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and Polarization of Light

All optical fields undergo random fluctuations. They may be small. as in the
output of many lasers, or they may be appreciably larger as in light generated
by thermal sources. The underlying theory of fluctuating optical fields is
known as coherence theory. An important manifestation of the fluctuations is
the phenomenon of partial polarization. Actually. coherence theory deals with
appreciably more than with fluctuations. Unlike usual treatments it describes
optical fields in terms of observable quantities and elucidates how such quan-
tities. for example, the spectrum of light, change as light propagates.

This book is the first to provide a unified treatment of the phenomena of
coherence and polarization. The unification has been made possible by very
recent discoveries, largely due to the author of this book.

The subjects treated in this volume are of considerable importance for
graduate students and for research workers in physics and in engineering
who are concerned with optical communications, with propagation of laser
beams through fibers and through the turbulent atmosphere. with optical
image formation, particularly in microscopes. and with medical diagnostics.
for example. Each chapter contains problems to aid self-study.

EMIL WoLF is Wilson Professor of Optical Physics at the University of
Rochester. and is renowned for his work in physical optics. He has received
many awards, including the Ives Medal of the Optical Society of America.
the Albert A. Michelson Medal of the Franklin Institute and the Marconi
Medal of the Italian Research Council. He is the recipient of seven honorary
degrees from universities around the world. Protessor Wolf co-authored
the well-known text Principles of Optics (with Max Born. seventh edition.
Cambridge University Press. 1999) and Oprical Coherence and Quantiim
Optics (with Leonard Mandel, Cambridge University Press, 1995). He has
also been the editor of a well-known series Progress in Optics since its
inception. Fifty volumes of Progress in Optics have been published to date.,
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Preface

“. .. the image that will be formed in a photo-
graphic camera — i.e, the distribution of intensity
on the sensitive layer — is present in an invisible,
mysterious way in the aperture of the lens, where

the intensity is equal at all points.”
F. Zernike, discussing coherence in
a lecture published in Proc. Phys.
Soc. (London), 61 (1948), 158.

The optical coherence and polarization phenomena with which this book is concerned have
their origin in the fact that all optical fields, whether encountered in nature or generated in
a laboratory, have some random fluctuations associated with them. The monochromatic
sources and monochromatic fields discussed in most optics textbooks are not encountered
in real life.

For thermal light, the fluctuations are mainly due to spontaneous emission of radiation
from atoms which generate the field. For laser light the fluctuations are due to uncontrol-
lable causes such as mechanical vibrations of the mirrors at the end of the cavity. tempera-
ture fluctuations and, again, arise also because contributions from spontaneous emission
are always present. For a well-stabilized laser these effects are largely manifested in phase
Auctuations rather than in amplitude fluctuations and also in the chaotic behavior of the
Jaser output that may be detected over a sufficiently long time. In the optical region of the
electromagnetic spectrum, the field fluctuations are too rapid to be directly measurable.
The theory of coherence and polarization involves average quantities that can be measured.
Cﬂnseqllelltly, the theory deals with observable quantities.

When [ Started writing this book my intention was to provide an introductory text on the
subject of classical optical coherence theory alone. Although there are now several books and
book chapters devoted to coherence, none of them seems to me to treat the subject at a level
appropriate for a reader who has a reasonable knowledge of elementary optics and none
presents the basic concepts and results of coherence theory in a sufficiently sound and yet

X1



X1 Preface

not too abstract manner. By the time 1 had written several chapters, a new development had
taken place. namely the discovery that coherence and polarization of light are two aspects
of statistical optics which are intimately related and can be treated in a unified manner.
Until then coherence and polarization had been considered as being essentially independ-
ent of each other — the only apparent link was the term “coherency matrix.” a 2 X 2 correla-
tion matrix which has been used in the analvsis of elementary polarization problems since
the 1930s. This term is actually a misnomer, because such a matrix has nothing to do with
coherence, as the term is now understood. Coherence is essentially a consequence of correla-
tions between some components of the fluctuating electric field at two (or more) points and
is manifested by the sharpness of fringes in Young's interference experiment. Polarization,
on the other hand, is a manifestation of correlations involving components of the fluctuat-
ing electric field at a single point and may be determined with the help of polarizers, rota-
tors and phase plates. Both concepts reflect “degrees of order™ in an electromagnetic field,
but they pertain to somewhat different statistical aspects of it. The theories of coherence
and polarization are, however, concerned not only with order and disorder in optical fields.
Their basic tools are correlation functions and correlation matrices which. unlike some
directly measurable quantities such as the spectrum of light, obey precise propagation laws,
With the help of these laws one may determine, for example, spectral and polarization
changes as light propagates. whether in free space or in a medium, which may be either
deterministic (e.g. a glass fiber) or random (e.g. the turbulent atmosphere). Consequences of
these laws are among the most useful aspects of the theory.

Until very recently, coherence phenomena have been studied largely on the basis of scalar
theory, whereas polarization requires a vector treatment. It was actually a generalization of
the concept of coherence from scalar fields to electromagnetic vector fields, introduced only
a few years ago, that has made 1t evident that coherence and polarization of light, whilst
distinct phenomena, are just two closely related aspects of statistical optics; and that many
features of fluctuating electromagnetic fields can be fully understood only when they are
treated in close partnership.' This discovery has not only enriched both subjects, but also has
already provided new insights into many aspects of statistical optics. This development, which
is discussed in the concluding chapter, is likely to find useful applications. for example, in
connection with optical communication, with imaging by laser radar and in medical diag-
nostics, but undoubtedly other applications will be forthcoming.

In order to provide a treatment of the subject which is not too demanding mathematically
and which will help the reader to acquire a working knowledge of it, detailed proofs are
sometimes omitted. Most of them can be found in M. Born and E. Wolf, Principles of Optics
(Cambridge University Press, Cambridge, 7th (expanded) edition, 1999) and in L. Mandel
and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press,

! Developmments leading to the recognition that there exists an intimate relationship between the phenomena of
coherence and polarization are discussed in an article by E. Wolf, “Young's interference experiment and its
influence on the development of statistical optics™ in volume 50 of Progress in Optics ( Amsterdam, Elsevier,
2007).
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Cambridge, 1995)." which also contain more detailed accounts of the subject, with full ref-
erences. The historical development of coherence theory is outlined in an article in Selected
Works of Emil Wolf with Commentary (World Scientific. Singapore, 2001). pp. 620-633.
Accounts of the development of the theory of polarization can be found in E. Collett. Polarized
Light (M. Dekker, New York, 1993) and in C. Brosseau, Fundamentals of Polarized Light
(J. Wiley, New York, 1998).

Some readers may note that parts of the presentation resemble fairly closely the treat-
ments given in B&W and M&W., This is mainly due to the fact that [ had difficulties in pro-
viding a different formulation, but it should be clear that this book uses more elementary
and less rigorous analysis, aimed at non-specialists, especially teachers and students. who
might perhaps also find it helpful that problems are included at the end of each chapter.
Additional problems can be found in M&W.

[ am grateful to Dr. Gale Gant and Dr. Don Nicolson for the photograph of the 20-foot
Michelson stellar interferometer at Mount Wilson Observatory, built in the 1920s. The pho-
tograph, reproduced as Fig. 3.12, was taken around the year 2000.

In writing this book I have greatly benefited from the assistance of many colleagues and
students who read drafts of the manuscript and helped in weeding out errors and improving
the text. I would particularly like to acknowledge substantial advice that I received from
Professor Taco Visser and also useful suggestions from Prof. Jannick Rolland, Mrs. Nicole
Carlson-Moore, Dr. David Fischer. Dr. Olga Korotkova, Dr. Mircea Mujat. Mr. Jonathan
Petruccelli, Mr. Mohamed Salem, Mr. Thijs Stegeman, Dr. Tomohiro Shirai, Mr, Mayukh
Lahiri and Mr. Thomas van Dijk. I am also obliged to Mr. Mohamed Salem and Dr. Sergei
Volkov for help with checking the proofs.

The staff of the Physics—Optics—Astronomy Library of the University of Rochester pro-
vided much help, especially with locating articles and checking references. I am much
obliged to Mrs. Patricia Sulouff, the Head Librarian, and to Mrs. Sandra Cherin and Mrs.
Miriam Margala for their assistance.

I am greatly obliged to Dr. Greg Gbur for preparing the excellent line drawings of most
of the figures and also for the beautiful figure which appears on the front cover.

Some of the research described in this book. especially that connected with the unified
theory of coherence and polarization discussed in Chapter 9. was supported by the Air
Force Office of Scientific Research (AFOSR). I am much indebted to Dr. Arje Nachman of
AFOSR for his continued support over many years and for his interest in our work.

[ acknowledge, with many thanks. the very substantial help provided by my secretary,
Mrs. Ellen Calkins, who, without any complaints, typed and re-typed numerous versions of
the manuscript and also prepared the author index.

[ wish to express my appreciation to my patient wife, Marlies, who spent long periods in
solitude whilst I was preparing the manuscript.

[ presented much of the material contained in this book in courses to Physics and Optics
graduate students at the University of Rochester and at the University of Central Florida:

! References 1o these books are abbreviated in the present work as B&W and M&W, respectively.
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but a good part of the text is an expanded version of notes that I prepared for a course which
I taught for many years at Annual Meetings of the Optical Society of America. I am
indebted to Dr. Simon Capelin, the Publishing Director for Physical Sciences of Cambridge
University Press. for suggesting that 1 expand the notes into a book and for encouraging me
to do so.

Finally [ wish to express my appreciation to the staff of Cambridge University Press and.,
particularly, to J. Bottrill, the production editor, K. Howe, the production manager and to
Dr. S. Holt who copy-edited the manuscript, for their cooperation and for having trans-
formed an imperfect manuscript into a beautiful end product.

Department of Physics and Astronomy Emil Wolf
University of Rochester

Rochester, NY 14627, USA

Spring 2007
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Elementary coherence phenomena

1.1 Interference and statistical similarity

The simplest manifestation of coherence between light vibrations at different points in an
optical field is provided by the phenomenon of interference. In fact, as we will learn later,
some features of the interference pattern provide a quantitative measure of the coherence
between light vibrations at two points in space and at the two instants of time,

Let us first consider light vibrations at a point P in an optical field. For the sake of sim-
plicity we will ignore, to begin with, the polarization properties of light and we may then
represent the light vibrations at a point in the field by a scalar, say U(r). If the light were
monochromatic, it would be expressed as

Uity = a cos(op — wt), (1)

where a and ¢ are the (constant) amplitude and phase, respectively, w is the frequency and
! denotes the time. However, as we have already noted. monochromatic light is an idealiza-
tion which is never encountered in nature or in a laboratory. Light that in some respects
imitates monochromatic light most closely is so-called guasi-monochromatic light. It is
defined by the property that its effective bandwidth. Aew is much smaller than its mean fre-
quency w, i.e. that

< 1. (2)
For such light the amplitude and the phase are no longer constant and its vibrations at a
point in space may be represented by a generalization of Eq. (1), viz.,

Ulr) = a(f)cos[a(n) — @1, (3)

where the amplitude a(r) and the phase ¢(r) now depend on time, and generally fluctuate
randomly. With the help of elementary Fourier analysis one can show (M&W, Section 3.1,
especially pp. 99-100) that for quasi-monochromatic light atr) and o(r) will vary very
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Fig. 1.1 Illustrating the behavior of the light vibrations U(r) of quasi-monochromatic
light at a point in space.

slowly over any time interval Ar which is short compared with the reciprocal bandwidth of
the light. i.e. for ime intervals

2m
At < .
A (4)

as illustrated in Fig, 1.1, where a(r) is indicated by dashed lines.

We have implicitly assumed that we are dealing with a “steady-state™ field. By this it is
meant that the statistical behavior that underlies the fluctuations of the field does not
change over the course of time. In the language of the statistical theory which we will
briefly consider later (see Section 2.1). such a field is said to be statistically stationary.

Let us now consider vibrations U, (1) and U,(s) at two points P, and P, in a quasi-
monochromatic field:

Uy(t) = a,(t)cos[oy(t) — wt]. (5a)

Us(1) = ay(icos[os(t) — wt]. (5h)

Suppose that we superpose these vibrations at another point P, for example by placing an
opaque screen across the field, with pinholes at P, and P,. Apart from some unessential
geometrical factors which depend on the size of the pinholes and on the angles of incidence
and diffraction, which we will assume to be small, the vibrations at the point of superposi-
tion may be represented by the formula

Ut) = U (1) + U, (1)

= a,(n)cos|o (1) — wt] + a,(t)cos|o,(t) — @r + 8] (6)

where & is the phase difference introduced between the two beams propagating from P, to
P and from P, to P, respectively.
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The instantaneous intensity /(7) at the point P may be defined, in appropriate units, as the
square of U(r):

Ity = U*(r)
= 1,(1) + L,(1) + 1 ,(n). (7)
where
I,(r) = a}(r)cos?[d (1) — @] (8a)
I,(1) = a3()cos’[o,(1) — @t + 6]. (8b)
and
15(1) = ay(Hyax ) {cos[o(r) + Oy(1) — 2wt + &] + cos[oy () — oy(t) — &]}. (8¢)

The expression (8c) follows from an elementary trigonometric identity.

Because of the very rapid fluctuations of optical fields, one can never measure the instanta-
neous intensity but only its average over some time interval —7 = ¢ << T which is large com-
pared with the reciprocal bandwidth of the light, i.e. T >> 1/Aw. To avoid ambiguity, and also
for reasons which will become evident later when we speak of ergodicity (Section 2.1), we will
formally let T— = and define the time-averaged intensity by the formula

T

o :
)= I—f'ml 5T J‘__ I(r)de. (9)

T

We attached the suffix 1 on the angular brackets to stress that the brackets refer to a time aver-
age and also to distinguish it from another type of average which we will encounter later.

Suppose that the amplitudes of the field at the points P, and P, are effectively independ-
ent of time (as is approximately true for the output of a well-stabilized single-mode laser)
and also that they are equal to each other. i.e. that a,(r) = a-(r) = a = constant. Then. on
taking the time average. we obtain from Eqgs. (7) and (8) the following expression for the
average intensity at the point of superposition:

(. =Ly ), {la). (10)
where
BT TR
i, =), =" (11a)
(1,,), = a*(cos[o,(r) — o,(r) — o];,. (11b)

In deriving the averages given by Egs. (11) we used the facts that (cos’[o(r) — @t]), = 1/2
and (cos[@;(t) + oy(t) — 2at + 6]), = 0.
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The formula (10) shows that the average intensity at the point of superposition is the sum of
the averaged intensities (/,), and {/5), of each beam and of a term, (/,5),, which represents the
effect of interference between the two beams. Were the beams strictly monochromatic, the
phases ¢, and ¢, would each be independent of time and the interference term (/,,), would
differ from zero, except at certain points, for which & takes a value that makes the cosine term
vanish. It is. however. evident from the expression (11b) that an interference term may be
present even if the phases ¢,(t) and ¢5(1) are not constant; in fact, even if they fluctuate ran-
domly. Suppose. for example, that ¢,(7) and ¢,(t) undergo random fluctuations but that

oalr) — o) = 3, (12)

where Jis a constant. Then evidently the interference term (/;5), will be non-zero, except for
special values of 6. just as in the idealized case of strictly monochromatic light. The simple
relation (12) may be said to be an example of statistical similarity' between the vibrations at
the two points. Thus we have shown that, in order to obtain interference, light need not be
monochromatic. It is necessary only that the interfering beams possess some statistical sim-
tlarity, which is the essence of coherence. This concept then acquires a precise quantitative
meaning in terms of the so-called degree of coherence of light.

1.2 Temporal coherence and the coherence time

We will now introduce by means of two well-known experiments some elementary con-
cepts relating to coherence.

Suppose first that we divide a steady-state quasi-monochromatic light beam from a source
S into two beams in a Michelson interferometer (Fig. 1.2) and that the two beams are brought
together after a path delay ¢ Ar (¢ is the speed of light in vacuum) has been introduced between
them. I Ar is sufficiently small, interference fringes are formed in the detection plane B. The
appearance of the fringes is said to be a manifestation of temporal coherence between the two
beams, because the contrast of the fringes depends on the time delay Ar introduced between
them. It is known from experiments that interference fringes will be observed only as long as

27

A = —, (1
Aw }

' A precise meaning of the concept of statistical similarity can be given in the framework of the theory of station-
ary random processes. The concept 1s relevant not only in connection with coherence but also in connection
with polarization. [H. Roychowdhury and E. Wolf, Opt. Commun. 248 (2005) 327-332,]

* By steady state we mean here that the averaged intensity

1 T

B It
2T <y

o + 0dt

taken over an interval 27 = 1/Aw is independent of the choice of 1, A more precise definition involves the
concept of statistical stationarity which we will encounter in Section 2.1. Whilst most ordinary laboratory
sources and sources found in nature (e.g. the stars) are of this kind, laser pulses do not belong to this category.
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Fig. 1.2 [llustrating the concept of coherence time of light by means of the Michelson
interferomeler. M, and M, are mirrors. M;; 1s a beam splitter (semi-transparent mirror). For
the sake of simplicity, a compensating plate and a collimating lens system are not shown.
To obtain interference fringes, one of the mirrors must be tilted with respect to the axis.

This result may be understood theoretically by considering the interference pattern formed
by each spectral component of the light and estimating the time delay for which the indi-
vidual intensity patterns get out of step, eventually canceling out. This time delay is called
the coherence time of the light and the corresponding path delay
o Nz

]A. (2)

AP 2L ..
Aw

AN

A being the mean wavelength and A\ the effective wavelength range. This quantity is
called the coherence length of the light.

We will illustrate the formula (2) by simple examples. Consider first thermal light. such
as would be generated by incandescent matter or gas discharge with a broad spectrum. The
bandwidth Aw is typically of the order of 10%s™', the coherence time At is of the order of
10~ 85 and its coherence length A/ ~ 27 X 3 X 10%ems™/10%7" ~ 19m.

Let us compare this result with light generated by a well-stabilized laser. with
Aw ~ 10*s™'. The coherence time of such light is of the order of 10~ *s and its coherence
length A/ ~ 190km, i.e. 10* times longer.

1.3 Spatial coherence and the coherence area

Another experiment which elucidates some aspects of coherence is Young's interference
experiment. Suppose that quasi-monochromatic light. assumed for now to originate in a
thermal source S, illuminates two pinholes in an opaque screen A (Fig. 1.3). For simplicity
we assume that the arrangement is symmetric, with the source having the form of a square
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Fig. 1.3 Illustrating the concept of spatial coherence by means of Young's interference
experiment with steady-state light.

of side Ax. If the pinholes at Q; and Q, are sufficiently close to each other, interference
[ringes will be observed on a detecting screen B throughout a neighborhood of the axial
point Py, provided that

Av Ad < X, (1)

where 2 A# is the angle which the line Q0> subtends at the source. A rough elementary
derivation of Eq. (1) may be obtained by considering the intensity distribution at the obser-
vation plane Bto arise from the superposition of intensities of independent interference pat-
terns formed by light from different elements of the thermal source. The relation (1) then
follows on requiring that the individual interference patterns remain approximately in step.
If the plane /1 of the pinholes is at a distance R from the source plane. the fringes will be
observed in the neighborhood of the axial point Py, in the observation plane B, provided that
the pinholes are situated within an area A4 of size

R- =2
A, 2
S (2)

AA ~ (RAGY =

where S = (Ax)? is the area of the source and the relation (1) was used. This area is said to
be the coherence area of the light in the plane A4 around the axial point Q,,. We see that it
increases quadratically with the distance R from the source plane. However, the solid angle
A€ which the coherence area subtends at the source is independent of the distance. being
given by the formula
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Although the preceding discussion has been confined to light from a thermal source, the
concept of coherence area applies more generally. However. the formula (2) applies only
when the pinholes are illuminated by thermal light.

[t is sometimes useful to express the coherence area in an alternative form that involves
the solid angle

0y
R’

A = 4)

which the source subtends at the axial point Qy. It follows at once from Eqgs. (4) and (2) that

X2
A = Sy (3)

A2
It is of interest to compare the coherence areas generated by various thermal sources. Let
us consider first a planar thermal source of area | mm?® emitting quasi-monochromatic ther-
mal light of mean wavelength A = 5,000 A (500 nm) and illuminating a plane A parallel to

it, at a distance R = 2 m. According to formula (2) the coherence area in that plane is
(2m)?

A = — X (5 X107" m)* = I mm?. (6)
107%m?

Let us compare this result with the area of coherence of filtered sunlight illuminating the
Earth’s surface. Suppose that the sunlight is passed through a filter with a narrow passband
around A = 5,000 A. The angular radius that the Sun’s disk subtends at the surface of the

Earth is approximately a = 0°16' = 0.00465 radians. Hence, if we neglect limb darken-
ing. the solid angle A" that the Sun’s disk subtends at the Earth’s surface is. therefore,

A =70 =3.14 X (465 X 1072 =6.79 X 10 %sr. (7)

Hence, according to Eq. (5), the coherence area of sunlight on the Earth’s surface is

_ (5X107% em)?
6.79 X 107°

~ 3.68 X 1073 mm?. (8)

Hence the linear dimension of the coherence area on the surface of the Earth of filtered sun-
light is of the order of (3.68 X 10 H2 mm ~ 0.061 mm. It is of some historical interest to
mention that this value agrees with an estimate made in the 1860s by the French scientist
E. Verdet, who used only a primitive notion of the concept of coherence.

Let us compare the coherence area of sunlight on the Earth’s surface with that produced
by a distant star. For this purpose we recall that according to Eq. (3) the coherence area is
inversely proportional to the solid angle AQ)" which the source subtends at the axial point
0, of the plane where the coherence area is to be estimated. Since the angular diameter of
a star when viewed from the Earth’s surface is many orders of magnitude smaller than that
of the Sun, one must expect that the area of coherence of star light at the Earth’s surface
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will be very much greater than that of the sunlight. As an example, let us consider the coher-
ence area formed on the Earth’s surface by the star Betelgeuse (a-Orionis), which was the
first star whose angular diameter was determined by an interferometric technique (dis-
cussed in Section 3.3.1). It was found to have an angular diameter of 2a ~ 0.047 seconds
of arc (2.3 X 1077 radians). The solid angle which this star subtends at the Earth’s surface
is, therefore, AQ’ = wa® ~ 4.15 X 10~ "#sr. Hence the coherence area on the Earth’s sur-
face of the light from this star, when passed through a filter which transmits a narrow band
around the wavelength X = 5,000 A, is, according to Eq. (5).

5% 1077 m)? 5
g BRI Wy Lo (9)
4.15 X 107" gr

It 1s evident from this estimate that there is appreciable “statistical similarity™ (spatial coher-
ence) between vibrations in the filtered light from the star reaching the Earth’s surface up to
a separation of about V6m? ~ 2.45m. Many stars have angular diameters which are
appreciably smaller than that of Betelgeuse and, consequently, light reaching the Earth
from such stars will be spatially coherent over much larger areas.

These results make it clear why stellar images formed in the focal plane of a telescope
have the appearance of diffraction images formed by spatially coherent light; for our analy-
sis shows that there exists a high degree of correlation in the star light entering the aperture
of the telescope over areas which are generally much larger than the area of the aperture.

1.4 The coherence volume

Let us now consider a field that is approximately a plane, quasi-monochromatic, steady-
state (1.e. statistically stationary) wave. The right-angled cylinder whose base is the coher-
ence area in a plane normal to the direction of propagation of the light and whose height is
the coherence length may be called the coherence volume (Fig. 1.4). It occupies a domain
of space whose volume is

AV = Al AA (1)

The coherence length Af is given by Eq. (2) of Section 1.2 and the coherence area, for ther-
mal light. 1s given by Eq. (2) of Section 1.3. On substituting from these equations into
Eq. (1) we obtain the following expression for the coherence volume of thermal light:

A |3
R [5]“ 2a)

or. if Eq. (4) of Section 1.3 is used.

| =3
V= —|— )
AEI'[ ]A @b)
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Fig. 1.4 Illustrating the concept of coherence volume AV in a steady-state field of a
thermal. quasi-monochromatic, approximately plane wave.

Let us estimate the coherence volume for the examples we considered a moment ago in
connection with the coherence area. We will assume that in each case the effective wave-
length range of the filtered light AX = 5 X 10™* A with mean wavelength A = 5,000 A.In
this case the coherence length is, according to Eq. (2) of Section 1.2, about 5 m. For a pla-
nar thermal source of area | mm* we found [Eq. (6) of Section 1.3] that the area of coher-
ence around the axial point Q, in a plane parallel to the source and at a distance R = 2m
from it has the size AA = | mm*. Hence, according to Eq. (1) of Section 1.4 the coherence
volume

AV~ (10" 'em)® X (5 X 10°cm) = 5cm". (3)

For filtered sunlight reaching the Earth we found [Eq. (8) of Section 1.3] that AA ~
3.68 X 10" *mm* and hence, using Eq. (1). the coherence volume of sunlight on Earth’s
surface is

AV~368 X 107 mm~ X 5 % 10°mm ~ 18 mm". (4)

For filtered light from the star Betelgeuse, we found that AA ~ 6 m* [Eq. (9) of Section 1.3],
so that

AV~6m* X 5m = 30m’. (5)

The formulas (2) pertain to radiation from a thermal source. However. the concept of
coherence volume applies much more generally. Consider. for example. light from a com-
mon-type laboratory helium-neon laser. Let us assume that the cross-section of the laser
beam is | mm?* and that the mean wavelength of the light is A = 6 X 10" %cm. Over a short
time interval, of the order of a few seconds, one can ecasily achieve stability that ensures a
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narrow bandwidth Aw ~ 10°Hz, implying an effective wavelength range AX ~ 1.2 X
10~ em. According to Eq. (2) of Section 1.2 the coherence length during such a short time
interval will be of the order of

R AGe mps)
106 s~ (6)

Al = 27 X

= 1900 m.

Assuming that the laser beam is spatially completely coherent over its whole cross-section
(which would be the case if the laser operated on a single mode). Eq. (1) then implies that
the coherence volume is

AV~1900m X 107%m* = 1.9 X 107 *m’, (7N

The concept of coherence volume has a counterpart in the quantum theory of radiation,
where it represents the so-called cell of phase space. It is the domain in a six-dimensional
phase space. formed by the three position coordinates and three momentum coordinates,
throughout which photons are indistinguishable. We will briefly discuss it later [Appendix
I(a)].

PROBLEMS

1.1 N quasi-monochromatic real scalar waves are superposed at a point P. The waves have
constant amplitudes and the same mean frequencies. Derive an expression for the
time-averaged intensity at the point P when the phases of the waves
(1) are constant;

(2) vary in unison. i.e. they differ from each other only by constants:
(3) fluctuate randomly and independently of each other.

1.2 The spectral density of blackbody radiation is given by Planck’s law

_ 8mhv? 1

c? ehpﬂk“?’! =]

where /1 i1s Planck’s constant, kg is the Boltzmann constant. ¢ is the speed of light in
vacuum, T is the absolute temperature and v = w/(27) 1s the circular frequency.

Estimate the coherence length of a beam of radiation whose spectrum is given by
Planck’s law and plot it as a function of kgT.

1.3 Betelgeuse in the constellation of Orion was the first star whose angular diameter was
measured. It was found to be 0.047 seconds of arc. Determine the coherence area
of the filtered light from this star on the Earth’s surface, at the mean wavelength
A=575X%X10" cm.
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Mathematical preliminaries

2.1 Elementary concepts of the theory of random processes

The elementary concepts that we have introduced rather heuristically in the preceding chap-
ter can be made more precise with the help of mathematical methods developed for the
analysis of random phenomena. This branch of mathematics is known as the theory of ran-
dom processes or the theory of stochastic processes. In this introductory text we will not delve
too deeply into the mathematical theorems and their proofs: rather we will try to get
acquainted with only the basic concepts and results of the theory in order to help us to gain
a deeper understanding of optical coherence and polarization effects.

Let us consider a real field variable x(r). It may represent, for example. a Cartesian com-
ponent of a steady-state electric field at some point in space, at time r. The exact behavior
of x(r) over the course of time cannot be predicted, because, as we noted in the preface, any
realistic field always undergoes random fluctuations.

Suppose that x(r) is measured in a series of very similar experiments and that (1), *x(1).
Ax(1). . . . are the outcomes of such experiments. as indicated in Fig. 2.1. We then speak of
an ensemble of realizations or of an ensemble of sample functions of the random function
x(1). Of course. such measurements cannot be performed at optical frequencies because of
the rapidity of variation of the field. but conceptually the existence of the ensemble 1s clear
and experiments of this kind can be performed with radiation at lower frequencies.

We have already encountered the concept of a time average [Eq. (9) of Section 1.1]. For
a typical realization “x(r) of the ensemble, the time average is defined as

-
(*x(n), = Lim%f fx(ndr. (1)

T —2% 2 T

One may define, in a similar way, the time average of a deterministic function F(x). where
x is a sample function kv(r) of the ensemble of x:

T
ST - 9
Lim — | F[*x()dr (2)

T—= —T

(F[*x(]),

11
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For example. if F(x) = 1 then
. I pT
oy = k(12
FIEx)]), = le TJ-TI x(n)]- dt. (3)

In the theory of random processes one also defines another kind of average. called the
ensemble average or the expectation value, which may be introduced as follows. Consider
first the averaged sum

1 5 :
—['x(r) + “x(r) + -+ +Mx(D], (4)
N
and let us formally proceed to the limit as N — =, One then writes

(x(n), = an—z kx(1), (3)

|\_-£ =3

which is one form of the ensemble average (average over an ensemble of realizations) of
A(7), denoted by the angular brackets with subscript e.

In a more abstract way one defines the ensemble average by means of an integral rather
than by a sum. For this purpose one introduces the probability density, p(x. #), with the fol-
lowing meaning. The quantity p,(x, r)dx represent the probability that the random field vari-
able will take on a value in the range (x, x + dx) at time 1. The probability density p, can be
estimated from an ensemble of realizations of x (Fig. 2.1). Suppose that among a large
number N of realizations the value of x is found within the range (x, x + dx) n times. Then

I
X, f) ~ —.
p,(x, 1) N (6)

The ensemble average of x(r), which may be regarded as a natural generalization of the def-
inition (5), is then defined. in view of Eq. (6), as

(x(r)), = f.x‘pif.r. fidx. (7)

where the integration extends over the whole range of values which v can take. We stress
that, although the random variable x is time-dependent, the variable x of integration under
the integration sign on the right-hand side of Eq. (7) is taken to be independent of time.
The formula (7) defines the simplest kind of ensemble average. namely the mean of x(r).
We will also need more general averages, for example. the ensemble average of F]x(r)], where
F(x) is again a deterministic function of x such as. for example. + or sin x. The ensemble
average is then defined by an obvious generalization of the definition (7), namely as

(Flxnl), = [ Fop,(x. ndx. (8)

Before proceeding further with the account of the basic aspects of the theory of random
processes we mention the form of the probability densities for thermal light and for laser



14 Mathematical preliminaries

light. For thermal light such as generated, for example. by incandescent matter or a gas dis-
charge, the probability density of the field variable, U say, is'

pU) = L ey, (9)
27 (1)

where (I) = (U?) is the average intensity, the average being taken over the statistical

ensemble. On the other hand, the probability density p, of the output of a single-mode laser
is well approximated by the expression

|
— Vﬁ'hﬂn |U| < JE.
pvy = { VU U (10)
0 when [U| > J{f_ﬁ

as was first shown by L. Mandel

Plots of the two probability densities (9) and (10) are shown in Fig. 2.2, We note some
basic differences between them. For thermal light, the value U = 0 is the most probable
value. whereas for the output of a well-stabilized laser it is the least probable value, the
most probable value being the square root U = £,/(I} of the stabilized intensity of the
laser output. Also, for thermal light there is always a finite (though possibly very small)
probability that U will take on any value. whereas for the output of a single-mode laser
there is zero probability that \U| > J{I) .

Returning to the general case. the probability density p(x. r) makes it possible to define
some ensemble averages, but is by no means adequate to characterize the statistical prop-
erties of a random function. This is because p(x, 1) depends on only one time argument. It
cannot, therefore, provide answers to questions concerning the statistical behavior of a ran-
dom variable at several instants of time 7y, 15, . . ., 1,. and consequently about averages of

" This result is a consequence of a general theorem of probability theory. known as the central limit theorem (see
M&W, Section 1.5.6). It asserts that, under very general conditions, the probability distribution of the sum of N
independent. or weakly dependent. random variables tends. with increasing N, towards a Gaussian distribution.
It we identify the random variables with the contributions to the total field arising from the different source ele-
ments (atoms), which at usval laboratory temperatures radiate independently by the process of spontaneous
emission of radiation, Eq. (9) follows.

* L. Mandel in Quantum Electronics, Proc. Third International Congress, N. Bloembergen and P. Grivet eds.
(Columbia University Press. New York: Dunod. Pans. 1964), pp. 101-109. See also L. Mandel and E. Wolf,
Rev. Mod. Phys. 37 (1965). 253. The same distribution was derived from a somewhat difterent model by J. W.
Goodman, Statistical Oprics (3. Wiley, New York, 1985), Section 4.4.1.

The singular behavior of the probability density (10) when U| = JE is a consequence of the rather
idealized model of the output of a single-mode laser. When a more realistic model is used, which takes into
account the presence of phase fluctuations caused. for example, by thermal fluctuations or vibrations of the
mirrors at the ends of the laser cavity, the probability distribution will not be infinite when |U| = J{I_J but
rather it will have a sharp maximum. Plotted as a function of arg U the probability will then have the well-known
doughnut shape [see. for example. O. Svelo, Principles of Lasers. third edition (Plenum Press. New York,
1989). Section 7.4].



The theory of random functions 15

12

gm Py
s

1F i
; light from a

i single-mode laser

T

0.8

1
]
[
i
]
i
]
I
!
i
L
r
L
i

thermal hight

= UA(T)

Fig. 2.2 The probability density p,(U) of the field variable U for light from a thermal

source and from a single-mode laser. [Adapted from L. Mandel in Quantum Electronics,
Proc. Third International Congress, Eds. N. Bloembergen and P. Grivet (New York,
Columbia University Press and Paris, Dunod, 1964, pp. 101-109).]

products such as x(1;)x(r5). To characterize a random process one needs a sequence of prob-
ability densities

pilxin). polx, X0 0, 0), pylx X f o f3), ...
The quantity p,(x,, x»; f;, 1,)dx; dx, represents the probability that the variable x will take on
a value in the range (x, x; + dx;) at time r;. and a value in the range (x, x; + dx;) at time

t». The higher-order probability densities ps, ps. . . ., have a similar meaning. One can then
answer, for example, questions such as “what is the ensemble average of the product

x(r)x(15)7" It is given by the formula
(x(r))x(ty)), = ff.‘l‘].l'lp:{.l'!. Xar s 1500 Ay (11)

We have assumed up to now that the random function is a real function of 1. Later we will

frequently encounter complex random functions of r, say

z() = x(r) + 1v(1), (12)

where x(7) and y(r) are real. The concepts that we have just been discussing may readily be

generalized to such situations, as we will now indicate.
The statistical properties of a complex random process z(t) are characterized by a

sequence of probability densities

pizis ), paz 2 ), P Tt ).
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The first one. when multiplied by d°z = dx,dy,. represents the probability that at time 1,
the random variable z will take on a value represented by a point located in the element
d’z; = dx,dy, around z; = x, + iy, in the complex z;-plane (see Fig. 2.3). The second
probability density, p,(z,, z>: 11, 1;), when multiplied by the product d°z; d°z, = dx, dy, dx,
dy-. represents the probability that the random variable z will take on a value represented by
a point in the element d*z, = dx,dv, around the point z; = x, + iv, at time ¢, and a value
represented by a point in the element d*z, = dx,dyv, around the point z; = x, + iy, at time
t>. The higher-order probability densities ps. py. . . . have similar meanings.

Ensemble averages involving complex random variables are defined by an obvious gen-
eralization of those involving real variables. For example

(27 (t)z(t,)) = f:l':zpz(;,. sty o AP, (13)

where asterisks denote the complex conjugate and the integration extends over all possible
values of z; and z> which the complex variable z can take on.

We spoke earlier about a steady stare. The concept of a steady-state process may be
regarded as a non-technical term for what is known as a stationary random process. By this
is meant a random process whose properties do not depend on the origin of time:; more pre-
cisely, a random process for which all the probability densities p, ps, ps, . . . remain invari-
ant under translation of the origin of time. Expressed mathematically, this means that

Pkt B vntinl vt Tc wls Hr = BlRi B o i b B o 2l (14)

for all values of 7 and for all positive integers n. Examples of such a situation are light
vibrations at a point in the focal plane of a telescope forming the image of a star (ignoring
the possibly finite life-time of the star).

For a real stationary field U(r) the average intensity, (/(r)). will be independent of time,
because

(1), = Uw), = [U?p, . ndU. (15)

dx

Y

0

Fig. 2.3 Tllustrating the meaning of the element d-z relating to the probability p,(z, Nd’z
(d*z = dx dv).
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and p, does not depend on ¢ because it has to remain unchanged under translation of the ori-
=in of time. Similar remarks apply to a complex stationary random field V(1), for which the
average intensity (/(t)). = (V' (OV(1))..

We are now familiar with two kinds of averages, the time average and the ensemble aver-
aze. Fortunately 1t turns out that. when one is dealing with stationary fields. these two aver-
ages usually have the same value. This 1s the essence of so-called ergodiciry, a concept
which we will now briefly discuss.

2.2 Ergodicity

In a broad sense a statistically stationary process is said to be ergodic if the time average.
taken over the interval —= < r < =, of any determimstic function F(&) of a typical real-
ization £ = *x(1) of the random process is equal to the corresponding ensemble average.
re. if

(F[*x@)]), = (Flx(]), (1)

and. more generally, if F(v. v2, .. .. ¥,) is a deterministic function of several variables y;,
¥s. . . .. ¥, then, for an ergodic ensemble

(F[*x(z)). ’*'.r{r:J. sy PRI B FTC N 0 s XL (2)

Such equalities may seem to be somewhat surprising at first sight since, for example, in Eq. (1)
the expression on the left-hand side seems to depend on the particular choice kx(1) of a realiza-
tion of the random process and is independent of time, whereas the expression on the right-
hand side does not depend on any particular realization and seems to depend on time. The
following example may perhaps indicate why the equality of the two types of averages might
be expected.

Consider a particular realization *x(1) of a stationary random process, such as that shown
in Fig. 2.4(a). Let us imagine that we divide it into long segments, which we label as T, 2.
= S each of duration 27 and let us place them under each other. as in Fig. 2.4(b). For an
ergodic ensemble we may expect that all the individual segments will be representative of
the ensemble of x(¢) of which *x(¢) is a member. Since the ensemble shown in Fig. 2.4(b)
was derived from the single realization “x(1) of the original ensemble. one might expect that
the statistical information which can be deduced from the single realization, (a). and from
the ensemble of realizations. (b), will be the same.

We will assume from now on that we are dealing with ensembles that are stationary and
ergodic. Consequently, it will not be necessary to distinguish between time averages and
ensemble averages and we will, therefore, omit from now on the subscripts f and e on the
angular brackets that denote expectation values.
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Fig. 2.4 lllustrating the meaning of ergodicity. The statistical information about the
ensemble of a stationary random process x(1) is contained in a single sample function
‘x(r) of the process. Dividing such a sample function into many parts. @, @, @, .. .,
[(a)] provides a valid ensemble [(b)] of realizations (sample functions) of x(1).
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2.3 Complex representation of a real signal and the envelope
of a narrow-band signal

In the usual treatments, when one deals with a real monochromatic wavefield, it is often
convenient to associate with it a complex monochromatic wavefield (see. for example,
B&W, Section 1.4.3). The use of the associated complex field simplifies calculations, espe-
cially if they involve averages of quantities that are quadratic in the field variable. e.g. the
mntensity. There is a similar procedure, which we will now describe. which 1s useful when
one is dealing with real random fields such as. for example, the wavefield generated by a
thermal source.

Let U(r) be a fluctuating real quantity, which might represent, for example. a Cartesian
component of the electric field at some point in space. Let us express it in the form of a
Fourier integral,

Ur) = f; u(w)e ' dw. (1)

Since U(r) 1s real, 1t is equal to its complex conjugate and. using this fact, it readily follows
that

u(—w) = u (w), (2)

where the asterisk denotes the complex conjugate. This result implies that the negative fre-
quency components contain no information that is not already contained in the positive
ones. For this reason we may omit the negative frequency components, i.e. we may use in
place of the function U(1) the function

Vi) = f: u(w)e “dw. (3)

Vi) 1s known as the complex analytic signal associated with the real signal U(r). The name
derives from the fact that the function V(r). when considered as a function of complex 1.
may be shown to be analytic in the lower part of the complex r plane (M&W, Section 3.1).
Moreover, one can also show that [M&W, Eq. (2.1-37)]

| .
V() = E[V“’{r} + V(). (4)

where the functions V"(r) = U(r) and V(1) form a so-called Hilbert-transform pair (some-
umes referred to as a conjugate pair); and, moreover. if V(1) is a stationary random vari-
able, then

([VODP) = =V (OV(1)). (5)

ba | =

Since the expectation value often represents the average intensity. the formula (5) shows that the
expectation value (V" (r)V(r)) may also be taken to be a measure of the average intensity.
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Analytic signals are particularly useful in representing the envelope of narrow-band
fields. To see this let us first consider a strictly monochromatic real signal x(f) of frequency
g, Le.

x(1) = a cos(v? — wot), (6)

where a and 1 are the amplitude and phase factors of the signal, both being constants. We
may rewrite Eq. (6) in the form

_r{f:l - L‘;_ﬂe- gt 4 %gaeim"r . (7)

|
2
where

& = ae®. (8)

The formula (7) implies that the Fourier spectrum of x(7) consists of two delta functions,
centered at frequencies wg and —wy, [see Fig. 2.5(a)].

Next let us suppose that x(1) is not strictly monochromatic but rather that it has a narrow
bandwidth Aw which is small relative to its mean frequency o, i.e. that

20 ot (9)

w

Such a narrow-band signal is said to be guasi-monochromatic. A typical Fourier spectrum
of such a signal is shown in Fig. 2.5(b). One often represents it in a form that is a general-
ization of that given by Eq. (6), namely as

x(r) = a(ncos[y(t) — wt]. (10)

The amplitude and the phase of such a signal are no longer constant as they are for a mono-
chromatic signal, rather they vary with time. However, as is intuitively perhaps obvious and
can be verified by elementary Fourier analysis, their variations are very slow compared
with the variation due to the term w?, remaining essentially constant over an interval that is
small compared with the reciprocal bandwidth 1/Aew. It should be noted, however, that the
representation (10) is somewhat ambiguous, because it associates with a real function x(f)
two real functions, a(r) and (1), and such an association is not unique. The analytic signal
representation makes it possible to avoid the non-uniqueness. One defines the complex
envelope by associating with x(r) the analytic signal [cf. Eq. (4)]

| :
(1) = 5[.:(11 + iy(1)]. (11)

where y(7) is the conjugate (Hilbert transform) of x(r). We can express v(7) in the form

w1y = a(t)sin[y(r) — wr]. (12)
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Fig. 2.5 The Fourier spectrum of a monochromatic signal of frequency wy is shown in

(a) and that of a real quasi-monochromatic signal of mean frequency w and bandwidth
Aw < w is shown in (b).

We now have two equations. namely (12) and (10). from which a(r) and v(r) may be
mmquely determined (apart from a trivial ambiguity of an additive phase factor 2m=, where
# IS an integer).

The function

2z(1) = [x(1) + 1v(1)]
- ﬂ{f)ﬂ"lt'“' -l {]“]

may be identified with a complex envelope of the narrow-band signal x(1).

We have so far regarded x(r) as a deterministic function. Suppose instead that x(7) is a sta-
monary quasi-monochromatic random function whose spectral density has an effective
sandwidth Aw which is much smaller than the mean frequency @. Such a random function
zan be represented by an ensemble of quasi-monochromatic signals. It is clear that its sta-
mstical properties are entirely reflected in the statistical behavior of the amplitude function
2 1) and of the phase function v«#).
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2.4 The autocorrelation and the cross-correlation functions

The two most important expectation values associated with a real random process x(r) are
its mean

m(t) = (x(1)) (D)

and its autocorrelation function (also known as the covariance function)’
R(t,. t5) = (x(1,)x(1,)). (2)

Let us assume that the process is statistically stationary. The mean will then be independ-
ent of the time argument ¢ and the autocorrelation function will depend on the two time
arguments 7, and 1, only through the difference 7 = #, — ;. We can then write R(7) in place
of R(1,, 15), i.e. we write

R(T) = (x()x(t + 7)). (3)

This function provides,. for a fixed 7, a quantitative measure of the intuitive concept of sta-
tistical similarity which we mentioned towards the end of Section 2.1. Let us plot a realiza-
tion x(r) and its “shifted version™ *x(r + 7) as shown in Fig. 2.6, it being assumed, for
simplicity, that (“x(r)), = 0. Evidently R(7) will have its maximum value when 7 = 0. As 7
increases R(7). in general, decreases because some of the positive values of x(r) will be can-
celled out by the negative values of x(r — 7). In fact one can show that, if the process is
ergodic, R(7) — 0 as 7—=. It is clear that the effective width of R(7) is a measure of the
time over which there exist correlations (some statistical similarity) between x(r) and
x(t + 7). The effective width of R(7) is evidently a more precise measure of the concept of
coherence time which we introduced earlier rather heunstically by an order-of-magnitude
relation [Eq. (1) of Section 1.2].

The autocorrelation function R(7) has a number of useful properties. of which some fol-
low immediately from its definition and others can be readily derived. The most important
ones are

R(0) = 0. (4a)
R(—7) = R(7). (4b)
IR(7)| = R(D). (4c)

U If the mean m(t) of x(t) is not zero, one often uses instead of the autocorrelation function R(1,. t,) the centered
autocorrelation function

.El.'lrl. 1) = {[xtr,) = mir, lxiry) — miz;)])
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2.4 Autocorrelation and cross-comrelanon

X(1)

1|.

Fig. 2.6 Illustrating the significance of the autocorrelation function of a real random
process x(r) of zero mean, as a measure of statistical similarity. As the separation 7
between the sample functions at two different instants of time  and 7 + 7 gradually
increases, “x(7) and “x(1 + 7) will acquire quite different values for each r. and the posi-
tive and the negative contributions will tend to cancel out in their product.

There is a theorem which asserts that the Fourier transform of the autocorrelation func-
won 1s necessarilly non-negative. This theorem, which 1s relevant to the definition of the
spectrum of a stationary random process (see Section 2.5) is known as Bochner's theorem
M&W, p. 18),

When the random variable is complex, we write z(r) instead of x(r) and we define its
autocorrelation function in a somewhat similar way to how it is defined for a real process
xir). If the complex process is stationary and of zero mean, we have in place of Eq. (3)

R(r) = (" (1)z(t + 7)), (3)
where the asterisk denotes the complex conjugate. The inequalities (4a) and (4¢) still hold.
Instead of the formula (4b) one has

R(—7) = R'(7). (6)

Later we will also need a generalization of the autocorrelation function for situations
involving two random processes, say z;(f) and z,(r). These processes may represent, for
example, the field variable at two points P; and P in space. Assuming that the processes
are also jointly stationary, i.e. that the joint probability of z,(7) and z-(r) is invariant with
respect to translation of the origin of time, the measure of their correlation is the so-called
cross-correlation function

R,,(7) = (g, (t)z,(t + 7)) (7)

[t has the following properties:

R, (1) < JR”(D]RH(D] (82)
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and
R,(—7) = R;I(T}. (8b)

Among the various parameters which characterize a random process, the mean m(r) and the
autocorrelation function R(t,, 1,) are particularly useful. When the mean is independent of time
and the autocorrelation function depends only on the time difference f, — 1, one says that the
process is stationary in the wide sense. Obviously a process which is (strictly) stationary (i.e.
for which all its probability densities remain invariant under the translation of origin of time)
is also stationary in the wide sense, but the converse is, of course, not necessarily true.

2.4.1 The autocorrelation function of a finite sum of periodic components
with random amplitudes

We will now examine the behavior of the autocorrelation function of a class of stationary
random processes which has a bearing on the concept of the spectrum of a stationary ran-
dom process, which we will discuss in Section 2.5,

Consider a random process represented by the ensemble

(0= {20} *k=123,....M), (9)
where each realization *z(r) is a sum of periodic components with frequencies @, w,, . . .

Wy, i,ﬁ.

k2(r) = KGN 4 K eT! e K om0, (10)

the *¢,, (m = 1,2, 3, .. .) being (generally complex) random variables. We will assume that
for each m the *C,, is of zero mean. i.e. that

(¢)=0 m=12,...M), (11)
and that the process is stationary, at least in the wide sense.
The autocorrelation function of this random process is
R(r) = (Z(Dz(t + 7))

M _ M _ :
=i e - =kt (f+T
= (| 2LGe || D™

=] n=|

M N
= X AGE et gty (12)

m=| n=|

Since the process is stationary, the right-hand side must be independent of r and this can
evidently be so only if

(_cj;q"} =0 whenn = m, (13)
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w2 the periodic terms of different frequencies must be uncorrelated. The formula (12) then

smmplifies to

M
R(r) = ) (G,C,)e"n", (14)

m=1|

We see that the autocorrelation function R(7) 1s now the sum of periodic terms at the same fre-
@eencies . wy, . . ., Wy as are present in the sample functions (10) of the process and that the
spectral component of each frequency w,, is (apart from a proportionality constant depending
om the choice of units) proportional to the average “energy” (or the average “power’™) associ-
med with each periodic component of the process. We note that the autocorrelation function
grovides no information about phases of the periodic components of the sample functions.
Thas process 1s evidently not ergodic because, as we mentioned earlier, for an ergodic process
M - — (0 as T — =, a condition which 1s not satisfied by the expression (14).

2.5 The spectral density and the Wiener-Khintchine theorem

The Fourier spectrum, which provides information about the strength of the periodic com-
ponents of various frequencies into which a function can be decomposed, is an important
concept in much of physics and engineering. It can be applied to many deterministic func-
pons encountered in practice.

The situation is more complicated with functions that are sample functions of a station-
ary random process. Such functions do not have a Fourier representation, because they are
defined in the time interval —= < 1 < 2 and do not approach zero as r — = and t — —.
Amempts to decompose such functions into harmonic components, i.e. into periodic com-
monents, have a long, rich and fascinating history, which cannot be discussed here. We will
only show how their formal decomposition may be used to introduce an important concept.
mamely the concept of the spectrum of a (wide-sense) stationary random process. We will
sgnore the mathematical subtleties encountered in a rigorous definition of the spectrum of
such a process. '

Consider a wide-sense-stationary complex random process z(r) of zero mean. i.e. such that

(z() = 0. (1)

Let us formally represent a typical realization as a Fourier integral
kz(r) = f kC(w)e “dw. (2)
A rigorous treatment requires the use of distribution theory. also called generalized function theory. An excel-

lent account of this subject is given in H. M. Nussenzveig, Causaliry and Dispersion Relations (Academic
Press. New York. 1972). Appendix A. pp. 362-390.
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Then, on inverting Eq. (2), we have
lw) = Lf “z(n)eidt (3)
27 of —=
and, consequently, with any two frequencies w and ',

| x = . J y '
K (w) E(w') = f_xf_x k= (Ok z(He e dr dr’, 4)

2r)?

Let us set t" =t + T, take the ensemble average of both sides and formally interchange
ensemble averaging and integration. We then obtain the formula

(@)(w")) = ] f f R(T)ell@ ~@heiw'rgs dr, (5)

(2w)?
where

R(r) = (Z"(Dz(t + 7)) (6)
is the autocorrelation function of the random process encountered in Section 2.4. The inte-

gration over 7 on the right-hand side of Eq. (5) can be carried out at once, being propor-
tional to a Dirac delta function:

=
1

o- | T = b’ - w). (7)
Equation (5) therefore implies that
((M(@)(w)) = S(w)d(w — @), (8)
where
S(w) = if: R(T)e'  dT. (9a)

On taking the Fourier inverse of Eq. (9a) we have

R(T]=f S(w)e " dw. (9b)

The formulas (8) and (9) imply two things. The first shows that for a wide-sense-stationary
random process the (generalized) spectral components of different frequencies are not cor-
related; and that the “strength™ of the “self-correlation™ (for w’ = w) 1s. according to Eqg.
(9a), equal to the Fourier transform S(w) of the autocorrelation function R(7) of the random
process. S(w), which is formally defined by Eq. (8). is known as the spectral density (also
known as the spectrum or power spectrum, or the Wiener spectrum) of the (stationary) ran-
dom process z(1).
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In order that S(w) agrees with the intuitive notion of a spectrum, it must. of course, be
non-negative. That this is so is fairly clear from the definition (8) and follows rigorously
from Bochner’s theorem that was mentioned earlier (Section 2.4), applied to Eq. (9a).

The results expressed by Egs. (8) and (9) are natural generalizations of those encoun-
tered in Section 2.4, in connection with a stationary random process consisting of a finite
number of periodic components of different frequencies.

The Dirac delta function on the right-hand side of Eq. (8) can be removed by integrating
both sides of that equation with respect to @' over a small range (0 — L Aw = w' <
@ + zl Aw) and then letting Aw — 0. This gives :

m*—{f&m
S(w) = Lim f T (@) () dw. (10)
i"u.u ‘ﬂ w‘—%;\w

The integration over the small frequency range expresses a kind of smoothing. In fact
smoothing 1s quite essential if one wishes to estimate the spectrum from a single realization
of a stationary random process (see Fig. 2.7).!

The formulas (9) are basic relations of the theory of stationary random processes,
expressing the so-called Wiener—Khintchine theorem. In words, this theorem expresses the
fact that the spectrum S(w) of a wide-sense-stationary random process of zero mean and its
autocorrelation function R(t) form a Fourier-transform pair.

For later purposes we will need a generalization of the concept of the spectral density
and of the Wiener—Khintchine theorem from a single random process z(r) to a pair of ran-
dom processes z,(r) and z,(r) which are jointly stationary, at least in the wide sense. In
optics zy(1) and z;(r) often represent the fluctuating optical field (represented by complex

' Alternatively smoothing can be provided by ensemble averaging. More specifically one can show [see. for
example, S. Goldman, Information Theory (Prentice Hall. New York. 1955). p. 244] thar

Stw) = Lim <“*+T’ﬁ> (10a)
T—= T
where
l =
. T)=— | z(ne“ds (10b)

15 the Fourier transform of the truncated process

i {;”]. when ifl < T.
o 0 when |1 = T.

The ensemble average and the limiting process (T — =) have 10 be taken in the order indicated in Eq. (10a). In
fact the limit as T— = of the expression in the angular brackets does not. in general. exist.
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Fig. 2.7 Schematic illustration of the spectrum S(w) of a random process. stationary at
least in the wide sense, and the spectrum

;
"(im.Tl=Lf kz(ner di
27 T

obtained from the Fourier transform of a single realization *z(r) of the process, truncated
over an arbitrary interval —7 = 1 < T. In general, the true spectrum S(w) cannot be deter-
mined from a single realization of the process without smoothing. Taking the ensemble
average, as indicated in Eq. (10a) of Section 2.5, provides one way of smoothing.

analytic signals) at two points in space. By a strictly similar analysis to that which led to
the derivation of formulas (8) and (9) one finds that

([ @) (@) = Wh(de — o), (11)
where
W,(w) = % R ,(T)ew dT, (12a)
and, taking the inverse,
R,(T) = f_z W, (w)e “ dw. (12b)

In Eq. (11), (@) and (;(w) are the generalized Fourier transforms of z(r) and z1(1), respec-
tively. The function W,(w). defined by (12a). is known as the cross-spectral density of z,(f)
and z>(r) and the function

Ry (1) = (g (1)z,(t + 7)) (13)

is the cross-correlation function of the two random processes. whose main properties we
noted in Section 2.4,

We will refer to the pair of formulas (12a) and (12b) as the generalized Wiener—Khintchine
theorem.
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PROBLEMS
Determine the analytic signal associated with the real signal

= 11 ‘'when—] =1 =,
) {0 otherwise.

x(r) is a real signal, bandlimited to the range lw,| = lwl = lw, + Al Show that the
square a* = 4lz(1)P of its real envelope is bandlimited to the range —A = w = A.

Consider a real random process
x(t) = a sin(wr + 6),

where a and w are constants and # is a random variable. Find necessary and sufficient
conditions on 6 to ensure that the process x(7) is stationary in the wide sense. Give also
a specific example of such a random variable 6.

x(r) is a wide-sense-stationary real random process of zero mean. Show that the com-
plex process z(1), obtained from x(¢) by replacing each sample function by the associ-
ated analytic signal, is also stationary in the wide sense and is of zero mean.

A random process x(f) = A, where A is a random variable, which is uniformly distrib-
uted on the interval (=1, 1).
(a) Sketch some sample function of the process.
(b) Determine the autocorrelation function of x(f) defined
(i) by a time average; and
(i) by an ensemble average.
(c) Is x(r) wide-sense stationary? Is it strictly stationary?
(d) Is x(r) an ergodic random process?
Your answers to (¢) and (d) should provide justifications.

x(r) is a real wide-sense stationary random process and ¥(7) is a process dernived from
x(f) by linear filtering. i.e. by a relation of the form

o = [ K@= rxar.

Show that y(f) is also a wide-sense-stationary random process and derive relations
between (i) the autocorrelation functions-of the two processes and (ii) the power spec-
tra of the two processes.

Determine the autocorrelation function of the random process
x(t) = ay coslant — @) + a, coslwyr — 6,).

where a,, a,, w, and w, are known constants and ¢, and o, are mutually independent ran-
dom variables, each of which is uniformly distributed on the interval (0, 27).
Determine also the power spectrum of the process.
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2.8

2.9

z(r) 1s a complex stationary Gaussian random process of zero mean. Let

2 (1) = {:{r} when || = T
g ! 0O whenll|>T

and let &(w. T) be the Fourier inverse of z4(r). Further let

[ [
SJ{(H} — S (e, T}g{w, T)
2T

and

Slw) = }:im (S (w)).

Show that, at any frequency w for which S(w) # 0, the variance of Sy(w) does not tend
to zero at T — =, What is the implication of this result for the problem of determin-
ing the spectral density function of the process from one of its sample functions?

The autocorrelation function of a real stationary random process x(r) is

_J1=|r//T when |tf]<T,
7 {(] otherwise.

Determine the power spectrum of the process.
Consider two random processes
x(t) = u cos{wt) + v sin(wt), V(1) = —u sin{w!) + v cos(wt),

where # and v are uncorrelated random variables with zero mean and with the same
variance.

(1) Find the cross-correlation function of the two processes.
(i1) Determine whether the two processes are jointly stationary in the wide sense.
(i1i) Determine whether the two processes are ergodic with respect to their cross-
correlation function.
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Second-order coherence phenomena
in the space—time domain

3.1 Interference law for stationary optical fields. The mutual
coherence function and the complex degree of coherence

In Section 1.1 we pointed out that light need not be monochromatic in order to produce
interference between two light beams: it is necessary only that the light vibrations in the
two beams are “statistically similar™ to each other. We will now introduce a quantitative
measure of statistical similarity, with the help of Young's interference experiment.

Suppose that light, assumed to be stationary, at least in the wide sense, illuminates two
pinholes Q, and Q- in an opaque screen A (Fig. 3.1). Let V(Q). r) and V((Q-. 1) represent the
light vibrations at the pinholes at time t. For simplicity we consider V(Q, 1) to be a (com-
plex) scalar. Generalization to vector fields will be considered in Chapter 7. We will exam-
ine the distribution of the average intensity in the neighborhood of some point P on a screen
B behind the screen A containing the pinholes.

A B

Fig. 3.1 Notation relating to Young's interference experiment with guasi-monochro-
matic light.
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Let R, and R, denote the distances Q,P and Q,P respectively. Since the light from the
pinholes 0, and (2, takes the times

R, R,
=y B = s (1)
-, - c
to reach the point P, V(P, 1) is given by the expression
VP, 1) = Ki\V(Q), 1 — 1)) + KbVIQs. 1 — 1), (2)

where the factors K, and K, take into account diffraction at the pinholes and ¢ in Eq. (1)
denotes the speed of light in vacuum. It follows from the Huygens—Fresnel principle (B&W,
Section 8.2) that, if the angles of incidence and diffraction at the pinholes are sufficiently
small, then'

K. ~-——da

. i = 1,2). 3
j R (J ) (3)

where d4, and d A, are the areas of the two pinholes and X is the mean wavelength of the
incident light.

Because the fluctuations of the light are very rapid, one cannot observe the time behavior
of V(P, 1), but one can measure the expectation value I(P) = ([(P, 1) = V'(P, nV(P, 1)) of
the intensity, which is independent of time, because of the assumed stationarity. Using Eq. (2),
it follows that

r) = |K]|2{V‘{QI,I - '[]J'V(pr - F]J}
+ (KPP0 o=t )Vt =106))
+ 2 Re (K| K, (V(Q,,t — 1)) V(Q,.1 — 1,))}, 4)

Redenoting the real part. Using the assumption of stationarity, and also the fact that K, and K,
are purely imaginary numbers, the expression (4) may be simplified and becomes

I(P) = |Ki|*(Qy) + | Ko HQy) + 2 Re {|K)||Ko|T(Q1. Q2 1y — 1)}, (5)
where /(Q;) = (V' Q;, DV(Q;, 1) (j = 1, 2) are the averaged intensities of the light at each
of the two pinholes and

L@, 0, 7) = (V(Q,, V(Q,.r + T)) (6)

is the cross-correlation function [Eq. (13) of Section 2.5] of the field at the pinholes at Q,
and Q,. In the present context I'(Q,, Q,, 7) is called the mutual coherence function and is
the basic quantity of the so-called second-order coherence theory, the term “second-order”

' It is convenient in the present analysis to define the K factors somewhat differently from how they were defined
in B&W. We include here the terms dA;/R, in their definition, thus making them dimensionless.
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mdicating that I is a correlation function involving a product of the field variable at two points.
Later. in Chapter 7. we will encounter correlation functions involving a four-term product,
which are the basic mathematical tools of the so-called fourth-order coherence theory.!
The formula (5) may be rewritten in a physically more significant form if we note that
the first two terms on the right-hand side of Eq. (5) represent the average intensities of the
kght that would be observed at the point P if only one of the pinholes were open. For exam-
ple. if just the pinhole at Q| were open, one would have K, = 0 and Egq. (5) then implies that

I(P)= 1" (P) = [K\[1(Q)). (7a)
Similarly. if just the pinhole at O, were open, then
I(P) = I'V(P) = |K>[’I(Qy). (7Tb)

The formula (5) may, therefore, be rewritten as

I(P) = I'V(P) + I''(P) + 2 Re Jﬂ”(P)Jif?*{Pn(Q],Qz.r, = I:l‘. (8)
where
10 0 1) = € D) 9)
JIQ) {I(Q,)
Q. Q,, 7) —

R JI“{Q, Q,,0) JF{Q-_;- Q,.0) '

The formula (8) is one form of the so-called interference law for stationary optical fields.
It shows that, in order to determine the (average) intensity at a point P in the observation
plane B, one must know not only the average intensities of the two beams at P but also the
real part of the correlation coefficient +(Q,. Q. 7). called the complex degree of coherence,
of the light at the pinholes at Q) and Q. In view of the significance of the cross-correlation
function which we discussed earlier. the complex degree of coherence is evidently a precise
measure of the statistical similarity of the light vibrations at the points , and Q-.

It follows from the definition (10) and the property of the cross-correlation function
expressed by Eq. (8a) of Section 2.4 that, for all values of its arguments. ~ is bounded by
zero and by unity in absolute value, i.e. that

0<|¥Q0. 021 =<l (11)

The extreme value zero represents complete absence of correlation: the other extreme case,
unity, represents complete correlation of the vibrations at O, and Q-. In the first case the

' This terminology is not quite uniform. What we call second-order and fourth-order coherence functions are
sometimes called first-order and second-order coherence functions. respectively.
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vibrations are said to be mutually completely incoherent; in the second case they are said to
be mutually completely coherent.

A deeper insight into the significance of the complex degree of coherence may be obtained
by expressing the interference law (8) in a somewhat different form, using the envelope rep-
resentation of narrow-band signals which we discussed in Section 2.3. Let @ be the mean
frequency of the light and let us write

YQ,, 05, T) = 1Q,. Q,, T)el*(@ L. 11~dr] (12)

where

(I(Qp Ql. )= wT + darg '}(Q]. Q;r. T) “3)

As we learned in Section 2.3, a(Q,. Q-, 7) changes slowly over any time interval 7 which
is short relative to the reciprocal bandwidth 1/Aw of the light. If we express 4 in the inter-
ference law (8) in the form (12), we obtain for the intensity at P the expression

I(P) = IV(P) + ID(P) + 2JIV(P)YI®(P) |1(Q,, 0,, Tlcos|a(Q,. Q,, 7) — 6],
(14)

where

2T
ﬁ=5r=a(r2—r]}=T(R2—R1}, (15)

A = 2wc/w being the mean wavelength.

The formula (14) is an alternative form of the interference law (8) for stationary optical
fields. Let us examine its implications.

Suppose that P, is some fixed point in the detection plane 3. The average intensities [ D(p)
and I (P) will change slowly with P in the neighborhood of P, and so will [v(Q,, Q> 7).
Now, we have already noted that the phase factor a(Q,. Q,. 7) will vary slowly with the
time delay 7 = (R, — R,)/c over t-intervals which are short compared with the coherence
time of the light. Consequently, considered as a function of the phase delay &, the last term
in Eq. (14) will be a slowly modulated cosine term whose amplitude remains effectively
constant over regions of the detection plane B for which the change in R; — R, is small in
comparison with the coherence length of the light. Under these circumstances interference
fringes will be formed in the observation plane 8. which will be essentially sinusoidal, with
the amplitude and the phase of the sinusoidal patterns changing very slowly with position.
This situation is illustrated in Fig. 3.2 for the commonly occurring situation when ‘%
(P) = I'V(P). In this case the interference law (14) reduces to

I(P) = 2I'(P){1 + |Y(Q,, Qs T)lcos[alQ,. 0>, T) — 8]}. (16)

This formula implies that when || = 1 (and only in this case) there are points in the fringe
pattern where the average intensity is zero [namely points for which a(Q,, Q>. 7) — é =
(n + %}n’ (n=20, £1, £2,...)], i.e. where there is complete cancellation of the light by
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2[1 + [
bl & aph
2[1 — AU
= f - 4
(a) coherent superposition (b) partially coherent superposition (¢) incoherent superposition
(=1 N<l¥< (=0

Fig. 3.2 The distribution of the average intensity in the neighborhood of an arbitrary
point in the interference pattern formed by two quasi-monochromatic light beams of
equal intensity /', with the correlation between them characterized by a degree of
coherence 7.

destructive interference. This is the case of complere coherence. In the other extreme case,
~ = 0, no interference fringes are formed at all, this being the case of complete incoherence.
In all other cases, (0 < |7| < 1) fringes are formed but their contrast is lower than in the
completely coherent case. One then says that the light at the pinholes is partially coherent.

[t is evident from Eq. (16) that the maxima and minima of the average intensity in the
immediate neighborhood of any point P in the plane B of observation are given by the
formulas

Imax(P) = 2I'(P)[1 + |3(Q). O5, 7] (17a)
and
Lin(P) = 2I(P)[1 = |10y, G2 D] (17b)

A useful measure of the contrast (i.e. of the sharpness) of the interference fringes 1s their
so-called visibility, v, defined as

L. P = L G
‘]"’(FJ = mdx( mun ) (18)
!I'I'iil'.{P} + Im'm' F)
On substituting from Eqgs. (17) into Eq. (18) we see at once that
V(P) = |7(Qy, Q2. 7). (19)

This formula relates a quantity that can be readily measured (the visibility %) to the more
abstract concept of the modulus of the complex degree of coherence. The argument (the
phase) of v can also be determined experimentally. by measurement of the location of the
intensity maxima in the fringe pattern (B&W, Section 10.4.1).

The complex degree of coherence Q). Q. 7) provides a quantitative characterization
of both temporal and spatial coherence, which were introduced in Sections 1.2 and 1.3 as
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two distinct concepts. The temporal coherence of light at one point Q is now characterized
quantitatively by Y(Q. Q, 7). For example, in the Michelson interferometer, Q is a point on
the dividing mirror M, shown in Fig. 1.2, and 7 represents the time delay introduced
between the two interfering beams by displacing one of the mirrors, M, or M,, from the
“symmetric position” by a distance ¢7/2. The visibility of the fringes in the detection plane
B is then equal to |(Q, O, 7)|.

The spatial coherence of light at the two points @, and Q, is characterized by ~(Q). 0-,
Tn), Where 7 is some fixed time difference 7, = 1, — 1, (often taken to be zero) in Young's
interference experiment. As we just saw, the visibility of the interference fringes at a point
P in the detection plane, for which the path difference Q,P — ﬁ = ¢Tp, IS equal to
[7(Q1, @2, To)-

We will learn later (in Section 3.5) that only in special situations can temporal and spa-
tial coherence of an optical field be treated independently of each other, because the mutual
coherence function propagates according to precise differential equations, which relate its
spatial and its temporal behavior.

Returning to spatial coherence, we have already mentioned that the time delay T is often
taken to be zero. This is generally the case when there is some kind of symmetry in the
experimental set-up or when one is dealing with optical images near the axis of a centered
optical system. In such cases the coherence effects are usually adequately described by the
simpler correlation functions

J(Q,,Q,) = I(Q,,. @,, 0) = (VI(Q,. NV(Q,, 1) (20)
and
. [Q,.0,.0)
J(Qp Qz] = 'T{Qsz-ﬂ.‘-' = QI Q" (21a)
JI©.0,.0) JI(Q,.0,.0
J(Q,. 0,)
= S (21b)
Q. Q) (0:. 0,)
J0,0,) (21c)

) JIQ) 1@,

where /(Q;) = {V*(Qr nv(Q,. n) = J(Q;, Q) (j = 1. 2) denotes the average intensity at the
point ;. These functions may be called equal-time coherence functions. Often J(Q,, 0,)
is referred to as the mutual intensity and j(Q,, Q) as the equal-time complex degree of
coherence.

[t follows from the envelope properties of narrow-band light (discussed in Section 2.3) that
[0, Q. 7) = NQ,.0,)e ™", (22)

Y0y, Dy, 7) = j(Q), By)e7, (23)
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provided that | 7| is small relative to the coherence time, i.e. provided that

Y pe
T < =, (24)
|7] T~ )

3.2 Generation of spatial coherence from an incoherent source.
The van Cittert-Zernike theorem

We have learned from our elementary treatments of the concepts of coherence area and
of the coherence volume (Sections 1.3 and 1.4) that even a spatially incoherent source will
generate a field which may be spatially coherent over large regions of space. Evidently in
such situations spatial coherence is generated in the process of propagation. We will now
give a simple intuitive argument indicating why this happens and we will then discuss this
phenomenon gquantitatively.

Consider light emitted by two small steady-state sources S, and §,. We assume that the
light is quasi-monochromatic of mean frequency w and that the sources are statistically
independent, so that there is no correlation between the beams of light which they gener-
ate. We will compare the light vibrations at points some distance away from them.

Let V,(Py, 1) and V,(P,, 1) represent the field at points P, and P, respectively, due to the
source S, and let V5(Py, 1) and V,(P,, t) represent the field at these points due to the source
S, (Fig. 3.3). If the difference between the distances R, = §;P; and Ry; = S|_P2 is small
compared with the coherence length (~2mc/Aw) of the light, one obviously has

V,(Ps, ) = Vy(Py. 1). (1a)

Fig. 3.3 Schematic illustration of the generation of spatial coherence from two small,
uncorrelated sources.
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Similarly, if the difference between the distances R, = S>P; and Ry, = S,P, is small relative
to the coherence length of the light one has

VE(PE,UEVZ(FPIL (Ib)

The total field at P, arises from the superposition of the field generated by the two sources
(see Fig. 3.3) and hence is given by the expression

V(Py. 1) = Vi(P), 1) + Va(Py, 1). (2a)
Similarly, the total field at P, is given by the expression
V{PZ‘ 1= V](.P:_r.. i)+ V:[P:, I). (Eb}

Now, since V|(P|, 1) and V4(P,, 1) are generated by sources S, and S- which are statistically
independent, these two disturbances will not be correlated. For the same reason V,(P,, t) and
Vs(P,, t) will also not be correlated. However, the sums V(P 1) + V5 (P, 1) and V|(P,, 1) +
V5(P5. 1) will be correlated because of the relations (1) and, consequently.

V(Pa, 1) = V(P,, I). (3)

This conclusion is also evident from the sketch in Fig. 3.3, where the (essentially identical)
wave trains V,(P,. t) and V,(P5, t) arriving at the points P, and P,, respectively, from §, are
drawn as solid lines and the (essentially identical) wave trains V5(P,. t) and V5(P,, t) arriv-
ing at P, and P, from the other source S, are drawn as dashed lines. Clearly, although the
solidly drawn wave trains and the wave trains drawn as dashed lines may have completely
different forms, the sum of the two wave trains arriving at P; and the sum of the two wave
trains arriving at P, will be similar to each other. Thus the fields at P, and P,. given by Eqs.

2a) and (2b), will evidently be strongly correlated (i.e. statistically similar). Hence we see
that, even though the nvo small sources S; and S, are statistically independent, they will
give rise to correlations in the field which they produce and the correlations are evidently
generated by the process of propagation.

Let us now examine quantitatively in a more precise mathematical language the correla-
tions which are generated in the field produced by an extended planar source ¢ of natural
light. We assume that the source is statistically stationary. at least in the wide sense, and
that it emits radiation in a narrow range of frequencies Aw around a mean frequency @. We
also assume that the linear dimensions of the source are small relative to the distances
between the source and the points P, and P, and that the angles which the lines from each
source point to P, and P, make with the normal to the source are small (see Fig. 3.4).

Let us imagine that the source is divided into elements doy, do,, .. ., do,, centered at
points Sy, S,, ..., §,, and that the linear dimensions of the elements are small compared
with the mean wavelength A of the emitted light. Let V,,,() and V,,5(1) be the complex ampli-
tudes of the field at the two points P, and P, in the field. contributed by the source element
da,,. The total complex field amplitudes at the two points are then given by the expressions

V1{” T val{”' VE‘” - vai{”' (4)

m i
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incoherent source

Fig. 3.4 Notation relating to the derivation of the van Citteri-Zernike theorem.

It follows that the mutual intensity J(Q., Q,). defined by Eq. (20) of Section 3.1. is. in the pres-
ent case, given by the expression

J(P, B) = (V )V, (1)
w Z( ml“)vl’{” +ZZ ml“iv;rz(f)}' (5}

m m=n

Since we assumed that the source generates natural light, the contributions from the differ-
ent source elements may be assumed to be uncorrelated (mutually incoherent) and also of
zero mean and hence

ZZ ml{r) ".,{f)) = ZZ( mI(I” 2“:} = 0. {6)

m=n m=n

If R,,, and R, are the distance of the field points P; and P, from the source element do,,, then

expl—iw(r — R, /¢)l
lefﬂ A “ i lef c) d ]{UR = . )
[ ._{’"' y 3 - (7)
exp —iw(r ,/0)]
vm?.{” Am“ =i Rm"j(-} : wR m -
m2

where the modulus |A,,| of A,, represents the strength and arg A,, represents the phase of the
radiation emitted from the element do,, of the source, ¢ denoting the speed of light in vacuum.
On substituting from Eq. (7) into Eq. (5) and using Eq. (6), it follows that

expli@(R V¢
‘”PL‘PEI = Z<A (r = R -‘"C}Am“ == z""f:‘)} plia( m2 ml |

L m 2 R R

i ml” m2

exp[ith 5. = R 1”{]
- Z{AJ:!{I}AHF[I o (‘Rmz M }IFD R "R L {8}

m ml" m2

where we have used the fact that the source is statistically stationary. If the path differences
IR,.» — R,,;| are small relative to the coherence length of the light, At ~ 27/Aw. we may
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also neglect the retardation terms (R,» — R, )/c in the averages, and the formula (8) then
becomes

xp [—i@(R
J(P. Py =) (A (DA, (1) expl ""; m‘; R/ €l

" f7:] Rl 7 1

(9)

The average (A, (1A, (1) represents the intensity of the radiation emitted from the source
element do,,. In any practical case the total number of the source elements will be so large
that one may consider the source to be effectively continuous. If we denote the intensity
emitted per unit area of the source by /(S), then (A, (1A, (n) = I(S,)do,, and we may
replace the summation in Eq. (9) by integration. We then obtain the following expression
for the mutual intensity at the pair of points P, and P,:

ik(R, —R, )

e
J(P,PR) = sy ————ds. 10
(F, B) L(J RR, (10)

1
where R, and R, are the distances between a typical source point S and the field points P,
and P, respectively, k = @/c = 27/X being the mean wave number of the light.
If we recall the definition Eq. (21c) of Section 3.1 of the equal-time degree of coherence
J(P), P) and use Eq. (10), we obtain at once the following formula for the equal-time
degree of coherence of the light at the two field points:

1A{H —R,)
J L Eh) = f —dS, (11)
i) ,/I(P
- 1(S) )
where I(P;) = J(P.P) = —dS (j=12) (12)

J

being the (averaged) intensities at P, and P-.

The formula (11) is the mathematical formulation of a central theorem of optical coherence
theory, known as the van Cittert—Zernike theorem. It expresses the equal-time degree of coher-
ence j(P), P,) at two points P; and P; in a field generated by a planar. statistically stationary,
spatially incoherent quasi-monochromatic source o in terms of the averaged intensity distri-
bution /(S) across the source and the average intensities /(P,) and /( P,) at the two field points.

The integral that appears on the right of Eq. (11) is of the same form as is encountered in
quite a different connection, namely in the theory of diffraction at an aperture in an opague
screen. To see this analogy we recall that if a monochromatic spherical wave

(S, 1) = U(S)e i, (13a)
with

—ikR,

Ues) = a(§)<

(13b)
|
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Coherence Diffraction at an Aperture
van Cittert-Zernike Theorem Huygens-Fresnel Principle

aperture A

Equal-time degree of coherence of the field at Normalized complex amplitude U(P,) of the field
points P; and P-: at P, due to the diffraction of a monochromatic
spherical wave converging to the point P,:

_ 1 ek (R, —R))
B == I(§)———dS
- Nl RR,

1 e—ikR,  QikR,
U(P,) = —,f a(s) ds
& N a RI R'l
e i
incident diverging
converging sphencal
wave secondary
wave

Fig. 3.5 The analogy between the van Cittert-Zernike theorem and the Huygens—Fresnel
principle.

converging to a point P, (see Fig. 3.5) is incident on an aperture A in an opaque screen,
then the diffracted field at a point P, is, according to the Huygens—Fresnel principle [B&W,
Sections 8.2 and 8.3, especially Egs. (1) of Section 8.2 and Eq. (17) of Section 8.3], given
by the expression (with the time-dependent factor e ™" omitted)

kR, kR
U{P.,J=-l—;fa{51L L
- N Jj RI RZ

where N’ is a constant, small angles of incidence and diffraction being assumed.
Comparison of the van Cittert—-Zernike theorem expressed by the formula (11) with the
Huygens—Fresnel principle (14) brings into evidence the following rather remarkable anal-
ogy: the van Cittert—Zernike theorem implies that, under the conditions stated. the equal-
time degree of coherence j(P,, P,) is given by the normalized complex amplitude at a point
P> in a certain diffraction pattern; namely that formed bv a monochromatic spherical wave
of frequency w, converging towards a point P, and diffracted at an aperture A in an opague
screen of the same size, shape and location as the incoherent source o. with the amplitude

ds. (14)

distribution across the aperture being proportional to the intensity distribution across the
source. (See Fig. 3.5.)
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Fig. 3.6 Notation relating to the derivation of the far-zone form of the van Cittert—
Zernike theorem.

We obtained this analogy from a formal comparison of the van Cittert—Zernike theorem
of coherence theory with the Huygens—Fresnel principle of diffraction theory. A deeper
reason for this analogy will become evident later (Section 3.5).

Frequently the field points P, and P, are located in the far zone of the source, often in a
plane A4 parallel to the source plane. The van Cittert—Zernike theorem then takes on a sim-
pler form which we will now derive. For this purpose we choose a Cartesian coordinate
system in the source plane and denote by (£, i) the coordinates of a source point S. We also
take a coordinate system in the plane A with origin O" and with the X, Y-axes parallel to the
£, n-axes (see Fig. 3.6). If (X, ¥}) and (X,, Y>) are the Cartesian coordinates of the field
points P, and P-, respectively. in the plane A, then the distances R, = S_P| and R, = E"Z
are evidently given by the expressions

R|2 = {X| ,_{)1 * “1 - ?”2 + Rz. [IS_)
RB=X = E)F £ —nP +#2,

50 that

4 (X; = &P+, _.,”:‘

R ~R =
X 3 Y 2 (16)
i - + o -
R s g 23 =& m
2 R

On the right-hand side of Egs. (16) we retained only the leading terms of the power-series
expansions, which is justified if we assume that the points P, and P, are at distances from
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the axis OO’ which are small relative to R. It follows from Egs. (16) that

X2E) X+ B =X =N

B =R = SR R

(17)

In the denominator of the integrands in Eqgs. (11) and (12) R, and R, may be replaced. to a
zood approximation, by R. It is also convenient to set

e S ' (18)
3 ol A _
R ¢ R o

and

_ FiE+ B¢ v 1)
2R '

W (19)

It follows that when the points P, and P, are in the far zone, Eq. (11) for the equal-time
degree of coherence reduces to

{:‘“‘ff I(E, n)e *pErande dn
[ .

JJ 1&mdgan

This formula shows that, when the linear dimensions of the source and the distance berween
P, and P are small relative to the distance of these points from the source, the equal-time

JP.B) = (20)

degree of coherence j(P,. P»), apart from a phase factor, is equal to the normalized Fourier
transform of the intensity distribution across the source. We may refer to Eq. (20) as the
far-zone form of the van Citteri—Zernike theorem. The phase v, defined by Eq. (19), has a sim-
ple interpretation. It represents, to a good approximation, the phase difference I:[PSPE =
P;P,] between the field points P, and P. in the plane A, and points P} and P; at the same
height from the OO’ axis as P, and P>, located on the sphere centered at the origin O in the
source plane and passing through the origin O" in the plane A (see Fig. 3.7).

In its mathematical structure the expression on the right of Eq. (20) resembles the well-
known expression of elementary diffraction theory for Fraunhofer diffraction at an aperture
(B&W, Section 8.3.3). This was to be expected in view of the analogy between the van
Cittert—Zernike theorem and the Huygens—Fresnel principle. which we noted earlier.

As an example let us determine the equal-time degree of coherence of the far field pro-
duced by an incoherent, quasi-monochromatic circular source of radius a and of uniform
intensity iy The formula (20) gives, for this case.

f[fp. A_'ql

(P, P) = etV — ]
SN2 1(0,0)
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Py
P
P
. 4
) R o'
source plane
a

Fig. 3.7 Mlustrating the significance of the phase v, defined by Eq. (19) of Section 3.2.
[t represents, to a good approximation, the phase difference k[ P3P, — P 1P,].

where

f(f.g} = ‘F'Jfflnfgﬂz e~ TE+amdg dy. (22)

The integral on the right of Eq. (22) can readily be evaluated and one finds that (B&W,
Section 8.5.2)

27, (A_'a\fp: + g2 )]
= . (23)
ka\p? + ¢* '

where J; 1s the Bessel function of the first kind and first order. On substituting from Eq. (23)
into Eq. (21) we obtain for the equal-time degree of coherence of the far field the expression

E{Ep. FZ:}} = 7a?

2J.(v)

v

J(R.P) = e (24)

where

v = kayp* + ¢*. (25a)
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Recalling the expressions for p and g given by Egs. (18). we can express v in the form

a
—\|d, 25b
. o

where

d = X, — X, + (¥, — 1,)? (26)

is the distance between the points P, and P, in the observation plane A.

Apart from a trivial proportionality constant the expression on the right-hand-side of
Eq. (24) will be recognized as the Airy formula for the field distribution in the Fraunhofer
diffraction pattern of a uniformly coherently illuminated circular aperture [B&W. Section 8.5,
Eq. (13)]. Its modulus is plotted in Fig. 3.8. It decreases steadily from the value unity when

= () to the value zero when v = 3.83 (indicated by the point B in the figure). Hence, with
increasing separation of the two points P and P, the equal-time degree of coherence decreases
from the value unity (complete coherence) to zero (complete incoherence) when the right-
hand side of Eq. (25b) is equal to 3.83, i.e. when

d =t

%33[ ] 0.61R\ &

A further increase in the separation of the two points reintroduces a small amount of coher-
ence but the absolute value of the degree of coherence is then smaller than 0.14 and there
is further incoherence, indicated by point C in Fig. 3.8 when v = 7.02.

> |j(Py. P>)|

B

Fig. 3.8 The absolute value of the equal-ime degree of coherence j(P,. P;) =
f:""'IiJ|(kade)f(kade‘j], [Egs. (24) and (25b)], at points P, and P; in the far zone, gen-
erated by a uniform, incoherent, quasi-monochromatic circular source of radius a.
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The function 2J,(v)/v decreases steadily from the value unity when v = 0 to the value
(.88 when v = 1 (indicated by point A in the figure), i.e. for separation

_ 0.16R)\

(/)

d (28)

In practice, a drop from the value unity (complete coherence) which does not exceed 12%
is often not regarded as being very significant. Hence, roughly speaking, in the far zone and
close to the direction normal to the source plane and parallel to it, the light produced by a spa-
tially incoherent, quasi-monochromatic uniform, circular source of radius a is approximately
coherent over a circular area AA, whose diameter is 0.16 N a, where a = alR is the angu-
lar radius subtended by the source when viewed from AA. We note that AA =
70.16 M(2a)]?, ie.

AA = 0.0632_X°, (29)

w| %

where § = ma? is the area of the source. This expression is in agreement with the order-of-
magnitude relation (2) of Section 1.3 for the coherence area.

The far-zone behavior of the equal-time degree of coherence of light from an incoherent
uniform, circular source which we just discussed was verified experimentally many years
ago.' The results, together with the theoretical predictions, are shown in Fig. 3.9, for vari-
ous separations of the pinholes. The experiment was repeated more recently. using a high-
precision digital technique.® Excellent agreement with the theoretical predictions was
obtained.

3.3 Illustrative examples

Two old classic interferometric techniques which we will now briefly discuss. both due to
Albert Michelson, provide very good examples of some of the concepts and results of ele-
mentary coherence theory which we just discussed, even though they were invented before
the notion of coherence came to be understood.

3.3.1 Michelson’s method for measuring stellar diameters

Because the angular diameters that stars subtend at the surface of the Earth are exceedingly
small, they cannot be measured directly even with the largest available telescopes.
A. A. Michelson showed theoretically in 1890 and he. together with F. G. Pease, demon-
strated experimentally in the 1920s that the angular diameter of a star and, in principle, also
the intensity across the stellar disk may be obtained with the help of an interferometer as

' B. J. Thompson and E. Wolf, J. Opt. Soc. Amer. 47 (1957), 895-902.
? G. Ambrosini. G. Schirripa Spagnola, D. Paoletti and S. Vicalvi. Pure Appl. Opi. T (1989), 933-939.
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Fig. 3.9 Young's interference pattern formed by partially coherent quasi-monochro-

matic light with three different degrees of coherence, from a uniform incoherent circu-
lar source. for various separations of the pinholes. Upper figures: observed patterns.
Lower figures: results of experiments. For details of the experimental arrangement see
B&W Section 10.4.3 or the original paper by B. J. Thompson and E. Wolf. J. Opt. Soc.
Amer. 47 (1957), 895-902. from which these figures are reproduced.

shown schematically in Fig. 3.10. The principle of the technique may be understood as fol-
lows. Light from the star is incident on the outer mirrors M, and M, of the interferometer,
is then reflected at two inner mirrors M5 and M, and is brought to the back focal plane ¥ of
a telescope to which the interferometer is attached. The purpose of the telescope is to pro-
vide stability for the interferometer. The inner mirrors M3 and M, are fixed while the outer
mirrors M; and M, can be separated symmetrically in the direction joining M; and M,.
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A

=
Y
X

Fig. 3.10 A schematic diagram of the 20-foot Michelson stellar interferometer at Mount
Wilson Observatory, mounted on the 100-inch reflecting telescope. [Adapted from
F. G. Pease, Ergeb. Ex. Naturwiss. 10 (1931), 84-96.]

In the focal plane ¥ of the telescope one observes a diffraction image of the star, crossed by
fringes formed by the two interfering beams.

The visibility of the interference fringes in the focal plane ¥ depends on the separation
d between the outer mirrors M, and M,. Michelson showed, by an elementary argument,
that from measurements of the changes in the visibility with the separation of the two outer
mirrors one may obtain information about the intensity distribution across the star, at least
in cases when the star is assumed to be rotationally symmetric. Michelson showed, in par-
ticular, that, if the stellar disk is circular and uniform, the visibility curve, considered as a
function of the separation of the two outer mirrors M, and M,, will have zeros for certain
separation distances d; and that for a spectral component of wavelength X\, the smallest of
the values for which a zero occurs is

0.61
dy = 7)‘0 (1)

8]

where « is the angular radius of the star. Thus from measurement of d;, the angular diame-
ter of the star may be determined.

From the standpoint of coherence theory, the principle of the method can easily be
understood. At the two outer mirrors M, and M,, the incident light is, in general, partially
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coherent. According to the far zone of the van Cittert-Zernike theorem [Eq. (20) of Section
3.2; see also Fig. 3.6], expressed in a slightly different form, the equal-time degree of
coherence is given by the formula (with |¢)] <€ 1, kg = wy/c = 27/)\)

ff i(n, V]Elku“-‘::_-‘] W=y ¥y dy
a

JM.M,) = . : (2)
I‘L i(u, vidudv

Here i(u, v) represents the (averaged) intensity distribution across the stellar disk as a func-
tion of the angular variables u and v of the points (&, 1) on that disk,

=
Il
= |on

1':—1}—. (3)
R

and (x;, y;) and (x,, y,) are the coordinates of the outer mirrors M, and M-.

It follows at once from the formula (2) and the fact that the visibility of the fringes is
equal to the absolute value of the equal-time complex degree of coherence [Egs. (23) and
(19) of Section 3.1] that the visibility of the fringes in the focal plane of the telescope is
proportional to the Fourier transform of the (averaged) intensity distribution across the star.
In particular, if the stellar disk is circular, is of uniform intensity and subtends angular
radius n = a/R at the telescope, the formula (2) gives [cf. Eq. (24) of Section 3.2]

2J, (kyoed)

i(M,, M.,)| =
(M, M,)| Ty

; (4)

where d = .\/{x2 —x,)* +(y; — ¥ )* is the distance between the two outer mirrors M,
and M, of the interferometer, J, being the Bessel function of the first kind and first order.
The smallest value d, of d for which the expression (4) vanishes is given by kyad, = 3.83,
implying that d;, = 0.61 Ay/cr, in agreement with Michelson’s result expressed by Eq. (1).

The first determination of a stellar diameter using this technique was made in the 1920s
and employed a 20-foot interferometer attached to the 10¥)-inch telescope at the Mount
Wilson Observatory (Fig. 3.11). By means of it the angular diameter of the red giant star
Betelgeuse in the constellation of Orion was determined by F. G. Pease. In these measure-
ments the first “incoherence” occurred when the outer mirrors M, and M, of the interfer-
ometer were separated by the distance of dy = 307 cm. According to the formula (1) this
implies, taking Ay = 5.75 X 10 %cm, that the angular diameter of Betelgeuse is about
0.047 seconds of arc. Angular diameters of five other stars were determined by that
interferometer in the 1920s, but the instrument has not been used since that time. However,
it has been preserved at the Observatory. A photograph of it, taken in more recent times, is
shown in Fig. 3.12.



Fig. 3.11 The Michelson stellar interferometer mounted on the 100-inch telescope.
[Adapted from F. G. Pease, Ergeb. Ex. Naturwiss 10 (1931), 84-96.]

Fig. 3.12 The original Michelson stellar interferometer preserved at the Mount Wilson
Observatory, around the year 2000. (Courtesy of Gale Gant and Don Nicholson.)
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Fig. 3.13 The Westbrook aperture-synthesis telescope. (Reproduced from K. Rohlfs,
Tools of Radio Astronomy, Springer, Berlin and New York. 1986, p. 113, Fig. 6.9.)

Since the time when the first Michelson stellar interferometer was built in the 1920s, sev-
eral others have been constructed and used, one of them operating at infrared wavelengths.
Today, however, this technique is used mainly in radio astronomy. where the principle has
been applied with great success to map the radio sky. Because the wavelengths of radio
waves are very much longer than those of light. the base line of the radio interferometer —
usually called a radio telescope or an antenna-synthesis telescope — has to be many orders
of magnitude longer. Instead of mirrors one uses large antennas (see Fig. 3.13) and the
incoming radio waves are sampled at pairs of them. The antennas are arranged in various
configurations, one of which is shown in Fig. 3.14.

3.3.2 Michelson’s method for determining energy distribution in spectral lines

Suppose that a beam of quasi-monochromatic light is divided into two beams in a Michelson
interferometer (Fig. 1.2) and that the beams are superposed after a path difference ¢7 has
been introduced between them. In the region of superposition interference fringes whose
visibility depends on the path difference are formed. Michelson showed in the 1890s that
from measurements of the visibility 7(7) of the interference fringes, as a function of 7 one
may obtain information about the energy distribution in the spectrum of the light.
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Fig. 3.14 The VLA (Very Large Array) at Socorro, New Mexico. The array consists of
movable 25-m telescopes and operates with wavelengths =3cm. (Reproduced from
K. Rohlfs, Tools of Radio Astronomy, Springer, Berlin and New York. 1986, p. 113,
Fig. 6.9.)

From the standpoint of coherence theory the principle of this method may be understood
as follows. Let us for simplicity assume that the two beams have the same intensity. Then,
according to Eq. (19) of Section 3.1, the visibility of the interference fringes, (considered
now as a function of 7 rather than P), in the region of superposition of the two beams is
given by the expression

V(1) = (1), (1)
where 4(7) = Y(Qp, Qu, T), Qy denoting a typical point on the dividing mirror My, According
to the normalized form of the Wiener—Khintchine theorem [Eq. (9b) of Section 2.5],

WT) = j: s(w)e " dw. (2)

where s(w) is the normalized spectral density of the light at Q. The integral on the right
contains only positive frequency components, because we use the analytic signal represen-
tation (which we discussed in Section 2.3) of the optical field.

It is convenient to set

(1) = AT)e %", (3)
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where w15 a mid-frequency of the light. It then follows from Egs. (3) and (2) that

Yy = [ Goe du. (4)
where
i il
From Eqgs. (1)—(5) it follows that
YV(T) = f_:; §(p)e=wr d,ur. (6)

Suppose first that the spectrum is symmetric about the central frequency wg. Then the
“shifted” spectrum 5(;¢) will be approximately an even function of i and, consequently, the
integral appearing in Eq. (6) will be real. It follows that in this case

V(r) = x2f }x §(10)cos(ur)dp. 7

The ambiguity in the choice of the sign on the right-hand side of Eq. (6) arises from the fact
that the expression (6) gives only the modulus of the integral. On taking the inverse of
Eq. (7) we obtain for the shifted normalized spectrum the expression

. 1 p=
s(p) = s(w, + p) = i:ﬁl V(T)cos(pur)dr. (8)

This formula shows that, when the spectrum is symmetric, the spectral energy distribution
about the mid-frequency w, may be calculated from measurements of the visibility curve.
provided that the ambiguity in sign of the integral can be removed. This may usually be
done by appealing to physical plausibility.

If the spectrum is not symmetric, the Fourier transform of the “shifted” spectral density
s(y) 1s no longer everywhere real and in such cases Eq. (8) no longer applies. In order to
determine the spectral density in such cases one needs to know, in addition to the visibility
curve, also the phase of the Fourier transform 5(7) of $(u) or, alternatively. the phase of the
complex degree of coherence. As mentioned earlier [in the paragraph which follows
Eq. (19) of Section 3.1], the phase of the complex degree of coherence can be determined
from measurements of the location of the intensity maxima in the fringe pattern formed by
the interfering beams. In Fig. 3.15 a result from Michelson’s original determination by this
technique of the energy distribution in spectral lines of thalium is reproduced.
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Fig. 3.15 Two lines, each having a satellite, in the spectrum of thallium (left) and the
corresponding visibility curve (right). (Adapted from A. A. Michelson, Light Waves
and Their Uses, The University of Chicago Press, Chicago, 1L, 1902, Reproduced from
first Phoenix Science Series, University of Chicago Press, 1961, Fig. 64, p. 79.)

In more recent times Michelson’s method has been superseded by a related interferomet-
ric technique, called Fourier spectroscopy, which is also known as the interferogram
method, and sometimes called the FTIR technigue. It is used mainly in the infrared region
of the spectrum. This method allows direct determination both of the real part and of the
imaginary part of the degree of coherence +(7), from which the normalized spectral density
may be unambiguously determined.

3.4 Propagation of the mutual intensity

The van Cittert—Zernike theorem that we discussed in Section 3.2 implies that the spatial
coherence of light changes on propagation. Specifically the theorem indicates that even a
spatially incoherent source generates a field that is partially coherent and is, in some region
of space, highly coherent. We will now generalize this result to propagation from an open
surface on which the equal-time degree of coherence is known.

Suppose that the complex amplitude at a typical point Q on a surface A intercepting a
quasi-monochromatic light beam is V(Q. 1) = U(Q)exp(—iwt). Then, according to the
Huygens—Fresnel principle (B&W, Section 8.2) the space-dependent part of the complex
amplitude at a point Py in the domain in which the beam propagates is given by the expres-
sion (assuming small angles of incidence and diffraction)

U(P) iﬂm@ et do 1
(i = )——dQ); (1
| }l 5 I R| I

where R denotes the distance from Q, to P, (see Fig. 3.16). Similarly,

i QlkR,
U(P) = —— Uu(Q, do,, 2)
(P) }\fj; (Q,) &, <,
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Fig. 3.16 Notation relating to derivation of Zernike’s propagation law for the mutual
intensity [Eq. (5) of Section 3.4].

k = w/e being the mean wave number associated with the mean frequency w. It follows
that

R,—R,)

2 | 5 . eiEl
U (PU(R)) = = e IQ,)) ———dQ, dg,.
{ ( |} ( _)) PE L ﬁ \ Ql} 'I-Q_ ) RR Q| Q_ (3)
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The expectation values appearing in this formula will be recognized as the mutual intensity at
the points Q, and @, [cf. Eq. (20) of Section 3.1] and hence the formula (3) implies that

| el.i_'ER:—R.J'
J{PsP': = —_f f J v 52 —d d 3.
1 B) ol A (0. &) RE, Q, dQ, (4)

This formula was first derived by F. Zernike in his basic paper on coherence cited earlier,
published in 1938, and is often called Zernike s propagation law for the mutual intensity.

If we recall the definition of the equal-time degree of coherence j(Q,, @,) [Eq. (21c¢) of
Section 3.1] we may express Zernike's propagation law (4) in the form

ik (R,—R,)

| e
P.P) = ff Q. 0TI S——dQ dO,. (5
T iy Ja a7 NI@NIC gE, e B
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This formula expresses the equal-time degree of coherence of the light at any pair of points
P, and P; in the region of space into which the light propagates in terms of the equal-time
degree of coherence and the averaged intensity of the light across the surface A. The for-
mula (5) is a generalization of the van Cittert—-Zernike theorem and reduces to it when the
light distribution on the (now planar) surface A is spatially incoherent [J(Q), @) ~
820, — Q,), where 8% is the two-dimensional Dirac delta function].

The formulas which we just derived apply to propagation in free space. If the space between
the surface 4 and the points P, and P- contains a linear medium or a linear optical system
one can readily generalize the formulas to such situations. It is necessary merely to replace
the “propagator” explikR)/R (R = QP) by an appropriate transmission function, say K(P,
Q). Instead of Eq. (4) one then has

JPL Py = [ J(Q,, Q)K" (P Q)K(P,, Q,)dQ, dQ,. (6)

This formula may be used to determine, for example, the equal-time degree of coherence
in the image plane of a light source, a situation discussed in detail by Zernike in his classic
paper.

In this section we have considered only propagation of the mutual intensity J(P,, P;).
One can also formulate laws for the propagation of the more general mutual coherence
function I'(P,, P>, ) which are somewhat more complicated. They may be derived from
rigorous propagation laws for the mutual coherence function, to which we will now turn
our attention.

3.5 Wave equations for the propagation of mutual coherence in free space

We saw in Section 3.2 that the mathematical formulas which express the van Cittert-Zernike
theorem for the mutual intensity and the equal-time degree of coherence closely resemble
a well-known formula of elementary diffraction theory. namely the Huygens-Fresnel prin-
ciple. The propagation law for the mutual intensity which we just derived likewise resem-
bles the Huygens—Fresnel principle. We will now show that there is a deeper reason for these
analogies than might appear to be the case from our formal derivation.

Consider an ensemble {V(r, 1)} representing a complex wavefield in free space.! Each
member of the ensemble satisfies the wave equation

VEV{T,I} - %w (l)
el

! In the preceding sections we frequently denoted points by capital letters, such as P. Q. and S. In the general the-
ory it is, however. more convenient to represent them by position vectors such as ry, r; ete. In the subsequent
sections we will use either of the notations, whichever is more convenient.
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Let us take the complex conjugate of this equation. replace r by r, and ¢ by 1, and multiply
the resulting equation by V(r,, £,). This gives
1 @2V, d)

TEV*(I'],II)V(I'-,J-,} S Wil ) (2)
- - ct ﬂfl'- T

where V1 is the Laplacian operator acting with respect to the point r;. Next let us take the
ensemble average of both sides of this equation and interchange the order of the various
operations. We then obtain the equation

o B

o 1 0
ViV (r. h)V(n, ) = ——
l( [?1 2 H} c? dfl._

(V*(x,, 1)V(r,. 1,)). (3)

It the field is statistically stationary, at least in the wide sense as we now assume, then

Vi, n)V(r, ) = (Vi OV, t + 1, — 1)) = T(x, 1y, 7), (4)

=1, = 1}, where I'(r, r., 7) is the mutual coherence function of the field [Eq. (6) of
Section 3.1]. Evidently 9-/0tf = 9*07" and hence Eq. (3) implies that

1 8T, 5. 1)

Vil(r,r,,7) = . (5a
it c? ar- )
In a strictly similar manner we find that
] 1 &*l(r,,r,, 7)
V(. r,7) = — e, (5b)

2

c ar-

where V3 is the Laplacian operator acting with respect to the point ra.

The two wave equations' (5a) and (5b) for the mutual coherence function hold rigor-
ously for propagation in free space. From them one can obtain at once equations which are
valid, to a good approximation, for the propagation of the mutual intensity in free space.
They follow on substituting for I" from Eq. (22) of Section 3.1 into the wave equations (5).
One then obtains the two equations

V2i(r. 1) + k(x5 5) =0, (6a)
and
ViJ(r,.x,) + k2J(r. 1) = 0, (6b)
where
F=2, (7)
"

! Actually the two equations (5) are not independent. because of the relation [(r,, rs 7) = [*rs, r. —71)
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provided that the inequality given by Eq. (24) of Section 3.1 holds, i.e. provided that

27
e (8)

Aw

Equations (6) explain why the van Cittert-Zernike theorem resembles closely the
Huygens-Fresnel principle of elementary diffraction theory. This principle is a conse-
quence of the fact that a monochromatic optical field satisfies the Helmholtz equation. We
have just shown that the mutual intensity of a stationary random field also obeys, approxi-
mately, the Helmholtz equation. This common property implies that in both cases the prop-
agation is, to a good approximation, governed by the Huygens—Fresnel principle.

PROBLEMS

3.1 A plane, polychromatic light wave. whose spectrum consists of a line with Gaussian
profile, is incident normally on a screen A containing two pinholes. At each instant of
time the complex wave amplitudes at the two pinholes are the same. Derive an expres-
sion for the visibility of the interference fringes observed at a point P on a screen B
parallel to A, at distances r; and r, from the pinholes.

3.2 A double star consists of two components which subtend on Earth the same angular
diameters 2¢ and have angular separation 27. The stars may be regarded as having
uniform circular cross-sections and radiating at the same mean wavelength. The ratio
of the brightnesses of the two components is 1 : b. The light received from the star is
passed through a filter so as to make it quasi-monochromatic.

(a) Derive an expression for the equal-time degree of coherence j,» of the star light in
the observing plane of a Michelson stellar interferometer.
(b) If 3 => a, show how 3 may be determined from the visibility curve.

3.3 A Michelson interferometer is illuminated by a quasi-monochromatic light beam hav-
ing a rectangular spectral distribution of width Aw. centered on frequency @. The
interference fringes first vanish when one of the mirrors is displaced by a distance d,
from its symmetric position with respect to the other mirror. Determine the degree of
self-coherence ~(r, r, 7) of the light at the beam splitter of the interferometer and using
it, calculate the width Aw of the spectral distribution.

3.4 A spectrum of light consists of N “lines™ of the same profile but of different intensities,
centered at frequencies wy, w,, . . ., wy. The light is analyzed by means of a Michelson
interferometer.

(a) Derive an expression for the visibility curve.

(b) Discuss in detail the case when the spectrum consists of two lines (VN = 2) of the
same intensities and with identical profiles that are of Gaussian form. Show also
how the separation of the two lines may be determined if it is assumed to be large
relative to the effective width of each line.
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3.5 The mutual intensity function for all pairs of points on a surface intercepting a station-
ary quasi-monochromatic light beam is of the form

.f[r,. I."g] :f[r|).2(rj:|.

where f(r) and g(r) are known functions of position on the surface. Show that

(a) g(r) = af (r), where a is a real constant and the asterisk denotes the complex con-
jugate; and

(b) the light in the space into which it propagates is completely spatially coherent
within the framework of second-order coherence theory.

3.6 Consider a real random source-distribution Q'(r, 1), localized for all times within a
finite volume D in free space. and let V")(r, ) be the field which the source generates.
Q" and V' are related by the inhomogeneous wave equation

221701
Vevi(r, 1) - ldV_irn = —47Q0'""(r, 1).
c- aes

Show that if Q"(r, 1) and V'"(r, t) are stationary random processes, and Q(r, ) and
V(r, 1) are the associated analytic signals, then the cross-correlation functions

Fo(r, 5y, 7) = {Q7(r, )O(ry, 1 + 7))
and

Folmmer) =V (Es VD041
are related by the equation

- 2 ort

== =
c- Ot

. ] d: - 1

3.7 The mutual coherence function of a certain stationary optical field in free space has
the form

F(l‘h L, T_] = F{I’h l‘g}G{T).

Show that the function F(r,, r,) must satisfy two Helmholtz equations and determine
the most general form of G(7).
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Second-order coherence phenomena in
the space—frequency domain

Up to relatively recent times, second-order coherence phenomena have usually been
described in terms of the space-time correlation function. namely the mutual coherence
function I'(ry, rs, 7). or in terms of a space correlation function, i.e. the mutual intensity
J(r,.r5). Using them we defined, in Section 3.1, the complex degrees of coherence ~(ry, rs,
7) and j(r,. r,). More recently an alternative description was developed. which has consid-
erable advantages in the analysis of many problems involving statistical wavefields. It
employs certain functions which were originally introduced rather formally in terms of the
Fourier transforms of the mutual coherence function, but later they were found to be also
correlation functions, associated with ensembles of realizations, that are functions of posi-
tion and frequency, rather than of position and time. This step is not as trivial as it might
appear at first sight because, as we noted in Section 2.5, the sample functions of a station-
ary random process do not have a Fourier frequency representation.

The newer space-frequency representation turned out to be very useful for providing
solutions to many problems and it has led to the discovery of some new effects, some of
which we will discuss in this chapter.

4.1 Coherent-mode representation and the cross-spectral density
as a correlation function

As we already noted, in the space—time formulation of coherence theory of stationary opti-
cal fields, the basic quantity is the mutual coherence function

I'(r,r,, 1) = (V' (5. DV(r.r + 7). (1)

In the space-frequency formulation, the basic quantity is the cross-spectral density func-
tion W(r,, r». w), which is its Fourier frequency transform, i.e.

1 B LT
Wir,r,.w) = Ef_xl[rl.rj.ﬂc dr. (2)

60
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For later purposes we note that in free space the cross-spectral density obeys the two
Helmholtz equations

ViW(r,, 15, @) + EW(ry, 1, @) = 0 (3a)
and
ViW(r,, ry @) + BW(r,, ry, @) = 0, (3b)

where Vi and V3 are the Laplacian operators acting with respect to the points T, and r,
respectively, k = w/c is the free-space wave number, ¢ being the speed of light in vacuum.
These equations follow at once from the two wave equations (5a) and (5b) of Section 3.5
which are satisfied by the mutual coherence function in free space, on taking their Fourier
transforms.

We have already encountered the cross-spectral density in a somewhat broader context, in
connection with the generalized Wiener—Khintchine theorem [Egs. (12a) and (12b) of
Section 2.5] of the theory of stationary random processes. However, in that treatment the
cross-spectral density appeared in a “singular formula™ containing the Dirac delta function
[Eq. (11) of Section 2.5]. In the space—frequency formulation of coherence theory, the cross-
spectral density is introduced in an alternative way, within the framework of ordinary func-
tion theory, as a correlation function of a statistical ensemble of well-behaved realizations.

Let us consider an optical field in a closed domain D in free space. Then it can be shown
(M&W, Sections 4.7.1 and 4.7.2) that, under very general conditions (Hermiticity, non-
negative definiteness and square-integrability of W over D), the cross-spectral density of
the field at any pair of points r; and r, in D may be expressed in a (generally infinite) series

W(r.r,.0) = Y A (0)d (r,.w)o, (T, ). 4
n
The functions ¢, may be shown to be the eigenfunctions and A, the eigenvalues of the inte-
gral equation

[ W n.06, 1. 0)d = )\, @6,y 0). (5)

The eigenfunction ¢, may be taken to form an orthonormal set over the domain D, i.e.
‘];’J‘ Qb: ( r, m}d’m {r’ f,u]d:"r' i I'Knm N {6)

Onm being the Kronecker symbol (4, = 1 when n = m. §,,, = 0 when n # m). The quanti-
ties A, (w) [the eigenvalues of the integral equation (5)] are positive, i.e.

Alw) =0 (n=0). (7)

The summation in Eq. (4) must be interpreted as follows. If D is a three-dimensional
domain, n stands for the triplet (1, n», n3) of non-negative integers and ¥ stands for a triple
sum. If the domain is two-dimensional n stands for a pair of non-negative integers, n; and
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n,, and X stands for a double sum. If the domain is one-dimensional, n stands for a non-
negative integer and one has a single summation.
In free space, each function ¢,(r, w) obeys the Helmholtz equation

V30,(r, @) + Ko (r, ) = 0. (8)

To derive this result we substitute the expansion (4) of the cross-spectral density into the
Helmholtz equation (3b), multiply the resulting equation by ¢,,(r, w), integrate both sides
with respect to r| over the domain D and use the orthonormality relation (6). For reasons
which will become evident later, the expansion (4) is known as the coherent-mode repre-
sentation of the cross-spectral density.

We will now show that by using the expansion (4) of the cross-spectral density, one can
construct an ensemble {U(r, )} of sample functions U(r, w) in terms of which the cross-
spectral density of the field in the domain D may be expressed as a correlation function.

Let us consider the ensemble of sample functions of the form

Ur,w) = > a,(w)o,(r,w), )
n
where the a,(w) are random coefficients such that
(@ (@a, (@), = A, (@), (10)

and the )\, (w) are the same positive quantities as appear in the expansion (4),' i.e. the eigen-
values of the integral equation (5).

Next we consider the correlation function (U(r. w)U(r>, )). One has, on using the
expansion (9),

U (r, @U(ry,0), =3 > (@ (wha, (w)o,(r. v, (r,, o), (11)

where we have interchanged the order of the ensemble average and the double summation.
On using (10), the expansion (11) simplifies:

U™ (. )U(ry, @), = Y. A (@), (1. )¢, (ry, ). (12)

Since the right-hand sides of Egs. (12) and (4) are the same, the left-hand sides must be
equal to each other and hence we have established the important result that

W(r), rs, @) = (U'(r}, 0)U(rs, ©)),. (13)

! There are many ways of choosing such random coefficients. For example one can take a(w) = JA, (w)e'™,

where, for each n, #, is a real random variable that is uniformly distributed in the range 0 = @, < 27 and 8, and
6., are statistically independent when n # m. With this choice the requirement (10) is satisfied.
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We have attached the suffix w on the angular brackets to stress that the average is taken over
an ensemble of space—frequency realizations. It is an ensemble which is quite different from
the ensemble taken over the space—time realizations V(r, 1), which we encountered earlier.

The formula (13) 1s an important result. It shows that the cross-spectral density of a sta-
tistically stationary fluctuating field in the domain D may be expressed, for all pairs of
points in D, as a cross-correlation function of an ensemnble {U(r, w)} of space—frequency
realizations U(r, o).

Because each of the functions ¢,(r, @) satisfies the Helmholtz equation (8) it is clear that
the left-hand side of Eq. (9) also satisfies that equation and, consequently,

\TEU(r, w) + kEU(r, w) = 0. (14)

Hence we may regard each sample function U(r, w) of our ensemble as being the space-
dependent part of a monochromatic wavefield V(r. 1) = U(r. w)exp(—iwr). This fact
contributes towards an intuitive understanding of many of the results of the second-order
coherence theory in the space—frequency domain. For example. Eq. (13) implies that the
spectral density S(r, @) = W(r, r, w) of the fluctuating field V(r, r) at a point r may be
expressed in the form

S(r, w) = (U'(r, w)U(r, ®)},, (15)

This formula is similar to the formula based on the common intuitive belief that the spec-
tral density is the average of the squared modulus of the Fourier frequency components of
the fluctuating field V(r. r). However, as we learned in Section 2.5, a stationary random
field V(r, r) does not have a Fourier frequency spectrum. Nevertheless the formula (15) is
rigorously valid, but one must appreciate that U(r, w) is not a Fourier frequency component
(which does not exist) of the fluctuating field but is the space-dependent part of a member
of the statistical ensemble {V(r, 1) = Ulr, m)e_i“"} of monochromatic realizations, all of
frequency w. The distinction between a monochromatic field and an ensemble of mono-
chromatic fields of the same frequency is crucial. Once this fact is appreciated. one can use
the space—frequency representation with great advantage to study second-order coherence
phenomena in stationary wavefields, as we will soon see.

4.2 The spectral interference law and the spectral degree of coherence

In Section 3.1 we introduced a (generally complex) space—time correlation coefficient,
namely the degree of coherence 4(ry, ro. 7). from the analysis of Young's interference
experiment. In this section we will introduce a space—frequency correlation coefficient,
also from the analysis of Young's interference experiment. but with the difference that
instead of considering the distribution of the intensity in the dereminnﬁ\plun‘é&"tw will con-
sider the spectrum of the light in that plane. For this purpose it is not nﬂcé‘s:;ary that the light
illuminating the pinholes is narrow-band; on the contrary, the effect of superposing two
beams emerging from the pinholes on the spectrum of the light in the detection plane
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Fig. 4.1 Notation relating to Young's interference experiment with broad-band light.

becomes more pronounced when the light incident on the pinhole contains a broad band of
frequencies, as we will soon see.

Let us once again consider light of any state of coherence. incident from the left on an
opaque screen /4 containing two pinholes, at points Q, and Q- (Fig. 4.1). As is clear from
the results that we have just established, we may represent the field at the pinholes by
ensembles of frequency-dependent realizations {U(Q,. w)} and {U(Q,, w)}. We assume
that the pinholes are sufficiently small that the amplitude of the field is effectively constant
over each of them and also that the angles of incidence and of diffraction are small. Then
the field at a point P on a detection plane B some distance beyond the screen 4 and paral-
lel to it is, to a good approximation, given by an ensemble of realizations { U(P, w)} where

U(P,w) = KU(Q,,w)e"™ + K,UQ,.w)e"":, (1)

K, and K, being defined by Eq. (3) of Section 3.1, with A being replaced by the wavelength
A corresponding to the frequency w, i.e. A = 27c/w and R, and R, are, as before, the dis-
tances from @, to P and from Q- to P, respectively.

Let us substitute from Eq. (1) into the expression for the spectral density [Eq. (15) of
Section 4.1]. If we also use the fact that W(Q,. Q,. @) = W (Q,, Q1. ), we obtain for the
spectral density at the point P the expression

S(P, ) = |Ki[>S(Qy, @) + |K>|*S(Q2, @) + 2 Re(KIKaW(Q), Oa, w)e ™0}, (2)
where

. 2T
b = T{R' = R;). (3)

The factors K, and K, are proportional to the areas of the pinholes. If we let the area of the
pinhole at Q, decrease to zero, Eq. (2) will then represent the spectral density, S"'/(P, )
say, at the point P, with just the pinhole at Q, open, i.e.

|K\|*S(0. w) = S'(P, w). (4a)
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Similarly,
K, |*S(Q,, 0) = SPUP, w). (4b)

represents the spectral density at P with just the pinhole at Q> open. Hence the formula (2)
may be rewritten in the physically more significant form

S(P,w) = SYNP,w) + SP(P,w)

+ E{JS”](P,M}\/SIE'(EM) Re[;i.{QI,QE,mJB_i"J}‘ (5)
where
W(Q,.0,,
wWQ,, 0, w) = Sl (6a)
JW(Q,.0,,0)\W(Q,.0,.)
_ W(Q,.0, . w)
J5(0.@)5(0,.0) (65)
If we set

Q. 0,.w) = (@, Q,, w)le L) ”

the expression (5) for the spectral density at the point P in the observation plane becomes

S(P.w) = SO(P,w) + SO (P,w)
+ 2JSD(P, w)SD(P.w)[1(Q,, Q. w)|cos[3(Q,. Q. 0) — 8].  (8)

This formula is called the spectral interference law for the superposition of beams of any
state of coherence. In its mathematical structure it is of the same form as the “intensity inter-
ference law” [Eq. (14) of Section 3.1]; but 1ts meaning is different. The intensity interference
law is an expression for the averaged intensity at a point P in the interference pattern,
whereas the formula (8) is an expression for the spectral density of the light at that point.
Before turning our attention to some consequences of the spectral interference law, we
will briefly comment on the physical significance of the factor p(Q,, Q,, w) which plays an
analogous role to the complex degree of coherence +(Q,, Q,, 7). This is evident on compar-
ing Eq. (8) with Eq. (14) of Section 3.1. The expressions (6) by which p(Q,, Q,, @) has been
introduced show that 1t is the normalized cross-spectral density of the fluctuating field at the
points @, and Q,. We have already learned that the cross-spectral density W(r,, r-, ) may
be interpreted as a correlation function in the space—frequency domain [Eq. (12) of Section
4.1]. By using the fact that the cross-spectral density function is non-negative definite (or by
use of the Schwarz inequality) one may show [see B&W. Appendix VIII, p. 911] that its nor-
malized factor (Q,, Q,, w) is bounded in absolute value by zero and unity, i.e. that

0 =< |wQ, Q> w) =1 (9)
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for all values of its argument. The extreme value |;| = | represents complete correlation;
the other extreme value, ¢ = 0. represents absence of correlation. For this reason the nor-
malized cross-spectral density p(Q,, >, w) is called the spectral degree of coherence at
frequency w of the light at the points 0, and Q..

Let us now return to the spectral interference law (8). Usually S®/(P, w) = §'"(P, ) and
the spectral interference law then takes the simpler form

S(P, w) = 258V(P, w){1 + |u(Q). @s. )|cos[HQ,. O», w) — 6]}. (10)

We note two implications of this formula. First. at any frequency w, the spectral density
varies sinusoidally with the position of the point P across the detection plane B, with the
amplitude and phase depending on the spectral degree of coherence. Secondly, at any fixed
point P the spectral density S(P, w) will, in general, differ from the spectral density $'(P, )
of the light which would reach the point P through only one of the two pinholes, the differ-
ence depending on the spectral degree of coherence p(Q;, @5, w). This difference in the two
spectra is an example of the phenomenon of correlation-induced spectral changes, which
we will discuss shortly.

In a sense the “intensity” interference law given by Eq. (8) of Section 3.1 and the spectral
interference law (8) are complementary to each other. The former shows that appreciable mod-
ifications of the averaged intensity take place when narrow-band quasi-monochromatic light
beams are superposed. The latter indicates that appreciable changes of spectra may take place
when two broad-band beams are superposed. More detailed analysis reveals that in the former
case no appreciable spectral changes take place. whereas in the latter case no appreciable inten-
sity variations occur. Moreover, no interference [ringes are formed when the path difference
introduced between the two beams exceeds distances of the order of the coherence length of the
light, whereas spectral modulation takes place irrespective of the phase difference’ é, defined
by Eq. (3), as is evident from the spectral interference law (8). Figure 4.2(a) shows the exper-
imental set-up for illustrating this effect. Results of the experiment are shown in Fig. 4.2(b).

Spectral changes have also been observed in star light passed through two slits in an
opaque screen and then superposed.” From such changes. shown in Fig. 4.3, the spectral
degree of coherence of the star light reaching the Earth was determined by the use of the
spectral interference law (8). In principle, one can estimate from such measurements the
angular diameter of the star with the help of the van Cittert—Zernike theorem (that we dis-
cussed in Section 3.2). This method must be distinguished from Michelson's method for
measuring stellar diameters, which we described in Section 3.3.1, Michelson’s method is
based on determining the correlation between the fluctuating fields at two mirrors of an
interferometer from visibility measurements, whereas the method which we just mentioned

' Similar effects have been found in interference experiments with matter waves, specifically with neutron beams
[see, for example H. Rauch, Phys. Lerr. A173 (1992), 240242 and D. L. Jacobson, S. A, Werner and H. Rauch,
Phys. Rev. A49 (1994), 3196-3200. See also G. S. Agarwal. Found. Phys. 25 (1995), 219-228.

* H.C. Kandpal, A. Wasan, J.C. Vaishya and E.S.R. Gopal Indian J. Pure Appl. Phys. 36 (1998), 665-674. In
this paper measurements of the frequency dependence of the spectral degree of coherence of light from a star
(a-Bootis) were also reported.
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Fig. 4.2 Spectral changes generated on superposition of two partially coherent, broad-
band light beams, emerging from two slits. (a) Layout of the experiment with
Dy =068mm, D, =34mm. a = 0.026mm, b= 0.11 mm. (b) Measured values,
denoted by circles and interpolated by the solid curves and the original spectrum (bro-
ken line). [After M. Santarsiero and F. Gori, Phys. Letr. A167 (1992), 123-128.]

is based on measurements of the spectral changes arising on interference between two
beams, 1.e. it makes use of correlation-induced spectral changes.

In discussing the “intensity interference law™ in Section 3.1, we showed that the absolute
value of the complex degree of coherence (Q;, O>, 7) can be determined from measure-
ments of the visibility of interference fringes [Eq. (19) of Section 3.1]. We will now show
that the absolute value of the spectral degree of coherence j(Q,, Q>, @) may be determined
in a somewhat similar manner. For this purpose we note from the spectral interference law,
specialized to the case when S“(P, w) = S'"(P, w) [Eq. (10)], that the spectral density
S(P, w) at any fixed frequency w has a maximum in the neighborhood of a point P in
the plane of observation, when the path difference (3 — &) is such that the cosine term in
Eq. (10) has the value +1 and that it has a minimum when it has the value —1. These
extreme values of the spectral density evidently are

Sl ) = 23{“(&")“ + |.“'[Ql~ 2s m)”- (11a)

Smin(P. @) = 251 - |11(Qy, Qs w)|]. (11b)
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Fig. 4.3 Spectra of the stars o-Bootis (a) and a-Scorpio (b) at an observation point P
on axis. Curve S, is the recorded spectrum when slit P, is open and P5 is closed. The
curve S5, is the recorded spectrum when the slit P, is open and P, is closed. Curve §
is the recorded spectrum when both £, and P- are open. The dotted line represents the
sum of the two spectra given by the curves §; and S,. [After H. C. Kandpal, A. Wasan,
J. S. Vaishya and E. S. R. Gopal, Indian J. Pure Appl. Phys. 36 (1998), 665-674.]

By analogy with the defimition Eq. (18) of Section 3.1 of the fringe visibility, we now intro-
duce the concept of spectral visibility V(P. w). defined by the expression

S (Pyw)— 8 (P w
'V{P.w) — max min ;' . {]2]
Srrn:nr.II‘*‘P‘"’E"-:I + ‘S‘r|1in{‘lu“":!";l

On substituting from Eqgs. (11) into Eq. (12) it follows that
WP, w) = |p(Q). Q2. w)]. (13)

This formula shows that the absolute value of the spectral degree of coherence can be
obtained from Young’s interference experiment by letting the light from the two pinholes
pass through narrow-band filters which transmit a narrow portion of the spectrum centered
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on the selected frequency w. The argument (phase) of i can also be determined experimen-
tally, from measurements of the locations of the maxima and the minima, in a similar man-
ner (mentioned in Section 3.1 and described in B&W, Section 10.4.1) to what can be done
to determine the phase of ~; but, in addition, one must again use narrow-band filters. Other
techniques for measuring both the modulus and the phase of the spectral degree of coher-
ence have been described in several publications.'

With the interpretation of the normalized cross-spectral density (6) as the spectral degree
of coherence, one can readily understand why the expansion Eq. (4) of Section 4.1 is
known as the coherent-mode representation of the field. For this purpose let us rewrite the
expansion in the form

W(r.r.w) =) Wrr.r,o) (14)

where
W’“”f[‘h I, w) = A,,(W}Cf’:;(l'h {ﬂ}tﬁn(rg, w). “5}

The spectral degree of coherence associated with the contribution of W' is given by the
expression

W (r,, T, @)
\/5["’(1',.(&}\/5["‘(1'2,&;}
- A, (@)0) (1, w)é, (1, )
\/’\n{“’”‘f’n“]-wlF Jﬁ,,(leéﬂ{rz.w)F ‘

Pk i r,.w)

(16)

implying that
|p"Ury, 1, w)| = 1. (17)

In going from the first to the second expression on the right of Eq. (16) we used the fact that
the spectral density $"(r, w) = W"(r, r, w).

Equation (17) shows that each term (mode) in the expansion Eq. (4) of Section 4.1 rep-
resents a field which is completely spatially coherent at frequency w.

It may be shown (M&W, Section 7.4) that laser modes provide examples of such coher-
ent modes.

4.3 An illustrative example: spectral changes on interferences

The spectral interference law that we have derived in the preceding section has a number of
interesting implications and some useful applications. In this section we will show how it
may be used to determine the angular separation of distant objects.?

' D.F. V. James and E. Wolf, Opt. Commun. 145 (1997), 1-4: S.S. K. Titus, A. Wasan, J. S. Vaishya and H. C.
Kandpal, Opr, Commun. 173 (2000)), 45-49; V.N. Kumar and D. N. Rao, J. Mod. Opr. 48 (2001), 1455-1465;
G. Popescu and A. Dogariu. Phys. Rev. Leit. 88 (2002), 183902 (4 pages).

* The analysis of this section is based on a paper by D.E. V. James, H. C. Kandpal and E. Wolf, Astrophys. J. 445
(1995), Part |, 406—410.
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r < >

source screen observation
plane

Fig. 4.4 Illustrating the notation relating to formula (2) of Section 4.3.

When the spectral densities of the light reaching the observation point P from each of the
pinholes are the same [i.e. S'(P, w) = S?AP, w)] we have. according to the spectral inter-
ference laws [Eq. (10) of Section 5.2],

ﬁ{f% =1 + [1(Q,. 0, @) |c0s[3(Q,, 0, @) — 8. (1)
Let R, and R, denote, as before, the distances from each of the two pinholes at points @,
and Q- to the point of observation P, d the distance between the pinholes and x the distance
of the point of observation from the axis (see Fig. 4.4). Suppose that x is small relative to
the distance R between the plane of the pinholes and the observation plane, i.e. that
x/R<< 1. Then R, — R; = xd/R and the path difference ¢ = k(R, — R)) = wxd/(Rc).
Under these circumstances the formula (1) becomes

S(P.w) . .
————— =1+ |Q,.0,.w)cos[ HQ,.0,.w) — wxd/(Rc)]. 2
SSTP ) Q. 0, Q,.0, (2)
Suppose that the source is a pair of identical circular disks. e.g. a somewhat idealized dou-
ble star, each of uniform intensity iy. The intensity distribution fy(p) across this two-com-
ponent source, each component of which is assumed to be spatially incoherent, may be
expressed in the form

Io(p) = ig{circ[|p + by/2|/a] + circ[|p — by/2|/al}. (3)

where a denotes the radius of each of the two circular sources, by is the vector specifying
the location of the center of one of them relative to the other, ij is the intensity, assumed to
be constant, of either of the two sources and

1 whenO =y =1,

AR =V whien =1

4
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Fig. 4.5 Mustrating a method for determining the angular diameters and angular sepa-
ration of two circular sources from spectroscopic measurements.

The spectral degree of coherence of the light reaching the pinholes from the source can
readily be calculated by substituting from Eq. (3) into the far zone form Eq. (20) of Section
3.2, of the van Cittert—Zernike theorem with the equal-time degree of coherence j(Q,, 0>)
replaced by the spectral degree of coherence 1(Q,, 05, w). One then finds that

wd-b,,
2cr

2/ lawd/(cr)]
cOS

(Q,,0,.w) =
3 Q' Qz awd/(cr)

(5)

where r is the distance between the “source plane™ and the plane of the pinholes (see Fig.
4.5) and d is the (vectorial) distance between the two pinholes. For the sake of simplicity
we have assumed that the line joining the pinholes is parallel to the line joining the centers
of the two circular sources, i.e. that d is parallel to by,

On substituting from Eq. (5) into Eq. (2) it follows that

wxd

S(Pw) _ , 2lawd/(cr)] CDS{ wd'b, i

28'(P, w) awl(cr)

2cr cR
where we have used the fact that the factor containing the Bessel function is real and posi-
tive and that R > d.

Figure 4.6 shows the behavior of the ratio 25(P, w)/S""(P. w) as a function of the fre-
quency w, for some selected values of the parameters. Several features are worth noting:
first, the rapid sinusoidal modulation, due to the factor cos[wxd/(cR)]: and secondly, the
contrast of the spectral modulation due to the frequency dependence of the spectral degree
of coherence, given by Eq. (5), of the light at the two pinholes. One can readily identify the
two different causes of the modulation as being due to (i) the size of the source and (ii) the
separation of the two sources. Thus, in principle, the angular radii of the sources and their
angular separation can be deduced from such spectral measurements made at fixed pinhole
separation. These theoretical predictions have been verified by experiments’ (see Fig. 4.7).

! H.C. Kandpal, K. Saxena, D.S. Mehta. J. S. Vaishya and K. C. Joshi, J. Mod. Opr. 42 (1995), 447454,
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Fig. 4.6 The spectrum produced on superposing. at a point P, two beams from circular
sources, each of angular radius & = 3 X 107", The angular separation of the two sources is
A = 3 X 1077, the path difference (R, — R;) = 10pum and the baseline d = 5 m. [Adapted
from D. F. V. James, H. C. Kandpal and E. Wolf, Astropliys. J. 445 (1995), 406-410.]
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Fig. 4.7 Results of the first laboratory experiments testing the theoretical predictions
shown in the previous figure, with the same values of the parameters. Dashed line: the-
oretical prediction; solid line: results of experiments. [Adapted from H. C. Kandpal,
K. Saxena, D. S. Mehta, J. S. Vaishya and K. C. Joshi, J. Mod. Opt. 42 (1995), 447-454.]
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4.4 Interference of narrow-band light

It is frequently assumed that, when light of sufficiently narrow bandwidth, centered at fre-
quency wy, say, interferes, sharp fringes (i.e. fringes essentially of unit visibility) are
formed, imitating interference of monochromatic light of that frequency. We will now show
that this assumption is incorrect; and also that interference fringes formed with narrow-band
light exhibit a number of interesting features.

Suppose that we place identical filters in front of each of the pinholes at points (0, and
0> in Young's experiment. We will consider how the passband of the filters affects the
interference pattern.

Let
WAQ,, 0o w) = (U(Q), w)U(Q5. w)) (1)

be the cross-spectral density of the light incident on the pinholes. The expectation value
on the right of Eq. (1) is to be understood in the sense of coherence theory in the space-
frequency domain, which we discussed in Section 4.1. For the sake of simplicity, we have
now omitted the subscript @ on the angular brackets.

Let T{w) be the transmission function of each filter. The cross-spectral density function
of the filtered light which emerges from the filters is then given by the expression

WENQ,, 05, @) = (TH()UV(Q,, 0)T (@)U (Q,, w))
= [T(w)PWNQ,, 0, w), 2)

where we have made use of Eq. (1).
The spectral degree of coherence of the light transmitted by the filters, immediately
behind them, is given by the expression

WO 05 w)

10,0, w) = ; (3)
JWENQ,. Q). 0) (W (Q,. 0y 0)
On substituting from Eq. (2) into Eq. (3) we find at once that
1NOy, Qs w) = 1"(Qy. 0 w). (4)
where
p“J(Q],QI.wJ = Ll (SR (5)

\/wm(Qi_Ql,wy‘fll"“(Qz,Qg-wJ 5

is the spectral degree of coherence of the light incident on the pinholes. Formula (4) shows
that the spectral degree of coherence is unchanged bv linear filtering.
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Next let us consider the effect of the filters on the “space—time” degree of coherence
HQ,. 05, 7) which we discussed in Section 3.1. For light incident on the two pinholes, it is
given by the expression

.o,
YO, 0. T) = \/ e Ot (6)

T(Q, 0, 7)JTQ,.0,.7)

where '"(Q,, 0>, 7) is the mutual coherence function, defined by Eq. (1) of Section 4.1.
According to the inverse of Eq. (2) of Section 4.1, it is just the Fourier transform of the
cross-spectral density function, i.e.

r(Q,0,,7) = f: W (Q,.0,.w)e " do, (7)

where the integration extends over the positive frequencies only. because of our use of the
analytic signal representation.

On using Eq. (2) it is clear that the mutual coherence function of the light emerging from
the filters is

="

Ff+]lQ|~Q:-T) = fn |T[¢U}|zw“}(Q|*Q3‘M}E T dw. (8)

Suppose that the effective bandwidth Aw of the filters is so small that the absolute value
and the phase of the cross-spectral density W(Q,. 0>. @) of the incident light are effec-
tively constant over the bandwidth Aw of the incident light (see Fig. 4.8). If w; is the mean
frequency of the incident light we may then evidently approximate Eq. (8) by the formula

Q. 0,,7) = W(Q,.0,.w, :f; T (w)*e @7 dT. (9)

7 W0y, 0>. w)|
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Fig. 4.8 Schematic illustration of the relative behavior of the modulus of the transmis-
sion function T(w) of identical filters placed in front of the pinholes in Young's interfer-
ence experiment and of the modulus of the cross-spectral density W(Q,, Q5. w) of the
light incident on the pinholes, in experiments with narrow-band light. The effective
pass-band w, — Aw/2 = w = w, + Aw/2 of the filtered light is assumed to be so
narrow that the modulus and the phase (not shown in the figure) are substantially constant
across it. [Adapted from E. Wolf, Opt. Lett. 8 (1983), 250-252.]
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Hence the degree of coherence of the light emerging from the filters is given by the
expression

T i)
JF‘ "’fQ.~Q.1G)JF***thQT0)
= fu“.]{Qj" Qz‘ w” )B{T}I {10}

Il

Y0 0y 7)

where the spectral degree of coherence ' is given by Eq. (3) and

o(r) Jy T@)Pe do
O(7) = ;

- (11)
fﬂ T(w)] dw

We will refer to the function ©(7) as the filter function. We note that, as a consequence of
a well-known inequality for integrals, we have

Max|O(7) = ©(0) = 1. (12)
It follows from Eq. (12) that

Mjlxlﬂf:H(QprT}t = hl{i}(Ql*Qz,mﬂ)L [13}

In words: the maximum of the absolute value of the (temporal) degree of coherence of the
light emerging from the filters behind the two pinholes is equal 1o the absolute value of the
spectral degree of coherence at the central frequency wy, of the light incident on the pinholes.

Suppose that the averaged intensities of the light that is incident on the two pinholes are
the same. Then, according to Eq. (19) of Section 3.1. the modulus of the degree of coher-
ence ¥ (Q,, 01, 7) is equal to the visibility of fringes formed by the light emerging from
the two pinholes. Equation (13), therefore, implies that the maximum visibility of the
fringes formed by the filtered light is equal to the modulus of the spectral degree of coher-
ence ;"(Q,, 0>, wy) of the (unfiltered) light that is incident on the pinholes. Thus we see
that reducing the bandwidth of the incident light by linear filtering will not produce sharper
fringes. In particular the fringe visibility will not approach the value unity, irrespective
of how narrow the passbands of the filters are (unless, of course, |(Q), Q5. wp)| = 1).
However, it is clear from Eq. (10) and from a well-known reciprocity inequality relating to
effective widths of a pair of functions that arec Fourier transforms of each other [B&W,
Eq. (32) of Section 10.8] that the following result holds: the narrower the passbands of the
filters, the broader the absolute value of the filter function ©(7). Consequently, according
to Eq. (10) and the relation (19) of Section 3.1 between |7 (Q,, Q. 7)| and the visibility,
more fringes will then be formed.
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Fig. 4.9 Results of measurements of the fringe visibility 4/(7) in a two-pinhole experi-
ment against log;o( Aw), where Aw denotes the bandwidth of the filtered light. The two
sets of measurements pertain to sets of filters centered on the wavelengths A = 633 nm
and A = 488 nm. The points on each sequence are joined by dotted lines for clarity. The
measurements confirm that in the frequency ranges considered the fringe visibility is inde-
pendent of the bandwidth of the light over very wide wavelength ranges. [Adapted from
L. Basano. P. Ottonello. G. Rottingni and M. Vicari. Appl. Opt. 42 (2003), 6239-6244.]

We may summarize the main result that we derived in this section by saying that we have
shown that linear filtering does not increase the spatial coherence of light (i.e. no sharper
fringes are formed) but it increases its temporal coherence (i.e. more fringes will become
visible). These theoretical predictions were verified experimentally.' Some of the experi-
mental results are reproduced in Fig. 4.9.

PROBLEMS

4.1 It was shown in Section 4.1 that the cross-spectral density function of a statistically
stationary field occupying a finite domain D may be expressed in the form

W(r], I, w) = (U'(l‘l. WJU[ I, m}}}
where
Ulr, ) = X a,(w)o,(r. w).

The functions ¢,(r, ) are the eigenfunctions of an integral equation whose kernel is
the cross-spectral density function W(r,, r». w). The a,(w) are random coefficients
which satisfy the requirement that (a,a,,) = A\, &4, being the Kronecker symbol.

' L. Basano, P. Ottonello, G. Rottigni and M, Vicari. Appl. Opr. 42 (2003), 6239-6244,



Problems Ti

42

4.3

Show that
(1) (Ulr,, ®)U(r,, w)) = 0; and
(2) if U™ and U™ are the real and the imaginary parts of U then

(Ur,, o) U (ry, ) = (Ur), @)UV, w))
and
(U}, @)U (ry, ) = — (Ur), 0)U"(ry, w)).

Find also expressions for the real and for the imaginary parts of the cross-spectral den-
sity W in terms of correlation functions involving the real and the imaginary parts of U.

(a) Derive arelation between the space—time degree of coherence ~,(7) and the spec-
tral degree of coherence ji)>(w) of the field at two points P, and P,.

(b) Suppose that the light is quasi-monochromatic and that the normalized spectra at
the two points are equal to each other, i.e. that

si{w) = s (@),

and also that ;> is independent of frequency over the narrow bandwidth Aw of
the light. How does the relationship between ~5(7) and p;,(w) simplify in the
case when 7 < 27/Aw?

A cross-spectral density of a planar, secondary source has the factorized form
W(r,, r2. w) = Fl(r; + r)/2, w]G(r; — 1), w).

Show that, in order that F(r, ) represents the spectral density and G(r’, w) the spec-
tral degree of coherence of light across the source region, the spectral density has to
satisfy a certain functional equation. Show that the above formula applies with any
spectral density distribution whose spatial dependence has the form

S'U}(p.w]' = Sln]'{.r,}‘,m} = Sm]':(}.U.M)e"il‘lr';l-"’.

where 3, and /3, are constants,

4.4 Consider two identical small sources, separated by a distance d. The spectrum of each

4.5

source is Sp(w) and the correlation between them is characterized by ig(w).

Derive an expression for the total power radiated by the two sources and discuss
the limiting cases d <€ A and d > A (A = 27c/w). Comment on the implications of the
result for the case A > d on the overall behavior of the spectrum of the far field.

Statistically stationary partially coherent light propagates from the input plane z = z;
through a deterministic, time-invariant system, which is rotationally symmetric about the
z-axis, to the output plane z = z,. The system 1s characterized by an impulse response
function K(p, p', w). The vectors p and p' are two-dimensional position vectors perpen-
dicular to the z-axis, of points in the input plane and in the output plane, respectively.
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4.6

(a) If Wy (py, p1. w) is the cross-spectral density of the light in the input plane, derive
an expression for the spectral density S,(p, w) of the light at a typical point in the
output plane.

(b) Consider the special case of (a), when the input is a polychromatic plane wave
which propagates in the positive-z direction.

Qilw) = alw)X(w) + Yw), )w) = jw)X(w) + Yiw)

are sample functions, in the frequency domain, that represent the fluctuations of two
small sources, located at points P, and P,. X(w) and ¥(w) are random mutually uncor-
related functions, i.e.

(X (0)Y(w)) =0,
and a(w) and F(w) are deterministic functions such that
()| = |B(w)].

(a) Derive an expression for the degree of correlation p;,(w) of the two sources in
terms of the spectra Sy(w) and Sy(w) of X(w) and Y(w), respectively.

(b) Derive an expression for the spectrum S { P, w) of field produced at a point P equi-
distant from the two sources and sufficiently far from them when

Sylw) = S, (w) = Ale (0@ 2% (A and o are positive constants)
and

la(w)| = 1. o, w) — odw) = 21, (7> /o),

where ¢, and ¢ ; are the phases of a and 3 respectively. Sketch (P, w) as a func-
tion of w.
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Radiation from sources of different
states of coherence

5.1 Fields generated by sources with different coherence properties

Light generated by sources of different states of coherence may exhibit very different
behavior. This is quite evident from some simple examples, as we will now show.

Suppose first that the light originates in a thermal source, e.g. it is emitted by a hot body. The
radiant intensity, J,,(s), which represents the rate at which power at frequency w is radiated by
the source per unit solid angle around a direction specified by a unit vector s (which makes an
angle 0 with the normal n to the source plane), is given by Lambert’s law [Fig. 5.1(a)]’

J(8) = J,(0)cos 0. (1)

This is a rather broad angular distribution, illustrated on a polar diagram in Fig. 5.1(a). On
the other hand, light generated by a single-mode laser will be very directional [Fig. 5.1(b)].
Practically all the laser light will be concentrated within a very narrow solid angle around
the forward direction and, consequently, the polar diagram of the radiant intensity J,(s)
will now have a needle-like form.

Apart from this obvious difference between the radiation originating in these two kinds
of sources there is a more subtle difference. It becomes evident if one considers the depend-
ence of the radiant intensity on the shape of the source. It is clear from Eq. (1) that rhe radi-
ant intensity of the light generated by a Lambertian source is independent of the shape of
the source, being just proportional to cos ), it is, therefore, rotationally symmetric about
the normal 6 = 0 to the source plane. On the other hand, in view of the well-known
Fourier-transform relationship between the light distribution in the far zone and the light
distribution across the source plane of a spatially coherent source (usually the aperture
plane), the radiant intensity generated by such a source depends strongly on the shape of
the source. Consider, for example, a uniform circular source [Fig. 5.2(a)]. It will generate

!' Examples of modern Lambertian sources, i.e. sources which obey Lambert's law, are light-emitting diodes. See,
for example. E. F. Schumba, Light-Emitiing Diodes, second edition (Cambridge University Press, Cambridge,
200}6), Section 5.5.

79
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Fig. 5.1 Comparison of the angular distributions of the radiant intensity J(#) of light
produced by a thermal source (hot body) (a) and a single-mode laser (b).
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Fig. 5.2 Illustrating the effect of change of shape of a spatially coherent planar source
on the far-zone intensity pattern.

a rotationally symmetric intensity distribution, with circular contours [Fig. 5.2(b)].
Suppose that the source is “stretched™ in the y direction [Fig. 5.2(c)]. Then the far-zone
intensity distribution will shrink in that direction [Fig. 5.2(d)]. The difference between the
two very different kinds of sources is evidently due to the difference in their coherence
properties, the Lambertian source being spatially highly incoherent (see Section 5.5),
whereas the laser is spatially highly coherent,

There are, of course, other important differences between beams of light generated by these
two kinds of sources. As we have seen earlier (Section 2.1). the probability distributions which
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Planar secondary
source a

Fig. 5.3 Ilustrating the notation relating to a planar, secondary source o.

govern the fluctuations of the light field in the two cases are quite different. Another difference
is in the average number of photons in a cell of phase space (the coherence volume). The num-
ber is called the degeneracy parameter of the light and is discussed in Appendix 1.

In this chapter we will study radiation properties and coherence properties of fields gen-
erated by sources of different states of spatial coherence. We will mainly deal with fields
generated by planar, secondary sources, which are of particular interest in many applica-
tions, e.g. in instrumental optics. The corresponding results pertaining to three-dimensional
primary sources are very similar (M&W, Section 5.2).

5.2 Correlations and the spectral density in the far field

Let us consider a planar. secondary source & of finite size. assumed to be statistically sta-
tionary, at least in the wide sense. Such a source may be an opening, for example, in an
opaque screen illuminated either directly or via an optical system.

According to the coherence theory in the space~frequency domain that we studied in the
preceding chapter, the cross-spectral density function of the field at a pair of points §, and
S, in the source plane (see Fig. 5.3) may be expressed in the form [Eq. (13) of Section 4.1.
with the subscript @ omitted from now on]

WO (pl, ph @) = (U (p}, @) U? (p} w)). (1)

Here p; and p5 are two-dimensional position vectors specifying the locations of the two
points, with respect to an origin O in the source plane z = 0, and the superscript zero indi-
cales that the quantities pertain to points in that plane. U'” (p'. ) represents. of course, a
member of a statistical ensemble of the frequency-dependent realizations and the angular
brackets denote the average over that ensemble.

Let us now consider the cross-spectral density function W(r,, r,, w) of the field at any
pair of points P,(r,) and P5(r,) in the half-space z > 0 into which the source radiates (see
Fig. 5.4). It may be expressed by the same formula as W', viz.,
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Fig. 5.4 Illustrating the notation relating to radiation from a planar, secondary source .

W(r,, 12, w) = (U'(r), @)U(ry, w)), (2)

where {U(r, w)} represents the ensemble of the field at the point r generated by the field in
the source plane z = 0. U(r, w) may be expressed in terms of the “boundary field” U'” (p’, )
by the first Rayleigh diffraction integral [M&W, Eq. (3.2-78)]'

QikR ]

R

d
8:_

d2p’, (3)

__L (Mt
Ulr. w) gﬁqu (0, ®)

where

R=r—p|.

(4)

We will consider the far field, i.e. the field at points P which are at very large distances
from the origin, which is taken to be in the source region. To evaluate U at such points, it is
convenient to set r = rs (s* = 1). Evidently, for sufficiently large distances r,

R~r—s-p, (5)

where s - p'denotes the projection ON of the distance OQ onto the s direction (see Fig. 5.5)
and hence

! When the source is a primary three-dimensional source, rather than a two-dimensional secondary one, with
source distribution Q(r, w) occupying a finite domain D, one has in place of Eq. (3) the formula

i ek r
U(r,w) = o(r', w)— d*r',
J o R

where R = |r — r'|. For proof of this result see. for example, C. H. Papas, Theory of Electromagnetic Wave
Propagation (McGraw-Hill, New York, 1965), Section 2.1.
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P(r)

-~

secondary
source o

Fig. 5.5 Mlustrating the approximation (5). valid for large distance r.

kR 1kr
£ ¢ e iksp’ (6)
R r
Consequently
E ﬂ ~ ik i elkr E—iks-p*_ 7
dz| R rl r

On substituting from Eq. (7) into the Rayleigh diffraction integral (3) and noting that
z/r = cos ) we obtain the following expression for the value of U in the far zone, which we
will denote by U™

kr

U™ (rs,w) ~ r;icosb* IU‘"-‘[p'.wle‘“‘”"dzp'. (8)

Py 4 o

Here @ denotes the angle which the s direction, pointing from the origin in the source plane
to the observation point P = rs in the far zone, makes with the z-axis (i.e. with the normal
to the source plane).

It will be convenient to introduce the two-dimensional Fourier transform UO(f. w) of
U%p', w), viz..

O (£, w) = f UO(p . w)e o' d2p’, 9)

(z=0)

(2m)*

where f is a two-dimensional spatial-frequency vector. Although formally the integral on the
right-hand side of Eq. (9) extends over the whole plane z = 0 containing the secondary
source, it is actually taken only over the source region o, because U'"(p’, @) = 0 outside o.



84 Sources of different states of coherence

With the definition of U” given by Eq. (9), the formula (8) may be rewritten in the more
compact form
ikr

U (rs, w) ~ —2mik cos 0 U (ks , w)—, (10)
) I

where s | is the projection, considered as a two-dimensional vector, of the three-dimensional
unit vector s onto the source plane z = 0; i.e. if we write s = (s,. 5,, 5.) thens| = (s, 5,, 0).

According to Eq. (2) the cross-spectral density at a pair of points in the far zone speci-
fied by position vectors r; = rys; and r, = 158, (s] = s3 = 1) is given by the formula

W™ (ry8), 1a8p, @) = (U™ (118, 0)U™(r8,), w)). (11)

On substituting from Eq. (10) into this formula we see at once that

ik[rz n)

W‘“"(r]sl.rlsz.m) = (2wk)? cos -:":?I cos ﬂl{{:’m"{ksl_.w}i}“}}(ksn,w;l} (12)

Jif
where, of course, #, and #, are the angles which the unit vectors s, and s, make with the posi-
tive z-axis. On the right of the formula (12) there is the average of the product of the two-dimen-
sional Fourier components of U'”. We will now show that this average may be expressed as a
four-dimensional Fourier transform of W, We have, on using the definition (9) of U'?, that

(OO (£, 0)U O (£, w))

_ tzl}r‘ [f{IU:H:*{H’_m}Umr[p:"w}I‘,e_i"[:'i":‘_l'l'l"al*d:p; dzp:,i. (13)

(z=0)

Let us introduce the four-dimensional Fourier transform of W', viz..

WO, 0) = 1 ff WO pl, pl, w)e PP d2g! d2p,. (14)
- 2n)* S -
(z=0)

Now according to Eq. (1) the expectation value under the integral sign in Eq. (13) is just the
cross-spectral density W%(p], p3, @) of the field in the source plane and hence the right-hand
sides of (13) and (14) are equal to each other, apart from the difference in the sign of f, in the
exponent. Taking this difference into account, the left-hand sides of these equations will also
be equal to each other and hence

([}{“]‘(f],m]ﬂ‘m(fz,w)} = WO, f, w). (13)

Finally, on substituting from Eq. (15) into Eq. (12) we obtain the following expression
for the cross-spectral density of the far field:

eik[rz_r| )

WEN(rs,, 18, 0) = (Zwkllﬁ““){—ksl ks, L w) cos f), cos 0, (16)
s & e nr, -

'
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This is a basic formula from which various properties of the far field generated by planar,
statistically stationary sources of any state of coherence may be deduced. We will study
them later in this chapter. '

The formula (16) i1s an analogue in second-order coherence theory of the Fraunhofer for-
mula of the elementary theory of diffraction of monochromatic light. 1t implies that. apart
from simple geometrical factors, the correlation of the radiated field at a pair of points in
the far zone, in directions specified by unit vectors s; and s,, is given by a particular four-
dimensional spatial-frequency component W (f,. f. ) of the cross-spectral density of
the light in the source plane, namely one for which the two-dimensional spatial-frequency
vectors are f; = —ks, | and f, = ks, . Since 5, and s, are components of unit vectors it
can be seen at once from Eq. (16) that only those spatial frequency vectors for which
If,| < kand [f,| < k of W contribute to the cross-spectral density function W' of the far
field. We will call them low-spatial-frequency components.

The spatial-frequency component for which the opposite inequalities hold. i.e. for which
If,| > k and |f,| > k may be called high-spatial-frequency components. There are, of course,
also “mixed” situations when |f;| > k and |f;| = kor |f;| = kand |f,| > k. The basic formula
(16) shows that only the low-spatial-frequency components of the source contribute to the
far field. The high-spatial-frequency components give rise to evanescent waves. (see, for
example, M&W, Section 3.2), which decay exponentially in amplitude with increasing dis-
tance from the origin and, consequently, do not contribute to the far field.

As already mentioned, one may derive from formula (16) various properties of the far
field. In particular let us consider the spectral density §™ (rs, ), which is also called the
optical intensity at frequency w, of the field at the point P(rs) in the far zone. It is given by
the expression

S (rs, w) = (U™ (rs. o) U™ (rs. w)) = WZ)rs, rs, w) (17)

or, using the formula (16),

2

2wk

r

SN rs,w) = ﬁf"”'l—ksL.h‘.w .w)cos-4. (18)

We note the inverse-square-law dependence of S on the distance r from the source, a
result reminiscent of the inverse square-law of elementary wave theory. It is to be noted that
the angular dependence of the spectral density is not only given by the proportionality fac-
tor cos*d but also depends on the spatial coherence properties of the source, through the
dependence of W' on the directional vector s,

Because the distance from the source enters (18) only through the factor 1/7~ it is con-
venient to set

§*Nrs,w) = —=—, (19)
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Fig. 5.6 Tllustrating the meaning of the radiant intensity J,(s). It represents the rate at
which energy at frequency w is radiated into the far zone, per unit solid angle d{2 around
the direction specified by a unit vector s.

where, evidently,

J (s) = QekPWO (ks .ks .w)cos>d. (20)

The function J,(s) is known as the radiant intensity at frequency w or, more precisely, as
the spectral radiant intensity and is a generalization of a quantity bearing the same name in
traditional radiometry which deals with light from spatially incoherent sources. In suitable
units the radiant intensity is a measure of the power radiated by the source per unit solid
angle, around the direction specified by the unit vector s. per unit frequency interval cen-
tered at the frequency w (see Fig. 5.6).

Another quantity of interest relating to the far field is its spectral degree of coherence
1F(r 8y, r:87, w). According to the general formula (6a) of Section 4.2 it is given by the
expression

W™ rs,.
\{W‘I'[rISI.qsl.m}\/W‘I'(rlsl.rzsz.m)

158, w)

s, . 18, @) = (21)

Apart from a simple phase factor. the right-hand side of this formula may be expressed in
terms of the cross-spectral density function of the source by the use of formula (16). One
then finds that

ﬁmn[—ksl_, ks, .w)
\ﬁ{;m;(_._ksl ' ‘j:sl;wJJH‘ﬂUI{-_._kSL.kSM_.W)

18,85, 0) = SO
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Fig. 5.7 Ilustrating longitudinal spectral coherence (a) and transverse spectral
coherence (b) in the far zone.

We note that p'™' depends on the distances r, and r, from the origin of the two points
Py(rs)) and P(ry8,) in the far zone only through the phase factor k(r, — ry).

Two consequences of Eq. (22) are of special interest. When the points P, and P, in the
far zone are located in the same direction, i.e. when s, = s, the first factor on the right-
hand side of Eq. (22) has the value unity and one then has

,U'I}{r,s.rzs.w} - eiklr:—rll‘ (23)
Consequently

p2) (s, ns, @) = 1. (24)

This formula implies that along any direction pointing from the source, the far field is spa-
tially completely coherent at each frequency , a result which may be expressed by saying
that the far field has complete longitudinal spectral coherence at each frequency, irrespec-
tive of the state of coherence of the source [Fig. 5.7(a)].

Let us next consider the situation in which the two points in the far zone are located at
the same distance, r say, from an origin in the source region, in directions s, and s,. The
spectral degree of coherence y'™(rs,, 1s;, @) may then be said to represent transverse
coherence. It follows at once from the general formula (21) that the transverse degree of
coherence of the light in the far zone is independent of the distance r and depends only on
the directions s, and s, [Fig. 5.7(b)].
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5.3 Radiation from some model sources

To gain some insight about properties of fields radiated by sources of different states of
coherence it is convenient and useful to consider fields that are produced by certain types
of model sources. Some of these sources represent, at least approximately, sources that are
frequently encountered in nature or that can readily be produced in a laboratory. Moreover,
the fields which they generate may often be analyzed by the use of relatively simple math-
ematics. A broad class of such model sources is formed by the so-called Schell-model
sources, which we will consider first.

5.3.1 Schell-model sources

A planar secondary source of this class is characterized by the property that its spectral
degree of coherence 1'*'(p,. p,. @) depends on the location of the two points P, and P, only
through the difference p, — p,, of their position vectors p, and p,. We will then denote the
spectral degree of coherence of the light in the source plane by 1'”(p; — p;. w) rather than
by 1% (p,, p>. w). Recalling the definition of the spectral degree of coherence [Eq. (6b) of
Section 4.2], it follows that the cross-spectral density function of a planar, secondary
Schell-model source has the form

W'/, pyw) = JS‘“'{pl'.m]JS'“"lpé.m}p‘”‘{p; — pj ). (1)

An expression for the radiant intensity of the field generated by a source of this kind may
readily be calculated on first taking the four-dimensional spatial Fourier transform of
expression (1) and substituting it into the general formula [Eq. (20) of Section 5.2]. On
changing the variables of integration in the Fourier transform by setting p; + p2 = 2p and
p> — p; = p' one obtains the following expression for the radiant intensity generated by
such a source:

-

J (8) =J 0= lzL coszﬂf Ju‘“’ip'.w'}H‘“’(p’.w)e_“"-"‘rdzp’, (2)
T
where
HO(p' w) = fJS‘“’f.p +p'/2.0){SO(p - p'/2,w) d2p. (3)

As an example let us suppose that the source is circular and of radius a and that both the
spatial distribution of its spectral density across it and also its spectral degree of coherence
are Gaussian, i.e. that

SO (p,w) =

|A2e—p‘!{2n;} e p=<a {4}

when p>a
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and

uOp,w) = e %), (5)

where the quantities A, o, and o, are taken to be independent of position but. in general,
depend on the frequency. Usually @ > o,. We will assume this to be the case. which simplifies
subsequent calculations. Such sources are known as Gaussian Schell-model sources and the
fields which they generate are called Gaussian Schell-model fields. They have been studied
extensively in the analysis of various partially coherent fields and in connection with propaga-
tion of beams through the turbulent atmosphere where fields of this kind, which have beam-like
form, are called Gaussian Schell-model beams. We will encounter such beams in Chapter 8.

On substituting from Eqgs. (3)—(5) into Eq. (2) one finds after a long but straightforward
calculation that

=
V2087

HO(p'. ) = 2x A’c2e? 7, (6)
and
J.(6) = J,(0)cos2 e 3 *sinl (7)

where we have now written J,(#) rather than J,(s), & denoting, as before. the angle which
the unit vector s makes with the positive z-axis; and we assumed not only that ¢ = o, but
also that a > o,,. In Eq. (7)

J,(0) = (kAc6)? (8)

and

1 | 1
—_— = il
62 (20, )= Crf ' (¢a)

We see from Eq. (5) that 4'"(p’, w) — 1 as o, — . The source is then fully spatially
coherent, but this limit has to be interpreted with caution. For our earlier assumption that
a > o, demands that the source diameters must also become infinite, in such a manner that
the ratio @/, tends to a finite limit which is large relative to unity. Now according to Eq.
(4) the spatial intensity distribution across the source has a Gaussian form. This is clearly
the same situation as one encounters when the source is a laser operating in its lowest-order
Hermite—Gaussian mode. In this case (o, — =) Eq. (8a) implies that

6 = 2a0,. 9

Moreover, we now have ké = 2m(é6/A) = 4na /) and. for a realistic laser, this parameter
will be much greater than unity. The exponential term in Eq. (7) will then have a non-
negligible value only when sin # < 1. The expression (7) for the radiant intensity J,,(6)
generated by such a source may then be approximated by the expression
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1.(0) = J (0 :7F (10)

Evidently the angular spread of the radiation from such a source is confined to a domain of
semi-angle 8 ~ 1/(ké6) = M(2wé) ~ Mdre,), in view of Eq. (9). In this case the radiation
is effectively confined to a very narrow angular domain, i.e. under these conditions the
source generates a beam — namely a Gaussian beam. with a beam waist wy = ¢ = 2a,. Thus
we have shown that Gaussian Schell-model sources are generalizations of laser sources
operating in their lowest-order Hermite—Gaussian mode.

Let us now consider the other extreme case, namely when o, — 0. This obviously rep-
resents the incoherent limit (zero spectral correlation length). In this case we have from
Eq. (8a) that 6 — 0. In order for the factor J,(0) given by the formula (8) to remain finite
and non-zero, with o, fixed, it is necessary that A — = in such a way that the product A6
remains finite. Expression (7) then reduces to

J (@) = J_(0)cos . (11)

Hence in the incoherent limit the radiant intensity falls off with @ as cos?f. Since, for a
Lambertian source, J(#) = J,,(0)cos 6. this result implies that a spatially strictly incoherent
planar, secondary source cannot be Lambertian, at least when the incoherent source is mod-
eled as a limiting case of a Gaussian Schell-model source. One might, therefore, suspect that
a Lambertian source is not completely spatially incoherent. We will later see (Section 5.5)
that this is indeed the case.

5.3.2 Quasi-homogeneous sources

An important sub-class of Schell-model sources (again assumed to be planar, secondary
sources) is constituted by so-called quasi-homogeneous sources. For such sources the spec-
tral density $'”)(p. w) changes much more slowly with p than the spectral degree of coher-
ence 1'%p’, w) changes with p’ = p5 — p/. One says that $'”(p, w) is a “slow™ function of
p whereas ;®(p’, w) is a “fast” function of p’. Such behavior is illustrated in Fig. 5.8.
Further, the linear dimensions of sources of this kind are assumed to be large relative to the
wavelength A = 2mc/w of the light.

For a quasi-homogeneous source the expression (1) for the cross-spectral density simpli-
fies. It may evidently be approximated by the formula

! + [
W (p . p, w) = S‘“‘[E'—z&‘w u Ol — ol w). (12)

The fact that W now has such a factorized form leads to considerable simplification in
further analysis.

To derive an expression for the radiant intensity and for the spectral degree of coherence
of the far field generated by a planar, quasi-homogeneous source we must first determine the
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Fig. 5.8 Illustrating the concept of a quasi-homogeneous source. The effective spectral
coherence area of the source is much smaller than the region of the source over which
the spectral density (intensity) changes appreciably.

four-dimensional spatial Fourier transform of the expression (12). For this purpose we intro-
duce the same new variables as we did before in the transition from Eq. (1) to Eq. (2). viz..

! ’ !

p=1(p +p) p'=p —p. (13a)

We have the inverse relations
A= p=oel m=p+ip. (13b)

and one readily finds that the four-dimensional Fourier transform W, defined by Eq. (14)
of Section 5.2, of the cross-spectral density function (12) has the factorized form

WOL, £, w) = SO, + £,,0)i? L (f, - £).0|. (14)
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{11}

where § and /1" are the two-dimensional Fourier transforms of $'” and of 1", respectively:

SO, w) = (2717}’.[ SO (p,w)e-iPdp, (15a)
T (z=0)

O w) = (2n)? f 1O (p' w)e P d2p’. (15b)
(z=0}

The formula (14) shows that for a quasi-homogeneous source the four-dimensional Fourier
transform of the cross-spectral density of the source distribution factorizes into the product
of two two-dimensional Fourier transforms, one involving the spectral density and the
other involving the spectral degree of coherence of the source. Using Eq. (14), the radiant
intensity and the spectral degree of coherence of the far field [Egs. (20) and (22) of Section
5.2] may readily be evaluated. One finds that the radiant intensity of the field generated by
a quasi-homogeneous source is given by the expression

J,(@) = 27k S0, w);i'? (ks , w)cos?d, (16)

where the factor

SO0, w) =

. SOp’, wyd?p’ (17)
(2m)* \[::=Uj

is proportional to the integral of the spectral density of the source. taken formally over the
entire source plane.

Equation (16) shows that the angular distribution of the radiant intensity depends on the
product of cos’# and of the two-dimensional spatial Fourier transform of the spectral
degree of coherence of the light distribution across the source. The spectral intensity distri-
bution across the source, i.e. the spectral density $”(p. w), enters only through the factor
g‘L}’(D, w) given by Eq. (17). Hence the angular distribution of radiant intensity generated
by a quasi-homogeneous source is independent of the shape of the source; 1t 1s essentially
determined by the spatial-coherence properties of the source, represented by the spectral
degree of coherence ). This result explains a fact we noted earlier, in Section 5.1, namely
that the angular distribution of the intensity throughout the far zone generated by
Lambertian sources (which, as we will learn in Section 5.5, are quasi-homogeneous) is
independent of the shape of the source.

The far-zone coherence properties of the radiation produced by a planar, secondary
quasi-homogeneous source may also be readily determined. We see from Eq. (14) that

WO (=ks, ks, .0) = SO[k(s, — s, Joli'®|Lks, +s,)w|.  (I8)
and there are two similar expressions for the two terms appearing in the denominator of
Eq. (22) of Section 5.2 for the spectral degree of coherence. On substituting from Eq. (18)
into that equation we find that
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SO(k(s,, — ;)]
§fDJ{U, w)

P (ns,.ns,,w) = GO(ks,, ks, .w)e* ), (19)

where
ﬂ{ﬂi[% K8 <8, J.m!

'O (ks, | . m}Jﬁm’(ksM ,w) '

GO (ks, ks, @) = (20)

Now, for a quasi-homogenous source, the spectral density §'(p, w) is a “slow” function
of p whereas 4'%(p’, w) is a “fast” function of p’. According to a well-known reciprocity
relation involving Fourier-transform pairs, S *(f. w) will, therefore, be a “fast” function of
f and 79", w) will be a “slow” function of f'. Using these facts, the expression on the
right of Eq. (20) may be approximated by unity and the expression (19) for the spectral
degree of coherence of the far field reduces to

Lg‘{Dl[k(Sz_L == S|___]=w1 Ei“"'l_?]'
S(U)({L w}

PN (ns, s, 0) = 1 (21)

This formula shows that, apart from a simple geometrical phase factor, the spectral degree
of coherence 1'*)(r;8,. r18;. w) of the far field generated by a planar, secondary quasi-
homogeneous source is equal to the normalized spatial Fourier transform of the spectral
density across the source.

Except for the difference in notation, the formula (21) is of exactly the same form as the
far-zone form of the van Cittert—Zernike theorem [Eq. (20) of Section 3.2] for the equal-
time degree of coherence +*(r;s,, r28,. 0) = j(r,s,, rss;), which pertains to quasi-
monochromatic radiation from a spatially incoherent source. Clearly the formula (21) may
be regarded as its generalization, in the space—frequency domain, to the far field generated
by guasi-homogeneous sources. It should be noted that such sources may have large coher-
ence areas.

We will now examine more closely the two main formulas which we derived in this sec-
tion, namely Eqgs. (16) and (21), taking for simplicity r, = r; in Eq. (21). We may express
these two formulas in the form

J (@) = Qrk)*Cii (ks . w)cos?b, (16a)
1S, 18,5, @) = éé}"':“[i'c{sl1 —8yi Ywol; (21a)

where the factor C = §%0, w) is given by Eq. (17). This pair of formulas brings into evidence
two interesting reciprocity theorems relating to radiation from planar quasi-homogeneous
sources. The first shows that the angular distribution of the radiant intensity primarily
depends on the two-dimensional spatial Fourier transform of the spectral degree of coher-
ence of light across the source and, as already noted, is therefore independent of the shape
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of the source. The second shows that the spectral degree of coherence of the far field is pro-
portional to the two-dimensional spatial Fourier transform of the spectral intensity distribu-
tion (the spectral density) across the source. These two results are indicated schematically
in the following diagram, in which the arrowed lines indicate Fourier-transform pairs:

SOURCE PLANE FAR ZONE

Spectral Density

; g Radiant Intensity
(Optical Intensity) )

Spectral Degree of Spectral Degree of
Coherence Coherence

We will illustrate these results by a simple example. Consider radiation from a second-
ary, quasi-homogeneous uniform circular source of radius @ > A whose spatial distribution
of the spectral intensity and also spectral degree of coherence are Gaussian, viz.,

2a—p* 202
$O)(p, w) = A“e #29)) when p=a, 22)
when p > a:
and
.H'm; fp' w) = E_‘.':I{:"';:J}' [23)

where the parameters o, and o, depend on frequency. in general. The calculations simplify
if we assume that the linear dimensions of the source are large relative to the r.m.s. width
a, of the spectral density function §'%, i.e. if @ = o,. Because the source is assumed to be
quasi-homogencous, we also have a > ¢,,. Under these circumstances one readily obtains
from the two reciprocity relations (16a) and (21a) the following expressions for the radiant
intensity and spectral degree of coherence of the far field generated by such a source:

1,0 = (kAo 0))* cos2f e 21k, Vsin®®l (24)
Iulfcr:](rlsl . T:SE.CU) == C_%’{tﬂ‘ 3 uf:eik{f'}_—]'l l‘ {25)

where
w2 = |82, — 84| (26)

Figure 5.9 shows the polar diagram of the normalized radiant intensity J(6)/J,(0), cal-
culated from Eq. (24), for radiation from sources with various values of the r.m.s. width,
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Fig. 5.9 Polar diagrams, calculated from Eq. (24) of Section 5.3, of the normalized
radiant intensity from a Gaussian-correlated quasi-homogeneous source, for various
values of the r.m.s. width o, of the spectral degree of coherence p. The length of the
vector pointing from the origin to a typical point on a curve labeled by a particular value
of the parameter ko, represents the normalized radiant intensity in the direction of that
vector. [Adapted from E. Wolf and W. H. Carter, Opt. Commun. 13 (1975), 205-206.]

@, of the spectral degree of coherence .. We see that for small values of ko, the radiation
is spread over a wide solid angle but that as ko, increases, i.e. as the source becomes more
spatially coherent, the radiation becomes more directional. eventually forming a beam. For
comparison, the corresponding polar diagram for radiation from a Lambertian source is
included. Figure 5.10 illustrates the behavior of the spectral degree of coherence of the
light in the far zone, calculated from Eq. (25). 1t shows that with increasing effective source
size (ko, increasing) the angular region over which the absolute value of the degree of
coherence is appreciable becomes narrower.

5.4 Sources of different states of spatial coherence which generate
identical distributions of the radiant intensity

It is frequently asserted that, in order for a source to generate a highly directional field. i.e.
a narrow beam of radiation. it must be spatially highly coherent. such as. for example. a
well-stabilized laser is. This, however, is not true. We will see that under appropriate con-
ditions partially coherent sources of different states of coherence may produce beams which
are just as directional as laser beams. More specifically we will show that sources of differ-
ent states of coherence may produce fields with the same far-zone intensity distribution, i.e.
with the same distribution of the radiant intensity.
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Fig. 5.10 The behavior of the absolute value of the spectral degree of coherence, given
by Eq. (25) of Section 5.3, of the far field generated by a quasi-homogeneous, Gaussian,
planar, secondary source. The variable u, is defined by Eq. (26) of Section 5.4. [Adapted
from W. H. Carter and E. Wolf. J. Opt. Soc. Amer. 67 (1977), 785-796.]

It follows from Egs. (14) and (20) of Section 5.2 that the radiant intensity of a field gen-
erated by a planar, secondary, statistically stationary source may be expressed in the form

I, (5) =
w

Zi] cﬂslgff wl(lll‘p"-p;‘w}c-'iﬂsl-lp;:—pﬁ dzplrdzﬁ*‘_ {1)

Let us express the cross-spectral density W of the field in the source plane in terms of the
spectral density and the spectral degree of coherence of the light in that plane [Eq. (6b) of
Section 4.2]. The formula (1) then becomes

Cﬂszgff\{S{[]'I(plf‘m]\{S{m{p;-w]Plﬂ}(ﬂf.p;‘m}e—i_ks;-q‘p:’_q"]dlﬂfdzpz"_

-

k
J -_ e
»\(8) [2

(2)

Equation (2) shows that both the spectral intensity distribution $”'(p, w) and the spectral
degree of coherence u'”(p}, p3, w) of the light in the source plane contribute to the radiant
intensity. The possibility exists that two different sources, one with spectral distribution
SPp’, w) and spectral degree of coherence u(p}, p 3, @) say, and the other with distribu-
tions S9(p’, w) and £P(p 1. p5. w), may generate the same radiant intensity J (s). To put it
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differently, it seems plausible that there might be a “trade-off™” between the spectral density
and the spectral degree of coherence in such a way that the two sources would give the
same values of the integrals in Eq. (2) and, consequently, generate the same radiant inten-
sity. It turns out that this is indeed possible. A simple example is provided by the Gaussian
Schell-model sources which we discussed in Section 5.3. It follows at once from Egs.
(6)—~(8) of that section that two sources of this kind. for which the r.m.s. widths o, of the
spectral density and the r.m.s. width o, of the spectral degree of coherence are such that the
quantity 6, defined by Eq. (8a) of Section 5.3, viz.,

| 1 |
— + —
o* (20, ¥ 3)

I

has the same value, will generate fields with the same relative angular distribution of the
radiant intensity. Moreover, as is evident from Eqgs. (7) and (8) of Section 3.3. if the factors
A [see Eq. (4) of Section 5.3] are such that the expression

J(0) = (kAa b) (4)

also has the same values, then not only the relative but also the actual values of the radiant
intensities will be the same.

The fact that for two such “equivalent” sources the sum of the two terms on the right-
hand side of Eq. (3) has 1o be the same indicates the trade-off between the contributions of
the spectral density and of the spectral degree of coherence. Some computed curves show-
ing such a trade-off are shown in Fig. 5.11. Experimental verifications of these theoretical
predictions are illustrated in Fig. 5.13, obtained by use of the system shown in Fig. 5.12.

In Fig. 5.14. the changes of beam radii for propagation from sources with the same ini-
tial r.m.s. radius o, = 0.1 cm but with different spectral degrees, of coherence (a) and from
sources with the same r.m.s. spectral degree of coherence but with different r.m.s. widths o,
of the intensity distribution (b) are shown. Figure 5.14(c) illustrates the equivalence theo-
rem. There is a trade-off between spatial coherence of the source and the spatial intensity
distribution across the source, in accordance with Eq. (3). resulting in beams which have
the same angular spread in the far zone.

5.5 Coherence properties of Lambertian sources

We will now return to one of the reciprocity relations which we derived in Section 5.3 and
make use of it to elucidate the spatial coherence properties of Lambertian sources,

According to the first reciprocity relation, given by Eq. (16) of Section 5.3, the radiant
intensity of a field generated by a planar, secondary, quasi-homogeneous source is given by
the expression

J (8) = (27:‘&}Ihg'{”]'{ﬂ,m];?{”’{ksl,w)cnszﬂ. (1)
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Fig.5.11 Illustrating the behavior of the spectral degree of coherence and the spectral inten-
sity distribution across three partially coherent sources [(b), (c), (d)] which produces fields
whose far-zone intensity distributions are the same as that generated by a coherent laser
source [(a)]. The parameters characterizing the four sources are (a) o, =%, og= 1 mm,
A =1 (arbitrary units), (b) o, =5mm. og= 1.09mm, A =084, (c) o, =2.5mm,
og = 1.67mm, A = 0.36 and (d) ¢, = 2.1 mm. o5 = 3.28 mm, A = 0.09. The normalized
radiant intensity generated by all these sources is J(A)/J,(0) = cos’dexp[ —2(ké; ) sin 4],
(o5 = 1 mm). [Adapted from E. Wolf and E. Collett. Opt. Commun. 25 (1978), 293-296.]

where §%(0, w) is defined by Eq. (17) of that section. For a Lambertian source,
J (8) = J cos (2)

where J) denotes the radiant intensity generated by the source in the direction # = 0,
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Fig. 5.12 A system that was used to test that sources with different spatial coherence

properties can generate identical angular distributions of the radiant intensity. L;. L. Ly

and L, are lenses, F is an amplitude filter, G is a rotating ground glass plate. PH is a photo-
detector. [Adapted from P. DeSantis, F. Gori, G. Guattari and C. Palma, Opr. Commun.
29 (1979). 256-260.]
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Fig. 5.13 (A) Intensity distributions across a coherent laser source (a) and across an

“equivalent” partially coherent source (b). (B) The measured angular distribution of

intensity, / (arbitrary but same units) in the far zone of fields generated by the two

sources shown on the left. [Reproduced from P. DeSantis, F. Gori, G. Guattari and

C. Palma, Opt. Commun. 29 (1979), 256-260.]

Suppose. as is usually the case, that the spectrum is the same at all source points. i.e. that
§9p’, w) = §°%w) say. The formula (17) of Section (5.3) then gives at once

S‘U*{U,w} =

P 2
&)

S“”{m).
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for beams with the same initial r.m.s. beam radii (o, = 0.1 cm), but with different degrees of
coherence. The wavelength for each beam was taken as 6328 A. (b) The r.m.s. beam radii for
beams with the same degree of coherence. with o, = 0.2 cm, but with different initial r.m.s.
radii o,. The wavelength for each beam was taken as 6328 A. (c) The r.m.s. beam radii for
beams with different initial r.m.s. beam radii o, and with different widths o, of the degree of
coherence, but with equal far-field beam angles, fy. as predicted by the “equivalence theo-
rem” discussed in Section 5.4. The parameters of the four beams are (i) o, = 0.1 cm and
o,=%(i)o, = 0.109cmand o, = 0.5cm, (i) o, = 0.167cmand g, = 0.25cm and (iv)
o, =0.328cm and o, = 0.21 cm. The wavelength of each beam was taken as 6328 A.
[Adapted from J. T. Foley and M. §. Zubairy. Opt. Commmuan. 26 (1978), 297-300.]

where A denotes the area of the source. If we next substitute from Eq. (3) into Eq. (1), use

Eg. (2) and solve for /i'”’, we find at once that

(0)
jw

= . (4)
AK2S' (@)1 — 87

where we have used the relation cos ! = ,}I = Th

ﬁ‘ml‘ks* Lw)
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Next we take the two-dimensional spatial Fourier transform of Eq. (4) and neglect the
contribution from the domain |s, | > 1, which is associated with evanescent waves whose
contributions are negligible unless 19 varies rapidly on a scale of the order of a wave-
length. We then obtain for 1’ the expression

IU] 1 . :
m ks -p 42
1O w) = f e P d4(ks ). (5)
('ﬂJ ey :
ARl g  Ji-e
Now since ;0. w) = 1 one has from Eq. (35)
dztks_ ). (6)

jf{]l 1
1 =
Ak2S (@) f -

'-:*:I

From Eqgs. (5) and (6) it follows at once that the spectral degree of coherence of the source
may be expressed in the form

' F[p’.m)
0 g' @) = ——=, 7
pp, w) F(0.0) (7
where
e P’ d2 (ks ). (8)

y 1
Sy
— ad
s: =l ! sl

The integral on the right may be evaluated in closed form and one finds that (M&W, p. 248)

sin(kp’)
ko'

u(p', w) = 9)

This formula implies that all quasi-homogeneous planar secondary Lambertian sources
for which the spectrum is the same at each source point have the same spectral degree of
coherence, given by Eg. (9). It is plotted in Fig. 5.15 as a function of the normalized dis-
tance kp' = k|p> — pi| between two arbitrary source points. We see that the correlation
distance Ap_. of the light in the source plane is given by the order of magnitude expression
(k Ap.) = w/2 or, since k = 27/,

Ap. = N4, (10)

Thus we have shown that Lambertian sources are not spatially completely incoherent but
are correlated over distances of the order of the wavelength.
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The normalized far-zone spectrum is, therefore,

S 0rs.w)

s N rs,w) =

x

ﬁ SO rs.w)de

k28N w)i " (ks . w)

= o (3)
fn FS{-“"{w}ﬂ'U’fks;m]dm
and the normalized source spectrum is
(0)
SO (s, ) = ——@) (4)

f: S w)dw

It is clear from a comparison of Egs. (3) and (4) that. in general. the two normalized
spectra will differ from each other. the difference being due to the spatial-coherence prop-
erties of the source, which are characterized by the spectral degree of coherence, /'’

Examples of such “correlation-induced” spectral changes are given in Fig. 5.16, for radi-
ation from a source with a Gaussian spectral profile. Figure 5.16 shows the differences in
the far-zone spectrum in different directions of observation. We see that with increasing
angle of observation from the normal to the source plane the spectral line undergoes a red-
shift, 1.¢. a shift towards longer wavelengths (lower frequencies). Other types of changes
may be generated with different spatial-coherence properties of the source as is illustrated,
for example, by Fig. 5.17.

It is clear from Eq. (3) that the normalized far-zone spectrum will be independent of the
direction s of observation if (ks . w) factorizes in the form

iV(ks .w) = F(w)H(s ). (5)

The expression (3) then reduces to

k2SO w)F(w)
f: k2SO w)F(w)dw

=) (rs,w) = (6)

The factorization condition (5) has some interesting consequences. if we assume that it
holds not only for the domain |s | = 1 (which is a consequence of the fact that s is a unit
vector) but also for all two-dimensional vectors s. Evidently this will approximately be so.
if at each frequency w which is present in the source spectrum the spectral degree of coher-
ence 1'”(p’, w) is effectively bandlimited to a circle of radius k about the origin: or, in more
physical terms. if "(p’, w) does not vary appreciably over distances of the order of the
wavelength A = 2m¢/w. Assuming this to be the case. we obrain. on taking the Fourier
transform of Eq. (5),
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Fig. 5.16 [llustrating the effect of spatial coherence of a planar, secondary source on the
normalized far-zone spectrum of the emitted light. The normalized source spectrum s”(w)
is a line with a Gaussian profile, with o/w, = 1/20 (wy is the central frequency; o, is the
r.m.s. width). The spectral degree of coherence was assumed to have a Gaussian spatial pro-
file, with rm.s. width o, = 10, Ay being the corresponding wavelength. The normalized
far-zone spectrum is plotted (a) on axis, (b) at # = 2° and (c) at # = 30°. [Adapted from Z.
Dacic and E. Wolf, J. Opt. Soc. Amer. A5 (1988), 1118-1126.]

1O’ ) = EF(w)H(kp'). (7)

where H is, of course, the Fourier transform of H. Since 1'"(p’. w) is a correlation coefficient,

100, w) = 1 for all w. (8)
Hence Eq. (7) implies that
KF(@) = —— 9)
H(0)

Because the left-hand side of Eq. (9) depends on the frequency but the right-hand side is
independent of it, it follows that

¥

g+

Flw) = (10)

where o is a constant.
Two important conclusions follow at once from these results. If we substitute from Eq.
(10) into Eq. (6). we obtain the following expression for the normalized far-field spectrum:

S!ﬂ!{m)

(11)

i ; 5O (w)dw



2N, w)y (hikgT)

0.2 F 1
(]
I
]
I ]
I
]
I
0.1 i
I
1
i
i
B 1
]
:
(a) 5 kﬁ 10 5 o el
Wi
A
m{kﬁrﬁl]
e
[==]
—_—t
S
3
5
w (kaT/h)
0.5
0.4
0.3
0.2
0.1 } |
7~ w (kgT7h)
(b) 0 5 10 15

Fig. 5.17 The far-zone spectra in different directions of observation, produced by a pla-
nar, quasi-homogeneous source, with Gaussian spatial profile, whose spectrum is given
by Planck’s law, (a) for the case when the spectral degree of coherence of the source is
a Gaussian function. (b) The frequency w,, is the frequency at which the Planck spec-
trum, indicated by dotted line. has its maximum. [Adapted from E. Wolf, Appl. Phys.
B60 (1995), 303-308.]
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This formula shows not only that the normalized spectrum of the light 1s now the same
throughout the far zone, i.e. it is independent of the direction of observation, but also that
it is equal to the normalized source spectrum.

When the condition (10) is satisfied and, consequently, when the normalized far-zone
spectrum 1s the same as the source spectrum, the spectral degree of coherence necessarily
has a certain functional form. This conclusion follows at once on substituting from Eq. (10)
into Eq. (7) and setting aH(kp') = h(kp'). We then obtain for the spectral degree of coher-
ence of the source the expression

1%’ w) = hikp'). (12)

where, as before, p’ = p> — p,. For obvious reasons this formula is known as the scaling
law. According to the preceding analysis, any planar, secondary source whose spectrum is
the same at each source point and which obeys the scaling law [Eq. (12)] will generate
light whose normalized spectrum will be the same throughout the far zone and will be
equal to the normalized source spectrum.’

We have learned earlier that the spectral degree of coherence of a planar, quasi-homoge-
neous secondary Lambertian source whose spectrum is the same at each source point is

[Eq. (9), Section 5.5]

_ sin(kp')

a 13
ko (13)

,U“”[p,.fﬂ

i.e. a Lambertian source satisfies the scaling law. The fact that many laboratory sources and
also many sources encountered in nature are Lambertian may explain why “spectral invari-
ance” of light on propagation has for so long been generally. but incorrectly, taken for granted.

We have considered only spatial invariance of the spectrum throughout the far zone.
However, a more general result may also be established, namely that the normalized spec-
trum of the field generated by any quasi-homogeneous scaling-law source is. to a good
approximation, the same throughout the half-space into which the source radiates. except
perhaps at points at distances of the order of a wavelength or less from the source plane.?

The prediction that the spectrum of light may change on propagation, even in free space,
was tested experimentally. The first tests were carried out with two different sources, both of
thermal origin. In the first tests a tungsten lamp was located in front of an aperture in plane I
[see Fig. 5.18(a)] and the light which passed through the aperture produced a secondary
source in plane II, after it had passed through an optical system. Spectra in both these planes
and also in a plane III located in the far zone of the secondary source were measured.

The first optical system was an ordinary lens [Fig. 5.18(a)]. The secondary source in
plane Il can be shown to have a spectral degree of coherence which obeys the scaling law.
The second system [Fig. 5.18(b)] was a Fourier achromat consisting of a combination of

! We established the condition (12) as a sufficiency condition for “spectral invariance.” The condition is also a
necessary condition [E. Wolf, J. Mod. Opr. 39 (1992). 9-20, Theorem 11, p. 19].
2 H. Roychowdhury and E. Woll. Opt. Commun. 215 (2003). 199-203.
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Fig. 5.18 Two systems used to illustrate the validity of the scaling law for a planar, sec-
ondary, quasi-homogeneous sources. [Adapted from G.M. Morris and D. Faklis, Opt.
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optical elements designed for the use in white-light processing. One can show that with this
system the light in plane 11 does not obey the scaling law; in fact it is effectively independ-
ent of the frequency over the whole frequency range for which the lens has been achroma-
tized. According to the theory which we outlined, one must expect that in the first case the
normalized spectrum of the light in plane IIT will be the same in all directions of observa-
tion £, whereas in the second case it will depend on 6.

Figure 5.19 shows the result of the experiments. Figure 5.19(a) shows the measured spec-
trum at all points in the far zone with the first system (a conventional lens). Since, as we have
already noted, the scaling law is satisfied in this case, the theory predicts that the normalized
spectrum of the light is the same for all # directions and is the same as the normalized spec-
trum of the secondary source. This is indeed what the experiments demonstrated. In Fig.
5.19(b) the measured far-zone spectra obtained in the experiment which used the Fourier
achromat are shown. Since in this case the secondary source in plane II does not obey the
scaling law, the normalized spectra observed in different directions should depend on 6. This
was experimentally confirmed, with the results shown in Fig. 5.19(b).

PROBLEMS

5.1 A planar secondary source occupies a finite domain in the plane z = 0 and radiates into
the half-space z > 0.
(a) If the source fluctuations are characterized by an ensemble which is stationary,
show that the radiant intensity of the field produced by the source may be
expressed in the form

J (8} = k:xiélks_. w)cos-6.

where C(K, w) is the Fourier transform of the so-called source-averaged correla-
tion function C(r’. w), defined by the formula

| '
Cr', w) = Zf'ﬂ"“’(r — /2. r + r'2)d?r,

where A denotes the area of the source.
(b) Use the formula of part (a) to derive expressions for the radiant intensity when the
source 1s (1) of Schell-model type; and (i1) quasi-homogeneous.

5.2 A planar, secondary, quasi-homogeneous source o of finite extent radiates into the
half-space z > 0. The total radiated flux at frequency w is given by the expression

F, = [ J,(s)d0.
where J,(s) is the radiant intensity generated by the source and the integration extends

over the solid angle of 27 subtended at the source by the hemisphere at infinity in the
half-space z > (. Show that
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5.3

54

5.5

5.6

s )

F, = f SO(r, w)d2r,

where Sr, w) is the distribution of the spectral density across the source.

Obtain conditions under which two planar, secondary, Gaussian Schell-model sources
will generate fields that have the same spectral degree of coherence throughout the far
zone.

Derive also expressions for the corresponding radiant intensities produced by two such
sources.

A three-dimensional spatially incoherent primary source occupies a finite domain D.

Its fluctuations are statistically stationary and the spectrum of the source is the same at

every point.

(a) Show that the normalized spectrum of the field is the same at every point outside
the source domain D.

(b) Derive an expression for the spectral degree of coherence in the far zone.

(a) Find a sufficiency condition under which two three-dimensional statistically sta-
tionary, primary, quasi-homogeneous source distributions Q(r, w) generate fields
which have the same far-zone spectra.

(b) Give an example of two such sources.

(c) Consider also the special case of (a) when the sources obey the scaling law, i.e.
when the spectral degree of coherence of each source has the functional form

po(r', w) = h(kr'), (k= wlc).

Consider a statistically stationary three-dimensional source occupying a finite volume,

(a) Derive an expression for the radiant intensity in terms of the coherent modes of the
source.

(b) If the integral of the radiant intensity over all directions (i.e. directions that fill the
complete 47 sohid angle) has zero value, the source may be said to be non-radiat-
ing. Show that, if the source is non-radiating, then all of its source modes are also
non-radiating.

Show that the radiant intensity generated by a fluctuating three-dimensional source
distribution Q(r, f) is given by the expression

J,(8) = 2m)°W,(~ks, ks, w),

where l’l}Q (K, K,, @) is the six-dimensional spatial Fourier transform of the cross-
spectral density function Wy(ry, r), w) = (Q(ry, w)Q(r>, w)) of the source. i.e.

v o l —itK,'r, +K.'r,) 43,. 43,
WoK. K, ) = 2y ff Wg(rl* £, W} 22 dy dr,.
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5.8

Show also that when the source is spatially completely incoherent the radiant intensity
is independent of direction,

Consider a completely coherent, statistically stationary, three-dimensional source dis-
tribution Q(r, f) occupying a finite volume. The cross-spectral density of such a source
has the factorized form

W, (r/, 1y, @) = G'(r]. w)G(r}, w).

(a) With the help of the result stated in the previous problem, find an expression for
the radiant intensity of the field generated by the source.

(b) Suppose that the source is uniform, equi-phasal and spherical. Show that for cer-
tain values of its radius the source will not radiate.



6

Coherence effects in scattering

When light is incident on an object, it deviates from its original path, i.e. it is scattered by
the object. There are many different types of scattering, for example, scattering by atoms
or molecules, by dust particles. or by macroscopic bodies. The bodies may be homoge-
neous or inhomogeneous, isotropic or anisotropic and their behavior may be changing in
time. One then speaks of static or dynamic scattering, respectively. The response of the
scatterer may be linear or non-linear and the medium may be deterministic or random.

It is clear from these remarks that light scattering is a very broad subject. In this chapter
we will consider only one class of scattering process, albeit a rather broad one: namely
scattering on a linear, isotropic, statistically stationary medium, We will discuss both deter-
ministic and stochastic fields incident on a static scattering medium, both when the medium
is deterministic and when it is stochastic.

6.1 Scattering of a monochromatic plane wave on a
deterministic medium

Let us first consider the scattering of a monochromatic wave
VA, 1) = U'r, w)e ™, (1)

incident upon a linear scatterer, which occupies a finite domain D in free space (Fig. 6.1).
Here r denotes the position vector of any point either outside or inside the scatterer, ¢
denotes the time and w denotes the frequency. We assume that the physical properties of the
medium are characterized by a refractive index n(r, w).

Let

V(r, 1) = Ulr, w)e ™! (2)
be the total field at a point r. U(r, w) then satisfies the equation
V2U(r, w) + k*n*(r, o)U(r, ®) = 0, (3)
where k 1s the free-space wave number associated with frequency w, i.e.

k = wle, 4)
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scattered wave U (8
incident wave ("

Fig. 6.1 Illustrating the notation relating to scattering.

¢ being the speed of light in vacuum. It is convenient to rewrite Eq. (3) in the form
V3U(r, w) + KU(r, w) = —4xF(r. o)U(r, o). (5)

where the quantity

I —aare
Flr.w) = 4—_ k=[n-(r,w) — 1] (6)

il

is called the scartering potential of the medium. Because of the relation
(. w) = 1 + 4m(r. w) (7)

between the refractive index n(r, w) and the dielectric susceptibility 7(r, ), the scattering
potential may be expressed in the simple form

F(r, ) = kK*ij(r. w). (8)

Let us represent the field U(r, w) as the sum of the incident field U"X(r, @) and the scat-
tered field U™)(r, w), viz.,

Ur, w) = U'Nr, ) + U(r, w). (9)

This relation may, in fact, be regarded as defining the scattered field U™(r, w). The incident
field will be assumed to satisfy the Helmholtz equation

(V2 + KU Mr, w) =0 (10)

throughout all space.
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By the use of well-known vector identities one can show from Egs. (5) and (10), when
Eq. (9) is also used, that, with the scattered field U™)(r, w) assumed to behave at infinity as
an outgoing spherical wave, the total field obeys the equation (cf. B&W, Section 3.1.1)

Ulr,w) = UNr,w)+ fn F(r'.o)Ur', )G(r — r'|,w)d*r, (11)

where G(R, w) (R = |r — r'|) is the outgoing free-space Green function

G(R. w) = e*’IR (12)

of the Helmholtz operator. Equation (11) together with Eq. (9) is the basic integral equation
for the scattered field, for scattering of a monochromatic wave on a medium characterized
by the scattering potential F(r. w). It is generally known as the integral equation of poten-
tial scattering.

In general, it is not possible to solve Eq. (11) in closed form. However. when the scatter-
ing is weak, a relatively simple approximate closed-form solution of Eq. (11) can readily
be deduced. By weak scattering we mean that the magnitude |U"| of the scattered field is
much smaller than the magnitude |U""| of the incident field. i.e. that

| U (r, )| < |U'(r, w)] (13)

throughout the scatterer. It is clear from Eqgs. (6) and (11) that the scattering will be weak
if the refractive index differs only slightly from unity. In such a case, one can, to a good
approximation, replace the total field U in the integral in Eq. (11) by the incident field U,
The integral equation (11) then becomes

Ulr,w)~U'(r.w) + fn Fr', o) U, 0)G(r — 1), w)d*r', (14)

which is known as the first-order Born approximation to the solution of the integral equa-
tion of potential scattering. We note that. unlike Eq. (11). Eq. (14) is not an integral equa-
tion but is, in fact, a solution to the scattering problem in terms of the incident field U and
the scattering potential F(r, w).

It is of interest to note that within the accuracy of the first-order Born approximation
Eq. (5) reduces to

V2U(r, w) + KU(r, ) = —47F(r. w)U"(r, ). (15)
This equation is identical to the equation for radiation from a scalar source distribution'
pr, w) = F(r, o)U"(r, ), (16)

occupying the volume region D. Hence within the accuracy of the first-order Born approx-
imation the process of scattering on a static, linear medium and the process of radiation
from a localized source distribution are mathematically equivalent to each other.

' See. for example, C. H. Papas. Theory of Electromagnetic Wave Propagation (McGraw-Hill, New York. 1965).
Eq. (56), p. 11.
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P(r)

Fig. 6.2 Notation relating to derivation of the far-zone approximation (19) of Section
6.1 to the free-space Green function G(|r — /|, w).

For later purposes we derive from Eq. (14) an expression for the scattered field in the far
zone of the scattering medium, assuming that the wave incident on the scatterer is a mono-
chromatic plane wave of frequency w, which propagates in the direction of a real unit vec-
tor Sg:

UP(r.w) =a(w)e™oT, (17)
Under these circumstances Eq. (14) becomes

Ur,w) = alw)e™ " + a(w) F{r’.w)eiks“"'Gl']r —r'. w)d?, (18)
D

where Green’s function G(R,w)= G(/r — r'|, @) may now be approximated by the
expression

ikr

G(r — r'|, w)~ g ks (19)

-
The appmmmalmn given in Eq. (19) is evident from Fig. 6.2, where r = OP and
Ir = r'| = QP ~OP —ON = r — s * r'. N being the foot of the perpendicular dropped
from a point Q(r’) onto the line OP.

If we make use of Eq. (19) in Eq. (14) and use Eq. (17) the field in the far zone is seen to
be given by the expression

Jkr

U(rs,w) = a(w)|e™ T + A(s,w) (20)

%
where

Als,w) = [ﬂ F(r',w)e %= ' g3,/ (21)

In mathematical language, Eq. (20) represents the asymptotic approximation to the far field
as kr—c in the fixed direction s. The amplitude function A(s, ) of the spherical wave on
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the right-hand side of Eq. (20) is known as the scattering amplitude. If we introduce the
Fourier transform F (K. w) of the scattering potential,

F(K.w) = f " F(r'.w)e®r g3/, (22)

then Eq. (21) implies that

A(s.w) = Flk(s —s,).w]. (23)

Equation (23) shows that, within the accuracy of the first-order Born approximation, the
scattering amplitude A(s,w) is equal to a component of the three-dimensional spatial
Fourier transform of the scattering potential, namely the component labeled by the spatial-
frequency vector K = k(s — s). s, being the unit vector along the direction of incidence.

6.2 Scattering of partially coherent waves on a deterministic medium

We will now consider the more complicated situation when the light incident on a deter-
ministic scatterer is not monochromatic but is partially coherent. The fluctuations of the
light are assumed to be statistically stationary, at least in the wide sense.

Let W(r,. ry, ) be the cross-spectral density function of the incident light. Then as we
learned earlier, W'’ may be expressed in the form [Eq. (13) of Section 4.1]

WO(r, ry.w) = (U (1, @)U (ry, w)), v

the angular brackets denoting the average over the statistical ensemble of monochromatic
realizations of the incident field.

The scattered field may likewise be represented by an ensemble of monochromatic real-
izations, U'S(r, w), whose cross-spectral density function may be represented in a similar
form, viz.,

We(r, @) = (UY (1, 0) U (r,. 0)). 2)

The scattered field {/*’ and the incident field U" are related by the integral equation of
potential scattering. Within the accuracy of the first-order Born approximation the scattered
field U™ is given by the integral on the right-hand side of Eq. (14) of Section 6.1. Using
that relation and Egs. (1) and (2) it follows that

{s) — (i) f3e! et 0 | f
W (r,, 1, ) fu_fnw (r/.r) )F" (1] w)F(r),w)
X G'(r, = r/|, ©)G(r, — 1y}, w)d*rd*r]. (3)
To obtain a clearer insight into some consequences of Eq. (3). let us express the cross-

spectral density WW(r{, ri, w) in terms of the spectral densities S™(r{, w) and S"(r}, w) of
the incident light and of its spectral degree of coherence [Eq. (6b) of Section 4.2], viz.,
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W“’(r;.r;,w) = JS“’(rl",wl\/S“'{r;,w} ,u[i'(r{. r:f.w}. (4)

Equation (3) for the cross-spectral density of the scattered field then becomes

Wm{rl‘rz*m} - f{) I;] Jsiilf_r:,m}\/sli:(r::,m);,liI(r]',r._f.m)F'{rlf,wlF(l';.w)
X G (Ir, — r)G(r, — | w)d* dr. (5)

If, as is frequently the case, the spectrum of the light incident on the scatterer is independ-
ent of position, then we may set S(r], w) = S(r}, w) = §9(w) in Eq. (5). which then
becomes

W'H}{rl,r11w} - S(l'll(w] fnfnJufi}(r]f‘r;‘mJF:ul:.rl"m)F['r;.M)
X G'(r, = 1/l w)G(ry. rjl w)d &'y, (6)

In particular, if the two field points coincide, i.e. if r; = ry = r say, then the left-hand side
of Eq. (6) will represent the spectrum of the scattered field, $* (r, w), and the equation
reduces to

S*""{r.w} — S“’(m) f”fﬂ .u“'[_l';, r;,pr'{r]f‘“‘}F{r;"w}
X G (r — 1/, @)G(r — 1;], w)d*r] d*r) (7)

This formula shows that. even on static scattering. the spectrum of the scattered field dif-
fers, in general, from the spectrum of the incident field. the change arising from (1) the spa-
tial coherence properties of the incident light, (2) the frequency dependence of the potential
(due to dispersion of the medium) and (3) the frequency dependence of the free-space
Green function. Usually, with narrow-band incident light. the change will be caused mainly
by the spatial-coherence properties of the incident light, which are characterized by the
spectral degree of coherence u"'(r{, ri, w).

We noted earlier [see the remark that follows Eq. (15) of Section 6.1] that, within the
accuracy of the first Born approximation, the processes of radiation and of scattering are
equivalent to each other. We also learned in Section 5.6 that the spectrum of a field radiated
by a partially coherent source may differ from the spectrum of the source. Hence the result
that we just derived, namely that the spectrum of the light scattered on a time-
independent medium (i.e. for static scattering) will, in general, differ from the spectrum of
the incident light, was to be expected.

We will illustrate some of the preceding results by a simple example. Suppose that a
polychromatic plane wave, propagating in the direction of a unit vector s, is incident on the
scatterer. We may represent the wave by a statisucal ensemble (denoted by curly brackets)

(UM (r.w)) = {alw)}e*r, (8)
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alw) being a random amplitude. On substituting from Eq. (8) into Eq. (1) we obtain for the
cross-spectral density function of the wave incident on the scatterer the expression

wo(r,r,.w) = S0 ()eio (=N (9)
where
S(w) = (a (w)a(w)) (10)

represents the spectrum of the incident wave. It follows at once from Eq. (9) and from
Eq. (4) that the spectral degree of coherence of the incident wave is given by the expression

j.t“‘{l‘l.l‘z.m} o ﬂi.li‘J‘ir:—r‘J" (1 l}

Since in this case |"(r,. ry, )| = 1 for all pairs of points r; and r,, the incident wave is
spatially completely coherent at the frequency w throughout all space.

It follows from Egs. (5) and (11) and from the fact that the spectrum of the incident light
is now independent of position that the cross-spectral density of the scattered light is,
within the accuracy of the first-order Born approximation, given by the expression

Wor), 1y, @) = (U (1), @)UV (ry, w), (12)
where
U (r,w) = 5N w) fD F(r,w)G(r — r'|, w)e™ " @3, (13)

Since the cross-spectral density W*(r|, r», w) is now the product of a function of r; and a func-
tion of r,. it follows at once that the spectral degree of coherence p'V'(r, r>. w) of the scattered
field, which may be defined by a formula of the form of Eq. (4), is unimodular, implying that
the scattered field 1s also spatially completely coherent at frequency . The fact that in the pres-
ent case the state of coherence has not changed on scattering is rather exceptional. In general
not only the spectrum of the light but also its state of coherence will change on scattering.

One is frequently interested only in the behavior of the scattered field in the far zone.
One may readily derive an expression for U"*'(r, w) by making use of the far-zone approx-
imation [Eq. (19) of Section 6.1] for the free-space Green function. Equation (13) then
becomes

1kr ) ,
US(rs.w) = SV (w) f F(r',w)e *(E=s0) T g3,/
r D
- u e“"r .
r

where F(K, w) is the three-dimensional Fourier transform of the scattering potential, defined
by Eq. (22) of Section 6.1. From Egs. (14) and (12) it follows that the cross-spectral
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density of the scattered field and the spectral density in the far zone are given by the
expressions

W‘“’(rsl.rsz,wj = w]—ﬁS‘”(w}F*[k{sl = s“). a:a.?];.‘:"[ﬂo[s2 — Sy)s w] (15)

.’.;_

and

SO, ) = WO rs.18.0) = — SO (w)|Flk(s — s,), ][ (16)

re

The preceding formulas refer to coherence properties in the space—frequency domain. Let
us now briefly consider coherence properties in the space-time domain. As we learned ear-
lier, these properties are characterized by the mutual coherence function I'(r,, ry, 7). which
is the Fourier frequency transform of the cross-spectral density [Eq. (2) of Section 4.1]. In
the present case, when the wave incident on the scatterer is a polychromatic plane wave, its
cross-spectral density function is given by Eq. (9) and hence

lwl'i‘}{r] S rz‘ 7) = j::c S[i](m}eibﬂ-fr: ) e—iwt dew
_ fu'x S[i]{w-,.le—iwlir_sh-ir: —I Vel dw- {]?)

The degree of coherence +")(ry, r,, 7) of the wave is obtained by normalizing Eq. (17) in

accordance with Eq. (10) of Section 3.1 and one finds that

" S0 (@)e 8 TR Vel g
Y(E,E,,T) = 0 3 (18)

F SO () dw
J0

The mutual coherence function of the scattered field in the far zone is obtained by taking
the Fourier transform of Eq. (15), which gives

1 p® o, o 2 5
[9@s,,rs,,7) = Ffﬂ SO (w) F'k(s, — s,). o] Fk(s, — s,), wle " dw. (19)

An expression for the degree of coherence 1'*'(rs,. 75, 7) of the scattered field is obtained
by normalizing Eq. (19) in accordance with Eq. (10) of Section 3.1, as above.

6.3 Scattering on random media

6.3.1 General formulas

So far we have assumed that the scatterer is deterministic. The scattering potential F(r, ) is
then a well-defined function of position. Frequently, however, this is not so; the scattering
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potential is then a random function of position. An example of such a situation is the turbu-
lent atmosphere in which the refractive index varies randomly both in time and in space. due
to irregular fluctuations in temperature and pressure. Over sufficiently short intervals of
time, typically of the order of a tenth of a second, the temporal fluctuations may be neglected
and one then speaks of a “frozen model™ of the turbulent atmosphere. Under these circum-
stances one is essentially dealing with static scattering. to which our considerations apply.
For such situations an expression for the cross-spectral density of the scattered field that
is valid to within the accuracy of the first-order Born approximation is obtained by averag-
ing Eqs. (3) and (5) of the preceding section over the ensemble of the scattering medium.
We will denote this average by angular brackets with subscript m (i.e. we will write it
as (...),). We then obtain, from Eq. (5) of the preceding section. the formula

W*”(I‘I,I'Tlﬂ} = fpfn \/S“'[r;_‘”:'\/S“'[l’;-w”f‘“fr;. r:F.mJCFlfrl",l‘-_f.w}
X G (r, — I‘,’

. @)G(r, — r;I w) d-‘rlf dJJ':’. (1)
where

Cp(r/.ry.w) = (F'(r/,w)F(r;.w)) (2)

m
is the correlation function of the scattering potential. It should be noted that Eq. (1) con-
tains implicitly two different averages, namely one taken over the ensemble of the incident
field and the other over the ensemble of the scatterer. Since we have assumed that the scat-
tering is weak (in the sense of the first-order Born approximation) we can treat the two
averaging processes independently of each other.

The spectral density of the scattered field is obtained at once from Eq. (1) by setting
r, = r, = r and we then find that

S“”(r,w)=f f JS“‘{rl’,m) \/S“"(r{,m}ﬂ‘“{rf.r_{.m)CF{r]’.r}wi
< n

X G'(r—r

, w)G(r — r£| w}d-‘:f d-"r;. (3)

Although Eqgs. (2) and (3) involve averages over macroscopically similar but microscop-
ically different scatterers, one can often deduce the values of these averages. at least to a
good approximation, from experiments involving only a single scatterer. For example. the
necessarily finite size of the detector aperture will frequently provide spatial averaging,
which is essentially equivalent to ensemble averaging.'

! See L.G. Shirley and N. George, Appl. Opt. 27 (1988), 1850-1861. Section I1. and J. Goodman's contribution in
Laser Speckle and Related Phenomena. second edition, J. C. Dainty ed. (Springer, New York, 1984), Section 2.6.1.
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Expressions for the cross-spectral density and for the spectrum of the scattered field in
the far zone may be obtained at once from Egs. (1) and (3) by again using the far-zone
approximation (19) of Section 6.1 for the free-space Green function. Equations (1) and (3)
then give

1 . _ | |
WS (rs . rs,,w) = — f f JS“’(rI’.m} SO(ry, )V (r/, 1y, w) Cp(r). 1y, @)
B r~Jpdop ) L )

X e R R 3 g (4)

and

1 : , !
§®(rs,.w) ~ —Tf f \/5{'}{1';,(0} ‘/Sm(r:",ml,u“’(rl': r,’,u}}CF(r;,r:,m)
r~JpJop = -

X g is(e—n) d3rl’d3r'lf (5)
as kr — o, with the directions s,. s, and s being kept fixed. An expression for the spectral
degree of coherence of the scattered field in the far zone is obtained on substituting from
Egs. (4) and (5) into the formula (6b) of Section 4.2 which defines the spectral degree of
coherence, viz.,

WEl(rs .rs,.w)

JS{”{rsl.m] J&"“{rsj.w} .

(6)

“HJIJ"SPFS:1W} ==

We have assumed so far that the scatterer is a continuous medium. The analysis may
readily be extended to scattering by a system of particles, a case of considerable practical
interest. If the scattering potential of each particle is the same, say fir, w) and the particles
are located at points with position vectors ry, s, . . ., the scattering potential of the whole
system of particles is

F(r.w) = ) f(r —r, o) (7)
n

The correlation function of this scattering potential is evidently

Cr(ry 1. w) = (F'(r, @F(ry,w) = Y > (f(r, — 1, 0)(r, —r, o)), (8)

where the expectation value is taken over the ensemble of the particles.

The formulas that we have derived in this section and in the preceding one may be used
to elucidate many features of the scattering of the light of any state of coherence, on a deter-
ministic or on a random medium. We will now illustrate them by some examples.
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6.3.2 Examples

When the incident field is a spatially coherent. polychromatic plane wave, its cross-spectral
density is given by Eq. (9) of Section 6.2. On substituting that expression into formula (4),
we obtain for the cross-spectral density function of the scattered wave in the far zone the
expression

W'[”(JSI,J'S.‘.M} - Lﬂ S{ii['m}f f piks,(r—r)) CF(I';,I'.':,M)E_iﬂsz.r;_s'.r;' d-*f'lfdgr‘:
) re pJ D P -
1 . -
= —8WNw)C [F(, — 5y ks, —85;) 0], (9)
2

where

CrK . Ky.0) = [ [ Cplrr).w)e ®rnmKom g g (10)

i1s the six-dimensional spatial Fourier transform of the correlation function C; (r], ri. @) of
the scattering potential.

The spectrum of the scattered field in the far zone of the scatterer is obtained at once
from Eq. (9) on setting §; = s, = s. One then finds that

] ; -
S‘S'[FS,{U) e _15{”{{”) (‘}_[—k(s s Sﬂ]. k(s — 50)‘ LrJ]+ (I ”
,'-

Suppose that the scatterer is a Gaussian-correlated, homogeneous isotropic medium. Its
correlation function then has the form

A

(J {2?;'})th

Cplr.ry, @) = e il Ay, (12)

where A and o are positive constants. We assume that o is small compared with the linear
dimensions of the scatterer. Using Eqs. (10) - (12) one finds after a straightforward calcula-
tion that the spectral density of the scattered field in the far zone is given by the expression

5“'{?’5.&1‘} = ﬂStil(w}e—ﬁika‘trsln:fﬁ'n’li‘ “3J
r2

where V is the scattering volume and £ is the angle of scattering (s * s, = cos f).
Let us compare this situation with the case when the incident light is ambient. rather than
spatially coherent. The cross-spectral density function of the incident field has the form

sin(klr, — r|)

Wil(r, r,,0) = S0(w) (14)

I, — x|
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Fig. 6.3 The ratio f(6: ko) = [S®(@)]con/[5®' ]t Of the spectra of a spatially coherent
plane light wave and of ambient light, scattered on a Gaussian-correlated isotropic

medium of r.m.s. width o, calculated to within the accuracy of the first Born approxima-
tion. [Adapted from J. Jannson, T. Jannson and E. Wolf, Opt. Letr. 13 (1988), 1060-1062.]

rather than the form given by Eq. (9) of Section 6.2. In this case. Eq. (5) may be shown,
after some calculations, to give

AV _ 1 i) = e=2007 ], (15)

SG(rs, w) =
{ ) rt 2kea)? ]

One may readily verify that when ko < | (highly uncorrelated scatterer) Eqs. (15) and
(13) become identical. However, when ko = 1, i.e. when the correlation length ¢ of the
scatterer is much greater than the reduced wavelength M(27) = 1/k = c/w of the incident
light, the angular distributions of the scattered light in the far zone in the two cases are com-
pletely different. This fact is illustrated in Fig. 6.3.

On returning to Eq. (11) we see, as was to be expected from our earlier remarks relating
to spectral changes produced on scattering and from the comment following Eq. (16) in
Section 6.1, that the spectrum of the scattered field in the far zone will, in general, differ
from the source spectrum.’

Effects of spectral coherence on the angular distnibution of the scattered light were stud-
ied experimentally” and confirmed some of the main features relating to effects of the state
of coherence of the incident light on the angular distribution of the scattered radiation.

As another example, let us consider the scattering of a spatially coherent polychromatic
plane wave on a random distribution of identical particles. The spectral density of the scattered

! See, for example, E. Wolf, J. T. Foley and F. Gori. J. Opt. Soc. Amer. A6 (1989), 1142-1149; errata, Ibid. A7
(19903, 173,
2 F. Gori. C. Palma and M. Santersiero, Opt. Commun. 74 (1990}, 353-356.
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light in the far zone is given by Eq. (11), with C s defined by Eq. (10). The quantity C in this
case, is given by the formula

EF{_K’ K.w) = Z Zfﬂ fo(f‘{r]f el m’;n_}"(rzr = w)}e—ilx-irf‘r.’;l d},.lf d3r:._'-
m

n

(16)
Let us introduce new variables R, = r{ — r,,. Ry, = r; — r,. The formula (16) then becomes

éf.{—K, K. w) = <Ezﬂ—il{-(r"—rmh>

mn n

X [ [ (R, 0)f Ry, 0)e ®®RR) R BR,. (17

which may be expressed in the compact form

C.( K. K.w) =|f(K. o) S(K). (18)

where f (K, w) is the Fourier transform of fir, w) and

S(KJ e z e_iK"'m

mn

(19)

is the so-called generalized structure function of the particle system.'
On substituting from Eq. (18) into Eq. (11) we obtain for the spectrum of the scattered
field in the far zone the expression

S6)(rs, w) = %S‘“{m] f[k(s =8 @) " Slk(s — Syl (20)
This formula shows that the spectrum of the incident wave is changed by scattering on a
system of particles, the change being caused by the scattering potential fir, @) of the indi-
vidual particles and by the structure function S(K) of the particle system.
Some examples of the changes in the spectrum produced by particle scattering were dis-
cussed by Dogariu and Wolf.* The possibility of utilizing spectral changes generated by scat-
tering to determine density correlation functions in some particle systems was also noted.?

6.3.3 Scattering on a quasi-homogeneous medium®

An important class of random media is constituted by the so-called guasi-homogeneous
media (also called locally homogeneous media).’ To explain the basic properties of such

' This function is proportional to the structure factor. which plays an important role in the theory of disordered

systems. [See. for example. J. M. Ziman, Models of Disorder (Cambridge University Press, Cambridge. 1979))].

A. Dogariu and E. Wolf, Opt. Letr. 23 (1998). 13401342,

G. Gbur and E. Wolf, Opt. Commun. 168 (1999), 3945,

The analysis in this section is largely based on the following papers: W. H. Carter and E. Wolf, Opr. Commun.

67 (1988). 85-90; D. G. Fischer and E. Wolf, J. Opt. Soc. Amer. A11(1994), 1128-1135: and T. D. Visser, D.G.

Fischer and E. Wolf, J. Opt. Soc. Amer. A23 (2006). 1631-1638.

3 Scattering from such media appears to have been first considered by R. A. Silverman. Proc. Cambridge Philos.
Soc, 54 (1938), 530-537.

= e 0
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media, we first introduce the normalized correlation coefficient of the scattering potential,
defined by the formula

C'F(r].rz,m_'_l
‘JCF(rl. r. ) \/CF(rE. r,, @) ’

Jp(T, T, @) = 1)

where Cg (r|. ry. w) is the correlation function, defined by Eq. (2), of the scattering poten-
tial F(r. w). It 1s useful to introduce also the function

Ig(r, w) = CHr, r, w) = (F¥(r, o)F(r, w)),, (22)

which is a measure of the strength of the scattering potential at the point r.
A quasi-homogeneous medium is characterized by the properties that at each frequency w

(1) the normalized correlation coefficient pg(ry, ry, @) depends on the two spatial variables
r; and r, only through the difference r, — r|. in which case we will write jig(r; — ry, @)
in place of jig(ry, ry, ); and

(2) the strength /g(r, w) of the scattering potential varies much more slowly with r than
1ie(rs — 1), w) varies with the difference r’ = r, — r;. Hence /(r. w) remains nearly
constant over distances for which |p(r', w)| has an appreciable value.

These properties are sometimes expressed by saying that /{r, w) is a slow function of r
and that pr’, ) is a fast function of r'. Examples of media with such properties are the
troposphere and confined plasmas.

The conditions (1) and (2) are strictly analogous to conditions that characterize quasi-homo-
geneous sources. as we discussed in Section 5.3.2. We showed there' that such sources and the
radiation generated by them obey certain reciprocity relations. Because of the previously men-
tioned analogy between radiation and scattering. we can expect that somewhat similar results
will apply in connection with scattering. We will now show that this is indeed the case.

Let us rewrite Eq. (21) in the form

Crlr.ry, ) = JIF(r,. ) Jff.frz. )i (r, r,, ). (23)

Because of the properties which characterize quasi-homogeneous scatterers, Cr may be
approximated by the formula

_ n+n
Cery 0y, w) = I —?—.m pe(r, — 1, ). (24)

Suppose now that the wave incident on such a medium is a polychromatic plane wave of
spectral density S(w), propagating in a direction specified by a unit vector s,;. According to
Eq. (11) of Section 6.2, the spectral degree of coherence of such a wave has the simple form

' In Section 5.3.2 we considered planar quasi-homogeneous sources, However, it is not difficult to show that
strictly similar results apply to three-dimensional sources of this class (see M&W, Section 5.8.2).
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]“_'["l](l.“ I‘E, w) = {;“‘“ﬂ'{r:_'|‘+ (25)

On using Eq. (25) and the fact that the spectrum of such a wave is independent of position,
the formula (9) for the cross-spectral density of the scattered field in the far zone applies.
The Founier transform which enters that formula is now given by the expression

E‘F(K],K:,w):fff}_-
D D

The integrations on the right can be considerably simplified by changing the variables of
integration. Let us set

!
i+
2

! ! -] o ! !
pp(ry = r), @)e KR g3t @iy,

(26)

r= %tr,’ + ), r' =1 —r. (27a)
Then we have the inverse relations
!:r—ir’ ' =r+1¢. (27b)
and Eq. (26) becomes, after some calculations,

éF{KP Kg- w} _ fn J"D fF(r' w},uF(r*. m}e—ijl(1-{r—]3r'|:—|{2-{r+%r;" d3rd3r" {28}

where we have used the fact that the Jacobian of the transformation (27) is unity, as may
readily be verified.
From Eq. (28) one finds that

CrK,. Ky 0) = (K, + Ky, o) LK, ~ K)). o). (29)
where
I(K, )= [ 1,(r, o) dr (30a)
and
~  wrl _ ' —iK'r g3t
fip (K, w) = f”p.F(r,m)e K"t 43,/ (30b)

are the Fourier transforms of /r and py respectively. On substituting for C  from Eq. (29)
into Eq. (9). we obtain the following expression for the cross-spectral density of the scat-
tered field in the far zone of a quasi-homogeneous medium illuminated by a polychromatic
plane wave:

-

5 2

2 0

‘W‘”{rsl, rs,, w) ~ L_}S”'{m} fr[k{sz =8, w] ﬁF [A’ LW

r

(31)
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From Eq. (31) it follows that the spectral density is given by the formula

| y - i .
SEI(rs, w) = — Sl (0, w)i [k(s — S, ) @], (32)
2

where, according to Eq. (30a),
1.0, w) = fﬂ(|F(r, w)P),, d3r'. (33)

The spectral degree of coherence of the scattered field can also be readily determined
from Eq. (31) and one finds that

1.[kis, —s,), w]
1:(0, )

H_"”(rsp f‘sz. m) = G(S]. s:s_; Sﬂ" w)r {34]

with

S, +s:

e |k — 5| w

G(s,, 8,: 85, @) = (35)

Jﬁf-lki‘a = 8,), w] ‘jﬁF[ff(sg ~ §y). w] |

Because for a quasi-homogeneous scatterer jir’, w) is a fast function of its spatial argu-
ment, it follows from a well-known reciprocity theorem concerning Fourier-transform
pairs that /i (K. w) is a slow function of K. Under these circumstances

- - " (s, +5s,) _
elk(s) = sy), @] = fip[k(s, = 54), @] = fi, |k T" — 8§, @/ (36)
Consequently Eq. (34) simplifies to
His]{rsl‘ ’s,. @) ~ A’FIMS: =8 ) w] . (37)

EF(O,w)

Equations (32) and (37) bring into evidence the following two reciprociitv relations for
scattering of a polychromatic plane wave on a quasi-homogeneous medium:

(1) the spectrum of the scattered field in the far zone is proportional to the Fourier trans-
form of the correlation coefficient of the scatterer; and

(2) the spectral degree of coherence of the scattered field in the far zone 1s proportional to
the Fourier transform of the strength of the scattering potential.

These reciprocity relations for scattering are analogues to the reciprocity relations for radi-
ation from quasi-homogeneous sources, which we encountered in Section 5.3.2 [Eqgs. (16)
and (21) of that section].
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Fig. 6.4 lllustrating the effect of scattering of a plane polychromatic wave on a quasi-
homogeneous. Gaussian-correlated spherical medium. The normalized correlation coeffi-
cient (1 and the strength factor /. of the scalh.:]"jtnjg Rmemia] of the mediurp are taken to be
TR and Ip(r, w) = e, (a) The
normalized spectral density S™(rs, @)/5*/(rsy, @) of the scatlered field in the far zone, as
a function of the angle # between the direction of scattering s and the direction of inci-
dence s;,. (b) The spectral degree of coherence ,t:m(r*s.. rs,, w) of the scattered field in the
far zone in the directions s, and s, located symmetrically with respect to the direction s
of incidence and §| - §; = 85 - 5y = c0s &. |Adapted from T. D. Visser, D. G. Fischer and
E. Wolf, J. Opt. Soc. Amer. A23 (2006), 1631-1638.]

given by the expressions ,uF[r’. w) = ¢

Results of numerical calculations relating to scattering from a Gaussian-correlated
medium, based on these two reciprocity relations, are shown in Fig. 6.4.

PROBLEMS

6.1 A plane monochromatic wave propagating in free space is scattered by a homogeneous
sphere of radius a, whose refractive index is close to unity. Assuming that the effect of
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the discontinuity of the scattering potential at the boundary of the sphere may be neg-
lected, determine, within the accuracy of the first-order Born approximation, the scat-
tering amplitude in a direction that makes an angle ¢ with the direction of incidence.

6.2 A polychromatic plane wave is incident on a weak random scatterer which occupies a

finite volume. Derive an expression that indicates how the normalized spectrum of the
scattered field in the far zone differs from the normalized spectrum of the incident field.

A polychromatic plane wave is incident on a deterministic scatterer, which occupies a
finite domain D. Derive an expression, valid within the accuracy of the first Born
approximation, for the degree of coherence y(rs,, 585, 7), (st = s5 = 1), of the scat-
tered field in the far zone.

Consider also the special cases when (1) | = ry; and (2) §; = 8,. Discuss the phys-
ical significance of these two cases.

6.4 Consider scattering of a plane, spatially coherent wave on a weak, homogeneous scat-

6.5

terer, with correlation function Ci{ry, r5, @) = Cg(r, — r,, w) of the scattering potential.

(a) Derive an expression for the cross-spectral density of the spectrum and for the
spectral degree of coherence of the scattered field in the far zone.

(b) Consider also the special case when the scatterer is delta-correlated, i.e. when

CHry, T, 0) = A(w)8(r; — 1))

&% being a three-dimensional Dirac delta function and A(w) a function which is
independent of position.

A coherent plane wave with spectral density $”(w) propagates into the half-space
z > 0 and is scattered on a finite random medium, located in that half-space. The cor-
relation function of the scattering potential F(r, w) is CH{r|, ., @).

Show that, within the accuracy of the first Born approximation, the spectrum
S)(r, w) of the scattered field may be expressed in the form

S8, w) = SOw)M(r, @)

and derive an explicit expression for the “spectral modifier” M(r, w) for this case.
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Higher-order coherence effects

7.1 Introduction

In the preceding chapters we have been concerned with coherence phenomena which depend
on correlations between field variables at two space-time points, say (ry, f;) and (r», 75).
One then speaks of second-order coherence phenomena. When the fluctuations are statis-
tically stationary and the polarization features of the field are not taken into account, such
phenomena may be characterized by the “space—time™ correlation function (the mutual
coherence function) [Eq. (6), Section 3.1]

[(r), vy, 7) = {(V(r), OV(Ty, 1 + 7)) (1

in the space—time domain; or, equivalently, by the space—frequency correlation function,
i.e. the cross-spectral density [Eq. (13) of Section 4.1],

W'fl‘|, l‘:, (ﬂ]‘ - {U‘{l‘h m]U(I‘:. ﬂ])}. {2}

The two correlation functions given in Egs. (1) and (2) form a Fourier-transform pair [Eq. (2)
of Section 4.1].

Although the coherence phenomena that have been discussed so far can be described in
terms of such correlation functions, there are other coherence phenomena which must be
analyzed by using other correlation functions. Because the theory involving them is some-
what complicated, we will consider only correlation phenomena which can be described by
the so-called fourth-order correlation functions, which are defined by the expression’

T3y, 11 Ta, B Ta, 13 Ty 1) = (VI 1)V (15, )V, V(X ). (3)

The first superscript on I'*** in Eq. (3) indicates that the correlation function contains two
complex conjugates of the field variable V, namely V'(ry, 1,) and V'(rs, 15). The second

| For a general statistical description of stochastic fields in terms of correlation functions of all orders see M&W.
Sections 8.2 and 8.3,

129
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superscript indicates that it contains two (non-conjugated) field variables V(r, 1;) and V(ry, 1,).
In this notation

0, ;0 ) = (V) )Vrs. 1) “)

is the mutual coherence function defined by Eq. (1), when the field ensemble is not neces-
sarily stationary.

In general, no simple relation exists between the correlation functions I'*? and TV,
However, there is an important and broad class of random processes, known as Gaussian
random processes, for which the correlation functions '™ with M and N being non-
negative integers, can be expressed in terms of the lowest-order one. Such a random process
is characterized by the property that the joint probability densities

Pu{vl' V;h ) Vﬂ“' D L3 T2 435 - s I'”. "uj

are all Gaussian distributions.! Random processes of this kind turn up very frequently in
nature. A reason for this was mentioned, for example, in connection with Eq. (9) of Section 2.1.
A basic property of a Gaussian random process in any number of variables (known as a
multivariate Gaussian random process) is that it is completely specified by its first-order
and second-order moments (correlations). For example, for such a process, assuming for
simplicity that the first moment (the mean) is zero, the following relationship exists:

'["l‘?.l‘r(rl! .fl: ry, ;2; A ]f3: K f_') = (V*(]‘I, fl)vt(r:, IZ)V(r ) f_;_“’"(r 5 f_'J}
= (V'(r,, BV Ve, 60V, 1))
+ (V(r, ) V(r,, s OV (x,, 1,)V(x,, 1)), (Sa)

i.e.

22(r,, Iis Louilys X

3. 1

. = 7LD . (1.1} -

+ TO(r, 15 1y, 1)T00(E,, 1 1y, 1), (5b)

where I'!!) is defined by Eq. (4). As we will see shortly, this is a very important relationship
which is of particular relevance to intensity interferometry, which will be discussed in Section
7.3. It is a special case of a general formula known as the moment theorem, which holds for
any multivariate Gaussian random process. It expresses correlations of any order (M, N) in
terms of correlations of order (1, 1).

As we mentioned in Section 2.1, thermal radiation is a realization of a Gaussian random
process, which is a consequence of the fact that at room temperature such radiation is
largely produced by the process of spontaneous emission.

' A comprehensive discussion of Gaussian distributions of any number of real or complex variables is given
in C.L. Mchta, “Coherence and Statistics of Radiation™ in Lectures in Theoretical Physics. Vol. VIIC,
W.E. Britten ed. (University of Colorado Press. Boulder, CO. 1965), pp. 345-401. See also C. L. Mehta, in
Progress in Optics, E. Wolf ed. (North-Holland, Amsterdam, 1970). Vol. VIIL, Appendix A. pp. 431434, and
K. 5. Miller, Multidimensional Gaussian Distributions (). Wiley, New York, 1964).
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7.2 Intensity interferometry with radio waves'

In the early days of radio astronomy, around 1950, attempts were made to measure the
angular diameters of radio stars. It seemed that the use of a Michelson-type stellar interfer-
ometer (see Section 3.3.1) for such measurements would not be practical, because it was
suspected (incorrectly, as it turned out) that one would have to use extremely long base-
lines. At that time it was known only that angular diameters of radio stars could not be
much greater than a few minutes of arc and some astronomers believed that they might be
as small as those of visible stars. At meter wavelengths an interferometer with a baseline of
hundreds or perhaps thousands of kilometers would then be required. Obviously. it would
not be possible then to use a Michelson-type stellar interferometer, because the required
stability could not be maintained over such long distances,

In the early 1950s a British engineer, Robert Hanbury Brown, considered the possibility
of using a different type of stellar radio interferometer. In the Michelson stellar interferom-
eter, light arriving from a distant star at two outer mirrors M; and M, of the interferometer
(see Fig. 3.10) propagates to the detection plane, where it forms an interference pattern.
From measurements of the fringe visibility, the angular diameter of the star can be deduced
by use of the van Cittert—Zernike theorem. In the Hanbury Brown interferometer the sig-
nals arriving at the antennas A, and A, (see Fig. 7.1) are compared with each other by the
use of a correlator (multiplier). The first interferometer of this type was described in 1952.°
It was used to determine the angular diameters of two stars, using antennas separated by a
few kilometers. Since that time, the correctness of the results has been confirmed by other
interferometers.

The principle of operation of the intensity interferometer with radio waves may be
understood from the following considerations. Let

K1)y = V*{rj, DV, 0. (j=12) (1)

be the instantaneous intensities of the radio waves, assumed to be members of a statistically
stationary ensemble, arriving at the two antennas A, and A,, located in the neighborhoods
of points r and r», respectively. For simplicity we will ignore the vector nature of the wave-
field, representing it by a scalar wave function. If the mean values {I(r;. 1)) and (/(r,. 1)) of
the intensities of the waves arriving at the antennas are subtracted electronically, the inten-
sity fluctuations are given by the expressions

Allry, ) = Irp 1) — (I, n)  (j=1.2). (2)
The correlation of the intensity fluctuations at the two antennas is given by the expression

(Alry, DALy, 1 + 7)) = ([l(r), D = (r. O)[Hrp t + 1) = ([ra, t + 7)), (3)

' A comprehensive account of intensity interferometry, both with radio waves and with light. is given in
R. Hanbury Brown. The Intensity Interferometer (Taylor and Francis. London, 1974).

* R. Hanbury Brown, R.C. Jennison and M. K. Das Gupta, Nature 170 (1952). 1061-1063. See also R. Hanbury
Brown and R. Q. Twiss, Phil. Mag. 45 (1954), 663-682.
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Fig. 7.1 Block diagram of a radio intensity interferometer. [Adapted from R. Hanbury
Brown, The Intensity Interferometer (Taylor and Francis, London, 1974), p. 84.]

where 7 denotes the time delay between the waves arriving at the two antennas. On perform-
ing the multiplication on the right-hand side of Eq. (3) and using the fact that the assumed
stationarity of the field ensemble implies that (/(r,, ¢ + 7)) = ({(r5, 1)), Eq. (3) gives

(Al(ry, DAI(r,, t + 7)) = {I{x,, DIy, t +7)) — {I(x;, DI(E,, 1))
= {(x, D) (ry, 1)) + (I(r;, D) (r,. 1)
= (I(x;, DI(r,, £ + 7)) — (I(x;, DN, D). (4)

Let us express the right-hand side of Eq. (4) in terms of the fluctuating field incident on the
antennas. One then finds that

(A, DAI(r,, t + 7)) = (V*(rl. OV(r, DV (r,, t + TIV(r,, t + 7))
— (V" (5, OV(r,, D)V (K, DV(Ey. 1)), (5)

We note that the first term on the right is the fourth-order correlation function which we
encountered earlier [Eq. (3) of Section 7.1)]:

(Vi DV DV (a1 + NV, t + 1)) =TEr et + it 0, £+ 7). (6)
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It is reasonable to assume that the wavefield reaching the antennas arises from the super-
position of many independent contributions of the stellar radio source; and consequently,
according to the central limit theorem, mentioned in connection with Eq. (9) of Section 2.1,
the field arriving at the antennas will be a realization of a Gaussian random process. Under
these circumstances, and assuming the wavefield to be statistically stationary, the fourth-order
correlation function (6) may be expressed, according to Eq. (5a) of Section 7.1, in the form

(Vi(r, DV (r, DV (xy, t + TIV(ry, 1+ 7))
= (V*(x,, OV (r,, D) (V' (5, 1 + TIV(E,. £ + 7))
+ (V7 (r,, DV, t + TV (r,, t + TV(r, 1)
= (I ONHE; 1) + TV, &, TSN T, =) (7)

or, since I'"':"” obeys the relation
I““'"{r:,rh —T) = l"”'l'*(r], rs, ‘T), (8]
one has

(V™ (x,, DV(r;, OV (r,, t + TIV(K,, t + 7))
= (I(r, D)(I(x,, 1)) + [TW(x,, T, 7). (9)

On substituting from Eq. (9) into Eq. (5) we obtain for the correlation of the intensity fluc-
tuations the formula

(AI(r,, DAI(r,. t + 7)) = [T4D(r, 1y, 7). (10)

Now the second-order correlation function I'"""(r,, r,, 7) which appears on the right-hand
side of Eqg. (10) is just the mutual coherence function which we denoted before by ['(r|, rs, 7);
its normalized version

D, B T _ Tm.x, 7)
JF{I'I, T D}Jl“(rz, ry, 0) J(”"w D){(xy, 1))
= (K. Ty, 7) an

15 just the degree of coherence of the wavefield at the points ry and r,. Hence Eq. (10) may
be expressed in the form

(AI(r,, DAI(E, 1+ 7)) = (15, D)I(r,. DT, £y, TP, (12)
which implies that

(Al(r,, HAI(r,, t + 7))
(I(x,, (T, 1))

=Tl B - (13)
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Equation (13) is the basic formula of intensity interferometry for thermal radiation. It
shows that the absolute value of the degree of coherence of a thermal field at two field
points r; and r, may be determined from measurements of the correlations of intensity fluc-
tuations and the average intensities at these points.

We recall that by use of the Michelson stellar interferometer one can, in principle, deter-
mine the complex degree of coherence ~(ry, r,, 7) at the two mirrors from visibility meas-
urements although, in practice, atmospheric turbulence essentially destroys information
about 1ts phase. In intensity interferometry, as we just showed, one can determine the mod-
ulus |v(ry, ry, 7)| of the degree of coherence. By use of the van Cittert—Zernike theorem one
can then obtain information about the intensity distribution across the source. assuming
that it is spatially incoherent. However, as is evident from Eq. (13), such measurements
cannot provide, even in principle, any information about the phase of the degree of coher-
ence. This limitation is, however, of no consequence, if the stellar disk is rotationally sym-
metric, as we briefly discussed in Section 3.3.1.

7.3 The Hanbury Brown-Twiss effect and intensity
interferometry with light

After the first successful determination of the angular diameters of radio stars by intensity
interferometry, Hanbury Brown and Twiss turned their attention to the possibility of using a
similar technique to measure the angular diameters of stars at optical wavelengths. It was
clear that. 1if this were possible. an appreciable amount of valuable new information could be
obtained. Up to that time the only way to measure stellar diameters at optical wavelengths
was by use of the Michelson stellar interferometer. Practical difficulties had restricted the
use of that method to measurements made by Michelson and Pease in the 1920s determin-
ing the angular diameters of only six stars. A source of the difficulties in such measurements
was the extremely small angles subtended by stars at the Earth’s surface — of the order of
10~ seconds of arc; this requires the use of interferometers with baselines of several hun-
dred meters. Further, atmospheric turbulence produces blurring and distortions of the image
of the star. It was chiefly for these reasons that no progress made in applying Michelson’s
method to determining the angular diameters of other stars than the small number initially
measured.

At first glance it seemed that intensity interferometry would overcome some of the lim-
itations of Michelson’s method and this indeed turned out to be the case. However, the theory
of intensity interferometry with light rather than with radio waves turned out to be rather
subtle, mainly due to the quantum-mechanical nature of detection of light fluctuations. To
begin with we will ignore this complication and we will assume that Eq. (13) of Section 7.2,
which we derived for intensity interferometry with radio waves, applies even when a very
different detection process is employed, using the photoelectric effect. In Section 7.5 we
will explain why Eq. (10) of Section 7.2, which we derived on the implicit assumption that
the detector measures correlations in the intensity fluctuations of the classical field, can be
used even when photoelectric detectors are used, as long as some subtleties connected with
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the signal-to-noise ratio are ignored. Such subtleties must, of course. be taken into account
in practice, but omitting this aspect of the technique does not prevent an understanding of
the basic physical principles underlying it.

In the spectral region of radio waves, the procedure of determining the correlation in the
intensity fluctuations is straightforward, because square-law detectors measuring intensity
fluctuations AKr, 1) of radio waves are well-known electronic devices. One need only set
up two radio antennas in the neighborhood of the points r; and r,. The output signals are
then multiplied in an electronic correlator and the product is averaged and recorded.

The situation is quite different with light. Light detectors with a sufficiently rapid response
are photoelectric detectors. Such detectors are. however, highly “non-classical” devices,
making use of the photoelectric effect. This is the phenomenon of ejection of electrons
from a metal when electromagnetic radiation of short enough wavelength impinges on its
surface. It has been known for a long time that the energy of the ejected electron is inde-
pendent of the intensity of the light that illuminates the metal surface but depends on the
frequency of the light. When the intensity is increased. the number of electrons ejected
increases. but not their energy. These observations are in contradiction with the classical
wave theory of light. Einstein, in a famous paper published in 1905, explained these obser-
vations on the basis of the corpuscular nature of light, i.e. by postulating that light incident
on the photoelectric surface consists of particles — light quanta — now called photons.
Einstein’s paper was the first paper which clearly indicated the need for quantizing the elec-
tromagnetic field under some circumstances. In 1921 he was awarded the Nobel Prize for
Physics “for his services to Theoretical Physics and especially for his discovery of the law
of the photoelectric effect.”

We derived the basic formula (13) of Section 7.2 using classical wave theory for the
detection of radio waves. However, because of the non-classical nature of the photoelectric
effect, it is by no means clear that the formula would also hold for light waves detected by
use of this effect. In fact there was a bitter controversy, which we will mention later, regard-
ing this question; it was eventually resolved in favor of the validity of the classical formula
even under these circumstances. The justification involved some beautiful physics relating
to the wave—particle duality of light which we will discuss in Section 7.4; it also required
the development of the theory of photoelectric detection of light fluctuations, which was
formulated largely in order to clarify some of the questions surrounding this problem.

In 1956, shortly after the successful determination of diameters of radio stars by inten-
sity interferometry. Hanbury Brown and Twiss performed laboratory experiments to deter-
mine whether the technique worked also with light.! Light from a mercury arc was filtered
and split into two beams by a half-silvered mirror and the two beams were then incident on
two photo-multiplier tubes, one of which was movable across the beam (see Fig. 7.2). As
the photo-multiplier moved, the degree of coherence of the light at the two photo-cathodes
varied in a manner that could be calculated from the geometry of the arrangement. The elec-
trical signals from the two photo-multipliers were fed into electronic circuits, where they

' R. Hanbury Brown and R. Q. Twiss, Nature 177 (1956), 27-29.
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Fig. 7.2 Apparatus used for the demonstration of the Hanbury Brown-Twiss effect.
[Adapted from R. Hanbury Brown and R. Q. Twiss, Nature 177 (1956), 27-29.]

were amplified. The outputs were multiplied together in a multiplier. With this equipment the
intensity correlation was measured for various positions of the movable photo-multiplier
and compared with the theoretical values calculated from the geometry of the system, the
spectral distribution of the light and the electrical characteristics of the circuits. The results
are shown in Fig. 7.3 and are seen to agree well with predictions of the classical theory.'

In spite of the successful laboratory experiment a controversy surrounding the effect
continued and papers were published reporting results of similar experiments but with neg-
ative results, suggesting that the effect does not exist. It was shown later that the negative
results were largely due to substantial underestimation of the time needed to obtain a sig-
nificant signal-to-noise ratio.’

Before discussing the resolution of the controversy surrounding the Hanbury Brown—Twiss
effect and outlining why the “classical theory” applies to understanding the principles of
the optical intensity interferometer, we will briefly describe the first two such interferometers,
which were built in the period 1956-1966.

I A similar experiment was performed by W, Martienssen and E. Spiller. Am. J. Phys. 32 (1964), 919-926 by using
so-called pseudo-thermal sources. Such sources were produced from laser sources by changing the statistical
properties of the light by passing it through a rotating diffuser. In this way light was generated whose statistical
properties were governed by Gaussian distributions; but, unlike the usual thermal sources. it had a very high sta-
tistical degeneracy (see Appendix I), which made it appreciably easier to demonstrate the effect.

It was estimated that in one of the experiments [A. Adam, L. Jdnossy and P. Varga, Ann. Phys. (Leipzig) 16
(1955), 408—413] 10" years (longer than the estimated age of the Earth) would have been needed to obtain a
significant signal-to-noise ratio. In experiments described by E. Brannen and H.[. 5. Ferguson, Nature 178
(1956), 481482, the estimated time required for obtaining a significant signal-to-noise ratio was 1,000 years.

]
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Fig. 7.3 The experimental and theoretical values of the squared modulus of the degree
of coherence |7,5(0)|* for various separations between the photo-cathodes. [Adapted from
R. Hanbury Brown and R. Q. Twiss, Proc. Rov. Soc. (London) A243 (1958), 291-319.]

A block diagram of the detector part of an optical stellar-intensity interferometer is
shown in Fig. 7.4. The first interferometer of this kind' utilized devices that were somewhat
primitive, namely two parabolic reflectors of searchlights used by the British Army. Their
chief purpose was to concentrate light from a star onto two photodetectors, without aiming
at producing a good image. For, as we have already noted, the phase of the incident light
plays no role in the determination of the angular diameter of the star by this technique,
because the correlation of the intensity fluctuations at the two detectors depend only on the
modulus of the degree of coherence of the incident light, not on its phase [see Eq. (13) of
Section 7.2]. For the same reason the atmospheric fluctuations are of less consequence in
such measurements than in measurements that use the Michelson stellar interferometer.

Using this interferometer Hanbury Brown and Twiss found that the angular diameter of
the star Syrius is 6.9 X 107 seconds of arc, using baselines of up to about 9 m (see Fig. 7.5).

Having convincingly demonstrated the possibility of determining the angular diameters
of visual stars by intensity interferometry, Hanbury Brown and Twiss and their collabora-
tors built a large interferometer of this kind at Narrabri in Australia, about 370 miles by
road north of Sydney. The general layout of the interferometer is shown in Fig. 7.6 and can
best be described by quoting the following passage from Hanbury Brown’s book (p. 94) on
this subject cited earlier:

The photoelectric detectors were each mounted at the focus of two very large
reflectors carried on trucks running on a circular railway track with a gauge of
5.5m and a diameter of 188 m. These mobile trucks were connected to the control
building by cables suspended from steel catenary wires which were attached at one

' R. Hanbury Brown and R. Q. Twiss, Nature 178 (1956), 1046-1048; Proc. Rov. Soc. (London). A248 (1958).
222-237.
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Fig. 7.4 Block diagram of an optical stellar intensity interferometer. [Adapted from
R. Hanbury Brown, The Intensity interferometer (Taylor and Francis, London, 1974), p. 48.]
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Fig. 7.5 The squared modulus of the degree of coherence of light from the star Sirius
A. The points indicate measured values, together with probable errors. The curve shows
the theoretical values for a star of angular diameter 0.006Y seconds of arc. [Adapted
from R. Hanbury Brown and R.Q. Twiss, Proc. Roy. Soc. (London) A248 (1958),
222-231.]

end to a bearing at the top of a tower in the center of the circle, and at the other to
a small tender towed by each truck. When not in use the reflectors were housed in
a garage built over the southern sector. A valuable but expensive feature of this
garage was a slot running almost the full length of one wall enabling the trucks to
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Fig. 7.6 The general layout of the stellar intensity interferometer at Narrabri. [ Adapted
from R. Hanbury Brown, Sky & Telescope 28 (1964), 64—69.]

be parked inside without detaching the cables and hence without disturbing the
electric connections.

The control building which housed the control desk, the computer, a large air-
conditioning plant and various motor generators, switchboards, etc. was a two-
story brick building of solid construction with a good heat-reflecting roof so that it
was possible even in the summer at Narrabri to hold the inside temperature to
72 * 2°F. It was close enough to the central tower to allow the catenary cables to
pass over its roof [see Fig. 7.6].

The reflectors [shown in Fig. 7.7] were regular 12-sided polygons roughly 6.5 m in diame-
ter, each having a useable reflecting area of 30 m®. They were mounted on turntables car-
ried by trucks.

The focal length of each mirror was about 11 m and the surface of each reflector was a
mosaic of 252 hexagonal mirrors (Fig. 7.7), each approximately 38 cm between opposite
sides and 2 cm thick. The angular diameters of 32 stars were determined by this instrument
and this information represents a major contribution to astronomy.

Although the Hanbury Brown—Twiss effect was discovered, and has been used, in con-
nection with determining stellar diameters, it has found other applications since then, for
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Fig. 7.7 Twin light collectors of the stellar-intensity interferometer on the circular track at
Narrabri Observatory, New South Wales, Australia. Some of the small mirrors have been
removed from each of the 6.5-m reflectors for recoating. A beam 11 m long supports a

photoelectric detector at the focus of each reflector. [Adapted from R. Hanbury Brown,
Sky & Telescope 28 (1964), 64-69.]

example in high-energy physics, nuclear physics, atomic physics and condensed-matter
physics.!

7.4 Einstein’s formula for energy fluctuations in blackbody radiation and
the wave—particle duality

Let us now return to the question of why the performance of an optical intensity interfer-
ometer can be described by classical wave theory, even though the photoelectric detectors
act in a highly non-classical manner. A turning point in the controversy surrounding this
subject was the publication of a short note by E. M. Purcell.” He showed by a simple heuristic

' Sec, for example, G. Baym, Acta Phys. Polon. B 29 (1998), 1839-1884: M. Schellekens. R. Hoppeler, A. Perrin,
J. Viana Gomez, D. Boiron, A. Aspect and C.1. Westbrook, Science 310 (2005), 648-651; A. Oul, S. Ritter,
M. Kohl and T. Esslinger, Phys. Rev. Lerr. 95 (2005), 090404,

? E.M. Purcell, Nature 178 (1956), 1449-1450.
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argument that, when a beam of light is incident on a photodetector, the statistical fluctua-
tions in the counting rate of the emitted electrons will be greater than one would expect in
a random sequence of independent events occurring at the same average rate. The addi-
tional fluctuations give rise to the cross-correlation in the intensity fluctuations found by
Hanbury Brown and Twiss, which is essentially a classical wave contribution.

The presence of both a particle contribution and a wave contribution in the photoelectric
detection of light fluctuations brought out by Purcell’s analysis may be regarded as a man-
ifestation of the wave—particle duality, which is a basic feature of quantum mechanics. It
was discovered by Einstein! well before the formulation of quantum mechanics, in a beau-
tiful paper dealing with energy fluctuations in blackbody radiation. Because Einstein’s
paper has a close bearing on Purcell’s argument regarding the origin of the Hanbury
Brown-Twiss effect, we will briefly present its essence here.

Einstein considered blackbody radiation in equilibrium in a cavity of large volume V. In
any subregion of volume v <€ V the energy will fluctuate, moving in and out of the subre-
gion. He inquired about the magnitude of the fluctuations in this region in a small fre-
quency range (v, v + dv), choosing as the measure of the fluctuations the variance of the
energy E in that region, i.e. the quantity

(AE)* = (E - E), (1)
where, for convenience, we now use an overbar rather than angular brackets for an ensem-

ble average. Einstein showed first from thermodynamic considerations that”

— . BE
(AE)- = IEIBI_E‘_‘_H (2)

where kg is the Boltzmann constant and 7 is the absolute temperature. Equation (2) is often
called the Einstein—Fowler formula.
Now, for blackbody radiation, E is given by Planck’s law

E:ZL (3)

eMitkyT)

where h is Planck’s constant and

_ 8wVuidv
= e

Z . (4)

¢ being the speed of light in vacuum. The quantity Z may be shown to represent the so-
called number of cells in phase space associated with the volume V in ordinary space and

' A. Einstein, Phys. Z. 10 (1909), 185-193; English translation in The Collected Papers of Albert Einstein. Vol. 2
(Princeton University Press, Princeton, NI, 1989), 357-375.

* For a derivation of this formula see, for example, F. Reiche, The Quantum Theory (Methuen, London, 1922),
Note 52, 139-140.
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the frequency range (v, v + dv) [see Appendix 1(b)]. On substituting for the mean energy
E from Eq. (3) into Eq. (2), one obtains for the variance of the energy fluctuations in the
subregion the expression

(AE)? = hvE + é-f (5)

This formula is known as Einstein’s fluctuation formula for blackbody radiation.

Einstein drew some remarkable conclusions from this formula. He pointed out that if the
cavity V contains only waves, as most physicists at that time believed, one could decom-
pose the field within the cavity into a set of plane-wave modes of different amplitudes and
phases, propagating in different directions. Short-term interference of the waves would
then produce field fluctuations and, consequently, energy fluctuations in the subregion v of
the cavity. Einstein argued, by using a simple dimensional argument, that the variance of
these fluctuations will be given exactly by the second term in Eq. (5), namely by the formula

E2. (6)

Einstein next argued as follows: since only the second term on the right-hand side of Eq. (5)
can be understood on the basis of wave theory, that theory does not fully explain the origin
of the fluctuations. Suppose that the volume contains n particles (quanta). each of energy
hv. If they were independent classical particles, the fluctuations in their number would
obey the Poisson distribution [see Appendix IV(a)], viz.,

T E_E
n!

pn) = (7)

' Einstein's heuristic argument by means of which he interpreted the meaning of the second term on the right of
his fluctuation formula {5) occupies only eight lines of his paper. Another plausibility argument, indicating that
the variance of fluctuations of the waves is proportional to E°, may readily be given on the basis of Eq. (12) of
Section 7.2. That formula is an expression for the correlation of intensity fluctuations in a field governed by a
multivariate Gaussian distribution (i.e. a Gaussian random process), as might be expected to be the case for
blackbody radiation. If we set in that formula ry = r; = r and 7 = 0, then +(r, r, 0) = 1 and the equation
reduces to (using now an overbar instead of angular brackets to denote an ensemble average)

(AP =T,

where [ is the instantaneous intensity. Evidently I may be taken to be a measure of the instantaneous energy E.
Writing £ = o, where a is a constant, the above formula reduces to

(AEy: ~ E°,

A long but rigorous derivation of the formula (6) was given by H. A. Lorentz in his book Les théories statis-
tigues en thermodynamigue (Teubner, Leipzig and Berlin, 1916), 114-120.
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The total energy of n such particles would be E = nhv, so that

E
n=—. (8)
by
Now the variance of a Poisson distribution is
(An)? = 7, (9)

and it follows from Eqs. (8) and (9) that the variance [A(E/(hv))]> = E/(hv), i.e.

(AE)?

particles

= hvE, (10)

Here we have attached the subscript “particles™ to stress that the expression was derived on
the assumption that the energy fluctuations are caused by particles. We see that the expres-
sion on the right of Eq. (10) is precisely the first term on the right-hand side of Eq. (5).
Hence, using also Eq. (6), we can express Eq. (5) as

(&b}h = (ﬂﬁjlpunicle.a 3 (M}-“'nvcs' (11)
This result was the first example of the wave—particle duality, which about 15 years later
became a prominent feature of quantum mechanics.

Equation (11) is a kind of a hybrid result that expresses the variance of energy fluctua-
tions in a cavity containing blackbody radiation as a sum of contributions of classical par-
ticles and classical waves. Today one would interpret Einstein's result somewhat ditferently,
in terms of either non-classical waves or non-classical particles. For example, by using Eq.
(8) we could rewrite Eq. (5) in the form

(An)? =E+éﬁz. (12)

The presence of the second term on the right of this formula shows that the particles do not
behave as classical particles which obey a Poisson distribution because, for such particles,
Eq. (9) rather than (12) would apply. Equation (12) for the variance is, in fact, a well-known
formula pertaining to quantum particles known as bosons in Z cells of phase space [see
Appendix I(b)].

With this background we will now return to the Hanbury Brown-Twiss experiment and
consider, more generally, the theory of photoelectric detection of light fluctuations.

7.5 Mandel’s theory of photoelectric detection of light fluctuations
7.5.1 Mandel’s formula for photocount statistics

As noted in the previous section, the controversy surrounding the theory of photoelectric
detection of light fluctnations was largely resolved by a brief discussion by E. M. Purcell.
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He showed that the reason why correlations in the fluctuations of a classical optical field
can be extracted from photocount measurements was due to the excess fluctuations (arising
from the boson nature of light) over completely random counts.

L. Mandel in two important papers' carried Purcell’s argument further and developed a
theory of photoelectric detection of light fluctuations, which he appropriately referred to as
stochastic association of photons with random waves. Mandel’s analysis not only gave a
clear explanation of the Hanbury Brown-Twiss effect, but also provided a general theory of
the interaction of stochastic light beams with photoelectric detectors. We will now give a
brief account of it.

Consider first a single photodetector exposed to an incident light wave, assumed for sim-
plicity to be linearly polarized, with fluctuating complex amplitude V(r), represented by an
analytic signal (Section 2.3). It seems plausible and can be shown, for example, by semi-
classical theory,” that the probability that an electron will be emitted within a time interval
(1,1 + Ar) is proportional to the instantaneous light intensity /(1) = V' ()WV(1), i.e.

P(HAL = al(DAt, (1)

o being a constant representing the quantum efficiency of the photodetector. Starting from
Eq. (1) Mandel showed that the probability that n electrons are emitted within a time inter-
val (¢, 1 + T) is given by the formula

pn, t,T) = %mwu, TP aWiT), @)

where

T r L
W, T) = [ 1()dr (3)
T

is the integrated intensity of the light incident on the detector over the tume interval (1,
t + T). The derivation of Eq. (2) is somewhat lengthy. It is given in Appendix III.

It is of importance to appreciate that Eq. (2) pertains to a single realization of an incident,
generally random, field. Physically more significant is the average, which we will denote
by an overbar, of the expression given in Eq. (2) over the ensemble of the incident field:

Pn,t, T) = pn, t, T)

= l‘[nwo, T)pre WD) )
.

or, more explicitly,

Pn,t, T) = f Me““w“-ﬂp(W}dW‘ (5)
0

n!

L. Mandel, Proc. Phys. Soc. (London) 72 (1958), 1037-1048; and Ihid. 74 (1959), 223-243.
L. Mandel, E. C.G. Sudarshan and E. Wolf, Proc. Phys. Soc. (London) 84 (1964), 435-444, Eq. (2.18b).

1
2
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where p(W) = p(W. ¢, T') is the probability density of the integrated intensity, given by Eq.
(3). the variables r and T being kept fixed in the integration. We will refer to Eq. (5) as
Mandel’s formula for photocount statistics.

The formula is of considerable generality. It applies to any kind of linearly polarized
incident light, irrespective of its statistical properties and irrespective of whether the light
fluctuations are statistically stationary or not. It should be noted that the formula involves
probabilities in two different ways. First, it contains the probability relating to emission of
photoelectrons from a single realization of the incident field: and second, it involves the
ensemble of the incident field.

The integrand on the right-hand side of Mandel’s formula contains the expression
[aW(1, T)]%e """ D!, which is a Poisson distribution with mean

n = aWT). (6)

However, Mandel’s formula (5) is, in general, not a Poisson distribution, because of the
presence of the weighting factor p(W) under the integral sign. The formula may be said to
represent a Poisson transform of the probability p(W).

7.5.2 The variance of counts from a single photodetector

The variance of the counts, recorded in the time interval (#, # + T') is given by the formula

(An)* = (n — n)* = n® — 2, (7)

where the first two moments,

e

n= Z np(n,t,T) (8a)
n=0
and
nd = Z n*p(n,t,T), (8b)
n=0

of the averaged Poisson distribution p(n. 1, T), defined by Eq. (4), are given by the well-
known formulas’

n=aW(T), (9a)

n® = aW,T)+ a’[W(t, T)P. (9b)

! See, for example, A. Papoulis, Probability. Randon: Variables and Stochastic Processes (McGraw-Hill, New
York. 1963), 145.



146 Higher-order coherence effects

Hence the variance defined by Eq. (7) is given by the expression

(An)? = aW(t,T) + @} (W, T)]? — a? [Wfr, T)]‘, (10)

or, using Eq. (9a),
(An)? = 1 + o [AW@G, ), (1

where

AW TP = [We.T) = wa. T)| = (wa. TP ~[W{1.T)r (12)

1s the variance of the integrated intensity W(r, T) defined by Eq. (3).

Equation (11) has a simple interpretation. It shows that the variance of the fluctuations in
the number of ejected photoelectrons may be regarded as having two separate contributions:
(1) from the fluctuations in the number of particles obeying the classical Poisson distribution
(the term n1) and (ii) from fluctuations of a classical wave (the wave interference term
a’[AW(1, )?). This result which, as we have just shown, holds for any radiation field, is
strictly analogous to the celebrated result of Einstein, relating to energy fluctuations in a
region of a cavity containing blackbody radiation, under conditions of thermal equilibrium,
as discussed in Section 7.4. We now see that a fluctuation formula of the kind Einstein
derived, which clearly exhibits the wave—particle duality of radiation. also holds for count-
ing fluctuations in time intervals for any light beam (i.e. thermal or non-thermal, stationary
or non-stationary), at points that may be situated far away from the source of the light.

It is of interest to note that when the intensity of the incident beam is stabilized, e.g.
as in a single-mode laser beam, the variance [AW(r. T)]* will be negligible because there
will be no intensity fluctuations in the incoming beam and the formula (11) then reduces
to (An)* = 7], as for a system of classical particles.

If, on the other hand, the light is of thermal origin. the probability density p(n, 1. T) of the
photocount will be quite different. For thermal light the probability distribution of the incident
field will be Gaussian (see Eq. (9) of Section 2.1). By using elementary rules of the theory
of probability, this may be shown to imply that the probability distribution of the intensity
is exponential (see M&W, Section 3.1.4), i.e. that

pI) = =exp(—I/). (13)

~|| =

One may then show by the use of Mandel's formula (5) and formulas (9a) and (3) that if the
integration time 7 is much shorter than the coherence time of the light, i.e. if 7 < 27/Aw,
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where Aw is the bandwidth of the incident light, the probability distribution of the photo-
electron becomes'
P T T) -
(n.t, I')y=pn.t. 1) = ————, 14
P (ﬁ‘ + |)u+.| ( ]

which is the Bose-Einstein distribution for one cell of phase space (see Appendix IV,
Eq. (16), or Morse's discussion?).

7.5.3 Correlation between count fluctuations from two detectors

We will now consider the situation when a light beam illuminates two photodetectors. a
situation which, as we saw, is of special interest in optical intensity interferometry. Suppose
that the detectors are located in the neighborhoods of points r| and r, respectively. We will
indicate by subscripts 1 and 2 the outputs of each of the two detectors.

Let us determine the correlation An; An, of the fluctuations

Any=n —n and An, =n, —n, (15)

of the photocounts of the two detectors. We have

nn, = Z Z nn,png, t, Tipy(n,, t,, T)
; HI_U H}:U'
(16)

=

= Z npng, 1, T}Z n,p,(n,, t,, T),

=0 ny=0

where the probabilities p(n;. 1;, T), j = 1. 2, are given by expressions such as Eq. (2). Now,

according to Eqgs. (8a) and (9a),

x

n1=ﬂ
ﬁ: = E n, p._,{n:, Iy, 1) = ﬂZWE{I:, ¥ i (17b)

ny, =i

i.e. the expectation values of i) and n, are proportional to the averaged integrated intensity
Wi(t, T) at each of the two points. Hence, using Egs. (17). we have

mn, = aa, W (t,. TYW,(1,. T). (18)

' L. Mandel in Progress in Optics. E. Wolf ed. (North-Holland. Amsterdam, 1963), Vol. 2. p. 228. Eq. (71b).
* P.M. Morse. Thermal Physics (Benjamin, New York, 1962). p. 218.
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Now

An, An, = (n; — n))n, — 1)

= nn, — nh, (19)

or, using Eqgs. (16) and (18),

ﬂml ﬂnz = a,0,|W (1, TIW,(1,, ) — oy, W (1,. T) W,(t,. T),

which implies that

An, An, = nln'gﬂ.wl(rl. T)AW,(t,, T), (20
where
AWJ(:‘;. T)= Wj(fl‘,-. £ Y= Wj(fj, 1) (21)

are the fluctuations of the integrated intensities of the light incident on the two detectors.
The formula (20) shows that the correlation Any An, between the fluctuations of the photo-
count at the two detectors is proportional to the correlation between the fluctuations in the
integrated intensities of the classical field incident on the two detectors.
If the integration time 7 of the detector is short relative to the coherence time 1, = 27/Aw
of the incident light, we have from Eq. (3) that

W, T) = TK1) (22)
and Eq. (20) reduces to

fln! &nz = u]az]‘": i’u’I(I] 1N3(f: 5 (23)

where Al(r) = K1) — I(1) denotes the fluctuation of the intensity. Except for a slight change
in notation, the right-hand side of Eq. (23) is identical with the left-hand side of Eq. (10) of
Section 7.2 which, as we have seen, is the basic quantity from which angular diameters of
stars are determined by intensity interferometry.

Equation (23) confirms that the correlation of intensity fluctuations of the classical field
incident on the two detectors can indeed be determined from measurements of correlations
of the fluctuations in the number of electrons emitted by the two illuminated photodetec-
tors, in spite of the non-classical nature of the photoelectric effect.

Equation (20) contains the essence of the Hanbury Brown-Twiss effect. In practice it is,
of course, also necessary to have an estimate of the signal-to-noise ratio. For discussion of
that topic we refer the reader elsewhere.’ It turns out that the signal-to-noise ratio depends

! See R. Hanbury Brown and R. Q. Twiss, Proc. Roy. Sec. (London), A242 (1957), 300-324, Section 3(d). See also
L. Mandel, in Progress in Optics, E. Wolf ed. (North-Holland, Amsterdam, 1963). Vol. 11, Section 4.3, pp. 181-248.
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rather significantly on the degeneracy parameter ¢ of the light [see Appendix I (¢)] and that
when & is much smaller than unity it is essentially proportional to . We have shown in
Appendix I that & < | for thermal sources at laboratory temperatures and for light from
stellar sources. It 1s mainly for this reason that the effect had originally been so difficult to
demonstrate. Since for laser light the degeneracy parameter is generally very large, of the
order of 10'7 or greater, one might expect that the effect would be very easy to demonstrate
with laser light. However, as we have already noted, this is not so. A good-quality laser will
generate a beam in which the intensity fluctuations A/ are negligible. Consequently corre-
lations in intensity fluctuations are essentially absent and the large value of the degeneracy
parameter is then irrelevant. The effect can, however, easily be observed with so-called
pseudo-thermal sources, which we mentioned in Section 7.3.

Finally we recall that in the preceding discussion we represented the incident field by a
single scalar wave function. This is equivalent to assuming that the incident field is linearly
polarized. For a discussion of intensity fluctuations and the photoelectric detection of light
of some other states of polarization we refer the reader to a paper by Mandel.'

7.6 Determination of statistical properties of light from
photocount measurements?

Let us now return to Mandel’s formula (5) of Section 7.5.1 for the probability that n elec-
trons are emitted in the time interval (¢, r + T) under the influence of incident light:

P(n, 1. T) = f T D e~ W) (W)W, (1)
0

n!

Here
r+T
W, T) = f 1(2)dr' (2)
o

represents the intensity of the incident light, integrated over the time interval (1, r + T'), and
« is the photo-efficiency of the detector.

In principle, the photocount distribution P(n, r, T) may be measured. We will now con-
sider how one can derive the probability distribution p(W) of the integrated intensity of the
light incident on the detector from knowledge of that distribution. This amounts to finding
the inverse of the Poisson transform which appears on the right-hand side of Eq. (1). For
this purpose let us first introduce the function

F‘x} S fnx e'h-l-"p'p‘:w)‘e—nﬂ-'dw- {3:'

! L. Mandel. Proc. Phys. Soc. (London), 81 (1963), 1104—1114.
* The analysis presented in this section is largely based on a paper by E. Wolf and C. L. Mehta. Phys. Rev. Lei.
13 (1964), 705-707.
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Taking the Fourier inverse of F(x) we have

i * g2
p(W) = 5 f F(x)e W dx. (4)

m

Next let us expand the exponential on the right-hand side of Eq. (3) in a power series. This
gives, formally at any rate,

o (xWyr .
F(x) = H(W)e— oW dw
J j:m Z n !

n=0

_ Z (1x) f W" p(W)e aW qw. (5)
n!' Jo

mn=()

Now Mandel’s formula (1) implies that

b &

!
W p(W)e aW qw = i;[-‘—-}E’f.ll. L T) (6)
[_I G"

and hence Eq. (5) gives

F(x) = ZI%] Pin, 1, T). (7

n={}

It follows that the required probability distribution p(W) may be obtained from knowledge
of the photocount distribution P(n, t, T) forn = 0, 1, 2, . . . by first evaluating the function
F(x), defined by Eq. (7), and then using Eq. (4).

Let us illustrate the inversion procedure by a simple example. Suppose that the photo-
count distribution P(n, 1, T) is Poissonian, 1.e. that

n=()

Pn,1,T) = 2% (8)
n'
Equation (7) then gives
i ix i H‘ne—ii
F(.l-} — Z i
a n!

R, |

’ c—azi{uﬂ]

n'| a
n=0

= ellliv/a)=1] (9)
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On substituting from Eq. (9) into Eq. (4) we obtain for p(W) the formula
w1 : -
= alWa=h A—ixiW=i1la)
pW) = eWe - j_x e dx. (10)

The integral on the right of Eq. (10) 1s just 2nd(W — n/a), where § is the Dirac delta func-
tion. Hence

pW) = 8W — W), (11)
where

W=_, (12)

2 |

This result implies that when the observed photocount distribution is strictly Poissonian,
1.e. given by Eq. (8), which represents pure shot noise, the intensity of the incident light is
completely stabilized in the sense that it does not fluctuate at all and W has then the con-
stant value W = ii/a.

PROBLEMS

7.1 Vir, 1) is an analytic signal representation of a linearly polarized, stationary, thermal
field and

AKr, ©) = Kr, 1) — (Ir, D)

represents the fluctuation of the instantaneous intensity of the field at the point r. Show
that one may determine the absolute value of the degree of coherence 4(r), 5, 7) of the
light at two points in the field from knowledge of the averaged intensities and of the
correlation between the intensity fluctuations at the two points,

7.2 (E) represents the average energy in the frequency range (v, v + dv) of blackbody radia-
tion, at temperature 7, contained in a volume V. It is known that
(i) when hv/(kgT) < 1, (E) is given by the Rayleigh-Jeans law

(E) = ZkgT:,
(ii) when hv/(kgT) > 1, (E) is given by Wien's law
(E} = Zhve Inrflknﬂ1

where
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(a) Show that the variance of the energy fluctuations is given by the expressions

S(E)*  when hu/(k,T) <1,
hu(E) when hv/(k,T) = 1.

(AEP) =

(b) Assuming that the fluctuations in these two limiting cases are due to two different
causes and that, in general, both are effective and give rise to fluctuations whose
variance is the sum of the two variances stated in (a), determine, with the help of
the Einstein-Fowler formula, the general expression for (E).

7.3 (a) Determine the mean and the variance of the probability distribution
_!-l' n
B} =i
p]{ (l + ,{;}"‘H
where (¢ is a positive constant and the random variable n takes on all non-negative
integer values.
(b) The probability distribution for the number of photons of energy Av in a mode of
blackbody radiation at temperature 7" may be shown to be given by the expression

PE{H) =(1 - E—hl.u"ikuﬂ] e—uhv.l’(kHTJ*

where kg is the Boltzmann constant. Show that p-(n) may be expressed in the form
pi(n) with an appropriate choice of the parameter j.

Determine also the variance of p,(n) in the two limiting cases when

ho/tkgT) <1 and  hvl/(kgT) > 1.

7.4 The time-dependent intensity of a single-mode amplitude-stabilized laser beam, inci-
dent normally on a photodetector, has the form

]
I(r) = Efu[l + cos(wyt + #)],

where I, and w; are constants and # is a random variable which is uniformly distrib-
uted on the interval (0, 7). Determine the mean and the variance of the number of
photoelectrons emitted by the photodetector in a time interval of duration T.

7.5 Alaser beam of constant average intensity is incident normally on the surface of a pho-
todetector. What is the probability p(n) that n photoelectrons will be emitted from the
detector in the time interval (1,  + 7)? Comment on the physical significance of the
result.
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7.6 A stochastic electromagnetic beam is incident normally on a photoelectric detector. It
is found that the probability of n photoelectrons being emitted in a time interval (t, 1 + T)
is the Bose-Einstein distribution for a cell in phase-space, viz.,

ﬁH

Pn) = ———.
(m + ™!

Determine the probability p(W) of the integrated intensity
o o
W= [ 1aar
of the incident light.
What is the corresponding result when P(n) is the Poisson distribution

e

P(n) = 2

n!
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Elementary theory of polarization of
stochastic electromagnetic beams

Up to now we have simplified our discussion of optical fields by treating them as scalar
fields, i.e. we have ignored their polarization properties which arise from the vector nature
of the electromagnetic field. In this and the next chapter we will discuss the extension of
the theory by taking the vector nature into account for a broad and a useful class of vectors
fields, namely stochastic electromagnetic beams,

8.1 The 2 X 2 equal-time correlation matrix of a quasi-monochromatic
electromagnetic beam

Let us consider an electromagnetic beam, i.e. an electromagnetic field which propagates
close to a particular direction. which we will take to be the z direction (see Fig. 8.1). We
will assume that the fluctuations of the electric and the magnetic field vectors are charac-
terized by ensembles which are statistically stationary, at least in the wide sense. Let E(1)
and E (r) be the components, represented by complex analytic signals (see Section 2.3), of
the electric field at some point P in the beam, in two mutually orthogonal directions, per-
pendicular to the z direction.

E (1)

‘lJ
E (D

—\

Fig. 8.1 Notation relating to propagation of an electromagnetic beam close to the
z direction.

Y
&4
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Assuming that the beam is quasi-monochromatic and of mean frequency w, we may express
E, and E, in the form

E ()= a(pe’80™,  E (1) =a,()e!hiro, (1)

As we learned in Section 2.3 in connection with the envelope representation of quasi-
monochromatic signals, the amplitudes a,(r) and a-(r) and the phase functions o,(r) and
&+(1) change slowly with time over intervals which are short relative to the coherence time
. ~ 2n/Aw, Aw being the effective bandwidth of the light.

The second-order correlation properties of the electric field at a point O may be charac-
terized by a 2 X 2 correlation matrix

§ _ |(EXOE@) (EXOE )

2

(E}(E, () (EJNE (1)) =
the asterisk denoting the complex conjugate. The matrix J is called the polarization matrix.
(A less appropriate name, “coherency matrix.” is used in older literature.) This is an equal-
fime correlation matrix. Its diagonal elements are averages of the intensities associated with
each of the two components and its off-diagonal elements are analogous to the mutual
intensity J(ry, ry) of a scalar field, which we encountered in Section 3.1. However, whilst
the mutual intensity of the scalar field W(r, 1) is a measure of correlations, at the same
instant of time, at two points r, and r», the off-diagonal elements of this matrix are mea-
sures of the “equal-time” correlations between the mutually orthogonal components E, and
E, of the electric field at a particular point.

We saw in Section 3.1 that the mutual intensity, and hence the diagonal elements of the
matrix, may be determined by means of Young’s interference experiment. We will now
show that also the off-diagonal elements of the polarization matrix J may be determined by
relatively simple interference experiments.

Suppose that the beam is passed through a compensator and then through a polarizer
(Fig. 8.2).

Let £; and £; be the phase changes introduced in the components E,(f) and E (r) by the

compensator as the beam propagates from a plane z = z; to a plane z = z; and let # denote
X T
0 S
_—
5
Compensator Polarizer

Fig. 8.2 Transmission of a quasi-monochromatic beam through a system consisting of
a compensator and a polarizer.
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the angle which the directions of vibrations of the electric vector emerging from the polar-
izer makes with the x-axis. Apart from an unessential constant phase factor and ignoring
reflection losses at the surfaces of the compensator and the polarizer, the linearly polarized
electric field vector which emerges from the system is given by the expression

E(t.c),5,,0) = [E (Ne" cos® + E (1)e" sin O]i, (3)

where ig is the unit vector in the direction of the linearly polarized electric vector, i.e. the
two-dimensional unit vector with components (cos f, sin#).

The averaged intensity, or, more precisely, the expectation value of the electric energy
density of the light transmitted by the system., is given, in suitable units, by the formula

L

HE|. £, H) =(E (1, €y, €5, ) - E{f, E1s €9y Ig):', (4)

apart from a proportionality constant which depends on the choice of units. On substituting
from Eq. (3) into Eq. (4) we find that

I(g, &2, 0) = K6, 0)

= Jy cos?0 + J, sin’0 + J esinfcos O + Je Pcosfsind, (5)
where
b=2g — g (6)
and

Joo =(EXE M), T = (EXDE 1),
Jo =(ESME (D), 1, = (EL(DE (1), (7)

are the elements of the polarization matrix J. We note that

di. =l (8)

¥ xy?

i.e. the matrix is Hermitian. Moreover, it is also non-negative definite, i.e., with any (real or
complex) numbers ¢; and ¢,

11" xx s

GOl F U o T B L Gl o 9)

This result follows at once from the obvious fact that (|¢,E, + ;*35‘.|3_; = (). From this inequal-
ity or by applying the Schwarz inequality to the term J,, = (E }(I]E,.{ 1) and making use of the
Hermiticity condition (8) one readily finds that

ERE T (10)
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We may characterize the correlation between the x and y components of the electric field
by the correlation coefficient

Jy = 7" (11)

The inequality (10) then implies that
0=|jul =1L (12)

The extreme value |j,,| = | represents complete correlation; the other extreme value,
lJwl = 0O, represents complete absence of correlation between the fluctuating x and y com-
ponents of the electric field vector.

If one measures the average intensity with various phase delays ¢ and angles # of orienta-
tion by the use of phase plates and polarizers one obtains, using Eq. (5), a set of linear equa-
tions from which the four elements of the 2 X 2 polarization matrix J can be determined.'

Instead of characterizing the properties of the fluctuating electric field by the 2 X 2
polarization matrix J, one frequently uses an older representation, in terms of Srokes
parameters. They may be defined in terms of averages involving the amplitudes and the
phases of the x and y components of the complex electric field by the formulas

b

s, = (@l () + (ad (),
5 = (@20) - (@) |
s, = 2a, (1) ay(necos[e, (1) — o, (1)),

s, = 2{a, (1) a,(Dsin[o, (1) — &, (1)]). |

(13)

It follows from Eqgs. (13), (7) and (1) that the Stokes parameters and the elements of the
polarization matrix J are related by the formulas

_ 3
Sﬂ - J.u + ‘;_\'_r‘

5 =J. =J.,
1 B J.\:r ) “43}
5 =Jy + J_ﬂ.
s = "J_\-_r - Jr_\-)_,
and
T = 585 +.5)),
‘I'.'\‘ - 'lr_('?ﬂ = Sl}’
. 1 ; { 14b
J_w = %{53 + 185), (140)
Jop ';IE':-S: — i83). 1

' Expressions for the four elements in terms of a particularly convenient choice of the parameters & and 8 are
given in B&W, p. 621.
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One can readily derive formulas that describe the changes which the polarization matrix
J or the so-called Stokes vector s = (sy, 51, 52, 53) undergoes as the beam passes through
various linear non-imaging devices such as polarizers, compensators and rotators. In the
correlation-matrix formalism they are represented by 2 X 2 “transmission” matrices. In
the formalism which uses the Stokes parameters they are represented by 4 X 4 matrices
known as Mueller matrices. Since this topic is treated in many publications.! we will not
discuss it here.

When the electromagnetic beam is monochromatic, the Stokes parameters are particu-
larly useful for representing certain geometrical properties of the oscillating field vector, as
we will see in Section 8.2.4.

8.2 Polarized, unpolarized and partially polarized light.
The degree of polarization

Of special interest are fields for which the modulus of the degree of correlation j,,, defined
by Eq. (11) of Section 8.1, takes on one of the extreme values, either |j,,| = 1 or j,, = 0.
We will now consider these two cases.

8.2.1 Completely polarized light
Suppose that

el = 1 (1)

In this case the x and the y components of the electric field are completely correlated. It fol-
lows at once from Eqgs. (11) and (8) of Section 8.1 that then

Detd = J . Jy, — JoJ

Xy

= 0. (2)

Conversely, the vanishing of the determinant of the polarization matrix may readily be seen
to imply Eq. (1), i.e. it implies complete correlation between the x and the y components of
the electric vector.

It is known from elementary theory of matrices that the determinant of the polarization
matrix J is invariant with respect to rotation of the x- and the v-axes about the direction of
propagation of the beam. Hence if the x and the y components of the electric field are com-
pletely correlated for a particular set of coordinate axes they will also be completely corre-
lated for any such pair of axes.

! See, for example. G. E. Parrent and P. Roman, Nuovo Cimento 15 (1960), 370-388: E. L. O'Neill. Introduction
1o Statistical Oprics (Addison-Wesley, Reading, MA (1963): reprinted by Dover. New York, 2004); and
E. Collett, Polarized Light (Marcel Dekker, New York. 1993). Chapter 5.
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From Eq. (1) and from Eq. (11) of Section 8.1, making use of the Hermiticity of the polar-
ization matrix expressed by Eq. (8) of Section 8.1, it follows that

J= JI\FE—- “j”‘ ; (3)

where a 1s real.

Equation (1), or. equivalently, the statement that £, and E, are completely correlated,
characterizes light which is said to be completely polarized at the point P(r). This terminol-
ogy is used because of a formal analogy between this situation and the behavior of a (nec-
essarily deterministic) monochromatic field. Such fields will be discussed in Section 8.2.4.
Here we only explain the reason for the analogy.

A monochromatic electromagnetic beam is, at every point, completely polarized in the
sense that with increasing time the end point of its electric field vector moves on an ellipse
(sece B&W, Section [.4.3). One says that the field is elliptically polarized. In some cases the
ellipse may, of course, reduce to a circle or a straight line, in which cases we speak of cir-
cular and linear polarization, respectively.

Consider a monochromatic beam propagating close to the positive z direction. Let

E,l.'(:ﬁ I) = 'E'Iﬂ-lm:_w’. E_l;t:i'.u f] = e:ﬂi(k:_l‘dl’] {4}

(k = wle, ¢ being the speed of light in vacuum) be the components of the (complex) elec-
tric vector at an arbitrary point, along two mutually orthogonal directions, specified by unit
vectors € and e,, perpendicular to the direction of propagation. One can associate with this
monochromatic wave a 2 X 2 matrix which is somewhat analogous to the polarization
matrix [Eq. (2) of Section 8.1] of a random and, therefore, necessarily not monochromatic
field, namely the matrix

| _|EE EE|
yox N

_[4e e -
e;el e;ezf

It is to be noted that the elements of this matrix do not involve any averaging.

It is evident that the determinant of this matrix has the value zero, just as is the case when
the polarization matrix represents a completely polarized beam [see Eq. (2)]. This result
implies a certain equivalence theorem, namely that the “canonical” experiment which employs
only a compensator and a polarizer for determining the elements of the polarization matrix
J cannot distinguish between a random quasi-monochromatic beam whose polarization
matrix has the form given by Eq. (3) and a strictly monochromatic beam whose polariza-
tion matrix has the form (5b), with

e = .JJ. e%, e, = JJ el% (6)

1 Xy

where «v; and «v, are real arbitrary constants.
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8.2.2 Natural (unpolarized) light

We now consider the other extreme case, namely when the degree of correlation takes on
the value zero, i.e. when

jn=0, (7)

irrespective of the particular choice of the x- and y-axes. Light with these properties is said
to be natural light, because it very frequently occurs in nature, for example light reaching
the Earth from most astronomical sources. For reasons that will be explained shortly, such
light may also be said to be unpolarized.

Let us consider some implications of Eq. (7). For this purpose let us first examine how
the matrix J changes when the axes are rotated by an angle, say ©, in the anticlockwise
sense around the direction of propagation of the beam. If E,., E, are the components of E
referred to the rotated coordinate system O,-, O, (see Fig. 8.3) one has

E,= E_cos® +E sin®,
E, =—E sin© + E cos©. (8)
The elements of the polarization matrix, referred to the rotated coordinate system, are
Ju¢ = (EpEg) and, using Eq. (8), we see that the polarization matrix in the new coordinate
system is

i JIE L AT A T Vs 0, =T s+ T 2= T P

J :1 ¥ Yo 2 2 2 2 "R 18 ®)
L(J_w = H){.!- + J_\,x{ = .fn,s Ju_x + J_‘,_\.C — (J’IF + J.”)L.E'J

where ¢ = cos # and s = sin 0.

According to the definition of the correlation coefficient [Eq. (11) of Section 8.1] and
using the Hermiticity condition [Eq. (8) of that section], the requirement (7) implies that
for natural light

Joy=Jyu=0, (10)

0

Fig. 8.3 Notation relating to the change in the correlation matrix J when the axes are
rotated about the direction of propagation of the beam.
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irrespective of the particular choice of the x'- and y'-axes. In view of the transformation law
given by Eq. (9), Eq. (10) implies that with any choice of  the term (J,, — JJcos #sin ) = 0,
1.e. that with any choice of the x- and y-axes

v R (11)

Using Egs. (10) and (11) it follows that the polarization matrix of natural light has the form
- I 0

Ji= J“_ID ll‘ (12)

i.e. J is proportional to the unit matrix. The proportionality factor /., is also independent
of the choice of the axes, because, when Eqs. (10) and (11) hold. the transformed polariza-
tion matrix is independent of f. For reasons that will become apparent shortly such a beam
is also said to be unpolarized.

Let us consider the transmission of natural light through the system shown in Fig. 8.2,
consisting of a compensator, which introduces a phase delay é, and a polarizer, which trans-
mits the component of the electric field vector which makes the angle # with the x-axis. The
intensity /(8, ) = I(g, €5, 6) of the light emerging from such a system is given by Eq. (5)
of Section 8.1, viz.,

18, 6) = J cos°0 + Jy, sin*f + J e sin Bcos 6 + J,e ™" cos fsin 6. (13)

On substituting from Egs. (10) and (11) into this formula we obtain for the intensity of the
transmitted beam the expression

1(6, 8) = Jr_s.'_r& {14}

1.e. only half of the intensity of the incident wave i1s transmitted. The formula shows that,
when a beam of natural light is transmitted by a compensator and a polarizer, the intensity
of the light emerging from this system is unaffected both by the retardation introduced by
the compensator and by the orientation of the polarizer.

8.2.3 Partially polarized light and the degree of polarization

We considered two extreme situations: a light beam for which the absolute value of the cor-
relation coefficient j,, has the extreme value unity and a light beam for which it has the
other extreme value, zero. We will now show that the polarization matrix of any light beam
may be, at each point, expressed uniguely as the sum of these two kinds of beams.

The ratio of the intensity of the polarized part to the total intensity is called the degree of
polarization. The nature of the polarized portion (i.e. the length of the principal axes of its
polarization ellipse and the orientation of the ellipse) together with the degree of polariza-
tion are said to represent the srate of polarizarion of the beam. It generally changes as the
beam propagates' or is scattered. for example. by a solid body or by a system of particles.

! That the degree of polarization may change on propagation, even in free space. appears to have been first
demonstrated by D. F. V. James. J. Opr. Soc. Amer A11L01994), 1641-1643.
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Such changes are often of considerable practical interest because they provide information
about the physical system that interacts with the beam.

Let us then consider the possibility of expressing the polarization matrix of a beam prop-
agating close to the z direction in the form

J=J0 4+ g, (15)

where the two matrices on the right represent completely polarized light (superscript p) and
completely unpolarized light (superscript u). According to Egs. (13) and (12) the matrices
are of the form

o —|B D wyo— all O
Jp [H CL J Ab d, (16)
where
A=0, B=0, C&=0 (17)
and
BC — DD’ = 0. (18)

With Ji, (k = x, y, € = x, y), representing the elements of the polarization matrix J. Egs.
(15) and (16) imply that

A+B=1_, D=1
D’=J., A+C=J a2

On substituting for B, C and D from Eq. (19) into Eq. (18) we obtain the following equa-
tion for the matrix element A:

(Jox — AWy, — A) — I J,, = 0. (20)

This equation shows that A is an eigenvalue of the polarization matrix J. A simple calcula-
tion shows that the solution to this equation may be expressed in the form

A=%{thunJF—4Dmuﬁ, 21

where Tr denotes the trace and Det the determinant. Since according to Eqgs. (8) and (9) of
Section 8.1 the polarization matrix is Hermitian and non-negative definite, both eigenval-
ues A are necessarily non-negative, as may also be verified by direct calculation.

Let us consider first the root A given by Eq. (21), with the negative sign in front of the
square root:

1 1 ,
A=EHT+ﬁH—E$£thP—4mN. (22a)

Al
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On substituting this root into the diagonal terms in Egs. (19) we obtain the following
expressions for the matrix elements B and C:

B = %Uﬁ =t %J{Tr J)? — 4 DetJ, (22b)

&= ;I;{JD, ~J )+ %J{TrJf —~ 4 Det J. (22¢)

If we make use of the Hermiticity relation J,, = J,, [Eq. (8) of Section 8.1] we find at
once that

(Trd)2 —4Detd)’ = JU.. - J P +4lJ P =) —J (23)
1 xy ¥y 0 Ly

)'.rl'
Consequently the matrix elements B and C given by Egs. (22) are necessarily non-negative
as required by two of the inequalities in (17). On the other hand. the other expression for A
given by Eq. (21), with the positive sign in front of the square root, may readily be shown to
yield negative values for B and C and, therefore, does not satisty the inequalities (17). Thus
we have shown that there is a unique decomposition of the polarization matrix J in the form
given by Eq. (15), subject to the constraints given by Egs. (17) and (18). This result implies
that any sratistically stationary light beam may, at each point, be regarded as being the sum
of two beams, one of which is completely polarized and the other completely unpolarized.

It follows from the expression for the polarization matrix J'P’ of the polarized part [the
first matrix in Eq. (16)] and from Eqgs. (22b) and (22c¢) that its trace (B + C) is given by the
expression

TrJ® = ((Trd)? — 4 Det J. (24)

The trace of the polarization matrix J*’ of the unpolarized part is, according to Egs. (16) and
(21), given by the formula

Trd™ = Trd — (TrJ)? — 4 Det J. (25)

where we used the fact demonstrated earlier that only the expression for A with the nega-
tive sign in front of the square-root sign is admissible. Now. according to the definition of
the polarization matrix [Eq. (2) of Section 8.1], the trace of that matnx is proportional to
the average electric energy density and may, therefore, be regarded as a measure of the
intensity, say /. of the light. Using Egs. (24) and (25) it follows that the degree of polariza-
tion of light, defined as the ratio of the intensity of the polarized portion I'” to the total
intensity / at the point under consideration, is given by the expression

®) 4 Det J
gt Jl TR (26)
! (Tr J)?
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Since both the determinant and the trace of the correlation matrix are invariants under the
rotation of the x- and y-axes about the z direction. the degree of polarization ? is independent
of any particular choice of the x- and y-axes. Also, in view of the inequality (23) one can read-
ily deduce from Eq. (26) that

= |, (27)

We see at once, on using Eq. (2) in Eq. (26), that, for light that we previously called com-
pletely polarized light, the degree of polarization %, given by Eq. (26), does indeed have the
extreme value 7 = 1.

For natural light we have, from Eq. (12), TrJ = 2J,, and Det J = /2, so the degree of
polarization given by Eq. (26) has, in this case, the other extreme value 7 = 0, i.e. it may
be said to be unpolarized.

When the degree of polarization has a value between these two extremes, i.e. when
0 < P< 1, we say that the light is partially polarized.

As we saw earlier the polarization matrix is Hermitian [Eq. (8) of Section 8.1]. Hence by
application of a well-known theorem about such matrices' it can be diagonalized by a uni-
tary transformation (which, however, need not be a rotation). It will then have the form
% 0 ‘

! - 1
J 0 A (28)

A and A, being the eigenvalues of the polarization matrix. Moreover, because the polariza-
tion matrix is also non-negative definite [Eq. (9) of Section 8.1] the eigenvalues are necessar-
ily non-negative. Since the trace and the determinant of a matrix are invariant under rotation
of the x- and y-axes about the : direction,” the determinant of the original polarization matrix
J and the determinant of its diagonalized matrix [Eq. (28)] must be equal to each other and
the same is true of the traces. Hence

Detd = )'“l"k_"'." [293}
Trd = A| -+ )‘h:. {Zgb]‘

and the degree of polarization, given by Eq. (26), may. therefore, be expressed in the sim-
ple form

4\
p= fi- b (300)
N +A)° :
1.e.
& A = X,
N T (30b)
Nt A

' F. W. Byron and R. W. Fuller. Mathematics of Classical and Quantum Physics (Addison-Wesley. Reading, MA,
1969); reprinted by Dover. New York, 1992, Vol. 1. p. 165, Theorem 4.20.
* See, for example, E. W. Byron and R. W. Fuller, Joc. cit., p. 119. Theorem 3.13.
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Since the eigenvalues are independent of the choice of the x- and y-axes it is clear that the
degree of polarization P is also independent of that choice, as, indeed, must be the case if
P is to have an unambiguous physical meaning.

8.2.4 The geometrical significance of complete polarization. The Stokes
parameters of completely polarized light. The Poincaré sphere

We saw in Section 8.2.1 that completely polarized light is characterized by the property
that the x and y components of the electric field vector are completely correlated and that,
consequently, the polarization matrix is expressible in the form [Eq. (5b) of Section 8.2.1]

-

:
EIEI f:'lﬁ’:

J= 5 (31)

E -
ee ee,

[ 8

where ¢, and e, are independent of time. We have also seen that such a matrix is indistinguish-
able from the polarization matrix of a monochromatic plane wave with w = @ and k = &,

Ef(z1) = el®on  E(z, 1) = epeik=on, (32)

We will now consider some geometrical implications of Egs. (32).
Equations (32) represent the Cartesian components of the electric field vector in com-
plex form. The physically meaningful quantities are their real parts, i.e.

EM(z,1) = |e||cos(ey, + kz — wr), (33a)
EMNz,t) = |e-2|c05{r.r: + kz — wt), (33b)

where o and a, are the phases of ¢; and e, respectively.
It will be convenient to set

p, = le,|cos(a, + kz). q, = |e|sin(a, + kz), (34a)
f’-.- = I£3|C(}S(QZ A+ f(:)‘ qr = IE':‘Sin‘ﬂ: + k:] [34]3)

By expanding the cosine terms on the right-hand sides of Egs. (33) and (34) by the use of
elementary trigonometric identities, the components of the electric field may be expressed
in the form

E(t) = p cos(wt) + g _sin(wt), (35a)
E;,”(f] = pﬁ,cus(mr) - q}_sin{w.'}, (35b)

where we suppressed the explicit dependences of the various quantities on z. On combin-
ing the two scalar formulas (35) into a simple vector formula we have

E'"(r) = pcos(wr) + qsin(wt), (36)

where p = (p,, p,) and q = (q.. q,).
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Equation (36) shows that, with increasing time, the end point of the electric field vector
E'"(r) at a fixed point in space describes a curve in the plane containing the two real vec-
tors p and q and passes through their end points. Because cos(w!) and sin(a1) are periodic
functions of time 1, the curve is evidently closed. We will now show that, in general, the
curve is an ellipse. To see this let us rewrite Eq. (36) as

E™(1) = Re{(p + ig)e™'}, (37)
where Re again denotes the real part. Let us set
(p + iq) = (a + ib)e”, (38)
where ¢ is a scalar parameter. In terms of p, q and ¢ one evidently has
a=pcoss+ qsinz, (39a)
b= —psinsz + qcos =. (39h)

Let us now choose the parameter £ so that the vectors a and b are mutually orthogonal with
lal = |b|. In that case = must evidently satisfy the equation

(pcose + gqsing) - (—psins +qeose) = 0. (40)

From this equation it readily follows that

2

tan(2:z) = (41)

]

I Lk
=
P-—q
We may take as the parameters which specify the behavior of the electric field at any par-
ticular point the time-independent components of the mutually orthogonal vectors a and b

and the associated parameter &, rather than the six Cartesian components of the vectors
p and q. From Egs. (37) and (38) it then follows that

E'"™(r) = a cos(wt — =) + b sin(wt — ©). (42)

If we take Cartesian axes with the origin at the point where the electric field is being
considered and with the x and y directions along the vectors a and b, respectively, we evi-
dently have

E" = acos(wt — ¢), E" = bsin(wr — 2). E =0 (43)

(a = lal. b = Ibl). These equations represent an ellipse in the x, y-plane, known as the polariza-
tion ellipse,

i'El_n r IE{_r: I2
L ‘FT s : 1= = ], |_f4,_1_:|
a- b=
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with the semi-axes a and b along the x and y coordinate axes. By elementary geometry it
may be shown that p and q are a pair of conjugate semi-diameters of the ellipse.'

The ellipse may be traversed in one of two possible senses. In conformity with frequently
used terminology we say that the polarization is right-handed when, to an observer look-
ing in the direction from which the light is arriving, the end point of the electric field vec-
tor would appear to traverse the ellipse in the clockwise sense. In the opposite case we say
that the polarization is left-handed. These two situations are distinguished by the sign of the
scalar triple product [a, b, V] = [p. q, Vz].

We may readily determine the semi-axes a and b of the polarization ellipse in terms of
the original quantities p and q and the parameter z, given by Eq. (41). We have from (39a)

a* = p° cos’c + g?sin’s + 2p - qcosc=sine

l r ) I > = b "
=5 +g)4 Et’p‘ — q7)cos(2e) + p - qsin(22). (45)

From Eq. (41) it follows that

op - 2 — gt
sin(2z) = d cos(2¢) = L q - (46)
J{p: —¢*) +4(p-q)? J(p? = ¢ +4(p - g)?
Hence
- l o > 2 I 2
at = - B gt J{p- —g-)- +4p-q) I (47a)
Similarly, one finds that
] I ] A ) Ay 7
b = E.[p— + g% = \/(p- =g~y F4p*qQr- ] (47b)

To determine the angle between a and p we express the equation of the polarization
ellipse in a parametric form,

El:rl = acCosQ, Eir:' = bsin o, (48)

where ¢ is the so-called eccentricity angle (see Fig. 8.4). According to elementary geome-
try the angle ¢ is related to the polar angle 6 of the point (EY", E) by the formula

b
tanf = —tano. (49)
il

! For discussion of conjugate diameters see. for example, A. Robinson, An Introduction to Analviical Geomerry
{Cambridge University Press, Cambridge. 1940). Vol. L. Section 14.7.
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Fig. 8.4 Tllustrating the meaning of the eccentricity angle ¢ of a point (EY, E{") on the
polanization ellipse.

Comparison of Egs. (43) and (48) shows that in the present case ¢ = wt — =. Now, accord-
ing to Eq. (36), E”(r) = p when 1 = 0, so that the eccentricity angle of p is —=. Equation
(49) then implies that the angle ¢ between a and p is given by the formula

tan iy = f’- tan <. (50)
€l

Let us introduce an auxiliary angle 3 defined by the equation

1< tan (7. (51)

p

It then follows from the formula (41) and from elementary trigonometric identities that
tan(2¢) = tan(2/9)cos +, (52)

where 7 is the angle between the vectors p and q.

Let us summarize the results which we have just derived. If the real vectors p and q are
given [see Eq. (36)], and if v denotes the angle between them and 3 denotes the auxiliary
angle defined by Eq. (51), then the semi-axes of the ellipse and the angle v* which its major
axis makes with the vector p are given by the formulas (47) and (50) (see also Fig. 8.5),
where < is given by Eqs. (52) and (41).

Two special cases are of interest, namely when the ellipse degenerates into a circle and
when it degenerates into a straight line. In the first case one says that the electric field at the



8.2 Polarized. unpolarized and partially polarized light 169
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Fig. 8.5 Ilustrating the significance of various parameters used for specifying the polar-
ization ellipse and some useful relations between them:

E'®(1) = pcosiw!) + qsin(er)
= acoslw — £) + bsin(wr — £),
b
oy = —tan =,
a
tan 7 = E—.
_Il
3 .
tan(2s) = .:p—q‘ = tan(2.9)cos 7.
P q

point under consideration is circularly polarized. Then a and b and, consequently, also ¢
are undetermined. According to Eq. (41). one then has

prq=p —¢>=0. (53)

When the ellipse degenerates into a straight line, i.e. when the wave is linearly polarized,
there is no minor axis (b* = 0) and the formula (47b) then gives

(p-q)’ = pq’ (54)

We briefly mentioned towards the end of Section 8.1 an older representation of electro-
magnetic beams in terms of the so-called Stokes parameters [Egs. (13) of that section]. In
the special case when the beam is completely polarized the Stokes parameters are given by
the simple expressions

s, = 1612 + 162,
5 = €12 — €512, (55)
s, = 218lI€ilcos 6,

5, = 2I6lI€lsin 6,
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where
d=a); — a (56)

1s the difference between the phases o, and a- of the (generally complex) quantities ¢; and
¢>. These four Stokes parameters are not independent but are related by the identity

P I=ad .2 .2

as follows at once from Eqgs. (55).

The parameter s; is proportional to the intensity of the beam. The other three Stokes
parameters can be shown to be related in a simple way to the angle ¢'(0 = v» = «) which
specifies the orientation of the polarization ellipse and to the angle \ (—=7/2 = \ = 7/2)
which characterizes the ellipticity and the sense in which the ellipse is traversed. The fol-
lowing expressions for the Stokes parameters s, 51, $5 hold:

51 = 5o cos(2y)cos(2v), (58a)
51 = §g cos(2y)sin(2y), (58h)
§3 = Sgsin(2y). (58¢)

The derivation of these relations is somewhat lengthy. It is given elsewhere (see, for exam-
ple. B&W, Section 1.4.2).

Equations (58) indicate a simple geometrical representation of all possible states of a
polarized ficld. Evidently the three Stokes parameters [Eq. (58)] may be regarded as
Cartesian coordinates of a point P on a sphere »_ of radius sy, with 2y and 2v being the
spherical angular coordinates of that point (see Fig. 8.6). Hence to every possible state of a
Sully polarized beam of intensity s, at an arbitrary point there corresponds a point P on the
sphere }_ (known as the Poincaré sphere) and vice versa. Since y\ is positive or negative,
respectively, according to whether the polarization is right-handed or left-handed, it fol-
lows from Eq. (58c) that a right-handed polarized state is represented by points on . which
lie above the equatorial plane (the x, y-plane) and left-handed polarized states are repre-
sented by points which lie below that plane. Further, for linearly polarized light the phase
difference é defined by Eq. (56) is zero or is an integral multiple of 7. According to the
fourth equation of the expressions in Eq. (55), the Stokes parameter s is then zero. Hence,
linear polarization is represented by points in the equatorial plane. For circular polarization

el = |es] and 6 = «/2 or —7/2, according to whether the polarization is right- or left-
handed: hence right-handed polarization is represented by the north pole (s, = 5, = 0,
§3 = 5p) and left-handed circular polarization by the south pole (s, = 5, = 0, 57 = —s).

This geometrical representation of different states of completely polarized light by points
on a sphere is due to Poincaré. It is particularly useful in crystal optics for determining the
changes in the state of polarization of light which traverses a crystalline medium,
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Fig. 8.6 The Poincaré sphere. Every point P on this sphere, of radius 5. with Cartesian
coordinates given by the Stokes parameters s, $, 53. represents the state of polarization
at a point in space. The angles 2\ and 2" are the polar angles specifying the direction
of the vector OF [see Egs. (58)]. Points above the equatorial plane represent right-
handed polarization: points below it represent left-handed polarization. Linear polariza-
tion is represented by points in the equatorial plane. circular polarizations by the north
pole and the south pole.

PROBLEMS

8.1 (a) Show that the absolute value of the correlation coefficient

where J,,. J,, and J,, are elements of the polarization matrix, does not exceed the
value of the degree of polarization.

(b) Show also that the x- and the y-axes may always be so chosen that |j,, is equal to
the degree of polarization.

8.2 Show that the Stokes parameters of a quasi-monochromatic light beam satisfy the
inequality

2 .2 2 o 2
ih +32 +.s3 = 55
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8.3

8.4

8.5

8.6

S0+ 81, 83 and sy are the Stokes parameters of a monochromatic light beam. Show that
the expression

¥

| 2]
S + 53 4+ 83

5

=2

is invariant under rotation of the axes about the direction of propagation of the beam.

Derive an expression for the degree of polarization of a quasi-monochromatic light
beam in terms of the Stokes parameters.

In the literature on scattering the following expression for the degree of polarization is
often used:
I (x) =i tr}

P(r) = ’
L) +.1.(r)

Here /, and /, denote the (averaged) intensities of the electric field in two mutually

orthogonal directions perpendicular to the axis of the beam.

(a) Show that Pis equal to the degree of polarization P, defined rigorously in Section
8.2.3. if and only 1f the polarization matrix J is diagonal.

(b) Determine the conditions under which the polarization matrix of a stochastic elec-
tromagnetic beam may be diagonalized by a rotation of the x- and y-axes about the
direction of propagation of the beam.

(¢) Assuming that the condition for diagonalizing the polarization matrix by rotation
1s satisfied, discuss the meaning of /, and /, in the above formula for P.

Consider a monochromatic plane wave with Cartesian components E, exp(—iwr),
E, exp(—iwt) of the complex electric field, in two mutually orthogonal directions per-
pendicular to the direction of propagation. Let

E

X

E=| %
E,

E is known as the Jones vector.
Suppose that the wave passes through a linear non-image-forming device. The Jones
vector of the emerging wave is then

E' = LE,

where
_la b
L= ¢ d‘

is known as the instrument operator (matrix).
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8.7

Determine the instrument operator of the device in each of the following cases.

(a) A compensator which introduces a phase difference & = o, — o, between the
phases ¢, and . of the components E, and E,, respectively.

(b) An absorber which attenuates the x component of the electric field by the multi-
plicative factor e and the y component of the electric field by the multiplicative
factore™ .

(¢) A rotator which produces rotation of the electric field by an angle # in the clock-
wise sense around the direction of propagation.

(d) A polarizer which transmits only the component of the electric field that makes an
angle @ with the x direction, measured in the anticlockwise sense around the direc-
tion of propagation.

A quasi-monochromatic light beam, characterized by a polarization matrix J passes
through a linear, non-image forming device.
(a) Show that the polarization matrix J' of the emergent beam is given by the formula

= LULE

where L is the instrument matrix (see the previous problem) at the mean wave-
length of the beam, the dagger denotes the Hermitian adjoint and T denotes the
ranspose.

(b) Show, with the help of the above transformation, that the averaged electric energy
density of the beam does not change when the beam passes through a compensator
Or a rotator.

Derive also expressions for the averaged electric energy density of the beam after it has
passed through (i) an absorber and (ii) a polarizer.
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Unified theory of polarization
and coherence

So far we have treated the subjects of coherence and polarization independently of each other.
Yet both are manifestations of the same physical phenomenon, namely of correlations
between fluctuations in light beams. Coherence, we will soon see, arises from correlations
between fluctuations at two or more points in space. Polarization, on the other hand, is a man-
ifestation of correlation between fluctuating components of the electric field at a single point.

In recent times, more than 60 years since the publication of Zernike's basic paper on
coherence and more than 160 years since Stokes introduced parameters which describe the
state of polarization of a light beam, a unification of the phenomena of coherence and
polarization was achieved.' In this chapter we will describe this development and we will
give examples which demonstrate the usefulness of this more comprehensive formulation
of correlation effects in stochastic electromagnetic beams.

9.1 The 2 X 2 cross-spectral density matrix of a
stochastic electromagnetic beam

The basic quantity of the unified theory of coherence and polarization of stochastic. statis-
tically stationary, electromagnetic beams is the so-called electric cross-spectral density
matrix W(r, r,, w), which may be formally introduced as the Fourier transform of the elec-
tric mutual coherence matrix

(Eyr,, DE, (1, t + 7)) (EX(r, DE (5, t + 7))

L .0, T) = : \ 2 'y
2 (B B £ 7)) (EL(ry, DE (1, t + T)}I

(1)

where £, and E, are the components of the (complex) electric field vector. represented by
analytic signals (see Section 2.3) in two mutually orthogonal directions perpendicular to

' E. Wolf, Phys. Leu. A 312 (2003). 263-267: Opt. Letr, 28 (2003), 1078-1080; and H. Roychowdhury and
E. Wolf. Opt. Commun, 226 (2003), 57-60.

174
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the axis of the beam (taken to be the z direction).! Explicitly one has

Iwrx.r(rl‘ rl‘ @) W\1'[r|' rE' w)

W(r,, r,, w)
lW\'.a.‘(rl ’ rz‘ @) W\'_r {r] ] r?_' w)

I = :
= T 2
. f_x I(r,. r,, 7)e" dT. (2)

The matrices I' and W are functions of two points, whereas the polarization matrix J of
Section 8.1 is a function of just one point. This generalization is crucial for elucidating
many polarization features of a fluctuating electromagnetic beam. In particular, as we will
soon see, it makes it possible to determine how the degree of polarization may change as
the beam propagates, whether in free space or in a medium.

We have introduced the cross-spectral density matrix W(r,, r,, ) as the Fourier trans-
form of the mutual coherence matrix I'(r, ry, 7) of the electric field. However, by analogy
to the important result derived in Section 4.1 for stochastic scalar fields, the cross-spectral
density matrix may also be expressed as a correlation matrix, i.e. in the form

Wi, ry, w) = [W;(r, 1,, 0]

(E(r,, ®)E (r,, w)) (E; (r,. w)E (r,, w))

= " . 3
{E_,I_(rl. w)E (ry, )) (E},irl, w)E (r,. w)) (3)

=50 J= %y,

where E,(r, @) and E,(r. @) are members of suitably constructed statistical ensembles.’
This matrix is particularly useful in formulating the unified theory of coherence and polar-
ization and for many applications.

9.2 The spectral interference law, the spectral degree of coherence and the
spectral degree of polarization of stochastic electromagnetic beams

By analogy with our earlier discussions of fluctuating scalar wavefields we regard the state
of coherence of an electromagnetic beam as the ability of the beam to produce fringes of

A related, somewhat less general but nevertheless useful correlation matrix is the so-called beam coherence-
polarization matrix, which was introduced by F. Gori, M. Santersiero. S. Vicalvi, R. Borghi and G, Guatari.
Pure Appl. Op1. 7 (1988). 941-951.

Both matrices are restricted versions of the general 3 > 3 electric correlation matrix of the electric field (see
M&W, Section 6.5.1).

It follows from the envelope representation of quasi-monochromatic signals (Section 2.3) that,
when |7| < 27/Aw (Aw being the effective bandwidth of the light). '(r;. r.. 7) may be approximated by
[ir,. r.. 7) = I(r|. r. D)exp( —i@ r). This approximation corresponds to that given by Eq. (22) of Section 3.1 of
the scalar theory.

Proof of this result is given in Section 7 of J. Tervo, T. Setdld and A. T. Friberg, J. Opt. Soc. Amer. A21 (2005),
2205-2215.

(=1
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Oi(py) R,  P(r)
.

Os(p)

A B

Fig. 9.1 Notation relating to Young's interference experiment with stochastic electro-
magnetic beams.

appropriate sharpness, in suitable interference experiments. Naturally, we associate a high
degree of coherence with interference fringes of high visibility and a low degree of coherence
with fringes of low visibility. The basic experiment which reveals the state of coherence is,
of course, Young's interference experiment, that we discussed in Sections 3.1 and 4.2 in the
context of the scalar theory. We will now discuss the experiment by taking into account the
electromagnetic nature of the beams. Although the analysis will be similar to that which we
presented for scalar fields, new questions now arise, such as the role which coherence and
polarization play in propagation of partially coherent electromagnetic beams — a subject
which is rather subtle and has been clarified only relatively recently.

Let us again consider a stochastic, statistically stationary, electromagnetic beam which
propagates close to the z-axis and is incident on an opaque screen 4 in the plane z = 0, con-
taining two small openings at points Q,(p,) and Q5(p,) (see Fig. 9.1).

We will determine the distribution of the averaged spectral energy density in a plane B,
placed at some distance beyond the plane A4 of the pinholes and parallel to it.

Let { E(r, w)} represent the statistical ensemble of the electric vector at the point P(r). A
typical realization E(r, w) of this ensemble is given, in terms of the realizations E(p,, w)
and E(p,, w) of the electric field vector at the two pinholes, by the formula

E(r, w) = K E(p,, w)e"™ + K,E(p,, w)e*":, (1)

where R, and R, are the distances from the points Q(p,) and Q(p,), respectively, to the point
P(r). and K, and K, are the same factors as in the scalar case [Eq. (3) of Section 3.1 with A
replaced by A], again assuming that the angles of incidence and of diffraction at the pin-
holes are sufficiently small.

Let us now consider the spectral density S(r, w) of the field at the point P(r). We may
identify the spectral density (the spectrum) with the average electric energy density at that
point. Apart from an unessential proportionality factor which depends on the choice of
units, we have

S(r, w) = (E'(r, w) - E(r, w)} (2a)

= TrWI(r, r. w). (2b)
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where Tr denotes the trace of the cross-spectral density matrix W(r, r, w) which we intro-
duced in the previous section, evaluated for coincident points (r; = ry =r), 1.¢.

TrW(r. r, w) = (E.(r, w)E_(r, w)) + (E.(r, w)E (r, w)). (3)

On substituting from Eq. (1) into Eq. (2a) we find that

Sr. o) = |K,| S, ) + |K,[ S(p,. w)
+ KK, Tt Wip,, p,, w)ek (R ~K)
+ K K3 Tr W(p,, p,, w)e &R, (4)

Similarly to the scalar case, this formula may be rewritten in a physically more significant
form by noting first that, if the pinhole at Q,(p,) were closed, then K, = 0 and Eq. (4)
would become S(r. ) = §'V (r, w). where

SO, w) = |K,['S(p,. ). (5)

S'"(r, w) evidently represents the spectral density of the field reaching the point P(r)
through the pinhole Q,(p,) only. A strictly similar expression is obtained for the spectral
density, $°X(r, w), if the light reaches the point P(r) only through the pinhole at O,(p,).
Using these expressions and the relation

TrWip,. p. @) = [TrW(p, p,, )], (6)

which follows from the definition of the cross-spectral density matrix, we obtain from
Eq. (4) the following expression for the spectral density at the point P(r):

S(r, w) = .S“](_r, w) + Sr."!}(r! w) + 2\/5'(1]“.‘ w)JSG](I', w) RE[TI{H- By m}e'“”r‘ﬁ'ﬂ],

(7)
where Re denotes the real part and
ey, Py, w) = By ) (8a)
T JTrW(pl, H,w)JTrW(g,ﬁ.w] ‘
_ TrWi(p,, p,, ®) (8b)

S, @Sy, @)

If, as is usually the case, S (r, w) = §'V (r, w), Eq. (7) reduces to

S(r, w) = 28'(r, w){1 + Reln(p,. p,» w)e*1}

= 28U (r, w) {l + |?}(pl. P, w)lc-::-s[ru(p., Py, ) + r‘i]}, (9)
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where a(p,, pa, w) is the argument (phase) of 7 and
b = kiR, — R)) (10)

is the phase difference associated with propagation from Q,(p,) to P(r) and from Q,(p,) to
P(r), respectively.

Equation (7) shows that the spectrum at a point P(r) in the observation plane B is not just
the sum of the spectra of the two beams reaching that point from the two pinholes but
differs from it by the presence of the third term, which evidently represents the effect of
interference. We may, therefore, refer to Eq. (7) as the spectral interference law for the
superposition of stochastic electromagnetic beams. It is of the same form as the spectral
interference law for scalar wavefields [Eq. (5) of Section 4.2], the only difference being that
the factor 7j(p,. p». w) defined by Eq. (8a) now appears in place of the factor u(p,. p,. w)
defined by Eq. (6) of Section 4.2.

It is seen at once from the spectral interference law [Eq. (9)] that. as the path difference
R, — R, and. consequently, the phase difference é changes and the spectral density S(r, w)
varies sinusoidally betwesn the values

S 15 @) = 250, @) {1 + [5(p). py. )} (11a)
and

Spin (12 @) = 25V, @) {1 = [1(p;. py. )]} (11b)

Hence the spectral visibility V(r, w) of the fringes is given by the expression

‘V(l‘ {.:.I;I = Smux[r‘ w) — IS‘min{r" w)
IS:miu.{r‘ w) + Smin {l". w)
= |y oy, ). (12)
Evidently
0 = |n(p,. py. )| = 1, (13)

and the fringes are sharpest (visibility /= 1) when || = 1 and there are no fringes at all
(7= 0) when 7 = 0. We may, therefore. identify 7(p,. p,. w), defined by Eq. (8a), with the
(generally complex) spectral degree of coherence of the fluctuating electric field at the
points Q,(p,) and Q»(p,). It can be determined experimentally from visibility measure-
ments. The phase of 7 can also be determined from measurements, namely by determining
the location of maxima in the interference pattern. in a manner similar to that in the scalar
case |see the discussion which follows Eq. (13) of Section 4.2]. It is of interest to note that
Eq. (8a). which defines the degree of coherence n(p,, p,, w), depends only on the diagonal
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elements W, (p,, pa, w) and W,,(p,. p>. @) of the correlation matrix W. The physical reason
for this fact can be undersmod-by noting that two mutually orthogonal vector components
Exand E,y of the electric vector, with X and ¥ denoting unit vectors along the x and v direc-
tions, do not interfere, because x - v = 0. This is the essence of some of the classic
Fresnel-Arago interference laws,' which were formulated before the electromagnetic the-
ory of light was established. The fact that two mutually orthogonal components of the elec-
tric field do not interfere does not, of course. imply that they are necessarily uncorrelated.

Although the off-diagonal elements W,, and W,, do not contribute to the coherence
properties of a beam, they play a role in specifying its polarization properties; in particular
their spectral degree of polarization P(r, w). This important quantity is defined by a for-
mula strictly analogous to Eq. (26) of Section 8.2.3 with the polarization matrix J(r)
replaced by the cross-spectral density matrix W(r,, r., w), restricted to the situation where
Iy =r.=r,ie.

4DetW(r, r, w)
TCE, = /- ; 14
Weid) \j [Tr W(r. T, @)’ U

Det again denoting the determinant and Tr the trace, i.e.

Det W(r.r, w) = W (r.r, o)W, (r. 1, w) — W (r, I, @)W(r, T, w) (15a)

TrWir.r.w) = W, (r,r,w) + W.(r.r, w). (15b)

Since the degree of polarization is expressed in terms of both the trace and the determinant
of the correlation matrix W, it does indeed depend, in general, not only on the diagonal
but also on the off-diagonal elements of the matrix. Finally we stress that, whilst the spec-
tral degree of coherence depends on the behavior of the electric field at two points,
the spectral degree of polarization depends on the behavior of the electric field at a single
point only,

9.3 Determination of the cross-spectral density matrix from
experiments

We will now show how the elements of the cross-spectral density matrix of the electric field
of a stochastic beam may be determined experimentally.

Let us suppose that we again perform Young’s interference experiment, with incident
light that is filtered so that it becomes effectively quasi-monochromatic around the

' For accounts of the Fresnel-Arago interference laws see, for example, E. Collew. Am. J. Phvs. 39 (1971),
1483-1495; E. Collent, Polarized Light Fundamentals and Applications (Marcel Dekker, New York, 1993),
Chapter 12; or C. Brosseau, Fundamentals of Polarized Light (Wiley, New York, 1998), p. 6.

A denvation of the Fresnel-Arago interference laws which incorporates effects of coherence is given in
M. Mujat, A. Dogariu and E. Woll. J. Opr. Sec. Amer. 21 (2004), 2414-2417.
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frequency w. According to the spectral interference law given by Eq. (7) of Section 9.2, the
spectral density at the point P(r) may be expressed in the form

S(r, ) = §V(r, w) + S?(r, w)
+ EJS'”(I'. leS‘z’(r. w) lrm. P w}|cosln(g, Py, @) + ».*'], (1)

where & is the phase difference k(R> — R,). In this formula S'" (r) is the spectral density of
the field which would be observed at P(r) with only the pinhole at Q,(p,) opened, $(r)
having a similar meaning. Further,

”(plm p’l" m} == |.“.f{p|_ p:‘ m}leiﬂ{[!l.l'l:,wi
ir W{pl. P w)
VS, @)\/S(p,. @)

15 the spectral degree of coherence of the electric field at the pinholes [Eq. (8b) of
Section 9.2].

Suppose that polarizers 11, and I1,, which transmit only the x components of the incident
electric field, are placed in front of the pinholes. The cross-spectral density matrix,
[Wp ., pa, @)]7 say, of the light emerging from the pinholes is

- \
Wip,. p,. w)]” = (E(p,. w)E (p,, w)) 0O ‘ 3)
0 0
Clearly
[Tr W(p,. p2. )" = W (p). po. w), 4

i.e. the trace of the cross-spectral density matrix of the transmitted light is the leading-
diagonal element of the cross-spectral density matrix W of the light incident on the
pinholes. Using Eq. (4), Eqg. (2) gives

W (p.p w) = \/SJ (p, w) \/Sll(p:. w) 1), (P} Py ), (5)

where the subscripts on the quantities on the right indicate that the values of the spectra and
of the spectral degree of coherence pertain to this experimental set-up, i.e. when only the x
component is transmitted.

In a similar way, if polarizers which transmit only the v component of the incident beam
are placed in front of the pinholes, one obtains in place of Eq. (5) the analogous formula

W, (01, 3. @) = S, (0, @) [S,(p. @) 1), (py. Py @), 6)

An expression for the off-diagonal elements of the matrix W(p,, p-. @) may be obtained
as follows: linear polarizers are again placed in front of the pinholes. The polarizer at
Q:(p,) transmits the x component and the polarizer at Q5(p,) transmits the y component of
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the incident light. In addition a rotator is placed behind the polarizer at the pinhole Q5(p,).
which rotates the transmitted field component through 90° in the clockwise sense about
the beam axis [the (positive) z direction]. The cross-spectral density matrix of the light
emerging from the pinholes now is

F

(Ei(p, w)E (p,, @) 0]

Wip, py. )] = I D 0 )
Hence, with this arrangement,
[Tr Wip,. p2. 0)]™ = W (py, pa, w). (8)
Equation (2) now gives, in obvious notation,
W,p.po) = Jb'_,.{p,. w) JS_r{pz. @)1, (Pys Py @). (9)

With a strictly analogous arrangement one can obtain the other off-diagonal element of
the W matrix in the form

W, (0 Py @) = S, (P, @) /S, (B, @) 1, (py- Py @) (10)

The spectra 5,(p;. w) and S,(p>. @) may be measured with the help of the usual spectro-
scopic devices and. as we noted earlier (see the discussion following Eq. (13) in Section
9.2). the spectral degree of coherence 1),(p,, p>. w). (i, j = x, y). may be determined from
interference experiments. Thus, we have shown how all four elements of the 2 X 2 cross-
spectral density matrix W(p,. p,, @) may be measured.

9.4 Changes in random electromagnetic beams on propagation

We showed in Section 4.2 that the spectrum of light may change on propagation. Such
changes may be said to be induced by the coherence properties of the source. The analysis
in Section 4.2 was based on scalar theory. One might expect that spectral changes will also
be generated when the electromagnetic nature of the light is taken into account. One might also
expect that there will be other changes on propagation, for example, in the degree of polar-
ization of the beam and in its state of polarization, i.e. changes in the size, the shape and the
orientation of the polarization ellipse of the polarized portion of the beam. In this section
we will consider such changes which may also be said to be correlation-induced. A treat-
ment using the cross-spectral density matrix, which we will sometimes just call the corre-
lation matrix for short, provides a unified approach to determining changes of this kind. To
elucidate them we will first determine how the matrix changes as the beam propagates.

9.4.1 Propagation of the cross-spectral density matrix of a stochastic
electromagnetic beam — general formulas

Let {E"(p’, w)} and { E(r, @)} be the statistical ensembles. introduced in Section 4.1. of the
spectral components at frequency w of the fluctuating electric field vectors at a point Q(p”)



182 A unified theory of polarization and coherence

in the source plane z = 0 and at the point P(r) = P(p. z) in the half-space z > 0, respec-
tively (see Fig. 9.2). Then [see M&W, Egs. (5.6-14) and (5.6-17)]

. = aikz i pal oy o) 2./
Erw) =ck [ ENQ w)Gp-p w0 (1)

where j = .x or y represents the components of the electric field vector in two mutually orthog-
onal directions. perpendicular to the axis of the beam (the z direction). Further,

Glp—p'.2 @) = ——@x =2 (2)

ik p[ik(p —p')? ]
27z

(k = w/c. ¢ being the speed of light in vacuum) is Green's function for paraxial propagation
from the source point Q(p’) to the field point P(r = p, z).

On substituting for E; from Eq. (1) into Eq. (3) of Section 9.1 one obtains the following
expression for the spectral correlation matrix W at a pair of points located in any transverse
plane z = constant > 0 in terms of the 2 X 2 correlation matrix W'? of the electric field
vector at pairs of points in the source plane z = O

Wip, p.2w) = ff:_u WO (pl pl, 0)K(p, = p.p, = Py, 2 w)d’p] d7p), (3)

Kip—ppp =Py 2 w) =G (p —p), 22 @)G(p, — ph T ). (4)

Equation (3) applies to propagation in free space. It is not difficult to generalize it to prop-
agation in any linear medium whether deterministic or random.’

A
’—///_/‘;
Qe r
A P

g}

9
P
0

Fig. 9.2 Notation relating to the propagation of an electromagnetic beam,

' Some applications of the generalized formulas have been used in studies of propagation of random electromag-
netic beams in the turbulent atmosphere, See, for example, H. Roychowdhury, S. A, Ponomarenko and E. Wolf,
J. Mod. Opt. 52 (2005), 1611-1618; M. Salem, O. Korvtkova, A. Dogariu and E. Wolf, Waves in Random Media
14 (2004), 513-523; and O. Korotkova, M. Salem, A. Dogariu and E. Wolf, Waves in Random and Complex
Media 15 (2005), 353-364.
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9.4.2 Propagation of the cross-spectral density matrix of an
electromagnetic Gaussian Schell-model beam

We will illustrate the usefulness of the preceding analysis by a number of examples. We will
restrict ourselves to correlation-induced changes in so-called electromagnetic Gaussian
Schell-model beams. These are model beams which are generalizations of the scalar
Gaussian Schell-model beams that we encountered in Section 5.3. The elements of the cor-
relation matrix of planar sources which generate such beams are

‘ri*',]{-'”{p:, pz-‘ w) = \/5;”](0:- w) \/.5'}[1]([];. w) ,"!L'Ih‘p; —P:-. ),
(F=ux, v j=2x.¥). (5)

Here p| and p5 are two-dimensional position vectors of points in the source plane z = 0,
S:"’(p], w) and Sﬁm (p3, w) denote the spectral densities of the 7 and the j components,
respectively, of the electric field vector in the source plane z = 0, and ;:};}' (p5 — pl. @)
denotes the degree of correlation between the components E; at pj and E; at p5. Both these

quantities are given by Gaussian functions. viz..
S\7(p'. w) = A? expl~p”I(207)). (6a)
;:L."'{p; —p, @) = B, expl—(p, — p,’]zﬂhﬂi}l. (i =xvj=x9). (6b)

The parameters A;, Bj. 0; and & are independent of position but may depend on the fre-
quency w. However, they cannot be chosen quite arbitrarily. In particular

=1 wheni=j (7a)
B,/=1 whenj =i (7b)

and
B = Bﬂ (7¢)

where the asterish denotes the complex conjugate. Further,

(q-h: = 6-’)‘ (7d)

The constraint (7a) follows at once from the fact that, when j = i, y{'(p5 — pi. w) is just

the usual correlation coefficient which necessarily has the value unity when p5 —
pi = 0. The inequality (7b) follows from the fact that the correlation coefficient i,; cannot
exceed unity in absolute value.! The relations (7c) and (7d) follows from the fact that

' See Appendix A in O. Korotkova, M. Salem and E. Wolf. Opt. Conmun. 233 (2004), 225-230).
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Wir), r, w) = H{Z—{r_«;, r,. w), which is an immediate consequence of the definition of the
correlation matrix W. The variances ﬁf,— and the coefficients B;; have to satisfy some addi-
tional constraints, which are consequences of the fact that the correlation matrix is neces-
sarily non-negative definite. Such constraints have been discussed in several papers.' In
addition there are also constraints that have to be satisfied in order that the source generates
a beam. If

3
I
3
Il
Q

(8)

. 7
the constraints are-

+ — < ; (i=x.vj=x0y) (9)

It is shown in Appendix III that when the condition (8) is satisfied, i.e. when the r.m.s.
widths of the spectral densities S{(p’. w) and S{’(p’. w) of the x and v components of the
electric field at each point in the source plane z = 0 are equal, the spectral degree of polar-
ization P"(p. w) is independent of p, i.c. it has the same value at every point of the source
plane.

Let us now consider an electromagnetic Gaussian Schell-model beam. i.e. a beam gen-
erated by a Gaussian Schell-model source.” Its cross-spectral density matrix W(p,. p». z: w)
may be calculated by substituting from Egs. (5) and (6) into the propagation law {Eg. (3)].
with Green’s function G(p — p’, 2: w) in the propagation kernel K(p, — p}. p> — p5: 7. w),
defined by Eq. (4), being given by the paraxial approximation (2). One finds after a straight-
forward but long calculation that, assuming that the constraint given in Eq. (9) applies.
| ik~ pp)

exp -_—
ZRG.(:-}

A:'Aj'B:j _ {pl T pz]z

(py — p)?
—1 S cxp '—"2 Do - e | X
&&{.,] 8o ﬂ-lj(h}

WP py 2 0) = 20:A%(z)
I | e

L
(10)

. u i) - 0 w -
where the quantities Aj(2), sometimes called the beam-expansion coefficients, are given by
the expressions

ok

. & | | |
Az(z) =1+ : = + —
i Q| 2 40t G

[ i

! See F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello and R. Simon. /. Pure Appl. Opt. 3(2001), 1-9
and H. Roychowdhury and O. Korotkova, Opt. Commun. 249 (2005), 379-385 which provides a somewhat
more general treatment,

0. Korotkova, M. Salem and E. Wolf, Opt. Let. 29 (2004), 1173-1175.

Methods for generating Gaussian Schell-model sources and Gaussian Schell-model beams have been described
by G. Piguero. F. Gori. P. Roumanini, M. Santarsiero, R. Borghi and A. Mondello in Opt. Commn. 208 (2002),
9-16 and T. Shirai, O. Korotkova and E. Wolf., J. Opt. A: Pure Appl. Opt. 7 (2005), 232-237.

(¥}
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and

R.(z) = |1+ z (11b)

-~

kaﬂfj ]

Of special interest is the case in which the field points are in the far zone. One then finds
that, provided that Eq. (10) holds, the elements of the cross-spectral density matrix of the far
field (denoted by superscript =) are given by the formula’

A
WJ 1‘[!‘131. 1S, w) = k?cos 5] cos 6, ﬁex]}{—Zkz[aﬁ o .i,.j{sl - s)1}
7] if

» explik(r, — r]}].

G=xvj=uxv), (12)
hs

as kr; — % and kr, — =, with the directions, specified by the unit vectors s, and s,, being kept
fixed (see Fig. 9.3) and with

i i 13

f = !:[ = 3 i { a}

J 4(0;3’. - b&] 4 da} — b;-}

where
] | | |
=c|l—=+=| == (13b
4 2| 20" ﬁj;] v 255. )
P,
=13
T
P,

~r

Fig. 9.3 Notation relating to the arguments of the correlation matrix at points in the far
field of an electromagnetic Gaussian Schell-model source,

' O. Korotkova, M. Salem and E. Wolf. Opr. Letr. 29 (2004). 1173-1175.
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9.4.3 Examples of correlation-induced changes in stochastic
electromagnetic beams on propagation

Equation (10) gives the elements of the cross-spectral density matrix at pairs of points in
any cross-section z = constant > 0 of electromagnetic Gaussian Schell-model beams of a
wide class, namely those for which the constraint given by Eq. (8). i.e. o0, = 0, = o, holds.
As we have already noted. the constraint ensures that the degree of polarization is the same
at every point in the source plane z = 0.

On substituting for the matrix elements given by Eq. (10) in Egs. (2) and (14) of Section
9.2 one can determine the changes in the spectral density S(r, @) and in the spectral degree
of polarization P(r, w) throughout the half-space z > 0 into which the beam propagates.
Using Eq. (10) one may also determine changes in the complete state of polarization of the
beam at each point in that half-space. i.e. the shape and the orientation of the polarization
ellipse of the polarized portion of the beam. We will discuss such changes shortly.

For simplicity we will assume that the x and v components of the electric field in the
source plane are uncorrelated, i.e. that

pQ(p — o) @) = pup, —pp, @) = 0. (14)
According to Eq. (6b) this implies that
B.rjl.' = B_t'.l.' = 01 flj}
and it 1s clear from Eq. (5) that, in this case.

W %p,, py: @) = W2, py: w) =0, (16)

1.e. the correlation matrix is now diagonal.
According to Egs. (10) and (7a), the elements of the cross-spectral density matrix of the
field in any cross-section perpendicular to the beam axis are given by the expressions

W. (. p 2 )

__A ppted | | ey ik(p? — p)
=t epi— T exprj TAT (2 exXpi— . , (17a)
.\'.t{"'} 4o 1,1('“} "E.t'.-.' : .'r_l.'("‘) AT ()
W_ (P P T @)
v A2 f 2 40 [ ( 2 k(o2 2)
= expf—p+1i ex |—p—if—] exp|—-—=2— P11 (17p)
AL (2) '[ 4m&;_,_[:} 2&_\-_}_&;__1_1:) 20 (2)

Wlﬁ'{pl* P2 i) = WY.TI:pl" P2 3 W) = 0. (17¢)
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In the formulas (17a) and (17b) the beam expansion coefficients are given by the formulas

, I I L |5
nefz) =1+ - Rl i 18:
u (ko) | 40- 62 (154)

Al(D)=1+ + z2, |8b
R (ko) | 402 62 \Leb)

and, according to Eq. (11b),

e 2] = | 1 =Lz, (19a)

@ () =1+ z (19b)

Let us now make use of these expressions to elucidate, by means of a few examples, correlation-
induced changes in an electromagnetic Gaussian Schell-model beam on propagation.
We have from Eqgs (2b) and (17) that

S(r. w) = TrW(p,p. 33 w} =W _(p.p. 23 @) + W, (p.p. 20 w)
A
AZ(2)

I
203.&3:}_(:)

2 ] A2
‘l'p 2 + 3 .r e
20°45 (2)] A2

ex 3 (20)

Xp

Since in the present case the correlation matrix is diagonal, we obtain. on using Eqgs. (17).
the following expressions for the determinant:

Det Wip. p. 22 w) = W_(p. p. 2: w) W (p.p. 2t w)
ATAT
- CXp|—
AL () A2 (2) ¥

1 1

2
R T x 1)
AL ALG)

202 i

On substituting from Egs. (20) and (21) into Eq. (14) of Section 9.2, we obtain an expres-
sion for the degree of polarization at any point in the beam. A few examples of such changes
in planes z = constant > 0 are also shown in Fig. 9.4. The behavior of the spectral degree
of polanzation along the axis 1s shown in Fig. 9.5. The considerable differences between
these figures reveal that the changes in the degree of polarization on propagation depend
very sensitively on the values of the parameters that specify the source.
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Fig. 9.4 The normalized intensity (spectral density) S.{(p. z: w) and the spectral degree
of polarization P(p. = w) of a stochastic electromagnetic beam propagating into the
half-space z > 0. The field in the source plane z = 0 is represented by a cross-spectral
density matrix with elements

W (p.p.w) = Flp, p§ w)cosd,

(pr — p)?
AL L) .1

"‘.l‘ﬁ.-

W, (0. 0 @) = Fip{. ol wexp| -

with
F(p. pi. w) = S (w)exp|—

The source generates a linearly polarized. spatially coherent Gaussian electromagnetic
beam. with polarization angle € and with the effective width o, incident on a random
phase screen. The parameter d,, is a constant relating to the properties of the screen. The
values of the parameters were taken as o, = I mm. é,, = 0. mmand A = 632.8 nm. The
distance of propagation z is normalized by the Rayleigh range zp = 2ko? (k = wlc).
[Reproduced from T. Shirai and E. Wolf. J. Opt. Soc. Amer. A21 (2004), 1907-1916.]

>
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Normalized propagation distance z/zg

Fig. 9.5 The spectral degree of polarization P(0, z. @) of a stochastic electromagnetic
beam, with the same parameters as in Fig. 9.4, along the axis of the beam (the z-axis), for
some selected values of the polarization angle #. The propagation distance is normal-
ized by the Rayleigh range zp = 2ko of the incident beam. [Reproduced from T. Shirai
and E. Wolf. J. Opt. Soc. Amer. A21 (2004), 1907-1916.]

It may seem surprising that, in general, the degree of polarization chunges as the beam
propagates. The reason for such changes is the difference between the correlation coeffi-
cients which specify the correlation between the x and the y components of the electric field
vector at the two source points. Unless the correlation coefficients are the same, the expansion
coefficients A2 (z) and AZ(2), defined by Egs. (18), have different values. Consequently
the diagonal elements W,, and W, of the correlation matrix, given by Eqs. (17). expand
at different rates. This leads to different behaviors of the two matrix elements, resulting in
changes in the degree of polarization as the beam propagates.

One might expect that not only does the degree of polarization. in general, change on prop-
agation but also that the shape and the orientation of the polarization ellipse of the polarized
portion of the beam change. This indeed is the case.' Because the derivation of the pertinent
formulas is rather lengthy, we will only state them here.

One finds that. in terms of the elements of the correlation matrix, the squares of the
major and the minor semi-axes of the polarization ellipse are given by the formulas

a*(p, 7 w) = %N‘Twn = W) +4

5 | "
E'J"(P. iw) = §|\{(W’1r o w_r_r}* +4

T W - W+ AR W, | (22a)

7
“-1?-‘

I
W,

= W~ W) R W, [ (22b)

where ®e denotes the real parts.

' See O. Korotkova and E. Wolf, Opt. Commun. 246 (2005), 3543,
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The angle f;, which the major axis of the polarization ellipse makes with the x-axis is
found to be given by the formula

2 Re W_‘_.‘_{p, 7 W)

B,(p, 2 w) =
03P W . (p.zw) — W (p.2w)

darctan

I
= m/2<8, =7/2). (23)

An example of changes in the polarization ellipse of an electromagnetic Gaussian Schell-
model beam, calculated from these formulas. is given in Fig. 9.6. The corresponding val-
ues of the degree of polarization are also indicated in that figure.
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Fig. 9.6 Changes in the polarization ellipse and the degree of polarization associated
with a typical Gaussian Schell-model beam on propagation in free space. [Reproduced
from O. Korotkova and E. Wolf. Opr. Conmmun. 246 (2005), 35-13.)
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9.4.4 Coherence-induced changes of the degree of polarization
in Young’s interference experiment’

In the previous section we studied correlation-induced changes in the polarization proper-
ties of a Gaussian Schell-model beam on propagation in free space. Somewhat similar changes
may take place when two correlated beams are superposed, for example, in a Young inter-
ference experiment. In this section we will briefly discuss the change in the degree of polar-
ization in Young's interference pattern as the degree of coherence of the light incident on the
pinholes is changed.

Consider a stochastic, statistically stationary electromagnetic beam propagating close to
the z-axis and suppose that an opaque screen A is placed across the plane ; = 0 with small
openings at points Q,(p,) and Q-(p,) and that measurements are made at a point P(r) in the
observation plane B, which is parallel to the screen A in the half-space z > 0 (see Fig. 9.1).

Let {E(p,. @)} and {E(p,, @)} be the statistical ensembles of the electric field vectors at
the two pinholes. If {E(r. @)} denotes the statistical ensemble of the electric field vector at
the point P(r) then we have for each member of this ensemble, as in Eq. (1) of Section 9.2,

E(r, w) = K E(p,, 0™ + K,E(p,. w)e*f:, (24)

where K| and K, are the same geometrical factors as we encountered before [Eq. (3) of
Section 3.1 (with A now replaced by A)]. We again assume that the angles of incidence and
of diffraction at each pinhole are small.

To determine the degree of polarization at a point P(r) in the observation plane B we
must first determine the elements of the correlation matrix

W(r.r, w) = [Hf"j{r, r, w)] = [(E(r, w}E}.{r. w))]. (i =x,vij=xvy. (25)
On substituting from Eq. (24) into Eq. (25) we readily find that

W(r, r, w) = |K1|' Wilp. p.w) + K| Wilpy. p,. ©)

K,

+ KK, Wo (g py 0)e™®7R) + K KIW.(py, gy, w)e™#87R), (96
where
Wip.p,w) = (E; (P WE(p. @), (i =x.¥3j=x0y) (27)

are the elements of the cross-spectral density matrix whose arguments are the points Q,(p,)
and Q-(p,) where the pinholes are located.

Suppose that the beam incident on the pinholes is an electromagnetic Gaussian Schell-
model beam. which we discussed in Section 9.4.2. The spectral densities SI"(p, )

' The analysis of this section is based on a paper by H. Roychowdhury and E. Wolf, Opr. Commmn. 252 (2005).
268-274.
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(j = x, v), of the x and y components of the electric field incident on the pinholes are then
given by Eq. (6a) and the correlation coefficients 1{"(p, — p;. w) are given by Eq. (6b).
For simplicity we will assume that the spectral densities of the x and the y components of
the electric field vector at the pinholes are the same. Then in Eq. (6a)

ll

A=A =A. (28)

In general A will depend on the frequency w. We will also assume that in Eq. (6b) for the

2 i 1t —_
correlation coefficients i (P2 — P o),

(29a)
B = | ifi = j,
ij B, (real) ifj # i, (29b)
and that
Oy = Oy = 0. (30)

The cross-spectral density matrix of the electric field at the pinholes may then readily be
shown to be given by the formula

i 2 — }3 )
Exp —M B{] eXp -—M
p|2 - pg 26~ 2{“:1
WOpy. py. ) = 4% exp| - —= o —p 2] b oy
i p-n) P - n)’
By exp| ——= 55— exp| ——————
0 26 Y
v J =y j
(31)

where we have used the relation é,, = 8., [Eq. (7d) of Section 9.4.2]. On substituting from
Eq. (31) into Eq. (8a) of Section 9.2 one finds that the spectral degree of coherence of the
electric field at the two pinholes is given by the expression

p, — P )2
{0} = —_—e I
1 rp,.pz.w] Exp[ 552 ] (32)
If the pinholes are placed symmetrically with respect to the z axis, then p» = —p, and the
expression (32) for the spectral degree of coherence becomes
. 2p;
%Ny, =y, @) =exp| = (33)

An expression for the degree of polarization at each pinhole is readily obtained on sub-
stituting from Eq. (31) into the general expression (14) of Section 9.2. One finds that

PYp,.w)=By (a=1,2). (34)
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Since this formula shows that the degree of polarization has the same value, By, irrespec-
tive of the location of the pinholes, we will suppress the dependence of 2'” on p,, and will
write

PNp,. w) = B (= By). (35)

In order to determine the spectral degree of polarization 2(r, @) at a point in the fringe pat-
tern, we need to determine the elements of the matrix W at a point P(r) in that plane. On
substituting from Eq. (31) into Eq. (26). we find that, with the symmetric location of the
two pinholes, i.e. with p> = —p,.

2 2 > b L 2p?
A? (:)l:pl—,::.'1 ilKI + |K,| + 2 Re(K| K,e* R "R yexp| ——1
20 & i =
when i = j, (36a)
Hf}.{r. r.w) = 1 I 1
? 2 | 2 ; 2p}
20- i - s
if
when i # j. (36b)
[t is convenient to set
K PAtexp| - | (i =
Sj.(r. w) = |ij A- exp = (j=12). (37)

which represents the spectral density at frequency e of the field at the point r in the plane of
observation. The formulas (36) may then be rewritten in the form

W‘jtr. r.w)
pr "
S,(r, ) + S,(r, w) + 2\/5‘1{:-, m]JS_._:{r. w)cos[k(R, — R )]exp|— 52
!
) when i = j. (38a)
. 27 |
$,(F @) + S,y (r, ) + 2,S,(r. @)yS, (r. w)coslk(R, — R)exp| —— | B,
LA
when i # j. (38b)

On substituting from Egs. (38) into Eq. (14) of Section 9.2 we obtain the following expres-
sion for the degree of polarization in the plane Bof the interference pattern:

Plr. w)
f 2 2
S,(r, w) + §,(r. ) + 2\/5|[r. wi\/SE(r* w)cos[k(R, — R)lexp|— ::l_
—_ ﬂ’.l] :’H}_
2pr
$,(r. @) + S,(r. w) + 25, (r. 0) /S, (r. )cos[k(R, — R, )lexp| - 8
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According to Eq. (33) the exponential factor in the last term in the denominator is just the
spectral degree of coherence 11"(p,, —p,. w) of the light at the two pinholes. Hence Eq. (39)
may be rewritten in the form

P(r, w)

5

2p?
S,(r. w) + S,(r, w) + ?_J.S'I{r. w}JSztr, w)cos[k(R, — R,)lexp|—

= = T
S,(r. w) + S,(r. w) + ZJS]{r. w}JSJ(r. w)cos[k(R, — R, J];;‘“'fpi. —p, w)

(40)

Frequently the spectral densities S,(r, @) and S,(r, w) of the light reaching the point P(r)
in the plane B will be approximately the same, i.e. 55(r, @) = §,(r. w). Equation (40) then
reduces to

2

| b

] + C{}H[:’((R: = RI )exp| —

82

P(r, w) = 2. (41)

I+ cos[k(R, — RO (p,.— p. @)

This formula shows that rthe degree of polarization in the detection plane B depends not
only on the degree of polarization T, of the light at the pinholes but also on the spectral
‘W of the electric field at the pinholes and on the parameter Oy which
characterizes the correlation between the x component of the electric field at one of the pin-

degree of coherence 1)

holes and the y component of the electric field at the other pinhole. This result brings into
evidence the subtle relations which exist between polarization and coherence of stochastic
electromagnetic beams.

Figure 9.7 shows the behavior of the spectral degree of polarization Pat the axial point'
(1.e. on the beam axis) in the plane of observation B, when the spectral degree of coherence
n'(p,. —p;. @) at the pinholes is varied while the degree of polarization 2, at each pinhole
1s kept constant.

The effect of the degree of coherence of light at the pinholes on the degree of polariza-
tion in Young's interference experiment was tested and confirmed experimentally.?

9.5 Generalized Stokes parameters®

In Section 8.1 we introduced the Stokes parameters of a random electromagnetic beam.
They were defined in terms of the mutual intensity matrix J by Eq. (14a) of that section, i.e.

' The behavior of the spectral degree of polarization at off-axis points is discussed in Y. Li, H. Lee and E. Wolf.

Opr. Commun. 265 (2006). 63-72.

* F. Gori, M. Santarsiero, R. Borghi and E. Wolf, Opr. Lerr. 31 (2006), 688—690).

¥ The results presented in this section are based on a paper by O. Korotkova and E. Wolf, Opr. Letr. 30 (2005).
198-200.
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Fig. 9.7 Behavior of the spectral degree of polarization P(r, w), at the axial point in the
plane of observation B, when the spectral degree of coherence 1/”(p,. —p,. w) of the
light at each pinhole is changed, while the degree of polarization @, at each pinhole is
kept fixed. The curves are associated with different values of the parameter é,, which
characterizes the correlation between the x component of the electric field at one pin-
hole and the y component of the electric field at the other pinhole. The values of the
parameters were taken as P, = 0.5,z = 10cm, p; = 2mm,
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[After H. Roychowdhury and E. Wolf, Opr. Commun. 252 (2005). 268-274.]
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in terms of equal-time correlations between mutually orthogonal components of the elec-
tric field at one point. It is also possible and useful to define analogous quantities in the
space—frequency domain by somewhat similar formulas, in terms of the cross-spectral den-
sily matrix. viz.,

So(r, @) = W (r,r, @)+ W _(r, I, w),
si(r,w)= W (I T - W\.,;_{r._ r, w).
5,(r, w) = W (r. 1, )+ W-’;I{r, r. w), (la)
5(r @) =W (r 0 = W T o),

or, more explicitly. in terms of the spectral components of the electric field,

so(r, @) = (EL(r, wE (r. w)) + (E (r. )E (r, w)),
5,(r, @) = (EX(r. 0)E (1, 0) — (EX(r. )E,(r, ).
5,(r @) = (EL(r. @E,(r, w)) + (EX(r, @E(r, o)), | (1b)
$;(r, @) = iI{E;{r- w)E (r, w)) = (E{(r, w)E (r, w)}] .

These four parameters may be called the spectral Stokes parameters. They can be deter-
mined experimentally in a similar way to how one determines the usual Stokes paramelters,
provided that the light is filtered to become quasi-monochromatic around the frequency w.

In Section 9.4.1 we showed how the cross-spectral density matrix of a stochastic electro-
magnetic beam changes on propagation. In this section we will briefly consider how the
spectral Stokes parameters change as the beam propagates. For this purpose it is, however,
necessary to generalize the usual Stokes parameters, which depend on one point, to quan-
tities which depend on two points. Such generalized Stokes parameters may be introduced
by formulas of the form given by Eq. (1). but with the two equal spatial arguments (r, r) on
the right-hand side replaced by two unequal spatial arguments (r|. r»). Thus, in place of the
formulas (1a) we now have

So(ry 6, @) = W (r, 5, 0) + W (5, 5, w),

Sir. @ =W (r,n, o) - W (r, 5, o),

S_,_frl. r,, w) = W_‘_y(r], r,, w) + W}__t(rl. r,, ), (2a)
S;(r.r, @) = ilW‘,.xtr], r,, w) — W (r.r, m)E.
More explicitly,
So(r). 1y, w) = (E((r}, w)E (1, w)) + (E{(r;, 0)E (1, @),
S,(r. 5y, w) = (E(r;, wE (r,. 0)) = (E{(r;, ®)E (1, ®)).
(2b)

SE{[]» r‘n {ﬂ} = (E_:(rlt fU}ET{r:.. W)) + (E:.{I‘I. W}E.‘,{rz, ll))}.

i
Sy(r. 1. @) = i[(E{(R, @)E (r), w)) — (E (T, w)E (r,, w}}],
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[f the beam propagates in free space, the cross-spectral density matrix W(r;, rs, w) prop-
agates from an initial plane z = 0 according to Eq. (3) of Section 9.4.1. It follows at once
from Egs. (2a) for the generalized spectral Stokes parameters that these parameters propa-
gate according to the same law, viz.,

3,(r, 1, )
=[] SV@. 0k )K(py — 0.y — bz 0P A (@ =0, 1,2,3)

(3)

where r; = (py, 2): r; = (py. 2) and the propagator K(p; — p). p» — p5 2; ) is given by
Eqs. (4) and (2) of Section 9.4.1.
If we set r; = r, = rin Eq. (3) the formula becomes, with r = (p, z),

s, (rLw) =S (r.r,w) = ff_iﬂ 50, pi. @K(p = p. p = ph 2 w)dp] d2pl.  (4)

This formula expresses the ordinary spectral Stokes parameters s,,(r, @) at any point in the
half-space z > 0 in terms of the generalized spectral Stokes parameters S, at all pairs of
points in the plane z = 0. Evidently knowledge of the ordinary spectral Stokes parameters
s,(r. w) at all points in the source plane is not adequate to determine the values of those
parameters throughout the half-space z > 0. In fact two stochastic electromagnetic beams
which have the same Stokes parameters s,(p, w) in the source plane z = 0 may produce
beams of different degrees of polarization throughout the half-space z > 0.

[tis clear that the generalized spectral Stokes parameters, just like the cross-spectral den-
sity matrix, can be used to elucidate the spectral properties. the polarization properties and
the coherence properties of a stochastic electromagnetic beam.

In Figure 9.8 examples are given of the changes of the spectral Stokes parameters of an
electromagnetic Gaussian Schell-model beam on propagation in free space, calculated
from Egs. (4) and (2a).

Similar calculations can be carried out for propagation of the spectral Stokes parameters
not only in free space but in any linear medium, deterministic or random. One must then
use in Eq. (4) the kernel appropriate to propagation in that medium.

PROBLEMS

9.1 Two unpolarized, mutually uncorrelated stochastic, statistically stationary beams prop-
agate close to the z axis into the half-space z > 0. {E‘(r, @)} and {E®)Xr, @)} are the
statistical ensembles representing each beam. Further,

(A} — / (A)® (A) (B) _ /(B)* (B)
WA =(EATEW), W = (EBIE®)
' Anexample of this kind is given in M. Salem. O. Korotkova and E. Wolf, Opr. Let. 31 (2006), 3025-3027. where

the difference in the degrees of polarization of the two beams is due to the difference in the degrees of coherence
of the field in the source plane = = (). information which is not contained in the ordinary Stokes parameters S5
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Fig. 9.8 Changes of the Stokes parameters sg. 5, 5, and 55 of an electromagnetic Gaussian
Schell-model beam on propagation in free space. The parameters characterizing the source
have been taken as w = 3 X 10°Hz (A = 6328nm), A, = 1.5,A, = |, 6 = arg B,, = 7/6,
B,,| =0.35, 0 = lem, 6, = 0.2mm, 4, = 0.25mm and é,, = 0.15 mm. [Reproduced
from O. Korotkova and E. Wolf, Opt. Lerr. 30 (2005), 198-200.]

and

WAB) = (EA"E®), (i = xyj=xy)

x and y being mutually orthogonal directions perpendicular to the z direction. The angu-

lar brackets denote the ensemble average.

(a) Derive an expression for the cross-spectral density matrix of the total field.

(b) Show that the total field may be partially polarized. Under what condition will the
total field be unpolarized?

A thermal light beam, with axis along the z direction, is incident on two detectors
located at points Py(p;) and Ps(p-) in a plane z = constant. Assuming that the 2 X 2
cross-spectral density of the beam is symmetric in the variables p, and p,, show that
the correlation between the intensity fluctuations Al(p;, w) = p; w) — (I(p;, w))
(j = 1, 2) is given by the expression

(Allpy. 0)Al(ps. w)) = Tr[W(p,. pa. @)W(py, pa, »)],

where W(p;. ps. w) is the cross-spectral density matrix of the beam, and the dagger
denotes the Hermitian adjoint.

Derive an expression for the degree of coherence of a planar, secondary, electro-
magnetic Gaussian Schell-model source.
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9.5

9.6

Show that the degree of coherence at any pair of points in a cross-section of an electro-
magnetic Gaussian Schell-model beam tends to unity with increasing distance of prop-
agation in free space.

Consider a beam generated by a Gaussian Schell-model source located in the plane
z = 0 and linearly polarized along the x direction, with spectral densities

Sm’[wi = Ale—lw—a) f{2a?) $0) () = B:E—[m—a;l_.-’Lzalj
X ¥ "y
and correlation coefficients of the electric field

=fn—a 1 42
1O, py. @) = e~er /)
—{p— 2 (242
e A P (287)

¥

Ho Py Py @) =
;r._t_r(pl. py, w) = 0.

In these expressions A, B. 7, 6, and é, are independent of position and of frequency and
the source is assumed to be large relative to o. Let

S(r.
sir, w) = {F. &)

f: S(r, w)dw

be the normalize spectral density at the point r. Derive an expression for s(r, w) at points
in the far zone.

Plot the normalized source spectrum and the normalized far-zone spectrum in direc-
tions making angles # = 0° and 0 = 0.3° with the normal to the source plane, when
A=1,0=02wand é = 0.5 mm.

Determine and plot also the degree of coherence 1" (p,, ps. w) of the electric field
in the source plane at pairs of points located symmetrically with respect to the beam
axis, as a function of the separation |Ap| = 2[p,| = 2|p,|.

Consider a stochastic electromagnetic beam generated by a planar, secondary source,
located in the plane z = 0 and propagating about the z-axis into the half-space z > 0.
The spectral densities S{""(w) and ${”(w) of two mutually orthogonal components of
the electric field in the source plane are assumed to be independent of position.

Show that the spectral density of the field at a point r in the half-space z > 0 may be
expressed in the form

Str, w) = S wM (r, w) + S ()M _(r, w).

Derive expressions for M,(r, w) and M(r, w). How do these expressions simplify
when the point r is in the far zone?
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Show that, if the components E, and E| of the electric field in the source plane are
uncorrelated, the above formula can be expressed in the form
S(r, w) = S ()M (r, ) + alr, )M _(r, w)].
where
] — PO
alw) = ~——{w].
1 + POY(w)
P%(w) being the degree of polarization of the field in the source plane.
9.7 ogdenotes the unit matrix and o, o> and o5 are the so-called Pauli spin matrices. The
four matrices are defined as
_[1 ol 1 o o 1 0 i
Ty = 1 g; =1 a, = ; Ty = -
0 1] 0 -l 10 -i 0
(a) Show that
Tro;-a0,) =26, (j, k=0,1.23),
where 0y 1s the Kronecker symbol (6 = 1 when k = j; é;. = 0 when k # j).
(b) Show with the help of the above relations that the spectral Stokes parameters and
the cross-spectral density matrix are related by the formulas
s (T, w) = Tr{WI(r, r, w) - r'}j}
and
| &
W(r,r,w) = ;Z {sj.{r, w‘jcrj}_
T =l
9.8 s(r.w) (j = 0, 1, 2, 3) are the spectral Stokes parameters of a quasi-monochromatic,

stationary light beam. The matrix

[sn(r, )

S(r, w) = H )
5, (r, w)

lsS(r, )

is said to represent the (spectral) Stokes vector of the beam.
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Suppose that the beam passes through a linear, non-image-forming device. Let S'(r, @)
denote the Stokes vector of the emerging beam. Then

S'(r, w) = M(r. w)S(r. w).

where M is a 4 X 4 matrix known as the (spectral) Mueller matrix.
Express the elements of the Mueller matrix in terms of the elements of the instru-
mental matrix, defined in Problem 8.6.

Show that the two stochastic electromagnetic beams which propagate from the source
plane z = O into the half-space z > 0 may have different degrees of polarization through-
out the half-space. even though they have the same sets of Stokes parameters in the source

plane. (Hint: use the generalized Stokes parameters to characterize the source.)



Appendix 1

Cells of phase space and
the degeneracy parameter

(a) Cells of phase space of a quasi-monochromatic light wave (Section 1.4)

We mentioned towards the end of Section 1.4 that the concept of coherence volume has a
counterpart in the quantum theory of radiation, known as a cell of phase space. In this
appendix we will define the cell of phase space and also introduce a related concept of
degeneracy parameters of radiation.

Let us first consider a monochromatic plane wave of wavelength A. According to one of
the de Broglie relations (B&W, Appendix IT), we may associate with it photons of momen-
tum p, whose magnitude is

P = (1
A
where A is Planck’s constant. Suppose that r = (x, y. z) specifies the location of a photon, '
According to elementary quantum mechanics, the location and the momentum of a photon
cannot be measured simultaneously with an accuracy greater than allowed by the
Heisenberg uncertainty relation, viz.,”

AxAp, = h, AyAp, = h, Az Ap, = h. (2)

Let us introduce a six-dimensional space, called the phase space, in which points are
specified by values of the six variables x, v, z, p.. p,, p-. In view of the inequalities (2) it is
natural to divide this space into regions of volume elements, called cells, of size

Ax Ay Az Ap Ap,Ap. = I, (3)

Clearly photons of the same spin state (same polarization) belonging to a region of the phase
space which is not greater than indicated by Eq. (3) are intrinsically indistinguishable.

' The position of a photon cannot be specified more accurately than to distances of the order of the wavelength
but here we will ignore subtleties concerning photon localization,

* The uncertainty relations (2) are often written with a factor /2 (h = h/(2x)), rather than / on the right-hand
sides. The value of the factor depends on the exact definitions of the uncertainties Ax, Ap .. ete. For our purposes
definitions which imply the inequalities (2) are convenient.

202
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We will now show that the concept of coherence volume which we introduced in Section 1.4
[rom considerations based on classical wave theory is the volume Ax Ay Az of ordinary space
given by the formula (3). subject to the constraints imposed on the product Ap, Ap, Ap_ by
the geometry and by the bandwidth of the light. Stated somewhat differently, we will show that
the coherence volume is that region of space throughout which the photons are intrinsically
indistinguishable. To justify this statement let us first estimate the uncertainty in the compo-
nents of the momentum of a photon in the far zone of a field generated by a planar. quasi-
monochromatic, thermal source o, of linear dimensions 2a located in the plane z = 0 and
radiating into the half-space z > 0. Let 2¢ denote the angle which the source subtends at a
point Q in the far zone, assumed, for simplicity, to be small and situated on the normal to o, at
a distance R from it (Fig. I). There will be uncertainties Ap, and Ap, in the x and the y com-
ponents of the momentum of the photon arriving at Q, because of the lack of knowledge
regarding the source point from which the photon was emitted. Evidently these uncertainties
are represented by the projections of the photon momentum p onto the x and the v axes, i.e.

Ap, = Ap, = 2po. (4)

Using Eq. (1) and assuming ¢ to be sufficiently small. one has

Ap, = Qp, = 21po
—EITQWEE (5)
AN OA R

where ) is the mean wavelength of the emitted light. Since @ was assumed to be small, the
uncertainty of the z component of the momentum arises mainly from the uncertainty in
the wavelength. If A\ is the effective wavelength range of the light, then it follows from
Eq. (1) that

R = (6)

>
12

2a

thermal source o

Fig. 1 Notation relating to the derivation of Eq. (5) of Appendix 1.
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Hence we have from Egs. (5) and (6)

A S
Ap Ap e 1o Wiy ,
Ap, Apy Ap. ¢ R2

(7)

where § = (2a)” is the order of magnitude of the size of the source. On substituting this
expression into the expression (3) for a cell of phase space. we see that the volume of the
space around the point Q throughout which the photons emitted by the source are intrinsi-
cally indistinguishable is

< I
AvAy Az = — A" 8

; R [ A )‘] (8)
Comparison of Eq. (8) with Eq. (2a) of Section 1.4 shows that the right-hand side is equal
to the expression for the coherence volume derived by considerations based entirely on
classical theory. Thus we have justified our earlier assertion about the quantum-mechanical
significance of the coherence volume.

(b) Cells of phase space of radiation in a cavity (Sections 7.4 and 7.5)

The concept of cells of phase space was originally introduced not for a light beam but
rather for thermal radiation in a thermally insulated cavity, i.e. for blackbody radiation. It
plays an important role in the theory of photoelectric detection of light fluctuations, for
example, which is discussed in Section 7.5. In this appendix we will derive an expression
for the number of cells of phase space for this situation.

Using Eq. (3) let us calculate the number Z, say, of cells of phase space associated with
photons in some finite momentum range contained in a volume V of the cavity. Evidently

Z 2 dp d '
7 = h_"f p, dp, dp_dxdydz, (9)

where the integration extends over the accessible domain of the phase space containing the
photons. The factor 2 in front of the integral arises from the fact that one must distinguish
between two spin states.

Consider photons of the same spin. whose energies lie in the range between

E=hv and E + dE = h(v + du).
The magnitude of the corresponding momenta will lie in the range between

c c ¢

where ¢ is the speed of light in vacuum.
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Since we are considering radiation under equilibrium conditions. there is no preferential
direction of propagation of the photons. This makes it possible to determine the contribu-
tion to the integral in Eq. (9) from the momenta in a simple manner as follows. Consider a
spherical shell in momentum space indicated on the figure below:

The contribution to Eq. (9) from the shell is evidently

f dp dp dp. = 4= p*dp

= 47 — 12 dv. (10)

The contribution from ordinary space (called also configuration space) is
fd.rd}' z =V (11)

On substituting from Eqs. (10) and (11) into Eq. (9) we obtain for the number Z of cells
in phase space the expression

L.e.

_ 87V

o

Z V2 du. (12)

The size of the region in the cavity throughout which the photons are indistinguishable
is, according to Eq. (12) with Z = I, given by the expression

E:_A AP, (13)

1
8T
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where we have used the relation v = ¢/A. Equation (13) is of the form of Eq. (2b) of
Section 1.4 for the coherence volume of thermal light, with the solid angle AQ)' replaced
by 87. Now A’ represents the solid angle formed by all the directions along which radi-
ation in the cavity can reach the region under consideration. As was mentioned in Section
7.4, Einstein pointed out in a basic paper on energy fluctuations in blackbody radiation that
radiation in a thermally insulated cavity may be regarded as a mixture of plane waves
which propagate in all possible directions, filling a solid angle 4. If we also take into
account that the waves are unpolarized, i.e. that each consists of two mutually independent
polarization states (e.g. left- and right-handed circularly polarized waves), one can at once
understand the origin of the factor 1/(87) in Eq. (13). Thus we see that, just as in the case
discussed in part (a) of this appendix. Eq. (13) derived from the concept of indistinguisha-
bility of photons in a cell of phase space is in complete agreement with the expression for
the coherence volume based on classical wave theory.

Finally we might mention that the concept of cells of phase space is often encountered
in the physics literature in various disguises. For example, one sometimes speaks of an
elementary bundle of rays (a concept due to von Laue), which, just like the term “volume
of an oscillation mode,” means radiation occupying a single cell of phase space. Sometimes
one finds a reference to the degrees of freedom of a light beam or its Jean's number. These
are merely alternative terms for the number of cells of phase space.'

(c) The degeneracy parameter

For the analysis of some situations, encountered. for example, in the theory of photoelec-
tric detection of light fluctuations (Section 7.5), it is important to have an estimate for the
average number of photons contained in a cell of phase space. This quantity is known as the
degeneracy parameter of the radiation. It differs drastically for thermal and for laser light,
as we will now show.

For blackbody radiation at equilibrium temperature 7, the value of the degeneracy
parameter, &, at frequency v, is given by the formula®

6 = e.ﬁw’lknTl ] ? “4)

kg being the Boltizman constant. Figure 2 indicates the values of the degeneracy parameter
of blackbody radiation for various temperatures and wavelengths A = ¢/v, calculated from
Eq. (14). For light of frequency v = 5 X 10" Hz (A = 6 X 10 °cm) from an incandescent
source at temperature T = 3,000 K,

§~3x 1074 (15)
' In this connection see also D. Gabor in Progress in Optics, Vol. 1. E. Wolf ed. (North-Holland. Amsterdam,

1961), Section V, p. 146 er seq.
* See L. Mandel, J. Opt. Soc. Amer. 51 (1961), 797-798.
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Wavelength (jum)

10°

Temperature (K)

Fig. 2 The degeneracy parameters of blackbody radiation for various temperatures and
wavelengths, [Reproduced from W. Martienssen and E. Spiller. Amer. J. Phvs. 32
(1964). 919-926.

indicating that such light is highly non-degenerate (8 < 1). In order that & ~ 1 at this fre-
quency, it is necessary that the temperature be of the order of 3 X 10*K.

The situation is quite different for laser light. To see this, let us consider a laser with 1 mW
output power, generating a beam of cross-section 1 mm? and having mean wavelength
A =6x10"%cm (U = 5 X 10" Hz). The number of photons per unit volume expressed in
terms of the energy of a single photon in such a light beam is

photons (beam power)

volume (hv)(c)(cross-sectional area of beam)
(1 X107 1/s)

(3.3 X 107" J)3 X 10° m/s)(1 X 107® m?)

= 10"3 photons/m?

= 107 photons/cm”. (16)

We have seen earlier [Eq. (7) of Section 1.4] that. over a short enough time interval, such a
laser is sufficiently stable that the coherence volume of the light which it generates is
AV ~ 300cm?. Hence. in this case, the degeneracy parameter has the value

6=p- AV~ (107 phm{m.‘sfcm?‘} X 300cm” = 3 x 10°. (17)

Such light is, therefore, highly degenerate (¢ 2 1). Comparison of Egs. (17) and (15) shows
the remarkable difference of 13 orders of magnitude between the degeneracy of blackbody
radiation and that of the laser beam.
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Derivation of Mandel’s formula for

photocount statistics
[Eq. (2) of Section 7.5.1]

Consider a linearly polarized quasi-monochromatic wave, with fluctuating complex amplitude
V(1), incident on a photodetector of quantum efficiency a. According to Eq. (1) of Section
7.5.1, the probability that an electron will then be emitted in a time-interval (1, r + T) is
given by P(1)Ar = al(n)At.

Let us divide the interval (1, t + T) into T/Af short intervals. each of duration Ar. which
we will label as

L=t+iAr (i=01,2,... T/An. (1)

The probability of obtaining n counts in the interval (1, t + T) is the product of the proba-
bilities of obtaining a count at time f, - acount at timet,, ... acountattime f, . multiplied
by the probability of obtaining no coum in the remammg (Tf&f} — n intervals, summed
over all possible sequences of the counts. Thus

TiAr T/ Y Tl

pin. 1, T) = lim Z Py —a"f{r (e, )= 1(r, YA

=0r=0 r=0 n!

TIA
x [0 - e, J&T]/H[I = al(t, )], (2)

i=0n i=l

We note that as Ar— 0 the product

Hn = al(t, )Ar) = 1 = nO(A), (3)

J=1

' The analysis of this appendix follows essentially a derivation given by L. Mandel in Progress in Optics, Vol. 11
E. Wolf ed. (North-Holland. Amsterdam, 1963). pp. 242-248.
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which evidently tends to unity if n is finite. The multiple summation over the indices
I'is I3, . . . Iy becomes separable and equal to

:'I"f_lr i
S al(r)AT

=0

which tends to

n

1+T
‘u [ 1(t"dt"

1

as Ar — 0. The remaining product can be expressed as follows:

T/
[T =alupan =1-
j=0

Z al(r)At

TIA: }
=0

TIAL A TIA:
+ — Z”!“;)‘ﬁ! = ;Zn*!-(!i)[,ﬁl)*
<=0 s =

712

3
l ! I 2 2 / 3
- E}um‘.w - E;Zj:“ T (1 ) A1)

+ e (4)

The terms in the square brackets are all of order zero in At, while the others are of the first
and higher order in Ar and become negligible as Ar— 0. It follows that

T/t A
H [1 — al(t)Ar] — exp —E al(t )At
=0 i=0 ]
1+T
— exp|—a | I(tdr' (5)
/
as At — 0. Hence Eq. (1) gives Mandel’s formula for photocount statistics, viz.,
T " tt ir ]
pin,t, T) = —|a f 1t")dt'| exp|—a ] 1(thdr'|. (6)
n! : “ I

b=

T
Equation (6) is evidently a Poisson distribution in n, with parameter f I(rhdr'.
Jo
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The degree of polarization of
an electromagnetic
Gaussian Schell-model source

The cross-spectral density matrix of a Gaussian Schell-model source is, according to
Eqgs. (5) and (6) of Section 9.4, given by the formula

Hf’,j.m(p,, Py @) = \/Sf”'{p], ®) JS;“'[pj. ®) ,nt“:”(p2 —pp @), (i =x, %)= X))

i
(1)
where the spectral density
S:”'(p; w) = A? exp[—p*N207)), (2)
and the correlation coefficient
' (py = pp @) = B expl—(p, = p)*/(28D)], (3)

with the coefficients B;; satisfying the constraints given by Eq. (7) of Section 9.4.
According to Eq. (14) of Section 9.2, the spectral degree of polarization of the electric field
at a point specified by position vector p in the source plane is given by the general formula

PO(p. w) = |1 - 4 Det W(p, p. ui}_ (4)
[Tr W(p. p. w)]*

When p, = p, = p, Eq. (1) becomes

W " (p. p. @) = Jsj.“*(p. w) Js;.‘“(p. w) p 0. w), (i =xj=xy. (5
It follows that
Det wm};p‘ p. w) = WOWIi0 — widhwto)
: X L0y Ay ¥

= S"p, )5 (p. w)[1 = {20, w)]?], (6)

b )
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where we have used the fact that ((}(0, w) = 1'{)"(0, w). the asterisk denoting the complex

conjugate.
Further, it follows from Eq. (5) and from the fact that ;,(0, w) = | (i = x, v) that

TrWip. p. w) = SP(p. w) + 50 (p, w). (7

On substituting from Eqgs. (6) and (7) into Eq. (4) we obtain for the degree of polariza-
tion in the plane z = 0 the expression

pl0) -, 45-"0.“3’ w]S_i_‘“(p, ) — 14O 2
(p.w) = |l — — {1 |i“_n (0. w)-]. (8)
[S(p, @) + S©(p, )P |

On substituting from Eqs. (2) and (3) into this formula we obtain for the degree of polar-
ization the expression

i I 1
JA A exp|——p* | 5 + —
% 2 g o
PO(p, w) = |l - : —— {1 =48 _FJ. (9)
[ 2 2
A2 exp| -2 | + AZexp| - P
g 204 4 20?
We note that if
Eq. (9) reduces to
. 4AZA2 -
PO, w) = I —————(1—|B_J]). (11
(p (A7 + AL 1B, )

This formula implies that when the condition (10) is satisfied, i.e. when the rm.s. widths of
the spectral densities of the x and the y components of the electric field in the source plane
z = 0 are the same, the degree of polarization P"(p, w) is independent of p, i.e. it is the same
ar every source point. If, in addition, |B,,| = | then, according to Eq. (3), |11,,(0, w)| = 1,
implying that the x and the y components of the electric field are then completely correlated
at each source point. Equation (11) then gives P%(p, w) = 1, i.e. the degree of polarization
1S now unity at each source point, indicating that the electric field is, in this case, com-
pletely polarized across the source.



Appendix IV

Some important probability
distributions

In this appendix we briefly consider some of the most important probability distributions
and summarize their main properties.

(a) The binomial (or Bernoulli) distribution and some of its limiting cases

The binomial distribution, also known as Bernoulli’s distribution, is one of the most impor-
tant probability distributions encountered in classical physics. Some other well-known dis-
tributions such as the Poisson distribution and the Gaussian (or normal) distribution may be
regarded as limiting cases of it.

The binomial distribution applies to experiments of the repetitive kind such as, for exam-
ple, a succession of throws of dice. Let P be the probability of a certain event occurring in
a single trial. Let us determine the probability py(n, P), (n = 0, 1, 2, .. ., N), of exactly n
successes occurring in N independent trials. We will denote by S a successful outcome and
by F a failure. One possibility of having exactly n successes in N trials could be an outcome
indicated by the sequence

S 5 3 F F F F F F.
\——-—-..,—-“ = . “ [ l,]
Holimes N—=n times

By the so-called product rule for independent events' the probability of such an outcome is

P b 4 P X .P.-. > Q X Q x Q_._ _ FHQN o | F"[I = P)N_”,

n nmes N —n times

(2)

where Q = | — P denotes the probability of a failure of the event to occur in a single trial.
We are actually not interested in the particular sequence (1) but rather in all sequences
with n Ps and (N — n) Qs. i.e. n successes and N — n failures, irrespective of the order of

' See. for example, J.F. Kenney and E. S. Keeping. Mathematics of Statistics. Part Two. second edition (D. Van
Nostrand, New York. 1951), p. 10.
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the Ps and the Qs. The number of such sequences is evidently the same as the number of
ways in which one can distribute i particles among N boxes. This number is equal to the
binomial coefficient

NC =

n

NI
N]- (3)

n) (N —n)n!

Using Eqgs. (2) and (3) we see that the probability of n successes in N trials is
pMn. Py ="C,P"(1 — PYV" (0=<n=<N). (4)

This formula represents the binomial distribution.
It is not difficult to show that the first two moments of this distribution are

A!
n=)_ npynP)= NP, (5a)
n=0
s, N
n* =Y n’p,(n,P) = NP(Q + NP) (5b)
n=0
and that the variance
o? = (n — n)? = NPOQ. (5¢)

[t may be shown that in the simultaneous limit of a very large number of trials (N — =)
and a very small probability of success in a single trial (P — (), subject to the constraint that
the mean is still given by Eq. (5a). the binomial distribution given by Eq. (4) can be shown
to become the Poisson distribution’

HHE—H

p(n) = (6)

n!

n being, of course. the mean of the distribution,

The Poisson distribution is found to be a good approximation to the binomial distribu-
tion when simultaneously N = 1 and n < n.

One can readily verify that the second moment and the variance of the Poisson distribu-
tion are given by the expressions

n? =n+ne, (7a)

bl

o

= 7. (7b)

' J.F. Keency and E. S. Keeping, Marhematics of Statistics, Part One, third edition (D. van Nostrand, New York,
(1954), p. 153.
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Another important limiting case of the binomial distribution is the Gaussian distribution
(also known as the normal distribution)

e—ln—ﬁl:flza-‘l‘ ':8]

1
pn) = —==
-::w'2a

expressed here in terms of its mean i1 and its variance o°. It may be formally derived from
the binomial distribution as N — =, under certain constraints.

(b) The Bose-Einstein distribution

As we noted earlier, the binomial coefficient ¥C,,. defined by Eq. (3). can be understood
from the analogy with the problem of distributing n particles among N boxes. The particles
are regarded as physically distinct, i.e. they can be distinguished from each other.

Towards the end of Section 7.4 we encountered the concept of a cell of phase space, dis-
cussed in Appendix 1. In such a domain, photons and some other particles are, as a conse-
quence of Heisenberg's quantum-mechanical uncertainty principle, indistinguishable from
cach other. It is clear that under these circumstances the binomial distribution will not
apply. Let us examine this situation.

The probability that n such particles are located in a cell of phase space is given by Eq.
(2) as before. However, the binomial coefficient *C,,. given by Eq. (3), is no longer appro-
priate because it represents the number of ways in which n distinguishable particles are dis-
tributed. In place of Eq. (4), one then has

pvn. P) = KyP'(1 — PN, (9)

where the factor K has to be chosen so that the probability py is properly normalized. One
might expect that this factor also depends on n, but more refined analysis shows that, in
fact, this is not so.

Equation (9) has to be normalized so that

N
Y py(,P) = 1. (10)

n={)
On substituting from Eq. (9) into Eq. (10) one readily finds that

L= |}

K, =
N ] Fark ﬂl"l'r Q.V

(1)

! See, for example. A. Papoulis and S. Unnikrishna Pillai. Probability, Random Variables and Stochastic
Processes, fourth edition (McGraw-Hill, Boston. 2002), pp. 156-157, Theorem 5.2.
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where (J = 1 — P as before and

a = —, (12)

On substituting from Eq. (11) into Eq. (9) we obtain for py, the expression

=g |
_Fn N—amn —
1 —a OF ¢ |, ==

puin; P) = ol (13)

Suppose that the number of the particles is very large, i.e. that N = 1, and we formally pro-
ceed to the limit as N — o, In order that the expression (13) tends to a finite limit we must
evidently have a << 1. The formula (13) then becomes

p(n) = (1 — a)a”, (14)

where we have now written p(n) in place of py(n, P). The formula (14) is one form of the
so-called Bose—Einstein distribution for one cell of phase space.

Straightforward calculations give for the mean, for the second moment and for the vari-
ance of this distribution the expressions

x

=Y npn)=——1\ (15a)
n={) I -

l_IE = anpfn} =n (15b)
n=0

ol=n—n)? =n+ns. (15c)

Using the formula (15a) one may express the Eq. (14) in the form

Pl = —————y (16)

which is a more familiar form of the Bose-Einstein distribution for one cell of phase space.'

! The Bose-Einstein distribution for several cells of phase space is given. for example, in L. Mandel, Proc. Phys.
Soc. (London). 74 (1959), 233-243.
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All optical fields undergo random fluctuations. They

may be small, as in the output of many lasers, or they

may be appreciably larger, as in light generated by

thermal sources. The underlying theory of fluctuating

optical fields is known as coherence theory. An

important manifestation of the fluctuations is the

phenomenon of partial polarization. Actually, coherence

theory deals with considerably more than fluctuations.

Unlike usual treatments, it describes optical fields in terms of observable quantities
and elucidates how such quantities, for example, the spectrum of light, change as
light propagates.

This book is the first to provide a unified treatment of the phenomena of coherence
and polarization. The unification has been made possible by very recent
discoveries, largely due to the author of this book.

The subjects treated in this volume are of considerable importance for graduate
students and for research workers in physics and in engineering, who are

concerned with optical communications, with propagation of laser beams through

fibers and through the turbulent atmosphere, with optical image formation,
particularly in microscopes, and with medical diagnostics, for example. Each
chapter contains problems to aid self-study.




