fractal and Wavelet
Image Compression
Techniques

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Dowalfddeet Fitosr/viwp shistokalliprnligisdrimsaefusey/ on 09/17/2013 Terms of Use: http://spiedl.or g/terms

Tutorial Texts Series

e Fractal and Wavelet Image Compression Techniques, Stephen Welstead, Vol. TT40

o Fundamentos de Electro-Optica para Ingenieros, Glenn D. Boreman, translated by Javier
Alda, Vol. TT37

e Infrared Design Examples, William L. Wolfe, Vol. TT36
o Sensor and Data Fusion Concepts and Applications, Second Edition, L. A. Klein, Vol. TT35

o Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Second Edition,
Herbert Kaplan, Vol. TT34

o Fundamentals of Machine Vision, Harley R. Myler, Vol. TT33

¢ Design and Mounting of Prisms and Small Mirrors in Optical Instruments, Paul R. Yoder, Jr.,
Vol. TT32

e Basic Electro-Optics for Electrical Engineers, Glenn D. Boreman, Vol. TT31

e Optical Engineering Fundamentals, Bruce H. Walker, Vol. TT30

e Introduction to Radiometry, William L. Wolfe, Vol. TT29

e Lithography Process Control, Harry J. Levinson, Vol. TT28

e An Introduction to Interpretation of Graphic Images, Sergey Ablameyko, Vol. TT27

o Thermal Infrared Characterization of Ground Targets and Backgrounds, P. Jacobs, Vol. TT26
e Introduction to Imaging Spectrometers, William L. Wolfe, Vol. TT25

e [Introduction to Infrared System Design, William L. Wolfe, Vol. TT24

e Introduction to Computer-based Imaging Systems, D. Sinha, E. R. Dougherty, Vol. TT23

o Optical Communication Receiver Design, Stephen B. Alexander, Vol. TT22

e Mounting Lenses in Optical Instruments, Paul R. Yoder, Jr., Vol. TT21

o Optical Design Fundamentals for Infrared Systems, Max J. Riedl, Vol. TT20

e An Introduction to Real-Time Imaging, Edward R. Dougherty, Phillip A. Laplante, Vol. TT19
e [Introduction to Wavefront Sensors, Joseph M. Geary, Vol. TT18

 Integration of Lasers and Fiber Optics into Robotic Systems, Janusz A. Marszalec, Elzbieta A.
Marszalec, Vol. TT17

e An Introduction to Nonlinear Image Processing, E. R. Dougherty, J. Astola, Vol. TT16
e Introduction to Optical Testing, Joseph M. Geary, Vol. TT15

¢ Image Formation in Low-Voltage Scanning Electron Microscopy, L. Reimer, Vol. TT12
¢ Diazonaphthoquinone-based Resists, Ralph Dammel, Vol. TT11

e Infrared Window and Dome Materials, Daniel C. Harris, Vol. TT10

e An Introduction to Morphological Image Processing, Edward R. Dougherty, Vol. TT9

e An Introduction to Optics in Computers, Henri H. Arsenault, Yunlong Sheng, Vol. TT8
 Digital Image Compression Techniques, Majid Rabbani, Paul W. Jones, Vol. TT7

e Aberration Theory Made Simple, Virendra N. Mahajan, Vol. TT6

¢ Single-Frequency Semiconductor Lasers, Jens Buus, Vol. TT5

e An Introduction to Biological and Artificial Neural Networks for Pattern Recognition, Steven
K. Rogers, Matthew Kabrisky, Vol. TT4

e Laser Beam Propagation in the Atmosphere, Hugo Weichel, Vol. TT3
e Infrared Fiber Optics, Paul Klocek, George H. Sigel, Jr., Vol. TT2
o Spectrally Selective Surfaces for Heating and Cooling Applications, C. G. Granqvist, Vol. TT1

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Fractal and Wavelet

Image Compression
lechniques

Stephen Welstead

Tutorial Texts in Optical Engineering
Volume TT40

SPIE

PRESS
Bellingham, Washington USA

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Dowalfddeet Fitosr/viwp shistokalliprnligisdrimsaefusey/ on 09/17/2013 Terms of Use: http://spiedl.or g/terms

Library of Congress Cataloging-in-Publication Data

Welstead, Stephen T., 1951—
Fractal and wavelet image compression techniques / Stephen Welstead
p. cm. — (Tutorial texts in optical engineering; v. TT40)
Includes bibliographical references and index.
ISBN 0-8194-3503-1 (softcover)
1. Image processing—Digital techniques. 2. Image compression—Mathematics. 3. Fractals.
4. Wavelets (Mathematics). 1. Title. II. Series.
TA1637.W45 1999
621.36'7—dc21 99-051601
CIP

Published by

SPIE—The International Society for Optical Engineering
P.O. Box 10

Bellingham, Washington 98227-0010

Phone: 360/676-3290

Fax: 360/647-1445

Email: spie@spie.org

WWW: http://www.spie.org/

Copyright © 1999 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed
in any form or by any means without written permission of the publisher.

Printed in the United States of America.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

To the memory of my parents

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

I ntroduction to the Series

Sinceitsinception in 1989, the Tutorial Texts (TT) series has grown to more than
80 titles covering many diverse fields of science and engineering. The initial idea
for the series was to make material presented in SPIE short courses available to
those who could not attend and to provide a reference text for those who could.
Thus, many of the texts in this series are generated by augmenting course notes
with descriptive text that further illuminates the subject. In this way, the TT
becomes an excellent stand-alone reference that finds a much wider audience
than only short course attendees.

Tutoria Texts have grown in popularity and in the scope of material covered
since 1989. They no longer necessarily stem from short courses; rather, they are
often generated by experts in the field. They are popular because they provide a
ready reference to those wishing to learn about emerging technologies or the
latest information within their field. The topics within the series have grown from
the initial areas of geometrical optics, optical detectors, and image processing to
include the emerging fields of nanotechnology, biomedical optics, fiber optics,
and laser technologies. Authors contributing to the TT series are instructed to
provide introductory material so that those new to the field may use the book as a
starting point to get a basic grasp of the material. It is hoped that some readers
may develop sufficient interest to take a short course by the author or pursue
further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs
and textbooks in the way in which the material is presented. In keeping with the
tutorial nature of the series, there is an emphasis on the use of graphical and
illustrative material to better elucidate basic and advanced concepts. There is also
heavy use of tabular reference data and numerous examples to further explain the
concepts presented. The publishing time for the books is kept to a minimum so
that the books will be as timely and up-to-date as possible. Furthermore, these
introductory books are competitively priced compared to more traditional books
on the same subject.

When a proposal for a text is received, each proposal is evaluated to
determine the relevance of the proposed topic. This initia reviewing process has
been very helpful to authors in identifying, early in the writing process, the need
for additional material or other changes in approach that would serve to
strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure
that chapters communicate accurately the essential ingredients of the science and
technol ogies under discussion.

It is my goal to maintain the style and quality of books in the series and to
further expand the topic areas to include new emerging fields as they become of
interest to our reading audience.

James A. Harrington
Rutgers University

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Contents
Preface

1. Introduction
1.1 Images
1.2 The image compression problem
1.3 Information, entropy, and data modeling
1.4 Scalar and vector quantization
1.5 Transform methods
1.6 Color images
1.7 The focus of this book

PART I: FRACTAL IMAGE COMPRESSION

2. Iterated Function Systems
2.1 Iterated function systems as the motivation for fractal image
compression
2.2 Metric spaces
2.2.1 Basic concepts
2.2.2 Compact sets and Hausdorff space
2.2.3 Contraction mappings
2.3 Tterated function systems
2.3.1 Introduction
2.3.2 The Collage Theorem
2.3.3 What the Collage Theorem says
2.3.4 Affine transformations
2.4 Implementation of an iterated function system
2.4.1 Points and transformations
2.4.2 Affine coefficients
2.4.3 Computing the fractal attractor image from the IFS
2.4.3.1 Deterministic algorithm
2.4.3.2 Random algorithm
2.5 Examples
2.5.1 Sierpinski triangle
2.5.1.1 Fractal dimension
2.5.2 Constructing an IFS from a real image
2.5.3 A few more IFS examples

3. Fractal Encoding of Grayscale Images

3.1 A metric space for grayscale images

3.2 Partitioned iterated function systems (PIFS)
3.2.1 Affine transformations on grayscale images
3.2.2 Contraction mappings on grayscale images
3.2.3 Contraction mapping theorem for grayscale images
3.2.4 Collage Theorem for grayscale images

3.3 Fractal image encoding

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

xiii

O 00 ~J W A WIN a

11

11
12
13
15
16
18
18
19
20
21
22
22
24
25
25
29
34
34
35
37
38

43
43
44
44
45
45
47
48

3.3.1 Domain cells
3.3.2 Quadtree partitioning of range cells
3.3.2.1 A scheme for keeping track of quadtree
partitioning
3.3.3 Mapping domains to ranges
3.3.4 Encoding times
3.4 Image decoding
3.4.1 Measuring the error
3.5 Storing the encoded image
3.5.1 Range file format
3.5.2 Binary range file format
3.5.2.1 Efficient quadtree storage
3.5.2.2 Bit structure for storing range information
3.5.2.3 Transmission robustness
3.6 Resolution independence
3.7 Operator representation of fractal image encoding
3.7.1 “Get-block” and “put-block” operators
3.7.2 Operator formulation
3.7.3 Solution of the operator equation
3.7.4 Error analysis

4. Speeding Up Fractal Encoding
4.1 Feature extraction
4.1.1 Feature definitions
4.1.2 Encoding algorithm using feature extraction
4.1.3 Sample results using feature extraction
4.2 Domain classification
4.2.1 Self-organizing neural networks
4.2.2 Fractal image encoding using self-organizing
domain classification
4.2.3 Sample results using self-organizing
domain classifier
4.3 Other approaches for speeding up fractal encoding

PART Il: WAVELET IMAGE COMPRESSION

5. Simple Wavelets

5.1 Introduction

5.2 Averaging and detail

5.3 Scaling functions and wavelet functions

5.4 Multiresolution analysis

5.5 Normalization

5.6 Wavelet transform

5.7 Inverse wavelet transform

5.8 Wavelet transform in two dimensions
5.8.1 What a wavelet transform looks like
5.8.2 Simple wavelet compression scheme

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

50
51

53
54
56
57
58
60
60
61
62
63
64
65
66
66
67
68
69

7
71
71
73
76
81
82

84

86
90

93
93
94
96
101
104
105
109
111
113
116

6. Daubechies Wavelets
6.1 Weighted averages and differences
6.1.1 Lowpass and highpass filtering
6.1.2 Matrix representation
6.2 Properties and conditions on the coefficients
6.3 Wavelet transform
6.4 Scaling functions and wavelet functions
6.5 Daubechies wavelets
6.6 Simple image compression with Daubechies wavelets
6.7 Other wavelet systems

7. Wavelet Image Compression Techniques
7.1 Introduction
7.2 Wavelet zerotrees
7.2.1 An implementation of wavelet zerotree coding
7.2.1.1 Terminology: Which way is up?
7.2.1.2 Handling the insignificant coefficients
7.2.1.3 The zerotree encoding algorithm
7.2.1.4 Bit planes
7.2.2 Decoding a zerotree encoded image
7.2.3 Where is the compression?
7.2.4 Encoding speed
7.3 Hybrid fractal-wavelet coding
7.3.1 Operator approach to hybrid fractal-wavelet
coding
7.3.2 Other hybrid approaches

8. Comparison of Fractal and Wavelet Image Compression
8.1 Rate distortion
8.2 Encoding speed
8.3 Larger images
8.4 Conclusions

Appendix A: Using the Accompanying Software
A.1 IFS System
A.1.1 Points window
A.1.2 Transformation window
A.1.3 IFS window
A.2 IMG System: Fractal Image Compression
A.2.1 Encode window
A.2.1.1 Encode setup
A.2.1.2 Running image encoding
A.2.2 Self-organizing encoding window
A.2.2.1 Setting up the self-organizing network
A.2.2.2 Running self-organized image encoding
A.2.3 Decode window
A.2.4 Subtraction window
A.2.5 Plot window

Xi

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

119
119
119
120
121

122
123

124
126
129

131
131
133
135
135
137
141
142
143
149
150
150

152
153

155
155
159
160
163

165
165

166
167
169
172
172
174
176
177
177
179
179
181

182

A.3 WAV System: Wavelet Image Compression
A.3.1 Wavelet compression window
A.3.2 Wavelet zerotree encoding
A.3.3 Wavelet zerotree decoding
A.3.4 Image subtraction with the WAV System
A.3.5 Wavelet plotting window

A.3.5.1 Setting Up the Graph Parameters

Appendix B: Utility Windows Library (UWL)

B.1 Windows Programming
B.1.1 Multiple Document Interface (MDI)
B.1.2 Dialogs
B.1.2.1 Modal vs. modeless dialogs
B.1.2.2 Windows Common Dialogs
B.2 Utility Windows Library (UWL)
B.2.1 The twindow class
B.2.2 MDI frame window
B.2.3 MDI windows
B.2.4 Graph window
B.2.5 WinMain in a UWL application
B.2.6 UWL dialogs
B.2.7 Building UWL
B.3 Windows Programming References

Appendix C: Organization of the Accompanying Software Source

Code
C.1 IFS System
C.1.1 IFS classes
C.1.2 IFS code files
C.1.3 UTM Library
C.2 IMG System
C.2.1 IMG classes
C.2.2 IMG code files
C.3 WAV System
C.3.1 WAV classes
C.3.2 WAV code files

References
Index

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022

Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

184
184
186
187
188
188
189

191
191
192
193
193
194
195
195
197
200
202
204
210
211
212

215
215
215
217
218
218
218
219
221
221
223

225
229

Preface

This book is a tutorial text that examines the techniques behind fractal and wavelet
approaches to image compression. The field of image compression has experienced an
explosion of interest recently because of the growth of the Internet and other multimedia
applications. While standard image and data compression methods exist and are in
extensive use today, the demand for ever increasing storage requirements and
transmission speed have spurred continued research for improved methods. Fractals and
wavelets provide two different avenues for such research. For scientists, engineers,
students and researchers interested in learning more about fractal and wavelet image
compression, this book provides both an introduction to the subject matter and
implementation details sufficient for beginning their own investigations into these
exciting new technologies.

Prior knowledge of image compression, fractal geometry or wavelet concepts is not
necessary to benefit from this book. The level of mathematical presentation is accessible
to advanced undergraduate or beginning graduate students in technical fields.
Mathematical concepts that would be helpful to know include the idea of convergence of
a sequence, multiple integrals, linear independence and basis vectors. Experienced image
processing practitioners will probably be disappointed at the minimal amount of coverage
devoted to traditional techniques such as the discrete cosine transform and entropy
coding. These topics are covered in depth in other books. For example, entropy coding,
which can be applied to the output of any compression algorithm, including fractal and
wavelet approaches, is not included in the system applications developed here. The
present book focuses on the mathematical aspects of fractal and wavelet image
compression.

In addition to learning the theory behind fractal and wavelet image compression, readers
of this book will have access to software that will enable them to explore these ideas on
their own. The software accompanying this book can be found on the web at
http://www.spie.org/bookstore/tt40/. Details on how to use the software, and how it is
constructed, are covered in the book's Appendixes A, B, and C. Three complete
Windows-compatible software systems are included with the accompanying software.
The IFS System allows readers to create their own fractal images using iterated function
systems. The IMG System compresses images using fractal techniques, displays the
decoded images, and computes the error between the original and decoded images
through image subtraction. The WAV System performs similar functions on images
using wavelet techniques and, in addition, displays the wavelet transform of an image.
Each system uses a standard Windows interface and includes options for saving and
retrieving information from files. The programs run on 32-bit Windows systems,
including Windows NT, 95 and 98. Finally, to enable readers to explore beyond the
boundaries of the included software, complete C/C++ source code is provided.

The source code for the accompanying software is written in a combination of C and
C++. It is not necessary to know either of these languages to benefit from the ideas of
this book or to run the programs included with the software. There are a few code
examples listed with the text. For the most part, the computational code is written in C.
When there is an obvious benefit to exploiting the object-oriented characteristics of C++,
then that language is used. In either case, the computational code is kept separate from

Xiii

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

the user-interface and display code modules that access Windows. Thus, the
computational source code, with perhaps minor modifications, should be portable to
other platforms, such as UNIX. The user-interface code, where there is an obvious
benefit to using object-oriented properties such as inheritance, is written in C++. The
source code includes its own C++ application framework for developing simple
Windows applications. It does not depend on Microsoft’s Foundation Classes (MFC) or
other third-party frameworks. The code here was developed using Borland’s C++ for
Windows, version 4.5. It has also been compiled with Symantec C++ 7.2 and Microsoft
Visual C++ 4.0. It should be possible to re-compile the code with any C++ compiler that
accesses the Windows Application Programming Interface (API) and supports
development of 32-bit Windows applications from source code files.

Outline of Topics

The book begins with an overview of the image compression problem, including a brief
discussion of general topics such as information and entropy, arithmetic coding, and a
look at current compression approaches such as JPEG. These general topics are
introduced in order to place fractal and wavelet image compression techniques in the
context of the overall theory of image compression. The remainder of the book is
devoted to fractal and wavelet topics and will not focus on general compression topics,
such as entropy coding, which are covered in other texts.

Fractal image compression is motivated by initially looking at iterated function systems
(IFS). The mathematics of IFS theory, including the contraction mapping theorem,
Barnsley’s collage theorem, and affine transformations, is covered here. These topics are
important to understanding why fractal image compression works. Computer examples
show how to use IFS techniques to synthesize fractal images resembling natural objects.

Partitioned iterated function systems extend the ideas of IFS theory to more general real-
world images and enable fractal encoding and compression of those images. Once the
theory behind fractal encoding has been established, the book considers practical
implementation issues such as how to set up a system of domain and range subimages
and the transformations between these subimages. Computer examples illustrate concepts
such as quadtree partitioning of range cells and the convergence of image sequences to
an attractor image.

Long encoding times have hindered the acceptance of fractal techniques for image
compression. Two approaches for speeding up the encoding process have received recent
attention in the literature. Feature extraction reduces the number of computations needed
for domain-range comparisons. Classification of domains reduces search times for
finding a good domain-range match. This book examines techniques for feature
extraction and the use of neural networks for domain classification. Examples show that
these techniques reduce encoding times from hours to seconds and make PC
implementation viable.

The book then introduces wavelets as an alternative approach to image compression.
Basic Haar wavelets illustrate the idea of wavelet decomposition as a process of
averaging and detail extraction at different resolution levels. The book presents a
unifying approach to the seemingly disparate multiple entry points into wavelet analysis.

Xiv

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Image resolution leads the reader from the ideas of averaging and detail extraction on
discrete sequences to scaling functions and wavelet functions. The fact that these
functions form basis sets in certain vector spaces leads to the idea of multiresolution
analysis. The wavelet transform can be derived from any of these entry points. Averaging
and detail extraction can be represented as matrix operators, which leads to a particularly
simple formulation of the wavelet transform. The essential features of these operators can
be extended to more general highpass and lowpass filtering operators. This analysis leads
to more complex wavelet systems, such as the Daubechies wavelets, which provide high
compression of commonly occurring signal and image components. With the wavelet
framework established, the book examines wavelet image compression techniques,
beginning with simple wavelet coefficient quantization schemes and moving on to more
complex schemes such as wavelet zerotree encoding. Code samples will illustrate key
implementation steps, and computer examples will show how the techniques work. The
book also discusses recent research in hybrid techniques which apply the ideas of fractal
encoding to data in the wavelet transform domain. Computer examples compare the
performance of fractal, wavelet, and hybrid image compression techniques.

Acknowledgments

Special thanks to Bill Pittman, without whose vision and extraordinary scientific
curiosity this tutorial would never have been developed. Thanks also to Rick Hermann
and SPIE Press for their encouragement during the preparation of this manuscript.
Thanks to Bob Berinato for thoughtful and insightful discussion and comments on the
manuscript. Finally, thanks to the reviewers, whose comments made this a better book.
Any errors that remain are solely those of the author.

Stephen T. Welstead
October 1999

XV

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

1

INTRODUCTION

Digital images are claiming an increasingly larger portion of the information world. The
growth of the Internet, along with more powerful and affordable computers and
continuing advances in the technology of digital cameras, scanners and printers, has led to
the widespread use of digital imagery. As aresult, there is renewed interest in improving
algorithms for the compression of image data. Compression isimportant both for speed of
transmission and efficiency of storage. In addition to the many commercial uses of
compression technology, there is aso interest among military users for applications such
as the downlink of image data from a missile seeker and for archival storage of image
data, such as terrain data, for defense-related simulations. The problem of image
compression or, more generally, image coding, has made use of, and stimulated, many
different areas of engineering and mathematics. This book focuses on two relatively new
areas of mathematics that have contributed to recent research in image compression:
fractals and wavelets.

Recognition of structure in data is a key aspect of efficiently representing and storing that
data. Fractal encoding and wavelet transform methods take two different approaches to
discovering structure in image data. Barndey and Sloan (1988,1990) first recognized the
potential of applying the theory of iterated function systems to the problem of image
compression. They patented their idea in 1990 and 1991. Jacquin (1992) introduced a
method of fractal encoding that utilizes a system of domain and range subimage blocks.
This approach is the basis for most fractal encoders today. It has been enhanced by Fisher
and a number of others (Fisher 1995; Jacobs, Boss, and Fisher 1995). This block fractal
encoding method partitions an image into digjoint range subimages and defines a system
of overlapping domain subimages. For each range, the encoding process searches for the
best domain and affine transformation that maps that domain onto the range. Image
structure is mapped onto the system of ranges, domains and transformations. Much of the
recent research in fractal image compression has focused on reducing long encoding
times. Feature extraction and classification of domains are two techniques that have
proved to be successful. This book includes techniques and discusses recent results
(Bogdan and Meadows 1992; Saupe 1994; Bani-Eqgbal 1995; Hamzaoui 1995; Welstead
1997) for improving fractal image encoding performance.

Wavelet transform approaches to image compression exploit redundancies in scale.
Wavelet transform data can be organized into a subtree structure that can be efficiently
coded. Hybrid fractal-wavelet techniques (Davis 1998; Hebert and Soundararagjan 1998)
apply the domain-range transformation idea of fractal encoding to the realm of wavelet
subtrees. The result isimproved compression and decoded image fidelity.

This chapter provides background material on some general topics related to image
coding. Following an overview of the image compression problem, we will briefly look at
information theory and entropy, scalar and vector quantization, and competing
compression technologies, such as those of the Joint Photographic Experts Group (JPEG).
The purpose of this chapter is to place fractal and wavelet compression techniques into

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2 Introduction

the overall context of image compression. Details on the aternative approaches
introduced in this chapter can be found in the references.

1.1 IMAGES

From a mathematical point of view, a grayscale image can be thought of as a real-valued

function f of two real variables, x and y. This image function f(x,y) is typically defined on

a rectangular region of the plane, and most of the images in this book are defined on

square regions. Since the image doesn’t “know” what region it is defined on, we typically
assume that this region is the unit square {JQ11]. The grayscale values are positive

real numbers. Fig. 1.1.1 shows a grayscale image and the graph of the corresponding
function representatioffx,y). Color images correspond to vector-valued functions on the
plane. There are different ways of representing color information. Electronic image
display systems, such as computer displays, represent color as red, green, and blue (RGB)
values. Printing systems use cyan, magenta, and yellow for color, in addition to black
(CMYK). Either way, color is represented as a three-dimensional vector. Coding
algorithms that work for grayscale images can be applied to each of the components of a
color image, although more efficient approaches are possible. While it might be expected
that the color image coding problem is three times as hard as the corresponding problem
for grayscale images, it turns out that the situation is not quite that bad. It is possible to
take advantage of the properties of human perception of color to reduce the coding
requirements for color images. We will revisit this topic later in this chapter.

Fig. 1.1.1 A grayscale image (left) and its corresponding
representation (right) asa function on the plane.

Human perception of images is an analog process, but the realm of computers is a digital
world. Thus, the computer representation of a grayscale image is a two-dimensional array
of nonnegative values. Each entry of the array is a pixel of the image. The pixels take on a
finite number of values, which we can assign to a range of nonnegative integers. The
range may be expressed in absolute terms, such as “256 gray levels”, or in terms of the
number of bits necessary to represent the values, as in “8 bits per pixel”.

While most of the literature on image processing and compression is devoted to human
perception of images, it is worth noting that for some applications, machine perception

may be more important. For example, an automatic target recognition system may extract
features from an image (such as edge locations or texture variations). In that case, the
performance of a compression algorithm may be judged on how well it preserves feature

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The Image Compression Problem 3

values after compression, which may not correspond exactly with human perception of the
same image.

1.2 THE IMAGE COMPRESSION PROBLEM

Fig. 1.2.1 shows an overview of the image compression process. A digital image is an
array of pixel values, which we can think of as a list of numbers. The compression
problem consists of two main parts. encoding and decoding. Encoding attempts to
represent the original list of numbers in a different way, hopefully requiring less storage
than the original list. Decoding tries to recover something like the original image from the
encoded information. If the decoded image is always exactly the same as the original
image, then the encoding-decoding algorithm is said to be a lossless algorithm. If the
decoded image differs from the origina image, then the algorithm is a lossy algorithm.
The fractal and wavelet methods covered in this book are lossy algorithms, as are most
compression algorithms.

Algorithmic Compact

Encoding Representation
Fourier (JPEG, etc.), Huffman coding,
Fractal, Arithmetic coding,
Wavelet, quantization, bit-packing,
etc. etc.

Decoding

Image Post-

processing

Compressed Image Decompressed Image

(optional) (Lossless: = Original Image;
Lossy: = Approximation of Original)

Fig. 1.2.1 Overview of the image compression process.

There are two ways that you can try to compress a set of data represented by a list of
numbers. You can try to make the list shorter, that is, consist of fewer numbers, or you
can try to make the numbers themselves shorter, that is, use fewer bits on average to
represent each number. Either approach will result in fewer total bits required to represent
the list. Complete compression schemes do both.

Fig. 1.2.1 refers to the first of these approaches as algorithmic encoding. This class of
algorithms includes Fourier transform and discrete cosine transform (DCT) methods,
which are the basis for most JPEG compression methods. It also includes wavelet
transform and fractal methods, the subjects of this book. With transform methods, the idea
is to transform the image data to a different domain where it is easy to identify data that
may safely be deleted. This enables the discarding of an appreciable amount of data

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4 Introduction

content with little loss of image quality. In the case of the Fourier transform, this is
usually high-frequency data. For wavelet transforms, it is high-detail data. Fracta
methods attempt to directly represent image information in a compact way.

The output of agorithmic encoding can be further compressed through compact
representation of the encoded numbers. Quantization can result in both fewer numbersin
the list and fewer bits per number. Digital images by definition have already undergone
some type of quantization before the encoding stage. Entropy coding methods, such as
Huffman coding and arithmetic coding, examine the distribution of values to arrive at an
efficient bit representation for each value. Values that occur frequently in the list are
assigned a smaller number of bits, while rarely occurring values are assigned longer bit
strings.

Decoding attempts to restore the original image from the encoded data. For transform
methods, the decoding step applies the inverse transform. Additional post-processing may
accompany the decoding step to improve the quality of the decoded image, for example to
remove blocking artifacts that may result from the compression algorithm.

1.3 INFORMATION, ENTROPY, AND DATA MODELING

Let A be some event that occurs with probability P(A). Then the information associated
with A is defined to be:

i(A) =log, % =-log, P(A). (1.3.1)

Note that this implies that when P(A) is small, i(A) is large, while P(A) =1 implies
i(A) = 0. Small probability events carry alot of information while virtually certain events
carry very little information. If you are told that it is going to snow in Alaska this winter,
you have not been given much information. However, if you are told that Floridais going
to be covered in snow, then you might want to start looking at orange juice futures.

In information theory literature, the phenomenon that generates the random events A is
called the source. Suppose we have a set of independent events A; occurring with
probabilities P(A;). The entropy of the source associated with these events is the average
information:

H= Z P(A)I(A). (1.3.2)

For our purposes here, we are interested in images as sources. Suppose that A, j = 1,...1,
represents a sequence of pixel values from an image, and tle¢ basis of the log
function in (1.3.1), equal 2. Then the entropy associated with the image is a measure of
the average number of bits needed to code the pixel values.

In general, it is not possible to know the true entropy associated with a source, because we
don’'t know the true values &fA) in (1.3.2). The best we can do is to estimate the values
for P(A)) and use (1.3.2) to arrive at an estimate for the apparent entropy of the source.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The Image Compression Problem 5

Recognizing structure in data can reduce the apparent entropy. Consider the following
example, from Sayood (1996). We start with the sequence

12123333123333123312.

If we ignore structure and consider the numbers one at a time, we see that there are three
symbols, 1, 2, and 3, that occur with the following probabilities:

P(1) = 5/20 = 0.25; P(2) = 5/20 = 0.25; P(3) = 10/20 = 0.5.
The apparent entropy is:
-(0.25 10gy(1/4) + 0.25 logy(1/4) + 0.5 10g,(1/2)) = 1.5 bits per symbol.

However, if we consider the numbers in the sequence two at atime, we discover structure:
12 and 33 aways occur together, and the entire sequence consists of just these two
symbols. Moreover,

P(12) = 5/10 = 0.5,
P(33) = 5/10 = 0.5,

and the apparent entropy is now
-(0.51005(1/2) + 0.5 l0g,(1/2)) = 1 bit per symbol.

In the first case, it would take (1.5)(20) = 30 bits to encode the sequence, while the
second case requires only 10 bits. The process of associating a structure with a data
sequence is called data modeling. Fractal encoding methods provide a data model for an
image that can reduce apparent entropy and lead to compression. Transform methods,
such as wavelets, provide structure in the transform domain, which also reduces apparent
entropy and leads to compression.

Entropy is the basis for Huffman coding and arithmetic coding. Given any sequence of
data values, such as the output of a fractal or wavelet compression scheme, one can
always apply an entropy coding technique, such as Huffman or arithmetic coding, to the
sequence to achieve further compression. These techniques examine the distribution of
data values, and assign low bit rates to frequently occurring values, and high bit rates to
less frequently occurring values. We will not explore entropy coding techniques any
further in this book. Details can be found in the references, such as Sayood (1996).

1.4 SCALAR AND VECTOR QUANTIZATION

Quantization is another way of reducing the amount of stored information. Scalar
guantization reduces the precision of scalar quantities to some fixed number of levels. For
example, 16- or 32-bit numbers may be reduced to 8 bits. In this case, there are 256 levels
in the quantization. Quantization may be uniform or non-uniform. Uniform quantization
spaces the quantization levels evenly across the range of numeric values. Not surprisingly,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

6 Introduction

this type of quantization works best when the values to be quantized are uniformly
distributed.

If the values are not uniformly distributed, it may be advantageous to concentrate more
guantization levels in the region of highest density of numeric values. Decimation is one

example of non-uniform quantization. Decimation consists of setting some portion of the

numeric values equal to zero. The portion may be determined as some percentage of the

total number of values, or it may be determined using a threshold test. For example, one
approach to wavelet image compression is to set some percentage, say 90%, of the
transformed wavelet coefficient values equal to zero. The “quantization” of the remaining
values merely consists of retaining those values. The number of levels is reduced to 0 plus
the number of different values of the 10% remaining coefficients (remarkably, as we will
see in later chapters, a quite good decoded image can be recovered from just this 10% of
the original coefficients).

Vector quantization represents arrays of values with a single quantized number. Color
images provide a good motivation for the use of vector quantization. The pixels in a color
image typically consist of a triplet of values. In an RGB system, this triplet consists of
red, green and blue values. For true reproduction of the color image, the entire (R,G,B)
vector must be stored. A 24-bit color image devotes 8 bits to each of the three values per
pixel. In this case, any value in the three-dimensional RGB space can be used for a given
pixel. However, a good approximation to the original image can be obtained by restricting
the pixel values to some finite list of RGB vectors. Such a scheme is calbbo anap,

or, in Windows programming, palette. For example, the color map, or palette, may
consist of 256 values, so that the index into this list requires only 8 bits for storage. In this
case, once the color map is known, each pixel can be represented with 8 bits, rather than
the original 24.

Obviously, the choice of color map affects the quality of the approximated image. In
vector quantization in general, the choice of the best such list, knowiccaiet®mok in

general vector quantization applications, is nontrivial. One approach is to use adaptive
clustering of the data. In this approach, the means of the clusters become the codebook
entries. Note that in vector quantization, the codebook must be known to the decoder, and
it is usually data dependent. This usually means that the codebook must be stored along
with the encoded data, which reduces the effective compression. Fig. 1.4.1 shows an
example of the vector quantization process, as it might be applied to a color RGB image.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The Image Compression Problem 7

Find closest | Encoding Decoding
codebook Stored Stored
/——> vector Codebook |ndex Index Codebook >
[A]] N |
| é - - I\lﬁ |
—|_,T ‘?J’
B | | B
Source Image o -] Lo Llg Decoded Image
R L | L | — R
[]

Fig. 1.4.1 Vector quantization, as it might be applied to a color
RGB image. Thered (R), green (G) and blue (B) pixel values form
vectors of length 3. Encoding finds the closest entry in a table of
vectors known asthe codebook. Only the index of the table entry is
stored. Decoding convertsthisindex back to a vector. Note that the
decoder needs to know the codebook table. Finding the optimum
codebook for a given image isnontrivial.

1.5 TRANSFORM METHODS

JPEG is the most widely accepted standard for image compression. JPEG users can
choose either a lossless version or one of several lossy options. The lossy versions
provide better compression rates. Compression ratio and restored image quality can be
controlled (though not precisely specified) through parameter selection. The basis for the
lossy versions of JPEG is the discrete cosine transform, which is a variation of the Fourier
transform. Quantization is applied to the transform coefficients to achieve compression.
Sayood (1996) discusses the JPEG method, and Lu (1997) provides a detailed example.
Barnsey and Hurd (1993) also have a detailed discussion of JPEG with sample source
code. Compl ete source code is avail able on the Internet.

Losdess JPEG applies linear predictive coding. Linear prediction makes use of
relationships among neighboring pixels to achieve compression. It is an example of
seeking inherent structure in the image, and hence reducing the apparent entropy.

JPEG has a video cousin, MPEG (Moving Picture Experts Group). Video compression
can take advantage of considerable frame-to-frame redundancy to achieve much greater
compression ratios than is possible for still pictures.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

8 Introduction

Why consider new image compression approaches when perfectly
good standards (JPEG, MPEG) exist?

The establishment of JPEG and MPEG as standards does not mean the
end of aneed for research in image and video compression. Rather than
stifle new research, standards have increased the number of applications
using image and video data and have thereby helped uncover
challenging new problems: robust transmission, digital image and video
libraries, content-based retrieval, and digital watermarking are a few
examples. Our understanding of the fundamental structure of image and
video sources is limited. There is little reason to believe that today’s
standards are optimal for these sources. Fractal methods, in partjcular,
take a whole new look at how to model fundamental image strudture.
Continuing research is needed to improve our understanding aphd to
improve the performance of compression methods. In fact, the JPEG
Standards Committee has recognized that the original JPEG stapdard,
developed more than 10 years ago, needs to be updated to meet the
expanding requirements of today's digital imaging consumer. [The
committee is actively developing a new JPEG 2000 standard, which
uses wavelet technology in place of the DCT compression methods of
the original JPEG standard. See (Chen 1998) for a further discussipn on
the role of standards in image compression.

1.6 COLOR IMAGES

As we have already seen, digital color image pixels consist of three values, representing
red, green, and blue values in the RGB system used for most displays (print systems use
cyan, magenta, and yellow for color, in addition to black (CMYK)). At first glance, it
might appear that compression of color images is three times as hard as grayscale image
compression. However, due to human perception of color, it is possible to transform RGB
values in a way that allows greater compression. The RGB values are transformed to YIQ
values, where Y isuminance, | is hue, and Q issaturation (the notation | and Q is a
holdover from than-phase (1) and quadrature (Q) terminology of signal processing). It

turns out that the | and Q channels can be greatly compressed with little perceived
degradation. Thus, the overall compression of color images is greater than what is
possible for grayscale images, typically 2 to 2.7 times greater (Fisher 1995). The
transformation from RGB to YIQ, and vice versa, is linear. The matrices representing the
transformation and its inverse are shown below:

Y] [0209 0587 0114 R
0596 -0274 -0.322
Q| [0211 -0523 0312 || B

[1.000 0956 0621]Y
1000 -0273 -0.647| |
|1.000 -1.104 1701 || Q]

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The Image Compression Problem 9

Color television transmission in North America uses the Y1Q representation.

Fisher (1995) and Lu (1997) discuss compression of color images in more detail. The
examplesin this book will focus on compression of grayscale images.

1.7 THE FOCUS OF THIS BOOK

The remainder of this book focuses on the algorithmic aspects of fractal image
compression and wavelet image compression. We will investigate the mathematics behind

these methods in order to understand how they work. We will look at how to implement

these methods on a computer, showing samples of source code. Examples using the

book’s accompanying software will illustrate the methods and their implementation. The
examples will be applied only to grayscale images, since the algorithms do not change
when applied to color images (though the implementation details do change). While
complete image compression systems would employ entropy coding and decoded image
post-processing to improve results, the systems developed in this book are tutorial in
nature and thus will focus only on the implementations of the fractal and wavelet
compression algorithms. For this reason, performance results presented here should be
used only to compare the relative performance of these algorithms to each other, and not,
for example, to the research-level implementations of other image compression
practitioners. The references contain more information on the details of compact
representation, such as entropy coding and bit-packing, image post-processing, color
image compression, video compression, as well as other compression topics and
approaches.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2

ITERATED FUNCTION SYSTEMS

In the early 1980’'s, Michael Barnsley introduced the idea of synthesizing a predetermined
image as the attractor of a chaotic process. Other researchers had previously shown that
chaotic systems were capable of producing fascinating images knowvatraage
attractors. Barnsley, however, was the first to take a step toward solving the inverse
problem: Given a specified image, can one come up with a chaotic system that has the
given image as its strange attractor? Barnsley used a particular system of mappings which
he called arterated function system (IFS). IFS’s are, at best, only a crude form of image
compression. It should be stressed that IFS’s in their original form, and as they are
presented in this chapter, are not the basis of current approaches to fractal image
compression (a misconception held by some of the detractors of fractal image
compression). However, IFS’s were the inspiration for fractal approaches to image
compression. And while IFS’s are not viable themselves as complete image compression
systems, an understanding of IFS theory is essential to understanding how fractal image
compression works. In this chapter, we will develop the mathematical background of IFS
theory and see how to implement such a system on a computer.

2.1 ITERATED FUNCTION SYSTEMS AS THE MOTIVATION FOR FRACTAL
IMAGE COMPRESSION

The quintessential example of a fractal image generated by an IFS is a fern, such as that
shown in Fig. 2.1.1. (a). The IFS used to generate this image consists of four
transformations. These transformations map the entire image onto the four subimage
regions shown in Fig. 2.1.1 (b). Each transformation has a fixed form that can be
specified with six real-valued coefficients. Thus, all of the information needed to produce
the image in (a) is contained in 24 floating point numbers.

These 24 coefficients represent a code for the image (a). This code is particularly compact
and requires much less storage than a pixel version of the image (a). This is the
motivation for fractal approaches to image compression: IFS’s provide an image code that
represents a compression ratio of hundreds- or thousands-to-one.

Simple IFS’s such as the one that produced Fig. 2.1.1 (a) do not work for arbitrary
images. First of all, the image in Fig. 2.1.1 (a) is a binary image, that is, its pixel values
are limited to O or 1. More general grayscale images require a more sophisticated system
that the next chapter will develop. Also, simple IFS’s apply only to images thatifare
similar, that is, images that are made up of subimages that are copies of the entire image.
Notice that each leaf of the fern is actually a copy of the entire fern. This is not true of
arbitrary images. In general, we can only hope to find subimages that are copies of other
subimages, which is what the system developed in the next chapter will do. In the
remainder of this chapter, we will develop the mathematics needed to determine the
coefficients for a simple IFS, and we will see how such an IFS can produce an image such
as Fig. 2.1.1 (a).

11

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

12 Iterated Function Systems

1

10

(@ (b)
Fig. 2.1.1 (a) A fern image created with an IFS. This|FS consists of
the 4 transformations mapping the entire image onto the 4
subimage regions shown in (b). All of the information needed to
reproduce the image shown in (a) can be stored using just 24
floating point values.

What isa fractal?

The term fractal was first introduced by Benoit Mandelbrot (1983).
Fractals are more easily described than defined. The key property that
characterizes fractals is self-similarity. That is, fractals show the same
amount of detail regardless of the scale at which they are viewed. Most
objects lose detail when one zooms in for a closer view. Because the
scaleis arbitrary, infinity is lurking behind the scene here. True fractals
are always the result of some type of process involving infinity, such as
an iterative process. A second property that characterizes fractals is
non-integer dimension. While the very concept of non-integer
dimension may seem counter-intuitive, it is possible to take the idea of
ordinary Euclidean dimension that we are used to (that is, the dimension
that assigns the number 1 to lines, 2 to filled-in rectangles on a flat
sheet of paper, and 3 to the world in which we live) and extend it to a
definition for which non-integer values make sense. The name fractal,
in fact, comes from the fractional values that the dimension of fractal
objects can assume. See (Mandelbrot 1983) for more details.

2.2 METRIC SPACES

Mathematicians like to extend concrete concepts into the abstract. The concept of
measuring distance between real-world objects is certainly well defined. But how do we
measure the distance between two images? What properties of the concept of distance do
we want to preserve when extending its definition to more abstract objects such as
images? Sometimes the abstract frees us from looking at the world in conventional ways

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Metric Spaces 13

and allows us to consider new approaches to solving problems. In this section, we’ll
extend the idea of distance to the more abstract notianewfc. We will also view
objects in more abstract terms as points in space. This will allow us to consider images as
points in a special type of space known aswelric space and to measure distance
between images. We can then tap into the machinery of classical metric space
mathematics to develop an algorithm for generating custom-made fractal images.

2.2.1 Basic concepts

In the Euclidean plan@?, the usual definition of the distandgx,y) between two points
X = (X1,%2) andy = (y1,y») is:

da(xy) = ((Kay)” + (% - ¥2))) 2. (2.2.1)
This is not the only way to measure distancRinAnother distance function is:
di(Xy) = Ko - ya| + K2 - Yol (2.2.2)

These two distance functions do not yield the same answer for the distance between two
points. For exampled,((0,0),(1,1)) =+/2, while d((0,0),(1,1)) = 2. However, they both
satisfy the essence of being measures of distance. What is this essence? That is, what
properties should a “sensible” distance function satisfy? Here is what mathematicians
have deemed the essential properties of a distance function:

1. It shouldn’t matter whether distance is measured fdoy or from
y to x. That is, we should have:

d(xy) = d(y.x).
2. The distance from a point to itself ought to be O:
d(x,x) = 0.

3. It shouldn’t be possible to find a shorter distance between two points
by jumping off to some intermediate point (in other words, the
shortest distance between two points is a straight line — whatever that
ish):

d(xy) < d(x,2) +d(zy).

This is also known as the triangle inequality.

4. Finally the distance measure itself ought to be real-valued, finite, and
positive when applied to any two distinct poirtandy:

0 <d(xy) < co.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

14 Iterated Function Systems

A distance function satisfying properties (1) - (4) aboveis called ametric. A set of points
X together with ametric d defined on X iscalled ametric space, and is denoted (X,d).

We will be working with images as sets of points in the plane R?. One might wonder why
we are bothering with abstract metric space concepts when we are dealing with such a
concrete space as R% Actually, we are interested in defining a metric space whose points
are in fact images. When we make this leap, we will have available to us al of the
machinery of metric space theory to guide us through a space where intuition is not
awaysreliable.

We need some basic definitions that apply to a general metric space (X,d). A sequence of
points{x,} issaid to convergeto apoint x [0 X if, by choosing n large enough, we can get
X, arbitrarily close to x. In precise mathematical terms, thisis stated as follows: Given any
£> 0, thereis an N > 0 such that d(x,,X) < & whenever n= N. The point x is caled the
limit of the sequence {x,} , and we denote this convergence by:

Xn - X

A sequence {x,} is called a Cauchy sequence if points x, and x., get arbitrarily close to
one another as m and n get large. Once again, there is a precise mathematical definition:
Given £> 0, thereisan N > 0 such that d(x,X,) < € for al m,n > N. Convergent sequences
are Cauchy sequences, however the converse is not necessarily true. That is, it is possible
to define a space Sand a Cauchy sequence {x,} in Ssuch that S does not contain the limit
of the sequence {x,}. Consider the following somewhat contrived example. Suppose Sis
the set of points in R? that are less than distance 1 (Euclidean distance) from the origin,
excluding the origin itself:

S={(xy) O R* 0<dy((x¥),(0,0)) < 1}.

Now consider the sequence of points {(1/n,2/n)}, n > 1, in S. Thisis a Cauchy sequence
in S yet it does not converge to a point in S. Similarly, {((n-1)/n,0)}, n > 1, isalso a
Cauchy sequence in Sthat does not convergeto apointin S

A metric space in which each Cauchy sequence does converge to a point in the space is
called a complete metric space. (R%d,) is a complete metric space. The space (Sd,),
where Sisthe set defined above, is not a complete metric space.

While the sequences defined above do not converge to pointsin S, they do have limitsin
the larger space R% (1/n,1/n) - (0,0) O R? and ((n-1)/n,0) - (1,0) O R?. The points
(0,0) and (1,0) are caled limit points of the set S. A point x is called a limit point of a set
Sif there is a sequence of points {x,} in S\{x} such that x, —» x. Here, S\ {x} is defined
as the set of all pointsin S excluding x. A set A in a metric space (X,d) is closed if it
contains al of its limit points. The set S defined above is not closed. However, the
following set is:

§ = {(X,y) O Rz: dz((X,y),(o,O)) s 1} .

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Metric Spaces 15

A set A together with its limit points is called the closure of A, denoted A. In the above
example, S isthe closure of S.

One final definition for this section: A set B in (X,d) is bounded if there is a point X, O X
and afinite value R, 0 < R < 0, such that for every x O B we have

d(xe,X) < R.

The sets Sand S defined above are both bounded, as are all of the image sets we will
consider in this chapter.

2.2.2 Compact sets and Hausdorff space

The mathematical notion of an “image” in this chapter is somewhat different from the
grayscale images considered in later chapters. A binary image such as the fern in Fig.
2.1.1 (a) can be considered as a special case of a grayscale image, that is, as a two-
dimensional matrix of grayscale values, where each pixel is either black or white.
However, in this chapter, when we refer to a binary image, mathematically we are
referring only to the set of points iR? represented by the black pixels. That is, the
“image” is a set of points contained within a bounded subseR%fl,f. Rather than
working with these images directly as sets, we will take advantage of the concept of
abstract metric space to define a space in which these images themsepaestar€his

will allow us to apply a well-known result from classical metric space theory to derive an
algorithm for producing fractal images. We will define a metric to measure the distance
between these image sets, and the sets themselves will be points in a metric space.

Binary images are closed and bounded subse®°af,). To place these images as points

in a more abstract metric space, we need to generalize the idea of “closed and bounded”.
A set C in a metric spaceX(d) is compact if every infinite sequence i€ has a
convergent subsequence with a limitdn(R?d,) is not compact since, for example, the
sequence {{,0)}0.. does not have a convergent subsequence. Note that the definition of a
compact set implies that it must contain its limit points and, hence, be closed. Bie set
defined in section 2.2.1 therefore is not compact since it is not closed. In Euclidean space,
such as R%d,), the compact sets are exactly the sets that are closed and bounded, a
nontrivial fact known as the Bolzano-Weierstrass theorem.

Let (X,d) be a complete metric space, and defit{¥) to be the space consisting of the
compact subsets of. That is, each point iRl(X) is a compact subset &f. Define the
distance between a poirt] X andB O H(X) as the shortest distance betwseand any
pointy [0 B:

d(x,B) = min {d(x,y): y O B}.

Note that this minimum exists and is finite becaBss compact, and hence closed and
bounded. Now we can define the distance between two compabtaeds as:

d(A,B) = max {d(x,B): x O A}.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

16 Iterated Function Systems

The compactness of A ensures that this maximum exists and is finite. But does d(A,B)
define ametric? Consider the situation shownin Fig. 2.2.1.

-« '
d(A,B)

d(B,A)

Fig. 2.2.1 d(A,B) # d(B,A) in general.

It is clear from Fig. 2.2.1 that d(A,B) # d(B,A) in genera (in fact, these quantities are
rarely equal). We can fix this by defining a new distance measure h(A,B) by:

h(AB) = max {d(AB),d(B,A)}.

Now h(A,B) =h(B,A) and h is a metric on H(X). The metric h is caled the Hausdorff

metric and the metric space (H(X),h) is called a Hausdorff metric space. Barnsley (1993)

cals (H(X),h) “the space where fractals live”. It is the space where we will develop the
machinery to generate a certain type of fractal using iterated function systems. The space
(H(X),h) is a complete metric space (Barnsley 1993). When the underlying sfifo@ss

it will be for the binary images considered in this chapter), the notat{&) will be
shortened td.

2.2.3 Contraction mappings

Transformations assign points in one space to points in another (possibly the same) space
according to some pre-defined rule. For example, the function

f(x,y) = (0.5« + 0.3y + 2,0.% - 0.5/ + 1)

is a transformation that sends one poirRfrto another point ifR%. Transformations are
also calledmnappings, and we writd: X; —» X, to denote a transformation from one space
X1 to a second spacé.

A transformationf:X — X on a metric spaceX(d) is called acontraction mapping if
there is a constast 0< s< 1, such that

d(f(x0).f(x2)) < s d(x1.%2)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Metric Spaces 17

for all x3, x, 0 X. The constant s is called the contractivity factor for f. Fig. 2.2.2 shows
an example of a contraction mapping on (R?,d,) acting on a set of pointsin R?.

f
— —

Fig. 2.2.2 A contraction mapping f acting on a set of pointsin R%

Fig. 2.2.2 depicts a transformation that is applied more than once. That is, once f(x) is
computed for a point x, the value f(f(x)) is computed by applying f to the result. You can
continue this process to compute f(f(f(x))) and so on. The transformations obtained by
applying f over and over again in this way are called iterates of f. The n" iterate of f is
denoted f°", that is, f"(x) = f(f(...f(x)...)), wheref is appliedn times.

Note thatf(x), f°4(x), f°3(x),... forms a sequence K. Supposd is a contraction mapping
with contractivity factors. Note that
d(f"(x), 129 () < sd(£ (x), 1o (x))
< s"d(x, °X (x)).

Note also that

d(x, £°X (%)) < d(x, f(x)) + d(f(X), F°2 (X)) + ... +d(F°€ ™ (%), F°K (x))
<@+s+s%+..+5Nd(x, F(X)
1
1-s

<

d(x, f(x)),

where the final inequality follows from the series expansion & twhich is valid here
because & s< 1. So, for example, if <m, we have

SI"I

1-s

d(F°" (%), F°™ (X)) € ——d(x, F(X)).

Sinces< 1, the expression on the right approaches f,ras— . In other words, the
sequencef{"(x)} is a Cauchy sequence iX). Since K,d) is a complete metric space,
this sequence converges to a limifl X, that is,

lim f°" (x) = x; .

n- o

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

18 Iterated Function Systems

This point x; has a special property. What happens if we apply f to x?

d(x;, f(x;)) < d(x, £ (%)) +d(f" (%), (X))
< d(x;, £ (%)) + sd(f°"™ (%), %;).

Since f°"(X) — X; the two terms on the right converge to 0, and so the term on the left
must be 0. In other words,

f(x) = Xs.

We say that X is a fixed point of f. How many fixed points can a contraction mapping
have? Suppose y; is another fixed point of f, so that f(ys) = y;. Then:

d(xey9) = d(FOR),f(yr) < S dxeyp)-

Since s< 1, the above ineguality implies d(x.y;) = O, that is, X =y;. So a contraction
mapping f on (X,d) has one and only one fixed point in X. Note that since there is only
one fixed point, it follows that {f °"(X)} converges to this fixed point regardless of the
starting point x. These results are summarized in the following theorem:

The Contraction Mapping Theorem: Let f:X - X be a contraction mapping on a
complete metric space (X,d). Then f possesses exactly one fixed point x; 0 X, and for any
x 0 X, the sequence {f°"(x): n = 1,2,...} convergesto x;, that is,

lim f°" (x) = x;, for all x OX.

n- oo

The Contraction Mapping Theorem is a cornerstone of classical functional analysis. Many

existence proofs use the technique of showing that a certain mapping is a contraction and
hence possesses a unique fixed point. This theorem is the basis for all fractal image
compression approaches.

2.3 ITERATED FUNCTION SYSTEMS

The above discussion mentions the fact that we will consider fractal images as points in
the Hausdorff spacedH(X),h). In this section we will define a special type of contraction
mapping that acts on images, that is, on pointsi{)),h).

2.3.1 Introduction

Let {w;w,,...w\} be a finite collection of contraction mappings oX,d), with

contractivity factors,,s,, ..., S\, 0< s, <1. Define a mappingV that acts on compact sets
of points ofX (that is, orH(X)) by

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Iterated Function Systems 19
W(B) = Wl(B) O W2(B) 0...0 WN(B)

N
= | Jwa(B) for each BOH(X) (that is, B 0 X).

n=1

Then W maps H(X) to H(X) and W is a contraction mapping on (H(X),h) with
contractivity factor s given by s = max {s;,,...,S\}. That is,

h(W(B),W(C)) < s h(B,C) for B,C 0 H(X).

An iterated function system (IFS) consists of a complete metric spaXal) together with
a finite set of contraction mappings,: X - X with contractivity factorss, The
contractivity factor of the IFS is given Iy max {5,,S,...,.5}. The notation for an IFS is
{X W, n=1,2,...N}. If the underlying metric space is apparent, sucRam the case of
images, we will shorten this notation te,§.

There are a number of details we have glossed over here, including the fadiBhatin

fact a point inH(X) whenB O H(X) (that is, thaW(B) is compact wheiB is compact)

and thatw is in fact a contraction mapping. The interested reader is referred to Barnsley
(1993) for a more complete discussion.

2.3.2 The Collage Theorem

The Contraction Mapping Theorem (CMT) can be applied to mappingd(),k), and,

in particular, to IFS’s. The image that is the unique fixed point of the IFS (guaranteed by
the CMT) inH(X) is called theattractor of the IFS. Barnsley (1993) has derived a special
form of the CMT applied to IFS’s orH(X),h) called theCollage Theorem. Remember

that a “point” inH(X) is actually a compact set of pointsRi that represents a binary
image.

Collage Theorem: Suppose we have a point L in H(X). Let £ > 0 be given. Choose an
IFS{X,w,: n=1,2,..,N} with contractivity factor s) < s< 1, so that

N
h[L,an(L)] <e
n=1

then

N
h(L,A) < (1-5) h[L,ylwn(L)J < 9

where A is the attractor of the IFS.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

20 Iterated Function Systems

To see that this result follows from the CMT, consider a contraction mapping f on a
complete metric space (X,d). Let x be the fixed point of f. Suppose x O X is such that
d(x,f(x)) < efor some £> 0. Then
d(x, x¢) =d(x, f(x4))
< d(x, £(x)) +d(f(x), f(x;))
< d(x, f(x)) +sd(x,X¢).

It follows that

d(x, f(x))
-s)

< i .
(-9

d(x,X;) <

from which the Collage Theorem follows.
2.3.3 What the Collage Theorem says

Suppose we have a hinary image L O R? and suppose we can determine contraction
mappings W, so that

N
Uwn(v)
n=1

covers L without missing too much and without too much overlap. We can think of each
wi(L) as a smaller copy of L. Then the Collage Theorem says that the attractor A of the
IFS {w,} is close to L in the Hausdorff metric h. The “collage” is the collection of
subimagesv,(L).

Because the attractéris the result of infinitely many iterations of the IFS, it is fractal in
nature. The Collage Theorem gives us a way of representing images as fractals. Fig. 2.3.1
shows an example of this. The image in Fig. 2.3.1 (a) shows a leaf image (this is a tracing
of an actual maple leaf). You can cover the leaf with four subimages, as shown. This leads
to an IFS with four transformatiomg, w,, ws, wy. Fig. 2.3.1 (b) shows the attractor of this

IFS. Note the fractal nature of this attractor set. In the following sections, we will see
how to determine the transformatiomsand how to generate the attractor.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Iterated Function Systems 21

@ (b)

Fig. 2.3.1 Collage Theorem example. (a) Theoriginal image and 4
subimages; (b) the attractor image.

2.3.4 Affine transformations

We need candidate transformations for contraction mappings in order to implement a
practical application of the Collage Theorem for generating fractals. The transformations
used by Barnsley for his IFS’s are the so-caligfine transformations. An affine
transformationT:R? - R?is a transformation of the form

- X\ (a b)x N e (2.3.1)
y) lc dly) (f) e
wherea,b,c,def O R. Affine transformations can accomplish rotation, translation, and

contraction. Define
A= a b
“|c d

as the matrix part of. If Sis a set of points iRR?, then the area of the transformed set of
points T(S) is |detA| times the area df, where |deth| is the absolute value of the
determinant ofA. Thus, T is a spatial contraction, and hence a contractiorH(x),
whenever |detAl<1. The six unknown constants,lc,def) that define the
transformation can be determined by specifying the action of the transformation on three
points (see section 2.4.2 below). Fig. 2.3.2 shows the action of an affine transformation
on a set of points iR

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

22 Iterated Function Systems

= = (X5, Y,)
A Cav) o (X1,¥1)
’ <=
(X5.¥s) (X2,Y>)
(X3,Y5)

»

X

Fig. 2.3.2 An affine transformation acting on a set of pointsin R
Thistransformation mapsthe points (x;, ;) - (X;,Y;) asshown.

Affine transformations are used in IFS systems because they are easy to specify and it is
easy to compute their coefficients. However, any contractive mappings could be used to
satisfy the Collage Theorem and produce | FS attractor images.

2.4 IMPLEMENTATION OF AN ITERATED FUNCTION SYSTEM

Suppose you wanted to implement a system for producing fractal images with IFS’s.
What would the key components of such a system be? First, you need to have in mind an
image that you want to reproduce with an IFS. So, it would be helpful if your system
could import existing images in some specified graphics format. Next, you'll need a way
to specify points on a two-dimensional grid. You then define affine transformations by
specifying three points as domain points and three points as range points. Your system
would then automatically generate the affine coefficients by solving the appropriate linear
equations. Finally, your system would then iterate the IFS and display the results
graphically to depict the fractal attractor image. The following sections discuss some of
these steps in more detail. The appendix discusses how to run the IFS software used to
produce the examples shown here and also discusses the organization of the source code.

2.4.1 Points and transformations

Fig. 2.4.1 shows an example of an X-Y grid for plotting the points and transformations
that define an IFS. This figure also shows the sketch of a leaf (also shown in Fig. 2.3.1
(a)) that has been imported to aid in positioning the points and transformations. The first
step in producing an IFS image is to recognize at least some approximate self-similarity in
the original image. In the case of the leaf image, it is not too hard to spot that the three
“lobes” that make up the leaf each appear similar to the leaf itself. This gives us three
candidate transformations for the IFS. Recall, however, that the Collage Theorem
stipulates that the collage of subimages must come close to covering the original image.
These three transformations leave a gap in covering the image. So we add a fourth
transformation that covers the stem area of the leaf.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Implementation of an Iterated Function System 23

1.27

-0.6-05-04-0.3-0.2-01 0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 2.4.1 X-Y grid showing imported leaf sketch with 18 points
identified and one of the four transformationsfor the leaf IFS. This
transformation maps points 1, 6, and 9 onto the points 3, 15, and
16.

Once you have an idea of what the transformations are going to be, the next step is to
identify the points that will define the transformations. These points usually are associated
with prominent features that identify the main image and the collage subimages. For
example, the points labeled 1, 2 and 3 in Fig. 2.4.1 identify the tips of the three main
lobes of the leaf, while the points 4 - 9 identify the corresponding points on each lobe.
Points 10 - 12 identify the stem. Finally, the accompanying software allows you to select a
color to associate with a transformation.

Trial and error is often a part of IFS image creation. The original intent with this leaf
collage was to map the points 1,2,3 to the points 1,4,5 for the top lobe, 2,6,7 for the left,
3,8,9 for the right, and 11,10,12 for the stem. Fig. 2.4.2 shows the result of this choice of
transformations. This choice failed to produce good coverage and, as a result, failed to
produce a good | FS attractor image, as you can see from Fig. 2.4.2.

To remedy this situation, we’'ll use the points 1, 6, and 9 to represent the overall leaf. We

now need corresponding points for the smaller lobes. These are the points 13 through 18
in Fig. 2.4.1. Note that some of these points are in the interior of the leaf, and so their

exact location must be estimated. The light interior lines sketched in Fig. 2.4.1 show

where smaller copies of the leaf might lie, in order to facilitate the location of the points.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

24 Iterated Function Systems

Once again, trial and error isinvolved in deciding the exact locations. The attractor image
shownin Fig. 2.3.1 (b) is the result of using the transformations
{1,6,9} -{1,17,18}, {1,6,9} -{2,13,14}, {1,6,9} —{3,15,16}, and {1,6,9} - {11,12,10}.

Fig. 2.4.2 IFS attractor image for med by using the transfor mations
{1,2,3} - {1,4,5},{1,2,3} - {2,6,7}, {1,2,3} - {3,8,9},
{1,2,3} - {11,10,12} (numbers refer to pointsin Fig. 2.4.1). In this
case, these transformations do not produce a good attractor image
representation of the leaf. Compare with Fig. 2.3.1 (b), which was
produced using the transformations {1,6,9} -{1,17,18},
{1,6,9} - {2,13,14}, {1,6,9} - {3,15,16}, and {1,6,9} - {11,12,10}.

2.4.2 Affine coefficients

Once you have determined the points and transformations for the IFS, the next step is to
compute the affine coefficients. Equation (2.3.1) gives an expression for the affine
transformation with coefficients ab,c,d,e, and f. Specifying the action of this
transformation on three sets of points (x;,Y;) — (X;,Y;) leadsto the following equations:

(2.4.1)

fori =1, 2, 3. Note that (2.4.1) actually decomposes into two sets of three equations. One
set of equations determines the unknown coefficients a, b, and e in terms of
Xy, X5, and X3, while the other determines c, d, and f in terms of y,, y,, and y;. Solving
each of these sets of three equations reduces to inverting the same 3 x 3 matrix:

X 11
X Yo 1)
X3 ¥z 1

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Implementation of an Iterated Function System 25

The code in the accompanying software inverts this matrix to solve for the affine
transformation coefficients.

2.4.3 Computing the fractal attractor image from the IFS

There are two agorithms for computing the fractal attractor image from the IFS. Oneisa
straightforward application of the contraction mapping theorem, while the other is an
application of the so-called “Chaos Game”.

2.4.3.1 Deterministic algorithm

The deterministic algorithm for computing IFS attractor images directly applies the
contraction mapping theorem to any starting imBde H(X). The algorithm computes a
sequence of images, by repeatedly applying the IFS mappWg= {wq,W,, ... Wy}

A, =W"(B). (2.4.2)
Recall that the mappiriy applied to the sdi is defined as

W(B) = wy(B) 0 Wy(B) O... 0wy (B).

If we setA, = B, then (2.4.2) can be formulated as an iterative process:

An = W(A,). (2.4.3)
By the contraction mapping theoreAy, converges t@\, the attractor of the IFS.

Listing 2.4.1 shows how this iterative process is implemented in the C code in the
accompanying software. (This is a partial code listing. Refer to the source code with the
accompanying software for complete variable, structure and function definitions.) Two
arrays,ol d_i mage andnew i nage, are set up to hold the binary images that result
from the iterations. The arrapl d_i mage corresponds toA.; in (2.4.3) and
new i nage corresponds t@\,. Each of these arrays consists of 1's and 0’s, with a 1
indicating a pixel of the binary image. Each of these arrays has been dynamically
allocated to match the display window sine:ows x ncol s. In order to operate on this
image with the IFS, we need to translate from the image array to the X-Y plane. This
plane is nothing more than the X-Y grid shown in Fig. 2.4.1.

Fig. 2.4.3 shows how the iterative process works. Each nonzero element of the
ol d_i mage array is mapped to a poinik,(y) in the X-Y plane. Each affine
transformation of the IFS then operates on this point. The number of transformation
functions is denotedo_of _f ns in the codecoef f | i st is a list of pointers each of
which points to a structureoef f _st ruct , which contains the affine coefficients. The
new point knewynew) is plotted in the display window using the function
Xy_to_w ndow_col or, using the color that was chosen when that transformation was
constructed. The poinkiew,ynew) is then mapped back into thew_i mage array.

To complete the iteration, the arrayew i nage is copied intool d_i mage,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

26 Iterated Function Systems

new_i nage is reset to zero, and the next iteration begins. Iterations end when the user
activatest er m ni nat i ng_pr oc, which captures mouse clicks or the “escape” key.

Listing 2.4.1 Code sample implementing the deterministic IFS algorithm.
On each iteration, the IFS is applied to the array ol d_i mage (which
consists of 1's and 0's) to set the values in the arrayew_i mage. The
array new_i mage is then plotted to the window, using the color stored
with the IFS transformation. To complete one iteration, the values from
new i nage are moved tool d_i mage, and new_i nage is reset back to
0.

iter = 0;
do {
/1l If clear_scr flag is set, clear the w ndow between
/1 iterations. The structures gr_setup and gr contain
/1 wi ndow graphi cs paraneters.
if (clear_scr)
dr aw_bor der (gr _set up, gr, CLEAR_W NDOW ;
iter++;
for (i=1;i<=nrows;i++)
for (j=1;j<=ncols;]j++)
if (old_image[i][j]) {

/1 Map the old image array to the virtual XY

/1 plane:

// Map 1 to x_min and ncols to x_nax:

x = ((float)(j-1)/(float)(ncols-1))*x_range +
gr_setup->x_m n;

I/l Map nrows to y_mn and 1 to y_nax:

y = ((float)(nrows - i)/
(float)(nrows-1))*y_range +
gr_setup->y_mn;

I/ Loop through all the transformations

/1 (no_of _fns) in the IFS:

for (k = 1; k<=no_of _fns; k++) {

ifs = *(coeff_struct *)(coeff_list->at(k));
xnew = ifs.a*x + ifs.b*y + ifs.e;
ynew = ifs.c*x + ifs.d*y + ifs.f;
if (fabs(xnew) + fabs(ynew) > IFS_TOO BI G ({
nmessage_puts (MB_EXCLAI M "I FSPROC',
"This system diverges!\r\n"
"Check to see that all
transfornmations\r\n"
"are contractions.");
goto exit_proc;
Y /Il end if

/'l Map the virtual X-Y plane back to the new

/'l image array:

/1 Map x_mn to 1 and x_max to ncols:

col = ((xnew - gr_setup->x_min)/x_range)*

(ncols-1) + 1;

[/ Map y_mn to nrows and y_max to 1:

row = nrows -((ynew - gr_setup->y_nin)

l'y_range)*(nrows-1);

new_ i mage[rowj[col] = 1;

I/ Plot the X-Y point in the wi ndow in color:

Xy_t o_w ndow_col or (gr, xnew, ynew,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Implementation of an Iterated Function System 27

rgb_ifs color (ifs));
} I/ end k
Y/l oend if, i, j
/1 Move new_ inmage to ol d_ i mage, and reset new_ i nage:
for (i=1;i<=nrows;i++)
for (j=1;j<=ncols;j++) {

old_image[i]l[j] = new_image[i][j];
new_ i mage[i][j] = O;
}
} while (!termnating_proc());
1
1 ncol s
1
Old Image
Array
nr ows
nr ows
1 ncol s
Xmn XnMax
Iteration ymax ymax
Step
_ Virtual X-Y
ymn Plane
ym n
Xm n Xmax
1
1 ncol s
1
New Image
nr ows Array
nr ows
1 ncol s

Fig. 2.4.3 Conceptualization of the relationship between the image
arrays in the code and the virtual X-Y plane where the IFS
operates. The image arrays consist of 1's and 0's, with a 1
indicating a point in the binary image. Each nonzero element of the
“old image” is mapped onto the X-Y plane. The IFS operates on
this point, producing, in general,N new points. These new points
are then mapped back into the “new image” array. At the
conclusion of each iteration, the “new image” array is loaded into
the “old image” array, in preparation for the next iteration.

Fig. 2.4.4 shows the result of using the deterministic algorithm to compute the attractor
image associated with a fern IFS consisting of 4 affine transformations. The figures (@) -
(d) show the image A, of equation (2.4.3) after, respectively, 2, 3, 10 and 30 iterations.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

28 Iterated Function Systems

Fig. 2.4.5 shows the same IFS using a circle as the starting image. As we would expect
from the contraction mapping theorem, the attractor image is the same in both cases.

(© (d)
Fig. 2.4.4 The deterministic algorithm applied to a fern IFS with 4
affine transformations. The starting image in this case was a
rectangle. These figures show the image A, of equation (2.4.3)
after: (a) 2 iterations; (b) 3 iterations; (c) 10 iterations, (d) 30
iterations.

From a pedagogical point of view, the deterministic algorithm is useful because it allows
one to see the effect of the IFS transformations at each iteration. You can see the
contraction mapping theorem in action and gain an understanding of how it works in the
context of the IFS transformations acting on an image. However, from the practical point
of view of producing high quality IFS attractor images, this is not the most efficient
algorithm. The next section examines an alternative algorithm that is faster, easier to
implement, and produces higher quality images.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Implementation of an Iterated Function System 29

J//_\\
{

e

@ (b)
Fig. 2.4.5 SamelFSasin Fig. 2.4.4, but using a circle asthe starting
image. These figures show A, after: (a) 3 iterations, (b) 30
iterations.

2.4.3.2 Random algorithm

While the deterministic algorithm provides a straightforward connection to the
contraction mapping theorem, making it easy to see how this algorithm works, in practice

this algorithm is too slow and is not the usual choice for displaying IFS attractor images.

Instead, a random algorithm based on the “Chaos Game” is the preferred choice (see
(Peitgen and Saupe 1988, Chapter 5) for a discussion of how to play the “Chaos Game”).

The random algorithm assigns a probabitityo each affine transformation in the IFS.

These probabilities determine how densely each part of the attractor image is covered in
points. Recall from the Collage Theorem that the affine transformations are chosen

according to how well they cover the desired image with smaller copies of the image

itself. Thus, in some sense, each affine transformation controls a part of the image. If we
want the attractor image uniformly covered by randomly generated points, that is, if we

don’t want one part of the image denser than others, then the probability associated with
each transformation should be proportional to the area of the part of the image controlled
by that transformation. That is what the code in Listing 2.4.2 does.

Recall that the area of the part of the image controlled by an affine transformation is
proportional to the determinant of the matrix part of the transformation. The code in
Listing 2.4.2 computes this determinant for each of the IFS transformations. The
determinants are summed, and each value divided by the sum to get a true probability
between 0 and 1 for each transformation. This also ensures that the probabilities sum to 1.
You can modify this code to experiment with non-uniform distributions for different parts

of the attractor image.

Once the probabilitieg, have been assigned to the IFS transformatigns= 1,...N, the
random algorithm begins by picking an arbitrary poiat (x,yo) 0 R The algorithm

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

30 Iterated Function Systems

then computes x; by randomly selecting the integer i(0) from the set {1,..N} with
probability pi), and applying the transformatieg to Xo:

X1 = Wi()(Xo)-
In this way, the algorithm computes a sequence

Xos X1y X2, ..
where

Xn :Wi(n)(xn-l)y n=12,..
where, at each stegn) O {1,...,N} is chosen with probability;. Note that
Xn O Ay = WP(A) (2.4.4)

for some starting sed,. It doesn't really matter what ség is, since the contraction
mapping theorem guarantees that the iterations will converge for any starting set. All we
know aboutA, is thatxy belongs to it. The sequence of poinkg}{forms what is called

the orbit, or trajectory, of a dynamical system. The computer implementation of the
random algorithm, shown in Listing 2.4.3, plots this orbit. Note that the first 10 or so
points (this number is arbitrary) are “buried” (not plotted).

The random algorithm produces higher quality IFS attractor images much more quickly
than the deterministic algorithm. This is due to the fact that not only does this algorithm
do less work per iteration than the deterministic algorithm, but the work it does produces
higher quality output. The deterministic algorithm plots the entiré\sat each iteration

n. Consider the images shown in Figs. 2.4.4 (d) and 2.4.5 (b). All of the points in these
images represent the s&f, that is, the set produced after 30 iterations (with different
starting images). The random algorithm, on the other hand, plots only the singlg,point

at iterationn, and so it can literally do thousands of iterations in the time it takes the
deterministic algorithm to do one iteration. But there is an added bonus as well. The point
Xn belongs to the s&,, as indicated by equation (2.4.4). So, for example,isf 30,000,

thenx, belongs toAs 0. The significance of this is thégy e is much closer to the true
attractor of the IFS thaAg, is. Collectively, the points ..X,1, Xn, Xp+1,... Produce an
image closer to the true IFS attractor. Fig. 2.4.6 shows the result of running the random
algorithm on the same fern IFS that produced the images in Figs. 2.4.4 -2.4.5. This image
was produced using over 31,000 iterations, which took only a few seconds on a Pentium-
class personal computer.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Implementation of an Iterated Function System

31

Fig. 2.4.6 The fern IFS attractor rendered with the random algorithm, using over
31,000 iterations. This is the same IFS used to produce the images in Figs. 2.4.4-

2.4.5.

Listing 2.4.2 Code sample to compute probabilities associated with IFS for the
random algorithm. Each probability is proportional to the determinant of the
matrix part of the affine transformation. This determinant, in turn, is proportional
to the area controlled by that transformation. You can modify this code to

experiment with non-uniform distributions for different parts of the attractor

image.

int conpute_ifs probabilities (object list *coeff list) {
int i,no_of fns = coeff _list->get _count();
float *pr = NULL,*det_a = NULL;
/1 allocated 1..no_of fns
float sum= 0.0, pr_sum = 0.0;
coeff _struct ifs;

if (!(det_a = allocate f _vector (1,no_of fns)))
return O,
if (!(pr = allocate f_vector (1,no_of fns))) {
free f vector (det_a,l);
return O;

}

for (i=1;i<=no_of fns;i++) {
ifs = *(coeff _struct *)(coeff list->at(i));
det _a [i] = fabs (ifs.a*ifs.d - ifs.b*ifs.c);
sum += det _a[i];
| B

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

32 Iterated Function Systems

for (i=1;i<=no_of fns;i++) {
pr[i] = det_a[i] / sum
if (pr[i] < 0.01) pr[i] = 0.01;
pr_sum += pr[i];

free f vector (det_a,l);
/*adjust pr values to get true probabilities */
for (i=1;i<=no_of fns;i++) {
pr[i] /= pr_sum
((coeff _struct *)(coeff list->at(i)))->
prob = pr[i];
}

free f vector (pr,1);
return 1,

}

Listing 2.4.3 Code sample implementing the random IFS algorithm. This
algorithm is simpler to implement and faster than the deterministic
algorithm, and it produces higher quality images.

voi d i fs_random i nage_graph (graph_setup_rec *gr_setup,
graph_wi ndow_struct *gr,object_list *coeff_list,
termproc termnating_proc) {

int i,Kk;

int no_of _fns = coeff _list->get_count();

int *p = NULL,*pi = NULL; /* allocated 1..no_of _fns */
coeff _struct ifs;

int int_sum= 0;
float x,y,Xxnew, ynew,
unsigned long iter;

if (!(p = allocate_int_vector (1,no_of_fns))) return;
if (!(pi = allocate_int_vector (1,no_of _fns)))
goto exit_proc;

if (!conpute_ifs_probabilities (coeff_list)) {
free_int_vector (p,1);
free_int_vector (pi,1);
return;

}

for (i=1; | <;no_of _fns;i++)
(i ntgl([(l(]cogff_struct *)(coeff _list->at(i)))->
prob* MAX_I NT) ;

for (i=1;i<=no_of_fns;i++) {
p[i] = int_sum+ pi[i];
int_sum+= pi[i];

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Implementation of an Iterated Function System 33

| B
p[no_of fns] = MAX | NT;

free_int_vector (pi,1);

X = 0;

y =0;

/* bury first 10 iterations */
for (i=1;i<=10;i++) {

k = pick_random nbr (p,no_of _fns);

ifs = *(coeff _struct *)(coeff _list->at(k));
xnew = ifs.a*x + ifs.b*y + ifs.e

ynew = ifs.c*x + ifs.d*y + ifs.f;

X = Xhew,
y = ynew,
Voorx Qo

if (!graph_setup (gr)) /* free arrays before returning*/
goto exit_proc;

draw border (gr_setup,gr,1);

set _graph_max_mn (gr_setup,gr);

iter = 0;
do {
k = pick_random nbr (p,no_of _fns);
ifs = *(coeff _struct *)(coeff _list->at(k));
xnew = ifs.a*x + ifs.b*y + ifs.e
ynew = ifs.c*x + ifs.d*y + ifs.f;
if (fabs(xnew) + fabs(ynew) > IFS TOO BI G {
message_puts (MB_EXCLAI M "I FSPROC!
"This systemdi verges!\r\n"
"Check to see that all transformations\r\n"
"are contractions.");
goto exit_proc;

/* Plot the X-Y point in the window in color: */
Xy_to_w ndow col or (gr, xnew, ynew,
rgb ifs color (ifs));
X Xnew,
y
ph_iter (gr_setup,gr,iter);
} while (!termnating_proc());

exit_proc:

rel ease_dc (gr);
free_int_vector (p,1);
return;

} /* end proc */

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

34 Iterated Function Systems

2.5 EXAMPLES

We close this chapter with some examples of iterated function systems and their
associated attractor images. All of the images in this section were produced using the
random algorithm.

2.5.1 Sierpinski triangle

The Sierpinski triangle (also called the Sierpinski arrowhead or gasket) is one of the
earliest known examples of a fractal. There are several ways of constructing a Sierpinski
triangle, one of which is shown in Fig. 2.5.1. We start with a solid triangle, as shown on
the left. Step 1 of the construction removes an inverted triangle from the center, as shown
in the center figure. Step 2 removes 3 inverted triangles from the remaining 3 triangles, as
shown in the rightmost figure. This process continues, at step n removing 3** inverted
triangles from the centers of 3™ remaining triangles. What remains (and something does
remain!) isthe Sierpinski triangle.

Fig. 25.1 The Sierpinski triangle can be constructed by starting
with a triangle (left) and removing an inverted triangle from its
center (center), then removing inverted triangles from the centers
of thethree remaining triangles (right), and continuing this process
indefinitely.

The Sierpinski triangle is also easy to construct as the attractor of an IFS. Fig. 2.5.2 shows
the IFS transformations and the attractor image. There are 3 transformations in the IFS;

{1,4,3} -{9,10,12}, {1,4,3} - {54,7}, {1,4,3} - {6,7,3}. It is easy to compute the actual
affine coefficientsin this case also. The transformations are:

(6 asly)*los)
[o) (%)
o) osly) (o)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Examples 35

Fig. 2.5.2 The transfor mations for the Sierpinski triangle IFS (left)
and the attractor image (right). The three transformations are:
{1,4,3} - {9,10,12}, {1,4,3} - {5,4,7}, {1,4,3} - {6,7,3}.

The Sierpinski triangle provides a good example of the two hallmarks of a fractal: self-
similarity and non-integer dimension. The self-similarity is evident from the construction.
To see why it makes sense to assign a non-integer dimension to this object, consider the
following.

2.5.1.1 Fractal dimension

What do we mean by “dimension? Intuitively, we know that a line has dimension 1, a
solid square has dimension 2, and a solid cube has dimension 3. Is there a way to compute
these numbers? Consider the situation shown in Fig. 2.5.3. Suppose we wish to cover a
squareS of side length 1 with smaller square blocks. It takes 1 block of side length 1 to
cover the original square? 2 4 blocks of side length 1/2? 3 9 blocks of side length

1/3, and so on. Ldig1/n) denote the number of blocks of side length Bquired to

cover the square. It is easy to see that

Ng(1/n) = n?

The dimension of the square, which we know to be 2, lurks as the exponent on the right
side of this equation. We can extract the dimension as:

d =2 = InNg(L/n)/In (n). (2.5.1)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

36 Iterated Function Systems

1 1/2 1/2 1/3 1/3 1/3

Fig. 2.5.3 A square of sidelength 1 requires 1 block of side length 1
to cover, 22 = 4 blocks of side length 1/2, and 32 = 9 blocks of side
length 1/3.

Note that the left side of (2.5.1) isindependent of n > 1, so the right side must be also. In
particular, for aset A, we can define its dimension d, to be;

d, = lim In(NA(1/n))
n-o In(n)

(2.5.2)
where Na(1/n) is the number of blocks of side length 1/n needed to cover the set A.
We can apply this definition to the Sierpinski triangle S. As Fig. 2.5.4 shows, 3 blocks of
side length 1/2 are needed to cover S (assuming without loss of generality a side length of
1for), and 9 = 3% blocks of side length 1/4 = 1/2° are needed. In general,

Ng(1/2" = 3"

where Ng(1/2") is the number of blocks of side length 1/2" needed to cover S Thus the
dimension ds of Sis:

= lim @) _ InG)
n-w In2") In(2)’

S

That is, the dimension of S not only is not an integer, but is an irrationa number,
approximately equal to 1.58. Clearly Sisafractal object.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Examples 37

Fig. 2.5.4 The Sierpinski triangle S of side length 1 requires 3
blocks of side length 1/2 to cover, and 9 = 3% blocks of side length
1/4 = 1/2° to cover. The dimension of Sis In(3)/In(2) = 1.58....

2.5.2 Constructing an IFS from areal image

While the fractal fern, such as that shown in Fig. 2.1.1 (@), is reminiscent of area fern, it
is unlike any fern actually occurring in nature. For one thing, it has infinitely many leaves,
and each leaf has infinite detail. Fig. 2.5.5 () is a digital photograph of a real plant
(though not a fern), with finitely many leaves. We can construct an IFS attractor image
that approximates this image, but it will require more transformations than the fern. It is
interesting to note that there is apparently an inverse relationship between image
complexity and complexity of the transformations. |s there a connection between this
observation and the fact that ferns were one of the earliest plants to evolve?

To obtain an IFS attractor representation of the plant in Fig. 2.5.5 (a), we’ll need a
transformation for each leaf. This image is a good candidate for an IFS representation
because each leaf resembles the entire plant in miniature. Fig. 2.5.5 (b) shows the plant
image imported into the grid layout in the accompanying software. The plant has 11
leaves, and we'll need one transformation for each of these. Each leaf is identified by
three points, for a total of 33 points needed for the leaf transformations. In addition, there
are three transformations that define segments of the curving stem. These require 7
additional points (two of these are used twice), for a grand total of 40 points and 14
transformations. Fig. 2.5.5 (b) shows the point labels and one of the leaf transformations
(note that the points 1,2,3 identify the entire plant). Fig. 2.5.6 shows the resulting IFS
attractor image. This exercise can be viewed as a crude form of image compression.
However, as mentioned at the beginning of this chapter, while IFS techniques may have
been the motivation for fractal image compression, the mechanisms by which fractal
image compression is now practiced bear little resemblance to the process we just went
through here. The next chapter will explore more practical methods for implementing
fractal techniques for image compression.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

38 Iterated Function Systems

[l_

-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
@ (b)

Fig. 2.5.5 (a) Digital photograph of a leaf. (b) Points and one IFS

transformation superimposed on the image.

Fig. 2.5.6 The IFS attractor image, constructed with 40 pointsand
14 transformations. Thisis a crude example of compression of the
imagein Fig. 2.5.5 (a).

2.5.3 A few more IFS examples

We close this chapter with alook at afew more examples of IFS images, shown in Figs.
2.5.7 through 2.5.10.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Examples

w
f‘y_
L5

Teom
<
o“w
&
.*,2(’4

o
£
s

{,‘
$
I

(© (d)

Fig. 2.5.7 What happensif you leave out a transformation. Figures
(@) - (d) show what happens if you leave out one of the four
transformations used to construct the fern IFS attractor shown in
Fig. 2.1.1 (a). Each of the figures shown here was constructed using
just three of the four transformations. Can you guess which

transfor mation wasleft out of which figure?

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

39

40 Iterated Function Systems

A e e i o
W Ahn R
ke ad wn o in

Fig. 2.5.8 “Block UAH"” (for University of Alabama in Huntsville!)
IFS. This IFS was constructed using 9 transformations and 25
points. One of the transformations is shown in Fig. 2.5.9. Can you
find the others?

124
1.1+
1.04
0.9+ 1._& 8. 1131216, 20, 21 2
0.8 4
0.7 22, 23,
0.6 1
24,
0.5 1 15.
0.4+ 710, 18, 1719, 257
0.3 4
0.2 4
0.1+
l]__

-0.6 -0.5 -0.4 0.3 -0.2 01 0 01 0.2 03 0.4 05 0.6

Fig. 2.5.9 One of the transformations used to construct the “Block
UAH" IFS shown in Fig. 2.5.8. This transformation maps the points
1,2,3 to 4,1,5. Note that the ordering of the points affects the
orientation of the subimage.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Examples

Fig. 25.10 A spiral IFS. This IFS was created with just 9 points
and two transformations. Can you find them? This is another
example of very simple transformations leading to a complex
attractor image.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

41

3

FRACTAL ENCODING OF GRAYSCALE IMAGES

An image such as the fractal fern of the previous chapter can be reproduced with a
relatively simple iterated function system (IFS) because this type of image has the
property of global self-similarity. That is, the entire image is made up of smaller copies of

itself, or parts of itself. If one zooms in on this type of image, it will display the same

level of detail, regardless of the resolution scale. Also, this type of image is a binary
image, that is, each of its pixels can be represented with either a 1 or a 0. Real-world
images do not exhibit the type of global self-similarity present in the IFS images of the
previous chapter. Moreover, real-world images are not binary, but rather each pixel
belongs to a range of values (grayscale) or a vector of values (color). If we are going to
represent such an image as the attractor of an iterated system, then clearly we need a more
general system than the IFS’s of the previous chapter. This chapter examines the
development and implementation of such a system that can be used for the fractal
encoding of general grayscale images.

3.1 A METRIC SPACE FOR GRAYSCALE IMAGES

As mentioned in Chapter 1, we can consider grayscale images as real-valued functions
f(x,y) defined on the unit squaté=1 x |. That is,

f12 5 {1,2,..N} OR,

where N is the number of grayscale levels. We can define a meffic) on these
functions as:

12

dy(f.9)=| [|100y) - g0y oy | (3.1.1)

2
|

Define F as the space of real-valued square-integrable function$ with this metric.
ThenF is complete and the contraction mapping theorem holds.

In practice, the images we will work with are digital images.nAnm digital image is a
matrix of valuesfj], i = 1,...n,j = 1,...m, wheref;; = f(x,y;). That is, a digital image is a

matrix of sampled values &fx,y), taken at sample points, ;). In this case, the metric is
called therms (root mean square) metric:

nom 2 1/2
drn\s(f,g){zZ|f(xi,yj)—g(xi,yj)|] - (3.1.2)
1=1 =

43

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

44 Fractal Encoding of Grayscale Images

3.2 PARTITIONED ITERATED FUNCTION SYSTEMS (PIFS)

Fractal image compression uses a specia type of IFS caled a partitioned iterated
function system (PIFS). A PIFS consists of a complete metric space X, a collection of
sub-domains D; 0 X, i =1,...n, and a collection of contractive mappings: D; - X,
i=1,.n (Fig. 3.2.1)

Wy
W, Ry
I
D, D,
/
5 v | B
2 3 R, 2

Fig. 3.2.1 A partitioned iterated function system.
3.2.1 Affine transformations on grayscale images

Let W, (x,y) be an affine transformation oh — 12, that is,
- X
W (x,y)=A{y)+bi (3.2.1)

for some 2x 2 matrixA; and 2x 1 vectorb;. LetD; (I 12 be some subdomain of the unit
squarel?, and letR be the range ofv. operating onD;, that is, w:(D;) = R (see
Fig. 3.2.2). We can now defing: F - F operating on image$x,y) by

wi(h(xy) = s (W™ (xy) +0 (3.2.2)

providedw; is invertible andXy) O R. The constang expands or contracts the range of
values off, and so, in the context of grayscale images, it contmisast. Similarly, the
constanto; raises or lowers the grayscale values, and so corrodgtness. The
transformationw; is called thespatial part ofw;.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Partitioned Iterated Function Systems (PIFS) 45

o
=

| R

Fig. 3.2.2 Spatial affinetransformation and itsinverse.

Transformations of the form (3.2.2) are the basic affine transformations on grayscale
images that we will use in fractal image encoding.

3.2.2 Contraction mappings on grayscale images
Whenisw;: F — F acontraction? We need

da(wi(f).wi(g)) < s da(f,9)

for some s, 0 <s<1, where d, is the metric given by (3.1.1). Using the formula for
change of variablesin amultiple integral, we have

BB (D w(@) = [l (Nxy) - wi (@) ey
wi (D)

=[5 et A [|1x,y) - g0, y)f abay

D.

<[s|’|det Aj|d3(f,9),

where A; is the matrix part of wi, det A; is the determinant of A;, and § is the contrast
factor. In order for w; to be a contraction, it suffices to have

|syldetA| < 1. (3.2.3)

In particular, the contrast factor 5 can be greater than 1 in magnitude, provided the spatial
part of w; is a contraction with a sufficiently small contractivity factor so that (3.2.3)
holds.

3.2.3 Contraction mapping theorem for grayscale images

Partition the unit square 12 into a collection of range cells { R} that tile |%

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

46 Fractal Encoding of Grayscale Images

Let {w,} beaPIFS such that
w;:D, - R

for some collection of domains D; I 1% (the D;'s may overlap, and need not covéx. Fig.
3.2.3 shows this configuration.

|
[
5\\\

e
|

Fig. 3.2.3 Transformation w; maps domain D; to range R;. The
domains may overlap, while the rangestile the unit square.

For eachw;, define a corresponding contractiveon the image spade
wi(fxy) =s (W, * (xy)) + o,

choosings so thatw; is contractive. Now defind: F - F by

W(H(xy) = wi(f)(xy) for (xy) O R.
Since the rangeR tile 12, W is defined for all ,y) in 1%, soW(f) is an image. Since each
w; is a contractionW is a contraction or. Therefore, by the Contraction Mapping
TheoremW has a unique fixed poifif; O F satisfying

W(fw) = fw.
Iteratively applyingWV to any starting imagf will recover the fixed poirfy, :
W'(f)) — fw, asn — oo,

where W*"(fo) is W(W(...W(fo))) (n times). Fig. 3.2.4 shows the result of applying a

contractive mappingV to two different starting images. The mappMfused in this
figure was obtained through the fractal image encoding techniques described below.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Partitioned Iterated Function Systems (PIFS) a7

Starting image: Fixed point:

W
—>
Different starting

image:

w
—

Fig. 3.2.4 The Contraction Mapping Theorem applied to grayscale
images. In this example, W is a contractive mapping applied
iteratively to two different images. Regardless of the starting
image, the iterations conver ge to the same fixed point image.

The Contraction Mapping Theorem is the basis for al fractal image encoding techniques:
Given a grayscale image f, try to find a contraction mapping W such that fy,, the fixed
point of W, is close to f. W then contains all of the information needed to recover fy. If
you can store W in less space than is needed to store f, then you have achieved image
compression.

3.2.4 Collage Theorem for grayscale images

As was the case for IFS’s and binary images, there is a Collage Theorem for PIFS’s and
grayscale images. Given a grayscale imdgesuppose we can find a contractive
transformatior\V such that

do(f, () < &

Then
£

dy(f,fyy) € —,
o(Ffw) < 75

(3.2.4)

wheres is the contractivity factor dfV, andfyy is its fixed point. This means we can start
with any imageg and iteratdV ong to get an image that is closefto

W'(g) - fw = f.
While the Contraction Mapping Theorem provides the justification for fractal image

encoding, the Collage Theorem actually gives us a substantial clue as to how to
implement the process. Rather than having to worry about what an infinite number of

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

48 Fractal Encoding of Grayscale Images

iterations applied to a given image looks like, we only need to find a W such that one
application of W, namely the image W(f), is close to the desired image f. Note that W must
be contractive, with contractivity factor s significantly less than 1, otherwise the bound on
theright side of the inequality (3.2.4) will not be meaningful.

The Collage Theorem brings us one step closer to a procedure for fractal image encoding.
Given agrayscale image f, try to find a contractive W such that W(f), hence fyy, is close to
f. Decoding consists of iterating W on any starting image g to recover f.

3.3 FRACTAL IMAGE ENCODING

As Fig. 3.3.1 shows, fracta image encoding attempts to find a set of contractive
transformations that map (possibly overlapping) domain cells onto a set of range cells that
tile the image. The range cells may be of uniform size, but more commonly some type of
adaptive variable sizing is used. The range cells shown on the right in this figure are the
result of a quadtree partitioning scheme.

4;?

Transformations

Domain Cells Range Cells

Fig. 3.3.1 Fractal image encoding attempts to find a set of
contractive transformations that map (possibly overlapping)
domain cellsonto a set of range cellsthat tile the image.

The basic algorithm for fractal image encoding proceeds as follows:

1. Partition the image f into non-overlapping range cells { R} . In the examples
we will look at here, the range cells R are rectangles, however, other shapes
such as triangles, may also be used. The R may be of equal size, but more
commonly some type of adaptive variable sizing is used. This alows a
concentration of small range cells in parts of the image that contain detail.
One common type of adaptive partitioning scheme which we will examine
below is quadtree partitioning, as described in Fisher (1995).

2. Cover the image with a sequence of possibly overlapping domain cells. The
domains occur in a variety of sizes, and there typically may be hundreds or
thousands of domain cells. The next section discusses a scheme for
constructing the set of domain cells.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Fractal Image Encoding 49

3. For each range cell, find the domain and corresponding transformation that
best cover the range cell. The transformations are typically affine
transformations of the form (3.2.2). Adjust the transformation parameters,
such as contrast and brightness, for best fit.

4. If the fit is not good enough, subdivide the range cell into smaller range
cells. Continue this process until either the fit is within tolerance, or the range
subdivision has reached some preset limit.

Fig. 3.3.2 shows a block diagram of the fractal encoding process, as it is implemented in
the accompanying software. Note that there is an option to search for best domain. If this
option is selected, the search will continue even if a domain-range match is found within
the error tolerance. If this option is not selected, the domain search ends as soon as a
match within tolerance is found. Not selecting this option results in faster encoding, with a
small cost in decoded image quality.

Fit Domain to -
Subdivide Select Range Range (Rotate, This Range
Range Cell [Cell from Shrink,Scale); Cell is Covered
Partition List Keep Track of within Tolerance
l Best Fit So Far k

Get Domain _,T

Cell from
Domain List [

Max
Quadtree
Depth
?

End of

Domain

List
?

Range Cell Done;
Y Not Covered

»| within Tolerance; »
Use Best Fitting
Domain

Fig. 3.3.2 Flow diagram showing the main steps in fractal image
encoding, asimplemented in the accompanying software.

When fitting a domain cell to a range cell, the accompanying software implements the
spatia part of the affine transformation, denoted w; in (3.2.2), with the operations of
trandation, rotation, and shrinking. Shrinking reduces the size of the domain cell to the

size of the range cell. This operation is accomplished with a simple averaging across rows
and columns.

The details of fractal image encoding vary with different implementations. Some range
partitioning schemes, as mentioned, use non-rectangular cells, with the most common

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

50 Fractal Encoding of Grayscale Images

alternative choice being triangles. This can help aleviate some of the blocking artifacts
present in decoded images originating from rectangular range cells. Non-affine
transformations have also been investigated (Popescu, Dimca, and Yan 1997). The spatial
part of the grayscale affine transformation, namely w; given by (3.2.1), provides spatial
contraction if |det Aj| < 1. We will limit the choices for w; to spatial contractions with
rigid trandation and one of eight basic rotations and reflections, as described in Fisher
(1995).

Step #3 is the most computationally intensive. For each range cell R, the algorithm
attempts to find the domain D;, the spatia transformation w;, the contrast s and
brightness o; such that wi(f) is close to the image f on R. That is, we want to find w; such
that the quantity

[1w (F)(%, y) = £(x, y)| *cbxely (3.3.1)
R

issmall. For a digitized image, the integral in (3.3.1) represents a summation over pixels.
If the quantity (3.3.1) is not less than some preset tolerance after the best w; has been
found, then the adaptive range cell scheme subdivides the range into smaller range cells,
and the search for an optimal transformation is repeated on these smaller ranges. This
process continues until the quantity (3.3.1) can be brought within tolerance or until the
maximum preset range cell subdivision has been reached.

One of the main problems with fractal image encoding is that the large numbers of
domains and ranges lead to long encoding times. Recent research has focused on this
difficulty, and we will investigate in the next chapter some ways of aleviating this
problem.

The “code” for a fractal-encoded image is a list consisting of information for each range
cell, including the location of the range cell, the domain (usually identified by an index)
that maps onto that range cell, and parameters that describe the transformation mapping
the domain onto the range. Thus, the compression ratio depends on the number of range
cells as well as the efficiency of information storage for each range cell. A large number
of range cells may provide good decoded image quality, but this comes at the expense of
compression ratio.

3.3.1 Domain cells

For each range cell, we want to find a domain cell that efficiently maps onto that range
cell. In order for the mapping to be a contraction, the domain should be bigger than the
range. Good compression depends on the ability to find a good domain-range match
without having to subdivide the range. Too much range subdivision leads to too many
ranges, which hurts the compression ratio (and in fact can lead to “image expansion”
rather than compression if one is not careful!). Ideally one would like a continuum of
domain sizes and positions within the image to choose from for each range.
Unfortunately, the computational cost of searching through so many possibilities is
prohibitive. The process of setting up a system of domains is a balancing act between
providing a large enough domain set faod range match possibilities and keeping the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Fractal Image Encoding 51

domain set small enough so that searches can be performed in a reasonable amount of
time.

The accompanying software uses a system of five parameters to describe the domain
system. Once these five parameters are specified, a single index unambiguously
determines the location of each domain cell. The parameters are stored as part of the
coding header information, and a domain index is stored with each range cell in the coded
image. The five parameters are: domain rows p, domain columns y; domain levels A,
horizontal overlap 4, and vertical overlap 4,. Together these parameters determine how
many domains there are, how many different sizes of domains there are, and how much
overlap is allowed. Parameters p and y specify how many of the largest level of domain
cells are in one row and column of domain blocks. So, for example, if the image size is
256 x 256 and p and yeach egual 8, then the largest domain blocks are 64 x 64 (256/8 =
64). The domain block size is halved with each increase of the domain levels parameter A.
If the largest domains (A = 1) are 64 x 64, then at level A = 2, the domain sizeis 32 x 32.
Note that the number of domains quadruples at each new level. Finally, 4, and 4, control
the amount of overlap. These parameters take on values between 0.0 and 1.0, with 1.0
indicating no overlap, 0.5 half overlap, and 0.0 complete overlap. The smaller these
values, the more domains (in fact, 0.0 would result in infinitely many domains, but the
software forces a minimum of one pixel non-overlap). Table 3.3.1 shows the number of
domains that result from various choices of the domain parameters.

Domain Rows () 8 8 8 8 8 8
Domain Columns ()) 8 8 8 8 8 8
Domain Levels (1) 1 2 2 3 3 3
Horizontal Overlap (4y) 10 | 10 0.5 0.5 0.25 0.1
Vertical Overlap (4,) 10 | 10| 05 | 05 0.25 0.1
Total Number of Domains | 64 | 320 | 1186 | 5155 | 20,187 | 125,707

Table 3.3.1 Sample values of the domain parameters, and the
resulting numbers of domains.

For example, when p= 8, y= 8, and A = 2, then, with no overlap, there are 64 (i.e., 8@)

level 1 domains of size 64 x 64, and 256 (i.e., 16@6) level 2 domains of size 32 x 32, for
atotal of 320 domains.

3.3.2 Quadtree partitioning of range cells

One way to partition the image into range cells is a method called quadtree partitioning
(Fisher 1995). This method starts with a coarse partition, such as a subdivision of the
entire image into 4 rectangles (see Fig. 3.3.3). For each range cell, the algorithm tries to
find the domain and corresponding contractive transformation that best cover the range
cell. In order to produce contractive transformations, range cells larger than the largest
domain cells are subdivided into smaller range cells. Contrast and brightness are adjusted
for the best fit through a least-squares process. If the fit is within a preset error threshold,
then that range cell is considered to be covered, and the algorithm moves on to the next

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

52 Fractal Encoding of Grayscale Images

range cell. If the fit is not within threshold, the algorithm checks to see if the maximum
quadtree depth has been reached. If it has, processing stops for that range cell, and the
range cell is considered covered with the best domain and transformation available. If
maximum quadtree depth has not been reached, then the algorithm subdivides that cell
into 4 smaller range cells, and the search for optimal domains and transformations begins
anew with these 4 new range cells. Processing is complete when all range cells have been
covered, either by finding a domain-transformation fit within the error tolerance, or by
reaching the maximum quadtree depth.

Fig. 3.3.3 Quadtree partitioning starts with a coar se partition (left).
If a good domain-range match cannot be found for a particular
range cdl, that cell is subdivided into 4 smaller cells (center). The
subdivision process continues until either a good match is found or
the maximum quadtr ee depth isreached.

Note that using a smaller error threshold leads to more range cells, and using a larger
quadtree depth also leads to more range cells. Fig. 3.3.4 shows the effect of using tighter
error tolerances and larger quadtree depths. In either case, more range cells means poorer
compression (and sometimes no compression at al), but usually better decoded image
quality.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Fractal Image Encoding 53

Quadtree level 5 Quadtree level 6 Quadtree level 7
H HHH]
Error —HH T HFH
Threshold E FH T
A LA L L e
0.05 FEEE PR TR
T HHHH HH T ---!- -
T i H
-i--- I H T HHH T HH 1T
Error
Threshold
0.025 [H
HHE

Fig. 3.3.4 Increasing the quadtree level and/or decreasing the error
threshold leadsto morerange cellsin the quadtree partition.

3.3.2.1 A schemefor keeping track of quadtree partitioning

To implement a quadtree partitioning algorithm, you'll need a way of keeping track of the
range cells that result from the partitioning. The accompanying software uses the
following list manipulation scheme to assign a unique quadtree index to each range cell.
To see how this works, consider a simple example with a maximum quadtree depth of
three. We start with a list of four vectors, each with length equal to the maximum quadtree
depth, in this case 3. The first component of the first vector is assigned the value 1, the
first component of the second vector is assigned 2, and so on. The initial list then consists
of these four vectors:

1,0,0
2,0,0
3,0,0
4,0,0.

This list corresponds to the initial, or quadtree level 1, partitioning shown on the far left
of Fig. 3.3.3. By convention, the 4 list entries are assigned to the 4 range cell blocks in
clockwise order, starting with the upper left. When the algorithm calls for a range cell
subdivision, the list entry corresponding to that range cell is replaced with 4 new list
entries. The components up to that quadtree level remain unchanged, while the
component corresponding to that quadtree level is assigned the values 1,...,4 in the four
new list entries. So, for example, the list corresponding to the level 2 partitioning shown
in the center of Fig. 3.3.3 would be:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

54 Fractal Encoding of Grayscale Images

1,10
1,2,0
1,30
1,4,0
2,00
3,0,0
4,0,0.

Following the same scheme, Fig. 3.3.5 shows a particular level 3 partitioning and
resulting index list. For example, the shaded cell hasindex 3,2,4.

111

1 2 112
113
114
120
130
140
200
x| 310
321
\ 322

323

4 3 324
330

340

400

Fig. 3.3.5 A quadtree partitioning (level 3) and corresponding index
list. The shaded box correspondsto quadtreeindex 3,2,4.

It is not difficult to imagine how quickly the quadtree index list can grow with increasing
quadtree levels and tight error tolerances.

3.3.3 Mapping domains to ranges

The dominant computational step in fractal image encoding is the domain-range
comparison. For each range cell, the algorithm compares transformed versions of all the
domain cells (or, at least all of the domain cellsin a given class, as described in the next
chapter) to that range cell. The transformations are affine transformations, of the form
described in section 3.2.1, with the spatial part of the transformation limited to rigid
trandation, a contractive size-matching, and one of eight orientations. The orientations
consist of four 90° rotations, and a reflection followed by four 90° rotations. In a recent
paper, Saupe (1996) claims that the use of these eight orientations is not necessary and
that equally good results can be obtained by using a larger domain pool without applying
rotations. The accompanying software alows you to explore this possibility, since the
number of orientations is user-selectable to a value of 1 to 8, with 1 corresponding to the
identity transformation.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Fractal Image Encoding 55

Domain-range comparison, as implemented in the accompanying software, is a three-step
process, as shown in Fig. 3.3.6. First, one of the eight (or fewer) basic rotation/reflection
orientationsis applied to the selected domain. Next, the rotated domain is shrunk to match
the size of the range. Note that, in practice, the range must be smaller than the domain in
order for the overall mapping to be a contraction. Finally, optimal contrast and brightness
parameters are computed using a least-squares fitting.

Domain
3. Compute best fit of
' contrast and brightness.
1. Rotate 2. Shrink Compare result to range.
Range

Fig. 3.3.6 Comparing domain and range cells. First, one of eight
basic rotation/reflection orientations is applied. Next the rotated
domain is shrunk to the size of the range. Finally, the contrast and
brightness parameters are adjusted through a least-squares fitting
to obtain optimal values. Theresult is compared on a pixel-by-pixel
basisto therange cell to determine the quality of thefit.

To find the optimum contrast s and brightness o, we want to find the values for s and o
that minimize:
T

Here, {d;} and {r;} are, respectively, the domain and range pixel values. These pixels
reside in rectangular arrays with M rows and N columns (the domain size has already been
shrunk to match the range at this point).

The solution is

where

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

56 Fractal Encoding of Grayscale Images

a= z z (dj —d)(rj =7)

|

ﬁ:ZZ(dij _a)2

J
1
w22
1
:WZJZI’” .

d

=

3.3.4 Encoding times

One of the drawbacks of fractal image compression is long encoding times. Encoding

times of over two days on a workstation have been reported for cases where the number

of domains exceeds 100,000. Table 3.3.2 shows three examples of encoding times, using

the code in the accompanying software on a 200 MHz Pentium PC. The image used here

is the “Rose” image shown in Fig. 3.2.4. Note that in the second and third examples, the
number of domains is larger, leading to a longer encoding time. The larger number of
domains does improve the compression, as represented by the smaller number of range
cells. The decoded image error is comparable in all three cases, which is to be expected
since the error tolerance was the same in each case.

In the third example, the option “Search for Best Domain?” is set to “Yes”. Recall that
when this option is off, domain-range matching stops as soon as a match is found within
the error tolerance. When this option is on, as in the third example, all domains are
compared to each range cell, regardless of whether a match within tolerance occurs. The
best domain-range match is kept. Not surprisingly, encoding takes much longer when this
option is on. In the third example here, encoding takes over three times as long as
example 2, which has identical encoding settings, except for this option. The number of
range cells is the same as for example 2 (916 range cells), so there is no improvement in
compression. There is a slight improvement in pixel error. Fisher (1995) notes that having
this option off can lead to a bias of choosing domains that occur early in the domain index
list. However, the cost in encoding time in having this option on does not appear to be
justified in terms of improved compression performance. In the remaining examples in
this book, this option will be turned off.

The next chapter will develop methods that will reduce these encoding times down to
seconds.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Image Decoding

57

Quadtree Depth 6 6 6
Error Threshold 0.05 0.05 0.05
Domain Rows 8 8 8
Domain Columns 8 8 8
Domain Levels 2 2 2
Horizontal Overlap 1.0 0.5 0.5
Vertical Overlap 1.0 0.5 0.5
Number of Domains 320 1186 1186
Number of Orientations 8 8 8
Sear ch for Best Domain No No Yes
Final No. of Range Cells 1048 916 916
Average Pixel Error 3.844% 3.839% 2.982%
PSNR 24.17 dB 24.32 dB 26.061 dB
Total Encoding Time 15 Min. 42 Min. 2Hrs. 19 Min.
59 Sec. 32 Sec. 31 Sec.

Table 3.3.2 Encoding times on a 200 MHz Pentium PC. The
methods discussed in the next chapter will significantly improve
these times. See Sect. 3.4.1 for a definition of the error measures.

3.4 IMAGE DECODING

The image is decoded by iteratively applying the transformation W to an arbitrary starting
image g, where

W(g)(xy) = wi(g)(xy) for (xy) O R.

If the transformations {w;} have been correctly chosen, the iterate W°"(g) will be close to
the origina image f for some reasonable value of n. Note that, according to the
contraction mapping theorem, the iterates will converge regardless of the starting image.
Typical decoding schemes use a starting image that is uniformly gray, but, as Fig. 3.4.1
shows, other images provide equally good performance.

To implement the iterative decoding scheme in a computer program, you must set up two
image arrays, for example, called ol d_i nage and new_ i mage. The contractive
mapping W is defined as a separate transformation on each range cell. Each range cell has
a transformation and domain cell associated with it. The contents of that range cell are
computed by applying the transformation to the domain cell. The pixel values for the
domain cell are obtained from the ol d_i nage array. The resulting range cell pixel
values are stored in new_i mage. One iteration is complete when all of the range cells
have been processed. It is important to keep ol d_i mage and new_i nage separate
during the iteration process, otherwise you are not implementing the contractive mapping
W properly. To begin the next iteration, replace ol d_i nage with new_i nage. Note
that it is not necessary to physically move the contents of new_i mage into
ol d_i mage. This can be accomplished much more efficiently by simply reassigning
pointer values, as can be seen in the source code for the accompanying software.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

58 Fractal Encoding of Grayscale Images

Iteration #2

Iteration #3 Iteration #4 Iteration #5

Fig. 3.4.1 An example of decoding a fractal encoded image. Any
starting image may be used. The error in this example after 5
iterationswas 2.2332% average error per pixel.

3.4.1 Measuring the error

Error measurement is an important aspect of determining the effectiveness of an image
compression scheme. Obviously, we want to know how far off the decoded image is from
the original image. Because perception of image quality is subjective, the question of how
to measure this difference is not an easy one to answer. The software accompanying this
book uses two simple measures. average pixel error and peak signal-to-noise ratio
(PSNR). Average pixel error is computed as:

1 Nrows Neols
N 2, 2 7l

PSNR is a standard measure in the image compression world, and is computed as:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Image Decoding 59

1 Ngows Neois
rms:\/— Z Z | —di,j‘z
NROWSNC0|S =1 =

oM O
PSNR =20l0g,, G—=>*°
o rms 0

In the above, Ngows and Ny are the number of rows and columns, respectively, Mgrayieve

is the maximum gray level value (255 for the examples in this book), f;; is the pixel value

of the original image at row i, column j, and d;; is the decoded image pixel value. The
quantity rms is the root mean square error. Note that PSNR will “blow up” if it ever
encounters a lossless compression algorithm.

The accompanying software computes and displays the error image obtained by
subtracting the decoded image from the original image, as shown in Fig. 3.4.2. The
software also computes average pixel error and PSNR, as discussed above.

Fig. 3.4.2 The original “Rose” image (left), decoded image (right),
and error image (center). The encoding in this case used a
maximum quadtree depth of 6, an error threshold of 0.05, and 320
domain cells. Decoding was stopped after 4 iterations. The error
image is actually the reverse of true error: it is computed by
subtracting the error from the number of gray levels (256 in this
case). The average pixel error is 3.168% (PSNR 24.898 dB).

Error measure is an area of active research in image compression. Human perception of
error does not always coincide with absolute measures of error. Block artifacts, such as
those visible in the image on the right in Fig. 3.4.2, are quite noticeable to human
observers, yet do not contribute a great deal to either average pixel error or lower PSNR.
In this case, error measures that take into account gradient differences as well as absolute
differences might be more appropriate. In applications where a machine is the final
consumer of the decoded image, such as automatic target recognition systems in the
military, the characteristics of the recognition algorithm should be taken into account
when measuring decoded image error.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

60 Fractal Encoding of Grayscale Images

3.5 STORING THE ENCODED IMAGE

Once the image has been encoded, you will want to save the encoded information in a

file. The accompanying software has two formats for doing this. There is a text range file

format (“*.rng”) that lists the range cell information in a format that you can read with a
text editor. This format enables you to see how the algorithm has encoded the image. Of
course, since this is an ASCII text format, it is not very compact, and usually represents
image expansion, rather than compression. The software also provides a binary range file
format (“*.fbr”) that stores the range cell information in a compact binary format. The
next sections discuss these formats. Please note that neither of these formats are standard
in the image compression community. There are no standard fractal compression formats,
although Iterated Systems, Inc., has their proprietary fractal image format (fif).

3.5.1 Range file format

The range file format (“*.rng”) provides a text version of the encoded image. To decode
an image, you need to know how the image has been partitioned into range cells, and you
need to know the domain and transformation associated with each range cell. Fig. 3.5.1
shows the partial contents of a sample range file. The sole purpose of this text version of
the range file is so that you can see what the encoding algorithm has produced. The
header contains information on the domain rows, columns, levels, and horizontal and
vertical overlap increments, as discussed in section 3.3.1 above. From this, the system of
domain cells can be deduced so that, given a single domain index, it is possible to
determine the size and location of the corresponding domain cell. Lines starting with a
double slash (*//") are comment lines for informational purposes only. These lines contain
information about how the encoding was done, but these are not items needed by the
decoder. For example, the error threshold impacts how many range cells are produced in
the quadtree partition, but the decoder does not need to know the value of the error
threshold.

The decoder does need to know the quadtree depth and the number of range cells
(“Rects” in Fig. 3.5.1), which are the final items in the header information. The remainder
of the file contains a list of range cell data, one line for each range cell. For each range
cell, the file lists the quadtree indexes (integer 1 through 4 for each of the quadtree
levels), the domain index, transformation index (0-7), an integer brightness level, and a
real-valued contrast value.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Storing the Encoded Image 61

Sample range file information:

Domai n Rows, Cols, Levels: 8 8 2
Horiz, Vert Incr: 1.000 1.000

/'l Used Donmain Features: No —

/| Searched for Best Domain: Yes Header data
/1 Max No. of Transformations: 8

/1 Error Threshol d: 0.0500

Quadtree Depth: 6 _
No. of Rects: 1492 —

11 1 1 0 0 42 0 64 -0.218

11 1 2 0 O 1 0 68 -0.015

11 1 3 0 O 1 6 34 0.495

1 11 2410 1 3 a1 -o1s —Rangerectangle data
1 1 1 4 2 0 232 2 -59 1.164

11 1 4 3 0 1 3 65 -0.261

1 1 1 4 4 1, 107 3 14 0.641

prrety

.. etc.
Quadtree Contrast
indexes !
Brightness
Orientation
index (0-7)
Domain
index

Fig. 3.5.1 Sample range file infor mation.
3.5.2 Binary range file format

To actually store a compressed version of the image, it is necessary to store the
information in a binary format. Examining a line of data in the range file format shown in
Fig. 3.5.1 reveals that the quadtree indexes take up over half of the numeric entriesin a
line. Even though each index takes on only the values 1 through 4, and so requires only 2
bits for storage, thisis till alot of data to store for each range cell. Fortunately, thereis a
scheme that takes advantage of the tree structure of the quadtree data. This tree structure
reguires only one bit per overall quadtree position, and can be stored separately as part of
the header information. Each range cell then requires only domain index, orientation
index (Max. No. of Transformations in the header information actually refers to the
number of orientations), brightness and contrast. Fig. 3.5.2 shows the organization of data
in the binary range file. The following sections discuss the specificsin more detail.

Header Data
(Quadtree Data)

Range Data
(Domain Index,
Orientation Index,
Brightness,
Contrast)

Fig. 3.5.2 Organization of data in the binary range file. The
quadtreeinformation can be stored compactly as part of the header
block.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

62 Fractal Encoding of Grayscale Images

3.5.2.1 Efficient quadtree storage

While the quadtree index list is a convenient mechanism for manipulating range cell
information during the partitioning process, the list itself is not an efficient way of storing
this information. The list can be compactly stored as binary tree structure. A few ssimple
observations about the quadtree index list will suggest how to construct thistree:

1. The maximum number of range cells at quadtree level nis4".

2. If there is one non-zero index at a particular level, then all 4 indexes must be
present (e.g., if 111 is present in the list, then 112, 113 and 114 must also be
present).

3. A‘0’ at a level means all corresponding indexes at higher levels are also ‘0'.

This suggests the use of a binary tree structure Wildit# at levein. A ‘1’ indicates that

this cell is subdivided. A ‘0’ indicates that there is no subdivision at this level (and hence
no subdivision at any higher levels). Note that the tree needsNonlyt levels for a
maximum quadtree depth b since by definition there is no further subdivision at level

N. So, for example, the 3-level partition shown in Fig. 3.3.5 could be represented with the
following 2-level binary tree:

Level 1: 1 0 1 0
Level 2: 1000 0000 0100 0O0OOO

Thus all of the quadtree information in the partition of Fig. 3.3.5 can be stored in 20 bits.
The information can actually be stored in fewer bits if one observes that the second and
fourth blocks in level 2 consist of all 0’'s and are actually superfluous, since their values
can be predicted by the presence of 0’'s in the preceding level. This scheme requires more
complex decoding logic. The accompanying software does not eliminate superfluous 0’s
in the storage of quadtree information.

Listing 3.5.1 shows the relatively compact code that converts a range index list to a
guadtree “level array” of 1's and 0's of the type shown above. It takes longer to explain
what the code does than to write the actual lines of code. The vdreabdd _arr ay is

an array of pointers to a structure of the tyfyt e_array. Eacht byte_array is

an array of four integers, each calldadl t . The number of levels is one less than the
quadtree depth. In the example above, there are two levels. The first level has one
tbyte_array, and the second has four. In general, there will"de Byt e_array’s

at leveln. The expression

level _array[j-1][1evel _index].bit[bit_index]

accesses the individual “bits” in the level array. The first ingexi(wherej is the
quadtree depth) is the level. The above example has two levels, corresponding to indexes
0 and 1. The second inddxgvel _i ndex) tells whicht byt e_ar r ay to access at that
particular level. In the above example, at levél@yel _i ndex can have only the value

0, while at level 1, it takes on the values 0 and 2. The final indiex (i ndex) tells

which “bi t " to access it byt e_array. Note that each non-zero value in the array
actually gets set multiple times.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Storing the Encoded Image 63

Listing 3.5.1 Code sample for converting range index list to
guadtree “level array”.

typedef struct {
short i ndex[MAX_QUADTREE_DEPTH+1] ;
unsi gned int domain, transf;
int brightness;
float contrast;
} range_struct;

typedef struct {

int bit[4];

} tbyte_array;
typedef tbyte_array *pbyte_array;
pbyte_array | evel _array[MAX_QUADTREE_DEPTH] ;
int i,j,no_of _levels = quadtree_depth - 1,

| evel _i ndex, bit _i ndex;

int power _4[MAX_QUADTREE_DEPTH] ;
power_4[0] =1

for (i=0;i<no_of_levels;i++) {
level _array[i] = (pbyte_array)calloc((size_t)
power _4[i],sizeof (tbyte_array));
power _4[i +1] = power_4[i]*4;
} /1 end i

for (i=1;i<=range_list->get_count();i++) {
range = (range_struct *)(range_list->at(i));
| evel _i ndex = O0;
for (j=1;j<quadtree_depth;j++)
i f (range->index[j+1] > 0) {
bi t _i ndex = range->i ndex[j]-1;
level _array[j-1][1evel _i ndex].
bit[bit_index] = 1;
| evel _index = | evel _index*4 + bit_index;
} /1 end j
} I/ end i

3.5.2.2 Bit structure for storing range information

Listing 3.5.2 shows the bit structure for storing the information required for each range

cell. The total number of bits should be a multiple of 8 so that each range cell can be

stored with an integral number of bytes. The allocation in the code in Listing 3.5.2

reflects atotal budget of 4 bytes per range cell. It isatria and error process to determine

the optimal allocation of bhits across the four quantities (domain index, transformation

index, brightness level and contrast factor). For example, allocating 8 bits for brightness

and 11 bits for contrast resulted in 4.789% average error per pixel for a particular
encoding of the “Lena” image, while an allocation of 9 bits for brightness and 10 bits for
contrast resulted in 4.355% error. The number of bits allocated for domain index
determines the maximum number of domains. In this case, the 10 bits allocated means the
maximum number of domains is 1024. This is not a lot by traditional fractal encoding
practices (some implementations allow hundreds of thousands of domains). However, it is
a good compromise between speed and accuracy. A large number of domains is
the single biggest factor in long encoding times. Note that eliminating the orientation

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

64 Fractal Encoding of Grayscale Images

transformations, as Saupe suggests (Saupe 1996), would free up 3 bits that could be
alocated to the domain bits, thus increasing the allowable number of domains. Fisher
(1995) recommends using the quantized brightness and contrast values during encoding,
rather than encoding with optimal values and then quantizing.

Listing 3.5.2 Bit structurefor storing range cell infor mation.

#defi ne DOVAIN_BI TS 10

#def i ne MAX_NO_OF_DOMAI NS 1024 /* 2**DOMAI N_BI TS */

#define TRANSF BITS 3

/* Trial and error deciding how many bits to allot for
bri ght ness and contrast. These choices seem K for
a 19-bit (total for both) budget. */

#def i ne BRI GHTNESS_BI TS 9

#def i ne BRI GHTNESS_LEVELS 512 /* 2**BRI GHTNESS BI TS */

#def i ne CONTRAST_BI TS 10

#def i ne CONTRAST_LEVELS 1024 /* 2**CONTRAST_BI TS */

typedef struct {
unsi gned donmi n: DOVAI N _BI TS,
transf: TRANSF_BI TS,
bri ght ness: BRI GHTNESS BI TS,
contrast: CONTRAST_BI TS;
} trange bit_struct;

3.5.2.3 Transmission robustness

Quantization of the range cell parameters, such as what occurs due to the bit allocation
discussed above, introduces a small amount of error into the decoded image. A related
issue in applications that require sending compressed images across communications
channels is how robust the image coding is with respect to errors introduced during
transmission. This is of particular interest in military applications, which may have
challenging transmission environments.

Asnoted in Fig. 3.5.2 above, the quadtree partition can be stored quite compactly as part
of the header information. The quadtree partitioning alone usually contains enough
information to make the image recognizable. It is not hard, for example, to tell the
difference between “Lena” and a “cat” image merely by looking at the quadtree partition.

Any corruption of the header data would likely lead to large errors in the decoded image.
However, the size of the header data is small, so it may be possible to protect this data
through some type of redundancy scheme. Fig. 3.5.3 shows the effect of corrupting
domain index and transformation index information. The horizontal axis is the percentage
of randomly selected corrupted indexes. The vertical axis is the resulting error in the
decoded image. The image in this case is “Lena” (25@56, 256 gray levels),
compressed to a 6:1 ratio. Fig. 3.5.3 indicates that the coding is more sensitive to errors in
domain index than transformation index. However, the error increases only linearly. For

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Resolution Independence 65

applications such as target recognition (rather than human perception), the degradation in
image quality may be tolerable. The lack of sengitivity to corruption in the transformation
index is perhaps further corroboration of Saupe’s claim (Saupe 1996) that these
transformations can be eliminated from the encoding process.

10.0
9.0
8.0 1
70 1
6.0 +
50 1
40T
30 1
20 1
10+
0.0

—o— Domains

—— Transformations

Decoded Error %

0.0 5.0 10.0 15.0 20.0

Corruption %

Fig. 3.5.3 Transmission corruption versus decoded error. The
corruption percent represents corruption of a percentage of
domain indexes and transformation indexes. The graph indicates
decoded error issensitive to errorsin the domain indexes, although
theerror only increaseslinearly.

3.6 RESOLUTION INDEPENDENCE

One of the unique features of fractal image compression is that the decoding is resolution
independent. Note that nowhere in the range file do we include information about the
original image size. The reason for this is that such information is not needed. The
decoding can proceed at any image size, regardless of the size of the image that was used
for encoding. This property has led to exaggerated claims for compression performance.
For example, suppose a 28@56x 256 grayscale image is encoded with 4000 range
cells. Assuming each range cell requires 4 bytes of storage, the encoding requires
approximately 16K bytes of storage. This represents an approximate compression ratio of
4:1 when compared with the 64K bytes for the original image. Now suppose the encoded
image is decoded at a size of 1024024. One could say that this represents a
compression ratio of 256:1, since a 162#024x 256 grayscale image normally requires
1024K bytes of storage. Compression ratios reported in this book do not use this device.
All ratios reported here are computed by comparing with the size of the original image
used for encoding.

Another claim made for the decoding of fractal encoded images is that decoding at a
larger image size inserts detail into the image. This detail is artificial, in the sense that it
does not originate from the image that was encoded, however it is contextually consistent.
Figure 3.6.1 shows an example of “fractal zoom” versus ordinary zoom. The detail in the
fractal zoom is somewhat finer. Additional examples are given in Fisher (1995) and
Barnsley and Hurd (1993). However, Polidori and Dugelay (1995) claim that images

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

66 Fractal Encoding of Grayscale Images

obtained by zooming fractal encoded images are not better than oversampled images
produced using classical interpolators.

(b)

Fig. 3.6.1 Example of “fractal zoom” (a) versus ordinary zoom (b).
The image in (a) is a segment of the “Rose” image, fractal encoded
at 256x 256 and decoded at 1024 1024. The image in (b) is the
same image, also fractal encoded at 256256, but decoded at

256 x 256, then blown up to 400% of its original size, using
ordinary pixel zoom.

3.7 OPERATOR REPRESENTATION OF FRACTAL IMAGE ENCODING

We close this chapter with a discussion of an operator formulation of fractal encoding
introduced by G. Davis. This formulation will be used later when we relate wavelet and
fractal approaches and investigate hybrid methods of encoding. The operator formulation
and the solution of the resulting operator equation provide a compact representation of the
fractal encoding and decoding processes. We will use the notation and terminology of
Davis. Further details can be found in Davis (1995; 1996; 1998).

3.7.1 “Get-block” and “put-block” operators

Let O™ denote the space of m x m digital grayscale images, that is, each element of 0" is
an mx m matrix of grayscale values. We define the “get-block” operBfgq: oM - O

wherek < N, as the operator that extracts the k block with lower corner am,m from
the originalN x N image, as shown in Fig. 3.7.1.

The “put-block” operato(B,':’m) :0¢ & OV inserts & x k image block into al x N zero

image, at the location with lower left corneman. Fig. 3.7.2 shows the action of the put-
block operator.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Operator Representation of Fractal Image Encoding 67

|

k X k

N XN

Fig. 3.7.1 The “get-block” operator B,f,m extracts ak x k image
block from an N x N image.

(Bt S IS N

k x k

N XN

Fig. 3.7.2 The “put-block” operator (B,Iflm) inserts k x k image

block into an N x N image consisting of all zeros.
3.7.2 Operator formulation

Let FOO" be an N x N image, and let {R;,...,Ry} be a collection of range cell images
that partitionF (for example, these may be the result of a quadtree partition).R-hels
dimensionr; x r; with lower corner located at,m in F. Let F; be theN x N image with
all zeros except for range c&| that is,

F=(8) R).

Then

T
1
<
n

! * (3.7.1)
=Y (Bim) (R).

<

[y

What's going on in equation (3.7.1) is nothing more than what is depicted in Fig. 3.7.3.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

68 Fractal Encoding of Grayscale Images

R, 7. R,
= 0 + 0 + + 0
Ru
F F. F, Fu

Fig. 3.7.3 Theimage F can berepresented asthe summation of the
images Fy,...,Fu.

If the range cells R are the result of fractal image encoding of the image F, then for each
range cell R there isadomain cell D; and an affine transformation T, such that

R=Ti(D)

_AD)+G. (3.7.2)

Denote the dimension of D; by d;, and denote the lower left coordinates of D; by k;l;. In
equation (3.7.2), A: 0% - o is the operator that shrinks (assuming d; > r;), trandates

(k,l;) - (n;,m), and applies a contrast factor s, while C; is a constant r; x r; matrix that
represents the brightness offset. We can write D; as:

D, =8, (F).
Thus, (3.7.1) can be rewritten as the following approximation;
M
F=Y (Bim) {A(BL, (F)+)
I'_/ll * M *
= (Bhm) {A(BE E)+ S (Bl) (@)
1=1 o 1=1 .

or
F=G(F)+H,

where G: OV —. OVisan operator, and H is aknown constant image in O™,

3.7.3 Solution of the operator equation

The solution of the operator equation

X=G(X)+H (3.7.3)
isgiven by:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Operator Representation of Fractal Image Encoding 69
X=(1-6)"(H)
= [Z G“](H)
n=0

provided ||G|| < 1 in some appropriate norm || - ||. Here, G" is the composition of G with
itself n times (for example, GX(H) = G(G(H))).

This solution can be obtained iteratively. Start with any image x© OOV, then compute
X from:

X® =6(x@)+H
X® =6(xW) + H =G*(X?) + G(H) +H

X(n) - G(x(n_l)) +H
n-1
=G"(x?)+ ZGJ(H)
]:
-~ (1-G)™(H) asn - w, provided |G| <1
Note that thisiterative processis exactly the fractal decoding process.

3.7.4 Error analysis

In general, the original image to be coded, F, is not an exact solution of the operator
equation (3.7.3), but rather, F satisfies

F=G(F)+H+¢
for some error image £ 0 O™, Let F be the true solution of (3.7.3). Then
F-F=G(F)+H+&-G[F)-H
= G(F - IE) +E.
Thisimplies

[F =l = tet]F - 7]+ e

from which we get:
(Gl

ey

-7l

Thisis exactly the Collage Theorem bound.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4

SPEEDING UP FRACTAL ENCODING

Fractal encoding is computationally intensive because of the large number of domains
that must be searched for each range cell and because of the computations that must be
performed for each domain-range comparison. Early implementations of fractal encoding
were notorious for the amount of computation time required, typically taking many hours,
and sometimes days, on the most powerful UNIX workstations. This time requirement
hindered the acceptance of fractal image compression as a practical method. Attempts to
improve encoding speed have focused on two areas. Classification of domains can
significantly speed up encoding performance by reducing the number of domains that
must be searched. Most fractal image compression implementations incorporate some
type of domain classification. A second approach is to reduce the number of computations
required to compare domains and ranges. This can be accomplished through feature
extraction. The fastest approaches combine feature extraction with domain classification
search strategies.

This chapter looks at the approach first introduced in Welstead (1997), which combines
feature extraction with a domain classification and search strategy based on a self-
organizing neural network.

4.1 FEATURE EXTRACTION

The comparison of range cells to candidate domain cells, illustrated in Fig. 3.3.5 in the
previous chapter, demands significant computational resources. The computations include
the pixel-by-pixel operations of rotating and shrinking, as well as least-squares fitting to
determine optimal contrast and brightness factors. These operations must be done for
every candidate domain cell until a good match is found. One way to improve the basic
fractal image coding process is to extract a small number of features that characterize the
domain and range cells. The comparison of domains and ranges is then based on these
features rather than on individual pixels, thus reducing the complexity of the problem.
Features may come from Fourier spectrum analysis (McGregor, et al., 1994), wavelet
analysis (Hebert and Soundararajan 1998), or from measures of image tone and texture
(Welstead 1997). This section defines five features that measure image texture and
contrast distribution. Examples will show that feature extraction by itself provides a
significant speedup in the encoding process.

4.1.1 Feature definitions

Five different measures of image variation are used here as features. These particular
features were chosen as representative measures of image variation. However, no attempt
has been made to optimize the choice of specific features or their number. The optimal
selection of features remains an open question. The specific features used here are:

(i) standard deviation, o:

71

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

72 Speeding Up Fractal Encoding

1 n N
(pj - H)°

where p is the mean, or average, pixel value over the n, x n. rectangular image
segment, and p;; is the pixel value at row i, column j;

(if) skewness, which sums the cubes of the differences between pixel values and the cell
mean, normalized by the cube of o:

skewn&es— Zz(p”

(iii) neighbor contrast, which measures the average difference between adjacent pixel
values;

(iv) beta, which measures how much the pixel values change in relation to the value at the
center of the cell;

(v) maximum gradient, which is the maximum of horizontal gradient, which measures
change in pixel values across the cell, and vertical gradient, which measures change
in pixel values from top to bottom. Maximum gradient is set equal to whichever of
these two gradientsis the largest in magnitude (i.e., has the largest absolute value).

Because eight different orientation transformations, consisting of 90° rotations and
reflection, are applied to the domain cells, there is no need (nor is it desirable) to use
features that are essentially equivalent under these transformations. For example,
horizontal gradient is just vertical gradient rotated through %@at is why maximum
gradient, rather than either horizontal or vertical gradient, is used as a feature.

The source code with the accompanying software has specific definitions for all of the
features (i) - (v). Mean is not used as a feature, since contrast and brightness directly
influence the pixel value, and these are varied during the domain-range cell matching
process. For example, an image segment that has a constant value of 25 for all of its
pixels can be matched exactly with another image segment that has constant value of 230
merely by adjusting the brightness factor to 205. The mean values of these image
segments are quite different, but for the purposes of our domain-range matching via affine
transformations that allow brightness adjustments, they are better characterized by the fact
that their standard deviations (and in fact all of the above features) are zero.

How do these feature values compare for different types of images? Fig. 4.1.1 shows
some representative test images. Table 4.1.1 shows the values of the features computed
for the sample images shown in this figure. Note that all of the feature values are 0 for
image 1, which is a constant image. The horizontal variation of image 2 provides a
positive horizontal gradient, but zero vertical gradient. Image 3 is just so8ion of

image 2, and so has positive vertical gradient, but zero horizontal gradient. Under the
domain transformations, these would be equivalent images, and so we would want these
images to have equal feature vectors. This is the case provided we use maximum gradient.
There would be significant distance between these images in feature space if horizontal
and vertical gradient were separate features. Images 4 and 5 have the largest beta

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Feature Extraction 73

response, and the beta value has opposite sign for these two images. Images 6 and 7 have
more pixel-to-pixel variation, and so neighbor contrast is high for these images. Image 7
has the largest absolute skewness, which happens to be negative in this case, which means
outlying pixel values tend to be below the mean (i.e., darker).

4 5 6 7
Fig. 4.1.1 Sample images used for comparison of feature values.

Image (Fig. 4.1.1): 1 2 3 4 5 6 7
Standard Dev. 0.00 | 17.4629 | 17.4624 | 22.5348 | 17.5781 | 121.0294 | 50.0018
Skewness 0.00 | -0.0505 | -0.0505 | 0.5376 | -0.4955 | -0.5164 | -0.6826
Nbr. Contrast 0.00 | 0.4409 | 0.4409 | 1.3843 | 1.1396 | 186.4964 | 104.0830
Beta 0.00 | -0.0002 | -0.0002 | 0.0534 | -0.0413 | 0.0001 -0.0016
Horz. Gradient 0.00 | 0.4710 | 0.0000 | -0.0493 | -0.0274 | 0.0000 -0.0009
Vert. Gradient 0.00 | 0.0000 | 0.4710 | 0.0339 | -0.0500 | 0.0000 0.0114
M ax. Gradient 0.00 | 0.4710 | 0.4710 | -0.0493 | -0.0500 | 0.0000 0.0114

Table 4.1.1 Feature values for sample images.

The feature vector must be normalized when comparing distance in feature space,
otherwise the larger feature values would dominate the comparison. The next section
includes a discussion of this normalization step.

4.1.2 Encoding algorithm using feature extraction

Feature extraction alone, without domain classification, can provide a significant speedup
in the encoding process. The steps to implement an encoding algorithm using feature
extraction are asfollows:

1. Compute and store feature values for all of the domain cells. Keep
track of the maximum and minimum values for each feature across al
of the domain cells. These values will be used for normalization.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

74 Speeding Up Fractal Encoding

Normalize the feature values for all of the domains. A feature value f is
normalized to avalue s between 0 and 1 according to the following:

N = (F - frnin)/ (Frva = frvin) (4.11)

where fi, is the minimum value for this feature over all domain cells,
frax IS the maximum value over al domain cells, and n; is the
normalized value.

2. Implement quadtree partitioning as before. However, when doing the
domain-range comparison, compute the feature vector for the range
cell, and normalize the feature values according to (4.1.1). Note that it
is possible that the normalized values for the range cell may be outside
the range (0,1), since the maximum and minimum were computed over
domain cells only. However, the values should not be far outside this
range if a sufficiently large domain pool was used. Compute the
distance between the range feature vector and each domain feature
vector, according to:

Ny
d=% |f[il - falil],
;' alil

where f[j] is the j" feature value for the range cell, f[j] is the j" feature
value for the domain cell, and N is the number of features (e.g., Ny =5
in this case).

3. Keep track of the best, i.e., smallest, distance value, dy,, computed
so far for thisrange cell. If d is less than d.,,, then compare d to f,, the
feature tolerance value. If d<fy, then do a pixel-by-pixel domain-
range comparison as in normal fractal encoding (i.e., rotate the domain,
shrink to the range size, compute optimal contrast and brightness). If
the pixel-by-pixel comparison is less than the error tolerance, then this
range cell is covered. If not, continue checking domains. Subdivide
range cell as necessary, as before.

Fig. 4.1.2 shows the flow diagram for fractal image encoding with feature extraction.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Feature Extraction 75

T
ompute
o Feature Vectors
; for all Domain
Cells
Y
Compute
Distance
between
l v Feature Vectors
| Fit Domain to N This Range
. Select Range Range (Rotate Searc
Subdivide 9 ! i
Range Cell [Cellfrom Shrink,Scale); for Best Cellis Covered
Partition List: Keep Track of Domain within Tolerance
Compute Feature Best Fit So Far 7
Vector
Get Domain
Feature Vector
from
Domain List Eeature
Tol.
Max ¢ N
Quadtree < > A 4

Depth

Range Cell Done;
Not Covered

»| within Tolerance;
Use Best Fitting
Domain

Fig. 4.1.2 Flow diagram showing the main steps in fractal image
encoding with feature extraction, as implemented in the
accompanying software. The shaded boxes show the steps involved
with feature extraction that are additions to the basic fractal
encoding algorithm shown in Fig. 3.3.2.

The checks that compare the feature distance against minimum distance computed so far,
and against feature tolerance, act as gatekeepers, alowing through only those domain
cells that pass both tests. These tests greatly cut down the number of domain cells for
which the time consuming pixel-by-pixel domain-range comparison is performed.

The value to which f is set impacts total encoding time and compression performance.

Fig. 4.1.3 shows a graph of encoding time (on a 200 MHz Pentium PC) and number of

range cells as a function of feature tolerance values. The image used here was the “Rose
image, with a quadtree depth of 6, an error tolerance of 0.05, 1186 domains (horizontal
and vertical overlap set to 0.5), and the “Search for Best Domain” option turned off. This
graph indicates that the minimum encoding time occurs for a valyerafar 0.05, where

the total encoding time is 24 seconds. Normal fractal encoding for this example, without
using feature extraction, is 2552 seconds, ovethonered times as long.

Somewhat better compression occurs, however, Whésn near 0.25, as indicated by the
lower number of range cells. For valuedgflarger than 0.05, more domain cells make it
through to the pixel-by-pixel comparison step. This increases encoding times, but helps
compression since more domains are available for comparison. The maximum possible
distance between our normalized length-5 feature vectors is %, Approaches this
value, the encoding times level off, sirfgeno longer has any effect. Note also that the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

76 Speeding Up Fractal Encoding

encoding time increases somewhat for very small values of the tolerance due to an
increased number of range cells. The large number of range cells results from an
insufficient number of domains surviving the tolerance check, leading to poor domain-
range matches. Finally, note that the maximum encoding time (159 seconds) in Fig. 4.1.3
is much less than the normal fractal encoding time (2552 seconds), indicating that the
minimum distance check is also responsible for cutting down on a large number of
domain-range comparisons.

160 [‘ ‘ . o 4000
140 —{F—Encoding Time T 3500
- 120 |- No. of Range Cells 1 3000
9 &
0 h
— 100 + -+ 2500 o
) =
E P
= 80 + -+ 2000 8
2 g
S 60 + % 1500 O
0 o
c tn
W40 5\[]/(+ 1000
20 + L + 500
0 0
0.01 0.03 0.05 0.10 0.25 0.50 1.00 3.00 6.00
Feature Tolerance Value

Fig. 4.1.3 Encoding time (in seconds) and number of range cells as
a function of the feature tolerance value. This example used 1186
domain cells, with a maximum quadtree depth of 6 and an error
tolerance of 0.05. Note that when the tolerance value approaches 3,
the encoding time levels off, since this value is close to the
maximum feature distance value (5). Also, the encoding time
increases somewhat for very small values of the tolerance dueto an
increased number of range cells. Normal fractal encoding without
feature extraction required 2552 secondsin this example.

4.1.3 Sample results using feature extraction

Figs. 414 - 4.1.7 show sample results comparing the feature extraction encoding
approach (referred to as “FE” henceforth for convenience) with the baseline fractal
compression method (“baseline”) for various numbers of domains. The parameters used
to produce the numbers of domains shown are those shown in Table 3.3.1. The image
used is the 258 256 “Rose” image. The maximum quadtree depth was set at 6, with
error tolerance 0.05, and the “Search for Best Domain” option set to “No”. Two feature
tolerance values were used for the feature extraction encoding: 0.25 and 0.05.

Fig. 4.1.4 compares the encoding times (200 MHz Pentium PC) for the two methods. The
difference in encoding times is so great that a logarithmic scale is needed, otherwise the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Feature Extraction 77

FE times would appear as a flat line at the bottom of the graph. As expected from the
results shown in Fig. 4.1.3, the feature tolerance value of 0.05 produces faster encoding
times than the feature tolerance value of 0.25, though at the expense of producing more
range cells (see Fig. 4.1.6), and hence somewhat poorer compression. Note that not only
does the FE method produce much lower encoding times than the baseline method, but
the rate of increase as the number of domains increases is also much lower. For example,
with a feature tolerance value of 0.25, the encoding times increase from 57 seconds for
320 domains to 404 seconds for 125,707 domains, a factor of less than 10. However, for
the same numbers of domains, encoding times for the baseline method increase from 959
seconds to over 130,000 seconds (over 36 hours), a factor of 135 (the encoding time for
the baseline method for the case of 125,707 domains was not verified directly, but rather
estimated from the average encoding time per range cell).

There is a certain amount of computational overhead associated with the FE method,
namely the computation of feature vectors for each of the domains prior to the actual
encoding process. The encoding times shown in Fig. 4.1.4 include the time needed for
this computation. Fig. 4.1.5 shows the relative portion of the total encoding time that is
devoted to this computation. Only for very large numbers of domains is this computation
asignificant fraction of the total encoding time.

The baseline method does generally produce somewhat fewer range cells, and hence
dlightly better compression, than the FE approach, as Fig. 4.1.6 shows. Fig. 4.1.7 shows
that the difference in error in the decoded imagesis not significant. Thisisto be expected,
since both methods are required to meet the same error tolerance when performing
domain-range checks. One should not read too much into the variation in error in Fig.
4.1.7. The significant result is that both methods are meeting the 5% error requirement.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

78 Speeding Up Fractal Encoding

1000000
(estimated)
100000 5
:tn: Lt —O—Feature
@ .-’ Extraction
> 10000 (FT:0.25)
£ /’-‘7 ol B Feature
'; 1000 Extraction
< (FT:0.05)
° 100 — —Z—Baseline
g " T .
& -
10
1
320 1186 5155 20187 125707

Number of Domains

Fig. 4.1.4 Comparison of encoding times (200 MHz Pentium PC)
for the feature-extraction (FE) encoding algorithm with encoding
times for the baseline fractal image compression algorithm of the
previous chapter. The image used is the 256 x 256 “Rose” image,
with maximum quadtree depth set at 6, and error tolerance 0.05,
and the “Search for Best Domain” option set to “No”. Two feature
tolerance (FT) values were used for the FE encoding: 0.25 and 0.05.
The encoding time for the baseline method with 125,707 domains
was estimated, from an average encoding time per range cell, to be
approximately 130,000 seconds.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Feature Extraction

79

300
250]
7 200 - | BFEEncoding
9 Time
& 150 |
[} B FE Feature
£
£ 100 || Comp
= i
0 % %
320 1186 5155 20187 125707
Number of Domains
Fig. 415 Total encoding time, showing the computational
overhead of computing feature vectors for all of the domains (“FE
Feature Comp.”). Encoding parameters are the same as in Fig.
4.1.4. The values shown here are for the case when the feature
tolerance is 0.05. “FE Encoding Time” is encoding time without
including the domain feature computation time. The total encoding
time reported in Fig. 4.1.4 is the sum of these two times,
represented by the total column height here.
2200 T
2000 ~—
s - —{}+—Feature
2 1800 0. - Extraction
8 - (FT:0.25)
S 1600 - e = F
o - - . eature
é — E .H{ - {f Extraction
w1400 — (FT:0.05)
o —/——Baseline
Z 1200
1000 F——
400 1f T\
320 1186 5155 20187 125707
Number of Domains

Fig. 4.1.6 Comparison of number of range cells versus number of
domains, for feature extraction and baseline methods. Encoding
parameters are the same as for Fig. 4.1.4.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

80 Speeding Up Fractal Encoding

-/

4.0

g 3.8 ¥
S
L 3.6 —m—FEETor
I \.—_—/
X
a :
o 3.4 Baseline
2 Error
]
>
< 3.2

3.0

320 1186 5155 20187 125707

Number of Domains

Fig. 4.1.7 Average pixel error for feature extraction and basdline
methods. Feature tolerance value is 0.25. Other encoding
parametersarethe sameasfor Fig. 4.1.4.

As Figs. 4.1.4 - 4.1.7 show, feature extraction provides a significant speedup over the
baseline fractal encoding algorithm. The baseline method does tend to produce somewhat

better compression (i.e., fewer range cells). The FE method compensates for this by
producing smaller pixel errors. Fig. 4.1.8 shows there is no perceptua difference in
decoded image quality between the two methods. This figure provides a side-by-side
comparison of the decoded “Rose” image, encoded with the baseline fractal encoding
algorithm (a) and with the FE algorithm (b). The encoding parameters were: quadtree
level 7; error threshold 0.025; feature tolerance 0.25; number of domains 1186. The
“Search for Best Domain” option was turned off in both cases. Baseline encoding took
9,632 seconds (over two and a half hours) on a 200 MHz Pentium PC, while FE encoding
took just 180 seconds, an improvement of over 50 to 1. The baseline method did produce
better compression, 5.2:1 (3154 range cells) compared to 2.7:1 (5953 range cells). The
FE encoding produced a somewhat better quality decoded image (1.72% error compared
to 2.04% after 6 iterations), although the difference can be attributed to the higher number
of range cells.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Domain Classification 81

(b)

Fig. 4.1.8 “Rose” image encoded using the baseline fractal encoding
method (a) and the FE method (b). The baseline method here
provides compression of 5.2:1 with pixel error of 2.04% (30.12 dB
PSNR) after 6 decoding iterations, while the FE method provides
2.7:1 compression with pixel error of 1.72% (31.27 dB PSNR).

4.2 DOMAIN CLASSIFICATION

Long encoding times result from the need to perform a large number of domain-range
matches. The total encoding time is the product of the number of matches and the time
required to perform each match. The domain-range match is a computationally intensive
pixel-by-pixel process of rotating, shrinking and fitting a domain cell to arange cell. The
feature extraction encoding algorithm described above reduces encoding time by
replacing this pixel-by-pixel process with the less demanding feature-distance
computation. Only those domains that pass feature-distance tolerance checks make it
through to the pixel-by-pixel comparison. Thus, many domain-range match computations
are eliminated by this preliminary feature-distance check.

A further step that one can take to reduce the number of domain-range match
computations is to perform classification on the domains and ranges. Domain-range
matches are then performed only for those domains that belong to a class similar to the
range. Actualy, the feature-extraction approach of the previous section is a type of
classification scheme. The feature computation serves to identify those domains
belonging to the class of subimages whose feature vectors are within the feature tolerance
value of the feature vector belonging to the range cell. More sophisticated classification
schemes use a pre-defined set of classes. A classifier assigns each domain cell to one of
these classes. During encoding, the classifier assigns the range cell to a class, and domain-
range comparisons are then performed only against the domains in the same class (and
possibly other similar classes) as the range cell. The savings in encoding time comes from
the fact that fewer domain-range comparisons are performed.

The classification scheme described here is based on a self-organizing neural network that
is trained on feature vector data extracted from domain cells obtained from a typical
image. The features are the same five features described in the previous section. The
advantage of using a self-organizing network is that we don't need to decide what the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

82 Speeding Up Fractal Encoding

image classes should be for classification. The network organizes itself into clusters that
represent image classes based on the image data presented to it. Moreover, the image used

for training need not be (and usually isn’t) the same image that is to be encoded. Thus,
network training time is not part of the overall encoding time. For small nhumbers of
domains, the classification approach provides a slight improvement in encoding time over
the FE approach. However, for large numbers of domains (20,000 or more) the time
savings is significant, and these large numbers of domains can provide better image
quality at a given compression ratio. The approach discussed here was first presented in
Welstead (1997). Other references (Bogdan and Meadows 1992; Hamzaoui 1995) have
also discussed using a self-organizing neural network for domain classification.

4.2.1 Self-organizing neural networks

A fascinating feature of the brain is that its physical organization reflects the organization

of the external stimuli that are presented to it. For example, there is a well defined
relationship between the relative physical location of touch receptors in the skin surface
and the relative location in the brain of the neurons that process the stimuli from those
receptors. Nearby touch receptors correspond to nearby neurons. Areas of the skin that
are densely populated with touch receptors, such as the hands and face, are assigned a
proportionately larger number of neurons. This correspondence produces the so-called
somatotopic map, which projects the skin surface onto the part of the brain, called the
somatosensory cortex, corresponding to the sense of touch (Ritter, Martinez, and Schulten
1992).

Teuvo Kohonen, in the early 1980’s, developed an algorithm to mimic the brain’s ability
to organize itself in response to external stimuli. He called his algoridatfr@rganizing
feature map (Kohonen 1984). Kohonen'’s algorithm represents a type of neural network
that is capable of learning without supervision. This type of neural network is called a
self-organizing neural network.

Self-organizing neural networks are characterized by a multi-dimensional arlatyicer

of nodes. Fig. 4.2.1 shows an example of such a network with a 2-dimensional lattice.
Associated with each lattice node is a weight vector. The weight vector is the same
dimension as the input vectors that will be used for training. The dimension of the lattice
need not be the same as that of the weight vector. Complex relationships in problems
requiring higher dimensional weight vectors usually require higher dimensional lattices to
sort themselves out. However, biological inspiration and practical processing
considerations typically limit the lattice dimension to 2 or 3.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Domain Classification 83

neighboring
weight vectors

Lattice

[T T T T T T T J—

C

Input feature vector

Fig. 4.2.1 A sdlf-organizing neural network. The weight vectorsare
attached to a lattice of nodes, such as the 2-dimensional lattice
shown here. When an input vector is presented to the network, the
weight vector that most closely resemblesit is adapted to look more
like the input vector. Neighboring weight vectors on the lattice are
rewarded for their proximity by being adapted also, though not as
much asthe winning weight vector.

Network training is through unsupervised learning. The network of weight vectors is
initialized to random values. An input feature vector is then presented to the network and
we find the weight vector closest to the input vector. That is, we find i’,j’ such that

IV -wip < v - will for all i,j

where v is the input feature vector and w;; is the weight vector at node i,j. Adapt the
weights in the |attice neighborhood of the winning weight w;.j to look more like the input
vector. This adaptation is summarized as:

2
wlnf‘"’ :wﬁ'jd +eexp§x”v—wﬁ'jd“ ﬁv—wﬁ'jd)

where i,j range over a neighborhood of i’,j’. The size of this neighborhood is reduced
during the course of the training iterations. The parangdtethe iteration stepsize, and

is inversely proportional to the neighborhood size. Details of the algorithm are
summarized in the sidebar “Training Algorithm for a Self-Organizing Neural Network”.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

84 Speeding Up Fractal Encoding

Training Algorithm for a Self-Organizing Neural Network
1. Initialize the weight vectors.
2. Present input vectors to the network.

3. For each input vector v, determine the weight vector that is closest to
the input vector:

Findi’,j’ such that
IV - wi gl < IV - wil| for al i,j

where v isthe input vector, and i and j range over al the
nodes in the lattice.

4. Adapt the weight vector and its lattice neighbors. The starting
neighborhood size is a user-selectable parameter, and the neighborhood
size is gradualy reduced over the course of the iterations. The
adaptation stepsize is also reduced over the course of the iterations.
Also, weights within the neighborhood that are farther away from the
winner are not adapted as strongly as weights close to the winner. This
mechanism is accomplished through the use of a gaussian function
applied to the distance of the weight vector from the winner. The
adaptation can be summarized as:
)

where v isthe input vector, and i and j range over just the neighborhood
of i’, |’ as selected in step 3. Here, ¢ is the stepsize and o is a fixed
coefficient that is set equal to the inverse of the neighborhood size.

new old old old

Wi,j :Wi,j +£[@V_Wi’j)eXp(O'HV—WI’]

The lattice serves to define a neighborhood topology for the weight vectors. That is,
weight vectors whose lattice nodes are close to one another will share properties that are
similar relative to the distribution of features in the input data. This neighborhood
topology will be exploited in the domain search strategy described below.

4.2.2 Fractal image encoding using self-organizing domain classification

We use a classification scheme based on Kohonen self-organizing neura networks to
classify the domains. The dimension of the feature vectors used here is 5. In the
accompanying software, used to produce the examples shown here, the lattice dimension
is fixed at 2, and the size (that is, number of rows and columns) is user-selectable. The
examples discussed below use an 8 x 8 lattice. Each lattice node represents a class of
domain cells, so it is desirable to keep the overall number of nodes fairly small. Table

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Domain Classification 85

4.2.1 shows the default values for the self-organizing neural network in the accompanying
software. The starting neighborhood size should be approximately half the size of the
rows and columns. A starting neighborhood size that is too small can lead to poor
neighborhood topology in the trained network (that is, dissmilar weight vectors may
appear close to one another in the lattice structure).

L attice Rows: 8
Lattice Columns; 8
Starting Stepsize (€): 0.25
Starting Neighborhood: 4
Iteration Blocksize: 100
Iteration Blocks: 10
Maximum Search Radius: 1

Table 4.2.1 Default parameter valuesfor self-organizing neural network.

Once the network has been trained, the domain cells for the given image are classified by
assigning them to the weight vector to which they are closest in feature space. Thus, each

lattice node now has a weight vector and a list of domain cells attached to it. This list of
domains belongs to the “class” associated with that weight vector. The class is, by
definition, the set of all images that are closer in feature space to that weight vector than
to any other weight vector on the lattice.

When a range cell feature vector is presented to the network, it is similarly assigned to a
network weight vector. The range cell is then compared to those domain cells assigned to
this weight vector, as well as to those domains assigned to the neighboring weight vectors
on the network lattice, as shown in Fig. 4.2.2. The maximum search radius parameter,
shown in Table 4.2.1, determines the size of this neighborhood. As before, we keep track
of the best (minimum) feature distance obtained so far. If the new domain in the search
list provides a smaller feature distance, we then check this distance value against the
feature tolerance valudy,. If the distance passes this test, a complete pixel-by-pixel
domain-range comparison is performed. The only difference between this algorithm and
the FE algorithm of the previous section is that the number of domains upon which the
feature-distance computation is performed is smaller. There is some overhead involved
with the determination of the weight vector closest to the range cell feature vector (a
series of feature-distance computations). The significance of this overhead decreases as
the total number of domains increases. Fig. 4.2.3 shows the revised flow diagram
incorporating self-organizing domain classification.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

86 Speeding Up Fractal Encoding

N
O o,/o\ O
’ Radius 1 Search Nbhd.
7 7’ N
(/)/ O, O‘/_g_ Selected Node

N

N

e

00 @ 00
00" /b/o

N Ve

Y ¥— Radius 2 Search Nbhd.
O 00,0 O

\

7
7

7
7

e
4

’
N

Fig. 4.2.2 Sear ch neighbor hoods ar ound the selected node in the weight network.

. ?Omi’/”“i Classify
eature Vectors P
for all Domain | Domain

Cells Cells
K A
v Y
Subdivide Sﬂ‘;ﬁ‘ffoargge S.Zﬂﬂucf
Lyl
Range Cell Partition List; between
Compute Feature| | Feature Vectors
h Vector Fit Domain to -
v Range (Rotate, Search This Range
- Shrink,Scale); for Best Cell is Covered
Classify Keep Track of Domain within Tolerance
Range Cell Best Fit So Far 3
k2
Get Domain l
Feature Vector
from
Domain List End of
fot This Class i (S
N Feature D(I)_Ts?m
Tol. 5 Y
N N
Max End of i
Quadtree Domain < >
Depth List <
? ?
y Range Cell Done;
Not Covered

within Tolerance;
Use Best Fitting
Domain

Fig. 4.2.3 Flow diagram for fractal image encoding with self-
organizing domain classification. The diagonally shaded boxes

indicate the additional steps required for using the self-organizing
classifier to classify the range and domains.

4.2.3 Sample results using self-organizing domain classifier

Fig. 4.2.4 compares encoding times for the self-organizing domain classification method

(referred to as the “SO method” for convenience) with the FE method of the previous
section. The image and encoding parameters used here are the same as those in Fig. 4.1.4.
The self-organizing network used here is ar 8 network trained on 1186 domains

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Domain Classification 87

extracted from the “Cat” image. This particular image was chosen for training to illustrate
the fact that there does not need to be much similarity between the training image and the
image to be encoded. The time required to train the network is not included in the
encoding times shown below, since this training can be done once ahead of time and does
not need to be repeated for different images. The network search neighborhood radius
size was set to 1.

Fig. 4.2.4 shows that the advantage provided by the SO method over the FE method
increases as the number of domains increases. This is in spite of the fact that the SO
method has additional overhead. Not only must the SO method compute feature vectors
for the domains, as the FE method does, but it must also assign each domain to one of the
self-organizing network classes. For this example, there are %8)(8uch classes. Fig.

4.2.5 shows that this classification time becomes significant for large numbers of
domains. However, comparison with Fig. 4.1.5 shows that the actual encoding times for
the SO method are much lower than comparable times for the FE method, leading to the
lower overall encoding times shown in Fig. 4.2.4.

The SO method does produce somewhat larger numbers of range cells, and hence
somewhat worse compression, for a given error tolerance than either the FE or baseline
methods, as shown in Fig. 4.2.6. This is offset by generally better error results, as shown

in Fig. 4.2.7.
450
J] —{F+—Feature
400 / Extraction
w350 (FT:0.25)
(8]
O / - = -
£ 300 mg Featurt?
) / . Extraction
E 250 (FT:0.05)
= / "
2 200 7 L 43 O—Self-
=] /[- Organizing
S 150 -] (FT:0.25)
i /[v]/ ;
W 100 > Self-
D-//‘?/ g —— Organizing
%0 o —— R - .cc:c = oo - : (FT:0.05)
o+ | | |
320 1186 5155 20187 125707
Number of Domains

Fig. 4.2.4 Comparison of encoding times for the algorithm using
self-organizing domain classification and the algorithm of the
previous section using feature extraction only. The encoding
parameters are the same as those used in Fig. 4.1.4. Results for
featuretolerance (FT) values of 0.05 and 0.25 are shown.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

88 Speeding Up Fractal Encoding

180
160
140

« 120 bSO Encoding

§ 100 Time

~ N SO Domain

o 80 IR

= Classification

F 60 @ SO Feature
40 Comp
20 -

0 | | I | | : :
320 1186 5155 20187 125707
Number of Domains
Fig. 425 Total encoding time for the self-organizing domain
classification method includes computational overhead for
computing feature vectors for the domains (“SO Feature Comp.”)
and also classifying the domains (“SO Domain Classification”).
Encoding parameters are the same as in Fig. 4.2.4. The values
shown here are for the case when the feature tolerance is 0.05.
2400 —{—Feature
I Extraction
2200 J] (FT:0.25)
~. = =0 = Feature

o 2000 . Extraction

o oS (FT:0.05)

O 1800 2 -

] - . Self-

=2 ~ Y

& 1600 S ! Organizing

g " ——— 1 —— - Ho (Fr:0.29

© 1400 — Self-

% Organizing
1200 (FT:0.05)
1000 o~ ——/——Baseline

800 T | ——
320 1186 5155 20187 125707
Number of Domains

Fig. 4.2.6 Comparison of number of range cells versus number of
domains, for SO, FE and baseline methods. Encoding parameters
are the same as for Fig. 4.2.4.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Domain Classification 89

3.8T T\ /
3.6 —=—FEError

4.0 ‘

g
S
o 3.
>
a SO Error
o 3.4 ‘
(o))
o Baseline
G>) Error
< 32

3.0

320 1186 5155 20187 125707

Number of Domains

Fig. 4.2.7 Average pixel error for SO, FE and baseline methods.
Feature tolerance value is 0.25. Other encoding parameters are the
same asfor Fig. 4.2.4.

Fig. 4.2.8 shows an example of an encoding of the “Leaves” image using the SO method.
The self-organizing network used here is the same &ietwork used in the preceding
examples. The encoding parameters were: quadtree levels: 7; error tolerance: 0.05;
feature tolerance: 0.25; number of domains: 5155 (3 levels, 0.5 overlap). The total
encoding time was 118 seconds on a 200 MHz Pentium PC, about half of the 235 seconds
required for FE encoding using the same parameters. The decoded error for this
challenging image was 3.45% per pixel (25.61 dB PSNR) for FE and 3.19% per pixel
(26.23 dB PSNR) for SO (using 6 decoding iterations in each case). The SO encoding

produced 6592 range cells, which represents slightly worse compression than the 6241
range cells produced by FE encoding.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

90 Speeding Up Fractal Encoding

(b)

Fig. 4.2.8 (a) Original “Leaves” image. (b) “Leaves” image encoded

using self-organizing domain classification. Encoding parameters:

quadtree levels: 7; error tolerance: 0.05; feature tolerance: 0.25;

number of domains: 5155 (3 levels, 0.5 overlap). The total encoding
time was 118 seconds on a 200 MHz Pentium PC, compared with
235 seconds required for feature extraction encoding without

domain classification. The error is 3.18% per pixel (26.23 dB

PSNR).

The time advantage of domain classification encoding improves as the number of
domains increases. The number of feature distance computations for the SO method is
typically less than one-tenth the number for FE encoding. This is where most of the time
advantage comes from. The number of domain-range fittings using pixel operations is
approximately the same for each case and, in fact, remains roughly constant over a wide
range of domains, increasing dowly as the number of domains increases. Compared with
the baseline method, the advantage of using the SO and FE methods is that they allow one
to increase the number of domains without paying a large penalty in encoding time. This
leads to better compression performance and better quality in the decoded image.

4.3 OTHER APPROACHES FOR SPEEDING UP FRACTAL ENCODING

A number of other authors have proposed approaches for speeding up fractal encoding.

All of these approaches address one or both of the two contributors to long encoding

times, namely the complexity of the domain-range comparison and the number of domain-

range comparisons. Bogdan and Meadows (1992) applied a Kohonen self-organizing
network to the fractal encoding problem. Their approach differs from the one described

here in that they do not use feature extraction, but rather apply the network directly to the

domain pixel blocks. Thus, the complexity of the domain-range comparison is not
alleviated. Their approach also requires training the network on the image to be encoded,

so that network training timeis part of the overall encoding time. McGregor, et a. (1994),

address both aspects of the encoding problem, using a K-D tree search on the domains,
combined with the extraction of a small nhumber of image “characteristics” (what we call
features here), derived from Fourier coefficients. Saupe (1994) uses a nearest neighbor
search of the domains based on “multi-dimensional keys” that are versions of the domains
and ranges down-filtered to a small size (e.g.,83 for comparison purposes. Bani-Eqgbal

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Other Approaches for Speeding Up Fractal Encoding 91

(1995) proposes a tree search of domains. Hamzauoi (1995) modifies Bogdan and
Meadows self-organizing network approach by introducing down-filtered versions of the
domains and ranges as feature vectors. This approach, however, still requires training the
network on the image to be encoded.

Finaly, Ruhl and Hartenstein (1997) have shown that, in the context of computational
complexity, fractal encoding is NP-hard. They show that, even with a finite number of
admissible contrast and brightness factors (s and o), the number of feasible codes grows
exponentially with the number of ranges or the image size. Moreover, they show that any
code produced by standard fractal encoding methods (i.e., domain-range matching) is a
suboptimal solution.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

5

SIMPLE WAVELETS

We now turn our attention to an alternative approach to image compression that makes
use of wavelets. Wavelet image compression belongs to the transform class of methods
and as such differs from fractal methods. Nevertheless, there are fundamental connections
between the two approaches. Fractal methods use self-similarity across different scales to
reduce stored information. Wavelet methods exploit redundancies in scale to reduce
information stored in the wavelet transform domain. Hybrid methods apply fractal
techniques to information in the wavelet transform domain to provide even greater
compression performance. This chapter introduces wavelet analysis through the use of the
simple Haar wavelets. The following chapters look at wavelet image compression and
more advanced wavelet topics.

5.1 INTRODUCTION

The idea behind wavelet image compression, like that of other transform compression
techniques, is fairly simple. One applies a wavelet transform to an image and then
removes some of the coefficient data from the transformed image. Encoding may be
applied to the remaining coefficients. The compressed image is reconstructed by decoding
the coefficients, if necessary, and applying the inverse transform to the result. The hopeis
that not too much image information is lost in the process of removing transform
coefficient data. Fig. 5.1.1 illustrates this process.

Starting Wavelet Decimate / quantize Inverse Decoded
Image Transform wavelet transform Transform Compressed
coefficents Image

Fig. 5.1.1 Wavelet image compression. The compression process
involves application of a wavelet transform to the image, followed by
some type of decimation and/or quantization, and possible encoding, of
the resulting wavelet coefficients. The compressed image is
reconstructed by decoding coefficients, if necessary, and applying the
inver se wavelet transform.

The process of image compression through transformation and information removal
provides a useful framework for understanding wavelet analysis. The literature contains a
number of different approaches to the study of wavelets, some of which may seem
daunting to the aspiring wavelet analyst. Mathematical references develop multiresolution
analysis through the definition of continuous scaling and wavelet functions. Engineering

93

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

94 Simple Wavelets

papers introduce the topic through the use of highpass and lowpass filters and quadrature
mirror filter pairs. As Fig. 5.1.2 shows, it is possible to relate these seemingly disparate
approaches and see that they all lead to the idea of the wavelet transform and its inverse.
The present chapter will start with the simple ideas of averaging and detail and show how
these can be related to image compression. These simpleideas |lead to scaling and wavel et
functions, multiresolution analysis and the wavelet transform. The next chapter derives
more advanced wavelets by generalizing the ideas of averaging and detail to introduce
lowpass and highpass filters.

Scaling
Functions
Resolution & Basis Functions
Wavelets
Discrete
Sequences Wavelet Multiresolution
Averaging & Transform AT
Detail

Matrix Operators g Matrix Operators
Operators
Lowpass &
Highpass

Fig. 5.1.2 There are a number of different entry points into wavelet
analysis, all of which relate to one another and all of which lead to the
wavelet transform.

5.2 AVERAGING AND DETAIL

As a simple-minded approach to image compression, one could replace an image by the
average of its pixel values. This approach gives great compression (a single number
represents the entire image!), but doesn’'t do much for image quality. To recover the
original image from this average, you would need to know what detail was removed to
arrive at the average. Consider an “image” with two pixelgxf}. These two values can

be replaced by the averageand differencel of the values:

a= (Xl + X2)/2
d= (Xl - X2)/2.

(The factor of 1/2 is introduced in the definitionafor notational convenience.) Note
that we can recoveix{,x,} from { a,d}:

X1:a+d
X2:a.-d.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Averaging and Detail 95

The “wavelet transform” of the original sequence,;} is {a,d}. No information is

gained or lost in this representation. One might ask, then, what the advantage of replacing
{x1,%2} with { a,d} might be. There is no advantage in particular, unless the two values
andx, happen to be close to one another. In that case the diffeddacamall, and the
“image” {x1,X;} can be replaced by its approximatioa}{ Note that this new “image” has

fewer pixels than the original. We have achieved image compression! The reconstructed
image is f,a}, with error image {; - al,k, - al} = {|d|,d[}. Sinced is small, the error is

small.

Fundamental to wavelet analysis is the idea of extracting information at different levels of
detail. Detail can also be thought of as scale or resolution information. The simple
example above is of limited usefulness for real images, but it does illustrate the idea
behind the application of wavelet analysis to image compression: Identify the detail
information and remove the detail information that is small and does not contribute a
great deal to the final image.

Let's look at a slightly bigger imagex{x,,xs,Xs}. As before, we consider averages:

a0 = (X1 +X2)/2
a1 = (X3 + X4)/2 (521)

and differences:

Ao = (X1 - X)/2
dl,l = (X3 -)(4)/2 (522)

(The double subscripts here indicate that we are embarking on a multi-step process, of
which this is the first step.) As before, we have a new representatigg;{,d; o,d; 1} for

the original image that contains just as many pixels as the original. If we wanted to
compress this image, we’d look at the size of the vadygsndd;; and decide if they

could safely be eliminated. This would leave us with the compressed iragge, {}.
Suppose, thagh, that we are not satisfied with this level of compression and want to
further compress the image. We can apply the above procedure again to the remaining
image {a10,81,1} to obtain its average and difference:

0,0 = (A0 + a11)/2
oo = (@10 - a1,1)/2. (5.2.3)

If the differenced,, is sufficiently small, we can replace the entire original image
{X1,%2,%3, X4} With the single pixel imagedyo}. Let's look at whatayg really is:

3o = (a4 + 3y)/2
= (X + %) /2 + (Xg + X4)/2)12 (5.2.4)
= (X * Xy, + X3+ X)/ 4

Thusay is just the overall average of all the pixels in the original image. If the original
image is uniformly gray (i.e., al equal to the same value), we can compress it by
replacing it with a single value equaling that particular gray level. The aglualso

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

96 Simple Wavelets

represents the coarsest level of information in this image, that is, the information at the
lowest resolution or coarsest scale. The values a; o and a; ; together represent information
at the next highest resolution level, or next finer scale. Note that we can recover {a; 9,83 1}
from {ag0,do0} Using the same procedure as above. The original pixel values { X;,Xp,X3,Xq}
represent the highest resolution and finest scale available for thisimage. These values can
be recovered from ay o, dy o, a1 and d; ;. But since we can get a; 0 and a; ; from ago and
doo, We can recover the original pixel values from the overall average azp and the
differences dyp, d; o, and d; ;. Thus the sequence

{20,0,d00,01,0,d1 1} (5.2.5)

is another representation of the original image consisting of an overall average and
difference values representing two different levels of detail. The sequence (5.2.5) is a
wavelet transform of the origina sequence {X;,X;,X3,X4} . Note that we now have more
choices for compression. If dyo and d;; are too large to ignore, it may be that we can
eliminate the next level of detail, dyo. For larger images, we continue this process of
averaging and extracting detail at coarser resolution levels.

5.3 SCALING FUNCTIONS AND WAVELET FUNCTIONS

The averaging and detail extraction of the previous section represent one node of the
diagram in Fig. 5.1.2. In this section, we move clockwise on that diagram and show how
resolution leads to the notion of scaling functions and wavelet functions.

Suppose now we consider our image { X;,%»,X3,Xs} as a function on the unit interval by
writing

f(t) = X1 Xjo.ua)(t) + Xo Xwa2)(t) + X Xju2,34(t) + Xa Xza,n(t) (53.1)
where each Xja1, is the characteristic function of the interval [a,b), that is,
Xan(®) ={1if a<t<b;0otherwise}.

Fig. 5.3.1 shows how a graph of this piecewise-constant function might look for some
arbitrarily chosen values of x;, X, X3, and X4. Note that if we were using f(t) to
approximate a continuous function, then we would get a better approximation by using
more characteristic functions over smaller subintervals. That is, we would get better
approximation by using better resolution.

A X2

X1 L Xy

.

A

va vy2 34 1

\ 4
Fig. 5.3.1 The function f(t) defined by equation (5.3.1).

Note that Xjy4,12)(t) isjust ashifted version of Xjg y4(t), thet is

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Scaling Functions and Wavelet Functions 97

Xwaaz)(t) = Xowat - 1/4).

Similarly, X124 (t) and Xa1(t) are shifted versions of Xoys(t). Also, Xjou4)(t) is a
scaled version of the characteristic function of the unit interval, X(g1)(t), that is,

Xio.ua(t) = Xio1(2%).

Thus, al of the characteristic functions in (5.3.1) can be written as scaled and shifted
versions of asingle function, X[1(t). We introduce the notation

At) = X (1), (5.3.2)
and define
@0 = g2t-j) j=0,..,2-1. (5.3.3)
Then:
ot) = A1)

@o(t) = ¢2t) = {1 for 0< t <1/2; O otherwise}
@ 1(t) = ¢g2t-1) = {1 for 1/2< t < 1; O otherwise}.
Figs. 5.3.2 (a) and (b) show some of these functions. Notegthahd @ ; are scaled and

shifted versions ofz We callgthescaling function. The functiorf defined by (5.3.1) can
be written in terms of these new functions as:

() =x1 @o(t) + X2 @a(t) + X3 @ao(t) + X4 @3(1). (5.3.4)

A

A
\ 4

\ 4

Fig. 5.3.2 (a) The scaling function @

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

98 Simple Wavelets

A A
1 1 —_—
| | |
: ﬂ,o : : ¢l,1
1 I 1
< | . < I I .
0 0.5 1 0 0.5 1
\ 4 \ 4

Fig. 5.3.2 (b) ¢oand ¢ ; are scaled and shifted versionsof ¢

The interval over which the function ¢; is nonzero (and hence equal to 1) is called the
support of the function. Note that the width of the support of ¢ decreases as k increases.
In fact, the support of ¢ ishalf the width of the support of ¢;. So, scale or resolution is
determined by the value of kin ¢;. If we want higher resolution, we use a higher value of
k.

Suppose now that we want to go through a procedure similar to what we did in the
preceding section. That is, we wish to represent the function f(t) given by (5.3.4) in terms
of averaging and differencing operations. Averaging is the same as going to lower
resolution, so we can accomplish that by using @; with a lower value of k. This is
equivalent to representing f(t) in terms of @ and @ 1. The coefficient of @, in this
representation is a; o, given by (5.2.1), that is, this coefficient is the average of the first
two coefficients of f. Similarly, the coefficient of @, is a;;, and so we obtain the
following function:

gu(t) = a0 @ot) + a1 @a(b). (5.3.5)

Itisclear, however, that g; is not identical to the function f. For example,
f(U8) =x,
while
01(1/8) = a1 0= (X1 + X)/2

which is not the same in general (unless x; = X;). We have used only averaging in
obtaining g; from f, so we should expect to lose information unless our original function
has very little information to begin with. What's missing from our procedure of the
previous section is the concept of identifying detail through some type of differencing

operation. We need a function capable of expressing difference.

The function we seek is calledravelet function. For the example here, the basic wavelet
function is given by:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Scaling Functions and Wavelet Functions 99

pO=x , O-X, (1)
[0.) 5D

1for0<t <%,
1 (5.3.6)
=<-1for ES 1<,

0 otherwise.

Fig. 5.3.3 shows a graph of the wavelet function ¢(t).

A
1 _
'/
0 105 ! 1
: \
-1 R
\ 4

Fig. 5.3.3 The basic wavelet function ¢At)

As we did for the scaling function ¢{t), we now introduce scaled and shifted versions of
{At). Define gj(t) by:

i) = Y21 -j),j =0,...,%-1.

Then, for example,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

100 Simple Wavelets
YooM=),
lforO<t< 1,
4

- =) fortet<t
wlo(t)—(//(Zt)— 1for4st<2,

0 otherwise,

1forl£t<§,
2 4

_ _) 3
wll(t) =y2t-1)= 1forzs t<y,

0 otherwise,
Fig. 5.3.4 shows graphs of ¢4 and ¢ ;.

A A

1 1 1 [—
E Yo i i i

o| ' los 1 0 05 1 1
1 L 1 L

\ \ 4

Fig. 5.3.4 The functions ¢ and ¢4, represent scaled and shifted
versions of the basic wavelet .

Let's now reexamine the problem of expressing the fundtionterms of averages and
differences, or in our new terminology, in terms of scaling functions and wavelets. Since
our finest resolution occurs on subintervals of length 1/4, we can exgittinen each of

the subintervals [0,1/4),...[3/4,1) to see where it fails at equaling the original fufiction
On [0,1/4) the difference is:

f(t) - gu(t) = X1 - a0 = dyo.
On [1/4,1/2) the difference is:
f(t) - gu(t) = X2 - a0 = -dao.

Thus, fort in the interval [0,1/2) we can write:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Multiresolution Analysis 101

f(t) = az0 @o(t) + duo Yho(V).

Similar analysis on [1/2,3/4) and [3/4,1) shows that

f() = a1 @a(t) + dus ¢ra(t)

for tintheinterval [1/2,1). Putting al of this together, we get a new representation for f
on the entireinterval [0,1):

f(t) =a10 @o(t) +av1 @ (1) + dio ¢ho(t) + dis ¢ra(). (5.3.7)

We now have arepresentation of f as a sum of functions defined as averages on intervals
of length 1/2, plus whatever detail functions we need to make up the difference with the
original function.

Following our steps in the previous section, we now introduce the average over the entire

interval [0,1), replacing the first two termsin (5.3.7) with ago @ o(t), and leaving the
difference terms unchanged:

Jo(t) = @00 @olt) + dio Yhot) + dia ¢ra(t).
On [0,1/4) the difference between f(t) and gq(t) is:
f(t) - Qo(t) = X1 - @00 - di,0 = Ao,
while on [1/4,1/2) we have
f(t) - go(t) = X2 - @gp + di0=dgp

also. Similarly, on [1/2,1), f(t) - go(t) = -do,0, SO that we can write f(t) on all of [0,1) as:

f(t) = @00 @o(t) + doo Yoolt) + dio Yhro(t) + dis ¢ra(t). (5.3.8)
Equation (5.3.8) is the functional analog of the sequence shown in (5.2.5).
5.4 MULTIRESOLUTION ANALYSIS

The process of decomposing a discrete sequence of values (such as a digital image) into
blurred, or averaged, values, together with detail values at different scales, is called
multiresolution analysis. In this section, we will illustrate multiresolution analysis with a
simple example which forms the basis of the Haar wavelet. This section contains some
mathematical detail regarding the function spaces where @; and ¢ live. Strictly
speaking, this material is not necessary to apply wavelets to image compression.
However, it is helpful in understanding the theory of wavelets in general, and as such it
will help in understanding the topics in the following chapters where we look at advanced
wavelets.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

102 Simple Wavelets

Let V ° denote the space of all functions that are constant on the interval [0,1). Then V% is
avector space of functions. That is, if we add two constant functions together, the result is
certainly a constant function, and soisin V °. Also, if we multiply a constant function by a
number (scalar), the result is of course still constant, and so is also in V° The basic
scaling function @is a member of V°. In fact, any member of V° can be obtained by
multiplying @by a suitable constant. Thus, { ¢} forms a (rather trivial) basis for VV °.

Consider now a slightly more complicated space of functions. Let V! consist of all
functions that are piecewise constant with constant pieces on [0,1/2) and [1/2,1). V' is
also a vector space of functions. An example of an element of V! is the function gy(t)
defined by equation (5.3.5). The scaling functions ¢@ o and @ ; are also elementsof V *. As
suggested by (5.3.5), other elements of V! can be expressed as linear combinations of ¢ o
and @ ;. One can show that { @ o,@ 1} forms a basis for V', Also, note that a function

constant on all of [0,1) is trivially constant on each of the pieces [0,1/2) and [1/2,1), sO
that any element of V % isalso an element of V *, that is

veovt
We continue in this way, defining V ? as the space of functions piecewise constant on the
subintervals [0,1/4), ..., [3/4,1), and" the space of functions piecewise constant on the
equally spaced subintervals of length"1/2achV " is a vector space, and the scaling
functions {@;; j=0,...,2-1} form a basis forv". Moreover, the spaceg" satisfy the
nested sequence property:
veovio..ovhov™o...

Next we define aimner product for elements of/ ™
1
(f.9)= [FOawat. (5.4.0)

A vector space equipped with an inner product is callechiaer product space. Two
functions are said to hethogonal with respect to the inner product (-,-) if

(f.g9) =0.
Orthogonality is of interest for several reasons. First of all, note that, for example,
(Ao@1) =0
so that {1 0,¢a 1} forms an orthogonal basis fat*. In fact, for eaclk, andj # |, we have
(@ @) =0

so that {@;; j = 0,...,%-1} forms a set of mutually orthogonal basis vectorsvfér Also,
note that

(%,j!lﬂsl) =0

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Multiresolution Analysis 103

forj#l.

Orthogonality is of interest for another reason. For a given inner produce space U
contained within some larger inner product space S, we can talk about the set of vectorsin
S that are orthogonal to al of the vectors in U. This set is called the orthogonal
complement of U in S, and is denoted U (the shortcoming of this notation being its
failure to display the implicit dependence on S, so sometimes this is also denoted S\U). It
is easy to check that U" isitself a vector space (and so is an inner product space as well).

We are interested in:
W¥={hOV*% (hf)=0foral fOVY.

That is, W¥ is defined as the orthogonal complement of V¥ in V¥ We are aready
familiar with some members of W*. Consider ¢4;. Note that the intervals where ¢; is
constant are half the width of the intervals where members of V¥ are constant. In other
words, Y OV k1 for each j. Moreover, it is easy to convince yourself that (¢;,f) = O for
each f 0 V¥ and thus ¢; 0 W* for each j and each k. For example, consider

f=fo@o+f C”i,lDVl.

where fy, f; are scalar constants. Then

(o) = fo(Yro@o) + fo(¢ro@) =0+ 0=0,

since

74 7
W10 00)= |, W@+ [-Dwet=0

4

and
1
W10 02)= [Ot =0.

Thus, ¢4 0 W and similarly ¢, 0 W™ The argument for showing ¢; 0 W* is similar.

How big is W*? Clearly it is no bigger than V***, since W* 0 V¥, Thus the dimension

of W¥ can be no more than 2" (here we are talking about the vector space dimension,

that is, the number of elementsin a basis, as opposed to the fractal dimension discussed in
earlier chapters). Since { ¢;: j = 0,...,%1} forms a set of 2mutually orthogonal, hence
independent, vectors W¥, the dimension ofV¥ is at least 2 But this is the most the
dimension ofW* can be, foiv ! is also home to another set &frautually orthogonal
vectors, namely §;: j = 0,...,%-1}, and each of these vectors is also orthogonal to each
vector in {¢4;:j = 0,...,%-1}. Any vector inW* not expressible in terms ofyf;} would

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

104 Simple Wavelets

have to be expressible in terms of { @&}, which is impossible. We have arrived at the
foILowing conclusion: the dimension of W* is 2 and {;:j = 0,...,2-1} is a basis for
W*.

Isn’t that interesting? The wavelet functions form a basis Vigt, the orthogonal
complement ofv ¥ in V¥, The previous section introduced wavelets as a means of
restoring detail when moving to lower resolution. Here, wavelets arise as the basis for the
orthogonal complement of the space of functions defined at a given resolution. This
orthogonal complement can be thought of as the detail that is lost in going from one
resolution level to the next lower resolution level. Wavelets can in fact be defined as any
basis functions for this orthogonal complement.

A by-product of the above discussion is that we have stumbled upon an alternative basis

for the higher resolution spadé*. We already know one basis fof*? is { @
j=0,...,2"-1}. The alternative basis is:

{@,01---1@,2“—11‘/4(,01---1%,2“-1}- (542)
We can think of one step in the wavelet transform process, namely the step in going from

the resolution o¥/ “* to the lower resolution of ¥, as expressing an elemept; 0 V**
in the basis given by (5.4.2). Suppage 0 V" was originally expressed as

Ok+1 = Qr1,0@+1,0 T - oot Qe okt 11 @ kg
Theng:1 can be expressed in terms of the basis (5.4.2), as, for example,
Oke1 = Qoo + - Fakaka@oks + Oeolho + --. + ok ok

The coefficients €o,...,dkok1} become part of the wavelet transform. The next step in
the process would express

Ok = Aofho + - +akaka ok OV E
in terms of {@.1;} and {1}
5.5 NORMALIZATION

In what follows, it will be convenient to work withormalized scaling functions and
wavelets. We define theorm of a vectolf in an inner product space to be

[fll=(f. f).

A vectoru in an inner product space is normalizeduif 1. A normalized vectar can
be obtained from any non-zero vectday dividing by the norm of the vector:

u =1/f]].

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Transform 105

Thus, to normalize ¢ and ¢; we need to determine their norms:
1 i%k .
2
||¢kl|| = J.(”ﬁ, (t)dt = I dt :?,
0 %k
Thus,

1
ol

for eachj = 0,...,2-1, and similarly,

1
o] :F

for eachj. So, in order to work with normalized scaling functions and wavelets, a
redefinition is necessary. From this point gy),will be defined as:

B, =V2* @2t -), 1 =0,....2¢ -1 (5.5.1)

and ¢; will be defined as

wk,j(t)E\/Z_kl//(Zkt—j), j=0,..2"-1 (5.5.2)

We will refer to the wavelets defined by (5.5.2) (wighdefined by (5.3.6)) as the
normalized Haar wavelets.

5.6 WAVELET TRANSFORM

Suppose we have a sequence consisting pbmts{xl,xz,...,xzn} for some integen >
0. We can identify this sequence with the following functiol ih

(1) = Xa@no(®) + o ¥ X0 @ (D). (5.6.1)

The first step in computing the wavelet transform of the sequchxe?,...,xzn} is to
expresd(t) in terms of the alternative basis of the form (5.4.2Y bfwhich has wavelets

comprising half of its members:
f(0) = a1 0fn-10() * o+ A 01 @ o (O +

(5.6.2)
Ango¥n-10(®) * oo+ s @ oo (D).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

106 Simple Wavelets

The coefficients {d,_,....d__, ,»2_,} Of the wavelet basis functions form half of the

wavelet transform coefficients, so we will save these values. The transform process
continues by applying the same basis transformation to the remaining termsin (5.6.2):

gn—l(t) = aﬂ—l,0¢l"l—l,0(t) Tt an_LG—l_1¢n_1]2n—1_1(t)- (563)

That is, g1 is an element of V™, and so can be written in terms of an aternative basis
consisting of scaling functions @.,; and wavelets ¢, »;.

Before we continue too far down this path, one obvious question arises. How do we
obtain the coefficients in (5.6.2) from the coefficients in (5.6.1)? This is what
orthogonality lives for. Recall that each @,.,; is orthogonal to each of the other @.,x as
well asto dl of the ¢h.1;, and similarly, each wavelet ¢.,; is orthogona to the other
wavelets .1 and to all of the scaling functions ¢,.,;. Also, recall that each @.,; and each
{h-1; is normalized because of equations (5.5.1) and (5.5.2). To exploit this orthogonality
and normalization, multiply both sides of (5.6.2) by @.1j(t) and integrate over t from O to
1. Theresultis

1

[1@ Ot =2, (56.4)

0
Orthogonality is the reason there is only one term on the right side of (5.6.4) and
normalizetion is the reason a,,; appears with no other multiplicative factors. Now

substitute the right side of (5.6.1) for f(t) in (5.6.4). For example, with j = O, the left side
of (5.6.4) becomes:

A : Zon -
!xﬂ/z—” 2" dt+;nx2\/2_” V2 = (X1+X2)(}/ \/Ejzn (}é“) (5.6.5)

= (X +%) /2.
Combining (5.6.4) and (5.6.5), withj = 0, leads to
(X +X%) [V2 =2, 1. (5.6.6)
The square root factor in (5.6.6) is a result of normalization. If we had used the non-
normalized versions of the basis functions, then we would have recovered the two-point

average seen in sections 5.2 and 5.3. The remaining coefficients a1, j = 1,...,2-1, are
computed similarly. Thus,

8n1; = (X + Xoj42) 2, j=0,...,2" -1 (5.6.7)

Similarly, using the orthogonality and normalized propertieg;af;, one determines the
coefficientsd,.;; as

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Transform

On1j = (K01~ Xoj42) (42,] =0,..., 2" -1,

107

(5.6.8)

Once again, normalization is responsible for the square root factor in (5.6.8). Without
normalization, we would have exactly the difference expressions derived in sections 5.2

and 5.3.

Equations (5.6.7) and (5.6.8) call out for expression as a single matrix equation:

-1 1 -
— — ©0 0
V2 2 1T a |
1 1 1 -1,0
0 0 — —= 0 0
2 2
. . . o i
0 0 = —
\/E \/E — an—1,2”’1—1 (5.6.9)
11, 0 do-10 o
Z 2
1 -1
0 0 — — 0 0
Z 72 .
. XZT\J L n—].,Zn_l—lj
0 0 1
i V2 2]
The matrix in (5.6.9) is a square matrix with 2" rows and 2" columns. Define
-1 1 -
— — O 0
Z 72
1 1
0 0 — — 0 0
A, V2 42 (5.6.10)
1 1
0 0 = —
i V2 2]
and
1 -
— — O 0
V2 2
1 -1
0 0 — —= 0 0
D, V2 V2 , (5.6.11)
1 -1
0 0 = —
i v2 V2]

where A, and D, are 2™* x 2" matrices and A, can be thought of as an averaging operator

n n-1
and D, adifferencing operator on R> — R? . Let’s also introduce the vector notation

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

108 Simple Wavelets

Xy an-1,0 On-10
x=| | a= | dy= B (5.6.12)
d

n-1,2""-1

where X is a column vector with 2" components, and a,., and d,,., are column vectors with
2™ rows. Then we can write (5.6.9) as

Anl &

The matrix on the left side of (5.6.13) isasingle 2" x 2" matrix and the vector on the right
side is asingle 2" x 1 column vector. At each step of the wavelet transform process, we
collect detail coefficients and operate on average coefficients. In the case we are looking
at here, the wavelet transform will have 2" components. Equation (5.6.13) provides half of
these as the detail coefficients in d,..;. Save these coefficients as half of the final wavelet
transform. The next step in the wavelet transform is to apply the averaging and
differencing operations at the next lowest resolution level to a,.;:

An—ljl |:an—2]
—e=s g =] (5.6.14)
|:Dn—1 nt dn—2

Here, An.1 and Dy4 are 22 x 2! matrices of the form shown in (5.6.10) and (5.6.11) and
an, and d,,, are 2™*-dimensional column vectors. We keep d,,» to form part of the wavel et
transform, along with d,..;. We continue this process, applying averaging and differencing
operations to a, and keeping the resulting detail coefficients as part of the wavelet
transform. At the final step, we keep the average a,p, which is just a 1-component vector
(in other words, a scalar) with the single component ayp. The resulting wavelet transform
is

(5.6.15)

which we can think of as a single column vector with 1+1+2+ ...+ 2" =2"
components.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Inverse Wavelet Transform 109

5.7 INVERSE WAVELET TRANSFORM

In order for the wavelet transform to be useful in applications such as image compression,
we need to be able to undo the above process. That is, given a wavelet transform of the
form (5.6.15), we need to be able to recover the original sequence {x;,X,,..., in} from

which the transform was derived. We have actually gone through this inverse process
previously in section 5.2, where we recovered x; and x, from the average and detail
values. We follow a similar process here. The step in the wavelet transform going from

resolution level k to k-1 looks like:
Ay)
= 57.1
[Dk}ak L‘k—j &7

(Ao +a1)/v2 = 3
(B0 ~a1) V2 = d .

from which we obtain

(5.7.2)

For future reference, note also that (5.7.1) and (5.7.2) can be written as a pair of matrix-
vector equations:

Ay =
Dyay = dy4

|

QD
~
NN

(5.7.3)

foreachk=1,...n.

From (5.7.2) we can easily solve for the higher resolution texmsy, from the lower
resolution termsy.; o anddy., o:

& = (ak—LO +dk—Lo)/\/§
81 = (Bg,0~tg0)/V2:
Similarly, forj = 0,...,2-1,
a‘kyzj = (ak‘lj +dk—lj)/\/§ 670
a'k,2j+l = (ak—]_,j _dk_]_'j)/\/a.

From a linear algebra point of view, we are solving equation (5.7.1) for the egdigr
inverting the matrix that appears on the left side of that equation. That is, we have
performed the following operation:

_[Ak * a1
a, _[.b.k.] {a.l.(._.l.]_ (5.7.5)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

110 Simple Wavelets

How do we know the inversein (5.7.5) exists? Because we found it in (5.7.4)! In matrix
form, thisinverse lookslike

_%o o%o 0
%o O_T;O 0
o%o. oo%o..o

P_k_]-l 0 % 0 0 o —T; 0. . 0 576
Dy 0 0 0
1 1
0 .o?o .OT%
0 0z 0 05

Comparison with (5.6.9) shows that this inverse matrix is just the transpose of the matrix
used in the forward transform. In fact, the first 2* columns of the matrix in (5.7.6) form
exactly the transpose of A, and the last 2! columns form the transpose of Dy. This
convenient fact is due to the orthogonality and normalization of our scaling and wavelet
basis functions. Thus, we can write theinversein (5.7.6) as:

-1
{gj :[A; ;D*k], (5.7.7)

where * denotes the matrix transpose.

Ak o]
=[5t] [a)
_ x 1% ak—l

= Ay Dy

We can now rewrite (5.7.5) as

Equation (5.7.8) provides a practical formulation for obtaining a, from a,; and dy.:
Apply AL to a.; and D; to di; and add the result. This, in fact, rather than the direct

inverse approach given by (5.7.5), is the approach used in the code in the accompanying
software. Comparison with (5.7.3) shows the following to be true:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Transform in Two Dimensions 111

a, = ALAa, +DDay. (5.7.9)

Infact, it is possible to show directly that the following relationship is true:
AWA +DDy =1, (5.7.10)

where |, isthe 2 x 2identity matrix. The following relations also hold:

A= (5.7.11)
DDy =1 ja.

In the next chapter, we will require that relations analogous to (5.7.10) and (5.7.11) hold
for the highpass and lowpass filters that lead to the definition of Daubechies wavelets.

5.8 WAVELET TRANSFORM IN TWO DIMENSIONS

So far, we have considered the wavelet transform only for one-dimensional sequences,

and we have loosely referred to these sequences as “images”. While it is true that we can
always string out the rows and columns of an image into a single long sequence, that
process results in a juxtaposition of information that is not representative of the
arrangement of information in the original image. It is possible to extend the idea of the
wavelet transform to higher dimensions. The easiest way to do this is to first transform the
rows of the image, then transform the columns of the row-transformed image. This is easy
to implement in code since the same one-dimensional transform can be used to transform
both the rows and columns of the image.

To see why this works, consider the two-dimensional analog of the simple 4-element
sequence treated in section 5.3. Suppose we now hayelamage:

Xp1 X2 X3 X4
Xo1 Xoo2 Xp3 Xp4

(5.8.1)
X31 X2 X33 X3a
Xa1 Xa2 %43 Xg4
which we can represent as a function on the unit squareX{(011]:
4 4
f(X,y)=Z in,jxhx.j xy). (5.8.2)
1=1 |=

Equation (5.8.2) is the two-dimensional analog of equation (5.3.1). Here,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

112 Simple Wavelets

= [41 11) [

= {(xY): XD[T]' '—4)andyD[41 l4)}

and

X 1, (%)

1 for(x,y)0l; x1,
0 otherwise

X, ()X, (¥) (5.8.3)

= @1 1 (Y)-

We can substitute (5.8.3) into (5.8.2) to obtain:

4 4

f(xy) = z z X, (92 -1(X) @2 1 (y)
1=1 J=1

4 4
= {Z X j@2,-1(Y) }¢2,i—1(x) (5.8.4)

=1 | =1

4
= Z % (V)21 (%)

1=1
where

4

X (y) = Z X j92,j-1(Y) - (5.8.5)
&

Observe that for each i = 1,...,4, equation (5.8.5) looks very much like equation (5.3.4).
This means we can apply the one-dimensional wavelet transform just as before for each
=1,...,4,in (5.8.5). The result will be a new set of equationsxf¢y) i = 1,...,4, with
coefficients in terms of the wavelet transform of :{..., % 4}. Thus we arrive at the
following:

X (y)= a(i),o(oo,o(y) + dci),o‘/’o,o (y)+ di,o‘/’l,o()’) + di,lwl,l(y) (5.8.6)

for eachi = 1,...,4. This is the equivalent of applying the one-dimensional wavelet
transform to each row of the original image (5.8.1). Now substitute (5.8.6) back into
(5.8.4) and rearrange terms to obtain:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Transform in Two Dimensions 113

f(x,y) = {Z a(|3,0¢2,i-1(x)}¢o,o(Y) +{Z dcl),o¢2,i-1(x)}wo,o(Y) +

4 4
{Z d1|10<02,i _1(X)}l//w(y) + { Z dil¢2,i—1(x)}wll(y)-

Each of the summation terms in brackets in (5.8.7) again looks very much like equation
(5.3.4), and so the one-dimensional wavelet transform can be applied to each of these
terms. This is the equivalent of applying the wavelet transform to each column of the
original image (5.8.1).

(5.8.7)

To summarize the above discussion as it applies to images, one way to obtain a two-
dimensional wavelet transform of a 2"x2" image is to first apply the one-dimensional
wavelet transform to each of the 2" rows, then apply the one-dimensional wavelet
transform to each of the 2" columns. This is not the only way to define two-dimensional
wavel et transforms. This approach has the obvious implementation advantage of requiring
no new development beyond the one-dimensional transform that is already available. It is
quite effective for our image compression application.

5.8.1 What a wavelet transform looks like

What does the wavelet transform of an image look like? We can think of the averaging
and detail extraction operations of the Haar wavelets as lowpass and highpass filtering
operations. A lowpass filter allows low frequency information (i.e., low amount of detail)
to pass through, while blocking high frequency (i.e., high detail) information, while a
highpass filter allows high frequency information through while blocking low frequency
information. Our 2-D wavelet transform applies a 1-D wavelet transform to each row,
then a 1-D wavelet transform to the resulting information in each column. The diagram in
Fig. 5.8.1 shows how to visualize this. Recall that the first step in the wavelet transform is
to save the detail information from half of the coefficients. Thus fully a quarter of the 2-D
transform coefficients result from a highpass filter (H) acting on the rows followed by a
highpass filter operating on the resulting column information. This block of coefficientsis
indicated by HH; in the lower right corner of the diagram. Another quarter of the 2-D
coefficients result from the lowpass filter (L) operating on the column information that
has already passed through the row highpass filter. This block is indicated by LH; in the
upper right corner of the diagram.” Similarly, the HL, block in the lower left corner of the
diagram results from the lowpass row operation followed by the highpass column
operation. The upper left corner of the diagram is subdivided into smaller blocks,

! The notation we are using here follows the mathematical convention for composition of
operators. That is, if F and G are operators, then the mathematical notation for the
operation of F followed by the operation of G is GF (i.e.,, G is applied to the result of
applying F). Here, the notation for the composition of L followed by H is denoted LH.
Unfortunately, this notation is not consistent with what appears in the wavelet literature,
where this operator is usually denoted HL. The choice was made to use the mathematical
notation because the next chapter will examine composition of operators extensively.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

114 Simple Wavelets

showing the wavelet transform operations acting on successively smaller numbers of
coefficients, until the final coefficient in the upper left corner, which has had only lowpass
operations performed on it.

LL,|LH,
LH
HL,;|HH 2
3|3 LH,
HL, | HH,
HL, HH,

Fig. 5.8.1 Diagram of 2-D wavelet transform as a sequence of
vertical and horizontal highpass (H) and lowpass (L) filtering
operations. In the diagram, LH, indicates a vertical highpass
operation followed by a horizontal lowpass operation, while HL,
indicates a vertical lowpass operation followed by a horizontal
highpass operation.

Figs. 5.8.2 (a)-(d) illustrate the effect of these highpass and lowpass operations acting on
various types of images. Each pair of images shows an image together with a rendering of
its two-dimensional Haar wavelet transform. The wavelet transform images were formed
by decimating the array of wavelet coefficients by setting the smallest (in magnitude) 50%
of the coefficients to zero. Pixels corresponding to the nonzero coefficients were then
colored black, and pixels corresponding to zero coefficients were colored white. Since the
wavelet transform itself may produce more than 50% zero coefficients, it is possible for
more than 50% of the pixelsto be white.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Transform in Two Dimensions 115

@ (b)

A

© (d)

Fig. 5.8.2 Some images with their 2-D wavelet transforms. In each
case, the image is on the left and its corresponding 2-D Haar
wavelet transform is on the right. The wavelet transform images
were formed by setting the smallest (in magnitude) 50% of the
wavelet coefficients to zero and coloring the remaining nonzero
coefficients black.

Fig. 5.8.2 (a) consists only of vertical lines, so any detail change occurs only when
moving horizontally, that is, only when moving across the rows. There is no detail
information when moving in the vertical direction along the columns. Thus, the H
operator acting on rows will capture information, while the same operator acting on
columns will destroy it. The effect of this is evident in the transform figure. All
information in the lower half of the transform image is zero. This is because al of the
coefficients in the lower half of the transform image have been subjected to a highpass
operation on column information. The upper half of the transform image shows the detail
information captured by moving across the rows. Only 3% of the coefficients are nonzero
in this transform image. Fig. 5.8.2 (b) shows the converse situation when there is only
vertical information and no horizontal information. Here, the right half of the transform
image is zero. Once again, only 3% of the coefficients are nonzero.

Fig. 5.8.2 (c) shows a solid circle inside circular rings. The rings provide detail
information in both the horizontal and vertical directions, and so nonzero coefficients
appear in both the lower left and upper right blocks of the transform. Note that the circle
itself contributes no detail information, except along its edge, and so there are no detail
coefficients corresponding to the filled-in part of the circle. The single LL coefficient in
the upper left corner of the transform provides all of the information needed to represent
this part of the image. Approximately 9% of the coefficients are nonzero in this transform
image.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

116 Simple Wavelets

Finaly, Fig. 5.8.2 (d) shows a more realistic image with its 2-D wavelet transform. Notice
that, as in the case of the circle image, the solid black background part of this image has
no detail information and so resultsin zero values for coefficients in blocks away from the
upper left corner of the transform. In this transform image, 50% of the coefficients are
nonzero.

5.8.2 Simple wavelet compression scheme

A simple wavelet compression scheme is the following. Upon computing the wavelet
transform, sort the wavelet coefficients and retain only the largest x% of the coefficients,

setting the remaining smallest (100-x)% equal to 0, for some user-selectable value of x.

Decode by applying the inverse wavelet transform to the decimated array of coefficients.

Figs. 5.8.3 shows the result applying this scheme to the “Lena” image, using 10% and 5%
of the wavelet coefficients. As you can see, good image quality can be obtained with a
small fraction of the total number of wavelet coefficients. The 5% coefficient example
shows a noticeable blockiness in the reconstructed images. This is a characteristic of
using the Haar wavelet for image compression. The Daubechies wavelets developed in the
next chapter will alleviate some of this blockiness.

Although Figs. 5.8.3 (a) and (b) use, respectively, 10% and 5% of the wavelet
coefficients, these examples do not represent, respectively, 10:1 and 20:1 compression.
This is because information about the location of the retained coefficients must also be
stored, along with the actual coefficient values. Also, the wavelet coefficients tend to have
significantly higher dynamic range than the original image pixels, and so require more
bits for storage (or quantization that will degrade the quality of the decoded image).
Chapter 7 discusses these issues, as well as more advanced coding techniques, in more
detail.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Transform in Two Dimensions 117

(b)

Fig. 5.8.3 Simple wavelet compression of the “Lena” image, using
the Haar wavelets. (a) Image reconstructed using just the largest
10% of the wavelet coefficients. (b) Image reconstructed using 5%
of the wavelet coefficients. Average pixel error and PSNR: (a)
2.0376% and 30.9052 dB; (b) 2.8925% and 27.3918 dB.
Compression ratio represented here is not 20:1 (5% case) or 10:1
(10% case) because information about the location of the retained
coefficients must be stored and the wavelet coefficients require
higher dynamic range than the original image.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

6

DAUBECHIES WAVELETS

In the previous chapter, we saw that the ideas of simple averaging and differencing lead to
the development of Haar wavelets and that these wavelets can be used for image
compression. In this chapter we will see that we can extend these ideas to weighted
averages and differences and that particular choices of weighting coefficients lead to
different systems of wavelets. Ingrid Daubechies (1988) chose coefficients that lead to
wavelet systems that are particularly well suited to compression of certain types of
images. The wavelet image encoding techniques we will investigate in the next chapter
can be used with either the Haar wavel ets or the wavelets developed in this chapter.
6.1 WEIGHTED AVERAGES AND DIFFERENCES
Suppose we have a data sequence (e.g., an image): X = {Xy, Xo, X3, ..., X5} for somen > 0.
Instead of the simple numerical average that led to the development of the Haar wavelets,
we now consider a weighted average:

CoXg +CpXo + ... +CnXn

for some set of coefficienty, ¢, ..., cni, N = 2. By convention, we defing,= 0 for
k < 0 ork= N. The analog of the simple difference operation is the following:

C1Xg - CoXo + CaXag - CpXg +
Note that this choice leads to the following orthogonality property:
(C0,C1,€2,C3,...)* (C1,-Co,C3,-C, ...) = 0. (6.1.1)
6.1.1 Lowpass and highpass filtering

Letn = 2" for somem > 0 and extend the data sequence by wraparound to obtain a
periodic sequence:

ey X1y Xopeeey Xny X1, X250y Xny X125 X205 Xpyeee -

That is,Xy = Xp, X4 = Xp1s X1 = X1, Xme2 = Xo, and so on. Recall that =0 fork< 0 or
k= N. Define the operatdr,: R" - R" by:

n

: n
(LX) = ch_2i+lxj, [:l...,z.
J:

The operatolL , is called dowpassfilter.

Define the operatar,; R" — R"? by:

119

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

120 Daubechies Wavelets

(Hx); = Z(—l)i+lc2i_jxj, i=1...,

1=

n
>

The operator H, is called a highpass filter. Together, L , and H,, form a quadrature mirror
filter (QMF) pair (see Gopinath and Burrus 1993).

6.1.2 Matrix representation

Let L [i,j] denote thei,j element of the matrix representation of the operator L ,, where we
assume wraparound of the data sequence x. Then

Cj—2i+l |fOSJ_2|+1S N_l
Lali,jl= Cj—2i+14n if j-2i+1<0
0 if j-2i+1> N

Similarly, let H[i,j] denotethei,j element of the matrix representation of the operator Hy,
0 that

(‘1)j+1Cj_2i+1 if0<2i-j<N-1
Hn[i;j]: (_1)j+1C2i—j+n if 2|—J <0
0 if 2i—j=N

L[i,j] and H[i,j] are defined for i =1,2,...n/2 andj = 1,2,...n, so thatL, andH, are
n/2 x n matrices.

As an example, we can construct the matriceandH,, for the casen = 8 andN = 6 (so
the coefficients arey,cy,...,Cs). Here’'s what the matricés; andHg look like:

C,b, ¢ C ¢ ¢ ¢C O O
0 0 ¢ ¢ ¢ ¢ ¢ G
G & 0 0 ¢ ¢ G C

G

G
cs C, ¢ ¢ ¢ ¢ 0O O

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Properties and Conditions on the Coefficients 121

6.2 PROPERTIES AND CONDITIONS ON THE COEFFICIENTS

In Chapter 5, we saw that certain properties of the averaging and difference operators A,
and D,, such as orthogonality and the properties given by (5.7.10) and (5.7.11), followed
from the definitions of these operators. In the present chapter, we will impose conditions
on the coefficients cy,...,Cn.1 SO that similar properties hold foy, andH,.

From our construction of the matriceg andH,, and the orthogonality property (6.1.1),
we have the followingrthogonality property:

HnLE :LnHEZOnIZ!
where Oy, is the n/2 x n/2 matrix that is identically zero and * indicates the matrix
transpose. We impose the following condition loy (and hence on the coefficients
Cos--+,CN-1):
o_
LoLy =12 (6.2.1)
wherel , is then/2 x n/2 identity matrix. Condition (6.2.1) is equivalent to:

N-1
EF@HNZJM,m:QﬂJZM, (6.2.2)
=0

whered; is the Kronecker delta function:

5 = 1 ifi=j
TTloifiz]
Condition (6.2.1) also implies:
HoHn =1y (6.2.3)
Note that
Ha(L'L o +HoHp) = (HoLR)L g + (HHOH,
:Onlan +|n/2Hn
= Hn
and similarly,

Ln(LELn + HEHH) = I‘I"I'
Thus, the operatdrELn + HEHn: R" - R" is the identity operator:
LoL, +HoH, =1, (6.2.4)

The property (6.2.4) is analogous to property (5.7.10).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

122 Daubechies Wavelets

6.3 WAVELET TRANSFORM

The wavelet transform can be defined as a tree of lowpass and highpass filters, as shown
in Fig. 6.3.1. Aswas the case for the averaging and difference operators of Chapter 5, the
idea here is fairly simple. The lowpass filters {L,} reduce the amount of information in
the signal x. The highpass filters {H,} represent the information that is lost. Fig. 6.3.1
shows an example of the wavelet transform operating on an element x in R®. Recall that
L HyR">R™ that is, the filters decimate the dimension of the input vector by half. The
wavelet transform is the element of R® represented by {L,L 4L gx, HoL algX, Hal gX, Hex} .
That is, the wavelet transform consists of the final weighted average L,L 4L gx plus al of
the detail vectors collected at each step of the transform process.

RE NTH, > Hx Y H, > HlLgx Y H, > H,L LxOR!
R4 R? R

Fig. 6.3.1 Wavelet transform as a tree of lowpass and highpass
filters. In this example, the transform is operating on an element x
in R® The output of the transform is an element of R® consisting of
the lowpass term LoL4lgx O R* together with the three highpass
termsHgx O R, HyLg OR? and HyL,Lg O R

Property (6.2.4) is the key to constructing the inverse wavelet transform. The inverse
transform process is just the reverse of the steps that make up the transform process.

Fig. 6.3.2 shows an example of how to recover the element x O R® from its wavelet
transform. For example,

LoL,L 4L gX + HoH, L sLgx = (L5L, + HoH)L 4L gX
=L,Lgx

where we have used the fact that L5L , + HyH, = I ,, the identity operator on R,

O
Lol x> Lo >@>Lbox> Ly ~@>Lex~ Lg ~@~ x

R8
HoL Lex —~ HS HoLox— HY Hex— Hg

R? R? R#

Fig. 6.3.2 Inver se wavelet transform.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Scaling Functions and Wavelet Functions 123

6.4 SCALING FUNCTIONS AND WAVELET FUNCTIONS
We now extend the notion of scaling functions and wavelet functions, developed in the

previous chapter for the Haar wavelet, to more general wavelets. The Haar scaling
function ¢(t) defined by (5.3.2) satisfies the following relation:

A = 20 + (2t - 1).

Suppose now, given a set of coefficients c,Cy,...,Cn1, We try to find a general scaling
function ¢(t) that satisfies the following property:

dt) = s (cog(2t) + (2t - 1) + ... +Cyag(2t - (N - 1))). (6.4.1)
Equation (6.4.1) is called thdilation equation (Strang 1989). The constastt O is
introduced to allow some flexibility in ensuring the existence of such a fungion
satisfying (6.4.1) and the other properties we are about to impose. The censthirt
fact be determined by these properties.
We now introduce two additional properties, which are satisfied by the Haar scaling

function, that we require of our general scaling function. The first of these is
normalization:

P = I:O(pz(t)dt =1. (6.4.2)
The second property @thogonality of translates:
jz A2t - A2t - M)k = 5, . (6.4.3)
Integration of the dilation equation (6.4.1) leads to:

J(p(t)dt:sz\lz_:cjjt/i(Zt— j)dt = (%jszcj J’ @u)du,

from which we get:

(6.4.4)

as a condition on thg's in order that such a functigpexists.

Then normalization (6.4.2) and orthogonality (6.4.3) applied to the dilation equation
(6.4.1) lead to:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

124 Daubechies Wavelets

) N-1) 1
S Ci |-|=|=1,
Z J (2)
1=0
and insertion of (6.2.2) with m =0 provides avaluefor s:
s=42.
Just as the Haar wavelet function is defined in terms of the difference operator, we can

now define a more general wavelet function in terms of the highpass filter operator. For
example, for N = 4, define the wavelet function ¢At) by:

wt) = %(ngl(Zt) -2t -1 + 2t - 2) — o2t - 3)). (6.4.6)

So, if we know the coefficients c,cy,Cy,..., We can findg(t) and ¢(t) recursively using
(6.4.1) and (6.4.6). For example, if values¢t) are known at the integers, then we can
easily find¢(1/2), ¢(1/2), ¢1/4), and so on.

Equations (6.2.2) and (6.4.4) provide two conditions orgiteeFor example, witN = 2,
we get

Grid=l 2=goro,

as conditions for determinirg, c,. This leads to

1
C=6G= NA
as the coefficients for the Haar scaling function and wavelets.
ForN > 2, we need additional conditions to determinecfise
6.5 DAUBECHIES WAVELETS

Daubechies (1988) chose the following conditions orcfe ChooseW = (c3,-C,C1,-Co)
so that the vectors (1,1,1,1) and (1,2,3,4) have zero componentsVdlongat is, the
following should be true:

%=C*a"¢=0 (6.5.1)
C; —2c, +3c; —4c, = 0.
Conditions (6.5.1) are equivalent to saying thHt has vanishing zeroth and first
moments. This means that constant and linear signal information can be greatly
compressed. For images that have large areas that are relatively smooth, such as the
“Lena” image, this turns out to be advantageous for image compression. Not only is the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Daubechies Wavelets 125

overall error reduced for a given compression rate, but much of the blockiness associated
with Haar wavelet compression is reduced as well.

Using conditions (6.5.1) along with the normalization and orthogonality conditions, you
can find the Daubechies coefficients:

_1+4/3 _3+4/3
“Taz YTam
C :—3_\/§ C :—1_\/§
2T a2 a2

These coefficients define the wavelets known as D4 Daubechies wavelets. Requiring
vanishing higher moments leads to systems of Daubechies wavelets with more
coefficients. For example, the D6 Daubechies wavelets are obtained by requiring a
vanishing second moment:

12C5 - 2204 + 3203 - 4202 + 5201 - 62C0 =0,

in addition to vanishing zeroth and first moments. There are other Daubechies wavelets,
including systems with 12 and 20 coefficients.

There is a simple way to generate a graph of these wavelet functions by applying the

inverse wavelet transform to along (e.g., 1024 points) unit vector, that is, a vector with a

1 in one position and O’s in every other position (Press, et al., 1992). Fig. 6.5.1 shows
graphs of the D4 and D6 wavelet functions generated in this way.

]

CY (b)
Fig. 6.5.1 The Daubechies D4 (a) and D6 (b) wavelet functions.
These graphs were generated by applying the inverse wavelet
transform to a unit vector of length 1024, with nonzer o component
in position 6 (a) and 11 (b), respectively.

The D4 wavelet function shown in Fig. 6.5.1 has some interesting properties. It is
continuous, but not differentiable. Its derivative fails to exist at p&igts wherek andn

are integers. At these points, it is left differentiable, but not right differentiable. It is O

outside the interval [0,3]. A function whose nonzero values are restricted to a closed
bounded interval is said to hawempact support. All of the Daubechies wavelet

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

126 Daubechies Wavelets

functions have compact support. The D4 wavelet function is in fact fractal, in the sense
that its discontinuities are independent of scale. The smoothness of the Daubechies
wavelets increases with p, the number of vanishing moments, gaining about half a
derivative for each increase in p. The D6 Daubechies wavelet function has a continuous
first derivative, but higher derivativesfail to exist.

6.6 SIMPLE IMAGE COMPRESSION WITH DAUBECHIES WAVELETS

The vanishing moments property of the Daubechies wavelets means that they should be

well suited to compression of images that have large smooth areas. For example, image
segments that are of a nearly constant tone, or a linearly changing tone, should compress

well with these wavelets. Figs. 6.6.1 - 6.6.2 show that the D4 Daubechies wavelets do a

good job of compressing the “Rose” and “Lena” images. Comparison with Figs. 6.2.1 -
6.2.2 shows that D4 wavelet compression produces smaller errors than the corresponding
Haar wavelet compression. In addition, block artifacts are reduced. In fact, the errors
introduced by compression with the Daubechies wavelets tend to be of a blurry nature, as
though one were looking at the image through an old glass window. This is less
objectionable than the blockiness that occurs with Haar wavelet, or for that matter, fractal,
image compression. Table 6.6.1 shows the actual error rates for the “Lena” image for the
Haar and Daubechies wavelets. These values are plotted in Fig. 6.6.4.

Fig. 6.6.1 Image compression of the “Rose” image using the D4
Daubechies wavelets. (a) 10% wavelet coefficients; average pixel
error; 1.8929% (31.7549 dB PSNR). (b) 5% wavelet coefficients;
average pixel error: 2.8264% (28.0999 dB PSNR).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Simple Image Compression with Daubechies Wavelets 127

Fig. 6.6.2 Image compression of the “Lena” image using the D4
Daubechies wavelets. (a) 10% wavelet coefficients; average pixel
error: 1.7066% (32.5803 dB PSNR). (b) 5% wavelet coefficients;
average pixel error: 2.5006% (28.9101 dB PSNR).

While the Daubechies wavelets provide better compression performance for many

images, Fig. 6.6.3 and Table 6.6.2 show that this advantage may not always be significant.

The “Winter 1” image contains much more high frequency detail information than either
the “Rose” or “Lena” images. The optimal choice of wavelets for compression is image
dependent. Mandal, Panchanathan and Aboulnasr (1996) discuss this issue, and also
suggest a way to quantify the detail content of an image in order to help choose an
appropriate wavelet system.

(b)

Fig. 6.6.3 “Winter 1” image (a) and compressed version (b) using

10% of the D4 Daubechies wavelet coefficients. Average pixel
error: 4.4540% (24.4362 dB PSNR). The same image compressed
using 10% of the Haar wavelet coefficients yields 4.5452% average
pixel error (24.2073 PSNR).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

128 Daubechies Wavelets

10% Coefficients 5% Coefficients 1% Coefficients

Haar: AverageError 2.0376 2.8925 % 5.1009 %
PSNR 30.9052 26.3918 dB 22.2369 dB

D4: AverageError 1.7066 % 2.5006 % 4.6811 %
PSNR 32.5803 dB 28.9101 dB 23.4130dB

D6: AverageError 1.6699 % 2.4530 % 4.7459 %
PSNR 32.8309 dB 29.1049 dB 23.3612 dB

Table 6.6.1 Error rates for compression of the “Lena” image, using
10%, 5% and 1% of the wavelet coefficients, for the Haar,
Daubechies D4 and D6 wavelets.

10% Coefficients 5% Coefficients 1% Coefficients

Haar: Average Error 4.5452 % 57742 % 8.1284 U
PSNR 24.2073 dB 21.7420 dB 18.3067 B

D4: Average Error 4.4540 % 5.6570 % 6.8949 U
PSNR 24.4362 dB 22.0399 dB 18.6811 ¢B

D6: Average Error 4.4371 % 5.6506 % 6.8417 U
PSNR 24.4696 dB 22.0911 dB 18.7611 dB

Table 6.6.2 Error rates for compression of the “Winter 1" image,
using 10%, 5% and 1% of the wavelet coefficients, for the Haar,
Daubechies D4 and D6 wavelets.

——Haar-Lena
—o—D4-Lena
—n—D6-Lena
---¢--- Haar-Winter 1
---0--- D4-Winter 1
---A--- D6-Winter 1

Average Pixel Error (%)

0.0 - 1
10% 5% 1%

% Wavelet Coefficients

Fig. 6.6.4 Error rates for Haar and Daubechies D4 and D6
wavelets, for the “Lena” and “Winter 1” images. For the “Lena”
image, the Daubechies wavelets provide a clear improvement over
the Haar wavelets. However, for the more detailed “Winter 1"
image, the error performance is virtually the same for all three
wavelets.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Other Wavelet Systems 129

6.7 OTHER WAVELET SYSTEMS

The Haar and Daubechies wavelets considered here are just a small sampling of a much
larger universe of wavelet systems being used in signa and image processing
applications. The Haar and Daubechies wavelet systems have the property of compact
support, as discussed above, and are aso orthogonal. Thet is, the scaling functions ¢; and
wavelet functions ¢4 setisfy:

(¢ ki) =0 .
f l. 6.7.1
(wk,j1wk,l):0} oz 671

In addition, these functions also satisfy
(@ ¢y,) =0 foral j,I. (6.7.2)

The Daubechies wavelet systems also have the properties of smoothness and vanishing
moments.

There are other properties that might be desirable in a wavelet system. One such property
is symmetry, that is, the scaling functions and wavelet functions are symmetric about their
centers. The Haar wavelets satisfy this property, but the Daubechies wavelets do not. In
fact, in turns out that the Haar wavelets are the only wavelets that are symmetric and
orthogonal and compactly supported (Daubechies 1992).

So, for example, if we want smooth symmetric wavelets with compact support, we have to
be willing to give up orthogonaity. Many of the newer wavelet systems used in
applications are not orthogonal, in the sense of satisfying properties (6.7.1) - (6.7.2), but
rather satisfy some weakened form of orthogonaity. One such property is
semiorthogonality (Stollnitz, DeRose and Salesin, 1996). Semiorthogonal wavelet
systems satisfy (6.7.2), but not (6.7.1).

Another weakened form of orthogonality is biorthogonality (Burrus, Gopinath and Guo,
1998) Biorthogonality is related to the concept of duality. Suppose {uy,Us,...,u,} is a set

of basis functions which are not orthogonal. It is possible to express a fuhetfora
linear combination of these basis functions:

f(x):Zajuj(x).
=

The lack of orthogonality makes it more difficult to determine the coefficiapts
However, there is another ba§ig, U,,...,u,} with the property that

a; =(f,u)).

The 1‘unctionsﬂj also satisfy the property

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

130 Daubechies Wavelets

(U, uj) =0 for j#k

The basis {U;,U,,...,U,} is caled the dual basis corresponding to {us,U,,...,Us}. A
biorthogonal wavelet system consists of four sets of functions: a scaling function basis
{¢;} and its dual basi%(ok’j}, and a wavelet function basig/, ;} and its dual basis

{J/kyj}. The condition of biorthogonality requires that these function sets satisfy the
following property:

(@ Wyx))=0

-~ foral j, k1.
(@i @) =0

In addition, duality implies

((ak,j!a]k,l)zo

N for j #1.
Wy Wi)=0

Biorthogonal wavelet systems have become a popular choice in the image compression
applications. Villasenor, Belzer and Liao (1995) evaluated over 4300 biorthogonal
wavelet systems for application to image compression.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

v

WAVELET IMAGE COMPRESSION TECHNIQUES

In the previous two chapters, we looked at simple examples of wavelet image
compression that consist of applying a wavelet transform to an image and then removing
some of the information from the transformed array. These examples illustrate the
potential of using wavelets for image compression. However, practical wavelet image
compression techniques in use today use more sophisticated methods for encoding
information in the wavelet domain than the simple sorting and decimation approach used
for these examples. The present chapter examines some of the issues associated with
wavelet image compression. It also introduces zerotree encoding, a technique that
addresses these issues and forms the basis for most of the successful wavelet compression
schemesin use today.

7.1 INTRODUCTION

The wavelet transform is easy to implement and fast to compute. It should not be
surprising, therefore, that non-wavelet issues tend to dominate the implementation of
wavelet image compression schemes. For example, in the simple compression scheme
used in the previous two chapters, the process of extracting information about the relative
significance of the coefficients, in order to decide which coefficients to decimate, takes up
most of the encoding time. Fig. 7.1.1 shows the encoding times for a 256 x 256 image,
using various percentages of Haar wavelet coefficients. The wavelet transform
computation time remains constant at 3 seconds in each case. As the percentage of
retained wavelet coefficients increases, the time required to select these coefficients
increases and dominates the total compression time.

At first glance, one might think that a wavelet compressed image using 10% of the
wavelet coefficients represents a 10:1 compression ratio. However, the situation is not

quite that propitious. The problem is that, in addition to the values of the coefficients, we

need to know which 10% of the coefficients are being used to represent the compressed

image. For example, if we wish to store row and column information for a 256 x 256

image, we would need an additional 2 bytes per coefficient. Also, the wavelet coefficients

of an 8-bit image tend to require more than 8 hits for representation. For example, the
wavelet coefficients of the “Rose” image have a range of -2979 to 22,737, and so would
require a full 2-byte integer for storage. So, we need roughly 4 bytes per stored coefficient
(as before, without any special coding techniques being applied). A 10% wavelet
compressed 258 256 image would have 6554 coefficients each requiring 4 bytes, for a
compression ratio of approximately 2.5:1, rather than 10:1. The 5% wavelet compressed
image represents a compression ratio of 5:1. Using more than 25% of the wavelet
coefficients results in no compression at all.

131

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

132 Wavelet Image Compression Techniques

60 4 O Decimation Time

| Wavelet Transform
Time

Time (seconds)
N
o

1 5 10 25
Percentage of Retained Coefficients

Fig. 7.1.1 Compression times (200 MHz Pentium PC) for a
256 x 256 image, using the Haar transform. As the decimation
percent increases, the wavelet transform time remains constant,
while the time required for selecting the coefficients to be retained
(“Decimation Time”) dominates the total compression time.

There are two areas to focus on when trying to improve the compression ratio for wavelet
image coding. The first is storage of the coefficients themselves, and the second is the
encoding of the coefficient location information.

Approaches for compressing coefficient values include:

-Scalar quantization, either uniform or non-uniform.

-Setting smallest x% of coefficient values to O, with quantization of the remaining
coefficients. Thisis aform of non-uniform quantization. Runlength coding can be
applied to the O coefficients.

-Entropy coding of the coefficients.

Approaches for compressing coefficient location information include:

-Quantizing coefficients in place. Compression comes from the lower bit rate of the
quantization. This can be combined with runlength coding.

-Storing location information (row, column) with the coefficient value. Store this
information only for those coefficients that survive the decimation process. Thisis
feasible only if a small number of coefficients are retained.

-Using a binary significance map. This is a structure with 1 bit per coefficient. A
value of ‘1’ indicates a significant coefficient; a value of ‘0’ indicates a coefficient
that has quantized to a value of 0. The size of the significance map depends only
on the image size, not on the number of significant coefficients.

-Using a wavelet zerotree structure.

The last of these items, using a wavelet zerotree structure, is where most of the current
wavelet compression research is focused.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 133

7.2 WAVELET ZEROTREES

We saw in Chapter 5 that we can think of the two-dimensional wavelet transform as a
sequence of vertical and horizontal highpass and lowpass operators applied to the image.
There are four types of composite operators. vertical highpass followed by horizontal
highpass (HH,); vertical highpass followed by horizontal lowpass (LH,), vertical lowpass
followed by horizontal highpass (HL,); and finaly, vertical lowpass followed by
horizontal lowpass (LLy)" Fig. 7.2.1 diagrams the location within the wavelet transform
array of the output of these operators. These blocks can be arranged in a tree structure, as
Fig. 7.2.2 shows. Each coefficient in a block has 4 “children” in the corresponding block
at the next level. For example, if Fig. 7.2.1 represents the wavelet transform ef&n 8
image, then Lk, HH;, HL; and LH; are 1x 1 blocks, HH, HL,, and LH are 2x 2
blocks, and HK, HL; and LH, are 4x 4 blocks.

LL,|LH
$—3 LH,
HL 4| HH, LH
1
HL, | HH,
HL, HH,

Fig. 7.2.1 Wavelet subtree structure. LH, indicates a vertical
highpass operation followed by a horizontal lowpass operation,
while HL, indicates a vertical lowpass operation followed by a
horizontal highpass operation.

The significance of this tree structure is that there typically is a great deal of similarity in
coefficients in a block from one level to the next. That is, the children at one level are
likely to resemble their parents in the previous level. This is evident in the examples
shown in Fig. 5.8.2 in Chapter 5 and Fig. 7.2.3 below. In particular, it is quite often the
case that if a coefficient quantizes to zero, then its children quantize to 0 as well. This
observation is the basis for what is knownnaselet zerotree encoding, first introduced

by Lewis and Knowles (1992).

! Once again, the notation here is that of composition of operators. Thus\das that
the H operator is applied first, followed by the L operator.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

134 Wavelet Image Compression Techniques

L] 1x1

1X1

“Top”

[hef [hu) [Ln]

2X 2
HH, HL, LH,
/ \ 4X4
HH, HL, LH,

“Bottom”

Fig. 7.2.2 The wavelet subtree blocks from Fig. 7.2.1 are arranged
here in a tree structure. Each coefficient in a block has 4 “children
in the corresponding block at the next level. For example, if Fig.
7.2.1 represents the wavelet transform of an 8 8 image, then LLs,
HH3, HL; and LH5 are 1x 1 blocks, HH,, HL,, and LH, are 2x 2
blocks, and HH;, HL, and LH; are 4x4 blocks. “Top” and
“Bottom” are indicated as these terms are used in the zerotree
algorithm described below.

(b)

Fig. 7.2.3 The “Lena” image (a) and its wavelet transform (b). The

image in (b) is formed by rendering the largest 50% of the Haar

wavelet coefficients black and the remaining coefficients white. The
wavelet subtree structure is superimposed here, with some of the
highpass and lowpass operators identified. Note the similarity in

corresponding blocks from one level to the next.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 135

The original wavelet zerotree implementation of Lewis and Knowles (1992) assigned O to

all of the descendants of a coefficient that quantized to 0. This can be thought of asaform

of runlength coding. In fact, it is even more efficient than traditiona runlength coding

since there is no need to code the length of the run of 0's. However, while it is true that a
coefficient that quantizes to zero in the wavelet subtree structure is likely to have children
that also quantize to zero, it is also possible for that coefficient to have significant
nonzero children. This possibility contributes to errors in the Lewis and Knowles zerotree
approach. Shapiro (1993) proposed a modified zerotree encoding approach that
accommodates the possibility of isolated zeros. Said and Pearlman (June 1996 and
September 1996) introduced a refined version of zerotree coding called Set Partitioning in
Hierarchical Trees (SPIHT). In the next section, we develop an implementation of
zerotree coding that is similar to the methods introduced by Shapiro and Said and
Pearlman.

7.2.1 An implementation of wavelet zerotree coding

In this section we’ll develop an encoding algorithm that takes advantage of the wavelet
subtree structure shown in Figs. 7.2.2 and 7.2.3. This algorithm is fast, provides good
compression and decoded image quality, and has the desirable property of
accommodatingrogressive transmission. Progressive transmission means that encoded
information is stored, and hence transmitted, in such a way that intermediate versions of
the transmitted image contain complete approximations of the final image. This is a
desirable property for applications such as the Internet, where impatient users can observe
intermediate images and decide whether to wait for a complete image download, or move
on to something more interesting.

The particular implementation developed here is based on the zerotree ideas used by
Lewis and Knowles (1992), Shapiro (1993), and Said and Pearlman (June 1996).
However, the implementation details are this author's own, and any performance
measures provided here refer only to this implementation and should not be taken as
indicative of the referenced zerotree algorithms. The implementation given here is
intended only to illustrate the ideas involved and is not intended as a complete
compression system. For example, entropy encoding of the symbols that result from the
algorithm, incorporated in all of the referenced algorithms, is not included here.

7.2.1.1 Terminology: Which way isup?

First, we need to define some terminology for maneuvering through the tree structure of
Fig. 7.2.2. “Top” refers to the top of Fig. 7.2.2, as shown, that is, near the lowest
resolution wavelet coefficients. “Bottom” refers to the part of the tree structure at the
bottom of the figure, where the high-detail coefficient terms are located. We will work
with the three subbands, LH, HH and HL as shown in the figure. The lowpass (LL) term
tends to be among the largest of the coefficients in magnitude. Rather than try to encode
this term, we will simply write its entire value as is.

Moving from top to bottom in Fig. 7.2.2, each block in the next lower level in each band
has twice as many rows and columns as the block in the level above it. Thus, each block

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

136 Wavelet Image Compression Techniques

at the next lower level has four times as many coefficients as the block in the level above

it. Each coefficient in a given block, except for the lowest block, has four “children” in
the corresponding location in the block below it. The four immediate children of the
coefficient at locationi(j) are located at {21,3-1), (2-1,2), (2,2-1) and (2,2j). This
relationship is shown in Fig. 7.2.4. All of the descendants in the subtree below a
coefficient will be referred to as children of that coefficient (that is, its immediate
children, the children’s children, and so on). Similarly, a coefficient is a parent to all of
the children in the subtree below it.

Parent

(i)

Children

(2i-1,2j-1)| (2i-1,2))

@i2i1) | (2i2)

Fig. 7.2.4 Each coefficient in blocks higher than the lowest level has
four children in the next lower level.

The notion of what is meant by a “significant” coefficient is important in the
implementation of zerotree encoding. A coefficiensigmificant with respect to a given
threshold if its magnitude (i.e., absolute value) exceeds that threshold. This brings up the
guestion of how to choose such a threshold. In the implementation presented here, we will
extract the binary representation of each wavelet coefficient, so we will choose a
sequence of thresholds that are powers of 2.

To keep track of where we are in the processing of an image, we set up a symbol array of
the same size as the image. Each element of the symbol array is initialized to O at the start
of each threshold comparison pass to indicate that that element has not yet been
processed. We will use a set of five symbols to indicate a processed element. These are:

POS: the corresponding wavelet coefficient on this threshold pass is significant and
positive;

NEG: the corresponding wavelet coefficient on this threshold pass is significant and
negative;

I1Z: anisolated zero, that is, the corresponding wavelet coefficient on this threshold
pass is not significant, but does have a significant child somewhere in the
subtree below it;

ZR: azerotree root, that is, the corresponding wavelet coefficient on this threshold
pass is not significant and the entire subtree of children of this coefficient
contains no significant coefficients;

ZT: an insignificant child of a zerotree root.

Only four symbols, POS, NEG, IZ and ZR, are written to the output file. On decoding, the
ZR symbols are expanded to fill out their zero subtree, so there is no need to write out the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 137

corresponding ZT symbols. Thus, we can use two bits each for the four symbols (of
course, a complete system would use entropy coding to achieve lower overall bit rates).
The use of a two-dimensional symbol array differs from the approaches taken by Shapiro
(1993) and Said and Pearlman (June 1996), who use auxiliary lists to keep track of
significant coefficients. Because we do not do entropy coding, we can write out the
symbols on each threshold pass, and thus need to maintain only one symbol array in
memory, rather than one array for each threshold value.

7.2.1.2 Handling the insignificant coefficients

The significant coefficients are easy to handle: If the magnitude of the coefficient exceeds

the threshold, simply assign either a POS or NEG symbol, depending on the coefficient’s
sign. The insignificant coefficients present more of a challenge. Before we can assign one
of the symbols 1Z, ZR or ZT to an insignificant coefficient, we need to know not only
about that coefficient, but everything about all of its children and parents as well. That
means we need information about coefficients both above and below the current
coefficient in the tree structure.

We obtain this information by making two passes over the coefficients: a “Bottom-Up”
pass to identify the parents of significant children, and a “Top-Down” pass to identify the
zerotree roots. Within a subband (LH, HH or HL), the bottom-up pass is applied first. Fig.
7.2.5 shows a block diagram of this process. Starting in the lowest block of the subband,
identify the significant coefficients, and assign the corresponding elements in the symbol
array POS or NEG symbols. We now also have information about the parents of these
coefficients: None of the parents of these significant coefficients can be zerotree roots
(ZR) or children of zerotree roots (ZT); they must all be coded as POS, NEG or IZ. At
this point, mark all of the parents of this significant coefficient as IZ. That is, assign the
symbol 1Z to all of the elements in the symbol array corresponding to the parents of this
coefficient. Later on, as we move up the tree, these elements may be found to correspond
to significant coefficients themselves, in which case the 1Z symbol will be overwritten
with either POS or NEG. Listing 7.2.1 shows the member functionk _parent s

from thet zer ot r ee C++ class in the accompanying software.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

138 Wavelet Image Compression Techniques

Bottom-Up Pass

Get next
coefficient <
(moving up)

coefficient
significant

Code as POS or
NEG

v

Mark parents
as having a »
significant child

(12)

Yes

?

Go To Top-Down
Pass

Fig. 7.2.5 The “Bottom-Up” process used in the zerotree algorithm.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 139

Listing 7.2.1 The mar k_par ent s member function of the C++
classt zer ot r ee, from the accompanying software.

void tzerotree:: mark_parents (int row int col,short synbol)

/'l Mark the parents of this position (row col) as having a
/1 significant child.
/1 The four "children" of position (i,j) in the subtree
Il are: (2i-1,2j-1),(2i-1,2j),(2i,2j-1) and (2i,2j).
/'l Here, we need to nove "backward", or up the tree, and
/'l determine the parent of a given (row, col) position.
int ichild = rowjchild = col;
int iparent = ichild,jparent = jchild;
while ((iparent > 1)&&(jparent > 1)) {
if ((ichild/2)*2 == ichild) // even
i parent = ichild/2;
else // odd

i parent = (ichild+1)/2;

if ((jchild/2)*2 == jchild) // even
jparent = jchild/2;

else // odd
jparent = (jchild+1)/2;

set (i parent, j parent, synbol);

ichild = iparent;

jchild = jparent;

} /] end while
return;

}

At the conclusion of the bottom-up pass for a given subband, all of the significant
coefficients have been identified and coded as POS or NEG, and al of the isolated zeros
have been identified and coded as |Z. All of the remaining coefficients are either zerotree
roots (ZR) or children of zerotree roots (ZT). The top-down pass identifies which is
which. Starting at the top of the subband, we check the symbol array to see which
coefficients have been coded. Because we start at the top, any coefficient that has not yet
been coded must be a zerotree root. Thisistrue for al but the lowest block in the subtree.
Coefficients in the lowest block have no children, and so by definition cannot be zerotree
roots. Coefficients in this block that have not yet been coded are assigned the 1Z symbol,
rather than ZR. When a zerotree root is identified, all of its children in the subtree below
it are marked as ZT. Listing 7.2.2 shows the code for the t zer ot r ee class member
function mar k_chi | dr en which accomplishesthis.

The top-down pass also writes the symbols to the binary output file. When a POS, NEG,
I1Z or ZR symbol is encountered, it is written out with the appropriate 2-bit code. ZT
symbols are not written to the output file. Fig. 7.2.6 shows the block diagram for the top-
down process.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

140

Wavelet Image Compression Techniques

Top-Down Pass

Get next
coefficient
(moving down)

Yes

Is
symbol
coded
as POS, NEG,

IZor ZT
?

In Lowest

Block
?

No

Write POS, NEG,
1Z symbols to file
(don’t write ZT)

Yes Code symbol

as IZ and
write to file

Code symbol
as ZR and
write to file

_,| Mark all children
as ZT

Go To Next
Subband
(Go to Threshold
Subtraction if
at HL Subband)

Fig. 7.2.6 The “Top-Down” process used in the zerotree algorithm.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 141

Listing 7.2.2 The mar k_chi | dr en member function of the C++
classt zer ot r ee, from the accompanying software.

void tzerotree::mark_children (int row int col,int nrows,
int ncols,short synbol) {
int child_end_row child_end _col,child rows, child_cols;
/1 The four "children" of position (i,j) in the subtree
/[l are: (2i-1,2j-1),(2i-21,2j),(2i,2j-1) and (2i,2j)
child_end_row = 2*row,
child end col = 2*col
child rows = 2;
child_cols = 2;
while ((child_end_row=nrows)&(child_end_col <=ncol s)) {
for (int i=child_end_rowchild_rows+1;
i <=child_end_rowi++)
for (int j=child_end_col-child_col s+1
j<=child_end_col;j++)
set(i,j,sy
child _end_row *= 2
child_end_col *= 2
child rows *= 2;
child_cols *= 2;
} /] end while
return;

}

nbol) ;

7.2.1.3 The zerotree encoding algorithm

We're now ready to put the entire encoding algorithm together. Fig. 7.2.7 shows a block
diagram of the algorithm. The first step, not surprisingly, is to apply the two-dimensional
wavelet transform to the image. Any of the three wavelets that we have developed so far,
Haar, Daubechies D4 or D6, can be selected in the accompanying software. Other
wavelets can also be used with this algorithm. Next, set the initial threBlegjdal to the
largest power of 2 that is less than the maximum magnitude wavelet coefficient. The
accompanying software automatically keeps track of this maximum as it computes the
wavelet transform. It is often the case that the lowpass LL coefficient value (the single
coefficient in the upper left corner of the transform array) has the largest magnitude in the
transform array. This coefficient is not one of the three subbands LH, HH and HL and so
is excluded from consideration when determining the transform maximum. This lowpass
value is written to the output file as is. In addition, some other items that the decoder will
need are written to the beginning of the output file: wavelet type (Haar, D4, D6), row size
(the algorithm works only for square images), and(lbg

The algorithm now enters the threshold loop. The symbol array is initialized to 0 at the
start of each pass through tleep. For each subband, the algorithm performs the bottom-

up and top-down passes, as described above. The subbands are processed in the order LH,
HH, HL. Recall that the symbols are written to the output file as part of the top-down
pass. At the end of the loop, the threshold valig subtracted from all of the significant
coefficients (i.e., all coefficients that have POS or NEG symbols). The threshold is then
cut in half, so that the new threshold valueTi2. The next pass through the loop

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

142 Wavelet Image Compression Techniques

compares the new wavelet coefficients with this new threshold. The resulting symbols are
written to the output file. The loop continues until T=1. There is also an option to stop
sooner than this, which we will discuss below.

Apply wavelet transform

v
Set threshold T = largest
power of 2 < max coefficient
v
Write out lowpass (LL) |

coefficient value

D) e
No

Yes

Initialize symbol array
to 0

\]

Bottom-Up Pass for LH
Top-Down Pass for LH

v
Bottom-Up Pass for HH |

Top-Down Pass for HH

v

Bottom-Up Pass for HL
Top-Down Pass for HL

v

Subtract T from significant
(POS, NEG) coefficients

Fig. 7.2.7 The zerotree encoding algorithm developed in this section.

7.2.1.4 Bit planes

Examination of the above algorithm reveals that the encoding is actually constructing a
sequential bit-plane representation of the wavelet transform of the image. Notice that
nowhere have we stored explicit information about the actual values of the significant
coefficients at each threshold level (other than their sign). However, by successively
subtracting powers of 2 from these coefficients, the algorithm is extracting a binary
representation of the values of these coefficients. The result is that each pass through the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 143

threshold loop in Fig. 7.2.7 produces a bit plane, starting with the most significant bits
and ending with the least significant bits, as shown in Fig. 7.2.8.

— €< Least
significant bits

A

Most
Bit Planes significant bits

Fig. 7.2.8 Bit planes. The zerotree encoding algorithm produces a
sequence of bit planes corresponding to a binary representation of
the wavelet transform of the image. The most significant bits are
encoded first and the least significant bitsare encoded last.

Actual examples of symbol-encoded bit planes are shown in Fig. 7.2.9. These bit planes

are from zerotree encoding of the “Lena” image, using Daubechies D4 wavelets. The
images in Fig. 7.2.9 are rendered so that the four symbols (POS, NEG, 1Z, ZR) that are
encoded and written to the output file appear in various shades of gray, while the ZT
symbol is rendered in white. Notice that most of bit planes 1 through 7 are white, which
means that these bit planes don't require much storage. In fact, the first three bit planes
combined require less than 30 bytes, and the first 7 bit planes require only about 1 Kb of
storage. This is good news for compression schemes, since these first bit planes contain
the most significant bits, and hence most of the significant information in the image. The
later bit planes, such as 13 and 14, are densely packed with encoded symbols. However,
these planes contain the least significant bits, and so it may be possible to safely ignore
these bit planes in a compression scheme. We'll need to decode the encoded image to see
the effect of removing some of this information.

7.2.2 Decoding a zerotree encoded image

Decoding a zerotree encoded image is easier than encoding it. A block diagram for
decoding is shown in Fig. 7.2.10. The header information contains the wavelet type,
number of rows (which equals the number of columns and so provides image size), the
lowpass valuel = log(threshold), and number of bit planes, whose use will be explained
below. Just as for encoding, we use a symbol array of the same size as the image to store
the symbols. The symbol array is an instantiation of the samee ot r ee C++ class

used for encoding. The symbol array is initialized to 0 on each threshold pass. For each
threshold value, we read the symbols for the LH subband, the HH subband and the HL
subband from the top down into the symbol array. Whenever a zerotree root symbol, ZR,
is encountered, it is expanded into its full zero subtree by assigning the ZT symbol to all
of its children in the symbol array. This expansion is accomplished using the same

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

144 Wavelet Image Compression Techniques

mar k_chi | dren (Listing 7.2.2) member function of the t zer ot r ee class as was
used for encoding.

A separate array maintains the wavelet transform values. This wavelet transform array is
initialized to O at the start of the decoding process. Once the symbol array has been
completely filled in for a particular threshold pass, the values in the wavelet transform
array are updated by adding the threshold value T to each array location corresponding to
a POS symbol and subtracting T at each location corresponding to a NEG symbol. Thus
the wavelet transform values are built up from their binary representations, using the most
significant bits first and progressing to the least significant bits. The decoded image is
obtained by applying the inverse wavelet transform after the final bit plane has been
constructed.

It is this ordering of the bit planes of the transform image, from the most significant bit
plane to the least significant bit plane, that provides zerotree decoding with its progressive
transmission property. To see how much information is transmitted after each bit plane, it
isinstructive to apply the inverse transform after each bit plane is constructed. Fig. 7.2.11
shows an example of this technique. The images in Fig. 7.2.11 were constructed by
applying the inverse Daubechies D4 wavel et transform to the bit planes of Fig. 7.2.9.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 145

Symbols:
POS
NEG
12
ZR
LlzT
1
2
3
[
4

Fig. 7.2.9 Bit planes 1-14 during zerotree encoding of the “Lena”
image, using Daubechies D4 wavelets.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

146 Wavelet Image Compression Techniques

Read header data: wavelet
type, # rows, lowpass value,
N = log, (threshold), bit planes

v
Compute threshold
T=2N
No
T=1 T-T/2
?
Yes 0
Apply inverse wavelet Initialize symbol array
transform to 0
v

Read symbols for LH band
y from top down; expand ZR’s

C Decoded Image) v

Read symbols for HH band
from top down; expand ZR’s

\J

Read symbols for HL band
from top down; expand ZR’s

v

Add T to significant |
(POS, NEG) coefficients

Fig. 7.2.10 The zerotree decoding algorithm.

Fig. 7.2.12 shows (&) PSNR and (b) pixel error % as a function of bit plane number for
the images shown in Fig. 7.2.11. Note that the zerotree encoding-decoding algorithm
described thus far is nearly a lossless agorithm, when al of the bit planes are
incorporated. This is expected, since the algorithm attempts to encode the entire binary
representation of the transform coefficients, without throwing away any information.
However, as it turns out, a small quantization error is introduced since the wavelet
coefficients are floating point values and the algorithm encodes only the integer part of
these floating point values. There is also a small numeric error introduced in applying the
wavelet transform and inverse transform operations. This is the reason for the pixel error
(0.99%,; 36.4 PSNR) which remains after decoding is applied to all of the bit planes.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 147

Progressive
Decoding of
the “Lena” Image

Fig. 7.2.11 Progressive decoding of the “Lena” image, which was
encoded with the zerotree algorithm using Daubechies D4 wavelets.
Each image here results from decoding the corresponding bit plane
in Fig. 7.2.9.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

148 Wavelet Image Compression Techniques

40 10000
——PSNR
| o 2
---0--- Compression Ratio 3
30 - + 1000 B
D
7
o 25 A o
E]
x 20 | +100 @&
n o
a 15 ~
=
\.‘ (8
10 + = . + 10 7
5+ - 5
. L)
0 f f f f f f f f f f f ——0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bit Plane
(a) PSNR and Compression Ratio vs. Bit Plane

20 5 8.0

187 —o—Pixel Error % T 7.0
16 1 ---m-- - Bits Per Pixel 5§ f60w
7
< r 5.0 -"5'2
S 4.0 2
0 @
- 3.0 5
T
L2032

r 1.0

0.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bit Plane

(b) Pixel Error % and Bits per Pixel vs. Bit Plane

Fig. 7.2.12 Two views of error and compression as a function of bit
plane number. The numbers here correspond to the 256 x 256
“Lena” image encoded with the zerotree algorithm, using the
Daubechies D4 wavelets, as shown in Figs. 7.2.9 and 7.2.11.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Wavelet Zerotrees 149

7.2.3 Where is the compression?

Fig. 7.2.12 also shows the effective compression ratio at each level of bit plane decoding.
Unfortunately, the algorithm as implemented here, without entropy encoding of the
symbols, provides essentially no compression when al of the bit planes are used.
However, if we eliminate the last few bit planes, we can obtain very good decoded image
quality with modest compression. For example, at bit plane 10, the decoded image has 2.0
% pixel error (31.4 PSNR) with a compression ratio of 5.16:1 (1.5 bits per pixel). Thisis
the reason for including the number of bit planes in the header information for the stored
encoded image. The decoder can stop at the designated bit plane to achieve better
compression.

There is another way to achieve additional compression. We can combine the decimation
technique of the previous two chapters with the zerotree algorithm. The decimation is
applied to the wavelet coefficients before the zerotree encoding. If al the bit planes are
retained, the results are approximately the same as for the basic decimation algorithm,

both in terms of decoded image error and compression ratio. For example, when 10% of

the Daubechies D4 wavelet coefficients are retained from the wavelet transform of the

“Lena” image, each algorithm provides a compression ratio of approximately 2.5:1 and
31-32 dB PSNR. We can improve the compression ratio of the zerotree encoded image
for a small price in decoded image error by retaining only 10 bit planes. Fig. 7.2.13
compares the basic decimation algorithm with the zerotree algorithm using decimation
and 10 bit planes. With 10 bit planes and 10% retained wavelet coefficients, the
compression ratio of the zerotree encoded image is 7.35:1 with a PSNR of 30.3 dB.

35 30
30 25
23 —0—Zerotree PSNR) g
erotree ¢ 20 3
o ---0--- Decimation PSNR °
- 20 +) ®
~ ——Zerotree Compr. Ratio . 0
z Decimation C Rati . Tz
(% 15 + ---0--- Decimation Compr. Ratio g
a
Pyl
+10 &
10 =
5 +5
0 - ‘ 0
10% 5% 1%
Retained Percentage of Coefficients

Fig. 7.2.13 Comparison of PSNR and compression ratio for the
decimation algorithm and the zerotree algorithm using decimation
and 10 bit planes. The zerotree algorithm provides better
compression for a small cost in PSNR. The image is 256 x 256
“Lena” and the wavelets are Daubechies DA4.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

150 Wavelet Image Compression Techniques

7.2.4 Encoding speed

A significant advantage of the zerotree algorithm, particularly when compared to fractal
algorithms, is encoding speed. Fig. 7.2.14 compares encoding times for the zerotree
algorithm with the basic decimation agorithm. The zerotree algorithm in this case
includes no decimation. Compression comes from reduced bit planes only. The
decimation process involves a sorting operation that dominates the encoding time. The
wavelet transform by itself takes approximately 3 seconds for a 256 x 256 image. The
zerotree algorithm with no decimation takes just a second or two in addition to this
transform time. This time includes writing the symbols to a file. The decimation time
increases with the percentage of retained coefficients. For 1% retained coefficients (25:1
compression ratio) this time is negligible, and so the total encoding time approximately
equals the wavelet transform time of 3 seconds. For 10% retained coefficients (2.5:1
compression ratio), the decimation time increases to 15 seconds, which is the predominant
portion of the total encoding time of 18 seconds.

20
18+ O
16 L —<——Zerotree - No Decimation
o
f,,_’/ 14+ - ---O-- - Basic Decimation
o 1 Algorithm
S 12 L R, Wavelet Transform Only
= 10+ .
g’ B
5 81 B
g
c 61 :
LLl
4 + ~- - <>
................................ i
2 €
0 f f f f f
0 10 20 30 40 50 60

Compression Ratio

Fig. 7.2.14 Encoding time vs. compresson ratio for zerotree
encoding with no decimation and the basic decimation algorithm
(200 MHz Pentium PC processor). Decimation includes a sorting
operation that accounts for most of the encoding time for that
algorithm.

7.3 HYBRID FRACTAL-WAVELET CODING

Self-similarity in scale is the defining characteristic of fractals. Wavelets, with their
ability to extract scale information, are a natural tool for analyzing fractals. It should not
be surprising, therefore, that recent research activities have focused on combining wavel et
and fractal techniques for image compression. Davis (1995, 1996, 1998) has proposed an
image compression approach that uses elements of both fractal and wavelet image
compression and provides a framework that ties these two approaches together. Asgari, et

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Hybrid Fractal-Wavelet Coding 151

a. (1997) use a wavelet transform to construct non-affine transformations for a
compression scheme based on iterated function systems. Hebert and Soundarargjan
(1998) perform domain-range matching in the wavelet transform domain to achieve very
high compression ratios.

The idea behind most hybrid fractal-wavelet coding approaches is to apply a wavelet
transform to the image and then use fractal methods in the wavelet domain. However, the
distribution and dynamic range of the wavelet coefficient values can cause problems with
this approach. The very properties that make the wavelet transform advantageous for
image compression make manipulation of the image in the wavelet transform domain
difficult. Remember, we can throw away 90% or more of the wavelet transform values
and still get a good rendering of the original image when the inverse transform is applied.
Thisistelling us that most of the image information is concentrated in a small number of
transform values. We have seen that the significant coefficients of the wavelet transform
array are located primarily in the upper left corner among the lowpass filter values. Thisis
evident, for example, in Fig. 7.2.9, where the first 6 bit planes of the significant
coefficients are nearly all zero, except for afew valuesin the upper |eft corner.

Fig. 7.3.1 shows two different quantizations of the wavelet transform of the “Lena”
image. Part (a) of this figure shows uniform quantization (256 gray levels). Nearly all of
the image quantizes to the same level (corresponding to the transform value of 0 — the
transform contains both negative and positive values). This is because of the large
dynamic range of the wavelet values, as well as the fact that many of the values cluster
near zero (which is why the wavelet transform provides such good compression!). The
dynamic range increases approximately by a factor of two at each wavelet level. In part
(b) of this figure, each wavelet level was quantized separately, in an attempt to bring out
more detail in the transform image. More detail is visible, but there is still a
preponderance of wavelet values that quantize to zero at each level.

€Y (b)

Fig. 7.3.1 Haar wavelet transform of the “Lena” image. (a)
Uniform quantization. (b) Separate quantization for each wavelet
level.

A problem with applying fractal image compression to awavel et transform image, such as
Fig. 7.3.1 (a) or (b) isthat there is not enough image information for the fractal algorithm
to latch onto. The domain-range matching process of fractal encoding does not apply

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

152 Wavelet Image Compression Techniques

special attention to one region of the image versus other regions. Thus, the standard
fractal algorithm would not supply sufficient encoding fidelity to the critical information
in the upper left corner of the wavelet transform array.

7.3.1 Operator approach to hybrid fractal-wavelet coding

Davis (1995, 1996, 1998) proposed a hybrid approach that develops an operator
framework in the wavelet domain. This operator framework is similar to the operator
representation of fractal encoding that we developed in Chapter 3. However, instead of
operating on block subimages, as was the case for fractal encoding, Davis introduces “get
subtree” and “put subtree” operators that operate on subtree structures in the wavelet
domain (Fig. 7.3.2).

Wavelet
Fractal Approach: |:| Analog: |:|
/\ /\
Map domain blocks to Map subtrees to
range blocks subtrees
@ (b)

Fig. 7.3.2 Fractal encoding maps domain blocksto range blocks (a).
Davis (1995, 1996, 1998) proposed an analogous operation in the
wavelet domain that maps subtreesto subtrees (b).

Given an imageF O O with wavelet transformW(F), the algorithm maps domain
subtrees to range subtrees to obtain an ope@asoich that

W(F) = G(W(F)) + H. (7.3.1)

The solution of (7.3.1) is given by
F=wW'(l-6)"(H) (7.3.2)

which exists providedd|| < 1. Note the similarity to the operator formulation of standard
fractal imagg coding. As for the fractal case, (7.3.2) can be solved by first iteratively
obtainingW(F) and then applying the inverse wavelet transfavi.

To summarize the steps in Davis’ hybrid approach:
To encode an imade
1. Apply wavelet transformE - W(F). Reorganize the coefficients W(F)
into wavelet subtrees.
2. Set up a system of domain subtrees and disjoint range subtrees (similar to
fractal domain and range blocks). Determine composite mapping operator
G from domain subtrees to range subtrees to minimize error in wavelet
domain.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Hybrid Fractal-Wavelet Coding 153

3. Apply quantization and entropy coding.

To decode an image:
1. Extract operator G and offset H from quantized entropy-coded coefficient
values.
2. Start with an arbitrary image Y and iterate:

YO =G(Y™) +H.
3. Apply inverse wavelet transform:
F=w(Y).

Operating on wavelet subtrees rather than directly on image subblocks provides the
advantage of removing blocking artifacts in the decoded image. This leads to decoded

images that are more acceptable from a visua perception point of view, even when
standard error measures are comparable to those of standard techniques. Davis (1998)
achieves quite good results using his self-quantization of subtrees (SQS) approach. He

reports 65:1 compression of the 512 x 512 “Lena” image, with a PSNR of nearly 30 dB.

On the downside, the computational complexity of this method produces encoding times
in excess of an hour on a 133 MHz Pentium PC.

7.3.2 Other hybrid approaches

Hebert and Soundararajan (1998) use a special scan order to transform the two-
dimensional image into a one-dimensional vector. This vector is then subdivided into
range subvectors of fixed equal length. A system of overlapping domain subvectors, each
of twice the size of the range subvectors, is also established. The one-dimensional wavelet
transform of each range and domain vector is then computed. Domains and ranges are
compared on the basis of their wavelet transforms. Speed is attained by comparing low
resolution coefficients first and eliminating matches that fail a threshold test. (The authors
report encoding times in the range of several minutes on a Pentium PC fox 22566
grayscale image). Once the best domain-range match is found, the domain is mapped onto
the range using an affine transformation that shrinks the domain by a factor of two and
applies optimal scaling and offset values determined by a least squares fitting. The
algorithm achieves high compression ratios (greater than 100:1) because of its relative
inflexibility. There is no adaptation of ranges, for example. The number of ranges is
fixed, and so the number of transformations is fixed. The location of the transformation in
the list determines the range to which it applies. There is a relatively small number of
domains (the authors use 255 in their example), so the domain index takes up a small
number of bits. The only transformation information that needs to be stored is the domain
index and scaling and offset values. The price for this inflexibility, as you might expect, is
relatively low PSNR values for the decoded images (on the order of 21 dB). However, the
scan order approach eliminates blocking artifacts, which leads to visually acceptable
decoded images in spite of the low PSNR.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

8

COMPARISON OF FRACTAL AND WAVELET IMAGE
COMPRESSION

The preceding chapters have examined techniques for compressing images using fractal
and wavelet approaches. This final chapter will compare these two approaches and
discuss the relative advantages of each. The results shown here were generated with the
accompanying software. As mentioned previoudly, this software was developed to
illustrate the ideas of the book and was not developed with performance as a primary
goal. Also, the systems compared here are not complete compression systems. In
particular, there is no entropy coding on the output of the fractal or wavelet algorithms.
The presence of entropy coding might alter the results presented here. For example, one
or the other of these algorithms might produce output that is more compressible under
entropy coding. The results shown here should be used to compare the relative merits of
the fractal and wavelet algorithms presented here and should not be compared, for
example, to research or commercial quality compression software.

8.1 RATE DISTORTION

Rate distortion compares the tradeoffs between compression and distortion of the decoded
image in lossy compression schemes. Rate is defined as the average number of bits
needed to represent each pixel value (Sayood 1996). It is usually expressed as bits per
pixel (bpp). Distortion is usually measured in terms of PSNR, although this is not always
a good measure of perceived image quality. Rate-distortion curves normally plot bpp
versus PSNR. However, the fractal encoding literature more commonly reports rate
distortion in terms of compression ratio versus PSNR, rather than bpp versus PSNR. This
may be due to the fact that fractal encodings are not tied to an image size in pixels, as are
other encoding methods. The discussion that follows will aso report rate distortion in
terms of compression ratio versus PSNR. For fractal methods, the encoded image size is
determined by assuming 4 bytes for each range cell. The compression ratio is determined
by dividing the size of the original bitmap image, in bytes, by the number of bytesin the
encoded image. Distortion, as measured by PSNR, is determined by decoding the image
at the same size as the original bitmap, and comparing the decoded image to the original.
For wavelet methods, the encoded image size is the size of the actual binary zerotree file,
as discussed in Chapter 7.

Fig. 8.1.1 shows compression ratio vs. PSNR curves for various fractal and wavelet
compression techniques applied to the 256 x 256 “Lena” image. These curves plot
compression ratio versus image quality, as represented by PSNR. The most desirable real
estate on this graph is the upper right quadrant, where high compression ratios and good
image quality live. In reality, all encoding algorithms reside closer to the lower left
region, where they must manage a tradeoff between compression ratio and image quality.

155

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

156 Comparison of Fractal and Wavelet Image Compression

39
—O—Fractal Baseline
36 1% --.0--- Wavelet D4 - No Dec.
0\\ ---#--- Wavelet D4 - 10% Dec.
33 | 0\\ —0— Fractal FE
—A— Fractal SO
r 30+
=z
[%2]
o
27 +
24 +
-0
21 f f f f f f f f f f
0 5 10 15 20 25 30 35 40 45 50 55
Compression Ratio

Fig. 8.1.1 Compression ratio vs. PSNR curves for fractal and
wavelet compression applied to the “Lena” image (258 256).

There is a fundamental difference in how the fractal and wavelet algorithms presented in
this book handle compression versus image quality. The fractal methods use an adaptive
quadtree partitioning scheme which is driven by a preset error tolerance. The tighter the
error tolerance, the better the decoded image quality. However, this leads to worse
compression since it results in more range cells. Thus, the user picks image quality in
advance and settles for whatever compression results from that. It is possible to design a
non-adaptive partitioning scheme, in which the user designates in advance the range cell
partitioning, usually uniform over the entire image. This allows the user to control
compression, however the uniform partitioning leads to much poorer decoded image
quality for most images.

The wavelet methods, on the other hand, give the user control over compression by
allowing the designation of bit planes or decimation percent, or both. In this case, the user
picks compression in advance and settles for whatever decoded image quality results from
that. You should keep in mind these differences between fractal and wavelet compression
when comparing rate-distortion curves for these algorithms.

Three fractal algorithms were used for this comparison: the “Baseline” method of Chapter
3, and the feature extraction (“FE”) and self-organizing (“SO”) domain classification
methods of Chapter 4. In each case, 1186 domains were used (level 2, with horizontal and
vertical overlap set to 0.5). The “Search for Best Domain” option was set to “Yes”, which
improves image quality (at the expense of compression time, as we’'ll see below). To get a
variety of compression ratios and image qualities, five combinations of quadtree level and
error tolerance were used:

1. Quadtree level 5; error tolerance 0.05;
2. Quadtree level 6; error tolerance 0.05;

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Rate Distortion 157

3. Quadtree level 7; error tolerance 0.05;
4. Quadtree level 6; error tolerance 0.025;
5. Quadtree level 7; error tolerance 0.025.

As expected, a tight error tolerance (e.g., 0.025) combined with a large quadtree depth
(e.g., 7) leads to good image quality, but not very good compression.

The wavelet algorithm is the zerotree algorithm of Chapter 7, using the Daubechies D4
wavelets, and implemented both with no decimation of coefficients (“No Dec.”) and
decimation of all but 10% of the coefficients (“%10 Dec.”).

The baseline fractal algorithm actually works best in this case, providing better image

quality for comparable compression ratio than either the wavelet algorithms or the FE or
SO fractal algorithms. The next best performers are the wavelet algorithms. Note that for
compression ratios of about 10:1 or greater, the two wavelet algorithms merge, providing
essentially the same performance. Thus, there is no point in doing the time-consuming
decimation operation at this level of compression, since it adds no benefit to compression
(and certainly not image quality). The zerotree algorithm with no decimation is essentially

a lossless algorithm when using large numbers of bit planes. Thus it is not surprising to
see the compression ratio vs. PSNR curve for this algorithm reaching high along the
PSNR axis. The catch, of course, is that this curve is also asymptotically approaching the
vertical line where the compression ratio equals one.

The worst performers are the FE and SO fractal algorithms. These algorithms were
designed with speed in mind, and Fig. 8.1.1 shows that some performance has been
sacrificed in terms of compression and image quality. The gap between the compression
ratio vs. PSNR curves for these algorithms and that of the baseline fractal algorithm
indicates that improvement could be made in the selection of features used by these
algorithms. No attempt has been made to optimize the choice of these features. Other
researchers have considered Fourier (McGregor et al. 1994) and wavelet features (Hebert
and Soundararajan 1998).

For a second example of compression ratio vs. PSNR curves, we'll look at results
obtained for the “Leaves” image. This image is shown in Fig. 8.1.2 along with a fractal-
encoded version. As it turns out, this image is fairly challenging for our compression
algorithms, as can be seen from the compression ratio vs. PSNR curves shown in Fig.
8.1.3.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

158 Comparison of Fractal and Wavelet Image Compression

(b)

Fig. 8.1.2 The challenging “Leaves” image (256 256). (a) Original
image. (b) Image compressed with baseline fractal algorithm to
3.8:1 with 3.1% pixel error (25.9 PSNR).

Comparison with Fig. 8.1.1 shows that all of the algorithms perform significantly worse

on this image than on “Lena”. The wavelet zerotree algorithm with no decimation does
provide high PSNR for cases where there is a large number of bit planes, but compression
is nearly nonexistent at these levels. Note that performance for this algorithm is quite
close to that of the baseline fractal algorithm. In fact, the compression ratio vs. PSNR
curves for these algorithms cross at a compression ratio of approximately 5:1, with the
image quality of the wavelet algorithm rising above that of the fractal algorithm for
compression ratios to the left of this point. The FE and SO fractal algorithms fare
somewhat better here, out-performing the 10% decimation wavelet algorithm for small
compression ratios.

42
9
39 + 6. —©O—Fractal Baseline
36 \\ ---¢--- Wavelet D4 - No Dec.
b ---@--- Wavelet D4 - 10% Dec.
33 —+—Fractal FE
\<> —aA— Fractal SO

30 + N
x
& 27 + o
o

24 +

21 +

18 + e

15 } } } } } } } }

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Compression Ratio

Fig. 8.1.3 Compression ratio vs. PSNR curves for fractal and
wavelet compression applied to the “Leaves” image (256256).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Encoding Speed 159

8.2 ENCODING SPEED

In addition to compression ratio and image quality, there is a third parameter, namely
encoding speed, which should be considered when comparing compression algorithms.
This is where the baseline fractal agorithm, which held its own quite nicely under the
wavelet assault in the previous section, would like to avoid further scrutiny. Fig. 8.2.1
compares compression ratio and encoding time (on a 200 MHz Pentium PC). The time
scale on the vertical axis is logarithmic, otherwise the baseline fractal times would flatten
all of the other curves. The times here correspond to the encodings shown in Fig. 8.1.1 for
the “Lena” image.

Recall that the fractal algorithms used for Fig. 8.1.1 all used the “Search for Best
Domain” option. With this option in effect, the domain-range matching operation checks
all of the domains, even if a match has been found that is within the error tolerance. This
provides slightly better rate-distortion performance, but it carries the expense of increased
encoding time. As we saw in Table 3.3.2, in Chapter 3, this option can triple the encoding
times for the baseline algorithm. The situation is not quite as bad for the FE and SO
fractal algorithms, where this option only doubles encoding times.

Fig. 8.2.2 shows encoding times for the baseline algorithm with the “Search for Best
Domain” option turned on (“Fractal Baseline”) and with this option turned off (“Fractal
Baseline - No Best Domain”). In addition, for the latter case, the number of orientation
transformations was reduced from 8 to 4 to provide a further time improvement. These
two modifications decreased encoding times by a factor of 5, but also decreased PSNR by
2 dB for these cases.

100000
@ O\o\ ——0— Fractal Baseline
I
3 10000 v\o\o —0O—Fractal FE [
2 —A—Fractal SO
|
~ - —-&—--W let D4 - 10% Dec.
= 1000 avele 6 Dec. | |
% - -¢ - -Wavelet D4 - No Dec.
I I S
E 100 +
= \A\A
o
._g "W - - ——— *
3 10
S POy mmmmmm=== $============================== <
1 f f f f f f f f f f

Compression Ratio

Fig. 8.21 Encoding time (on a 200 MHz Pentium PC) vs.
compression ratio for the “Lena” image (256x 256).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

160 Comparison of Fractal and Wavelet Image Compression

18000
16000 + —O—Baseline; Best Domain; 8 Transf.
%\ 14000 —e—Baseline; No Best Domain; 4 Transf.
£ 12000 +
o
£ 10000 +
e
o 8000 +
c
S 6000 +
o
2 4000 |
L
2000 +
0 1 1 1 1 1
5 10 15 20 25 30 35
Compression Ratio
(a) Encoding Time vs. Compression Ratio
33
—O—Baseline; Best Domain; 8 Transf.
30 + —e—Baseline; No Best Domain; 4 Transf.
z
0 27 +
o
24 +
21 1 1 1 1 1
5 10 15 20 25 30 35
Compression Ratio

(b) PSNR vs. Compression Ratio

Fig. 8.2.2 (a) Encoding time vs. compression ratio for the 256 x 256
“Lena” image. This figure compares the effect of using the “Search
for Best Domain” option, as well as reducing the number of
orientation transformations from 8 to 4. (b) PSNR vs. compression
ratio for the same cases.

8.3 LARGER IMAGES

All of the examples we have looked at so far have been 256 x 256 images. These smaller
images are convenient to work with. However, many image compression references report
results for larger images, with 512 x 512 being a standard size. Larger images are usually
easier to compress. This is particularly true when they represent larger versions of the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Larger Images 161

same image, such as when comparing the 512 x 512 “Lena” image to the 256256
version. This is not surprising, since the information content of the larger image has
increased very little. Fractal methods, in particular, can take advantage of this lack of
increase in information to provide much greater compression ratios for larger images.

Fig. 8.3.1 compares the rate-distortion curves for fractal encoding of the Hl2 and

256 x 256 “Lena” images. Note that for the larger image, the curves shift significantly to
the right, indicating greater compression for the same PSNR levels. In fact, if you draw a
horizontal line through a PSNR value you will see that it intersects the compression ratio
vs. PSNR curves for the larger image at compression ratios approximately 4 times greater
than the same curves for the smaller image. The dashed line in Fig. 8.3.1 shows one
example of this. The horizontal line at the level of approximately 26 dB PSNR intersects
the FE and SO curves for the 26@56 image at a compression ratio of 10:1 and
intersects the 512 512 curve at 40:1.

33
Q
i —O— Fractal Baseline - 512
B b — 00— Fractal FE- 512
30 + —aA— Fractal SO - 512
o ---0O--- Fractal Baseline - 256
. ---0O- - - Fractal FE- 256
o ---A--- Fractal SO - 256
Z
27 +
21ROy
e
IE\\\ 1
1 SaSs
244 1 il :
I Sy 1
1 A 1
[} 1
[} [}
21 $ f f ¥ f f f f f f f f
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Compression Ratio

Fig. 8.3.1 Compression ratio vs. PSNR curves for fractal encoding

of the 512 x 512 “Lena” image and the 256« 256 “Lena” image.
The dashed line shows an example where, for a given PSNR level,
the compression ratio is approximately 4 times greater for the
larger image.

In fact, for the same quadtree depth and error tolerance level, the fractal encoding
methods give nearly the same number of range cells for either image size. This can be
seen in Fig. 8.3.2, which plots PSNR vs. number of range cells for both image sizes.
Thereisvery little difference in the number of range cells for the two image sizes.

The fact that the number of range cells does not increase with image size is the same
phenomenon that produces the resolution independence property of fractal encoding that
was discussed in Chapter 3. Fractal encoding looks for information in an image. It does
not care about image size.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

162 Comparison of Fractal and Wavelet Image Compression

33
..0
A
30 +
0
527 + .
g_) , —o0—Fractal Baseline - 512
—— Fractal FE- 512
—A— Fractal SO - 512
24 L ---0O--- Fractal Baseline - 256
- - -0O- - Fractal FE- 256
& ---A--- Series6
21 : : : : : :
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
No. of Range Cells

Fig. 8.3.2 PSNR vs. number of range cells for fractal encoding of
the 512 x 512 and 256 x 256 “Lena” images.

The situation is similar for wavelet encoding. Here, as for the fractal methods, as Fig.

8.3.3 shows, we get nearly a factor of 4 increase in compression ratio when going from a

256 x 256 image to a 512 x 512 image. The examples in Fig. 8.3.3 represent wavelet
zerotree encoding of the “Lena” image using Daubechies D4 wavelets with no
decimation. The dashed line in Fig. 8.3.3 shows a horizontal line intersecting the
compression ratio vs. PSNR curve for the smaller image at a compression ratio of 20:1,
and intersecting the curve for the larger image at nearly 80:1.

39

36 3 —0— Wavelet D4 - 512

---0--- Wavelet D4 - 256

PSNR

21
0 20 40 60 80 100 120 140 160 180 200 220 240

Compression Ratio

Fig. 8.3.3 Compression ratio vs. PSNR curves for wavelet zerotree
encoding of the 512 x 512 “Lena” image and the 256« 256 “Lena”
image.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Conclusions 163

The increased compression ratios that are possible for larger images do not come without
a price. Encoding times, as one might expect, increase for the larger images. For the
fractal methods, encoding times are approximately twice as long for the 512 x 512 image
asfor the 256 x 256 image. This situation is not quite as bad asit could be, since there are
4 times as many pixels in the larger image. For the wavelet zerotree approach, with no
decimation, the encoding times actually increase by a factor of 5-6 for the larger image,
although total encoding times are till only on the order of 30 seconds (200 MHz Pentium
PC). With decimation, encoding times are significantly longer, due to the sorting
operation that is involved.

8.4 CONCLUSIONS

In this book, we have examined fractal and wavelet techniques for image compression. It

has not been the intention of this book to “sell” one or the other of these techniques, either
compared to each other or compared to the standards now in use. Rather, the intention has
been to equip you, the reader, with the tools and information to further pursue these
techniques on your own.

Fractal and wavelet methods provide an alternative to Fourier-based compression
techniques, such as JPEG. As mentioned in Chapter 1, standards such as JPEG and
MPEG should not stifle further research in image compression. Rather, by encouraging
the use of digital images in communication, these standards help to uncover new uses and
needs for compression technology. New technologies such as fractals and wavelets should
not be viewed as competitors but as allies in establishing new standards. In fact, wavelets
are at the core of the new JPEG 2000 standard. The International Standards Organization
(ISO) JPEG Committee, in collaboration with the Digital Imaging Group (DIG), have
recognized the need to update the original JPEG standard to address digital imaging’s
enormous growth due to the Internet and also to address the changing needs of those who
create and use digital images. For the last three years they have been developing JPEG
2000 as a new digital image compression standard. According to the DIG JPEG 2000
white paper (1999), the wavelet technology of JPEG 2000 can provide a 20%
improvement in compression efficiency over previous JPEG DCT compression methods.
JPEG 2000 also takes advantage of the progressive transmission property of wavelets,
covered here in Chapter 7, to provide the end user of the image with progressive access to
resolution quality and color depth. Release of JPEG 2000 is planned for early in the year
2000, with formal adoption as an international standard later that year.

The baseline fractal encoding method can provide better rate-distortion performance, that
is, better compression and image quality, than the wavelet approach. However, this
performance comes at great expense in encoding time. Better performance could be
obtained using more domains, but that only exacerbates the time problem. We addressed
the time problem through the use of feature extraction and domain classification. This
brought encoding times down to a level more competitive with the wavelet methods, but
at the expense of decreased rate-distortion performance. As mentioned above, this
suggests that the features used, which were not subjected to any sort of optimization,
could be improved upon. One encouraging aspect of the fractal encoding process is that it
is completely parallelizable. Domain-range matching can proceed simultaneously on
multiple image segments on multiple processors, with no communication required among

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

164 Comparison of Fractal and Wavelet Image Compression

the processors. Specialized parallel hardware can therefore provide significant reduction
in encoding times. Such hardware is currently in use at Iterated Systems, Inc.

With current implementations, such as those described in this book, fractal methods are
probably best suited to archival applications, such as digital encyclopedias, where an
image is encoded once and decoded many times. Wavelet methods are better suited to
applications requiring fast encoding, such as communication across the Internet, or from a
missile seeker to ground control.

Our understanding of images as information sources is far from complete. Fracta
methods represent a step in a new direction toward furthering our understanding of

images. Unlike wavelet and Fourier transform methods, which essentially throw
information away to achieve compression, fractal methods attempt to reconstruct the

image using relationships among subimages. The domain-range matching approach that is

the basis for most fractal methods is a far from optimal implementation of the theory of

fractal representation of images. Recall from Chapter 2 the “fern” image that is the
quintessential example of an IFS image. This image is generated using just 4 affine
transformations. What would happen if we applied our fractal encoding to a bitmap image
of this same fern? We would get hundreds or thousands of transformations, and the
decoded image would not be as good as the one generated with the original 4
transformations. Rather than condemning fractal encoding, this simple example should
point out that there is need for further research to unlock its potential.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A

USING THE ACCOMPANYING SOFTWARE

The software accompanying this book is intended to illustrate the ideas introduced here. It
can be found at http://www.spie.or g/lbookstor e/tt40/. While every effort has been made
to provide stable software with a functional user interface, you will not find all of the
features you might expect in commercial-grade software. Source code is also provided so
that you can build on this software and do your own explorations in fractal and wavelet
compression techniques. The source code is not optimized for speed, but rather has been
written with clarity of style in mind. Appendixes B and C discuss the source code in more
detail.

System Requirements. The software is designed to run on a Pentium (or better) PC with
a 32-bit Windows operating system (Windows 95, 98 or NT; you can aso use Windows
3.1 augmented with WIN32S). The executables (*.exe) run without any additional
dynamic link libraries (DLL’S), other than what is available in a standard Windows
configuration.

Softwar e Systems. There are three software systems supplied:
o |FS System: Create and run iterated function systems
o IMG System: Fractal image compression
¢ WAV System: Wavelet image compression and plotting.

A.1IFS SYSTEM

The IFS System creates iterated function systems (IFS's), using specified points and
affine transformations between sets of points. Fig. A.1.1 shows the main frame window
for the IFS System, with the menu showing the options for opening various window types.
The program provides an interface for placing points on a 2-dimensional grid and using
these points to specify affine transformations. These affine transformations define an | FS.
The program computes and stores the coefficients for the affine transformationsin afile.

The steps to produce an | FS attractor image are the following:
1. Define the points.
2. Define the affine transformations.
3. Save the coefficients to afile.
4. Open the coefficient file and run the I FS.

The next sections discuss these steps in more detail.

165

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

166 Using the Accompanying Software

£ IFS System M= E3
File Bun Image Window
Open IFS Window... S\Spiral.cff =

Read Coeff File...

Open Points File...
New Points Window

Open Transformation File...
MNew Transformation Window

Print Window

About IFS...

Quit

23739

Fig. A.1.1 Frame window for IFS System, showing main menu
options, and an | FS window.

A.1.1 Points window

The points window provides a grid for specifying the locations of points that will be used
to define the affine transformations. The program provides the option of importing a
bitmap image (“Image” menu) that will be superimposed on the grid to aid in defining the
point locations. Fig. 2.4.1 shows an example of the grid with an imported bitmap image.
You should define your x-y points at easily identified image points, such as the tips of
leaves, or corners of block letters. You need to know in advance what your
transformations are going to be, and what points are going to define those
transformations. Remember, you are trying to implement the Collage Theorem (section
2.3.2) here. Your transformations must be contractions (i.e., transformations that map
large areas to smaller areas) and they must cover the image without too much overlap and
without missing too much of the image. The closer your collage of transformations comes
to accomplishing this, the better your final IFS image will be.

To add a new point, click on the“Add New Points’ item in the “Edit” menu, then click on
the grid in the approximate location where you want to locate the point. The “X-Y Point”
dialog, as shown in Fig. A.1.2, then appears, alowing you to fine tune the numeric values
of the x and y coordinates of the point. When you click “OK” on this dialog, you will see
the new point on the grid with its consecutively assigned numeric label. You will remain
in“Add New Points’ mode as long as that menu item is checked.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IFS System 167

X-Y Point [x]
4 IFS System :
File | Edit Image Window Edit X values:
Add New Points) 0.3620
v Edit Points Delete
Browse Points List ¥ |0.4299
v Show Point Labels
: C:\FractiIFS\Fern.pts ox_| e |
, 1A
1.1 Edit Points [=]
1.0
0.9 Double Click to Edit Points:
0.8 1 %:-0.3620 ¥: 0.4299
2:%: 0.0934Y: 1.1469
0.7 8. 31X 0.2608 Y: 0.4342
0.6 2:%:-0.2491 Y: 0.1245
0.5 12 5:%:-0.1674Y: 0.2946
: 1 ° 6:%:-0.0195 : 0.2685
0.4 ° 7:3% 0.0817 Y: 0.1070
0.4 5. 8:%:-0.3031 Y: 0.6487
: 11.5¢ 9:%: 0.2306 Y: 0.6258 -
0.2
4,
0.1

10.

Cancel |

-0.6-0.5-0.4-0.3-0.2-0.1

Fig. A.1.2 The points window, showing its “Edit” menu and the
dialogsfor editing the pointslist.

To edit an existing point, select the “Edit Points’ menu item, then click on the point you
want to edit. You can now drag the point to its desired location. Y ou can aso edit points
by selecting the “Browse Points List” menu item, which brings up a list box dialog
containing the current points list. Double-clicking an item in this list summons the “X-Y
Point” dialog for numeric editing. Fig. A.1.2 shows the points window, with its “Edit”
menu, and the list box and “X-Y Point” dialogs.

When you are satisfied with your points list, save the list to afile, using either the “ Save
Points File” or “Save Points File as...” menu items under the “File” menu. (By the way,
the ellipses (“...”) on a menu item means that that item summons a dialog box. Thisis a
user interface convention that goes back at least as far as the earliest Macintosh.) Close
the points window when you are done.

A.1.2 Transformation window

The transformation window creates, edits and saves affine transformations, using a
previously created points file. To open a transformation window, select either “New
Transformation Window” to create new transformations, or “Open Transformation
File...” to edit an existing list of transformations. In either case, you will be asked for the
name of a points file that will supply the points list upon which the transformations will
be defined.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

168 Using the Accompanying Software

£ IFS System M=l E3
File lﬁ Image Window
Create New Transformation...
AcceptNew ranstormation...
Edit Transformations...
v Show Point Labels

Edit Transformations E3

Edit Transformations:

1.2
2
1
1.0
0.9 Enter transformation point indexes:
0.8 Mte12)
0.7
8. 11 4[4
0.6 - |— | | |
12,
05— N I —

’ Color ...
0.3 5 6. 33 6 [5 |
0.2 [

4% 7. I
0.1 10, oK Cancel | Delete |
0

-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. A.1.3 The transformation window, with its “Edit” menu and
dialogsfor editing the transfor mations.

The transformation window displays the points on the same grid that was used for their
creation by the points window. However, you cannot edit the points in the transformation
window. Fig. A.1.3 shows the transformation window, with its “Edit” menu and dialogs
for editing the transformations. Y ou can import a bitmap image here, to be superimposed
on the grid, just as for the points window, to aid in drawing the transformations.

Select “Create New Transformation...” to begin creating a new transformation. An affine
transformation is defined by six points, mapping the first three points onto the last three
points. The left mouse button selects a point, the right mouse button deselects it. As you
select the points, lines will appear between the selected points, with atriangle defining the
first three points, and a second triangle defining the last three points. Remember, as
mentioned in the previous section, you are trying to implement the Collage Theorem of
section 2.3.2. The second triangle should be smaller than the first, so that you have a
contraction, and the collection of second triangles from all of the transformations should
cover the desired image without missing too much and without too much overlap. When
you have selected the sixth and final point defining the transformation, select “Accept
New Transformation...” from the “Edit” menu. The “Transformation Points’ dialog will
appear, as shown in Fig. A.1.3. This dialog alows you to edit your point selections, and
aso to specify a color for the transformation, using the standard Windows color chooser
dialog. This color selection determines the color of the range of the transformation (i.e.,
the region determined by the second triangle of the transformation) in the final 1FS image.

You can edit your list of transformations using the “Edit Transformations...” menu item,
which brings up the list dialog shown in Fig. A.1.3. You can aso use thisdialog to view a

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IFS System 169

transformation by selecting it from the list. The two triangles for the selected
transformation are displayed on the grid, with the second triangle shown in the color for
that transformation.

When you are finished creating and editing your transformationslist, save thelist to afile,
using either the “Save Transformation File” or “Save Transformation File as...” menu
items under the “File’ menu. With points and transformations defined, you are now ready
to create your IFS. Select “Create Coeff File...” under the “File” menu to create a file
with the coefficients of the IFS. Y ou will be prompted for afile name (“*.cff"). Once this
has been specified, the program calculates the affine coefficients from your
transformation definitions. The program checks to see that each transformation constitutes
a contraction mapping. If it encounters a transformation that is not a contraction mapping,
it displays a warning message identifying the offending transformation. It will, however,
generate the affine coefficients and save them to the designated file. A system with a non-
contractive transformation will most likely diverge when you attempt to display the IFS
image.

A.1.3 IFS window

The IFS window runs the IFS and displays the resulting attractor image. The image can be
generated using either the deterministic algorithm, as described in section 2.4.3.1, or the
random algorithm, as described in section 2.4.3.2. Fig. A.1.4 shows IFS windows
displaying both random and deterministic images. “Run IFS’ iterates the IFS and displays
the resulting attractor image. Stop the iterations by clicking the left mouse button
anywhere on the window, or hitting the “Esc” key. The random algorithm runs by default.
Y ou can choose the deterministic algorithm by checking the “Use Deterministic System”
menu item. Pick from among a sgquare, a circle, or a point as the starting image for the
deterministic image, using the dialog summoned from the “Change Det Start Image...”
menu item.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

170 Using the Accompanying Software

IFS System M=l B3
File Iﬁ Image Window
v Use Deterministic System
Change Det Start Image...

Run IFS

{ CACPP_CODE\IFS\DATA\Fern2g.cff

+ CACPP_CODEMFS\DATAYF 4

Iter:

33966

Fig. A.1.4 IFS window, showing a fern IFS generated with the
random (right) and deterministic (left) algorithm. The starting
image for the deterministic algorithm isacirclein this example.

The “Graph Setup” dialog can be used to change various graphing parameters, such asthe
x-y window and the background color. Changing the x-y window effectively zooms in on
the attractor image (this feature works only with the random IFS attractor), as shown in
Fig. A.1.5. The clipboard feature allows you to import the image directly into other
Windows applications for printing or display.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IFS System 171

IFS System
File BRun | Image Window
Setup Image...
Copy Image to Clipboard

Graph Setup

Select Graph Parameter:

0.5000
Y Max: 0.7000

Text Color: RGE(0,0,0)

Back Color: RGB(192,192,192)

Cancel |

Iter:

250946

Fig. A.1.5 The “Graph Setup” dialog can be used to change the x-y
window and the background color.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

172 Using the Accompanying Software

IFS System Hi[=] B3
File Bun | Image Window
Setup Image...
Copy Image to Clipboard

Graph Setup []
+ CACPP_CODEMFS\DATAVF Select Graph Parameter:

X Min: 0.0000
X Max: 0.2000
Y Min: 0.5000
Y Max: 0.7000

Text Color: RGE([0,0,0)

Back Color: RGB(192,192,192)

Cancel |

Iter:

2b0946

Fig. A.1.5 The “Graph Setup” dialog can be used to change they
window and the background color.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

172 Using the Accompanying Software

A.2 IMG SYSTEM: FRACTAL IMAGE COMPRESSION

The IMG System implements fractal image compression, as described in Chapters 3 and
4. It has the following capabilities:

 Encode grayscale images using:
i) standard fractal quadtree encoding;
ii) fractal quadtree encoding with feature extraction;
iii) fractal quadtree encoding with feature extraction and a self-
organizing neural network for domain classification;
« Store encoded image as either text or binary rangefile;
» Decode images stored as text or binary range files;
» Compare decoded image with original and provide error performance using
image subtraction;
* Plot grayscale image as atwo-dimensional surface in three-dimensional space.

Fig. A.2.1 shows the “File” menu options for opening the various window types. The
encode windows read in image files in Windows bitmap (BMP) format. Numerous utility
programs are available for translating other image formats, such as TIFF, GIF or JPEG,
into BMP format (since we're trying to do image compression here, it would be
counterproductive to start with an already compressed format, such as GIF or JPEG!).
The program can actually read and display color BMP images. These images will be
transformed into grayscale images prior to encoding.

A.2.1 Encode window

The encode window implements basic fractal quadtree image encoding. The domain-
range matching can be based on extracted features or on direct pixel comparison. When
you open an encode window, you will see a file dialog asking for a bitmap file. This is the
image to be encoded. Fig. A.2.2 shows the encode window with two of its menus. The
“Image” menu provides information about the image, such as its size (“Bitmap Info...")
and overall feature values (“Show Image Features...”). These are the same features that
are extracted for each domain and range, as discussed in Chapter 4, when the feature
extraction encoding mode is selected. “Stretch Bitmap” enlarges or shrinks the image to
fit the window. “Copy Image to Clipboard” copies the window contents (as a bitmap) to
the Windows clipboard, for importing into other Windows applications. The “Run” menu
runs the application. “Gray Image” converts the screen bitmap image into an internal
grayscale array (even if the original image is color). “Encode Image” will do this step
automatically before encoding. Image comparisons (such as the image subtraction
window) are done with this internal array, so sometimes it is necessary to run “Gray
Image” without the encoding process. “Remove Redundant Domains” compares domains
and removes redundant domains from the list. A domain is redundant if it can be mapped
onto another domain with a fit that is within the selected error tolerance.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IMG System: Fractal Image Compression 173

IMG System
lﬁ Bun Setup Image Window

Open Encode Window...

Open Self Org Encode Window...

Open Range file...

Open Binary Range file...
Open Subtraction Window
Open 2-D Plot Window

Save
Save as...
Save as Binary...

Print Window

About IMG...

Quit

Fig. A.2.1 The IMG System for fractal image compression. The
system can encode grayscale images using the fractal methods of
Chapters 3 and 4 and can decode images stored as range files. The
subtraction window provideserror performance.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

174 Using the Accompanying Software

IMG System
File Bun Setup | Image Window
Bitmap Info...

' C:\Fractiim4 Show Image Features...

Stretch Bitmap

Copy Image to Clipboard
| Run g II ;

Gray Image

-

Image Features E

Bemove Redundant Domains

Encode Image @ Standard Dev.: 50.5140
Skewness: 0.9728
Nbr. Contrast: 15.1634
Beta: -0.0049
Horz. Gradient: 0.1510
Yert. Gradient: -0.0075

Max. Gradient: 0.1510

Cancel

Fig. A.2.2 The encode window, showing the “Run” menu, “Image”
menu, and “Image Features” message dialog.

A.2.1.1 Encode setup

The “Setup Image Encoding...” item under the “Setup” menu summons the “Encode
Setup” dialog, as shown in Fig. A.2.3. This dialog is an example of a data object list
dialog. Double-clicking on an item in the list will bring forth a dialog that is appropriate

for editing the value of that item. For example, there are numeric items that are updated
through dialogs that accept only numeric values and can do max-min bounds checking.
“Yes-No” items are updated through radio-button dialogs that allow only a yes or no
answer. There are also file name items and color items that are updated through standard
Windows dialogs for selecting file names and colors, respectively. The advantage of this
type of list dialog is that it is easy for the developer (and you, after all, are now the
developer!) to add items, without redesigning the user interface.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IMG System: Fractal Image Compression 175

Error Threshold |]
Error Threshold
0.0500
Max: 999.0000 Min: 0.0000
Encode Setup 0K I Cancel
Select Encode Parameter:
Horiz Overlap Delta: 1.000 -

Vert Overlap Delta: 1.000
Error Threshold: 0.0500
Gray Levels: 256

[Use Domain Features?: Yes
Feature Tolerance: 0.0500

Search for Best Domain?: No Use Domain Features? B
Quadtree Depth: &
S Max: 0.90 hd

Use Domain Features?

concel_|

0K Cancel |

Fig. A.2.3 The “Encode Setup” dialog is an example of a data
object list dialog. Double-clicking on an item brings up a dialog
appropriate for editing that item’s data.

The parameters in the setup dialog allow you to control the performance (both speed and
decoded image quality) of the fractal encoding. Default values are provided that give
reasonable performance for 256 x 256 grayscale images. Here is a list of the parameters
and the impact that they have:

Domain Rows, Columns:Determine the basic domain block size. Default is 8 x 8.

Domain Levels: The basic domain size is halved with each level. If the basic domain size
is 8 x 8, then levels = 2 means that there are 8 x 8 and 4 x 4 domain blocks in the
pool.

Horizontal and Vertical Overlap Delta: This parameter designates fraction of domain
overlap, with a smaller value resulting in more domains. A value of 1.0 indicates no
overlap, while a value of 0.0 is complete overlap (the program forces a minimum 1
pixel “overhang” so that there will be a finite number of domains!).

Error Threshold: This is the primary quality control parameter. The domain-range
match must be less than this value in order for the match to be accepted. A smaller
value leads to better image quality, but longer encoding times and worse
compression.

Gray Levels: This is the number of gray levels used when converting the screen image to
the internal grayscale array.

Use Domain Features?: This turns feature extraction on or off. When this is off (“No”),
then domain-range matching is done on a pixel-by-pixel basis (i.e., baseline fractal
image encoding). Be prepared for encoding times of hours or more when this is off.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

176 Using the Accompanying Software

Feature Tolerance: This is the feature “gatekeeper” parameter, as discussed in Chapter
4. When in feature extraction encoding mode, the first domain-range check is done
on the basis of feature values. If the difference in feature space is less than this
feature tolerance value, then a pixel-by-pixel comparison is done, using the error
tolerance parameter. A small feature tolerance value leads to fast encoding times,
but may reject too many domains. A large value negates the speed advantage of
using feature comparisons.

Search for Best Domain?: If this is “No”, then domain-range comparison stops for that
range as soon as a match is found within the error threshold. If this is “Yes”, then all
domains are compared, and the best one is kept (if the match is within error
threshold, then no further quadtree subdivision is done on that range).

Quadtree Depth: This sets the maximum quadtree depth for the ranges. A large value
(e.g., 7 for a 25& 256 image) leads to good image quality, but worse compression.

S Max: Maximum allowable contrast factor used in affine transformations. Should be
close to 1. A value larger than 1 can be used, but may jeopardize contractivity of
transformations. Too small a value increases the number of iterations required for
decoding.

Number of Transformations: Number of allowed combined rotations and reflections for
affine transformations. Maximum value of 8 allows 4 rotations for each of two
reflections. Encoding can be sped up by reducing this number to 4 or 2, without a
noticeable impact on compression performance.

Display graphics during encoding?: Turns the display graphics on/off. The program
displays the quadtree partition over the image as this partition is adapted during
encoding. This provides visual feedback on the progress of the encoding. The time
overhead for this option is only a second or two, but if you're going for an absolute
speed record, you have the option of turning the graphics off.

Write featuresto file?: You have the option of saving the feature vectors computed for
each domain cell. The program will write the seven features shown in Table 4.1.1
(and in the dialog shown in Fig. A.2.2) to a text file, seven columns of data, one line
of text for each domain cell (for example, if there are 320 domains, then 320 lines of
feature vector data will be written). Note that only five features are actually used for
domain-range comparison, since maximum gradient is used in place of horizontal
and vertical gradient.

Feature File Name: The name of the feature data file. This item brings up a file browser
dialog.

A.2.1.2 Running image encoding

Once you have selected the appropriate setup parameters, you are ready to run image
encoding. From the “Run” menu, “Encode Image” runs the fractal encoding. Encoding
will take anywhere from less than a minute, if you have selected feature extraction, to
several hours or more, if you have elected to go with “classic” fractal image compression.
The quadtree partition is displayed as it is adapted during encoding, providing visual
feedback on the progress. You can stop encoding at any time by hitting the “Esc” key. At
the termination of encoding, you will see the message dialog shown in Fig. A.2.4,
displaying the statistics of the encoding process. You can save the encoded image as a
text range file or a binary range file (“Save as Binary...").

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IMG System: Fractal Image Compression 177

Encoding Data E

@ Feature Comp Time: 0
Encoding Time: 12

Total Elapsed time: 12
No. of rectangles: 1186
Average time per rect: 0.01011804
Total Fit Count: 1552
Feature Dist. Count: 406408
Average fit count: 1.3086
Average Dist. Count: 342.6712

(0] 4 Cancel

Fig. A.2.4 This message dialog is displayed at the end of encoding,
showing the statistics of the encoding process.

A.2.2 Self-organizing encoding window

The self-organizing encoding window implements fractal encoding using a self-
organizing neural network for domain classification, as discussed in Chapter 4. This
window includes all of the same options for encoding as the regular encoding window,

plus additional options for setting up and training the self-organizing neural network. Fig.

A.2.5 shows this window, with the “Weights” menu and the setup dialog for the self-
organizing neural network.

A.2.2.1 Setting up the self-or ganizing networ k

The first step in setting up the self-organizing network is to set the parameters, which are
shown in the dialog in Fig. A.2.5. The values shown in Fig. A.2.5 are the default values,
and these will work fine in most situations. Here is a list of the parameters and their
meaning, if you want to experiment with changing them:

Lattice Rows, Cols: The number of rows and columns in the weights lattice. Their
product is the number of nodes in the lattice, which corresponds to the maximum
number of domain classes. There is a balance between the number of nodes and the
number of domains per class, since the algorithm must search over both the lattice
nodes and the domains within the selected class. More nodes means fewer domains
per class; fewer nodes means a quicker lattice search, but more domains within the
selected class.

Starting Stepsize: This is the starting value for the stepsizaused in training the
network. It controls the speed of adaptation during training iterations. A small value
will slow down training iterations, while too large a value may cause the adaptation
to “overshoot” and fail to converge.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

178 Using the Accompanying Software

IMG System [(O] %]
File Run Setup Image | Weights Window
Read ¥Weights from File...

\Fractiimages\Berried

Train and Save Yeights to File...

Set
aetup = Save Weights to File...

Setup Image Encoding...

Setup Self Org Encoding...

Self Org Setup

Select Self Org Parameter:

Lattice Rows: 8
Lattice Cols: 8
Starting Stepsize: 0.250
Starting Nbhd: 4

Iter Blocksize: 100

Iter Blocks: 10

Max Search Radius: 1
Read weights from file?: No
WWeights File Name:

Fig. A.2.5 The sdf-organizing encode window includes a menu for
training and saving the neural network weights and a dialog for
setting the parameter s associated with neural network training.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IMG System: Fractal Image Compression 179

Starting Nbhd: This is the size of the starting lattice neighborhood used for training
adaptation. When a lattice node is selected as the “winner” during a training
iteration, the weight vector for that node as well as the weight vectors attached to
each node in the neighborhood of that node are adapted to look more like the input
vector. If the starting neighborhood size is too small, the weights lattice can tie itself
in a knot during training, leading to poor neighborhood topology in the trained
network (that is, dissimilar weight vectors may appear close to one another in the
lattice structure) See Welstead (1994) for an example of this phenomenon. As a rule
of thumb, the starting neighborhood size should be half the number of rows (or
columns) in the lattice.

Iter Blocksize: The training iterations are divided into blocks. At the end of one iteration
block, the adaptation stepsize and neighborhood size are reduced, and training
continues with the next iteration block.

Iter Blocks: The total number of iteration blocks. The total number of training iterations
is therefore the number of blocks times the blocksize. Larger networks require more
training iterations.

Max Search Radius: This is a search parameter, rather than a training parameter. When
the network is operating as a classifier and an input is presented to the network, the
search algorithm selects the lattice node whose weight vector most closely resembles
the input. The algorithm will search through the domains associated with that node
and will also search the nodes within the search radius, as shown in Fig. 4.2.2.

Read weights from file?: The algorithm does not necessarily need to train on the same
image that is being encoded. If you want to read in a weights file trained on a
different image, then specify “Yes” here and supply the weights file name as the
next item in the list. If this option is “No”, the algorithm will automatically train on
the image to be encoded, as part of the encoding process.

Weights File Name: The name of the weights file. This is the file that will be read in, if
the preceding item is “Yes” or the name of the file to which the weights will be
written, if the preceding item is “No”.

A.2.2.2 Running sdlf-or ganized image encoding

The only difference between this encoding and the previous encoding window is the
presence of the self-organizing neural network and its weights file. If you elected to use a
previously trained weights file, the program will read in that file and proceed with
encoding. If you have elected to not read in a weights file, the program will train the
weights on the image currently loaded in the window. You can separate the training and
encoding steps by selecting “Train and Save Weights to File...” from the “Weights”
menu. A progress bar dialog appears during training to indicate where you are in the
training process.

A.2.3 Decode window

Use either “Open Range File...” or “Open Binary Range File...” to open a window for
decoding. Fig. A.2.6 shows the decode window with its “Run” menu. As this figure
shows, you can view the quadtree partition that was generated during encoding. For step-
by-step decoding, “Decode Image” runs one iteration of decoding. To view the resulting
image, select “Gray Image”. To automate the decoding process, use “lterate Decoding”.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

180 Using the Accompanying Software

You will be asked for an iteration number (the default is 6 iterations). The program will
automatically cycle through that number of iterations, displaying the resulting image at
each step.

£ IMG System (O] %]
File | Bun Image Window
Z8 Gray Image

Show Quadtree Partition Only

Decode Image

Iterate Decoding...
HH
[[JE d:t
T H 1] BT
H T H
H [FFH *
I T T HH HH
T H T H
I
H M
H HHHH T H
| T
1 H
H
HE
H
i
1 [
! L
1 H e
HHHH H H
u TH HH
H T H
H
i
HH
- -
T HHHH

Fig. A.2.6 The decode window, showing a quadtree partition and a
decoded image.

Recall that the contraction mapping theorem asserts that you can use any starting image

and still converge to the attractor of the system. The options under the “Image” menu,
shown in Fig. A.2.7, allow you to determine the starting image. The default starting image
is uniformly gray. The program will fill its internal grayscale image array using the gray
level value shown as “Starting Image No.” in the decode setup dialog shown in Fig.
A.2.7. You change this value through the setup dialog. You also have the option of
importing a bitmap image as the starting image (“Use Starting Bitmap Image...”). This
option will present you with a file browser dialog for selecting the bitmap file and will
load the selected bitmap image and display it in the window. The starting image does not
have a significant impact on the speed of decoding or the quality of the decoded image,
but it is interesting to observe a validation of the contraction mapping theorem in action.
Figs. 3.2.4 and 3.4.1 show examples of this.

Note that the setup parameters also allow you to specify the number of rows and columns
for the decoded image. The decoder has no knowledge of the size of the original encoded
image and indeed has no need for such knowledge. The decoded image size, and in fact
shape, is independent of the dimensions of the encoded image. You can decode at a larger
or smaller size, or a different rectangular shape, than the encoded image. The default

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IMG System: Fractal Image Compression 181

image size for decoding is 256 x 256. If, for example, you want to decode at 512 x 512,
you would change the number of rows and columns in the image setup parametersto 512.

The “Image” menu also includes options for corrupting the domains and transformations.
These options are available for studying transmission robustness issues, as discussed in
Chapter 3. The domain corruption randomly modifies a percentage of the domain indexes.
The percentage is one of the setup parameters. Similarly, you can corrupt a percentage of
the rotation/reflection transformations. Once the corruption has been done, it can’t be
undone without reloading the range file. Obviously, this corruption is not something you
want to do on a routine basis.

IMG System H=] 3
File BRun | Image Yindow
.

C:\Fract, Stretch Bitmap

Use Starting Bitmap Image...

I Corrupt Domains
Corrupt Transformations

Setup Image...
Copy Image to Clipboard

Decode Setup |]

Select Decode Parameter:

Image Rows: 256 -]
Image Cols: 256

Starting Image No.: 128

Percentage Corrupt Domains: 10

Percentage Corrupt Transformations: 10

Cancel |

Fig. A.2.7 The “Image” menu and setup dialog for the decode
window.

A.2.4 Subtraction window

The subtraction window compares the decoded image to the original image. To open a
subtraction window, you must have an open encode window and an open decode window.

The image in the encode window must be loaded into the program’s internal grayscale
image array. If this has not already been done as a result of encoding, then you can run
“Gray Image” on the encode window to accomplish this. Run image subtraction simply by

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

182 Using the Accompanying Software

selecting that option from the “Run” menu on the subtraction window. There are no setup

parameters. Fig. A.2.8 shows an example of a subtraction window. The program reports
average pixel error and peak signal-to-noise ratio (PSNR) and also displays the

subtraction image. Grayscale is reversed in this image so that zero error shows up as
white, and large errors show up as dark gray levels. The less this image looks like the
original image, the less error you have. The subtraction window operates on the most
recently opened encode and decode windows. To avoid confusion, it is best to just have
one open encode window and one decode window prior to opening the subtraction

window.

IMG System
File RBun Image Yindow

ChFraciimages\Rose_gry.bmp I [=] B

Fay /g
C:\Fractilmagesirose_base q6e05d1186 b... M=l

Image Subtraction Window

Image Subtraction

@ Average Pixel Error: 2.9818%
PSNR: 26.0612 dB

C:\Fractilmages\Rose_gry.bmp

C:\Fractilmagesirose_base_qb6e05d1186_best_d.rng

Cancel

Average Pixel Error: 2.98182% .
PSNR: 26.0612 dB

Fig. A.2.8 The subtraction window subtracts a decoded image from
the original encoded image and computes the average pixel error
and power signal-to-noiseratio (PSNR).

A.2.5 Plot window

The final capability of the IMG system is the two-dimensional plot window. This window
plots an image as a two-dimensional surface in three-dimensional space. This plotting
window works in conjunction with an encode window. To run this window, you must first
open an image bitmap file using an encode window and convert the image to a grayscale
array. Fig. A.2.9 shows a plot window with its corresponding encode window, and setup
dialog.

The setup parameters control the appearance of the plot. The elevation and rotation angles
control the viewing angle. The pixel averaging and decimation factors control the density

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IMG System: Fractal Image Compression 183

of the grid lines used in the graph. The pixel averaging factor reduces the size of the
image array by averaging adjacent pixels in the origina image. The reduced image is the
array that is actually plotted. The x and y decimation factors reduce the number of grid
lines that are used in plotting in the x and y directions. There are thus two ways of
reducing the grid density. Setting either the pixel averaging factor to 4 and the decimation
factorsto 1, or the pixel averaging factor to 1 and the decimation factors to 4, results in
the same number of grid lines. A higher value for the averaging factor, however, tends to
produce a smoother graph.

The projection coordinates determine the location of the virtual central projection point.
This is the point where the virtual observer is located. Changing the x or y values will
skew the graph sideways, while the z value determines the distance of the observer from
the graph. A large z value (e.g., 100) will reduce the projection effect, while a small value
(e.g., 2) will exaggerate it.

£ IMG System H[=] 3

File Bun Setup Image Yindow

‘\Fractiimages\Bill.bmp

2-D Plot Parameters

Select 2-D Plot Parameters:

Elevation Angle [deg): 30.00
Rotation Angle [deg): 30.00
Pixel Averaging Factor: 4
X Decimation [1,2.3..]: 1
Y Decimation [1,2,3..): 1
Use Perspective Projection?: Yes

Projection X Coord: 0.50

Projection ¥ Coord: 0.50

Projection Z Coord: 8.00 ¥

Cancel |

Fig. A.2.9 The 2-D plot window, with its setup parametersdialog.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

184 Using the Accompanying Software

A.3 WAV SYSTEM: WAVELET IMAGE COMPRESSION

The WAV System performs wavelet image compression on Windows bitmap images,

using Haar and Daubechies D4 and D6 wavelets. It can also plot wavelet functions, as

well as display two-dimensional wavelet transforms of images. The WAV System
implements two different compression algorithms. the basic decimation algorithm
described in Chapters 5 and 6, and the zerotree algorithm described in Chapter 7. The
“Wavelet Compression Window” implements the basic decimation algorithm, and both
compresses and decodes the image. The zerotree algorithm is implemented by an
encoding window and a decoding window, and the system can save zerotree encoded
images to a file. Fig. A.3.1 shows the WAV System frame window, with its “File” menu
for opening the various window types.

BB waY System =] B3
Eile Bun Image Window

Open Image BMP file...

Open Wavelet Compression Window...

Open Wavelet Zerotree Encoding Window...
Open Wavelet Zerotree Decoding Window...

Open Wavelet Plotting Window

About WAY_..

Quit

Fig. A.3.1 Frame window for the WAV System.
A.3.1 Wavelet compression window

The wavelet compression window can display either the compressed image (“Show
Wavelet Compressed Image”) or the wavelet transform of the image (“Show Wavelet
Transform”), as shown in Fig. A.3.2. You can select from among three wavelet types:
Haar, and Daubechies D4 and D6 wavelets. You can specify the compression percent via
a numeric dialog (“Compression Percent...” under the “Setup” menu). This is the
percentage of wavelet transform coefficients that will not be set equal to zero prior to
applying the inverse transform. Thus, if compression percent is 10%, then the largest 10%
of the wavelet transform coefficients will be retained, and the remaining 90% will be set

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

WAV System: Wavelet Image Compression 185

equal to zero. However, if this percentage is 0%, then no decimation is performed. Recall

that a compression percent of 10% does not represent 10:1 compression, however, since
information about the location of the retained 10% of the coefficients must be stored as

well. The processing that is performed when you select “Show Wavelet Compressed
Image”, with compression percent equako, is the following:

1. The wavelet transform is applied to the image, using the selected
wavelet type.

2. The largest (in magnitude¥o of the transform coefficients are
retained, the remaining (100% are set equal to zero, leaving a
decimated two-dimensional array of transform coefficients.

3. The inverse wavelet transform is applied to this decimated array. The
resulting image is displayed.

“WA\I’ System = [O] x|

File RBun | Setup Image Window
‘
e

Wawvelet Type...
Select Wavelet Type E

Compression Percent...
Transform Threshold Percent...

Bun
Show Gray Image

Show Wavelet Transform —

Show Wavelet Compressed Image \
BB Haar Wavelet Transform [50.10

Wavelets
% Haar Wavelet

" Daub 4 Wawvelet
" Daub b Wawvelet

Cancel |

Fig. A.3.2 The wavelet compression window can display either the
compressed image (“Show Wavelet Compressed Image”) or the
wavelet transform of the image (“Show Wavelet Transform”). The
example here shows the largest 50% of the Haar wavelet transform
coefficients of the “Leaves” image. The wavelet type, the
compression percent and the transform threshold percent (for
displaying the wavelet transform coefficients) are user-selectable
via dialogs.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

186 Using the Accompanying Software

You can check the error performance of this compression by opening an image
subtraction window, just as was the case in the fractal image compression system. As
before, the subtraction window requires a window displaying the original image to be

open (“Open Image BMP file...”), as well as an open wavelet compression window. Each
window must contain a grayscale image array (“Gray Image”).

This wavelet compression window also has the capability of displaying a binary version
of the wavelet transform of the image, as shown in Fig. A.3.2. This option displays the
largestx% of the wavelet transform coefficients in black, and the remaining X)2@G0sf

the coefficients in white. This option typically takes a minute or two to display the binary
image, since a sorting operation is involved in selecting the coefficients.

A.3.2 Wavelet zerotree encoding

The wavelet zerotree encoding window encodes bitmap images using the zerotree
algorithm described in Chapter 7. Fig. A.3.3 shows an example of this window, with its
“Setup” and “Run” menu options displayed. As for the basic wavelet compression
window, you can select one of three wavelet types, and also the compression percent.
Compression percent is the percentage of wavelet coefficients that are retained after
decimation. However, the default value of O indicates that no decimation is to be
performed. In addition, zerotree encoding has a “Set Max Bit Plane...” option.

Zerotree encoding can achieve compression in two ways. The first way is through
decimation of coefficients, which is controlled by setting the compression percent. The
second, and more efficient, way is to restrict the maximum number of bit planes used by
the encoder. When this value is 0, all bit planes (typically 14-16) are used. When a
nonzero number is entered here, the encoder stops when that number of bit planes have
been encoded. The progressive decoding example in Chapter 7 gives an idea of decoded
image quality at various bit plane levels.

When you are ready to encode, select “Wavelet Zerotree Encoding...” from the “Run”
menu. The zerotree encoding window saves the encoded image as a “*.wvz” file. You will
be asked to specify the file name at this time. The bit planes are displayed with the four
coded symbols rendered with four grayscales, and the ZT symbol displayed in white, as
shown in the example in Fig. A.3.3. Checking the menu item “Show Bit Planes During
Encoding” will display each symbol bit plane during encoding. When this item is not
checked, only the final bit plane is displayed. The time used to do the actual display of
these bit planes is not included in the encoding time summary that is provided at the
conclusion of encoding. Similar to the wavelet compression window, this window also
has the capability to display the wavelet transform, using the “Transform Threshold
Percent...” setting (this value is not used during encoding).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

WAV System: Wavelet Image Compression 187

IR waAY System =] &3

4—/_‘Fi].L_Bun Setup Image Window
Bun _ Wavelet Type...

Transform Threshold Percent...
Compression Percent...
Set Max Bit Plane...

Show Gray Image

Show Wavelet Transform

Show Bit Planes During Encoding

Daub4 Wavelet [0.00%): C:\Fractimages\Ros... [[=] E3
Wavelet Zerotree Encoding...

wilh e T
Bit Plane: *** ** -

Fig. A.3.3 The zerotree encoding window. This window has options
to select wavelet type, compression percent, and maximum bit
plane used during encoding. The window displaysthe symbol array
for each bit plane during encoding.

A.3.3 Wavelet zerotree decoding

The zerotree decoding window reads in a file of type “*.wvz”, containing data recorded
during zerotree encoding. Wavelet type, image size and number of bit planes are all
included in the file information, so there are no options to select that will impact the final
decoded image. There is a menu option to “Show Progressive Decoding”, located under
the “Run” menu, which will display each bit plane as it is built up during decoding. This
takes longer, but the process is instructive to observe. When this option is off, only the
final decoded image is displayed. Fig. A.3.4 shows an example of the zerotree decoding
window during progressive decoding.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

188 Using the Accompanying Software

BB wAY System =1
File | RBun Image Window
Show Gray Image

¥ Show Progressive Decoding
Decode Wavelet Zerotree File

R CAFractimagesirose d4_bl0.wvz

Bit Plane:

7of10

Fig. A.3.4 The zerotree decoding window. When “Show
Progressive Decoding” is selected, each bit plane will be displayed
during decoding. When this option is turned off, only the final
decoded image will be displayed.

A.3.4 Image subtraction with the WAV System

The WAV System has a subtraction window option so that you can compute the errorsin

decoded images. The subtraction window reguires the original image to be displayed in a
window. This is done using the “Open Image BMP File...” option from the “File” menu.
The image must be converted to an internal gray image prior to opening the subtraction
window. There must also be a decode image displayed in a window. This can be either a
basic wavelet compression window or a zerotree decoding window. When both an image
window and a decode image window are open, you can open a subtraction window and
run image subtraction to compute the errors. To avoid confusion and unpredictable results
as to which decode image is subtracted from which original image, you should have only
one image window and one decode window open when doing image subtraction.

A.3.5 Wavelet plotting window

The wavelet plotting window graphically displays the Haar, Daubechies D4 or

Daubechies D6 wavelet functions. Fig. A.3.5 shows an example of this window with some
of its menu options. The method for generating the graphs is a simple algorithm, taken
from Press, et al. (1992), that makes efficient use of code already developed for the
wavelet compression part of the system. This algorithm simply applies the one-
dimensional inverse wavelet transform to a unit vector consisting of all 0's except for a

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

WAV System: Wavelet Image Compression 189

single component set to 1. You can set which component is nonzero using the “Setup”
menu option “Set Starting Component...”. The graph in Fig. A.3.5 was produced using a
vector of length 1024 with the £omponent set equal to 1.

BB waY System H= B
File Run | Setup Image Window
Setup Graph

Set Starting Component
BB Daub4a wavelet: (11)

Daub4 Wawvelet

Comp: 11
Bun
Plot Haar Wavelet

Plot Daubd4 Wavelet
Plot Daubb Wavelet

Fig. A.3.5 The wavelet plotting window can display the Haar,
Daubechies D4 or Daubechies D6 wavelet functions.

Why does this algorithm produce a graph of the wavelet function? Recall that a one-
dimensional wavelet transform vector represents the coefficients of a basis-expansion of
some function, using scaled and shifted versions of the wavelet function as basis
functions. What kind of function would have an expansion with only a single non-zero
coefficient? It would have to be one of the basis functions, that is, one of the scaled and
shifted wavelet functions. If you specify larger starting components, such as 50 or 100,
you will see the graph of the wavelet function slide to the right and become compressed,
that is, it has been shifted and scaled.

A.3.5.1 Setting up the graph parameters

The graph setup dialog (Fig. A.3.6) controls the appearance of the graph, allowing you to
turn on or off various options such as grid lines and tic marks. You can modikyythe
window of the graph, implementing a crude “zoom” functionality, by setting “Scale
Window from Data?” to “No”, and then changing the values of “X Min”, “X Max”, “Y
Min” and “Y Max”.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

190 Using the Accompanying Software

BB wWAY System =]
File Run | Setup Image Window

Setup Graph...

Set Starting Component...

BB Daubq Wavelet: [11) M= E3
Daub4 Wavelet

Comp: 11 L 0.16

Graph Setup

Select Graph Parameter:

Graph Title: Daub4 Wavelet
Show X Tic Marks?: Yes
Show ¥ Tic Marks?: Yes
Label X Tic Marks?: Yes
Label ¥ Tic Marks?: Yes

X Tic Size: 0.0000

Y Tic Size: 0.0000
Show X Grid Lines?: Yes

r0.12

r0.08

r0.04

- 0.00

r-0.04

r-0.08

012

Show Y Grid Lines?: Yes =

200 300 400 500 600 700 80O

Fig. A.3.6 The graph setup dialog controls the appearance of the
graph, such astheinclusion of grid lines, tic marks and axis labels.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix B

UTILITY WINDOWS LIBRARY (UWL)

This appendix gives a brief overview of Windows programming, and describes the Utility
Windows Library (UWL), a C++ object-oriented framework that is the basis for the
application systems in the accompanying software.

B.1 WINDOWS PROGRAMMING

From a programming point of view, the Windows environment is defined by the Windows
Application Programming Interface (API), which consists of over a thousand function
definitions, as well as defined types, structures, and constants. To program for Windows
using C, you can write code that directly calls the API functions. There are also several
C++ class libraries that have been developed to deal with Windows programming, the
most prevalent of which is the Microsoft Foundation Classes (MFC), which today
effectively defines the C++ Windows interface. The software accompanying this book
uses its own self-contained C++ class library, called the Utility Windows Library (UWL),
for interfacing with the Windows environment. This library provides a framework for
easily implementing a subset of the Windows API. Complete source code for UWL is
provided with the software.

Why develop aclass library when MFC is available? For one thing, MFC was not mature

at the time of initial development of this software. There were several competing libraries

at that time, including an early version of MFC and Borland’s Object Windows Library
(OWL). It appears that MFC has won out. Having a self-contained class library, however,
ensures that the code with this book can be compiled with any compiler that supports the
Windows API. This code has been compiled and tested with Borland C++ 3.1 (16-bit
only), 4.5 and 5.0, Symantec C++ 7.2, and Microsoft Visual C++ 4.1. Another advantage
of UWL is that it produces small executables, typically less than 300 Kb in size (without
requiring any of its own Dynamic Link Libraries, or DLL'’s), compared with 1.5 Mb or
more for a typical MFC-produced executable.

Where possible, the computational aspects of the application code have been separated
from the Windows-specific code. This allows you to interface these computational code
modules with another Windows library, such as MFC, or even another windows platform,
such as X-Windows in a UNIX environment.

The best reference for basic Windows programming is (Petzold 1992), or the updated
version for Windows 95 (Petzold 1996).

UWL addresses the two primary needs that the applications in this book require of a
Windows interface: (i) the ability to display multiple windows with graphical information;
(ii) the ability to communicate with the user via dialog boxes. The following two sections
discuss these two aspects of Windows in more detail.

191

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

192 Utility Windows Library (UWL)

B.1.1 Multiple Document Interface (MDI)

Most commercial Windows applications, such as Microsoft Word and Visual C++, use

some variation of what is known as the Multiple Document Interface (MDI). MDI alows
multiple windows to be open at the same time. The user can move freely among these
windows. Fig. B.1.1 shows the main components of a MDI application. The MDI frame
controls the menus and defines the region of the screen that contains the application’s
windows. The MDI frame controls the opening of new windows, and also shuts the
application down when the user exits the application. The MDI client window is the
actual “window” contained within the frame (the dark gray background in Fig. B.1.1).
Functionally, the MDI client window controls the initial placement of the child windows,
and can also automatically arrange the child windows through commands such as “Tile”
or “Cascade”, selected from the “Window” menu.

MDI Frame MDI Client Window
Menu

MG System
e | Bun Image Window
Gray Image
Show Quadtree Partition Only

!

e_qhe05f25d320.mg M= E3

Decode Image

Iterate Decoding H I B

MDI Child
Windows

Fig. B.1.1 The main components of a MDI system include the frame
window, the client window, the menu, and multiple child windows.

In most commercial MDI applications, each child window has the same behavior. For
example, in MS Word, each window is an editor window for entering text. However, it is
possible for a MDI application to have different types of child windows and this is in fact
true of each of the applications in the software accompanying this book. For example, the
IMG System has several types of encoding and decoding windows, as well as image
subtraction and plotting windows.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Windows Programming 193

B.1.2 Dialogs

Diaog boxes are the primary means by which application programs communicate with

the user. Dialog boxes accept input from the user, and can also display information back

to the user. Dialog boxes are distinguished both by their appearance and by their
functionality. Resource scripts define how the dialog looks. Callback functions define

what the dialog does. In Fig. B.1.2, for example, a resource script defines the size of the

dialog box, and the location and appearance of its components, including the “OK” and
“Cancel” buttons, the groupbox containing the “Yes” and “No” radio buttons, and the text
(“Use Domain Features?”). Resource scripts typically are created with a visual resource
editor, although it is possible to edit manually the resulting text file.

Once the resource script has been defined for a dialog, its functionality can be defined
using a callback procedure. The callback procedure is provided to Windows as a function
that defines actions to be performed in response to events associated with the dialog.
Examples of such events include the user hitting the “OK” button or selecting one of the

radio buttons. Each component of the dialog has an identifier, i.e., a defined constant,
associated with it so that the program knows when an event affects that component.

Resource Script (*.rc) Callback Procedure

Dialog

Use Domain Features? E

Use Domain Features?

0K Cancel |

Defines how the Defines how the
dialog looks dialog behaves

Fig. B.1.2 Resource scripts define the appearance of a dialog box,
whileitsbehavior isdefined by a callback procedure.

B.1.2.1 Modal vs. modeless dialogs

Windows provides two types of dialogs. By far the most frequently used type of dialog is
the so-callednodal dialog. When a modal dialog is open, it demands undivided attention
from the user. The user cannot communicate with any other user interface component
outside the dialog until the dialog has been dismissed, usually by clicking on its “OK” or
“Cancel” button. From a programming point of view, modal dialogs are easy to deal with.
Program execution effectively halts while the dialog is open. So, if you have a line of
code that executes the dialog, then you can depend on the next line of code having
available to it the latest input from the user via that dialog.

The other type of dialog in Windows is the less commonly usedeless dialog.
Modeless dialogs allow communication with other components of the application while

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

194 Utility Windows Library (UWL)

the modeless dialog is open. A modeless dialog is more like an ordinary window than a
typical modal dialog. The spell-check dialog in MS Word is an example of a modeless
dialog, since you can leave the dialog and actually correct an errant word in the text
window while the dialog remains open. From a programming point of view, modeless
dialogs are somewhat more difficult to deal with. For one thing, the WinMain function
must be modified to capture messages intended for the modeless dialog and route them to
that dialog. Also, once the dialog is open, the calling program must know when to check
back with the dialog while its own processing continues. The only place in the
accompanying software where amodeless dialog is used isin the IMG system, which uses
amodeless dialog to display a progress bar during training of the self-organizing network.

B.1.2.2 Windows Common Dialogs

Windows includes a set of pre-defined dialogs for performing commonly occurring tasks,
such as selecting file names or colors. These dialogs, called Windows Common Dialogs,
do not require resource scripts or callback functions. Fig. B.1.3 shows two of the common
dialogs, ChooseColor and GetOpenFileName. There are also Common Dialogs for
printing and font selection. You should take advantage of Windows Common Dialogs
whenever possible in your Windows code development. For one thing, they are easier to
use than defining your own dialogs. Also, they automatically incorporate upgrades that
appear with new releases of Windows. For example, the file dialogs that are included with
Windows 95 and later, as well as the recent versions of Windows NT, have the capability
of handling file names longer than 8 characters, and also have a new look, as shown in
Fig. B.1.3. If your code used the Windows file dialog, it would automatically benefit from
the new functionality and appearance, without even the need to recompile (the dialogs are
accessed through a DLL). However, if you had developed your own file browser dialog,
that dialog would remain with the functionality you had originally provided for it.

Color HE
Basi) Image Bitmap File HE
Basic colors:
I_ I_ I_ Lock in: |@ Images j gl e =
mrrT B babs o by, 48 len512 brp
. I_ I_ @peppm 2.brop
Roaose_gmw.bmp
- goldhE12bmp dBwinter bmp
- - - : Leaves.bmp @W’inteermp
[l el el i Lena.omp
LCustom colors:
I_ I_ I_ I_ I_ I_ I_ I_ File: hame: |"_bmp Open I
o rrrr . |
Files of type: I".bmp j Cancel

Wefire Eustanm Eolars > | o o
pen as read-only

Cancel | Z

GetOpenFileName

ChooseColor

Fig. B.1.3 ChooseColor and GetOpenFileName are two of the
Windows common dialogs. These dialogs do not require a resource
script or callback procedure, and can be used with a single call to
the appropriate API function.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL) 195

B.2 UTILITY WINDOWS LIBRARY (UWL)

The Utility Windows Library (UWL) is a C++ class library that handles the basics of

MDI window management and dialogs. Windows user-interface development is an ideal

candidate for an object-oriented language such as C++. Mundane tasks that are common

to all windows and dialogs can be assigned to base classes and then needn’t be dealt with
again. Some of the references at the end of this appendix provide more details about the
approach used here for MDI window management (Welstead 1996) and dialogs
(Welstead 1995). Fig. B.2.1 shows the class hierarchy for the classes in UWL that deal
with MDI window management.

Utility Windows Library (UWL)

Windows Classes

twindow
Window base class

v

tmdi_window

MDI window base
class

'

tmdi_frame_window

MDI frame window
base class

v v v

tmdi_manager tmdi_child_window

MDI window manager MDI child window
base class base class

v v

Application-specific tmdi_graph_window
MDI window MDI graph window
managers base class

v v

Application-specific
MDI child window

Application-specific
MDI frames

Application-specific
MDI graph windows

Fig. B.2.1 Class hierarchy for the windows classesin UWL.
B.2.1 The twindow class

The twindow class is the basic window class from which all other windows, including
MDI frame and child windows, are derived. This class takes care of the routine tasks and
behavior common to all windows.

Windows is an event-driven program environment. User actions, such as moving the
pointing device or entering keystrokes through the keyboard, generate events. Windows
responds to these events by sending messages to the application program. In fact, the
main program in any Windows application program (calldMain) simply executes a

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

196 Utility Windows Library (UWL)

loop that looks for messages from the Windows environment and dispatches them to the
application’s windows. One application differs from another only in the way that it
responds to these messages.

The base clastwvindow responds to Windows messages throughhétsdle message
member function. Listing B.2.1 shows the code for this function. Functions such as
respond_wm paint define the response for a particular Windows message, in this case
WM_PAINT. In twindow, this response is not functional. However, descendant window
classes need only redefine the individual message response functions. In most cases, it is
not necessary to redefit@andle_message itself. Note thathandle_message returns 0 in

most cases. Returning 0 to Windows tells it to continue processing the message; a
nonzero value would tell Windows to do no further processing. It is usually best to let
Windows continue to process a message after you are done with it, since there may be
functionality that you are not aware of (some of which may be introduced in later versions
of Windows).

How do Windows messages get to laadle_message function? Windows provides for a
procedure (thecallback procedure) to be associated with each window type. This
association occurs by assigning the address of the procedure to the window during
window registration, which occurs as part of the applicatdnMain function. Ideally,

we'd like to assign the address of tendle message member function. However, C++
doesn'’t allow the assignment of the address of a member function, since this address is
not known until a particular class object is instantiated at run time. This iswitdow

has a et_global_ptr member function. In descendant window classes, this member
function is redefined to set the value of a global pointer to a particular instantiation of the
window class (using the class’d¢his’ pointer). That global pointer then defines a
particular instance of thieandle_message function that is called from a global function,
whose address is provided to Windows as the callback procedure associated with that
window type.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL)

Listing B.2.1 The handle_message member function of the twindow class.

197

LRESULT CALLBACK twi ndow. : handl e_nessage (HWAD hwnd,

U NT nessage, WPARAM wParam LPARAM | Param) {

hwi ndow = hwnd;
switch (nessage)

case WM CREATE:
if (respond_wmcreate (hwnd))
br eak;

case WM COVIVAND:

return O;
br eak;
case WM PAI NT:

br eak;
case WM MDI ACTI VATE:

return O;
br eak;
case WM S| ZE:
if (respond_wm size(lParan))
br eak;
case WM HSCROLL:

return O;
br eak;
case WM VSCROLL:

return O;
br eak;
case WM QUERYENDSESSI ON:

br eak;
case WM CLCSE:

br eak;
case WM DESTROY:

br eak;

} /* end switch */
return

}

/* If "respond_..." procedure actually does
sonet hing,then return, otherw se drop through to
default. */

if (respond_wm conmand (wParam | Paramn)

if (respond_ wmpaint ()) return O;

if (respond_wm ndi acti vat e(hwnd, wPar am | Par am))

if (respond_wm hscroll (wParam | Paramn)

if (respond_wmvscroll (wParam | Paramn)

if (respond_wm queryendsession())
if (respond_wmclose()) return O;

if (respond_wm destroy(hwnd)) return 0;

defaul t_wi ndow _proc (hwi ndow, nessage, wPar am | Par an ;

B.2.2 MDI frame window

The tmdi_frame window class is a direct descendant of twindow that implements a basic
MDI frame window. The frame window displays the menus, interacts with the user
through menu commands, and dispatches user commands to the client window. The client
window either responds directly to the command, or sends it along to the appropriate

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

198 Utility Windows Library (UWL)

child window. UWL does not modify default client window behavior, and so does not
incorporate a C++ class corresponding to the client window.

Listing B.2.2 contains the class declaration for tmdi_frame window. The linked list
structure tmdi_type list_struct facilitates the handling of a number of different child
window types with a single frame window class. This structure ties a menu command,

type id, to a window class, the class. When the frame window receives a menu
command, it first cycles through its linked list of child types to see if the command
matches any of these type id’s. If there is a match, the frame creates a new child window
of that type. This linked list enables the handling of any number of child window types
without having to create a new frame class for each application. The only time you have
to derive a new frame class is when the application requires some action other than
opening a child window (for example, when the frame window must handle dialog input
from the user).

The frame window responds to the Windows WM_CREATE message with the function
respond_wm create, which creates the MDI client window. The frame window then
optionally displays an “About” dialog box. Each of the applications included here use an
“About” box.

User-selected menu commands go toréspond_wm_command member function. This

is where the child window types are checked againstnttie type list struct linked list.

A match initiates the creation of a MDI child window of the appropriate class. If there is
no match, the frame continues checking for other common commands, including the
commands that carry out pre-defined MDI behavior, such as tiling and cascading of child
windows. Note that this basic MDI behavior is accomplished merely by sending the
appropriate message to the client window. The command structure defined here is general
enough to handle most MDI applications. Specific needs, such as a frame that
communicates with the user through dialog boxes, can be accommodated through derived
frame classes.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL) 199

Listing B.2.2 Classdeclaration for tmdi_frame_window.

typedef struct tndi _type list_tag {
U NT type_id;
LPCSTR t he_cl ass;
LPCSTR the_title;
tndi _type_list_tag *next;
} tmdi _type_ list_struct;

void free_ndi _type list_struct (tndi _type_ list_struct
*type_list);

LRESULT CALLBACK _export FrameWidProc (HWND hwnd, U NT
message, WPARAM wPar am LPARAM | Par an) ;

#define NO ABOUT O
#def i ne SHOW ABOUT 1

class tndi _frame_wi ndow. public tw ndow {

public:

tndi _franme_wi ndow (H NSTANCE hl nst ance,
LRESULT CALLBACK wi ndow proc,int w ndow extra,
LPCSTR nenu_nane,
LPCSTR titl e_nane,
LPCSTR cl ass_nane, LPCSTR i con_nane,
tndi _type_list_struct *child_types,
int init_show about);

HWD hwndCl i ent ;

CLI ENTCREATESTRUCT clientcreate ;

LRESULT CALLBACK | pf NnEnum ;

HWND hwndChi I d ;

MDI CREATESTRUCT ndi create ;

tndi _type_list_struct *ndi _children_types;

U NT | at est _conmand;

HVENU frane_nenu, frame_submenu;

i nt show about ;

virtual void set_ndicreate (LPCSTR the_cl ass, LPCSTR
the title);

virtual void set_global _ptr (void);

virtual int respond_wmcreate (HWMD hwnd);

virtual int respond_wm comand (WPARAM wPar am LPARAM
| Param ;

virtual int respond_wm queryendsession (void);
virtual int respond_wmclose (void);

virtual int respond_wmdestroy (HWD hwnd);
virtual int respond_wm about (void);

virtual LRESULT CALLBACK defaul t _wi ndow _proc (HAD
hwnd,
U NT nessage, WPARAM wPar am LPARAM | Par an) ;
void init_menu (H NSTANCE hi nst, LPCSTR nenu_r c_nane,
WPARAM wi ndow_subnenu_pos) ;
}

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

200 Utility Windows Library (UWL)

B.2.3 MDI windows

Listing B.2.3 shows the class declarations that define basic MDI window behavior. The
base class tmdi_window redefines the default_window_proc member function to call the
Windows function DefMDI ChildProc, which defines default MDI behavior.

Windows keeps track of the active MDI child windows through a list of HWND
identifiers. As child windows are created and destroyed, Windows adds or deletes HWND
identifiers so that this list correctly reflects the current windows that are open in the frame
window. UWL represents each MDI child window with a descendant of the
tmdi_child_window class, so it needs to maintain a separate list of pointers to the active
C++ MDI child window class objects. The purpose of the tmdi_manager class is to
maintain this list and take care of routing Windows messages to the active child window.

The structure type child window_struct ties a Windows HWND identifier to a pointer to
a tmdi_child_window object. The window_list member of tmdi_manager maintains the
list of active child windows. Thisis a pointer to an object_list class, a class for handling
an array of object pointers. The class tmdi_manager has a virtual function
new_child_window that creates a new tmdi_child_window. To create child windows of a
specific type, you need to derive a descendant MDI manager class that overrides this
virtual function with a version that creates the desired child window type. Normally,
new_child_window and set_global _ptr are the only member functions that you need to
override in descendant manager classes.

The tmdi_manager member function handle message processes WM_CREATE and
WM_DESTROY messages itself, so that it can keep its active window list updated.
Messages that are relevant to the child windows, such as paint and mouse movement
messages, are sent to the active child window. All other messages get default processing.

The member functionsinit_menu and set_frame _menu set up the menu and submenus for

the child window, and their relationship to the frame window menu. These functions are

caled once in the WinMain function, just after window registration. The identifier
menu_rc_name is the string name for the window’'s menu as it appears in the resource
file. The parametewindow_submenu_pos tells Windows where to place the list of open
MDI child windows. The appearance of this list in the menu is a benefit you get for free
from Windows MDI management.

The tmdi_child window class is a base class for specific child window types. It
encapsulates behavior common to all MDI child windows. The most significant behavior
is that of switching the frame window menus whenever a new child window is activated.
Member function respond wm mdiactivate accomplishes this, in response to a
WM_MDIACTIVATE message. This function uses two macros:
ACTIVATE_MDI_CHILD_WINDOW and MDI_SETMENU_MSGPARAMS. There

are two versions of these macros, one for 16-bit Windows (such as Windows 3.1) and one
for 32-bit Windows (such as Windows 95, 98 and NT). These macros allow the use of
one set of source code that can be compiled for either 16- or 32-bit environments.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL)

Listing B.2.3 Classdeclarationsfor M DI windows.

201

class tndi _w ndow public tw ndow {
public:
/1 Base class for tndi _manager and tndi _child_w ndow
t mdi _wi ndow (H NSTANCE hl nst ance, LRESULT CALLBACK
wi ndow_proc, int w ndow extra, LPCSTR nenu_nane,
LPCSTR titl e_nane,
LPCSTR cl ass_nane, LPCSTR i con_nan®) :
twi ndow (hl nstance, w ndow proc, w ndow extra,
menu_nane, title_nanme, class_nane, icon_nane)

hwnd, U NT nessage, WPARAM wPar am LPARAM | Par an) ;
}

#defi ne MAX_NO OF ACTI VE_W NDOWS 20

class tndi _child wi ndow, // Conplete declarations given
/1 bel ow
class tndi _frane_w ndow,

typedef struct {
HWAD hwnd;
tndi _chil d_wi ndow *w ndow;
} child_w ndow struct;

class tndi _nmanager: public tndi _w ndow {
public:
HWD hwndd i ent, hwndFr ane;
HVENU wi ndow_nenu, wi ndow_subnenu, f rame_nenu,
frame_submenu;
tndi _franme_wi ndow *parent _frane;
object list *wi ndow |ist;
int active_index;
t mdi _manager (H NSTANCE hl nst ance,

tndi _franme_wi ndow *parent,

LRESULT CALLBACK wi ndow proc,

i nt wi ndow _extra, LPCSTR nenu_nane,

LPCSTR titl e_nane,

LPCSTR cl ass_nane, LPCSTR i con_nan®) ;
virtual int respond_wmcreate (HWMD hwnd);
virtual int respond_wmdestroy (HWD hwnd);
virtual HWAD get _active_hwnd (void);
virtual int add_child_w ndow (HWND hwnd,

child_wi ndow struct *child);
virtual child_wi ndow struct *get_child_w ndow
(HWND hwnd, i nt *i ndex);
virtual LRESULT CALLBACK handl e_nessage
(HWND hwnd, Ul NT nessage,
WPARAM wPar am LPARAM | Par an) ;
void init_menu (H NSTANCE hi nst, LPCSTR nenu_r c_nane,
WPARAM wi ndow_subnenu_pos) ;
voi d set_frame_nenu (HVENU t he_frame_nenu,
HVENU t he_frane_subnenu);
virtual ~tndi _manager ();

s

{}
virtual LRESULT CALLBACK default_w ndow proc (HWD

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

202 Utility Windows Library (UWL)

cl aBszb} Ingl _child_wi ndow. public tndi_w ndow {

tndi _manager *nmanager;
tmdi _chi | d_wi ndow (HWAND hwnd,
tndi _manager *the_manager,
LPCSTR titl e_nane);
virtual int respond_wm ndiactivate (HWND hwnd,
WPARAM wPar am
LPARAM | Par am) ;
virtual int respond_wm queryendsession (void);
virtual int respond_wmclose (void);

s

B.2.4 Graph window

UWL includes the tmdi_graph_window as a MDI window class for handling basic X-Y

graphing functionality. Listing B.2.4 shows two structures that hold most of the
parameters that define the graph window. The structure graph setup rec contains
information specified by the user that defines the appearance of the graph, such as axis

labels and tic marks. The computed values in graph window struct define the
relationship between the X-Y values and the window's pixels. All of the graph drawing
functions use these structures as arguments. This is a step toward portability, since the
underlying drawing functions can be changed to a different window system (such as X-
Windows) without changing the application code that calls these functions.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL)

Listing B.2.4 Structures used by the MDI graph window.

203

/* graph_setup_rec holds itens usually specified by the

t he constant GRAPH SETUP_I| TEMS. */
typedef struct {

float x_mn,x_max,y_mn,y_nax;

BOCOL scal e_wi ndow_from dat a, use_ni ce_nunbers;

BOCL | abel _x_axis, | abel _y_axis, | abel _axes, show title;

char x_axis_| abel,y_axis_| abel;

char hor_axis_| abel [GR_ LABEL_LEN + 1],
vert _axis_|abel [GR_ LABEL_LEN + 1],
graph_title [GR_TITLE LEN + 1],
print_header 1 [GR_ HEADER FOOTER LEN+1],
print_header_ 2 [GR_ HEADER FOOTER LEN+1],
print_footer [GR HEADER FOOTER LEN+1];

BOCOL show x_tic_marks, show y tic_marks,
| abel _x_tic_marks,|abel _y tic_marks;

float x_tic_size,y tic_size;

BOCOL show x_nmax_m n, show y max_m n;

int x_len,y len,x _dec_places,y_dec_pl aces;

BOCOL show x _grid_lines,showy grid_lines;

DWORD | i ne_col or, text _col or, back_col or;

} graph_setup_rec;

/* graph_wi ndow struct holds itens that are conputed as /*
specific for this w ndow */
typedef struct {
HDC hDC;
HAWAD HW ndow;
RECT rect,draw rect,iter_rect;
S| ZE | abel _extent;
float x_mn,y_mn,x_nmax,y_nax, Xx_range, y_range;
int logical x_max,logical _y nax,start_col,end_col,
title_row,
start _row, end_row,
Xx_mn_col,x_max_col ,y_mn_row, y_max_row,
no_of _rows, no_of cols,
iter _row 1,iter_row 2,
iter_col,done_row,
X_row, x_center_col,
y_col,y_center_row,
tic_cols,tic_rows,
X_space, y_space;
DWORD | i ne_col or, text _col or, back_col or;
} graph_wi ndow_struct;

/* user. If you add fields to graph_setup_rec be sure to /* change

Thetmdi_graph_window class, defined in Listing B.2.5, provides a window environment

for graphical display, but it doesn’t actually graph anything. Descendant application class
windows will do that. Thémdi_graph_window class provides an interface to the user for
obtaining values for thgraph setup rec structure. It also captures whatever is in the
window to a bitmap, so that the window can quickly be redisplayed in response to a
Windows paint message (such as occurs when the window is resized or a previously
covered portion is revealed), without recomputing the values that make up the graph. It
also provides the capability to copy this bitmap to the Windows clipboard, so that the

graph image can be imported to other Windows applications.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

204 Utility Windows Library (UWL)

Listing B.2.5 Classdeclaration for tmdi_graph_window.

class tndi _graph_wi ndow. public tndi_child_w ndow
{ public:
HDC nmenory_dc;
HBI TMAP hbi t nap;
graph_wi ndow_struct gr;
graph_setup_rec gr_setup;
tlist_box_data gr_setup_data;
tndi _graph_wi ndow{ HVWAD hwnd, t ndi _nmanager *the_nanager,
LPCSTR titl e_nane);

virtual int save_inmage_to_bitmp();

virtual int OnCopyTod ipboard ();

virtual int respond_wm paint();

virtual int respond_ wmprint ();

virtual int respond_wmcreate(HWND hwnd);

virtual int respond_wm graph_setup ();

virtual int respond_wm command (WPARAM wPar am LPARAM ;
virtual int respond_wmdestroy (HWD hwnd);

virtual ~tmdi _graph_w ndow ();

B.2.5 WinMain in a UWL application

Every Windows application has a WinMain function. WinMain, analogous to the main
function in an ordinary C/C++ application, is the main function that runs the application.
The primary work that WinMain does is to dispatch Windows messages to the
application. Thus, every WinMain function contains a message loop as its main body of
code. The primary work that you, the programmer, do in setting up a WinMain function
for your applicationisto tell it where to send the messages that it passes along.

The steps for setting up a WinMain function for a UWL application are straightforward
and common to al UWL applications. Listing B.2.6 shows the code for the WinMain
function for the IMG System, the fractal image compression application included with the
accompanying software. One of the distinguishing features of the UWL framework is the
ease with which it accommodates multiple types of windows, each with a different
functionality, within the same MDI application. The IMG System includes five different
types of windows. Sections A.2.1 - A.2.5 show examples of these window types and
discuss their functionality.

The following steps for setting up the WinMain function are common to al UWL MDI
applications. These steps are highlighted in the code shown in Listing B.2.6.

1. Define Windows class names for the frame and each type of child window. These
are strings that Windows uses to identify the window types.

2. Define the linked list for the MDI child window types. This is a linked list of
pointersto structures of type tmdi_type list_struct.

3. Define an object for the frame window, and an object for the MDI manager for
each child window type. These are pointers to the appropriate C++ class for
each type. For IMG, there are five such child window classes:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL) 205

tenc_window_manager, for managing basic fractal image encoding
windows; tself_org_enc_window_manager, for managing fractal image
encoding with self-organizing domain classification;
tdec_window_manager, for managing windows that decode and display
fractal encoded images; tsub_window _manager, for managing image
subtraction windows; tplt2d_window_manager, for managing windows that
display two-dimensional surface plots of images.

4. Fill the entriesin the child type linked list. Create one entry for each type of child
window. The type id is the menu resource identifier for the menu item that
will open this child window; the_class is the Windows class string defined
above. Note that IMG actually has six entries in this linked list, since the
decode window type has two different menu commands that correspond to
it. The menu identifiers for IMG are: IMG_OPEN (for the basic encoding
window), IMG_OPEN_RANGE and IMG_OPEN_BINARY_RANGE (the
decode window, corresponding to the two types of range files),
IMG_SELF ORG_OPEN (fractal encoding with self-organizing domain
classification), IMG_OPEN PLOT (the plotting window), and
IMG_OPEN_SUB (the subtraction window).

5. Instantiate the frame object and each child MDI manager object. Allocate each
C++ pointer using the constructor for that class.

6. Register the frame window and each child window type, using the class’s
register_window_class member function. This takes care of the Windows
registration that is necessary in any Windows application.

7. Initialize the menus for the frame and each child window type. Each UWL MDI
window class has atnit_menu member function. The MDI window
manager classes also haveet frame_menu function that associates the
child window menu with the frame window.

8. Set up the Windows code. Load the accelerators, create and show the frame
window, and implement the message loop. Some variation of this code is
common to all Windows applications, whether UWL or otherwise.

9. Clean up when done. Delete the frame and MDI manager objects and free the
linked list of child types. It's important to free up your memory allocations
in a Windows application, since these allocations may live beyond the end
of the application.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

206 Utility Windows Library (UWL)
Listing B.2.6 The WinMain function for the IMG System. The steps
involved in setting up a WinMain function for a typical UWL
application are highlighted.

/1 ITMGVMAIN.CPP WnMin for | MG system Fractal inmage

I conpr essi on.

#i ncl ude <stdlib. h>

#i ncl ude "uw . h"

#i ncl ude "i nmgwi n. h"

#i ncl ude "decwi n. h"

#i ncl ude "encwi n. h"

#i ncl ude "soencw n. h"

#i ncl ude "subwi n. h"

#i ncl ude "plt2dw n. h"

/1 For menu position constants:

#i ncl ude "ndi fnids. h"

#i ncl ude "ingrids. h"

/1l Step 1: Define Wndows class nanes for the frame

/1 and each type of child w ndow.

char szFrameC ass [] = "I MFrane" ;

char szl MGSO ass [] = "I M3Child";

char IMG title [] = "I M5 Wndow';

char szDECSO ass [] = "DECChild";

char DEC title [] = "DEC W ndow';

char szSUBSO ass [] = "SuUBChild";

char SUB title [] = "SUB W ndow';

char szPLOTSC ass [] = "PLOTChild";

char PLOT title [] = "PLOT W ndow';

char szSELFORGSC ass [] = " SELFORGChi | d";

char SELF CRG title [] = "SELF ORG W ndow';

HI NSTANCE hl nst ;

int WNAPI W nMai n (H NSTANCE hl nst ance,

HI NSTANCE hPrevl nstance, LPSTR, int nCrdShow)
{
HACCEL hAccel ;
HWND hwndFr ane, hwnddient ;
MSG nsg ;
/1l Step 2: Define the linked list for the MD child
/'l wi ndow types.
tndi _type_ list_struct *child_list,*child_type;
/1l Step 3: Define an object for the frane wi ndow, and an obj ect
I/ for the MDI manager for each child wi ndow type.
tndi _franme_wi ndow *ing_franme_w ndow;
tenc_wi ndow_manager *enc_nanager;
tsel f_org_enc_w ndow nmanager *self_org_enc_manager;
t dec_wi ndow_manager *dec_mmanager;

Downloaded From: https:

/lwww.spiedigitallibrary.org/ebooks/ on 28 Mar 2022

Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL) 207

t sub_wi ndow manager *sub_manager;
t pl t Zd_w ndow_nanager *pl't2d_nanager;
i nt width, hei ght;

I/l Step 4: Fill the entries in the child type linked list. Create
/1l one entry for each type of child wi ndow. The type_id is the
I/ menu resource id for the menu itemthat will open this child
/1l window, the class is the Wndows class string defined above.

child list = (tndi _type_list_struct *)

mal | oc((size_t)sizeof (tndi _type list _struct));

child type = child_list;

child type->type_ id = | MG_OPEN;

child type->the_class = szl MaSO ass;

child type->the title = IMGtitle;

child type->next = (tndi _type_ list_struct *)
mal | oc((size_t)sizeof (tndi _type list _struct));
child type = child_type->next;
child type->type_ id = | MG_OPEN_RANGE;
child type->the_class = szDECSO ass;
child type->the_ title DEC title;

/* Commands | MG_OPEN_RANGE and | MG_OPEN_BI NARY_RANGE
correspond to the sane wi ndow type. */

child type->next = (tndi _type_ list_struct *)

mal | oc((size_t)sizeof (tndi _type list _struct));
child type = child_type->next;
child_type->type_id = | MG_OPEN_BI NARY_RANGE;
child type->the_class szDECSO ass;
child type->the_ title DEC title;

child type->next = (tndi _type_ list_struct *)
mal | oc((size_t)sizeof (tndi _type list _struct));
child type = child_type->next;
child type->type id = | MG_OPEN_SUB;
child type->the_class szSUBSO ass;
child type->the_ title SUB title;

child type->next = (tndi _type_ list_struct *)
mal | oc((size_t)sizeof (tndi _type list_struct));
child type = child_type->next;
child type->type id = | MG_OPEN _PLOT;
child type->the_class = szPLOTSC ass;
child type->the title = PLOT title;

child type->next = (tndi _type_ list_struct *)
mal | oc((size_t)sizeof (tndi _type list _struct));
child type = child_type->next;
child type->type id = | MG_SELF_ORG_OPEN;
child type->the_class szSELFORGSC ass;
child type->the_ title SELF _ORG title;

child type->next = NULL;

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

208 Utility Windows Library (UWL)

hl nst = hl nstance ;
gdl g_i nstance = hlnstance;

/] Step 5: Instantiate the frame object and each
/1 child MDI manager object.
i mg_frame_wi ndow = new t ndi _frame_w ndow (hlnstance,
(LRESULT CALLBACK) FrameWhdProc, 0,"",
"I MG Systent, szFraneC ass, "I FS_| CON",
child_list, SHON ABOUT) ;
enc_nanager = new tenc_w ndow nanager (hlnstance,
i rg_franme_wi ndow, O, szl MGSO ass, "I FS_ | CON') ;
sel f _org _enc_nmanager = new tself_org_enc_w ndow nanager
(hl nstance, i ng_frame_w ndow, 0, szSELFORGSC ass,
"I FS_I CON'");
dec_nanager = new tdec_w ndow nanager (hlnstance,
i rg_franme_w ndow, 0, szDECSC ass, "I FS_ | CON') ;
sub_nanager = new tsub_w ndow nanager (hlnstance,
i rg_franme_w ndow, 0, szSUBSCO ass, "I FS_| CON',
enc_nanager, sel f_org_enc_nanager, dec_nanager) ;
pl t 2d_manager = new tplt2d w ndow nanager
(hl nstance, i ng_franme_w ndow,
"I FS_| CON', szPLOTSd ass, "I FS_| CON', enc_nmnager) ;

/1 Step 6: Register the frame wi ndow and each child
/l window type, using the class’s
Il register_window_class member function.
i f (!'hPrevlnstance)
{
i ng_frame_wi ndow >regi st er_w ndow cl ass();
enc_nmanager - >r egi st er _wi ndow_cl ass();
sel f_org_enc_manager - >r egi st er _wi ndow cl ass();
dec_nanager - >regi st er _wi ndow_cl ass();
sub_nanager - >r egi st er _wi ndow_cl ass();
pl t 2d_manager - >r egi st er _wi ndow cl ass();

}

// Step 7: Initialize the menus for the frame and
/I each child window type.
i rg_frame_wi ndow >i nit_nenu (hlnst, "M nMenu",
I NI T_MENU_POS) ;

enc_manager - >i ni t _nenu(hl nst, "I MGvenu",
| MG_MENU_CHI LD_POCS) ;
enc_nanager - >set _frame_nenu
(i mg_frame_w ndow >f rane_nenu,
i ng_franme_wi ndow >frane_subnenu) ;
sel f_org_enc_manager->i ni t _nenu(hl nst, " SLFORGVEnu",
SO ENC_MENU_CHI LD _POCS) ;
sel f _org_enc_mnanager->set _frame_nenu
(i mg_frame_w ndow >f rane_nenu,
i ng_franme_wi ndow >frane_subnenu) ;
dec_manager - >i ni t _nenu(hl nst, " DECMenu",
DEC_MENU_CHI LD_POS) ;

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL) 209

dec_nmnager - >set _frame_nenu
(T ng_frane_w ndow >franme_nenu,

i mg_frame_w ndow >franme_subnenu) ;
sub_nmanager - >i ni t _menu(hl nst, " SUBMenu",
SUB_MENU_CHI LD_POS);
sub_nanager - >set _frame_nenu
(i ng_frame_w ndow >frane_nenu,
i mg_frame_w ndow >franme_subnenu) ;
pl t 2d_nmanager->i nit _nenu(hl nst, " PLOTMenu",
PLOT_MENU_CHI LD_POS) ;
pl t 2d_nmanager - >set _frame_nenu
(i ng_frame_w ndow >frane_nenu,
i rg_frame_w ndow >franme_subnenu) ;

Step 8: Set up the Wndows code. Load the

accel erators, create and show the franme w ndow,
and i npl enent the nmessage |oop. This is standard
W ndows code.

/1 Load accel erator table
hAccel = LoadAccel erators (hlnst, "Mi Accel") ;

/] Create the frane w ndow

wi dth = Get Systenvetrics (SM CXSCREEN) ;

hei ght = Get Systemvetrics (SM CYSCREEN);

hwndFrane = Creat eW ndow (szFranmed ass, "I MG Systent,
W5_OVERLAPPEDW NDOW |
WS_CLI PCHI LDREN,
0, O,
wi dt h, hei ght,
NULL, i nrg_franme_w ndow >f rane_nenu,
hl nst ance, NULL) ;

hwndd i ent = Get Wndow (hwndFrame, GWCH LD) ;

ShowW ndow (hwndFr ane, nCndShow) ;
Updat eW ndow (hwndFr ane) ;

/1 Enter the nodified nessage | oop
whil e (Get Message (&msg, NULL, 0, 0))

if (!'g_nodel ess _dialog ||
'l sDi al ogMessage
(g_nodel ess_di al og- >hdi al og, &rsQ))
if (!Transl ateMDd SysAccel (hwnddient, &nrsg) &&
I Transl at eAccel erator (hwndFrane, hAccel, &nsg))

Transl at eMessage (&nsg) ;
Di spat chMessage (&nsg) ;
}

}

/1 Step 9: dean up when done. Delete the frame and

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

210 Utility Windows Library (UWL)

[/ NMDI manager objects and free the linked |ist of
/1 child types.

del et e enc_manager;

del ete sel f_org_enc_nmanager;

del et e dec_manager;

del et e sub_manager;

del ete plt2d_nanager;

del ete ing_franme_w ndow,

free_mdi type list _struct (child_list);

return nsg. wParam ;

}

B.2.6 UWL dialogs

In addition to providing basic MDI window functionality, UWL also provides a set of
basic dialogs for obtaining input from the user. Fig. B.2.2 shows the class hierarchy for
the UWL dialog classes. The thum input_dialog class collects numeric input from the
user. The input datais edited to ensure that it is true numeric data, and there is an option
to check to see that it is within specified max-min bounds. Fig. B.1.2 shows an example of
adialog produced by the thool _dialog class, which solicits a yes/no choice from the user.
Thetabout_dialog class is the base class for application “About” dialogs.

Scrolling list boxes are implemented thigt_dialog. Windows provides support for a list

box control that displays, scrolls through, and selects from a list of character strings. The
tlist_dialog class inserts this control into a dialog box. This class loads the list box with a
list of strings and retrieves the index of the user-selected string when the dialog box is
closed. The clasglata_list_dialog takes this one step further. Here, the list box displays
strings that are associated with typed data objects that are members of the class
ttyped data_obj. When the user double-clicks on an item in the list, a dialog appropriate
for editing that item appears. For example, if the item is a numeric data item, a numeric
input dialog appears; if the item is a file name, the Windows file name dialog appears, and
so on. In Appendix A, this type of list dialog was called a data object list dialog. An
example is shown in Fig. A.2.3. From a programming point of view, the advantage of the
data object list dialog is that new input data items can be added to the list without
redesigning the dialog. There is no need to modify resource files or add additional control
logic to the dialog class. Simply insert the appropriate typed data object into the list, and
you automatically get a dialog for editing that object’s value. For more details on this type
of dialog, see (Welstead 1995). For a Java implementation of this idea, see (Welstead
1999).

The tmodeless dialog class is the base class for modeless dialogs. €kée dialog
member function for this class calls the Windows AReateDialog function, which
creates a modeless dialog (as opposed tualihkog exec_dialog member function, which

calls the API functiorDialogBox to create a modal dialog). The applicatdmMain

function needs to know when a modeless dialog is open so that it can route messages to it.
The link to a particular modeless dialog is established through the global pointer
g_modeless dialog, which is set to the address of the currently open descendant of
tmodeless dialog, by that class’'sxec dialog function. With this approach, only one
modeless dialog can be open at any one time in a single application.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Utility Windows Library (UWL) 211

Thetprogress bar_dlg classisatmodeless dialog descendant that implements a progress
bar for graphically conveying progress during the execution of a program task. The IMG
system displays a progress bar during training of the self-organizing network. As
previously mentioned, thisis the only instance of a modeless dialog in the accompanying

software.
Utility Windows Library (UWL)
Dialog Classes
tdialog
Dialog base class
|
tmodeless_dialog tinput_dialog tlist_dialog object_list
-«
Modeless dialog Text input dialog List box dialog Object array
base class base class handling class
tprogress_bar_dlg tnum_inputl_dialog tdata_obj
Progress bar dialog Nume_rlc input Data object base
dialog class
tbool_dialog tdéta_list_(%ialog o ttyped_data_olbj
Yes/no radio dialog List box d/glog Typed data object
for data objects class

tabout_dialog

About dialog
base class

Fig. B.2.2 Class hierarchy for the dialog classesin UWL.
B.2.7 Building UWL

Source code files that make up the UWL are listed below. There are a few naming
conventions. File names that start with a “u” involve some type of utility code. Code is
defined as “utility” if it used by more than one system (thus, by definition, everything in
UWL is “utility”). A “w” following the “u” indicates that this is a utility file that uses
Windows-specific code. Most of the code in UWL is C++, although there are a few C
files containing some all-purpose functions that were not appropriate to assign to any one
C++ class. Header files (*.h) for these C/C++ files are shown in Listing B.2.6, as part of
the header file UWL.h. Applications that use UWL should include the single header file
UWL.h.

utobjlst.cpp: Contains th@bject_list class for handling arrays of objects.
uwabtdlg.cpp: Class definition fotabout_dialog.
uwcolors.c: Contains some basic C utilities for handling Windows RGB colors.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

212 Utility Windows Library (UWL)

uwdatobj.cpp: Class definition for ttyped data_obj.

uwdialgs.cpp: Contains a series of self-contained functions that instantiate, initialize, and
execute various dialog classes. These functions obtain input from the user, then
destroy the dialog object and return the input data to the calling program.

uwdlg.cpp: Class definitions for tdialog, tinput _dialog, tnum input_dialog, and
tbool_dialog.

uwgrnbrs.c: Contains C utility functions for producing “nice” numbers for graph axes.

uwgr set.c: Contains utility C functions for graphing and drawing.

uwgrsetp.cpp: Contains the functionsinit_graph setup, for initializing the
graph_setup_rec structure, andraph_setup_to_collection, which associates the
elements of this structure with objects incopect_list array.

uwgrwin.cpp: Class definition fotmdi_graph_window.

uwmdichw.cpp: Class definitions formdi_manager andtmdi_child_window.

uwmdifrm.cpp: Class definition fotmdi_frame_window.

uwmdlsdg.cpp: Class definition fotmodeless dialog.

uwprgbar .cpp: Class definition fotprogress bar_dig.

uwprtwin.c. C functions for printing a graphics window. These functions use the
standard Windows printer dialog. However, the logic is set up to print black and
white only. It is not suitable for printing grayscale images. To print grayscale,
copy the image window to the clipboard and import it to an application with full
printing capabilities.

uwwin.cpp: Class definition fotwindow.

The application systems in the accompanying software link UWL as a static 32-hit
Windows GUI library. Linking UWL as a static library means that the executable files for
these applications are self-contained. You don’t need to worry about porting additional
library files when you move these applications from one machine to another. It is also
possible to compile and link UWL as a DLL. If you choose this option, you need to copy
the DLL file wherever the application is installed.

To build the UWL library, include all of the above C/C++ files in your project or
Makefile. The target file type should be set to static 32-bit Windows GUI library. Define
the constants WIN_32 and STRICT. STRICT is a Windows constant that ensures the
code is compatible with Windows NT. WIN_32 is a UWL constant that ensures that
correct macros will be selected for 32-bit Windows. While there are corresponding
macros for 16-bit Windows (i.e., Windows 3.1), these macros have not been maintained,
and no assurance can be made as to how the resulting code will run if these macros are
used. Also, 32-bit code runs much faster than 16-bit code. If you are going to do image
compression work, you should seriously consider upgrading to a 32-bit Windows system
if you have not done so already. Finally, in your project or Makefile, you should indicate
where the Windows and standard C “include” and “lib” directories are located.

B.3 WINDOWS PROGRAMMING REFERENCES

Petzold, C. 1992Programming Windows 3.1, Microsoft Press.

Petzold, C. 199&rogramming Windows 95, Microsoft Press.

Welstead, S. 1995. “Data Object List Dialog for Windows/C++ Users Journal, Vol.
13, No. 9:23-41 (also appears as Chapter 8, pp. 115-13@fridows NT

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Windows Programming References 213

Programming in Practice, R&D Books, Miller Freeman, Inc., Lawrence, KS,
1997).

Welstead, S. 1996. “C++ Classes for MDI Windows ManagemediC++ Users
Journal, Vol. 14, No. 11:41-50.

Welstead, S. 1999. “A Java Object List DialogZ/C++ Users Journal, Vol. 17,
No. 1:21-33.

Listing B.2.6 The header file UWL.H. C++ programsthat use UWL
should includethis singlefile. C programs that use only the general
purpose C functions in UWL should include only the header files
for those functions (for example, uwgr.h or messages.h).

/Il File uw.h GCeneral UAL header. Application prograns should
I i nclude this header when using UW.

#i f ndef UW._H
#define UW_H

#i ncl ude "dl gids. h"
#i ncl ude "grrscids.
#i ncl ude "nmdi f m ds.
#i ncl ude "nessages.
#i ncl ude "utobjl st.
#i ncl ude "uwabtdl g.
#i ncl ude "uwcol ors.
#i ncl ude "uwdat obj .
#i ncl ude "uwdi al gs.
#i ncl ude "uwdl g. h"
#i ncl ude "uwgr. h"
#i ncl ude "uwgrnbrs. h"
#i ncl ude "uwgrwi n. h"
#i ncl ude "uwndi . h"

#i ncl ude "uwnrdl sdg. h"
#i ncl ude "uwprgbar. h"
#i ncl ude "uwprtw n. h"
#i ncl ude "uwwi n. h"

SI3I3335

#endi f

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix C

ORGANIZATION OF THE ACCOMPANYING SOFTWARE
SOURCE CODE

This appendix discusses the organization of the source code for the accompanying
software.

C.1IFS SYSTEM
C.1.1 IFS classes

Fig. C.1.1 shows the class hierarchy for the IFS system. The IFS system consists of three
different types of MDI windows, each with their own MDI window managers and with
supporting dialogs. There are also some utility C functions.

The first window type is the points window, implemented by the class tpoints window

and its MDI window manager classes tnew_points window_manager and
topen_points window_manager. These two classes both manage points windows. The
difference is that the “open” manager opens a previously saved points file, and so uses a
file dialog to ask for the name of the points file before creating the new window. Fig.
A.1.2 in Appendix A shows the points window and its two dialogs for editing the points.
Thetpoints window is a descendant ¢ridi_graph_window that displays an X-Y grid for
locating points that will define the affine transformations. It also has the option of
importing and displaying a bitmap image on that grid, so it uses a utility function for
reading a bitmap file. Utility drawing functions are used for drawing the grid and
displaying the points. Thipoint_dialog class implements a descendantidiélog that

edits the X and Y values of the point coordinate. It also has the option of deleting that
point. Thetedit_points dialog class implements a list box dialog that displays a list of the
points and allows them to be edited using the points dialog.

The next window type in IFS is the transformation window, implementettfowindow.

As was the case for the points window, there are two MDI manager classes,
topen_trf_window_manager, which opens a previously saved transformation file, and
tnew_trf window_manager. In either case, the transformation window operates on a
previously created points file, and so each of these managers uses a file dialog to obtain
the points file name before creating the new transformation window. The transformation
window draws the same grid as the points window, and also displays the points and their
labels. It also has the capability of importing and displaying a bitmap image on the grid.
The user creates a new affine transformation by designating two sets of three points. The
first set of points is the domain of the transformation, and the second set is the range. As
each set of three points are selected, the window draws lines to connect the points, with a
triangle completing the designation of a set of three selected points. When the user
completes the selection of the points, tné pts dialog class presents a transformation
points dialog for editing the point indexes and for selecting a color to associate with the
transformation. Theedit trf dialog implements a list dialog that manages the list of

215

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

216 Organization of the Accompanying Software Source Code

transformations. Each previously created transformation can be edited from this list with a
transformation points dialog.

The transformation window provides a geometric description of the transformation.
However, running the IFS requires that each transformation be represented in terms of its
affine coefficients. The transformation window comput es these coefficients. When the
user selects the “Create Coeff File...” option from the “File” menufttfievindow class
responds with itsOnCreateCoeff member function, that, in turn, calls the external
function create coeff file. This function computes the coefficients, using the approach
outlined in Chapter 2. The computation includes & 33 matrix inversion that uses
functions from the matrix utility library UTM, whose files are listed below.

Class Hierarchy for IFS System

UWL.lib

tdialog UWL " imdi_graph_window UWL tmdi_manager
Dialog base class

UwWL

MDI window manager

MDI graph window base class base class

= !

uwL

tlist_dialog tpoint_dialog
List box dialog - X-Y point location [|_ 5. tpoints_window
base class !) .
v } Window for editing
T
i

r---» anddisplaying points | ||__ N - i
tedit_points_dialog || topen_points_window_manager

List box for list of (|-==---=---[---- tnew_points_window_manager

ttrf_pts_dialog ttrf_window topen_trf_window_manager

I Transformation - » Window for editing tnew_trf_window_manager
1 points and displaying affine
| ™ transformations])

tedit_trf_dialog < i tifs_window_manager

tr |
List box for list of [-=======-=====---- ! v
transformations tifs window - - >

Window to display
IFS attractor image

Fig. C.1.1 Class hierarchy for the IFS system. The solid lines
indicate inheritance, and the dashed lines indicate that this classis
used by another class.

The third and final window type is the IFS window, implemented bytitlsewindow

class. This is the window that actually displays the IFS attractor image. External functions
ifs random_image graph andifs_deterministic_image graph graph the attractor image,
using, respectively, the random and deterministic algorithms to produce the image
iteratively, as discussed in Chapter 2. External functions are used here to keep the
computational aspect of the code separate from the Windows-specific parts of the code.
This makes for easier porting of the computational parts of the code to other non-
Windows platforms. Note that the graphics calls here use the graphics structures of UWL,
rather than Windows-specific arguments.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IFS System 217

C.1.2 IFS code files
Here are the C/C++ files needed to build the IFS System:

ifsfiles.cpp: Functions for reading and writing points files and transformation
files, and functions for creating (create coeff_file) and reading affine
coefficient files.

ifsmain.cpp: The WinMain function for the IFS System.

ifsproc.cpp: Functions for displaying IFS graphics, including
ifs random_image graph and ifs_deterministic_image graph.

ifswin.cpp: Containsthe tifs window class for displaying the IFS attractor image
in a MDI graph window, and the MDI manager class
tifs window_manager.

ifswprcs.c: Windows graphic procedures for drawing grid lines and points in a
MDI graph window.

ptdialg.cpp: Containsthe tpoint_dialog and tedit_points dialog classes.

ptswin.cpp: Contains the tpoints window class for creating sets of points and
displaying them on a grid, and also contains the MDI manager classes
tnew_points window_manager and topen_points window_manager.

readbmp.cpp: Contains the function read BMP_file for reading bitmap files,
used by tpoints window and ttrf_window to import bitmap images.

readin.c: Contains readin, a genera-purpose function for reading data lines
from afile.

trfptsdg.cpp: Containsttrf_points dialog and tedit_trf dialog classes.

trfwin.cpp: Contains the ttrf_window class for creating sets of transformations
and displaying them on a grid, and aso contains the MDI manager
classestnew_trf_window_manager and topen_trf window_manager.

utofile.c: Contains general-purpose utility functions for opening and closing text
and binary files.

wkeys.c: Contains some genera-purpose utilities for handling Windows
keyboard messages.

In addition, you will need the corresponding header files that are included with these files,
and you will also need the following resource files that are included in ifsapp.rc:

ifsmenu.rc: Menus for the frame window and child windows.

ptdialg.rc: The points dialog resource.

UWL\dIg.rc: The resource file for all of the dialogs in UWL (located in the
UWL directory).

trfpts.rc: The transformation points dialog resource.

abifsdg.rc: The “About IFS” dialog resource, includifigrn.omp.

fern.bmp: Bitmap of the fern image, used in the “About IFS” dialog.

fern.ico: Fern icon (appears in upper left corner of the windows).

To build the IFS application, you should include in your project or Makefile the C/C++
code files listed here, along with the resourceifgapp.rc. In addition, you will need to
link in the librariesUWL32.lib and UTM32.lib. Fig. C.1.2 shows the files needed to
build FS32.exe.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

218 Organization of the Accompanying Software Source Code

C/C++, RC Files Library Files

D IFS D UWL
ifsfiles.cpp |— (] uwis2 Application
ifsmain.cpp |_
ifsproc.cpp .
ifswin.cpp UWL32.lib IFS32.exe
ifswprcs.c E] UTM —
ptdialg.cpp + -

ptswin.cpp |_ @ UTM32

readbmp.cpp

I_DIIIIIIIIIIIII

readin.c |_ .

triptsdg.cpp UTM32.lib

\tA;L\A:nS'CCpp Also: Standard Runtime Target Platform:

itsanp.c Libraries (Static) & 32-bit Windows GUI
’ Windows Libraries

U™ Defined Constants

utofile.c WIN_32, STRICT

Fig. C.1.2 Building the IFS application. Your project or Makefile
should include the C/C++, RC and library files shown here, and
also define the constants WIN_32 and STRICT. The target
platform for the libraries and application executable is 32-bit
Windows GUI.

C.1.3 UTM Library

The Utility Matrix (UTM) library is a small collection of files that perform matrix and
vector computations and manipulations. This library does not include any Windows-
specific code, so it should be portable to other platforms. It is compiled as a 32-bit library
that will be linked with a 32-bit Windows GUI application. The code files are listed here:

utintmat.c: Code to allocate and free integer matrices.

utmatinv.c: Matrix inversion using Gauss-Jordan elimination with
partial (row) pivoting.

utmatrix.c: Code to allocate and free matrices (float).

utprod.c: Matrix-vector product and vector-vector dot (scalar) product.

utvect.c: Code to allocate and free vectors (integer and float).

C.2IMG SYSTEM
C.2.1 IMG classes

Fig. C.2.1 shows the class hierarchy for the IMG system. The IMG system displays five
types of MDI child windows. There are actually six MDI child window classes in IMG,
since timg_window is the base class for the four classes that display images:
tenc_window, tdec_window, tsub window, and tself org _enc window. There is aso a
class for displaying the image as a two-dimensional surface plot, tplt2d_window.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

IMG System 219

The encoding and decoding computations are separated from the window classes by
encapsulating them in their own C++ classes. timage is a smple class that defines an
image object. The image pixels are contained in a two-dimensional array. tfract_image is
a base class that handles the setup operations for manipulating domains and ranges that
are common to both fractal encoding and decoding. The class tfract_image has three
descendant classes. tenc_image implements the basic fractal encoding agorithm
described in Chapter 3 and aso the feature-extraction approach from Chapter 4.
tself_org_encode image implements the self-organizing neural network approach for
encoding described in Chapter 4. Finally, tdec_image decodes fractal-compressed images.
Each of these descendants of tfract_image uses a timage object to hold the image on
which it operates.

Class Hierarchy for IMG System

UwL32.lib

timage WL tmdi_graph_window UWL tmdi_manager

Image base class MDI graph window base class MDI window manager
base class
2 2

tfract_image timg_window tplt2d_window
Fractal image base Basic window class for [_ | Window to display | -
class; handles domain displaying images image as 2-dimensional

1
1

and range allocations 1| function plot
1
1

! | L |

Lo -» . n
tdec_window tsub_window : timg_window_manager

-[---> Window to display |~ Window to display’ “* tplt2d_window_manager
decoded image image subtraction

tdec_image
> Fractal image

decoding algorithm > tsub_window_manager

"""""""" > tdec_window_manager

tenc_image tenc_window L __________._

1
1
i
:., Loy > tenc_window_manager
H Fractal image Window to display
! encoding algorithm image during encoding tself_org_enc_window_
! ke manager
i l l ,
'

H tself_org_encode_image tself_org_enc_window !
Lyl |

Fractal image encoding using Window to display F---

self-organizing neural network image during self-

organized encoding

Fig. C.2.1 Class hierarchy for the IMG fractal image compression
system. The solid lines indicate inheritance, and the dashed lines
indicate that thisclassis used by another class.

C.2.2 IMG code files
Here are the C/C++ files needed to build the IMG System:

binrange.cpp: Functions for reading and writing binary range files.

decimg.cpp: Contains the tdec_image class for decoding fractal compressed
images.

decwin.cpp: Contains the tdec_window and tdec_window_manager classes for
displaying an image during the decoding operation.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

220 Organization of the Accompanying Software Source Code

encimg.cpp: Contains the tenc_image class for encoding an image with the
fractal encoding algorithm.

encwin.cpp: Contains the tenc_window and tenc_window_manager classes for
displaying an image during the fractal encoding operation.

features.c: Functions for computing the features used during feature extraction.

frctimag.cpp: Contains tfract_image, the base class for manipulating domains
and ranges.

image.cpp: Containstimage, the base class for holding an image.

imgmain.cpp: The WinMain function for the IMG system. The message loop is
modified to accommodate messages for the modeless dialog that
displays the progress bar during weights training for the self-organizing
neural network.

imgpr oc.cpp: Miscellaneous procedures.

imgwin.cpp: Contains timg_window and timg_window_manager classes for
displaying an image.

plot_2d.c: General purpose functions for plotting a two-dimensional surface in
three-dimensional space.

plt2dset.cpp: Contains the function plot_2d_setup to collection, which
associates the setup parameters used by the two-dimensional plotting
code with an object list of ttyped_data _obj objects. This enables the
updating of the parameter values through a data object list dialog.

plt2dwin.cpp: Contains tplt2d_window and tplt2d window_manager classes for
displaying a two-dimensional surface plot.

dforgw.cpp: Code for implementing the self-organizing neural network.
Includes functions for reading, writing and training the network
weights, as well as a function for using the trained network as a
classifier.

soencimg.cpp: Contains the tself_org_encode image class for using the self-
organizing neural network with fractal image encoding.

soencwin.cpp: Contains the tself_org_enc_window and
tself_org_enc_window_manager classes for displaying an image during
fractal encoding using a self-organizing neural network.

subwin.cpp: Contains the tsub_window and tsub_window_manager classes for
displaying the difference image obtained by subtracting one image from
another.

utmatrix.c: Code to allocate and free matrices.

utofile.c: Contains general-purpose utility functions for opening and closing text
and binary files.

utscan.c: Contains general-purpose utility functions for scanning aline of text.

utvect.c: Code to alocate and free vectors.

In addition, the following resource files are included in imgapp.rc:

abimgdg.rc: Resource for the “About IMG” dialog.

imgmenu.rc: The menu resources.

UWL\dIg.rc: The resource file for all of the dialogs in UWL.

bill.omp: Bitmap file for the “cat” image used in the “About IMG” dialog.
|FS\fern.ico: The fern icon from the IFS system (used by some of the windows).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

WAV System 221

Building the IMG application is similar to building the IFS application. You should
include in your project or Makefile the C/C++ code files listed here, along with the
resource file imgapp.rc, and link in the UWL32.lib library. Since IMG only uses the
alocation functions from utmatrix.c and utvector.c, it includes those files directly
(alternatively, you could link the UTM 32.lib, as was done for the IFS system). Fig. C.2.2
shows the files needed to build IM G32.exe.

C/C++, RC Files

D IMG

binrange.cpp

decimg.cpp

decwin.cpp

encimg.cpp . .

encwin.cpp Library Files

features.c

frctimag.cpp Application
image.cpp L o

imgmain.cpp I_

imgproc.cpp

imgwin.cpp B UWL32 —
plt2dwin.cpp + L)
slforgw.cpp uwL32.lib
soencimg.cpp

soencwin.cpp Also: Standard Runtime
subwin.cpp Libraries (Static) &

imgapp.rc Windows Libraries Target Platform:

32-bit Windows GUI

IMG32.exe

PLOT_2D Defined Constants
plot_2d.c WIN_32, STRICT
plt2dset.cpp

UT™M

utmatrix.c
utofile.c
utscan.c
utvect.c

I_I_I_I_DI_I_DIIIIIIIIIIIIIIIII

Fig. C.2.2 Building the IMG application. Your project or Makefile
should include the C/C++, RC and library files shown here, and
also define the constants WIN_32 and STRICT. The target
platform for the libraries and application executable is 32-bit
Windows GUI.

C.3 WAV SYSTEM
C.3.1 WAV classes

Fig. C.3.1 shows the class hierarchy for the WAV system. The WAV system displays
seven types of MDI child windows. The timg_window class is the same base class for
displaying images that is used by the IMG system. Here it is used for displaying the
original image, so that it can be compared with the wavel et-compressed version via one of
two types of subtraction window, also implemented by the same tsub_window class used

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

222 Organization of the Accompanying Software Source Code

by IMG. The twavelet_window class displays the wavelet-compressed image, using the
simple decimation compression agorithm. The twavelet zerotree window and
tdecode_zerotree window classes handle zerotree encoding and decoding. The
twavelet_plot_window class displays a plot of the wavelet function.

The WAV system provides three types of wavelets: Haar, Daubechies-4 and Daubechies-
6 wavelets. The twavelet class is the base class for these wavelets. It includes the basic
wavelet filter and its transpose, as well as the wavelet transform operator and its inverse.
The three wavelet types used here differ from one another only in their coefficients, so
twavelet provides for general coefficient values, while the derived classes tHaar_wavelet,
tDaub4 wavelet, and tDaub6_wavelet implement specific values for these coefficients.
The wavelet filter and transform code here is based on the public-domain wavelet code
from W. Press, et a., Numerical Recipesin C, 2nd ed, Cambridge University Press, 1992
(note that most of the code in this reference is not public-domain, however the wavelet
code has been placed in the public domain on their web site). The twavelet_2d_array
class defines a wavelet transform and its inverse for application to two-dimensional
arrays, such as images. This class smply applies the one-dimensional twavelet class
transform to the columns and rows of the array, as discussed in Chapter 5. The
twave_dialog class implements a simple dialog with three radio buttons for selecting from
among the three wavel et types.

Class Hierarchy for WAV System

UWL.lib
v v v
WL tdialog WL tmdi_graph_window WL tmdi_manager
Dialog base class MDI graph window base class MDI window manager
base class
v v v
twave_dialog timg_window timg_window_manager
Select wavelet type 1: Basic window class for tsub_window_manager
' displaying images
:) g twavelet_window_manager
' !
twavelet E tsub_window E :_ > twavelet_plot_window_manager
Wavelet base class R Lo ! Window to display |* * [p— : -
- : : 1 ecode_zerotree_window.
twavelet_2d_array I ! image subtraction [« -- |} ! manager A _
. [
Wavelet 2-dim . o tencode_zerotree_window_
array class ', HE ! manager
twavelet_window 2D '
tDaub6 wavelet R » Basic wavelet s 7 timage
= See compression window | [~ "' mage base class
tDaub4_wavelet . o
| L v D
_______ Lo H
tHaar_wavelet : :' = === 1~ > tdecode_zerotree_window _f:—+
Haar wavelet 0_________ a R » f v
;! Zerotree decoding [« s | | tyavelet_plot_window
| !
- > i . .
tshort_array tzerotree : te”wde—zem"ee—w'ﬁdow ' Window for plotting
Short integer | > Zerotree - Zerotreeencoding | J wavelet function
array class encoding window

Fig. C.3.1 Class hierarchy for the WAV wavelet image compression
system. The solid lines indicate inheritance, and the dashed lines
indicate that thisclassisused by another class.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

WAV System 223

C.3.2 WAV code files
Here are the C/C++ files needed to build the WAV System:

uwplot.c: Contains the function plot_xy, agenera X-Y plotting utility.

wavdzwin.cpp: Contains the tdecode zerotree window class, a descendant of
twavelet_window, for decoding zerotree-encoded images.

wave_dlg.cpp: Contains the class twave dlg, a radio-button dialog for selecting
wavel et type.

wavelet.cpp: Contains al of the wavelet classes (twavelet, tHaar wavelet,
tDaub4 wavelet, tDaub6_wavelet and twavelet_2d_array).

waveproc.c: Contains the function decimate_array, used by twavelet 2d array
to remove al but the largest x% of the array values (this is redly a
general-purpose function that does not use any wavelet properties).

wavmain.cpp: The WinMain function for the WAV system.

wavplot.cpp: Contains the twavelet_plot_window and
twavelet_plot_ window_manager classes for displaying the wavelet
function plot in awindow.

wavwin.cpp: Contains the twavelet window and twavelet window_manager for
displaying the wavel et-compressed image in a window.

wavzwin.cpp: Contains the tencode_zerotree window class, a descendant of
twavelet_window, for encoding images with the zerotree algorithm of
Chapter 7.

zerotree.cpp: Contains the tzerotree class, a descendant of tshort_array, which
includes member functions mark children and mark parents for
implementing the zerotree encoding algorithm.

In addition, WAV shares the following files with IMG (discussed in the previous
section):

IM G\image.cpp

I M G\imgpr oc.cpp

IM G\imgwin.cpp

IM G\subwin.cpp

UTM\utofile.c

UTM \utshort.cpp: Contains the tshort_array class.

In addition, the following resource files are included in wavapp.rc:

abwavdg.rc: Resource for the “About WAV” dialog.

wave_dlg.rc: Resource file for wavelet type radio-button dialog.

wavmenu.rc: The menu resources.

UWL\dlg.rc: The resource file for all of the dialogs in UWL.

daub4wav.bmp: Bitmap file for the Daubechies-4 wavelet plot image used in
the “About WAV” dialog.

wavelet.ico: The wavelet function icon (used by some of the windows).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

224 Organization of the Accompanying Software Source Code

The WAV system also includes the UTM 32.lib and UWL32.lib library files. Like IFS
and IMG, WAV is a 32-bit Windows GUI application. Fig. C.3.2 shows the files and
settings needed to build WAV 32.exe.

CI/C++, RC Files

[wav Library Files
uwplot.c
wavapp.rc @ uwL
wavdzwin.cpp I_
wave_dlg.cpp [uwise Application
wavelet.cpp |_
waveproc.c UwL32.lib WAV32.exe
wavmain.cpp
wavplot.cpp D UTM —

wavwin.cpp +

wavzwin.cpp I_ D UTM32

zerotree.cpp

IMG UTM32.lib
image.cpp Also: Standard Runtime Target Platform:
imgproc.cpp Libraries (Static) & 32-bit Windows GUI
imgwin.cpp Windows Libraries
subwin.c .
PP Defined Constants
Utv WIN_32, STRICT
utofile.c

I_I_DIIIIDIIIIIIIIIII

utshort.cpp

Fig. C.3.2 Building the WAV application. Your project or M akefile
should include the C/C++, RC and library files shown here, and
also define the constants WIN_32 and STRICT. The target
platform for the libraries and application executable is 32-bit
Windows GUI.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

SPIE &t
Digital Library
Stephen Welstead, Fractal and Wavelet Image Compression

Techniques, SPIE Press, Bellingham, WA (1999).

The supplemental files for this eBook are available for download at:

http://link.aip.org/link/mm/doi=10.1117/3.353798.sup&filename=TT40 sup.zip

Please click on the link. Your files should begin downloading shortly.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

http://link.aip.org/link/mm/doi=10.1117/3.353798.sup&filename=TT40_sup.zip

REFERENCES

Asgari, S., T.Q. Nguyen, and W.A. Sethares. 1997. “Wavelet-Based Fractal Transforms
for Image Coding with No SearchRroc. |IEEE International Conf. on Image
Processing, (ICIP97).

Bani-Eqgbal, B. 1995. “Speeding up Fractal Image Compresstint, SPIE Sill-Image
Compression, Vol. 2418.

Barnsley, M. 1993Fractals Everywhere, 2" ed., Boston: Academic Press.

Barnsley, M., and L. Hurd. 1993Fractal Image Compression, Wellesley, MA:
A.K.Peters, Ltd.

Barnsley, M., and A. Sloan. 1988. “A Better Way to Compress |Imagegs,
January:215-223.

Barnsley, M., and A. Sloan. 1990. “Method and Apparatus for Image Compression by
Iterated Function System”, U.S. Patent #4,941,193.

Barnsley, M., and A. Sloan. 1991. “Method and Apparatus for Processing Digital Data”,
U.S. Patent #5,065,447.

Bogdan, A., and H. Meadows. 1992. “Kohonen neural network for image coding based
on iteration transformation theoryProc. SPIE 1766:425-436.

Burrus, C., Gopinath, R., and Guo, H. 199%8troduction to Wavelets and Wavelet
Transforms, Prentice-Hall, Upper Saddle River, New Jersey.

Chen, T., ed. 1998. “The Past, Present, and Future of Image and Multidimensional Signal
Processing”|EEE Sgnal Processing Magazine, Vol. 15, No. 2, March:21-58.

Daubechies, 1. 1988. “Orthonormal bases of compactly supported wav€eis. on
Pure and Applied Math, XLI1:909-966.

Daubechies, I. 199Zen Lectures on Wavelets, SIAM, Philadelphia.

Davis, G. 1995. “Adaptive self-quantization of wavelet subtrees: A wavelet-based theory
of fractal image compressionProc. of SPIE Conf. on Wavelet Applications in
Sgnal and Image Processing |11, San Diego.

Davis, G. 1996. “Implicit Image Models in Fractal Image Compressierdg. of SPIE
Conf. on Wavelet Applicationsin Signal and Image Processing 1V, Denver.

Davis, G. 1998. “A Wavelet-Based Analysis of Fractal Image Compressiaik
Trans. on Image Proc., Vol. 7, No. 2:141-154.

Davis, G., and A. Nosratinia. 1998. “Wavelet-based Image Coding: An Overview”, pre-
print, to appear iMpplied and Computational Control, Sgnals, and Circuits, Vol.

1, No. 1. (64 pages).

Digital Imaging Group 1999. “JPEG 2000 White Paper”, available at the JPEG Web site,
WWWw.jpeg.org.

Fisher, Y., ed. 1995%:ractal Image Compression, New York:Springer-Verlag.

Gopinath, R., and C. Burrus. 1993. “A Tutorial Overview of Filter Banks, Wavelets and
Interrelations” Proc. ISCAS-93.

Hamzaoui, R. 1995. “Codebook Clustering by Self-Organizing Maps for Fractal Image
Compression”,Proc. NATO Advanced Sudy Institute Conf. on Fractal Image
Encoding and Analysis, Trondheim, July, 1995, Y. Fisher (ed.), New
York:Springer-Verlag.

Hebert, D., and E. Soundararajan. 1998. “Fast Fractal Image Compression with
Triangulation Wavelets”Proc. of SPIE Conf. on Wavelet Applications in Sgnal
and Image Processing VI, San Diego.

225

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Jacobs, E., R. Boss, and Y. Fisher. 1995. “Method of Encoding a Digital Image Using
Iterated Image Transformations To Form an Eventually Contractive Map”, U.S.
Patent #5,416,856.

Jacquin, A. 1992. “Image Coding Based on a Fractal Theory of Iterated Contractive
Image TransformationsTEEE Trans. on Image Proc. Vol. 1, No. 1:18-30.

Kohonen, T. 1984Slf Organization and Associative Memory, 2V ed., Berlin:Springer-
Verlag.

Lewis, A., and G. Knowles. 1992. “Image Compression Using the 2-D Wavelet
Transform”,|EEE Trans. on Image Proc., Vol. 1, No. 2:244-250.

Lu, N. 1997 Fractal Imaging, San Diego:Academic Press.

Mandal, M., S. Panchanathan and T. Aboulnasr. 1996. “Choice of Wavelets for Image
Compression” Lecture Notes in Computer Science, Vol. 1133:239-249, Springer-
Verlag.

Mandelbrot, B. 1983The Fractal Geometry of Nature, New York:W. H. Freeman and
Company.

McGregor, D., R.J. Fryer, W.P. Cockshott and P. Murray. 1994. “Fast Fractal Transform
Method for Data Compression”, University of Srathclyde Research
Report/94/156[IKBS-17-94].

Peitgen, H., and D. Saupe, eds. 198%e Science of Fractal Images, New
York:Springer-Verlag.

Polidori, E., and J. Dugelay. 1995. “Zooming Using Iterated Function Systentg’, of
NATO Advanced Sudy Ingtitute Conf. on Fractal Image Encoding and Analysis,
Trondheim, Norway, July, 1995, Y. Fisher (ed.), New York:Springer-Verlag.

Popescu, D., A. Dimca, and H. Yan. 1997. “A Nonlinear Model for Fractal Image
Coding”, |[EEE Trans. on Image Proc., Vol. 6, No. 3:373-382.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery. 1B@g&erical Recipesin C,

2" ed., Cambridge University Press.

Ritter, H., T. Martinez and K. Schulten. 19%kural Computation and Self-Organizing
Maps, Reading, MA: Addison-Wesley.

Ruhl, M., and H. Hartenstein. 1997. “Optimal Fractal Coding Is NP-h&mdt. DCC'97
Data Compression Conferend&EE Computer Society Press:261-270.

Said, A., and W. Pearlman. 1996. “A New Fast and Efficient Image Codec Based on Set
Partitioning in Hierarchical TreeslEEE Trans. on Circuits and Systems for Video
Technology, Vol. 6, June:243-250.

Said, A., and W. Pearlman. 1996. “An Image Multiresolution Representation for Lossless
and Lossy CompressionE.EE Trans. on Image Proc., Vol. 5, No. 9:243-250.

Saupe, D. 1994. “Breaking the Time Complexity of Fractal Image Compres3iati.,
Report 53, Institut fur Informatik.

Saupe, D. 1996. “The Futility of Square Isometries in Fractal Image Compres&BR”,
International Conference on Image Processing (ICIP;26lsanne.

Sayood, K. 1996. Introduction to Data Compressipisan Francisco:Morgan Kaufmann
Publishers, Inc.

Shapiro, J. 1993. “Embedded Image Coding Using Zerotrees of Wavelet Coefficients”,
|IEEE Trans. on Signal Proc., Vol. 41, No. 12:3445-3462.

Strang, G. 1989. “Wavelets and Dilation Equations: A Brief Introducti8iM Review
31:613-627.

Stollnitz, E., DeRose, T., Salesin, D. 19%avelets for Computer Graphics, Morgan
Kaufmann, San Francisco.

226

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Villasenor, J., Belzer, B., and Liao, J. 1995. “Wavelet Filter Evaluation for Image
Compression”,|EEE Trans. on Image Proc., Vol. 4, No. 8:1053-1060.

Welstead, S. 1997. “Self-Organizing Neural Network Domain Classification for Fractal
Image Coding”, Proc. of IASTED International Conference on Artificial
Intelligence and Soft Computing, July, 1997, Banff, Canada, IASTED Press:248-
251.

227

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

INDEX

affine transformation, 21
on grayscale images, 44
algorithm
basic fractal image encoding, 48
deterministic,
for computing IFS, 25
fractal encoding, using feature
extraction (FE), 73
Kohonen, 82
lossless, 3, 7
lossy, 3
guadtree partitioning, 53
random, for computing IFS, 30
training, for self-organizing neural
network, 84
zerotree encoding, 141-150
analysis, multiresolution, 101-104
arithmetic coding, 4, 5
see also entropy coding, Huffman
coding
attractor of an iterated function system,
19, 20
see also strange attractor
average pixel error, 58-59, 63, 80, 81,
89, 90, 117, 127, 146, 148-149,
158

basis

dual, 130

orthogonal, 102
beta, 72
binary range file format, 61
biorthogonality, 130
biorthogonal wavelets, 130
bit planes, 142
Bolzano-Weierstrass Theorem, 15
bounded set, 15
brightness, 44

Cauchy sequence, 14
“Chaos Game”, 25
closed set, 14
closure, 15

CMT. see contraction mapping theorem

(CMT)

CMYK (cyan, magenta, yellow, black),
2,8
see also color images
codebook, 6
coding
arithmetic, 4, 5
entropy, 4, 155
Huffman, 4, 5
linear predictive, 7
Collage Theorem, 19-21, 47, 69
bound, 69
for grayscale images, 47
color images, 2
CMYK, 2, 8
color map, 6
palette, 6
RGB, 2, 6-7, 8
YIQ, 8,9
complete metric space, 14
compact set, 15
compact support, 125
compressionsee image compression,
video compression
compression ratio, 7, 11, 50, 65, 82,
117,131, 132, 149-151, 154,
155-163
contraction mapping, 16
on grayscale images, 45
theorem, 18, 45, 47
contraction mapping theorem
(CMT), 18
on grayscale images, 45
contractivity factor, 17, 45
contrast, 44
converge, 14

data modeling, 5
Daubechies wavelets, 124-126
image compression with, 126
DCT. see discrete cosine transform
decimation, 6
decoding
a fractal encoded image, 57
a zerotree encoded image, 143
digital watermarking, 8
dilation equation, 123

229

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

dimension
Euclidean, 12
fractal, 35-37
non-integer, 12, 36
vector space, 103
discrete cosine transform (DCT), 3, 7, 8
distance function, 13, 14
domain cells, 50
classification, 81
dual basis, 130
dynamical system, 30

encoding. see fractal image encoding,
wavelet zerotree encoding
entropy, 4-5
entropy coding, 4, 155
see also arithmetic coding,
Huffman coding
error
analysis, 69
image, 59, 95
measurement, 58-59, 146, 149, 154
threshold, 51, 52, 57, 59, 60, 80
tolerance, 49, 52, 53, 56, 74, 75,
76, 77, 87, 89, 90, 156-157,
159, 161
see also average pixel error, peak
signal-to-noise ratio (PSNR)
Euclidean dimension, 12

feature extraction, 71-80
filter
highpass, 113, 120
lowpass, 113, 119
quadrature mirror, 120
fixed point, 18
Fourier transform, 3
fractal, 12
dimension, 35-37
zoom, 65-66
fractal image encoding, 48-50
isN-P hard, 91
operator representation, 66-69
speeding up, 71-91

gradient, 72
grayscale images, 43
affine transformations on, 44

230

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

contraction mapping theorem for,
45
Collage Theorem for, 47

Haar wavelets, 105
Hausdorff
metric, 16
metric space, 16, 18
highpassfilter, 113, 120
Huffman coding, 4, 5
see also arithmetic coding, entropy
coding
hue, 8
hybrid approaches, 150-153

IFS. seeiterated function system (IFS)
image compression, 1, 3-4, 6-9, 11, 38,
47,94-95, 101, 109, 113, 124,
160, 163-164
error measurement in, 58-59, 146,
149, 154
fractal, 18, 38, 44, 56, 65, 71, 78,
126, 152
hybrid, 150
problem, 3-4
wavelet, 93, 95, 117, 119, 126,
127, 130, 131
information, 4
inner product, 102
Space, 102
in-phase, 8
inverse wavelet transform, 109-111, 122
iterated function system (IFS), 11-42
definition, 19
deterministic algorithm for
computing, 25
implementation, 22
random algorithm for computing,
30
see also partitioned iterated
function system (PIFS)
iterates, 17

JPEG (Joint Photographic Experts
Group), 2, 3,7, 163-164
JPEG 2000, 8, 163-164
see also MPEG

K ohonen self-organizing feature
map, 82

limit, 14

limit point, 14

linear predictive coding, 7
lossless algorithm, 3, 7
lossy algorithm, 3

lowpass filter, 113, 119
luminance, 8

mappings, 16
contraction, 16
contraction mapping theorem, 18,
45, 47
domains to ranges, 54-56
metric
Hausdorff, 16
rms (root mean square), 43
metric space, 13-14
complete, 14
Hausdorff, 16, 18
MPEG (Moving Picture Experts
Group), 7, 8, 163
see also JPEG, video compression
multiresolution analysis, 101-104

neural network, self-organizing, 82-84
normalization, 104-105, 123
N-P hard, fractal image encoding is, 91

operator representation
of fractal image encoding, 66-69
of hybrid approach, 152

orbit of adynamical system, 30

orthogonal basis, 103

orthogonal complement, 103

orthogonality, 102, 121, 123, 129
see also biorthogonality,
semiorthogonality

palette, 6

partitioned iterated function system
(PIFS), 44

peak signal-to-noise ratio (PSNR), 58-
59, 81, 89, 90, 118, 128, 146, 148,
149, 155-163

pixel error. see average pixel error

231

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

progressive transmission, 135, 164
PSNR. see peak signal-to-noise ratio

quadrature, 8
quadrature mirror filter, 120
quadtree partitioning, 48, 51-54
quantization, 4, 5-6

decimation, 6

scalar, 6

vector, 6

range file format, 60
binary, 61

rate distortion, 155

ratio, compression. see compression
ratio

resolution, 96

resolution independence, 65

RGB (red, green, blue), 2, 6-8
see also color images

robust transmission, 8, 64

saturation, 8
scalar quantization, 6
scaling function, 97, 123
self-organizing neural network, 82-84
self similarity, 11, 12
semiorthogonal wavelets, 130
semiorthogonality, 130
sequence, Cauchy, 14
set

bounded, 15

closed, 14

compact, 15
Sierpinski triangle, 35
skewness, 72
somatotopic map, 82
source, 4

image as, 5, 164
space

inner product, 102

metric, 13-14, 16, 18

vector, 102-104
standard deviation, 72
standards, 8, 163
strange attractors, 11
support of afunction, 98

compact, 125

theorems
Bolzano-Weierstrass, 15
Collage, 19-21, 47, 69
contraction mapping, 18, 45, 47
trajectory of adynamical system, 30
transform
discrete cosine, 3, 7, 8
Fourier, 3
inverse wavelet, 109-111, 122
two-dimensional wavelet, 111-117
wavelet, 93, 95, 96, 106-109, 122
transformations, 16
affine, 21, 44
transmission
progressive, 135, 164
robust, 8, 64
triangle inequality, 13

vector quantization, 6
vector space, 102-104
vector space dimension, 103
video compression, 7

watermarking, digital, 8
wavelets, 99-101, 123
biorthogonal, 130
Daubechies, 124-126
Haar, 105
semiorthogonal, 130
wavelet image compression, 93, 115,
126, 131-150
Daubechies, 126
compared with fractal image
compression, 156-164
wavelet transform, 93, 95, 96,
106-109, 122
intwo dimensions, 111-117
inverse, 109-111, 122
wavelet zerotree encoding, 141

YIQ, 8,9
see also color images

zerotrees, 133-150
wavelet encoding algorithm, 141

232

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Stephen Welstead is a staff scientist at XonTech Incorporated in Huntsville, Alabama,
and an adjunct associate professor of mathematics at the University of Alabama in
Huntsville, where he developed and taught a graduate-level course on fractal geometry.
He received the Ph.D. degree in applied mathematics from Purdue University. He is the
author of Neural Network and Fuzzy Logic Applications in C/C++, as well as a number
of papers and presentations on neural networks, fractal image encoding, chaos and
dynamical systems, and signal processing. He has presented several short courses and
tutorials on fractal and wavelet image compression, as well as neural networks and fuzzy
logic. He has also written several articles on Windows programming techniques. He is a
member of the Society of Photo-Optical |nstrumentation Engineers (SPIE), the I ngtitute of
Electrical and Electronics Engineers (IEEE), and the Society of Industrial and Applied
Mathematics (SIAM). When he is not in front of a computer, Dr. Welstead can be found
training for upcoming running races or riding his mountain bike.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Note about software
The files accompanying this Tutorial Text can be found at
http://www.spie.org/bookstore/tt40/

They contain executable programs that allow the reader to build and run examples
illustrating material in the book. These programs run on 32-bit PC Windows systems,
such as Windows NT, Windows 95, or Windows 98. There are three programs: 1FS32
builds iterated function systems; IMG32 compresses bitmap images using fractal
methods; WAV32 compresses bitmap images using wavelet techniques. The files also
contain sample data for running examples, as well as complete C/C++ source code. It is
not necessary to compile this code in order to run the executable programs. The file
"readme.txt" describes the contents of the files in more detail.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

	Front Matter
	CHAPTER 1.__Introduction
	CHAPTER 2.__Iterated Function Systems
	CHAPTER 3.__Fractal Encoding of Grayscale Images
	CHAPTER 4.__Speeding Up Fractal Encoding
	CHAPTER 5.__Simple Wavelets
	CHAPTER 6.__Daubechies Wavelets
	CHAPTER 7.__Wavelet Image Compression Techniques
	CHAPTER 8.__Comparison of Fractal and Wavelet Image Compression
	Appendix A USING THE ACCOMPANYING SOFTWARE
	Appendix B UTILITY WINDOWS LIBRARY (UWL)
	Appendix C ORGANIZATION OF THE ACCOMPANYING SOFTWARE SOURCE CODE
	Supplemental Material
	Back Matter

