibility 
  second-order, 3-16 
  third-order, 3-16 
 
T 
temperature, 1-2, 4-9  
tension, 3-13 
tensor, 1-7 
  arrow notation, 1-13 
  calculus, 4-1 
  components, 3-4 
  directional compoundedness of, 3-2 
  explicit standard notation, 1-11 
  general rank, explicit standard notation 

for, C-2 
  Laplacian, C-14   
  multiple-subscript notation, 1-11 
  notation, 1-1, 1-11, 3-7, 3-14, 3-18 
  operands, 4-37 
  order notation, 1-14 
  order of, 3-2, 3-4 
  post-subscript notation, 1-14 
  post-superscript notation, 1-14 
  pre-subscript notation, 1-12 
  pre-superscript notation, 1-12 
  product, 4-3, 5-5 
  product, general, C-3 
  rank of, 3-2, 3-4 
  rank rules, 4-16 
  rank-four, 3-3, 3-13 
  resultant, 4-36, 5-5, 5-14 
tensor-tensor cross product, 3-21 
tensor-tensor direct product, 3-21 
tensor-tensor dot product, 3-21 
tensor/dyadic issue, 3-2 
tensor field 
  line integrals, 5-2 
tensor operators, 4-3 
tensor phasor, 1-6 
tensor phasor field, 2-18 
tensorial resultants, 4-35 
third-harmonic signal, 3-4 
third-order nonlinearity, 3-17 
third-order permittivity, 3-17 
third-order susceptibility, 3-4 
time harmonic, 1-5 
total flux, 2-12 

triad, 3-13 
triadics, 1-11, 3-16, 3-20, D-8 
  arrow notation, 1-13 
  dot product, 5-5 
  explicit standard notation, 1-11 
  pre-subscript notation, 1-12 
  pre-superscript notation, 1-13 
  tensor notation, 1-12 
triads, 1-11 
  inner product with differential length 

segment, 5-4 
triple dot product, 2-8, 3-4 
triple vector product, 2-17 
 
U 
unit dyad, 1-7, 1-12, 3-6 
  pre-subscript notation, 1-12 
  pre-superscript notation, 1-13 
unit impulse, 5-26 
unit triad, 1-12 
  pre-subscript notation, 1-13 
  pre-superscript notation, 1-13 
unit vector, 1-3 
  coordinate derivatives of, 1-23 
 
V 
vector, 1-2 
  arrow notation, 1-13 
  single directional compoundedness, 

3-3 
  six-dimensional, 3-15 
vector addition, 2-4, 2-5, A-1–A-3 
vector differential operator   
  first-order, 4-1 
  n-dimensional, 1-8 
  second-order, 4-2 
  tensor notation, 1-12 
vector dot product with a dyadic, 3-2 
vector field direction line (See flow 

line) 
vector fields, 2-2, 2-3, 4-18 
  circulation of, 2-12, 4-29 
  conservative, 2-12 
  current density, 5-30 
  divergence of, in cylindrical 

coordinates, D-6 
  irrotational, 2-12 
  line integrals, 5-2 
  rotational, 2-12 
  solenoidal, 2-12 
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vector function 
  partial derivative of, 1-22 
vector phasor, 1-6, 2-17 
vector product, 2-7 
  restricted use of, 2-7 
  triple, 2-17 
vector subtraction, 2-5, A-3, A-4 
vector-dyadic dot products, 3-8 
vector-vector products, 2-7 
velocity, 2-2 
voltage, 1-2  
volume charge density, 5-27 
vortex field 
  circulation density, 4-51 
vortex hole, 4-51 
  cyclonic type, 4-51 
vorticity, 4-31, 4-49 
  nonrotational, 4-50 
  nonvarying, 4-50 
  vector, 4-50 
 
W 
wave number, 5-25 
work, 1-2, 5-6 
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Cylindrical Coordinate Expansions of Common 
Vector Differential Operators 

 

Conversions from generalized orthogonal curvilinear coordinates (GOCCs) to cylindrical: 
 

1q r= , 2q φ= , 3q z=  and 1 1h = , 2h r= , 3 1h =  
 

First-Order Vector Differential Operators (Div, Curl & Grad) 
 
Div vector [Eq. (4.4-22)] 

( )1 1r z

cyl

ArA A
A

r r r z

φ

φ
∂∂ ∂

∇ ⋅ = + +
∂ ∂ ∂

  a scalar field 

Div dyadic [Eq. (B.1-5)] 

( )

( ) ( )

1
ˆ

ˆ ˆ

rrr zr
r

cyl

r z zrzz zz
r

GrG G
G u G r

r r z

rGu G G GrGu G
G r r

r r z r r z

φ
φφ

φφ φφ φ φ
φ

φ

φ φ

∂∂ ∂
∇ ⋅ = + − +

∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂
+ + + + + + +

∂ ∂ ∂ ∂ ∂ ∂

 
 
 

   
   

  

   a vector field  

Curl vector [Eq. (4.5-13)] 

( )1 1
ˆ ˆ ˆz r z r

r zcyl

A rAA A A A
A u u u

r z z r r r

φ φ
φφ φ

∂ ∂∂ ∂ ∂ ∂
∇× = − + − + −

∂ ∂ ∂ ∂ ∂ ∂
    
        

   a vector field 

Grad scalar [Eq. (4.3-18)] 

1
ˆ ˆ ˆ

r zcyl

V V V
V u u u

r r z
φ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
  a vector field 

Grad vector [Eq. (4.3-23)]  
ˆ̂

ˆ ˆˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ( )

ˆ ˆ ˆˆ ˆ ˆ( )

cyl rr r rz

r zr z zz

rr z r

z z r z

uAA A A
rr r r

u uA AA A A
r r z z z

A u u u A

A u u u

φφ

φ

φ φ

φφ φ φ φ

φ

φ φ

∂∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∇ = + + + −

+ + + + + +

    a dyadic field 

 
Second-Order Vector Differential Operators (Laplacians) 

 
Scalar Laplacian [Eq. (4.7-6)]  

2 2
2

2 2 2

1 1
cyl

V V V
V V r

r r r r r z

∂ ∂ ∂ ∂
∇ = ∇ ⋅∇ = + +

∂ ∂ ∂ ∂
 
 
 

           a scalar field 

Vector Laplacian [Eq. (4.7-14)]  
 

2 2 2 2

2 2 2 2

2 2
ˆ ˆ ˆr r

r r z zcyl

A AA A
A u A u A u A

r r r r

φ φ
φ φφ φ

∂ ∂
∇ = ∇ − − + ∇ + − + ∇

∂ ∂
   
   
   

    a vector field 

 
See the inside front cover for the Cartesian coordinate expansions of these operators and 
Appendix D for other vector differential operator expansions. 
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