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BACKGROUND: Metallic components are the
cornerstone of modern industries such as avia-
tion, aerospace, automobilemanufacturing, and
energy production. The stringent requirements
for high-performance metallic components im-
pede the optimization ofmaterials selection and
manufacturing. Laser-based additivemanufac-
turing (AM) is a key strategic technology for
technological innovation and industrial sus-
tainability. As the number of applications in-
creases, so do the scientific and technological
challenges. Because laser AM has domain-by-
domain (e.g., point-by-point, line-by-line, and
layer-by-layer) localized forming character-
istics, the requisite for printing process and
performance control encompasses more than
six orders of magnitude, from the microstruc-
ture (nanometer- tomicrometer-scale) tomacro-
scale structure and performance of components

(millimeter- to meter-scale). The traditional
route of laser-metal AM follows a typical “series
mode” fromdesign to build, resulting in a cum-
bersome trial-and-errormethodology that creates
challenges for obtaininghigh-performance goals.

ADVANCES: We propose a holistic concept of
material-structure-performance integrated ad-
ditive manufacturing (MSPI-AM) to cope with
the extensive challenges of AM. We define
MSPI-AM as a one-step AM production of
an integral metallic component by integrat-
ing multimaterial layout and innovative struc-
tures, with an aim to proactively achieve the
designedhigh performance andmultifunction-
ality. Driven by the performance or function to
be realized, the MSPI-AM methodology en-
ables the design of multiple materials, new
structures, and corresponding printing pro-

cesses in parallel and emphasizes their mutual
compatibility, providing a systematic solution
to the existing challenges for laser-metal AM.
MSPI-AM is defined by two methodological
ideas: “the right materials printed in the right
positions” and “unique structures printed for
unique functions.” The increasingly creative
methods for engineering both micro- and
macrostructures within single printed com-
ponents have led to the use of AM to produce
more complicated structures with multi-
materials. It is now feasible to design and
print multimaterial components with spa-
tially varying microstructures and proper-
ties (e.g., nanocomposites, in situ composites,
and gradient materials), further enabling the
integration of functional structures with
electronics within the volume of a laser-
printed monolithic part. These complicated
structures (e.g., integral topology optimiza-
tion structures, biomimetic structures learned
fromnature, andmultiscale hierarchical lattice
or cellular structures) have led to break-
throughs in both mechanical performance
and physical/chemical functionality. Pro-
active realization of high performance and
multifunctionality requires cross-scale coor-
dination mechanisms (i.e., from the nano/
microscale to the macroscale).

OUTLOOK: Our MSPI-AM continues to develop
into a practical methodology that contributes
to the high performance and multifunction-
ality goals of AM. Many opportunities exist to
enhance MSPI-AM. MSPI-AM relies on a more
digitized material and structure development
and printing, which could be accomplished by
considering different paradigms for AMmate-
rials discovery with the Materials Genome
Initiative, standardization of formats for digi-
tizing materials and structures to accelerate
data aggregation, and a systematic printability
database to enhance autonomous decision-
making of printers.MSPI-orientedAMbecomes
more intelligent in processes and production,
with the integration of intelligent detection,
sensing and monitoring, big-data statistics
and analytics, machine learning, and digital
twins. MSPI-AM further calls for more hybrid
approaches to yield the final high-performance/
multifunctional achievements, with more ver-
satile materials selection and more compre-
hensive integration of virtual manufacturing
and real production to navigate more complex
printing. We hope that MSPI-AM can become
a key strategy for the sustainable development
of AM technologies.▪
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Material-structure-performance integrated additive manufacturing (MSPI-AM). Versatile designed
materials and innovative structures are simultaneously printed within an integral metallic component to yield
high performance and multifunctionality, integrating in parallel the core elements of material, structure,
process, and performance and a large number of related coupling elements and future potential elements
to enhance the multifunctionality of printed components and the maturity and sustainability of laser
AM technologies.
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Laser-metal additive manufacturing capabilities have advanced from single-material printing to
multimaterial/multifunctional design and manufacturing. Material-structure-performance integrated
additive manufacturing (MSPI-AM) represents a path toward the integral manufacturing of end-use
components with innovative structures and multimaterial layouts to meet the increasing demand from
industries such as aviation, aerospace, automobile manufacturing, and energy production. We highlight
two methodological ideas for MSPI-AM—“the right materials printed in the right positions” and “unique
structures printed for unique functions”—to realize major improvements in performance and function.
We establish how cross-scale mechanisms to coordinate nano/microscale material development,
mesoscale process monitoring, and macroscale structure and performance control can be used proactively
to achieve high performance with multifunctionality. MSPI-AM exemplifies the revolution of design and
manufacturing strategies for AM and its technological enhancement and sustainable development.

M
etallic components are the cornerstone
of modern industry (1, 2). To a large
extent, they also determine the service
performance of an entire mechanical
system.High-performancemetallic com-

ponents are typically applied in extremely severe
environments. These components often have
complex structures with various combinations
of attributes such as ultralight weight, ultra-
high bearing capability, extreme heat resistance,
and high reliability (1, 3). Such combinations
of attributes have major implications for ma-
terial selection, manufacturing processes, and
performance requirements. Laser-based addi-
tive manufacturing (AM), also known as 3D
printing (3DP), is a key strategic technology for
technological innovation and industrial sus-
tainability (4, 5). It allows for innovative design
and integralmanufacturing of end-usemetallic
components to meet the increasing demands of
high-end industries (6, 7).
At present, the two main representative

categories for laser-based AM processes for
metallic components are laser-directed energy
deposition (LDED) and laser powder bed fu-
sion (LPBF), according to the standard ter-
minology for AM technologies established by

the International Organization of Standard-
ization (ISO)/American Society for Testing
and Materials (ASTM) (8). Although LDED and
LPBF share the same layer-by-layer fabrication
methodology, they demonstrate distinctly dif-
ferent process procedures, material and laser
parameters, and technological development
directions and opportunities (9).
LDED is an AM process in which thermal

energy (i.e., laser) is used to fuse materials
(typically in the form of powder or wire) by
melting as they are being deposited (Fig. 1A)
(8). The thickness of deposited layers during
LDED is typically no greater than 1 mm and
may be as small as several hundred micro-
meters (10). A relatively large-sized laser beam,
combined with a high laser power, is tailored
to ensure both a high productivity and a suf-
ficient laser energy input to melt the metals
(Fig. 1B). One of the remarkable features of
LDED is the high manufacturing speed with
which it can be used to build large-scale com-
ponents. Another feature of LDED is its high
flexibility, extending its applicability from 3DP
to surface coating (11), repairing (12), and re-
manufacturing (13). The precision of LDED
metallic parts is relatively low, requiring sub-
sequent machining to meet the designed struc-
ture and accuracy requirements.
LPBF is an AM process in which a laser, as

focused thermal energy, selectively fuses regions
of a powder bed (Fig. 1C) (8). The thickness of
the deposited powder layer on the powder bed
is typically below 100 mm (10), and accordingly
the metallic powder for LPBF typically has a
particle size one-third to one-half of that of
powder for LDED. A successful LPBF depends
on the uniform laying of powder layers, and
therefore spherical powder particles with a
high flowability are favored (14). Relative to

LDED, LPBF uses a low laser power but a con-
siderably finer laser beam with a high beam
quality (Fig. 1D), which not only can carry suf-
ficient laser energy to melt metals, but also can
ensure a high printing accuracy. One of the
important features of LPBF is its high man-
ufacturing precision, making it suitable for the
direct printing of complex structures. LPBF is
typically applied for net-shaping small- and
medium-sized components. As a result of high-
speed scanner and multilaser scanning tech-
nologies, the forming size of LPBF is increasing
and the maximum side length of build volume
in the largest LPBF metal additive system
today reaches 800mm (15), making it possible
to print components longer than 1 m.
Starting from the conceptualization of AM

with single-material/simple-structure printing
in the 1980s and 1990s, laser AM technologies
developed rapidly in the 2000s and 2010s to
produce complex metallic structures with im-
proved mechanical properties (we call this
“performance”). Laser AM increasingly empha-
sizes new materials and structures, as well as
faster, bigger, and more unusual printing (16),
introducingmore physical and chemical prop-
erties and functionalities that were not possible
previously (we term these “function”) (Fig. 1E).
Although the industrial applications of laser-

metal AM are continuously broadening, AM is
still a developing technology by comparison to
traditional casting, forging, and welding tech-
nologies. As a result, a series of scientific and
technological challenges are emerging. First, the
categories of commercially available metallic
materials for AM are very limited. The process
enhancement of AMurgently calls for serializa-
tion of existing and new materials with ele-
vated AM applicability (17, 18). Second, the
point-by-point, line-by-line, and layer-by-layer
localized forming characteristics of AM require
cross-scale coordinationacross at least six orders
of magnitude, including nano/microscale phase
and microstructure control (material-related)
(19, 20), mesoscale interaction between laser
and printingmatter (process-related) (21, 22),
and macroscale component-forming processes,
performance control, and application verifi-
cation (structure- and performance-related)
(23, 24). However, as a consequence of the high
complexity of the interaction of these multiple
factors, the cross-scale control principles and
methods for precise laser AM of metallic com-
ponents have not been systematically estab-
lished. Third, a successful laser-metal AM
ultimately relies on performance enhance-
ment or even multifunctional breakthrough
of components. However, the material prepa-
ration, structure design, process control, and
performance/function realization for laser
AM are often empirical and are handled sepa-
rately, and fundamental scientific theories that
might guide a systematic approach are lack-
ing. To tailor a complicated laser-metal AM for
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a particular processing task therefore requires
a complete, fundamental understanding of
the basic sciences behind laser AM processes
(6, 9, 17).
The interdisciplinary nature of laser-metal

AM determines its rich scientific and techno-
logical connotations with respect to material
(25–28), structure (29–32), process (17, 33),
performance/function (34–36), and associated
applications (37–39). Several other excellent
reviews address recent advances in these in-
dividual areas (25–39). We do not address these
aspects separately, but instead propose a holis-
tic concept of “material-structure-performance
integrated additive manufacturing” (MSPI-AM)
to cope with the extensive connotations of AM,
providing a systematic solution to the above-
mentioned challenges for laser-metal AM. We
define the concept of MSPI-AM and highlight
its characteristics, emphasizing opportunities
for creating high-performance/multifunctional
metallic components via MSPI-AM. We then
propose cross-scale coordination mechanisms,

basic sciences, and technical approaches for a
proactive implementation of MSPI-AM. Fi-
nally, we share our perspective on future di-
rections for the improvement of MSPI-AM
and sustainable development of laser-metal
AM technologies.

Defining MSPI-AM

Conventional design and manufacturing ap-
proaches for metallic components with multi-
ple performance/function requirements usually
involve the individual design of structures and
materials and subsequent manufacturing and
assembly. For example, in the aerospace indus-
try, a planetary exploration lander is subject to
an extremely severe service environment during
landing (Fig. 2A), hence its bottom component
has strict requirements for bothmechanical and
physical properties (Fig. 2, B and C). The
commonly applied method for this category
of components is hierarchical manufacturing
and assembly, which involves several conven-
tional methods such as equivalent manufactur-

ing (e.g., forging, sheet metal forming, welding)
and subtractivemanufacturing (e.g., machining)
(Fig. 2C). Equivalent manufacturing, exempli-
fied by the bronze casting technique of early
China, has more than 3000 years of develop-
ment, whereas subtractive manufacturing
technologies, promoted by the invention of
electromotors, have emerged over the past
300 years (40). The equivalent and subtractive
manufacturing processes have always proven
to be irreplaceable to modern industries. Even
so, the conventional route for the bottom com-
ponent of the lander (Fig. 2C) normally requires
repeated trial-and-error and coupling steps
and, consequently, faces obstacles such as lim-
ited structure and material selection, compli-
cated processes, serious overweight risk, and
insufficient performance or function.
Laser AM has demonstrated substantial po-

tential in high-performance/multifunctional
design and integratedmanufacturingofmetallic
components, turning “assembled parts” into
an “integral component” (29, 30). Currently,
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Energy intensity: 104–105 W/cm2

Building rate: ~0.2 cm3/min (193)

Beam quality factor (fiber laser): 
0.3–4 mm·mrad (192)
Typical beam size: 70–200 µm (194–196)
Energy intensity: 106–107 W/cm2
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Building rate: 0.1–4.1 cm3/min (184)

Typical beam size: 3–6 mm (185,188)
Energy intensity: ~105 W/cm2

Building rate: 11.5 cm3/min (189)
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Fig. 1. Development of two categories of representative laser-metal AM technologies. (A and C) Schematics of LDED (A) and LPBF (C). (B and D) Typical
development stages of processes (magenta-tagged), laser categories (blue-tagged), and laser and printing parameters (green-tagged) for LDED (B) and LPBF (D) of
metals (181–196). (E) Timeline of major features and progress in the technological development of laser-metal AM.
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material forming by AM enables high-
performance printing of multimaterials such
as metal-matrix composites (41–43), in situ
composites or nanocomposites (44–46), and
gradient materials (25, 47, 48). Structural in-
novations for AM, such as integrated topology
structures (49, 50), biomimetic structures (51, 52),
and hierarchical cellular or lattice structures
(53, 54), are emerging, leading to performance
or function breakthroughs such as enhanced
load bearing, energy/impact absorption, propul-
sion, and thermal management. Nonetheless,
current laser-metal AM still follows a tradi-
tional route: A specific AM process, based on a
particular structural design and material selec-
tion, is tailored to create components and en-
sure performance. This route is a typical “series
mode”; “performance” occurs as the result of

the printing (“process”) of “material” and
“structure.” It may be necessary to adjust,
respectively, the parameters in the domains
of material, structure, and process to obtain
the expected performance (55). This material-
structure-process method—sequential but sep-
arately controlled—requires repeated trial and
error to realize the performance of printed
components (56).
MSPI-AM represents an opportunity to

reduce this trial-and-error process. We define
MSPI-AM as a one-step AM production of an
integral metallic component by integrating
multimaterial layouts and innovative struc-
tures, with an aim to proactively achieve the
designed high performance and multifunc-
tionality. With respect to multifunctionality,
MacDonald and Wicker (34) have provided a

state-of-the-art overview of multiprocess (or
hybrid) 3DP, which entails not only the print-
ing of multiple materials frommetals to non-
metal materials but the embedding of active
components to deliver electronic, electromagnetic,
optical, chemical, and other functions (34).
For 3DP of a metallic component, because of
its highmelting point and difficult-to-process
nature, the material combinations and appli-
cable AMprocesses have substantial limitations.
The realization of multifunctionality of laser-
printedmetal components therefore becomes
more difficult. Because the high-temperature
printing of metals increases the difficulty of
embedding active components and/or main-
taining their functions (57), themultifunctionality
of 3DP metallic components depends more on
thedesignofmultimaterials andnovel structures.
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Fig. 2. Example of MSPI-AM of an integral metallic component for potential
aerospace applications. (A and B) Schematics of a planetary exploration lander
and an extremely severe service environment during landing. (C) Conventional
hierarchical manufacturing and assembly approach for a bottom component of a
lander with multifunctional requirements, likely to result in complicated processing
procedures and overweight risk. (D to H) MSPI-AM approach for multifunctional
design and manufacturing of an integral component. (D) Structure steps as
described in Box 1. (E) LDED main frame structure, where carbon nanotube (CNT)–

reinforced titanium-based nanocomposites are potential candidate materials (80).
(F) LPBF shock-absorbing structure derived from the diving bell of a water
spider [right image reproduced from (197) with permission]. The upper inset in (E)
shows its assembly method along the stiffeners of the main frame structure. (G)
LDED thermal insulation structure inspired by the natural armor of Chrysomallon
squamiferum [upper image reproduced from (198) with permission], where
multilayered Ti6Al4V/TiB2 laminates are potential candidate materials (199). (H)
LDED surface thermal protection structure derived from honeycomb (200).
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Box 1. Example of MSPI-AM realization approaches and scientific issues.

We use the design and AM of a multifunctional integral bottom component for potential applications in the next-generation planetary exploration lander as
an example to illustrate the concept of MSPI-AM, with its implementation philosophy, approaches, and scientific issues involved as follows. These scientific
challenges and issues have common implications for laser AM of other similar materials and structures.

Integration of processes: Multiprocess hybrid printing and integrated manufacturing

Printing and manufacturing procedures Candidate processes Scientific challenges and issues

Printing of main frame structure (i) LDED with powder or wire - Optimization of laser printing strategies
and parameters for densification and
defects control

- Stress evolution and deformation
control of main frame structure and stiffeners

- Control and improvement of printing accuracy
of topology optimization structures

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. .

Machining the assembly surface
along stiffeners for structure (ii)

Computer numerical control
(CNC) milling

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. .

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ...

Printing of shock-absorbing structure (ii) LPBF - Coordination of laser powder-melting behavior
and printing process

- Control of metallurgical defects, e.g., balling effect,
lack of fusion, porosity, and powder sticking

- Dimensional accuracy and surface smoothness control
of printed bioinspired reticular structures

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. .

Machining the assembly surface and
assembling with structure (i) along
stiffeners (Fig. 2E)

CNC milling and assembly

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. .

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ...

Building the printing support for structure (iii)
across surface of assembled structures (i) and (ii)

LDED - Influencing mechanism of laser energy input on assembled
structure and its deformation

- Crack and deformation control of multimaterial laminated,
curved surface structure

- Interfacial interconnectivity of multimaterials and
multistructures across different scales

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. .

Printing of thermal insulation structure (iii) LDED
.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. .

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ...

Printing of thermal protection structure (iv) LDED - Interfacial adhesion of laser-printed high-melting-point
material/structure on curved surface

- Warpage and crack control of printed cellular structure
under multiple structural and stress constraints

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ...

Integration of structures and materials: Performance-driven design of hierarchical structures and multiple materials

Hierarchical structure
and function

Structural feature Candidate materials Scientific challenges and issues

(i) Lightweight, load-bearing
main frame structure

Topology-optimized frame structure
with stiffeners (Fig. 2E)

- High-strength Al alloy and
Ti alloy

- Al-matrix and Ti-matrix
composites

- Laser printability and metallurgical defect control
- Microstructure control and phase precipitation
- Simultaneous enhancement of strength and
ductility of printed materials

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. .

(ii) Shock-absorbing and
impact-resistant structure

Reticular structure inspired by diving
bell of water spider (Fig. 2F)

- High-strength Al alloy - Response of materials to structural complexity
and laser-forming ability

- Relation between point-by-point printed material
and overall structure performance

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. .

(iii) Thermal insulation structure Multilayered structure inspired by
natural armor of Chrysomallon
squamiferum (Fig. 2G)

- Alloy/ceramic laminates
- Alloy/alloy laminates

- Coordination of hardness, thermal conductivity,
and coefficient of thermal expansion of materials

- Control of interlayer printing defects and adhesion
- Stress and deformation control of laser-printed
integral curved surface

.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. .

(iv) Surface heat–resistant
and thermal
protection structure

Cellular structure inspired by
honeycomb (Fig. 2H)

- High-temperature Ti alloy
- Ni-based superalloy

- Conformal deposition behavior and interfacial
bonding properties of materials on curved surface

- Microstructure and performance evolution of laser-
printed materials at high temperature
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The MSPI-AM strategy is therefore vital to the
final high-performance/multifunctional goals of
laser-metal AM.
MSPI-AM is within the framework of AM

and inherits its enormous design freedom and
other advantages. Also, MSPI-AM displays the
revolution in design and available manufac-
turing strategies for AM, which elevates both
the scientific challenges and technical approaches
of AM. As an example, we apply MSPI-AM to
the planetary lander example (Box 1). Versatile
designed materials and innovative structures
are simultaneously printed in different posi-
tions by multiprinters and multiprocesses with-
in an integral component to yield a specific
performance or function (Fig. 2, D to H). Use
of the performance-driven MSPI-AM method-
ology leads to the design of multiplematerials,
new structures, and corresponding printing
processes in parallel, with an emphasis on
their mutual compatibility.

The right materials printed in the
right positions

MSPI-oriented AM requires the controllable
incorporation of multiple materials in differ-
ent positions within a component to meet
multiple requirements. Multiphase distribution
with zero- to two-dimensional reinforcing phases
is the simplest mode for multimaterial distribu-
tion in a microscale. The idea of alloying is
normally realized by multiphase distribution
and strengthening of 0D nanoparticles. Laser
AMalloys—either conventional stainless steel
(58) or recently developed Damascus-like mar-
aging steel Fe19Ni5Ti (59) and high-strength Al-
Mg-Sc-Zr (60), Al-Mg-Si-Sc-Zr (61), andAl-Mn-Sc
(62) alloys—commonly demonstratemultiphase
distribution with the precipitation of ultrafine
nanoscale reinforcing particulates in specific
positions of fusedmelt pools. LPBF processed
alloys typically have heterogeneous hierarchi-
cal microstructures—consisting of fusion boun-
daries, dendritic and/or cellular structures,
dislocations, precipitates, segregated elements,
etc.—with the microstructural length scales
spanning five to six orders of magnitude from
nanometer to submillimeter (58, 59). The

solidification cellular structures are commonly
reported in Fe-based and Al-based alloys prod-
uced by LPBF (58, 59, 62), which is a major
contributor to the strength (58). The solute
segregation and precipitates of nanoparticles
are also observed along the walls of cellular
structures in LPBF 316L stainless steel, which
can promote dislocation pinning and twinning
for a large uniform tensile elongation (58).
Laser AM of alloys by adding secondary nano-
particles further highlights the precise design
and control of multiphase distribution. A typ-
ical strategy is to introduce Zr nanoparticles
as nucleants in 7075 aluminum alloy, which
changes the columnar growth of dendrites to
a fine equiaxed grain growth ofmatrix during
LPBF, thus eliminating hot cracking by re-
ducing solidification shrinkage and strain
(63). Adding peritectic-forming lanthanum
nanoparticles in titanium creates a promising
laser solidification path for the a phase, yield-
ing equiaxed microstructures with reduced
anisotropy (64).
In contrast to the phase complexity of most

alloys, high-entropy alloys (HEAs) have a high
mixing configurational entropy originated
from a mixing of five or more principal metal
elements to stabilize the simple solid-solution
structures (65, 66). Both LPBF and LDED have
demonstrated high potential in developing
HEAs with excellent mechanical performance
[e.g., strength-ductility synergy (67–69), fatigue
(70), creep (71), and damage-tolerant (72) be-
haviors] and functions [e.g., magnetic property
(68), corrosion resistance (69, 72), and high-
temperature oxidation resistance (73)]. Laser-
induced superfast cooling rates of LDED and
LPBF help to prevent the formation of detri-
mental intermetallic compounds and the dif-
fusion of constituent elements (65). However,
laser rapid solidification tends to cause a large
temperature gradient and resultant residual
stresses, intensifying the possibility of cracking
in laser-printed HEAs. The element combina-
tions free of formation of intermetallics and
insensitive to stress and cracking are recom-
mended primarily for the composition design
ofHEAs to enhance their laser printability (65).

Another advantage of LDED and LPBF for
HEAs lies in their capability to yield a hierarchy
of microstructures including grain refinement,
elemental segregation and precipitation, in-
creased dislocation density, and deformation
twinning (66, 74), thereby facilitating the
microstructural and performance/function
manipulation of laser-printed HEAs.
The formation of composites by incorporat-

ing different metal matrices and reinforcing
phases can make the types, contents, mor-
phologies, and distributions of reinforcements
more diverse and designable. A homogeneous
incorporation of ceramic particles throughout
a matrix is the most common layout manner
for reinforcement (75) (Fig. 3A). Unfortunately,
the easily occurring particle agglomeration and
limited ceramic-metal wettability cause inter-
facial micropores and cracks, as well as a
dilemma known as strength-ductility trade-
off (76). Interface modification through laser-
tailored construction of a gradient interfacial
layer between ceramic and metal proves effi-
cient in eliminating interface defects and
achieving a simultaneous improvement of
strength and ductility (77–79). Laser-tailored
in situ reaction further expands the formation
mechanisms of reinforcing phases. Laser-metal
AM is distinguished by its unique laser energy
feature and metallurgical mechanism. The
peak temperature in laser-induced melt pool
can be several hundred degrees above the
liquidus temperature of an alloy, and even as
high as the boiling point of the alloy for
keyhole mode printing (17). The cooling rates
during laser rapid solidification reach 105 to
107 K/s for LPBF and 102 to 104 K/s for LDED
(6, 9). Laser-tailored in situ reinforcements
can have novel 1D whisker- or strip-structured
(80) or 2D nanosheet- or lamellar-structured
(81) growth features (Fig. 3, B and C) with
metallurgically coherent interface with the
matrix. The synergistic action of novel reinforc-
ing structure, interfacial coherence, andmatrix
microstructures/dislocations contributes subs-
tantially to the enhancement of both mechan-
ical performance [e.g., tensile (41–43), wear/
friction (82, 83)] and physical or chemical
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laser-printed multistructures
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functions [e.g., high-temperature oxidation
resistance (84, 85), corrosion resistance
(86, 87), superhydrophobicity (88)] of laser
AM components.
Nozzle-based LDED is sufficiently flexible to

enable a macroscale layout of two or more
materials within a single component. With
multiple powder or wire feeders, this approach
allows for the depositing of multiple materials
in various positions to yield compositionally or
functionally graded structures by dynamically
changing the desired materials at specific times
and positions during printing. One of the most
widely applied forms for multimaterial print-
ing is the 2D gradient distribution of different
layers of materials along a building direction
(25, 47, 89) (Fig. 3, D and F). The 3D gradient
distribution of different materials both within
and between deposited layers, despite its higher
technical difficulty, offers a more site-sensitive
and material-specific mode for multimaterial

layout (Fig. 3E). With the development of an
in situ powder mixing and feeding system in
a LPBF machine, the LPBF process, which
was previously limited to single-material use
(25), broadens its capability in multimaterial
printing (Fig. 3G) (90, 91). A great challenge
for AM quality control is miscibility of the
deposited material layer with the previously
deposited ones (92). Mismatches in physical
properties (e.g., melting temperature, laser ab-
sorptivity, coefficient of thermal expansion,
and thermal conductivity) are the governing
factors in inhibiting intermaterial/interlayer
bonding (25, 47, 92).
The first step toward reducing the degree

ofmismatch is to optimizemultimaterial com-
bination. Metal-metal combinations [e.g., stain-
less steel 316/316L with Ti-6Al-4V (93), Inconel
625 (94), and copper alloys (91, 95)] demonstrate
the processability required to achieve gradi-
ent structures using both LDED and LPBF.

Nonetheless, the formationofbrittle intermetallic
phases is prone to occur at the gradient interface,
which is a main cause for cracking and even
delamination of deposited materials (92–94).
A direct metal-ceramic AM in a single compo-
nent is still far from mature (25). In some
extreme cases, the temperature at which a
ceramic can efficiently melt and flow is even
higher than the vaporization temperature of
a metal. Altering printing parameters and
strategies according to the specific materials
being printed is the secondmeasure to create
a targeted printing environment to alleviate
the detrimental influence of material mis-
match (89, 91, 93, 96). Third, the composi-
tional gradation approach, which introduces
a gradual transition structure between ce-
ramic and metal, is efficient in reducing mis-
match and metallurgical defects. It can be a
compositional intermediate layer designed
in the component model to metallurgically
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Fig. 3. Laser AM of multiple materials and sensors within a monolithic
metallic component to demonstrate “the right materials printed in the
right positions.” (A to C) Multiphase distributions in laser-printed metal-
matrix nanocomposites: (A) zero-dimensional (0D) TiC nanoparticles in Al
matrix [image reproduced from (75) with permission], (B) one-dimensional
(1D) nano-whisker structured TiC reinforcement in Ti matrix (80), and (C)
two-dimensional (2D) graphene nanosheet in Fe matrix [image reproduced
from (81) with permission]. (D to G) Multimaterial distributions in laser-
printed compositionally graded structures. [(D) and (F)] LDED Ti6Al4V
(TC4)–Al2O3 multimaterial structure with 2D gradient distribution of different

materials between deposited layers [(F); image reproduced from (89) with
permission]. [(E) and (G)] LPBF 316L–glass multimaterial object with 3D
gradient distribution of different materials both within and between deposited
layers [(G); image reproduced from (90) with permission]. (H and I) LPBF
enabling the structural integration of sensors in complex monolithic metallic
structures. (H) Selective laser-sintered temperature sensor structures on a
glass insulation layer (blue) and on a stainless steel substrate (gray) [image
reproduced from (103) with permission]. (I) Selective laser-melted smart
femoral hip stem with the embedded sensor in the printed carrier structure
[image reproduced from (104) with permission].
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bond two immiscible materials during AM
(97). Another ingenious transformation is the
printing of ceramics in the form of metal
matrix composites (MMCs) (98, 99) to in-
crease compatibility with metals. The con-
tents of ceramics can continuously change in
gradient along one or more spatial directions
to allow for the local tailoring of properties.
Beyond the alloys, composites, and multi-

materials with spatially varying microstructures
and properties, the next level of complexity of
3DP is the integration of functional structures
with electronics within the volume of a printed
part (34, 57, 100, 101). This “material-sensor”
distribution,with structural integration of active
components in a laser-printed monolithic part,
delivers more functionality and even intelli-
gence, thereby broadening the connotation of
“multimaterial” printing. 3DP structureswith
electronics have comprehensive requirements
of high surface finish and minimal porosity,
high structural precision and spatial resolution,
and superior electrical, thermal, and mechan-
ical properties (102). Amultiprocess production
combining AM and complementary processes
is necessary to realize material-sensor distri-
bution, providing spatial control of the main
structure, active components, subcomponents
(e.g., wires and antennas), and available func-
tionality. First, the integration of sensors into
a customized component can be realized by
either (i) multilayer AM of different materials
to build up an entire, individualized sensor
compatible with a structure without adhesives
(103) (Fig. 3H) or (ii) embedding of sensors
directly into a printed structure with AM pro-
cess interruption, followed by the creation of
connections between sensors and surrounding
components to obtain sensitivity (104) (Fig. 3I).
For this purpose, amultiprocess AMproduction
route should be optimized to avoid the detri-
mental influence of the surrounding printing
matter (e.g., possible residual metal powder) on
the functional efficiency of encapsulated active
components (105). Second, the operative tem-
perature of laser-metal printing should be strict-
ly controlled to avoid overheating andmaintain
the functions of temperature-sensitive active
components (57). Third, the installation position
and functional connection interfaces of active
components need to be designed to achieve a
balance between the laser printability of basic
structures and the operability of the embedding
process (104–106).

Unique structures printed for unique
functions

“Design for AM” has received intensive atten-
tion as a means of broadening the freedoms
and benefits of AM technologies (29, 30). De-
sign for AM integrates multiscale levels, ranging
from material-level design with microstructural
complexity to component-level design with
macrostructural complexity. We use three

representative structures for AM—topology
structure, cellular structure, and biomimetic
structure—to describe the methodologies, prin-
ciples, challenges, and solutions for structural
design and multifunctionality for laser-metal
AM (Fig. 4) that are also broadly applicable to
other materials and structures.
Topology optimization (TO) design of mono-

lithic components is of particular importance
for applications of AM in building aircraft,
aerospace, and automotive structures (32, 50),
primarily motivated by the substantial weight
reduction (29–32). For example, a satellite
bracket with TO configuration filled with
internal lattice structure results in a 17%
weight reduction (Fig. 4A) (50). The AM-applied
TO is often in the structural domain (29). The
structural TO determines the optimal layout of
the solid or void of subregions that constitute a
continuum structure (107) in order to achieve a
desired performance or functionality for a given
set of loads and constraints (29, 108). Structural
TO assumes that the structure is composed of a
single homogeneous material and that material
is either present or absent in each subregion
of the design domain (29, 107). The best dis-
tribution of material is realized by creating,
merging, and splitting interior voids during
structural evolution (31). Therefore, the essence
of TO is to place the voids and materials of
appropriate sizes and configurations into the
appropriate positions of a monolithic compo-
nent, reaching its design goals such asminimal
material usage, uniform stress distribution,
and long service life. As AM substantially in-
creases design freedoms by reducing some
manufacturing limitations, AM-assisted TO
has advanced from the preliminary weight-
saving structural design of a single homoge-
neous material to complex multimaterials
and multiphysics design (109). Many exam-
ples are available where laser-based metallic
AM is making a substantial impact on the
promotion of TO to a multifunctional level
(110–113). TO has been applied in a range
of design objectives for AM to fulfill multi-
functionality [e.g., heat conduction (110) and
thermal-fluid (111), electromagnetic (112), and
shockwave propagation (113)].
This sort of TO design brings merit to an

application only when it has manufacturabil-
ity. Although amajority of TO structures could
be printed by polymer-based AM processes,
difficulties may arise when using metallic
AM for the direct printing of nontailored TO
structures (30), especially when handling the
multimaterial, multiphysics, and multifunctional
TO. Laser-metal AM introduces extra manu-
facturability-related constraints or boundary
conditions to TO, such as supports for over-
hanging structures, minimum printable struc-
tural resolution, anisotropicmaterial properties,
and interior strain and stress (30, 32). Research
on TO for AM should be accordingly geared

toward both physically and digitally print-
ready TO designs (e.g., support-free structures,
smooth and well-defined boundaries, etc.) in
order to bridge the challenges of TOdesign and
laser-metal AM fabrication (32).
Cellular structures (CSs) are another cate-

gory promoted by AM. CSs are created by
designing the configuration and volume frac-
tion of a unit cell having a characteristic scale
of 0.1 to 10 mm (53), building up a volume
based on an interconnected network of unit
cells. Foams (random connectivity of unit
cells), lattices (regular/periodic connectivity),
honeycombs, and structures similar to these
are included in CSs (53). From the primary
target of lightweight CSs produced by AM,
the minimum wall thickness and finest re-
solvable feature size are the manufacturing
constraints (29, 32). Therefore, the basic idea
of material distribution for CSs is to put the
minimum amount of materials only where it
is necessary for particular functions and ap-
plications. Laser AM can create hard-to-produce
metallic CSs with specific mechanical, thermal,
acoustic, optical, and biological properties (29).
Typically, the mechanical behavior of CSs is
anisotropic (53), and the type, dimension,
orientation, and boundary conditions of the
periodic unit cells determine the final porosity,
properties, service, and failure mechanisms.
Various optimization methods [e.g., computer-
aided design and finite element modeling (53)
and topology optimization (29)] are developed
for the design of CSs, particularly considering
the periodicity of unit cells, homogenization of
interconnected networks, and additive manu-
facturability. Although periodic arrangements
of identical unit cells are common for a vast
majority of CSs, a conceptual change in print-
ing multiscale, hierarchical lattices by mimick-
ing crystalline microstructures (Fig. 4B) yields
robust and damage-tolerant functions relative
to arrangements of identical unit cells (114),
which opens up opportunities for architected
CSs with breakthroughs in functionality. This
lightweight and damage-tolerant architected
structure has potential applications in produc-
ing the blades for next-generation airplane en-
gine (114) where each blade contains multiple
cellular domains that are filled with crystal-
inspired meso-lattice features (Fig. 4B).
After 3.8 billion years of natural evolution,

organisms have optimized complex materials
and structures to fulfill specific functions to
meet the competition from the external en-
vironment (115). “Biomimicry” or “bioinspira-
tion,” the development of solutions based on
biological adaptations, aims to provide the
optimized material and structural strategies
learned from nature in solving engineering
problems (51, 52). An example of the magic of
bioinspiration is the full-scale aircraft wing
optimized by gigavoxel computation and 3DP-
demonstration, which shows remarkable
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similarity to naturally occurring bone struc-
tures of bird beaks (116). A general method-
ology for biomimetic AM consists of problem
definition, analogy search and preselection,
analysis and abstraction of biological model,
and transfer to engineering design and AM
production (117). Biomimetic AM implies the
bioinspired printing of naturally optimized
structures to yield multifunctional components.
A key challenge is how to “duplicate” the finely
developed natural structures with the right
materials. An example is the selective laser-
melted lightweight, functional graded sand-
wich structure inspired by the Norway spruce
stem and printed with titanium alloy, having
both thermal protection (118) and load-bearing
(119) functions, which finds its potential appli-
cations in the aerospace industry for compo-

nents of hypersonic vehicles and reusable
launch vehicles (118) (Fig. 4C).
The use of digital imaging tools (e.g., x-ray

microcomputed tomography) (115) can yield
an in-depth understanding of natural struc-
tures, which is particularly important for
determining spatial structural and material
information as bioinspiration for AM design.
Bioinspired structural design elements typi-
cally have eight common categories of fibrous,
helical, gradient, layered, tubular, cellular, suture,
and overlapping structures (120). A true natural
structure, however, exhibits the multiscale hier-
archical repetition of various structural forms to
provide superior properties over a single struc-
ture. Meanwhile, material multiplicity and their
layout manner contribute to the particularity of
natural structures. Although their compositions

are considerably different from those of metals,
the material layout principles are worth learn-
ing and implementing in high-performance/
multifunctional AM design and production.
The various forms ofmaterial and structural

complexities bring substantial challenges to
AM manufacturability. The first challenge is
the gap between the designed high-quality sur-
face and structural precision and the limited
manufacturing accuracy and quality (121, 122)
(Fig. 4E), caused by some typical defects asso-
ciated with laser-metal AM such as (i) stick-
ing of unmelted powder, balling effect of melt
and rough surfaces (53); (ii) residual micro-
porosity and metallurgical imperfections (115);
and (iii) residual stresses and resultant defor-
mation and cracking (117). The efficient control
of these defects toward ahigher printingprecision
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depends on the tailored coordination of a
whole printing chain including laser-material
absorption, material melting, formation of
melt pool, and subsequent rapid solidifica-
tion. The second challenge is the anisotropy
of materials and properties (123) (Fig. 4F),
which is either the process-induced anisotropy
caused by the layer-by-layer manufacturing
nature of AM or the intrinsic anisotropy
arising from the material or structure itself
(e.g., multilayered composites or anisotropic
lattices) (124). Laser-printed anisotropy can
be alleviated by a robust optimization algorithm
development for design, by a material and
microstructure homogenization, and by a laser
printing strategy and parameter control (124).
The third gap is reflected by the current prac-
tice in which the designs for laser-metal AM
are usually oriented toward mechanical prop-
erties or limited functions, and the function-
alization of AMcomponents needs to be further
enriched to strengthen the diversity of func-
tions (Fig. 4G).

Realizing MSPI-AM

The complexity of parameters is intrinsic to
AM, and an entire AM chain includes nearly
130 input- and influencing parameters (5). A
MSPI-AM implies a comprehensive integration
of various elements and parameters of material,
structure, and performance/function within a
monolithic component, and its implementation
approaches generally include two levels: the
internal coordination of individual elements
and their mutual integration.

Nano- and microscale material control

The fundamental unit of a printed component
is the grains and their microstructures of the
material, with the length scale ranging from
several nanometers to submillimeter scale
(58, 59). The atomic-scale structures [e.g.,
nanoprecipitates (60–62), supersaturated
solid solution (125), solute microsegregation
(59), and atomic-scale impurities (58)], as the
minimum hierarchy of AM microstructures,
normally play an underlying role in determin-
ing the performance of laser-printed metallic
materials. The material-related approaches for
MSPI-AM are typically realizedwithin a nano- or
microscale by controlling phases, microstruc-
tures, and interfaces. First, the homogeniza-
tion of each individual material (i.e., grain
structure homogeneity) through material
design and process optimization is the basis
for multimaterial printing and integration
within a single component (Fig. 5A). Gener-
ally, laser-tailored formation of fully equi-
axed, homogeneous fine grains is favorable for
high-performance laser-metal AM (63, 126).
Assembling nanoparticles onto aluminum-
based (63, 79), nickel-based (78), or iron-based
(127) powder to prepare nanocomposites dem-
onstrates its feasibility, which is attributed to

the mechanisms of increased nucleation sites
and grain-growth retardation. Alloying is an
alternative method to improve crystallization
behavior for metals without grain refiner. An
example is laser-printed titanium-copper alloys
having a high constitutional supercooling ca-
pacity, which offsets the negative effect of a
laser-induced high thermal gradient and en-
sures a complete columnar-to-equiaxed transi-
tion (126). The incorporation of external energy
fields [e.g., high-intensity ultrasound (128) and
strong magnetic field (129)] during AM also
yields fully equiaxed grains and improved me-
chanical properties without changingmaterial
composition.
Second, tailoring a sound compatibility be-

tween multiple materials further strengthens
multimaterial integration through interfacial
coherence and its control (Fig. 5B). A simulta-
neous occurrence of the melting/solidification
transformation of the current printing mate-
rial and the cyclic reheating and solid-state
phase transformation in the previously printed
materials (so-called “intrinsic heat treatment”)
generates hierarchical phases and microstruc-
tures (59) and complex residual stresses (9, 130).
MSPI-AM calls for a metallurgically coherent
intermaterial interface free of defects such as
voids, cracks, and incomplete fusion (91, 92, 95),
as well as an atomic-scale coherent interphase
interface with minimal lattice misfit (80) for
performance/function enhancement. Therefore,
a multimaterial combination with sufficiently
high mutual wettability is preferred (131, 132)
and the individualized printing parameters can
be optimized to correspond to specific mate-
rials (89, 91, 93, 96), thereby improving
interphase/intermaterial interfacial coherence
in the printed components. LDED of copper-
nickel with improved wettability yields nearly
full densification and a defect-free Cu-Ni graded
structure (131), whereas the homogeneous melt-
ing tracks cannot be produced during LPBF of
Ag/SnO2 contact material as a result of insuffi-
cient wettability (132).
Third, because the multimaterials are nor-

mally presented in different structural forms,
an ultimate importantmaterial-related approach
for MSPI-AM is to build the correlation between
materials and structures to adapt to a specific
performance or function. The main consider-
ations are (i) the applicability of the chemical
compositions, physical properties, and mechan-
ical properties of a specific material system to
the designed structure and performance, and
(ii) the attendant (sufficiently high) material/
structure printability. A typical example is the
LDED process for porous Ti-Ta alloys coating
on a Ti6Al4V acetabular cup (Fig. 5C), which
incorporates the excellent biocompatibility of
Ta and the good mechanical properties and
processability of Ti. LDED-printed Ti-Ta alloys
incorporate microporosities during processing,
as well as in situ nanoscale surface modifica-

tion to enhance both in vitro cytocompatibility
and early-stage in vivo osseointegration (133).
Another example highlighting the contribution
of material selection to the printed function is
the bimetallic LPBF approach to embedding
dissimilar tagging material (Cu10Sn copper
alloy) safety features into 316L stainless steel
components. The heavier atomic weight of
the tagging material and its thicker printed
layer contribute to higher contrast in digital
x-ray images, enabling effective identification
of the embedded tags (134).

Mesoscale process control

A successful realization of MSPI-AM relies di-
rectly on a tailored laser AMprocess. The length
scales of process-related physical metallurgical
phenomena are typically at the “mesoscale,”
between the material-related microscale and
the component-related macroscale. MSPI-AM
requires precise control of an entirely inter-
connected process chain, involving four se-
quentially dependent scientific issues (Fig. 5,
D to G), which relies on high-fidelity meso-
scale simulations and technical control of heat
transfer, thermodynamics, and fluid dynamics
during AM. First, the interaction of the laser
with the matter being printed directly deter-
mines whether printing can be initiated. For
LPBF, as a consequence of multiple reflections
in open pores throughout the powder layer,
laser energy penetrates to a depthmuch greater
than the powder scale until finally reaching the
underlying printed layer (135–137). For LDED,
the laser beam generates a melt pool on a
substrate where the filler material (typically
powder) is injected. The laser goes through a
cloud of injected powder, during which a
substantial percentage of energy is absorbed
by the powder. Absorptivity varies in a com-
plicated way as a function of particle morphol-
ogy beforemelting (138),melt poolmorphology
aftermelting, and real-time processing temper-
ature (136, 139). The effective absorptivity of
powder under a wide range of laser powers is
affected by the transition from conduction-
mode melting at low power to the keyhole
mode at high power (139, 140). The absorp-
tivity increases with laser power, because a
widening depression of melt at a higher power
can accommodate more reflections with more
energy absorption events (139). At the higher
powers beyond the keyhole transition, a satu-
ration value in absorptivity is reached. A sharp
decrease in absorptivity occurs when full melt-
ing of the powder tracks occurs, followed by
a keyhole-driven increase at even higher pow-
ers (136).
Second, energy absorption follows more

complex physical processes of powdermelting,
melt pool formation, and defects such as
spatter (139), denudation (141), and keyhole-
induced porosities (142). In terms of modeling
methodologies, high-fidelity numerical simulations
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such as finite-element simulation for thermal
modeling (143), computational fluid dynam-
ics calculation for melt dynamics (144), and
multiphase flow modeling for spattering and
denudation (145) help to improve the funda-
mental understanding of the physical mech-
anisms for these phenomena. Recoil pressure
and Marangoni convection are important in
shaping the melt pool flow and determining
how denudation, spatter, and pore defects
emerge during LPBF (139–145). Spattering is
a combined effect of the jetting vapor and
attendant vortex flow of ambient gas, whereas
denudation is driven by the vortex flow of
ambient gas, where particles close to the vapor
jet are entrained inward (145). The laser-spatter
interaction affects the printed track quality by
increasing the melt pool depth fluctuations
(139). A low laser power fails to expel the cluster
of spatters. Instead, the laser boils the top
surface of the cluster and the recoil pressure
presses it down into the melt pool. This out-
come is problematic because it decreases the
melt depth, distorts the track direction, and

causes discontinuity and lack-of-fusion defects.
Therefore, a sufficiently high laser power is
necessary to activate the expulsion mechanism
that pushes away large spatters and suppresses
the associated defects (139).
The direct experimental approach by in

situ high-speed synchrotron x-ray imaging
(139, 140, 146–149) provides the advanced
technical means to capture the rapid changes
in these highly dynamic phenomena with high
spatial and temporal resolution (147, 148),
revealing different paradigms and mecha-
nisms for process control of these defects
(148). Direct visualization reveals that the
keyholes are present across the entire range
of currently typical values of laser power and
scan speed applied in LPBF. A well-defined
threshold of laser power density (~0.4 MW/
cm2) exists from conduction mode to the
keyhole regime, following the sequence of
vaporization, depression of liquid surface,
instability, and deep keyhole (140). The deep
and narrow keyholes are responsible for the
formation of some small and often spherical

pores, causedby anewly discoveredmechanism
termed “critical instability at moving keyhole
tip” (149). This keyhole instability generates
acoustic waves in the melt pool that provide
driving force for the pores near the keyhole tip
to move away from the keyhole and become
trapped as pores (149). Although the keyholes
exist under essentially all typical processing
conditions relevant to LPBF (140), the high
laser energy intensity is typically required for
certain AM practices; high densification of
parts (>99%) can be obtained by decreasing
keyhole-induced pore defects (139).
Third, laser-induced solidification behavior

of the melt pool eventually determines a met-
allurgically sound printed component. Multi-
branched crystal formations of columnar grains
or dendrites and resultant potential porosities
and cracks are not acceptable for engineering
applications (150). Laser-controlled solidifi-
cation is completed by three major events of
heterogeneous nucleation of melt, grain growth
andmicrostructure development, andmushy-zone
heat/mass transfer and densification (151, 152).
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Fig. 5. Cross-scale coordination and implementation approaches for
MSPI-AM of metallic components. (A to C) Material-related approaches,
typically implemented on a nano- or microscale, including (A) microstructural
homogenization of a specific printed material (e.g., tailoring fine equiaxed
grains in LPBF zirconium nanoparticle–functionalized Al7075 aluminum
alloy), (B) interfacial compatibility between multiple printed materials (e.g.,
forming a metallurgically adherent interface in LPBF 316L/Cu bimetallic
structure), and (C) applicability of printed materials to specific structures
and functions (e.g., LDED-processed porous Ti-Ta alloy coating on a Ti6Al4V
acetabular cup to improve biocompatibility [images (A) to (C) reproduced
from (63), (95), and (133), respectively, with permission]. (D to G) Process
enhancement via mesoscale control of an entire laser AM of metal powder, in

terms of (D) laser absorption behavior of particles, (E) powder melting
behavior, (F) formation mechanism of melt pool, and (G) solidification
behavior of melt pool [images (D) to (G) reproduced from (137), (141), (142),
and (152), respectively, with permission]. (H to J) Macroscale structure and
performance control approaches, including (H) multiprocess printing with
collaborative 3D printers and a six-axis robot for conveyance and postprocess
assembly, (I) laser-printed large-sized airplane cabin component with
multistructures mimicking the organic cellular structure and bone growth
found in living organisms, and (J) hot-fire testing of mechanical and thermal
multifunctions of additive manufactured Cu/Inconel 625 bimetallic combus-
tion chamber and nozzle for liquid rocket engines [images (H) to (J) adapted
from (34), (161), and (166), respectively, with permission].
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Normally, an increase of laser energy lowers
residual porosity but intensifies grain growth
(153). Critical energy densities need to be tai-
lored to balance the competition between
densification activity and grain coarsening,
simultaneously achieving full density, grain
refinement, and elevated printability (154, 155).

Macroscale structure and performance control

The ultimate realization of MSPI-AM is em-
bodied by the printed components and their
structures to meet industrial application re-
quirements, which are normally several milli-
meters to a fewmeters in size. First, MSPI-AM
of an integral component with a great deal of
structural complexity calls for multiprocess
printing with collaborative use of various pro-
cesses (Fig. 5H) (34). The combination of mul-
tiple AM processes with other complementary
manufacturing processes [e.g., machining
(156), assembly (157), cold spraying (158), laser
shock peening (159), electropulsing (160), etc.]
is necessary to realize the spatial control of
multimaterial layout, multistructure geome-
tries, and multifunctionality.
Second, MSPI-AM requires the integration

of multiple structures, which is implemented
by both the overall structural design and the
precise structural control during printing. A
laser-printed large-scale airplane cabin com-
ponent to separate the passenger cabin from
the galley (i.e., a “bionic partition”) (Fig. 5I)
presents a typical example of multistructure
integration in aircraft manufacturing to solve
the major engineering puzzle of minimizing
weight while retaining maximal infrastructure
safety. This innovative bioinspired design cap-
italizes on the power of cloud computing to
generate thousands of design alternatives to
meet specific goals and constraints (161). Multi-
structure integration is strongly dependent on
the structural accuracy, which is controlled by
the residual stresses and resultant deformation
of printed structures. Essentially, residual stresses
during laser AM can be reduced by weakening
local thermal gradients in the melt pool, which
can be accomplished by (i) preheating the sub-
strate and previously deposited layers (9, 17, 162),
(ii) optimizing laser printing parameters to
maintain constant melt pool morphology/size,
especially at the corners of printing areas (163);
and (iii) setting up a proper laser scanning
pattern by dividing cross sections into islands
to reduce vector length (so-called “island scan-
ning” strategy) (164) and shifting the position
of scan vectors in each island between neigh-
boring layers (80, 164, 165).
Third, the final realization of MSPI-AM re-

lies on multifunction coupling in an integral
component and systematic function verification
in a real/close-to-real service environment. Aero-
space components generally require aggressive
testing conditions to demonstrate multifunc-
tionality and survivability in the harsh service

environment. For example, hot-fire testing
was completed on LDED-fabricated multialloy
integrated-channel nozzles, accumulating a
total of 142 tests over a period of 5242 s (Fig.
5J); this testing advanced the design and AM
technologies for regeneratively cooled thrust
chamber assemblies of liquid rocket engines
(166). The continuous monitoring, measure-
ment, feedback, and control of both AM pro-
cess and printed components guarantee the
application maturity of AM technologies. The
current AM process monitoring mainly fo-
cuses on the in situ powder flow rate and
distribution (167, 168), melt pool temperature
and melt surface characteristics (169, 170),
and layerwise anomaly and porosity defects
(171, 172). Process monitoring solutions need
to be combined with nondestructive testing
data taken from printed components (e.g.,
dimensional accuracy, surface finish, internal
structure and defects, chemical compositions,
and residual stresses) (173) and their service
performance data under real situations, so as
to generate intervention and acceptance limits
for defect types,morphologies, and dimensions
and to increase the number of methods for
their elimination (5).

The outlook for enhancing MSPI-AM

MSPI-AM is still evolving from a concept to a
practical methodology that contributes to the
high-performance/multifunctional goals of AM.
Because of the rich scientific and technological
connotations and multidisciplinary character-
istics of AM technologies, many opportunities
exist for further enhancements of MSPI-AM to
provide other advances in scientific discovery,
technological breakthroughs, and industrial ap-
plications of AM technologies. We highlight
some trends and development frontiers.
An enhancedMSPI-AM relies on amore dig-

itized material development and printing. The
vast majority of the more than 5500 alloys in
use today cannot be reliably printed because
of metallurgical defects (63) and, consequently,
the next-generation metallic materials for AM
become evenmore difficult to process. The even
bigger challenge is that the different categories
of difficult-to-process materials are expected
to be printed within an integral component to
achieve 3D-gradient distribution with high-
performance/multifunctional outcomes. The
design and preparation of AM-applicablemate-
rials can be accelerated through data-driven,
complementary efforts in theory, computation,
and experiments, thereby revealing the under-
lying structure-performance relationships in-
trinsic to amaterials genome. The combination
of the Materials Genome Initiative (MGI) (174)
with AM accordingly advances a paradigm
for materials discovery and design. Digitizing
materials information with standardized for-
mats for data andmetadata to accelerate data
aggregation should facilitate the develop-

ment of tools to automate the synthesis and
characterization of AM materials. The emer-
gence of metamaterials also promotes the digi-
tization of materials (54, 175, 176), contributing
to the development of “materials” that are not
yet available. Metamaterials with precisely de-
signed artificial structures demonstrate extra-
ordinary physical properties that natural
materials do not have, substantially enriching
the connotation of “material.” The function-
alization of metamaterials depends on a high
structure resolution of the printed components
(54, 175, 176), which further requires develop-
ment of printing matter, improved laser re-
sources, and different printing equipment and
methods. Structures for laser-metal AM are
developing toward two extremes of larger or
smaller to meet the multifunctional require-
ments of an enhanced MSPI-AM. The dimen-
sion of large-scalemetallic components produced
by LDED exceeds 3 m (177), whereas the struc-
tural resolution of micro-LPBF for metals is
as low as 30 mm (178). These size limits will
continue to be exceeded. As an ultimate form
of digitized printing, the establishment of a
systematic printability database helps to en-
hance MSPI-AM with autonomous decision-
making from the printing systems, bringing
together the appropriate functional modules
ofmaterials, structures, and process approaches
as well as potential defect categories, perform-
ance levels, and control measures.
MSPI-oriented AM becomes more intelli-

gent in processes and production. The digitally
designed and optimized new materials and
structures for AM further bring challenges to
process approaches and their control methods.
Laser AM processes are becoming much more
intelligent to meet the demands for custom-
ized, high-quality products in highly variable
batches with short delivery times. One of the
latest and most exciting frontiers in intelli-
gent AM is the concept of digital twins (9, 179).
By incorporatingmultiphysics simulations, in-
telligent sensing on real-time objects, big-data
statistics and analytics, and machine learning
capabilities, digital twins demonstrate great po-
tential in (i) the efficient design of newproducts
for AM, (ii) AM production planning (with re-
spect to usage scenarios and environmental
conditions), and (iii) the capture, analysis, and
action on AM operational data and final high
quality. The collected big data play a funda-
mental role in improving the intelligence of
MSPI-AM technologies. At the level of the in-
dividual printer, to ensure accurate prediction
and control over an entire process of AM pro-
duction, big data from sensors installed on
the printer and objects being printed are fun-
damentally important to determine the real-
time process situations and their changes
over time. For the level of multiprinter and
data integration and by integrating more data
collected from a vast number of printers, a
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big data–driven framework can be further
developed to enable a more intelligent AM
with improved productivity and quality (180).
The new-generation laser-metal printers ac-
cordingly need to integrate more intelligent
detection, sensing, and monitoring devices,
such as in situ, high-speed, high-resolution
imaging systems to capture the dynamics of
laser AM (167, 169, 170) and nondestructive
detection systems to quantify porosity, re-
sidual stresses, deformation, and other de-
fects (173).
The diversification of approaches is neces-

sary for further enhancing MSPI-AM. One of
the most important outcomes of MSPI-AM is
the wide integration of multifunctions within
an integral component, yielding both mechan-
ical performance and sound, light, magnetic,
electrical, and thermal-related functions. The
approaches to achieve the final goals of MSPI-
AM accordingly become more hybrid (34).
First, materials selection and solutions be-
come more versatile to realize MSPI-AM. For
example, the local replacement of a fraction
of metallic components with a material hav-
ing a higher strength-to-weight ratio, such as
carbon fiber composites, provides a substan-
tial weight savings opportunity in aerospace
manufacturing fields, which further calls
for non–metal-based 3DP technologies and
their coordination with metal-based print-
ing. The second consideration in MSPI-AM is
to strengthen the integration of various AM
technologies and complementary processes
to navigate complex printing of objects with
more extreme conditions in materials and
structures. Third, because of the elevated
complexity of multiprocesses, a smooth inter-
connection of various process interfaces is
favored for MSPI-AM to avoid the potential
formation of defects. “Virtual manufacturing”
based on numerical simulations can be inte-
grated with real production to promote MSPI-
AM, providing the multiscale modeling and
accurate prediction of an entire AM process
and attendant optimization of printing tech-
niques and parameters. The advanced computa-
tional algorithms and codes, high-performance
computing methods, and innovations in pro-
cess control methods are required to achieve
a component-scale understanding of basic
physics and technical methodologies of laser
AM production with a substantial process
enhancement.
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Material-structure-performance integrated laser-metal additive manufacturing
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Cross-scale coordination
Laser-based additive manufacturing has the potential to revolutionize how components are designed. Gu et al. suggest
moving away from a strategy that designs and builds components in a serial manner for a more wholistic method of
optimization for metal parts. The authors summarize several key developments in laser powder bed fusion and directed
energy deposition and outline a number of issues that still need to be overcome. A more integrated approach will
help to reduce the number of steps required for fabrication and expand the types of structures available for end-use
components.
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