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PREFACE

The present volume was written with a desire to satisfy the require-
ments of three types of possible reader: First, of course, students of
physics and chemistry who desire to learn some details of a particular
branch of physics that has general use; second, experimental physicists
and chemists, and engineers and metallurgists with mathematical lean-

_ings who are intercsted in keeping an eye on a field of physics that is of
possible value to them; and third, theoretical physicists at various stages
of development who are interested in the present status of that phase of
solid bodies that deals with electronic structure. The author fully
realizes that the first two groups of reader do not wish to be concerned
with all the intricacies of the theory, and for this reason he has attempted
to edit the text by marking the more mathematical sections with an
asterisk. It is recommended that readers not desiring to go through all
this material read over it with an eye for the qualitative arguments and
conclusions.

The author believes that an investigation of the table of contents will
tell more concerning the scope of the book thaa a paragraph or two at
this place. Although the book is a large one, it must be admitted that a
number of very important topics are not treated. For cxample, the
plastic properties of solids are only touched upon. The reason for this
omission is, of course, that the theory involved in this field is not ene that
grows naturally out of modern quantum theory, and hence might better
be treated under separate cover with some of the other structure-sensitive
properties of solids. In addition, it was fclt necessary to curtail the dis-
cussion of many interesting topics simply to avoid making the book much

_too long. In all such cases, which usually involve rather specialised
subjects, an attempt has been made to give the reader reference material
from which he may draw further information.

The author started to write this book in 1936 when he was at the
University of Rochester and graiefully acknowledges the cooperation he
received from Professor L. A. DuBridge in conneection with it. The book
was continued in spare time during the author’s stay at the Research

' Daboratories of the General Electric Company in Schenectady from 1937
to 1939. He would like to say that the atmosphere of this organizhtion
proved very stimulating for writing, as well as for many other forms of
rescarch, and would like to express his gratitude to the directors for their
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liﬁerest &supponj. The book was completed at the University of
e enoouragement of Professor G. P. Harnwell.
In{dchtaon the author is obligated to the directors of the Westinghouse
horﬁtprlu for the privilege of spensling a stlmuiatmg summer
in afgh in 1939.
\ The author also wishes to express his gratitude to the many friends
and colleagues to whom he has turned for advice and discussions. Among
these he particularly desires t0 mention Dr. R. P. Johnson, Dr. W.
Shockley, Professor L. N. Ridenour, Dr. 8. Dushman, Dr. E. U. Condon,
Professor E. P. Wigner, and Professor J. H. Van Vleck.

Finally, he should like to acknowledge, though in a very inadequate
manner, the -constant help and encouragement furnished by his wife,
Elisabeth Marshall Seitz, without whose aid this book probably never
would have been written.

FREDERICK SErre.

PHILADELPHIA,
June, 1940,
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COMMONLY USED SYMBOLS

The Bohr radius of the hydrogen atom,

The magnetic vector potential,

The eoefficient of volume expansion.

The volume compressibility ; also, the Bohr magneton.

The velocity of light; also, the velocity of elastic waves.
The specific heat at constant volume.

The molar or atomic heat at constant volume.

The molar heat at constant pressure.

The damping frequency of an oscillator.

The electronic charge; also, the base of the natural system of
logarithms.

The electrostatic field intensity.

The energy of an electron of wave number k.

The dielectric constant. '

The energy of the uppermost electron in the filled band.
The energy of the uppermost electron in the filled band at abso-
lute zero of temperature.

The energy of the electron at the bottom of the filled band.
The mean electronic energy.

The mean electronic energy at absolute zero of temperature.
The delta functiqn.

‘The Laplacian operator.

. The Einstein specific-heat function.

The Debye specific-heat function.

" A partition funection.

The free-electron correlation energy.

Planck’s constant.

Planck’s constant divided by 2x.

A Hamiltonian operator.

The magnetic field intensity.

The current per unit area.

The electronic wave-number vector; components k., k,, k..
Boltzmann’s constant; also the optieal extinction coefficient.
The wave number of the electron at the top of the Slled band.
Principal vectors in the reciprocal lattice of a crystel.

xiii
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COMMONLY USED SYMBOLS -

The mean free path between collisions (averaged for all scattering
angles).

The mean free path of the electron having wave number k.
Orbital angular momentum vector.

The orbital angular momentum quantum number.

Wave length of an electron, light quantym, or lattice vibrational
wave.

The actual electronic mass.

The effective electronic mass [determined from the ¢(k) curve].
The mass of an atom or ion.

Orbital magnetic moment.

Atomic electric dipole moment.

Matrix component of the atomic dipole moment.

Magnetic moment per unit volume.

The saturation magnetic moment.

The electron spin magnetic moment vector.

The magnetic permeability.

Index of refraction; exponent in Born’s jon-ion repulsion function.
The number of particles per unit volume.

The effective number of free electrons (usually the number of
electrons in the band of width k7' at the top of the filled region).
The total number of atoms or elect.rons in a system ; the complex
index of refraction.

Avogadro’s number.

Frequency of vibration.

‘Maximum frequency in elastic vibrational spectrum of a lattice.

The electric polarization. _

The work function of a metal; also, the azimuthal angle.

The radius of the sphere having the same volume as the atomxc
cell.

The distance bet.ween two particles. .

The gas constant; also, the Hall constant; also, the reflection
coefficient; also, the refractivity.

Resistivity; also, the radiation density; also, the charge density.
The total spin quantum number.

The electrical conductivity ; also, the absolute value of the wave-
number vector.

The saturation magnetization in units of Bohr magnetons per
atom.

The wave-number vector for lattice vibrations; also, the spin
angular momentum vestor; the components are, g, oy, o, in both
cases.

The Thomson heat.



COMMONLY USED SYMBOLS xv

The temperafure, usually in degrees Kelvin.

A characteristic temperature, such as that for the specific heat
or the electrical conductivity; also, the effective cross scotion for
collisions between electrons and lattice.

The Debye characteristic temperature.

The Curie temperature. _

The mean time between colligions.

The primitive translation vectors of the lattice.

The velocity of the uppermost electron in the filled electron band.
The total volume of a system. '

The magnetic susceptibility (per unit volume).

The molar magnetic susceptibility.

The atomic number.



THE MODERN THEORY
OF SOLIDS
CHAPTER I
EMPIRICAL CLASSIFICATION OF SOLID TYPES

The Five Solid Types.—When using the term *“solid” in this book,
we shall refer to crystalline aggregates of atoms and molecules; that is, we
shall have little to do with substances such as glasses that do not have
definite lattice structure. In addition, we usually shall deal with crystals
having relatively simple structures because they are most amenable to
theoretical treatment. This limitation is not very important so long
as we are interested only in general properties of solids, for substances
with complicated structures can be classified in the same genersl way as
simple ones. On the other hand, the restriction is very serious if the:
theory is looked upon as a tool for aid in making practical use of solids.
There seems to be no way of removing this restriction other than to
continue work along the lines that are developed here.

Although there is no unique way of classifying all the solide found in
nature, the division that will be used here has enough natural advantages
to make a discussion of alternatives unnecessary. It is based upon a
survey of chemical, thermal, electrical, and magnetic characteristics.
Briefly, the classification is as follows:

a, Metals.

b. Tonio orystals.
¢. Valence orystals.

d. Semi-oonductors,
e. Molecular erystals.,

Metals, which are distinguished primarily by their good electrical
and thermal conduetivity, are formed by the combination of the atoms
of electropositive elements.

Tonic crystals are distinguished by good jonic conductivity at high
temperatures, strong infrared absorption spectra, and good cleavage.
They are formed by a combination of highly electropositive and highly
electronegative elements, the salts, sodium chloride, magnesium oxide,
ete., being the best examples,

1



' THE MODERN THEORY OF SOLIDS [Crar. 1

alence cfystals, of which diamond and carborundum are cxamples,
.ha¥€ poor eléctronic and ionic conductivity, great hardness, and poor
tleavage. - Fhey are formed by combination of the lighter elements in
the columns of the periodic chart.
~ ~@gtii-conductors, of which sine oxide and. cuprous oxide are good
examples, show a feeble electronic mduchﬂty which increases with
increasing temperature. It should be added that there is evidence: that
these substances are electronic conductors only when impure or when
their composition is slightly different from that characteristic of ideal
stoichiometric proportions, such as when there is an excess of zinc in
ginc oxide. For this reason, semi-conductors are characterized by a ten-
dency to favor addition of impurities and to disobey simple valenee rules.

Finally, molecular crystals are the solids formed by inactive atoms
such as the rare gases, and saturated molecules such as hydrogen and
methane. They are characterized by low melting and boiling points,
and they generally evaporate in the form of stable molecules.

* As will be shown below, a large number of solids have properties that
overlap those of two or more of these ideal groups. For this reason, the
divisions should not be regarded as being clean-cut in the sense that a
given solid belongs to only one of them.

We shall now give a more detailed discussion! of each of the five
solid types.

2. Monatomic Metals.—Metals may be divided conveniently into
two major classes, namely, monatomic metals and alloys. The literature
relating to alloys naturally is much larger than that for monatomie
metals. Since we shall not be interested in deVeIoplng the theory of
alloys beyond an elementary stage, we shall not give them a proportional
amount of space.

We may: recognize a furt.her subdivigion of metals into two groups
depending upon whether the d shells? of the constituent atoms are filled
or not. If the d shells are completely filled or completely empty, the
properties of the metal usually are simpler than if they are not. The two
cases will be discussed separately, the designation ‘“simple metals™
being used if the d shells are completely filled or completely empty, and
““transition metals” in the alternative case.

! Since the methods used in obtaining most of this experimental material can be
found in other places, they usually will not he discussed here; however, a fow lesser
known experiments concerning semi-eonductors and ionic orystals are discussed in
Secs. 4 and 6.

2 Throughout this book, we shall use the conventional notation for the electronic
orbital momentum quantum numbers (¢f., for example, H. E. White, Introduction to
Atomic Spectra (McGraw-Hill Book Company, Inc.,, New York, 1034). Ia this-
notation the letters s, p, 4, f, g, etc., designate ths siates having orbital angular
momentum quantum numbers 0, 1, 3, 8, 4, etc., respectively.
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@& Cohesion of Monaiomic Metals.—The heat of sublimation, which
is the energy required to dissociate a mol of substance inte free atoms,
is & cenvenient memnsure of the cohesion of a metal. Numerical values
of the heats of sublimation that have been taken from the compilation
by Bichowsky and Roesini! are given in Table L. The few values that
appear in parenthesis do not occur in these tables and have been esti-
mated by use of Trouton’s rule, namely,

L = 0.0235T,

Tasre I.—Tum Hmars or Susunation or Monatomic Mwrats
(In kg cal/mol at room temperature)

’ Monovalent Metals
Li 3.0 Cu 81.2
Na 25.9 Ag 68.0
K 19.8 Au 92.0
b 18.9
Cs 18.8 .
Drival - : Metals
Be 75 In 27.4
Mg 5.3 Gd 26.8
Ca 47.8 Hg 14.8
S &7
Ba 49
Ra (72.7)
Trivalart Metals
Al 55 Ga B2
- Be 70 In 32
Yt 90 Tl 40
1e 90
Tetrawalent Motals
T 100 Ge 85
Zr 110 " 8Bn 78
Hf (>72) Pb 47.5
Th 177. '
Pentavalent Metals
As 80.3
8b 40.
Bi 47.8
Transition Element Metals
vV 86 Nb (>68) Ta (>97)
Cr 88 Mo 160 w 210
‘Mn 74 Ma Re ’
Fe 94.0 Ru 120 Os 128
Co 85.0 Rh 115 Ir 120
Ni 85.0 Pd 110 Pt 127
U 220

1 F. R. Biopowsxy and F. D. Rossint, The Thermochemistry of the Chemical Sub-
. shamoes, Reinheldl Publishing Corporation, New York, 1986.
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where L is the heat of sublimation in kilogram calories per mol at the
boiling point and T’ is the boiling temperature in degrees Kelvin, There
are many interesting relationships amorg these values. One of the most

——

Fig. 1.—The face-centered cubic Fi1G6..2.—The body-cen-
lattice. tered cubic lattice.

striking ones is the fact that the atoms of transition metais on the whole
are more tightly bound together than those of simple metals. o
b, Crystal Structures.—Most of the monatomic metals crystallize in
simple cubic or hexagonal structures. The three common types are
shown in Figs. 1 to 3. More complex ' '
structures, which occur mainly among the
atoms having higher valence, are shown in
-Figs. 4 to 11. Table II is a tabulation of
the crystal parameter values for different

Fia. 3.—The close- Fi16. 4.—The diamond and gray tin

hexagonal lattice lattice.
" showing two prominent crys-
tallographic planes.

metals, including various allotropic modifications. These values have
heen taken from the three editions of Strukturberichie.?

! Strukiurberichte, Leipzig (1831). Three supplements have appeared sirce the
first volume.
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- Hume-Rothery! has pointed out that many complex structures, such
a8 those of bismuth (Fig. 9), tin (Figs. 4 and 8), mercury (Fig. 6), and
gallium (Fig. 7), are strikingly like those
et among valence crysials, which are
discussed bclow. For this reason, he o
would regard thesc substances as being

o
Ol234?ﬁ

Fin. 5.-~The indium lat- F1a. 6.—The mercury lattice.
tire. The parsmeter values
Turs piven for indium,

intermediate et ween ideal metal and valence vypes, as we shall see below.
This view is snpported by observations on the conductivity and magnetic
properties of these metals,

c. Allotropy.—Table Il shows that at
ordinary pressures the transition metals exhib-
it allotropy more commonly than do simple
metals. Bridgman® has found, however, that.
many of the simpler metals change their struc-
ture at high pressures. Cesium, for example,
has a close-packed modification which appears
at 22,000 kg/em? of .pressure; similar changes

L) )

OGa

 JN T W — —
012345
Frg. 7. -The gallium lat- Fig. 8.—The white tin lattice.
tice, showing the layer strueturce .
in which each atom is sur-
roundod by three neighbors.
oceur in magnesium.  For this regson, it is doubtful whether poly-
morphism is a particular characteristic of any one group of metals.

YW, i reuz-Roriery, The Structure of Metals and Alloys (Institute of Moetals
Mozrograph, Londan, 1036).
2P W, Bripomaxn, Phys. Rev., 48, 893 (1935); Nat. Acad. Sci. Proc., 38, 202 (1957).
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Tamas II . —TABULATION OF CRYSTAL STRUCTURES AND PARAMETERS or MonaToMic
MzraLs
(d is the nearest interatomic distance in angstroms and a is the edge length of the
fundamental cube for cubic lattices. The parameters e and ¢ for hexagonal close-
packed lattices are shown in Fig. 3.) -
‘The alkali metals form body-centered cubic lattices with the following parameter
values,

a d
Li 3.46 | 3.00
Na | 4.24 | 3.67
K 5.25 | 4.54
Rb | 5.62 | 4.87
Cs |6.06]5.24

The monovalent noble metals have face-centered cubic lattices with the following -
parameter values.

G d
Cu | 3.600 | 2.55
Ag | 4.078 | 2.88
Au | 4.070 | 2.87
Divalent Metals
Type a d
Be h.c.p 2,28 3.50 a
Mg h.o.p 3.20 5.20 a
a Ca f.cec. 5.56 3.93
B Ca b.ep 3.08 6.52 . a
8r f.c.c. 6.06 cens 4.28
Ba b.c.c. 5.01 e 4.34
Zn . hop. 2.65 4.930 a
Cd h.c.p. 2.97 5.61 a
Hg (uo Fig. 6)
‘Trivalent Metals
‘Type a c d
Al f.ec. 4.04 2.86
8¢
Yt hep. \| 3.66 5.81 a
ala h.e.p. 8.72 6.06 a
A Ls f.c.c. 5.80 3.74
Gs (see Fig. 7) .
In tet.f.c. .59 4,94 (see Fig. 5) -
aTl h.e.p. 3.45 5.52 a
g7 f.c.0. 4 84 3.42
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TasLE II.—TABULATION OF CRYSTAL STRUCTURES AND PARAMETERS OF MoNATOMIC

MgzTravs.—(Continued)

Tetravalent Metals
Type a c d
Ti h.c.p. 2.953 4.73 2.892
a Zr h.c.p. 3.23 5.14 a
B Zr b.c.c. 3.61 3.13
Hf h.c.p. 3:20 3.14
Ge diam. str. 5.62 . 2.43
a Su (gray) diam. str. 6.46 2.80
B 8n (white) (see Fig. 8)
Pb f.c.c. 4.93 3.48
Pentavalent Metals .
As (see Fig. 9)
8b As type; (see Fig?9)
Bi As type; (see Fig. 9)
Transilion Metals
Type a c ad
v b.c.c. 3.01 2.61
a Cr b.c.c. 2.87 e 2.49
g Cr h.c.p. 2.72 4.42 a
a Mn (see Fig. 11) .
g Mn S 12.58 .
v+ Mn tet.f.c. 3.77 3.53 2.08
a, B, 5 Fe (ais low-tem-
perature magnetic
form) b.c.c 2.86 2.58
v Fe f.c.c. 3.56° 2.57
« Co h.c.p 2.51 4.11 a
8 Co f.c.c. 3.55 2.51
Ni f.c.c. 3.51 2.48
‘Nb b.c.c 3.30 2.86
Mo b.c.c 3.14 2.96
Ma
Ru h.e.p 2.765 4.470
Rh f.c.c. 3.78 2.67
Pd f.é.c. 3.88 2.74
Ta b.c.e 3.29 2.72
a/ b.c.c 3.16 2.73
(sec Fig. 11) .
Re h.c.p 2.76 4.45 a
O3 h.c.p 2.7 4.32 a
Ir f.c.c. 3.83 | e 271
Pt f.c.c. 3.92 ° 2.H
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There is, however, one type of allotropic change that is characteristic
of transition metals. This may be illustrated by comparing the cases
of tin and iron. The a, or gray, modification of tin is stable at very low
temperatures, whereas the 8, or white, modification is stable at high

— T

¢ Yy
| -

Fa

| MRS S T TU———)
0 23 454 ©OM

Fig. 9.—The bismuth lattice, show- F1a. 10,—The « manganese lattice.
ing the layer structure in which each
atom is surrounded by three nearest
neighbors.
temperatures (¢f. Table II). The transition temperature, which is 18°C,
was determined by Cohen and van Eijk' from measurements on the
emf of an electrolytic cell that had one gray-tin electrode and one white-
tin electrode. The case of tin is typical of the simple metals inasmuch
as the a modification is not again stable
in any range from 18°C to the melting
point of the g phase. On the other hand;
the body-centered modification of iron 1s
stable? in two temperature ranges,
namely, from 0° to 1179°K and from
1674°K to the melting point 1803°K.
The face-centered, or vy, modification is
stable in the intermediate range from
1179° to 1674°K. This “intrusion” of
Fio. 11.—The 8 tungsten structure. ON€ Phase into the range of another also
occurs in cobalt.? In this case a face-
centered cubic phase splits the stable range of a close-packed hexagonal
phase into two parts.
1 E. Couen and C. vax Eug, Z. physik. Chem., 30, 601 (1899).
* Cf. Strukturberichte.
38. B. Henpricks, M. E. Jxrrerson, and J. F. Snurrz, Z. Krisi., 78, 376 (1930).
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d. Atomic Radii.—It is often convenient to ascribe to each atom or
ion & radius that is determined by the volume which the atom or ion
occupies in a given compound. In monatomic metals the radius r is
defined as half the distance between the centers of nearest neighbors,
this definition being based upon the rigid-sphere concept of atoms, accord-
ing to which the observed interatomic distance should be the distance
for which neighboring spherical atoms come into contact, or twice the
atomic radius. Since the nearest-neighbor distance is seldom precisely
the same for two allotropic metal phases, it is clear that the rigid-sphere
picture cannot be accurate. Nevertheless, the concept can be very
valuahle for semiquantitative work as will be seen when we discuss the

Rb 1
r~e=t-Ru Ba
24 - i ey ||
Na Felt-=-r-t--Coll v P | 0s-L - H1F~—"Hg
e e o ]
Mg 1 b fCh} {1 4=In w-“"'%
V20 b 11450 Ta |
AL Ti-H -]’ jihifr--Ga 1 1P L A Hf-r1 | el
fittiii g r-se it r .
4 A
P Be
IA HH "
. _ it
“ 'd 111
' |
'fl !
0 il 1}
0 20 30 40 50 60 0 80 %
o Atomic Number

Fia. 13.—~The n;dﬁ of the metallic atoms as determined from the interatomic distance.

Hume-Rothery rules for alloys (¢f. Sec. 3). Figure 12 shows the atomic
radii as determined from the interatomic distances of Table II.

e. Electrical Conductivity.—The electrical resistivity ¢ of a substance
is a tensor quantity that is defined in terms of the electrostatic field
intensity E and the current per unit area J by the relation

E=¢-J.

¢ is a constant tensor for cubic crystals and may be represented by a
gsingle number in these cases. It has twoindependent values for hexag-
«onal and tetragonal crystals. - These may be determined by using fields
parallel and perpendicular to the principal axes, since E and J are paralle]
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to one another in these two cases. The two components of ¢ are respec-
tively designated as the || and 1 components.

Tasue IIL—Tus Resigrrvirss oF MuraLs ar RooM TEMPERATURE
(The resistivity p is expressed in units of 10~% ohm-cm. || and L designate, respec-
tively, values in directions parallel and perpendicular to the principal axis in hexagonal
and tetragonal crystals.)
Monovalent Metals

Li 8.75 Cu 1.56
Na 4.35 Ag 1.49
K 6.62 Au 2.04
Rb 12.0
Cs 19.0
Divalent Metals
Be 5.5 Zv ||6.0; 15.8
Mg [[3.50; 14.22 Cd [|8.4; 16.9
Ca 9.80 Hg (—45.5°C) [|17.8; 1.23.5
Sr 32
Ba 60
Ra
Trivalent Metals
Al 2.50 Ga 52.6
So In 8.4
Yt T 1i7.2
La b57.6
Tetravalent Metals
Ti 47.6 - Ge 89,000
Zr 41.0 Sn  [|13.1; L9.1
Hf 32.1 ~Pb 19.8
Th\ 18
Pentavalent Metals
As 128
Sb 39
Bi ||143; 1109
Transition Metals
v 58.8 Nb 21 Ta 14
Cr 2.6 Mo 5.03 w 4.9
a 710(7) Ma Re 18.9
Mn<{g 91(D) Ru 7.684 Os 8.9
y 23 Rh 4 58 Ir 5.0
a Fe 8.71 Pd 10.2 Pt 9.81
a Co 6.2 '
Ni 12.0

Table ITI and Fig. 13 contain tabulations of the electrical resistivities!
of monatomic metals at temperatures near 0°C. The lowest resistivities
are those of the monovalent noble metals copper, silver and gold. In
comparison, the alkali metals are only moderately good conductors.

1 See, .for example, the compilations of Landolt-Bornstein and the International -
Critical Tables.
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Usually the resistivity decreases with increasing valence for the lighter
elements and increases with increasing valence for the heavier elements,
'as may be seen by comparing the following two sequences:

Resietivity - 10® ohm-em Resistivity - 10* ohm-cm
Na 4.35 Cu 1.56
Mg 3.50 o Zn 5.8
Al Z.50 Ga 52.8

One of the most striking periodic properties of the resistivity is the
large decrease that follows the completion of a d shell. The change ir

La 81
60 .
v ‘GMn mg; Ba (109
Mn 9l
Ga
50
Ti-t
Zr
t “"
2 Sr"
<
= Hf
E‘?’o }Re
" ¢
~~Cb
2 zﬁm Fe Mo _Hal - Pb
r-HFc Tt ~rof[ & T
Ni :;--gg--sn Ta
o |-4_|-Na Ca Rool 14! 111 Hifin pif
1 -
Be grﬂgl“ -tz ll 111 4] fiHca T HIES
11w 111
0
0 0 20 30 50 60 70 80 %
Atomic Number

F1a. 13.—The resistivity of monatomic metals. The ordinates are expressed in chm-em.

resistance from 12 - 10~% ohm-cm for nickel to 1.56 - 10~ for copper is
the most prominent illustration of this.

The metals with the highest resistivities are those such as arsenic,
antimony, bismuth, tin, mercury, and gallium which have complex
structures, a fact lending additional support to Hume-Rothery’s view
that these are intermediate between ideal metals and insulating crystals.

The ratio of the resistance at temperature T to the resistance at zero
degrees centigrade is shown in Fig. 14 for a number of metals.! The
fact that the curves are closely alike justifies our comparison, in the pre-
ceding paragraphs, of the room-temperature values. The high-tempera-
ture resistivity of most metals varies linearly with temperature, whereas
the low-temperature resistance varies with a higher power of 7. The

1 Ibid.
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most reliable mcasurements seem to show that the low-temperature
variation is as 7® for metals that are not superconducting. We shall
discuss this topie more fully in Chap. XV.

(4]
8
6
4 A
. -
5 Y=
2 =
V.l
H
T 05 7
e |
/A
02 f
1
e ® Fe
O Ni
005 o Ft
AH Cu
4 Mg
e Bi
002
oot ]
0 200 490 600 800
T Deg. K.-—

F1a. 14.—Temperature dependence of the relative rasiat.i}rities. of several metals. The
ordinate is the ratio of the resistivity at temperature T to that at 0°C.

A large number of mectals beéome superconducting below & tempera-
ture characteristic of the substance. These metals and their transition

TaeLe IV.—Tar SveerRconpuctine Mutans anp Tasir TransirioNn TEMPERATURES

1
Metel T, °K l Metal 7T, °K
Zn 7.80 ! Ti 1.13
Ca 0.6 ; Zr 0.7
He 4.18 ' Hf .3
Th 1.33
Al 1.4 Sn 3.72
Ga L.07 Ph 7.2
In 3.38
Tl 2.47 v 4.29
Nb 9.22
Ta 4.27
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temperatures arc listed in Table IV. There seems io be no striking
regularity beyond the fact that none of the monovalent metals is super-
conducting. The resistances of nonsuperconducting metals at very low
temperatures and the normal resistance of superconducting metals just
above the transition temperature usually are dependent upon the pre-
vious history of the specimen on which measurements are made. It is
believed! that, at least in principle, one can divide the resistance into
two parts, namely, a part that is characteristic of the pure substance and
that extrapolates to zero at the absolute zero, and a part p,, generally
termed the residual resistance, that arises from imperfections and that
presumably would be zero for a perfectly pure undistorted ecrystal.

[t

s r//
s
/Y

L/
Vi

100 -
[} 200 TOK 300 400 500

Fra. 15.—~The atomic-heat curves of silver and aluminum. The ordinates are oal/mol‘.

Since p, does not seem to vary reversibly during temperature changes,
it usually cannot be separated from a set of measured resistances in a
precisely quantitative way. It is known from fluctuations in resistance,
however, that the residual resistance is of the same order of magnitude
as the total resistance at 5°K. Since the room-temperature value is
about a thousand times larger than this, the fluctuations caused by resid-
ual resistance are of the order of 0.1 per cent at ordinary temperatures.
J. Specific Heats.—Figure 15 shows the temperature dependence of
the atomic heats at constant volume C, of silver and aluminum.z These
curves are typical of most of the simpler metals. They are characterized
by & monotonic rise from zero at absolute zero to a nearly constant

1 Cf. E. Grineisen, Handbuch der Physik, Vol. XTIT (1928). More recent work,
such as that of W. J. de Haas and G. J. van den-Berg, Physica, 4, 683 f. (1937),
seems to show that the residual resistance increases with decreasing temperature in
the case of gold.

« 3 Bilver: A. Evcksx, K. Crusius, and H. WoLTINEEK, Z. anorg. Chem., 203, 47
(1081;. Aluminum: C. G. Marer and C. T. ANDERSON, Jour. Chem. Phys., 2, 513
(1934).
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value at high temperatures. This constant value should be about 3R,
according to the law of Dulong and Petit, where R is the gas constant.
Actually, the measured values are slightly higher and rise with increasing
temperature. The part of the curves near 0°K may often be approxi-
mated closely by the expression R(7/05)% where O is a constant, kr.awi

12
" Hf
" /
. |
) |
B
. ]
CP . II G‘E‘\_ __,v-“'"""-_
4 /—- /
3
2
(= L
0
0 50 100 150 200 250

TOK —= )
Fic. 18.—The atonuc-heat curves of germanium and hafnium. The ordinates aré cal/mol
{ After Simon and Cristescu.)

as the Debye characteristic temperature. Table V contains values of
©, for several metals that exhibit this type of specific-heat behavior.

TapLe V.—~CHARACTERISTIC TEMPERATURE OF SEVERAL SiMPLE METALS A8 DErrr-
MINED FPROM THE T? Law
(See Table XXXIV, Chap. IIL, for additional values.)

Metal Op
Ag 210
Ca 219
Zn 200
T1 94
Sn 140
Bi 107

All the nontransition elements resemble silver and aluminum in that -
they have a limiting high-temperature atomic heat of about 3R, but a
number of them do not behave quite so simply at low temperatures.
The differences vary from slight deviations from the T? law to greate:
ones represented by large peaks, such as those shown in the curves! fox
germanium and hafnium (Fig. 16). The metals that exhibit anomalies

1 8, Cristescu and F. SiMon, Z. physik. Chem., 26B, 273 (1934).
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of the extreme type generally have lattices in which more than one atom
is contained in the unit cell.! For example, hafnium [orms a close-
packed hexagonal crystal, and germanium has the diamond lattice; both
these types contain two atoms per unit cell.

The atomic-heat curves of the transition metals generally rise well
above the Dulong and Petit value of 3R at high temperatures and increase
linearly in this region. Figure 17 shows the behavior? for v iron, which
is a typical case. The ferromagnetic metals « iron and nickel show the
same behavior but have additional peaks that accompany the decrease
in their permanent magnetization. Figures 17 and 18 illustrate® these
two cases.

I8
. A

e s P A S
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_.-—""":y ¥ i i |
4 _ L ..'! 1
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QW | T i
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0 100 200 300 400 500 600 700 800 ?FEJDOKIDGO 1100 12C0 1200 40T ..’.’-uO 1600 17001800

Fra. 17,

The atomic-hent curves of @ and v iren. The ordinales sre cal/mol. (After
Austin.)

The specific heat of nickel does not follow the 1'% law in the region
below 10°K but becomes linear in accordance with the equation*

C, = 0.0017447T cal/deg-mol (see Fig. 19). (0

If the valucs given by this function are subtracted from the observed
values, the residue is found to follow the 7' law. This fact indicates

1If #y, 73, 75 are the primitive translation vectors of the lattice, the unit cell is the
unit of the lattice from which the entire lattice may be generated by translations
of the type
T = niry + nare + nars

in which n3, 73, and n; range over all integer values. The volume of the unit cell
is equal to the volume of the parallelepiped the edges of which are equal to 7y, 74, 73,
namely, 71 .72 X 73,

1 Cf. the compilation of J. B. Ausiin, Industrial Eng. Chem., 24, 1225 (1932);
24, 1388 (1932).
. *Bee ibid. for iron and Landolt-Bornstein for a survey of the specific heats of
nickel.

¢+ W, H. Keesom and C. W. Crark, Physice, 2, 513 (1935).
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that the total specific heat of nickel is composed of two parts, one that
has the same source as the specific heats of the nontransition metals and
one that has another ofigin. The first part is believed to arise from
thermal excitation of lattice vibrations;there is fairly eonclusive evidence,

v |

0 200 400 600 _ B0 1000 1200 W00 1600
FiG. 18,--The atomic-heal curve of nickel. The ordinates are cal/mol. (After Lapp.)
which will be presented in Chap. IV, that the second is related to the
excitation of the electrons in he unfilled d shells. In this connection, it
is worth pointing out that at 1000°K the value of C, in Eq. (1) is of the
same order of magnituda as the difference between C, and 3R.

0.08

? v
po //

002 I-- S

¢ / ..
0 4 8 12 16 20
TOK ——
Fra. 19.-—The atomic heat of nickel near absolute zero. The ordinates are cal/mol.
(After Keesom and Clark.)

g. Magnetic Propertics—The magnetic suseeptibility per unit volume
x, like the resistivity, is a tensor quantity. It is defined in terms of the
magnetic field intensity H and the magnetization per unit volume M
by the relation '

M=yx.H
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We shall ordinarily use cgs units for these quantities, expressing H in
gauss and M in terms of the cgs unit of dipole moment per unit volume.
Another important magnetic quantity is the permeability y which is
defined in terms of H and the magnetic induction B, by the equation

_ B = gH.
u and x are related by the cquation
v =1+ dmy.

x is practically independent of both tcmperaturé and field strength
for a large number of nontransition metals; however, it varies with
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Fia. 20.—The specific susceptibilities of the monawomic metala at room temperature.

temperature in some ¢u.es.  The room-temperature values for the simnle
metals are given! in Table VI and in Fig. 20. For convenience, the
specific susceptibilities x/A, where A is the density, rather than the
susceptibilities are listed. It may be seen that the metals in the shoit
periods and those which precede the transition elements are paramag-
netic, that iz, have positive susceptibilities, whereas the metals which
follow the transition metals are diamagnetic. The susceptibilities usually
are so small thaf traces of ferromagnetic impurity affect the measured
values considerably and cause them to vary from specimen to specimen.

1 Seé, for example, the compilations of Landolt-Bornstein and the Internationsl
“Critical Tables. As in the case of the resistivity, the scalar components of the sius-
ceptibility are listed,
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In addition, the susceptibility of a given specimen depends markedly
on the mechanical treatment it receives. For example, Bitter! found
that the susceptibility of a piece of copper wire could be varied by az
much as 40 per cent by stretching. Similarly, Honda and Shimizu®
found that cold working changed the susceptibility of a sample of copper

TasLe VI.—RoOM-TEMPERATURE SpPEcCIFIc MAGNETIC SUSCEPTIBILITIES OF Mo A-

TOMIC SUBSTANCES
(In cgs units)
Monovalent Metals

x + 108

Ti 3.6
Na, 0.6
K 0.6
Rb ¢ 2

Divalent Metals
Be —-1.0
Mg 0.5
a Ca 1.1
Sr -0,2

Trivalent Metals
Al 0.6
Se
Tt
g La 20

Tetravalent Metals
Ti 1.2
Zir —0.45
Hf
Th 1.0
, Pentavalent Metals
As -0.25
Sb [|—0.497; 1 —1.38
Bi l—1.0; L—-1.5
Transition Metals

Y 1.5
e Cr 3.0
a Mn 10
Nb 2.3
Mo 1.0
Ru 0.4
Rh 1.9

from negative to positive and that annealing after cold work restored
the original diamsgnetism. It is probably true that measurements on
perfectly pure, unsirained specimens of the same metal would be closely
alike. However, ordinary materials do not conform to these conditions.

¥, Birrer, Phys. Rev., 38, 978 (1920); also, Introduction fo Ferromagnetisn

{McGraw-Hill Book Company, Ine., Ne., York, 1937).

* K. Honoa and Y. Sumizu, Science itepts. Imp. Tohoku Univ., 20, 460 (1931}

22, 915 (1933).
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Figure 21 shows (he temperature dependenco of the measured! sis-
ceptibilities of & fe-w nontransition elements.
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I'ta. 21.—~The temperature dependence of the specific susceptibilities of several metals.

The susceptibilities of the nonferromagnetic transition elements are
all positive and are generally larger than those of the paramagnetio

085 /’,-—’2
i 040 _"_,_—-—;':,/ ?/
Flixlo_c' / /
075 / —

-150 00 =50 Q

-—’
TL =
Fia. 22.—~The temperature dependence of 1/x for several specimens of platinum. (After
Collet and Foir.),

simple metals. The temperature dependence? is shown in Fig. 22 for
several specimens of platinum.

1 See footnote 1, p. 17.
2 P. Correr and G. Foix, Compt. rend., 192, 1213 (1931).
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The susceptibilities of ferromagnetic solids are so strongly dependent
upon field strength that the magnetic properties are described most
conveniently by giving M as a function of H, Figure 23 shows! M
versus H curves at room temperature for three directions in a single
crystal of nickel. M and H are parallel in cach of the three cases. It
may be observed that M is small when no field is present and that it
rises very rapidly at first as H increases. It approaches a saturaticn
value M, in the [111] direction? at about fifty gauss and then remains
practically constant. The intensity curves for the [110] and [100]

5004~ oy : -

L 1 i L. 1

|
0~ 100 200 300 400 50 600

Fie. 23.—The magnetisation curves of » ml:ml,c orystal of nickel. The abscissa is expressed
: in gauss. (After Kaya.)
directions bend over sharply at values of about M, cos 30° and M, cos 60°,
respectively. They then rise relatively slowly and approach the value M,.
This behavior may be interpreted in terms of the domain concept of
ferromagnetic materials which was first proposed by Weiss,®? According

1 8. Kava, Soience Repts. Imp. Tohoku Univ., 17, 630 (1928),

% We shall commonly use this notation in which s crystallographic direction is
specified by a set of integers (Miller indices) that are proportional to the direction
cosines. In cubic crystals, the coordinate axes are usually taken as an ordinary
Cartesian system; in a hexagonal crystal such as cobalt, however, one coordinate axis
. is taken in the direction of the hexagonal axis of the crystal, and three others, separated
by 120 deg, are taken in the plane normal to the bexagonal axis. In the second case,
directions are specified by four integers, the last being propottional to the diraction
cosine between the given direction and the hexagonal axis. We shall specify planes
in a similar way by giving the integers that are proportional to the direction cosines
of the normals to the planes. '

*P. Weiss, Jour. phys., 6, 861 (1907). An excellent discussion of the preseat
statue of domain theery may be found in the book edited by R. Becker, Probleme der
technischen Magnetisierungskurve (Julius Springer, Berlin, 1938). See algo the more
recent review article by W. F. Brown, Jour. App. Phys., 11, 160 (1040), and the book
by R. Becker and W. Déring, Ferromagnetismus (Julius Springer, Berlin, 1939).



8gc. 2] EMPIRICAL CLASSIFICATION OF SOLID TYPES 25

to this concept, ferromagnetic substances contain a large number of
small domains that have an intrinsic value of magnetic intensity equal to
M, even in the absence of an external field. It is assumed that theo
direction of this intensity lies along one member of a prominent set cf
equivalent crystallographic directions, this set being the eight directions
equivalent to [111] in the case of nickel, for example. The resultant
magnetization of the entire crystal is zero when H is zero, for the domains
have their magnetization distributed uniformly among the eight [111]
directions. If a weak field is applied in the [111] direction, all ‘he
domains have their magnetization changed to this orientation and th<
crystal becomes magnetized to the saturation valu: M,. This process
of rotation is demonstrated very convincingly by the Barkhausen'

1800 lod)
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1g. 24.—The magnetization curves of iron. ‘The absci is expr d in gauss. (After

Honda and Kaya.)

offect, which shows that magnetizntion takes place in very small discrete
stanges. The size of the domains reav be estimated from the siza of these
steps if it is assumed that eacl Limp renresenia the effeet of ono drsonin
changing its directicn. In thiz way, Bozorth and 13 car? esiime zd
that +here are 10° domains per cubic certimeter,

Tt should be emphasized that ":5 domsins are o0 15w ferl with
crystalline units of the lattice, «ueb o The grains in polyervstals. It now
seems well establizhed tha' the doraain size, which maz be lurzer or
smaller than the grain size, is deteemined primarily by the © . nelic
interaction of di'fr~ent parts of & specimen and by variations in it
internal stress. I addition, it should be mentioned that magnerizatinn
may take place b, ..uic or loss confinnous growth of properly voierted
domains at thei: boundaries, inuch ee arystals grow from gueici.

' A, BARKHAU=EN. Hhysik, Z., 20, 401 71919),
2 . Bozoria and J. Thremwezsn, Phys, Fev, 835, 733 71930
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If a weak field is applied in the [100] direction instead of the [111]
direction, the domains are reoriented as nearly parallel to the [100]
direction as possible without leaving the eight [111] directions. Since
the angle between the [100] direction and the four nearest [111] axes is
55°, it follows that the largest value of M| that can be obtained in this
way is M, cos 55°. This actually is the value at the bend in the [100]
curve of Fig. 23. Since M increases beyond this value as H is increased,
it follows that the intensities of the domains can be bent away from the
normal directions of magnetization and eventually become patallel to
the direction of the applied field. The curve for the [110] direction
supports the same picture.

1400 -
: ooy
- 1200 —
T 1000 ; k)
M 800F o)

m b w

400 §

200 4

0 ! 1 1 1 i ! ! 1 1 I

(¢] 2000 4000 6000 8000 10000
H——

Fie. 25.—The magnetization curve ef cobalt. The abscissa is expressed in gauss, (After
Kaya.)

Figures 24 and 25 give corresponding curves for iron! and cobalt.?
The [100] direction is the easy direction of magnetization in the first case,
whereas the hexagonal axis is in the second. The [1010] and [1120]
direction curves for cobalt show no sharply rising portions because they
are orthogonal to the easy direction of magnetization.

Akulov? has shown that one may account for the form of the magneti-
zation curves of iron by assuming that the energy E. of the crystal varies
with the direction of magnetization of the domain in the manner

E. = K\(838] + 8383+ 838)). 2

K, is a constant which ordinarily is determined experimentally, and S,,
Ss, Ss are the direction cosines of the magnetic intensity. The total
energy E, of the crystal in the presence of a field H is then

~ Ey=E.— HM cos ¢
1 K. Honpa and 8. Kava, Science Repte. Imp. Tohoku Univ., 15, 721 (1926).

38, Kava, Science Repis. Imp. Tohoku Unsv., 17, 1157 (1928).
¥ N. 8. Axvrov, Z. Physik, 87, 794 (1931).



Sec. 2] EMPIRICAL CLASSIFICATION OF SOLID TYPES 23

TasLe VIL—MagyeTic DaTa oF THE FERROMAGNETIC MonaToMic Mwpravs
(The values of M, and o, correspond to 0°K.)

Fe Co Ni Gd
My, CgS. .o B 1752 | 1446 512 1560
o, Bohr magnetons per atom. . ............. 2.22 1.71 0.606
Bo, “Cul e 780 1075 365 | 16 + 2
O °C. 714 1231 372

where ¢ is the angle between H and M. The value of ¢ corresponding
to equilibrium for a given field intensity is determined by the condition

dE,

de 0 1700— "%yﬂﬂl’ 2
This leads to a relationship between 1600/ v
¢ and H, from which the component 1500 f
of intensity in the field direction t 1400 }5
may be determined as a function of ' 1309
H that involves the constant K, ™ 1200 /
Tigure 26 shows the calculated and 1100 Hit ]
observed values of M for the [111] 000k~ poce g:#%
and [110] directions of iron; these P | 177
were obtained by using 9 100 200 300 400 500 600 700
H =~
K, = 2.14 - 105 ergs. 1800

This method of correlating experi- 1700 : s
mental measurements with energy 4 500 o
expressions of the type of Eq. (2) has 500 /V
been extended by Gans,! Bozorth,2 M 4
and others. HOO*-? '

The magnetization curves vary  '300 ‘gf | g
with temperature in two striking 1200 coeo  ObL.
ways: (1) The value of M decreases 1100 : |—- Cali..
with increasing temperature and 100 rorlr
eventually approaches zero at the 100 200 51-?—19-0 500 600 700
ferromagnetic Curie point ©,. (2) . Fro. 26.—Caloulated and observed.

. . magnetizati ocurves f iron. (After
The relative values of the magneti- Am;‘.)n o or. iron.

zation curves for different directions
change with temperature. Figure 27 shows the ratio of M,(T) to M,(0),
the value of M, at 0°K, as a function of T/0, for iron, cobalt, and nickel.

! R. Gans, Physik. Z., 83, 924 (1932).
t R. M. BozorTH, Phys. Rev., 50, 1076 (1936).



.24 THE MODERN THEORY OF SOLIDS [Crar. 1

Table VII contains? valuea of O, for each of these substances as well as
values of M,(0) and o,, the saturation moment per atom.

Above the Curie temperature, ferromagnetic crystals exhibit a
paramagnetism that is the eame order of magnitude as the paramagnet-

T T
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T 06 0 /ron
A Nicke/
- Mg(T) X Cobalt
Ms(O 04
02
0 |
0 Q2 03 08 Lo
7 6 —>

Fie. 27.—The temperature dependence of saturation magnetisation for iron, cobalt
and nickel. The abscissa is the ratio of the temperature to the Curie temperature 6, and
the ordinate is the ratio of the magnetization at temperature T to that et absolute sero.

(After Tyler.)
80000 7

/

000 4
% VL

1
= 40000
' / r Qﬁe
000 e
20 / J}L//
0 ) g

0 200 400 600 800 1000 1200 1400
T-Deg.C
Fig. 28.—~Temperature dependaneo of the paramagnetic susceptibility of nickel and iron
above the Curie point.

ism of other transition metals. The susceptibility is highest at T = =6,
and decreases with increasing temperature The temperature depend-
ence of the reciprocals of x for iron and nickel is shown in Fig. 28. It
may be noted that these curves are almost linear, a fact which shows that

~_C
——T-ep

i After F. Tyuer, Phil. Mag., 9, 1026 (1930); 11, 596 (1931). See also E. C.
StonER, Magnetiem and Maiter (Methuen & Company, Ltd., London, 1934). b
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where C and O, arec constants. Some values of 6,, which is ealled the
paramagnetic Curie point, are given in Table VII.

We have remarked in f that the specific heat of a ferromagnetic metal
has a sharp peak in the neighborhood of the Curie point. Peaks of this
type appear in Figs. 17 and 18. Figure 29 gives a more detailed plot
of measured values for nickel. This curve,! which is characteristic, also,
of iron and cobalt, shows that the specific heat does not return to the
normal 3R value above the Curie point.

It should be mentioned in passing that Urbain, Weiss, and Trombe?
have found that metallic gadolinium is ferromagnetic, its ferromagnetic
Curie point being 16°C.

Qlé
Ql5
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T 013 -
- —
& v
ok /’
ah -
/
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0 109 200 _300 400 500 600 700
T-Deg.C—»
Fig. 29.—The specific heat of nickel in the vl}cinit.y of the Curie temperature. (After
Moser.

We shall not discuss the many intricate facts about the properties of
polyerystalline ferromagnetic materials.

8. Metal Alloys.—The metallurgist defines a metal alloy as a com-
bination of two or more monatomic metals that has metallic properties.
Thig definition does not require that the material should be a homo-
geneous phase, and, indeed, many useful alloys are not. For simplicity,
however, we shall restrict. practmally all of our discussion to single

hases.
’ " Alloys generally may be divided mto two distinct clesses, namely,
substitutional alloys and interstitial alloys. In the first type the different
constituent atoms occupy the same type of lattice position. Gold and
silver form an' alloy of this type in which both atoms occupy at randam
face-cantemd lattice positions. " As we shall see, one general requisite

' H. Mossr, Physik. Z., 87, 737 (1936). _
1 G. Urean, P. Weiss, and F. TroMsx, Compt. rend., 200, 2132 (1985).
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for the formation of an alloy of this type is that the radii of the con-
stitient atoms be nearly equal.

In interstitial alloys, one or more kinds of atom ﬁt into the interstices
of the lattice formed by another kind. Low-concentration earbon steels
are alloys of this type. In these, carbon atoms probably occupy some
of the face-centered positions of the ordinary body-centered strueture of
iron. The interstitial atom usually is much smaller than the atoms of the
lattice into which it fits.

The properties of a large number of substitutional alloys have been
investigated extensively, whereas information concerning interstitial
alloys seems to be fragmentary. The main reason for this deficiency is

Liguid Liguidus
T v curve 3. /»
N i i A
Y, . +LJ \\b- (‘&
Tp X | S
a !
i U 8 r
a+@ B+y
|
)
Tz'_'- YR
0 10 20 30 4_ 30 00 10 60 X
A Cornposition w IB”%

Frac. 30.—A symbolical phaso diagram. The regions «, 8 and v mark regions in which
three different phases are stable. The phases o and B coexist at a point such as X in the
region @ + B. The « phase ¥, formed at the temperature T may, in certain cases, be
quenched to temperature 7'z, where it is unstable, without actusally reverting to the stable
mixture of a and 3.
that the small atoms, such as hydrogen, carbon, and nitrogen, of clear-cut
interstitial cases are not good X-ray scatterers, fo that structures of
these alloys cannot be determined with certainty. We shall be concerned
almost entirely with substitutional alloys in the following discussion.

a. The Phase Diagrams of Binary Alloys.—It is most convenient to
discuss binary-alloy systems in terms of the conventional phase diagram.
[u this diagram the temperature-composition boundaries of the phases -
of the system are plotted as functions of composition. Figure 30 shows
a typical case, the areas a, B, und y marking regions in which three
different phases exist. The composition and temperature may be varied
within the limits of any one of these regions without changing the homo-
geneous structure of the material. If, however, one attempts to make an
alloy correspondmg to a pomt such as X, that i8 not contained in one
of these regions, the result is a mechanical mixture of two pha.ses-*-the
phases @ and 8 in the case corresponding to the point X. It should be
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added that this statement is rigorously true only if we imply thermo-
dynamically stable phases, for it is possible to prepare an unstable phase
that corresponds te the temperzture and composition of a point such as
X. For example, it is possible that the a phase, formed at temperature
and composition corresponding to the point Y, at the temperature T';,
where the a phase is thermodynamically stable, could be cooled to the
temperature 7's, where it no longer is stable, without breaking into two
phases in a measurable time. This procedure, known as quenching, has
great practical iinportance and depends upon the fact that the time
required to attain thermodynamical equilibrium may be very long at
sufficiently low temperatures.

It may be proved by means of thermodynamics® that the boundaries
of different phases usually are not contihuous but are separated as in
Fig. 30 (¢f. Sec. 123).

The liquidus curve shown in the figure marks the temperature at
which a solid phase begins to separate from the molten solution of two
metals. This eurve has significance only over a range of composition in
which the molten metals are miscible. The solidus eurve, on the other
hand, marks the teriperature at which a solid phase of given composition
begins t0 melt. The two curves coincide only at special points such as
at the ends of the diagram. At temperature T';, the liquid and solid
phases that may be in equilibrium with one another are given respectively
by the two intercepts that the temperature line makes with the liquidus
and solidus curves. Consider, for example, the case of Fig. 30 again.
" Starting with the solid of composition U, we find that this begins to melt
at temperature 73 and that the compositien of the firat sample of molten
metal corresponds to the point (V,T3). Conversely, if we start with the
liquid of composition V and cool it to temperature T;, the solid that
forms has the composition U. It follows that the composition of the
‘solid and melt changes as the proccss of melting or freezing proceeds in
either of these two cases.

It is possible to derive a number of important and interesting reia-
tionships among liquidus, solidus, and solubility-limit curves by use of
thermodynamics. We refer the reader to other sources! for the develop-
ment of these topics.

b. Rules of Combination of Birary Substitutional Alloys of Simple
Metals.—A systematic 'investigation of the phase diagrams of metal
alloys has led to the fermulation of a number of simple rules that corre-
late many facts. We shall include a brief summary of these rules for

! See, for example, G. Tammany, The Stales of Aggregation (translation by R. F.
Mehl, D. Van Nostrand Conipany, Inc., New York, 1925); R. Voeryr, Handbuch der
Metallphysik, Vol. 1I (Akademische Vexlngsgcselhchaft Leipzig, 1937).
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reference in later work. They should not be accepted as though rigorous,
for many exceptions exist.

1. The rule of atomic size—This rule attempts to make more precise
the qualitative notion that atoms must be nearly the same size if they
form substitutional alloys over a wide range of composition. It hasbeen
developed by many workers, but the most nearly quantitative formula-
tion has been given by Hume-Rothery, Mabbott, and Channel-Evans.!
These workers find that atoms the radii of which differ by more than
about 15 per cent do not form extensive solid solutions. If the difference
is less than this, they are soluble over a wide range.. This rule is restricted
by the condition that the radii must be derived from monatomic phases
that have similar structures and that it should not be applied to systems

100 —— T

:;E‘HJSO = Lij‘u‘d T+ solid
gm'm Sofid h-.._\-h
§950 : 96052
£ o ' |
R

Fia. 31.—~The phase diagram of the silver-gold system. This is an example of a case in
which the components are completely miacible.

in which one of the atoms has a tendency to exhibit valence character-
istics, as do the atoms of arsenic, antimony, and bismuth. These two
~ conditions obviously are interrelated since atoms that have valence char-
acteristics usually have complex lattice structures. In Table VIII, the
range of solubility of different metals in copper and the range of solublhty
of copper in these metals are compared with the atomic radii.

Tasne VIII —Sonummn Limrrs oF THE PRIMARY PHASES OF SBVERAL COPPER
Arroys
(The solubilities are expressed in atom percentayge of the solute.)

System Sire factor Solubility in Cu Solubility of Cu
Cu-Be Fevorable 16.5 Be 2.0 Cu
(h:-glg Unfavorable 6.6 Mg 0.01 Cu
Favorable 38.4 7Zn 2.3Cu
Cu-Cd Unfavorable 1.7 Cd 0.12 Cu
Cu-Ga . " Favorable 20.3 Ga Very small
Cu-Tl Unfavorable Small Small
Cu-Ge Favorable 12.0 Ge Small

1W. Hm-tu-Rommr, G. W. Massorr, and K. M, Cuanner-Evans, Phil, Traxs.
Roy, Soc., 288, 1 ff. (1934). 8ee also Humz-RoTHERY, 0p. cif.
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The silver-gold system is one of the most favorable cases for high
solubility, according to this rule, for the lattice of both constituents is
face-centered cubic, the valences are the same, and the atomic radii are
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F1a. 32.—The phase diagram of the copper-silver system.
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Fi1a. 33.—The phase diagram of the copper-gold system. These metals are completely

miscible at ail temperatures. The low-temperature curves correspond to ordered phases.

equal to within 2 per cent.” Figure 31, which is the phase diagram of this
system, shows that these metals form & single phase for the entire range
of composition. ’
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The radius of copper is about 13 per cent less than that of either gold
or silver, and therefore the copper-gold and copper-silver systems should
be borderline cases. The phase diagrams are shown! in Figs. 32 and 33.
Whereas copper and silver do not mix, copper and gold are completely
misecible except at low temperatures where more complex structures
occur. These cases indicate that the rule of atomic sizes dezs not tell
the entire story.

At the opposite extreme are lead and copper the radii of which differ
by about 30 per cent and which do nat mix in any proportion.

Hﬂﬁqu e— i ine
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¥ra. 34.—The brass (Cu-Zn) phese diagram. This is typical of substitutional allogs of
atoros having different valences.

2. The Hume-Rothery electron-atom ratio rules.—The copper-rich and
gilver-rich portions of the phase diagrams of such systems as Cu-Zn,
Cu-Cd, Cu-Al, Cu-In, Cu-8n, Ag-Zn, Ag-Sn, in which the rule of favorable
atomic sizes is satisfied, are strikingly similar. Figures 34 and 35 show
the cases of Cu-Zn and Cu-Al whick sre typical examples. The 8
phase is body-centered cubic in both cases and appesrs immediately to
the right of the piimary face-centered phsse of pure ccpper. The
v phase, which has a compiex cubic structure, occurs next. The struc-
ture of this phase, which is shown in Fig. 36 for brass, is similar though
not identicsl in all alloys; moreover, the v phase generally has s bigh
resistivity and a negative magnetic susceptibility and is britéie. The

t8ce M. Hawsun, Aufbau der Zweisioflegierung (Julivs Springsr, Gerlin, 1936)
for refereanss on the slloy systems discussed here,
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¢ phase of the brass system, which is close-packed hexagonal, also occurs

in the copper-tin system.
Although these similar phases usually occur for different atomic
concentrations, Hume-Rothery! has pointed

o Tw o out that they occur for about the same
S I3 C‘i value of the ratio of valence electrons to
1oo — ] ‘t* i, atoms. In computing the number of valence
)/ <02 electrons, he used the usual chemical va-
1000 A;" lences, namely, one for copper, two for zinc,
900 llr
<
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F1a. 35.—The copper-aluminum Fia. 36.—The ~ brass structure.

system.

three for aluminum, and so on. Table IX gives a compilation of metals
that form one or more of the three alloy phases mentioned above and

] C
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- aln *fo; .
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¥ia. 37.--The liquidus eurves of silver rolutions.

-that eatisfy the Hume-Rothery rule. The electron-atom ratio charac
tetistic of each structure is given at the head of each column. :

1W, Home-Rovaery, Jour. Inst. Metale, 85, 323 (1826). BSev 20 Hum-
ROTHERY, 0p. cit.



32 THE MODERN THEORY OF SOLIDS ICHap. T

TasLe IX.—Pnases Tuar Conrorsm To Hume-Roraery’s ELEcTRON-ATOM HRaTIO

Rowe
|
Eleetren-atom rativ 1.5 1.61 ' 1.75
Struetare..... ... ... .. ... . ... ..., £ brass (b.c.c.) | v brass type h.c.p.
Nontransition eases. .. .. ....... .... CuZn CusZing CuZug
CuBe CuyCds CuCd,
{ Agin Agsing AgZn,
'[ AgCd | ...... ApCd,
i AuZn Augdnsy AuZn,
AuCd ) ..., AuCd,
C'I.I.BAI (1\191’115 CusSn
(};I sG'a C'L'I.gG.‘B-] CI.I 3GF,
CuiSn Cusing ApsSn
Cuy;Sus AugAls
Transition cases. ... ................. CoAl CoZn;
NiAl
FeAl
i

This rals is analogous to the ordinary rule of eight, being valid for
substitutional alloys instead of for ionic and valence compounds.
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Fi1c. 38.-~The solidus curves of silver sclutions,

3. The Hume-Rothery liquidus- and solidus-curve rules.'—The liquidus
curves of the primary solid solutions of elements such as zine, cadmium,
gallium, indium, tin, and antimeny in copper and silver are similar in
form and coincide if the electron percentage instead of the atomic

LR L i L L L

VW, Home-Roreznry, G. W. Massort, and K. M. CHaNNEL-Evans, Phil. Trans.
Roy. Soc., 388, 1 ff. (1934). See also Hume-Roruxry, op. cil.
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percentage is used as abscissa. In cases in which the solvent is mono-
valent, the electron percentage is obtained by multiplying the atom
percentage with the valence of the solute. The liquidus curves of silver
are given in Fig. 37 in order to show the extent to which the rule is valid.
Figure 38 shows that the solidus curves obey the same principle.

¢. Alloys Imvolving Metals with Strong Valence Characteristics.—The
phase diagrams of systems in which one of the constituents is a metal of
low valence, such as copper, silver, zine, or magnesium, and the other is
a less electropositive atom, such as arsenic, antimony, or hismuth, show
that these substances do not combine to form extensive solid solutions,
even when the sige factors are favorable. Consider, for example, the
phase diagram!® of the magnesium-antimony system 'shown in Fig. 39.
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Fio. 39.—~The magnesmm—antumony systom. These atoms are completely immiswhle
except for the componnd Mg:Sba.
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The fact that the primary pliases are narrow shows that neither atom is
appreciably soluble in the lattice of the other. The intermediate phases
occur over narrow regions of composition and for atomic ratios that are
characteristic of ionic or valence compounds rather than of ideal metal
alloys; moreover, the structures of these phases are often similar to those
of ionic crystals. For example, the only intermediate phase in the
mognesium-antimony rystem is the compound Mgs8b, in which the
‘constituents are exhibiting their normal electropositive and electro-
negative valences. This compound exists in two phases, both of which
have the structures of rare earth metal oxides.

We may conclude from evidence such as this that these alloys form
part of a bridge between ideal-inetals and ionic crystals.

1 3oe {ootnote 1, p. 30,
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It should be added that arsenic and antimony are completely mixcible
in one another, & fact showing that they do not form ionic-like lattices
unless they are combined with strongly electropositive elements.

d, Bules for Combirution of Transition Metals.—When transition
metals combine with simpler metals, they obey fairly closely ‘he three
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Fia. 40.—Tha iron-cobalt phase diagram. ‘The « and § irou phases are body-centered cubic,
whereas the v phase is farc-centered. The e phase is hexagonal close-packed.
rules that were presented in part b. In applying the rules, however, it
is necessary to treat traisition metals as though their valences were
practically zero. For example, Table IX contains several alloys that
have structures compatible with Hume-Rothery’s electron-atom ratio

rule (2 of part b) if this assumption is made.
Transition elements in the same row of the periedic ehart bave almost
identical radii and combine over wide ranges of composition. —Figure 40
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shows the phase diagram of the iron-cobalt system which is a typical
example.

Transition metals form an interesting sequence of interstitial alloys
that has been studied extensively by Higg.! He has found that the
“metalloid”" atoms hydrogen, nitrogen, carbon, and boron enter info the
interstices of transition metals forming alloys of composition M(X, M,X,
MX, and MX,, where M is the metal atom and X is the metalloid, if
the ratio of the radius of the metalloid atom to that of the metal is less
than 0.59. This family of alloys usually forms lattices in which the
metal atoms are arranged in cubic or hexagonal close-packed struc-
tures, although there are a few notable exceptions, such as tungsten
carbide, WC, in which the tungsten atoms possess a simple hexagonal

cu:0 zZn: @ %Cu&Zn:@
Ordered Phase Disordered Phase
() ®)

\FIG. 41,—The ordered and disordered phases of 8 brass.

arrangement. The iron-carbon system lies just outside the domain of
applicability of Hagg’s rules, for the radius ratio is about 0.63 in this
case; however, the iron-nitrogen system is a typical one for which they
are valid. The nontransition metals do not usually form genuinely
metallic interstitial alloys when combined with the metalloid atoms, but
rather tend to form more nearly ionic crystals, such as calcium carbide,
presumably because they are more electropositive than the transition
metals. ‘

e. Ordered and Disordered Phases.—In an ideal substitutional alloy,
different kinds of atom occupy a given set of lattice positions at random.
Many alloys in which the atoms have this property at high temperatures
change as the temperature is lowered. Consider, for example, the case
of B brass,? which has the composition CuZn and the structure shown in
Fig. 41b. At bigh temperatures, each site.is occupied with egual prob-

1 @G. Hiaaq, Z. phys. Chem. B, 8, 221 (1929); 7, 339 (1930); 8, 455 (1930).

2 The possibility of order and disorder was first suggested by G. Tammann, Z. anorg.
Chem., 107, 1 (1919). The structures of ordered and disordered 8 brass were first
‘established by X-ray methods by F. W, Jonesand C. Sykes, Proc. Roy. Soc., 161, 440
(1937).
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‘ability by either type of atom. Below 480°C, however, the copper
atoms prefer! body-centered positions and the zinc atoms prefer cube
corners. These preferences increase as the temperature is lowered, and
the structure becomes that of Fig. 41a at very low temperatures. The
ordering process takes place continuously with decreasing temperature
in this case and is completely reversible if the system is maintained at
equilibrium. If we let pc. designate the probability that a body-centered
position may be occupied by a copper atom and pz. the probability that
it may be occupied by a zinc atom, we may conveniently define an
} order parameter S by the equation

| S = Pcu = Pza-
This parameter varies from 0 to 1 as the
I lattice passes from the relatively dis-
S ordered high-temperature phase to the

ordered structure. Figure 42 shows

schematically the way in which S depeunds

upon temperature in 8 brass. This curve

ToC— resembles closely the curve that shows

Fia. 42 O e ome semporature  the dependence of saturation magnetiza-

tion of ferromagnetic materials upon tem-

perature (¢f. Fig. 27). The analogy with ferromagnetism becomes

even more striking when one examines the specific heat curve? of 8 brass,

which is shown in Fig. 43. It may be seen that there is a charp peak,

similar to the peak that oceurs in nickel at the Curie temperature, at the
temperature where ordering begins.

All changes between the ordered and disordered phases do not occur
so gradually as that observed in 8 brass. For example, in the CusAu
system, a high degree of order occurs sbruptly when the alloy is cooled
below 380°C. This abrupt and reversible change is accompanied by the
appearance of a latent heat.

Other substitutional phases that exhxbxt ordering are shown in
Fig. 44.

J. Addittonal Properties of Substitutional Alloys of Nontransition
Metals.—The thermal, electrical, and magnetic properties of metal alloys
are, on the whole, much the same as those of monatomic metals. There
are, however, a few striking differences that make additional discussion
worth while. In this section, we shall consider alloys of nontransition

metals.

1 The body-centered and cube-corner positions are completely interchangeable in
this case.
! MoSER, op. cil.
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1. Thermal properties—The difference between the heats of forma-
tion of alloys and of the metallic phases of their constituents has been
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Fic. £3.—The spenific heat of # brass during the transition from the ordored to s disordered
strueture. (After Mouer.) :
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i Order
Fro. #4.—The upper pair of figures respeoctively reprasent the disordered snd prdered
- srrangements of FozAl O = Fe; @ = Al; @ = 1PejAl 'rhempdrumt&c
disordered and ordeved structures of CuPd. O = Cu; @ = Pd.

determined in a number of cases. Three methods are commonly used:

(1) comparative measurements of the heat evolved when monatomic
metals and zlloys are dissolved in acids; (3) direct calorimetric menaure-
ments of the heats of redction of monatomic metals; and (3) messugement
of emfs of cells in which one of the electrodes is the alloy under investiga-
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tion. The room-temperature values! of some results of this work,
expressed in terms of kilogram calories per gram-atom, appear in Table X..
The experimental errors are usually of the order of magnitude of 1 kg cal.

TasLE X.~—ROOM-TEMPERATURE VALUES OF THE Hmars oF FORMATION OF ALLOYS
(In kg cal/gram-atom)
Cu-Zn System
B brass (unordered) 2.2
v brass 2.6
CuZn, 1.8
Ag-Cd System
# phase (unordered) 1.31
~s phase 1.42
AgCd, 1.23
Au-Zn System
AuZn 6.0
AuZn 5.5
AuZn, 5.6
Miscellaneous Cases
Mg.Sn 20 MgLa
Caal, 13 CdSb
Ca.Zn, 8 AuSh,
Na,8n 7 . T1;Pi
Nuktlg 5.4 HegTl. 0
Ceses Involving Transition Elements
Ni;Sn 5.8
Nig8n, 7.5
NiSn 7.5
AliCo, 12
AlsFe 6.3

The nearly ideal substitutional alloys, iike the Cu-Zn and Ag-Cd
systems, are not bound so tightly as compounds such as Mg.Sn that
evidently arve transition cases. On the whole, however, it does not seem
to be possible to draw any striking conclusions from this table.

The specific heats of nontransition metal alloys ususlly resemble
those of monatomic metals in approaching zero at 0°K, in obeying
Dulong and Petit's law at high temperature, and in increasing mono-
tonically in the intervening region. The exceptions are those phases
which undergo allotropic changes or which become ordered as described
in part e. In the first case, there is a discontinuity in the specific heat
curve and & latent heat, just as for any allotropic change. The behavior
of the specific heat during ordering was discusser in part e.

.- Early investigation of the specific heats of allov- led to the formula-
. tion of . the Kopp-Neumann law, which states that the molecular heat of
any alloy is equal to the sum of the atomic heats of ils constituent

1 These are taken from the compilation of W. Biltz, Z. Melallkunde, 29, 73 (1037).
See also W. Seith and O. Kubaschewski, Z. f. Elektrockem., 43, 743 (1937).

O =
~ w0 o
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TasLe X1.—Taz Morecunsr HEaT oF Ag:Au

Tempera- Observed molar | Sum of atomic

ture, °C heat, cal i heats, cal
100 ‘ 24.926 24 942
200 25.415 25.475
300 26.005 26.000
400 26.599 - 26.513
500 27.195 27 .012
600 27.789 27.500
700 28 .354 27.979
800 28.937 28.463

monatomic metals. More modern work has shown that this law is never
precisely correct, although it is often ¢orrect to within 10 per cent. Table

——y

09 Mn -
Ion"r”n—-’é“’/ ~
9..
3/ “

b
I ?_/

I

. ag?Fe )
Ni 2

e

ol 1

i

<200 <0 -100 50 0 +50
ToC

- F1a. 45.-—The resistivity versus temperature eurves of & number of copper alloys’in the
range in which the resistivity of copper varies linearly with temperature. It should be
observed that the rcsistivities of the slioys are much higher at low temperatures, implying
very large residual resistivities. The pusistivities are expressed in chms-cm. The numbers
indicate the atomic per cent of the alloying metal. (Afier Linde.)

XT gives a comparisén‘ ‘of the molecula: anccific heet of Ag,Au and the
sum of the atomic heats of the constituents over a 700° temperai.re

11, A. Borrema and F. M. Jarosr, Proc. Roy. Soc. Amsterdam, 85, 928 (1932).
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range. The close agrecment in this case is partly a consequence of
Dulong and Petit's law, since both the pure metals and the alloy obey it
closely. 1t is evident that the Kopp-Neumann rule will fail badly in
any temperature range in which the alloy becomes ordered.
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Fia. 48. -—~Tim resistivity of the silvar-gold system at room temperature,

- 2. Blectrical resistivity of alloys.—One of the most striking character-

- istics of the temperature-resistance curves of alloys is the fact that they
do not extrapolate to zero at absolute zero o closely as those of mona-
tomic metals do. In other words, their residual resistance usually is

1
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Fic. 47.—The room-tempersture resistivity of quenched snd annealed specimens of
copper-guld alloys.. The quenched specimens, which ‘are not ordered, have the typical
repistivity versus composition curve of porfect solid svlutions. The annealed alloys show
m.utsnee- minima at the compositions at which ordering oocurs.

very large. This fact is shown by the curves! of Fig. 45 which are
temperature-resistance plots for a number of copper alloys. One of t._he
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LJ. O. Lwom, Ann. Physik, 18, 219 (1032).
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natural consequences of this large residual resistance is the fact that the
low-temperature resistance of dilute primary solid solutions rises with
increasing concentration of the splute. This behavior! is shown in
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F1a. 48.—The temperature-resistivity curve of 8 Lrass during tho ordering transition., The

residual resistivity of the ordered alloy is much lower than that of the disordersd phass.

Fig. 46 by the curve of resistanes versus concentration for the Au-Ag
system.

The resistance of an ordered phase invariably is lower than that of the
disordered one, and there usually is a sharp kink in the curve of resistivity"
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F1a. 49.—The increase in resistivity of copper and silver alloys per atom per cent of
solute. The abscissa is the number of valence clectrons of the solute atom relative to the
closed d shell.
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versus temperature at the tempersture where ordering begins. These
facts are illustrated? in Figs. 47 and 48, which show the dependence of

1 See, for example, the references in Iﬂudolt—ﬁomtein.
t C. H. JoranssoN and J. O. Linpx, Ann. Physik, B, 762 (1930); 26, 1 (1938).
G. Borwrius, Proc. Phys. Sec. (Sup.), 49, 77 (1937).
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resistivity on composition and on temperature for some alloys that
were well enough annealed to allow ordering to take place.

Different atoms, dissolved in a given solvent metal, affect the resistiv-
ity in different ways. If, for example, one plots the increase in resistance
per atom percentage of solute for different copper and silver solutions, one
obtains the curves! of Fig. 49, which show that the msnsta.nce increases
with the difference in valence of the solvent and solute atoms.
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Fia. 50.—The dependence of magnetic susceptibility upon composition in the copper-gold
system. (After Shémizu.)

3. Magnetic suscepiibitities—The specific magnetic susceptibilities of
- alloys of the nontransition metals are of the order of magnitude of 10-¢,
just as are those of pure nontransition metals. If the constituents are
soluble in all.proportions and if the alloys do not form ordered phases,
the variation of suseeptibility with composition usually is uniform.
Examples? of such cases are shown in Figs. 50 and 51. 1In other cases,
particular phases have their own magnetic properties which may be
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Fm- 51.—The dependence of the magnetioc susceptibility upon composition in the mhm(myn
bismuth system. Shimizu, }
considerably different from those of the pure metal. Thus, the v brass
type of phase usually is strongly diamagnetic, whereas the g brass type is
usually normal. The susceptlbﬂlty of the brass system® is shown in
Fig. 52.
1 See footnote 1, p. 40.

*Y. Suimizu, Science Repts. Imp. Téhoku Univ., 21, 826 (1932).
3 H. Exno, Science Repts. Imp. Téhoku Univ., 14, 479 (1925).
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g. Additional Properties of Transition-metal Alloys. 1. Thermal
properties.—The heats of formation of only a few alloys that contain
transition metals have been measured. Several of these vnlues are
contained in Table X. Generally speaking, they ave of the same order
of magnitude as those of phases of nontransition metals.

The specific heats of the transition-metal alloys generally show the
same types of behavior as the specific heats of monatomie transition
mecals. Thus, they do not obey Dulong and Petit’s law at high tem-
peratures, if they are strongly paramagnetic or ferromagnetic; and if
ferromagnetic, they exhibit ‘‘anomalous’ peaks near-the Curie point,
There is a close correlation between the height of such peaks and the
saturation moment of thé ferromagnetic substance. For example, the
addition of copper to nickel quenches the magnetization of the latter,
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Fra. 52.—The magnetic susceptibility of tke brass systein, showing the large peak assu-
viated with the v phase. (Ajfier Endo.)

and Fig. 53 shows® that the peak in the specific-heat curve disappears
as the percertage of copper increases. Simiiar ier\avmr has been
observed in the chromium-nickel system.

2. Electrical conductivity.—The effect of temperature upon the.elec-
trical conduectivity of alloys that contain transition metals has not teen
investigated so widely as has that upon the electrical conductivity of
simpler alloys. The geperal facts, however, probably are about the
same.? In disordered alloys, for example, there is a large residual
resistance that decreases with increasing crder. Typical composition-

1 K. E. Geew, Proc. Roy. Soc., 146, 509 (i934),
+ ?The resistance of several transition-metasl 2lioys, such sa ¢onstantan (Cu30 Nidd)
and manganin (Cu84 Mnl12 Ni4), are nearly temperature-independent over a tem-
perature range of several hundred degrees,
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resistance curves are enough like those of nontransition cases to mqmre
no additional comment.

3. Magnetic properties.—The magnetic properties of this group of
alloys form a large and interesting body of material which we have only
limited space to discuss. Most of .the alloys are paramagnetic and have
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Fia. 53.—The quenching of the magnetic specific heat of nickel by addition of copper.
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Fic. 54 —The queaching of the magnetization of nickel by the sddition of simple
motaly, R is the retio of the satntation maguelisation at a given wmpomuon to that of
puro nickel. {(Affer Sadron.)
susceptibilities that decrease with increasing temperature, just a,s do
the susceptibilities of monatomic transition metals. The alloys that
contain one of the ferromagnetic metals, however, are ferromagnetie, at

“least for large concentrations of the ferromagnetic metal. This ferro-
magnetism usually decseases with increasing dilution of the ferromagnetic
constituent if the other constituent is not ferromagnetic. For example,!

Y Bwncm, Ann. Physik, 17, 371 (1932).
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Fig. 54 shows the decrease in the saturation magnetization of a number
of nickel alloys as their composition is varied. These curves show the
customary behavior, namely, the magnetization decreases uniformly as

the concentration of solute is in-

600 .
creased. The manganese-nickel /’\ .
system is an exception to this 500,/—\ ™ J _
rule, for the magnetization passes l \
through two peaks when manga- 400 \J \
" nese is added to nickel in gradually I ' \
. . . 200
increasing amounts! (¢f. Fig. 55). My \
The alloys of ferromagnetic ' 5,
eloments are al ferromagnetic. \
Figure 56 shows the behavior? of 100
the saturation moment and the \
Curie point in the iron-cobalt % 0 20 30 20
Ni Atom Per Cent Mn

system.

The alloys of copper and man-
ganese®* have the susceptibility
curves shown in Fig. 57 at room
and liquid-air temperatures. The susceptibility of the phase that con-
tains about 23 per cent of manganese is very high, indicating a strong

F1a. 556.—Dependence of the saturation
magnetisation of nickel-manganese slloys
upon composition. (After Kaya and
Kussmann.)
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Fig. 56.—The saturation moment and the Curie temperature in the iron-cobalt system.

tendency toward ferromagnetism. By adding aluminum or tin to this
system, one obtains the Heusler alloys, of which some, such as the phase*
of composition CusAlMn, are ferromagnetic. Ferromagnetic alloys also

18, Kava and A. Kussuanw, Z. Physik, 72, 203 (1931).

* MagnetiZation: A. Kussmann, B. Scaarnow, and A. ScuHuizm, Z. tech. Physik,
13, 449 (1932); P. Wriss and R. Forrer, Compt. rend., 189, 663 (1920).

38, VaLenNTINER and G. BeckEer, Z. Physik, 80, 735 (1933).

4+ F. HevsLer, Verh. deut. physik. Ges., B, 219 (1903),
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ocour in the chromium-tellurium, manganese-arsenic, and platinum-
chromium systems.

4. Jonic Crystals.—The salts produced by combining highly electro-
positive metals and highly electronegative elements such as the halogens,
oxygen, and sulfur are the ideal ioni¢ erystals. Other, more complex -
salts, such as metal carbonates and nitratecs and ammonium halides, also
may be classified as ionic crystals. We shall be interested principally

in the diatomic types, however,

350 P\ 100 "] since they are the easiest to handle
300 theoretically. _

'[ Ionie crystals closely obey the

I 200 ordindry rules of classical valency;

| in fact, most valence numbers are

¥xi0® I derived from investigations of the

100 .\ : coml.ninings ratios of atoms in ionic

compounds.
Xmﬁ&% a. Coheston.—The heats of for-

& !?a m%r wf?”n 80 ﬁg mation! of a number of diatomic
F1o. 57.—The magnetic susceptibility of . 100i0- erystals are given in Table
tl:-“ Sopper-manganese a'sn:‘n- The ab- XII. The standard state to which
fier Votensimer aod Bectery, 2™ these velues are referred is that of
the monatomic gases of the con-
stituents. ' It is noteworthy that the cohesive energy generally is larger
for components containing atoras of higher valency than for compounds
containing atoms of lower valency.

In many instances, it is convenient, to refer the cohesive energies to &
standard state of free ions rather than of free atoms. Thus, we shall have
occasion to use the energy required to sublime sodium chloride into free
Nat and CI~ ions. These energies may be obtained from those of
Table XII by adding the energy required to transfer valence electrons
from the metal atoms to the electronegative atoras. 'In compounds of
- formula MX, this additional term obviously is a multipie of the difference
between the ionisation energy of the metal atoms and the electron affinity
of the electronegative atoms. The first of these quantities has been
determined very accurately, by spectroscopic means, for practically all
metals. The second, however, bas been mansured only for the halogens.
Ths most direct msthod of determining electron affinities has been devel-
oped by Meyer? and iz bLzsed upon mssemrement of the equilibrium

! Bicaewsxy snd Rossiny, op. off .

5. E. Mayms, Z. Physik, €t, 798 (1080). Y. Heawzors snd J. E. Matew,.
Jour. Chem. Plys., 2, 245 (1834). P. P. Svrron and J. E. Maves, Jour. Chem.
Phys., §, 146 (1954); %, 20 (1935).
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density of atomic ions in heated alkali halide vapor. - From thisquantity,
it is possible to determine the heat of the reaction
. . MX (molecule) =2 M+ (atom) + X~ (atom)
where M is the metal atom and X is the halogep atom. - By subtracting
from this the heat of the reaction
MX (molecule) & M (atom) + X (atom)
and the ionization energy of the metal atom, one obtains the energy of
the proccss
Electron + X &2 X~

Tapre XI[I.--Conesive Eneraigs or lonic CrysTars RELATIVE TO THE MoNATOMIC
Gases or THE CONSTITUENTS
{In kg cal/mol at room temperature)
Alkali Hydrides

LiH 1125

NaH 901.8

KH 81.7

RbH 8§2.8

CsH  82.7

Alkali Halides
LF 216.4 LiCl 162.8
NaF 193.7 N_lal 153.1
KF 186.1 KCl 153:1
RbF 183 .9 EhCl 1839
CsF 182.2 CeCl 154.0
LiBr 148.7 Lit 120.7
NaBr 138.5 Nal 130.8
EBr 140.8 K1 124.3
RbEr 141.€ RbI 125.6
CsBr 143.4 Ol 128.3

Other Menovalent Metal Halides
CuCl 144.4
CuCiy, 192.4
AgF 148.5 AgCl 127.2
AuCl 129.2
TIC1 nnE

CuBr. 134.8 Cnl 124.6
CuBry 1¢9.0 Cul; 187.2
AgBr 118.7 Agl 108.5
Aubr 122.3 o Aul 117.4
Alkciine Farth Halides :
BeCls 245.4
Mg¥, 383.7 dgCly 247.4
CeF, 401.8 CaCly 780.2
SI'F: 322.6 Siug 502.7
BaF, 4£00.5 BaCl, 312.1
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TasLe XII.-—ConEestve ENERrGIES OF Ionic CrysraLs RELATIVE To THE MoxAToMIC
Gasgs- of THE ConsTiTueNTs.— (Continued)

BeBr, 208.2 Bel, 165.6
MgBr: 214.0 Mgl. 174.3
CaBr. 263.8 Cala 227.5
SrBr., 271.8 Srl, 234.3
BaBr, 283.2 : Bal; 244 .8
Other Divalent Metal Halides
ZI.ICI: 184.8 ZIIBPQ 159.6
CdCl; 177.6 CdBr, 156.4
HeCl, 125.8 HgBr, 109.1
PbCl, 191.0 FbBr: 167.6
Znl, 128.4
Cdl, 126.4
Hgl, 91.1
Pbl, 140.5 .
Miscellaneous Cases
AlF, 510 AlCl; 308
SbhF, 352 TICl, 209
: SbCl; 218
SbCls, 202
SnCl; 217
FeCl: 234
FeCly, 277
AlBr, 262 All, 209
SbBr; 180 © 8bls 140
SnBr; 193 Snl, 168
Adkali Metal Oxides, Sulfides, and Selenides
Li;O 279 Na.S 208
Na,0 210 K8 227
K0 185 Rb,8 192
Cs,0 179 CssS 191
LisSe 224
Na,Se 172
Ks8e 175
- Other Cases
BeO 269
MgO 242 MgS 185
Ca0 258 Ca8S 228
BrO 247 S8 226
BaO 241 BaS 226
Al;O; 667 AlS; 449
TiO: 436
CaSe 191
8rSe 191

BaSe 191



Sxc. 4] EMPIRICAL CLASSIF’I CATION OF SOLID TYPES 49

Another scheme of the same type, also devised by Mayer, involves the
use of halogen vapor instead of alkali halide vapor. Table XIII con-
tains some values of the electron affinities of the halogens that were
determined by Mayer, Helmholz, and Sutton, using these methods.

Tasux XIIT.—~EvecrroN Arpinrry o HarogeEn AToms as DererMiNed DmzcrLy
BY MavEr’s MerHODS
(In kg cal/mol)
Cl 88.3
Br 84.2
I 724

The electron affinities of -the doubly charged negative ions O—, 8—,
and Se, etc. probably are negative; hence, these ions are unstable, a.nd
therefore thelr affinities cannot be determined by direct methods.

Fia. 58.—The podium chloride . F1G. 59~—The cesium chlo-
lattice. ride lattice.

b. Crystal Structure.—Ideal ionic compounds usually crystallize in
one of several simple structures.! The sodium chloride structure of
Fig. 58 is characteristic of all the alkali halides? except the low-temperature
modifications of cesium chloride, bromide, and iodide, which have the
simple cubic structure of Fig. 59. Many divaleni metal oxides, sulfides,
selenides, and tellurides also have the sodium chloride lattice, although
many others crystallize in the zinchlende and wurtzite structures of
Figs. 60 and 61. On the whole, it may be said that all four of these
structures are characteristic of-ionic crystals in which the constituent
atoms have equal positive and negative valences. An interesting feature
of these lattices is that they remain the same when metal -and electro-
negative atoms are interchanged.

The fluorite lattice of Fig. 62 is typical of ionic compounds that have
the formula M.X or MX, This structure occurs among the alkaline
earth halides such as calcium fluoride and barium fluoride and among the

1 See Strukturberichte.
* Many of the alkali halides possess the cesium chloride structure at high pres-

sures. See R. B. Jacobs, Phys. Rev., B4, 468 (1938).
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~ alkali metal oxides and sulfides such as lithium oxide and sulfide. Many
other compounds that have these formulae possess strueturés in which
the chemical molecule shows a tendency to form an “island ”’ in the lattice.
This is evident, for example, in the rutile or titanium oxide lattice of
Fig. 63 which may be regarded us being built of a body-centered arrange-
ment of TiO; molecules. Since this behavior is typical of molecular
crystals, it may be said that ionic crystais such as titanium oxide are
mild transition cases between ionic and molecular types. Another

¥Fra. 60.—The zincblonde Fic. 61.—The wurtzite Inttice.
latiice.

Fia. 62.—~The csalcivm fuoride Fia. 63.—The rutile lattice.
!s_-ttice. )
aimple lattice that shows the same behavior is the pyrites or FeS, struc-
ture of Fig. 64. This is equivalent tc 8 face-centered cubic arrangement
of FeS; molecules. Carbon dioxide, which is & typical molecular com-
pound, has a similar lattice. -
The a-corundum structure of Fig. €5 is formed by several ionic
compounds that have the form A,B;, such as AlyCs and Fe Os.
The structurss of a nuinber of ioni¢ ¢rysials are listed in Table XIV.
This collection® also contains a few subsiences such as AIN and GaP,

! See Strukiurbericite.
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which are transition cases but which are of interest because they have
typical ionie structures. Several ammonium salts also have been
included in order to show that a radical may play the same role as an
atomic ion.

®re Os @A 00
Fia. 64.—The pyrites lat- Fia. 65.—The a-corundum lattice.
tice. Both ferric sulfide and
carbon dioxide possess this
structure.

The interatomic distances d of the alkali halides, show a regularity,
namely, that the differences between the d values of NaF and KF,
NaCl and KCl, NaBr and KBr, and Nal and KI are equal to within a
few hundredths of an angstrom unit:

NaF-KF NaCl-KCl NaBr-KBr |  Nal-KI

0.36 & 0.33 4 e.31 4 0.30 &

The same type of relationship is valid for the differences between the d
values of the halides of other pairs of alkali metuls and the d values of
the alkali metal salts of pairs of halogens. It foliows from this rule
that we may associate with each ion a definite radius, the interatomic
distance of each substance being given closely by the sum of the radii
of the constituent ions. Thus, the crystals behavs as though-they were
composed of rigid spherical ions that are in contact with one another.
It obviously is not possible to determine the absolute values of the ionic
radii from the d values alone, although it is possible to determine the
differences of all the alkali metal ion radii and all the halogen-ion
radii. Thus. it is necessary to know the absolute value of only one radius
in order to determine all radii.

This additivity principle also is roughiy valid for many other classes
of ionic crystal, such as the copper and silver halides and the alkaline
earth oxides, sulfides, and selenides.
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Tasue XIV.—Sous CrysraL Constants or Iowic Sowns
Monovalent Metal Halidzs

(S8ee Table II, for notation) -
The alkali metal hydrides probably have the NaCl type of lattioe,
Parameters, )
Type
a e d
'LiF f.c.c. 4.02 2.01
NaF f.ec. 4.62 . 2.31
KF f.c.c. 5.33 . 2.67
RbF f.c.c. 5.63 . 2.82
CsF f.c.c. 6.01 3.00
LiCl f.o.c. 5.14 ces 2.57
NaCl f.rc. 5.63 o 2.81
KCl f.c.e. 6.28 . 3.14
RbCl f.c.c. 6.54 . 3.27
CeC1 f.o.c.
CsCl1 s.0. 4.11 3.56
LiBr f.e.c. 5.49 2.75
NaBr f.c.c. 5.96 2.08
KBr f.c.c. 6.58 3.20
RbBr f.0.0, 6.85 3.4
CaBr B.C. 4.20 3.7
"Ll f.c.c. 6.00 .. 3.00
Nal f.c.c. 6.46 .es 3.8
KI f.c.ce. 7.05 . 3.53
RbI f.c.c. 7.83 . 3.60
Csl 8.c. 4.56 . 3.05
AgF f.c.c. 4.92 . 2.46
Cu(Cl Zincblende 5.41 2.84
AgCl f.cc. 5.54 2.7
CuBr Zineblende 5.68 2.46
AgBr f.eo. 5.76 2.88
~Cul Zincblende 6.05 ceens 2.62
e Agl Wurtzite 4.59 7.58
g Agl Zincblende 6.49 Vaen 2.81
na 5. 3.84 3.33
TiBr 8.c. 3.97 3.4
T 8.0 4.18 8.42




SEc. 4]

EMPIRICAL CLASSIFICATION OF SOLID TYPES

TasLe XIV.—Some Crystan Conerants oF IoNic Sovips.—(Continued)

Alkaline Earth Halides

53

(Many of these have complex structures which we shall not discuss. “The follow-
ing are a few simple cases.)

Pammeteré, A

T R
ype a ¢ d
MgF, Rutile (see Flg 63) 4.64 3.06 2.05
CaF, Fluorite 5.45 2.36
BaF, Fluorite 6.19 2.68
ZnF, Rutile 4.72 3.14' 2.10
CdF, Fluorite 5.40 2.34
Alkali Metal Ozxides, Sulfides, and Selenides
Lis0 | Fluorite 4.61 2.00
Li.8 Fluorite 5.70 2.47
Na.S Fluorite 6.53 2.83
Monovalent Meta Oxides, Sulfides, Selenides
Cu,0 Complex cubic lattice 2.46 1.84
Cu.S Fluorite 5.59 2.42
" CusSe Fluorite 5.75 2.49
Ag:.0 Same as CuyO 4.70 2.05
Bivalent Hdal Oxides, Sulfides, Selenides
BeO Wurtzite 2.69 4.37 1.64.
Mg0Q f.c.c. 4.21 2.10
CaO f.c.c. 4.80 2.40
SO0 f.c.c. 5.15 2.58
BaO f.c.c. 5.53 2.77
Zn0O Wurtzite 3.24 5.18 1.94
Cdo f.c.c. 4.70 2.35
BeS Zincolende 4.86 2.10
MgS f.c.c. 5.19 2.80
CaS f.c.c. 5.68 2.84
S8 f.c.e. 6.01 3.1
BaS f.c.c. 6.57 3.19
a ZnS Zincblende 5.42 e 2.36
8 ZnS Wurtzite 3.84 ©.6.28 2.%
a Cds Zincblende 5.82 e 2.52
g Cds Wurtszite 4.14 6.72 2.62
Hg8 Zinchlende 5.84 2.63
BeSe Zincblende 6.18 ) 2.18
MgSe f.c.c. 5.45 2.73
CaSe f.c.c. 5.01 [ 2.96
Srl8e f.c.c. 8.24 . 3.12
BaBe f.c.c. 8.59 3.0
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Tspre XIV.—Some CrystaL Consrants oF Ionic Sovms.—(Continued)
Parameters, 4
Type
a c d
Bivalent Metal Oxides, Sulfides, Selenides *
ZnBe Zincblende 5.66 . 2.45
CdSe Zincblende 6.05 . 2.62
HgSBe Zincblende 6.07 “ 2.63
MgTe Wurtzite 4,52 7.33 2.75
CaTe f.c.c. 5.91 2.96
BrTe f.ce. 6.55 3.33
BaTe f.c.c. 6.99 3.50
ZnTe Zinchblende 6.09 2.64
CdTe Zincblende 6.46 2.7¢
HgTe _Zincblende 6.44 2.80
Ozides of Trivalent Metals

a Alz0;, Fe 0y, o Ga,0; form crystals with the corundum structure of Fig. 65.

Miscellaneous Other Cases

Face-centered Crbic Type Simple Cubic Type
a d a d
FeO | 4.28 | 2.14 NHCl | 3.8 | 3.34
CoD 4.25 2.13 NH.Br| 4.05 3.51
NiO 4.17 2.08 NH,I 4.87 3.78
SeN 4.14 2.20
Zincblende Type
a d
AP 5.45 2,
GaP &.44 2.
Wurtzsite Type
a d
NHF 4.39 7. 2.83
AW 8.1 4. 1.87
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¢. Conductivity—The halides and oxides of the simpler mefals
generally have an electrolytic conductivity thav ivercases with inereasing
temperature. Iigure 48 shows the specific conduativity of a number of
very pure alkali halide erystals as determined by lLetfeldt.! The secale
of abscissae is adjusted in order to

-4 ﬁ jﬁ- be propertions! to 1/7, and the
0 Na Cl Nd B seale of ordinates is logarithmie.
! ‘,?L R }y It mayv be chserved that the low-
68 L.,t!‘ IR temperature portions of the con-
Xl . °°_.." i duetivity curves depend upon the
-5 - Vi histery of the specimen, whereas
10 Iy / /r’ :‘; the high-temncrature portions are
/ / repreducible straight lnes in this
Y,
) ¥ Y AN TR T Y 17
w0# KCl 1 K Br. h| 10 A5t ;‘r rgbr| |7
s"‘ s 4
- -6 A7
G !} 10 ) 7
X ff e /
‘.. S db ]
-8 3* f s -10p 4?{
0 °,.;%|' & ?L 10 57 ] oy
b _eﬁ Vi A
¥ : - /
Rblal |4 RbBri |4l 1 1072 i
Er
1 L _T1|CL SATE y
o . 5*" 10-% & {
- o'y s / K i‘r
10° . sftl-f
‘oﬁ‘ / o'$ 1 ]0"0 f
'.:q o r .. g?‘
‘ = -
Ig} § § § § § 3 § '0-14 = 1 ﬁ_ 14)
Deg.C. -100°  0%100%500° ~50°0%100%5¢0°
¥1a. 66. Fio. 67.

Fra. 86.—The ionie conductivity -7 the alkali halide crystals as a function of tempera-
‘ire. In all cases except that of Nati the different sets of points refer to two artificial
cvstals. Additional measurements were made on natural erystals of sodium chloride.

The ordinates are expressed in ohry™: cm™, the abscissas in degrees centigrade. (Affer

Lehfeldt.)
_F16. 67—The conductivity of #i'ver and thallium halides, The erdinates are expressed
Sttt em™l, (After Lehfeldt.)

-type of ploi. This fact shows that the bigh-temperature conduetivity ¢
satisfies the relation
5= Ae ¥
where A and « are practically constant.
1 W, Lerrewor, Z. Physik, 85, 717 (1933).
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Similar curves are shown in Fig. 67 for silver and thallium halides.

It has been demonstrated® fairly.conelusively that the conductivity
of the halides is compietely ioni:. This fact is by no means obvious
from the temperature dcpendence, for the electronie conduetivity of
semi-conductor§ usually follows the same law. Generally speaking, it
is possible to establish the existence of ionic conductivity only by per-
forming a number of indbect experiments, which will be discussed in
connection with semi-conductors. Oxides, sulfides, and selenides usually
exhibit some electronie conductiviiy. )

Table XV gives the fractions n, and n_ of the current carried, respec-
tively, by positive and negative ions in a number of halide crystals.
These fractions are called the trarsport numbers of the corresponding
ions.

Tasre XV.-—Ter Transrorr Numsers or Iownic Soving ot DirFERENT
TEMPERAT TRES '

Compound Temperature, °C <: n. i n-
! |
.‘. =1

 NaF 500 i 1.000 0.000

550 ? 0.996 0:004

600 | 0.916 - 0.084

625 i 0.861 0.139

NaCl 400 1.000 0.000

510 0.981 0.019

600 0.946 0.054

625 0.929 0.071

KCl 435 0.956 0.044

_1 500 0.941 1| 0.059

' 550 0.917 0.083

600 0.884 0.166
AgCl 20-350 1.00 0.00
AgBr 20-200 1.00 0.00
BaF; 500 0.00 1.00
BaCl, 400-700 .00 i 1.00
BeBrs 350450 0.00 ! 1.00
PbF, 200 0.00 1.00
PbCl, 200450 0.00 1.00
PbBr, 250-365 10.00 1.00
Phl, 255 0.39 0.81
290 0.67 0.33

18ee the survey article by C. Tubandt, Handbuck der Experimenial Fhysik, Vol.
X1I, part 1.
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d. Specific Heats.—The specific-heat curves of the diatomic salts of
simpie metals are normal in the sense that they obey Dulong and Petit’s
law at high temperatures and decrease monotonically with decreasing
temperature. Figure 3, Chap. III, shows the atomic-heat curves of

240 "‘"‘x |
* *e
/ T~ et |
Izzc O =
69
200
180

2 4 6 8 o 12
T°K —>
Fi1a. 68.—Variation of the characteristic temperature of potassium chloride with tem-
perature near absolute sero. The characteristic temperature is defined by the 7% law in
cases of this type (see SBec. 19). (After Keeaom and Clark.)

several alkali halides above 20°K. Keesom and Clark! have found that
the specific heat of potassium chloride shows slight deviations from
Debye’s T® law at temperatures below 10°K (¢f. Fig. 68). We shall
discuss this effect in Chap. III. '

50
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il 5 Na Clf”

5 L | -
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0 40 80 120, 160 200 240 280

ToK—>

NH L=

Fia. 69.—A comparison of the molar heats of ammonium chloride and sodium chloride.
(After Stmon, v. Simson, and Ruhemann.)

The specific heats of ammonium halides resemble those of the alkali
halides at very low temperatures, but they have large anomalies in the
region just below room temperature. Figure 69 gives a comparison of
the specific-heat curves of ammonium chloride and sodium chloride?
and shows the high peak that occurs at 250°K in the first case. As we

' Kensox and me, Physica, 2, 698 (1985).
* F. BMon, O. v. Simmsox, and M. RUHEMANN, Z. physik. Chem., 129, 339 (1927).
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shall see later, this peak is connected with the reorientation of the NH,*+

,z%:‘

radical.t
“
-4
0
s
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6
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2
0
0 50

100 150 200 250 300
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Fia. 70.—The apecific-heat curves of manganous sulfide, ferrous sulfice, and calcium sulfide.
The ordinate is cal/deg-mol. (Afur Anderson.)

Salts of transition metals usually do not obey Dulong and Petit’s
law at high temperatures; they show the same type of excess specific

n

peak that oocurs at the Curie
point. The ordinates are
cal/deg-mol. (After Weiss, Pio-
cord and Carrard.)

heat that is observed in metals that have
unfilled d shells. Figure 70 shows the
curves? for manganous sulfide and ferrous
sulfide and, for comparison, the ““normal’’
curve of calcium sulfide.

Several transition salts are ferromag-
netic. Consequently, one might expect
their specific-heat curves to have peaks
near the ferromagnetic Curie point. Fig-
ure 71 shows the peak for magnetite,®
which seems to be the only case that has
beer. examined.

e. Magneiic Properties.—Most ideal
jonic salts are diamagnetic, the exceptions
being salts of transition metals, which

usually are paramsagnetic and sometimes are ferromagr.etic.

1 Ag 8 result of cereful thermodynamical work in the vicinity of the trapsition
temaperature in ammonium chloride, A. Lawson [Phys. Rev., 87, 417 (1940)] has shown
that the anomaly originstes in a reorientation of the ammonium radicals rather than

in onset of free rotation.

1C. T. Awonesos, Jour. Am. Chem. Sec., 38, 478 (1981).
s P, Wmiss, A. Picocarnp, and A. CaRgarn, Arch. sci. phys. nat., 43, 113 (1917},
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The measured molar susceptibilities of a number of halides,! oxides,
and sulfides of simple metals are given in Table XVI. The experimental
values fluctuate from specimen to specimen, as in simple metals; there-
fore, these values are not accurate to within more than a few per cent.

It may be verified that the susceptibiliiies of the alkali halides are
additive to a comparatively high degree of .accuracy. This fact indicates
that each ion preserves a characteristic diamagnetic susceptibility in each
compound. However, we cannot determine the absolute susceptibility
of the ions from these data alone, just as we could not determine their
ionic radii from crystallographic data alone.

The susceptibilities of other halides also seem to be additive, although
the results fluctuate so widely in different experimental results tha. this
gtatement cannot be made with certainty.

'The copper salts furnish an interesting example. The cuprous salts
invariably are diamagnetic; however, cupric chloride and iodide are

TasrLe XVI
Molar Susceptibilities of Salts of Nontransition Flcments
(The unit used is 10° times the cgs unit.)

F Ci Br I
| 7 I ~ 25.4 ~ 37.3 ~ 55.8
Na —-16.6 ~ 3.8 — 48.2 -~ 60.3
K —25.7 ~ 36.3 ~ 49.2 — 67.2
Rb ~31.9 —~ 46.4 ~ 56.7 - 67.1
C | e ~ 92.5
CuX | ... - 38.1
CuX: | ... 7243, 620
AgX | ... - 54.8 — 48.6
AuX I ... — 67.0 ~ 60.8 - 91.0
TeX \ — 58.2
MgX: | ... —~ 40.7 -~ 72.2 —~111.4
CaX, --23.4 —~ 54.5
SnX, ~ 3.0 ~ 85.3 —131.1
BaX, —22.8 - 74.0 —~103.6 —160
ZnX; ...... - 8.2 | ..., -1132.7
CdX, U B ~134.1
HgXs | ...... — 80.9
88X, | ...... — 114.1

* 1 Boe, for example, the compilations in Landolt-Bornstein and the International
Critical Tables.



60 THE MODERN THEORY OF SOLIDS [Caar. I

: TasLe XVI.—(Continued)
Molar Busceptibilities of Transition-metal Salts
(Room-teraperature values)

XAm * 10%
FeCl, 1.82
FeBr, 1.38
' FOIQ 1.36
FeB0, 1.24
CoCl, 1.22
CoBr, 1.27
Col, 1.07
CoBe, 1.0
Co0O 10%
Y

NiCl, 0.62
NiBr, 0.56
Nil, 0.38
NiO 104
PtCl, 0.0136
CeF, 0.220
CeCl, 0.192
CesSy 0.492
Sm .8, 0.322

Sm4(80¢)s 0.211

pa.ra.msgnet;ic This fact shows that the cuprous ion is & simple ion
whereas cupric ion is similar to the ions of transition metals.

The molar susceptibilities of a number of transition-metal salts also
are listed in Table XVI. We shall describe the magnetic properties of
some of these salts more fully in Chap. XVI.

The large susceptibilities of cobaltous oxide and nickel oxide suggest
that these compounds are ferromagnetic. However, there do not seem
to be any measurements on the magnetization curves of these substa.nces
Magnetite, Fe;04, and pyrrhotite Fe;Ss, are the only salts that are ferro-
magnetic at room temperature and that have had their ferromagnetic
properties measured.! The specific-heat curve of magnetite is shown-in
Fig. 71.

'6. Valence Crystals. General Description.—~Ideal valence erystals
are monatomic nonconducting substances that have high cohesive ener-
gies and great hardness. Diamond is the prototype of this class, jus:
- as the alkali halides are the prototypes of ionic crystals. A charactemtv
of the diamond structure, which is shown in Fig. 4, is that the number ot

1 P. Wxiss, Jour. de Phys., 6,661 (1907). M. ZiEGLER, Thesis (Zurich, 1915). 8¢
also D. R. Inguis, Phys. Rev., 46, 119 (‘934}
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nearest neighbors of each atom, namely, four, is equal to the ordinary
valence of carbon. Table XVII' contains some data! for diamond and
other valence crystals. Boron is possibly another ideal valence crystal
sinee it is also a very hard insulator; however, its structure does not seem
to be known.

TasLE XVII.—Soms ProPERTIES OF SovLiDs HAVING VALENCE CHARACTERISTICS

| Bard v
: Cohesive energy,| ness Resistivity, .
Substance | Structure kg oal /mol (rela- ohm-cm subﬁl;h-
tive) . 108
Diamond.....| Fig. 4 (170.0 4 a)* 10 - 1014 —0.50
d=1541 '
Graphite...... Fig. 72 (170.49 + a)* 0.5 [2-10"%at 0°C| —3.5
d=1.42 ’ Decreases with
decreasing
temperature
Boron........| ............ 115 9.5 {0 -0.7
Silicon........| Diamond type| = 85 7 8-10-2 —0.13
d =235 . '
Germanium...| Diamond type 85 e ¢ 102 - | —0.10
d =243
Gray tin...... Diamond type 78.6 R I —0.35
d =280
8ilicon carbide | ZnS type 283 9
d = 1.89, ete. :
‘Silicon Aioxide | See text 405.7 7 1014 —0.45
Boron nitride.| Fig. 72 ! R 0.0 -
" ’ d =145

* Two different methods of determining the heat of sublimation of grsphlte lead
to values that differ by about 50 kg cal/mol.

‘ Ma.ny substances may be classified between the valence type and
one of the other types. For example, silicon, germanium, and gray tin
‘crystallize in the diamond structure although they ordinarily have a
much higher conductivity than diamond. . Silicon and germanium may
also be classified among semi-conductors, whereas gray tin may be
classified among metals. Similarly, silicon carbide and silicon dioxide
have some valence properties, such as great hardness, and some ionic
<haracteristics, such as the ability to absorb infrared radiation strongly.
3 Silicon carbide crystallizes in several diéerent lattice structures, which
have in common the property that each atom is surrounded by four atoms
of opposite type that are situated at the corners of a tetrahedron. One

«to 1 See, for example, the uomplhbnm of Ia.ndolb—BomsiAm and the International .
+Jritical Tables.
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form, for example, corresponds to the zincblende strncture of Fig. €0.
Similarly, silicon dioxide has several crystaliine forms. In each of these,
a silicon atom is surrounded tetrahedrally by four oxygen atoms and each
‘oxygen atom is joined to two silicon atoms.

The most stable solid form of earbon probably is graphite, which
has a layer lattice structure similar to that of boron nitride, shown in
Fig. 72. This substance is not hard in spite of its high cohesive energy
(¢f. Table XVII), presumably becayse the planes of carbon atoms slide
easily over one another. Nevertheless, we shall classify graphijfe among
the valence compounds since the forces between carbon atoms in the
planes of graphite are believed to be similar to the forces between carbon
atoms in diamond. It may be seen from
Table XVII, that graphite has s large
conductivity which increases with decreas-
ing temperature. Since this conductivity
is electronie, graphite may also be classified
? among metals.

Let us consider the following two se-
guences of compounds:

.
o RS 0 N S
- /"(//.l o= //'I;IZ-_./I.-

R AP 8 . by ey Li¥ NaF
5 7 5 BeO MgO
@8 ON BN AN,

Fra. 72.—The lsftice of boron p, each of these sequences the valences of

the electropositive and electronegative
clements increase by unity as we move down a given column. The
top members are ideal ionic compounds. The second msn:bers
exhibit ionic conductivity and crystallize in typical ionic structure »ut
are very hard. Boron nitride has the structure shown in Fig. 72,
which is similar to that of graphite, whereas aluminum nitride has the
wurtszite structure, which is similar to that of dismond. Evidently ile
properties of a compound of light elements become inore nearly like
those of typical valence crystals the nearer the center of the periodic
chart its constituents lie. This general rule is obeyed by many com-
pounds of the lighter elements, the principal exceptions being molecula:
compounds. _

In this eonnection, it may be recalled that the metals arsenie, anti-
mony, and bismuth crystallize in a layer lattice structure in which the
rumber of nearest neighbors of a given atom is equal to the electro-
negative valency of these elements. This behdvidr, being analogous to
that of ideal valence crystals, indicates that these substances should be
classified between the metallic and the valence types.

8. Semi-conductors. a. General Properiies.—A number of solids
have & small electronic conduetivity that is nogligible at very low tem-



Sec. 6] EMPIRICAL CLASSIFICATION OF SOL{D TYPES a3

peratures and increases with increasing temperature. The experi-
ments that distinguish this conductivity from ieni: conductivity will be
decseribed in the next section. The electrical properties of these semi-
conductors are so unique that it is convenient to introduce a separate
classification for the group, even though it would be possible to place
them among the other types. It will become apparent that this class
does not possess the same degree of unity as the other four classes of
solids. :

Table XVIII contains a list of established semi-conductors and
several substances that probably are semi-conductors. Most of these
solids crystallize in the ionic type of structure and were discussed with
ideal ionic crystals. Carborundum, on the other hand, was previously
included under valence types. The semi-conducting specimens of most
monatomic substances, such as silicon and tellurium, are usually impure.

TasLx XVIII
Semi-conduclors
Monatomic Substancca
Si(impure)

Te
Halide:
Agl
Cul
Oxides
CuQ NiC Cr10,
Zn0O FeQ Fe:0,
BaO WO, Fz,0,
Co0O - U0, CU0
Sulfides and Belenides
PhS
Ag:B AgsSe
Cds
MoS:;
Probable Semi-conductors
8iC(impure)
AgiTe

There are two methods of measuring the conductivitiées of semi-
conductors. The first of these, which is used more commonly,! eonsists
in placing a single erystal or a pressed powder specimen between two
metal electrodes and measuring its resistance by some ordinary means
such as a Wheatstone bridge. This direct method hes a number of
advantages; for example, the specimen may be heated or cooled easily,
and it may be placed in any kind of atmosphere. Its main disadvantage
is that contact resistance between the electrodes and the specimen, or

° 17TyBANDT, op. cit. See also the survey article on semi-cozductors by B. Gudden,
Ergebnisse exakt. Natur,, 18, 223 (1934).
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between granules of the powder, may affect the current-resistance curve.
In some cases, these effects cause an apparent deviation from Ohm’s law,
in other cases, they simply give rise to a spurious value of the conductiv-
ity. For these reasons, it is always difficult to be certain that the
conductivities obtained by the method actually are constants of the
material under investigation. .

An alternative method has been developed and employed by Gudden?
and his coworkers Vélkl and Guillery. They mix & quantity of the
powdered semi-conducting material with a nonconducting dielectric, such
as a heavy oil, and use the mixture as a dielectric medium in a condenser.
The electrical conductivity of the semi-conductor is determined from an
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F16. 78.—The ionic conductivity of silver chloride as determined by seversl methods.
The values eormsponding to the atraight and dashed lines and to the crosses were measured
by direct means. The values-corresponding to the circles and triangles were measured by
Volkl using the method described in the text.

investigation of the effective resistance of the condenser ‘when it is part
of a resonating high-irequency circuit. This procedure has the advantage
that it eliminates contact resistance, for the current simply surges back
and forth within the granules during the experiment. The principal
disadvantages of the method are: (1) It does not allow a very wide
«'-vice of conditions under which measurements may be made. (2) It
8 not lead to very accurate results, since the experimental error usually

" f the order of 10 per cent.
Results obtained by the two different methods agree in some cases
-1 disagree widely in others. Guillery found, for example, that the
ssed-powder and condenser methods give nearly identical results for
st oxides, but widely different ones for stannic oxide and silicon carbide.
Figure 73 shows the conductivity of silver chloride, which is an ionic
- ductor, as determined by a number of workers,? using different meth-
> {(see legend to TFig. 73). In this case, the logarithm of the low-
" :perature conductivity is not linear whea plotted as a funetion of

T {cf. Sec. 4).

A vah!l.., Ann, Physik, 14, 193 (1932); P. GoLERy, ibid., 14, 216 (1932).
* VLo, ap. ool
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Figure 74 shows the temperature dependence of the conductivity of
- cuprous oxide! as measured by the direct method. The conductivities
of a number of semi-conductors give linear plots of this type, a faet
showing that the conduectivity varies with temperature in the manner

_E
o= Ae

where F and A are practically constant for a given specimen. Meyer?
has shown that A is about 1 ohm~! em~! for many semi-conductors,
whereas E varies considerably for different substances and for different
specimens of the same substance. For example, values of E between
0.06 and 0.6 ev have been quoted for cuprous oxide. :
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Fia. 74.—The resistivity of cuprous oxide as a function of temperaturs. The ordinates are
obm-cm. (After Vogt.)

b. Methods of Determining the Type of Conductivity.—One or more
of the following three quantities are commonly measured in trying to
determine whether cr not the conductivity of 2 substance is electronie:

1. Transport numbers.
- 2. The Hall constant.
3. The thermoelectric weﬂioihn_i..

We shall discuss the guiding principles that are used in each case.

" 1. Measurement of transport numbers.—An important characteristic of
ionic conductivity is that electrolysis accompanies the flow of current,
ginee this electrolysis should be absent in a substance the conductivity
of’ which is entirely electronic. There is some electrolysis if the con-
ductivity is partly ionic and partly electronic, but Faraday’s transport
law should not be valid in this case. Hence, in principle at least, one
should be able to determine the fraction of electronie current by measur-

1 W. Voar, Ann. Physik, 7, 190 (1939), )
* W. MeyeR, Thesis (Berlin, 1936); Z. Physik; 86, 278 (1933).
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ing the deviation from Faraday’s law. Tubandt! and his coworkers
have employed this method of determining semi-conductors with a great
deal of success. Their procedure varies somewhat from case to case, but
the underlying principles may be understood by considering the following
hypothetical example.

Suppose it is suspected that a substance of formula MX, in which M
is the metallic constituent and X is the electronegative constituent,
ennducts by both positive ions M+ and electrons. In this case, Tubandt
waould place three pressed-powder or erystalline disks of the material in
series with three disks of a substance MY, which is known to conduct
only by means of M jons, and would place these between two electrodes

of the metal M (see Fig. 75). The disks

MY MX adjoining the eclectrodes and the elec-
ZZN\NN trodes are weighed accurately. A cur-
Cathodle /?é%&‘z\l Anode  rent then is sent through the system, and

= + the total gquantity of electricity that
Fra. 75.—Arrangement of speci-

mens and electrodes in measurement P882€S is measured by means of a cou-
of transport numbers. In this case Jometer. If there is any electrolysis, the
the Specim, zﬁ,nﬁ’ﬁr:’n;‘m’-‘:’:';;g;,‘;? disks in contact with the electrodes usu-
is unknown, wherese MY iz a ally become fastened to the electrodes
ﬁﬁ;ﬁ’g;ﬁ&ﬂﬁ;m wrest  during this procedure, The electrorlns

and the disks attached to them are
weighed together in order to determine the amount of material lost by the
anode and gaincd by the cathode. The positive-ion transport number
may then be computed fron: all these measured quantities.

Tubandt uses the known ionic conductor MY in the cireuit, partly
to check the coulometer measurement and partly to make certain that
negative ions do not leave the disk nearest Lhe cathode. Three disks of
each substance are employed in order that one disk may be in contact
ovly with chemically similar substances. If the experiment is flawless,
the weight of this disk should not change. A negative transport number
can be determined in a similar way by placing three disks of a substance
NX, which conducts only by negstive ions X—, between the anode and
the three disks of the substance under test.

In practically all cases, this direct method yields results that agre
with those determined by other methods. A set of transport numbe
that Tubandt and other workers have obtained in this way and that are
generally accepted at the present time are given in Table XIX. It
should be noted that several semi-conductors have a small, but finit
ionic conductivity.

1 Bee footnate 1, p. 56.
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Tubandt’s procedure seems to lead to incorrect results in the case of

« silver sulfide, which we shall discuss biiefly. In this case, Tubandt
employed the scheme symbolized by Fig. 75, making the disks MX of
“silver sulfide, the disks MY of silver chloride, and the electrodes of silver.
_Since the « phase is stable only above 180°C, the system was maintained
at an elevated temperature during the experiment. Tubandt found
that the silver anode lost as much weight as the cathode gained, and he
concluded that positive ions carry all of the current. This conclusion
was contradieled by a large amount of subsequent work that indicated
that the conductivity is mainly electronic. For example, the conductiv-
ity of silver sulfide at 180°C is about fifty times larger than that of any

TaBLe XIX.—TranszrorT NUMBERS OF SEMI-CONDUCTORS
(n. = electronic transport number; n, = positive-ion transport number)

Substance Temperature, °C Ny ny
PbS 240 1.00.
a Ag.S Abhove 180 ~0.99 ~A.01
8 Ag:S 20 0.015 0.985
B AgsSe 20 ~1.00 <0.01
B Ag:Te 20 ~1.,00 <0.01
v Cul 200 ~1.00 ~2.7-10"%
325 0.50 0.50
400 0.00 1.00
Cu.0 800 ~1.00 ~2 .10~
1000 ~1.00 ~5 - 10—¢

.ionic conductor, and the Hall coefficient (¢f. 2 below) is of the magnitude

ordinarily associated with electronic conductivity.
At present, this contradiction is explained! in the following way.
It is assumed that most of the conductivity of « silver sulfide is electronic,
_although a very small fraction is ionic. The halogen atoms that are
ased at the boundary between the silver chloride and silver sulfide
3 by eclectrolysis of silver chloride reduce some of the sulfide and
# an equivalent amount of sulfur. This sulfur in turn reacts with an
wlent number of silver atoms that diffuse from the anode through
sulfide. This picture has many direct supports. For example, it is
«] that the anode does not lose an equivalent of weight if a very large
ht is passed through the silver sulfide. In this case, the diffusion
sitral -silver atoms is not rapid enough to change all the liberated

to sulfide.

wark on silver sulfide is discussed by C. Wagner, Z. physik. Chem., B, 21,
"4, 469 (1933). !
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2. Measurement of the Hall constant,—In 1879, Hall! found that an
emf may be produced across a strip of metal which is carrying a current
by placing the strip in a magnetic field. For a cubic erystal, the direc-
tion and magnitude of the induced electrostatic field are given by the
vector relationship

E=RJXH. ¢y

Here, E is the ¢lectrostatic field vector, J is the current per unit area, H
is the magnetio field intensity, and R is the Hall constant of the material.
The effect usually is measured by pessing & large current J through a
thin strip of thickness ¢ that is placed in the magnetic field in such a way
that M is normal to the surface. In this case, the emf Ey is

Ew = RI.

In Sec. 37, we shall discuss & simple theory of the Hall effect in which

the conductor is treated like a gas of free electrons. The results of this

theory may be summarized by saying that they relate the Hall constant

to the number of electrons per unit volume n and the value of the elec-
tronic chargé ~e by means of the equation

B= g

in which ¢ is the velocity of light. The sign of the charge on the carriers
is thus the same as the nign of B. Strangely enough, this sign is positive

.for & number of metals, such as sinc and antimony, although their
conductivity is undoubtedly electronic. The interpretation of this:
anomaly s one of the striking successes of the zone theory of solids, which
will be developed in later chapters, In order of magnitude, the mobility?
of the current carriers is given by the ratio of the Hall constant to the
gpecific resistivity, which, in the vicinity of room temperature, is about
100 em?/volt-sec for most metals. These mobilities are about one
hundred times larger than the mobilities of ions in the best solid ionic
conductors. Incidentally, the Hall effect in ionie conducters is too small
to be measured. '

1E. H. Haut, dm, Jour. Math., %, 387 (1879). A survey of estly literature ir
givea by L. L. Campbell in Galvanomagnetic and Thermomagnetic Effects, (Longman:
Greazi & Compaay, New York, 1053), '

$ The mobility « of a current-carrying particle in 8 conductor is defined as the
veloeity with which the particle moves when placed in a unit elestrostatic fiold. Thus,
the corductivily < is equal to nex where, as in the equation for the Hell constent,
n is the number of conducting partieles per unit volume and e is their charge.
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Semi-conductors possess & measurable Hall effect, as Baedeker! first
found in 1909, and the mobility of the carriers turns out to be of the same
magnitude as the mobilities of elecirons in metals. At the present
time, the existence of a measurable Hall effect is accepted as proof that a
given substance is a semi-conductor. The apparent sign of the charge
of the current carriers is positive for about as many semi-conductors as
it is negative. This anomaly is expleined by the modern theory of
solids in the same way as it is explained for metals.

The sign of the Hall coefficient apparently changes from positive
to negative in some specimens of cuprous oxide? as the temperature is
raised, being zero at abcut 500°C. The oxide remains an electronic
conductor during the transition, however, a& fact showing that the
absence of a Hall effect does not furnish proof that the conductivity is
ionic.

3. Measuremert of the thermoeleciric effect.—A current flows in two
wires of different metals, which are joined together to form a closed
circuit, if the two junctions are kept at different temperatures. This
thermoelectric effect is usually described by giving the emf dE/dT that
is developed for each degree difference in the temperatures of the junc-
tions. These thermoelectric coefiicients are additive in the sense that the
value of dE/dT for two metals A and C is equal to the algebraic sum
of the values for the metals A and B and the metals B and C. Hence, it
is possible to find the value for any peir of metals if the value of each,
relative to a standard, is known.

The thermoelectric effect is observed in semi-conductors but not in
ionie conductors. For this reason, the effect is used as a test for elec-

. tronie conductivity in the same way that the Hall effect is used.

¢. Factors That Infiuence the Conductivily.—In addition to tempera-
ture, there are three factors that strongly influence the conductivity of a
semi-conductor, namely, its impurity content, the mechanical treatment
it has received, and the vapor pressures of the gases of its constituent
atoms that are maintained in the surrcunding stmosphere.

The first two of these influences have not been investigated.in a
systematic way. It is known, however, that different specimens of most
monatomic semi-conductors, sueh as silicon, selenium, and tellurium, do
not have the same conductivity at the same teraperature, and it is
concluded from this fact that impurities play an important role in
determining the conductivity. Similarly, it is found thet the conductiv-

*  of powders that are prepared from the same materisl by grinding

#8 with the amount of grinding, and the conclusion is drawn that

1 K. BADDEKER, Ann. Physik, 29, 566 (1600); Physik. Z., 18, 1080 (1912).

A'W. Bcrorry and F. WamseL, Physik. Z., 34, 858 (1934). See also Physik. Z.,

2'8,(1935) for correction in sign.
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mechanical treatment influences the conductivity. It is possible that
these phenomena are closely related, that is, that the distribution
impurity atoms in the semi-conductor may be partly connected with its
mechanical history. Problems such as these await further investigati

A large amount of work has been done on the effect of vapor press .-
upon the conductivity. These investigations have thrown a great d -
of light upon the origin of electronic conductivity in many of those sex
conductors which also may be catalogued under the heading of io:
crystals. The classical example of this type of work is Baedeke
experiment! on cuprous iodide, in which it was found that the conducti

TasLe XX _
Substances in Which the Conductivity Increases with Increasing Vapor Pressure of i
Elecironegative Atom
Substance Sign of Hall Coefficient

Cul +

Cu8

Cus0O +

NiO

UO0:

FeO

o0

Substances in Which the Conduciivity Decreases with Increasing Vapor Pressure of
Electronegative Atom
Substance Sign of Hall Coefficient
AgsS . -
ZnO -
Cdo -
Substances in Which the Conductivity Is Practically Unchanged with Increasing Ve
Pressure of the Elecironegative Atom
CuO
Co30,
Fe, 0,
Fe 0,

ity of this substance increases with increasing jodine vapor pressu:
The Hall coefficient, which is positive in this case, decreases at the san
time, a fact indicating that the number of conducting partieles increas.
with increasing iodine vapor pressure. Similar work? has been dor-
ou the effect of oxygen and sulfur vapor pressure upon the eonductivi
of oxide and sulfide semi-conductors. In some of these cases, the cc
ductivity increases with increasing pressure of the electronegati
‘element, and in others it decreases. Table XX contains a list of &
stances upon which investigations have been made and summar

! BARDEKER, 0p. cil.
? A survey of work prior to 1835 is given by B. Gudden, Ergebnisss exakt. Na.

18, 223 (1934). Additional refererices may be found in Physik. Z., 86, 717 (19L
86, 721 (1936).
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qualitatively the results of this work. Figures 76 and 77 show the
dependence of conductivity! upon vapor pressure in the cases of cuprous
oxide and cadmium oxide. It may be observed that the conductivity
js proportional o ~ power of the oxygen pressure in both these cases.
Fhis type of veiztionship occurs commoenly. It should be mentioned
Jhat we have chosen some of the “best” curves that are available in the

Log Pg: {mm. h’g)tl-—-h
F1a. 76.—The dependénce of the conductivity of cuprous oxide upon oxygen pressure.
(After Danwald and Wagner.)
literature and that all experimenters do not agree precisely upon the
values of the conduetivity of a given substance at a given temperature
vnd vepor pressure.

The vapor pressure of the wetallic constituent of a semi-conductor
wually is not varied in these experiments. Hilsch, I’ohl,® and their
oworkers, however, have placed salkali halide crystals in an atmosphere
of alkali vapor for a long enough period of time to ohserve changes in

wonductivity. The crystals become colored and exhibit a feeble electronic

(600 600°

L 1 ' 1
a4 08 12 1.5 2.0
Log Po, { mm.Hg) ~—>
i"lu 77.—The dependence of the conductivity of cadmium oxide upon vapor pressure of
oxygen. (After Baumbach and Wagner.,)

&onductn 1ty at the end of this treatment. This shBws that even the
ost jdeal ionic crystals may become semi-conductors under suitablc
onditions.

It should be added that the ionic conductivity of some semi-conduc-
~~g (¢f. Table XIX) seems to vary with the pressure of the electro-

1H, H. v. Bavmsacu and C. WasKeR, Z. physik. Chem., BR22, 208 (1933); .
ﬁﬂhwun and C. Wacs~EeR, ibid., 22, 214 f. (1938).
 Bee the survey article by R. Pohl Pree. Phys. Soe. (Sup.), 49, 2 (19375,
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negative gas in the same way as the electronic conduetivity. For
example, Nagel and Wagner! have found evidence to support this in the
case of cuprous oxide.

Schottky and Wagner have suggested that there is a correlation
between the conductivity of semi-conductors that are sensitive to vapor
pressure and the amount by which their composition deviates from ideal
stoichiometric proportions. On this basis, they have developed a
theory of semi-conductors that will be presented at s.ppropna.te places
in the following chapters.

7. Molecular Crystals.—Of all the five solid types, we shall be least

interested in molecular crysta.ls Sinee they are loosely bound aggregates
of saturated atoms or molecules,
G— - (9_,_9 - )—O many of their properties are deter-

G mined primarily by the internal
molecular structure, rather than by

GC—o the solid binding, and thus they are

o G—o ©  sutside the scope of this book. A

i
I
Lo
i number of substances that form
! © e | _© molecular crystals are listed in Table
Z XXI.? The prototypes of-the class

: are the solids of the gaseous elements
ST o—On and of organic compounds that have
F16. 78 —The iodine lattice. low boiling points and low heats of
sublimation. Several substances,
such as sulfur, selenium, tellurium, phosphorus, and iodine, which are
transition cases between molecular and valence types, are included as
illustrations.

The rare gas solids crystallize in the face-centered cublc lattice, as
may be seen in Table XXI. Helium forms a true solid only under a
pressure of at least 25 atmospheres. The structure of this has not been
determined. _ .

Hydrogen, nitrogen, and oxygen have several phases which prob-
ably correspond to states in which the diatomic molecules have different
relative orientations. All the high-température phases apparently are
" close-packed hexagonal structures of the diatomic molecules.

The solid phases of hydrochloric and hydrobromic “acid are face-
centered cubic lattices of the diatomic molecules above 98° and 110°K,
-respectively. Below these temperatures the structures are. fa_.ce-centemd
tetragonal. It is believed that the molecules aré more randomly oriented
in the high-temperature forms than in the low-temperature forms.

‘1 See Tootnote 2, p. 70. . ,

? See, for example, the compilations of data by.Bichowsky and Rossini, ep. eil.,
and Strukturberichte. _
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The halogens, chlorine a.\d iodine, have more complex structures in
which the diatomic molecule behaves as a unit. - The lattice of iodine is
shown in Fig. 78.

Sulfur forms a lattice in which the units are S; molecules that have
the ring structure shown in Fig. 79. The heat of sublimation relative
to free S; molecules is about 20 kg cal/mol, a fact indicating that there
are fairly large intermolecular forces. Selenium, tellurium, and phos-
phorus do not have typical molecular structures.

The erystals of organic molecules show a strong tendency to erystal-
lize in simple structures. For example, carbon dioxide and methane

TasLe XXI—Dara yor MoLECULAR CRrYSTALS

Heat of sublimation,

kg cal /mol Structure
He 0.052
Ne 0.52
A 1.77 f.c.c.
Kr 2.67
Xe . 3.76
H, 2.44 There are several phases in each case. Appar-
O 1.74 ently, the high-temperature phases are close-
N, 1.50 packed hexagonal arrangements of molecules
HCl 4.34 Two pbasez. The high-temperature phase is f.c.c.
HBr 4.79 —the low-temperature, - face-centered tetrag-

onal

Cl, 6.0. Similar.to Fig. 78
I 18.9 See Fig. 78
S © 20 Lattice of Sy molecules (see Fig. 79)
Se 30 t Complex structures similar to those of arsenic,
Te 25 antimony, and bismuth '
P 17.7 [ Complex valencelike structure
NH, 6.2 Slightly- distorted f.c.c. lattice
CO, 8.24 Sarne ag pyrites (Fig. 64)
CH, 2.40 f.c.c. lattice

form face-centered cubic lattices of the constituent molecules. The
ammonia lattice is very nearly the same, the difference being that the
afoms at cube-corner and face-centered pesitions are slightly displaced
relative to one another This tendency toward comparatively simple
arrangements extends eve:. to very large molecules.
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Practically all molecular crystals sre diamagnetic. This is in aceord
with the fact that the constituent molecules, heing saturated. have no
resultant spin. Oxygen is an exception, since the normal state of the
molecule is triplet. Solid oxygen is strongly paramagnetic.

The specific-heat curves of many molecular crystals have large peaks.
The typical cases of methane! and hydro-
chloric? acid are shown in Figs. 80 and 81. It
is believed that these peaks are associated with
changes in degree of molecular orientation.

8. The Transition betwcen the Solid Types.
‘ Figure 82 represents an attempt to show the .
' . interrelation of the solid types. The metals -

are at the left, the two main classifications of

these being monatomic metals and alloys.

There is necessarily an abrupt transition be-

Fro. 79.—The unit ring tween these two classes. Valence and ionic
meleculs of sulfur. (Affr {yneg stand next to the right and are in one-to-
Warrexn.) . . .
one correspondence with the monatomic

metals and the alloys. The poorly conducting metals, such as bismuth,
are transition cases between the ideal monatomic metals and the
monatomic valence crystals diamond and boron. Similarly, alloy

80
70

60
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30
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F1a. 80.—The specific heat of mothene, showing the large peak at 20.4°K. The ordinates
are cal/deg-mol. (After Clusius and Perlick.)

systems which have narrow phase boundaries, such as the antimony-
magnesium system, are transition substances between alloys and
ionic crystals. In the same way, valence crystals, such as quartz

1 K. Crusius and A. Penruick, Z. physik. Chem., 4, 313 (1924).
2 A. Evcxen and C. Karwar, Z. physik. Chem., 113, 467 (1924). W.F. GIAvQuE
and R. Wmesk, Jour. Am. Chem. Soc., B0, 2193 (1928); 51, 1441 (1929).
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and earborundum, that have strong polar characteristics should be
classed between ideal valence and ionic types. The molecular erystals
are on the far right. The transition cases between these and valence
and ionic crystals are substances such uas sulfur and titanium oxide

25 H

20 —

PI 0 ""; b -
i7*
s
5 Jf
[
0

0 25 50 75 1019”2'5 150 175 200 225

Fio. 81.—The specific-heat .ourve of hydrogen chloride. The ordinates are cal/deg-mol.
: (After Giauque and Wiebe, and Eucken and Knrwat.)
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Phosphorus
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iHacorz\- Molecular
Carbiy crystals
ic crystal rites
Alloys — !gr';lé: sfo[cﬂ,s %anlu
Mg; Sb, |dlefect semicond)

F1a. 82.—The interrelation of the solid types.

or pyrites, respectively, which are hound more tightly than molecular
crystals but which shew molecular coordination between atoms.

The several different types of semi-conductor cannot be fitted into
this chart as a unit. Stoichiometrical defect or excess semi-conductors,
such as zinc oxide, may be classed as ionic crystals. On the other hand,
impurity semi-conductors, such as selenium, are transition solids between
valence and molecular types that contain foreign atoms.



CHAPTER II
THE CLASSICAL THEORY OF IONIC CRYSTALS

9. Introduction.—The foundations of the classical theory of ionmic
crystals were laid about a quarter of a century ago by Madelung! and
Born.? The basic coneept of the theory is that the constituents of ionic
crystals are positively charged metal atom ions and negatively charged
electronegative atom ivns. It is assumed that these ions are spherically
symmetrical and that they interact with each other according to simple
central force laws. The main interaction, according to ‘the theory, is
the ordinary electrostatic, or coulomb, force between the ions, which
accounts for the large cohesive energies of the crystals. The electro-
static forces, which tend to contract the dimensions of the crystal, are
balanced by repulsive forces which, from the classical viewpoint, have
uncertain origin and which vary much more rapidly with interionic
distance than do the coulomb forces between charges. Additional inter-
actions are considered in the process of refinement and will be discussed
later. ‘

The repulsive term usually is chosen as a function of interionic dis-
tance that contains two adjustable parameters which are usually deter-
mined émpirically by making the ‘expression for the total energy satisfy
the following two relations:

dE dE\ _ 1 .

av)y_,.. =0 and a“ﬁ)m. = V5 W
Here E is the energy of the crystal, V is its volume, and 8 is its compressi-
bility.* These equations evidently express the conditions that the
crystal should be at equilibrium under all forces and that the theoretical
compressibility should be equal to the observed value.

As we shall see, the theory is remarkably successful in correlating
many of the properties of ionic crystals. From a historical point of
view, it may be said to form the basis for a quantitative understanding

1 E. MapxLuNG, Goit. Nach., 100 (1909), 43 (1910); Physik. Z., 11, 898 (1910).

* A survey of Born’s work may be found in the Handbuch der Physik, Vol. XXIV /2.
? The compressibility is defined by the relation

170
ﬂf*"; 3—;:)’.

Bimoe p = —3E/3V, it foliows that 1/VB = 31E/3V?,
76
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of all solids, since it helped to distinguish between those facts which
can be understood in terms of classical theory and those which ecannot.
We shall consider the theory here partly for this reason, and partly for
the reason that the mathematical technique employed in it is of great
value in more modern developments. .

We shall now discuss in detail the various interaction terms employed
in the classical theory. These will be considered under three headings:
(1).electrostatic interaction, (2) repulsive interaction, and (3) multipole
interaction.

10. Electrostatic Interaction Energy.—It is assumed in the classical
ionic theory that the ions have charges corresponding to their normal
chemical valence. Thus, sodium ions and’ chlorine ions in sedium
chloride have, respectively, one electronic unit of positive and of negative
charge, whereas magnesium ions and oxygen ions in magnesium, oxide
have two electronic units of positive and negative charge. According to
electrostatic theory, the interaction energy of two nonoverlapping
spherically symmetric charge distributions is

€162
T12 ' (1)

where e; and e, are the total charges on the distributipns and r; is the
distance between their centers. Similarly, the total electrostatic energy
E, of n such charges of magnitude &; ¢ =1, + - - , n) is

E, = 5;3’ @)
paira

in which the summation extends over all pairs of charges, each pair being
considered once. This also may be written in the form

1Q ey
E, = §2 =, @)
]

where the summation is now a double sum over all charges and the super-
script prime indicates that the cases ¢+ = j are to be excluded. This
convention will be used throughout this volume.

A detailed discussion of Ewald’s' method of evaluating sums of type (3)
for charges that are distributed in crystalline array may be found in the
references of the footnote below. For two-atom crystals such as sodium
chloride, cesium chloride, zinc sulfide, calcium fluoride, and aluminum
oxide, the results may always be expressed in the simple form

E, = —N.;Aﬁi;-‘-- @)

1 P. P. Ewarp, Thesis (Munich, 1912); see also footnote 2, p. 76.
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Here, E, is the energy per mol; e, and e.. are the absolute values of the
charges on the positive and negative ions, respectiveiy; [ is one of the
characteristic erystal dimensions, such as the length of the cube edge, in
cubic crystals, or the cation-anion distance; N4 is ihe Avogadro number;
and A; is the Madelung constant, which is characteristic of the type of
crystal structure and is independent of the dimensions of the lattice.
The numerical value of the Madelung constant evidently depends on the
nature of the parameter I and on the units of charge, length, and energy
that are used. Values of 4; are quored in Table XXII for the types of
ionic crystals that were discussed in Sec. 4. These values are given for
threc different choices of I: (1) when [ is the closest catian-audon distance
re; (2) when I is the cube root of ihe molecular volume &; (3). when { is
the length a, or the cube edge. The last case is significant only for cubic
crystals,

Taere XXII.—-Maprerune Consrants ror Somi Tyrican lonic Crysrans
(The values in the three columns corregpond to thiee different ehoices of lattice
parameter:
ro cation-anion distauce
& cube root of molecular volume
a; cube-cdge length in cubic erysials)
T

]

i. Ar, 1 s, : A,D

, i
Sodium chloride. .. ... ... .........oooiii... N 1,.176’ 2.2018 | 3.493i
Cesium ehloride. . ... .ovvrt e LTz e, oamf 2.0354
Zincblende (ZnS) ... ... . oo e | 18381 | 2.3831 | 3.7829
Wurtzite (ZnS)............. .o I 1.611 | 2.386 |
Fluorite (CaF.)............. ) 5.0388 © 7.2306 | 11.8366
Cuprite (CuOz) ... ....c... ... e N 4.1155: 6.5436 | ©O.5044
Rutile (Ti03)........ovvvvnn. e e : 4.816 ' 7.70
Anstase (TiOz)......... oo ] 4300 | 804 |
Corundum (AlOs).......ooooiiniiiieinn. - 25,0212 | 45.825 |

It follows from fq. (2) that the zero of energy is chosen in such 2 way
that E, vanishes when the ions are infinitely separated, Thus, the
standard state is oue of {ree ions. In the case of the atkali halides, — &,
is about 10 per ceni layger than the observed values of the cohesive
energies U, referred to this stundard state. For example, we liave in
the cases of sodiuni and cesium chloride

- K N
.! cfl/mi. U (obs.;

| .
NaCl | 205 | sz s
CsC :

164 | 153
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Accerding Lo the classical picture, the energy associated with repulsive
forces should account for the difference. . :

1.. The Repulsive Term.--The repuisive force between ions is very
small until the ions come into countaect, whercupon it increases more
rapidly than the clecirostatic force.  Two different forms of the repulsive
interaction term have been considered in the course of the development
of the theory. The first, which has ne independent foundation, was
introduced long hefore the advent of modern quantum theory; the
second was introduced as a result of quantum theorctical treafments of
ionic interaction. We shall now discuss both of these terms.

a. The b/r* Interaction.—In his carlier work on ionic erysials, Born!
assumed that the repulsive forces between inns gave rise to an inter-
action energy of the type

; b
Er - F (1)
for the entire crystel. Here, b and » are constants and r is the distance
between nearest unlike ions,  If we assuree that only nearest neighboring
ions contribute to (1), this term implies that ions repel cach other with o
central force that varies as 1/r7+1,

In addition, Born assumed that the total encrgy of the crystal is
simply the sum of the {erm (1) and an electrostatic term of the type (5)
of the previous scetion. He then determined n and b by use of Egs. (1)
of the preceding section. We shall let E designate the energy of a
mol of substance and shall express the molar volume V in terms of r by
means of the equation ’

VYV = N‘q.gl'/s (2)

in which « is a constant that is characteristic of the typc of lattice. Thus,
the first two derivatives of E with respect to V are

dE 1 dE

aV = 3N dr ®)
ek _ 1 dfldEy )
dv:  ONZa%?dr\i?t dr

Combining Eq. (1) with Eq. (4) of the previous seciion and solving
Eq. (1) of Sec. 9 for b and n with the aid of Egs. (3) and (4), we obtain

b = ‘_N.jéfgif:rs—l, (5)
Gard
n==1+§5-+e_A: (8)

1 8ee footuote 2, p. 76.
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B N4 fs&f:-(l - %) )

o

The values of n that are determined from Eq. (8) by use of experimental
values of 8 generally lie in the vicinity of Y. They are somewhat smaller

Taswe XXITI.—VaLues oF n DerivEp FrRoM (COMPRESSIBILITY MBASUREMENTS
Substance n

LiF

LiCl

LiBr

NaCl

NaBr 9.

© 00 00
-y oy

TasLe XXIV.—TrHEORETICAL ENERGIES OF ALKALI HALIDE CRYSTALS DETERMINED
BY Usk or THE b/r~ REPuLsivE POTENTIAL

Salt ﬂ U (cale.), U (exp.), Affinity,
kg cal/mol -kg eal/mol kg cal/mol
LiF 6.0 2401 ] ..., 100.1
NaF 7.0 21660 | ..... 9G.7
EF 8.0 190.4 |  ..... 95.3
RbF 8.5 181.8 |  ..... 98.0
CsF 9.5 172.8 | ... 98.8
LiCl 7.0 193.3 198.1
NaCl 8.0 180.4 "182.8
KC 9.0 164.4 164 .4
RbCl 9.5 158.9 160.5
CsCl 10.5 148.9 155.1
LiBr 7.5 183.1 189.3
NaBr . 8.5 171.7 173.3
KBr 9.5 157.8 156.2
RbBr 10.0 162.5 153.3
CsBr 11.0 143.5 148.6
Lil 8.5 170.7 181.1
Nal 9.5 160.8 166 .4
K1 10.5 149.0 151.5
RbI 11.0 144.2 149.0
. Csl 12.0 136.1 145.3

than 9 for salts involving light ions and somewhat larger for salts involv-
ing heavy ions. Table XXIII contains several values that Slater?
derived, using compressibilities that he obtained from his own measure-
ments by extrapolation to absolute zero of temperature.

1 J C. SuaTrR, Phys. Rev,, 38, 488 (1924).
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Various workers have em;:loyed values of n that differ slightly from
iose derived from compres==. ijlitics. Thus, Lennard-Jones! has deter-
mined values from an investiz tion of the equation of state of rare gases,
and Pauling? has used values : -btained by rules that he derived from an
approximate theoretical trentment of the interaction of closed-shell
electronic configurations. It is clear from Eq. (7) that a change of n by
unity affects F by 1 or 2 per cent. Sinece the various choices of n for a
given substance differ by no more than 1, their differences are of minor
consequence as far ag the total energy is concerned.
Table XXIV contains a list of observed and calculated values of
cohesive energies of alkali halide erystals. The theoretical values, which

TaprLe XXV.—TrEoRETICAL ENERGIES oF OxIpES, SULFIDES, AND SELEN.DES
DerarMINED BY Usk oF THE b/r* REPULSIVE POTENTIAL
{The electron affinities of O, S, and 82 have not heen determined by direct experi-
ment. The last column lists $he values of these affinities which must be assumed if
the caiculated and observed resulis are to agree.)

i "

| U (cale.), Affinity,
Bt L " kg eal/mol kg cal /mol
MgO 1 7.0 | 940.1 ~176
Ca0 i 2.0 ! 842. 1 -171
80 ' 8.5 790.9 —160
Ba0 ‘ 9.5 747.0 —157
MgsS 8.9 } 778.3 - 72
CaS 9.0 g 7231 .8 -7
88 [ 9.5 ! 687.2 - 77
BalS 15.5 i 655.9 — 80

! .
Cae 9.5 K 895.8 -: - o4
SrSe 19.0 ; 6A7.1 : - 82
BaSe | 120 ; 637.1 | - 97
—— L

were computed by Sherman,® include smoll corrections that allow them
to be compared with room-temperature experimnental values. Sherman
used the values of n appearivg in the second column that were determined
by use of Pauling’s rules. As we mentioned in the preceding paragraph,
these differ only slightly :rom those of Table XXIII. Experimental
values for the fiuorides e net listed because the clectron affinity of
fuorine is not known. The last column, however, contains a list ‘of

1 J. E. Lexnvarp-JonEs, Free. oy Soc., 106, 441, 463, 709 (1924); 109, 476 (1925);
109, 534 (1925).

tL, Pavning, Proc. Roy. Soc., 11&, 181 (1927); Jour. Am. Chem. Soc., 49, 765
(1927); Z. Krist., 87, 8377 (192}, .

3 J, SusrnvaN, Chem. Rev., 11, 63 (1032).
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electron affinities of fluorine that must be assumed in order to make the
calculated and observed values agree. A similar compilation for seversl
oxides, sulfides, and selenides is given in Table XXV. It should be
noted that the values of affinities that must be assumed are negative in
these rases.

Sherman used a set of affinities of negative ions that he derived from
comparisons of theoretical and experimental cohesive energies of alkali
halides and alkaline earth oxides, sulfides, and selenides in order to com-
pare observed and computed energies of a number of other halides,
oxides, sulfides, and selenides. Some of these cases are listed in Table
XXVI. The agreement is very good fer ideal ionic substances and is
poor for substances such as cupric oxide.

v

b. The ae ? Interaction.—Investigations of interionic forces that
have been carried out on the basis of guantum mechanics and that will
be discussed in Chap. VII indicatc that a repulsive term of the type
b/r™ cannot be rigorously correct, although it may be a fair approximation
for a short range of r. Born and Mayer! attempted to bring the older
theory more nearly into accord with the quantum mechanical results by
modifying it in fwo important ways: (1) They replaced the repulsion
term (1) by an exponential expression of the type

r

er) = ae * ®)

for the repulsive interaction of pairs of ions, in which e and p are con-
stanis. (2) They added another attractive term which is known ag the
van der Waals interaction. Mayer? subsequently modified this term
and added another, as will be seen in the next section.

Born and Muyvere found that they eould take pin Eq. (8) as0.345 X 10—2
em for all types <t ion if they determined a from the equation

ity

a==b(1+§~:;+§f;_e . (9)-

Here, b is another fixed constant, z; and z; are the valences of two inter-
acting ions, n; and n; are the numbers »f valence electrons in the outer
shells of the ions, and r; and »; are the ionic radii. The valences have
negative signs for electronegative ions. 7 is equal to 8 for all simple ions
exeept those which are isoelectronic with lithium, in which case 7 is 2.
Born and Mayer used the ionie radii given in Table XXXII (page 93),

1 M. Bogrw and J. E. Maver, Z. Physik, T5, 1 (1932); see paper following this
as well. .

2 J, E. MAYER, Jour. Chem. Phys., 1, 270 (1933); see also J. E. Maysr and M. G.
MAYER, Phys. Rev., 43, 605 (1933).
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which were derived by Goldschmidt in the manner described in Seec. 1.
Although Fq. (9) has some theoretical justification, its chief merit bies

TasrLe XXVI.—ExPERIMENTAL AND THEORETICAL COHESIVE ENBRGIES ox HAanIDXE:s
Ox1pESs, SULFIDES, AND SELENIDES DETERMINED BY UsE oF TuE b/r" RErULSIVE
POTENTIAL

(The experimental values are referred to a standard state of free ions, They
involve the following electron affinities, obtained by Sherman in the manner deserilzed
in the text:

F 98.5 kg cal/mol O --168 kg cal/mol
Cl 92.5 kg cal/mol S -~ 79.4 kg cal/mol
Br 87.1 kg eal/mol Se — 97 kg eal/imnol

I 79.2 kg cal/mol
The theoretical values are determined from the Born theory by use of the values of n
which appear in the third column.)

i | 4
) ' U (exp.), | U (theor.), ! Difference,
Substance St.ructuf‘e " 1 kg cal/mol | kg eal mmol ‘ ke cal/mol
o e e e e
AgF NaCl i 8.5 | 223.¢ 247 .9 E 5.1
MgF, Rutile 7.0 688.3 o668 | -~ K.5
CaF, Fluorite 8.0 618.0 - nl7.7 l 4+ 0.2
Nily Rutile 8.0 713.2 (U | l 16.1
CuCl Zincblende | 9.0 226.3 206.1 20.2
AgC1 NaCl 9.5 207.3 187.3 | 20.0
TICL CsCl 10.5 170.9 159.3 | 1.6
Li;O Fluorite 6.0 693 695 - 2
Cu,0 Cuprite 2.0 788 682 106
Ag.O Cuprite 8.5 1 715 585 130
NiO NaCl 8.0 | 486 068 - 2
Zao Whurtzite 8.0 972 977 - 3
PbO, Rutile o8 2,831 2,620 —211
ALO, Corundum | 7.0 3,617 8,708 - 91
|
Na.S Fluorite 8.0 524 516 8
Cu,S Flucrite 9.0 683 612 71
ZnS Wurtzite 9.0 851 : 816 35
Zn8 Sphalerite | 9.0 851 819 32
Pb8 NaCl 10.5 781 705 26
ZnSe Sphalerite -| 8.5 245 790 55
PbSe NaCl 11.0 735 684 51
Cu.Se Fluorite 9.5 ‘685 599 86

in the fact that it leads to a good correiation between observed and
calculated results without additional assurn.ptions.

. As an illustrative example, let us consider a crystal that contains two
types of ion, each of which is surrounded by M like ions and M’ unlike
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ions. If we consider only ncarest like and unlike neighbors, the total
repulsive iuteraction energy per mol is
niri-r g 2r 2\ _a'r]
Er = N‘bl-.’ifcne L4 +—— Cue A + nge ) ’] (10)
"o

where Cj, C1n, and C, are appropnate values of the quantity
[l + (zi/m) + (2;/n)] in Eq. (9), 7 is the distance between like jons, and
a’r is the distance between unlike ones. If we desire to use an approxima-
tion corresponding to that of part (¢), we should add the electrostatic term
to this and apply Egs. (1) of Sec. © to the sum. Instead, Born and
Mayer included two additional terms which we shall discuss before
proceeding further.

- 12. The Multipole Interactions and the Zero-point Energy. «. Van
der Waals Terms.—It may be concluded! from the existence of solid and
liguid phases of the rare gases that the constituent atoms have a small
but finite attraction for one another. London investigated this attrac-
tion on the basis of quantum mechanics and was able to derive a simple
approximate expressicn for the interaction energy. We shall use the
results here and discuss-the derivation in Sec. 58. 'It turns out that any
two atoras or ions have, in addition to the terms of the type discussed in
Secs. 10 and 11, an atiractive energy term of the approximate form.

€y = ‘f;h ;ﬁ%amz 1)
where »; and »; are the serics limit frequencies of the discrete specira
of the two atoms or ions, and ay and «, are their polarizabilities. More
accurate expressions have been developed for particular eases, but this
expression is very useful for a general discussion. It will be shown in
Sec. 58 that thiz atiraction iz connected with a synchronization of the
motion of the electrons in the two atoms or ions.

The total van der Waals energy for a lattice of the same type as that
which we considered in deriving Ey. (10) of the preceding section is

E, = »?Yﬂ[s,am + gyt

(v
where ns, au1, and asy are, respectively, the coefficients of 1/7% in Eq. (1)
for the positive-negative, positive-positive, and negative-negative ion
pairs. S, and S, are, respectively, the sums over all unlike and like ions
of 1/R¢ where i; 1= the distance between a given ion and the ¢th jon in a
iatiice in which r; = 1. Numerical values of these rapidly convergent
sums are given in Table XX VII for several types of structure.

1 LBNNARD-JONES, op. oil.
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In their original work, Born and Mayer evaluated the a that occur
in (2) by means of London’s equation (1), using values of « and » that
were determined from date on free icns. The results represent only
about 1 per cent of the total energy and do not appreciably affect the
order of magnitude of agreement between thecretical and experimental

Tasre XXVII.—-CoRFFICIENTS FOR THE VAN DEE WAALS AND FOR THE DiroLp-
QUADRUPOLE ENERGIES

Lattice type 8, ; s, ! Sar Sk
Sodium chloride. .. ................ ; 6.5052 | 1.8067 | 6.1457 | 0.8002
Cesium chloride................... 8.7088 '3.5445 8.2007 2.1476
Zinoblende........................ L 4.354 0.762 4.104 0.253

values. These terms, however, are of considerable importance in
determining the relative stability of two different lattice types, for they
are comparable with the difference in energy of possible meodifications.
From a study of allotropy, Mayer! concluded that the o and » values
for free ions, when used in Eq. (1), do not account for the fact that CsCl,
CsBr and Csl form simple cubic lattices instead of face-centered ones.
He proposed that ‘“better’’ values of these quantities should be deter-
mined from measurements of the optical properties of crystals by a
method which we shall describe in Sec. 150. These values nearly double

TasLe XXVIII.—Comrarison oF VaLurs oF THR ConsTant C APPBARING IN THE
DiroLE-pIPOLE TERM FOR TEE VAN DER Wails EnErey C/r*
(In 10~%° erg-cm?®)

Atomic data | Mayer’s method
LiF 6 18
LiBr 102 188
NaCl 100 180
Nal 247 482
RbCl 354 691
CsBr 1,258 2,070

the van der Waals energy. Table XXVIII contains several values
of the coefficient of 1/r® that were determined by using the two types of
data. We shall employ the energies given by Mayer’'s method in the
following sections of this chapter. It should be emphasized, however,
that in doing so we are departing somewhat from the original concepts
of the ionic theory. It probably is true that the treatment of ionie
crystals that would reproduce Mayer's values of a« and » from the funda-

"1J. E. MAYER, Jour. Chém. Phys., 1, 270 (1933); 1, 327 (1983).
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mental equations of quantum mechanics would not substantiate all
details of the classical picture.

b. The Dipole-quadrupole Term.—The energy term (2), which varies
with the inverse sixth power of the distance, actually is the first term
in an infinite serics of terms that successively decrease in importance.
The next term, which was first investigated by Margenau,! varies as
1/r® and usually is about one-tenth as large as the van der Waals term
at the observed interionic distance, We gheall discuss the derivation
of an expression for this interaction that is analogous to the derivation of
(1) in Sec. 58. For present purposes, it is sufficient to point out that the
contribution to the total energy of the crystal from this term is

Bu = N suds + 5,205 2) ®
in which the d are analogous to the ¢ in Eq. (2) and S» and S’ are sums
of 1/R® analogous to the sumsin Eq. (2). Table XXVII contains values
of 8 for several types of crystal. We shall use values of d that were
derived by Mayer from empirical measurements [see pert (a} of this
section].

The energy term (3) is called the dipole-quadrupole interaction
becauses it may be interpreted as arising from the interaction of a dipole
moment on one agtom with a quadrupole moment on the other. For the
same reason, the van der Waals term is sometimes called the dipole-
dipole term, The next term in the sequence, which varies as 1/r'9, is
ealled the qusdrupole-quadrupole term and is negligible in all cases in
which we are interested.

c. Zero-point Energy.—The mechanical motion of the atoms or jons
in a crystal containing N atoms may be treated as theugh the crystal
were an assembly of 3N oascillators of various frequencies (cf. Seq. 22).
According to quantum mechanics, an oscillator of frequency » retains an
energy of hv/2 at the absolute zero of temperature, which must ba
ineluded along with the other energy terms when a esmparison of experi-
mental and theoretical cohesive energies is made. For present purpeses,
it is sufficiently accurate to use the Debye theary, accarding to which
the frequencies are distributed between zero and 8 maximum p,, in the
manner described by the density function

5y = %;y*. @)

Here, f(#)dv is the number of oseillatora having frequenoies in the range
from » to » + d». Thus, the total zero-point energy is'

1 H. MarGeNAU, Phys, Rev,, 38, 747 (1981). Boo also Rev. Modern Phys., 11, 1
(1939).



Sec. 12] THE CLASSICAL THEORY OF IONIC CRYSTALS 87

N CL A ®)

und the energy per mol of a distomic crystal is

Ex, = Nao 4};»,.. (6)

The maximum frequency may be estimated to a sufficient degree of
accuracy by using infrared absorption data, since the zero-point energy
actually is small.

Following Mayer, we shall assume that the total energy of the crystal
at absolute zero of temperature is given by the sum of the terms (2),
(8), (6) of this section and Egs. {4) and (10) of Secs. 10 and 11, respec-
tively. This sum is

B, = N.,{-A + b[MC;-.-er T M ™ + O ] -

{Sﬁ w0 | ;g[sudn + s;f‘ﬁ‘f—”;f’—*l + ;hr.,.}- @
If we eliminate b by means of the first of Egs. (1) of Sec. 9, we obtein
B = N.ti — A+ (B {A,. -+ 2 SD) S-a+

A O
where

g’& 1 —at )2
{a' — DM’ ("u(l + c“ }em““ 0
k=

—at Y
2MCiz + GMC'u 1—}-?3—“, B)( re Tl ),

:ﬂiu_j_" daz
C = 8,012 + Q,‘ 9

D = Sudaz + S, ‘&i‘—““

and § is the difference of the ionic radii. 'The parameter p may be
determined from E: by means of the second of Eogs. (1), See. 9. Born
and Mayer actually empleyed a slightly medified form of this equatlon
which aillowed them to wse room-temperature values of 8.

Tabie XXIX contains a compilation of the values of the five con-
stituent terms of E, for 8 number of halides. In addition, the sum of
" thes: terins is compared with the eunergies computed by Sherman (ef.
wee: 119, Born and Mayer did not use the dinole-guadrupole term Ex
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and the empirical van der Waals term when they derived the values
of the repulsive term for the alkali halides that appear in this table.
They completely neglected the first term and used a smaller value for
the second (¢f. part b, Sec. 11). We have subsequently added the Ex
and empirical E, terias, but we have not cerrecied for the change that
this induces in the repulsive term. This change is practically negligible
as long as we are interested only in a comparison of E; with Sherman’s
values.

Taers XXIX.—ConTriBUTIONS TO THE ConEsTvE ENERGIES OF THE ALKALI HALIDES
A8 GiveEN BY THE BorRn-Maver EquaTion

(In kg cal/mol)
. Dipole-
Madel- R:ig:l- 1?1‘1;»%:- quad- Zeilr::it Total | Sherman
ung rupole po
LiF 285.5 | —44.1| 3.9° 0.6 ~3.9 | 242.0 | 240.1
LiC 228.5 [ —26.8! 5.8 0.1 ~2.4 | 200.2 | 193.3
LiBr 207.8 | —-22.5| 5.9 0.1 -1.6 | 189.7 | 183.1
Lil 188.8 | —18.3| 6.8 0.1 -1.2 | 176.2 | 170.7
NaF 2481 ~85.3| 4.5 0.1 -2.9 | 2145 | 215.0
NaCl | 204.3 -23.5| 5.2 0.1 ~1.7 | 184.4 | 180.4
NaBr | 182.9 | —-206] 5.5 0.1 -1.4 | 176.5 | 171.7
Nal 1780 | —17.1| 6.8 0.1 ~1.2 | 166.1 160.8
KF 215.1 -28.1| 6.9 0.1 -2.2 | 101.8 | 180.4
KCl 183.2 -21.5] 7.1 0.1 ~1.4 | 167.5 | 164.4
KBr 174.5 -18.6| 6.9 0.1 -1.2 | 181.7 | 157.8
KI 162.8 -15.9! 7.1 6.1 -1.0 | 153.1 | 149.0
RbF 208.8 -26.2| 7.9 0.1 ~1.4 | 184.2 | 181.8
RbCl-! 176.8 | —19.9 | 7.9 0.1 -1.2 | 162.7 | 158.9
RbBr | 167.2 -17.6| 7.9 0.1 -0.9 | 156.7 | 152.5
RbI 158.5 -15.4| 7.9 0.1 —0.7 | 148.4 | 144.2
CaF 1911 -289| 97 0.1 -1.2 | 175.8 | 173.8
CaCl 1626 | —17.7| 11.7 0.1 -1.0 | 155.6 | 148.9
CsBr | 1556.8 | —16.4| 11.4 0.1 -0.9 | 150.0 | 143.5
Cal 146.8 | —14.6 | 11.1 0.1 -0.7 | 142.7 | 1%6.1

In computing the energy of the alkaline earth oxides and sulfides by
means of Eq. (8), Mayer and Maltbie! used the mean of the values of p
that were deterrained from the alkali halides. They estimated the van
der Waals term from London’s formula and omitted the dipole-quadru-
pole term. The results of this work are given in Table XXX and may

1J. E. Maver and M. McC. Mavreix, Z. Physik, 75, 748 (1932).
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be compared with Sherman’s values in Table XXV. The affinities of
oxygen and sulfur, determined from these newer computations, show a
wider spread than those determined by Sherman.

TasLe XXX -—CrvstaL EnErcies DerivEp rroM TEE Bonrn-Mayer EquaTion

Substance Structure —K,, kg cal/mol | Affinity, kg cal/mol
MgO NaCl 939 —190
Ca0 : . NaCl 831 . —1656
8rO NaCl 766 —144
BaQ NaCl . 727 —147
MeS NaCl 800 . — 98
CaS NaCl 737 —102
S8 NaCl 686 — 86
BaS NaCl 647 — 88

Bleick! has determined the lattice energy of the ammonium halides
by the use of the Born-Mayer equation, treating the ammonium radical
ion NH,* as though it were a centrally symmetric unit. He obtained good
agreement with measured cohesive energies in this way.

18. The Relative Stability of Different Lattice Types.—One of the
important problems of crystal physics is that of determining the relative
stability of different types of structure. This problem has a simple
formal answer if questions of unstable equilibrium are neglected, for the
stable lattice is that which has the lowest free energy. Unfortunately,
the differences in free energies of different possible modifications may be
extremely small; indeed, they are often less than the computational
accuracy of the free energies. This fact is usually true, for example, of
the differences in free energy of the four characteristic types of ionic
structure (¢f. Sec. 4). The free energies of different structures often are
computed and compared in spite of this, the hope in such cases being that
the computational errors lie in the same direction in each instance and
cancel. -

Mayer,?® and Mayer and Levy,? using the Born-Mayer equation, have
examined the relative stability of several halides in each of the structures
listed in Table XXXI. They made no attempt to include temperature
dependence, and so their discussion is valid only for the absolute zero
of temperature. As they changed from the observed lattice type to a
hypothetical one, they evaluated the differences of each of the constituent
energy terms in Eq. (7) of Sec. 12, keeping ro fixed and equal to the

+ 1 W. E. Buaicx, Jour. Chem. Phys., 2, 160 (1084).
2J. E. Maver, Jour. Chem. Phys., 1, 270 (1938); 1, 327 (1933).
*J. B. MavEx and R. B. Luvy, Jour. Chem. Phys., 1, 647 (1933).
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value for the vbserved stable lattice, They then added to the sum of
these terms the change in energy of the hypothetical lattice as its inter-
ionic parameter changed from ro to the observed equilibrium value 7§.
This second term is equal to

(ac':r"),_,.o L -2 o

where E} is the energy of the hypothetical lattice. The zero-point energy
was assumed to be the same for the different modifications. 'Table XXXI
contains a list of the differences of the energy for the parameter 7o, the
eorrection for change in density, and the sum of these two quantities.
The sum would always be positive if the results agreed with experiment.

Tssre XXXI.—TE® Rxrarive Exzrems oF DFFERENT Latricm Trers »om
SeveraL HaLipms

(The first four columns of numbers are the changes in each of the contributions

to the energy when the nearest-neighbor distance is held constant. The fifth column

is the energy change 3E obtained when the lattice expands or contracts to the true

equilibrinm distance. In kg cal/mol)

Change for fixed ry
Hypotheticsl Total
Btable lattice lattice Dipole- iE change
Madel- | Dipole- Repul-
ung | dipole “““"pd““ sive

AgF Bodiutn chloride | Zincblende +14.7 | + 7.9 +1.3]| -13.7 | -1.9| + &,3 .
AgCl | Bodium chloride | Zincblende 4+13.0 | + 9.7 +1.9| ~18.8| ~1.9 | + u.9
AgBr | Bodium chloride | Zincblende +12.5 | + 8.7 +1.6] ~13.4 | —1.9 ] 4 8.4
Agl | Zineblende Sodium chloride | —12.8 | -17.7 | -3.7 | +80.0 | -1.9| ~ 6.1
AgF | Bodium chloride | Cesium chloride | — 2.0 | = 0.7 | -1.7| +18.7| —0.9 | + 2.4
AgCl | Bodium ehloride | Cesium chloride | = 1.7 | =11,8| =-2.3| +24.7 | —-0.9| 4~ 8.0
AgBr | Bodium chloride | Cesium chloride | — 1.7 | ~11.6 -32.2{ +38,7| —-0.9| +12.3
TiCl | Cesium chloride | Sodium chloride | 4+ 2.4 | + 8.1 | +1.8| —-10.8) —0.6 | —~ 0.8
TIBr | Cesium chleride | Sodium chloride | 4 1.4 | + 7.9 | +1.2| —-10.1 | ~0.86 | ~ 0.2
T Cesium ohloride | Sodium chloride | + 1.8 | + 8.3 | +1.6| ~10.1] —=0.6 | + 0.4
CuCt [ Zincblende Bodivm ohloride | —15.4 | ~10.5| —-1.9| 488.4 | —-1.9] + 8.7
CuBr | Zincblende Bodium ohloride | ~14.7 | —11,0 | ~2.0| +34.8 | —1.0 | + 4.7
Cul Zinchlenda Sodium chloride | —13.6 | —13.68 -2.6| +34.0}| -1.9| 4+ 2.3

It is not positive for Agl, TIC, and TIBr, for in these cases, the sodium
chloride type of structure, instead of the observed one, has the lowest
energy. It may be esen from the table that the attractive terms favor
the stability of the following three types of structure in the order given:
CsCl, NaCl, and Zn8. Cecnversely, the repulsive term favors them in
the reverse order. It would require only & small increase in one of the
attractive terms, such as the van der Waals term, to shift the calculated
stable lattice of TICl and TIBr from the sodium chloride type to the
cesium chloride type. On the other hand, it would require a compara-
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tively large change of an opposite kind to account for the stability of the
zincblende stracture in Agl. Mayer concluded from these facts that
thallium salts and most silver salts conform closely to the assumptions
of the ionic theory and that Agl has some nonionic characteristics.

~ May! has made a very thorough investigation of the problem of the
relative stability of the cesium chloride and sodium chlcride lattice for
cesium chloride on the basis of the Born-Mayer equation. He found
that this equation does not account for the stability of the cesium chioride
lattice at absolute zero of temperature if a two-parameter repulsive
term and Mayer’s value of E, are employed. In order to generalize
the equation, he introduced two additional parameters. One of these
was a multiplicative factor in the van der Waals term and the other was
-a factor in M’ of Eq. (7), Sec. 12. In effect, the second parameter makes
the constant b in the repulsive term different for like and unlike jons.
These parameters were a.d)usted in order to make the cesium chloride
lattice stable at absolute zero. The additicnal measured quantities
that were used in doing this are the measured heat of the phase transition
(about 1.34 kg cal/mol), and the observed change in lattice constant.
The multiplicative constant of the attractive terms turns out to be 3.6, °
and the coefficient of M’ to be 0.70. At the same time, the constant b
is doubled, and p changes from 0.290 to 0.3654. May suggested that
part of the required increase in the attractive terms should be associated
with a change in the purely electrostatic energy caused by distortion of
the icns from spherical form. It is easy to show . that the distortion
of the charge on an ion in a cubic crystal may be described in the first
approximation by fourth-order surface harmonics and that the associ-
ated potential, which is not centrally symmetrical, varies with r as 1/7°.
There is, however, no conclusive quantats,t;we evideace to support May’s
.suggestiqn.

May also carried through a similar treatment of the stability of
ammonium chloride and found further support for the conclusions drawn
from the case of cesium chloride. In addition to this, he estimated the
transition temperature for both cesium chloride and ammonium chloride

- and obtained qualitative agreement with the observed facts.

In contrast with May’s work is that of Jacobs,? who correlsted the
phase transitions that occur in the alkali halides &t high pressures
with empiricaliy determined constants that are morc necarly like thosz
used in the earlier work of Born and Mayer.

“I4. Ionic Redii.—We saw, in Sec. 4, Chap. I, that the nearest jon dis-
tarces of the alkali halide crystals are additive. This fact, which was

A. Mav, Phyo. Rev., 53, 359 (1837).
R. B. Jacoss, Fhye. Rev., 64, 468 (1888).
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first emphasized by Goldschmidt,! suggests that the ions of these crystals
may be regarded as rigid spheres and that the equilibrium interionic
distance is simply the distance at which these spheres come into contact.
This view is justified in a rough way by the Born theory, which shows
that the repulsive forces between ions vary about ten times more rapidly
with interionic distance than do the electrostatic forces. The rigid
sphere concept, however, cannot be used very widely for quantitative
purposes; we shall discuss some of its limitations in a later paragraph of
this section. ' _

It is not possible to obtain the values of ionic radii from crystallo-
graphic data without knowing at least one radius at the start. Gold-

3
Uf
2
Goldlschmidt
1 rod) '
P H-
[ -
Q0 05 l.? (;0 1.5 20

Fi1a. 1.—The cherge distributions of Lit* and H~ ions as determined by Hylleraas and Bethéd.
The vertical line marks the point of contact of the Goldschmidt radii.

schmidt began his extensive work on the tabulation of radii with the
following values of the radii of F~ and O—:

F-:1334A; 0—:132X.

These values were determined by Wasastjernas? who correlated measure-
ments on the optical properties of fluorides and oxides with a classical
quantum theory of dispersion and thereby determined .the radii of the
outermost orbits of these ions. The theoretical basis of this work need
not concern us here. We may, however, compare the value of the radius
of Lit that is deduced from the value for F— with the electronic charge
distribution of Li* as determined by modern quantum mechanics,? which
is shown in Fig. 1. It is obvious that there is no precisely defined radius;
however, the vertical line corresponding to Wasastjernas’ radius is a
reasonable point at which to say that the distribution stops. The right-

1 V. M. Govvscamapr, Skrifter det Norske Videnskaps (1926, 1927).
2 J. WasAsTseENAS, Comm. Fenn., 1, (1923); 6, (1932).
1 F. HyLizmaas, Z. Physik, b4, 347 (1929); H. Berun, Z. Physik, 67, 815 (1929).
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hand part.of Fig. 1 shows the distribution in H-. The two curves are
plotted in such a way that the distance between origins corresponds to
the Lit~H- distance in lithium hydride. Table XXXII contains a

“TaBLE XXXII.—Govrpscuminr’s Joxie Rapu

(Io A)

H- 1.27 (8 1.32
F- 1.33 8 1.74
Cl- 1.81 Se— 1.91
Br- 1.96 Te- 2.03

I~ 2.20
Li+ 0.78 Mg+t 0.78
Na+ 0.98 Catt 1.06
K+ 1.33 Sr++ 1.27
Rb+ 1.49 Bat* 1.43
. Ce* 1.65 Be*t 0.34
Ti+ 1.49 Zn*t  0.83
Cut 0.53 Cd+*+ 1.03
Ag* 1.0 Hg++ 1.12
Mnt*+ 0.91 Al*+ 0,57
Fe+! 0.83 Set++  0.83
Cott 0.82 Yttt 1.06
Nit+ 0.78 Lat++ 1.22
Pbt+ 1.32 Gattt 0.62
Int++  0.92
TI+++  1.05

list of Goldsehmidt’s radii, which have been determined from additive
systems. These values are self-consistent to within about 5 per cent.
Other radii have been obtained by other workers using different start-
ing assumptions. For example, Huggins and Mayer* obtained the radii,
given in Table XXXIII, for the alkali ions and halogen ions by adjusting

TasrLe XXXIII.—TxE Rapir oF THE ALKALI METAL Ions AnD THR HALOGEN
Ions As DerErMiNeDp BY Huagins axD Mayer

(In &)
Li*  0.475 F- 1.110
Na+ 0.875 Cl- 1.475
K+ 1.185 Br- 1.600
Rb*+ 1.320 I- 1.785

Cs+ 1.455

the radii that appear in the Born-Mayer equation so that the theory
would lead to the observed lattice constant; that is, b in Eq. (7) of
Bec. 12 was given a fixed value and the ionic radii were adjusted so that
Eq. (1) of Sec. 10 was satisfied for the observed lattice spacing. The
" values in Table XXXIII differ appreciably from Goldschmidt’s values.

t M. L. Hugains and J. E. Mayer, Jour. Chem. Phys., 1, 643 (1933).
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The cesium chloride type of structure has a larger electrostatic
cohesive energy than the sodium chloride type for a given value of ro,
the nearest ion distance. In view of this fact, one might attempt to
explain the stability of the sodium chloride type in most alkali halides
on the basis of the rigid ion picture, by asyuming that one type of ion is
so large that like neighbors touch at greater values of ro in the cesium
chloride structure than unlike ones do in the sodium chloride structure.
A condition obviously necessary for this is that one set of 101 should be
s0 large that pairs touch in the cesium chioride structure for the observed
interionic distance of the sodium chloride type of structure, that is, that
the radii B, and R, should satisfy the conditions

To_ -1
R1 = '\/5’ Ra =< (1 x/:-}-)?’u.

The ratios must then obey the inequality

By e vEi-1=01
kK,

KF, RbF, RbCl, RbBr, and CsF do not satisfy this condition if GGold-
schmidt’s radii are used; moreover, no reasonable and self-consistent
change in radii would make ail the ions in face-centered alkali halide
crystals satisfy it. N

In view of the work of the previous section, the failure of the simple
rigid-sphere concept fo cope with this problem is not surprising. The
stability of an ionic erystal in any given structure is determined by a
delicate balance of several types of force.

16. Implications of Deviations from the Cauchy~Poisson telations.—
In all the computational work that is discussed in the preceding sections
of this chapter, it is explicitly assumed that the ions are spherically
symmetrical and interact with spherically symmetrical forees. If this
assumption were correct, the three elastic constants,! €1, €13, and cu

? We shall use Voigt’s notation for the elastic constants [see W. Voigt, Lehrbuck
der Kristaliphysik (Teubner, Leipzig, 1910; reissued 1928)]. If we designate the
three tension components of the stress tensor by X,, X; and X;, the three shear
components by X, X;, and X, the three tension components of the strain tensor
by &1, z:, and 7, and the three shear components by zi, 7, and z;, Hooke’s stress—
strain relation is given in terms of the thirty-six elastic constants ¢i; (1, j = 1, 2,

+ + , 6) by the equations
8
X; = za,-zg.
j=l

If E(xy, + » + , %) is the energy per unit volume of the crystal as a function of the
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of a cubic crystal should satisfy the Cauchy-Poisson relation
Ciz = Cu

The measurements of Rose,! which are piotted in Fig. 2, show that
this relation is not valid for sodium chloride at low temperatures, “he

6 CH
5
I s
exio™
e 3
2 ——
c44~
‘ cizl
080 100 |20 140 160 INZOOZZOZHZSOZW
Fia. 2.—The three elastic constants of sodmm chionda. cu and o2 cross at J40°K.

(After Rose.)
discrepancy heing of the order of 10 per cent. Similar measurements?
strains, it followe from the relation between force, work, and ‘energy that

E(SB:. L ,fm} = %20&1’3:3,‘.
Thus,
g
Gi = f‘la;.az,-
and
Cii = Cji;

hence, only twenty-one of the thirtv-six ¢, are independent. Fer cubic crystals,
there are the additional relatioas.

C13 = (g3 = {33, Ci1g3 = (g3 = Cj, Ced = Cpy = Cge
and all other components are zero il 't.i¢ rovrdinate axes and cube axes arc parallel;
benew, there are only three indepeundent cowponents in this case. In hexagonal
erystals, there are the relations
€11 = Ca3, C13 = Cay, Cit = C4yy Con == 'i'(cn - Cm):

and all other components exeepl ¢4 are zero, if the hexagonal axis is in the z direction.”
Ii the atoms of the erystal interact with central forces, there are the additional
Cauchy~Poisson relations, which in the cuses of cubic and hexagonal crystals are

Ciz = Cy, and €13 = Cy4) Cip = %cu,
respertively.
F. C. Ross, Plys. Bev., 48, 50 (1936). .
* Data furnished by Qulml-y, Balwmuth, and Rose on "mgnr tum oxide appenra
in a paper by Barnes, Bratisin, and Seitz, Phys. Fo 0 ©or RN See ulso the
corection. Phys. Reo , 49, 405 (19361, M. A, Durand, #nys. ve., £0, 448 (1936).
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on magnesium oxide show a deviation between ¢, and cu of about 50 per
cent. It is natural to ask how this discrepancy affects the Born
theory. ; :

The terms in the Born-Mayer equation may be divided into two
classes, namely: the electrostatic term f;, which varies slowly with 7,
and all others fs, which vary rapidly in comparison. The first term is
rigorously known, for aithough the charge distribution may not be
precisely spherically symmetrical, the electrostatic-correction term
arising from this distortion varies at least as rapidly as 1/7° and may be
classed in f;. It follows that the deviations from the Cauchy-Poisson
relations occur because some of the terms in f; should not be spherically
symmetrical.

We have seen in the preceding work that the absolute magnitude of f;
is about ten times that of f. for equilibrium values of r, even though the
force terms df/dr are equal. The increase in importance of fs as we
pass from a consideration of energies to one of forces is an immediate
consequence of the fact that f, varies more rapidly with » than does fi.
This fact is shown in a striking way by the older form of the repulsive
term b/r3, where n is of the order of magnitude 10. The ratio of this
term to the electrostatic term is

b. —
At 4/
whereas the ratio of the derivatives is n times this. Similarly, fy is
about ten times larger than fi’, whence we may conclude that the elastic
constants, which are related to second derivatives of the energy, are
primarily determined by f;. Thus, the experimental measurements of
elastic constants show that f, is in error by about 10 per cent in sodium
chloride and about 50 per cent in magnesium oxide. This error affects
the.cohesive energy by only 1 per cent in the first case and 5 per cent
in the second, because f; accounts for only about 10 per cent of the
cohesive energy. The energy differences of different crystallographic
forms, however, are of the same order of magnitude as this error. Hence,
it seems safe to say that these energies can be computed accurately only
when the nonradial part of f; is properly included in the Born-Mayer
equation.

16. Surface Energy.—One of the factors that determines whether or
not a given crystallographic plane is a cleavage plane is its surface energy,
that is, the energy ¢ per unit area required to separate the crystal along
this plane. This energy usually is defined in such a way that the areas

" of the two halves of the crystal are counted separately. Surface energies
of crystals with the sodium chloride lattice have been computed on the



Suc. 16] THE CLASSICAL THEORY OF IONIC CRYSTALS 97

basis of the ionic theory by Madelung,! Born and Stern,? and Yamada.?
Madelung took into account only electrostatic forces and found that the
energy of a (100) surface is 0.520¢?/a® per unit area, where a is the cube-
edge distance of the unit cell. Born and Stern improved this calculation
by including repulsive forces and found the following values for the

(100}
t

(100) and (110) planes: g

32

g0 = 0.11%)

. ’, (1)
_O‘;m = 03155'

Sinee the second is about 2.7 times larger than
the first, it follows that rock salt should split
more easily along a (100) plane than along a
(110) plane, This result is in agreement with

Fia. 83.—Polar diagram
of the surface energy of crys-

experiment, since only (100) planes show cleav-
¢, -In both the preceding calculations, it was
assumed that the ionic spacing near the surface
is the same as in the interior of the lattice.
Madelung, however, has shown that, in the
case of (100) surfaces, there should be a slight
contraction of interionic distance in the dn‘ectmn
normal to the (100) plane.
Yamada extended Born and Stern’s com-
putations by caiculating ¢ for all surface planes
that have normals lying in the (100) plane.

tals with the sodium chloride
Iattice. The angular vari-
able is the angle between the
normal to the surface plane
and the (100) direction.
Although thia plot is valid
only for planes whose nor-
mals lie in a principal plane,
the minimum in the (100)
direction is An abeolute
minimum. The dotted
square rapresents the crystal
Karm of loweat surfaco

ved by

Yamada.)

energy, ss determi
Wualff's method., (dfter

This includes as special cases planes that are

equivalént to the (100) and (110) surfaces. His values of ¢ are shown in
the polar diagram of Fig. 3, in which the angular variable is the angle
between the (100) direction and the normal to the plane. This figure
shows that the value of ¢ for the (100) plane is a relative minimum,
whereas that for the (110) plane is a relative maximum. Yamada also
found that the surface energy of the (100) plane is smaller than that of
any other plane, so that the (100) value is also an absolute minimum for
the three-dimensional ¢ surface.

Wulffi* has proved that the crystal form corresponding to the lowest
surface enérgy may be obtained from & pola.r diagram of this type by
taking the envelope of those planes that are ofthogonal to lines passing
through the origin at the points where these lines intersect the surface.

L E. MapsLone, Physik. Z., 19, 524 (1918); 20, 404 (1919).

. Born-and O. StarN, Sitzh, prevss. Akad. Wiss., 901 (1918).

I M. Yamava, Physik. Z., 24, 364 (1023); 85, 52 (1934).

4 G. Wurrr, Z. Krist., 34, 449 (1901).
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It is clear that this form is the dotted square of Fig. 3 in the two-dimen-
stonal case correspouding to Yamada’s result for the (100) plane and is a
cubc in the three-dimensional case. In order to obtain the condition
for thermodynamical equilibrium above absolute zero, Wulfi’s construc-
iion should be applied to the free-energy polar diagram instead of to
the energy diagram.

H icnie crystals were perfect, it should be possible to estimate their
breaking strength from the surface energy. Following Polanyi,! we
shall assume that the interatomic forces between two separating crystal
planes-are important for a distance Al of about ten angstrom units and
shall determine a rough value of the breaking stress S by use of the
ercrgy equation

20 = AIS (2)

where o is the surface energy per unit area of the crystal. The value
of ¢ for sodium chloride that is given by the first of the equations (1)
is about 147 ergs em™?% which corresponds to a value of S of about
300 X 107 dynes em™t. The values ordinarily observed are about one
hundred times smaller than this. Zwicky? carried through a more
exact calculation of S on the basis of the ionic theory and found the value

S = 2,000 X 107 dyne-cm™!,

which is in even worse agreement with the measured values. Since
measurements of the surface tension of molten salts lead to values of ¢
thut are in comparative agreement with the theorvetical values, we may
not conclude that the computational methods for a perfect lattice are
badly in error.

At the present time, it is believed that these discrepancies between
vizserved and caleulated breaking strengths arise from lattice imperfec-
nons.  This type of explanation was first proposed by Griffith,® who
suggested that the weak spots are tiny surface cracks. A more complete
theory has been developed by Taylor.* He assumes that the weakening
centers, which he calls dislocations, are distributed throughout the
crvstal and play an important role not only in lowering the breaking
strength but also in determining the plastic properties of crystals. We
shall refer the reader to other sources® for a discussion of this work.

1 M. Poranyy, £ Physik, 7, 323 (1921).

2, Zwicky, Physik. 7., 24, 131 (1923).

s A. A. GrirrrrR, Phil. Trans. Roy. Sec., 221, 163 (1920).

" 44, I. TAYLOR, Trans. Faraday Soc., 24, 121 (1928); Proc. Roy. Soc., 145, 362,

83 (1034). + ’ .

5 3ee L. Scumro and W. Boas, Krisiallplastizitat (Julius Springer, Berlin, 1935);
. V. BramM, The Distortion of Metal Crystals (Oxford University Press, 1935); also the’
repart of the Bristol Conference on this topie, Proc. Phys. Soc., January, 1940.



CHAPTER II1
THE SPECIFIC HEATS OF SIMPLE SOLIDS

17. Introduction.—It was shown in Chap. I that the specific heats of
practically all simple solids approach zero monotonically as the tempera-
ture approaches absolute zero. Since this fact cannot be explained
satisfactorily on the basis of classical mechanics, Einstein’s qualitative -
interpretation! on the basis of quantum theory may be regarded as one
of the first triumphs of the theory. Einstein postulated, as had been
done previously, that a simple crystal could be regarded as an aggregate
of atomic oscillators, all of which vibrate with the same natural frequency.
In addition, he assumed that, the allowed energy states of these oscil-
lators are integer multiples of Av, where » is the frequency of oscillation
and h is Planck’s constant. In classical mechanics, it would have been
assumed that the allowed energy states are continuous; and this assump-
tion, according to classical statistical mechanics, would mean that Dulong
and Petit’s law should be valid at all temperatures. Einstein found
apon applying Boltzmann’s theorem to his postulated assemblage of
quantum oscillators that the observed decrease in specific heat could be
explained qualitatively.

A few years later, Debye? showed that most of the quantitative
discrepancy between Einstein’s rcsults and observations could be removed
by the introduction of a more accurate analysis of the modes of vibration
of a simple solid. In short, he improved upon Einstein’s assumption
that all atoms oscillate with the same frequency. One outstanding
result of Debye’s work is the prediction that the specific heat should
approach zero as T near the absolute zero of temperature. This law is
accurate for a large range of temperatire in many cases; in others, it is
not accurate.

Born and von Kérmén® developed a method for computing the modes
of vibration of a solid about the same time as did Debye. Although
their method actually is more accurate than Debye’s, since it is based
upon fairly rigorous principles of atomic dynamics, Debye’s results
agreed so well with available experimental material that his theory was
considered sufficiently accurate for practical purposes. In recent years,

' 1 A. EInsTRIN, Ann. Physik, 22, 180, 800 (1906); 34, 170 (1911).
* P. DeBYE, Ann. Physik, 89, 789 (1912).
* M. Born and Th. von KAamAN, Physik. Z., 18, 297 (1912); 14, 15 (1913):
99
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ﬁowever, a number of striking deviations from Debye’s theory have
been found in the low-temperature range where it might be expected to
Ber-most accurate. For this reason, Blackman! reopened the question
of detpmnmng the distribution of frequencies, and he found that Born
and von:Kdrmén’s method gives something more nearly like the observed
specific-heat curves. Blackman’s work is essentially qualitative, how-
ever, and it remains to be seen how well the low-temperature anomahes
actually can be explained. "

The three stages of development of the vibrational theory of specif.c
heats, namely, the theory of Einstein, of Debye, and of Born, von Kdrmdn,
and Blackman, may be included in an approximation in which it is
assumed that interatomic forces obey Hooke’s law. We shall treat
specific heats of solids by this method in the preaent chapter.

It is believed that the details of specific-heat curves that cannot be
explained by the Hooke’s law approximation have two origins, namely,
anharmonic interaction terms and thermal excitation of electrons.
These topics will be discussed in later chapters. Anharmonic inter-
action terms supposedly account for the following facta: (a) the anomalous
peaks in the specific-heat curves of molecular erystals, such as solid
methane, and of ionic crystals, such as ammonium ghloride; and (b)
a part of the high-temperature deviations from Dulong and Petit’s law.
Electronic interaetion is believed to account for: (a) the linear tempera-
ture dependence of the specific heats of some metals near absolute zero,
(b) the anomalous peaks in the specific heats of ferromagnetic metals and
paramagnetic salts, and (c) a part of the high-temperature deviation
from Dulong and Petit’s law—~particularly that of transition metals.

18. The Energy of an Assembly of Oscillators.—It will be shown in
Sec. 22 that a crystal which contains N atoms that interact according to
Hooke’s law is mechanically eqmga.lent to a set of 3N independent
oscillators. Thus, the mean total energy E of such a crystal is equal
to the sum of the mean energies of the individual oscillators. We shall
denve the expression for the mean energy of an oscillator by assuming
dncrdte energy levels in accordance with quantum theory.

The relative probability? of finding in its ¢th level a syatem that has
levels of energy ¢ and degeneracy g; is

L3

i = gie TET, (1)

1 M. Brackmaw, Z. Physik, 86, 421 (1933); Proc. Roy. Sec., 148, 381 (1935),
1B9, 416 (1937); Proc. Cambridge Phil. Soc., 33, 94 (1937).

2 For a discussion of Boltzmann’s theorem,; see various books on statistical
mechanics such as: E. H, Kennard, Kinetic Theory of Gases (MoGraw-Hill Book Comn-
pany, Inc.,, New York, 1038); L. Brillouin, Die Quammmmt (Jutius Springer,
Berlin, 1931)
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Usrng this, we find that the absolute probablhty Py is

k'i"‘
1
pi = ___E:__.___J
2(-'56 T
i

where j is summed over all levels. The mean energy &
obviously is

of the system

= Jpe =t ®

which is identical with the expres"-zion

@ = — T o8 (Eg‘e "‘)' @

We shall eall the sum

the partition function and shall designate it by f.
Let us evaluate Eq. (3) for a harmonic oscillator of which the energy
levels, in accordance with quantum theory, are given by
e = nhy (5)
where n takes all integer values and » is the natural frequency of the
oscillator. The levels are not degenerate in this case, whence g; is unity.
Thus, the partition function for the system is

nh»

23 * 2(3 kr)n

n=0 ne=0

- ®

According to Eq. (4), the mean energy is

he.
- d . e _ hwe FT
emmlog(l—e )—:—g
ﬁ-hv ’ ._ (?)

T — 1
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whﬁaﬂ the mean total energy of an assembly of 3N oscillators of differ-
ent frequencies v; (7 = 1,2, - - - ,3N) is

3N

BE="S 0 ®

hn
i=1 T — 1
This sum may be replaced by an integral if the distribution of frequencies
can be represented by an integrable function. In this ease, which oceurs
commonly, as will be seen later,

E= J' " )iy ©®
¢ e?r' -1

where g(»)dv is the number of oscillators in the frequency range from »

to v + dv, and v, is the maximum frequency of any oscillator. Obvi-

ously, we may expect g(v) to satisfy the equation

fatr)d» = 3N. (10)

The derivative of Eq. (8) or (9) with respect to T is the molar héat
Cy in the case in which N is the number of atoms in & mal of substance
N - We hava

3Nm
Ry .
or = (2 ) (12)
E ) B o
in the general case, and we have

Cy = f k¥l s ) ———q(#)d», (11a)
(e“' 1)? .
when Eq. (9) may be used. The summand in (11), namely,
h»
2
"(Eh" e , (12)
(T - 1)

increases monotonically with temperature, It is sero at absolute zero;
and as T' approaches infinity, it approaches the constant value k in the
menner indicated in Fig. 1. It should be clear that, with positive coeffi-
cients, any sum or integral of such a monotonically increasing function
also must increase monotonically, Therefore, we may conclude that
Cy is an increasing function of temperature regardless of the frequency
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distribution. This conclusion is valid only when the interatomic forces
obey Hooke'’s law and when electrons do not contribute to the specific
heat. Since (12) is equal to k¥ when kT is much greater than hv,,., the
sum (11) in this case reduces to

Cy = 3Nk = 3uR (13)

where R is the gas constant and n is the number of atoms per molecule
of the erystal. Thus, the law of Dulong and Petit is valid at high temper-
atures for an assembly of oscillators. This limiting case also corresponds
to the case in which quantum theory degenerates to classical theory,
that is, when h approaches zero.

It is not possible to draw further important conclusions from this
theory unless the form of the frequency distribution function ¢(») is

‘known. In the next section, we shall discuss several different assump-
tions that have been made about this function.

19, Einstein’s and Debye’s Frequency Distributions. a. Einstein’s
Distribution.—Einstein! postulated, for simplicity, that the atoms of a
solid oscillate independently and with the same frequency ». The
summand in Eq. (8) of Sec. 18 is constant under tkis assumption, whence,

E=3N s )
e_'f'--l
and
s T
Cv = 3nR ,:‘_?-';)-—A—”--*
(*T — 1)2
=3ang( ) @

fz will be called the Einstein specific-heat function (¢f. Fig. 1). The
parameter v in Eq. (2) is usually adjusted so as te obtain the best possible
fit of theoretical and observed specific-heat curves. Its magnitude
usually is of the order of an infrared frequency. Although the parts of
specific-heat -curves for which C, is greater than 3nR/2 usually can be
fitted closely with an Einstein specific-heat function, the low-temperature
portions usually cannot. It may be recalled from the discussion of
Chap. I that the observed specific heat usunlly drops to zero as T3,

whereas Eq. (2) varies as
walgr)

FiNsTEIN, op. cil.
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which approaches gero more rapidly. We shall discuss the comparison
of observed and theoretical values in more detail after presenting Debye’s
theory.

b. Debye’s Distribution.—Debye! pointed out that the posslble
oscillation frequencies of a solid body range from very low values, corre-
sponding to sound waves, to very high ones, corresponding to infrared
absorption peaks of solids. Since the contribution of a low-frequency
oscillator to the low-temperature specific heat is larger than that of a
high-frequency one, we might have anticipated that Einstein’s assump-
tion, which neglects the long waves, would not give a large enough specific
heat at very low temperatures.

|
1.0 ! I ‘Ifurcf'..oh—
‘ )2 tion
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ag 4%
. I;J Elrl
0.6 //
y
04
/
o [
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Fie. 1.—A comparison of the Einstein and Debye specific-heat curves. The frequency
associated with the Einstein curve is equal to the maximum Debye frequency.

Debye suggested that a more accurate distribution might be found
by treating the crystal as though it were a continuous elastic medium
which has elastic constants that are independent of frequency. It has
become conventional to follow Debye’s original simplified treatment
of the problem in which the medium is assumed to be isotropic. Instead,
one might use the actual elastic constants. The factor that makes the
more precise procedure difficult to apply is not so much the problem of
finding the normal modes of vibration as the problem of expressing the
frequency density in a-tractable analytical form. In the isotropie case
the frequency is independent of the direction of propagation, so that the
distribution function may be expressed simply. We shall proceed with
the simplified treatment and discuss the al’gemat;ve one later,

The following point should be kept in mind. The vibrational _fre-
quencies of a continuous medium range from zero to infinity, corrwpond-
ing to wave lengths that range from infinity to zero, whereas, in an actual
solid, wave lengths shorfer than interatomic distances are not independ-

! DeBYE, op. cit.
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ent of longer ones. This interdependence is shown for a simple example
in Fig. 2. The transverse displacements of the particles in this figure
may be described equally well by the function a or b, or by any one
of an infinite number of shorter waves that have the same amplitudes
as a or b at the atomic positions. '

The same conclusion may be drawn from the fact that a system which
contains N atoms has only 3N degrees of freedom, whereas a strictly
continuous medium has an infinite number of degrees of freedom. This
interdependence of different modes is not exhibited as long as¢he medium
is treated as though it were continuous. Hence, it is necessary to intro-
duce a condition that limits the number of modes used in determining
the specific heat. This may be done conveniently by neglecting all

Displacement —
o

F16. 2.—An example of the way in which a given periodic displacement of a lattice may
be described by different harmonie functions g and b. The wave numbers o, and o3 of the
two funotions bear the relation o3 = o4 + 1/I, where [ is the lattice distance.

modes having a frequency greater than the value v defined by the
equation

S 10ray = 3N, ®)

in which f(») is the distribution funection for a continuous medium. This,
however, is not a unique way of selecting the modes of vibration. We
could, for example, choose them by placing a regtriction upon the range
of wave lengths rather than upon the range of frequencies. The question
of choosing modes doee not arise when they are derived by a detailed
atomic treatment like that of Secs. 20, 21, and 22 for this method auto-
matically gives us a unique set of 3N modes

Let us consider a rectangular parallelepiped of an isotropic med.mm,
bounded by the six planes z = 0,z = L,,y = 0,y = L,, 2 = 0,2 = L,.
The equsations for the propagation of longitudinal and transverse vibra-
tions in this medium are

1 9%y,
A = 5 (4a)

ct o’
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respectively, where u; and u. are the_amplit.udes of the vibrations and
¢; and ¢ are their velocities. These velocities may be related to the two
elastic constants for isotropic media by means of the equations!"

cp = m: Oy = 2m
= }_.._ ” . I................_
c11 €11 + C12

in which m is the density.

The boundary conditions employed when one searches for the normal
modes of vibration depend upon the specific physical conditions under
which the body vibrates. Since the frequency distribution turns out
to be insensitive to the choice of boundary conditions, we shall assume
for simplicity that the surface planes are rigidly held. In this case, the
boundary condition is that u should be zero at these planes. With this
condition, the normal modes are -

NL

u.salsin'—}fan%uin T in 2r0, (5a)
muA.ain'z‘xuin%ﬁn%fsinzﬁx, (5b)

where the n; are arbitrary integers and the A; are constants. The fre-
quencies »; and » are related to the n; by means of the equations

135+ 53
-4+ 8+ 5)

There are three independent modes of vibration assoeisted with each
set of integers n,, n,, n,, namely, two transverse waves of frequency
and one longitudinal wave of frequency ».

The quantities
A 2L, Ay = g_._L‘ A, = _....ZL‘
™ T ﬂv ! = .3 (7)

1 In an isotropic medium, the clastic constanta c;; (¢f. footnote 1, p. 94) are
welsted by the equationa.

C11 ™= Cas ™ Cjy,

Ciz == Cg3 ™= Oy,

(e '*__g_:__s_;f
2

and all others are zero. Thus only two eonstants are independent. The equations
for propagation of a wave in an clastic medium degenerate to (4a) and (4b) in this
case. Bee, for example, W. Voigt, Lehrbuch der Kristallphysik, p. 587 (Teubner,
Leipaig, 1928); G. Joos, Theoretical Physics (G. E. Stechert & Company, New York,
1934).

Caa ™ Cip ™ Cop ™
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are the wave lengths of the modes (5a) and (5b) measured along the z,
y, and z axes, respectively. The reciprocals of these quantities give the
number of waves per unit length, or the wave-number componenis ¢., oy,
and o,:

=gly =gl e =gre ®)
In terms of these quantities, the frequencies (6e) and (6b) become
n = ¢,
v = &0, (60)
where :
o= Vol -+l + ol 9

The standing wave (5) may be viewed as the sum of a set of traveling
waves, for which the prototype function is the exponential function

Aegitrler—r) (19}

where A is a constant, ¢ is & constant vector having components o,, oy,
and o,, v is the frequency of the wave, and r is the position vector
whosc components are the Cartesian coordinates of space z, y, and z.
At a given time the phase of (10) is constant at all points that satisfy
the equation .

¢ - r = constant,

that is, on planes orthogonal to the direction ¢. Thus these planes are
the wave fronts, The normal distance between planes that differ in
phase by 2 clearly is 1//s|. Hence, [¢| is the reciprocal wave length
or the wave number, that is, the number of waves per unit distance
normal to the wave front. For this reason, ¢ is called the wave-number
vector. The phase of (10) is constant at points that satisfy the equation

é-1 — » = constant,

which describes the motion of the wave front planes in the direction.of ¢
with a velocity equal to »//é]. The standing wave (5) may be obtained
by adding together the sixteen functions that can be derived from (10)
by exchanging the signs of » and of the threé components of 4.

The number of modes of vibration having values of ¢ less than the
value ¢/ may be computed conveniently in the following way:

Let us represent the continuous variables o, oy, and o. in a three-
dimensional coordinate system. The points defined by Eqs. (8) are
then distributed throughout the positive octant of this reference system
and are arranged at the mesh points of a simple rectangular lattice.
The equation ¢ = ¢’ defines a sphere in the same reference system, and
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the volume of the part of this sphere lying in the positive octant is
#rc’®. The total number of points (8) that lie in this octant is

L.LyL.§wo"3, (11)
since the average volume occupied by any one point is 1/8L.L,L,. Equa-
tion (11) may be written as

Vine's (12)
where V is the volume of the crystal.

There are three modes of vibration associated with each point (8);
therefore, the total number of modes for which ¢ is less than ¢’ is

N(c") = Vdare's, (13)
The equation » = »* defines two spheres in @ space, one corresponding
to longitudinal modes of vibration, and the other to transverse modes.
The radii of these spheres are given by the equations
R :

o = c" oy ¢t (14)
respectively. Using Eq. (12), we find that the number of points in the
first sphere is $x0}3, and thé number in the second is 47¢{®. Hence, the
total number of modes having frequency less than » is

— vyl 2,
Ny = V(5 + 2, D)
since one longitudinal mode and two transverse modes correspond to

each value of . We may define s mean velocity ¢ by means of the
equation ¢

3 1, 2
and we may write Eq. (15) in the form’
NG = V%p". a7

The corresponding expression for the case of a unonisotropic medium
cannot be derived so simply, for the dependence of v on the variables
62, 6y, and g, usually will not be so simple as in (6a) and (6b).

Debye determined the highest allowed fr- juency »m, by setting (17)
equal to 3N where N is the number of atoms in the solid. In addition,
he assumed that the number of inodes of vibration iu the frequency range
from »' to ¥ 4 d is given by the differential of (17}, which is equivalent
to sseuming that the distribution [unction f(») in Eg. () of Sec. 18 is
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o 3?%;". - (18)
Under these conditions, Eq. (9) of Sec. 18 becomes
Ch o N a9
O T — 1

We may eliminate ¢ by means of Eq. (17), after setting N(#»') = 3N.
E then is

¥m 3dy
£ =kl (20)

Next, we may set z = hv/kT and write (20) in the form

kT T 2z
E = 9Nhv.{ ; ) o1 (2n
Thus, the molar hest is equal to
*
kY T e“z'dz @2)

Cv“gﬂﬂ ;-;: Jo '(—'—c‘__l),‘

Following Debye, e shall define a characteristic temperati:re O, by the
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Fiq. 3.—Comparison of the Debye specific-best curve and the observed specific heats ot a
number of simple substanees.

equation kOp = hvn and shall write (22) in the form

Cy = 3nm(°°\ 23)
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{l

#(7) - (E) | e

The funetion fp(z) is shown in Fig. 1, along with Einstein’s function. It

[Crar. T1I

(24)

Tasrd XXXIV.—~Tws Derin CuaracTerisTic TEMPERATURES OF SoLIDS

fubstance @n Bubstance ep
Moetals
Na 150 Al 300
E 100 Gsa 125
Cu 3186 In 100
Ag 215 Ti 100
Au 170 1a 150
Be 1,000 Ti 350
Mg 290 Zr 280
Ca 230 Hf 213
8r 170 Ge 290
Zn 250 Sn 260
Cd 172 Fb 88
Hg 86
8b 140
Bi 100
Cr 485 Ta 245
Mnu 350 W 310
Fe 420 Re 300 -
Co 385 Qs 250
Ni 375 ir 285
Mo 380 Pt 225
Ru 400
Rh 370
Pd 275
Ionic Crystals
KCl 227 CaFy 474
NaCl 281 Fef, 645
KBr 177
AgCl . 183
AgBr 144

should be noted that f» approaches zero as (7'/05)3.
Figure 3 shows the manner! in which the atomic-heat curves of a num-

ber of simple solids may be fitted with a Debye function.
1 See, for cxample, the compilation of data in Landolt-Bornstein.

It is obvious
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from Fig. 1 that the Einstein function would not apply nearly so well
at low temperatures. Table XXXIV contains values of 6 that were
determined from curves of this type.

The mean velocity ¢ and the characteristic temperature are related
by means of the equation

i
=i‘;"_’2 h (3N (25)

O = =¥\&v)"

Born and von Kdrmén,! employing room-temaperature values of the
elastic constants, found excellent agreement between the observed and
calculated temperatures of aluminum, copper, silver, lead, sodium
chloride, and potassium chloride for temperatures above 25°K. Similar
agreement. has been found by Hopf and Lechner? for caleium fluoride
and iron sulfide and by Schridinger® for iron and carbon. Eucken,*
however, showed that this close agreement usually disappears if the
elastic constants for absolute zero are used instead. For example,
Table XXXV contains & comparison of observed and calculated values

‘TasLn XXXV —CompParisON OF CHARACTERISTIC TEMPERATURES DETBRMINED
FroM THE T? Law witH Tuosg COMPUTED FROM THE LOW-TEMPERATURE
Erasric ConsTaNTs

Substance | 8p (T law) | Op (cale.)

Cu 329 353
Ag 212 241
Al 399 {502

of Op for copper, silver, and aluminum. It should be noted that the
Op calculated from absolute-zero data are larger than the observed
values. We may invariably expect this kind of discrepancy if the
observed 6, agrees with the value computed from room-temperature
data, since the elastic constants increase with decreasing temperature.

In addition to the disecrcpancy pointed out by Eueken, Griineisen
and Goens® have found that the @, for zinc and cadmium determined
from room-temperature data are larger than the experimental values.
"The disagreement would be emphasized even more in this case b using
elastic constants corrected to absolute zero.

1 Born and von KAruAN, op. cif.
} 21, Horr and G. Lecaner, Verh. deul. physik. Ges., 18, 643 (1914).
3 F. ScardpINGER, Handbuch der Physik, Vol. X.
4 A. EvckeN, Verh. deut. physik. Ges., 16, 571 (1913).
s E. Grtnesen and E. Gorns, Z. Physik, 26, 250 (1924).
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Thus, we may say that at least part of the excellent agreement
between the observed specific-heat curves and Debye’s curve is fortuitous.

c. Modtﬁcatwrzq of Debye’s Equation Based upon the Conlinuum
Hypotkems —Several modifications of Debye’s equation were suggested
in the period following his paper. We shall discuss briefly the work of
Born,! the theoretical basis of which is examined in Sec. 21.

In treating molecular solids, Born postulated that only those 3N
degrees of freedom that correspond to iniermolecular vibrations of a
system of N molecules should be treated by the _continuum method.
The specific heat associated with the remaining 3(n — 1) sets of N
frequencies that correspond to intramolecular vibrations of the n atoms

v
&
Ut
Y : :
T
v

ml

——

-

T ——

olI'!|
Fi6.4 —-Frequency versus wave-pumber relationship for an isotropic continuous medium.
The two lines represent curves for the two types of polarization. In the Debye scheme the
3N modes are selected by choosing all waves having frequency less than »,. Thus the
transverse modes wrmpondinu to the wave-number range a-b are excluded, whereas
the longitudinal modes in the same range are retained. In the Born method all modes
having wave numbers less than o,, are retained, all othera are discarded.y/ %,

in a molecule should be approximated by 3(n — 1) Einstein functions.
In addition, he suggested that the continuum frequencies that are used
should be selected by taking all modes of vibration associated with a
region of wave-number space instead of restricting the range by means of
Eq. (17). The difference between Born’s and Debye’s methods may be
understood by considering an isotropic medium. The two lines of
Fig. 4 represent the dependence of frequency on wave number for the
transverse and longitudinal waves. In Debye’s scheme, the modes are
selected by taking all frequencies less than vm. Thus, waves having
only one type of polarization are used-in the range of ¢ extending from
a to b. Born suggested that it would be preferable to use all waves for
which o is less than the value ¢, that is defined by the condition that
N(o’) in Eq. (13) be equal to 3N; that is, '

1 M. BogN, Dynamik der Kristaligitter (Teubner, Leipzig, 1915).
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o i
on =\ (26)

where no is the molecular density. The limiting frequencies of the
longitudinal and transverse waves then are
Vm,t = CiOm,
Vmit = CiOm, 7)
and the density of each type of vibration is

fily) = V4::= 0< V< ¥uy,
1

. 2 (28)
) =2V 0%y S
&

The contribution to the specific heat from these modes is

wl(7) + ()]

where ©; = hvni/k and ©; = hru/k. To this, Born would add 3(n — 1)
Einstein terms in order to include the intramolecular vibrations.

Born suggested that the same method of selecting freqnencies could
also be used in good approximation in anisotropic solids. . In this case,
the three waves of different polarization have different velocities for
each direction of propagation. Thus, the limiting frequencies »a,;,
#m.3, 80d 7, 3 are functions of the direction of propagation. If the direc-
tion variablee are taken to be the polar angles 8 and ¢, the specific heat
associated with the continuum modes of vibration noyr is

. - ﬁé [ (24 2)ea @)

2\
6;(0, ¢) = h’n.ii" ¢) = Mi(:! 1’)(3_4_}0) _ (30)

and dQ is the differential of solid angle. If we add to this the Einstein

term associated with intramolecular vibrations, we obtain

3(n—-1)
hy;
Cr=Co+ D R pr) @y
i=1 )

F&mterling" computed C; for the cubic salts sodium chloride, potas-
siym chloride, calcium fluoride, and iron sulfide, using the room-temper-

- 3K, Fomsrznuive, 2. Physik, 8, 9 (1920); Ann. Physik, 61, 549 (1920); Z. Phyeik,
8 251 (1922).

where
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- ature elastic constants. As we shall see in Sec. 23, it is doubtful whether
Born’s method of dividing the specific heat into Debye and Einstein
terms can be justified in the case of these ideal ionic crystals. Forsterling
employed an ingenious expansion method for evaluating the integrals in
Eq. (29) and found that the result could be approximated closely by
means of three Debye functions. The three Einstein frequencies were
taken to be the same in the diatomic case, whereas two sets of three
equal values were used in the triatomic cases. These frequencies were
chosen in order to give the best fit with the observed results. The three
computed characteristic temperatures and the assumed vibrational
frequencies are listed in Table XXXVI. Table XXXVII contaiiis a

Tapwe XXXVI1
Caleulated characteristic temperatures Assumed {requencies
Substance S
0, Oy [N hvi/k hve/k
NaCl 354 216 194 218
KCl 289 170 150 186
CaF; 558 348 274 306 502
FeS, 631 439 404 406 620

TasLe XXXVIL.—CoMPARISON OF OBSERVED AND CALCULATED Morar Hmar oF
Porassivm CHLORIDE
(In cal/mol)

T, °K Observed | Calculated

70 7.54 7.52
87 8.66 8.63
137 10.36 10.38
235 11.46 11.38

comparison of the observed and calculated values of Cy for potassium
chloride above 70°K. The accuracy is about the same in the other
cases. The contributions from the Einstein terms decrease very rapidly
at low temperatures and are negligible below 10°K. Hence, only the
C5 term need be considered in this range. This term, however, varies
as T®/0° where 1/8% is the mean of 1/63(6, ). Since Keesom and Clark
have found that potassium chloride does not satisfy the 7 faw below
10°K, it follows that Born’s modification of Debye’s theory is subjectto
some of the same objections as the original theory.

More recently, Lord, Ahlberg, and Andrews: have applied 2 modifiga-
tion of Born’s theory to crystailine benzene, which is an ideal molecalsr

1R. C.Lorp, J. E. ABIRERG, and D. H. Anprews, Jour. Cheii. Phys., B, 649 (1937
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substance. In addition to using the continuum theory for the 3N
intermolecular vibrations, they employed the theory for the 3N modes
of motion in which the molecules undergo coupled torsional oscillations.*
Einstein functions were employed for the remaining 27N intramolecular
modes of vibration, the observed vibrational frequencies of the free
benzene molecules being used in these terms. Since the intramolecular
frequencies are eomparatively high, the Einstein terms are negligible
at 60°K and only the 6N continuum modes need be considered below

T -
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F16. 5.—The observed and calculated molar heats of bensene. The lower curve repre-
sents the low-temperature heat, the upper curve corresponds tc the higher temperature
valuos. (After Lord, Ahlberg and Andrews.)

this temperature. These workers found that the molecular heat in
this region could be fitted closely by the single Debye term

()
in which 6p = 150°, The agreement is shown in the lower half of
Fig. 5. The observed and calculated molar heats for a wider range are
given in the upper half of the same figure. Unfortunately, a rather
questionable C» — Cy correction must be added above 150°K, so that the
agreement in the higher temperature range is not so significant as that
in the lower. It may be observed that the Einstein terms play an impor-
tant.role between 60° and 150°K.

The preceding method cannot be applied to & molecular crystal in a
temperature range in which torsional oscillation changes to free rotation.
We shall discuss the theory for this case in Chap. XIV.

* vIn a molecular crystal in which the inner molecular forces are much larger
trhm Xhe intermolecular forces, it may be expected that there are a set of 3N low-
frequency torsional modes of vibration as well as the 3N low—frequenc\« trans-
lstlolml ones.
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A striking example of a substance for which Born’s equation (29)
is more successful in predicting the specific heat than Debye’s is the
alkali metal lithium. The elastic constants of this substance have been
computed by Fuchs,! using a method that will be described in Chap. X.
The elastic constants of lithium have not been measured, but those of
sodium have been measured by Quimby and Siegel.? The agreement
between observed and calculated results in this case may be found in
Table LXII, Chap. X. It should be observed that the relation

2e44

€11 — Ci3

for isotropic media is far from being satisfied, showing that these crystals
are much less isotropic than the alkali halides. Fuchs used the elastic

I
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F1a. 6.—The observed and calculated Op(T) curves of lithium. The theoretical curve I
was caloulated by Fuchs using Born's modification of Debye’s theory and the theoretical

alutic constants of lithium. The experimental curve II was determined by Simon and
wain.

constants of lithium to compute the three characteristic temperatures for
each direction of propagation [¢f. Egs. (29) and (30)] and then computed
the specific heat from these. Figure 6 gives a comparison of the observed
and computed values of 8(7) obtained by equating the observed and
calculated specific-heat curves to a single Debye function. It is evident
from curve Il that Debye’s law is inaccurate over a range of temperature
comparable with the mean Debye temperature. The theoretical curve
duplicates the general trend of the experimental curve and, hence, is in
better agreement with it than the straight line corresponding to Debye’s
theory would be. However, the agreement is still far from exact. Itis
possible that Blackman’s methad of computing the specific-heat curve,
which is discussed in See. 28, would further improve the theoretical
values.?

' K. Fucns, Proc. Roy. Soc., 153, 622 (1936); 167, 444 (1986).

8. L. Quivpy and 8. Smory, Phys. Rev., 54, 293 (1938).

3 R. C. Lord has pointed out to the writer that the specific heat of lithiuma mazx be

fitted closely by a eombination of Einstein and Debye funetions, which suggests that
the lattice may be somewhat molecular. This suggestion awaits X-ray confirmation.
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30. Observed Deviations from Debye’s Law of Vibrational Specific
Heats.—The specifis heatsl:}ef}number of simple solids exhibit deviations
from Debye’s law that imply that Debye’s theory requires modification.
We shall exclude molecular crystals from consideration at the present
. time and shall diseuss only the cases that involve metals or simple ionic

erystals.  The divrepancies may be placed under three headings, as
falipma:

a. The Linear Term in Metals.—Figure 19, Chap. I, shows that
nickel has a linear specific-heat term in addition to the Debye term. A
number of other metals show a similar anomaly near absoluie zero
that is now ascribed to the specifie heat of their free electrons, We shall
discuse a simple theory of this term in the next chapter.

b. Low-temperaiure Anomalics of Monotonically Increasing Curves.—
Figure 88, Chap. I, shows the variation with temperature of the Debye
characteristic lemperature of potassinm chloride. This curve was
obtained by Keesom and Clark by equatling the observed molecular heat

to Debye’s expression
) J— T *
Cy = 464.5(-9—;)

and solving for ©p. It may be observed that, instead of being a constant,
this quantity shows a distinct peak about 4.3°K. As we mentioned in
the previous section, Born’s modification of Debye's theory cannot
explain this because the Einstein terms in Eq. (29) are negligible in this
temperature range. Deéviations of this type have been explained
qualitatively by Blackman. We shall discuss his work in Sec. 23.

¢. The Anomalous Peaks of Germanium and Heafnium.—These peaks,
which are shown in Fig. 16, Chap. I, cannot be explained by any theory
that assumes Hooke’s-law forces, for no superposition of Einstein functions
leads to a curve with a maximum. Although the peaks in these metals
are similar to the peaks occurring in molecular crystals, the explanation
in terms of molecular rotation evidently cannot be applied.

21. The Vibrational Modes of One-dimensional Systems. «a. Mona-
tomic Lattice.—Suppose that we have a one-dimensional lattice of atoms
extending along the x axis. We shall assume that the atoms are spaced
at distances a from one another and that they interact with Hooke’s-law
forces. Consider the longitudinal modes of vibration from the following
two standpoints: first, the Debye standpoint in which the modes are
determined by solving the equation

1) _ %) ®

G dr da?
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where ¢(%) is the longitudinal displacement and c; is the constant velocity
of propagation of very long waves; and, the atomie standpoint in which
the normal modes are determined by solving s:multanaously the equations
of motion for each atom.

The independent harmonic solutions of (1) for a string of length L
fixed at both ends are

¥(z) = A, sin ?'E“' sin 2wt ‘ 2
where % is an integer and the frequency » is related to it by the equation
oy = c'% = ¢w. 3)

It is obvious that n/2L is the wave number ¢ of the standing wave.
Since there are an infinite number of independent modes of vibration
for a continuous string, we must limit the frequencies if we want to take
account of the fact that there are a finite number of atoms iu the string.
This may be done by excludmg those modes for which n is greater than N,
the toial number of atoms, that is, by neglecting modes with wave
lengths less than 2a. o

Next, let us derive the equations of motion for the atoms of the
string. We shall number the atoms consecutively from 1 to N, starting
at the origin of coordinates, and we shall let z, be the variable that
measures the displacement of the nth atom from its equilibrium position.
In addition, we shall assume that each atom interacts only with its
immediate neighbors. Under thmloomhﬁon, the equation of motma
of the nth atom is

mEZe = —pl(Ea = Zess) = (s — 2] @

where 4 is Hooke’s constant for a pair of atoms and = is the mass of an
atom.

The equations x’or the two end atoms obviously are different from the.
equations for interior atoms, for the former lack neighbors on one side.
This fact could complicate the procedure of finding solutions of (4);
however, we shall avoid the difficulty by using a method that was
employed first by Born and von Kdrmén.! We shall assume that there
are additional atoms on both sides of the string, in order that the equa-
tions for the end atoms may be the same as those for interior atoms. This
. assumption cannot affect the nature of the frequency-distribution func-
tion in any important.way, as long as the number of atoms is sufficiently
large. In addition, we shall agsume that the phase of z: is the same as

”Bm}ln_ndvox KAruix, op. cil.
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AL A
the phase of the hyp%thetical N 4 1st atom. As an alte:ggi:e, we
might assume that the end atoms are fixed. The “periodic” boundary
conditien is more advantageous, however, since it allows us to find
elemental running-wave solutions without dealing with an infinite
string and, at the same time, takes proper account of the number of
degrees of.freedom. .
The funection

2, ) = 467G =), L ®

where A is a constant and ! is an integer, satisfies the periodic boundary
condition and reduces all of Eqs. (4) to the same form, namely,

—4r2my? = —p2(1 — cos g—;-«l) (6)

Henee, the real and imaginary parts of (5) are physically interesting
solutions of Eq. (4). Each of these parts defines a real traveling wave .
of wave length A = Na/l, or wave number ¢ = [/Na, for which the end
atoms move in phase. We may also construct real standing-wave
solutions of fixed frequency »' by properly combining the four functions
of type (5) for which I = +¥ and » = ++. The two independent
waves of this type are

2 = A sin %‘{,fn sin (V¢ + 8) (7a)

-

and

Z = A cos %f-n sin (vt + &) (7b)
where 8 and & are arbitrary phases.

The set of independent modes of different wave number are those
corresponding to values of [ for which the quantities (5) are different
functions of n. Thus, the modes belonging to Il =0 and [ =V + N
are not independent, since z.(l’, ») is equal to z.(!' + N, ») for all values
of n. It is clear that there are only N independent values of I and that
these may be chosen to be those lying in the range from zero to N — 1.
The sine and cosine functions of 2«l'n/N appearing in (7a) and (7b) are
different only for half this range of [, hecause of the relation

gin z = ~ sin (2r — z), (8a)
cos z = cos (2» — 2). - < (8b)

Thus, if we choose to represent the normal modes by means of the func-
tions (5), the independent range of I 8xtends from sexo to N — 1, whercas,
if we choose the two functions (7a) and (7b) instead, the range extends
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from zero to N/2. In either case, however, there are just N independent
modes, ¥n agreement with the fact that there are only N degrees of freedom
in the system.

The relationship between frequency and wave number, given by
Eq. (6), may be reduced to

1 . .
y = ;.J-—-:;- sin 5 & sin wa! (9)

This equation becomes identical with Eq. (3) for values of ¢ small enough
to allow us to replace the sine by its argument, for then

r=aJ-E¢r.
m

Fikure 7 illustrates the expression (9) for the independent range of the o.
This curve shows that it is not generally permissible to assume that the

wl

I - 0 %

O—
Fia. 7—~The »(o) curve for a monatomic linear lattice. The independent range of o is
t;r?;n to extend from —1/2a to 1/2a wrmpondms to values of I extending from —N/2 to

' velomty of propagation of elastic waves is independent of frequency,
one does in deamng Debye’s frequency distribution.

Griineisen”'and Goens! first suggested that one might explain the
discrepancy between the characteristic temperatures obtained from the
.T*law and those computed from elastic data on the basis of differences in
velocity between: long and short waves. The fact that short waves
travel more slowly in the linear lattice suggests that in computing ©5»
we should use elastic constants somewhat smaller than those obtained
from ordinary measurements. Blackman has investigated more fully.
the significance of this suggestion (¢f. Sec. 23).

We shall next find the frequency distribution oorreapondms to
Eq. (9). Equal ranges of ¢ contain equal numbers of modes, since o is
proportional to . Moreover,

1 GetiwxissN and Gouxs, op. oit.
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dl

@ = Na
Hence, the density dl/dv is :
a _ 1 _ Na _ N
dv  dv/dl  dv/de  +/u/m cos xea
Nv/m/u
T VI Gemle)

Thus, the density is constant for small values of », just as in the continu-
ous case, but it becomes infinite when ¢ = 1/2a.

b." Diatomic Lattices.—Let us extend the preceding problem by adding
particles of mass M at points midway between the particles of mass m
so that the distance between neighbors now is a/2. We shall label the
masses with integers extending from 1 to 2N in this case so that the odd
integers correspond to the masses m and the even ones to the masses M.
The equations of motion are then

dz;::“ = —u[(Zans1 — Tany = (T2nsz — Taara)}y
' (10)
Mddg:- = —p[(Zan — Zan—1) — (Tant1 — Z2w)l, II _

where u is the force constant between unlike neighbors.'
If the Born-von Kérmén boundary conditions are used again, a
normal coordinate substitution is

tau = 46 ),
_ Bgm(a%"? - u)

for integer . The wave number o is [/Na in this case. Aand B satisfy
the homogeneous linear equations

(11)

(4n2my? — 2u)A + 2u cos (2!'*-—).8 0, o
(12)

2u cos ( N)A + (4x2M»* — 24)B = 0

‘which have a solution only for those values of v that satisfy the compati-
bility equation

(4m2my? — 2u) 2u cos (2‘r-- -
=0, (18)
2u cos ( ) (4x:M? — 2;.&)
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the roots of which are

dorty? = fﬂ(u +mt \fm + m? +2Mm cos 2-%) (14)

It is easy to show that all independent modes occur in the range of 1
extending from zero to 2N and that there are two modes for each value

| = .
m4ﬁ2§‘ - o~
“ \\- /’/ \/ v(I')
|

VR

N\
\
AN
0 @ £ 0 e 3
v(o) . :”('?

\

/
N

Fi1g. 8.—»(¢) curves for a distomic linear lattice. In a the independent range extends
from 0 to 2/a and the function is single-valued. In b the independent range extends from
—1/a to 1/a so that the curve is symmetrical and single-valued. In ¢ and d the funciion is
douyble-valued, being unsymmetrical in the first cuse and symmetrical in the second. Case
d is the raduced-sone scheme which will be used frequently in subsequent work.
of I, corresponding to the two roots of (14). Only half of these 4N
modes are independent, however, since the factor cos 2x1/2N in Egs. (12)
repeats its values in the range o6f I extending from zero.to 2N,

We may obtain a one-to-one relationship between the modes of
‘vibration and the 2N values of ¢ by %r{mt.rarily restricting » to be a
single-valued function of ¢, in the manner illustrated in Fig. 8a. The
dotted curves show the discarded branches. It is sometimes convenient

to choose the domain of ¢ to extend from -2 to +1 instead of ffom
zero to 2/a. In this case, the single-valued »(¢) curve is symmetrieal, as
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in Fig. 8. On the other hand; we muy choose the range of o to extend
from zero to 1/a, and we may use both branches of the frequency curve
_in the manner shown in Fig. 8c. It is also possible to obtain a sym-
metrical v(¢) curve in thiz case by choosing ¢ so that it ranges from
—1/2a to +1/2a, as in Fig. 8d. We shall usually use this mode of
description, which is called the ‘‘ reduced-zone scheme.”
The relationship between A and B may be determined by substituting
»? from Eq. (14) in either of the equations (12). The ratio A/B is

A 2M cos 2x(l/2N) I

L= — . 15
B [M+m+ VM + m'+ 2Mm cos (2z1/N)] (1%)

It is interesting to note that thie two normal modes which correspond
to the points of discontinuity at ¢ = +1/2a are those in which one of the
two types of mass is stg&i‘omﬁmf[‘hﬁs fact may bLe shown by setting
1= N/2in Eq. (12). In addition, it should be noied that » approaches
zero linearly ncar the origin, just
as in the monatomic case, a fact
showing that , acoustical waves |
travel with coustant velocity.

- The number of mades of vibra-
tien per unit range of « is constant
for each branch of the »(¢) curve ”
and is.equal to Na. Hence, the !
distribution as a function of fre- !

T - — ——
geneyE O B /R A

j‘(y) = Nag%, - Fia. 9.—-Diagrsm1:;:;:)10t of the fre-

quency distribution of modes of vibration for
the diatomie linear Iattice. The density

which may be evaluated from Eq. approaches infinity at the three points indi-
(1 4)' This function, whiech is cated by vertical dashed lines.

shown in Fig. 9, has nonvanishing values’over two ranges of frequency
corresponding to the two branches of the v(s) curve.

It may be seen that we obtain a new equation of type (12) for each
particle added to the unit cell of the lattice and that a new root, is simul-
taneously added to the determinantal equation that determines the
frequency. Hence, if we want to retain » as a single-valued function
of o, we must extend the domain of ¢ by 1/a for each particle added.

Another interesting one-dimensional case is that in which the two
particles in the unit cell of a one-dimensional lattice have equal masses
but interact more strongly with one another than with their neighbors.
This ocase is analogous to that of a molecular crystal in which intra-
molecular forces are stronger than intermolecular ones. If « is the

fw)

R .S
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Hooke’s constant for interaction between the pairs in the unit cell, 8 the
constant for interaction of one of these atoms with the neighbor in a
different cell, and m the atomic mass, the equation analogous to (14) is

22 = 2a + 8) + V4(a + B)° — 16aB sin® (2xl/ 2N) In the reduced-
2m :
: N

zone scheme, I is an integer extending from _.%V to 3 and the wave

4=

number is ¢ = l/Na, as before. When o becomes very large in com-
parison with 8, the upper branch of this function reduces to the constant
value

|

V = —alag—?

x\ 2m

which is the natural frequency of ‘two atoms having mass m and force
constant 8. The lower curve reduces to

1 [E |
9-—; 2—'m lIlN

under the same conditions. This expression is almost the same as (9);
however, 2m appears instead of m. It is clear that the pair of atoms in
the unit cell move as one in the modes associated with the low-frequency
branch of the »(¢) curve and oscillate as though in free space in the
modes of the high-frequency braneh. This condition obtains, of course,
only when « is much larger than 8. If « and 8 are comparable, the pair
of atoms in the unit cell will behave less as an independent unit.

These simple one-dimensional examples illustrate most of the impor-
tant features of the general three-dimensional case, which we shall
discuss next. In particular, it is possible to see the origin of Born’s
postulates which were presented in part ¢ of Sec. 19.

In connection with Baorn’s first postulate, it should be pointed out
that only the modes associated with the lowest branch of the »(¢) curve
approach acoustical vibrations at long wave lengths. Hence, this i3
the only branch we may reasonably expect to approximate by means
of the v(¢) curve for a continuous medium. There are no other branches

for a monatomic lattice (case @), but there are others in polyatomic cases..

The number of degrees of freedom in the lowest branch or in any single
branch is equal to' the number of unit cells in the lattice in the linear
case and is equal to three times.this number in the three-dimensional
case. From this fact, Born concluded that it is not permissible to

obtain the distribution of more than 83N modes by treating the solid as

though it were continuous. He effectively assumed that the other
branches of the »(¢) eurve are constants when he assumed that their
contribution to the specific heat could be expressed in terms of Einstein
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functions. This assumption is reasonable for molecular crystals, in
which the intramolecular forces are much stronger than intermolecular
ones (¢f. the last one-dimensional example); but it cannot apply to
crystals such as potassium chloride, in which there is high coordination
between the atoms in the lattice.

Born’s second assumption follows from the fact that in three dimen-
sions each of the three branches of »(¢s), corresponding to the three
directions of polarization, extends over the same range of wave numbers,
just as the different branches do in the one-dimensional case.

22. General Three-dimensional Case.*—Let us now consider a
general three-dimensional lattice! of atoms that interact with Hooke’s-
law forces. We shall discuss a crystal having t{ranslational vectors
@, 73, and v; that are not necessarily orthogonal to each other. The
unit cell may be taken as a rhombohedral parallelepiped the edges of
which are determined by the translational vectors, The crystal specimen
may have an arbitrary shape; we shall conveniently assume, however,
that it is a rhombohedral parallelepiped of which the faces are parallel
to the faces of the unit cell and the edges L), Ls, and L; are large integer
multiples of the lengths of the edges of a unit cell; that is,

L, = N:]‘h', Ly = N:l":l' Ly = Nll“sl- (1)

The crystal obviously contains NiN:Njs unit cells. A given cell may
be specified relative to one corner of the crystal by the vector

T(p1,p2,P3) = Pre1 + Pars + Patsy )

which extends from the corner of the crystal to the corner of the cell in
question. We shall call the cell that is specified by the integers p{, p3, vs
the p’th cell in the lattice. In addition, we shall assume that there are
n atoms in the unit cell and that the positions of these relative to the
corner nearest the origin of coardinates are specified by the n position
vectors ga(a =1, 2, - - -, n). The position vector £.(p1,ps,Ps), of the
ath atom in the pth unit cell relative to the origin is then given by the
sum

tc(px,P:,Pc) = T('px,p:,?s) + Qa-

* This section may be omitted in a first reading. It is demonstrated that the
general conclusions that were drawn from the one-dimensional case concerning the
- »(e) curves also apply to thesthree-dimensional one with the difference that the wave
number i8 now a three-dimensional vector whose independent values range
throughout a polyhedron. . '

. " For additional details concerning the problem of determining the vibrational
modes of lattices, see R. B. Barnes, R. R. Brattain, and F. Beits, Phys. Rev.,
48, 582 (1935); R. R. Lyddane and K. F. Herzfeld, Phys. Res., 54, 848 (1988).
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We shall designate the coordinates ef the ath atom in the pth unit cell
" relative to its equilibrivin position by z.*(p1,pe,ps} where ¢ takes values 1,
. 2, and 3 corresponding to each of three orthogonal Cartesian coordinates.
The equations of motion for this atom have the form

A%2,5(p1, s,

A ) - ©)

where m;, is the mass of the ath atom and f.'(p) is & homogeneous linear

function of the relative displacements of the a-pth atom and all other
atuins: '

Jui = Eu«s"’(ﬁ?'){xa"(?’) — zd(p)]. 4)
i
We shsli consider the interaction with all neighbors rather than, as in
ihe one-dimeusional case, merely the intceraction with nesrest neighbors.
The coefficients u.s%(p,p’), which obviously are the interatomic Hooke
constants, depend only on the relative values of ¢’ and p for given «, B,
1, j, that is, only on the relative equilibrium positions of two atoms. Thus,
the equations of motion for the atomas in the pth cell differ from those for
equivalent atoms in the gth cell only by the translation T(pi,ps,ps) —
T(¢1,92,9s). We shall make no assumptions about the number of
physically important terms that appear in the right-hand side of (4),
although we may expect that nearest neighbors will have the largest
coefficients.
Since we shall genierelly be interested in forces that -may be expressed
as the gradient of 2 potential, we may require that
i(p) = —. 275 .
f(p) 57.00) (%)
The necessary and sufficient conditions for these equations to be satisfied
are

ofi(p) _ ofs' ("),
dzg(p')  9z.'(p)

or, as one may readily see,

p,,".i(p,p') = “ﬂﬁﬁ(p”p)r (6a)
Irasi@2)) = 3 par(@,0"). (6b)
-5 Tl"”

In order to introduce the Born-von Kérm4n boundary conditions, ne
shall assume that surface atoms of the crystal have the same equations
of motion #s the interior atoms. We are then abile to show that the
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3nN N:N3 equations (3) may be reduced to 3n independent equations.
The appropriate substitution that Sﬂilﬁﬁeb the Born-von Kérmdn
boundary conditions is, in fact,

2 (P1,P2,08) = %%e%««-ratp..m,m—u) : 7

a

where the £, are constants and ¢ is a vector that satisfies the conditions

6+ T(N,0,0) = Nig+x1 = I, - :
L, (8)
1y,

G- T(O,Nz,O) = de * Ty
6+ T(0,0,N3) = Nyd+ =

where Iy, I, and 15 are integers. 'The solution of Egs. (8), which obviously

express the Born-von Kérmén boundary conditions, is

o

I #a X ng ly wg X m ls =1 X =2 (8¢)

AT R AT R AT

where the cross designates the conventional vector product and |eywaws, is
the determinant

tu ta i
tiz iz fse).
bis laz sl

‘Equation (8a), like Eq. (2), defines the mesh points of a lattice haviny
primitive translation vectors s;, 83, and 83, where

T2 X"S 8y = 13)( . 83 ‘1)(‘5 (9)
=N Nijeieoe i *T N Iﬂ’!ru] Neleresrs] )

‘This lattice has been called the reciprocal lattice by Gibbs, who first
used it.

Let us consider for o r_oment the -imp!c ' -ttice eonsisting of one type
of atom, say the ath ia the unit coll. When the &f (1 = 1, 2, 3) are
fixed, expression (6) describes a running wave for which the wave-number
vector is . There are N;N:N; ways of choosing the I; in (8) to give
independent waves, and these may be selected to lie in the range

N _N_‘ N. N, Ns

_N; .
=L =< 5 251; g 2513 b

This doinain obviously correspor s to value- of the wz . >-number vector ¢
that lic within the rhombohedral parallelepiped having corners at the
eight points

< == .L% + H'?‘Bz T N"Eﬁa (™
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The waves (7) are independent for a larger domain of ¢ if we consider
all atoms at once; in fact, it is easy to see that the domain may be chosen
to be n times larger. However, the difference between modes for which
¢ lies inside (10) and those for which it does not is simply & matter of the
relative phases of the motions of different atoms in the unit cell. Hence,
we may condense the larger domain of ¢ to the domain determined by (10)
by absorbing these phases in the £ and introducing n sets of § instead
of one. This procedure is analogous to the one used in passing from
the description of Fig. 8 to the reduced-zone scheme of Fig. 84 in the
one-dimensional case.

We shall frequently use the relation

za-f(-—-'n-r,(p) = NiN:Nsb,» (11)
P

where the summation extends over all N,N:N; values of p, and ..,
the Kronecker delta function, is sero when ¢ ¢ ¢’ and is equal to 1
when ¢.= ¢'. _
Substituting (7) in Eq. (3) and multiplying the result by e— 2= ra(s) — =],
we obtain the following 3n equations for the &° after summing over p’:

'_kvgfui = Fa‘(g! ﬁ: Tty E:r d)' (12)

g.* clearly is a homogeneous linear function of the % and of the differ-
ences r.(p) — £a(g). We have, in fact,

R W Prin frg(p) —ra(p)] — _5¢ _
g 2 (et - (3)
- Ez..,ff:ca)sa
iB
where
Napi(8) = E_(?’P kaa-r:,w;—uml (14a)
for o =5 8 and p = p', and
W) = =2 D (2. - (14v)
“#‘lrwp

The Aas are real only in the special case in which each atom is a center
of symmetry, that is, in the case in which there is an atom of type g
at the position —[rs(p’) — ra(p)], relative to atom « in the p’th cell,
for each atom at the position +[rs(p’) — r.(p)]. This condition is
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satisfied in some of the simplest lattices, but the A.s are usually complex.
We see, however, that

Aas(8) = Nga'**(3), (15)

because of Eqs. (6a) and (6b). Hence, the matrix of the A,z is Hermitian.
The homogeneous linear equations (12), namely,

— 4t (3) = El...s“(d) £/(9), ' (18)
78

will have solutions only for those values of » which satisfy the usual
determinantal condition. This secular equation has 3n real roots
vi@t=1,---,3n), since Au is Hermitian. The 3n independent sets
of &, which we may distinguish by a superscript ¢, satisfy the orthogonal-
ity relation

25,,,*@)5.,‘#*@) =0 17)

when ¢ ¢ t'. These coefficients may be normalized in such a way that
this sum is unity when ¢ = ¢’; that is,

() () = . (17a)

Thus, we see that in all there are 3nN,N.N; independent funetions of
type (7) when we include the NyN,N; indecpendent values of g.

The &,° are usually complex when the A.s are complex. We may
obtain physically interesting real functions, however, by taking the real
and imaginary parts of the quantities {..(d)e? 1" %a(P)~>Ml  This pro-
cedure does not double the modes of vibration, since spatial parts of the
3n complex functions associated with —d are the complex conjugates of
those associated with -¢, as may be seen by taking the complex conju-
gate of Eq. (16). The real functions have the form

Z(P) = @' sin 2x[6 - ro(p) -~ #] + ba’ cos 2x([6 - ra(p) — »i]

where a.’ and b.f are now real. Thus the motion of the oth atom is
described by the vector

A, sin Zxlé « Ta(p) — ] + Ba c08 2x{d - 1a(p) — ), (18)

where A, and B, are the vectors

G -G
A.={a.2) Ba=|bt} (19)
o? ba?
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1f A and B are not equal and if neither i8 zero, the quantity (18) describes
harmonic motion in an elliptical path, the plane of the ellipse being the
plaie containing the two vectors A and B. The direction of the major
and minor axes may be found in the following way: Let us choose Car-
tesian coordinates z and y in the plane determined by A and B. Then,
the motion of the pearticle is given by

z=A.sin a 4+ B, cos a = /A2 + Blsin (a + tan—! %),
x

]

y = A, sin a 4 By cos a -\./an—f- B; cos (a — tan—! ‘%!),
¥

where a = 2x[é - r.(p) — ] and A., A, and B,, B, are the components
of A and B. The condition that the ellipse should be in normal form is
that .

If 0 is the angle between B and A and if ¢ is the angle that A makes with
the z axis, we _have

vio)

A, = |A] cos &,
A, = |A| sin ¢,
B, = |B| cos (8 + ¢),
B, = |B| sin (8 + ¢),

' and (20) becomes
¥ IBI? sin 2(6 + ¢) = —|AJ? sin 24,

g — :

Fia. 10.—S8chematic diagram of th : .
»(o) curves of a monatomie three-dimen- which determines ¢.
sional lattice. Actually the val:tlee ofa Thus, we see that the real normnal
range over a three-dimensional sone . . . e
rather than a one-dimensional one so mOd% usua'ny _de&cr‘be enlptmau}’
that this corresponds to the »(¢) rela- polarized elastic waves. They are

tion for a line in « space that passes . . . . .
through the origin. It should be noted plane-polarized in the special case in

that the »(c) relation is linear near the Which A or B is zero, that is, when &,
origin. . is real.

The \.s that appear in (16) are continuous functions of é. Hence, it
may be expected that the frequencies »(8) are continuous functions of ¢
in the domain (10). In general, there are 3n continuous branches of the
frequency curve. These branches may coincide for certain values of 9,
particularly if the lattice has a high degree of symmetry. In analogy
with the one-dimensional case, there are three branches of the »(8) curve
that approach zero linearly as é approaches zero. The long wave-
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length modes of this type correspond to ordinary acoustical waves which
travel with constant velosity. Thus, we may expect that the three
branches of »(d) will behave schematically, as illustrated in Fig. 10, if
there is one atom per unit cell. Similarly, the six branches will behave
as illustrated in Fig. 11, if there are two atoms in the unit cell, ete.

- Before leaving this treatment of .the three-dimensional problem, we
shall derive expressions for the total

energy and for the Lagrangian and v (o)
Hamiltonian functions. In terms of
the £./(p), the kinetic energy is

T = SHEr. @) %%
“wa, p .

The potential energy, which is defined

by Egs. (5), is given by the expressgion

-V =% 2 2 bat®(p,0")2d (p) —

p §.68.9
za'(p)1za*(p)
=13 fi=i). (22)
fap : :
Let us now express z.'(p) as a series
of the form

' 'c’-..c‘(d) o - -0
o = 0) 2222 L glrie,(n) 23) —_—
3 @) ;&( ) V m.N ( Fia. ll.-—schomﬁ: diagram, snalogous

: to Fig. 10 for the diatomic oase.
-where N is the total number. of unit

cells and a(g) is the time-dependent amplitude of the {th mode having
wave number 6. We shall assume that the ¢ are normalized in the sense
of Eq. (17a). The amplitude a;(d) may then be expressed in terms of the
z4(p) in the following way. If Eq. (23) is multiplied by

J%& .,m(‘!)e —=2xio" T, (p) (24)

and the result is summed over ¢, a, and p, the right-hand side reduces to
- 3nay(d¢’) because of the orthogonality relations. Hence,

ar(@) = 33,;“2\[%@@) bes (@Yot (25)
P

Since the secular equations for ¢ and —d are identical, we may choose
the index ¢ in such & way that

Lud(—0) = Ead®0) (26)
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and write Eq. (23) in the form
" : I .
24 (p) = 1 E [a(8) {,‘g‘(d)ez"’"w(’) + a.(—é) Lo, ¥(8)e— 28 54(P)]
il :

Vm.N
27

where =’ implies that the summation of é is carried out in such a way
that only one of the two points +dis counted. We may now specify that

a*(8) = ai(—3) (28)
in order that (27) may be real. If (27) is substituted into Eqs. (21) and
{22), it is found that these equations reduce to

T =3 6(0)*(@),
ot " (29)
V =3 ahi@a®ate),
it

‘because of the orthogonality conditions. Now it is convenient to replace
the complex variable a;(é¢) by the two real variables

[04®) + a* (@72, (30a)
{04{a) — at*(d)]'—f‘g' (80b)

Vo shall do this in such & way that the 3n variables (39¢) are sssocintad
with the point & and the 3n variables (30b) ere sssociated witl. the peint
--83 that is, we shall introduce real varisbles a,{8) defined by the relations
(8 *(3)
a(9) = 2O+ )j@“‘m‘ 1,

{:(8) )i B
17 .22 B 23

3 (31)
Since the inverses of the enunti~ns are
0-':(_0) -+ ‘.‘:dc( _d),

a;(—d} =

a8) = ‘\/§
» — t.ug(:i') -— ‘itx:(—'d)
a*(d) 75 ) (32)
Eqgs. (29) may be iransformed to
EEEPION
ol (33)

1 ay
Vo= 5 Ddni(ejel(),
CT2e
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where ¢ is now summed over the entire zone of wave numbers. Thus,
the Lagrangian function of the system is

L=T-V =3 Dae) — 43 @)d(@)] (34)
i
whereas the Lagrangian equations are
Cau(6) = —dx*si(d)a(d), (36)
which are-the same as those for a linear harmonic oscillator, as we should

expect.
The momentum variables p,(é) are defined in terms of the Lagrangian

function by the equations

() = &% = a(d). (36)

Thus, the Hamiltonian function is

H = Epg(d)du(d) ~L
1“' 37)
= 5.2y Pi(®) + 4x?vi(d)ai(9)].

to

23. Blackman’s Computations.—Blackman! has determined by
direct computation the frequency-distribution function of the normal
modes of several simple lattices and has used the results to determine
specific heats. The lattices he treated do not correspond to actual
cases; however, the consequences of these computations make it seem
reasonable that the discrepancies between experiment and the Debye
theory which we listed under b in Sec. 20 may be explained, at least in
part, by an extension of his work.

We shall discuss the results of two of Blackman’s computations,
namely, those for the linear lattice with two different atoms and those
for a three-dimensional simple cubic lattice.

a. The Linear Lattice.—In Sec. 21, we derived the expression for the
energy of the vibrational modes of a one-dimensional lattice containing
two atoms. The result is

4x%3(3) = ﬁ(m + m + V/M* ¥ m® F 2mM cos 2xda) (1)

where d is the wave number, which may be taken to extend from —1/2a to
1/2a. The distribution of modes as a function of frequency is shown in

" 1 BLACKMAN, op. cil.
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Fig. 9. We may compare the specific heat derived by the use of this
distribution function f(») with that derived by the use of the distribution
for a continuous string. It is easy to show from the results of the first
part of a in Sec. 21 that the distribution function in the second case is

fe(i’) = gl.v.g.

If we restrict the domain of » so that the number of modes is 2N, then
=22 o<y @

from which we obtain a one-dimensional Debye specific heat

o)) e @

where © = hva/k.
Blackman evaluated the specific heat, using the actual distribution
functicn for the one-dimensional
lattice, and then equated this to (3) -
300 at each temperature and obtained a
1) value of ©. The maximum fre-
) quency of the lattice was chosen in
! 250 , each case so that hw./k = 200°.
The dependence of © on tempera-

e (3)/ka) ture for several values of the ratio
200 -(5) m/M isghownin Fig. 12. Itmaybe
7 observed that the curves approach &

¥

nearly constant value at high tem-
. peratures but deviate considerably
0 20 40 60 80 100 120 wo  in the range below 40°K. The
TOK —> deteils near T = 0 are not given

. Fie. 12.—~6(T) curves for a one-dimen- exactly in this figure; more precise -
Sonl Iattice. /M = L @m/M =3 computations show that the (T)

tinuum. (After Blackman.) curve for m/M = 8 has a minimum

near 10°K.

These curves leave little room for doubt that the deviations from
Debye’s distribution function can be important,

b. Simple Cubic Lattice.—Blackman carried through a similar. compu-
tation for & monatomic simple cubic lattice (c¢f. Fig. 13). He assumed
that each atom interacts only with its six nearest neighbors and twelve
next nearest neighbors. For simplicity, he fixed the ratio y/a of the
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force constants ‘at 0.05, where « is the Hooke’s constant for nearest
neighbors and « is that for next nearest neighbors.

There is one particle per unit cell in this case; hence, the secular
equation is of third degree, the three roots corresponding to the three
directions of polarization of vibrational ,
waves. It turns out that the three
branches of the »(8) curve meetaté = 0 :
and at the eight corners of the cube E i

_defined by 8 LY
o = il/m,ﬂ'y = :tl/m,fs = ;!:1/2:;, 5’ ¢

where a is the distance between nearest
neighbors. For this reason, the range
of frequency happens to be the same for -

each branch of »(d). e Iatti
Figure 14 shows the relative num- m“.fﬁ&-.mmﬁ: ?o‘:cnenui

ber of modes as a function of  for each jeighborsis . That for next noarest
of the branches of »(d). The unit of ’

frequency has been chosen arbitrarily to make », = 1.55. The fourth
continuous curve is the relative distribution of all modes. Actuslly,

18000
16000
14000

RRERE

o
: 8§
=1

o ©
L I |

0 bt et
0O 02 04 06 08 10 12 14 16
P g

Fia. 14~—Relative scale plot of the frequency distribution of modes of vibration for the
simple cubie lattice. Curves b, ¢, and d correspond 'to separate directions of polarisation;
ourve a is the sum. (After Blackman.)
these curves were determined by approximate means; the stepwise curve
illystrates the total distribution function as Blackman computed it.

One striking difference between the three-dimensional and one-
dimensional cases is that the peak in f(») does not ocour at ». in the
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former. Although the gradient of »(8) does vanish at the corners of the
cube in ¢ space within which all independent modes lie, this fact does not
lead to & peak in f(v), for the volume of ¢ space in which the gradient of
»(é) vanishes is an infinitesimal of higher crder. Blackman believes
that the three-dimensional and one-dimensional cases usually differ in
this respect.

Figure 15 is a plot of the © versus T' curve that Blackman obtained
by comparing the specific heat of the simple cubic lattice with that for
the Debye continuum. The absolute units of v, were fixed arbitrarily
in order that the high temperature © should be 144°. It may be seen
that © varies considerably in the range below 40° and that it does not
approach the high-temperature value at 0°K. Thus, if this were an
actual crystal, Debye’s law would appear to be valid experimentally
above 40°K, but the value of 6, that would be obtained would differ

150

T 140 et

o(M ww\
120 \)/

0!02030405060708090!00

—-—.'
Fm 15.—The O(T) curve for the smnple cubic lattice. (After Blackman.)

1o

from the value obtained from observations ncar absolute zero. In
addition, the 7% law would not be valid below 10°K, as one might expect
from Debye’s theory.

The substances that conform most closely to Blackman’s model are
the alkali halides, such as potassium chloride, in which the masses of
positive and negative ions are nearly caual. The low-temperature
behavior of 6 for KCl has heen measured by Keesom and Clark and is
described in part b, Sec. 20. Blackman’s results do not agree with their
experimental results very closely, since 6 passes through a minimum at
low temperatures in his model, whereas a maximum actually is observed.
It is possible that more extensive assumptions about the interaction
forces between neighboring atoms wouid give better agreement with
experiment.

24. The Cr — Cy Correction.—The molar heat ordinarily measured
is C», the heat at constant pressure. However, the theories we have
been discussing in this chapter are based on the assumption that the
interatomis distance is kept constant as the temperature changes; hence,
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they refer to Cv, the molar heat at constant volume. Cp and Cy are
connected by the thermodynamieal equations!

— 0y - 13V
where V is the molsr volume and P is the pressure. If we set -
_1feV
w=33), =W ) )

where ay is the coefficient of volume expansion and 8 is the compressibil-
ity, Eq. (1) becomes

Cr—Cy = TV%" (3)

The coefficient of volume expansion is practically equal to three times
the coefficient of linear expansion; hence, :

Cr — Cy = TV @)

Although o; is comparatively easy to measure at any temperature, g is
usually measured only in the viecinity of room temperature. For this
reason, it is necessary to obtain values of 3 at other temperatures by
an extrapolation method of some kind.

14 — .—1==c,
12 ge—

10 iCy
98
Se
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Fig. 16.-~The Cp and Cy ourves for sodium chioride. The ordinate is in cal/mol-deg.

Figures 16 and 17 show C» and Cv for sodium chloride and for lead as
determined by Eucken and Dannéhl.? They used their own values of
o; and values of 8 that were extrapolated linearly from room-temperature
values of Slater and Bridgman. One of the most interesting features of
these results is the fact that Cy seems to drop below the Dulong and:

18ee, for example, G. BierwisTLE, The Principles of Thermodynamics, pp. 71 f.

(Cambridge University Press, 1925).
* A. Evcken and W. DANNGHL, Z. Elckirochem., 40, 814 (1934).
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Petit value at high temperatures in the case of sodium chloride. The

same workers have found a similar drop in silver. Since the rise at high
temperatures in the case of lead may be explained in terms of an electronie
specific heat (¢f. Chap. IV), they conclude that the drop observed in
the other cases is & common property of the contrihution to Cy from
lattice vibrations.

Unfortunately, this conclusion rests upon the assumption that the

linearly extrapolated values of 8 are correct. Eucken and Dannohl

C
~P
l‘"f : ]

g p—
— ~{Cv

4

Cal/Deg.
Q—Nblaimﬂ\\l

~250-200-160-100-50_Q +50 100 150 200 250 300 '

Fra. 17.~The Cp and Cy ocurves for lead. The ordinate is in oal/mol-deg.
believe that this assumption is justified by the fact that the quantity v
defined by the equation -

| v =T (®)
mwhxch(l'ristharvdueofthespemﬁchutntmshnhvoh:me is
practically independent of temperature, the reason for this being that
Griineisen,! in developing an equation of state for metals on the assump-~
tion of central-force interaction of atoms, found that ¥ should be temper-
ature-independent. It does not seem entirely safe to accept this result of
Griineisen’s theory, howewver, since the interatomic forces are far from
central. If Grilneisen’s relation were correct, the determination of Cy
would be greatly simplified, for then 8 oould be replaced by vy and we
should have ,

& =1+ ®al. - ®

Thus, v could be determined from room-temperature measurements, and
values of o; alone would need to be measured at other temperatures.

It should be added that the deviations from Dulong and Petit's law
implied by Fig. 17 are not unreasonable, for Born-and Brody? have shown
that potential interaction terms that are oubic i atomic displacements
have an effect of thie kind at high temperatures.

1 E. GrONRIERN (sec Handbuch der Physik, 'Vol.X,forammyo!thmrk)
s M. Boax and & Bropy, Z. Physik, 6, 132 (1921).



CHAPTER IV

THE FREE-ELECTRON THEORY OF METALS AND
SEMI-CONDUCTORS

26. Introduction.—Drude! first suggested that the electrical and
thermal properties of metals might be correlated by assuming that metals
contain frec electrons in thermal equilibrium with the atoms of the solid.
This hypothesis has passed through several stages of development and
remains the cornerstone of the theory of metals. Drude employed the
hypothesis to derive approximate expressions for electrical and thermal
conductivity. In this work, he introduced the concept of a mean free
path for collision of the free electrons, which has also been retained in a
modified form in subsequent developments.

Lorentz* carried Drude’s postulates to their logical conclusion in a
more accurate and extensive treatment of the problem. He assumed
that the electron velocities in & metal that is in field free space at constant
temperature obey the Maxwell-Boltzmann distribution laws, and he
determined by an ingenious method the appropriate modification of this
distribution when electric fields and temperature gradients are present.
Using .these results, he was able to make more precise computations
of the conductivities than Drude had made. In addition, he was able
to treat various thermoelectric effects. As sometimes happens in such
cases, Drude’s results were in somewhat better agreement with experi-
ment than Lorentz’s results. These differences are of minor importance,
however, when compared with two major objections to the theory,
namely: (1) The manner in which Maxwell-Boltzmann statistics were
employed implies that the electrons contribute a larger share of the
specific heat of metals than is possible if the Einstein-Debye theory is
applicable to atomic vibratians in metals, (2) It was necessary to
assume that the electronic mean free path becomes infinite ai the absolute
zero of temperature in order to explain the vanishing of resistance at
absolute zero. The theory presented no plausible reason for this fact.

The theory remained in this unsatisfactory state until after the dis-
covery of the Pauli principle and the development of Fermi-Dirac

1 P: Droog, Ann. Physik, 1, 566 (1900). See H. A. LoreNnTz, The Theory of Elec-
trons (Teubner, Leipzig, 1909 and G. P. Stechert & Co., New York, 1923) for a dis-
cussion of this early work.

! H. A. Lorentz, Amsterdam Proc., 1904-1905; see 2lso Lorentz, op. cit.

139 '
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statistics. Then Sommerfeld! modified Lorentz’s treatment by employ-
ing quantum statistics instead of classical statistics. This procedure, as
we shall see, removed practically all the difficulties except those relating
to the behavior of the mean free path at low temperatures. Houston?
and Bloch,* however, were able to justify the ocourrence of large mean
free paths on the basis of a quantum mechanical investigation of the
interaction between electrons and lattice ions.

On the whole, then, Drude’s original idea has withstood the test of
time. The free-cleetron theory merits a thorough diseussion, partly for
this reason and partly because it furnishes us with% clear semiquantita~
tive picture of some of the most useful properties of metals. We may
point out, however, that the free-electron pieture, as we shall present it in

-this chapter, does not include an interpretation of the cohesive properties
of metals and does not explain why some substances are metals and
others are not. These topics can be understood clearly only when solids
are treated on the basis of quantum mechanics.

A. METALS |

26. Distribution of Electron Velocities.—Follewing Drude, we shall
employ the following simple model of a metal. We shall assume that

Energy ——

x_'-

Fia. 1—Behematic diagram of the potential of a metal. The value of the potential
inside is —W,, that outside is sero. The mangr part of the variation between — W, and
zero takes place near the surface. :

the electronie potential energy is constant in the interior of the metal
and is equal to — W, relative to an arbitrary sero of potential at infinite
distance. The precise way in which the potential energy varies in the
vicinity of the surface need not concern us at present; a schematic dia-
gram of the variation is shown in Fig. 1. The total energy of a moving

' A. Sguumer¥rLp, Z. Physik, 47, 1 (1928). See also the review articles: A.
Sommerfeld and H. Bethe, Handbuch der Physik, Vol. XXIV /2 (1934). A. Sommer-
feld and N. H. Frank, Rev. Modern Phys., 3, 1 (1981).

3 W, V. Housro, Z. Physik, 48, 449 (1928).

P, Brocs, Z. Physik, 58, 555 (1928).
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electron in the interior of the metal then is

= o — W W
where p is the momentum vector. If the electronic potential actually
were constant, m* would be the electronic mass. It happens, however,
that it often is possible to approximate the electronic energy by an
equation of type (1), even for fairly complex internal potential fields, by
allowing m* to take values different from the electronic mass. The
reason for this fact will be made clear in later sections of the book that
deal with methods of computing the energies of electrons in solids.

We shall now develop the expressions for the velocity distribution of
electrons in-a metal in those cases in which classical and Fermi-Dirac
statistics! are valid. Actually, it is permissible to use only the second
type of statistics, but it is interesting to compare the differences between
the two forms.

Before proceeding, we shall determine the number of states having
energy E, since this quantity is involved in the expressions for the dis-
tribution functions. In a rigorous treatment, the degeneracy should be
determined by solving the Schrodinger equation; however, the following
simple method leads to correct results. We may associate with each
electron a six-dimensional phase space of which the six coordinates are
the three positional coordinates z, y, z and the three components of
momenta ., Py, P- of an electron. If we arbitrarily divide this phase
space info cells of volume A3, we may obtain the proper density of states
by associating two states with each cell. These two states correspond
to electrons that move in the same orbit with opposite orientation of

_electron spin. This procedure may be justified roughly by use of the

1 For a discussion of the differences between Fermi-Dirac and classical statistics,
see, for example, G. Joos, Theoretical Physics, Chap. 37 (G. E. Stechert & Company,
New York, 1834); also Sommerfeld and Bethe, op. cit., and L. Brillouin, Die Quantenata-
tistik (Julius Springer, Berlin, 1930).

In classical statistics, the number of particles in an assembly that are in the level
of degeneracy g; and eneérgy « is

-
n; = gide *T
where A is a constant that is to be adjusted so that the sum of n; over all levels is

equal to the total mumber of particles.
In Fermi-Dirac statistics, which is valid for electrons,

g - “_9.‘
,..T;_+1

in ‘which ¢ is the adjustable parameter analogous to A in the olassical case. Itmy
be shown that ¢ is the free energy per particle,
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phase-integral condition of classical quantum mechanics, which states
that the volume of phase space associated with each level is h for each
positional coordinate. Thus, the volume is k? for a particle in ordinary
three-dimensional space. A more rigorous justification will be given in a
later chapter.

In the present case, in which the electrons are allowed to wander
freely throughout the volume V of the metal, we may assume that each
cell in phase space extends throughout the volume V associated with the
positional coordinates. Then the different cells may be completely
specified by giving the domain of momentum space they cover. The
average number of cells in the parallelepiped that has edges extending
from p. to p- + Ap., p, to py + Apy, and p. to p, + Ap., ete., is

AG = VARLRAD:, (2)

since VAp.Ap,Ap, is the volume of phase space occupied by the parallele-
piped. In a crystal of ordinary size, for which V is greater than
10-12 cc, the values of Ap., Ap,, Ap, that are associated with one cell are
infinitesimally small for all practical purposes. Hence, we may replace
the discrete distribution of cells by a continuous one and say that the
number of-cells d@, in the volume Vdp.dp,dp. of phase space, is

iG = Vd_&%ﬂ’:. 3)

The number dG, of states of both kinds of spin, associated with the
same volume, is twice dG; that is,

dg, = v 2IRdn:, (4)
‘We may now derive the expression for the number of levels lying in

the range from E to E 4+ dE. According to Eq. (1), the relation
E = constant
defines a sphere in momentum space of radius v/ (E + W.)2m*. The

volume dP between concentric spheres the radii of which differ by dF is
clearly

P = 4x(E + Wo)2m*d/ (B F Woyam*
= 2rV/ (E + Wo)(2m*)4dE. 8

This may be simplified by setting
€ = E + Wc, {6)
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for then
dP = 2x(2m*)1\/ede. N
The variable ¢ evidently measures the electronic energy relative to — W,.

According to Eq. (4) the number of states associated with this volume of
momentum space is

g()de = 4"”2"” ) ede = Cr/ede (8)
where
C = ﬁ*i%“:_)_. (g)

and g(e) is the density of states. It should be emphasized that Eq. (8)
is valid only when (1) is true. .

We are now prepared to discuss the distribution function for classical
and Fermi-Dirac statistics.

a. Classical Distribution.—The classical, or Maxwell-Boltzmann,
distribution function, is!

o«

n = gide *T,. (10)

where n; is the number of particles in the level of energy e« which is
gi-fold degenerate, and A is the normalizing parameter. Thus, according
to Eq. (8), the number dn of electrons in the energy range de is

dn = CAe F~/ede. . an
If the total number of particles is N, we find, upon integrating (11) over
all values of ¢ from zero to infinity, that A is related to N by the equation

2 N 1 },sn:
A== C = Z@mkT) (12)
where np = N /V is the number of electrons per unit volume. Hence,
_ 2 N -5,
dn = aTye Y e a3)

This result, which is independent of A and of V, shows that the size of
the cell in phase space is not important so long as the cell is small enough
to permit the use of a continuous distribution of levels. Incidentally,
Eq. (13) is identical with the corresponding equation for the Maxwell
distribution of kinetic energies of gas molecules.

1 See footnote 1, p. 141.
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The mean energy per electron é is equal to 1/N times the integral of edn
over all values of ¢; t.hat is,

= 7 'Tc-l‘—“j; G_ﬁiifk |
= JkT. (14)

Thus. according to classical statistics, the total electronic energy per mol
of a monatomic metal i,

E = }2RT

where 2 is the number of free electrons per atom. This result is contra-
dicted by experiment, if we assume that z is equal to the number of
valence electrons per atom, for it predicts an electronic heat per gram
atom of 3zR/2. We have seen in Chap. III, however, that practically
all the specific heats of most metals can be ascribed to lattice vibrations.
This contradiction is sufficient to rule out the use of classical statistics
for describing the distribution of the free electrons in metals.

b. Ferms-Dirac Distribution.—The quantum' statistical distribution
"function that should replace (10) is? '

- gi =% ' (15)

P N

where, for convenience, o has been replaced by ¢ /k7. This equation
becomes
dn = ¢ Yede (16)

G—a)
e ™ 41

when the eontinuous distribution method is used.
The parameter ¢, which must be fixed in such a way that the integral
of (16) is equal to t.he total number of electrons, cannot be determined so
easily as t.he corresponding parameter in the classical case. We shall
‘evaluate ¢ for several limiting cases, using dxfferent methods in each one.
1. Absolute zero.—The form of

) 75,

as a function of ¢ is illustrated in Fig. 2 for various relations between 7'
and ¢. In the limiting case of absolute zero, (17) is unity when e is less

1 8ee footnote 1, p. 141,
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than ¢), the value of ¢ at 0°I{, and is zero for greater velues of e.  Hence,
Eq. (16) may be written

dn = {C-\/Ede 0 <e<e
0 ’ €y < € . (8)

That is, at absolute zero all the .energy levels below ¢ are completely
filled with electrons, whereas all- above ¢ are completely empty (¢f.
Fig. 3). Also, all cells in momentum space for which p is less than

) kT"“f"“\\ KT<<e’

1 ' ) +-T=0

fle)

0 €

€ ——
Fiu, 2.——The Fermi-Dirac distribution function for several reletiondBips between T and €.
1

700 4

Fia. 3.—The filling of the lowest energy levels of the metal at absolute zero. All levels
below e = € are eampletely occupied; sll above are empty. The work function ¢ is the
difference between the {op of the filled region and the potential at x = =,

™

£o

V/2me, are entirely filled, whereas those that have greater momentsa are
completely empty.
The integral of (18) is

N=C¢C fo ede = §Ce;‘. (19)
Henze, ,
' P ’3?10);

where no = N/V, as previously. It is interesting to note that ¢, depends
only upon the density of particles.
Using Eq. (20) we find that the mean energy is

e’ " 12 i
& = %J; Cer/ede = -gea = 136 ;@;(—3—;3) . (21)
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The .value of ¢ for a number of metals is given in Table XXXVIII, in
which we have assumed that m?* is the actusal electronic mass. Since
these numbers are of the magnitude of several electron volts, we see that
the results of quantum statistics are appreciably different from those of
classical statistics, in which & is zero at absolute sero. Thus, in classical
statistics, an energy W. would be required to remove an electron from a
metal, whereas, in quantum statistics, the minimum energy required
is ¢ = Wi — & (¢f. Fig. 3). The quantity ¢, which is called the work
function, may be evaluated experimentally by determining the light
quantum of lowest energy that will eject electrons from a metal. Photo-
electrically determined® values of ¢ are listed in Table XXXVIII. ¢ is-
greatly dependent on the condition of the surface through which elec-

TasLe XXXVIII
Metal Valence G v ¢, ev We e+ ¢

Li 1 4.72 2.2 8.9
Na 1 3.12 1.9 5.0
K 1 2.14 1.8 3.9
Cu 1 7.04 4.1 11.1
Ag 1 5.51 4.7 10.2
Au 1 5.54 4.8 10.3
Be 2 14.3

Ca ° 2 4.26 8.2 7.5
Al 1 5.63 3.0 8.6
Al 3 1.7 L 3.0 14.7

trons are ejected,-and the values in Table XXX VIII are averages for the
cleanest surfaces that have been obtained.

‘We shall see below that at low temperatures i is equal to ¢ plus a term
that varies with temperature as (k¥7)*/¢. 8ince this term ordinarily is
very small compared with unity, the complete filling of the lowest
energy levels that are shown in Fig. 3 is not appreciably altered at
ordinary temperatures.

2. The case in which kT is small in comparison with &.—This case
is a very useful one since ¢ is much larger than kT below the melting
point of most metals.

- The equation for determining ¢’ in this case, as well as the general

one, 18
N-cf e @
el 41

1 fee, for example, the compilations by J. A. Becker, Rev. Modern Phys., T, 956
(1985), and A. L. Hughes and L. A. DuBridge, Photoelectric Phenomena (MeGraw-Hill
Book Company, Ine., New York, 1932).
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Sommerfeld and Bethe! have developed a convenient method for evaluat-
ing integrals of this type. Let us write Eq. (22) in the form

N = Cf"v/ede, 29)

using the notation of Eq. (17). Integrating this expression by parts, we
obtain

N = -—CJ “dfz 2ade. (24)

It will be found that a number of important integrals may be expressed
in an analogous form, namely,

a=C J; -g{a(e)de (25)

where a(e) is a continuous function of e
Following Sommerfeld and Bethe, let us transform the integration
variable in (25) from e to # defined by

!
€ - €

ﬂw_—-kT ‘-

This is equivalent to choosing ¢ to be the origin of the energy seale and
expressing the energy in uvits of k7. In additicn, let us write

ale) = B(n).
Then, Eq. (25) becomes

a=cf” s (20)
&

For small values of k7, ¢/kT is so large that the lower limit may be
replaced by — «, whence

szzef s ¥, (@
Let us assume that 8 may be expanded into a Taylor series. Then,
s = 6@ + [ 2] 0+ J 28] e + -

! SoMmERFELD and Beraz, op. ol
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and Eq. (27) is

o-cf oo+ [Bla+ it )m

The first integral iz
Cma o
BOC | _grdn = BOCYMI=. = —BOC.
The second integral vunishes because df/d7 is an even functicn of #.

P_ af

1 LA
i “.
! / N
8] &
e — e
F16. 4.—The functions f and ——’;—': as func. I e (schematic).

The third term, which is the only other ons ii:it need be considered in
the low-temperature approximation, is

o8] o (7 _aver - ,
|28 o " e )

This may be »valuated by expanding the integrand in powers of e,
The integral then is

2.[] n3(e™ — 2% 4+ 3= — - -+ Yy = -;(:e — 5 ,__%1_ -—:f-,-f- . )
T?
Hence,

emmclom +2122))

Tré.nsforming ‘back to the variable ¢, we have

o —-C'(a(e') + %(k?’)*[%%?jl‘_{)o | (29)
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It is easy to see that the infinite series of which the terms in (29) are
the first few members converges very rapidly when k7T is much less than-
¢. The form of the function df/de for this case is illustrated in Fig. 4.
It is - bvious that this function vanishes everywhere except in a region
of width k7" at € = ¢, where it has a steep maximum. Since

f_ﬂdfdm 1,

the main term in the expansion of a is simply —Ca(¢), the value of the
integrand at ¢, The additional terms are corrections for the finite width
of the function df/d¢, and are small as long as the width is small.

Let us return to Fq. (24). Using Eq. (29), we find that

N = ( a+T (k?;)’), (30)

whieh reduces to Eq. (19) when T becomes zero. We may solve this
. for ¢ when T is not zero by replacing ¢ in the denuminator of the second
term by €. It is found in this way that

;gs‘;ll_f '{92’ 2]

-5}

The mean energy per electron is

._cf" c '
E = WJO felde = -~/ g*e ide. | (32)
When Eqgs. (19) and (20} are used, this reduces to
ooy
31 e
=3 ;?(Befl + %e ;(?;I')z). (22)

Upon simplifying this equation by means of Eq. (31), we find

o 3]
[ i (“) } (64

where & is the value of € for absolute zero [¢ft Eq. (21)].

€
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The derivative of Eq. (34) with respect to T is the electronic heat
2 k 1’

__;;5..,_

A linear term, which ordinarily is much smailer than the classical value of
3k/2, has been observed in a number of metals and will be discussed in
Becs. 27 and 28. It is easy to see from the method we have used to
arrive at Eq. (34) that only the part of the electronic distribution near
¢ = ¢ contributes to the temperature-dependent part of & The elec-
trops of lower cnergy are hemmed in by filled eells to such an extent that
ordinarily ihey are not excited. Thus, only those electrons that are
in the energy range of width k7 near the top of the occupied levels are
free in the classical sense. In fact, one muy obtain a specific heat of the
same order of magnitude as (35) by assuming that a fraction kT'/¢’ of the
electrons are free and have the classical electronic heat 3k/2.

Equation (29) may be used to derive expressions for the mean value
of various quantities in cases more general than that in which g(e) has
the form (8). Suppose that g(¢) is an arbitrary function of e. Then,
the integrals for NV and ¢ are

- '—-' - L ] # .
N = [ ocosae = ~ [ 7] [ oteraz |Yae (36)
- - '] ﬁ
Né = J; eg(e)fde = —J; [J; zg(z)dm]a:de. 37
Using Eq. (29), we find thdt these expressions may be reduced to
.} .
N = _La(«)de + TOTY @), (364)
Ni = J; “eg(e)de + ’fﬁ%@:wg'(.') + o). (37a)

The total electronic heat may be derived from (37a) by differentiating
this equation with respect to 7" and is

Ny, =0+ 75 ) +¢ O+ T @)+ @9

An expression for the derivative of ¢’ with respect to temperature may be
obtained by taking the temperature derivative of Eq. (36a). The
result is

de’ . r’ g (e')
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Substituting this in Eq. (38), we find

=22 T g(e')
=73 N (39)

y =
Equation (35) is the special case of this equation in which g hag the value
CvVe. o
* 8. The case in which ¢ is large and negative.—We shall see that this
case is of interest at very high temperatures. When ¢ is negative, the
quantity
.f

T (40)
is less than unity. Hence, we may expand the expressions for N and i
in terms of it. The results, to terms in the first power of (40), are

d = .
N =< CefT J; e T/ede, - (41a)
4
zgg;—'-’ | o e (41b)

These equations become identical with those for the case of classical
statistios, which was discussed in part a, when we set

¢
| A =&,

This result shows that classical statistics are valid under the conditions
in which (40) is small in comparison with unity, Substituting 4 from
Eq. (12), we find that

o log R

BT = "B 3ZamkT)i
The condition that must be satisfied if this is to be negative and large is

16\ 22 {3no\} _ [16\},
Rikd = 27»(}:) - (@)«
For most metals, this condition is satisfied only at temperatures far
above the melting point.

4, Intermediate case.—The evaluation of integrals in the intermediate
case, in which k7 is comparable with ¢, involves a relatively large
amount of computation and will not be diseussed here. Some of the
. more important results have been derived by Mott! and by Stoner.?

L N. F. Morrt, Proc. Roy. Soc., 1562, 42 (1935).
2 E. C. BroNER, Phil. Mag., 21, 145 (1936).
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For exampie, the behavior of the electronic heat, as a function of k7'/e}, is -
shown in Fig. 5.

27. The Specific Heats of Nontransition Metals.-—The expression
that was derived in the preceding seetion for the heat of free electrons
in a metal, namely,

k_kT
T =T (1

per electron, is small compared with the eontribution from lattice vibra-
tions at ordinary temperatures,
At low temperatures, however, it

15k —

/...-—--—— should become comparable with the
/ Debye value of
10k 12¢4( T\®
/ 2 CYNC
05k per atom, since the quantity (2)

decreases more rapidly with decreas-
ing temperature than (1). The
ratio of (1) to (2), namely,

0 05 1.0 15 20

( 5 kT(0s
F1a. 5—~The electronic heat as a func-. 24xt g \ T/’

tion of temperature during the transition .
from the degenerate to the nondegenerate approaches unity in the neighbor-

state. (After Mott.) hood of 1°K when 6, is of the order
of 100° and ¢ is of the order of 1 electron volt. " Thus, according to this
result, an appreciable part of the specific heat of simple metals in the
neighborhood of 1°K should have electronic origin.

Keesom' and Kok have observed an electronic specific heat of t.h:s type
in the simple metals silver, zine, copper,. and aluminum. The most
accurate measurements have been made on copper and aluminum, for
which the molar heats are

Cu: Gy = 0888 10T + 37 °5°), *
Al: Cy = 1.742 - 10~*RT + 3&;1,(419 @

where fp(8/T) is the Debye function. Equation (4) is valid only above
1,13°K, for the metal changes to the supeérconducting phase at this
temperature. It is possible to determine an ‘““experimental’”’ ¢, from e,

i Ag, Zn: W. H. Kresom and J. A. Kok, Physice, £, 770 (1934). Cu: J. A. Kok
and W. H. Keesom, Physica, 8, 1035 (1936). Al:J. A. Kok and W. H. Kexsom,
Physica, 4, 835 (1937).
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the coefficient of T in the linear term in (3) and (4) In fact, we have
from Eq. (1)

dlexp) = AR, ®)

where z is the number of valence electmns per atom. Values of this
quantity are given in Table XXXIX. In the case of copper, it is assumed
that there is 1 free electron per atom, whereas with aluminum values are
given for the casee in which it is assumed that there are 1 and 3 electrons
per atom. Evidence that will be discussed in Chap. XIII indicates that
there actually are 3 free electrons per atom. Dividing the computed
¢ of Table XXXIX by the experimental ones, we obtain the ratio of the
effective electronic mass to the real mass. These ratios also appear in
Table XXXIX.

Equations so precise as (3) and (4) are not given for silver and zine.
The experimenters estimate, however, that m*/m is of the order of unity
in both cases.

Tasiy XXXIX
« (exp.), ev z m*/m
Cu . 4.78 i 1.47
Al 2.44 1 . 2.%0
7.80 8 : 1.81

28, The Electronic Specific Heats of Transition Metals at Low Tem-
peratures.—Experimental investigations that we shall discuss presently
show that transition metals often have & much larger electronic specific
heat than do simple metals. In order to treat this topic at the present
point, it i8 necessary to accept some mnple consequences of the band
theory of solids; these will be justified in later chapters,

According to the band theory,! the ten states of an atomic d shell
contribute a quasi-continnous band of 10N electronic levels to the metal,
where N is the total numbet of atoms. Of these levels, 5N correspond
to one orientation of spin, and the other 5N correspond to the opposite
orientation. Figure 6 shows the position dnd width of the d electron
band relative to the levels of the ordinary valence electrons. At present,
we shall not discuss the quantum mechanical principles that determine
the width AE of the d band, and the relative position of the valence and d
levels. The density of valence-electron levels is so much less than the
density of d levels that the peint below which there are 11N levels of both
© valence and d type is above the top of the d band. In other words, the

U'This d-electron-band meodel was first proposed by N. F. Mott, Proc. Phys. Soc.,
47, 571 (1985), and has been extended hy J. C. Blater, Phys. Rev., 49, 537 (1036).
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ordinary valence levels are filled above the top of the d band if N electrons
are added to the valence band (¢f. Fig. 6). Thus, the d band is com-~
pletely filled in metals such as eopper, silver, and gold, which have 11N
electrons outside the rare gas shells. Conversely, the d band is not
completely filled in the transition metals that immediately precede
eopper, silver, or gold in the periodic chart.

We shall let g.(¢) and ga(e), respectively, designate the density of
levels in the valence and d bands, as functions of energy. The origin of €
will be taken to be at the bottom of the valence band. For present

N

d Band

) s Band : .

Fia. 6.—The ralative widths and the density of levels in the & and d bands. . The shaded
area of the & band represents the width of energy levels occupied by one electron per atom.
There is room for ten electrons per atom in the d band. If there are eleven valence elec-
trons per atom, as in copper, silver end gold, both,bands are filled as shown in this figure.
For the case in which there are ten electrons per atom see Fig. 7.
purposes, we shall assume that g.(¢) has the form of g(¢) in Eq. (8) of
Sec. 26, namely, ° ' '

9’0(£> = C‘\/: @
where the mass appearing in C does not differ from the true electronic
mass by a factor larger than 20r3. As we shall see, there is good evidence
that near the bottom of the d band ga(e) has the same form as the expres-
sion (1) for free electrons, namely,

gd(é) = Cav e — K, « = Ej. (2)
where '
C, = 4137(31_@! ®)

in which m; is the effective mass at the bottom of the band. We shall
assume that near the top of the band:

ge(e) = CV(Ba+AE —¢ ¢ < Ea+ AE @
where
¢, = &¥am) ®)

in which m is the effective mass near the top of the band.
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It may be expected that m, and m, will turn out to be much larger
than the electronic mass, since the density df levels in the d band is much
larger than the density of levels in the valence-electron band.

According to Eq. (89), which is valid when kT is much less than ¢, the
electronic heat is .

22T g€
Ty = B 3 95:?) ©)

per electron, where g(e) is the total density of levels at the top of the
filled region. If there are more than 10N electrons,

(&) = go(e0), @

since then the d band is completely filled and the valence band is filled
beyond the top of the d band. Hence, we may expect that in this case
the electronic heat is of the same magnitude as that of other simple
matals. This was shown to be true in the previous section, for it was
found there that the electronic heats of copper, silver, and zine are the
same nrder of magnitude as that of aluminum. On the other hand,

g(e) is
g(0) = go(ed) + ga(e{.) 8)

when there are fewer than 11N electrons, for then the d band is only
partly filled. We may expect (8) to be much greater than (7), since
we have seen that the density of d levels is much greater than the density
of valence levels. Consequently we may expect a larger eleectronic
specific heat for transition metals.

Before presenting the experimental facts for nickel, we shall find it
convenient to discuss the implications of ferromagnetism from the
energy-band picture. Let us divide the d band into two bands, each
having density ga(e)/2, corresponding to two opposite orientations of
electron spin (¢f. Fig. 7). In a paramagnetic transition metal, these two
bands are filled to exactly the same level when no external magnetic
field is present (¢f. Fig. 7a). Thus, the intrinsic magnetic moment is
gero in this case. We may interpret many of the properties of ferro-
magnetic substances by assnming that at the absolute zero of tempera-
ture one of the two d bands is completely filled, whereas the other is
filled to the same height as the valence band (¢f. Fig. 7). The metal
then possesses an intrinsic magnetic moment per unit volume, since
- there is an excess of electrons with spin oriented in the direction asso-
ciated with the filled band. If 8 is the magnetic moment per electron,
the magnetic moment M per unit volume is seen to be

M = BAn, : (9)
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where Ang is the difference between the numbers of electrons per unit
volume in the d band having each orientation. This oceurrence of the
freezing of electrons in one-half of the d band is accompanied by a decrease
in the total energy of the metal. We shall discuss this in a later chapter.
Since all ferromagnetic metals become paramagnetic at sufficiently high
temperatureg, after a continuous decrease of the intrinsic magnetization,
we may conélude that the frozen electronie structure gradually melts as
the temperature is raised.

HWacon

;\-\\\\—\\\§ i

d Band
(a)

d Band
s Bond (b) N .

Fi. 7.—Filling of levels in transition metals, which have ten or fewer valence electrons
per atom. Case a, paramagnetic metal in which levels of both spins in the d band are
filled to the same height. Case b, ferromagnetic metal in which the lovels in the d band of
one spin are preferentially filled. The lovals in the othor half of the d band and in the s
band are filled to the same height.

The pumber Angy may be determined for ferfomagnetic metals from
Eq. (9) by using experimental values of M and assuming that 8 is the
Bohr magneton

\

§

o

%

eh .
B = tme (10)
This number, which is given for nickel, cobalt, and iron in Table VII,
Chap. I, is also equal to the number of electrons per unit volume missing
from the unfilied half of the d band. For this reason, it is often called
the number of holes in the d baitd. Thus, there is 0.6 hole per atom in the
d band of nickel, etc. Since the nickel d band is nearly filled, we shall



Skc. 28] THE FREE-ELECTRON THEORY OF METALS 157

assume that the density gs/2 of vacant levels in the partly filled half band
is half of (4), or that

dunte) = S E X AT — 2,

The parameter ¢ may be determined from this by means of the following
‘equation which states that the number of holes is 0.6N, where N is the
total number of atoms:

_ C VE T3E =%
0.6 = ZNf E, + AE — ode. aan
Integrating this, we find that

% = E, + AE ~ (1 SN (12)

where 8¢ is the width of the unfilled region. Hence, the density of
levels at the point ¢ in the partly filled half of the d band is

pant¢) =S8Ny, (19

According to Eq. (6), the contribution from the d electrons to the elec-
tronic heat is

7 =" ’; LAY (1)

per electron. If we use Eq. (12), we may replace C; by 8¢. The result
is

% T
7y = 035 (15)

or the molar heat is
Cr = 0.3ReteT. (16)

Keesom and Clark! have found that the molar heat of nickel at very
low temperatures can be expressed by the equation

Cy = 8.72 - 10~RT + 31%(4"3?—3)-_ an

Thn-a electronic term is about ten times larger than that for simple metals

! W. H. Keresom and C. W. Cragrk, Physica, 3, 513 (1935).
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such as copper or aluminum. Equating (16) to the first term in (17), we
find
8¢ o

| o 5 3400°K,
which is about 0.29 ev. This should be corrected slightly to include the-
small contribution of the valence electrons to the specific heat. The
result, however, would not be appreciably different.

The ratio of m, to the true electronic mass may be determined easily
from the preceding equations. The result is

98,
m

which shows that the d electrons behave as though they were relatively
heavy particles.

Keesom and Kurrelmeyer! have measured the specific heat of « iron
at low temperatures and find

Cy = 0.60 - 10°RT" + 2.36 - 10—°RT?.

In this case, the number of holes in the d band is of the order of 2.2 per
atom, if we assume that we may interpret the data of Table VII of Chap.
I (page 23) in the same way as for nickel. The corresponding values of
" 8¢ and m./m are listed in Table XL. The fact that m,/m is smaller than
for nickel is partly connected with the fact that Eq. (4) is not valid for
the holes in the d band of iron, as will be seen in Chap. XIII.

It has become conventional to associate the specific heat of the d
electrons in transition metals with the holes in the d bands. This
procedure is convenient because the use of quantities such as An in (9)
and &¢' in (12) and (16), which are, respectively, the number of holes in
the unfilled region and the width of this region, reduces the expression
for the specific heat to its simplest form. We shall see later that this
convention has many other advantages.

Large electronic specific heats have been observed in palladium and
platinum.? However, it is not possible to determine 8¢’ for these metals
from the observed data, for they are not ferromagnetic. Since these
metals occupy positions in the periodic table similar to nickel, we shall
assume that they also have 0.6 hole per atem. These holes are dis-
tributed equally among levels of both kinds of spin so that the equation
relating C; and 3¢’ is now different from (12) Instead of (12), we find

e = 0.9N 9N
1 W. H. Kxzsom and B. KURRELMEYER," Physwa, 6, 364 (1939).

' Pd: G. L. PickArp, Nature, 188, 123 (1936). -
Pt: J. A, Kok and W. H, Kersom, Physica, 8, 1035 (1936).
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however, the equation connection Cy and é¢ turns out to be the same as
(16). Using the observed electronic heats per mol of metal, namely,

Pd: Cy = 1.6 - 10~°RT,
Pt: Cy = 0.804 - 10°RT,

we obtain the values of é¢ and m;/m given in Table XI..

TaeLe XI.—TrE Errecrive Masses oF THE HoLes 1N THE d BAaNDs or SmpvEra
TransrrioN MeTaLs :
(Derived from the observed electronic heats on the assumption that the holes
are perfectly free)

Metal | &', ev | mi/m

Ni 0.29 28
a Fe 1.58 12
Pd 0.16 43
Pt 0.32 22

29. The Pauli Theory of the Paramagnetism of Simple Metals.—It
may be seen from Fig. 20, Chap. I, that the metals that follow the rare
gases in the periodic chart are weakly paramagnetic. Since it may be
shown that the inner closed-shell electrons of these substances give a
diamagnetic contribution to the total
susceptibility, we may conclude that the
paramagnetic susceptibility is associated
with the valence electrons. Pauli' pro-
posed the following simple semiquantita-
tive interpretation of this paramagnetic

term.
Let us divide the quasi-continuous ;g
band of levels shown in Fig. 3 into two T

bands, one for electrons of a given spin Fra. 8—The relative dil

. . 1. 8,~— reiatlve dispiace-
and one for electrons of the opposite spin, | en¢ of the levels of different spin.
just as we did for the d band in the preced- The levels with magnetic moment
ing section. The density of levels in each ™ thas, i Bold are Jowered by
of these two bands obviously is just half raised by the same amount. The
the density in the band of Fig. 3. Inthe Soecey, fiference 26H s ex-
absence of a magnetic field, each band is
filled to exactly the same value of e. If the metal is placed in a homo-
geneous magnetic field of intensity H, the band of levels associated
with electrons having spin parallel to the field is lowered by an amount
BH, and the other band is raised by the same amount. Here, g is the

magnetic moment of the electron which, according to the theory of
1 W. Pavw, Z. Physik, 41, 81 (1027).
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electyon spin, is given by Eq. (10) of the preceding section. Figure 8
shows schematically the behavior of the levels. Evidently, the equilib-
rium distribution of -electrons is that in which both types of level are
filled to exactly the same point on an energy scale, for otherwise we could
gain energy by removing electrons from the highest filled band to the
lowest. Hence, more electrons have their magnetic moment parallel
to the field than antiparallel to it. The number An of electrons that
leave the antiparallel band and enter the other is equal to the number of
electrons in the energy range of width SH at the top of one of the bands,
that is,

An = BHg.(¢) (1)

where ,(¢) is the density of levels of given spin at the top of the filled
region. The relation (1) is valid only for fields that satisfy the condition

fH K ¢.

All ordinary fields are included in this eondition, since AH is of the order
of 102 ev for the strengest attainable fields and ¢ is of the order of 1 volt.

The dlﬁerenee between the number of electrons in the t.wo ba.nds namely
2An, i8

2An = 2ﬁHg.(¢’), 2)
whence the magnefic moment per unit volume M is-
and the susceptibility is -
| x = 24, )

We shall assume that the electrons are perfectly free and shall substitute
q.(e’) from Eq. (8) of Sec. 28; that is,
9:(¢') =— =-\/"E4Nz
Then,
' 3 ..l

| x =g
The relationship between x, &, the number of valence electrons per atom,
Z, and the atomic volume a, is

x = Lo%10- @
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where x is now expressed in cgs units, a is expressed in cubic angstroms,
and €} is expressed in electron volts.

Table XLI contains values of x, computed from Eq. (4), for the alkali
metals and several alkaline earth metals. It should be observed that
the computed susceptibilities are often more pesitive than the observed
ones, a fact indicating that a diamagnedic correction is frequently needed.
One of the principal sources of this correction is the closed-sheil ien cores

TasLe XLI.—A CoMpaRIsON OF THE OBSHRVED SUSCEPTIBILITIES OF SEVERAL
MgzTa1s with THosE COMPUTED OoN THE Basis oF THE FREE-ELECTRON ' THRORY
(Tn cgs units)

x + 10°%
Metal
Observed | Calculated v
Ti 2.0 | 0.80
Na 0.63 0.65
X 0.58 0.53
Be --1.85 1.38
Mg 0.87 0.98
Ca 1.70 0.89

of the atoms. In the cases of copper, silver, and gold. the diamagnetic
contribution from the newly filled d shells is large enough to cancel the:
ppramagnetic term and to make the metal diamagnetic

The transition metals such as piatinum and palladium are strongly
paramagnetic. Since the free-electron theory may be used to explain the
electronic heat (¢f. Sec. 28), we naturally should attempt to apply te
-these metals the analogue of Eq. (4), namely,

= 81. 9? 10—*
ade;

whereé Z is the number of heles per atom. It was first shown by Mott
and Jones,* and may be verified by simple esiculations, that the values of
d¢; that are required to explain the observed values of x arc four or five
times smaller than those derived from the experimental values of the
electronic heat. This discrepancy shows that the free-eleciron model is
much too simple for the d-shell electrons.

$0. Thermionic and Schottky Emissicn.—Up to this point, we have
had no cause tc consider the way in which the electronic poteuntial of a
metal varies near the surface. The form of this curve is important,
however, when we constder any preocess in which clectrons pass through.

LN. F. Motr end H. Jomes, Theory of the Properties of Metcls end Alloye, pp. 191:{!‘
(Oxford University Press, T436),
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the surface. We shall discuss two phenomena of this type in the present
section, namely, thermionic emission and Schottky emission. Therm-
ionic emission' is the phenomenon in which an electronic current evapo-
rates from a heated metal in the absence of an external electric field,
whereas Schottky emission refers to the evaporation that eecurs when
the metal is at & negative potential. Both these emission phenomens
are strongly temperature-dependent. An additional temperature-inde-
pendent emission occurs when the potential of the metal becomes suffi-

vix)
¢
. /’—'
W i
(a)
v
0 b —
wix }-’Ee x
(b)

F1a. 8.—a, the image-force potential barrier [¢f. Eq. (3)]; b, the effect of a field on the
image-force barrier [¢f. Eq. (5)].

ciently negative. This field emé¢ssion, which can be explained in terms
of the quantum mechanical process of penetration through a barrier, will
not concern us in the present chapter.

Suppose that we have an electron at a distance z from the surface
of an uncharged metal, where z is large compared with an interatomic
distance and small compared with the dimensions of the surface. Then
the only force thaf acts upon the electron is the classicdl attractive
image force F,, which is given by the equation :

- ,
F;= 1)

T4t

1 See the following review articles: 8. Dushman, Rev. Modern Phya., 2, 381 (1930);
Backer, op. cit. See also J. H. de Boer, Electron Emisston and Adsorption Phe-
nomena (The Macmillan Company, New York, 1935) and A. L. Reimand, Thermionic
Phenomena (Chapman and Hall, London, 1934).
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in which e is the electronic charge. The potential cnergy associated
with this foree is clearly
e’
Vi = iz 2)
The form of the potential may be expected to deviate from this when the
surface i3 not homogeneous, when z is comparable with the interatomic
distance, or when z is comparable with the linear dimensions of the
surface.
We shall assume for simplicity that the actual potential has the form

V() = {“Iﬂ“ték‘“‘/w,) z=0, @
—W., =<0,

where the region in which z is negative corresponds to the interior of the
metal. It is clear that this function, which is illustrated in Fig. 9,
changes continuously from — W, to zero as we pass from the interior
of the metal to infinity and that it approaches (2) for large distances. In
an actual case, we might expect dV/dz to be continuous; however, the

function (3) does not satisfy this condition.
If the metal is charged negatively, so that the repulsive field is E, the
potential ;
V.= —Eez (4)

must be added to (3). The total field V; then is

e? '

Vi= {‘”4?_“_5-;- /W, —Es 220 (5)
— Wa =<0

The additional field term in (5) has the effect of lowering the height of the

potential barrier at the surface of the metal. The maximum value of
. Viis

Ve = —VEd, _ ‘ ‘(s)

as may be proved by solving the equation dV /dz = 0.
Hence, when there is a field present, the effective work funetion ¢, is

ve = ¢ — VE®, @)

where ¢ is the work function defined in Sec. 26. :

Let us now compute the number of electrons that evaporate from a
‘unit area of the metal in unit time. We shall assume that the energy ¢
of the electrons inside the metal may be written as a function of the
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componants of momentum, and we shal! choose the z axis to be normal
to tle surface. Then, as long as the potential is a function of z alone,
the y =nd 2 components of the momaentum of any electron that passes
throuzgh tlie surface are preserved. Hence, if a given electron moving
toward the surface is to surmount the surface barrier, its total energy e
1aust be g;rea.t.er than the barrier height W. — v/Eet = ¢ + ¢, by an
cronni (r3 4+ p?)/2m. Thus, we must have ‘

€= ¢ + o Zm(p" + pi) = €. (8)

The total number of electrons with momenta in the range p. to
p- + dps, ote., siriking a unit area of the surface in unit time, is

px.m,p-)vzdpxdpydp. = n(px,m,p.) dp»dpvdps. 9
N.'i‘x"!i'l!
v, = ;;x (9a)

According to Egs. (4) and (15), Sec. 26, n(p.,py,ps), which is the number
of electrons per unit volume of phase space, is .

2 1
(P Py, Ps) = B giram =7 ¥ 1 - (10)

The total number of electrons » that strike a unit area in unit time is
cqual to the integral of (9) over all values of p., py, and p. that satisfy
the relation (8). The integration over dp. may be replaced by an
integration over the variable ¢, since

Oe

—dp. = de.
ap, P T %

The resulting integral is

ha
!(!'I'P)

2m
—%Tf f log[l+¢ F ldpdp. (11

The exponential function appearing in the integrand ordinarily is very
small, since ¢ is much greater than k7. Hence, we may expand the
logarithm and keep only the first terms. The result.is
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— _3’1“"91!

swm(u') f iy =TT J‘E‘ (12)
0

= =33 e

Equation (12) is the Richardson-Dushman® eguatior which was first
derived on the basis of thermodynamics.

If we let r designate the probability that the elecirons which have
sufficient energy to get over the barrier are reflected back, we find that
the current per unit area is

4
I = AT — r)e ¥, Ve (13)
where
_ Srmek® _ _smp__
A= = 12¢ em’deg? (14)
Had we used the classical distribution funetion
o -
n('Pa;Pw:'Pa) (21‘”1;6 T) ;€ ’ (15)

where 7, is the number of electrons per unit volume, we should have
found that

I=en l—kT—(l - r‘e_% (16)
_ “\/%m g :
This becomes identical with Eq. (13) at high temperatures if we set
Woe=¢ 14
and if we recall that
e—*ﬁ. _ 2(2rmkT)?
. h’na
On the other hand, the emission corresponding to Eq. (16) is much
larger than that corresponding to (13) if W, in (16) is regarded as the

measured work function. As a matter of iact, Eq. (16) gives the same
result as Eq. (13) in this case only if a fraction

3V :?(kT .

of all electrons is essumed to be free.
The reflection coefficient r is much less than unity if the barrier is
described fairly well by the image-force potential. - This fact was shown

1 See footnote 1, p. 162,



166 THE MODERN THEORY OF SOLIDS [Cuap. IV

first by Nordheim® on the bams of wave mechanics. With this simplifica-
tion, Eq. (13) may be written

. J |
I = AT% ¥~ Vi, 7

The relative dependence of I upon field strength has been found to obey
this equation very closely. Table XLII contains values of 4 and of ¢
that have been determined by experimental measurements? on thermionie
emission. It should be observed that A actually does not have.the
theoretical value (14) in any case. The observed values do not depart
from the calculated ones by a very large factor in most cases, but there
are large deviations in a few. The possible interpretations of these
deviations may be understood by examining the assumptions upon

TasLs XLII—THErrMIONIC DATA FOR SEVvERAL METALS

Metal | A, amp/cmt-deg®| o, ev
Ca ~ 80 3.2
Cs ~160 1.8
Mo | ~ 60 4.3
Ni ~ 27 ~5.0
Pt ~ 10¢ 5.0
Ta ~ B0 4.1
Th ~ 60 3.4
w ~ 60 4.5

whmh the derivation of Eq (13) was baaed We shall preaent these
assumptions categorically.

a. Apparently, we were assuming that the electrons are atnetly free
inside the metal when we set the mass m that appears in Eq. (8) equal
to the electronic mass. Actually, this assumption® has not been made,
for the momenta and mass in Eq. (8) may be regarded as the values
ouiside the metal. It is necessary to assume, however, that the com-
ponents of momenta in the plane of the surface are preserved as the
electrons pass through the surface, if the manner in which Eq. (8) was
used in deciding the limits of integration of (11) is to be correct. This
assumphon is justifiable only if the potent.zal gradient parallel to the
surface is sero.

b. We were implicitly assuming that the electrons do not interact
appreosably when we used the Ferm: dmtnbut.lon function for each

11, W. NorprElN, Proc. Roy. Soc., 121, 626 (1928).

2 These values of A and ¢ have been taken from the compilations reiemd toin
footnete 1, p. 162.

3 ¢f. Sommerfeld and Bethe, op. cit., p. 436
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electron without including interaction terms. The density of electrons
emitted through the surface is so small that it is easy to justify! this
assumption.

c. The fact that the mtegra.tlon over p, could be replaced by an
integration over e is valid under broader conditions than those contained
in our model. In wave mechanics, the integration variable that replaces
the z component of momentum is h times the # component of electronic
wave number k.. It turns out that the group velocity in the z direction
vz, is related to the energy by the equation?

=10
_ Y= = R ok,
which is equivalent to the relation
de
0P,

Ve =

that we used previously.

d. We also assumed that the surface is plane. There seems to be
little doubt that even the smoothest surfaces are rough in a submiero-
scopic sense. Metal surfaces are apparently made® of many different
crystallographic planes which are- inclined relative to one another.
The form of the potential function before each plane depends both upon
the crystallographic orientation of the plane and upon the nature of
any contamination that may be present on it. Although the total
potential difference between any point inside the metal and a point at
infinity is W, when there is no external field, the barrier before some of the
surfaces may rise to values higher than W, and drop to W, at larger
distances. Since the highest point of the barrier determines the work
Yunction, we should expect the entire surface to bebave as though com-
posed of many surfaces which emit more or less in accordance with Eq.
(13) but which have different work functions. The variations in sur-’
face potential from point to point also imply that there is a tangential
force. The existence of this force makes the process of separating the
integral (11) into independent integrals over p. and over p, and p, an
approximation.

¢. The assumption that the reflection coefficient r is zero seems to be
justifiable for any reasonably clean surface. It is not justifiable,* how-

1 This does not mean that the electrons will not congregate outside the metal and
give rise to space-charge effects,
2 8ee¢ Chap. VIII.
3 Direct evidence for this has been given by R. P. Johnson and W. Shockley,
Phys. Rev., 49, 436 (1938).
4 Evidence for other barriers has been presented by W. A. Nottingham, Phys,
Rev., 49, 78 (1936).
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ever, if the potential function has a large peak at'a distance comparable
with the electronic wave length before it approaches the image-force
value. Therc is no reason for expecting such peaks for clean metal
surfaces; they may occur, however, when the surface has been oxidized
or when layers of other foreign atoms have been absorbed.

J. Finally, it should be pointed out that in deriving Eq. (13) we have
assumed that the work function is independent of temperature. Since
metals are heated to very high temperatures during thermionic experi-
ments, this assumption is not justifiable.! This topic will be discussed
further in Chap. XI. '
~ By way of summary, it may be said that the deviations from the

Richardson-Dushman equation probably arise from a combination of
effects that are connected with the compcaite nature of metal surfaces
and the temperature dependence of the work function.

31. Boltzmann’s Bquation of State; Lorentz’s Solution*.—Let us con-
sider a system of particles that is in dynamic equilibrium under external
forces. For example, the system may consist of the electrons in a metal
that is acted upon by stationary external electric and magnetic fields.
When the steady-state current-is flowing, this system is in a state of
dynamic equilibrium of the type we wish to consider.

Let

Tolz,y,2,04,0y,0,)dzdydzdy dvdo, (1)

be the number of particles having position coordinates in the range from
z to z + dx, ete., and velocity coordinates in the range from v, to v, + dv.,
etc. We may obtain a condition on f., whenever the system is in a steady
state, by asking that it should be independent of time. Now, f may
vary with time in two independent ways: (1) It may vary becausc
particles are moving from one region of space to another and are acceler-
ated by the external field during this motion. This variation, which
takes place continuously, is called the ‘“‘drift variation” and may be
evaluated in the following way. The number of particles that, at time
{ + dt, bave drifted to the cell of phase space corresponding to the
coordinates z, ¢, 3, v, vy, 9, must be equal to the number that were in the
cell located at x — vdf, ¥ — v dt, 2 — vdt, v, — adt, v, — a,dl, v, — adl
at time {, where a,, a,, a. are the components of acceleration. This
relationship holds only for a time interval d¢ so short that collisions have
not had a large effect on the distribution. Thus, the change due to drift
in the number of particles having coordinates z, y, and z and velocity
Vs, Uy, Ve in & time df is

tSee J. A. Becken and W, H. Bearraix, Phys. Rew., 45, 604 (1934).
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(Af)a = falz — vdlty — vdi,z — v.dly, — adly, — audiv, — adlt) —
Ja(Z,Y,2,02,04,00,1)

(Lo + Loy + Lo+ Lot By - Lo Yt

Consequently the rate of change of f caused by drift is
= — af n 61'1- afu af' —_ -
) --Os 2T W T %ay (2)
(2) f may vary because of the relatively discontinuous changes in veloe-
ity that accompany collisions. If

0/(24,0y,04305,9,,9,) dv,dv,dy; 3)
is the probability per unit time that a particle will change its velocity
from v,, v, v, to a value having components in the ranges extending

from ¢ to v} + dv., etc., the total number the velocity of which alters
from v,, v, v, to some other value is

a=f ﬂ(3’%3”8;'"'3).[6(93:"!:"3;”;’9;’9;)‘1’%% 4)

Similarly, the number the velocity of which changes to v., vy, v. from
another value is

b= [1a(02 0} w)OL ) Y 0000, A0 d o ®)
Thus, the rate of change of f, caused by collisions is
(%‘) ~b—a (6)

The total rate of change of f. is the sum of (2) and (8). The condition
for equilibrium is that this sum should vanish or that

%fio. + af,.o' + af,. - + 8fn afaa. + af,. =) — g, )

which is Boltamann’s equation® of state.

In a homogeneous specimen of metal that is at constant temperature
in a field-free space, the components of the gradient of f., 3f./3x, 3f./3y,
df./02, and the components of acceleration a,, ay, «, vanish. Equation
(7) then reduces to

a=250

which states that the numbers of particles that leave and enter a given
volume of momentum ‘space as a result of collisions are equal. Om the

' L. BourzManN, Vorlesung iber Gastheorie (J. A. Barth, Leipsig, 1928).
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other hand, the left-hand side of Eq. (7) does not vanish if there is a
temperature gradient in the metal or if there is an external field. Hence,
a is not equal to b in this case.

Suppose that we have homogeneous electrical fields in the z and y
directions and a homogeneous magnetic field in the z direction. Accord-
ing to classical mechanics, the acceleration « is given by the equation

mu=—eE—§va _ (8)
where E and H are the electric and magnetic fields, respectively, and e

is the absolute value of the electronic charge. For the field assumed
above, we have

ity = —(eE,, + S”"T_;)’
. 9
Mmay = —(eE,, - E”‘H‘)’ ®
ma, = 0.
Hence, Eq. (7) becomes
af., q,g, 4 s, Ofa(eEs ey ) afaf e _eb, )“
v + ”’ 3z o ( S+ cmH’ dv,\m cm

?J —a. (10)

We shall discuss this equation in the case first treated by Lorentz,’
namely, when the medium is homogeneous and isotropic, no magnetic
field is present, and the electrical field is in the z direction. Equation
(10) then reduces to
since f, does not depend upon y and z.

Lorentz simplified the collision terms by making the following three
assumptions.

1. The electrons undergo only elastic collisions. This assumption
seemed to be reasonable at the time it was made since it had been postu-
lated that the electrons were deflected principally by direct collisions with
the ions. It may be shown that electrons, being relatively light, would
lose little energy in such processes. This interpretation of the electronic
collisions is not accepted as completely rigorous at the present time.
Nevertheless we shall employ Lorentz’s assumption since the results
that may be derived from it have semiquantitative value.

TH. A. Lorentz, The Theory of Eleeirons (Teuhner, Leipzig, 1809, and G. E.
Stechert & Company, New York, 1923).
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2. The electronic scattering is isotropic; that is, © in (3) is independ-

cnt of the relative directions of the velocity before and after collisions.

3. The distribution function f,, for the case when a field is present,

is related to the function f2, for the case when no field is present, by the
equation : .

fa =12+ vax(@) (12)

where x is a small undetermined function that depends upon the velocity

only through the speed » = +/v2 + o2 + v2. Equation (12) may be

regarded as expressing the form of f, when it is expanded as a series in

powers of E; and only first-power terms are retained.
According to assumption 1, the probability © is zero unless

v=uy.

I is important to note that © should be infinite when this condition is
satisfied if the total probability of a collision, namely,

f O(vz,¥y,0s ;v;,v;,v;Jdv;dv;dvi,

is different from gero. In order to avoid the mathematical difficulties
that accompany the use of a discontinuous func- =<
tion, we shall introduce a new collision function

1(0:0,038,¢') sin 0d0'dy’ (13)

which gives the probability that a particle that is
traveling with speed v in the direction desecribed by
the polar angles 8, ¢ (¢f. Fig. 10) is deflected into ¥
the solid angle sin #'d8’dy’ in the direction 6!, ¢’
. without a change in speed. O and 75 are cbviously Fra. 10—The polar
connected by the equation angles ¢ and 6.

n(v:0,0;6'¢") = ﬁ“e(vﬂvmm;vi,”;vi)v”dv'- (14)

According to assumption 2, 5 is a constant; hence, we see. that
a = fundn, (15)
or according to Eq. (12), _
a = [fav) + vx(v)}dmn. (16)
Substituting (12) in the expression (5), we find

!

b = fo%xn + vx(v)n ’;— sin 'd0'dy’.
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The second integral vanishes since v./y»’ = cos #. Hence,

b = fa(v)dan, @17)
and

b —a = —uv.x(v)dnn. (18)
We might have foreseen that b — a would not contain f2 from the fact

that a is equal to b when E, is zero. _
Since the factor 4wy is the total number of collisions an electron
makes in a second, 4my/v is the total number that it makes in traveling
1 cm, and the reciprocal of this quantity is the mean free path I. Thus,

l= ;E‘;,‘ (19)

We may now simplify the drift terms by using Eq. (12). Substituting
(12) in the left-hand side of Eq. (11), we find

af N opdx g _ep,0x e
CHIEE R R R N e

We may drop the terms in x since, by assumption, they are considerably
smaller than those in f}. Hence, Eq. (11) becomes

a.% - ;%E_.% - —"x(). (21)

We may replace the derivative with respect to v, by one with respect to e
if we use the relation

¢ = Gt = F0% + 0} + od).

Equation (21) then becomes
o g Y o
-é;" ek, a: IX(’)' (22)
Solving this equation for x we obtain '
o _Yefr aj:)

X ";(3‘5 Eae ) (23)
which relates the unknown function x to the properties of the known
distribution function f3.

The process of reasoning that leads to Eq. (23) may be summarized
as follows: In using (12), we assume that the distribution function is

modified by the addition of a small term if an electric field is present.
The form of this term implies that there are more electrons moving
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in the direction of the force than in the opposite direction, since this term
is negative for negative values of v, if it is positive for positive ones.
Since the collision probability is unaffected by the field, the contribution
of fo to the collision terms is zero in the presence of a field, just as in the
absence of one, and the collision terms depend only upon x. The drift
terms are calculated by considering the effect of the field on the unper-
turbed distribution function. It is assumed that the small additional
term in x does not appreciably affect the drift terms.

The equation for x reduces to the simple form (23) only as a result
of the simplifying assumptions that were made concerning the collision
probability ©. It would not be possible to remove x from under the
integral sign in the expression for b if the particle speeds were not con-
served during collisions. Hence, we should arrive at an integral equation
in place of (23) in a more general case. This occurs, for example in the
quantum mechanical treatment! of the equation of state for electrons in
metals, since the electrons are found to be inelastically scattered by
the lattice when the collision process is examined in the light of quantum
mechanical laws.

Gans® has generalized the Lorentz equation to include the case in
which there are both electric and magnetic fields present. We ghall
assume that the electric field is in the z and the y directions and that the
magnetic field is in the z direction, so that the equation of state is (10).
In place of (12), Gans assumes that

fu =3 4+ v2x0 + Oyxe (24)

where' x; and x. depend upon the velocity components only through the
speed ». In place of Eq. (18) he then obtains

b—a= —--(v,xx + vyx2). (25)

We may substitute Eq. (24) in the drift term of Eq (9). The expres-
sion may be simplified by setting

2 my 9 and L 9
0, *de oy "5;

Many terms then cancel, and the result is

(af") 2 6:1: + ,%f; - afo(o,eE. + neEy) — - ~Hoxa +
ev,
2 mexze (26)

' Bde Chap. XV.
* R. Gaxs, Ann, Physik, 20, 203 (1906).
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Terms that involve products of E. or E, and xi, x2 or involve derivatives
of the x have been regarded as negligible in comparison with the terins in
E. and E, that are retained.

Equating coefficients of v, and of v, in Eqgs. (25) and (26), we obtain

6"3‘ - ('Esaf = ’x1 — _e—Hsz

9z me
o ey, Y @0
ay ?af - me X1 EXz-
The result of solving these equations for x, and x3 is
= o)
v s?+41
_ it (28)
v 8241
where
o= SH, =Y k=t 29)
muvce v mcec
and
o _ afs (30)
Ji = W e

32. Electrical and Thermal Conductivity*.—The electrical and thermal
currents! i and ¢ that are associated with an electron having velocity v
are, respectively,

i= —ev and C=vg5 (1)

The total electrical and thermal currents I, and C, that pass through a
unit area at z, ¥, 2, normal to the z direction of a metal, may he expressed

by the integrals

I, = -—fev,fndd, (2a)
1 _
C. = J ”zém"’fﬂdqs. (2b)

where f, is the distribution function of electron velocities, do is dv.dv,dv,,
and the integral extends over all values of v, v, and v,. I, and C,
depend upon z, y, and z whenever f. is dependent upon these variables.

1 First treated by Sommerfeld, op. cit.
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The integrals in (2a) and (2b) vanish when f, is dependent on the com-
ponents of velocity only through the scalar velocity, for then the current
associated with electrons traveling in one direction is exactly compen-
sated by the current associated with electrons traveling in the opposite
direction. Thus, the contribution to the currents from f) in Eqs. (12)
and (24) in Sec. 31 is zero.

Let us consider the form of Eqs. (2a) and (2b) in the case in which there
are an electric field and a thermal gradient in the z direction. The distri-
bution function then is given by Eq. (12) of the preceding section where
x satisfies Eq. (23) of the same section. Consequently Eqs. (2a) and

(2b) become
I,nejv"l o _ oE, 2 (Ba)

=_—-~va9( - f' : (3b)

The quantities in parentheses in each of these integrals involve v,, v,
and v, only through the scalat velocity . Ience, we may replace »2 by
v?/3, do by 4wvldv, and the triple integration by a single integral of v
extending from zero to infinity. Thus,

_ dxe ot af: _ ij;_’
I = L (4 _ e, )a», (4a)
c, = _dm f 6f3 - Lo (4b)

a. Electrical Conductivity.—The simplest case to consider is that in
which the temperature of the metal is constant. Then, f2 is independent
of z, and the current is

w . _Q_P:g
I s = v Je do. (5)
We shall use the Fermi-Dirac distribution function for meials. Thus,
' 3
Roavun) = 5o ®
where
1
1 = =~ @
e *T 41

At ordinary temperatures,

~ o P f3na)
¢z = (5) ®
where o is the number of electrons per unit volume (¢f. Sec. 26).
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It is convenient to change the variable of integration {rom » to e
Equation (5) then becomes
\fj}”@ ©)
where [¢f. Eq. (9), Sec. 26]
C _ 4x(2m)t _ 3 n,

V=R T (10)

We may now employ the approximation expressed by Eq. (29), Sec. 26,
and write

f a2 Dge = — e an

where l(e;) is the value of I for ¢ = ¢,. This approximation is very
accurate for ordinary valence electrons. Then, I, becomes :

2 2
1. =55 2 (12)

‘etng |2,,,
= ES‘Q ;ﬁ\{;ﬁ(%)
e*nol(eq)

mv(ep)

Hence, the electrical conductivity is

= I _ enle)

"= E T e (13)

According to this equation, the conductivity depends upon temperature
through the factor I alone, sinee sll other quantities in Eq. (13) should be
practically constant. ’

b. Thermal Conductivity.—The electronic thermal conductivity may
be obtained by solving Eqs. (4a) and (4b) for C, in the case in which
there is a uniform temperature gradient d7'/dz in the z direction and in
which there ig 'no electrical current fowing. The thermal conductivity
« 18 defined by the ratic

ar

k= —Cir (14)

9f2/dz is not zero when there is a tempemuure gradient. Infact, if we
reenll that f2 is a function of @ = (e — €)/kT [¢f. Eqgs. (6) and (7)], we
see that
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afe _ afedT _ - Af dadT _ aﬁ[ 4 _dT(T>] 1T (15)

9z 9T d=x de dT dz
Equations (4a) and (4b) now become
o \d7] | K.dT
I, g\/' {K1| <E. + TdT(T dx] + 5 EE}’ (16a)
=1 g o md (AT | K.dT
C.= EJE{KS[E._&. + T dT<T) dx] + Ex’}’ (16b)
where
I )
K= JG etz an
-_——~M - ¥
6.0t " / Re
50~
I sl
rxi0®
30F A, s W Theor.
IS P e ___.....--—-—-'—-Mo S value
W T e
e "'.
1.0}
- L m H L L A 2I00 L L l‘ ' 360 L L L - 4& i 'S
T°K —

F1e. 11.—The Wiedemann-Franz ratio for several metals. The ratio r(r = «/T7) is
given in units in which ¢ is measured in ochms™! ¢cm™!, k is measured in w.its deg™' cm™4,
and T ie the absolute temperature. The theoretical value is 2.45 X 10™® watt-chm/deg?

We may eliminate E., from (i6b) by substituting this quantity from (16a),
after setting /. = 0. The result is

_ C‘, i '2 KsK1 K’) (18)
T T@T/dz 3'\[m *
According to Fq. (29), Sec 26,
X; = —-Q{e Ueh) + -—Wz[d (ff‘] } (19)

It is obvious that the total contribution to (18) from the first term of

Eq. (19) is mero. The principal contribution from the second term may
be reduced to

1r_ 2 k2nol{ef)

3 me(e)

T (20)



178 THE MODERN THEORY OF SOLIDS [Caar. IV
by straightforward manipulation. We find that

] N2

"= %(.:_’) ) 1)
upon comparing this expression with the one for the conduectivity.
In other words, the free-electron theory predicts that x/ 7o should be a
universal constant. A relationship of this type was observed first by
Wiedemann and Franz;' for this reason, the ratio /7o is called the
Wiedemann-Franz ratio. Experimental values usually differ somewhat
from the theoretical ones. Figure 11 shows plots of the observed?
ratio for several metals. Silver, copper, and gold obey the theoretical
relation fairly well at high temperatures but do not at low temperatures.
On the other hand, beryllium and 8 manganese show large deviations,?
338. Electrothermal Effects*.—The rate at which heat accumulates in
& unit volume of & wire that is carrying both eleetrical and thermal

currents in the z direction is

dH aC,

The first term in this equation is the electrical work done, and the second
is the divergence of the heat current which, according to the equation of
eontinuity, is the rate at which heat ﬂows into the volume. We may
solve Eq. (16a) of the previous aection for E, thus:

m 1 dT XK, 1dT
E = —“ IR edT( )dz_ ~ K,Tedz @
The expression (lab) for C, then becomes
KK, — daT
o B WIS o

when E. is replaced by (2). If we now substitute Eqs. (2) and (3) in
Eq. (1), we obtain

A _ I3 | Lpd
@ =t ‘“) d:v( @

where ¢ and « are the electrical and thermal conductivities, which are
given, respectively, by Eqgs. (13) and (20) of the preceding section.

! WiepEMANN and Franz, Ann. Physik, 89, 407 (1853).

* Taken from Landolt-Bornstein, The measurements were made principally by
W. Meissner.

3 These deviations are most probably associated with the assumption that the
electrons are perfectly free.
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The first term in Eq. (4) is the Joule heat, and the third is that
arising frem crdinary flow of heat. Both these terms are independent
of the relative directions of the electrical current and the thermal gradient.
The second term, on the other hand, represents an accumulation of heat
that depends upon both the direction of the current and the direction
of the temperature gradient. The influence of this term is usually con-
sidered in three separate cases which we shall now discuss.

a. The Thomson Effect.—Suppose that we have a wire carrying a
current I. and having a uniform temperature gradient d7'/dz. Then,
in accordance with the second term in (4), heat will be produced at a rate

dH _I.nd( Ky _ ¢\dT '(5)

dt ¢ dT\TK, T/dz -
This is known as the Thomson heat, and the negative of the coefficient
of 14T /dz, namely,

_ Td(K, ¢
7T = T dT\TK, T)’ @

is -called the Thomson coefficient. The quantity in the parenthesis of
(6) may be evaluated by use of Eq. (19) of the preceding section. The
first-order terms cancel and the second-order terms lead to the result

1K Y = 3 1d¥le?) 1d(le) - x 1 I"(c’)]‘
T “K"I““-)- *‘Ta[w T T ae ] "’T*s[?."'m:% @
Hence, o7 is
BTl | Vle)

The quantity ¥(e)/i(e)) cannot be determined without & theory of
the mean free path. We shall treat this as an unknown and shall use
measured values of or to evaluate it. Values-of ¢jl'(e})/l(¢;) and of o¢/T
are given in Table XLIII for the alkali metals.! It should be noticed
that the observed values are similar for all cases except Li which has a
different sign and is extremely large. Whether this difference is real
or is due to experimental error remains to be seen. The negative value of
or for most of the alkalies shows that the electrons carry heat from hot
to cold regions of the metal.

b. Peltier Effect.—When a current passes from one metal to another
that is at the same temperature (for example, from 1 to 2), some heat
usually is evolved or absorbed at the junction. This is knownas the
Peltier heat: the Peltier coefficient »3-,3 is defined by the relation

- 1 8ee SoMMERTELD and FRANK, op. ol
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dH
Ti—y2 = "a"j}lx

where dH /dT is the heat evolved per unit area of the junction. Accord-
ing to the second term of Eq. (4),

B J‘zd ~ % Jdz :
i = TATK, f:)

TN K. PAY .
[Tﬁzl ) \TK, 7)) )

Hence, comparing this with Eq. (6), we see that

d M1z — org — o'g-'l'
B"T‘( T ) =TT (19)
This equation may be derived on the basis of.purely thermodynamical
TaeLe XLIIL
-
o o | N
Li +0.40 —76
Na —0.0282 2.6
X —0.0275 1.20
Rb —0.069 4.05
Ce —0.062 * - 2.88

reasoning.! Thus, the agreement between the observed and computed
values of (9) should be neither better nor worse than the agreement
between observed and computed values of o7.

¢. The Seebeck Effect.—When the junctions of two metals 1 and 2
that are connected in series to form a closed joop are kept at different
temperatures 7° and 7", an emf acts within the circuit. The Seebeck
emf Fg is defined as the value of the total force when the current is zero.
Fs may be computed by integrating the expression (2) for E. around the

circuit
e ~fe - (L) B

_1g( &dT | K, dT
39(;( TEE+-K;TEE)dz' S

1 These effecta and others are discussed from the thermodynamical viewpoint by
P. W. Bridgman, The Thermodynamics of Electrical Phenomens in Metals (The Mac-
millan Company, New York, 1934).



SEc. 34] THE FREE-ELECTRON THEORY OF METALS 181

We may now change the variable of integration from z to 7" and divide
the integral (11) into integrals over each meial. Then,

Y T AT < e')],?,,
Fa = *f [\KIP ;) (R}?"'fld“

Hence, according to (9),

T
Fs = fr , “,;* ar. (12)

This equation also may be derived on a purely thermodynamical basis.

34. The Isothermal Hall Effect*.—Let us consider a metal ‘hat has
electric fields in the x and y directions and a magnetic field in the z direc-
tion. The equation of state then is Eq. (24), Sec. 31, in which x; and x¢
satisfy Eqgs. (28) of the same section. It may he seen that the electrical
and thermal currents in the z and y directions are

I, = —~-i-4:-3!—e‘— USXIdO' = -—*3—'-[ lflg b_:!'_ izvedt"r (10’)
I, = __.ﬁff 2X7d0' = --g—*J Ifgg _l_?if‘”nd”} (lb)
C, = _L@J‘v xi1do = “mf 3ff]2__;_slf2 Zdy, (Xe)
C’ = —ﬁ—fvl‘xﬂda = _%mf 310?2:8;{1”2;’9 {1d)

We shall consider the emf induced in the y direction, when there is a
current flowing in the x direction and when the metal is at constant
temperature. This transverse field is known as the ™all emf. The
conditions describing this physical situation are

o 9% _ -
Fraal and I, = 0. (2)

Then Eqgs. (1&) and (1b) are

_ _4re 1 aﬁ _ s off
( f 1 3 Ynp2dy Evf"lsz i sdv) @

0 = _T(E" r E—T—af“ 2dy - qu ¢ vl o j_ lafu?do)

We shall change the variable of integration ¢o ¢ and replace f2 by the
Fermi-Dirac function. These equations then hecome
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L= 5 \2€L - EL),

2 ' . @
et (2
0= “'g&(EﬂLl + Est),
where '
_C O ds o
,rs=+1ae Li=v), #F1a ®)
and f is the Fermi-Dirac function.
Solving Eqs. (4) for E, and E,, we find
3 m L
AP E S
m L (6)
2
E=azorml-

The first equation shows that t.he electrical conductivity in a magnetic
field is

2
oy = 8\ [EEE I o
Now,
_el(ep)
L, = m(eg)cH,Ll, (®)

whence the second of Eqgs. (6) may be written
= ) HIs
& = e o (Hy)
The coefficient of H.I, in this is the Hall constant R:

el(e) '
(&) ca(F’ ®)

which, when o(H,) is equal to the expression for zero magnetic field,
reduces to

BR=—-1 (10)

[¢f. Eq. (13) of Sec. 32] where no is the number of electrons per unit
volume.! It may be shown by tracing through the preceding computa-
tion that the negative sign of Eq. (10) arises because the conductivity
is related to,an electronic current. The sign would be reversed if the
carriers were positively charged. .

! We may ses from Eq. (9) that the product Re is the mobility (see faotnote 2,
. 68)
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TasLe XLIV.—CoMmrarisoN oF OBsERvED Harr ConsTAnTs WITH THOSE COMPUTED
ON THE Basis or THE FREB-ELECTRON THEORY
(In volts/ecm-abamp-gauss. Experimental values refer to room temperature.)

R -10u
Metal—— -
’ Observed Calculated
Cu | - 5.5 ~ 7.4
Ag l — 8.4 —10.4
Aw | = 7.2 -10.5
Li - 17 -13.1
Na — 25 —-24 .4
Be + 24 .4 - 2.5
Zn + 3.3 — 4.6
Cd + 6.9 - 6.5
« Al - 3.0 - 3.4
Fe +100
Co + 24
Ni - 60
Bi | H1~—1,000 | ~— 4.1
H| ~+ 300

Experimental and theoretical values! of R appear in Table XLIV.
The computed numbers are the same order of magnitude as the observed
ones for the monovalent metals. The signs are opposite for the divalent
metals beryllium, zine, and cadmium and for iron and cobalt. The
magnitude of the observed coefficient is one hundred times larger than

TapLE XLV.—TuE ErEcTrROoN Mopinrmizs oF SEvEraL MxTals As DErRIVED FROM
TRE Propuct oF TAE CoNDUcCTIVITY AND THE Hari Consrant

(In cm?/volt-se¢)

Metal ] Metai u

' Cu 1 34.8 Zn 5.8
Ag 56.3 cd 7.9
Au 20.7 Al ] 10.1
Li 19.1 Bi 1l 9.1
Na 48.0 2.1
Be 44 4

1 Bee, for example, the compilations of Landolt-Bornstein and the International
C'ritical“Tables.
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the theoretical one for bismuth. Both these types of anomaly have been
explained semiquantitatively by the band theory of solids.

"The product of the Hall constant and the electrical conductivity is
the electron mobility 4. Values of this quantity for several metals are
given in Table XLV. It may be seen that the mobility differs less from
metal to metal than do the conductivity and the Hall constant. Using
Eq. (13) of Sec. 32 and these mobilities, we find that I~ 5§ -10~7 cm for
the best conductors.

By a straightforward manipulation with Eqgs. (29), Sec. 31, we may
reduce the expression (7) for ¢(H.) to

o(H,) = F(o)(l - -"—'—Fp (11)
where
¥ kTl 1P
B= [m‘w"'c‘?o)‘] a2
and
C = o°R, 13)

in which R is the Hall constant (10).
Equation (11) predicts that & should decrease quadratically with H,

TasLe XLVI.—A ComparisoN oF THE Mzasurep Harn CoNsTaANTS wriTH THOSE
DereeMinep rRoM TEE ConpuctiviTY IN MaenETIC FimLps

(In volts/em-abamp-gauss)
R - 10
Metal
{ Observed From o(H,)
Cu -5.5 ~7.5
Ag —8.4 —-12.5
Au -7.2 T —-17.5
Zn 353 ~35
Cd 6.0 ~100
Al -3.0 13
Sb ~2,000 ~1,000

Bi | L-1,000 | ~—8,000

for weak fields and should asymptotically approach a constant value

n(l - -g) for large ﬁeid strengths. The observed values of C usually

agree in order of magnitude with those determined from directly meas-
ured values of the Hall coefficients. Table XLVI contains values of R
for copper, silver, and gold, determined directly as well as from measured
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values of ¢(H,).! Figure 12 illustrates the observed dependence of
resistance upon H. for a specimen of copper. The saturation effect
predicted by Eq. (11) does not appear for the range of field strengths
that has been employed in these metals. Table XLVI shows values of
R for zine, cadmium, aluminum, antimony, and bismuth which were
also determined from o(H.) as woll as by direet measurement. The
agreement is not so good as for the monovalent metals. The computed
values of B are about 104 times smaller than the observed ones at ordinary
teperatures, a fact showing that a more cxact treatment of the problem

is necessary.

02F
oir

0 100 200 300 400 500 600 700 800
H (Kilogauss)

F1g. 12,—Variation of the resistivity of copper in a magnetic field. The ordinate is
Ap/pe where pg is the resistivity in the absence of a field and Ap = p(H) — ps. Curvelis
obtained by fitting the points in the quadratic region near the origin with Eq. (11) when
C is sero. Curve II is obtained by adjusting both B and . The value of C obtained in
this way agrees closely with the theoretical value, whereas the observed B is about 104
times larger than the theoretical value. (After Sommerfeld and Prank.)

Qualitative explanations of this discrepancy have been given by
Sommerfeld and Frank and by Sommerfeld and Bethe,? and more
accurate treatments have been developed by Jones and Zener,* and by
Davis.* It may be shown that B depends upon the fluctuations in
velocity of an electron in the metal. In the derivation of the relation
(12), it is explicitly assumed that the electroni¢c energy is an isotropic
function of velocity, so that the only fluctuations that occur result from
the fact that the Fermi-Dirac distribution function has a tail of width k7.
In an actual metal it turns out, as we shall see in the following chapters,
that the energy versus velocity function is not usually isotropic, because
of the interactions between electrons and the lattice. The reader is

! Measurements by P. Kapitza, Proc. Roy. Soc., 128, 202, 342 (1929).
% BommErFELD and FRANK, op. cif. SomMERFELD and BETHE, op. cit.
8 H. Joxgs and C. ZENER, Proc. Roy. Soc., 145, 268 (1034).

‘L. Davis, Phys. Rev., 66, 93 (1939).
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referred to the paper by Davis for a more complete discussion of this
topie.

B. SEMI-CONDUCTORS

35. A Simiple Model of a Semi-conductor.—We shall discuss the
theory of semi-conductors on the basis of a simple model! that is adequate
for understanding most of the characteristic features of these substances.
We shall assume that there are n, bound electronic states per unit volume
having energy —Ae and that these levels are completely occupied at
absolute-zero temperature by n, electrons, In additien, we shall assume
that above these bound states there is a conduction band of levels that

>

[*}]

1.

& Free

] Electron
Levels

0

Bound
Levels

-Md__......._._._.{

X —
¥Wa. 13.—Model of & semi-conductor. The ordinate is energy and the abscissa is a
symbolical positional coordinate z. The region above zero energy is quasi-continuously
dense with free-electron levels. The levels at —Ae¢ correspond to electrons that are Found
at particular positions in the lattice.
are completely unoccupied at absolute zero (see Fig. 13). The density
go(€) of conduction levels will be taken as

go(e)de = C/ede e>0 ()]
where for a unit volume,

_ 4x(2m*)

lef. Eq. (9), Sec. 26]. We shall assume that it is permissible to speak of
velocity, momentum, ete., for electrons in the conduction band in the
conventional way.

Some clectrons are thermally excited from the bound states to the
conduction band at temperatures above the absolute zero. The number
of electrons n(e) per unit volume having energy e is

n = —9©__ ®)

e—e

e-.i:"i"..*.]_

! 4 model similar to this was proposed by A. H. Wilson, Proc. Roy. Soc., 133, 488
(1331); 134, 277 (1931).
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where g(e) is the density of levels and ¢ should be determined from the
usual condition '

f_:n(e)de — (4)

The density function g(e) is given by Eq. (1) when e is greater than
zero, and it is zero for all negative values of e except —Ae. According
to our assumptions about the density of bound states, the density must
be so great at e = — Ae that

ﬁ’ _g(e)de = m. (5)

The discontinucus function defined in this way may be approximated as
closely as we please by a continuous function. The only one of its
properties we shall use is the relation

2 F@9(9de = mf(~n9) ©

where f(e) is any continuous function of e.

We shall divide the integral in Eq. (4) into two integrals, one extend-
ing from — e to 0 and the other extending from 0 to «. The first
integral is '

0 1 1 -
g()=g—de = my—g—g— @
L LS | e T 41

as we may see from Eq. (6). The second integral is
f : ' (8)
. *T +1
This ev:dentlv is equal to the total number of excited electrons, which,

to begin with, we shall assume small compared with n,. It is ObVIOJS
from the form of the Fermi-Dirac distribution function that the qua.nt.:t.y

(8) is small only when —¢ >» k7', that m, when e‘f 1. We may

use this fact to expand (8) in terms of eT If we retain only the first
term, the result is

C ‘/_“”‘ ~ Ceﬂ'f e ff«/‘ede = cet"f(k:r')l%. (9)
_T + 1
Thus, Eq. (4) is

o
oﬂ(m"’f + s _Mf., = 1,
e M +1
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or
CHTUTIYT = iy — (10)
e T 41

The guantity on the right-hand side of this equation is the number of
electrons that have been excited from the bound states. The condition
that must be satisfied if this is to be small compared with n; is that
¢ should be much larger than — Ae, so that the exponential in the denom-

inator may be dropped. Wc have, as a result,

2¢ _ A
e*_T'C(kT)?lg—; = me *T, (11)

or
, Ae | kT 2
= =25 4 2 og —22
‘ z t 2 e o
The second quantity on the right is of the order of magnitude k7 for
ordinary densities of bound electrons. Thus ¢ is very ncarly equal to
—A¢/2 when Ae is greater than k7' (Fig. 14).

(12)

L
!
. free Electron
Levels
i
Bound
—~ -— = ——-=flectron
Levels
X —

(1]
e

Fia. 14.—The position of the distribution function f(e) relative to the energy level
diagram of Fig. 13. The point € = eo of the distribution function occurs ai the point
—Ae/2 when Ae> >kT.

Substituting (12) into Eq. (3) and neglecting small quantities, we
find that '

§ __ A« )
nle) = m*[m?}—f——:] e W FT\/¢ (13)

7=

This becomes ideutical with the classical distribution (13), Sec. 26, if
we say that the number of free electrons per unit volume 7, is given by
the temperature-dependent quantity '

: ¢
iy = .m*[léj(kTFC] e_%. (14)
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If kT is large compared with Ae, it is evident that practically all the
electrons will have evaporated from the bound levels and that n, may
then be set equal to n,.

We shall proceed to discuss the conductivity, the thermoelectric
effects, and the Hall effect in semi-conductors and shall use Eq. (10) in
the same way that we used the Fermi-Dirae distribution in metals. For
convenience, we shall write Eq. (13) in the form

n(e) = ae /e (13)
where
R T B
/= (kT)t

36. Electrical Conductivity*.——According to Fq. (5), Sec. 32, the

electrical conduectivity o is

I:: 4” 2 ® n
oml tr L o2y 1)

where fldv.dv,dv, is the number of free electrons per unit volume having
velocity components in the range from #, to v, 4 du., etc. The relation
between < and v is

m*y?

€ = ——mn

2

_in our model of a semi-conductor. Hence, f} is related to n(e) in Eq. (12)
of the nreceding section by the equation

4nf%%dy = n(e)de. (2)
Thus,
nfe),/m*\?
ot = (')
- 2(”;_‘.‘)'@“%‘3‘, 3)
and
oo = ﬂ.gf\f%a ﬁ zegg(e'f“f)de. )

A simpler way of obtaining the same result is to recall that the distribu-
tion function in the present case is the limit of the ¥ermi-Dirac function
when ¢’ is negative and is equal to the quantity in Eq. (12) of the preceding
section. Then the equation for the conductivity (and for the thermo-
electric effects) may be derived by replacing the Fermi-Dirac funetion f
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in all the equations of Sces. 32, 33, and 34 by the follomng appmxunate
value:
o ﬁ‘“ﬁh=:__JE§__]*‘ﬁﬁ'1?
F=ete [o(w)i\/; e e

= g.ﬁ?. : (4a)

Equation (8), Sec. 32, then leads to Eq. (4).
We shall assume that ! is a constant I, for the range of velocities over
which the integrand is apprecia.ble Then,

__4nde’
J- kT = ®)

This equation was derived first by Lorentz,! who used it for metals
under the assumption that n, is the number of free electrons per unit
volume. In passing, let us compare Eq. (5) with ¢ in Eq. (13), Sec. 32.
We shall call the latter o, and shall set n; = n,. The ratio of the two
conductivities is

g _ 3 vV 2xm 2xm*k Tl(e,) 6)
ce 4 mo(e) Ll

If we assume that I(ep) /o is of the order of unity, this ratio is of the order

A/kT/e, which is about 10~ at room temperature for ordinary metals.
Thus, ¢, agrees with experiment at room temperature only if we assume
that either n, or l, is ‘about 10—! times as large as the corresponding
quantities that appear in g,. Thus, the classical mean iree path must
be of the order of '10~® em if n, is assumed to be equal to n,. Then,
contrary to experiment, the contribution to the electronic heat must be
taken as 3R/2 per mol. On the other hand, if we assume that the
classical mean free path is the same as the quantum mean free path, we

must assume that
' k
ny = no\/;f . (7)
0

There is no a priori reason for making this assumption on purely clacsical
grounds. Actually, the use of quantum statistics is equivalent ta
eliminating all but a fraction of the free electrons, as we have pointed out
in previous sections.

18ee footnote 2, p. 139.
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Returning to semi-conductors, for which n, is expressed by Eq. (14)
of the preceding section, we see that

As
o = mi 33@ %‘?fm*k?)ie“m. . (8)

In the range of bcmpera.t.ure in which kT < Ae/2, the coefficient of
de
e 2T yaries so slowly with temperature, compared with the exponential

Ae
e 2FT that (8) agrees within experimental error with the observed law

.. E
o ¢ =Ae ¥ (9)
(¢f. Sec. 8). We conclude that the observed F and A are related to
quantities in Eq. (9) by the equations

_ Ae
—2

=3
A= 4‘/5“ “(zm‘km!

= 0.0241.,13;*31‘* ohm™! ¢m~—1, (10)
The numerical value of A has been determined by setting 12* equal to the
actual-electronic mass.

37. Thermoelectric Effects and the Hall Effect in Semi-conductors.—-
According to Eq. (8), Sec. 33, the Thomson coefficient vr is
T df Ky ¢
¢ a\TK, 'J") (1)
where the quantities K; and K, must be evaluated by use of the classical
value of f in the manner described in Sec. 26. We find

K _ @
TK: - %,
i J; ze—*dx

if we assume that l is constant. The expression (2) contributes nothing
to (1), since it is independent of tempernture Hence,

Ae
er = — dT( ) 10 T. @

The Peltier coefficient ;. and the Seebeck emf Fs are related to ar
by Eqgs. (10) and (12) of Sec. 33, namely:

dT(fn—»s) - crr ! (4)

T'f
Fa= L» **,:'*dr ®)

oy = —
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The value of the Hall constant R is

Ly 1
R = -1 A=ty ®)
fef. Eg. (6), Sec. 34], where the ratio Ls/L; now is
- "¢ of
Ly _ ey Jo vac™ -
L m »
' ¢ f (-g’fde
0 Je€
eH,, B,
" ame "N kT
Hence,
e xlo
Ro(H,) = T okt 2 ®)

As in Sec. 32, we shall assume that ¢(H) is equal to (0} for ordinary
fields. Then ¢ is given by Eq. (5), Sec. 36, and

R= "% —-. (6)

All the electrical quantities in these equations are expressed in electro-
static units.

Let us apply these equations to the case of zine oxide, which is a
typical semi-conductor. Its properties, which have been measured by
Fritsch,! are strongly dependent upon such factors as thermal treatment
and oxygen vapor pressure. This behavior is characteristic of most semi-
conductors (¢f. Chap. I). The temperature dependence of the conduc-
tivity of a particular specimen is shown in Fig. 15a. These results may
be fitted by the function

_E
c= Ae *T

where A is 3.72 ohm—! em~1 and E is 0.013 ev. This specimen was then
kept at 900°C for 30 hours in an atmosphere of oxygen at 120 atmospheres.
As o result of this treatment, 4 changed to 2.1 ohm™! e¢cm~!, and E
changed to 0.38 ev. Thus, the room-temperature conductivity fell by
a factor of about 10%. The fact that A was nearly the same before and
after the heat treatment indicates, according to Eq. (10), that the product
Inyt did not change by a large factor during heating. The Hall constant
of this specimen was not measured, but it was measured on another
specimen before and after heating in the high-pressure furnace. In this

1 0. FrrrscH, Ann. Physik, 22, 375 (1985).
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case, A changed from 5.63 to 0.62 ohm~! ¢m~!, and E changed from
0.012 to 0.063 ev after 120 hours of heating. It is interesting to note
that the change induced in ¥ in this case was not nearly so large as in
the case cited above, although the heating in oxygen was extended about
four times as long. Apparently erratic results of this kind are character-
istic of semi-conductors. The room-temperature Hall constants, before
and after heating, were —9 X 10~%and —380 X 10~ volt/cm-amp-gauss,
respectively. From these results and Egq. (9), we may conclude that n,
dropped from 8-10'7 to 2-10!¢ electrons per cubic centimeter as a

-1
[ |
log &
{(Q7em)
.-.4 -
1 i E I 1 H L i
3 4 5 & 1T 8 9 W
(a) 4 %10% —
03F TK
ol AN -
&£
T
oir

W0 20 40 80
(b) T°C —>
F16. 15.—a, the log o versus 1/T plot for a specimen of zine oxide; b, the Seebeck emf per
degree for the same specimen. The ordinates are in units of millivolt/deg.
result of heating. The product R at room temperature, was —30 - 108
gauss—! before heating and remained practically unchanged. This,
according to Eq. (8), implies that I, was about 1.7 - 10~7 cm.

Figure 15b shows the Seebeck emf per degree as a function of temper-
ature for a copper-zinc oxide system. These measurements were made
on the second specimen discussed in the previous paragraph after it was
heated. The Seebeck emf per degree should be equal to the derivative
of (5) with respect to T"’; that is, it should be equal tc

e ®
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This expression may be related to the Thomson coefficients of copper
and of zine oxide by means of Eq. (4). We shall assume that the coefi-
cient for copper is negligible compared with that for zinc oxide, basing
this assumption on the fact that the Seebeck emf for metals is about 103
times as large as that for semi-conductors. The quantity (10) is then

’
Wi—2 ) € (11)

T =T
because of (3) and (4). Substituting the value of ¢ derived in Sec. 35
[¢f. Eqgs. (12) and (14)], we find

= —% %—f+klog£-f . (12)

Since the measured value of Aeis 2 - 0.063 ev, Eq. (12) predicts an effect
of the order of magnitude 0.4 - 10~* volt per degree, which agrees
roughly with the observed effect. The precise variation, however, does
not seem to lie within the deseriptive power of the simple theory.

~ Thig manner of correlating the properties of a semi-conductor may
be applied to a large number of other cases. It should be emphasized
that the simple theory we have used applies only to those substances
for which the Hall effect, is negative. There are, however, & large num-
ber of substaneces, such as copper iodide, for which the Hall constant has
a positive sign, as though positive charges carry the current. We shall
return to a discussion of these substances after developing the band
theory of solids.



CHAPTER V
QUANTUM MECHANICAL FOUNDATION

In Part A of this chapter we shall consider the principles and theorems
of quantum mechanics that have particular use in the theory of the solid
state. Although some of this material may be well known to the reader,!
we shall present it here in order to place it in a form that is consistent
with the treatment of later chapters. In Part B, we shall discuss the
theory of radiation.

PART A

38. Elementary Postulates of the Theory.—The development of
the nonrelativistic form of quantum mechanics, with which we shall be
solely concerned, brought with it a revision of the logical and mathe-
matical discipline of mechanies. This revision was necessary in order to
include principles that are applicable in a larger domain of the physical
world ‘than that in which the classical laws are valid. There is 8 cor-
respondence hetween the classical and the quantum mechanical laws,
for the domain of the former is contained in the domain of the latter.
Thus, there is a quantity in quantum mechanics corresponding to each
quantity in classical mechanics, and the quantum laws reduce to the
classical ones when Planck’s constant may be regarded as a very amall
quantity.

One of the primary features of quantum mechanics is the introduction
of a state function which is said to deseribe a given dynamical system
completely when the system is in & given state of motion. This function,
ag we shall use it, is an ordinary function of Cartesian coordinates. Al
available information may be derived from the state function by the
proper use of certain operators that correspond, individually, to measur-
able guantities, such as position coordinates, momentum, energy, etc.
Neither state functions nor'the operators have immediate physical
signifitance; only certain quantities derived by proper juxtaposition of
the two are measurable numbers.

! General references: P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford
University Press, New York, 1935). 8. Dusaman, Elemenis of Quantum Mechanica
(John Wiley & Sons, Inc., New York, 1938). E. C. KemsLr, The Fundamenial
Principles of Quantum Mechanics (McGraw-Hill Book Company, Inc., New York,
1037). V. Rosansky,: Introductory Quanium Mechanics (Prentice-Hall, Inc., New
York, 1988). ’
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The most convenient definition of an operator, from our standpoint,
is the following: An operator is a quantity symbolizing a process in which
a given function is changed into another funetion. For example, the
preeess of taking the square root of a function defines an operator. If

we designate this operator by v/ and the operating process by a dot, we
have

V=T

that is, v/ operating on f gives 4/f. Similarly, we may regard the
ordinary differential symbol 3/8z as an operator for which

a _ of
3z flz) = 3r

Likewise, the multiplication of the functions f(z) and v(zx) defines an
operator since the product v(z)f(z) is a new function of z.

Complete description in quantum theory does not imply precise
knowledge of all measurable quantities at all instants of time as it does
in classical mechanics. Quantum mechanics is primarily a statistical

" theory; its results tell us the mean or expectation values of measurements.
Thus repetition of the procedure for making a precise measurement of a
given quantity usually should not lead to a repetition of results even
when the system on which measurements are made is in the same state
at the beginning of each measurement. This principle is to be con-
trasted with the principles of classical theory, according to which ome
should expect precisely repeatable results under identical experimental
conditions.

The statistical formulation of quantum theory is believed to be
ultimate, in contrast with the formulation of classical statistical mechan-
ies in which probability is introduced only as a convenient tool. Thus,
it is believed that the limitation of description contained in quantum
theory can be verified by direct experiment. The electron-diffraction
experiments! of Davisson and Germer, Thomson, and Rupp and the
molecular-beam experiments of Rabi® and his coworkers have gone a
long way toward providing this verification. Even without this direct
experimental check of the uncertainty relations, however, there is over-
whelming experimental evidence of other kinds to justify the use of
quantum mechanics for the types of problem that are considered in this
book.

1 (. Davisson and L. H. GerMer, Phys. Rev., 30, 705 (1927}, G. P. THomsON,
Prgc. Roy. Soc., 117, 600 (1928); 119, 651 (1928). E. Ruir. Ann. Physik, 85, 981
(1925).

* 1. Rami, Phys. Rev., 49, 324 ff. (1035).
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Although experimental results usually should not be precisely repeat-
able, there is one case in which duplicate observations should give
identical results. Suppose that a is the operator corresponding to a
given observable quantity and that f is the state function of a system
for a particular state of motion. Precisely the same values of the
measured quantity associated with a should be obtained when the
system is in the state f if

af=df @)
where a is constant. Moreover, the number a should be the resulf of
each measurement. A function f that satisfies an equation of this type
is by definition an eigenfunction of the operator .- «a is called the eigen-
value of f.

From a practical standpoint, the problems in which we are primarily
interested are to determine (1) the possible forms that may be given to
the state function and to the dynamical operators and (2) the dynamical
laws of the theory. The solutions may be placed in many possible forms,
just as in classical theory. A serviceable form for our purposes is the
one based on Schrédinger’s scheme. It may be summarized in the
following way:

a. The operators that correspond to the Cartesian coordinates
Z;, Yy, 2i of the ith particle of a system and to the time variable ¢ are taken
to be the variables themselves. The state function f is then chosen as a
funection of these variables. Then,

f = f(xlr Y, 21, ¢ * * 3 Tny Yny 2Zny t)‘

b. The operators of the variables that are conjugate to these variables
in the classical sense, namely, the corresponding momenta p., Py,

Ds, * -+, Ps, and the negative of the Hamiltonian function H are taken
in the form

kR ko L o hao

Tom’ iy vion  iob @

respectively. In classical dynamics, — H is the conjugate of ¢ only in the
special case in which it is independent of time. The assignment of the
operator w?% to H is assumed to hold, however, even when H is
dependent on time.

¢. The operator corresponding to any classical dynamical variable
that is a function of the z, the p, and ¢ may be obtained by replacing the
p by the difierential operator introduced in part b. In particular, the
operator corresponding to the Hamiltonian funection, which generally
has the form, : .

H(zh tt yBayDPay oty Py, t)
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H(I‘h Cr oty iy i‘_g" ot ﬁ‘i) ) (3)

1 01, T 0z,

This operator must be equal to —ﬁ 3 if the identification presented in

10
part b is also correct. Since this relation is not an identity, it is neces-
sary to assume that the theory is concerned only with those state fune-
tions that satisfy the relation

hao _h__:_a_ ____hﬁf
H(Ii, s, 2ny ;-55‘;) %az"}t f-- - (4)

This is the furdamental dynamical equation of guantum mechanics,
which is used to determine the state function. We shall refer to it as the
first Schrodinger equation.

d. The states that are eigenfunctions of the encrgy operator satisfy
the equation

haf o, _
Hf = ~3%% = Ef. )
Henee, they must have the form
F
=Wy, <, z)e P (6)
where ¥ satisfies the equation
HY = Ev. ()

This is the second Schrodinger equation.
e. [t was mentioned in connection with Eq. (1) that the observed
value of « is always a if a system is in a state f that satisfies the equation

af = af.

If the state function is not an elgenfunctlon of @, the mean value & of
the measured value is

*x - fdr
Uff “ﬁ;‘i : @®

where the integration is to be extended over all values of the z and ¢; f*
is the complex conjugate of f; and dr is the product of df and the voiume
clement in 3n-dimensional configuration space. Whenever [f*fdr is
infinite, d is the limit to which the ratio (8) approaches as the volume
of integration is gredually increased to include the entire space. Since
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all measured quantities are real, the allowed operators a must satisfy
t he relation

Jf*e - ar = [f(a - f)*dr. )

Such operators are called Hermitian.

f. One may legitimately ask for the operator that corresponds to the
m easurement of whether or not the system has the coordinates zj, - - -,
zi, ¢. It is difficult to formulate this operator in a mathematically
rigorous fashion in the Schrédinger theory. This difficulty may be
avoided by defining the operator to be one for which the integral (8) has
the value

f‘f(xii e 12:;: t’)' (10)

Thus, f*f(=], - - + , 2, t') is interpreted as the probability that the system
has the coordinates z;, + - - , 2., ¢. If fis an eigenfunction of the Hamil-
tonian operator, it has the form (6), and the quantity f* = ¥*¥ is
independent of time. States of this type are said to be stationary.

g. It is natural to expect that f*f should be an integrable function if
f*fisinterpreted as the relative probability that the system should occupy
the coordinates zf, - - -, 2. t’. This is a general restriction on the state
function. Ordinarily, this condition is fulfilled by demanding that f
should be finite everywhere; the more accurate condition, however, is
that the integral of f*f over any finite volume should exist and be finite.

It may easily be shown! that classical mechanics and quantum
mechanics lead to identical results in the ordinary large-scale domain in
which classical mechanics is ordinarily applied.

39. Auxiliary Theorems.—There are several additional theorems
that are frequently used in conjunction with the preceding principles
because they are useful in applying the theory to specific problems.
They may be listed in the following way.

a. The purely spatial part of an eigenfunction (6) of a time-independ-
ent Hamiltonian operator may be used without the time-dependent

iBt
factor ¢ » when the mean value of any time-independent operator is
computed, since these factors cancel out of the integrands in Eq. (8).
Since the eigenfunctions of other operators usually do not satisfy the
time-dependent Schrédinger equation (4) and hence cannot be written
in the form (6), their purely spatial eigenfunctions usually cannot be
used in the same way. We shall mention two useful theorems concerning
the spatial eigenfunctions of Hérmitian operators.
1. The space eigenfunctions ¢y, ¥, - - - of any time-independent
Hermitian operator form a complete orthogonal set; therefore, any space
! 8ee KEMBLE, op. cit., p. 49.
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‘function ¢, such as an eigenfunction of a Hamiltonian operator, may be
..expapded in terms of them in a Fourier-series fashion. Thus,

¢ = E.Gc'h )
where
_ Jobtdr(zy, <+« 2a),
* [ZE @

2. The condition that must be satisfied in order that two operators «
and § may have all eigenfunctions in common is that they should com-
mute, that is, that they must satisfy the condition

(B — Pa)y = 0 @

for arbitrary ¢. This theorem is particularly useful when we have
operators that commute with the Hamiltonian operator of a system, for
then we may choose the stattonar}’ states to be eigenfunctions of all
these operators.
b. Normalizing Conditions.—Since it is possible to interpret |f(z,,
, Za, £)| a8 the relative probability that the system has the coordi-
nates z,, « « - , 2, &t time ¢, it is reasonable to ask that f should satisfy
the equation

flf(xh sty iy t)lzd'r(xh resy, A) =1 4)

at each instant of time, where the integration extends over all s.pa,ce.
This is known as the normalizing condition. Since the relation

& fidrtar, -+ ) =0 ®

may be proved by use of the Schridinger equation and the Hermitian
condition on H, a state function that is normalized at one instant of
time remains normalized at all later times. As a rule, normalized func-
tions are used because they give absolute rather than relative probabilities.

¢. The Variational Theorem.—QOne of the most powerful tools for
obtaining solutions of the S8chridinger equation by means of approximate
methods is furnished by the variational theorem of quantum mechanics.
This theorem states that functions ¥(z,, - - - , 2,), for which the varia-
tion of the mean value

I‘y*a‘l’d‘f’(ﬂ-l, .. ’ 2,.) )
T9*%dr (6)
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is zero, satisfy the relation
a¥ = a¥l,
The converse of this is also true.
‘We shall prove this theorem for the case in which « is a time-independ-

ent Hermitian operator and in which integration extends over all space.
We have, as the condition on 4,

f¥*a¥dr

3 = ¥ g =0 (®)

where 34 ix}dica.tes the variation in & that is to be associated with a
variation §¥ in ¥. If we set

A = [V*aVdr, )
B = {¥*¥dr,
3d becomes
A B3A — AdB
o = a(y -—g— =0 (10)
Hence, we must have
438 — 14 = 0,
or
asB — 84 = 0, (11)
since S
A
d = 5
Now,

$A = [0V *%a¥dr + [Y*ab¥dr,
B = [5¥*Vdr + [¥*5V¥dr,

whence (11) may be written in the form
fo¥%(a@ — x)Wdr + [¥*(@ — a)d¥Wdr = 0
or in the form
| JoNE — a)¥dr + [8¥(8 — a)¥%dr = 0, (12)

since a is Hermitian. If we express ¥ in terms of its real and imaginary
parts, ¥, and ¥, respectively, (11) becomes

[o8¥,(@ — a)¥dr + [8¥(d — a)¥dr = 0.
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’i necessary and sufficient conditions for this equality are that

@— a)¥, =0,
(d - CI’.)‘P{ = 0,

since both 8%, and 3¥; are arbitrary. Hence, the necessary and suffi-
cient condition for the validity of Eq. (8) is that ¥ should satisfy the
equation

a¥ = av. (18)

It is not possible without further investigation to say whether a
particular ¥ satisfying (13) gives @ a maximum value, & minimum value,
or just an inflection point.

If we apply this theorem to the Hamiltonian operator H, there gen-
erally is a lowest value of the mean value corresponding to the stationary
state of lowest energy. States of higher energy are invariably orthogonal
to this, as we mentioned in part a. Hence, the state ¥,, just above the
lowest ¥;, may be specified by the two conditions

f‘Pg*H‘P?d‘r _
“Tevdr (14)
[¥*¥dr = 0. (15)

The necessary and sufficient condition for these equations is that
¥4 should satisfy the relation :

H‘I’: = (E - }\)‘I'z = E"I’g

where the Lagrangian parameter A may be determined by the condition
(16). Higher discrete states may be defined in a similar way by the
condition (14) and by additional conditions of the type (15) which
express the fact that the higher state is orthogonal to all lower ones.

The variational theorem shows that the accuracy of the mean value
of H for a given approximate function f is usually greater than the accu-
racy of the mean value of other quantities. This fact may be shown
directly as follows. Suppose that f is expressed in the form

f=V¥+ ad (16)

where ¥ is the exact cigenfunction, which f represents approximately,
and o® is the part of f orthogonal to ¥. We shall assume that ¥ and ¢
are normalized and that « is a small number. The mean value of H
for the function (186) is

J(¥* 4 a2¥)H(¥Y + a®)dr _ (B + «*[®*Hedr)
. 1+ «?) - 1+ a?
where E is the eigenvalue of ¥. Thus, the fractional accuracy of ¥ is
the square root of that of E. Since the mean values of other operators
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involve terms in the first power of «, their fractional accuracy is also
of the order of the square root of the accuracy of the energy.

40. Electron Spin*.—A significant feature of the preceding formuiation
of quantum mechanics is that it contains an operator for each classical
variable. It has been found necessary to introduce other operators
that do no* correspond fo clggsicaily measurable quantities, in order tc
explain certain experimental chservations. Most important among
these operators are those associated with electron spin. Historicelly,
they find their origin in an sttempt of C.oudsmit and Uhlenbeck to explain
certain features of atomic spectra that had not been previously inter-
preted. These workers were led to assume that an electron possesses a
spin sbout an exiz passing through its center and that the total spin
angulsr ravmentuia is equal to /2. This condition on the angular
momertum may be expressed in the form

[Pl =

o= VATATat=b

where o, ., S0 o, are, respectively, the x, v, and z components of spiu
angular mowcd . In addition, they found it necessary to assume
that the magnetic moment g, associated with electron spin, is ralated to
the mechanical moment é, by means of the equation
e .-
v = —_-d @
In contrast with this, the relationship between the orbital angula:
momentum L (that is, the angular momertum of an electron moving
about an axis that does neot pass through it) and the orbital magnetic
moment M, is

e . .
MO = —E?’E‘;Ls (0)

that is, there is av additional factor of 2 in the right-hand side of Eq. /2).
There have been several attempts, based on classical electromnagnetic
theory, to prove that the mechanizal and magnetic moments of a spinning
spherical charge distribution actually de satisfy the relation (2). At
present, this work is generally regarded as inapplicable, aside from being
inconclusive, for the phenomenon of electron spin is viewed as lying
outside the demain in which classical concepts have meaning.

The most complete theory of spin yet devised was discovered by
Dirac? in a search for a form of quantum mechenies that satisfies th»
principles of relativity. llquation (2) arises as a by-produet of other
ussumptions in Dirac’s theory. We shali not be concerted with the

¢ Bee ibid., p. 510.

3 Zen Royansky, op. cif.
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details of this theory, for we are interested only in the nonrelativistic
approximation. In this case, spin may be handled by a scheme developed
by Pauli-to which Dirac’s treatment reduces when the velocities of
electrons are small compared with the velocity of light.

The significance of spin in Pauli’s theory is connected with the state-
ment that electrons are particles for which the complete state function
has two components instead of one. The two components are not
scalar functions in the sense that they are independent of the choice of
coordinate system in three-dimensional space, for they transform between
one another in a complex way when coordinate axes are transformed.
Thus, it is customary to introduce the concept of a two-dimensional
spin space in which the two-component functions of the state function
are represented .as orthogonal components of & spinor. A transfor-
mation of coordinate axes in ordinary space induces a correspond-
ing transformation in spin space. We shall not consider the details
of spinor transformation theory because we shall have no explicit use
for the transformation equations.! It should -be mentioned, however,
that the transformation characteristics of two-dimensional spinors are
considerably different from those of two-dimensional vectors.

The introduction of spin in the quantum theory of electrons is
analogous to the introduction of the concept of polarization into the
theory of light. Suppose that we were acquainted with none of the
polarization phenomena of optics. Then it would be possible to describe
many optical experiments, such as those of interference or of energy
transport, by assuming that the amplitude of a light wave is a scalar
quantity, just as the amplitude of sound. As soon as experiments on .
polarization are performed, however, we are compelled to say that there
is & vector character associated with the amplitude of g light wave. This
vector character may be described by taking components of the ampli-
tude in two orthogonal directions of polarization. The analogy between
the electron and the light wave does not hold in a quantitative way,
however, for the two independent directions of electron polarization are
separated by 180 degrees rather than byugo degrees, as they are for light.
This fact marks the difference between vector character and spinor
character.

¢  We shall represent the coordinate variables in spin space by {; and ¢;,
respectively. A unit spinor in the direction of the {; axis has components
f1 = 1, {3 = 0 and may be represented by the column matrix

n(1,0) = ((‘,) @

t 8ee, for example, E. P. WieNER, Gruppentheorie (Vieweg, Braunschweig, Ger-
many, 1931).
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s unit spinor along the {; axis may be represented by

0.1) = \1) ®)

Pau!s aszumr i%34 the eccmponenis of spin angular momentum
representad in spin space by the matrices

) A' f) ™= g(? _z) (0 1) ©

The spincr »{7,0) . - ¥ig. /4) satisfies the relation

o, - (1,0) = gn(i,b}, )
- and n(0,1) satisfes
o m(0,1) = —u(o). O ®
_ Hence, these two spinors are said to corresp-ond respectively to the pre-

cise values 434 and —3h of the z component of spin angular momentum.
A direct computation of the matrix

¢ = ol +al+dl, ©
which corresponds to the total spin angular momentum, shows that
o = -w(é ‘1’) (10)
Thus any spinor n(}y, {») satisfies the equation
6% m($y, £2) = 4% a($y, 1), (1
and the precise value of the square of the total spin angular momentum

is 3h%/4.

 In the ccordinate system in spin space for which the matrices of
02, 0y, and o, have the form (6), the two components of the state function

may be labeled by a variable {, which takes two values, namely, +1
for-the coordinate going with the diagonal element &/2 of o, and —1 for
the coordinale going with the value —#/2. In other words, we may
label the axes in spin space with the eigenvalues of 20,./A, instead of by
the indices 1 and 2. The state function then has the form f(z,y,2,{:), it
being understood that f(z,y,2,1) and f(z,y,2,—1) are the components of a
spinor

f(xl y! z) 1 )
(z!ylz! - 1) ) (12)
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All state functions (12) are eigenfunctions of the total squarc spin angular
momentum (10). The reader may readily verify that the state funetions

(f(xby_,z)) and “(f(z?y,z))

are eigenfunctions of ¢, and that

f(z,y.2) and ( f(@,y,2)
1 f(z.y,2) T (z,y,2)
are eigenfunctions of ¢, and oy, respectively.
Classically, the components of angular momentum of a particle, rela-
tive to the origin of coordinates, are given by

Ma = YPs — ZPy,
My = 2P — z'p.,} (13)
My = TPy — YPs,

where z, y, z are the spatial coordinates of the partiele and p., py, p, are
the components of angular momentum. The quantum operators that

correspond to (13) are
m, = (ya'; - z@)

h
my = :(’*’a - +2) 4o

By yaa;

It is easily shown that these obey the commutation rules

MMy ~— MM, = himy, (15)
MMy — MyMa = KTy

Since the spin matrices (6) obey exactly the same commutation rules,
they may be viewed as quantwin mechanical angular-momentum oper-
ators even though this angular momentum cannot be measured directly,
even in an idealized experimont.

Along with the spin operators, we may introduce the following
operators:

myms — mymy = him,,}'

Hz = E‘CG' £

Hy = 0y, (16)
me
]

M = T2y

me
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which we shall call the components of spin magnetic moment. The
choice of coefficient in these relations is justified both by Dirac’s theory
and by experiment, as we have said previously.

When the mechanical system contains n electrons instead of 1, the
state function must be viewed as a spinor in a 2*-dimensional spin space.
We may choose the coordinate system of this in such a way that the
components of the state function are labeled by n variables {5, {ay + + -,
t.., each of which takes the two values +1; that is, we may wrile the
state function in the form

f(xly oy 2, fzu ot s{:n)' (17)

The function of z1, + - - , 2 associated with each of the 2" possible values
of the ¢. is a component of a 2*-dimensional spinor. It is implied that the
operators o.,(¢ = 1, - + + , n), corresponding to the z components of spin
of the n electrons, are 2*-dimensional diagonal matrices in this coordinate
system and that the diagonal element of 2¢,,/h is +1 or —1, respectively,
for the coordinate axes for which {,,is +1 or —1. Similarly, the matrices
gz, and oy, are represented by 2"-dimensional matrices that have the
form (6) in the two-dimensional subspace that is associated with the two
axes labeled by ¢1, ¢3, * * *, (i, £1, thay - ¢ ¢, th. All other com-
ponents are zero. It is easy to show that the ¢ satisfly the commutation
rules

(18)

Oyi0sz; — Oz0y; == sia'hwm
00z, — G205 = Oijhioy,,

00y, — Oy0z = bihios,
The matrices 6] = o7 -+ o}, + o}, are diagonal matrices, all diagonal
elements of which are equal to 3k*/4 [¢f. Eq. (10)].
The three matrices, defined by the equations

n

2, = D)o
1=1

3y = 2""‘ (19)
=]

Z, = i:gu
i=1

are called the operators of the components of the total spin angular
momentum, and

X =314 2} 4 =} (20)
is ealled the square of the total spin angular momentum. X, 3, 2
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commute with X2 and obviously satisfy the commutation rules

}:yz: - >--"::2:3;' = ?'?J.E,,
3.5, — 2.3, = k3, (21)

E:Ey - E,,-E; = éhz;,

because of Eqs. (18). The one-electron operators sx, oy, and o, com-
mute with 2., Z,. Z., respectively; but the pairs ¢., and Z, do not com-
mube with one another. Moreover, the one-clectron operators do not
commute with £? when there are two or more electrons in the system.
dence, the one-electron operators will not be in diagonal form if the
coordinale axes are sclected so that Z. and X? are diagonal.

If the Hariltonian operator does not centain any spin terms, as
happens in many actual cases, it commutes with all spin operators.
Then the stationary slates of the system may be chosen to be eigenfunc-
tions of any set of commuting epin operators, such as the set Z,, 5., -

0., Or the set £2, =, The second sct is particularly useful when the
Pauli principle, which we shall describe in the next section, is properly
taken into account.

41, The Pauli Principle and Related Restrictions.-—The Hamiltonian
operator of any system that contains at least two particles of a given
kind remains invariant in form if the coordinates of like particles are
permuted among themseives. It may be shown that for this reas>n the
set of stationary states of the system that are associated with a given
eigenvalue of the Hamiltonian transform among themselves in one of
several different ways when the coordinate variables are permuted.
The theory of groups of transformations is particularly concerned with
this property of eigenfunctions. This topic need not interest us at
present, however, because of the Pauli exclusion principle which states
that the physically permissible solutions of Schrddinger’s equations
behave in definite ways when the coordinates of particles ar: permuted.
In particular, the Pauli principle requires that the state function be
antisymmetric under electron permutations; that is, the state function
must transform into its negative under odd permutations of electrons
and into itself under even ones. It is also true that the state function
must be symmetric under the permutation of the coordinates of light
quanta; that is, it must transform into itself under both.even and odd
permutations in this case.

The fundamental reason for these requirements is not completely
understood at present. It seems reasonable, however, to expect that the
exclusion principle will appear as the natural consequence of some general
invariance principle, possibly unformulated as yet, just as the concept
of spin arises out of the requirement of relativistic invariance in Dirac’s
theory. '
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Statistical theories, corresponding to classical statistical mechanics,
that take the exclusion prineiple into account have been developed! by
Fermi and Dirac for the antisymmetric case and by Bose and Einstein
for the symmetric one. '

It seems to be a general rule in nature that all clementary particles,
except photons, obey Fermi-Dirac statistics. The statistical behavior of
nuclei, as is determined from the analysis of band spectra, is explained
completely by assuming that nuclei are composed of protons and neu-
trons. In order to remove the single exception, photons, it has been
postulated that light quanta are composed of two elementary particles
which are not observed separately in standard optical experiments. The
evidence [or this postulate, however, is not very conclusive.

The antisymmetric states are the most important ones from the stand-
point of the electron theory of solids. Although the actual process of
selecting such states will be discussed in detail in sections that deal with
the approximate solutions of the Schridinger equation, there are several
points that should be brought out here. :

Suppose that we have a system that contains n electrons. Let us
designate them by integers ranging from 1 to n in order to establish a
normal arrangement. There are n! possible different permutations of
these n indices, each of which relabels the electrons: in different ways.
The Hamiltonian operator is invariant under these permutations of
indices. For each permutation, say the rth of the set of 2!, we may
introduce a permutation operator P,, which is defined ir such a way that
it permutes electrons in the manner desceribed by the »th permutation.
Any operator « that is inveriant under the vth permutation satisfies the
relation

P,og = aP,g
for an arbitrary function of 9. We may write the operator equation
corresponding to this -
- P X = CIP »
and may say that « commutes with P,. Tt is quite clear that two permu-
tation operators generally do not satisfy the relationship
Per'0=Pr'PJU

for arbitrary y. The Pauli restriction on the allowable state functions,
namely,

P,f = (=1,

P/f = (—1)%,
where p(») is the order of the »th permutation, implies, however, that

P,Pyf=P,P,f '
1 See, for example, L. BrIiLLouIN, Quantenstatistik (Julius Springer, Berlin, 1030).
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for all allowable state functions. Thus, for our purposes, all permutation
operators may be said to commute.

The one-electron spin operators do not commute with the permutation
operators, since each spin operator refers to a specific electron. Hence,
we cannot expect to find functions that are simultancous eigenfunctions
of H,of P,, - - -, P,,, and of the one-electron spin quantities. On the
other hand £* and Z,, which commute with one another, do commute
with the P, since they contain all electron variables symmetrically.
Hence, when # is independent of spin, we may expect to find stationary
states that satisfy the Pauli principle and are eigenfunctions of X2 and
Z,. For this reason, the physically interesting states are eigenfunctions
of X2 and =, rather than eigenfunctions of the one-electron operators.

We shall accept without proof the following theorems? concermng the
eigenvalues of £? and Z,.

a. For a system of n clectrons, the elgenvalues of £* have t.he value

S(S + 1)A® -

where S may range from n/2 down to 0 or 3 dependmg respectively upon
whether nis even or odd. S is called the total spin quantum nurmber, and
the eigenfunctions of X? are said to be states of definite multiplicity.

b. There-are 28 + 1 degenerate states associated with each value of
S. These states may be chosen in such‘'a way that they are eigénfunc-
tions of Z, and have eigenvalues ranging from +8to —S, by integer
steps. The number 28 + 1 is called the multiplicity of the degcnerate
level associated with S.

Rules for constructing eigenfunections of definite multiplicity may be
found in the references in footnote.?

PART B. THE INTERACTION BETWEEN MATTER AND RADIATION*

We shall develop the theory of radiation® in this part of the present
chapter for usc in discussing the optieal properties of solids. The

1 8ee, for example, E. U. ConpoN and G. H, S8sorTLEY, The Theory of Atomic
Spectra (Cambridge University Press, 1935).

2 Eigenfunctions of definite multiplicity are used extensively in the theory of
molecular valence, in which they are called “bond func¢tions.” A discussion of the
theory” of thesefunctions may be found in the following papers: H. Eyring and
@G. E. Kimball, Jour. Chem. Phys., 1, 239 (1933); G. Rumer, Nachr. Gott., M. P.
Klasse, 337 (1932); J. H. Van Vleck and A. Sherman, Rev. Modern Phys., T, 167
(1935)..

* This part is used primarily in Chap. XVII, whmh deals with the optical prop-
erties of solids, and may be omitted by a reader not immediately interested in this
topie.

* General references: G. Breir, Rev. Modern Phys., 4, 504 (1932); E. FErumi,
Rev. Modern Phys., 4, 87 (1932); W. Hertuer, The Quantum Theory of Radiation
(Oxford University Press, New York, 1936).
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topics of principal interest are the theory of light quanta and the theory
of the interaction between matter and light. We shall begin with a brief
discussion of the classical tneory and shall use this to develop the quan-
tum equations. ,

42. The Classical Electromagnetic Equations.! a. The Radiation
Field —Maxwell’s equations for free space are

div E = 0, div H = 0,
1 0H _14E
curl E= ""E 'Ei'} curl H = ET%_, (1)

where £ and H are the electric and magnetic field intensities, The time-
dependent. solutions of these equations that correspond to light waves
have the form

E = Eoe&rl'(n-r*-rt],} @

H = Hoeritrr—m

where E, and Hy are constant vectors, n ie the wave number vector, and »
is the frequency of the wave. These quantities arc interrelated by the
equations

E0“=0, HU “50]
n? 1 H. E, = 0
CET & o B0 =0, 3)
Hi = E3,

from which it may be concluded that E; and Hy are orthogonal to one
another and to the direction of propagation of the light wave.

It is convenient to express Maxwell’s equations and the solution (2)
in terms of the vector and scalar potentials A and ¢, which are related to
E and H by the equations

_10A
E=—-2a ad “”} 4)

H = curl A.

The equm‘:i?ns for A and ¢ are
10? 16%A
de—Gg =0 AL =0,
. 19e

div A = 3 (5)

1 M., Asranam and R, Becker, Classical Eleciricily and Magnetism (Blackie &
Sen, Litd., London, 1932); R. BeckeR, Theorie der Elekirizitdt, Vol. II (Julius Springer,
Berlin, 1282).



212 ’ THE MODERN THEORY OF SOLIDS [Crap. V
In the case of light waves, we may set ¢ equal to sero and take A to be

A= —-——Eosz-‘c.v rr=r), (6

It may be seen that Eqgs. (4) then lead te Eqgs. (2) and (3).

If we have a number of waves of different frequencies in a cubical apa.ce
of volume V, the real vector potential of the system may be expressed in
the form of a series of traveling waves

A= Ef.(n)w{ A (n)e2HOT=rn@0 4 4 F(n)e—2T—nm0},  (7)

The quantities that appear in this equat.ion are very similar to those that
appear in the Fourier resolutions of the atomic motions in lattice theory
(¢f. Sec. 22). The quantities f,(n)(s = 1, 2) are real polarization vectors
that satisfy the equations

fi(n) -n =0, f(“)'f (i'l) =0,
fofo=1, } ®)

" and the A,(n) are complex constants that are proportional to the ampli-
tudes of the wave of wave number n having E in the direction f.(n)
Since we shall deal with real quantities, ‘we shall assume that

Am) = A (w). ®

The summation of n extends over the allowed values of this variable,
which are given by the equations

=3 m=7 w=7F (10)

where n,, ny, and n, are integers and L is the length of an edge of the box.
It may be seen from this that the density of the allowed values of n in
wave-number space is L* = V. The factor ¢/(»V)} is introduced into
(7) in order to simplify results that we shall obtain below.

We shall now derive a Hamiltonian function for this radiation field
using Eq. (7). In material systems, the Hamiltonian, when independent
of time, is equal to the total energy. Hence, we should expect to obtain a
Hamiltonian for the radiation field by computing the energy E,, namely,

E, = 8% f (E2 + HYAV. an

If Eqgs. (4) are used to compute E and H from the yector potential, Eq.
(11) becomes

E, = 3207, (n)a,(n)a.*(n) (12)
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where

L(n) = A,(n)e—2rivdnt
oty 2 A grin a2

If we now regard a,(n) and ia,*(n) as conjugate variables an& (12) as the
Hamiltonian of the system, we find that the Hamiltonian equations are

dHz

d,(n) = m—-*.—-—*—-—".'(n) = —2wiv,(n)a,(n),
4% (n) = 5‘.’&?’(:;). = 2mivy(n)as*(n). (14)

The solutions of these equations lead to the time dependence expressed
by Eqs. (13). Hence, (11) actually is the Hamiltonian function of the
system. .

Bince the variables a,(n) and a,*(n) are not real, it is convenient to
replace them by the real quantities

Pa(m) = V]:/g('—?: + a.*),
() = \i/;(a. ~ a*). (15)

The Hamiltonian, when expressed in terms of these variables, is
1
Hyx = 5 > 20nm)pi(w) + i) (16)
an

which is the same as for a system of harmonic oscillators. It is this fact
that justifies the statement that a radiation field is equivalent to a system
of harmonic oscillators. The Hamiltonian (16) may be used as the start-
ing point for & discussion of the quantum theory of the radiation field.

If we express the vector potential A in terms of the a and the p and g,
we find

A = D@ pplo @ + o me=m] a7
c

= Ef.(n)‘.—/.zr.—[y (uﬁi(”' ¢0s 2 -t + ¢, sin 2em - 1),

nE

b. The Interaction between Maiter and Radiation.'—The force that acts
on an electron of charge —e that is moving with velocity f in an electro-

! M. Apmiamau and R. Broxer, Classical Electricity and Magnetism (Blackie &
Son, Ltd., Léndon, 1932); R. Beckrr, Theorie der Elekirizitdf, Vol. II (Julius
Springer, Berlin 1932).
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magnetic field is given by Lorentz’s equation

f= —eE — % X H.
Hence, the Newtonian equation of motion is
mit = —eE — % X H.

This equation may be derived from the Lagrangian function

L = gmit — A + ep, (18)

as may be verified by writing out the Eulerian equations associated with

this function. The components of momenta are

aL e
p,=-é-£—m£—EA,,

etc., so that the Hamiltonian H = p.# — L i$

2
H=—1-—( f) — ep

2m 1l+~-—13 A+~——-n‘\*~—e¢ (19)

The terms
e e?
H, = '???_Cp.A-{_WA! (20)

are of interest when the charge is in a radiation ficld because they give the
interaction between the field and the particle. The other two terms
constitute the Hamiltonian in the absence of a ficld.:

It should now be clear that the total Hamiltonian of a system of n
electrons in a radiation field is

"H

Hu + EHE"‘ -A@x) + E-E;E%Az(r;)-i
= Hu -+ H, (21)

where Hj is the Hamiltonian in the absence of a vadiation field and H,
is the interaction term. If we desire to include the radiation field in the
Hamiltonian, we must add to (21) the function #/» that was derived in
Part A. The total Hamiltonian then is

Hr = Hu + H, + Ha. (22)
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43. The Semiclassical Method of Treating Radiation.—Previous
to the development of Dirac’s theory of radiation,® which, at present,
is the most accurate method of treating radiation problems, Schrédinger,?
Gordon,® and XKlein* developed a simpler theory which is still useful for
obtaining some of the important equations in & simple way. 1In this
scheme, the classical interaction term H; in the Hamiltonian (21) of
the preceding section is treated as a time-dependent perturbation in the
Schrodinger equation. If the radiation field is zero in the classical se.se
that the system i3 in the dark, the system is unperturbed and cannot
change its state. If, on the other hand, the field is finite, the aystem may
change its:state by emission, absorption, or scattering of light. The fact
that ihe state can change only if radiation is present shows a fundamental
weakness in the theory, for it cannot be used to treat the problem of
spontaneous emission of light by an excited atom. In spite of this weak-
nezs, the method leads to many correct results rel . tively simply. An
important reason for this simplicity is the fact that the Schrédinger-
Gordon-Kicin method can treat absorption, emission, and dispersion in
an approximation in which the ¢2A%/2mc? terms of q. (21) are neglected
as small quantities, whereas the Dirac theory can ireat dispersion only
in an approximation in which ali the terms of H, are retained.

The semiclassical method will now be used to develop the equations
for absorption, emission, and dispersion of radiation by an atom. We
shall assume that the radiation field extends continuously over a finite
range of frequencies and that the vector potential of the wave of wuve
number n is

A(.“) = EEEEO(“)[eﬂvi(u'r‘-d) _— c-—-zﬂ'(q'l’-—rt_!] ’ (1)

where E, is the amplitude of the electrostativ sield. The interaction term
in the Hamiltonian ari-* ; from this vector potential is

fj'; = 2_2-%”;“. Egz,;ﬂﬂ'.ﬁﬂ‘{‘"n} _— 8-2;-&(;'!:—-,0]- 2
i

We shall designate the Hamiltonian of the atom by Hx and the stationary
states by ¥; where

Hx¥; = E¥,. (3)

1 Bee footnote 2, p. 210.

1 B, ScHRUDINGER, Ann. Dhyeik, 81, 134 (1926).
3 W. GomooN, Z. Physik, 40, 117 (1926).

40, Xuew, Z. Phy:ik, 81, 895 (1926).
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It is now of -interest to search for a solution of the time-dependent
Behraodinger eguation
ne_ _hof
(Hu + H)f = ==& 4)
that is equal to ¥, at time { = 0. This solution may be expressed in
terms of the ¥; in the following way:
~ig -5

=t ¥k Sacke 2 ®)
W0
where a, is unity at time zcro and the a; are small quantities that are
gero at the same time. Substituting this in Eq. (4), we find after a
simple reduction that employs Eq. (3)

A da;, 1B ~ipa
STle N = ot ®

. L]
in which small terms involving the product of a; and H! have been
neglected. If this equation is multiplied by ¥;* and the result is inte-
grated over the electronie coordinates, it is found that

L @
where
Hy = [W*Hvodr. (8)
I_n deriving ‘7), we have used the relat-iu’n
Jurvdr = 5 - ©

We shall assume in the following work that a, is close to unity at all
times in which we are interested. Since Hj, involves time, it is con-
venient to show this dependence explicitly by using Eq. (2). Equation
(8) then becomes

Hjp = Eo» (Cjoe— 2% — Cjotelrin) (10)
where
Cjo = ﬁ[wf'(z Pﬂeg""’”-‘)‘f'odf (11)
i

and Cy* is the same quantity with the sign of n reversed. Thus, Eq. (7)
is
k da;

-—..i- —a-—f- = ED - {C,oﬂ

o (Lo o OV ¢ N Y

Ciote |
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The integral of this equation that vanishes at ¢ = 0 is

: ;
= 3 (Bo~Ey+hnt 2 (Be—Bi=hni

= B, |C et osl—e
%= —E [C"’ B~ & ¥ °'°+“M“*“T—_:‘x?“]' 12
When either one of the relations

Eo-'E;:]:hl“—'ou (13)

is not closely satisfied, a; oscillates very rapidly with time about the
value zero. In this case, it may be said that the atom remains in the
state ¥, and behaves like a system undergoing forced oscillations far
from resonance. On the other hand, when either one of the relations
(13) is satisfied we may say that the atom resonates and changes its
state. We shall first discuss the case of resonance and return to the

other later. :
In the case of resonance, we may interpret |a;* as the probability
that at time ¢ the system is found in the state ¥;. Since kv i8 positive, the

case .
Eo—Ei=hy | (14)
can occur only when E; < Eo, so that it corresponds to induced emission.
The case

E; — Ey = hy, (16)
on the other hand, corresponds to induced absorption. The probability
that either process occurs in time ¢ is, respectively, :

P,(t) = |Eq - Cio?(Bo — E; + hv) (16)

where the negative sign corresponds to (14) and the positive to (1_5), and
2(-1 — cos 55) 4sin,‘% |

“’(‘) = pE = e - (17)

This varies quadratically with time.at smal! time for any given value of ».
If the radiation is continuous and extends over a sufficiently broad range
of the spectrum, however, the total probability varics linearly with time. .
Let us suppose that the energy of the radiation that lies in the range of
frequency from » to » 4+ dv and is polariged in the direction n, is p(v)d»,
where p is practically constant near the resonance frequency. Since the
mean density is related to the amplitude E; of (1) by the equation

p=g0
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we may rewrite Eq. (16) in the form .

P,(t) = 2wpjne « Cpo|*w(Es — Ej + hv). (18)
The total probability of the transition then is

P(Y) = _[; “P.(t)dv = 2p £ *|no - Col?w(Eo — E; + ho)dv.  (19)

The function «» has a peak of half width A» = 1/¢ at the resonance
frequency. For the optical absorption and emission time in which we
shall be interested, { is of the order of 1032 sec, so that hAv is of the order
of 10~? ev, which is very small compared with ordinary values of ».
Hence, we may replace w by a delta function of the same area. Now,

., €
sin? = - .
® 2h, 2 sinx. 2t
uJ"_-4 Ez __E _.,_;‘Bg dx—- h.

Hence, w(e) may be replaced by
-i?&(e) (19a)
where 3(¢) is a delta function that satisfies the equation
J240de = 1.
Thus, P(t) is

3
P(l) = %—lﬂo « Cjo|2pst (20)
where p, is the density at the frequema},':r defined by Eq. (14) or (15).
Equation (20) shows that the induced emission and absorption

probabilities are proportional to the radiation density and that the
selection rules for transitions are determined by the matrix components

of the operator Epie""*"'. These matrix components can easily
- .

be expressed in terms of the matrix components of the atomic dipole
moment

M = —Sler 1)
i

in the case in which n.r varies so little over the atomic system that
et can be replaced by unity. If the Schridinger equation

HY, = B,
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is multiplied by (21'.) ¥;* and the result is subtracted from the equation
i
HY* = Ev*,

after the latter is multiplied by (Zr.- Wy, it is found that

(& - E.)f*lrit(Er,»)*hdr - X f (21-‘)[@..(2 A.-)w,- _
w,'(E )w,.]abr. (22)

The right-hand side may, by use of Green s theorem, be t.ra.nsformod to

ﬁfz (¥ grad; ¥;* — ¥;* grad; ¥;)dr. (23)
It is assumed that ¥; vanishes at large distances, so that the surface
integrals in Green’s formula can be dropped. In a similar way, the

integral of the second term in (23) may be shown to be equal to the first.
Hence,

fv;r, mwm -n (E, Eg)f(zn Y, "dr.  (24)

Accordmg to Eq.-(11),
Co = — ;fm E f\li,-‘(gra,d.- Wo)dr

when €277 ig unity, so that we find with the use of Eq. (24)

Ao e

(25)
Here

Mo=—f \Irf*(z_;en Yodr, (26)

and opposite signs are valid for the cases of Eqa (14) and (15), respec-
tively.
Equation (20) may now be written

P() = S5 |Mo - mofp,t. @
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The average value of the coefficient of p,f in this equation, namely,
8,..3
W!MNP! (28)

is the Einstein B coefficient for induced transitions between two states ¥,
and ¥;. Here

[Mjo|? = |Maspl|® + | My0l® + | M0 (29)

If the lowest atomic state is an S state,® which is spherically sym-
metrical in electron coordinates, the dipole matrix components are finiic
only if the excited state is a P function, which has the symmetry of a
first-order surface harmonic. If the tliree degenerate P functions are

chosen to have the symmetry of the functions Ez;, Zy., and zz.,

respectively, and are labeled with indices z, y, 2, it may ba shown that

Ma,ﬂ=M"ﬂ=‘M:ﬁ*|
Ms,ﬁ=ul,»=°.'= ,.d="'=Ms.ﬁl=0-

Thus, light polarized in either the z, y, or z direction may induce a transi-
tion to one of the triply degenerate states.

In order to discuss by the semiclassical method the scattering of
light when the frequency is not near the resonance frequency, it is neces-
sary to compute the mean value of the atomic dipole moment M for
the state f of Eq. (5). The result is a time-dependent function that
contains terms which vary harmonically. We shall assume that the
real ccefficient of the term that varies as ¢ is the amplitude of a
forced atomic oscillation of frequency ». We shall also assume that
27t may be replaced by unity.

The mean value of M for the state f is

M = f T¥Mfdr
‘i(l’t— Bt

i — . —
= [0 M + 3 aMatd ™™ - oMo FTT] (30)
in which terms involving squares of the a have been neglected. If it is
recalled that a; has the form

_2mi(Bo— Bi-+ho)t © _wi(Ba—Be—ho)t_

B —Ef1—¢ % 1—¢ %
@ =B M= °[ T E ¥R B =B~ hr ] @1

! We shall use the conventional notation of atomic spectra in which the states
having total angular momentum 0, 1, 2, 3, 4, etc., in units of &, are designated respec-
tively by 8, P, D, F, @, etc. See, for example, H. E. White, Introduction to Atomic
Spectra (MoGraw-Hill Book Company, Inc., New York, 1934).
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it is found that the terms that oscillate with frequency » are

2 Eo - MpMo* 5 Eo( 1 1 (e—2min 4 g2rint)
k

hv \Eo— Ex— hy  Eo— By + hv
= D Malli® B (e-mein 4 o) (32)
k

vt — »?

where
v = (Bx — Eo)
h
Since the electrostatic field intensity is
E = (e~ + etriv),
the. atomic polarizability tensor e for unmodified scattering is

Mp*Mep 200
¢=§ ! (33)
This tensor is a constant with the value
! 2y,
> M (34)
k

if the state ¥, is an S state. The remaining terms in the mean value of
M depend upon time through functions of the type

8—{(:.—:0: ,

These terms do not have significance as induced scattering terms and will
not be considered further.

In order to discuss Raman, or modified, scattering of light, it is
necessary to extend the preceding computation by considering matrix
components of M between states fo and fi. By a correspéndence-
principle argument! that is not very satisfactory, one may then arrive at
the equation

_ MaM,, M, M,
Crtrm = E Ven 7 Voh + ¥ (35)

for the polarizability tensor associated with the absorption of frequency »
and the emission of frequency » + we. The final frequency must, of
course, be positive.

44. The Current Operator.—It is necessary to use the matrix com-
ponents of the current operator in applying the semiclassical method to

1 Q. KLEwv, Z. Physik, 87, 805 (1926).
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solids, as we shall do in Chap. XVII. This operator may be derived in
the following simple way. If we multiply the Schrédinger equation

~-= a‘h 2-—A ¥, + ;.2%2 A(r) -gradi ¥ + V¥ (1)

by ¥.* and subtract from it the equation for ¥;* multiplied by ¥, we
obtain

ANl 21:;12 (*ATs — VAT,®) — EGE divi AGIEAE), (@)

since div A = 0 for the fields in which we shail be interested. Now,
U *A¥ — WA = divg (3% grad; ¥ — ¥; grad V%),
so that Eq. (2) may be written

AN - - div, [ "éimh"':(m* grad; ¥y — V; grad; ") —

%A(r.-)w.m]. @)

The quantity —e|W¥.|? may be regarded as the charge density p in
3N-dimensional space. Hence, if we compare Eq. (3) with the equation
of continuity, namely, '

2'*? = ~div J,

where J is the current, we obtain
h 2
Jix = 2[“‘%%&(‘?1.-‘ grad; ¥, — ¥, grad; ;%) — f-?m"éA(fi)‘h*‘I’g]' 4)

We shall regard this as the diagonal matrix component of the 3N-dimen-
sional ourrent operator of which the genecral element is

dp = E[ 2”“(‘1': grad; ¥ — ¥, grad; ¥;*) — -—»A(r.)w; \it*] (5)
)

Now, the charge density p(r:) of the first electron is

p(e) = [(oles, - - -, r)an ®
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where the primed integral extends over the variables of all electrons
except the first. Thus, the current associated with the first electron is

in(r) = E‘f [ —j-zmh-;(‘l'f‘ grad; ¥, — ¥, grad; ¥;*) —

& AT a7
eyl L7 1Y J , (M
and the mean total current at the point r, is

Ju(r) = Nf [ ‘_%(‘I’k‘ grad; ¥, — ¥, grad; ¥,*) —

%A(r;)\hm*]dr’. ®)

456. Line Breadth.'—The absorption and emission kines of an atomic
system that has discrete levels obviously should be infinitely narrow in
the delta-function approximation of Eq. (19a), Sec. 43. The same result
is obtained even if w(e) is not replaced by a delta function, for the function

sin?
w(e) = ﬁ

0

may be made as narrow as we please by making ¢ large enough. Thus,
after a long time the frequency distribution of the total radiation from a
system of excited atoms should be very narrow. This result is a conse-
quence of the approximations that were used in solving Egs. (7), Sec. 43,
and does not occur if the equations are solved more accurately by taking
into account the fact that the coefficient ao(f) for the initial state is not
a constant but varies with time.

It is possible to obtain a nearly self-consistent solution of Eq. (6)
Sec. 48, in & number of important cases by assuming that

ay = e~ T )]
where I' is a constant. With this assumption, the equation for a; is
i
_Eﬁ = H’w—-i{.&—m-—ﬂr)c . (3)

in the approximation in which terms other than a may be neglected in
the right-hand side. The solution of this equation is

‘{xo—x,—mrum 1 —
. ~E- [C‘TU — thT + h» C#- E, — E'; thT — hy
1 See the survey article by V. Wemakopf Phys. Zeits., 84, 1 (1933).

x(Sa-l;-—wiP-h)l
] 4)



224 THE MODERN THEORY OF SOLIDS [Caap. V

A value of T' may be obtained by substituting (2) into the equaiion
for ao, namely,
(BBt

hoao _ ; ) R
_1’7 *a‘-{ = EHwa,e (:))
7

In the semiclassical theory, I' is proportional to the encrgy densily of
radiation and is, as a consequence, very small when the radiation dc: sity
issmall. In the Dirac theory, however, it contains an additional constant
term that is related to the probability coefficient for spontancous emis-
sion from the upper to the lower member of the pair of leveis between
which the optical transitions are occurring,

The function a;(f) given by Eq. (4) reduces to a;(t) of Eq. (12), Sec. 43,
when ¢ is much smaller than 1/I'. Hence, the results of Sec. 43 are
valid only for comparatively short times. At times long compared with
1/T, the square of the absolute value of one of the terms in (4) reduces to

Eq - Cjof?
[(Ee — %’) + ;wlz + R (6)

a fact showing that the distribution of transition probability for different
frequencies is governed by a function of the form

1
[(Be = E) £ fE + bir? (1)

which, as a function of », has a peak at

v = B0 B ®)

- of which the width at half maximum is
Av = 2T )

It may be shown that I is of the order of magnitude 10? sec™! for ordinary
atomic transitions so that this nafural width ordinarily is small compared
with emission frequencies.

The{fact that an emission line or an absorption line has & finite natural
breadth does not imply that energy is not conserved. This breadth
finds its origin in the fact that the energy of the excited atomic state is
uncertain because the interaction between the atom and the radiation
field, expressed by the term H; is uncertain. Thus' the half width
could be made as small as we please by making H; sufficiently small.

Natural broadening is usually masked by one or more kinds of broad-
ening that have a completely different origin. In the case of gases, for
example, lines are broadened by the Doppler effect, since the atoms
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move with different speeds, and by the interaction between atoms.
Doppler broademing is not important in crystals, but the analogue of
interaction broadening is important. We shall discuss it briefly here
and in more detail in Chap. XVIIL.

If we have a large number of free atoms that are infinitely separated
from one another and are stationary, their electronic levels are discrete

Solid

Free atom %

S ——

L

Fie. 1.—The discrete atomic energy levels may be broadened in the solid. If tran-
sitions between many levels in each band are sllowed, the resulting emission *line” will be
broad. This occurs in metals,
so that the energy levels of the entire system are discrete. Thus, the
width of the emission lines is determined entirely by natural broadening.
The atoms interact, however, if they are brought within a finite distance
of one another, and this interaction broadens those levels of the entire
system which were degenerate when the atoms were infinitely separated,

Solid
Aforn

~Pnly atliowed
‘em{vs;'ﬁon

/

e

F1a. 2.—In this case the lowest level remains nondegenerate in passing from the system
of free atoms to the solid. If selection rules forbid transitions from more than one of the
excited states to the lower level, the emission line should be sharp. In actual cases of this
type the line is broadened because of coupling between the electrona and the lattioe.
a8 we shall see in Sec. 66. If transitions are allowed between many of
the levels in two bands, the corresponding emission ‘‘line”’ should now
have 2 breadth that is determined hy the selection rules and the width
of the bands. Thus the lines may broaden because the atomic levels are
spread into bands (¢f. Fig. 1).

It frequently happens, in the case of solids, that selection rules forbid
transitions from more than one level of a band to & nondegenerate level
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of the entire system (¢f. Fig. 2). The corresponding line would have
only the natural breadth, in this case, if only the electronic states of the
system had t0 be taken into account. An assembly of atoms, however,
has, in addition to its electronic states, a system of energy states that
are associated with internuclear motion. In the case of solids, these
states may he described in terms of lattice oscillations, as we have seen
in Chap. III. It turns out that the vibrational states may be excited
during transitions between electronic states. Since the range of allowed
vibrational frequencies is continuous, the amounts of energy that can be
given to the vibrational system are spread over a continuous range.
Now, the energy that is not given to the vibrational system during
spontaneous emission is radiated as light; hence, the emission lines have
vibrational broadening. This vibrational broadening is one of the most
important of the factors that determine the shape of absorption and
emission bands of insulating solids at temperatures above absolute zero.



CHAPTER VI
APPROXIMATE TREATMENTS OF THE MANY-BODY PROBLEM

48. Introduction.—This chapter deals with some of the methods
that have been devised to handle the Schrodinger equation for a mechan-
ical system in which there are at least two interacting particles. In
practically all these schemes, an attempt is made to select one member
of a given set of admittedly approximate wave functions by use of the
variational theorem (¢f. Chap. V, Sec. 39). In one method—the varia-
tional method—the set of approximate state functions is obtained by
writing down a definite function of the electronic variables that contains
& number of parameters. The best function of the family is chosen by
fixing these parameters so that the mean value of the Hamiltonian is a
minimum, In another scheme—that of Hartree, Fock, and Slater—the
starting set of functions is chosen as a combination of one-particle
functions, that is, functions that involve the coordinates of only one
particle. The one-particle functions are then determined by use of the
variational theorem.

Since vhe exact solutions of the Schrbdmger equation for any many-
body system usually are very intricate functions of all variables and since
the functions that may be manipulated are restricted to fairly simple
types, even the best funetion obtained by one of the approximate treat-
ments usually leads to an energy that differs appreciably from the experi-
mental value. There are exceptions to this statement, such as the case
of the normal state of helium, which we shall find useful for locating the
cause of error in other problems.

We shall begin the discussion with a few remarks concerning the
Hamiltonian operator that will be used in solids. These will be followed
by & presentation of the two schemes that were deseribed above.

47. The Hamiltonian Function and Its Mean Value.—In order to
place the problem of determining the stationary states of solids upon a
working basis, it is necessary to overlook certain terms in the Hamil-
tonian operator that are cf secondary importance. First, we shall neglect
the effects that arise from the motion of nuclei, assuming that the nuclei
are at rest. The nuclear coordinates then enter into the Hamiltonian as
parameters. In later chapters that deal with phase-changes, conduc-
tivity, and optical properties, we shall be interested both in the motion of

nuclei and in the effect of nuclear motion on electrons Second, we shall
227





