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used in Secs. 95 and 107. We shall discuss. their results for threc cases,
namely, nickel oxide (NiO), cuprous iodide, and Ppotassium iodide.
Although the last case does not involve transition metals, they consider
it for comparative purposes.

In nickel oxide, which has sodium chloride structure and an oxygen
excess, some metal-ion sites are vacant. De Boer and Verwey conclude
that the electrons removed from the lattice with the positive ions are
taken from two nickel ions alongside the vacancy, leaving two Ni+t+
‘ions, These holes may be thermally freed making the crystal conducting.

Cuprous iodide has the zincblende structure and is a halogen excess
semi-conductor. The workers conclude that in this case there are
neutral iodine atoms at the iodine sites alongside the metal-ion vacancies,
This case should be contrasted with that of cuprous oxide, discussed
above, in which the hole is believed to reside on the positive ions. De
Boer and Verwey estimate that in copper iodide the hole would be 1 ev
less stable at a copper-ion site than at an iodine site,

Potassium iodide is also an excess halogen semi-conductor. The
computational evidence indicates that there are positive-ion vacancies
and neutral palogen_ atoms nearby, just as in copper iodide.

De Boer and Verwey also point out that the zone approximation
is much iess accurate for d-shell electrons than for electrons in s-p levels.
It is probably true that the lowest level of the entire solid in a salt con-
. taining an odd number of d electrons per unit cell is separated from the
higher levels by a large gap, even though the lowest levels should be
quasi-continuous in the Bloch approximation. A case in point scems
to be CoO which his the sodium chloride lattice with one cobalt ion per
unit cell. Since this ion has seven d electrons, the salt should be a
metallic conductor, according to the zone theory. Actually, it is not,
a fact which shows that the ordinary rules for predicting métallic char-
acter cannot always be applied to d-electron groups.

E. MOLECULAR CRYSTALS

114. Survey.—There has been no explicit work on the electronic
energy levels of molecular crystals. Apparently, it is safe to assume
that the lower excited states may be treated by the methods of excitation
waves to a high degree of accuracy. The widths of the excitation bands
should be small, for the intermolecular forces are small. One consequence
of this fact is that the spacing between the lower excitation bands should
be nearly the same as the spacing between the electronic levels of the
free molecules. In addition, there should be additional bands below
the ionization continuum that correspond to the transfer of an electron
from & molecule to one of its neighbors. - The principles which deterrnne
all the levels should be enough like those which have been used success- .
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fully in connection with ionic erystals to require no further comment
here. 'This subject probably could be developed considerably if experi-
mental investizations of the absorption spectra of molecular crystals
were carried out in the near ultraviolet and Schumann regions.

116. The Transition between the Solid Types.—In Chap. I, we
attempted to show the interrelation between the solid types by means
of Fig. 82. We may now discuss this diagram again, using our knowledge
of the electronic states. The idesl metals, which are on the left, possess
broad, incompletely filled bands when described by the zone approxima-
tion. They cannot be described adequately by the Heitier-London
approximation, since the lowest energy levels of the entire solid are
quasi-continuous.

As we move to the right in Fig. 82, the energy bands separate into
filled and unfilled sets. This transition takes place gradually, being
well advranced in metals such as calcium, bismuth, and graphite and
complete in diamond and possibly boron. The separation of bands also
occurs as we move from ideal substitutional alloys to ionic crystals.
In this case, substances such as Mg;Sb, occupy the intermediate positions
that correspond to bismuth, and so forth, in the monatomic case. Ideal
valence and ionie crystals may be deseribed in terms of both the Heitler-
London and the Bloch scheme. Neither is completely satisfactory when
used alone, however, even for qualitative work, and the two approxima-
tions must be combined to form a complete picture. The atomic fune-
tions must be greatly perturbed in constructing the best Heitler-London
functions for the lowest state of these solids. This is indicated by the
fact that the best functions in valence crystals have directional properties
and the best functions in jonic crystals are closely like the functions of
free ions. In the energy-level diagram of the entire solid, a singlet
separates from the quasi-continuous levels of metals as we move from
left to right.

Passing still farther to the right, we come to molecular solids, which
usually are described more satisfactorily by the Heitler-London approxi-
mation than by the Bloch approximation, since the Heitler-London
functions arc very nearly the same as those of the frec molecular units.
The lowest level of the entire solid is a discrete singlet, and the higher
levels that lie below the lommt.mn limit presumably are grouped mto-
narrow excitation bands.

Bemi-conductors are insulating erystals that have a.ddlt.lona.l electronic
states because they contain lattice defects or foreign atoms.



CHAPTER X1V
THE DYNAMICS OF NUCLEAR MOTION. PHASE CHANGES

116. The Adiabatic Approximation*.—We have treated the nuclear
coordinates as parameters in practically all the preceding discussion
because we were interesied primarily in the stationary electronic states.
We shall now examine the extent to which this procedure may be justified
and shall discuss & scheme for treating eleetronic and nuclear motion
together. This scheme was employed by Born and Oppenheimer! in
connection with the stationary states of molecules and has been used
subsequently in similar problems.?

The complete Hamiltonian operator, 9., for a crystal is

k2 At 10 e?
8o =~ Digati = Dyrhet 511

i
“Velesy, = 0, 2a &1y ¢ 0 i+ Vald, -0 0,80
=-H- EzM, )
The indices ¢, j, . . . , n extend over all electrons, and the indices
a, b, ..., fextend over all ions. M, is the mass of the ath ion, V. is

the electron-ion interaction potential, ¥V is the interaction potential
of the rigid ions, and H is the electronic Hamiltonian of Chap. VI, in
whick: the nuclear kinetic-energy terms were neglected. In Chap. VI,
V. was taken to have the form

S\V(r).
=

Since the icns wers regarded as being fixed, V(r;) had the periodicity of
the lattice. We must now include the dependence of V on the auelear
coordinates, since they will also be treated as dynamical variables.

' M. Born and J. R, OreeNERIMER, dnn. Physik, 84, 457 (1927).

*H. Perzer and E. Wicner, Z. physik. Chem., 1568, 445 (1932); E. WiGnNER,
Z. physik. Chem., 19B, 203 (1932); H. Evring, Jour. Chem, Phys., 8, 107 f. (1935)
(¢f. veview article in Chem. Rev., 1T, 65 (1935); L. Farxas and E. WiaNER, Trans,
Faraday Soc., 32, 708 (1936). A critique of this method as applied to problems in
cheinical resctions is given by E. Wigner, Trans. Faraday Soc., 34, 29 (1938); see
alse J. O, Hirscbielder snd E. P. Wigner, Jour. Chem, Phys., 7, 616 (1939).
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Although the exact characteristic functions & of . usually are
intricate functions of the z and the {, we shall attempt to use approximate
solutions of the form

Q‘M(:B;, =" ',zngslg e '4ff)=

‘1’,(21, SRR S S N rff)Xu(El: N O t): (2)
where ¥, is an electronic function of the type used in previous chapters,
in which the ¢ were regarded as parameters, and xn. (¢, - - - , ) isa

function of the .nuclear coordinates. This approximation is commonly
called the adiabatic approximation, because at each instant the electronic
distribution i taken to be the same as though the nuclear coordinates
were at rest at the positions they have at this instant. This assumption
obviously can be true only if the electrons move much more rapidly
than the ions. We shall see presently that the aceuracy of the approxi-
mation depends on the fact that ionic masses are great relative to the
electron mass.
If the function (2) is substltuted in the equation

5= A% ®

and if it is recalled that
H‘?,-(I:,, Ty By El: T Ty Sf) = Er(fl: T, rf)wh '4) ’
it is found that

h2 1 2
22}!! Xrala¥, — EE grado ¥, - gradc Xra — éiﬁ;‘llr'ﬁuxva -+

a a

E!‘(£1: T :ilf)‘ler:a = '_—\l' = Q)

Multiplying this by ¥,* and integrating over the electronic coordinates,
we obtain

_ [_"2“:2?;;. |
EH; (Jl\l',tgmd w,df) - grad, x_,,] - Eﬁ?‘i;&xﬂ: +

h? ro
Er{el: T T gf)x"n = "i(;:é

It will now be shown that the first term may ordinarily be neglected for
- statienary-state problems. In order to do so, two extreme cases will be

considered, namely. that in which the electrons are perfectly free and that
- in which they are completely bound.

‘I',.‘A.\l',d-r(zl, Rty zn)]X}ﬂ -

(%
.\!’)’a
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The one-electron wave functions are of the form e?**T in the first
case and hence are practically independent of nuclear coordinates.
Thus, the first two terms in (6) are vanishingly small.

In the opposite case, we may, for simplicity, regard the wave function
as though it were composed of one-electron functions of the type

Jul@i = &y ¥i — N0 2i — o). )]
Under this condition, we have the relation ’
}3 grad, ¥ = —2 grad; ¥; 8)

hence, the first term in (6) is simply

%E f‘l',*(- %%A:)‘I’,dr 9)

if it is massumed that there is only one type of ion. Since the quantity
(9) is equal to m/M times the mean kinetic energy of the electrons, it is
normally negligible because the ratio m/M is at most 1/1,840.

The second term also may be dropped in stationary-state problems,
for ¥ can then be chosen as g real function. Hence.

: f\?* grad, ¥ = %gmd. fl*lfl’dr = grad, 1 = 0.

The final equation for x,« i8

h? h Oxra .
2 - ma"x"‘ + E"(Eli R r!)Xu = _"-‘—x"“’ (10)
which has the form of a Schrédinger equation in which E, is the cffective
nuclear potential function. This equation has stationary-state solutions
of the form

—Grat
XM(E‘h i t) = hP‘l!(tl.- T :;.!)e L (11)
where A, satisfies the equation
hx
*Emm:« + Er(fl’ Tty rr)lu = @r«ln (12)

and .. is the constant total energy of the system. It is evident that G,.
is the mean value of §, in the approximation in which the first two terms
of (6) are negligible.

Although the mean value of §, for the funetion (2) is accurate to
within terms of the order of m/M times the electronic kinetic energy
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if ¥ and x satisfy Eqgs. (4), (11), and (12), it does not follow that all mean
values are equally accurate,! for we know from the variational theorem
that the energy is stationary for small variations in the wave functions.
As we have seen in Sec. 39 the accuracy of the mean values of other
quantities is usually of the order of nagnitude v/m/M.

117. A Qualitative Survey of the Theory of Phases.—Equation (12)
of the preceding section, which is the equation for the stationary states
of nuclear motion, is usually very difficult to solve accurately because
E.(%, - - - , {7) usually is an extremely intricate nonseparable function
of the nuclear variables. This may be realized from the fact that this
equation should yield a description of all types of phases of matter from

solids to gases.
Let us consider the behavior of the
funetion Eo(&:, - - -, §y) that is as-

sociated  with the lowest electronic
wave function. This is the effective
potential field in which the ions usually
move. E,approachesaconstantvalue
corresponding to the normal energy
of the constituent atoms when the - m pe
atoms are separated by more than Configurotionat C”"m_mm (G
Fia. 1.—8chematic behavior of the

10~¢ cm, (¢f. Fig. 1). As the nuclei slectronic energy of the lowest state of
are brought together, E, usually de- the entire crystal us the interatomic
creases to a certain minimum value and %’:‘:;mm opor large separaticas
then increases agnin as the nuclei are decreases and then increases agaiu as
crowded more closely. The depth of _u“ stome are brought cioser together.
this absolute minimum relative to the value of E, for large separa-
tions i3 a measure of the ecohesive energy of the solid. In addition
to this absolute minimum there may be secondary minima correspond-
ing to atomic configurations that may be metastable at very low
temperatures. A part of the purpose of the next section is to examine
the relative stability of the minima of this type that correspond to crystal-
line arrangements. . :

If the coordinates of any atom or group of atoms are varied slightly
when the system is at an equilibrium point, we may.expect E, to increase.
The change in E, is not the same for all directions of variation but
depends upon the crystalline binding. Now, if we rearrange the atoms
in any way that does not alter the crystal structure, the initial and final
energies are the same. Bince E, increases for changes near the equi-
librium values, it follows that this function passes through a maximum

r3e)

E.(§

- 1The acouracy of the adiabatic approximation in special cases is discussed by H.
Pelzer and E. Wigner and by E. Wigner (¢f. footnote 2, p. 470).
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during the rearrangement from one equilibrium distribution to anothe:.
The minimum value of this maximum for all possible rearrangement
paths, that is, the height of the ‘‘saddle point” of E, in the potential
barrier that separates the two minima, is called the “activation‘energy”
for the rearrangement (¢f. Fig. 2). Paths leading through this saddle
point. are the ones ordinarily followed when rearrangements take place
thermally.!

We may now describe the stationary states of nuclear motion qualita-
tively, using these concepts. In the very lowest state, which is described
by the wave function A, the system is iocalized near the absolute mini-
mum of Eo(f, - - -, §y). The actual
distribution of nuclei is given by the
function |Ae|?, which will be described
more fully -in the next section. The"
energy parameter §yw, associated with.
the lowest state, is slightly greater than
the minimum of E,, the difference being’
the zero-point energy of the atoms.
Since the probability distribution func-
tion decreases very rapidly in the regions

Energy
w

fctivartion
an E;- gy

€t —
Frc. 2—8chematic diagram
showing the behavior of the energy
oi the system when the atoms are
rearranged without changing the
atructure. A and B correspond
to the minimum energy arrange-
mente. During the rearrangement
from 4 to B the energy increascs,
passcs through ‘a maximum, au\gl
decreases. The lowest maximum
oceurs at the saddle point 8 of the
potential hill separating A and-B.
The height of 8 above A and B.is the
activation energy.

where E, is greater than &, it follows
that the individual atoms are statistically
localized near their equilibrium ‘positions
as long as.the energy per atom is less
than the saddle point of the barrier
surrounding the equilibrium position.
There is a chance that a large part of the
zero-point energy of the system may
become localized in one atom, allowing
it to move away; however, the likelihood
of a large fluctuation nsually is very

small for the normal state as we shall see in the next section.

As we go to higher energy states, the probability of finding the entire
system at regions away from the equilibrium position increases because
there is a‘larger range of configuraiion space in which &, — E, is posi-
tive. When the mean energy per atom becomes comparable with the
height of the saddle point for a given rearrangement, this rearrangement
may take place spontanecusly with an appreciable probability, The
very lowest states in which rearrangements oceur appreeciably are those
in which the system is still crystalline and in which a small fraction
of the atoms are diffusing about, whereas the higher states correspond o’

L. theamivéy article by H. Eyring, Chen: Rev., 1T, 65 (1935},
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liquid phases in which there is no lattice structure and in which atoms
correlate their positions only with those of their nearcer nei hbors.! Thus
the gradation of stationary states from the crystalline phase to the liquid
phase is perfectly continuous. The phenomenon of melting, which
ordinarily occurs abruptly with the absorption of hea:, does not imply
any discontinuity in the allowable energy states but is a process in which
a range of possible states is jumped over for reasons that are described in
Sec. 121. The states skipped during melting are those associated with
glasses and supercooled liquids.

The states for which the total energy is greater than that of the system
of free molecules correspond to the gaseour phase. In this phase each
molecule has enough energy on the average to surmount the barriers
holding the atoms of the solid or liquid phase together.

} Gas
f Liguid
> Super cooled
5 | Viquid
& Crystal

Fra. 3.—Bohematic diagram showing the typee of energy states of a system of atoma.
1, II, and III represent relative minima of the Eo(fi, + + - , {w) function that correspond
to different allotropic phases. The energy states below A correspond to crystalline phases
in which the atoms are vibrating. Long-distance order vanishes at A and the range of
glasses, -supercooled liquids, and liquids lies between 4 and ' B. The levels near A are
usually skipped during melting. The gaseous phase lies above B.

When two or more different crystalline arrangements of the & cor-
respond to relative minima of Eo(%1, - + - , {y), only the lowest is thermo-
dynamically stable at-the absolute zero of temperature. The time
required to bring about thermodynamical equilibrium may be very long,
however, if the system gets caught in one of the higher mxglma at low
temperature. For this reason, seversl- different phases of a substance
may be steble in a practical sense. ‘

‘We may summarize this qualitative discussion by means of the energy-
level diagram shown in Fig. 3. There usually are several types of stable
‘states, labeled I, II, III, ete., which correspond to the different poly-
morphic forms. Above each of these is a range of energy, terminated
by the line A, in which the system possesscs lattice symmetry. The

. Evidence for this type of atomi¢ correlation is given by X-ray analysis of liquids.
BSee, for example, A. H. Compton and 8. K. Allison, X-rays in Theory and Ezperimeni
(D. Van Nostrand Company, In¢., New York, 1935).
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region above A, which is the domain of glasses or supercooled liquids,
gradually blends into the less viscous liquid state. The states cor-
responding to energies near 4 usually are thermodynamically unstable
at all temperatures. The line B, which marks the point at which the
entire system is in the gaseous phase, depends upon the volume in which
the system is kept. B actually may fall below A, in which case the solid
sublimes before melting.

118. Low-energy States.—As stated in the last section, we shall
assume that the relative minima of Ey(§, - - -, ¢7) occur for lattice
arrangements of the nuclear coordinates. Let us consider & minimum
of this type and describe the lattice in terms of the notation of Sec. 22,
Chap. III. It will be assumed that the corner points of the unit cells
are specified by the vectors

(p) = p1v1 + Prvs + Pats ' (1)

where the p; are integers and the «; are the primitive translations. In
place of the variables £,, 4., and [, we may introduce the variables

ra(pls?’s,?:) hd l‘(p1,'Pa,Pa) + Px 2)
where the r. are the position vectors, relative to the origin of coordinates
of the n atoms in the cell specified by p., p2, ps and . is the position of
these atoms relative to the corner point. In addition, we may introduce
the variables

Ta'(P1,P1,P3), (1=1,2,3), (3)

for the coordinates of the dis;:lacement of the ath atom from its equi-
librium position.

1f Eo($y, - + + , §p) is expanded in terms of the z.(p), we need retain
only the quadratic term in the first approximation. The problem of
finding the stationary states then reduces to the normal coordinate
problem that was discussed in Sec. 22, Chap. III. We know, from the
results derived there, that the quadratic terms in E, may be reduced to
the sum of squares by making the normal coordinate substitutién

1 i wio-

2a(p) sz' ROTROLL X (4)
where a+(8) is the complex amplitude of the {th normal mode of wave
number g, and £, (8) is the complex direction vector of the displacement
of the ath atom. If the a,(¢) are replaced by the real amplitudes

*
a)(d) = ai(8) + a:*(9)
and

(5)

a(68) — a.*(d)
_—

al=9) = =7
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the normal form of E§ is
Ef = 13 4x2(d)ei(9) (6)
b

where ¢ is summed over an entire zone. There are 3nN a,(d) in all, for
¢ has N independent values and ¢ has 3n values.
Since the kinetic energy 7" has the form

T = §3,44(9) )

when expressed in terms of the «, the Hamiltonian function of the system
is

H = §3[i(6) + 4xv}(8)ai(9)] ®

where p.(d) is the momentum variable conjugate to oz(s). The cor-
responding quantum operator is

H - 22[ s + @ai@ |, @

which may be separated into operators for each normal coordmate.
Hence, the etationary-state wave function has the form

to
AC- -~y (@), -+ ) = [[hewo(ad) (10)

where ). (a:(d)) satisfies the Schrddinger equation for & simple harmonie
oscillator, namely,

ﬁ 3 hg
2 9a(9)

The total energy in the state (18) relative to the minitaum of E, is
E(: - ,n(g)y )= zénr_:.n = Ei."'(tr‘” + $lhv(d). (12)
i e

+ 22252(8)a(8)hn = €xhn. (11

Let us examine the properties cf the lowest state. The normalized
eigenfunctions of the wave 2quation (11) are

1 4xtmi(v)aut{s)
lade) = (12) a7 a3)

- Plértminlaiie) , - '

Ae=Ce & MO (14)

so that
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As an approximation, we may replace the exponent by

A Sheowe | = -2 (15)

where Ej is the potential energy and 7 is'a mean oscillator frequency,
which is of the order of ‘magnitude kOp/h, ©p being the characteristie
temperature of the substance. The probability of finding the system

to
in the volume element :[[da,(d) is

Eo
[ (“""(‘)) dm(d)] s, (16)
and the proba.bd:ty of ﬁndmg; Ej§ lying in the range from E to E + dE is
. _2E 3N_ '
Ce WE? 'dE (17)

where C’ is a constant. This function has a very steep maximum of
width k5 at the value of E, satisfying the-equation

E = §Nhs.

The fluctuation in the position and energy of a single atom may be
estimated by expressing Eq. (16) in terms of the atomic coordinates. If
we keep all atoms except one fixed at their equilibrium positions, F
depends on the displacement variable z of this atom as the function
kz? where k is related to 7 in order of magnitude by the equation

k = 4x*M

in which M is the atomic mass. Hence, the probability depends on 22
through a factor of the form
4xts M .
e AT

The half width of this distribution, namely, (1/2x)a/k/iM, is 10-? cm
for »=10"* se¢c and M = 2 X 10~%*, the mass of hydrogen, a fact
showing that the range of fluctuation ordinarily is small compared with
interatomic distances.

119. Polymorphism.-—When E (&, + - + , {;) has a relative minimum
for two or more crystallographic phases, the thermodynamically stable
one at the absolute zero of femperature is that having the lowest energy.
Another arrangement may be more stable, however, at high.temperatures.
We may obtain a simple interpretation of this fact in the following way.
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According to Boltzmann's theorem,! the relative probability of finding
the ath modification in the energy state E, at temperature T is

G(E. )e_*- =

B

EBo—T3(Ey)

)

where, G(E.) is the degeneracy of the energy leve! E. and S = k log

G(E.) is the entropy associated with this level.

an extremely steep maximum at the
value of E, satisfying the equation

dE,
as, = T

as may be proved by setting the de-
rivative of (1) equal to zero. The
sharpness of this peak may be ap-
preciated from the fact that £, is of
the order of calories for an ordinary-
sized crystal, whereas the fluctuations
in E, are of the order of kT, which is
about 10-2° cal at ordinary tempera-
tures. The condition (2) allows us
to specify the equilibrium state of a
given modification at any temperature
very simply, for this state corresponds
to the point on the E(S) curve at
which the slope is T (¢f. Fig. 4). It
should be observed, in passing, that
the condition that the function (1) be
a maximum is that the function
A(E) = E — TS(E) be a minimum.
Sinee A is the thermodynamical free
energy, this condition is identical with
the thermodynamical condition for
determining the stable state. The
numerical value of A at any tempera-

2)

The function (1) has

B

- Ang-TS

g —

F16. 4.—8chematic diagram showing
the relationship between %, S, T, and A.
The full line is the E(S) curve as deter-
mined, for example, by solving che
Schridinger equation.  The equilibrium
state at temperature T is tho staw:
ocorresponding to the puint (E’, 8" where
the slope of E(S) is T. The intercept
of this tangent with the energy axis is
the free energy. The specific heat at
temnperature T is related to the second
derivative by the equation

(&)
43
FZDAY
ds?

ture is determined from the quantities in Fig. 4 by extrapolating the

tangent line to the energy axis.

The relationship between E and S may be derived very easily when

the lattice frequencies are all the same.

In this case, the number of

quanta available for distribution among the 3N degrees of freedom of

the crystal is

1 See the footnotep on statistioal mechanics in Chaps. III and IV,
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E—-F .
no= g 3)

where E’ is the energy of the lowest state and » is the vibrational fre-
quency of the modes. The degcneracy @ of this state is the total number

! Transition
f ,/ femperature
£ corresponds 1o
slope of fhus line
[ B
E
L
E! =
Einstei * K
$ i ~.
" ) AAS
--Debye E. “ S —
s
/
S — y
F1a. 5.—8chematic representa- Fi6. 6.—E(8) curves for two crystalline

tion of the E(S) curves for the phases. Both curves resemble those of
lattice vibrations of a arystal. The Fig. 5; however, the curve rises inore
Einstein curve rises more rapidly rapidly in the crystal having the higher
than the Debye curve because vibrational frequency (the a phase in this
there are fewer ways of dividing E cage). Since the curves cross, they have a
into quanta if the Einstein fre- common tangent and a phase change will
guency distribution is used. oceur under equilibrium conditions at. the
temperature corresponding to the slope of
the comnmon tangent. The latent heat is
the energy difference at the points of
tangency, ete.

of ways in which these quanta may be distributed among the modes,
namely,
BN +n— D!
BN = 1)n!
Hence, by the use of Stirling’s approximation, we find

8 = k log @ = k[(BN + n) log- (83N + n) — 3N log 3N — nlogn]. (5)
S and dE/dS are zero when n = 0 and 8 increases monatomically with ¥
(¢f. Fig. 5). The E(S) curve rises more slowly for small values of S
if the Debye distribution of frequencies is used. We may determine ihe
value of F and S at any temperature T' by employing the value of n
that minimizes the free energy £ — T8. Using E and S as determined
by Egs. (3) and (5), we find

G = (4)

1

n=-3N—-h7-——‘
efT — 1
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When E and S are computed from this, it is found that

h»

A=E—-TS=FE — 3Nleog—;;§z--- (6)
P |

Let us consider two different crystallographic modifications « and 8
of 2 substance and determine the transition temperature for a case in
which Eq. (5) may be used for both phases. The fundamental fre-
quencies of the two phases will be designated by v. and »s, respectively.
If it is assumed that Ep’ is greater than E.’, so that the « phase is most
stable at low temperatures, and that », is greater than v,, the two S(E)
curyes have the form shown in Fig. 6. Since 8,(F — E.’) rises more
slowly than Ss(E — Eg’), the two curves cross and have a common tan-
gent line.

The ratio of the probabilities P, and P, of finding the system in either
the first or the second phase at temperature 7' is

[Eq(T) = T8(T)]~[Ep(T) ~ T'85(T)]
Pq e 5T

Pg

Ag(T)— Ag(T)

= )

where A, and A; are the free energies of the two phases. The ratio (6)
is either very great or very small except for a narrow temperature range
in which 4, and 4; differ by a factor of order of magnitude k¥T'. Thus,
the transition temperature 7” is given by the thermodynamical equation

Ao(T") = Ap(T"). ®)

It may be seen from the construction of Fig. 6 that this condition is satis-
fied at the temperature corresponding to the slope of the tangent line
of the two E(S) curves. The a phase is stable below this temperature,
and the B phase is stable above; moreover, the heat of the transition is
equal to the difference L between the energies of the two tangent points.

According to Eq. (6), the free energies of the twe phases at tempera-
ture T are

Rrg

kT
Au(T) = EJ — 3NKT log —;———
e*T — 1

(9)

hv’
An(T) = Ep' - 3NkT log "—-;;"'—-“
el — 1
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The difference of these free energies is

a(-,,—.-,) e_? 1 :
AAows = EJ — Eg' — 3NKT log e T —log ] (10)
€T — 1

which is zero at the temperature defined by the cquation

Ba ~%g ¥ _
-svE _ ¢ -1
e W =y (an
e -1

The necessary and sufficient condition that must be satisfied if this
equation is to have & root is that », should be greater than vy if Eg is
greater than E.'.

The condition replacing (11) when all the 3N frequencies are different
18

'Y Yo hrg
R | (e
®¥T = :!'1__*:.’_______ (12,

He ™ -1

as may be seen by using the expression

ira

E/+kTlog [[a —¢ ) (13)

Ve

for the free energy of a dystem of oscillators.! Equation (12) is difficult
to solve directly even when there is a simple relation between frequency’
and the wave number. . In practical work, it actually is simpler to
compute numerically the free energies of t.he phases and to find the
temperature at which these functions are equal. The specific heats of
none of the phases for which transitions have been investigated thor-
oughly obey either the Einstein or the Debye law, however, so that
there is no need for discussing these computations in detail. Instead,
we shall discuss several actual cases. It should be mentioned at this
poiut $hat the credit for the first intensive investigations of the thermal

' 'Vhis expression may be derived from the partition functions discussed in Seec.
18, Chap. IH, by the use of the relation

—Tlog f= A

connecting the free energy of B system and its total p'trtl wn funclion,  [See, fo
exawsple, . H. Fowler, Statistical Mecha:.+. - {Cambridige Uriversity Press, 1038).}
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effects associated with allotropy-is due to Nernst,! who used this subject
as the cornerstone in establishing his heat theorem.

a. Tin.—The transition between black and white tin has heen studied
fairly completely and has practical interest because it is responsible
for tin diseasc which may impair the protective coating of tinned metals.
The low-temperature; or black, form has the diamond structure; the
high-temperature ferm has a complex tetragonal lattice. The ther-
modynamical transition point was determined most accurately by
Cohen and van Eijk? who measured the temperature at which the emf
of an electrolytic cell in which the two electrodes are made of the different
phases vanishes. This tempcrature is 292°K. The specific heats of

25
N I R 1A
LWl E e
X 2.
A 15 ~-p—-- g 4%
Acly 3 b
et \ | § s P
N [ & 200+ — A —
! ®
5 "1\—-'"‘1 - £ 100 : ~ -
o } | 0
0 50 W00 TLEI)(O 200 250 300 0 50 100 IJ?F"I%‘)O 250 300
Fi. 7.—The Aey /T curve for gray and F16. 8.-—The AE and AA curvea

white tin. The specific heat of white tin for gray aad white tin. Below the

is the larger and aceounts for the phase transition temperature, A4 is smaller

change. The ordinates are cal/deg?. for . the gray modification. The
point at which AA becomes sero is
the transition temperature.

both phases were measured by Lange? to within 2 few degrees of absolute
zero; the -diffcrence of these specific heats divided by T is shown in
ig. 7. The specific-heat curves do not obey the Debye law closely,
but they do approach 3R at high temperatures, showing that the oscilla-
tor model is probably accurate. The transition heat AE of the phase
change was measurcd by Bronsted and was found teo be 535 cal at the
transition temperature and 399 cal at absolute zero. The complete
transition-heat curve is shown in Fig. 8. The corresponding free-energy
curve AA, which may be determined by computing AKE(T) and AS(7')
from the empirical data under the condition that S(T3 vanish at absolute
zero, is shown in the same figure. The same curve may be obtained
from AE(T) alone by solving the Gibbs-Helmholtz equation

1 V. Nernst, The New Heat Theorem (E. P. Dutton & Company, Inc., New York,
1926).
2 B, ComnN and C. vax Euk, Z. physik. Chem., 30A, 601 (1399).
3F. LaNae, Z. phystk. Chem., 110A, 360 (1924).
4 1. N. BriinsTep, Z. physik. Chem., 63, 744 (1909).
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d4A
under the third-law condition that 3AA /87T be zero at absolute zero.
AA crosses the axis at 205° showing good agreement with Cohen and
van Eijk’s directly measured vaiue.

b. Sulfur.—The transition of sulfur from rhombic-to monoclinic form
at 368,5°K was investigated by Nerust,! Bronsted,? and a number of
other workers. It is worth mentioning that this transition ig the first
recorded case of allotropy.®? The specific-heat cuives deviate con-
giderably from the Debye form, and their difference is shown in Fig. 9.
The transition temperature as computed from the point at which AA
vanishes is 370°K.

1400 ” "
}:00 - A 1260 : v
f _ AE / T any”
S o 2 p
g 50 el 600 A
. &A /
4€0 4
% e nd
ARGy N\ 200 o AF]
o0 300 400 G - ;
1%"*? o AR 1400
Tic 9--The AE, AA and ACY curves Fra, 10.—The AA and AE curves
for the two phazes of sulfur, for dizmond end graphite. The letter

has the lower free energy at all tem-
peratures ai ordinary pressures.
¢. Carbon.—Detailed measuremente of the transition heat of the
diamound-graphite phase change by Roth and Wallasch* show that
graphite has the lower energy at prdinary temperatures and pressures,
The difference, however, is only 160 i 30 cal at rocia temperature.
The lower curve of Fig. 10 shows the temperature dependence of this
difference. Since the characteristic temperature of diamond is higher
than that of graphite at ordinary pressures, it follows from the preceding
discussion that graphite is more stable than diamond at ali { >mperatures.
The free-energy difference curve of Fig. 10 supports this conclusion, for
it rises-away from the value st absolute zero.
Simon® has made a thermodynamical estimate of the pressure depend-
ence of the free-energy eurve and has concluded that pressures in the
" 1 NERNet, op. oif. _
8 J. N. BrONseTED, Z. physik. Chem., 58, 871 (1808).
3 MitscHRERLICH, Ann. Physk, 88, 328 (1852). :
¢ Rore and WaLLascH, Ber. deut. Chem. Ges., 48, 808 (1018). )
¢ F, SruoN, Handbuch der Physik, Vol. X, p. 378 (Julius Bpringer, Berlin, 1926).
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neighborhood of fifty thousand atmospheres would be needed to reverse
the equilibrium at the high temperatures at which the rate of change is
appreciable.

An outstanding exception to the rule that the amplitude of the
zero-point oscillation is small tompared with the interatomic distance
seems 0 océur in one of the condcnsed phases of helium. The phase
diagram of helium at low temperatures is shown' in Fig. 11. In the
immediate vicinity of absolute zero, this substance forms a true solid
if the pressure is above 25 at.mospheres however, at lower pressures,
it forms two liquid phases, which are known as liquid helium I and liquid

6
, - [
100 / 5
90 -
8o Solid . 4
1 20 I }
-1 60 g .
P \ Cy 3 -
50 - W,JEJ
40 - Liquid T ' 2
20 .
20 — T\ | ! Do
Liquid I\ A Line 1 -
N [\ T [vaeort] o
0 2 4 217 218 219 220 221
g T° K=—> _ TK—>
Fi1a. 11.-—The low-temperature Fra. 12.2-The anomaly in the
phase diagram of helium. Thereis specific heat of liquid helium at the
ne solid phase below 25 atmos- A-point. The ordinate is expressed
pheres. The ordinate is expressed in cal/gram-degree. (After Kessom
in atmospheres. . and Keesom.)

‘helium 1I, and no ordinary type of solid. The density of the liquid
phases is about 0.70 relative to that of the high pressure solid phase.
The transition poini between helium I and helium II, which is known
as the A point, is distinguished by several striking eﬁects Thus, it is
found that the specific-heat curve? has the discontinuity shown in Flg 12
and that the fluidity® and thermal conductivity increase very much in
passing below the X poiut. .In addition, it is found* that liquid helium I
exhibits the mechanical analogue of the thermoele¢trical effects observed

YW, H, Kessou and KxCrustus, Proc. Acad. Sci. Amsierdam, 35, 320 (1932);
W. H. Keesom and H. P. K M, Proc. Acad. Sci. Amsterdam, 85, 786 (1082)

2W. H. KeesoM and H. P, Kmsou, Physica, 8, 557 (1935).

* W. H. Keesom an H. P. Keesom, Physica, 3, 557 (1935); B. V. RoLLiN, Physica,
3,266 (1936); J. F. ArLLEN, R. Prisris, and M. Z. UppiN, Nature, 140, 475 (1937).

*J. O. WiteeLM, A. D. Misener, and A. R. Cuagk, Proc. Roy Soc 161, 342
(1935); E. F. Burron, Nature, 185, 265 (1935), 142, 72 (1938).
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in metals, for mechanical flow is induced as a result of temperature
gradients.

Guided by the similarity of the specific-heat curve shown in Fig. 12
and the specific-heat eurve observed during the transition between the
ordered and disordercd state in alloys such as 8 brass in which the com-
ponents are present in equal numbers (¢f. Fig. 43, Chap. I), Frohlich!
suggested that the two liquid heliumm. phases represent ordered and
disordered phases of a crystal. In particular, he suggested that the
phases have the diamoud structure (Fig. 4, Chap. I), which may be
regarded as a body-centered cubic latiice in which half the atoms are
replaced by vacancies, and that the disordering process consists in the
interchange of atoms and vacancies, Thus, according {0 this picture,
liquid helium T would correspond to the phasc in which there is no long-
distance order and liquid heliuma II would correspond to the partly
ordered phase. There are, however, the following two objections to
Frohlich’s model: (1) Tt should be expected that the lignid helium II
phase would become more and more solidlike as the temperature is
lowered and ordering increases, whereas it is actually found that the
viscosity seems to become smaller and smaller. (2) London? showed,
on the basis of the Slater-Kirkwood expression for the interaction energy
of two helium atoms, that the diamond type of lattice is unstable relative
1o the interchange of vacancies and atoms, so that Fréhlich’s ordering
process is unlikely.

As a result of this work, London suggested that the amplitude of the
zero-point oscillations in these liquid phases is so large that the atoms
should be treated as though free in the same sense that the electrons in a
metal are free. Since the helium atoms obey Einstein-Bose statistics
instead of Fermi~Dirac statistics. London suggested that a qualitative
insight into the properties of the two liquid helium phases might be
obtained by treating them as a degenerate Bose-Einstein gas. The
thermal and mechanical properties of a gas of this type may be ohtained
by methods analogous to those used in the Sommerfeld theory of metals,
the function

1 = —2—

AT — 1

replacing the Fermi-Dirac function, 1t is found that the specific-heat
curve of this gas has the singularity shown in Fig. 18 which begins when
the particles start to condense in the lowest energy state. London
suggested that this singularity corresponds to the i point of liquid helium

! H. FrouricH, Physica, 4, 639 (1937).
: T, Lonbon, Nalure, 141, 643 (1938), 142, 612 (1938); Phys Rev., 5&, 947 (1938).
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and that the differences between the curves of Figs. 12 and 13 arise
because the helium atoms interact and thus are not perfectly free. The
temperature Ty at which the singularity occurs in Fig. 13 would be 3.14°K
for a perfect gas of helium atoms having the observed density of the
liquids. This actually is fairly close to the
observed A point at 2.19°K. London hasalso 2r
shown that many of the anusual thermal and
mechanical properties of liquid helium II can
be given a qualitative explanation on the ir
basis of his simple model.

120. The Effect of Electronic Excitation

T

on Phase Changes.--The Gibbs-Helmboltz g t
equation, namely, %“"'
Y FrG. 13.—The molar heat of
A=E+ Tg-;;- (1) u Boss-Finstein gas near the
@ rdegeneracy temperature Tl.

" may be integrated and placed in the form Fhe “m":_mt“';n i”:q“" to
2 19 )

T . e ART I
_ E .., . 2w ME\2.812
A= ~TL = @

where M is the atomic mass and
ne is the number of atoms per

which makes it possible to compute the free unit volume.
energy when the function E(T) is known. Since

E(T') = EQ) + ;7 c(T)ar” @)
where C(T) is the molar heat,
T 1 fr. ¥ e mir

Thus, A may be computed from the molur keat.  We may conclude from
this equation that A is affected appreciably by a given part of a system
only when this part contributes to the specific heat. Since the electrons
do not contribute appreciably to the specific heat in simple metals and
insulators, as is evidenced by their obedience to Dulong and Petit's
law above the characteristic temperature, we may conclude that phase
changes in these solids are not influenced by the electronic excitation
whioch ordinarily occurs. This is not true of substances containing
transition-element atoms, however, for the electronic specific heat
usually is comparable with the 3R value at sufficiently high temperatures.

An important case in which the electronic excitation probably
plays a role is afforded by iron. As we bave seen in Sec. 2 the « or body-
centered phase is stable at all temperatures in the range from 0°K
to the melting point at 1803°K except for a region extending from
1174° to 1674°K in which the face-centered y phase is stable. It is
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possible to understand this behavior by using the information given by
the specific-heat curves of Fig. 17, Chap. I. We may see from this
figure that the ¥ phase has the lower characteristic temperature; hence,
we may conclude from the discussion of the preceding section that it
would be the stable phase at high temperatures if the free energy were
determined by the lattice vibrations alone. Actually, the electronic
specific heat of the a phase is larger than that of the v phase at tempera-
tures above 580°K, and this difference tends to compensate for the
‘“advantage” the ¥ phase receives
SO from the larger value of the vibra-

Lattice {a - " tional specific heat below 200°C.
| The situation . that probably

i exists is indicated schematicaly in

I W Fig. 14 in which the dotted lines
l ! ; represent the contribution to the-
E(8) curves of the two phases from
latfice vibrations. If these were
the actual curves, the ¥ phase

/ would be stable at high tempera-
. tures. Theé electronic specific heat

/ altéers the curves and leads to the

full lines. Since the electronic

¥ specific heat of the a phase is the

larger at high temperatures, the
E(8) curve of this phase is altered
most. We may conclude that the
E(S) curve for the ¥ phase crosses
that for o twice in the manner

«a

S —

Fia. 14.—Probable behavior of the E(S)
curves of the a and ¥ phases of iron. The
a« curve is initially lpwer, but rises more

rapidly becsuse the characteristic tempera-
ture of the a phase is larger. At higher
values' of S, the larger electronic heat of
the @ phase reverses the curves.

shown, two tangent lines being thus
produced,

If the electronie specific hea.ta of
o and v iron were accurately meas-

ured,! it would be possible by the use of Eq. (4) to test the preceding
picture by direct computations of the contributions to 4.
Since cobalt has a similar reappearance of the low-temperature phase
at high temperatures, we may conclude that Fig. 14 also applies to it.
121, Melting.—We shall not attempt to give a survey of the preseut
status of the theory of liquids, for to do so would carry us too far afield, -
but we shall mention briefly the process of melting.?

1 An analysis of the entire specific-heat curve of nickel that is oased on the use
of the low-temperature value has been given by E. C. Stoner, Phil. Mag., 23, 81

1986).
¢ 4 Burvey articles on the theory of liquids are ag follows: K. F. Herszfeld, Jour.
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The quadratic approximation for the function Ei(&, - - -, ¢)),
which was discussed in Sec. 118, is not valid when the amplitude of atomic
vibrations becomes comparable with the interatomie distances, because
the potential well about any atom flattens in the directions in which
there are saddle points (¢f. Fig. 15), such as the saddle points correspond-
ing to the interchange of two atoms. This flattening should cause the
density of levels G(E) to increase! more rapidly than for the quadratic
approximation, so that the entropy may increase in the manner shown
in Fig. 16. If the S(¥) curve has an inflection point, as in Fig. 16, the

Actual
curve
a*ppgfgnhvtamn
' [
8 \ /
5 \
£ \ m{
-pofenfial
. S(E)
Fia. 15.—Schematic tepre- F1a. 16.—8chematic represénta~
pentation of the behavior of the tion of the F(S) curve for an actual
atomio potential well. This dévi- solid (full line). The effect of
atea from the simple parabolic anharmonic forces is to inarease the
well assumed in the ordinary entropy of higher energy states.

theory of specific heats, when the

atomic displacements hecome

large. )
system jumps from the state I to the state II at a temperature 7' given
by the slope of the line joining these two points. Below this temperature,
the system is crystallirie; above it, the syrtem presumably is in the liquid
state since this is the phase in which atomic rearrangements take place
fairly freely, as is evidenced by the ability of liquids to flow. If € is
the height of the activation hill for the interchange of atoms, the number
of atoms having enough energy to pass over this hill should vary with
temperature in the manner

Ae ¥ 1)
where A is nearly constant. Hence, the flowability, that is, the reciprocal
of the viscosity, should vary with temperature as the quantity (1). The

Applied Phys., 8, 319 (1937); H. Eyring and J. Hirschfielder, Jour. Phys. Chem., 41,
249 (1937); R. H. Ewell, Jour. Applicd Phys., 9, 252 (1938); J. E. Lennard-Jones,
Physica, 4, 941 (1937): N. F. Mott and R. W. Gurney, Reports on Physics Progress,
Vol. V (Cambridge University Press, 1938).

1 A part of this increase may be regarded as a mixing entropy (¢f. ihid.}.
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energy L (cf. Fig. 16), by which the system jumps during the transition.
is the latent heat of fusion. It should be clear from the figure that this
heat is connected with the change in entropy AS by the equation

L
AIS = —T—‘.I.

The states immediately below II, which are skipped during melting,
describe supercooled liquids, whose flowability decreases with decreasing
temperature and which become glasses at low temperatures. The E(S)
curve of such a glass may depart from the full curve of Fig. 15 (¢f. the
dotted section) when rearrangements no longer take place. Thus, the
entropy may decrease rapidly, although the atemie arrangement is not
" crystalline and the energy is not so low as for a perfect crystal.

Mott! has used a simple model of the liquid state to compute a
partition funetion, which he has employed suceessfully in relating some
properties of the liquid and solid phases. He assumed that the liquid
state is dyriamically similar to a solid, inasmuch as the individual atoms
are vibrating, and he assumed that the mean liquid vibrational frequency
» is lower than the mean solid frequeney v, because the liquid is less
rigid than the solid. He neglected the contribution to the partition
funetion from the interchange of atoms so that the relationship between
the solid and liquid phase in this model is essentially the same as that.
we have found for allotropic modifications. Thus. the partition funetions
for the liquid and solid phases are

ket an
- Ef kT
f, =g k ——E-E-———-ﬂ '
efT — 1
5 2_1. v
L T
f =2 k{ 8\ . ._U) ]
t Rz .
et — 1

where E, is the lowest state of the crystal, & is the lowest state of the
liquid, that is, the energy of the stipercooled liquid at abselute zero, and
N is the number of atoms. The conditin: for eguilibrium at the meltng

temperature Ty i3
v\ P,
2 = ¢ RT {
(v;) e 3)

in which it is assumed that kT is much greater than hv,. E; — E, is
very nearly cqual to L, the latent heat of fusion, whence

@)

1 N. F. Mott, Proc. Roy. Sec., 146, 463 (1934;.
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WY -
W/ = €e" 7, ®»
vhich is Mott’s relation.

Mott has tested this relation for metals by comparing the ratio v,/n
conputed from (4) with the ratio derived from conductivity measure-
‘mnts.  We shall discuss the connection between the electrical conductiv-
it and the vibrational frequency of the lattice in the next chapter and

shat find that

L
@ 7 ©
in smple eases.  In other words, we have.
- 2
Zs . o3RTw. (6)

71

Theextent to which this equation is satisfied may be seen from Table
LXXV. It is valid for the simpler metals, but it fails for the metals with

Tasir LXXV.—ComparisoNn oF Opservep VALUES OF o,/0; wWiTH THose Cowm-
pTED FROM Motr's RevaTioNy (6) BY THE UsEe or OBSERVED VALUES OF

L anp Ty
"'c/"'t
Observed Caleulated

Li i 1.68 ! 1.84
Na ! 1.45 1.77
K | 1.56 1.795
Rb 1.61 1.76
Cs 1.66 1.75
Cu 2.07 1.97
Ag i 1.9 2.0
Au 2.28 2.22
Al 1.64 2.0
Cd 2.0 2.3
Pb 2.07 1.87
Sn 2.1 3

T1 2.0 2.3
Zn 2.09 2.3
Hg ~4 223
Bi 0.43 5.0
Ga 0.58 4.5
Sb ! 0.67 5.6
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unusual structures. This failure is explained in part by the fact that the
relation (§) is not obeyed by the transition metals.

Equation (6) should apply to allotrepic forms of a metal at the transi-
tion temperature in cases in which this temperature is much larger than
the characteristic temperature of the two solids. There do not seem to
be enough experimental data available to test the relation in any cases
of this kind.

Herzfeld, Mayer, and Kane! have computed the free energies of the
rare gas solids, relative to the free energies of the gaseous constituents, as
functions of the lattice constants and have found that these solids would
undergo a discontinuous expansion if they were superheated. In terms
of a diagram of the type of Fig. 12, their results indicate that the first
inflection point in the E(S) curve of one of these solids occurs, not because
the individual atomic potential wells are anharmonic, but because the
curvature of the well decreases as the crystal expands. At the present
time, it is not possible to say whether or not this effect makes an alteration
of the qualitative picture of melting, presented above, necessary in all
solids.

In the Debye approximation, the molar free energy of the solid may
be written in the form

A(T) = E@(T) + ‘i‘N‘hi’n + AD(P-,T,?') (7}
where FEo(r) is the molar electronic energy, §Nihv, is the zero-point

vibrational energy, 4 »(vm,T,r) is'the free energy obtained from a Debye
function, namely, -

' TaT
A=-T J; B0 (rm T, (®)

and », is the maximum frgquency of the lattice. The energy Eq(r) was
expressed in terms of a van der Waals interaction term of the form

C

T

(¢l
and a repulsive term of the form

CBe . (10)
Thus,

_r _V2-1r
Eor) = c{—%§+123e »[1 +e 7+ ]} (11

1 K. F. HerzrELD and Maris G. MAYER, Phys. Rev., 48, 995 (1934); Broruer
GasrieL Kang, Jour. Chem, Phys., 7, 603 (1939).
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in which the factor 14.5 is the coefficient in the sum of terms .(9) for a
face-centered lattice and the coefficient of 12B is the sum of terms (10).
In each case, p was given several values. For example, the values
0.345 A and 0.209 A were used in all cases. The first is the empirical
value of Born and Mayer (see Chap. II), and the second is the value
" found by Bleick for neon. Corre-

sponding values'of C and B were then 12 ALY \\ J
determined with the condition that 4 L >~
(11) plus the zero-point energy should § \\&
give the observed lattice constant 3 \Q.___‘;'! :
" and cohesive energv at low tempera- § 0 N T
tures. The process of determining &-4
these constants actually involves a  _ k|82
reiteration procedure; for v., which .
oceurs in the zero-point energy, was 2 AN T 604
determined from the theoretical ex- 385390 395 400 405,410 415 420 4%
pressions for the elastic constants, PA S
which in turn involve C and B. ! N S 77
Figure 17 shows the computed '21 "\ k \ s
and observed values of the internal 4

served melting tempera.f{lre, namely,
116.0°K. The two setds of curves
correspond to the values 0.345 and
0.209, respectively. The ordinary
equilibrium volume is determined by . \ o eV
the condition that d4/3V vanish. L | oAl ™
Theé icteresting feature of these 885 390 395 400(;‘,‘:’05_1-& 45 420
curves is that those for temperatures "

above 108° and 91°K, respectively, vﬂf;“‘oflzl;:?:l';ﬁ‘;l“imﬁ:rfmﬁg
are positive everywhere, which in- Jlaypton for several temperatures. &
dicates that the body-centered crystal corresponds to the value 0.345 of the
becomes unstable. This behavior is repuleive parameter and b to the value
A N 0.2098. The minima that occur at high
tied up with the fact that the elastic temperatures imply that the crystals be-
constants, and hence »n., decreage °O™®unstable. (After Kane.)

with inereasing lattice constant and thus raise Ap. Thus, the free
energy presumably could be decreased by rearranging the atoms into
another phase, such as the liquid, and at the same time increasing the
atomic volume. Since the solid phase becomes unstable even relative
to the gaseous phase, it is natural to suggest that meltmg is forced by
the disruption of the crystal.

/
pressure —3A4/3V of krypton for . \ \ \ \\ \0’7/’/
N

several temperatures near the ob- \\ \
\

Pressure

i
o b~ O

t
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122. Atomic Diffusion*.—Atomic diffusion has been studied with fair
experimental accuracy! in a number of metals. The processes that have
been treated are the diffusion of constituents in substitutional and
interstitial alloys and the self-diffusion in those monatomic metals having
radioactive isotopes.? Although the diffusion of atoms in insulating
crysials has not been investigated so thoroughly as diffusion in metals,
the general facts probably are very similar in the two cases.

It is usually assumed that diffusion in solids obeys the space-time
diffusion equation

de _ divD grad ¢ @
dt
where c is the concentration of the diffusing atoms and L js the diffusion
coefficient, which usually depends on ¢. In order to translate D into an
atomic constant in a simple case, let us assume that the distance between
atomie planes in the dicection of diffusion is & and that the probability
that an atom moves from one plane to the next in unit time is d. If n,
is the number of diffusing atoms per unit area and n; is the number in
the neighboring plane, the number per unit area that passes from plane 1
to plane 2 in unit time is

d .

—d-‘:—r == d(n, — na). (2)
The quantity n, — ns is 8 times the concentration gradient in the
direction normal to the plane, however, so that Eq. (2) is

dN _

da
.where r; is & unit vector normal to the plane. Equation (3) reduces to
(1) if we set

8%dr, - grad ¢ 3

D = d&. (4)

This method of reasoning can be used to convert D into an atamic
constant d, in more complex cases than the one treated here.

It is found experimentally that for fixed concentration D depends
' upon temperature in the manner

D = Ae T (5)

18ee the review articles by R. F. MznL, Jour. Applied Phys., 8, 174 .(1937);
R. M. Barrer, Proc. Phys. Soc. b2, 58 (1940).

* The radioactive indicator method was first used by G. von Hevesy, W. Seith,
and A. Keil (¢f. Z. physik. Chem., 87, 528 (1931); Z. Physik, 79, 197 (1932)).
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where both A and ¢ are practically constant. Using equations of the
type (4), we may translate A into an atomic constant. Thus, in the case
in which (4) is valid, we may write

A = ad?

where ¢ is the “jumping frequency for a given atom when kT becomes
large compared with e. It is also found experimentally! that these
frequencies usually are of the order of 1013, Figure 18 shows the depend-
ence of log D on 1/T for the diffusion of gold in lead and illustrates a
typical case in which Eq. (5) is valid. A number of values? of ¢ that
are determined from the slopes of curves of this type are given in Table
LXXVI.

There are three coneeivable sim- i 00 }50T°c ?56' 250 300

ple mechanisms for diffusion of [T ) ) 1
atoms 4 in a solid 4B, namely, the I -1
following: 1-2 = (_"1!4
1. Atoms 4 and B may inter- $ 3 [ . rovermeavsion
change places, squeezing by one -4/ ;gmﬂgmgm—'
anﬂthel' in t/hc nOl“nlal lattvice. =5 27 26 25 ZL 25 ﬁ 20 |9 m 7
2. The A atoms may diffuse ~— 1/ Tx 10%
individually through interstices. F1g. 18.—Temperature dependonce of

e he diffusion coeff ) .
3. The diffusion may take place :;fmlMu:lh?)l clent of gold in lead

with the help of vacancies, the
atoms moving oniy intc vacant adjacent sites. It may be postulated
that iu this case the crystal with: vacancies is thermodynamically more
stable than one without vacancies.

The first mecha-ism has the disadvantage that if it were valid one
might expect the sutivation energy for the process in which two atoms
squeeze by one wther to be very high, of the order of the cohesive
energy, whereas *i. values in Table LXXVI are uniformly less than the
cohesive energic-. For this reason, this process is ordinarily ruled out. -

1 This fact was poicted out by 8. Dushman and I. Langmuir, Phys. Rev., 20, 113
(1922), who suggwn' ‘hat an approximate value of a should be obtained from the
relation @ = ¢/h. Sirc: - is of the order of magnitude 10~ erg, the values of a
cbtained in this way are ¢f 1he order of magnitude 10%;

* Most of these valies are taken from footnote 1, p. 494. The values for seli-
diffusion in co pper, gold, ~l:e and bismuth have the following orzigin.

Cu: J. Sreramay, W, & .wxmr, and F. C. Nix, Phys. Rev., 88, 13 (1939).

- Au: SaeroBskL, Physul Z. Sowj., 13, 118 (1937); M(_.‘KA!. Trans. Faraday
Soc., 34, 845 (1938).

Zn: F. Banks, H. Day and P. MmmrER (see program Washington Meeﬁng, Am,
Phys. Soc., 1940).

Bi: W. Serre and A. K, Z, Elekirochem., 39, 538 (1933).
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1f it docs oceur, it is casy to understand why a is of the order of magnitude
10'3, for this is the magnitude of atomic vibrational frequencies.

- The second process should require a smaller activation energy than
the first only in crystals that have interstitial sites sufficiently large
to accommodate the atoms A. Since the interstices of metals forming
substitutional alloys usually are much smaller than the atomic size, it
seems probable that this mechanism occurs only in interstitial alloys,
such as iron carbide and nitride, and in semi-conductors, such as zinc
oxide, that have interstitial atoms (cf. Sec. 112). We saw, in the case
of zinc oxide, that the fraction of interstitial atoms f is governed by an
equation of the type '

'f’
f = no;tBe A ©)

where no, is the density of nxygen in the surrounding vapor and B’ is a
constant. If the probability. that one of these atoms jumps is

5 = pie FT, )

Tise LXXVI.—Activation ENERGIEs ForR METALLIC DifFFusioN

. Activation
Solvent Solute: energy, ever
. |
- ! -

Cu Cu 2.5
Zn (9.58%) 1.8
Zn (20.089;) 1.8
Sn (10%). 1.7

n Zn 0.75
Ph Pb 1.2

8n 1.04

Tl 0.91

Bi 0.81

Cd 0.78

Ag 0.686

Au 0.57
Ag | Au 2.5
Au .| Ag 3.0
Bi | Bi 113
6.1
-‘Fe I C 1.6
' N 1.5
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the atomic diffusion coefficient. d should be

o 4

d = iino,~tBe KT, (£:3]

In this case, both a and e are composite quantities.

One should expect a much smaller value of the activation energy
for the third process than for the two others ‘n the case of substitvtional
alloys.! Since the number of vacancies should be less than the total
number of atoms in this case, d should be a composite quantity as in
Eq. (8). According to the discussion in Sec. 110, the fraction of vacancies

f is given by the equation
.}l
f=or
where ¢’ is the energy required to remove an atom from an interior site
to the surface. Hence,

e
d = e 9

¢
where #%¢ T is the probability per unit time that an atom and a vacancy
on neighboring sites change places.

It is reasonable to suppose that the third mechanism occurs in
substitutionsal alloys, but this supposition has not been conclusively
demonstrated. '

We may develop an equation for the jump frequency, using elementary
principles of the theory of reaction rates. We shall treat the problem
generally enough' so that the results are applicable both to diffusing
interstitial atoms and to diffusing vacancies although we shall refer to the
diffusing particle as an interstitial atom.

As the atom moves from one equilibrium position to another, the
energy of the system rises through a maximum at the saddle point
of the barrier between minima. According to the theory of reaction
rates, we may regard the jumping process as an act in which the system
is thermally excited to the saddle point S through which it then passes.
The probability per unit time # that this process occurs for a given atom
is then equal to the rate at which atoms pass through S divided by the
total number of interstitial atoms. For gimplicity, we shall assume
that the energy of the system depends only upon the three positional
coordinates of the jumping atom; moreover, we shall assume that the
potential is nearly constant for a short distance along the direction of flow

1 Theoretical work of H. Huntln;ton in progress, indicates that the activation
energy for interstitial diffusion in copper is' sbout three times larger than that for the
third process.
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through the saddle point. The rate at which the atoms pass through S
then is equal to the number of atoms per unit length of S times their mean
velocity. As long as only a small fraction of the diffusing atoms are
at the saddle point at any one time, the number of atoms n, per unit
length of 8 is equal to the total number of interstitial atoms n times the
ratio of the partition function per unit length of 8 to the partition function
of the interstitial atom at its equilibrium position.

We shall assume that the interstitial atem in an equilibrium pesition
is at rest, for in this book this assumption is usually made in computing
the number of interstitial atoms. It is incorreet, since the interstitial
atom actually oscillates about an equilibrium position. The error made
in this way, however, cancels in taking the product of n and the proba-
bility of finding an atom at S.

In addition, we shall assume that the forces acting on an atom in the
saddle point are also harmonic in the two directions orthogonal to the
direction of flow. If »,is the vibrational frequency, the partition function
for thepe 2 degrees of freedom then is

f= (.__.1 _h)'. (10)
1—¢ T

We shall be interested primarily in the case in which A», is much smaller
than k7. Then, fis
kT\? '
(h_ﬂ.) . {11)

The partition function per unit length in the direction of flow is equal to
the partition function for a one-dimensional gas at a point where the
potential energy is ¢,, where ¢, is the height of S ahove the equilibrium
position., This function is

&.ﬂi_kT_)_’e TFT, (12)

Hence, the complete partition function per unit length of the saddle

point is
1{kT\*@2xMET)} -
fs = E(‘E;" ———j:"—-e ’ (13'}
where « is the number of saddle points of height ¢, about a given equilib-
rium position. This number, which should depend upon erystal sym-
metry as well as upon the type of ions in the lattice, could be &s large as
forty-eight for a crystal with cubic symmetry.

The mean velocity with which the atoms pass through the saddle point
is .
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Mot

f e TTygy

0

T Me
“e md,,

( (14)

Hence, the jump frequency # is

ﬁu

1 (kT)' -5

=10 = e as)
This equation has the form
b
P= e kT
where
- (&T)?
= ah’v,
According to this result, the diffusion coefficient D has the form
n 1 (k) -5
D = dﬁ‘ o= 52‘-‘-\?;}3—';:— W} (16)

where n is the number of interstitial atoms or vacancies per unit volume
and N is the total number of atoms per unit volume. This equation will
be used in Sec. 132.

i23. The Phase Boundaries of Alloys.—By applying the principle of
minimum free energy, it is possible to derive the equations that determine
the phase boundaries of alloys. ILet us consider two binary alloy phages
« and 8 of & pair of monatomic metals 4 and B. The necessary condition
that the two phases be in thermodynamical equilibrium evidently is that
the free energy of the entire system remasin stationary if atoms are taken
from one alloy to the other.

We shall assume that there are N, A aioms and N, B atoms in the
eatire system and that the total number N remains fixed when the atoms
are taken from one alloy to the other. In addition, it will be assumed
that there are n, A atoms and 73 B atoms in the @ phase. Thus, there are
(N. — n.) A atoms and (N, — n) B atoms in the 8 phase. The com-
position of the phases may then be specified by means of the fractions
z. and 2 of A atoms, which are, respectively,

a — N e — Na ‘
Ly = ———— and Ty = ﬁm' (l)

Now, if A.(x) is the free energy of a specimen of the « phase that

contains N atoms of both types and has composition z and if As(z) is the
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same quantity for the g8 phase, the total free energy of the system is

na+m N — na — m( )
A= Ae n.+m)+ N G e (ﬂ.+m‘1

Thus, the conditions for equilibrium, which are

o4 _, o4
Mg ’ any

=0, (3)

lead to the equations _

Ao — Ap — 2aAd (o) + 7244 (28) = 0, - (4)
in which A’ = 3A/0x. By subtracting these, we may derive the
equation

Aa'(ma) = 4‘13’(.’;’), (5)

which, when substituted in either gquat.ion, gives ihe additional relation
¢ o Ae = Ag

A = i (6)

Equations (3} and (8) state that the

Aa boundaries «f tix o and B phases
’ are deterr e v the points at
T _ A which the :iope: of the two free-

1

«Phase! @+ 4 Phase energy curves areugual and have a
' i_ common tangent {+f. Fig. 19). To
F1a. 19.—8chematic representation of the left of the point of tangency on
the condition for determining the phase the 4, curve, the . phase alone is
boundsries of sifloys. stable, whoreas to the right of the .
corvesponding pjoint on the As curve the g phase is stable.

Jones! has applied the relations (5) and (6) to tke houndaries of the a
and g brass types of phase «f substitutional alloys that were discussed in
Sec. 3. Thesc phases are, respet,twely, facc-centered and body-centered
cubic and, as was seen in Sec. 102, are stable for a rangé of electron-atom
ratios near the vslues for which the zones of the two lattices are filled
to the points of highest level density. Jones assumecr! that all energies
except the Fermi energy are practically the same for disordered speci-
mens of the t.vo phases so that the filling of the one-eleciron levels alone
determines ” ae relative energies at absolute zero «f temperature. The
n(e) curves for the face-centered and body-centered lattices of the brass
(Cu-Zn) systemi that are determined by tho approximate methods

Free Energy

1 H. Jonms, Proc. Phys. Soc., 49, 248 (1937\.
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discussed in Sec. 65 are shown in Figs. 20a and b. The ene
per atom of the two phases is shown in Fig. 20c as a func ‘on.o
. electron-atom ratio n.. It should be observed that the n(e) c
identical to about 6 cv, which correSponds to an electron-atom ratio of
about 0.95. The n(e) curve for the face-centered lattice rises to a peak
in the energy range just above this, so that this phase has a lower Fermi
energy. The 8 phase then has its peak, and the rclative energy curve
changes sign.” It is clear that when the composition corresponds to the
intercept of the relative energy curve with the n, axis, that is, when the
electron-atom ratio n, is 1.44, the systemm would be moat stable if it
consisted of a quantity of « phase

having a lower value of n and a E

o - . 03 b

quantity of S phase having a a

higher value. On the other harnd, I
if n, is near 1.2, it would be neces- 0zr
sary to raise the energy of the @ "©
phase a great deal in order to form at
a small quantity of g phase.

005
Thus, we should expect the a phase

. . % 567 8 9
to be stable at this point. The (@) & e
actual values of n, at the phase 5
i 1 1.0
~ boundary points, as determined 1 A souncu
from Egs. (5) and (6) for the ae 0 Eleiven atom vaite
absolute zero of temperature by -10
replacing the free energy by the -15 ©
energies computed from Fig. 20q, Fia. 20.—a and b are the n(e) curves for
are the face-centered and body-centered struc-
tures, respectively. Curve ¢ is the relative
Neo = 1.409 energy Ae of the two phases as a function of
oo ! the electron-atom ratio. The energy scales
Ne,g = 1.447.. are in electron vulis. (After J'q?sa.)

As may be seen from Fig. 20b, these valucs lie very close to the point
where the relative energy _urve intercepts the axis.

Jones extended tiis. work to higher’ teinperature ranges by adding
mixing entropy terms surh as those considered in the theory of order
and disorder. If a given disordered phase has n. A atoms and ns B atoms,
its mixing entropy is

§ = klog (Ml ™

in which (n. 4+ 7ns)!/n.!n,! is the total number of ways of rearranging the
A and B atoms among the n, 4 n, sites. When this is expsnded by
means of Stirling's approximation, it becor-.cs '

S = —~Nkijzrlogz + (1 — z) log (1 — 2)] (8)
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where N = n, + ny and z is defined by Eq. (1). Thus, if E(z) is the
energy of the N atoms as a function of =,

A(z) = E(z) + NkT[zlogz — (1 — z) log (1 — 2)]. (9)

Using free-energy functions of this type and E(z) curves obtained
from the data of Fig. 20, Jones computed the phase houndaries of the «
and 8 phases of the Cu-Zn and Cu-Al systems as functions of temperature.
The observed and calculated curves are shown in Fig. 21. They agree
as closely as one might expect in view of the simplifying sssumptions
made in this work.

Jones has applied similar computations to the liquidus and solidus
curves of substitutional alloys, which are briefly deseribed in Sec. 3,

L u-2Zn
1000}
I \
! \
ToC 500F i
s i
0 L
-100}
- 200} x\B\B
2973 ;
0 0 40 50

30
Atom Per Cent of Solute
Fre. 21.—A comparison of the observed and calculated phase boundaries of the @ and
8 phases of Cu-Zn and Cu-Al. The full curves are the thecreiical ones; the broken lines
are experimental. (Afier Jones.) .

and has shown that the dependence of these curves upon composition
may be adequately explained if the solid phases are assigned free-energy
functions of type (9).

124, Order and Disorder in Alloys. a. Experimental Discussion.'—
X-ray diffraction studies of substitutional alloys show in many cases
that each type of atom is localized at a definite site in the unit eell, just
as the constituents of ionic crystals are localized at definite positions. As
the temperature is raised in these cases, the degree of order may decrease,
even though the crystalline arrangement is maintained. This decrease
is made evident by the fact that it is no longer possible to tell precisely
which kind of atom occupies a givep site. The order may decrease
continuously, as in 8 brass, or it may undergo an abrupt change, as in
CusAu. These cases and others are discussed in Sec. 3, Chap. I.  Alloys
in which the order changes abruptly usually have an abript change in

* 8ee the previous discussion in Sec. 3.
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heat content at the {ransition temperature whereas those in which the
change is continuous do not, although there may be a discontinuity in
specific heat at the point at which all sites become equivalent.! The two
types of phase change, characterized respectively by CusAu and CuZn,
are said to be of the first and second kinds.

Although two-component alloys have been investigated most widely,
these are not the only substances in which order and disorder occur.
Ketelaag? has found, for example, that silver and copper mercuric iodides
(AgsHgl, and Cu,Hgl,) show complex order and disorder changes which
resemble closely those found in CusAu. The low-temperature modifica-
tions have the tetragonal structure shown in Fig. 22 in which mercury
atoms occupy the cight corners of a nearly eubic
cell. The iodine atoms are distributed tetra-
hedrally about four of the eight corners, forming
a face-centered lattice, and the silver or copper Ag
atoms are arranged at the centers of the four °
vertical faces. The iodine atoms do not change &
their relative positions as the temperature is
raised. The metal atoms, however, make an

Hg ,

abrupt change, becoming uniformly distributed
over the eight corners and six face centers of
the cube. It is evident that two of these
fourteen sites must be vacant on the average.
Hence, the disordering process involves silver
atoms, mercury atoms, and vacancies in the
ratio 2:1:1. The behavior of the ionic condue-
tivity of Ag,Hgl, is shown in Fig. 23.

b. Qualitative Principles.—We shall not de-
vote space to a detailed treatment of the more
advanced theories of order and disorder since
discussions of these may be found in other

¥i1a. 22.—The positions
of mercury and silver atoms
in the ordered, low-tem-
perature phase of AgeHgle
The iodine atoms, which are
not shown, are distributed
tetrahedrally about the Hg
atoms. In the high-tem-
perature phase the Hg atoms,
the Ag atoms, and the
vacancies at the centers of
the top and bottom faces of
the cube become mixed.
The low-temperatuse form is
slightly tetragonal; the high-
temperature form is cubic.

writings;® however, we shall give a brief discussion of the principles

involved and of the simpler theories.

It is clear that the disordered alloy has a higher entropy than the

ordered one.

If we neglect any difference in the vibratinal entropy of

the ordered and disordered state, we may estimate the maximum change
in mixing entropy that accompanies dirordering by computing the

1 The discontinuous behavior of the elastic constants of Cus;Au in the wicinity of
the ordering temperature hias been investigated by S. Siegel, Phys. Rev., 8T, 537(1940).

1J. A. A. KETELAAR, Z, physik. Chem., 36B, 327 (1934), 30B, 53 (1985); Z. Krist.,
87,436 (1934).

3 Bee the survey article by F. C. Nix and W, Shockley, Rev. Modern Phys., 10, 1
(1938).
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number of arrangements associated with .the completely ordered and
disordered states. In the simplest system, namely, that in which there
are two types of atom present in equal numbers N, the number of arrange-
ments associated with the ordered state is unity because all atoms of
a given type are equivalent. The number of arrangements in the com-
pletely disordered state is the number of ways of distributing N atoms
among 2N sites, namely (2N)!/(N1)%. . Hence, the maximum increase
in mixing entropy associated with disordering is

, |
k log %g 2Nk log 2. a)

A similar calculation may be made for any system.

30 et
40
~-log o
50 /
4
6'0 j
"
4
40 320 300 280
— ‘+x|u5

Fia. 23.—The conductivity of AgaHgl. near the transition temperature. ¢ is expressed
in ohm™ em™. (After Ketelaar.)

The energy of the crystal presumably increases as we pass from the
ordered to the disordered state, for otherwise the ordered state would
not be stable at low temperatures. Hence, the energy versus entropy
curve should rise with increasing disorder. Figure 24 shows two possible
ways.in which this curve may behave. In the first case, the E(S) curve
has an inflection point so that a tangent line may be drawn to two parts
of the curve. Thus, the entropy, and hence the order, should show an
abrupt change at the temperature equal to the slope of this tangent line,
and there should be a latent heat, just as in melting. In the second
case, the E(S) curve has positive curvature so that there is no discon-
tinyity in order.

.The actual behavior of a solid is not necessarily determined by the
E(S) curve for disordering alone. It is possible that the vibrational
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frequencies of the crystal may decrease in passing from the ordered to
the disordered state; the disordered phase then has a higher vibrational
entropy than the ordered one at corresponding temperatures. Thus,

the ordered and disordered phases may behave like different allotroplc
phases, and the transition may occur abruptly even though the E(S)
curve for disordering alone would predict a gradual decrease of order.

The theories of order and disorder that are discussed in the article referred’
to in footnote 3, page 503, do not yet interpret the experimental material
in a quantitative way. The reason for this lack is, of course, that the
complete entropy and energy changes which accompany disordering are
very difficult to compute, just as are the changes of these quantities

i

t
€ 3

0= 0

— __—-nl—-——-_._\-_—-—“

e

{

(a) (b)

F1a. 24.—Two possible behaviors of the E(S) curves for order-disorder changee. In
case (a) there is an inflection point, whenoe long-distance order may appear and disappear
sbruptly with a latent heat. In the second case there is no inflection point and the transi-
tion is continuous. The curvature changes at the entropy corresponding to sero long-
distance order (0 = 0), so that there is a discontinuity in specific heat. The right-hand
vertical line corresponds to the entropy for sero short-distance order in each case.
during melting. The results of this work, however, leave little doubt
that the qualitative principles are now understood.

c. Definitions .of Order.—There are two interesting types of order,
namely, long-distance order, which measures the extent to which the
positions of atoms in different cells of the lattice are correlated, and short-
distance order, which measures the extent to which the positions of
neighboring atoms are correlated. The first type of order is responsible
for the Bragg reflection of X rays by. lattices; the second is responsible
for the diffraction rings of liquids and glasses. Following Bethe,! we may
define these two types of order mathematically in the following way.

When long-distance order is disoussed, the lattice may be divided
into as many types of site as are occupied by different atoms in the com-
pletely ordered state. Thus, there are two types of site in 8 brass and In

' H. BerHE, Proc. Roy. Soc., 160, 552 (1835).
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CujAu, and there are three types in AgsHgl,. In crystals in which two
types of site are present in equal numbers, the long-distance order O
is defined as the difference between the probability that an atom will
occupy its own kind of site and the probability that the other kind of
atom will occupy this site. Thus,

O = P,(A) — P.(B) 2

where P,(A) is the probability that an A atom occupies its own site and
P.(B) is the probability that a B atom does. The four probab:htaes
P.(A), P.(B), Py(B), Py(A) obviously satisfy the equations

Py(A) + Py(4) = 1,  Py(A) + Pu(B) = 1,
P.(B) + Py(B) = 1 Py(A) + Py(B) = 1, @

which shows that there is only one independent P. ' In the case of CusAu
in which there are three times as many A atoms as B atoms the long-
distance order may be defined by the equation

0 = P,(A) — 3P.«(B). (4)
The interrelations between the P are '

P(4) + P.(B) = 1, Py(B) + Py(4) = 1,
Py(B) + 3P(B) =1, Pa(4) +1Ps(4) = 1, (5)

so that again there is only one independent P. It‘is clear that the order
parameters defined by Eqs. (2) and (4) are unity in the state of highest
long-distance order and are zero when there is no long-distance order.
This convenient fact is the principal reason for selecting these combinations
of the P, for any one of them could serve as a measure of long-distance
order.

Long-range order is not so easy to define in systems such as Ag.Hgl,
that have three kinds of site, for there is then more than one mdependen‘
P. Let us consider Ag.HgI. as an example, designating the nine proba-
bxht!ea by

Py(Ag), Pau(Hg), Pae(V), - « + , P¥(V)

where the subscripts refer to sites and V is the symbol for a vacancy.
These probabilities are interrelated by the following six equations:

Pa(Ag) + Pr(Hg) + Pa(V) = 1. ‘

Psiy(Ag) + Pu,(Hg) + Pr(V) = 1. (6)
Py(Ag) + Py(Hg) + Pv(V) = 1.

Pu(Ag) + $Pu(Ag) + $Pv(Ag) = 1.

2P (Hg) + Pu,(Hg) + Pr(Hg) = 1. @)

- 3Pa(V) + Pag(V) + Pv(V) = 1.
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Only five of these equations are independent so that it is neccssary to
know four of the P before the average distribution of atoms in the unit
cell can be given. Thus, it is not possible to express the degree of long-
distance order in terms of a single parameter as it was in the preceding
cases.

Short-distance order is also easy to define in two-component alloys.
In the completely ordered state, a given kind of atom has a definite
arrangement of atoms in the neighboring sites. We may specify the
short-distance order in any state by giving the difference ¢ between the
fraction of atoms in a shell surrounding a given atom that have the same
arrangement as in the perfectly ordered state and the fraction of atoms
that have not. The size of the cell may be varied to suit the case at
hand. ‘The quantity o evidently is equal to unity in the completely
ordered state and to zero in the completely random state.

The concept of long-distance order was introduced into the theory of
order and disorder first because it is measured directly by ordinsary
X-ray diffraction data. Bethe! pointed out, however, that short-range
order actually is 2 more fundamental quantity since the in‘eratomic
energy is determined primarily by it.

d. Elementary Theories of Order and Disorder.—The earliest theory
of order and disorder was devéloped by Gorsky? and applied to two-
component systems of the type AB. However, an equivalent theory
developed later by Bragg and Williams® undoubtedly is responsible for
the more recent interest in the subject. In these earlier theories, it was
assumed that the long-distance order O existing at temperature T is
determined by the energy V required to take an atom from an ordered
position to a disordered one. This assumption is expressed by the
equation

0 = oV,T). - (8

It was also assumed that V is a function of the long~dlstance order so
that there is a second relation

V = V(7). 9

The relations (8) and (9) are sufficient to determine O as a function of T
alone.

Gorsky derived explicit forms for Egs. (8) and (9) in the case of an
alloy of composition AB. Since there arc thermal fluctuations, there
is a finite probability that each atom will leave. its position, diffuse

1 I'bid. '

®* W. Gomsky, Z, Physik, 50, 64 (1928).

3W. L. Brage and E. J. WirLrLiaMs, Proc. Roy. Sac., 145, 699 (1934); 151, 540
(1935),
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through the lattice, and fall into a vacant site. Gorsky assumed that
the probabilities per unit time of A and B atoms leaving their own sites
are equal as are the probabilities that they will leave improper sites.
We shall designate these probabilities by [, and I, respectively. In
addition, he assumed that the probabilities that the free atoms will fall
into any vacant proper sites are equal, as are the probabilities that they
will fall into improper sites. We shall designate these by f, and f,
respectively. If N is the total number of atoms of a given kind, = is
the number of vacant sites, and « is the fraction of atoms on proper sites,
the equilibrium equations for proper and improper sites are

Nal, = n?f,,
N(1 — a)l; = n. (10)
Solving these equations and using the relation
0 =2a—1, 11)
we ¢btain
0= 1- (fil?/f_t_’zl_'_). (12)

T 1+ (/T

Gorsky assumed that f, and f; are not strongly temperature-dependent
and that they are nearly equal so that their ratio is practically unity.
Since !, and [; are temperature-dependent, he assumed that their ratio is

~ir
.% - e. . (13)
¢ R
Using these relations, we find
0 = tanh 2. (14)

Evidently, ¢, — ¢ is proportional to V, the energy required to remove an
atom from an ordered site to a disordered one. Hence, (14) is

14

O = tanh e (15)

where 8 is a proportionality factor. This equation has the form (8).
Were V independent of O, O would decrease slowly with increasing
temperature and would approach zero when 1" becomes infinite. It is
clear that ¥V must depend upon order, however, for there is no difference
between proper and improper sites in the completely disordered state.

Hence, Gorsky assumed that V varies linearly with O in the manner

_ V = V0 (16)
where V is a constant. This equation corresponds to (9).
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The solution of Eqs. (15) and (16) is given by the equation

BY 0.
kT

This has two reots, namely, the root O = 0, which is independent of
temperature, and a root which is unity when 7' is zero and zero when

O = tanh

(17)

_ BV
T, = D% (18)
and varies continuously in between (¢f. Fig, 25). The relation deseribed
by the second root agrees qualitatively with that observed in 8 brass.
One obvious objection to the details of
Gorsky’s treatment is the fact that he
assumes a questionable diffusion process in {
deriving Eq. (15). 0
Bragg and Williams' modified the prin- 051
ciples used in Gorsky’s treatment and
extended the field of application of the
method. In earlier work, they introduced 0

0 05 |

rate processes in order to derive equations I
equivalent to (15). Williams? subse- i

quently showed that this procedure is not Fie. 256.—~The O(T) curve ob-
necessary and that the equations may be Laged, from Gorsky's theory of
derived on the basis of statistical me-
chanics. We shall discuss their work from the later standpoint.

Let us epnsider a ease in which there are n, A atoms and ¢ sites and
" ny B atoms and b sites. Generalizing Egs. (2) 2nd (4), we may define

the long-range order by the equation

n ny

_ z _ T _p—= 6
-p(l‘{-l-—x) 1—-z 1-z2 (19)
where, for simplicity, we have replaced Pi(4) by the symbol p, and

. '_;_' poud the fraction of @ sites, by #. Let us now compute the entropy
L]

associated with a given value of order. The zN'p 4 atoms in thezN'a
positions (N’ = n, + m) may be distributed in
_ (zN')!
™M= T e ) N ) (20)
! Braea and WiLriams, op. oft.
*E. J. Wiutams, Proc. Roy. Soc., 152, 231 (1035). See also R. H. Fowvsr,
op. cit.

0 = Pu() - 2pu() = Pui){1 +22) ~ 2
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independent ways, whereas the (zN’ — zN'p) A atoms inthe (N/ — zN") b
sites may be distributed in

(N’ — zN')! @1
(N = 2zN" + aN'p)(GN’ — zN'p)! 1)

ways. Since the total number of arrangements is the produet of n; and
ns, the entropy! is

Ny =

S = k log nin. .
= C — N'kx(l+—-p) log (1 — p) + zp log p + .
(1 — 2z + zp) log (1 — 2z + zp) + (x — zp) log (z — zp)] (22

where C is independent of p.
The energy of the disordered state relative to the orderéd one is

E = VN's(1 — p) (23

where N’z(1 — p) is the number of atoms
that have been moved from ordered to
T disordered positions. The value of p for

which the free eneigy E — 7T'S computed
T from (22)- and (23) is & minimum satisfies

Fio. 26—0(a) eurve for the equation _
z = %.. As the tenmiperature is
raised fronl: abo?l‘euto sero the log (1 —-p)izx V. (24)
= V/kT lines‘become tangent - ——
:t the ou'i:;n before the other p(1 2z + zp) kT

interoept has reached the origin.  y¢ Lo yanlace p by O, using Eq. (19) we ob-
- tain an equation connecting O and V, namely,
[Mz(l — 2)(e* — 1) + 1} — 1

220 — (e = 1) (25)

where « = V/kT. This ec;uat.ion Jeduces to Gorsky’s equation (15)
when z = §, a fact showing that g should be 4. The expansion of
Eq. (25) in the neighborhood of « = 0 is

0(a) = z(1 — 2)a + (1 — 2)(1 — 28)%a+ + ++.  (26)

Hence, S usually starts out with a finite slope and positive curvature, the
exceptional case being z = §. If it is assumed that the relation (9) is

V = V0,

as Gorsky did, the transition is of the first kind in all cages, except that in
which 2 = 4. This follows from the fact, illustrated in Fig. 26, that the

0=1-

tIn this computation, only the mixing entropy.is considered. Actually, the
‘ change in vibrational entropy should be included as well.
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V(0) line. becomes tangent to the O(V) line at the origin before the
other intercept approaches the origin when the O(V) curve has positive
curvature.

e. Bethe's Treatment of the Problem.—Bethe provided a new and
important approach to the problem of order and disorder by pointing
out that the ordering energy and entropy are determined primarily by
the short-range order since neutral atoms interact with short-range forces.
Thus, the equation of state may be determined by considering short-
range order, and the long-distance order may be obtained as a by-produect.
In addition to recognizing this principle, Bethe developed an approximate
method for computing the partition function of the system. Discussions
of this and of subsequent theoretical work may be found in the review
article listed in footnote 3, page 503.

126. Free Rotation in Crystals. a. Ezxperimenial Survey.—The
specific-heat curves of molecular solids frequently show peaks resembling

. those observed during order-disorder transitions in alloys. Two inter-
pretations of these peaks have been given in the theoretical develonment
of the subject, namely, the hypothesis due to Pauling' that the peaks
accompany the onset of free molecular rotation and the hypothesis due
to Frenkel? that the molecules undergo only torsional oscillations both
above and below the transition temperature and that they have less
relative orientation above the transition than below. At least in the
case of ammonium chloride, which has been investigated very thoroughly
by Lawson,® the evidence seems to be in favor of Frenkel’s hypothesis,
a8 we shall see below. The observed cases may be classified as follows:

1. Nonpolar molecular erystals, such as CH,, N3, O,
2. Ammonium salts.
3. Polar molecular crystals.

‘We shall discuss these categorically.

1. Nonpolar cases.—Although carbon atoms of solid methane form a
face-centered lattice below 89°K, there is no direct evidence concerning
the position of the hydrogen atoms. The specific-heat curve possesses the
changes, shown in Fig. 80, Chap. I, near 20°K, but these are not accom-
panied by the appearance of a latent heat. As the temperature is raised
through this transition region, the molar volume increases abruptly
from 30.57 to 36.65 cm®. There is no other obvious change in crystal
structure during the transition. It is assumed, however, that the hydro-
gen atoms are localized below the transition ’oemperatu.re and are not
localized abave it.

1L, Pavring, Phys. Rev., 86, 430 (1930).
t J. FreNkzL, Aca Physicochemica, 8, 23 (1935).
$ A. W, LawsoN, Phys. Rev., 57T, 417 (1940).
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Solid oxygen and nitrogen seem to possess similar transitions at
23.7° and 35.4°K, respectively. The experimental work indicates that
there are large hysteresis effects associated with the transition in these
cases, 80 that the results are not so definite as for methane.

2. Ammonium salts.—A number of ionic crystals that contain the NH
radical, such as the ammonium halides, ammonium sulfate, and.ammo-
nium nitrate, have specific-heat curves that show anomalies simi 0
those observed in methane. The curve for ammonium chloride is shown
in Fig. 69 of Chap. I. As a result of a very careful set of experiments,
Lawson has shown in this case that the specific heat at fixed volume does
not exhibit nearly so high a peak as the specific heat at constant pressure
and that Cy is 9R above the transition temperature, corresponding to
torsional oscillations of the molecules rather than frce rotation. Thus
his results support Frenkel’s- hypothesis rather than Pauling’s in this
case. It seems likely that Frenkel’s picture is also valid in the other
ammonium salts and probably in solids of polar molecules, but it does
not appear safe to draw conclusions concerning other cases.

3. Polar molecular crystals.—Many crystals that are composed of
polar molecules, such as solid hydrogen chloride, hydrogen iodide, and
hydrogen sulfide, behave in a way similar to the substances already ,
mentioned and yet show important differences. For example, hydrogen
chloride forms a cubic crystal above 98.8°K in which the chlorine nuclei
are localized in a face-centered cubic lattice. Since this fact clearly
means that the molecules are not parallel, we may safely assume that .
they sre more randomly oriented. The lattice changes abruptly to a
tetragonal face-centered form at 98.8°K with the appearance of a latent
heat. We may conclude that the molecules have higher relative orienta-
tion in the low-temperature form of the substance. Apparently, the
intermolecular forces and lattice frequencies are sufficiently different in
the two states that the crystal behaves as though it were undergoing an
allotropic phase change.

Hydrogen bromide and iodide behave more nearly like nonpolar
crystals since they do not exhibit a latent heat during the transition;
however, their specific-heat curves have very large discontinuities.

- b. Pauling’s Theory and Fowler’s Extension.—Pauling’s hypothesis
was treated in & semiquantitative manner by Fowler. Since this work
resembles that on order and disorder discussed in the previous section.

. we shall discuss it briefly. Pauling assumed that the potential energy
of a molecule in a lattice depends upon its angular-orientation relative
to the crystallographic axes. Let us consider a lattice of nonpolar
diatomic molecules and speeify the position of a molecule relative to the
orientation for minimum energy by a polar argle 8 and an azimuthal
angle ¢. When ¢ is fixed, we may expect that the energy varies with
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6 in the manner shown in Fig. 27, the direction 8§ = » being equivalent to
8 =0. If V,is large enough, the lowest energy levels of the molecule
E; correspond to states of oscillation about the equilibrium orientation
so that the molecules should not rotate at very low temperatures. They
should -rotate, however, at sufficiently high temperatures. Pauling
realized that the height of the potential-energy curve depends upon the
amount of rotation of the other molecules, for otherwise the specific-
heat curve would not be discontinuous.

It is clear that the pnnclples embodied in Pauling’s plcture of the
onsct of free rotation are the same as those
used to explain the order-disorder transitions  {
in alloys. This was first pointed out by v
Fowler' who applied the equivalent of a
Bragg-Williams approximation to Pauling’s-
theory in the case of a lattice of polar
diatomic molecules. He assumed that the
aligning potential may be expressed in the
form

V= ~Vycos 8 - ( ° o— 3

. - Fia. 27.—The iation of
and that thel'e are 81'10“8}1 nega-tlve energy v(o) asa function 0:;?01’8:0!1-

levels to justify the use of classical mechanics Polar diatomic molecule. The
. . s equilibrium position is & = 0.
when one is computing the partition fune- . '
tion near the transition temperature. The partition function then is
—-_;,!f ve' s:::’ ) +Vacos @ ‘ '

Ay = | e M dpedp, sin 6dedy

ol W Vo @)
hz "VO— sSin W
Thus the specific heat is

C NL' 2 Ve | ®3)
V= “\ k7T sinh :T :

Now, V, should depend upon temperature because it is affected by
the prevailing degree of rotation, which is a temperature-dependent
guantity. Ina treatment of the present problem that is closely patterned
after the Bragg and Williams treatment of order and disorder, the degree
of rotation R would be defined in a physically reasonable. way; it would

1R. H. FowLer, Proc. Roy. Soc., 149, 1 (1935); sec also Statistical Mechanics
Cambridge University Press, 1936).
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then be assumed that Vo depends upon this variable in some exphicit
manner. This equation and Eq. (2) would then be analogous to Egs.
(8) and (9) of the preceding section arnd would lead to a relation between
the degree of rotation and temperaturs. In this secheme, different types
of transition -could be treated by varying the relation between V, and
the degree of rotation. Instead, Fowler used a fixed relation between
Vo and R and treated different transition-types by taking different
definitions of B. We shall discuss two of his cases.

In the first case, he defined the nonrotating molecules as those
satisfying the relation

1 2
ﬁ( e o) ﬂ) < BV, 4y

where £ is an adjustable parameter. The molecules specified by Eq. (4)
cvidently have kinetic energy less than W for any angular orientation.
The fraction B of molecules that are rotating is then given by the equation

=L ®)
where f is the partition function (2) and
o [ Yocou? _Ppp, /st 8
fo = = J; e ¥ 1. T dpodp,
{pg*+m,t 1.1'\’ ) >218Va _ (6)
2IkT kT =5 . b Va
i T A
Thus,
_B¥
R=g¢ * ()]
For simplicity, the dependence of V, on B was taken as
Vo= Vil ~—R) (8)

where V) is & constant. Equations (7) and (8) determine the relation
between R and teinperature. It js easily seen that R is unity at

= BV,
¢ k
and that
2T T
B=t-7{1-p

near the transition point. The epecific heat below 7', is

_ dR{cush z sinh 2 — z
(;Ir == Nk(? - ;'ﬁh‘_ ) + N\IVﬂdT 3inh= T )
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where
_ Vol - R)
I A
and is Nk above T.. Moreover, the specific heat is continuous at 7'
in this case, although it has the maximur shown in Fig. 28 below 7.
"~ Fowler was able to alter the definition of order in such a way as to
obtain & more abrupt change. If it is assumed that the nenrotating

3k

2R

oL

Fio. 28.—The type of molar heat curve obtained hiom Eq. {3). Above 7% the value is
R, as for diatomic molecules. The full line corresponds to the classical casc treated by
Fowler. The broken line represents the effect of quantum mechanicai modification.

" molecules. satisfy the relation.

‘1 y 5 84 .
3] po® + Eim) < -2-3{1 + cos )

instead of the relation (4), it is found that

which is analogous to Gorsky’s equation of the preceding section. When
‘coupled with Eq. (7), this relation leads to a discontinuous specific-heat

curve, as in the case of alloys. It is possible to obtain transitions of the
first kind in a similar way.

Note: The topics of nucleation and rates of simple phase changes in solids, which
we have omitted for reasons of space, should properly be included in this chapter.
A discussion of these topics that is in accord with the presentation of the preceding
sections has been given by R. Becker, Ann. Physik, 32, 128 (1938). Becker shows
that many of the facts concerning the rates of simple phase changes may be explained
semniquantitatively on the assumption that the energy of the surfaces of misfit between
the new and the old phase is such that only reiatively large nuclei are stable.



CHAPTER XV
THEORY OF CONRDUCTIVITY

In the present chapter, we shall be interested in three types of con-
ductivity, namely, metallic conductivity, ionie conductivity, and photo-
conductivity. The first of these was discussed in Chap. IV on the basis
of the free-electron gas model and will be redeveloped in the first part of
this chapter following a method that was first used by Houston and Bloch.
The two other topics will be diseussed in subsequent parts of the chapter.

A. METALLIC CONDUCTIVITY

126. Summary of Older Equations.—The Lorentz-Sommerfeld theory
of metallic conduction is based upon Boltzmann’s equation of state -

vograd, f+ e grade f=b.—a )

where v is the electraonic velocity, « is the electronic acceleration,
3, .0 , .9
gr&d'—iﬁr-“} j3§+k0_z-'

., 0 . 0 a
grad. = b + i3m; + ka-’-‘:

[ is the statistical distnbution fanction, which gives the number of par-
ticles per unit volume having velocity v,, v,, v,, 8nd ¢ and b are collision
terms. This equation was derived in Sec. 31 and was solved on the
assumption that f has the form

= I + vax(o) (1a)

where f, is the distribution function in the absence of a field and x is an
undetermined [unction that is small compared with fo. In addition, the
quantity b — a, which gives the difference between the numbers of
particles entéring and leaving a unit volume of phase space because of
collisions, was computed on the assumption that the electrons make
elastic collisions with the ione of the lattice. It was found to have the
value

b -6 = -.._’_"_2‘_%.(!2 (2

where Iy is the mean free path, which is assumed to be independent of
b16
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velocity. If f, is the Maxwell-Boltzmann distribution function
_.
Ae FT
where A is a constant, the conductivity o i8
4 ﬂﬂoez
3 \f—‘k
where-ny is the number of free electrons per unit volume, ete. [cf. Eq. (5),
Sec. 36]. Since the mean velocity #x in Maxwell-Boltzmann statistics is

ENELLE @

Eq. (3) may be placed in the form

. n;loe"o'u

(35

On the other hand, if fo is the Fermi-Dirac distribution function
.’i""—'} | .
T +1
ay iS oL

= ®)

[¢f. Eq. (13), See. 32], where r(e{,) is the veioc:t.y of the electrans at the top
of the filled band.

Equation (3) gives the proper order of magmtude for the conductivity
at room temperature if lp is tdken as the interatomic distance and if
ny is the total number of eleetrons per unit volume. The temperature
dependence is wrong, however, for the observed condustivity vs.nes as
1/T near room temperature.

Equation (6) is incorrcet if lg is given the same value as in the praced-
ing case because ﬂ(e,,) is between ten and one hundred times’ larger than

VET/m®, if m* is the electronic mass. Moreover, the temperature
dependence is also wrong. 1n order to justify the use of this equuation,
which is more reasonable than (3) since elect.rons actually obey the Pauli

principle, it is necessary to assume that [ is temperature-dependent and
at room temperature is between ten and one hundred times larger than
the interatomic distance. It must also be assumed that '} approaches
infinity at low temperatures in order to explain the observed increise
in conductivity with decressing temperature (c¢f. Fig. 3). This type of
temperature dependence would imply, however, thst the assumptions
going into the derivation of Eq. (2) are also in error.
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Houston' and Bloch? reopened the problem of metallic conductivity
by investigating the way in which electrons interact with a crystal lattice
on the basis of quantum mechanics. ‘We shall discuss this work and sub-
sequent refinements in the next section. . It will be seen that inelastic
electrop-lattice collisions are of primary importance in determining the
resistance; however, the amount of energy given to the lattice by the
clectrons is small, so that Sommerfeld’s equation (6) is not badly in error..

127. The Collisions between Electrons and Lattice Vibrations in
Monovalent Metals*.—Houston! first pointed out that the mean free
path of an electron in a perfect nonoscillating lattice should be infinite.
This is very easy to see in the Bloch scheme; for then the one-electron
functions have the form

¥k = xxe>xr,
and the velocity of the clectron in a given state is
' v = grady e(k)/h.

In the absence of any perturbation, an electron should continue in this
state indefinitely. ’

An ordinary metal does not satisfy these ideal conditions for two
reasons: (1) Its lattice is undergoing thermal oscillations, and (2) it
usually contains imperfections, such as impurities and lattice defects.
Both these effects may scatter electrons and thus make the mean free
path finite.

The temperature oscillations should decrease with decreasing tem-
perature and become very small at absolute zero. This fact provides a
satisfactory qualitative explanation of the great rise in conduectivity at
low temperatures. The imperfections, on the other hand, should not be
affected appreciably by decreasing temperature and should account for
the residual resistance at low temperatures. Moreover, since the
imperfections should depend upon the previous history of a specimen,
we should expect the residual resistance to vary from specimen to
specimen, as is observed.

From a wave standpoint, we may say that the a.boms of a perfect
lattice scatter electrons coherently, that is, in a manner that resembles
the Laue diffraction of X rays. Hence, before an electron can be scattered
in a perfect lattice it must occupy a level at the boundary of a zone, and
the level to which it can jump must be vacant. These conditions are
not ordinarily satisfied by an appreciable fraction of the conduction
electrons. We shall sce below that the scattering due to thermal vibra-
tions may be regarded as the analogous coherent scattering by a lattice

1 W. V. Housron, Z. Physih, 48, 449 §_1928) ; Phys. Rev., 34, 279 (1929),
* F. Brocw, Z. Physik, 63, 555 (1928); 68, 208 (1930).
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which is periodically deformed by a vibrational wave, the distorted
crystal behaving like a grating with a grating constant equal to the wave
length of the lattice wave. Since this type of scattering is also limited
by Laue conditions, a given vibrational mode can deflect a given electron
only through definite angles. It is generally assumed that the tempera~
ture-independent scattering which gives rise to residual resistance is
essentially incoherent, that is, that the scattering centers are arranged
so haphazardly that they may be treated as though independent of one
another. We shall discuss this in more detail in Sec. 130.

We shall devote the rest of this section to a quantitative discussion
of the scattering of electrons by lattice vibrations. All quantitative
treatments of this topic have been simplified by means of the assumption
that the electronic energy depends only upon k = VE: 4+ k2 + k3,
the scalar wave number. This condition is closely satisfied in the
monovalent metals, and thus the discussion of the present section should
apply most nearly to them.

The differences between the various treatments of the problem
of electron scattering lie in the different assumptions that have been
made regarding the interaction between the clectrons and the lattice.
Let us consider a simple monatomic metal containing N atoms and
designate the equilibrium positions of the atoms by the variables

1{p) = pw1r + pres + Pavs 1)

where the p are integers and the = are primitive translations. We shall
designate the displacerent of ‘this atom from its equilibrium position by
R(p). In the quadratic approximation, R may be expressed in the form

R(p) = “‘(")t (@)e2rieeca @
2% ’\’ ‘
[¢f- Eq. (4), Sec. 118], where the a are the complex amplitudes and the ¥
are the unit polarization vectors of the normal modes, the ¢ are the wave-
number vectors, which extend over the N values in a single zone, and M
is the atomic mass. Since each atom is a center of symmetry in our
simpie lattice and R(p) is real, the ¥ are real vectors and
a.(d) = G»;(‘—d).
As we have seen in Sec. 22 it is convenient to define real amplitudes
- a(8) in terms of the a by means of the equations
{ *
4‘_{6} = t:!_‘-.d—)-‘.-.;h_éf_‘_(_"_)’
. (&)
aé) — a (6)

V2%

af—a) =
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a. The Perturbing Potential.—In the earliest work on the quantum
theory of conductivity by Bloch,! Brillouin? and Bethe,® it was assumed,
for convenience, thdt as the ions move the electronic charge is deformed
in such a way that the potential of an electron at the point r’ in the
deformed lattice is the same as that at the point r in the undeformed one.
Here r and t’ are connected by the equation

¢ =r+ R(@) 4)
where R(r) is obtained from-Eq. (2) by replacing r(p) by r. Thus,
Va(r + R(x)) = Va() : (5)

in which V. is the potential in the undeformed lattice and V, is the per-
turbed potential. In first approximation the perturbing potential
3V (r) is

8V = Vulr) — Valr) = —R - grad Va(0). | (6)

Nordheim¢ objected to this assumption because he believed that
the important part of the field is that near the ions which moves almost
unchanged as the nuclei oscillate. For this reason, he suggested that
the perturbing potential should be obtained by treating the lattice as
though it were a system of rigid oscillating atoms. In this case,

V() = S — £@) + R@))
?

where v is the potential of an atom. Thus, the perturbing potential
then is

3V (r) = — 3 R(p) - grad v(r — R(p)). @
Hd

The most satisfactory discussion of the potential has been given
by Bardeen® who obtained it by a self-consistent field method. His
result, which should he valid for the monovalent metals, is more nearly
like Bloch’s than like Nordheim's, the reason being that the volume of
space near the ions in which the atomic potential v(r) is large is s0 small
that the “rigid” part of the field actually ean be neglected: We shall
not discuss the derivation of Bardeen’s results in full mathematical
detail but refer the reader to the original paper. His final equation
for the matrix components §¥x of the perturbing potential connecting

! BLoch, op. cii. :

? L. BriLrouiN, Quantenstatisisk (Julins Springer, Berlin, 1931).

' H. Borre, Handbuch der Physik XXIV /2 (1933).

‘L. NorpHEIM, Ann. Physik, 9, 607 (1931).

3 J. BArDEEN, Phys. Rev., 63, 688 (1937).
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the states of _electronic wave number k and k’ is

W = 3, D + Kau(9) cos 73,k + 6 +K)  (8)

X

in which the K, are principal vectors in the reciprocal lattice, D¢ 4+ XK.)
is a function of |¢ + K,| alone, and cos v:(é) is the angle between ¢
and E(¢). }

We shall now discuss the manner in which the resistivity is related to
the matrix components of the perturbing potential in the general one-
electron case as well as that in which Eq. (8) is valid.

b. The Selection Rules for Electronic Collisions.—It was seen in Sec.
48 that the probability P.s that a perturbed system will change from a
state of energy E. to a state of energy E; in time { is

&\’ in?
P = () 1Vt 225 ®
where
= (Ea - Eg)i
g = Be T (10)

and V. is the matrix component of the perturbing potential connecting
the two states:

Vas = [&*Vdadr. (11)

1 2
For sufficiently long times, we may replace 51:’ z by

2 ek — Ee)

so that

Poy = 2V 4ft8(E. — Ep). (12)

We shell apply these results ta the problem of conduetivity, regarding
the entire crystal as a single system. The unperturbed wave functions
of this system have the form [¢f. Eqs. (2) and (11), Sec. 116]

ﬁr.u(zl: Tty Zny sh T ;f) = ‘l",(zl, Y zn)AM('EI: tR Yy IJ")

where ¥, is the electronic wave function and ‘A, is the nuclear-coordinate
wave function. In the present case, in which the harmonic approxima-
tion is employed, the wave functions A,, are

i
Ala) = [ e (ala))- (13)
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Theaappemngmt.huaqusuonmdaﬁnedby]i‘.qs (3),andtheh
satisfy the harmomc-osc.lllnor equation

S ity OO = @@ (10
where '
ey = [n(8) + djhwi(d). (i4a)

It is assumed, of course, that the electronic wave function is a deter-
minant of Bloch functions. Hence, the entire state of the system
may be specified by the electronic wave numbers k, the electronic-spin
quantura numbers, and the vibraticnal quantum numbers of the lattice.
Since Bardeen’s perturbasion potential discussed in part a is the sum of
identical one-glectron. terms that are indepencent of spin, those matrix
components cornecting states in which spin Guantum numbers differ,
or in- which more than one wave-number vecior is different, vanish.
The nonvanishing components connect states for which the changing
wave number satisfies the condition?

K =k+¢+K, (15)

where k is its initial value and ¥’ its final value [¢f. Eq. (8)). We must
now find the matrix components of the quantity in the right-hand side
of Eq. (8) for the nuclear-coardinate wave functions, This term involves.
the nuclear coordinates a{4j through the function

(d) cos 7i(8) | (16)

which appears as a coefficient of D¢ + K,) in Eq. (8). The matrix
components of (16) vanish for all states except those in which n.(d)
differs by an integer, because A(a) is a product of one-dimensional har-
monic-oscillator fu nctions The nonvanishing components of (16) are

| R

- (d}é(n , n 4 1) cos 7.{d) 4

Im(d) cos Tt(d)]u.n’ = \/n -2}. 1

We may summarize these results by saying that an electron may
change its quantum number from k to X’ in a single coilision, where k
and k' satisfy Eq. (15).. This change must also satisfy the Pauli prin-
ciple; that is, the state k' must be unoccupied. At the same time, one
and only one of the three modes of vibrationof given ¢ may change
its vibrational quantum number by unity. This quantum number may

1 This relstionsi'lip is essentially Laue’s equation for the diffraction of a wave of -
wave number k by a lattice having lattice constant 1/}e].
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decrease only if the initial value is 1 or greater than 1, that is, if the modec
is initially in an excited state. Since energy must be conserved during
this collision according to Eq. (12), k' and ¢ must satisfy one of the
relations

k') = ek + (6 + Ko)) + h»,(a),} 18)

e(k’) = e(k + (¢ + K.)) — hu(9)

~ Tt should be mentioned here that Peierls’ was the first person to point
out that values of K. different from zero should be considered in the
preceding equations! As we shall see below, these additional terms
make an appreciable contribution to the resistivity.

The matrix component for a given change of state of the aystem is
obtained by choosing the cqmponents of (8) for one of the three vibra-
tional modes of given ¢ and by using Eq. (17). When this matrix com-
ponent is substituted in Eq. (12), we obtsin the probability for the
process

k- K, (19)
ﬂ.g(d)_ — fu(ﬁ) + I,

all other quantum numbers remaining fixed. The total probability that
an electron of given k is scattered in given time when the vibrational
system is initially in the state specified by a given set of vibrational
quantum numbers i obtained by summing the probability for an individ-
ual process over all values of d, K., and ¢ with the dxﬁerent. alternatives
in sign.

For the purposes of the following discussion, we shall write the square
of the matrix element of the perturbing potential connecting the elec-
tronic states k and k + ¢ + K. and the vibrational states n,(d) and
n(d) + 1 or n,{(8) — 1 in the form

4k, ¢ + Ko) - {:::E‘;; + (20)
where '
Ak, ¢ + K.y = |Dy(8 + Kol (‘) cos? v,(é). (21)

c. The Computation of b — a for Temperatures above the Characteristic
Temperature.—According to Eq. (9) and the preceding results, the
total probability P(k, ¢ + K,) that an electron in state k shall make a
transition to another state k + ¢ + K. is

Pk, ¢ + K = DAk &+ K){[n(6) + () — e — hn(®)) +

‘ne(8)w(e(k’) — e(k) + hr(8))} (32)
tR. anzm. Ann. Physik, 12, 154 (1932).
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where
. el
4 gin? —
o) = — 22 (23)
and

k' =k + ¢ + K..

It is assumed at this point that the state k' is unocoupied. We T:nny
conveniently note that Ar,(d) is small compared with ¢(k) or «(k’) for the
electrons near the top of the filled region since k9., which corresponds
to the maximum value of i»(8), is less than 0.05 ev for most metals,
whereas e(ko) is at least 1 ev for all metals. This means that the elec-
tronic energy is very nearly conserved during the collisions discussed
in this part of the present section. Hence, as a practical approximation,
we shall replace the w in (22) by w(e(k’) — «(&)). As will be seen below,
this approximation is justifiable as long as T ig appreciably larger than
0,. With this simplification, P(k, ¢ + K.) becomes

Pk, ¢ + Ka) = 3 Auk, 3 + Ko)[2n(8) + Lw(e(k') — (k)
= B(kk + ¢ + K)w(e(k') — e(k)). (220)

In a practical problem in which we know only that & metal is at
temnerature 7', we are not able to give the ».(d) in this equation particular
integer values. Instead, we can know only the average values, which
we shall assume are given by the equation

1
n8) = —ory——
e T — 1
(¢f. Bec. 18).

It was remarked above that Eq. (22a) gives the transition probability
only when the state k' is unoccupied. If f(k') is the probability that
this state is occupied, the probability that it is not cccupied is {1 -~ f(k")].
Under equilibrium conditions in the absence of an external field, we
may assume that f has the value

N 1
Jolh) = -g=ar = (24)

e ¥ 4]
corresponding to Fermi-Dirac'statistics. _

We may now compute the collision terms in Boltzmann’s equation
for statistical equilibrium. The total number of electrons per unit
volume leaving a unit volume in k space per unit time because of collisions
is
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a= %ff(k)B(ksk})w(e(k) — ()1 — f(K&')]p(k)dr (k)

where p(k’) is the density of levels at the point kK’ and the integration
extends over those points in wave-number space for which the selection
rules are satisfied. Similarly, the number of electrons per unit volume
entering the unit volume of k space because of collisions is

b= 5 10 BleY0e®) — <DL~ 100)1p)dr ().

Hence, b — a is

b—a=3 f BK)o(e(k') — ) 7)1 — f(K)] —
FOIL — fEN) p(k)dr (k). (25)

This evidently vanishes when f{k) has the form of Eq. (24). In the
case in which there is an electrical field, we shall assume that f has the
form '

1) = fo(k) + kog(k) o (26)

where g(k) is a small function that depends only upon e(k). This
assumption evidently is equivalent to that of Eq. (1a), Sec. 126. If
(26) is substituted in Eq. (25) and only first-order terms are kept, it is
found that -

b—a= %fﬁ(k,k’ Jw(e(k) — e(k’))[kzg(B)\— kag(k)]lpo(k')dr(k’). (27)
We shall now integrate this under the assumption that

_ R
“® = om
and that, when |k| = |k’|, B(k,k’) depends only upon [k| and the angle ¢
between k and k'. ‘Then, p(k’) is a constant equal to 2V, and

dr (k") = k'*dk’ sin 6d8de

= (%- 112de(k') sin 6ddde

where 6 and ¢ are the polar angles of the vector k' measured relative to
k. Making use of the relations

f ;“F(g)w(e)de =2 (), 28)
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for at > >MAr and

2w ' .
J; (ke — K)dp = 2rk.(1'— cos ),
we find
b—a= —(jf Vitkg(o2T _ BleJ)(1 — cos 6) sin 60
where the integration extends over 6. .

* Comparing this equation with the corresponding equation for Som-
merfeld’s theory [¢f. Eq. (2), Sec. 126}, namely,

va0x(0)
!

we may cenclude by analogy that the mean free path { is

b—a= —

1 A I .
= 16-;'(3;) Vk j; B(kX')(1 — cos 6) sin 640 _ (2?)

since v.x(v) is repiace‘d by k.g(e) in the present problem and since
1de

o e

h dk

Before this result can be substituted in Eq. (6) of the preceding sec-
tion for the conduetivity; it must be shown that k.g and v.x have the
sams form. In order ic do so, we must solve Boltzmann’s equation

a
(—af—;)dﬁ“ =} — a.

In the Lorents-SBommerfeld case, the solution of this is (¢f. Sec. 31)

’ ==z 93 afo
_ vex = eEl- Jv. (30)
Now, in the present case,
of - _€E.df 3¢ 1 3¢ Of (31
Ot/ arits k 3edk, hok,dzx Wb

We may assume that f is independent of z and may retain only the first
part of (26) in the remaining term in (31). We obtain

3= -FE% 32
Thus, the equation to be solved is
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where 1 is given by Eq. (29). The solution of this is
- - fo
kg = eEJ% Fd (33)

which is identieal with Eq. (30); henee, we may use the value of I(k) givon
by Eq. (29) in all the cquations of the Lorentz-Sommerfeld theory.
Thus, the conductivity is

_ e™nol(ko)

= Sho Re) (34)
v (ko) K/ \\.-o+Kq
It is sometimes convenient to writc
Eq. (34) in the form —

=1 _moko) 1 _
P =G T Tetn, (ko)

where p is the resistivity. When
coup: led with Eq'. (29)’ this fo-m shows ‘F1a. 1.—The relationship between k,
clearly the way in which the resistivity m:lh: + t..d'rho center :f go :;lele
depends upon the matrix components 18 8¢ the origin of k space and the radius
X { the circle = |k'|. The val
of the perturbing potential.. over which .:.+’ i!- !,ntotrafp‘:l :3
d. The Numerical Computation of "‘i‘:;";, by the chords that connect k
the High-temperature Conductivity.— e
We shall now outline the way in which Bardeen computed 1/1. Accord-
ing to the equations of parts b and ¢ -

(35)

. ) i
BeX)y = Die + Ko)ligongs 008 1(@)2m(s) + 11, (36)

13

This must be substituted in Eq. (29), and the result must be integrated
over §. Before this can be done, it is necessary to investigate the depend-
ence of 4 and K, upon 6. The relations between k, k’, ¢, and K, are
given by the equations
k' —k =4¢+ K,

AR @)
which show that the allowed values of é 4 K, are the chords of a aphere
of radius |k| that pass through the point k (¢f. Fig. 1). Moreover, each
allowed value of ¢ + K. satisfies this relation only once. The relation
between [¢ + k.| and 8, the angle between k and k', may be found by use
of elementary geometry and is

6 + K. = 2k sin g (38)
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Hence, all the terms of B(k,k’) except. 4-;--(-35—- and [2n.(é) + 1] depend

upon @ alone. ' A part of the complication arising from the additional
terms may be removed by assuming that

ve(d) =cq

where ¢ i8 independent of £ and 6. This relation is not rigorous since
the velocity of vibrational waves usually depends upon wave number
even in an isotropic solid. Wlth this assumption, we may make use of
the relation :

Z cos? () =

which is valid because the three directions of polarization of lattice
waves are orthogonal. We are then left only with the complication that
part of the coefficients in the terms of B depend upon |¢ + K.| and part
depend upon [8]. As leng as é + K., lies in the first zone, K, is zero,
so that these terms depend only upon |¢|. Bardeen has pointed out that
|é| is very near to its maximum in the monovalent metals when K. is
not zero. ‘This fact can be made evident by observing that in monovalent
metals the circle of radius 2k, in ¢ + K. space, which determines ihe
allowed values of ¢ + K., usually is not close to points K. other than
tLe origin. Hence, we may replace v,(d) by com in those terms of B(ik,k’)
for which K. #¢ 0. This assumption evidently decreases the theoretical
resistivity to some extent.

As a further mmphﬁca.t:on it may be assumed that the first zone of
wave-number space is a sphere of radius

0’.. = 2ikﬂ.
The vector J¢ + K| extends outside this sphere wheneyer
.82t '1
or whenever 8 > 79°, '
Finally, it will be assumed that the temperature is so high that

e = 5

T — 1

may be replaced by kT /hy.,
With these assumptions, we have

BeX') = gm0y, (399)
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when sin 8/2 < 21, and

Bok) = sanmr o), (30b)

when sin 6/2 > 21, where

% = sin 9

2

and G(u) is a somewhat iniricate function that may be derived in a
straightforward manner from the coefficients D.(¢ + K.) m Eq. (8).
It should be observed that the value of
B(k,k’) for which sin 8/2 is less than
2-1 joins continuously with that for
which sin 6/2 ie greater than 2-1, since

4k32-

Tm

The function G(u)?, which determines
the angular distribution of scattering,
decreases from a relative value of 1
to a value of about 0.1 in the range
extending from 8 = 0 to @ = x, as is
shown in Fig. 2. Hence, collisions in 270° _
which the electron is scattered in the ¥re: z;;aofg‘f‘;;: ;’;‘{:‘_".‘ns("‘%‘ as i
forward direction are most probablé.
Substituting the foregomg value of B(k,k’) in Eq. (29), we obtain

32x°kT (dR\?

mﬂ

= 1.

fm‘ {Q o "

0 = 9 &), 8- (40)
where C? is defined by the equation
- el 1 ki
Ct = 2""[ . G(u)*utdu + 2_'G(u)’w;;«uld',;]. (41)

Hence, if we use the relation 6p = hcow/k the conductivity is

48’?6 Mkoz\ 1
)l: k\ T {’)ﬁ" “2)

It should be observed that the effect of the relatively large valye of
G(u) in the direction of forward scattering is partly compensated by the
coefficients of this function in the integrands of (41). Actually the
second integral represents about 40 per cent of C%. A list of computed
arid observed values of the conductivity of a number of monovalent
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metals is given in Table LXXVII. The important simplifying assump-
tions made in deriving these values are that the electrous are perfectly
free and that the lattice potential at the surface of the equivalent sphere
(see Chap. X) is equal to ¢(0). These assumptions are most closely
satisfied by sodium, for which the agreement between observed and
caloulated values is best. The theoretical values usually are larger

Tapre LXXVII.—ComparizoN oF OpsarvEp aND CarcrvraTep VALUES OF THE
ConpuorivirY or Several. MoNovaLeNT MErars ar 0°C
{These values are taken from the review article by J. Bardeon, Jour. Applicd Phys.,
11, 88 (1940). In 10¢ ochm-cm]

Observed | Calculated

Metal
Li. 11.8 28
Na 28.4 23
K 16.4 20
Rb 8.6 33
Ca 5.8 22
84 174
Ac:} 6 143
Au 49 142

than the measured ones, a fact showing that the computed values of 1/1
should be larger. Bardeen estimates that about 10 or 15 per cent of
the difference is due to the fact that » is replaced by #. in the terms of B
for which K, is not zero.

e. Other Computations—QOther workers have ohiained results com-
parable with Bardeen’s on the basis of somewhat different assumpiions.
We mentioned, for example, Bloch’s assumption of deformable ions and
Nordheim’s assumption of rigid ions in part a. The first of these leads
to an eguation gimilar to (42) in which the constant C is given by an
expression different from (41) which involves the electronic potentisl
in the undeformed lattice. Peterson and Nordheim! have used the
potential funetion for sodium, determined by the methods diseussed in
Chap. X, to compute Bloch’s C and have found that thie valne leads to a
conduetivity about three times smaller than the experimental value
given in Table LXXVII. This fact indicates that the actual fluctuatiors
in potentis] are less than those given by the deformable stom picture,
so that scattering is Jess. The rigid-ion picture is not very well founded,
as we saw in part a, and has not actually been useu as the basis for a
quantitative computation.

Peterson and Nordheim have proposed another method for determin-
ing the electron seattering in metals that is simpler, although less accurate

L £. L. Perersox and L. W. NorbupiM, Phys Rev., 51, 355 (1937).
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than Bardeen’s. They assume that the electronic wave functions have
the form

xoctriks,

where |xo|? varies invereely as the change in atomic volume, when the
lattice is perturbed hy s vibrational wave of wave number ¢. Fhey
then expand the perturbed wave function in terms of the unperturbed
functions and compute the matrix componenis of the perturbing poten-
tial from the coefficients. The value of the square of these components is

h4
V) se = T a (),

which may be used to compute 1// in a way similar to that discussed
in the preceding section. Peterson and Nordheim neglect the terms for
which K 0, and vbtain

c

a 0.84
for all metals. Although this result egrees within about 10 per cent with
values of the same quantity computed by Bardeen, Bardeen pointa out
that the neglect of terms for which K. » 0 is a serious omission, for if
they were included, the value of C/¢ would be inereased by a factor of
tha order 2.

Mott and Jones! have developed another simplified method for treat-
ing the reswstivity at high temperatures. They compute the probsability
that an electron is scattered in a single polyhedran on the assumption
that the fluctuations of potential within a given polyhedron may be
handled as though independent of the fluctuations in other cells The
total scattering probability 8 ther determined by adding the contribu-
tions from each cell. This approximation is equivalent to assuming
- that the atoms have individual oscillation frequencies, as in the Einstein
theory of specific heats, and is roughly valid as long as T is appreciably
larger than the characteristic temperature. Since the scattering depends
upon the square of the atomic amplitude, which varies as /T, the
ordinary linear temperature dependence of resistance is obtained very
simply in this theery. '

J. Low Temperature.—The first extensive investigation of the low-
temporature conductivity was carried through by Bloch.? His work
follows closely the procedure presented above for high temperature,

IN. F. Morr and H. Jones, The Theory of the Properties of Metals and Alloys
(Oxford University Press, New York, 1936).
* F. Buoon, Z. Physik, 59, 208 (1930).
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although he made the additional simplifying assumptions that the
scatltering is isotropic and that the term for which K. is not zero may be
neglected.  On the whole, his computation, which will not be presented
here, is more intricate because the assumption that

w(e(k’) — e(k) + hy) = w(e(k’) — e(k))

may not be made at low temperatures. - Bardeen has corrected Bloch’s
results to conform to the use of his own interaction potential. This
means, in principle, that he repeated the computation of parts a to
¢ on the assumption that T is less than 5. The results show that the
ratio of the high-temperature conductivity o3 to the low-temperature

conductivity o, is
(@)D )

where 7, << 8p << T2 In other words, the results predict that
the low-temperature conductivity should vary as 7-5, This temperature
dependence was also found by Bloch who derived the relation

T\'T,
E— 497. 6(-—- T, (44)
in place of (43).
The physical origin of thls T-% law may be understood in the following
way. If we schematize the collision process by saying that the eleetro-s
make collisions with the quanta of lattice vibrations, the mean free patii
should contain a factor 1/T3 because the density of quanta varies as
T when T is well below the characteristic temperature. In addition,
the collisions become less effective as the temperature decreases, for only
the lattice waves of smaller wave number are excited. In fact, the mean
wave number & is of the order of magnitude kT /hc at temperature T,
where ¢ is the acoustical velocity. Consider an electron that is travel-
ing in the direction of the field and has wave number k. After a collision,
its wave number is k + ¢, where ¢ is the wave number of the quantum

, with which it has collided. Since ¢ ranges over a sphere, the component
of momentum in the direction of the field is not changed on the average
by a factor of the order of magnitude &/k; instead, the change is of the
order of magnitude 2/k%. Thus, the number of collisions required to
stop the electron is of the order of magnitude k2/#% which varies as 1/T%,
whence the effective mean free path for stopping varies as

1 1
T -1 =
If the atoms scattered the electrons mdependently at low temperatures,
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as Mott and Jones in their simplified theory assumed that they do at

. A»
high temperatures, the density of quanta would decrease as ¢ 7 with
decreasing temperature, where » is & constant, and the resistance would
decrease much more rapidly than T°.

In this connection, Peierls' has raised the objection to the low-
temperature theory that thermal equilibrium is assumed without ade-
quate proof. He points out that in the _
Bloch-Bardeen type of treatment the
electrons make only small-angle collisiong
at low . temperatures, at least in the
monovalent metals, in which the top of
the filled region is not mnear a.zone
boundary, and that the number of low-
frequency quanta excited may not cor-
1eapond to equilibrium. This objection
has not yet been fully cleared..

- Extensive experimental work of
Griineisen? shows that the 7% law is
closely obeyed at low temperatures. It : o
is not possible-to distinguish between *oo o o 100°
- Eqs. (43) and (44)," however, because Fre. af&mm u:,n
the characteristic temperature cannot be free path in silver as determined by
fixed closely enough. Griineisen has also wm?&wﬁauﬂl%
found empirically that the reciprocal of to Grineisen's empirieal function tor
the conductivity of many simple metals "™
is given closely over a wide temperature range by the function

(-]

ztdy
= AG(T) = ATf (,3 — Te R (45)

.if the constants A and © are properly chosen (¢f. Fig. 3). Usually, 0 is
close to the characteristic temperature of the substance. At high
temperatures, this function approaches the value A7/4; at low tempera-
tures, it approaches the value 124.447% Thus, according to this
empirical relation, the ratio of the high-temperature conductivity to the
low-temperature conductivity is the same as Bloch’s relation (44).

It is probably well to bear in mind that the basis of the T-* law is
intimately connected with the validity of Debye’s T® law for specific
heats. Since the apparent. experimental verification of the latter at
temperstures above 10°K is open to the criticisms discussed in Secs. 20

1 R. Petxnes, Ann. Physik, 4, 121 (1080).
* E. GrUNEIsEN, -Ann. Physik, 16, 530 (1933).
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and 23, the experimental test of the 7% law is not so significant as it
seems at first sight.

g. Critigue of the High-temperature Treatment of Conductivity.—Kret-
schmann! has pointed out that, in the preceding treatments of the theory
of conductivity, the electronic states are described as though their
energy were accurately defined to well within the limits of the changes in
cnergy occurring during transitions. Since these changes are of the
order of magnitude hv..,, where », is the maximum Debye frequency, he
suggests this description c¢an be accurate only if the perturbing effect
of the lattice vibrations is much less than kv.. The effect of the lattice
is measured by the mean time between collisions, namely, r = I/p where
[ is the mean free path and ¢ is the mean velocity. At room temperature,
I ~ 10~* cm in a good conductor and v ~ 107 cm/see so that r ~ 102 sec.
Hence, the condition that should be satisfied, if the perturbing effects are
small compared with k., is that

£<< by
T

or

s> §~ 101, (46)

Actually, the lattice frequencies are also of the order of magnitude
1012 gec™ L,

Peierls? has suggested in this connection that Kretschmann s eriti-
cism would be accurate only if the delts-function approximatien of
Eq. (12) had to be employed from the start. Actually, we have been
able to use the form (9) of the perturbation equation until reaching
Kq. (29) because the matrix component |Vqg|? in (9) is a slowly varying
function of the variable e. The condition under which the relation (29)
is valid is that the integrand should vary slowly within the range of
in which w(e) has its peak. Since the g in (27), which are expressed in
terms ‘of the Fermi-Dirac distribution funetion, vary within a range k7
necar the edge of the filled region, it follows that we must have

h ~

T <t<r7t (47)
instead of (48). This is slightly less restrictive than Kretschmann’s
condition, although room ten:perature is a borderline temperature cven
for good conductors.

1 E. KreTscHMANN, Z. Physik, 87, 518 (1934); 88, 786 (1934).
¢ R. PrimpLs, Z. Physik, 88, 786 (1034); Helvetica Phys. Acta, T (SBup.), 24 (1934).
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h. The Effect of Electronic Coupling.—Houston® has suggested that
the effects of electrostatic-coupling between electrons which are disre-
garded in using wave functions constructed of one-electron functions
may appreciably alter the quantitative values of the computed conduc-
tivity. He has pointed out, for example, that because of this coupling .
collisions may occur in which two or more elecirons change their wave-
number vectors at the same tlinie. he wave-number vectors of indi-
vidual electrons need- not obey Eq. (15) in such. collisions since this
equation is replaced by one concerning the behavior of the total wave-
number vectors of all electrons, In view of the excellent results Bardeen
obtained for the theoretical conductivity in the case of sodium, it seems
unlikely that Houston’s conclusions are important in the case of the
simpler metals at ordinary temperatures; however, they are possibly
important at low temperatures for establishing thermal equilibrium.

128. Other Simple Metals.—We should not expect the equations
developed in the preceding section to apply quantitatively to divalent
metals in which the distribution of levels near the top of the filled band is
different from that for perfectly free electrons as Manning’s results show
(Sec. 99). In agreement with this, it is observed that the resistivity
of these metals is sbout four times larger than the resistivity of the
monovalent metals preceding them in the periodic chart, even though
the former have twice as many electrons and nearly the same lattice
parameters and characterisiic temperatures as the latter. The increase
in resistivity may be understood qualitatively from the fact that the
effective number of free electrons, that is, the number in the energy
range of width kT near the top- of the band, is smaller in the divalent
metals than in the monovalent metals, for these electrons alone transport
the current. No quantitative computations of the resistivity have heen
carried out.

Jones? has pointed out that the principle that accounts for the com-
paratively high resistivity of the divalent metals should also apply to
those metals, such as bismuth, which lie between ideal metellic and
valence types, since they also Lave nearly filled zones,

129. The Temperature-dependent Resistivity of the Transition-
clement Metals.—The resistivity of transition-element metals, such as
iron, cobalt, and nickel, usually is higher than that of the simpler metals,
_such as copper, following them in the periodic chart and having nearly the
same lattice parameters, We have seen in Chap. XIII that the transi-
‘ion metals differ from the simpler metals by having unfilled d levels
with the same energy as the lowest unoccupied s-p levels. Sinee the
v levels in transition-element metals are very nesrly the same as those

1'W. V. Houeron, Phys. Rev., 65, 1255 (1939).
* H. Jonzs Proc. Roy. Soc., 147, 396 (1934). See also Mott and Joaes, op. cit.
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in the simple metals which follow, the resistivity arising from transitions
of the conducticen electrons. between s-p levels should be nearly alike
in the two cases. Mottbwas the first to suggest that the s-p electrons
are principally responsible for-the current in transition metals and that
the additional transitions from s-p levels to the unfilied d levels accounts
for most of the additional resistivity. As proof of the first of these
suggestions, it is usually pointed out that the conductivity of any single
band of electrons may be placed in

\ I J{k) the form
\ - "
\ A lof. Eq. (6), Sec. 126] where
e r = 1/v(e;) |
£l is the collision time and m* is the
7 9 K==\ effective mass of the electrons in

. N the band. Since m* for d-shell
F16. 4.— The relative positions of the s .
and d levels in the transition metals [cr. €lectrons is much larger than the
Eqs. (1) and (3)]. The detted line ropre-  glectronic mass, it is assumed that
vents the top of the filled region. (1) is small in comparison with the
~ eonductivity of the s-p electrons. Mott devcloped a simple mathe-
matical theory of the scattering of s-p eiectrons arising from transi-
tions to the d band; however, Wilson? hag since given a more extensive
treatment, which we shall discuss here. .

Wilson sssumed thal the energy states in both the s~p bands and
the d bands mav be treated with the Bloch approximation and that the
energy in each band is a quadratic function of the wave number in the
reduced-zone scheme The «(k) curves for the two ove:lapping bands

" then sppear as in Fig 4. We shall select the zero of energy so that the
energy «(Kk) of the s-p electrons is

k) = B k2 (@)
31 2m. «)
and the energy (k) of the d ievels is
hz

where m, and my are the effective clectron masses in the iwo bands.
in the one-electron approximation, the selection rules for transitions
from the s-p band to the ¢ band should be the same as those derived in

"N, F. MaT1T, Proc. Phys. Sor., 47, 57, (1935); Proe. Roy Soo.. 153, 699 (1934),

156, 363 1]936)
> A H. WiLsow, Proc. Roy 8ob., 167, 530 {1938).
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See. 127 for transitions between levels of the s-p band, namely,

e(k') = e(k) & hr(8), (5)

where k is the wave number of the initial state, k' is that of the final
state, 8 is the wave number of the yibra.t.ional mode causing the transition,
and K, is a principal vector in the inverse lattice.

We may treat separately the contributions to the resistivity from
the collisions in which the s-p electrons jump to s-p levels and those in
which they jump to d levels, since we are dealing with a one-electron-
approximation. The first contribution was discussed in Seec. 127 for
the monovalent metals. The result for the present case should differ
from the result found there only in the fact that ke should be replaced
by a value appropriate for the s-p levels in the transition metals. Since
there is 0.6 free electron per atom in nickel, for example, we have

3 4
ku = (go.ﬁ?l o) (6)

where nq is the number of atoms per unit volume. If this is substituted
in the equations of Sec. 127, it is found that the resistivity increases by a
factor (0.6)~t compared with the resistivity for a monovalent metal.

Wilson developed an expression for the additional resistivity that is
valid for both high and low temperatures, using simplifying assumptions
which will now be outlined. Let us assume that the lattice frequencies
are distributed according to the Debye theory and that the longitudinal
and \t.ransverse modes have the same value of »(¢). The probability
for a transition in time ¢ to a vacant state in the s-p band from one in the
d band then is

(kX' . {[ﬂ(d) + How(ea(k) — e(k) — hr(3)) (7a)
229(8) \n(e)wles(lt’) — e (k) + hv(3)) (7b)

where a4 is a function of k and k'’ that is equivalent to 2xw(8)/h
times the quantity A.(k,k’) appearing in Eq. (20), Sec. 127. Case (7a)
corresponds to a collision in which the vibrational mode of wave number @
gains a quantum, and (7b) to one in which it loses a quantum. The
probabilities for the reverse transitions are

L b @) — o) — (@)
(k)55 {{n(a)+1}w<ed<k*) ~ e(k) + hv(e)) ®)

As we remarked in part ¢, Sec. 127, the approximation
w(ea(k’) — &(k) + hy(d)) = u(u(k’) — &(k))
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may be employed at high temperatures but not at low temperatures.
If we designate the electronic distribution functions for the levels of the
s and d bands by f. and fi, we obtain the following expression for the
contribution to the collision terms from the s-p to d transitions:

b—a= %f&c}%ﬁ)(”ﬂ@) + 11141 = fo) — n()fa(l ~ £.)}
w(ea(E) — e(k) — hw(9)) + (n()f(1 = fa) — [n(8) -+ 11fa(1 — f2)}
w(ea(k’) ~ e(k) + hv(d)))p(k’)df(k’) (9
where the integration extends over the values of kK’ satisfying Eq. (4).

Wilson integrated this under-the following assumptions.
| a. oy is g constant. This is

/_,_,..!.._\h__ equivalent to sassuming isotropic
- ' RN scattering.
/ 'T?\\\ b. f. and fs may be placed in the
7/ ! %\ form
/ /’/ { b ’rq\\
[ N “l \'._ fo = fou + 7&9.( t(k))! f
L i\ ofé ks :\'1 — Ja = foa + k,g.‘(e,,(k)),} (10)

~ where f,, and f, 4 are the Fermi-
Dirac distributicn funections fo. the

" Bra. 5—~The relationship between . ko,

field free problem and the g are

comparatively small functions.

¢. The functions g in (10) have
the form

koa and ¢ + K« in the case of the transition
metal. The outer cirale is the boundary of
the filled region in the s-p band, whereas the
inmer circle ie the boundary in the d band,
(¢f. Fig. 3). ‘These circles usually should
not coincjde. The vector s + K. joins ko
and k., o that its minimum value is

lkee] — |Eodl.

9 = CoZ.

This functional form was also as-
sumed in the cases discussed in Sec.

127.
d. The values of n(¢) are given by the equation
1
n(8) = T T
e T — 1

As in Sec. 127, it is convenient to integrate over the values of the
vector ¢ + K, instead of the values of k ; there is, however, an important
difference between the present and preceding cases. In the preceding
case, the values of é + K. ranged over a sphere of radius k¢ that passed
through the origin (¢f. Fig. 1). Hence, the range of [d 4 K.| extended
from zero to 2ky. In the present case, however, the values k¢ and ko,
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of the wave number of the electrons at the limit of the filled regions in
the s and d zones should usually be different, so that the vectors ¢ + X,
should range over a sphere of radius k. that is centered at a point ko,
(¢f. Fig. 5). This sphere evidently will not pass through the origin,
unless by accident. Since the lowest value of |6 + K, in the integration
i8 lko, - ksafy the vibrational modes of longest wave length usually do
not play = role in scattering elecirons between the s-p and d bands.
Only these modes are active at sufficiently low temperatures, however,
.whence the resigtance arising from the s-o- to d-band transitions should
drop to zero at low temperatures much more rapidly than the resistance
arising from s-p- to s-p-band jumps.

Wilson's result for the resistivity arising from the s-p- to d-band
transitions at temperature T is '

2m m,; ¢
= acteyt "(w)j; {er — 1)(1 —€™*) (1)

where Oy is the characterislic temperature,
W,

’ 2
o = okt

S .lg
Fu = (4*) \/2m.*Maka

and k0O’ is the energy of the lowest vibrational frequency that scatters
electrons between the s-p and d bands, that js,

= k{kw - _kudlc

where ¢ is the velocity of the elastic waves. The e in the denominator of
P4 is the lattice parameter. :
At high temperetures, Eq (11) approaches the value

msmd( )P .;( g_f
ﬂnf’tb 91‘-‘

which has the linear temperature-dependence characteristic of the transi-
tions. within the s-p band. At low temperatures, however, Eq. (11)
approaches zero as ' ' '

N

The only extensivé measurement of low-temperature resistance seems
to be for platinum, which does not show the anomaly one would expect
if an appreciable part of its resistivity were described by Eq. (11).
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Oe Haas and de Boer,! who made the measurements, found that the
resistivity p can be fitted by the function

Py CG(%? + 1.5 - 10~%,T? (12)
where po is the room-temperature resistivity, and G is a Griineisen func-
tion [¢f. Eq. (45), Sec. 127].  An interpretation of the term in 7% is given
below. There are several reasonable explanations of the fact that a
part of the resistance does not obey Eq. (11). (a) It is possible that 6’
. is accidentally very small for platinum and that the experiments are not
accurate enough to distinguish between a contribution to the resistivity
of the form G(8/7) and one of the form of Eq. (11) with 8’ = 0. ()
It is possible that the d-shell electrons should not be treated by the
Bloch theory, so that the selection rule (4) is not applicable in the present
case. (c¢) It is possible that the s-p- to d-band transitions actually are
negligibly small and that the resistance may be explained by extension
of the theory of Sec. 127. (d) It is possible that the ¢(k) relation for the
d electrons is so different from the free-electron relation (3) that there
are many directions in k space for which ko, and ky; are equal. In this
case, the very long lattice waves would always play a role, and the
d-shell resistivity would not decrease so rapidly as an exponential function
with decreasing temperature. This problem can be settled only on the
basis of more extensive work. .

Baber? has interpreted the term in Eq. (12) thai varies as T? in
terms of an enhancement of the transitions between s-p levels due to
the presence of the holes in the d band. If the holes were rigidly fixed,
they would behave like impurity atoms and would give rise to a tem-
perature-independent scattering. If the band approximation may be
used, however, the holes are also able to move and should also be scat-
tered. Since they must obey the Pauli principle during these transitions
and since the way in which the levels are occupied is temperature-depend-
ent, the resistivity turns out to be temperature-dependent. Baber
assumed that the interaction potential of an electron and a hole has the
form3

Vo) =2
—_ T
(r) = e
and showed that the observed T? term in platinum may be derived by
the use of reasonable numerical values of g.
1'W. J. g Haas and J. H. vz Boer, Physica, 1, 609 (1934).

* W. G. Basgr, Proc. Roy. Soc., 1568, 383 (1937).
: The reason for using this potentiel is discussed in the next section.
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130. Residual Resistance. The Resistivity of Alloys*.——Nordheim?!
was the firt to point out that the residual resistance of nonsupercon-
ducting metals probably is due to the scattering of electrons by lattice
imperfections such as impurity atoms and flaws. This qualitative
explanation agrees very well with the fact that the residual resistance
of a specimen depends upon its previous history. If Q; is the cross
section for scattering by a given kind of imperfection, such as an impurity
atom, and n; is the density, of imperfections, the mean free path 4 for
scattering by these imperfections is given by the equation

;= e (1)

Thus, according to Eq. (6), Sec. 126, the residual resistance p; due to
this type of imperfection is .
'

. pi = m*:ff:;)ﬂﬂ_i, : 2
which is temperature-independent. If @; is about 10~'ecm?, which
is a customary atomic cross section, and if » is 10'® em~3, which is the
concentration of impurities in a reasonably pure specimen of metal, [; is
of the order 0.1 cm. The mean free path for the scattering due to lattice
vibrations, which was discussed in the previous sections, approaches this
value at temperatures near 15°K in a good conductor such as silver.

In a sense, a disordered alloy may be viewed as a metal in which the
impurity content is very high. Hence, if Nordheim'’s picture is correct, it
should be possible to compute the contribution to the resistance of alloys
from the disordered atoms by a method similar to that used above in-
estimating the residual resistance. We shall discuss this resistunce on
the basis of a procedure developed by Nordheim.

It is known from the discussion of Sec. 127 that the quantities deter-
mining the resistance gre the squares of the matrix components of
potential connecting electronic states. We shall assume for simplicity
that the potential ¥ may be written as the sum of potential terms
arising from each atom: '

V=30 — 1(p)) 3)

where v,(r — r(p)) is the potential of the atom at the position r(p).
We shall also assume that v, is zero outside the pth cell. The matrix
components of V then are

Vige = ?fl&k *o,ddr. | “4)

! NORDHEIM, op. cif.
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The integrand in the pth term in this series is finite only in the pth cell;
moreover, the origin of each integrand may be shifted in such a way
that it falls at r(p). Thus, the series may be written in the form

Vi = zezmk'—k}.:fp) fa.kx )
? N

where
Joaw = [¥x*(@)v, (1) (r)dr, )
in which the integration extends over the cell centered at r = 0. We

shall retain the index p because v, varies from cell to cell if there is more
than one kind of ion present. The square of the absolute value of (5) is

[ Vil = Eeawsu'—m:m)—r@n 1ok xk » ()
@GP
Let us suppose that there are s kinds of atom in the alloy and that
the fraction of the 7th kind is p,. Then, the mean value of fonu is

fr = ngfi.kx‘ 8)
i1
where f; e is the value of the integral (6) for the <th kind of atom. 1f
we use this mean value of fpuw in place of the fpx in Eq. (5), the sum
vanishes since

zgzw«w-m {1(@) ~rio)]
X ’

is zero, if k' — k is not a principal vector in the reciprocal lattice. This
result i8 not surprising, for the case in which f, i is independent of p is
that of a perfect lattice, in which elecirons are scattered only as a result
of Bragg reflection or thermal oscillations. With thig in mind, Nord-
heim assumed that the contribution to the effective squared matrix
component {from the pth atom is the difference of |fp.x |2 and the square
of the mean value [fxc|®. Although this dlfference is negative for an
atom for which |f,ur|? is less than average, the square of the total
effective matrix component, namely,

Viali = n(f0e]t — [Fael?), ®
is positive. Here,
1frwel? = zpsifuwfz' (10)

and n is the total number of atoms. The use of Kq. (9) is equivalent to



SEc. 130} THEORY OF CONDUCTIVITY 543

assuming that the part of the atomic scattering that is greater or less
than the average is incoherent. This evidently can be true only if the
alloy has no secondary long-distance order, such as can ocecur in g brass.
Let us consider a case in which the alloy contains two kinds of atom,
A and B, and designate the fraction of A atoms by z. For simplicity we
shall consider a unit volume. The value of the quantity (9) then is

nz(l — 2)(fouw — fouu)? (€3))

This funetion, which is the analogue of the function B(k, ¢ + K,)
appearing in the theory of lattice vibrational scattering, leads to the
equation

} = 16x* M) kinz(l — ) f (fasxr — foux)*(1 — cos @) sin 846 (12)

if we assume that (11) depends only upon 8. If, in addition, we assume
that the scattering is isotropic and that (dk/de)o = m/h%,, we obtain

Sm?
;— = §g’~;';£m(1 = D) (farr — fouu)?

We shall place this equation in the form

%-?: nx(l — z)Q (13)

where the quantity

Q = 327m

(foxe — fe ke)?

.is the atomic cross Aection.
The resistivity g, that is associated with this type of scattering, then is

o= mv(q,)Q, — ) = “‘ §’E) Qz(1 — z). (14)

Thus, Nordheim’s theory predicts that the temperature-independe.
part of the resistivity of a disordered solid soluiion should vary with
concentration as z(z — 1). This prediction has been checked in the
silver-gold system. It is found that the experimental walues of the
additional resistivity can be fitted closely by Eq. (14) with
Q' = 08635 106 cm®

Computed and observed values of p} are listed in Table LXXVIII.

As we mentioned previously, Eq (14) ie not valid in a range of

concentration in which the alloy has an ordered phase for then more of
the scattering is coherent than is assumed in using Eq. (). Suppose,
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for example, that the lattice sites of the two-component alloy can be
divided into two sets, namely, a sites, which are occupied by A4 atoms
alone in the perfectly ordered alloy, and b sites, which are occupied by B
atoms alone in the same phase. The a sites and the b sites may then be
regarded as independent lattices when the temperature-independent
resistivity is computed. We know from our previous result that the
incoherent scattering is zero when each kind of site is occupied by only
one type of atom. Hence, the Nordheim type of resistivity of the
perfectly ordered lattice is zero. In a partly ordered state th which
there are some B atoms in a sites and some A atoms in b sites and in
which there still is a difference between a and b sites, the scattering by
the atoms in the two lattices may be computed separately by the use of
Eq. (9), the mean values f,xw and fou evidently being the appropriate
matrix components to use in each. case. When the long-distance order
vanishes, the a and b sites become identical and Eq. (14) is again valid.

TasLe LXXVIII

B 0.01 | 0.025 | 0.316 | 0.629
,{oba) X10% ..o, SRR 0.35 | 0.8 7.3 8.2
2(cale) X 10%.................. e 0.35 | 0.88 7.6 8.2

The topie of the resistivity in disordered and ordered alloys has been
considered in a high degree of detail bn the basis of the Bragg-Williams
theory by Muto,! who found that the resistivity arising from disordering
should depend on the long-distance order parameter O in accordance with
the equation

po = A + BO + CO?

in which A, B, and C are temperature-dependent. Muto has shown that
this relation is in reasonable agreement with experiment in several
interesting cases.

Mott® has used an extended form of Nordheim's theory to discuss
the resistivity of substitutional alloys of copper (¢f. Figs. 45 and 49, Chap.
I). Let us supposé that an atom having Z + 1 electrons outside closed
shells is placed in a monovalent metal. In the immediate vicinity of the
foreign atom and outside its closed shells, we may expect the potential -
to be larger than that at the corresponding position near the mohovalent
atom by an amount

Ze?

r

1T, Muto, Sci. Papers, Inst. Phys. Chem. Res., 30, 99 (1936); 81, 153 (1937).
1 N. F. Morr, Proc. Cambridge Phil. Soc., 32, 281, 1936.
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where r is the distance from the nucleus. The valence electrons will
swarm around the more highly charged ion preferentially, however, so
that we may expect the difference in potential to vanish for large values
of r. Mott assumed that the actual difference varies as

.'.Z.E_zg“"ﬂf (15)
T

where ¢ is a constant, 1/¢ being the mean radius of the swarm of valence
electrons. The function (15) evidently is an explicit form for the part
of the atomic potential that gives rise to incoherent scattering in Nord-
heim’s theory. Using this funetion and assuming that the electrons
are nearly free, Mott found that the increase in resistance per atom
per. cent of the foreign atom is

v (Ze* 1 1
o= sinkan) [oe (1 +5) - o) {16)
where
_ qzh’
Y= T6xtmot

and v is the electron velocity. This result explains qualitatively the
curves shown in Fig. 49, Chap. I. If the foreign atom is a nontransition
atom and if the atomic radii are nearly the same, as is true for the atoms
that form good solid solutions when mixed, we should expect g to be a
constant so that p, should increase as Z2. It may be seén that the two
curves in Fig. 49 are very nearly parabolic on the positive side of the
origin. The value of 1/¢ in this case is of the order of magnitude 0.3 i
The points obtained by adding transiiion metals to copper and silver also
lie very nearly on parabolas, suggesting that the potential (15) may be
uged for negative values of Z, which correspond to the number of holes
in the transition-clement atoms relative to the monovalent atoms.

131. Superconductivity.—Superconductivity, which was discussed
very briefly in Chap. I, has developed theoretically in two directions.
(1) There has been a phenomenological development in which the
observed properties of superconductors are discussed in terms of the
functions of thermodynamics and of Maxwell’s equations. (2) There
‘has been a very rudimentary treatment in terms of the electron theory
of solids. .

The first development, which is surveyed extensively in a tract by
London,! leads to the conclusion that, in addition ,to having a high
electrical conductivity, a superconductor is a medium in which the

'F. Lonpon, Une conception nouvelle de la supra-conductabilsté, actualités scientifiqucs
¢f indypstrielles (Hermann et pie.. Paris, 1937).
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magnetic flux is zero, a fact implying a very large diamagnetism. More-
over, the entropy associated with the superconducting state is abnor-
mally low compared with-the entropy of a metal in its normasl state.
Although the unigue magnetic characteristies of supercondueciors are
not so spectacular as the electrieal properties, their theoretical significance
is no less important. The reader is referred to London’s article for a
detailed discussion of this type of work.

The development along the lines of the electron theory of solids is due
principally to Slater! and is still in only the most qualitative stage.
Slater has suggested that the levels of the entire metal (see Secs. 66 and
98) become discrete, or at least pnssess extreriiely low density, at the
bottem of the spectrum. In essence, the levelS in this region are to be
regarded as the residues of the oxcitation states that occur in the stomic
approximation when the atoms of the metal are widely separaied.
Because of the strong perturbaiions, however, they cannot be described
in terms of ordinary exciton theory Instead, Slater would regard them
a8 possessing extremely intricate wave functions corresponding to a
blend of many exciton states, so that the elecirons in a comparatively
large region of the metal are intimately correlated. Thus, in a schematio
way, Slater regards the metal, when in one of these lower states, as an
aggregate of very large molcculur units extending over one hundred or.
more atomic distances and having discrete levels that are very finely
spaced, bul pot so finely spaced as they would be if the units were as
large as the entire specimen of metal, Being large compared with ordi-
nary molecules, these units should have a large diamagnetism, and
Slater suggests that their properties are basically those of a supercon-
ductor; hence, h¢ would regard the low-lying low-density levels of the
entire metal as the superconducting states. The system can occupy
. these levels only at temperatures near absolute zero since they have very
tow statistical weights and are favored only by ibeir low energy. For
the reasons discussed in Chap. X1V, we may expect the system to jump
to states of higher energy and higher entropy at temperatures above
absolute zero, the transition taking the form of one of the three possible
types of phase change. The most probable high-entropy states are, of
course, those described in the band approximation, in which the metal
has normal properties. Presumably, these states differ from the low-
entropy ones prinecipally in the fact that the pseudomolecular structure
responsible for superconductivity has melted; that is, the electronic
motiohs are no longer correlated -over many atomic distances, but only
over a few, as in the approximations developed in preceding chapters.
The precise form of the change from thesuperconducting to the ordinary
state depends uper the demsity of tevels of the entire sohd in the region

'J. C. Buares, Phys. Rev., B1, 1656 11027); §2, 214 (1937).
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between the two types of level, and the theory has not developed to a
point where this may be predicted. Experiment shows that the phase
change is of the second kind, in which there is a discont.inuity in specific
heat, but no latent heat.

The difficulties that stand in the way of a qua.ntatat:ve test of any
electronic theory of superconductivity ebviously arise from the difficulties
of handling wave functions for the entire solid in a degree of approxima-
tion sufficiently high to include states of the type discussed by Slater.
There seems little likelihood that theae difficulties will be surmounted in
the immediate future.

B. IONIC CORDUCTIVITY

132. General Pririciples.—It is believed at spresent that the ionic
conductivity of solids is closely connected with the type of lattice imper-
fections that occur in pure semi-conductors. This idea was first sug-
gested by Freunkel! and has been substantiated by subsequent work,
the most thorough investigation of the possible types of lattice defect
having been made by Schottky and Wagner.? We shall begin by dis-
cussing their work. :

Let us consider a crystal of composition MX, such as a monovalent
metal halide or an alkaline-earth oxide or sulfide. If.the crystal is
entirely perfect in ifs equilibrium state, a volume ionic conductivity is
found only if positive or negative ions leave their normsgl sites and
wander in the lattice because of the influence of the field. In this case,
the crystal lattice would devélop imperfections as an effect of the fleld.
It is evident, however, that a2 very large field would be required te
dislodge an.ion from its normal position, for the potontial energy of an
ion varies by an amount of the order of magnitude of 1 volt in an inter-
atomic distance. Thus, a field of millions of volts per centimneter would be
required to induce a current. Hence, it is necessary to assume that
the ions carrying the volume ionic current are wandering before the
field is ‘applied and that the field sunp;y disturbs the statistical dis-
tribution of metion.

There are two ways in whieh ions may move through the crystal
(¢f. Fig. 68). (1) They may move through interstitial positions which
are unocecupied in the perfect crystal . (2) They may move by jumping
mbo vacant sites. In the second case, it is common to say that the
vacancies move through the lattice and carry the current Specific
examples of crystals in which these types of conductivity occur are
discussed below.

1 J, FrRensEL, Z. Physik, 35, 652 (1926). _

: (., Waonsa and W, Scnortry, Z. physik, Chem., B11, 168 (1930). C. Wacnen,
Z. physik, Ckem., Bodenstein Fest, 177 (1031); B22, 181 ff. (1933).
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In order to derivé an equation for the conductivity of the interstitiak
ions or the vacancies, we shall employ the same model of the flow process
that was used in the derivation of. the equation for the jump frequency of
diffusing atoms in Sec. 122. According to this work, ‘the probability
per unit time that the interstitial atom or the vacancy will jump in one
of the a directions, in which there is a saddle point of height ¢, is

kT)* _
in the absence of an electrostatic field. Here, »,is the vibration frequency
in the two directions in the saddle point that are normal to the direction
of flow. We shall treat a simple model in which there are six saddle
points of energy e, which lie along the six axial directions relative to

b

+ - * - + - = + - +* - *
®
- + - + - 4 - m] - + -
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- + - + - 4 - + - 0O =
+ = o+ = + 4 F + - + = + |,
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Fia. 6.—Schomatic representation of the two modes of ionic motion. In (a) the interstitial
jions @ diffuse through the interstitial sites. In (b) the ions move via the vacdpcies [ ].

the equilibrium point. Let us now assume that there is an electrdstatic
field of intensity E in the z direction. The saddle point lying in the
direction of the field relative to a given equilibrium position is lowered
by an amount Eed/2 where §/2 is the distance between the equilibrium
position and the saddle point and e is -the charge on the ion or vacancy.
Hence, the jump frequency for this barrier is changed to

3 o Eed
pet = é(;‘;?g e ETeZkT, (2)

The saddle point in the opposite direction is raised by the same amount
so that the jump frequency in the backward direction is

1 (hT)? _ = _Ee
pg— = — ———¢ kTe 2kT.
Ve o et e 3)
Thus, the excess probability for jumpipg in the field direction is

Ees 4)

i, = gt — pg~ = F 2 sinh 2?;?‘ 1
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We shall be interested in fields so weak that Eed < < kT, in which case

bp = f'%‘%v“s (5)

Since the electrical polarization associated with each favorable jump is
ed, the current ¢ per unit area is '

. _Ee28?

1= nv—ﬁ— . (6}
where n is the number of interstitial ions or vaeancies per unit volume.
Thus, the contribution ¢ to the conductivity from this flow is

_es? 7

, | o = nigp: @
The conductivity and ionie mobility are related by the equation

o = neu (8)
whence

52
=i 9)

Equation (7) may be compared with the similar equation derived by
Lorentz on the basis of a free-particle model, namely,

. €%l '
o= ﬂfg-ET (10)

[ef. Eq. (5), Sec. 126.]) Here, 5 = 44/kT/2xM, [ is the mesn free path,
and n, is the density of free ions. Equations (7) and (10) are Tormally
equivalent if we make the correspondence

I~ 3, -’-‘—3{'—} ~ nid,

¥f more than one kind of interstitial ion or vacancy is present in the
lattice, the total ionic conductivity may be obtained by adding together
the contributions of type (7) from each kind of ion.

The temperature dependence of n in Eq. (7) is determined by the
particular way in which the lattice defects occur. We have discussed
two types of defect in Sec. 110, namely, those which occur in the alkali
halides and those which occur in xin¢ oxide and zinc sulfide. In the
first case, it is believed that the metal-ion lattice and the halogen-ion
lattice have equal numbers of vacancies so that the number of vacancies
of a given kind is

¢

n = Ne 2T (11)
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when the crystal is.in thermal equilibrium. Here, ¢’ is the energy
required to take an alkali-metal ion and a halogen ion from the interior
0 the surface of the crystal, and N is the total number of ions of a given
kind. In the second ecase, it is believed that oxygen and sulfur atoms,
respectively, evaporate .and the excess metal atoms diffuse intd the
interstices of the crystal. The number of interstitial atoms in this case is

"

n = No,iB'e T (12)

where ¢’ is the energy required to produce an interstitial zinc atom and
an oxygen atom, the latter being bound to another to form a molecule
in the vapor phase These two eases do not exhaust the possible types.
Schottky and Wagner have pointed out that there are in all the folloviag
three independent. types.

AB AT A A B A B A AB A B A

BA B A B B A O A B o A5 A B

A TA B A A B A B A AB AR A

B A B 5D O A B A B B A B A B

A B A B A A B A O A A B A B A
(@ ' () ©

F16. 7. —The tiree types of lattios defects. In (o) some of the B utoms have moved i
interstitial places leaving vacsnmes. (6} I stows have evaporared leaving vacanciss in
the lattico. There are no intersiitial atoms. In the nlkali halides. there are equal numbers
of A and B vacancies. An excess of ona type or the other may be obtained, however, by
heating the cryetel in an appropriste. vaper. (¢) A fraction of the 4 atoms have svaporatad
from the surface leaving an excess of ‘B atoms which diffuse into inierstitial positions.

I (¢f. Fig. 7a). There are interstitial M or X ions (or atoms) and
there are in each of these cases an equal number of vacant M ar X sites,
respectively. If ne is the energy required to rempve = ions of a given
kind to form = vacancies and = inteistitial ions and if —24Tx log (n/N)
is the entropy gained in doing so, the equilibrium value of n/N is

§ e Er - (@13)
where N is the total number of ions of the given kind.

IIg (¢f. Fig. 78). Some M or X atoms evaporate, leaving an equal
number of vacancies in M or X sites, Since the evaporating atoms
must be neutral, there is an exocess or a deficit of electrons in these two
cases. These electrons ar holes should reside near the vacancies in the
lowest energy state. This oase is similar to I. the difference being that
there are no interstitial atoms in the lattice in the present case
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I1b. We may classify separately the case in which the positive and
negative ions leave in equal numbers. This ordinarily occurs in the
alkali halides, for which the equilibrium value of 7 is gnren by an equa-
tion of the type (11).

111 (¢f. Fig. 7c). A fraction of one of the constituents may evaporate,
" leaving an excess of the other in interstitial sites. Zinc oxide and zinc
sulfide, which were mentioned above, belong to this class.

We might expect that thie deviations of type I and III, which involve
interstitial atoms, should occur primarily in lattices that have large
interstitial spaces, such as the zincblende and wurtzite structures, which
have low coordination numbers.

Jost! has investigated the relative proba.bxlxty of case I and case IIb
fot crystals having the sodium chloride structure, in which the interst-
itial spaces are comparatively small. If the values of n and ¢ in the two
cases are distinguished by subseripts I and II, we have from Egs, (11) and
(13)

€

5T __“l"_'“’:
o ¢ = ¢ WT (14)
g — ‘

e 2k

Let us compute the difference ¢’ — ¢ on the assumption that the inter-
ionic distances near a vacancy or near an interstitial ion are the same as
for a perfect crystal. For simplicity, it may be assumed that the repul-
sive potential between ions varies as b/r* where n ~ 9. The energy of
an ion in a normal site then is (Sec. 11)

= —1.7465’5(1 - 1-11) (15)

and the energy necessary to remove both a positive and a negatjve ion
completely from the lattice is twice the negative of this. If, however,
the ions are brought only to the surface, the energy should be — 2¢ minus
_the energy required to remove a positive and a negative ion from the
surface, which is just the heat of subhmatlon per molecule. Hence,
in the present approximation, ‘

. g = —e (16)

The electrostatic energy of an interstitial ion in an undistorted sodium
chloride lattice is zero because the relationship between the distribution
of positive and negative ions is a symmetrical one. The distance between

t'W. Josr, Jour. Chem. Phys., 1, 466 (1933); Z. physik. Chem.; A169, 129 (1934);
Physik. Z., 88, 757 (1935). See also Diffusion und chemische Rmdwnca in festen
Stoffen (J. %emkopi Leipzig, 1937).
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the center of the interstitial-ion site and the centers of the neighboring
ions is a4/3/2, whenee the repulsive energy for the interstitial atom is

2 n
6 ~ 1.741(---3-- 2

where the factor 4 enters because there are only four neighboring halogen
ions instead of six, as for an ordinary ion. Hence,

o = —e+ s,
and
"

¢ — ey = 6. (17)

This difference is of the order of magnitude 1 ev for the alksli halides so
that -

R

(1511
Thus, case ITb is much more probable than case I under the assumptions
made above.
It is clear, however, that these assumptions must be seriously in
error, for the magnitude of en/2 as given hy Eq. (16) is about 3.7 ev for
sodium chloride. According to Eq. (7), the activation energy for ionic
conductiviry should be at least as large as this, whereas the observed
value! is only 1.90 ev. A reasounable explanation of this discrepancy
is that the atoms or ions around vacaneles and interstitial atoms become
displaced from their normal positions in the undeformed lattice and thus
lower the energy of the lattice. The source of the additional energy is
not hard to find.” If an ion of charge ¢ is removed from a site, the region
about the vacancy is left witl. an excess charge —e. This charge should
polarize the surrounding lattice and the energy of the equilibrium state
should be lower than that of the undeformed lattice by the polarization
energy; moreover an interstitial ion should polarize the lattice in a
gimilar way. If the charges occupied a spherical domain of radius r and
if the medium were continuous and had a static-field diclectric constant x,,
the polarization energy would be

The energy actually should be computed with the use of a more detailed
atomic picture; however, we shall use Eq. (18) for an order-of-magnitude
estimate. For vacancies, it will be assumed that r is equal to the mean
ionic radius, that is, to a/2, and for intcrstitial ions it will be assumed

! W. Lan¥swor, Z. Physik, 85, 717 (1983).
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that r is equal to half the distance between the center of an interstitial

site and the nearest ion site, namely, an/3/4. The energy required to
produce an interstitial ion in case I then is

= PRI -6 DD} o

and the energy required to produce a vacancy in each lattice is
of

When the static dielectric constants of the alkali halides, which are of
the order of magnitude 6, are used in these equations, the value of the
additional negative terms in (19) are comparable with ¢ and reduce e
to values that are much more nearly in acocord with the experimental
activatiou energies. The difference between Kgs. (19) and (20) is

v LTt 6(__3_, o
a — gl = % 0.5¢ — 0.18{ 1 . (a1)

The negative term reduces the difference to a value somewhat below
that of Eq. (17) but does not redice it encugh to change the previous
conclugion that the ratio (14) is very small. Jost and Nehlep! have
made & more accurate estimate of ¢ — e by taking into account the
actual displacements of nearest ions. They find the value 0.40(1.74¢%/2a)
for the extreme case in which x, ig infinite. Since the difference should
be larger than this in actual cases, we may conclude that deviations of
type I do not oceur in the crystals having sodium chloride structure for
which only the electrostatic and repulsive terms of the Born theory are
important. This includes practically all the alkali halides and probably
the oxides and sulfides of beryllijum, magnesium, and ealcium.?

We saw in Chap. II that the van der Waals energy plays an impor-
tant role in the halides of metals such as silver and thallium which have
newly filled d shells. Jost and Nehlep have investigated the oohesive
energy of interstitial metal mns in erystals of this type and have found
‘that the contribition to ¢’ — ¢f fram the van der Waals term may
reasonably reverse the sign of t.his difference. Thus, they find that in
silver bromide, which has the sodium chloride structure, the correction
to ¢’ - ¢ should be

1 W. Josy and G. Namvave, Z. physik. Cheni., B32, 1 (1936).

% A careful analysis of the contribytions to the activation energy for electrolytic
conductivity in sodium chloride has also been given by N. F Mott and M J. Littleton,
Trans Faraday Soc., 34, 188 (1988). -
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-1 1.74¢%
- 2a ?

which is sufficient to reverse the sign of (21). Although this result is
not yet conclusive, it does show that case I is & possibility in some salts
having sodium chloride structure. )
Let us now discuss the ionie conductivity of the alkali halides on the
assumption that they belong to class IIa. The number of vacancies of
e

each kind then is Ne *T, and the equation for the total ionic condue-
tivity may be placed in the form
252 _2__::? ; ;

o = Noyre (b + 5.) (22)
where 7, and i_ are the jump frequencies for the two types of vacancy.
The distance 8 between neighboring like jons is the same in the two cases.
In sodium chloride, the vacancies undoubtedly diffuse in the twelve
(110) djrections instead of in the six (100) directions as assumed in
deriving (22). This fact does not impair the use of Eqs. (1) and (22) for
an order-of-magritude estimate of »,. According to Eq. (22) the ratio
of the transport numbers of the two ions is determined by the ratio
of the two terms in parenthesis. Tubandt’s measurements on the trans-
port numbers of the ions in NaCl show that the sodium-ion vacancies
carty about 92 per cent of the current at 580°C. For this reason, we
shall neglect 5_ in Eq. (22) for this substance. The equation may then
he placed in the form

¢ = Ae *T (23)
where
A = NOO&L(RT)?
kT a h3?-
& (24)
€ = "2_ + €5

Lehfeldt’s measured value of A (¢f. I'ig. 66, Chap. I) isx 10 ohm™! em~ .
If we assume that

6§ =28 X 107% ¢em
kT = 1.0 X 10713,
N = 224 X 10%,

and solve for 1/»2, we find

22 g
vy~ 17 X 10 ’ (25)

4 4
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or v, ~ 10", This valve, which is surprisingly low, implies that the
saddle point is very flat in the direction al right angles to the direction
of flow. Tt is possible, however, that the assumption made in deriving
Eq. (7), namely, that the potential energy is determined by the position
of the ion or vacancy alone, is far from correet and that many ions should
be taken into account in computing the jump frequency of a vacancy.
It is also possible, as has been suggested by Jost,’ that ¢ is not tem-
perature-indepandent but contains g linear term of the type ¢7. In
this event, as in the case of thermionic emission, the measured value 4 *
of the intercept of the logarithmie plot would be a compnsite quantity of
the form

A* = Ade ¥

in which A is the computed constant (24). Jost has shown that the
exponential factor in this equation may reasonably be of the order of
magnitude 1,000.

At lower temperatures, the measured conductivities deviate from
Eq. (23) in a way that depends upon the previous history of the erystal
(¢f. Fig. 66) This change may be described by saying that e decreases
with decreasing temperature. It is possible that the rate at which the
equilibrium value of n is attained becomes so slow at temperatures
below a temperature T’ that the valve of n for this temperature is
retained. In this case, the teinperature dependence of ¢ would be
determined by ¢ alone. The slope of the low-temperature part of
Lehfeldt’s log o versus 1/7 plots for the alkali halides is usually about
one-third that of the high-tempcrature part. Hence, if the preceding
interpretation of this change is correct, this value shows that

wl‘(_f{' .
&, 3 2 + s,)

I'.I'l 2 .
“2'- lad 3(:, {26)

or

where ¢ is the high-temperature activation energy.

An alternative interpretation of the difference in slope of the low- and
high-temperature portions of the curve is that the low-temperature
conductivity arises from a very small number of ions that are situated at
surfaces of internal cracks of the erystal and are more free to move than
the ions in ordinary sites. It does not cem to be passible to decide
between these alternatives at the present time,

VW, Jost, Z. physik. Chem., A169, 129 (1934).
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If Eq. (26) may be used, the ratio ~ of the number of vacancies to the
total number of ions may be computed from the equation

r
€

r=¢'2

_? e
3 ET‘

i

€

Using the value € = 1.90 for sodium chloride, we find that » ~ 10-¢ at
the melting point.

As we have seen above, it is not possible to say definitely in which
category silver chloride and silver bromide may be placed, although Jost
and Nehlep’s computations indicate that they belong to class . If the
raiio of vacancies to normal atoms were large enough. it would be possible
to distinguish between case I and case IIb by a comparison of the meas-
ured density and the density computed from X-ray data by assuming
that there are no vacancies. In case I, the two should agree since there
is one interstitial ion for each vacancy. In case IIb, however, the com-
puted density should be larger than the measured one by a factor (1 — r)~!
where r i~ the ratio of the number of vacancies to the number of normal
ions. If we examine Fig. 66, Chap. I, we may see that the high-tempera-
ture slope is about twice the low-temperature value for silver chloride and
silver bromide. Hence, in place of Eq. (26) we have

& = (27)

For silver bromide, the value of r at the melting point computed! in this
way is

r o= ¢ T = 1028, (28)

The experimental accuracy of density and lattice corstant measureruents
is not large enough? fo detect the difference in densities that would
arise from this value of r in case IIb. Wagner and Koch,* however,
have used an ingenious indirect method, involving conductivity measure-
ments, to determine the ntmber of lattice defects in AgBr at various
- temperatures. Their method is based on the fact that the number of
holes in AgBr may be increased by adding fixed quantities of PbBr..
The lead salt forms a perfect solid solution when present in small con-
centrations. Since the lead ion is divalent, each ion added replaces two
silver ions; hence, one vacancy is produced in the silver-ion lattice for
each dissolved lead ion. The conductivity per vacancy may be deter-
mined from an investigation of the increase in conductivity as lead is

1 ¥, Serrz, Phys. Rev., 54, 1111 (1938); &6, 1063 (1939).
¢ Density measurements have been made by C. Wagner and J. Beyer, Z. physik.
Chewi., B33, 113 (1936). See ibid. for the reason why the conclusions drawn by these

workers are not trustworthy.
s E. Kocr and C. WAGNER, Z. physik, Chem., B38, 205 (1938).
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added, and the result may then be used to determine the number of
vacancies-in the pure crystal. Table LXXIX gives a comparison of the
fraction of vacancies determined in this way with the fraction determined
from Eq. (27). The computed values are off by a factor 5, a discrepancy
that is not surprising in view of the simplifying assumptions used in the
theoretical computation.

TabLe LXXIX.—CoMPARISON OF THE FRACTION OF VACANT S1TES IN SILVER BREMVDE
AT Varrous TEMPERATURES A8 DETERMINED BY EqQ. (27) AND BY THE ME180D
or Koca anp WaaNER

T, °C|r (theor.) - 10% | 7 (exp.) - 10°

300 2.71 4.0
250 0.36 1.8
210 0.18 0.76

If we compare Eq. (7) with Eq. (16) of Sec. 122 for the diffusion
coefficient, namely,

D = %w,

we obtain the unporta.nt relation
o= N TD (29)

This relation has been checked by von Hevesy and Seith! for Pbl,, in
which the conductivity of Pb++isknown. They determined the diffusion
ceefficient of radioactive lead in single crystals of Pbl; and compared
this value with that computed from Tubandt’s measured values of ¢ by
means of relation (29). The two agree, mthm expenment.al error, in
the temperature range from 255° to 290°C.

Von Hevesy and Seith have also measured the rate of diffusion of
radioactive lead in PbCl.. The positive-ion transport number is immeas-
urably small in this case, but by use of Eq. (29) they obtained the
equetion .

_ 4,180 15,000
o(ohm=* cm—!) = 9.78 -10~%¢ 7 + L15-.10% 7T

for the total conductivity. The first term is the chlorine-ion conductivity
which was measured directly; the second term is the positive-ion con-
ductivity which was computed by means of (29): The types of lattice
defect that occur in PbCl; have not been detcrmined, and so it is not

1 G. von"Hevesy and W. Serra, Z. Physik, 68, 700 (1929); 67, 869 (1029).
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yet possible to give an interpretation of the large dlfference in the coeffi-
cients in this equation.

C. PHOTOCONDUCTIVITY

138. The Mean Free Path of Free Electrons in Ionic Crystals.—The
semiempirical computations of the mean free path of free electrons in
semi-conductors that were discussed in Part B of Chap. IV indicate
that at room temperature the path is of the order of an interatomic
distance, and is usually less than the mean free path of an electron in a
metal. This result is not surprising, for the metal lattice is nearly at
complete equilibrium when the conduction electrons move through it,
whereas the ionic crystal is under stress.

We shall consider the simplified model of a crystal that is practically
isotropic and shall discuss the scattering by the vibrational modes of
frequency ». If the kinetic energy e of the free electron is greater than
hv, the electron may lose energy to the.lattice as well as gain it. It
follows from the discussion of Sec. 127 that the proba.bx!ltles that these
processes will oecur in unit time ar of the form

A (&)(n, + 1):} 1)

A, (en, »

respectively, where in the isotropic case 4,(e) is dependent only upon the
electronic energy, and n, is the mean vibrational quantum number per
os¢illator, that is,

1 .
n, = -4 * (2)
AT — 1 . .

Thus, the total probability per unit time that the electron will be scattered
by a lattice vibration. of frequency » is

P, = A, (e)(2n, +1) (e > hy). 3)

In the case in which the electronic energf,r is less than kv, the electron
cannot lose erergy to the lattice so that

P, = A,(e)n, (e < hy). (4)

Thus, an electron having energy greater than k» is scattered by the waves
of frequency » even at absolute zero of temperature, whereas one having
energy less than » is not. The total probability of scattering may be
obtained by summing expressions of the type (3) and (4) over all lattice
frequencies. We may expect that the terms for which » < ¢/h will
lead to & finite mean free path even at absolute sero.
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We shall not discuss the computation of the function 4(¢) in com-
plete d~tail' but shall give a simplified discussion, due to Seeger and
Teller,? of the case in which n, = 0. This result may then be used to
estimate the mean free path.

If it is assumed that a free electron in an ionic crystal is scattered
isotropically by inelastic collisions in which it loses energy and that the
average energy lost per collision is hv. where », is the vibrational fre-
quency of the optically active mode, the mean free path ! and the energy
loss per unit distance-d W /dS should be related by the equation

AW

By = l%g- (5)
We shall use this equation to compute [ after computing dW /dS by the
method employed by Seeger and Teller. The equation evidently is valid
only if the collisions are nearly isotropic. This condition is satisfied for
electrons having energies not too large in comparison with h», since the
changes in velocity resulting from individual collisions then are com-
parable with the initial velocity. It is not satisfied, however, when the
electronic energy is very large compared with A»,, for then the collisions
are predominantly through smali angles, ag in the case of electrons in
metals. :

An electron that is passing through an ionic crystal ordinarily moves
so quickly, even when it has thermal energy, that the ions do not have
time to come to complete equilibrium under the force of the electron.
This fact is, of course, the basis of the Franck-Condon principle. For this
reason, we shall assume that only that part of the polarization of the
crystal arising from the electronic displacement is induced by the moving
electron. The dielectric constant associated with this polarigation is
simply n® where 7 is the refractive index extrapolated for infinite wave
length. The electrostatic field strength at a distance r from the electron’
then is

where 1, is a unit vector in the radial direction. Seeger and Teller use

1 A discussion based entirely upon quantum mechanical perturbation methods
may be found in the following papers: H. Frohlich, Proc. Roy. Soc., 160, 230 (1937);
H. Frohlich and N, F. Mott, Proc. Roy. Soc., 171,496 (1989). This discussion is more
complete than the one in the present volume in the sense that temperature dependence
is included; however, as Seeger and Teller point out, it is unreliable in the range of
energy in which thie mean free path is least because the mean time between collisions
is of the order of magnitude 10715 sec (see part g, Ssc. 127). See also Phys. Rev.,
56, 349 (1939).

tR. J. Sexcrz and E. Terims, Phys. Rev., 54, 515 (1938;. See also Phys. Rev ,
56, 352 (1938). - ’
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a slightly different constant for the coeffisient of e/r?, but the simp e
value 1/n? is at least as accurate as theirs, in the writer's opinion.

Let us suppose that an electron moving with velocity » passes at
distance b from an ion having charge Ze. The force f normal to the
direction of the electron velocity at time ? is

I Ze? b
I=wryoe U yon @

in which the origin of ¢ is chosen as the time of closest approach. The
total impulse p transferred to the ion by the electron is the time integral
of (7), namely,

2 Z¢?

P= ®)

which is equivalent to the energy

i P22 2%
¢T2M T n M
where M is the ionic mass. Thus, the amount of energy that the electron

loses to those ions lying within a cylindrical shell of radius b and thickness
db in traveling unit distance is .

aw xbdd
Eﬂ’“ﬁ’ A

in which d is the distance between like ions. If the lattice is8 of the
-type, such as sodium chloride, that is symmetrical in two types of ion,
the total differential energy loss then is the sum of terms of type (9) for
both types of ion. Setting

&

11,1

Pl A 5
where M, and M. are the masses of the two kinds of ion, we may write
this sum in the form

dW\ .2 Z%* xbdb
(47) - 2.2 o
It may seem from Eq. (10) that 8(dW /dS) decreases as 1/, which shows
that the total effect of distant ions is much greater than that of the
jons through which the electron passes. Hence, we may integrate
Eq. (10) with reasonable acouracy by treating the solid as though con-
tinuous. Thus,
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dW __ [ 2xZ%* db
5 = ) v s an
in which the limits are yet to be specified.
We shall assume that the time » during which the distance between

the electron and ion is of the order of magnitude b may be taken as
2b/v. In order that Eq. (11) shall be valid, this must be short dompared

l‘ u4f_

xmzle*
npathy,
&

ﬁ/
ds
-8

e

: i 1 |- i i 1 i 1 i A
0 1 2 3 4 8% 6 7 8 8 10 1 12
i'lwm

Fia. 8.—The samislaseical excitation function.

with the oscillational time of the optically active frequency, for otherwise
the work done by the force averages to sero. Hence, we must have

2b 1

v < 20V
which gives as the upper limit of integration

v
bows = dxvm

As a lower limit, Seeger and Teller take tlie de Broglie wave length. of
the electron divided by 2x:

%=—*ﬁa

Using these limits in Eq. (11), we find

aw _ 2:-2’%‘ my?/2

a5 n‘m’u‘ B

Z’e‘_]; €

niua® e 8 7m Rvm
where € = myp?/2, . This funct:on. which is ahown in Fig. 8, has the
maximum value

(12)

( fmZ'c
L)

n‘,ua‘hv
when ¢ = 2.7hv,..
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Combining Egs. (1) and (10), we obtain

g v n'uathvn e
L= aWids = TmZe log </ (14)

The minimum values-of I, corresponding to € = 2.7h»,,, are listed in
Table LXXX for several alkali halides.

TasLe LXXX.—Tre Mean FreEr Patas oF Evecrrons IN IonNic CrystaLrs

Ep - 1075 volts/em
nt batn + 108 cm o
Calculated Observed, room
‘temperature

. LiF 1.93 4.74 15.4 31

NaCl 2.19 5.0 4.7 15

Ka 2.19 4.0 4.8 10

KI 2.40 6.4 2.0 5.7

RbBr 2.40 7.4 1.6 6.3

RbI 2.85 12.9 0.81 4.9

These results obviously should apply.only at the absolute zero of.
temperature and then only very approximately in thedow-energy range
where € ~ Rva, for it has been assumed that the crystal possesses a single
lattice vibrational frequency whereas actual crystals possess a continuous
range of frequencies extending from zero to ».. ' Thus the actual dW/dS
curve for absolute zero should not drop sharply to the axis at ¢ = hy,
but should continue smoothly to the origin. N

Von Hippel' has suggested that dielectric breakdown in insulators
occurs when the electrostatic field becomes so strong that on the average
a free electron in the lattice can gain more cnergy from the field between
collisions than it loses as a result of collisions. If Ejy is the breakdown

field, von Hippel’s condition is

EBZmln = hvm- (15)
By use of Eq. (1), this may be transformed to the form
dW

1 A, vox Hireey, Jour. Applied Phys., 8, 815 (1937). Discussions of this'and other
theories of dielectric breakdown may be found in the following papers: H. Frohlich,
Proc. Roy. Soc., 160, 230 (1937), 172, 94 (1939). W. Frane, Z. Phyeik, 118, 607
(1939); Seeger and Teller, op. cit.; R. C. Buehl and A. von Hippél, Phys. Rev., §8, 941

(1939).
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The results’ that are obtained aré shown in Table LXXX and asre com-
pared with von Hippel’s measured values. The computed ones all are
smaller than the observed ones. Seeger and Teller suggest that a part

. of this discrepancy may be due to the use of the actual electronic mass m
in Eq. (11) instead of the effective mass for the interior of the crystal.
Actually, it seems unlikely that the semiclassical computation of the
mean free path is sufficiently trustworthy to merit accurate comparison
with experimental results even if (15) is the correct condition for
breakdown.

According to the discussior in the earlier part of this section, we
should expect the mean free path to decrease with increasing temperature
because the n, in Eqgs. (3) and (4) increase with increasing temperature.
Thus, the breakdown strength of crystals should increase with increasing
temperature if Eq. (15) is valid. Buchl and von Hippel? have observed
that the dielectric strength of the alkali halides is decreased by cooling
from room temperature to liquid-air temperature; however, the observed
decrease is much more rapid than is to be expected from Eq. (15). It
seems likely, at the present time, that the simple theory of dielectric
breakdown needs important revision.®

Reasoning from his inability to detect a meaaumble Hall effect in
photoconducting specimens of sodium chloride, potassium chloride, and
potassium bromide crystals, Evans* has concluded that the mean free
path in these crystals at room temperature isless than 4.5 - 10~*em. - The
Hall effect is easily observable in zinc oxide and zinc sulfide (Sec. 37),
and corresponds to mean free paths of 107 cm. The origin of the differ-
ence in properties of these two types of salt remains to be investigated.

134, Photoconductivity in Colored Alkali Halide Crystals.>—In this
section and the next, we shall discuss the present status of the theory
of photoconductivity. The most extensive interpretive work has been
done on the photoconductivity of alkali halide crystals that contain
F centers. As we have seen in Sec. 111, the properties of these crystals
may be explained most reasonably by assuming that they contain more
halogen-ion vacancies than alkali-metal-ion vacancies and that the

! These values differ somewhat from Seeger and Teller's because of differences in
the form of Eq. (6).

* Buesw and voN Hirrry, op. cit.

*In an attempt to explain the observed temperatuce dependence, H. B. Sampson
and the writer have pointed out that the primary excitation process of the free elec-
trons is the production of excitons, rather than sccondary electrons as is ordinarily
asumed. Unless the excitons are dissociated by cither the field or temperature,
breakdown cannot occur. (To be published shortly.)

4J. Evans, Phys. Reo, 67, 47 (1940).

5 See the articles by R. W. Pohl surveying the cxperimental work, Proc. Phys.
Soc., 49 (1087); Physik. Z., ”, 36 (1938).
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excess halogen vacancies are occupied by ‘electrons. In addition to the
alkeli halides, we shall discuss photoconductivity in’ zinc sulfide and
silver halide crystals. '
: Let us begin by considering the photoconductivity of colored sodium

chjoride. The other colored alkali halides behave in an essentially
' A= 470mp A>700m

absorbed oo absor

ngfﬁt Dark interval
F=Centers .

the |
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| e B
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Photo-Electric Current

. . (d) . .

Fi1g, 8.—The photocurrent in colored sodium chloride as a function of time at different
temperatures. During the interval A the crystal was irradiated with light in the F-cen-
ter absorpsion band. During B the crystal was in the dark, and during C it was irradiated
with infrared light. In (a) the crystal was at 30°C and only a primary current is observed
duriug 4; that s, the current varies abruptly when the light is turned on or off. Further
current may be induced by infrared ndifuo’ on after illumination with light in the F band.
In (b) the temperature was 80°C and the current continued to risé after illumination began
and did not drop to sero. when ths light'was turned off. This secondary current is largerin
casee (¢) and (d). ' (After Hiach and Pokl,) .

similar way. At temperatures below 30°C, the photoconductivity begins
abruptly when the crystal is exposed to light in the F-center absorption
band, remains constant during a constant exposure that does not endure
for too long a time, and dropa abruptly to sero when the light is cut off’
(¢f. Fig. 9a). A photoourrent that behaves in this way is said to be a
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primary. current. Its properlies may be -explained!' in ferms of .the
following simple assumptions:

a. A fraction y of the absorbed-light quanta free eleotrons, which
wander about the lattice with thermal velocities.

b. In the presence of an electrostatic field of intensity E, the electrons
drift in the direction of the field with mean velocity xE where u is the
mobility, which is temperature-dependent.

c. The electrons that do not reach the electrodes eventually become
trapped. If A is the mean distance traveled before trapping takes piace,
the mean distance w an elactron drifts in the direction of the field is

. W= ”Ei (i)

‘where § is the mean velocity of random motion. We shall call w the
dmplwement distance.

109 - I : I
o™ Thermolly ir ronge.
P 1o
1 -
E I, i
1
/ 0~m&/baw‘ng
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4 irradiated by l-dmmy _
] i . 1
~250-200 -150 -100 -50 0 +50_+100 +150 +2DO
emperature®C

Fra. 10.—The function w/E as a funection of temperature for sodium chloride with
F-centers. It should be noted that the photocurrent drops sharply helow —150°C. The
units of the ordinate scale are meter3/volt. (After Pohl.)

If I is the intensity of the absorbed radiation per unit distance
between electrodes, the measured current 7 should be
| §= n—{ew - 0))
hy !

according to these assumptions, where Av is the energy of the absorbed
light quanta. Since w is proportlonal to E and 5 is presumably inde-
pendent of field intensity, the quantity

should be'independent of E. This actually is found to be the case in
the primary-current range. Figure 10 shows the temperature depend-

1 Ibid.
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ence of the measured value of (3) for sodium chloride.! It should be
observed that nw/E varies relatively slowly from 25° down to —150°C
and then drops very rapidly, indicating that either 5 or w decreases very
rapidly near the absolute zero of temperature. A similar drop in photo-
sensitivity has also been observed in potassium chloride.

Mott? has given an explanation of this decrease in terms of a decrease

in the quantum yield . If an F center corresponds to the lowest stable
state of an electron and a vacaney in the halogen-ion lattice, the electro-
static field in which the electron moves should vary as —e?/n%? at large
distances from the vacancy. Hence, the electron should have more than
.one discrete level beneath the ionization continuum. By analogy with
a hydrogen atom, or an alkali-metal atom, the lowest state of the system
should be an s-like state and the strongest absorption band should cor-
respond to the transition from this state to the lowest, discrete, p-like
state, which Mott postulated is the F absorption band. -Since the
-electron is bound in the p state, the crystal should not become photo-
conducting unless the electrons are thermally excited to the ionization
continuuim. Hence, there should be no photuconductivity at the
absolute zero of temperature. If A is the relative probability that the
electron jumps from the p state to the ground state in unit time without
becoming free and if B-is the relative probability that it becomes free
in the same time, the quantum yield should be

—— B — 1 -
TFAFBTIF@A/D)

Mott assumes that 4 has the value 10% sec—! and that B has the form

€Y

3

B = »ve

(5)

where » is of the order of magnitude of an atomic oscillationial frequency
10% sec —! and e is the energy required to ionize an electron in the excited
state. Under these conditions, '

1 o
n= e ®
1 + 10-%¢7

The condition, which must be satisfied if this is to begin drepping to zere
at 100°K, is that ¢ should be of the order of magnitude 0.G1 v,

Indirect evidence shows that the trapping centers‘ave other ¥ centers.
As the erystal is illuminated?® with light in the # absorption band in the

1G. Grassr and W. LerreLor, Nachr. Kgl. Ges, Wiss. Goltingen, 2, 91 (1936).

3 N. F. Morr, Proc. Phys. Soc., 50, 106 (1938).

1 7. Gyurar, 2. Physik, 33, 251 (1925); R. Hiuscn and R. W. Porw, Z, Phywl,
68, 721 (1931). '
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region of temperature in which the primary photocurrent is observed,
the F band gradually -disappears and a new band appears on the long
wave-length side of the F 'band. This new band, whith is cailed the
F’ absorption band, ordinarily overlaps partly with the F band (¢f.
. Fig. 11). Evidently, the F’ band corresponds to the absorption of
light by the centers that are formed by the trapped electrons. Measure-
ments! on the displacement distance per unit field strength, «/E, show
that this quantity is inversely.proportional to the concentration of F
centers (¢f. Fig. 12). This result suggests that the F centers act as
trapping points for the free electrons and that an F’ center consists of a

|
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Fia. 11.—The F and F' Fia. 12.—Plot of w,/E as & func-
bands of potassium chloride. tion of conoentration of F centers.
A is the F band as it oodurs be- Since w/E is the displacement dis-
fore illumination with light in tance per unit field intensity it f:l-
this band. After illumination, lows that the mean free path for
the intensity of the F band de- trapping is dependent upon the con-
creases and the F' barnd B oc- centration of F' centers. The ordi-
ours. The unit of wave length nates are expressed in units of meter?/
is 107" em. The unit of ordi- volt. (After PoM.)
nate scale ia em™. (After -
Pohl.)

vacancy plus two electrons. If this interpretation is correct, two
F centers should be destroyed for each F’ center formed. Pohl and his
collaborators have found evidence showmg that this cond;t:on actually is
satisfied.

It is also found. that the crystal containing F’ centers beeomes
photoconducting when it is illuminated with Jight in the 7’ band. This
shows that the electrons in F’ centers may be freed by ptical excitation,
just as may those in an # band.

From the curve of Fig. 12, we may estimate the ratio of the mean
free path I for scattering of free electrons and the croes section ¢ for
capture of a free electron by an F center. Let us assume that ¢ is unity
-at —100°C for potassium chloride. According to Eq. (1), :

1@, Gusnn,fﬁfpchr. Kgl. Ges. Wiss. Gottingen, 3, 31- (1937).
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A
E= 4 ™
The mobility 4 is related to the conductivity ¢ by the equation
e = neu | 8).
where n is the number of free electrons per unit volume. Since

« = 57 | ®
according to classieal theory [¢f. Eq (5) Bec. 126], we have
3‘;“%‘.' (10)

The mean distance A for capture and the capture cross section @ are
related to the density & of capturing centers by the equation

ilﬁ = (11)
 Using Eqs. (7), (10), and (11), we obtain
w _ 1 e. 1
E 3k7TsQ
or
.": = 325, a2)-

Ii we employ the expemnenta.l values of w/E and & that are given in
Fig. 12 and assume @ ~ 10-¢ ¢m?, we find

1~ 5-10"° cm.

Although this estimated value is about one-tenth as large as the value
computed in Sec. 138, it does not seem safe to draw any conclusions about
the validity of the preceding equations from the discrepancy.

When a sodium chloride crystal that contains F’ centers, which have
been formed by illuminating the colored crystal in the F band, is heated
above room temperature, the F’ centers disappear! and are replaced by
F centers. Hence, the trapped electrons may be thermally released and
should be able to move farther than the displacement distance w at high
temperatures. This expectation is supported by the appearance of-a
secondary photocurrent above room.temperature. It is found? that the

3 GyuLAL, op. cit.; Hiuscr and Ponrw, op. cit. ’
* B. Gupoen and R. W Pony, Z. Phyu)c 31, 851 (1925); W. Tmu, Ann. Physik,
26, 561 (1936).
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photocurrent continues to rjse after illumination begins and approaches
a saturation value. The rate at which this value is attained is greater
at higher temperatures (¢f. Fig. 9). .In addition, the current does not
disappear completely when the light is removed. Instead, it decreases
abruptly by an amount equal to the initial rise and then gradually dies
out. In Fig. 10, the double sets of points above 25°C ccrrespond, respec-
tively, to the initial and saturation photocurrents. :

A complete mathematical treatment of the problem of secondary
currents has not yet been developed. It seems likely, however, that the
following three qualitative principles determine.the behavior of the
sccondary current in all photoconductors, as well. as in colored sodium
chloride. -

1. Electrons that are trapped after being released by light may be
freed thermally at sufficiently high temperatures and may continue to
drift toward the anode. This contribution ¢, to the secondary current
should not rise to a saturation value instantly if the electrons are trapped
for a measunble time 7. * SBuppose that the electrons are optically freed
at & rate n per unit time, so that the number in the crystal at the end of
time ¢ is nf. After being initially freed, the electrons move a distance w
and become trapped, giving rise to the prmm.ry current. If the probabil-
ity that one of the n¢ trapped electrons is released in unit time is 1/7,
the total number released per unit time is nt/r. H it is assumed that
they move a distance » and are again trapped, the secondary current as a .
function of time is

. nd
te= —ew. (13)
Deviations from this linear rise occur as soon as the electrons begin
arriving at the anode at a rate comparable with the rate at which they
are optically freed. The greatest possible value of 7, for uniform illumina-
tion between electrodes that are a distance d apart is nde/2 since each
freed electron moves a mean distance d/2.

2. Additional electrons may enter the crystal from the cathoae and
move through the-crystal to the anode. This flow from the cathode is
indueed by the space charge fields set up in the crystal by the displace-
ment of the electrons in the primary current and in 4. Either field
emission from the cathode or an inherent dark electronie conductivity
may serve to introduce the electrons into the crystal. We shall call this
contribution to the current ¢n. Since the space charge field should vary
with time, immediately after ilumination, ¢n should also be a function of
time. Tt may be difficult to separate ¢n from ¢, for this reason. The
limi ting value of the total photocurrent for long periods of illumination
is determined by the dependence of ¢n on the field strength near the
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cathode; for if a sufficiently large space charge accumulates, the optically
freed electrons will not be able to reach the eathode. :

3. The migrating electrons may become permanently trapped to
form anew the centers that were originally ionized by light quanta. In
the alkali halides, this means that ' centers may be formed by the recom-~
bination of freed electrons and halogen-ion vacancies. In a true equi-
librium state, the rate at which this process oecurs is equal to the rate
at which the centers are ionized by light.

i | Dark Light Dark mmi Light
, ‘
i |
t— ——
(a) ) t
i iy | 1
; | i
4 i i
Dark Light Dark parky Light i
1.
b 1 - t—

(b) (d)
Fi1a. 13.—8chematic representation of the behavior of primaxy and secondary photo-
currents. In (a) there is only a primary current i1 which corresponds to electrons actuslly
released by light. Theee electrons ultimstely become trapped. In (b), which is at & higher
temperature, there is an additional current €, corresponding to the flow of the thermally
releassd trapped electrons. (c) corresponds to a case in which charge cannot pass from
the cathodejnto the crystal. Polarization aventually reduces the current to sero in spite
of wontinuots illumination. In (d) a curren€ six flows from the cathode in the equilibrium
state. All cases intermediate between (¢) and (d) are possible.

Several different possible cases are illustrated schematically in
Figs. 130 to d. In the first, there is only the primary -current which
rises and falls abruptly with changes in. illumination. This current
could not exist indefinitely if no charges entered £he crystal to neutralize
space charge. In Fig. 13, we have the primary current and the second-
ary current i, which we have assuméd reaches its saturation value. If
there are no electrons flowing from the cathode, the primary current
and the secondary current 1, eventually fall to zero because of polariza-
tion (Fig. 13¢). The cathode current tn prevents this drop and makes
the final current finite. If ¢n is large, the total current need not have a
maximum (Fig. 13d), whereas if ¢;; is small, the current may rise to a
‘peak and then fall asymptotically to a finite value.
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Only the primary current flows in colored sodium chloride below
25°C. Since there is no direct evidence that electrons enter the crystal
from the cathode between this temperature and 280°C, it is possible that
only the primary current and ¢, coexist in this range. Above 230°C,
the electrons bound in F centers are freed thermally, and the current 2,
undoubtedly occurs. The three components of current have not been
separated experimentally, however.

Hilsch and Pohl! have treated a particular case of the general problem,
namely, the case in which 7 is so short that the primary current and ¢, are
inseparable and the rate at which electrons are trapped by ionized centers
(effect 3) is negligible. They find that the total steady-state electronic
current 1 is related to the effective primary surrent 7, by the equation

; :
11—

T = tp
where v is the fraction of the dark conductivity before illumination
that is due to electrons. If s, and o; are the electronic and ionic dark
conductivities,
Te
= o+ o,

They did not consider the transition current before the steady state is
reached. _

136. Photoconductivity of Zinc Sulfide and of the Silver Halides.”—
Gudden and Pohl® have also made measurements on the photoconduetivity
of natural single crystals and artificially prepared powders of sinc sulfide
that can be interpreted along the lines discussed in the preceding section.
Although the impurity content of the single crystals is not discussed, we
shall assume that the composition of crystals and powders is similar,
since the photoconducting properties of both are nearly alike. The
photoconducting powders are usually prepared by heating pure zine
sulfide either alone or in the presence of small quantities of salts of other
metals, such as copper, manganese, or silver.. It is believed (¢f. Sec. 112)
that small quantities of neutral metal atoms enter interstitial positions
in the lattice as a result of the heating process and provide centers that
may be ionized by the conductivity-inducing radiation in the near ultra-
violet. The pdsition of the spectral sensitivity curve is dependent upon
the kinds of interstitial atom présent, but it usually has its maximum
near 36504 and has a small tail in the blue region of the visible spectrum.
Many of the photoconducting, zinc sulfides, ‘such as the pure heated

! R. Hiuscu and R. W. Ponw, Z. Physik, 108, 56 (1937).

* Review of experiments: F. C. Nix, Rev. Modern Phys., 4, 723 (1932).

3B. Guppen and R. W. Pony, Z. Physik, 2, 181,361 (1920); 8, 98 (1930); 4,
206 (1921); 5, 176 (1921); 6, 248 (1921); 17, 331 (1923); Physik. Z., 38, 417 (1922).
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material and those activated by means of copper, silver, or manganese,
luminesce bnght.ly when excited with radiation.lying in the region in
which photoconductivity oocurs. We shall discuss the correlation of
these two effects below. .

It is found that the phot.ocumnts in the gino sulfides are primary
for electrostatic fields below 6,000 velts/cm. The primary current
saturates, however, in sufficiently thin erystals; for example, Fig. 14
shows the saturation obtained for a crystal about' 1 mm thick. When
the maximum current is reached, one electron arrives at the anode for
each light quantum that is absorbed, which indicates that the displace-
ment distance « is greater than the distance between electrodes. If, in
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Fig. 14,—The saturation of the pri- " Fia. 18—The resistance of a

mary photocurrent with voltage in  specimen of tino sulfide as a function
sinc sulfide. Saturation ocours when of time. The specimen had pre-
each clectron flows to: the .oathode. viously been irradiated with ultra-
(After Hisch and Pohl) . violet light. It was then placed in
t : liquid air and irradipted with infrared .
rodiation, atarting at time mero.
(After Reimann.)

' Eq (12) of the preceding section, we.set w equal to the thickness of the

crystal for the value of E at which the current is half the saturation value
and if we set I equal to 10~® cm and @ equal to 10~¢ cm?, we find

.. 8~3.10%,

‘Thm implies that the demnty of trapping centers is very low compared
with the density of interstitial atoms, which usually is about 10'* em
Moreover, since the shape of the saturation current is ind~nendent of
light intensity, we canmot conclude that the trapping centers are the
ionized centers. No satmfa.otory expla.nahon of the trapping has yet
beeri given.! '
! In recent experiments based on a study of the deuay of luminescence, R. P.
Johnson, Jour. Optical Soc., 29, 367 (1939), has shown that there are at least two
"types of trapping center, OQne of these binds the electrons more iightly than the
others &nd, probaily is the trapping center that is important for room-temperature
photoconductivity. - The other probnb!y would also be important at lower
temperatures,
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The trapped electrons may be temporarily released cither by heating
the crystal to sufficiently high temperatures or by illuminating it with
infrared light at any temperature. This freeing is made evident by the
appearance of conductivity. Hence, if a crystal that has previously
been illuminated with ultraviolet light is continuously illuminated with
infrared light or is kept sufficiently warm, the electrons that are con-
tinuously being freed from the trapping centers should eventually
recombine with the ionized interstitial atoms and the conductivity
should gradually decrease. If we assume that the rate at which n
ionized electrons and = ionized atoms recombine is proportional to the
product of the number of each, we obtain the equation!

%‘ = —an? (1)
which has the integral

1 1

S=ad+ e 2)

where no is the number of photoelectrons at time ¢ = 0. Under these
- conditions, the resistivity of the crystal that is illuminated with infrared
light should increase linearly with time. A relationship of this type has
been observed by Reimann? (¢f. Fig. 15) on a specimen of zinc sulfide
that was kept at liquid-air temperature and was continuously illuminated
with infrared light after an initial excitation with ultraviolet light.

According to Egs. (1) and (2), the rate at which electrons and inter-
stitial ions recombine is given by the equation

e ®
dt = (neat + 1)*

If light quanta of frequency » were emitted during this recombination,
the intensity I(t) at time ¢ would be

dn hvan} I1(0)

dt = " (ned + 1)t (B 1) )

where
B = nea.

It is found experimentally that the luminescence of zine sulfide decays very
nearly in accordance with this equation at times not too near the initial
time of excitation. This fact provides a possible explanation of the

1 This discussion is valid only whea there is » single trapping center. It has been
generalized by Johnson, ep. cif. -
* A, L. REivanN, Nafure, 140, 501 (1937).
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luminescence of the salts. A more definite correlation between liimines-
cence and recombination would be provided by simultaneous measurements
* of the decay of conductivity and of luminescence when a previously excited
crystal is illum.  ated with infrared radiation or is warmed.

Currents higher than the saturation values of Fig. 13 may be obtained
at room temperature by continuously illuminating the crystal with
ultraviolet light while maintaining high electrostatic field intensity.
Figure 16 shows the way in which the total charge removed from the
crystal, as a function of time, deviates from linearity at different field
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F1q. 16.—The total charge coaducted by a specimen of sinc sulfide that was con-
tinually illuminated with ultraviolet light as a function of time. At hlgh field intensities
the current rises above the saturation value of the primary current that is shown in Fig. 14.
‘I‘he;nale of ordinates is such that 100 units ~qual 7.2 X 107 coulomb. (Afier Hilach
and Pohl.) .

strengths. These secondary currents, like those in the colored halides,
have not been studied guantitatively.

Photoconductivity that is qualitatively similar to that observed in
zinc sulfide has been found in many other natural and artificial erystals.
Most notable among these are selenium and the silver halides. The first
of these is used in the photovoltaic cell and has been studied extensively
for practical work. The results, however, are not very useful for interpre-
tive work.

The phatoconductivity of the similar salts, AgCl and AgBr, has been
investigated by ‘Hilsch and Pohl,! Toy and Harrison,? and Lehfeldt,’
the work of the last of these investigators being the most extendive-
The spectral sennmrlty curves . for stimulating conductivity extend

1R. Hiusce and R. W. Pomy, Z. Physik, 64, 606 (1930).

: F. C. Toy and G. B. Haggmox, Proc. Roy. Soc., 127, 613 (1930).
: LewreLpT, Nackr. Kgl. Ges. Wiss. Goitingen, 1, 170 (1035).
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throughout the visible and into the near ultraviolet region of the spec-
trum, have peaks in the blue, and lie close to, if not actually in, the tail
of the fundamental absorption band. Lehfeldt has found that in the
range from room temperature to liquid-air temperature the quantum
yield of photoelectrons is close to unity for all absorbed light.
- It has often been suggested that electrons are freed with quantum
vield unity throughout the fundamental absorption region, and that
photoconductivity is observed in the tail of this region and not in its
center only, because the reflection coefficient becomes large in the center.
According to present view concerning the excited states of perfect insulat-
ing erystals (Chap. XII), the observed photoconduetivity arises from
impurities or lattice defects, at least in the case of the alkali halides.

» As we saw in Sec. 132, Jost and Nehlep have given theoretical evi-
dence that the lattice defects in silver halides are interstitial silver ions.
Thus, it is possible'that the souree of photoelectrons is either the inter-
stitial silver ion, if the ion carries an electron with it, or the negative ions
near the vacancy, if the interstitial ion does not take an electron. Mott!
has shown, however, that it is not unressonable to suppose that photo-
electrons are produced in these salts by thermal decomposition of excitons
formed by absorption in the fundamental band.

Nagte: The theory of contact rectification of the tvpe occurring in galena and cop-
per oxide rectifiers has not been discussed in this chapter, in whieh it would natusally
bedang. ‘This subject hes passed through a gradual development aad the most revent
treatment, which seems t0 correlate mast of the known faets, is that givea by N. F.
Moti, Proc. Rey. Soc., 171, 27, 281 {1939). -

1N, F. Morr, Proc. Roy. Soc., 167, 384 [1938).



CHAPTER XVI
THE MAGNETIC PROPERTIES OF SOLIDS

136. Introductmn —It was seen in Chap. I that there are thlee main
classes of solids as far as magnetic properties are concerned, namely,
diamagnetic, paramagnetic, and ferromagnetic substances. Practically
all simple insulators and about half the simple metals are diamagnetic,
whereas all other insulators and metals, except for a few ferromagnetic
substances, are paramagnetic. The ferromagnetic materials become
paramagnetic when heated to sufficiently high temperatures, a fact show-
ing that paramagnetism and ferromagnetism are intimately connected.

Diamagnetism is related to changes in the orbital motion of electrons
that occur when atomic systems are placed in a magnetic field. It may
be recalled that the current induced in a closed electrical circuit by o
magnetic field is always in such a direction as to tend to keep the total
flux unchanged. Thus, the circuit has, in effect, a negative suscepti-
bility. This effect is retained even in systéms of charges that must be
treated by quantum mechanics and is responsible for .diamagnetism.
Paramagnetism, on the other hand, is related to the tendency of a
permanent magnet to align itself in a magnetic field in such a way that its
dipole moment is parallel to the field. In atomic systems, the per-
manent moment is the magnetic moment associated with electron spin
in the simplest cases, but it may also be the permanent moment of an
unfilled atomic shell that arises from a combination of spin and orbital
motion. If a system is more stable when the atomic dipoles are parallel,
the system is ferromagnetic at low temperatures. Ferromagnetism
disappears at high temperatures for a reason similar to that for which
solids melt, namely, because the nonferromagnetic state is more dis-
ordered and has a higher entropy than the ferromagnetic one. The
moment-aligning forces in ferromagnetic substances are not the magnetic
forces between dipoles but have electrostatic origin, as we shall see in
Sec. 143.

137. The Hamiltonian Operator in a Magnetic Field.—According to
the results of Sec. 42, the Hamiltonian operator for any system of elec-
trons in an external electromagnetic field is

2
H= 2-2—1;(94 + EA.-) +V - Dewt Dta-cul A (1)
i i 1
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where p; is the momentum operator for the ith electron, ¢ and A are the
scalar and vector poteatials of the external field, V is the internal electro-
static potential of the electronic system, and —ed;/me is the spin mag-
netic moment of the ith electron.! If the external field is uniform and of
Intensity H, we may choose A as

A=jH Xr. (2)
For convenience, we shall take H to lie in the z direction. Under these
conditions,

ehf o 3 Hze s
- [ el )+ B ]

V+ D sHa ()

The operator

2 Mo - v = Em @

is the z component of the total angular momentum operator (¢f. Sec. 40).
If the two terms containing H, to the first power are combmed thay
reduce to

Hz_:;“wz (my + 202), (5)

in which the negative of the coefficient of H, is the z component of the
total magnetic moment arising from both orbital motion and spin.
This term accounts.for the weak-field Zeeman effect in free atoms since
its matrix components are usually much larger than those of the quadratic
term

chzz (2} + ¥ (®)

We may discuss the contnbutlon_s to the total energy from the terms
(5) and (6) separately for the inner-shell electrons and for the valenee
electrons. Some of the properties of the first type of electron, which
may be treated like the electrons in free atoms or ions, will be presented
in this section. These results can be applied to all the electrons in those
ionic crystals whose constituent ions behave as if they were nearly free,

! The interaction between the fleld and the magnetic moments of the electrons,
not considered in Sec. 42, is also included in this Hamiltonian.
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We shall devote other sections to the valence electrons of other substances
that require separate consideration.

Although the z component of the total angular momentum operator
is & constant of motion for a free atom, the z component of magnetic

“ moment usually is not, because of the factor 2 that appears as a coeffi-

cient of @, in (5). There is one important exceptional case, however,
namely, that of Russell-S8aunders coupling,! in which the spin-orbit
interaction terms are small. This case occurs commonly among the
atoms on the left-hand side of the periodic chart. We shall list the
operators that are constants of motion in this case. The conventional
form of the eigenvalues of each operator are also given.

a. The square of the total angular momentum

[Sm+a]s  wG+. | @

b. The square of the orbital angular momentum

[Zm]s  aL@ +). - ®
1

¢. The square of the spin angular momentum

[z«]‘; S8 + 1). | )

d. The z component of the total angular momentum

E(m.,. +0): A (10)

e. The z component of the total orbital angular momentum

Soma; M. (11)

J.:The z component of the total spin angular momentum
Soa; hSe (12

In the preceding equations, the quantum numbers L and M, are
allowed only integer values, whereas the quantum numbers J, 8, and J,
are integers in atoms having an even number of electrons and are half
integers in atoms having an odd number of electrons. The levels of

1¢f. E. U. Convon and G. H. SporTLEY, The Theory of Atomic Spectra (Cam-
‘bridge Uaiversity Press, 1986); G. HerzBERG, Atomic Spectra (Prentice-Hall,-Inc.,
New York, 1937).
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given J are (27 + 1 )-fold-degenerate and the different degenerate states
may be specified by the 2J + 1 values of J, that range from J to —J/
in integer steps. In-an ideal case of Russell-Saunders coupling, the
levels group themselves into widely separated sets, called multiplets,
which are specified by given values of L and 8 (¢/. Fig. 1). The different
levels ir each multiplet are in turn specified by values of .7 that range by
integer steps from the value L + 8 to the value |L — 8}|. The separation
of levels in the same multiplet, which is determined by a small interaction
between spin and orbital motion that does not appear in Eq. (1), is
given by the simple equation

E:.q.l bl EJ = a(.f + 1)
where « is a constant for a given multiplet.

In terms of these quantum numbers,', the eigenvalues of the magnetic
term (5) are

H'ﬁl_l + J(“' + 1) +28}€I':-13) : L(L + 1)]J= (13)
where
eh
B = 2me
is the Bohr magneton. We shall bs interested in this result principally

for the discussion of the magnetic effects of —
inner shells of the atoms in solids. Since J, L, -

and 8 are all zero for completely closed shells,

the contribution to (5) arising from these shells

is zero; however, they do contribute to the term

(6). On the other hand, the quantum numbers

usually are not zero for the unfilled inner shells

of the transition-element atoms or of the rare

carth atoms. Hence, the term (5) is important

in these cases. It is easy to see that (6) is u+2
unimportant whenever the expression (13) is not Jt[:_,————_z} 25+lL
sero, for if the coefficient of H,8 in (13) is of J F1c. 1.—The distribution
the order of unit.y snd if the mean value of of multipiets iu_ Ihu;ucll-
(x} 4 y?) in (7) is of the ordar of magmitude «, if;"‘;‘j’:‘t';ct"\:':’e‘l’f‘t’;,i‘ mﬂ’t‘f
'tht‘ _raho of (6) to (6) is plets, that is, between the

25%1 4
feshy

s of levels of given

h! .+ are large compared

—— w'm'L ;}.n iwner  multiplet
Bce3m? BCpari:i 1Hns.

which is of the order of magnitude H,-10-'° in cgs units. This is
completely negligible for ordinary magnetie ficld strengths.
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‘We shall now examine the connection between the energy states and
the magnetic susceptibility of an atomic system. The susceptibility x
i8, by definition, the ratio of the magnetic polarization per unit volume
M and the magnetic-field H; that is,

M=yx-H. (14)

In the general case in which M and H are not in the same direction, x
is a tensor. We ghall restrict the present discussion to the ¢ase in which
x is a constant. If the external magnetic field is changed by an incre-
ment AH, the change in energy of a system that is in the energy state B’
and has a magnetic polarization per unit volume M is

AE"

Hence, if H' is the scalar value of the magnetic field,
1 ’ '
X =~y (16)

If the system is at the absolute zero of temperature, E’ is the lowest
energy state £o,. Thus, in this case,

7]
m k2B -
On the other hand, if the system is at a finite temperature 7. the mean
“value of 3B’ /oM’ is

2(8E¢/8H')e_%'
i

d
e = —k72 o8] - (18)
e M
0
where
-5
F=Ye (19)
z
is the partition function of the system. Hence,
kT o
X = 7 oFy o8 /- (20)

Since —k7T log f is also the free energy A of the system, (20) may be
written in the form
: 1 04
X = ~HV (20a)

which is a generalization of (17).
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Let us apply Eq. (20) to a simple system consisting of N independent
atoms. We shall assume that. the inner-multiplet spacing is so large
compared with kT that all atoms are in the lowest 27 + 1 states of a
multiplet, which are degenerate in the absence of a ficld. This model
applies to an ionic or molecular crystal in which some ions or atoms have
incompleted inner shells so perfectly screened thai they are the same as
in a free atom. If we use Eq. (13) for the splitting oi the lowest level,
the partition function is

H.fg(J,L.8) M,

LE,,"— u‘l ]N (21)

where
_ l+J(J+1)+S(s+1)-—-L(L+1)] (22
g= 2J(J 1) ==
is the Landé g factor. Summing the series, we find
sinh (J + o
r= [ sinh /2 ] (23)
where
H
“= o

Thus, the susceptibility is

X = ggg{ +(a), (25)

in which |
BJ({X) = (J +_’1t)_“‘0t’h (J__‘: ‘5‘)0’ o 3 coth a/2

(26)

is the Brillouin function.! Values of B, for several values of J are
shown in Fig. 2. Since B,(a) approaches unity for large values of o,
the limiting value of M is NggJ/V when 8H, is much larger than kT, which
corresponds to complete alignment of the maghetic moment parallel
to the magnetic field. For small values of a, B, varies linearly with «
so that, when gH, is much smaller than k7', the magnetic polarization is

2
M(H) = Nﬂ 9 u;(ka+ Dy,

(27)
and the susceptibility is

Ngg*J(J + 1) :
AT (28)

' L. BriLvouvin, Jour, phys., 8, 74 (1927).
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Equation (28) was first derived by Langevin! for the case of classical
mechanies. in which gg+/J(J + 1) is replaced by the permanent atomic
magnetic moment.

If the atom has a closed-shell structure, so that J is gero, (28) van-
ishes and the susceptibility should be determined by the quadratic
encigv term (6). Since closed shells are spherically symmetrical, the

matrix coraponent of 2(:-‘:% + y?) for the lowest state is

gnr? (29)
where n is the total number of electrons in the atom and r? is the mean
10 =
¥ r/“] -
4 1‘/ /]

- lari v

By (@}
o5
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Fra. 2.~Values of B;(a) for the values J =0, §, 1, and §.

vglne of r* for any electron. Thus, the mnagnetie energy per umt volume
of a group of N atoms of this type is

% Nn-
‘H.c_u _T‘“ =3 _ (30)
and their susceptibility is
Nn et
._._Vﬁ - | @31

which correcponds to diamagnetism.

We have seen in the previous chapters that simple ionic crystals
behave as though they were composed of spherically symmetric closed-
shell ions of the constituent atoms. If there are N./V ions of the ath
type per unit volume of this erystal, the dinmagnetic susceptibility is

! P. LANGEVIN, Jour, phys., 4, 678 (1905),
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2

x = =g SNeers (32)
where n, and 7.2 are, respectively, the number of electrons on the ath
ion and the mean value of r? for this ion. Equation (32) may also be
used to compute the diamagnetic contribution to the susceptibility from
the closed shells of any solid. A discussion of the methods of computing
the dizumagnetic susceptibilities of various closed-shell ions and tables
of numerical values of these susceptibilities may be found in Chap. VIII
of Van Vleck’s book.} _

138. The Orbital Diamagnetism of Free Electrons*.—A theorem of
classical mechanics? states that a system of charges that are confined
in"a fixed volume but are otherwise free has sero magnetic susceptibility.
If the system is not confined, each constituent charge is induced to move
in a helical path and the total magnetic flux is decreased. The charges
striking the wall, however, have their paths changed in such a way that
their magnetic field nullifies the field of the rest. This result may be
understood on the basis of the following formal argument. In classical
mechanics, & magnetic field alters the direction of motion of a charge
but does not change its speed. Hence, the distribution of energy states
and, as a result, the partition functlon of a.system of charges that is at
equilibrium are unaltered by the magnetic field. According to Eq. (20) of
the preceding section this means that the susceptibility is zero. The fact
that the charges are confined assures us that the system is in equilibrium.

Landau?® first pointed out that this theorem is not valid in quantum
mechanics because the distribution of energy levels is altered by 2 mag-
netic field in the new scheme. This may be demonsirated as follows.
The Schrédinger equation for a free electron in a magnetic field, as
derived from thé Hamiltonian (3) of the preceding section, is

Heh
¢‘+2

Hze? '
me t( 3y ”ax + g T Y = o, t))
in which it is assumed that the field is in the z direction. The spin term
is neglected in the present section. If we make the transformation
Hie zy
¥ = wfx,v.z)e"’; 7 (2)
Eq. (1) reduces to
A3 Heh o Hze?
"27,‘15? + e I a; + 2mch, €0, 3)
1J. H. VAN Vieck, The Theory of Eleciric and Magnetic Susceptibilities (Oxford
University Press, New York, 18332).
1.0y, ibid. :
$L. Lanpav, Z. Physik, 64, 629 (1930).
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which does not explicitly contain ¥ orz This equation may be further
simplified by means of the substitution

e(2,y,2) = N(z)e?ilhw+ha), (4)
for it then becomes
A! d2 N
~%m a2 + [i%i(kk" + Hgg:r:) + };::]l =e\, (5)

which is identical with the equation for ‘a simple one-dimensional oscil-
lator that is centered about the position

,_ _¢h
r = e_H_,k' - {6)
and has the natural frequency
1 He
Y e @)
Hence, the allowed values of ¢ are
_RR Hhel 1Y
‘"%*ﬁ%“+ﬂ ®)
where n is restricted to integer values.
The form of the total wave function, namely,
[ Hae : -
Vasos, = & GETT) () aete ®)

shows that the motion in the z direction is the same as for a free particle
having a component of momentum hk, along this axis. "Thus if L, is the
length of the container in the z direction, the number of states that have
a fixed value of n and k, and values of k, lying in any range Ak. is

Na’ = MiL:Q- (10)

The contribution to the total energy from the other two degrees of
freedom is (8) minus h%k:/2m, or
,  H;he 1
=i ) )
Each of the discrete levels of this tymklimensional system is highly
degenerate. This degeneracy may be estimated in the following way.

The parameter k, in Eq. (8) is analogous to a y component of wave
number so that the number of values of k, in an allowed range Aky is.

NM,ﬂM'Ly
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by analogy with Eq. (10). The allowed. range of k,, however, is not
unlimited as is that of k., for the point 2’ defined by Eq. (6), which is the
center of gravity of the cleetron position in the z direction, should lie
within the container. Thus, if the width of the box in the z direction is
L,, the total number of allowed values of k, is

M.
N. = Z2LL, (12)

which is also the number of states of given ¢'.
The distance Ae¢’ between successive values of the two-dimensional
cnergy parameter is HM,he/2xme, according to Eq. (11). Hence, the

No field Fleld

;

Np,- fold

fevels

Fia. 3.—Schematic representation of the coalescence of levels of the two-dimensional
system in a magnetic field. In effect, bundles of N, levels of the continuum for perfectly
{mh.sl:udm combine-to form discrete levels. The center of gravity of the bundle remains
unel -

density of the states of the two-dimensional system is
Na _ L.Ly
ae = o (13)

This is independent of H, and is the same as the density of levels for a
free particle in two dimensions. Thus, the magnetic field does not
change the average density of levels although it does alter the detailed
distribution.

We may obtain a qualitative picture of Landau’s diamagnetism for a
system obeying classical statistics from a discussion of the energy levels
of the two-dimensional system. The quasi-continuous energy levels of
the field-free system become discrete in the presence of the field. In
effect, groups of N levels coalesce to form each member of the discrete
set of levels (11) as is shown in Fig. 3. The individual groups coalesce
about their center of gravity; that is, the quasi-continuous set from 0 to
Hihe/2xme coalesce to H.he/4wme, and so forth. Now, in the absence
of a magnetic field the lower levels of any group are preferentially filled
if Boltsmann statistics are used. Hence, the mean energy of electrons
in a group is less than the energy at the center point. Since all the
particles have the energy of the single level into which the group coalesces
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in the presence of a ma.gnet:c field, the mean energy of the electfons is
raised. - Thus, the system is diamagnetic. This effect is much smaller
if the particles obey Fermi-Dirac statistics and if the system is degener-
ate, for then only the few electrons at the top of the filled region have
their mean energy altered by the field. There is & diamagnetic term,
however, even in this case, as will be shown below.

We shall now compute the value of the susceptibility of the three-
dimensional model for both classical and Fermi-Dirac statistics. T the
clmc&l case, the partition funetion for a single particle is

- " H Adhe +H.B(2n+l)
e [ Sttt E
a-O '
VeH, [PxmkT: H-ﬁ{2ﬂ +1) (14)
="a N ® Eo

VeH, .
=t Vv Tz sinh (H.ﬂ/kT)

where V = L.L,L,. For normal field intensities, the susceptibility
determined from this partition function by means of Eu (20) of the
preceding section is

S
x 3

<=

ﬂﬂ
kT (15)
where N is the total number of particles.

For Fermi-Dirac statistics, the partition function f of a particle is
given by the equation!

fs-’-*-'-’+ HaB(2n + 1)

log f = 22f ——-4::. log {1 4 ¢ ¥ Ty,

nw=0

Since « is very large for a degenerate gas, we may replace the logarithm
in the integrand by

MR+ H.ee ]
3 2';?'1 + H.8(2n + 1)
kT
and evaluate the summations only for those values of n and k, for which

this quantity is positive. This procedure is equivalent to assuming that
the major part of the contributien to diamagnetism arises from the

t See, for example, R. H. Fowler, Statistical Mechanies (Cambridge University
Press, 1937). The quantity « is equal to ¢/kT, us in Sec. 26.
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electrons in the completely filled: part of the Fermi d.mtnbutlon. The
integration over k, then takes place between the limits

i};fzmw)i[a - -H—"i%’?f,i—l)] (16)
and leads to the result
28:;,‘, 4 ok’ [ H'ﬂ(?:'} + 1)] an

The summation over n extends from zero to kTa/2H.8 and may he
obtained by use of the approximate equation

N
3F(n) = _”;“F(n)dn - ,&[F'(n)]f ;". (18)
0
The result is
p(3N\ _2mmVey3N\! ., '
[N s*a(sr_v 3 (:-V H ]kT (19)

in-which the two terms arise; respectively, from the two terms of (18).
The first term is independent of H,, so that the second is entirely respon-
sible for the magnetism of the system. The susceptibility determined
from it is

1(3N\}
x= -4 (20)

1t is easy to see from the form of Eq. (17) that the sumamation over »
would vanish in the approximation of Eq. (18) if it were carried out
before the integration rather than after it. This shows that the diamag-
netic term (20) is a three-dimensional effect and is related to a redistribu-
tion of electrons near the top of the filled band among different levels.
The reason for the redistribution is illustrated schematically in Fig. 4,
which represents a plane in wave-number space that is normal to the
z axis. The circle is the limit of the occupied region. In the absence
of a field, the allowable values of wave number are uniformly distributed,
whereas, in the presence of a field H,, the group of levels lying in the
cylindrical shell parallel to the z axis associated with a range

H,he
2xme
coalesce to form levels going with a single value of n. Some of the levels
near the boundary of the circle that were previously occupied now lie

Aé =
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outside the circle. Others that previously were unoccupied now lic
inside. Although the electrons move from the first set of ievels to the
second, the mean free energy remains larger than the value in the abscence
of a field by the second term in the brackets of Eq. (19).

Feierls! has pointed out that Eq. (18) is valid only when the condition

[F(m) — F(m — 1)] << F(m) (21)

is satisfied for all values of m, which
implies that H.8 < < k7.2 This con-
dition is not satisfied for sufficiently
low temperatures and high field
strengths. Thus, kT/H.8 is of the
order unity for T’ ~ 10°K and H, ~ -0
kilogauss. Under these conditions,
the susceptibility must be computed
by using different approximational
methods.

Suppose that we have a two-

THE MODERN THEORY OF SOLIDS [Cnar. XVI

Fic. 4.—Sohematic representation
of the behavipr of the electronic levels
in the three-dimensional case. The
diagram represents & cross section of
wave-number space normal to the s
axis, the field being in the z direction.
The outer circle is the limit of the filled
region. In the presence of a field the
group of levels contained in the
cylindrical tube parallel to the z axis
coalesce to form levels associated with a
single value of n. Some of the levels
of given k, are raised and an equal
number are lowered. This is unimpor-
tant for the electrons well inside the
filled region, since the mean energy is
unchanged. ' Qn the other hand, the
effect is important for the electrons near
the surface of the filled region and their
mean energy is raised.

dimensional system of free particles
at absolute zero of temperature and
that. the energy levels, in the presence
of a field, are determined by Eq. (11),
namely, '

¢ = H,8(2n + 1).

When the degeneracy eH.L.L,/ch be-
comes greater than N, the total num-
ber of particles, all particles occupy
the state for which n = 0 and the
total energy is

which corresponds to a constant magnetic moment and zero susceptibility.
As H, is lowered, E decreases until the degeneracy becomes less than N,
whereupon some of the electrons begin filling levels for which # is unity.
The energy then increases with decreasing field intensity, so that the
system becomes paramagnetic when

chN
H, = S,
| 2
! R. Pemrus, Z. Physik, 80, 763 (1933); 81, 186 (1933).
* Otherwise it is possible that a — }M?T.’_—B may be accidentally zero for

n = n' and very large for n = n’ 4+ 1.
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1t is easy to see .t.hat the general expression for the total energy is
E(n) = gBHL{1 +3 + - -+ +[2(n — 1) + 1]} + -
(N — ngHIH.82n + 1)} (23)
= NH.8(2» + 1) — gHifn(n + 1)

when
N N
—_— - - (
n+]<gH,<ﬂ (24)
where
= C7 7.
9= h Ly

The magnetic moment for fields in the range (24) is

M= -af'gn) = —Ng(2n + 1) + 2gH,ﬂ.n(n + 1),
which is equal to N8 when.gH. = N/n and is -\--j\’ﬂ when
- N
R = ry

Thus, the moment abruptly changes sign at frequent intervals aa the

t! \\
]

=l

F16. 5.—Behavior of the maguetic intensity as a function of field intensity at absolute
temperature in the two-dimensional case.

i

2-|J:
i
|

field is lowered, the discontinuities occurring at points for which gH,
is equal to N/n. This behavior is'shown in Fig. 5.

The three-dimensional spectrum is not discrete, so that discontinnous
changes in sign do not occur. Peicrls! has shown, however, that oseilla-
tions in sign still occur. By a direct extension of the preceding work,
he obtained the equation

M et & (BH. ¢
TV T rthic ﬁ”(‘ kT’ 'k".r) (25)

' R. PeierLs, Z. Physik, 81, 186 (1933).
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for the magnetic moment per unit volume. Values of ¢, determined by
direct .computation, are shown in Fig. 8. Variations similar to this
have been observed in bismuth and will be discussed in the next sectien.

139. The Orbital Diamagnetism of Quasi-bound Electrons*.—P=ierls!
has extended the theory of the diamagnetism of valence electrons to
include the case in which the electrons are nearly bound. It turns out
in this case that there are three contributions to the susceptibility,
namely, one that is identical with the susceptibility of atomic electrons,
given by Eq. (31), Sec. 137, another that is a generalization of Eq.
(20) of the previous section for perfectly free electrons, and s third
that, has no analogue in either the free or the bound models. Although

04 -
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008 | |
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004 |
| a0z :
o O GT[azl o5 | 4] 05 ‘ff‘

T

=002
-0.04
- Q06
- 008 -
=010 -
Fi16. 6.—The function ¢ in Eq. (25) for the absolute zero of temperature.

Peierls’s treatment of the problem, which is presented here, is valid
only for nearly-bound electrons, Wiison? has shown that the second
term also occurs for nearly freeclectrons and is a measure of the suscepti-
bility accompanying the type of free-electron motion found in metals.
As we shall see, this term may be used to explain the unusually large
diamagnetism of bismuth and the v phases.

- Consider a set of weakly interacting atoms that are centered at the
lattice positions r(n) given by the equation

1(n) = nuzy + neve + Nty 1)

in which the v are primitive translations for a simple cubio lattice having
lattice constant d. If the interaction forces are neglected, the Schréd-
1 [bid.
t A. H. Witson, The Theory of Metals (Cambridge University Press, 19386).
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inger equation for the electron on the nth atom is.

._%’-‘Aw.(r ~ x(m) + {V(r —1(n)) — %H.(z;% - y% +

o @+ e = e @

in which ¢, and ¥ are the atomic wave function and potential, respec-
tively. This equation is different for each atom because the.zero of the
vector potential has been chosen to be the origin of coordinates. We
may reduce the equations to a standard form by the transformation

o = e_w(s)'(!)(")&(r —-— r(ﬂ)} : (3)

where a = ¢/2he. The equation satisfied by ¢, namely,

— B st = 50 + {Vie — 1) = 21 e~ mad ] -

@~ mDZ) + oo ~ )t + v~ mad)y = o, )
is the same as the equation for ¢(r — r(n)). Hence,
¢n = e~ Zriarm X Hg,(r — r(n)). (6)

This result shows that the energy e(H,) of each of the unperturbed func-

tions is the saine, namely,
2

e(H) = e + 212 (6)

where ¢ is the energy in the absence of a field and x. is the atomic dia-
magnetic susceptibility: ’

.
Xe = g [ it + y)in Q)

mec

[¢f. Eq. (30), Sec. 137]. This is the first of the three contributions to
the total susceptibility that were mentioned in the opening paragraph.
Equation (5) may be placed in another convenient form by employing

3
the displacement operator ¢ 3% which has the property?!

eﬁ’%f(x)' = f(z — a). ®)

&
1 This property of the operator ¢ "9z may easily be demonstrated by expanding it
as & power series in terms of the exponent, and eomparing the result of the operation
of the operator on a function with Taylor’s series.
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Using this operator, we may write ¢, in the form

eo(r — 1(n)) = e-iimhm(r) (9)
where '

bl -

p = > grad.
Thus, Eq. (5) becomes

Pn = e_m(ni—pw’ (10)
in which

P=(%+ar><H). (11)

We shall now consider interatomic perturbation terms on the assump-
tion that the Hamiltonian operator for an electron near the nth atom is

H = _%;A + DV - ) = x(m)]) - g:—EH.(z% - ya-a;) +

2 2
e+, a9

This is the same as the Hamiltonian operator in Eq. (2) except for the
term

3 Vi - [x(n) — r(m))). (13)

If we assume that the perturbed eigenfunction ¢ may be expressed
in the form

¥ = Eam\“ms (14)
. m
the eigenvalue equations for the a,, are
€an = 2“""‘" (15)
1
where ¢ is the eigenvalue of the perturbed system and

Unt = Jom*H'odr = [po*e2ris) PHg~2ris) Py (16)

Peietls proved that the off-diagonal matrix elements (16) are matrix
components of the operator

E = (H) + 3 ADePOE a7

3
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where

AQ = for{3 V@ - r@)}eudr (18)

and
K=P - —(ro X H), (19)

in which r, is by definition the matrix satisfying the relation
Lo ¢n = 1(n)en

In the presence of a magnetic field, A(l) involves the field intensities
through the function ¢,®*. This fact may be made explicit by writing
#»* in the form (10) with the help of Eq. (11). In the absence of a
magnetic field, )

K=—-8md (20)

and the eigenvalues of K are the wave-number vectors k. Hence, in
this case the elgen{ralues of E are -

«®) = e + 3 Ao(hetre®d (@)
: . : i

where A; is the value of 4 when H = 0. This result was previously
derived in Sec. 65 by maere direct means.

Using Eq. (17) Peierls computed the total partition function for the
perturbed system by a method that will not be discussed here. The
result is

tog = [[{o{ ety + et o)

%s:a*;[% ok T (ak,ak) }""("m)} 22)

@' —e

_ g(9) =log (1 +€*7),
alk) = —%’,E (ez’“‘".?’fvo(r — @) - @ - ¢ X )P
1 .

{E'V(r - r(_n))}wdr),

and the iritegration, extends over all wave-number space. It should bo
observed that ¢, is independent of H,. If the first integrand in (22) is

where

(23)
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expanded to terms in H?, it leads to the result

JTo + Hitxa + ederco Jarco, (24)

in whieh the integral involving the first term is the partition function
in the absence of a field. Since x, is & constant, the remaining terms
may be placed in the form
2
B + [erioumo) (25)
Thus, if we include the second term in the integrand of (22), we see
that there are three contributions to the suasceptibility, namely,

= — T (26)
ka ’ )
xa = 2L f gt (cw))ar, @
ET ot [| 8% 9* "
o= gy | |G oh — (o) prowe. e

«a Shuuld be the same order of magnitude as the atomic susceptibility
of gases, namely,
6’
Ome
and should lead to & diamagnetic susceptibility of the erder of 16-7,
A simple estimate of x2 shows that it is related to x, in order of magnitude
by the equation

e
&f

~ m
X8~ —SX1

where m is the true electronic mass and m*® is the effective mass of the
electrons in the filled region. . Thus, x: would be negligible in the limiting
case of very narrow bands.! '

The factor g’’(¢) in the integrand of (28) is

1.9 1 ‘1 of
e = ) " Ha
+1

where f is the Fermi funetion. This derivative has a sharp peak at the
point ¢ = ¢, and satisfies the relation [see Eq. (29), Bec. 26]

fetolf = -

! Wilson (op. eil.) has shown that xs is zero for perfectly free electrons.
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Hence, xs may be placed in the form

0% 0% 0% 2V
= —gay f ( %9k ~ k9K, jgrade 4 (29)

where the integral extends over the surface of the filled region in wave-
number space. This expression reduces to Landau’s equation (15) of
the previous-section when the electrons are perfectly free, that is, when e
is equal to h%k?*/2m.

The quantity in parentheses in Eq. (29) becomes large whenever the
curvature of (k) is large at the edge of the filled region. Since this may
occur near the boundary of a zone according to the zone theory, xs should
be largest for metals such as the alkaline earths and bismuth that have
nearly filled zones. Jones! has postulated that the five valence electrons
per atom in bismuth extend just beyond a prominent zone that has room

N\ d

b k=

Fia. 7.—a, cross section of the prominent zone boundary of bismuth (see Fig. 6, Chap.
XIIT) normal to the preferred direction. The shaded regions are those in which it is
believed the filed region extends into the outer zone. b represents schematically the
behavior of the (k) curve for the line through the sone boundary shown in a. The dotted
line in b is the top of the filled region. The curvature of the (k) curve is believed to be very
large in the upper branch, so that the effective electron mass is small.

for five electrons per atom in sevéral directions. In addition, he postu-
lated that the behavior of the e(k) curve near the zoneis as in Fig. 7, so
that the curvature is very great for the higher zone. The high diamag-
netic susceptibility of this metal and of the alloys such as y brass that
have similarly filled zones may be understood in terms of this picture, for
the integrand of Eq. (29) is large and positive for a part of the range of
integration in all these substances. .

In order to develop a semiquantitative theory of the diamagnetism
of bismuth, Jones assumed that the energy contours are ellipsoids of
revolution which are centered about the center points of the vertical plane
faces of the zone in the six regions of Fig. 7 in whieh: the filled region
extends into the outer zones. Thus, if the z axis is parallel to the prin-

" H. Jonms, Proc. Roy. Soc., 144 226 (1934); 147, 306 (1934).
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cipai axis of the crystal, the energy contours in any one of the six regions
have the form

e(k) = %(a;k; + akd + askl) . (30)

where the origin is at the center point of the corresponding face. The
constants a; and ay are, respectively, the ratios of the electron mass to
the effective mass in the directions normal to the principal axis and along
the principal axis. It follows from the symmetry of the prominent zone
of bismuth that the ellipsoidal contours on opposite faces may be joined,
six sets of completely ellipsoidal contours being thus produced.

If (30) is substituted in Eq. (29), it is found that the volume suscepti-
bility in the z direction, expressed in cgs units, is

x = —0.122/2, EEIO'.‘ @31)

where ¢, is the value of (30) at the top of the filled region expressed in ev.
Thus, x is largest in the direction in which « is smallest.
Now, the number of states per atom n, within the ellipsoidal contour

associated with ¢ is
Sr(zmq, o1
a = =T y———i———g | 2
" 3 h“ -\/ma;aa (3 )

in which 9 is the atomic¢ volume. This result may be derived by com-
puting the volume of the ellipsoid and using the fact that there are 2V
states per unit volume of k space, if V is the volume of the crystal.
Jones evaluated n, by noting that the temperature coefficient of resistance
of the tin-bismuth alloy system changes from positive to negative as tin
is added to bismuth, the value sero occurring when about 0.13 atom per
cent of tin is present. Each bismuth atom that is replaced by a tin
atom presumably carries with it one of the electrons from the overlapping
region, for the valence of tin is one unit less than that of bismuth. Thus,
if it is assumed that the point at which the temperature coefficient of
resistance changes sign is the same as that at which the boundary of the
filled region extends just to the first zone. it follows that the number of
electrons per atom outside the inncr zone in pure hismuth is 0.0013, or
there is 0.0002 electron per atom in each of the six shaded regions of
ig. 7. Prom this, ¢, may be computed by the use of Eq. (32), and
in Eq. (31) may then be given a value.
Jones finds that the observed room-temperature .values of x,; and
x1, which are listed in Table VI, Chap. I. may be obtained from Eq. (34)
by assuming

ay ~ 40 and ag~1
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The assumption that the a in the plane normal to the principal axis
are equal is justified by the fact that the susceptibility is the same in all
directions normal to the principal axis.

The most extensive theoretical treatment of the low-temperature
suseeptibility of bismuth has been given by Blackman,! whose work is
based on an extension of Peierls’s theory. As we pointed out in the last
gection, it is observed experimentally that the susceptibility fluctuates

-x1® }

L L 1 '

0 2 4 ] 8 "]
H

. )

Fie. 8.—Comparison of the obeerved and ealculated values of the low-temperature
magnetic susceptibilities of bismuth in the plane normal to the principal axis. Curves a
correspond to values along the z direction of Fig. 7, and curves b correspond to the y direc-
tion. The measured values, which are for 1.86°K, are represented by circles on the dotted
curves.

.with the field intensity in the neighborhood of absolute zero of tempera-
ture. For example, Figs. 8a and 8b show the variations® of —x with
field intensities at 1.86°K. The measurements a are for fields parallel to
the z axis of Fig. 7, and the measurements b are for fields in the y direction.
Thus, the effect is not the same in all directions normal to the principal
axis, Fluctuations are not observed when the field is parallel to the
principal axis. It may be mentioned that the curves of Fig. 8 for 1.86°K
are closely similar to curves for 14.2°K in the region in which the abscissae

1 M. Braoxuan, Proc. Roy. Soc., 166, 1 (1088).
SW. J. o= Haas and P. M. van AvpreN, Leiden Comm., 212 (1931); D. 8roxn-
»erc and M. Z, UppiN, Proc. Roy. Soc., 168, 687 (1936).
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overlap. This suggests that the curves bf Fig. 8 may safely be compared
with theoretical curves computed for the absolute zero.

The fact that the susceptibility is not symmetrical about the principal
axis in the low-temperature range indicates that the energy contours for the
electrons which are responsible .for the fluctuations cannot heve the
symmetry of the function (30), for this function is invariant under
rotations about the z axis. Thus, Blackman was led to assume ihat the
(k) function for these electrons is -

k) = go(aik? + ek} + k) (33)

where ay, s, and a; are different constants. At first 'sight-, this appears
to contradict Jones’s results. Blackman points out, however, that ‘tht

'Xz_ (b
0 IW 3 05 o
—I- H—u—.*
-2..

F1c. 9.—The gusoeptibility at absolute zero of temperature computed by assuming that
there is only the type of electron corresponding to Eq. (33). The designations a and b
have the same significance as in Fig. 8. The theoretical curves of Fig. 8 were derived by
adding to the curves of this figure the susceptibility arising from the type of electron con-
sidered by Jones,

number of electrons responsible for the fluctuations probably is much
smaller than the number determining the high-temperature susceptibility
so that the two sets may occupy completely different parts of wave-
number space and make independent contributions to the susceptibility
In this connection, it should be emphasized that the zone shown in
Fig. 7 and in Fig. 6, Chap. XIII, is not the first Brillouin zone but the
fifth. Hence, it is very probable that there are regions in the outer zone
other than those indicated in Fig. 7 in which the effective mass is very
high. In support of this is the fact that the sign of x fluctuates in the
theoretical curves derived by Peierls (¢f. Fig. 6) and Blackman (¢f. Fig..9)
on the assumption of one type of electron, whereas the experimental
susceptibility is always negative.

The susceptibility computed by Blackman for the absolute zero of
temperature using (33) is shown in Fig. 9, which correspouds to the
particular ratio a;/as = 9.8. The abscissa is the variable H/Ho, where
H is the magnetic field intensjty and H, is

&

= %
Ho Bloag)t
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in which ¢ is the Fermi energy relative to the zero of (33). Blackman
added a constant to his theoretical susceptibility in order to include
Jones’s type of diamagnetism and adjusted the parameters ¢, a1, az, and
. agin order to fit the observed curves most reasonably. The results, which
cufreapond to the parameters

@ = 9.8, g = IO, ag = 1.1- 10',
¢ = 0.019ev,

are shown in Fig. 8. The number of free electrons per atom in the part
of the band responsible for the fluctuating susceptibility as computed
from ¢ is 1.2 - 10~5, which is about 1 per eent of the number Jones found
were responsible for the room-temperature susceptibility. As may be
sten from Eq. (31), the large value of o5 accounts for the absence of an
observable fluctuating susceptibility in the z direction.

140. The Spin Paramagnetism of Valence Electrons*.—The origin of
the paramagnetic behavior of many simple metals was first cxplained by
Pauli in the elementary way described in Sec. 29. The value of the
susceptibility obtzined from this theory is

o r

x = 2205) o
where 8 is the Bohr magneton, g.(¢;) is the density of energy levels of one
spin at the top of the filled band, and V is the volume of the metal.
Although this explanation, which involves the assumption that the two
systems of energy states associated with opposite spins become displaced
relative to one another in & field, is believed to be correct in principle, the
simple computation requires modification for the following reasons:

a. The density function g,(e¢) is not necessarily the same as for free
electrons. _

b. The total energy of the solid cannot be expressed only as a function of
one-electron energy terms, but also involves two-electron terms. Of
these, the exchange and correlation energies are dependent upon the
number of electrons having each kind of spin and affect the susceptibility
in a way that cannot be included in the expression (1).

¢. The orbital diamagnetism of inner closed shells and valence elec-
trons, which was discussed in the previous scctions, is comparable with
the spin paramagnetism. These diamagnetic terms are so important in
metals having newly filled d shells or nearly filled bands that they deter-
mine the sigr of the susceptibility.

Let us assume-that we have an electronic distribution, in which the
first (N + p)/2 levels of electrons whose magnetic moments are parallel
to the field are filled and in which the first (N — p)/2 levels of opposite
8pin are alsc. filled. We shall designate the®nergy of the nth level fror:
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- the bti’t't:om in the absence of a field by ¢(n). When there is a field, t.he
.tota] eriergy in the Bloch-Hartree approximation is

(N - p) (N+p)

Ep) = [, * em)dn+ [ * e(m)dn — pH.. (2)

If this is expanded in terms of p, it is necessary to retain only the first-
order teims, since we shall be interested in the case in which p/N is small.
The result is

B = 5O +Z(2), 5 ~ por, ®)

We shall elevate and add to (3) the electronic-interaction terms for the
case of free electrons. e
It may be recalled that the exchange interaction energy arises from
the interaction between electrons of parallel spin. When electrons of
both spins arc present in equal numbers, the exchange energy per electron

is (¢f. Sec. 75)
3ie?

€ = — Ot 4

where me is the total electron density. This may be expressed in terms
of the radius 7. of the equivalent sphere and is then

v 2
—0.458—?;;- (5)

If there are (N + p)/2 electrons of one spin and (N — p)/2 of opposite
spin, the total exchange energy is

[ @& —»)(N = p} (N+p)(N+p)*]o.4sse='
“[2(N+2 y) I ©®

which becomes
0.458¢ 2 p? 0.458¢?

n 9N n @,

E.(p) = —N

when expanded in terms of p.

We shall assume that the correlation energy arises only from electrons
of opposite spin, for reasons discussed in Sec. 76. The correlation energy
as a function of p then is

E@ = —e{ 5 p)[((N T p) )+ 5 2A(o X 5" ®)

= —e {Nf(f‘a) “!'f’ 4)5;‘ N ﬁfﬁ(ﬂ)rfﬁ}
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where
f= 0.288
?; + 5105

The term in f usually is at least ten times as large as the one in f”'.
Combining Eqgs. (3), (7), and (8), we obtain for the total energy

2
| Ep) = E(0) + o — ppH, ©)
where

The expression (9) is a minimum for the value of p satisfying the
equation

= NBH,
or
BH‘ 3
p=N % (11)
1f this is substituted in Eq. (9), we obtain
) 2)d2
E(H,) = E(0) — N&T&. (12)
o
Hence, the susceptibility is
I .
X = nog- (13)

This reduces to Eq. (1) when the exchange and correlation terms ave

neglected, since
N = éz) .
a.(¢') -(de ’_%

'The terms in a are given in Table LXXXI for sodium and hthium.
Although the first term is largest the others! are not negligible. Values of
the total susceptibility given by Eq. (13) appear in the same table. Tn
addition, values of the free-electron dianmagnetism and the inner-shen
diamagnetism are listed. The former werc obtained by the use of
Eq. (29), page 595, and the relation ¢ = h%k*/2m?*, the camputed values
of 71 being employed. The contribution to free-electron diamagnetism
i~om exchange was not included since the corresponding term -from
correlations cannot be computed. The comparatively small ion-core
terms were obtained from Van Vleck’s hook. '

1 Further details of this computation are to be published in the Phys. Rev.
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The observed and calculated values of the susceptibility agree
closely in the case of sodium, but the computed value for lithium is
somewhat higher than the highest observed one. The agreement in the
first case supports the general conclusion that the electronsg in sodium
are very nearly perfectly free, whereas the disagreement in the second
case indicates that the relation ¢ = h%k?/2m™* is not exact. The most
reasonable source of the discrepancy would seem to be a comparatively
small term in k4, which causes a lowering of the density of levels at the
edge of the filled region and a corresponding decrease in paramagnetism.

TasLe LXXXI.—CONTRIBUTIONS TO « FROM THE TurMs 1N Eq. (10) ror Livarom
AND Sop1uM AND THE VALUE OF THE SUSCEPTIBILITIES GIVEN BY EqQ. (13)
(The terms in the first row are expressed in electron volts; thosg in the seeond row, in
terme of 10 times the cgs unit of volume susceptibility.)

N(de/dp)/4 = «4/3| Exchange | Correlation Total
Ti -1.02 -0.8 | 7 o0.19 ©0.35
Na 1.12 ~0.70 0.10 - 0.61
nofit . . .
B Ion core | Diamagnetic Total Observed
Li 3.54 —0.05 —0.17 3.32 1.4-2.0
Na 1.11 —0.18" —-0.23 0.70 0.63

It is interesting to note that the exchange energy is made more
negative by increasing p [¢f. Eq. (6)]. This shows that the exchange
interaction of free electrons favors the ahgnment of spins. This tend-
ency toward ferromagnetism ordinarily 'is more than compensated by
the fact that both the Fermi energy and the correlation energy are
raised when p increases. The change from paranagnetism to ferro-
magnetism can occur only when a becomes negative, for then Eq. (11)
leads to a maximum rather than a minilnum. Bloch! pointed out that
the exchange term becomes larger than the Fermi term for sufficiently
large values of r,, since the first decreases as 1/r, and the other as 1/r1.
If we neglect the correlation terms, it follows from Eq. (10) that this
occurs when

m
Ty > _6.03? ag.

The limiting value of 7, for perfectly free electrons is about 6.0ax, which
is larger than the value for any alkuli metal. This fact and the fact

UF, Brocs, Z. Physik, 67, 545 (1929).
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that the corrclation term does not favor spin alignment make it safe to
sayt that the observed ferromagnetism of transition metals should nut
be associated with nearly free electrons.

141 Paramagnetic Salts.—Thc thcory of the properties of the pars-
mag,nctlc rare earth and iron group clement salts has been highly devel-
oped in those cases in which the paramagnetfic ions are so widely
separated that the bands associated with their clectrons are narrow and
the atomic approximation is valid. We shall net discuss the details of -
this rather specialized topic here but refer the reader to other sources.?

142. Macroscopic and Local Field Corrections.—Suppose that the
currents in an electromagnet are adjusted in such a way that the field
at a given point in free space is H’. If the space is then occupied by a
maknetic specimen, the orienting field that acts upon an atemic magnetic
dipole is no longer H’ because of the fields arising from the rest of the
material. One part of the difference H — H’, namely, the demagnetiza-
tion field, may be handled by classical methods. This contribution
corresponds to the field of the effective surface distribution of magnetic
charge that is induced on the specimen and is determined by the geomet-
rical shape of the specimen. It usually varies from point to point, even
when H’ is constant; however, it is constant when the specimen has one
of several possible shapes. In these cases, the correction takes the form

AH; = DM (1)

where M is the intensity of magnetization and D is the demagnetization
constant. D is —4nx for a thin pillbox whose axis is parallel to the field
and is ~4x/3 for a sphere. Values for other cases have been listed by
Staner.* The correction (1) is negligible in substances having a small
susceptibility since the fractional error made in neglecting it is of the
order of x.

Under certain conditions, it is convenient to discuss another type of
correction field. Suppose, for example, that we are dealing with a
dense paramagnetic gas of molecules having a molecular susceptibility
X« The magnetic moment per unit volume in this case is not simply

1(y. E. WiaNER, Phys. Rev., 48, 1002 (1934); Trans. Faraday Soc., 34, 678 (1038).

% See the following books and articles: Van Vieck, op. cit.; W. G. Penney and R.
Schlapp, Phys. Rev., 41, 194 (1032), 42, 666 (1832); W. G. Penney, Phys. Rev., 43,
485 (1936); A. Frank, Phys. Rev., 89, 119 (1932), 48, 765 (1935); J. H. Van Vieck,
Phys. Rev., 41, 208 (1932); O. M. Jords.hl Phys. Rev., 48, 87 (1934); F. H. Spedding,
Jour. Chm Phya, , 316 (1937); A. Slegort Pflyswa, 3, 85 (1936), 4, 138 (1937).
A survey of the toan has vecently Jbeen given by J. H. Van Vleck, Reporis of The
Strassbourg Conference (1939); to be published in Ann. Inst. Henri Poinoaré.

1E. C. Broves, Mognetism and Atomu: Structure. (E. P. Dutton & Co., Inc., New
York, 1984).
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JxeHs @

where H is the demagnetically corrected field, but is different because
of the interaction between the molccular magnets. If H; is the average
local magnetic field acting on a given molecule, the mean magnetic
moment per molecule is x.H; and the intensity of magnetization is

M= _ nox::Hl ’ (3)

where ng = N/V. In order to use this, we must know the relationship
between H and H,. Lorentz’ was the first person to derive a relation-
ship of this kind. He obtained the equation

m=H+%M @)

on the basis of the following assumptions:

a. The arrangement of molecules is either isotropic or cubie.

b. The relative orientation of magnetic moments is statistically
the same for both near and distant molecules.

Assumption bis analogous to the assumption madein the Bragg-Williams
theory of order-disorder (Sec. 124). If Eq. (4) is placed in Eq. (3), we find

NoXa
M= it ®)

Thus, the susceptibility per unit volume is
Xa_ .
X = T /B ©

It should be noted that, from the standpoint of electronic approxima-
tions, this and the following discussions of the local field implicitly assume
that the magnetic units may be described in an atomic or molecular
approximetion. Thus, these discussions have significance only when
the bands are narrow. _

Lorentz’s treatment is not completely satisfactory for the same reason
that the Bragg-Williams theory of order is not satisfactory, namely, it
does not take into account the fact that near neighbiors are aligned more
often than distant neighbors. We shall discuss two attempts that have
been made to improve the theary, .

Onsager? modified Lorentz’s method of computing x in the following
way. For mathematical purposes, Lorents had circumscribed an imagi-
nary sphere about a given molecule and derived tne term 4oM/3 in

1 H. A, LoreNTz, The Theory of Elacirons (Teubner, Leipzig, 1006).
3 L. OnsacER, Jour. Am. Ckem. Sec., 68, 1486 (1938). '
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Eq. (4) by considering the contributions to the field from the molecules
inside and outside this sphere. In doing this, he assumed that the
polarization is uniform. Ovsager assumed that the sphere has physical
reality as the volume within whizh the molecule is contained. In
addltion, he made the following two assumptions:

a. The polarization field in the magnetic medium outside the spherc
is not uniform but is the same as the field about a holiow spherical cavity
that contains a point dipole of magnitude m. One part of the polariza-
tion field My is induced by the constant applied field H and is fixed;
the rest arises from the dipole and varies when the dipole changes its
direction.

b. The field H; inside t.he cavity, exclusive of the dipole field of
the molecule, is the orienting ficld that acts upon a melecule. H, is the
sum of the external field H (with depolarization correction) and the field
arising from the polarization outside the sphere. The second part of H,is
analogous to the 4#M/3 term in the Lorentz equation (4).

In the case in which m is constant H; may be determined as a simple
solution of Laplace’s equation and is

2(u — l)

Hi=H+ '2“‘”-“13 1H * G F D™ @
where p is the permeabﬂity and a is the radius of the spherical cavity.
The gécond term, which arises from the polarization of the external
medium induced by the field H, may be transformed to the form

4xyx :
8xx + 3 ®)
wheré x is the macroscopic susceptibility (1 — u)/4«. This should be
compared with the corresponding Lorents term

drx,
- 3
The third term in (7) is the rcaction field of the dipole and.is always
parallel to m. Tt does not exert an orieating foree so that it is unimpor-
tant when m is constant and may be dropped. Thus,

. 47!',(
H; = (1 + Brx + 3 H. (10)

It should be noted that this approaches a limiting value 3H/2 when the
magnetic suscepiibility becomes large, for the field then attempts to avoid
the cavity. The same effect does not occur in Lorents’s approximation.

If this result is inserted into Eq. (3), the following implicit equation
for x is ehtained:

)
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(1 + 81' + 3)"'0Xa (11)

This equation has the solution
3 4

X =73 &'[ 1 + 4xnex. + (l -+ 3 MoXa + 161-2uoxa) ] (12)
Equations (6) and (12) are identical with terms in (n¢x.)? so that they do
rot give appreciably different results when ngx, is much smaller than
unity; however, they behave very differently in the region where nox, is
near unity. Lorentz’s expression (6) approaches infinity as nedax./3
approaches unity, Whereas Onsager’s expression remains finite, being
equal to 3(1 4 +/3)/8x. This difference is very important when the.
atornic susceptibility satisfies the Curie law

XG':T_‘

for then x, becomes large at low tewperatures. If Eq. (5) were correct,
M would be finite even in the absence of a field when n¢arx./3 becomes
unity. Since this effect implies ferromagnetism, Lorentz’s theory
implies that all substances obeying the Curie law shouid become ferro-
magnetic at sufficiently low temperatures. Onsager’s equation, on
the other hand, docs not imply ferromaguetism since

XNiNXa

for large values of x.. Simple calculations based on Lorentz’s result
show that the ferromagnetic Curie point should lie in the neighborhood of
0.1°K for most of the paramagnetic salts. Although several of these
salts show ferromagnetic cflects near thie temnperature, Van Vieck?
believes that this ferromagnetism should be ascribed to the exchange
coupling discussed in the next section. Hence, experimental evidence
" seems to support a modification of Lorentz’s theory such as Onsager’s.

Van Vleck has derived another.relation that is valid at high tempera-
tures and has a more rigorous foundation than either Lorentz’s or Onsag-
or’s results. He included magnetic dipole-dipole interaction terms in the
Hamiltonian function for a paramagnetic erystal of the type mentioned in
the preceding section and computed the effect of these upon the partition
function, using series expansion methods. If it is assumed that the
atomic gusceptibility x, satisfies the equation

xaﬂé_fr 13)

1], H. Vax VL!:CK, Jour. Chem. Phys., B, 320 (1937).
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where _
g*8%J (J .+__1_),
ok

Van Vleck’s equation for x may be writ.tén in the form

. “4xr 1 .. :
x = 37'[1 +tarTrt T’ = T’ + ] 14)
wherq

-$ (1 + 8J(J1+ 1)) (18)

Here, @ is an integer of the order of magnitude 10 that depends upon the
crystal structure. If Onsager’s expression for x is expanded and a value
of ¢ appropriate to his model is placed in Eq. (14), the two expressions
are identical with the terms shown in (14). Lorentz’s expression, on the
other hand, does not give the same value for the terms that vary as
1/T*. Thus, Onsager’s result is more accurate when 7'/ is larger than
unity.

Since Eq. (14) cannot be used at low temperatures, it is not possible to
check the validity of Onsager’s relation in this region by direct computa~
tion of the partition function.

Van Vleck has extended Eq. (14) for the case in which the levels of the
paramagnetic ions are split by erystalline fields. This work will not be
discussed further here.

One of the most direct supports of the Onsager-Van Vleck theory of
local fields arises from its application to polar liquids and moleéylar
solids.! These substances contain molecules having permanent dipole
moments, so that the preceding theory can be taken over with little
modification for a discussion of their electrical properties. Since the
relative magnitudes of electrical polarizabilities are of the order of one
thousand times larger than those of magnetic polarizabilities at corre-
sponding temperatures, the temperature at which the form of the local
field is important is much higher in the electrical case. If Lorentz’s
equation were valid, these substances should show the electrical analogue
of ferromagnetism in cases in which intermolecular aligning forces other
than the dipole-dipole force are relatively small. Actually, this effect
is not observed when it would be expected. For example, it can be
estimated that the electrical Curie point should occur at about 260°K
in the case of HCIl, whereas no anomalies are observed until 100°K, at
which point molecular reorientation stops (¢f. Bec. 125). '

143. Ferrothagnetism.—The theory of ferromagnetism has developed
in stages-starting from two different points, namely, from the atomic

! Ibid., p. 556.
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approximation and from the band approximation. The treatment that
starts from the -atomic. approximation has value primarily for under-
standing the spin aligning forces in ferromagnetic media, whereas the
band treatment, which was discussed in Sec. 101, has qualitative value
for discussing the relation between the conduction electrons and the
d-shell electrons. The first three parts of this section will be devoted
to the atomic approximation and the fourth to the connection between
this and the band approximation.

There is a close analogy between the atomic theory of ferromagnetism
and the theory of order and disorder in alloys that was prasented in
Chap. XIV. 1Infact, the theory of ferromagnetism, which was developed
first, was used as a pattern for the other. It will be seen that the magne-
tized state, like the ordered state of alloys, has alower entropy than other
possible states, so that it can occur only when it is favored by a low
energy.

a. The Weiss Theory.—It was seen in the previous section that a
relationship between the external magnetic field H and the local fieid H;,
of the type derived by Lorentz, namely,

M=H+%% (1)

where M is the intensity of magnetization, can imply ferromagnetism if
the atomic susceptibility x. becomes very large in a temperature range.
Under this condition, the susceptibility x, which is reiated to x. by
the equation

X = ne— X% (2}

- m#x::f’a :

where n, is the density of particles, becomes infinitc when 4rngx./3 is
unity so that the magnetic moment per unit volume may be finite, even

in the absence of a field. x. satisfies this condition at sufficiently low
temperatures if it obeys Curie’s law

Xa =

SES

3)

Hence, Egs. (1) and (3) are sufficient for ferromagnetism. Even if the
Lorentz equation were accurate, however, which it is not for the reasons
discussed in the iast section, it could not explain the ferromagnetism of
iron, cobalt, and nickel, for the reasonable values of 4 are too small.
Thus, if we use the relation

g J(J + 1
A= QE__gTi'__) (4)
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discussed in counection with the theory of paramagnetism and give J/
and g ordinary atomic values, we' should expect ferromagnetism only
below 1°K. .

Weiss! arbitrarily dismissed these difficulties and assumed that in
ferromagnetic material

H;=H+aM (5)

where « is a large constant of the order of magnitude 10*. In addition, he
assumed that the scalar value of atomic moment m is related to H; by
Eq. (25), Sec. 137, namely,

m(H) = 807 8. 180), ®)
which is the generalization of Eq. (8) for strong fields. Equations (5)
and (8) lead to the following implicit equation for M:

)
In his oniginal work, Weiss actually used the classical analogue of the

M
Mee

0

]

Fra. 10.—Schematic representation of a method of visualizing the roots of Egs. (8a)
and (80). -The lines correspand to (8b) for several temperatures,. where T: > T1 > T..
The single curve represents (8¢). It is assumed that H is sero, although the additive con-
stant in (8b) usually om:not be showwn on this scale anyway.

function B;, which may be derived by allowing 8g to appkoa.ch gero and J
to approach infinity in such a way that SgJ remains finite.
Equation (7) is equivalent to the two simultaneous equations

51 = Bs(a), (8a)

" =B ( )Tﬂ" ()
1 P Wxiss, Jour. phys., 8, 667 (1907). CYf. StonER, op. cil.
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where M, is the saturation value of M. The roots of these equations,
which may be pictured by the graphical method shown in Fig. 10, are
shown in Fig. 11. The decrease of M/M,_ with inereasing temperature
folows a continuous curve, so that the melting of ferromagnetism is a
transition of the second kind in Weiss’s theory. The Curie temperature,
at which M vanishes, is

5 o

Smce M is of the order of magnitude of 1,000 gauss for the common

- ferromagnetic metals, the value of

O given by (9) is of the order of

0.1a. Thus, « must be of the

order of magnitude. 104, if Weiss’s
theory is to be adequate.

In Fig. 11, the observed values
of M/M,_ for iron, cobalt, and
nickel as functious of 7/6, are com-

+ pared with tii= computed functions
for several values of J. It may
be observed that the value § fits
the experimental work best, a fact

0 02 0.? % 10 su.g?,-est-ing It-hat ’t-h‘e magnetifm

arises almost entirzly from spin.
Fra. ll—-—Companson of the obscrved This is also supporied by the
sopuaton, megnetiaion urves 81 TSR fact that the gyromagnetic Fatio

for several values of J. The theorctical is almost 2 {¢f. Sec. 101),
curve for J = } fits the measured ones beat. The H‘*::i‘.p'tibi‘uity above the

Curie temperature may be found from the equati~n aralor-us to Eq. (2)
of Lorentz's theory, namely,

= Mg '
- X nol ‘_ me(lxa (10}

If the value of nyx. that may be derived from Eq. (#), namely,
10 \
NoXe = ‘—x T} (11;
is substituted in Eq. (10), it is found that
X, = (i2)

which is known as the Curie-Weiss law. The suseceptibilities in the
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paramagnetic range have been investigated by Weiss! and coworkers.
Figure 28, Chap. I, shows 1/x as a funetion of temperature for iron and
nickel. If Eq. (12) were precisely valid, these curves should be straight.
lines; however, they are only approximately linear. In addition; the
uuw, for iron shows a discontinuity because of the intrusion of the
y phase.  Weiss and Foex have pointed out? that the eurves for cpbalt
and nickel may be closely approximated by a series of straight lisies in
separate temperature regions. For tHis reason, it is suggested that the
ferromagnetic metals have several magnetic allotropic phases above the
Curic temperature and that a separatc Curie-Weiss law is valid over
the temperature range in which cach phase is stable. . A’'more reasonable
interpretation is that the Curie-Weiss law is only a rough approximation
to 4 more accurate equation. This is substantiated by more recent
theoretical work which is discussed below.

It is possible to treat magnetlocaluric effecis on the basis of the Weiss
theory.? Whriss postulated that the energy of magnetization B, is
related to the intensity of magnetizaiion M by the cquation

E. = —J;MH; - dM (13)

where H; is the local field. It ig implicitly assumed in this equation that
the hypothetical local field H; is an act 1al magnetic ﬁeld If we substi-
tute the relation (5) in (13), we find

En = —}{aM? (14)
in the absence of an external field. Thus. the specific heat of magnetiza-
tion is

_ ladM? : '
= T3, AT (18)

where p is the density. $i~ze M varies mosi rapidly just below the Curie
temperature and is zero above, the speciic beat would rise to a peak at
the Curie temperature and would then drop discontinuously to zero
if Eq. (15) were valid. Although the areas under the experimental
specific-hedt curves are of the same order of magnitude as that of the
theoretical curve, the forms of the itwo usually differ, inasmuch as a
magnetic specific heat is ohserved above the Curie temperature. This
fact is shown in Figs. 17 and 29 (Chap. I). The effect is largest in iron
but is not negligible in the case of cobalt or nickel. It may be recalled
that a similar discrepancy occurs between the specific heat predicted on

1 7. wess, Jour. phys., 5, 129 (1924).
* ’bid.; G. Forx, Ann. phys., 18, 304 (1921).
3 7f. STONER, op. cil.
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the basis of the Bragg-Williams theory of order and disorder, and the
observed specific heats. This discrepancy was removed in a qualitative
way by taking into account short-distance order. We may conclude that
a part of the error in the Weiss theory is related to the fact that it does not
take into account the correlation of the magnetic moments of near-by
atoms. -

b. Heisenberg's Theory.—Heisenberg! first showed that the Weiss
local field may be given a direct and simple explanation in the language
of quantum theory. The principles involved in his work, which is based
upon a Heitler-London approximation, may be demonstrated by the
following simple problem.

Suppose that we have two atoms A and B that have one electron
each®? and are separated by a distance rm. We shall desiguate -ihe
atomic wave functions by ¥. and y; and the energies of the free atoms by
e. In addition, we shall assume that these states have no orbital angular
momentum, so that all of the magnetic moment arises from spin. The
possible antisymmetric wave functions of the complete system then are
(¢f. Secs. 48 and 56)

¥ = Wa(1)¥e(2) + ¢a(2)¢p(D]n(Dn2(—1) — m(—1n=(1)],
[ (1)n2(1)] (16)
¥ = [Ya(1)¥a(2) — ¥a(@Wa(DIS [n(1)n2( 1) + m(—1)n2(D)],
[m(—=1)na(—=1)]

in an obvious notation. The first of these is the wave funection of the
singlet level, which has no spin moment, and the other three are the trip-
let functions, for which the spin quantum number 8§ is unity. The second
set of states evidently is the analogue of the set of ferromagnetic states
of solids. We may assume that the interaction potential for the two
atoms is

Vo = Tab + Tig 71 Te; a7
where 712 is the distance between the electrons, and 73 and ry, are the
distances between a given nucleus and the clectron on the other atom.
The energies of the two types of state (16) are, respectively,

EI = Ev + JGJ
EII = Ec - Jrn} (18)
where
E. = 2¢ + [Wa(1){?V ,¥(2)[drz (19)

1'W HeisENBDRG, Z. Physik, 49, 619 (1928).
? A treatment of this problem for the case in which each atom has more than one
electron has been given by J. H. Vau Vleek, Jour. Chem. Phys., 6, 105 (1938).
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is the sum of the atomic energy and the-coulomb interaction energy and
= [Va*(D*(2) Vaba(2¥s(1)drss (20)

is the exchange integral. It should be noted that ¥V, in the integrals in
Eqs (19) and,(20) could be replaced by é?/r, if the functions y. and ¥»
were orthogonal. From Eq. (18), we sce that the magnetic sta.tes ¥z are
energetically stable relative to ¥ only if J is positive.

Equations (18) may be placed in a form that is significant for the
theory of ferromagnetism. The square of the total spin operator

X2 = (6, + 62)? (21)

is a constant of motion in each of the states ¥; and ¥y, the eigenvalues
haying the form A%S(S 4 1), where Sis 0 and 1, reSpectn ely. If (21)is
expanded, it becomes

6t + 9 + 261 - ds. _ (22)

Smce the individual spin angular momenta ¢? and ¢ are also constants of
motion that have the eigenvalue 3%%/4, it follows that 8, « é; is also a
constant of motion and has the eigenvalue -—3h2?/4 when 8 is zero and
h*/4 when S is unity. Employing the operator (21), we may place
Eqgs. (18) in the operator form

22
E=E,;+J,(1—F (23)
or, using (22), in the form
E=E ~7- J,2"‘ (24)

If we now use the fact that the electronic magnetic moment g is —284/4,
the spin-dependent part of (24) may be written as

!I
2 6391 v2. (25)

Thus, apart from the dependence of J, on interatomic spacing, the energy
is determined by the relative orientations of the electron spins. It
should be emphasized that this interaction energy is fundamentally
electrostatic. Spin enters primarily as a consequence of the Pauli
principle:

Bethe! has made a simple qualitative analysis of the conditions under
which J is most likely to have a given sign. Let us suppose that the
functions . and ¥, have no nodes in the region where they overlap appre-
ciably, so that the*product va(1)y»(l) may be assumed to be positive

' H. Berae, Handbuch der Physik, XXIV/2.
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everywhere. This condition is always satisfied if . and y» are & functions
that have nodes close to the mucleus but may also be satisfied in other
cases if the nodal surfaces do not lie near the mid-point of the line con-
necting the centers of the two atoms. Under this condition, the essen-
tially positive terms

e? e?

L4+ 2 (26)

T1i2 Tad
favor ferromagnetism, whereas the negative terms

2 2 '
£-2 a»

do not. The variable term e?/rs in (26) is larger when the product
Yoy is very large in a small volume of space than when the product is
small in a large volume. Moreover, the terms (27) are smallest when
the overlapping region is as far from the nuclei as possible. Hence, J is
most likely to. be positive if (a) the
distance ra is fairly large compared with
the orbital radii and (b) the wave func-

} /\ tions are comparatively small near the
Je — nuclei. Inboth these cases, the product
VYa¥» is small at the nuclei and large

/ near the mid-point between the atoms.
Condition (b) is most fully satisfied

o when the orbital angular quantum num-
Fig. 12 —Behavior of Jo as & function her ] is high since the wave functions
: start as r’. Hence, we should expect J
to be positive for the interaction between unclosed shells of ¢ or f electrons’
when the interatomie distance is large compared with the atomic radius.
. These conditions actually are satisfied by pairs of atoms:in the metals of
the iron group and rare earth type, in which the interatomic distances are
determined primarily by the s-p valence electrons. “We shall see below
that this qualitative argument can be applied to these metals, since the '
interaction between the d shells may be expressed as a sum of interactions
between pairs of atoms.

It follows from the pnnciples of the preceding discussion that the sign
of J, should depend upon the ratio z of the orbital radius and the inter-
atomic distance in the manner shown in Fig. 12. If z is close to unity,
J,. should be negative; if it is large, J, may be positive. I:is only fair to
mention that Bethe’s argument does not tell the eatire story, for the
diatomic molecules Oz and NO, which have permanent magnetm moments.
do not satisfy his conditions very well.
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It may be shown! that in the Heit.l& London approximation the total
energy of any number of electrons can be placed in the form

E = C ~ g5 > Ji2-0 (28)

which generalizes (24). Here C is a constant, J;; is the exchange integral
for the ith and jth electronic wave functions, and ¢; and ¢; are the spin
operators of the ith and jth electrons. We shall be interested in the
case in which each atom has one electron and in which J, is appreciablc
only for nearest neighbors. Equation (12) then becomes

E=C—3 > 24 (29)

nearest’
pairs

where J. is the exchange integral for neighboring atoms. The more
general case in which there are several electrons per atom has also been
considered, but we shall not treat it here since it does not lead to qualita-
tively differcnt results.

Let us now discuss the number of states associated with different
values of the z component of total magnetic moment. If there are N
electrons, the largest value of the magnetic moment is 8N, which occurs
when all the spins are parallel and which can Happen in only one way.
The value MB, which occurs when there are (N + M)/2 moments
parallel to the z axis and (N'— M)/2 moments antiparallel to it, caa

happen in
Nt
N+ M Y N — M)!
2 2 '

different ways. Thus, the state of maximum magnetic moment, which
is energetically most stable when J, is positive, has very low degeneracy,
whercds the states of lower moment have larger values. Hence, we
should expect the state of highest magnetization to occur only at low
temperatures. The actual state at temperature T' can be computed
from the partition function; however, this computation is not easy to
carry through directly because the n(M) states (30) have different ener-
gies. Heisenberg assumed that the distribution of levels of given M
may be approximated by the function

(30)

n(M) =

(E-Ewr
Bt
Su(E) = é‘;(;‘fT)xe 31)

1Cf. J H.'Va~x Vieck, The Theory of Electric and Magnelic Susceptibilities (Oxford
Univerersy Press, New Yerk, 1932).
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where E is the mean value of the energy levels of given M and A% is
the mean square deviation from this mean. These quantities were
computed by an approximate mcthod that is discussed in Van Vleck’s
book. With this assumption, Heisenberg computed the partition fune-
tion in a straightforward way,! after adding an energy term

2&2-»- H

in order to include the effect of an external magnetic field. The mag-
netic,equations obtained from this partition function are

M
™, = tanh », (32a)
in which
H . 1 1\ M M\
n = %fr + AU %)'ﬁ: +%§(ﬁ;) (32b)
where 2z is the number of nearest neighboring atoms and
_aJ.
kT

Equations (32a) and (32b) are nearly the same as Weiss's equations (8a)
and (8b) since B;(n) is equal to tanh u. The only difference lies in the
term in 5 containing (M/M_)3. If this is dropped and the correspondence

a2~ v~ 1) (33)

is made, the two systams of equations are {dentical. The field parameter

« defined by (33) is a constant coly at high temperatures, in which crse

~ 2

¢ = 98y

The Curie temperature is not related to this value of « by Eq. (9) but is
given instead by the equation

24)

' 2J
0= 35
k(1 — +/1 — 8/z2) (85)
which is real only if ¢ is at least 8 and is positive only if J is positive.
Thus, Heisenberg’s treatmeont leads (o conventional ferromagnetic
behavior only for the more close-packed lattices. This means not that

1 Znother method of evaluating the partition function has been used by J. H. Van
Vieck, Phys. Rev., 49, 232 (1936) This does not lead to quslitatively different
results,
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the erystal is not ferromagnetic at sufficiently low temperatures when z is
tess than 8 but only that the phase change is not of the second kind.!

Treatments of ferromagnetism using Heisenberg’s model but employ-
ing distribution functions other than the Gaussian function (31) have
heén presented by several investigators.? By properly choosing this
function; the difficulties associated with the imaginary behavior of (35)

«may be svmded

The susceptibility above the Curie temperatuze does not conform to
the Curie-Weiss law e}.cept when T is much greater than 6. We shall
‘not dlscuss the result since Heisenberg’s model unquestionably is too
simple t6 be applied quantitatively to actual ferromagnetic materials.
It is important to know, however, that observed deviations from the law
ark not at variance with theory.

¢. The Spin-Wave Treatment.—Heisenberg’s treatment of ferro-
magnetism has the following weaknesses.

1. It is based upon a simple Heitler-L.ondon description in which the
periodicity of the lattice is not taken into account.

2. An arbitrary approximation [¢f. Eq. (31)] ie used to obtain the
distribution of levels. Since the thermal properties are strongly depend-
ent upon this distribution, a_more accurate descnptnon should be used
for quantitative work.

Of the methods that have been employed to improve upon Heisen-
berg’s work, we shall discuss that developed.by Bloch?® and extended
more recently. by Slater,! since it is the most fruitful. Although this
treatment casts a new light upon the problem of ferromagnetism, its
results are not radically different from those of Heisenberg’s theory.
For this reason, the older work can still be used for qualitative purposes.

It may be recalled that the Heitler-London approximation may be
used to discuss the normal and lower excited states of insulators. When
thig is done, the lowest level is nondegenerate and the excited levels are
very highly degenerate. Thus, if there are N atoms and the first excited
one-electron state is g-fold degenerate, the first excited level is Ng-fold
degenerate. A more accurate set of wave functions can be obtained by
computing the mairix elements of the Hamiltonian cormecting these
Ng states and by diagonalizing the result. This problem, which was
solved in Sec. 96 for a simple ease in which the interatomic energy is

1 This peculiar behavior of the Heisenberg model arises from the fact that the use
of the Gaussian distvibution is equivalent to assuming levels of arbitrarily low energy.
Thus the E(S) curve (Sec. 117) approaches the energy axis asymptotically with infinite
slope, rather than with zero elope as it should.

$ Bee, for example, F. Bitter, Phys. Rev., BT, 569 (1940).

3F, BrocH, Z. Physik, 61, 208 (1931).

+J, C. SBuaTER, Phys. Rev., 63, 108 (1937).
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small, leads to the following results. The first excited wave functions
Vi are given by the equation

‘I’k = dkzezﬂt.‘(”)q’“ (36)

where ¥, is the determinantal eigenfunction that is formed from the
lowest wave function ¥, by replacing the normal wave function ¥, for
the nth atom'by the excited wave function ¥}, and n is summed over all
atoms. The ¥y, which evidently have wave characteristics, are called
excitation waves. The energy associated with ¥k is

R e

where g ranges over the vectors joining an atom with its nearest neigh-
bors, E, is the energy of the ¥,, and I is composed of integrals involving
paire of neighboring atoms.

Bloch constructed a set .of magnetic wave functions that bear the
same relation to Heisenberg’'s atomic functions that the excitation waves
do to the ¥, in (36). Let us consider a system of N atoms, each of which
2as one valence electron. We shall assume that the one-electron wave
functions ¥(r — T(n)) = ¥a are like atomic functions. For the basic
nondegenerate wave function of the complete system, Bloch chose the
state ®, in which all electron spins are parallel. The energy E; of this
state is

E¢ = N(eo + C — }J.2) (38)
where ¢ is the energy of a free atom, NC is the coulomb interaction
energy of the system, J, is the Heisenberg exchange integral (2) involving
the ¥, for pairs of neighboring atoms, and z is the number of nearcst
neighbors. The states ®, analogous to the ¥, in Eq. (1) are deter-
minants of functions that differ from &, in that the spin of the electron
on the nth atom has been reversed. These N functions have the same
energy and have a z component of magnetic moment equal to (N — 2)8.
The spin waves &, analogous to the excitation waves ¥y, are

&y = akzeﬁﬂ'k-t(a)@” (39)

and have the energy
By = Eo + N’E (1- t’-‘z'*") ’ (40)
r]

where g is summed over nearest neighbors as in Eq. (37). This function
is shown schematically in Fig. 13.
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1t can be shown that, as long as the number of spin waves is small
compared with N, the energy of the crystal in a state in which there are

S spin waves of wave number k;, k;, . . . , Kk, i
7
Eky, - ,k)=E + Zh(k-) (41)
r=1
where : !
- &(k,) = Ex* — E,. (42)

Thus, the spin waves behave like elementary particles that are so nearly
independent of one another that their energies are additive. It is
evident that the 2 component of magnetic moment in the state having
[ <pin waves is (N — 2f).
Under the restrictions for which Eq. f

(41) is valid, the necessary condition for e(k)
ferromagnetism- is that ¥ (k) — E, be posi- \ /
tive, that is, that J; be positive, for then &,
is the lowest state of the system. This l k—s
condition is identical with Heisenberg’s. Fio. 13.—The schematioc rep-

 Bloch used-Eq. (41) fo compute the FREWSR o Be, peer o
partition function for the system of elec- of & in the ferromagnetic case
trons. T!ler? is no difficulty i-n de!:gmin- mm:"o:“dm the non-
ing the distribution of levels in this case,
since one state is associated with each value of k in wave-number space.
This partition function is

2 Be-pHN 2D el S ek,
f= 23 [ 2 H T, (43)
=0 k,...ks -

in which —gH(N — 2!) is the field interaction term. At low tempera-
tures, when only the lowest levels are excited, «,(k) may be replaced by the
value

ak) =J -2 (o k)2 (44)

Using this approximation, Bloch found that the magnetization M
satisfies the equation

where a depends upon the lattice and has the value  for a face-centered
lattice and § for a body-centered lattice. This result may be placed in
the form
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M 7\ .
w.~1-(5) (16)

where © is the approximate Curie temperature, which for face-ceutered
and body-centered lattices has the values

Bf‘c‘ == 9.7—.‘;:5 y
J.
eh,e. = 6. :E”

respectively.

Weiss! has made a careful experimental test of Bloch’s T% lgw for
iron and nickel. He found that a 7'? law holds above 70°K, but that the
Tt law applies in the range from J°
to 20°K. 'This verification of Bloch’s
result seems to be support for a spin-
wave type of theory of ferromagnetism,
o although it must be admitted that Bloch’s

el e . y . r
ReTrrZrrrr Rodel, on which (46) was derived, is
Excitotion- probably much too simple (see part d).

spin waves-\ Ra\PZZ77777772777)  Slater? extended Bloch’s method of
determining the magnetic wave functions

_ \ ROgzrrrrrrrrrrrr7za by carrying the perturbation procedure

Fie. 14.—The energies _g{‘ Slater's  several steps further. The important
excitation-spin  Taves. e zero . - )
line represents the energy of the differences between the fwo procedures

system when spins are parallel. gre as follows:
g{’uzh};a:;?nﬁn;omﬁf?:f’ If-'i‘: 1 a. Slater added to Bloch’s spin waves

for ::l;ichj the electron hhavinz (39) the wave functions &y that are
rever spin remains on the same .
atom as the hole it leaves in the defined by the equation

levels of opposite spin. The other

AN ;

PR A K KR

RS0 0RRIR IR KRR
KRR

.:.’.’o GERRITRAR

lonization-
spin fevels

discrete curves-correspond to cases R = zezn‘k-r(nkp 47
in which the electron having reversed P, "R (47
spin is removed to an atom at dis- "

tance . The sonfnim 1eye. where @ is constructed from @, by
and hole when they become com- taking an electron from the atom at r(n)
pletely free of one enother. to the atom at r(n) + R and reversing its
spin. The functions (39) evidently ‘are the special set for which R is
zero. These excitation-spin waves have energies that can be represented
"schematically for each value of R by discrete curves in a one-dimensional
diagram {¢f. Fig. 14). The curve for R = 0 corresponds to the curve of
Fig. 13. . :

b. The matrix components of the Hamiltonian were computed for
the system of excitation-spin waves (47), and the perturbing effect on

1P, Weiss, Compt. Rend., 188, 1803 (1934).:.

* Jbid.
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the Bloch states of the states for which R is not zero was estimated from
these components. '

¢. Slater did not employ ordinary atomic functions but used instead
an orthogonalized system x. that was obtained from Bloch type func-
tiora xe2™%r of the ionization band approximation (¢f. Chap. VIII) by
means of the equation

Xn = Zn(r)es"'"'f"“"“- (48)
k

This procedure has two important consequences: (1) All terms in the
exchange integral (20) except those arising from e?/r,» vanish because
of the orthogonality conditions. (2) Some of the quantities in the
exression for the perturbed function can be expressed in terms of char-
acteristic quantities of the band approximation.

Slater’s result for the energy of Bloch’s spin waves, in the higher
approximation, is

a(k) = AZ (1 — enx), (49)

Here,
2
A=7 - (50)

1

where J, is the exchange integral for the x», namely,

To= [ 3 O @ @i, (51)
12

W is the width of the ionization band, and I, is essentially the difference
between E, and the center of energy of the excitation-spin waves for R
greater than zero (¢f. Fig. 14). In the case in which there are f spin
waves, the total energy E(k;, . . . , k;) may be obtained by substitut-
ing (49) into.Eq. (41). When the atoms are widely separated, J, is
positive, W is very small, and 4 is then positive. On the other hand,
W becomes very large when the atoms are close together, so that we
may expect A to change its sign. Thus, in this approximation we
should expect ferromagnetism only for widely separated atoms just as
in the Heisenberg theory.

The behavior of the lowest spin-wave energy curve as the ionization
band widens is shown in Fig. 15¢ and b. The levels of the ionization
band occur at the series limit of the discrete curves of the excitation-spin-
wave system hnd are indicated by the striped region. In the first
case, the ionization” band is narrow and the energy curve of the lowest
spin wave is above F,. In the second, the ionization band is so wide
that it depresses the spin-wave curve below E,.
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d. Critique of the Theories of Ferromagnétism.—The Heisenberg and
spin-wave trcatments of ferromagnetism are incomplete for metals
hecause the valence and d-shell electrons are not considered simul-
tancously. Actual ferromagnetvic metals are made of atoms whose
total electroni¢ states possess a mixture of s-p and d-electron chirac-
teristics. The s-p part of the atomic wave funection is altered in such
a way that the solid has metallic properties, such as high conductivity,
and the d part produces ferromagnetism. Since the g-factor is ~2.and
the observed atomi¢ saturation moments are not integer multiples of
the Bohr magneton, we know that there is not an integer amount of

Eo*

r] Fl.

Eo | =

qa

b
Fi6. 15.—8chematic representation of the behavior of the spin-excitation levels as the
ionisation band widens, 1n case g the ionization band is narrow and the system is ferro-
magnetic, whereas in case b the spin-wave curve is inverted so that the system is not
ferromagnetic. In both of these diagrams the ordinate is energy and the sbscissa is the
difference of the wave-number vectors of the electron before and after excitation, which is
the wave-number vector of the exciton. Hence the lowest discrete curve is analogous to
that of Fig. 13. The shaded region represents the ionization-spin states, in which both
the electron and hole are free. This has sero width at the midpoint, which corresponds
to zero difference in wave number, because the (k) curve is the same for electrona of either

spin. (After Slater.)

d property per atom. Thus, the two characteristics are intimately
mixéd, .nd in any complete theory of ferromagnetism they should be
discussed simultaneously.

The band approximation, which is based on Bloch type one-electron
functions, does an excellent job of picturing the balance between s-p- and
d-electron character. Since it is found that the d and s-p bands in
transition metals overlap, the relative number of electrens in each band
is determined by the condition that the energy be stationary under the
process of moving electrons from one band to the other, which means
essentially that the bands are filled to the same level. Thus, there is no
reason for expecting an integer number of d electrons per atom, for the
positions of the bands are determined by many factors. As we have
seen in Sec. 101, this picture can be used to correlate a large number
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of the properties of transition metals that are related to d-electron
charaeter,

In order o explain ferromagnetism on the band theory, it unfortu-
nately is necessary to assume arbitrarily that there are more electrons
iimthe d band having one type of spin than the other. The excess in
metalscsuch as nickel and cobalt is so large that half the 4 band is com-
pletely filled, and the excess is slightly smaller in iron. If the band
theory were accurate enough in the case of narrow bands to furnish a
trustworthy explanation of thig preponderance of electrons of one type
of spin, the Heisenberg-Bloch-Slater type of treatment would be superflu-
ous for’most descriptive work. It is true that the exchange energy for
Bloch functions, xyxe?~*r, favors ferromagnetism, but it is possible to
“Show that for the narrow bands the correlation correction is just large
enough to compensate for this effect in first approximation (¢f. Sec. 75).

At first sight, it might seem possible to use the band scheme to
determine the distribution of s-p and d electrons and to use the spin-
wave scheme to handle the d electrons. This procedure cannot be
carried out in & simple way, for wave functions that are more compli-
cated than (47) would have to be employed, since there is not an integer
nuriiber of d elertrons per atom.

Thus, there does not seem to be a single, tractable, approximational
scheme that can be used to develop satisfactory equations for all the
properties of ferromagnetic metals. At present, we must use the spin-
wave and band schemes in the separate domains in which they are
individually most satisfactory. .

It should be added that the Heisenberg and the spin-wave approxi-
mations are suited to discussions of ferromagnetism in ionic solids, such
as magnetite and the rare earth salts, in which there is an integer num-
ber of magnetic electrons per atom.

144, Additional Application to Alloys.—We saw in Sec. 101 that many
of the properties of ferromagnetic metals and alloys may be correlated
on the basis of the band scheme. It is also possible to correlate other
properties by the use of the Heisenberg type of theory in & way that will
now be discussed.

Dehlinger! has attempted to construct semiquantitative exchange
integral curves J,(r) of the type shown in Fig. 12 for the transition-
metal atoms by the use of empirical information. Since the close-
packed phases of both nickel and cobalt are ferromagnetic, it may be
concluded thst J, is positive at the observed nearest-neighbor distance
und that the complete curves have the forms shown in Fig. 16e in which
the vertical dotted line represents the nesiest-ucighbor distance for the

1U. DenuiNGer, Z. M ctallkunde, 38, 116 (1936); 28, 194 (1936); 92, 388 (1937).
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close-packed structures. The face-centered, or y, phase of iron is not
ferromagnetic; however, the body-centered, or «, phase, in which the
interatomic distance is slightly larger, is ferromagnetic. Hence, the
Jo(r) curve for iron (Fig. 16d) is negative at the dotted.line and crosses

)
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Interatomic Distanng ———a
Fi1a. 16.—Hypothetical J,(r) curves for
the magnetically important transition-
metal atoms. Evidence discussed in the
text indicates that the pesk for nickel
sotually occurs to the left of the equilibrium
spacing. (After Dehlinger.)

the axis at larger valuesof .
Dehlinger attempted to €lassify
the J,(r) curves for the nonferro-
magnelic transition metals by
studying their paramagnetism. He
concluded that the corresponding
J. curve is nearly zero at tR¢ near-
est-neighbor distance if the me
are strongly paramagnetic and
the paramagnetism increases with
decreasing temperature. On the
other hand, the crossing point is
far away if the paramagnetism is
weak or temnperature-independent.
It is possible, in the second case,
that J.(r) is negative everywhere.
Using considerations of this type,
he arrived at the other curves of
Fig. 16. It may be seen that in the
cases of palladium and platinum he
has concluded that the exchange
integral is positive at the actual
interatomic distances although the
magnitude is small relative to that
for the truly ferromagnetic metals.
Among the properties of ferro-
magnetic metals that are nicely
explained in a qualitative way by
Dehlinger’s picture is the fact that
their expansion coefficients change
near the Curie point, Consider the
case of iron, for example. It follows

from the fact that the observed ioteratomic distance is on the left-
hand side of the peaks of the .J.(r) curves in this case that the
additional interalomic force arising from exchange when the magnetic
moments of two atoms are parallel instead of antipardllel tends to push
them apart. The total force for the entire solid arising from this source
is & maximum when ull spins are parallel and decreases as the magnetiza-
tion decreases, such as when the substanece is heated, for then an increas-
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ing number of atoms have opposite spin. Since the maximum change
in magnetization uceurs in the neighborhood of the Curie point, it may be
expected that the greatest decrease in the interatomic repulsive force
arising from ferromagnetism occurs in this region of temperature. This
devrease; however, should compensate for at least a part of the internal
pressure that causes the sclid to expand when heated. Hence, it may be
expected. that the expansion coefficient would decrease near the Curie
point. In some cases, such as in invar steel, which is an iron-nickel-
carbon alloy, the two effects almost compensate for a range of tempera-
ture, and the expansion coefficient is nearly zero.

Shoakley! has pointed out that the expansion coefficient of nickel
increases near its Curie point, showing that in this case the actual inter-
&omic spacing is to the right of the peak of the J.(r) curve, and is not as
is shown in Fig 16d. A similar conclusion has been drawn by Bozorth?
from the fact that the Curie point of the iron-nickel system passes through
a maximum as nickel is pdded to iren. It presumably is safc to conclude
that the atomic spacing in cobalt, which lies between iron and nickel,
corresponds to a point near the peak of the J.(r) curve.

Tapsre EXXXII.—TaE SiaNs OF THE EXCHANGE INTEGRALS FOR NEAREST NEIGH-
BORING ATOMS AND FOR FARTHER NEIGHBORS IN CLOSE-PACKED PHASES OF A
NumeEr oF BiNARY ALLOYs

m?mi Ni | Co| Fe | Mo | o | Mo | w
\ o — i - SRS -
Pt ++ | I '
Pd ++ | ++. !

N ++' ++ i ‘
Co | ++ ! ++! +%| ++ ! ,

Fe | 441 ..ol ++ | 44| —+ ! !
Mn | ....! ++ | 4+ -+ -+ -4 "

Cr +4+ .. =+ =+ | -+ == |
Mo | Lol o IIVIEDZDD T oo

w | —-—-; —— == == -

Dehlinger extended this type of semiempirical work to substitutional
alloys and predicted the rudimentary properties of the J.(r) curves for a
number of unlike atoms. The results of this investigation, which is
discussed in more detail below, are listed in Table LXXXII. The first
of the two signs in a given square represents the sign of J.(r) for nearest.
neighbors in the binary alloy formed of the atoms associated with the row
and column in which the square is situated. The other sign is the sign of
J(r) for all ﬁrthe.r neighbors. Thus, according to this diagram, J. is

! W. SHocKLEY, Tech. Pub. Bell Tel. Sysiem, 18, 645 (1939).
: R. M. Bozortn, Tech. Pub, Bell Tel. System, 18, 1 (1840).
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positive for iron and nickel atoms. that are separated by the nearest-
neighbor distances of the iron-nickel alloys and is also positive for all
larger distances. Similaily, J, is negative for first neighbors in nickel
and chromium atoms and is positive for others in the nickel-chromium
alloy system. The data in the squares lying in the principal diagofal
apply to the interaction of pairs of atoms of the same kind and express
nothing that is not contained in the curves of Fig. 16. If the conclusions
contained in this table are correct, we should expect an alloy to be ferrp-
magnetic only if it contains platinum, palladium, nickel. cobalt, iron,
manganese, or chromium.

The method of deriving this information may be demonstrased by
giving several examples. It is found that the saturation moment o
nickel ig raised when njckel atoms are replaced by iron. Thus, it m
be concluded that the exehange integral is positive, for otherwise the
magnetic moment of iron would set itself antiparallel to that of the nickel
atoms and the magnetization would decrease. By assumption, the J.(r)
curve has the form of Fig. 12; hence, J.(r) must be positive for larger
distances. If small amounts of tungsten or chromium are added io
nickel, the saturation moment is decreased, a fact indicating that .J.(r)
is negative at least for the nearest neighboring nickel-tungsten and nickel-
chromiim atoms in the corresponding alloys. These two cases differ,
however, inasmuch as the Curie temperature increases rapidly with
increasing tungsten content in the nickel-tungsten system and remains
practically consiant in the nickel-chromium system. The reason the
Curie temperatire does not fall is not difficult to understand. In both
these cases, the nickel atoms immediately surrounding tungsten or
chromium atoms have parallel moments at absolute zero of temperature.
In order to reverse its moment, one of these nickel atoms must do enough
work to overceme not only the niokel-nickel exchange interaction but also
the npickel-tungsten or nickel-chromium interaction. Henece, if the
interaction for antiparallel moments is more than the nickel-nickel inter-
action for paralle] moments, the Curie temperature should rise when
tungsten is added, asis observed. It may be concluded from the behavior
of the Curie temperature that the nickel-chromium exchange energy is
less negative than the nickel-tungsten energy. Dehlinger also concludes
from the differences of the two cases that the nickel-tungsten exchange
energy is negative for both nearest and more distant neighbors, whereas
the chromium-nickel interaction is negative for first neighbors and
positive for others. .

Dehlinger has used the results of this scheme to correlate a number of
interesting and important properties of ternary ferromagnetic alloys such
a8 the Heusler alloys.
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146. Ferromagnetic Anisotropy.—A semiquantitative theory of the
magnetic anisotropy of cubic ferromagnetic substances has been devel-
oped by Van Vleck using an atomic model. This anisotropy, which is
made evident by the fact that there are easy and hard directions of mag-
revization in cubic metals (see Sec. 2), cannot be explained on the basis of
excharge coupling between the spins of electrons on different atoms if
there is one or less than one magnetic electron per atom, as in the case of
nickel, for it may be shown? that this type of interaction always leads to
isotropic expressions for the energy as a function of magnetization direc-
tion. Van Vleck suggested that the anisotropy is due to a coupling
betweed spin and orbital angular momentum not unlike that which gives
rise to the inner multiplet splitting in Russell-S8aunders coupling. This

Noupling would not lead to anisotropy if the electronic distribution in the
d shells were isotropic, a8 in an S state of & perfectly free ion; however, the
d-shell weve functions are appreciably distorted because of crystalline .
binding, as we have seen in Sec. 99, which means that the d-shell distri-
bution is anisotropic. Since this anisetropy is fixed relative to the
crystal axes, the electronic spin becomes conscious of its orientation
relative to the crystal through the coeupling with the orbital mofion.

Van Vleck assumed that the Hamiltenian for a ferromagnetic solid
contains magnetic terms of the type

=20 6+ AT mi & 4 4 Sty Mo myy mie gy Wi Tg)y ()
L35 5] ’

in which ¢; and m; are the spin and orbital angular momentum operators
of the electrons on the ith atom, r; is the radius vector connecting the
ith and jth atoms, J; is the exchange integral for the two atoms, A is
the spin-orbit coupling counstant, f;; is a polynomial exprescion in the
arguments indicated, and the sums extend over all atoms. The first
term evidently is the Heisenberg exchange term, which is responsible for
ferromagnetism.  The second term deseribes the coupling between spin
and orbital motion, whereas the third term leads to an anisotropic
eleetronic distribution. Van Vleck showed that the observed magnitude
for nickel of the constant K, in Eq. (2), Sec. 2, may be explained by
use of the energy terms (1) with theoretically reasonable values of 4
&nd f 0.

The saturation magnetic moment in iron and cobalt is larger than
one Bohr magnelon per atom, and in these cases, it is possible to explain
the magnetic anisotropy by using only the first term of (1); however, it

1J. H. VAN ViEcK, Phys. Rev., 83, 1178 (1837).
2 R, BEckeR, Z. Physik, 63, 2563 (1930); see also thid. reference 36.
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is likely that the higher terms also are lmport.ant in’ &ntertmnm)g. the
details of the anisotropy in these cases as well.
“Brooks! has recently shown that this topic may also be approached
on the basis of the band approx:matlon :
The problem of magnetostriction is closely connected with the problcm
of anisotropy; however, we shall not discuss it here.?

! H. Brooks, Phys. Rer., 57, 570 (1940).
2 See J. H. Van Vieck, Phys. Rev., 52, 1178 (1937).



CHAPTER XVII
THE OPTICAL PROPERTIES OF SCLIDS
146. Introduction.—The classical theory of the optical properties of

=olids is based upon Maxwell’s equations for an uncharged polarizable
medium, namely,

div'(E 4+ 4P) =0, . div (H + 4rM) = 0,
{ 19(H + 4rM 10E | 4xr oP | 4xd
c‘lll'i’E = —- ( +'—"""—‘_)’J' curl H «-—-E*a-t- -+ <o + -’ (1)

c at

wiere P and M are the electric and magnetic polarization intensities and
J is the current per unit area. . We shall be interested only in the case in
which M is small enough to be dropped. In practically all applications
of these equations, it is found possible to assume that P and J are related
to E by the equations

P=a«a-E, _

J=g- E,} | 2)

where e« and é are the polarizability and conductivity tensors of the
system. Maxwell’s theory does not give an explanation of the depend-
ence of « and ¢ upon frequency; the derivation of these relationships is
the purpose of the atoiic theory of solids.

Maxwell’'s theory of radiation is subject to direct experimental test
whenever « and é may be measured without performing an optical
experiment. Unfortunately, this includes only. the long wave-length
region of the spectrum that is employed in radio work. For shorter
waves (A < 1 em), the results of Maxwell’s theory must be employed to
determine the constants, in lieu of values determined by use of atomic
theory. Although this may seem to be only an experimental difficulty,
it should be realized that the size of the electrical circuit which can
resonate to radiation having frequency 10 cycles per second is of the
order of atomic dimensions. For this reason, it is necessary to have
intimate. knowledge of the theory of atomic systems before the results
of optical experiments can be interpreted in a way that throws light
upon the behavior of the charges in solids.

The classical theory of « and ¢ was developed farthest by Lorentz!
although important contributions have been made by other workers.?

' H. A. LorexTtz, Theory of Electrons (Teubner, Leipsig, 1906).

*P. Drube (see ibid.); C. ZExeR, Nature, 182, 968 (1933); R. p® L. Kronic,
Nature,-188, 211 (1934),

]

]
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This work is still very useful since some of its most significant results
have not been modified. The quantum treatment of the optical proper-
ties is in principle just one of the fields of application of the theory of
radiation developed in Chap, V. From a purely formal standpoeir?, it
should only be necessary to apply Dirac’s theory in order to determine
the optical behavior of any solid. This formal procedure actuully
has not been followed very closely, however, and the subject has devel™
oped unevenly. Individual contributions have been made in order to
obtain reasonably correct equations in a simple way rather than to
obtain a self-consistent description of all properties. The rgason for
this procedure is, of course, that the rigorous theory is difficult to a,pp'ly
147. Classical Theory.—We shall discuss the solutions of Maxwe)''s

equations (1) for au isotropic or cubic medium in which the elestrical
polarizability and the conductivity are constants instead of tensors.
The equations ther are

divE =0, - divH =0,
curl E = ~1aH curl H = caE + &‘-l- (1)
where _
¢e=1+4+4m {2

is the dieleotric constant. There is one importaut point that should be
kept in mind for future reference. The quantity

oS ®)

which appears in the fourth of Egs. (1) when e is replaced by use of (2),
has the nature ot a current—the polarization current. Maxwell believed
that this current could be distinguished from the current J by the fact
that the latter arises from the motion of obvious charge, such as that in
conductors, whereas the former arises from hidden chargée. In adopting
an atomic viewpomt, we are no longer able to dietinguish between the
two typee unamblguously; hence, we must be caroful not to include the
same current twice.

Since we are interested in periodic solutions of Eqs. (1), we shall
employ complex values of E and H of the form

E(z,y.2,t) = E'(z,y,2)e?r
H(z,y,2.8) = H'(x,y,2)e?",

Only the real parts of these functions will be regavded as physically
interesting. The phases of the true current J and the polarization
current adE/at evidently differ by 90 deg when o and « are reat. For
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this reason, we may, if we choase, eliminate the term in J in the fourth
of Maxwell’s equations by replacing a with the complex polarizability
g, : '

a = a4+ g 4

—r we may eliminate the term «dE/d¢ by replacing ¢ by the complex
conductivity .

0 = o + 2xiva. (5)
The étrrent defined by the equation
Jd =E

where ¢ i¥ real is always in phase with the electrostatic field; hence, it
constantly takes energy from the field. The mean power per unit
volume that is lost in this way is
P=JE=.,E (6)
where the line indicates the average value. This relation may be used
to show that the absorption is proportional to . Now the absorption
coefficient 4 is defined by the equation =
. aw

2L

where W is the mean energy density and d W /dz is thé decrease due to
absorption alone Since

2
w-E
and
-
P .
for a unidirectional wave, it fo}lows that
. o sra

C

The polarization current, on the other hand, is 90 deg out of-phase with
E and does not remove energy from the field.

The plane-wave solutions of Egs. (1) in which we are interested may
be taken in the form

E = E'egﬁ»(t-f-:—n.'r)

8
H = () ¥
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where E, and H, are constant vectors, wo is & unit vector in the direction
of propagation of the wave, and N is the complex index of refraction,
which may be written

Nup-—-a‘k, (")

in which » is the ordinary index of refraction and k is the &xtinetion
coefficient. ) :

The imaginary part of N evidently measures the damping of*the
wave. The equations connecting the quantities in (8), which may be
derived by substituting for E and H in (1), are

no+Eo =0, no Ho = 0,

Neo X Eo = Hoy  Nuwo X Ho = --.(e i éﬁ‘.’)e.,. 7o)
. vy |

These relations show that E; and H, are orthogonal to ny and to one

another. For simplicity, we shall take no, Eo, and Hj'to lie in the z, y,

and z directions, respectively. The last two equations then become

NE,=H, NH, = (e + ;?-j)s,. (11)
Hence, .
o _
Nt = (e + ;), (12)
ar
n? — k? =g,
. _

The phase angle between E and H is arctan k/n, which may be expressed
in terms of ¢ and ¢ by solving (13).
If # is zero and e is positive, it follows that

k=0, ﬁ="\/;'.

Under these conditions, the wave is undamped. and E and H are in phase.
This case evidently corresponds to the propagation of light throtgh a
perfectly transparent medium having index of refraction n. On the
other hand, if ¢ is negative,

n = 0, E=—¢

and the wave is damped in the direction of propagation. This damping
is not accompanied by absorption, however, for P in Eq (7) vanishes if
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o is zero. Thése conditions evidently can be satisfied only if the mediuin
is totally reflecting, which is shown explicitly by the extension of the
theory of light that takes into account the behavior of a plane wave that
is'mcident upon a plane surface of & medium.! According to this work,
the reflection coefficient for normal incidence is

(=14 R

B g (14)
which is unity when n is zero.

If o ig not zero, the solutions of Fas. (13) are

e+ V4 dle/n)? )
2 5 (130)

n? =

X S t \/*_g_jf_‘-“@jﬂ’
_ 2
Thus, the medium is neither perfectly transparent nor perfectly reflecting.
We shall discuss two cases of this; tzpe that are of particular interest.

a. Lorentz Treatmeni of Absorpt.ur and Dispersion in Insulalors.—As
early as 1880, Lorentz? showed that it is possible by use of a simple atomic
model to account for the dispersive behsavior of insulators near an absorp-
tion line. He postulated that insulating materials contain electrons
that are bound to equilibriun positions by Hooke’s law forces. We shall
assume that these forces are isotropié and that the &lectrons are subject
to a damping force proport!onal to the velocity. The equations of
motion of an -electron that is subject to a periodic electrostatic field

directed along the y axis then is

d:‘;’ + 2-rm7 + xy = —eEqe?rin (15)

where y is the displacement of t.l:me €lectron along the y axis, 2rmny is the
damping constant, x i8 Hooke’s constant, and E, is .the amplitude of the
electrostatic field. The solution of this equation is

_ eEne drivt
v Trm[(vi = ) + #v9)
e Ewﬂﬂ‘.s{e—-lﬂ

~wn G T a0

= ;
Yo \ljir'm

¥ See, for examplé, P. Drude, The Theory of Optics (Longmans, Green & Company,
New York, 1902).
? LLORENTZ, op. cil.

where
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_ s the natural frequency of the oscillator and

¢ = arctan ?_-"—;5 a7

is the phase angle between the electronic motion and the field intensfly.
The current per unit area associated with this motion is

nyet Prve ( ,+I)

= - ;= 2xint .

J Y = i NV — 12 ?%zE"e (x8)
where 1y is the number of oscillators per unit volume. Since the\lc%pmpl ex
conductivity o. is the coefficient of Ege?r* in' this equation, we hfve

e’ 2nv. _ et I e

= Anm \/(,,0 - ,,s)z I 2t 3 i g = Grim (F — v 4 v?’ (163

noe? P S — et (g = v (20)
“« -h-“m,/( — ,,z) F v P el 4 drm (vd - WF 5 2

It may be seen from Eq. (17) that ¢ is % or zero, depending upon the
sign of » — v, whenever

[v = wof >> .

The phase angle varies between these limits in the manner shown in Fig. 1
as v passes through the value v, the width of the transition region being
of the erder of magnitude y. Since ¢
is appreciably different from zero only
in thig transition region, this is the
only region v which light may be
absorbed. The absorption coefficient
4wg/c is plotted in Fig. 1 and has

T

"\ y—s
P

Fic. 1. »The.phm angle ¢ snd F16. 2---The polarizability of the
the absarption coefficient 3 of the system of oscillators
asaembly of oscillators as functions -
of frequency.
a peak of half width v, centered about .

The polarizability «, given by Eq. (20), changes sign as we pass
through the absorption maximum because cos ¢ changes from positive
to negative values. Its absolute value increases as 1/|wo — ¥, as »

I.
L S

Gt

2oht

R ——
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approaches the absorptlon region, but does not go to infinity because
of the term in v in the denominator of (20). The characteristie behavior
of a is shown in Fig. 2. The dieleetric constant ¢, which is of immediate,
interest for investigating the optical properties, is

, Moe? vi — »?
e=1 + 4"“ =1 + ';:é;_' ("a _(_uvg)g _i_)?"’g' ' (2])
*Using these results and Eqgs. (18), we may discuss the optical proper-
ties of the system of oscillators. In the region on thelong wave-length
gide of e where v, — v i much greater than v, ¢ is positive and greater
than umty, and ¢ is negligible. Hence, nk is zero, and n? -- h?is positive.
We may conclude thal

k=0 At=c (22)

Thus, the system is transparent and has a refractive index greater than
unity. This behavior is characteristic of most ionic and molecular
crystals in ths visible region of the spectrum. If we assume that n, is
of the order of 1022 cm~—*, which is 8 normal atomic density, and that
v — »*is of the order of 10%° sec™2, we find ¢ ~ 1.7, or n ~ 1.3, which
shows that this oscillator model can yield the correct magnitude for the
optical quantities. '

As we enter the absorption region, # no longer is zero. e is initially
positive and passes through a maximum at

v = Un—%=

1t is readily found that
aq o~ 2rva

in the region of this maximum Equations (13) then become

n? — k* = 1 4+ 4ra. nk = 2xa. (23)

The solutions of (23) show that n is larger than 4/ in thls part of the
absorption region and that k is of the order of magnitude 4/« for large
values of « and of the order of magnitude o for small values. 1t follows
from Eq. (14) that the reflection coefficient approaches umty when «

becomes [arge.
At the center of the absorption hne, o is zero, whereas o'has the maxi-

mum value

nne?

Op. = g—

T 2rmy
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The values of n and k at this frequency arc determined by the equations

_ 1+ VIFaa/d . —1+ VIF 4R
= - = - - ---'—‘——2—--——-—--—--

4
n
2

As we pass to the other side of the absorption line, e décrea.ses and
reaches a minimum value at

y =+

Both n and k decrease as this occurs. If « reaches the value —1 /iliqr,-so
that ¢ is zero, n and k are equal to

T
o
n is less than k in the region where ¢ is negative.

When.» — », is much greater than v, o is again zero and the medium
no longer is absorbing. Whether
it is perfectly reflecting or trans-
parent- here depends upon the sign
of e. Since o approaches zero as
—1/(» — wo), ¢ is certainly positive

e ]

«
1

o 'R

ke AR t for sufficiently high frequencies.
=== r—-—-== . . . .
Zn : W - The medium is transparent in this
:% : | region although it is optically less

- 1S | Metomic | dense than a vacuum. ¢ may be

L./ rent. 8.:: - — g.. . . y
M edion "’;%§ :" e ﬂiu negative, howaver, in the non-
i,§ ! s -absorbing region near the absorp-

Fro. 3.—The polarisability and the four ti0n line.  When this happens, n
optical regions associated with an absorp- is zero, k is finite, and the medium
tion line. is totally reflecting (cf. Fig. 3). We
shall sce later that the optical properties of an ideal metal are similar to
those of the system of oscillators on the high-frequency side of the center
of the absorption line.

Accarding to Eq. (19), the shape .of an absorption line is determined
by the function

p2
2 =) + piy?
Since this is appreciable only in the region where vo and » are nearly
equal, we may write

(R — 2 = (3 — M2 + 9)* = H2(ve — M)
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We then obtain the relation

. =1 1

G =+ v d e — )T+ 0727
which is the same as the form (7) of Sec. 45 determined by quantum
theory.

It is not possible to make more than an order-of-magnitude estimate

of the breadth ¥ of the absorption line by means of classical theory. A
lower limit is determined by radiation damping. According to classical
theory; " an oscillating charge radiates energy at the rate

2 =

3
where p is the dipole moment, which is'ey in the present case. For strictly
periodic motion, this may be replaced by

2 82.7.—.'
3 c—,y!h

(24)

which is equivalent to assuming a damping force
2¢% o Sviel
3aY 3 o
_Thus, the damping frequency is

_ et
Y —_ 3me?
‘As we remarked in Sec. 45, this is of the order of magnitude 10° sec™!
for optical frequencies and is usually masked by the damping due to other
sources, such as collisions. ' o
Before leaving this topic, we should mention that the local field?
corrcction has been neglected in deriving the equations for- the optical
praperties of the assembly of oscillators. This correction may be included
by use of Lorentz’s theory when « is not too large. The macroscopic
polarizability.is related to the polarizability a, of a single oseillator by
the equatiopn '
a = ,._,E_"q_a_._._ (25}
1 - ~3—noa¢

: See, for exampl:z, M. Abraham and R. B:ecker, The Classical Theory of Electricity
and M agnetism (Blackie & Son, Ltd., London, 1932).
?8ee Sec. 142.
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When the medium does not absorb,
n? = ¢ =14 dna,

or
nt —1

& = ——

4=

Thus, Eq. (25) may be transformed to

n?—1 4r
m = "gﬂua.- (26)
In the absorbing case, we may write Eq. (12) in the form

N2 — 1 = 4ra,

where a. is the complex polarizability. Equation (25) is then generalized
to :

. = — Totka,c (2-
e

1-- i,;-nm..,,

where a.,. is the complex polarizability of an oscillator. When these tw
equations are combined, the relation replacing (26) is

Nt~} 41r
NT¥3 ™~
We shall discuss the application of these equations to particular casc
below.

b. The Drude-Zener Treaiment of Perfectly Frec Electrons.—Th.
classical treatment of the optical properties of metals that is based ¢
the assumption of perfectly free electrons was developed by Drude
Zener,* and Kronig.? The equation of motion for a free electron is

d
i

which is identieal with (15) except for the fact that x is zero. Thus, w¢
may anticipate that a system of free electrons behaves like u gystem ot
oscillators of frequency zero. In the present case, the damping term
arises from the resistance of the metal, as we shall see more deﬁmbel‘
below. The stationary solutions of Eq. (29) are

e Eneﬂtu!
¥y= Tdxta =% F iy

nl‘“a e {2&

Y + 2mmy 2L = —eEaet, @5

1 P. DrUDE, op. cit.
3 C, ZeNER, op. cil.
? R. pr L. Kronia, op. cit,
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om which we obtain

= ng bt 2Ty
7= Mt +7 (30)
e? 1 )
= . 31
AT T @Y
aen » is gero, the first of these equations is
e&
o = ﬂu——27 - (32)

omparing this with Eq. (), Sec. 126, we see that

where = is the mean time between collisions, which is of the order of
magnitude 10~ sec at room temperature.

ks>~ = - Rerlec ting - i - - Transparent--»
Absorbing regmn revin _
Fic. 4—The quantities n and k as functions of frequency for a system of free electrons.
Since Egs. (30) and (31) are identical with Eqgs. (19) and (20) when
vo is zero, it follows that the optical properties of a sysiem of free electrons
should correspond closely to those of an insulator on the short wave-
length side of the center of an absorption band. Thus, there should be
an absorption region extending from zero frequency to » ~ vy, which in
case no is large enough should be followed by a nonabsorbing region in
which e is negative (¢f. Fig. 4). Here, 7 is zero, and k is equal to v/ —e.
ventually, ¢ should become positive, since |o| decreases as 1/»* with
ccreasing frequency, and the system should become transparent.
nce, the system should be highly reflecting until « is —1/4xr and should
-en behave like an ordinary transparent insulator. The frequency »
. which this transition occurs is’so much larger than v for ordinary
.ensities of electrons that we may obtain it from Eq. (31) by setting +
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equal to zero. Thus,
R LT @.

We shall now discuss the three optical regions.
1. v < < v.~—The optical .relations corresponding to the absorbi
region in which » is much sma]]er than v are '

.nne2 1 ________
D e I‘L\/l’l'(‘wi')’]——%'r}i,"w 3
2~ Toe? 1 n
k2 = qﬂ,;t S+ AT+ (vl X5 o< o

These may be simplified by use of Eq. (32), for they then reduce to

\
n==k= (v) (3¢

If these values are substituted in Eq. (14) for R, we find

we1 L) ¢

This relation has been tested experimentally in the far infrared region t
Hagen and Rubens:' According to (36). the value of (I — R)v
should be equal to 36.5/4/ if \ is measured in microns. Table LXXX1
shows the agreement between the observed and calculated values of th
quantity for constantan.

Tasta LXXXIII.—VavLugs For CONSTANTAN oF (1 — RVx

A; microns | ‘Observed | Calculated

4 119 4 18 25
8 13 0 12 90
12 1o 10.54
25.5 T.36 | 7.23

2. v~ » . —In the region near »/, at which 4ra becomes unity, » i
about one hundred times latger than y so that o/» in Eqs. (13) is negli-
gible in first approximation. These equations then are

3 _pioq el
” Sk 1 m’:?} {37)
nk =

1 E. Hacen and H. Rusens, Ann. Physik, 14, 936 (1804),



-8mc. 147] - THE QPTICAL PROPERTIES OF SOLIDS 641

As we mentioned previously, n is zero and k is 4/ —¢ when » is less than
v, and k is zero and n is 4/« when v is greater than »'. Wood* has found
hat the alkali metals, in which the valence electrons are neerly free,
sstisfy these relations closely. Table LXXXIV contains the observed
-ave lengths at which the transition from the reflecting to the ‘rans-
aitting state occurs, These were determined by ohservations on thin
ns of the metals. The values calculated from Eq. (33) by the use
* the true electronic mass and electron density are tabulated for com-
rison. In the cases of lithium and sedium, the values for the theoreti-
cal effective masses arc also given.

Tasre LXXXIV

Calculated, b1
Observed, &

n m*
Li 1550 1500 1830
Na 2100 2090 2020
K 3150 2920 '
Rb . 3400 3220
Cs 3800 3630

3. ¥ >>v>>v—The theoretical and experimental results do
ot seem to agree very cloaeiy in t.he visible and near ultraviolet region

Irhere

VRS> e>>.
he values of o and ¢, given by Egs. (30) and (31), in this region are
noedy noe? \'1
= Frmu? = wv ;;' (38)
-1 M2
e =1 oo (39)

‘Forsterling and Freedericksz? obtained measurements of » and & for a
number of metals, in the region from lx to 15g, from which values of o
god ¢ may be determined by means of Eqs. (I13). The observed values
of ¢ usually agree with the theoretical ones determined from (39) to
within about 10 per cent whereas the valueg of s disagree by a compara-
-ively large factor. It is found that vhe frequency dependence of the
bserved valties 15: the same as that predicted by Eq. (38); however, the
1R. W. Woop, Phys. Rev., 44, 353°(1933). See also R. W. Woob and C. Luxxns,

Phys. Rev., 54, 332 (1938).
? K. FORsTERLING and V. FREEDERICKSZ, Ann. Physik, 40, 201 (1913).
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value of g6 that is vequired to give the proper magnitude is much smaller
than the actual static conductivity. The two valies of oy are listed in
Table LXXXV. In addition, the value of the effective electron mass
that gives the best fit between. the observed and computed e curves is
given in the cases of copper, silver, and gold.

TasLe LXXXV

‘; Ag | Au ‘ Cu | Pt ] o .
[ IR e . ——— e m = = “E . o m—tn
Value of oo for best fit............. 1+ p 25 110 T n 12 ; 013
Actual value...........c. ool } 57 | 4.2 ' 53 ] 0.85 1‘\11_7
} l i
MM bro7 | 13 0 256 ) :

Tt should be pointed out! that the optical propertics in this speetral
region are determined by a thin surface layer of the metal. The pene-
fration distance 8, in which the light intensity drops to 1/cth of its initial
value, is :

A
drk

where X is the wave length. This is about 2004 at 1u for silver, since
k is 5.62. It is possible that the conductivity oy of a sheath of this
thickness is considerably lower than that of the bulk material because of
surface contaminations.

148. Quantum Formulation of the Optical Properties*.—We shall now
develop the equations for the optical propertics of solids in three idealized
cases, namely: (a) the case of a system of isolated atoms, (b) a case in
which the excited state of the system may be deseribed by exziton waves,
and (c) a system in which the electronic wave functions are determinants
of Bloch one-electron functions. The results for the first two cases
cvidently may be applied to insulators such as molecular and ionic
crystals, whereas the results for the third should apply to metals. The
effect of nuclear motion will be neglected for-the present.

a. A System of Isolatcd Atoms.—When the atoms or molecules in s
solid are very loosely bound, its optical properties may be cbtained from
the equations that were derived for free atoms in Sec. 43, We saw there
that the effective atomic polarizability for dispersive scattering of quanta
of frequency » is the tensor

« = 2 MM 2vk0 (1)
k

5 =

h v — »?

! This suggestion apparently was made first by A. H. Wilson, Thz Theory of Metala
(Canbridge University Press, 1833).
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[¢f. Eq. (33), Sec. 43]. Here, k is summed over all excited states,

Mo = — [ ¥o*(Zer) Vedr @)
is the matrix compunent of the atomic dipole moment, and
E, — E: .
Yo = LZ-——}- ' (3)

' ““milarly, the probability I;() that an atom jumps from a state ¥, to a
sate ¥, if the energy density as a function of frequency is p,, is

3 i = !‘
P_;(i,l’) = Sj:rTiMuf . n!’p;tﬁ(E'.k E', -- J’) {4)

‘a the §-function approximation of Sec. 43, where n ig the direction of
polarization of the radiation. It should be pessible to derive € and ¢ from
Egs. (1) and (4).

Since it is' conyenient to treat cascs in which ¢ and « are constants
instead of tensors, we shall usually consider examples in which (1) and (4)
are independent of the direction. In the present case, this is true if the
atoms are in S states (cf. Sec. 43). -

The individual terms of Eq. (1) are very similar to those derived
in the last section for the polarizability of an oscillator in a nonabsorbing
region, namely,.

I (5)

o0 = Fxtm vip — vt :
l¢f. Eq. (20) ni the case in which v is negligible] 1n fact, Eq. (1) may be
written as )

a, = szoako (6)
k
where :
2,
fuo = 2 MM )

15 the oscillator strength of the transition from ¥, to ¥, which evittently
is a tensor quantity. A theorem of the theory of atomic spectra states!
that for free atoms the sum of all the f,, connecting two levels is a multiple
of the unit tensor. For cxample, in the case in. which the ground state
is a 18, state, fro is nonvanishing only for a 'P, state when the Russell-
Saunders coupling scheme is valid. If the three degenerate substates:

1 See, for cmmplf;, E. U. Condoa and G. H. Shortley, The Theory of Alomic Spectra

(University Press, Cambridge, 1885); S. A. Korfl and G. Breit, Rev. Modern Phys..
4, 471 (1932); G. Breit, fev. Modern Phys., &, 504 (1932).
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are chosen to be eigenfunctions of the three con‘iponen ts of orbital angul
~momentum, the sum of fxo for the three states is

Em =3 '*".81 ”(gz‘)": j " y‘)’w!s + l(gz‘)«oﬂl - ®

L ]
where Iis the unit tensor. In the same case, the sum of the time deriva
tives of (4) for the transitions from the lowest state to the three dege‘
" ate P states is

g ) 9

in which »y is the frequeney v and fio is the coefficient of I in Eq. (8

The scalar coefficient of I in the equation corresponding to (8) fc
any two levels [ and m is usually designated by fi. and is called the f factc
or the line strength for the two levels. - The reason for the second designa-
tion is that fi» generally occurs in the equation analogous to (9) and thus
measures the relative linc intensity. It follows that the fi.. may be
determined from absorption and emission measurements.

Another theorem of quantum mechanics! states that

S fim =1 «{10)
L

in which I is summed over all levels and = is the total number of electrons
in the atom. Since the o in Eq. (7) are positive for the lowest state
in the atom, it follows that the f factors for this level are all positive.
Hence, in this case, (10) states that the sum of the f factors for absorption
from the lowest state is equal to n. The same conclusion cannot be
drawn for the absorption f factors of an excited atom, for there may be
additional factors connecting this and lower levels. Since the emir
sion factors are negative, it follows that the sum of the absorption lir
_strengths of an excited atom usually is greater than n. This fact is ¢
importance in discussing the absorption f factors in the cases of monc
valent atoms, such as the lighter alkali metals, in which the valence
electron wave functions can be derived from an effective ion-core fiela
as we have seen in Sec. 78. In this case, there is a theorem analogou:
to (10) for the valence electron, namely,

| zfl:u = lr 0
i

t E. WiGNER, Physik. Z., 83, 450 (1932); H. A. Kaauers, C. C. JoNKER, and
Koormans, Z. Physik, 80, 178 (1932).
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“where fy, refers to the levels of the ion-core field. In lithium, the lowest
state is a 2s function, and there are no lower p functions; hence, the f,,,
for the 2s state are ail positive, and the sum of the absorption strengths
of the valence electron should be unity. In sodium, on the other hand,
thé lowest state is 3s. Thus, in this case there is a fictitious 2p state
lying Lelow the 3s for which there is a negative f factor. Hence, the
sum of the absorption line strengths should be larger than unity. The
_+me is true in any of the heavier alkali metal atoms whose levels may be
obtained from an effective ion-core field.

In atomic lithium,! the strengths far the valence-electron transitions
have vhe values given in Table LXXXVI.

TasLe LXXXVI

Transition from:Zs to I
. - 0. 7500
. 0.0055
AP e e e 0.0047
. i e e e 0.0026
CONIMUUIN . .. ..o vt et e e e e e e e iee e 0.24
BT, . ottt e e e e e 1.01

Thus, 75 per cent of the oscillator strength is associated with the first
excited level, and the sum of the fis close to unity.

According to Eq. (26) of the preceding section, the index of refraction
in a nonabsorbing region sheuld be related to the atomic susceptibility (6)
by the equation

Jio
n’+2 32:;;:;’"“,, > (12)

where [ is summed over all excited le.vels. The f values of the rare gas
atoms have been determined by expressing the observed index of refrac-
tion of the gas in a series of the type (12). It is found? in this way that
the total.f value associated with the transition from the lowest level to
the levels of the 1s2p configuration is 1.12 for helium, which has two
elestrons. In the other rare gases, which have six p electrons in the
outer shell, the corresponding numbers are as follows

Ne 2.37
Ar 4.58
Kr 4.90
Xe 5.61.

1 1B, Tromrz, Z. Physik, 81, 54 (1929),
* See, for example, XK. L. Worrr and F. K. HerzreLp, Handbuch der Physik,
Vol. XX.
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The absorption coefficient in the absorbing region may be determined
from Eq. (9). Acoording to this, the energy loss per unit volume at &
point where the energy density is p, is

= S = BT S =
1

where 7, is the number of atoms per unit volume. Comparing this w'th
Eq. (6) of the preceding section, we find

2
o = ’;—'9':? tﬁ(lﬂ - r). (13)

1

Hence, the absorption coefficient in this delta-function approsimation is
not%y
v0) = g = ) (19
]

according to which the absorption peaks should be infinitely narrow.
Combining Eqs. (6) and (13), we obtain for the complex atomic
polarizability

_ 0. & Ji __ixffﬁ(v ‘-- )
% =+ 505 = Lnim - [p’,‘— vt 2 ] (15)

1t was found in Sec. 45 that the shape of an abrerption line is given
by the function .

1
G ¥ 16)
instead of by a delta function. Hence, we should replace the, delta
function in Egs. (13) and (15) by the function (16) multiplied by an
appropriate normalization constant. Since the integral of (18) over all
frequencies is x/I' if 1; is gréater than I', the delta function should be
replaced by :

W2

(= v)* + 17

or, if we use the approximation of Eq. (24) of the preceding section, by
: 2vvi/x

@ — ) + vy

! Since the atoms ate in their lowest state. we mnay drop the subscript zero in
f. P and ».

(17
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where y = 2. At the same time, the coefficient 1/{(v} — »?) of the real
part of (15) should be replaced by

v = »)

(’iﬂ"“_“ﬁ)?'_}r 2yt (18)
Thus, {15) becomes
_ ¢ N G )
% datm ‘F = v)E 4+ 2
; (19)
et f:.

T &m (=) 4 1yy’

which is analogous to the result that is obtainable from the classical
equation (16) of the preceding section.

b. The Case of Excitalion Waves—In treating the absorption and
dispersion in a solid whose normal and lowest excited states are described
by excitation waves, we must use the equations that were derived in
Sec. 96 for extended atomic systems. We shall discuss a simple model
in which there is only one electron per atom. According to the discussion
of Sec. 96, the normal-state wave function then is 1/4/N! times a
determinant of normalized one-electron functions of the atomic type
Y(r — r(n)) that are centered about each of the atomie positions

r(n) = n% + nets + nata (20)
The normalized excited states bave the form
1
Wy = —— N 2Pk, (21)
* \/ﬁE !

where ¥, ; is the wave function derived from ¥, by replacing ¢(r - t(n))
by the excited atomic function ¥:(r — r(n)), and k ranges over the points
of a single zone. A band of levels of energy

EK) = B+ 13 s (@2)

is associated with each value of ¢ where E; is the unperturbed energy of
the state ¥,; and I; is an integral involving neighboring excited and
normal atoms. We shall discuss a case in which the lowest atomic func-
tion is an S'state.

It was found’in Sec. 96 that

f Vo grad ¥ydr = ?}K‘r(f* grad wr)a.,g 23)
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where ¢ is the normal atomie function and ¢: is the excited function for
the same atom [¢f. Egs. (17) to (20), Sec. 96]. We may conclude {rom
this that the only allowed transitions take place between the excitation
baunds corresponding to atomic states between which {ransitions, gre
allowed. The appearance of the factor dx,e in (23) implies that the
excited states of the entire crystal must have the same wave nimber as
the normal state in the redueed-zone sense, which is g geuerahzatlon ofe
the principle of conservation of momentum.
Now, the conduetivity associated with these transitions is! -

) = o vEINI ¥iui grad “'°"" Boos = 3). (24)

When the relation (235 is used. this becomes

- - (25

where

in which E; and E, are, respectively, the unperturbed energies of ¥, ;
and Wo. Equation (25) is identical -with the expression for the condue-
{ivity of a system possessing ne isolated atoms per unil volume. Thus,
it may be transiormed into Eq. (13) by use of Eq. (8) and the equation

f“'{’! dr
\of. Eq (24), Sec. 43].

1 A detailed development of Eqs. (24) and (27) is omitted for brevity, These
squations may be derived by the use of the seunclassical method by dividing the
ervstal into sections smalier than the wave length of light and larger than atomic
dimcusions and treeting thesé sectious both as specimens of the bulk solid and as
molecular units to which the methods of See 43 are applicable. Perturbed wave
functions may he computed for the cuase in which a radiation field is.present; and, from
these, the power loss P due to transitions and the mean value J of the eurrent operator
(re0 Bee, 44) may bhe evaluated The conductivity ¢ and the polarizability o are
related 4o these guantities by the equations

|f|{z grad ybedf = %ﬂ’.’.’!

(26)

" P = qBE* and j”—'a-E.

It foifows from these remarks that Egs (24) and (27) are valid only when the wave
tengih of light ia lang compared with atomic dimensions. The second term in Eq.
{27} srises from the part of Eq (8), p. 223, involving the vector potential.
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If Eq. (28) is subst.xtut.ed in the equation for the polarizability,’
na.me!y,

_ e*h P
" [%rwvﬂv (v f v var) - ) @
k,:

«and Eq (26) is used to simplify the result, it is found that

'M‘, et
where
. )
= g,f:mE]f Vgd va| (29
1=1

is the dipole matrix component.
We may reduce this still further by use of the sum rule

Efl = 8a Zmp‘!M !
. l
fordf we subtract the equation
2 LY
-—"4"’4,,-,(2 fi— 1) -0
2
from Eq. (28), we obtain

noe? ’ _i{__ (30)

which 1s equivalent to the expression for the polarizability of a system
of isolated atoms.

We may conclude from the results of this part of the prescnt Section
that the optieal properties of a system that is described by means of
excitation waves are the same as those of a system of free atoms. The
absorption spectrum consists of discrete lines not because the energy
fevels do not form wide bands, but because the wave number of the
exciton must be zero.

c. The Case of Bloch Wave Funcbions~—When the system may be
described in-the Bloth approximation, the lowest singlet wave function
Wo is a determinahi of functions

Y= xuctoer, - (31)

1 See previous footnote.
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in-which each of N/2 y¢x of lowest cnergy appear once with each spin.
The excited singlet states are determinantal functions that are derived
from V¥, by replacing one or more of the yx by cxcited functions y.
Since the matrix components in which we arc intcrested are integrals of &
one-clectron operator, the intercsting excited states differ from ¥, by one
Bloch function. "If the state derived by Teplacing Y with Yy is deexg—
nated by Wy, it follows from the discussion of Sec. 71 that

N [¥e* grad: Yodr = (fxx™* grad xudr)dxx+x. (32)
Thus, as was pointed out in See. 71, the allowed optical transitions
correspond to “ vertical” jumps in the reduced-zone scheme.

It should be noted that in the present case the electronic absorption
spectra of the entire solid consist of broad bands instcad of discrete lines,‘
in contrast with the case of excitons. The reason for this is that in the
transition from ¥, to ¥ the excited electron and the hole it leaves
behind move independently of one another. Thus, the only restriction on
electronic wave number is that the sum of the wave number k' of the
excited electron and the wave number —k of the hole be equal to a

principal vector K in the reciprocal lattice, Whlch may be satisfied for any
value of k.

~ The polarizability, which is given by Eq. (27), is

*h Vik+K e?
“T [247.4”‘23’21’2 Yk+E — v’”“"" grad xdrl* — Z;wm] 33)
KK

in the present case. The variable k extends over the cccupied levels of

the lowest state, once for each spin, and K is summed over sl values of the
“principal wave-number vectors,

The sum rule for Bloch’s one-electron functions! is

|fx0c+x* grad xudr|®

6x*m
S-S

If this equation is multiplied by e*/4x*m®, summed over all values of
k, and is combined with (33), it is found that

+ ?%'Ake (k) = 1. (34)

_|_¢h [[xx+x* grad xadri® e . (35)
= [%%’V Sk Paarx — 7) 211‘2:%2»2‘"“ (35)

+ The first part of this equation may be placed in the form

e? Y fux

41r-mV K Vzk,k+‘ — p? (36)

! Sce, for example, Wilson, op. cil.
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where

fux = _h fxx+x* grad xudr|®
6x2m Vik+K

Equation (36) is the counterpart of the polarizability of insulators since
it is assqpriated with transitions between the lowest zone and others. It
gpproaches (30) in the limiting case of narrow bands in which the xx
Bec ome atomic functions. The last term in (35) may be transformed ito

@7

noet-

T axrtm*yt (38)

by makg usc of the relation
' 1
e = gianeli):
Comparing Eq. (38) with Eq. (31) of the preceding section, namely,
« = _noe* 1
Tqxim v F 47

we see that they are identical in the case in which the resistance damping
v is neglected and m* is equal to m. Hence, (38) corresponds to the
polarizability of free electrons.

The expression. (24) for the conductivity becomes

a(v) = @-;:—nrp* ' In+x* grad xudr| 6(mx+x — ¥),  (39)
kK

which may be used to discuss the absorption associated with transitions
between bands. This expression is not valid at zero frequency, for it
does not allow for the fact that free electrons may ‘be continuously
accelerated in a static electrostatic field. In the present approximation.
in which damping is neglected, ¢ should have an infinite peak when » is
zero. This term is absent because the perturbation scheme used -in

Sec. 43 was not applied properly in the aperiodic case of zero frequency.
We need not discuss this case here, since it was treated extensively in

Chap. XV. o
149. Application. to Metals.—We shall now discuss the application

of the preceding theoretical results to metals. If the theory were applied
accurately to all cases, we should be able to test it by comparing observed
and computed values of n and k for a wide range of frequencies. This

actually can be done only for several of the alkali metals and then only.
‘semiquantitatively. In other cases, we must be satisfied with a rough
comparison of the pes.ks and minima of the observed absorption curves

with those which should be expected from estimated levels of the band

approximation.
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a. The Alkali Melals.—It was seen in Chap. X that the valence clec-
trons in alkali metals are very nearly free, for the oceupied electronic
levels can be expressed in the free-eiectron form

(k) =

The computed values of m/m* for lithium,

where m* is a constant.
sodiumn, and potagsium are

Li
K

Using the sum rule

h? K?

2m™

0.65
1.07
1.6

~]

_ _ C fxeex* grad xudr* - m
1 Eka =1 E Bt rexrx =

lef. Eq. (34) o[ the preceding section), ws obtain a relation between m™*
and the ffactors that determine the absorption probability for iransitions

from one band to another

In sodium, m/m* i§ very nearly unity so that

Ef &,k is very small. This means that the oscillator strengtha for transi-

uons trom the lowest band to higher bands are small and that we chould

28 nas
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04 Y 7 =~ Ca!cula*ed
JII o
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Wave -length in Angstroms

Fic. 5.-—The quantities n, k. and nk, ag
junctions of wave leogth, for sndium. In
this case the agreement batween observa-
tion and the simple theory 1= excelient.
(After frey nnd Bn

expeet the Zener-Kronig theory for

perfectly free electrons to apply

closely for this metal. This actu-
ally turns eut to be the ease.
Experimental and theoreticall
curves, which are shown in Fig. 5,
agree closely down to 18504 except
for the fact that the observed value
of nk, although very small in the
reflecting region, is severa] times
larger than the value computed
from resistance damping by using
the observed static resistivity.
Since nk is proportional to the
absorption coefficient, this fact
implies that the absorption is higher
than we should expeot from the
free-electron theory. If is possible
that the discrepaney has the same

explanation as that proposed for the cases discussed under 3, part (b),
"H. E. Ives and H. B. Briccs, Jour. Oplical Sec. Am., 27, 181 (1937)
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Sec. 147, namely, that the surface conductivity is less than the volume

conductivity.

It is also possible, however, that the volume absarption

due to interband transitions begins in the visible region of the spectrum,

for the energy-level diagram of sodi-
um dlscussed in Seo. 99 (of. Fig. 1)
indicates *that the lowest transition
should ocecur at about 2ev. In
v sradiction to this explanation is
the fact that the peaks for the volume
photoelectric effect lie far in the ultra-
violet foY the lighter alkali metals.
The theoretical values of m/m*
arc®appreciably different from unity
for lithium and potassium. Hence,
we not only should expect the absocp-
tion coefficient to be greater for these
metals but should also expect the
frequency at which the dielectric
constants become zero to be dis-
placed relative to the value for per-
fectly free electrons. There do not
seem to be available measurements

(8 r— :
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16 -—-—Fxperlfmenu/ 7
~Krorigs ca/w!m‘ed;* ya /
L4} valves using M =M £
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Wavelength .in Angsiroms
Fie. 8,—The quantities n, k, and nk
for potassiumi. In this case the simple
theory and experiment agiee ohly if
m* = 1.43m (see text). (Ajter [ves und
Briggs.) :

on n and & for Jithium ; however, Ives and Briggs’ have made very accurate
observations.on potassium. Figure 6 shows the observed values of n and

o Thickness tl‘! Cm
& 40 <4-1.25 x J070
o
&% ~
c
'520 25x1023 \\
5 g
i A ~N
g 50xI077 N
ug 0 l"'!x \-._l
120G 2000 2600 3600 4400 5200 6000

Wave- Length in- Angstroms
Fia. 7.—The transmission of several
layers of cesium. The fall in trans-
mission below 2800A presumably implies
nonvanishing interband tranaition prob-
ahilities. (Ajffer Tves and Briggs.)

k, which atre compared with the
thegretical curves ebtained by use of
m* = m and m* = 1.42m. The sec-
ond set of curves agrees with the ex-
perimental values much more closely
than the first. Unfortunately, the
corresponding value of m/m* is less
than unity rather than greater than
unity, a fact suggesting that Gorin’s
estimate of m* is not very accurate.
As in the case of sodium, the observed
value of nk is much larger than the
theoretical one, although it is not
possible to say whether or not the
increase is due to internal absorption.

We should"mention in passing that Ives and Briggs? have also exam-
ined the optical properties of ecesfum and rubidium. Transmission

tH. E. Ives and H. B. Bricas, Jour. Opfical Soc, Am., 88, 238 (1938).
* H. E. Ives and H. B, Briaas, Jour. Optical Soc, Am., 87, 395 (1937).
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curves obtained by these workers for three different layers of cesium
are shown in Fig. 7. The rise in transmission on the long wave-length
side of the figure undoubtedly is related to the change in reflectivity;
however, the fall on the short wave-length side is presumably related to
interband absorption. +
b. Copper, Silver, and Gold.—The extent to which the optical proper-
ties of a metal specimen are sensitive to its prcv;ouu history is shown by

Optical Constants of Copper
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1.2
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8 —.
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00 B aeiength in. Angstioms "

Fia. 8.—The quantities n, k/n, and R in per cent for copper as determined by various
workers. (Ajfter Nathanson.)

the curves o1 Fig. 8, which contains a compilation of values of n» and k/n
for copper measured by several observers.! The shapes of the measured
curves are the same, but the absolute values vary considerably from case
to case. That the differences between the results for different cases
are related to the treatment the surfaces of the specimens have received
seems to be established beyond doubt. Lowery, Wilkinson, and
Smare? have shown in the case of copper, for example, that k is increased
and n is decreased when the metal surface is polished mechanically.
Since nk increases during the polishing, it follows that the resistivity
~of the layer in which the light is reflected is increased. This effect can

1 Taken from the review by J. B. Nathanson, Jour. Optied Svc. Am , 28, 300
(1938). )
1 H. Lowary, H. WiLxmvson, and D. L. 8mars, Phil. Mag., 22, 769 (1938).
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be understood if the surface layer is madc less perfectly crystalline as a
result of polishing, for then the electronic mean free path is decreased.
It is generally postulated,! at present, that the polished surface possesses
a polycrystalline layer. ' a

g pical nk curves for copper, silver, and gold are shown? in Fig. 9.
The product nk is about ten times larger for these metals than for the
aJkalies, as measured by Ives and Briggs, a fact showing that the absorp-
_ . s much larger in the former than in the latter. The peaks that occur
near 25004 and 45004 in the case of copper are observed in almost all
specimens, whereas the large rise thot appears on the long wave-length
side of B700A is very sensitive to surface trcatment. For this reason,
it is supposed that short wave-length peaks are related to volume absorp-

. AL
I v \ ,2“

"\ P

0
2000 3000 _4000- 5000 6000
A ——s

Fia. 9.—Typical nk curves for copper, silver, and gold (see text)s (After Minor and Meier.)

1=

tion which would occur in an ideal specimen, whereas the peak in the red
is associated with the ordinary resistivity. Mott and Jones® suggest
that the peak near 45004 is due to transitions from the filled d.band
to the vacant sp levels and that the peak at 25001 is due to transitions
from the occupied s-p levels to a higher .valence-electron band. This
interpretation, rather than the inverse one, is supported by the following
two facts: (1) Silver, which has s-p bands similar to those of copper
but which has different d bands, also has a peak at 25004. (2) The
peak at 45004 shifts toward the blue as-ginc is added to copper, and the
s-p band. is filled higher.* Since gold and silver have similar valence-
electron structures, it might also be expected that gold ‘would have a
peak at 25004 if the preceding interpretation is correct; however, this
peak apparently does not occur.

1 Bee, for example, L. H. Germer, Phys. Rev., 50, 659 (1936).

*R. B. Mivor, Ann. Physik, 10, 581 (1903); W. MEmER, Ann. Physik, 81,
1017 (1910). - s

2N. F. Morr ands H. Jones, The Theory of the Propeities of Metals and Alloys
{Oxford University Press, New York, 1938). .

‘ H: Lowery, H. WiLkinsoN, and D. L. Bamars, Proc. Phys. Soc., 49, 345 (1937).
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It seems natural to suppose that the large peak that is observed near
3700A in gold has the same origin as the peak in the visible region for
copper, for the atomic d1% and ds® configurations lie very close together
in both cases. In any event, the presence of these peaks accounts for
the characteristic colors of these metals, whereas the absence of one In

Mr = silver explains the normal metallic
b color of this metal. .
- Kronig has applied the free-
o electron theory of Sec. 147 to
8 Freedericksz’s infrared optical
ok g, | TMeasurements on copper,. silver,
- and gold. The agreement was dis-
4 cussed under 3, part b, Sec. 147_
2t ¢. Divalent Metals.—Since the
0 T N divalent metals have nearly filled
200 3500 450, 2,3500 @500 overlapping bands the absorption
Fia. 10.—nk curves for sinc and bismuth. regions that correspond to transi-

(After Minor and Meisr.) tions between the bands of these
metals should lie nearer the red end of the spectrum thaun the correspond-
ing absorption regions in the monovalent metals. The nk curve! for zine,
which is shown in Fig. 10, seems to ahow that these regions actually extend

- into the infrered. This conclusion is not entirely safe, however. for it is
also possible Lhat the resistivity of the specimen of zinc on which the
measurements of Fig 10 were made is high.

14 T
n -
0 , Cu . F
& —
L~ |
6 1 _mn
=]
4
2 - .-7:..-
Z

00 A0 2P S
Fie. 11.—nk curves for several transition metals. (Afier Minor and Meior,)

d. Other Simple Metals.—Among the metals of highcr valence with
nearly filled bands, such as bismuth, antimony, white tin, and so forth,
there apparently are available measurements oaly for bismuth. The
nk curve for this metal, which is shown in Fig. 10, bas a large rise in the -

1 Bee MinoR, op. cit.; Mnier, 0p. cil.
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red, a fact suggesting that there is a peak in the infrared, as in the case
of zinc.

It should be added that reflectivity measurements! indicate thnt
aluminum is highly reflecting farther in the ultraviclet than most other
metals. A resmsonable explanation of this fact is given by the n(e)
curve for aluminum shown in Fig. 18, Chap. XIII, which indicates that
o ali the valence electrons of aluminum are very nearly free. I we assume
that they are free, the transition frequency »' given by Eq. (33), Sec. 147,
is near 8004. Even if only one were free, however, the reﬁectmg region
would extend te about 1400A

e. Transition Metals. The nk curves for a number of transition
metals are shown in Fig. 11. All these metals absorb strongly in the
visible and near infrared, as might be expected from the fact that the
unfilled s-p and d bands overlap.

150. Ionic Crystals.——The structure of the ultraviolet absorption
bands of the alkali halides, which have been measured semiquantitatively
by Hilsch and Pohl? and Schueider and .
O’Bryan,?® are shown in Fig. 2, Sec. 95.
At low temperatures, the regions of
absorption consist of a number of \ 5
narrow bands, each .of which may be > L“\
releted to a transition between the o
fowest state and the state of wave- |4\ ‘\
number zero in one of the excitation 1 sl ALK
bands associated with the excited

2.F

states of the halogen ion. According ) 17 "‘,k‘ al‘m

to the results of part b, Sec. 148, the qt."-\\ :—::'!_"l;

absorption bands would consist of 163 S ~IRE

sharp lines if the transitions were pure- K-@ B s s

ly electronic. As we have pointedout 5/ sehet-KC L

in Sec. 45, the observed width arises D O e 1

from the fact that lattice vibrationsare  '*

stimulated during electron excitation. 2000 3000 4000 5000 6000 7000
The refractive indices of some of AA) ——

the alkali halides in the transmitting E:b:f'“;f%k;ﬁ'“ﬁfﬁei“ﬂi;:nfj

visible and uluaviolet regions of the (After Gyulai.)
spectrum as determined by Gyulait
are shown in Fig. 12, It may be observed that these curves exhibit the
! See, for example, the compilation of data in Landolt-Bornstein.
*R. Hisce and R’ W, Pomu, Z. Physik, 44, 421 (1027); 48, 384 (1628); 64,
606 (1930). N
*E. G. Scunmiver and H. M. O’'BryaN, Phys. Rev., 51, 208 (1937).
Y Z. Gvural, Z. Physik, 46, 80 (1928),
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sharp rises which are to be expected on the long wave-length side of an
absorption maximum.

Mayer! has attempted to correlate the measured absorption spectra
and refractive indices of sodium chloride, potassium chloride, »nd
potassium iodide by means of the theoretical results of S8ecs. 147 and 148.
We have seen there that the atomic conductivity o, is related to the
line strengths by the equation

alr) = £ bl = ) )

whereas the atomic polarizability in transparent regions is

et N

@ = s 3] = ‘@
The second quantity may be expressed in terms of the first by means
" of the equation
1{° o
@ = ;aj; ;ri‘:"z;,‘zd": @)
which allows us to compute «, from measured values of the absorption.
The actual relationship between the index of refraction of 4 system of

atoms and a, is complicated by the local field correction. We have
seen in Sec. 147 that in a transparent region

ni(s) = 1 = Laly) = 4700 “'i:) 4)

1 - '-3—ﬂod¢
if the Lorentz local field relations are employed [¢f. Eq. (25)]. As we
approach a single absorption frequency vo, a: becomes

~_ o
%™ drm g —
so that afr) becomes _
noe? fo

alv) 2 : .
)= o 7 e N ®)
0 m 0. |
Hence, the effective absorption peak in the composite system occurs at
L - C?n[g - '
v = ("a ;Ef o) (6)

1J. Maver, Jour. Chem. Phys., 1, 270 (1923).
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This displacement is not negligible in an ordinary solid, for V/e*ne/7m
may be as large as 10'® sec™! in an ordinary crystal. Since the measured
absorption peaks occur at these displaced positions, it is not allowable
to gompute a, from (3) by assuming that o, is proportional to the observed
absorption. Instead, Mayer assumed that

_rgﬂ ) 4y )

5“""‘?

where o(»') is proportional to the observed absorption coefficient. Since
only the relative absorption curves n(») are measured, we may place this
equation in the ferm

ni(r) — 1 = c'f 7(r) ®)

where C is a constant that is determined by comparing the observed
and calculated values of n at one frequency. Mayer fitted the observed
Schumann-region n(») curves analytically with a system of parabolic
segments and one narrow rectangular peak. The height of this peak
h was taken as an adjustable parameter which was determined along with
C by fitting observed and calculated values of n. The resulting »(»')
funetions were then used to integrate Eq. (8) analytically. In the final
determination of C and h, a small correction to the observed dispersion
was made for the contribution arising from the absorption peaks of the
alkali ions in the soft X-ray region. The two observed values of n(»)
used to fix these parameters were obtained from measurements in the
visible and in the far ultraviolet regions, respectively. Table LXXXVII
gives a comparison of the observed and calculated values of (n? — 1) at,
an intermediate frequency.

TasLe LXXXVII

NaCl “KQl KI
= 1)(bs.)............. 1.720 (2812 8) | 1.245 (23121) | 1.914 (3130 1)
(n? — 1)(eale.).:..........-| 1.708 1.258 1-910
2 . 3.25 ' 3.24 4.00

If we assume that these Schumann-region bands are associated with

the electrons of the halogen ions. we may obtain the total optical strength
J per ion frof the equation

- f Co(v)dv’ )
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where no is the numaber of jons per cubic cenulmeter and Cn(v) is the final
. curve obtained by fitting (8). This equution is a consequence of Eqgs.
(5), (7), and (8). Calculated values of f are given in Table LXXXVII.
It is interesting to note that the values for NaCl and KCl are ¢losely
alike, indicating ihat the optical strengths of the halogen ions are néarly
the same in different compounds.

Mayer has used the functions Cy(v), deternnned by the precedmg,
method, to evaluate the.constants that appear in London’s and M’axge-
neu's expressions for the van der Waals iuteraction of halogen ions.

5 we have mentioned in Bec. 12, this procedure leads to larger values
of the interaction energy than are obtained by treating the halcgens as
though they had the same properties as neighboring rare gas atoms.

The fact that the optical strength of the halogen ions seems to e
constant may be compared with the principle of additivity of refractivi-
ties, which has been evolved! from a study of the experimental refractive
indices of ionic crystals. The molar refractivity of a crystal is defined
by the equation

_n?—1

e

b

where 7 is the refractive index and V. is the moiecular volume. It is
evident from Eq. (28), Sec. 147, that R is a universal constant times the
polarizability per molecule when the Lorents equation for the local field
is valid. Values of R, corresponding to the extrapolation of 2 ie infinite
wave length, are usually designated by R_. It is found experimentally
that the values of R_ for 2 sst of four simple ionic crystals AX, AY, BX,
BY satisfy closely the additivity relations

R,.,A:. - R..,.w =- Rn.!x- - Ru-“a
Roax — Rosx = R ax — R_sv,
For example, the refractivities of several alkali halides satisly the relations

Raci — Ras, = 3.13,
Rasci — Rrve, = 3.23,
Roc — Rowme = 3.21. (10)

This result suggests that we may speak with some significance of the
refractivity of individual ions in the simpler ionlc crystals Using Eq. .
(6), SBec. 148, we obtain

_ N ft’,
R 31!"?“ T ‘

1 K. Fasans and G. Joos, Z. Physik, 23,1 (1923).
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_hcncé, if the absorption frequencies »} lie sufficiently close to one ancther,

N 40‘

E. &mﬁj (1)
“where f is the total optical strength per ion and »? is the mean value of
he 1/v}. Since the position of the Schumann-region absorption bands
in those halides having the same halogen ion are nearly the same, it
follows that the additivity of the refractivities implies that the f factors

for' separate ions are additive.
By choosing the value 0.50 for the refractivity of the sodium ion, for
reasons which we shall not discuss here, Fajans and Joos' have obtained
the ion refractivities given in Table LXXXVIII from observed differences

TasLe LXXXVIII.—Tus anamm’rms or Ions (AFTER FaJsaNs AND Joos)

Ion R Ton R Ton R

F- 2.6 Lit 0.2 Rett 0.1
Cl- 9.00 Na* 0.5 Mgtt 0.3
Br— 12.67 K+ 2.23 Catt 1.3
I- 19.24 Cs 6.24 Bat+ 4.3

of the type (10). When the value 9.00 for Cl- is substituted in Eq 11)
along with the value # = 2.4 - 10 sec —! for the approximate center of .
gravity of the absorption bands of the alkali chlorides, it leads to

Ja = 3.4,
which is to be compared with the value 3.25 derived by Mayer (¢f.

Table LXXXVII). The corresponding values for I~ agree to about the
same degree of accuracy. o

151. Semi-conductors.—It was pointed out in Sec. 6 that there are
two types of semi-conductor, namely, monatomic crystals such as silicon
and selenium that contain impurities, and ionic crystals that either are
impure or contain a stoichiometric excess of one constituent. Most
prominent among the semi-conductors of the second kind are alkali
halides with F centers, phosphorescent zinc sulfide, and similar alkaline-
earth oxides and sulfides. The impurity or stoichiometric-excess atoms
in all these semi-conductors have their own characteristic absorptiori
bands that lie in the visible or near ulraviolet part of the spectrum. In
the case of natural semi-conductors, such as silicon and the natural
sulfides, which may Have 28 much as 1 per cent of impurity, this absorp-
tion band may shdw up as an appreciable peak in the nk curve determined
from reflection, even though it may overlap the fundamental absorption

1 Iind.
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band of the substance. For example, Iig. 13 shows the nk curves for
silicon and natural stibnite,! MoS,. The peaks that occur in the near
ultraviolet are probably due to the impurities whose thermally or optically
freed electrons make these substances semi-conductors. In most
artificial semi-conductors, on the other hand, the number of impurivy
atoms is comparatively low so that they do not give rise to »nk peaks
of this magnitude. The absorption may be detected, however, by trans-
mission measurements if the bands do not overlap the fundamental
region. :
‘The theory of dispersion has been applied to the F-center bands of
the alkali halides by Smakula,? in order to determine the dersity of
centers. It may be recalled that these
bands probably arise from the excitation
" I~ of electrons in. vacant halogen sites in
_ ) L . . .
- /7\ N Mos, crystals containing an excess of alkali
metal atoms, the absorption transition
/ [ being analogous to the 1s-2p transition in
Z__ / | | atomic hydrogen (cf. Secs. 110 and 111).
s N st Since the elecirons are coupled to the
latiice, the observed absorption bands are
rouch wider than the lines of free atoms
at room temperature. The extinction
Fro. 13—k ourves for milieon and coefficient of the bulk material is 7€10 n
natural MoS,.  (Ajfter Meicr.) the vicinity of the F-center bands, since
_ these bands usually are far from the
fundamental absorption region; moreover, the refractive index of the pure
salt is usually constant in the vicinity of the F bands. We shall designate
this constant by n’. For these reasons, Smakula assumed that the
polarizability of the bulk material is given simply by the quantity

o o B S

L
2,000 )
3000 mo>~ & 5000 6000

3 n?—1
2T 1)
42 2 0.
In addition, he assumed that the complex polarizability of the electrons
in the F centers may be represented by the corresponding polarizability
function for a single absorption line, namely.
et S ()
4r2m vl — % b iy
Here, n, is the density of F centers, s» is the [vequency at the center
of the absorption band, #} is the damping frequency which is of the order
of magnitude of 10' sec™!, and f is the oscillator strength of the transi-

{ Mivoe, ep. ¢it.; MBIBR, op. cil.
2 A, SmaxvLa, Z. Physik, B9, 603 (1930).
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tion. Since only one absorption peak is observed, we may expect thst
practically all the optical strength of the stoichiometric-excess electrons
is centered in this band and that f should be near to unity. Using
};Jq (28), Sec. 147, for the relation between the complex index of refrac-
tion and the polarizability, we obtain

(n— k) -1 _n" - nyfe? 1

(n—1k)* +2 =n't+4 2 + 3rm (vi — ¥} + gy @)

if we now set
n-=n" + An and o= wp + I

where An is a small quantity, we obtain for the real and imaginary parts
of (3)

An - N fe* (n'? 4 2)2 Av(2rr + Av) _ u
18xm n’ A (2p: + Ar)® + V' 2(vr + Av)¥ e
P nofe’ (n'* + 2)? Aive + Av) o)

18%m n' D1 2ep + AvI? 4 ¥ 2(vr 4 AY)?

The observed k curves, which are measured directly by the extinction
of transmitted radiation, may be fitted
closely by a function of the form (3h), aa
is ahbwn in Fig. 14.

v; may be eliminated from (3b) by
expmssmg this quantity in terms of the
value Ar; of Av for which & is half its
maximum value k,. Wheu the resulting
equation is solved for nof, it is found
that

Damping Constant K (cmi ®)

_ Oknn’mys Av;{zn -+ Ary)
mf = ToF LW (e 4 Av) )

400 500 600
.. ! . Wave Length (ma)
it is convenient to express the frequencies Fia. 14 —A cowparison of the

in electron vol ; observed k curve for the F' centers of
volts and to expreas' k !l‘l KCl and the curve of the form (3b)
terms of the constant «(v) appearing in (hat fits it most eclosoly. (After

the equation Sriakuia.)

In making practieal use of this equation,

I
}.; = e-ald (5)
whitéh expresses the decreasc in intensity of light, after it passes through =
crysatal of thickness d. The relation between k and o is

al

' -k-g, (6)
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When this is done, Eq. (4) becomes

2vr + Av
@ 2)2"‘-‘“"7#3?." ™

where a., the value of ‘@ at the center of the absorption band, is expresséd
in inverse centimeters and the frequencies are expressed in electron volts.

If v» is much greater than »;, as at low temperatures, we may simplify,
this equation to

nof = 1.31 - 107

ﬂ’
mof = 131207 T an W 8)

where W is the width of the k curve at half maximum in electron volts.
Equation (7) has been used by Hilsch and Pohl' and their collab-
orators to determine the value of nof for F centers and for impurity

14 ‘
. 1950 . .
12 xc1+l Tl 3 ' ,/
10 19% 10, Mol %o —— / .
ch—_ I7 ) ( m"2 /j
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7\ 7475 L
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Fio. 15.—The impurity-induced Fie. 16.—The curve obtained by
k curve of a potassium chloride plotting the optically determined values
crystal containing thallium. (After of a, in orystals of KCl containing
Koch.) thallium as & function of the chemically

determined number of impurity atoms.

atoms of other kinds. It has also been found possible to measure no by
direct chemical means in several of these crystals so that values of f may
be determined by combining the results. Thus, in the case of F centers
in KCl, Kleinschrod? has found that fis 0.81. The fact that this is not
exactly unity indicates that the F-center electrons lose some. optical
strength because of interaction with the closed shells of the atoms present,

Koch? has combined optical and chemical measurements in a similar
way to determipe the f factors for the absorption bands of impurity
thallium atoms in alkali halide crystals. It is found that small quantities
of thallium halides may be dissolved in the alkali halides and that the
resulting mixed crystals exhibit narrow absorption bands! in the ultra-

1See the survey by R. W. Pohl, Physik. Z., 89, 36 (1958).

*F. G. Kuemnscurop, Ann. Physik, 27, 97 (1936).

3 W. Kocs, Z. Physik, 57, 638 (1930).

1 An interpretation of these peaks has been given by the writer, Jour, Chem. Phys.,
8, 150 (1938).
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violet below 3000 A. A typical absorption curve is shown in Fig. 15.
In each case, there are two large peaks that seem to be closely related
to the energy levels of free monovalent thallium ions. Figure 16 shows
the, am versus no curve: obtained by combining optical and chemical
measurements. From the slope of these, Koch obtains f ~ 0.1 for the
loug wave-length band and f ~ 0.6 for the short wa.ve-length band.

162. The Infrared Spectra of Ionic Crystals.—All polar compounds
possess infrared absorption bands that are associated with the stimulation
of oscillational motion of the atoms or ions. Although the interatomic
forees in ionic erystalsare comparable with electronic forees in atoms, the
vibrational spectra lie in the infrared because ionic maséses are of the
opder of magnitude 10* times larger than the electronic mass. This fact
is made evident by the relation between the frequency » and mass m
of an oscillator having force constant x, namely,

1 |«

In order to discuss the optical effects associated with the lattice
vibrations, it is first necessary to obiain the expression for the dipole
moment of the lattice as a function of ionic displacements. 1i we
arbttrarily defipe the dipole moment as zero when all the ions are at their
cquilibrium positions r.(n), the dipole moment when the ions are at
positions R.(n) relative to the equilibrium positions is

M = ze,_kn,m_). (2)

Here, a cxtends over the ions in the unit cell, n extends over the cells
in the lattice, and ¢, i8 the charge on the ath ion. The variables R.(nr)
may be expressed in terms of normal coordinates of the farm

R.(n) = EE«:.(«) f/}\:“:} AT @)

g=] g

when the potential energy is a quadratic function of displacements (rf
See. 22). Here, a,/d) is the amplitude of the normal mode of wave
number ¢ in which the ath atom is polarized in the direction £,,.(¢), and
N is the total number of unit cells in the lattice. We shall employ the
reduced-zone scheme so that ¢ extends over a single zone and s takes
values from ¢ to 3n? where n is the number of atoms in the unit cell.
When Eq. (3) is substituted in (2), it is found that

a \/ﬁzeaza;(ﬁ)& 5(€)8. 4. (4)
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Thus, only the modes of vibration associated with zero wave number in
vhe reduced-zone scheme contribute to the dipole moment. The reason
for this is that the contributions to M from different cclls cancel one
another in the other cases, since they have different phases. .

Let us consider a cublc crystal such as sodium chloride that has two -
oppositely charged ions per unit cell. In this case, three of the normal
modes associated with zero wave number are purely translational a.nd‘
for this reason, do not contribute to the dipole moment. Hence, the
dipole moment is determined by the remaining three modes, which
correspond to the maximum frequency vm and represent oscillations in
which the positive and negative ions move in opposite directions. Thus.
the crystal is equivalent to a system of 3N diatomic oscillators of fye-
quency vy. Since the polarizability of an oscillator is the same in quan-
tum and in classical mechanics, it follows from the rosulis of Sec.- 147
that

3ne? 1 .
T T (6 =) F v | (8)

where 7o is the number of molecules per unit volume, x is the reduced
mass of the ions, e; is the ionie charge, and v is the damping frequency.
As in the case considered in Seec. 147, this complex polarizability implies
an absorption line of half-width ¥ at ».. Since an atomie mass rather
than the electronic mass appears in the denominator of this equation, the
polarizability arising from ionic oscillators is of the order of magnitude
10—+ times as large as the polarizability that would arise from an equal
density of electronié oscillators of comparable frequency. For this
reason, the index of refraction in the transparent visible and ultraviolet
regions of most ionic crystals is determined almost entirely by the elec-
tronic absorption bands in the far ultraviolet.

In an ideal harmonic approximation, the damping frequeney ¥ would
be determined entirely by radiation damping and would have the value

4k e?
Y=73 ucd

which is of the order of magnitude of 1 sec™!, or about 10~* ev for
ordinary ionic crystals. The observed widths actuslly are far greater
than this. For example, Fig. 17 shows observed’ transmission curves
for several specimens of sodium chloride at room temperature. It may
be seen that the width of the peak is of, the order of 5 .10 see™?, or
about 0.01 ev. It should also be observed that the tgansm:ss:on curves
show more structure than should be expected from a single absorption

1 R. B. Barngs, R. R. Brarrain, and F. Serrz, Phys. Rev., 48, 582 (1985}
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line. Even more complicated structure has been observed under higher
dispersion in magnesium oxide, which has the same lattice structure as
sodium chioride.

« o A qualitative interpretation of this large damping and the accompany-
ing structure was first given by Born and Blackman! on the basis of
classical mechanics. They related the structure to_cubic terms in the
expression for the potential energy of the ions that couple the optically
Zctive modes of vibration to other modes. Their work was later exténded

° =017
N\
) \/
. L
T,o \
V- A\

55 60 65 T0 15
A —>

Fiu. 17.—Infrared trausition curves of several specimens of sodium chloride. The
abseissa is the wave length in microns. The numbers accoinpanying the curves are the
crystal thicknesses. (After Barnes and Bratlain.)

5 40 45 50

by the use of quantum mechanics.? Although this work provides the
machinery for s more complete theoretical investigation of the topie, a
thorough experimental trcatment of the transmission properties of a
simple crystal over a range of temperatures is lacking at present. For
this reason, it is not possible to say that the structure may be completely
interpreted in terms -of anharmonic potential terms. We shall present
briefly the principlgs employed in this theory.

. . . i
M. Born and M. Brackmaw, Z. Physik, 82, 551 (1933); M. Brackman, Z.
Physik, 86, 421 (1933).
? BArRNEs, BraTrAIN, and SE17Z, op. cil.
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In the quadratic approximation, the vibrational wave finctions of the
erystal have the form (¢f. Sec. 118) -

Aa( v -, ci(8)y « o+ ¢ ) = ]i[h.m(as(d))_ (6)

where the Au are harmonic oscillator wave functions and the n.(é)
are integers. The energy of this state has the same form as for an
- assembly of oscillators, namely.

Ba = (@) + 5 pni@. a

o

During absorption, the system changes its state from A, to the state
Ani1 in which all quantum numbers are the game except for that of one
of the optically active modes, which increases by unity. The energy
difference between A, and Asy: is clearly hy,.

The cubic perturbing potential has the form

Ve = S @D (6()oun(6(k) ®

where the ¢;;: are constants. The limitations en the combinations of «
that can occur in this series, which may be obtained from group theory,
will not be discussed here. .

In the perturbed scheme, the new wave functions A’ have the form

A; = Aa + Zau.n’hn‘ (9)
where the a, .~ are given by the equations
_ JAwV Audr X
Qn,n = _.En—"—-E.' ¥ (10}

in'which the integration extends over the coordinate space of the variables
a(¢). Since V. is the sum of cubic terms and the Ay are products of
one-dimensional oscillator functions, it follows that each state A, is now
coupled with states in which three quantum numbers differ from those of
A, by one unit. Thus, if the system is in the state A, it may make an
optical transition not only to Ay, but to any other state inwhich a wave
function A.; appears in the sum in Eq. (9). For this reason, the optical
strength of the absorption process is distributed throughout many states,
and the absorption band is broader than in the quadralic approximation.
We may expect the width of this absorption band to increale with increas-
ing temperature becsuse the amplitudes «:(¢) in (8) increase with increas-
ing temperature. This effect has been observed qualitatively.
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188. ‘Special Topics.— There are a number of interesting topics con-
cerning 'the optical properties of solids that limitations on spacc do not
permit us to discuss in detail. For the benefit of readers who arc inter-
ested, we shall outline several of these topics briefly and give the principal
references. . .

a* The Photoelectric Effect in Metals.—In the interior of a raetal, the
only allowed optical transitions take place between bands in accordance
ewith the selection rules discussed in the previous scction. namely, that the
transition must be vertital in the reduced-zone scheme. Tamm and
Schubin! have pointed out that additional absorption may takc place
neaf the surface since the wave functions are not periodic in this region
and the selection rules employed in Sec. 149 ave not valid. Although

* the second type of absorption is relatively unimportant in a discussion
of the optical properties of metalg, since only about one quantum in five
hundred is absorbed in this way in passing through the surface, it is
extremely important for the photoelectric effect, for electrons thet are
excited near the surface are in an excellent position to get out of the metal.
The first detailed treatment of the surface photoelectric effect was carried
through by Mitchell* and has been extended by several workers.? We
shall discuss a treatment given by Hill that is closely patterned after

Mitchell’s work and has been applied to the case of the alkali metals.

* Hill assumed that the electronic potential is & constant — W, inside
the metal and that the electrons are restrained from pouring out by a
barrier at the surface. In the detailed computations, he considered two
types of barrier, namely, a square barrier for which the potential jumps
abruptly from — W, to zero, and an image-force barrier of the form

32
V(z) = {*'3‘5:_77'- e/ We =0
—W. z<0
(see Fig. 9, Chap. IV). Since the internal optical absorption is zero
in this model, because the electrons are free, it can be used only for a
discussion of the surface effect. Experimental work on the alkali
metals seems to show that, even when the spectral peak for the volume
photoelectric effect is appreciable, it lies so much farther in the ultra-
violet than the peak for the surface effect that the two do not overlap.
For this reason, the two effects can be discussed separately in these simple
metals. In addition, we know from the work of preceding chapters that
the properties of ?lka.li metals usually conform closely to those of the
1L Tamx und, S. Scrus, Z. Physik, 68, 97 (1031).
3 K. MircHELL, Pros. Roy. Soc., 146, 442 (1934); 188, 513 (19368); Proc. Cambridge
Phil. Soc,, 81, 416 (1935).
#R. D. MyEss, Phys. Rev., 49, 938 (1936); A. G. HiLL, Phys. Rev., 53, 184 (1938).
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simple free-electron model so that it should apply to them. Recent
experimental work on the photoelectric effect in barium by Cashman and
Bassoe'! shows that the surface and vcolume peaks oi this metal overlap.
Thus, the two effects would have to be discussed simultaneously in this
case; moreover, & more complicated model would have to be employed,
for the electrons in divalent metals are not nearly free. -

To begin with, Hill computed the energy distribution function of
clectrons that are emitted by light of a given frequency and compared
the computed function with observed ones for the case of sodium.
Although the two types of curve agree well at the high energy end, the
agreement at low energies is poor, for the theoretical curves start cut
linearly whereas the observed curves start out nearly quadratically.
The most reasonable explanation of these discrepancies is that the sur-
face on which the measurements were made was sufficiently contami-
nated so that either the work function varied from point to point or the
electronic transmission coefficient was different from the computed value.
The way in which these quantit.ies can affect emission was discussed in
connection with thermionic emission at the end of Sec. 30.

In addition, Hill compared the observed and calculated spectral
distribution functions, that is, the
: i .| functions giving the dependence of

\ the total current per unit light in-*

" | tensity- on the frequency of the

d radiation. The observed curve
possesses a peak that is much sharper

N\ than the peak of the thcoretical

/ \ curve, as may be seen from Fig. 18.

/ / A possible explanation of this dis-
0 o crepancy lies in the fact that-the de-

8000 2200, @ 3000 tailed optical properties of the metal

Fra. 18.—Comparison of the com- yere neglected in Hill's treatment.
Puted e e abeerrs vy aar  This possibility was first realized by
um. Iis the experimental curve and 11 Mitchell, but Schiff - and Thomas?
is the theorotical curve.  (Afier Hill) have furnished more direct evidenoe
for its importance in a eomputation that is based on & semiclassical
treatment of radiation. This topic has also been discusged, more recently,
by Makinson.? T

b. Breadth of Optical Absorption and Emission Bands.—If the atoms
of an insulating crystal were held rigidly during a chm.age in electronic

Y

Milliamps per Watt
N

1 R. J. Casamax and E. Bassor, Phys. Rev., B§; 68 (19390).
tL, 1. Scarer and L. H. THOMAS, Phys. Rev., 47, 860 (1935).
1R. E. B. MakimNsoN, Proc. Roy. Soc., 162, 367 (1987).
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state 1nvol\rmg absorption and emission of radiation, the frequency
distribution of absorbed or emitted light would have only the natural
width (see Sec. 148, part b). The actual emission and absorption
-spectra of solids exhibit a broadening that increases with increasing
temperature. The primary source of this breadth is the fact that the
vibrafional modeg of the crystal also may be stimulated during an elec-
tronic transition. Since the amount of vibrational energy that may be
nvolved has a finite range, the alfowed optical emission or absorption
frequencies also extend over a finite range.

A rudimentary treatment of the theory of broademn; has been given
by Peierls;' the salient points of his work are as follows. The elastic
coustants and the equilibrium atomic positions are usually different for
“the normal and excited electronic states of an insulator. For this reason,
the systems of vibrational wave functions for the normal and exeited
states are not identical. If the differénce between the atomic potential
energies for the normal and excited states is designated by AE(¢y, « « + ,{))
where £, . . . , {; are the configurational coordinates of the atoms, the
vibrational wave functions x, for the excited electronic state may be
expressed in terms of the vibrational wave functions x. for the normal
state by means of the perturbation equation

X = o D xR, M

The indices n and m correspond to sets of vibrational quantum numbers.
Now, if xm-is vhe vibrational wave function of the system before the
transition, the final state rmay be any state x;, for which the integral

I x»‘ ! o (2)
does not vanish, if we assume that the electronic transition is allowed.
The integration in (2) takes placc over the configurational eoondmstes
According to (1) ), the integral (2) is equal to

Jxm*BExAdT

,a - Eru
An analysis of this integral that is based on a power series cxpansion of
AFE shows that at low temperatures the absorption or emission bands
should consist of a sharp strong line which has & companion band ‘on its
long wave-length side whose shape is simply related to the vibrational .
frequency spectrum. At high temperatures, the structure is more
complicated.? *

1 R. PEIERLS, A:m Physik, 18, 905 (1032).

? A treatment of this problem for the case of metals has been given by T. Muto
Sci. Papers Inst. Phys. Chem. Res., 27, 179 (1935).
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¢. The Fluorescence of Crystals—Many simple crystals fluoresce
when illuminated with uliraviolet light or bombarded with electrons.
Although a large number of these phosphors have been prepared for
comunercial purposes, only a very few have been. investigated with
sufficient thoroughness to make a discussion of the mechanism of lumines--
cence feasible.! Three substances in the second class are the zinc
sulfide phosphors, willemite, which is a form of zine silicate, and the
alkali halide thallium phosphers, which are alkali halide erystals contain-
ing a small amount of thallium halide. We shall discuss briefly the prop-
erties of the first of these, which is typical of the set.?

The zinc sulfide phosphors are prepared most simply by heating
zinc sulfide alone or with a small amount of another heavy metal sulfide,
such as the sulfides of copper, silver, and manganese. The pure phosphor
fluoresces with a light-blue color under near-uliraviolet light, whereas the
other materials have different colors thai depend upon the impurity
atoms. The quantum efficieney of this luminescence usually is nearly
unity at room temperature. The materials usually are strongly phos-
phorescent; that is, some of the light is emitted after excitation cecses.
The length of time required for emission of this stored light increases
a9 the temperature is lowered.

It is found that these fluorescent- zinc sulfide materials are photo-
conducting and that the spectral sensitivity curve for stimulating
photoconduectivity extends over esséntially the same region as the
corresponding curve for stimulation of luminescence. On the basis of
facts of this kind and a knowledge of the behavior of impurity atoms in
semi-conductors (¢f. Secs. 110 to 112), it has been concluded that the
stimulating ultraviolet light liberates clectrons from neutral interstitial
atoms of the impurity metal, or of zine in the pure phaesphor, and that
light is emitted when the electron and interstitial ion recombine, the
cqlor of the emitted light depending upon the kind of interstitial atom
that does the emitting.

- Since the freed electron may be trapped before returning, the crystal
is phosphoreseent. The decay of phosphorescence is temperature-
dependent, since the trapped electrons must be freed thermally. On the
basis of a detailed examination of this decay, Johnson! has concluded
that there are at least two types of trapping center. '

The zinc sulfide phosphors may be stimulated to a lesser extent by
ultraviolet light that lies in the fundamental absorption band of sinc

! See the reviews by F. Seitz, Trans. Faraday Soc., 88, 74 (1939); H. W. Leverenz
and F. Seitz, Jour. Applied Phys., 10, 479 (1939).

2 This picture was presented independently by A. Schieede, Angew. Chem., 50,
908 (1937), and by the writer, Jour. Chem. Phys., 6, 454 (1938).

3 R. P. Jounson, Jour. Opt, Soc. Am., 29, 887 (1939).
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sulide or by bombardment with athode rays. Although the energy
efficiency of this type of excitation is of the order of one-tenth the effi-
ciency of near-ultraviolet excitation, it is about one thousand times
Jigher than it would be if only the centers that are ionized by direct
absorption were responsible for the light. If the absorption of energy
in the"fundamental absorption band produces excitons, as in the case of
the alkali halides, we may conclude that a fraction of the excitohs eventu-
#lly give their energy to the interstitial atoms by a process analogous
to.a collision of the second kind. It is possible in zinc sulfide, however,
that absorption in the fundamental region produces free electrons instead
of exeitons and that these excite the interstitial atoms by a collision of the
first kind.

¢ The wave length of the emitted radiation is always longer than that
of the exciting radiation; the reason for this is probably that given in
See. 108. In addition, the emission band consists of a broad band &t
room temperature. This band becomes narrower as the temperature is
lowered! and usually consists of a single_sharp line and several weak
satellites at very low temperatures. The explanation of the sharpening,
undoubtedly is that given in part b of this section; however, the fine
structure has not yet been completely interpreted, although it probably is
also connected with the stimulation of the vibrational modes of the
crystal.?

Willemite resembles the sulfide phosphors closely, for photoconduct.lv—
ity® accompanies luminescence in this case as well. The alkali halide
phosphors, however, belong in a different category, for they are not
photoconductors 4 A fuller discussion of these matermis may be found
in the articles listed in footnote 2, page G72.

d. The Photolysis of Crystals.—Many crystals become colored or
decompose when they are irradiated with light of suitable wave length.
In this connection, we have already discussed the discoloration produced
in alkali halides by X rays (¢f. Sec. 111), which is due to the transfer of
electrons from inner shells to vacant negative-ion sites.

The most mportant and useful photolytic process occumng in a
simple erystal is that responsible for the latent photographic image in
silver halide crystals, If silver chloride or silver bromide crystals are
exposed for a short time to light lying in the visible or near ultraviolet
region of the spectrum, a visually imperceptible change is produced in
‘them; however, when the crystals are placed in certain reducing agents,

1J. T. Ranpary, Nature 143, 113 (1938); Trans. F’amday Soc., 85, 2 (1939).
t ¥, Sertz, Trans. Faraday Soc., 88, 1 (1939).

* R. HorsTavTER, Phys. Rev., M, 864 (1938).

+See Jour. Chem. Phys., 8, 150 (1938).
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known as ‘“‘developers,” the irradiated parts of the crystal proceed to
decompose with the production of free silver and the corresponding
halogen. The same decomposition may be produced by continuous
irradiation without developmentr-—-n process known as the ‘““print-out
effect.” v

The credit for unraveling the fundamental processes in the darkening
of the silver halides belongs to a large number of workers whose contribu-
tions extend over many years of intensive work.! After it had been
definitely established that the decomposition products-: of the print-out
" effect are free silver and halogen gas, Fajans suggested that the funda- .
mental action of the light is to transfer an electron from a halogen ion to a
gilver ion, producing free silver in accordance with the reaction

Agt + Br- — Agt 4+ Br + electron — Ag + Br. 3;

This hypothesis was supported by the observation of Toy and Harrison
(¢f. Sec. 135) that photoconductivity accompanies the n.bsorptmn of
light in the region of wave lengths in which the latent image is produced.
After the development of the zone theory of sclids, Webb employed  this
scheme to describe the freeing of electrons and their subsequent trapping
in the lattice. Although this work went a long way toward explaining
the initial steps in the darkening process, it left unexplained the manner in
which the silver ions migrate to a given point in order to form a clurpp
of free silver. The final steps were developed by Gurney and Mott?
who were able to give a fairly complete deseription of the darkening
process. Briefly, the picture is as follows:

1. After being freed, the photoelectron wanders -hout through the
crysta.l and ultxmately becomes trapped at a poin. near the surface.
It is believed that the most likely trapping center is a speck of silver
sulfide, the reason for this being that extensive chemical work has shown
that the gelatin of photographic emulsions must contain a small amount
of a sulfur compound if the latent image is to be produced. Presumably,
a small amount of this substance is used in the production of silver
sulfide. Gurney and Mott suggest that the work function of silver
sulfide is enough larger than the work functions of the silver halides so
that a small speck of the former substance should be a good trapping
eenter

2. The trapped electron attracts the silver ions in its vicinity, and
these ions migrate toward it by the ordinary process of ionic conductivity.
One of the silver ions reaches the trapped electron and is neutralized,
producing an atom of silver. This is the essential point in Gurney and

1 Beo the survey by J. H. Webb, Jour. App. Phys., 11, 18 (1940). -
1 R. W. Guaniy and N, F, Morr, Proc.. Roy: Sec., 164, 151 (1938).
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Mott’s picture and is supported by the fact that the silver halides have
an appreciable iomic conductivity at room temperature (¢f. Fig. 68,
Chap: I). It is assumed that there are cnly one or two trapping posi-
tions in the small crystals that oceur in ordinary photographic emulsions,
80 that practically all the free electrons produced in a given crystal go
to the same point. Thus, one atom of free silver is formed at the trapping
center for each photoelectron released. It is believed that small specks
¢f silver formed in this way represent the latent image. :
3. It should be added that the free halogen atoms produced during
the formation of the latent image presumably diffuse out of the crystal.
The probability that they will run into the latent image and interact
with it is small. | |
- 4. Gurney and Mott suggest that in the early stages of the formation
of the latent image the trapped electrons have an appreciable chance of
evaporating and returning to. the halogen atoms from which. they were
originally relcased, thereby reversing the process. As the amount of
free silver grows, however, the work function of the trapping centers
should approach the value of about 4 ev for metdllic silver, making it
more and more difficult for reversal to occur. Actording to the most
reliable measurements it requires between five and ten quanta per grain
to form & stable latent image under the most favorable conditions. This
fact indicates that the work function of a clump of five or ten silver
atoms is sufficiently large to prevent reversal at ordinary temperatures.
5. Extensive experimental investigation by Webb and others has
shown that the efficiency for producing the latent image decreases with
decreasing light intensity at very weak intensities.! This fact is an
immediate consequence of the possibility of the reversal discussed under 4,
for if the light intensity is sufficiently weak each silver atom may dis-
sociate thermally before another is formed. The efficiency for producing
the latent image does not continually increase with increasing light
intensity, however, for it is found to fall at high intensities. Limited
“ionic conductivity presumably is responsible for this effect. Unless the
charges of the trapped electrons are neutralized as fast as they are
trapped, some of the electrons will be repelled from the trapping center
and will recombine with the holes. In this connection, Webb? has shown
that the efficiency for production of the latent image attains a low value
that is independent of light intensity at liquid-air temperature. Presum-
ably, both the probability of thermal dissociation of the silver atoms and
the ionic conductivity are vanishingly small at this temperature so that

1 This type of change of efficiency with intensity is related to reciprocity-law
failure of ordinary photographic plates for exposures with light,
*J. H. WesB ax» C. H. Evans, Jour. Oplical Soc. Am., 28, 249 (1938).
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the light simply charges the centers to a point where all other electrons
are repelled. When the crystal is warmed, enough silver ions migrate
to the electrons to neutralize the charge, which happens to be sufficient
to form a latent image. If it were not sufficient, no latent image would be
formed as a result of low-temperature illumination.

6. If illumination'is continued after the latent image has formed, the
amount of free silver continues to grow and eventually an appreciable
fraction of the crystal is decompoaed corresponding to the results of the
print-out effect.

7. Since the latent image is near the surface of the crystal, it comes in
contact with the developer when the crystal is immersed. Apparently,
the silver atoms of the latent image oxidize the developer molecules and
thus-obtain a negative charge which attracts silver ions and causes the
amount of free silver to grow just as if illumination had been continued.

Another type of darkening process which has been studied extensively?
is that occurring in zinc sulfide which has been su‘lably heated. Since
zinc sulfide is mosi commonly used either as a paint pigment or as a

~luminescent material, this darkening usually is a disadvantage.

1 This work is reviewed in a paper by N. T. Gordon, F. Seit 7, aud F. Quinlan, Jour,
Chem, Phys., 7, 4 (1938).



‘APPENDIX
DERIVATION OF HARTREE'S AND FOCK’S EQUATIONS

a. Hartree’s Equations.—Hartree’s equations are based upon an
cigenfunction of the type

Y = (T )¥a(Ts) - - - Ya(ra), (1)

in which it is assumed that the y; satisfy the normalization condition
J |’J’t'l’d7t' =1 (2)

but are not necessarily orthogonal.
From the variational theorem, we should expect the “best’’ ¥; to be
those for which

aI‘I'*H‘PdT(:le T Jz") fh Tttty rrl) =0 (3)
with the auxiliary condition (2). We shall write 7 in the form

E 1‘;'39 .. :
H = H.+§ I-r*;;_ (S,J=1,' ot ,?’E) (‘1)
i J

where H; depends only upon the variables r; and is the same function of
these as H; is of r;, Equation (3) may then be written in the form

-EJ‘[%*@':) s \b."(rn)(EH,-—l-%E'%: .
i J ik

I'h(fl) C (T )W (i) o ﬁ'n(fn)wi(l’i)]df’ +

Ef[ih*(rt) s V":‘--l*(-ri-—-l)\f’i*'*::m-l; Coroe '.(ﬂn*(l'-)a\('i'(.f;)'

- 1Y e :
(S +3S Den - v i = 0. )
i ik _
When integrated, this reduces to
' ’
S J‘W[E f'h‘ffahdn + 1 o [y,
i , kot Hj.kp‘l' *
T N I : fom in 50.%)
ok et ) 3¢: + (a symmetrical expression in &¥;*) = 0. (6)
i ’ '

877



678 . THE MODERN THEORY. OF SOLIDS

The variational equivalent of (2) is _
N( [ pdr -+ [SbMadr) = 0, (7)
The result of adding (7) to (6) with Lagrangian multipliers, ), is

?J"ﬁ\ [EJ‘% H;"hd‘r, 12 et l“”(’:)l’i%(n)vd +

H. + 2 e? ”"[ Wlar; + ]W,d-r.

(a symmetncal expression in &%) = 0. (8)

If the condition that H is Hermitian is used, the position of & and y;*
may be reversed in the written term of (8). Since 3¢ and &),* are_
independent variations and are independent of the variations of & and
oy *(k > ), the necessary and sufficient condition that (8) be satisfied
is that the coefficient of each &y, and each &y,* be zero. These conditions
are

Habi + (2 fi—ﬁ‘:;l‘id'r:)\b- 4- (2 J.‘;’J'*H\bid"i +
i Fl o

fl'm N"k! d I‘"‘ x‘)‘“ 0 (Q)

Johvei
avd

Hy* + (2 J"Lﬁ-ﬁj‘dﬁ')%* + (2 fﬁr;*H\b,dr; +
Fl ' i )

Jilertd
Obviously, only one of these need be considered since the two equations
are complex conjugates. We obtain Hartree's equations

Ha + (EJ‘N’:’P r;)lh + e = 0 (10)
Ji g
by setting

(E f‘,,,...wﬂwz fzm m& H)_ an

If we require, in addition to (2), that
Jo*dr = & (12)
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and if we add the variational equivalent of this to (8), we find that a term
3 M is added to (11).

ird

b. Fock’s Equations.—The derivation of Fock's equations may pro-
ceed along exactly the same lines as those employed in part a with the
exception that the basic wave function is

1 _ '
¥ = Wg(fl)"P-iil(rf) C o aEDm(EY) ¢ ma (D] (18)

wherg

*l"‘*b ‘Piﬂ\bls"'l ¢'-I=¢u

and: the spin functions # are opposite for the members of each of these
pairs of equal functions. In this case, we have '

oY = :}/::2(—-1)’?.[2%(:1) .
Py

i

T Weni () - - - P EITED) - - - n-(ﬁ.)j- (14)

We shall substitute this in the equation _
Sf¥*HVYdr = [YHo¥dr + [6¥*H¥dr = 0 (15)

where H is given by (4). After integrating, summing over spin, and
using the condition [¢:*(r)y;(r)dr = 0, for ¥; > ¢;, and | lil2dr = 1, we
obtain

2 J (“’""*)[E {wr e e +

1 \f’,{z’%(:’
§E Wi (r2) |2 (ra) |

! E f,p,*{n)%*‘(n)& (I's)%{fs)d s+ Hi +

T23

Il amn:

622 I‘IE’J R)L . + Ma] — {Er\h*(fg)[esf#{: (f:)f’i(fn)dn +

] lpml

f\h*(rz)Hﬂ"r{fﬂ + A ]})Wﬁ(h)dﬁ +
[a symmetrical expressioh in &;*(r1)] = 0. (16)
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The N} are the Lagrangian multipliers for the orthogonality and normal-
ization conditions. We shall set

' !
M= Nk D [ Haedes + 5 o [T,
i ik

%2 esfih‘(!t)Hf'k‘(fa)\f'f(fl)'f’k(rs)d?” a7
ik

T

is
|} anins

and
N = Ny + 3 [ e H (@) dr, (18)
i

We find, upon equating the coefficient of &¥:(r;) to zero, as before, that

[Hl + Es’f-[ﬁ%—)—lfdfz -+ kii]\"l'(rl) -
i

' 2 | Wit (T (ra) —
E [c_ f —-}:;‘—’Td'ru + x.-,-]-x«,- =0. (19)

|| spins

Equation (19) is valid only for those states of sero multiplicity which
correspond to a complete set of paired ;. In other cases, these equations
will be modified in 2 way that depends upon the type of wave function.
We shall not discuss these cases since the one leading to (19) is sufficiently
general for our nceds, '
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A

Absorption coefficient, 631f., 635, 646
alkali metals, 652
semi-conductors, 662
transition metals, 656
Abgorption spectra, alkali halides, 410,
448, 6571
F centers, 662
infrared, 666
ionic crystals, 4081,
wnetals, 6514,
semi-conductors, 681 4.
Acceleration in band scueme, 315f.
Accidental degeneracy, 290
Altivation energy, reactions in solids,
474, 550
semi-conductors, 459f.
Additivity, atomic heats, 38
“onic radii, 51
ionic susceptibilities, 59
refractivities, 660 '
Adiabatic approximation, 470f.
Alkali halides, absorption spectra, 408f.,
448
bands, 441
charge distribution, 44+
cohesion, 80f. -
conduction levels, 446°
discoloration, 460
F centers, 457
Hall effect, 563
ionic conduectivity, 55, 385f.
lattice defects,"h8f.
Madelung constanis, 78
" optical properties, 657f.
photoconductivity, 413, 446, 459, 563
semi-conductors, 457
vacancies. 4581
Alkali metals, Bloch functions, 350f.
cohesion, 348ff., 366
correimtiBn cnergy, 366
¢oulomb field,"349
effective mass, 353

Alkali metals, elastic constants, 116
electronic structure 420f.
exchange cnergy, 359, 421
ion-core ficld, 348
level density, 366
optical properties, 423, 652
paramagnetism, 599
simple treatment, 382
specific heat, 116, 421
total wave function, 308f.
work function, 392

Alkaline earth metals, bands, 424f.
level dengity, 424

Alkaline earth salts, absorption spectra,

408f.
cohesion, 81f.
excitation states, 418f.
Hall coefficient, 467
photoconductivity, 413

Allotropy, carbon, 484
cobalt, 8, 487
helium, 485
ionic orystals, 89f.
iron, 8, 487 '
metals, 2.
sulfur, 484
theory, 473f., 478f.
tin, 8, 483

Alloys, 26f., conductivity, 541
Curie point, 45, 624
diamagnetism, 595
diffusion, 4956
equilibrium conditions, 500
exchange integral, 624
ferromagnetism, 45, 623f.
filling of levels, 434, 501
heat of formation, 38 -
Hume-Rothery rules, 28, 30f.
interstitial, 25f.
magnetic susceptibilities, 42f7., 595
ordered, 37, 502
phase bounidaries, 499
phase changes, 500
quenching of magnetization, 44f.

687
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Alloys, resistivity, 39f., 43f.
substitutional, 25f.
thermal properties, 37
Angular momentuimn, orbital, 426, 578
spin, 206f., 232, 426, 577
Anisotropy, 21, 627f.
Antisymmetric states, 209, 236, 243
molecular helium, 264
two electrons, 232, 260
Approximate methods, 329f.
Atomic dipole moment, 218
Atomic heat (see Specific heat)

B

Band scheme, 251, 271f.
alkali halides, 441
alkali metals, 348, 4207.
anisotropy, 628
Boltzmann's equation, 319
conduectivity, 274
connection with Heitler-London
scheme, 337
diamond, 452
excited states, 407, 408
ferromagnetism, 339
holes, 317 )
ionic erystals, 441
level density, 307f.
metals, 420f.
- narrow bands, 303f.
overlapping, 296
riles concerning, 274ff., 205f.
transition metals, 426f., 468
Barkhausen effect, 25
Beryllium, 371f.
level density, 371, 437
work function, 400
Beryllium atom, 2471

energy, 248
Beta brass, 35f., 506
specific heat, 37
Bismuth, 425

diamagnetism, 595
effective mass, 594f., 599

. optical properties, 656

Bloch funections, 272f.

accuracy, 312
alkali metals, 348, 350f.
approximate, 273, 394, 303f., 3311,
excitdtion waves, 647f.
iree cleotrons, 272
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Bloch functions, nsrrow bands {sec
Approximate methods)
symmetry, 275
Bloch scheme (see Band scheme)
Boltzmann’s equation of state, 168f., 173*
in band scheme, 819 516f., 626
Boltzmann's theorem, 09 i
entire solid, 479
Bond functions, 210 _
Born-Mayer equation, 87, 98
justification, 445 .
Born-Oppenheimer equation, 470
Born-von Kédrmén boundary conditions,
118, 121, 126, 272
Bound electrons, 274
Brass system, 30, 43
Breaking strengihs, 98
Brillouin functions, 581
Brillouin zones, 284, 287f., 294f., 208

Cp — C, correction, 136
Carbon atom, 249
Carbon dioxide, 394
Carborundum, 2, 61, 63
Cauchy-Poissc~ relations, 94, 376
Cellular method, 329
alkali metals, 349
empty-luttice test, 832
Cellular polyhedron, 330f., 362
Characteristic temperature, ionie crys-
tals, 57, 114, 134§
metals, 108, 109
Chemical constant, 403
Chemical reactions, 470
Closed shells, 228, 247, 262f., 302f., 310,
346
copper, 367 _
diamagnetism, 582
ionic crystals, 388
rare gases, 393
Closed-shell inieraction, 262f.
alkali metals, 360
metals, 376
Cobalt, allotropy, 8, 487
Coherent scattering, 542
Oahesion, 345f. .
alkaline earth salts, 81f.
alkali metals, 348, 366
alloys, 38, 271f., 378
carbon dioxide, 393
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Cohesion, copper, 367
Fock approximation, 368
ionic crystals, 46f., 78, 80f., 88f., 271,
assf.
lithium hydride, 390f.
fhetallic hydrogen, 367
metads, 3, 2711, 367f.
molecular solids, 73, 391f.
molecules, 254ff. .
solids, 271f.
transition metals, 427f.
valence crystals, 61, 271f.
Collisign terms, 169, 525, 538
Lompetition of energy terms, 230
Compressibility, 76, 138
& jonic crystals, 391
theory, 373f.
Conductivity, alkali halides, 55, 64
alloys, 544 -
band theory, 274,.297f.
change with melting, 401
ch&nge with order, 41, 504
classical theory, 190
critique of theory, 534
cuprous oxide, 65
dependence on vapor pressure, 70, 461
excitation waves, 416
ionic solids, 55fF.
low temperature, 531
magnetic field, 184f.
metals, 9, 170f., 1744, 180, 426, 5164
optical region, 631f., 635f., 648
semi-conductors, 63, 189f., 157, 461,
466
simple metals, 5361
suriace, 642
transition metals, 535
Copper, hands, 367, 423f.
cohesion, 367
optical properties, 424, 654
Copper-gold system, 33, 36, 503
Copper-silver system, 33 -
Correlation of eleetrons, 231
exchange, 240 .
free electrons, 242
hrdrogen molecule, 259
metals, 420
narrow bunds, 330
golids, Mae X
Corrclation cnergy, 231, 234
alkali imotals, 366
atoms, 227f.

689

Correlation energy, beryllium, 373 -
free electrons, 342fF.
narrow bands, 339

Covlomb vnergy, 346, 357
ulkali metals, 363

Cross ecction, alloys, 543f.
angular dependence, 528§,
_electronic ecollisions, 169, 320, 526,

b41f., 5456
ionic crystals, 554
low temperature, 531

Cuprous oxide, 2
conductivity, 65
levels, 467F.
rectification, 575
vacancics, 467f.
work function, 481

Curie law, 581, 606 .

Curie temperature, 23, 26
alloys, 45, 624
dieleetric, 607
theory, 610, 616

Curic-Weiss law, 24
theory, 610

Current operator, 221§, 417

b

Damping, lattice vibrations, 666f.
radiation, 633, 637
Darkening, silver halides, 672
zinc sulfide, 672
Debye function, 109, 152
Debye’s theory of specific heats, 104f.
deviations, 117, 120, 134
" modification, 112f., 124
Degeneracy, 210
accidental, 290
diamond, 453
excited states, 411,
Fock's equetions, 302
lattice vibrations, 479
magnetic field, 583f., 617
orbital, §79
spin, 579
spin waves, 617
d electron band, 153f.
copper, 423
filbng, 156
holes, 155f.
noble metals, 428f.
Paulirg’s theory, 429
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d-¢leciron band, splitting, 429
transition metals, 426f.
widths, 158
Demagnotisation factor, 603
Density of levels, 143, 163F.
Density raatrix, 244
Deterninantial wave functions, 237

Einstein function, 103

Kinstein's theory of spegific heat, 99

Elastic constants, 84
alkali metals, 118, 373
Cauehy-Poisson relations, 84, 376 o
change with ordering, 503
compouent parts, 375f.

wmolecules, 283 ionic eryatals, 85, 301

solids, 302 isotrgpic media, 106, 877F.
Diamugmetism, alloys, 5&5 theory, 373f.

bismuth, 598 Elastic waves, 12¢

olosed shells, 582 Electric polarization, 807

_ free electrons, 583f., 504
narrow, bands, 590

Electromagnetic vheory, 208, 210p.
Electron affinities, 46

Dismond, 2, 61 hajogens, 49, 805,
allotropy, 484 negative ions, 80f., 4141, 448f.
. banda, 4527. Electron-atom ratio rule, 30y.
Dieleetric , 316, 562 Bleetron coupling, 535
Dielectrie copatent, 629, 635 - Electronic distribution, 231
Diffusion, 4547, DARH. alkali halides, 443
alloys, 466 sing oxide, 447 -
intorstitial, 4954. FEleetron-electron collisions, 536, 540
ionie conduotion, 548f., 5587 Electronic eonductivity, 62

jump frequency, 495, B48

Dipaole-dipole interaction (:: van der
Waals interaotion)

Dipole layer, 396
Dipole momuent, stomic, 218

surface, 396
Dipole-quadrupolo interaction, S6f.
Dislocations, 08

Domain theory, 30f.
Drift termas, 169, 525
d shells, 2, 16, 4204,
" ferromagnetism, 614
Dulong rnd Potit’s law, 14, 38, 108, 138,
487

Effective electron mass, 141, 153, 816
sikali metals, 854
bismeth, 5638, 509
ionis solids, 441, 445
negative, 218
optical, 853
theory, 350
transition metals, 1587., 536

Eigenfunction, 187
antisyrametrie, 200

ionic crystals, 554

Electronic specific heat, alkali metals, 42

aluminum, 152
" classieal, 144

copper, 152

iree clectrons, 422

free energy, 487

iron, 158

nickel, 18

palladium, 158

platinum, 158

silver, 152§

sine, 182f.
Electron magnetic moment, 203
Electron mobility, 183
Fleetron spin, 203§f., 232

Dirse theory, 208

magnetic moment, 207

Pauli theory, 204f.
Electrostatic energy, 77

Electrothermal cffects, 178f., 191

Emission prohability, 218f.
Entropy, {ferromagnetism, 608
lattice vibrations, 481
mixing, 458, 409
ordering, 504f., 500
solid, 476
superconductors, 546
vacancies, 458, 481
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Exchange correlation, 240

narrow bands, 384
Exchange eaergy, 240
, alkali atoms, 350°

dlkali metals, 359, 422

beryljjum, 371

copper, 367

Fermi-Thomas theory, 388
*{erromagaetism, 612f., 618, 638

free electrons, 339f.

ionic orystals, 388

m , 308

narrow bands, 334f.

"Exchange function, 340, 308

Rxchange integral, 240

alloys, 624 -

ferromagnetiam, 612f., 618, 623
Excitation funetion, 561
Excitation spin waves, 6820
Excitation waves, 413, 414, 6171

alleali halides, 413

conduetivity, 418, 416

decomposition, 563,

insulators, 451

meiala, 408

Molecular solids, 468

narrow bands, 416

normalization, 413

optical properties, 847f.
Excited states of solids; 407/,

atomic arrangesmaont, 451

band scheme, 407, 408f.

jonic solids, 409,

metals, 4091f.

semi-conduciors, 414
Exciton (see Exocitation waves)
Expansion coefficients, 380

ferromagnetism, 628
Extinction coeflicient, A32f.

F

F centers, 459, 565
absorption, 459
free energy, 468
levels, 468 .
optical properties, 565, 662
F' centayg «567 .
Fermi energy, 3§5
alkali metals, 355
copper, 349
Fermi-Dirac distribution, 145

Fermi-Thomas theory, 368, 378, 3847,

Ferromagnetism, 156
alloys, 45, 434, 623
anisotropy, 22, 627
critique of theory, 622
domain theory, 20f.
entropy, 615
free electrons, 602

sum, 25
Heisenberg theory, 612
Heusler alloys, 45
jonic crystals, 60, 623
partition funotions, 615
specific heat, 611
spin-wave theory, 617
Weiss theory, 608
factor, 643f.

F centers, 682
ionic crystals, 65%f.
rare gases, 845
sum rules, 649

Filling of levels
alkaline earth metals, 424
alloys, 434§., 501
magnetic field, 587
semi-conductors, 4564,
transition metals, 420, 535 -

Fluctuations, 478

Fock operator, 45

Fock scheme, 227

Fock's equations, 342f., 282, 677

connection with Hartree's, 335, 397,

molecular hydrogen, 260
solids, 302, 313, 335, 347
solutions, 246f.
Forbidden region, 273f.
Free electrons, correlation, 242
diamagnetiam, 583, 504
. ferromagnetism, 602
magnatic field, 554
metals, 139
optical praperties, 638§
wave functions, 341, 272
Free energy, carbon, 484
electronic, 487 '
F centers, 458.
lattice vibrations, 480
rare-gas polids, 492
semi-~conductors, 466
solid, 479
vaoancies, 458
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Free rotation, 511
Fowler's theory, 513
Pauling’s theory, 511

Fundamental absorption band, 411, 675 -

G

Gamma brass, 30f.
sone boundaries, 433
Gibbs-Helmholtz equation, 483, 487
" Glasses, 476
Goldschmidt radii, 92f.
Graphite, 61, 455
allotropy, 484
Group theory, 375, 297 .
Griineisen’s function, 533, 540
Griineisen’s law, 138f.
Griineisen’s theory of metals, 379
- Gyromagnetic ratio, 474

H

Hiagg’s rules, 35
Hagen-Rubens relation, 640
Hall constant, metals, 181f., 318
photoconductors, 563 -
positive, 182, 183, 194, 318
semi-conductors, 68f., 192, 563
zinc oxide, 467
Malogen ions, electron affifiity, 46, 80f.,
414f. .
Hamiltonian operator, 197, 199, 202,
212f1., 227, 246
complete, 470
crystals, 345§.
hydrogen molecule, 258
hydrogen molecule ion, 254 .
ionic erystals, 387
magnetic ficid, 576
mean value, 229, 236
Hamilton’s equations, 213
Hartree fields, 251, 333
Hartree functions, 234
Hartree’s equations, 235, 677
connection with Fock’s, 335
solids, 3291., 335, 347
solytions, 246f. .
Heat of formation (see Cohesion)
Heat of sublimation, 3
Heitler-London scheme, 251, 254f., 263
accuracy, 312
connectian with band scheme, 337
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-Heitler-London scheme, connection wit'

~ Hund-Mulliken scheme, 252, 263
301
excited states, 408
ferromagnetism, 612
ionic crystals, 441,
metals, 348, 420f.
Helium atom, 2314f.
Helium interaction, 264, 269
Hermitian matrix, 129, 199
Heusler alloys, 44
High pressure, 374, 382f.
Holes
in bands, 156f., 317, 430
ionie crystals, 446
semi-conductors, 457
Hume-Rothery rules, atomic size, 28
electron-atom ratio, 30f., 434
golubility limits, 28
Hund-Mulliken scheme, 251, 254f., 263
* connection with Heitler-Lgndon
scheme, 252, 263, 301
Hydrogen ‘nteraction, 268
Hydrogen molecule, 258
Hydrogen-moleeule ion, 254

I

Image-force barrier, 162
Impurity levels, 325, 4561.
Inelastic collisions of electrons, 523
Infrared spectra, ionic crystals, 665
width, 6664,
Inner shells, 272
diamagnetism, 601
Interstitial alloys, 25f.
, Higg’s rules, 36
Interstitial atoms, conductivity, 547f.
diffusion, 485
Invar, 625
Jon-core field, 330, 383
Ionie conductivity, 648
mean free path, 554
mechanism, 550f.
theory, 547f. .
Ionic crystals, 1, 46f.
absorption spectra, 408f.
allt')tropY. 893._
characteristic temperatire; 57, 114
«cohesion, 46, 78,-807., 880, 8857
conductivity, 55, 548f. _
effective mass, 441, 445
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Tonic crystals, elastic constants,

3901
equilibrium arrangement, 451
exchange, 388
+ eycited states, 409
Hainiltonian, 387
holes, 446
infrared spectra, 665
Jmagnetic properties, 59
mean free path in, 558
photocenductivity, 446
radii, 82, 1.
spew—=t heats, 57f., 99ff.
- structures, 49ff.
total wave function, 442
“Transport numbers, 56, 65
work function, 400f.
Ionization levels, 413
Iron, allotropy, 9, 487
band scheme, 4287.
expgusion coefficient, 625
magnetization, 20f., 610
speeific heat, 15, 158

J

Sump frequency, 495, 548

K

k space (see Wave-number space)
Kinetic energy, 229
Koopmans’ theorem, 313f., 408

- Kopp-Neumann law, 38
Kronecker delta function, 128
Kronig-Penney model, 282, 321

L

Lagrangian parameter, 202

Lambda point, 485
ammonium chloride, 511
crystals, 5111,

. Bpecific heat, 512

Lands factor, 581

Latent imsge, 675

Lattice derocts, density, 556
relative energy, bl

" silver halides, 8568
typgs, 381

95, Lattice vibrations, assembly of oscillators,

1001 :

Born-von Kdérmdn boundary condi-

tions, 133, 275f.
change during ordering, 506
coupling, 667, 672
damping, 451
diatomic lattice, 121
free energy, 481

frequency distribution, 103f., 121, 135

general theory, 476 :
Hamiltonian, 131
kinetic and potential energy, 131
normal modes, 105f., 119, 127
optical properties, 665f.
scattering by, 518f.
velocity, 120, 123
wave functions, 477f., 521
Laue’s conditions, 288
conductivity, 518 .
Level density, alkali metals, 366, 437
alkaline earth metals, 424 .
alloys, 433
anomalous, 439
bands, 307f. _
beryllium, 371, 437
complex metals, 425
from X rays, 436ff.
transition metals, 427, 440
Line breadth, 223f., 646f.
natural width, 224
vibrational broadening, 226, 670
Liquid helium, 269, 485
lambda point, 485
specific heat, 485
Liquid state, 4751., 488f.
+ helium, 485
supercooled, 475
Liquidus ¢urve, 27
Lithium hydride, 390f.
bands, 444
Lithium molecule, 262

Local field correction, 603f., 637f., 658

Long-distance order, 507
Lorentz forge, 170, 213, 317
Lorentz theory of collisions, 170
Luminescence, 452, 573, 672

M

Madelung constant, 78
Madelung energy, 363
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Madelung energy, siloys, 378
ionic crystals, 388
Magnesium-antimony system, 33
Maguetic anisotropy, 22
Magnetic moment, electronic, 208, 207,
428
Magnetic susceptibility, above Curie
point, 617
additivity, 59
alloys, 42f., 44f.
atomic, 605
dependence on straiu, 12
diemagnetic, 577
ionic crystals, 50f.
metals, {6, 159f.
theory, 1568f., 576f.
Magnetisation, 16
curves, 20f.
quenching, 44ff.
saturation, 28§.
temperature dependence, 18
theory, B76f.
Many-body problem, 2275.
Maxwell-Boltzmann statistics, 139
Maxwell’s equations, 211, 629f.
Mean energy of electrons, 144
Mean free path, 139
alloys, 541
electrons in ionic crystals, 558
high temperatures, 527
ionio crystals, 564
low temperatures, 531
metals, 173, 184, 190, 5181
photoconductivity, 5655., 568
semi-conductors, 190
theory, 5164., 5187, 526
Mean value, 198
Hamiltonian, 229
Melting, 475f., 488f.
conductivity change, 491
latent heat, 490
Mott theory, 400
rare-gas solids, 492
Metallic hvdrogen, 367
Metals, allotropy, 5
alloys, 25f.
atomic radii, 9
band theory, 272f., 420f.
cohesion, 3, 348f.
oconductivity, 9, 5184, 532
elastic constants, 3934,
electronic structure, 42047
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Metals, excited states, 407f.
Fermi-Thomas theory, 368
free-clectron theory, 139f.
high pressures, 374, 382
iron group, 427
magnetism, 16f. .
mean free path, 184, 190, 51§, 526
optical properties, 638(., 649
resistivity, 9
simple, 2
simplified theory, 8797
specific heats, 13f.
structures, 48,
superconductivity, 12, 545
total wave function, 308(.
transition, 4
work fuaction, 395f.

X-ray emission, 43617,

Metastable states, 452

Miller indices, 20

Mobility, eleetronic, 68, 183, 565

Molecular binding, 254f.

Moleculur crystals, 1, 72f.
cohesion, 391f.
levels, 468§.

Molecular notation, 254§.

Molecular wave functions, 253, 254fL,

Multiplet, 579 ’

Multiplicity, 210, 242

N

Neon interaction, 265, 383

Nickel, band schemé, 428f.
electronic specific heat, 15, 157
expansion coefficient, 625
magnetization curve, 20f.
optical properties, 6566

Noble metals, monovalent, 367, 423f.
optical properties, 655 .

Normal modes of vibration, 105f., 121,

127, 2754, 476

distribution, 135

energy. 131f.

Hamiltonian, 131

Lagrangian, 131

optical properties, 665
Nuclear-motion, equations, 4701
Nucleation, 51.5

o
One-eléetron scheme, 227f., 233, 2724,
280
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Operators, 195§.
Hermitian, 199
Optical properties, alkali halides, 408f.,
446, 6577,
alkali metals, 423, 6562f.
alkaline sarth ssits, 450
Bloch functions, 648
excitation waves, 647f.
& centers, 450
free clectrons, 8384,
ionue crystals, 887,
ﬁmls. G238, B49, A51 1.
nevalent tooie metdly, 424, 0490
quentum forinulation, G427,
semi-conductors, 459, GOl
“Order-disorder, 38y, 41, 486, 502
amalgams, 503
beta brass, 35f., 506
change in elagtic sonstants, 503
conductivity, 35f., 504
dependende on vibrational frequencies,
S0
entropy change, 504f.
magnetism, 608
gpecific heat, 37
¢heories, 508§
Order 36, 505f.
Oucillator strength, 845f.
© {S¢e aizo f factory
gxygen atoms, 250

II

Paramagnetic sajts, 608
Paramagaetiom. alkali metals, 5997,
contribution from exchange and corre-
lation, 600
above Curie temperature, 610, 817
free iow, A80F.
valence electron, 890
Partition function, 101
{arromagnetiem, 616
Inttice vibrations, 482
magnetic Seld, §80, 586
#pin waves, 618
Pauli principle, 141, 208f., 231
Peltier effect, 179
Fepetratinw thstamce, 842
Periodio boundarysconditions (see Born-
von Kdrmdn boundary conditions)
Periodic wave functions, 272, 280f.
Parmeability, 17

895

Pormulations, 208§,

Perturbation methods, Bardeen’s, 520
Herring and Hill’s, 332
Bchrédinger, 284, 289

semiclass cal, 5607,
time-dependent, 216, 521f.

FPhase changes, 470ff., 473f.

Phase diagragps, M
bra«s, 30, 802
copper-aluminum, 31, 502
copper-gold, 33
.copper-silver, 33
iron~cobalt, 34
magnesium-antimony, 33

Phase space, 143

Photoconductivity, 558
alkali halides, 413, 448§, 459, 562
darkening, 574
decrease at low temperatures, 566
displacement distance, 565
mean free path, 580, 572
quantum yield, 565f.
gilver halides, 874

Photoelectric offect, 1531, 670

Photographic theory, 6741,

Photolyeis, 678

Plasticity, 98

Polerisability, 629, 534 639
atomie, 287, 5494
complex, 631f., 642

Polarizetion current, STOf., 630F.

Polarization energy,
lattice defects, 351

Polymorphism (sez Allotropy)

Potassium chioride, anomalous specific

heat, 57

Potential in motal, 140

Primary ocwrrent, 585

Primitive teanslations, 15, 128

Prinecipal lattice vectors, 288, 208

Q

Quantum mechanios, 1084,

Quantum statistics, 209

Quantum yield, photoconductivity, 164,
565

Quenching, 27

R

Radiation field, Fourier resolution, 213f.
Hamiltonian, 214,
Interaction with matter, 218
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Radiation theory, absorption probability,
2137
damping, 224
Dirac theory, 215
dispersion, 220
emission probability, 2187,
linc breadth, 223
natural width, 223
Schrodinger-Gordon-Klnin theory, 215
aclection rules, 225, 326, 418, 423
Radii, atomie, 9
ionie, 51, B2, 1.
Raman scattering, 221
Rare-gas solids, free energy, 492
melting, 492
Reaction rates, 470, 494, 497
Reciprocal lattice, 204, 327
Rectifiention, 575
Reducéd mass, 232 .
Reduced-zone scheme, 122, 287, 202, 328
Reflection coefficient, electrons, 165f.
kght, 833, 640
Refractive index, 632f.
alkali halides, 657
Refractivity, 660
Relativistic electronic theory, 203
Repulsive-potential, ionic crys.als, 79f.,
o
Residual resist.sec, 541
Resigtivity, alloys, 39ff., 43f.
high temperature, 12
low temperature, 12
measurement, 64
- metals, 9.
residual, 541
(See also Conductivity)
Resonance, 217
Richardson-Dushman equation, 165
Russell-Baunders coupling, 578

S

Baddle point, 474

Scalar potential, 211

Behottky effect, 1624

Schrodinger equation, 198f.

Screening, 261

Secondary current, 58S,

Seeback effect, metals, 180
somi-sonductors, 192

Sclection rules, band geheme, 326
electronic collisions, 821f.
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Belection rules, excitation waves, 418,
6481
X-ray emission, 438
Belf-consistent ficlds (see Hartree fields)
Self-enesgy of charge, 36i
Semi-condnctors, 1, 627
activation energy, 459f.
conductivity, 63f., 1894., 457, 461, 465
dependence of conductivity on vapdr
pressure, 70, 192, 465 T
clectronic transport, 62f.
free electrons in, 188
Hall constant, 68f., 192, 456
holea in, 457 .
impurities in, 456
ionic transport, 64ff.
levels 414, 457
mean frec path, 190
optical properties, 661§.
theory, 1864.
vacancies, 458
Short-distance order, 507
Silica, 456
Bilver-go'd system, 28, 40
Silver halides, ionic conductivity, 64
lattice defects, 556
photoconductivity, 574
Bimple metals, 2
Sodium chloride, cohesion, 385f.
“effective mass, 441, 445°
energy levels, 4424
infrared absorption, 666
work functiop, 400
Solid types, |
clectronic structure, 4204
iransition between, 74
Solidus eurve, 27, 32
Solubility limit, ume-Rothery rule, 28
theory, 502
Specific heats, alkail metals, 116, 422
alloys, 38
aluminum, 152
anomalous, 57, 98, 100, 111, 1164, * "4,
B5i2
benzene, 1185
Blockmanr’s treatment, 99, 116, 120,
1337.
Born-von Xégnén theory, 46
C, — Oy eorragtion, 1864, '
copper, 152
Debye's thoory, 1047,
diamond, 454
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8pecific heats, Dulong and Petit's law,
38, 103
Einstein’s theory, 103
- elactronic, 15, 117, 144, 422, 487
Fermi-Dirac theory, 1504.
ferromagnetism, 611
ioyic crystals, 574
ivonp 15, 158
liquid helium, 485
metals, 13f., 432
niekel, 25, 157
ord®e alloys, 37
_palladium and platinum, 158
silver, 152f.
ur, 484
theory, 99f.
-tin, 483
zine, 152ff.
Sphere approximation, 349, 362f.
Sphericgl harmonics, 330
8pin angular momentum, 205f., 426,
577
Spin matrices, 205
Spinor, 204f.
Spin waves, 617
~excitation, 620
partition function, 618
Btate function,. 195f.
$atistics, classical, 139, 141, 517
Einstein-Bose, 486
Fermi-Dirae, 141, 144 4., 209
Maxwell-Boltzmanu. 139, 141
bructures, ionic erystals, 494
metals, 1ff.
molecular crvstals, 72
valence erystals, 60f.
tmstitutional alloys, 26f., 502
/ands, 432fF.
iffugion in, 495f.
&ler-disorder, 502f.
llotropy, 484
¢ heat, 484
ucture, 74
rules, atoms, 644, 649
. anoch fum:tiom;, 650
J factors, 644 .
Superco iGva 535
Su energy, 48, 51%
Surface properties, 395
~"=face resistivity, 642
-+ ce states, 320f.
re tension, 98

T

T? law of specific heats, 19. 533
deviations, 120
Theory of conduction, cnuque, 53"
Lorentz, 190f., 516
metals, 170f., 516f.
Sommerfeld, 174, 5i7
Theory of radiation
theory)
Thermal conduction, theory in metals,
1748,
Thermionic emission, 161f.. 402f.
Thermodynamics, 80, 402
Clausius-Clapeyron equation, 402
equilibrium conditionz, 476, 479, 500
Gibbs-Helmholtz equation, 483, 487
Thomson effect, 179
Tin, allotropy, 8, 483
disease, 483
gray, 61
specific heat, 483
Totul eleetronic-wave funstion of solids,
3087 '
alkaline earth salts, 44R
divalent metals, 312
excited states, 3)), 107/
wsulators, 309
ionic solide, 409fF., 412
metals, 308f., 407, 4205
semi-conductors, 407F., 414f.
Transition between solid types, 74, 469
"Uranrition metals, 2, 426
aliotropy, 487
ulloys of, 4344
atomic heat, 15
bands, 426
cohesion, 427f.
conductivity, 635f.
electronic heat, 133, 155, 432
holes in, 430
level density, 427, 440
magnetic properties, 428
optical propertiés, 656
Pauling’s theory, 429, 441
tungsten, 426
Transpzrent region, 636
Transport numbers, 66f., 465
Trappiog centers, 565
Tungsten, 426f.

(see Tadiation



n (see Forbidden. region)
fation, 230

Vacancies, 458, 461
gikali halides, 460
conductivity, 547§,
cuprous oxide, 467f.
" density, 550
diffusion, 495f., 547F.
enilropy, 458
free energy, 458
Valence binding, diamoad, 455
molecules, 270
solids, 421
Valenee erystals, 1, 80f.
Valence forces, 270f.
van der Weals interaction, 82, 84§, 262f.
ionic crystals, 388
metals, 360
~molecyior solids, 391§
raré gases, 492
Variational theorem, 200f., 227, 242, 259,
262, 473
Vector potential, 211, 577
Velocity, band scheme, 315f.
excitation waves, 417
group, 315, 417
sound, 109, 123
Vibrational broadening, 226

w

Wave functions, antisymmetric, 209, 230
Bloch, 251, 272
detérminantal, 237, 302 .
excitation waves, 414f.
excited states, 311f., 412
free electrons, 241, 272
Heitler-London, 261
Hund-Mulliken, 251
hydrogen molecule, 258
impurity levels, 325
lattice vibrations, 477f., 518f., 521
magnetic field, 584f., 501f.
molecular, 253, 254f.
one electron, 227, 233
periodic, 272, 278f.
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Wave functions, surface, 320
total of solid, 308§., 420f.
two electron, 232, 260

Wave packets, 315

Wave-number components, 107

Wave-number space, 273, 204
density of points, 204

Wave-number veetor, 107, 212
electronic, 272f.
prineipal, ~35, 208

Wiedemann-Franz law, 178

Work {unetion, 145ff., 166, 404
alkali metals, 399
beryllium, 400
interna! contribution, 397
nonmetals, 400f.
sodium chloride, 400f.
surface contribution, 397
temperature dependence, 402
theory, 394f.

Wronskian, 279

Wulfi’s theorem, 97

X

X-ray absorption, 407

X-ray diffraction, 288, 206

X-ray emission, 344, 407, 413
bands in metals, 4384
transition probabilities, 438

Zero-point energy, 86
Zinc oxide, 2, 464
conductivity, 70, 192, 549
diffusion, 496
Hall effect, 198
impurity levels, 414, 4471.
Seebeck emf, 103
Ti-omson effect, 193
Zone boundaries, 273, 505
Zone scheme, 122, 273
Zones, 273, 200 -
bismuth, 425
Brillouin, 284, 2871
ﬁg‘ul‘u, m! ’
gamma brash, 438
" mapping, 288
rules conoerning, 274f., 205f.
X-may difiraction, 288, 206





