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Preface to the Reprinted Edition

When Orville Becklund and 1 began writing our book, a powerful and rapid computer
was not available to us. The best we had was a hand-held programmable calculator. We
used it to calculate solutions in which each solution consisted of a series of series. Many
times I had to program the calculator to run all night. I would turn it on to calculate until
morning, and go to bed. Finally, I had a bunch of partial answers to put together. I think it
should have been expected that we would always be uneasy about the accuracy of data
that finally found its way into the text.

Computers, programs, and programmers have come a long way since then. One of the
best for calculating problems relating to optics, is from the work of Dr. David F. Edwards
of Tracy, California. Much of his work in optics programming was after his retirement
from Lawrence Livermore National Laboratory as head of the Optical Sciences and
Engineering Group. Our calculations are updated by Dr. Edwards’s, and are found in
Appendix D (p. 401).

Charles Williams
July 2002
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Preface

An abundance of knowledge about the optical transfer function (OTF) has been
published in many excellent articles during the past 35 years or so, but somehow
a niche for this knowledge has never been found in the engineering and scien-
tific structure. As a result, OTF publications are scattered throughout the ar-
chival literature of scientific and technical journals. Our book aims to bring
together into one source much of this wealth of information.

Those concerned with grounding engineers and scientists in the procedures
of optical evaluation have found that spatial frequency, wave-front distortion,
and optical transfer function, though not particularly difficult concepts to un-
derstand, do not as easily become part of one’s thinking, and therefore practice,
as the concepts of rays, ray tracing, and ray aberrations. The word ray (geo-
metrical optics), for example, in contrast with spatial frequency (physical op-
tics) is used so commonly in our language that it is no longer an esoteric term
reserved for optics. Actually, there are advantages peculiar to each of the two
viewpoints, and an optical analyst is handicapped by a lack of facility with
either. We hope that our book is articulate enough in the art to bring practition-
ers up to speed in the realm of spatial frequency and the OTF.

Specifically, our text dwells on such fundamental concepts as spatial fre-
quency, spread function, wave aberration, and transfer function—how these are
related in an optical system, how they are measured and calculated, and how
they may be useful. In the early chapters we review the historical background
for the OTF, the related concepts, and the necessary nomenclature and coor-
dinate systems. We discuss in some detail the wave aberration function, which
is a measure of an optical system’s ability to produce an image that is a ‘‘rea-
sonable facsimile’’ of the object and which, therefore, is a fundamental char-
acterization of the system’s excellence of performance. We derive the optical
transfer function and related concepts mathematically, and we discuss some
ways that the OTF can be used for assessing the quality of an optical system
both during its design and during testing of the manufactured system.

We show how the OTF can be used: when specifications for the optical
system are being drawn up, when the OTF is part of a merit function while the
system is being designed by computer, and when the optical system is being
tested to verify adherence to specifications. Finally, we show how the OTF can
be calculated mathematically, both by analytical procedures and by numerical
methods of integration.

XV
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XVi PREFACE

In the appendixes some pertinent mathematical basics are reviewed, and we
document a number of OTF calculations that other workers have made.

Our book makes liberal use of illustrations. For the reader who wishes to
pursue studies beyond the scope of our text, we provide a full complement of
references at the end of each chapter.

The reader of our mathematical chapters should have had courses in calculus;
a course in transform theory would be helpful but not necessary because the
mathematics in the appendixes provide a review of all the Fourier transform
theory that the reader will need. Besides the professional nonexpert in physical
optics, the level of our text is intended to suit undergraduates with limited ex-
posure to optics, such as juniors and seniors in science, mathematics, and en-
gineering.

We have purposely avoided certain OTF topics: We do not treat the geo-
metrical approximation of the OTF, the OTF of sampled images, or the poly-
chromatic OTF, because we feel that the state of the art conceming each of
these topics is not guite ready to be included in a tutorial book on the optical
transfer function.

We make no pretense that the ideas in this book are original with us. Our
information has come through various paths and from many sources, and we
have tried to give credit at the appropriate places in the text to the many whose
work we have used.

CHARLES S. WILLIAMS
ORVILLE A. BECKLUND

Dallas, Texas
May 1988
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1
OTF Historical Background

INTRODUCTION

The Optical Transfer Function (OTF) is the frequency response, in terms of
spatial frequency, of an optical system to sinusoidal distributions of light inten-
sity in the object plane; the OTF is the amplitude and phase in the image relative
to the amplitude and phase in the object as a function of frequency, when the
system is assumed to respond linearly and to be space invariant. The OTF de-
pends on and potentially describes the effect of diffraction by the aperture stop
and the effects of the various aberrations.

The concepts related to the OTF, which are considered in some detail in the
next chapter, evolved very slowly. In fact, our whole civilization developed so
gradually that only rarely can we clearly mark the beginning or the end of a
stage in the evolutionary process. Similarly, any historical stage through which
our modern institutions evolved was so like the preceding and the succeeding
stages that a date of birth can hardly be established. We think it of some im-
portance, therefore, that in the world of optical design and evaluation a new era
has emerged in which once familiar terms like circle of least confusion, blur
circle, resolution, and bar chart have become obsolete and, instead, the optical
transfer function is being accepted as a criterion for the performance of optical
systems.

An analysis of any given optical system using the OTF must necessarily
consider the shape of wave fronts at the exit pupil; that is, it must use wave
optics rather than, or at least as well as, ray optics. The new emphasis on wave
optics has undoubtedly been a handicap in the advancement of the OTF; there
is evidence that a traditional dependence on geometrical optics and ray tracing
for design and analysis has delayed the acceptance of the OTF. The people who
made their living and built their reputations by tracing rays may have felt them-
selves too busy to explore the possibilities of the OTF. ‘‘Prosperity, like the
other creations of technology, is a tiger whose riders do not dare to dismount”’
[1]. Among the senior practitioners of optics there has been a tendency to regard
the OTF as interesting but too theoretical to be of much practical use for decid-

1
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2 OTF HISTORICAL BACKGROUND

ing either how to design an optical instrument or how to evaluate one. Perhaps
the complementary new approach has somehow been seen as a threat to the old
ways, and, as Robert Frost suggests in ‘‘Reluctance,”’

Ah, when to the heart of man
Was it ever less than a treason
To go with the drift of things,
To yield with a grace to reason,
And bow and accept the end
Of a love or a season.

Nevertheless, substantial progress in the knowledge of the OTF and its po-
tential usefulness seems to have begun during the mid 1950s; and the art of
OTF has steadily continued to advance since that time so that now the OTF can
be applied to the procedures of optical system design, specification, and eval-
uation. Therefore, this book must give special consideration to these topics
along with the main topic, the OTF. The OTF is now recognized as a means of
refining an optical system during the final stages of design optimization; its
application has the potential of going beyond the optimum design that can be
obtained with ray optics alone. In the sections that follow, a brief history is
given of early optical design and evaluation; and the history of OTE concepts
and of the OTF potential is outlined.

For a list of the principal contributors to OTF concepts, we offer the authors
in the chapter reference lists of this book. Prominent among these contributors
are H. H. Hopkins and his associates, including his pupils, at the Imperial
College of Science and Technology of London. For guidance in assembling the
brief historical background of OTF for this chapter, we are particularly indebted
to Hopkins, Baker, and Smith [2-4].

THE EARLY HISTORY OF OPTICAL DESIGN AND IMAGE
EVALUATION

The theory of optical instruments and the evaluation of their performance have
been studied ever since the first useful systems were assembled early in the
seventeenth century. Long before that time, Pliny and other ancient writers
indicated that people knew about burning glasses, which were glass spheres
filled with water. However, it was not until the thirteenth century that any men-
tion was made of lenses deliberately made for a purpose, for example, specta-
cles. In about 1608, a Holland spectacle maker, Hans Lippershey, is said to
have been holding a spectacle lens in each hand, and when he happened to align
them before his eye with the steeple of a nearby church, he was astonished to
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THE EARLY HISTORY OF OPTICAL DESIGN AND IMAGE EVALUATION 3

find that the weathercock appeared nearer. Then when he fitted the two lenses
in a tube to maintain their spacing, he had constructed the first telescope.

Galileo Galilei in Venice heard about the new telescopes in June of 1609,
and immediately began to make telescopes of his own. His first had a magni-
fication of 3, but his instruments were rapidly improved until he achieved mag-
nifications of about 32. He manufactured hundreds with his own hands for ob-
servers and experimenters throughout Europe. Galileo’s own application of the
telescope tumed to the heavens. He startled the world with observations of
Jupiter’s satellites, the spots on the sun, the phases of Venus, the hills and
valleys on the moon, and the nature of the Milky Way.

Spherical aberration was soon recognized by the developers of the early
telescopes as a reason for defective images, and considerable effort was spent
in experimenting with various aspherical refracting elements to overcome this
fault. In 1666 Isaac Newton discovered that refraction by a given lens depended
upon color, and he correctly concluded that the most significant defect of the
then current telescopes was what we now know as chromatic aberration. He
hastily concluded that all glasses had the same relation between refraction and
color, so he turned to reflectors to solve the color problem. This decision pre-
vailed in the telescope art for almost seventy years. Then Chester Moore Hall,
a gentleman from Essex, realized that the refracting humors of the human eye
are balanced optically to avoid color separation in visual images. Why shouldn’t
an appropriate combination of optical glasses solve this problem in telescopes?
In 1733 he demonstrated a refracting telescope essentially free of chromatic
aberration.

Long focal lengths and parabolic mirrors were also early means for alleviat-
ing aberrations in the telescope art.

Inasmuch as the first optical systems were mostly designed for astronomical
work, it is not surprising that the star (an almost perfect point source) became
the standard test object. Although many other objects have since been used for
testing optical systems, the study of star and other point-source images has
persisted to the present time in evaluating the response of image-forming sys-
tems. As later chapters in this book indicate, the OTF represents the latest
organized approach to judging systems by the nature of their point-source im-
ages.

Even systems that are almost free of aberrations produce highly complex star
images. A skilled observer, particularly one who specializes in one kind of
optical system, still finds the star test one of the most sensitive methods of
evaluating aberration residuals; however, the image is extremely difficult to
interpret quantitatively. In general, the star test provides so much data in its
own peculiar code that considerable data reduction is required before a partic-
ular star image can be said to qualify the system for, say, a television or an
image intensifier application. The precision required in data reduction can be
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OTF HISTORICAL BACKGROUND

appreciated when we realize that a star image rarely extends over more than
one or two hundred micrometers in diameter and that the range of flux densities
to be measured and recorded can extend over a few orders of magnitude. If we
choose to apply the star test by calculating reference images for a sequence of
design parameters for an assumed system, we find that calculation of the dis-
tribution of flux density in the star image is still a formidable problem.

As applications broadened from the study of sky objects to predominantly
extended terrestrial objects, the difficulties of evaluating optical systems by in-
terpreting star images led to the use of various extended test objects. In recent
decades, a variety of test charts consisting of black and white bars of varying
dimensions has been a favorite type. The bar chart has one notable advantage:
Performance can be specified by giving a single number, which is the acceptable
bar spacing (either the bar interval or the number of bars, or lines, per unit
distance perpendicular to the bars) in the image of the chart. However, the
method has a number of shortcomings. Results are highly dependent on the
nature of the image detector (human eye, photographic emulsion, etc.). Near
the resolution limit, the boundary between bars of the bar chart image becomes
a gradual transition from maximum to minimum intensity (or reflectance) rather
than a sharply defined boundary between black and white; so repeatable obser-
vations of the resolution limit for a given system are difficult. A phenomenon
called spurious resolution, in which the color of bars is reversed, that is, a black
bar becomes a white bar and a white becomes black, is often seen in bar charts.
It is also hard to predict the results expected from optical design data or to
describe the quality of reproduction of another kind of test object once the bar
chart resolution is known. In contrast to star images, which seem to give too
much information, bar chart images tend to tell too little.

As he reflected on the limitations of the bar chart in 1938, Frieser [5] sug-
gested that the resolution test could be improved by substituting a one-dimen-
sional sinusoidal variation of grays in the test object for the abrupt variation
from black to white characteristic of the bar pattern. He saw an advantage re-
sulting from the nature of optical systems to produce a sinusoidally distributed
image from a sinusoidally distributed object over a wide range of spatial fre-
quencies. This concept brought with it the first expression of a related idea, that
the transfer function connecting the sinusoidal image with the sinusoidal object
would be a good way to assess the performance of optical systems.

Since the beginning of optical system fabrication, designers have relied on
the accepted concept of straight-line propagation of light with a change of di-
rection (refraction) at boundaries between unlike media. Directed lines called
rays depict light paths from object to image. Sometimes pencils of rays are
traced to evaluate discrepancies between the configurations of object and image.
Perhaps less frequently, ray density has represented light flux density, which
allowed a comparison of image distribution of light flux with the corresponding
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THE EARLY HISTORY OF OPTICAL DESIGN AND IMAGE EVALUATION 5

object distribution. For the most part, the art of optical design has depended on
simple algebra and plane trigonometry, generally referred to as geometrical
optics.

Even modern computer three-dimensional ray-tracing programs, for all their
speed, precision, and self-modification toward optimum design, are fundamen-
tally the same process as the paper-and-pencil, cut-and-try procedures used for
a couple of centuries.

About a hundred years ago, a study of intersection patterns on the image
plane by pencils of rays from the object led to an analytical theory of aberra-
tions. The image plane was usually defined as the plane of best focus, that is,
the plane on which a point source would produce the minimum circle of con-
fusion.

Geometrical optics, though recognized as only approximate almost from its
inception, has remained the mainstay of optical design simply because it has
produced excellent results. In fact, application of geometrical optics to the elim-
ination of aberrations finally produced such fine systems that actual star images,
in their departure from a simple point configuration, could no longer be ex-
plained by geometrical optics. In 1835, Airy [6], who was familiar with the
wave theory of light, developed the formula for the diffraction pattern, there-
after known as the Airy disk, that constituted the image of a point source in an
aberration-free optical system.

It would have seemed reasonable if the optical designers, impressed by
Airy’s accounting for the performance of their ultimate systems, had turned to
wave theory for further advancement of their art. In the main, however, they
did not. Their reluctance to incorporate the wave theory of light, included in
what is known as physical optics, into their calculations could not be attributed
to a lack of scholars and well-documented work in the field. Among the leaders
were Grimaldi (1665), Huygens (1678), Young (1802), and Fresnel (1815). In
fact, in 1818 Fresnel, by using Huygens’ concept of secondary wavelets and
Young’s explanation of interference, developed the diffraction theory of scalar
waves essentially in the form that we know it today. Nor could the resistance
to wave theory by designers result from the adequacy of geometrical optics to
handle all design problems. Besides the particular need satisfied by the Airy
disk, general geometrical optics treatment of optical processes in the vicinity
of the focus and near the edge of a beam in limited-aperture systems is partic-
ularly lacking.

The dichotomy of geometrical optics and physical optics has persisted to the
present day. A frequent question for graduate students preparing to extend their
optical background is, ‘‘physical or geometrical?’’ It is interesting to speculate
on this division. The solution of diffraction problems associated with nonspher-
ical waves, which are characteristic of nonideal optical systems, is a difficult
mathematical problem. This fact, in combination with the scarcity of corre-
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6 OTF HISTORICAL BACKGROUND

sponding reliable, flexible test equipment, may have delayed the development
of OTF techniques. Further, many of the best lens designers in the past seem
to have had only sporadic training in physics and mathematics; on the other
hand, the scholars of physics and mathematics have been quite unproductive of
practical designs. Except for a curious glance over the fence now and then,
each optical expert seems to have been diligently working in his or her own
field.

LAYING THE FOUNDATION FOR OTF—1850 to 1940

Although the bulk of practical optical work until recently has been accom-
plished with little reference to physical optics, certain concepts, which seemed
alien to each other but are fundamental to the optical transfer function, emerged
early in the nineteenth century. By the late 1850s, Foucault was suggesting that
a striped pattern as an extended object would be a better target than a point
source for testing an optical system [7]. Rayleigh is said to have actually set up
a periodic test object in 1896 [8]. Early in the 1870s, Abbe expressed the con-
cept of spatial frequency, although he did not call it by that name, in his history
of microscope imaging [9, 10]. This theory grew out of extensive experimen-
tation that he performed to prove to his contemporaries that they were misin-
terpreting diffraction effects as resolved structures of the specimens they were
observing under highly coherent light beams.

Parallel with the development of geometrical aberration theory (latter half of
the nineteenth century) came a unification of geometrical rays with waves; this
is expressed in the characteristic function of Hamilton {11; 12, pp. 200-202;
13, pp. 112, 133-142] and the eikonal of Bruns [14; 12, pp. 202-207; 13, pp.
112, 134-135]. Simultaneously Lommel [15; 13, pp. 435-438] solved the dif-
fraction theory of light distributions produced in out-of-focus planes by aspher-
ical wave fronts.

Also in the same period, Rayleigh formulated his well-known quarter-wave-
length limit or criterion for optical quality [16]. This occurred while he was
investigating the permissible inhomogeneities in large spectrograph prisms.
Starting with the premise that the emerging image-forming wave front of a per-
fect optical system, having a point source object, is spherical, Rayleigh pos-
tulated that the image of an actual system would not be significantly different
from that of a perfect system if the actual nonspherical wave front could be
contained between two ideal spherical wave fronts no more than a quarter wave-
length apart.

Another Rayleigh exercise that smacks of OTF is his analysis of the image
of an equally spaced array of mutually incoherent point sources. He assumed
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LAYING THE FOUNDATION FOR OTF—1850 TO 1940 7

an aberration-free system and expressed the intensity distribution in the image
by a Fourier series. The resulting curve would now be described as the modu-
lation transfer function, which is a component of the OTF.

Strehl, a contemporary of Rayleigh, has only recently been fully appreciated
for showing how small aberrations modify the Airy disk [17}. In his book, Die
Beugungstheorie des Femrohrs, he showed that the small aberrations reduce the
intensity at the principal maximum of the diffraction pattern, that is, at the
““diffraction focus,”” and that the removed light is distributed to the outer parts
of the pattern. As a measure of degradation of image quality, Strehl set up the
ratio of intensity at the diffraction focus with and without aberrations and called
it Definitionshelligkeit, which translates literally to definition brightness. The
term without explanation is equally ambiguous in both languages. In English,
it is sometimes called the Strehl definition; however, the Strehl intensity ratio
or simply the Strehl ratio may be preferable.

The first lens designer to have come really to grips with combining physical
optics and aberration theory to advance the art seems to have been Conrady
[18]. Starting with the Rayleigh limit as the criterion for permissible wave-front
errors, he first formulated theoretically and then applied in practice tolerances
on focus errors and aberrations. He developed formulas by which he calculated
optical path differences along various rays to arrive directly at the wave-front
aberration for the optical system under investigation.

Both the Rayleigh criterion and the useful range of the Strehl ratio apply to
highly corrected systems. The quarter-wavelength limit defined by Rayleigh
corresponds to a Strehl ratio of about 0.8. Above this limit, A. Maréchal (1947)
[19] showed that the loss of intensity at the diffraction focus is simply related
to the root-mean-square departure, called the variance, of the wave front from
a spherical shape. This relation was extended to simple formulas for finding the
best plane of focus in the presence of aberrations. Maréchal also showed how
best to compensate for higher order aberrations by the introduction of appro-
priate amounts of primary aberration. The variance of wave-front aberration in
conjunction with a special canonical coordinate system is used in automatic
optical design programs to estimate image quality.

When the Strehl ratio drops much below 0.8, the quality of the optical image
deteriorates rapidly; in fact, the point-source diffraction image, especially off
the optical axis, becomes so complex that it can no longer be practically ana-
lyzed to give a Strehl ratio or any other single-number figure of merit.

Relations in optical systems are generally nonlinear, so pioneering work had
to be done to justify the linearity assumptions inherent in the optical transfer
function approach. This requirement parallels the linearity assumptions that un-
derlie most electrical system analyses. Work in this direction was done by
Frieser [5] and Wright [20], who in the late 1930s suggested the use of an
optical transfer function. Frieser applied the concept of a transfer function to
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8 OTF HISTORICAL BACKGROUND

photographic film and discussed the amplitude reduction of sine-wave targets
by the film emulsion. Wright considered an optical lens as a component in a
television network and suggested that the performance of the lens might be
conveniently expressed in terms of the amplitude attenuation it introduced. Of
course, he was thinking of frequency in time rather than space in his consid-
eration of the whole network, but inherent in his treatment of the lens as a
contributing component was the concept of spatial frequency.

Frieser’s work with photographic films and their emulsions was connected
with experimental sound recording on motion picture film using variable density
in the sound track. (The competing technology in early motion pictures involved
recording a variable opaque area in the sound track.) Ideally a pure note of a
single pitch with no harmonics would record as a pure sinusoidal variation of
transmittance along the sound track. To describe the properties of the recorded
image, Frieser employed the notion of an optical transfer function.

THE APPEARANCE OF SOME IMPORTANT MATHEMATICS

During the 1930s and 1940s mathematicians were developing a branch of their
discipline that is now known as transform theory. One kind of transform known
as the Fourier transform became quite useful to electrical engineers who were
working out the theories of sound recording and amplification. The Fourier
transform, defined mathematically by an integral known as the Fourier integral,
establishes a correspondence between a pair of mathematical functions; for ex-
ample, one a function of time and the other a function of frequency. The func-
tions, expressed in terms of either variable, could represent some physical quan-
tity such as voltage or current. Operation of the integral can be made on either
function; that is, the transform can go either way, from the time variable to the
frequency variable or from the frequency function to the time function. Thus,
there came into being the two concepts: a time domain and a frequency domain.
It is easy to go from one to the other, and so the analyst can work in whichever
domain is most fruitful and then go back to the other domain if necessary.

One particularly useful process in Fourier transform theory is an integral
called the convolution integral. From it came the convolution theorem which
states: If a function is given by the convolution of two other functions, the
transform of the first function is given by the product of the Fourier transforms
of the other two functions, when their Fourier transforms are taken individually.
The convolution theorem is a powerful tool in frequency analysis.

The Fourier transform can easily be extended to two dimensions as over an
area in the object plane, or image plane, of an optical system; and the pair of
corresponding functions can be in terms of spatial coordinates or in terms of
spatial frequency. Functions representing physical quantities, for example, light

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



GROWING AWARENESS OF OTF—THE 1940s 9

intensity over the object plane, easily meet the requirements for validity of the
Fourier transform. Thus, we have a ready-made theory for treating functions of
spatial frequency in the object and image planes of optical systems, provided
we find a means for relating the frequency function in the image to the fre-
quency function in the object; this means must be a function of the optical
system alone. Such a ready-made function is the spread function, which is the
distribution of light flux in the image when the source of light in the object is
a single point source. It turns out that the image function in terms of spatial
coordinates is the convolution of the object function and the spread function
when the optical system is assumed to have linearity and to be space invariant.
The Fourier transform of the spread function is one definition of the OTF.

And so, this book, reduced to its fundamental purpose, establishes, explains,
illustrates, and extends the concepts of the previous three paragraphs. We have
attempted in these paragraphs to describe concisely what the OTF is and how
it can be treated, mostly by Fourier transform theory. The resulting formulas
begin with the wave-front shape in the exit pupil or with a spread function:
point spread function, line spread function, or the edge trace.

GROWING AWARENESS OF OTF—THE 1940s

By 1950, Schade, Selwyn, and Luneberg [21-23] were analyzing the image
quality of the early television systems by Fourier methods. During World War
II, Selwyn applied these methods separately to lens and film. Later, drawing
upon his extensive experience in assessing images in terms of photographic
resolving power, he showed that the light intensity variations in the image of a
sinusoidal test object could be calculated from the observed variation of light
intensity in the image of a line source.

In 1944, Luneberg published a detailed theoretical discussion about the res-
olution of objects having periodic structure.

Schade, an electrical engineer working on television lens evaluation, devel-
oped the concepts of contrast reduction through a sequence of cascaded system
elements by applying communication theory. In a series of papers beginning in
1948, he discussed the calculation and evaluation of the electro-optical char-
acteristics of imaging systems, and he introduced the transfer function of a lens
and showed how it could be modified to increase image sharpness.

In a series of papers beginning in 1935, P. M. Duffieux first fully formulated
the theory of the optical transfer function, including the role of the diffraction
integral, for describing the image of a two-dimensional incoherent object. He
was undoubtedly helped by progress in the techniques of mathematical analysis
spurred by World War II research in acoustics and communication theory. His
book, L’Integral de Fourier et ses Applications a L’Optique [24], in which he
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10 OTF HISTORICAL BACKGROUND

applied Fourier methods to optics, became a widely used practical source book,
particularly for European workers in the field.

Duthieux showed that the Abbe theory of image formation of coherently il-
luminated objects may be usefully restated in terms of Fourier analysis. He also
established the complementary fundamental theorem for the image formation of
self-luminous, incoherent objects. His transmission factor is equivalent to the
transfer function, and he showed how to compute it from the wave front in the
exit pupil. He extended his theory of image formation to any form of aperture
and aberration, making only the assumption of the Fourier transform relation
between a diffraction aperture and the Fraunhofer diffraction pattern. However,
for self-luminous, incoherent objects, the Fraunhofer diffraction formula as-
sumption is an unnecessary restriction. By using the convolution theorem, Duf-
fieux demonstrated that the Fourier transform of the function expressing the
distribution of intensity in an image is closely approximated by the product of
the Fourier transform of the distribution in the object by the transform of a point
source image. This relation holds provided the point-source image (also known
as the spread function) does not change significantly over the angle of field
through which the Fourier components are transmitted to the image. The frac-
tional contrast reduction of these components can be called the transfer function
of the optical system; Duffieux found that this function depended on both the
lens aperture and the aberrations.

Duffieux’s new concept of image formation passed largely unnoticed by
workers in the field of optics, many of whom were concentrating on making
consistent measurements of resolving power that would correlate in some way
with the predictions of lens designers.

The story of the 1940s would be incomplete without recognizing the ad-
vances made in analyzing diffraction effects caused by various types of wave-
front distortion. For small aberrations where departure from a spherical wave
front is only a fraction of a wavelength, Nijboer [25}, partly in collaboration
with Zernike and Nienhuis, showed the influence of small aberrations on the
image in an extensive diffraction treatment. Nijboer was the first to use the
concept of a reference sphere, and he also defined the wave aberration function
as the difference between the wave surface and the reference sphere. The effects
of large aberrations were studied by Van Kampen [26]. Finally, Hopkins’ book,
Wave Theory of Aberrations [27), defined the basic types of aberration in terms
of the wave-front distortion. So the foundation was laid for the calculation of
the OTF for specific types of aberration.

INVENTIVE OTF INSTRUMENTATION—THE 1950s

The ideas prevalent at the beginning of the 1950s are found in the published
proceedings [29] of a symposium held at the National Bureau of Standards in
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INVENTIVE OTF INSTRUMENTATION—THE 1950s 11

1951. An important paper by Elias and others [28] was published in 1952, but,
as in Schade’s work, the OTF ideas are in terms of input and output functions
without any reference to physical optics. Another symposium, held in 1955 at
the University of Rochester, resulted in a large collection of papers related to
the OTF in the September 1956 issue of the Journal of the Optical Society of
America. These publications document the growing awareness of the OTF as a
new procedure in optical system analysis. During the 1950s, and especially
during the last half of the decade, there seems to have been a mushrooming of
concepts and instrument developments related to the OTF; these came from
many sources, largely independent of each other. Along with the growth of
OTEF ideas there was a beginning of instrument construction and OTF measure-
ment techniques. Apparently, Schade’s work with Fourier analysis, and the
acceptance of the term transfer function, inspired many engineers and scientists
to invent a variety of new photoelectric instruments for measuring what is now
defined as the OTF.

In contrast to the input-output approach of Schade, H. H. Hopkins based
his OTF developments on physical optics to provide a comprehensive founda-
tion for optical design and evaluation [27, 30, 31]. E. L. O’Neill assembled his
work in a mathematical form particularly appealing to engineers and others
familiar with communication theory as applied in electronics systems [32]. His
summaries and the impact of his teaching were particularly significant contri-
butions.

Rosenhauer and Rosenbruch published a review of OTF instruments [33],
most of which were developed during the 1950s. This work reflected the en-
thusiastic equipment-building effort in most research activities interested in
OTF. Although the resulting publications indicate that the equipment verified
a few curves calculated from diffraction theory, the real interest of the partic-
ipants seemed more in inventing and constructing fascinating equipment than
in results that could be compared with theory or with results obtained by other
Instruments.

In the general wave of appreciation of OTF in the fifties, certain favorable
features of this approach became better understood:

1. A sine wave (a sinusoidal variation of light intensity over the object) is
imaged as a sine wave.

2. The OTF approach deals with an extended object.
Real-time testing of optical parts and systems is practical.

B w

. A wide range of systems, from those suffering from severe aberrations to
diffraction-limited systems, can be tested. Also, different types of sys-
tems, including fiber optics, can generally be evaluated by OTF methods.

5. One-to-one comparisons can be made between measured OTF data and

the corresponding data calculated from design information.
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12 OTF HISTORICAL BACKGROUND

6. By resorting to Fourier analysis, one can predict the shape of the OTF
curve required to produce an acceptable image of a given object.
7. The real-time and quantitative nature of OTF evaluation of optical parts

and systems provides a means of specifying and quality control in optical
manufacturing.

On the other hand, some of the limitations of OTF testing were also appreci-
ated. For instance, the effect of scattered light or veiling glare can best be eval-
uated by methods not depending on the OTF.

A review of OTF equipment most promising at the end of the 1950s for real-
time testing in industry indicates that they reduce to two basic types. Both types
employ a narrow optical slit, a sinusoidally distributed pattern, and a photocell
detector; but the two types differ in the sequence of these optical elements. In
the first, the sinusoidal pattern, incoherently illuminated, is the object of the
optics under test. Its image, which is also a sinusoidal pattern, is scanned by
the slit, and the detector picks up the time-varying transmitted light signal, the
amplitude and phase of which represents a point on the OTF function. In the
second method, the slit is illuminated and becomes the object. The slit image
is scanned by the sinusoidal pattern, now a transmitting screen, and the detector
picks up the ‘‘chopped’’ signal. Application of Fourier transform theory shows
the two equipment types to be equivalent.

These two theoretically direct techniques for measuring the OTF for an im-
age-forming optical system were found to have certain practical difficulties:

1. Periodic patterns of constant contrast and truly sinusoidal distribution were
extremely difficult to make.

2. Design limitations tended to restrict the range of spatial frequency to less
than desired. Also, an equivalent test near zero frequency was difficult to
attain.

3. Practical light signal levels at the detector were often low enough to be
troubled by ambient light.

4. Tllumination of the object, either the sinusoidal pattern or the slit, had to
be truly incoherent. Even a small degree of coherence would produce a
wrong result.

These and other difficulties usually required equipment considerably more elab-
orate than the basic principles might indicate.
By the end of the decade, there was a growing success at theoretically cal-
culating the OTF for certain specific types of aberration. (See Appendix A.)
Since, as already mentioned, geometrical optics rather than physical optics
was the field of the practical lens designers, one could expect attempts toward
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ADJUSTMENT TO PRACTICE—THE 1960s 13

geometrical approximations for the transfer function. Indeed, Hopkins [34] and
his colleagues, De [35], Bromilow [36], and Marathay [37], showed that good
results are possible at low frequencies for aberrations greater than two wave-
lengths. Miyamoto [38] and Hopkins [34] each developed a general expression
for a geometrical transfer function. This general method gave good results for
very large aberrations, but the approximations become poor for small aberra-
tions. In the intermediate range around one and two wavelengths of aberration,
a mixed method of multiplying the geometrical transfer function by the transfer
function of the aberration-free system was often found to give good results.
However, even this approach had its shortcomings for certain levels of aber-
ration [39, 40].

Ultimately the most exact method for computing the OTF is to calculate the
self-convolution of the pupil function (defined in Chapter 5) or to calculate the
diffraction integral of the pupil function over the exit pupil followed by calcu-
lation of the point spread function and, finally, the Fourier transform (discussed
in detail in later chapters). Some of the results from this approach first appeared
in the late 1950s and early 1960s in papers published by De [35], Black and
Linfoot [41], Steel [42], Barakat [43], and Goodbody [45].

ADJUSTMENT TO PRACTICE—THE 1960s

Since the amplitude part of the OTF (called the Modulation Transfer Function)
is based on measuring the contrast in the image of a periodic object, a relatively
simple concept, electronics engineers found that it paralleled other transfer
functions in their experience so closely that they had no hesitation in applying
it to their own instruments. The concept was also readily accepted by optical
physicists, who, with their understanding of the diffraction theory of image
formation and with laboratories equipped for physical optical experiments, pro-
ceeded to make their own equipment for OTF measurements. Unfortunately for
later correlation of these measurements, the optical physicists typically relied
on optical test benches that had been designed only for visual assessment of
image quality.

The performance of the earliest OTF measuring equipment was checked by
the ability either to produce the Fourier transform of a known aperture or to
indicate the OTF of a well-corrected microscope lens or collimater. Later ex-
perience was to show that these checks lacked an adequate test of bench align-
ment, and they fell short of predicting what the equipment would do when the
lens under test had several wavelengths of aberration. These deficiencies showed
up in a test program conducted under the auspices of the Avionics Laboratory
at the Wright Air Development Center. A 12-in. f/4 Covogon aerial lens was
circulated around eight laboratories, which were equipped to make OTF mea-
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14 OTF HISTORICAL BACKGROUND

surements. The spread of the resulting MTF curves was significantly in excess
of the likely errors predicted for the various instruments. The obvious conclu-
sion: Measurements of MTF had not yet become accurate enough to justify its
use in standard specifications.

During the 1960s, lenses for low-light level television, microfiche storage,
and microcircuit applications called for the development of a reproducible, ob-
jective, and reliable method of specifying and measuring image quality. To
bring the measurement state of the art up to the standard required, it was sug-
gested at a meeting of the International Society of Photogrammetry (London,
1966) that a number of special reference standard lenses be designed and con-
structed for in-house measurement at the various laboratories. To serve this
purpose, the standard lenses should produce a typical range of OTF curves and,
yet, be of the simplest possible geometrical construction so that they could be
accurately made at a reasonable cost.

As one might expect, improving the state of the art required more than just
issuing a series of reference standard lenses. Intercomparisons of lenses had
already shown that the cause of disagreement could be found only by a thorough
study of all aspects of OTF calculation and measurement. The close collabo-
ration between OTF laboratories around the world required to this end was
appropriately provided by the SIRA (Scientific Instrument Research Associa-
tion) Institute in England, which administered a collaborative group project en-
titled Assessment and Specification of Image Quality that was initiated on April
1, 1967. Participating group members included various commercial and non-
commercial institutions from many parts of the world. The expressed aims of
the group were:

1. To assess the accuracy of instruments for measuring OTF and veiling
glare, to establish the procedures and conditions necessary for accurate
measurement, and to provide simple means for checking and maintaining
this accuracy.

2. To determine the relation between OTF and veiling glare and the perfor-
mance of various optical systems when the influence of psychophysical
or other considerations are taken into account.

3. To establish standard procedures for specifying performance.

To achieve these objectives, the group started by developing a range of refer-
ence standard lenses whose measured performance closely matched their theo-
retically predicted performance. These were tested in different laboratories and
on different instruments to determine sources of error and disagreement. The
results also indicated the level of accuracy that could be expected under con-
trolled conditions. It is expected that series of reference standard lenses of this
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type will be generally available to laboratories for routine checking of the OTF
instruments.

Adjusting the OTF art to practice could hardly have been achieved without
the modern electronic calculator. An engineer can accomplish a large part of
the data processing with a hand-held programmable calculator. However, the
amount of data to be processed in typical OTF calculations is still great enough
to require computer time; in fact, in some instances, compromises have to be
made between time and accuracy. Thus, the appearance of the Cooley-Tukey
algorithm and subsequent fast and fast-fast procedures for calculating the Fou-
rier transform and autocorrelation [46-50] were particularly timely for extensive
application of the OTF.

As already suggested by our emphasis on calculator and computer efficiency,
the OTF is seldom measured directly but is actually derived from some other
measured optical parameter. Among the primary measurements is the determin-
ing of wavefront distortion by interferometric experiments. The OTF can also
be calculated from data obtained by scanning the appropriate image in test set-
ups for measuring point spread function, the line spread function, or the edge
trace. Hence, development of both the hardware and the software of data pro-
cessing systems, as well as of optical techniques and instruments, in the 1950s
and 1960s contributed directly to practical OTF measurement.

During the 1960s, Hopkins continued his contributions relating to OTF with
the introduction of what he has called the canonical pupil coordinates [51].

A second seminar on OTF was held at the University of Rochester under the
sponsorship of the SPIE [52].

ACCEPTANCE-THE 1970s

Though still too close for good perspective, the 1970s appear to have been a
decade in which OTF received general acceptance for optical performance eval-
uation. Acceptance was helped by the vacuum that was left when limiting res-
olution was discredited as a comprehensive indicator of optical imaging prop-
erties at the beginning of the decade. Along with acceptance came a better
perception of where OTF techniques fell short and where further development
work was required.

The National Bureau of Standards has established an optical measurement
service, which is available to commercial firms and government agencies that
want NBS authentication of their products and services. The new service also
fills a gap for organizations that find it impractical to operate their own mea-
surement equipment [53].

An indication of the breadth of interest in OTF was that most of the papers
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16 OTF HISTORICAL BACKGROUND

dealt with some aspect of that subject at the May 1974 seminar on Image As-
sessment and Specification in Rochester, New York [54].

In spite of the many refinements in OTF techniques, no one has been able
to derive the OTF of a cascaded system from the OTFs of the parts. Nor has
anyone done very well at diagnosing specific defects, except for gross aberra-
tions, from the OTF. In other words, how an optical system fails can be de-
scribed in detail, but the why remains obscure. As the OTF art matures, one
can expect that its limitations, as well as its capabilities, will be usefully de-
fined.

The advances in calculating techniques, which were important in advancing
OTF measurements in the 1960s, continued through the 1970s. As small com-
puters became increasingly available, routine use of the OTF in specifications
and design became even more feasible. Comprehensive assessments that would
require a series of limiting computer runs could now be accomplished quickly
and inexpensively by using these small dedicated computers.

During the 1970s, the SIRA group, which was set up in the 1960s, began to
produce results. Sources of errors in OTF measurements were found to be lack
of control precision and stability in lens test benches, poor spectral data on light
filters, poor-quality slits, and insufficient control of incoherence of the illumi-
nation. The use of standard reference lenses with known performance charac-
teristics turned out to be a great help in tracking down sources of error and in
training of laboratory personnel. A satisfactory level of agreement between dif-
ferent OTF measurements has been generally achieved over small field angles,
but more work is required to get similar agreement for large angles off axis.

Although difficult to document, increased performance-to-cost ratios appear
to have been achieved in the optical industry by firms that depend on routine
OTF testing.

THE 1980s

By 1980, the momentum of OTF development was substantial, and it has re-
mained so on into the decade. Already on the horizon is the extension of present
successful practice in conventional designs to wide-angle systems, that is, sys-
tems with high numerical aperture and wide field, and also to even more unusual
and exotic systems. Evidence that the OTF is being widely used is that advances
in the science and art of the OTF now generally accompany advancements in
other aspects of the science and art of lens design and of optical system mea-
surement and evaluation. At an international conference on lens design in 1980
[55], 78 papers were presented, and the theme running throughout the program
was the developments achieved in both the hardware and software for designing
lenses. Every paper, it seems, discussed a lens design program, and every pro-
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gram had at least an option for calculating the OTF from design data. The
conference stressed greater computer power for lens design. In the 1980s the
microcomputer, especially the small computer dedicated to optical design cal-
culations, is coming into widespread use.

As testimony to the explosion of activity in optical design, specification, and
assessment, five other conferences were held during the first five years of the
1980s, almost on an annual basis. The international interest in optics continued
to be evident in that one conference was in Oxford, England, and another in
Geneva. Papers were presented by recognized authorities that discussed familiar
topics, which indicated that continuing investigations are being rewarded by
significant progress. Among the topics were international intercomparisons of
MTF measurements on a 50-mm, f/2, camera lens, further activities of the
SIRA group, optical quality and assessment, and the practical comparison of
aberration polynominals for optical design. The Zernike polynomials seem more
evident in the papers than the traditional Seidel polynomial.

Algorithms for calculating the Fourier transform are being steadily im-
proved, and algorithms faster than the widely used Cooley-Tukey are now
available. The Winograd Fast Fourier Transform (FFT) seems to be the most
promising [56]. This algorithm can be easily and efficiently adapted to com-
putation of the OTF, and results obtained with it come faster than with other
methods without loss in accuracy.

A pattern that pervades the recent optical literature is that a well-developed
lens design program grows with the user’s experience in optics. A modern com-
prehensive optimization procedure has been typically fine-tuned by years of
revision and use, each advance having been carefully examined so that it is a
clear benefit to the user. A modem program is no longer merely a ray-tracing
routine but includes facility with complex optical problems such as tilted and
decentered elements, ‘‘heads-up’’ displays, and multistage infrared designs for
airborne or laser telescopes in which packaging needs call for off-axis or oddly
shaped components. This means that the computer handles details like the task
of proper selection of damping factors, derivative increments, and constraint
monitoring and control, thus allowing the optical designer to concentrate on the
solution of more subtle optical problems.

In addition to the familiar damped-least-squares method of optimization,
newer methods are coming into practice; one example is the pseudo-second-
derivative (PSD) in a program called SYNOPSYS described by Dilworth [57].

Several research students at the Imperial College, London, have been study-
ing improved optical design software with particular emphasis on programs for
OTF calculation.

A second international lens design conference was held in June 1985 at
Cherry Hill, New Jersey (see Ref. [58]).
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PERSPECTIVE

Expansion of OTF practice into areas so far not exposed to its benefits will
probably require deliberate communication effort by it users. Included among
the people who might profit by knowing the fundamentals and subtleties of the
OTF are practicing optical engineers and technicians. Buyers and users of op-
tical lenses and systems can benefit by digging under the buzz words to learn
how the OTF may be applied to their specifications and testing.

Now, after many hours of searching the literature, scanning and studying
published papers, writing about the OTF, and contemplating the practical as-
pects of the OTF and its use, we have a growing feeling that the future of the
OTF depends not on the professionals, the scholars in optics, and the designers
of optical systems, but on those who should perhaps be called the “paraprofes-
sionals’’—the users—purchasers, the preparers of specifications, and the evalu-
ators. The latter group understands the OTF, but generally not quite to the point
of visualizing, for instance, just what and how specific MTF changes modify
the appearance of a particular object. A fundamental concept necessary to the
intelligent and powerful use of the OTF is an understanding of how the low-
pass filtering of spatial frequencies alters the distribution of radiant flux density
in the object. A simple example of this phenomenon is the rounding off of the
edges of a square-wave distribution by the attenuation of high spatial frequen-
cies in the spectrum of a square wave.

An evaluator studying a lens under test cannot directly see the spatial fre-
quency spectrum nor the spatial frequency distribution in the image whereas the
flux density distribution is manifest. Hence, when using a criterion based on
the OTF, the evaluator is always one step removed from a direct observation.
In spite of this complication, the OTF is here to stay, and it is being used to
advantage in a number of practical ways. Therefore, we expect the art, at least
in its application, will mature; and we anticipate not slowly. This is why we
believe continued work on the assessment criteria and their measurement is of
great importance.

A salable feature of the OTF is that its evaluation applications are often cost-
saving replacements of other procedures, but greater gains from the OTF are
likely where it assumes some role that cannot be handled in any other way. This
occurs, for instance, when sensitive techniques are needed for aberrations of
just a few wavelengths or less. Here, where maximum wave-front discrepancies
are on the order of 10 um, spot diagrams and other geometrical optics tech-
niques become impotent, whereas OTF methods perform well.

Among the characteristics that give the OTF an advantage over other means
of evaluating image quality are the following:
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1. The validity of an OTF depends primarily upon linear relations between
object and image characteristics. Under these conditions, the user can
postulate the legitimacy of superposition and shift invariance.

2. Application of the OTF does not require any specific theory of light, any
particular spectral composition, any assumptions about the shape of the
aperture stop, or any limitation on the type or magnitude of aberrations
(provided the shift-invariance postulate is not violated).

3. The OTF for any given region of the image provides a complete analyt-
ical description of the object-image relation for that region without any
restriction on the specific form of the test object.

4. The OTF is a direct application of the highly developed Fourier transform
theory in which a two-dimensional variation of intensity over the object
plane is analyzed into a two-dimensional spectrum of spatial frequencies.
The OTF then describes how each of these Fourier components is atten-
uated in amplitude and shifted in phase as it appears in the image. Alter-
natively, any two-dimensional object may be treated as the superposition
of a set of one-dimensional objects in different azimuths, each azimuth
requiring only a one-dimensional transfer function.

5. The OTF can be both calculated directly from the design data of any
system and measured for that system after fabrication. Thus, for the first
time, exactly the same index of quality can be calculated and measured
for evaluation of the fabrication process and the precision of measure-
ment.

These characteristics are discussed in the appropriate chapters of this book.

In retrospect, it seems reasonable to suspect that wide application of the OTF
for assessing image quality in industry might have been set back as much as a
decade by the flood of publications on techniques and instruments that failed to
give adequate attention to precision of instrumentation. When these methods
failed in production, OTF received an ill-deserved black eye that took some
time to heal.
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Concepts

INTRODUCTION

For the OTF to become a part of our everyday thinking, we need to understand
the full meaning and the essence of certain basic concepts; we also need to
acquire a working knowledge of related principles and to attain a facility with
certain mathematical procedures. Pertinent concepts are discussed in this chap-
ter; prominent among them are:

Spatial frequency, spatial frequency spectrum, and distribution.
. Contrast and contrast transfer in an optical system.

. Point spread function, line spread function, and edge trace.

. Isoplanatism.

. Linear superposition.

We direct attention to three specific distributions: point spread function, line
spread function, and edge trace. Two especially important mathematical con-
cepts are those of convolution and autocorrelation, which are discussed in Ap-
pendix B. To convert a distribution in a space domain into a spatial frequency
spectrum, which is an equivalent distribution in the frequency domain, the Fou-
rier transform is applied in a number of examples. The significance of these
concepts and procedures becomes apparent in later chapters when, for example,
an optical system is found to function as a low-pass filter of spatial frequencies.
In the language of systems analysis, the optical system is a two-dimensional,
space-invariant, fixed-parameter linear system; and the point spread function is
its impulse response.

Two further basic concepts are wave aberration and wave aberration func-
tion, which are treated at length in later chapters.

SPATIAL FREQUENCY

Figure 2.1 is a picture of a white picket fence of regular spacing. Measurements
on the actual fence indicated that each picket and each space are the same width,

23
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24 CONCEPTS

Figure 2.1. The white picket fence has 8.06 pickets per meter.

6.2 cm, which means that a grasshopper progressing along the horizontal rail
would encounter a new picket each time the distance of 12.4 cm is traveled.
Further, he would note (if sufficiently astute) after moving a measured distance
of one meter that he had gone 8.06 times through the repeating cycle of a picket
followed by a space. The fundamental horizontal spatial frequency of the re-
peating cycle along the fence could be described then as 8.06 cycles per meter.
Measurements on the picture of the fence in Fig. 2.1 would lead to a corre-
sponding spatial frequency of the white and dark cycles; but, of course, the
dimensions and frequency would be different because of the change of scale.
Also, the description would no longer be of physical pickets and the spaces
between them but rather of the changing color from white to black in cycles as
our eyes scan along the picture of the fence. The physical quantity in the picture
is the changing capability to reflect light, which gives the pattern of black, gray,
and white regions. In this connection, reflectance is defined as the fraction of
the incident light that is reflected.

To simplify the mathematical analysis of the picket-fence image, the picture
of Fig. 2.1 has been reduced to the bar pattern shown in Fig. 2.2. Here the
reflectance of the pickets is assumed unity and that of the spaces, zero (complete
reflectance alternating with complete absorption). A graph of the reflectance as
a function of distance along the fence is shown in Fig. 2.3. Because the ordinate
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Figure 2.2. A *‘perfect’’ picket fence constituting a bar chart.
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Figure 2.3. Reflectance as a function of distance along the fence.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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in the figure represents reflectance p, which is a function of x alone, values of

reflectance at points in the picture are given by the mathematical expression for
p = f(x), and the expression is

f(x)=p(x)=1 when (—x,/2)<x = (+x/2)

and
(2n+3)x; = |x] = (2n +3)xy,
and
fx)=p(x) =0 when (2n +1)x; = |x| = (2n + 3)x,
for

n=0,1,2,3---. (2-1)

In these expressions we have assumed that the fence extends very far in both
directions, which corresponds to allowing n to become arbitrarily large. Equa-
tion (2-1) describes mathematically the distribution of reflectance in the bar
chart of Fig. 2.2 and the graph of Fig. 2.3.

FLUX DENSITY AND DISTRIBUTIONS

For the purpose of our discussion, distribution can be defined as a point function
of position representing values of some physical quantity that varies in a pre-
scribed way over the surface (for instance, over the image plane). Distribution
refers to the manner in which the physical quantity varies. For example, in the
picture of Fig. 2.2, the pattern of bars shows how reflectance is distributed.
Other quantities represented in distributions are intensity, flux density, and even
the complex amplitude over a phase front (wave front) in a coherent light beam.
In discussions of flux the term may apply to the amount of radiant energy in
joules per second, or it may be the amount of luminous energy in lumens, which
is visible light that has been evaluated for its efficacy to stimulate the human
eye. Flux density, a common term, depends on the context to tell whether in-
cident, reflected, or emitted flux is involved. Also, whether radiant energy or
luminous energy is meant ordinarily is evident from the topic under consider-
ation. Intensity and flux density are defined as follows:

Intensiry, I, is the amount of flux leaving a point source per unit of solid
angle.
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FLUX DENSITY AND DISTRIBUTIONS 27

Flux density, "W, is the amount of flux incident upon or leaving a surface
per unit of surface area.

Complex amplitude is discussed in Appendix C and in Chapter 4 in connection
with diffraction.

Besides the example given in Eq. (2-1), where f (x) represents reflectance
at points x, a distribution could be “W (£, ), representing flux density at points
(&, 7).

In the bar chart of Fig. 2.2, the combination of a white bar and an adjacent
black bar constitutes a cycle. As in the primitive example involving the
grasshopper, the number of such cycles occurring in a unit distance constitutes
the spatial frequency of the pattern. The length of one cycle or period is the
width of a white bar plus the width of a black bar. In Eq. (2-1) and in Fig. 2.3,
a period is equal to 2x;. The frequency w and the period are reciprocals:

w=1/(2x). (2-2)
In the example, the units of « are m~'; however, cm ™' and mm ™' are also
commonly used. In the bar chart, we have measured the frequency and period
perpendicular to the bars (which is generally done in simple patterns of this
type).

The graph of Fig. 2.3 is usually referred to as a square wave of reflectance;
but because, strictly speaking, it does not represent a wave like the moving
swell on the surface of water, terms like crenalate distribution and top hat
distribution of reflectance are sometimes preferred.

The sinusoidal distribution shown in Fig. 2.4 is especially convenient in the
analysis of complex patterns. It can be mathematically represented by

f(x) =a + bcos 2rwx

Figure 2.4. A sinusoidal distribution of reflectance.
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or by
f{x) =a+ bcos 7x/x,, (2-3)
where
a+b=<l, b < a,
and
wy = 1/(2x,).

In Eq. (2-3), a is the average reflectance, sometimes referred to as the ‘‘dc
level.”” The amplitude of the cosine distribution (or ‘‘wave’’) is b.

In practice the application of the spatial frequency definition (number of
cycles per unit distance) to sinusoidal distributions like the one in Fig. 2.4 is
straightforward; but square wave or bar distributions (Fig. 2.2) are often spec-
ified by the number of ‘‘lines’’ per unit distance, and this practice has led to
some confusion. The question is whether the combination of a black and an
adjacent white bar constitutes a line or each bar is counted separately. This
ambiguity can be avoided by always referring to line pairs. The number of these
in a unit distance will be equal to the frequency. Unless some other unit is
clearly specified, the practice in this book is to give the frequency in cycles per
millimeter (units: mm™!).

FREQUENCY SPECTRUM

The square wave distribution represented by Eq. (2-1) can also be expressed as
the sum of cosine terms as

4 2nwx 4 2nwx
) - oS — 2 0S .
n=1,59, -+ AT X n=3711, -+ AT |

f(x) =05+

(24)

(See [1, p. 26].) Each of the cosine terms is a sinusoidal component of the total
distribution. We speak of analyzing, or breaking down, a distribution such as
the square wave into its components. The sum, implying the physical super-
position, of all components represented in Eq. (2-4) is the square wave distri-
bution of Eq. (2-1) and Fig. 2.3. In fact, any realizable periodic distribution of
reflectance or flux density can be represented by a Fourier series of sine and
cosine functions of distance. Each of the terms is recognized as a sinusoidal
frequency, the lowest one of which is equal to the frequency of the original
periodic function that is represented by the series. Strictly speaking, an infinite
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number of terms would be required to make their sum exactly duplicate the
original function; but in many applications of Fourier series, the partial sum
converges so rapidly to the true value with the addition of terms that the sum
of just a few terms is a good approximation of the function.

The series representation of any periodic function as illustrated by Eq. (2-4)
has profound analytical significance. The fact that all arbitrary periodic distri-
butions are composed of but one kind of building block, the sine wave, allows
an investigator to explore the response of a given system to one sinusoidal
distribution at a time. (See [3].) Then the system response may be generalized
by displaying (for example, by plotting a curve of response versus frequency)
the individual response to each of the several components of an arbitrary dis-
tribution. When it is useful for the analysis, the individual responses can be
summed (with attention to phase) to arrive at the complete response distribution,
which then can be compared with the applied arbitrary periodic distribution that
produced it.

An obvious objection to a Fourier series analysis is that the reflectance and
flux density distributions encountered in optics are not generally periodic. To
meet this objection, the method of analysis has to be developed one step further.

When the terms of Eq. (2-4) are examined as representative of Fourier series
terms in general, it is apparent that as the period 2x; of the function is length-
ened, the interval between successive frequencies (1/(2x;), 3 /(2x,), 5/(2xy),
etc.) is shortened. By allowing the period to expand without limit, the interval
between frequencies can be made arbitrarily small, to any degree desired; and,
finally, a continuous spectrum of frequencies results. This limit corresponds to
a period of unbounded length; that is, a single cycle of the function extends
over all values of x, negative and positive. In other words, the function analyzed
over a finite path, however long, need no longer be periodic. Mathematically,
at the limit, the Fourier series becomes a Fourier integral. (It should be noted,
however, that the actual mathematical derivation of the Fourier integral can be
more conveniently handled by not involving the Fourier series. The discussion
here is intended to establish a conceptual relationship.) The Fourier transform
to convert a distribution as a function of distance f (x) to the same distribution
as a function of frequency F(w) is (see [2] and also Appendix B)

F(w) = g wf(x) exp( —i2wwx) dx. (2-5)

The reverse transformation, to convert a distribution as a function of frequency
to the same distribution as a function of distance, is

fx) = g i F(w) exp(i2wwx) dw. (2-6)
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The function F(w) as defined in Eq. (2-5) is called the frequency spectrum or
the Fourier transform of f (x). Because the exponent in the Fourier transform
is imaginary, the expression for F(w) is generally complex, giving both the
amplitude and the phase of each sinusoidal frequency component making up
the spectrum. However, the particular spectrum for a three-bar pattern, which
is discussed with its spectrum (Eq. (2-7)) in the next section, is real (the phase
is zero or 7 radians), meaning that all component waves are either in phase or
« radians out of phase at the origin of x. Application of Fourier analysis is
illustrated in a number of examples that follow.

THREE-BAR PATTERN SPECTRUM

In the picket fence example illustrated in Figs. 2.1-2.3, and formulated in Eq.
(2-1), an unbounded number of pickets (or bars) has been assumed. The Fourier
transform of f (x) in Eq. (2-1) can be worked out as a problem for bounded r
(finite number of pickets). When this transform is applied for three pickets or
bars as shown in Fig. 2.5, the spectrum is given by

sin 6wx; w

Fi(w) = (2-7)

27w COS TX @

A portion of this spectrum is shown in Fig. 2.6 where F; is plotted as a function
of . Relatively great local maxima in the amplitude are noted in the vicinity
of frequency values 1/(2x;), 3/(2x,), and 5/(2x;). These can be related to

Figure 2.5. A three-bar pattern.
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Figure 2.6. Frequency spectrum of the three-bar pattern shown in Fig. 2.5.

the frequency of the bar pattern (‘‘pickets’’) in Fig. 2.5 where 2x, is shown to
be the period of a cycle and x; the width of a single bar (black or white).
Therefore, from our discussion of spatial frequency, the first local maximum
occurs near the frequency of the bar pattern, the second near three times the
pattern frequency, and the third near five times the pattern frequency. These
three frequencies are called the fundamental, third harmonic, and fifth har-
monic, respectively. (In this sequence, the fundamental could also be called the
first harmonic, but this term is rarely used.)

Further observations based on the example illustrated in Fig. 2.5 and Fig.
2.6 suggest general characteristics of Fourier analysis. Some of these will be
emphasized in additional examples.

If the three-bar ‘‘pulse’” of Fig. 2.5 were increased to more bars at the same
spatial frequency, the plot corresponding to Fig. 2.6 would show narrower and
more pronounced peaks at the fundamental and the odd harmonics. As the num-
ber of bars approaches infinity, Fourier theory indicates that all frequencies
except the fundamenal and the odd harmonics vanish; and the amplitude plot
becomes a series of vertical lines at the fundamental and odd harmonic fre-
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quencies. As indicated earlier, the spectrum would be represented by an infinite
sinusoidal series rather than an integral. In all instances, because the average
of the bar function is positive, the plot that is a function of frequency would
have a positive, nonzero value at the origin (‘‘dc’’ or zero frequency).

EVEN AND ODD HARMONICS AND FUNCTIONS

In the discussion of harmonics, one could well ask why there are no even (sec-
ond, fourth, etc.) harmonics in the multiple-bar spectrum. The absence of these
frequency components results from choosing an f (x) that has the property

f(x + x) = —f(x) + constant, (2-8)

where 2x; is the period and the constant can have any real value, positive or
negative. Any function having this kind of symmetry is represented by a Fourier
series with only odd (fundamental, third, fifth, etc.) harmonics. If, instead of
the function shown in Fig. 2.3, the flat top were retained but the corners at the
axis were rounded, even (as well as odd) harmonics would appear in the series.
(See {1, p. 28].)

Although the discussion of Fourier series following Eq. (2-4) refers to both
sine and cosine functions, only cosine functions appear in Eq. (2-4). This ob-
servation suggests that some property of f (x) in Eq. (2-1) eliminates the sine
terms that might be expected in the corresponding Fourier series. To discuss
this property, the definitions of even and odd functions have to be used. If f (x)
is an even function, where f (x) = f (—x), a series of cosines will result. If
f(x) is an odd function, where f (x) = —f (—x), a series of sines will result.
(Note that a cosine is an even function and a sine is an odd function.) When
the even-odd property is explored in Fourier integral theory (see [2, p. 11]),
one finds that the transform of a real and even function is another real and even
function and that the transform of a real and odd function is another real and
odd function. Also, the frequency components of even functions are cosine
functions, and the frequency components of odd functions are sine functions.

The even-odd relations in Fourier integral theory suggest that Fourier math-
ematics can be considerably simplified by proper selection of the origin on the
x-axis. By such a selection, the relatively simple expression of Eq. (2-7) re-
sulted from the analysis of the three-bar configuration in Fig. 2.5. The origin
of x was arbitrarily placed at the midpoint of the center bar, thus making f (x)
an even function as well as a real function. The Fourier transform of f (x)
plotted in Fig. 2.6 must, therefore, be a real and even function mathematically,
although the negative frequencies have no physical meaning and are not shown
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A STEPLADDER BAR PATTERN 33

on the graph. As indicated on the ordinate axis, the relative amplitudes plotted
are of cosine waves.

The spectrum of Fig. 2.6 exhibits a general reduction of amplitude as the
spatial frequency increases, which can be easily traced to the 27w term in the
denominator of Eq. (2-7). This property of practical spectra allows frequencies
above some arbitrarily chosen limit to be ignored with little loss in accuracy.

A STEPLADDER BAR PATTERN

The bar pattern of Fig. 2.7 is made up of five shades of gray ranging from white
to black with three intermediate steps. If reflectances are plotted along a hori-
zontal path with the origin at the center of a white bar, Fig. 2.8 results, which
shows one of an assumed infinite number of cycles. The expression for the
corresponding spectrum is

2 0 (2j —1)2nrw cos 2nwx
nmw > 16 16x,

}. (2-9)

Figure 2.7.  An involved bar chart having a more complicated frequency spectrum than the spec-
trum for the three-bar chart.
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Figure 2.8. A plot of the reflectance as a function of distance across one cycle of the bar chart
of Fig. 2.7.

In this expression, 16x; is the period, and the fundamental w, is 1/(16x;). The
constant (or dc) terms are

&2 -1
po + 2 18 =pp + 2. (2-10)

j=1
When the summation over j is completed, Eq. (2-9) becomes
o | 2 3 5 7
F(w) =py +2 + Z\:— sinﬂ+sinﬂ+sinﬂ+sin—nﬂ}
n=1 | AT 8 8 8 8

2nmXx
16x, - (2-11)

X cos

Again, the assumed function represented in Figs. 2.7 and 2.8 satisfies the con-
dition of Eq. (2-8), so only odd harmonics appear in the spectrum. All har-
monics (including the fundamental), expressed as n/(16x;) or nw, where n =
1,2,3,..., atfirst seem to be present in Eq. (2-11); but substitution of any
even integer for n in the coefficient of the cosine function results in a value of
zero, whereas odd integers produce nonzero coefficients. Calculated amplitudes
for the first few harmonics are given in Table 2.1 and are shown in the spectrum
plot of Fig. 2.9. The envelope of the amplitudes has to go to zero at multiples
of 2/(16x;) = 2w, because even harmonics are not present.
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Table 2.1 Amplitudes of a Few Harmonics in the Spectrum
for the Bar Chart in Fig. 2.7

Harmonic Frequency Amplitude
Fundamental Wi 1.66357
Third 3w 0.22969
Fifth Sw, 0.13781
Seventh Ty 0.23765
Ninth 9w, —0.18484
Eleventh 11w, —0.06264
Thirteenth 13w, —0.05301
Fifteenth 15a, —0.11090
Seventeenth 17w 0.09786
Nineteenth 19w, 0.03627
Twenty-first 21w, 0.03281
Twenty-third 23w, 0.07233
Twenty-fifth 25w, —0.06654
Twenty-seventh 27w, —0.02552
Twenty-ninth 29w, —0.02376
Thirty-first 31w, —0.05366
Thirty-third 33w, 0.05041
Thirty-fifth 35w, 0.01969
etc.

SPECTRUM FOR A GENERAL DISTRIBUTION

In contrast to the bar charts illustrated earlier in this chapter, a picture like Fig.
2.10 does not suggest any recurring cycles of reflectance. Nevertheless, along
a line in any direction, such as from A to B in the picture, recurring cycles at
certain spatial frequencies actually do exist. In general, the spectrum of fre-
quencies is continuous; but, as already demonstrated with the bar charts, some
frequency components can have zero amplitudes. In fact, if one chooses a path
parallel to the boundary of a bar, all frequency components, except the dc or
constant level, have zero amplitudes.

The plot of Fig. 2.11 approximates the reflectance along the line AB in Fig.
2.10. If the coordinate along 4B is £, the reflectance can be designated f (£);
it also meets the mathematical requirements for having a Fourier transform. The
frequency spectrum, then, along AB is

+ oo

Flog) = | 7(8) expl(—i2mat) de. (212)
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Figure 2.9. The beginning of the frequency spectrum for an infinite sequence of bars like those
in Fig. 2.7.

Functions similar to the one shown in Fig. 2.11 are obtained by measuring the
reflectance of prints with a scanning microreflectometer. This procedure does
not provide a mathematical expression for f (£); in fact, such expressions are
seldom available. So experimental procedures are designed to provide values
of f (&) at specified intervals along the £-coordinate, and appropriate numerical

Figure 2.10. A nonrepetitive distribution of reflectance.
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Reflectance
|

£, distance along photographic print

Figure 2.11. A plot approximating the reflectance along the line AB in Fig. 2.10.

methods are available to apply the Fourier transform to a sequence of such
values.

A number of “‘fast’’ Fourier transform programs for computers and hand-
held calculators are now available. Some of these programs and the related
methods for calculating spectra are discussed in later chapters on the measure-
ment and computation of the optical transfer function.

If an image of a sinusoidal distribution, f (x) of Eq. (2-3), is formed by an
optical system, we say that the sinusoidal pattern of the object is transferred
from object space to image space. In this sense, we define (in a following sec-
tion) an optical transfer function, which indicates the efficiency of an optical
system to transfer sinusoidal distributions at various spatial frequencies.

Application of the optical transfer function requires the assumption for the
present that each sinusoidal component, usually of a flux density distribution,
is transferred through the optical element or system of interest without distortion
of the waveform, that is, the corresonding output component remains sinu-
soidal. In general, however, the distribution of flux density in the image and
the relative amplitudes and phases of the components will be affected by the
optical element or system. In fact, it is the relative amplitude and phase effects,
as functions of spatial frequency, that give useful characterization of the optics
in the application of the optical transfer function. Study of this characterization
is the purpose of this book.

EXTENSION TO TWO DIMENSIONS

In the examples already given, care was taken to reduce the two-dimensional
bar charts and picture to one dimension by specifying a path along which ob-
servations of reflection would be taken. This was done to simplify the discus-
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sion of concepts and mathematical operations. The present purpose is to restore
the second dimension of the general problem in Fourier analysis. Extension to
three dimensions will not be undertaken because all effects that we will treat
with the optical transfer function will be in lateral directions; no effort will be
made to discuss spatial frequencies in the direction of the optical axis.

When the Fourier transforms of Eqs. (2-5) and (2-6) are written in two di-
mensions rather than one, the following equations result:

@

F(w, w,) = SSf(x, y) exp[ —i2m(w,x + w,y)] dx dy; (2-13)

@

+ o

flx,y)= SS F(w,, ,) exp[i2n(w,x + w,y)] dw, dw,. (2-14)

—

CONTRAST AND CONTRAST TRANSFER

The term constrast is found in discussions of optics, photography, vision, and
photogrammetry, among other subjects, and usually refers to the range of rec-
ognizable shades of gray between the dimmest and brightest parts of an object
or image. Definitions leading to numerical values are structured to be most
helpful in the different contexts of the various fields. In this book, contrast C
is defined by

C= (Wmax - Wmin)/(wmax + Wmin)s (2'15)
where W, is the maximum flux density and W, is the minimum flux density
in the “‘picture’” or field. In the field described by Eq. (2-3), W, is (@ + b)
and W,,;, is (¢ — b). When these values are substituted in Eq. (2-15),

C=b/a. (2-16)

Because of the resemblance of this definition to that of amplitude modulation
in communication theory, C is sometimes referred to as modulation contrast.

If the sinusoidal pattern described by Eq. (2-3) is transferred through an
optical system, our earlier assumption about such patterns indicates that the
equation describing the image will have the same form as the object equation
but with different values for the constants, which we will designate by primes
(see Eq. (B-61)):
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f(x") =a' + b’ cos(2rwixi + ¢). (2-17)

The added term, ¢, is the phase difference between object and image caused by
transmission through the optical system. For a given sinusoidal component,
then, we can define contrast transfer T as

Te=C'/C=(b'/a")/(b]a). (2-18)

In this context, the unprimed values are said to denote object space and the
primed values image space.

In a given optical system, T will be a function of the spatial frequency and
is usually presented as a plot against a normalized frequency on the abscissa;
this function is called the modulation transfer function, commonly shortened to
MTF. When this magnitude function is abetted by a corresponding phase func-
tion, specifying the relative phase angle as a function of frequency, the com-
bination is called the optical transfer function, shortened to OTF. The phase
part of the combination is the phase transfer function (PTF). To express mag-
nitude and phase simultaneously, the OTF is put in complex form:

OTF(w) = T(w) exp [i¢(w)], (2-19)

in which T is the MTF and ¢, the phase, is the PTF.
Figure 2.12 shows the MTF for a ‘‘perfect’’ lens, that is, a lens or lens

-

50

L . ) 'l L L ' A
100 150 200 250 300 350 400 450 500
Spatial frequency, lines per mm

Figure 2.12. The MTF for a diffraction limited lens. The phase transfer function (not shown) is
zero for all frequencies.
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Figure 2.13. A measured OTF showing plots of both the MTF and the PTF [13].

system limited only by diffraction effects. The PTF, since it is zero at all fre-
quencies, is not shown. Figure 2.13 shows the measured OTF of an actual
lens. Both the MTF and the PTF are plotted as functions of spatial frequency.
The phase transfer function is discussed again in Chapter 7 in connection with
image quality.

DISTRIBUTIONS OF PHYSICAL QUANTITIES

Earlier in this chapter when functions f (x) and F(w) were used in connection
with illustrated patterns, they were reflectance functions and could have been
more explicitly designated p(x) and p (w). The reflected flux density could have
been represented using the symbol M, and the incident flux density by the sym-
bol H. The quantity represented by H is called incidance; and the quantity rep-
resented by M is called exitance. (Note: incidance and exitance as used here
are correctly spelled with an a; both terms are often defined in treatments of
photometry. We tacitly assume here that negligible radiant flux is emitted by
the surface because the term exitance would otherwise correctly include any
flux leaving the surface whether emitted or reflected.) Under a uniform distri-
bution of flux density H, we could have

M(x) = Hep(x),  M(w) = Hep(w). (2-20)

In the examples given earlier in this chapter, f (x) and F(w) could have rep-
resented these flux-density functions as M(x) and M(w), respectively, instead
of the corresponding reflectances. By further adjustments of the physical cir-
cumstances of the examples, yet a third alternative significance could be given
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to the f (x) and F(w) functions. Assume that the various patterns had been
displayed by optically projecting each pattern from a slide projector onto a screen
of uniform reflectance p.. Then the following relations would apply:

M(x) = H(x)p., M(w) = H(w)p.. (2-21)

Now M(x) and M(w) could represent exitance in lieu of the flux-density func-
tions f (x) and F(w), respectively.

We will not use the terms (or their symbols) incidance and exitance further
in this book, except where the context requires their use for clarity. When a
symbol for flux density is desired and we need not differentiate between inci-
dance and exitance, “W is used.

POINT SOURCES

Point sources of light, which are easy to visualize and convenient in mathe-
matical analyses, cannot quite be realized in practice. However, for practical
purposes, a source of finite dimensions is a point source if its dimensions are
negligibly small compared to other significant dimensions in the optical config-
uration. Some examples of small sources are the miniature, grain-of-wheat in-
candescent bulb; the low-power (2-W) concentrated zirconium arc, approxi-
mately 0.13 mm in diameter; and the 100-W, high-pressure, mercury arc
(actually with a little argon), approximately 0.3 mm arc length. A source of
appreciable size can be made to function as a point source by forming an image
of the source on a small hole in a metallic screen. The illuminated hole then
functions as the point source. Some sources that are used in this way are high-
power, high-pressure gas arcs and the positive pole of a carbon arc.

Specifying the “‘strength’” of the source in different directions requires the
concept of radiant intensity, which, as defined earlier, is the radiant flux leaving
a point source per unit solid angle given in watts per steradian. (Units: Wosr !
and Im-sr™', respectively.) An ideal point source of light would radiate uni-
formly over 47 steradians—a complete sphere—but in most optical applications,
a considerably smaller solid angle of near uniform flux distribution—constant
intensity—meets requirements.

Point sources, either individually or as building blocks in continuous sources,
are frequently considered as objects in optical image-forming systems, and cer-
tain tacit assumptions are usually made concerning the flux from such sources
as it passes through a system. If no information is given concerning the loss
properties of the system, it is usually assumed that all the flux entering the
entrance pupil (defined in the next section) from the object source will leave
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the system through the exit pupil (100% efficiency). Actually, of course, the
flux is diminished in transmission by absorption, by scattering, and sometimes
by vignetting for off-axis sources.

For convenience, the total flux originating at the source and passing through
the system is usually assigned a unit value in the appropriate units.

STOPS AND PUPILS

When light passes through an optical system from object to image, the bundle
of rays from each point on the object successively goes through (or is reflected
from) whatever optical elements that have been placed in the path. The elements
may be refracting lenses, mirrors, apertures in opaque screens, mounts holding
cross hairs, etc. Each element has a boundary beyond which the element no
longer passes rays; thus, the boundary defines an effective size. These bound-
aries can be any shape, but in many optical designs they are circular with the
optic axis passing through their centers. The first element encountered by the
rays from a point on the object defines a bundle of rays, which passes on to the
next element in the series. Whether the second element further limits the bundle
depends on the relative sizes of the bundle and the second element. As this
process is repeated through the whole optical system, it will usually turn out
that the outer edge of one particular element determines the size of the bundle.
This element is called the aperture stop. Although the aperture stop may be any
kind of element, it is commonly an opening in an opaque screen when the
optical system has been designed for optimum performance. Certain aberrations
can be appreciably reduced by proper placement of this element along the optic
axis. Also, different trade-offs in system performance can be realized by making
the size of the aperture stop adjustable.

Two pupils are defined as particular optical images of the aperture stop.
Generally other elements will both precede and follow the stop. The image
formed in object space by the optical elements preceding the aperture stop is
the entrance pupil. Similarly, the image formed in image space by the elements
following the aperture stop is the exir pupil.

Most multielement optical systems can in principle be reduced to the simple
configuration shown in Fig. 2.14. To attain the simple configuration for a sys-
tem, all the elements preceding the aperture stop are replaced by a single ele-
ment having all the attributes of the original combination; and similarly all the
elements following the stop are replaced by their equivalent element. The re-
sulting simplified system is called the reduced optical system. If a particular
system is designed so that no elements precede the aperture stop, it is called
the front stop and also functions as the entrance pupil. If, on the other hand,
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stop is exit
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Figure 2.14. Reduced optical system.

the system has no elements following the aperture stop, it functions as the exit
pupil.

When one’s eye is positioned on axis at the object location looking into the
optical system, the limiting opening seen is the entrance pupil. Looking the
other way from on axis at the image position, one sees the exit pupil. Except
for the two special cases already described where no optical elements intervene
between the eye and the physical aperture stop, the observer is looking at an
image, real or virtual, whose location in space is quite different from the loca-
tion of the stop itself.

In the frequent reference to entrance and exit pupils, they are treated as if
they were physical openings rather than the images that they usually are. This
should cause no difficulty because they do indeed function as if they were phys-
ical openings limiting the light fluxes at their respective positions.

POINT SPREAD FUNCTIONS

The image of a point source can never be as precise as the point source itself.
Several factors cause a spreading of the radiant energy reaching the image plane
of the optical system. Dust particles on optical surfaces and scratches in these
surfaces, foreign particles (air bubbles, for example) within lens material, ir-
regularities on the edge of the aperture stop, diffraction of the light beam by the
aperture stop, and aberrations (including defocusing) all cause the light to scat-
ter and spread out about the point where the image would otherwise be formed.

A physical analogy useful in visualizing the distribution of flux density in
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the image of the point can be set up by making a contour map in which the
isopleths of constant altitude represent lines of constant flux density. The typical
hills-and-valleys plot would show a large hill in the center. Discussion of a
variety of these plots will be deferred to later sections; our present discussion
will confine itself to the plot shown in Fig. 2.15, which consists of a single hill,
boss, or mound representing the flux distribution in the image plane. The math-
ematical function representing this boss, ‘W(x, y), gives the flux density as a
function of rectangular coordinates on the image plane, the usual origin being
the location of the ideal image point. The function W(x, y) is called the point
spread function.

Our references to the image plane in the preceding paragraphs and through-
out the book usually imply the Gaussian image plane, which is defined in the
next chapter. In actual optical systems, the choice of image plane tends to be
arbitrary: Its optimum position usually depends upon what trade-offs we accept

Figure 2.15. Light mound or boss showing isopleth lines.
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in image quality. The rays emanating from a point source and intercepted by
the entrance pupil of the optical system have a conical envelope (tangent to the
outer rays everywhere), called the caustic, with the source at the vertex and the
entrance pupil defining the base. As these rays leave the exit pupil, they con-
verge so that the bundle again is the shape of a cone, in the ideal situation, with
the image at the vertex. A plane perpendicular to the optic axis and passing
through the vertex of the cone is the image plane. However, for the reasons
already given for the spreading of the point image, the rays converge imper-
fectly and never do meet at a point before diverging again. The envelope rather
necks down to an interval of small cross section and then expands indefinitely
thereafter. The actual image plane would be located perpendicular to the optic
axis and somewhere along the interval of small cross section. Once a position
of optimum image quality has been found, ‘‘images’” formed on other planes,
parallel to but not coincident with the plane at the optimum position, are said
to be defocused.

For purposes of discussing the flux-density distribution in the cross section
of the image ray bundle, a hypothetical image plane serves as well as an actual
one to define the cross section. An image formed on a hypothetical image plane
is called an gerial image.

If we assume that the total light flux passing through the optical system from
a point source is unity, the following integral applies to the point spread func-
tion:

SS W, y) dxdy = 1. (2-22)

Finite limits of the order of the optic system dimensions can be applied to the
integral of Eq. (2-22) with little loss of accuracy because typical spread func-
tions decline to negligible values at relatively short distances from the ideal
point image position.

A practical way of measuring the point spread function is first to photograph
the point image by exposing a photographic film in the image plane. The density
produced on the developed film then corresponds to the image flux density in
phots, but usually not linearly. After photographic processing, the results are
measured point by point with either a microdensitometer (for a transparency)
or a microreflectometer (for a print). Conversion of the observations is then
accomplished by referring to the appropriate characteristic curve, which gives
log exposure versus photographic density. Exposure is defined as the product
of incident flux density and the exposure time. From the field of flux-density
data so obtained, contour lines of constant flux density can be plotted to show
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Figure 2.16. (a) Photograph of the point spread function produced by a diffraction-limited optical
system of circular symmetry [14]. (b) Photograph of the point spread function produced by a dif-
fraction-limited optical system having circular symmetry but a rectangular aperture stop. The di-
rection of a short side of the stop is parallel to the long direction of the spread function pattern.
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graphically the point spread function. Figure 2.16q is a photograph of the point
spread function produced by a diffraction-limited optical system of circular
symmetry. This spread function is known as the Airy pattern. Figure 2.16b is
a photograph of the point spread function produced by a diffraction-limited op-
tical system having a rectangular-shaped, rather than circular, aperture stop.
The long dimension of the spread function is parallel to the short sides of the
stop.

To accomplish a satisfactory measurement of the point spread function by
the photographic method described, certain capabilities are required of the ma-
terials and instruments employed. The photographic film must provide contin-
uously varying shades of gray corresponding to the range from the maximum
flux density in the image to a level that is accepted as negligible. The resolution
of the film must be adequate to record independently the flux density at adjacent
points spaced at a distance corresponding to the minimum distance between
contour lines in the final plot. The instrument probe that explores the photo-
graphic record must also be small enough to measure the record at the adjacent
points independently.

When the graininess of the photographic film, the size of the probe, and other
limitations in the measurement process compromise the resolution, the plotted
spread function not only includes the effects of the optical system under mea-
surement but incorporates the shortcomings of the measurement process as well.
To get the true spread function of the optical system, one must ‘‘back out’’ the
effects of the measuring process. To do this, it is convenient to assume that the
measuring process has a point spread function of its own, which combines with
the point spread function of the optical system to produce the plotted spread
function. Theoretically, this kind of combination of two spread functions in-
volves the convolution integral (see Appendix B, Eq. (B-31)),

+ oo

Wi, y) = || Wi wie —xy -y aar o)

where ‘Wq(x, y) is the optical system spread function, and “W(x, y) is the
spread function of the measuring process.
Because grains in emulsions are oriented and distributed randomly, point

spread functions for films are circularly symmetrical, which allows them to be
written

W =W(r) = W[+ vy (2-24)

On the other hand, optical point spread functions are generally not circularly
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symmetrical. This is illustrated in Figs. 2.17 and 2.18, which are asymmetric
point spread functions for systems having circularly symmetric optics.

Departures from symmetry that cause the characteristics of point spread
functions to be angularly dependent can often be identified with specific features
and characteristics of the corresponding optical systems. For instance, the struts
holding the secondary mirror in a reflecting telescope produce a characteristic
star effect superposed on the diffraction pattern, the number of ‘*points’’ cor-
responding to the number of struts (see Fig. 2.17¢). Coma, astigmatism, and
distortion each produces a characteristic asymmetry of the optical system point
spread function.

Probing either an aerial image of a point or the photographic record of such
an image to get numerical data about the point spread function can usually be
considerably simplified by taking advantage of symmetry and other general
characteristics of the flux-density distribution. For instance, a single scan along
a straight line through the center of the symmetrical boss shown in Fig. 2.15
would produce a profile like the one in Fig. 2.19, which gives complete infor-
mation about the distribution. For asymmetrical distributions, however, several
scans in different directions are required to get sufficient data. A minimum for

(a)

(c) (d)

Figure 2.17. (a) Photograph of the point spread function produced by an optical system having
circular symmetry and a small amount of coma [15]. (b) Photograph of the point spread function
in a plane containing a focal line, produced by an optical system having circular symmetry and a
small amount of astigmatism [15]. (c) Photograph of the point spread function produced by a
diffraction-limited optical system having circular symmetry except for an obstruction of the incident
beam by a secondary mirror held in place by three struts [16]. (d) Photograph of the point spread
function produced by an optical system having a small amount of astigmatism. This is the spread
function in an image plane midway between the two line images [15].
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Figure 2.18. A computer-generated plot showing the point spread function produced by an optical
system having circular symmetry and having a small amount of coma {17-19]. From ‘‘How Images
Are Formed,’” F. D. Smith. Copyright © 1968 by Scientific American, Inc. All rights reserved.

such distributions would ordinarily be a scan parallel to the optical tangential
plane and a second scan parallel to the sagittal plane.

As indicated in our earlier discussion about the microdensitometer or micro-
reflectometer probe, any instrument probe to sense a point-by-point character-
istic of a distribution must, to get good resolution, be as small as possible.

W(x)

x Figure 2.19. Profile through the boss of Fig. 2.15.
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Because the sensitivity of a detector commonly declines as it is made smaller,
a practical limit is reached because of noise in the sensing system. Also, the
dimensions of a probe in an actual beam of light flux would have to be kept
small to avoid disturbing the distribution being measured. To solve the sensi-
tivity versus size problem in the probes for point image distributions, a line
sensor rather than a point sensor is typically used, that is, the sensor area is
elongated in one dimension to get sensitivity but is kept narrow in the dimension
at right angles to the first to get resolution. This change, point to line sensor,
requires, of course, a corresponding change in interpreting the data.

For point image applications, the long dimension of the probe sensor is made
greater than the maximum image width; and the probe is swept across the image
in a direction perpendicular to the long dimension. Simultaneously responding
to the flux densities (or equivalent) at all points along the long dimension is in
effect integrating the point spread function along a coordinate in the direction
of this dimension. If the probe is swept in the y direction, the observed response
would be related to the point spread function W(x, y):

+ o

Wi(y) = S . W(x, y}) dx. (2-25)

W( y) is called the line spread function and is discussed in a later section.

It is at once apparent that the same line spread function would result from a
sweep in any direction across a symmetrical point image. However, the line
spread function for an asymmetrical point image would depend on the direction
of the sweep or scan. In general, several scans in different directions would be
required to get sufficient information about an asymmetrical image.

SPREAD FUNCTIONS FOR SMALL ABERRATIONS

The point spread function has a particular significance because the optical trans-
fer function, which is the central concern of this book, is derivable from it.
(The derivation is discussed in Chapter 5.) As indicated earlier, the paragon of
point spread functions, called the Airy pattern, would be produced by an ideal
optical system having no aberrations and having a perfectly circular aperture
stop. This pattern is the limit a designer strives for in successive corrections to
an optical system. An example of a point spread function recorded for a highly
corrected system is shown in Fig. 2.16a. Twenty diffraction rings appear on the
original photographic film; but to show the outer rings, detail in the central disk
had to be compromised by overexposure.
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The profile along a radius of an Airy pattern is plotted in Fig. 2.20. Figure
2.21 is a computer-generated picture of the light mound corresponding to the
photograph in Fig. 2-16a and the profile of Fig. 2.20. In the derivation of the
expression for this curve, the only mechanism assumed for spreading the light
is the diffraction at the circular aperture stop; hence, the Airy pattern is often
referred to as the diffraction-limited spread function. The expression for the
profile is (image space index of refraction assumed unity)

Wp') = Weol 2 Sy ()] /4, (2-26)

where ‘W, is the flux density, and W, is its value at the center of the pattern;
Ji is the first order Bessel function of the first kind; and u = 277 sin @’ /N =
27rpm/(As"). The symbols in the expressions for u are defined in Fig. 2.22,
where s’ = R so that the numerical aperture is equal to sin o’ = p_, /s’, a good
approximation except for systems having high numerical apertures. The point
source is assumed on the optic axis, so the Gaussian image of the source would
also be on the axis. The general point p’ in the pattern is at a distance r from
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Figure 2.21. A computer-generated picture of the light mound or boss corresponding to the spread
function shown in Fig. 2.16a, to the profile of Fig. 2.20, and to the distribution expressed by Eq.
(2-26) [17-19]. From ‘‘How Images Are Formed,”” F. D. Smith. Copyright © 1968 by Scientific
American, Inc. All rights reserved.

the intersection of the axis with the image plane. The source is assumed to
radiate light in a narrow band at wavelength A. Actual images of point sources
depart from the Airy pattern represented by the expression in Eq. (2-24) for a
number of reasons. For instance, the rays from an off-axis point object some-
times encounter a vignetted aperture, which is not circular; as a result, the
spread function departs from the perfect Airy pattern. Departures can also be
caused by slight defocusing or small aberrations, either for on-axis or off-axis
point sources.

When the actual performance of an optical system differs only slightly from
the ideal, the corresponding departure of the image of a point source from the
Airy pattern is almost imperceptible. One might expect a very small aberration
to cause a slight increase in the size of the spread function with little change in
brightness. Actually, in most instances, the reverse is true. The apparent size
of the central disk and the positions of the luminous rings surrounding it remain
almost unaltered. The significant change is rather that the central disk declines
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Figure 2.22. Schematic of the image space of a diffraction-limited optical system having circular
symmetry and defining the parameters used in Eq. (2-26).

in brightness, and the lost light is distributed mostly to the innermost diffraction
rings. The central disk is so bright compared with the rings that the redistri-
bution is typically undetected by the human eye and barely recordable on pho-
tographic film. The flux density at the center of the perfect Airy disk is about
57 times the maximum flux density in the first ring. The central disk contains
84 % of the total flux transmitted by the optical system from the point source.
The remaining 16% is distributed throughout the ring pattern. If the system is
defocused just enough to produce a quarter wavelength distortion in the wave
front at the exit pupil (see Chapter 4 for further discussion)—the popular *‘Ray-
leigh criterion’’—an additional 17% of the total flux is moved from the central
disk to the ring system, but no appreciable change is made in the disk size or
in the positions of the rings. The reduction of flux density in the disk by the
factor (84 — 17)/84 = 0.80 is barely perceptible to the eye and would even
be difficult to measure if a perfect and a defocused disk were compared in the
laboratory. However, the flux in the ring pattern is doubled (from 16 to 33%).
The extra flux may be distributed uniformly in the ring pattern, but is more
often distributed asymmetrically to the first few rings as shown in Figures 2.17
and 2.18.

In the discussions of the optical transfer function in later chapters of this
book, it will be shown that wave-front distortions equivalent to the defocusing
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Figure 2.23. Modulation Transfer Function for an optical system having circular symmetry: (a)
MTEF for a diffraction-limited system with sin «’ = 0.125 and A = 500 nm. (b) MTF for the same
optical system but with a slight defocusing. (¢) MTF for the same system but with 4 wavelengths
maximum wave-front distortion corresponding to 4 wavelengths of spherical aberration [20].

Modulation transfer function

0.2 | 1 |
0 0.5 1.0 1.5 20

Normalized spatial frequency

Figure 2.24. MTF for a system free of aberrations but having a defect of focus. The maximum
wave-front distortion is # /7 wavelengths where n is the number shown on each curve [21].
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described produce highly perceptible changes in the OTF as can be seen in Fig.
2.23. These show up as loss of contrast at the high spatial frequencies, which
corresponds to loss of contrast in the fine detail in the images of extended ob-
jects. Thus, one of the most valuable characteristics of the OTF is that the
modulation transfer function (MTF) is significantly changed for small degra-
dations in highly corrected optical systems whereas the corresponding changes
in the spread function are hardly detectable.

When a system of rays originating at a single object point is constructed so
that the rays are uniformly distributed over the entire entrance pupil, the plot
of their consequent intersections with the image plane is called a spot diagram.
Spot diagrams are sometimes studied by experienced optical designers to find
what kinds of aberrations are present in a system. It is interesting to compare
this method with the inspection of MTF curves to identify aberrations. From
the comparisons in Figs. 2.23 and 2.24, as well as the discussion in previous
paragraphs, one observes that as aberrations are introduced into a system,
changes in the MTF curves will indicate their presence though the wave-front
distortion remains quite small. After the aberrations are increased beyond the
detection level, changes in the MTF curve begin to characterize the kind of
aberration.

LINE SPREAD FUNCTIONS

The point spread function, which we have discussed at length, is the mathe-
matical expression for the flux-density distribution in the image of a point source.
Similarly, the line spread function is the mathematical expression for the flux-
density distribution in the image of a line source.

A convenient way to approximate an ideal line source in the laboratory is to
focus the image of a high-pressure mercury arc, or other intense source, onto a
long, narrow aperture; the illuminated aperture then serves as the line source.
A practical way to make the aperture or slit is to etch an engraved line through
a thin sheet of metal. Another technique is to engrave a line through an opaque
coating of aluminum on a glass substrate.

In our treatments of the line spread function, unless something is said to the
contrary, we will assume that the source is completely incoherent over its sur-
face. As with the corresponding plot of the point image, an isopleth plot of the
line-source image results in a hill, boss, or light mound; but this time it is
cylindrical as shown in Fig. 2.25. To acquire data for such a plot, a long,
narrow probe may be used to scan the image. The axes of the probe and image
are maintained parallel, and the probe is scanned perpendicular to these axes.

Because the line spread function is easier to measure, it is usually preferred
over the point spread function in optical analysis. Several methods are used to
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Figure 2.25. Isopleth plot of a line spread function.

obtain a line spread function. One has already been described in the discussion
of Eq. (2-26). As suggested there, the indicated integration may be accom-
plished mathematically when the point spread function is known or experimen-
tally when an aerial or a recorded image of a point source is available. Another
method of obtaining a line spread function is to differentiate the edge trace,
which is discussed in the next section.

The line spread function corresponding to the Airy pattern may be derived
by first making the following substitutions in Eq. (2-26): u = (12 + u2)'/?,
where u, = 2mp,r,/Ns’ and u, = 2mp,r,/\s’. Comparison of the above
expressions with the definition of u following Eq. (2-26) shows that r, and r,
are the rectangular coordinates of the general point p’ in the image plane. With
these substitutions, Eq. (2-26) becomes

file 1) = Weo 2{ 12 + u2)'*1} /(i + ). (227)

Conversion of this expression for the Airy pattern to the corresponding line
spread function is done by integrating with respect to u,. The result is known
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Figure 2.26. Line spread function for a diffraction-limited optical system corresponding to Eq.
(2-28).

as a Struve function of the first order, S;(2u,). The relations are

+a

f2(ux) = S—a fl(ux’ uy) duy = 4WCOSI(2ux)/u§9 (2'28)

where f,(u, ) is the diffraction-limited line spread function (Fig. 2.26). The limit
a is the value of u, = 2mp,r,,/\s’, where r,, is an arbitrary distance from the
Gaussian image point chosen so that f(u,, «,) has negligible values at greater
distances. In the mathematical literature, Struve functions are associated with
Bessel functions; and tabulated values of Struve functions are usually found in
tables of Bessel functions.

THE EDGE TRACE

Figure 2.27 shows schematically an optical configuration where a knife edge is
placed in the object plane so that it intersects the optic axis. The resulting image
is a plane half ‘‘white,’” half ‘‘black’’ separated by a straight line, which is the
image of the knife edge. Close examination of the line, however, reveals that
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Figure 2.27. Schematic showing the formation of an edge trace.

the transition from white to black is not abrupt but occurs gradually because of
diffraction, aberrations, and defocusing. When flux density is plotted against
distance along a path perpendicular to the dividing ‘‘line,”’ the edge trace shown
in Fig. 2.28 results.

Inasmuch as both the edge trace and the line spread function are dependent
upon the same characteristics of an optical system, it is not surprising that one
can be transformed mathematically into the other. In fact, the edge trace is the
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Figure 2.28. Edge trace for a diffraction-limited optical system with circular symmetry.

integral of the line spread function:
W(x,) = S W(x') dx’, (2-29)

where “W(x, ) is the edge trace, and “W(x’) is the line spread function. Because
of this relation, the edge trace is sometimes called the accumulated line spread
Junction.

The edge trace is also the convolution (see Appendix B) of the line spread
function and a step function:

wi) = | o) -y ax, (230)

—oo

where f,(x") is the spread function and U(x') is the step function, which is
defined as

Ux')=1 when 0 =< x' < o, (2-31)

S
R\

N’
|

=0 when —o0 < x’ < 0.
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ISOPLANATISM

An optical system is said to be isoplanatic, in the context of OTF discussions,
if a translation of the object point in the object plane produces just a proportional
translation of the entire point spread function in the image plane. That is, if an
object point source at (x,, y;) produces the point spread function f;(x’, y') in
the image plane, a translation of the object point to (x; + Ax, y; + Ay) pro-
duces the spread function fi(x’" + m Ax, y' + m Ay) where m, a constant, is
the magnification of the system and m Ax = Ax’ and m Ay = Ay’. Under these
conditions, the translation of the object point causes no change in the spread
function (except its location), and the shapes of the wave fronts approaching
the image point are unchanged. As a result, the wave-front aberration (defined
in the next chapter) also remains unchanged. The region that includes all iso-
planatic points in the object plane (or the corresponding region in the image
plane) is called an isoplanatism patch. The greatest isoplanatism patch contain-
ing a particular point P is called the isoplanatism patch belonging to P.

In practical optical systems, aberrations are known to change appreciably as
an object point is moved considerable distances in the object plane. In the ter-
minology just defined, this is to say that optical systems are not generally iso-
planatic. Unfortunately the mathematical requirements for applying the Fourier
transform to calculate the OTF reduce in part to requiring isoplanatism; in fact,
the concept of a unique OTF for a given system requires that the system be
isoplanatic. This problem is overcome by deciding first what variation of wave-
front shape (aberrations) can be regarded as insignificant and then subdividing
the object plane into regions, isoplanatism patches, so that the accepted varia-
tion is not exceeded within a given patch. Each patch will have its peculiar
OTF. (Since wave-front shapes cannot be observed directly, some related op-
tical characteristic (MTF, image distortion, etc.) will have to be observed to
establish the boundaries of isoplanatism patches.)

LINEAR SUPERPOSITION

In addition to isoplanatism, the mathematical conditions for applying the Fou-
der transform to calculate the OTF include linear superposition. Mathemati-
cally, linear superposition can be illustrated by assuming the *‘strengths’’ of
two sources to be I;(x;, y;) and L,(x; + Ax, y, + Ay), which produce fi(x’,
y') and fo(x’ + Ax’, y' + Ay') in the image plane, respectively, when each
source is applied by itself. If the two sources are applied simultaneously to
produce f3(x', y') in the image plane, linear superposition means that

AL YY) = A, Y) + AH(x' + AX', Y+ Ay'). (2-32)
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Furthermore, if the two source strengths are modified by the two arbitrary fac-
tors A and B so that they become Al (x;, y;) and Bl,(x; + Ax, y; + Ay), they
will individually produce Af;(x', y') and Bfy(x" + Ax’, y' + Ay') in the image
plane. When the modified sources are applied simultaneously, the total effect
in the image plane will be Afj(x’, y') + Bfi(x' + Ax', y" + Ay’).

The natures of the source ‘‘strengths’” and the resulting effects (fi, f>, and
f;) in the image plane were purposely left ambiguous in the discussion above
because both the sources and the images could be characterized in different
ways—all legitimate as long as linear superposition holds.

As indicated by the mathematical discussion, linear superposition means that
the effect in the image plane will be directly proportional to the strength of the
source. When two or more sources are applied simultaneously, the combined
effect at each point in the image plane will be the sum of the individual effects
observed when the various sources are applied one at a time.

Linear superposition breaks down when the phase in the beam from one
source depends on the phase in the beam from a second source. Such depen-
dence is called coherence.

COHERENCE

Electromagnetic energy in a beam of light exists in discrete packets called pho-
tons. Each photon is thought to be accompanied by a short electromagnetic
wave train of increasing and then decreasing amplitude. Unless the photon-
generating mechanism imposes a special discipline on the photons with respect
to their placement in both space and time, as in a laser, the phase relations
between photons are random; so no fixed-phase dependence usually exists be-
tween any two places in an ordinary beam. Without a stable phase relation, the
beam is said to be incoherent. However, if the beam from a source, especially
a point source, is divided and the two separate beams are then led over different
paths and recombined appropriately, the phase in one beam may have a constant
difference with the phase of the other. This dependency, which is called coher-
ence, cannot be observed directly by comparing the alternations in the two
beams; no detector exists with a short enough time constant. When the beams
are superposed correctly and there is a sufficient degree of coherence, in-phase
regions of the composite beam will be characterized by above average flux den-
sity, out-of-phase regions by below average flux density. On the image plane,
these in-phase and out-of-phase regions show up as light and dark fringes, which
are manifestations of constructive and destructive interference, respectively, in
the superposed beams. The existence of observable fringes implies a partial
fixed-phase dependence, and also implies at least a degree of coherence. The
process of imposing certain characteristics on a beam of light—such as colli-
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mating, narrow-band filtering, and passing through small apertures, even
through microscope objectives—often introduces a degree of coherence into an
otherwise incoherent beam. Many of these creations of coherence are uninten-
tional. Whatever the reason that coherence is produced in the light reaching the
image plane, coherence will tend to violate the conditions necessary for apply-
ing the Fourier transfer function to calculate the OTF.

Coherence is discussed from a number of points of view in Refs. 4-12. The
accuracy of the various procedures must be evaluated by the OTF practitioner
from a general comprehension of coherence principles and a knowledge of the
particular laboratory setup. In certain procedures for measuring the OTF, a
degree of partial coherence can cause the results of an experiment to be inac-
curate. These problems with coherence are discussed with the appropriate con-
text in later sections of this book. (See Ref. 23.)
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Notation and Coordinates

INTRODUCTION

There seems to be no clear consensus on the choice of symbols and terms in
the field of optics. Even the choice of which direction of a directed quantity
such as a ray is to be positive or negative is not standard. Many attempts have
been made to find a common language that all would accept, but it seems that
each textbook and each lens computer program still has at least a few unique
elements in its language. Because there is no generally accepted standard in the
optics literature, we often made an independent choice as to what is used in this
book. Since more significant papers about the OTF have probably been pub-
lished in England than in our own country, the selection of symbols and terms
becomes especially difficult when the notation accepted in England, for exam-
ple, is not commonly found in the United States.

Because of the existing muddle, the sometimes irksome and often difficult
to visualize subjects of notation, sign convention, and coordinate systems, which
constitute the special language of the optics of the optical transfer function, are
treated in some detail in this chapter. Our main purpose is to introduce the
reader to the usage in this book and, we hope, quite generally in the field of
optics.

For historical and tutorial reasons, we begin with the conventional way of
presenting cross sections of optical elements and optical systems, including ray
paths through the elements. We briefly explain cardinal points and paraxial
notation. We then take up the reduced and canonical coordinates of Hopkins,
which, when they are changed back to real-space coordinates, become the more
familiar conventional notation. Finally, while we are discussing coordinates,
we take up the relations involved in a shift of image plane and with magnifi-
cation in anamorphic imaging.

Our choices begin with the selection of terms and symbols. As already in-
dicated, we try to use terms and symbols that have been used most often and
most effectively by other writers. We pay particular attention to the American
National Standard, ANSI PH3.57-1978, which is mentioned in Chapter 8,
Ref. 5.

64
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INTRODUCTION 65

An optical system, in our discussions, is a sequence of transparent media,
usually isotropic, each separated from the next by a smooth, polished surface.
It is often useful to think of two successive surfaces and the optical medium
between them as a unit called a simple lens or element.

Like other three-dimensional geometric systems, the optical system is rarely
treated mathematically until certain simplifying conditions are imposed. Unless
something is said to the contrary, all surfaces are surfaces of revolution on a
common axis; in fact, the further assumption that the surfaces are spherical can
often be made. Of course, a plane surface can be regarded as a spherical surface
of infinite radius. The vertex of a surface is its intersection with its axis.

If only rays that are both close to the axis and almost parallel to the axis are
to be considered, the system is said to be paraxial, Gaussian, or ideal. Under
this assumption, an angle o made by the ray with either the axis or a perpen-
dicular to an optical surface will be small so that the following approximations
can be made (« in radians):

sihe =@, tana=a  cosa=1. (3-1)

The approximation for each trigonometric function is recognized as the first
term in the series expansion for the function, the accuracy of the approximation
depending on how close the value of the first term is to the sum of the infinite
series.

When the paraxial assumption gives acceptable results, nonspherical sur-
faces can usually be adequately represented by spherical approximations {1, p.
17]. The wave front approaching an image point in paraxial calculations is
spherical, so the paraxial system is free of aberrations. Thus, only one optical
transfer function applies (Fig. 2.12) under this simplifying assumption.

Treating an optical system as a Gaussian (paraxial) system is useful for de-
fining focal length and power (optical sense) and for locating the cardinal points.
Included in the cardinal points are the focal points, principal points, object
point, image point, and nodal points. A plane through any one of these points
and perpendicular to the axis has the same name as the point, as, for example,
the Gaussian image plane, which is perpendicular to the axis at the Gaussian
image point.

Discussions of relative aperture, entrance pupil, exit pupil, aperture stop,
vignetting, and field (of view) coverage involve rays that are relatively remote
from the axis and, therefore, cannot be conducted in terms of the Gaussian
system. Instead, a more comprehensive system (fewer simplifying assumptions)
is needed. This is also true when the optical transfer function is to be used in
optical analysis, evaluation, and design because moderately large fields of view
and entrance pupils characterize optical systems in which questions of aberra-
tion residuals occur.
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SIGN AND NOMENCLATURE CONVENTIONS

Because assignment of algebraic signs is largely arbitrary in setting up optical
problems and because no common convention has been adopted regarding what
is called positive and negative, explicit rules have to be set up and meticulously
followed concerning signs. The rules we use are included in the following def-
initions and conventions:

1. Light proceeds from left to right in the optical diagrams unless otherwise
stated.

2. A distance measured in the direction that light is proceeding (usually
from left to right) is positive.

3. A distance is always measured from a refracting surface or from a prin-
cipal plane (which will be defined later).

4. The vertex of a refracting surface is its intersection point with the axis
of symmetry.

5. A radius of curvature is positive if the direction from the vertex of a
surface to its center of curvature is from left to right.

6. The surfaces are numbered in the order in which light passes through
them.

7. Subscript numbers indicate the surface at which refraction is taking
place.

8. Whenever a distinction must be made, a prime indicates that the quantity
applies after the ray has been refracted at a surface.

9. A reflecting surface requires the use of a negative index of refraction
for the medium following the surface to account for the change in di-
rection or ‘‘folding’’ of the optical system.

10. Object space is that region containing the rays before they enter the lens
or optical system.

11. Image space is that region containing the rays after they have passed
through the lens or system.

CARDINAL POINTS

Associated with each lens and with each combination of lenses are certain sig-
nificant points, that are useful in analyzing optical systems, called the cardinal
points. We postulate the existence of these points and planes related to them
and define them as follows:
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1. Two unit conjugate planes (conjugate here meaning that there is an ob-
ject-image relation between them), called the first and second principal
planes, unit planes, or Gauss planes, are perpendicular to the optic axis;
their points of intersection with the optic axis are called the first and
second principal points, respectively.

2. The first and second focal planes (which can be called infinite conjugates)
are perpendicular to the optic axis; their intersections with the optic axis
are called the first and second focal points, respectively.

3. Parallel rays in object space that are incident upon the first principal plane
and that pass through the system will reach a common point in the second
focal plane; parallel rays in image space, having passed through the op-
tical system, will have passed through a common point in the first focal
plane.

4. A ray that is incident on the first principal plane at a distance # from the
optic axis and that passes through the system will leave the second prin-
cipal plane at a distance 2’ = h from the axis.

5. There are two points on the optic axis called nodal points such that a ray
passing through the first nodal point will also pass through the second
nodal point and its direction in image space will be parallel to its direction
in object space.

The principal points, focal points, and nodal points together are called the car-
dinal points for the system. When the positions of these points are known, the
location of the image of an object and its magnification can be determined by
a simple ray-tracking procedure. Since a centered system is postulated, only a
two-dimensional plot is needed.

If the refractive indices of the media in object space and image space are the
same, the nodal points will coincide with the principal points. In the following
discussions we assume this to be true. In most practical optical systems, the
medium is air, which has a refractive index of approximately unity. An impor-
tant exception is the human eye.

PARAXIAL NOTATION

Although the paraxial system is too elementary for significant OTF develop-
ments, its notation is a convenient stepping stone for a more complex coordinate
system and notation appropriate for OTF analysis.

Figure 3.1 shows the symbols and the coordinates for a paraxial system; for
illustration the angles (a, o', and 6) have been drawn larger than would be
permissible for the paraxial approximations discussed earlier. As shown in the
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Figure 3.1. Symbols and parameters for the paraxial optical system. The size of each angle is
exaggerated for clarity.

figure, unprimed symbols are usually reserved for object space and primed sym-
bols for image space. The diagram, which is not meant to represent any actual
system, shows the two spaces nicely separated so that unprimed symbols appear
on the left and primed on the right. For some systems the object and image
spaces overlap so that F' and H’ could occur to the left of F and H. The paraxial
symbols on the diagram are defined as follows:

o0, 0’ On-axis object and image points

0, Q' Off-axis object and image points

F, F’ First and second focal planes

H H First and second principal planes

S, Aperture stop

E, E' Intersections of entrance and exit pupil planes with the
axis

a,a’ A rim or edge ray

n,n' Indices of refraction in media of object and image spaces

b, b’ Chief or principal ray (from an off-axis point)

] Field of view half angle

nsin a, n'sin &’  Object and image space numerical apertures

(£,7), (¢, 1)) Rectangular, real space coordinates in object plane and
image plane with origins at O and O’ (% and 7’ not
shown because they are measured perpendicular to the
plane of the diagram )
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(x, ), (x", 9" Rectangular, real space coordinates in entrance pupil and
exit pupil with origins at E and E’ (not shown in dia-
grams)

L First and second focal distances, which are equal when

the media of object space and image space are the
same or have the same index of refraction

Object and image distances measured from the principal
planes, first and second respectively

As indicated earlier, O and O’ determine the positions of the object and image
planes.

NEED FOR SPECIAL COORDINATES

In the early work on the optical transfer function, real-space coordinates, such
as the system described for paraxial optics, led to a number of distracting dif-
ficulties. One particular improvement was to define points relative to coordi-
nates on a wave front rather than relative to pupil plane coordinates. H. H.
Hopkins was the pioneer in this work, and he developed what are known as
reduced and canonical coordinates [2-6]. Before these coordinates are defined,
we will discuss some of the difficulties that led to their use.

The word reduced means here that the effects of magnification are removed
from analysis of the image. Without this adjustment, a spatial frequency «’ in
image space is related to the corresponding spatial frequency w in object space
by the magnification m of the optical system according to

w = w/m. (3-2)

For example, when the magnification is 10, 20 cycles/mm in object space
becomes 20 cycles for each 10 mm or 2 cycles /mm in image space. However,
in reduced coordinates, magnification is always unity, so the reduced frequency
does not change from object to image space.

In real-space coordinates for nonparaxial systems, application of Eq. (3-2)
is no longer simple when m is not constant. For instance, the aberration called
distortion causes m to depend on the object point distance OQ (Fig. 3.1). Fur-
thermore, at off-axis points many optical systems tend to be anamorphotic (hav-
ing different magnification in each of two perpendicular meridians), so m then
depends on the direction of the object point distances as well as on its magni-
tude. In a test situation, this means that the apparent magnification of an optical
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system depends on the azimuthal orientation of a line-pair test chart. Reduced
and canonical coordinates remove the need for explicit attention to these and
other effects of aberrations and vignetting (restrictive action of the edge of the
aperture for rays that are not axial).

In real-space coordinates, certain diffraction integrals and certain equations
for wave-front distortion due to focal plane shift become indeterminant when
either the exit pupil or the image plane is at infinity. These indeterminancies do
not occur in canonical coordinates.

Because of the relative characteristics illustrated in the previous paragraphs,
computer programs for calculating the optical transfer function are simpler and
more efficient when expressed in reduced and canonical coordinates rather than
in the more conventional real-space coordinates.

WAVE-FRONT ABERRATION

Figure 3.2 shows a wave front diverging from the off-axis object point Q toward
the entrance pupil of an optical system. Because of the physical nature of wave
propagation, the wave front is spherical and centered on 0. The rays related o
the wave front are normal to the wave front and pointed radially away from Q.
Figure 3.3 shows the wave front after it has emerged from the exit pupil of the
optical system. If the system is assumed free of aberrations, the wave front will
be spherical and centered on an image point Q', upon which it converges. The
related rays are again normal to the wave front but this time pointed radially
inward toward _Q_ '

Figure 3.2, Symbols and parameters for an off-axis object point.
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WAVE-FRONT ABERRATION 71

Figure 3.3. Image space symbols and parameters corresponding to object space designations of
Fig. 3.2.

Because of aberrations, the emerging wave front is generally not spherical,
nor does it necessarily tend to converge on the designated image point (defined
later). To specify the nature of the actual wave front, it is compared with a
spherical wave front of the aberration-free system; the spherical wave front,
which may be hypothetical, is called either the reference sphere or the pupil
sphere. The distance along a ray from the reference sphere to the actual wave
front is the wave-front aberration or wave-front distortion; its numerical value
is the optical path length obtained by multiplying the geometrical distance along
the ray by the refractive index of the medium. In Fig. 3.4, n’ times the distance
between B’ and D’ is the amount of the wave-front aberration at B '. The ab-
erration is positive when measured from reference sphere to wave front in the
direction of the ray; hence, the aberration depicted in Fig. 3.4 would be posi-
tive. (The terms wave-front aberration and wave-front distortion are often short-
ened to wave aberration and wave distortion.)

Since wave-front aberration, represented by the symbol W, varies with po-
sition in the wave front, it is a function of the coordinates on the reference
sphere:

W= W(B"). (3-3)

Optical designers can make an estimate of the actual wave-front shape in the
vicinity of the reference sphere when doing ray tracing. (See the section on
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Figure 3.4. Object and image spaces showing tangential plane symbols and an image space ref-
erence sphere.

transfer equations for a discussion of ray tracing.) The approach is to make a
number of exploratory optical path length measurements along rays from the
off-axis point Q (Fig. 3.4) to the reference sphere, which is centered on Q' and
passes through E'. (The location of E ' is discussed in the next section, which
describes nonparaxial notation.) As indicated earlier, optical path length D is
the product of the refractive index over each segment and the geometric length
[ of the segment:

B

D=2n(l)Al or D= SQ n(l)dl, (3-4)

which is the optical length of the ray OBB’ where n(!) is the index of refraction
at the element dl of geometrical path length. The optical lengths for various
points B, resulting in various corresponding points B', should be equal if there
are no aberrations. In general, however, the various optical path lengths so
calculated are not equal; the difference between each length and the length for
the ray QFEE’ is a measure of the aberrations present in the system. Since the
quality of the point image is determined by the whole wave front, the optical
designer has to make enough exploratory calculations of ray length to get a feel
for the discrepancies between the actual wave front and the reference sphere.

A defective image of a point source is caused by a combination of interre-
lated wave-front and ray characteristics: failure of an emergent wave front to
be spherical, failure of all rays (normals to the wave front) to point toward the
image point, and failure of all points on the wave front to arrive at the image
plane exactly in phase.

By definition, all points of a wave front originating from a point source are
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at the same optical distance from the source and are all in phase. So far, in our
discussion, wave-front aberration has been indicated as the optical ray length
increment between the reference sphere and the wave front. However, the ef-
fect, at the image point, of this discrepancy is more simply related to the phase
increment than to the length increment. Phase increments can be given either
in radians or in wavelengths in free space. A wavelength corresponds to 27
radians or one cycle of phase. To calculate wave-front aberration phase advance
from the wave-front aberration W(B'), W(B') is multiplied by & where & =
2w /N and \ is the wavelength in free space. At B’ in Fig. 3.4, the phase
advance is 27n’ (B D) /A radians or n’(B' D) /N wavelengths; of course,

if D' were to the left of B’ ( B’ D' negative), the aberration would be described
as a phase lag.

In an aberration-free system where the emerging wave front coincides with
the reference sphere, all rays arrive precisely in phase at the image point, and
a maximum exchange of energy takes place from the wave front to the image
point. Any aberration will disturb this condition; energy from all parts of the
wave front will not arrive in phase at the image point (which is equivalent to
saying that all rays will not be directed at the image point), and the exchange
of energy from the wave front to the image point is diminished. It is conceivable
that the wave front could be spherical and yet not be centered on the designated
image point so that the maximum energy would be delivered to another point.
However, if the wave front is nonspherical, something less than the maximum
possible energy exchange will take place at any point because of the consequent
spreading out of the energy.

NONPARAXIAL NOTATION

In Fig. 3.2, Q is an off-axis object point outside the paraxial region, and O is
the axial object point in the same object plane as @, so OQ is the distance of
Q from the axis. In nonparaxial notation, the bar on symbols like Q indicates
that an off-axis object or image point is involved. As in notation discussed
earlier, primes usually denote image space.

The plane that includes the axis and the line OQ is called the rangential
plane in optics. Two-dimensional diagrams like Fig. 3.5, which include Q and
the axis, are drawn in the tangential plane. A cone of rays originates at 0 and
passes through the entrance pupil of the optical system. Only a ‘‘fan’’ of rays
originating at O can be shown on the two-dimensional diagrams. In Fig. 3.5,
the fan is represented by two edge rays and a central ray. The particular wave
front shown was chosen so that the two edge rays intersect the wave front at
equal distances from the axis (| + Y, | = | =Y |). The chosen wave front,
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Figure 3.5. Tangential plane of an optical system.

in turn, intersects the axis at E, and the central ray, drawn from Q through E,
is called the pupil ray. This ray is sometimes confused with the principal or
chief ray, which passes through the intersection of the entrance pupil plane and
the axis. In the coordinate system being defined, E locates a new off-axis en-
trance pupil whose ‘‘plane’’ is actually a portion of a sphere centered on Q with
a radius R equal to the distance QF. As indicated in Fig. 3.5, the pupil ray
makes an angle « and the upper edge ray an angle o with the axis.

The conjugate of E in image space is E’, which locates the exit pupil in this
new system of coordinates.

Real-space coordinates in the object plane are £ and 7 with O as the origin.
For points in the newly defined pupil ‘‘plane,”’ the coordinates are X and Y,
where X is measured parallel to £, Y is measured parallel to 7, and the axis is
the origin. Because of the spherical shape of the new pupil surface, different
coordinate points will not only have different X and Y, but the distances from
the axis that determine the values of X and ¥ will generally be measured from
different points of origin on the axis.

A plane through the pupil ray and perpendicular to the tangential plane is
defined as the sagittal plane. In the isometric diagram of Fig. 3.6, the sagittal
plane passes through the pupil ray marked with an R and the x-axis, which
passes through E. As indicated earlier, a single tangent plane extends from the
object point, through the optical components of the system, and to the image
point; however, each time that the pupil ray is refracted at an optical surface,
a new sagittal plane has to be defined.

In Fig. 3.6, the curved dashed line passing through E and P is the intersec-
tion of the pupil sphere and the xz coordinate plane; hence, it is the locus of
points on the pupil sphere with the coordinates ( X, 0). The sagittal rays are
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defined as those that originate at Q and pass through this intersection. It is to
be noted that only the pupil ray in the sagittal fan is in the sagittal plane; the
other rays in the fan lie in a conical surface with apex at Q. In Fig. 3.6, the
sagittal fan, except for the pupil ray, is above the sagittal plane.

Just as Y,,, has already been defined as the pupil sphere coordinate of the
ray at X = 0, which passes through the edge of the entrance pupil, we now
define X, as the pupil sphere coordinate of the ray at Y = 0, which passes
through the edge of the entrance pupil. As in the earlier definition, there is a
second edge ray at —X,,,.. In Fig. 3.6, X, is shown as a distance in the xz
plane from the point Pg to the optic axis. As indicated in the figure, the sagittal
pupil angle ag = arc sin ( X, /R).

When one makes the simplifying paraxial assumptions, a paraxial ray is con-
ventionally used from the axial object point O to define ray heights at the par-
axial entrance and exit pupils. Similarly, in the canonical system now being
defined, rays ‘‘close to’’ the pupil ray are used to define corresponding close-
ray heights and close-ray angles in the tangential and sagittal sections and in
the entrance and exit pupil spheres at E and E’. A simplifying close-ray as-
sumption is to measure ray heights on a plane tangent to the pupil sphere at E.
This plane is represented in Fig. 3.7 by a broken line perpendicular to the pupil
ray at E. Consistent with subscript and prime usage already shown, the notation
for the various close-ray heights and angles is hr, hg, by, hg, o, og, o, and
as. When the object point is moved to O on the axis where no tangent-sagittal

Figure 3.6. Sagittal plane in object space.
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Figure 3.7. Reference wave front and edge-tay height in object space.

distinction can be made, this notation reduces to k, k', «, and «', which are
the symbols for paraxial ray heights and ray angles.

As suggested by the notation, close-ray heights and angles are defined only
for rays in the tangential and sagittal fans. A ray in the tangential fan has the
coordinates (0, Y) in object space and (0, Y') in image space. The correspond-
ing ray heights are

hy = Y/N, hy=Y'/N', (3-5)

where N and N’ are the direction cosines of the pupil ray with respect to the
optic axis (z-axis). A close-ray in the sagittal fan has the coordinates ( X, 0) in
object space and (X', 0) in image space. The corresponding ray heights are

hs =X, hi=X" (3-6)
Formulation of the ray height in object space (Fig. 3.7) in Eq. (3-5) results

from the solution of a small right triangle in the vicinity of E (triangle not
shown), which includes as one of its acute angles the pupil ray angle &. In the
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tangential plane, the pupil sphere and the tangent plane are coincident at E. The
direction cosine in this instance is N = cos @. The expression for A} is obtained
by the same procedure as the one for Ay except that the geometry is in image
space. By inspection, one can see in Fig. 3.6 that close-ray heights in the sag-
ittal fan are simply their X coordinates (Eq. (3-6)).

Close-ray analysis for off-axis sources, like paraxial analysis for on-axis
sources, tends to be just a preliminary procedure followed by an analysis that
takes into account the peculiarities of the rays near the edge of the pupils. To
prepare for this analysis for a specified system, the edge rays are first found by
ray tracing, which is discussed in the next section. From the locations of the
edge rays in the tangential plane, each pupil sphere is found by locating the
spherical surface centered on the object or image point and having equal Y,
values for the edge rays. The intersection of the pupil sphere with the optic axis
then establishes the location of the pupil ray.

In Fig. 3.7, the particular close-ray height hy is that of the edge ray. From
the geometry of the figure and the definition already given for N,

hy = Y., /N = R (sin ay — sin @)/N. (3-7)
An angle variable u can be defined as
ur = hy/R = (sin oy — sina)/N. (3-8)
The corresponding sagittal plane (Fig. 3.6) ray variables are

hs = X,.x = R sin ag, (3-9)

wax/R = sin ag. (3-10)

Us

It is evident that each of the second ray variables, ur or ug, is simply the first
variable normalized to the pupil sphere radius R. The ray variables defined in
the four equations above correspond to the traditional 4 and # found in ray-
tracing problems. Unlike the limited application of paraxial theory mentioned
earlier in this chapter, the theory involving Ar, ur, ks, and ug ordinarily is useful
over the full aperture; in fact, in what follows, these variables usually apply to
edge rays.

The numerical apertures for the tangential and sagittal planes are defined
respectively as

(N.A)y = nY . /R = n(sin ar — sin @), (3-11)

(N.A.)g = nX../R = n sin ag. (3-12)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



78 NOTATION AND COORDINATES

When the object point is moved to O on the axis where no tangent-sagittal
distinction can be made, @ becomes zero, the ray variables become

h

hy =hg=Y=X=Rsinaq, (3-13)
u=ur=ug=h/R =sinc, (3-14)
N.A. = (N.A), = (N.A) = n¥/R = nX/R = nsina.  (3-15)

TRANSFER EQUATIONS

The ray variables & and u defined in the preceding section completely define
the edge rays at the entrance pupil reference sphere. The process of evaluating
the ray variables at successive surfaces of an optical system is called ray trac-
ing. For paraxial rays, standard optics texts give transfer equations that calcu-
late values of k and u at a given surface in terms of the values of these variables
at the preceding surface. In these equations, the characteristics of the optical
system taken into account are the distance along the axis between the two sur-
face vertices, the radius of curvature of the second surface, and the index of
refraction of the intervening medium. (See [1, pp. 41-45; 7, pp. 190-194; 8,
pp. 135-140; 9, pp. 24-33; 10, pp. 81-95].) Ray variables in the exit pupil
and the image plane are found, therefore, by starting with the variables in the
object plane and successively calculating them at the succeeding surfaces until
the exit pupil and the image plane are reached.

Ray tracing for nonparaxial rays, conventionally called finite ray tracing, is
somewhat more involved than the procedure just described. In addition to trac-
ing in the tangential, also known as the meridional, plane, one must trace rays
in the sagittal plane and also those that are oriented so that they are in neither
the tangential nor sagittal plane. The nonmeridional rays are called skew rays.
Being the most general of ray classifications, skew rays require the most in-
volved procedure for tracing. Again, the reader is referred to the standard texts
for details. In proceeding from the object plane to the image plane, each ray
intersection with an optical surface has to be located by three coordinate values,
and the direction of the ray has to be described by three directions cosines.
Application of Snell’s law to get the refraction of a skew ray at an optical
surface becomes an exercise in three dimensions to establish the new set of
three direction cosines.

Even the very general ray tracing formulas that accommodate skew rays are
usually applicable only to spherical optical surfaces. When aspherics are in-
volved, a suitable expression describing the curvature at each ray-surface in-
tersection must be available.
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By whichever technique is appropriate for each lens design problem, ray
tracing is the means by which image space parameters are determined.

The on-axis paraxial image point O’ corresponding to the on-axis object point
O is defined as the on-axis image point, and a plane perpendicular to the axis
at this point is the image plane. The pupil ray QF in object space is found, by
ray tracing, to cross the axis again in image space near the exit pupil, the par-
axial exit pupil position E’ having been determined by paraxial analysis. The
intersection of the pupil ray with the axis in image space is labeled E' and is
called the off-axis exit pupil point; the intersection of the pupil ray with the
image plane is the image point Q'. The image point Q' is the center of the
image space reference sphere, which has a radius R’ equal to E'Q’. The edge
rays, traced from object space, intersect the reference sphere at the edge ray
heights Y'. and X’ defined analogously to the corresponding edge ray
heights in object space.

In object space, the four edge rays were arbitrarily originated at the point Q;
however, because these rays then pass through an optical system that will gen-
erally have aberrations, they will not necessarily pass through the image point
Q'. Therefore, to set up a geometry by which we can define image space ray
variables similar to the corresponding object space variables in Eqs. (3-7)-
(3-12), we must assume an ideal optical system that does indeed bring all four
edge rays together at O'. Then, by reasoning similar to that used for object
space,

h, =Y, /N =R'(sinoj —sina’)/N’, 3-16)

= hy/R' = (sina} — sina’)/N’,

=
=
i

3-17)

(N.A)G = 'Y /R = n'(sinaf — sina’), 3-18)

hi = X! = R’ sin o, 3-19)

[ — —
ui = max/R’ = sin af,

(
(
(
(
(3-20)
(

(N.A.); =n'X,./R' = n'sin of. 3-21)
To find Y/, and X max D the above expressions, edge rays are traced through
the actual (not ideal) optical system to find their intersections with the image
space reference sphere. The distances from these intersections to the optic axis
are the respective maximum values. As the object point O is moved toward the
axis causing the image point also to approach the axis, the six equations above
approach the following three as limiting equations:

h' = R'sin o, (3-22)
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1

u

sin o', (3-23)

(N.A.)' = n’sina’. (3-24)
Because certain assumptions were made to set up a workable ray geometry in
image space, the image space ray variables and some of the angles in the expres-
sions for them involve approximations not found in the corresponding object
space quantities. However, when accurate calculations are to be based on image
space parameters, attention is usually focused on the actual wave front and on
the wave aberration function W(B") rather than on the rays; so we will not be
concerned here with analyzing the errors introduced by the approximate image
space ray geometry.

PUPIL VARIABLES

In Egs. (3-5) and (3-6), hr is the ray height of the ray whose coordinates on
the pupil sphere are (0, Y), and hg is the ray height of the ray whose coordinates
on the pupil sphere are (X, 0). Corresponding statements can be made about
the ray heights in image space (primed values). As has been true in much of
the previous discussion, we are now concemed with only the edge rays in the
tangential and sagittal planes; so hy and hg are two constants equal to the in-
dicated edge ray heights. If both sides of each equation in Egs. (3-5) and (3-6)
are divided by the ray height, the resulting ratios would all be unity. Starting
with these particular values of these ratios in the tangential and sagittal planes,
we allow X and Y to take on values off the two planes to satisfy the following
equation for an ellipse:
2

(X/hs)” + (Y/heN) = 1. (3-25)
Again, an identical equation except for the addition of primes can be set up for

image space.
By assigning coordinate symbols to the ratios,

Xg — }/hs, yr = ;’/h’rl_v, (3'26)
% =X'/hs,  yi=Y/HN', (327)
we have normalized coordinate systems for the entrance and exit pupils, re-
spectively. When these symbols are substituted in Eq. (3-25) and the equivalent

equation for image space,

x2+y2 =1 and x§2 +y® =1, (3-28)
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the new coordinates describe the pupils as unit-radius circles. If Q' is in an
isoplanatism patch, which is required for optical transfer function theory to be
valid, it can be shown [3] that

Xs = x5, X = x| (3-29)

Equation (3-29) is equivalent to making aberrations stationary with image height
and is also, according to Hopkins [3], a statement of the optical sine condition
for freedom from coma near Q. Insofar as the isoplanatism condition holds, Eq.
(3-29) tells us that image space variables can be replaced by the corresponding
object space variables without error. As a practical matter, the differences x5 —
xg and x; — xr are rarely found to exceed 0.01 in a normally corrected system,
which means that errors are generally kept to not more than one percent of the
pupil radius [6, p. 358].

REDUCED COORDINATES

Besides the coordinate systems already discussed, Hopkins and others have de-
veloped two other derived systems known as the canonical and reduced coor-
dinates. A set of partial differential equations, the canonical equations, ex-
pressed in canonical coordinates, are significant in the analytical theory of
aberrations and its application to automatic design. The reduced coordinates are
particularly useful in diffraction theory.

We derive the reduced coordinates and formulas for reduced spatial frequen-
cies here for the case of rotationally symmetric systems. Hopkins, in two im-
portant papers, has developed the reduced coordinates so that they can be ap-
plied to a completely general optical system [11].

The canonical and reduced coordinates are based on the object point Q and
the image point Q' as origins in the object and image planes, respectively. If a
point near Q has the coordinates (£,, 1,) and the Q coordinates are (£,, 7,),
the displacements in the two coordinate directions are

Af =&, — & and Ay =19, — 7. (3'30)

The object plane canonical coordinates (Gg, Hr) are defined in terms of these
displacements as

GS = n(imax/k) AE

n(sin ag) A%, (3-31)

Hy = n(Yp/R) Ay = n(sin ap — sin @) Aq. (3-32)

In the above definitions, the coefficients of A and Ay are recognized as the
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numerical apertures for the sagittal and tangential planes as defined in Eqgs.
(3-11) and (3-12). Image plane canonical coordinates are defined similarly:

Gg = n'(sin of) AE’, (3-33)
Hr

n'(sin af — sin a’) Ap'. (3-34)
If the condition expressed by Eq. (3-29) applies, it follows that
Gs = G and H; = H;. (3-35)

This condition, as indicated earlier, means that the system is free of aberrations
to the extent that a ray from Q (Fig. 3.4), which intersects the entrance pupil
sphere at B, would pass through the exit pupil sphere at B’ and through the
image plane at Q ’. Now if we introduce aberrations into the system so that the
ray instead passes near B' and near Q ', displaced from B’ in the pupil sphere
by the increments &x§ and 6y4 and displaced from Q' in the image plane by the
increments 8G§ and 6Hr, the following relations can be derived [2, 3]:

oxi = OW/dGs, by, = OW/3Hy, (3-36)
3Gl

—0W/dxs, SH} = —3dW/dys, (3-37)

which are the canonical equations—so called because of their similarity in form
to Hamilton’s canonical equations of motion. Because the coordinates Gg, Hr,
G§, and Ht are involved in these equations, they are known as canonical co-
ordinates as we have already referred to them in setting up their definitions.

The canonical equations show that the aberration function W is a function of
G and Hr, which locate the originating point of the ray on the object plane, as
well as a function of xg and yr, which indicate where the ray passes through
the pupil sphere:

W = W(xs, yr; Gs, Hr). (3-38)

Although the scope of our discussion of the optical transfer function does not
permit further interpretation of the canonical equations, the student of the an-
alytical theory of aberrations and its application to automatic optical design
could profitably pursue them in the technical literature.

Hopkins’ reduced coordinates ug, v, ug, and vy are derived from the can-
onical coordinates by normalizing with respect to wavelength:

ug = GS/)\s vy = HT/)\, (3‘39)
ui= Gy/N, vk = Hp/\ (3-40)
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Unfortunately the symbols ug and u§ used for two of the reduced coordinates
are also used for two of the ray variables defined by Eqs. (3-10) and (3-20).
Because this ambiguity tends to be the practice in the literature of optics, no
attempt is made here to invent a new set of symbols for either the sagittal ray
variables or the sagittal reduced coordinates. Usually the context will indicate
which use of ug and ug is meant.

Certain numerical aperture ratios, called aperture scaling factors, are closely
related to significant optical system properties. The sagittal and tangential ap-
erture scaling factors are defined as

ps = (N.A)/(N.AL), (3-41)
pr = (N.AL)/(N.AL). (3-42)

An example of their significance is given in Chapter 5 where it is shown that
the diffraction-based spread function is anamorphotic to the same degree as the
ratio of the scaling factors. Having defined these factors, we sometimes find it
convenient to express the reduced coordinates in terms of them:

us = (npg At/ \) sin «, (3-43)
vr = {(npp An/\) sin a. (3-44)

Equation (3-43) results from combining the relations expressed in Egs. (3-12),
(3-15), (3-31), (3-39), and (3-41); Eq. (3-44) results from combining the cor-
responding equations for the tangential plane. Similar derivations for the image
plane result in

ui = (n'p§ A£'/\) sin o’ (3-45)
vh = (n'pt Ag’'/\) sin o', (3-46)

Reduced spatial frequencies in the ug and v coordinates are defined by
ss = 1/6ug and sp = 1/bvr, (3-47)
where dug and vy are the spatial periods in the sagittal and tangential planes,
respectively, in object space. From the relations expressed in Egs. (3-43) and

(3-44), the following equations relating the periods in reduced coordinates to
the periods in the object plane coordinates can be written:

us = [(nps/N) sin «] 8(A%), (3-48)
vy = [(in/)\) sin a] 6(An). (3-49)
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The relations between frequencies, reciprocals of periods, are

ss = [ N/(nps sin )] ws, (3-50)
st = [ N/(npr sin &)] wr, (3-51)

where wg and wy are the spatial frequencies at the intersections of the object
plane and the sagittal and tangent planes, respectively. On the image plane, the
corresponding equations are

ss = [N/(n'p§ sin o' )] wi, (3-52)
st = [N/(n'p% sin &' )] wi. (3-53)

From the definitions of numerical aperture (Egs. (3-11), (3-12), and (3-15)), it
is evident that the dimensionless reduced spatial frequency that we have been
discussing above is the real-space spatial frequency multiplied by the wave-
length in free space and divided by the numerical aperture. Also from the def-
initions of numerical aperture and from the reciprocal relations between period
and frequency, we can write

ss = N/[n6(AE) sin o], (3-54)
ss = N/[n'8(AE") sin o4 ]. (3-55)

When
n'8(AE") sin o = nd(AE) sin ag, (3-56)

it is commonly said that the sine condition holds (which we have already said
is true over an isoplanatism patch); so, from Eqs. (3-54) and (3-55), the sine
condition causes the reduced spatial frequencies in image and object spaces to
be equal.

Equations corresponding to Eqs. (3-54) and (3-55) can be derived for the
tangential plane.

SHIFTING THE IMAGE PLANE

Earlier in this chapter, the image plane was defined as a plane perpendicular to
the optic axis at the paraxial image point. When the image point was moved off
the optic axis, it was identified as the intersection of the pupil ray with the image
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plane. A reference sphere, centered on the image point, was set up so that its
radius was the length of the pupil ray from the image point to the intersection
of the pupil ray with the optic axis (E'Q’in Fig. 3.5). Wave-front aberration
was defined as the distance between this reference sphere and the actual con-
verging wave front as it passed through E’.

One way to improve the ‘‘fit”’ between the wave front and the reference
sphere, that is, to reduce aberrations, is to alter the optical elements and the
spaces between them to improve the shape of the wave front. An alternative
approach is to change the reference sphere to reduce its separation from the
wave front. In considering possible changes, it is convenient for the analysis to
require that the sphere always pass through E ' and that its center always lie
along the pupil ray. This leaves one freedom, the selection of the sphere radius
so that the reference sphere more closely conforms to the actual wave front.
Since one end of the radius line, E ', is fixed, changing the radius changes the
position of the sphere center, which is on the image plane. So altering the ref-
erence sphere to reduce aberrations is equivalent to selecting a more desirable
position for the image plane. Defocusing, a familiar bane among manipulators
of optical equipment, can be said, therefore, to be the result of a poor choice
of reference sphere caused by picking the wrong image plane.

From the foregoing discussion, it is apparent that an expression relating a
change in wave-front distortion to a change in image position would be useful;
in fact, applying such an expression would be equivalent to the oft repeated
operation of focusing with actual optical equipment. The following analysis to
get the desired expression follows a similar development first given by Hopkins
and Yzuel [5].

In Fig. 3.8 the plane through the points O and é(, is the paraxial image
plane, and the line through O’ and Q' represents the image plane in a slightly
shifted position. (The shift displacement OO has been exaggerated in the fig-
ure for clarity.) The pupil ray E'Q} intersects the shifted plane at Q ', which
is the shifted image point or shifted focus. The paraxial exit pupil point is E'.
The conventionally defined reference sphere centered on Qf with radius R 0=
E’Q is represented by the arc passing through E ’ and Bj; the reference sphere
centered on the shifted focus Q' with radius R' = E Qs represented by the
arc passing through £’ and B’. Besides the two radii just defined, the lengths
of other line segments in Fig. 3.8 are also useful parameters and will be iden-
tified by symbols as

=
=
I
S
S
=
I
|
S

X
I
&y
&
~
I
&y
S

(3-57)

With the image plane through Of in Fig. 3.8, the wave aberration for the in-
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R’ extends _
fromE to Q.
R ‘o extends_
from E'to Q.
Axis

Figure 3.8. A shift of the image plane. E{) is the length of line segment E'Q. R is the length

of line segment E'Q".

dicated ray, according to the definition already given, is n’, the index of re-
fraction of image space, times the distance from Bj to W', the product being
the optical path length between the reference sphere and the wave front, normal
to the wave front at W', If the image plane is shifted to O', the distance factor
in the wave aberration is measured from B’ on the new reference sphere to W’;
so the change in the wave aberration 6W; is given by

SW, = n'p, (3-58)

where p is the distance from B’ to Bj.

Our purpose is to develop Eq. (3-58) so that 6W,_ is expressed in more con-
venient parameters. By mathematical experimentation, one finds that derived
expressions are considerably simplified if the distance from B’ to By is approx-
imated by the distance from C’ to Bj. This approximation is seen to be good in
a practical system where O’ is close to Og, and du’ is much smaller than the
angle shown large for clarity in Fig. 3.8. _

The coordinates of Q ', with E' as the origin, are (E 'L’ R'M',R'N")
where L', M ', and N’ are the direction cosines for the pupil ray through the
points E’, (—2(’,, and Q. Since no initial condition has been placed on the co-
ordinate system as to its orientation around the Z' axis (optic axis), we are free
to rotate the coordinate system so that the pupil ray lies in the Y 'Z’ plane, thus
making the L' direction cosine zero and the Q ' coordinates (0, R'M', R'N").
The coordinates of B), will be designated (X', Y’, Z'); B} is not necessarily in
the Y'Z' plane. A direction cosine identity in analytic geometry gives us the
following relation:

M?+N?=1. (3-59)
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The square of the distance between points Bj and Q' is

B?=(R'-p)=X2+RM -Y') + (RN -Z')". (3-60)

Similarly,
2

ByOy =Ry =X+ (RoM' ~ Y'Y + (RgN' = Z')". (3-61)

Both Eq. (3-60) and Eq. (3-61) are expressions of the Pythagorean theorem.
By expanding the squared binomials in these equations and substituting accord-
ing to Eq. (3-59), the following can be written:

p2 _2§Ip =§/2 +—i112 +2/2 -2
0=X2+Y?%*+Z27%-2
Combining these two equations gives
2R'p[p/(2R") — 1] = (2Y'M’' + 2Z'N")(Ry, — R'), (3-64)
which reduces to
- = — - = — — — T
p=(YRM' +Z'ReN')(1/Rgy — 1/R")[1 — p/(2R")] ™. (3-65)
From Eq. (3-63), it is evident that the first binomial on the right side of Eq.
3-65)is (X2 +Y?*+2Z 'j)/z. Then, by recognizing that p will always be
extremely small relative to R’ in practical optical systems, the following rea-
soning toward an approximation can be made:
p << 2R’,
p/(2R") << 1, (3-66)
— .-t
[t -p/(2R")] =1

With the indicated substitution and approximation, the expression for the change
in wave aberration becomes

W =n'p=n'/2)(X?*+Y?+Z?(1/R, - 1/R"). (3-67)

The expressions in the second and third sets of parentheses can be stated in
more meaningful parameters. From the definitions in Eq. (3-57) and the ge-
ometry of Fig. 3.8

R, =Ry/N', R'=R'/N' (3-68)
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Thus, the third set of terms in parentheses can be written
(1/Ry— 1/R')y=N'(1/Ry — 1/R"). (3-69)

Since the difference between R ' and R}, is the distance the image plane is shifted,
the derived factor on the right side of Eq. (3-69) is simply related to the shift.
Because the coordinates of the point B} with E’ as the origin are (X', Y', Z'),
application of the Pythagorean theorem gives the relation

E'B*=X"+Y?+ 2" (3-70)

The line segment E'Bj, whose length is squared in Eq. (3-70), would reduce
to the ray height 4’ in the exit pupil in paraxial coordinates. If reduction to
paraxial coordinates is further extended to the third parenthetical expression,
Eq. (3-67) becomes

Wy = (n'h"*/2) (1/Rs = 1/R"), (3-71)

where the radius symbols without bars can be substituted according to the def-
initions in Eq. (3-57). (The subscript 20 is explained in the next chapter.) For
paraxial rays, E’ and E’ may be considered the same point. With this approx-
imation, Eq. (3-71) can be written as

W, = (n'h'*/2)(1/Ry — 1/R"). (3-72)
By combining the relations in Eqgs. (3-72), (3-69), and (3-67), we obtain
SW, = (8Wao/h'Y)N' (X2 + Y2 + Z'%), (3-73)

which gives the change in wave-front distortion in terms of the corresponding
change in paraxial wave-front distortion, the paraxial ray height, and the real-
space coordinates of the intersection of the edge ray with the exit pupil reference
sphere. MacDonald and Hopkins and Yzuel [4, 5] have pointed out that a com-
monly used expression for W} that omits the Z'? given in Eq. (3-73) can lead
to significant errors. In fact, in the development of the aberration function in
the next chapter, dependence on the Z ' coordinate indicates defocusing affect-
ing the coeflicients of certain aberration types such as spherical aberration, coma,
and astigmatism.
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MAGNIFICATION WITH DISTORTION

Certain optical systems are designed to be anamorphotic; that is, the magnifi-
cation in one direction, say horizontally, is significantly greater than at right
angles to that direction. A familiar example is the wide-screen moving picture
system in which the camera lens predistorts the film image by greater vertical
magnification and the projector lens compensates by applying greater horizontal
magnification from film to screen. Our interest in this book, however, is prin-
cipally in centered systems having circular symmetry about the axis in which
anamorphosis is an undesirable aberration [4]. Even a slight residual anamorph-
ism in an optical system has a significant effect on the optical transfer function.

In the optical literature reference is made to local magnification and to finite
magnification. Local magnification can be defined by referring to a small cross
as the object having arm lengths of 8¢ and 67. The sagittal and tangential mag-
nifications at the intersection of the cross are defined as

mg = lim 8% /6%, (3-74)
86 ~0

me = lim 69’ /9. (3-75)
6n—0

A nonlimiting finite magnification is defined by referring to Fig. 3.9. A region
in object space, shown as RSQP, is part of an annulus centered on the axial
object point O. Because the optical system is circularly symmetrical, the image
of this region is also part of an annulus centered on the axis; and the angles
/ROP and /R’ O'P’ are equal. If OR = OP = nand O'R’' = O'P’' = 7', the
finite tangential magnification is

my =7'/n. (3-76)
The nonlimiting sagittal magnification at the annulus is
mg = R'P'/RP = ' [R'O'P' /4 /ROP = n'/n = my. (3-77)

The finite magnification is a function of 4 whatever there is distortion or when-
ever the system is anamorphotic:

mg =f(77)- (3'78)

It is of interest to find relations between the local magnifications defined in Egs.
(3-74) and (3-75) and the more easily measured finite tangential magnification
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AreaR'S'Q'P'is
in the £29' plane

R—
S/

n
Area RSQP is
in the ¢-n plane

Figure 3.9. Imaging a sector of an annulus.

defined in Eq. (3-76). As already suggested by the choice of notation for the
two sagittal magnifications, they are equal to each other and to my, the finite
tangential magnification. This results from symmetry of the system about the
axis: Magnification along the arc RP is a constant; so, as this arc and its cor-
responding image are reduced in length in Eq. (3-77), ms is not affected. Car-
ried to the limit, this reduction causes the expression to be the same as Eq.
(3-74), the definition of the local sagittal magnification.

The two tangential magnifications, however, are not in general equal. To
find their relation, the expression for the finite tangential magnification mj at 5
+ 6n is developed by Taylor’s expansion:

my = f(n + 6n) = £(n) + on(dmy/dn) + ©(bn)’
my + on(8my/d7) + O (6n)’, (3-79)

in which O (89)” represents the sum of all higher order terms. By the definition
of Eq. (3-76), m{, at n + &7 can also be expressed as

my = (9" + n')/(n + on). (3-80)

(Note that the prime in m does not specify image space as has been the practice
in most of the other primed symbol usage of this book.) By equating the two
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expressions for mg given in Egs. (3-79) and (3-80), dropping the sum of higher
order terms, dropping a term with 6y as a factor, and substituting myn for ’
according to Eq. (3-76), we obtain

&n'/on = mg + 1(3mg/dm). (3-81)

Because of the nature of the dropped terms, Eq. (3-81) improves in accuracy
as 6n approaches zero. In the limit, according to Eq. (3-75), the derivative is
equal to mr, so

my = mg + 7(dmy/dn), (3-82)

which is the desired relation between the local tangential magnification m and
the finite tangential magnification my.
In a distortion-free system, mg = my = my.
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4

Diffraction Integral and Wave-Front
Aberration Function

INTRODUCTION

Discussions in earlier chapters have already indicated that the optical transfer
function is mathematically related to the diffraction integral, the wave-front
aberration function, and the spread function. This chapter is concerned with the
diffraction integral and the wave-front aberration function (frequently shortened
to wave-front aberration, wave aberration, aberration function, wave aberra-
tion function, wave-front distortion, or wave distortion depending on the em-
phasis and context).

To contribute to a complete mathematical description of an optical system
output, the wave-front aberration function is made part of the pupil function,
which will also be discussed in this chapter.

In the previous chapter, the concept of wave-front aberration in image space
was developed by comparing the actual emerging wave front, which originated
from a point source in object space, with an ideal spherical surface at the exit
pupil. It was emphasized in that discussion that discrepancies between the wave
front and the spherical surface accounted for aberration in the image. Even
without defects of this kind, the desired point image actually becomes a spread-
out diffraction pattern. In other words, even if the emerging wave front were
perfectly spherical over its extent, the image of the point source would still be
a bright central disk surrounded by unevenly spaced, concentric circles because
the converging wave front producing the image is only a small part of a sphere.
Although the image-forming optical system causes both the limiting of the wave
front and the distorting of its shape from sphericity, the effect of the first, which
is diffraction, is usually regarded as something to live with; but the effects of
the second, aberrations, are targets for elimination. Thus, when this objective
is achieved, the high quality of the optics is indicated by designating the design
as a ‘‘diffraction-limited system.”’

To develop further the wave concepts in image space and to get some un-
derstanding of how diffraction comes about, the development of the diffraction

92
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WAVE-FRONT EXPRESSIONS AND THE DIFFRACTION INTEGRAL 93

integral is undertaken before the specific characteristics of various aberrations
are studied.

WAVE-FRONT EXPRESSIONS AND THE DIFFRACTION
INTEGRAL

Figure 4.1 schematically represents the imaging of an off-axis point object 0
in the tangential plane. Two positions of a wave front, originating at Q and
finally reaching the image plane in the vicinity of @', are shown where it passes
through the pupil points E and E’. It is assumed that the wave front passes
through the optical system undistorted (no aberrations) so that the wave front
coincides with the pupil sphere. Furthermore, it is assumed that diffraction ef-
fects during passage of the wave front from the aperture within the system,
where the wave front is actually truncated, to the exit pupil are negligible so
that it is legitimate to investigate diffraction effects as if a limitation of the wave-
front extent is fashioned at the exit pupil (near E’).

A general point on the wave front is designated B in object space and B' in
image space. Under the assumptions stated, the complex amplitude 00(B') at
B’, in accordance with wave theory (see Appendix C), can be represented by

U,(B") =[G exp(ifn'R’)] /R, (4-1)
- — 7"
) v Y
AP
|-
///////’ ©
B //37.7

B
(0] > — 0
/
Q

Figure 4.1. Schematic of a wave front diverging from the object point and converging toward
the image point.
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94 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

where G is a scalar constant, R’ is the distance from B’ to Q' and also the
distance from E' to Q' because both distances are radii of the spherical wave
front, n' is the refractive index in image space, £ is the symbol for the ratio
27 /N, and \ is the wavelength in vacuum of the light propagating from Q.

The coordinates at B’ are (xg§, y1) as defined by Eq. (3-27). Because the
wave front has been assumed spherical, R’ has a constant value for all (xs,
y4%) within the unit circle of the pupil. It follows that Uy(B') as represented by
Eq. (4-1) is also constant over a wave front.

If the optical system has introduced aberrations and thus distorted the wave
front now passing through E’ so that it no longer coincides with the pupil sphere,
R' and U,(B') become functions of (x§, y4). In practical optical designs, the
variation of R’ over the whole wave front is just a few wavelengths of light.
An inspection of the MTF curves given in Appendix A shows how much the
spatial frequency response of an optical system deteriorates with wave-front
distortion. It is obvious that with a maximum wave-front distortion of 10 wave-
lengths or more, the image is badly degraded; and, for most applications, a
considerable amount of preliminary aberration correction would be required.

Ten wavelengths of near infrared at A = 1 pm in air (n’ = 1) would measure
10 um. On the other hand, 10 wavelengths of light at A = 0.5 pm in a medium
where n' = 1.6 would measure only a little over 3 pm. Yet, because the deg-
radation of response is more directly related to the number of wavelengths of
discrepancy in the distorted wave front than to the actual distance between pupil
sphere and wave front, wave-front aberration is often expressed in terms of
wavelengths.

A constant G in Eq. (4-1) for the amplitude of the numerator is usually an
acceptable approximation; however, when the complex amplitude does vary
significantly over the wave front, G has to be recognized as a function of the
coordinates:

G = G(x§, yp). (4-2)

Also, if R’ varies significantly over the wave front, it is convenient to express
it as a binomial:

R' = R} — m\, (4-3)

where R} is the distance from E' to Q', the constant radius of the reference
sphere; and m is the number of wavelengths that R’ is shortened because the
wave front at B' is closer to Q' than the reference sphere. (Of course, if the
wave front is farther than a " than the reference sphere, m is a negative number.)
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WAVE-FRONT EXPRESSIONS AND THE DIFFRACTION INTEGRAL 95

If the expressions for G and R’ from Eq. (4-2) and Eq. (4-3) are substituted in
Eq. (4-1), then

N

Us(B') = G(x4, y4) {explikn’(R'y — mN)]}/(Ry — m\)
= G(x§, y4) [exp(ikn'R})] [exp(—ikn'mN)] /(R — m\)
= G(x, yt) [exp(ikn 'R§)] {exp[—z (2an'm)] } (Ry — m\).

(44)

The second term on the right side is a constant phase shift relative to the phase
at Q. The ratio exp[ —i(2mn'm)]/( R’0 — m\) describes the significant phase
variation of U,(B'). With m as a factor in the phase angle of the numerator, it
is apparent that the variable phase shift of Uy(B’) relative to the phase at the
reference sphere is proportional to the number of wavelengths m that the wave
front is displaced from the sphere. On the other hand, from our previous dis-
cussion of the magnitude of mA, the denominator is negligibly affected by m:

R, — m\ = Ry(1 — mN/R}) = R}, (4-5)

From the definition of wave-front aberration as given in Chapter 3, we can
assign the single symbol W(x§, y1) to the product mA. With the indicated
changes in the terms of Eq. (4-4);

I

Oo(B') = G(xt. »4) (exp{ibn’[Rt — Wixe. y0)]}) /R (4.6

G(x§, yt) {exp[itn'R5]} /R;,

where G(xs, yr) represents the product G(xg, y1) exp[ —ikn'W(x§, y4)].
Thus G(x§, y4) is the pupil function, and W(x§, y;) is the wave aberration
JSunction; both, in general, are functions of the coordinates (x4, yt).

So far, we have depended on an intuitive understanding of what is meant by
a wave front. Actually this term could refer to a surface through points in a
propagating wave of uniform instantaneous field value; however, unless oth-
erwise stated, a wave front in this book refers to a surface through points of
uniform phase. In Fig. 4.1, all points in each wave front are the same number
of wavelengths from the object point é; however, in Eq. (4-6), distance to a
general point on the wave front is measured from the image point Q', and
according to the phase expression in braces, the phase (and, therefore, the num-

ber of wavelengths) from Q' to the wave front can vary from point to point on
the wave front.
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96 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

The ultimate objective, of course, in setting up the various expressions for
the image space wave front at the exit pupil is to find what kind of image of a
point object is formed on the image plane as a result of diffraction and aberra-
tions of various kinds. Ideally, the point object at QO would form a point image
at Q'; however, to find what actual distribution of light occurs in the vicinity
of Q' as the result of diffraction, a general point P (Figs. 4.1 and 4.2) is set up
on the image plane near Q'. Aberrations are eliminated from the diffraction
study by assuming the wave front to be spherical, that is, that it coincides with
the pupil sphere so that W(xg, yr) = 0. The distance from the general point B’
to Pis R'.

In accordance with the discussion associated with Eq. (3-30), the coordinates
of P with reference to Q' as the origin would be (A£’, An'), but for convenience
&, will be used for A£’ and 7, for Ay’ in the following development.

To find the complex amplitude at P due to the spherical wave passing through
the exit pupil, each infinitesimal area on the wave front, functioning as a point
source is assumed to radiate a spherical wave (Huygens® wavelet); the total
effect at P is the integration of the complex amplitude of all such waves arriving
at P but originating from points on the wave front. Appendix C on waves in-
dicates how to set up the integral. The element of area on the wave front is do
and the general point on the wave front is B' in the following expression for
the complex amplitude at P from the total area @ of the wavefront at the exit

pupil:
ot 1) = (170 || {[00(B") exp (—itwm))/R") do. (4)
v e
, P
r -,
it Mo g
B
E’ o
Figure 4.2. Geometry for calculating the electro- \
magnetic distarbance at the image plane produced by
a wave front at the exit pupil.
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The element of area do could be more explicitly written dxg dyt, or in real-
space coordinates:

do = dX'dY'/(hih;N"), (4-8)

according to Eq. (3-27). By substituting the expression from Eq. (4-4), Eq.
(4-7) becomes

Ot ) = (/) | (1/RiR") G, 1) exp [ (R - RY) g .
(49)

Although R’ is a variable depending on the location of B’ on the wave front,
the denominator product Ry R’ actually varies negligibly compared with the
exponential term in the numerator; so it is a good approximation to treat the
product as a constant and to combine it with the other constants before the
integral signs:

C = i/(AR}R"). (4-10)

Even with this simplification, the remaining integral in Eq. (4-9) is still difficult
to evaluate because of the form of the variables in the exponential term. This
difficulty can be reduced by converting the terms Rj and R’ in (Eé — R to
coordinate expressions and then making further simplifying assumptions.

In the following development, the approximation of Ry = R’ will be
dropped, and R’ will be indicated throughout. The point B’, which terminates
the lengths R’ and R’ (Fig. 4.2), has real-space coordinates (X', Y', Z') with
the origin of Z' at O’. In Fig. 4.2 if E' and Q' are regarded in the plane of the
figure, this has to be the tangential plane in which £’ = 0 and X’ = 0 by
definition. However, since B’ is a general point on the wave front, it may have
a nonzero X' coordinate, and since P is a general point on the image plane, it
may have a nonzero £, coordinate. Neither of these two general points need be
in the plane of Fig. 4.2. The coordinates of P are [£,, (' + 75), 0]; the
coordinates of Q' are (0, %', 0). Having thus set up the coordinates of the end
points of R’ and R’, we can apply the Pythagorean theorem to express these
two variables in terms of the end-point coordinates:

E,Z =X¢2 + (?r . 1’/)2 +2:2
=XI2 +?/2 + 1’/2 _2?!111 +le, (4_11)
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98 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION
R? = (X' = &) + (Y =0 —n) +27
=X?+ 82X g+ Y7407 4
—2Y'' = 2¥'mo + 29’ + Z (4-12)
When the terms in Eq. (4-12) are subtracted from those in Eq. (4-11),
R? —R?=2(X' + Y'mo) — (& +n3 + 20'no).  (4-13)

Then, if both sides of Eq. (4-13) are divided by the binomial (R + R"),

R'-R' = X't + ¥'no _ £+ 6 + 20'no 1- R' - R\
L 2R’ 2R’

(4-14)

Because (E’ — R') << 2R/, the value of the second brace on the right side of
Eq. (4-14) is very close to unity and does not have to be shown as an explicit
factor. With the simplifications indicated, Eq. (4-9) can be written

Uo (¢0, m0) = € Ha G(xt, 1) exp[ f(ko m0)] dxidyt,  (4-15)

where

o ) i‘m,(Y’Eo + Yy £+t 2n'no>
0> %10

R’ 2R’

o [nX'%  n'Ymy  n'(E5 + M5 + 20'n0)

127!": N + N VT } (4-16)
As indicated by where it occurs in Eq. (4-15), the expression for f(&o, 7o) 1In
Eq. (4-16) describes the phase at P. In the second line of Eq. (4-16), the terms
in brackets have been so arranged that the third fractional term contains only
constants as far as the integration process of Eq. (4-15) is concerned; so this part
of the phase expression can be placed before the integration signs in company
with C. Inspection of this constant term indicates that its value is influenced
strongly by the positions of the image point Q' and the general point P on the
image plane. When this part of the phase term in Eq. (4-16) is separated from
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the rest of f( €0, M0 ), it is given a symbol and written as

Fy(§or mos ') = exp[ —imn'(£5 + 5 + 20'no)/NR']. (4-17)
The remaining two fractional terms in brackets in Eq. (4-16) can be written in
terms of more convenient variables by referring to equations developed in the
previous chapter. By applying Eqgs. (3-19), (3-27), (3-33), and (3-40), one can
write
n'’X g0/ AR’ = xbu, (4-18)
and by applying Egs. (3-16), (3-27), (3-34), and (3-40), we have
n'Y'mg/AR' = yivf, (4-19)
where u} and v} can also be written in terms of certain optical angles as
us = (Eo/N)(n’ sin ag), (4-20)
vi = (1o/N)[n'(sin & — sina’)]. (4-21)
For the relations expressed in Eqgs. (4-20) and (4-21), see the discussion in the
previous chapter related to Eqgs. (3-17), (3-21), (3-41), (3-42), (3-45), (3-46).

By incorporating a number of the simplifications discussed subsequent to the
writing of Eq. (4-15), it becomes

Uo(us, vr) = Cfy (£0, 10, ') SSQ G(xs, ¥r)
exp|i2m(xiug + yror )| dxg ayt. (4-22)

Equation (4-22) is the diffraction integral. Frequent references are made to it
in following chapters.

The product of Uo(ug, v1) and its complex conjugate gives the radiant flux
density at a point on the image plane corresponding to (u§, vt):

W(ug, vr) = [ Oo(u, v1)] [08 (ug, v5)]. (4-23)

In Eq. (4-23), flux density is represented by the symbol W.
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100 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION
THE STREHL RATIO

The historical introduction of the Strehl ratio is discussed in the first chapter
where the period from 1850 to 1940 is reviewed. This ratio was conceived as
an arbitrary figure of merit for highly corrected optical systems. It compares the
radiant flux density at the center of the diffraction pattern of a point object with
(numerator) and without (denominator) aberrations. The useful range of the
Strehl ratio is approximately 0.8 to 1.

The radiant flux density at a point (u}, v4) near Q' can be expressed by
combining Eqgs. (4-22) and (4-23):

2

1 ’ A 2 Al ! ’ . 1o [ ’ ’
W(u§, vr)= lC l gg& G(XSs yr) eXP[le(xsus + }’TUT)] dxg dyr | .

2 a
|5

(4-24)

Because the Strehl ratio is concerned with only the center of the diffraction
pattern, that is, at Q' where ug = vr = 0, both fp and the exponential term in
the integrand of Eq. (4-24) become unity, and the expression for the radiant
flux density becomes

2

W(0,0) = |¢[ SL G(xg, ¥t ) de§ dyy

2
Ji SS& G(x&, yi ) exp[ —ikn'W(xs, yr)] dxs dyt|

:!c

(4-25)

where the complex G(x§, y;) has been expanded according to the definition
following Eq. (4-6).

In the highly corrected systems for which the Strehl ratio is pertinent, G can
be regarded as constant over the whole exit pupil; so when we set up the Strehl
ratio, this factor can be written before the integral signs in both numerator and
denominator. The only difference, then, between W (0, 0), the radiant flux
density with aberrations, and ‘W, (0, 0), the radiant flux density without aber-
rations, is that the wave-front aberration function W(xg, yr) occurs as a variable
in the exponential term of the first and is identically zero in the second. The
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Strehl ratio, therefore, can be written

RS = W(O, 0)/w1(0, O)

2

[ expl—imnmias, )] g art

SS dxg dyr
Q

[ S Sa exp| —ikn'W(xt, y4)] dxs dys

- e _ (4-26)

¢ 6

2
¢l 6

2

ANAMORPHOTIC STRETCHING

The reduced coordinates (5, v) in which the diffraction integral and the Strehl
ratio have been discussed are convenient in optical analysis because of the nor-
malizing involved in their definitions, but eventually one has to get back to real
coordinates on the image plane to appreciate the optical results. The real co-
ordinates, as previously defined, with Q' (Figs. 4.1 and 4.2) as the origin, are
(&0, Mo ), Which are identical to (A¢’, An'") discussed in Chapter 3.

In going from reduced to real coordinates, it turns out that the two coordi-
nates of a point do not generally convert proportionally; the discrepancy is re-
ferred to as anamorphotic stretching. For instance, a circular diffraction pattern
in reduced coordinates tends to be a regular oval in real coordinates.

To find the relation between reduced and real coordinates, one can form the
ratio of corresponding sides of Egs. (4-20) and (4-21), and with some rearrange-
ment obtain

£o/m0 = (us/v%) [n'(sin of —sina’)]/(n'sinaf).  (4-27)
With reference to Egs. (3-11) and (3-12) of Chapter 3, it is apparent that the
trigonometric ratio on the right side of Eq. (4-27) is equivalent to a ratio of

numerical apertures, which in turn is equivalent, according to Egs. (3-41) and
(3-42), to a ratio of scaling factors:

Eo/mo = (us/vr) (N.A)r/(N.A)g = (us/v5) (pr/ps).  (4-28)
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102 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

Inasmuch as the aperture ratio pg/py is normally greater than unity for off-axis
points, the diffraction pattern, Uy (u§, v4) or W (ug, v1), is stretched—that is,
longer—in the tangential () direction relative to the sagittal (£) direction when
conversion is made to real coordinates.

THE PUPIL FUNCTION

The mathematical expression that has already been discussed following Eq.
(4-6), which describes an actual wave front as it passes through the exit pupil,
is called a pupil function. When this function is expressed in normalized coor-
dinates, it is usually understood to have zero value outside the unit-radius circle:

G(xt, yr) = G(xk, i) exp| —ikn'W(xg, y1)]  when (xg + y#) < 1,
(4-29)

and
G(xs, v4) =0  when (x£ + y{?) > 1. (4-30)

Assumptions connected with the coordinates x5 and y; are reviewed in the dis-
cussion associated with Eq. (3-29).

Our earlier discussion of a ‘‘perfect’” diffraction-limited optical system in-
dicates that in such a system an incident diverging spherical wave front of uni-
form amplitude is transformed into a converging spherical wave front of uni-
form amplitude. (This concept can be extended to systems producing virtual
images by describing the output as a diverging spherical wave front of uniform
amplitude.) When the system is a diffraction-limited system, the complex am-
plitude G(xg, ¥} ) is a real constant, and the wave aberration function W(xg,
y%+) is equal to zero. In the form given in Eqs. (4-29) and (4-30), the pupil
function incorporates complete information about the imaging properties of the
optical system. The mathematical procedures for arriving at these properties
from the pupil function are discussed in later chapters.

In our discussion of the pupil function, it has been tactily assumed that the
object is a fixed point in the object plane and that only one frequency (or wave-
length) of light is involved. As the subject matter requires, object plane coor-
dinates and other independent variables will be explicitly expressed in addition
to the coordinates (xg, y1 ) in the exit pupil.

The pupil function as expressed by Egs. (4-29) and (4-30) remains valid
whether the light beam illuminating the object is incoherent, partially coherent,
or coherent.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



THE WAVE ABERRATION FUNCTION 103

The amplitude function G (xg, yr) of the pupil function is extremely difficult
to measure, but, fortunately, in the highly corrected systems with which we are
most concerned, the typical variations in the amplitude have far less effect on
the image than the typical variations in phase, which is contained in the wave
aberration function W(x§, v+ ). The phase characteristics can quite conveniently
be measured interferometrically. So, in the absence of a statement to the con-
trary, the amplitude of the pupil function is assumed constant, and all aberration
effects can be attributed to the wave aberration function. Optics conforming to
this assumption are sometimes referred to as Airy systems. For those who re-
quire a pupil function with variable amplitude, Barakat [27] offers an approach
for amplitudes having Gaussian-like radial tapers.

THE WAVE ABERRATION FUNCTION

The wave aberration function already discussed in this and preceding chapters
has been defined as the optical path length along a ray between the pupil or
reference sphere and the actual wave front. In the exponent of the pupil function
discussed in the previous section, the function W(xg, yr) is in terms of the
actual physical distance between the wave front and the reference sphere; this
distance is converted to the equivalent distance in a vacuum by multiplying by
the refractive index r’; and, finally, application of another factor, &, which is
27 divided by the vacuum wavelength, converts the equivalent distance in a
vacuum to the number of radians phase shift between the wave front and the
reference sphere. Not only does the wave aberration function go by a number
of different names in the literature, as mentioned at the beginning of this chap-
ter, but the reference may be to the actual distance, the equivalent distance in
vacuum, or the phase shift between the wave front and the reference sphere. So
far in this book, the wave aberration function has been indicated as dependent
on its position B’ at the pupil sphere or on the normalized rectangular coordi-
nates (xs, yr) of B’. However, as we approach the task of an explicit mathe-
matical expression for W(xg, yt ), the assumed circular aperture dictates polar
coordinates (p, ¢) or, better yet because of symmetry about the tangential plane,
(p, cos ¢).

The wave aberration function has been expressed in a number of different
mathematical forms, two of which will be discussed in some detail here.

Early work in geometrical aberrations, especially by L. Seidel [7], was de-
veloped in terms of rays rather than wave fronts. However, as the mathematical
description of the wave aberration function becomes the vehicle for aberration
information, continuity with the older geometric practices is attempted by ap-
plying the Seidel classification names to the aberration groupings that emerge
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104 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

from the new mathematics. In a few instances the match is only fair. Seidel’s
aberration type names are spherical aberration, coma, astigmatism, Petzval
curvature, and distortion (see {1, pp. 220-225; 8, Chapter 6}).

Besides expansion of the wave aberration function in a power series or in
Zernike’s circle polynomials, both of which are discussed in later sections of
this chapter, the following are among the other wave aberration function ex-
pansion methods that deserve further study: Tatian {20] and Buchdahl [21] use
an expansion of the mixed characteristic of Hamilton; Barakat [19] uses an
expansion in Tschebyscheff polynomials; De, Hazra, and Purkait [22] use radial
Walsh block functions. Among those who have written about Zernike’s circle
polynomials are Kintner and Sillitto [10] and Hawkes [23].

POWER SERIES EXPANSION OF THE WAVE ABERRATION
FUNCTION

The generally useful and time-honored power series in applied mathematics has
become a standard way of expressing the wave aberration function. Hamilton
[4] was probably the first to apply the power series to aberration theory; but
since his approach involves the characteristic function of Hamiltonian optics [35,
6], which we do not discuss, the power series expansion in this book is based
on later work.

In the study of aberrations, the wave aberration function is not only a func-
tion of the coordinates (x§, y; ) where the ray passes through the pupil sphere,
but is also dependent upon where the object point is located in the object plane.
If it is assumed that the aperture is circular and that the system is symmetrical
about the axis, a convenient set of coordinates is (7, p, cos ¢) in which r is the
distance from the axis to the object point. By definition, of course, the object
point is in the tangential plane, so a second coordinate is not required. Figure
4.3 shows the geometric relation between the rectangular and polar coordinates
at the pupil sphere; the consequent expressions relating the independent vari-
ables are

!

xS=pSin¢a yfr=PCOS<P,
)1/2

p=(x&+y)", ¢ =amctan(xs/yr). (4-31)

In our discussions about expansion of the wave aberration function, the polar
coordinates and the object plane coordinate are indicated:

W = W(r, p, cos ¢). (4-32)
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Figure 4.3. Polar coordinates (p, ¢) on the
pupil sphere.

In making up a power series involving r, p, and cos ¢, all possible powers of
each variable separately, products of two variables at the same or different pow-
ers, and products of three variables at all combinations of powers have to be
considered. However, when the physical characteristics of the optical system
to which they refer are taken into account, certain terms are seen to have zero
coefficients under all conditions as pointed out in following paragraphs.

When the object point is close to the optic axis (r = 0), the r factor has to
be omitted to allow the wave aberration function to take on values other than
zero over the exit pupil. Furthermore, because of the symmetry that results from
the object point on the axis, no variation of the function is possible with change
of ¢ (or cos ¢), so the cos ¢ factor must also be omitted when r is omitted.
Finally, symmetry requires that the function be even; that is, W(p) = W( —p).
This means that when p is the only variable in a term, it must occur only in the
even powers. In the previous chapter, it was shown that a term involving only
p* (called 2 in Eq. (3-71)) represents a shift of the image plane, defocusing.

Some authors omit the p? term altogether in the series representing the wave
aberration function because its coefficient would always be zero for a correctly
focused system. However, during the design stage, the p® term is useful to
account for a defect of focus. In fact, it is common practice under certain con-
ditions to minimize the coefficient of this term, designated ,C,, by a scheme
discussed later, to find the best focal plane.

Another term, |Cr p cos ¢, which represents a lateral shift of the image
point in the image plane, may also be included so that ;C;, can be minimized
to get best focus [11, 12].
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106 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

As the reader may infer from the two examples already given, each coeffi-
cient in the power series is tagged with three subscripts to indicate the exponents
on the three possible factors. If a, b, and ¢ represent the three exponents, the
correspondence is as follows: ,C,.r® p” cos o.

Terms in the power series that omit all nonzero powers of p would represent
only a constant phase increment over the wave front and, therefore, can be left
out without any loss of generality.

After all possible terms in the power series are analyzed in terms of the optics
system, it is found that the wave aberration function requires only powers of
r?, p?, and the product rp cos ¢:

W(r, p, cos @) = ¢Coo + 1C1170 €08 ¢ + ¢Cyg 0° + ,Coor?
+4Co0r* + oCag 0* + oCep0® + * - -
+,Cyyrp’ cos @ + * - -
+,Cpor? p? cos® @ + -+
+,C0r’0> + -+
+ 3Cyripcose + - - (4-33)

A question might be raised as to why a Z (coordinate in the direction of the
optic axis) dependence is not explicitly shown in Eq. (4-33). Actually, the Z
coordinate of W(x%, y4) or W(p, ¢) is fixed by the other two coordinates in-
asmuch as the coordinate system for the wave aberration function is on the
surface of the exit pupil sphere.

By definition of the wave aberration function, it coincides with the pupil
sphere at the intersection with the optic axis, that is, where p = 0; so Eq.
(4-33) at the axis would be written

Wo(r’ p, COS <p) = ¢Co0 + 2COOr2 + 4Coor4 4o

= 0. (4-34)

Since the series must be identically zero for all values of r, it follows that all
the indicated coefficients in Eq. (4-34) must each be zero. If the terms indicated
in Eq. (4-34) and the optional terms 0Caop® and {Cyrp cos ¢ (previously dis-
cussed in connection with focus) are dropped from the series given in Eq.
(4-33), the general term for the power series expansion is

I+m _n+m

{+mCrnamm? 0" cOS @, (4-35)
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POWER SERIES EXPANSION OF THE WAVE ABERRATION FUNCTION 107

in which the terms having one of the three following combinations are omitted:

n=m=0, (4-36)
or

Il=m=0 and n =2, (4-37)
or

I=n=0 and m=1. (4-38)

In general, [, m, and » are either positive integers or zero.

Since the variable r locates the point object in the object plane and the other
two variables p and cos ¢, raised to their respective powers, determine the
general shape of the wave aberration surface, we can think of n + m and m,
the powers of p and cos ¢ (which are the right-hand subscripts of the coeffi-
cient), as the indicators of the aberration type. The product of the coefficient
and r raised to its power establishes the scale of the general shape. During the
computation or the measurement of the optical transfer function, r is fixed and
becomes part of the coefficient. The OTF thus determined is for the isoplana-
tism patch in the vicinity of the circle of r radius in the object plane and is valid
only insofar as any variation of r has negligible effect on the OTF.

It is customary to group the terms of the wave aberration function series
according to their order, which is defined as

order = (sum of the powers of r and p) — 1. (4-39)
According to this definition, the two optional focus terms, whose coefficients

are respectively 4Cyg and ;C,;, would be first-order terms. The next five terms
in the series are third-order terms and correspond to the Seidel aberrations:

Spherical aberration 0Caop®

Coma 1Cs1rp cos @

Astigmatism and Petzval curvature 2Coor 0% + 5,Coor?p? cos? o
Distortion 3Cyyrp cos ¢

There are nine fifth-order terms, and they are usually grouped as follows:

Spherical aberration 0Ceo 0°

Linear coma 1Cs170° cos ¢

Elliptical coma 3C31r°p° cos ¢ + 3Cs3r°0° cos® ¢
Oblique spherical 2Caor?p* + ,Cr?p* cos® ¢
Astigmatism and Petzval curvature 4Caor 0% + 4Coor*p® cos? ¢
Distortion sCir°p cos ¢

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



108 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

There are 14 seventh-order terms, 20 ninth-order terms, and, in general, 2 +
34+ .-+ %(N + 3) Nth order terms. Table 4.1 gives the wave aberration
power series terms through the ninth order. The terms are arranged according
to their values of m and n as defined in Eq. (4-35).

As one notes the combinations of coeflicient subscripts in the aberration

groupings already given, it is apparent that other meaningful groupings are pos-
sible. For instance,

spherical aberration = (Cyop* + (Ceop® + oCsop® + - * -

il

distortion = 5C;;7%p cos ¢ + sC;,r°p cos ¢

+ ,Cyripcos @ + - -

Although the higher order aberrations must also be considered in highly cor-
rected optical systems, we will confine our discussion in the following sections
to just the third-order or Seidel aberrations. Welford [8, Chapters 6 and 7] can
be pursued for a more extensive treatment. Also, in keeping with our historical
and tutorial objectives, our discussions of aberrations and their correction will
involve only simple lenses. The reader will understand that actual aberration
correction procedures for multielement systems require complicated computer
programming beyond the scope of this book.

As the surface shapes of the wave aberration function for the various aber-
rations are discussed, it is sometimes helpful in understanding the image defects
to appreciate how the shape affects ray direction. As previous discussions of
the function W(r, p, cos ¢) have indicated, the surface shape is relative to the
reference sphere at the exit pupil; so, if the function, not the wave front, were
‘“flat,”” that is, having zero gradient over the whole pupil, the rays, which by
definition are perpendicular to the wave front, would all converge radially to
the center of the reference sphere and produce the ideal geometrical point im-
age. (The present discussion ignores the spreading effects of diffraction.) As
the flat disk is warped by the various aberrations, the slope or gradient of the
surface is no longer everywhere zero, and most of the related rays no longer
follow radial lines but are deflected from the ideal image point by the amount
of the gradient.

SPHERICAL ABERRATION

As indicated earlier, the spherical aberration component of the wave aberration
power series is itself an infinite power series in which each term is a positive
even power of p with its coeflicient. The Seidel spherical aberration term is
0Caop”, which has already been listed as one of the third-order terms. It is also

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



o? 00150 01 m

& 300 0416)! g974%0°¢ 8

& 500 0 48T & 500 0 a1nt N lio 1t 9

& 500 0 L)t & 800 0, 1Y % 500 J.41)° ,954770° ¥

&S00 0, 4P)Y & 800 0 _45)F & 80 0 4T)0 & 500 0 L1t 9540 z

& 500 J 455 & 500 d 1770 & 800 0 £t & 800 ,d 4T)8 & 500 d 4l 0
SUONDLIZqY L2PIQ-YIUIN

(%0 8

& 500 d4'ip! 694%0° 9

v

& 500 0, 48T & 500 d 415t vqiovb ¥

& 800 J.4)tE @ 500 0, 1Y & 800 0 .45 :944%0° z

@ 800 0, L77Y & 800 0 45" & 509 0, 450)0 & 500 d 4Vt 0

SUOUDLLZQY 42PIO-YIUIA2G
oQ oo_wo 9
& 00 mE_m\& vqiovbN ¥
v

) /500 VQNEUN & 00 mqmg_mbm NQKONO z

@ 800 J 4t & 800 0, 4THY & 500 d 4V )f 0
SuouvLIZqY 12PLO-Yf1]

VQOVOO ¥

& 803 d4IEY! 94%0° z

& 802 ,0,4%)t & 800 d.a'1Ht 0
SUOHDIIZQY LIPIO)-PAIY]

G = b= w € =w =W 1 =w 0=w u

SILIAG 1240 UOTIOUN] UOIJRIIIQY IABAA Y} Ul SIS, MII V I'p dqel.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022

Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



110 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

referred to as primary spherical aberration. The succeeding terms in the series
are respectively called secondary, tertiary, and so forth, spherical aberration.

Primary spherical aberration is plotted against p in Fig. 4.4 for an assumed
lens. It will be noted that the practice is to use the ordinate rather than the
abscissa for the independent variable in plots of this kind. An equal-increment
contour plot of the primary spherical aberration for the same lens is shown in
Fig. 4.5. The contours are in the unit-radius circle having the coordinates (p,
¢) with the endwise view of the pupil ray as the center 0. A profile of the wave
front and the pupil ray are shown in the tangential plane in Fig. 4.6. Figure 4.7
is a diagram of the primary spherical aberration in three dimensions. This shape,
of course, is not quite the same as that of the wave front because it is relative
to the reference sphere. Also, the magnitude of the aberration is exaggerated in
this and similar diagrams to show its characteristics.

By showing the paths of equally spaced parallel rays in the tangential plane,
Fig. 4.8 indicates the effects of spherical aberration for a spherical mirror. Al-
though rays near the optic axis tend to converge to a common point, spherical
aberration prevents a true focus. When spherical aberration is present in either
a reflective or refractive system designed to produce an image on a plane per-
pendicular to the optic axis, a screen placed anywhere between the focus of the
paraxial rays and the focus of the marginal rays will image an axial point source

] | 0 | ] 1. |
A A 0 A A ELY A
T8 16 16 8 16 2

Wave aberration

Figure 4.4. Wave aberration as a function of the distance from the pupil ray with one quarter
wavelength maximum distortion at the edge of the pupil caused by primary spherical aberration.
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0.25A

0.20A
0.15A

0.10A

0.05A

Figure 4.5. Contours of constant wave
distortion produced by a lens having only
primary spherical aberration with (C, equal
to A/4.

as a circular patch of light. The minimum diameter patch that one finds by
analytically or experimentally moving the image plane along the axis is called
the circle of least confusion, but this location of the image plane is not neces-
sarily the best for images of extended objects, which can be thought of as being
made up of a large number of contiguous point sources. In the image, the patches

Wave front

Pupil sphere

Figure 4.6. The wave-front profile in the tangential plane at the exit pupil for the spherical ab-
erration represented in Figs. 4.4 and 4.5.
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112 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

Figure 4.7. Three-dimensional representation of the
wave distortion for primary spherical aberration. (Re-
produced by permission from M. Born and E. Wolf,
Principles of Optics (Pergamon Press, Oxford and
New York), Third Revised Edition, 1965.) x's

from the point sources overlap considerably causing outlines and details in the
object to be softened in the image; and details that would be smaller in the
image than the size of a patch from a point source disappear altogether. The
quality of an extended object image depends not only on the patch size from a
point source but also on the distribution of light in the patch. The light patch
may consist of a bright ring with a fainter center or of a small bright nucleus
with a rather tenuous halo. Then, again, it might be a rather sharp central disk
with a faint concentric fringe.

Figure 4.9 shows the modulation transfer function of a lens for which the
coeflicient 4Cy, is equal to one wavelength. The different curves correspond to
different locations of the image plane between the marginal focus and the par-
axial focus. The curve for the location midway between the foci, B = —1, is
closest of those plotted to the broken line curve for no wave-front distortion;
but the nature of the application would still have to be considered before a final
decision could be made as to which image plane location to use. Further dis-
cussion of this kind of decision is left to later chapters.

~ NEEENR\N
N VAN
~. L\\TZ\
JANSN
< [N/
£ F ¥

Figure 4.8. Spherical aberration of a spherical mir-

: 4
ror. /
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Figure 4.9. Modulation transfer function for a system with one wavelength of aberration, ¢Cyo
= \, caused by third-order spherical aberration. The curves are for different positions of the image
plane between the marginal focus and the paraxial focus. The curve labeled B = —1.0 is for a
setting midway between the two focal planes [15].

Figure 4.10 gives calculated modulation transfer function curves for different
amounts of primary spherical aberration, that is, for different values of (Cy
with the higher order coefficients fixed. For each value of 4Cyo, the imaging
plane was placed at the position of best low spatial frequency response.

A number of elementary techniques have been used for abating spherical
aberration. Since this aberration is attributed to the spherical shape of the optical
surfaces involved, it is not surprising that the introduction of one or more ap-
propriately designed aspherical surfaces can bring the aberration within accept-
able limits. For instance, the reflectors of astronomical telescopes are often
made parabolic for this reason. The price paid is that the heavenly object must
be kept very close to the optic axis or the imaging process becomes swamped
by coma. When multiple lenses are involved in a system, a combination of
positive and negative elements can sometimes end up with considerably less net
spherical aberration than a simpler system for the same imaging application.
Overcorrection in a negative lens is used to balance the undercorrection in a
positive lens. When one has only the two surfaces of a single refractive element
to work with, spherical aberration can still be minimized by selecting the best
pair of curvatures to attain the desired focal length for the lens. With reference
to Fig. 4.11, if a point source is at a great distance to the left and the glass in
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Figure 4.10. Modulation transfer function for an optical system having just primary spherical

aberration with different values for 4Cy. For each value, the best image plane was found for low

frequency response [16]. (Reproduced by permission of The General Electric Co., Ltd., of En-
gland.)

a spherical lens has a refractive index of 1.5, the shape with the least spherical
aberration will be closest to the second lens in the bottom row (plano-convex
with the bulge toward the object). Strictly speaking, however, it would be clas-
sified with the first lens (concavo—convex) with a ratio of radii of about 148 for
a focal length of 3.8 in. and a thickness of 0.5 in. A typical focal length char-
acteristic of a corrected lens is shown in Fig. 4.12 where the margin is slightly

) J XK

negative lenses

positive lenses

Figure 4.11. Lens shapes.
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1
Margin
1 | —

Figure 4.12. A plot of the aberration of a lens having

spherical aberration with marginal overcorrection and zonal

] undercorrection. (From Jenkins and White, Fundamentals

990 9.95 10.00 10.05 of Optics, 2d ed. McGraw-Hill Book Company, Inc., New
Focal length, cm York, 1950.)

overcorrected and the intermediate zone is undercorrected. The reverse is pos-
sible but unusual.

A well-corrected lens usually has its primary and higher order spherical ab-
errations balanced for a specific maximum entrance pupil radius. In cameras
and other optical systems, a heavy penalty of missing detail is exacted when
the system is forced to larger than design apertures. Figure 4.12 shows how
rapidly the focal length deteriorates at the margin for one particular example.

COMA

The Seidel or third-order coma term is ;C;;rp° cos ¢. Because of the factors in
this primary coma term, it is obvious that this aberration grows as the object is
moved away from the optic axis and that the ray direction for a given object
position is strongly dependent upon which zone of the exit pupil transmits the
ray. As indicated in the previous section, coma is especially severe for reflecting
paraboloids. In a laboratory test of the 200-in. Hale telescope at Mt. Palomar,
coma became evident only 1 mm off axis, a field angle of only 13 seconds [14].

Figure 4.13 shows an equal-increment contour plot of primary coma where
the maximum wave-front distortion is a quarter wavelength at the edge of the
pupil in the tangential direction. As indicated, the aberration is negative in the
lower half of the figure where ¢ ranges from 7 /2 to 3w /2 radians and is pos-
itive in the upper half. In the sagittal plane (along the xg-axis where ¢ is equal
to either 7 /2 or 37 /2 radians), the wave front coincides with the pupil sphere.
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116 DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

However, a gradient in the tangential (yy) direction exists along this axis of
coincidence; so the rays associated with this region of the wave front are not
directed toward the Gaussian image point.

Figure 4.14 shows a profile of the coma-distorted wave front in the tangential
plane. The radial distance between the pupil sphere and the wave front, the
wave aberration function, is shown in three dimensions in Fig. 4.15.

The peculiar effects caused by coma on the image of a point source are shown
in Fig. 4.16. The rays associated with each narrow zone of the wave front reach
the image plane in a circle rather than at a point. As the zone radius p increases,
the image circle becomes larger and is displaced more from the axis. In Fig.
4.16a, a narrow zone is shown in the wave front, and eight points in the zone
are numbered. The rays associated with the zone produce the image shown in
Fig. 4.16b. Pairs of rays from the eight zone points intersect at the correspond-
ingly numbered points in the image, +1 and —1 rays at 1, +2 and —2 rays at
2, and so on. When the images through the various zones from a point source
are superimposed, the image suggested by Fig. 4.16¢ results. Since the wave
front is continuous rather than made up of discrete zones, the circles actually
blend together forming a comet-shaped image of the point source. Because of

Positive
contours

Negative Y xg
contours

Figure 4.13. Contours of constant wave-front distortion for a lens having just primary coma with
the coefficient ;C;, equal to A /4.
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Pupil sphere

Wave front

Pupil ray

Pupil sphere

Wave front

Figure 4.14. Profile of the wave front in the tangential plane showing the distortion produced by
primary coma.

the r factor in the third-order coma term, the image grows as the object is moved
away from the axis.

If crossed lines are used to locate an off-axis point in the object, the inter-
section can be located quite accurately in spite of considerable spherical aber-
ration; but because of its asymmetrical nature, the blurring caused by coma can
lead to large location errors.

Just as with spherical aberration, coma can be weakened in a simple lens by
selecting the best pair of curvatures to provide a required focal length. Fortu-
nately, the optimum combination for cropping coma is very close to that re-
quired for cropping spherical aberration. For relatively large apertures, higher

Figure 4.15. A three-dimensional representation
of the aberration function produced by primary
coma. (Reproduced by permission from M. Bom
and E. Wolf, Principles of Optics (Pergamon Press,
Oxford and New York), Third Revised Edition,
1965.)
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3
1 Comet Shaped
Image
(a) (b) (c)

Figure 4.16. Formation of comet-shaped image of a point object. (From Jenkins and White,
Fundamentals of Oprics, 2d ed. McGraw-Hill Book Company, Inc., New York, 1950.)

order coma may become significant even though third-order coma has been
softened. However, if a relation known as the sine condition can be realized
for all zones, all coma must be absent [1, pp. 167-169; 8, p. 155].

Coma is minimized if the optical system can be made symmetrical about the
aperture stop and the lateral magnification made unity. In the absence of spher-
ical aberration, primary coma does not depend on the aperture position; but in

1.0 — T T T T T T T I
- \ —
N
A
\
0.8 W\ —
- \
s L AN C31= 063 A N
5} \ \,
E W\ O
T 06} NN Cp=0 —
2 \ \\
2 \\ ~
g r N . i
5 \ N S
= 04— \ \\\ —
El N s S~a
o N\ ~ \\\
§ — \\ \\ Cpop =205 -~
\\\ \\
0.2} S~ ~o _
\\\
- Coo= 210X ~~we ]
=~
0 I IS PR R RS
0 0.2 04 06 0.8 1.0

Normalized spatial frequency, s

Figure 4.17. Modulation transfer function for a lens having just primary coma with ,Cy, equal
to 0.63\. The curves are for different amounts of defocusing. Solid lines are for ¢ = /2 and
dashed lines for ¢ = 0, where ¢ is the angle of the line structure to the meridian plane as shown
in Fig. 5.4 [17]. (Reproduced by permission of the General Electric Co., Ltd., of England.)
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the presence of spherical aberration, a stop position can be found where primary
coma vanishes, given complete freedom of movement. This procedure, of
course, is of limited usefulness because of practical restrictions on stop posi-
tion. In fact, when a high-quality optical system is designed, usually by com-
puter methods, pat techniques to eliminate coma or any other single aberration
are rarely successful; coexisting aberrations have to be treated jointly as sug-
gested in later chapters.

Figures 4.17-4.19 show the calculated MTF for a lens having primary coma
and differing amounts of defocusing. In the three figures, the coefficient (5,
has the values 0.63\, 1.26\ and 1.89\, respectively. Defocusing is measured
from the paraxial image plane.

ASTIGMATISM

In the power series representing the wave aberration function, the term ,Coor?p?
cos? ¢ is identified as the Seidel or third-order astigmatism term. The contour

1.0

08 Cy =126 ]

0.6

0.4

Modulation transfer function

0.2

0 0.2 0.4 0.6 08 1.0
Normalized spatial frequency s

Figure 4.18. Modulation transfer function for a lens having just primary coma with 1G5, equal
to 1.26A. The curves are for different amounts of defocusing. Solid lines are for ¢ = /2 and
dashed lines for y = 0, where Y is the angle of the line structure to the meridian plane as shown
in Fig. 5.4 [17]. (Reproduced by permission of the General Electric Co., Ltd., of England.)
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Figure 4.19. Modulation transfer function for a lens having just primary coma with ,Cs; equal
to 1.89N. The curves are for different amounts of defocusing. Solid lines are for ¢ = /2 and

dashed lines for ¥ = 0, where y is the angle of the line structure to the meridian plane as shown
in Fig. 5.4 [17]. (Reproduced by permission of the General Electric Co., Ltd., of England.)

plot for primary astigmatism, Fig. 4.20, resembles the coma plot of Fig. 4.13
in some respects. The wave front and the reference sphere coincide along the
xg-axis, and all the contour lines are perpendicular to the yr-axis. However,
the contour lines for astigmatism are straight rather than curved, and the con-
tours are positive relative to the xg-axis both above and below this axis. The
profile of a wave front with astigmatism shown in the tangential plane (yr-axis
of Fig. 4.20) is given in Fig. 4.21, and the wave aberration function with only
primary astigmatism is shown in three dimensions in Fig. 4.22. A three-dimen-
sional ray diagram is drawn in Fig. 4.23 to show image formation by a simple
lens with primary astigmatism. The off-axis point source in the object plane is
shown emitting four rays, two in the tangential plane and two in the sagittal
plane, and the plane areas are indicated between the rays and the optic axis.
When all rays from the point object are considered, they are found to focus in
a line perpendicular to the tangential plane at the tangential focus and in a line
perpendicular to the sagittal plane at the sagittal focus. In the region between
the two foci, an image plane shows an elliptical spot, which becomes circular
somewhere near the center of the region and collapses to a line as the image
plane is moved to either focus.
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Figure 4.20. Contours of constant wave-front distortion for a lens having just primary astigma-
tism.
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Figure 4.21.

Profile of the wave front at the exit pupil for a lens having just primary astigmatism.
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Figure 4.22. Three-dimensional representation of the
aberration function for a lens having just primary astig-
matism. (Reproduced by permission from M. Born and
E. Wolf, Principles of Optics (Pergamon Press, Oxford
and New York), Third Revised Edition, 1965). x's

Since the factor 7% causes the astigmatic distortion of the wave front to in-
crease as the square of the object point displacement from the axis, one would
expect that aberration effects in the image would become more pronounced as
the point source is moved away from the axis. Evidence of this is illustrated in
Fig. 4.24 in which all points of the object plane are imaged on the right side of
the lens. As in the imaging of a single point, two different sets of images result,
now represented by two surfaces rather than two lines. With increasing r, the
foci come closer to the lens and their separation increases. Both surfaces are
paraboloidal, and they intersect the optic axis at the paraxial image point. Mak-
ing the two surfaces coincide amounts to eliminating astigmatism.

As one might predict from our imaging discussion, astigmatism allows con-
centric circles on the object plane, centered on the optic axis, to be sharply
imaged on the tangential image surface whereas radial lines are sharply imaged

Sagittal image

Circle of least confusion

Tangential image

Figure 4.23. Formation of tangential and sagittal images in astigmatism.
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on the sagittal image surface. An elementary drawing of a wheel (Fig. 4.25) is
a good object to illustrate these imaging characteristics. In the tangential image,
Fig. 4.25a, both the rim and the hub are sharp, but the spokes get increasingly
fuzzy as one goes outward from the hub. On the other hand, in the sagittal
image, Fig. 4.25b, the spokes are sharp, but the rim is uniformly fuzzy. The
hub circles, being close to the axis, remain sharp because of the low value of
r2. Astigmatism is a function of both the lens shape and the position of the
aperture stop.

Figure 4.26 shows calculated MTF curves for two optical systems with dif-
ferent amounts of astigmatism specified by the constants p and g. These con-
stants are defined in Chapter 9 where a detailed procedure for calculation is
presented, and the numerical values for these MTF curves are given in Table
9.11. The OTF for one of these systems is plotted on the complex plane in Fig.
4.27. This method of presentation, called an Argand diagram, is discussed in
connection with Fig. 5.11.

®
O

(a) (b)

Figure 4.25. Astigmatic images of a spoked wheel: (a) tangential image and (b) sagittal image.
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Figure 4.26. Calculated modulation transfer function for two assumed optical systems having
different amounts of astigmatism compared with a *‘perfect”” MTF. (See Table 9.11.)

CURVATURE OF FIELD

Every optical system, without specific correction, has curvature of the image
‘“‘plane.”” Field curvature, called Petzval curvature, is represented in the power
series for the wave aberration function by the term ,C,q7%p?. In the absence of
astigmatism, the sagittal and tangential surfaces coincide and lie on the Petzval
surface. A three-dimensional plot of the Petzval curvature term is shown in Fig.
4.28.

Field curvature is especially objectionable in cameras, enlargers, and pro-
jectors because the film plane and the projection screen are typically flat. Cor-
recting for curvature of field is referred to as “‘field flattening.’’ Positive lenses
introduce inward curvature of the Petzval surface (undercorrection), and nega-
tive lenses introduce outward curvature (overcorrection).

DISTORTION

If all other aberrations are eliminated and only the term ;C;;7>p cos ¢ remains
in the power series for the aberration function, the corresponding image is
sharply defined; but as one examines the image positions of points farther and
farther away from the axis, it is discovered that they are displaced more and
more from their ideal positions because of the > factor. This aberration is sim-
ply labeled distortion. Under its influence, images of straight lines that pass
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Figure 4.27. The complex optical transfer function of one of the systems of Fig. 4.26 plotted on
the complex plane (Argand diagram).

through the optic axis remain straight, but all other straight lines in the object
produce curved images. The three-dimensional plot of the distortion term is
shown in Fig. 4.29. Its effect on a uniform mesh diagram in the object plane
can be seen in Fig. 4.30. Where distortion operates to move points more out-
ward with increasing r, the pincushion effect of Fig. 4.30a results. On the other
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Figure 4.28. Three-dimensional representation of
the aberration function for a lens having primary field
curvature. (Reproduced by permission from M. Born
and E. Wolf, Principles of Optics (Pergamon Press,
Oxford and New York), Third Revised Edition,
1965.) *'s

hand, if the aberration pulls the image points more and more inward from their
proper location with increasing r, barrel distortion, as in Fig. 4.30b, results.
Magnification is said to increase with r in pincushion distortion and to decrease
with increasing r in barrel distortion.

An aperture stop located between a positive lens and the image increases
pincushion distortion, and a stop on the side of the lens remote from the image
increases barrel distortion. Distortion is minimized by making systems sym-
metrical about the aperture stop.

In summary, the first three of the primary or third-order aberrations—spher-
ical aberration, coma, and astigmatism—cause lack of sharpness in the image.
The last two—Petzval or field curvature and distortion—cause geometrical dis-
tortion of the image.

EXPANSION OF THE WAVE ABERRATION FUNCTION IN
ZERNIKE POLYNOMIALS

Parallel to the expansion of the wave aberration function in a power series is
the newer practice of expanding the function in a series of orthogonal polyno-

Figure 4.29. Three-dimensional representation of
the aberration function for a lens having primary dis-
tortion. (Reproduced by permission from M. Born and
E. Wolf, Principles of Optics (Pergamon Press, Ox-
ford and New York). Third Revised Edition, 1965.)
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a b
Pincushion Barrel

Figure 4.30. Distortion of a square mesh object pattern.

mials, particularly Zemike circle polynomials. Besides the introductory papers
by Zermike and Nijboer [9, 24] and the references already mentioned by Kintner
and Sillito and by Hawkes, our necessarily brief treatment of Zernike
polynomials can be extended by consulting Born and Wolf [1, pp. 464-468 and
Appendix VII], the further discussions by Kintner [25, 26], and the article by
Kim and Shannon [28].

Expansion in Zemike circle polynomials provides advantages in calculating
diffraction integrals, arriving at the optical transfer function, and balancing ab-
errations. In the last application, effectiveness is greatest for very small aber-
rations where the objective is to maximize the Strehl ratio, which requires that
the wave-front distortion be under one wavelength for the balancing technique
to work.

Before defining the sets of functions known as the Zemike circle polynomials
and Zernike radial polynomials, it is of interest to discuss the characteristics
that would be desirable in functions used to build series equivalents of the wave
aberration function.

The region of the wave aberration function, as we have defined it in previous
discussions, is a circle of unit radius with rectangular coordinates (x§, y;) or
polar coordinates (p, cos ¢) in which cos ¢ is used instead of ¢ to take advan-
tage of simplifications resulting from the symmetry about the tangential plane
(yr-axis) (see Fig. 4.3). For the present discussion, the point object is consid-
ered fixed; so r, the coordinate of the point in the object plane, is not involved
here as it was in the expansion in a power series.

Whatever set of functions is defined to serve as terms in a series expansion
of the aberration function, it is apparent that the definition of the set must be
broad enough to include all the kinds of terms necessary to represent any rea-
sonably well-behaved function. Such a set is called complete in the jargon of
mathematics.
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Another property given the Zernike circle polynomials is invariance in form,
which means that when the coordinate system is rotated, in general, as follows,

!

X X cos ¢ + y sin ¢, (4-40)

y' = —xsin ¢ + ycos ¢,

each polynomial V(x, y) is transformed into a polynomial of the same form;
that is, V satisfies the following relation under the rotation:

V(x,y) = G(o) V(x', y"), (4-41)

where G(¢) is a continuous function with period 27 radians of the angle of
rotation ¢, and G(0) = 1.

A property that gives the Zernike circle polynomials advantages in mathe-
matical manipulation is orthogonality. A system of functions f,(x), defined in

the interval @ < x < b and continuous in it, is said to be pairwise orthogonal
if

S LX) f(x)dx =0 ifn #n'. (4-42)

a

However, it is always assumed that
b
S fi(x) dx > 0. (4-43)

The form of the general Zernike circle polynomial useful for the kind of optical
system discussed in this chapter is 4,,,R7 (p) cos me, in which 4,,, is the coef-
ficient, R™(p) is an nth degree polynomial in p which contains no powers of p
less than m, and the third factor is the cosine of the multiple angle me. As in
the power series for the wave aberration function, p and ¢ are the polar coor-
dinates for the exit pupil reference sphere. The positive integers m and n have
values that are restricted as follows: n > m; n — m is always even.

The Zemike circle polynomials exhibit their orthogonal property in the fol-
lowing equation:

27 ol
S S [Ry(p) cos me][R} (p) cos m'¢]p dp de
0 0

L forn =n'andm = m’,
_ 2n + 2
0 for eitherorbothn # n' and m # m’. (4-44)
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The factor R™(p) by itself is called a Zernike radial polynomial; the members
of this set are also orthogonal functions:

——1—— forn = n'
: m m do = 2(n + 1) ’
SO [R" (P)][Rn (P)]P g 0 forn # n’. (445)

The formulas for the Zernike radial polynomials are

(n—m)/2
R {(p) = [ 1 { d )} {(p2)(n+m)/2(p2 _ 1)(n—m)/2}

(= m)/2]" Ld(s?
('Hf])/z s (n — ) (n—2s)
T S (_1)s! [(n+m)/2 —s]! [(n—m)/2—s]!p ’
(4-46)

These tedious formulas are often bypassed in practice by either using a gener-
ating function [1] or applying a recurrence relation that allows one to calculate
a Zernike radial polynomial from two other Zernike radial polynomials, all of
different degree n [26]. Table 4.1I gives Zernike radial polynomials for m and
n up through 8. An easily verified property is that R (1) = 1.

Once calculated, the Zernike polynomials are assembled in the series for
Wp, ¢):

1 oo oo n
W(p, ¢) = Ay + N 2 AoRp) + 2 2 ART(p) cos me.
n=2 n=1m=1

(4-47)

As indicated in earlier discussion, the coefficients A,,, are functions of r, the
coordinate of the point object in the object plane. In the second term, 1/ V2is
factored out of 4,4 to simplify derived formulas.

Although the third-order terms of the power series representation of the ab-
erration function could be correlated quite closely with the historically impor-
tant Seidel aberrations, the terms of the Zernike polynomial expansion do not
match up well with the power series and Seidel classifications. One can appre-
ciate why there are discrepancies by reviewing the relations between the mul-
tiple-angle cosine factors of the Zernike terms with the power cosine terms of
the other series. For instance, from the following trigonometric identities, it is
evident that a number of terms in one series would contribute to a single term
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in the other:
cos2¢ =2 cos® o —1,
cos 3¢ = 4 cos® ¢ — 3 cos ¢,

cos 4o = 8 cos* ¢ — 8cos? p + 1,

cos 5S¢ = 16 cos’ ¢ — 20 cos’ ¢ + Scos o, . . . (4-48)
Although the new groupings of image errors in the Zernike polynomial expan-
sion of the aberration function suggests that different classifications with new
names might be desirable, the terminology listed earlier in this chapter for the
third-order and the fifth-order terms of the power expansion still prevails in most
discussions.

As indicated earlier, the Zemike polynomials have a built-in capacity for
balancing aberrations to maximize the intensity at the Gaussian focus. For in-
stance, R3(p) = 20p° — 30p* + 120> — 1 is recognized as a combination of
third-order spherical aberration, fifth-order spherical aberration, and defocus-
ing—according to the established nomenclature. A remarkable fact is that the
coeflicients of the three powers of p are in precisely the correct ratio to achieve
maximum intensity. This useful characteristic is discussed in a later chapter.

As one considers the integers m and n as they occur in the Zernike circle
polynomials, it is apparent that the main features of the aberration contour dia-
gram such as Figs. 4.5, 4.13, and 4.20, symmetry, for instance, depend on m
while details depend both on m and n. This suggests that in a new classification
system, the value of m could determine the general type of aberration. On this
basis, by analogy with the Seidel aberrations, the terms with m = 0 could be
called spherical aberration; m = 1, coma; and m = 2, astigmatism. In such a
system, curvature and distortion would appear as degenerate cases of spherical
aberration and of coma. Terms with m = 3 have no parallel in the Seidel sys-
tem. The value of n could translate into ‘‘primary,”’ ‘‘secondary,”” and so on.
For instance, p? cos 2¢ would be primary astigmatism and p* cos 2¢ would be
secondary astigmatism.

REFERENCES

1. M. Born and E. Wolf, Principles of Optics, 3d ed. Pergamon, Oxford, 1965.

2. C. 8. Williams and O. A. Becklund, Optics: A Short Course for Engineers and
Scientists. Wiley-Interscience, New York, 1972, pp. 100-104.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



132

10.

11.

12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22

23

DIFFRACTION INTEGRAL AND WAVE-FRONT ABERRATION FUNCTION

W. T. Cathey, Optical Information Processing and Holography. Wiley, New York,
1974, pp. 7-13.

. A. W. Conway and J. L. Synge (Eds.), The Mathematical Papers of Sir W. R.

Hamilton, Vol. 1. Cambridge Univ. Press, London, 1931.

- H. A. Buchdahl, An Introduction to Hamiltonian Optics. Cambridge Univ. Press,

London 1970.

- O. N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics. Academic, New

York, 1972, Chapter 12.

- A number of significant papers by L. Seidel developing his aberration coefficients

were published between the years 1852 to 1856 in the Astronomische Nachrichten;
for example, see L. von Seidel, Sur Dioptrik. Astron. Nachr. 43, 289, 304, and
321 (1856).

- W. T. Welford, Aberrations of the Symmetrical Optical System. Academic, New

York, 1974.

. F. Zernike, Beugungstheorie des Schneidenver-Fahrens und Seiner Verbesserten

Form, der Phasenkontrastmethode. Physica 1, 689 (1934).

E. C. Kintner and R. M. Sillitto, A New ‘‘Analytic’’ Method for Computing the
Optical Transfer Function. Opr. Acta 23, 607 (1976).

H. H. Hopkins, The Use of Diffraction-Based Criteria of Image Quality in Auto-
matic Optical Design. Opr. Acta 13, 343 (1966).

R. S. Longhurst, Geometrical and Physical Optics. Wiley, New York, 1967.
H. H. Hopkins, Wave Theory of Aberrations. Oxford Univ. Press, Oxford, 1950.

I. S. Bowen, Optical Problems at Palomar Observatory. J. Opt. Soc. Am. 42, 795
(1962). ’

G. Black and E. H. Linfoot, Spherical Aberration and the Information Content of
Optical Images. Proc. R. Soc. London Ser. A 239, 522 (1957).

A. M. Goodbody, The Influence of Spherical Aberration on the Response Function
of an Optical System. Proc. Phys. Soc. (London) Ser. B 72, 411 (1958).

A. M. Goodbody, The Influence of Coma on the Response Function of an Optical
System. Proc. Phys. Soc. (London) Ser. B75, 667 (1960).

M. De, The Influence of Astigmatism on the Response Function of An Optical
System. Proc. R. Soc. London Ser. A 233, 91 (1955).

R. Barakat, Computation of the Transfer Function of an Optical System from the
Design Data for Rotationally Symmetric Aberrations, I. Theory. J. Opt. Soc. Am.
52, 985 (1962).

B. Tatian, Aberration Balancing in Rotationally Symmetric Lenses. J. Opt. Soc.
Am. 64, 1083 (1974).

Reference 5, pp. 265-268.

M. De, L. N. Hazra, and P. K. Purkait, Walsh Functions in Lens Optimizations,
I. FEE-Based Criterion. Opt. Acta 25, 573 (1978).

P. W. Hawkes, The Diffraction Theory of the Aberrations of Stigmatic Ortho-

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



REFERENCES 133

24.
25.

26.

217.

28.

morphic Optical or Electron Optical Systems Containing Toric Lenses or Quadru-
poles. Opt. Acta 12, 237 (1965).

B. R. A. Nijboer, Thesis, University of Groningen, 1942.

E. C. Kintner, A Recurrence Relation for Calculating the Zernike Polynomials.
Opt. Acta 23, 499 (1976).

E. C. Kintner, On the Mathematical Properties of the Zernike Polynomials. Opt.
Acta 23, 679 (1976).

Richard Barakat, Optimum Balanced Wave-Front Aberrations for Radially Sym-
metric Amplitude Distributions: Generalizations of Zernike Polynomials. J. Opt.
Soc. Am. 70, 739 (1980).

C.J. Kim and R. R. Shannon, Catalog of Zernike Polynominals. In Applied Optics
and Optical Engineering, Vol. 10, R. R. Shannon and J. C. Wyant (Eds.). Aca-
demic, San Diego, 1987.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5

Mathematical Theory of OTF

INTRODUCTION

As we have already indicated in discussing geometrical optics in the previous
two chapters, rays from a point object in a perfect optical system form a
homocentric pencil of rays that converge to a point image; and the wave fronts
(which, by definition, are perpendicular to the rays) are spherical. However, if
in this approach aberrations keep the rays from passing through a common point,
the wave fronts cannot be spherical.

In geometrical optics, analysis of aberrations becomes a study of differences
between particular nonhomocentric pencils of rays and the ideal homocentric
pencil. In the OTF approach, on the other hand, aberrations are identified with
how the wave front departs from a spherical shape. The link between these
departures and the image is the diffraction integral, which relates the complex
amplitude of light on the image plane to the discrepancies between the actual
wave front and a reference sphere. A significant difference between the geo-
metrical and OTF approaches is that the ‘perfect’” optical system for the latter
does not form a point image of a point object but rather a diffraction pattern
(sometimes referred to as an Airy pattern) consisting of a disk surrounded by a
series of rings. The pattern results from limiting the solid angle of an actual
wave front to something considerably less than a complete sphere. Addition of
aberration effects further complicates the image pattem.

If we broaden our consideration of a point object to an extended object,
which may be thought of as an assembly of point objects, it soon becomes
apparent that the job of calculating the corresponding extended image by su-
perposing aberrated diffraction patterns is extremely difficult except for geo-
metrically simple objects. For example, consider Fig. 2.16 and try to visualize
the task of superposing just a few of these, each produced by one of a cluster
of point sources in the object. Specifying an aberration tolerance in terms of
image quality by this approach is virtually impossible. Therefore, as a practical
matter, it becomes desirable to calculate the OTF from the wave-front aberra-
tion because the OTF can be related in meaningful ways to image quality.

134
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DEFINITIONS, NOMENCLATURE, AND CONVENTIONS

The foundation for the mathematical theory of OTF has been laid in the earlier
chapters and in the appendix of this book, and now we distill some of the ideas
from these pages in preparation for further mathematical development.

As suggested in the introduction of this chapter, a key relation for the study
of the OTF is the diffraction integral

Uo(ug, o) = CF, “@. G(x4, yt) exp[i2m(xiug + yrot)] dxs dyr,

(5-1)

which is a slightly abbreviated form of Eq. (4-22). The expression is for O,
the complex amplitude at a point on the image plane at the reduced coordinates
(ug, vi). Instead of the reduced coordinates, the real-space coordinates (£,
7o) are sometimes indicated, which have their origin on the image plane at the
ideal image point; the ideal image point has, in turn, the real-space coordinates
(0, ") with the optic axis as the origin. (Alternatlve symbols for &, and 7 are
A&’ and An’, respectively.) The first term, C, in the expression for U, is a
complex constant. The second term, fp, is a function of the coordinates of the
point on the image plane for which U, is expressed. Again, these coordinates
may be indicated in any of the several ways already discussed in connection
with U,. The double integral is taken over the surface @ of the wave front as it
emerges from the exit pupil and is written in terms of the coordinates (x§, vt )
on the reference sphere at the exit pupil. Because the wave front is abruptly cut
off by the aperture, the pupil function G(x§, y;) in the integrand has to be
written in two ways:

G(xs, ¥1) = G(x§, y1) exp —ikn' W(xg, y1)]
when (x§> + y4%) < 1, (5-2)
and
G(x's, ) =0  when (x§ +yp) > 1, (5-3)
which were originally written as Eqs. (4-29) and (4-30). Because the pupil func-
tion has a zero value everywhere beyond the unit circle (Eq. (5-3)), the double

integral in Eq. (5-1) can be shown with the limits — oo and + oo instead of over
the surface Q.
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The exponential factor of the pupil function has already been discussed at
great length as the wave aberration function, which was shown expanded in the
previous chapter both as a power series and in Zernike polynomials. Because
of the symmetry of the assumed optical system, the indicated rectangular co-
ordinates (xg, y1) give way to derived polar coordinates ( p, cos ¢) or ( p, cos
me) in the expansions.

In spite of the approximations involved in the derivation of Eq. (5-1), the
diffraction integral, this formula is found highly accurate for practical applica-
tions in optical system study.

The normalized coordinates (xg, y; ) for the exit pupil were first defined in
Chapter 3 by Eq. (3-27). In all subsequent discussions, the subscripts S and T
(signifying sagittal and tangential, respectively) have been retained to distin-
guish the normalized coordinates from the real-space paraxial coordinates (x’,
y") introduced earlier in Chapter 3. For consistency, the same subscripts have
been applied to the reduced image plane coordinates (ug, v} ) defined in Eq.
(3-40). The primes, indicating image space, have been retained to distinguish
the coordinates from those (unprimed) for object space. Now we propose to
simplify expressions involving these symbols by dropping both the subscripts
and the primes, and we offer the following justification: The mathematics in the
remainder of this book will not involve paraxial assumptions; so dropping the
subscripts should cause no confusion. Unless we indicate otherwise, our dis-
cussions will assume the necessary conditions, including isoplanatism (see Eq.
(3-29)), so that

!

x=x', y=y, wu=u', and v="10". (5-4)

Thus the unprimed symbols, in most instances, can represent image space co-
ordinates as well as object space coordinates.

As indicated in the development of the normalized and reduced coordinate
systems, the x-axes in both object and image spaces are parallel to the sagittal
plane and are perpendicular to the optic (z) axis; the y-axes lie in the tangential
plane and are also perpendicular to the optic axis. The u-axes in both object
and image spaces are parallel to the x-axes, and the v-axes are parallel to the
y-axes. Whenever a single off-axis object point is being considered in a rota-
tionally symmetrical (about the optic axis) optical system, no loss of generality
is suffered by placing the object point Q in the tangential plane as in Fig. 5.1.

Comparison of the diffraction integral, Eq. (5-1), and the Fourier integral,
Eq. (B-16) of Appendix B, show them to have identical mathematical forms.
This likeness accounts for many of the useful relations in OTF theory. Discus-
sions of Fourier transforms, particularly in Appendix B, have shown that the
indicated transformation of function, G(xg, yr)to Uo(ug, vr) in Eq. (5-1), can
be reversed by an expression that differs in form only in the sign of the expo-
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nent. (Compare Egs. (B-15) and (B-16).) Since these reversible transformations
occur frequently in OTF theory, Eq. (5-1) and its reverse are often shortened
to

Uo(us, v1) < G(x5, ¥1), (5-5)
or, with the omissions of subscripts and primes, '
Us(u, v) © G(x, ). (5-6)

The quantity 00(u, v) has already been identified in Eq. (5-1) as the complex
amplitude of the electromagnetic disturbance at the general point (u, v) in the
image plane near Q' (Fig. 5.1) and with the origin of the coordinates (u, v) at
Q'. The function representing the complex amplitude, Uy (u, v), is called the
amplitude point spread function whose square is proportional to the flow rate
of energy at (u, v), that is, flux density (in ‘W /cm?, for example). The math-

ematical expression for this relation is
A A A 2
By(u, v) = [Op(u, )] [U§ (4, v)] = l[Uo(u, v)]' (5-7)

Figure 5.1. The coordinate systems.
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138 MATHEMATICAL THEORY OF OTF

The product of U, times its conjugate is by definition the square of U, and, by
virtue of this mathematical operation, is always a real quantity. The function
By (u, v) is called the flux-density point spread function or PSFE. It describes
the distribution of flux density in the image plane produced by a point source
in the object plane. The integral of the point spread function over the image
plane is often arbitrarily set equal to unity, which is equivalent to assuming that
the total light flux passing through the system from the point object is a unit
quantity.

Because the flux-density point spread function is a two-dimensional distri-
bution of a quantity over the image plane, a Fourier transform as in Eq. (B-15)
can be applied to By (u, v) to find the equivalent two-dimensional spatial fre-
quency function at the image plane:

+ oo

bo(ss, s7) = SS By(u, v) exp[ —i2n(ssu + spv)] dudv.  (5-8)

This, when normalized with respect to its value at s = st = 0, is called the
optical transfer function. Because the coordinates (u, v), in more explicit no-
tation, were defined as normalized to unity wavelength in Eq. (3-40), the fre-
quencies (sg, st) are normalized to unit frequency and correspond to the fre-
quencies defined in Eq. (3-47).

Definite integrals with positive and negative infinity as limits require special
functions in the integrand to be practical, that is, the value of the function must
become negligible at reasonably small values of the independent variables. We
have already discussed the diffraction integral and the nature of the pupil func-
tion that permits the infinity limits. In integrals like that in Eq. (5-8), where
integration is over the image plane and the integrand function is usually a flux
density, practically all of the optical power is confined to a relatively small area
whose boundaries are apparent from the parameters of the optical system.

By normalizing the constants preceding the integral in Eq. (5-1) and review-
ing the discussion leading to Eq. (5-6), we can write

+ oo

G(x,y) = SS Uo(u, v) exp[ —i2w (ux + vy)] du dv, (5-9)

which indicates that the pupil function G(x, ) can be derived from the complex
amplitude function U, (u, v) on the image plane.

From the relations expressed in Eqgs. (5-8) and (5-9), the spatial frequency
function by (s, s7) at the image plane can be written in terms of the pupil
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function G (x, y). In brief notation, Eq. (5-8) can be expressed as
Eo(ss, s¢) © By(u, v). (5-10)

Just as U, is related to G in Eq. (5-6), we can assume that the second factor
U of the middle expression of Eq. (5-7) has a similar relation to some function

Py

Gy
U5 (u, v) © Gy(x,y). (5-11)

By applying the convolution theorem (discussed in connection with Eq. (B-31)
and the following equations in Appendix B) to Egs. (5-6), (5-7), (5-10), and
(5-11), one can write

+-o00

bo(ss, s1) = SS [G(x ][Gilss = x, 51 = y)] dedy,  (512)

— 0o

which, in words, states that b, is the convolution of G and G,. From the theory
of Fourier integrals, it is known that the transform of the complex conjugate of

a function is the reversed complex conjugate of the transform of the function
{1, p. 16}; that is, if

Fx) © Fw), (5-13)
then

F*@x) @ F*(-0). (5-14)
This indicates that Eq. (5-12) can be written

+ oo

balssr 1) = | | (GG MI[6%(x = 560y — )] deay. (5-15)

— oo

This equation is recognized, by comparison with Eq. (B-84), as the autocorre-
lation function of G(x, y). When a constant is added to or subtracted from each
independent variable as in the second factor in the integrand of Eq. (5-15), the
effect is to shift the function on the coordinate axis. (See the discussion under
*‘Significance of the Convolution Integral’’ in Appendix B.) Any limits that
apply to the function are correspondingly shifted. Because a pupil function has
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Figure 5.2. Common, or overlapping, area of two sheared circles as in the autocorrelation inte-
gral.

nonzero values only within a circle of unit radius as stated in Egs. (5-2) and
(5-3), the nonzero areas for the integrand factors in Eq. (5-15) appear graphi-
cally as in Fig. 5.2. Since both factors have to be nonzero simultaneously to
give the integrand a nonzero value, the integration is taken over only the over-
lapping region (shaded in the figure) of the two circles. Two functions offset as
indicated in Fig. 5.2 are said to be ‘‘sheared.’’ From the diagram, it is apparent
that the distance between the circle centers is (s§ + s2)1/2 A set of examples
based on this figure is worked out in a later section of this chapter.

Equation (5-1) and the subsequent discussion of various optical mathematical
concepts have been based on a point source in the object plane without any
attempt to write a mathematical expression for the point source. Such an expres-
sion can be set up with the application of the Dirac delta function as discussed
in Appendix B, where it is shown that this function is zero everywhere except
at a point and that its integral over the area in the vicinity of the point is unity.
Thus, the flux density in the object plane can be represented by B, (u, v) as

B, (u, v) = C;8(u, v) = C[6(w)][8(v)], (5-16)

where C; is a constant.

Also, in Appendix B, it is shown that the Fourier transform of the delta
function is unity, a real constant. So, the spatial frequency spectrum produced
by a point source of light is continuous with constant power level; but this
spectrum represents the ‘‘input’ to the optical system in terms of frequency.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



DEFINITIONS, NOMENCLATURE, AND CONVENTIONS 141

Application of the Fourier transform to the point source may be expressed as
Bi(u, v) < C,. (5-17)

When we examine the resulting image plane distribution of spatial frequencies
(as we do in later sections of this chapter) by properly applying the Fourier
transform to the flux-density point spread function, we find that the amplitude
in the image generally declines with increasing frequency (although in some
systems, the level might increase with increasing frequency over short inter-
vals), and a cutoff frequency is finally reached beyond which the power remains
zero at all frequencies.

Borrowing from the language of communication engineering, we can say that
image forming optical systems invariably behave like low-pass filters. The par-
ticular characteristic of any spread function By(u, v) is a manifestation of the
imaging properties of the optical system including the aberrations that it pro-
duces. The amplitude and phase over a wave front at the exit pupil determine
the performance of the optical system both in terms of the impulse (point source)
response, which is the point spread function, and in terms of the Fourier trans-
form of the spread function, which is the unnormalized optical transfer function.
The spectrum of the distribution received at the image b;(sg, sp) can be ex-
pressed in terms of the input spectrum C; and the optical transfer function,
before normalization at (0, 0), 50(ss, St), as

Ei(ss’ s) = [Eo(ss’ ST)] Ci. (5-18)

The transforms of the three terms in Eq. (5-18) are

bi(ss, st) < Bi(u, v), (5-19)
bo(ss, s1) © By(u, v), (5-20)
C, < Cé(u, v). (5-21)

The relation in Eq. (5-21) is discussed in connection with Egs. (B-25) and
(B-26) in Appendix B. By applying the convolution theorem, as was done to
write Eq. (5-12),

+ o0

B(u',v') = SS By(u, v)[6(u' —u, v' — v)] dudv. (522)

— o0

In words, Eq. (5-22) says that the distribution of flux density in the image plane
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is equal to the convolution of the point spread function (a property of the optical
system) and the distribution of flux in the object plane (a point source), which
distribution happens here to be described by the delta function. Since a general
distribution in the object plane can be thought of as the superposition of many
points, one might expect that Eq. (5-22) could be generalized to

+ oo

B(u',v') = SS By(u, v) By(u' — u, v’ — v)dudv, (523)

— oo

where B, (u, v) is a function describing a general distribution of flux density in
the object plane. It may be useful to visualize the distribution as a juxtaposition
of an infinity of point sources, each incoherent within itself and each incoherent
in relation to every other point source. Each point source has the appropriate
intensity and enough ‘‘spread’’ to render the object-plane flux-density distri-
bution continuous. This powerful optical relation, Eq. (5-23), does indeed hold
provided certain restrictions are observed, which are discussed in the next sec-
tion.

LINEARITY AND ISOPLANATISM

The mathematical statements of the preceding section are based on a number
of tacit assumptions that should be reviewed whenever OTF theory is applied.
The bases for these assumptions are discussed in Chapter 2 in connection with
isoplanatism, linearity, and coherence.

The light beam passing through the optical system is assumed in our devel-
opments to be a constant single-frequency wave train, that is, a perfectly co-
herent beam. Actually, the usual situation is that a spectrum of frequencies,
variable both in amplitude and spectral content, compose the beam. This is true
even when a nominally single-frequency, incoherent, finite, or damped wave
train is involved.

Fortunately for the application of OTF theory, most optical systems are lin-
ear in the sense that response is proportional to an appropriately selected input.
This property allows one to apply each component frequency or beam individ-
ually and then to combine the results to obtain the complete response function
for the system. Some written discussions of optical systems responses to co-
herent and incoherent light give the impression that a system reacts differently
to the two kinds of light. However, an optical system, in general, is strictly
passive. The fundamental response of the system to any given frequency com-
ponent of incoherent light is identical to the response to the single frequency in
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coherent light, provided the two frequencies are the same. The differences exist
because the two kinds of light must be superposed differently.

Before we can follow specific rules for superposition, we must be assured
that we are operating within a single isoplanatism patch as discussed in Chapter
2. For instance, if two identical point sources, one at (u;, v;) and the other at
(u; + Au, vy + Av), produce displaced patterns on the image plane that are
precisely identical, the two points are said to be in the same isoplanatism patch;
and the same point spread function can be convolved with the delta function
representing each point to produce the mathematical expression for the corre-
sponding pattern as in Eq. (5-22). According to the nomenclature already
adopted, the two intensity distributions in the image are

B, (u;, v;) and By(u; + Au, v, + Av). (5-24)

Similarly, by convolving the amplitude point spread function with the delta
function, the corresponding pair of identical (except for location) amplitude
distribution functions result:

U(uy, v;) and U (u; + Au, v, + Av). (5-25)

From the described characteristics of an isoplanatism patch, it can be said to be
aregion in the object plane over which one wave-front aberration function holds
for all points.

Having satisfied the isoplanatism condition, we face the question of how to
combine the patterns produced through the optical system by the two point
sources. Obviously, superposition is achieved by adding some property of the
two patterns, point by point, on the image plane—But should we add intensities
(B;) or amplitudes ( 01 )? The answer depends on whether the two sources are
incoherent or coherent. If incoherent, intensities (real) must be superposed; if
coherent, the known phase relations must be taken into account and the ampli-
tudes (complex) superposed. Because of the fixed phase relations characteristic
of coherent light, the superposed patterns will show diffraction effects not evi-
dent in the superposed incoherent patterns; however, if we could observe the
superposed incoherent patterns instant by instant, we would see a dynamic se-
quence of diffraction effects similar to the stationary effects noted for coherent

light. It is the short-term dynamic averaging that permits the direct superposi-
tion of intensities:

Bi(u;, v1) = By(uy, v1) + B(u; + Au, v; + Av). (5-26)

However, because of the ‘‘stop-action’” nature of the coherent light situation,
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the more tedious superposition of amplitudes, with appropriate attention to
phase, has to be performed:

ﬁi(ul, vl) = ﬁl(ul, vl) + ﬁl(ul + Au, Uy + Av) (5‘27)

Then by squaring the total amplitude point by point, as in Eq. (5-7), the B, (u,,
v;) for coherent light can be determined. Theoretically, the incoherent super-
position problem could also start with Eq. (5-27) if the instantaneous phase
relations were known, but this approach has no practical application.

For convenience in the superposition discussion, the displaced identical pat-
terns previously postulated for the isoplanatism discussion were used for illus-
tration. The reader should realize that the conclusions reached about superpo-
sition apply as well to unlike patterns.

Unfortunately, no clear-cut method of image plane superposition exists for
partially coherent light. Solutions would require some kind of combination of
results reached by first assuming coherent and then incoherent light. Image pat-
terns for coherent and incoherent light in otherwise identical optical systems
have no direct relation to each other. Kintner and Sillitto [2] suggest a perfor-
mance indicator, unrelated to OTF principles, that is based on the oscillatory
ringing observed in images formed with partially coherent light. In another ap-
proach [4-12 of Chapter 2], a calculated mutual coherent function, based on
pairs of points in the object, does have a linear relation in the image, even for
partially coherent light, and can be used as a performance indicator. However,
because it has no readily apparent characteristic discernible in the image and its
value carries no intuitive significance of image quality, the mutual coherence
function does not seem as popular as performance tests that concentrate on a
particular characteristic (like ringing) of the imaging process. Because the Kint-
ner and Sillitto treatment and other performance evaluations for partially co-
herent light are not related to OTF theory, further discussion of them is limited
to remarks accompanying Eqs. (10-4) and (10-5) [1 of Chapter 10].

If no reference is made to coherence, the optical analyst must make an as-
sumption concerning this characteristic when conclusions are dependent on
which kind of light is involved as in the formation of images. Also, the optical
experimenter must be alert to the nature of test discrepancies that result from
partial coherence in a system assumed to be operating with incoherent light.

IMAGE OF A GENERAL DISTRIBUTION

The superposition of the images of two object points, discussed in the previous
section, is the first step toward developing the expressions that describe the
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formation of an image from a general extended object. If such an object is a
self-luminous area of incoherent light on the object plane, it can be described
by the intensity (flux-density) distribution B; (u, v). It is assumed to lie within
a single isoplanatism patch.

Radiant flux from each element of area (point) on the object produces its
particular intensity distribution on the image plane; that is, any object distri-
bution B, (u, v) may be regarded as a spatial distribution of an infinity of delta
functions, each being multiplied by B, («, v) at its location. The convolution
integral is applied to express the interaction of two functions like the intensity
distribution in the object B, (u, v) and the point spread function By(u, v) of
the optical system to produce the intensity distribution B;(u', »" ) in the image.
The principles of this application are discussed in Appendix B under ‘‘Signifi-
cance of the Convolution Integral.”” The mathematical expression in the present
instance has already been anticipated in Eq. (5-3). As indicated in the identity
of Egs. (B-47) and (B-48) in Appendix B, Eq. (5-3), can also be written

+ oo

B(u',v') = SS B (u, v) Bo(u' —u, v’ —v)dudv. (5-28)

o

As in other integrals showing —oo and + oo as the limits, the practical limits
here between which the integration has to be performed define a comfortably
small span. The outer elements on the object plane that need be considered are
only those that make an appreciable contribution to the light that passes through
the optical system and reach the area of interest on the image plane. When the
isoplanatism patch is defined, its limits are sometimes substituted for the infinity
signs.

By applying the convolution theorem as was demonstrated earlier in this
chapter, Eq. (5-28) is found equivalent to

I;i(ss, st) = [51(339 ST)] [Eo(ss, ST)] > (5-29)

where b1 (ss, sT) represents the spatial frequency distribution of intensity in the
object, by (ss, sp) is the frequency response of the optical system, and b (ss,
st) represents the resulting frequency distribution of intensity in the image.
Typically Eq. (5-29) describes the low-pass filter operation of the optical system
on the general spectrum in the object to produce the modified spectrum in the
image. Inasmuch as the spectra are described by complex numbers, both am-
plitude and phase are involved in each value. The optical system frequency
response function b, (s, st), when normalized to unity at zero spatial fre-
quency, is defined as the OTF.
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The pupil function G(x, ¥) (discussed in connection with Egs. (5-2) and
(5-3)) is sometimes also called a frequency response function; but here the ref-
erence applies to the amplitude and phase of the electromagnetic disturbance
(neither observable by the eye, detectable by any sensor, nor recordable by
photographic film) whereas b, (sg, s¢) refers to spatial frequency properties of
flux density distributions. Unless indicated otherwise, frequency response func-

tion in this text has reference to a spatial frequency response function of flux
density as in Eq. (5-29).

ONE-DIMENSIONAL ANALYSIS

Two-dimensional distributions such as 5;(ss, st) and b, (s, sp) of Eq. (5-29)
are sometimes hard to handle in analysis and computation, and they are espe-
cially troublesome conceptually as guides in measurements and experiments.
Often, without any loss in generality, a one-dimensional approach can be sub-
stituted for the two-dimensional mathematics to simplify and clarify analysis
and visualization of the optical processes.

In Fig. 5.3 a sinusoidal distribution of flux density in the object plane is
represented schematically by the dashed lines, which are loci of maximum flux
density. This distribution is designated B, (u, v) with the spatial frequencies sg
along the u-axis and sy along the v-axis. When the lines of constant flux density
are parallel to neither axis, as shown in the figure, the axes can be rotated about
the origin through an angle ¥ to make the lines parallel, in this instance, to the
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Figure 5.3. Schematic of a one-dimensional sinusoidal distribution.
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u-axis. From the geometry of the figure,
Y = arctan(sg/s7). (5-30)

The spatial period along the u,-axis, which is perpendicular to the dashed lines,
is 1/s,. Further relations in Fig. 5.3 are

siny = (1/s0)/(1/55) = 5s/50, (5-31)

cos ¥ = St/So, (5-32)

sin® y + cos” ¢ = (ss/s0)" + (sr/50)" = 1, (5-33)
52 = 5% + sk (5-34)

Since in most analyses only positive frequencies are considered, the angle y is
usually confined to the first quadrant.

For illustration in Fig. 5.3 we have chosen a single-frequency pattern for
which we can write the Fourier transform relation and the coordinate shifts as

A

Bl(u’ l}) « bl(sS’ ST)’ (5'35)
Bl(u’ l}) = Bl(uo’ \[/)’ (5'36)
by (ss, st) = b1 (50, ¥)- (5-37)

Although all the functions shown in the three relations above have two inde-
pendent variables, B, (1o, ¥) and b, (so, ¥) have the advantage of easily visu-
alized functions of the single variable u, or s, once the axes are shifted through
the angle y.

This single-frequency example can be expanded to the general situation, with
no revision in the three relations, were B;(u, v) is any distribution of flux
density. Then b, (so, ¥) gives the amplitude and phase of a single spatial fre-
quency wave in the azimuth direction ¢ for each pair of sg and sp. The total
Bi(u, v) is the superposition of all these single-frequency waves with appro-
priate attention to azimuth and phase. Each component wave of frequency s, in
the superposition has its azimuth direction y and is a space function of the form

B (uy) = a + B cos(2msqug + ), (5-38)
where 8 is the amplitude of the wave, a (which is equal to or greater than 3)

is the constant level necessary to keep the wave from going negative (because
negative flux density has no physical meaning), and # is the relative phase angle
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of the component wave. Actually, the inclusion of a constant such as « to pre-
vent negative values of flux density need only be considered after all alternating
waves are algebraically added; it is their sum that must not be allowed to swing
to negative values. In the Fourier analysis, the total of all « terms occurs as a
single term.

A particular consequence of the one-dimensional treatment is that slits and
gratings—a sinusoidal distribution is one kind of grating—oriented successively
in different azimuths may be used for testing the imaging properties of optical
systems. Experimentally, slits rather than point sources are desirable to get a
high signal-to-noise ratio at the detector. In practical setups, a slit can transmit
up to 10* times as much radiant power as a pinhole.

Another benefit from the one-dimensional treatment is that a single indepen-
dent variable suffices for a plot of the computed frequency response function
by(ss, s7) in Eq. (5-29).

When the sagittal magnification mg differs from the tangential magnification
my, because of distortion by the optical system, the expressions for one-dimen-
sional treatment and the observations in related testing procedures are modified.
A direct result of the difference in magnifications is that the spatial periods in
the image plane, 1/s§ and 1/st, bear different ratios to the corresponding pe-
riods, 1/sg and 1 /sy, in the object plane:

mS/sS’ (5'39)
my /st (5-40)

1/s5
1/s

The expression for the image azimuth angle ¥’, corresponding to the object
azimuth angle ¢ in Eq. (5-30), is

Y’ = arctan(ss/st)
= arctan|(my/ms) (ss/s1)], (5-41)
50
tan ' = (my/mg) tan . (5-42)

In a test setup where a grating is in the object plane, the grating azimuth angle
will generally differ from the image azimuth angle when distortion is present.
As Eq. (5-42) indicates, exceptions occur at angles of 0 and 90°.

When the image frequency is to be calculated and either or both the mag-
nification constants differ from unity, Eq. (5-34) has to be modified as follows:

(s0)" = (ss/ms)’ + (s2/mz)’. (5-43)
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OPTICAL TRANSFER FUNCTION

The optical transfer function (OTF) is one of the concepts presented in Chapter
2. The illustrating expression, Eq. (2-19), gives the OTF as a function of a
single real-space spatial frequency w. The magnitude (modulus) T of the OTF
is shown in the discussion preceding the equation to be a ratio of contrasts C'/C
in the image and object.

Now, with the benefit of considerable concept and mathematical develop-
ment beyond Chapter 2, the definition of the OTF can be brought into a more
conventional form based on the function Eo(ss, st) in Egs. (5-10) and (5-15).
An expression for by (ss, st) that closely parallels the expression for the OTF
in Chapter 2 is

bo(ss, s) = bo(ss, st) exp[id(ss, s1)]. (5-44)

The principal difference between Eqs. (2-19) and (5-44) is that two reduced
spatial frequencies (defined in Eq. (3-47)) have been substituted in Eq. (5-44)
for the single real-space frequency. A further modification to by(ss, s7) to bring
it into a common OTF (symbol: 0) form is to normalize it with reference to
its value at zero frequency:

é(ss, st) = Eo(ss, ST)/I;O(O’ 0)
= [bo(ss, 51)/bo(0, 0)] exp[id(ss, s1)]
T(ss, st) exp[id(ss, s1)], (5-45)

I

where T(sg, s7) is the modulation transfer function,

MTF = T(sg, s1), (5-46)
and ¢ (sg, st) is the phase transfer function,

PTF = ¢(ss, s1). (5-47)

By the method demonstrated in the previous section on one-dimensional anal-
ysis, these functions can be indicated as functions of a single frequency s, whose
subscript is dropped to simplify notation:

O(s) = T(s) exp[is(s)], (5-48)
MTF = T(s) = by(s)/bo(0), (5-49)
PTF = ¢(s). (5-50)

Because the zero-frequency values have been taken as references in the nor-
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150 MATHEMATICAL THEORY OF OTF

malizing procedure, it follows that the normalized value of the MTF approaches
unity and the normalized value of the PTF approaches zero as the frequencies
approach zero.

With reference to Fig. 5.1, which shows the off-axis image point Q' as the
origin of the (u, v) coordinates, a number of assumptions pertinent to the pres-
ent discussion can be reviewed. An OTF for an optical system holds for only
one location of Q ', which would seem to require two coordinate values in the
image plane; however, since circular symmetry of the system is assumed, only
a radial value is needed. Furthermore, from the definition of the tangential plane,
whose intersection with the image plane is the vertical coordinate axis, the ra-
dial value is identical with the  coordinate because Q ’ is always, by definition,
in the tangential plane.

The OTF, which can be thought of as an operator on each spatial frequency
in the object plane to produce a corresponding result in the image plane, is
dependent on the orientation of the object plane frequency pattern. The orien-
tations favored in most optical test procedures are shown in Fig. 5.4. In Fig.
5.4a the grating is said to be in the radial direction (¢ = 0) with lines of
constant phase parallel with the sagittal plane (§-axis); in Fig. 5.4b the grating
is in the tangential direction (Y = 90° = = /2 radians) with lines of constant
phase parallel with the tangential plane (n-axis) [14]. Each diagram has an inset
of defining the general angle Y on the (u, v) coordinate axes. Except where a
standard specifies the nomenclature of particular grating orientations as in the
statements above, the practice in this book is to describe spatial frequency ori-
entation either by giving the angle ¢ of the line perpendicular to the lines of
constant flux density in the spatial frequency pattern or by indicating by sub-
script whether the lines of constant flux density are perpendicular to an axis in
the tangential plane (T) or in the sagittal plane (S). Specifying radial direction
according to the standard is consistent with our practice because the grating
lines are indeed perpendicular to a radial line from the optic axis. However, its
counterpart, tangential direction, refers to perpendicularity to a line tangent to
a circle of symmetry (not to a line in the tangent plane). Hence,

W, (5-51)
wg. (5'52)

w in “‘radial direction”’

w in ‘‘tangential direction”

Although, the OTF, MTF, and PTF are usually indicated as functions of the
single frequency variable s as in Egs. (5-48)-(5-50), the above discussions about
radial and orientation dependence imply that an explicit indication of depen-
dence would require

OTF = O(s, r, ¥) = T(s, r, ¥) explig (s, r, ¥)], (5-53)

with similar independent variable expressions for the MTF and PTF.
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Figure 5.4. Spatial frequency lines oriented (a) in radial direction and (b) in tangential direction.
Insets show orientation in a general intermediate direction . Insets also show the (u, v) coordi-
nates, which have their origin at Q.

Another independent variable expression that requires comment is in the def-
inition of relative modulation, M (s, ¥):

M(s, ¥) = T(s, ¥)/T(s, ¥; 0), (5-54)

where T'(s, ¥; 0) denotes the value of the modulation transfer function at fre-
quency s and orientation ¥ if the system under consideration is limited only by
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152 MATHEMATICAL THEORY OF OTF

diffraction. The relative modulation function is often used in specifications of
optical systems and is discussed in a subsequent section in connection with the
variance of the aberration difference function.

THE PERFECT OTF

As indicated in the previous section, our definition of the OTF is a normalized
bo(ss, st), which can be calculated for a particular optical system by integration
in either Eq. (5-10) or Eq. (5-15). Numerical methods of integration are usually
applied. Some of these methods are discussed in Chapter 10. However, a general
expression involving only algebraic and transcendental functions without cal-
culus operations for hq(ss, s7) cannot be derived from either integral expres-
sion. To arrive at a manageable OTF expression, certain reasonable limiting
assumptions can be applied without eliminating all generality in the results.

In the earlier chapters of this book and indeed in most general optical treat-
ments elsewhere, circular (rotational) symmetry about the optical axis is usually
assumed. This means that optical elements (lenses, stops, mirrors, etc.) in a
system are centered on the axis, and the circular contours and edges of the
elements are in planes perpendicular to the axis. A property of such a system
is that the image of a fixed object is unaffected by rotation of the system about
its axis. For a general off-axis point object, a zangential plane is defined in
Chapter 3 to include the point object and the optical axis. A result is that the
pupil ray from the point object to the ideal image point on the image plane
remains in the tangential plane throughout the system. Where it is convenient
to set up a coordinate system in the object plane, the image plane, or an inter-
mediate surface, the intersection of the tangential plane and each surface is
conventionally one of the coordinate axes. Because of the way the tangential
plane is defined, this axis is an axis of symmetry in each surface coordinate
system.

Besides assuming circular symmetry and setting up a convenient coordinate
system, we have to make some simplifying assumptions concerning G(x,y)in
Eq. (5-15) to reach a useful ‘‘general”” expression for the OTF.

In Chapter 4, the significance of G(x, y) is discussed under ““The Pupil
Function.”” Near the beginning of the same chapter, the idea of eliminating
wave-front distorting aberrations but accepting the image faults due to diffrac-
tion in a corrected system is discussed in explaining the term, ‘‘diffraction-
limited system.”” The OTF for such a near-perfect system is the one we here
call the perfect OTF. By reviewing the pupil function, we see that aberrations
are eliminated by making the aberration function W(x, y) zero and the modulus
G(x, y) a real constant. These conditions can be most closely approached in
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an actual system by working with an on-axis point object and paraxial rays
(small aperture). Then Eqgs. (4-29) and (4-30) reduce to

G(x,y) = G, aconstant,  when (x? +y%) = 1, (5-55)
G(x,y) =0 when (x*+y%) > 1. (5-56)

When these values are substituted for G(x, y) and G*(x — sg, y — sr) in Eq.
(5-15) and the graphical representation of the integration is considered in Fig.
5.2, it is apparent that the value of the integral is G times the shaded common
area of the two unit-radius circles:

EO(SS7 ST) = G2[2A (sSa ST)]’ (5_57)
where A(sg, s7) is the area of the shaded segment of each circle, two of which
make up the total shaded area. The geometric formula for a unit-radius circle
segment whose chord is d/2 from the center is

A(d) = arccos(d/2) — (d/2)[1 — (d/2)"]'". (5-58)

From the earlier discussion of Fig. 5.2,

d = (s3 + s2)"~ (5-59)
For sg = s = 0,
d=0, (5-60)
A(0) = arccos 0 = 7/2, (5-61)
bo(0, 0) = (5-62)

The perfect OTF (diffraction limited) by definition is
O(Sss st) = bo(ss, ST)/EO(O’ 0). (5-63)
By substituting expressions derived for numerator and denominator, we obtain
O(ss, s1) = G*[24(d)]/(xG?)
= (2/m) {arccos(d/2) = (d/2)[1 - (d/27]""}.  (5-64)

(Note that the angle must be expressed in radians.) By reference to the earlier
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discussion in this chapter on one-dimensional analysis where it is shown that,
with appropriate rotation of axes, a single frequency s (subscript dropped) can
be substituted for sg and s,

s? =53 + 52, (5-65)

It is thus apparent that in a single-frequency analysis, from Eq. (5-59),
s =d, (5-66)

and the perfect OTF is

O(s) = (2/7) {arccos(s/Z) - (s/2)[1 - (s/2)2]1/2}. (5-67)

Values for this function are given in Table 5.1, and are plotted in Fig. 5.5.
Since the radii of the sheared circles are each unity, it is apparent that the range
over which the circles overlap and, as a consequence, O{s) has a nonzero value
is

0=s=2 (5-68)

This range is unaffected by reverting back to the more general situation where
G(x, y) is neither real nor a constant; the range calculation depends only upon
the rotational symmetry assumption and the normalized nature of the reduced
spatial frequency s (see the discussion leading up to Eq. (3-47)). Therefore, any
quantity directly derived from the nonzero frequency range (such as the cutoff

Table 5.1 The Perfect MTF as a Function of
Normalized Spatial Frequency

s MTF s MTF
0.0 1.00000 1.1 0.33683
0.1 0.93636 1.2 0.28476
0.2 0.87289 1.3 0.23507
0.3 0.80973 1.4 0.18812
0.4 0.74706 1.5 0.14429
0.5 0.68504 1.6 0.10409
0.6 0.62384 1.7 0.06815
0.7 0.56364 1.8 0.03739
0.8 0.50463 1.9 0.01332
0.9 0.44701 2.0 0.00000
1.0 0.39100
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Figure 5.5. A plot of the diffraction-limited, or perfect, MTF.

frequency) has a significance for a more general OTF than the value of the
perfect OTF given by Eq. (5-67).

The OTF plot of Fig. 5.5 shows that every optical system within our as-
sumptions functions as a low-pass filter with a cutoff frequency, s, = 2. This
can be converted to a real-space cutoff frequency by solving for w in Eq.
(3-52) or (3-53). Near the optic axis, pg and p1 are close to unity; so,

w, = (2nsin a)/A, (5-69)
and by the definition in Eq. (3-15),
w, = 2N.A./\, (5-70)

where n is the refractive index of image space, « (often called angular aperture)
is half the cone angle subtended by the exit pupil at the image point, A is the
free space wavelength of light, and N.A. is the numerical aperture.

When anamorphotic stretching of the diffraction pattern (see the anamor-
photic stretching discussion in Chapter 4) for off-axis object points has to be
considered, that is, where pg and pr are not equal, the cutoff frequency will
depend on the orientation of the spatial frequency pattern, and

wSc/ch = PT/PS- (5-71)

In most optical systems, wr. > wg; SO in a test with an optical grating just
under the nominal cutoff frequency, the best response usually results when the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



156 MATHEMATICAL THEORY OF OTF

grating is oriented with its lines of uniform phase perpendicular to a radius line
(*‘radial direction””).

All conceivable (but not necessarily realizable) OTFs can be sorted into three
classes according to the imperfections in the optical systems they represent:

1. Ideal (no diffraction, no aberrations).
2. *‘Perfect’’ (diffraction present, no aberrations).
3. Usual (diffraction and aberrations both present).

The second classification is the one we have dwelt on in this section.

An ideal image-forming optical system (first classification) would be one that
functioned so perfectly that the image would be identical to the object even to
maintaining the contrast in the finest structure of the object. In terms of the
OTF as represented by a plot like Fig. 5.5, the ideal OTF would be graphed as
a horizontal line at the ordinate value of unity for all values of the frequency s.
Like the “‘perfect”” OTF, the ideal OTF would be real for all spatial frequen-
cies; that is, there would be no phase shift and the PTF would be zero for all
s. Obviously, since the contrast would be undiminished however great the spa-
tial frequency (however fine the structure), there would be no cutoff frequency.
Such an OTF is unattainable and is useful only to let us appreciate by compar-
ison what shortcomings we must accept in a physically realizable system.

In discussing the ‘‘perfect’” OTF, quotation marks are used wherever it seems
necessary to emphasize that the characteristic so designated is actually far short
of perfection but is rather “‘an OTF as perfect as the imperfection caused by
the wave nature of light will allow.’” It is the limit (not quite attainable) to
which highly corrected systems aspire. The mathematical expression for the
perfect OTF based on Eq. (5-15) has shown by(ss, s1) to be a real function.
Further, it is an even function symmetric about the origin of the (sg, s) coor-
dinate system (Fig. 5.6). However, values of the function outside the first quad-
rant (where sg and sy are both positive) are of questionable significance unless
the meaning of a negative spatial frequency is defined.

All realizable image-forming optical systems have OTFs in our third clas-
sification where the parent function Eo(ss, st) of Eq. (5-15) is complex, which
means not only that the amplitudes of the frequency components are diminished
in different amounts but that the phases of the components are shifted according
to some PTF. The significance of variable MTFs and PTFs can be discussed
by referring to Fig. 5.7, which is a plot of three sine waves of the same fre-
quency. Each wave can be represented by an expression in the form of Eq.
(5-38). Curve 1 in the figure represents a frequency component in the object
plane. If an ideal OTF applied, curve 1 would also represent the same frequency
component in the image plane. However, if the perfect OTF (second classifi-
cation) applied, curve 2, which is in phase with curve 1 but is of reduced am-
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ideal image, (2) a “‘perfect’” image having reduced amplitude, and (3) an aberrated image having
a further reduced amplitude and a phase shift. (From H. H. Hopkins, The Application of Frequency
Response Techniques in Optics. In Proc. of the Conference on Optical Instruments and Techniques,
London, 1961, K. J. Habell (Ed.). Wiley, New York, 1963, p. 487.)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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plitude, would represent the corresponding frequency in the image plane. Fi-
nally, in the usual system, curve 3, which lags curve 1 by « and is of reduced
amplitude, would be the type of frequency component one would expect to find
in the image plane. Of course, in specific instances the amount of reduction in
amplitude and both the amount and sign of the phase shift y (negative in the
figure) could be expected to differ from our jllustration.

PERFECT OTF FROM SPREAD FUNCTION

In the previous section, the perfect OTF has been formulated as the normalized
autocorrelation function of the idealized form of the pupil function G(x, y).
The same OTF can be derived from the flux-density point spread function,
which has already been described as the image of an axial point object formed
by a diffraction limited system (no aberrations).

The flux-density point spread function is found by first applying the diffrac-
tion integral, Eq. (5-1), to a constant real G(x, ¥) and then squaring the re-
sulting expression for Uo(u, v) according to Eq. (5-7) to get the desired By (u,
v). When symmetry about the axis is taken into account, the one-dimensional
expression already discussed as Eq. (2-24) can be substituted for By{u, v), with
some revision of symbols:

Bo(2mup) = Weo[2J,(27u0) ] /(27u0)°
= (W /47) [27r]1(27ru0)]2/u%
= (wc0/47f3)f(“0)- (5-72)

The product 27u, is chosen as the independent variable to accommodate later
mathematical manipulation. The grouping of terms to define f (i) is done also
with a future substitution in mind. ‘W, is the flux density at the on-axis image
point. The symbol J; indicates a Bessel function of the first kind and order one
with the argument 27wu,. The variable uj is defined as

Uy =rn'sina’/\, (5-73)

where r = (£2 + n2)1/ 2 is the real-space radial distance in the image plane
from the on-axis image point, n' is the index of refraction in image space, o'
is the angle made with the axis by the edge ray to the on-axis image point, and
N is the wavelength of light in vacuum. A review of the definitions of reduced
and canonical coordinates in Chapter 3 affirms that Eq. (5-73) is consistent with
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up = (u* + 02)1/2,

u=ugsiny, v = ucos y. (5-74)

The basis for these relations is shown geometrically in Fig. 5.3.

In the introductory statements to Eq. (5-5), it is pointed out that the diffrac-
tion integral, Eq. (5-1), is identical in mathematical form to the Fourier integral,
Eq. (B-16). Thus, in general, we may relate the complex amplitude in the image
plane to the complex amplitude (modulus) of the wave front at the exit pupil
by the Fourier transform and its inverse:

Uy(u, v) « G(x, y), (5-75)

which has also been expressed as Eq. (5-6). For the perfect OTF, as in the
previous section, G(x, y) is assumed a real constant, and the object point is on
the optic axis. In the discussion of the Fourier transform in Appendix B, it is
shown that if a function is both real and even, its transform must also be real
and even; so Uo(u, v) is real and even. That (70 is even could also have been
concluded from the symmetry of the assumed optical system about the optic
axis.

In Eq. (5-75), (u, v) are space coordinates in the image plane; so we would
expect the independent variables (x, y) of the transform to be spatial frequencies
in accordance with the usual significance of Fourier transformation. However,
(x, y) are, in fact, space coordinates on the reference sphere at the exit pupil.
For comparison we combine Eqs. (5-7) and (5-10) and write

By(u, v) = [Uy(u, ) UE(u, v)] © bo(ss, s1). (5-76)

It is apparent that the transform of U, is a function in the space variables (x,
y) and the transform of U (2), as indicated in Eq. (5-76), is a function in the
spatial frequency variables (sg, s+). This suggests an equivalence between the
spatial frequencies in the image plane to the space coordinates on the pupil
sphere. Making this assumption, we write Eq. (5-8) as

+

bo(x, y) = SS Bo(u, v) exp[ —i2x(xu + yo)} dudv.  (5-77)

On the left side is the function that, when normalized, is the OTF; the right
side involves By (u, v), which is the spread function. Our present purpose is to
apply the perfect OTF assumptions to Eq. (5-77) to get the expression for the
perfect OTF already reached in the previous section by another method.
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As suggested by the form of Eq. (5-72) for B, a transformation of coordi-
nates, rectangular to polar, is necessary in Eq. (5-77). Transformation expres-
sions for the image plane are already given as Eq. (5-74). The corresponding
expressions for the exit pupil are

p=(x+y1)"
x=psing, Yy =pcose. (5-78)

Application of differential formulas to the expressions for u and v in Eq. (5-74)
leads to

du dv = ug dug de. (5-79)

From the various transformation expressions, Eq. (5-77) can be written as

4+ 2%
S S Bo(uo) exp| —i2mpuy(sin ¢ sin ¢ + cos ¢ cos ¥)]
0

—

50(9)

Uy dy duy

4+ n27
S SO uoBo (1) exp| —i2mpuy cos (Y — @)] dv dug. (5-80)

—

Breaking down By () as indicated in Eq. (5-72) yields

27

50(9) = (Weo/47>) S_: So uo f (1o) CXP["iZWP”o cos(y — 90)] ay dug.
(5-81)

A well-known formula for Bessel functions [5] can be applied to perform the
integration on -
27
Jo(b) = (1/27) S exp[ —ib cos(¥ — ¢)] d¥. (5-82)
0

This reduces Eq. (5-81) to

50(9) = (Wco/zfz) S_w uo f (ug) Jo(2mpug) duy. (5-83)
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This can be integrated by applying a standard Hankel transform formula [35, p.

145]:
Flo)= | ) snton ar (584)
where
£(r) = (1/27) [Jy(ar)]' /7, (5-85)
and
f(w) = 2 arccos(w/2a) — (w/a)[1 — (<.o/2a)2]1/2 when 0 < w =< 2a,
(5-86)
and
f(w) =0 whenw > 2a. (5-87)

When the Hankel transform formula is written in terms of the nomenclature of
Egs. (5-83) and (5-72),

Flo) = | wof (w0) do(2mpue) dit

— oo

1/2

2 arccos(p/2) — p[1 — (P/z)z]
= 2{arccos(p/2) = (p/2)[1 = (0/2)']"*}.  (5-88)
Then, from Eq. (5-83),
bo(p) = (Weo/27%) f (p)
= (Weo/2m) (2/7) {arccos(/2) = (p/2)[1 = (0/2)']"*}.
(5-89)
Although p was originally defined as a radial coordinate at the exit pupil, Eq.
(5-78), it is also equivalent to spatial frequency, as pointed out in the discussion
preceding Eq. (5-77); so Eq. (5-89) may be written

bo(s) = (We/27) (2/7) {arccos(s/2) - (s/2)[1 - (s/2)2]1/2}.

(5-90)
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From the definition of the perfect OTF,

O(s) = bo(s)/b,(0), (591)

the expression in Eq. (5-90) gives

O(s) = (2/7) {arccos(s/2) = (s/2)[1 = (/2] ). (5-92)

which is identical to Eq. (5-67) arrived at by a different approach.

In summary, Eq. (5-67) for the perfect OTF is reached by assuming an ab-
erration-free pupil function and deriving, first, the spatial frequency function in
the image plane and then the perfect OTF. On the other hand, Eq. (5-92) for
the perfect OTF is based on the expression describing the flux-density distri-
bution in the image plane resulting from an axial point object in a diffraction-
limited system. To arrive at identical expressions for the perfect OTF by these
two procedures requires that an equivalence be recognized between the space
coordinates on the exit pupil reference sphere and the spatial frequencies in the
image plane.

EFFECTS OF CERTAIN ABERRATIONS ON THE OPTICAL
TRANSFER FUNCTION

In the previous two sections, the same expression for the perfect OTF, Eqgs.
(5-67) and (5-92), has been reached by two different approaches. Although a
general OTF is a complex function consisting of the product of a real modulus,
called the modulation transfer function (MTF), and a factor having an imagi-
nary exponential term, called the phase transfer function (PTF), the perfect
OTF is real, which means that the phase shift is zero for all spatial frequencies
and that the OTF and MTF are identical. The OTF, MTF, and PTF are dis-
cussed earlier in this chapter in connection with Eq. (5-45) and associated equa-
tions.

It is of interest now to introduce aberrations into the optical system and to
observe the consequent effects on the OTF by comparison with the perfect OTF.

Since our approach to aberrations has been to describe them as distortions
of the wave emerging from the exit pupil, we return again to the pupil function
stated in this chapter as Egs. (5-2) and (5-3). Two variables, G(x, y) and W(x,
y), each dependent as indicated on location in the exit pupil, occur in the pupil
function. The perfect OTF has been derived by assuming G(x, y) constant and
W(x, y) zero at all locations; so, to study departures from the perfect OTF, we
have to allow either or both variables to take on different values as functions of
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(x, v). The way to learn the specific effects of the variables, of course, is to
allow only one to vary at a time. With reasonable assumptions, the variation of
W(x, y) has much the greater effect on the OTF. Our present discussion will
be confined to studying the effects of this variable with G(x, y) held constant.
In a later section the reverse, called apodization, is undertaken where W(x, y)
is zero or constant and G(x, y) is varied (which can be done experimentally by
introducing into the optical system a filter with variable transmission across its
face).

As indicated in Eq. (5-15), the transfer function l;o(ss, s7) is the autocor-
relation function of the pupil function G (x, y). For a constant amplitude pupil
wave, conveniently made unity, the pupil function of Egs. (5-2) and (5-3) be-
comes

G(x,y) = exp[ —iknW(x, y)],

when (x2 + yz) < 1, that is, within a unit-radius circle centered at the origin,
and

G(x,y) =0, when (x* +y*) > 1. (5-93)

The transfer function is then

bo(ss, s) = SS@ exp{ —i&n[W(x, y) = Wx — 55,y — ST)]} dx dy,

(5-94)

where the only nonzero region of integration is the overlap area of the sheared
circles of Fig. 5.2, as discussed following Eq. (5-15). To simplify the mathe-
matics, the axes are rotated and the variables changed so that Eq. (5-94) be-
comes

bo(s) = ”a exp{—i&n{W(x + % y> - W<x - % y>dedy.

(5-95)

The results of this manipulation are that the two unit-radius circles are centered
on the x-axis at x = —s/2 and x = +s5/2, and the component spatial frequen-
cies sg and st have been combined in the single frequency s.

Although the variables of integration (x, y) appear the same in both Eq.
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164 MATHEMATICAL THEORY OF OTF

(5-94) and Eq. (5-95), one set of coordinates is, in general, rotated and shifted
relative to the other so that certain symmetries in W with reference to the co-
ordinate axes no longer hold in Eq. (5-95). It is also important to note that the
(x, y) coordinates before rotation are normalized or reduced coordinates defined
in Eq. (3-27) (and later shomn of subscripts and primes) to transform all exit
pupils from their generally elliptical form in real-space coordinates to circles in
reduced coordinates. When it becomes necessary to examine real-space results
that are calculated in terms of reduced coordinates, an inverse transformation
has to be made. For instance, a real-space diffraction pattern for an off-axis
point object is stretched in the y direction compared with its shape in reduced
coordinates. Before the inverse transformation to real space is made, any axis
rotations to write Eq. (5-95) must first be reversed.

A further simplification in the integrand can be achieved by defining an ab-
erration difference function as

Vix, y;,s) = (1/s){W<x + %, y> - W(x - %, y>} (5-96)
Then Eq. (5-95) can be written
bo(s) = SS@ exp[ —iknsV(x, y; 5)] dx dy. (5-97)

Some useful conclusions can be drawn concerning the relative modulation M(s),
which may be expressed from Eq. (5-54):

M(s) = \E(S)\/l b(s)

(5-98)

perfect ’

where | 5(5) | pertect is the transfer function for a diffraction limited system
(‘“perfect”” OTF).

A well-known mathematical relation, Schwartz’s inequality [1, p. 63; 4, p.
86], is expressed as

2

< Hb IOk drH Sb |60 dt}. (5-99)

b
| A0 50 a

When the statement is extended to two dimensions and the general functions
£ (1) and f, (¢) are replaced by G(x, y) of Eq. (5-93) and the shifted function
G*(x — sg, y — st) under our simplifying assumptions:
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2

< S S& dx dy, (5-100)

l SS& [G(x, M][G*(x = 55,y — s1)] dx dy

because | G |> = | G*|* = 1. Comparison of the left side of Eq. (5-100) with
Eq. (5-12) indicates that it represents | By (ss, s7)|*, the squared transfer func-
tion for a unit amplitude pupil function, which may have aberrations. Review
of the previous section in this chapter on ‘“The Perfect OTF’’ shows that the
right side of Eq. (5-100) represents | by (sg, St) |Serect> the squared transfer func-
tion for a unit amplitude pupil function that has no aberrations. Again, the
coordinate axes can be rotated and shifted, as in Eq. (5-95), so that only one
frequency s is involved without affecting the conclusions reached concerning
Eq. (5-100). Then, according to the definition of Eq. (5-98),

M(s) =1 or M(ss, st) < 1. (5-101)

This inequality shows that with negligible amplitude variations in the pupil
function (G (x, y) constant), the effect of aberrations of any kind introduced by
W(x, y) is always to produce an additional loss of contrast at all spatial fre-
quencies other than those very near s = 0 and s = 2. These extreme values can
be investigated by applying Eq. (5-95). As s approaches zero, the two unit-
radius circles that define the integration area become superimposed and the ex-
ponent approaches zero. Thus, the value of the integral approaches =, the area
of a unit-radius circle, independently of the value of W, that is, independently
of the aberrations in the system. At the other extreme, where s approaches 2,
the two circles separate until there is no overlap and, consequently, there is no
region of integration where the integrand is other than zero; so the integral
becomes zero, again quite independently of the value of W. Summarizing these
statements, for all aberrations expressed by a variation of W, we have

by(0) = m, (5-102)
M(0) =1, (5-103)
bo(2) = 0, (5-104)

where the numbers in parentheses are the limiting values of s. (Of course, M(2),
a ratio of zeros, is mathematically ambiguous at the limit.)

The value of M(s) at s = 0, Eq. (5-103), shows why the gross features,
corresponding to very low spatial frequencies, in an object seem not to suffer
in poorly corrected systems, while the finer features become indiscernible. Test
charts to evaluate the quality of an imaging system usually include a pattern
consisting of alternating white and black bars arranged so that narrower and
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166 MATHEMATICAL THEORY OF OTF

narrower bars can be observed through the system. The maximum number of
bar pairs that can be distinguished in a unit distance (maximum spatial fre-
quency) is frequently given as a significant figure of merit for the system. In-
cluded in such a numerical evaluation is the degree of the inequality expressed
as Eq. (5-101). Though Eq. (5-104) indicates that the normalized frequency s
= 2 is the cutoff frequency independent of aberrations, the dips in the MTF
(T(s) of Eq. (5-48)) curve for a poorly corrected system cause the apparent
cutoff frequency to be considerably less than the theoretical value. When the
MTF does become zero at some s < 2 and then negative, it will ultimately
come back to zero at s = 2. The generally declining value of the MTF curve
as the spatial frequency increases, especially for poorly corrected systems, ac-
counts for the approximations in geometrical optics being most appropriate in
the low-frequency (gross features) region of the spectrum.

Since the greatest discrepancy in performance between well-designed and
poorly designed optical systems occurs at the high spatial frequencies, quality
evaluation of a camera, for instance, often consists of close visual inspection
of fine detail, particularly of low contrast, in the photograph.

From the relations given in Egs. (3-52) and (3-53) between the normalized
or reduced spatial frequencies and the real-space spatial frequencies, it is evi-
dent that the real space cutoff frequency can be raised by increasing the nu-
merical aperture of the optical system. In Fig. 5.8, comparison is made between
systems having cutoff frequencies w,; and w,. Though we might expect better

Modulation transfer function

Real-space spatial frequency

Figure 5.8. Hypothetical MTF curves illustrating (@) a perfect MTF with real space cutoff fre-
quency w;, (b) an MTF for small aberrations with the same cutoff frequency ., (¢) a perfect
MTF with cutoff at a significantly higher frequency w,, and (d) an MTF curve having the same
cutoff at w,, but having a large amount of aberration, which often results from simply increasing
the numerical aperture.
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EFFECTS OF CERTAIN ABERRATIONS ON THE OTF 167

performance from a highly corrected high-cutoff system (curve c) than from a
corresponding low-cutoff system (curve a) at some frequency w;, we often dis-
cover that the situation shown by the broken curves b and d prevails: Increasing
the numerical aperture inevitably brings other changes including increased ab-
errations. The result can be actually poorer performance by the high-cutoff sys-
tem (curve d) than by the low-cutoff system (curve b).

Deterioration of optical performance caused by defocusing is shown in Fig.
5.9. The curves are for a circularly symmetrical optical system free of aberra-
tions except for the stated maximum displacement of the exit pupil wave front
from the reference sphere due to focus error. The number on each curve is n in
the expression n\ /«, which gives the maximum distance between the surfaces;
so the maximum phase distortion of the wave front is 2n radians.

A marked feature of the curves in Fig. 5.9 is the collapse, as s increases, of
the response for spatial frequencies above approximately s = 0.4, only 20% of
the cutoff frequency. Even at n = 1, which is only about a third of a wavelength
of wave distortion, the response degrades significantly at the higher spatial fre-
quencies.

In Fig. 5.9, there are dips in the curves well below zero, and a fair question
is of what physical significance are negative values of T(s). Before this can be
answered, more must be known about the whole OTF function, which includes
both the T(s, ) and the phase transfer function ¢ (s, ¥) (see Eq. (5-48)).

A review of the aberration characteristics as described in Chapter 4 reveals
that various symmetries occur in the wave aberration function that influence the
outcomes of the integrating operations discussed in this chapter. Defocusing
represented by Fig. 5.9 has circular symmetry so that variation along any line
through the origin is an even function, which would also be true for spherical
aberration. The result of the described symmetries for defocusing and spherical
aberration (not represented here by a figure) is that each produces a real and
even pupil function. By reasoning similar to the discussion of real and even
functions in Appendix B, it is found that the autocorrelation of a real and even
function produces a real and even function; so O(s, ¥), the OTF, must be real
and even. This in turn requires that ¢ (s, ¥) be zero for all values of s and v,
with a notable exception. From the theory of complex numbers, it is known
that a negative T(s, V) and a zero ¢ (s, ¥) are equivalent to a positive T(s, ¥)
of the same absolute value and a ¢ (s, ) = = radians or 180°. The latter
interpretation turns out to be the useful one to explain the negative curve values
in Fig. 5.9. As a T(s, ¥) curve passes from positive to negative values, the
sinusoidal phase of the spatial frequency reverses; that is, an alternating black
and white object at this frequency suddenly reverses so that white appears in
the image where black formerly occurred and vice versa. This effect is shown
for a defocused sector grating image in Fig. 5.10.
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Modulation transfer function

—0.2 | | ]
0 0.5 1.0 1.5 2.0

Normalized spatial frequency

Figure 5.9. Calculated MTF curves for an optical system that is free of aberrations but has a
defect of focus. The wave-front distortion at the edge of the pupil is 2\ /= in which n is the number
of each curve [7].

Figure 5.10. A photograph of spurious res-
olution. (From P. Lindberg, Measurement of
Contrast Transmission Characteristics in Op-
tical Image Formation. Opt. Acta 1, 80
(1954).)
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EFFECTS OF CERTAIN ABERRATIONS ON THE OTF 169

When a T(s, y) curve dips into the negative region, even though it may
emerge into the positive region for one or more intervals at higher frequencies,
the resolution is said to be spurious at all frequencies above the first crossover.
For instance, the curve for n = 4 in Fig. 5.9 crosses the T(s, ¥} = 0 value at
s values of approximately 0.28, 0.65, 1.41, and 1.65, being negative for s
between 0.28 and 0.65 and also for s between 1.41 and 1.65. The curve is
positive for all other values; however, the resolution is said to be spurious for
all frequencies above s = 0.28.

A study of astigmatism is given in Fig. 5.11 for T(s, 7 /6), which, accord-
ing to the nomenclature used in Eq. (5-53), is for a spatial frequency orientation
of y = = /6 radians or 30°. (See Fig. 5.1 and Fig. 5.3 for the definition of the
angle .) The details of calculating the OTF shown in Fig. 5.11 are given in
connection with Fig. 9.6.

Instead of the familiar MTF versus s presentation, Fig. 5.11 is an Argand
diagram (named after a mathematician who pioneered in complex numbers).
When the OTF, O, is to be expressed as a complex quantity, it can be in either
polar or rectangular form as indicated by the equation in Fig. 5.11. The curve
is the locus of points on the complex plane (real numbers a on the abscissa axis,
imaginary numbers b on the ordinate axis) for values of s from 0.0 to 0.7. The
geometrical relation of the polar and rectangular forms is indicated for s = 0.2.
The length of the arrow is the MTF and the angle (here negative) of the arrow
with the a-axis is the PTF. The tip of the arrow is at the rectangular coordinates

(a, b).
a s=wQ0
f 0.0 f f f f 1

02 0.0 02 04 ol.s 08 10

o FIF 8 = (MTF) enpli(PTF)] /
\\< =a+ib /
-Oﬁ‘-.
b os ™ \
s=07 g \
o0zt o5 » 0.1
\ MTF
L 2
-0.4 A,
04 03 \
\ 02

s > |

Figure 5.11.  An optical transfer function plotted on a complex plane for astigmatism and a spatial
frequency orientation of 30°. (See discussion of Fig. 9.6 in Chapter 9.)
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APODIZATION

The shape of an MTF curve can be changed in certain preplanned ways, and
the most usual method of doing so is to operate on a wave front as it passes
through the exit pupil. Because the purpose of this process is to alter the shape
of a response curve, the term apodization is used, although this usage departs
from the word’s etymology since the root, apodize, suggests to ‘‘remove the
feet.”” The wave front is caused to pass through an optical filter that can be
designed to act on the wave front in one or both of two ways: by absorbing
energy (reducing amplitude) and by introducing a phase delay. By design these
effects are made to vary across the face of the filter so that amplitude and phase
become functions of the exit pupil coordinates.

In Fig. 5.12 a ray schematically represents a wave-front incident upon an
optical filter. The particular ray indicated enters the surface at the general point
(x;, ¥;) with a complex amplitude of G,(x,, y;), and after losses caused by
absorption and multiple internal reflections, the wave front emerges with an
amplitude of G,(x,, ;). The ratio of G,(x;, y;) to G, (x4, y,) is defined as the
amplitude transmittance 7(x;, y;) of the filter at (x,, y;). Expressed generally,

#x, y) = 7(x, y) explia(x, y)]
= Gy(x, y)/Gi(x, y)
= G,/G, exp [i(Bz - 51)]- (5-105)

In apodization design, results are achieved by manipulating the real ampli-
tude of the wavefront rather than the phase shift or a combination of the two.
To minimize the introduction of aberrations, in fact, the phase is held as con-
stant as possible as a function of (x, y). With constant phase, a(x, y) is con-

Fiiter

Figure 5.12. A schematic to illustrate absorption as a function of coordinates in a partially trans-
parent slab.
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APODIZATION 171
stant as is the difference 8, — 8,. (The magnitude of «, as long as it is held
constant, is of no consequence in this analysis.) If it is assumed that the incident

wave front G;(x, y) is constant, the generality of our development is not af-
fected by assigning unity as its value. Then, from Eq. (5-105), we can write

7(x,¥) = Ga(x, y). (5-106)

As in most of the optics discussed in this book, radial symmetry is assumed,
which makes polar coordinates particularly convenient:

x=psing, y=pcose, (5-107)
so that r becomes a function of p:
7(p) = Gy(p). (5-108)

Four hypothetical examples of apodization are illustrated in Figs. 5.13 and 5.14.
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0 02 04 06 08 1.0 FigureS5.13. Apodization: Absorption by filters placed
Normalized radius p in the exit pupil according to the transmittance curves in
(b) (a) and (b).
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Figure 5.14. Apodization: MTF curves resulting from the transmittance characteristics of (a) Fig.

5.13a and (b) Fig. 5.13b.

Figure 5.13 shows the assumed filter transmittance for each example as a func-
tion of the normalized distance p from the optic axis, and Fig. 5.14 shows the
calculated modulation transfer functions corresponding to the four transmittance
functions. For reference, the perfect OTF, expressed in Eq. (5-67), is plotted
as the solid curve in both parts of the figure. The four examples have transmit-

tance functions as follows:

Example 1:  7(p) = cos® (wp/4). (5-109)
Example 2:  7(p) = sin® (mp/4). (5-110)
Example 3:  7(p) = 0.3 — 0.2p. (5-111)
Example 4: 7(p) = 0.9p + 0.1. (5-112)
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APODIZATION 173

The curves are numbered to correspond to the example numbers. The angles in
the first two examples are in radians. As in previous MTF curves having the
reduced frequency s as the independent variable, the range of frequency for the
curves of Fig. 5.14 is

0<s=2. (5-113)

Calculation of MTF curves from the exit pupil filter characteristics is based on
the autocorrelation of the pupil function expressed as Eq. (5-15); the corre-
sponding diagram of nonzero areas of integration is shown in Fig. 5.2. If the
axes are rotated so that both unit-radius circles are centered on the x-axis and
if the phase of G(x, y) is constant (and, therefore, assumed zero), Eq. (5-15)
becomes

bl(sn) = SSG G(x’ y) G(x — Sy y) dx dy. (5'114)

The pupil centers are thus separated by s,, and s, ranges from zero to 2. The
area @ is the common overlapping area of the two sheared circles.

For numerical calculation of b, (s,), Eq. (5-114) can be modified, first, by
shifting the x-axis for symmetry, and then, with the substitution permitted by
Eq. (5-108), by writing an equivalent summation expression:

SS G<x + ﬁ, y> G<x - &, y> dx dy, (5-115)
@ 2 2

by =4 23 2 7(py;) 7(pyy) Ay Ax. (5-116)

bl(sn)

As indicated in Fig. 5.15, the numerical integration of Eq. (5-116) is performed
in the first quadrant; then, by taking advantage of symmetry, the integral over
the whole sheared area is obtained by multiplying the first quadrant integral by
four. The range of x for the numerical integration is from the origin to (1 —
$,/2); the range of y is from the origin to the positive ordinate of the left-hand
circle, [1 ~ (s,/2 + x)?}'/2. This integrating procedure can be used for the
entire range of s, including the most lengthy integration, for s, = 0, where the
two circles are superposed with centers at the origin. Time can be saved, how-
ever, for this one integration by taking advantage of the simplified geometry as
indicated in Fig. 5.16. The summation expression is

ba(0) = 4 T "27(p,) a0

= E 27p;7( p;) Ap. (5-117)
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174 MATHEMATICAL THEORY OF OTF

Figure 5.15. Numerical integration coordinates for calculating values on the MTF curves from
transmittance characterstics.

Comparison of the filter characteristics of Fig. 5.13 with the corresponding
MTF curves of Fig. 5.14 suggests that characteristics with negative slopes (ex-
amples 1 and 3) produce MTF curves that are above the ‘‘perfect’” curve at
lower spatial frequencies and lower than the ‘‘perfect’” curve at higher fre-
quencies. The reverse appears to be true of characteristics with positive slopgs
(examples 2 and 4). These observations lead to the question of how even more
extreme filter characteristics would affect the MTF curves. The extremes se-
lected to answer this question are shown in Fig. 5.17. In each of the two filters
represented, the unit-radius circle is divided by a concentric boundary so that
half the total area has 100% transmission and the other half is opaque. The first,
example 5 of the present series, has an opaque outer ring and is described by

Example 5: 71(p) =1, 0 =p < ++0.3.
(p) =0, 0>p= ++0.5. (5-118)

Figure 5.16. Simplified numerical integration coordi-
nates for s, = 0.
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Radius = 1

Figure 5.17. (a) Filter with an opaque ring around a zero
absorption circle. (b) Filter with a zero absorption ring
(b) around an opaque circle.

Radius = /0.5

The second, example 6, is described by

Example 6: 7(p) =0, p < ++~0.5.
(p)=1, +~05=p=1. (5-119)

Coincidentally, example 5 illustrates the effect of reducing the numerical ap-
erture, and example 6 illustrates the effect of a central obscuration. The filter
characteristic functions for examples 5 and 6 are plotted in Figs. 5.18ab, re-
spectively. The resulting MTF curves are shown in Fig. 19. Although neither
MTF curve is above the ‘‘perfect’” curve, except for a short interval at high
frequencies in example 6, the frequency discrimination tendencies of the earlier
examples are borne out. Example 5, in which transmittance abruptly drops from
unity to zero with increasing radius, has an MTF curve that drops to zero at
about 71% of the cutoff frequency of the other curves. Example 6, in which the
transmittance abruptly rises from zero to unity with increasing radius, has a
relatively flat MTF from a normalized frequency of 0.4 to 1.6 instead of the
steadily declining value of the ‘‘perfect’’ curve.

Because more than the overall slope of the transmittance curve is involved
in determining the shape of the corresponding MTF curve, we have to limit our
generalizations to noting that transmittance near the optic axis tends to favor
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Figure 5.19. MTF curves for the filters of Fig. 5.17.
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THE GEOMETRICAL OPTICS OTF APPROXIMATION 177

the lower frequencies and transmittance near the periphery emphasizes the higher
frequencies.

In all applications of apodization filters, results are achieved by a subtractive
process: Part of the input optical energy is being deliberately removed before
it reaches the image plane. Compensating design changes, such as increasing
the optical aperture, increasing the source strength, and increasing exposure
time, are often required. It is recognized that some of the filter characteristics
assumed in our six hypothetical examples might be difficult to realize with avail-
able techniques and materials, thus making certain compromises necessary to

achieve similar MTF results.

THE GEOMETRICAL OPTICS OTF APPROXIMATION

A number of authors have discussed calculation of the OTF by a geometrical
optics approximation [9-11] which, if valid, could save appreciable labor dur-
ing early design stages. Briefly, the method consists of mapping rays from an
element of area on the wave surface at the exit pupil onto the image plane by a
transformation involving Jacobians. The result in the image plane is a ray den-
sity, which is interpreted as flux density. This is converted by a Fourier trans-
form to a spatial frequency distribution. Typical results from OTF calculations
by this approximation are given in Refs. 10-13.

In lens design or evaluation, certain merit functions based, for instance, on
the mean square value of classical ray aberrations may ultimately be replaced
by merit functions based on physical optics or the OTF. It is conceivable that
the geometrical optics approach to approximating the OTF could smooth the
transition by indicating some sort of equivalence between the two sets of merit
functions. Some question remains, however, as to the validity of the assump-
tions in the geometrical approximation.

A transformation involving Jacobians is a standard procedure in certain phys-
ics problems dealing with irrotational flow of a perfect fluid through a narrow
tube of changing cross section. Equipotential surfaces, which are analogous to
wave fronts, are perpendicular to stream lines, analogous to rays. The analogy
to electromagnetic energy flow from exit pupil to image plane breaks down for
several reasons. In ray optics, rays must sometimes cross or intersect, which
brings into question the one-to-one point correspondence that is basic to a co-
ordinate transformation by Jacobians in a double integral, especially when ab-
errations are present. A given element of area on the image plane typically
receives light from more than one element on the pupil. In some instances the
theoretical ray density distribution in the image becomes infinite at certain
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178 MATHEMATICAL THEORY OF OTF

points, such as at a focus, where the Jacobian becomes zero, and delta functions
are required to handle the representation. Singularities in general invalidate the
simple model. Finally, to be strictly correct, the pupil coordinates must be on
the reference sphere rather than on the pupil plane as assumed in the transfor-
mation involving Jacobians.

At best, the indicated discrepancies make the geometrical optics OTF ap-
proximation suspect. Trying to make the approximation more accurate may well
add complexities that would compromise its utility, the reason for its use in the
first place. A complete changeover from ray optics and aberrations to physical
optics and the OTF appears presently to be the preferred route.

THE POLYCHROMATIC OTF

Many discussions of the OTF go on to include what might be considered an
OTF resulting when the light beam illuminating the optical system is white
light. In some quarters the evaluation of optical systems by means of a poly-
chromatic OTF is almost standard practice. But there are serious pitfalls asso-
ciated with the polychromatic OTF because optical systems are not color-blind.
The formula for the cutoff spatial frequency, Eq. (5-69), tells us that the cutoff
for blue light is different from the cutoff for red light because of the dependence
on wavelength. Of course, an optical system may be achromatized to place the
focus for two or three wavelengths at the same focal point; and we might,
therefore, conclude that the caustic of rays converging toward the focal plane
would have the same size and shape. Nevertheless, at present we have no way
to predict what the wave-front shape, the wave aberration function, and the
OTF at these same wavelengths and at intermediate wavelengths would be. The
three things might differ appreciably. An evaluation based on the polychromatic
OTF of an optical system having these unknown characteristics would at least
always be suspect. In fact, it has been shown that lenses with completely dif-
ferent chromatic aberrations can have the same polychromatic OTF. Some sort
of average of the OTF at two or three different wavelengths cannot provide a
reliable assessment criterion.

Several papers have been published to point out the danger of evaluating
lenses on the bases of color-blind polychromatic OTFs. Barnden [17, 18] has
given two important conditions that must be satisfied for the polychromatic OTF
to be used:

1. The light beam from the object must have a constant spectral composi-
tion, both spatially and temporally, and the detector must have a uniform spec-
tral sensitivity.
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2. Variations of the local magnifications, mg and mr, with wavelength must
be insignificant.

The necessity to meet these conditions adds another degree of complexity to the
already difficult problem of designing high-quality optical systems. There are,
therefore, difficult problems in the practical application of the polychromatic
OTF to the specification and evaluation of optical systems.

Takeda [19] goes further into the difficulties involved with polychromatic
OTFs. An analytic technique—chromatic balancing—is proposed that will as-
certain the chromatic aberrations that are different and yet give the same poly-
chromatic OTF for a specified spectral combination of the light source and the
detector. A typical numerical example is given that supports the theory and the
conclusions. Takeda emphasizes that more theoretical and experimental studies
must be made before reasonable and generally acceptable use of the polychro-
matic OTF can be made.

Because there has been a tendency to consider and apply the polychromatic
OTF too naively and because we believe that further study is sorely needed,
the polychromatic OTF will not be considered further in this book.
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6

Optical Design and Image Criteria

THE NATURE OF OPTICAL DESIGN

The OTF has appreciable potential for use in specifying, designing, and eval-
uating optical systems; this book, then, responds to an obligation by discussing
such associated topics as optical design, image quality, merit functions, and
evaluation criteria—especially as they relate to ways that the OTF may be ap-
plied. This chapter and the next are devoted to discussions of these topics.
Optical design, the topic of this chapter, is the process of finding the descrip-
tions of individual elements and their arrangement in a desired optical system.
The descriptions provide the information as specifications necessary to manu-
facture the system.

The designer starts with an idea for a needed system that will solve a specific
imaging problem. The required image implies certain imaging characteristics
that have been variously specified using such terms as resolving power, acut-
ance, MTF, permissible distortion, field of view, f/number or numerical ap-
erture, encircled energy, and range of color. Also to be met are the physical
requirements such as size of package, size of image, and object-image distance.
The ultimate in convenience would be to go directly from the requirements to
the specifications, but it does not work that way. Instead, designers must draw
upon the optical-design literature and their own background and experience with
other systems to make a guess as to the assembly of elements needed to produce
the desired optical characteristics.

In the early days of optical design, designers could usually assemble a system
from available, or easily shaped, elements, and could detect by visual exami-
nation of the image such imperfections as chromatic aberration, astigmatism,
or coma. Not so today. Even if it were economically feasible to construct an
optical system at intermediate stages of the design so that laboratory tests could
guide further refinements, visual inspection methods could no longer achieve
the correction required in present-day systems.

Nowadays, designers assume a system by listing a set of initial construction
parameters as a first guess in describing the desired system. For each element
the parameters typically are the index of refraction and dispersion of the ma-
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182 OPTICAL DESIGN AND IMAGE CRITERIA

terial, the diameter and thickness of the element, and the curvatures of the two
surfaces. The separation and order of the elements are also part of the design.
For the system to be realizable, a suitable optical material must be available
that has the necessary index of refraction and dispersion. The material also must
be transparent over a specified wavelength range. Generally, the material will
have to be selected from available glasses that are cataloged, with their char-
acteristics, by the several glass suppliers.

Fortunately the lore of optical technology is well developed in many ways.
Libraries of existing lenses, proved by use, are especially helpful. Three ex-
amples of patented lenses and some of their characteristics are shown in Figs.
6.1-6.3. Tables 6.1, 6.11, and 6.1 give the construction data for these lenses.
Cox [1], among sources of this kind of information, lists 240 patented lenses
and gives the construction data for each one.

Calculated diffraction patterns for two systems having a wavelength of coma
are shown in Fig. 6.4.

The designer will first trace a few key rays through the system using the
assumed parameters, and then will note the intersection points of these rays
with a chosen initial image plane. A small number of well-chosen rays suffice
to guide reduction of the gross Seidel aberrations. A study of the transverse
deviations of certain rays and the distribution of ray intersection points are use-
ful in revealing types and amounts of aberrations. After these preliminary ad-
justments, optical design becomes more subtle. Changes of parameters to re-
duce aberrations further and to bring the system more nearly into its physical
requirements require almost intuitive judgment on the part of the designer, more
art than science. This ‘‘feel’” usually has to be exercised to some degree before
automatic lens design can be applied. We note for later discussions of the OTF
that this same artistic skill based on ray analysis probably does not carry over
to a corresponding skill based on OTF analysis for making a parameter im-
provement, like a small change in a surface curvature, from a calculated or
measured OTF. In fact, R. Barakat [2] suggests that the fundamental problem
of lens design is finding an analytic expression relating image quality criteria
(like some characteristic of the OTF) to design parameters. Optical design will
likely continue to be very much an art as well as a science in spite of the con-
tributions of fast, large-capacity computers and ingenious software. Instances
of a complete automatic lens design starting from an elementary system are rare.
Each designer generally employs a kit of special-purpose computer programs
as tools to fashion optical systems according to the designer’s particular expe-
rience and ability. Our discussion, for tutorial reasons, deals with more general
procedures.

To accomplish the more subtle adjustments, optical design can be turned
over to a computer. The subsequent procedure, referred to in this book as au-
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Figure 6.1. (a) The Gauss-type photographic lens of U. S. Patent Number 4,094,588. (b) Trans-
verse aberrations.

tomatic lens design, is calculation by electronic computer according to pro-
grammed instructions. The program sequence typically makes small changes in
one or more of the parameters and then tests the altered system to determine
whether an improvement has been made. For testing image quality the computer
calculates an appropriate merit function that gauges the image quality in a way
preferred by the designer. When every possible further parameter change de-
grades the image quality, the automatic design procedure is programmed to
stop. The design is then superior to any other design in which the value of each
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Figure 6.2. (a) The objective lens of U. S. Patent Number 4,165,916 with close object focusing
aberration correction. Axial spacings dA4 and dB are adjustable. (b) Transverse aberrations for the
lens focused at infinity.
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Figure 6.3. The small copy lens of U. S. Patent Number 4,173,396.
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186 OPTICAL DESIGN AND IMAGE CRITERIA

Table 6.1 Construction Data for Lens of Fig. 6.1

Radius of Axial Refractive Abbe
Curvature Distance Index Number
r; = 0.6147

d, =0.1158 n; = 1.6204 v, = 60.3
r, = 2.9052

d, = 0.0019
ry = 0.4738

d; = 0.0777 n, = 1.6935 v, = 50.8
ry = 0.8002

d, = 0.0468
rs = 1.0617

ds = 0.0203 n; = 1.5814 vy = 40.8
ro = 0.2764

dg = 0.3357
r; = —0.2984

d; = 0.0193 n, = 1.7552 vy =27.5
rg = 15.8469

dg = 0.1160 ns = 1.6935 vs = 53.3
rg = —0.5113

dy = 0.0019
rip = —1.0617

dyp = 0.0890 ng = 1.8061 v = 40.9
r; = —0.4676

d;; = 0.0023
ri, = 1.8784

dy, = 0.0570 n; = 1.6935 v; = 50.8
riz = —2.2973

f=10 fz = 0.7430

parameter is in the neighborhood of the value pertaining when the design
stopped. The system is then said to be optimized.
The design background for an optical system designer includes:

1. A knowledge of geometrical optics, which gives a picture of how a lens
works.

2. A mental catalog of lenses and the general performance characteristics of
the various types.

3. A general knowledge of the characteristics of the various kinds and orders
of aberrations.
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Table 6.I1 Construction Data for Lens of Fig. 6.2 when Lens is
Focused at Infinity”

Radius of Axial Refractive Abbe
Curvature Distance Index Number
ry = 0.452

d; = 0.048 n; = 1.7755 vy = 37.9
r, = 0.788

d, = 0.003
r; = 0.293

d; = 0.082 n, = 1.6779 v, = 55.5
ry = —16.234

d, = 0.028 ny = 1.6545 vy = 339
rs = 0.201

ds = 0.174
re = —0.233

dg = 0.04 ns = 1.6815 vy = 36.8
r; = —0.348

d, = 0.003 (dA : Variable)
rg = —1.916

dg = 0.05 ns = 1.6589 vs = 56.5
ro = —0.282

dy = 0.02 (dB: Variable)
rip = —0.271

di, = 0.02 ng = 1.6583 ve = 57.4
ry = —0.329

“f=1.0; F = 3.5; 2w = 24°; back focal length § = 0.69

4. An ability to reduce gross primary aberrations by relatively simple pa-
rameter changes.

5. A knowledge of how certain parameter changes affect particular higher
order aberrations and image quality in specific systems.

6. A knowledge of the need for optimum balance between primary and higher
order aberrations.

A general treatment of these and other background areas is beyond the scope
of this book, but excellent material for background purposes can be found in
Cox [1], Conrady [3], Smith [4, 5], Kingslake {6], Welford [7], and Feder [8-
10]. Our particular purpose is to discuss, on an intermediate level, how the
OTF can contribute to:

1. Specifications of image quality for optical systems.
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Table 6.111 Construction Data for Lens of Fig. 6.3%"

Radius of Axial Refractive Abbe
Curvature Distance Index Number
ry = 42,701

d; =17.08 n, = 1.69680 v, = 55.5
r, = 102.239

d, = 2.50
r; = — 421.315

d; = 2.00 n, = 1.59551 v, = 39.2
ry = 43,423

dy =5.57
rs = 93.836

ds = 5.11 ny = 1.74400 vy = 44.7
re = —93.836

d¢ = 5.57
r; = —43.423

d; = 2.00 ns = 1.59551 vy = 39.2
rg = 421.315

dg = 2.50
re = — 102.239

dy = 7.08 ns = 1.69680 vs = 55.5
rp = —42.701

“f = 150; F = 4.5; 2w = 56°; Y = 160.
bf, = 63.80; total length of the lens: 39.41; value of the condition (1): 0.425;
f value of the condition (2): 0.037; f value of the condition (3): 5.13, 3.19.

2. Merit functions in automatic design (see Chapter 7).

3. Calculation of an indicator of image quality from design data (see Chapter
9).

4. Measurement and evaluation of a manufactured lens (see Chapter 8).

AUTOMATIC LENS DESIGN

Automatic lens design is usually based on the solution of simultaneous linear
equations [6, 11]. As our previous discussions have indicated, optical systems
are inherently nonlinear; so incremental changes in parameters must be small
enough that only the linear range (first term in the Taylor’s series) need be
considered in the relation between parameter change and a particular aberration
variation. If we assume that an optical system has N parameters p;, which in
mathematics are the degrees of freedom, available for adjustment and the same
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(b

Figure 6.4. Calculated isopleths in the diffraction pattern of an optical system having a third-
order coma coefficient of approximately one wavelength. The maximum of the pattern has moved

upward on the image plane owing to the coma. (@) Circularly symmetric system. (b) A system with
a square aperture stop [37].
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190 OPTICAL DESIGN AND IMAGE CRITERIA
number of aberrations A4; to observe, then

A

i f(Pj), (6-1)
where

j=1,2,3,...,N, and i=1,2,3,...,N.

Corresponding values in the functional relation of Eq. (6-1) are usually calcu-
lated by ray-tracing methods. For small changes A p; in the parameters, one can
write the linear system of equations for the resulting changes AA4; in the aber-
rations:

M=

AA,‘ =

(aAi/an)APj- (6'2)

~

To simplify notation,
a; = 34;/3p;. (6-3)

Then if a small change is introduced in each assumed parameter in turn and the
resulting change in each aberration is calculated individually, the values of the
coefficients a;;, totaling N 2 in all, will have been determined; and the conven-
tional computer solution methods for simultaneous linear equations can be ap-
plied—with appropriate attention to the extent of the linear region.

In the initial specifications for the optical system, the maximum allowable
aberrations are given, implicitly or explicitly, so that the designer can derive
desirable values of the 4;. In general, the calculated values of 4; for the initially
assumed system will differ considerably from the desired values; so simply
making each difference the A 4; in the system of equations, Eq. (6-2), is likely
to violate the linearity requirement for the equations. Instead, smaller A4;, say
less than 30% of the ultimate reductions, can be set up in Eq. (6-2). From the
computer-calculated Ap;, a new set of parameters p; results; and the designer
repeats the previous steps: evaluating the a;, choosing a new set of A4;, com-
puting the Ap;, and calculating the new parameters p;. Eventually, by succes-
sive reductions A A;, the residual A; are within design specifications and the
process is complete. In automatic lens design, as much of the described iterative
procedure as possible is turned over to the computer. However, certain practical
problems still challenge the designer’s ingenuity in each conversion of a set of
specifications into a manufacturable optical system. Some of these are discussed
in the following paragraphs.

Nothing in the physics of optical systems produces the same number of ad-
justable parameters as there are types and orders of aberrations; in fact, there
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are usually fewer parameters than aberrations. So we have to modify the orig-
inal assumption expressed in Eq. (6-1):

4; = f(p;), (6-4)
where

j=12,3...,N, i=1,2,3,...,M,
and
M > N.

This change in assumption carries over into our expressions for systems of lin-
ear equations. From the assumed definition of A4;, Eq. (6-2) can be extended
to

N
A = A+ A4 = 4, + Zay Ap;. (6-5)
J

As indicated, A} are the new values of the aberrations after starting with the
aberrations A4; and executing one cycle of the iterative procedure already de-
scribed. After each cycle, the A! become the A; for the next cycle until the final
set of A] meet specifications and are called the residual aberrations or just
residuals for the optical system.

Because M > N in Eq. (6-4), there is no longer a single solution for the
system of equations. For this and other reasons, designers usually prefer to
define a merit function to measure optical performance rather than set individual
maxima for the various aberrations. A merit function commonly used in math-
ematics and engineering is the mean square of selected errors occurring in a
system. In the present context, this merit function 42 is defined as

A2 = (1/M) [(4) + (45)" + -+ + (4)’]

= (1/M) % (A1), (6-6)

This kind of averaging has at least two characteristics to recommend it. Errors
tend to have both positive and negative values; but in most physical systems,
it is not desirable for a positive error of one kind to cancel a negative error of
another kind. Squaring, of course, makes all errors positive. Squaring also ex-
aggerates the relative magnitudes of the errors: so any correcting program will
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realize an appreciable reduction in A2 by reducing one or more of the relatively
large errors. Whatever the functional relations between errors, squaring tends
to equalize the various errors when the objective is to minimize A2.

All errors or aberrations are not equally deleterious to the task at hand. In
image-forming optics, considerable research has been done to determine what
influences apparent image quality. When the results are interpreted in terms of
the aberration system, the designer can weight the various aberrations according
to their respective degrading effects. The weighting factors w; are introduced
into Eq. (6-6) as follows:

A* = (1/M) Z w4} (67)

i=1

The net effect is that a computer program minimizing this mean square average
will tend to reduce the more detrimental aberrations to smaller residuals.

Computer programs to minimize A2 are generally available [1, 12-14] and
are based on a least-squares procedure invented by Legendre in 1805. Because
in the first few cycles of an iterative A2 minimizing procedure the swings Ap;
in parameter values may be so large as to become oscillatory, the definition in
Eq. (6-7) is often modified to include a damping term:

4% = (1/M) Zow(4)) +d 2 (ap;), (6-8)

where the damping coefficient d is relatively large at the beginning of the iter-
ations and is reduced in each succeeding cycle until the damping term almost
drops out at the end. Convergence of the computer sequence to the desired
residual level is often tediously slow; so considerable effort has been put on
techniques to hasten the process [12-16].

SELECTED FEATURES OF DESIGN PROGRAMS

The functions A2 have been discussed at some length as an example, and an 4;
was identified only as ‘‘an aberration.’” In fact, any flaw of the imaging process
could qualify as an aberration and be used in the design procedure provided
each flaw is independent, can be identified and quantified, and have accord with
other flaws sufficient to form a merit function. Coefficients of the terms in a
power series or the polynomial coefficients in a Zernike (or another) polynomial
series, which were discussed in Chapter 4, could be the aberrations A4;. Of
course, the series would have to be calculated from ray-tracing data, a relatively
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large number of higher order terms would have to be included to ensure more
aberrations than parameters, and the higher and lower orders would have to be
kept in balance correctly.

A design program described by Friedman [17] is cited for an example that
uses the Zemike circle polynomials. The program, entitled ZEST, illustrates a
few of the complexities that are being built into modern lens design programs.
Wave fronts are first determined from optical path difference (OPD) data; then
the series is ‘‘fitted’’ to wave fronts for a nominal lens and for a variety of
manufacturing perturbations to the lens, such as radius, thickness, asphericity,
tilt, and irregularities of errors. The differences between the nominal and per-
turbed Zernike terms are calculated. These differences are treated as perturba-
tion coefficients enabling the synthesis of wave front and MTF with no addi-
tional ray tracing. The set of Zernike coefficients, for the circle polynomials
representing the wave front, consists of 25 values. These are the primary, sec-
ondary, tertiary, and quarternary terms involving up to the tenth power of p as
illustrated in Table 4.II. The MTF is calculated by conventional integration
techniques for the two directions, radial and tangential. The program is an MTF-
based approach to tolerancing; it also facilitates changing the merit function
when necessary as the design progresses. As each of 16 perturbations is sepa-
rately applied to each lens surface, first in the positive and then in the negative
sense, ZEST computes and prints image shifts, changes in each Zernike coef-
ficient, and changes in MTE. This analysis is performed both axially and at one
specified field angle. The effect of each perturbation is computed as if it were
the only perturbation applied to an otherwise nominal lens. ZEST prints a di-
agnostic when the size of the perturbation is likely to destroy the linearity of
the resulting Zernike coefficient. An AUXILIARY program enables several per-
turbations to be applied simultaneously. Wave-front and MTF values are com-
puted for the image plane location specified by the user. Coefficient and deriv-
ative information determined by ZEST is used in the AUXILIARY program
along with the same wave-front and MTF equations as are in ZEST. Combi-
nations are linearly performed at the Zernike wave-front level and then MTF is
computed. ZEST-supplied MTF change values for individual perturbations are
never directly combined. The derivative of each Zernike coefficient with respect
to image shift is also computed and stored.

Many design programs use points of ray intersection with a chosen or spec-
ified image plane because they are more direct and convenient; information
readily available is transverse displacement of the principal ray (or the pupil
ray) from the axis, displacement of selected rays from the principal ray inter-
section point, spot diagrams, and ray densities. Coefficients of the power series
may be calculated for the information they provide, but the departure of each

ray from its desired position is used more often for an aberration A; than the
coeflicients.
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Optical system-design programs have become almost unbelievably versatile.
Such things as ray tracing, optimization, finding the pupil function from ray
path lengths, and calculation of the OTF have become routine, at least as op-
tions for the designer. Computers now accomplish many tasks that once seemed
the private domain of the optical designer. They do minor but significant design
changes such as changing a single element to a doublet or triplet, shifting a stop
position, eliminating weak elements, and even deliberately introducing tilts or
decentricities. The designer is left with the difficult theoretical analyses in-
volved in the design.

Computers are being used in the design of complex systems, for example:

Nonrotationally symmetric systems.

Systems using tilted and decentered elements.

Heads-up displays.

Multistage designs, as in the forward-looking infrared systems, that call
for off-axis and oddly shaped elements.

W=

5. Lens design using gradient index materials and plastics.

Desk-top calculators and microcomputers are being used more and more;
when used by the optical designer, either type is normally dedicated to optical
design, and many are dedicated to the design of specialized systems and pro-
grams. These small computers have a number of advantages, not the least of
which is their constant availability and their very short turnaround time for
program runs.

An optical-design computer and associated software will now usually have
a graphics option. A few things routinely plotted for study by the designer are:

1. The MTF and MTFs at different wavelengths.

2. A map showing the wave-front shape in the exit pupil.

3. A map showing the difference between the wave front and the reference
sphere.

. A knife-edge trace.

. A spot diagram and spot diagrams in different colors.

. Through-focus spot diagrams.

Through-focus MTFs.

Geometrical and diffraction MTFs.

. Transverse ray fans.

10. Point spread functions.

Graphical outputs are especially useful to the designer for study by providing a
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link between what can be observed and the desired optimum of a merit function.
When presented with all of this information, in graphical form, it is not difficult
to improve one’s understanding of the relation between transverse ray aberra-
tions, or wave-front aberrations, and the OTF. A plot of the MTF or a map of
the wave-front shape should give the designer a more comfortable feel for the
relation between wave-optics functions and wave-optics specifications of image
quality.

It should be emphasized that graphical representations are not to be used as
design criteria, but as guides to understanding. The spot diagram is a convenient
representation of the geometrical point spread function, and also, from it the
geometrical MTF can be calculated.

Two additional significant features are:

1. ““Global optimization,”” meaning that the program can pass through a
local image-quality optimum to explore outside the neighborhood of the first
optimum for a second, more favorable optimum; that is, the lowest minimum
of the merit function can be found even though it is not the nearest minimum.

2. Many programs can choose a point on a glass chart where the type of
glass nearest the point is the most favorable material to use for a particular
element. A glass chart, or glass map, is a plot of Abbe number » versus ny,
where » = (np — 1)/(ng — nc) and np, is the refractive index near the mean
index in the wavelength transparency band of most optical glasses. Values ng
and n¢ are the indices near the edges of the wavelength band. Every common
glass type is located on the glass chart. By this means the index of refraction
and dispersion of the material are chosen by the computer program.

In addition to the references already cited, two timely and comprehensive
sources of lens design information are the two Proceedings of the SPIE which
are cited as Refs. 39 and 40 of this chapter.

MANUFACTURING TOLERANCES

The best design in the world is of no value if a shop or a factory cannot use the
design to make a practical optical system. A certain practical precision must
apply to every parameter that has to be controlled during the manufacturing
processes: dimensions of the elements as they are being made and positions
(including orientations as tilt and decentering) of the elements as they are as-
sembled. As in the manufacture of other kinds of products, folerances tell how
much, plus or minus, a numerical value can differ from the design value and
yet not compromise the overall performance of the optical system. Tolerances
must also be within the capability of the shop to measure and control; in fact.
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a design is of little value if tolerances are so tight that the cost of scrapped parts
becomes excessive. The process of determining tolerances is referred to as tol-
erancing.

Many design programs include tolerancing as an option (see [10, 12-14,
17]). The main feature of the program described by Friedman (already cited as
Ref. 17) is tolerancing. In difficult designs the program can be stopped delib-
erately to allow the designer time to study the current status of the design and
the tolerances that may be involved.

To set the tolerances, designers work with two sets of relations. The first set
gives the sensitivity of the system performance to departures from design val-
ues, and the second set gives the manufacturing cost versus the allowed toler-
ances [18, 19]. Designers may make calculations with the extremes in the first
set for “‘worst case’’ performance, or they may choose a statistical approach,
often intuitive, and assume that all parameters do not reach tolerance extremes
simultaneously. Before a large production run, a few trial systems are usually
assembled and tested, and the design is fine-tuned to accommodate the realities
of the shop. Thereafter, the production systems are tested according to contract
or quality control requirements, which often are abbreviated procedures to as-
sure compliance with minimum system performance specifications. These are
frequently expressed as certain MTF values.

Besides designing an optical system to operate satisfactorily over a shop-
dictated tolerance range for each parameter, the designer must also assure op-
eration over certain tolerance ranges imposed by environmental and operational
conditions. For instance, slight temperature changes can distort optical surfaces
enough, especially in large telescopes, to introduce significant aberrations. And
so, in addition to the usual optical considerations, the designer may have to
work with insulating and other temperature-control techniques to complete an
adequate system design. In cameras of large numerical aperture, as another
example, practical methods of spherical aberration correction usually leave the
inner zones undercorrected and the outer zones overcorrected. The application
is further complicated by giving the user the option of aperture size over a wide
range. Here the designer must exercise tolerance judgment so that the camera
functions acceptably in all modes of operation. In a popular camera having
zoom lenses designed to operate over a wide range of focal lengths as well as
of apertures, the tolerance problem is compounded by having to keep residuals
within bounds while various elements are moved smoothly along the optic axis.

ASSESSMENT OF IMAGE QUALITY

When the optical system has been designed and made, a question will be asked,
““How well does the system perform the imaging task in its intended use?’” If
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the system performs well, then a question could still be asked, ‘“‘How should
the degree of success be graded?’’ The designer, the manufacturer, the evalu-
ater, and the user must all be satisfied with the same answers. When we ponder
these questions, we realize that we are now in the business of evaluating the
image produced by the system, that is, the assessment of image quality, because
the degree of design success will be rated by quantified information extracted
from the actual image.

The “‘intended use’’ of a system could refer to many and varied uses; that
fact is perhaps the main obstacle to formulating a satisfactory set of criteria for
assessment. The qualities required of an image will differ, or, at least, have
different emphasis, in different applications; and a change in aberration-balanc-
ing that improves an optical system for one purpose might possibly make it
worse for another. It seems hardly reasonable to expect a unique measure of
image quality to be defined. Perhaps the most general measure of image quality
is how effectively the image in some way makes information accessible about
the object.

A certain specified set of OTFs of an optical system is increasingly being
employed for the required criteria. A hypothetical problem can be used to dem-
onstrate how an OTF might reveal the quality of a system and also to illustrate
the limitations inherent within a system, whatever its intended use.

If we consider the image in terms of spatial frequency, the finest system that
could be produced would have a relative modulation M (s) of unity as calculated
by Eq. (5-54):

M(s) = T(s)/T(s; 0), (69)

at every point of the image plane. Such an image would be produced by a
diffraction-limited system, and its MTF = T(s; 0), given by Eq. (5-67), is
tabulated in Table 5.1 and plotted in Fig. 5.5. The real-space frequencies w are
given by Egs. (3-52) and (3-53):

w =s(p/N)(nsin ). (6-10)

Then by choosing, arbitrarily, a minimum value of one-half for the MTF at a
certain frequency s,, or the corresponding w;, so that T(s,) = T(s;; 0) = 0.5
we can find the contrast in the image as given by Eq. (2-16) to be one-half the
contrast in the object. In fact, this is the meaning of MTF,

A value of T(s,; 0) = 0.5 occurs almost at 0.8 on the s scale. But since cut-
off in terms of s occurs at 2s, T(s;; 0) = 0.5 occurs at 0.4 w,, where w,_ is the
real-space cutoff frequency. An optical system designer could hardly do better
than this because it is the diffraction-limited case.

When the cutoff frequency, for example, is 400 lines /mm, then the MTF
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for a perfect system at 160 lines /mm is very close to 0.5. A *‘good eye’’ could
begin to notice the degradation of contrast, especially if object and image can
be observed side by side, and fine detail in the image begins to be lost. Some
designers routinely ignore the performance above 0.2w, until the system in de-
sign appears to be close to the desired system.

When all parties concerned agree that a certain relative modulation at a given
spatial frequency w, must be achieved, the designer has two ways to accomplish
the goal: work on the design until the relative modulation at the chosen fre-
quency is unity, or very nearly so; or enlarge the numerical aperture (n sin «).
Enlarging the aperture raises the cutoff frequency so that v, is a smaller fraction
of w.. But enlarging the aperture also increases the design difficulties.

Any criterion for image quality should fulfill the following requirements:

1. For the optical designer, the criterion should be so expressed quantita-
tively that the system parameters can be adjusted toward an optimum
design.

2. For the evaluator of the manufactured system, the criterion should be so
expressed that the quality of the system can be rated from optical mea-
surements.

3. For the evaluator and the user, the criterion should allow a practical,
unambiguous specification of the quality to be expressed in its terms.

4. The nature of the criterion should allow a statement of quality to be ex-
pressible numerically on a continuous scale from bad to excellent. Just a
“‘go”” or ‘‘no go’’ discrimination does not suffice.

5. The same quantitative rating of quality for an optical system in terms of
the criterion should be determinable by calculating both from the design
data and from experimental measurements on the manufactured system.

6. Quality ratings should be independent of the kind of object being imaged
and independent of the degree of coherence of the light illuminating the
object.

7. The limits of expressing quality in terms of the criterion should be rec-
ognizable.

The OTF is increasingly recognized as an excellent criterion for rating image
quality. A comparison of its properties and the requirement list above indicates
that the OTF has at least the potential for satisfying each of the qualifications.

Our discussions of optical systems have been limited to systems starting with
the object and ending with the image on a plane. Actually, such optical systems
are usually followed by receiving systems that process the image configuration
before the information is utilized. Examples of system extensions are the eye
and its associated nervous system, a photographic film and the processing steps
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that follow, and a television camera tube followed by its electronics and pre-
sentation device. A great deal of effort has been expended in trying to incor-
porate the post-image-plane apparatus into the system to be evaluated. Except
for a discussion in this chapter of some of the problems encountered beyond
the image plane, we confine our efforts to just the system from object to image
plane.

When images are viewed—by observing the image directly, by examining a
photograph, or by seeing a television display—the human visual system con-
tributes its properties to the overall image-transfer process. The problem thus
becomes psychophysical rather than physical and requires a wholly new ap-
proach to quality evaluation. The psychophysical aspects include the effects of
experience and can include aesthetic and other subjectives factors, which are
far more difficult to quantize than physical measurements. The armed forces
have studied at length such visual tasks as the detection, recognition, and iden-
tification of military targets and have tried to correlate the results with the out-
come of bar chart tests or with some property of the frequency response function
{20, 21].

The following section reviews some aspects of human perception of images
and illustrates some problems that occur in the selection of criteria.

RESOLVING POWER VERSUS ACUTANCE

Extensive research by engineers and scientists at the Eastman Kodak Company
and other organizations has been concerned with evaluation of the images pro-
duced by optical systems [22-34]. The Kodak investigation of acutance (de-
fined later) in particular has dispelled some commonly held misconceptions of
what constitutes quality in a photograph [27, 32]. Simply using some number
loosely defined as resolution to measure quality is demonstrated to be futile.

The fundamental problem in evaluating the quality of a photograph is to
define a subjective property, commonly referred to as definition, that measures
the observable clarity by which detail is reproduced. So far no single quantity
has been found to do this satisfactorily.

In the Kodak experiments, a number of photographs were made under con-
trolled conditions, some having poor resolution but good definition and others
having good resolution but poor definition. Typical results are illustrated in
Figs. 6.5 and 6.6. The photograph in Fig. 6.5 was printed in such a way as to
give good resolving power; from the same negative, the photograph in Fig. 6.6
was printed so that the specially defined property of acutance would be high.
When the original photographs are compared, Fig. 6.5 shows detailed structure
in the shrubs and tiled roof; so the resolution is good. But observers generally
agree that the other picture, Fig. 6.6, has better definition. (The differences
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Figure 6.5. A photograph exposed for high resolution {27, 32]. (Reprinted by permission of
SPSE, The Society for Imaging Science and Technology, sole copyright owners of Photographic
Science and Engineering. Permission to reprint was also granted by the authors of Ref. 27 and by
the authors and publisher of Ref. 32.).

between the photographs are admittedly difficult to see in the halftone repro-
ductions.)

Wolf and his associates [33, 34} discovered poor correlation between resolv-
ing power and definition. In seeking the features that distinguished the high-
definition pictures, they concluded that the manner in which edges are repro-
duced had a lot to do with the property of definition. This points to the OTF as
a criterion of definition because a spatial frequency spectrum is directly deriv-
able from an edge trace. Along with the specially shaped edge trace, of course,
will always be the requirement of reasonably high resolution—particularly when
the picture includes repetitive detail in the nature of a bar chart.

Acutance, which is a numerical property of an edge trace, can be defined by
reference to Fig. 6.7, where log(1/t), the logarithm of the inverse of film
transmittance, is plotted as a function of x, the distance along the film surface
perpendicular to the indicated knife edge. The choice of ordinate variable re-
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Figure 6.6. A photograph exposed for high acutance [27, 32]. (Reprinted by permission of SPSE,
The Society for Imaging Science and Technology, sole copyright owners of Photographic Science

and Engineering. Permission to reprint was also granted by the authors of Ref. 27 and by the
authors and publisher of Ref. 32.).

B
LogL
¢
Alogl
Ax
A Figure 6.7. Edge trace of the image of a
knife edge showing analysis for computing
Distance x acutance.
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sults from the relation between transmittance and film density D:
D =log(1/t) = —log . (6-11)

The toe and knee points A and B on the curve are at some predetermined low
value of the slope or gradient. The interval between A and B is divided into N
equal increments of x, and the mean square gradient of density is determined
as follows:

G: = (1/N) 2 (AD/Ax)’
=(1/N) {[a10g(1/0]/ax}

= (1/N) 2 [(A log 9)/Ax]’ (6-12)

Acutance is then defined:
acutance = G2/(Dy — D,)
= G2/[(log 1/4), — (log 1/4),]

= G/[(log ¥), — (log ¢),]. (6-13)

The differences in the edge traces for the lens—film systems producing Figs. 6.5
and 6.6 correspond to the differences in their line spread functions shown in
Fig. 6.8. Calculated from these spread functions are the MTF curves of Fig.
6.9. Curve A indicates high resolution; but curve B, which is for the system of
higher acutance though poorer resolution, was judged as having the better def-
inition of Fig. 6.6 over Fig. 6.5.

Comparison of the characteristics of the two systems that produced the pho-
tographs of Figs. 6.5 and 6.6 gives a clue as to what might serve as a merit
function for evaluation or automatic design. The sharp peak of the A spread
function is associated with the higher MTF values, meaning better contrast, at
high spatial frequencies, which is interpreted as higher resolution. On the other
hand, the higher acutance, and thus better definition, in Fig. 6.6 is associated
with the higher MTF values (though the margin is only about 15%) below the
crossover of the two curves. The reason for the significance of the midcurve
MTF values may be understood from a hypothetical comparison of an MTF
curve and a curve of an observer’s perception of detail under specific test con-
ditions of lighting, distance, and so on. In Fig. 6.10, curve a is a plot of the
assumed MTF values for a system, and curve b is the significant part of the
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Figure 6.8. Line spread functions corresponding to Figs. 6.5 (A) and 6.6 (B).

observer’s threshold curve, below which the spatial frequency variations in con-
trast cannot be seen. The shaded area is the margin by which the MTF curve
exceeds the threshold over the frequency interval from w, to w,. Any superiority
of one MTF curve over another in the region below the threshold curve has no
significance. Because MTF curves usually decline in value with increasing fre-
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Figure 6.9. Modulation transfer function corresponding to the spread functions of Fig. 6.8.
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Figure 6.10. Forming a merit function by using the area (shaded) between MTF curve a and eye
modulation threshold b.

quency (increasing ‘‘fineness of detail’”), the region of no consequence is likely
to be the upper end of the spectrum. Hence, to rate a system for definition, one
must first determine where the MTF and threshold curves are likely to cross
and then, somewhat arbitrarily, select a band of frequencies, as in Fig. 6.10,
Jjust under the crossover and evaluate, as a merit function, the area bounded by
the two curves and the frequencies w; and w,.

THE PHASE TRANSFER FUNCTION
In Chapter 5, the OTF, O(ss, s1), is written

O(ss, st) = T(ss, st) exp[io (s, sT)]. (6-14)

where T(sg, st) is identified as the MTF, and ¢(sg, st) is the PTF or phase
transfer function in terms of reduced spatial frequencies. When only a single
frequency s is involved, these expressions become, respectively, O(s), 1(s),
and ¢(s) for the OTF, MTF, and PTF. In discussions of the OTF in the optical
literature, emphasis is on the nature of the MTF; very little is said about the
PTF. 1t is our purpose here to suggest why this is so and to indicate which of
the OTF properties are contributed by the PTF [28, 33, 36].

The mathematical form of Eq. (6-14) indicates that the MTF is the absolute
value of the OTF, and PTF gives the phase shift in radians of the OTF. In terms
of the image, the MTF describes the contrast in the object. The PTF tells how
much the detail at each spatial frequency is shifted in position on the image
plane relative to that detail on the object plane. The numerical value of ¢(s) is
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in terms of the spatial wavelength at each frequency. For example, if the fre-
quency s; is three times s; and, thus, the wavelength of s, is three times the
wavelength of s, a value of one radian for ¢(s;) would indicate a shift on the
image plane one-third as far as one radian for ¢(s;). This means that if a com-
bination of different frequency details on the object is to be shifted so that details
maintain their relative positions to each other, their PTF values must be pro-
portional to their frequencies; or, in other words, the ¢(s) curve must be linear
and must pass through the origin.

In a nonsinusoidal extended object, the variation of flux across the pattern
on the object plane can be broken down, as demonstrated in Chapter 2, into
sinusoidal components by Fourier methods. To preserve the exact appearance
of the pattern, one requirement would be to keep the sinusoidal components in
their original relative positions, which, as indicated above, requires a linear
PTF curve.

An example of what a nonlinear PTF can do to a pattern can be demonstrated
by starting with a bar pattern (discussed in Chapter 2) in the object plane. The
variation of flux along a line perpendicular to the bars is given in Eq. (2-1),
and when this variation is transformed to a Fourier series, Eq. (2-4) results. If
the crenalate or square wave shape (Figs. 2.2 and 2.3) is approximated by writ-
ing just the first three terms of this series, the equation becomes

f(x) =05 + (4/x) [cos(2mwx) — (1/3) cos(bmwx)
+ (1/5) cos(10mwx)]. (6-15)

where the spatial frequency w is equal to 1/(2x;) in the Chapter 2 development.
It is evident that the three terms of the series in Eq. (6-15) consist of the fun-
damental, third harmonic, and fifth harmonic of the frequency set by the bar
pattern. (The coefficients of the even harmonics are all zero because of our
choice of pattern.) If the fundamental frequency w is assumed to be 150
cycles /mm and the pattern is to be transmitted through an optical system having
the pass band shown by curve b of Fig. 2.23, it is evident that only the fun-
damental and the third harmonic will reach the image plane. Curve set A of
Fig. 6.11 shows how one lobe of the square wave would look if these two
components were transmitted perfectly (PTF = 0 for all frequencies). Curve a
of the set is the fundamental, curve b is the third harmonic, and curve c is their
sum, which is the plot for the image of the square wave bar pattern. (All curves
in this figure have arbitrarily been normalized to the amplitude of the funda-
mental.) Though symmetrical, the comners of the square image are rounded, and
there is a sag in the top of the lobe instead of a straight line. However, if the
PTF curve were zero at the fundamental frequency and showed a phase shift of
— /2 radians at the third harmonic, the asymmetry of curve set B in Fig. 6.11
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Figure 6.11. Synthesis of a fundamental plus a
third harmonic for several phase relations.

results in the image, the difference between sets A and B being due entirely to
the assumed difference in the PTF for the two sets. Comparison of curves ¢ of
sets A and B shows a marked deterioration of the square wave shape resulting
from the assumed departure of the PTF from the ideal.

If the square wave pattern were transmitted through the defocused system
represented by the MTF curve of Fig. 2.23 (PTF assumed zero at all frequen-
cies), the negative MTF at the fundamental frequency and the small positive
MTF at the third harmonic would produce the curve set C of Fig. 6.11. The
lobe (curve c) is now negative and slightly more peaked than a sinusoidal lobe.
The reversal of sign indicates that in the vicinity of the fundamental, the black
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and white bars of the bar pattern object are interchanged in the image. Though
the result shown in curve set C is sometimes referred to as a ‘‘w-radian shift,”’
it is usually regarded as an MTF rather than a PTF phenomenon and is indicated
by a negative value on the MTF curve.

From our discussion of the PTF characteristic necessary to keep different
frequency components of a photographic detail in correct relative position on
the image plane, certain observations and conclusions may be made. The ex-
ample of asymmetry in a square wave resulting from a drift of the harmonics
relative to the fundamental can be extended to images of a point (point spread
function) and a line (line spread function): a nonlinear PTF produces asym-
metric point and line spread functions. Also, as with the square wave, a linear
PTF curve that passes through the origin displaces a spread function from its
correct position on the image plane, but the spread function is symmetrical. The
slope of the PTF curve determines the amount of displacement. Therefore, if
the slope varies as a function of the distance from the optic axis, one can expect
to see pincushion or barrel distortion in the overall image. Ordinarily distortion
represented by a straight-line PTF curve of modest slope is not serious except
in photogrammetry, where a purpose of the photographic image is to present
details in their exact positions relative to their positions in the object plane.
Examples are aerial photographs taken in geographical surveys and aerial pho-
tographs to establish locations of military targets.

When point and line spread functions become asymmetrical due, for in-
stance, to coma, the corresponding PTF will be nonlinear. Such asymmetry can
coexist with photogrammetric distortion, which is the same as saying that the
PTF has both linear and nonlinear components. To analyze the nonlinear com-
ponent, one has to subtract the linear component from the total curve, which is
equivalent to changing the coordinate origin relative to the image.

If the image coordinate axis is the same as the axis of symmetry of a sym-
metrical line spread function, the real and even mathematical properties of this
function cause it to transform into a real and even spatial frequency function,
that is, a function having a zero PTF at all frequencies. (See the discussion
following Eq. (B-14) in Appendix B.)

As a practical matter, the PTF nonlinearity associated with an asymmetrical
spread function is usually of little consequence. Most MTF curves indicate sig-
nificant attenuation of the high-frequency harmonics; so the distortion caused
by a shift in their phases is muted—especially in photogrammetry where the
lens OTF combines with the emulsion OTF. The emulsion spread function is
inherently symmetrical. When detail in the image is so fine that the fundamental
is shifted by the nonlinear PTF, the combined effects of blurring by a low MTF
and the reduced actual shift in millimeters due to short wavelength (see earlier
discussion on the declining scale of ¢ with increasing frequency) make the PTF
characteristic unimportant.
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K.-J. Rosenbruch {38] thoroughly studied the role played by the PTF and
has found that the PTF never exceeds 7 /4 radians as long as the MTF is higher
than 0.2. Since many optical designers plan their systems to have sufficient
contrast in the image over only the lower fourth of the spatial frequencies below
cutoff, they can neglect the PTF for evaluating image quality when the OTF is
part of their criteria.

As our discussion in the preceding paragraphs has suggested, no simple gen-
eral statement can be made concerning the degradation of image quality caused
by a large or erratic PTF. For certain special instances, the PTF may supple-
ment the information given by the MTF, but the PTF alone usually conveys
little information. Besides being more difficult to interpret than the MTF, the
PTF is also more difficult to measure; so common practice is to report only the
MTF part of the OTF.
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7

Merit Functions and Aberration Balancing

INTRODUCTION

In Chapter 6 merit functions are discussed as a means of optimizing the design
of an optical system. During the long history of optical design, perhaps the
most familiar approach to utilizing merit functions has been to reduce the clas-
sical Seidel aberration coefficients to a common scale and then minimize a func-
tion of the mean square (possibly weighted) of the aberrations. This procedure
is described in some detail in Chapter 6. Other merit functions based on ray
optics in the vicinity of the image plane have also proved effective. Two that
correlate well with each other are the size of the ray-trace spot diagram and the
optical path difference (OPD) [1]. In the first, the design program aims to reduce
the area on the image plane covered by the rays coming from a common point
object. In the second, the objective is to make the optical path length for all
rays the same from the point object to the image plane. (Conrady [2, p. 585]
sets a goal of a small fraction of a wavelength for the greatest difference be-
tween optical path lengths.) A perfectly spherical wave front at the exit pupil
leads geometrically to a zero OPD, both conditions indicating the absence of
aberrations.

When an optical system has been corrected to a Strehl ratio of 0.8 or to the
Rayleigh quarter-wavelength criterion, which are roughly equivalent, further
improvement has been found more responsive to correction of wave aberrations
than to reduction of spot diagrams or ray aberrations (like the transverse Seidel
aberrations).

As we have suggested earlier in this book, there is a growing acceptance of
the OTF, either as a graph or a table of data, as the most complete presentation
of imaging information; so one could expect that superior merit functions would
involve OTFs. However, the user must observe certain precautions. Like many
other kinds of optical system performance data, each OTF gives information
about imaging only one point in the object plane; furthermore, an OTF usually
holds for only one orientation of the spatial wave pattern at that point. So, to
have a comprehensive set of data about a system, OTFs must be taken for
multiple points in the object plane and for at least two orientations at each point.
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212 MERIT FUNCTIONS AND ABERRATION BALANCING

Also, all of these observations are functions of the wavelength of light passing
through the system; so complete sets of OTFs should be taken at selected wave-
lengths. Once it is appreciated what constitutes a complete set of OTF data, it
is usually wise to limit actual observations to just critical values. Instead of a
complete OTF from zero to the cutoff frequency, the application may be ade-
quately served by recording only a limited range of spatial frequencies; in fact,
in some instances the MTF at two or three frequencies may suffice.

Designers striving to improve the performance of an optical system would
be helped in their decisions by knowing the ‘‘observer’s’” sensitivity to changes
of the MTF. The human observer rarely observes an optical image directly with
the eyes; the image that is seen is produced by some intervening system, for
example, by a ground glass plate, an exposed and processed photographic film,
or a television-type picture produced by one of several possible methods. There-
fore, no general sensitivity threshold, that will serve all applications, can be set
for the primary optical image. However, when some property of the OTF is
used as a merit function, an accepted rule of thumb is that a human observer
will notice an improvement of image quality only if the MTF is increased by
at least 0.1 within the range of spatial frequencies common to the frequency
distributions of the object and the observer. Any degradation that might be
caused by the intervening systems must be accounted for when a minimum for
the merit function is specified.

Because some aberrations inevitably remain after all practical correction
measures have been taken, the designer has to decide what the desired ratios
should be between the various residuals. Procedures to determine these ratios
differ according to the circumstances of the design; so our purpose in a later
section of this chapter is to select arbitrarily an example for detailed solution to
illustrate the philosophy of residual balancing rather than to set up a pat formula
for general use. To treat the residual balancing problem, both the power series
and the Zernike polynomial representations of the aberration function are con-
sidered.

As indicated in Chapter 6, the effects on optical system performance of spe-
cific parameter changes are useful in setting manufacturing tolerances. In a later
section of this chapter, the effects of parameter changes on the OTF are studied
in some detail. This choice of topic is consistent with our general purpose to
emphasize the OTF significance in optics rather than to attempt a balanced pre-
sentation of all prevailing merit function practice and residual balancing.

A successful merit function depends in large part on a careful choice of the
criterion for optical quality [3], which is based on what is desired in the appli-
cation. At the outset, it must be appreciated that the position of the imaging
plane is one of the factors that determine quality. Along with other parameters
of the system, positioning of the plane can be conveniently included in the
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CERTAIN MTF GRAPHICAL AREAS AS CRITERIA 213

optimizing procedure. So also must be the location of what is regarded as the
ideal image point, which in turn establishes the reference sphere for the wave
front at the exit pupil. Choice of image plane position and image point location
is treated in some detail in the residual balancing example employing the power
series representation of the aberration function.

As in all calculations where exact integration processes give way to corre-
sponding numerical methods appropriate for digital computers, summation
expressions have to be written with short enough intervals in the independent
variable(s) to attain desired accuracy.

SINGLE MTF VALUES AND CERTAIN GRAPHICAL AREAS AS
CRITERIA OF PERFORMANCE

In general, when evaluating a choice of parameters, a designer of an optical
system is interested in the entire MTF curve (probably for multiple object points
and at various spatial frequency orientations), as well as other data. However,
after manufacturing procedures are under control, acceptance testing, for in-
stance, can be safely reduced to establishing a single point or, at most, a few
points on the MTF curve.

If a merit function is set up to maximize the area under the MTF curve
between spatial frequencies w, and w,, as in Fig. 7.1, measuring the MTF value
at some w; intermediate to w; and w, may be all that is needed to assure speci-
fication compliance of a manufactured system; however, confidence in estab-
lishing the MTF curve would be greater if, instead, the values at w; and w,

Modulation transfer function

0 w1 wy
Spatial frequency

Figure 7.1. Area under the MTF curve as a merit function.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



214 MERIT FUNCTIONS AND ABERRATION BALANCING

were measured, that is, two observations rather than one. This is particularly
true if the manufacturing process allows marked variations in the shape of the
curve in the interval of interest. Ordinarily, test measurements of the MTF are
not made at low spatial frequencies because differentiation between the curves
of high-performance and low-performance systems is difficult in this region. On
the other hand, the high frequencies just under cutoff are also avoided because
even for well-designed systems the transfer function is always small so that
erratic behavior in this region is usually of little consequence. One reason for
ignoring the MTF characteristics at high frequencies is indicated, for example,
in the photogrammetry curves of Fig. 7.2. (See also the discussion of Fig. 6.10
in the previous chapter.) Here Fig. 7.1 has been modified by adding an emul-
- sion curve representing a modulation detectability or minimum resolvable mod-
ulation in an aerial image. The crossover at wy is called the lens /film resolution
limit. The characteristics of the MTF at higher frequencies have no significance.
The merit function for the photogrammetry system could be the area between
the two curves either down to a selected frequency w, as in Fig. 7.1, or all the
way down to zero. The enclosed area is called the modulation transfer function
area criterion, MTFA. Since the film threshold curve of Fig. 7.2 is fixed during
the optimization of the optical design, maximizing the area between w; and w,
(where w, = wy) attains the same results as maximizing the simpler cross-
hatched area in Fig. 7.1. The principal purpose of the threshold curve is to
establish wy. Still another criterion used in connection with the conditions rep-
resented by Fig. 7.2 is the length AB, the height of the MTF curve over the
film threshold at the chosen frequency w;.
How the MTF at spatial frequency w, relates to the ratio of output to input
signals of a scanning optical system gives a laboratory significance to this value.

Spatial frequency

Figure 7.2. Area between the MTF and emulsion curves for defining merit functions.
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CERTAIN MTF GRAPHICAL AREAS AS CRITERIA 215

The ideal object for such a test, of course, is a ripple pattern with a sinusoidal
distribution of radiant power along the line that is scanned by the system. How-
ever, a review of Fourier analysis principles indicates that a pattern less pre-
cisely described as having a structure of alternating high and low flux-density
regions serves almost as well for a test object. The predominant frequency w,
in such a structure has a half period equal to the average length of the high and
low intervals in the direction of scan. If the object flux-density ratio between
high and low regions, as measured by the scanning detector, is R, the image
ratio R, is

R = [T(Sl)] Ry,

= [M(s))] [T(s:; 0)] Rops (7-1)

where s, is the reduced spatial frequency (sometimes referred to as the nor-
malized frequency) corresponding to w; (see Eqgs. (3-52) and (3-53)). As indi-
cated by the two expressions in Eq. (7-1), the MTF value at s,, T(s;), can also
be given in terms of the relative modulation M(s;) (see Eq. (5-54)). The expres-
sion T(s; 0), as in Chapter 5, stands for the ‘‘perfect’”” MTF whose values are
given in Table 5.1.

A minimum relative modulation at an arbitrarily selected spatial frequency
of w; has been frequently suggested as a merit function. This application is
closely equivalent to using resolving power as a merit function.

In electronic equipment, where performance versus a time frequency rather
than a spatial frequency is considered, the passband or the bandwidth is an often
used merit function. The two limits of the band are typically defined as the
frequencies where the performance value has fallen to a given fraction of the
intermediate ‘‘flat’’ value. These limits are applied, of course, so that the band
includes only the frequency region where significant (arbitrarily defined) per-
formance prevails. However, the typical MTF curve in optics differs markedly
from the corresponding performance curve in electronics. Instead of a mesalike
shape, the MTF characteristic starts at a high value at zero frequency and gen-
erally declines until a cutoff frequency is reached. To specify the bandwidth as
the total span from zero to cutoff is often regarded as excessive because the low
performance values near the cutoff frequency are insignificant. High values can
be emphasized here, as we have already indicated in other contexts, by squaring
all values and then making comparisons. Following this weighting procedure,
optical workers define an equivalent passband N, as

N, = SO [T(0)] do, (7-2)
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216 MERIT FUNCTIONS AND ABERRATION BALANCING

where T(w) is the MTF as a function of the actual frequency w. (No attempt is
usually made either to apply a normalizing coefficient to the integral or to take
its square root as in rms calculations.)

Besides the equivalent passband significance of Eq. (7-2), the expression is
similar to Parseval’s formula in Appendix B, Eq. (B-18). If T(w) is assumed
an even function,

W= | [l do= | [rer e (7:3)

—o0

where

T(w) « f(x), (7-4)

that is, the two functions are transforms of each other and both are real and
even functions according to the discussion of Fourier transforms in Appendix
B. A review of earlier discussions of spread functions identifies f (x) as the line
spread function; so the equivalent passband can be evaluated, by Eq. (7-3),
from the area under the curve of squared flux-density distribution in the image
of a line source, as well as from the area under the squared MTF curve.

A MERIT FUNCTION BASED ON THE LOW-FREQUENCY END
OF THE MTF

In a general consideration of the various frequency sections of the MTF as
indicators of optical performance, we have already dismissed the low extreme
as varying too little with merit changes and the high extreme as being too erratic
to tell a good story. However, under certain conditions—particularly that of
starting with a fairly well-corrected system—observing the slope and related
defined graphical areas at the low-frequency end looks promising for merit eval-
uation.

When the wave aberration, of any type, approaches 1.25 wavelengths, the
MTF curve drops rapidly with increasing frequency; and slightly above s =
0.3 the MTF is in the vicinity of zero, as indicated by curve 4 in Fig. 7.3.
Reference to Appendix A indicates that MTF curves of this type Become erratic
above the zero or minimum near s = 0.3; so the higher frequency region of the
MTF cannot provide a merit function for further improvement of lens quality.
However, comparison of the 1.25-wavelength curve with curves of lesser ab-
erration shows that the first dip toward zero occurs at higher and higher fre-
quencies as the aberration is reduced. To convert this wheeling behavior about
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Figure 7.3. Characteristics of the MTF curve at low frequencies for defining merit functions.

the point (0, 1) into a numerical value, an area can be defined within boundaries
formed by the curve under consideration (say curve d in Fig. 7.3), the perfect
MTF, and the line s = 0.3. Quality is improved by minimizing this area. As
this process becomes insensitive, a new area can be defined with the boundary
s = 0.4, or any greater value below the erratic region (see curve c, Fig. 7.3).
The minimizing procedure can be repeated with the new area, and so on until
the whole area between the MTF under consideration and the perfect MTF is
the value to be minimized. In the actual computational mechanics, only the
successive MTF values bounding the area to be minimized are calculated. In
particular, no time has to be wasted on the erratic high-frequency end of the
curve.

OTHER OTF-RELATED MERIT FUNCTIONS

Granger [4] and his associates at the Eastman Kodak Company have developed
an image quality merit function, or image quality reference standard, related to
the OTF. Because they find that it correlates linearly with subjective quality
judgments, they call the function the subjective quality factor (SQF). It is said
to give significant evaluations over a span from the unusable to the best reason-
able reproduction of a test scene. Birch [5] also discusses a number of other
criteria based on the OTF.

The question of which merit function or merit criterion to choose for eval-
uating a given optical combination cannot be answered within the scope of this
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218 MERIT FUNCTIONS AND ABERRATION BALANCING

text. The choice depends partly on the physical characteristics of optical sys-
tems, devices, or materials (for instance, the eye, detector, or photographic
film) used with the optical combination under test. However, the least tangible
factor in the decision is based on psychometric tests. These involve subjective
opinions by a number of observers as to what constitutes quality and then cor-
relation analyses against the various merit functions to see which one best tracks
the accepted subjective criteria.

MERIT EVALUATIONS BASED ON THE ABERRATION
FUNCTION

As already indicated in previous chapters, the aberration function describes the
aberration characteristics of an optical system in terms of wave-front distortion
at the exit pupil. The OTF is derivable from the expression for the wave front
(pupil function) and, therefore, from the aberration function. So, instead of
basing merit functions on the OTF, it appears consistent to base the merit func-
tion on the aberration function itself. This, in fact, is close to early practice—
especially if one allows the equivalence between the traditional Seidel aberra-
tions and certain terms in the series describing the shape of the aberration func-
tion. To illustrate the relation between the aberration function and the OTF, a
particular expression is assumed in Chapter 9 for the aberration function and
the OTF is calculated from it.

Three general types of merit functions based on the aberration function seem
to prevail in practice: (1) the mean square value of the aberration function, (2)
the variance of the aberration function, and (3) the variance of the aberration
difference function [3, 6-12]. These are discussed in the following sections.

MEAN SQUARE VALUE OF THE ABERRATION FUNCTION AS

A MERIT FUNCTION

In the polar coordinate system used in Chapter 4 for the exit pupil, the mean
square value of the aberration function may be expressed as

W= /@ || W oo dodo, (7:5)

where @ is the area or the region of the wave front at the exit pupil. Before this
expression can be written for a specific optical system, the position of the image
plane has to be arbitrarily chosen, which is usually undesirable because opti-
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mizing this position (focusing) is often part of the procedure for reducing ab-
errations.

VARIANCE OF THE ABERRATION FUNCTION AS A MERIT
FUNCTION

Early work on the variance of the aberration function as a merit function was
done by Maréchal [13]. .

As a reference to calculate the variance, the mean W of W(p, ¢) must be
established:

W= (1/Q) SS& W(p, ¢)p dp de. (7-6)

Then the point-by-point difference AW between the mean and the aberration
function is

AW = W — W. (7-7)

The variance § is defined as the mean square of the difference AW:

& = (aW) = (1/@) SS& (AW)’p dp de

=(1/Q) Ha (W — W)’ p dp de. (7-8)

In Fig. 7.4, which illustrates the various quantities involved in this development
for an assumed wave front, the pupil ray for the particular off-axis object point
that generates the wave front goes from the pupil point E' to Q'; Q' is the
initial image point, which is the center of the reference sphere through E’ and
of radius R. Because of aberrations, the actual wave front does not coincide
with the reference sphere; so a ray through some point P on the wave front
strikes the image plane at Q' instead of Q'. For purposes of illustration, the
distortion of the wave front has been grossly exaggerated. In proper scale, the
angle / Q' PQ’ would be extremely small making the differences R — R, and
W, — W, negligible.

Expansion of the squared binomial in Eq. (7-8) leads to considerable sim-
plification in the expression for the variance &:

=(1/@Q) Ha (W2 = 2WW + W?)p dp de. (7-9)
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Reference Image
plane

3

Figure 7.4. Image space geometry and symbols.

Each of the terms of the trinomial can be treated separately in the integrating
procedure and the three integrals added to get the final expression for &. Inte-
grating the first term, as in Eq. (7-5), gives the mean square value of W. Re-
cognizing the mean W as a constant, we find that the second term integrates to
minus two times the mean value squared. Finally, the third term turns out to be
just the mean value squared. Adding the three integrals yields

& =w— 20w + (W)’ =w? - (W). (7-10)

By keeping in mind the relations in Fig. 7.4, one can visualize the effect of
focusing, that is, moving the image plane to the right or left along the optic
axis. Moving to the left, for instance, would shorten the reference sphere radius
R, which would pull the ends of the broken-line arc representing the sphere
toward the image plane. For the particular wave front assumed in Fig. 7.4, this
change would reduce W, the mean W, until at some position of the image plane,
W would become zero. We assume that this could be done for any practical
wave front that might be encountered. Then Eq. (7-10) becomes

g, = W2 (7-11)

Returning to the expression for _8 before focus correction, Eq. (7-10), and not-
ing the definitions of W? and W in Egs. (7-5) and (7-6), we can rewrite Eq.
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(7-10) with the definitions written in terms of the approximate discrete sums:

N Ly 2
8=—ZW2-[—ZW,,] 7-12
Nn=1 " Nnr=1 ( )
Maréchal, working in geometrical optics, developed a relation between the
variance & and the Strehl ratio Rg [13, 14]:

Rs = [1 - 2(x/N) 8] (7-13)

The Strehl ratio is discussed in Chapter 4 where 0.8 < Rg =< 1 is given as
Maréchal’s estimate of the useful range. However, other workers [8] are willing
to extend the range to 0.7 < Ry = 1, which in the parlance of the art includes
systems at the lower end that are not quite ‘‘fairly well corrected.”’

Maximizing Rg as a merit function, which is the same as minimizing &, is
interesting because it treats the wave front as a whole and does not involve the
corrections of terms in a series with the consequent question of how to balance
the various corrections to achieve the greatest good.

VARIANCE OF THE ABERRATION DIFFERENCE FUNCTION AS
A MERIT FUNCTION

Subsequent to Maréchal’s relating the Strehl ratio to the variance of the aber-
ration function, Hopkins [15] also studied the gray region of systems not quite
““fairly well corrected’’ and came up with a relation similar in form to Eq.
(7-13) but written in terms of the relative modulation and the variance of the
aberration difference function.

The relative modulation is defined by Eq. (5-54):

M(s, ¥) = T(s, ¥)/T(s, ¥; 0), (7-14)

which is recognized as the ratio, at frequency s and orientation V, of a general
MTEF to the MTF limited only by diffraction.
The aberration difference function has been defined by Eq. (5-96) as

V(x,y;s) = % {W(x + % y> - W<x - % yﬂ (7-15)

The transfer function by(s), as indicated by Eq. (5-97), can be written in terms
of V(x, y; s):

bo(s) = Sga exp[ —ifns V(x, y; 5)] dx dy, (7-16)
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222 MERIT FUNCTIONS AN ABERRATION BALANCING

where @ is the overlapping region in the sheared circles discussed following
Eq. (5-15). If we define the mean of V(x, y; s),

7(5) = /@) || vy acay (7-17)

which is a constant as far as x and y are concerned, we can introduce it into the
integrand of Eq. (7-16) and then compensate by writing a reciprocal of this
introduced constant as a coefficient of the integral:

bo(s) = exp[ —ikns V(s)] SSQ exp{ —ikns [V(x, y; s) — I—/(s)]} dx dy.
(7-18)

In the above expressions, it is obvious for convenience that the orientation y/
and the object coordinate r, though they are among the variables on which the
functions are dependent, are not always explicitly indicated in the parentheses
following the function symbol.

According to Eq. (5-49),

T(s, ¥) = |bo(s, ¥)/bo(0, ¥)|, (7-19)
and

T(s, ¥; 0) = | bo(s, ¥3 0)/5o(0, ¥; 0)|. (7-20)

As indicated, s = 0 in both denominator transfer functions of Eq. (7-19) and
Eq. (7-20); so in both instances Eq. (7-18) becomes

P

0=S&ﬁ@=@ (7-21)

In the discussion following Eq. (5-15), from which Eq. (7-18) is derived, the
area @ is identified as the area of the overlapping region of two unit-radius
circles whose centers are separated by the value of the frequency s = (53 +
s2)1/2_ Therefore, when s = 0 as in Eq. (7-21), the area @ is the area of a unit-
radius circle or . Then Eq. (7-14) may be written

M(s, ¥) = |bo(s, ¥)|/|Bo(s. ¥; 0)]. (7-22)

Since by the definition of ‘‘diffraction-limited’’ we mean that W(x, y; s) = 0
and, therefore, V(x, y; s} = 0 by Eq. (7-15), Eq. (7-18) becomes
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VARIANCE OF THE DIFFERENCE FUNCTION AS A MERIT FUNCTION 223

bo(s, ¥; 0) = Sgadxdy = @, (7-23)

as in Eq. (7-21) except that @ now takes on all the values from zero to «
according to the value of s. From Egs. (7-18), (7-22), and (7-23),

M(s, ¥) = 1/G|exp[ —ikns V(s)]
: Ha exp{ —ikns[V(x, y; 5) = V(5)]} dx dy|.  (7-24)
From the exponential identity,
eF=1—-x+x*/2! =x*/31 + -+ -, (7-25)
the integrand of Eq. (7-24) can be written
I=1—-iks(V—7V)+ i(iks)’ (Vv - V)
=1 — iksV + iksV + L(iks)’ V* — (iks)’ VV + L(iks)’ V%, (7-26)

where (1) the dependent variables for ¥ and ¥V are not indicated, (2) n is assumed
unity (for air), and (3) terms beyond the third in the series have been dropped.
Integrating term by term and collecting gives

Sgaldxdy &{1 + [(iﬁs)z/(ﬂi) SSQVZ dxdy} - [@TB

Q{1 ~ L37V? + L 25V}

I

@{1 - %&25,2(?/_2 - T/2)} (7_27)

The binomial in parentheses has the same form in ¥ as the expression for € has

in W, Eq. (7-10); so it is consistent to define the variance &, of the aberration
difference function as

& =V - V2 (7-28)

Substituting from Eqgs. (7-27) and (7-28) in Eq. (7-24) yields

M(s, ¢) = \{exp[—iﬁs I_/(s)]} [1 — 1#5°8,]

. (7-29)
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224 MERIT FUNCTIONS AND ABERRATION BALANCING

Since the binomial in the right square brackets consists of real quantities, it is
the modulus or absolute value of the expression within the absolute value signs
of Eq. (7-29). Hence,

M(s, §) = 1 — 1576, (7-30)

By backtracking through the derivation of Eq. (7-29), one finds that the value
of the exponent in the expression within braces is the phase transfer function of
the OTF:

PTF = —és V(s). (7-31)

Because of the assumptions made in the derivation of Eq. (7-29), the expres-
sions in Egs. (7-30) and (7-31) are only approximate; but Hopkins [15] shows
that the errors are small, even for systems having the Strehl ratio somewhat less
than 0.8. As a reference value, setting M(s, ¥) = 0.8 in Eq. (7-30) gives

&, = (0.1N%)/(w%s%). (7-32)

ABERRATION BALANCING BASED ON THE POWER SERIES
EXPANSION OF THE WAVE ABERRATION FUNCTION

In Chapter 4 the wave aberration function is expanded in a power series, Eq.
(4-33), in terms of the radial displacement r of the object point in the object
plane, the radial coordinate p of the wave front at the exit pupil, and the angular
coordinate ¢ of the wave front at the exit pupil.

For an example of aberration balancing, we assume that the aberration func-
tion consists of only the following terms:

W(r, p, cos @) = Cag p* + oCap p* + Ce0 0° + 1Ci17p cOs @

+ 1C31rp3 Cos ¢ + 1C51rp5 CoSs ¢. (7‘33)

In this selection, besides omitting higher order terms of spherical aberration and
coma, we have assumed no astigmatism, Petzval curvature, or distortion. Fur-
ther, we have retained the two focus terms ,Cyop” and ;Cy,rp cos ¢, which are
often dropped from the conventional power series for the aberration function.

The object for which the aberration terms are to be balanced is a fixed point
source; so r becomes a constant that can be incorporated into the coefficient.
Distortion and Petzval curvature have significance only if a point image position
is compared with some other position, which cannot be done in this analysis
since only a single point object is involved.
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With r considered a constant, Eq. (7-33) becomes

W(p, cos @) = Cyp* + Cyop* + Coop® + Cyip cos ¢

+ C30° cos ¢ + Cs0° cos ¢. (7-34)

During the changes in parameters in the design optimization procedure, the
primary coefficients C,, and C;; vary more rapidly than the secondary coeffi-
cients C4, and Cs;, respectively; so initial optimization efforts tend to concen-
trate on the primary coeflicients.

In the present task of balancing aberrations, we choose the variance & as the
merit function to minimize in arriving at optimum balance. With reference to
Egs. (7-6), (7-9), and (7-10) and to the discussion related to these equations,
the variance can be written

& =(1/@) Sgawz(p, cos ¢)p dp de

_ [(1/@) SS& W(p, cos ¢)p dp dqu, (7-35)

where Q is the region within the unit-radius circle at the exit pupil (area = 7);
and cos ¢, instead of ¢, is shown as the second independent variable for W
because ¢ occurs only in the cos ¢ function in the power series representation
of W. This limitation on ¢ is consistent with the assumed optical symmetry
about the tangential plane. If Eq. (7-35) is rewritten with the properties of @
more explicitly expressed, then

& =(1/7) Szw S: W2 p dp de — {(l/r) Szw S; W o dp dqu. (7-36)

0 0

As the integral expressions are compared with the W? and W expressions, it is
at once apparent that all integrand terms with the first power of cos ¢ as a factor
make no contribution to either integral and can be ignored in the determination

of &:
W2 = Clop* + Cigp® + Ciop'? + 2C30C,00° + 2C50Ce0p® + 2C40Ce0p™

LY ol o BINC N allVal
200 1 518600

1) aae
OS¢

+(Chp® + C3p® + C3p"° + 2C;,Cypp* + 2Cy,Cs10°

+ 2G;,C51p°) cos® . (7-37)
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226 MERIT FUNCTIONS AND ABERRATION BALANCING

W = Cyp® + Cyop* + Coop® + (Ciip + C31p° + Cspp°) cos . (7-38)

In the power series representation of W as discussed in Chapter 4, the terms
with even powers of p are associated with spherical aberration and those with
odd powers are associated with coma. (As pointed out earlier, the first term of
each grouping relates to focusing.) Because the cross-products of W2 do not
contribute to & as indicated in Eq. (7-37),

8 = E;even + E;odd’ (7-39)
1
where &, = (1/7) S S Wiven p dp do
0
27 2
[ (1/x) S S Weven P dp dso} (7-40)
0 Jo

Eosa = ( 1/7F)S SO Wi p dp de

2

1

- [(1/7") So So Woada p dp d‘P] > (7-41)
Weven = C:20p2 + C:40p4 + C60p6’ (7'42)
Woya = Cpip cos ¢ + Cy0° cos ¢ + Csip° cos . (7-43)

Rather than go through all the details of evaluating the above integrals, we will
show only examples of parts of the polynomials involved and then present the
results obtained by proceeding similarly with all parts. If we first consider the
parts of W2, and W,,., that contribute C3, terms to the expression for &.cn,
Eq. (7-40), we have

2

27 1 27 1
I, =(1/7) So S Chop’ dpd‘p—{(l/w) So So C20p3dpd<p]
= C%o/?’ - C§0/4 = C§0/12. (7-44)
Collecting all such parts for &.,., yields

Seven = C20/12 + 4C3,/45 + 9C5, /112 + Cyy C4o/6

+ 3Cy Cep/20 + Cyo Ceo/S. (7-45)

Because of the rapidly convergent nature of the series for W, Eq. (7-42), the
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most significant variable for determining a minimum for €., is Cyo; s0 a good
approximation of Cy, called (Cyg)p, for such a minimum can be calculated by
setting 38yen/9Cs = O:

ageven/aC20 = C20/6 + C40/6 + 3C60/20 = 0. (7"46)
(Cyo),, = —(Cyo + 9Ce0/10). (7-47)

Because C,, is the coefficient of the focusing term in the expression for W,
(Cyo)m establishes the optimum focal surface in terms of Cyg and Cgy. When
(Cyo) is substituted in the expression for &y, Eq. (7-45), (Seyven )min 1D tETMS
of C, and Cg, results. After algebraic simplification,

(Seven).... = [(Cao/ Ceo)’ + 3(Cao/Ce) + (81/35)] (C3o/180). (7-48)

To continue the minimizing procedure, it is convenient to assign a symbol to
the ratio of the primary to the secondary coefficient, Cyo/ Ceo:

Bss = —Cuo/Ceo (7-49)

By adding and subtracting the fraction 9/4 in the brackets of Eq. (7-48), a
perfect binomial square is formed, and Eq. (7-48) can be written

(8even)min = [(Bas — 3/2)" + 9/140] (C%/180).  (7-50)
Returning to the expression for W 44, Eq. (7-43), we can substitute in the in-

tegrals for §,44, Eq. (7-41), and repeat calculations similar to those demon-
strated for W,,., and &.,.,:

8oaa = C11/4 + C3,/8 + C3,/12 + Cy,C;, /3 + C,Csi /4 + C3,Cs,/5.
(7-51)
By finding the C,; that satisfies 38 44/3C;; = 0, we find
(Cidm = —(2G5/3 + C51/2). (7-52)
If we again define a § as the ratio between primary and secondary coefficients,

B35 = —C5,/Csy, (7-53)
then

(Cll)m = (2535/3 - 1/2) Cs,. (7'54)
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228 MERIT FUNCTIONS AND ABERRATION BALANCING
Substituting this value in Eq. (7-51) yields
(8odt)min = [(Bss — 1.2)° + 3/50] C%,/72. (7-55)

At this point of our development, in Eqs. (7-50) and (7-55), we have expres-
sions for the two parts of the variance &, &.,., (spherical aberration) and &4,
(coma), for the optimum (signified by ‘‘min’’) location of the image. Each
expression is in terms of the ratio of the primary to the secondary coefficient of
the respective aberration and of the secondary coefficient. Now we propose to
fix each variance and get the corresponding relation between each ratio and its
secondary coefficient.

Maréchal [13] has suggested the following range of values, also adopted by
others, for &:

0 < & < N\/180, (7-56)

which, by substitution in Eq. (7-13), corresponds to the following range for the
Strehl ratio:

0.7927 < R < 1. (7-57)

This is consistent with Maréchal’s well-known choice of 0.8 for an Rg lower
limit. If we substitute the upper limit of &, Eq. (7-56), in both Eq. (7-50) and
Eq. (7-55), then

Ceo/N = [(Bas — 3/2)" + 9/140]71/2, (7-58)
Csi/N = [(Bss — 1.2)* + 3/50]7 1/ (2/5)"/~ (7-59)

These two equations are plotted in Fig. 7.5. (Usually the ranges expressed in
Egs. (7-56) and (7-57) are for the total aberrations in the system, whereas in
Egs. (7-58) and (7-59) we have chosen to introduce the extreme value of &,
\? /180, for each of the component aberrations, spherical aberration and coma.
This means that the total &, Eq. (7-39), would be 1% /90 and the corresponding
Rs would be 0.6095. Our reason for taking this liberty is to track closely with
an example in our references [3].) Each of the equations gives the relation be-
tween the secondary coefficient and the primary-to-secondary coefficient ratio
at the maximum & (equivalent to the minimum Rg) for a fairly well-corrected
system. Each peak in the two curves of Fig. 7.5, therefore, gives the greatest
value of the secondary coefficient allowable for the somewhat arbitrarily defined
““fairly well-corrected system.’’ The peak value of Cq4o/\ is 3.944 and occurs
at a 3,4 value of 1.5; the peak value of Cs; /N is 2.5820 at a 855 of 1.2.
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Figure 7.5. For a Strehl ratio of 0.7927 (§ = A\*/180): (a) Variation of the secondary coefficient
of spherical aberration as a function of the primary-to-secondary ratio of coefficients; (b) variation
of the secondary coefficient of coma as a function of the primary-to-secondary ratio of coefficients

[3].

The value for each g to achieve the maximum secondary coefficient for other
given variances remains the same as for the particular variance value, \* /180,
discussed above. This can be seen by considering the form of Eqs. (7-50) and
(7-55). For example, solving for C%, in Eq. (7-50) gives

180 (&cven )mi
C2 _ even /min , 7-60
P (Bss — 3/2) +9/140 (760
and it is at once evident by inspection that for any chosen value of (8,,e;)mins

%, (and, therefore, Ceo) will be a maximum for 845 = 3/2. Similarly in Eq.
(7 55), for any chosen value of (8,44)min, Cs; Will be a maximum for 835 =
1.2. For these maximizing values of the 8’s, Egs. (7-50) and (7-55) become,
respectively,

Expherical = (9/140)(C5,/180) = 9C%,/(140 x 180), (7-61)

Beoma = (3/50)(C3,/72) = 3C%, /(50 x 72), (7-62)
where the & subscripts, spherical for even and coma for odd, more explicitly

identify the aberrations involved. If the equivalent expressions in terms of the
Strehl ratio instead of the variance are desired, the respective expressions for &
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230 MERIT FUNCTIONS AND ABERRATION BALANCING
can be substituted in Eq. (7-13) to get

(Rs)spericat = [1 = 2(w/N)*(9C%) /(140 x 180)]?

2 x 972 T
1l - — -

and
(R)eoma = [1 = 2(w/N)(3CE /(50 x 72)]

2 X 372 T
-2 e [ (7-64)

These equations are plotted as the lower curves in Fig. 7.6.

The significance of aberration balancing (that is, the optimum choice of (),
as compared with aberration reduction, can be illustrated by two examples taken
from the curves in Figs. 7.5 and 7.6.

All points on both curves in Fig. 7.5 are for a Strehl ratio Rg equal to 0.7927.
(See the discussion preceding Eq. (7-58).) Suppose that the coeflicient ratio is
arbitrarily set at unity, 846 = 1, in Fig. 7.5a, that is, equal primary and sec-
ondary aberration coeflicients but of opposite sign. The corresponding value for
the secondary coefficient is Cgy /N = 1.784. If this same secondary coefficient
value is combined with the optimum (3,, = 3 /2 (instead of unity), Fig. 7.6a,
or Eq. (7-63), indicates a Strehl ratio of Rg = 0.9556. So by increasing the
primary spherical aberration S0% with the same secondary coefficient, the Strehl
ratio is improved from 0.7927 to 0.9556.

As a second example, we choose 835 = 1 in Fig. 7.5b, which results in
Cs /N = 2 for Ry = 0.7927. If the same value of the secondary coefficient,
Csi /N = 2, is located on the lower curve of Fig. 7.6b (or is substituted in Eq.
(7-64)), meaning that 355 is increased to the optimum 1.2 by increasing the
absolute value of the primary coefficient by 20%, Rg is improved from 0.7927
to 0.8727.

In each of the examples, despite increasing the primary aberration coefficient
considerably (to reach the optimum primary-to-secondary ratio), the overall ab-
erration is appreciably reduced, as indicated by the increased Strehl ratio.

Because of the minimum permissible value of Rg, Fig. 7.6 indicates that
Cso/ N cannot exceed a value slightly above 4 and Cs, /X cannot exceed a value
slightly above 3. If greater values of these coefficients (equivalent to smaller
values of the Strehl ratio) are to be handled in optimum balancing, some other
criterion, such as relative modulation M(s, ), has to be considered instead of
the Strehl ratio Rg. The upper curves in Fig. 7.6 show the results of pursuing a
development for relative modulation corresponding to the described one for the
Strehl ratio.
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Figure 7.6. (a) Relative modulation and Strehl ratio as functions of the secondary coefficient for
spherical aberration. (b) Relative modulation and Strehi ratio as functions of the secondary coeffi-
cient for coma [3].

As indicated by Eq. (7-14), the relative modulation is a function of both the
frequency s and the orientation y, whereas the Strehl ratio is expressed for a
combination of all frequencies and orientation in the optical system. So a mean-
ingful balancing analysis in terms of the relative modulation would probably
require a number of parallel calculations for various frequencies and orienta-
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tions. Because of the shape of a typical MTF curve, significant results tend to
be at the lower frequencies (small values of ).

As in the balancing development resulting in the Ry curves of Fig. 7.6, the
development leading to the M(s, ) curves starts with Egs. (7-42) and (7-43)
as expressions of the aberration functions W,,., and W, for spherical aberra-
tion (even) and coma (odd). From these expressions, with appropriate attention
to rectangular—polar coordinate transformation, the corresponding expressions
for the aberration difference functions, [V (x, y; $)]even and [V (x, ¥; $)]oqa, are
derived. The mean aberration difference function V(s) for each is found by Eq.
(7-17) and the mean squared aberration function V2 (s) by

Vi(s) = (1/@) SSG[V(x, y; s dx dy. (7-65)

From the two means, Eq. (7-28) gives the variances (&,)eyen and (&,)o4q Of the
aberration difference functions. From each variance, the corresponding relative
modulation M (s, ¥) can be found by Eq. (7-30).

Hopkins [3] gives the variances as

8vs = ApChy + AuCho + AgClo + A2, CoCyo + A26C0Ce0 + AsCaoCoos
(7-66)

8y = A3C3) + A5sC3y + A35Cy,Csy, (7-67)

where the subscript s (for spherical) has the same significance as the subscript
even, and the subscript ¢ (for coma) has the same significance as the subscript
odd.

By pursuing minimizing steps as have been carried out for the Strehl ratio
and by defining the coefficient ratios 84 and S35 as before, curves for Cg,/\
and for Cs; /\ as functions of the 3’s can be calculated for the arbitrary value
M(s, ¥) = 0.8 (Fig. 7.7). Unlike the Strehl ratio development, each M (s, V)
curve is for a specific frequency s as indicated. At s = 0.10, the peak value of
Ceo/ N occurs at 345 = 1.66; the peak value of Cs; /N at 835 = 1.38.- When
these 3 values are substituted in the relative modulation equations correspond-
ing to Egs. (7-50) and (7-55) of the Strehl development and then M(s, V) is
substituted for the two expressions for &, according to Eq. (7-30), the relations
shown by the upper curves in Fig. 7.6 result. As indicated in the parentheses
following the M’s, the spatial frequency s for both relative modulation curves
is 0.10; the angle y for spherical aberration is zero, and the angle for coma is
7 /2 radians. Obviously an infinity of curves could be drawn for all possible
choices of s and .
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Figure 7.7. For a relative modulation of 0.8 at the indicated frequencies: (a) Variation of the
secondary coefficient of spherical aberration as a function of the primary-to-secondary ratio of
coefficients; (b) variation of the secondary coefficient of coma as a function of the primary-to-
secondary ratio of coefficients [3].

If, instead of the 3’s for the maximum values of C4y/\ and Cs, /N, a certain
design requires 8,5 = 1.25 and B35 = 0.95 at s = 0.10, then, for a relative
modulation of 0.8 (for which all the curves of Fig. 7.7 are drawn), Cq, = 4.5\
and Cs; = 2.9\, However, the curves of Fig. 7.6 show that these values of Cq,
and Cs; would result in relative modulation values of 0.92 and 0.91, respec-
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234 MERIT FUNCTIONS AND ABERRATION BALANCING

tively, for spherical aberration and coma if the optimum $’s, 1.66 and 1.38,
were applied. Again, as in the Strehl examples, an improvement is realized by
increasing the primary aberration to attain optimum balance.

ABERRATION BALANCING WITH ZERNIKE POLYNOMIALS

In Chapter 4 the wave aberration function is expanded in two different series.
The first is the traditional power series illustrated in Eq. (4-33) and in Table
4.1 where the terms are sometimes referred to as the classical aberrations, some
of which correspond to the historical Seidel aberrations. Balancing these clas-
sical aberrations to optimize the wave aberration function according to some
merit function is the concern of the previous section.

The second series discussed in Chapter 4 is the one involving Zernike
polynomials as indicated in Eq. (4-47). A significant difference in the two series
is the way the polar coordinate angle ¢ occurs in the terms of each series. In
the power series, cos™ ¢ is the form of the angular function; in the Zernike
polynomials, cos me occurs as a factor. As suggested by Eq. (4-48), trigono-
metric identities relating cos™ ¢ and cos me functions allow the expression of
a term in one series as a combination of terms in the other series.

In the previous section, the process of determining how large the primary
aberration should be to balance the higher order terms proves rather tedious.
On the other hand, when each Zemike term is converted to its equivalent clas-
sical combination of aberrations, a ‘‘built-in’” property produces classical ab-
errations that are already balanced. Demonstrating this property is the purpose
of the present section.

In Eq. (7-13) the Strehl ratio is given as the source of a binomial. When this
binomial is expanded, the following expression in terms of the variance & re-
sults:

Ry = 1 — (472 /N8 + (4n*/\*) &% (7-68)
For R values close to unity, the third term on the right side can be dropped:
Rs = 1 — (47°/N)é&. (7-69)

(For convenience, since approximations based on restricted independent vari-
able ranges are commonly expressed as equalities in optics, the ‘‘approxi-
mately”” symbol in Eq. (7-69) will be dropped in derived relations.) When the
expression for & in terms of the wave aberration function W, Eq. (7-10), is
substituted in Eq. (7-69):
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ABERRATION BALANCING WITH ZERNIKE POLYNOMIALS 235

Ry = 1 — [(2n)*/N] [W? — (W)’). (7-70)

The average of the squared wave aberration function W? is defined in Eq.
(7-5). Because the indicated integration is over a unit-radius circle, the expres-
sion can be written more explicitly as

w? = (1/7) Sh Sol W dp de. (7-71)

0

The average of the wave aberration function, defined in Eq. (7-6), can also be
more explicitly written:

w=(1/7) S;W S; W p dp de. (7-72)

One form of W expressed in a series of Zemike polynomials is given as Eq.
(4-47). By revising the definition of A4, as done by Bezdid’ko [16] and others,
the series can be more compactly written:

W = 2. A,.R™(p)cos me. (7-73)

Substitution of this series in Eq. (7-70) according to Egs. (7-71) and (7-72)
looks extremely complicated. However, because of the orthogonal property of
Zemike polynomials, as discussed in Chapter 4, the cross-product terms (that
is, where the factors have different m’s) in the squared series integrate to zero:

W2 = A% + (1/2) gl %()Aﬁm/(n + 1), (7-74)
W = Ay, (7-75)
Ry =1—[(2x)/N] 2 42,/(n + 1). (7-76)

Besides being surprisingly simple in form, this expression for Ry indicates that
each individual Zemike aberration reduces the Strehl ratio independently of the
others.

As a demonstration of the inherent balance in each Zemike aberration, the
following single term will be explored:
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236 MERIT FUNCTIONS AND ABERRATION BALANCING

W = Ay R} (p)cos 4¢. (7-77)

From Eq. (7-76),
Rs =1 — [(27)* /N2, /5. (7-78)

To transform the Zernike term into the equivalent combination of classical ab-
errations, the third identity of Eq. (4-48) is applied:

cos 4o = 8 cos* ¢ — 8 cos® o + 1. (7-79)
From Table 4.1I, the expression for the Zernike radial polynomial can be found:
Ri(p) = o". (7-80)

So the complete classical expression for the Zernike wave aberration function
assumed in Eq. (7-77) is

W = 84,,0" cos* ¢ — 840" cos® o + Aup”. (7-81)

To check whether this combination is balanced, an arbitrary third-order (Seidel)
spherical aberration, (Cyg0®, is added to W:

W =W+ 0C40p4 = 8A44p4 COS4 @Y — 8A44p4 COS2 ¢ + A44p4 + 0C40p4.

(7-82)

The coefficient (C,, can be any nonzero real value, positive or negative. To
show that the aberrations for W, Eqgs. (7-77) and (7-81), are balanced, we have
to demonstrate that any R§ for W’ must be less than the Rg for W, Eq. (7-78).
To do this, the expression for W', Eq. (7-82), has to be written in terms of
Zernike polynomials so that we can utilize the formula for R, Eq. (7-76). Since
the first three terms on the right side of Eq. (7-82) constitute the Zernike
polynomial for W in Eq. (7-77), we have only to determine the Zernike equiv-
alent of the remaining term, ,C,o0*. This can be done by finding what combi-
nation of the m = 0 Zernike radial polynomials in Table 4.II will sum up to
oCaop®. By inspection, it is apparent that the following, with appropriate coef-
ficients, will do the job:

RY=1, RY=2p"—1, and Ri=6p"—6p>+ 1. (7-83)

Forming the sum gives
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RY + 3RY + 2R = (6p* — 6p° + 1) + (6p> — 3) + 2 = 6p*, (7-84)
SO

0Cao 6% = (0Ca0/6)RS + (0Ca0/2)R3 + (oCao/3)RS,  (7-85)
and, therefore, the Zernike coefficients are
Ay = 0C40/6» Ay = 0C40/2, and Ay = 0C40/3~ (7‘86)

When the Zernike equivalent of 0C40p4 in Eq. (7-85) is substituted in Eq.
(7-82) with the coefficients of Eq. (7-86), the following results:

W' = Ay Ri(p)cos 4o + Ay Ri(p) + Ay RY(p) + Ao (7-87)
Then, applying the formula for the Strehl ratio, Eq. (7-76), we have

Rs =1 —[(2n)’/N][(434/5) + (4%/5) + (43/3)].  (7-88)

Comparing Eq. (7-76) with Eq. (7-78), we find

Ry = Ry — [(27)*/N][(4%0/5) + (430/3)], (7-89)

R} < R (7-90)

for all real values of (C,, other than zero, which indicates that the classical
aberrations equivalent to the single Zemike aberration are balanced to produce
the maximum possible value of the Strehl ratio.

COMPARISONS OF OPTIMIZING AND BALANCING
PROCEDURES

An optical designer has available a number of different optimizing and balanc-
ing procedures, some of which have been discussed in the earlier pages of this
chapter. Although further comparison and appraisal of these procedures are be-
yond the scope of this book, the reader may benefit by knowing the nature of
some authoritative discussions of the procedures. Prominent among these works
are papers by Hopkins [3], Rosenbruch [17], and Rosenhauer et al. [18].

Hopkins compares three different procedures for optimizing and balancing
using the following criteria or merit functions:
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238 MERIT FUNCTIONS AND ABERRATION BALANCING

1. Variance of wave aberration &, Eq. (7-8).
2. Mean square of wave aberration W?, Eq. (7-5).
3. Mean square of transverse aberration ¢2.

The first and second merit functions are defined by the indicated equations. The
third requires some extension of definitions in Chapter 3.

Image plane canonical coordinates Gg and Hy are defined by Egs. (3-33)
and (3-34). Aberrations produce increments 6G g and 8H ¢ in these coordinates,
and the increments are related to partial derivatives of the wave aberration W
according to Eq. (3-37). The transverse aberration ¢ is defined by

& = (6G4)" + (8HLY, (7-91)

and the mean square value is given by

& =(1/a]) S SG ¢ da. (7-92)

The wave aberration power series is broken into two polynomials, as in previous
developments:

W = Coo p? + Cyop* + Ceo p°  spherical aberration, ~ (7-93)
Wi = Cip cos ¢ + Cyp® cos ¢ + Csip’ cos ¢ coma. (7-94)

When these polynomials are written in rectangular coordinates and 6G’s and
8H/ are evaluated by the partial derivatives of We,en and Wouq:

€2ven = 2C30 + 4Clp + 6CG + — s

+ 6CeCag,  (7-95)

for spherical aberration, and

2 C2
5(3731 + ——135 4 2C),Cy + 4Cy,Csy + 2C5,Cyy,  (7-96)

)
€ad = C1 T

for coma. These equations correspond to the equations for £e.e,, Eq. (7-45),
and £,44, Eq. (7-51); optimum primary-to-secondary coefficient ratios (846 =
—C,o/ Cep for spherical aberration, 835 = —Cj;/Cs; for coma) can be deter-
mined for €2,., and €244 in a manner similar to finding the optimum ratios for
&.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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Table 7.1 Optimum Primary-to-Secondary Coefficient Ratios’

Merit Function 3 & w? Iz é &
Spherical Aberration (34
By integration 1.50 0.94 1.33 0.83 1.30 1.20
By discrete sum — 1.17 1.50 0.97 2.25 1.42
Coma 635
By integration 1.20 0.8 1.20 0.80 1.5 1.20
By discrete sum — 1.27 1.50 0.94 2.5 1.50

“From Hopkins.

Instead of evaluating just three optimum ratios each for spherical aberration
and for coma, Hopkins introduced two kinds of variations that increased the
evaluations to 11 for each aberration. Wherever an integration was indicated,
he would make a parallel evaluation by a discrete sum based on a marginal ray
(0 = 1) and a zonal ray (p = 0.707). Also, besides evaluations for optimum
focus, he repeated these evaluations for the paraxial focus (C,, = 0, C;; = 0).
His results are given in Table 7.1. The subscript O indicates criteria for paraxial
focus.

The wide ranges of the values in the two parts of the table suggest that there
is more to an optimum balance than simply calculating a coefficient ratio. The
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240 MERIT FUNCTIONS AND ABERRATION BALANCING

designer must study the application of the optical system to decide which merit
function most closely coincides with the purposes of the system. Then, if dis-
crete sums are used to evaluate integrals, the selection of which rays and how
many of them (with possible weighting) will obviously affect the results.

As a further demonstration of how balance is dependent on which criterion
is applied, Rosenbruch [17] adds the coma curve of Fig. 7.5 to the curves of
Fig. 7.7b to produce Fig. 7.8 where the added curve is labeled ‘‘Strehl ratio =
0.7927.”’ 1t is apparent that the maximum value of the coma secondary coefti-
cient occurs at a lower value of the primary-to-secondary ratio for a fixed Strehl
value than for any of the indicated relative modulation curves. Again, the de-
signer has to make a decision: Does the Strehl ratio provide a better criterion
than the OTF-based relative modulation at a particular frequency?

THE EFFECT OF OPTICAL PARAMETER VARIATIONS ON THE
OPTICAL TRANSFER FUNCTION

By changing optical construction parameters and calculating the resulting
changes in the MTF (the absolute value of the OTF), Rosenbruch [19] studied
the influence of parameter inaccuracy on system performance. He worked with
an f/5 system with a focal length of 300 mm. Seven optical surface radii were
involved; he changed each in succession by 1% and found that the region oc-
cupied by the various resulting MTF curves was as shown by the cross-hatched
area in Fig. 7.9. The total variation, as indicated, was about 0.1 of the MTF.
To make a similar study, King [10] chose to differentiate the OTF with re-
spect to the design merit function, which was the squared OTF with certain
weightings. This criterion allows a wide range in OTF values, and neither the
spatial frequency nor the aberration function need be limited to small values.
The mathematics of King’s approach is outlined in the following paragraphs.
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The wave aberration W(x, y) is assumed to be a function of N construction
parameters p, where

n=1,23,...N. (7-97)

If changes Ap,, are kept sufficiently small, the following truncated expansion of
a Taylor’s series is a valid approximation of W(x, y) at parameter values p,,:

w
W(x, y; pa) = Wolx, y) + 2 — Ap,, (7-98)

where W, is the value of W for initial p, values of p,,. The transfer function
by, (s) for this W(x, y; p,) can be expressed by substitution in Eq. (5-95):

- e o)
+ 3 {[6W0<x +3 y)j/apn} Ap,
o2 B o5 )]

- dx dy. (7-99)

The index of refraction # is assumed to be unity. Rearrangement of exponential
terms gives

hioy = § el ([l 5) [ [l
2 (ol 5) )
- Ha%(x - yﬂ/aan Apnﬂ dx dy. (7-100)

For convenience, groups of terms will be represented by single symbols as

it = oel {[fe +3)] =[50 )]

(7-101)
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242 MERIT FUNCTIONS AND ABERRATION BALANCING

0, = 0,(x, y; 5) = {[6W0<x + % yﬂ/ap,,} - {[awo(x - % yﬂ/ap,,}.

(7-102)

Making these substitutions in Eq. (7-100) yields

N
by(s) = S Sa i exp<—m El o, Ap,,> dy dy. (7-103)

The exponential factor in the integrand can be expanded into the power series
whose form is

expf =€ =1+0+6/20+6/31 + -, (7-104)

If Ap, is sufficiently small, the infinite series can be adequately approximated
by the first three terms (within braces):

N

bo(s) = § Sa ﬁ{l — ik % 0. Ap, + (87/2) [E o, Apﬂ dx dy.
(7-105)

If only one parameter p,,, where 1 < m < N, is changed, the corresponding
change in b, (s) can be reached by taking its partial derivative with respect to
Ap,.:

me

f’;ﬁ—;f")]l - | Sa ;{-m on + &2[ %1 anApn} amz dxdy. (7-106)

For further development of this equation, it is convenient to express each term

of the complex integrand in rectangular form, explicitly defining for each a real
(Re) and an imaginary (Im) part,

Re(m, n) + ilm(m, n) = & S S (fo,0,, dx dy) Ap,,  (7-107)

where n # 0, and

Re(m, 0) + i{Im(m, 0) = —&s S po,, dx dy, (7-108)
@
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where n = 0. Substituting these defined expressions in Eq. (7-106) yields

3[bo(s)] = Re(m, 0 + fdm(m, 0) — §1 [Re(m, n) + ilm(m, n)] Ap,.

3[ap.]
(7-109)
We also define a rectangular form for Eo(s),
Re,(s) + iImy(s) = by(s), (7-110)
which, when differentiated with respect to Ap,,, becomes
3 bo(s)] _ d[Rei(s)] 4 3[Im(s)] (7-111)

ap,]  3[Apa] [ Apn] -

Since both are the same partial derivative, the right sides of Eq. (7-109) and
(7-111) are equal. As in all complex equations, the real parts on the two sides
of the resulting equation are equal; the imaginary parts on the two sides are also

equal:
8[Rey(s)] N
Era Re(m, 0) = 2 [Re(m, n)] Ap,, (7-112)
9[Imy(s)] N
ofap,) im0 - 2 [1m(m, n)] Ap,. (7-113)

King chooses a merit function having several terms, two of which are directly
related to the OTF. One of these is

N
0 2 qa(4p.), (7-114)

where Q is a positive damping factor and the g,’s are damping coefficients. The
other OTF-related term is

¢p = 1 — 2 [n,Re}(s) + nyIm¥(s)], (7-115)

where the #’s are positive weighting factors and the summation is over a set of
off-axis image points. Since Re, and Im, are defined by Eq. (7-110), the quan-
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tity in the brackets of Eq. (7-115) is the squared value of the transfer function
by(s) when Na=7p = 1.

Equation (7-115) could represent alternative merit function terms where the
summation is over different spatial frequencies, different azimuths v/, or differ-
ent wavelengths A. The weighting factors must be controlled so that ¢, remains
positive during an optimization procedure. Minimizing the merit function term
¢p involves the partial derivative,

a¢D
a(Ap,,)

= -2 2 {naRel(s) ‘ZR(Z—;(S)) + 7plm, (s) ZI(TIT*S))K (7-116)

The real part of by(s), which is defined in Eq. (7-110), is the real part of Eq.
(7-105); the partial derivative of Re(s) is given by Eq. (7-112). Similarly, the
term in Eq. (7-116) involving the imaginary part of by(s) can be obtained from
Egs. (7-105) and (7-113).
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8

Measurement

INTRODUCTION

The ability to measure an optical transfer function (OTF) with sufficient accu-
racy and speed at a practicable cost is a goal of high significance in the art of
optical instrumentation. Just the confidence among designers and users that a
measurement of the OTF in one laboratory, or on a specific set of equipment,
could be reproduced reliably at another time and place would most certainly
broaden the use of the OTF for the specification and proving of optical systems.
Optical quality could then be generally specified not only in terms of geometric
fidelity between image shape and object shape but also in terms of a fidelity of
contrast between given points in object and corresponding points in image.

As one reviews the sweat and frustration spent on OTF instrumentation,
hindsight suggests a guiding adage that might have made life more productive
for workers in the field: As the refinement of optical systems is pushed to higher
and higher precision in the balancing of smaller and smaller residual aberra-
tions, with ever higher numerical apertures and ever wider fields of view, old
standards of optical measurement must be correspondingly raised. Measurement
procedures require more careful planning, the measuring equipment itself must
become more elaborate, and the resulting measurements have to be carried out
to greater accuracy than ever before.

Through the work of a group at the SIRA Institute, Ltd., the British Cali-
bration Service was among the first to pin down the sources of error and spell
out the limitations of OTF measurement equipment. They prepared a set of
standard test lenses that were measured by a number of different laboratories.
Comparison of the resulting data by an error analysis indicated how the limi-
tations might be reduced, and specifications for designing and building an ad-
equate test facility were assembled. SIRA has also suggested how existing fa-
cilities for measuring the OTF could be improved.

As later sections of this chapter indicate, schemes for measuring the OTF
proliferated during the period from the late 1940s into the early 1960s. Unfor-
tunately most of the resulting equipment, though often ingenious, emphasized

246
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INTRODUCTION 247

speed and convenience rather than precision. Two excellent review papers by
Murata and by Rosenhauer and Rosenbruch [1, 2] describe this interesting pe-
riod. The weight of the evidence, discussed in some detail near the end of this
chapter, seems to favor the interferometric method of measuring wave-front
distortion and subsequent calculation of the OTF by autocorrelation.

A present challenge is to measure consistently the OTF at off-axis points in
the image field. On-axis results are now reasonably reproducible between lab-
oratories with tolerable error. Even with the same kind of equipment, though,
consistency begins to be quite difficult at 10° off axis.

Certain construction difficulties contribute to off-axis measurement errors. A
well-made lens that exhibits excellent performance in a practical application
often falls short when the MTF or spread function is checked for consistency
at a given radius while the lens is rotated about its optical axis. This might be
due to a residual, though minute, decentering or tilting of individual elements.
Lens seats and screw threads can be out of tolerance or adjustment to increase
further the noncoincidence of the mechanical axis (the center line of the cylin-
drical barrel) with the theoretical optical axis.

Maintaining cylindrical symmetry in laboratory measurements is fundamen-
tal. In an MTF instrument itself, it is usually taken for granted that the object-
field slide, the image-field slide, and the seating flange of the lens holder are
all parallel. However, when a lens is mounted in the system, the optical axis
of the lens generally does not coincide exactly with the axis of the MTF instru-
ment. As a result, the image plane of the lens does not coincide with the plane
of the image field slide. By making a sequence of off-axis MTF or spread func-
tion measurements for different lens aspects, a lens position can be found that
produces balanced readings, that is, symmetry about the instrument axis; and
the image plane of the lens intersects the plane normal to the axis of the MTF
instrument along a line parallel to the edge of the image-field slide {3].

OTF standards are beginning to appear in various countries. In Great Britain
OTF measuring equipment must meet certain performance criteria to gain ap-
proval by the British Calibration Service [4]. In the United States the American
Standards Institute (ANSI) has established a standard on the OTF [5]. A number
of other countries either already have OTF standards or are preparing them [6-
9].

To complement the work that is going forward on OTF measurements, op-
tical authorities recognize that a broadened optical quality concept requires also
explicit standards on veiling glare light, light transmittance, distortion, and an-
gular aberration, all of which are quite independent of OTF measurements.

In earlier chapters, the OTF is often discussed in terms of its two parts, the
MTF (modulation transfer function) and the PTF (phase transfer function). As
stated near the end of Chapter 6, the MTF, besides being the far easier of the
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two to measure, has proved of much greater significance than the PTF. Small
wonder, then, that purported work on OTF measurement procedures turns out
to be about only the MTF part of that function.

As the various equipments for measuring the OTF are reviewed, two para-
doxes become apparent. First, extended objects are sometimes used for test
purposes, but OTF theory is based on a point source in object space at a given
distance r from the axis; furthermore, image-forming properties of the optical
system are, in general, dependent on r. Second, when other than laser sources
are employed, the object is illuminated by light having a considerable range in
the wavelength A. The image-forming properties of the optical system are in
general dependent also on A.

When an extended object is part of an OTF measuring system, the variation
of measured results must either be negligible over the range of the distance r
involved, or a well-defined average must be accepted for each result. The con-
cept of isoplanatism, defined in Chapter 2, provides the basis for accepting
extended objects in measurement situations.

When the test illumination has a relatively broad spectrum, the optical sys-

Holding

Device

Light Test Test image

Source Object Lens Receiver

Detector

Device

Figure 8.1. Essential components of an OTF measuring equipment.
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tem must be free of chromatic aberration over that spectrum to give results
equivalent to testing with a narrow range of A. Otherwise, a well-defined av-
erage, again, must be accepted for each result.

COMPONENTS OF A MEASURING SYSTEM

The basic components of an experimental setup for measuring the OTF are
illustrated in the block diagram of Fig. 8.1. The essential components of any
such system are (1) the illumination system or light source, (2) a test object,
which can take the form of a slit, a half plane, or a grating, (3) the test lens,
which is the lens being tested, (4) a holding device to hold the test lens with
the required positioning and displacement accuracy, (5) an image receiver with
the required placement and motion accuracy in the image plane of the test lens,
and (6) a suitable and convenient electronic detection device to provide an elec-
trical response for a data output. The variations of the details of these compo-
nents are discussed in the subsequent sections of this chapter. The major dif-
ferences among setups lie in the form of the test object and the consequent form
of the image receiver. Other differences occur in the nature and particular char-
acteristics required of the detection device.

REQUIREMENTS OF THE COMPONENTS

Common to the large number of current designs of OTF measuring equipment
are certain basic components, which will be discussed briefly here by outlining
the principles involved and by describing some of the sources of error.

Precision in optical measurements starts with the quality of the optical
bench—especially in techniques as sensitive to error as an OTF measurement.
Errors peculiar to the bench itself must be known and minimized; these com-
promise the measurement more and more, as already mentioned, as the object
point is moved further off axis.

The OTF measurement requires a particularly stable device for holding the
test lens. The device must also provide precise adjustments for displacements
so that measurements can be made in a defined image plane for different field
angles and for different azimuths. As stated in Chapter 7, an observer’s thresh-
old in the perception of change in image quality is about a 10% change in the
area under the MTF curve. With this as reference, a feeling for the bench dis-
placement precision required can be gained from an example by Rosenhauer
and Rosenbruch [2]: A displacement of the image plane by 3 pm causes a change
of about 10% in the MTF for a lens with a numerical aperture of 0.25 (f/number
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of 2). Mechanical precision requirements are dependent upon focal length and
aperture in such a way as to make errors increase with increasing numerical
aperture. When the required optical error tolerance is determined for a given
test, a careful evaluation of the corresponding mechanical error allowable for
the image plane scanning device must be made to check the adequacy of the
available bench setup. As stated earlier, off-axis field points at angles as low as
10° begin to challenge typical laboratory equipment.

A particularly convenient method of determining bench errors has been dis-
cussed by Marchant and Ironside [10] and by Marchant [11]. Figure 8.2 shows
schematically the bench parts involved. The test lens is clamped to a mounting
face that is assumed perfectly flat and parallel to the reference surface. If the
test lens were perfectly corrected and perfectly made, its actual image plane
would be exactly parallel to the reference surface and would assume the position
of the ideal image plane indicated by the dashed line in the figure. OTF mea-
surements are typically made at various points in the image plane. In making
these measurements, the image analyzing device, typically a slit, should move
in the ideal image plane; but, in practice, many different kinds of mechanical
errors in the bench, such as curved slide ways and general flexure when the
bench is turned to different field angles 6, combine to cause the analyzing device
to move in some such path as indicated by the curved line. The consequent
error &z is thus a function of position in the image plane and of the accumulated
mechanical bench errors, which are in turn functions of the field angle.

Marchant and Ironside [10] determined the influence 6z-type errors had on
the MTF of a certain high-quality, wide-angle lens (f/4.5, 30-cm focal length).
In Fig. 8.3 the MTF is plotted for various field angles as a function of the

Reference
surface

Lens
mounting
face ‘ Ideal

Path followed
by image
analyzing device

Figure 8.2. Diagram illustrating a method of defining and measuring optical bench error 6z {10].
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Figure 8.3. ““Through-focus™ OTF curves for a high-quality, wide-angle lens (30 cycles /mm,
aperture: f/4.5) [10].

displacement of the image analyzer from the ideal image plane, which was
chosen as the position where the on-axis (§ = 0°) MTF attained its peak value.
These through-focus curves were all recorded at a spatial frequency of 30 cycles/
mm. Because of the choice of image plane position, some of the off-axis curves,
for instance the one for § = 30°, have a steep slope at zero displacement; so
the MTF value for these curves is comparatively sensitive to small changes in
analyzer displacement near the ideal image plane.

The relative shapes and positions of the through-focus curves, such as those
of Fig. 8.3, vary considerably from lens to lens. A flat-field lens of otherwise
poor correction, for instance, would produce shallow curves that reach their
peaks very nearly at the same image plane position. As a result, the error tol-
erance for 6z would be comparatively great.

Marchant and others [12] have analyzed the MTF measurements made by
nine different laboratories on a standard wide-angle lens. Three figures, Figs.
8.4-8.6, show graphical results of these measurements. Figure 8.4 is a plot of
one set of results. The MTF for both the radial and tangential directions, from
on-axis up to 40° off-axis, are shown. The ideal image plane, zero on the dis-
placement scale, was placed at the peak of the tangential on-axis MTF curve.
To facilitate comparison of the various curves, the on-axis data are for a spatial
frequency of 30 cycles/mm; and the off-axis data are for 10 cycles/mm. To
compare various measurements at different laboratories, nine sets of data, re-
corded under supposedly identical conditions, were plotted on a common pair
of axes as in Figs. 8.5 and 8.6. In Fig. 8.5, the radial MTFs 10° off-axis are
plotted against spatial frequency; in Fig. 8.6 the tangential MTFs 20° off-axis
are plotted also against spatial frequency.
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Figure 8.4. Variation of MTF with focus position and field angle [12].

At first sight, the discrepancies in the results from the nine laboratories may
appear to discredit the MTF for the specification and performance assessment
of lenses. However, the study by Marchant and others came up with the fol-
lowing conclusions: Analysis indicates that the differences among the labora-
tories’ results can be attributed largely to errors in setting up the lens on the

10

0.8

0.6

0.4

Radial MTF, +10° off axis

02+ —

0 | | l I
0 10 20 30 40 50

Spatial frequency, lines/mm

Figure 8.5. Comparison of MTF measurements made at different laboratories. Radial MTFs, 10°
off-axis, versus spatial frequency [12].

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



REQUIREMENTS OF THE COMPONENTS 253

10 T 1 T T
@ 08} —
s
B
Q06 —
Y
x
b_
=
S 0.4 —
€
[}]
oo
c
202 —
0 ! l
0 10 20 30 40 50

Spatial frequency, lines/mm

Figure 8.6. Comparison of MTF measurements made at different laboratories. Tangential MTF,
20° off-axis, versus spatial frequency [12].

optical bench, to mechanical misalignment of the bench itself, and to errors in
the spatial frequency calibration of the MTF measuring equipment. With dili-
gent attention to these sources of error, it is estimated that MTF measurements
can be repeated to within +0.05.

A substantial body of evidence suggests that +0.05 uncertainty in the MTF
is small relative to the least-detectable difference in picture quality. So, with
attention to this uncertainty and the quality of the laboratory making measure-
ments, the MTF can be reliably employed in procurement specifications. It
appears especially appropriate to use the MTF as a quality control tool in pho-
tographic lens production.

What maximum value of 8z can be tolerated in making acceptable MTF
measurements? A general answer is probably impossible to formulate, but a
useful approximation can be reached by limiting the scope of optical parameters
in the test lens. As in aberration considerations, the ultimate precision required
in any measurement corresponds to reducing errors to match the errors caused
only by diffraction (diffraction-limited lens). With this provision and with the
+0.05 latitude in MTF already discussed, the tolerance on 6z becomes a func-
tion of spatial frequency and relative aperture. With reference to Fig. 8.4, we
make the conservative assumption that the through-focus curve of the MTF
being measured is so located along the displacement axis that the maximum
slope occurs at the origin (position of the image plane). Then, with rather ar-
bitrary assumptions as to the typical ranges of spatial frequencies and of aper-
tures, the simplified relation for the maximum error that can be tolerated is
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6z = [54 (f/No.)/w] pm, (8-1)

where A(MTF) = 0.05, N = 0.546 pm, and w is the spatial frequency in
cycles/mm. Although the mechanical tolerances calculated by this formula may
appear extremely small, a review of the data-taking represented by Figs. 8.2
and 8.3 suggests that this tight a restriction on 6z is a legitimate target for the
bench manufacturer [10].

A reliable value for 8z cannot generally be reached by dealing with the total
of such errors as those caused by departures from straightness of slide-ways and
the lack of parallelism between transverse slides and the lens mounting flange.
The various errors must be assessed individually. Finally, to get an accurate
evaluation of &z, it should be measured directly as a function of field angle 6.

Most OTF measuring instruments involve a narrow slit either as the test
object or, on the other side of the lens, to scan the aerial image formed by the
test lens of an extended object. Errors occur when the nominal size and ge-
ometry of the slit are accepted without a careful check. Typical spectrometer
slits are calibrated for various widths, but each control setting must be checked
against actual slit width. This is especially important when the precision of the
measurement calls for a correction in the MTF value based on slit width. Also,
the slit should be minutely examined to assure constancy of width along its
length, straightness of its edges, and coplanarity of the slit jaws. The difficulty
of this task can be appreciated when it is found, as demonstrated in a later
section, that the slit width for MTF measurements is of the order of a microm-
eter.

For MTF measurements at large field angles or at large apertures, the re-
sponse of the image receiver to obliquely incident beams becomes important.
Some mechanically adjustable slits, however finely honed, have a depth many
times the width; so the opening presents a tunnel rather than a theoretically
desirable slit to the incident beam. The cross section of the beam admitted
through such an opening can be a complicated function of the field angle. This
“‘tunnel effect’’ can be minimized by ruling the slits in thin metal films. Another
approach to the problem is to form a reduced image of a regular spectrometer
slit with a low-power microscope objective. Kuttner [13] has shown the signif-
icant effects of microscope objectives on MTF measurements made at large
apertures and at large field angles.

OTF measuring devices make use of grating transparencies in a number of
different ways. These line patterns, usually involving a sine wave variation, can
be test objects or be in the image field either as scanners or as patterns scanned
by images of special test objects. In these applications, the purpose of the mea-
surement is usually to determine how the contrast of the line pattern varies with
spatial frequency or with the wavelength of transmitted light. Knowing the pre-
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cise frequency in such measuring is critical to getting a true MTF curve shape
[10].

As we have established in earlier chapters, the validity of the optical transfer
function requires incoherent illumination, with the exception of the interfero-
metric or autocorrelation method of measurement. This incoherence is usually
attained by arranging a sufficiently large aperture in the illumination system and
providing ground glass or some other diffuser.

Since aberrations are dependent on distance to the object, the bench setup
must comply with the specified distance, either by actual spacing or by simu-
lation with an optical auxiliary such as a collimator. When optical auxiliaries
are introduced, care must be taken neither to disturb the conditions for inco-
herence nor to compromise the measured OTF by including the effects of ab-
errations in the auxiliaries. Backing out the contributions of auxiliary optics
from an overall measurement is usually an extremely difficult procedure; so,
whenever possible to avoid this difficulty, the quality of the auxiliary should
far exceed that of the test lens, or the auxiliary should be dispensed with alto-
gether. The unwanted effects of auxiliary optics may show up either as part of
the geometrical aberrations or in the wave-front aberration, depending on the
measurement method used.

DIRECT METHODS

Perhaps the most direct method of measuring the OTF is the one represented
by Fig. 8.7a. A grating is placed in the specified object position for the test
lens with the grating lines parallel to, for example, the n-axis. With this setup,
the variation of the transmittance 7 as a function of the position coordinate £,
perpendicular to the grating lines, is

7(€) = 7, + 7y cos w(£/Ey), (8-2)

which corresponds to Eq. (2-3) with a change in notation. When the grating
transparency is illuminated by an incoherent beam having a uniform incidance
H at the grating, the distribution of exitance M over the grating, on the side
toward the entrance pupil, is

M(§) = Hr(&) = M, + M, cos w(£/%,). (8-3)
(See the section on “‘Distributions of Physical Quantities’’ in Chapter 2.) In

Eqs. (8-2) and (8-3), ¢, is the half period of the spatial frequency in the grating;
so the spatial frequency is given by
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Figure 8.7. Two configurations for the direct measurement of the OTF: (@) Sinusoidal grating as
the object; slit in the image plane. (b) Slit as the object; sinusoidal grating in the image plane.

w; = 1/(251)- (8'4)

Methods for varying the spatial frequency are discussed in a subsequent para-
graph.

Contrast in the object, according to Eq. (2-16) and with appropriate adjust-
ment of nomenclature, is

C=M/M, =1/, (8-5)

The test lens forms a sinusoidal aerial image (image in space without a screen)
at the defined image plane. To determine the distribution of this aerial image
experimentally, the flux density is measured photometrically by probing the
light field at the image with a radiant energy detector. As the detector is moved
at a constant speed in a path perpendicular to the sinusoidal bars in the image
plane, it produces an electrical time-dependent signal of the form
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i(t) =i, +i,cos[(wt/t;) + ¢], (8-6)

where ¢ is the time phase advance (time phase lag if negative). The time and
spatial quantities are related as follows:

t=£t/v; t =& /v, (8-7)

where v is the velocity of scanning in a direction parallel to the £-axis. The
measured contrast in the image is

Ci = ip/i, (8'8)
and the modulation transfer function at the spatial frequency w, is

T(wl) = (ib/ia)/Mb/Ma) = (ibMa)/ iaMb)* (8_9)

Each data point on the MTF curve requires a separate grating for each particular
spatial frequency for which the MTF is measured.

The straightforward derivation of Eq. (8-9) is, in fact, oversimplified. In a
subsequent section, it is shown that the finite length of the grating and the width
of the slit both strongly affect the value of T(w,;). These factors also enter into
the measured value of w;. To take into account the grating length and the slit
width, a special computation is required after each measurement; in fact, when
precise results are needed, the additional compensating computation really de-
nies the existence of a truly direct measurement procedure.

Certain experimental difficulties in the described procedure require attention.
First, the radiant energy detector in the probe and its associated dc amplifier
should be designed with as high signal-to-noise ratio as practicable. The de-
tecting surface of the detector has to be in the shape of a slit, as narrow as
possible to provide fine resolution along the £ direction. However, the signal-
to-noise ratio improves with increased cross section of the slit; so the slit should
be long in the  direction to compensate for the required narrow width. Second,
the alignment of the detector probe long dimension must be precisely parallel
with the lines of the grating image; otherwise the advantage of narrow width is
lost. Third, although the £—n-axes define an image plane, the moving probe
may, according to the conditions of the test, have to follow instead the actual
surface of the optimum image (maximum contrast). The location of the probe
scan path relative to the £-n plane must be recorded as part of the measurement.

A variation of the procedure just described fixes the detecting probe slit and
moves the grating instead, producing again a relative motion between image
and probe. Another variation interchanges the positions of the grating and the
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slit; so, instead of the configuration of Fig. 8.7a, the parts are arranged as
shown in the schematic of Fig. 8.7b. As indicated, the slit and the detector can
no longer be incorporated in one physical entity since they are on opposite sides
of the lens. Again, a time-varying electrical signal is produced by the detector
as relative motion occurs between the slit image and the grating. Equivalence
between these variants is discussed in more detail in subsequent paragraphs.

EFFECT OF FINITE GRATING LENGTH

In our oversimplified view of OTF measurement, we have assumed that the
grating extends a great distance in each direction of the £ coordinate. This can-
not be attained practically, the actual extent being only from, say, some limited
—~§, to +§&,, with the arbitrarily placed origin of £ located so that the object
distribution function (representing the truncated sinusoidal distribution of the
actual grating) is an even function. The frequency spectrum of the truncated
sinusoidal distribution is

+ oo

MgM(%) exp( —i2mwt) dt, (8-10)

m(w) = |

where My, is a rectangular function (sometimes designated rects M) defined as

Mg =1 when —§¢, < ¢

IIA

£
Mg =0, when |£]| > &, (8-11)

and M(§) is defined by Eq. (8-3) where £ extends to positive and negative
values without limit. An alternative symbolic form for Eq. (8-10) is

m(w) = { MM, + MaM, cos(n£ /£)}, (8-12)

where the arrow denotes ‘‘equals the Fourier transform of.”” To find the Fourier
transform of the expression in braces, each of the two terms is operated on
separately, which can be done by inspection with the help of the convolution
theorem (see Appendix B). The first term in braces is a rectangular function
having the amplitude M,; its transform m,(w) is the well-known sinc function:

my(w) = [28,M, sin(27¢,0)]/(27E,0). (8-13)

This term is plotted in Fig. 8.8.
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Figure 8.8. Sinc function term in the frequency spectrum of a truncated sinusoidal distribution.

The second term, m,(w), is the rects function with an amplitude of M, mul-
tiplied by a sine wave of unit amplitude and unlimited extent. The Fourier trans-
form of the sine wave is a unit value delta function at the spatial frequency w,
of the grating. The convolution of the rects spectrum with the delta function is
the sinc function centered at +w,; hence

ma(w) = 26 My{sin[27E,(w; — @)]/[27E (0, — )]}, (8-14)

The complete spectrum is therefore

m(w) = my(w) + myw) = 26,{ M{[sin(27£,0)] /(27t0)}
+ My{sin[ 278, (w0 — @)]/[27E (w0 — w)]}}. (8-15)

This spectrum has three segments: m;(w) centered at the origin and two
segments in m,(w), one centered at —w, and the other at +w,. The widths of
the graphical lobes in the three segments are determined by £,. The first zero
of mi(w) is at 1/(2&,).

As indicated by the foregoing brief analysis of the total spectrum, the effect
of working with a grating of finite length is that, instead of having a single
frequency w;, the measuring apparatus simultaneously generates a distribution
of frequencies in the vicinity of w = 0 and another distribution around the
desired w,;, as shown in the plot of positive amplitudes in Fig. 8.9. It is obvious
that as the length of the grating 2£, is increased, the ‘‘skirts’’ of each peak are
drawn in closer to the frequency of the peak and, in the limit, squeeze in to
produce a single frequency at w, and a single zero frequency, a ‘‘dc,’” at the
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Figure 8.9. Frequency spectrum of a truncated sinusoidal distribution (minor lobes omitted).

origin. Because the grating has to be finite, a distribution of appreciable width
will always occur around the frequency w,; and an exacting task in the labo-
ratory is to measure both the height of the peak and the frequency at which it
occurs. These measurements obviously become easier as the lobe is narrowed.
Where to make the compromise between manageable grating length and a nar-
row distribution of frequencies involves a number of factors including mea-
surement judgment.

The example in Fig. 8.9 shows the relative widths of the frequency distri-
butions about w = 0 and about w = w; when the grating width contains eight
complete cycles of the spatial frequency. The maximum of the peak centered
at w; is never greater than the maximum of the peak in the other distribution
because

M, =M, (8-16)

as discussed in connection with Eq. (2-3).

Parts of the spectrum are omitted in Fig. 8.9. A mathematically complete
spectrum would include negative frequencies in a distribution about w = —w,
to form a ‘‘mirror image’’ of the positive frequencies shown in the figure. Neg-
ative frequencies are not plotted because they have no physical significance.
Also, that part of the spectrum distributed about w = 0 would not vanish at
1/(2%,) as the figure suggests; there is a succession of lobes of decreasing
height going on out to higher and higher frequencies, and these higher frequen-
cies must be considered until the lobe maxima begin to have negligible values.
Each lobe of Fig. 8.8 contains a continuum of spatial frequencies. The phase
of spatial frequencies in alternate lobes changes by = radians; or, alternatively,
the amplitude of every frequency in even-numbered lobes can be assigned a

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



CHANGING SPATIAL FREQUENCY 261

negative sign. Thus we must take into account both the wide m,(w) segment of
the spectrum centered at w = 0 and another wide segment, the m,( +w;) seg-
ment, centered at w = w,;; the two segments overlap.

It is of interest to consider the spatial frequencies in the two lobes of the
m;(w) segment on either side of w;, one lobe just above in frequency and the
other just below. (Since the value of w; in this example happens to be an integral
multiple of 1/(2¢§,), the m;(w) segment is zero at w;.) These lobes are illus-
trated in Fig. 8.9 by the broken line curve. (The maxima are not drawn to
scale.) The frequency w; is at the eighth zero of the m;(w) segment. Just below
w; and just above w, the amplitude maxima are —0.042 and +0.037, respec-
tively, times the amplitude at w = 0. By doubling the number of cycles in the
grating width to 16 cycles, the ratio of the larger adjacent lobe maximum to the
w = 0 amplitude would be reduced to —0.021. When the spatial frequencies
in the m,(w) segment are added algebraically at each frequency to the spatial
frequencies of the m,( +w,) segment, the resulting amplitudes just below w,
will be reduced and those just above will be augmented. These effects shift the
frequency of the measured peak to a slightly higher value than w,.

Because a wider grating decreases the amount of significant overlap of the
two distributions, the potential error in measuring the frequency of a test grating
image is reduced.

Accurate measurement of spatial frequency in the image of a sinusoidal grat-
ing is often critical. Our discussions of frequency, beginning in Chapter 3, deal
largely with the reduced coordinate system in which the optical magnification
is assumed to be unity. In the real-space coordinates of optical measurements,
the magnification may not be known to the required accuracy of the overall
measurement, in which instance the spatial frequency in the image must be
carefully measured.

CHANGING SPATIAL FREQUENCY

The practical laboratory problem of how to vary spatial frequency has been
solved in a number of different ways. In a typical scheme, a succession of
gratings is applied to provide as many different frequencies as the MTF curve
requires. One frequently used method is indicated in Fig. 8.10. The gratings
are on the cylindrical surface of a rotatable drum to facilitate the successive
presentation of the different gratings. A quite different way to employ a grating
drum is to put a continuous grating (of constant frequency or of a succession of
different frequencies) on the cylindrical surface by making the lines parallel to
the drum axis. Then rotation of the drum provides the scanning motion across
a stationary slit in the image surface.
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< Drum
Grating
Figure 8.10. Schematic showing several / c;?(tlf
gratings mounted on a drum for rapid change

of spatial frequency.

Rosenhauer and Rosenbruch [2] employed the second drum technique to get
the oscillogram pattern shown in Fig. 8.11. As the drum was rotated at a con-
stant angular velocity, a photomultiplier tube behind the slit picked up the light
from the grating and produced the pattern on an oscilloscope, which was pho-
tographed for the figure. With a number of stipulations, the envelope of the
oscillogram is the MTF curve. Among the requirements of this method are:

1. The photomultiplier-amplifier-oscilloscope system must be linear (out-
put proportional to input).
2. The contrast in the successive gratings must be constant.

3. The frequency and the number of cycles in each successive grating must
be so chosen as to make linear the spatial frequency scale of the envelope.

Figure 8.11. Pattern produced by a rotating drum-mounted grating having a succession of differ-
ent frequencies with lines parallel to the drum axis [2].
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Creating a grating with a sinusoidal transmittance has photographic problems.
Sinusoidal variation of flux density in a light field can be accomplished by a
number of different methods; but when such a distribution is to be recorded on
film, nonlinear photographic response limits the accuracy of the sinusoidal vari-
ation in the processed film. Several workers [14-17] have kept distortion to less
than 1% by carefully controlling the choice of film, exposure, and the photo-
graphic processing procedure. To achieve linearity, a common objective in the
entire process is to make the photographic gamma constant and near unity—no
mean feat.

When only one qualified grating is available for an MTF measurement, some
means are needed for varying the effective frequency of the grating. One tech-
nique is to employ an auxiliary optical system with magnification either greater
or less than unity to form an image of the grating, which then functions as the
object for the test lens in the measurement setup. As indicated earlier, the MTF
of the auxiliary optics must be taken into account in arriving at the MTF for
the test lens.

A nearly sinusoidal distribution with continuously variable spatial frequency
can be produced by crossing two square-wave gratings of relatively high spatial
frequency. The spatial frequency of the resulting Moiré pattern depends upon
the angle of crossing. One mechanism for this effect is to put the gratings on
two disks rotating in opposite directions about the optic axis; the Moiré fre-
quency then varies continuously as the disks rotate.

THE AREA GRATING

To avoid the photographic linearity problem, described earlier, in making a film
grating with a sinusoidal transmittance as a function of the coordinate £, the
grating area covered by the slit can be made a combination of areas having
either maximum transmittance (ideally unity) or minimum transmittance (ide-
ally zero). In other words, the grating is made up of areas that are either per-
fectly (nearly) transparent or completely opaque—nothing between these two
extremes. We can analyze this approach by returning to the grasshopper ex-
ample of Chapter 2. The grating pattern of Fig. 8.12b is analogous to the picket
fence, and Eq. (2-1) can be rewritten, with a change in notation, as

¢) =1 when (—£,/2) =& = (+ &/2)

and

IA

(2n +3/2)¢, = || = (2n + 5/2)%,,
7(£) =0 when (2n+ 1/2)¢, = |£] = (2n + 3/2)¢,,
n=0,1,2,3,4,.... (8-17)

1A

IA
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Figure 8.12. Scanning a square wave grating with a slit: (a) line spread function of the slit; (b)
square wave grating.
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This grating can be considered an array of parallel transparent bars as in Fig.
8.12b. The grating is assumed to be an image receiver whose surface is in the
image plane, and a slit is the test object. The test lens has the line spread func-
tion M(£) shown in Fig. 8.12a, which, by definition, is a plot of the incidance
in the slit image on the grating. We assume that the slit image falls on the
grating so that the long dimension of the image is parallel to the long sides of
the bars and that the image is at least as long as from bottom to top of a bar,
b. The scale along the £-axis for the line spread function M(£) is the same as
that for the grating function 7(§). The light flux in the slit image that strikes
the transparent part of the grating passes through, and the remainder is rejected;
so the amount that passes through depends on the position of the image relative
to the grating. In the measurement procedure, the image scans the grating by
motion of either the slit or the grating. The relative movement of the slit is
parallel to the ¢ coordinate axis. As the slit image is slid along the grating, the
spread function at each point along the way is expressed mathematically by the
shifted spread function; when its center is located at a point £,, the spread
function is given by
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M'(Eo) = M(Eo - E)- (8‘18)

At a point { along the axis, a slice out of the grating can be expressed as a
rectangular elemental area b d£. Because of the orientation of the slit image,
the incidance is uniform over the elementary rectangle, and the total flux reach-
ing the slice is bM (£, — £) d&. When this quantity is multiplied by the grating
transmittance function 7(£), the resulting expression is the light flux d$ that
passes through the elemental area of the grating:

d® = br(§)M(§, ~ &) dE. (8-19)
The total flux transmitted through the grating as a function of & is the integral
of Eq. (8-19):
+ o0
BE) = b | AEM(G — £) k. (820)

Equation (8-20) is recognized as the correlation integral of the grating trans-
mittance function with the line spread function.

To help visualize the process represented by Eq. (8-20), a transparency will
be hypothetically substituted for the lens spread function in the image plane.
The spread function M (£), as shown in Fig. 8.13a, is plotted on a transparency
with the height at £ = 0 equal to the height b of the grating bars. To convert
the ordinate scale of M (£ ) to the same units used for b, a constant C, is applied:

CM,=b or C, =b/M, (8-21)

where M, is the peak value of the M (£) occurring in Egs. (8-18)-(8-20). The
area between the curve and the £-axis is cut out or otherwise made perfectly
transparent (unity transmittance) and the rest of the transparency is opaque (zero
transmittance) as represented in Fig. 8.13a. The transparency, shown in Fig.
8.13a, is placed on the grating with the £-axes coincident. Then, as the trans-
parency is slid in the £ direction with the origin of the transparency at £ as
shown in Fig. 134, the total flux ®, passing through the two films is

+oo

®2(80) = b/M,, g _ T(E)M(E — £) dE. (8-22)

Comparison of Eq. (8-22) with Eq. (8-20) shows them to be identical except
for the scale constant 1/M,,. Therefore, the hypothetical transparency-grating
combination is a legitimate model for visualizing the projection of a spread
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Figure 8.13. Superposition of two transparencies: (a) spread function transparency; (b) super-
position of spread function transparency on grating transparency.

function on a grating. Although we used a specific function (the square wave)
for M (&) so that simple illustrative figures could be drawn, the development
for any other M (¢) function would have been the same as for our square wave
example. Particularly, the function could have been sinusoidal to be in line with
our previous grating discussions. Examples of actual sinusoidal area gratings
are shown in Fig. 8.14.

Though the application of the area grating is a current art in MTF measure-
ments, it is reminiscent of area sound track techniques in the early ‘‘talking”’
moving pictures.

The measurement of ®(§,), as represented by Eq. (8-20), constitutes the
raw data for evaluating the spectrum m(w), the lens MTF, which is the Fourier
transform of the lens spread function M (£). We resort to the convolution theo-
rem (see Appendix B, Eq. (B-32)) to extract the MTF from Eq. (8-20). If ¢(w)
is the transform of ®(&,), then

olw) = b[T,(w)][m(w)]. (8-23)
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Figure 8.14. Examples of sinusoidal area gratings (from Murata [1]).
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Solving for the spectrum m(w), which is the MTF, yields

m(w) = (1/b)[¢(w)]/[71(@)]. (8-24)

In this formula for m(w), the functions ¢(w) and 7,(w) must still be evaluated
by taking the Fourier transforms of ®(&,) and 7(£), respectively. Since ®(&,)
is recorded by a scanning process, £, must also be evaluated from &, = o,
where v is the velocity of the scan and ¢ is time, the actual independent variable
in the scanning process. In practice, rather than recording ® continuously, this
quantity is usually observed as discrete values at regular time intervals, f,, f,,
t,, etc.

In operating on the grating function 7(§), its finite nature has to be recog-
nized as indicated earlier in the analysis of the finite sinusoidal grating distri-
bution function m(w). A similar analysis of the bar pattern of Eq. (8-17) pro-
duces the result:

f(w) = [sin(27N%,0)] /[ 27w cos(7E,w)], (8-25)

where N is the total number of bars in the grating.

EFFECT OF SLIT WIDTH

So far, in the mathematical formulation of the slit-lens-grating combination,
the lens and grating functions have provided for physical limitations in the lens
and grating, but the slit has been treated as an ideal line having negligible width.
Actually, the slit must be wide enough to allow the passage of enough light flux
for relatively noise-free measurement. Just as we found that a lens produces a
spread function image for an ideal line object and that the finite nature of a
grating complicates its function, we now find that the appreciable width of a
slit also has to be involved in reducing the data for an MTF measurement.

For the following development, the slit will be regarded as the image re-
ceiver as shown schematically in Fig. 8.7a. Setting up an expression to repre-
sent the light flux passing through the combination of the image and scanning
slit parallels the writing of Egs. (8-20) and (8-22), which are usually referred
to as convolution integrals; in this instance, the integral is

+ oo

Bi(5) = | rE0(E - £k, (826)

—oo

where ®,(£,) is the light flux ‘‘passing through’’ the image-slit combination,
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75(£) is the rectangular slit function, and M;(£) is the grating image function.
For simplicity, the constant preceding the integral has been assumed unity. By
again applying the convolution theorem, as we did to arrive at Eq. (8-23), Eq.
(8-26) leads to

py(w) = [73(@)][ms(w)], (8-27)

where ¢;(w), 73(w), and my(w) are the Fourier transforms of ®3(£,), 75(£),
and M;(£), respectively. Solving for m3(w), which is the MTF, gives

may(w) = [g03(w)]/[73(w)]. (8-28)

Although this formula for the MTF appears to give the desired result, certain
peculiarities of the laboratory optical setup have to be explored before we can
be sure that the calculated m4(w) is indeed the true MTF for the lens under test.
Somewhat like the mechanical tolerances discussed earlier in this chapter, cer-
tain design tolerances either have to be maintained or special calculation pro-
cedures, often complicated, have to be followed to compensate for departures
from ideal design. For example, a grating may have a sufficient number of
cycles, though finite, to be treated as a continuous grating, but should it be
necessary to limit the number of cycles below some tolerable limit, calculation
of the MTF from observed data must take into account the finite nature of the
grating. Also, as another example, should the width of a slit exceed a limit
determined by the required accuracy of the MTF measurement, it can no longer
be treated mathematically as a line.

A previous section, ‘‘Effect of Finite Grating Length,”’ has already treated
the grating problem at some length. The actual spectrum produced by the finite
grating is a combination of sinc functions rather than the single frequency re-
sulting from an ideal sine variation; so reduction of the measured data requires
a corresponding correction when the difference is significant. Also, the total
value of the contrast peak near w; (Fig. 8.9) actually occurs at a frequency
slightly different from w, because of the contribution of the sinc function at the
origin. If not taken into account, this could contribute to errors both in fre-
quency and in contrast values.

When the Fourier transform of the rectangular slit function 75(¢) is taken to
get the spectrum 73(w) of the slit, a sinc function results:

m3(w) = [sin(27t0)]/(27¢w), (8-29)

where 2£; is the slit width. The first zero of this function occurs at the lowest
value of w where the sine in the numerator is zero and the denominator has a
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nonzero value:

27!‘25(.05 =, (8—30)
28, = 1/w,.

Ideally, as the slit scans spatial frequencies of equal contrast, we would prefer
that the signal at the detector be of constant amplitude. However, Egs. (8-29)
and (8-30) indicate that as the frequency increases, the slit attenuates the signal
more and more until at w, the slit is as wide as a spatial period and no net signal
is received as the pattern is being scanned. Any observation through the slit has
to be corrected for this attenuation. As in any other measuring system, atten-
uation of the signal brings the measured quantity closer to the noise level, which
affects the accuracy of the observation.

To get some idea of how wide a slit can be tolerated, the attenuation curve
ms(w) can be compared with the ‘perfect”’ (diffraction-limited) MTF curve.
In particular, the relative values of the first zero frequency w, and the MTF
cutoff frequency w, are of interest. In Chapter 5, Eq. (5-70), the cutoff fre-
quency is shown to be

we = 2 NLAL/A, (8-31)

where N.A. is the numerical aperture and A is the nominal wavelength of the
illuminating light. If we assume a numerical aperture of 0.25, which corre-
sponds approximately to an f /2 optical system, and a wavelength of 500 nm,
. is found to be 1000 lines /mm. Comparison of the MTF (“*perfect’’) and the
sinc curves in Fig. 8.15 confirms the anticipated requirement that w, must be
greater than w_; so w, > 1000 lines/mm. From Eq. (8-30), where 2¢; is the
width of the slit,

1/(2£,) > 1000,
2%, < 1/1000 mm or 1 pm. (8-32)

So, for the assumed example, the slit should be as much smaller than a mi-
crometer as the detector minimum signal requirement allows.

SQUARE WAVE GRATINGS

Instead of a sinusoidal grating, a square wave grating is sometimes used as the
test object in setups represented by the schematic of Fig. 8.7. Besides a fun-
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Figure 8.15. Comparison of the *‘perfect’” MTF and the sinc function.

damental frequency, such a grating produces an infinite series of harmonics as
indicated by Eq. (2-4), which must be taken into account either by calculation
or by electronic filtering.

Filtering becomes quite complicated when a sequence of square wave grat-
ings having different frequencies is put on a rotating drum. One way of avoiding
this problem is to substitute a rotating sector disk (Fig. 8.16) for the conven-
tional grating. When the disk image is scanned by a small aperture at a fixed
radius from the disk center, both the optical spatial fundamental and the elec-
trical time fundamental are constant as the disk rotates at constant speed. How-
ever, as the aperture is moved toward the center of the rotating disk, the spatial
frequency increases, but the electrical frequency remains constant, making elec-
tronic filtering a relatively easy task.

Another scheme places the square wave gratings of different frequencies side
by side rather than in sequence on a rotating drum. Then the spatial frequencies
are selected by moving the circular aperture parallel to the axis of rotation.
Constant electrical frequency, as in the disk technique, can be realized by mak-
ing the drum rotational speed inversely proportional to the spatial frequency
being observed.

As in the measuring techniques employing sinusoidal gratings, the signal-to-
noise ratio for square wave gratings can be greatly improved whenever one can
use the relatively large transmission area of even a narrow slit instead of a small
circular aperture. Also, when the straight-line boundaries of a square wave grat-
ing are scanned by a round aperture, the process produces its own peculiar
harmonic structure different from that of a slit.
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—

Figure 8.16. Square wave grating in the form of a sector disk.

INDIRECT METHODS

Although considerable calculation is involved in converting raw measurement
data into MTF results in most of the methods already discussed, they are gen-
erally referred to as direct methods. The OTF or MTF can also be evaluated
by observing the images of objects that are less suggestive of the sinusoidal
functions that form the basis of the OTF. Fourier analysis is characteristically
employed to reduce the data to useful form. This second group is loosely re-
ferred to as indirect methods.

Simple examples of objects commonly employed in indirect methods are slits
and edges. The frequency spectrum of a slit in terms of its width has already
been discussed in connection with scanning periodic images. The knife edge,
also called a half plane, consists of what may be regarded as a special case of
a square wave grating——a total of one cycle in all space, the ultimate in low
spatial frequencies. In the usual setup, the edge or line separating the two half
planes is arranged to intersect the optic axis. The bright-to-dark contrast is made
as high as practical, typically about 1000 to 1. The image of an edge is a dis-
tribution called an edge trace, which is represented by the symbol M.(£). The
derivative of the edge trace is the line spread function My(¢):
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M(§) = d[M(£)]/d¢. (8-33)

Inversely, as shown by Eq. (2-29) in different notation, the edge trace is the
integral of the spread function:

&e
M) = | mea (834)

The Fourier transform of the line spread function turns out to be the optical
transfer function.

In the laboratory, the image of an incoherently illuminated slit or edge is
scanned by a second slit. The incidance at the image plane is converted to a
proportional electrical signal by a detector. A rule of thumb based on experience
is that the width of the scanning slit should be no greater than a third of the
spatial period of the test lens cutoff frequency.

Indirect methods have the advantage of avoiding the complicated test objects
of direct methods but suffer a disadvantage in requiring complicated electronic
systems to perform Fourier analysis. They share the complication of having to
take into account the spectrum of every slit that is part of the laboratory appa-
ratus.

The image of a slit is the convolution of the ideal line spread function My(§’)
with a rectangular function Mg(¢) involving the slit width. This rectangular
function has already been defined by Eq. (8-11) to take into account the ‘“‘width’’
of a finite number of cycles in a grating. In reduced coordinates, the light flux
®.(u) in the slit image is

+ oo

d(u) = S_m Mg (u' )M u — u') du'. (8-35)

Reduced coordinates, as used in Eq. (8-35), are discussed at some length in
Chapter 3 where the key defining equations are Egs. (3-39), (3-40), (3-43), and
(3-45). If the conditions for Eq. (3-35) are met, no distinction need be made
between the scale of variables in object and image spaces (magnification, for
instance, is normalized to unity), so primes are no longer reserved to distinguish
between object and image variables. (The primes in Eq. (8-35), for example,
identify the conventional variable of integration in the convolution expression,
and do not, of themselves, label the associated symbols as coordinates in image
space. Whether a given variable is in object or image space has to be gleaned
from the context.)

When the image ®,(u) of the first slit is scanned by a second slit, the re-
sulting flux ¢.,(u) is found by the convolution of ®(u) with a rectangular
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function Mg, representing the second (scanning) slit:

+ o

d (u) = S i Mg (u' )2 (u — u') du'. (8-36)

Successive convolutions, as indicated in Eqs. (8-35) and (8-36), are discussed
in Appendix B leading up to Eq. (B-46). In the notation of the present chapter,
the successive convolutions are represented by

Om(u) = Mao(u) * Mg, (u) * M(u). (8-37)

Then, by applying the convolution theorem to each successive convolution in
Eq. (8-37), the following product of a three-term multiplication results:

mu(s) = maga(s)ma(s)my(s), (8-38)

or

my(s) = mu(s)/[mea(s)mas(s)), (8-39)
where m_(s) is the observed spectrum and mg(s) is the spectrum that would
have been produced by the lens for an ideal line source. Since an ideal line
source (ideal slit) can be represented by a Dirac delta function, whose spectrum
(Fourier transform) consists of all frequencies of equal amplitude and zero phase
shift (see Appendix B, ‘“The Delta Function’’), m(s) is the MTF of the lens
when normalized to unity at zero frequency.

The spectra in the above equations are expressed in terms of the reduced
spatial frequency s. Actual measurements in the laboratory are generally made
in terms of the real space coordinate £; the spectrum m,, the Fourier transform
of the observed ®.(£) through the scanning slit, then is in terms of the real
spatial frequency w. The reader is referred to Chapter 3 for conversion relations
between real and reduced quantities to evaluate, for instance, m,,(s) from m(w)
or vice versa. In real-space coordinates, Eq. (8-39) would be written

MTE = myw)/[mg(w)mg(w)]. (8-40)

INTERFEROMETRIC METHODS

An implied condition of MTF measurement in all of the methods discussed thus
far is that the illuminating light beam be incoherent. When measuring high-
quality optics such as microscope objectives, or when these optics are used as
an auxiliary part of the test setup, it is difficult to ensure strict incoherence. One
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way to avoid this problem is to use an interferometric method, in which coher-
ence is required.

The laser provides a stable, powerful, and monochromatic light source for
interferometric measurements. Its high intensity enables a correspondingly high
signal-to-noise ratio. A disadvantage is that a polychromatic OTF is not directly
obtained but requires a synthesis of measurements made with lasers of different
wavelengths. One objection often heard against interferometric measurements
is that they are time-consuming and relatively expensive; however, if corre-
sponding OTF results are to be obtained from any other kind of setup, the
differences in time and expense are not found significant.

As emphasized in previous chapters, the fundamental measure of optical per-
formance is the pupil function, from which the OTF can be calculated by an
autocorrelation procedure. In turn, the pupil function can be calculated from
ray-trace data. The least complicated, experimentally, of the interferometric
methods is measurement of the wave-front shape in the exit pupil of the lens
being tested; the OTF is subsequently calculated by an autocorrelation proce-
dure. This method is discussed further in Chapter 9 in company with other
topics involving extensive calculation. Other methods discussed in the follow-
ing sections of this chapter are generally characterized by measurement of the
total light flux in the overlapping area of sheared (that is, laterally displaced)
wave fronts. Among the interferometers discussed in this chapter, the most
common types are each some modification of the Michaelson interferometer.
We refer to all of these as forms of the Michaelson interferometer even though
certain instruments may be closer in design to what is known as the ‘“Twyman-
Green’’ interferometer.

THE INTERFEROMETER

A schematic of a Michaelson interferometer is shown in Fig. 8.17. A laser beam
is passed through a beam expander to provide plane wave fronts incident from
the left at Q. The incident wave train is represented by

£ = & cos(2mvt — @), (8-41)

where £, is the scalar quantity representing amplitude in the wave, v, is the
optical (time) frequency, and ¢ is the phase angle at Q. The wave is divided
into two parts at the beamsplitter, a portion being reflected upward and the
remainder transmitted to the right. The reflected portion is again reflected at the
mirror M so that it travels back down toward the beamsplitter. At the beam-
splitter, the wave divides a second time, part being reflected toward the source
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Figure 8.17. Schematic of a Michaelson interferometer.

and the rest transmitted downward toward Q’. Similarly, the portion transmitted
at the first encounter with the beamsplitter reflects from mirror M,, strikes the
beamsplitter again, and a part reflects downward toward Q’. With perfect align-
ment of the beamsplitter and the mirrors, the two parts of the wave train are
traveling downward toward Q’ in exactly parallel directions.

If ¢, is the phase angle of one of the waves at z,, the other wave has a phase
angle of ¢, — (278 /\) to take into account any difference & in the two paths.
If we assume that the amplitude of a wave is divided into two equal parts by
the beamsplitter, the two waves at z, can be represented as

£ = (£0/4) cos(2mvet — ¢,), (8-42)
£, = (£0/4) cos[2mwet — ¢, + (278 /N)].

The resultant field quantity is
E=4§ + & (8-43)

Adding two sinusoidal functions of the same frequency results in a sinusoidal
function of that frequency as the sum with a phase angle somewhere between
the phase angles of the two components. Because £, and £, have been assumed
of equal amplitude, the resultant has the phase angle [¢, — (w6 /N)], halfway
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between those of the components. After some trigonometric manipulation, the
amplitude of the resultant is found to be a square root, [2 + 2 cos(275 / MI1Y2,
times the amplitude of a component. By a trigonometric half-angle identity, the

square root becomes 2 cos(wd/\); so we can write
£ = (&/2)[cos(w8/N)][cos(2mret — 0, + w8 /N)].  (8-44)

The radiant flux density of the resultant wave, with a convenient choice of units,
can be calculated by finding the average of £, over a large number of cycles:

W = (£3/4)[1 + cos(278/N)]. (8-45)

From this expression, it is obvious that the flux density becomes zero for neg-
ative unity values of the cosine. This occurs when

276/N=nw or 6 =nA/2, forn=1,3,57,.... (846)

Maximum values of the flux density occur for positive unity values of the co-
sine:

206/N=mw or & = m\/2, form=20,2,4,6,... (847)

The effect of a mirror flaw on the performance of the interferometer can be
studied by assuming a specific defect in the mirror surface and finding what it
does to the combined wavefront. The specific results can be extended to flaws
in general if the assumed defect can be thought of as a building block for more
complicated flaws. A suitable assumption for this purpose is a dimple, a cir-
cularly symmetrical depression of z depth and having the following shape in the
mirror surface:

z=pMl-r), r=l, (8-48)

where p is the depth at the center of the depression in wavelengths of light, A
is the wavelength of the light beam, and r is the distance, parallel to the mirror
surface, from the center of the depression. Then the portion of the wave front
at r has to travel the extra distance, because of the flaw, of twice the depth at
that point:

22 =2pN1 - r). (8-49)
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Thus, & of Eqgs. (8-46) and (8-47) becomes a function of z:
8(z) = & + 2pA(1 — r), (8-50)

where g is the constant path difference for a flawless mirror surface.
When

8(z) = n\/2, (8-51)

a dark ring, usually referred to as a fringe, results because, according to Eq.
(8-46), the flux density is zero. When

8(z) = m\/2, (8-52)

a bright ring results because, according to Eq. (8-47), the flux density is a
maximum. The fringes, of course, are circular because of the assumed sym-
metry of the flaw. The central fringe is a circular disk, dark or bright depending
on whether n\ /2 or m\ /2, respectively, applies.

Fringes in the described example are said to be formed at infinity because
the interferometer beams are parallel. The fringes can be more easily observed
by placing a converging lens in the beam near z, to form an image of the fringe
pattern at Q'.

To explore the effects of moving mirrors M, and M,, we assume all surfaces
to be perfectly plane and the interferometer to be adjusted so that the wave
fronts are perfectly parallel at z,. The flux density ‘W, as given by Eq. (8-45),
is uniform over a cross section of the beam. Moving either mirror along the
optical axis, that is, perpendicular to its surface, varies é and, therefore, the
flux density. If the movement is a linear displacement, say of M,, with time,
the flux density will vary sinusoidally between a maximum of £3/2 and zero.
A condensing lens placed near z, in Fig. 8.17 produces the configuration of
Fig. 8.18 and concentrates the flux so that a detector can efficiently convert the
variations in light flux to an electrical sine wave.

When one of the fixed mirrors is tilted slightly to form a wedge between the
two superposed wave fronts, the separation of the wave fronts is a linear func-
tion of the distance x perpendicular to z. Ideally this would produce *‘straight-
line”” fringes. For small angles, the distance dx between two successive bright
fringes, as indicated in the schematic of Fig. 8.19, is

o = N a. (8-53)

where « is the wedge angle between wave fronts in radians and A is the wave-
length of the light beam. Because of the double passage of the beam at the
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Figure 8.18. Application of condensing optics in a Michaelson interferometer.

mirror surface, the corresponding wedge angle between the mirror surface and
its position for parallel wave fronts is a /2.

In general, the existence of fringes indicates some kind of flaw in the inter-
ferometer setup that causes a variable path difference in the two beams. With
m and n defined as in Eqs. (8-46) and (8-47), a fringe or wavelength variation
of wavefront spacing occurs between two points 1 and 2 when either

my=m +2 or n, =n + 2. (8-54)
Positions of
bright fringes
i 1
|
Sx ; a Figure 8.19. Production of fringes by a

wedge between wave fronts.
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A fringe pattern is thus a sort of contour map. Measurements on a photograph
of a fringe pattern can provide accutate information about the wave-front shape
of one beam relative to the other.

H. H. Hopkins [18] was the first to suggest applying the interferometer to
measuring the OTF. He replaced the plane mirrors M, and M, of Fig. 8.18 with
comer reflectors as illustrated in Fig. 8.20. Because this configuration shifts a
ray laterally, an instrument so designed is called a shearing interferometer. In
Fig. 8.17, each wave front is ‘‘inverted’’ upon reflection from each plane mirror
including the beamsplitter; that is, when looking in the direction of propagation
of each wave, one finds that the right edge of the incident wave becomes the
left edge of the reflected wave. However, in Fig. 8.20 each wave front retains
its right-left relations as it reverses direction at a comer reflector. In doing this,
as indicated, a ray does not return upon itself but is displaced laterally
(“‘sheared’’). The amount of shear can be varied by a lateral displacement of
the corner reflector. In Fig. 8.20, one ray is sheared a distance p by mirror M,,
and the other ray is sheared a distance m by mirror M,. By experimentally
tracing a few rays through the mirror system, one quickly discovers that the
two wave fronts, except for special positioning of the corner reflectors, are only
partially superposed; of course, fringes will be formed only in the superposed,
or overlapping, region. If lens L is placed to transmit the incoming wave front
to produce the distorted form W as shown in Fig. 8.20, integration of W, Eq.
(8-45), in the superposed region for selected values of p and m, provides data
for plotting the MTF. The superposed region in the shearing interferometer is

T,
m)
| (—p)
Z,
T W,

Figure 8.20. Schematic of a shearing interferometer with corner reflectors [18].
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the physical analog of the mathematical overlapping area in the autocorrelation
of the pupil function, Eq. (5-15).

The complex equations, with time factors suppressed, for the beams ap-
proaching the plane at z, in Fig. 8.20 are

fi(x,y) = Ui, y) exp{ W[ (x = p), ¥]}, (8-55)
and
fi(x, y) = Ux, y) exp{iW[(x + m), y] + iks},  (8-56)

where U, (x, y) and U,(x, y) are the wave amplitudes, W(x, y) is the displace-
ment difference between the actual wave front and a hypothetical reference wave
front (in this instance, a plane), and é is the path difference between the super-
posed wave fronts. Certain assumptions can greatly simplify the mathematics
of the interferometer. Although beamsplitters do not generally divide a beam
perfectly into two parts of equal amplitude, the assumption that U, = U, = 1
introduces negligible error in practical calculations of MTF. To bring the in-
terferometer mathematics in line with the reduced coordinates introduced in
Chapter 3 and the autocorrelation of the pupil function in Chapter 5, it is con-
venient to assume that each wave front has a circular boundary of radius r
beyond which the amplitude is zero. Further, p is defined as the displacement
of the center of one wave relative to the center of the other, which is at the
origin, that is, m = 0 in Fig. 8.20. Then the reduced spatial frequency is defined
as s = p/r. When these modifications are made in Egs. (8-55) and (8-56), the
total of the two wave fronts in the overlapping region is

fiit+h= exp{iKW[(x —s), y]} + exp[ikW(x, y) + ik8]. (8-57)
Then the flux density is
(Amplitude)” = (f; + ) (ft + /#)
=2+ 2cos R{W[(x — ), 5] = W(x,y) - 5). (858)
The total light flux ®(s) in the superposed region @ is

B(s) = SSQ<2 + 2 cos R{ W[ (x = 5).5)] - W(x,y) - 8} dx dy.

(8-59)
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For a later application of this light flux formula, it is desirable to change its
form by applying trigonometric identities as follows:

B(s) =2 Sgadx dy + 2 cos £ SSQ cos K{ Wl(x —s), y] — W(x, y)}
- dxdy + 2 sin &6 SSQ sinK{W[(x - ), y] — W(x, y)} dx dy.

(8-60)

AN INTERFEROMETRIC MEASURING EQUIPMENT

Although Baker [19] describes an *‘interference photometer,”” Fig. 8.21, as one
that gives the frequency response of a lens directly for almost any condition of
illumination and independent of the type of object, our discussion here is con-
fined to a coherent beam in this type of instrument because lasers have become
readily available.

The apparatus of Baker’s report is essentially an analog computer incorpo-
rating the lens under test. The setup is based on an interferometer of the Mi-
chaelson type with corner reflectors as suggested by Hopkins and illustrated in
Fig. 8.20. These optical components are on the right side of the diagram in
Fig. 8.21. The rest of the measurement setup consists of a flicker photometer
in which one beam passes through the lens L; under test, and the other beam
passes through a high quality collimating lens L,. As suggested by the diagram,
the test lens L, creates an aberrant wave front, and the collimating lens L,
provides a plane (reference) wave front.

Baker’s apparatus has a sodium vapor lamp as a light source. Its image is
focused on the slit S, the light from which reaches the outside faces of the roof
reflector R after the beam passes through a collimating lens and the polarizing
unit Pol;-WP-Pol,. The Wollaston prism WP splits the light into two slightly
divergent beams polarized at right angles to each other. By the time they reach
the roof reflector, the two beams are separated enough so that one beam reflects
upward and the other downward in Fig. 8.21. The next reflector in each path
causes the beams to become parallel, well separated, each focused by a lens
(C, or C,) on a slit. The function of the field lenses F; and F, is to focus the
exit pupil of the previous lens onto the lenses C; and C,, respectively. The
lower slit in the diagram is in the focal plane of L, the lens under test; and the
upper slit is in the focal plane of the reference lens L,.

After passing through L; and L,, the beams are recombined at z before pas-
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Figure 8.21. An interferometric measuring equipment: IU, illumination unit; Sq, S;, S,, slits;
Pol,, Pol,, polarizers; WP, Wollaston prism; R, roof reflector; F,, F,, field lenses; C;, C,, slit
focusing lenses; L;, lens under test; L,, reference (ideally perfect) lens; M;, M,, interferometer
comer reflectors; H, lens forming interferogram at slit I; E;, eye position for visual inspection; E,,
detector position for measurements; K, shaped aperture [19].

sage through the interferometer. The lens H, which typically has great depth of
focus, images the pupils of L, and L, at the aperture I where an interference
pattern, or interferogram, is formed. With this pattern as the source and the
following field lens to focus its image, two alternative optical systems are avail-
able to observe the interference pattern. When the mirror following the field
lens is in the position shown in the diagram, an eye at E, can observe the image;
however, when this mirror is swung upward out of the way for a measurement,
the image is formed at K and can be viewed from E, through an eyepiece. After
visual adjustment of the instrument is completed, a highly transmissive diffus-
ing element is placed between I and K to produce a uniform illumination over
K; and an electronic detector is placed at E, where it responds to the flux in the
light beam.

The ratio of light flux in the L; and L, arms can be set by adjusting the
elements in the polarizing assembly. First, the polarizer Pol, is set at a known
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angle; then, by rotating Pol, about the optic axis, the operator can smoothly
vary the distribution of light flux from a hundred percent in one arm to a hundred
percent in the other. The element S is a spectrometer slit, which opens sym-
metrically; and S, and S, are iris diaphragms, each of which can be widely
opened and fully illuminated to provide an effective extended source. This is
useful during the initial setting up of the equipment.

The corner reflectors M; and M, are mounted on lathe-bed ways and can be
accurately positioned laterally by adjustment of micrometer screws. Mirror M,
can also be moved parallel to the incoming beam so that the optical paths in the
two interferometer arms can be made virtually equal.

The aperture 1 is shaped so that it masks off the noninterfering light of the
sheared wave fronts. Thus, the transmitted cross section is common to the two
displaced circular wave fronts.

In this text, depending upon the context, the optical transfer function has
been expressed mathematically a number of different ways. Examples are Eq.
(2-19), where real-space spatial frequency is the independent variable; Eq.
(5-48), where the normalized spatial frequency is substituted; and Eqgs. (5-94)
and (5-95), where the transfer function 150 (which is the OTF before normali-
zation at zero frequency) is shown to be the autocorrelation function of the pupil
function.

The OTF in terms of the normalized spatial frequency is

O(s) = T(s) exp[i¢(s)] = T(s) cos ¢(s) + iT(s) sin (s). (8-61)
The OTF as an autocorrelation function is

A

O(s) = (1/Q) SS& exp i!i{W[(x —s),y] = W(x, y)} dx dy. (8-62)

where 1/Q@, is the normalizing coefficient to make 0(0) = 1. So, from Eq.
(8—61)’

T(s) cos ¢(s) = (1/@yp) SL cos K{W[(x - 5),y] = W(x, y)} dx dy,
(8-63)
T(s) sin ¢(s) = (1/Qp) Sga sin Q{W[(x - 5), y] — W(x, y)} dx dy.

(8-64)
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By substituting from Eqgs. (8-63) and (8-64) into Eq. (8-60) we obtain

®(s,8) =2 SS dx dy + 2Qq T(s) cos #6 cos ¢(s)
@

+ 2@, T(s) sin &6 sin ¢(s), (8-65)

®(s,8) =2 Ssadxdy + 2@, T(s) cos[#6 — @(s)]. (8-66)

To simplify the right side of Eq. (8-66), the equation is divided through by
2@®,; then, because the first term is a constant for a given value of s, that is, a
fixed amount of shear, it will be designated B(s):

(s, 8)/(2Qy) = &, (s, 8) = B(s) + T(s) cos[#s — ¢(s)]. (8-67)

In the diagram of Fig. 8.21, the detector at E, senses the light flux &, (s, 9).
As the path difference § is varied at a constant speed, the detector signal varies
sinusoidally with time; and the amplitude of the variation is proportional to
T(s), the MTF. The phase angle ¢ () is the phase transfer function (PTF) part
of the OTF. If Pol, in Fig. 8.21 is adjusted so that only the plane wave from
L, reaches the point z, Eq. (8-45) applies for the flux. Comparing Eq. (8-67)
with Eq. (8-45) indicates that under the plane wave condition, B(s) and T(s)
are equal and that the phase shift (PTF) is zero. With this as a reference, it is
apparent that the difference in the observed phase angle between the aberrant
and the plane waves is the PTF.

Baker’s experimental results with the described equipment compare favor-
ably with theoretical results calculated by Hopkins [20] for a defocused tele-
scope objective. Hopkins’ theoretical results are discussed in Appendix A.

OTHER INTERFEROMETRIC EQUIPMENTS

A number of other OTF measuring equipments have been described in the lit-
erature [21-33], but these in general involve practical improvements in exper-
imental techniques rather than new basic principles of measurement.

A vparticularly interesting version is Kelsall’s automatically recording instru-
ment [21], which is capable of making rapid and accurate measurements on a
wide variety of optical assemblies. To achieve stability of adjustment, the mov-
ing parts required for wave-front shearing and path changing are mounted in-
dependently of the interferometer bed. The stationary part of the interferometer
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Figure 8.22. Kelsall’s interferometer with shear plates [21].
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Figure 8.23. Comparison of pen recorder traces (curves), made by Kelsall’s measuring equipment
[21], with corresponding theoretical calculations (plotted points) by H. H. Hopkins for defocusing
[20].
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Figure 8.24. Comparison of pen recorder traces (curves), made by Kelsall’s measuring equipment
{211, with corresponding theoretical calculations (plotted points) by Black and Linfoot for primary
spherical aberration [34].

is mounted on a rigid base plate supported by a vibration-free mounting. By
this separation, it is possible to shear the wave fronts and alter the path differ-
ence without any detectable effect on other adjustments. Conversely, neither
relative shearing nor tilting of the wave front occurs when adjustments are made.

As the schematic in Fig. 8.22 shows, Kelsall’s interferometer shears the

L] Figure 8.25. Optical transfer function measuring
interferometer of Montgomery: M,;, M,, mirrors;
BS, beam splitter; S,, S,, shear plates; P,, P,, po-
Py larizers. Collimated beam from test lens enters from
bottom left [23].
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wave fronts with two plane-parallel optical flats, optically one in each arm of
the interferometer but mechanically mounted together and swung on a common
pivot; pivoting the flats performs the same function as the lateral movement of
the comer reflectors.

Examples of Kelsall’s results are shown in Figs. 8.23 and 8.24. In the first,
a study of defocusing, the curves are replicas of the pen recorder trace made
by the measuring apparatus; the plotted points are theoretical calculations by
H. H. Hopkins. Figure 8.24 shows a similar comparison for primary spherical
aberration. The theoretical points are those reported by Black and Linfoot [34]
and discussed in Appendix A.

Figure 8.25 is a schematic of an interferometer, reported by Mongomery
{23, 24], using polarizing techniques.

Wyant [24] describes an interferometer in which gratings accomplish the
lateral shearing. This interferometer functions with a white light source; he
elaborates on three conditions to make such a source work in a lateral shearing
interferometer.
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Calculation of the OTF: Analytical Methods

INTRODUCTION

The specific calculation required for the analytical determination of the OTF
depends on a number of factors. First, the choice depends on whether the cal-
culation is (1) a purely theoretical one for a hypothetical optical system having
a given kind and amount of aberration, (2) an anticipated evaluation from sys-
tem design data for optics in the design stage, or (3) a practical determination
from experimental results for an actual system that is being tested. In the cal-
culation from experimental results, the method depends on the information
available, for example, whether the pupil has been measured interferometricaily
or the aerial image of a point source (the aerial spread function) has been scanned
by one of several methods: by a knife edge, an elongated slit, or a “‘point™
Sensor.

When the pupil function is known, the OTF can be calculated by either of
two equivalent procedures. In one, the OTF is obtained directly by the auto-
correlation of the pupil function. In the other, the amplitude spread function is
first found by taking a Fourier transform of the pupil function. Then the inten-
sity spread function is calculated by squaring the modulus of the amplitude
spread function. Finally, the OTF is obtained by a Fourier transform of the
intensity spread function. The latter combination is called the double-transform
method.

The shape of a wave front at the instant it passes through the exit pupil is a
fundamental characterization of the optical system and contains all the data
about the imaging properties of the system; all of this information is retriev-
able—at least in principle. In Chapter 4, the wave-front shape is described
mathematically by the wave aberration function, which gives the phase at points
on the wave front relative to the phase at corresponding points on a reference
sphere. The aberration function is thus a description of the errors, that is, the
aberrations, produced by a lens or optical system in terms of the phase-differ-
ence distribution over the wave front at the exit pupil. Since typical variations
of amplitude over the wave front generally produce negligible effects on im-
aging properties compared with the effects of even small changes of phase, this
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292 CALCULATION OF THE OTF: ANALYTICAL METHODS

chapter will be limited to discussion of only the wave aberration function, which
is the phase characteristic of the pupil function, and will assume the amplitude
across the wave front to be constant.

Because the concept of wave aberration is based on a coherent wave train,
involving it in the calculation of the OTF does not require specifying the degree
of coherence in the illuminating light beam and hence does not depend on the
type of object being imaged. This independence is a significant advantage in
the interferometric measuring procedure for finding the wave-front shape.

The autocorrelation method and the double-transform method are more fun-
damental in principle than computations based on measurements of a spread
function. Spread function methods assume incoherent light beams and can be
in error because the actual experimental light beams in the laboratory are some-
times partially coherent, which may not be evident without a careful examina-
tion of the apparatus. Choice of a measurement-calculation procedure for ob-
taining the OTF involves a number of interrelated factors, both theoretical and
practical; but under ‘‘average’’ restraints, it appears that the autocorrelation
method has been the most useful.

To calculate the OTF from the aberration function, the aberration function
must be expressed in analytic form. However, in the usual laboratory measure-
ment, the amounts of wave-front distortion at specific, generally predetermined,
coordinates are measured experimentally. That is, at each of a finite number of
coordinate positions, say at (x/, y/) when x and y are the independent variables,
a discrete value of the aberration function W;, which is the dependent variable,
is determined. These values can be assembled in tabular form or plotted as curve
relations; but until mathematical expressions for the curves can be written, cal-
culation of the OTF cannot proceed. Finding the mathematical expression that
describes an experimental curve is called curve fitting.

Commonly used expressions to which the data are to be “‘fit’’ are various
series: Power, exponential, polynomial, and sinusoidal (Fourier) series are fa-
miliar examples. The process involves numerical methods which are described
in Chapter 10. The OTF is quite sensitive to variations in the aberration func-
tion; this sensitivity manifests itself particularly at the midrange and higher
spatial frequencies. So any approximations, either in the observed data or in the
subsequent curve fitting, must be examined carefully to be sure that they are
valid over the entire wave front defined by the aperture. The actual calculation
from the analytic aberration function to the OTF must itself maintain an accu-
racy consistent with the required accuracy in the end results; available proce-
dures to meet this requirement are not simple. There are several to choose from,
each of which has its peculiar advantages.

Hopkins [1] was able to set up an expression for the OTF, in terms of a
converging series of Bessel functions, for an optical system free of aberrations
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THE OTF CALCULATED FOR DEFOCUSING 293

but suffering from a defect of focus. M. De [2] originated a corresponding
expression for astigmatism with defocusing due to Petzval curvature; his
expression is a product of a series of Bessel functions.

In the following two sections of this chapter, we redo the calculations of
Hopkins and De. For astigmatism with Petzal curvature, we obtain a new result.
In each development, the OTF, O(S), is given by an exact expression; but the
calculations are made by appropriately truncating the series, which are all rap-
idly convergent. In Chapter 10 on numerical methods, we illustrate a calculation
involving curve-fitting the data.

THE OTF CALCULATED FOR DEFOCUSING

In this section we calculate the OTF for an optical system free of aberration but
having a defect of focus. The procedure was introduced by Hopkins in 1955
[1]. The OTF, O(s), is the autocorrelation of the pupil function G(x, y) as
given by Eq. (5-2). For reasons discussed earlier in this chapter, the modulus
G(x, y) is assumed constant—in fact, unity. Then, by combining the relations
expressed in Egs. (5-15) and (5-45) we obtain

0(s) = (1/4) || 6{Lx + (57203} 6#{[x = (5], y} ax v,
(9-1)

where A, is new notation for b,(0) of Eq. (5-45), that is, the value of the
integral of Eq. (9-1) when s = 0. Under the conditions imposed, the pupil
function reduces to

G(x,y) = exp[ikW (x, y)]. (9-2)
A general expression for the aberration function W(x, y) is given in polar co-

ordinates by Eq. (4-33). The third term on the right side represents defocusing.
Since all other aberrations are excluded in the present development,

W(o, ¢) = ¢Cyp’. (9-3)
The applicable rectangular-to-polar conversion equation is the familar p*> = x?

+ y2. The amount of defocusing is expressed by the coefficient ,C,o. To state
this coefficient in terms of «’, the number of quarter wavelengths:
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294 CALCULATION OF THE OTF: ANALYTICAL METHODS

0C20 = a')\/4. (9'4)

When the expression & = 27 /A, which is usually written as a constant coeffi-
cient of the aberration function, is combined with ;C,,, then

&0C20 = a'1r/2. (9'5)

The graphical representation of the shifted pupil function (Fig. 5.2) can be
dimensioned as shown in Fig. 9.1. Since the defocusing expression of Eq.
(9-3) indicates radial symmetry, the OTF can be calculated along any radial
direction; in our development, as shown in the figure, we choose a shift along

the x-axis. With the combinations and assumptions discussed, the integrand of
Eq. (9-1) becomes

exp((ia’w/2) {[(x + s/2)2 +y?
- [(x - 5/2)2 + }’2]}> = exp(ic’ wsx). (9-6)

At s = 0, the integrand exp(0) is unity. Then the indicated integration over
the unit-radius circle @ is «. Because O(0) = 1, 4, = . Then Eq. (9-1)
becomes

O(s) = (1/x) S S exp(iax) dx dy, (9-7)

T
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Figure 9.1. Geometry for the autocorrelation calculation.
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THE OTF CALCULATED FOR DEFQCUSING 295

Figure 9.2. Geometry to determine integration limits.

where o = a'ms. As shown in Fig. 9.2, integration on x is between the upper
limit +x;, and the lower limit —x,, that is, +[(1 — y?)'/2 — (5/2)]. After
integration,

O(s) = (2/7a) S sin(ax,) dy, (9-8)

¥y

where we have applied the identity

sin axy, = (1/i) sinh (i) = (1/i2) [exp(iox,) — exp(—iax,,)].
(9-9)

When the value for x,, is substituted in Eq. (9-8),

0(s) = (2/ma) Sy sina[(1 —y)'"? - (s/2)]dy.  (9-10)
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296 CALCULATION OF THE OTF: ANALYTICAL METHODS

Because of the conditions imposed on the pupil function, the OTF, O(s), is
real; hence no caret (") is needed on the OTF symbol. The geometry of Figs.
9.1 and 9.2 is symmetrical about the x-axis, so integration can be made over
only positive values of y and the resulting integral multiplied by 2. Limits on y
are then zero and [1 — (s/2)%]'/2. A change in variable is needed to facilitate
integration. The substitution chosen allows the integrand to be expressed as a
series of Bessel functions; then integration can be accomplished term by term.
Since y has already been limited to values between zero and unity, the following
variable substitutions are permissible:

y = sin ¢, ¢ = arc sin y,
dy = cos ¢ de,
(1 —y%) = (1 — sin? ¢) = cos” ¢,
[1 = (s/2)]"" = 8 = arc cos(s/2). (9-11)

By applying the identity for the sine of the difference of two angles, the inte-
grand of Eq. (9-10) can be expanded as

sin[a(1 — ) /? - (as/2)] = sin[a cos ¢ — (as/2)]

sin(« cos ¢) cos(as/2)

— cos(a cos @) sin(as/2). (9-12)

The factors sin(« cos ¢) and cos(a cos ¢) are each defined by a series of
Bessel functions (see, for example, Watson [3, p. 22] and Abramowitz 4, p.
3611):

oo

sin(« cos @) = 2 2:]1 (=1)" [Jon+1(@)] cos[(2n + 1)p], (9-13)

cos(a cos ¢) = Jy(a) + 2 nél (—1)" [Jan(@)] cos(2ne). (9-14)

Here the J, («) are Bessel functions of the first kind, order n and argument o.
When the series, Egs. (9-13) and (9-14), are substituted into the right side of
Eq. (9-12), the resulting expression is the integrand of Eq. (9-10), which now
has the following form:
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THE OTF CALCULATED FOR DEFOCUSING 297
0(s) = (4/7a) cos as/2 2 Z, (1) ()]
8
. S cos[(2n + 1)¢] cos ¢ dwg
0
8
~(4/7wa) sin as/2 [Jo(a)] S cos ¢ do
0

o 8
—(4/7a) sin as/2 {2 ’El (=1)" [Fan(a)] SO cos 2ng cos ¢ d(p}‘

(9-15)

The integrals of Eq. (9-15) are standard forms given in most tables of integrals.
See, for example, Selby [5, p. 437, No. 317] and Gradshteyn [6, p. 140, No.
2.532:3]. After integrating and regrouping, Eq. (9-15) becomes

O(s) = (4/7a) cos as/2 {81, () + (1/2) sin 28[J,(«) = J3(«)]
— (1/4) sin 48[J5(a) — Js(a)] + - - - }
— (4/ma) sin as/2 {sin B[Jo(e) — Jr(a)]
— (1/3) sin 38[L(a) — Jo(a)]
+ (1/5) sin 5B[Je () = Jo(a)] = -+ }. (9-16)

The series in Eq. (9-16) are convergent and are in a convenient form to be
evaluated numerically. However, depending on what resources are available in
the way of Bessel function tables or equivalent computer software, the user may
want to select convenient values of the argument « to reduce the tedium of
getting the numerical Bessel function values for insertion in Eq. (9-16). A study
of a given kind of aberration, such as defocusing in the present development,
often consists of plotting a family of OTF curves, each differing from the next
by a fixed increment in the coefficient (4C,, for defocusing). If we label the
increment b\, where A is the wavelength of light and b is the fraction of the
wavelength that makes the argument « a convenient value, then each curve is

for a given 4C,, that is, an integral multiple m of the increment bA; so, drop-
ping the subscripts, we have

C = mb\. (9-17)
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298 CALCULATION OF THE OTF: ANALYTICAL METHODS

It remains to determine the value of b for convenient values of «. From Eq.
(9-17) and the definitions of o’ and « in Eq. (94) and following Eq. (9-7)
respectively, we find

a = a'ws = (4C/\)7s,
C = aN/(4xs),
b = C/(m\) = af/(47wms). (9-18)

Suppose that the desired increment in « is 0.5 and the increment in s for the
OTF plot is 0.1. The values of m have already been established as integrals,
that is, having increments of unity. When these increments are substituted in
Eq. (9-18),

b = 5/4r = 0.3978873577 = 0.4 wavelength. (9-19)

Table 9.1 Modulation Transfer Function Values for Defocusing
0Cyo = 5mN/(4m)

Perfect

Normalized Lens Defocusing Defocusing

Frequency s m=90 form =1 form =2
0.0 1.0000 1.0000 1.0000
0.1 0.9364 0.9104 0.8365
0.2 0.8729 0.7884 0.5675
0.3 0.8097 0.6586 0.3155
0.4 0.7471 0.5368 0.1338
0.5 0.6850 0.4317 0.0252
0.6 0.6238 0.3460 —0.0293
0.7 0.5636 0.2788 —0.0488
0.8 0.5046 0.2276 —0.0499
0.9 0.4470 0.1898 -0.0476
1.0 0.3910 0.1630 —0.0449
1.1 0.3368 0.1443 —0.0376
1.2 0.2848 0.1299 —-0.0291
1.3 0.2351 0.1161 -0.0184
1.4 0.1881 0.1021 —0.0071
1.5 0.1443 0.0883 0.0033
1.6 0.1041 0.0729 0.0175
1.7 0.0682 0.0533 0.0241
1.8 0.0374 0.0327
1.9 0.0133 0.0147
2.0 0.0000
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THE OTF CALCULATED FOR DEFOCUSING 299

A tabular sequence of values would then be

Fors = 0.1,
m=0 1 2 3 4
(9-20)
a=0 05 10 15 20
Fors = 0.2,
m=0 1 2 3 4
(9-21)
a= 0 10 20 30 40

and so on. The first three columns of the routine described here (m = 0, 1, 2)

were used to calculate the points tabulated in Table 9.1 and plotted in Fig. 9.3.
A helpful tool for evaluating Bessel functions of successive orders for a given

«, once two in the sequence have been established, is the recurrence formula

J(a) = [2(n = 1)/ald,_ (@) = J,_(a). (9-22)

Levi [7, 81, using a different mathematical approach from the one discussed
here, presents a large table of values for O(s) as a function of s and different
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Figure 9.3. Modulation transfer function (MTF) curves for a perfect optical system and for two
amounts of defocusing.
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300 CALCULATION OF THE OTF: ANALYTICAL METHODS

amounts of defocusing. Curves for O(s) as plotted by Hopkins [1] are given in
Appendix A.

THE OTF CALCULATED FOR ASTIGMATISM

M. De [2] calculated the OTF for primary astigmatism with Petzval curvature
by a method similar to that of Hopkins, which is discussed in the previous
section. Although our approach in this section is similar to that of De, we show
a different result.

As in the previous section, the present OTF calculation begins with the power
series expression for the aberration function W(x, y) given in polar coordinates
by Eq. (4-33). Following Eq. (4-39), the power series terms are sorted out and
assigned names based on the traditional Seidel designations. Among these are
two terms, commonly paired in optics, that are together called astigmatism and
Petzval curvature:

Wa = 2C20 r2p2 + 2C22r2p2 COS2 L. (9"23)

Since the OTF is always calculated for a fixed r, this independent variable can
be suppressed in Eq. (9-23) by incorporating it into the coefficient of each term.
Then the first right term, C,, 0%, takes the form of a defocusing term, which is
the subject of the previous section. The reference image point is a point on a
plane perpendicular to the axis at the paraxial image point; the significance of
this reference is discussed following the calculations in the present section.
For integration steps that are to follow, it will be convenient to express the
aberration function of Eq. (9-23) in rectangular coordinates (xg, yg):

W, = Cyp® + Cypp® cos” ¢ = Cyolxg + ¥5) + Cpyd

Cooxt + (Cyo + C2)ys. (9-24)

The coordinate transformation equations in slightly different notation are given
in Eq. (4-31).

Examination of the contour plot for primary astigmatism, Fig. 4.20, indi-
cates that we should expect the OTF in the tangential direction to be different
from the OTF in the sagittal direction; in fact, the OTF depends upon the angle
¥ of any arbitrary direction between these two. So, for an all-inclusive analysis,
it is convenient to transform the rectangular coordinates in accordance with the
OTF angle:
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THE OTF CALCULATED FOR ASTIGMATISM 301

Xo = X COS Y — ysin y,

yo=xsiny +ycosy, 0=y = /2. (9-25)

When these expressions are substituted in Eq. (9-24) and the appropriate
trigonometric identities applied:

W(x,y) = Cu(x* + y2) + Cpp(x?sin® ¢ + y* cos® ¢ + xy sin 2¢).
(9-26)

The integrand in an equation corresponding to Eq. (9-6) in the previous section
is

exp(ik{W[(x +5/2), y] - W[(x — 5/2), y]})
= exp{iks[2t(Cyo + Cp sin® ¥) + yCppsin 2]}, (927)
Since ¢ is constant for a given OTF, in the corresponding series of integrations

(fors = 0.1,0.2, 0.3, . . .), the mathematical notation is simplified by defining
two new constants:

p = zﬂs(CZO + C22 Sin2 J/), (9"28)
q = ksC,, sin 2¢. (9-29)
Then the expression for the OTF corresponding to Eq. (9-7) of the previous

section is
O(s, ¥) = (1/x) S exp iqy< S exp ipx dx> dy. (9-30)

In a search for symmetry to simplify the integration process, we find that there

is no simple symmetry about the y-axis nor about the x-axis because, as Eq.
(9-26) shows,

W(x,y) = W(-x,y),
W(x,y) + W(x, —y). (9-31)
However, there is a more subtle symmetry as shown by
W(x,y) = W(-x, —y),
W(-x,y) = W(x, -y). (9-32)
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302 CALCULATION OF THE OTF: ANALYTICAL METHODS

The significance of these symmetries can be appreciated by referring to Fig.
9.1 plotted in the (x, y) coordinates. The overlapping area in the first quadrant
is equivalent to the overlapping area in the third quadrant. (The two would be
alike in all respects if the first were rotated about the y-axis and then about the
x-axis.) The same kind of relation exists between the second and fourth quad-
rants. Because of the symmetry, integrating over the upper half from —x,, to
+Xx,, is the same as integrating over the lower half from +x, to —x,. Therefore,
the OTF, Eq. (9-30), is found by integrating over the upper half of the over-
lapping area and then multiplying by 2. As in an earlier integration, the limits
are apparent from Fig. 9.2:

Ym

expign)| | ewolipe) ar| v,

o =[1 = (/2017 xa=[(1 =) = s/2]. (9-33)

06s.¥) = 2/m) |

0

As in Eq. (9-7) of the previous section, the integration on x is straightforward:

Ym

05, ) = (4/m) | {expliay) sinp[(1 = ¥)1"* = 5/2]}
(9-34)

As in the previous development, the integration on y can be accomplished by
expanding the integrand into a series of Bessel functions. Expansion is facili-
tated by the following changes in variables:

y = sin w, dy = cos w dw,

(1 - yz)l/2 = cos w,

8 = arc cos (s/2) )2]1/2.

arc sin [1 — (s/2 (9-35)

With the above substitutions, Eq. (9-34) becomes

8
O(s, ¥) = (4/7p) [ SO exp(iq sin w) sin (p cos w) cos(ps/2) cos w dw

8
- S exp(ig sin w) cos(p cos w) sin(ps/2) cos w dw].
0

(9-36)
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In Eq. (9-36), constant terms can be placed before the integral signs and the
exponential terms expanded to give
8
O(s, ¥) = (4/xp) cos(ps/2) S [cos(g sin w) sin(p cos w) cos w
0
+ i sin(q sin w) sin(p cos w) cos w] dw
g8
—(4/7p) sin(ps/2) S [cos ¢ sin w) cos(p cos w) cos w
0
+ i sin(q sin w) cos(p cos w) cos w] dw. (9-37)

The following Bessel function series expansions of terms in Eq. (9-37) expedite
integration [3, p. 22; 4, p. 361}:

(=]

cos(z sin ) = go €,02,(2) cos(2np), (9-38)
sin (z sing) = 2 §0 Jon1(2) sin(2n + 1) o, (9-39)
cos(z cos ¢) = go (—1)"e,J5,(2) cos(2np), (9-40)

sin(z cos @) = 2 go (=1)"Tapsi(2) cos(2n + 1) @. (941)

In Eqgs. (9-38) and (940), ¢, = 1 whenn = 0, and ¢, = 2 whenn # 0. After
making the indicated substitutions and rearranging, Eq. (9-37) becomes

0(s. ) = 4/) feos(ps/2)| 2 T T (-1)"eud(a)
8
r(p) |, 1) a0
© . 8
#8338 (1) 000(0) s () [ Al0) ]
© ™ m 8
—sin(ps/2)| B, T (<) et (@) Tan(p) | () de

122 3 (0 el () alp) [ A} 042
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304 CALCULATION OF THE OTF: ANALYTICAL METHODS

In Eq. (9-42)
fi(w) = cos(2nw) cos[(2m + 1) w] cos w, (9-43)
f(w) = sin[(2j + 1) w] cos[(2k + 1) w] cos w, (9-44)
fi(w) = cos(2nw)cos (2mw) cos w, (9-45)
filw) = sin[(2 + 1) w] cos(2kw) cos w. (9-46)

The functions defined in Eqgs. (9-43)-(9-46), which are the integrands in Eq.
(9-42), integrate according to formulas in Ref. 7, p. 140, nos. 3 and 5. When
the integration is completed, the OTF can be expressed as

6(s, ¥) = (1 /Wp)[cos@s/z)[z BB (1) e dan(a) sz“(p)fsw)}
— sin(ps/2) Lgo "EO (—1)"enemdan(q) sz(P)fs(B)}

icos(ps/[4 5 B (-0 1009 () 58|

j=0 k=0

+ isin(ps/2)[2 % % (—1)kfk12j+1(4) Jzk(P)fs(B)}}-

(9-47)
In Eq. (9-47), the four functions of 3 are
£(8) =sin[2(m + n + 1)B]/[2(m + n + 1)]
+sin[2(m — n + 1)B]/[2(m — n + 1)]
+ sin[(2n — 2m) B]/(2n sz) o
+ sin[(2n + 2m) B]/(2n + 2mj, (9-48)
£(B8) = sin[(2n + 2m + 1) B]/(2n + 2m + 1)
+ sin[(2m — 2n + 1)B]/(2m — 2n + 1)
+sin[(2n — 2m + 1)B]/(2n — 2m + 1)

+ sin[(2n + 2m — 1)B8]/(2n + 2m — 1), (9-49)
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£(8) = {cos[(2k + 2 + 3)B] — 1}/(2k + 2 +3)
~ {cos[(2k — 25 + 1)8] - 1}/(
+ {cos[(2k + 2 + 1)8] — 1}/(2k + 27 + 1)
+ {cos[(2/ — 2k + 1)8] — 1}/(2j — 2k + 1), (9-50)
fu(B) = {eos [2(j + k + 1)B] = 1}/[2(j + &k + 1)]
— {cos[2(k =) 8] = 1}/[2(k = )]
+ {eos[2(j + 1) 8] - 1}/[2() + k)]
+{w4ﬂj—km]—Q/pU—kﬂ. (9-51)

2% — 2 + 1)

It is interesting to note in all four of the above equations that the indeterminate
form 0/0 occurs whenever the coeflicient of 3 is zero. When these ambiguities
are resolved by L’Hépital’s rule, the ratios for zero coefficients of 8 in Eqgs.
(9-48) and (9-49) are shown to have the value 3; for zero coefficients of 8 in
Egs. (9-50) and (9-51), the ratios are shown to be zero.

Equation (9-47) is an exact expression for the OTF in terms of the normal-
ized spatial frequency, the amount of primary Petzval curvature, the primary
astigmatism, and the orientation with respect to the sagittal direction. Though
quite unwieldy, this expression, of course, can be programmed on a computer
having subroutines for the trigonometric and Bessel functions. M. De [2] does
not include an Imaginary component in the expression for the OTF because, he
says, ‘‘the aberration being symmetrical about the x- and y-axes, the response
is wholly real.”” However, we have not been able to verify that the imaginary
term of Eq. (9-47) should in general be zero. The spread function in Figs. 2.17b
and d for astigmatism and the wave shape in Figs. 4.20 and 4.22 hardly suggest
freedom from phase shift for all possible related OTFs.

When the OTF angle y is zero, that is, when the OTF is in the sagittal
direction, Egs. (9-28) and (9-29) show that the constant ¢ is zero and the con-
stant p reduces to the « defined in Eq. (9-18); then the integrand in Eq. (9-27)
becomes identical with the corresponding defocusing integrand of Eq. (9-6). So
the OTF in the sagittal direction for primary Petzval curvature and primary
astigmatism is the same as the OTF for defocusing. This conclusion is con-
firmed by Eq. (9-24) because the angle ¢ has the value 7 /2 in the sagittal
direction (¢ = 0), and the aberration function equation becomes the same as
Eq. (9-3), which describes defocusing.

In the tangential direction (y = = /2), the constant q is again zero. This
alone tends to simplify Eq. (9-47) because the Bessel functions involved, Bessel
functions of the first kind, all have a zero value for a zero argument except the
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306 CALCULATION OF THE OTF: ANALYTICAL METHODS

zero-order Bessel function, which is unity for a zero argument. Both of the
imaginary terms in Eq. (9-47) have J,; , ;(q) as a factor; so for a zero g, which
occurs in both the sagittal and tangential directions, the OTE, O(s, 0) or O(s,
w/2), is indeed real and can be written without the complex caret (*). Both of
the real terms in Eq. (9-47) have J,,(q) as a factor; so, for zero g, this Bessel
function is unity for zero n and zero for all other values of n. When the sagittal
and tangential direction (y = 0 and ¥ = =w/2) values are applied in Eq.
(9-47), it reduces to the following for both directions:

O(s, ¥a) = (1/ap) 2 (=1)"[2 c08(ps/2) Jom1(p) £5(8)

— € sin(ps/2) Jon(p) fel B)]- (9-52)

Expressions for f5(8) and f§( 8) in Eq. (9-52), derived from Egs. (9-48) and
(9-49), are

Table 9.1 Optical Transfer Function Values for the Direction y = 7 /6

g;zzzgzd Perfect Forp = 3s,q = 3s Forp = 5s,q = 5s
s Lens MTF PTF MTEF PTF
0.0 1.0000 1.0000 0.0 1.0000 0.0
0.1 0.9364 0.9240 —-0.314
0.2 0.8730 0.8395 —0.579
0.3 0.8097 0.8000 —-0.524 0.6962 —0.758
0.4 0.7471 0.7158 ~0.628 0.4964 —0.873
0.5 0.6850 0.6093 —0.681 0.3041 —1.035
0.6 0.6238 0.4863 —0.688 0.2124 ~1.459
0.7 0.5636 0.3635 —0.671 0.2412 -1.794
0.8 0.5046 0.2595 —0.694 0.2700 —1.876
0.9 0.4470 0.1744 —0.867 0.2211 —-1.912
1.0 0.3910 0.1721 —1.202 0.1248 -2.058
1.1 0.3368 0.1897 —1.458 0.0649 —-2.362
1.2 0.2848 0.2005 —1.554 0.0585 —2.147
1.3 0.2351 0.1803 —1.555 0.0735 —1.766
1.4 0.1881 0.1340 —1.491 0.0652 —1.625
1.5 0.1443 0.0187 —1.354 0.0404 —1.625
1.6 0.1041 0.0454 —1.114 0.0284 —1.718
1.7 0.0682 0.0273 —-1.579
1.8 0.0374 0.0230 -1.610
1.9 0.0133 0.0109 -1.591
2.0 0.0000 0.0000
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Figure 9.4. Modulation transfer function (MTF) curves for a perfect optical system and for two
amounts of astigmatism and Petzval curvature at an OTF direction of 7 /6.

£5(8) = 2sin[2(m + 1)8]/[2(m + 1)] + 2 sin(2mB)/(2m),
(9-53)
fe(B) =2sin[(2m + 1)B]/(2m + 1) + 2sin[(1 — 2m)B]/(1 — 2m).
(9-54)
The OTF in the tangential direction is distinguished from the OTF in the sagittal

direction by the value of p, the argument of the remaining Bessel functions. In
the tangential direction, from Eq. (9-28),

pr = 24s(Cy + Cy). (9-55)
In the sagittal direction,
Ps = 2ks Czo. (9'56)

Since it has already been pointed out that when y = 0 (sagittal direction),
corresponding integrands for the combined Petzval curvature and primary
astigmatism and for defocusing are identical, we expect that the consequent
expressions for the OTF, Eqs. (9-52) and (9-16), are also the same. This is
indeed true, but considerable rearrangement of terms is required for the identity
to be evident. (As in the integrand comparison, p and « are the same when y
is zero.) Since Eq. (9-52) serves for both y = 0 (sagittal direction) and ¢ =
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Figure 9.5. Optical transfer function (OTF) plotted on a complex plane (Argand diagram) for
astigmatism and Petzval curvature at an OTF direction of 7 /6, Bessel function arguments p = 3s
and g = 3s.
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Figure 9.6. Optical transfer function (OTF) plotted on a complex plane (Argand diagram) for
astigmatism and Petzval curvature at an OTF direction of 7 /6, Bessel function arguments p = Ss

and g = Ss.
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7 /2 (tangential direction), the distinction being the value of p as detailed in
Egs. (9-55) and (9-56), we might ask how the Petzval-astigmatism OTF in the
tangential direction relates to the defocusing OTF. Because the two expressions
for p are identical except that in the tangential direction the coeflicient C,g is
replaced by (C,y + C,;), we can conclude that the OTF in the tangential di-
rection, like the OTF in the sagittal direction, has a defocusing OTF shape but
with a different value for the defocusing coeflicient.

Though the OTFs in the sagittal and tangential directions, because the
expressions for them are relatively simple, may usually be chosen for calcula-
tion, an OTF calculation discussion would hardly be complete without some
reference to calculations in some intermediate directions. For these, all the terms
in Eq. (9-47) must be considered. How one proceeds with the actual calcula-
tions depends on what the objectives are and particularly what computer re-
sources are at hand. Of course, if all the necessary software is available, the
optical worker need only (1) assume the amount of aberration by selecting val-

Table 9.1I1 Optical Transfer Function Values for the Direction y = /3

g;zﬁizz;d Perfect Forp = 6.5s, 9 = 3s Forp = 10.8s, g = 5s
s Lens MTF PTF MTF PTF
0.0 1.0000 1.0000 0.0 1.0000 0.0
0.1 0.9364 0.9014 —-0.192 0.8395 -0.314
0.2 0.8730 0.7659 -0.367 0.5800 -0.519
03 0.8097 0.6051 —0.456 0.2303 —0.587
0.4 0.7471 0.4290 —0.428 —0.0115 —1.736
0.5 0.6850 0.2708 -0.307 —0.0846 —2.959
0.6 0.6238 0.1500 —-0.276 —0.0839 —3.168
0.7 0.5636 0.0932 —0.878 —0.0899 —3.813
0.8 0.5046 0.1151 —1.473 —-0.0723 -3.911
0.9 0.4470 0.1090 —1.666 —0.0559 —4.185
1.0 0.3910 0.0724 —1.908 —0.0693 —4.267
1.1 0.3368 0.0638 —-2.136 —0.0430 —4.349
1.2 0.2848 0.0770 —1.994 —0.0448 —-4.369
1.3 0.2351 0.0735 —1.839 —-0.0441 —-4.376
1.4 0.1881 0.0560 —-1.782 —0.0521 —4.396
1.5 0.1443 0.0572 —1.698 —0.0301 —4.030
1.6 0.1041 0.0597 —-1.518 —0.0136 -3.041
1.7 0.0682 0.0405 —1.237 -0.0119 —2.465
1.8 0.0374 0.0222 —0.943
1.9 0.0133
2.0 0.0000
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Figure 9.7. Modulation transfer function (MTF) curves for a perfect optical system and for two
amounts of astigmatism and Petzval curvature at an OTF direction of 7 /3.

ues of C,, and C,,, (2) determine the desired OTF direction by selecting v,
and then (3) plug in successive values of s and read the corresponding values
of O for the OTF curves. However, if the worker is constrained to using tables
of Bessel functions and a scientific calculator and wants to avoid elaborate in-
terpolation, certain juggling of assumed values is desirable with some conse-
quent restrictions on freedom of choice. We offer some examples of the latter
situation.

¥, = /6 radian = 30°, (9-57)
¥2

i

/3 radian = 60°. (9-58)
For ¢4,
siny; = 1/2, siny, = 1/4, sin2y, = sin 7/3 = V3/2.
(9-59)
For ¢,
sin ¥, = v3/2,  sin®y, = 3/4, sin2y, = V3/2.  (9-60)
The arguments p and g for the Bessel functions in Eq. (9-47), first defined in

Egs. (9-28) and (9-29), should be convenient for table look-up. This can be
attained by proper choice of the aberration constants C,, and C,, in the defining
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312 CALCULATION OF THE OTF: ANALYTICAL METHODS

equations:
p= 2‘15(C20+ Cy sin’ \b) = 2RSC22[(C20/C22) + sin’ \0], (9'61)
q = £5C,, sin 2¢. (9-62)

For the direction = ; = = /6, a convenient value of the coefficient ratio is
Cyo/Cpy = (s/§ - 1)/4 = 0.1830127019 = 0.18. (9-63)

The first value (‘‘exact value’”), given as a fraction, is to be used in calcula-
tions; the decimal values are only to indicate the magnitude of the assumed
ratio. For this ratio of coefficients, two sets, a and b, of OTF (consisting of
both MTF and PTF parts) values are calculated, for which we choose conve-
nient values of Cyg:

I

(Ca), = [3/(xv/3)] N = 0.5513288954 ) = 0.55X,

I

(Cw), = [5/(xv/5)]\ = 0.9188814924\ = 0.92\.  (9-64)
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Figure 9.8. Optical transfer function (OTF) plotted on a complex plane (Argand diagram) for
astigmatism and Petzval curvature at an OTF direction of w/3, Bessel function arguments p =
6.5s and ¢ = 3s.
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Figure 9.9. (Continued)

Then, when p and g are evaluated by Eqgs. (9-61) and (9-62), the following
results are obtained for y; = «/6:

Di. =35, qq, = 3s. (9-65)
P = 35, qip = 3s, (9'66)

where the normalized spatial frequency will be assigned values as follows:

s=20.1,02,03,...,19,2.0. (9-67)

The calculated MTF and PTF values are tabulated in Table 9.1, and the MTF
curves are plotted in Fig. 9.4. The OTF, O(s), for the two sets of aberration
coefficients is also plotted in Figs. 9.5 and 9.6 on a complex plane. (As we
point out in Chapter 5 in connection with Fig. 5.10, these are often referred to
as Argand diagrams.) Because each curve on the complex plane requires dif-
ferent coordinate scales for clear representation at its two ends, it is broken into
parts a and b (with some overlap).

Two further sets of values are presented, this time for the OTF direction v
= Y, = 7 /3. The same aberration values, C,, and Cy,/ Cyy, are applied so
that comparisons can made with the calculations for the previous OTF direction
. The Bessel function arguments p and g are necessarily different from those
of the previous direction because they are functions of y:
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316 CALCULATION OF THE OTF: ANALYTICAL METHODS

Pra= (3 +6/v3)s = 3(1 + 2/+/3)s = 6.464101615s

= 6.5s, (9-68)
G2a = 3s. (9-69)
P = (5 +10/3)s = 5(1 + 2/4/3)s = 10.77350269s

= 10.8s, (9-70)
dz = 5s. (9-71)

Table 9.1I1 gives the calculated values for direction v, = 7 /3. The correspond-
ing curves are shown in Figs. 9.7-9.9. As in the previous Argand diagrams,
each curve in Figs. 9.8 and 9.9 is broken into parts a and b so that appropriate
coordinate scales can be set up for each end of the curve.
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10
Calculation of the OTF: Numerical Methods

INTRODUCTION

In Chapter 9 analytical methods for calculating the OTF are demonstrated by
assuming the kinds and the amounts of aberration and then proceeding to cal-
culate the points on the OTF curves that correspond to these assumptions. The
kinds and amounts of aberration are expressed in terms of the power series for
the wave aberration function, W; in each example the aberration assumptions
are made by setting the values of the coefficients in the power series.

In this chapter, rather than starting with assumed values of coefficients in the
wave aberration function, we assume that the initial data are in the form of
optical path differences observed in laboratory measurements or calculated from
ray trace data in an optical design. When one tries to get OTF values from this
kind of information, it is soon discovered that analytical approaches are not
practical. Instead, numerical methods must be applied to the problem through
electronic computers.

Most numerical methods that are productive in calculating OTF values ap-
pear to involve three kinds of processes: (1) numerical interpolation, (2) auto-
correlation of the pupil function resulting from numerical interpolation, and (3)
direct numerical operation, equivalent to evaluating a definite integral, on op-
tical path differences. The third process combines processes 1 and 2 in one
operation.

Figure 10.1 represents, with a single independent variable, the problem in
numerical interpolation. The function y represented by the curve is to be ex-
pressed as a power polynomial in x or, more generally, a series of polynomials.
In optics the function could be the wave aberration function W in terms of two
or three independent variables. In Fig. 10.1 discrete values of y at x4, x;, x,,

and x; are shown. The complete sequence of known values, f(x;), can be ex-
pressed mathematically as

N
f(x) = 2 c,x?, where x; = xg, Xy, X3, X3, . . . . (10-1)
0

n=
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x3

Figure 10.1. Approximation of a curve by a sequence of straight line segments.

The function f (x) is known to have the values f (x;) at the given abscissas x;,
which are called interpolation points. The problem is to determine the constants
Cp-

When the numerical interpolation example represented by Fig. 10.1 and Eq.
(10-1) is extended to the two-dimensional wave aberration function W( p, ¢),
autocorrelation of the pupil function, which involves the wave aberration func-
tion, to get the OTF would constitute the second process listed earlier.

The third process, which may be substituted for the combination of the first
two processes, can be represented in one dimension by

| rds= D s, (102)

a

where the f (x; ) have the same meaning as in Eq. (10-1), and the H, are weight-
ing factors. When the function f (x) in Eq. (10-2) is represented graphically by
the curve in Fig. 10.1, each of the expressions on the two sides of the equation
is an expression for the area under the curve from x = a to x = b. When the
infinite series on the right side is truncated, as it must be in any practical cal-
culation, the summation on the right side is just an approximation of the actual
area. This summation process is often referred to as mechanical quadrature or
just quadrature (probably because the approximation is made by one or more
quadrilaterals so assembled that the sum of quadrilateral areas approaches the
area under the curve). In three dimensions (counting the y-value), the process
would be to approximate the volume under a surface and probably be more
appropriately termed cubature.

To extend the one-dimensional example, Eq. (10-2), to two dimensions, it
is replaced by a slightly altered form of the expression in Eq. (5-15), which is
the autocorrelation function of the pupil function:
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SSQ G(x, y) G*[(x — s5), (y — t)] dx dy

= }; 5:13 H;G(x;, y;) G*[(x — 5), (3 ~ )] (10-3)

The three processes in numerical methods outlined in the previous paragraphs
are discussed in greater detail in the remainder of this chapter. However, the
scope of this text does not allow full mathematical rigor in treating numerical
methods, nor is it feasible to go into the software subtleties that must be prac-
ticed before the three processes can be executed by electronic computers.

Optical path difference data may be obtained experimentally from interfer-
ometric measurements on an optical system. In the second section of this chap-
ter, the measurement-calculation procedures to develop these data are discussed
in some detail and a number of papers are cited for further review. Emphasis
on interferometric methods is largely justified by the modern developments that
greatly facilitate the measurement and reduction of data. The laser, for exam-
ple, provides an intense, monochromatic, stable light source having sufficient
temporal coherence to eliminate the tedious requirement of maintaining nearly
equal path lengths in the arms of the interferometer. Also, fast-scanning micro-
densitometers, operating automatically in conjunction with dedicated digital
computers, scan and measure the interferogram and reduce the data.

Because the illuminating light beams of most interferometers are nearly co-
herent, it is appropriate to review the properties of coherent beams that are
pertinent to the calculation of the OTF. An excellent paper by Swing [1] for
this purpose starts with the theory of partial coherence relating to the imaging
properties of optical systems and presents a brief analysis of the propagation of
what he defines as the ‘‘mutual intensity’’ and the calculation of the OTF of
lenses. (See also a paper by DeVelis and Parrant [2].)

When lenses are cascaded, the transfer function of the combination is prin-
cipally limited by the pupil function of the poorest lens. In Swing’s analysis of
a reasonably balanced system, it is apparent that one cannot find the transfer
function, in general, simply by calculating the product of the pupil functions of
the individual lenses or by calculating the product of the individual transfer
functions. When two lenses are cascaded in the finite conjugate mode, as illus-
trated in Fig. 10.2, with the pupils displaced in the x direction:

O(s) = (1/4) SS G{lx + (s/2)], v} - 6{[x - (s/2)]. )

. 62{[x + (s/2)], y} . G;‘{[x - (s/2)], y} dx dy, (10-4)
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320 CALCULATION OF THE OTF: NUMERICAL METHODS

Figure 10.2. Sketch of two lenses cascaded at finite conjugates [1].

where the symbols conform with the notation in Eqs. (9-1) and (9-2). When the
system is extended to N lenses similarly cascaded,

0= (1/4) || T 6 {Lx + /2], )
-G {[x = (5/2)). v} dx dy. (10-5)

Swing’s analysis makes evident that the pupil function is the only functional
description of a lens suitable for assessing cascaded system response, unless
the whole system can be treated as a unit. When a lens is tested, for example,
other lenses are usually part of the experimental setup; and if these are not
significantly higher in quality than the tested lens, their effects on the overall
measurement have to be removed by ‘‘backing out’’ their pupil functions from
the integrand of Eq. (10-5). Whatever the quality of the lenses in the measuring
apparatus, their characteristics must be known to assure reliable results.

Because the pupil function is recognized, as emphasized by Swing and oth-
ers, as the fundamental characterization of an optical system, particularly with
partially coherent illumination, its measurement is logically the way to get the
data for calculating the OTF. Measurement of the pupil function is best done
by interferometric methods.

OPTICAL PATH DIFFERENCE DATA BY INTERFEROMETRY

To get optical path difference data of a lens under test, the laboratory worker
may employ any one of a number of well-known interferometers, with a variety
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OPTICAL PATH DIFFERENCE DATA BY INTERFEROMETRY 321

of modifications, to produce the interference pattern from which the data can
be derived. The principles involved are reviewed here by describing the oper-
ation of an instrument called a LUPI (Laser Unequal Path Interferometer), which
was originally discussed by Minnick and Rancourt in 1968 [3].

LUPI produces interferogram photographs of an interference pattern. Optical
path differences are calculated by measuring the fringe spacing in the photo-
graphs. The schematic in Fig. 10.3 shows how LUPI is set up to test (a) an
aspheric mirror and (b) a refracting lens. When a refracting lens is to be tested,
it is placed in a position to focus at infinity so that its post-refracted rays are
ideally parallel. Our discussion of LUPI assumes that a refracting lens is being
tested.

A highly coherent beam is produced by the laser, and the beam is expanded
to a train of plane wave fronts, actually phase fronts, by the beam expander.

jImperfect test wave
| Ground glass

| viewing screen I
| 4 It
L

MLUPT ™ Adjustable fiat NGl
] reference mirror ; Lens |
1 Sphericaljj ]
| Plane wave \ || i
| :
} Aspheric
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{ Laser Beam ' Beam I mirror
! expander [ ‘\dlverger 1 I
limperfect test wave” }/ Recs;sgce I] l
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Figure 10.3. An interferometer for measuring optical path differences with (@) an aspheric mirror
and (b) a refracting lens [3].
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322 CALCULATION OF THE OTF: NUMERICAL METHODS

Each wave front is divided, by division of amplitude, at the beamsplitter; a
portion is reflected and another portion is transmitted. The reflected wave fronts
become a reference beam and are retroreflected at a flat reference mirror. The
angle between the reference mirror surface and the incident wave fronts is ad-
justable. The reference beam reflected from the reference mirror returns to the
beamsplitter and again is divided, a portion being transmitted through it toward
a ground glass viewing screen. The second portion of the original expanded
wave front that passes through the beamsplitter is caused to diverge as a spher-
ical wave front by the beam diverger. Concentric spherical wave fronts seem
to diverge from a virtual point source within the beam diverger. The lens being
tested is placed so that its optic axis is colinear with the axis of the interfer-
ometer and its object-space focal point coincides with the virtual point source.
Spherical wave fronts become plane wave fronts. (The beam is focused at in-
finity by the lens being tested.) Plane wave fronts are retroreflected at a second
plane mirror; the beam then retraces its path to the beamsplitter. A portion is
reflected toward the viewing screen where the wave fronts are superposed on
the reference wave fronts and interference fringes are produced. A photographic
film substituted for the viewing screen records the interferogram. Use of instant
film such as high-speed Polaroid positive film facilitates a speedy processing of
data.

Linear fringes can be produced by an appropriate adjustment of the reference
mirror, and fringe spacing is related to the angle of adjustment between the
interfering beams. Circular fringes can also be produced by adjustment of the
reference mirror, but linear fringes are preferred for the following reasons:

1. The linear pattern is easily recognized by x-y scanning devices.

2. A reasonably uniform distribution of light flux density is achievable over
the aperture.

3. Ambiguities in fringe order, which are possible with circular fringe pat-
terns, are avoided.

With linear fringes, any curvature of a fringe is recognized as an effect caused
by a distortion of the wave front. Also, with circular fringes, the zero order is
at the center of the pattern, and it must be located, whereas with linear fringes,
it is not necessary to locate the zero order.

When fringes are truly linear, that is, when the interfering wave fronts are
both perfectly plane, the fringe spacing x is a function of wavelength A and the
angle o between the two interfering wave fronts, as shown diagrammatically in
Fig. 10.4. The plane of the diagram is perpendicular to the line of intersection
of wave fronts. From the geometry of the figure,

tan /2 = \/x. (10-6)
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A
e X
Figure 10.4. Cross section of interfering plane wave fronts.

When “‘linear fringes’” are curved and spacing between fringes is decreasing,
an imaginary plane that is tangent to the distorted wave front is making a larger
angle « to the reference wave front. When spacing is increasing between curved
““linear fringes,”’ the angle « is smaller. Fringe spacing is measured in a direc-
tion normal to the curvature of fringes. Thus, from the size and shape of the
curved pattern of fringes, which ideally would be linear, and from the spacing
between fringes, a contour plot of the distorted wave front can be constructed
and optical path difference data deduced.

CALCULATION OF THE ABERRATION POLYNOMIAL

When numerical methods are applied to wave-front-ray-aberration data, a series
of points is known; but an expression for the smooth curve that passes through
these points is unknown. In optics the wave aberration function, for example,
is usually expressed as a series of polynomials such as the right-hand member
of Eq. (4-47). The process of evaluating the constants in the polynomial series
so that it passes through calculated points is known as curve fitting and is dis-
cussed by a number of authors including Plight [4] and Barakat [5].

The optical path length D, defined by Eq. (3-4), from the object point along
a pupil ray to the exit pupil point E’, as defined in Chapter 3, determines the
reference path length D,. When any other ray is extended this same distance
D, from the object, the end point in image space is a point on the wave front
near the exit pupil at the ray’s coordinates (x, y) on the reference sphere. The
optical path difference (OPD) between the wave front, defined by the D, points,
and the reference sphere, which also passes through the exit point E’, is the
phase advance, defined as 2«n'(D — D)/ \. This quantity is discussed in
Chapter 3 in connection with Fig. 3.4. The OPD, given in radians, is the value
a; applied in numerical calculations as the wave distortion at (x;, y;). It is pos-
itive when directed from the reference sphere to the wave front in the direction
that the wave is traveling. Values of a; are called the wave-front-ray aberra-
tions.

The data a; can be made as accurate mathematically as desired during the
design optimization procedure, which consists of successive calculation of the
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OPD for a number of key rays. However, when the data are obtained experi-
mentally by interferometric measurement of the wave-front shape produced by
an actual optical system, the required precision in laboratory methods, as dis-
cussed in Chapter 8, is often extremely difficult to attain.

Once the wave-front-ray-aberration data have been obtained, the next task is
to select a general mathematical expression that can be made to fit the data in
the range of interest. Since the wave aberration function W is the difference
between the actual wave front and the reference sphere at the exit pupil, the
power series and the Zemike polynomial series representations of W discussed
in Chapter 4 are two examples of possible mathematical expressions to fit wave-
front-ray-aberration data.

It is of interest to review the elementary beginnings of employing a power
series as a general function. The basis of our discussion is the Weierstrass theo-
rem [6]. Though simple in expression, proof of this theorem has involved subtle
and highly sophisticated reasoning by a number of eminent mathematicians,
including Gauss. The theorem is stated as follows in terms of a single variable
{7, p. 19]:

Let f (x) be an arbitrary continuous function defined in the finite interval
a < x < b. It is always possible to approximate f (x) over the whole
interval (a, b) as closely as we please by a power series in x of sufficiently
high degree.

In equation form, the theorem states
f(x) =co+ ox' + cx? + ¢c3x° + -0+ cx”, (10-7)

where n is a sufficiently high degree of the polynomial and the ¢, are coeffi-
cients. (Ordinarily the exponent 1 is omitted and x' is simply written x; on the
other hand, if the exponential continuity is to be emphasized, the first right-
hand term could be written c,x® with no change in the meaning of the expres-
sion.) If the values of f (x) are known at certain discrete values of x, either by
experimental determination or by calculations in a theoretical model, we can
state this by

f(x) = a;, (10-8)
and for each known value of a;, there is an equation
flx) =a;=co+ cx! +cxf + cax) + -+ +cxf. (109)

In expanded form, Eq. (10-9) is
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f(x0)=c0+c1x(‘,+c7_x(2,+c3x(3,+ SRIRE Sarolh 78
%) = ¢y + cpxl + x? + exd + -+ oxf,
1 0 1% 2X] 3X7 n
X,) = ¢ +cx1+cx§+cx%+---+c,,x'7_’,
2 0 1X2 2 3
x) =cp + cixl + cx? +oexl + -0 4 cxn (10-10)
n 0 t*n 2%n 3

Since n + 1 discrete values, ‘‘interpolation points,”” were chosen for x to find
corresponding values of f(x), we recognize in Eq. (10-10) a set of n + 1
simultaneous linear equations in ¢ where the ‘‘constants’’ represented by c are
paradoxically the variables to be determined by simultaneous solution. Of
course, as with all such sets of equations, certain conditions of independence
and freedom from inconsistencies must hold, for which the reader is referred to
a standard discussion of simultaneous linear equations and their solution.

Since the Weierstrass theorem places no restrictions on the chosen values of
x;, that is, the ‘‘positions’’ of the interpolation points, some thought has to be
given to how best to choose these points with accuracy and convenience of
calculation in mind. Because in the optical application of quadrature theory we
are ultimately concerned with values of the OTF, it seems obvious that we
would like to relate the method of choosing the interpolation points to some
accuracy criterion of the OTF. Gauss quadrature ranks high among optical prac-
titioners as a basis for effective computer software to find the OTF from OPD
data. Although our present scope does not allow exploring the intricacies of
such software development, a following section does outline the principles of
Gauss quadrature by illustrating the procedure for one independent variable (in-
stead of the two or three independent variables usually involved in optical com-
putations).

EXTENSION TO MORE THAN ONE INDEPENDENT VARIABLE
If we chose to write Eq. (10-7) in summation form, it would appear as

fx) = 2, (10-11)
and Eq. (10-10) would be written

f(x) = Z jZ ¢ x. (10-12)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



326 CALCULATION OF THE OTF: NUMERICAL METHODS

With similar notation, Eq. (4-33) of Chapter 4, with r treated as a constant,
could be written

W(p, ) = 2 cip’ cost o. (10-13)

If a number of observations a; of W are made, then

a; = _;0 cyi Pl cost ¢, (10-14)
and
W(pn ¢t) - Z Zk qup{ COSk @Pis (10‘15)
i J

where certain limitations are placed on j and k in accordance with Egs. (4-35)-
(4-38). As with the single independent variable, with sufficient observations of
a;, the c;; may be solved for and W( p, ¢) determined to any accuracy desired.

CHOICE OF ORTHOGONAL POLYNOMIAL

Setting up an expression for W( p, ¢), as discussed in the previous section, is
only the first step in finding the OTF. Following that, the autocorrelation in-
tegral must be solved, probably by numerical methods. In fact, the form chosen
for W(p, ¢) depends in large degree upon the subsequent mathematical oper-
ations to calculate the OTF. Those who have labored over this problem have
come up with various infinite series of orthogonal polynomials to represent W( p,
@), which, of course, are truncated to a manageable number of polynomials for
actual calculation. Orthogonality has already been discussed in Chapter 4 where
Eqgs. (4-42) and (4-43) define the property. Also in Chapter 4, the Zemike circle
polynomials are treated in detail to give the reader a feeling for how the or-
thogonal polynomials are applied in general to the wave aberration function
W(p, ¢).

Besides being orthogonal, the interpolation polynomials have a number of
other properties in common. Not only should each polynomial series represent
the wave front, but it should be able to give the shape of the wave front relative
to the reference sphere everywhere over the exit pupil. This requires the series
to have simple continuity and to be single valued in the interval defined by the
boundary of the exit pupil. With rectangular coordinates (x, y), as defined in
Chapter 3, practical optical problems require
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0= ‘W(x, y)l <2nw  for (x*+y?) = 1. (10-16)
The integer n is assumed to be small, say less than 5 in practical optics, and
W(x,y) =0 for (x*+y°) > L (10-17)
In polar coordinates ( p, ¢)
0= |W(p e)| =2nm for p=1 (10-18)
and
W(p, ¢) =0 for p > 1. (10-19)

It must be possible to set the polynomial series equal to the known value g; of
the wave-front-ray aberration for each of a finite number of interpolation points
(x;, yi) or (p;, 0;).

No one series of orthogonal polynomials can be declared best for the cal-
culation of the OFT from a set of interpolation points. We have already referred
to the discussion of Zemike polynomials in Chapter 4 where the general expres-
sion for the series is given as Eq. (4-47) and the first 25 Zernike radial poly-
nomials are shown in Table 4.II. Hawkes [8] has carried out an expansion of
the wave front in Zemike circle polynomials, which are the most widely used
for analyzing diffraction integrals.

Another powerful set for optical calculations is the series of Tschebyscheff
polynomials discussed by a number of authors [4]. Tschebyscheff polynomials
of the first kind can be arrived at by a recurrence formula when two of three
successive polynomials have been found by other means:

Tn+l(p) = 2an(p) - Tn—l(p)' (10—20)

As indicated by the single independent variable, the radial coordinate p, the
Tschebyscheff polynomials alone can be applied to expressing W( p, ¢) only
when there is rotational symmetry. Otherwise each polynomial must be used in
combination with another function [4, 9]:

03(p, ¢) = T,(p) cos pe, (10-21)

where ¢ = p, and | g — p| is even. The first 13 Tschebyscheff polynomials are
tabulated in Table 10.1.

Legendre orthogonal polynomials result from application of the most precise
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Table 10.I The First Thirteen Tschebyscheff Polynomials

To(x) =1

T] (x) =X

T(x) = —1 + 2x2

Ty(x) = —3x + 4x3

T,(x) =1 — 8x% + 8*

Ts(x) = 5x — 20x® + 16x°

Te(x) = —1 + 18x% — 48x* + 32x5

T(x) = —7x + 56x3 — 112x° + 64x’

To(x) = 1 — 32x? + 160x* — 256x5 + 1288

To(x) = 9x — 12063 + 432¢° — 576x" + 256x°

Tio(x) = —1 + 50x? — 400x* + 1120x° — 1280x® + 512x'°

T (x) = —1lx + 22063 — 1232x% + 2816x" — 2816x° + 1024x!"
Tn(x) = 1 — 72x% + 840x* — 3584x5 + 6912x® — 6144x'0 + 2048x"?

of the many quadrature formulas, the method of Gauss, which is discussed in
the next section.

One way of defining the Legendre polynomials is by means of a generating
function H(x, r) [12, p. 45]:

H(x,r)=1/(1 = 2xr + r)'/%. (10-22)

If this is regarded as a function of r, the right side can be expanded in a power

series for sufficiently small values of the variable. The coefficients of the powers

of r will be polymomials in x, which we designate as P,(x) where n = 0, 1,

2, ... so that
H(x,r) = Po(x) + Py(x)r + Py(x)r? + -+ . (10-23)

The polynomial coefficients are the Legendre polynomials, the first five of which
are given in Table 10.I1. For calculation of further Legendre polynomials, the

Table 10.IT The First Five Legendre

Polynomials
Py(x) =1
Pi(x) =x

Py(x) = (1/2)(3x* — 1)
Py(x) = (1/2) (5 — 3x)
P,(x) = (1/8) (35x* — 30x? + 3)
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GAUSS QUADRATURE 329
recurrence formula may be applied:

(n+1)P,i(x) — (2n + 1) xPy(x) + nP,_,(x) = 0. (10-24)

GAUSS QUADRATURE

More needs to be said about the process of quadrature, sometimes called ap-
proximate quadratures [13], which is the numerical integration already referred
to in the previous pages for proceeding from optical path difference data to the
OTF.

When a function f (x) is known to be continuous over an interval of x from
a to b but the explicit form of f (x) is unknown, numerical evaluation of its
integral depends on substituting a second integral for the original:

b b
S f(x) dx is replaced by S ¢ (x) dx, (10-25)

where ¢ (x) can be determined in a simple way. Since f (x) is known to have
(n + 1) values yq, ¥, Y25 - - - » Y, at the (n + 1) interpolation points within
the interval (a, b), the second integral may be expressed as

b
S p(x)dx = Coyg + Ciy1 + Coya + -+ + Gy, (10-26)

where the (n + 1) quantities C; are independent of the (n + 1) values of the
y;. Therefore, if f (x) is a polynomial of degree < n, the error made in replac-
ing the original integral by £ C; y; may be made to vanish by the proper choice
of the C;. Even if f (x) is a polynomial of degree > n, the difference between
the true value of the integral and the value in Eq. (10-26) may still be small
enough to make this procedure useful.

Many formulas have been developed to evaluate {2 f (x) dx, most of them
assuming the y; to be known at equal intervals over the range (a, »). Among
these are the Euler—Maclaurin formula, Gregory’s formula, and the Newton-
Cotes formula, which subdivides into the Trapezoidal rule, Simpson’s rule, and
Weddle’s rule [13].

The method of Gauss or Gauss quadrature not only determines the (n + 1)
values of C; but also fixes the (n + 1) y; of Eq. (10-26) in such a way as to
make the difference between the two integrals given in Eq. (10-25) a minimum.
As a result, there are in effect (2n + 2) constants available so that if f (x) is a
polynomial of degree < (2n + 1) the method will give an exact result for the
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integral. Because of this characteristic, Gauss’s method in general introduces
less error than other quadrature methods for a given number of y;.

The following elementary procedure is presented as a portal to the subject
of Gauss quadrature. For complete mathematical processes, rigor, and prepa-
ration of computer software, the reader is referred to advanced texts like those
listed at the end of this chapter. (See particularly [7, 11, 14, 15].)

An article by R. Barakat [15] discusses many of the mathematical procedures
that are mentioned, but not explained, in this chapter. The article treats the
procedures—which range from the trapezoidal rule and Simpson’s rule to Gauss
quadrature—and algorithms for applying the procedures to computer software
from the viewpoint of optical design and analysis. Particular algorithms for a
number of useful optical calculations are given.

Perhaps the simplest quadrature approach is illustrated in Fig. 10.5a where
a trapezoid abBA has been constructed as a first approximation to the area under
the curve f (x) between the abscissa values a and b. As indicated point A4 on
the curve is at (a, f(a)) and point B at (b, f(b)); and the trapezoid is com-

"]

A

/&\ | |

a

(a

M\&\\\\ |

a b
b)

Figure 10.5. Trapezoid approximations of the area under a curve.
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pleted by drawing the straight line AB connecting the two points. Since the
width w = (b — a),

area = (w/2)[f(a) + f(b)]. (10-27)

This expression can be put in the form of Eq. (10-26):

area = (w/2) f(a) + (w/2) f(b). (10-28)

It is obvious that this approximation of the area under the curve would be un-
satisfactory as a general approach. It is true that the approximation could be
improved by subdividing the interval (a, b) and adding the areas of the succes-
sion of trapezoids; but a far more effective way of improving the approximation,
without requiring a large increase in the number of interpolation points, is to
substitute points C and D (Fig. 10.5b) for 4 and B to define the approximation
trapezoid. In fact, it is apparent that if these points are so chosen that the tra-
pezoid area above the curve exactly equals the void under the curve, this method
of calculating the area under the curve from a to b is exact. The Gauss method
consists essentially of how to choose C and D to get the optimum approxima-
tion.

The Gauss method as developed requires that the integral be arbitrarily taken
over the interval (—1, +1) instead of the general interval (a, b) as previously
indicated. However, this requirement can be handled by appropriate change of
variable as indicated in the following example:

SO exp(—1) dr = [—exp(—1)]"

—exp(—o) + exp (0)

0+1=1. (10-29)

To change the variable to realize the (—~1, +1) limits, letr = (x + 1) /(x —
1). Then, when

t=0, x=-1, (10-30)

and when

I=o0, x=+1, (10-31)
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and

dt = [(x — 1)dx — (x + 1) dx]/(x = 1)". (10-32)

So

SO exp(—t)dt = =2 S ({exp[—(x +1)/(x - 1)]}/(x - 1)2) dx.

(10-33)

Having indicated with a particular example an approach for changing the
integration limits to the required (—1, +1), we turn to the general problem of
evaluating the resulting definite integral, which is represented by Fig. 10.6.
The trapezoid EHGF corresponds to the trapezoid of Fig. 10.5 discussed earlier.
As indicated, point C on the curve is at (x;, f(x,)), and point D is at (x,,
S (x3)). Our object is to develop a rationale for a Gauss quadrature formula
based on the general type given as Eq. (10-26):

S o(x)dx = Cop(xy) + Cid(x,). (10-34)

-1

As indicated earlier, most of the quadrature formulas work with equal inter-
vals between xg, X{, X2, . . . , X,; but the Gauss method requires specific inter-

Figure 10.6. Optimizing the trapezoid area approximation by choosing x, and x, within the in-
terval from —1to +1.
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vals, which are determined as part of developing the method. Therefore, in Eq.
(10-34) there are four unknowns: C,, C|, x;, and x,. Also, one has to make
some assumptions as to the nature of the ¢ functions. To do this, some phi-
losophizing is in order as to how best to connect interpolation points to fit the
unknown curve between the points. The easiest technique is simply to connect
the points with straight lines; but we have already seen that the resulting
trapezoids under the curve are likely, in most instances, to be unsatisfactory.
Some sort of curved connecting line, whose shape is influenced by the inter-
polation point values, would seem to be an improvement. About as simple as
we can go in this direction is to employ parabolas, that is, functions made up
of powers of x. We thus can arbitrarily write the four independent equations
needed to solve for the four unknowns in Eq. (10-34):

¢ (x) =x° =1,

b (x) = x' = x,

¢3(x) =%,

dq(x) = x3. (10-35)

When these assumed functions are individually substituted in Eq. (10-34),
+1
+1
| Wac=w=2= o+ an),

+1
S xdx = [x2/2]i: =0 = Cyxg + Cyx,,

~1

+1
| wa=temrt=2s - on,

+1
+1
S_l xde = [x*/4] =0 = Cx} + Cix}. (10-36)
From the first, second, and fourth of Eq. (10-36),
Co + Cl = 2,
Coxo + Clxl = O,

Coxs + Cix2 =0, (10-37)
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It is apparent that the following will satisfy the simultaneous equations in Eq.
(10-37):

CO = Cl = 1,
Xo = —X;. (10'38)

When these values are substituted in the third of Eq. (10-36),

x5+ x3=12/3,
x5 =1/3,
xo = +0.5773502692. (10-39)
So, in general, from Eq. (10-34),
+1
S—1 ¢ (x) dx = $(—0.57735) + #(0.57735). (10-40)

The Gauss method can be extended to three or more points instead of the
two in the example above. As the number of points within the interval (—1,
+1) increases, accuracy increases; but the labor of solving simultaneous equa-
tions also increases. The latter job is considerably lightened by relations in-

Table 10.III Gauss Quadrature Coefficients and Abscissas

Number of
Points Coefficients C; Abscissas x;
2 Co=C =10 —xg = x; = 0.57735 02692
3 Co=C, =0.555555 . .. —Xg = X, = 0.77459 66692
C, = 0.888888 . . . —-x; = 0.0
4 Cy, = Cy = 0.34785 48451 —xo = x3 = 0.86113 63116
C, = C, = 0.65214 51549 —x; = x, = 0.33998 10436
5 Cy = C4 = 0.23692 68851 —x, = x4 = 0.90617 98459
C, = C3 = 0.47862 86705 —Xx; = x3 = 0.53846 93101
C, = 0.568888 . . . -x, = 0.0
6 Cy = G5 = 0.17132 44924 —Xxg = x5 = 0.93246 95142
C, = C4 = 0.36076 15730 —x; = x4 = 0.66120 93865
C, = C; = 0.46791 39346 —x, = x5 = 0.23861 91861
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volving Legendre polynomials. When the Gauss method is extended to n points,
the general equation corresponding to Eq. (10-34) is

S 1 ¢ (x) dx = élo Cio(x;), (10-41)

and the general equation corresponding to Eq. (10-36) is
+1 n
g x"dx = 2 Cx”, (1042)

wherem =0, 1,2, 3, . . ., n. Values of C; and x; are tabulated in Table 10.11I
for up to six interpolation points. Values for a greater number of points are
available from various sources; for example, see the appendices of Kopal [7].
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Appendix A
Calculated Optical Transfer Functions

INTRODUCTION

Optical Transfer Functions for optical systems having primary and secondary
aberrations have been calculated for most of the classical Seidel aberrations.
Published papers reporting these calculations have often been referenced in
chapters of this book. Here, in Appendix A, we summarize results of the cal-
culations by showing typical curves of the OTF and other pertinent results.

The reader will notice that certain works and parts of some works are not
included. Omissions occur because we arbitrarily adopted the following criteria
for including a set of calculated OTF curves:

1. A set of included curves extends only to small amounts of maximum
wave aberration according to whether it is in either

(a) a case where the MTF drops below 0.5 at the normalized spatial fre-
quency of 0.1, or

(b) a case of approximately 2 wavelengths of maximum wave aberration.

2. Calculations reported in a published paper must have been proved correct
subsequent to the date of publication.

3. Geometrical approximations of the OTF are not included.
4. ‘‘Heterochromic OTFs’’ are not included.

Exceptions to these rules are allowed if additional curves show a trend when
appropriate parameters vary.

DEFOCUSING

Figure A.1 shows the results obtained by H. H. Hopkins [1] for an optical
system free of aberration but having a defect of focus. The method of calcula-
tion is discussed in Chapter 9 of the text. The curves have been replotted with
an expanded scale along the abscissa so that they conform more closely to the

337
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Modulation transfer function

1 1 {
1.0 1.5 2.0
Normalized spatial frequency s

Figure A.1. MTF curves for a defocused optical system that is free of aberrations. The amount
of defocusing is indicated by the number on each curve. Cy = n\/. (Reconstructed by changing
the abscissa scale of Fig. 5.9, which is Fig. 5 of Ref. 1.)

style of the rest of the curves in this appendix. The number » on a curve is for
(n/7) wavelengths of maximum wave aberration caused by defocusing. The
aberration produced by defocusing is radially symmetrical; therefore, there is
no phase transfer function.

PRIMARY SPHERICAL ABERRATION

Figures A.2-A.4 show OTFs for primary spherical aberration as calculated,
using Simpson’s rule to evaluate the integral, by Black and Linfoot [2]. The
symbol C is the coefficient (C,, in the expression for spherical aberration as
given in Chapter 4 of the text. It represents the amount of fourth power spherical
wave aberration, and it would be given by

W(p, o) = C40p4. (A-1)

The aberration is radially symmetrical so that there is no phase transfer func-
tion. Calculations were made considering different image planes as denoted by
the symbol B and shown in the figures. Black and Linfoot introduce a defocus-
ing term as

W(p, ¢) = C(p* + Bp?). (A-2)
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0.2

Modulation transfer function

-0.2

0 0.4 0.8 1.2 1.6 2.0
Normalized spatial frequency s

Figure A.2. MTF curves for an optical system having spherical aberration C4o = 1 at selected
focal settings. See the text for an explanation of focal settings, which are indicated by B [2].

Then with the paraxial focus arbitrarily chosen as the ‘‘image’’ plane for study,
they set B = 0 and C = 1. The maximum wave distortion is 1 wavelength and
the maximum occurs at the edge of the pupil where p = 1. They allow B to
take on other values denoting different image planes for study. At any image
plane, the reference sphere and the wave front coincide on axis; for example,

1.0
0.8
0.6

0.4

Modulation transfer function

0.2

02 04 06 08 10 1.2
Normalized spatial frequency s

Figure A.3. Same as Fig. A.2 but with different focal settings [2].
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1.0 g

0.8 ¥

0.6

0.4

0.2

Modulation transfer function

-0.2

Normalized spatial frequency s

Figure A.4. Same as Fig. A.2 but with greater aberration equal to Cy = 2 [2].

0.8

o
o

0.2

Modulation transfer function
o
.

0
1.0 Image plane setting B

Figure A.5. Curves showing the dependence of the MTF on focal setting for a system having
Cy, = 1 at several normalized spatial frequencies s. The symbols have the same meaning as in
Figs. A.2-A 4 [2].
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Normalized spatial frequency s
0 0.4 0.8 1.2 1.6
I [ i T I I [

Best focus B*
| | | | |
- 9 o o o
o ® o » N
[ [ T T T
N

|
—
N

-14

Figure A.6. Variation of best focus B* with frequency for a system with selected amounts of
aberration, C4 = 1, 2, and 4 [2].

when
B = —2, maximum distortion is —2 wavelengths, and the image plane is
at marginal focus;
B = —1, distortion, at p = 1, is 0;
B = 0, image plane is at paraxial focus, and maximum distortion is +1;
and when

B = 42, maximum wave distortion is 3 wavelengths, and the image plane
is beyond the paraxial focus, that is, nearer the exit pupil.

Intermediate values of B are allowed as shown in the figures.

Figure A.5 is from Black and Linfoot showing the MTF as function of B,
image plane setting, for fixed values of normalized spatial frequency. Maximum
of each curve shows the image plane setting B to give peak MTF for C = 1,
and the indicated value of normalized spatial frequency. There is no image
plane setting to give peak MTF at all frequencies, which would be of interest
with a heterochromic beam of light.

Figure A.6 shows the variation of the image plane position B* giving best
focus, that is, maximum MTF, with variation of normalized spatial frequency.
Numbers on the curves are values of C.

PRIMARY WITH SECONDARY SPHERICAL ABERRATION

A. M. Goodbody [3] calculated OTFs for the cases of defocusing and pri-
mary spherical aberration each in the presence of secondary spherical aberra-
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Cog =—5.0A
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= 5 Wavelength
S 0.4} et
2
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= 0.2

0
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\/ Figure A.7a. Ceo = —4\, B; =B; — 0.5
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0. — 061 ]
6 [ Cop =0

1
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0. — 0.2+ —
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Modulation transfer function
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A // ‘\__/,
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Figure A.7b. Cgo = —4\, B4 = B

Figure A.7. and Figure A.8. MTE curves in the presence of primary, Cyo, and secondary, Cgp,
spherical aberration in various focal planes. In the upper diagram in each figure the shape of the
wave fronts are compared, one (—--) in the best focal plane and another (—) at paraxial focus.
The ratio of defocusing to primary aberration is (Cyp /Ca) = B,, and the ratio of primary to
secondary (Cy/Cs) = Bs. The b figure in each set of three represents the optimum balance of
higher order aberration; when values of the 8’s optimize the response according to the tolerance
theory of Hopkins, primed symbols are used. The legend for the MTF curves accompanies the ¢
figure in each set [3]. (Reproduced by permission of The General Electric Co., Ltd., of England.)
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tion. The method used was a numerical integration of the pupil function, which
had been expressed in double integrals following an expansion in a Taylor’s
series by a method suggested by Hopkins [4]. Goodbody expressed the wave
aberration function by

(A-3)

2 3
W(x, y) = Cop(x® + ¥7) + Cyol(x® + ¥2) + Ceolx® + %),

which corresponds to our expression in Chapter 4 of the text. Calculations were
made for different amounts of C,, and C, and for different ratios of primary to

Cxp =0
1.0 T T 1.0 AN L~ ~20
_ Cog =—0.5A —ﬂl’ aaa B =85 - 05
% 0.8 ‘ — 0.6 i —eee—03 = (5 — 0.25
5 \‘ B2 = B2
= ——-— = g
2060 . 0.2t | b2 = b2+ 0.25
£ W\ 0
© N,
= LN -1 0 1 Wavelengths
504
£ \ T T T T
© \
3 \
\
§ 0.2 \
0./ 06, 08 e
ol -
0 0.2 Sea—->ec 10% 1.2 T4 16
Normalized spatial frequency s
Figure A.7c. Cgo = —4\, 3, =85+ 0.5
10 T T 107 T T T
[Cx = -8.15:
c i
S 0.8 M —0.61 Coxp=20 —
© \
< N\
2 N\
506 o2l N -
5 0 | i ] |
= -2-1 0
= 0.4 1 3 5 7 Wavelengths
2
3
el
L=}
=3
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Figure A.8a. Cgo = —6\, 8, = 83 — 0.5
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secondary aberrations, which he defined as 8; that is,

B, = (Czo)/(cm); By = (C4o)/(cso)- (A‘4)

When the ratio optimizes the response (MTF) according to a tolerance theory
of Hopkins [5], primed symbols, 85 and 8}, are used. A plot of wavelength
distortion, in wavelengths, accompanies each set of MTF curves, which are
presented in Figs. A.7 and A.8.
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Figure A.8b. Cgo = —6X\, 81 = 84
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Figure A.8c. Cg = —6M\, 8, =85 + 0.5
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PRIMARY AND SECONDARY COMA WITH DEFOCUSING

In a second paper [6] Goodbody considers primary and secondary coma. Dif-
ferent positions of the image plane, the state of balance with higher order ab-
erration, and different azimuths of the line structure in the object are considered.
The wave aberration function that he used is

W(x,y) = Colx* + y*) + Cy(x* + y*)(ycosy + xsiny)
+ Cs (x% + y*)(ycosy + xsiny), (A-5)

which corresponds only roughly to expressions given in Chapter 4. The symbol
¥ in Eq. (A-5) is the angle of the spatial frequency line structure to the meridian
plane of the optical system as shown in Fig. 5.4.
The results for primary coma, at different image positions {defocusing), and
values 0 and 7 /2 for the azimuth are shown in Figs. 4.17-4.19 in the text.
Figures A.9a-c show the results that include secondary coma. Figure A.11
shows the OTF, which for coma is a complex quantity, on an Argand diagram.

Modulation transfer function

0 02 0.4 0.6 0.8 1.0
Normatized spatial frequency s
(a)

Figure A.9. MTF curves in the presence of primary, C,,, and secondary, Cy;, coma in various

focal planes. —, Azimuth ¢ equal to zero; ~--, ¢ = 7 /2 [6]. (Reproduced by permission of
The General Electric Co., Ltd., of England.)
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Figure A.9. (Continued)
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Figure A.10. Lateral phase shift for primary coma C;; = £0.63\ in various focal planes plotted
as function of the spatial frequency s [6]. (Reproduced by permission of The General Electric Co.,
Ltd., of England.)

C31 = +0.63\

0.5 0.4 03

Imaginary component

10 | 1
-0.2 R 04 06 08 1.0

Real component

0.2

Figure A.11. MTF in the presence of primary coma plotted on an Argand diagram. Numbers
around the curves indicate values of the normalized spatial frequency s at the points {6]. (Repro-
duced by permission of The General Electric Co., Ltd., of England.)
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Figure A.12. MTF in the presence of primary and secondary coma plotted on an Argand diagram;
C31 = —4.6\, Cs5; = 2.6\, Cy = £2X [6]. (Reproduced by permission of The General Electric
Co., Ltd., of England.)

Figure A.10 shows the lateral phase shift, in right angles, for primary coma,
C;; = +0.63), in three different image positions. Figure A.12 is an Argand
diagram for the OTF when C,; = +2A, C3; = —4.6\, and C5; = 2.6 A. The
figure illustrates how the phase transfer function can circulate, with relatively
large amounts of aberration, as the spatial frequency varies from zero to 1.00;
the PTF here is the angle ¢ of Eq. (2-19).

SPHERICAL ABERRATION WITH COLOR

In a series of papers during the 1960s Richard Barakat [7-12], working with
several different collaborators, reported on extensive calculations of the OTF.
He used optical path difference data obtained from the lens design data in a
method that was discussed in Chapters 9 and 10. He then represented the ab-
erration function in a series of Tschebyscheff polynomials and used the Gauss
quadrature method of numerical integration to accomplish the convolution of
the pupil function; these processes were discussed very briefly in Chapter 10.

Figures A.13a, A.14a, and A.15a show Barakat’s results of computations
(with M. V. Morrello) for a spherical doublet; and Figs. A.13b, Al4b, and
A.15b show the results for the same lens but with a tenth-order aspheric fitted
(in d-light) on the last surface. Calculations were made at different wavelengths:
C-light at 6562.8 A, d-light at 5875.5 A, and e-light at 5460.7 A. The pa-
rameter 8/ is the displaced focal setting. When 6/ is zero, the setting is at the
paraxial focus; a negative value for 6/ means a defocusing toward the marginal
focus. All calculations were made for an f/5 system at focal lengths of 66, 33,
and 13.2 in.

Considering spherical aberration as used in these calculations, we note the
behavior of the MTF at low and high spatial frequencies to be almost indepen-
dent of the order (i.e., 1st, 2nd, 3rd, 5th, etc.), when the coefficients for all
orders have the same value. ‘‘The low order coefficients influence the MTF in
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Figure A.13. MTF curves calculated from design data for a 66-in. spherical doublet in d light
for different focal settings. The symbol 6/ = 0 is paraxial focus; 6/ is distance toward marginal

focus [8].

the midrange the most since they deviate more from zero over the aperture than

do the higher order’’ [8].

OPTIMUM BALANCED FIFTH-ORDER SPHERICAL

ABERRATION

Barakat [9] calculated the OTF for examples having different amounts of, but
a constant ratio between, third-order and fifth-order spherical aberration. He
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Figure A.14. MTF curves calculated from design data for a 33-in. spherical doublet with different
amounts of defocusing and different wavelengths of light [8].

uses a formula for optimum balance,
W(o. ¢) = Calo® — (3/2) 0" + (3/5) 0%, (A6)

which was published by W. Ta Hang in 1941. The formula thus gives Cyy =
1.5C¢ and C,, = 0.6Cy,. However, Barakat does use different image planes,
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Figure A.15. MTF curves similar to the curves of Figs. A.13 and A.14 except for an aspheric
doublet [8].

which would change C,,, the amount of defocusing, but not C, and Cgy. Typ-
ical MTF curves are shown in Figs. A.16 and A.17. The curves show that there
is an image plane that gives best MTF and that any other image plane away
from best focus degrades the MTE. Curve D in both sets of curves is the best;
but greater amounts of aberration degrade all MTF curves although the optimum
balance still produces the best MTF.
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Figure A.16. Two sets of MTF curves for balanced fifth-order spherical aberration and various
amounts of defocusing. Defocusing is measured in wavelengths from paraxial focus. Letter codes
on the curves identify amounts of defocusing: A, 1.2; B, 1.4; C, 1.6; D, 1.8; E, 2.0; F, 2.2; G,
2.4; and H, 2.6. Curve D shows the MTF in the plane nearest best focus; the Strehl criterion test
locates this same best focal plane [9].
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Figure A.17. Two sets of MTF curves similar to those of Fig. A.16 except for greater amounts
of aberration and different amounts of defocusing. Correlation of defocusing with letters on the
curves are A to H with defocusing from 1.8 to 3.2 wavelengths (in increments of 0.2), respectively.
Curve D is again the setting nearest the best focus [91.
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PRIMARY COMA AT DIFFERENT AZIMUTHS

It is difficult to make critical comparisons between results by different investi-
gators; for example, Goodbody, whose work was reported in a previous section,
calculated the OTF for coma at only two azimuths: = 0 and = 7 /2. When
Barakat and Houston [10] calculated for coma, they added a calculation for
= w/4. Miyamoto [13] also included calculations at ¥ = 7 /4. But there are
differences between the calculations in the three papers that might be related to
differences in their results.
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Figure A.18. (a) MTF curves for third-order coma, the author’s C;3, = 1.0\, at paraxial focus,
Cy = 0. Curve 1 is for ¢ = 0; curve 2 is for y = 45°; and curve 3 is for y = 90°. (b) MTF
curves similar to those of (@) except for an f /3.5 lens operating at 6° off axis with light at 5400
A in the plane of best focus. Line code is the same as for (a) [10].
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Barakat and Houston used Luneburg’s modified Kirchhoff’s diffraction the-
ory, the Hamiltonian mixed characteristic which represents the optical path
length of a ray from the object point x,, y, to the exit pupil where the optical
direction cosines of the normals to the converging wave front become the exit
pupil coordinates. The wave aberration function is expressed in terms of the
direction cosines. The Gauss quadrature method is used to accomplish the nu-
merical evaluation of the OTFs.

Figure A.18a shows the MTF for three values of the azimuth angle—0, 7 /4,
w /2—with the coefficient for third order coma—their C,3;—equal to one wave-
length of wave distortion. It would seem from Fig. A.18a that the OTF at =
m/4 = 45° could be represented by a simple average of the OTFs at yy = 0

Modulation transfer function

0.0 0.5 1.0
Normalized spatial frequency s

(@)

Modulation transfer function

Normalized spatial frequency s
(b)
Figure A.19. MTF curves for coma alone for azimuth angles (@) ¢ = 0 and (b) ¢ = 90° [13].
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and ¥ = 90°. But the MTF curves of Fig. A.18b for a test lens ( f/3.5; 6° off
axis; light at 5400 A in the plane of best focus, Cypq = 0.7\) show that an
appreciable error could be made by averaging the OTFs at 0° and 90° to obtain
the OTF at 45°. Aberration coeflicients other than third-order coma were in-
cluded when the curves of Fig. A.18)b were calculated.

The plane of best focus was the image plane in which the variance of the
wave front is minimum; this is a criterion suggested by Maréchal [14] as a merit
function in lens design and evaluation. The results of Barakat and Houston do
indicate that the best MTF correlates with minimum variance.

Miyamoto [13] also calculated the MTF for coma at an azimuth of 45°; but
his optical system has a square aperature. He shows us a form of nonrotationally
symmetric optical systems in which the shape of the aperture has a bearing on
the OTF. When the ‘‘square’’ pupil functions are sheared in a direction parallel

3
— t

4
(a)

Figure A.20. Curves of constant illuminance for a circular aperture in the Fraunhofer receiving

plane for cases of nonrotationally symmetric aberrations. The parameters C, E, F, and G are ex-

plained in the text. (@) C = 0.5A. (b)) E = 0.5A. For F = 0.5\, the figure would be rotated 90°.

(©) G = 0.5\ [11].
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to a side of the aperture, the ‘‘perfect’”” MTF is a linearly decreasing function
of 5; thus, even the perfect MTF is higher in the midrange than the perfect MTF
for a circular aperture, a side of the square being equal to the diameter of the
circle. In any other direction of shear, the MTF varies nonlinearly with s, and
the amount of nonlinearity varies with y. When shearing along a diameter, the
scale of s differs by a factor of V2 from the scale when shearing parallel to a
side of the square.

Figures A.19a and b show MTF curves calculated by Miyamoto; these curves
also show that one cannot count on taking the average of the zero azimuth and
the 90° azimuth for the MTF at 45°.

NONROTATIONALLY SYMMETRIC SYSTEMS

The work of Barakat and Houston [11] published in 1966 is an important de-
parture from the comfort of thinking altogether in terms of the classical aber-

AT
/‘\/%\\‘/ / "5o>\
Y\ \f

0

(]
Figure A.20. (Continued)
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rations and of rotationally symmetric optical systems. We even gamble some-
what our own professional stature by trying to simplify their explanation or to
summarize the work. Nevertheless, because of the elegance of their analysis
and generality of the treatment, we want their work to be mentioned here.

The most common optical system is one that can, at least in theory, be ro-
tated about its axis with a change of neither its imaging properties nor the image
position. Let us recall that even the square aperture used by Miyamoto, which
was discussed briefly in a preceding section, ties certain imaging properties to
the orientation of the optical system; and they must turn with the system, if it
is rotated about its axis. However, Barakat and Houston deal with more subtle
nonrotationally symmetric properties than those that might be produced by a
noncircular aperture.

As in Ref. 10, these two authors use the Kirchhoff diffraction theory as ex-
pressed by Luneburg and the Hamilton mixed characteristic function. The mixed
characteristic is expanded in a series of power polynomials; then terms and
powers are chosen according to types of aberrations and number of planes of

Figure A.20. (Continued)
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symmetry. They mention as an example of a system with only one plane of
symmetry a perfect refracting system with one lens element tilted with respect
to either the tangential or the meridional plane. A system with two planes of
symmetry would be an anamorphotic imaging system. No plane of symmetry
is exemplified by a completely decentered objective.

We show in Figs. A.20a-c examples of the calculated spread function in the
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Figure A.21. Three sets of MTF curves. Calculations were made for nonrotationally symmetric
aberrations. (@) The parameter C = 1A. —, ¢ = 00r90°; ———, y = 45°, (b) The parameter £
=1\ ---~ ¢y =0;---, ¢ =45, — { = 90°. The same curves would hold for Fif ¢y =
0 and y = 90° were interchanged. (c) The parameter G = 1\. Line code is the same as in (a) and

(b) [11].
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(Continued)

Fraunhofer receiving plane with maximum distortion in each example of 0.5
wavelength. The resulting MTF curves for the same three of their parameters—
C, E, and G, which are tensors—are shown in Figures A.21a-c:

C is for defocusing due to a tilt of the wave front;

E and F are defocusing in directions of the direction cosines p and ¢, re-

spectively; and

G is for a nonsymmetrical aberration which they characterize as comatic

aberrations.

These parameters are for no plane of symmetry, and the maximum wave-front

distortion for the MTF curves is in each example one wavelength.
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Appendix B
Some Mathematics

THE FOURIER TRANSFORM

The Fourier transform of a function f (x) of a single variable x is defined in
this book as

F(w) = S f(x) exp(—i2mwx) dx. (B-1)

In our optics discussions, the parameter x is usually a space coordinate or its
equivalent, and w is spatial frequency.

The inverse Fourier transform, also called the Fourier integral, by which
f (x) can be recovered from F(w) is defined by

fix) = S_m F(w) exp(i27wx) dw. (B-2)

The conditions, known as the Dirichlet conditions, under which a Fourier in-
tegral representation for a given function is possible are adequately summarized
for our purposes by the expression

S_m | £(x)| dx shall be finite. (B-3)

In our applications, f (x) usually represents the flow of radiant energy in units
appropriate to flux density, incidance, exitance, intensity, radiance, or reflec-
tance. The integral of Eq. (B-3) would, therefore, represent the totalizing of
some kind of energy in an optical system, and we know that such a total must,
in an actual system, remain finite.

References in this book to Eqgs. (B-1) and (B-2) are usually shortened to
transform and inverse transform, respectively.

In general, the functions f (x) and F(w) are complex. Usually we will de-

362
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pend upon the context to indicate whether quantities are real or complex; how-
ever, when we wish to indicate explicitly that functions are complex, carets will
be added to the symbols as, for example, f (x) and F(w). In our discussion of
the transforms, we use the subscripts 1 and 2 to label the real and imaginary
parts of the functions:

F(x) = fi(x) + iK(x), (B-4)
F(w) = Fi(w) + iFy(w). (B-5)

If the expanded form of f (x) given in Eq. (B-4) is substituted in the transform
expression of Eq. (B-1) and the trigonometric equivalent is substituted for the
exponential factor in the transform according to the identity, exp( —2wiwx) =
cos 2mwx — i sin 27wwx, the following form of the transform results:

+ oo

Flw) = S [ fi(x) cos 2mwx + fo(x) sin 27wx ] dx

— oo

- S [ i (x) sin 27wx — f5(x) cos 27wx] dx.  (B-6)

—oo

Then, according to Eq. (B-5), the real and imaginary parts of F(w) are

+ oo

Fi(w) = S [ fi(w) cos 2mwx + f5(x) sin 27wx] dx, (B-7)

—oo

+ oo
Fy(w) = S [ —fi(x) sin 27wx + f£(x) cos 2mawx] dx. (B-8)
If the steps leading to Egs. (B-6)-(B-8) are repeated for the inverse transform,
the real and imaginary parts of f (x) are found to be

filx) = S_m [F1(w) cos 2mwx — F,(w) sin 27wx] dw, (B-9)

fi(x) = &m [Fi(w) sin 27wx + F,(w) cos 27wx] dw.  (B-10)

If f (x) is a real function, that is, if it is equal to fi(x) because f,(x), the
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imaginary part, is equal to zero, the real and imaginary parts of F(w) are
~+ oo
Fi(w) = S f(x) cos 2wwx dx, (B-11)

Fy(w) = S —f (x) sin 27wx dx. (B-12)

Similarly, when F(w) is real,

+ oo

filx) = S F(w) cos 2mwx dw, (B-13)

— Qo

Hx) = S ) F(w) sin 27wx dw. (B-14)

—

Because we can often choose where to place the origin in the coordinate system
for f (x), we find that we can then simplify the mathematics of the Fourier
transform operations by making the appropriate choice. For instance, if f (x) is
real and has a symmetry that makes it an even function, that is, f (x) = f ( ~x),
with proper choice of origin, certain simplifying benefits result. The fact that
f(x) is real, as has already been shown, reduces the real and imaginary parts
of the transform to Egs. (B-11) and (B-12). Because the sine function is odd,
that is, sin 2wrwx = —sin 27w (—x), and f (x) has been assumed even, the
integrand in Eq. (B-12) is an odd function. The indicated integral of an odd
function is always zero, so F,(w) is zero. This means that the transform of a
real even function is real. Furthermore, because f (x) is real, making £, (x) in
Eq. (B-10) equal to zero, the remaining integrand, F; (w) sin 2wwx, must be an
odd function. Since the sine factor is odd, F;(w) then has to be even to make
the product odd. To summarize, if f(x) is both real and even, its transform
F(w) must also be real and even.

When the transform and its inverse are each a function of two dimensions,
Eqgs. (B-1) and (B-2) are replaced by

Flo, w,) = SS f(x,y) exp[—i27(w,x + w,y)] dx dy, (B-15)

—oo

flxy) = SS-:» F(w,, w,) exp[i27r(wxx + wyy)] dw, dw,. (B-16)
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When F (w) is the transform of f (x), a common shorthand to show their relation
is

F(x) & F(w). (B-17)
A frequently encountered relation in transform theory, which will not be derived
here, is Parseval’s formula expressed as

+oo

Sj: £ Go)f de = S_m A (@) do, (B-18)

wheref(x) o F(w) and F(w) = A(w) exp[i¢ (w)]. According to the usual
convention, A%(w) is the product of F(w) times its complex conjugate. A more
general form of Parseval’s formula is

+oo

[ U@lawa= | ACollho]dw 69

— oo —oo

where f,(x) © F,(w) and §,(x) © F>(w).

THE DELTA FUNCTION

The Dirac delta function, &(x) or 6(x, y), is useful in optics to represent
point sources of light and arrays of apertures and slits. Here we only outline
the properties of the delta function and refer the reader to standard texts [1-3]
for a more complete treatment.

The delta function (more correctly called a distribution) is zero except when
the argument is zero:

5(x) =0 when x # 0, (B-20)

but in the immediate vicinity of x = 0, the delta function has the peculiar prop-
erty to make the integral

Sﬂoé(x)dx =1 (B-21)

Similarly,

5(x —a)=0  when x # gq, (B-22)
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but in the immediate vicinity of where the argument is zero, that is, where x =
a, the delta function takes on a value to make the integral

SW o(x —a)dx = 1. (B-23)

— oo

Therefore, when this delta function is multiplied by a function f (x), the integral
becomes

| reo0 - ayas = rea). (B24)

where the parameter a may be a constant or it may be an independent variable
that ranges, for instance, over the same values allowed for x. When the delta
function is applied in this way, it is part of a coordinate shifting mechanism.
In Eq. (B-24) if a = 0, the integral, of course, becomes f (0). Thus, the
transform of a constant times the delta function is simply the constant:

S*“’ Ad(x) exp(—i27wx) dx = A, (B-25)

— oo

which is an application of Eq. (B-1). The inverse Fourier transform according
to Eq. (B-2) is then

SHO Aexp(i2mwx) dw = A6(x). (B-26)

-

It is at once evident that the reverse sequence would work out the same, that
is, the inverse transform of 48 (x) would be A; and the transform A would be
Ad(x). If inf(x) e F(w) we choose 46(x) to bef(x), then F(w) becomes
A, which tells us that the spectrum of the delta function includes all optical
frequencies of equal amplitudes and at zero phase.

From our discussion of the delta function, it is evident that

8(x) = &6(—x), (B-27)
and

8(x —a) =é6(a —x). (B-28)

So the delta function is recognized as even. This property can be extended in
two dimensions to
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8(x, y) = 8(~x,y) = &(x, ~y) = 6(~x, -y), (B-29)

which indicates that the delta function has a radial symmetry about the zero of
its argument.

When the transform of the shifted delta function is taken and Eq. (B-24) is
applied

S*“’ 5(x — a) exp(—i27wx) dx = exp(—i2wwa). (B-30)

As in our interpretation of the transform of the unshifted delta function, all
frequencies are present at a constant amplitude; but because the exponent is
proportional to the amount of the shift a, we can add that the phase is propor-
tional to the shift as well as the frequency w. In other words, the phase varies
linearly with the product wa.

THE CONVOLUTION INTEGRAL

In the following equation, the integral f5(x) is said to be the convolution of the
two functions, f; (x) withfz(x):

+ oo
A = | A@) A - a) da, (B31)
This relation between three functions occurs when their transforms are related
as
Fy(w) = [Fi(o)][F ()], (B-32)
where

fl(x) “« Fl(‘-"), fz(x) « Fz(‘-"), fa.(x) “« F3(°’)~ (B-33)

The consistency between Egs. (B-31) and (B-32) can be demonstrated by suc-
cessive substitution in Eq. (B-2):

A(x) S_m F3(w) exp(i27wx) do

Il

S [Fi (@) By (w)] exp(i2max) do. (B-34)

- oo
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Writing out the first two shorthand expressions of Eq. (B-33), we have

Fi(o) = S_wfl(x) exp( —i2wwx) dx, (B-35)
Fy(w) = S_wfz(x) exp(—i2nwx) dx. (B-36)

For convenience in later substitutions, the variable of integration in Eqgs.
(B-35) and (B-36) is changed as follows (without, of course, affecting the sense
of the two equations):

+oo

Fi(w) = S_mf‘(“) exp( —i27Twa) do, (B-37)

+oo

Fw) = | Aly) exp(~i2mor) d. (B-38)

These two expressions for F 1 (w) and I:"z(w) are substituted in Eq. (B-34):
+ oo + o
Alx) = S {H £ (@) exp(—i2Twa) da}

X { Stfz(y) exp( —i2mwy) dyB exp(i2nwx) do. (B-39)

By combining the exponential factors and rearranging other terms, Eq. (B-39)
becomes

fx) = SSj:fl(a)fz('y){ Sj: exp[i2rw(x — a — ] dw} dy do.
(B-40)

By a substitution of variable, x; = (x — o — v), the integral within braces is
recognized as the one in Eq. (B-26) with 4 = 1, so

+ oo
S 1 exp(i2mwx;) do =1 6(x;). (B-41)
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When this delta function is substituted in Eq. (B-40),

Ao = | a@f [ awse-a-na e @)

With change of variable, x, = (x — «), the integral within braces is the same
as the one in the identity of Eq. (B-24), so

S :fz(’Y) 5(x, — y) dy = H(x,). (B-43)

When this substitution is made in Eq. (B-42),

+ oo

A = | A A - a) da, (B44)

we have shown that Eq. (B-31) holds if Eq. (B-32) is assumed. A commonly
used shorthand for Eq. (B-44) is

Ax) =[A®]*[A®)]. (B-45)

The proposition demonstrated above, that the inverse Fourier transform (or
Fourier integral) of the product of two functions is the convolution of the in-
verse transforms (or Fourier integrals) of the two functions, is known as the
convolution theorem.

When successive convolutions are made, that is, when the function resulting
from one convolution is convolved with another function and this sequence is
continued indefinitely, the shorthand notation is

f) =A@+ [A®]* -« [ L], (B-46)

where f (x) is the result of the (n — 1)th convolution.

CONVOLUTION IDENTITIES

It is sometimes convenient to set up the convolution integral in a form differing
from Eq. (B-31); so the following identities are offered, without proof, to pro-
vide alternatives:
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0 =A@ A - @) da (B47)
_ Sj: A (x — o) fu(a) de (B-48)
= Sj: fx — a/2) filx + «/2) da (B-49)
= Sj: A(x + a/2) fh(x — o/2) do. (B-50)

CONVOLUTION INTEGRAL WHEN ONE FUNCTION IS
SINUSOIDAL

When either f, (x) or f,(x) is a sinusoidal function, their convolution integral,
f(x), is also sinusoidal provided the various integrals in the following dem-
onstration development exist. The functions f; (x) and f,(x) are more explicitly
represented as

fi(x) = Fi(x) + ifi(x), (B-51)
fo(x) = a + b cos 2max, (B-52)

where a and b are real and b < a. It follows that f; (x) is then also real. The
functions f1(x) and f}(x) are assumed real with the superscripts r and i indi-
cating the real part and the imaginary part, respectively. (The superscripts are
not exponents.) The convolution of fl (x) with f;(x) is

£(x") L [fi(x) + ifi(x)][a + b cos 21w (x’ — x)] dx (B-53)

Sjm [afi(x) + bfi(x) cos 2mw(x’ — x)] dx
+ i Lo [afi(x) + bfi(x) cos 2z (x’ — x)] dx.  (B-54)

Note that, unlike previous handling of the convolution integral, the variable x
has been retained as the variable of integration necessitating introduction of x’
as the independent variable for f;. For convenience, parts of the two integrals
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in Eq. (B-54) will be represented by the symbols

I3 S afi(x) dx, (B-55)

— oo

-
I

S : af’ (x) dx. (B-56)

The real and imaginary parts of the right-hand expression in Eq. (B-54) can
then be written as follows after a trigonometric identity is substituted for the
cosine function:

+ o

Re [ fa(x")] = I + b cos 2wwx’ S Fi(x) cos 2mwx dx

+oo

+ b sin 2mwwx’ S fi(x) sin 27wx dx, (B-57)

—oo

and

+ oo

Im [ f5(x")] = I} + b cos 2mwx’ S fi(x) cos 2mex dx

—o0
+ oo

+ b sin 2mwx’ S £i(x) sin 27awx dx. (B-58)

The integrals in Eqgs. (B-57) and (B-58) are recognized as Fourier cosine and
sine transforms, which will be represented by the symbols

Fi(w) = S_m Fi(x) cos 2mewx dx, (B-59)
Fi(w) = S_m fi(x) sin 27wwx dx, (B-60)
Fi(w) = S_m fi(x) cos 27wx dx, (B-61)

+ oo

fi(x) sin 27awx dx. (B-62)

Fitw) = |

When the various symbols are substituted in Eq. (B-54),
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f(x") =I' + bF(w) cos 2mwx’ + bF{(w) sin 27ox’
+ il + ibFi(w) cos 2mwx’ + ibFi(w) sin 2wax’. (B-63)

If a further assumption is made that f; (x) is real, that is, f} = 0, all imaginary
terms in Eq. (B-36) become zero, and the equation is simplified to

f(x") =1T1 + b[F{(w) cos 2mwx’ + Fi(w) sin 2max’].  (B-64)
The expression in brackets can be simplified by defining Y, a new variable, in

terms of trigonometric functions as

cos ¥ = Fi(w)/{[Fi(@)] + [Fi(w)]}"”, (B-65)

sin ¥ = Fi(w)/{[Fi()]" + [Fi(o)}". (B-66)

When these two equations are solved for Fi(w) and F%(w), respectively, and
substitution is made in Eq. (B-64),

A1) =1+ b{[F(@)] + [Fi()])”

X (cos Y cos 2mwx’ + sin ¥ sin 27wwx’). (B-67)
The transform expression will be assigned the symbol F'(w):
T T 2 T 2 ]/2
Fr(o) = {[Fi(o)] + [Fi(w)]} " (B-68)

By substituting this symbol and substituting an identity for the trigonometric
expression, Eq. (B-67) becomes

fi(x") =1} + bF'(w) cos (2mwx’ — V), (B-69)

which is similar to the assumption for f, (x), Eq. (B-52), a constant term plus
a constant times a cosine function—however, here the cosine is shifted y radi-
ans.

SIGNIFICANCE OF THE CONVOLUTION INTEGRAL

Because the convolution integral shares importance with the Fourier transforms
in the mathematics associated with the optical transfer function, it deserves
elucidation beyond just the bare demonstration of its validity and the indication
of where it fits in OTF analysis.
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Our method for developing concepts of what the convolution integral is all
about is to show graphically the nature of certain functions and especially how
the functions relate to each other.

The triangular function f, (x) shown in Fig. B.1a can be described as

Hx)=x+2 when -2 = x =< —1,

f(x)=—-x/2+1/2 when —1=<x< +1,

H(x)=0 when x < =2 and x = +1. (B-70)
The same function is plotted in Fig. B.1b except that —x is substituted every-
where for x:

H(—x)=—x+2 when +1 < x = +2,

fi(—=x)=x/2 +1/2 when —1=<x=< +1,

H(—x)=0 when x <= —1 and x = +2. (B-71)

y
-1
fo(x)
| | |
-3 -2 -1 0 1 2z
(a)
y
— 1 A
/// \\
// \\
'//fz(—x) \\
/ \
,,/ \\\
// \
] | Il I A
-3 -2 -1 0 1 2 X

(b)

Figure B.1. Effect of reversing the sign of the independent variable in a particular triangular
function.
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Comparison of the two plots in Fig. B.1 shows that reversing the sign of the
independent variable produces a “‘reflection’’ of the function in the vertical axis
(x = 0). Another way of expressing this relation is to say the sign reversal
folds back or rotates the function about the vertical axis, a sort of right-handed
to left-handed transformation. This transformation is always performed on one
of the two functions in a convolution.

If the triangular function is altered further by adding a constant x, to the
independent variable, the resulting function, f,(x, — x), plots as shown in Fig.
B.2. When this figure is compared with Fig. B.1b, it is apparent that the effect
of adding a positive number to the independent variable is to shift the whole
plot to the right by the amount of that number. So, by assigning different values
to x,,, we can slide the function along the x-axis as we will. Experimentation
with various values of x and x,,, positive and negative, will show that positive
increments of x, shift the plot in a positive direction by virtue of our having
chosen to plot f,( —x) rather than f,(x) as the basic function subject to the
shifting.

In Fig. B.3 two functions, f; (x) and f, (x), are plotted against x in (a) and
(b), respectively. The value of each function is assumed to be zero for values
of x at which no curve is shown. As was done for the triangular function in Fig.
B.1, the sign of the independent variable for the second function is reversed
and the result plotted as a broken line in Fig. B.3b. (In continuing the analogy
with the triangular function, the added constant x, is considered here to be
zero.) A third function, f; (x), is defined as the product of f;(x) and f, (—x):

fi(x) = fi(x) fo(=x). (B-72)

The function curve in Fig. B.3¢ was plotted by measuring the function values
of f,(x) and f,( —x) at each of a number of x values, calculating the product,
and plotting the result as a point on the f; (x) curve. The shaded area under the
curve in Fig. B.3c, whose area is A,, represents the integral of f;(x). The

| | 1
-1 0 1

Figure B.2. Shifting a function by adding a constant to the independent variable.
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y
/ H®
O x
(a)
y
.
/\\\\
\
fa(x) fo(=x)
O x

(b)

Figure B.3. Multiplying and integrating functions, x, = 0.

graphical sequence described for Fig. B.3 can be stated mathematically as

w=| swa-{ rwaona @

Because the independent variable for the second function can be regarded as x,
— x with x,, = 0, the area value A, is plotted in Fig. B.3c at x = 0.

In Fig. B.4 the graphical sequence described for Fig. B.3 is repeated except
that x,, has been given a positive, nonzero value, which moves the second factor
function curve, £, (x, — x), x, units to the right. Because of the sag of the f; (x)
curve in this region, the product curve, f3(x), plots lower and has a slightly
different shape compared with the corresponding curve in Fig. B.3. Conse-
quently, the area A4, is smaller than A, as indicated by its plotted value at x =
x,. The graphical sequence for Fig. B.4 can be stated mathematically as
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\'\—-—-/fl(x)

0 n x
(@)
¥y
7 N
} \
| \
falx—x,) folx, —x)
|
0 X, x
&)
¥y

Figure B.4. Multiplying and integrating functions, x, #* 0.

sl pwa-| swi-ne @

In the procedure described for finding 4, it is obvious that this value is a func-
tion of x,,, so it can be designated f; (x,):

400

Al = | A0 A, -0 e (875)

which, except for the choice of symbols, is the convolution integral defined in
Eq. (B-31).

One question that seems to cause some confusion in writing convolution
expressions and in writing shifting Dirac delta functions is the order of terms
in the argument or independent variable binomial; that is, should the expression
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be (x, — x) or (x — x,)? One who has not learned the answer by rote sometimes
finds reasons for one or the other quite elusive. One approach in connection
with convolution is to make one of the two functions involved a delta function
and then extend an answer thus gained to more general combinations. This we
pursue in the following discussion.

From the earlier discussion of the Dirac delta function in this appendix, we
know that it integrates to unity, and its value is zero except where its argument
is zero. From these properties it follows that

[ A8 - x) de = iz, (B76)

because the delta function acts as a factor of unity only where x — x,, = 0O orx
= x,. At all other values of x, the delta function is zero. It is also true that

| Awst, - mac= £, (8:77)

The integrals of Eqgs. (B-76) and (B-77) are identical because x — x,, = 0 and
x, — x = 0 give the same answer: x = x,.. Thus, we know that the delta function
is an even function; that is, its value is unchanged when the sign of its argument
is reversed. However,

S_m 6(x)fZ(x - xn) dx =f2(_xn)’ (B-78)

but

| o)l —x)dr = 5. (8.79)

So, unless the second function in the integrand happens to be an even function,
the integral is changed when x and x, are reversed in the binomial argument.
When the integral of the product of two functions is to be the convolution of
the two functions, the order of terms in the binomial argument of Eq. (B-79) is
followed. The advantage seems obvious when one of the integrand factors is
the delta function: The convolution function will vary with increasing values
of the independent variable exactly as the convolved function except that it will
be shifted along the axis. Since in OTF theory the delta function is the ideal
limit of many of the functions that are convolved, it follows that a desirable
treatment when the delta function is involved is likely to be preferred for the
more general combinations as well [5].
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CONVOLUTION AND SPREAD FUNCTIONS

From the properties of the delta function already discussed, we know that
graphically it is a high spike of negligible width so proportioned that its area is
unity. These idealized dimensions make the delta function a suitable represen-
tation of an ideal point or line source in optics. In the course of transferring
energy from the source to the image, the optical system in one or more steps
operates on the dimensions of the source to produce an image usually resem-
bling but not identical to the source in size and energy distribution. In the con-
volution integral, the first function describes the source or object; and the sec-
ond function is the transmission characteristic of the optical system. (Actually
the roles of the two functions could be reversed without affecting the result
because the order of functions in the convolution integral is commutative. See
Egs. (B-47) and (B-48).) Since the optical system tends to spread out the light
from each point in the object, the second function is known as a spread func-
tion. Therefore, insofar as the object of an optical system is a true point or line
(negligible width), that is, fairly represented by a delta function, a plot of the
light distribution in the image is a graph of the optical system spread function
as indicated by Eq. (B-79).

An actual source, of course, unlike a delta function, does have appreciable
width as, for example, f, (x) of Fig. B.5. In this figure, f,(x) represents the
optical system spread function. By mentally reviewing the graphical signifi-
cance of the convolution process described in connection with Figs. B.1-B.4,
one realizes that the convolution of f, (x) and f, (x)} (which represents the image)
resembles but is not exactly the same shape as the spread function. Also, it is
evident that the convolution (image) function will always be broader than either
of the other two functions.

So far, in showing how the convolution process represents the physical be-
havior of an optical imaging system, we have used relatively narrow objects. It
is our purpose now to apply some of the concepts gained thus far to show how
an extended object is transferred through an optical system to produce an image.

In Fig. B.6, fi(x) represents the object. Our approach is to consider this

flx) fx)

£ / \fz -

0 x Y x

Figure B.5. Source and spread functions.
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y
[
fi(x)
x0 x1 x2 X
(@)
y
Ve - s I—\_‘/\'\\\\
o/ AN . .
! v * \2 Figure B.6. Forming the image of an ex-
0 xn x  tended object by summing a large number
®) of spread functions.

function as the sum of a large number of extremely narrow incremental func-
tions, three of which are shown at xg, x;, and x,. By visualizing how each
increment would be imaged and then superimposing the incremental images,
we can see how the total image is made up and possibly comprehend qualita-
tively how the shape of the spread function influences the object-to-image trans-
fer.

Each of the incremental functions making up f; (x) resembles a delta function
in being extremely narrow; but instead of having a uniform value of unity, each
incremental area is proportional to the value of the function at its x. Like the
delta function, each incremental function in combination with the spread func-
tion produces a convolution function shaped like the spread function; however,
these images are located along the x-axis according to the respective x values
of their originating incremental functions, and their corresponding ordinates are
proportional to the heights of their originating incremental functions. Three
convolution (image) functions corresponding to the three incremental functions
shown are plotted in Fig. B.6b. The ordinate for the complete extended image
at some x = x,, would be the sum of all incremental x, ordinates, only three of
which are indicated in the figure. A complete diagram in Fig. B.6, of course,
would require that the area under f; (x) be solidly packed with incremental func-
tions, each infinitesimally wide, resulting in a corresponding number of infini-
tesimally spaced image components in Fig. B.6b.

OTHER CONVOLUTION INTEGRALS

If fi(x) is the same function as f,(x) for the convolution integral of Eq.
(B-75), the equation can be written
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+ oo

) = | A@ A -0 a (-40)

and the expression is called the self~convolution integral.

Although all the discussion about convolution thus far in this appendix has
involved only real functions, the convolution integral can also be written in
terms of complex functions:

filx) = L £i(x) falx, = x) ax. (B-81)

The family of correlation functions, discussed in the next section, resembles in
a number of respects the group of convolution functions discussed in this and
the previous two sections; but important differences also exist, which will be
taken up in the next section.

THE CORRELATION FUNCTION

In the mathematics associated with the optical transfer function, one often en-
counters the correlation integral, which is expressed as

+ oo

¢ = | a0 el —x)ax (B52)

The parameter x,, typically has a range over both positive and negative values.
The form of Eq. (B-82) is identical to that of the convolution integral, Eq.
(B-75), except that the sign of the binomial argument of the second function is
reversed. Except for this reversal the graphical representation to illustrate the
evaluation of the correlation integral would be similar to the one described ear-
lier in detail for the convolution integral. Again, the graphical effect of the
binomial argument is to slide the second function along the x-axis relative to
the first function with which it is being correlated. Each of the relative posi-
tions, of course, represents a particular value of x,,.

Like the convolution integral, the correlation integral can be expressed in
terms of complex functions:

b)) = | s e -x)a (B-53)

—
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However, as indicated by the asterisk, the complex conjugate of g, (x) is sub-
stituted for g,(x) in the integrand. When g, (x) and g,(x) are the same func-
tion, the integral given in real and complex form in Eqs. (B-82) and (B-83),
respectively, becomes the autocorrelation function:

fe) = | a0k - ) ax (B-54)

— 0

In both the convolution and the correlation integrals, if the second function is
even, that is, f,(x) = ,(—x) or g,(x) = g,(—x), the sign of the binomial
argument has no significance—the integral has the same value whether the ar-
gument is written (x, — x) or (x — x,,). So, if one of two functions is both real
and even, the convolution and the correlation integrals formed from the two
functions are identical.

When the self-convolution is found of a complex function,

+ oo

i) filx = x) (B-85)

P = |
the phase information in £, (x) is retained in the self-convolution. On the other
hand, when the autocorrelation function is found for a complex function as in
Eq. (B-84), the phase information in g, (x) is lost. In general, therefore, one
would expect the self-convolution £ (x,) and the autocorrelation g(x,) of a
given complex function to differ. There is one notable exception. A Fourier
transform of a real function, that is, F (w) < f(x), is found in Fourier integral
theory to have complex symmetry, which means

F(-w) = F*(w). (B-86)

ComparisAon of Eq. (B-85) with Eq. (B-84) shows that if F (w) were substituted
for both f; (x) and g, (x), f (x,) and g (x,) would be identical functions.

Although the scope of the present work does not permit further developments
in these fields, the topics already touched on in convolution theory and corre-
lation theory probably indicate to the reader that a complete treatment would
have considerable depth. References are cited at the end of this appendix to aid
in broader and more thorough study of these interesting areas.

EXAMPLES

Example 1. This example applies the convolution integral of Eq. (B-75) to the
two identical functions, f;(x) and f,(x), shown in Fig. B.7. (The exercise is
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fl flx)

f1(x) f2(x)

-b 0 «+b x -b 0 +b x

Figure B.7. Two identical rectangular functions.

the same as finding the self-convolution of either function.) Equations for the
two functions are

filx)=f(x)=a when —b=<x

IA

+b,

filx)=£(x)=0 when x < —b and x > +b. (B-87)

Since the functions are even, no pains have to be taken to reverse one of the
functions to accommodate the sign of the binomial argument in the integrand
of Eq. (B-75). As in our earlier discussion of the significance of the convolution
integral, the graphical portrayal of this convolution has to convey the sliding of
one of the functions, say f;(x), along the x-axis in accordance with the value
of the shifting parameter x,,. As the positions of f; (x, — x) relative to f; (x) are
noted, it is apparent that for | x, | > 2b the two functions do not overlap; and
the convolution integral is, consequently, zero. However, for all values of x,
in the range where | x,, | < 2b, the two functions do overlap, resulting in non-
zero values for the integral. Since each function has the value a over its nonzero
range, the product in the integrand through the overlapping range is a?, and the
value of the integral is a? times the overlap interval. In Fig. B.8, the overlap

fx)

SIhagaet

Figure B.8. Overlap of two rectangular [ |
functions being convolved. -3b -2b -b 0 b 26 3 *
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interval is shown as x_, and the following relations can be written from the
geometry of the figure:

x. =2b + x, when —-2b <x, <0,

X, =2b—x, Wwhen 0 =<ux, < +2b. (B-88)

Because the convolution function (integral) f;(x,) is equal to a’x,, the relations
of Eq. (B-88) can be substituted to give

fu(x,) = a*x, = 2a’h + a’, when —2b =<x, <0,
fi(x,) = a’x. = 2a*h — a’*x, when 0 =< x, < +2b,

falx,) =0 when x, = —2b and x, = +2b.
(B-89)

When these equations are plotted in Fig. B.9, the convolution is found to be a
triangular function with its base extending from x, = —2bto x, = +2b.

Example 2. A convolution that is of particular value in optics is two dimen-
sional and involves the overlapping area of two circles:

fe ) = || Al Bl = 0 =) ey, (B90)

where the single symbol Q takes the place of the negative to positive infinity
limits vusually placed on each of the two variables of integration, x and y. Like
the previous example, the two functions being convolved have a constant, non-
zero value only in a defined region (in this instance a circle of radius r for each
function), and their value in the rest of space is zero. It is, therefore, immaterial
whether one indicates that integration is to take place in all of space or just in

f4(xn)

Figure B.9. Convolution function of two rectangular
-2b 0 26 Xn functions.
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the region where both functions simuitaneously have nonzero values. This re-
gion in the present example is the overlapping area @ of the two circles. The
integrand in all the rest of space is zero because at least one of the factor func-
tions is zero.
If the value of each function within its circle is assumed to be A4, the two
functions can be expressed as
filx,y) =fi(x,y) =4 when x>+ y*><r?

filx,y) =fx,y) =0 when x> +y* > r (B-91)

Graphically the convolution of f; (x, y) and f, (x, y) is represented by Fig. B.10
where £, (x, — x, y,, — y) is shown being shifted with respect to f; (x, y) in
two dimensions, the angle ¢ made by the line between centers and the x-axis
being determined by the relative values of x, and y,,. For all combinations of
these shifting variables where (x2 + y2)!'/? < 2r there will be an overlapping
area, and the convolution will have a nonzero value. For all other combinations,
the convolution is zero.

In Example 1, being one-dimensional, one axis in the graphical representa-
tions, Figs. B.7 and B.8, could be used to show the value of the function. In
the present example in Fig. B.10, both axes have to be used for the independent
variables; so the constant function value A within the circles would have to be
shown on a third axis perpendicular to the diagram (z-axis) making the three-
dimensional representation a pair of right cylinders sharing a common volume
where the cross hatching is shown in Fig. B.10.

The present example can be reduced to a one-dimensional problem by rotat-
ing the x- and y-axes through the angle ¢ so that the x-axis coincides with the
line between circle centers as in Fig. B.11. Then the convolution function be-
comes

Q

Figure B.10. Two-dimensional convolution—overlap of the nonzero regions of two functions.
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Figure B.11. Rotation of the axes in Fig. B.10.

i) = || nenae - enaa. @)

Within the overlapping areas of the two circles, the product of the two integrand
functions is 4%. Evaluating the integral, that is, the convolution function f; (x,,),
consists of finding an expression for the overlapping area in terms of x, and
multiplying it by the constant 4%. Half of the overlapping area, which is the
segment of one circle, is shown cross hatched in Fig. B.11. Applying a standard
mensuration formula, we can write

Segment area = r? cos™! (a/r) — avr? — a*. (B-93)
From Fig. B.11 it is apparent that a = x,,/2; so the convolution function is
filx,) = 2A2{r2 cos™! (x,/2r) — (x,/2)[r? - (xﬁ/4)]1/2}, (B-94)

where the normal range of x,, is from zero to 2r.

If we had not rotated the axes and had derived an expression for f, (x,, ¥,n)
based on Fig. B.10, the overlapping area would have had to be written in terms
of the distance D between centers instead of in terms of x,,. This would require
only that D be substituted for x, on the right side of Eq. (B-94). Its value in
terms of the old x,, and y,, corresponding to Fig. B.10 would be

D= (x2+ )" (B-95)

A plot of f,(x,) in accordance with Eq. (B-94) is shown in Fig. B.12. As
indicated, the scales on both axes have been normalized. On the vertical scale,
fi(x,,) has been divided by 7w r24%:
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Figure B.12. Convolution of two functions having two independent variables.

A, = [1/(xr?a%)] fi(x)
= 2/7r{cos_1 (xa/2r) = (xo/2r)[1 - (x,,/2r)2]1/2}. (B-96)

As one considers ranges of values, it is evident that the quantity in braces goes
from 7 /2 when x,, = 0 to zero when x,, = 2r or when the normalized distance
x,/r = 2. The corresponding range of the normalized area 4, is from unity to
zero.
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Appendix C
Diffraction Integral Fundamentals

INTRODUCTION

The development of the diffraction integral, Eq. (4-22), in Chapter 4, “‘Dif-
fraction Integral and Wave-Front Aberration Function,’” assumes that the reader
has some familiarity with traveling wave theory. However, for those who would
like a little more exposure to the fundamentals underlying the diffraction inte-
gral, this appendix has been added.

THE TRAVELING WAVE EQUATION

Light has long been recognized as a wavelength region in the electromagnetic
spectrum, which also includes, among others, radio, radar, infrared, ultraviolet,
X, and gamma rays. Some of these, including light, have a complementary
particle nature, which does not bear directly on diffraction phenomena and,
therefore, will not be discussed further in this appendix.

In the theory of electromagnetism, Maxwell’s equations have become so
basic and so firmly established that the study of wave phenomena is started with
them. They are, in vector notation,

V x E = —0B/dr, (C-1)
VxH-=j+ 3D/ (C-2)

Two additional equations, which are often included with Maxwell’s equations,
may be derived from these by assuming that electric charge is conserved:

V-B=0, (C-3)
V-D= qq4- (C-4)

In these equations, E, D, H, and B are the field vectors (electric field strength,
electric induction, magnetic field strength, and magnetic induction, respec-
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388 APPENDIX C

tively), j is current density, and ¢4 is electric charge density. We assume the
equations to be valid, that is, that they form a self-consistent set whose predic-
tions concerning static and slowly varying (nonrelativistic) fields are in agree-
ment with experimental data.

The four field vectors can also be related by using three material parameters:
€, u, and o, which are called permittivity, permeability, and conductivity, re-
spectively. These quantities, which characterize the medium, are point func-
tions constant in time. They may be scalars or, for anisotropic materials, ten-
sors. Their values in a given medium depend upon the frequency components
constituting the wave disturbance. The relations between the field vectors es-
tablished by the material parameters may be linear or nonlinear, the latter oc-
curring particularly in connection with lasers and their high-intensity, coherent
beams. In the present text we assume linearity and isotropy; so the relations are

D = ¢E, (C-5)
B = uH, (C-6)
Jj = dE. (c-7)

If we assume that a solid material has no free charges (i.e., no electrons are
free to move throughout the body of material so that ¢ is everywhere zero) the
material is called a dielectric. If ¢ is zero, the current density j also is zero.
Any accumulated excess charge ¢ will be a static charge and will neither con-
tribute to nor respond to changes in field. Then the four ‘‘Maxwell’s equa-
tions,”” by our assuming isotropy and homogeneity, are

culE =V x E = —u(3H/d1), (C-8)
curl H =V X H = ¢(0E/dt), (C9)
divH=V-H=0, (C-10)
GvE=V-E =0, (C-11)

where the symbol ‘=" signifies ‘‘equals by definition.”” To derive wave equa-
tions from Maxwell’s equations, the following vector identity can be applied:

curl curl V = grad div V — V2V, (C-12)

which can be verified by expanding both sides according to the vector defini-
tions of the symbols (curl, grad, div, and V) applied to the general vector V.
Because of Egs. (C-10) and (C-11), Eq. (C-12) simplifies to the following for
E and H:
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—VIE, (C-13)
~V’H. (C-14)

curl curl E

i

curl curl H
By taking the curl of both sides of Egs. (C-8) and (C-9), we obtain

curl curl E = —p 8/dt(curl H), (C-15)
curl curl H = ¢ 8/d¢t(curl E). (C-16)

Substituting from Egs. (C-13) and (C-14) in these equations, we find

V2E = u 3/3t(curl H), (C-17)
VH = —€0/0t(curl E). (C-18)

By taking the partial derivatives with respect to time of both sides of Egs.
(C-8) and (C-9) we obtain

8/dt(curl E) = —u(3%H/0t?), (C-19)
d/dt(curl H) = €(0°E/3r%). (C-20)

By substituting from Egs. (C-17) and (C-18) and rearranging terms in (C-19)
and (C-20), the following wave equations result:

VH = eu(0°H/0t?), (Cc-21)

V’E = eu(3°E/0t?). (C-22)

In a three-dimensional coordinate system, six scalar wave equations are repre-
sented by Egs. (C-21) and (C-22) and are of the form

V22U = eu(3%U/0t?), (C-23)
where U, in a rectangular coordinate system, for instance, is any one of the
field components E,, E,, E,, H,, H,, and H,. The general solution of Eq.
(C-23) is

U(r, 1) = U,[kE(r) + vr] + Up[ki(r) — vt], (C-24)
where U, and U, are arbitrary functions of the indicated arguments, r is a po-

sition vector from the origin to a point (x, y, z), k is a propagation constant,
{(r) is a real scalar quantity, a function of position, and v is a speed.
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To comprehend the traveling wave nature of Eq. (C-24), each of the argu-
ments is considered at some time f; and a later time ¢,. If the argument is to
remain constant so that U, or Uy, remains unchanged, the r,, corresponding to
t,, must change to a compensating r,. The displacement represented by Ar =
(r, — r;) during the time interval At = (¢, — t;) indicates that the assumed
fixed field configuration of U, or Uy, is a traveling wave. The difference between
the two functions U, and Uj, is that in one instance the wave is traveling in a
direction to increase r and in the other the wave is traveling in a direction to
reduce r. To define the functions U,, U, and {(r), initial or boundary condi-
tions and the physics of the space medium have to be utilized. The solution
requires ingenuity rather than knowledge of some routine approach.

Rather than attacking Eq. (C-24) directly as outlined above, it is usually
more productive to recognize that OTF problems generally involve steady-state
beams that can be resolved into sinusoidal components, that is, sine or cosine
functions. Although these trigonometric functions can be introduced directly as
real functions into the solutions of Eq. (C-23), common practice is to use the
complex identity,

et = exp +if = cos 0 + isin b, (C'ZS)

and to express the solution of Eq. (C-23) as the sum of two particular complex
solutions,

U= U,exp(ik - r + i2mvt) + Uy exp(—ik - r + i27wt)

I

I

U, exp(i2wvt) + U, exp(i2mvt)
(0, + U,) exp(i2wwt), (C-26)

]

where » is the time frequency of the light and

U, = U, exp(+ik * 1), (C-27)
0, = U, exp(—ik - 1). (C-28)

U, and U, are real scalar space functions determined by initial or boundary
conditions of each particular problem. The propagation vector k has a magni-
tude k and the direction of wave propagation, for example, in a rectangular
coordinate system:

k = Lk, + Lk, + Lk,
k2= k2 + K2+ kD (C-29)
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I, I, and I, are unit vectors parallel to the coordinate axes. Substitution of Eq.
(C-26) into Eq. (C-23) gives

VA0, + 0,) + en(2m) (U, + U,) = 0. (C-30)

This is known as the Helmholtz equation. Again, as in the discussion of Eq.
(C-24), U, and U, describe waves that are traveling in opposite directions. One
or the other or both have to be chosen according to the conditions of the prob-
lem. A wave function that satisfies the wave equation must be both a space and
a time function. Whenever the time function can be separated out as in Eq.
(C-26), the remaining space function need satisfy only the Helmholtz equation.
A separable time function is usually omitted (suppressed) in wave theory prob-
lems.

SPHERICAL WAVE FRONTS

Our discussion of diffraction involves the image space between the exit pupil
and the image plane. The space is assumed isotropic and homogeneous. The
wave fronts considered are spherical. Functions are sinusoidal and for a single
frequency; and the complete notation discussed in the previous section, with
the time function suppressed, is used to describe the traveling light wave. First,
a function is set up consistent with the assumed boundary conditions, and then
its legitimacy as a traveling wave is checked by seeing whether it satisfies Eq.
(C-30).

The simplest concept of a spherical wave is one originating at a point source
radiating uniformly in all directions of three-dimensional space (Fig. C.1). As
in the previous discussion of traveling waves, this wave has a counterpart, which
is a spherical wave traveling toward, rather than away from, the center (Fig.
C.2). This concept, modified by limiting the extent of the wave front, corre-
sponds to the idealized wave emerging from the exit pupil and converging to
the focal point of an optical system.

Having suppressed the time function of the traveling wave, we retain the part
that describes the distribution of the wave in space. When the whole sphere is
considered, symmetry about the center dictates that field values depend only on
the radial distance r; no variation in these values can be expected when either
the azimuthal angle ¢ or the polar angle 0 (Fig. C.3) is varied. From the defi-
nition of the wavelength N, the angular argument of the sinusoidal functions
(sine and cosine) must go through 27 radians for each A increment of r in free
space. In general for a transmission medium with an index of refraction n’, the
actual wavelength is A’ = N/n’; so the argument becomes 27 (r/\’) or
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wave front

/ Source
N

AN

\\

.

Figure C.1. Cross section through the center of a spherical wave system, energy originating at a
point source at the center.

2w (n'r/\). Throughout this text, this expression has been shortened by defin-
ing £ = 27/ A\, which allows the argument to be expressed as én'r. The com-
plex expression to describe the sinusoidal distribution in space then becomes
exp( +ikn'r). The choice of sign depends upon the variation of the argument
relative to the argument of the suppressed time function, exp (2#wvz). Tempo-

wave front

Figure C.2. Spherical wave system in which external energy is uniformly directed toward the
center.
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~!

Figure C.3. Spherical coordinate system.

rarily restoring the time function gives the complete expression exp(27vt +
ikn'r). When the traveling wave reasoning of the previous section is applied to
this argument, it becomes apparent that the positive sign applies to a spherical
wave traveling toward the center; and the negative sign applies to a spherical
wave traveling away from the center.

Having determined cyclic variation of the field value with the space variable
r, we still have to find the coefficient of the sinusoidal function, that is, the
amplitude variation of the field value with r.

When energy is conserved in the traveling wave, the flux density on a spher-
ical wave front varies inversely as the total area of the spherical surface. This
area varies directly with the radius squared, r?, so we are affirming the “‘inverse
square law,”” which states that the flux density in this configuration is inversely
proportional to r>. However, the desired expression is for the amplitude func-
tion U(r), which is proportional to the square root of the flux density; hence
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the amplitude varies inversely with the radius r. The coefficient, then, of the
complex sinusoidal function is the ratio G/r where G is the amplitude at unit
distance from the center. Therefore, the complete expression for a spherical
wave traveling toward the center is

U=10(r) = [Gexp(itn'r)]/r, (C-31)
which corresponds, with appropriate changes in nomenclature, to Eq. (4-1) of
Chapter 4.

The question remains whether Eq. (C-31) is a legitimate expression for a
traveling wave according to Eq. (C-30); that is, does the expression for U sat-
isfy Eq. (C-32)?

V20 + ep(270)°0 = 0. (C-32)

From vector analysis, V2, known generally as the Laplacian, is expressed in
rectangular and polar coordinate systems as

V2 =09%/0x> + 8%/3y* + 8%/87>
= {1/(r*sing)} {(sing) (3/3r) [r*(8 /ar)] + (3/86) [sin8) (3/36)]
+(1/sin8) (8%/89%)}. (C-33)

Because the functions of interest in the present discussion are independent of
the polar coordinates ¢ and 8, the Laplacian reduces to

vz = {1/r2}{(8/3r)[r¥(a/0r)]}. (C-34)
Applying this operator to the U of Eq. (C-31), we find
V20 = —(G/r) (n') exp(ifn'r). (C-35)

When the second term of Eq. (C-32) is added to the above expression for V>U,
and the complete expression is algebraically simplified:

—(kn')’ + en(2mr)’ = 0. (C-36)

By substituting the defined ratio 27/ A for &, and simplifying the equation fur-
ther, we obtain

(0 /N) = ewv?. (C-37)
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Since a traveling wave moves one actual wavelength A’ = \ /¢’ during the time
period 1/, the speed of the wave in the direction of propagation (radially for
the assumed spherical waves) is ¢’ = (A/n")/(1/v). From Eq. (C-37), this
ratio is

c' = 1/ep. (C-38)

We conclude that our expression for a spherical wave traveling toward the cen-
ter, Eq. (C-31), does indeed turn out to be a solution of Helmholtz equation,
Eq. (C-32). Similarly, the following equation for a spherical wave traveling
away from the center can be shown also to be a solution of Helmholtz equation:

A~

U=0(r) = [Gexp(—ikn'r)]/r. (C-39)

APPLICATION OF THE HUYGENS-FRESNEL PRINCIPLE TO A
SPHERICAL WAVE FRONT

In 1690 Huygens, the first proponent of the wave theory of light, published a
rule for the construction of a set of surfaces that are ‘‘optically parallel’’ to each
other. It states that each element of a wave front may be regarded as the center
of a secondary disturbance that gives rise to spherical wavelets; the position of
the wave front at subsequent times is the envelope of all such wavelets. By
illustrating a few of the unlimited number of wavelets on a wave front, Fig.
C.4 indicates Huygens’ construction.

Utilization of Huygens’ construction to explain the puzzling phenomenon of
diffraction did not occur until about 1818 when Fresnel showed that Huygens’
concept, combined with the principle of interference, provided the means for
understanding diffraction. Later (1882) Kirchhoff put Fresnel’s analysis on a
sound mathematical basis.

With reference to Fig. C.5, Fresnel’s concern was how a secondary wavelet
originating at a point Q on the primary wave front contributed to the light field
at point P in what we would call image space. Huygens’ wavelet being approx-
imately a hemisphere, it could be expected to differ in properties from the spher-
ical waves that are discussed in the previous section. In particular, the amplitude
may well be a function of the angle x in Fig. C.5 instead of uniform about the
center as in spherical waves. In the wavelet, Fresnel assumed that the inclina-
tion factor K(x) applied to the amplitude of the corresponding spherical wave
would be unity at x = 0 and would decline to zero at x = = /2 radians. To
check his assumptions for a spherical wave front, Fresnel used a construction
similar to Fig. C.6. He divided the spherical wave front into zones Z,, Z,, Z5,
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————— New wave front
(envelope of wavelets)

Huygens' secondary
spherical wavelets

Original primary
wave front\

\

Figure C.4. Huygens’ construction.

Z,4, . . . and rationalized a series of values for K(x): K;, K;, K5, Ky, . . .,
corresponding to the sequence of zones. He wrote an expression for the ampli-
tude at the point Q (see Eq. (C-39)):

U(Q) = |G exp(—ikn'r)]/r. (C-40)

Then he applied the wavelet concept to find the amplitude at P due to the
wavelet from each zone:

av(P) = {[0(Q) K(x) exp(—itn'1)]/1} do. (C-41)

When Egs. (C-40) and (C-41) are combined,

O(P) = [G exp(—ikn'r)]/r SL {{exp(=ikn'1)]/1} K(x) do.  (C-42)

Since no analytical expression was available for K(x), the integral was evalu-
ated by a special summation (involving a number of rationalizing assumptions
of only historical interest) [1], which gave the following result:

U(P) = —i)\Kl{Gexp[~iﬂn’(r + r')]}/(r +r'), (C43)

where K(x) = K, the inclination factor of the first zone, Z;.
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Huygens’
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Direction to point in
image space
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{normal 1o

wave front)
Primary wave front

Figure C.5. Single secondary wavelet showing the inclination angle x.

To verify the above wavelet approach, U(P) was evaluated also as a simple
spherical wave-front problem (Eq. (C-39)) with the center at O and the spherical
wave front through the point P:

U(P) = {Gexp[—iﬁn’(r+r')]}/(r+r')- (C-44)

Figure C.6. Fresnel’s zone construction.
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Comparing Eq. (C-44) with Eq. (C-43), we note that they are equivalent pro-
vided that

—iNK; =1, or Ky = —1/(iN) =i/N\ = [exp(x/2)]/N\. (C45)

The interpretation of this value for K| is that the secondary wavelets oscillate a
quarter of a period out of phase with the primary wave and that the amplitude
of the secondary wave is to the amplitude of the primary wave as 1 is to A.
About sixty years after Fresnel reached these conclusions, Kirchhoff showed
that

K(x) = [i/(2N)][1 + cos x], (C-46)

which verified Fresnel’s K;: K(0) = i/\; but it was not true, as Fresnel as-
sumed, that K(x/2) = 0.

APPLICATION OF THE HUYGENS-FRESNEL PRINCIPLE TO
CHAPTER 4

The optical system discussed in Chapter 4 is shown schematically in Fig. C.7
(duplicate of Fig. 4.1). The point source Q is imaged at O ' on the image plane.
The region of interest in our study of diffraction is the image space, which
extends from the exit pupil at E ' to the image plane at O'. This region is shown
in Fig. C.8 (duplicate of Fig. 4.2). The arc at the pupil point E ' represents the
reference spherical surface, which coincides with an aberration-free wave front
at the exit pupil. The spherical surface is centered at Q' and has a radius R’
shown from the center to a general point B’ on the surface. The general point

n Y Y n
///P
// N’
P Q
B ‘:7
B =\|R'
0 E o
_ E
Q

Figure C.7. Optical system showing geometry for diffraction analysis.
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Figure C.8. Optical system image space.

P, at a distance R’ from B’ and having the coordinates (&, no) with reference
to Q' as the origin, is in the diffraction pattern. Our present purpose is to de-
velop the expression in Eq. (4-7) for the amplitude U (£, mo) at the general
point P on the image plane.

The sequence of steps to evaluate Uy, is similar to the described approach to
determine U(P) in the previous section: The amplitude is first evaluated at a
general point on a spherical wave front; then, by using the wavelet concept, the
total contribution of all such point amplitudes to the amplitude at a designated
point on the image plane is evaluated. An important difference, however, is that
in the present instance the spherical wave front is propagating toward its center;
so the amplitude at point B’ on its surface is according to Eq. (C-31), which
has a positive rather than a negative exponent. With the nomenclature indicated
in Fig. C.8, the amplitude expression becomes

Uy(B') = [Gexp(itn'R")]/R", (C47)

which is Eq. (4-1) in Chapter 4. Then, proceeding with the steps that corre-
spond to Egs. (C-41) and (C-42), we find

d0(P) = {[Uy(B') K(x) exp(—itn'R')]/R'} do,  (C-48)

where do is an element of the total wave-front area @. Because £, and 7, are
each extremely small compared with R’, the angle x between the line B'P and
the radius line B'Q’ is practically zero; hence, according to Eq. (C-46),

K(0) = i/ (C-49)
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Then,

oo o) = | |, 0P) do

(i/N) g ga {[UO(B') exp(—itn'R")}/R’ } do. (C-50)

This is the same as Eq. (4-7) in Chapter 4, where considerable manipulation
finally produces Eq. (4-22), which is recognized as the diffraction integral.
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Appendix D

Updated Calculations

The following tables represent calculations performed by Dr. David F. Edwards,
formerly of Lawrence Livermore National Laboratory, as referenced in the
Preface to the Reprinted Edition (p. vii).

Table D.1 Optical Transfer Function Values for the Direction y=7/6

Normalized

Frequency Perfect Forp=3s,9=3s Forp=5s,g=>5s
s Lens MTF MTF
0.0 1.0000 1.0000 1.0000
0.1 0.936365 0.864463 0.849491
0.2 0.872889 0.734759 0.703933
0.3 0.809733 0.632737 0.583414
04 0.74706 0.559287 0.463263
0.5 0.685038 0.501847 0.338613
0.6 0.623838 0.450883 0.22291
0.7 0.563639 0.404508 0.159816
0.8 0.504632 0.359639 0.190057
0.9 0.447014 0.308483 0.198298
1.0 0.391002 0.249433 0.138789
1.1 0.33683 0.196026 0.0708125
1.2 0.284757 0.163287 0.0541181
1.3 0.235075 0.142588 0.0735196
14 0.18812 0.117652 0.0764514
1.5 0.144294 0.0909744 0.052712
1.6 0.104088 0.0713678 0.0314071
1.7 0.0681474 0.0573227 0.0278218
1.8 0.0373861 0.0460639 0.0201757
1.9 0.01332 0.0337247 0.0106097
2.0 0.0000 0.0000 0.0000
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402 APPENDIX D

Table D.2 Optical Transfer Function Values for the Direction y=7/3

Normalized

Frequency Perfect Forp=6.5s,q=3s Forp=10.8s,g=5s
s Lens MTF MTF
0.0 1.0000 1.0000 1.0000
0.1 0.936365 0.83634 0.774362
0.2 0.872889 0.666959 0.519545
0.3 0.809733 0.543534 0.299992
0.4 0.74706 0.458088 0.108394
0.5 0.685038 0.375121 0.188769
0.6 0.563639 0.253577 0.1979
0.7 0.504632 0.107993 0.838718
0.8 0.447014 0.0785467 0.0661051
0.9 0.391002 0.0794094 0.0743255
1.0 0.33683 0.0240422 0.0213139
1.1 0.284757 0.00548988 0.024274
1.2 0.235075 0.0317163 0.0312558
1.3 0.18812 0.0419184 0.01192
14 0.144294 0.0141535 0.0366746
1.5 0.104088 0.0303124 0.0192608
1.6 0.0681474 0.0164231 0.0311978
1.7 0.0373861 0.0160886 0.011905
1.8 0.01332 0.026357 0.00171976
1.9 0.0000 0.0181265 0.00852818
2.0 0.0000 0.0000 0.0000
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Aberration, wave front, 70 Angle variable, 77
Aberration balancing: Angular aperture, 155
assumed aberration function, 224 Aperature, 284
compared with aberration reduction, 230 Aperature ratio, 102
intended use, 197 Aperature scaling factors, 83
power series, 224 Aperature stop, 42
Zemike polynomials, 232-237 location of, 126
Aberration classification, 131 Apodization, optical filter, 170
Aberration difference function, 164 Apodization filters, subtractive process, 177
Aberration function, 152 Apparent cutoff frequency, 166
definition, 324 Approximate quadratures, 329
polar coordinates, 293 Argand diagram, definition and illustration,
power series, 212, 300, 324 169
Zemike polynomials, 212 Arrays of aperatures and slits, Dirac delta
Zemike polynomial series, 324 function, 365
Aberration polynomial, calculation of, 323 Aspherical surfaces, 113
Aberrations, 92, 94 Astigmatism, 104, 119
geometrical, 103 calculated OTF, 300
higher order, 108 illustration, 169
reduction of, 182 third order, 119
residual, 191 Astigmatism and Petzval curvature, 107, 300
Aberration weighting factors, 192 Argand diagrams, 315
Accumulated line spread function, 59 calculated OTF, 315
Acutance: Astronomical telescopes, coma, 113
definition, 200 Autocorrelation calculating, 15
related to MTF, 202 Autocorrelation of a complex function, phase
Acutance vs. resolving power, 199 information, 381
Aerial, image, 45 Autocorrelation function, 139, 381
Airy disk, § Automatic lens design, 182, 183
flux density, 53 simultaneous equations, 188
Airy pattern, 47, 50, 134 Axis of symmetry, 152
Airy systems, 103 Azimuth angle with distortion, 148
Amplitude function, 103
Amplitude point spread function, 137 Balancing and optimizing procedures,
Amplitude transmittance, 170 comparison, 237
Amplitude variation of field value, spherical Bandwidth, merit function, 215
wave front, 393 Bar charts, 4, 165, 166
Anamorphism, 89 Bar pattern, 24
Anamorphosis, 89 Barrel distortion, 126, 207
Anamorphotic stretching, 101, 155 Beam diverger, 322
Anamorphotic systems, 69, 89 Beamsplitter, division of amplitude, 322
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Bessel functions, 160
application, 297

Canonical coordinates, 7, 15, 69, 81, 82, 238
Canonical equations, 81, 82
Canonical system, 75
Cardinal points, 65, 66
Cascaded system, pupil function significance,
320
Caustic, 45
Central obscuration, illustration, 175
Central ray, 73
Chief ray, 74
Chromatic aberration, early telescopes, 3
Circle of confusion, §
Circle of least confusion, 111
Close-ray analysis, 77
Close-ray angles, 75
Close-ray heights, 75
Coherence, laboratory precautions, 62
Coherent beams, properties, 319
Coherent illumination in measurements, 255
Coherent light beams, 6
Collimating lens, 282
Coma, 104, 117
cropping, 117
OTF illustration of primary at different
azimuths, 354
OTF illustration of primary and secondary
with defocusing, 345
primary, 115
Complete set, 127
Complex amplitude, 26, 93, 94, 96, 102, 135
Complex amplitude function, 138
Complex designs by computers, 194
Complex symmetry, 381
Component requirements in a measuring
system, 249
Computer programs, special purpose optical,
182
Computers:
application to complex designs, 194
dedicated, 16
glass chart, 195
“global” optimization, 195
use of graphics, 194
Conductivity, 388
Conjugate planes, 67
Construction parameters, initial, 181
Contrast, 38
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Contrast transfer, 38, 39
Convolution:
overlapping area of two circles, 383
successive, 274
Convolution identities, 369, 370
Convolution integral, 8, 139, 367
examples, 381
one function sinusoidal, 370
significance, 372
spread functions, 47
Convolution integral of two identical
functions, 381, 382
Convolution and spread functions, 378
Convolution theorem, 8, 369
application, 145
point source, 141
Coordinates:
canonical and reduced, 81
image space, 136
normalized, 102
normalized rectangular, 103
object space, 136
polar, 103
real, 101
real-space, 74, 135
reduced, 101, 135
reduced and canonical, 69, 83
Coordinate shifting mechanism, 366
Coordinate systems:
axis in tangential plane, 152
normalized, 80
normalized and reduced, 136
Comer reflectors, 284
Correlation vs. convolution integral, argument
difference, 380
Correlation function, 380
Correlation integral, 380
grating and line spread function, 265
Crenalate distribution, 27
Criteria of performance:
graphical areas, 213
single MTF values, 213
Criterion for image quality, requirements, 198
Criterion for optical quality, 6, 212
Curvature of Field, 124
Curve fitting, 292, 323
Cutoff frequency, 141
apparent, 166
dependence on numerical aperature, 166
Cylindrical symmetry in measurements, 247



INDEX

Definition in an image, 199
Definition vs. resolving power, 200
Defocusing, 45
calculated OTF, 293
OTF illustration, 337
study, 288
symmetry, 301
Delta function, 140, 259, 365, 379
Densitometers, measuring interferograms, 319
Designer, desirable background, 186, 187
Designer intuitive judgment, 182
Design program, ZEST, 193
Design programs, ray intersections, 193
Dielectric, 388
Diffraction, 92, 395
Diffraction effects, 6
Diffraction integral, 93, 99, 135, 136, 400
accuracy, 136
Diffraction integral fundamentals, 387
Diffraction—limited line spread function, 57
Diffraction-limited optical system, 47
Diffraction-limited spread function, 51
Diffraction—limited system, 92, 152
Diffraction pattern, 5, 134
Dirac delta function, 140, 365
properties, 377
Dirichlet conditions for the Fourier integral,
362
Disk, rotating sector, 271
Distortion, 104, 107, 124
Distribution, 26
Distribution of flux density, image plane, 141
Distributions of physical quantities, 40

Edge rays, 73, 77
Edges and slits in indirect measurements of
MTF, 272
Edge trace(s), 272
by convolution, 59
definition, 57
different lens—film systems, 202
by integration, 58, 59
Element, optical, 65
Elliptical coma, 107
Emulsion curve, 214
Emulsions of films, 47
Entrance pupil(s) 42, 74, 80
Equivalent passband, evaluated from line
source image, 216
Euler-Maclaurin formula, 329
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Even functions, 364

Exitance, 40

Exit pupil, 42, 74

Exposure, 45

Extended object, 134, 378
image of, 144, 145

Extended source, 284

Extended test objects, 4

Fast Fourier transform (FFT), 17
Field flattening, 124
Field vectors, 387
Fifth-order terms, 107
Film density vs. transmittance, 202
Fine features, object-image transfer, 165
Finite magnification, 89
Finite ray tracing, 78
Finite tangential magnification, 91
Flaw of imaging process, 192
Flux, 26, 27
Flux density, 26
nomenclature, 41
Flux-density point spread function (PSF), 138
Focal planes, first and second, 67
Focal points, 65
Fourier analysis, 30
combination of components, 148
two dimensions, 37
Fourier integral, 8, 29, 136, 362
Dirichlet conditions, 362
Fourier integral theory, 32
Fourier series, 28, 29, 32
stepladder bar pattern, 33
Fourier transform(s), 8, 29, 32, 136, 259, 362
calculation of, 15
delta function, 366
general distribution, 35
illustration, 147
point source, 141
product of two functions, 369
Frequency response function, confusion of
meaning, 146
Frequency spectrum, 28, 30
Fringes:
bright and dark, 278
central, 278
linear vs. circular, 322
Front stop, 42
Functions, even and odd, 32
Function tables, constraints, 311
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Galileo, 3 Ideal slit, compensation for departures from,
Gaussian, system, 65 269
Gaussian image plane, 65 Ideal system, 65
Gaussian image point, 65 Image, aerial, 45
Gauss planes, 67 Image detector, 4
Gauss quadrature, 325, 329 Image of an extended object convolution
table of interpolation points, 334 integral, 145
Generating function, 129 Image of general distribution, 144
Legendre polynomials, 328 Image imperfections, visual examination,
Geometrical aberrations, 103 181
Geometrical optics, 5 Image plane, 5
Glass chart, incorporated in computer, 195 Gaussian, 44
Glasses, available, 182 Image plane position, 213
Global optimization by computer, 195 Image point, 65, 79
Graphics by optical-design computers, 194 on-axis, 79
Gratings: Image point position, 213
area type, 263 Image position shift, 204
correlation with the line spread function, Image quality, 134
265 assessment, 196
drum requirements, 262 intended use significance, 196, 197
drum techniques, 271 measurement, 14
effect of finite length, 258 merit functions, 183
electronic filtering, 271 Image space, 39, 66
extension of an old technology, 266 Image space coordinates, 136
finite bar pattern, 268 Image space ray variables, 79
harmonics, 270, 271 Image space reference sphere, 79
Moiré pattern, 263 Imaging problem, design considerations, 181
mounting on drums, 261 Impulse response of optical system, 141
problems, 263 Incidance, 40
radial direction, 150 Inclination factor in a wavelet, 395
spectrum from finite length, 259 Infinite conjugates, 67
square wave, 270 Infinity as integration limits, 138
tangential direction, 150 Inherent limitations in a system, 197
Gratings in measurements, 254 Initial or boundary conditions, 390
Gratings and slits, orientation, 148 Integral limits, 45, 138
Gregory’s formula, 329 Intensity, 26
Gross features, object-image transfer, 165 Interference, 5, 395
constructive and destructive, 61
Half plane in measurements, 272 Interference patterns, 283
Hankel transform formula, 161 as a source of data, 320, 321
Harmonics, even and odd, 32 Interference photometer, 282
Helmholtz equation, 391, 395 Interfering wave fronts, 322
Highly corrected systems, 156 Interferogram, 283
Human visual system, contribution to image Interferogram photographs by LUPI, 321
transfer, 199 Interferometer:
Huygens’ construction, 395 lateral shearing, 288
Huygens—Fresnel principle, 395, 398 Michaelson, 275
Huygens® secondary wavelets, 5 Michaelson type, 282
Huygens® wavelet, 96 polarizing techniques, 288
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slit width in measurements, 254
tolerancing, 193
values for defocussing (table), 298
MTF area criterion (MTFA), 214
MTF and PTF, effects of values on transfer,
156

Newton—Cotes formula:
Simpson’s rule, 329
Trapezoidal rule, 329
Weddle's rule, 329
Nodal points, 65, 67
Nomenclature, simplified, 136
Nomerclature conventions, 66
Nonparaxial notation, 73
Nonrotationally symmetric systems, OTF
illustrations, 357
Normalized coordinate systems, 80, 102
Normalized rectangular coordinates, 103
Normalized and reduced coordinate systems,
136
Notation:
paraxial, 67
problems, 64
Numerical aperature, 77, 101, 155
reduction illustration, 175
Numerical methods:
autocorrelation of the pupil function,
317
direct numerical operation, 317
mechanical quadrature, 318
nature of application, 323
numerical interpolation, 317
quadrature or cubature, 318
vs. analytical methods, 317
weighting factors, 318

Object-to-image transfer, 379

Object point, 65

Object space, 39, 66

Object space coordinates, 136

Oblique spherical aberration, 107

Observer’s perception of detail,
202

Observer’s threshold curve, 203

0Odd functions, 364

Off-axis exit pupil point, 79

Off-axis limit in measurements, 247

On-axis image point, 79

One-dimensional analysis, 146
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Optical bench:
ideal image plane, 250
image analyzing device, 250
quality, 249
reference surface, 250
Optical design, 181
Optical element, 65
Optical filter, apodization, 170
Optical path difference (OPD):
defined, 323
from fringe spacing, 321
initial data for calculations, 317
ray—trace spot diagram, 211
Optical path difference (OPD) data, 193
from interferometric measurements, 319
Optical path length, 72
Optical system:
assumptions, 65
concept, 23
fundamental characterization, 320
as a low-pass filter, 23
Optical transfer function, see OTF, MTF, PTF
Optimizing and balancing procedures,
comparison, 237
Optimizing design, merit functions, 211
Order of term, 107
Origin, selection of, 32, 364
Orthogonality, 127
Orthogonal polynomial, choice of, 326
OTE:
1850-1940, 6
1940s, 9
1950s, 10
1960s, 13
1970s, 15
1980s, 16
with aberrations, 162
from the analytic aberration function, 292
analytical determination, 291
assumptions, 150
autocorrelation of pupil function, 158, 293
based on physical optics, 11
broad light spectrum, 248, 249
calculated, 337
calculated for astigmatism, 300
calculated for astimatism and Petzval
curvature, 315
calculated for defocusing, 293
calculation by autocorrelation method, 292
czlculation by double-transform method, 291
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Measurement (Continued):
lateral shearing in an interferometer, 288
light flux in superposed region, 281
LUPI, 321
Michaelson type interferometer, 282
National Bureau of Standards, 15
observed spectrum, 274
off-axis limits, 247
OTF standards, 247
oversimplified formulas, 257
polarizer, 283 Modulation contrast, 38
polarizing techniques in an interferometer, Modulation transfer function, see MTF, OTF,

288 PTF

quality of auxiliary optics, 255 MTF:

optimizing design, 211

OTF, 211

OTF-related, 217

psychometric tests, 218

residual balancing, 212

residual ratios, 212

Seidel aberration coefficients, 211
Method of Gauss, 329
Michaelson interferometer, 285
Mirror flaws, 277

repeatability, 252, 253
roof reflector, 282
shearing interferometer, 280
shift in observed frequency, 261
SIRA Institute, Ltd., 246
slit width, 254
sodium vapor lamp, 282
spectrometer slit, 284
superposed wave fronts, 278
use of Polaroid positive film, 322
varying spatial frequency, 261
Wollaston prism, 282
Measuring system:
components, 248, 249
requirements of the components, 249
Meridional plane, 78
Merit function:
evaluation of automatic design, 202
image quality (Kodak), 217
low-frequency end of MTF, 216
mean square of crrors, 191
mean square value of aberration function,
218
passband or bandwidth, 215
refative modulation, 215
resolving power, 215
revising in process, 193
variance of the aberration difference
function, 221

variance of the aberration function, 219, 225

Merit functions:
based on aberration function, 218
damping factors, 192
image quality, 183
intervening system effects, 212
MTF, 212
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acutance, 202

Argand diagram, 169

autocorrelation of pupil function, 173

coherent illumination in measurements, 255

comparisons of measurements, 251

concept, 39

convolution theorem, 266

curve shape with aberrations, 216

defocusing, 55

direct methods of measurement, 255

displacement errors in measurements, 253

equivalent passband definition, 215

experimental difficulties in measuring, 257

gratings in measurements, 254, 255

indirect measurement methods, 272

interferometric methods of measurement,
274

isoplanatism requirement, 60

low-frequency end as merit function, 216

merit functions, 212

negative, 167

observer’s sensitivity to changes, 212

oversimplified formulas in measurements,
257

“perfect” lens, 39

in procurement specifications, 253

quality of auxiliary optics in measurements,
255

quality control in photographic lens
production, 253

reduced spatial frequencies, 149

relation to transmittance curve, 175

relative importance of MTF and PTF, 247,
248

repeatability of measurements, 252, 253

sensitivity to small aberrations, 55
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slit width in measurements, 254
tolerancing, 193
values for defocussing (table), 298
MTF area criterion (MTFA), 214
MTF and PTF, effects of values on transfer,
156

Newton—Cotes formula:
Simpson’s rule, 32%
Trapezoidal rule, 329
Weddle’s rule, 329
Nodal points, 65, 67
Nomenclature, simplified, 136
Nomenclature conventions, 66
Nonparaxial notation, 73
Nonrotationally symmetric systems, OTF
illustrations, 357
Normalized coordinate systems, 80, 102
Normalized rectangular coordinates, 103
Normalized and reduced coordinate systems,
136
Notation:
paraxial, 67
problems, 64
Numerical aperature, 77, 101, 155
reduction illustration, 175
Numerical methods:
autocorrelation of the pupil function,
317
direct numerical operation, 317
mechanical quadrature, 318
nature of application, 323
numerical interpolation, 317
quadrature or cubature, 318
vs. analytical methods, 317
weighting factors, 318

Object-to-image transfer, 379

Object point, 65

Object space, 39, 66

Object space coordinates, 136

Oblique spherical aberration, 107

Observer’s perception of detail,
202

Observer’s threshold curve, 203

0dd functions, 364

Off-axis exit pupil point, 79

Off-axis limit in measurements, 247

On-axis image point, 79

One-dimensional analysis, 146
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Optical bench:
ideal image plane, 250
image analyzing device, 250
quality, 249
reference surface, 250
Optical design, 181
Optical element, 65
Optical filter, apodization, 170
Optical path difference (OPD):
defined, 323
from fringe spacing, 321
initial data for calculations, 317
ray—trace spot diagram, 211
Optical path difference (OPD) data, 193
from interferometric measurements, 319
Optical path length, 72
Optical system:
assumptions, 65
concept, 23
fundamental characterization, 320
as a low-pass filter, 23
Optical transfer function, see OTF, MTF, PTF
Optimizing and balancing procedures,
comparison, 237
Optimizing design, merit functions, 211
Order of term, 107
Origin, selection of, 32, 364
Orthogonality, 127
Orthogonal polynomial, choice of, 326
OTF:
1850-1940, 6
1940s, 9
1950s, 10
1960s, 13
1970s, 15
1980s, 16
with aberrations, 162
from the analytic aberration function, 292
analytical determination, 291
assumptions, 150
autocorrelation of pupil function, 158, 293
based on physical optics, 11
broad light spectrum, 248, 249
calculated, 337
calculated for astigmatism, 300
calculated for astimatism and Petzval
curvature, 315
calculated for defocusing, 293
calculation by autocorrelation method, 292
calculation by double-transform method, 291
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OTF (Continued):

calculation by electronic computers, 317

calculation by numerical methods, 317

calculation by spread function method, 202

classification, 156

concept, 2, 37, 39

contributions to optical industry, 187, 188

contributors, 2

as a criterion, 198

criterion of definition, 200

definition, 1, 9, 138, 145

defocusing, 53, 54, 305

dependence on frequency pattern orientation,
150

derived from point spread function, 158

different expressions, 284

early conception, 7

early instruments, 11

early self-convolution of pupil function, 13

effect of defocusing, 167

effect of optical parameter variations, 240

effect of spherical abermration, 167

effects of aberrations, 165

evaluating image quality, 18

extended objects, 248

favorable features, 11

finite grating effect on measurement, 258

first formulation, 9

Fourier transform of line spread function,
273

at frequency extremes, 165

general discussion, 149

general expression, 152, 155

geometrical approximations, 13, 177

history, 1

ideal, 156

image quality reference standard (Kodak),
217

isoplanatism requirement, 60, 142

linear superposition requirement, 60

linearity requirement, 142

low-pass with a cutoff frequency, 155

magnitude, 149

mathematical theory of, 134

measuring equipment standards, 247

merit functions, 211

modulus, 149

normalized, 149

from optical path difference data, 325
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“perfect,” 152, 153, 154, 156, 162

perspective, 18

polychromatic conditions, 178, 179

practical difficulties in direct measurements,
12

precision of instrumentation, 19

primary Petzval curvature and primary
astigmatism, 305

reduced spatial frequencies, 149

relative importance of MTF and PTF, 247,
248

reluctance to use, 2

single frequency explicit variables, 150

test program, 13

theory, 142

usual, 156

OTF illustration:

defocusing, 337

nonrotationally symmetric systems, 357

optimum balanced fifth-order spherical
aberration, 349

primary and secondary coma with
defocusing, 345

primary and secondary spherical aberration,
341

primary coma at different azimuths, 354

primary spherical aberration, 338

Seidel aberrations, 337

spherical aberration with color, 348

OTF measurements, sources of error, 16

Paraxial notation, 67

Paraxial system, 65

Parseval’s formula, 216, 365

Passband, merit function, 215

Pencils of rays, 4

Perception of detail by an observer, 202

Perfect diffraction-limited optical system, 102

Perfect OTF, 152, 153, 154, 162

Period, 27, 29

Periodic test object, 6

Permeability, 388

Permittivity, 388

Petzval curvature, 104, 124

Phase advance, defined in terms of optical path
lengths, 323

Phase increments, 73

Phase transfer function, See PTF, OTF, MTF.

Photogrammetry curves, 214
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Photographic film, required characteristics, 47
Photographic quality, 199
Physically realizable systems, 156
Physical optics, 5
Pincushion distortion, 207
Pincushion effect, 125
Point object, 134
Point source, 3, 41
mathematical representation, 140, 378
Point sources of light, Dirac delta function,
365
Point spread function, 43
asymmetric, 47, 48
measurement of, 45
Polar coordinates, 103
Polarizer, 283
Power series:
focus terms, 224
as a general function, 324
Weierstrass theorem, 324
Primary spherical aberration, 110
Prime, significance, 66
Principal planes, first and second, 67
Principal points, 65
Principal ray, 74
Probe, instrument, 47, 49
Propagation constant, 389
Propagation vector, 390
PTF and MTF, effects of values on transfer,
156
PTF:
Argand diagram, 169
coma, 207
common practice, 208
definition, 204
importance, 207
limit, 208
linear significance, 205
nonlinear illustration, 205
part of OTF, 39
pincushion and barrel distortion, 207
pi-radian shift, 207
reduced spatial frequencies, 149
relative importance of MTF and PTF, 247,
248
slope, 207
zero at all frequencies, 207
Pupil coordinates relation to spatial
frequencies, 158
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Pupil function, 95, 102, 138, 152
Pupil ray, 74, 79, 152
Pupil sphere, 71, 94
Pupil variables, 80
Pupils, 42
entrance and exit, 80

Quadrature, 329

Quadrature theory, 325

Quality of auxiliary optics in measurements,
255

Quality criteria, summation expressions, 213

Quality in a photograph, 199

Quarter-wave-length criterion, 6

Radial direction of grating, 150
Radiant energy, 26
Radiant flux density, 99, 100
Radiant intensity, 41
Radius of curvature, 66
Ray intersections in design programs, 193
Rayleigh criterion, 7, 53
Rays, 4
Ray-trace spot diagram, optical path
difference, 211
Ray tracing, finite, 78
Ray variables, 77, 78
image space,79
Real coordinates, 101
Real-space coordinates, 74, 135
Real-space spatial frequency, 149
Rects M, 258
Rects spectrum, convolution with the delta
function, 259
Recurrence formula:
Legendre polynomials, 329
Tschebyscheff polynomials, 327
Recurrence relation, 129
Reduced coordinates, 69, 81, 82, 101, 135
Reduced optical system, 42
Reduced spatial frequencies, 83
Reference sphere, 71, 79, 94
Reflectance, 24, 27
Reflecting paraboloids, 115
Relative importance of MTF and PTF, 247,
248
Relative modulation, 164, 232
definition, 151
measure of residual balancing, 230
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Relative modulation (Continued)
merit function, 215
Residual aberrations, 191
Resolution in an image, 199
Resolving power vs. acutance, 199
Resolving power vs. definition, 200
Resolving power, merit function, 215
Response(s):
coherent and incoherent light, 142
combination of component responses, 142
Rings, bright and dark, 278
Ripple pattern:
alternate test objects, 215
as a test object, 215
Roof reflector, 282

Sagittal magnification, 148
Sagittal plane, 74
Sagittal pupil angle, 75
Sagittal rays, 74
Scaling factors, 101
Schwartz’s inequality, 164
Secondary disturbance in a wave front, 395
Secondary spherical aberration, 110
Secondary wavelet, 395
phase, 398
Secondary wavelets, Huygens’, 5
Second ray variables, 77
Seidel aberrations, 107
OTF illustrations, 337
reduction of, 182
Seidel classification, 103
Seidel polynomial, 17
Self-convolution of a complex function, phase
information, 381
Self-convolution integral, 380
Sheared functions, 140
Shifted focus, 85
Shifted image point, 85
Shifting delta functions, order of terms in
argument, 376, 377
Shifting the image plane, 84
Sign conventions, 66
Simpson’s rule, 329
Sinc function, 258, 269
Sine condition, 84, 118
Sine wave, 29
Sinusaidal component, 28
Sinusoidal distribution, 27
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Sinusoidally distributed image, 4
Sinusoidally distributed object, 4
SIRA Institute, Ltd., 246
Skew rays, 78
Slit:
ideal, 269
practical width, 273
spectrum, 269
width tolerance, 270
Slits and edges in indirect measurements of
MTF, 272
Slits and gratings, orientation, 148
Slit-slit convolution, 273, 274
Slit width in measurements, 254, 268
Sodium vapor lamp, 282
Spatial frequencies, 84
reduced, 83
Spatial frequency, 23, 27, 31
amplitude of wave, 147
azimuth and phase of wave, 147
phase angle of component wave, 147, 148
Spatial frequency relation to pupil coordinates,
159
Spatial frequency spectrum, from edge trace,
200
Spatial periods, 83
Specifications, typical, 181
Spectrometer slit, 284
Spectrum, 29
broad light, 248, 249
finite grating, 259
general distribution, 35
Spectrum observed in measurement, 274
Spectrum of a slit, 269
Spherical aberration, 104, 107, 108
early telescopes, 3
minimizing, 113
OTF illustration with color, 348
OTEF illustration with optimum balanced
fifth-order, 349
OTF illustration of primary, 338
OTF illustration of primary and secondary,
341
primary, secondary, tertiary, 110
study, 288
Spherical wave from a point source, 391
Spherical wave fronts, 391
Spherical wave toward a point, 394
Spherical wavelets, 395
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Spot diagram, 55
Spot diagram reduction vs. wave aberration
correction, 211
Spread function, 9, 378
diffraction-limited, 51
film emulsion, 207
small aberrations, 50
Spurious resolution, 4, 169
Square wave, 27
Standard reference lenses, 14
Star image, 4
Star as test object, 3
Step function, 59
Stepladder bar pattern, spectrum, 33
Stop, position of, 119
Stops, 42
Strehl ratio, 7, 100, 240
measure of residual balancing, 230
Struve function of the first order, 56, 57
Subjective quality factor (Kodak), 217
Superposition:
coherent and incoherent light, 143
definition, 143
intensities and amplitudes, 143
isoplanatism requirement, 143
linear, 60
partially coherent light, 144
phase information, 143
Symbols and terms, problems, 64
System extension considerations, 198, 199
System inherent limitations, 197
System performance, sensitivity to parameter
values, 196
Systems “fairly well corrected,” 221

Tangential direction of grating, 150
Tangential magnification, 148
Tangential magnifications, local and finite, 90
Tangential plane, 73, 152
Telescope objective, defocused, 285
Telescope, 3

Hale, 115
Tertiary spherical aberration, 110
Test chart, 4
Third-order terms, 107
Three-bar pattern spectrum, 30
Three-bar “pulse,” 31
Threshold curve, 214
Threshold curve of an observer, 203
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Through-focus curves, 251
Tolerances:
manufacturing, 195
statistical approach, 196
Tolerancing in MTF, 193
Top hat distribution, 27
Transfer equations, 78
Transfer function, autocorrelation of pupil
function, 163
Transform, 362
two dimensions, 364
Transmittance, amplitude, 170
Transmittance function, 172
Trapezoidal rule, 329
Traveling wave, 390
Traveling wave equation, 387
Tschebyscheff polynomials, 327
table, 328
Twyman-Green interferometer, 275

Unit planes, 67

Variance, 7
of the aberration function, definition, 219
of wave aberration, 238

Vertex, 66

Wave aberration correction vs. spot diagram
reduction, 211
Wave aberration function, 95, 103, 136
earliest definition, 10
equivalent series, 127
power series expansion, 104
Zemike polynomials, 126
Wave aberration, 71, 292
Wave distortion, 71
Wave equations, 388, 389
scalar, 389
Wave front, 95
aberration, 70
distortion, 71
expressions, 93
speed, 395
Wave-front-ray aberrations, 323
Wavelengths of light, 94
Waves:
combination of, 276
combined, maxima and minima, 277
combined, radiant flux density, 277
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Weddle’s rule, 329 Zernlike polynomials, 17, 327
Weierstrass theorem, power series, circle polynomials, 104

324 advantages of, 127
Weighting factors for aberrations, 192 circle polynomials in ZEST, 193
Wollaston prism, 282 radial polynomial, 127, 129
Worst case performance, 196 series, 129
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