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assume that there is no radiation present so that we shall not be con-
cerned with radiation interaction terms. Neither of these negiected
effects introduces appreciable errors, as long as we are interested only in
the eigenvalues of the electronic system.

In addition to the foregoing assumptions, it is expedient to assume
that all extranuclear electrons may be divided into two classes: (1) the
inner electrons, which belong to closed shells that are rigidly attached to
the nuclei and are not affected appreciably by ehanges in interatomic
distances; (2) the outer, or valence, electrons, which are affected by
changes in interatomic distance. The latter are yesponsible for most
of the ordinary properties of solids. We shall assume that the effect
of the rigidly bound electrons on the valence electrons may be described
by means of a potential term of the same type as that which takes into
account the effeet of the nuclei. In other words, it will be assumed that
the valence-electron wave function may be determined by use of a
Hamiltonian operator in which the effect of the rigid-shell electrons is
taken into account by the presence of an ordinary potential function.
The validity of this method must be investigated for each solid and will
be discussed in particular cases later. It will be seen that this procedure

s usually satisfactory for simple substances.

According to these assumptions, the Hamiltonian operator for n

valence electrons is

n n
2 ot
H= E(‘%A‘*‘V‘) +%E f—;+1 Q)
S I C o dim1
where the indices 7 and j are to be summed over all n electrons, —#42A,/2m
is the kinetic energy operator of the ¢th electron, and V;, which is the
same for all valence electrons, is the potential energy of the ¢th electron
in the field of the nuclei and bound electrons. e?/r; is the coulomb
interact:.on potential between the 7th and jth'electrons, where e is the
absolute value of the electronic charge and r; the distance between
electrons. It should be noted that the cases ¢ = j are excluded in the
last summation. Finally, I is a constant representing the interaction
between the nueclei and between rigid-shell electrons on different atoms.
Although this term does not enter into the determination of the valence-.
electron wave functions, it is included here to indicate that it may not
be neglected when the cohesive energy of the solid is computed. 1t
should be added that both ¥ and I contain the internuclear distances
L parametrically.
Now, the stationary state of lowest energy minimizes the mean-value
integrai
E = jY*HVdr (2)
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according to the mean-value theorem. For this reason, the mean-value
integrgl is of importance and merits considerable discussion. Let us
break the Hamiltonian (1) .into two parts, namely,

:hg
T= —2'2?% » (8a)

V= EV.-+ %E’:i: +1, ' (3b)
i R ¥

where T is the total kinetic energy operator and V is the total potential
energy operator. In terms of 7' and V, Eq. (2) is

_ E = [¥*TVdr 4 [V*VVdr, (4)
We may write the first integral in the form

2 ,
%—1 > f |grad; V|%dr )
i

if we apply Green’s theorem and assume that the surface integral vapishes,

. 8s is true in the cases in which we shall be interested. We may conclude
that the mean value of T is a positive quantity since the integrand in (5)
is positive. The second integral in (4) may be written in the form

f I‘I'PVdT: (6)

for V ig'simply a function of the variables of integration. This integral
may be regarded as the classical potential energy of the charge distribution

p = e[¥|? )

in the potential field V /e, both the charge distribution and the potential
function being static in the 3n-dimensional space of all electronic coordi-
nates. Thus, the mean value of the potential energy may be given a straight=
Jorward classical interpretation in terms of 3n-dimensional charge anil
polential distributions.!

Since the mean value of T is positive, it follows that ordinary atomic
systems are energetically stable only because the mean value of V can be
negative. Evidently the first term of (3b), which contains the energv
of attractive nuclear-electron forces; is eniirely responsible for &1 ‘act
that (8) may be negative. At first sight, one might suppose that the

t Although ¥ is a function of the spin variables as well as the space variables, it is
possible to average over spin without affecting this copclusion, since neither 7' nor V

depends upon spin. Thus p in (7) may be taken as a simple function of -1 space
variables.
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wave function ¥ that minimizes E would distribute the electronic
charge in such a way that the integral (6) should be as negative as
possible. It is easy to see, however, that this wave function would
have a very large kinetic energy associated with it. To minimize (6),
it would be necessary to choose ¥ in such a way that p is small in regions
where V is pesitive and large in regions where V is negative. This
mesans, however, that ¥ would vary rapidly from point to point or that
its gradient would be large. The mean value of (5) would then be
large, and it is easy to show (¢f. next paragraph) that E would not be as
low as possible. On the other hand, suppose that we attempt to minimize
E by making the mean kinetic energy as small as possible. In this case,
we should choose ¥ to be a very slowly varying function, so that its
gradient might be very small. A function of this type would not give a
charge distribution p that preferentially localizes the electrons in the
regions of negative V, so that E again would not be as small as possible.
Thus we see that the mean values of T' and V tend to counterbalance one
another. If the mean value of V is large and negative, the mean value
of T is large and positive; if the mean value of 7' is nearly zero, the mean
value of V is also nearly zero. Hence, the function that minimizes ¥
must efect a compromise between both terms.

This competition between T' and V is indicated by the uncertainty
relation

Ap:Ag: 2 k.

Any increase in the localization of electrons implies that the Ag; are
decreased, a fact that in turn implies an increase in Ap;. Since the mean

value of T is roughly E(A'p‘)’ﬂm, the kinetic energy increases as the

Ag; decrease. Suppose, for example, that we have an electron moving
in the potential field ¢/r of a proton. The potential energy is roughly
—e?/Ar, where Ar is the uncertainty in r, whereas the kinetic energy is
_roughly h*/2m(Ar)t. The sum of these two energies does not have a
minimum when Ar is gero or infinite, which would respectively minimise
the two terms, but it-has a minimum for Ar = h?/me? & 0.5 - 10~* cm.
Incidentally, this example shows that the scale of atomic size, namely,
h*/me?, is determined by the eompromiae between kinetic and potential
energy.

Although the competition between T and V tempers the wave fune-
tion in such a way that neither of the terms is minimised, the wave
function always favors both terms to some extent. Thus, it is found
that the wave function for the lowest energy state is generally smooth
and yet localizes the charge in suitable regions of potential. Since the
potential (3b) becomes very large and pomtwe in regions of the 3n-dimen-
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sional coordinate space where the variables ry; are very small, we may
expect that p will generally exhibit & smooth minimum of the type shown
in Fig. 1 in the neighborhood of such regions.

" Ubpon these effects, which are related to the variational principle, sre
superimposed those which arise from the condition that ¥ must be
antisymmetric. Roughly, the lowest energy members of the family of
antisymmetric functions usually have a higher mean kinetic energy
than some of the functions that
might be allowed were it not for the
Pauli principle. The change in sign

of ¥ under permutation of t}%e va.ri- . Pf']t P
ables of any two electrons implies

that ¥ usually changes its sign in
certain regions of configuration space.

The word usually’ is employed
because in some simple exceptional 0 Ty —>

cases, such as that of the lowest o 5. 1Tt :;‘F;ubn’cm“‘;: that the
state of atomic helium, the anti~ amooth minimum of this type because of
symmetric condition affects only the electron repulsion,

spin variables. The change in sign of ¥ implies in turn that there is a
nonvanishing gradient in the same regions, and this implies a contribu-
tion to the kinetic energy (5). Unless this contribution is compensated.
by a drop in the mean potential energy, the best antisymmetrie function
does not give E an absolute minimum.. Thus, the lowest states of all
free atoms that involve more than two electrons (that is, atoms beyond
helium) are raised because of the Pauli principle. On the other hand..
we shall see that the potential energy of antisymmetric valence-electron
wave functions in solids is usually lower than the energy of other funec-
tions and that the decrease in potential erergy sometimes counter-,
balances the gain in kinetic energy. The origin of this decrease in ¥V
may be understood in the following way. As we remarked above, the
antisymmetry of ¥ implies that the wave function may change its sign at
regions of configuration space where ry; is zero. - Hence, the Pauli prin-
ciple may imply that p has a minimum at regions where 7;; is zero. This
condition, however, is just that which must be satisfied if the positive
‘contribution to the potential from the e?/ry terms is to be small.

48. The Helium-atom Problem.—We shall discuss only one of the
important problems solved by the variational method, namely, that of
helium. The Hamiltonian for this two-electron system is

A? A? et Ze* Zet

H= —~x040) — Ay + — — — =
2 2"3-{-’_12 1 Ty

1)

where r; and r; are the distances of the two electrons from the nucleus of
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charge Ze (Z = 2 for He) and u is the reduced electronic mass, namely,

__mM_
kE= M

in which m is the electronic mass and M is the nuclear mass. The other
quantities in (1) have been defined previously. In the approximation in
which (1) is valid, the wave functions may be written in the form!?

¥ = ®(r1,r9)o(¢1,¢a) (2

where ® is a function of the space variables, symbolized by r; and z,, and
¢ is a function of the spin variables. 1t may be shown from the sym-
metry of (1) under permutations of electrons that the only forms of &
that lead to stationary values of [®*H®dr are either symmetric or anti-
symmetric under interchange of r, and re. This characteristic is peculiar
to the two-¢lectron problem. We shall designate a symmetrical ® by &5
and an antisymmetrical one by ®4. According to the Pauli principle, .
¢ must be antisymmetric when @ is symmetric and symmetric when @ is
antisymmetric, in order that ¥ rmay be antisymmetric. There are three
symmetric spin functions for two electrons, namely,?

oy = n(na(1),
0§ = m(Ln2(—1) + m(—1Dna(1), (3)
o5t = m(—Dn(—1),
and there is one antisymmetric funclion, namely,
oq = ﬂt(l)??z(“’l) — m(—1Dna(1). 4
. These functions are eigenfunctions of the spin operators
22 = (a'ﬂ-‘l + Uz:)g + (ﬂtﬂx + Jﬂ!)z + (U-?t + Uﬂ)g (5)
and
Z, = (0'11 + 9'::)' ) (6)

The functions (3) correspond to the eigenvalue 242 of (5) and to the eigen-
values &, 0 and —% of (6), respectively, whereas (5) corresponds to the
eigenvalue 0 of both (5) and (6). We may expect that a singlef stafe
P509 has the lowest energy, since the presence of &s implies a low kinetie
energy (cf. Sec. 47).

The most extensive and systematic investigation of the mean value

E = [®*H®sdr )

! For simplicity, we shall designate the spin variable of the ith electron by {:
instead of by ¢.. as in the-preceding chapter.

2 The function #:( £1) is identical with the function y(fy, + 1) of ihe preceding
chapter. ‘
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has been carried through by Hylleraas,! who used functions containing
an increasing number of parameters in successive gtages of approximation:
In the case of helium, his method leads to a total binding energy that
agrees with the experimental value to within a few hundredths of a
per cent. We shall discuss the various types of function that he employed
and shall attempt to interpret his results in terms of the general remarks
of the preceding section. In this discussion, it is convenient to replace
the six Cartesian coordinates of the electron by the variables

§=r1+4r,
t = L — Ty, (8)
U = ris,

and by three other angular variables uﬁon which the wave function of the
lowest state does not depend.
a. First Approzimation.—The simplest function used by Hylleraas
has the form ’
Py = e~ = gmarig—ors (Q)

which contains only one parameter, namely, . The use of this function
is equivalent to assuming that both electrons move in & coulomb field
and have hydrogen-like wave functions corresponding to the ls state.
Since @ = Z/a; for one-electron atoms, where Z is the atomic number
of the nucleus and a; is the radius of the first Bohr orbit in hydrogen
(axr = 0.581 &), the value of aay = Z’ that gives [®s*H®dr its minimum
value furnishes a value of the “effective nuclear charge” in which each
electron moves. It is found that Z' = Z — %, which is % for helium.

. — — 2.2 .
The mean value of H is then —--(—?—&—‘E-“Le—: or 5.695 Rydberg units
A

(1 Rydberg unit equals 13.54 ev), which should be compared with the
observed value of 5.810 Rydberg units.

A part of this difference of 0.7 ev per electron may be remowved by
using & better eigenfunction of the one-electron type. The Hartree-Fock
procedure, which will be discussed more fully in the following sections,
starts from the assumptign

Bs = ¢(r1) $(rs) (10)

and determines ¢ in such a way as to minimize (7); that is, it determines
the best ® that may be written in the form (10). - The energy associated?
with the Hartree wave function is 5.734 Rydberg units, which leaves

1E. Hmnaas, Z. Phyeik, 58, 847 (1920). See also H. Brvun, Handbuch der

Physik, Vol. XXIV/1, p. 824.
t BevHE, op. cil., p. 368,
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about two-thirds of the difference, or about 0.45 ev per electron. This
difference arises from the fact that electrons really do not move inde-
pendently of one another but -are correlated. The wave function not
only is a function of the variables 8 = r; + r;and ¢ = r; — ry but is also
a function of 4 = r;3. This dependence has been discussed in Sec. 47
and is related to the fact that a potential term of the type ¢*/u appears in
the Hamiltonian. _

b. Second Approrimaiion.—In the next approximation, Hylleraas
chose the function .

& = (1 + ayu + bit?) (11)
and found

E = —5.805
for

by = 212
This leaves & difference of only 0.03 ev per electron between the computed
and observed values. The function (11) shows the expected correlation
between electrons since the variable u enters in it.

c. Higher Approzimations.—Hylleraas extended these computations
by using a power series in u, 8, and {? as the coefficient of e~ and arrived
at a limiting energy of 5.80749 Rydberg units which actually is greater
than the observed value by about 0.0002 Rydberg unit. This dis-
crepancy does not imply any flaw in the variation method but is due to
the fact that the Hamiltonian (1) neglects relativistic effects which would
introduce a correction of this order of magnitude:

One important fact that may be gained from this investigation is that
the method of one-electron functions yields an energy which is in error by
about 0.5 ev per electron, because it does not involve the necessary
correlations. Since the binding energy of many solids is of the order of
1 ev per electron, we may expect that the cohesive energies derived
from one-electron functions will often have a relatively high percentage
of error.

49. The One-electron Approximation..—The one-electron scheme
has proved to be the most fruitful of several approximate methods that

1 General discussions of this topic may be found in the tract by L. Brillouin,
Actualités Scientifiques iv (Hermann et Cie.; Paris, 19034), and in E, U, Condon and
G. H. Shortley, The Theory of Atomic Specira (Cambridge University Press, 1935).
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have been developed for obtaining qualitative and semiquantitative
solutions of the Schrodinger equation when many electrons are present.
As was mentioned in the introduction to the present chapter, this scheme
is based upon a plan for comstructing wgve equations for an n-electron
system from n one-electron wave functm.

It was assumed in the introductory development of the one-electron
approximation that the total state function can be represented by the
product of n one-electron functions. Thus,

V(21 Y1, 21, * * ) Tmy Ymy 23) = ¥1(Z1, ¥, 21)¥a(Zs, Y3, 29) e
wﬁ(ziu ﬂl‘: “)' (1)

Here the y; are the normalized one-eleetron functions and z, y:, % are
the spatial coordinates of the ith electron. BSpin variables were not
explicitly introduced. In accordance with the Pauli principle, as it
had been introduced into the Bohr theory, it was assumed that no more
than two electrons can have identical functions and that any two elec-
trons that do have identical y; have opposite spins. The function (1)
does not include electronic correlations explicitly since the state function
for the ith electron is ¥, regardless of the position of the other electrons.
" Hartree! suggested, on the basis of plausibility, that each one-electron
function in (1) should satisfy a one-electron Schrodinger equation in
which the potential includes a term that takes into account the coulomb
field of the other electrons as well as the fields arising from nuclei and
other charged particles. He chose this term as the classical electro-
static potential of the n — 1 normalized charge distributions |¢¢*. In
other words, his equation for y; is?

Lo+ [V + D e [Walu = @

where V; is the field arising from nuclei, etc. Hartree developed a prac-
tical method, now known as the method of the self-consistent field, for
solving the set of simultaneous equations, and applied this procedure to
a number of atoms in a large-scale program of investigating the periodic
chart. This program is still under way, although modified equations,
s»which we shall discuss below, are now used in place of (2). :

1 D. R. HarTrxn, Cambridge Phil. Soc., 24, 80 (1928). :

2 In the rest of this chiapter, we shall designate the volume element for the sth
electron by dr: when spin is not included and by dr; when spin is included. In cases
in which ambiguity may occur, however, we shall use the notation of the preceding
chapter, namely, dr(z;,y:,2:), ete. Bimilarly, the volume element for the coordinates
of the sth and jth electrons will sometimes be written as dridr; and at other times
AB dr“.



236 THE MODERN THEORY OF SOLIDS [Caar. VI

The mean value of the Hamiltonian
1 ' o2
H= E(—-——A +V)+§§;; @)

for the function (1) is seen to be simply
: h3 . _
= 2 (—%J‘w"‘wdfi + J‘*i.V&dTi +
=1 .. n .
1Y, (lal?igsl?
§‘Ej ﬂ’ff'—";"‘*dﬂdfh “4)

which reduces to

B = 2& E*” J‘ f"‘"" Wil 5)

o=

when the ¥; satisfy Hartree’'s equations.

There is dnly one equation of the type (2) for the normal state of
helium since the two ¢ are identical in this case. The energy (5) that
was derived by using the solution of this equation was discussed in part a~
of the previous section.

It was recognized during the period after Hartree’s first work that
the Pauli principle has a more natural position in the new quantum
Lheory than in the old. In accordance with the discussion of Chap. V,
the principle is taken to imply that all wave functions must be anti-
symmetric under permutation of all electronic coordinates, including the
spin variables. The function (1) is not a satisfactory wave function
frorm this standpoint, for it is not antisymmetric. An allowable anti-
symmetrie function may be constructed from the same set of one-
elcetron functions, however, if each ¢; i3 replaced by a function ¢; that
is the product of ¥; and a spin function #:($;), thus:

oilEs) = Vil Y 2)m5) ®

where r; in the left-hand side of (6) stands for the four variables z;, y;,
2, &7 We shall assume in the following discussion that the «; are eigen-
functions of o, the z component of spin. Hence, they may be labeled
as n;(+1) or ni(—1), in the cases going with the eigenvalues #/2 and
—h/2, respectively. The antisymmetric-function that may be con-
structed from the ¢; is

¥ = J—1)?P {eie)ears) -+ * enlra)] ™
P .
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where P runs over the »! permutations of the n variables and p is the
parity! of the pth permutation. This sum has the property that it may
be written in the form of a determinant

ei(r)eilrs) © + - er(rn)
ea(r)es(rs) * - - @:(fu)
¥ = ) ) ] (8)

-

Ton@entrs) -+ - onltn)

_in which the g are elements. The antisymmetric properties of ¥ are now
evident from the properties of determinants, for the process of interchang-
ing two columns, which reverses the sign of ¥, corresponds to a permuta-
tion of the correspouding variables. Moreover, ¥ vanishes identically
when two ¢; are equal. Hence, the Pauli principle, as it was employed
in the Bohr theory, is automatically satisfied.

It may be shown from elementary principles of group theory? that (7)
is the only antisymmetric combination of the ¢. This function is not
usually the only antisymmetric combination of the y:, however, for it
may be posgible to assign spin functions to the ¥; in more than one way.
This possibility will be discussed further in the following .sections.

The electrons do not move independently so long as there is more than
one independent term in (7); that is, -electronic motion is correlated
in the antisymmetric wave function even though this function is com-
posed of one-electron functions. These correlations are more or less
accidental, for they arise from the Pauli principle rather than from the
requirement that the electrons should keep away from one another. It
turns out that these accidental correlations sometiinzs favor cohesion by
keeping the electrons apart and sometimes hinder it by piling the elec-
trons together. We shail haxe oceasion to examine particular cases in
detail in later chapters.

"The function (8) is not normalized when the ¢; are normalized, so
that (8) must be multiplied by a constent. Although this constant
usually depends upon the choice of ¢;, it is simply 1/4/7!in the particular
case in which the ¢; are orthogonal, that is, when -

L Joitodr(z,,28) = 8. ©)
The integration in (9) implies & summation over the two values of spin

1 The parity of & permutation is the number of interchanges that must be made in
ordsr to obtain the permutation fromn the standard arrangement. ‘Thus, the parity
of the permutation 2148 of the integers 1284 is 2, since the permutation may be
cbtained by interchanging 1 and 2, and 3 and 4, reapectively.

t E. P. WiGNER, Gruppentheorie (Vieweg, Braunschweig, Germany, 1081).



238 THE MODERN THEORY OF SOLIDLS [Crar. VI
variable {: If ¥ is given by (7), '
[yvrvar =

JIZED Pt @) - e Pl - el (10)

which is equal to
3 [PHAE W@l - - - Wa@)|tdr = nl
. P

because of (9).
-~ We shall assume herecafter that the condition (9) is satisfied. This
does not place apy important restriction upon the ¢; since those which
have opposite gpjns are automatically orthogonal and those which have
parallel spins may be made orthogonal by the S8chmidt method.! This
orthogonalization process does not affect (8), for a determinant remains
unchanged if a constant multiple of the elements in one row is added to
the corresponding elements in another, and the Schmidt method is
equivalent to doing this.

Let us split the Hamiltonian into kinetic and potential energy parts,
as in Sec. 47. The mean value of the former, namely,

i=]

18
"Eih,;; %,[E(—l)'P(m‘(n)m‘(rs) cee so..'(r,.))]A‘-
P

[E(—l)"P'(m(r:) e %(h))]d"'(x:. ety b
P

L] i
: ) 2 - ) h!
- *g%fw‘é‘pdr(z,y,z.r) = —-E%J‘W“&Mr(x,y,z) (11)
- f=1
when the eigenfunction is (7). This result is exactly the same as that
derived by use of (1). Hence, the mean value of T is unaffected by the
use of a determinantal eigenfunction. The same statement is true for

" .
that part of the poteatial energy which can be written in the form EV.-,
im1
! Bee, for example, R. Courant and D. HiLsmrT, Methoden der mathematische
Physik (Julius Springer, Berlin, 1924).
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where V: depends only upon the coordinates of the.sth electron and i
the same function of these as V; is of theé coordinates of the jth elegtron, as
can be seen from the fact that the form of (11), as a sum of one-electron
integrals, depends only upon the property that T is & sum of one-electron
operators. Hence,

3V = 3 [ etV @edr(zya0). (12)
i i
If V is independent of spin, this is
3, [ ¥V @vdr@y,2). o @ae)
i L '
The mean value of those terms of tﬂg Hamiltonian, such as

Q' e
= — 14
24 1y ag

(X

in which the elements of summation depend upon the coerdinates of two
electrons, is affected by the use of an antisymmetric function. The mean
value of a typical term of (14), e?/ris, is

}II[;(HI)’P(%'&‘) ' '-",.‘P»'(En))];:;..
[E(‘“I)D’P!(‘Pl(n) “. @n(r-))]dr'n
P" -
:t}:(—l)ﬁ"fﬂvﬂ(h) - .. p"(tn)]’%’;P’[Q’l(n) < oa(T)ldr. (15)
PP

If a given permutation P sends r; into 11 and 1; inte r and the remaining
n — 2variablesintor;, - - - ,r,in some particular way, the integral in (15)
that contains this P vanishes unless the P’ in the same integral sends the
same get into ry, - - - , r, and either r; into r, and r; inte r; or r; into 1.
and r; into r;, 'When P’ does satisfy this condition, the integration over
the variables r5, - - - , 1, reduces (15) to

, ﬂ(nei 1)2[fwé'(l'l)%'*(rn)vi(l'l)wi(fz)drig -

ry T2
J‘ @:*(11) 0* (12) pi(r2) 0i(11) df{,]

T2

because of (9). - Since the result is the same for the other n(n — 1) terms
in the summation (14), the mean value of this quantity is
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o ’ - lei(rs) ,ip"-(*r—zll-fd'r'g _ tp,-"(rl)ﬁoi*(rs)w(!'s)'l’i(n)df;’ . ( 65
ST | K

Ti2 T12

The summation over the spins in the first terms may. be performed at

once, giving )
%3 ’flﬂwﬂ'ﬁfj&lﬁdﬂzl, Ty 2,.). (17)
- Tz

The corresponding sum in the second term is zero whenever n; > n;;
however, we shall leave this result in the form given in (16) for the
present. :

The expression (17) is exactly the same as the last term in (4), which
was derived by taking the mean value of (14) for the simple product
funetion (1). Hence, the only effect on the mean value of H of using
the determinantal form of ¥ is the introduction of the exchange energy

. _332 fﬁoi‘(xl'l)wi(rj)W(rﬁ) pi(r—l)d‘l:{p (18)

T13

This term results, not from any unusual nonclassical force between
electrons, but because we have used the determinantal eigenfunction
instead of (1). As we said previously, the product function (1) contains
no interelectronic correlations, whereas the determinantal function (7)
does contain them. The exchange term (18) is simply the contribution
that these correlations make to the energy. If the exchange energy is
negative, the charge distribution ¢[¥|2, corresponding to (7),‘'has a lower
self-potential than the charge distribution corresponding to (1), for the
accidental correlations in (7) keep the electrons apart. On the other
hand, if (18) is positive, the accidental correlations in (7) raise the self-
energy of the charge distribution, because they push electrons together.
We cannot predict the sign of (18) without knowing the form of the ¢;;
each case must be investigated separately.

In order to illustrate the ways in which exchange terms are related to -
correlations, we shall derive the expression for the probability density
of two electrons in a set of n. Let r, and r; be the coordinates of the
electrons and P(r,,rs) the probability density. To find P(r;,r:) we must
integrate |¥|? over all variables except r; and r,. The result, which may
be derived easily by the methods that were used in obtaining (16), is

Pleurs) = Rﬁ[% @ el ~
S et EaEaE | 09)

] :ﬁm
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where the second sum extends only over pairs of ¢; with parallel spin. It
follows from the manner of deriving P(r,r;) that the céulomb and
exchange energy is simply n(n — 1)/2 times the integral

e f P e, (20)

which is the self-energy of the charge distribution eP(r,r;).

Let us evaluate (19) for the special case of perfectly free electrons
in a large cubical box. - Jf we use periodic boundary conditions, the wave
functions are . . :

Vi = —Leteikcr, @1

V'V

Here, V is the volume of the box and k is the electronic wave-number
wector, the components of which take the.discrete values

k=% k=7 k=71 (22)

where n,, ny, n, are arbitrary integers and L is the length of an edge of the
box. We shall assume that all values of k that lie within a sphere of
radius ko appear in (19) with both spins. This system of free electrops
.evidently is equivalent to the system used in the simple Sommerfeld
model of a metal. :

Since [yx|* = 1/V, the first sum in (19) is equal to the constant
value 1/V2, The second sum may be written

2 2k — k). (r1~1s) (23)
Xy, ks

where k; and k; are to be summmed over all values in the sphere of radius
ko. If the number of electrons is sufficiently large and the levels are
sufficiently dense, this sum may be replsced! by an integral and then
reduced to '

s_;[z«k.,r cos 2rkor — sin 2@_.,5]’
2 Crkg)®
where » = [r; — ry]. Hence,

1 — sin 2xker |*
© Plryry) = Vz{l _9 2xkor cos ?;::;:r)’ sin .,r] }

The coefficient of 1/V? is plotted in Fig. 2 as a function-of r. The
< 1E, P. WienEr and F. Spirz, Phys. Rev., 43, 804 (1933).
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probability that the electrons will be at the same point iz just half the
probability that they will be far apart and varies smoothly in between.
The second term in (19) is entirely responsible for the correlation term
which, in turn, gives rise to the exchange energy when (20) is computed.
In cases in which the electrons are not entirely free, some correlation
effect is provided by the first terms in (19).

I

4 (r) 05

1 L 1 i i 1

0 i 2 ‘3; 4 5 6
rfre e——s

Fia. 2.—The relative probability of finding t:wos perfectly free electrons at a distance
r from one another. The parameter r, is the radius of the sphere whose volume is equal to
the mean volume per elestron. In this case the correlation effect corresponding to the
minimum near r = 0 arisee from exchange,

The introduction of antisymmetric wave functions detracts consider-
ably from the plausibility of Hartree's equations (2) since they do not
take into account the correlations that give rise to the exchange energy.
For this reason, Fock! and Slater? suggested independently that the
variational theorem should be used to derive a set of equations for the
best one-electron functions. We shall discuss these equations in See. 51,
after investigating the question of multiplicity in the next section. We
shall see that Hartree’s equations are satisfactory when ¥ has the form
(1) but that additional terms: must be added to these when the wave
function has the form (7).

- B0. Eigenfunctions of Definite Multiplicity.—It was pointed out in
the discussion of See. 41, Chap. V, that the antisymmetric stationary
states of any system can be chosen as eigenfunctions of both £2 and Z,,
as well as of H, as long as the Hamiltonian is indepeéndent of spin. It
was also pointed out that the functions that have the same eigenvalue
h*S(8S + 1) of X? can be divided into groups of 28 + 1 which have the
same energy. This (28 <4 1)-fold degenerate level is said to have
multiplicity 28 + 1. The constituent states may be chosen as eigen-
functions of Z,, and there is then one state for each of the 28 -+ 1 possible
eigenvalues of Z, which range from ‘S to —8 with integer differences.
States of different multiplicity usually have different energies except
in the special case in which accidental degeneracy occurs. For these

1V, Focx, Z. Physik, 61, 126 (1930). See also footnote 1, p. 234.

t J. C. SBraTeR, Phys. Rev., 88, 210 (1930),
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reasohs, the eigenfunctions of H, that is, the functions that minimize the
integral '
JY*HYd7'

are usually eigenfunctions of 2. The eigenfunctions may be chosen as
states of definite multiplicity, however, even when there is accidental
degeneracy. Hence, we shall consider this to be a general condition on .

The antisymmetric function (7) of the preceding section usually is not
an eigenfunction of £? when the ¢; are different and the %; are selected
at random. The determinant has unit multiplicity (that is, S = 0),
however, in the special case in which the y; are equal in pairs and the
spins of the members of equal pairs are opposite.! Hence, the deter-,
minant is & satisfactory funection from the standpoint of multiplicity
in this particular case. Fortunately, this case is an important one for
all simple solids, since they have unit multiplicity in the normal state.
As a result, the form of Fock’s equations, which is discussed in the next
section and is based upon a determinantal wave function, is valid for the
normal state of simple solids. The exceptional solids are ferromagnetic
and strongly paramagnetic substances.

61. Fock’s Equations.—The results that are obtained by following
Fock and Slater’s plan for determining the best one-electron functions
from the variational theorem are derived in Appendix I. It is found’
that these results depend upon the initial ehoice of the complete wave
funetion. If the function has the form (1), Sec. 49, the equations that
the ¥; must satisfy turn out to be Hartree’s equations (2). If, in addition,
we specify that the different ¢ are to be orthogonal or that

J &_"ﬁ'\fﬁdf = B, 1)
the best equations are

2 , 18 , o
— g+ (Vf + 2 8’J.L‘:%drf b=t Dhoh @

1
These équatiom_; have the same form as Hartree’s except for the presence

of the term
- /!
> M,
i

‘which arises from the condition (1). . The \;; are the Lagrangian param-
eters agsociated with the orthogonality stipulation.
The Pauli principle is not.properly included in either of the total
" wave functions on which Hartree’s equations and the equations (2) are
based. For reasons discussed in Chap. V, it is neceasary to use an anti-
1 8ee footnote 2, p. 210,
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symmetric funetion of the electron coordinates. When this is done by
employing a determinantal function of the type (7) of Sec. 49 w:.th the
condition

J"P\"Pdf(z}y:zsﬂ = dy, . 3)
the best equations are found to be (¢f. Appendix I) '

._%;-‘Aw(rl) + {V(rl) + E'e’flgﬁilzdf;]ﬂ(ﬁ) -

The parameters A have the same significance as those in (2), whereas the
essentially new terms, namely,

i, E[ez (e’ (’%] €, (5)

which we shall call “exchange terms,” arise from the use of a deter-
minantal eigenfunction. It should be noted that the integrals in (5)
are functions of r,. - The exchange terms may be regarded as ‘‘non-
conventional” potential integrals that take into account the accidental
correlations of the determinantal wave function, just as the exchange
integrals of Sec. 49 may be regarded as taking into account the change in
self-energy: caused by these correlations.
- Equations (4), which we shall henceforth call “Fock’s equations,”

have many symmetrical preperties not possessed by Hari‘.ree S equations.
If we add the expression

'[e; Mdn]%(fx)

to the first, summatmn on the left-hand side of (4) and subtract the same
-express:on from the second summation, we obtain

B+ 7+ D[l gty -

El
@i*(r2) ei(rs) ., it N e .
2[89‘[—"*—-;;;-“'(1?,]%“1) = IE'}*E‘PI(I'!): (6)
1
- in which M; = ¢ and none of the sums is primed. Next, let us set

5 op(Tyrs) = 2%‘(1'1)%(1'3)3 (7
7
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" which is known as “Dirac’s density matrix.”” In terms of this function,
the first summation in () is simply

[33 f —-p(?:’)d-r;]@e(fl):' ®)
and the second is * |
et f "_(r’;)_’—"(r*)d, | - ©)

Following Dirac,! we shall define an operator A in terms of (9) by the
relation
Agi(ny) = --a?f..p(r_”rl_)_‘i"___(r’)dfr. . (10)

T2
Thus, the operator A, acting upon ¢i(r;), multiplies this function by
p(rsry), changes the variable ry to ry, and integrates over rs. It may be
readily verified that A is hoth linear and Hermitian. The integral
that appears in (8) we shall designate by U; it is simply the coulomb
potential of the three-dimensional charge distribution. If we use the
foregoing terminology, (6) reduces to ' _

Hre(r) = I hawi(r) (1)
j .
where H7 is the Fock Hamillonian.operalor, namely,
. . 4 '
Hr = 2m&+V+U+A, (12)

which is the same for all electrons in the system.
The parameters A; in (11), aside from Ay, should be selected in such
a way as to ensure the orthogonality of the ¢:.. A possible choice of these
parameters when the spectrum is non-degenerate is Ay = 0(¢ # j), since
functions that satisfy the equation
H*p; = €pi _ ,
-are orthogonal because H* is Hermitian. This is not the only possible
choice of Ay, however, and others have been used on occadion; but we
shall find that this choice is a convenient one in a large part of the follow-
“ing discussion. ' '
The difficulties encéuntered in solving Hartree's equations also
arise with Fock’s equations, for it is usually necessary to obtain a solu-
tion by some method of successive approximations, such as Hartree’s
method of the self-consistent field. This procedure is more difficult
to apply to Fock’s equations beeause the exchange terms introduce
many complications.
1P, A. M. Dirac, Cambridge Phil. Soc., 26, 376 (1930).
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_ In the next section, we shall give a brief summary of the solutions .

Hartree’s and Fock’s equations for free atoms. The actual technique
does not interest us s6 much as the results and their deviation from experi-
" mental results, for these give us an estimate of the error that may be
expected when the equations are solved for solids.

62. The Solutions of Hartree's and Fock’s Equations for Single
Atoms.-——The simplest nontrivial problem to which the methods of
Hartree and Fock-Slater are applicable is that of the normal state of
helium, which we have discussed in Sec. 48. Hartree’s and Fock’s
equations are identical in this case since the electrons have antiparallel
spins and the exchange terms are zero. The total energy of the atom, as
given! by this approximation, is found to be 0.076 Rydberg unit higher
than the observed value of 5.810 Rydberg units, a fact indicating that
electronic correlations are important to the extent of 0.45 ev per electron.
Henceforth, we shall call an energy difference such as this 0.45 ev, which

- measures the error in the energy derived from a one-electron approxima-
tion, a “correlation energy.” The connotation of this term is evident
from the discussion in preceding sections.

The method employed to determine the one-electron function ¢ in
the case of helium is characteristic of the self-consistent-field compu-
tations of Hartree and hig school. This procedure is completely described
by Condon and Shortley? and will not be thoroughly discussed here. It
need only be mentioned that the procedure consists, essentially; in
assuming a starting function for each electron, determining the potential
integrals appearing in Hartree’s equation from these, solving the equa-
tions for the new wave funclions, and comparing these functions with
the ones originally assumed. If the two sets agree, the system is said
to be self-consistent and the equations solved; if not, the procedure is

- repeated until the initial and final functions do agree. Naturally, there
is no fixed plan that ensures that this procedure will converge rapidly,
since a great deal depends upon a good choice of starting functions.
Other workers, such as Brown? and Torrance,* have developed variations
of the scheme originally used by Hartree. All these methods involve
practically the same steps of approximation and will be regarded as the
same here.

We are fundamentally more interested in the solutions of Fock’s
equations than in those of Hartree’s equations, since the former should
lead to more accurate results. Solutions of one or both of thesevequa-
tions have been obtained for a number of atoms listed at the end of this

1 HARTREER, op. cif.

2 Conpon and SHORTLEY, op. cil.

3F. W. BrRowN, Phys. Rev., 44, 214 (1933).
4 C. C. Torrance, Phys. Rev., 46, 388 (1934).
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section. Among these, those for beryllium and carbon, determined
respectively by Hartree and Hartree! and by Torrance, are of principal
interest since the shsolute binding energies of these atoms are known.
We shall use the results of the atomic computations to study two
topics, namely, the aceuracy of the energy states of a given atom contain-
ing n electrons relative to the lowest energy state of that atom with
n — 1 electrons, and the error in the shsolute energy of an entire atom.
The first of the two quantities gives & rough estimate of the relative
accuracy of Hartree's and Fock’s equations, whereas the second indicates
the absolute error and will give a correlation energy. To date, beryllium
and carbon are the only cases, other than helium, in which the absolute
energy has been completely investigated from the theoretical standpoint.
‘When an atomic configuration involves only closed shells, it may easily
be proved? that Fock’s equations possess a self-consistent solution for which

¥ = Ri(r)0..(0)2.(¢)

where R, 6, ® are functions of each of the spherical coordinates, respec-
tively, and the spherical harmonies 6,,(60), ®.(¢) are chosen to agree
with the conventions of the one-electron approximation for atomic
spectra. This theorem is not valid for Hartree's equations, for they
do not possess the same symmetry as Fock’s equations. The effective
potential for an electron in a closed shell arising from the same closed
shell is not spherically symmetrical in Hartree’s equations, for the
summations in these equations are primed. However, when dealing with
closed shells, Hartree generally takes only the spherically symmetrical
part of the potential in order that the equations may be separated in
spherical polar coordinates. For this reason, his results are not exact
solutions except in special cases, such as the normal states of helium and
beryllium, in which the configurations are closed shells of s functions.
We shall now proceed to discuss particular cases.

a. Beryllium.>—Both Fock’s and Hartree’s equations have been
solved for the normal 1s*2s* state of beryllium to a high degree of accur-
acy. - The resulting 1s functions are very nearly alike, but the 2s func- -
tions show considerable difference. The two types of 2s function are
difficult to compare with one another because the solution- of Fock’s
equation is orthogonal to the 1s function, whereas the solution of Har-
tree’sisnot. The latter may be made orthogonal to the 1s, however, and
the results are gwen in Fig. 3.

"~ The total energies of Be and of Bet*, as determined by dlﬁ'erent
methods, appesr in Table XLVIL

1D, R. HartreEp and W. ITARTREE, Proc. Roy Soe., 1504, 9 (1935).
t Conpon and SHORTLEY, 0p. cil.
3 Hartree and HARTREE, op. cit.
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The difference between the total energy of beryllium as computed from
Fock’s equations and the observed value is about 0.19 Rydberg unit, or
about 2.56 ev, whereas the difference between the two values for Bett
is 0.07 Rydberg unit, or 0.9 ev. In order to obtain an estimate of the
correlation energy per electron, we shall divide the first of these by 4
and the second by 2, obtaining 0.65 ev and 0.45 ev, respectively. 1i

04

0.3

0.2

0.1

4 b6 8
r (Atomics Units) —

F16. 3.—A comparison of the square of the 2¢ functions of heryllium obtained by solving
Hartree's and Fock’s equations. The full curve represents the solution of Fock's equations;
the broken curves represent thé orthogonalized and non-orthogonalized solutions of Har-
tree’s equations.

might seem at first sight that it would be more proper to divide the first
by 4! and the second by 2!, since there are 4! and 2! in’ . racting pairs in
each case. This procedure would not be so reasonable, however, since
the correlation effect is larger for electrons in the sdme shell than for
electrons in different shells. According to these results, the mean

TasLe XLVII
Hartree Fock Experimental
E(Be), R.u. —29.115 —29.140 —29.331 £ 0.008
E(Bet*t) —27.235 —27.235 —27.307 +£.0.008

correlation energy increases slightly as the number of electrons increases,
a fact showing that the one-electron approximation becomes less accurate.
The correlation energy of 0.07 Rydberg unit for Be™ is almost exactly
the same as the value of 0.077 for He.

If we assume that the errer in E{Bet+) — E(Be) arises purely from
the correlations between the 2s electrons, this correlation energy is found
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to be 0.119 Rydberg unit, or about 0.81 ev per electron. Part of this
error actually arises from correlations of the ls and the 2s electrons, but
this is probably a small fraction.

b. Carbon.—Calculations of the energy levels of carbon have been
carried out by Torrance! and Ufford.2 Torrance solved Fock's equations
for the 1s22s?2p? configuration. The energies of the 3P, D, and 38
states were evalusted by Ufford using the functions obtained from the
solution. Since this is not a closed-shell configuration, Torrance had to
replace the asymmetric fields that arise from p electrons by sphérically
symmetrical ones. In addition, he used the form of Fock’s equations
discussed in Sec¢. 51, which is valid for a single determinantal eigenfunc-
tion, although the wave functions of the lowest states do not actually
have this form.* For these reasons, Ufford’s results should be somewhat
higher than those that would be derived from more accurate one-
electron functions. The computed cohesive energy of the normal atom is
1,019.66 ev, which may be compared with the observed one of 1,024.84 ev.
The difference gives a total correla-
tion energy of 5.18 ev, which is about
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L

0.86 ev per electron. cmt I 13N
Torrance also computed one- joqo00f N

electron functions for the 1s%2s2p? -

configuration from which Ufford was i 3

able to derive energy values for et

excited states of the carbon atom. g000

Inaddition, Ufford computed matrix

T T T T 1T 771

components of the Hamiltonian - se”
between the two configurations and "—“"-':gr""
determined new energy levels by 0 3p-

taking into account the perturbing o b .

effect that the configurations exert

> . F16. 4.—The relative positions of the
on one another. This procedure is

levels of the 2s?2p* and 2s2p* configurations
of carbon in different approximations.

equivalent to using new wave func-
tions that are linear combinations
of the unperturbed wave functions
“for the normal and excited states.
The relative pesitions of the levels

a, strict one-electron approximation: b,
approximation in which interaction between
configurations is taken into account; ¢,
observed term values. It should be noted
that the positions of the S and 18 levels are
inverted in going from a to.b.

in both approximations are shown in Fig. 4 and are compared with the
observed values, The computed cohesive energy of the atom is changed
from 1,019.66 ev to 1,020.09 ev by the interaction between configurations,

3 ToORRANCE, op. cil.

3 C. W. Urronn, Phys. Rev., 63, 568 (1938).

3 Modified forms of Fock’s equations have been developed by G. H. Shortley,
Phys. Rev., 50, 1072 (1936).
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so that this perturbation does not account for a very large part of the
error in cohesive energy. '

¢. Ozygen.—Hartree and Black! have solved Hartree's equation for
oxygen in various states of ionization, using the approximation described
above, in which only the radial part of the field arising from p functions
is employed. For this reason and because of the fact that Hartree’s
rather than Fock’s equations were solved, the results are not so sig-
nificant as in the case of beryllium and carbon. One point that may give
us some confidence in them, however, is the fact that the energies derived
from Hartree’s and Fock’s equations do not differ appreciably in the case
of berylium. The energies of several states of O*+, O, and O, relative
to the ground state of the atom having one less electron, are listed in
Table XLVIIL.

Taere XLVIII

Calculated, Observed, Difference
Rydberg units | Rydberg units ..
O++ ip 3.976 4,050 0.074
D 3.778 3.868 0.080
18 3.482 3.659 0.176
ot S 2.516 2.602 0.086
N D 2.258 2.334 0.076
sp 2.084 ) 2.210 0.126
(4] p 0.832 1.00 -0.168
D 0.686 0.856 0.170
18 0.468 0.694 0.226

If the equations that were solved had been Fock’s and if they had
been solved exactly, we might regard the energy diTerence on the right
of Table XLVIII as the correlation energy of the electron that is removed
to give the ground state. Actually,,these values are only approximately
equal to the correlation energies. It should be noted that the correlation
energy is greater for the excited states, particularly for those having low
values of multiplicity and angular momentum. The dependence on
multiplicity is probably related to the fact that states with low multi-
plicity are least affected by the Pauli principle so that the effects of
“accidental correlations” are not so prominent-as in the other cases;
hence, other correlations that are not provided by the Pauli principle
are more important.

" d. Other Cases.—A large number of other atoms have been investi-
gated by Hartree and additional workers. Although the Hartree

1D. R. HagTrer and M. M. BLACE, Proc. Roy. Soc., 189, 811 (1933).
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potentials arising from inner-shell electrons prove to be very valuable
for the process of determining wave functions of valence electrons in
solids, we shall not discuss these cases here, since they would carry us too
far afield. We shall refer to some of the results in later sections, how-
ever, and so we shall list those atoms for which Hartree fields have been
obtained.

Ag* M. M. Black, Mem. and Proc. Manchesier Lit. Phil. Soc. (1934-1935).

Alts D. R. Hartree, Proc. Roy. Soc., 161, 96 (1935).

A D. R. Hartree and W. Hartree, Proc. Roy. Soc., 168, 450 (1938).

B F. W. Brown, J. H. Bartlett, and C. G. Dunn, Phys. Rev., 44, 296
(1933).

Be, Bet D. R. Hartrec and W, Hartree, Proc. Roy. Soc., 160, 9 (1935); 154,
588 (1936).

Ca D. R. Hartree and W. Hartree, Proc. Roy. Soc., 149, 210 (1935);
164, 167 (1938). . -

Cs* D. R. Hartree, Proc. Roy. Soc., 148, 506 (1934).

Cl- D. R. Hartree, Proc. Roy. Soc., 141, 281 (1933); 1566, 45 (1936).

Cut D. R. Hartree, Proc. Roy. Soc., 141, 281 (1933); 15T, 400 (1936).

F, F- D. R. Hartree, Proc. Roy. Soc., 161, 96 (1935);.F. W. Brown, Phys.
Rev., 44, 214 (1933).

He D. R. Hartree, Cambridge Phil. Soc., 24, 89 and 111 (1928).

Hg D. R. Hartree and W. Hartree, Proc. Roy. Soc., 149, 210 (1935).

K D. R. Hartree, Proc. Roy. Soc., 143, 506 (1934), 168, 450 (1938);
Proc. Cambridge Phil. Soc., 84, 550 (1938).

Li J. Hargreaves, Proc. Cambridge Phil. Soc., 38, 75 (1928),

Na V. Fock and Mary Petrashen, Physik. Z., 8, 368 (1934); D. R. Hartree
and W. Hartree, Proc. Cambridge Phil. Soc., 84, 5560 (1938). ’

Ne F. W. Brown, Phys. Rev., 44, 214 (1933).

0,0+, 0%, 0% D. R. Hartree and M. M. Black, Proc. Roy. Soc., 189, 311 (1933).

Rb* D. R. Hartree, Proc. Roy. Soc., 151, 96 (1935). '

i+ J. McDougall, Proc. Roy. Soc., 138, 550 (1932).

w M. F. Manning and J. Millman, Phys. Rev., 49, 848 (1938).

58. Types of Solution of Fock’s Equations for Multiatomic Systems.—
Two independent types' of solution of Fock’s equations have been
widely used in multiatomic systems, namely: the Heitler-London, or
atomic, type; and. the Hund-Mulliken-Bloch, or molecular, type. In
the Heitler-London scheme, it is assumed that the y¥; aze large only
about single atoms or ions. Thus, in H,, the two one-electron functions
have the form shown roughly in Fig. 5a. This type of solution is accur-
ate when the atoms of the multiatomic system are far from one another
and the atomic or ionic properties of the constituent atoms are pro-
nounced. In the Hund-Mulliken-Bloch scheme, on the other hand, it is

1 The workers after which these schemes are named actually did not use them in
connection with Fock’s equations but simply used one-electron functions of the cor-
respanding form. In the ease of solids, we shall call the second scheme simply the
“Bloch scheme” or the “band scheme.”
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assumed that each ¢ extends over the entire system of atoms and has
equal amplitude at equivalent atoms. In H,, for example, both elec-
trons have the type of wave function that is illustrated in Fig. 5b. The
use of this type of function is equivalent to assuming that the atoms
of the system are affected by combination to such an extent that the

I

T b
F1o. 5.—In the Heitler-London approximation the electrons of Hj; have separate wave

functions of the type shown in a. In the Hund-Muliiken approximation both have the
Tunction b, which is distributed symmetrically between both atoms.

valence electrons belong to the entire molecule rather than to a single
atom.

It has not been shown whether or not both types of solution aiways
exist and whether or not they are the only solutions of Fock’s equations.
We shall show, however, that both  types can exist.

Let us consider Fock’s equations in the form

—'2&;35"6& 1) + [Vi(l't) + 2 egfi—:%?dn]&bi(r:) -
i

S (e[ e = aited. @
i

We shall discuss the case of atomic functions first. The coulomb terms
Se Wl
. - Tz
7

obtained from Heitler-London functions screen part of the contribution
to the ionic potential ¥V from all atoms except the ith and make the
attractive coulomb field largest at the sth atom. Thus, if we neglect
the exchange term, we may expect the solutions of Eqgs. (1) which are
obtained when the potentials have been derived from atomic functions
in be localized about individual atoms, that is, to have the form of
atoinic functions. Hence, we may expect to find a self-consistent solu-
tion of atomic functions in Hartree’s case. This conclusion remains
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valid when the exchange terms are included if the atoms are far apart, for
then these terms are small. Since it has not yet proved possible to
discuss the influence of exchange terms in any general way when the
atoms are close together, it has not been demonstrated that atomic
types of solution always occur in this case.

It is easy to see that the molecular types of solution always exist, for
if we write Fock’s equations in the form of Eq. (11), Sec. 61, it follows
that no atom is preferred as long as the y; prefer no atom. Hence, if a
starting set of functions of the molecular type is used in applying a self-
consistent scheme, all subsequent solutions, including the self-consistent
one, will be of this type. :

We shall show in later chapters (¢f. Chaps. VII and VIII) that the two
types of solution lead to identical antisymmetric total wave functions
in an important case, namely, that of the normal state of a molecule the
constituents of which have rare gas structure.

The molecular types of wave function, particularly those of lowest
energy which have few nodes, are smoother than the atomic wave func-
tions. Hence, we may expect that the mean kinetic energy usually will
be lower when molecular functions are used. This advantage of the
Hund-Mulliken-Bloch scheme is balanced by the fact that the scheme
relies upon the accidental correlations introduced by the Pauli principle
to reduce the energy of electron repulsion. The Heitler-London scheme,
on the other hand, reduces this energy by keeping the eleetrons on
separate atoms. The results for the problem of molecular hydrogen,
which we shall discuss in the nexl chapter, show that in this case the
advantages and disadvantages of the two schemes are about equal.
Incidentally, the cohesive energy obtained by both schemes is in error by
about 0.5 ev per electron, which shows that the solutions of Fock’s
equations are far from exact.

Both these one-electron schemes have been used extensively in solids,
since each has its advantage for different types of problem. For exam-
ple, the Bloch scheme is preferable in discussing metallic conductivity,
whereas the Heitler-London scheme is preferable in discussing cohesion
in ionic crystals. We shall develop both approximations in the following
chapters, letting physical reasonableness be our guide in their application.



CHAPTER VII
MOLECULAR BINDING

64, Introduction.—There is an intimate connection between the
binding properties of molecules and of solids as far as quantum mechanical
principles are concerned. For this reason, we shall discuss some of the
features of molecular binding. Since there are many important topies
in the theory of molecules upon which we shall not touch, the following
discussion should not be regarded as complete.

A fairly complete investigation along exact lines has been earried out
for many of the simpler molecules such as Hyt, Hy, and Li,. The Hartree-
Fock scheme, discussed in the last chapter, plays a very minor role in
this work, for the variational scheme has been employed directly. How-
ever, we shall be able to interpret some of the results in terms of the
Hartree-Fock scheme. In cases such as Hy+ and H,, in which the final
results are almost as accurate as those obtained by Hylleraas for atomic
helium, it is possible to gain an abundance of valuable information.

In addition to these quantitative investigations, there have been a
number of qualitative discussions of more complicated molecules based
on the Heitler-London and the Hund-Mulliken schemes. This work has_
proved to be extremely useful in the hands of the physical chemist who
is willing to introduce an ample amount of empirical knowledge into any
scheme he uses.

The Hamiltonian operator used in discussing the electronic structure
of simple molecules is generally the same as the operator (1) of Sec. 47,
Chap. VI, in which nuclear coordinates appear parametrically in V;
and I and in which spin interactions are neglected. For this reason, we
may take over all the general remarks of the last chapter.

b6. The Hydrogen-molecule Ion.—The simple molecule H:* has
the Hamiltonian operator -

h? et e? ¢
25—(“'}';;”—;-;) (¢))
where 7, and 7, are the distances of the electron from the two protons,

which are separated by a distance rs. The corresponding Schrédinger
equation

~ X - ( ¢ _ —)w By @)



Sec 53| MOLECULAR BINDING 255

is separable when expressed in terms of the elliptical variables

L R L @
ab Tab

where ¢ is the angle that the plane eontaining the electron and the two
nuclei makes with a fixed plane passing through the nuclei. In faet, if .
we set :

¥ = E(OHn)2(¢), 4)
the seperated equations are

d dz u? _
gg((s* - ) + (—~w +2DE— s+ r)E=0,  (50)

22 —
af e -
&;((1 ,,z)%%) + (x,,: = T)H =0, (5b)
a3
'&'3; = _#ﬂq;,’ (50)
where '
2
.._mrf,,,(E - ;; I
A= o , D = Jﬁﬁ——, (5d)

and g and r are separational parameters.

From (5¢), it is clear that & = e¢*, whence x may take on only integer
values. In addition, we know that the two states for which u = +u’ will
have identical cnergies, for only u? appears in the other two equations.
In other words, all levels except those for which y is zero are two-fold
degencrate. Since the angular momentum about the axis joining the
nuelei is simply ph, it is conventional to designate the states for which
w=0,1,2"--: by o x 8§ respectively, in analogy with the atomic
designation involving the angular-momentum quantum number.

On general grounds, we should expect the lowest state to be one
for which -z = 0 since this type of function does not have an angular
nodal plane. This state was investigated first by Burrau,! but a more
accurate treatment has been given by Teller? who, in addition, carried
through an investigation of higher states. We shall not discuss Teller’s
work in detail, except to say that he solved (5b) by means of power series
and found the eigenfunctions of (5a) by use of the variational equation
going with this self-adjoint differential equation. If the number of nodes
in E and H is designated by n; and n,, respectively, it should be possible
to label all the states by these two quantum numbers and x. The

1 0. Burrav, Danske Videnskab. Selskab, T, 14 (1927).
*E. TeLLer, Z. Physik, 61, 458 (1930).
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convention usually adopted, however, is to employ the quantum numbers
n and ! of the hydrogen-like state into which a given molecular eigen-
function degencrates when r. approaches zero. A simple investigation
revecals that n; goes into the radial quantum number and that n, goes
into the polar quantum number /-, as may be seen from the fact that
£ becomes a radial variable and % becomes the variable cos 8, where 8 is
the polar angle in spherical polar coordinates. In other words

n=n;+!+1;}

L= 1y + p ©

The energies of several states are shown as functions of . in Figs. 1
and 2. In Fig. 1, the abscissa is the internuclear distance -expressed in
Bohr units and the ordinate is the purely electronic part of the energy

Afo

3pa, 3o T
2s0-

2pm 3do -04

2po /_.-—--— \

| / -06
_2 . .
2po
Iso -08 \
-3 | \

"o 5 10 15 "M% 10 i
Fita. 1.—The electronic energy of Fra. 2.—The totalenergy of several states
several states of Hs" as a function of of Hat as a funetion of interatomic distance.
interatomic distance. (After Teller.) The These curves are derived from those of
ordinate is in Rydberg units. Fig. 3 by adding the energy of nuclear
repulsion. - (After Teller.)

(that is, the nuclear repulsion is neglected). In Fig. 2, the abscissae
are the same as in Fig. 1, whereas the ordinates represent the total
energy. The stable states are those of Fig. 2 which possess a minimum
for finite values of rs. It may be seen that the only members of the
computed set that possess this property are the 1ss, 3ds and 2pr states.
The energies of the minima relative to a zero in which all particles are
separated from each other by an infinite distance are given in Table
XLIX. -
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TasLe XLIX
State | Nuclear separation, ax | Energy, Rydberg units |Energy of dissociation, ev
lse 2.00 . —1.20537 2.781
3do 11.5 ~ —0.350 1.35
2pr 8 —0.265 0.20

The last column in this table is the energy required to dissociate the
molecule into an atom and a proton.

When the parimeter 7. becomes very large, the amplitudes of the
wave functions become negligibly small at distances midway between the
nuclei. The wave function then reduces, for all practical purposes, to
two hydrogen wave functions, each centered about one of the protons.
Only one of these two states should be regarded as the final state if the
separation is sufficiently large, for there is only a negligible probability
of the electron jumping from one atom to another. The quantum
numbers of this atomic state, which may be determined by a simple
analysis involving parabolic coordinates, are connected with those of
the molecule in the following way: The total quantum number n' of the
final state is related to ne, n,, and x by the equations

n;-l—%-i—p-i—l (n, even)

’

n = . @)
n;+n"2 +u+1  (ny odd).

No definite  value may be assigned to the final state, for the hydrogen-
atom wave functions obtained by removing e proton from H,* are not
eigenfunctions of angular momentum. '
The values of I entering into thesec wave
functions, when they are expressed as a
linear combination of eigenfunctions of
angular momentum, range over the
allowed values that may be associated
with #»/, that is, from n»’—1to 0. The
value of m for the final state is the same
as the value of u before separation. It

F1a. 3.—The charge distribution
may be seen from (6) that the value of associated with the normal wave

n obtained by coalescing the two nuclei function of Hi*. (After Burras.)

is either greater than or equal to the value (7) obtained by separation.

The electronic charge distribution of the lowest state is shown in
Fig. 3, for equilibrium separation of protons. It should be noted that the
amplitude is large and nearly constant at distances midway between the
protons. The disadvantage of having two repelling protons is more
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than compensated by the following two facts: (1) There is a larger region
in which the electron may have negative potential energy when there

- are two protons instead of one. (2) The wave function may be smooth
over a larger region of space. The first fact has associated with it a drop
in potential energy; the second, a drop in kinetic energy. The 2po
state, which combines with the 1so at large internuclear distances, has a
nodal plane midway between protons. Thus, neither is it smooth, nor
does it allow the electron to have an appreciable probability of being at
midway regions where the potential field favofs binding. Figure 2
shows that it is entirely repulsive, as we might expect. '

06. The Hydrogen Molecule.—The hydrogen molecule has been
treated approximately by a large number of workers. We shall consider
first the solution obtained by James and Coelidge,! since it is considerably
more accurate than any other. Their procedure is patterned after the
one Hylleraas followed when working with helium (¢f. Sec. 48, Chap. VI).
'We shall see that there is a close correspondence between the conclusions
that may be drawn from the solutions of both problems.

a. James and Coolidge expressed the Hamiltonian operator

e? e* et et et e?

A
Tt A - T T Tt ®
in terms of the four elliptical variables
C Tt T Taa + 7w
hETET BT TR
T — Tn _ T2a — f‘, . (20)
m = e ' N2 = _—r.; -

which are analogous to the set (3) of the previous section. Instead of
using #: and ¢ as the remaining pair of electron variables, they chose
the set.

= 2,
P o

0= ¢1+ ¢2 and (2b)
The interelectronic distance was used explicitly in order that electronic
correlation, discussed in the last chapter, might play a role appropriate
to its importance. The variable 8 does not enter into the wave function
of the lowest state for the same reason that ¢ does not enter into the wave
function of the lowest state of Hy™.

The starting wave function for the lowest state was taken in the

power-geries form

6= MO Y Connii(E0 Eninko® + E1ETwINER?) &)
1H. M. James and A. 8. CoovirGe, Jour. Chem. Phys., 1, 825, (1933).
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where & and the C are parameters that must be determined. Naturally,
only the first few terms of the series were used. The various steps that
were taken in extending the computation may be summarized in the
following way.

1. Only the exponential term was retained in the first approximation.
The best value of é depends upon r,; and is 1.696 for the observed separa-~
tion of 1.40 Bohr units. In this case, the binding energy of the molecule
is 2.56 ev, which should be compared with the experimental value of
4.73 + 0.04 ev.

The wave function

e— E+£1)
may be written in the form
"S(rietrs) _ 3(rietru)

e Tk g re (4)
which corresponds to the product of two one-electron wave functions of
the Hund-Mulliken type. Hence, the results for this case give us a lower
limit to the accuracy that should be expected if the Fock-Hartree pro-
cedure based on the Hund-Mulliken scheme were employed. From
this result, it is difficult to say to what extent a rigorous solution of
Fock’s equations would improve the calculated energy. A more accu-
rate solution of the Hund-Mulliken type will be discussed in part b.

2. Neglecting all terms in (3) that depend upon p, James and Coolidge
found that the best energy they could obtain for 7, = 1.40a; is abont
4.27 ev, which differs from the observed value by approximately % ev.
Since this approximation is the best possible one in which correlationis
are not included, it gives an upper limit to the possible accuracy of the
Fock-Hartree procedure. It is doubtful whether the energy of the Fock-
Hartree approximation would be nearly as good as this, however, since
(3) is much more intricate than a product of one-electron functions even
when terms in p are nheglected. Thus, the correlation energy correction
would be at least + ev per electron, if the Hund-Mulliken scheme were
used.

3. The simplest function employed in which the variable p occurs i
the five-parameter expression

o2t (o} + 1) + amums + aslls + B) Fagl  ©)
This leads to an energy of 4.507 ev with 7o = 1.40as. The parameter
values are listed in Table L. It should be noted that § has a value
considerably different from that discussed in case 1. Thus, just as in
the case of helium, the inclusion of a linear term in p leads to a better
energy. :

4. As a final step, a thirteen-parameter expression involving quadratic
terms in &, &, and p, as well as those appearing in (§), was employed.
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The parameters Cuaprp are tabulated in Table L, and it may be seen
that in some cases they differ greatly from the values discussed in case 3.
The final energy is about 4.69 ev, which lies within the experimental
error of the observed value. The computed internuclear distance is
‘identical with the observed one.

Tasre L
Case 1 Case 3 Case 4
5 1.69609 2.23779 2.2350
Coooze | .. 0.80483 1.19279
Coome ™ | e —0.27997 —0.45805
Cuee | ceenn.. —0.60985 —0.82767
Cuose | cooee.. 0 o —-0.17134
Croze | oo Lo -0.12101
Cite | ... 0.12394
[/ S KA S 0.08323
Cosvor Ceiaeaes 0.19917 0.35076
Cooo:r | oo . 0.07090
Coorn | e b L —0.01143
L e —0.03987
Coowez | eeeeeee | e —0.01197

b. We shall now compare the accuracy of the Heitler-London and
Hund->iulliken schemes in so far as computations on H; allow us to
make s comparison. It is easy to show that Fock’s equations for the
two schemes are essentially different in this case, as they are in most
multiatomic systems (an exceptional case will be discussed in Sec. 58).

For a two-electron system, the singlet eigenfunction based upon one-
electron functions is

A
V2

Here, at_id ¥q are the one-electron functions that, in the Heitler-London
scheme, are centered about different nuciei. Fock’s equation for ¢, is

[ )va(rs) + \(’1(1_’2)4'2(1'1)].[7!1(1)7!2(—1) — 92(Dm(~1)1. (6)

—-;%Aﬂ&ﬂh) + (-e—z - ;:; + e‘fw“;(::)lz Tz)';’l(rl) +

Tia

(32 f %(r:’)‘::s(rs) 1-,)%(1'1) = ef1(r1) + Ma(r), (7)

and there is a similar equation for ¥..
The space part of the total wave function (8) reduces to ¥(r)y(r2)
when ¥, and ¢, are equal, as in the Hund-Mulliken scheme. In this

case, Fock’s equation for ¢(r) is
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R e _ e ¥ (ra)|? =
i 2mA'P + ( E o + esf'—‘;;‘—dﬂ = ). 8
Equation (7) reduces not to (8) when we set ¢, = y,, but instead to
. _eL_ 2Dl
’ 2mA‘& + ( T1a T2a + 2e=f Tiz drs v = ,e‘&’ (9)

in which: the coulomb integral contains a factor 2. Thus the different
assumptions of the two cases lead to different systems of equations. The
two schemes should be regarded as different approximate solutions of the
same problem rather than as different solutions of the same set of one-
electron equations.

The most accurate attempt to apply the Heitler-London scheme to the
hydrogen molecule was made by Wang,! who used hydrogen-like atomic
wave functions of the form e—<r, where r is the distance of an electron
from the nucleus and « is an adjustable screening parameter. The best
value of the cohesive energy obtained by this procedure is 3.76 ev cor-
responding to rs = l.4las. The effective proton charge Ze is related
to a by the equation )

Ze = eaqy.

For the best value of «, one finds that Z = 1.17. At first sight, it may
seem surprising that this is greater than unity. It should be recalled,
however, that Z must increase from unity to the value of {§ for atomic
helium (¢f. Sec. 48) as ra decreases from infinity to zero. _

On the other hand, the most accurate attempt to apply the Hund-
Mulliken scheme to the hydrogen molecule was made by Hylleraas.?
He constructed a determinantal eigenfunction from one-electron solutions
of a two-center system, similar to Hy*. He assumed that the charge
on the centers was e¢/2, rather than e as in H,*, in order to compensate
for the nuclear screening effect that one electron exerts on the other.
The cohesive energy obtained by taking the mean value of the Hamil-
tonian of H; with this determinanial eigenfunction is 3.6 ev for an inter-
nuclear distance of 1.40a;. This fact shows that Fock’s equation would
lead to the correct energy to within at least 0.55 ev per electron if the
Hund-Mulliken scheme were used. In view of the remarks made under
2, part a, we can say that the correlation energy of H; for the Hund-
Mulliken scheme lies between 0.55 and 0.25 ev per electron.

We may conclude?® from these two cases that the Heitler-London and
Hund-Mulliken schemes are about equally successful as far as the

18. C. WaNaG, Phys. Rev., 81, 579 (1928).

*E. HyLLERAAs, Z, Physik, T1, 741 (1931).

3 Other methods of treating H, are surveyed by J. H. Van Vleck and A. Sherman,
Rev. Modern Phys., T, 167 (1935).
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problem of minimizing the energy is concerned. The error in each case
is of the order of 0.5 ev per electron.

57. Molecular Lithium.—Next to hydrogen, diatomie lithium is the
simplest stable molecule that contains only one type of atom. We shall
outline briefly the computations that deal with it.

In early work, several attempts were made to compute the binding
energy of Li, by taking into account only the two 2s valence electrons
and treating 1s shells as though rigidly fixed. The interactions between
the closed shells on different atoms were neglected. It was first pointed
out by James! that the relatively simple methods used in treating the
two valence electrons give a binding energy that agrees with the experi-
mental value of 1.14 ev only because the closed-shell interactions are
neglected. . He carried out several types of calculation that show the
following fact.s :

a. If the closed-shell mteractmns are neglected, a binding energy
greater than the observed value may be obtained by using essentially
the same procedure that James and Coolidge employed for Hs. There
are two reasons for this fact: (1) The ion cores repel one another more
strongly when the shells are taken into account than when they are not.
The origin of this additional repulsion will be discussed in the next
section. (2) The wave function obtained by a variational procedure
usually violates the Pauli principle unless the closed-shell wave functions
are explicitly included in the varied wave function.

b. A binding energy of 0.62 ev may be obtained by an involved
variational computation in which closed-shell wive functions are included
in the varied function. The interelectronic distance variables were not
introdueed into this wave function since they would have made the
computations prohibitively complicated.

James’s work on Li, is interesting from the standpoint of computations
dealing with monatomie solids, for many features of the two cases are
igentical. Since closed inner shells are present in all the interesting

«lidg, it is important to know the extent to which they can be neglected.
The preceding discussion shows that the problem of closed shells must
b spproached with care if relative binding energies are to have much
sigaificance. It will become apparent later that there are several
revicoming features in the case of solids. Most important among these
is tie fact that equ:hbnum distances in solids are usually much larger
tk>" jo molecules. For example, the closest distance of approach of
Binie o atoms in the metal is 5.65a;, whercas it is 5.05a, in the molecule.

&7, Closed-shell Interaction and van der Waals Forces.2—There
- ore eass in which the Heitler-London and Hund-Mulliken schemes are

. ML Fames, Jour. Chem. Phys., 2, 781 (1134;.
-+ review article by H. Margenaw, Kev. Modern Phys., 11, 1 (1839), for a snm-
_the development of the theory of viia der Wresla forces,
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identical, namely, the case of electron configurations that. correspond
to the interaction of closed shells. In this case, the singlet eigenfunction
is 4 simple determinant, for all elec- :

tronic wave functions appear in pairs

with opposite spin. The determinant % ¥
formed from Heitler-London wave func-

tions may be rearranged so as to satisfy @ b

the Hund-Mulliken conditions. We . ‘
shall demonstrate this theorem by con- M
sidering the interaction of two normal gl

helium atoms. It will be evident that 3 +

the principles involved in this particular (b)

case are generally applicable.
We shall designate the wave func-
tions centered about one of the atoms a

by ¥. and those centered about the
other by ¢». We may assume that ¥, ©
and y» are symmetrical in the sense that <

] - - Fic. 4.—a, the two Heitler-L.ondon
they bec_ome interchanged if the twonu- e of Hs Their sum b and
clei are interchanged (¢f. Fig. 4). The their difference ¢ are Hund-Mulliken

wave function for the molecule is then ~ functions.

Va(r)m(l) Va(r2)n2(1) Ya(rs)na(1) Va(re)ni(1)
Ya(r)m(—1) Va(Ta)na(—1) Ya(rs)ms(—1) Ya(Ta)na(—1)
Wa(r)m (1) ¥u(r)na(1) ¥u(T3)na(1) (T na(1)
l\"b(h)‘lh( -1) Yo(ra)na(—1)  ¥a(Ts)n(—1) Ya(rdm(—1)

It should be noted that corresponding clements in the first and third
rows have identical spin functions, as do those in the second and fourth
rows. Let us now add the third row to the first, subtract the first row
from the second, and repeat this procedure with the second and fourth
rows. We then obtain the determinant

l. )
|

| ¥alem(1) Va(ea)na(1) wmm(D) 7 da@)m(l)
| ¥alr)m(—1) Ye(r)ne(—1) Yi(ra)ns(—1) Ya(r)na(—1) @)
{a(r)n1(1) ¥n(rs)na(1) Yu(rs)ns(l) Yu(r)n(1)

yu(r)m(—1) Yn(ry)n(—1) ¥Yn(rs)n(—1) Yu(r)nd—1)
where

VY1 = Va + ¥, Vi = VYo — Yo ' 3)

Since (2) has been obtained by adding other rows to the rows of (1),
the two determinants are equal. ¥i and ¥u, however, are Hund-Mul-
liken wave functions (¢f. Fig. 4). Hence, in this case, the two schemes
are equivalent. In more general cases, the determinant corresponding
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"0 (1) hes more rows and columns, but alternate rows have equal spin
iunctions and may again be combined to form Hund-Mulliken wave
functions. We shall discuss the crystalline case in Chap. VIII.

The Heitler-London scheme has been used to compute the energy of
interaction between closed shells. For convenience, the one-electron
functions employed in these computations were based upon approximate
atomic functions rather than upon sclutions of Fock’s equations. We
shall discuss several examples in detail.

a. Helium Inleraction.—The most accurate treatment of the repulsive
interaction of two helium atoms has been given by Slater! who computed
the mean value of the interaction potential H; of the two molecules,
using a total wave function that was constructed by taking an appropri-
ate linear combination of atomic eigenfunctions. His work is not a
strict application of the Heitler-London method, since the atomic wave
functions that he used were not constructed of one-eleetron functions
rione but contained the interelectronic distance variable. In analytical
form, his atomie wave function ®(1,2) is

1.3926'*3(!‘1'!'!':)1"0.Er:t+i5.l.ll.07(r1’+ﬂ’); (rl‘ re < 3)’

1.2416""*‘"3“'1?{‘”“(1 + Q%Z‘QE), (n>2;r<3), @)

0.0707)

*(1,2) =

4

; (re > 3; 71 < 3).

1.24 18_2'1"1‘ "“'!r!—ﬂ. 255(1 _{_
Tg

Here 71, r3, and ry, are the radial distances between the clectrons and
the nucleus and between the electrons, expressed in units of the Bohr
radius. If we desigpate the two nuclei by a and b and let a subscript
on ® indicate the nucleus about which the electrons are centered, the
complete antisymmetric wave function for He, that is obtainable from
(4) is
¥(1,2,2,4) = 8.(1,2)8(3,4) — ®.(1,4)3(2,3) — ®.(2,3)8:(1,4) +
@,(3,4)@;(1,2), (5}

in which it is implied that.each ® has an appropriate spin factor. The
function (5) reduces to (3) when ®{1,2) is simplified to a product of onc-
electron functions. '

The repulsive interaction V(R) that is derived from (5) is a fairly
compticated function of the internuclear distance R, but it may be
accurately approximated by means of the analytical expression

) R
V(R) = 481¢ 0412 (6)
in unite of ev, for R greater than 2a,.

1J. C. SLATER, Phys. Rev., 32, 330 (1928).
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b. Neon Inieraction.—Bleick and Mayer! have determined the inter-
action energy in the case of two neon atoms, using one-electron atomic
functions that were obtained by approximating Brown’s results® ana-
lytically. The radial parts of the 2s and 2p funections are

Rs = 13.6e7%2% — r(14.7e35" 4 4.76e"-“'),} @
Rsp = 7(17.9¢3%0r 4 2.30e-6%).

The internuclear distances used in their work were so large that the
1s functions did not overlap appreciably. The results of a straight-
forward, though laborious, computation of the interaction energy are
given in Table LI for three values of the internuclear distance.

Tasre LI
R, Bohr Units V(R), ev.
3.41 2.16
4.35 0.22
6.05 0.003

These three values may be fitted by the simple function

B
1.18 - 104 0398 - (8)

with an error of about 10 per cent.

The fact that V(R) is approximately exponential in both the cases
a and b provides a rough justification for the exponential term that Born
and Mayer used to express the repulsive interaction of ions in crystals.

These repulsive terms do not describe the interaction exergy properly
at large distances since the tendency of electrons to avoid one another
has not been taken into account. An additional attractive term is
found when this is done. Since .the additional term was implicitly
postulated by van der Waals when he proposed his equation of state for
gases, it is called the ““van der Waals interaction.”

Let us consider the van der Waals energy® for two atoms a and b
that have m and n electrons, respectively, and are separated by a dis-
tance R. We shall assume that the atoms lie along the z axis and shall
designate the Cartesian coordinates of the electrons relative to the
nucleus of the atom on which they reside by (Zai,Yai,2es) 80d (Za;,Y5i,264),
respectively, where ¢ ranges from 1 to m and j ranges from 1 to n. The
interaction potential H; of the two atoms may be computed by straight-
forward principles of electrostatic theory and may be expanded in terms
of the Cartesian variables. The result is

1W. E. Bupick and J. Mayar, Jour. Chem. Phys., 8, 2562 (1934).

! W. G. BrowN (df. Sec. 52).
3 F. LoNDoN, Z. Physik, 68, 245 (1930).
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2 2
Hy= E E{‘"‘%(zﬁaﬂw — Yailfti — Zaithi) + g%;[fatxbj - zdfﬁ,- +

f=1 jw=1

2
(ot + Deacty — Bract) (ot — 7)) + 3 Falrliy — 5riad, —

bria, — 16a3al + 2(dzamy + Yot + zuits)'] + s } ©

The terms in 1/R? 1/R* and 1/R® are called, respectively, the dipole-
dipole, dipole-quadrupole, and quadrupole-quadrupole interaction terms
because they are similar to the interaction energy of the corresponding
types of multipole.

The expressions (6) and (8) are mean values of H; for the approximate
wave functions eonstructed from atomic wave functions, and they may
be looked upon as the first-order terms in the perfurbation formula

E':(R) = f‘f’n‘ffx‘l'odf — E]L‘_‘;’f&?ﬁtlf + - (10)

where ¥, is the lowest state and the ¥, are higher states. Hence, the
second term is the van der Waals energy, if we may assume that higher
terms in the expansion (10) are negligible.

London has derived a somewhat rough but general expression for
the contribution to the van der Waals energy from the dipole-dipole
potential in (9). For simplicity, he assumed that the unperturbed
wave functions of the normal and excited states may be represented by
products of functions of the separate atoms, thus,

¥ = by (11)

in which u and » correspond to different atomic states. This approxima-
tion is poor when the atoms are very close together, for it violates the
Pauli principle, It is accurate, however, for large atomic separations
when the wave functions of different atoms do not overlap. On this
assumption the integrals in the numerator of the second term in (10)
degenerate into sums of products of integrals over separate atoms, for
each of the terms in (9) is a product of terms involving variables of
electrons on different atoms. These one-atom integrals, which have the

form
f @,*0(23.,‘ ®;dra, (12)

play an important role in the theory of optical radiation (¢f. Chap. V).
They vanish unless a dipole transition is allowed between the states &}
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and ®’. Moreover, there is a close connection between the integrals
which involve 23,.' and those which involve Eym- and 2:2"" for the

& are wave functions for spherically symmetrical atoms. For these
reasons, the numerator of the second term in (10) may be mmphﬁed
conslderably, and the sum may be reduced to

Iz ).

Eos(R) = 61?230 oy ey ey (13)

(‘?'z“‘) - f ﬁ«“‘(;m @a“df,
(S)a, = Jor(Sa)over

and the E are the energy values of the wave functions that appear in
these integrals.

E.* and Ey are sometimes replaced by constant mean values E, and
E, in order that the numerator may be summed alone. These mean
values, which are not defined independently of Eq. (13), are usually
assumed to be approximately equal to the ionization energy of the atoms.
By the use of this approximation, Eq. (13) becomes

).

T ES+ E) — E, — E,

S/ - (3L a

The polarizability « of an atom is related to its energy E(E), in a field
of intensity E, by means of the equation

E(E) = Eo + }aE>. | (17
Thus, according to perturbation theory, we have

|(2"‘)mi

—5 (18)

where

(14)

Eqi.s(R) = ) (15)

since

a=—2¢’

p

which is approximately equal to

(3.

R ¥ S S—
¢ Eo "‘_Ea
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Hence, (15) is approximately equal to

o 31 (Bo— E)(Eo— By
H“ETR®+ B - B, - By

(19)

where a, and a; are, respectively, the polarizabilities of atoms a and b.

Margenau' and Mayer? have applied similar methods in order to
obtain the contribution to the van der Waals energy from the dipole-
quadrupole and quadrupole-quadrupole terms. The end result for the
dipole-quadrupole term that corresponds to (19) is

3 1 [awad (B2 — Bo) (B — ) + alao(ES — BB} — )]
2 R? (B3 + E} — E. — Ey)

Ed.' =

(20)

The quadrupole-quadrupole term may be developed in a similar way, as
is described in Margenau’s paner.

We shall now discuss the results of computations for hydrogen and
helium.

a. Hydrogen.—For two hydrogen atoms, (19) becomes

6 e
“Ra (21)

in which R is expressed in units of as, when £ — E, is set equal to the
ionization energy e?/2a). In the same approximation, the complete
expression for the van der Waals energy, through quadrupole-quadru-
pole terms, is

e} 1 22.5
‘"%(’R‘ BT R“') 22)
This may be used to estimate the relative magnitude of the different terms.
More accurate expressions for the dipole-dipole term have beon

derived by Eisenschitz and London® and by Slater and Kirkwood.*
The first workers summed (13) directly and obtained

6.47 e?

R o - ®
whereas the second emf;: yved a variational method and found
' 6.49 ¢?
Ty @4

1H. MARGENAU, Phys. Rev., 88, 747 (1931); 40, 387 (1932), see also op. sil,
3J. E. MavEg, Jour. Chem. Pkyt., 1, 270 (1933). ,

1 R. Emisenscarrz and F. Lonpon, Z. Physik, 80, 491 (1930).

¢J. C. Buater and J. G. Kirgewoop, Phys. Rev., 87, 682 (1931).
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b. Helium.—Margenau® has derived an expression equivalent to (22)
for helium. . The result is

-2 (R. + 23+ ET) (25)

A more exact expression for the dipole-dipole term, which was derived
by Slater and Kirkwood, is?
1.59 2
-F o (26).
The sum of (26) and (6) has a shallow minimum with a depth of
0.75 X 10-3 ev at 5.5a,. This minimum accounts for the weak cohesive

energy of liquid helium {see Fig. 5).

20

€x 10 Ergs
(=]

L~ i
\ /.
/
{
/
-20 ,'
4 5 6 1 8 9 ®©
R/a,

F1a. 5—The total interaction energy of two helium atoms. The dotted curve is the van
der Wauls interaction. (After Slater and Kirkwood.)

A similar minimum should be expected for all rare gas atoms. Bleick
and Mayer find that the total interaction energy for neon, obtained by
adding (8) and (19), has & minimum of 1.3 - 10~ ev when R is equal to
6.5as. These values agree roughly with those obtamed from empirical
data by Lennard-Jones.®

! Margensu has recently developed a revised form of Eq. (25) which he regards
a8 a more accurate representation of the true van der Waals energy than either
Eq. (25) or (26) (see Phys. Rev., 56, 1137 (1939)).

2 Srarer and Kimxwoon, op. o,

3 Bae survey by J. E. Lennard-Jones, Physica, 4, 941 (1937).
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69. Molecular Valence.—The problem of providing a reason for,
the inertness of the rare gas atoms in their interaction with onc another
is solved by the computations discussed in the last section, for they show
that closed-shell structures have very weak attractive forces. A similar
problem arises in connection with molecules such as H,, N;, CH,, C.H,,
since they also form very stable units that do not interact strongly with
one another. This problem is of importance to us because these mole-
cules are constituents of an important class of solids.

The origin of the weak intermolecular forces is believed to be largely
the same as that in the case of the rare gases, namely, the van der Waals
interaction. Computations that support this are discussed in Sec. 88,
Chap. X. The problem of understanding the internal stability of these
molecules, however, is not so easy to answer in a quantitative way.
Since the internal binding energy of the stablest molecules is of the
order of magnitude of 1 ev per electron, this problem can be solved
quantitatively only by solving the Schridinger equation for molecular
systems to a higher degree of accuracy than is generally feasible at present.

Physical chemists have attempted to avoid some of the difficulties
associated with solving the Schrodinger equation accurately by introduc-
ing semiempirical schemes. These are usually patterned after one of the
one-electron schemes, the matrix components that enter into the theo-
retical results being judiciously replaced by quuutities derived from
empirical data. From what is known of the sccuracy of one-electron
approximations, it i8 doubtful whether actual computations based on
these one-electron schemes would yield results that agree with experi-
mental results as well as those of the semiempirical schemes do. The
latter are such a distinct improvement over older valence theories, how-
ever, that they have great value in discussing many properties of mole-
cules. We shall present some of the qualitative results of these schemes
in the sections of Chap. XIII that deal with valence crystals.

1 See the review article by J. H. Van Vleck and A. Sherman, Rev. Modern Phys.,
7, 167 (19356).



CHAPTER VIII
THE BAND APPROXIMATION

80. Qualitative Importance of the Band Scheme.—Prior to the
introduction of quantum mechanics, it had been believed that insulators
have low electronic conductivities because their valence electrons are
localized on definite atoms or molecules and cannot jump from one
atom to another. The electrons in metals, on the other hand, were
considered to be free to roam throughout the lattice, and the high con-
dyctivity was believed to arisc from this freedom of motion. If we
attempt to use these qualitative notions in order to understand both the
conductivities and the cohesive energies of solids, we face considerable
difficulty unless we are willing to assume that the binding forces arise
from essentially different sources-in each type of solid.

Suppose, for example, we assume that there are only two kinds of
interatomic force, namely: (1) electrostatic forces between bound charge
distributions, and (2) undefined forces that are ultimately connected with
the presence of {ree electrons and are of primary importance in metals.
It is possible to account for the cohesion and insulating properiies of
ionic and molecular crystals in terms of (1). We may assume, as is
done in the Madeclung-Born theory, that the constituents of icunic crystals
are ions and that the main part of the cohesion arises from the clecteds
static attraction between these. Similarly, we may assume that the
molecular constituents of molecular crystals are electrostatieally. neutral
and that the cohesive energy arises from multipole forces of an electro-
static type. Since these forces should be weaker than the forces between
ions, we are able to uuderstand the relatively smaller cohesive energies
of molecular crystals.

We meet with difficulty in discussing insulating valence ecrystals
such as diamond. In this case, the atoms are electrostatically neutral, as
in molecular crystals, and yet the cohesion is as great as in ionie crystals
and metals. This difficulty was removed in classical theory by assuming
that in addition to (1) and (2) there are valcnee foreces which are respon-
sible for the large cohesion of diamond and quartz.

As in many other cases in which classical views led to complication,
the introduction of quantum mechanics produces order in & relatively

simple way. In particular, the band concept of solide, which is based
271
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upon the Bloch scheme and which has been developed by many workers, !
has been very useful in coordinating many of the properties of solids
that could not be adequately understood before. It may be recalled that
the Bloch scheme is based on a one-electron approximation in which the
one-electron functions have the same amplitude at equivalent positions
in each unit cell. We shall see in the next section tha.t these funct.wns
have the form

Y = xu(r)edrir, (1)

where r is the position vector, whose components are z, y, z; xx(r) has
the translational periodicity of the lattice; and k is a wave-number
vector. k may be defined in terms of the
reciprocal lattice of the crystal (¢f. Sec.
€ (k) 22) if the Born-von Kdrmgn boundary
conditions are used in. determ.lmng the

functions (1).
In the simplest case, xx is a constant
80 that Yy is a free-electron wave function
for which the dependence of energy on k

is
e(k) = LV (2)
T 2m :
0 k— (see Fig.1). This approximation cor-

Fic. """Th’m'::)le‘;“t::::‘“ perfectly  regponds to that of the Sommerfeld theory

' of metals, which was discussed in Chap.
IV. We shall see that its use is equivalentito assuming that the Fock-
Hartree field for the electrons is constam——a condition that is nearly
satisfied in many simple metals. .

In the opposite extreme, correspondmg to tightly bound inner-shell
electrons, xx is zero everywhere in the unit cell except in the immedi-
ate vicinity of the particular atom the inner shells of whieh are being
described. It turns out, in this case, that the portion of xx near the
atom is identical with the inner-shell wave function of the free atom.
Moreover, the energy e(k) is practically independent of k and has a
different value for each type of inner-shell electron.

1The qualitative existence of bands was first pointed out by M. J. O. Strutt,
Ann. Physik, 84, 485 (1927); 85, 129 (1928). The band picture was extended by:
L. Brillouin, Compt. rend., 191, 198, 202 (1930); Jour. phye, (VII), 1, 377 (1930)
[¢f. also Quantenstatistik (Julius Spnnger, Berlin, 1831)); P. M. Morse, Phys. Rev.,
35, 1310 (1930); R. Peierls, Ann. Physik, 4, 121 (1930) [¢f. also Ergebnisse exaki.
Natut', 11, 264 (1932)]; R. de L. Kronig and W. G. Penney, Proc. Roy. Soc., 180,
490 (1931).
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In intermediate cases in which xx is neither completely eonstant nor
localized, the energy e(k), as a function of k, is not completely quasi-
continuous, as in the free-electron case. Instead, ¢(k) exhibits the prop-
erty of banding; that is, it is quasi-continuous for large ranges of k but
is discontinuous for certain values of k. The regions of continuity lie
between a set of concentric polyhedra which are centered about the origin
of k space; the points where the discontinuities occur are at tiie.suriaces
of the polyhedra. In the following sections, we shall investigate the
relationships from which the form of these polyhedra may be deduced.
The regions between the polyhedra
are called “zones” and the polyhedra \| | t F!(k) J
are called “zone boundaries.” The N ‘ ¥
magnitude of the discontinuities at the \| i,"
zone boundaries depends upon the ex- L
tent to which xx deviates from a con- I
stant value and is zero for perfectly [\
free electrons. Figure 2 illustrates the
discontinuities for a typical case in

which the ¢(k) curve is plotted as a
\

function of the points on a line that
passes through the point k = 0. The
discontinuities occur at points where

this line intersects the different-

polyhedra.

The transition from the free-elec-
" tron type of wave function to the
rigidly bound electron type may be
regarded as taking place when xx
changes from a constant to a highly
localized function. During this transi-
tion e(k) develops discontinuities which
become larger and larger until (k) is
constant within each zone.

|
!
I
|
i

|
|
|
1

rhm————————————

"

_k1 0
K ——
Fia. 2,—Typical (k) curve for elec-
trons that are not perfectly free. This
corresponds to values of k that lie on a
line passing through the origin of
k space, The discontinuities oceur at
points ki and ks at which the line cuts
the zone-boundary polyhedra. These
points are different for different direc-
tions in k space. The dashed parabola
reprasents the e(k) curve for perfectly
free electrons (¢f. Fig. 1).

When constructing an antisymmetric wave function from the Bloch

functions, we are not allowed to assign a function of given k to more than
two electrons because of the Pauli principle. Hence, we must use a large
number of different values of k in order to assign functions to all electrons
in 8 solid. We shall say that levels are occupied when the wave func-
tions corresponding to them have been assigned to electrons. As in
treating atoms and molecules, we shall assume that, in the normal state
of the system, the lowest one-electron energy levels are occupied as far
as possible. It turns out that the number of states in any zone is an
integer multiple of the number of unit cells in the erystal. Hence, it
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may happen that a low-lying set of zones is completely occupied and that
the levels in zones of higher energy are completely empty. The condi-
tions that must be satisfied if this is to occur in the lowest state are as
follows: '

a. The number of electrons present must be exactly equal to the
number of states in an integer number of zones. It turns out that this .
condition is satisfied in all insulators and in the alkaline earth metals.
It is not satisfied in the alkali metals, for in these there are twice as many
states per zone as there are electrons.

b. The highest filled zone must not have any energy levels that lie
above the lowest energy levels in the next highest zone. If these energy
bands overlap, the energy of the system could be lowered by transferring
electrons from the highest levels of the last filled zone to the lower levels
of the next zone. Complete filling of zones is prohibited in the alkaline
earth metals because condition b is not satisfied.

Let us consider the difference between the properties of a substance
in which occupied zones are completely filled and those of one in which
they are not. In both cases, the electrons normally are paired in such a
way that for each electron moving in a given direction there is another
moving in the opposite direction with the same speed. Hence, the
current carried by each electron cancels that carried by the other, and
the resultant current of the entire solid is zero. This statistical balance
may be disturbed easily in a substance that does not have completely
filled bands; for, by the application of a weak electrostatic field, some of
the electrons may be made to jump to the near-lying unoccupied levels,
thus changing the average velocity from gero to a finite value. This type
of shift in statistical balance was described in the sections of Chap. IV
that deal with the Lorents-Sommerfeld theory of conductivity. On the
other hand, the highest occupied levels may be separated from the unoccu-
pied ones by several electron volts if the solid has completely filled bands.
In this case, a very strong electrical field would be required to induce the
electrons to jump from occupied to unoccupied levels. Hence, the
crystal with completely filled bands is an insulator even though its
electrons are wandering throughout the lattice. -

Thus, we see that the electrical properties of two substances that have
similar one-electron functions may be vastly different. In this connec-
tion, we may anticipate that the one-electron functions of diamond and
of metels are similar so that the coheswe forces have similar origin in
both cases.

Bince the introduction of the band scheme permits us to modify t.he
classical concept of “bound electrons” in valence crystals, it is natural
to ask whether or not we need retain the classical concept when discussing
ionic and molecular crystals. This question may be answered fairly
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unambiguously in both cases. In ionic erystals, the classical picture is a
fair approximation but is not rigorously corrcct since the valence-electron
wave functions are not entirely localized about the cations. This means
that the Bloch functions of ionic crystals possess properties similar to
those for metals. Conductivity is absent because of the way in which
zones are filled rather than because the electrons are not free to move from
one atom to another. Since the amplitude of the wave functions unques-
tionably is small at regions midway between molecules in molecular
crystals, we should expect small electronie conductivity even if the zone
structure did not exist. Nevertheless, the presence of filled zones plays
a predominant role in entirely prohibiting electronic conductivity.

It should be kept in mind that the zone scheme rests upon an approxi-
mation. Altheugh it serves & useful purpose in providing a model of a
solid that is adequate for desoribing many important properties in a
simple, straightforward way, the picture is not a perfect one, and it may
lead to incorrect results if it is'not used with sufficient care. In .par-
ticular, it should not be applied without reserve to problems that involve
excited states of insulators, for reasons which are discussed in Chap. XII.

61. The Connection between Zone Structure and Crystal Symmetry.
Since the concept of zone structure is based upon a particular type of
one-clectron approximation, it is natural to ask for those properties
of the Fock-Hartree equations that in this case lead to the existence of
zones. This question has the relatively simple answer that zone struc-
ture is characteristic of any eigenvalue equation in which the operator
remains unchanged under the primitive translations of the lattice. Thus
the eigenvalues E of any equation that has the form

H\b = E\;’ (1)

where H has erystallographic symmetry, are practically continuous except
for certain unallowed regions, This topic may be made the basis of a
very elegant and practical group-theoretical discussion! in which we shall
not indulge at this point. We shall consider, instead, several examples
of equations of type (1) in which the symmetry conditions that are
required for zone structure occur. From these, we may derive general
conditions from which the precise form of zone stru:iurg may be deter-
mined in any cese.

Case a. The One~dimensional Oscillating Latiice in Classical Mechan-
ics.—One of the simplest problems in which zone properties occur is
that of determining the vibrational modes of a long one-dimensional

1 The group-theoretical side of the existence of zones is discussed in the following
papers: F. Seitz, Ann. Math., 87, 17 (1936); L. P. Boucksert, R. Smoluchowski, and
E. Wigner, Phys. Rev., 50, 58 (1586); C. Herring, Phys. Rev., 53, 361 (1937), 6%, 365
(1937); M. 1. Chodorow and M. F. Manniog, Phys. Rev., 52, 731 (1937).
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lattice of particles that interact with harmonic forces. Several special
cases of this problem were discussed in Sec. 21, Chap. III. We shall
review these now. .

First, we considered the case in which the particles have equal mass
and are scparated by a distance «. The equations of motion far this
case are

m_% = —u{(Ln — Tn-1) - (Tng1 — Za)] (2)

where 2, is the displacement of the nth atom from its equilibrium position,
u is Hooke’s constant for interaction between nearest neighbors, and m
is the mass of a particle. Since we are searching for solutions that are
periodic in time, we may replace Eq. (2) by

—m{2rv) %, = —pl(Tn — Ta-1) — (Tapr — 2a)]. T®)

This equation is of the type (1) since we may regard the z, as components
of a vector X. Thus,

Z1

Ty

X = Tyn—1 . {\4)
Zn
Tatl

|

Using (4) we may write Eq. (3) in the form

szan = "'Vsz (5)
m
or ' :
M-X = —»X (5a)
where M is 8 tensor or matrix the components of which are
2p
Mn,g = e ’ n
drxim u Mn.m,= O, m ## ! or
Mﬂ.n—l-l == Mn——l.n = 4—-}-5;;;, | n T 1

The matrix M clearly has the symmetry of the lattice since Egs. (2) are
the same for all masses. The solutions of these equations were found {o,
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have the form
Tp = Aglriena (6)

‘Here o is the wave number I/Na, where l'is an arbitrary integer and N is
the number 6f cells in the lattice. Thé frequency associated with (6) is

1 [p, . -
% = 5-q ‘R lsin woal. )

The independent values of ! may be chosen to range from —N/2 to +N/2.
Equation (7), for the corresponding range of ¢, is shown in Fig. 7, Sec. 21.
This curve does not exhibit the discontinuities characteristic of zone
structure, for only one zone occurs in the present problem.

Next, we shall consider the extended problem in which two different
masses occur in the unit cell. If the particles are separated uniformly
by a distance a/2 and are labeled by integers extending from zero to 2N,

the normal modes are

2n
Irie
Tan = Be Ta),

2n+1
Liny1 = AGH( 2 ): (8)

where the wave number ¢ is again equal to I/Na. The frequencies and
the constants A and B may-be determined by solving an appropriate
second-order secular equation which was discussed in Sec. 21. We there
found the result

4xty? = .E‘:M*(M + m + v/ M? + m* + 2Mm cos 2xca),

in which we may choose the independent range of ¢ to extend from —1/a
to 1/a and obtain the result shown in Fig. 8, 8ec. 21. Discontinuities
characteristic of zone structure occur at ¢ = +1/24, so that there are
two zones in this case. _ )

If another mass is added to the unit cell in such a way that neighbor-
ing masses are separated by a distance a/3, the new normal coordinates

are
Bn
. -a
Tan = Ae
2 :S'n;-la
Zan+1 = Be '

P 3n+2

Zaapr = Ce 3, (9)
and so forth, if the masses are at points labeled by integers extending
from zero to 3N. There are three zones in this case, since discontinuities
occur when ¢ is equal to +1/2a and +1/a.
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It should be noted that we may write Egs. (6), (8), and (9) in the
form

z(§) = x(§et (10)

where ¢ is the positional coordinate of a given mass, x(¢£) is the dis-

placement of the mass from its equilibrium position, and x(§) is a dis-

continuous function having periodicity a that takes values different from

zero only at points where atoms are situated. Thus, in the case corre-

sponding to Eq. (9), x is equal to 4 at § = 3na/3,to Bat§{ = (3n + 1)%!

and to C at £ = (3n + 2)':_,; and is zero everywhere else. The form of

the function (10) evidently is the same
\ f j as that, of the function (1) in the
vi(a) preceding section.

If we continue to add masses at
equivalent points within the unit cell,
we eventually find it convenient to
use a density function p(£) and a force
function u(%), both of which are con-
tinuous and have periodicity a. The

normal coordinate should still be ex-

\ / pressible in the form (10) but x(£&)
should now be a continuous function of

LN £ with périodicity a. Theindependent
0 o — modes of vibration then correspond to

Fia. 3.—v¥(¢) curve for the normal . _ _
modes of a continuous string having values of  extending from — o to - <c,

periodically varying density and Hooke’s and »? is discontinuous whenever ¢ is
T oo ooty enie e €Qual to +7/2a, where r is an arbitrary
v¥(¢) curve would be a parabola. .This integer. This case, in which there
%’:"2"""““ be compared with that of ayidently is an infinite number of

zones, is represented schematically in
Fig. 3. The differential equation that is satisfied by z(£) is the wave

equation

which has the eigenvalue form (1). .

Case b. The One-dimensional Schridinger Equation. 1. Kramers’
general treatment.—From among the many methods that have been
developed to show that the eigenvalues of the Schrédinger equation
exhibit band structure when the potential function is periodic, we shall
select a particularly good one-that is due to Kramers.!

t H. A. KramMenrs, Physica, 3, 483 (1935).
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Suppose that we have an equation of the form

P B V@ =0 1)
where
V(iz + a) = V(z). (12)

Then, if y1(z) and ¢.(z) are solutions of this equation, the functions
vi(zx + a) and yi(xr + a) also are solutions. Since a second-order
equation possesses only two independent solutions, we must have the
relationships

vi(z + a) = ani(x) + a1sda(z),
Va(z + a) = a1 (z) + asps(x), (13)

if ;h(:c) and y.(z) are independent. From these equations, we may
dérive the relationship

iz + a) va(z + o) _ (@) ¥2(2)] e ai (14)
vilz +a) iz +a) Vi) ¢i(z)] las as
where ¢/ = dy¢/dz. Now, the quantity
vi(z) a(x) ,
W@ V@) (15)

which is called the “ Wronskian,” is a constant in the present case.!
Hence, we may conclude that

o ‘“‘:I -1 (16)

Q21 QG2

We may now choose linear combinations ¢; and ¢s of ¥; and ¢, that
have the property :

e1(z + a) = hign(2)
ez + a) = Aeg(2). a7

The coefficients A; and A; may be determined from the ¢ in Eq. (13) by
means of the equation :

@11 — N G2

a2 Q2s — A = A% — (Gn -+ Ggg)l + 1 =0, (18)

The quantity u = (a1 + as2) is real since y; and ¢, may always be
chosen to be real functions.

Kramers distinguishes between the three cases |u| > 2, |u] < 2, ju] = 2,
which we shall discuss categorically.

1 8ee, for example, Warrtaker and Warson, Modern Analysis (Cambridge
University Press, 1935).
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1. When |4} is greater than 2, Eq. (18) has unequal real roots so that
@1 and ¢ satisfy the equations

p1( + a) = Miga(2), ez +a) = %iwz(-‘ﬂ)- (19)

i2. When |g] is less than 2, the roots are complex conjugates of one
another, whence

ez + a) = e“p1(z),
0@+ a) = @), (20)

It may be shown very easily that in this case ¢, and ¢, are complex con-
jugates of one another. ' .

#i. When |u| is equal to 2, A is + 1, both roots are equal, and Eq. (6)
is replaced by . - -

ei1(z + a) ‘:l:soa(-‘l?)’

¢a(z + a) = toa(z) + bee(2). (21)
Thus, both functions ¢; and ¢; satisfy the equation
o(z + a) = to(2) (21a)
only when b vanishes. '
In case ¢, the ratio

certainly becomes infinite when n approaches either 4-© or — .
.Hence, this type of eigenfunction must be excluded if the periodic field
extends over the entire range of = between + » and — .

In case #t, beth eigenfunctions are periodic and satis{y the relation

le(z + a)] = le(@)].

These solutions are allowable as long as they remain finite in any unit
cell.

In case 77, there is at least one solution of type (21a) and possibly
two, depending upon whether b is zero or not.

The solutions for case ¢ correspond to the nnallowed regions of energy,
whereas those for cases 47 and 77 correspond to the allowed regions. We
shall see that the functions corresponding to case ¢ are solutions associ-
ated either with points in wave-number space at the zone boundaries or
" at points such as é = 0 for which the solutions have periodicity a.

It should be mentioned that the solutions for case ¢ need not always
be excluded if the periodic ficld does not extend to infinity; for in the
finite case, which corresponds to an actual crystal, the wave functien
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assoctated with some values of £ in the allowed region may not diverge.
In these cases, which were first pointed out by Tamm, the functions have
their maximum: absolute values near the boundary of the lattice and
decrease rapidly on both sides of:this point. We shall disciss these
solutions further in Sec. 70.

Kramers was able to express the quantities u, du/dE, and d®u/dE? in
terms of integrals that involve the functions ¢, and ¢ From these
expressions, he deduced that u(E) has the form illustrated in Fig. 4,

- B
!
I

N\ —.
ARz

Fia. 4—The u(E) curve. The aliowed values of E correspond to the ranges in which g
lies beiween 1 and —1. (After Kramers.)

which approaches 2 cos an/E when E approaches « and approaches
V=% when E approaches — . In intermediate regions, it oscillates
between values greater than 2 and less than —2, in the manner
shown. Thus, there are alternate continuous bands of allowed and
unallowed levels. The unallowed bands become vanishingly small when
E is large and positive. All values of E that are sufficiently negative are
unallowed because of the monotonic increase of p.

v(x)

100 nrnn

-3a -2a -a 0 at a 2a 3a
K —

-F1a. 5.—~The one-dimensional periodic potential of Xronig and Penney.

2. The case of Kronig and Penney.—Oune of the simplest examples of a
one-dimensional periodic fiekd has been treated by Kronig and Penney.!
This example merits attention because of the direct way in which it
y;el&a the general features of zone sti.ciure. Let us eonﬂder the
perioaic potential iliusirated in Fig. 5, for wlnch

1 Knonia and PENNEY, op. cit., 400 (1931). Hee alao V. Roransky, Iniroduclory
Quantum Mechanics, Sec. 49 (Prentice-Hall, Inc., New York, 1938).
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V=V, —-bs<z=x<0,
V=0 0<z<a-b,
V(z + a) = V(2). (23)

Thus, V has the constant value V, for a range of length b in each unit
cell. In the regions where V is zero, the general solution of the Schri-
dinger equation is

V1 = Ae** 4 Be—e= (24)
where :
- V2mE
h
In the other region, we have
Y2 = Ceéf? 4 De P (25)
where
vV 2m(Ve — E)
B =

Since we are searching for solutions of Kramers’ class ¢, we must have
¥a(—b) = ePY(a — B),
va(—d) = e™i(a - b), (26)
where \/2x is the wave number. In addition, we must have
¥2(0) = ¥1(0),
v2(0) = ¥1(0), 27
because of the continuity requirement at x = 0. We find, after sub-~
stituting (24) and (25) in (26) and (27) and solving the determinantal
compatibility equation, the condition

cos ha = (_Qf_z_z_ﬁsrf_ sinh b sin a(a — b) -+ cosh 8b cos a(a — b), (28)

which may be used to determine the allowed values of £.
Following Kronig and Penney, we may, at this point, introduce the
simplifying conditions

b-+0,

Vo o,

and we may stipulate that these limiting values are approached in such a
way that the quantity

-”%I,’-“b(q —b) (29)
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remains constant. This restriction assures us that the ‘ potential area”
Vb is finite. With these conditions, the quantity gb in Eq. (28) is
equal to
2chb
a—-b

where ¢ is the limiting value of (208). Equation (28) approaches the
value .

oouMn;E-aainua-i-coam (30)

in' the limit a8 b — 0. This equation may be satisfied whenever the
quantity on the right-hand side liés in the interval from —1 to +1 since
A may then take real values. As is shown in Fig. 6, we obtain allowed

t

naa
iwa-cosac

\ih-m '\-.,/'/ <: \,,/' \ [.

Fra. 8.—The function {c sin aa/aa + cos aa}. The allowed values of ¥ are given by

those ranges of @ = +/2mE/# in which this function lies between —1 and +1. It maybe
seon that the unallowed ranges become smaller as F increases. This curve is
to that of Fig. 4. (After Kronig and Penney.)

bands of energy that become closer and closer as E approaches infinity.
It may be verified that the coefficients A and B in (24) have the ratio

A 1 — g—ilrdaie

B T 1= 0w @1)

in the range of = that extends from 0 to a. The values of 4 and B in any
other range, such as that extending from na to (n + 1)a, may be obtained
from the values in the range from 0 to a by multiplying by the factor
eintlia )

Case c. The Two-dimensional Schrédinger Equation.—By discussing
three types of two-dimensional cases, we inay obtain some of the most
important principles of zone-structure thecry. The first case, which was
investigated by Brillouin,! deals with electrons that are practically free.
The periodic potential then may be treated as a small perturbation. In

1 Cf. Quantenstatistik, op. cit.
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the second case, the periodic potential is larger than in the first but may be
expressed in the form

V(zy) = Val@) + Vi) + Vi(z.0) (32)
where V.(z) and V,(y) are large compared with V,(2,y). The SBchrs-
dinger equation is separable in this ease if V,(z,y) is neglected. The
zones that are obtained when V¥, is included by perturbation theory
usually do not have the same form as in Brillouin’s case. We shall see,
however, that the two sets may be made identical by suitable rearrange-
ment. The third case to be discussed is the more general one in which
perturbation methods cannot be employed. '

1. Brillouin’s case.—We shall assume that the Schrodinger equation

has the form

k2 fa a

(2 + ) + vew - Ew =o0.

For simplicity, we shall discuss the case in which V(z,y) has the periodic-
ity a in both the z and y directions. The normalized unperturbed eigen-
functions then have the form

1 T
gl = _..‘\/__Seﬁrt (33)

where S is the ares. of the lattice, which we shall assume is a square having
the edge length Na. If we adopt the Born-von Kérmdn boundary
conditions, the permissible components of k are
2 =Ty
ks Na’ kl Na (34)
where n. and n, are arbitrary integers. The unperturbed energy of the
wave function (33) is

B = 35)
2m !

and the entire energy spectrum above zero is quasi-continuous.
To the first order in.perturbed quantities, the eigenfunctions of
Eq. (32) are
[% f e“’*"‘“"V(z',y’_)e""‘"'dz'dy’]eW" 36)

W(z,y) = %S"’"." + 2 B’ — End
- E

where the summation extends over all values of k, and k and the inte-
gration extends over the entire lattice. The integrals in Eq. (36) may
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be simplified by use of the translational symmetry of V(z,y). We have
in fact

Joem eV (s y)dedy = [ [, e'*."'(k““"“V(x,y)dxdy]4202"‘“‘*“"" 37)
where d is the vector

na
d_(ma’ (m,n=0,1,2, ,N)

and the integral in the right-hand term extends over the unit cell, that is,
over the ranges of z and y lying between zero and a. The summation in
(87) vanishes identically unless the vector (¥ — k') satisfies the relation

(ks — k)a = pe,| _
(ks — K)o = Dy 38).

where p. and p, are integers. Hereafter, we shall reserve the letter
K for wave-number vectors of which the scalar products with the primi-
tive translation vectors of the lattice are integers. Thus, we may write
Eq. (38) in the form

kK —k=K. (39)

Vectors of type X possess the important property that the functions
7K1 have the same periodicity as the lattice. Using (38), we may now

write Eq. (36) as
Yx = xx(z,y)e?%r (40)

where the function

2ei -
1 _8_: f e~ KT Vda:’dy’)
- ‘ ? 8
ka\—/sfl-i--l EkQ_EDk-f—K '

K

has the periodicity of the lattice. As we have remarked previously, the
form of (40) may be deduced rigorously on the basis of symmetry.
Turning now to the energy, we have in the second approximation

R 1 L1 NQ [fen k)T drdy®
B = e Bdexdy + = T (41)
: x

The first two terms on the right do not affect the continuity of E as a
funeotion of k. It may be seen, however, that the third term becomes
infinite when k and k’ satisfy Eq. (39) and the relstion.

Ey° = Ey° (42)
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is fulfilled. It is precisely in this case that the perturbation method we
have used needs revision. Instead of using the unperturbed wave func-
tions (33), we should select those *proper linear combinations’’ of the
degenerate functions that make the integral

Vo = [V (z,y)¥x"dzdy (43)

vanish. Then the numerators of the troublesome terms vanish, and the
degeneracy (42) is removed, so that there is a discontinuity in E at the
points where Eqs. (39) and (42) are satisfied.

The origin of this discontinuity may be illustrated by approximate
considerations of the following type. We shall assume that the values
of k and k' for which degeneracy nearly occeurs and for which Eq. (39)
is satisfied occur in pairs. If Y4° and y%x are the functions associated
with these pairs, the proper linear combinations ¥4 and Y% have the
form . -

n” = ah® + wm:.}

Y = cx’ + d¢’x,
in which a, b, ¢, and d must be chosen se that the off-diagonal components
of the energy matrix

B® + Vo Vo )
Ve E%ye + Voixasx

vanish. We shall assume that the V° are continuous functmns of k.
The equations corresponding to this condition are

P T @)
in which we have set &’ = k 4+ K and
& = E® + Vo
The X for which Eqs. (44) have solutions are the new unperturbed
energies and satisfy the equation
A= (Gk + Ck') + '\/(ﬁkz"‘ ﬁk‘)s -+ qvnkk"z (45)

ren |VO%w| is negligible in comparison with & — e, the roots of this
equation are e and . When e and ¢ become nearly alike, however,
the roots do not become closer than 2|V %;|, which implies & discontinuity
in the energy versus k curve. This is illustrated schematically in Fig. 7.
Now, Eq. (42) is satisfied whenever

it = &'}, : (46)
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because of Eq. (35) Hence, (39) and (46) are the only equations that
must be satisfied if there is to be a digcontinuity. It may be seen that
these conditions determine a set of lines which satisfy the equations

K _ k2
where K may be any one of the K-type vectors. These lines are illus-
trated in Fig. 8 for the lattice under discussion.

Brillouin has pointed out that all similarly shaded regions in Fig. 8
may be pieced together in a unique way to form a square that is identical
with the central zone. When this is
done, points in any two squares that

overlap when the squares are placed E":j

on top of one another differ by a 2ve °
vector of type K. For this reason, ' ’ ¥;"! IE"
similarly shaded regions are said to

belong to the same zone. It may be
observed that this piecing process
requires only that the sections be
translated to the central zone by a - K
vector of type K; that is, the sections '
do not need to be folded or rotated. — 5 —
If it is .reca.lled_th.at:. ¢¥%r hag -the Fro. 7.—Schematic disgram showing
translational periodicity of the lattice, the t;ﬂect of thle perhn};:: potential b:lr
it may be seen t.hat the functions ::«J piitinhd B:'"l.i-. continuoer the
that go with a given zone may be 3«tiyw-ﬁ3 thek.m‘t;h: is eq:iux
. . at state —
written in the form components of ¥ vanish unless t::‘tvo-
ket states satisfy the relation k' = k 4+ K,
Xic¢=™ T, where K is s principal lattics vector,
If the matrix of ¥V connecting these two
where k ranges over all points in the states is diagonalised, the new Ex curve

inner zone and xx has translationa] Postesses s discontinuity stk = +X/2.
symmetry. In addition, it may be seen from Eq. (45) that Ey is con-
tinuous when regarded only as a function of the values of k in the first
zone. In other words, we may represent Ex as a multiple-valued function
of the points in the first zone instead of as a single-valued, discontinuous
function of the points.in the entire k plane. The correspondence betwéen
the two types of representation may be made clear by cutting up each
of the surfaces in the multiple-valued representation and by placing
them over the outer zones. The reduced-zone scheme, which uses only
the inner zone, has the advantage that it requires knowing the geometrical
form of only one zone.
It should be emphasized that the symmetry of the zone structure
shown in Fig. 8 arises from the high degree of symmetry of E°, the
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unperturbed energy surface. The zone structure does not have the sume
form when this symmetry is sbaent We shall illustrate other possibil’
ties in case II.
The important zone relations
¥ -k =K, (48a)
k? = k'3, _ (480)

occur in the theory! of diffraction of X rays by crystals in which they
are called Laue’s equations. An X ray having wave-number vector k
that impinges on & crystal can have its wave-number vector changed to
k' by diffraction only if these equations are satisfied. Thus, we may

Fia. 8.—The first four Brillouin sones for a square, two-dimensional lattice. The
similarly shaded areas may be tranalated into the first zone by vectors of type K and will
then exactly cover this sone. The heavy dots indicate principal vectors in k space.
determine the X-ray diffraction pattern of a crystal from the Brillouin
zone pattern, and vice versa. 'This identification of Eqs. (48a) and (48b)
with Laue’s equations shows that the occurrence of zones in the electronic
problem is intimately connected with the wave properties of electrons.

2. Case I1.—We shall now consider the Schrodinger equation when
the potential has the form (32). If V, is neglected, we know that the
unperturbed equation may be separated into the ordinary equations

_ 1t d%(x) :
h?
2m d:;y(f) + (Vr r)ﬂ(?) = 0.

1¢f. A. H. Compron and B, K. Arvuson, X-Rays (D. Van Nostrand Company, Inc.,
New York, 1934).
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The complete unperturbed wave function is

V(@,y) = E@)(), (50)
and the unperturbed energy is
E° = E, + E,. (51)
From parts a and b of this section, it follows that
bou @
where k. and k, satisfy Eqs. (34). Hence,
¥’ = xlerEr, (53)

just as in Eq. (40), where
Xko = XkaXky

Moreover, both E. and E, possess discontinuities at points that satisfy
the relations )

ky = &=
ny (Rey iy = 0, £1, £2, - - - ).
ke = 54
Since E°® has the same discontinuities as E, and E,, we know that dis-
continuities appear in the unperturbed problem along the lines shown in
Fig. 9, which illustrates the energy contours of the unperturbed energy
function in a typical case.

When applying the perturbation theory, we may use the same simpli-
fications that were used in simplifying Eq. (36). This pmeedyre is
permissible because x in Eq. (53) has the same translational periodicity
a8 V,. The perturbed functions now are

VY *% yxdz’dy’
- (54)

Y = e"‘“"(xt" + gx"nxem"'é—ﬁk-r:ﬁm—

Hence, the form of Eq. (40) is maintained, and many of the remarks made
in connection with Ey° in the preceding case are valid again. Thus, Ey,
the perturbed energy, is discontinuous whenever

Ek" = E°k+l- (55)

This fact may be derived from an equation analogous to (41). One
difference between this case and the last is that Eq. (56) is not necessarily
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satisfied when |k| = |k + K|, as it was in Brillouin’s problem, for the
energy contours usually are not circles. Instead, they have lower sym-
metry which depends upon the symmetry of V. 4+ V,. Let us assume
for simplicity that the unperturbed potential has the symmetry of a
square, which is the highest- possible. We may then use one of the
elementary results of the theory of symmetry,! which states that Eq. (55)
is satisfied whenever J4° is sent into Y% +x by the symmetry operators
under which the Schrddinger equation is invariant. From the form of
(54), it follows that this happens in the present highly symmetric case

§

’—

-

N
D
Yl

N\

\ &
N

N b

Fra. 9.—Energy ocontours of the szero-order eigenvalues when the potential has the

form (32). Discontinuities occur only at the lines corresponding to the zones of one-
dimensional lattices.,, .

VA
N

|
N

whenever k is sent into k + K by one of the eight symmetry operations
of a square, that is, wheénever

ks = :t(ks + Ks)} or {ks = '.t(ky + K")_
The + signs in the two sets of cases may be taken in arbitrary combina-
tions. The conditions (56) include all the lines shown in Fig. 9 and all
the additional straight lines shown in Fig. 10. Many of the lines that
appear in Brillouin’s pattern are absent, however, because (56) is not so
_ stringent as the condition |k| = [K'|.

There is & large amount of accidental degeneracy in addition to the
symmetrical degeneracy that occurs at the points satisfying (56). It is
not difficult to see that this accidental degeneracy adds just enough zones
to make up for the difference between, the pattern of Fig. 10 and Bril-

_10f. E. WiGNER, Gruppentheorie (Vieweg, Braunschweig, Germany, 1931J

(56)
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louin’s pattern. The additional zone boundaries, however, are usually.
curved rather than straight lines. The amount by which these curves
deviate from straight lines depends upon the amount by which the energy
surface E.° = E, + E, deviates from a parabola of revolution. An
additional curved zone is illustrated in Fig. 10 for the case corresponding
to Fig. 9. The resulting pattern possesses square symmetry.

The sections having similar shading in Fig. 10 have the same total
area as the central gone and fit exactly into the first sone if cut along the
lines of the Brillouin pattern. Moreover, overlapping points of the two
squares still correspond to values of k that differ by a vector of type K.

F16. 10.—The lines of discontinuity in the case in which the non-diagonal matrix com-
ponents of the perturbing term in (11) are taken into account. Only the straight lines are
the same as for Brillouin’s case, in which the zero-order eigenfunctions are free-electron
functions (¢f. Fig. 8). The additional straight lines of Brillouin's pattern are replaced by
curved lines, of which one set is shown. The corresponding Brillouin sone is represented
by dotted lines.

We shall present these statements without proof since they are easy to
demonstrate. It follows that the differences between Brillouin’s pattern
and Fig. 10 have only superficial importance, for by properly cutting
and translating the zones of Fig. 10 it is possible to piece them together
to form the Brillouin pattern. - As a result of this process, some of the
starting eigenfunctions are relabeled, since a ¥ previously associated
with a point k may be associated with a point k 4 K after the redistribu-
tion. These facts show that knowledge of the central zone is sufficient
to provide a complete description of zone structure, for we may always
regard the energy surface as a multiple-valued function in this domain.
If the potential function (32) has no symmetry, aside from transia-
tional periodicity, we may anticipate that the symmetry of Ex° is much
lower than it was previously. It is true that the separation into Eqs. (49)
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proceeds as before and that the unperturbed energy (51) has the dis-
continuity pattern of Fig. 9, but Ex does not have equal values at points
that are connected by Eqs. (56). The remaining symmetry, which is
called the “natural symmetry of the Schrddinger equation,” is expressed
by the theorem that ¥ and ¢ * are independent solutions of the Schrodinger

equation having the same eunergy,if ¢ isa complex solution and the poten-
tial function is real. Now, the conjugates of the solutions &, and ns,
of Eq. (49) are £, and n_y,, respectively. Thus, the symmetry of the
one-dimensional energy curves relative to the origin of k space is due to
the natural symmetry’ of the Schrédinger equation. This symmetry

F16. 11.—First, second and third sones in a case in which the potential function (32)
has no symmetry other than translational symmetry. The only zones that are straight -
lines, as in Brillouin's scheme, are the vertical and horisontal lines of Fig. 9. All other sones
are curved lines. Only one curved sone, namely the second, is shown in this figure. The
fourth zone is curved as in Fig. 10.

carries over to the two-dimensional energy-level diagram and accounts
for the straight lines of Fig. 9. Since all other degeneracy that occurs
is accidental, the other zone boundaries usually are irregular curves, as
in Fig. 11, which have the residual symmetry expressed by the equations

Eir, = E4. gy "

As before, the similarly shaded regions may be cut’ and pieced together
to form the Brillouin pattern.

3. The general case.—I1t follows from the dmcusmon of the two pre-
ceding cases that Brillouin’s zone pattern usually does not occur unless a
perturbation method in which the unperturbed wave fanctions are free-
electron functions is used. The only unambiguous way in which to

1(f. E. WicNER, Go#. Nachr., 546 (1932).
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srive .at Brillouin’s pattern in a general case is to use the reduced-sone
scheme, in which Ey is determined as a many-valued function in the first
* Brillouin. zone, and to cut and djstribute the energy surfaces among the
outer zones. The distribution must take place in such a way that an
energy value associated with the point k in the inner zone goes to a point
k + K in an outer one. If the single-valued representation is obtained
by another method, the zone structure usuaily depends upon the method
employed. Certain zone boundaries, which may be established by an
investigation of symmetry degeneracy, always appear in cases of high
symmetry. Other boundaries are not unique and may be altered by
choice. There will be certain fixed points through which the zones must
pass, however, even in the case of lowest symmetry. These points are
determined by the relation

By = Ex, (87)

which expresses the natural symmetry of the Schridinger equatxon
Thus, the zone lines must. pass through the points
: K
k= 3 (58)

The natural advantages of the Brillouin gone scheme are (1) that it

determines zones by the Laue conditions, which have significance in the

'theory of X-ray diffraction, and (2) that it preserves a correspondence
between the k vectors for perfectly free electrons and those in the lattice.
If the wave functions for electrons in the crystal are labeled according to
Brillouin’s scheme and if the crystalline potential field is adiabatically
decreased to zero, the wave-number values will be preserved and will
agree with those for the resulting free electrons.

In spite of these advantages, the Brillouin scheme is not always the
siraplest one to use, particularly when one is dealing with cases in which
primitive translations are not equal or are not orthogonal to one another.
Let us consider a case in which the primitive translations are orthogonal
but not equal. The lines defined by Eq. (58), which are shown in Fig. 12,
do not form zones that are as simple as those of Fig. 8. It is easy, how-
ever, to determine a set that is almost as simple. Such a set, for example,
is shown in Fig. 13. These lines are parallel to the fundamental K
vectors instead of orthogonal to them, as Brillouin’s zone boundaries are.
The relative simplicity of this scheme is illustrated in an even more strik-
ing manner in an oblique case. It is still true, of course, that both
methods of construction may be brought into coincidence by appropri-
ately cutting and rearranging zones.

Case d. The Three-dimensional Schrédinger Equation.—The three-
dimensional case is a straightforward generalization of the two-dimen-
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sional one. All the remarks in case ¢ may be extended at once to cover the
case in which k is a three-dimensional vector. If we introduce the Born-
von Kérmén boundary conditions, k takes on the discrete, though dense,
values defined by the equations

Nk-w=n (m=0+1, £2, 4+ ---), (59)

which are identical with Egs. (8), See. 22, Chap. IIL.! Here the n; are
arbitrary integers, the = (i = 1, 2, 3) are the three primitive translations

1Y

7o

. L ]
Fia. 12.—Brillouin zone scheme for Fia. 13.—Alternative to Fig.
a two-dimensional rectangular lattice.. 12 in which the sone boundaries
The zone bounderies, which are de- are drawn parallel to the X
fined by Eq. (27), are more com- vectors. - This simplifies the
plex than those of Fig. 8 because they pattern, .
are orthogonal to the K vectors. .

of the lattice, and the N; are the number of cells that extend along an
axis of the crystal parallel to %. '

The three-dimensional Brillonin zones are determined by planes that
satisfy the equations '

11t may bn noted at this point for future reference that the density of points in
k space, as determined from the solutions

k moraXrt nrsXn ny T X1
Nilrwarsl ' Nilresrsl N lrerars

of Eq. (84), is V, where ¥ is the volume of crystal. This may be shown by computing
the reciprocal of the volume of the unit cell of the reciprocal lattice. If spin degen-
ersey is inctuded, the density of atates is 2V.
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which are analogous to (48). = The vectors K are defined by the relations
Kegg=1 ' (61)

where the [ are arbitrary integers. These equations, which generalize
(38), are special cases of (59) and their solutions [¢f. Eq. (8a), Sec. 22,
Chap. III] are:

T X % g3 X 7y T X %2
-+ - 2
= b |ereats ! “lereemy| Ls |®1eats (62)

The three-dimensional eigenfunctions always have the form
Vi = xxe? kT,

where xx has the translational periodicity of the lattice. This fect may
be proved either by perturbation theory, as was done in case ¢, or by
use of group theory.

We may obtain zone patterns that are different from Brillouin’s by
basing the determination of zones on some scheme that does not start
from free-electron waves. Some of the simpler zones determined by
other methods are the same as those obtained by use of (61) in cases of
high symmetry. As before, the differences in zone pattern are super-
ficial, since any pattern may be made to coincide with the Brillouin
pattern by appropriately rearranging points in k space. We shall dis-
cuss further details of the three-dimensional case in the next section.

Although the discussion of ¢ and d has been restricted to the Schro-
dmger equation, the conclusions are valid for the solutions of any eigen-
value problem in which there is translational symmetry. The problem
of determining the normal modes of vibration of a crystal is a case of this
type. We have seen in Chap. III that zone theory plays an important
role in the classification of solutions of this problem.

62, Survey of Rules and Principles Concerning Three-dimensional
Zones.—In this section, we shall amplify the remarks of part ¢ of the
previous section by tabulating rules for constructing three-dimensional
zones. Some of these rules were discussed in Sec. 22; others may be
derived by applying the principles introduced there. The rules are as
follows:

a. All sones have equal volume in wave-number space. This rule
follows from the fact that all zones may be mapped in one another.

b. It is possible to neglect all zones except the first if? e(k).is regarded
as a multiple-valued function in this zone. Thie reduced-zone scheme
is most useful when one is determining surfaces by a direct solution of

1 We ghall usually designate the eigenvalues of the three-dimensional periodic
one-eleciron funetions By e(k).
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Fock’s. equations, for then one may derive the energy bands without
becoming involved in many of the geometrical complexities of zone
structure.

c. Each zone contains 2N states, where N is the number of cells in
the lattice. The factor 2 arises from the two possible orientations of spin,
and the factor N from the fact that N values of k are associated with each
zone. Itfollows that the maximum number of electrons that may occupy
any zone is 2N.

d. There is a close correspondence between the laws for determining
Brillouin zones and those for determining X-ray diffraction. This
correspondence is indicated in part by the fact that the equations of
Brillouin zone boundaries are the samme as Laue’s equations for X-ray
diffraction; however, the correlation may be much closer. Mott and
Jones! have pointed out, for example, that in any monatomic solid in

which the electronic potential may be approximated by a sum 2‘1’3
3

of contributions Vs from each atom, the energy diseontinuities are small
for values of wave numbers for which the X-ray structure factor is
small and are large when the structure factor is large. This type of corre-
lation usually does not oceur in polyatomic solids because the scattering
powers of atoms for low-energy electrons and for X rays are not necessa-
rily proportional for different atoms.

e. Lattices that have the same type of translational symmetr; have
equivalent zone patterns since zone structure is determined by the K
vectors and these are determined by the primitive translation vectors.
The magnitude of the gaps, which is determined by the distribution of
potential in the unit cell, however, may be entirely different for erystals
that have the same zone structure. Hence, the zone boundaries at which
the largest gaps occur may be completely different in translationally
similar crystals. This fact is analogous to the fact that thé intensities
of X-ray diffraction spots may be very different in crystals that have the
same transiational symmetry.

J. If Brillouin’s zones are used to describe the states of all electrons
in the solid, it may be convenient to regard the K-shell electrons as filling
the first set, the L-shell electrons the next, ete. The valence electrons
then occupy zones at the outer fringe of the filled region. It is usually
more convenient, however, to disregard inner-shell electrons when one is
discussing properties of the solid that do not involve then: explicitly.
The valence electrons then may be regarded as occupying the central
zones.

iIN. F. Morr and H. Jongs, The Theory of Metals and Alloys, Chap.. V (Oxford
University Press, New York, 1936). :
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g. Two neighboring zones may have overlapping energy levels even
though the enecrgy associated with the outer zone is higher than that
associated with the inner at any particular point of the boundary. An

. example of a case in which overlapping occurs is shown in Fig. 14.

k. All occupied zones cannot be completely filled in a substance
that has an odd number of electrons per unit cell. Hence, oceupied and
unoccupied levely are immediately adjacent in a substance of this type.
Since this is the condition for metallic conductivity, these substances are

elk) ] € (k)
Possible
Conductor (c)f insulator
(1A
I fare)
] N
Fb;w (a)
|
(@t
Jd
o
g ’ ()
| / (b
'| ' /. |
8 ¥
0 Kakp K C Ka k K,
P akp Re e kb C
Fia. 14, : Fie. 16.

Fi1a. 14.—e(k) curves for the case in which two zones overlap. This figure givee super-
position of energy curves for values of k on lines. that pass through the origin of k space
and extend in three prominent directions. The intercepts of these lines with the sone
boundary oecur, respectively, at k, ks, and k.. The highest point at k., which belongs to
the second zone, lies below the lowest point of ky which belongs to the first zone, etc. (com-
parg with Fig. 15). )

Fia. 15.—e(k) curves for the case in which two zones do not overlap. This figure is
the same as Fig. 14 except that the gaps are so large that the uppermost levels of the lower
band are always below the lowest levels of the upper band. A substance having e(k)
curves of this type is an insulator if there is an even number of electrons.

metals (¢f. Sec. 60). If the substance has an even number of electrons
per unit cell, the type of conductivity depernds upon the nature of the gaps
at the boundary of the filled region. Suppose that there are 2m electrons
per unit cell. The mth zone is not completely filled if the mth and the
m + 1st zones overlap, for then some electrons prefer the lowest levels
of the m 4 1st zone to the highest levels of the mth zone. Thus, the
substance should be a metal in this case. On the other hand, it should
be an insulator if they do not overlap. Cases corresponding to both
these types are shown in Figs. 14 and 15.

We shall not discuss those properties of zones and energy surfaces
which may be dérived by application of group theory, for to do so would
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carry us too far afield. The development of this topic may be found in
the references of footnote 1, page 275.

63. Examples of Zone Structure.—Tor illustrative purposes, we shall
deseribe in this section the simplest zones of several lattices. The precise
description of zones is important, at present, only for a few simple
crystals, such as the monovalent and divalent metals and the alkali
halides. More complex solids can be handled only in rough approxima-
tion. Thus, for 4 brass all that is important is to know the shape of ona
or two zones near the limit of the filled region and whether the gaps at the
boundaries of these zones are large or small. We shall discuss these
cases as we need them in later sections.

a. Face-centered Cubic Lattice.—The primitive translations of the face-
centered cubic lattice may be choscn as

a a 0
T = (u), Ty = (0 , Ty = a). (1)
0 a, a

The components of these vectors are expressed in Cartesian coordinates,
Solving the equations

kK-Nem=mn (i=1223), . )
which define the values of k, we find

—1 ~1 1
k= 51—’:,%(—-1) 4 ?}%&( 1) ~ 2—37""5(-—1). 3)
1 -1 -1

Hence, the reciprocal lattice is body-centered.

The K vectors are given by those values of (3) for which =i, ns, and
a3 are integer multiples of N3, N, and N, respectively. The first three
sets of these vectors are:

1l }(“i) 1 _i) i‘(; m
20\ 1) 2\ _y) %\ _y) 2“1_
2 { 0
1 1 1
o). {2} 2fo) (I
(0) 0) 2 (2)

(IIT)
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The first two zones are shown in Figs. 16a and b and are bounded by
planes orthogonal to (1) and (II). The higher zones are more compli-
cated and involve other K vectors. It may be seen that the illustrated
zones are uniquely specified by symmetry conditions.

b. Body-centered Lattice.—The primitive translations in this case are

a —a ' —
T, =1a) T2 = aj, T3 =4 —ay} (4)
a a a
1 1 0
n, na s
ke = "(zzv,a __0) + *zm(}}) + m‘a(“ i)- ®)

In other words, the inverse lattice in this case is face-centered.

whence

a

¥1a. 16.—The first and second sones for a face-centered cubic lattice. The first has

half the volume of the oube that is determined by extending the six aquare faces. The
second has the saine volume as thia cube.

The first two sets of K veectors are:
2&0’ 2a n’ 2a1'_ 2a -1 2(;1’ 2a -1

2 0 0
1 1 1

0, 5t2). 54 0} (I1)
24“(0) 20'(0) 2a 2«)

The first two zones appear in Fig. 17. :
¢c. Close-packed Hexagonal Latiice—The primitive translations of the
close-packed hexagonal lattice are

) ] 0
T = (0)1 T = ( b/z ): Ty = ( '—b/2 )J - (6)
0 V/3b/2 V/3b/2
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~for .which

ki = %(o) + ot V3 /2) o —\0/5/2). @)
1 0 N 1/2 N3 1!2

Thus, this lattice is its own reciprocal. The first zone is the hexagonal

©d

F16. 17.—The first two sones for the body-centered cubic lattice. The surfaces of the
first-are normal to K vectors (I) of the text, whereas the surfaces of the second are normal
to K vectors (II) and K voetorl that lie in the (111) direction.

Fic. i8.—The first two Brillouin-type zones for a close-packed hexagonal crystal. The
second zone is not uniquely defined by symmetry and may be drawn in many different

WaYS.

prism shown in Fig. 18, which is determined by the following two sets of

K vectors:
1/
2 0 2
—_— - —_— . 1T

The form of the second zone, which is det.emmed by the sets (I) and (II)
and the set.
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(30) AT MR
/2 —=1 =32} —=|-
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(\(/—9/211) 2 \/§b/20) b(\/‘ b/2a)
/2 —7= 0 )

V3 Yy 72 13 1 V3
depends upon the axial ratio +/3b/2a. The form. for an ideally close-
packed lattice is illustrated in Fig. 18.

64, Cases of Cozlescence of the Heitler-London and Bloch Schemes*,
We saw in Sec. 58, Chap. VII, that the Heitler-London and Hund-
Mulliken schemes ard kquivalent when applied to the state of a moleculo
whosee constituent atoms or ions have only closed-shell configurations.
In this case, the total wave function is a single determinant in both the
oneselectron schemes, and it is possible to transform one determinant
into the other by adding to each row an appropriate linear combination
of otherrows. A similar theorem is valid forsolids. The Heitler-London
and Bloch schemes are identical whenever the Heitler-London scheme
leads to completely filled shells. To prove this, all that is necessary is
to show that a complete zone of N Bloch functions may be constructed
by takivg linear combinations of the N Heitler-London functions associ-
ated with translationally equivalent atoms in the N unit cells of the
lattice, for each of these Heitler-London functions appears once with
each spin in the determinantal eigenfunction.

Let ¢(r — r(n)) be the closed-shell function that is centered about
the point r(n) in the nth unit cell. The functions formed from these by
taking the linear combinations

Ve = JemmrOY(e — 2(n)), &)

where r(n) is summed over all unit cells in the lattice and k is a vector in
the reciprocal lattice of the crystal, are Blooh functions. This may be
seen! by changing r to r — «» where « is any primitive translation of the
lattice, for then (1) becomes _

M#G—M'{l(s)‘l'ﬂ‘p(r -— (f(ﬂ) + 1)) —= e?*ﬂ't-fh,
e(n) +r '
gsince in an ideal unbounded lattice the summation over r(n) 4 = is
equivalent to a summation over r(n). Thus, the function in (1) is
multiplied by a factor e3% when the crystel is translated by an amount

+F. Brocs, Z. Physik, 68, 555 (1928), pointed out first that the sum (1) is the
combination of atomic functions which satisfies the periodic boundary conditions,
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¢. WV indepghdent functions of type (1) may be constructed from the
Pg. ~ r(n)), and this number is just sufficient to fill a zone.

+ ¢ baconverse would be a theorem stating that the Heitler-London and
ﬁl hemes are equivalent whenever the Bloch scheme leads to a set
of completely filled zones. It does not seem to be possible to prove this
theorem generally. It is probably valid, however, in many special cases.
Consider the N funections

¥(r — r(n)) = zm—m{r-—rm 2
k

where yxe?% i3 g Bloch function, k is summed over all the N valuesin a
single zone, and r(n) ranges over N translationally equivalent positions
in the N cells of the lattice. The function (2) is localized in the nth
anit cell if xy varies sufficiently slowly with kj hence, in this case, it is a
function of the Heitler-London type. Suppose, for simplicity, that x
is independent of k. Then the funciion (2) degenerates to

x(,)z e—Imir—r(n)], 3)
s .

The phases of the exponent in the summands of this function range
roughly between ‘he values +2xjr — r(n)||k(max.)|, where k(max.) is the
distance from k = 0 to the farthest point in the zone. Hence, the sum
in (3) has its mazimaum value when r is in the nth unit cell and is very
small, wher [r — r(n)| is large. Although this property is affected if
x depends upon k, we may expect (2) to be localized as long as the
dependence is not strong. '

Thus, in some cases, we may transform s determinantal wave function
"thiat is based npov a fiilled zone of Bloeh funetions into & determinant of
Heitler-London  inetions that are localized about any sei of points in the
unit cell we choose,- It may happen, however, that the Heitler-London
wave functions which are obtained in this way do not have desirable
symmetry characteristics and that a better set can be found.

Before leaving this topic, we shall discuss the conneciion between
the energy parameters in Foek’s equations for the Bloch scheme and the
Heitler-I.oudon scheme when the two-are equivalent. For the Bloch
scheme, the equations may be chosen in the form :

Hyy = e(K)yx (4)

since the yx are automatically orthogonal (¢f. Sec. 51). The correspond-
ing equations for the Heitler-London functions arc

H¥ . =¥+ 3, anmbin (5)
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in which
- Vn = ¥(r — 1(n))

is localized about the atom at the position r(n) and the a,,.. are normaliza-~
tion parameters that must be introduced because the ¢, form a highly
degenerate set of functions not nutomatically orthogonal.

The ¥, and ¢, are connected by the equations

1 <
. 2: e2eiT(my g, 6
‘Lk - ‘\/Kr ( )

It may be verified that the operators H in Eqgs. (4) and (5) are the same
because of Egs. (6). The relation between ¢(k) and ¢, may be found by
multiplying Eq. (8) by ¢2*&7(), summing over n, and subtracting Iq. (4).
The result ig :

(eo — e(&))vx + ;"‘LNE i Apyin == O (7)
nm
If we multiply this by y4* and integrate, we find
’
(k) = e + %E Cp2riRlE () = 5(m)) (8)

We shall discuss relationships of this type in more detail in the next
section. .

65. Approximate Bloch Functions for the Case of Narrow Bands*.--
It is possible to use Eq. (6) of the preceding section to obtain Bloch
type functions from atomic functions even when the Heitler-London and
Bloch schemes are not equivalent; indeed, these functions are sometimes
very useful for semiquantitative discussions. The relationship between
the energies in this casc may be derived in the following way: We shall
assume, for simplicity, that we have a monatomic lattice of atoms that
possess one valence electron each and thai the Schriodinger equation for
the wave function ¢(r — r(n)) of the electron in the nth atom is

{=doat Ve = kN fbte = 2) = e — 1) (D

when the atom is frce. The function V(r — r(n)) is the electronic poten-
tial, which we may expect to be negative. When the atoms are brought
together, the potential at the nth atom is changed by the addition of the
term

3 V@ - r(m))



304 THE MODERN THEORY QF SOLIDS [Crmar. VIII

in which 1 is summed over all atoms except the nth. In order to deter-
mine' the cnergy of the Bloch wave function ’ '

= R;TE'?*“‘"‘”»(: - x(n)), @
it iz neceséa.ry to evaluate the integral |
(k) = fh*{——;—;a + E Vir — r(m))}nhdr
1/~ N .
- ﬁ(E e2rikelr(n) ~r(m)) f v — r(m)){ '-":%‘ +

Vie — r(ﬂ))}vﬁ(r = r{n))dr +
: Ee”"‘""""“_""’l f vir — r(m))E Ve — s — r(ﬁ))df-) @)

nm _ Intn
We shall assume that the atomic funoctions satisfy the relations
S — r(m)(x — 1(n))dr = Sman
and that .
J¥*(@ — r(m)) V(e — r(D)¥(r — rin))dr
is gero unless one of the conditions
n=1l @a=m (=m

is satisfied. Equation (3) may then be simplified to

C(k) = ¢ + %2 afmezu‘t-{r{h)—-t(m)] (4]
where wm _
¢ =+ 2.'.";(1-)12‘7(!- ~ r(1))dr (5)
1
and
G = JE*r — x(m)) V(s — r(n))¥(r — r(n))dr. (6)

Both o/, in this equation and a.. in Eq. (8) of the preceding section are
larger when the atoms overlap a great deal than when they are far apart;
moweover, in the limit as the atoms become free, (4) approaches the
energy ¢ of the eiectron in the free stom for all values of k. We may

! Ibid.
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conclude that in the solid there is a band of Bloch levels corresponding
to one zone of k space for cach electronic state of the free atom (cf.
Fig. 19). .

Since the lattice has translational symmetry, it follows that of,,,,
is independent of n. Thus, Eq. (4) may be written in the form

«k) = ¢ + Eaﬁe’“““m (7)
¢ .
in which

&) = g . (8)

and the summation extends over all values of . Equation. (8) of the
preceding section evidently can be placed in the same form. Now,
atomic functions may always be chosen as real if there is no magnetic field
present. Thus, the o/ may be regarded as real, and Eq. (7) may be
placed in the form

e(k) = ¢ + 2«; cos 2xk - x(D)
H

0 (
=¢+ ‘;a' - 2§I;a; sin? vk - r(}). (9)

Only the o; eorresponding to very near neighbors are important when
the bands are comparatively narrow.
Hence, only the first few terms in the

series (8) need be retained in this soid Lree

M ——

case. The a corresponding to im-
mediate neighbors are equal in the
three.cubic lattiees and in the ideally -
close-packed hexagonal crystal when
~the atomic functions -are & type.
Hence. in this case the nearest-
neighbor terms in (9) may be written
a8

ok) = ¢ — 2a3 sin*xk-x, (10)

Fn

where r, ranges over the vectors
. connecting an atom with its nearest

neighbors and F1a. 19.—The one-slectron levels of

the free atom split into bands when the

" aton entera the solid.

€ = ¢ 4+ za

in which z is the number of nearest neighbors. Now, if V(r - r(n))
in the integral (6) is negative, as the electronic potential of an atom"
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should be, and if the portions of the ¢ that overlap have the same sign,
as we may expect for well-separated s functions, the « in (9) are negative.
Thus, we may conclude that before appreciable overlapping occurs the
&(k) curves for bands that arise from s electrons increase with increasing
values of [k| in any direction starting from the origin of k space (cf.
' Fig. 20).

The same conclusion ecannot be
(k) drawn in cases in which the atomic
functions are not s type. Suppose,
for example, that the atomic ¢ are p
functions of the form

50). (11)

5 band

< “iiok.— Then the overlapping portions of the
o Fia. ls)!:;;—'_l‘he «k) ourve {;rfmﬁ ¥ Ommﬂh:hat have different z

lectron band is concave upwards for coordinates have opposite signs, and
directinna in k space. their « are positive (cf. I«gig., 21).
Moreover, although the overlapping portions for atoms that lie in the
same z plane have the same sign, the product is small because (11) has a
node in this plane. Thus, in this case the function e(k) should decrease
with_ increasing values of k in the z direction of k spacé¢ and should
increase in the ¥ and z directions (¢f. Fig. 22). Cases in which the funec-
tions are higher than s or p type must be considered individually.

!
¥

¥i16. 21.~The overlapping parts of p functions of type (11) that have different z coordinates
. have opposita. sign.

It is readily found that, in menatomic crystals having the three
simplest cubic structures, Eq. (10) reduces to
e(k) ¢ ¢’ — 4xaa’k? (12)

in the neighborhood of the origin of k space, where a is the edge length
of the fundamental cube. This may be made identical with the expres-.
gion for effectively free electrons, namely,
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k!
®) = ook,

by setting . ot
;*' = ——ﬁ-,—aa’.

Since a is negative for g electrons, they have a positive effective maass.
On the other hand, it is clear from what has been said in the preceding
paragraph that the effective mass of electrons near the origin of a p band
is negative for motion in the z direction. The significance of negative
masses will be discussed in Sec. 68. €k

Mott and Jones' have used e(k) *
functions of type (10) to compute the

i kx
I
function dN/de, which gives the num- !
|
1
I

—

ber of states per unit energy range.?
Since the density of points in k space
is uniform and iz equal® to 2V, it
follows that (@)

SN = 2Vdnry, 1
where dry is the differential of volume ¢
in k apace and 3N is the number of ! |
states in this volume. Now, if we i !
choose coordinates so that the differ- (u) Ky kg —>
b,

ential of volume is bounded on two
F1a. 22.—«(k) ourves for & p band.

faces by surfaces of constant energy, e(k,) curve is concave downward,
whereas the «(k,) and «(k,) curvea are

dk eoncave up . The ourvature is
dfk=ds(a—)d¢, less in the second case because the over-
lapping is smaller.
where dS is the differential area of the surface of constant energy, de

is the energy difference of the two bounding surfaces, and dk/de is the
change in k in going from one energy surface to the other. Evidently,

—— el e — .

(&) - o -
whence

in which the integral extends over the surface of energy ¢’

1 ¢f. Mory and Jongs, op. oil. . .
3 [n the following sections of this book, we shall usually designate &N /ds by n(s).
3 Bee footnote 1, p. 204.
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Figure 23 gives a comparison of the n(e) curves for the first gone of
a body-centered lattice that are obtained with the assumptions that (k)
is given by Eq. (10) and by the free-electron equation

e(k) = —'ik

respectively. In the second case, the function vaiies as 4/¢ until the
spherical contours intersect the zone boundary, whereupon the dena:ty
of levels decreases.

40
30 s 1 1
AN
Baris) 20 ’__\
D

w / > N
0 05 10 5

. —

3

Fie. 23.—dN/de curves for a bodymntered cubic lattiee. Cum b is derived by
:-ml(li;?thedoctrom mpwi‘eotb ; eurve a is obtained fromanc(k) relation of the
ype

68. The Total Electronic Wave Function of the Solid.—Let us digress
- momentarily from the one-particle approximation and discuss the wave
functions of the solid as a whole. To begin with, we shall assume that
the constituents are far apart. If the lowest states of these atoms, ions,
or molecules are nondegenerate as in rare gas solids, ordinary molecular
crystals, or ionic crystals that are referred to a normal state of ions with
_ rare gas configurations, the lowest state of the entire assembly also is
nondegenerate. On the other hand, if the .constituents are twofold
degenerate, as in the alkali metals, the total degeneracy of the system of
N separated atoms is 2¥. More generally, the degeneracy of the lowest
state of the entire assembly is g¥ if the lowest state of the constituent is
g-fold degenerate. The first excited state of the nondegenerate assembly
is Nf-fold degenerate if the first excited state of the constituents is f-fold
degenerate. 'The factor N appears because any one of the N constituents
may be excited.

Let us now bring the atoms or molecules closer together in order to
form a solid. We may expect some of the levels of the entire solid that
are highly degenerate at infinite separation to split into levels of lower
degeneracy as the interatomic distance decreases to the point where the
cha.rge distributions of different atoms overlap. This splitting may occur
in any one of several ways. (1) The components of the splitting level
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may be separated from one another by finite distances (¢f. Fig. 24a).
(2) The level may split into a quasi-continuous band (Fig. 24b). (3) It
may break into separate continuous bands (Fig. 24c). (4) It may break
into bands and discrete levels (Fig. 24d). A nondegenerate level remains
nondegenerate, of course, although it may cross or mingle with the

progeny of degenerate levels (Figs. 26a and 25b).

Separated erys
atoms The splitting of degenerate levels may be
understood from a general standpoint in the
a following way. It can be shown on the basis of
h—% X /

Fia. 24. Fro. 25.

Fra. 24.—Possible hehav;or of a degenerate level of & system of atoms as the atoms
are combined to form a solid. In a the level splita but remains discrete; in b it splits into
a quasi-continuous band; in ¢ it splits into two bands; in d it splits into & band and a dis-
crete level. The discrete levels in ¢ and d may be highly degenerate.

Fia. 26.—The upper level is highly degeneraie whereas the lower is nondegenerats. In
caee ¢ the lower level does not merge with the continuum; in case b it does.

symmetry theory that the wave functions of the entire crystal have
the form

M{mﬂi)
Xk, . k-(r‘h fr oty r,.)e é (1)

Here, 1; is the position vector of the ith elet'tron, Xki, . . . , ke i8 & periodie
function in the sense that

Xk, ...,kn(rl"!""’rﬂ““f;"’"n+7)'=Xh.....kn(rh°.'lrl) (2)
where ¢ is any translational vector of the lattice. If periodic boundary
conditions are used, the k; aa.t.lsfy the rela.t:ons

(zk.) Te=k (@=1,23),

where T. is one of the three vectors correspondmg to tﬁe edge lengths
of the erystal and l, i8 an integer. Thé function (1) evidently is a
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3n-dimensional generalization of a Bloch function, and Ek,- is a general-
i

ized wave-number vectors For each set of integers Ly, Iz, and l,, there is
an independent value of Ek. When the-atoms are widely separated,

we may expect x#;. ... . k» 88 in the one-dimensional case, to be a func-
tion that has a relatively large amplitude only when the electrons are
2ri( Zhore)

near the atoms. The modulation factor ¢ ¢ then has relatively
minor importance; and, as in the case of bound electrons in the Bloch
scheme, the degeneracies may be high since many wave functions that

have different values of zh‘may have the same energy. On the other

hand, we may expect x to have an appreciable amplitude for & much
wider range of the r; when the atoms are close together. The value of

zk.- then affects the energy, and the degeneracy is at least partly

removed.,

If the lowest level is not degenerate and if, as in Fig. 25, it does not
mingle with a continuum, the solid in its normal state is an insulator.
In this case, we may regard the effect of an electrostatic field as a pertur-
bation and may express the perturbed state as & linear combination
of the unperturbed functions. The amplitude with which the excited
states appear in this function is proportional to the field intensity and is
small as long as the field is not strong. Hence, we should expect a
finite electronic polarizability for small electrostatic fields, jusi 2s for
ordinary atoms and molecules in which the lowest level is discrete. .

Consider next the cases Hlustrated in Fig. 20 in which there are
low-lying vcontinuous bands. The lowest state now has a large number of
other states arbitrarily near to it. When this solid is placed in an electro-
static field, it may be possible to construct from the lowest levels of ‘the
continuum a stable perturbed wave function which takes maximum
advantage of the applied fieid by neutralizing this field within the solid.
This property corresponds to infinite polarizability and is characteristic
of metals. A continuum of levels is & necessary but not a sufficient
condition for metallic polarizability, as we shall sée presently. We may
conclude that Fig. 26 is representative of the energy-level diagram of &
metal. Figure 26b then corresponds to-the case of an alkaline earth
metal. The normal state at infinite separation is not degenerate in this
case because the atoms have closed-shell (s*) configurations.

% is not possible to describe a continuum of the type required for
metallic behavior by means of the Heitier-London approximation.
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Sinee the Hartree-Fock field for the Heitler-London functions must
have a trough in the region where the electrons are localized, just as'in
the case of atoms, we may expect the lowest energy levels that are associ-
ated with this trough to be discrete. Hence, the lowest and first excited
levels of the system should be separated by a finite energy.

The Bloch scheme, on the other hand, leads to a continuum of the
required type, as we have seen in the preceding sections of this chapter.
Thus the Bloch scheme is preferable to the
Heitler-London for a purely qualitative
description of the properties of metals.

Although the lowest state of insulators
may be described equally well by either ap-
proximation, the Bloch scheme may be
inferior for the lowest excited states. Con-
sider, ‘for example, the following system.
We shall start with a set .of N infinitely
separated atoms having nondegenerate
normal states. One excited atate of this
system is that in which an electron is re-
moved from one atom and is placed on
another, 2 positive and a nezative ion thus
being formed. We shall assume for sim-
plicity that this is the first excited state.
Its degenerscy is g,9.N(N — 1), where g,
and g. are the degeneracies of the positive
and negative ions, respectively. The factor -
N(N — 1) occurs because an electron may

——

Fig. 26.—Cases in which the
lowest levels form a quasi-
continuous band. In ctse a

be taken from any one of the N ions snd
placed on any one of the N — 1 remaining
atoms. Some of this degeneracy disappears
a8 the atoms are brought within a finite
distance of one another, because of the
"interaction between positive and negative
ions. The energy, of a pair of spherically

there is no nondegenerate level
and the low-lying 'degeneratc
level breaks .nto & band. In
case b the nondegenerate level is
absorbed into the continuum of
the band ariring from an excited
level. Case a ir characterietic
of the alkali metals, case b of
the alkaline earth metala.

symmetrical nonoverlapping ions decreases by an amount —e?/r, as the
ions approach one another, where r, is the distance between their centers.
Thus, the degeneracy of the new levels is n,g,¢.N, where 7, is the number
of neighbors at distance r, from a given atom. This remaining degen-
=racy is partly removed as the atoms overlap, and each level may be
expected to split into a band. Suppose that the splitting has reached the
point corresponding to the line A, Fig. 27, when the system attains
-equilibrium relative to interatomie displacements. The first band of
excited states then differ from the normal state in that an electron has
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been transferred from one atom to an immediate neighbor. Since the
negative and positive ions that are produced remain at a fixed distance
relative to one another, the crystal does not possess electronic conductiv-
ity when in any one of the levels of this band of excited states. It is
not possible to describe nonconducting excited states of this type by
means of the Bloch approximation. A erystal in which all occupied
zones are completely filled is an insulator, but it becomes an electronic
conductor as soon as one electron has been removed to an unoccupied
" gone. Thus, the use of the Bloch approximation for an insulator is
equivalent to assuming that a continuum which is similar to the con-
tinua of metals lies above the lowest nondegenerate level of the erystal.

m—»

Separated ] Solid

F16. 27.—Case in which the lowest level is nondegenerate and the excited dagenerate
level splits into several bands, the lowest of which is nonconducting. The noncinducting
states cannot be described by the Bloch approximation.

The Heitler-London approximation is somewhat more suitable than
the Bloch scheme for describing the nonconducting excited states.
However, it is open to the objection that in using it the assumption must
be made that a particular atom is ionized and that the electron is localized
on the neighbors of this atom. Since all atoms in the model discussed
above are equivalent, the excitation would be described more appropri-
ately if it extended throughout the lattice. In Sec. 96, we shall discuss
an approximational scheme that satisfies this condition.

The Bloch scheme is not always invalid when the lowest state of the
solid is not degenerate for large separations. Free alkaline-earth metal
atoms are normally in a 18, state, and yet they combine to form metals.
In this case, the degenerate level that corresponds to all atoms being in
the first excited state apparently drops below the nondegenerate state
and broadens into s continuous band as the atoms are brought together
(¢f. Fig. 26b). This band presumably is similar to the low-lying band
of the alkali metals and gives the alkaline earths their metaliic charac-
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teristics. It foilows, from this example, that the first excited state of an
insulator may be conducting for actual interatomic separations even
though this state is nonconducting for large distances. A continuum
that arises from degenerate states in which many atoms are excited or
ionized can cress or become very close to the nonconducting levels, Jeaving
the solid in the condition corresponding to that shown in Fig. 28.

Fia. 28.—Case in which the conddtting levels arising from the first excited state of an
insulator overlap or come very close to the nonconducting levels at the actual interatomic
distance. In this case, unlike that of Fig. 27, the firat excited state is eonducting.

- 6T, Koopma.ns’a Theorem*.—We shall now prove a thearem, due to
Koopmans,' which states that the energy parameter ¢; in Fock’s equa-
tions for a solid, namely,

H'¢; = ), (1) -

is the negative of the energy required to remove the electron in the state
; from the solid when the space part of the ¢ are Bloch type functions.

Suppose that the Hamiltonian for the entire solid is designated by H.
Then when the jth electron is removed, the new Hamiltonian is

f;’= ~—(——A;+2 +V) @

where V; is the ion-core potential. The wave function of the initial
state is

ery)........... 0i-1(r1) @i(ry) eialry)........... ealr)]

_\7___‘. R N )

le1(Ta). .. e B P e a e en(r,)
'T. Koormans, Physica, 1, 104 (1933).
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whereas the wave function for the state in which the clectron having the
function ¢; has been removed is

e(t).......... ei—1(r1) @pa(rs). ... ... en(r:)!
1 : - '
¥, = = . . . 4
i oDl - 4)
TG 3 T ¢,.(r..)|
Since the Fock Hamiltonian is practically unchanged when a Bloch
type function is removed, because the electron charge is spread through-
out the entire crystal, the ¢ in (3) and (4) are practically identical. This
conclusion clearly is valid only when the electronic system is very large

and when the one-electron functions are of the extended type.
The work done in removing the electron is simply

[ *H'vdr' — [Y*HVdr (5)
in which dr’ excludes the variables of the jth electron. Now,

f\lf,*H'\I!ﬁr = Efw*(fl)[ —*—*ﬁl + V(l‘i}]m(l'l)dfl +
[ f [w.ﬁ'x)[’[w(rs)m _ f ei*(r)es* r:)w(f:)ﬂ(l‘l)d ] )

I‘I"H\Ifdr is equal to the same expression with the difference that the
summations include the index j. Thus, (5) is

[ oo —ons+ ved + e [V, o epar, -
s
28. fw(row*(ﬁw(n)w(n) dm} -

- f o OV H e )dr = —¢

(¢f. 8Bec. 51), which proves Koopmans’s theorem.

It should be noted that Koopmans’s theorem also tells us that, in the
Foock approximation, the energy required to take an electron from the
state ¢y to the state ¢ is e(k’) — e(k) when the one-electron functiong
are of the Bloch type.

88. Velocity and Acceleration in the Bloch Scheme.—We shall now
develop several theorems! concerning the behavior of electrons in the

1 These theorems have been proved independently by several workers. See, for
example, A. Sommetrfeld and H. Bethe, Hand'.«ch der Physik, Vol. XXIV/2; I1. Jones
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Bloch approximation. In particular, we shall be interested in the relation
between electron velocity and energy and that between acceleration and
external fields. In quantum theory, the quantities corresponding to
velocity, acoeleration, and force are represented by operators. The
ordinary measured values of these quantities for a given state of a system
are the mean values of the corresponding operators. Hence, in order to
proceed in a rigorous fashion, we should compute these mean values and
should derive relationships among them from the quantum laws. Aectu- -
ally, the correct final results may be obtained much more simply by
using wave-packet methods. We shall employ this procedure.

a. The Relation between Velocity and Energy.—In order to determine
the velocity of an electron that has a given energy e(k’) and has the
wave-number vector k', we shall construct a packet by adding together
wave functions associated with values of k in the vicinity of k' and by
determining the group velocity of this packet. This group velocity
corresponds to the measured or mean value of the velocity of an electron
having wave number k. When the proper time dependence is included,
the Bloch wave functions are

)
= uetere @
_ o ME)
where xxe?*T is the space-dependent part and e ¥ is the time-
dependent part. The packet, whose constitueat functions are centered
about ¥/, is

560 = fatoxe " Farq @
where |a(k)| has a maximum value at k = k' and decreases rapidly on
either side. The integration extends over the range of values of k about
k’ in which |a(k)}? is appreciably different from zero and which may be
made as small as we please. If we set k = k' 4+ Ak and expand ¢(k) in
a Taylor series about k', we obtain

(k) = (k') + grady e(k") - Ak + + - - 3)
We shall assume that the range in which Ak is important is so small that

we need retain only those terms indicated in (3). Equation (2) then
becomes : :

P b -] f a(Ak):_cuem(.' )y (ak)

and C. Zenmer, Proc. Roy.- Soc., 144, 101 (1934); H. Frohlich, Theoric der Metalls
(Julius Springer, Berlin, 1937).
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where the integration now extends over a range of Ak about the value
AK = 0. xx varies s0 slowly with k that we may take it outside the
integral and write
gradpre
I

S 2@ T faaine T ) e, @

Equation (4) describes a wave packet whose phase is determined by the
funetion

)

which is the Bloch function corresponding to k = k'. Its group behavior
is determined by the function

gradigre

_[a(Ak)e“"(" 5 ‘)'“dr(ak), 6)

of which the argument is r — grafk—ft. Thus, the function (6) has

constant amplitude at those points for which r — ¢ grady ¢ is constant,
that is, at points that move with the constant velocity

V() = 7 grady «(K), ™

which is the group velocity of the packet. The classical expression
Iv] = v/2¢/m for the speed is valid only in the special case in which

h®. ,
Tms 2

‘that is, for perfectly free electrons. The relation betiwzen speed and e
ig different in all other cases. For example, near the top of 2 band where
the slope of e decreases, the speed decreases with increasing energy and
actually may become zero if the slope of ¢ happens to vanish at the
boundary of the zone.
The current i carried by an electron having velocity vis —ev. Hence,
we obtain from (7)
i=—e g’—mﬁ—“dz k), ®)

b, The Effective Electron Mass.~—We shall now derive the relation
between acceleration and apnlied force. It follows from Eq. (7) that
v _ ofgrt )] _ grnd 40/ -

at — dt S ) /
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The classical relation between force aad energy is

G =Fv (10)

which should remain valid for the mean values of quantum theory.
Substituting (10) in (9), we find

dv _ gradg F-v _ F - [gradk gradi e(k)] u
i h - h? an
where gradyx grady «(k) is & tensor the nine companents of which are
Pe O 0%
ak? dk,3k, Ok,0k.
9% 0% 8%

Wk, F TRk (12)
a% % de
k.dk, Okdk. ok}

Equation (11) is analogous to the classical equation

dv 1

& " mt
and shows that in the Bloch approximation an electron in an energy band
behaves as though it had an effective mass m* represented by the tensor

L = grady grad o). a3

Thus, the force and acceleration usually are not in the same direction.

Suppose that the electron is moving in the direction of a principal .
axis of the tensor (12) and that this direction is chosen to lie along the
z axis. Then, the effective mass for acceleration in the z direction is

m* = d‘ch)ﬁ'i?: (14)

As we may see from Fig. 2, this is usually negative when the electron
is near the top of the band. Hence, an electron in this position behaves
as though it had a negative mass. The type of force that we shall
usually consider is the combination of eiectrostatic and Lorentz force:

F=-eE-—-EvXH.

Since ¢ appears linearly in this, an electron with a negative effective mass
is equivalent to a particle with a positive charge.
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It was found while developing the free-electron theory of metals
that the electrons that reside in the energy band of width kT at the top
of the filled region are principally responsible for the electrical properties
of metals. If this band lies above the inflection point of e(k), all these
electrons behave like positive charges. This fact evidently offers an
explanation of the anomalous Hall effect: metals and semi-conductors
that have a positive Hall constant contain nearly filled bands.

It sometimes is convenient to ascribe all the ‘“anomalous’ properties
of metals and semi-conductors that are associated with the electrons of
negative mass to the vacant levels or holes at the top of the nearly
filled band. Thus, these holes may be treated as though they were
positively charged particles haviug effective mass

o = — grady grady e(k).
This convention is not simply an analogy, for sheisenberg! has shown that
it is possible to replace the wave equation for the electrons in a nearly
filled band by an approximate wave equation for the holes in the band.
In this equation, the holes play the same role as positive charges. Heisen-
berg’s theorem may also be applied to nearly filled atomic shells.

In addition to the preceding relations, we shall find the following one
useful. By combining Egs. (10) and (7), we find

d dk dk
F.v_..f__.._.-grade=h_-v’
whence
dt F
@ -h (15)

In this connection, Houston? has made an interesting investigation
of the motion of an electron in the presence of an electrostatic field
for the band approximation. He has shown that when the field is small,
or when the electronic wave-number vector is not near the zone boundary,
a good approximation for the solution of the time-dependent Schrodinger
equation is

2wi
xeieieng™ K] 0
where y = k — &, E being the field intensity. This function degener-
i ) =
ates toype » when Eis zero. In this approximation the electronic’

I'W. Hnmmr.m, Ann. Physik, 10, 888 (1931).
!'W. V. Housron, Phys. Rev., 67, 184 (1940).
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wave-number veclor moves through k space at a uniform rate eE/L, or,
in the reduced-zone srheme, the wave-number vector moves uniformly
to the boundary of the zone in the dircction of E, suffers a Bragg reflection,
that is, jumps to the opposite face of the zone, and starts back along the
same path, repeating tlie process indefinitely. During these cycles,
the system remains in the same energy surface ¢(k), so that there is no
transition between zones. In higher approximation, the electron may
jump between zones for sufficiently strong fields. Houston has shown
that these {ransitions occur when the wave-uumber vector is near the zone
houndary and that in a one-dimensional case the probability of a transi-
tion in & single cycle is

4o
(T2

where « = mV?/eEh, in which m is the electronic mass, 2V is the energy
gap, and d is the 'attice distance. A similar expression had previously
been derived by Zener! and applied to a discussion of the problem of
diclectric breakdown in insulating crystals. It is believed at present that
dielectric breakdown in simple crystals, such as the alkali halides, occurs
for fieids weaker than {hose required to cause wransitions from the filled
to the unoccupied levels by this process (see Sec. 133).
82. Modification of Boltzmann’s Equation for the Bloch Scheme.---
Ve are now in a position to modify Beltzmann’s equation to suit the
quanium mechanical one-electron mode of description instead of the
classical one (¢f. Sec. 31, Chap. IV). Tn place of the distribution funection
flz,y.2,0.0,0.), which gives the number of particles at x, y, and 2z with
veloeity components ., vy, and v, we shall introduce the function

f{"‘:yrfx;".’hkhk#) = f(rtk) ’ (I)

which gives the number of particles at z, y, z with wave-number com-
ponents k., k,, k.. :
The drift term, anale. sus to (2), See. 31, Chap. 1V, ig

. SRR SR N of i af af ;
< f)dmt -! A P Ok‘;k ric;ky ok, i e (2)

which may be expressed it tevms of grady e(k) and F by means of Eqs. (7
and (15) of the precediug -coiwn.  The result is

o o gradi e ro FL )
(df drift h E_._Tild:'. h gmdk f {3)

3 C, ZBNER, Proc. Roy Soc., 146, 523 [1934;.
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The collision terms may now be expressed in terms of the function
O(ks by feu kL Kok )dkpdk,dk,, which gives the probability that a particle
changes its wave-number components from k., k,, k. to values in the range
from k. to k. + dk., etc. The quantities that correspond to a and b, Sec.
31, Chap. IV, are then

a = f(:r,y,g, kx:kwkl)_re (kﬂkmkl;k;:k;rk!-)dkm;dkza (4)
b = [f(zy.2,0 K, kYO, Ky Ky ke oy o) Ak itk ke, (8)

The equation of equilibrium analogous to Boltzmann’s equation, is
d F
B gradc S + 5 gradsf = b —a, ®

which may be soived when b — a is known.

In general, ¢« and b may be determined from (4) and (5) when © has
been determined by means of a quantum mechanical analysis. We shall
disouss particular cases of this procedure in Chap. XV.

It may be concluded from the results of the present discussion that the
developments of Chap. IV can be modified in two important respects,
namely:

a. Although the electrons may behave as though effectively free, so
that the relation

2 2
«= E%_kz =P )

is valid, as assumed in Chap. IV, it should be recognized that the effective
mass m* may be negative in cases in which the bands are nearly filled.
Ae we have seen in the preceding section, this situation may be treated
by assuming that both m* and the electronic charge are positive. Thus,
the results of Chap. IV can be employed in these cases by reversing the
sign of e. _

b. It may be necessary to use the tensor character of the effective mass
in order to take into account the anisotropy even of cubig metals. This
procedure probably is necessary in discussing the dependence of resistivity
on magnetic field strength; for as we have seen in Sec. 34, the results
derived on the basis of (7) are badly in error but would be improved if the
velocity at the top of the filled region were an anisotropic function.

70. Additional Energy States,—It was mentioned in part b, Sec. 61,
that some of the nonperiodic states that are labeled under Kramers’
class ¢ may be permitted if the crystal is not infinitely large. If the
crystal does extend to infinity in all directions, the amplitude of these
states diverges in at least one direction. The possibilities for the finite
lattice were first pointed cut by Tamm?! who showed that the divergences

L1, Taux, Physik. Z. Sowj., 1, 788 (1033).
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can be avoided in special cagses. We shall discuss his computations for a
simple model in the following paragraphs. Before doing so, however, we
should add that a computation that is based upon the use of a static one-
electron field, as T'amm’s is, is not completely adequate for establishing
the general conditions under which nonperiodic states are permitted, since
the actual field in which an electron moves is determined in part by the
electron itself.

Tamm considers the simple potential field that is shown in Fig. 29,
whiech, for positive values of z, is the same as that used by Kronig and
Penney and has the constant value W for negative values. As before, we
ghall allow V, to approach infinity and shall assume that mVb(a — b)/h?

to
nnnn

3a P
F1a. 29.—The poteniial funotion used by Tamm.

approaches the constant value ¢ in the limit. One restriction on the solu-
tions then is

co8 A\a = ?:“E sin aa 4 €03 aa (1)

[¢f. Eq. (30), Sec. 61], where
= V2mE

and e ig the factor by which the wave function is multiplied when
changes to x + a. We found previously that A is necessarily real, for
otherwise the wave functions would diverge at large values of z. Hence,
the allowed values of E were determined by the condilion that the right-
hand side of (1) should lie between the values -1 and +1. These
conclusions are no longer valid since the wave functions are different from
Kronig and Penney’s in the negative tegion of z. Instead, they are
exponential functions of the type.

Vo = c'e» (2)
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where S
y = Y2 = E)
h .
These functions should be joined to Kronig and Penney’s at the origin
of z.

It turns out that all of Kronig and Penney’s solutions going with real
values of A may be joined to functions of type (2), if the phases are chosen
properly. Hence, the continuous spectrum of periodic states is not
altered. We must consider the case in which A is imaginary.

The solution that decreases by a factor e in successive cells of the
Iattioe along the positive r axis is

s l—w(n—hue‘u
Ve = 67 = Tt )’ 3)

where ¢ is +1 when the right-hand side of (1) is greater than +1 and is
—1 when the right-hand side is less than —1. The condition (1) is
replaced by

eooshpa-:“iasinma-i-cosm. 4)

The additional condition that must be satisfied if (2) and (3) are to join
smoothly at the origin is

_ nsin aq
o

+ coB aa = ee™4a (5

for the case in which E < W. Eliminating x from (4) and (6), we find
that K must satisfy the equation

aa cotan aa = a——:’—: — Vay? — a’a? {6)
where
s _ 2mW
Ly o

This equation possesses one root in each interval of aa extending from nr
to (n 4+ 1)x. BSince there is one continuous band in each of these inter-
vals, we may conclude that there is one “surface’” state in the energy
region between each pair of neighboring bands, when E is less than W.

When E is greater than W, the functions (2) are periodic and may be
joined to (3) for arbitrary values of E. The resulting solutions are
periodic outside the lattice and exponentially damped inside.

We may conclude that the type of surface barrier which is con-
sidered here permits states which lie in the ‘“‘unallowed’’ energy region.
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These states are exponentially damped on both sides of the surface
when E is less than W and are periedic outside the lattice and damped
inside when FE is greater than W. The first type represents electrons
that are localized at the surface, whereas the second represents electrons
that impinge on the surface from outside and are reflected back.

K——

Fi1a. 30.—A simple potential trough.

" Fowler! has pointed out that in a finite one-dimensional crystal the
surface states occur in pairs, one state being associated with each end of
the crystal. .

In addition, Shockley? examined the origin of the surface levels more
thoroughly on the basis of & more general one-dimensional model and
considered the dependence of the levels on lattice parameter. He found
that if the potential of the normal latiice may be expressed as a periodic
sum of simple troughs of the type shown in Fig. 30 the surface levels ean

Interatoric Distance ~——»
Fra. 81.—Schematic diagram shewing the manner in which the surface levels ocour in a

case in which the potential is a periodic sum of troughs of the type shown in Fig. 30,
occur only if there is a separate potential trough at the surface or if the
energy bands arising from separate atomic levels overlap (see Fig. 31).
The second case evidently cannot occur at large interatomic separations.
It turns out that the bands do not overlap in the Kronig-Penney model
and that Tamm obtained surface levels only because he implicitly intro-

1 R. H. Fowsar, Proc. Roy. Soc., 141, 56 (1933).
* W. Smocxrey, Phys. Rev., 6, 317 (1039). See also the similar discussion by
W. G. PoLrARD, Phys. Rev., 56, 324 (1939).
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duced an additional potential trough at the surface in cutting off the
potential funetion in the manner shown in Fig. 29. _

Shockley also showed that one level is removed from the lower band
and one is removed from the upper band for each pair of surface ievels
that oceurs. Thus, if the lower band were completely filled and the
upper band were compietely empty at large interatomiec separations, two
electrons of opposite spin would be forced from the lower band into the
surface levels when overlapping occurs.

The generalization for three dimensions is apparently straightfor-
ward. Suppose that we have a erystal that is bounded by the plane
z = 0, the crystal being on the positive side of the x axis. We may expect
some wave functions that have energies lying in the unallowed regions
and that have the form ’

inside the lattice and the form
Y = e—meeilkm+iuns) ®)

outside. In (7), x is a function possessing the periodicity of the lattice;
7 is real when  is less than W, the potential outside of the lattice, and is
imaginary when E is greater than W. As before, the second type of
solution iz permitted for all values of E in the unallowed regions. We
may expect more than one seolution of the first type in the unallowed
regicns in-which they may oceur, however, for k; and k, may take all values
associated with a two-dimensional zone system that is determined by the
translational symmetry of the surface. Roughly speaking, we may
expect as many states in these unallowed regions as there are atoms on
the surfsce. Since this number ordinarily is about one million times
smaller than the total number of atoms in & crystal, we should not expect
these surface levels to affect the bulk preperties of a substance.

There does not seem to be any direct experimental evidence for the
existence of surface states although Tamm suggests that charges on the
surfaces of some cherged insulators may be bound in states of this type.

Shockley has made & qualitative generalization of the results of
his investigation ef the one-dimensional model. His conclusions are as
. follows: .

Surface levels will not occur between the ordinary X-ray levels
or in the forbidden region of most simple insulating salts such as sodium
chloride, for neither of these eases corresponds to overlapping-band
systems. The basis for these conelusions is discussed in Chap. XHI.

b. Surface states should occur iu the forbidden region between the
highest. filled band and lowest vacant band of diamond, for this gap occurs
as a result of the overlapping of an s band and a p band (see Sec. 109).
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Since the number of surface states is approximately twice the number of
electrons that are forced from the filled band, the surface band should
not be completely filled. In an ideal case, this statement would imply
that the surface should be conducting; however, various effects, such as
surface cracks or adsorbed atoms, could easily impair this type of con-
ductivity, which does not seem to be observed.

c. Surface states should oceur ncar the overlapping bands of all
metals. In the monovalent metals, such as the alkali metals, in which the
occupied band is usually not filled to the zone boundary, these levels
would be completely empty. They should be partly filled in the divalent
metals, however. - .

More important than the existence of surface states is the fact, sug-
gested by these computations, that bound electronic statee may be

1
1AL

Impurity
afom
Fig. 32.—Bchemutic representation of a loealized impurity level. The lower curve
is the lattice potential which is distorted by an impurity atom. The upper curve represents

the localized charge distribution associated with an impurity level that lics in the forbidden
region.

associated with any flaw or discontinuity in an otherwise perfectly
periodic lattice in the manner illustratedin Fig. 32. Suppose, for example.
that we have an infinite one-dimensional latiice, such asg that of Kronig
and Penney, and that we alter the potential in a single cell by
lowering it from gero to —W’. It is easy to show by the method
used above that in the forbidden energy regions there are then states
corresponding to electrons which are localized in the vicinity ef the
singular cell. If the cell extends from —a to 0, the allowed forms of the
wave function within this range are

gin v’ (z + g) or €08 7’(:: + g) (9)

L INEEW)
- VIETW)

where
(10)

The localized functions correspond to cases in which the funetions ()]
are joined smoothly to functions of type (3) at z = 0 and 2 = a. The
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conditions for this in the two cases (8) ure, respeciively,

' r

-E— cotan -%9 sin ag + coS aa = e~ W)

and
! '] .
—% tan 3-29 8in aa + co8 aa = ee™*2, {11a)

Either one of these conditions and the condition (4) must be satisfied
gimultaneously. The resulting equations are more complicated than (6)
and will not be discussed in detail here. They show that when E is
negative we may expect approximately as many trapped electron states
as there are discrete states for a simple barrier of width ¢ and depth —~ V",
whereas, for values of E greater than zero, there usually is one state in
each forbidden region. However, there may be more or less than one in
particular regions. These cases depend in a complex way upon the
relative values of ag and v’a.

Thus, we may conclude thet impurity atoms or lattice imperfections
induce additional energy states which correspond to electrons localized
in the vicinity of the impurity or defect. These states lie in the regions
between continuous bands. We shall find that they can play a very
important role, particularly in semi-conductors.

71. Optical Transitions in the Zone Approximation.—Before leaving
the zone approximation, we shall find it convenient to discuss optical
transition probabilities. We found in Sec. 43 that the probability of an
optical transition between two states ¥, and ¥ contains the following
integral

fi',*zpm""fﬁ"‘\l'pdr(xl, v, %ny g—lr R | 5'-) (1)

in whieh p; is the momentum operator for the ¢th electron, n is the wave-
number vector of the light quantum that is absorbed or emitted, and the
integration extends over all of the electronic coordinates. In the band
approximation, ¥, and ¥; are determinantal wave functions that are
constructed of Bloch one-electron functions. Since the operator

3, pietriv @)

is & sum of one-electron operators, the integral in (1) vanishes if ¥, and
¥, differ with respect to more than one Bloch function; moreover, (1)
vanishes even in this case, unless the electron sping associated with the
two different Bloch functions are the same. Hence, only one electron
can change its state during the absorption or emission of a single light
quantum. . . ' '
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If ¢ and Yy are, respectively, the different Bloch functions in the
functions ¥, and ¥4, (1) may be reduced to the form

S peirTindr (z,y,2) @

| where the integral now extends over the coordinates of one electron. Let
us write Y, and ¥x in the typical Bloch function forms

¥k = xue?ET,
Y = Xwe? e, €Y
The integral (3) may then be written as
f e’.‘ritk’-i-w—k)'l'xk*[? grad xx — A2x(n 4+ k’)xg]df. (5)
The quantity
7 = x| erod xe = hawn + W0 | ®
has the periodicity of the unit cell, so that (5) may be written in the form
zgzﬁck'h—w-n f O T (7
Ti
where the integral J: extends over the ¢th unit cell of the lattice and «; is
a veetor extending from a corner of this $
cell to the origin of coordinates. Since )
each integral in the sum (7) is the same, N
this series is - | ;
!
Aze&-‘(k'+u-k)-n @8 | !
143 : :
where { }
Am j; 2wik +1 K1 fdr, | i
in which the integral extends over the | / I
unit cell at the origin. Now, (8) vanishes ! . . !
unless Fro. 33.—Diagram showing the al-
K dn—k=K ©) 2::21:.“““0“ in the reduced-sone

where K is a principal vector in the inverse lattice. Hence, transitions
are allowed only between one-electron states the wave-number vectors
of which satisfy the relation (9). The wave length of a light quantum
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ordinarily is large compared with the wave lengths of an electron of
comparable energy. Hence, n is usually much smaller than k or k'
and may be neglected. -Equation (9) theén simplifies to

_ ' k' =k +K,

which states that electrons may make only vertical transitions in the
reduced-zone scheme (¢f. Fig. 33).



CHAPTER IX
APPROXIMATIONAL METHODS

72. Introduction.—One of the most useful methods for obtaining
approximate solutions of the Schrodinger equation for solids will be
discussed briefly in this chapter. This diseussion iz supplementary to
that of Chap. VI, for the one-electron schemes described there form the
basis for the method deseribed here. This method begins by replacing
Fock’s equations, which usually eannot be separated into one-variable
equations, by ocentral field equations that are separable. When accurate
one-electron functions have been derived in this way, they are used to
compute coulomb and exchange energies. Following this, an attempt is
made to estimate the correlation effect and correlation energy. It is
difficult to treat these quantities either accurately or coneisely; however,
they have been handled in a few special cases that will be discussed near
the end of the chapter.

73. The Cellular Method.—The primary requirement of a practical
plan for solving Fock’s equations is that it should replace them by accurate
separable equations. Hartree’s procedure in the case of free atoms (¢f.
Chap. VI) is a good illustrative example of such a plan: Hartree’s
equilions are not separable when they are applied to an electron con-
figuration that involves an incompletely filled shell of p or d electrons.
If the nonspherical part of the coulomb potential of p or d electrons is
dropped, however, the equations becowne separable and may be solved by
the methods used for ordinary differentizl equations. The error made
in dropping the nonspherical terms lies within the limits of natural
error of the Hartree field method and may be conveniently corrected by
perturbation methods.

A similar procedure is possible in solids.! Let us restrict the discus-
sion, for the present, to the case of Hartree’s equations and overlook the
exchange terms. These equations are .

.—;%&%(n) + [V(n) + 2 c’flﬁ;—(iﬁl-’drs]%(n) = efx(r) (1)

where V(r,) is the total ion-core potential and the sum in the second term
extends over all electrons except the kth. The wave function near the

1E. Wioner and ¥. Burrz, Phys. Bev., 48, 804 (1088); 48, 500 (1934).
320
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nucleus of any atom is determined by the ion-core field of this atom, for
this field becomes very large compared with the other potential terms in
(1). In simple solids in which the ion cores are closed shells, this field
is sphericaily symmetrical. The potential arising from other parts of
the lattice is comparable with that of the ion core of this atom at dis-
tances from the nucleus that are of the same order as interatomic dimen-
siong. If the crystal has a high degree of rotational symmetry relative
to the nucleus, the potential of the rest of the lattice is nearly spherically
symmetrical. Thus, it may be expected that there is a large domain
about each nucleus in which the field may be replaced by a spherically
symmetrical one. This principle may be used in a wide range of cases,
although it is less accurate in erystals having low symmetry than in cubic
lattices, such as the alkali metals and alkali halides.

The preceding observation on the symmetry of the field in the neigh-~
borhood of each-nucleus suggests that the laitice should be partitioned
into a set of space-filling polyhedra, which are centered about each of the
nuclei, and that the field may be chosen to be contrally symmetrical
within each of these polyhedra. Within each polyhedron, Hartree’s
equations may then be replcced by the egoation

— oA+ VW = o @

where V(r) is the approximate spherically symmetrical field. The solu-
tions of (2) in spherical poiar coordinates have the form

¥ = fi(r,e)0L(0,0) (3)
where fi(r,e) is & radial function that satisfies the radial equation
_way P+, |
Imart T [V(”) tom = @)
and ©,(0,¢) is a surface harmonic
o = JE= M2 A 1pm o g)gime. ®)

TN+ m) 4r

Bloch functions may be constructed from functions of the type (3) by
forming series of those which are associated with the same value of e.
The coefficients in these series may be determined from appropriate
boundary conditions which we shall discuss below. This procedure forms
the basis of the cellular method.

The manner in which cells are chosen depends upon the lattice for
which computations are being made. For monatomic crystals in which
all atoms are translationally equivalent, the most convenient cell is
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chosen by taking the polyhedron whose plane faces bisect orthogonally
the lines joining an atom with its nearest neighbors. Figures 1 and 2
show cells of this type for monatomic face-centered and body-centered
cubic lattices. The ccll may be chosen in the same way when more than
one atom is present in the unit cell if they are equivalent, as in diamond
or in closed-packed hexagonal crystals. Figures 3 and 4 show this type
of cell for the crystals that were just mentioned. If the atoms in the unit
~ cell are not equivalent, as in sodium chloride, the cells may not be chosen

7,

F16. 1.—The ocellular poly- F16. 2.—The ocellular poly-

hedron for a monatomic face- hedron for a monatomic body-

centered cubic lattice. centered cubic lattice. .

Fra. 3.~-The cellular poly- ’ Fra. 4.—The cellular
hedron for diamond. polyhodron for a close-
' packed hexagonal lattice.

on the basis of symmetry alone. Each case of this type can be handled
in many ways.

As we mentioned above, within any cell, the Bloch function yx,
associated with the energy ¢ and wave number k, may be expressed!
in terms of a series of the type

W@ = Db nfi(r,e())O4(0,0). o ®
1,m '

! Wianxr and S=m177, op. oil.; J. C. Suatez, Phys. Rev., 48, 794 (10934).
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The important practical problem associated with this series is that of
determining the b from the boundary conditions which the Bloch fune-
tions must satisfy. These conditions are the following: (a) yx and its
first derivative must be continuous at the boundary points between
neighboring polyhedra, and (b) yx must satisfy the relation

Yu(r + ) = aenis @

where « iz a translation vector of the latfice. It turns out that these
conditions can be satisfied only for discrete values of € for a given wave-
number vector k. The permissible solutions furnish us the desired
relationship between ¢ and k. It may essily be seen that the boundary
conditions need be satisfied only for points within a single unit cell, for
the form of the function at any point outside this cell is connected with
a value inside by Eq. (7). Let us suppose that condition a has been
satisfied at all the interfaces between polyhedra in & given unit cell. By
definition, the vectors that join opposite faces of the remaining surface
are primitive translations of the lattice, since these faces constitute the
boundary of the unit cell. Moreover, the points on the faces are the
only ones in the unit cell to which the condition (7) can apply.

It has not been feasible in any of the work that has been carried
through up to the present time to satisfy conditions a and b at all points
of the surfaces of the polyhedra. Instead, all but a finite number-of the
terms in the series (6) are discarded, and boundary conditions are satis-
fied at just enough points to determine the coefficients of all these terms.
The only just:fication for this procedure lies in the belief thai the series (6)
should converge rapidly for small values of k, since then the wave length
of the Bloch function is large compared with the dimensions of the cell,
Results that bave been derived by using this method will be presented
in the following chapters.

Shockley' made an extensive test of the cellular method in a case in
which exact solutions are known, namely, in which V(r) is constant. He
found that when a small number of boundary poinis is used the approxi-
mation is satisfactory for zones which normally are occupied but that it
usually is very bad for excited states.

Several improvements? on the cellular method have been proposed
since Shockley’s work; but only one of these, namely, the method of
Herring and Hill, has been applied to praetical problems. These workers
assumed that the yx functions at a given peint on the zome may be
expressed as a finite sum of free-electron functions of the typ=

1W. BsockLEY, Phys. Rev., 52, 866 (1937).
*J. C. SvateR, Phys. RBe., 61, 846 (1937); G. WarNies, Phys. Rev., §3, 671 (1838);
C. C. Herring and A. G. HiLy, Phys. Rev. (to appear).
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i = 20-.‘*82'*"’ (8)

i=1

in which the constants a* and k; were chosen by use of group theory.
The matrix components of the erystalline potential that connect approxi-
mate wave functions of the type (8) at the corresponding points in-
several zones were then computed, and the resulting matrix was diagonal-
ized. In this way, approximate values of (k) for the boundary points
were obtained. This method, which was applied by Herring and Hill
to beryllium (¢f. Sec. 81), evidently is a special case of the perturbation
method deseribed in Sec. 61, the functions (8) being the appropriate
linear combinations in the zero-crder approximation.

T4. The Hartree Field.—In order to determine a self-consistent
Hartree field within each of the polyhedra in the cellular approximation,
it is necessary, first of all, to adopt a starting field or charge distribution
from which wave functions may be computed. This field may be chosen
in many ways. For example, when one is dealing with a monatomic
solid, the ion-core field plus the field arising from g uniform distribution
of valence electrons may be used. In any case, the starting potential
V1 and the starting charge distribution p; are related by the equation

Vi(r) = f‘ *};‘1?2 T2. ¢}

Bloch functions ¥y may be constructed from the starting field by use
of the method deseribed in Sec. 73, which combines the solutions of the
equation

*-—'A'& + Vi)Y = & (2)

where V1§ is the spherically symmetric part of (1) in a given polyhedron.

A new electronic charge distribution, cz't;tq.(r)ﬁ where Kk is summed over
X
all oceupied levels, is determined by these ¥y, and a new Hartree field

Vulr) = e f Eifzgl—-?)—l-dr + Volry) 3)

may be determired from th:s distribution. In (3), V.(ry) is the total
potential from the rigid ion cores; that is,

V,(r;) = Zﬂi.a(rl) 4)

s

where »;.(r1) is the potential at r; that arises from the core of the ath
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atom in the sth unit cell. The entire potential (3) may be written in the
form of a lattice sum, such a3 the sum in Eq. (4), by expressing the first
form of (3) in the form

(el S [y,
Ekefhr:;) g gfhr:: p

where p;,« is the value of ze“h{a!l within the ath polyhedron of the ith
k

unit cell.

Usually, Vn(r) will not be spherically symmetrical within a polyhedron,
since it may contain all surface harmonics that are compatible with the
symmetry of the polyhedron. Hence, the closest agreement that may be
expected, is that V§ and the spherically symmetric part of Vi should be
identical. This will not be the case, unless by fortunate chance. Hence,
it usually is necessary to choose a new field Vi as the starting field for
another computation. There are no general rules for choosing Vy; in
such a way that the field Viv, which is derived from its wave functions
in the way in which Vn was derived from the solutions for V;, will be
closer to Vi than Vn was to Vi. The convergence is often swift in a
monatomic lattice of equivalent atoms if Vi is taken as the mean of ¥,
and. Vi, but this scheme does not work very well in solids that contain
two or more different kinds of atom. The factors that govern the speed
of convergence have not been investigated in any general way.
~ The final wave functions that are derived from a self-consistent
Hartree field may differ appreciably from the solutions of Fock’s equa-
tions, for exchange terms are neglected in Hartree’s equations. Unifor-
tunately, the exchange terms usually cannot be included merely by
adding one-electron potential terms (¢f. Chap. VI). There are special
cases, however, in which they may be included very simply; we shall
discuss these in the next section.

78. Exchange Terms*.—There are two cases in which the exchange
terms have been handled rigorously, namely, the cases of perfectly bound
electrons and perfectly free electrons. In the first case, the atoms are so
far apart that the electronic wave functions of separate atoms do not
overlap appreciably; in the second, the potential field in which the elec-
trons move is 80 nearly constant that the one-electron functions have the
form e*r®r, We shall discuss these two cases in detail.

a. Rigidly Bound Electrone (Narrow Bands).—Atoms and ions when
they are far apart affect only the electrostatic field in their own vicinity.
Hence, in this case, the atomie or Heitler-London approximation is the
most accurate of the one-electron approximational methods, and the Bloch
approximation is as accurate only when it is identical with the Heitler-
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London method. We saw in Chap. VIII that the two schemes are
equivalent when there are completely closed shells if determinantal
eigenfunctions are used. Let us consider the way in which this equiva~
lence appears in Fock’s equations for the two systems. For simplicity, we
shall deal with a monatomic lattice of atoms whose valence electrons form
closed shells of the s type. We shall let ¢(r — r(n)) represent the
Heitler-London wave function of the electron that is centered about the
nucleus at the positionr(n). Fock’s equation for ¢ (r — r(n)) has the form

__2%4,‘(,(;1 - r(n)) + {V(n - r(n)) +
fiif'(fz ;:(ﬂ)) zdr,}do(r —r(n)) = &(r, — r(n)) (1)

where V(r; — r(n)) is the ion-core field of the atom at r(n) and the integral
is the coulomb potential cf the other electron on this atom. Exchange
integrals do not occur because, by assumption, electrons on the same
atoms have opposite spin and those on different atoms do not overlap
appreciably. Outside a given atom, the coulomb field of the electrons
cancels the ion-core field; hence, there are no coulomb terms hetween
different atoms. Since exchange terms are absent, Hartree’s and
Fock’s equations are identical in this particular case.

Now, let us consider Hartree’s and Fock’s equations in the Bloch
approximation. = As long as the closed shells do not overlap, we should
be able to write the Bloch functions in the form

lt) = \—}_1—\,2 earksmy(r — 1(n)) @)

where k is the wave-number vector, ¢(r — r(n)) is the normalized one-

electron function that is centered about the atom at r(n), and N is the

total number of atoms in the lattice. In a filled zone, each value of k is

associated with a pair of electrons having opposite spin. In the following

paragraphs of this section, summations over 2k will imply summation

over both types of states associated with the N values of k in a zone.
Hartree's equations for the yx are

_Q%A%(n) + E ng&h_ﬁ?iﬁﬂf -+ E”n(rl)‘hl(rl) = ex @

2k’

where E, extends over all pairs of electrons in the zone, except one of the
pairs having wave number k, and v,(r,) is the ion-core field of the atom at
r{rn). The potential
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f Md‘i"g, (4)
T2

arising from a singie electron, is negligible at any point in the lattice as
long as the crystal contains e large number of atoms. Hence, it is
immaterial whether the sum in (3) extends over all electrons or all elec-
trons except one and the primes may be deleted. Using (2), we have

S = 3,3 entrm -1y (r — xm)Hr — £(m)). (5
2% Ik n,m
The terms for which r(n) differs from r(m) vanish because the y do not
overlap. Thus,

Sl =3, 2(r — r(m)]? (6)
3k n

where the factor 2 appears because of spin. Qutside the mth atom, the
potential arising from the term 2[y(x — r(m))|* in (6) and the ion-core
field v.(r) cancel one another. Hence, only the term in (6), arising from
1¥(r — 1(n))|?, need be considered in the vicinity of the nth atom, for the
other terms are canceled by the ion-core terms. Thus, near the nth
atom, (3) reduces to

-2 pve — 1) + {w f lﬂf-;%ﬁli’dfz + o,.(n)}'#(rn ~ t(m) =
&(r, — t(n)). (7)

This equation is not the same as Eq. (1), because of the factor 2 which
appears in the coulomb integral. It is easy to trace this spurious screen-
ing term to the fact that the electrons are completely uncorreiated in the
total wave function on which Hartree's equations are based (¢f. Chap.
VI). In the Hartree approximation of Bloch’s scheme, the probability
of an electron being at a given atom is determined only by the average
charge distribution 2!y|* of eother electrons on the atom. Actually,
other electrons tend to stay away from this atom when the given eleciron
is there both because of the electron repulsion and because of exchange.
Let us consider next the Feck approximation. In this case, we have
in addition to the terms on the left-hand side of (3), the exchange terms

_Ees[ f ‘iﬂ%’iﬁ)dﬂ]&f@l) @)

1
where the sum extends only over clectrons of one kind of spin. This sum
need not be primed if the prime is dropped in (3), since the additional
terms just cancel one another. Using (2) once again, we find that (3) is
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equal to

_,; e ' 2rik’-r(n) - l
~ i {E e ¥(n r(n)))

o< {E J’ezn‘(k---“')"(”‘)l!!fr(: - r(le’d"}- ®

The cross terms in the second factor of the sum have been dropped
because the ¢ on different atoms do not overlap. This equation, in turn,
may be written in the form

NlA.J E 27k {2(n) — ()| p2wiks. r"‘"y(l’ - t{ﬂ))fw'(r’ a r("*))l d*r (10)

am K

The sum ze"" {r(r) =(m)] ig equal to N8, m, Rowever, for k' is summed over

t.he points of o zone. Hence, (8) reduces to
-5 {emone - r(-nnf L O

‘Thus, Fock’s equation for ;.b(r; — t(n)) is:

~ 2 Apes — x(m) + {e= f M drs + vn(t:)}#'(n — t(n) =
afr: — r(n)),

which is identical with (1). Thus, the exchange integrals remove. a
part of the spurious screening that occurs in Hartree’s equations (7).
This fact shows, however, that we eannot expect exchange to compensate
for all the inddequacies of Hartree's scheme, even in the simple example
discussed above. The exchange correlation affects only electrons with
parallel spin and does not alter the spurious screening of electrons with
antiparallel spin. The remaining defect may be corrected only by
solving the many-body problem by a method that is more accurate
than the one-electron approximation.

Let us consider an cxample in which the atams do not have closed
shells and the zones are not completely filled. We cannot expect the
Heitler-London and Bloch schemes to lead to identical results it this
case, but we can examine the relative merits of the two. We shall
assume that the atoms have a smgle valence electron outside the closed
shells and shall designate the ion-core field for this electrop by. V(7).
The equation for the Heitler-London function associated with the atom



338 THE MODERN THEORY OF SOLIDS [Caar. IX

at r(n) is _
—;%;;A\b(r = 1(n)) + V(r — r(n))¥(r — r(n)) = &f(x — r(n)) (12)

as long as the atoms do not overlap. Under these conditions, the total
energy of the lattice, relative to a system of N ionized atoms is Ne,
and is independent of the assignment of spins to the electrons. This
solution evidently is as accurate as the ion-core field.

In the Bloch approximation, the wave functions have the form (2)
and the k may be assigned spins in many different ways. The k range
over an entire zone if the spins are parallel, for example, but many other
arrangements are possible. The total wave function is & single deter-
minant in two cases, namely, the states of highest multiplicity, in which
all spins are parailel, and the state of zero multiplicity, in which all
spins are paired. In both these cases, Hartree’s equations have the
form

~ X abtes = ) + { Ve = s +
e: i_‘l"(rl ';l:(ﬂ)) ’dfg}lf/(f:l_ — r(n)) _ ﬂ;l(rl e, r(n)), (13)

which differs from (12) by spurious screening terms. The exchange
terms of Fock’s equations remove this term in the case in which all
spins are parallel, for then the k range over an entire zone and the
exohange term is identical with (8). On the other hand, if the spins are
paired and only the lower half of a zone is filled, the exchange term for
¥x is [¢f. Eq. (9)]

- % < {2 g2k c(n)y,(r; — r(n))}{z J' ezri(k—k')-r(m)wr(:: - "(m))l’dfs}

10

where k' is summed over half a zone. This may be rewritten in the form

_ 2
— %E E g2 {s(n) ~r(m)lg2rilker(mhy(y, — r(n)) J‘ME_._"_.“S . r]:(m))f— dry

am ¥
[¢f. Eq. (10)]. The summation
E £2x ik [e(n) —t(m)]
e

is not equal to Né.,.., for k' does not range over an entire zone. If we
assume, however, that the atoms are sc far apart that the summation is
negligible when r(n)  r(m), (13) reduces to (N/2)é,» Hence, in this
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case, Fork’s equation for ¢ in the Bloch scheme is

— (e, = x) + ¥+ § [t by, — ooy -
- eble — 1) (14)

" The exchange term cancels only half the spurious screening term. This
fact shows that the Bloch scheme may be very inaccurate! for some states
‘when the bands are very narrow. Thus, the energy of the lattice in the
Bloch approximation is

2 2

N [ WElv(r ?_)J,dm (15)
4 Tz

higher than the energy in the Heitler-London approximation when spins

are paired. The integral (15) is ecual to

3 e
32 a
or about 2.9 ev, for hydrogenic 1s functions.

As the atoms are brought nearer and nearer, the terms in (13) for
r(n) # r(m) may be neglected no longer and the exchange terms reduce
part of the screening effect of electrons on different atoms. This type of
correlation effect does not oecur in the Heitler-Londoun scheme. Thus, a
part of the advantage of the Heitler-London scheme over the Bloch
scheme begins to disappear as atoms begin to overiap. It is for this
reason, among others, that the Bloch scheme may be used in competition
with the Heitler-London scheme in the computation of binding energies of
actual solids.

b. Perfectly Free Electrons.—As a working model for discussing the case
of perfectly free electrons, we shall consider a system of N electrons in
& box that contains a uniform positive charge distribution of total
magnitude Ne. The positive charge compensates {or the over-all repulsion
of the electrons and makes the system stable. The exchange terms for
this system have not been treated in the Heitler-London approximation.
Although this solution probably would be very poor kinematically because
the metallic properties of the model are not apparent in the Heitler-London
. approximation (¢f. See. 66, Chap. VIII), the cohesive energy probably
would compare favorably with that derived on the basis of the Bloch
approximation.

_Since the positive-ion distribution is uniform in our model, the Bloch
functions have the free wave form
* 1 Caution must be used in applying Blooh functions to discussions of ferromag-
netism; for, as we see here, the Bloch approximation gives a spurious ferromagnetiam
in » oase in which states of all spih actially have the same energy.
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1

e = VA il (18)

where V is the volume of the erystal. iet us assume that all the lowest
clectronie levels are doubly occupied. The value, ky, of k at the top of the

filled region is given by’
3N :
ky = (Sar V) Q7)
and the exchange term in the cquaiion for yx is
(_.;2 “1 e?ﬂ(k k')ers .

'

e..ts(k’ k)-(ry~r2) .
32 L, (19)

'This integral is indcpendent of r; and may be evaluated by direct meth-
ods.? The result is that (19) reduces to

g2riken
Y ¢ fp—

VYV

which is identical with

where
o — k? lk+k
o .
| (20)

- 0.306;_:[2 + &-(1 ~ a?) log |I‘:““

in which & = k/k, and r, is defined by the equation

&V
3 & N
Hence, (19) is equal to a constant times yx, or
Ay = —Cigx (21)

for perfectly free electrons, where A is the Dirac exchange operator.. The
function Cyr,/e® is shown in Fig. 5.

The mean value of —C; for all electrons is equal to twme the emchange
energy per electron. We shall evaluate this energy directly. The total
exchange energy is : ‘

1Cf. Eq. 20, Sec. 26; also, Sec. 49.

2 P. A. M. Dirac, Proc. Cambridge Phil. Soc., 20 376 (1980) HE A Bu.huﬂ, Phys,

Rev., 49, 653 (1936).
: Wiener and Serrz, op. cil.
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1< . e2ri(k’ —k).(r1~r3)

—373 )¢ ——drdr,
| & - 712 it
e’ .
o= —T,-E-J"ez"(k —k)ln—r g opdk’ d&dridro ' 22)

where pr = V is the density of points in k space and the summation has
been replaced by an intcgration. This replacement is allowable for

0 1 L 1 1 1
0 a2z 04 Q6 Qa8 L9 12
kfko=—>

F1a. 5.—The negative of the exchange cnergy for perfectly free electrons as a function of
kE/ko. The energy units are e3/r,.

ordinary-sized crystals since their states are very dense. Integrating over
k and k', we find that (22) reduces to

H%egf(%koﬁg cos 211‘]{'[:';2 — sin ZI'kgrlg)szldd-g — —4‘3’82ng. (23)
12

ko may be replaced by its value (17), and then the mean exchange energy
per electron is found to be '
et
"mﬂol3l (24-)
where 7, is the number of elcctrons per unit volume. In terms of r,, (24)
becomes ' .

eg
—0.458 —- (24a)
Ts

The implications of the exchange terms for perfectly free electrons were
discussed in Sec. 49, Chap. V1. We saw there that the exchange terms
have the effect of keeping electrons of antiparallel spin apart (¢f. Fig. 2,

1Chap. VI). The absence of such correlational effects for electrons of
antiparallel spin in the Fock-Bloch approximation constitutes a large
source of error. The Heitler-London approximation will furnish some
-correlation between electrons of both kinds of spin by keeping them on
separate atofns; but as we have seen in molecular problems, such as that of
. H,, tkis method of introducing correlations is not very accurate. Thus, it
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seems reasonable to say that both one-electron schemes have comparable
errors when the electronic interactions are appreciable. We shall discuss
the correlation terms for the Bloch scheme in the next section.

76. Correlation -Correction for Perfectly Free Electrons.—The total
correlation correction for the free-electron model in which the positive
charge distribution is uniform has been investigated most thoroughly by
Wigner.! A part of this correction is the exchange energy

62
—0458%, (1)

which was derived in Sec. 75 (¢f. Eq. 24a). We shall be interested here
in the additional term that arises primarily from electrons of anti-
parallel spin. .

The simplest case in which the total correlation may be estimated is
that in which the electron density is so low that the electronic kinetic
energy is negligible. This is the case in which r, is very large. The
electrons then will form the most stable lattice arrangement, which,
according to the Madelung type computations, is a body-centered cubic
arrangement. Its energy, relative to the energy of a perfectly uniform
negative charge distribution, is

2
—0.746 f_« (2

Hence, the correlation correction to the Bloch-Fock seheme, which is
the difference between (1) and (2), is

ez
—0.288 T (3)

for low electron density. The expression tha{ is valid for small values
of r, should approach this asymptotically.

The details of Wigner's calculations for high electron density are
too involved for discussion in a book of this type.. We shall- present
only a brief summary of his procedure and results.

In the starting approximation, in which the correlation term (3) is
zero, the total electronic wave function may be taken in the form *

‘h(ﬂh) ............... 20 (IE) ‘4/1(y1) ............... f!l(yx)
. 5 . 7
~ 1 . . . - (i)
Wy : : .
"N(zl) ----------- “bN(I'N) \(’N(Vl) AR AL \(’y(yy)
z T 7 z T 7

'E. Wianss, Phys. Rev., 46, 1002,(1934); Trans. Faraday Soc., 34, 678 (1938).
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where the z refer to electrons of one spin, the y to electrons of opposiie
spin, the y are free-electron wave functions, and N is the total number of
electrons. This function does not satisfy the Pauli principle, but it has
the same energy as though .it did. Exchange effects, which are the
principal consequence of the Pauli principle in the one-electron approxi-
mation, are given correctly by (4) since all terms. of given spin are con-
tained in the same determinant.
Wigner considers the following modified form of (4)

\"1(3_21; Yy, « « oy yx) N2 (:c.\r; Yy - - oy y:\,) ‘Pl(yl) LI wl(y)\c}
3 2 z 7
. . = . (5)
. . !' . -
_."N(z!; Yo . . . yy) L ""N(zN; Yy, N y‘v) 1'1/“(9‘) Lo ‘b,\(yv)
T 7 T T vl |z T

in order to obtain functions from which to construect a better total wave
function. Here, the ¥(y;) are the wave functions for free electrons.
The ¥(zi, ¥1, . - . , ¥n) are to be determined by the condition that the
mean energy of (5) should be & minimum. The ¢ are then used in a
new total wave function from which a new total energy may be computed.
This new total wave function evidently will not be a rigorous solution
of the complete Schrodinger equation, but it is a closer approximation
than the function based on (4). :

" The correlation energy obtained by Wigner in this way is accurate
only for high electron densities because of his approximate computational
methods. He found that this result may be joined to (3) by the function

__0.2886*
Te + 5.1as

which he estimates is accurate to within 20 per cent.

An expression similar to (20) in the preceding section that will give
correlation energy as a function of k has not been developed. However,
we may compuit the correlation energy of the uppermost electron in the
filled band. Suppose that a number of electrons are removed from the top
of the band so that the total number is equal to N, instead of N, the"
‘total number in a neutral lattice. The correlation energy will change as

" a result, and the new value may be derived by taking into account the
change in density, that is, by changing r, to the value (N/N,)r,. Hence,
if the total correlatjon energy is expressed in the form

= No((F)") o

(6)
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where, according to (6), ¢ is
0.288

= —g2 ’
g(r) ¢ ¥ 51a

the correlation energy of the upper electrons is

‘(gﬁf)ﬁ_, = g(r) — 30'Cor.

[Caar. IX

(®)

©

This expression may be used in considering energy changes during a
process in which an electron is removed or added to a system, such as
during thermionic or photoelectric emission or when an electron jumps
from the conduction band to a vacant inner-shell level during X-ray

emission.



CHAPTER X
THE COHESIVE ENERGY

T7. Introduction*.—The degree to which the computed energy of a
. system agrees with an accurate observed value is a measure of the
_ aecuracy of the wave functions that are used in the theoretical compu-
‘tations, because of the variational theorem. For this yeason, computa-
tions of the cohesive energies of solids occupy an importamt position
in the development of the theory of solids. The existing ecalculations
deal with simple substances, such as the monovalent metals, the alkali
halides and hydrides, and rare gas solids, all of which will be discussed in
this chapter under three headings: metals, ionic crystals, and molecular
orystals. There have been no accurate computations that deal with
valence crystals, such as diamond. '

Before beginning the detailed discussion of cases, we shall derive
several useful equations. The cohesive energy of a solid is defined as the
difference between the energy of the crystal in the normal, bound state,
at absolute zero of temperature, and the energy of the isolated atoms or
molecules of which it is composed. If the surface energy is neglected,
the cohesive energy is proportional to the total number of atoms or
molecules in the lattice and may be expressed conveniently in units of
electron volts per molecule or in the thermochemist’s unit of kilogram-calo-
ries per mol. This energy is equal to the actual heat of sublimetion only
wheén the substance evaporates into the atomic or molecular constituents to
which the separated system is referred. ,

Let us derive an approximate expression for the cohesive energy in the
general case in which there are » atoms per molecule and m molecules per
unit cell of the crystal. Then,if EL£(B = 1, - - + , ») is the energy of the
pth neutral atom and ¥ is the complete electronic wave function for N
unit eells of the crystal, the cohesive energy FE,, relative to a system of
-separated atoms, is

E = mN DEs — g [0, by g @)

. B=1
where H is the complete Hamiltonian of the crystal and n is the total
number of electrons. 'We shall develop this in the important case in
which ¥ is expressed in terms of the solutions of Fock’s or Hartree's

equations.
845
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If the one-electron functions for the gth atom are m’(x,y,é), where
k ranges over the ng electrons of the atom, and if the total wave function

of the atom is ¥%(x1, * * * , 2a, {1, * * * , {up), the energy of the atom is
5 A
h2
E$ = 2 Jorr(~2a - 2 otirtenen) +
-]

e .
52 J“I'*J.;;;‘Pdsdf(xh -t :fn,)- (2)

The notation that is used in this equation is the same as that which was
introduced in Chap. VI. —Zge?/rs is the potential of an electron in the
field of the nucleus, whose charge is Zse, and ¢*/ry is the interaction
potential of the kth and Ith electrons. The last term in (2) may be
expressed as a sum of coulomb and exchange integrals of the type

fl&fl) f@t(rz). dr ’{f t (30)
Tis
and
o | es* () er*(r2) ou(r) erl(ra) ,
K.fp=e j‘ . dridry (3b)

which have coefficienis depending upon the multiplicity of ¥,. We shall
not be concerned with the numerical values of these cocfficients at present
but shall express the two sumas in the form

%-20&;:’1 K and - '}zﬁmﬁs’{u’ p @
Kl . EX .

The wave funcrions of those gg electrons on thie 2th aton that belong to
rigid closed shells are practically unchanged in passing {rom. the free to
the bound state. We shall designate the terns in :2) and (4) that
involve only these gs electrons by the symbol 2?. Similarl;, the terms

¢

that involve these electrons and the remaining n; -~ gs clectrons on the
atom will be designated by 2’ , and the (erms that fuvolve only the
an—g

ng — gselect:ons outside closed skells will be desigaatod by 25. The first

n—g

set of terms 2 is canceled by the similar term of Fq. (1) that appears

in the expresslon for the total energy of the solid aud may be drog. ped
from consideration. The two other terms are
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g ™

3° =3 3 (afhif — BLKP), ®)

am—0  k=1l=gg

2 Efm"‘( A Jﬂe )qok’dr (z,y,2) +

n—g k=g

Ry

3 @dL — BlK). (6)

kl=g

The first of these expressions is the energy of the interaction between the
valence and closed-shell electrons; the second is the total energy of the
valence electrons, minus this interaction. In the two eases in which
the one-electron functions are solutions of either Hartree’s or Fock’s
equations, namely,

HAp$ = &(H)p?,

Hrof = &(F)¢s, ' )]
respectively, it may be verified readily that the sum of (5) and (6) reduces
to

B = ze.ﬂ(m ] 2 (@b lnf — ButEt),

kmg . kil=g
n, n’

EFF) = 3 afF) — 3, (alif — BufKud). ®
k=g kl=g

Let us now designate the one-electron wave functions of the valence
electrons in the crystal by ¢;, for which ¢ ranges over values from 1 to n’,
where n’ is the total numher of valence uviccirons. We shall assume
that the total wave function ¥ has unit multiplicity. The total energy
of the crystal then is (,° ~hap. VI)

E = J.\I'*H'Ifdr = EJ‘ wg(r-‘,[-——b-’-A + V(n)]go‘-(n)dn +

=1

12 fw.(ror oile 128, e et Eelmelny, ,

Tiz Tig
=1

Ezli’s + EVnc-i-Eea )

in which the self-energy of the rigid ion cores is neglected. Here, V is
ihe couloemb.ion-core field, V .z is the exchange interaction between ion «
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and ion B8, and e, is the exchange interaction between ¢; and the ath ion.
Just as in Egs. (8), the first term in (9) may be expressed in terms of the
energy parameters of Hartree’s or Fock’s equations and the exchange
and coulomb integrals. The energy per molecule of the crystal may then
be obtained by dividing (9) by Nm, and an dpproximate expression for
the cohesive energy per molecule may be obtained by subtracting (9)

‘ from the expression for the total energy of the free atoms that is derived
by adding terms of the type (8).

Thus, the cohesive energy may be expressed in terms of energy
parameters and coulomb and exchange integrals for the atomic and
erystalline’ systems in the Hartree or Fock approximations. Since the
practical difficulties of evaluating these parameters and integrals are
very large, progress has been made only in those cases in which simple
approximational methods, such as those described in the last chapter,
can be used. There is a tendency for the errors that are introduced by
use of the ene-electron approximation to compensate one another when
this approximation is employed in both the atomic and crystalline states,
for the computed energies are too high in both cases. Thus, the com-
puted cohesive energy may be larger or smaller than the correct value,
depending upon whether or not the correlational error in the atomic
state is larger than that of the solid. In solids such as ionic and molecular
crystals in which the Heitler-London approximation can be used for
both the crystalline and the atomic states, the correlation error is nearly
the same in both cases, and we may expect to obtain a good value of
the cohesive energy. On the other hand, the correlation energy of the
valence electron on a free alkali atom is much smaller than that of the
valence electrons in the corresponding metal. Hence, the one-electron
approximation cannot be expected to give a good value of the cohesive
energy in this case. '

A. METALS

78. The Alkali Metals.—The ecohesive energies of the three alkali
metals lithium, sodium, and potassium have been computed! to a similar
degree of accuracy by using the approximate methods that were described
in the last chapter. We shall discuss the three alkali metals at the same
time.

a. The Ion~core Field.—The first step in computing the cohesive energy
of any substance is to obtain an ion-core field that takes into account the

1Li: F. Swxrrs, Phys. Rev., AT, 400 (1985); J. BaroerN, Jour. Chem. Phys., 8,
367 (1938).

Na: E. Wione® and F. Sxrrz, Phys. Rev., 48, 804 (1933); 48, 509 (1934). E.
WiaNmr, Phys. Rev., 46, 1002 (1934). BARDEEN, op, cit.

K: E. Gormv, Physik. Z. Sowj., 9, 328 (1936).
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interaction between the cloead-ahell electrons and ‘the va.lenoe electrons.
In both lithium and sodium, it was found possible to construct a radial
pot.e.ntaal field v,(r) having the property that the eigenvalues of the
equation

— g + 0¥ = B¢ o)

closely reproduce the observed atomic-term values. From the stand-
point of Fock’s equations, it is possible to say that in these cases the
exchange interaction between core and valence electrons may be replaced
by an ordinary potential term. In lithium, for example, the best field
that could be obtained by a trial-and-errer method duplicated the atomic
values to within a few tenths of a per cent. The field for sodium, which
was derived by Prokofjew! for another purpose, leads to term values
that agree with the observed ones to within about 1 per cent. Thus,
the computed atomic 3s function has an energy of 0.381 Rydberg
unit, whereas the observed value is 0.378. Gorin attempted to con-
struct a similar field for potassium, but he found that this could not be -
done with sufficient accuracy. Presumably, in this case the exchange
terms cannot be replaced even approximately by ordinary potential
terms. As a result, Gorin used a Hartree ion-core field and evaluated
the exchange integrals between the valence and core electrons by direct
methods. The ionization potential that he obtained in this way is
0.2934 Rydberg unit, which should be compared with the measured value
of 0.3190 Rydberg unit.

b. Application of the Cellular Approzimation.—All the alkali metals
form body-centered cubic lattices for which the polyhedron that should
be used in the cellular approximation is the truncated octahedron shown
in Fig. 2, Chap. IX. It may be assumed, for simplicity, that these
polyhedra can be replaced by spheres of equal volume. The error that
is made in doing so can be shown to be negligible and will be discussed
below. Since each of the spheres is electrostatically neutral, the coulomb
potential in a given cell that arises from any other cell is zero. Hence,
all that is necessary is to consider the coulomb field arising from the charge
in a given cell in the sphere approximation. For this reason, we shall
restrict the following discussion to a single sphere.

When deriving the electronic wave function within a sphere, we may
neglect the potential of the valence-electron distribution.in the first
approximation. This procedure is permissible because the electronic
charge distribution turns out to be very nearly constant and its potential
is a slowly varying function that may be mcluded readily by perturbation
methods in a later approximatien.

! W. Proxorsew, Z. Physik, §8, 256 (1929).
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Thus, the first problem to be solved in determining electronic wave
functions is that of finding solutions of Eq. (1) that satisfy boundary
conditions implied by the Bloch form

Ve = xue T _ @

(¢f. Chap. VIII). We may expect the lowest eigenfunction to be one for
which k is zero and which has cubic symmetry’ relative to any nucleus.
The lowest order surface harmonics that possess this symmetry are s
and g functions of -the type

g =1
0= A @0ty b ey ety 0| &

Hence, ¥, should have approximately the form
Vo = £u(r) + gfo(r) ' 4)

where f, and f; are radial functions. The equations for continuity of the
normal gradient of ¥ at the points (100) and (111) on the sphere of radius
T, are

f:(?’.) - *f:(?}) = G}
Lird) + #4(r) =0, (5)

where r, is the radius of the sphere and the prime indicates differentiation
with respect to r. The solutions of (5) are either - '

Yo=f(r) with fi(r) =0 (6)

Yo = gfe(r)  with  fi(r,) = 0. )

Since an s function should have lower energy than a g function that
satisfies the same boundary conditions, we should use the first of these
conditions for the lowest state. If the actual polyhedron were used
instead of a sphere, each of the two equations (8) would involve different
values of r,, one of which would be the distance from the center of the
polyhedron to a point on the surface in the (100) direction, and the other
of which would be the distance to a point in the (111) direction. We
should then obtain two solutions that involve both the s and g functions.
One of these, however, would be predominantly an s function and the
other predominantly a g function.

We may conclude that within the sphere ¢, is that s function which
goes into the lowest atomic & function when the lattice is expanded and
which satisfies the condition ¥(r,) = 0, A relative scale plot of this
function for the value of 7, correspondirlg to the actual lattice constant
is shown in Fig. 1 for sodium. The energy of ¥, as a function of 'r,,

or
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eo(rs), is shown in Fig. 2 for the three alkali metals. The full curve for
potassium includes the exchange interaction between the valence and
closed-shell electrons. These energy curves resemble very closely the

14
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\L—Z

-6

-10

-i4 1 1 1 1
[v] 1 2 3 4

. r (Bohr Units) ——s=

Fia. 1.—The lowest wave function of mwetallic sodium. It should be noted that this’
function is practically constant for over ninety per cent of the atomie volume.
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F1g. 2.—The e(r,) curves for a lithium, » sodium, and ¢ potassiuzn. The energy scale

is in Rydberg units (one Rydberg unit equals 13.54 ev). The horisental dotted lines

. represent the normal-state atomic energies. The dashed curve for potassium represents

the case in which the valence-electron closed-shell exchange energy is neglected. Exohange
is included in the_ full curve. '

characteristic energy versus internuclear distance plots for diatomic
molecules and show that the stability of metals is related to the fact that
" the spatial distribution of potential in & solid allows some of the electrons
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to have a lower energy than they have in the free atom. A part of this
decrease in energy is connected with the decrease in kinetic energy that
may be associated with increased smoothness of the wave functions,
and part is connected with the fact that the center of gravity of the
electronic charge in a given cell is nearer the nucleus.

Only two electrons are in the state going with k = 0. In order to
find the other wave functions in first approximation, it is necessary to
solve (1) for those cases in which k is not zero. Since only half of the first
zone is filled in the normal state of the alkali metals, it is not necessary*
to find the exact form of the «(k) curve near the boundary of this zone
in orderto compute the cohesive energy. With this'in mind, we shall
compute ¥ and e(k) by a method that is accurate near the center of the
zone but not accurate near the boundary.

If we substitute (2) in Eq. (1), we find that xy must satisfy the equation

2 2
~ ¥ At + 90 — ik - grad i = ¢ (K ®

where

) = alk) — 2o, (@)

2m

The solution of !(8), a8 given by the Rayleigh—Schriidinger perturbation
method,? is

) =« — —2n J ¥o*k - grad Yidr’ + et U'Wkﬂ sja:i yodr|? |

L 4

©, (10)

[k - gead godr ||
%24« BT (1)

where the ¢, are the solutions of (8) for k = 0 and y, is the lowest s fune-
tion. The first integral in (10) is zero; the sccond term may be simplified
in the following way. The only functlon ¥, for which [,k - grad yodr
does not vanish is one having 3 symmetry, that is, one having any one of

1 As we see from Fig. 17; p. 300, the tlosest point of approach to the zone boundary
occurs in the (110) direction of wave-numkber space. Since the ratio of ko to the value
of k at the zone is only 0.88 in this direction, it is possible that a small correction for
devirtions from the free-electran «{k) curve should be made (¢f. footnote 2, p. 366).

t Bardeen, op. cit., has developed an alternative method for solving Eq. (7) which
involves the assumption that the solution may he expressed in the form

xk = f(r) + k- rg(r)

where f(r) and g(r) are radiml functions within each sphere. FEvidently, f(r) is ve
and g(r) is f,(r) in Eq. (18).
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the forms
20, Lo, Zen), (12)

where ¢,(r) is a radial function. In each of these three cases, the matrix
components are, respectively,

, kaf;‘%g?v(")%(f)df ) kvff—:%%d'r ’ k. f ::—:p,wf_ (13)

Since the integrals in these terms are equa.l Eqgs. (9) and (10) may be
written in the form

‘) =t 2y E“" Wertirdr (14)
= Yo - —ank corke Loirtr 15

The p functions that are satisfactory. solutions of (1) in the sphere
approximation are those which satisfy the boundary condition ¢,(r,) = 0.
This fact may be proved by setting up equations similar to (5). When
these p functions have been computed, both ¢ (k) and yx may be deter-
mined by evaluating the integrals in (14) and (15). It is not evident
from what has been said that the higher order perturbation terms are
negligible, but a practical examination of these for all three metals
shows that they actually are so for values of k in the first zone that are
not too near the zone boundary.

It is worth noting that, in the approx:matlon in which Eq. (14).is
valid, ¢(k) may be written as.

) = ¢(K) + gkt = w + skt ae)
where! '

1 1 W82 |f po¥ridr]

E‘dﬁ(l+52.9 eo—e.) an

Similarly, ¢x may be expressed in the form _
Yx = e2%1(f,(r) + ik « ofy(r)) (18)

1 We shall see in Chap. XVII that the terms in the coefficient oi 1/m in Eq. (17)
are related to the f faotors of radistion theory.
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where f, is the lowest ¢ function and

1olr) = —~—2 s« Yo Lederdr, (19)

€y — €y

. The radial integrals that appear in the preceding equations were
determined for several values of r, for each of the three metals. The
values of the quantity m/m* that were computed! from these[cf. Eq. (17)]
are listed in Table LII. It turns out in the case of sodium that the

TasrLe LII.—VaLoes oF m/m* rorR THE ALKALI MBTALS
(The values for the observed values of r, are given in boldface type.)
Li

Tofan m/m*
3.00 0.584
3.1 0.653
3.32 0.684
Na
3.8 1.079
3.98 1.069
4.12 1.059
K
4.82 1.72
5.08 1.59
5.34 1.48
5.47 1.44

summation in (17) “accidentally ”” vanishes for values of r, in the vicinity
of the observed one, so that this ratio is practically unity. The ratio is
less than unity in lithium and greater than unity in potassium. A small
torm that takes into account the variation with k of the interaction
between the valence electrons and the closed-shell electrons has been
included in the case of potassium.

The expression (16) for e(k) is the same as the expressien for the
energy of free electrons that was used in the theory of metals discussed in
Chap. IV, with the difference that ¢, replaces ~W,. The quantity m*
is, a8 before, the effective electron mass. Since this mass is practically
equal to the ordinary electronic mass in the case of sodium, this metal
should behave more like an ideal metal than either lithium or potassium.
The same point is indicated by the fact that yo for sodium- (¢f, Fig. 1)
is almost constant in about 90 per ocent of the volume of the sphere, a
fact which shows that the wave functions are closely equal to Ae2vr,
where A is a constant.

As long as Eq. (16) is valid, the electrons in their normal state com-
pletely occupy a sphere centered about the origin of k space, just as in the

1 The values for ‘Na and Li weré computed by Bardeen using the method dis-
cussed i in footnote 2, p. 352.
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Sommerfeld theory. The radius ko of the occupied sphere of points in k
space'is given by the relation

dx N |
where V is the volume of the crystal, N is the total number of electrons,
and the 2 in the denominator of the right-hand side arises from spin
degeneracy. The mean value of

h
sk (21)

for these electrons will be called the mean Fermi energy in the following
discussion, since it corresponds to the mean kinetic energy & that the
electrons would possess if they were distributed according to Fermi-Dirac
statistics. Actually, (21) is a combination of kinetie and potential
energy so that the mean value of this quantity is not the mean value of
—h?A/2m. The mean Fermi energy is easily found to be

_3 R 3 h?(3n,\!
""32?”165‘(’8?) (22)
where no = N/V is the number of electrons per. unit volume, This is

identical with the expression for ¢ that was derived in Sec. 26, Chap. IV.
Since no = 1/(47r3/3), Eq. (22) is

3 At 1.105 e )
€r = ‘fﬁm*(&%’) =7 r: _("'m"t') (23)

Values of this energy are listed in Table LIII.
"It is interesting to note that the quantity

-—(io + €r + 61), (24)

where ¢; is the negative of the atomic energy, that is, the ionization
energy, agrees closely with the cohesive energies in the cases of lithium and
sodium. In the firdt case, (24) is 39 kg cal/mol, and the observed value is
also 89; in the second case, (24) is 24.4 kg cal/mol, and the observed
value is 26. These computed values are given for the observed values of
r, at which (24) actually does have 2 minimum. The agreement is not
80 close in the case of potassium, which we shall discuss separately below.
"~ In taking (24) to be the cohesive energy per atom, it is effectively
assumed that the field acting upon an electron is essentially that of the
.ion eore in the polyhedron in which the electron is momentarily found.
“Thus, it is assumed that no more than one electron can be in a given cell
at one time. The agreement between (24) and the observed cohesive
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energies in the cases of lithium and sodium suggests that on the average
the electrons actually do avoid one another in this way.

The cohesive energy of potassium, computed from Eq. (24), is 6 kg
. ca.l/mol whereas the observed value is 22.6. This discrepancy is sur-
prising at first; for we might expect the properties of the alkali metals to
vary continuously as we pass down the periodic chart from lithium to
cesium. Gorin believes that the error in potassium is related to flaws
in the Hartree field on which the eomputations are based, for this field
does not reproduce the atomic energy levels with the same accuracy as
the fields used for lithium and sodium (¢f. part a of this section) even
when exchange terms are included. Thus, the error in the lowest level
‘of the atom is 0.735 ev without exchange and 0.347 ev with exchange.

Sinee the exchange terms are larger in the solid than in the free atom,
because the center of gravity is nearer the nucleus in the solid, it seems

Tasrd LIII—VALUES OF ¢ ¢ AND ¢ FOR THE ALKALYI METALS
(The yalues of ¢, the ionization energy, are theoretical values.)

Observed

T €« 1 & er —(eo + &7 + ep) cobeeive energy

Li(e; = 5.365 ev = 123.4 kg cal/mol)

3.00 —84.6 kg cal/mol | ~ 44.7 39.9
- 8,81 ~82.6 - 438.6 39.0 39 kg cal/mol
3.32 42.7 38.8

-81.5

. Na(er = 5.159 ev = 118.7 kg cal/mol)

8.80 —75.3 51.4 23.9
3.96 —71.3 48.9 24.4 26
4.12 —67.2 42.9 24.3
K(er = 3.973 ev = 01.4 kg cal/mol)
4.8 | ... e 22.8
5.06 —41.0 42.7 -1.7
5.34 —40.6 35.7 4.9
5.47 -39.7 33.1 6.6

reasonable to expect that the entire correlational e¢ffect between the
valence and closed-shell electrons increases in passing from the free atom
to the solid. Now the exchange and correlation intergction energies of
the valence and closed-shell electrons in the free atom are, respectively,
0.388 ev and 0.347 ev. Gorin attempted to correct the absolute errer
of the l_owut level in the solid by multiplying the closed-shell valence-
electron exchange energy of the solid by a factor
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(0.388 + 0.347)
0.388

The correction induced by this is lmted in Table LIV and increases the
binding energy, as computed by Eq. (24), to-about 14.5 kg cal/mol for the

Tarre LIV.—CoRREcTED VALUES OF ¢ + ¢ FOR Poxassrus OBTAINED BY INCERAS-
iNé CLoSED-SHELL VALENCE-ELECTRON Excmanem »Y o Facrtor 1.80
(er = 4.333 ov =~ 99.7 kg oal/mol) :

= 1.89.

‘Observed cohe-

&+ e er —(eo + e1 + er) sive energy
4,828 | ...... ves 9.6
5.08 —-51.5 42.5 9.0
5.34 —48.1 84.5 13.6
5.47 —46.2 31.9 14.3

point r, = 5.4 where the total energy is a minimum. The agreement
‘between the observed and calculated energles is now comparable with
" that found above for lithium and
godium. The value of the lattice 2¢
parameter at which-the minimum
oceurs is much too large, however,
a fact showing that the corrections
of Table LIV are not adequate for
small interatomic distances.
¢. The Influence of Coulomb
Terms.—We shall now proceed to
correct the equations in part b by
considering the effects of t.he

ﬁn

coulomb term n N s
o 0 2 3
E"f . e » -
(et Fira. 3.—The charge distribution in the

unit sphere of hthm;n The ordinates a;e
expressed ita , wWh
We could evaluate this term, using  ofomie volume " ° o/os, Where 3 is the

the wave function (9), and deter-

mine a new set of functions to replace (9) by placing the result in Eq. (1).
The new solutions then could be employed in a reiteration of this pro-
cedure and the process repeated until a self-consistent set of functions is
found. Actually, the change in the wave funetions is negligibly small
at the end of the first step in this procedure. The charge distribution

St = S, (26)
k k
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obtained from the functions (10), is shown in Fig. 3 for lithium when
7, = 1o. It should be noted that this function is practically constant
over the major part of the unit sphere. This condition is satisfied even
better in sodium and not quite so well in potassium. Since the potential
that arises from a constant charge distribution turns out to have a
negligible effect on the wave functions (19), as we shall see, we may
conclude that the effect will also be negligible when (26) is used. The
electronic potential at a point r, arising from a spherical charge distribu-
tion of constant density —e/vo where v, is the volume of the sphere, is
3 1e2r?
VO =35 -35% s (@)
The constant term does not affect the wave function, and so we need
consider only the term in r%. The correction to ¥, arising from this term
is .
S ryodr
53 - “’*"::‘*:.r (28)

where the ¥y ohviously form the family of s functions that satisfy the con-
dition ¢/(7,) = 0. An upper limit to the value of the integrals [yy*r¥odr
may be obtained by evaluating the quantity

%r!f “‘o*r"hd'l’ = f Yorpodr — U.'Wg‘hdrr'

Sinoe Y, is practically constant, this is

G — M)l = el

Thus, the maximum value of any of the integrals in (28) is 0.13¢*/r,.
The difference between the first two s levels in the slkali metals is of the
order of €?/2a;. FEence, the ratio of the coeffictent of ‘any yi to that of
Yo i8. at most 0.26/r,, which varies from 0.08 to 0.05 for the three alkali
metals. Actually, only the lowest of the yx has a coefficient of this magni-
tude; the others play a less important role because the energy denominators
increase and the value of the itstegral [Yy*r%edr deereases with inereasing
k. In addition, it seems likely that the upper limit is too high, for it is
determined by adding the absolute values. On the whaole, then, we may
conclude that the correction term to ¥, changes the funetion by only a
few per cent. The same conelusion ¢an be drawn for the other functions,
for they are practically equal to %oe?***. The total error made hy
neglecting the change in wave funections can be shown to be less than
1 kg cal/mol, which is less than the computational error of the present,
work. .
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By way of summary, it may be said that the solutions of (1) that are
given by (2) and (11) in the sphere, approximation also are solutions of
Hartree’s equations for the lattice.

d. The Influence of Exchange Terms—It was demonstrated in Sec. 75,
Chap. IX, that the exchange operator A is diagonal in the special case in
which the eigenfunctions are free-electron waves ¢2#%, In this case, the
solutions of Hartree’s and Fock’s equations are identical. Now, we
saw in part ¢ that the solutions of Hartree’s equations are very nearly
free-electron waves for all three alkali metals under consideration.
Hence, the exchange operator should be almost diagonal in these cases,
and we may assume that the solutions of Fock’s equations are identical
with (10). This fact is & very fortunate one, for unless.it were true the
problem of treating the alkalimetals would involve many more difficulties.

* The influence on the exchange energy of the small p term in (18) may -
be estimated in the following way. For simplicity, we shall assume that
¥« has the form

Vx = &7 (g + ivk.T) ' (29)

where both « and y are constants. This is equivalent to assuming that
f. and f, are constant. In this case, the quantity 4 - \h‘, where A is the
exchange operator, is

_G’EI(G - i‘fk’ . f‘)(ﬂ + 'l-‘Yk r].) (ﬂ + ‘Tk r‘)Mm_rJ h+k"n]dfg

[ry — 1o

If we make the transformation rs = ry — r;, we may,! to terms in ~*
change this to

—eXa + vk - r;)e‘*’r&.rggf(“ + vk’ - l'll)rET - “Yk “ T3) g2~ K irady

Hence, the functions (18) are ecigenfunctions of A to terms in v2. We
shall find that the 2 terms are very small when we disouss the value of the
exchange energy in part e.

e. The Energy in the One-electron Approzimation.—We may now
evaluate the energy of the crystal in the one-electron approximation.
This energy is

E = [Y*H¥dr
! This approximation is equivalent to assuming that the wave functions have the

forin

, i-:';k.r
vk = ot
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where ¥ is the determinantal eigenfunction, formed of the funetions (2),

and
1 " o2
7= 3 (-gn +V) + 22 +H3Z e
is the total Hamiltonian of the lattice. In Eq. (30),
Vi = Yt = r(n))) (31)

where v.(jr; — r(n)|) is the potential at r; arising from the ion at the posi-
tion r(n), and the last term is the interaction potential of the ions. The
latter has the same form as for point charges, for the ion cores are so far
apart that they do not overlap appreciably,!

The mean value of the operator (30) is

22 f h‘(—-—-—a + V)hd + 42 f "”*('*)l:!f"(””'df -

228’ f !Pk"(ra)\"t'*(l‘ ,)h(r:)\f'r(")d + 22 (32

T1s

where the sums over k and kK’ extend over the occupied values of k,
excluding spin, and the factors 2, 4, and 2 in the first three terms give
the results of spin summation. We may split the first integral into
integrals over each of the N cells of the lattice. Since the component
integrals must be the same for every cell, they are equal to -

N2> f %*(—%A + V)Mr, (53)
k '

in which the integration extends over a single cell. From (31), we may
derive the relation

32 A b Vindr=32 [ e r(n)!)dr+222 f onlovc(e —x(n)dr

n'yén k
(349)

where the integration extends over the nth cell. In the second term,
vo(|t — r(n)|) may be replaced by —e?/[r — r(n’)| since the field is coulombic

outside the n'th cell. Hence, if the fact that the distribution 22”&[’
1 The contribution to the energy from the exchange and van der Waals terms is

less than 0.2 kg cal/mol so that these terms are negligible for the cohesive energy
They are important however, when the elastic constants are computed.
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is spherically symmetric within a given cell is taken into account, (34)
reduces to

Ste [4winde - rmhir - D oo 69

so that (33) may be replaced by

NE f h‘(“—-—ﬁ*‘!’c(ir"’r(ﬂ)i))'hdf‘" 5 (36)

! e? IS
N 2 = :»;Eﬂ T @

The coulomb term in (32) may be split into two parts, namely, one
for which r, and r; lie in the same cell, and another in which they lie in
different cells. In the sphere approximation, the second term is equal
to the mutual potential of a set of point charges, that is, to

since

1 e’
2.7y (38)
a,f '
which cancels the last term in (36).
Upon combining these results, we find that (32) reducea to
e [ [l |3 (r2) |2
2 S\ + v g [Iledlivutellry,
k KX’
2 * 1 % ,
22 32_ Vi * (1) e (1;):’11(1' 2)¥(r1) dria. (39)

Thus, the total energy differs from the sum of the energy parameters
for all doubly occupied states by the self-potential of the charge distribu-
tion in each of the polyhedra and the exchange energy of all electrons.
That the self-potential and exchange terms would enter in just this way
might easily have been predicted on the basis of the discussions of parts ¢
and d.

The self-encigy of the charge distribution within a unit cell has been
- evaluated nuneerically for several values of 7, in each of the three metals
ungder discussion; the results are listed in Table LV. It should be noted
that the actual energy is very close to 0.6e%/r,, which is the self-energy
of a constant charge distribution, for the observed lattice constant in
lithium and sodium. There is a considerable deviation, however, in
the case of potassium, which probably is related to the errors in the
potassium field that were discussed in part b.
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TasLe LV.—ComparisoN oF CourLoMB AND EXCHANGE ENERGIES FOR ACTUAL
ELECTRONS AND FOR FREE ELECTRONS AT PARTICULAR VALGES OF 7,
(In kg cal/mol)

Coulomb Exchange
Actual 0.6e%/r, Actual —0.458¢/r,
Li(r. = 3.21a,) 114.8 116.3 --90.2 —88.9
Na(r, = 3.96as) 93.8 94.4 -72.0 -72.0
K(r, = 5.06as) 82.2 74.3 —57.5 -56.6

The exchange terms are complicated by the fact that the integrals
caunot be broken up into integrals over single polyhedra in any simple
~manner. They may be evaluated, however, by replacing the functions
(18) with the simpler functions (29). This approximation actually is a
good one in the alkali metals, for f, is very nearly constant and f, is small.
The exchange energy has besn evaluated by direct computation in this
case and the result is '

2 H 4,2
N(——.O.458':7 - 1.051;% — 1_09,,2‘_’%_) (40)
where 7 is the constant appearing in Yx when it is expressed ic the form
ol /51
Yx = 7;—(1 ik r)- (41)

When 5 is zero, (41) is a free-electron wave function and the expression
(40) reduces to

-—-0.458N§:;

which, as we have seen in Bec. 75 of the last chapter, is the exchange
energy for free electrons. Numerical values of the quantity (40) appear
in Table LV. The terms in »? actually are very small, a fact showing
that the exchange operator is almost constant (¢f. part d).

J. Justification of the Sphere Approximation.—Before discussing the
cohesive energy, we shall justify the approximation in which the poly-
hedron surrounding each atom is replaced by a sphere. It will be shown
that the expression for the total energy does not differ appreciably from
that derived in part e, if the wave functions (18) are used at points inside
the polyhedron instead of at those in the sphere.

We may dispose of the ¢xchange terms at once by observing that the
principal term of (40), namely, —0.458¢2/r,, was derived by using fune-



Sec. 78] T'HE COHESIVE ENERGY 363

tions which extend throughout the lattice. The terms in n may be
influenced slightly by the sphere approximation, but they are so small
that this variation cannot be important.

Next, let us discuss Eq. (32). V may be expressed rigorously in the
form (31), so that we are iniererted in the sum

= [ g+ 0l = £ e (u2)

where the integration now extends over the polyhedron.

Although Yy satisfies Eq. (1), we cannot set the sum (42) equal to
2Z¢, for the normal gradient of ¥k is not continuous at the boundary
of the polyhedron. In other words, since Ayx is singular at the boundary,
. it is necessary to determine the contribution to the integral that is
associated with the singularity. It may be shown (see the papers on
sodium, footnote 1, page 348) that the necessary addition to the energy is

PSS [t ernd vaas (43)
E o« 7 '

where the integrals extend over the surface of a polyhedron and the
second sum extends over all cells in the lattice. This integral is less
than 0.005 ev for ¢ and may be neglected. Since f, in (13) is small near
the boundary, the integral is also negligible in other cases.

The remaining terms in the expression for the total energy, namely,

NEE{LMM: ~ x(w))dr +

k n'#n
- e Ezwer]
;—f e Zdridrs + 22—-, (44)

a,f

may be broken into two expressions, namely, the for the self-energy of
the charge in a polyhedron, and one for the mutual interaction energy
of the set of polyhedra. In order to do so, all that is necessary is to
write the second term of (44) in the form

, o [2Snr][25 ]
NE;—J;‘ k P drydrs +

" [2Zears][23 Weor]

E o = T dndn @)
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The first term is the sum of the self-energies of the electronic charge dis-
tribution in each cell, and the second is the interaction energy of the
electronic charges in different cells. The sum of the second term in
(45) and the first and last terms in (44) is the total electrostatic interaction
energy of the polyhedra. In the sphere approximatior, this sum was
assumed to be zero, and (44) was evaluated by computmg the sgelf-
energy of the charge in the sphere.

The electronic charge density in each of the three alkali metals is
very nearly equal to e/v throughout all parts of the polyhedron, except in
the region S near the nucleus where the eigenfunctions have nodes.
Since the distribution is spherically symmetrical -in this region, the
potential outside S iz the same as though the polyhedron contained a
positive point charge at its center and a uniform negative distribution of
density e/v. Hence, except for the value of the self-energy of the elec-
tropic charge in S, (44) has the same value as for a lattice of positive
point charges that contains a uniform distribution of negative charge.
The self-energy of this lattice may be computed by the methods discussed
in Chap. II and is

2
—0.8958°
Ts

per ion. The interaction energy of the positive and negative charge in a
given polyhedron of this lattice, as determined by direct numerical
calculation, is

|
—1.4939%.
T

If we designate by Ae the difference between the self-energy of the actual
clectronic charge distribution in the region S and the self-energy of a
constant electronic distribution in the same region, (44) is equal to

N(0.598:f—2 + Ae) . 46)

where N is the number of atoms. The result corresponding to (46) is,
in the sphere approximation,

N o.sf{f + L\e) 47)

where 0.6e2/7, is the self-energy of a sphere of constant charge distribution.
‘T'he difference, namely, —N0.002¢%/r,, is never more than 0.2 kg ¢al/mol
and may be neglected.

The close agreement between (46) and (47) is not & fortuitous coin-
cidence but rests upon the fact that the field outside a polyhedron actually
is practically zero, as assumed-in the sphere approximation.
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a g- Energy in the Fock Approzimation.—The complete expression
for the cohesive energy of the alkali metals in the one-electron approxi-
mation is

2 2 58e?
Mor MBS 0 0

Tasun LVL.—CoNTRIBUTIONS TO THE COHESIVE ENERGY OF THE ALEALX METALS
(The values for K_ contain the corrected values of ¢, + ¢; of Table LIV.Y

Cou- hEx- Cohesive energy | Corre- :;:?al Ob-
Ts co + €1 - ex lomb (;n::_lg in Fock lation | aivt;: served
i term (40) approximation |energy energy
o Li
3.00 | ~39.9 kg cal/mol | 124.6 |—95'1] 10.4 kg cal/mol |~22.3] 32.7
8.21 |—-89.0 _ 114.8 |-90.2] 14.4 —21.7 86.1 | 89.0
3.32 |—-38.8 . 110.9 |—-87.1] 14.0 —~21.5| 35.5
Na
3.80 |-23.9 98.8 |—75.1 0.7 ~20.3 21.0 |
8.96 |--94.4 98.8 |—72.0 2.8 ) —19.9 28.5 | 26.0
4.12 |—-24.3 89.6 (—69.2 3.9 —19.6] 24.5
K
ees || L. I ... lo2.6
5.06 |— 9.0 81.7 |—57.3|—15.4 -17.8 2.4
5.34 |—13.6 69.7 |—54.1j— 2.0 —17.3/ 15.3
5.47 |—14.3 67.6 {—52.5|— 0.8 —-17.1| 16.3

which includes only the principal term in the expression (4) for the
exchange energy. This result is listed in Table LVI in the column
headed “Cohesive energy in Fock approximation.” The minimum values
of the cohesive energies and the corresponding values of the lattice
eonstant appear in Table LVII. A striking feature of these results is

TaBLE LVIL.—COMPARISON OF OBSERVED AND CALCULATED VALUES OF THE COHESIVE
ENBRoY AND LATTICE CONSTANT IN THE FOCK AYPROXIMATION AND FINAL
APPROXIMATION

Cube-edge distance, A Cokesive energy, kg eal/inol

i o

Dbserved | Fook Tinal | Observed | Fock Final

i 8.46 3.50 3.50 39 14.6 | 86.2
Ha 4.26 4,55 4.51 26 4.1 | 245
K 5.30 5.86 5.83 23 - 0.7 | 18.5
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the fact that the cohesive energy determined by the one-electron approxi-

mation is smaller than the observed value by about the amount that

one would expect from consideration of the atomic and molecular prob-

lems for which correspondingly accurate solutions have been found.

It seems reasonable to ascribe most of the error, which is about 1 ev per

electron, to the neglect of correlations between electrons having opposite
in 1

Since the one-electron wave functions are nearly the same as those
for free electrons, we may use Wigner’s expression for the correlation
energy, which was discussed in Sec. 76, namely,

0.288
ETE SR (49)
The final energies are given in the next to the last column of Table LVI
and in Table LVII.

The calculations for lithium probably are the most significant since
thev are the most accurate. It is not easy to trace the source of the
arror of 3 kg oal/mol, but it probably arises from an error in the expres-
sion (49) for the correlation energy.? It is possible, however, that the
effective ion-core field also contributes to this error, for it may not
adequately represent the valence-electron and closed-shell interaction
in the solid. The error in sodium probably has the same origin as that
in lithium, whereas a large part of the error in potn.ssium, which was
. discussed in part b, undoubtedly is connected with the inaccuracies in
Hartree's closed-shell wave functions.

79. Metallic Hydrogen.—Although a metallic modification of hydro-
gen is unknown, Wigner and Huntington® have made a computation
of the properties of this hypothetical substance in order to estimate the
conditions under which it should be stable. This cemputation was
carried through on the assumption that the metallic lattice would be

1 Tables LVI and LVII contain a summary of values that the writer regards as
the ‘““best” results of the papers listed in footnote 1, p. 348.

2 C, Herring has pointed out to the v riter that two types of correction to the
equation ¢ = h*k?/2m* may be expected in the case of lithium. In the first.place,
there may be a slight downward curvature in the (110) direction because of the
proximity of the zone boundary. This effect presumably will also occur in sodium
and probably is not large. In addition, since the (k) curve for lithium is well below
the free-electron curve near k = 0 and we may expect it to rise in higher zoncs,
there is probably a positive term of the order k¢ in a more accurate representation of
(k). This term probably does not affect the Fermi energy appréciably but may be
responsible for a decrease in level density near the edge of the filled region that is
important for other properties, such as the conductivity and paramagnetic sus-
ceptibility (see Chaps. XV and XVI).

: E. Wiener and H. B. HunTiNgTON, Jour, Chem. Phys., 8, 764 (1935).
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body-centered, so that the computational procedure closely resembles
that used for the alkali metals. The principal difference is that the ion
core is a proton which rigorously has a coulomb field. This simplification
makes it possible to evaluate the wave functions and energies analytically
when the sphere approximation is used. The coulomb, exchange, and
correlation energies were estimated by the same methods that were used
for the alkali metals. Figure 4 shows the electronic energy per electron
as a function of r,. The binding energy, which involves a small correction
for the zero-point vibrational energy, is found to be 10.6 kg cal/mol for
a density 0.59. The corresponding values for the molecular forms are
52.4 kg cal/gram-atom and 0.087. The difference in energy shows clearly
why the ordinary form is not metallic.

If it is assumed that the observed 0 ] 2
compressibility of the molecular form,
namely, 3 * 10~° cm?/dyne, is constant
for & large change in volume, it is
found that the energy of the molecular
form would be increased by only 0.92
kg cal/mol when the density is changed 2|
{rom 0.087 to 0.59, so that there would
be no tendency to change to a metallic
form. Actually, the compressibility

Swc. 80] . THE COHESIVE ENERGY

decreases with decreasing volume.
Even if it became large enough to
make the change from the molecular
to the metallic phase possible, how-
" ¢ver, the pressure required would be

Fic. 4.—The lower curve ia the ea(r,)
curve for  metsllic hydrogen. The
upper curve ie the total energy per
electron. The origin of the energy
scale is the energy of an ionized hydro-
gen atom, so that only the values of
the upper curve relative to one Rydberg

unit are of interest for cohesion.

at least 400,000 atmospheres which i8 41 isea is expressed in Rydberg units.

not attainable at present. _

80. Monovalent Noble Metals.—Fuchs! treated the cohesion of
copper along the lines developed in the preceding sections and found that
the interaction between closed shells and the exchange and correlation
interaction between valence and closed-shell electrons play a much more
important role in this metal than in the alkali metals. The reasons for
this may be found from an investigation of Hartree’s wave functions for
atomic copper, for these show that about 0.4e of the 10e charges of the
-newly completed 3d shell lie outside the sphere whose volume is equal
to the volume of the unit cell. ‘This means that the effect of binding on
the d-shell electrons is nearly as important as the effect on the valence
electrons and that the discrete atomic d levels are split into bands in the
solid. Since it would be difficult to treat all eleven electrons by the

' K. Fuous, Proc. Roy. Soc., 181, 585 (1035); 168, 622 (1986); 187, 444 (1986).
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Bloch scheme in a computation of the cohesive energy, Fuchs assumed
that the d shell is nearly rigid. _
The closed-shell one-electron funclions may be expressed in the form

Yol = fur(")OI"(ﬂ,-w) n) .
where fu(#) is & radial function associated with the radial and orbital

l

Atomic Units
2

AL

Lot

Fia. 5—~The lowesi energy wave fuunctionz of metallic copper. The dotted curve
corresponds to & case in which exchange is neglected and the full curve to one in which it
is included. (Ajfter Fuchs.)
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Fia. 6.—The ao(r,) ourves of I, 7—~Curves IT and III
metallic copper without exchange are the same as-in Figure 6.
(ourve I} and with exchange (curve Curve IV includes the ion-
IT). Curve IIlrepresents the mean ion exchange repulsio.. (Afier
epergy per electron after adding Fuche.)

the Permi energy. (Ajfter Fuchs.)

angular momentum quantum numbers n and I, respeciively, and O is
a surface harmonic. In a given closed shell, the 2 component of angular
momentum quantum number m ranges over all integer values from —1
to , and each ¥ occurs onee with each of the two possible spin orientations.
If it is assumed that the valence electrons in the metal are so well corre-
lated that only one appears in a given cell at » time, Fock’s equation
for the valence-electron wave function ¢(ry) is
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. i
—QE'?EAP(I:) + veo(x)) — * E f Yotm (rg)\f;:zm(n)w(ts)dﬂ = ep(r1).
nl m=—]

(2)

Here, v. iwthe cculomb potential of the ion core, and the summation
extends over those ¢ in the closed shells which have the same spin a8 ¢.

Fuchs solved Eq. (2) for the radial function of the 4s type that
satisfies the boundary conditions ¢’(r,) = 0. In doing so, he evaluated
the coulomb and exchenge terms by the use of the Hartree one-electron
wave functions for atomic copper. The solutions that were obtained
with and without the exchange terms are shown in Fig. § along with
Hartree’s 3d function. In Fig. 6, ¢,(r,) is represented for both approxima-
tions. The exchange energy is 2.5 ev for the value of r, corresponding
to the observed lattice constant. Since this is a large fraction of the
cohesive energy of 3.1 ev, we may conclude that the correlation inter-
action between closed-shell electrons and valence electrons cannot be
neglected in an accurate computation. This term could be included
roughly in the manner developed by Gorin for potassium, but the labor
is not justified in the present case because of other approximations that
are made. o . :

The Fermi cnergy was not determined by use of the perturbation
method deseribed in Sec. 78. Instead, it was evaluated more roughly
by means of a perturbation scheme in which the entire periodic potential
field 'of the ion cores V(r) is treated as a perturbation. The starting
wave functions in this case are free waves, and the energy of the per-
turbed funetions xye?*®* is

) = P 1otV el
() = 5 + Voo + vgg T — <) ®

(¢f. Bec. 61). Here Voo is the integral of V(r) over a unit cell,
K=k+K,

-where X is any lattice vector in the reciprocal lattice, and v is the volume
of the unit cell. Fuchs retained only that term of the second-order sum
in (3) that belongs to the lowest zone and derived the expression

1
(221 — 0.10075V 7)) (4).

for the mean Fermi energy. This result is expressed in Rydberg units
when 7, is given in Bohr units. V, is the integral: '

V, = |fe=4me 1V (r)dr|
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where g is the vector joining the origin of k space to the nearest point of
the first zone boundary for the face-centered lattice. IFuchs assumed
that V,, which is approximately equal to one-half the energy gap at the
first zone boundary, is of the order of magnitude 2 ev. The second term
in (4) is then practically negligible. and the Fermi energy is the same as
for free electrons. This conclusion is not fully justified, for the same
line of reasoning would lead to a Fermi energy less than the value for
free electrons in the case of potassium, whereas Gorin’s work shows that
the opposite is true. We may conclude that the other terms in (3)
usually are not negligible,* so that the approximation (4) is not reliable.
The sum of €(r,) and the free-electron Fermi energy is shown in Fig. 6.

Fuchs assumed that the valence-electron self-energy is exactly bal-
anced by the exchange and correlation energies, just as in the alkali
metals. ‘The error made in doing this undoubtedly is smaller than that
introduced in estimating the Fermi energy from (4).

. Finally, the very important ion-ion repulsion term was estimated?
by means of a modified Fermi-Thomas method. When this result is
added to the previous results, the energy curve shown in Fig. 7 is obtained.
The closed-shell interaction correction is of the order of 0.6 ev when r,
is ‘equal to ro and rises very rapidly as the lattice constant decreases.
As we shall see in Sec. 82, the fact that the compressibility of the mono-
valent noble metals is less than that of the alkali metals can be associated
with this interaction term.

The cohesive energy and the computed lattice constant of copper are
listed in Table LVIIL. This energy was obtained by subtracting the

TasLe LVIIL—TuE OBsErRVED AND CaLcuraTED ComEsivE ENERGY AND LaTTICE
ConsTanT oF CorpPrR -

Cohesive energy,
Cube edge, kg cal /miol
Calculated 4.2 33
Observed + 3.6 ) 81

obrerved jonization energy of atomic copper from the energy curve of.
Fiz. 7. The large error in the calculated value cannot. be associated with
an error in a single term in this case, as it could in the case of lithium and
sodium. In spite of this fact, the computations do give an indication

! Except in the case of lithium, the actual free-electron band does not correspond to
the lowest zone, so that there are terms in (3) with positive as well as negative energy,
denominators.

2 In subsequent work on the elastic constants, which is discussed in Sec. 82, this
interaction was also used. '
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of the relative importance of the various terms that influence the cohesive
energy in the monovalent noble metals.

81. Metallic Beryllium.—Herring and Hill! have given a detailed
treatment of metallic beryllium along the lines of the preceding sections.
When compared with the monovalent metals, this case presents two
additional complicating features, namely, the fact that the lattice is close-
packed hexagonal instead of cubic, so that there are two atoms per unit
cell, and the fact that two zones are nearly completely occupied, so that
the free-electron approximations cannot be applied without careful
investigation. The atomic cell for beryllium is shown in Fig. 4 of Chap. .
IX, and the first two sones are shown in Fig. 18 of Chap. VIII. Binoce
the computations contain more details than it seems advisable to present

1 15

nie)
10F

05+

0 %5 @50 075 00 RU .

Fie. —The n(e) curve for berylium. Thisis :c:n;:red with the free-electron n(e¢) curves
for m/m* = 1 and 0.62,

here, we shall survey only the general outline of their work and compare

their results with experimental material.

To begin with, theyv obtained a self-consistent Hartree field for the
valence electrons in the metal, using Hartree’s atomic field for the (1s)?
core. It should be mentioned at this point that all computations were
carried out for values of 7,, the radius of the atomic sphere, both larger and
smaller than the cbserved value, as well as for the observed value (2.37as).
Waye functions for a number of points in k space were then computed,
the functions for the center points of the zone being determined by the
method used for ¢, for the alkali metals, and the functions at the zone
boundaries being determined by the use of the free-electron perturbation
scheme discussed in Sec. 73. From the energies of these functions, a
level-density curve was obtained and the mean Fermi energy computed.

1 C. C. Hereine and A. G. Hrr, Phys. Rev. (to appear).
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A complicating feature of this process is the fact that the exchange
interaction between valence and core electrons had to be included, as in
the case of potassium. A comparison of the actual distribution curve
with that for perfectly free electrons and that for free electrons having
the effective mass m* determined from the curvature of the ¢(k) curve near
k = 0 is shown' in Fig. 8. The vertical lines represent the top of the
occupied regions of levels in the three cases. It may be seen that the
actual dengity function has a strong minimum near the top of the filled
region—a fact that seems to occur generally among the alkaline earth
metals. Values of m/m* for several values of », are given in Table LIX.
It may be noted that the ratio is less than unity a< in lithium.

TasLw LIX.—VALUES OF m/m?* FoR THR VALENCE ELECTRONS OF BERYLLIUM DETER-
MINEDP FROM THE CURVATURE OF «(k) NEAR THE BorroM OoF THE FiLLEp Banp

Tay Ga m/m*
2.07 0.422
2.87 0.616
2.67 - 0.697

Next, Herring and Hill attempted to make a more accurate estimate
of exchange than would correspond to the use of the free-électron value.
This proved to be very difficult, but they came to the conclusion that
the exchange probably does not deviate by more than about 8 per cent
from the free-electron value.

In lieu of a better alternative, they employed the free-electron cor-
relation energy. The correlation energy is not' greatly larger than the
uncertainty in the exchange, so that this proeedure probably does not
introduce an important new error.

The results of the computation are listed in Table LX and are com-~
pared with computed quantities. The theoretical values are expressed

Tapre LX. —CompaRisoN oF OsERvVED AND CoMPUTED VALUEs OF THE COHESIVE
ENERGY, LAoTTICE PARAMETER, AND COMPRESSIBILITY OF BERYLLIUM

Caloulated | Observed

Cohesive energy (kg cal/mol). ... ........ 53 to 36 75
Equilibrium value of re(as). . ... [P 2.23t0 2.57 || 2.37
1/8-1071% (ogB) .. .ovvvr e v e oo 0.8T101.82 1.26

in terms of the limiting values obtained as a result of several methods of
approximating the various quantities.

To explain the discrepancy in cohesive energy, Herring and Hill
suggest the possibility that exchange and correlation energies for the

1 Figure 8 is not the final level-density curve obtained by Herring and Hill, but
resembles it closely.
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electrons near the top of the filled region, where the free-electron approxi--
mation undoubtedly is worst, may be considerably larger than their
computations indicate. In connectiofi with this, they note that the work
function computed from their resulté by a method to be discussed in. the
next chapter is in very bad agreement with the best observed value. This
discrepancy’ would also be decreased if the exchange and correlation
energies of the uppermost electrons were increased.

82. The Elastic Constants of Metals.—It is pointed out in footnote 1,
page 94, that the elastic constants c; that enter in the relation

X‘ = zcﬁxj (‘:j = 1: tt Tty 6)}

F
between the six independent components X; of the stress tensor and the
six independent components z; of thé symmetric strain tensor are given
by the equation

- E(xy, . . . , )
G aa:.‘a:c; (1)

where E is the energy per unit volume of the crystal as a function of the
strains. Thus, the elastic constants may be computed if the energy
of the crystal as a function of homogeneous atomic displacements is .
known. :
a. Compressibility—The simplest energy change to compute is that

accompanying a uniform compression in all directions. In this case,

Ty = 3: = g3 = §,

Zy = 25 = 2¢ = 0, (2)

so that the change in energy per unit volume is
SE = }(c11 + Caa - c32) & + (€12 + Cas + car) £ 3)

Since- the relative change in volume 8V/V is 3¢ for small displacements,
Eq. (3) may be placed in the form

BVLIAY |
iz = L)’ @
in which the compressibilily 8 is relatod to the ¢ by the equation
5 = gllon + o+ en) + e + cn + 0l - ®)

In cubic crystals,
C11 = C2z2 = Cs3y
=c

C1z 23 = €31
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so that
% = g(ent + 20m), ©6)
“whereas, in hexagonal crystals,
' C11 = Csgs,
| C3z = Ca1y -
whence
% = %(2011 + ¢33 + 2c13 + 4ca). (7

Now, sV/V is simply related to the relative change or,/r, in the
radius of the atomic sphere by the
equation

| —— Experimental
Theoretical

Hence, if E(r,) is the energy per unit
volume of the crystal as a function
Na Of 74, :

1_noE. .
B 9o

>
T
':,

or if ¢(r,) is the energy per atom,

b , 1 _1 %) (8)
0 005 010 0I5 020 025 B 12xr, or?
-AV/

" Fyo. 9.—Comparison of the observed L his quantity evidently may be com-
and clguatod ompresabilios o it - puted from the «(r,) curven discussed
change in volume —AV/V. (After 1N preceding sections. . These values
Bardeen.) ’ are given in Table LXII.

Bardeen! has used the computed e(r,) curves for lithium and sodium
to compute the compressibilities for a range of values of r, and has com-
pared these with values obtained from Bridgman’s room-temperaturc
results? by extrapolation to absolute zero of temperature. - The com-
puted and observed curves are given in Fig. 9. The pressure required to
produce the maximum change of volume in these cases is of the order of
magnitude 40,000 kg/cm?. Bardeen suggests that the disagreement in
the case of lithium arises from neglect of the effect of the discontinruity
of the e(k) curve at the first sone boundary (¢f. footnote 2, page 366).

" b.. Other Relations—In order to compute all the elastic eonstants, it
is necessary to determine the energy change of the crystal for deforma-

Compressibility x 10 (¢m?/ Dyne)
e _

- ¥BARDEEN, o0p. cit., 372. :
sP.W. Bamm(m, Proc. Am. Aoad Sei., T2, 207 (1938).
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tions other than a homogeneous compression. The most extensive work
of this kind has been carried out by Fuchs! for the alkali metals. He
determined the energy change for the following two additional types of
dilation:

1. Equal contraction and expansion, respectively, along two cube edges,
which leave the volume unchanged.—This deformation may be expressed
in terms of the fractional displacements along the three axes which will
be designated by a., a,, and a,. If the z direction is that along which
the distances are unchanged, we have

a,=3:3=0,
oy = 2 = §
ay = Ty = —§

Ty = 25 = z¢ = 0.
Thus, in this case,

3E = (Cu - 012)5’;
and

=122 ©)

2. Shearing siraih in @ plane parallel to two cube edges.—In this case,
the compressional strains are zero, and only the shear atmma are finite.
Thus the dilatation is described by the relntlons

Zi=a=23=0; Tu=§ Zz=ze=0
Hence,

GE = '}C“E’.

It is evident that these deformations, unlike the deformation that
determines the compressibility, distort the cells into noncubic forms,
thus deforming the spheres of the sphere approximation into e]hpsoids
Fuchs treated the changes in each of the contributions to the total energy
that were discussed in the preceding sections in the following way:

. t. Since the lowest wave function ¥, is practieally constant near the

boundary of the polyhedron, Fuchs assumed that. it is not appreciably
changed by a dilatation that does not alter the volume. Thus, € Was
regarded as a funection of r, alone,

12. Fermi energy. Since the Fermi energy of a free—elect.ron gas
depends only upon the volume, this assumption was retained in treating
the alkali metals. -

1 Fucas, op. cif. -
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415, The coulomb energy. We saw in part f, Sec. 78, that the coulomb
interaction of the electrons and ions is the same as the self-energy of a
set of positive point charges in a uniform cloud of negative charge, except
for regions very near to the nuclei. Since the form of the wave functions
in these regions is not affected by distortions that do not change the vol-
ume, the change in coulomb energy for the distortions 1 and 2 is the same
as the change in the electrostatic self-energy of the simple lattice. The
methods for computing this energy were discussed in Chap. II for the case
in which the atoms are at lattice positions. The changes for the distor-
tions 1 and 2 are simply related to second derivatives of these expressions
for the appropriate lattice.

0. Exchange energy and correlation energy. It was assumed that
these depend only on the volume, as for perfectly free electrons.

v. Noncoulomb ion-ion interaction. The interaction energy of the
closed shells is very sensitive to the interatomic distance and, hence,
affects the elastic constants appreciably even in cases, such as the alkali
metals, in which its contribution to the cohesive energy is small. Fuchs
deterntined the effoct of this interaction in the alkali metals by use of a
repulsive term of the Born-Mayer type

rrtri—r

Cibe °
which was discussed in Cha.p. 11, and a van der Waals term of the type
A

f_o,
which was discussed in Chap. VII. The methods used for determining
Ch2 and A need not be discussed again here. In the case of copper, the
closed-shell interaction was taken from the work discussed in Sec. 80.
This interaction leads to a slightly expanded lattice.
To summarize, the elastic constants are determined by terms i
and o. ’ '

In the alkali metals, the coulomb contribution is two to three times
larger than the contribution from ion-ion interaction, whereas the situa-
tion is reversed in the noble metals, as may be seen in Table LXI. A
comparison of observed and computed constants is given in Table LXVII.
It may be seen from Table LXI that the comparatively high rigidity of
the noble metals arises from the closed-shell interactions. :

It is interesting to examine the extent to which these constants
satisfy the conditions! for isotropy and the Cauchy-Poisson relations,
which are, respectively, '

2¢4 = €11 — C13
1 See footnote 1, p. 94 and footnote 1, p. 1086.
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Tasre LXI.—ComrosiTion OF THE ErasTic CoNsTANTS OF MONOVALENT METALS

(aFrrer Fucas)
(In units of 101! dynes/cm?)

Coulomb contribution | Ion-ion interaction

Li

€11 — Gy’ 0‘339 —0.(?2‘,

Cis 1.263 0.086
Na

Ci1 — Ciz 0.143 —0.02

Cya 0-532 0.048
K

e = Ca 0.0644 0.02

Cat 0.240 0.020
Cu

¢ — €13 0.573 4.53

Cud 2.57 6.4

Tapre LXII.—CoMmPaR1soN oF OBaxRVED AND CALCULATED VALUES or THE ELAsTic
CoNaTANTS OF MONOVALENT METALS

(In units of 10*! dynes/cm?)
1/8 cu1 — C1a Cut €11 s
Li
Caloulated..................... 1.30 0.341 1.349 1.53 1.19
Na
Calculated. ... ................. 0.88| 0.141 | 0580 | 0.97| 0.8
Observed...................... ~0.85{ 0.145 | 0.59 | ~0.95 [ ~0.80
K
Caloulated..................... 0.41 0.062 0.260 0.45 0.39
Cu
Caloulated..................... 14.1 5.1 8.9 17.5 | 12.4
M ...................... 1.3'9 5.1 8.2 18.6 13.4
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and
Ciz = Cu4.

It is readily seen from the results of Table LXII that neither condition is
closely satisfied and that the alkali metals! are very far from isotropie.
As was pointed out in See. 19, this fact accounts for a large part of the
anomalies in the specific-heat curves of these metals.

83. Cohesion of Alloys.—It was seen in Sec. 3 that alloys usually
have a small heat of farmation. There have been no extensive computa-
tions of these heats. Mott,2 however, has attempted to estimate the
difference in energy between completely ordered and completely dis-
ordered B brass, which is a body-centered metal containing equal numbers
of copper and zine atems (c¢f. Sec. 3). He assumed that the additional

_valence electrons of zinc cluster mainly about the zinc ions and that the
potential near a zinc ion is greater than that near a copper ion by an
amount

o) = ‘e &)

where ¢ is a constant. Since this potential vanishes as e~ at large
distances, it follows that its use is equivalent to the assumption that the
zinc atoms are neutral. The screening constant ¢ was evaluated by
comparing the observed resistivity of the alloy with that computed on the
assumption that the difference between the potential of the two ions is
given by (1) (¢f. Sec. 130) and was found to be 2.7 - 10% em—!, or

. _
== 0.37
3 37 &,

which is only about one-quarter of the radius of the zinc atom. When
this value of ¢ is used, the charges in the ginc and copper polyhedra of the
body-centered lattice are 0.075%¢ and —0.075¢, respectively, which
corresponds to an electrostatic interaction energy per atom of

~L070.075%2 @

where a is the cube-edge distance and 1.017 is the appropriate Madelung
constant. This energy is 0.027 ev for g brass. Since the mean potentiai
at an ion arising from neighbors would be zero in a perfectly disordered
lattice, it follows that (2) is the electrostatie ordering energy. In addi-
tion, Mott estimated the decrease in exchange repulsive energy in going

1 The experimental values for sodiuzn were obtalned by Quimby and Siegel (sce

Sec. 19).
2 N. ¥, Morr, Proc. Fays. Soc., 49, 258 (1937).
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from the disordered to the ordered state and obtained a value of 0.013 ev
per atom. Thus the total ordering energy is 0.04.ev per atom. The total
change in energy in the transition from order to disorder as obtained by
integrating the specific-heat curve of Fig. 43, Chap. I, is about 0.043 ev
per atom, which is the same order of magnitude as the computed value.
This computation suggests that the largest source of ordering energy is
the Madelung term, as in ionic crystals.

84. Simplified Treatments of Cohesion.'—In addition to the preceding
work, in which the computation of cohesive properties is based entirely
on the Schridinger equation, there have been several treatments of
cohesion that start from other points. Among these treatments, the
two most important are those which start from semiempirical equations of
state and interrelate measured quantities and those which use the Fermi-
Thomas statistical equation. We shall discuss these briefly.

a. The Semiempirical Method.——Perhaps the most extensive work of
this kind is that of Griineisen,? who assumed, following a suggestion
of Mie, that the atoms in monatomic substances interact in pairs with a
potential energy relation of the type

) =-%+2 W

in which r is the interatomic distanee and a, b, m, and n are positive
constants, n being larger than m. This assumption is analogous to
that of the Born theory of ionic crystals in which m = 1 and @ = e.e,.
According to (1), the total energy of the crystal at absolute gzero of

" temperature is
a 1 b 1
= -—-~2-N 2 E + QN 2 _‘ (2

in which the sum extends over all values of the distance r; between a
given atom and the others.

Three relations among the four parameters in (2) were determined
by the condition that this expression give the observed values of the
atomic volume, cohesive energy, and compressibility of the solid at
absolute zero. '

The temperature-dependent free energy of the lattice was obtained by
adding to (2) the free-energy function corresponding to Debye’s specific-
heat law. When this was done, it was found that _

1 This type of work s extensively discussed in the book by J. C. Slater, Iniroduc-
tion to Chemical Physics (McGraw-Hill Book Company, Inc., New York, 1939).

* G. GrtvEsEN, see Handbuch der Phystk, vol. X,
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n+2 _ dlog©p

6 d‘[_}' (3)

where Op is the characteristic temperature and V is the malar volume.
. It may be shown that the right-hand side of (3) is equal to the quantity

—V(@V /6T),
CaV/ap)r @)

Thus a fourth relation among the parameters was determined by the
condition that (rn 4 2)/6 be equal to the measured values of (4).

Using the resulting total free-energy function, Grilneisen was able
to correlate a number of properties of metals and of monatomic insulators
such as diamond. For example, Table LXIII gives a2 comparison of

TasLe LXIIT.—COMPARISON OF Ons_navm YaLves ofF Exeansion COEFFICIENTS
wrra Trose Comrurep BY ThHE UsE oF GRUNEISEN's ThEORY
(The values of a; are given in cgs units.)

. 108
Temperature “

interval, °K

Calculated | Observed

Diamond
84 8-194.1 0.16
194.1-273 2 0.61
273.2-296.2 0.97

=990
ES[8®

296 .2-328 1.17
328 -351 1.37

Copper
mmrmj| " 3.8
82 -289 14.0 14.2
28¢ -523 ! 17.4 17.2
528 648 | 18.7 18.6
648 -773 | 19.5 19.6

observed mean values of the expansion coefficients of diamond and copper,
taken for a range of temperature AT, and the mean values computed from
Griineisen’s equation of state. _ _

It is clear that the function (2) cannot be expected to give the proper
elastic constants since it would lead to the Cauchy-Poisson relations,
whith-are not usually satisfied in metals (¢f. Sec. 82).

Modifications of Griineisen’s plan that are based on more accurate
information of the cohesive fotces in metals have been developed by a
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number of people, principally - Rice! and Bardeen.? These methods
have in common the property that they express the absolute sero energy
of the entire metal as a sequence of terms which vary inversely asdifferent
powers of the volume, semitheoretical and empirical data being used to
evaluate the constants. This type of modification has been pushed
furthest by Bardeen, who used it to discuss the behavior of alkali metals at
very high pressures and to correlate a number of Bridgman’s measurements.
It was seen in Sec. 78 that the cohesive properties of the alkali metals
are given closely by the quantity —(e + ¢ + &), in which ¢ <+ &
is the energy of the electron of zero wave number relative to the energy
~of the free atom, in the sphere approximation, and e is the Fermi energy.
This result depends upon the fact that the exchange and correlation
effects combine in such a way as to allow on the average only one electron
in a given polyhedron at a given time. Now, by integrating Eq. (1),
Sec. 78, with appropriate simplifying assumptions, it is possible to show
that ¢(r,) has the approximate form

wr) =5 -2 ®)

where a is # constant that varies from solid to solid. In order to obtain
a slightly more general result, Bardeen assumed that ¢ actually can be
expreesed in the form

wlr) = 5= 7 | ©)

~ to a higher degree of accuracy. We shall not consider a proof of (5)
. necessary, for (6) is a valid assumption if taken in the same spirit as
". Griineisen’s relation (1). Now, we saw in part f, Sec. 78, that the Fermi
" energy varies as -
’ 2
221a f; ' n

in which & = m/m*. Since r, is proportional to v, where v is the atomic
volume, the total energy of the crystal in the sphere approximation may
be expressed in the form

i’ ¥
UL] Vo Vo
E(p) = A(}-’-) + B(-;) - C(;) (8)
where 4, B, and C are constants for a given metal and v, is the observed

atomic volume.

1 0. K. Rice, Jour. Chem. Phys., 1, 649 (1933)
t Bampme p. ail., 372. .
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Bardeen determined the parameters A, B, and C by adjusting them so
that (8) would give the empirical values of E(,), vo, and the compressi-
bility. Thus, since F must have a minimum when v = vy, we obtain

C 2
3= A+ §B. (9)
Moreover, if the value of E at absolute zero is Ey and if the value of the

compressibility is 8o, we find in addition

—Eo = 24 + B,
3 2B
g =24+5 (10)

Values of A, B, and C determined from these equations by the use of
empirical data are given in Table LXIV for all the alkali metals. The

TasLE LXIV.—CoMPARISON OF EMPIRICAL AND THEORETICAL VALUES OF THE
ConNsTANTS IN BARDEEN'S EmPinicAL EQUATION OF StATB
(The constants are expressed in unita of 107 erg per atom.)

Li Na K Rb Cs
A (empirical)................. 1.4 4.3 5.1 4.2 3.7
B (empirieal)................. 8.4 1.2+ - 21 -~ 0.6 0.0
B {(theoretical)............ 4.5 3.0 2.3 1.7 1.5
C (empirical)................. 20.8 15. 11.2 11.4 11.2
C (theoretical)................ 20.9 16.2 13.2 12.3 11.4

values of B and C are compared with the values obtained using the value
¢ = 3, corresponding to Eq. (5), and the free-electron value of « in (7).
It may be seen that (5) is a good approximation, whereas (7) is not good
if « is assumed to be a constant. We have seen that o actually varies
appreciably with » in lithium and potassium [see Eq. (17), Sec. 78; and
Table LII]; hence, this discrepancy in the value of B is not surprising.
Bardeen suggests that the true Fermi energy probably varies in the

manner
i
B(‘;ﬂ + B’(%‘?) (11)

in which the second term takes into account the variation of a with v.
As a test of the validity of the relation (8), Bardeen compared the
volume-pressure curves obtained from this equation with those obtained
by extrapolating Bridgman’s measurements to absolute zero of tempera-
ture. The theoretical volume at pressure p is determined by the equation

oE\ _ -
(‘5‘?)’ = =p (12)
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which le_ads to the relation .
v =y'ly — D24 + 3B+ A(y — 1)] (13)

= ()

The comparison is shown in Fig. 10. It may be observed that the agrec-
ment is fairly good in all the alkalies, the largest deviation occurring for
rubidium. In addition, the experimental curve for cesium shows a break
indicative of a phase change.

in which

—_— xpeﬂmém‘m' )

0.0

020 30 40
. Pressure xi07° (Dynes/ cm?)

Fia. iO.—‘-Compariaon of the observed and calculated relative changes in the volume
of the alkali metals as functions of pressure. The break in the experimental curve for
cesium i8 discussed in the text. (Ajter Bardeen.)

The effect of ion-ion exchange interaction is neglected in Iq. (8).
This varies as '

Ae * (14)

.and should contribute higher power terms to (8). One might expect these
higher power terms to enter first for cesium, since it has, the highest
compressibility. Bardeen assumed that the expression (8) is valid for
both a face-centered and a hody-centered lattice with given values of the
constants and that additional different terms should be added in the two
cases in order to include the ion-ion interaction. He determined p in
.Eq. (14) from the results of Mayer and Bleick’s computation of the
- exchange interaction betwecn neon atoms, and he determined A by
~ the methods used in the Born-Mayer theory (¢f. Sec. 11). He found that
& polymorphic change from a body-centered to a face-centered lattice
should occur at about the same pressure as the observed change indicated
‘in Fig. 10, which suggests that the change actually is of this type.
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_ b. The Fermi-Thomas Method.—In the Fermi-Thomas! statistical

treatment of the many-electron problem, it is assumed that the electrons
are effectively free at each point, so that the mean kinetic energy of the
electrons at a point r is related to the density n(r) by the equation for
perfectly free electrons, namely,

i o

l¢f. Eq. (20), Sec. 26.]. This assumption clearly is rigorous only if the
change in potential is very small over the distance of the electronic wave
length, a condition that is not satisfied near the nuclei of atoms. In their
original treatments of neutral atoms, Fermi and Thomas assumed that
the kinetic energy of the fastest electrons, namely,

E?‘(r) = fel(r), (16)

is equal to the negative of the potential energy —ee(r) at r. Thus, n(r)
and o(r) are related by the equation

hti3n(r) |4
@) = 5. e |
or
8| 2me i
e =5 e [ a7)
Now, ¢ satisfies Poisson’s equation _
Ap = 4dxen(r); . (18)
and if n(r) is eliminated from (18) by means of Eq. (17),
32 (2me\} _
Aﬁﬂ = —3'—8("};&-‘) ?i. ' (19)

This equation is solved for neutral atoms with the boundary conditions
that ¢ be zero at infinity and vary as Ze/r near the origin. It yields
reasonably good qualitative distribution functions for the electrons in
heavy atoms. _

Modifieutions of Eq. (19) that are valid for systems more general than
neutral atoms have been developed by Dirac? and by Lenz and Jensen.?
The Lens-Jensen scheme, which is a variational one, is formally equiva-
lent to the original Fermi-Thomas scheme, inasmueh as the Eulerian

1 8ge, for example, L. BriLromiN, Die Quantenstatistik (Julius Springer, Berlin,
1930), for & survey of early work on the Fermi-Thomas theory.

s P. A, M! Dmnac, Proc. Cgmbridge Phil..Soc., 128, 714 (1929).

*H. JexseN and W. Lenz, Z. Physik, T7, 718, 722 (1932).
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equation of their variational principle reduces to Eq. (19) when applied
to & neutral atom. Dirac’s scheme, however, is more general, for it con-
tains an additional term that decreases the energy at a point r by an
amount equal to the exchange energy of one of a system of electrons in a
region where the density is n, namely,

_0.91&*[4';(")]*. (20)

Thus, Lenz and Jensen’s method is equivalent to Hartree’s when applied
to perfectly free electrons, whereas Dirac’s scheme is equivalent to
Fock’s.

Blater and Krutter! applied Dirac’s method to a system of electrons
thet are in a lattice of point positive charges but did not obtain a mini-
mum in the energy versus interatomic distance curve. This result is not
surprising ; for the correlation energy, which iz neglected in this method, is
a large fraction of the cohesive energy in the alkali metals, which corre-

spond most clogely to Slater and Krutter’s model.

" Gombas® has applied Lenz and Jensen’s method to lattices that

correspond to the alkali and alkaline earth metals. The lattices are even

less stable in this approximation than in Dirac’s; however, Gombas added

a number of correction terms in order to compensate for the errors of the
method. Thus, he added the free-electron exchange and correlation
energies, which are sufficient to make the lattices stable. In addition, he

added ion-ion interaction correction terms and valence-electron ion-core

exchange terms. In this way, he has obtained energies that approximate

the observed ones closely. The success of this procedure in the case of the

alkali metals undoubtedly lies in the fact that the valence electrons are

very nearly free so that the results obtained from the Fermi-Thomas

method are nearly the same as those obtained from Hartree’s method.

B. IONIC CRYSTALS

. 85. Sodium Chloride.—The most significant, purely quantum
mechanical corputations of the cohesive energies of ionic crystals are
those which have been carried out on sodium chloride and on lithium

. hydride by Landshoff* and Hylleraas,* respectively. The first of these
will be discussed in the present section. Landshoff based his work on a

1J. C. Srarer and H, KrRorTER, Phys. Rev., 47, 559 (1935).

$P. Gousas, 7. Physik, 95, 687 (1936); 99, 720 (1986); 100, 599 (1936); 104,
592 (1937); 108, 509 (1938). :

3 R. Lanpsuorr, 2. Physik, 102, 201 (1936); Phys. Rev., 62, 246 (1937). The
wijter is indebted to Landshoff for the values given in Table LVIIL,

‘4 E. A. Hyruxraas, Z. Physik, 68, 771 (1030),
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Heitler-London approximation in which he used the solutions of Fock’s
equations for Nat and Cl~ that were determined by Fock and Petrashen
and by Hartree and Hartree, respectively. PFor simplicity; he did not
attempt to compute the absolute energy of the lattice. Instead, he
determined the energy of the crystal relative to the theoretical energy
of the free ions as obtained from the one-electron functions. The
adveantage of this procedure lies in the fact that the internal energies of
the ions do not appear in the final expression for the cohesive energy
and do not need to be evaluated. Since the absolute accuracy of the
solutions of Fock’s equations for the ions has not been determined,
Landshoff’s results cannot furnish us with an estimate of the absolute
accuracy of the Heitler-London approximation when applied to the solid.
Cohesive energies computed by Landshoff’s method might turn out to be
larger than the observed value, as we have seen in Sec. 77. -

It should be recalled that the Heitler-London and Bloch schemes are
identical in cases sich as the present one in which the’ Heitler-London
scheme contains only closed shells. Thus, the Bloch scheme should lead
to results of comparable accuracy.

The one-electron functions associated with neighboring ions are not
orthogonal for the observed lattice spacing, for they overlap appreciably.
Since it is convenient to use an orthogonal set of one-electron functions,
Landshoff orthogonalized the free-ion functions in the following approxi-
mate manner: Let ¥, designate the free-ion wave functions that are cen-
tered about different nuclei. Landshoff showed that the following linear
combinations of the ¢,

xe = ¥l + 380 — 13 8ubs W
where
Sll = I ‘t"*'lbﬂdr:
S =0,
8,2 = E'S\w *Syny @

satisfy the conditions
: 3 E:
fx»"‘x.dr = _‘1 S,“S.,. + O(Sa),
n

[idar =1+ 0, @)

in which O(S?) designates terms that contain the “‘overlap” integrals
S,. to the third and higher powers. Thus, the x are orthogonal to the
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approximation in which —-&ES,.;,_&,, and higth order terms are negligible.
Py

Landshoff proceeded on the assumption that these terms are negligible
and treated the ¢ as though they were orthogonal. It is not possible to
tell from his results to what extent this assumption actually is justifiable.
Under these conditions, the mean total energy of the Hamiltonian
operator, ' :

H = “‘*2"" E 22 m T 2 E}g, @
is

5-Ss 2 [~ gt - 2“ 2 Vuateide +

szlxiv(rl) |‘lx;-(f=)i’

S T2

2 e fx.‘*(rox.*(n)x,(r.)x.(rod L+ 228 22y (5)

T3

The factor 2 enters in the first two terms because of spin.
If the x are expressed in terms of the ¥ by means of Eq. (1), Eq. (5) -
becomes

£ = D20 + E (2uslglur) — Gurlglu] + S&ﬁ{ﬂulhln) +

22[2(leglnv) mlglw)l} E&.{%ﬂlhln) + E[%nvfgfw)

gt} + S 2L )
a8

(nlhlu) = f'&, (-—H+A ~ 2"3")\»,@1-,

Gvlglan) = ezf!h*(rl)'l'v*(rz)% (l'l)th(rz)dfn

T2

@)

All second-order terms of the type
ESgblSrlthlg[#v)
n.A ’

have been discarded in deriving Eq. (8).
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Exprmon (6) may be mmpllﬁed conmderably if the fact that the ¥ /)
are solutions of Fock’s equations is used, for then the integrals invalving
A may be expressed in terms of the energy parameters of Fock’s equations
and coulomb and exnhn.nge integrals. Many of these terms cancel when
the resulting equation is subtracted from the expression for the energy
of the system of free ions. The final equation for the cohesive energy is

E - E[ ] w,.crol'(—.Ez;‘")dn + E,'zowlal»v) +
2] S i +
ES,..[ f ww.(z 2, 4+ 4 ol |} (8)
' Brin rrin

The first, or coulomb, term is the electrostatic energy of a lattice of ions
of which the electronic charge distribution is given by the functions
|¢ul®.. This differs from the value —1.748Ne?/r,, corresponding to the
Madelung energy (¢f. Chap. II), because neighboring ions overlap.
Landshoff found that only the overlapping of neighboring Na+ and Cl~
ionsis important. There are two terms in the correction to the Madelung
value, namely, a positive term I3, which arises from the repulsion between
the electrons, and a negative one —I, which arisos from the attraction
between the electrons and the nuclei. Although T, and I, turn out to
be of the order of magnitude of several electron volts per ion pair at the
observed value of r;, the anion-cation -distance, Landshoff found that
they nearly cancel one another so that the total coulomb correction
is small.

The exchange terms were evaluated in a straightforward manner.
Only the exchange terms between nearest neighbors are important, but
for these ions both the conventional exchange terms

C = gz’;'(mialw

and the term, which we shall call B, that includes the factors S,,, are
very large. For example, C is —0.348 ev per ion pair, and B is 0.645 ev
for ro = bax. The two terms compensate for one another, however,
and their sum is much smaller.

The coulomb and exchange terms appear in Table LXV along with the
Madelung energy. The cohesive energy has a maximum of 179.3
kg cal/mol at r == 5.34a; which should be compared with the observed
value of 183 + 10 kg cal/mol at r; = 5.4aa. ,
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TasLe LXV.—ConTriBUTIONS TO THE CouEsivE Enerey or Soprum CHLORIDE
(ro is tho nearest-neighbor distance. In kg cal/mol)

ro/ay | Madelung | Coulomb | Exchange | Cohesive | , Beortt
. - - . d...
energy | correction | interaction| enargy‘ on
5.0 —-217.7 0.3 41.1 176.3 —4.2 180.5
5.1 —213.5 0.1 35.5 177.9 -3.7 181.6
5.2 —209.4 -0.1 30.6 178.9 -3.3 182.2
5.3 ~205.4 -0.2 26.4 179.2 —-3.0 182.2
5.4 —-201.6 -0.3 22.8 179.1 -2.7 . 181.8
6.0 —181.5 -0.3 8.5 172.3 -~1.5 173.8
Final values
Calculated | Observed
ru/ﬂa 5.25 5.4
E. 183 183

It is difficult to estimate the absolute accuracy of this one-electron
approximation; for on the one hand the absolute accuixcy of Fock’'s
approximation for the free ions is not known, and on the other Landshoff
does not give a numerical estimate of the magnitude of the neglected
terms in E,. If Landshoil’s approximations are valid, the agreement
between his results and experiment indicates-that the Heitler-London
. method that is based on solutions of Fock’s equations for the free ions
is fairly good. As the one-electron functions become more accurate,
the center of gravity of the electroric charge on an ion approaches the
nucleus, and the wave functions of difierent ions overlap less. This in
turn decreaces the repulsive terms and increases the computed value of
E.. Since Landshoff’s result leaves little room for improvement, the
one-electron functions are probably very good.

In higher approximations, both van der Waals and polarization terms
should be added to the preceding results. Landshoff -has evaluated the
van der Waals term by means of the expressions developed in Chap. II

and has obtained the following equation:

17.6 e

Eo.c.l.w .= (fq/a.\)‘ a‘

This adds about 3 kg cal to the result of Pable LXV and decreases o
to 5.26a,.
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86. Lithium Hydride.—Hylleraas' has treated lithium hydride in
- essentially the same way that Landshoff has treated sodium chloride.
He employed one-electron wave functions of hydrogenic type with
puclear screening in order that the entire computation might be per-
formed analytically. The principal objection to this procedure is that
his approximate hydrogenic wave functions do not lead to very good
binding energies for the frce H- and Li* states. The one-electron wave
functions are

,;, = g_(zihl%)‘g; (])

where Z is 1 for hydrogen and 3 for lithium. The ionic encrgies derived
from these functions are

Observed, ev | Caleulated, ev

H- - 0.718 0.745
Li+ 75.28 73.72

In other words, H~ is not stable in the approximation in which the func-
tions (1) are employed. This fault is reflected in the fact that the
electronic distribution of H— which is obtained from the hydrogenic
functions is not very accurate. This error would not be very serious if it
were not for the fact that Hylleraas found the H--H~ interaction to be

TasLe LXVI--CoNTRIBUTIONS TO TRE COHESIVE _Er;'n'.nur o¥ Lireron Hypripe
' (In kg eal/mol)

H-14 interaction H-H, Total
Madelung |— i - coulomb ot
ro/a energy \ plus cohesive
Coulomb | Exchange exchange . energy
3.84 —283.1 33.8 [ 67 .4 —34.0 215.9
4.16 —261.8 21.9 | 46.9 ~26.0 . 2185
4.56 —238.5 | 150 [ 26.0 —-14.0 211.5

Final values

Calculated | Observed

ro/ar 4 08 3.84
E. 218 218.5

1 E. A. HyLuEraas, Z. Physik, 63, 771-(1930).



Sec. 88] THE COHESIVE ENERGY 391

large and to favor binding. The contribution from this interaction term
probably would bé much smaller if more accurate wave functions were
used. '

We shall not dwell on the details of Hylleraas’ computations since

they involve exactly the same approximations as those of the preceding
case. Although his results were given in analytical form we shall list
numerical values. Table LXVI contains the values of the quantities
which were discussed in the last section. The H-Li and H-H interaction,
terms are listed separately. '
" The principal contribution to the H-H interaction is the coulomb
correction, for the exchange term is practically negligible. As we men-
tioned above, this correctioni undoubtedly would be less if more accurate
wave functions had been used.

87. The Elastic Constants of Ionic Crystals.—The methods dmcussed
in Sec. 82 evidently could be applied to compute the elastic constants of
godium chloride and lithium hydride. Actually, cnly the compressibility
of sodium chloride has been evaluated. It is given in Table LXVII.

TasLe LXVII.—TeE ReciprociL oF THE CompPRESSIBILITY oF Soprom CuLomnipy
. (aFrrER LANDSHOFF)
(In units of 10'? dynes/cm?)

Calculated Observed

1/8 4.35 4.16

C. MOLECULAR CRYSTALS

88. Computations of Cohesive Energy.—The principal source of
intermolecular cohesion in nonpolar molecular crystals and in many
polar molecular crystals is the van der Waals force. The quantum
mechanical methods of computing this force were described in Chap. VII.
We saw there that the first approximation term in the expreassion for the
van der Waals energy of two molecules varies as A /7%, where r is the
interatomic distance, and that the next term varies as B/r%, This inter-
action term is not thé enly one, however, for just as in ionic crystals
(¢f. Chap. II) there arc other sources of interaction energy. Those which
are most important in the simple cases to be considered here are the
following: (@) The electpgstatic interaction term which arises from the
‘“static’’_charge distributions on the molecules. Although the molecules
considered here are peutral, they are not spherically symmetrical and, for
this reason, have an, electrosmlc interaction. (b) The repulsive term,

which in the Bom-Ma.yer theory varies as be » where b and p are con-
stants. ‘The force arising from this term varies more rapidly with dis-
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tance than the van der Waals force, so that the van der Waals energy is
larger than the repuldive energy at the observed intermolecular distance.

There is a continuous gradation between those molecules which rigidly
retain the electronic structure of the free molecule in entering the solid
and those which become as highly deformed as the constituents of valence
crystals. For this reason, there is no sharp dividing line between
valence and molecular types, as we have seen in Sec. 8. Since the cohe-
sion of valence compounds is characterized by exchange energies that
favor cohesion in the Heitler-London approximation, it follows that the
repulsive term changes its sign to favor binding in the course of the transi-
tion from ideal molecular crystals to valence types. Omnly the more
ideal molecular types, which are characterized by very low heats of
sublimation, have been considered in any detail up to the present time.

a. London’s Calculdlions.—London!® first suggested that the electro-
static and repulsive energy terms are very small in comparison with
van der Waals terms, and he computed the cohesive energies simply by
evaluating the van der Waals term for the observed interatomic distance.
Ag we shall see from the more accurate work described in parts b and ¢,
this hypothesis sometimes is valid within the comparatively large error
of cemputations of the van der Waals energy but is often very inaccurate.
In addition, London treated diatomic and triatomic molecules as though
they were spherically symmetrical, in order that he might use the equa-
tions that were derived in Sec. 58. We shall see in part ¢ that this
proba= is only a fair approximation.

According to Eq. (19), Sec. 58, the van der Waals interaction energy
¢, of two molecules is, in first approximation,

A
£ = N (1)
where :
A = }hvi?, 2)

in which « is the polarizability and », is & mean exeitation frequency.
The sum of terms of type (1) for & face-centered cubic lattice containing

N molecules is

594
E = —N “&E- . (3)
where d is the cube-edge distance. In evaluating 4, London-assumed
that », should be closely equal to the principal oscillator frequencies that
appear in empirical equations for the refractive index of the gas of each
kind of molecule (¢f. Sec. 148, Chap. XVII). He used these frequencies

1 F. LoNDON, Z. physik. Chem., 11B, 222 (1930),
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in the cases in which they have been measured and spectroscopically
determined series-limit frequencies in the other cases. In addition, he
employed measured polarisabilities.

Computed values of E are given in Table LXVIII for & number of
molecular crystals. Not all these have face-centered cubic crystals, but
London assumed that the error made in assuming they have is small.

TaprLs LXVIIL—Taw vaN per Wiils Exmromms or A NuMmeEe or MoLRoULAR
Crysrars a8 Dpraruined BY LoNDON'S APPROXIMATE EQUATiON

: 1 Caloulated E, kg cal/mol
Molecule Lattice . Measured X
»e from refraction | », from speot.

Ne f.0.c. 0.47 0.40 0.52
A f.c.co. 2.08 1.88 1.77
N h.c.p. 1.64 1.61 1.50
0. h.o.p. 1.69 1.48 1.74
co : 1.86
CH, feoe. _ . 2.42 2.47 2.40
NO 2.89 2.04
HCl f.c.c. 4.04 4.34
HBr fce. - 4.58 4.79
HI 6.50
Cl; Fig. 78, Chap. I 7.18 6.0

b. More Accurale Calculations for the Rare Gases.—It was mentioned
in Sec. 58 that the repulsive-energy terms have been computed in the
case of helium and neon. Using Mayer and BRleick’s equation for the
ncon repulsive energy and assuming that this term is valid only for nearest
neighbors, Deitz! found that the total repulsive energy is 0.35 kg cal/mol
which, in absolute magnitude, is almost as large as London’s value of the
van der Waals energy, namely, 0.47 kg cal. This suggests that London’s
value of the van der Waals term is about half as large as the true value
and- that most of the agreement in Table LXVIII is fortuitous. The
diserepancy presumably arises from the fact that Margenau’s higher order
term is neglected, for this may be as much as half as large as London’s

" term. '

¢. Carbon Diozide.—Sponer and Bruch-Willstiter? have computed
the eohesive energy of solid carbon dioxide, taking into account all three
of the terms that were mentionted in the introductory paragraphs. It

.may be recalled from the discussion of 8ec. 7 that this solid, which is a .
typical molecular crystal, consists of a face-centered cubic arrangement

1V. Derrz, Jour. Franklin Inst., 319, 459 (1935).
t H. Sroner and M. BRucr-WiLLsTXTER, Jour. Chem. Phys., b, 745 (1937).
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of CO; molecules that is similar to the lattice of Fe8; (Fig. 64, Chap. I).
The cohesive energy is 8.24 kg cal/mol.

In first approximation,. the molecule was treated as a spherically
symmetric unit. The van der Waals energy that was obtained for the
observed lattice disiance by use of the London-Margenau equations of
Sec. 58 and the observed polarizability and ionization energies is 6.0 kg
cal/mol of which 3.6 arises from London’s term and 2.4 from Margenau’s.
In the next approximation, the molecule was treated as though it were
composed of two centers, which in practice are regarded as the effective
centers of charge of the two oxygen ions. Since the electronic dis-
tributions on these ions are presumably distorted from spherical form,
it was assumed that the positions.of the cénters lie between the carbon and
oxygen ions. Using several reasonable values of these positions, Sponer
and Bruch-Willstiter obtained values of the van der Waals energy
ranging between 9.6 and 7.6 kg cal/mol.

The electrostatic energy was computed on the assumption ths.t two
excess electrons of the oxygen ions are localized at the centers mentioned
in the preceding paragraph and that the carbon ion, which is midway
between the centers, has a positive charge of 4e. In this way, it was
found that the electrostatic energy varies between —0.1 and —0.5 kg
cal/mol. .

The constants in the repulsive term were determined from measured
values of the compressibility and expansion coefficient by the method
described in Sec. 9, Chap. II. The resulting value of the repulsive

energy 18 about —1.1 kg éal. A summary of the co:npnted quantities is
given in Table LXIX,

TasLe LXIX
Contribution to Cohesive Energy,
. kg cai/mol
Van der Waals (one center) ... ......... 6.0
Van der Waals (two centers). . ... .. ..... Between 9.6 and 7.6
Electrostaticenergy..................... Between —0.1 and —6.5
Repulsive terra . . ... .................... -1.1
Total result (two center).......... P -~

Observed



CHAPTER XI

THE WORK FUNCTION AND THE SURFACE BARRIER

89. The Principles Involved in Computing the Work Function.—
There is a close corrclation between the work function of a clean metal
surface and the volume properties of the metal. Ia general, the work
function is high! if the cohesive energy is high, and vice versa. On the
other hand, the work function may be appreciably affected if the surface

is altered by oxidation or by the deposition -

of a fraction of an atomic layer of another
metal. These facts indicate that the work
function is determined both by the binding
properties and by the surface structure. The
correct relationship between these factors was
first pointed out by Wigner and Bardeen.?
We ‘shall begin by discussing the principles
involved in their work and then shall present
detailed computations.

Let us consider a semiinfintite erystal that
is bounded by a plane, as shown in Fig. 1.
The distribution of ions in regions of the main
body of the crystal far from the surface is
not influenced by the presence of the surface
and may be computed under the assumption
that the lattice is perfectly periodic. On the
other hand, the distribution in the cells near
the surface should be different from the
distribution in internal cells because the po-
tential changes rapidly near the boundary.
The type of difference depends upon the
kind of crystal, the orientation of the surface,
and the kind of adsorbed atoms eor ions;

//

'16. .1.—A semiinfinite crys-
tal. The distribution of ions
in internal regions is the same
a8 that determined by X rays.
The surface distribution, how-
ever, may be different.

for this rcason, it must

be investigated separately in each case. Fortunately, this surfu.c'e-
sensitive region does not affect the bulk properties of the solid in any

! This correlation was first pointed out by A. Sommerfeld, Naturwissenacha/ten:
15, 825 (1927); 18, 374 (1928). Bee also J. Frenkel, Z. Physik, 49, 31 (1928).
* E. WioNER and J. BARDEEN, Phys. Rev., 48, 84 (1935); J. BARDpEEN, Phys. Rev.,

49, 65% (1936).
395
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practica nay, for its volume is of the order of 1/N times the volume of
the crysta if there are N?* cells in the lattice, and N is of the order of
107 for a singie crystal of ordinary size.

Electronic Distribution

Negative moment

\VaViVaViVm—

a

!\ iz !\ i: !! Positive moment

b X e

Fio. 2—Schematic diagram showing cases in which the electronic distribution may
lead to negative and positive dipole layers, In case a the electronic distribution extends
beyond the surface o good deal; in onse b the extension is amall.

The only effect of the surface cells in which we need be interested at
present is the way in which they influence the dipole moment of the

{100)

+No)

N

(i
intersection

Fia.

3.~The
of different surface planes with
& (010) plane. ‘If the ions are
not displaced relative to the
positions in an ideal lattice,
the (100) surface has sero dipole

moment because there are al-
ternate positive and negative
charges. In the (110) surface
the surface charges shown are
positive, however, those surface
charges in (010) planes above
and below the one illustrated
are negative so that there is
no -surface dipole in this oase.
On the other hand, the charges
in & (111) surface are either all
positive or. all negative; bence,
there is a dipole layer in this
CABS.

to remove an electron in

- moment (¢f. Fig. 2).

-surface. If the crystal is a monatomic cubic

metal, such as sodium, the dipole moment of
interior cells is zero. The dipole moment of
cells near the surface usually is not zero,
however, for the potential field in this region
is mot cubically symmetrical. Hence, these
cells effectively give the surface a dipole
In polar crystals, such
ag-sodium chloride, in which the unit cell may
be chosen in such a way that it has a dipole
moment, the surface moment depends both
upon the way in which the surface cuts
through the lattice and upon the distortion
of the surface cells (¢f. Fig. 3). In any case,
we shall designate the component of the dipole
moment per unit area in the direction normal
to the surface by P,. The important prop-
erty of this moment for our purposes is the
fact that it raisés the coulomb potential inside
the lattice by a term —4xP,

Let us consider the influence of the surface
on the work function from the standpoint of
Koopmans’ theorem (¢f. Sec. 67, Chap. VIII).
This theorem states that the energy required

the state Yx from the crystal is equal to the

negative of the parameter (k) in Fock’s equation,
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— g AVa(e) + [V(n) + et f 2y + A(ru)]\h:(n} = @), (1)

Here, V(r1) is the total iosi-core potential, p(r;) is the valence-electron
distribution, and A is the exchange operator. The quantity

V(f 1.) + e’fgg-’!)-{ifg

is the Hartree potential of the crystal, which, at points inside the lattice,
differs from the potential for a erystal in which the surface dipole is zero
by the term e4xP,. A(r,) arises from the exchange correlation hole,
which is confined to the vicinity of the electron, and is not affected by the
surface as long as the electron is inside the crystal. ¢y has tlie form
xx¢®*7 inside the lattice if we employ the Bloch scheme; and although
it is different in the cells near the surface, the total volume of these cells
is so small that they may be neglected in computing integrals involving
" ¢ that extend over the entire lattice.

Multiplying (1) by ¢x* and integrating, we find

k) = — ;‘“:;fﬁ"k*&lf'kdfl + f!hl’[ V(1) +-¢"f£%:2dﬂ]dﬂ +

f W*Ayadr, + 4xePa. (2)
Here, ‘
V() + f olrs);,

is the Hartree potential for a -lattice baving no surface dipole. Thus,
except for the term 4reP,, the work function —e(k) is determined by
volume integrals. The introduction of correlation effects does not alter
this conclusion, for correlation terms, like exchange terms, arise from a
hole in the vicinity of the electron.

When an electron is removed from a metal, the remaining electrons
concentrate in the interior of the solid in order to keep this regipn electro-
statically neutral. At first sight, it appears as though this effect might
invalidate the previous conclusions. This is not so, however, for the
-energy change accompanying the concentration process is equal to the
difference between the electrostatic energy of a volume and a surface
distribution of 1 electronic unit. This difference, which is of the order
6*/L, where L is the diameter of the crystal, is about 10~* ev for ordinary

90, The Internal Contribution to the Work Function.—Wigner and
Bardeen have evaluated the volume part of the expression (2) for the
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uppermost electrons in the filled levels of the metals discussed in Chap. X.
- It may be assumed that the metals are uncharged without introducing
an error; for, in the first place, additional charge would accumulate at the
surface, leaving the interior of the metal neutral, and, in the second place,
this surface charge is never high enough in actual cases to alter the surface
dipole layer appreciably. An ordinary specimen of metal has about 10'®
surface cells which contain about 10% esu of electronic charge. If one
per cent of this charge were removed, the field near the metal would be
raised to about one million volts, which is as high as practical values
ordinarily go; however, the dipole layer would not be altered by more
than a few per eent.

" According to the sphere approximation, which is relmble in the alkali
metals (¢f. Chap. X), the Hartree potential within any cell- may be
determined by the charge inside that cell, for the electronic and ionic
charges in other cells cancel one another. Thus, the first two terms in
Eq. (2) of the preceding section, namely,

X f e Bindr, + f Id«i*[ V@) + e f b ’)df,]df.,

-are equal to

{fw(—-—a + 0. e+ w‘flhl‘(f ooty )d }

where the integrals extend over a single cell, ¥ /v is the ratio of the volume
of the crystal to that of a cell, v, is the ion-core field inside the cell, and
ps i8 the electronic distribution in the cell. The first term in this equation
is-equal to

)

where ¢ is the energy parameter in the equation

"‘%Ma(r) + ﬂs(r)¢o(f) = 60"/(1')

(¢f. Sec. 78, Chap. X) and (A?/2m*)k? is the additional energy of yx.
If we replace the polyhedral cell by a sphere and assume that both ep,
and eV |yx|*/v are constant and equal to ¢/v, the second integral is simply
twice‘the self-energy of a spherical charge distribution, namely, 1.2¢%/r,,
where r, is the radius of the sphere.

The exchange integral in Eq. (2) of the preceding section was evalu-
ated in Sec. 75, Chap. IX, for plane waves and is equal to

wo.sosff(fi-:)
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)54 (ot

An explicit equation for the correlation energy of any given electron
has not been derived; however, the correlation energy of the electrons
at the top of the band is (¢f. Sec. 76, Chap. IX)

g — '}ﬂ'(ra)rl

0.288
g(f‘) - _ear‘ + 5.]:_01.

where

where

If we add these results, we find that the energy e. required to remove
an uppermust electron is given by the equataon

—e =& + ’é?ﬁ‘i’“ﬁ +12% —o. emr + gy — 83 Ar) 4 trePr @)

where 4xeP, is the surface dipole term.

Now, (h?/2m*)k? is equal to five-thirds of the mean Fermi energy e
of the crystal and may be replaced by this quantity. If we then replace
¢ by the value obtained from the cxpression for the cohesive energy per
atom ¢, namely,

—y = Z[eo + e+ 008 9—4?3 + g(r .)] + I(2), 4)

where Z is the number of valence electrons per atom and I(Z) is the
ionization potential of the free atom, we find

0.458¢* {,g"(r,)
3, + 3

Wigner and Bardeen derived this equation by another method,
namely, by computing the energy of the crystal as a function of the
number of .electrons and ions, N, and N, respectively. The work fune-
tion ¢, i8 then the derivative of this energy with respect to N.. The
advantage of this procedure is that the work required to remove an ion
" or & neutral atom may be computed from the same expression.!

All the quantities in (5) except P, have been computed for lithium,
sodium, and potassium in Chap. X, so that it is possible to determine -
€ + 47eP, for these metdals. The values are given in Table LXX.

€y %l'ic + I(z)] + [ 351’ - 0. ﬁ + - 4‘I'GP|.]. (5)

1 The expression for the emergy required to remove an jon contains the surface
dipole with opposite sign. Henee, the work required to remove = neutral atom does
not depend on the dipole moment.
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TasLe LXX
Tu Ck { ¢y + 4xeP,, ev | Experimental value
i—
3.28 { 2.19 2.28
Na 4.00 | 2.15 2.25
K 4.97 [ 1.87 2.24

The close agreement between the observed values of ¢, and the computed
values of ¢, + 4reP, for lithium and sodium suggests that the surface
dipole moment is very small for clean metal surfaces. This conclusion *
is borne out by explicit oomputat:ons of P, that Bardeen has made for
sodium.! '

On the basis of the work discussed in Sec. 81 and Eq. (5), Hernng and
Hill have found the work functlon of beryllium to be negative by about
1.7 ev, if it is assumed that the dipole
layer-is zero.* This result is in dis-
agreement with the best observed
value, which is about 4 ev. The
discrepancy suggests either that the
width of the occupied region of levels
@ . is much less than these investigators
have found, or that beryllium usually
has a tightly bound surface layer of
clectronegative atoms,

91. The Work Function in Non-
metallic Crystals.—All the funda-

Empty
band

Fio. 4.—S8chematic energy-level dia-

gram of an insulstor. The =zero of
potential is assumed to be slightly above
the bottom of the empty band. The

work function ¢, for inserting an electron
is smaller than that for removing an
electron from the filled band ¢ by the
encrgy difference of tho filled and empty
band,

mental principles used in the previous
section in discussing the work func-
tion of metals can also be applied to
nonmetals. In general, the energy

required to remove an electron from
the solid or to put one in depends both upon the volume characteristics
of the substance and upon the surface dipole layer. As an example, let
us consider the energy required to put an electron into a neutral sodium
chloride crystal. ‘This energy is less than the energy required to remove
an electron from the uppermost levels of the filled band by an amount
cqual to the gap between the filled and unfilled bands (¢f. Fig. 4).

We. shall consider a somewhat idealized case in which the surface
is a (100) plane and in which the ions near the surface retain the same
relative positions as those in the interior. Under these conditions, thc
ordinary lattice potential along the dotted line in Fig. 5 is zero becausc

! BARDEEN, 0p. cif,
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electron is dlstnhuted pnncipally about the sodmm iops, very much as
in metallic sodium. For this reason, we may assume that the energy
" of the electron is equal to the energy ¢f 8 sodium ion in the Madelung
-field at.the position of a sodium ion plus the additional energy by which
this level is lowered by the development of band structure. The Made-
lung potential at & sodium ion is 1.74e*/r;, and the ionization potential
of a sodium atom is —0.19¢2/¢;. Since the sodium-sodium distanee in
the salt is about the same as in the metal, we shall assume that the
depression due to band iormation 1s also

the same. According to Fig. 2b, Chap. X, ot T
this is 0.11¢?/a,. Hence, the work fune- + -~ + -~ +
3 gl
tion is o -+ -
~ e? e* ¢
P = 1.74-}:'; 0-19&; ﬁ.lla :'___"_,__'l'___'__,,.t..__.____
g —
= 0.03- £ 08 ev. -t -
' * + - + -
This actually is the sum of the internal _
and surface contributions; however, there ~ + — + =
is no surface dipole layer in the present , _ , _ 4

case becau:?,e the surface is a (100) p.ls:ne Fio. 5.~Tho potentisl slong
that contains equal numbers of positive the dotted line is zero becsuse
and negative charges. If we were to deal points on this line are equidistant
. rom positive and negative charges.
with another plane, such as a (111) plane,
or were to alter the interionic distances near the surface, we could com-
pute the surface dipole term by computing the Mad=lung potential at a
sodium ion. The difference between this value and 1.74e%/r, would then
be —4xeP,.

It is doubtful whether the energy gained by an electron on entering
an insulator is always as small as the value computed above for a typieal
alkali halide. The photoelectric work Ffunction of insulators, such as
cuprous oxide, that absorb in the visible is? of the order of 5 ev, a fact
indicating that the width of the forbidden region is about 2 ev and the
work function ¢,, discussed above, about 3 ev.

1 A gimilar value has been obtained by N. F. Mott, Trcma Faradw&c., 34, 50O
(1938) using slightly different reasoning.—

¢ Bee, for example, A. I.. Hoamrns and L. A. DuBripex, Pholoelectric Phenomena
(MoGraw-Hill Book Company, Ing.,, New York, 1932); R. FLBIsCBMANN, Ann, Phyeik,
B, 73 (1930); R. J. Caseman (paper 179, program Washington Meeting, American
Physical Boriety, 1940). .
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92. Thermionic Emission «nd the Temperature Dependence of the
,Work Function*.—In Sec. 30, Chap. IV, we derived the Richardson-
"Dushman equation for the thermionic electron emission from unit area

of a metal
w

I=AQ1 — r)T% *T, (1)
Fere, W is the work function, which was assumed to be a constant for
the entire surface, A is a universal constant, 120 amp/em?-deg?, and r
is the electronic reflection coefficient. In this section, we shall reexamine
the relations that enter into Eq. (1) in the light of the previous work of
this chapter. .

Let us suppose that the metal is at temperature equilibrium with an
external electron atmosphere. If we may assume that the eleciron
cloud behaves as a perfect gas, which is a reasonable assumption as
long 8s the density is small, the number of electrous that pass from the
outside to the inside per unit area in unit time is

p1 —7)

@emET)Y @
where p is the external pressure, m is the electron mass, and k is Boltz-
mann’s constant. This should be equal to the number that evaporates
from & unit area of the surface since the system is at equilibrium. Hence,
the thermionic current is
ep(1 — 7}

(@rmET) . @)

The equilibrium pressure p(T,V), which is a function of the tempera-
ture 7 and volume V of the crystal, may be related to the heat AH
required to sublime 1 mol of electrons from the metal at constant pressure
by the Clausius-Clapeyron equation

(5#2), - e ®

where R is the gas constant. If the specific heat of the electrons inside
the metal is neglected, .

I =

AH = NJW(V,T) + §RT ®)

where W(V,T) is the work function of the metal when the voiumne is
V and the temperature is 7, and 5R/2 is the molar heat at constant

pressure of the electron gas. The integral of (4) is

logp = | Ardl +C = —50 4 ( e

--mtE ®
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where

5= [() 47 1 o

is the entropy change that accompanies evaporation of a mol of electrons.
We may substitute AH from Eq. (5). According to the third law of
thermodynamics,’ the ednstant ‘term in AS should be chosen in such a
way that the entropy change associated with W(V,T) is

IT@HEQ]E
o L dT  |\T

and the entropy change of the gas is

RGlog T + % +3J)
where

is the chemical constant. Thus, (6) may be written

log p = — 200 41 f [‘-"_‘ﬂf T)]P--- +30g7 @

Substituting this in (3), we obtain

&gt_‘(j.'r} fr(duwfn iT
I=A(1 —r)T% ¥ kO vT

where A is the coefficient that occurs in Eq. (1).
It should be noted that Eq. (8) differs from Eq. (1) by the factor

aw &T
etj.o a7 9)

which is unity for all temperatures only if (dW/d7. = 0. The appear-
ance of this term indicates that the method vsed to derive Eq. (1) is
faulty whenever the work function is temperature-dependent. Since
the correction term (9) arises from the entropy of electrons in the solid,
we see that the simple model used to derive (1) is in error because we
neglected interactions between the electrons and the solid that cannot be
described adequately by a simple potential barrier. Equation (8)
could be derived on the basis of statistical mechanies, but it would be
_necessary to consider the entire solid in doing so.

Before investigating the importance of the temperature dependence
of W, wc shall introduce convenient definitions of the work function and

1 See P. 8. ErsteLy, Textbook of Thermodynamics (John Wiley & Sons, Ine., New
York, 1937).

®
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of the thermionic coefficient that were developed by Becker and Brattain.!
In ordinary thermionic experiments, the emitted current I is measured
over a certain temperature range, and the quantity log (I/7?) is then
plotted as a function of 1/T. The experimental work function and
thermionic coefficient, W*(T) and A*(T), are defined, respectively,
as the slope of this curve and intercept of the tangent on the log (I/7?)
axis (¢f. Fig. 6); that is,

e - r{ L8 7).

»

I dlog (I/T?
log A* = log s + T[—SE%,‘I——-}]'
I LK W*

= log T + T , (10)

These derivatives are taken at constant pressure because the specimen
is kept in & vacuum during the experiments.

LogA'

i
b

Log ‘1l7a

A3
b
L

/T~
Fia. 6.—Diagrammatic representation of the definitions of 4* and W*.

If Eq. (8) is substituted in these equations and if the relation

(&), - (). + Gr)av).

= (5%)7 + av(;?)r (1)

is used, where a = (3V/aT)/V is the coefficient of volume expansion,
it is found that

1], A, Bacekr and W. H. Brarramw, Phys. Rev., 45, 694 (1834).
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— 3 ] W(V ) W\ dT
we= | (5), + () -5 + [ Gr) 7]
‘ 1
e ()| 2 [
A* 1 (T(oW\ dT | aV Wy,
Ly EJO (Ta? Tt 517)[ 7t
_ " -
oW\ dT
J;(a_T)T (13)
Wigner! has attempted to estimate some of the terms in (13), using
the expression for the work function of sodium developed in Sec. 90.

His treatment is not rigorous, but it shcws that the tefms on the right-
hand side of (13) are not negligible even for simple metals and that the

(12)

*
value of log i fl A is of the order unity, that is, lies between +6

and —5. W(V T) may be related to the work function W(V,0) cora-
puted in the previous sections in the foliowing way: W(V,T) is defined
as the energy required to remove an electroa from the metal at tempera-

ture' T. The total energy of the crystal when no electrons have been
removed is

wheve Ep is the vibrational energy of the lattice, which we shall express in
- terms of Debye’s characteristic temperature 95, and E, is the clectronie
energy, which is not temperature-dependent if the small electronic
specific heat is neglected. If n electrons are removed at temperature 7',
the new energy E’ is

E = Ep+ E, + nW(V,T). (14)

Suppose that n electrons are removed at absolute zero of temperature
instead and that the metal is then raised to temperature T. The resulting
energy, which is again E’, is

E (‘l‘;—‘“’: + E. + aW(V,0) (15)

where A©, is the change in the characteristic temperature that results from
the removal of n electrons. Equating (14) and (15), we obtain

WW.T) = %%E;(%) + WO, (1)

1 E. WianzR, Phys. Rev., 49, 806 (1936). See also K. F. Herzrerp, Phys. How., 36,
248 {1930).
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Wigner finds that the contribution to (13) from the last term® in Eqj. (16)
is about —3.6 for sodium. It turns out that this result is balanced
somewhat by the conlribution from the first term in (16). There is,
however, no reason for expecting the two terms to cancel.

Direct measurements of the temperature coeflicient of W(V,T) in
£q. (5) have been cairied out by Kriiger and Stabenow? for molybdenum,
tungsten, and tantalum. These workers measured the heat lost by a
wire during thermionic emission. The temperature variation is within
the experimental error in molybdenum and has the value 0.8 - 10~ ev/deg
per electron in both tungsten and tantalum. If the integral in the expres-
sion (9) is evaluated with the use of this coefficient and with the assump-
tions Lhat (W /0T) approaches zero near absolute zero, so that the
contribtition from the lower limit of integration may be neglected, and

the temperature coefficients at constant.volume and. constant pressure
*

are practically the same, it is found that log [_‘K_TA-:—_:-)]N ~— 5.1

Hence, A* would be about §.66 amp/deg-cm?® if r were zero. Unfortu-
aately, these workers did not measure 4* on the specimens for which
this work was carried out. The values of A* measured by other workers
are about one hundred times larger.

! Sinee the lust form is independent of tempeérature, it is the work function dis~

enssed in the preceding sections of this chapter.
17, Hroeew and G, Stasevow, Ann. Physik, 2%, 713 (1935).



CHAPTER XII
THE EXCITED ELECTRONIC STATES OF SOLIDS

'93. Introduction.—Both the Bloch and the Heitler-London approxi-
mations have been used to treat the excited states of solids. Although
~ these methods have not been rigorously tested in particular cascs, qualita-
tive and semiquautitative arguments may be used to show that one
approximation is more suitable than another in a given case. For
example, we may expect that the Bloch approximation is more suitable!
to use in a discussion of the excited states of metals because it alone
leads? to the low-lying continuous; conducting levels that are character-
istic of these solids (¢f. Sec. 66). Similarly, we shall find that the Heitler-
London approximation is more applicable to the lower levels of molecular
and ionic erystals.

In this chapter, we shall discuss the general principles upon which
computations of excited states are now based and shall also present some
simple results. This discussion begins with s survey of the uses of the
Bloch method and is followed by a similar survey of the Heitler-London
scheme. Problems in which intermediate approximations are applieable
will be discussed in later sections.

94. Excited States in the Band Scheme.—The band scheme is hased
upon a one-electron approximation in which the ¢ have the form

Y = xuetrke 1)
and satisfy Fock’s equations
| | 2 ,
~ P a7 4 A = e @)

where V is the coulomb or Hartr+c potential and A is the exchange oper-
ator. The entire wave function ¢ the solid may be constructed from
determinants of wave functions f tvpe (1). ¥ and 4 are not appreciaily
altered if one of the yx in the xct is replaced by another, since the ¥

! Direct evidence for the qualitative correctness of the Bloch approximation is
also obtained from a study of the soft X-ray emission spectra of metails (gf. Sec. 104).

2 It should be pointed out that the Heitler-London scheme would also inckid:
the Bloch states if we considered atomic wave functions of ‘the type associuted with
continuous spectra as well as the localized wave functions of the t ype associated witk
the discrete atomic levels, We shall explicitly avoid inciuding the first type of
wave funetion, however.

407



408 THE MODERN THEORY OF SOLIDS |Crar. XIT

extend over the entire lattice and have small amplitude in any given cell.
Hence, V and A may be chosen the same for both normal and excited
states. It follows from Koopmans’ theorem that e(k) — e(k’) is the
energy required to excite the crystal from a given state to the one in
which ¢y is replaced by yx. Thus, the possible excited levels may be
obtained from the one-electron energy diagrams of the zone scheme. The
highest occupied zone is not completely filled in a metal, whence the
lowest states of the solid as & whole have a quasi-continuous gystem of
energy levels. Since the conduction properties of metals require this
type of continuum, the band approximation is naturally suited for a
semiquantitative description cf these solids. As we have seen in Chap.
X, the process of improving the zone approximation for a metal does not
simply effect a compromise between the Bloch and Heijtler-London
approximations but consists in treating correlations more accurately.
This does not mean that some atomic properties are not retained in
passing from the free atoms to the solid, for the functions xx.in Eq. (1)
preserve many of the features of atomic wave functions. _

The band scheme can be applied to insulators as well as to metals.
In these cases, the highest occupied zone is completely filled in the normal
state, so that the first excited level is a finite distance above the lowest
level. We have seen in Sec. 64 that the lowest state of an ionic or molecu-
lar crystal is described with equal accuracy by either the Bloch or the
Heitler-London scheme. We shall see in the next section, however, that
the Heitler-London scheme leads to excited levels that are not contained
in the Bloch approximation. Far this reason, the zone scheme is not
always adequate for a qualitative description of insulators.

96. Excited States in the Heitler-London Scheme.—Let us apply the
Heitler-London scheme to sodium chloride, which is a typical insulator.
We shall attempt to follow the behavior of the lowest atomic and ionic
‘energy levels as the ions are brought together to form the normal lattice
and arc kept in crystalline arrangement during the process. The excited
jonic levels will be neglected for the moment since they cannot be treated
properly without including a discussion of continuous spectra.

At infinite separation, the ionic and atomic levels of sodium and
- chlorine are as illustrated in the right-hand side of Fig. 1 in which the
halogen-ion level is given relative to that of the neutral atom and
the level of neutral sodium is given relative to that of Na*. Thus, the
normal state of Cl is at ~3.8 ev, and the lowest level of neutral sodium
isat —5.2ev. Other levels are neglected for the present. The minimum
energy required to transfer an electron from a halogen ion te an alkali
jon is —1.4 ev at infinite separation. Since this value is negative, the
infinitely separated system is more stable as a set of neutral atoms than

as a set of ions. This situation is gradually altered as the ions approach
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one another. If ro is the distance between nearest neighboring ions
in the lattice, the electrostatic potential at the negative ions is 1.748¢*/ro
and that at the positive ions is the negative of this. Thus, the halogen-
ion levels and alkali-ion levels are respectively raised and lewered in
accordance with the equations

47.3

(ro/an)’ 1)

«(Nat) = —5.2 + ﬁ-)--

«(Cl-) = -38 —

in which the unit of energy is the electron volt. These ecquations are
valid. only as long as the ions do not overlap appreciably. When they

10

5
~ o Na’Cl
3
B =
H =5 Ne
=
w

-
=)

=15

ro —™

_ Fia. 1.—Levels of the entire solid in the Heitler-London approximation based on an
ionie I:l’mdel. At large separations the state of neutral atoms is 1nost stable because the
ionisation potential of metal atoms usually is larger than the electron affinity of the halogen
atom. This situation is reversed as the atoma are brought together, because the Madelung

" energy favors the ionic state. Corresponding to each level of the metal atom there are -
a;.l. Iltnﬁnitneq nu(l;:)bor of levels of the entire solid, each of which is related to a particular value
0 s 1L " -

do overlap, additional energy terms should be added to (1) in order to
include the effects of exchange and correlation intcractions. Since these
terms are only about 10 per cent of the clectrostatic terms, we shall
neglect them temporarily. The energy Ae required 1o transfer an clectron
from a halogen ion to a distant alkali metal ion then is the difference
‘between the two terms in (1), namely,

Ae = —1.4 + (2—4/-% (ev). @)

This is 16.5 ev for the normal interionic distance of 5.29a, in sodium
chloride. There are, however, an infinite number of levels lying below
this one, for an znergy ¢?/R less than (2) is required to transfer the excited
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electron from a halogen ion to an alkali ion that is at a finite distance R.
That this statement is true may be seen from the fact that the Madelung
potential at a given alkali ion is decreased by ¢?/R if an electron is removed
from a chlorine atom at distance B. Thus, the normal and excited levels
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Fia. 2—The ultraviolet absorption bands of the alkali halide crystals. The dotted
portions of the curves represent meoasurements by Hilsch and Pohl [After Schneider and
O'Bryan, Phys. Rev., 81, 208 (1937).]

are dlsp{)sed as in Fig. 1, in which the excited levels are separated from
the ground state by an amount

04.6 27 08
Tolan ~ Rajany &V )

At the observed lattice distance, the first excited level, which is 11.3 ev
above the ground state, corresponds to B, = 5.29a;, the distance between
nearest neighboring ions, whereas the next level, which is 12.9 ev above
the ground state, corresponds to R, = +/2r,. Hilsch and Pohl' first
pointed out that the difference in the quantum energies of the first two

Aey, = —1.4 4

1 R, Hiscu and R. W, Pony, Z. Physik, 89, 812 (1930).
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ultraviolet absurption bands of sodium chloride is very nearly equal to
 the difference between these computed excited levels. The first band
has its peak at 1580 A (¢f. Fig. 2), and the second has its peak at 1280 & ;
these values correspond to energies of 7.8 and 9.6 ev, respectively. The
difference between these energies is 1.8 ev, which agrees closely with the
difference of 1.6 ev for the calculated absorption energies. von Hippel!
has attempted to refine this simple calculation of the first excited levels
by including corrections for the perturbation of the neutral alkali and
halogen atoms. His computed values and the observed values are
compared in Table LXXTI.

TasLeE LXXI.—ComprarisoN oF CoMpuTED AND OBsErvEr ENErRGY DIFFERENCES
BETWEEN THE GROUND STATE AND THE FIRST EXCITATION STATE OF THE ALKALI
HavipEs (AFTER voN HippeL)

Observed, ev | Calculated, ev
NaCl 7.8 8.3
KCl 7.6 8.0
RbCl 7.4 7.7
LiBr 6.7 8.1
NaBr 6.5 7.4
KBr 6.6 7.3
RbBr 6.4 7.1

The excited discrete levels, shown in Fig. 1, actually are highly
degenerate, for the excited electron may be removed from any one of the
N halogen ions of the crystal and may be carried to any one of its g,
neighboring alkali metal ions that are at distance R, without altering

Ae,. Thus, the levels are Ng,-fold degenerate. Since Eg. is equal to N,

E ]
the total number of alkali metal ions, we see that the total number of
excited levels in the system is N2,

In the simple model used above, the first excited level is sixfold
degenerate, if spin is neglected, for each chlorine ion has six equidistant
neighboring alkali ions. This degeneracy is partly accidental, for the six
funetions do not have the proper symmetry to have the same energy
in a cubic crystal. Thus, the degenerate levels would split if interatomic
interactions were taken into account. In first approximation, the new
functions should be linear combinations of the six functions y; that are
localized on the separate alkali ions. The electronic distribution of the
new functions should be spread over all six neighboring ions. The lowest
state evidently is the symmetrical function that is formed by adding all

1 A. vox Hiremv, Z. Physik, 101, 680 (1936)
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Above this, there arc

ai tnply degenerate set that is analogous to 'the three atomic p funetions

b)

(a)

. 3.—-Schematic diagram of the wave
funct.iona of excited electrons in ioniec
crystals. Function a is the analogue of an

atomic s function and distributes the
electronic charge equally about all of the
neighboring positive ions. Function b
is the analogue of a p function and
opposite signs in the two ' wings."

and a doubly degenerate level that
has no atomic analogue. Two of
the four possibilities for a two-di-
mensional case are shown in Fig. 3.

Let us now consider the con-
tinuum of levels corresponding to
ionization of the halogen ion. The
continuum remains essentially un-
changed as long as the ions are far
apart; however, the free electrons
begin to be perturbed appreciably
when the ions oceupy a considerable

fraction of the volume of the crystal. Sihcp the new levels should be

computed by determining the wave
functions of the free electrons in the
field of the entire crystal, they are
obviously the same as the excited
levels that are computed on-the
basis of the Bloch approximation.
We know, however, that the Bloch
bands contract into the levels of
the excited states at infinite separa-
tion. Hence, we may conclude that
the levels of the continuum tend to

cross and combine with the excited |

discrete levels of the Heitler-London
scheme, broadening these lines into
bands. The extent to which this

broadening actually takes place de- |

pends upon the interatomic dis-
tance. Only the series limit is
affected in a case in which the lattice
is highly extended, whereas in the
opposite extreme of ‘a highly com-
pressed lattice thie continuum over-
laps even the lowest level, making
the solid & metal. In the interme-
diate case the lowest level is dis-
crete, as shown achematically in Fig.
4.  One important case1s that cor-

45

lonization confinuum

4-15

-

A T Mg

Fia. 4.—Schematic diagram showing
the behavior of the levels of an ionic crystal
as the atoms are brought together (sce
also Fig. 1). At large distances the
neutral system is stable, whereas at
intermediate distances the ionic system is
stable. The bands correspondimg to the
ionisation continuum broaden and spread’
.and m&y .actually overlap all of the discrete
levels. The broadening of the excited
nonconducting levels at A corresponds to
the formation of excitation bands, which
is discussed in the next section.
energy units are electron voits for NaCl.

responding 10 the point 4 of Fig. 4 in which the continuyum has overlapped
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a‘ll the excited levels except the lower ones. In this case, the first excited
levels should be determined approximately by means of the Heitler-
London scheme, a8 von Hippel has done, whereas the higher states should
be determined by the Bloch approximation. Experimental evidenee,
. which will be presented in the next chapter, indicates that this corre-
sponds closely to the state of affairs in the simpler ionic crystals. It
should be noted that we have removed some of the degeneracy of the
lowest excited levels in Fig. 4 before they merge with the continuum.
The origin of this effect is discussed in the next section.

Frenkel,® who was one of the first to discuss correctly the possible
relationships between normal and excited states in insulators, has called
the lower excited levels of Fig. 4 that have not mingled with the con-
tinuum at A “excitation levels,” since they are analogous to the excited
states of atoms. Similarly, he has called the higher levels that should
be treated by the band approximation ‘‘ionization levels,” since they
are analogous to the ionized states of atoms. The ionization states
have already been discussed in Chap. VIII. We know from this pres-
-entation that the crystal should beeome photoconducting when excited
to these levels since the excited electron is then free to roam throughout
the lattice. On the other hand, the excited electron remains fixed relative
to the atom from which it came in the excitation states. Hence, we
should not expect photoconductivity to accompany optical excitation
to these states. Photoconductivity actually does not seem to occur
as a result of absorption in the first fundamental absorption bands of the
alkali halides, a fact which indicates that the first excited levels in these
solids correspond to excitation states.?

It should be mentioned in. passing that Valasek? has presented good
experimental evidence that-the excited X-ray levels in salts such as
sodium chloride and potassium chloride should be described by the -
atomic scheme, or by the exciton scheme which is discussed in the next
gection, rather than by the band scheme.

1J. FRENkEL, Phys. Rev., 37, 17 (1931); 37, 1276 (1931).

2 The cases of the alkaline earth oxides and sulfides, such as zinc oxide and zine
sulfide, aré still uncertain, for the structure of thé absorption bands of these solids
has not been thoroughly investigated. A recent experimental investigation of this
problem for the alkali halides has been carried out by L. P, Bmith and J. N, Ferguson
(see paper 177, program of Washington Meeting, American Physical Bociety, 1940).
These observers find photoconductivity in the long wave length tail of the fundamente}
bands, but not in the interior. According to the exciton viewpoint (sée next section)
this conductivity arises either from direct ionisation of impurity atoms or lattice-deféct
atoms (Chap. XIII), or from secondary ionization of these atoms by excitons, In
view of results of this ]tmd however, it must be admitted that there is no conelusive
experimental evidence that photoconductivity would not occur at least in the tail of

the fundamertal band of a pure perfect crystal.
3J. Vavasex, Phys. Rev., 47, 896 (1935); 88, 274 (1038).
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Let us consider another example of a system to which the Heitler-
London method may be applied, namely, that of an insulating crystal
which contains a neutral impurity atom. As we shall see in the next
chapter, this system corresponds to a semi-conductor, such as ZnO,
in which there are interstitial zinc atoms. At present, we. shall be
interested in the case in which the ionization potential of the neutral
atom is less than the energy of the first ahsorption band of the pure
crystal and the interstitial atom occupies a position of zero potential
at which it is symmetrically surrounded by positive and negative ions.
These conditions are approximately fulfilled in zine oxide. We may

expect, by analogy with the case of
I sodium ehloride, that the energy re-
! quired to transfer an electron from
a negative to a positive ion is nega-
tive at infinite separation, for the
electron affinities of negative ions are
w1 usually smaller than the ionization
potential of metal atoms. This situa-
tion is alterel as the oatoms are
brought together, for the positive
ions are surrounded principally by

Jonizartion continuum

At

l"lo..—p

Fic. 5.-—Behavior of the levels of
an interstitial atom in an ionie crystal.
The dotted lines correspond to the
energy-level curvea of the bulk material.
In this case, the excitation and ionization
energies of the bulk inaterial are larger
than those of the interstitial atom at the
equilibrium position, which corresponds
to the minimum of the lower curve. At
simall interatomiec distances, the lowest
level of the impurity atom may merge
with the ionization ceutinuum. This
probably does not happen in actual cases,

negative ones, and vice versa.
infinite separation, the ionization con-
tinuum of an interstitial atom lies at
the same position as that of the nega-
tive ions and must blend into the
Bloch bands of the entire solid as the
atoms are brought together, because
these are the levels of a free electron
in the lattice. The normal state of
an interstitial atom behaves in the
manner shown symbolically in Fig. 5

In this case, the level remains discrete until it merges with the spreading

ionization continuum.

96. Excitation Waves.—As we have seen in the preceding section,

there is reason to believe that there are noncondueting excited levels
beneath the conducting states described by the Bloch approximation
in insulators such as sodium chloride. We shall attempt to deseribe
these excitation states more fully in the present section, using a simple.
model that was censidered first by Frenkel' and by Peierls* and more
recently by Slater and Shockley.?

1 FRENKSBL, op. cil.; Physik. Z. Sowj, 9, 158 (1036).

t R. Prisrrs, dan. Physik, 12, 005 (1932).
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Let us consider a system of identical atoms that possess only one
electron and are ordered in a simple crystalline array. For simplicity,
we shall neglect electron spin and shall assume that both the lowest and
first excited levels are nondegenerate. It will be evident that the impor-
tant conclusions which may be drawn for this simple system are valid for
a similar system of atoms of any type in another lattice.

Let us assume that the atoms are located at the positions

r(n) = niw1 + naes + N, @)

- where the = are the primitive translations of the lattice and the n range
over all integer values. We shall let ¢, and ¢/, be the normal and excited
wave functions of the electron at r(n), and we shall assume! that we are
dealing with a case in which the wave functions on different atoms
overlap so little that the ¥ are practically the same as atomic functions,
V. and ¢, then are orthogonal to one another and to the wave funetions
of electrons on other atoms. A wave function for the lowest state of the
entire system may be constructed by taking a determinant of the form

4/1(1‘:) .............. Semsssses st st anasEenu e E ¢1(l'x)

¥ ‘.(1'1) ...................................... ¥ (tx)

where N is the total number of electrons and of atoms. ~The mean energy
of this wave function is

Eo = I‘I'D*H‘yod? (3)

where H is the Hamiltonian of the entire system. This integral may be
expanded in terms of the eigenvalues of the ¥ and the exchange and
coulomb integrals between atoms.

Let us consider next wave functions for the case in which one atom is
excited. The system of wave functions ¥, obtained by replacing v
in (1) by ¢, are not the best excited wave functions, for the integrals

Bon = [Yn*H¥,dr m = n @)

do not vanish. It is easy to show in fact that, under the orthogonality
conditions on the ¢, and ¥/, that were assumed above, (4) is equal to

¢ f VoL (T D) ¥n(Ta)m (TPl (rs) drys — 2 f ﬂ.-.‘(_!'_‘.l)\bn(rz)@m(fz-)\";(r:) driz  (5)

Ti2 [t

1 It should be emphasized that the following approximation is accurste only when
the atoms are not too close together. There may be no nonconducting excited states
if the atoms are pushed together sufficiently (cf. Sees. 66 and 95).
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when m £ n. When m' = n, (4), may be expanded in terros of the energy
levels of the normal and excited atoms and the exchange and coulomb
integrals between northal and excited atoms. We shall designate the
difference between E,, and E,, which is the order of magnitude of the
resonance energy of an isolated atom, by

€ =% Enn - Eﬂ (6)

We shall attempt to dmgopahze the N-dimensional matrix formed by the
E... This process is equivalent to finding those linear combinations
¥ of the ¥, which have the form

= Sat, @)

in which the a satisfy the equations

Ea.Em. = F'a.. ®

It fellows from the symmetry of the crystal that Ewa. depends only upon
the difference between the integer sets m and n. This fact suggests
that we should reduce the N equations (8) to the same form by making
the substitution

Ap = ﬂgﬁz’r‘t'r( m) (9)

where k is a vector in the rcci;{rocal lattice of the erystal. Equation (8)
then becomes -

B = Ean + 3 Epputr®1® (10)
{

where Enmit = Emirmirss, if | and r are arbitrary integer sets. The
prime in this summation indicates that the term for . = 0, which appears
outside the sum, is to be excluded. The normalized wave function
associated with the wave number k may be found by substituting Eq..(9)
in (7) and is

1 .
Yy = —o- e2rik ey 11
v, - a

The independent. values of k range over a single zone if there is one atom
per unit cell and the excited state is nondegenerate, whercas they range
over ag zones if there are atoms per u nit éell and the degeneracy of the
excited level is g.

In view of the a.saumpuon that overlapping is small, it is reasonable to
asstime that E., is zero for all except nearest neighbors. If I is the
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value of E,., in this case, (9) may be written

E'y = E.. + 1292'*'* (12)

where = is to be summed over nearest neighbors. Equation (12) is
simply
E'x = Enu + I(cos 2xk.a + cos 2xk,a + cos 2xk,a) (13)

in the case of a simple cubic lattice having lattice constant a. This
equation, which is similar to the equations derived in Sec. 65 for the
case of narrow conduction bands, shows that the excited levels form a
band the width of which is of the order of magnitude I. Equations (10)
and (11) are valid cnly as long as I is appreciably smaller than e. Other-
wise, more atomic states must be considered in diagonalizing the Hamil-
tonian matrix.

The excited atom is not localized in the states described by (11);
instead it is distributed throughout the crystal. By constructing wave
packets, it is easy to show that the excitation moves with the group
velocity

v = grads B (14)

in the energy state Fi (cf. Scc. 68).
The current associated with a given wave function ¥y is the mean
valuc integral

o= g | S grads vt — Wt gradwdn, (15)
i

which may be reduced to

h - : Y y

oy Dy DLt —rol. e-"‘-'“"’"'(*”lj ¥, grad; Yudri.  (16)
i mn .

If ¥, and ¥, are expanded.by substituting their' determinantal form, it is’

found that [¥,, grad: ¥.dr; vanishes for m ¢ n, for one or more vanishing

integrals of the type
f E"n';':pdfa I \f/':‘\bmd‘r, [¥admdr, j Vabndr.

appeear in each term.! Hence, (15) is zero and the excitation waves carry
no current. We may, if we choose, regard the execitation wave as though
1If the overlap integrals for immediate neighbors do not vanish, the current will

not be strietly zero, but will be very small, corresponding to motion of an electron
an atomic distance.
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it were an uncharged particle, created by exciting the crystal, that may
snove about the lattice. This convenient concept was first introduced
by Frenkel, who called the imaginary particle an ‘‘exciton.”

The selection rules for optical transitions from the ground state ¥, to
the excitation state ¥y are determined by the integral

S92 (3 grodi e Y uadr (@, - - - 2) (17)
: _

where ? is summed over all N electrons and n is the wave-number vector
for the light quantum:’ Bubstituting from Equation (11), we find that
(17) becomes

‘/ﬁ zezca-r{..) f Wo grad e=2oridr dr(zy, - - -, 2a) (18)

where r is the coordinate vector of any one of the eclectrons. If tho
determinantal form of the ¥ is used, the integral in this equation is
reduced to

%f Vn Er&d 6_-2'“'1'\5;‘17(1:1?)',3)! (19)

which deteriainc: the eclection rules for optieal transitions in isolated
atoms. Ordinarily, » is 80 small that ¢~ 29T does not vary appreciably
over & gingle atom and may be replaced by e—?7nr®), Thus, (17
becom-2

26"‘“"’"‘“)%‘[‘*; gra.d IP;d‘r = ‘\/JT’U‘& Cl‘&d M.df)'sh- (26)

It may be concluded that the transition probability is zero unless thie
condition

k=n @y
is fulfilled and unless the excited state ¥, is one to which transitions from
¥ are allowed. Since n is very smali, (21) is equivalent to the condition
thet k = 0.

If we consider, instead of the system described above, one such as
sodium chloride, in which the chlorine ion has excited states when in the
crystal, the practical problem of constructing the excited states is com-
plicated by the fact that the constituent ions contain more than one
electron. This should not affect the qualitative results of the preceding
discussion, such as that the width of the excitation band increases with

1The optical properties associated with excitetion bands are discussed in Chap.
XVIlL
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increasing interionic interaction and that the excitation wave carrie no
current. ' :

The lowest states of the electronegative ions in simple ionic erysfals
are S-like, since these ions have cloged-shell configurations, whereas the
first excited states have P-like symmetry, as we have seen in the last
section. Bince optical transitions between these types of level are
allowed, the condition (21) determines the selection rules.

Wannier! has proposed a very simple semiquantitative method of
looking at the excitation bands in insulatdrs. If we remove an electron
from the highest filled band of an insulator, we produce a positive charge
that should be able to move about freely in an undistorted lattice. In
the Bloch picture, the excited electron is independent of the positive
hole and is also able to move about freely. Actually, the hole and the
electron should attsact ane another with a force that is coulomb-iike at
large distances. Wannier has shown that the excitation bands are
- analogous to the discrete levels of a hydrogen atom in the sense that in
these states the electron and hole revolve about one another-in closed
orbits. The different levels in a given band correspond to the different
translational levels of an excited hydrogen atom. On: the basis of this
picture, Wannier has derived a set of simple approximate equations
from which the wave functions an? energy levels of the exciton may b
determined,

t G, H. Waxnier, Phys. Rev., 52.



_ _ CHAPTER XIII
THE ELECTRONIC STRUCTURE OF THE FIVE SOLID TYPES

97. Introduction.—The present chapter, in which we shall present a
survey of the electronic constitution of the normal and excited statos
of the five solid types, iz the central chapter of the book since all the
preceding chapters are preparatory for it. A large part of this discussion
is necessarily qualitative and probably will remain so until computational
technique has been developed much further. Thus, we shall use the one-
electron approximations freely in cases
in which they do not lead to quali-

[

L ¥ - 1 tatively incorrect results. In other
a3 ‘. # cases, we shall employ the method
a2 ‘1‘ 1" of description in which the epergy

A 1 | levels of the entire solid are used.

0 ):t J/ .~ A METALS

Y 98. General Remarks.—Although
“ ol \ the correlation terms that were dis-
\ . cussed in Chaps. IX and X probably
-3 [ are important in & quantitative deter-
-a4 mination of any property of a metal,
-5} : : it is unlikely that they often affect
-0 _ \V/ the qualitative properties. The pos-

sible exceptions occur in connection
Brdzom i zone dmme With those low-temperature effects,
Fio. L—The «® ‘:;:‘ for the such as superconductivity, which are
(110) direction of sodium (full line), Dot well understood at present. For
The dotted line is the frec-electron this reason, we shall discuss the valence
B e ey ® ' electrons of simple metals on the basis

_ of the band approximation. - Many of
the qualitative properties of d-shell electrons can also be treated
adequately in this way. The method is not entirely satisfactory,
however, for many other properties of d-shell elestrons can be
explained better with the Heitler-London approximation. This fact
shows that neither of the one-electron schemes is very good in this case
and that the d shells should be.treated as a whole. ‘This more
accurate procedure has been used only in a few cases, such as in the
420
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spin-wave theory of ferromagnetism which is developed in Chap. XVI.
It is usually assumed at present that the accurate solution would yield
the same result as the one-electron schemes in those cases in which
the latter appear to give a satisfactory description of affairs.

99, Simple Metals. a. The Alkali Metals—We discussed most of
the known facts concerning the electronic levels of the alkali metals in
Chap. X. A few additional results follow. :

The zone structure of sodium! has been investigated by several
workers. All the results show that the gaps are very narrow and that the
effective electron mass is close to unity. In view of Shockley’s investi-
gation of the empty lattice by the cellular method (cf. Sec. 73), we may

0 \ :{ s=0 )
% e
M P—
-0 \\ ; /L -
t 4‘
=2 : e —13p
%0
€03 : —
- 04 1 Js
IR
—06 =
0 33 4 5 6 7 8 9 10 1 12
d“‘“"‘"’

Fia. 2.—The dependence of the energy bands of sodium on interatomic distance d.
It should be observed that the s- and p-level bands overlap strongly at the observed walue
of d. This behavior is characteristic of the simpler metals. The energy scale isin Rydberg
units. (After Slater.)

gay that the electrons in sodium are free, within the a¢curacy of this
method. The zone structure determined by Slater is shown in Fig. 1,
and the dependence of energy levels on interatomic distance is shown in
Fig. 2. It should be noted that the s- and p-level bands overlap a great
deal at the actual interatamic spacing. This overlapping of s and p
levels is characteristic of all metals.

. Bardeen® has pointed out that exchange terms have a very important '
effect on the density of electronic levels near the top of the filled region
when the electrons are nearly free. In this case, the exchange energy is

k2
1 — —
- ki Jko + ki)e’
s 0.306(2 + % ks log ko =K/ (1)
1E. WionEr and F. Surrs, Phys. Rev., 48, 804 (1933); 46, 509 (1934). J. C.
Svarmm, Phys. Rev,, 48, 794 (1934); Rev. Modsrn Phys., 8, 209 (1934).
¥ J. BanoesN, Phys. Rev., 50, 1098 (1938).
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so that the total dependence of elect onic energy on & is
h?
ek) = & + §—m~k’ + €. (2)
The number of levels having values of k in the range from k to k + dk is
1
- 2 = 2
dn = 8xk*Vdk = 8wk dee. 3)

We may sec from Fig. 5 of Chap. IX, that de,/dk is infinite when & is
equal to ko. Thus, the density of levels is much smaller at k = k,
than it would be if e were simply a parabolic funetion of k. Since the
electronic specific heat should be proportional to the density: of levels
in this region, it follows that the electronic specific heat of a free-electron
gas, in which the exchange interaction is included, should be lcss than
the value '

which was derived in Sec. 27. In fact, Bardeen has shown that the spe-
cific heat should vary as —(log 7")/T at low temperatures when e(k) hag
the form of Eq. (2). The low-temperature specific heat of the alkali
metals has not bsen measured accurately enough to check this behavior.
It is possible that correlation terms have an effect which may compensate
“for the effect of exchange.! ‘

This infinity in the slope of the exchange energy is accompanied. by
a singularity in curvature. In fact, the mean value of the second deriva-
tive of (1) becomes infinite as log |ko — k| when k — ko, & fact implying
that the electronic mass of the uppermost electrons in the Fermi band
approaches zero at the absolute zero of temperature. This singularity is
usually ignored in computations of such effects as conductivity and
diamagnetism (sce Chaps. XV and XVI) because of the untietermined
influence of correlations. This procedure seems to be justified at room
temperature by the fact that results obtained are usually in good agree-
ment with experiment.

The zone structure of lithium? was investigated by Millran; using
the cellular approximation. His results show that the effective electron
mass is greater than unity, in this case, as we already have seen in Sec. 78,
In all other respects, the zone scheme is like that of sodimn.

The matrix elements that determine the transition probabilitics for
optical absorption are sero for perfectly free electrons and are undoubt

! This possibility was pointed out by E. Wigner, Trans. Fareday Soc., 34, 678
(1938).
2 J. MiLLMAR, Phys. Rev., 47, 286 (1935).
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edly small for the nearly free electrons in the alkali metals. Were this
not so, the alkali metals would probably be colored, since the first allowed

transition of the type k—k + K
should oceur at 1.5 ev in sodium
and at about 2 ev in lithium, ac-
cording to the zone diagrams for
these metals.

b. The Noble Metals Copper,
Silver, and Gold.—The monovalent
noble metals differ from the alkali
metals in that they have newly
corapleted d shells in the atomic
configurations. These d levels lie
so close to the ¢ levels that con-
figurations such as 3d'%4s and
3d°*5s? in the free atoms are about
1} ev apart. When the atoms are
brought together, the s and d
levels split into overlapping bands.
Naturally, the d-electron band is
narrower than the s~p band because
the d electrons are partly screened
by the others,

The first investigation of the d

applied the cellular method to copper.
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Fre. 4.—Dependence of energy bands of
oopper on interstomic distance d: It should
be observed that the s, p, and d bands overlap
appreciably at the actual interatomic dis-
tance. The energy scale is in Rydberg
units. (After Krutter.)

!

ol

a3

Qs

a7

Fia, 3.—~The e(k) curves for the (110)
direction of copper. The five branches I
to V meet at &k = 0, giving a five-fold degen-
erate point. Curve V corresponds to the
&-p band in simple metals and is nearly the
same B3 the free-electron curve. Actually
all levels are mixturea of s, p, and d states.
Curves I to IV and the lowest curve oor-
respond to the d band. The energy scale
is in Rydberg units. (After Krutler.)

band was made by Krutter,! who

‘When computing the s-p bands,
he assumed that the field within
each cell is that of the free Cut
ion; when computing the d band,
he used a field obtained from the
3d%s configuration of Hartree's
atomic -wave functions for copper.
In view of the diacudsion of Chap.
X, we may say that these simpli-
fications are reasonable for semi-
quantitative work. Figures 3 and
4 show the dependence of the
bands upon interatomic distance,
and the reduced-zone structure in
the (110) direction st the observed
lattice  distance. The second fg-

ure shows that ihe limit of the illed region is far abovc the uppermost

1H. M. Knorrn, Phye. Reo., 48, 684 (1935).
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level of the d band, so that this band is completely filled. It is doubtful
whether the d band ‘actually is as wide as Krutter's work indicates.
Hartree neglected exchange and correlation terms in deriving the field
used in computing these wave functions for copper, so that they extend
farther from the nucleus and overlap more than they should. The five
d-band e(k) curves meet at k = 0 in Krutter’s results. His approximate
method of applying the cellular scheme is responsible for this degeneracy,
for in 4 morc accurate solution the level would split into a twofold and a
threefold degenerate level.!
The reddish color of copper is attributed
\ to an optically induced electronic transition
from the d band to the s-p band. According
to Krutter’s results, the minimum difference
. "between levels for which a trousition is
1‘ allowed is. of the order of 3 ev in the (100)
direction, which implies strong absorption in
the blue region of. the visible speetrum.
Since silver is not so strongly colored as cop-
per, we may conclude that the difference be-
tween the d and s bands is larger for this
metal, The difference presumably decreases
again in gold since it is colored.
L Tibbs? has carried through similar com-
045 035 u2‘5 _EL Q05 putations for both copper and silver, includ-
Fio. 5—The density of en- g the conduction clectrons in more detail.
ergy levels in calcium. The " ¢. Calcium.—The only extchnsive caleula-
contributions from the fret ;‘;ﬂ tion on the zone structure of the alkaline
arately. The energy scale isin  earth metals, aside from that for beryllium,
ﬁ;‘;bj;"‘x‘r‘:;zﬁ') (After Mann- which was discussed in Sec. 81, is the work
of Manning and Krutter? for calcium. This
metal has. a face-centered cubic lattice, and the methods and approxi-
“mations used in obtaining the energy contours were similar to those used
by Krutter for copper.

The alkaline earth metals should be insulators for large interatomic
spacing since the atoms have closed-shell configurations in the normal
states. The conduectivity- arises from overlapping of the s, p, and d
bands at the observed interatomic distance. Manning and Krutter

nte)”

1'This fact may be derived from a group-theoretical treatment of crystalline wave
functions. A cubie crystal cannot have wave functions for k = 0 that are higher than
threefold degenerate. Thus, the fivefold degenerate atomic d function ‘splits into
a twofold and a threefold degenerate level.

: 8. R. Tisss, Proc. Camb. Phal. Soc., 34, 89 (1938).

3 M. I'. Max~iNe and H. M. Kxutter, Phys. Rev., 81, 761 (1937).
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found that this overlapping occurs not in the three principal crystallo-
graphic directions, but instead in the (021) direction.” Figure 5 shows
the density of levels as a function of energy for the first band and part
of the second. According to this result, the amount of overlapping
actually is very small, a fact which suggests that calcium, like beryllium,
is very nearly an inaulator.

10G. Metals with Irregular Structures.—Mctt and Jones! have made
5 sdesatled investigation of the zone structure of metals such as mercury,
white tin, and bismath that have unusual valencelike structures. In all
these metals, it is found that the edge of the filled system of energy levels
is-wery close to a prominent zone boundary, that is, to a boundary that
corresponds to a strong X-ray reflecting plane. Since the energy gaps
probably are large 2t a boundary of this type
(¢f. Sec. 62), there jis only a small amount of
overlapping of the filled and unfilled zonoes in
these metals. Calcium, which was discussed in
part ¢ of the preceding section, i3 a simple case
of this type. Figure 6 shows the prominent
zone boundary for the bismuth lattice which
contains five electrons per atom.

This observation that irregular metals pos-
sess nearly filled bands gives a very satisfactory
phenomenological explanation of the fact that Fi6. 8.—The prominent
their properties lie betweeh those of ideal metals Zone boundary for bismuth.

. . . This containe 10n states
and of valence types. The gaps in an ideal - s that it is nearly filled.
.valence crystal are wide enough to keep the The overlapping of the

X . levels of this zone and the
occupied and the unoccupied zones apart, for next is believed to oceur
these solids are insulators. On the other hand, 3t points A. (dfter Jones.)
the gaps are very narrow in ideal metais. Since the gaps in irregulur
metals are intermediate between those of these two tases, we may cxpect
that other properties should be intermediate.

The question of why the irregular metals choose those structures
which have nearly filled bands rather than others in which the properties
are more metallic can be answered accurately only by computing the
lattice energy for a nonmetallic and a typically metallic structure, as
has been done in the case of hydrogen (cf. Sec. 79). Since such computa-
tions have not yet been carried out, we must be satisfied for the present
with the chemist’s type of answer, namely, that the constituent atoms
of irregular metals bear a resemblence to hydrogen in that they prefer to
form a structure in which the atoms are coordinated, as in valence
cryat.a‘ls _

I N.F. Morr and H. Jongs, Theory of the Properties of Metals and Alloys, pp. 162 .
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101. Transition Metals.—Mott! and Slater? have used a zone model
as the basis for qualitative discussions of the transition metals as a class.
Two types of band are employed in this model, namely, a wide low-density
valence-electron band, which arises from the 8 and p atomic states, and
a narrow high-density d-electron band (¢f. Fig. 7). This scheme of
levels oceurs in copper, as we have seen in Sec. 99. The essential differ-
ence betwcen copper and the transition metals is that the d band is not
completely fillad in the latter.

An important property of the ferromagnetic transition metals that
is readily explained by the zone theory is that their gyromagnetic ratio
is nearly equal to 2. A mechanical moment may be induced in a ferro-
magnetic substance by magnetizing it, and the ratio of the magnetic
moment, expressed in units of the Bohr magneton, to the angular momen-
tum, expressed in units of h, is
called the gyromagnetic ratio.® If
the magnetio moment arises purely
from orbital motion, the ratio
should be unity (¢f. Chap. V); if it
arises from electronic spin, the ratio
should be 2; and if it arises from a
combination of spin and orbital mo-
tion, it should lie between zero and

s-p Band

d Band

¥Fig. 7.—Schematic diagram of the
relative positions and widths of the d
band and s-p band (¢f. Fig. 4 for copper),
The narrow d band has room for ten
electrons per atom, whereas the s-p band
has room for only two.

2. The fact that the value usually
is nearly 2 (for example, the value
for iron is 1.98) indicates that most
of the orbital angular momentum
that the d electrons possess in the

free atom is ““quenched” in passing from the gas to the solid and that
principally the spin magnetic moment remains. The orbital angular
momentum is negligible in the band scheme,* since the zones are sym-
metrically filled in such a way that the electrons may be paired in groups
which move in opposite directions with equal velocities., Accurate meas-
urements such as the ome cited above for iron show that the orbital
magnetic moment is not entirely quenched, a fact indicating that the
band approximation is not entirely accurate.

The cellular method has been applied in detail to only one transition
metal, namely, tungsten, which is discussed later, in part b. Slater,

1 N. F. Morr, Proc. Phys. Soc., 47, 571 (1935). .

$J. C. BuaTer, Phys. Rev., 49, 537 (1936); Jour. Applied Phys., 8, 3856 (1937).

38¢e E. C. Bronzr, Magnetisem and Maiter (Methuen & Company, Ltd., London,
1984); see also 8. J. BArN®TT, Rev. Modern Phys., T, 129 (1935).

¢ This point has heen carefully investigated by H. Brooks (paper to appear in
Phys. Rev.).
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however, has used the level system computed by Krutter for copper to
discuss some of the details of the iron-group mctal alloys, assuming
that the relative positions of the d and the s-p bands do not change very
much throughout “the iron group (¢f. Sec. 103). The density of levels
in the s-p and d bands of copper is shown in Fig. 8; the vertical lines’
indicate the extent to which these levels would be filled in transition.
metals with different numbers of eicetrons per atom.

a. The Irongroup Transition Metals.—We shall now discuss severai
properties of the iron-group transition mectals on the basis of the band
picture.

1. Cohesion.—One of the striking properties of the cohesive energies
of the transition metals immediately preceding copper, silver, and gold is
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Fic. 8.~—The density of levels in the iron-group series. The vertical lines designate
the limit to which the levels are filled in the elements having the number of electrons

* . corresponding to the integers given. Thus the d band is completely filled in copper (11

electrons) and is not quite filled in nickel (10 electrons). This figure is based on Krutter's
work on copper. The dbscissa is expressed in Rydberg units. ‘(After Slater.)

the fact that they usually are larger than the cohesive energies of the
monovalent metals. This fact is illustrated by the following sequences:

Ni 85 kg cal/mol Cu 81 kg cal/mol
Pd 110 kg cal/mol Ag 68 kg cal/mol
Pt 127 kg cal/mol Au 92 kg cal/mnol

Mott has proposed the following qualitative interpretation of this fact.
The electrons in the s-p band are principally responsible for the cohesion
of all these metals, since the d shells are nearly filled. Fuchs has esti-
mated the d-shell interaction in copper (¢f. Sec. 80) and has found it to be
of the order of 0.5 ev per atom. If it is assumed that the electronic levels
are very nearly the same in the transition-group metals and in the simple
metals that immediately follow them (for example, in the sequence from
iron to copper), it should be expected that the differences in binding
properties arise from differences in the way in which the levels are filled.
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Let us consider iron, cobalt, nickel, and copper. In the first three cases,
the d band is not completely filled, and the s-p band presumably is filled
to the same height as the d band. Since the density of d levels is very
high, this fact means that the s-p band is filled to very nesrly the same
point in each case, if it is assumed that the relative positions of the two
- bands remain fixed. On the other hand, the d band of copper is com-
pletely filled, so that the additional electrons fill the s-p band to a point
far above the top of the d band. Mott points out that the bottom of the
s-p band, the top of the filled region, and the mean energy per atom in
copper are related in the manner shown in Fig. 9, in which curve I is the
bottom of the s-p band, curve II is the top of the filled region, curve III is
the mean energy, and the zero of energy is referred to thé state in which all
atoms are infinitely separated. Since the electrons between eurves 11 and

1 N S

-—Qs-

F1a. 9.—Schematic reprosentation of the electron energies in .mppar. Curve I is the
es(ry) curve; curve IT is the top of the filled band; and curve III is the mean energy. Mott
points out that curve IIT would be lowered if there were fewer electrons in the s-p band.

IIT have more energy than the average, it might be expected that curve
III would be lowered if the electrons in the upper part of the filled region
were either removed or placed in lower levels. These electrons are
essentially removed in the transition metals, according to the zone
model. Hence, it may be expected thai, in these cases, curve II and
curve III are lower than in copper. It is oniy fair to say that this
argument can be used only in a qualitative way, since a shift in the filling
of one-electron levels has associated with it changes in exchange and
correlation energies that cannot be included in & simple energy diagram.

It has been suggested by other workers! that at least part of the bind-
ing of thetransition metals is related to a lowering of the center of gravity
of the occupied d levels in paasing from the free atom to the solid. Recent
work on tungsten, which is discussed below, indicates that this effect is
probably the largest source of coheawe energy in the platinum series of
transition metals. Whether or not it is important in the iron group
remains to be seen.

"'F. Ssrrz and R. P. Jomnsox, Jour. Applied Phys., 8, 84, 186, 246 (1937).
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In addition, Pauling,! reasoning on the basis of the empirical knowl-
edge of the properties of transition metals, has suggested that some of the
d electron wave functions combine with the s-p functions to form a scheme
‘of levels in which there is a larger number of valence electrons per atom
than the one s-p function per atom suggested by Krutter’s band scheme
for copper. In principle, Pauling’s suggestion is equivalent to assuming
that there are two types of d-electron band in the transition metals,
namely, a wide band (see Fig. 10), which is similar to the s-p band but
contaits 2.6 of the 5 d functions per atom of given spin, and a narrow band,
which contains the remaining 2.4 d functions. The first class of function
(A type), along with the s-p func- 77
tions, is responsible for the large /
cohesive energy of the transition
 metals since its existence implies

an increase in the number of bind-
ing electrons in the metal, whereas
the second class of function (B
type) is responsible for the mag-
netic properties in a manner that
.will be. described under 2. "It was
pointed out in Sec. 99, in connec-

N

N\

B-Type d band
2x zg:lufmu

A~ d band
2x 2belectrons

s-p Band
2electrons .

Fic. 10.—The energy bands in the iron-
graup metals according to Pauling. The

tion with Krutter's work on cop-

per, that the five d zones should
break into two separate systems
containing ‘two and three zoues,

#-p functions combine with some of the d
functions to form two broad bands, namely,
the left-hand band, which is designated
as the s-p band, but which contains a mixture
of d functions, and the 4 type of d band,

which has rcom for 1.6 electrons per atom
i in. The B type of d-eleciron

respectively (see footnote 1, page
424), and that Krutter's spproxi-
mation does not give this gplitting,
It is possible that Pauling’s scheme of levels would be obtained from
Krutter’s if the band &pproximation were applied with a higher degree of
accurscy. Yo shall see in Sec. 104, however, that the experimentally
detern:ined levels do net seem to agree with Pauling’s assumptions.

. 2. Pue filling of levels in the ferromagnetic elements.—This topic was
previously introduced in Sec. 27, Chap. IV, in which we used the band
theory to explain the low-temperature specific heats of transition metals.
It was postulated there that in the ferromagnetic eléments the half of the
d band associated with one kind of elegtron spin is completely filled and
that the saturation mag:otic intensity, expressed in Bohr magnetons per
atom, is equal to the = iriber Ang of unoccupied levels per atom in the
-other half of the dband. The number of electrons per atom n, in the s-p
band may be computed from this hypothesis. If m is the total number

1] Pavuivc, Phys. Rev., 64, 899 (1938).
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of d and s-p electrons in the atom, it follows that Ang, n,, and m must
salisfy the relation

10 — Ang +n, =m
or
ﬂn=m+Aﬂd""'10.

We find, using the measured saturalion moments, that n, is, respectively,
0.2, 0.7, and 0.6 for iron, cebalt, and nickel. The first value undoubtedly
is too smal) if the cohesive energy of iron is to be explained in terms of the
energy of s-p clectrons, whereas the other two are reasonable. . This low
value suggests either that half the d band is not filled in this case or that
the d band is lower in iron than in the metals following it and the cohesive
energy is related to this lowering. The second possibility is not entirely
unreasonable, for, as was mentioned above, the cohesive energy of tung-
sten (sce part b of this section) seems to be related sutirely to the behavior
of the d band. The first possibility is readily explained on the basis of
Pauling’s suggestion; for in iron the B type band of Fig. 10 would be
completely drained of the 2.4 clectrons per atom having one type of spin
and 0.2 elcetron per atom having the other type of spin would be removed,
whereas in cobalt and nickel only a fraction of the electrons in half this
band would be removed. We are not able to decide between the two
alternatives on the basis of the present knowledge of energy levels, how-
ever, and in subsequent discussions we sheall arbitrarily assume that the
first is correct.

The Heitler-London scheme has been used with considerable success
in discussing the spin-aligning forces of ferromagnetism, as will be seen in
Chap. XVI. Since this approximation does not provide a satisfactory
simple explanation of the low-temperature electronic heat of the transi-
tion metals, it cannot be used in place of the band theory for all purposes.

3. The pcramagnelic transition metals.—We have already seen in
See. 29 that the band theory cannot explain even semiquantitatively
both the specific heat and the magnetic susceptibility of the paramagnetic
transition metals. This failure lends additional support to the state-
ments made above concerning the limitations of the band approximation
when applied to d-shell clectrons.

b. Tungsten.—The band structure of metallic tangsten, which has a
hody-centered lattice and whose atoms possess six valenee electrons and
a newly filled f shell outside a rare gas configuration, has been investi-
gated by Manning and Chodorow.! These workers assumed that the-f
shell is unaffected by solid binding and obtained wave functions and
energy levels for the remaining six electrons per atom  In first approxi-

' M. F. Mannive and M. 1. CRoporow, Phys. Res., 66, 787 (1939).
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mation, an cffective field for these clectrons was obtained from a charge
distribution derived by renormalizing the parts of the free-atom wave
functions lying within the atomic sphere of the lattice. Valence-electron
wave functions and (k) contours were then computed with the use of
this ficld. In second approximation, the charge density obtained from
the results of the first approximation was used to compute a new field.
This second approximation was very nearly self-consistent.
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11.—n(e curves for ihe five d sones and one s-p zone of tungaten. The energy scale
is in Rydberg units. (After Manning and Chodorow.)

The n(e) curves for the six lowest zones are shown in Fig. 1la. The
" set labeled with roman numerals I to V correspond to the five d bands, and
curve VI corresponds to the s-p band. The total.n(e) curve for all six
bands is given in Fig. 11b. The limit of the filled regions of tungsten:
- and of the neighbering element tantalum are marked by vertical lines.
According tc these results, the number of eleetrons in the s-p band is of
the order of magnitude 0.1 electron per atom in both these metals.
Manning and Chodorow estimate that the center of the filled region is
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about 8 ev below the mean of the occupied levels of the free atom.
These results imply that the large cohesive energy of tungsten, namely,
210 kg cal/mol, arises from the fact that practically all of the six valence
electrons may occupy the low-energy portion of the d band. In addition,
they imply that the contribution to cohesion from the s-p electrons,
which are responsible for most of the ¢ohesion in simple metals, is neg-
ligible in this case.

Using the computed n(e) curves, Manning and Chodorow estimated
the electronic heat of tungsten and tantalum by the use of the equations
derived in Chap. IV. The observed and calculated values are given in
Table LXXII, '

Tasre LXXII.—A CoumparisoN oF OssmavED AND CALCULATED ELEcTRONIC HEATS
or TuNGsTEN AND TANTALUM
(In units of 10~ cal/deg-mol)

Experimental
Theoretical
Low temperature | High temperature
w 4.8T R 5.17
Ta 6.2T 27T T

The low-temperature value for tantalum was obtained indirectly from
conductivity measurements near absolute zero, and the high-temperature
values were obtained after subtracting the 3R lattice vibrational heat
and questionable C, — C, corrections from the observed molar heats.
A discussion of this work may be found in the original paper by Manning
and Chodorow. It is difficult to say whether the discrepancy between
low-temperature and high-temperature values implies ervor in the simple
theory of electronic heats developed in Chap. IV or in the treatment of"
experimental results. In any case, the agreement between the theoretical
results and the high-temperature values is excellent.

102. Simple Substitutional Alloys.—In the experimental survey of
Chap. 1, it was seen that the Hume-Rothery electron-atom ratio rule
correlates the solid-phase portions of the phase diagrams of different
substitutional alloy systems. This rule states that a given phase occurs
for a fixed electron-atom ratio in a number of different alloy systems.
As a result of an extensive investigation, Jones® has found that the edge
of the filled region of levels lies close to a prominent zone boundary
when the Hume-Rothery rule is satisfied. This observation allows us

1 H. Jonms, Proc. Roy. Soc., 144, 225 (1984); 147, 396 (1984). MorT and Jonms,
op. cit., Chap. V.
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to replace the Hume-Rothery rule by the statement that the stable alloy
phases have nearly filled systems of zones.

As we mentioned in Sec. 100, it is not evident why a nearly filled
zone system should be more stable than another, and this fact has not
yet received a eompletely satisfactory explanation. Figure 12 shows

t A

n(e)

46—
Fia. l&—%mahobﬁ.mdmdhwhmapmmmﬁmboudnyda
metal (¢f. Fig. & for calcium and Fig. 8 of Chap. X for beryilium).

the bebavior of the density of states per unit energy range near a zone
boundary at which the gaps are large. The density of levels in the lower
sone increases at firat as the zone boundary is approached because the
¢(k) curves bend over. After this rise, the density falls and approaches
the axis sharply. It should rise sharply again in the higher zone in the
manner illustrated. We may conclude that the
two zones overlap in the substitutional alloys
from the fact that these alloys are metallic
conductors. Jones assumes that the maximum
A of the lower zone occurs at that value of
energy for which the contours in wave-number
space just touch the zone boundary. This
assumption has been justified by a detailed
treatment of the e(k) curves for a number of
sones with the use of simplified models (¢f. Sec. Fia. 13.—The prominent
65). He then postulates that the stability of a socne boundary for the v
phase increases as the levels are filled to the h&:m,‘:% oetrons
point A and then decreases rapidly beyond this per unit cube of the lattice.
péint, because the average energy of the addi- (After Jones.)
tional energy is much larger than the mean emergy of all electroms.
It this assumption is true, the electron-atom ratio associated with 4
should be the value for which the phase is most stable.

Four phases are commonly met in simple substitutional alloy systems.
The a phase is face-centered cubic, the 8 phase is body-centered cubie,
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the v phase has & more complex cubie structure, and the 5 phase is close-
packed hexagonal. The first zones for the a, 8, and % phases were shown
jn Chap. VIII. The prominent zone for the ¥ phase is shown in
Fig. 13. This zone contains 90 states for a cubic cell of 52 atoms, or 1,731
states pex atom. The Hume-Rothery electron-atom ratio is {3, or about-
1.615. Jones has computed the ratio eorrespondmg to the point A,
Fig. 12, for each of these four phases, assuming that the energy contours
are spheres. His values are given in Table LXXIII along with Hume-
Rothery’s fractional estimates. The two values differ slightly but agree
equally well with the experimental values.

TapLe LXXIIT
Hume-Rothery's Jounes’
Phaso fractional value value
@ | cidenasenans 1.362
B =105 1.480
¥ = 1.615 1.588
W =17 -1.7

108. Alloys involving Transition Metals.—The properties of transi-
tion metals explzined most readily by the band theory are (1) the quench-
ing of ferromagnetism by the addition of nentransition metals that form
solid solutions ar.} /2) the dependence of the saturation magnetic moment
of ferromagnetic alloys on atomic composition. - We shall discuss these
two topics together. _

Ii simildr phases of the iron-group elements and copper and zinc have
practically the same zone structure, we may expect that the magnetie prop-
erties of their alloys depend principally upon the extent to which zones
are filled, that is, upon the electron-atom ratio. We shall use the follow-
ing two pnnc:ples in correlating the saturation magnetic moments:

1. The number of valence electrons per atom in the s-p band ‘of all
ferromagnetic metals is about 0.7. If, in addition, we were to accept
Pauling’s postulate, we should also assume that the A type d band of Fig.
10, which contains 2.6 electrons per atom, is filled or nearly filled and that
the electrons are removed from or added to the B type band.

2. The saturation magnetization, expressed in Bohr units per atom,
is approximately equal to the number of holes per atom in the d band.
The word “‘spproximately ”’ is inserted because the saturation magnetiza-
tion seems to be less in iron, as we have seen in Section 101. We shall
try to give additional insight into this point in the following paragraphs.

Before presenting a genetral survey of results, we shall consider two
typical cases. Suppose that some of the nickel atoms in a spceimen of
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‘nickel are replaced by copper atoms. Since copper has one electron per
atom more than nickel, we should expect that each copper atom which is
added has the same effect as if one electron were added to the bands of
pure nickel. These additional electrons enter the @ band and should
decrease the number of holes at the rate of 1 per copper atom. Since
there is 0.6 hole per atom in pure nickel, we should expect the satura-
tion magnetization to decrease linearly with the concentration of copper
and to be zero when the atom fraction of copper is 0.6. Sadron’s meas-
urements show this to be the casc (see Fig. 54, Chap. I). We should
expect zinc atoms to have twice tho effect of copper atoms siuce zine.
has two wvalence electrons instead of ome. This is also found to be
true. ’ .

Let us consider next the effect of alloying nickel and cobalt. Nickel
has 0.6 hole per atom in the d i

band and cobalt has approximately Fe-Co-

1.7. According to theband model, , i

the number of holes per atom in I ) Fe-Ni ~Fe-V

the alloy that contains an atomic & Ni-Co /%~ Fe-Ni

fraction of z nickel atoms and e N

(1 -~ z) cobalt atoms should be ‘ Fe—Cr}\
ne = 0.6z + 1.7(1 — z), (1) ‘Nl"-cw Ni-Zn

: . 0 . M .

so. that the saturation magnetic 0 Ni | 'Co 2 Fe 3 4

Ap——>

moment should be n. Bohr mag- . .

. S . y Fig. 14.—Relation beiween the saturation
netons per atom. This rule is magnetization, expressed iu magnetons per
closely obeyed in the nickel-cobalt atom, and the number of holes per atoim.
system, as we shall see below. (After Stater.)

Figure 14 shows! the relation between the saturation magnetization
per atom and the number of holes per atom fcr a number of substitutional
alloys of the iron-group elements. The number of holes par atom in the
d band is computed by the use of equations ot the type (1) on the assump-
tion .that there are 0.7 s-p electron per atom in all transition metals
cxcept nickel, which has 0.8. Nontransition elements are assumed to
have a negative value, corresponding to 0.7 minus their valence (that is,
=0.3 for copper and —1.3 for zine).  If «, and a, are the number of
holes per atom in the pure metals 4 and 3, the number per atom in the
alloy that contains a fraction f. of 4 and f; of B is_

nn = ufa + cofs, @

analogous to (1). The abscissa of Fig. 14 is the value of ns computed
from (2); the ordina}e is the saturation magneti¢c moment per atom .

1J. C.-BLATER, Jour. Applied Phys., 8, 385 (1937).
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A straight line corresponds to strict proportionality between these
two quantities. It should be observed that this relationship is closely
obeyed until the point at which n; is about 2.2. The experimental curve
then bends over smoothly and approaches the axis along what appears
to be a straight line. The small value of the saturation magnetization
of iron that was mentioned in Sec. 101 is in accordance with this bending.
Pauling’s assumption of the existence of A type and B type d bands is
primarily based upon this fact, for in his picture the B type band is
completely drained of electrons of one type of spin at the composition
corresponding to the peak of the curves of Fig. 14, that is, when 7, is
about 2.4. " As one passes farther to the right, toward iron, manganese,

%77 band ~~ gz -+
? ‘Ezgﬂz:fm
&
/fjﬂsr‘sfrlf
@ el

Fia. 15.—In case a there are excitaticn bands for the inner-shell electrons, and both
eontinuous bands and discrete lines may be expeeted in emission. In case b the excitation
bands have been ahsorbed into the continuum. The shaded region indicates the filled
part of the bands. It should be observed that emission occurs from occupied valenoe levels,
absorption to unoccupied ones.

and chromium, the remaining electrons are removed from the .B type
band and o decreases linearly.

Mott and Jones! have used essentially the same principles to deter-
mine the number of hoies in several paramagnetic transition metals,
For example, the paramagnetism of palladium decreases when it is
alloyed with gold. Since the paramagnetism vaonishes when a fraction®
of 0.55 palladium atoms has been replaced by gold atoms, these workers
conclude that palladium contains 0.55 hole per atom.

104. Level Densities from Soft X-ray Emission Spectra.—Experi-
mental values of the level-density curves of the valence electrons in
metals may be obtained from the ‘soft X-ray emission and absorption
spectra of metals.? These curves have particular value in deciding
whether the excitation-band picture should be applied to metdls as
well as to insulators or whether the band approximation is accurate for
qualitative work.

1 Morr and Jones, ¢p. cit., pp. 199200, .

2 Bee the survey articie by H. W. B. Skinner, Reporis on Progress in Physios V
(1938), (Cambridge Univ-rsity Press, 1939). This possibility was first pointed out by
W. V. Houston, Phys. Rer., 38, 1797 (1931).
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Let us suppose that an electron is missing from an inner shell of an
ion in a8 metal. We may describe these inner-shell levels in the Heitler-
London approximation and may designate the wave function of the
missing electron, which is localized about a single ion, by ¥,(r). If the
Heitler-London or the excitation-band picture were valid for the excited
states of this electron, there would be a set of discrete levels or a set
of nonconducting excitation states beneath the ionization limit; the
latter corresponds to the beginning of the Bloch levels (¢f. Fig. 15).
Thus, the emission and absorption spectra would consist of & eontinuum
corresponding to transitions between the Bloch band and the lowest
level and of discrete lines corresponding to transitions between the
excitation levels and the lowest levels. On the other hand, if there are
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Fi6. 18.—The soft X-ray emission spectra of several metals. (After Skinner.)
no excitation bands! because the ionization band has broadened enough
te absorb them, only the continuum should be present. In the transition
from oneé of these cases to the other, we may expect the intensity of the
ciscrete lines to predominate over that of the continuum at first, then
decrease, and finally disappear.

The observed soft X-ray emission spectra of lithium, sodium, beryl-
lium, magnesium, and aluminum, as determined by O’Bryan and Skinner?
and Farineau,? are given in Fig. 16. The lithium and beryllium bands
arise from transitions to the 1slevel (K band), and the two magnesium

1 The absence of excitation levels would imply that the free electrons so com-
pletely screen the hole in the ion core that there is not enough potential for a dis-
crete level. The quantitative description of this effect would require a very accurate
treatment of the many-electron problem.

t H. M. O’Bryax and H. W. B. SkiNNER, Phys. Rev., 45, 370 (1934).

3J. Farineav, Compt. rend., 208, 540 (1936), 204, 1108 (1937), 204, 1242 (1937),
206, 365 (1937); Nature, 140, 508 (19387). See footnote 1, p. 440, also.
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and aluminum bands arise, respectively, from transitions to the 1s
level and 2p level (Ly; band). In contrast with the absorption spectra
of the alkali halides (¢f. Sec. 95), these spectra show no indication of
strong discrete lines, which implies that the cxcitation levels are not
prominent. In erder to determine the extent to which the low-energy
tails of these bands are vestiges of the transitions from excitation states
we must examine the theory of emission more closcly. 4

We shall assume?! that the periodic wave functions may be expressed
in the form

Vi = xofr)o?rier

where xo is an s function in the vicinity of the nueleus. The intensity
of the line emitted in the jump from }l‘k to ¥ then is proportional to

va® grad ydrf? )

~ (cf- Sec. 43). For small values of k or r, we may cxpand the exponent
in powers of k « r and keep only the first two terms. - Thus, (1) becomes

fxo(1 — 2aik - 1) grad ¥ dr|® @)

If ¢, is a p function, the integral of the term in (2) that involves k vanishes,
leaving

|/x0 grad ¢,dr}?, ®

which is independent of k. This result should be valid for fairly large
values of k since ¥, is localized exceedingly close to the nucleus. Thus,
the intensity of the emission band as a function of energy should depend
only upon the density of levels and, as a result, should vary a8 4/« near
the low-energy side. On the other hand, if ¥, is an & function, the term
corresponding to (3) vanishes and the remaining term can be reduced to

3
ox%—"ﬂ ’ Q)

which varies as k? or ss e near the low-energy eide of the band. Since
the density of levels varies as 4/« in this energy region, it follows that
the intensity of the band should vary as et.

Now, the L emission curves for sodium, a.lummum, and ma.gnesmm
correspond to the first of these two cases. It is clear from Fig. 16 that
the intensity starts out much more slowly than 4/¢. A comparison. of

k!

1 HousToN, op. cit.; H. Joxrs, N. F. Morr and H. W. B, SkINNER, Phys. Rev.,
45, 379 (1934). :
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the actual curve and the 4/¢ curve that would fit the sodium curve!
most closely is given in Fig. 17a. This suggests that there is a residue
of the excitation bands; however, it is also possible, although not probable,
that the measured tail is due to a background emission of impurity atoms.
Bince the K emission curves of Fig. 16 correspond to the second of the
two cases, they should rise as el. Figure 17b gives a comparison of an
¢ curve and the observed curve for lithium. The high-energy cutoff
of the theoretical curve is chosen so that the width is the same as that
.computed in Sec. 78. The discrepancy on the low-energy side may have
the explanation suggested in Fig. 17a for sodium. The discrepancy on
the high-enérgy side indicates that the actual density of. levels does not

Emission Intensity

Emission Intensity

) } 7 3ev— ) ] N T ev.—

Fia. 17.— (a) Comparison of the actual emission band of sodiom and that expected
from the simple band theory. It is suggested that the shaded region répresents the con-
tribution from vestiges of the excitation bands. The energy scale is in electron volts.
(b) Comparison of the actual emission band of lithium and that predicted by the band
theory. :

vary a8 Ve in lithium. The premature peak in the curve for lithium
has not received a satisfactory explanation. It is possible that it is
related to a rapid variation in exchange and correlation energy at the
top of the filled region; however, if this is the case, it is not easy to see
why sodium does not have a similar peak. If the difference between the
curves for lithium and sodium is real, we may expett the electronic
specific heat of sodium to be more normal than that of lithium, for its
level density is more nearly like thgt for perfectly free electrons.

It is interesting to note that the beryllium curve of Fig. 16 behaves
as though the levels of a single zone were almost completely occupied,
a fact indicating that this metal is very nearly an insulator. In mag-

1 In these comparisons, the effect of both exchange and correlation on the ealcu-
lated band widths is neglected beenuse the second, which tends to compensate for the
broadening effect of the first (sce footnote 1, p. 422) is not precisely known.
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nesium and aluminum, however, the curves appear as though two zones
overlapped extensively.

TasLg LXXIV.—OBsEXRVED AND CALcULATED WIDTHS OF THE SOFT X—-nu EuissioN
Banps (ArrER SKINNER)
(The thmueal values are those computed in Chap. X. Values in parentheseu are
free-electron values)

.Observed, ev | Calculated, ev
Li 4.1 +0.3 3.4
“Na | 84102 3.2
Be | 14.8 £ 0.5 (13.8)
Mg | 7.6:0.3 7.2)
Al 13.2 £ 0.5 (12.0)

. The widths of a number of the emission bands determined by O’'Bryan
and Skinner, and others, are given in Table LXXIV and are compared
with the theoretical values in cases in which

the latter have been computed. The values

B (in
2m\ 8r

for perfectly free electrons are given in
parentheses in the other cases.

The emission bands of metals containing
filled or partly filled d'bands have been
investigated by a number of workers,?
ameng whoma are Bearden, Shaw, Beeman,
Friedman, Saur, Gwinner, and Farineau.
Farineau’s curves for. nickel, copper, snd
zinc are shown in Fig. 18, S8ince the density
of levels in the d band presumably is much

0
¥F1a. 18.—The emission curves

o

5 15

for niokel, copper, and lim

'Premmbly this emission "arises
mainly from the d band. The
difference between copper and
nicks! is mainly diie to the fast
thai coppar has one more valence
elesiron than nickel. Zinc, how-
ever, has an e:itirely different
structure so that the band struo-
suve should be different.

higher than that in the &-p band, we may
conclude that practically all of this strueture
arises from thed band. One o{ .ne impart-
ant features of these curves is the fact that
there is a single peak in the cases of copper
and nickel and not two, as we might expect
from Krutter's work. Krutter's :curve is

shown in the diagram for copper. If this peak were to be associated with

£3. A. Beanpey and C. H. Smaw, Phys. Rev., 48, 18 (1085); W. W. Beenax and

H. FrmmpMaAN, Phys. Revo., B8,

892 (1989); E. Bum. Z. Physik, 103, 421 (1936);

E. CwiINNER, Z. Physik, 108, 528 (1988).
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Pauling’s B type of d band (see Fig. 10), we should expect that it would
oceur nearer the high-energy cutoff of the curves, at least in the case’of
nickel.  Assuming that these density curves are trustworthy, we must
conclude both that the d bands shift to some extent in going from copper
to nickel and that the one-electron approximations discussed in previous
sections are not very accurate when applied to d electrons. The curves
for copper and zinc are considerably different; however, this fact is not
surprising, for the crystalline symmetry is different in the two cases.

R. IONIC CRYSTALS

- 106. Plan of Treatment.—In the preceding chapter, we saw: (a) that
the lowest state of ideal ionic erystals may be treated approximately by
cither the Heitler-London or the band scheme; (b) that the lower, nop-
conducting, excited states may be treated by the method of excitation
waves, at least in the case of the alkali halides; and (c) that the higher
excited states may be treated by the band scheme, In the following
sections, we shall apply these approximations to several alkafi halide
erystals and alkaline earth oxide and sulfide crystals the experimental
properties of which have been investigated with some degree of com-
pleteness. The first two sections apply to crystals having ideal, undis-
torted lattice structures, and the following section applies to ideal
crystals having lattice distortions of a type that will be described in
more detail in that section.

108. The Alkali Halides.—Zone-structure calculations have been
made for two alkali halides, namely, lithium fluoride and sodium chloride.
In addition, computations have been made for lithium hydride, which
resembles the alkali halides closely since negative hydrogen ions behave
like ions of a halogen.” In an atomic picture, the eight valence electrons
per unit cell of the alkali halides completely occupy the outer & and p
shells of the negative ions. In the band scheme, the same electrons
occupy four zones, one of which connects adiabatically with the ionic s
level and the -three others of which connect with the ionic p level.
Figure 19 illustrates the manner in which the ionic levels broaden into
the bands of the zone theory as the ions are brought together. The
levels of the negative ions are depressed and those of the positive ions
are raised because of th¢ Madelung field. In addition, the levels break
into bands: when the ions begin to overlap. At the observed lattice
distance, the s and p bands are sepa ated from one another and from the
higher unfilled band which connects with the lowest level of the metal
ion. The ionic levels do not split. into bands in the Heitler-London
approximation but remain discrete, rogghly following the qcenter of
gravity of the bands (¢f. the discussion in Sec. 64 concerning the connec-
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tion between the Heitler-London and Bloch energy parameters). If
the squares of the 2s wave funetion of atomic lithium and of the radial
part of the p wave function of ionic fluorine are plotted in such a way
that each distribution is centered about points which are separated by
the distance between the lithium and fluorine ions in the crystal, it is
found that the peaks of the distributions overlap and that the center of
gravity of the charge of an undistorted lithium atom would lie in the
shells of the surrounding halogen ions (¢f. Fig. 1, Chap. II, for lithium
hydride). _ '
In treating sodium chloride, Shockley! chose an effective chlorine
charge distribution by normalizing Hartree’s chlorine ion wave funetions
within a sphere the volume of which
| s equal to that of the unit cell of
! sodium chloride. He assumed that
! - only eight electrons are in this cell
" at any one time, because of correla-
tion effects, and computed the effec-
tive field for a given electron in the
sphere by taking the charge of the re-
maining seven into account. The
effective field for an electror near a
sodium ion was taken as the ion-core
field used in the computations on
| metallic sodium. To these effective
] | ion fields, Shockley added the
: Madelung field of the surrounding
v 1‘; S - ~ jons. In addition, he subtracted
of thieu'mnm.\;r i::e:;:i:]: tl::pir::f: t[ﬁ;t\::t_:; from thc sodium ion-core field the
of the constituents of ionic erystals field arising from a single electron
twak Into bands in the ";"3,;‘3‘;";‘;‘“:;; that is spread uniformly over the six
negative ion are scparate, whereas at B surrounding halogen ions. The mis-
they overlap. sing electron is assumed to be at the
sodium ion. Boundary conditions were applied to the wave functions
in three different ways: (1) by neglecting the sodium wave functions
and treating the lattice as though it were composed of chlorine ions, (2)
by satisfying only sodium-chlorine boundary conditions, and (3) by
satisfying both sodium-chlorine and ¢hlorine-chlorine boundary condi-
tions. The equations employed in the first case were those derived by
Krutter for copper, and Shoc¢kley derived similar equations for the two
other cages. The e(k) curves that were obtained from these equations are
shown in Figs: 20 a,b.
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1 W, SsockLEY; Phys. Rev., 50, 754 (1986).
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More recently, Tibbs! has investigated the conduction band of sodium
chloride by a similar method and has shown that the eﬁecfave mass of the
conduction electrouns is close to unity.

Attempts to construct self-consistent fields for the ]attu:e were made
in the treatments of lithium fluoride and hydride.? This task is much
more difficult in the case of diatomic erystals than in the case of mona-
tomic ones, because the total eharge in each polyhedron of the unit cell, as
well as the relative distribution within a given polyhedron, must be the
same in the initial and final solutions. In these ionic crystals, the
lattice was divided into cubes of equal volume centered about each of
the ions, and the cubes were replaced by equivalent spheres. The Lit+

Q4 o4
T a5 }as
(k) e(k)
06 as
a7 a7
%o — G — (100)

b

Fra. 20. —-{al e(k) curve for the (111) direction of sodium chioride. Only the p-band
curves are given. The full curyve correaponds to the resulis obtained by neglecting the sod-
ium wave functions; the dotted lines correspond to the most accurate procedure deseribed
in the text. (b) S8ame for the (100) direction. (After Shockley.)

ion-core field was taken from the work on metallic lithium, and the field
of the (1s)? ion core of F— was taken from Hartree’s work. The remain-
ing eight electrons per unit cell were treated by a self-consistent method.
- The charge distribution of the valence electrons was not determined by
computing wave functions for all values of k and taking an average.
Instead, it was assumed that the average of the four wave functions
associated with k = 0 is the same as the average distribution of all
electrons. This approximation is justified by the fact that the mean
charge distribution in the alkali metals is practically the same as the
distribution for k = 0. Boundary conditions were satisfied at different
points of the polyhedra for several different values of k, group theoretical

18. R. Tisns, Trans. Faraday Sac., 36, 1471 (1939).
2 D. H. Ewine and ¥, Sgwrz, Phys, Rev., 50, 760 (1936).
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methods being used to choose the appropriate co.nbihation of zonal
harmonics in each case.

Figure 21 shows the agreement between initial and final charge
distributions in the final trials for lithium fluoride, and Figs. 22 and 23
give plots of the s- and p-band functions for k = 0 for both lithium fluoride
and lithium hydride.
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Fia. 21.—The initial and Fic. 22.—Wave functions for
-final charge distributions in k = 0 in lithium fluoride. & is the
the Li and F polyhedra in . s-band function; b is the p-band
the last computation for the function and c is the function for the
self-consistent field in lithium first unoccupied band. It should be
fluoride. The abscissne are noted that a and b arg distributed
in Bohr units. (After Ewing principally about the F~'ion, whereas
and Seitz.) ¢ is distributed about both ions. The

abscissae are in Bohr units.

The integral of the charge distribution inside the lithium sphere of
lithium fluoride is 0.95¢ in the Hartree approximation. This result is
unquestionably too large since neither exchange nor correlation effecys
were taken into account. A somewhat better value might have been
obtained by including these terms in the way Shockley did, namely, by
excluding one unit of electtonic charge in determining the field inside
the fluorine sphere. A rough estimate shows that thiz procedure would
probably reduce the charge in the lithium sphere to about 0.5¢, which,
‘in turn, would leave about 0.05 valence electron in the sphere the radins
-of which i8 equal to the classical lithium-ion radius. This estimate
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furnishes a good justification for the Born“Mayer approximation in which
the charge in this sphere is assumed to be zero, for the correction to the
Madelung energy would be only

about 5 per cent, which is less than wr
the importance of repulsive terms. b
Figures 24 and 25 show the (k) f z“j
curves for several important crystal- ® ot
lographic directions.! The values U, Q¥R 12\ 20242015 (205 04 AH
corresponding to the dots are the -a i

L

actual computed cases, whereas the -®
full lines were obtsined by interpola-  ~%[
tion. The upper curve of the second :T: I \
band for lithium fluoride is doubly Fio. 23— The wave function for
degenerate in the (100) and (111) k =0 in the filled band of lithium
directions. This degeneracy also ap- m‘( uqumd:; s;;:) in Bokr
pears in Shockley’s results.

One important feature of the zone scheme is the fact that the upper-
most filled bands are several volts wide. Although these values probably
are too iarge, because Hartree fields were used in obtaining them, their

order of magnitude seems unquestionably to be correct.
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Fia. 24.—«(k) curves of lithium fluoride for three prominent crystallographic direetions.
The Greek letters are crystallographic term symbols; a is the interionic distance. The
lower two band systems are filled; the upper band is empty The energy is expressed in
Rydberg units. (After Ewing cmd Seitz.)

In sumimarizing this discussion of the normal states of the alkali

halides, we may say that the charge distribution in the lattice is very

1]t is interesting to note that the s curves increase with increasing |k|, whereas the
p eurves tend to decrease. This fact was pointed out in Bec. 65 on the basis of the
narrow-band approximation.
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nearly the same as if the crystdl were composed of free positive and
negative ions. The lowest s band of the zone picture is very narrow
so that the halogen s shell is not appreciably perturbed. The width of
the p band is of the order of 1 ev, which indicates that neighboring ions
overlap appreciably and that the exchange interaction is of the order of
1 ev. The magnitude of the band width also indicates that the effective
mass of a free hole in the p band is comparable with the mass of an
electron.

The wave functions for k = 0 in the first unoccupied zone of lithium
_ fluoride areshown in Fig. 22. Here, the electronic
1(»:)0]_ charge is distributed more or less uniformly
between the positive and negative ions. The
12 closest vertical distance between the filled and
unfilled bands of Fig. 24 is 7.5 ev for the end
F‘o point of the zone in the (110) direction. This

difference should be the energy required to induce
08 photoconductivity in the pure crystal, and it
should be greater than the first absorption
06 energy. Actually it is less, since the funda-
mental peak of lithium fluoride occurs below
m 1000 .&, which makes the absorption peak
greater than 12 ev. The Hartree approximation,
a2 can be blamed for this discrepancy, for the
\ / exchange terms would lower the filled band much
5 more than the empty ome. This tendency for

k= the exchange energy to be smaller in magnitude

Fio. 26.—Same as Fig. for an excited electron than for a normal one is

24 for the (100; directi . X
imlitl:iumah;d:itjie. lret?h:x shown for perfectly free electrons in Fig. 5,
is only one filled band in Chap IX

this casd so that the u; ; ) .

two bands are .m‘::;r, We have seen in Sec. 95, Chap. XII, that the

;I‘ohm m‘i;ie(‘f""“b':‘;’:l‘: position of the nonconducting excited levels of
of lithium ﬂuor;ge (Fig. the alkali halides can be estimated fairly closely
24). The energy is ex- hy the use of an atomic model. Aeccording to
presecd in Rydberg unite. tliris work, the first excitation band should lie
about 12 ev above the lowest state in lithium fluoride, a value that
agrees closely with the threshold absorption frequency for lithium
fluoride. The complete siructure of the first ultraviolet absorption
bands of lithium fluoride and sodium chloride has not been measured.
In a typical case such as that of sodium bromide, illustrated in
Fig. 26, it seems natural to assume, in analogy with the absorp-
tion spectra for atoms, that the peaks 4, B, C, and D correspond
to transitions to excitation levels and that the ionization cdge falls in
the sho:;t wave length foot of the band, that is, at about 1200 A. The
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corresponding points for lithium fluoride and sodium chloride (¢f. Fig. 2
of Chap. XII) undoubtedly lie at energies greater than 14 ev and 12 ev,
respectively.

107. Alkaline Earth Oxides and Sulfides. -—Although the cellular
method has not been applied to any of the alkaline earth salts, it is pos-
gible to draw several plausible conclusions about their zone structures by
indirect reasoning. The interatomic exchange terms, which give rise
to most of the repulsive forces in ionic crystals and arise mainly from
the metal-ion negatwe—mu mteracuom, arc about four times larger in
" the oxides and sulfides than in the halides. Sinee these exchange
energies are closely related to the widths of the occupied bands .(cf.
Sec. 64), we may expect-that the band are much broader in the oxides
and sulfides  Referring to Fig. 19, we may expect that the point B where

1000 200 iﬁ o i35 ﬁ‘ ﬁ
AA) —
F1a. 26.—The structure of the firat ultraviolet absorption band of sodium bromide.

the s and p bands are very close corresponds to the alkaline earth oxides
and sulfides, if the point 4 corresponds to the alkali halides.!

It is possible to construct reasonable energy-level diagrims tor some
of the alkaline earth salts by use of energy-level data derived from the
Born cycle and from spectroscopic measurements on the frce ions. As
examples, we shall take ¥ince oxide and zine sulfide, which have propertics
that are typical of other members of this group of salts. The crystal
structure of zinc oxide is the wurtzite lattice, ‘which is also the high-
temperature structure of zinc sulfide. The low-temperature lorm of
zinc sulfide has the zincblende lattice which is similar to diamond.

.We shall begin by considering the energy necessary to remove an
clectron from a free negative ion and place it on a free zinc ion. The

1 This overlapping of s and p bands occurs in diamond, as is shown in Sec. 109,
Hence we may expect it to be associated with some valence characteristics. H. M.
James and V. A. Johnson.(Phys. Rev., 56, 119 (1939)) have shown, in fact, that the
eharge distribution in zinc oxide is not perfectly ioniec.
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total electron affinities of O~ and 87 have been determined approxi-
mately by the Born cycle and are about —7 and —4 ev, respectively.
Lozier! determined experimentally the affinity of neutral oxygen for one
electron and found that it is 2.2 + 0.2 ev, which shows that the negative
affinity of oxygen for two electrons is due entirely to the second electron
and that the energy necessary to remove one electron from O=—'is about
~9 ev. The energy level of O~ is plotted? relative to the normal state
of O~ in the right-hand column of Fig. 27. Since O— and 8— have about

- In- __ Zn*t 0
I-_ 45%2“ - ”l" ZP.
5t b { 45
/ !,
OF ™~ Excitation / ™ =7 530
| Bands / 3¢° 3’ 2p*
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dop = Oev ' | ," \ 10
- 0% Barid g’ .
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Fia. 27.—The ionic energy-level relations in zine ordde. 'The levelr nf Zn't, Zm*,
and 07" are given on the right. The behavior of these when u lattive is formed is shown
by the dotted lines. The relative position of the levels in a neutral ziic atom is given
ou the feft. (See footnots 9 on page 450).

the same classical radii as F— and CI~, respectively, we may conclude
that the electronic structure of the first pair of ions is very similar to
that of the second pair. .

Now, the affinities of the halogens decrease as one passes down the
periodic chart. For this reason, we shall assume that the affinity of a
sulfur atom for a single electron is about 1 ev less than that of an oxygen
ion, which makes the energy of S— about 5 ev relative to the energy of 8—.
This is indicated in the right-hand column of Fig. 28. The energy levels
of zinc ions have been measured spectroscopically and are given in the
second and third columns from the right in Figs. 27 and 28. Since the

1 W. W, Lozizn, Phys. Rev., 40, 268 (1934).
2 ¥, 8grrz, Jour. Chem, Phys., 6, 454 (1938).
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energy of Zn* relative to Zn*+* is 17.9 ev, the energy required to remove
an electron from a free oxygen ion and place it on a free zinc ion is — 26,9
ev. The same quantity is —22,8 for = and Zn**. Let us now arrange
the ions in the lattices of ZnO and ZnS and gradually decrease the lattice
constants from infinity. The lattice potential at the position of the
positive ions is negative, and dhe potential at the negative ions is positive,
so that the levels of the negative ions arc depressed and those of the
positive ions are raised during this process. This change is indicated by
the dotted lines of Figs. 27 and 28, which show the total shift as computed
from the Madclung potentials of the zinc oxide and zinc sulfide lattices.

ZIn Cu Cu*+ Zn* In*t* S§--
18 Zn 4s_| Y 30 ] 5
[ Band b\ L] ' 3pS
0 3d ',._gg_' 34° 3 |,
R A = e A
St Tevi  Sevi 85!  Bonds \—— V/ 45
H -t H 105ev; UV
-0k — g Excited es! | \ -0
L ! = v oA 4.
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Fia. 28.—8ame as Fig. 27 for sinc sulfide. The positions of levels of neutral sinc and cop:er.
and of Cutt are given on the left. (See footnote 1 on page 450.)
At the actual interatomic distances, the discrete levels of the free ions
broaden into bands characteristic of band structure, and excitation
bands appear' below the first unoccupied zome, which is adiabatically
connected with the lowest level of free Znt, The energy required to
remove an electron from*a negative ion and place it on a zinc ion at
infinity, as found from these diagrams, is about 16 ev for zinc oxide and
10.6 ev for sinc sulfide. This transition evidently corresponds to
ionization. The energy required to carry the electron from a negative
ion to a near-lying zinc ion is less, of course, as is indicated in the figures.
The first absorption band of zinc sulfide has been measured roughly,
and the experimental work seems to show that the first-excitation band
~ should be about 6 ev above the ground state. The value of the absorp-
tion energy obtained from Fig. 28 is somewhat larger than this. Figure

11t is possible, however, that the excitation levels may merge with the ionization
levels,
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27 indicates that the first absorption band of zine oxide may correspond
to internal excitation of the zine ion, that is, to the transition

I+ (3d1%) — Znt+(3d%4s).

If this is true, the first absorption peak of zine oxide should lie near
1200 . There does not seem to be any work on the ultraviolet absorp-
tion properties of this salt.

Diagrams® such as Figs. 27 and 28 may be constructed for any ionic
crystal for which the necessary data are known. Some additional uses
for these diagrams will be found in Sec. 113:

108. Equilibrium Atomic Arrangements for Excited States.-—The
orderly lattice arrangement of atoms in ecrystals that is determined by
X-ray analysis is the equiiibrium distribution for the lowest electronic
state. There is no reason for expecting the same distribution to be
stable for excited electronic states of insulators. In fact, there is reason
to expect the opposite, for each excited electronic state of diatomic or
polvatomic molecules has its own equilibrium atomic arrangement.
Since the dependence of excited electronic levels on atomic arrangement
has not been investigated in a detailed and quantitative way, we shall
have to be contented with qualitative pictures.?

Let us consider an ideal ionie erystal, such as one of the alkali halides
or one of the alkaline earth salts. If we neglect thermal effects, the atoms
occupy lattice sitesin the normal electronic state. Suppose that we now
use electrons or light quanta to excite the erystal to a higher electronic
level. An excited electron and a hole are then produced, and the two
should move together if the excited state is not conducting. The crystal
still has the equilibrium atomic arrangement of the lowest level immedi-
ately after electronic excitation because'of the Franck-Condon principle.
Now, as we saw in the last chapter, the excited levels occur in systems
of quasi-continuous bands, each level of which corresponds te an exciton
moving with a definite velocity. If the exciton is produced by optical
absorption, it usually is moving slowly, because the selection rules forbid
transitions in which the wave-number vector of the exciton lies very
far from the center of the zone.and beecause the group velocity. gradk
¢(k)/h is zero when the wave number is zero. This selection rule is not
valid, of course, if the excitation is induced by means of cathode rays or
alpha particles, which lave appreciable momentum; hence, the exciton
may move more swiftly in these cases. If the exciton is regarded as an

1In both Figa, 27 and 28, the positions of levels of neutral atoms are represented
on the left, The jonization energies of these atoms should be altered because of
polarization effects such as thosc diseussed in Sec. 112. .

3 Cf. A. von Hieerr, Z. Physik, 101, 680 (1936). F. Serrz, op. cif., p. 150; Trans.
Faraday Soc., 86, 74 (1939). '
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Energy

of the possible positiona of normal
and excited states of an insulator
as functions of atomic coordinates.
The lowest curve corresponds to the
normal state and its minimum deter-
mines the norn:al atomic arrangement.
The croas-hatched region corresponds
to the levels of moving excitons.
Their minima are at position A4
because the lattice cannot come to
complete -equilibriura when the exei-
tons move. The ‘discrets level that
separates from this band represents
the state of an. exciton st rest. Its
minimum is not at A, because the

interactions between normal and ex-

‘excited atom into oscillation about a new equilibrium position if the
an exciton that is moving at 10® cm/sec
times this. We may expect, however, w
it dissipates this vibrational energy.
this state because gradx €(k) is zero at Iy
the exciton comes to rest should be set
the atoms are strongly coupled. Thus,
tion period, by the production of elastic
cited atoms are different.
is shown symbolically in Fig. 29. The abscissa represents the configura-
normal atomie arrangement of the lattice. The second curve represents

excited ion, it is eagy Lo see that the lattice near it is under stress for the
normal atomié arrangement, for an excited ion aud a normal ion usually
exciton were permanently at rest. If it is moving even slowly, however,
the atoms near the exciton may not have time to move very far during the
to traverse a distance of 10~% cm is 10~4

sec, and the time required for an atom

that some lattice vibrations about the B

normal atomic positions are stimulated

Thus, the exciton should eventually

drop to the lowest exclted energy state, -

the lowest point of the exciton band in Configurational Coordinates
simple crystals (¢f. Sed. 96 of the pre- ¥i1a. 20.—Sochomatic representation
into violent vibrational motion because

of ‘the stresses mentioned above. This

the localized vibrational energy should

be dissipated duriug a time of the order

waves that radiate from the vibrating

atom. ' .

tional coordinates of the lattice, that is, the interatomic distances, and
the ordinate is the energy of the crystal. The lowest level corresponds
the lowest excited state, in which the exciton is at rest.. The minimum
B corresponds to the values of the configurational coordinates for which

interact differently with their neighbors. These stresses would set the
short time thai the exciton is near. For pxample, the time required for
to make one oscillatior is about ten
and that the exciton is slowed because
and it should ordinarily be at rest in
vious chapter). The atom on which
kind of motion is strongly damped since
of 10~!2 gec, which is the atomie oscilla-

The possible‘dispoaiﬁoﬁ of the normal and excited levels of the cryétal‘
to the normal electronic state so that its minimum A corresponds to the
the excited atom and its neighbors are at equmbﬁm.' The quesi-
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oogt.muous band Jf levels represents the excited states in which the
exciton is in motion. These levels have their minima at the same point
as the normal state because the stresses are not localized when the
exciton is in motion. During excitation, the system jumps from A to
A’; as soon as the exciton comes to rest, the state of the system ‘“slides”
toward B with the emission of elastic waves.

There are two conceivable arrangements of the normal and excited -
levels. In the first (Fig. 30a), the excited state has its minimum B
within the minimum of the lower curve. In the second case (Fig. 30b),
the minimum E is outside the lower curve. The system slides to B
in the first instance and may then jump to the point C' on the lower
curve by emitting a light quantum. It slides to D in the second case

A

Energy

Configurational Coordinates Configurational Coordinates
(W)
Fra. 30.—Possible arrangements of the normal level and the level of an exciton at rest.
In @ the minimum of the excited level is inside the lower curve so that fluorescent emission
of frequency » may follow absorption of »i. In case b the minimum of the excited lcwel_
is cutside thu.t of the normal level. Hence, fluorescence cannot ocour.

and may then slide either to A or to E. All the energy is dlsmpated
immediately in the form of lattice waves in the first case. The system
may rest at E indefinitely in the second, storing a part of the excitation
energy. At temperatures above absolute zero, the system oscillates
about E and should eventually pass over D and down to 4. The crystal
may be fluorescent in the case of Fig. 30a, since some of the absorbed
cnergy may be radiated as light; however, it is not fluoreseent in the
second case. Fluorescence has never been observed* unambiguously te
accompany absorption in the fundamental bands of ideal crystals, which
indicates that the second case occurs commonly.

C. VALENCE CRYSTALS

109. The Zone Structure of Diamond.—In spite of the importance
of the subject, practically no quantitative work has been done on valence

i See sbid.
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binding in crystals. The reason for this lack, as we mentioned in Sec. 97,
is that the simplest atoms entering into valence crystals have so many
valence electrons which are appreciably affected by the crystalline binding
that the computations are more complicated tha~ for simple metals or
salts. The existing work consists of a semiquantitative investigation
of the zone structure of diamond and a qualitative discussion of the most
appropriate form of the Heitler-London functions for the atoms in
valence crystals with a tetrahedral arrangement of nearest neighbors.
Carbon and silicon are the principal atoms to which these considerations
apply. :

The fact that the lowest state of atomic carbon is degenerate and
that diamond is an insulator shows that the energy levels of the entire solid
vary very much as the atoms of the lattice are brought together. The
lowest level is highly degenerate at infinite separation, and it must
broaden into a dense band ‘just as the '
lowest levels of metal atoms do. Since 2
the crystal actually is an insulator, we t.&fé'{&f&;f?f

must conclude that a single level 3
separates from this dense array and i§ Continwum
the lowest level at the observed inter- {

atomic distance (¢f. Fig. 31). A simi- Single?
lar situation oecurs in ionic crystals,
for the highly degenerate state cor- r—
responding to free neutral atoms is levels of diamend on  teratomis
more stable than the state of free ions distance (schematic). At large dis-
at infinite separation; in this case, m“t?aht’::;:,‘“:” - lanly o
however, the two states cross before diserete level separates at smaller
appreciable splitting occurs, since the %tance=

Madelung energy favors an ionic state. For this reason, the situation
is much easier to understand in ionic crystals. A simple picture of the
‘same type has not been developed for diamond, although the separation
of the singlet level can be shown to occur in the band approximation, as
will be seen below. In fact, the separation occurs for such a simple
carbon field that we may expect the effect is determined primarily by
the crystal structure, that is, is connected with the way in which wave
functions are diffracted by the diamond lattice.

a. The Band Approximation.—Kimball,* who is responsible for a semi-
quantitative zone treatment of diamond, satisfied boundary conditions
at the center points of the four faces of the atomic polyhedron, which is
shown in Fig. 3, Chap. IX. Theré are two polyhedra of this type ix
the uynit cell. The boundary conditions, which were taken as the con-
tinuity of ¥ and its normal gradient at these points, require that y be

t @Q; E. Knupavry, Jour, Chem. Phys., 8, 560 (19335).

Energy
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expanded in terms of four surface harmonics. Kimball took these to
be one & function and three p functions, the field that was used to obtain
the radial parts being the one derived by Torrance for the 2s and 2p
functions of atomic carbon. The energy bands are showm! in Fig. 32.
The atomic 2s level splits into two zones since there are two atoms per
unit cell, whereas the atomic 2p function splite into six zones. These
two systems of zones overlap at r = 2.7a; and then split into two new
systems which contain four zones'each. Two of the lower set of gones
have zero width in Kimball’s approximation, but they probably would
have finite width if more boundary
points and surface harmonics had
been used. Since the lower zone
gystem is just exactly filled by the
gight electrons- per unit cell, the
‘drystal is an insulator at the ob-
served lattiee distance in Kimball’s
approximation. There is no iso-
lated low-lying group of four zones
at. large distances, however, so that
— the crystal should be a metal when

r r is greater than 2.7a;. From the

Fro. 82~The bead structure of dia- standpoint of the entire crystal, this
mond. It should be noted.that the s-p mMeans that a single level separates
bands overlap and break into two soparate  from a continuum when ris 2.7a,.
ontire golid this corresponds to the bebavior  Kimball found that his initial
of Fig. 31. (After Kimball.) _ and final charge distributions were
not the same, which shows that his starting field was inaccurate. That he
still obtained the separation of bands which is needed to make diamond
an insulator suggests, as we mentioned above, that this separation is
determined primarily by the ecrystal strueture. Thus, it is likely that
carbon would be a metal if the atoms were placed together in one of the
simple cloge-packed lattices.

The difference between the filled and unfilled bands of Fig. ‘32 is 7 ev,
whlch corresponds to an absorption peak near 1700 A. It is probable,
however, that excitation levels lie between these bands. The energy-level
splitting is so large that the atomic-perturbation method of Sec. 96
canrot be used as an argument in favor of these levels. Instead, they
should be treated by a more general method, sueh as that suggested by
Wannier.

b, The Heitler-London Approzimation.—The properties of tetravalent
carbon in saturated hydrocarbon compounds suggest to the ehemist that

1 A gimilar figure has.been derived by F. Hund, Physik. Z., 38, 838 (1835), on the
basis of simpler reasoning.
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carbon has tetrahedrai directional properties. For this reason, he assigns
a tetrahedral bond structure to carbon and assumes that this aton: prefers
to join with other carbon atoms or with hydrogen atoms along these
bonds. The structure of diamond supports this viewpoint since each
carbon atom in it is surrounded tetrahedmliy by four other carbon
atoms.

Pauling® and Slater? have independently established a set of principles
that may be used to understand this tetrahedral character. Let us con-
sider molecular hydrogen for a moment. As we have seen in Sec. 56, the
stability of this molecule arises from the following two facts: (1) The
field betweén two protons is stronger than the field of one. (2) Two
clectrons may share this region and minimize their repulsive energy by
correlating their motion so that they are not there at the same time:
When the binding is largest, the atomic distributions are distorted in
such a way that the wave functions extend along the line of centers, where
the field is largest. On the basis of results such as this, Pauling and
Slater suggest that the observed atomic arrangements in valence com-
pounds sre those for which the Heitler-Lon-
don functions have the largest peaks along
the line of centers. In applying this principle
te carbon, they assume that the carbon bonds
are 80 strong that the 2s and the 2p elec-
trons should be treated on an equal foating. # 0
Kimball’s results support this assumption,
for in his model the s levels split into bandw
that are as wide as the p bands and the two
types of state become thoroughly mixed. ank
Pauling found by direct computation that Fia. 33.—Polar plot of the
the four orthogonal functions which are f;‘;}';‘;‘ bond function (1) for
linear. combinations of one s function and
three p functions and which have maximum directional localization
extend toward the four corners of a tetrahedron. The equation of any
one of these may be placed in the form

J)G + § cos 6) 1)

where f(r) is a radial function and 6 is the polar anglé measured from the
directional axis. The angular part of (1) is shown in Fig. 33. -

It is evident that the Slater-Pauling principle cannot be rigorous, for
earbon also forms a stable erystal in which the coordination is not tetra-
hedml namely, graphite.

AL, Pmmm, Four. Am, Chem, Soc., 58, 1367 f. {1931)
*J. C. SLaTaR, Phys. Rev., 87, 481 (1931)

n/2




456 THE MODERN THEORY OF SOLIDS [Crar. XIII

The electronic distribution that can be derived from Kimbalil’s model
undoubtedly shows directional preperties similar to those of Pauling’s
tetrahedral functions. Since neither schende has been used to make a
quantitative computation of the cohesive energy of diamond, it is not
possible to say which would give a better binding energy.

The same principle may be applied in discussing other simple valence
bands such as those that occur between silicon atoms in solid silicon or
between silicon and' oxygen in silica. The second case, in which each
.silicon atom is surrounded by four oxygen atoms and each oxygen atom
by two silicon atoms, is complicated somewhat by the fact that oxygen,
in place of having two electrons available for binding, actually lacks two
electrons from a complete p shell. As we have seen in the previous
discussion on solids, these holes may be treated like positively charged
electrons. Hence, we may say that the -silicon-oxygen bond in silica
oceurs between a directed valence electron of silicon and a directed hole .
of oxygen. We should expect these bonds to be polar because holee
behave like positive charges.

D. SEMI-CONDUCTORS

110. General Principles.—There are two types of semi-conductor,
namely, those which contain impurities and those which do not. Many
‘polar salts, such as zinc oxide, belong to both classes. We shall be prin-
cipally interested in pure semi-conductors, since their experimental
properties have been studied more systematically than those of impure
semi-conductors.

The principles determining the electronic conductivity of pure salts
that have been given appropriate heat-treatment were first recognized
and developed by Schottky and Wagner.! They pointed out, for exam-
ple, that the electronic conductivity of pure zinc oxide can be associated

with interstitial zinc atoms the presence of which may be understood
in terms of ordinary principles.of statistical mechanics. We shall
present their work in a form that is modified in keéping with the treat~
ment of statistical mechanics used in this book.

There are two main divisions of pure semi-conductors,? namely,
those which conduct by free electrons and those which conduct by holes.
These two types may be distinguished experimentally by the sign of the
Hall coefficient; for the first class has the normal sign, that is, the same
sign as the alkali metals and bismuth, and the second has opposite sign.
It is easy to construct a system of electronic energy levels that explains

! W. ScrotTKY and C. Waaxnn, Z. physik. Chem., 11B, 163 (1830). C. Wlen,
Z. physik. Chem., 233B, 181 (1933).

1 See, for emnple, the review by B. Gudden, Ergebnisse ezakt. Natur., 13, 223
(1934); also Chap. I of this book.
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qualitatively the difference between these two types. Consider, for
example, a typigal insulator having the system of filled and unfilled
levels shown in Fig. 34a. If we add foreign atoms or distort the atoms
in another way, we may expect to introduce new electronic levels in the
fr rbidden regions. The electronic charge associated with these states
is localized about the distortion or impurity atom.! The detailed
properties of the additional levels vary from case to case and should be
discuseed separately in each one. If all the discrete levels are occupied,
as in Fig. 34b, the electrons near the conducting bands may be thermally
excited to this band, thereby making the crystal an electronic conductor.
We discusséed the properties of this type of semi-conductor in Chap. IV

mmm

Fw 34.—(a) The ﬁlled and unfilled levela in an insulator. (b) The discrete impurity
level is oceupied by an clectron. This substance mmay be an electronic semi-conductor if
the electron may be thermally excited to the empty band. (c) The level is unocecupied.
This substanee may be a hole semi-conductor with an ‘anomalous’ Hall coefficient, if
ﬁtl.ms rg:}';dbe thermally excited from the filled band to this level leaving free holes in

ower .

a.nd found that the low-temperature conductivity o should va -y according
to the equation

T = n,! 4—\—/: Y (2«:::*1;’1‘)*8 BT (O
where n; is the number of bound states per-unit volume, }, is the mean
free path, m* is the effcctive mass of the free electrons, and Ae is the
activation energy for freeing the electrons (¢f. Fig. 35). The sign of the
Hall coefficient is normsl in this case. If the discrete electronic levels
are unoccupied (Fig. 34c), the electrons in the filled region may be
thermally excited to the lowest unoccupied level, leaving free holes in
the band. These holes should behave like:free positively charged elec-
trons and should give the solid a Hall coefficient whose sign is opposite
to that of the preceding case. Equation (1) should also be valid in this
case-if the constants ns, lo, m*, and Ae are reinterpreted in terms of free
~ and bound holes. We shall discuss the electronic levels of several solids
in more detail below. '

1 The behavior of models of this type has been discussed by A. H. Wilson, Proe.
Roy. Soe., 183, 458 (1931), 134, 277 (1931); R. H. Fowler, Proc. Roy. Soc., 140, 505
{1933); “1- 56 (1933).
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At temperature T, the equilibrium state of an insulator is determined
by the condition that its free energy

A=E-TS

be & minimum. This quantity is simply E at zero temperature so that

»
WO

3
o
X
X

A

Q—H‘

Fig. 35.—Schema-
tic representation of
the excited and normal
levels in a semi-con-
ductor containing an
impurity atom. The
minimum of the lower
ocurve ocorresponds ‘to
the equilibrium atomic
arrangement when the
discrete level of the
foreign atom is oc-
cupied. Tha minimum
of the upper continuum
corresponds to the
enuilibrium arraige-
ment when the clectron
i8 ioniziw. The two
minima are differant
because the ionized for-
eign atom does mnot
interact with the lat-
tice in the same way
as the un-ionized one.
For this reason the
energy Ae for thermal
ionigation is usually
less thaun the energy
{or optical ionisation,
for the second process
must obey the Franck-
Condon principle and
corresponds to a verti-
cal jump in this dia-
gram.

the equilibrium condition presumably demands that
the ideal crystalline arrangement be most stable at
this terperature, since ¥ probably is then a mini-

‘mum. This arrangement need not be the most

stable above the absolute zero; for if the entropy
associated with a distorted arrangement, such as
that caused by placing some atoms in interstitial
positions or by removing normal atoms, is large
enough, the distorted state is more-stable than the
normal on¢. Let us consider a simplified system
consisting of a monatomic lattice of N atoms. We
shall let ¢ be the energy that is necessary to remove
one atom from a typical lattice site-and to place it
at the surface in a normal position. It will be
assumed that this energy is independent of the
number n of atoms removed for small values of #.

,If we neglect any changes in the vibrational energy

that may occur as a result of this transposition, the
total entropy change is determined by the number
of possible ways in which the n vacancies may be
distributed among the N sites. . This number
evidently is N!/nl(N — n)! so that the entropy S is

- N! n
Thus, the free energy
A =m-'-—kT,nlug§ 3)

is a minimum when

€
ﬂ —
R

N

This result shows that we should expect some deviations from the ideal
crystalline state at any finite temperature. If eis 1 ev and 7' is 1000°K,
which are values that can reasonably occur, we find

n

N. —l-‘l
w . 10-48,
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The . principles used in this computation may be applied to other
cases, most important of which for the theory of semi-conductors are the
polar crystals having the composition M.X,, where M is a metal atom
and X is an electronegative atom. The four independent types of
deviation from ideal arrangement that may occur in these solids are as
follows: Therx may be vacancies (a4) in the metal lattice or (b) in the
electronegative lattice; and there may be (c) interstitial metal atoms, or
(d) interstitial electronegative atoms. These four types of lattice defect
may occur in any one of the various possible combinations. We shall
discuss a few actual cases in the following sections.

111, The Alkali Halide Semi-conductors.—Hilsch, Pohl,! and their
numerous collaborators have made extensive investigations of semi-
conducting alkali halide crystals that are produced by heating these
solids in alkali metal vapor until the'r become colored. Figure 36 shows

A ——
<00 Ba0o 400 Baoo 400 B0 410 Saco 400 seor
ucl| {NaCl fxct RbCH Tes

4 3 2 3 2 3 2 3 2 3 2

. V.
F1a. 36.—F-center absorption bands at room temperature in various alkali halides. The
wave-length scale is in units of 10~7 em. (After Pohl.)

the spectral dependence of the new absorption band in several cases.
Identical discoloration may be produced by X-ray or c¢athode-ray
bombardment. The discoloration i8 not so durable in these cases,.
however, for it may be removed by relatively mild heating that does
not affect the discoloration produeed by heating the crystals in alkali
vapor. From the intensity of the absorption bands, it is possible to
determine the number of absorption centers that are responsible for the
discoloration. This number depends upon the method used to prepare
the colored crystal and varies frora 10'* to 10'® per cubic centimeter
in the specimens ordinarily used in experiments. Pobhl has named these
absorbing centers ‘“‘F' ceniers,” (Farbzeniren). We shall use the same
term.

The electronic conductivity of the alkali halides containing F centers
becomes appreciable above 200°C and is superimposed upon the ionic
conductivity, which is also appreciable. The two may be separated by
measuring ‘either the conductivities of separate clear and colored speci-
mens or ‘the conductivity before and after the F centers have been
removed. This removal can be accomplished by placing the colored

1 See the survey article by R. W. ‘Pohl, Physik. Z., 39, 36 (1938).
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crystal in & constant field at the temperatures at which the conductivities
are measured. The F centers then migrate to the anode and dissppear.
During this procedure, the conductivity drops, as is shown in Fig. 37,
Electronic conductivity may be induced at low temperatures by illu-
minating the crystal with light in the absorption bands. We shall
discuss this photoconductivity in detail in Chap. XV,

The ionic conductivity of the alkali halides usually is caused by the
migration of both positive and negative ions, as may be determined by
transport measurements, such as those discussed in Chap. I. Frenkel!
first pointed out that the migrating positive and negative ions probably
do not move by squeezing past one another, as they would in an ideal
lattice, since the activation energy® that .
would be required for this process is much
larger than the activation energies deter-
mined by measurements of the tempera-
turc dependence of conductivity. He
cstimated that the activation energy in an
idcal lattice would be about the same as the
cohesive energy. This is about 7 ev in
sodium chloride, whereas the observed .
value® of the activation energy is only 1.9
ev. For this reason, Frenkel postulated
that alkali halide crystals normally contain -

[-]
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Fic. 87.—Decrcase in the
current of colored potassium
chloride as the F centers are
removed by conduction. The
initial conductivity is due to
ions and electrons, the final
conductivity to ions alone. The
temperature "was b580°C;  the

vacancies in both the positive- and negative-
ion sites. We may conclude that these
vacancies are present in equal numbers in
uncolored crystals, for otherwise these
crystals would be charged. They presum-
ably have the same thermodynamical origin

field intensity was 300 volts per

o (Aftor Pokt) as the vacancies in the simple monatomic

lattice discussed at the end of the previous
section and ean be discussed in terms of the theory used there.

It is possible to give two reasonable pictures of the discoloration of
alkali halides by X rays. - In both pietures, it is assumed that the primary
action of the X rays is to free an electron from one of the inner shells
of an atom of the lattice and that the discoloration center is associated
with the absorption properties of this electron when it subsequently
becomes- trapped in the lattice. The most apparent trapping positions_
are the vacancies in the negative-ion lattice and the positive ions. The

1), FRENKEL, Z. Physik, 86, 652 (1926).

* The activation energy is the least energy required to interchange two atoms.
This is discussed in detail in the next chapter.

' W. Lenrerot, Z. Physik, 85, 717 (1933).
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vacancies should have an affinity because thc Madelung potential is

positive at thesc positions, whereas the positive ions should have an

affinity because an electron should be able to polarize the surrounding

lattice and produce a stable digcrete level lying below the conduction
bands discussed in Sec. 106 of this chapter. Evidence obtained from

investigations of photoconductivity seems to support the first interpre-

tation of the trapping position and rule out the second. If any alkali
atom could trap an clectron and produce an F center, the mean free path
- for trapping of frec electrons should be independent of the density of
F centers and of vacancies in thé¢ negative-ion lattice, since the number
of these is far less than the number of alkali metal ions. The experi-
mental work on the photoconductivity of crystals containing F centers
shows that the density of trapping points is far less than the density of
alkali metal ions and depends upon the density of F centers.. Hence,

it may be concluded that F centers are electrons trapped in vacant
halogen-ion gites.! There has been no experimental evidence to show
that electrons are ever trapped by the positive ions.

When an alksali halide crystal is heated in alkali metal vapor, some of
the atoms of the vapor presumably become absorbed on the surface and
lose their electrons. These electrons then wander into the crystal and
occupy vacant halogen positions, producing F centers. The ions left
behind may then diffuse into the lattice, decreasing the number of
positive-ion vacancies and keeping the volume of the crystal unchanged.
Let us suppose that the crystal is at temperature T and that it normally
contains n vacancies in the positive- and negative-ion lattice. In addi-
tion, let us suppose that it is placed in a container of which the volume ¥V
is much larger than that of the crystal and which contains N4 neutral
alkali metal atoms in vapor form. If n, atoms are absorbed into the
crystal, the number of vacancies in the positive- and negative-atom sites
is decreased from n to n — ne. The mixing entropy associated with
the vacancies is

—2k(n — nr) 108 =5 (1)

where N is the number of ions in the lattice. In addition, the nr electrons
that occupy the halogen sites have the entropy

—knr log %’: (2).

sinee they may occupy any of the N sites. The vapor has the entropy

1 This interpretation of F centers is due to J. H. de Boer, Rec. trav. chim. Pays-Bas,
56, 301 (1937), and hae been developed by R. W. Gurney and N. F. Mott, T'rans.
Faraday Soc., 84, 506 (1938).
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~k(Na — n») log‘g!—‘-g—-ﬂfv) 3)

where
¢ = Y (2muky
= pal s
in which u is t.hé_ atomic mass. Thus, the total free energy as a functien
of nr and n is

A(ng,n) = nye + (n — np)e + kT[2(n — nr) log n }ﬂ" + ny log % +

s = ) log Xz | qq)

where e is the energy required to dissociate an atom into an F center and

19

10

per

KBr

S

—o—o- 680°

Number of “Farbzentren
Cm3ofthe Crys
=

10 T e 600 —
/4’1 . —t e 520.
T —o—a- 440°
0Pl

05 P" o .
_ - Number of k~Atoms per Cm¥of ths Vapor
Fra. 88.—Relation between ‘the density of F centers in 8 potassium bromide crystal

m;:l the density of alkali metal atoms in the vapor for different. temperatures. (After .
Pohl.) .

an ion and ¢ is the energy required to form normal lattice defects. Then
A is 8 minimum-when

iy > '
According to this result, the ratio of the concentration of F centers to the
concentration of atoms in the vapor should be constant. - Figure 38
shows that this relation is obeyed in KBr over a wide range of con-
centrations.’ In addition, the temperature dependence is the same as
- that predicted by (3). Rogener finds experimezntally that ¢ = —0,25 ev
for KBr and —0.10 ev for KCl.

! Ponw, op. cif.
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If the equilibrium density of F centers is established at one tempera-
ture and alkali metal pressure and the crystal is then cooled, the excess
F centers should coagulate into colloidal globules of alkali metal unless
the cooling takes place so rapidly that the higher density is frozen in.

Following a plan of Gurney and Mott,! we may obtain a rough idea
of the energy levels of an F center by using classical methods. The
Madelung potential at a vacant negative-ion site is — Ae?/r, as long as
the surrounding ions havp perfect erystalline order. Here, A is the
Madelung constant and r, is the ncarest-neighbor distance. This poten-

e2
I;EF

o —E————===

Fi:. 30.—The potential trough for an electron - ear a halogen-ion vacancy. The
full curve represents the poteutial when polarization is neglected, the dotted curve the
potential when it is not.

tial is of the order of 9 ev for sodium chloride. At large distances from
the vacant site, the total potential is

-C 4V 6)

where Vi is the periodic Madelung potential of a normal lattice and
¢?/r is the potential arising from the vacancy. The mean value of Vy
is very close to zero for an electron placed in an alksli halide crystal (¢f,
Sec. 91), and so we are justified in dropping it from (8) in a good approxi-
mation. The remaining potential then varies smoothly between the
value — Ae?/ry at the vacant site and the value —e?/r at large distances,
in the manner shown in Fig. 39. If there were no electron in the vacant
site, the surrounding ions would be displaced from their equilibrium
positions for the normal lattice. We shall assume, however, that they
are nearly in their normal positions when an electron is present, for this
electron should have nearly the same electrostatic effect on the neighbor-
ing ions as a halogen ion. When the electron is at large distances from
the site, it is partly screened from the excess positive charge by the
polarization charge that it induces in the crystal. Hence, the potential
at large distances should vary roughly as e?/n% instead of as e?/r, where
n is the refractive index. Thus, the potential well in which the eleetron
is trapped should have the form of the second curve, Fig. 39. This
trough has an infinite number of discrete levels, which end in a series

! R, W. Gur~NEY and N. F. Morr, Proc. Phys. Soc. (sup.), 49, 32 (1937).
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limit at sero energy, since the field is conlomb-iike at large distances.
The lowest of the discrete states is an s state, and the next two are s and
p states. The optical transition from the lowest & state to the lowest p
state should have the greatest probability and should correspond to the
absorption band of the colored crystal. This transition should not lead
directly to photoconductivity, for the excited electron is bound to the
vacant site just as the normal electron is, The excited state lies nearer
the continuum, however, so that the probability for a thermal transition
- to the continuum is higher from it than from the lowest level. In order
to account for the observed photoconductivity, we must assume that the
electron actually becornes free by thermal excitation. The probability
for this excitation should decrease with decreasing temperature and
vanish at absolute zero. This disappearance of photoconductivity near
the absolute zero is actually observed.! We shall discuss the effect
further in Seec. 134. :

F centers are not the only color centers that may be introduced into
alkali halide crystals,? Thus, Pohl and his coworkers have found that a
stoichiometric excess of halogen atoms may be produced by heating the
crystal in halogen vapor. Most of the coloration lies in the near ultra.
violet -region of the spectrum in this case. Although these centers
have not been investigated so fully as F centers, it seems probable that
they are neutral halogen atoms in halogen sites. The F center absorption .
band may be destroyed and a new band may be introduced in the far
ultraviolet by heating a crystal containing F centers in hydrogen vapor.
In this case, it is believed that the hydrogen atoms diffuse to the F
centers and form H~ ions at these positions. The far ultraviolet absorp-
tion band of these “U centers” presumably corresponds to the first
excitation frequency of the internally absorbed hydrogen ions.

112, Zinc Oxide.—Zinc oxide that has been formed at low tempera~
tures is a pure white substance having no appreciable electronic con-
ductivity. After being heated to a high temperature, it develops a
brownish hue and is & good electronic conductor at room temperature.
A preliminary discussion of these properties was given in Sec. 37, which
deals with the free-electron theory of semi-conductors. We saw there
that the room-temperature conductivity obeys Eq. (1), Sec. 110 of this
chapter. For the purposes of this discussion, this equation may be
placed in the form

_¢
o= Ae *T ¢}

1 Ibid. :
? Recently H. Pick bas investigated the optical and electrical properties of colored
halides containing divalent strontium halides, A nn. Physik, 85, 73 (1939).
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where ¢ and A are not strongly temperature-dependent in the range over
which conductivity is measured. It was also seen in Sec. 37 that these
constants are influenced by the pressure of oxygen in which the specimen
is heated. Since A is related to the mean free path l, and the density of
centers ny by the equation

A = 0.0241n,} Tt ohm™! em™!

and since Hall-effect measurements show that I, is practically constant
for a given specimen, we may conclude that the variation of 4 with
oxygen pressure implies a variation in n,. This variation has been
investigated by Wagner and Baumbach;' we shall now discuss their

results.
Log g+3
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Fia. 40,~Dependence of the conductivity of zine oxide on vapor pressure of oxygen
{After Baumbach and Wagner.)

Figure 40 shows the variation of high-temperature conductivity
with oxygen vapor pressure for a specimen that has been heated at two
temperatures. Practically all the n, bound electrons are free at the
temperatures at which these measurements are made, for Ae¢ then is
appreciably less than k7. Hence, the curves of Fig. 40 give directly
the dependence of n, on oxygen pressure po. They show that

Ny = CPo

B

(2)

where n =~ 4.2.

All the experimental results may be explained satisfactorily if we
assume that the heated zinc oxide loses oxygen atoms from the surface
and leaves excess zinc atoms, which become ionized and diffuse into the
interstices of the lattice. Wagner has ruled out the alternsative possi-
bility that vacancies are produced in the oxygen lattice and that the
conduction electrons are those which might normally occupy these
vacancies by showing that the negative-ion transport number is very
small compared with the positive-ion transport number. The small
observed positive iomic current is carried either by ionized interstitial

1 H. H. v. Bavmiacs and C. WaanNer, Z, Physik Chem., 388, 189 (1933).
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zinc atoms or by the normal zinc ions. There is ample room for inter-
stitial zinc atoms in the zinc oxide lattice because it has the porous
wurtzite structure. _

The displacement of equilibrium.with changing oxygen pressure may
be treated in the following way. We shall let ¢’ be the energy required
to produce a singly charged interstitial zine ion, a free electron in the
lattice, and one atom of gaseous oxygen, which is attached to another
oxygen atom-to form an O; molecule. We shall let n be the number of
interstitial Zn* ions and No, the total number of O; molecules in the
gas, where No, is much larger than n. The total free energy then is

N03+"'2‘)
A(n,No,) = ne’ + kT nlog-+nlog0+(No,+ )logﬁ— o
3)

where the first entropy term is that of the interstitial ions, N being the
total number of interstitial sites, the second term is the entropy of the
irre-electron gas, and the thnrd term is the entropy -of the O;.molecules.
The equilibrium value of n is’

: o

nN}, = Bo T @

where B is a constant. Hence, n should vary as po,~t according to this
simple theory. 'I‘he result is in reasonable agreement with the observed

variation of po, * 3

In the first approximation, we might treat the energy levels of the
interstitial zinc atoms as though they were free atomsina honﬁogeneous,
polarizable medium. The principal effect of the polarizability! is to
decrease the distance between the ground state and the continuum,
as we have seen in the previous section. Supposc that we had a hydrogen
atom in & medium of refractive index n. Then, the potential between
the electron and proton would be —e?/n?r, where r is the radial distance
between the two particles. The presence of n in the potential energy
changes the Rydberg constant to R/n* where R is the normal value for
a free atom. The refractive index of zinc oxide is about 2, so that we
should expect the-ionization energy to be lowered by a large factor, of
the order of magnitude 10. The same qualitative result should apply to
" zine, which has an ionization potential of 9.36 ev, and should lower the
ionization energy of the interstitial atom to about 1 ev. The observed
values of ¢ in Eq. (1), however, are even lower than this value. For
example, ¢ is commonly less than 0.01 ev in a specimen that has beén

1N, F. Morr and K. W. GurNgy, Proc. Phys. Soc. (sup.), 49, 32 (1937). .
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heated for a long while in a vacuum. Moreover, Fritsch (¢f. Sec. 37)
has found that ¢ in Eq. (1) varies with the pressure of oxygen and has
shown that ¢ increases as the density of interstitial atoms decreases.
This effeet indicates that the interstitial zinc atoms interact with one
another and in some way . decrease the distance between the bound and
free levels. The density of interstitial atoms is of the order of 10,
according to Hall-effect measurements, so that this interaction is con-
ceivable only if the radius of the interstitial atom is ten times larger than
the radius of a normal zinc atom. Now, the radius of a hydrogen atom
in & medium of index n would be n? times larger than the radius of a
normal atom. Thus, it is possible that the electrons in the interstitial
atoms move .in very large orbits because the surroundmg medium i
highly polarizable.

113. Cuprous Ozxide and Other Substa.nces That Involve Transition
Metals.—Cuprous oxide is a very useful semi-conductor, but its highly
intricate properties are only partly under-
stood. The most reliable evidence seems
to show vhat it has hole conductivity,
which indicates that it has ecither a
deficienoy of metal atoms or an excess of
oxygen atoms. Wagner and his cowork-
ers! have evidence to show that the copper
ion is much more mobile than oxygen, and Cd" Cu*

Cu* Cu* Cu? Cu*
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they conclude from this that the con-
“ducting oxide probably contains vacancies
in the copper-ion lattice. These are shown

Fic. 41.—Schemastic representa-
tion of copper vacanciesin cuprous
oxide. The vacancy leaves the
lattice with a deficiency of one
alectron.

" schematically in Fig. 41. Since the defi-

cient copper ion carries away an electron. the lattice should contain one
electron hole for each vacancy. This hole may normally reside either on
a copper ion, turning a Cu* ion into a Cu* - ion, or on an oxygen ion,
turning an O— ion into an O~ ion. Wagner suggests that the first
picture is more probable since coppér is commonly bivalent. According
to this view, the conductivity of cuprous oxide should result from the
motion of the hole from one copper ion to another. The most stable
"position for the hele should be near the vacancy since there is an excess
negative cliarge at that position.
"~ De Boer and Verwey? have attempted to make a systematic classzﬁca-
‘tion of other semi-conductors containing metals with partly filled 3d
shells. They computed the energy of electrons on atoms and ions near
vacant sites, using atomic-model methods similar to those that we have

1C., WaGNER, Physik. Z., 86, 721°(1935).
:J. H. pe Boer and E. J. W. Verwsy, Proc. Pkys. Soc. (sup.), 49, 59 (1937).





