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2t the reciprocal voltage amplification is

iyt
Diia: a4 = e_k"w‘ Us) <1

a;‘fw;- v _

s extremely small r'éeiproca.l- voltage amplification is the reason for
. strong similarity between the pentode and the n-p-n transistor
haracteristics. The similarity is, incidentally, not tied to the fore-
g special case (see Fig. V.3.6) and results from the saturated charac-
of the collector current.? o ' !
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@, V.3.6. Comparison of the family of characteristics of a pentode and an n-p-n

g4. The Point-contact Transistor

Qualitative Treatment

Historically, the first transistor is the so-called type A transistor
own in Fig. V.4.1, whose discovery in 1948 by John Bardeen and
H. Brattain® created, rightly, a sensation. The transistor with
ole surface of J. N. Shive® (see Fig. V.4.2) and the ““coaxial tran-
1 Concerning the comparison of the n-p-n transistor and the vacuum tube, see
Iso L. J. Giacoletto, Proc. IRE, 40: 1490 (1952). Figure V.3.6 is based on data

this paper. :
. Bardeen and W. Brattain, Phys. Rev., 74: 230 and 231 (1948); 75: 1208

N
aste).
3 J. N. Shive, Phys. Rev., 75: 689 (1949).
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sistor”” of W. E. Kock and R. L. Wallace! (see Fig. V.4.3) are, as was
found shortly afterward, only geometric modifications of the type A
transistor and fall within the general concept of the “point-contact
transistor.” The physically significant mechanism is the same for all
these transistors. It consists in the fact that the boundary layer of a
point coutact, biased in the reverse direction, represents the eurrent
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Fia. V.4.1. The type A transistor.

* Emitter Collector

Load
Signal resistor R
F1e. V.4.2. Transistor with double surface.
Load
resistor R

F16. V.4.3. The coaxial transistor.

path which is influenced by carrier injection and that the emitter is
also a point contact, biased, however, in the forward direction. A
transistor of n germanium shall be considered for the qualitative
description of the mechanism. A current I, (e.g., 0.75 ma) enters the
n germanium from & positively biased (e.g., + 0.15 volt) emitter. A
small fraction 1 — v of this current consists of electrons which come
from the large area nonrectifying base and flow into the emitter after
passing through the body of the germanium. The major part v/,
! W. E. Kock and R. L. Wallace, Elec. Eng., 68: 222 (1949).
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' the emitter current, however, consists of holes which are naturally
ttracted by the negatively biased collector in the immediate vicinity,
U. <0 (e.g., —20 volts). Hence the major portion 8 of the hole
- current v/, is captured by the collector and thus modifies the con-
~ ductance of the collector boundary layer which is depleted of carriers
~ as a result of the reverse bias. In this manner the current path of
~ the battery in the collector circuit, which includes the collector bound- -
~ ary layer, can be modulated with very little power in the emitter
~ circuit.
L n.ttempt ta develop these concepts quantitatively, fails because
- the physical mechanism of the point contacts—as previously pointed
. out on page 73—is described only very approximately by the Schottky
. boundary-layer theory. The favorable operation of point-contact
- detectors depends largely on certain empirically determined surface -
. treatments and forming processes..This clearly points to chemical
.cﬁanges in the pure metal-semiconductor contact whmh have only
~ recently been discovered, at least in a qualitative way.!
- The only way to arrive at a ‘“theory’ of the point-contact transistor
~ is to apply the concepts used for the filamentary transistor to the
. geometry of the type A transistor, although this is only partly possible.
' ~ However, the following dlﬂiculty is even more serious. While in the
. ﬁlamenta.ry transistor the control of the conductivity of the current
- path between emitter and collector can be described and followed theo-
- retically,? we have for the point-contact transistor only the formal
- definition of the current-amplification factor «; for this important part
‘of the theory. In view of this unsatisfactory situation, we shall deal
mth thls subject only briefly in the next section. ;

. The Quantitative “Theory®’ of the Type A Transistor

We begin with a discussion of the emitter, and we consider first the
_properties of the emitter alone, ignoring the influence of the collector.
or this purpose we must keep the collector in the zero-current condi-
on and measure the emitter current-voltage characteristics:

I, = f-o( U-) < (V.4.01)

."' b With positive collector current I, the potential of the germanium sur-
- rounding the emitter would be R; - I. higher than before. According

" 1R. Thedieck, Physik. Verhandl., 3: 31 and 212 (1952). L. B. Valdes, Proc-
:-_ lIRE, 40: 445 (1952).

* The pertinent theoretical concepts hsve also been experimentally verified.
Bee W. Shockley, G. L. Pemon, and J. R. Haynes, Bell System Tech J., 288: 344
(1949)
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to Fig. V.4.4, R, is the resistance between the equipotential surface

- through the emitter and the grounded base, assuming the current to

spread out radially from the collector.
A positive collector current I, creates in the germanium wzth the

conductivity & a hemispherical potential distribution

Vel ;
Vi(r) = (s ; (V.4.02)
With the collector as center point, the resulting field strength
W L . I y
. E(r) = -—V'(r) = + Sror? (V.4.03)

then produces with the conductivity o exactly the reqw.red current 7.
through each hemisphere 2xr?. :

Emitter Spocmg- Collector

F1a. V.4.4. The origin of the effective emitter voltage
Uo off _‘ U; g Rqu

If the emitter is at a distance S from the collector the. equlpotent.ml
surface intersecting the emitter haa the potential

V(S) = ?a{mS ' (V.4.04)

The base is identified with the infinitely distant hemlsphere and there—

fore has the potential
V(o) =0 (V.4.05)

The voltage betwaen the equipotential surface through the emitter and
the base i is, therafore

V(S) = V() =-72—f§,§ (V.4.06)

and the resistance between the two surfaces in question is
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Hind = Zres N

I

'For a = %0 ohm~! ¢em—*and 8 = 50 - 10~4 ¢cm, by way oi example,%ﬁé' ;

10 ohm em
6.28 - 5 103 ¢

Inasmuch as with a collector current /. the potential of the germa-
jum near the emitter exceeds that for zero collector current by
, - I, it seems reasonable to regard U, — R - I. as the effective
emltter voltage and to write in place of (V.4.01)

' I -J‘.o(U _RbI:) ‘ ' (V409)

Ry = = 318 ohms (V.4.08)

tter current and t.he collector current can be superposed without
interaction. This aasumphon 1s certainly not strictly correct because
the conductivity of the germa.mum‘m modified by the injected holes.

aking this effect into account would les.d to appmmble comphcatmna
and will not be sttempted here.! : :
After having treated the conditions on the emitter mde, though in a
mewhat incomplete manner, and having obtained BEq. (V.4. 09) for
he emitter current I,, we shs.ll now consider the collector current Ie.
Without the influence of the emltter, I. s gnren by the unqulﬁad
collector characteristic

= fgg(Uc) for =0 (V4 10)

n addition to this component a.msmg dlrectly from t.he coIlector
tage U., a further component is introduced by the injection from
ie emitter. A fraction v of the emitter current I, consists of holes, &
on B of whlch, in turn, is captured by the collector. The ‘hole
nt .871 a.rnvmg at the collector releases a colleot.or—cpmnt-
onent an'yI = of, which is larger by the true current-amplifica-
factor a; and which is added to (V.4.10) though with negative
since according to our definition a positive emitter clm'ent '
Verses the collector c1rcu1t in a nega.tlve direction: :

: Ir. s f:o(Ue) ; _ (VA.].I)
- Equations (V.4. 09) and (V.4.11) are the two equations which relate

B. Valdes, Proc. IRE;40: 1429 (1952), has also neglected this effeot. ‘Valdes
ers the finite thickness of the Ge wafer in his calculation, which leads to a
mation of the hemispherical propa.gntxon of the collector current, in eontrast .
he above treatment.
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the currents I, and I. and the voltages U, and U.. If we consider
small deviations 4,, %, u,, % from an operating point I,, I, U,, U,, we
obtain from (V.4.09) and (V.4.11) by linearization ;

: 1 ;

k= e e
and S e (V.4.12)
U = ATty + Tele (V.4.13)
Here r, and r. are the differential resistances which can be calculated

from the unperturbed characteristics (V. 4.01) and (V.4.10) for the
operating points /, and I, respectively. R;is given approximately by

-4 : - lg— a1,
1T ] lll 4 2] é'.
P —
el Pamaay b
— 5 =
] N +
e ' [ e

-

Fi1a. V.4.5. The analogy between r, in the filamentary transistor and the external
coupling resistor Rx in the point-contact transistor. The 7nternal base resist-
ance R, does not have an ogue in the filamentary transistor, o

Eq. (V.4.07). The current-amplification factor « of the point-contact_
transistor is formally expressed by the product

o = a8y ' (V.4.14)

but it'is not possible to relate any of the three factors a;, B, and 4 to the
geometrical dimensions and the material constants of the device.1
Thus the theory of the point-contact transistor has a rather formal
character compared with the theories of the n-p-n transistor and par-
ticularly the filamentary transistor. '

We shall add a few remarks concerning the obvious comparison with
the current-voltage characteristics of the filamentary transistor:

U = (rs +  1)ie + ric, (V.2.43)
U = (1o + air)iy + (ry + ro)ie (V.2.44)

As can be seen, the resistance R, of the point-contact transistor does
. Dot act in a manner analogous to the base resistance 7 in the filamen-
! Sec further, J, Bardeen, Bell System Tech. J., 29: 469 (1950),

L]
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_ tary transistor (resistance between point I and the base electrode in
Flg V.4.5). The latter acts rather as a feedback resistance Rx which
~ can be added between base electrode and ground in the point-contact
- transistor. In view of

US = U, — Rxly = Us + Re(L. + I.) (V.4.15)

U* = U, — RKIb = U+ RK(I + Ie) (v-413)

-; a.nd the correspondmg equations for the deviations u¥ . from the
i3 opera.tmg point, we obtain from (V.4.12) and (V.4. 13)

- = Re+ r)ie+ @x+RYi.  (V417)

u? = (Bx + aroi, + B + roic . (V.4a8)

- Comparison with (V.2.43) and (V.2.44) shows the analogy between
7 in the filamentary transistor and Rx in the point-contact transistor,
~ whereas there is no analogue in the filamentary transistor to the resist-
~ ance R, of the point-contact transistor.

~ In conclusion we shall refer very briefly to an extensive field which is
. extremely important for practical applications. On page 124 we

N7
£ | ues
S 20
e e 74 {
:"' ot eto 20 A0 . .40
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‘Fm V.4.6. Family of chmctemstwa of a transistor with regions of negative
; remst&nce

]epd to msta.blht.y 1 In such cases the mput nnpedance, measured
- from the primary or secondary side, of a transistor is negative, indi-
'_ % cated by fa.l]mg cha.racterwtacs (see Fig. V.4.6). This phenomenon i

the t.ra.nsmtor in pulse smtchmg, and electromc computing techniques.?

1 8ee in this connection also p. 148,
2 Bee in this connection, for instance, B. A. E. Anderson, Proc. IRE, 40: 1541
‘5 &1953) ;
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! g3. The Unipolar Transistor

In contrast to the previously discussed three transistor types, the =~

injection of menority carriers plays no part in the unipolar transistor;
instead use is made of displacement effects of majority carriers in the
transition regions of p-n junctions. We may recall that there is a
: potential step Vp in a p-n junction even for zero current (see Fig.
IV.6.1). The establishment of this step requires space charges which
stem from the fact that, on both sides of the transition region, the
respective majority ca.rrier concentration is smaller than the corre-
sponding impurity density. If, by application of a reverse voltage U,
the potential step is increased to Vp + U, the space-charge regions
which are depleted of carriers must increase in width (see Fig. IV.7.1).
All this has been discussed in detail in Chap. IV, §6 and §7, in connec-
tion with the rectifying action of a p-n junction,

"Load AR A

p-germanium ;hhllllb;-\w
wyﬁkﬂwﬁf&ﬂw»% | .s{:ﬁ

F1c. V.5.1. The pnnclple of the unipolar transistor.

The unipolar transistor makes use of the majority carrier depletion
in the space-charge region of a p-n junction in the following way.  For
instance, a p-conducting channel is confined on both sides by p-n
junctions (see Fig. V.5.1). Variation of the voltage between the
» channel and the n boundaries controls the width of the space-charge
regions 8o that a varying width of the boundary strip on each side of
the p channel is depleted of carriers. This boundary stnp is sub-
tracted from the conducting cross section for a current in the longw—
tudinal direction of the channel. In the limit the entire channel width:
can be made carrier-free by applying sufficiently high reverse voltagea
between the p channel and the n boundaries. The channel is then
apparently ‘pinched off,” and the longitudinal current is blocked.

Thus the over-all effect is that the width of the channel, and with it
the conductance for the longitudinal current, is controlled by the
reverse voltage. The control requires only very little power, because
the control voltages are in the reverse direction and the reverse cur-
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of p-n junctions are extremely small.’ At the tlme of writing, no
yerimental realization of this unipolar transistor has been pubhshed
) hough it has already been announced by Shockiay 1

86. Appéﬁdﬁs The AmLpliﬁcation of Current,
Voltage, and Power for a Transducer
Element with Output Load

.1- '-We employ the linearized current-voltage relations (V2 18) and
! W 2.19) for the treatment of these equatlons

Uy = Tasle + Tiote ¥ (V.z.ls')' i
Ue = Ta1le 1 Tasle (V.2.19)
i ccordlng to Flg T & = .
U = —uL = -—Rz.tc v .6.01)— :

e

E | e v-: E]""““‘

'F1a. V.6.1. Transducer element with a load resistor at the output side.
here Ry, is the load resistor in the secondary circuit:

0 = rate + (ra2 + Rr)ic (V.6.02)
From the preced.mg we obtain for the current amplification

--:.; : | A t‘g 5 ._ f!i,: ) Tas ; .
. {_ T ,.—“m (V.6.03)

Pm IRE, 41+ 970 (1953)
2 We define the ratio of the secondary terminal voltage U to t.he primary terminal
 voltage ue as the volhage amplification. The maximum voltage which the pri-
nary voltage source is capable of producing without transducer element is often
aken as the reference quantity instead of w,. This would be the emf e, of the
imary generator. In this case we would have to introduce an internal resistance
‘the generator in Fig. V.6.1, and we would have to distinguish between the emf
d the terminal voltage u,. For our discussion, which is directed at the
sical essentials, we can refrain from considering these more detailed differences.
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ur_ _ru  Ra 1 :
Us rure + Er T Dl (V.6.04)
- T T2 + Ry ]

Equations (V.6.04) and (V.6.03) together lead to the power amplifica-
tion? '
ugle _ Th. _ rmlip w1 _
Uele  T11° T2z (r2a + Ri)? i (V.6.05)
T11 722 + Ry ’

In both of these equations, the second factor r::/(rs2 + R1), Ri/
(r22 + Ry1), and 725R1/(rse -+ R1)* represents the effect of the voltage
division between the circuit element and the load resistance on the
secondary side.? The physically important information is obtained
from the short-circuit (Br = 0) current amplification

% LT |
[fo]m cireuit T2z (VGOB)
the open-circuit (Rz = o) voltage amplification
UL . T21
[u. ]opcn cirouit T11 . (v-ﬁ.o'?)
and the power amplification under matched (Bz = rs) conditions?
- ’ .
[%] _1lrh 1 (V.6.08)
Uslo Imathea 4 711722y 1 rairis
2rura

The factor on the right of (V.6.08) is significant. It shows the feed-
back effect of the resistance ri: and the resulting tendency toward

1 We take the power u, - #, which is delivered to the four-pole element by the pri-
mary voltage source as the reference quantity for the definition of the power amplifi-
cation. Instead, the maximum power }{ - (¢]/r,) which can be taken out of the
primary generator e,, r, without the tramducer element is often used as reference
quantity for the power amplification.

* Tn this connection we may recall the, possibly trivial, fact that for an a-c short
circuit (Bz = 0) the voltage amplification and for an a-¢c open circuit (RB; = «)
the current amplification is zero. Whether a circuit element exhibits mostly cur-
rent amplification or voltage amplification depends alse very strongly on the mag-
nitude of ths load resistance and should, therefore, not be used for the characteriza-
tion of the physical mechanism of the particular circuit element.

: If we designate Ry = rs as ““matching,” we neglect the feedback resistance
r12 and its effect on the input resistance rss — risa1/(r11 + 7,) on the secondary
side. This, too, is not essential for our discussion which is mmed at t.ha basic

pringiples,
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ability which can oceur if the magnitude of ris is such that the

ominator of this factor can become zero so that the power amplifica~
n becomes =, leading to destruction of the transducer element.
ch as an mcrease of the power amplification is desirable, the utiliza-
on of the feedback ry, is risky because 3 the danger of instability, so
that one tries in general to make 71, as small as possible.*

§7. Problems -

‘1. What is the average transit time required for the injected minority carriers
to diffuse through a base region of the thickness w, assuming w << L? Give the
erical values for germanium transistors of hoth polarities with w = 10~% em.
2. Compare the diffusion transit time through the base region of a transistor
(see Prob. 1) mth the drift transit time under the influence of an electric field E.
~ The drift transit time can be defined as the transit time due to the field only.
What potential differenee across the base region would be necessary in a transistor
) that the drift transit time becomes equal to the diffusion transit time? For
er clectric fields, the transport process is mostly diffusion-determined, for
gher fields mostly field-determined.
. Calculate the drift transit time in an n-type germanium point-contact tran-
stor with an emitter-collector dr.qtance of 5 X 10~% cm, for a collector electron
current of 0.1 mA, assuming a germanium resistivity of 1 ohm-cm.
 4.* In a semiconductor with nonuniform impurity density, the free carrier
sity will be nonuniform, too. On the other hand, the carrier density in thermal
'oqmli'bnum can vary only when the electrostatic potential varies. This is true
ot only for p-n junctions but for inhomogeneous n-type or p-type doping as well.
A In all cases, the equilibrium carrier densities and the potential are connected by a
. pau' of equations analogous to (IV.6.10) and (IV.6.11):

p(@) = p(©) exp { - ﬁ,- V@ — o1} (v-7.01)
n@) = n(0) exp { + 3% V(@) — v} (V.7.02)

I 6. What is the potential distribution inside the base Iayer of a transistor if the'
~ donor density decreases exponentially from the emitter to the collector, according
~ to, say.

s 2

np(@) = np(0)-e > | (V.7.03)

- b. What is the drift transit time for holes (see Prob. 2) in a p-n-p germamum
* ﬁ'&nmstor with np(0) = 1.5 - 1017 em~2, A\ = 6.25 - 10~% ¢m, and w = 5 - 10~* cm?

5. Calculate the current amplification factor a; for an n-p-n germanium tran-
~ sistor with the following physical parameters: np = 101 cm=3, n4 = 2 - 1015 cm 3,
7 =10"%sec, 7» = 510" sec, w = 5-107% em. How much of the deviation of
- «; from unity is due to recombination losses, and how much is due to incomplete
& ._mjecttonf

. 1In contrast to the feedback resistance r1s, the coupling resistance: rs; must
- never be zero. For 7y = 0 there would be no effect of the primary circuit on the-
- secondary circuit, much less an_amplification of the prim_ary signal,
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- 6. When the injected minority-carrier density in the base region increases with
increasing emitter current, the majority-carrier density increases by the aame

amount in order to neutrahze the charge of the injected carriers, as described i in 3

§2a. The result is the same as -though the increase in the majority carrier density
had been caused by an increase in the impurity density. In the case of ann-p-n
transistor, this means that the hole current flowing out of the base into the emitter
is not proportional to the injected electron current, as would be: the case for a
constant hole density in the base. Instead, this ‘“lost’’ hole current riges faster
with increasing emitter voltage than the electron current, so that the emitter effi-
ciency v, decreases.® Calculate the dependence of v, alone and of the total current
amplification factor «; on the current. Plot the variation of the cun-ent-amphﬁca.-
tion factor for the transistor of Prob. 5.

~ 7. With increasing collector voltage the mdth of the oolleotor junction i moraases,
thereby reducing the width of the base region, ? If the emitter voltage is held
constant, the diffusion gradient in the base region becomes steeper and the current
increases. This means that the collector has a low, but finite, conductance, as
already shown in Fig. V.3.6. If, however, the emitter current rather than the
emitter voltage is held constant, the emitter voltage will drop with increasing
_ collector voltage by such an amount that the diffusion gradient in the base region
remains constant, This means that there exists a negahve feedback from the
collector to the emitter. Calculate the collector conductance for constant emit-
ter voltage (a:‘/aU,,)u. and the feedback factor for constant emitter current
(80U /duc)is for an n-p-n transistor with an abrupt collector junction. For sim-
plicity, make the following a.ddlt:onal assumptions: n.p,colisctor > N4, base; i = L.
Give numerical values for 3ermamum, assuming H? = 10~¢ cm, ru.n-. = 5-10“
em—3, 1.—1m.-\l U, = 3 volts.

1 W. M. Webster, Proc. IRE, 42: 914 (1954).
*J. M. Barly, Proc. IRE, 40: 1401 (1952),




Fundamentals of

‘Semiconductor Pilysics

Detailed deductions of concepts and theorems from the funda-
ntals of semiconductor physics have been avoided in the preceding
chapters, since such deductions would not have been in the interest
he application-minded reader. However, the physicist who wishes
delve deeper in the semiconductor field will want to distinguish
ween the elements in modern solid-state physics which are based
fundamental physical laws and those which rest on hypotheses and
plifying assumptions. Chapters VI to X, on funda.mentals may
ere be helpful.
A sohd body, with its enormous number of atomic nuclel and elec-
ns, represents a many-body problem whose exact treatment is out
he question. Since a crystal is, in a sense, a single gianf molecule,
‘geems reasonable to transfer to crystals the approximation methods
pund useful for molecules. This has, in fact, taken place. For
stance, the approximation method of Heitler and London has been
ied by Heisenberg! to the theory of ferromagnetism and by
lleraas? and Landshoff?® to the theory of the cohesive forces in ionic -
stals. Thus a wave-mechanical basis is provlded for the atomistic
cture which is employed mainly by crystal and phymca.l chemists
nd is hest suited for insulators and ionic crystals. In the last two
ades this picture has unjustly been regarded as antiquated and as
duly influenced by the corpuscular viewpoint. This may arise in
art from the fact that the other approximation method, the band
odel is particularly suited to metals and that, for historical reasons,
long-known and well-defined phenomenon of metallic conduction
W. Heisenberg, Z. Physik, 491 619 (1928).
E. A. Hylleraas, Z. Physik, 63: 771 (1930).
‘3 H. Landshoff, Z. Physik, 102: 201 (1936); Phys. Rev., 52: 246 (1937).
: 151
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was investigated first. By comparison, semiconductor physics, ini-
tially so confused, has expanded its scope only in the last threg decades.
In fact, in the minds of most physicists it lost a shghtly scurrilous
character only a few years ago.

In the field of molecular structure, the band model has its starting

point in the methods of Hund and Mulliken. To demonstrate clearly
the equal standing! of the band model and the atomistic picture, it
seemed appropriate to compare, in Chap. VI, the methods of London
and Heitler on the one hand and of Hund and Mulhken on the other as
applied to the simplest molecule, namely, the hydrogen molecule. In
Chap. VII we shall discuss the band model in detail. We cannot enter
upon the atomistic picture to the same extent. Quantitative results
have been derived from the atomistic picture only for the theory of
ferromagnetism and the theory of cohesive forces in ionic crystals.
These topics lie, however, outside the scope of this book.

Tnstead, Chap. VIII covers the quantitative results of the Fermi
statistics of electrons in crystals within the scope of the band model.
We return here to the concepts of lattice-defect reactions and the laws
of mass action introduced in Chap. II. In Chap. II wep ointed
out that this approach was proper only for sufficient dilution of the par-
ticipants in the reaction. A quantitative formulation of this assump-
tion becomes possible only with the aid of Fermi statistics in Chap.
VIII. These statistics also provide a basis for the value of the mass-
action constant which, in Chap. IT, could be given only without proof.

The law of mass action, which is so important for semiconductor
physics, is discussed once more in Chap. IX, this time from the kinetic
standpoint. Here we find relations between the mass-action constant,
the so-called recombination coefficient (or the effective cross sectlon),
and the lifetime. These matters are of importance in the theory of
phosphors and may be of significance in the high-frequency behavior
of rectifiers and detectors.

Finally, in Chap. X, the phenomena. are dmcussed which occur when
two different solids are brought into contact. Here we obtain a rep-
resentation of the concepts of the Galvani voltage, Volta potential
difference (= contact potential), work function, photoeiectnc activa-
tion energy, and diffusion voltage. - :

In this connection we shall also enter into a discussion of surface
states and their possible effect on the contact between two solids.

1 See F. Stockmann, Z. physik. Chem., 198: 215 (1951).




CHAPTER VI

§1. Introduction

i Our concern with the theory of the hydrogen molecule is not an end
_"-“‘ n itself. Instead, we wish to recognize in the approximation methods
used in this two-electron problem those characteristic traits which
we shall meet again in the multielectron problem of a solid.! In
it mmh an approximation method,? the Schridinger function ¢(xs, rs) of
fthe complete molecule, which con’r.mns the position vectors r; and r. of
h electrons 1 and 2, is initially approximated by a product of two
ctions u(r;) and v(r.), which each contain the position vector of
~ only one electron: '
i ' Y(ry, T2) = u(ry) - v(rs) (VI.1.01)
g g-nonidentical‘ eigenfunction with the same total energy would be
Hence we need not consider the refined approximation methods of 8. C. Wang,
hys. Rev., 31: 579 (1928); of B. Hylleraas, Z. Physik, T1: 739 (1931} or of H. M.
) a.nd A. 8. Coolidge, J. Chem. Phys., 1: 825 (1933).
We are not dealing here with Schrédinger’s original perturbatmn method in
hich the problem to be- treated differs by only a slight perturbation from an
ately solvable problem and where the solution of the perturbed problem is
cp: ' ded in t.he elgenfunctlons of the unperturbed problem. In principle, this is

, in case of convergence, will yield arbitrarily precise results. The methods to
described are, rather, specific realizations of a finite procedure. The historical
ing point for them is the treatment of the hydrogen molecule by W. Heitler
F. London, Z. Physik, 44: 455 (1927), which is to be discussed next. The
,geneul acﬁeme Wwas mdlcated b]r J. G Slater, Phys. Rev., 38: 1109 (1931) See

cos z - 8in 2y
sin 2z - cos ¥

. icate how, by the exchange of two coordinates or degrees of freedom, a non-
identical eigenfunction with the same chara.cbanstlc frequency can be obtained

Fig. VL1.1).
153
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that in which electrons 1 and 2 have exchanged their role E
Yy, 1) = v(ry) - ulEs) (VI.1.02) '
gince, for a measurable quantity such as the energy, it is a matter of
- indifference which electron is de-
noted by 1 and which is denoted by
2. The two functions (VI.1.01)
and (VI.1.02) are hence degener-
ate and, consequently, the correct.
eigenfunction will, in general, be
neither of the two, but rather a
linear combination of them:

.'A'_'(l"u r:) = ¢ - u(ry)o(rs)

+ d-v(r)u(r:) (VI.1.03)

The values of the coefficients ¢ and
d and of the total energy E are ob-
tained in effect by solving a varia-
tion problem replacing the Schrod-
inger differential equation within
the limits imposed by restricting the
choice of funetions to the manifold

Fig. VI.1,1. Two degenerate charac- _ :
teristic vibrations of the square mem- (:iIs' 11'103) : e ne:d n?it fn‘i;elr l;po.D
brane with clamped boundaries. b here in greater detail.' It 1s

. merely important for us that this
procedure yields as correct eigenfunctions '

Y(r, r2) = u(r)o(rs) — v(r)ulrs) {(VI.1.04)
Y(ry, r2) = ulr)v(rs) + v(r)ulrs) ~ (VL.1.05)

An exchange of the two electrons 1 and 2 does not change the “sym-
metric”’ eigenfunction (V1.1.05) at all and changes only the sign of the
‘““antisymmetric’ eigenfunction (VI.1.04).2 This was to be expected
since the measurable quantities deducible from the Schrédinger func-
tion such as energy, probability density, etc., cannot depend on the
numbering of the electrons. A change of sign of ¢ with an exchange of

1 The interested reader is referred to Geiger and Scheel, op. cif., vol. XXIV,
part 1, pp. 572ff. E

2 The fact that the cigenfunction which is symmetric in the position coordinates
of the electrons i retained and not eliminated from the consideration is only
apparently a violation of the Pauli principle. The restriction to eigenfunctions
antisymmetric in the electron coordinates required by this principle demands the
simultaneous consideration of the electron spin, which may occur at least formally
by the introduction of the spin variables « and the spin functions «(e) and B(e).
See H. A. Bethe in Geiger and Scheel, op. cit., vol. XXIV, part 2, pp. 587-598.
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ns 1 and. 2is permmble since the Schr&dmger function a.lwa.ys
: qmdrsnoally in thesesquantities. 3
The a.pproxlmntlon methods of Hund and Mulliken on the one ha.nd

of Heitler and London on the other, to be discussed below, differ
of all in the formulation of the one-electron functions 'u(r) and

§2. The Approximation Method of Hund'
and Mulliken®
We pmceed here from the case of closely adjoining hydrogen. nuelei.
nece the fields of the two nuclei overlap to a large extent; it becomes -

ingless to distinguish between the electron being in the field of one
eus a or its being in the field of the ot.her nucleus b. From this

L a b
‘.‘ - ""I\""'.G; Y(r)
- o
(a) . i (b)

VI.2.1. The starting points of the procedures of Hund and Mulliken and of

and London. (a) Hund and Mulliken: The eigenfunctions ¥.(r) and
_(r) of the molecular ion Hj are chosen as one-electron functions. (b) Heitler
n?on The atomic eagenfunetwns '!‘n(r.) and Yau(rs) are chosen as one-
n functions. ‘

pomt the eigenfunctions of one electron in the field of two nuclei
nd b, i.e., the eigenfunctions of the hyﬂrogen molecular ion (see Fig.
195 appear appropriate for u(r) and »(r). The exact treatment of
s one-electron—two-center problem is possible with the use of ellip-
coordinates. However, the utilization of the resulting exact
unctions of the hydrogen molecular ion in the procedure of Hund-
Mulliken is awkward. Hence we shall be content mth approxi-
expressions for the eigenfunction of an electron in the field of the
uclei a and b obtained when the separation ab is relatively large:?

_ Vi (0) = Yure) + ulrs) (VL.2.01)
. Y= (x) = Yaelra) — Yae(ms) (VI.2.02)

Hund Z. Physik, 51: 759 (1928); 63: 719 (1930).

B. Munﬂmn Phys. Rev., 82: 186, 761 (1928); 33: 730 (1928).

5 i8 unquestpnnbly a lomaal difficulty in our procedure, since it was stated
' start that the Hund Mulhkan ‘approximation corresponded to the case of

-
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" Here, according to Fig. VI1.2.2, ris the position vector of the electron
referred to an arbitrary origin. r, and 7 are the distances of the elec-
' _ tron from the nucleus a and b, respectively.
Hence the atomic eigenfunction! '
1pete ]
e » ' (VI.2.03
i ( )
is centered about the nucleus a. A corre-

sponding statement applies of course for
Var(rs). @ois the radius of the first Bohr orbit

Yat (?'a) =

Fia. VI.2.2. Two elec-
trons 1 and 2in the field’ B ‘
zi ;y;ghydmm_ nuclei a Gy = =5 = 0.5281 - 10~% em  (VI1.2.04)
The eigenfunction (VI1.2.01) which is symmetrical in the nuclei @ and
b pertains to the normal state of the hydrogen molecular ion; a higher?
energy of the electron in the field of the two nuclei a and b corresponds
to the eigenfunction. (VI.2.02) which is antisymmetric in the nuclei.
" In carrying out the program of §1 with the functions (VI.2.01) and
(VI.2.02) for the description of the normal state of the H, molecule, we
‘shall give both electrons the smallest possible energy and hence put
both : . ' : :
u(r) = Y(r)
. and v(x) = Yi(x)

Since % = v we obtain for the normal state of the hydrogen molecule
only the eigenfunction (VI.1.05) which is symmetrical in electrons 1

closely adjoining nuclei. In this limiting case, however, no simple relation is
obtained between the eigenfunctien of the molecular ion and the atomic eigenfunc-
tions Yai(re) and Yu(rs). In view of the intended comparison with the results of
Heitler and London, such a relation is more important to us here than the attain-
ment of the highest possible accuracy in the numerical results. Hence we ‘make

use of the approximate expressions (VI.2.01) and (VI.2.02) for the eigenfunction

of the molecular ion which apply for large separation of the nuclei.
! Hydrogen problem, normal state!
2 This can be recognized intuitively, even without calculation. The plane of
_ symmetry between the two nuclei is a region of (relatively) high potential. For the
antisymmetric eigenfunction, the probability density of the electrortin the fplane

of symmetry is zero (because of re1 = 731), and it is small in the neighborhood of the 4

plane of symmetry. The large negative contributions to the potential energy
made by this region for the symmetrical eigenfunction drop out for the antisym-

metric eigenfunction, so that the total energy is reduced less. Hence the normal

state with the lowest energy corresponds to the symmetn'e:&l eigenfunction, whereas
an excited state with higher (or less negative) energy corresponds to the, antisym-
metric eigenfunction. The symmetric eigenfunction (VI1.2.01) thus represents a
“binding state,” the antisymmetric eigenfunction (VI.2.02) & “loosening state.”” -

,’-




"the rea,dlly understood Abbrevintions al, b1, a2, b2 for the a.tomm

ctmn of the normal state

| + b1] - (a2 + b2]
= (al -a2 4 b1 : 52) + (al - b2 + bl - a2) (VI 2 05)

1f, next we wmh to conmder an excited state of the hydxogen mole-
j’e must give only one of the electrons the lowest possible energy.
) ordmgly, we subsmtute in the scheme of §1- '

u(r) = ¢ (r)
_ o) = ¥_(r) ‘

n (VI 1. 04) and (VI.1 05) lead* to the followmg two molecula.r
,nfuncinons for two exclted states:*

fl'i) Y(r2) — Y_(r1) - ¥y(rs) A ’ ., .
- [ql -+ bl] [a2 — 62] [al — b1] - [a2 + b2]

(1'1) ‘P—(h) a7 li’—(h) Yi(rs)
e = [al 4 bl] - [a2 — b2] + [al — bl] [a2 T b21
(al a2 — bl - 52) (VI 2. 07)

Finally, accommodatmg both electrons 1 and 2 in the antisymmetric
’ft te (VI.2.02) and carrying out, correspondmgly, the progra.m of §1
.;\ ith Y
s ) =

. v(r) = ¢ (r) i habir
s, as for the normal sta.te, to a mngle molecular funetmn whlch is
mn etnca.l in the electrons:

/- (rs) - Y—(ra) = [al — 1] - 102 el

13

H‘

wing four elgenfunctmns
rma.l sts.ta° : g,
: (a1 - a2 + b1 -b2) + (al b2 + bl -a2).  (VI.2.05)

. _. We omit the fact.or ‘2 in front of t.he complete eigenfunction which follows

rrying out the normalization procedure.
rs '—2 and 2, raspectrvely, ‘have been omitted from the ﬂnnlexpremona

(a.l b2 — bl - a2) (V1.2.06)

= (la-a2 + bl - b2) —:(al - b2 + b1 - a2) (V1.2 08)
__Mtogether, the procedure of Hund and Mulhken thus leads to the

§2 Approxlmahon Method of Hund and Mulhken ' 157 / :

unctions %(ral) Yo (751), War(7a2), dr_,(r;,g) we obtain for the eigen- :

‘._'-(VIUM) foru-v-mmnce:twoul‘dbecha.nsodagmnatanyra.tem_
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Excited states: . o .
(al -b2 — b1 -a2) (VI.2.06)
(al - a2 — b1 - b2) - (VL.2.07)
(a1 <a2 + b1 - b2) — (al - b2 + bl -a2) (VI.2.08)

§3. The Original Procedure of Heitler and London

In contrast with the program of Hund and Mulliken, we proceed . |

here from the case of widely separated hydrogen nuclei. We see
immediately that the state of neutral H atoms is energetically much
more favorable than the state H* + H~. Starting from two neutral
H atoms we reach the state H+ + H— by the ionization of one of the
hydrogen atoms (energy required: 13.54 ev)! and capture of the
electron thus freed by the other neutral H atom (energy libeérated:
0.76 ev).? This would require the very material expenditure of energy
of (13.54 — 0.76) ev = 12.78 ev. From this point of view it appears
appropriate to approximate at least the normal state of the Hy mole-
cule by regarding one electron as bound to one nucleus and the other
bound to the other nucleus. Accordingly, we substitute in the rela-
tions of §1

_Ts

ﬂ.
i

u(x) = \b.s(r.) = ‘\/53

o(r) = \h(ﬂ) \/—« of &

Then (VI 1.04) and (VI:1.05) y:eld as eigenfunctions

"’n(fal) ',"'-i(sz) —= \"n(fbl) g qfu(f'a!) =gal b2 — bl - a2
Vai(ta1) - f:n'(fb:) + Yae(re1) - Jf'-s(fqz) =al- b2 + b1 - a2

The sign of the so-called exchange integral determines for which of
the two functions the energy is lower and which, hence, represents the
~ normal state. For most molecules, including the hydrogen molecule,
the exchange integral is negative, so that the normal state corresponds

i) the eigenfunction which is symmetncal in the pomhon coordmates

of the electrons 3

Normal atatess: «4. o 4 o-gl s 3 4bli- n2 £ (VI.3.01)
Excited state: al -2 — bl - a2 ; (V1.3.02)

18e¢ J. D’Ans and E. Lax, ‘“Taschenbuch fiir Chemiker und Physiker,” p. 113,
_ Springer-Verlag OHG, Berlin, 1943.
% Ibid., p. 116. '

=

'See,eg,H A, BethemGelgerandBchael,op cu vol. XXIV, pu-t2,p 592. 3
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g4. E'x!;ensioil of the Procedure of Heitler and London P
by the Inclusion of Polar States. Comparison
of the Approximations of Hund and Mulliken
and Those of Heitler and London

- Ina comparison of the results (VI.3.01) and (VI.3.02) of the original -
- procedure of Heitler and London with those of the procedure of Hund
‘and Mulliken, the omission of polar states with H+ and H- in the
~ former, resulting in the absence of the products al - a2 and b1 - b2,
~ proves disturbing. Furthermore, an application of the original pro-
~_cedure of Heitler and London to 8 crystal could never lead to conduc-
. tivity. The transition of an electron from an atom a t6 an atom b
must invariably be accompanied by a compensating transition of
another electron from atom b to atom a if we limit ourselves to states in
~which every atom has at all times one electron, and only one electron.
Thus we must supplement the results (VI.3.01), (VI.3.02) of the
- original procedure of Heitler and London by two additional excited
~ states al a2 — b1 - b2 and al - a2 + bl - b2. The comparison now
takes the form:
Heitler and London

Normal state: $oi o al - b2 + bl -a2  (VI.4.01)
al -2 — bl - a2 - (VI.4.02)

Excited states: { al - a2 — bl - b2 ; (VI.4.08)
3 . al - a2 + bl - b2 (VI1.4.04)

b Hund and Mulliken

- Normal state:  (al - a2 + b1 - b2) + (al - b2 + bl - a2) (VL.4.05)
. el al -b2 — bl -a2  (VI.4.06)

_ Excited states: { al - a2 — b1 -_62 = pis (VL.4.07)

i (al - a2 + b1 - b2) — (al - b2 + b1 - a2) (VI.4.08)

We now see tha,t the two approaches differ in the est1mat10n of the
normal state and of what is here the highest excited state; accordmg to
Hund and Mulliken these are quite definite linear combinations of the
two corresponding states as adjudged by London and Heitler. ' Accord-
ing to Hund and Mulliken the heteropolar states al - a2 and bl - b2
participate with equal weight in the normal state as the homopolar

statesal - b2 and b1 - a2. Simply expressed, the electrons are, accord-
ing to Hund and Mulliken, as frequently together at one and the same ;

. nucleus as distributed between the two nuclei. By contrast, according
e to London and Heltler the electrons ‘are always d:stnbuted between
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the two nuclei in the normal -state and never at one and the same
nucleus.

At the same tlme it is intuitively obvious tha.t the actual 811'811111-
stances are reflected in the procedure of Heitler and London only for
very widely separated nuclei and in the procedure of Hund and
Mulliken only for the converse case of very closely adjoining nuclei,
These are, indeed, the starting points of the two procedures.

We can conclude, hence, that neither procedure describes the actual
circumstances correctly for intermediate nuclear separations. The
foregoing comparison of the results of the approximation of Hund and
Mulliken and the extended approximation of Heitler and London indi-
cates, however, how the approximation might be improved without
the introduction of functions more ¢omplex than the atomic eigen-
function (VI.2.03). The scheme of §1 or, more precisely, the range of
functions admitted to comparison will have to be extended and Slater’s
perturbation theory will have to be carried out with the formulation

¥(ry, rs) = Afal - 52 + bl - a2] + Blal - b2 — bl - a2]
" + Clal - a2 = bl - b2] + Dlal - a2 + b1 - b2] (VI.4.09)

Considerations of symmetry lead-to the conclusion that there will be
three types of eigenfunetions:

Nuclel antisymmetric; electrons antisymmet.ric':

al - b2 — bl - a2 (V1.4.10)
Nugclel antisymmetric; electrons symmetric: _
' R e - (VI4.11)
Nuclei symmetnc electrons symmet.nc
¢ A(al - b2 + b -a2) + D(al - a2 + b1 -b2)  (VI.4.12)

Carrying through the perturbation calculation again leads for the
two intermediate states to the types (VI.4.10) and (VI.4.11) as in the
procedure of Heifler and London [(VI.4.02) and (VI.4.03), respectively]
and that of Hund and Mulliken [(VI.4.06) and (VI.4.07), respectively].
However, eigenfunctions of the type (VI1.4.12) are obtained for the
 normal state and the highest excited state. The heteropolar com-
ponents vanish for the normal state and the homopolar components
for the highest excited state only for the limiting case of very widely
- separated nuclei (Heitler and London). Correspondingly, homopolar
and heteropolar components participate equally in the normal state
and the highest excited state only in the limiting ease of very closely
adjoining nuclei (Hund and Mulliken). In any case, the heteropolar

component of the normal state is surprisingly large even for the finite
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separation of the actual H, molecule. The proba.blht.y of find-
electrons at one nucleus is 37 per cent, whereas according to
d and Mulliken it would be 50 per cent and accordmg to Heitler
London, 0 per cent.!

What conclumona may be drawn for a giant molecule such as &
ystal from the relationships just described in the hydrogen molecule?:
approximation of Heitler and London with the inclusion of polar
tes corresponds to the atomistic picture in solid-state physics.
-every electron is ascribed to a particular atom in the normal
te, and excited states are created by ion formation (by the formation
“pairs” and “vacancies”). This picture is generally preferred by
cal chemists and then frequently described somewhat mislead-
- a8 a corpuscular picture. The considerations of Hund and
ulliken correspond to the band model in solid-state physics. Here
in the normal state every electron is distributed over all the atoms
the crystal. 'The normal state of the entire system is formed by the
bution of the electrons over the states of the one-electron approxi-
tion in accord with the Fermi distribution (any one state occupmd
only two electrons) Quite incorrectly, the band model is fre-
tly regarded as the only approach consistent with wave mechanics.
e relationships for the hydrogen molecule show us, however, that
atomistic picture has the drawback of a complete disregard of the
- states in the descnptaon of the normal state. The band model,
the other hand, exaggerates the importance, of the polar states.
-pxctures or mode]s are thus equa.ily imperfect and may be em-
ed with the same justification, and the same care, supplementing
C bther mutually.? There is no analogy to a perturbation caleula-

on with the broader formulation (VI.4.09) in solid-state. theory.
- Since the foregoing considerations proceed from the homopolar
drogen molecule, they apply only for atomic lattices with atomic or
alence bonds. However, if the difference between the atomistic
cture and the band model is seen to rest in the fact that the atomistic
icture ascribes the same state of charge to every building stone of the
ice without exception in the normal state, whereas the band model
erates the importance of charge transfers between the building
s of the lattice in the description of the normal state, the following
sion to the ionic lattice appears appropriate:
In an ionic lattice the atomistic picture ascribes, in the normal state, -
same state of charge to-all building stones of a sublattice. Thus
&Ecordmg to the atomistic plct.ure in an NaCl crystal all Na are posi-

3

'fﬂ'eaH A,BethemGetgsrandBchml,op ¢it., vol. XXIV, part 1, p. 541,
_5901" Stdekmann, Z. phym'k C‘km 1981 215 (1951).
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remains in its normal state. Any dewstaon»afmm thm wquld cor-
respond to an excited state of the crystal. The band mod,él, ‘on the
other hand, would include deviations from the arrangement NatCl-
even in the normal state and would, in fact, go much too far in this
direction. ' : :

85. Problems
1. Solve the Sehrodinger equm;mn in & one-dimensional delta function po'r.ent.lal
defined by
1 Uw) = —98 - 8x) { ; : {VI.5.01)
where S is a constant while : ; 3
: 05" z#%0 '
iy = {9 o2 %0 . (VL5.02)
+e : :
f 8(z) dz = 1 foralle > 0 ? (VI.5.03)

35 e
For positive 8 va.lu.es, there exist bound states which sa.tmfy the: boundary condi-
sions, |

i iy Yt o) =0 (VI.E.,OA.&)
and which can be normalized :
L ¥ + =
f isf'(z)l' = (V1.5.05)

; Calculat.e the energy of these bound states as a function of S.

2. Write down the two normalized Heitler-London functions y.4(z1, zs), for a

4 “onedmanmona.l molecule’” whose potential is given by two delta functions of
* the type described in Prob. 11~ "

S U(z) = —S[sx —d) + s(x +dy) (VI. 5.06‘)
Give the mathematical expression for both functions and make a schematic draw-
ing showing the probability distribution [¢2 for one electron when the other elec-
tron is held fixed at the position of one of the two “atoms’ and halfway between
the two, that i is, at z = +d and at 2 = 0.

3. For the molecular potential of Eq. (VI.5.06), calculate the two Hund-
Mulliken type one-eleciron wave functions which represent bound one-electron
states in that molecule. Show that the energy va.luea are the solutions of the
transcendenta.l equatlons i

2m.8 2mS

ot e x[l-«}-tanhxd]————- x[l—{—cothxd]-m (VL.5.07)

where ; _-.' qﬂ\f%(—!@'} ; : (Vi.E-OS)'

Which of -the two equatréns'belongs to the symmetrical and the antisymmetrical
function, respectively? Which function represents the ground state? Between
what limits do the ground state and the excited state vary if the interatomic dis-
tance varies from zero to infinity?

From (VI.5.07) and (VI.5.08), derive exphmt.br appronmat.lon formulu for the
energies of the two states as functions of d for large and for small d's, respectively.




CHAPTER VII :

~ The -Band' Model

gl. Introductmn 4

e band’ model results from approximation methods whxch repre-
application of the method developed by Hund and Mulliken
inary molecules to the giant molecule of the crystal. Strictly
e erystal, with N nuclei having m electrons apiece, constitutes an
4+ N - m)-body problem. If, to begin with, the mobility of the N
lei is neglected, the problem is reduced to an N - m-body problem,

e solution is again built up from solutions of a one-electron ‘prob-
The characteristic common trait of the procedure of Hund and
lliken on the one hand and of the band model on the other rests in
hoice of the one-electron problem and the manner in which the
us solutions of the one-electron problem are combined.

in analogy to the procedure of ‘Heitler and London, the motion of
electron in the field of a single atom core were chosen as the one-
tron problem, we. would obtain the atomistic picture.! For the

d model we choose, instead, the behavior of an electron in the field
Il atom cores and all remaining electrons as the one-electron prob-
m. It istruethat only the force actions of the atomic cores, regarded
hnnlobxle, are considered in greater detm.l The force actions of the
naining N - m — 1 mobile electrons are considered most inadequately
nly in so far as they screen, more or less, the fields of the atomic
JIncidentally, these details play a role only as the band model is
) ed to specific substances.? The assul_nption tha.t the electron

1 8ee Elg V121 4 3
J. C. Slater, Phys. Rev., 45: 794. (1934) (sodlumj 1) ’Mlllmsn, Phys. Rev.,

286 (1935) (lithium), F. Seitz, Phya Rev., 47: 400 (1935) (lithium). H. M.
tter, Phys. Rev., 48: 664 (1935) (copper} ‘F. Hund and B. Mrowka, Ber.
handl. sdichs. Akad. Wiss. Leipzig, Math.-phys. Kl., 87: 185 and 325 (1935)
. ‘G. E. Kimball, J. Chem. Phys., 3: 500 (1936) (diamond). W.
'Phys. Rev., 50: 754.(1936) (NaCl). D. H. Ewing and F. Seitz, Phys.
760 (1936) (LiF and LiH). C. Herring and A. G. Hill, Phys. Rev., 58:
MD) (beryllmm) F. G. von der Lage and H. A. Bethe, Phys. Rev., 711 612
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considered moves in a periodic field suffices for a series of very impor-
tant general theorems.

Tt must be emphasized that this is an assumption. As already men-
tioned, a part of the force actions on the electron is exerted by the
remaining electrons. These are mobile and influenced in their
behavior by the reference electron, resulting, in turn, in changes in
their force actions on the reference electron.! If we assume that the
electrons dodge each other with infinite ease and that the space
vacated by one electron is very rapidly occupied by another electron
‘taking its place, an electron passing from one atomic core to the next
meets identical force fields and the description by a fixed periodic
potential appears sensible. This need not always be the case, and it
is as yet an open question whether the peculiarities of the so-called
open-band semiconductors result from an inadequacy of the assump-
tion of a periodic potential in this instance.? ;

On the other hand, the same difficulties arise already in the treat-
ment of a single atom with several or a large number of electrons.
Here Hartree’s method of the self-consistent field has demonstrated
that stepwise approximations permit the ‘determination of potential
distributions which take account of the interactions of the electrons
quite well, even in g one-electron treatment.

In the band model we proceed, in any case, from a one-electron
‘problem describing the motion of an electron in a fixed periodic poten-
tial field.

Accordingly, we must seek those energy mgenvslues E of the
Schrodinger equation

[—%,(;;’;ﬁl +2) + (-0 UG 1,9 | #a v, 2
§ = E -y(=, y, 2) (VII 1.01)

mﬂ:‘. the lattice-periodic potentl&l Ulr 4 hay + las + L) = U(r),
for which the solution ¥(r) remains finite throughout the crystal
lattice. However, if we should regard a crystal with finite macro-

1 Thus, strictly speaking, the reference electron does not move in a fixed poten-
tial, but in a force field such as occurs in the treatment of the image force in the
' emission of electrons from +an incandescent solid. See, o.g., the article by W.
Schottky in Wien and Harms, “Handbuch der Experimentalphysik,” vol. XIIT,
part 2, p. 264, Akademische Verlagsgeselischaft, Leipzig, 1928,

2 J. H. de Boer and E. J. W. Verwey, Proc. Phys. Soc. (London), 49: 59 (1935).
W. Schottky, Z. Elektrochem., 45: 33 (1939), in particular p. 57. H. Dressnandt,
Z. Physik, 115: 369 (1940). C. Wagner, Physik. Z., 36: 721 (1935); reprinted in
Z. tech. Phys., 162 327 (1935). C. Wagner and E. Koch, Z. physik. Chem., B32:
439 (1936). R. Peierls, Proc. Phys. Soc. (London), 49: 72 (1937).
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dimensions as an “entire’’ crystal lattice, we would introduce
plexities in the solution which occur naturally at the crystal sur-
‘and have nothing to do with the behavior of the eleetron deep in
e interior of the crystal. To dissect out neatly this behavior deep :
thin the crystal, we apply an artifice also employed elsewhere in the
4 ry of crystal lattices. We assume an infinite crystal and demand
'y periodicity in an arbitrarily chosen fundamental domain G, which
tains a large number of unit cells. This procedure is-justified by
the fact that it permits a large number of conclusions in which the
hitrary size of the fundamental domain does not enter..
here are certain specific formulations of the periodic pdtentml
) for which an exact solution of the problem under consideration is
sible.! However, the approximation methods of Bloch .and
rillouin, to be discussed next (§2 and §3), are mare -informs.t.ive
yysically.?
In §4 we summanze the general propgrtaes, which do not depend on
ecific approximations, of the one-electron problem with periodic
tial field and discuss briefly the cell method (Wigner and Seitz).
Then in §5 to §9 we outline additional properties of the one-electron
proximation. In §5, momentum, velocity, and current contribution
an eléctron are discussed. In §6 and §7 we are concerned with the
ion of an external static field on an-electron in a crystal, whereas §8
overs the case of an optical alternating field. Finally, in §9, we dis-
the effect of material and thermal dev:atmns of a real lattice from
an ideally ordered lattice, leading to the concepts of mean free path
ean time between collisions, and mobility. .
Up to this point we are still concerned with obta.uung a one-electron ,
proximation and familiarizing ourselves withit. The many-electron -
problem is first attacked in §10, though only in the relatively primitive
ner corresponding to the approximation of Hund and Mulliken
ussed in Chap. VI. It was shown there how the many-electr on
nfunction is built up as sum of products of solutions of the one-
ectron problem. Such a many-electron eigenfunction cannot tell

1R, de L. Kronig and W. G. Penney, Proc. Roy. Soc. (London), 130: 499 (1931).

M Morse, Phys. Rev., 35: 1310 (1.930) M. J. O. Strutt, “Lamésche, Ma-
sche und verwandte Funktionen in Physik und Technik,” Ergebnisse der
athematik und’ :.hret Gren;hgebxet-e vol. 1, No. 3, Spnnger—Verlag OIIG, Berhn

,The situation is similar to the two-center—one-electron problem discussed in
of _t-he preceding chapter. This can be solved exactly if the two centers are
ogen nuclei with a simple coulomb potential. Navert-helees, we preferred
| approximate solution, since it was more fruitful for a uompanson with the
oced of Holt-ler and London.
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more regarding a particular selected electron than the one-electron
eigenfunction which pertains to the electron in question in the many-
~ electron eigenfunction. At this stage of the theory, the many-electron
eigenfunction has really only formal significance and may be replaced
by a statement regarding the distribution of the available electrons
over the quantum states of the one-electron problem. This makes it
plausible why in many descriptions of the band model of solid-state
theory the many-electron eigenfunctions”(the so-called Siater deter-
mmant.s‘) are not even written down and why, instead, the electrons
are simply distributed over the band system of the one-electron
problem. We shall follow this example in §10 of this introductory
representation. '

In §11 we shall discuss, finally, the conclusions derived from the
band model regarding the conductnnty properties of a particular

crystal.

§2 The Bloch Approxlmation for Strongly
- Bound Electrons

a. Counstruction of a Wave Function

In the-method of Bloch,? an approximate solution of the one-electron
problem (VII.1.01) just outlined is made possible by proceeding from
the case of strongly bound electrons. This has the following signifi-
cance. The energy of the electron under consideration is to be so low
that, energetmally, it lies deep within the funnel of potential energy

created for an electron by an atom

o (-Do___w _ (+No = coreof thelattice. In ordertopass
L J J ' ~ over toaneighboring atom core, the
electron must tunnel through a high
potential hill (see Fig, VII.2.1).
Such a transition will, hence, occur
relatively ragely. - Under these cir-
' cumstances, the ¥ function of the
electron will have approximately
the same form in the neighbor-
hood of the Ith atom core as though this core were completely isolated
- and the electron were the valence electron in the field of a single atom
core. In formulating these ideas mathematically, we shall restrict
ourselves to a one-dimensional atomic lattice. The essential relation-

1J. C. Slater, Phys. Rev., 34: 1203 (1020).
2 F. Bloch, Z. Physik., 52: 555 (1929).

b

Energy of
Ejor—¢-Ulx) reference electron

Frg. VII.2.1. Position of a strongly
bound electron on the enérgy diagram.
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)ps are brought out more clearly in this fashion. ‘The transfer of
results to the three-dimensional lattice will lead to no difficulties.
shall discuss molecular lattices toward the end (see page 182)

or z = la with ] =0, +1, +2,
nd ¢ = lattice constant we obtain

Y@ =~ Yu(@ — la) (VIL.2.01)

he atomic eigenfunction Yu(z — la) is
centered about the Ith lattice ppint and

- x=la
~ from this lattice point (see Figs. VII.2.2 Fic. VII.2.2. Concéntrat:onof
and VII.2.3). an atomic eigenfunction u
. cclation (VIL2. 01) w11.l Dol n}y about the ith lattice point.-
in the neighborhood of the Ith lattice point and cannot be extended to
-~ all of spa.ce Instead, in the neighborhood of another lattice point,

v. # ”Ew ] LA
27 4ol {I-2)a (l-dc Iu (lﬂh (hzla X i

: \._7& eVixlo)
AN

]
C
(¥}

"Epot =~8U{x)
lattice
Epot ~Epot -—.[U(xl-vt:-tu}]
lattice atom

. .;Fm VII.2.3. Difference of the potent:al energy supplied by the lstt.we and t.hat
B pphed by the Ith atom.

' the ¥ function of the eleétron in question will be equal to the eigenfunc-
n cantered about t.hls other lattice pomt -Thus we are led to t.he

lmtw 3 :
V@) = ) obu(z — la) ~

l= — e

{ arding the eaaentlal features of the coefficients c;. Since all atoms
n the lattice are completely equivalent, the participation of a par-
ular atomic eigenfunction eannot be larger or smaller than that of
7 other eigenfunction, Accordingly, the coefficients ¢; must all have
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‘the same absolute value:
; ¢ = cein . ~

Furthermore, the regular arrangement of the lattice points in space
makes it plausible that the phase difference ¢i11 — @1 between two
neighboring atomic eigenfunctions Y. (z — (I + 1)a) and yu(z — la) is
independent of the point of the linear atom chain at which the two
selected eigenfunctions happen to lie. Hence @111 — ¢1 must have a
value independent of I, which we can designate with ka. We shall
discuss the physical meaning of the quantity k, which, for the present,
may take on any real value, at a later point. We have thus arrived at
she following form?! for y(z):
PR
W) =Yz k) =c ) oMy —la) . (VIL202)

= —w

b. Graphic Repreeentatioﬁ of the Eigenfunction

We obtain a graphic representation of this eigenfunction if, af every
point z of the linear atom chain, we imagine a coinplex plane per-
pendicular to the direction z and plot in these planes Re ¢(z) and

-

.:-‘.._--""
Fro. VII.2.4. Eigenfunction of an electron in a crystal.

Ini ¢(z) (see Fig. VII.2.4). We see that, in every unit cell, the total
eigenfunction ¥(z) corresponds to the atomic eigenfunction but that it
is rotated progressively from unit cell to unit cell by a phase angle ka.
The absolute value of ¥(z) is thus the same in every unit cell, i.e., equal
to the absolute value of the atomic eigenfunetion .. [apart from the as
yet undetermined factor ¢ in (VIL.2.02)], so that the probability

‘

density is the same in all unit cells. v
1The correctness of (VI1.2.02) and '(VII.2.03) will be further confirmed below,
see p. 177. ; AT ) 23

-




~ §2. Bloch Apﬁroﬂmmnn for Strongly Bound Electrons 169

i

Normalization of the Engenﬁ:nctipns in the
 Fundamental Domain

.’_We utilize this rema.rk for determmmg the undetermined factor ¢in .
11.2.02). The probability of finding the electron in the Ith unit cell

. § sn,(a+}£n
e e - o) da
. zmla—3Ma

the case hera a.ssumed of strongly bound electmna, the atomic
hence neglect the contributions of the regions —« <z <la —
] andia - %a <z<l4» tothe “atonuc”normrmgamonmt,egral

’u-!—- d

H’n(ﬂ? G Iﬂ)li dﬂ: = 1

gt z=+la+3a
Wadds ~ [ Wwalde
s=—e Spiiome e

en the probablhty of ﬁndmg the elect.ron in the /th unit cell becomes
_and the probability of finding it in any of the G unit cells of the
undamental domain, G - ¢®. Since y(x) is supposed to be normalized

the fundamental domain, wemust pntG ‘¢* = 1,80 that c = 1/f

I-+n : h ; £
¥a) = ¥a; Bie —\75 E -ew..(; o) (VIL.2.03)

fm—w -

1. --Fulﬁllment of the Requirement of Penodicity in the
~ Fundamental Domain

part from the requirement of norma.hmtlon, we must also.fulﬁll

the requirement of periodicity in the fundamental domain, as stated on
165. In the one_—chmenmona.l case this takes the form

_\b(—'g )=\°(+g—a) - oma20m

€ subst.ltute (VIL.2. 03) in this equa.tlon, the strong concentration
the atomic eigenfunctions about their lattice point makes the term
th | = —G/2 the only one of importance on the left and that
th l= +G/2 the only one of xmportance on the nght Equat:on

’ -

function Yu.(z — la) is concentrated about the point z = la. We
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+ (VII.2.04) thus reduces to :; : :
S ; oy,
_ —%e”‘( 1) 4.4(0) = _—};”"“9 40
or . e{kau =1
which is satisfied by
: 2r n

k= R R + integer (VII.2.05)

One qua.ntum state claims! a segment 2x/a@ on the k scale.

e. Free and Reduced k Values

Of the values of k which are consistent with periodicity in the funda-
mental domain as given by (VII.2.05), k = 0 has the smallest absolute
value. For it the eigenfunction ¢(z) = ¥(z; 0) is real since the indi-
vidual atomic eigenfunctions may be assumed to be real and since
these are a.ddad without any phase rotation if & = 0: '

¥(z; 0) = \/@ =« + Y@ + 20) + V(@ + 16) + V(@) -

+ Yu(@ — 16) + VYui(z —20) + - -« } (ifII.2.0ﬁ)

For the next k valués +2x/aG, the ¥ functions are no longer real
“since the individual atomic eigenfunctions are rotated by the angle
ke = +2x/G, which is finite though small.

For the next two k values +4x/a@, the rotation ka = +4x/G is -

already twice as large and ¥ is again complex. Then ¢ becomes once
again real only for the (G/2)th pair of values
G

a

= 52

Here the rotation between éuccesﬁive atomic eigenfunctions is just +,
which, for the two cases k¥ = +r/a and k = —x/a, leads to-one and
the same eigenfunction

; . ;
#f(x; + E) =gl T+ 20) — dulz + 10) + du(2)
— Yz — 1a) + Yulz — 2a) — + + -} (VIL2.07)

! Here we have typical examples of sta.temenﬁs which, by themselves, have no

' physical meaning since they contain the arbitrary number of cells & jn the funda-
mental domain. In combination with other considerations they lead, however,
to statements which no longer contain the arbitrary G and which are then of
great physical significance. BSee, e.g., footnote 1 on p. 179, Eqs. (VII.10.07) to
(VIL.10.09) on p. 264, or the derivation of Eq. (VIIL.1.07) on p. 286.
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Alt,ogether there are thus '

1+2—--—-1)+1 l+G——2+1=

T T :
Gt (VIL.2.08)

Thi ' exhausts the totality of eigenfunctions. The next, pair of values
nsistent . with (VIL.2.05), k = *(x/a + 2r/a@), yields the phase
frotatmna :b('r + 27/G). Theae, however, are identical with

(e Boa)or(c-B).

ce in a phase rotation the addition or subtraction of a complete
lution 2r is mmatenal The two mgenfunctions with -

()

" thus are identical with the two with k = F (x/a — 2x/aG). How-
er, the last two values occurred already as the pair preceding
= +x/a. We see thus that we can confine attention to the interval
(VI-I 2.08) in the k values and may regard this as periodicity interval
- on the k scale, since outside this interval the eigenfunctions repeat
 themselves periodically. Thus, we obtain the same eigenfunctions for
 k and k + 2rh/a with b = 1, +2, . ... If k is limited to the
interval (VIL2.08) we also speak of a reduced k value. .

" f. The Interpretation of ¥/(z; k) as a Running Electron Wave
. Modulated with the Periodicity of the Lattice. The Special
Cases of the Standing Waves y¥(z; 0) and y(z; £r/a) - _
The special real cases (VII.2.06) and (VII.2.07) are particularly well
~ suited for graphic representation (see Fig. VII.2,5). As we pass over
X tvO the timo—depéndent Schrédinger function

¥(z, t) = Y(z) e=iFA * (VII.2.09) ,

e find that theae real cases are, furthermore, dmtmgmshed by the
that they represent standing waves. In geneml however, the ¥
1ction represents a running wave. We may obtain an idea of the
ture of this wave by the following tranaformatxon of (VII.2.03) and
AUES 2 09): .
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=+

- g i .E
V) = E ety (x — la) ~e 'K’
: \/G l=—w .
[
1 , ¥ S CE=D R
= e e—_fk{x—-ln)w“(x el h) - e A
\/(_’ im — o :
¥(z, 1) = ulz; k) -efttemenr = . (VII.2.10)
with w = % : (VII.2.11)
Jem o X
and u(z; k) = - z e""'"*”“’\b (2= Ia) (VIL2.12)
I T — % @

If we compa?re (VII 2.10) w1th the usual repraaentatlons of a plsne
wave : ; .

a ef“H'? =a b@(ihﬂ) =aq e‘*"—‘" (VIL.2.13)
we see that the amplitude of the electron wave in the periodie potential'

Avix;k)

o)

vixik): -

{b)

Fic. VII.2.5. The eigenfunctions are real at the band edges (in the one-dimensional
atomic lst.tlce) (a) k = 0: state at the lower edge of the band if the ex¢hange
integral is negative. (b) k ==/a: state at the upper edge of the band if the
axchn.nge mtegml is negat.we

ﬁeld is not independent of pomtlon but is modulated with the periodic-
ity of the lattice. - Thus, (VII.2.12) shows that the amplitude u(z; k)
has the periodicity of the lattice

u(e + a; k) =u(z; k) (VIL.2.14)

Equation (VII 2.14) is proved by substituting the daﬁnitlon of
u(z; k) given by (VIL.2.12) and introducing a new summation index
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= ] — 1. We see, furthermore, that the k values, which have been
'her colorless so far, represent the wave number k = 2x/A. ;
It was shown on page 171 that the two k values k and k + 2xh/a
to ‘the same elgenfunctmn ¥(z). This is possible only if the
ulation factors with lattice periodicity u(z; k) and u(z; k + 2;}; /a).
e related by

Il
—i2r Fis

(::: k+2:r ) u(x k)e

A‘check w1th (VII.2.12) conﬁrms thls Alt.hough the.mbstitutinn
— k + 2wh/a does not change the eigenfunction itself,? this does not
1y to the modulatlon factor u(z; k) by itself. -

? § -

Perturhation Calculatmn Fr R _

& 5
So far we have dealt in detail mth the aettmg up and the character
an eigenfunction for an electron in a penodlc potential field. How-
er, since we have based the e1genfunctloﬂ (VII.2.08) only on pla.um'ble
sonsiderations of symmetry, it is now high time to confirm the form
.2.03) by a perturbation calculation. Furthermore, only such &
urbation calculstion can supply the energy eigenvalues which
ong to the guessed eigenfunctions, and these eigenvalues are always
greatest importance in quantum-mechanical considerations.
The procedure which we shall employ for the approximate solution
the Schrédinger equation for an electron in a crystal

A a?

2m =ik o (E ks eU(a:))-P =0 (VIL.L.O1)

become plamer 1f we forget about our past eonmderatlons and
rt once again from the beginning.

Accordingly, we write for the unknown elgenfunctlon ¥(z) of the
éctron in the crysts.l

Ims 00 .

¥E) = ) odule — )

= —

d aeek to determine the unknown coefficients ¢;, Here we proeeed
st as t.hough the atomic eigenfunctions y,.(z — la) centered about
several lattice points constituted a complete orthogonal system or
the determination of the Fourier coeﬂimenta in a Fourier expan-
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sion.! Thus we substltute the expansion in the Schrbdmger equstmn
(VIL1 01)

s pad

s [ S e — 1) = (B + eU@u(e — o)

1

[o= — o0

. R o - (VIL2.15)

Now the atomic eigenfunction y,.(z — la) satisfies th&ScHrﬁdinger
equation of the isolated atom with the atomie eigenvalue E,, and the
potential V(z — !a) of the ith a.tom core

=X & e Ly (B + oV @ — la)Yule i (VII 2. 16)

If this is utilized in (VII,2.15), we find

ot : -
2 ol ~ Edvu(e = la) +'e(U@ — V(@ ~ @)z - ) = 0

je= — o

We now multiplj',with an arbitrary atomic eigenfunction y3(z — ra)
and integrate over the fundamental domain —-Ga/2 < z < --Ga/2:

et 3-+ a f
o {E - B - [ Vila = r)bue - ) ds
bl ‘T= —~§a
a.-+g¢
f LG V(= la))ulz — za) dz} =0 (VIL.217)

Bloch now puts

’-+~_¢ ! Wt
L foni=i/
fe yh(x — ra) \l’-t(x — la) - dz = 6,.; = I-O forr =1
z-—'fﬁ g ‘
(VII 2.18) :

since the factors in the mtegrand which are concentrated about the

-1 The deeper justification of this proeedure rests in the fact that we obtain in
this manner the best solution of a variation problem equivalent to the Schridinger
equation, as in the Ritz procedure. See, e.g., F. Fund in H. Geiger and K.
Scheel, “Handbuch der Physik,” vol. XX1V, part 1, p. 575, Springer-Verlag OHG,
Berlin, 1933.

#
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ts z = ra and z = la coincide only for r = I and since the inte-
can attain appreciable values only in these cases. For r > 1
e of the two factors has dropped to such a low value at every point z
at no appreciable contributions can result. On the other hand, for
1 the integral is practically! the normalization integral of the
jomic eigenfunction .., and hence = 1. For the second type

R . s=+30 :
of integral [ ¥AG — r)[UR) — V(z ~ l@)Wu(z — la) dz in
s=—za S . o] ' 5

(VIL.2.17) Bloch retains the three cases? = r + 1,1 = r,andl =7 — 1
(gee Fig. VII.2.6). He does not content himself with the case [ = r
I3 l* v 7 :

Valerad o a¥alxera) o 3

i el
-n{U(;l-Vh—llu)].
f

{11 |
1 ety | L
% ‘

. VII.2.6. Concerning the calculation of the “coulomb energy’ and the

r

exchange integral.”’ ;
e, although the factors yu( — ra) and Yu(z — la) coincide here,

, central factor [U(z) — V(z — la)] becomes very small in the very
ion = ~ ra = la in which these two factors contribute materially

In the ranges —® < # < —Ga/2 and +Ga/2 < # < + » which are missing
8 compared with the normalization integral, the contributions_are negligible
wuse of the rapid falling off of Vae(Z).
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I = r — 1 must be retained in addition to the integral with [ = r, since

in these two instances also-at least two of the three factors in the inte-

grand, namely, now Y. (¢ — ra) and [U(z) — V(2 — la)], are appreci-
ably large in the region z = ra. Incidentally, the symmetry of the
atomic eigenfunctions about ‘““their” lattice point and the symmetry
of the potential variations U and V lead to equal values for the

integrals! with I = r +1and ! = r — 1. 3
We put
's;'+ga_ e -l : -
e G e
e pe= — 00

2.

S(—OlU@) — V(@ — ra)) - Yu(z. — ra) = C (VI1.2.19).

=-+gc :
2 wmto G
—e: f lde = f Ya(z — ra) - (—e)
#-‘—EG T
[U() ;V(a: - (r + l}a)] Vol — (r + 1)a) dz = A (VIL2.20)
LI zm o
ok e O e (o

2

- [U(z) — V(z —" (?‘ — Da)] - \ff-t(&‘ (r—1)a)dz = 4

These designations are supposed to point out that (VII.2.19) repre-
sents the “coulomb energy” of the electron considered in the field of
the perturbation —e[U(z) — V(z — ra)] of the potential energy,
whereas (VII.2:20) is the “‘exchange integral” (Austauschintegral) of
this potential-energy perturbation for a transition of the electron from
one atom core to its neighbor. We shall return to an intuitive interpre-

It.a.tlon of the exchange integral later (page 178)

* Figure VII.2. 6 gives only a graphic representation of the reasoning of Bloch.
We shall got discuss further whether the conditions in an actual case are such as
to justify the argument quantitatively., A test of this question would lead to a
rather difficult study of the variation of the lattice potential and would also, e.g.,
have to treat separately the case in which the reference electron is a valence elec-
tron in the outermost shell and that in which it is strongly bound in the inner shells.
In the last instance in particular, it is questionable whether the approximation of
Heitler and London is not to be preferred to the procedure of Hund and Mulliken.

Tt should be emphasized at this point that the Bloch approximation represents, .
; hmtoncs.lly, the first treatment of electrons in a erystal. Here qualitative traits
are of primary importance; the results can scarcely be rega.rded as quantitatively

' Blgnlﬁca.nt.
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h (.'V-II..2.-18)5 (VII:2;-19), and-(V 11.2.20), Eq. (VIL.2.17) leads to
H04 07+ 0B — B -0 — 4) +c(® = F)-1 =)

'+ (B —E) - 0— A} +0+---=0
-—'Ac.._1 -t {E (E.t - C)}Gr e AC,.{..: = 0 (VlI2.21)
e t.he subscript 7 may be given any v;xlue 0 £, . leading

 an infinite number of linear Egs. (VIL.2.21) for the determma.t.mn of
infinite number of unknowns c,.
For their solution we may note the following: Since no termﬁ occur
h are free from the unknowns ¢,, we are dealing with a homogene-
s system of equations. A solution which is not identically equal to
exists only if the determinant of this system of equations vanishes.
leads to an equation for determining the energy. parameter . If
one of the roots of this secular equation, a nonvanishing solution
mes possible. It is determined except for a common factor which
xﬁxed by the normalization reqmrement for
oo
Y@ = Y etule — o)
=
wever, we shall not carry through a systematic solut:on of Eqs.
2.21) but shall utilize instead the previously (pages 168 and 169)
sed values of the ¢,, namely, :

15
o efkre we
n d shall verify that these sa.tlsfy the mﬁmte system of linear equa-
ns (VIL.2.21) if the energy parameter B has the value!

= .+ C + 24 cos ka : (VII.2.22)
' For the left side of (VII.2.21), we obtain

Or'-‘=

i ‘ | it Ll e
A L efttva 4 (24 cos ka} - o it = A — ofk(rtDe
el (@2 f e el o o -

AT T |
o (] --e"f*“ 2 cos ka — e’
o il el ]
Y. e bracketed term makes this in fact equal to zero mdependently of
' runmng .index 7. , : - _
is. of course doomve for ‘the verification that the running index » no longer

TS mthevaluerH&B),x.a thatmthsmnﬂevalueof}iaﬂoqmtmnsci
mﬁmteayat.em (VIL.2. 21) can be satisfied by thasyatemofvalm

e,-—‘;—ﬁear- r=0,%1, £2, ...
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. So far we have confirmed the values of the coefficients guessed pre-
viously as well as the form (VII.2.02) or (VII.2.03) of the eigenfunc-
tion ¥/(2) of the electron in the crystal. In addition to this, the energy
spectrum of the electron in the crystal has been determ.med as given
by (VII.2.22).

h. Physical Interpretation of the Formula for the
Energy (VII.2.22)-~

The result (VIE.2.22) is readily understood physically. The atomic
eigenvalue E.. is changed first of all by the fact that the potential
energy —eéV(x — la) of a single atom core is supplemented by a
perturbation —e[U(z) — V(z — la)]. -In the total energy " there
appears, accordingly, the mean value C of . this pot.entml-energy
perturbation weighted with the probability densxty [Wa(z — ra)|2.

+ is'negative since, in the integrand of (VII.2.19), the central factor E

—e[U(z) — V(z — ra)] is negative (see Fig. VII.2.3) and the product
[Ya(z — ra)|® of the other two factors is always positive. The negative
term C in (VII.2.22) thus eorresponda to the stronger binding of the
reference electron in the field of many atom cores as compared with
the binding in the field of a single atom core.
_ The most important part of (VII.2.22) is, however, the third term
24 cos ka. This exchange energy arises from the fact that the refer-
ence electron does not remain at one atom core but tunnels through
_ the potential hill to the neighboring atom from time to time and
~spends, on the average, an equal amount of time at every atom core.!
In the section Free and Reduced k Values (page 170) we have seen
that there are G different elgenfunctaons : |

Im= o0 .
1
= k) = — efklay, la) (VIL.2.03
Y@ =@ b \/@1_2_:. ey, ‘(z ) ( )
whlch differ in the‘value of the wave number k ' -
e ' ._ oy
k= i n = £ integer . (VIL.2.05)

In order to cover all the eigenfunctions, n had to tra.varse only the

interval -
el <ih (_}'
2 i

1 8ee, e.g., 8. Fligge and H. Marschall, “Rechenmethoden der Quantentheorm,”
pp. 162-164, Springer-Verlag OHG, Berlin, 1947; or H. A. Bethe in Geiger and
Scheel, op. cit., vol. XXIV, part 1, p. 335. Here further details are also given con-
cerning the re!stion between exchsn'ge energy and frequency of change of location.
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versing at the same time the interval of the reduced wave numbers

‘ 4 ~TckL 4T 0 (VIL.2.08)

-

‘Qutside this interval, the same elgenfunctxons recurred periodically.
Correspondingly, (VII.2.22) shows that also no new energy eigenvalues.
pear outside the periodicity interval (VII.2.08). Thus the atomic
nvalue E,, splits up, through the simultaneous action of the G
atoms of the funda.mentalrdoma.m, finto G/2 twofold eigenvalues
[.2.22), since the same eigenvalue E belongs to k = +2rn/aG and
‘= —2rn/aG. Since@ is supposed to be a very large number, the
inging together of G separate atoms changes the atomic eigenvalue
mto a qua.m-contmuous band of G/2 twofold exgenvalues or G

E ' | Forbidden

TR : [ energy vaolues
i Eot -"'lt;‘/"__zlgib
t

L) L 1 .
- -3 e -
‘Fm VII.2.7. Variation of the energy value E with the wave number k (for negative
exchange integral, A < 0). It is a peculiarity of the linear atomic lattice that
density of states is least in the middle of the band and increases toward both
‘boundaries. The converse app]ms in general for actual three-dimensional

Band of allowed
+stationary
‘energy values

| Forbidden
energy values

states.” [See Fig. VIL.2.7. If we oxmt. the limitation on k by
(VII.2.08), we obtain Figs. VII.3.11 and VII.3.12 in §3. This repre-
entation will prove advantageous in §6 and §7.] According to
e Pauli principle, every one of these states may be occupied by two
ectrons with opposite spins so that the band can accommodate
: 2(2@/2) = 2@ electrons or two electrons per unit cell or per atom.*

vever, this remark oversteps the boundaries of this §2, in which we
not yet concerned with the many-electron problem,? but only with
| approximate solution of the preliminary one-electron problem.
The boundaries of the band are formed by ka = 0.and ka = =+
'hese two values of the wave ‘number have played a special role
fore, in so far as they led to the standing waves of Fig. VIT.2.5. We

1111 this form the statement becomes independent of the arbitrary number of
@ in the fundamental domain-and beoomes thus physically meaningful. '
3Thiawﬂlﬁrstbetakenupm §10.
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conclude, hence that st.andmg waves correspond to the boundaries of
the band for the linear atomic lattice here considered. At the edges
of the band we have, furthermore,

~ (Ak)® _ (VI1.2.23)
as follows from (VII 2.22) or Flg VII.2. 7 :

" i. Band Spectrum of a Crystal, Degenerate Atomic Elgenvalnes,
Application to Three-dimensional Lattices . ]

So far we have been concerned with a single atomic elgenvalue B
However, the splitting up into & band of eigenvalues, asisolated atoms
are brought together in a crystal, applies equally for all eigenvalues of
the atom. Thus we obtain from the discrete spectrum of the atom a
band spectrum of the crystal, in which bands of allowed and forbidden
energy values alternate (see Fig.

Ed

Allowed VII.2.8).
Forbidden § Furthermore, it should be pointed
Ailowed out that it was assumed in the
Forbidden preeeding considerations that only
Allowed one atomic eigenfunction y,.(z) be-
longed'to the selected atomic eigen-
Eorbiddsg value %,,, so that the atomic eigen-
Allowed value E,, was not degenerate. The
rule that a band accommodates two

Tatiice consiam 5 electrons per unit cell was derived
Fra. VIL.2.8. The splitting of the dis- with this assumption. For degen-
crete atomic spectrum into the band 7 erateatomiceigenvalues—and these
speolumyolthpicy t'sl -4 are in fact the rule—the situation
_ becomes different. However, we shall not discuss further at this point
the number of available places in thé band since for a three-dimen-
sional lattice the circumstances can become quite complex (see, how-
ever, §11). We use this instead as a first indication that caution is
advised in applymg the. several results to the three-dimensional lattice.

Thus we have, e.g., for the linear atomic lattice just treated two dif-

ferent eigenfunctions for one and the same eigenvalue E, namely, a
wave running toward the right and one runnjhg toward the left.
Already in the two-dimensional and particularly in the three-dimen-
sional lattice, many electron waves running in all posmble directions
belong, in general, to a single eigenvalue. Furthermore, not all the
eigenfunctions belonging to the lowest and highest energies, i.e., t0
the band boundaries, need be standing waves. For example, for a
face-centered cubm lattice this is not so for the upper band bmmdary

0
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& negative exchange integral). Furthermore, the relation
[1.2.28) does not apply at this boundary. !

n. the three-dimensional case, the periodicity intérval —=/a <k
+r/a on the k scale found for the linear lattice is replaced by a
jodicity polyhedron in k-vector space. Outside this polyhedron,
nvalues and eigenfunctions repeat themselyes periodically. For
mple, the Bloch approximation yields for a quadratic point lattice
2 E surface ebove the (ks k,) plane subdivided into periodicity
res, as shown in Fig. VIL.2.9. As already mentioned, this view

AN o, g
AL Qéh- A1) Q2 7
777008 8 1/ N
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\ s, -y, “‘\ . -
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\
\
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r -g%‘. ¥ _‘.'i. _ 0 ;i- +é-§- /
'.VII.2.9. Variation of the energy E with the wave number vector k for the
mensional case (quadratic point lattice).

the E(k) dependence will prove advantagéous in §6 and §7. This
jodicity polyhedron is frequently, and wrongly, identified with the
alled first Brillouin zone in k space, which will be discussed in §3.
§11, the diamond lattice will provide an example in which the
ych periodicity polyhedron and the first Brillouin zone differ (see
273f1.). ' ; .
the one-dimensional case a quantum state claims a segment
a@) of the k scale, as we found on page 170. In the three-dimen-

case, correspondingly, a volume [2r/aG]? of k space is ascribed to
uantum state. If we introduce the volume V... = (Ga)® of the
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fundamental domain considered, the volume in k space ascribed to 3

one quantum state becomes simply (27)3/V jund't

_In the three-dimensional lattice we must note, furthermore, whether {

the atomic eigenvalue pertains to an s, a p, or a d term.. Thus, in g

simple cubic lattice, an atomic p eigenvalue with its three p eigen-
functions splits up into three bands.? Energetically these three bands =

coincide completely, however, an extreme example of band overlap,
which will be mentioned repea.tedly in §3.

Finally it should be pointed out that the f;arm (VII.2.03) of the _' '

eigenfunctions applies only for simple translation lattices.* For lat-
tices with a basis, such as molecular lattices,® ¢(z) must be written as
a sum of several summations (VII.2.02)—one summation for each,
sublattice. The coefficients of the individual summations (VII.2.02)

must then be determined by the perturbation calculation. This has

at times been overlcoked in the literature.*

§3. Brillouin’ s Approx.lmatl,on for Weakly
Bound Electrons

While even the strongly bound electrons. considered in the Bloch
approximation (see Fig. VIL.2.1)
do not remain permanently at one
e atom because _of the tunnel effect,

reference elsctron  bhe clectrons of  high energy con-

. E&
{l-1)a la {1+1)a X
T T =T -

mation (see Fig. VII.3.1) can fly
through the entire lattice almost
like free electrons. Their eigen-

Epot =—eUlx) . functions will be accordingly very
Fm VIL.3.1. Position of a quasi-free nearly plane waves e!'*?),  We thus
L D G S face a problem very similar to that
of the bombardment. of a crystal with X—rays or cathode rays. The

1Tao see how, in the ‘application ¢ of th:s sta.tement. in Chap. VIII, §1, the volume
of the arbitrary funda.mcntal domain drops out, see t.he derivation of Eq. (V'III 1.07)
‘on pp. 283 to 286. &

2 See, e.g., H. A Bethe in Geiger and Scheel, op. éit., vol XXIV, pa.rt 2, pp.
401-404.

-3 For a further discussion of this concept, see pp. 269 to 271.

<H. A. Bethe gives in Geiger and Scheel, op. ¢it., vol. XXIV, part 2, p. 307, a

formula (12.17). for the energy spectrum of & lattme with a basis in wluch appa.r“
ently account has not been taken of the n.bove-mentmned clmumsts.nce
'Bee footnote 2, p. 192. 5

sidered in the Brillouin approxi-
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mena oecumng in this instance are well known,! and we shall
n them first. The results of Brillouin’s perturbation calcula-

for weakly bound. electrons then become hxghly pla.umble phym

e begin with the dlﬂ'ract.lon phenomenon. resultmg from the inci-
ir ecbion cosine a = cos ¢ with the row of points (see Fig. VII3.2).

tions in the plane of the draw- .
in which the diffracted spherical Piffrumd wave
ses are superposed at infinite -
jance with the phase differences
—2-2x, —1-27, 0, -1 2,
.2r - - and hence reinforce Incident wave

t other In these directions, Path difference between two adjoining rays
: i3, ~ a2 alcopd - ccs%o)-c(a—u

Oy, Qo Q41 O with the row tlon, a(o: — an) = h'h

ts, the diffracted biaams of

—1st, 0, + 1st, +2d order are observed Flgure VII 3.2 ylelds
’a mterference eond:t.mn

&(an1;a)=h1l h;-—-O 41, et Bl (v1'13'01)

ah,:a-]'eh; h;-—O :I:l :tZ . (VII302)

however |anly as & d!.rectlon cosine, cannot exceed umty, ixoh
utions (VIL.3.62) are physically meanmgful but only a limited
r of them, up to a certain positive and a certain negative limit
depending on the smallness of A\/a. We see thus that for an
ry, but sufficiently small, wavelength there is a finite number of
ted beams if we limit ourselves to the plane of the drawing of
VIL3.2, i.e., to the plane of incidence. This is, however, not at
‘ eqeas_a.ry The interference condition (VI1.3.01) for the in-phase
yerposition of the diffracted spherical waves can be fulfilled equally
ll for directions which do not lie in the plane of incidence. The only

Ve tefer here to the excellcnt presentations of 1’ P. Ewald, “Kristalle und
Tgen’strahlen,” Sprmger—Var]sg OHG, Berlin, 1923, and in Ge:ger and Scheel,
‘vol. XXXTII, part 2. g

-

ce of & plane - wave on s linear series of points in a direction forming

v lattice point emits a spherical wa.vp There are then several

ch form the direction cosines Tra. VI1.3.2. Laue’s diffraction condi- -

*
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thing that matters is the a.ngie ¢, between the difiracted beam and the
direction of the linear point lattice. We thus see that all diffracted
beams of the same, e.g., of the second order, lie on a coune with a half-
aperture angle . (Fig. VI1.3.3).

“l J Incident beam Ground glass
screen

Oed I st %0 order ) ] of
Fie. VII.3.3. The diffraction cones of the linear lattice, for an incident beam
perpendicular to the lattice axis. (From P. P. Ewald, “Kristalle und Rontgen-
strahlen,” p. 43, Bpringer-Verlag OHG, Berlin, 1923.)

In summary, a one-dlmenslona} point lattice in three-dimensional
space will diffract an infinite number of beams from an incident plane

wave of arbitrary direction and arbitrary (though sufficiently small)
wavelength. All beams of any one order lie on an interference cone
whose axis coineides with the diractioq of the point lattice.

b. Diffraction of a: Three-dimensional Plane Wave
by a Two~dimensional Point Lattice

We now pass over to a two-dimensional, e.g., quadratlc, point lattice
in three-dimensional space. Again, in the direction of a diffracted
beam, the spherical waves diffracted by all lattice points must be
superposed in phase.  If this is checked first for the lattice points
which form a linear point lattice in the direction of the z axis, we
arrive again at Laue’s condition (VIL.3.01), where ay, and « are now
the direction cosines with respect to the z axis. Hence, once again,

cones of order 0, +1, +2, . .. would be diffracted from a wave of 1

arbitrary dlrect:on of incldenca and arbitrary (though sufficiently
small) wavelength. However, it is-here not at all certain that the
effects proceeding from parallel series of points 1, 2, 3 (see F1g VII.3.4)
will also be in phase and hence reinforce each other ;

We can also state that a gathering of the points of the quadrat.m

1 That is, by = +2,
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ice in the pomt series 1/, 2/, 3" parallel to the y axis is equally as
lid as their previous grouping in the point series 1, 2,3 . . . parallel
the z axis and that with the former grouping dlﬁ'ra.ctlon cones of the
ger 0,41, +2, . ... about the y axis are obtained if a Laue condition

B — 6) = b\ . (VIL3.03)

the dlrectmn cosines S, and g with respect to the y axis is fulﬁ]led
A cooperation of all lattice points in a particular direction as,, B, Will
te place only if both condition (VII.3.01) and condition (VII.3.03)
are fulfilled. Geometrically, this means that the dlrectuon of diffrac-
on of the order k., ks must lie both .
~ on the h;th diffraction cone about Point ‘W‘fs
" the z axis and the hsth diffraction ¥} L2 ts !
ne about the y axis. Thus the oA R QT
~ only directions of diffraction re- e N AT S £
. maining for the two-dimensional | T 1 TR
point lattice in three-dimensional = | s———f—s—o——2 font;
ace for arbitrary direction and . . e
velength of the incident waves : : ,
are given by the twostraight lines of EoE S :
tersection of the hith cone about :: ‘: xx&&mm: Epenlen
z axis and the hsth cone about i
y axis. Algebraically this is expressed by the fact that (VIL.3. 01) :
_d ('VII 8.03) are two equations for the two unknowns oy, and’ Bhs,
hmh are herewith completely determined. It is true that, to fix a
rection in space completely, three direction cosines are required; the
ird du-ect.mn cosine vy 18 obtmned from the equahon

- @+ prt =1 . : (VII.3.04)
ich apphea for the direction cosines for orthog‘onsl axes.!
ce this prescribes a value only to ¥, not to v itself, the sign of vis

‘undetermined, so that the two Laue conditions (VII .3.01) and
1.3.03) select two directions in space for trhe diffracted beam.

Diffraction of a Three-d.imensmnal Plane Wave .
.by a Three-dimensional Point Lattioe ' :

In smula.r fashion we must demand of the diffracted bea.ms of a
pe-dimensional pomt lattice in three-dimensional space that they be

Fornonort.hogonal axes we would obtain a gene.ral condition
a¢'+bﬁ’+07’+2daﬁ+3cﬁ'r+2fw-1 :

d of the condition (VIL.3.04), which msy be regarded as “4ransformed to -

pal axes.” -
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the intersections of three cones, e.g., about the z, the y, and the # axis,
Since, however, in general, three cones do not intersect in a common
straight line, we can’ conclude that for a three-dimensional point lattice
in three-dimensional space an incident wave of arbitrary direction and
_ arbitrary wavelength will not give rise to any diffracted beams. 3
Algebraically this circumstance is expressed by the fact that a third
Laue condition . ; :
: alys, — v) = ha\ : (VIL.3.05)

is added to (VII.3.01) and (VII.3.03) and that, then, (VIL.3.01),
(VIL.3.03), and (VI1.3.05) represent three equations for the three
unknowns an,, Bx; Y- Lhese equations alwa.ys have solutions. How-
ever, these solutions will satisfy the necessary side condition 4

ot 8Lt Ak =1 (VIL.3.08)

for the direction cosines with orthogonal axes' only in rare discrete
cases.

We can summarize our review - of the diffraction phenomena of point
lattices as follows: A one-dimensional point lattice in three-(hmen-
sional space diffracts an infinite number of beams of a particular order
for arbitrary direction and arbitrary (though suﬁiclently small) wave-
length of the incident wave; a two-dimensional point lattice in three-
dimensional space produces under the same circumstances only two
diffracted beams; and a three-dimensional point lattice in three-dimen-
‘sional space produces in general, i.e., for arbitrary direction and arbi-
" trary wa.velengﬂh of the incident wave, no diffracted beams Whatever

d. The Subdivision of k Space into the Brillouin Zones .

The so-called Brillouin zone construction is a means of seeing quickly
under what circumstances, i.e., for what directions of incidence and
what wavelengths, a three~d1mens1ona.l point Jattice produces a, dif-
fracted beam. To arrive at this construction we first write the three
Laue conditions (VI1.3.01), (VIL.3.03), and (VII 3.05) in the followmg

forms«

g(2_'f _¥ )=hi =+ ha- 0+h. 0 (v11307)

'%(%ﬁ’——ﬁ)—hl 0+ hs ot a0 (VILB.0)
R o

-ﬂ(—r‘v “"7“"/)=hf1'0+h!'q+ha‘a-(VII-3-09)

18ee footnote on page 185.
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we have designated the dlrectlon cosines o, B, va, of the dif-
aC beam simply with o, 8/, ¥'. Furthermore, we shall base the
llowing treatment right away on the general translation lattice with
e oblique axes a;, @, a.

(VIL.3.07), (VIL.3.08), and (VIL.3.09), 2xa/X, 2x8/X, 2xv/\ are
perpendicular projections of the wave vector k of the incident wave
' the three translatidn axes a;, a;, a;. The same applies for 2xra’/\
. with reference to the wave vector k' of the diffracted wave.
thermore, we introduce, in view of the right side of Eqs. (VIL.3.07)
) (VI1.3.09), the three vectors by, bs, bs by the requirement that, e.g.,
ie perpendicular projections of the vector by with reference to the
. e translation axes a;, ay, azbe equal to 1/a,, 0, 0.1 Thus b; must
satisfy the three equations

e el |
b, = 1 a! =0 b: _0
b; -a; ='. b; - a;, =0 b;-a; =0 (VII.3.10)

orrespondingly, b; and b; must fulfill )
- by-a; =0 by-a;=1 by-a;=0 (VIL3.11)
b;-a;, =0 b;‘a; =0 b;.a; = (VII.8.12)

The factors of ky in (VIL.3.07), (VIL.3.08), and (VII.3.09) are also
perpendicdlar projections of by on the three axes ai, a3, azg. The
e applies for the factors of h, and.h; with respect to the vectors bs
- Hence we can oombme tl'sa three Laue condmona in the vector

hs =|0, +1, £2,. . .

— k) uh1b1+h§b,+haag=h he = 0, 41, +£2, . ..

gy 0 b A2 % e
(VII.3.13)

1., ;
5o K Hk+b (VIL.3.14)

wever, in order that k’ may be the wave vector of a diffracted wave,
absolute value |k’| = 2r/A must be equal to the absolute value-
= 2r/\ since the wavelength of the diffracted wave must E)e equal

by, by, and by form the so-called reciprocal lattice.



188 . VII, The Band Model
to that of the incident wave. Thus (VIL.3.14)-has the side condition

k| = [k eovinsas)

which corresponds to the earlier side condition (VII.3.04). A dif-
fracted wave of order hy, hs, hs exists only when both Egs. (VIL.3.14)
and (VII.3.15) are satisfied by the one unknown k’.

We shall now rephrase the question of page 186, namely, for what
directions of incidence and what wavelengths a three-diménsional point

lattice forms a diffracted beam, in the more restricted form, under

what circumstances a beam of a particular order k1, ho, ks is produced. .
Then the vector h in the Laue condition (VIL.3.13) is fixed. The
addition of the side condition (VII.3.15) requires now that k'/(2x) and

TFra. VIL.3.5. Derivation of the Brillouin zone construction. (a) Consideration of
Laue's diffraction condition alone, ‘—;;k’ = %‘k 4 h. (b) Added consideration

of the side condition [K/| = [k|. (¢) The end point of k/(2r) must lie in the plane
pexpendicular to —h/2 if diffraction is to take place.

k/(2x) form an isosceles triangle with the vector h (see Fig. VII1.3.5a
and b). Itfollows from this (see Fig. VII.3.5¢) that for changing direc-
tion of incidence the wavelength determined by k| = 2r/X must vary
in such a manner that the end point of k always lies on the perpendicu-
lar plane through the end point of the vector — ¢h.

Herewith we have already answered the restricted question: Which
plane waves e lead to a difiracted beam of the order hy, hs, hs?

They are all those waves whose wave vectors divided by 2r end on the

perpendicular plane through the end point of the vector — 14h.

As we return to the more general question of page 186, under what
circumstances a plane wave e/~ produces a diffracted beam of any
order, we must recall that both the vector —h and the vector +h are
vectors,of the reciprocal lattice, since (VII.3.13) defined the vector h

as follows:
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) Hice) ha ) '

" h = b1 + habzﬁ‘ hsbg heV =0, £1,+2, £8, . . . (VIL3.16)
' ] A ha v

Thus, if we draw the reciprocal lattice for the translation lattice
~ under consideration and construct the bisecting perpendicular plane
" for every lattice vector of the reciprocal lattice, then a diffracted wave

=¥ oceurs if and only if the end point of k/2x lies on one of the bisgct-

\

/1,
/

|1/

I/a

A\

- _ » 3 4 5 6

. sEU0N u
" Fie. VIL3.6. Brillouin zones for the quadratic two-dimensional lattice. Strong
" Bragg reflection occurs if the end point of k/(2«) lies on one of the continuous lines.
- (From L. Brillouin, “Quantenstatistik,” Springer-Verlag OHG, Berlin, 1931.)
The construction of the bisecting perpendicular planes in the recip-
ocal lattice is designated as Brillouin zone construction. The cubic
lattice offers, of course, the simplest example for thecar rying out of this
onstruction. Here the three vectors a;, as;, and a; are mutually
hogonal and all of equal length, namely, equal to the lattice con-
stant a. By (VII1.3.10) the vector b, must be perpendicular to a; and
s and coincides hence in direction with a;. Also by (VII.3.10), its
ength is equal to 1/a. The same applies for b, and by, so that the
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reciprocal lattice is in the present instance a cubic lattice with the
lattice constant 1/a. Figure VI1.3.6 shows the (b;, bs) plane of this
reciprocal lattice and the carrying out of the Brillouin zone construc-
tion within this plane. The bisecting perpendicular planes of the
reciprocal lattice vectors hib; + hsbs + 0 - b; in this (by, bs) plane
intersect this plane in the lightly drawn straight lines. We see, there-
fore, how the reciprocal lattice is subdivided into the Brillouin zones.

If a plane wave with the wave vector k is incident from any direction
_ on the cubic point lattice with the lattice constant a, k/2x must be
entered on the reciprocal lattice. For large wavelength A, k/2r will
be relatively short and its end point will lie within the first Brillouin
zone. No diffracted wave k’ occurs in this case. As the wavelength A
is reduced, k/2x increases and ends eventually on the boundary
between the first and second Brillouin zone. Then a diffracted wave
K’ is obtained. As ) is reduced further and k/2x increases correspond-
_ ingly, the end point of k/2r lies in the second Brillouin zone' and,
again, there is no diffracted wave k’ until the vector k/2x reaches the
boundary between the second and third Brillouin zone, resulting again
in a diffracted wave k', etec. -

For carrying out the construction for complex lattices, it isimportant
to note that the determining equations (VII.3.10), (VIL3.11), and
(VII.3.12) for the reciprocal axes by, bs, bs have the following solution:

as X aj as X a; i Ay Shas
b (aum) * T (auasmy) g (arazas) (VIL.3.17)

Its correctness may be checked by substitution of (VII.3:17) in
(VIL.3.10), (VII.3.11), and (VIL.3:12), noting the following relations
for the common denominator of (VIL.3.17):

(a1a585) = a1 - (as X a3) = ag* (a3 X a;) = az* (a; X ay) .' (VII.3.18)

e. Interpretation of the Diffraction Phenomenon as Bragg
Reflection at a Family of Lattice Planes

For a physical interpretation it may be worth while to note that the
planes perpendicular to h (and hence of course also to —14h) are the
families of lattice planes with the Miller indices® A, hs, hs. This may
be seen in the following manner. According to the definition of the
_ Miller indices, one of the lattice planes has the intercepts on the axes
a1/hy, as/hs, as/hs. The vectors (ai/hs — as/hs) and (ay/hy — as/hs)

10Qr, in special cases, the fourth zone.
2 A very clear introduction to the Miller indices is given by Ewald, op. cit.,
pp- 20 and 26.
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s le i in this lattice plane, and their vector product is perpendmular’
For this vector product we ﬁnd

! A1 1
- h—) X=(n—1 G r, )

ﬂﬁl'-azx_ax Mla.)(m ?hh 51X81+hhazxﬂs

O_i_(aiasas) l+- a:Xaz-+hea=><a1+h a; X ag

hihohs * (a,asa5) (aia.a3) ! (asaza3) |
(aimza3)
= hihshs {hlbl + habs + hibl}
_ (amn.as)
bk

dicular to the lattice pla.ne (hy, ks, hs) is also parallel toh. Hence
' the planes perpendicular to h are the lattice planes with the Miller
: '008}11, h:, h: .

We recall here Bragg’s mterpreta.tmn of the diffraction process at
point lattice. If, in Fig. VI1.3.5, a parallel dmplacement. of the

Lattice plane -
&y AT~
g By Ty
Fia. VIL3.7. “Refiec- Fra. VIL.3.8. For reflection at a
tion” at the Ilattice lattice plane “adjoining” rays
plane with the Miller have no pat.h difference,
indices (R1, ks, hs).

cted wave vector k’/2r is carried out we see from Fig. VIL3.7
the incident wave k/2r is in effect “reflected’” at the lattice plane
hz, ks). The spherical waves diffracted by the lattice points of one
are in phase because of the symmetrical position of k and k’ and,
sequently, reinforce each other (see Fig. VII.3.8). The fact that
e waves reflected by two adjoining lattice planes do not annul each
by destructive interference but matead reinforce each other i3

ed by the relatmn _
ue P
- 2,.. lkl -
ich m&ybereadoﬁfrommg VIL3.7. Since |k| = 2x/), we may
uce from this

2-m cos.,al= A Gt (VII.‘3,.19)
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Furthermore, AN

L s e | d VN

]i-[ = amv " L 1 e

where n is the largest common denominator of the Miller indices
hy = nh¥, ha = nh%, hsy = nh} and where the absolute value of the
vector h* = h*b; + h¥b. + hibs; formed with the reduced Miller

‘indices h¥, k¥ h¥ is equal to the reciprocal of the separation dtigns of
1 3 Thihs

a
o,
ER

Fia. VII.3.9. For reflection at two adjoining lattice planes the path difference is
2d cos 8. . !

two adjoining lattice planes.’ Thus (VIL.3.19) becomes the well-
known Bragg reflection condition -

2 - daprzps - €08 B = nA (VII.3.20)
for a reflection of nth order at the lattice planes (hy; As, he).  This con-

‘dition assures a path difference n\ and hence mutual reinforcement

between the beams reflected at two successive lattice planes (see Fig.
VIL.3.9). .

f. The Results of the Brillouin Approximation for Weakly
Bound Electrons '

~ We have discussed in some detail the diffraction phenomena at a
three-dimensional point lattice and will now compare our results with

those of Brillouin’s approximation for weakly bound electrons.?
Brillouin finds:

1 For a proof see, e.g., Ewald, op. cit., pp. 249-250. For a theorem of number
theory used by Ewald without proof, see, e.g., B. L. van der Waerden, ¢ Moderne
Algebra,” part 1, p. 61, Springer-Verlag OHG, Berlin, 1937, or Arnold Scholz,
“Tinfihrung in die Zahlentheorie,” vol. 1131, p. 22, Sammlung Goschen, 1939.

* At the beginning of §3 and in Fig. VIL3.1, we have indicated that Brillouin’s
approximation is concerned with electrons of high total energy. Since, however,
an electron in a region of potential energy which is constant in gpace behaves like
a free electron, the characteristic properties of bound electrons result from spatial
variations of potential energy. Accordingly, weakly bound electrons are electrons
in a nearly constant potential field. In fact, the decisive assumption in Bril-

louin’s. approximation is that the variable part of the potential energy may be _'

" regarded as a small perturbation. :
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The eigenfunction of a weakly bound electron is, in general, pra.c—
tically a plane wave e’*~,

‘2. The energy E(k) depends on the wave vector k practically in the
.manner as for a free electron, i.e., according t.o the law?

B = 22w = 2 Gt R
Fig. VIL.3.10a..

s the plane wave e/** with a modulation factor u(r; k) with the
dieity of the lattice. If the wave vector k of the free electron? is
this modulation factor has small amplitudes unless k has a value
. which considerations of wave optics indicate a Bragg reflection.
‘such k values the eigenfunction is represented no longer simply by

acted or “reflected” wave. Thus the eigenfunction assumes the
acter of a standing wave in a direction perpendicular to the reflect-
attice plane. In case k is perpendicular to the reflecting lattice
plane, the eigenfunction becomes a standing wave entirely.

4, The modification of the variation of (k) by the variable part of
s potential energy is, in general, slight. The change with respect to
. VI1.3.10a is small. For k values leading to a Bragg reflection
e., for the Brillouin zone boundaries), discontinuities occur in the
erwise continuous variation F(k) (see Fig. VIL.3. IOb) This arises
the fact that the incident and the reflected waves e/®* and e/¥'*

is depandence is found immediately if t.ha formula y(z) = Ade/™* waubst.l-—
the Schrédinger equatlon : o
w Ey =0 S,
o free élwtron: : :
wMo : W 6
o (k2 + K + kﬁ)A ot — EA e’ET =0
E-+ ]kll-—»(k‘+k'+u)

i8 of course also permmble to employ instead of k a wave vector k + 2rh,
e b is & vector of the reciprocal lattice [see p. 187, in particular footnote i,
Eq. (VII3.13)]. In the one-dimensional case, this corresponds to a transition
kto k + 2xh/awithh = +1, i2 . . The modulation factor then changes
.mbo a modulation factor %

"ulr; k + 2xh) = u{r k) e‘f'ﬂ"

he perturbation by the variable part of the potential energy pro—

ane wave e/*%, but by a superposition of the incident and the -

‘the same wavelength, so that [k| = |k’| and that hence the unper-.

= S
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turbed energy eigenvalues h*k|?/(2m) and A*k'|?/ (2m) are equal to
each other. The incident and reflected waves are hence degenerate,
and the common unperturbed eigenvalue is split when the perturbation
by the variable part of the potential energy is considered. The per-
turbation produces a forbidden band in the gap-free continuum of the
unperturbed energy values. The calculation teaches the following
regarding the magnitude of the splitting. In view of its periodicity |
with the lattice constant a, the lattice potent.lal U(r) may be expanded
in a Fourier series
he=-+w= h h x foA
U@ = Y U ¢ | (VIL3.21)

Ch=—w=

[For a three-dimensional lattice, (VII.3.21) is replaced by a threefold

3 }E
SIU!.E}:\ 3 I
elUsl
°|Uz|}

- e|Uq| :
°¥U|1 a|U.
R ; 3%-2'« -% o+;+2~5+3§— Kig
7 (a) (b)

T, VIL.3.10a. The variation of the = Fig. VII.3.10b. The development of for-
energy with the wave number k for the bidden energy regions as result of Bragg
free electron. reflections.

Fourier expansion.] The split-up energy values are grouped sym-
metrically about the unperturbed energy value at a distance which is
equal to e|Us| (see Fig. VII.3.10b). This makes it particularly plain -
that the deviation of the electron in a crystal from a free electron
results from the variable components in the lattice potential.

5. If the Brillouin approximation is carried out one-dimensionally,
i.e., for a linear point lattice with lattice constant a in one-dimensional
space the forbidden energy regions occur at the points k = *w/a,
+2x/d . . . (see Fig. VII.3.10b). We may refer in this one-dimen-
sional case to Fig. V1L.3.6, provided that we limit ourselves to the
horizontal axis of this ﬁgure and to the vertical zone boundaries.
Since the zone boundaries occur at +1/2a, 12/20, +BuBa e,
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B ctoofions ohotir P satn s WEREY ke vl SR
: | folie 1 1.- AN Gty 1 4
k= +hZ
a

see particularly clearly from this simple example that the Brillouin

mnes constitute a complete subdivision of the range of variation of the

ependent variable k, whereas the expression “energy bands’’ directs

ntion to the existence of forbidden bands or gaps in the range of -

ation of the dependent variable E. s
\ .'.I 1 ILE

Forbidden band— U v U V U \I :

- -. .I_

3rd energy bond——
4. = = b
Forbidden band — A
~ 2nd energy band—=

Forbidden band 3 /
5% -3F | -& O+F +37 +5% k

_Tzone

I'st energy

s 40 RS
i ~ b5zone
6. VIL.3.10c. Energy spectrum according to the Brillouin approximation.
8. We have already mentioned, in footnote 2,.page 193, that we may
ploy, in place of the wave number k of the free electron, one of the
alent wave numbers k + 2rh/a with b = F1, 42,0 00 This
the eigenfunction u(z; k) e** and the eigenvalue E unaltered,
jough the modulation factor with lattice periodicity, u(z; k),
nges over into u(z; k) e~*"=>. Hence the variation of E(k) may
o plotted as in Fig. VIL.3.10c. This even becomes the natural
when carrying out consistently the degeneracy perturbation :
sulation required in the neighborhood of a Brillouin zone boundary.’
1T arrive at the representation in Fig. VIL.3.10b, it is necessary to suppress
f the eigenvalues supplied by the perturbation calculation at a time, which
ly not &t all justified. 43
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The comparison with the Bloch approximation to be given at a later
point (page 198) is also facilitated hereby. e
We turn once more to the Brillouin approximation for a quadratic
‘point lattice in order to describe the phenomenon of band overlap,
which is so important for the theory of the metals with a valence of 2
(see §11). We choose this two-dimensional example, because k space

may then be represented in Fig. VII.3.13 as a horizontal (k., k) plane

""EM,‘C:'-‘
3F -Z o«F 3F k -3F -Fo+F 37k
. Fia. VIL.3.11 Fic. VIL.3.12

Fra. VIT1.3.11. Energy spectrum according fo the Bloch approximation. KExchange
_ integrals alternately positive and negative. _ ;

Y. VI1.3.12. Energy spectrum according to the Bloch approximation, Ixchange

integrals all negative. 3 g - '

Fre. VII.3.13. The E(k) variation for a quadratic point lattice.

above which, in a perpendicular direction; the energy E(k) = E(k., ky) <
may be plotted. The first Brillouin zone QN

-

E 2y I 0 ™

SR |

is marked out particularly in the horizontal k plane. The E (k) surface
of a free electron would be a par aboloid of revolution: 7 g

EMS i h?
Ek) = 5 k]t = 5 (6 + ki)
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left rear quarter of thas paraboloid has been drawn,! and it is
n how the paraboloid is cut apart along the two boundaries
x/a and k, = -+=/a of the first Brillouin zone. The edges are |
horizontally, so that at the cut there is a gap twice as large as the
ponding Fourier coefficient of the lattice potent.ial (see page 193,
4).

e two edges of the cut in the energy surface E'(k) are represmnted
g. VIL.3.14 by drawing the (k., E) plane k, = +=/a. It is seen
‘that the highest value of the first band lies, for not too large |Us|,

ler than the lowest energy value of the second band. The bands
ap. It is true that, according to Fig. VII.3.13, the highest value

EMK

r% kx

F1g. VI1.3.14. Band overlap.

first band corresponds to the wave vector k, = (—n/a, +=/a),
eas the lowest value of the second band corresponds to another
vector, namely, ko = (0, +=/a). Different wave vect.ors_. and -
uent.]y different directions of the electron waves, belong in gen-
o the same energy values in the first and the second band ‘Thus,
case of band overlap, the electron can pass from one energy band -
he next higher one without energy uptake. At the same time, it
qha.nge its direction. This, however, happens at any rate very
ue tly as the result of thermal collisions (see Chap. VIL, §9).

' spa.tml repxesentatmn of this two-dimensional example thus corresponds
, 'VI1.3.10b of the one-dimensional case. However, this should not lead to
erroneous conclusion that the possibility of the representation in Fig. VII.3. 10¢
peculiarity of the one-dimensional case. It was pointed out already on p. 181
‘Fig. VIL2.9 that the transition from the wave vector k to & wave vector -
2xh, without change in the eigenfunction or eigenvalue, is possible also in

T

dunemnonal cases,
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g. Comparison of the Bloch and Bn]lomn Appronmat:ons
Reduced and Free Wave Vector

We return to Tig. VII.2.7 and retrace it in completed form in Figs.
VII.3.11 and VII.3.12. In doing this, we do not reduce the wave
number k to the interval —=/a < k£ < +=/a and draw, furthermore,
the variation E(k) for several successive atomic eigenvalues E,,. In
Fig. V1I.3.11 it is assumed that the exchange integrals belonging to the
eigenfunctions of successive atomic states are alternately negative and
positive. With these—rather artificial—assumptions, the variation
E (k) ‘according to Bloch (Fig. VII.3.11) attains a certain similarity
with the results of the Brillouin approximation (Fig, VII.3.10¢). This
is not the case for Fig. VII.3.12, where all the exchange integrals have
been assumed to be negative. Under certain circumstances (e.g., in
the case of Fig. VII.3.11) it can thus be advantageous to replace the
wave vector reduced to the first Brillouin zone with a free wave vector
with unlimited range. ‘We then obtain, turning back from Fig.
VI1.3.10c to Fig. VII.3.10b, an ordering of the permitted states by the
wave number k alone, whereas the use of the reduced wave number
demands an added index denoting the number of the band. A com-
parison of the Bloch and Brillouin approximations shows that in both
instances a strengthening of binding narrows the allowed bands and
widens the forbidden energy bands. Loosening of the binding leads,
vice versa, to broader allowed and narrower forbidden energy bands.
In the Bloch approximation, the width of the allowed bands is deter-
mined by the exchange integral, which becomes small in absolute
value when, as a result of strong binding, the atomic eigenfunctions
- are concentrated closely about the atomic cores. In the Brillouin
‘approximation, the widths of theforbidden energy bands are closely
related to the Fourier amplitudes of the potential (see page 193, item 4).
As we have pointed out in a footnote on page 192, the binding of the
~ electrons is determined by the variable component of the potential.
Thus, strong binding demands large alternating amplitudes of the
- periodic potential, and these large Founer a.mpl,tudes lead. to W‘.ldﬂ

forbidden bands.

A comparison of Figs. VII.3.10¢ and VII1.3.11 shows that the Bloch
and Brillouin approximations lead to the same subdivision of the
k axis in the one-dimensional case. This is true also for many more
complex three-dimensional lattices. Thus, for the face-centered cubic
and the body-centered cubic lattices, Bloeh’s periodicity polyhedron
and the first Brillouin zone are idéentical. “We will see, however, at a
later point (§11) from a lattice with basis, the diamond lattaee, that
this identity is by no means umversal :
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- ngeral Statements about the Elgenfunctmns antl
the Energy Spectrum of an Electron in the Periodic
Potential Fleld :

Agreements in the Results of Bloch ancl Brﬂloum

In the last two paragraphs we have treated the special cases of.
ongly bound electrons and nea.rly free electrons by approximation
ds. Inspite of quantltahva differences, we arrived at a number
ualitative results common to both cases. In fact, the most impor-
ant qualitative properties of the eigenfunction and of the energy
pectrum follow simply from the penodwlty of the potentm.l energy.
] are summarized below.

. *"1 The solutlons yb(r) of the Schrodinger equatmn

g = E 4+ UEWE =0 (VILEOD

h a potent.ml energy U(r) mth lattme penod;mty can alwa.yh be_

.wntten in t.he form
T k) = e e '(YI‘I.4.02_)

: the functlon u(r, k) has lattwe periodicity.?
. The energy scale is broken up into a number of allowed band.s
ch are separated by forbidden bands. If E lies in an allowed band,
corresponding ¢ has a real k value. ¢ then représents a plane
ve with an amplitude modulated with lattice periodicity. Ik attains
_meaning of a wave number and indicates the number of wave-
lengths A in a dmta.nce 2
(el vt 3 (m403)
' E lies in a forbldden band, the corresponding ¥ has a complex k
.y then increases or decrea.sea exponentla.lly The fulﬁliment
riodic boundary conditions is not possible.? :
. A wave vector k + 2rh lea,ds to the same eigenfunction a.nd
ce the same energy E as the wave vector k. h is here a vector of
ciprocal lattice (see page 187, in particular footnote 1). On the
of this fact we obtain a subdivision of k space (or the k plane or
s for two- and one-dimensional problems) into zones within which
he eigenfunctions ¢ and the eigenvalues £ repeat themselves period-
 (see, e.g., Figs. VI1.2.9, VII.3.10¢, VIL.3.11, VIL.3.12).

Floquet Ann. école norm., 12: 47 (1883)
. A. Kramers, Physica, 2: 483 (1935).
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4. Frequently, but not always, the energy shows a variation of the

type
B W T conat [k km.,llf . (VILA.04)

at the upper and the lower boundaries of the energy band.

5. An energy value E, which is forbidden for a particular direction of
propagation k, may be allowed for another direction of propagation k’.
Thus if we pass from a conslderatmn of a particular direction of
propagation to a consideration of all directions of propagation, the
width of the forbidden bands is reduced. This effect can go so far
that an energy band forbidden for a particular direction of propagation
vanighes when all directions of propagation are cons1dered We then
speak of band overlap.

6. Increasing the -binding of t-he electrona to the atomic cores
broadens the forbidden and narrows the allowed energy bands.
Weakening of the binding, vice versa, broadens the allowed and nar-

rtows the forbidden energy bands.

These are statements which follow quite generally simply from the

lattice periodicity of the potential energy —eU(r). It would of course

be valuable if, for given U(r), these general statements could be
extended, e.g., by indicating in (VII.4.02) the amplitude modulation

~ ufr; k) or, in (VIL.4.04), the values of Fy..a and of const. Neither the
" Bloch nor the Brillouin approximation has proved suitable for this in

cases of physical interest. The electrons responsible for conduction
phenomena in actual solid bodies are neither strongly bound nor almost
free, but lie just midway between these two cases. For the attainment
of quantitative statements, the cellular method of Wigner and Seitz?
has proved most successful so far.

~ b. The Cellular Method of Wigner and Seitz

Wigner and Seitz treat the potential fields about the individual atomig

cores as spherieally symmetric. They can also adduce a series of

reasons why this assumption does not depart greafly from reality.
They then subdivide space within the lattice into polyhedral cells about
each atomic core by erecting bisecting perpendicular planes on the
lines joining an atom core to its nearest neighbors and eventually also
to its next-to-nearest neighbors. Within one such cell the spherically

symmetrical potential variation is obtained from experimental data or.

from Hartree tabulations, the Schridinger equation i1s separated in
spherical coordinates, and the radial part of the eigenfunction is
determined by numerical methods.

! E. Wigner and F. Seitz, Phys, Rev., 43: 804 (1933),

e s diessnc it il

1
4

N
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- For the isolated atom ‘the boundary conditions follow from-the
quirement that the eigenfunction must not become mﬁmtely large
ither at the origin or at infinite distance. For the atom in the lattice,
5'only the boundary condition at the origin remains unaltered, The
: -_ boundary condition at infinity is replaced by the requirement that the
. eigenfunction must pass over continuously into the next cell at the cell
. boundary. To permit the practical realization of the procedure, this
~ boundary condition is fulfilled only at the centers of the polyhedral

- faces bounding the cell. '

The cellular method, particularly as perfected by Slater,! has had
~ remarkable success with monovalent metals. The difficulties increase
e rapidly if there are several valence electrons per atom, Further efforts

~ have been made to extend the method for this purpose.* However, no
_-_,’ results which are reliable quantitatively as well as qualitatively have
, become available up to the present for the valence lattices of the
dJamond type with four valence electrons per atom (C, Si, Ge, Sn),
. which are of particular interest for semiconductor physics.* Also for
Ef:-lsttit:ea with two kinds of atoms the quantitative results are not com-
upa.ra.ble with those obtained for monovalent and divalent meta.ls.‘ :

¥

i

§5 Mcan Momentum, Mean Velocity, and Mean
Current of an Electron in a Crystal

i The Schroédinger functions .
W(r; k) = ulr; k) e (VIL5.01)

re cigenfunctions of the operator —A%A/(2m) 4 E,.. of the total .
- energy. Since the momeutum operator '

[ i ijo a 9
Pop —-—.-gl'ad—'-.-l*a;:—é]:gél

 does not, in general, commute with the operator of the total enetgy,
i "l;hey cannot at the same time be eigenfunctions of the momentum.®

'-\‘r‘

J. C. Slater, Phys. Reo., 43: 794 (1934).

2 C. Herring and A. G, Hxli Phys. Rev., 58: 132 (1940).

di For a summary and bibliography of more recent work in thie field, sce F.
. Herman, Proc. IRE, 43: 1703 (1955). :

.~ 4Bee footnote 2, p. 163. - : i

© 5 As such, they would have to be pure exponentials e/, The factor u(r; k)
mth lattice penodlmty is t,hus here in the way. Only for a free electron we have
_ l{(r, k} = const = A, so that ¢(r) = A e** is an cigenfunction of both the totsi
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Thus, an electron represented by (VII.5.01) possesses a sharply defined

totn.i energy E(k), but no sharply defined momentum. Accordingly,

only a quantum-mechanical average of the momentum can be given,
which must be calculated by the rule

pi= J Y*(e; K)pod(r; k) dV =; ¥*(r; k) grad ¢(r; k) dV
fund 3 ; : fund

' (Vi1.5.qzj

The evaluation of (VIL.5.02) requires an explicit knowledge of the
eigenfunctions (VII.5.01). Fortunately, however, it is possible to
transform (VII.5.02) into - : '

p= ;’;f grady B(k) (VIL.5.03)
- . a " d
01'.‘ P %_k_, E(kis km k,) Py = %E'k; (k-t; km kl)
m a4
P = ‘ﬁaz E (kz’ km k‘)

Herewith the mean momentum can be computed simply from the

,var'.iat,i_on of the energy B with the wave number k.. This variation
E(k) is at least qualitatively known (see, e. g Figs. VI1L.3.10¢c, VII.3.11,
and VIL.3.12), so that quahts.twe statements regarding the mean
momentum belonging to a state (VIL.5.01) are possible.

The derivation of (VIL.5.03) from (VII.5.02) demands, unfortu-
nately, a certain amount of calculation. = We shall make it somewhat
more general than is required for the present purpose.! The point of
departure is the Schrodinger equation (VIL.1.01)

|- 2 s e~ B0 |0 =0 (VIL500

energy and the momentum. This is posa.lble in this specml case because for the
free electron, with Ep. = const, the operators of the total energy and of ‘the
momeéntum commute, For a free electron a state of sharply defined total energy
also happens to be a state of sharply defined momEntum See in this connection,
e.g., K. Fues in Wien and Harms, ‘“Handbuch der Expenmentalphya:k Ergéinzungs-
werk,” p. 212, Akademische Verlagsgesellschaft, Leipzig, 1935, and H. A. Kramers,
“Die Grundlagen der Quantentheorie” in Eucken and Wolf, '"Hﬁnd— und Jahrbuch
.der Chemischen Physik," - pP. 138 and 162, Akademische Verlagsgesellschaft,

. Leipzig, 1038. :
1 The general formula (VII.5.08) is employed, e.g., at the very top of p. 186 in

W. V. Houston, Phys. Rey., 57: 184 (1940).

BT i el i
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ich i dxﬁerentmtad with respect to kz: T

-

-:5, Lo i ]\b(r K+ [- 2 e eU(r) - E(k)]ak W3 )
i | o

€ _ B2 .
. LEE;\!/(I'; k) + [-—ﬁ— A —eU(r) — E(k)]
[Jzu(r k) eikr + 2_‘!_(}‘_]1‘2 eik-r] =0

" We now multlply from the left with np*(r, k') and mt.egrate over the
P iupdamental domain! s

f Vs TG k)cw

annd
: J V¥(r; K) [— A () — E(k)]

:__‘_  K R o [m(r 1) + 2N e’"“‘] dV =-a0 -

-

! In the first integral we utilize the orthogona.hty of the mgenfunctmna -
~ The second integral i is split into two integrals:

) -
B ak e : 5 h
s f 1p*(r k’)[ —-i‘“A 2 eU(r) E’(k)] Joy(r; kWV
Viund
V= (r; k’) [.._ E_A S cU(r) E(k)] é'u(r, k) e”“ dV
Frund 1
: I
= {4 —0 (VIL5.05).

RIT ot i 4
~ We first treat the third term of the suﬁn, in which we can
. 1.0f course, k and k' do not pertsul to an mc:dentandd:ﬂmcted wave, as in §3,
* but are arbitrary wave vectors. After all, there i is no chﬂ'mcted wave for arbitrary
N .:_.k. i 1 .
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make use of the Hermitian character of the operator of the total
energy [—A2A/(2m) — eU(r) — E(k)], since both ¢*(r; k) and
[du(r; k) /65:,]_&"““ are periodic in the fundamental domain:!

. * 5 z y
T = ?%7@ eﬂr-r{ £ %‘ A oli®) i E(k)] V*(r; k') dV
Viund

With the Schrédinger equation (VIL.5.04), with k' replacing k, we
obtain !

Il — v[ 2L i@y — BOOW*r; k) av
- m ¥ : L 7

. and, furthermore, with Eq. (VIL.5.01) in which, again, k has been

~ replaced by k',

i J WK o) — B@WA e K) oy (VILS06)
fund ;

We now turn to the second term in (VIL5.05). Since jay(r; k) is
not periodic in the fundamental domain, we cannot make use of the
Hermitian character of the operator [—A%A/(2m) — eU) — E(K)].
We note instead that : :

A (5 1) = 2 AP B +2-1- 2y ) + 0

' It is not always noted that the validity of the commutation rule for a Hermitian
operator depends on certain properties of the commuted functions. Thus the
momentum operator p,, = (#/7)d/dx is Hermitian. ‘However, the relation

J*popg dz = fﬂP:pf‘ dx
rests on an integration by parts
. . =

T=xy & =za

hod ft f d
g, Sk Ny e * 10 =3 e p P g, dz
X =y ; Tw=T) 4

It applies in the simple form here employed only if [f*(z2)g(zs) — 7*(21)g(z1)]
vanishes. This is true in most quantum-mechanical problems, since we ‘consider
here only functions f and g which vanish at the limits z1and z;. In problems with

a periodic potential field, this difference vanishes for a different reason, namely,
‘the periodicity in-the fundamental domain T = —~Ga/2, v, = +Ga/2:

fe) =1 (+5a) =1 (= %) = sz

glxs) = g (+ga) =g (* %a = g(z1).
[*(@2)g(x2) — f*(21)g(21) = 0
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_and hence ‘ |
ﬁ!

.. b — eU(x) *_.E(k)] ) (x; )

=x-[—-£A—eU(r)—E(f:)]gb(r'k);£-2ivp(r°k)
2m _ LT ] I Ll
=z L0 B LS Y

: moz "’

_ The last is obtained with the aid of (VI1.5.04). If we use this simple
~ expression in the integrand of II, we find y

3 i Wve
I~ f VA (x5 K (— s k)) ay

-4 Viund
. —-;j VA k) S5m0 k) dY
- fund P

B ) A
== f V(5 K)Pe W (x; k) @V = D payy,  (VIL5.O0T)
8 _ Vtund ) i "o ::. '.
 Here p.,, is the so-called matrix element of the x component oftﬁe

~ momentum operator (VII.5.02). - :
~ Equations (VII1.5.05), (VI1.5.06), and (VIL5.07) together yield

- st e+ BG) — B

wr(e; ) 2B awrr gy — 0 (VIL5.08)
_ . Viund G _a :
i For the present occasion, we need only this equation for k = k'. Tt
- then yields immediately
£ - _ 3
3 ok
., the = component of the desired relation (VIL5.03)

. e e O
B ‘ : ! Pz = _p’kk o _,; "a_‘x;:;

~ Herewith the valuable relation (VIL.5.03) has been proved. We shall
~ now proceed to its physical evaluation. R A ol Mo

~ In general, the total-energy E will depend on a wave vector com-
- ponent, such as k, in the manner shown by Figs. VII1.3.10¢ to VII.3.12.
ance, we deduce from (VII.5.03) that the mean value of the cor-

i
-

1
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responding momentum component vanishes at the band edges.’ The
fact, represented in Fig. VII.2.5, that the wave function becomes here
a standing wave—at least in the z direction—is in agreement with this.
The curve of the energy shows its steepest inclination near the
centers of the bands. = These states have, therefore, by (VII.5.03), the
largest momentum values.
The mean momentum p is related to the mean velocity v by

1
v==p . (VIL5.09)

since the velocity operator ?r./jm 'gmd and the momentum operator
%/7 grad differ only by the factor 1/m. Thus we find from (VIIL.5.03)
for the mean velocity '

o % grady (k) (VIL5.10)

This rather abstract discussion attains a certain graphic significance
from the identity of the mean velocity v for a state (VII.5.01) with the
group velocity of a wave packet formed by neighboring states centered
about the state (VII.5.01). This identity may be demonstrated with
the aid of (VIL.5.10). The time factor for a state (VII.5.01) is
e~ UME®- g0 that the frequency (1/k)E (k) is no longer simply propor-
tional to the wave number k. There is, hence, dispersion.’ In a
one-dimensional example the group velocity is then

dw 15d
. . Rk _
“By (VIL.5.10) this is identical with the quantum-mechanical mean
value '
| Lgiaids f V4 1) 2 grad (i ) dV
mP mv il 5 ’
fund

1 8ince we are dealing with a quantum-mechanical mean value, any particular
measurement can yield & value for the momentum component in question which
differs from zero even for a state at the band edge. On the average, for many
measurements, however, equally large positive and negative values must ocour
with equal frequency. The quantum-mechanical mean value of the kinetic energy
for & state at the band edge is, on the other hand, by no means zero. Here meas-
ured values of p! are averaged, whereas for the momentum measurements p.
itself is averaged so that positive and negative values can compensate each other.
These circumstances are related to the fact that the ¥ function which becomes a
standing wave at the band edge may be represented by a superposition of equal
numbers of plane waves running to the right and to the left. )

* A, Sommerfeld, “ Atombau und Spektrallinien,” vol. II, p. 8, Eq. (14), Vieweg-
Verlag, Brunswick, Germany, 1944. See also W. Shockley, ““Electrons and Holes
in Semiconductors,” p. 160, Fig. 6.2, D. Van Nostrand Company, Inc., Princeton,
N.J., 1950. : Ly
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~ All this is familiar for the plane waves of a free electron; however, the
. validity, here demonstrated, for the lattice-modulated waves of an
~ electron in a crystal is by no means obvious. |

~ To obtain, finally, an expression for the current density correspond-

. ing to an electron in a crystal with the eigenfunction
Y k) = ulr; k) et*

ﬁ . *
E. _ i (¥* grad ¢ — ¢ grad ¥*) .
," for the flux of probability density of an electron with normalized
~ eigenfunction y. Multiplication with the charge —e leads to the cur-
_;-..' rent density :

(v* grad ¢ — ¥ grad ¥*)

e
- = |
. For the stagionary solution y¢(r; k) with a probability density
~ *(r; k)¢(r; k) independent of time which we shall substitute in this
. expression, the divergence of the current density vanishes according to
" the continuity equation.? In the one-dimensional case, the current
* density must hence be constant in space. In two- and three-dimen-
~sional cases a solenoidal component may be added, which, however,
. must have lattice periodicity since the wave factors e/’ and e=7/**,
~ which are periodic in the fundamental domain but do not have lattice
. periodicity, cancel each other in the foregoing expression for the cur-
~ rent density. Such solenoidal portions of the current density, which
~ are repeated from unit cell to unit cell, obviously arise from electron
" orbits about the atom cores if they exist at all. They are of no interest
~ for the macroscopic eurrent density produced by an electron in a
~ orystal. If we cause them to vanish by taking a space average, we
~ get for the mean current density iusge of & single electron in a crystal

i.,..,.=~2—§.%~7~f;j (" grad ¢ — y gred ¥) -V (VILS.L)

&) >

By a transformation we obtain

e A A
Snee = —i—w-l-pf (¢*-?gl’&d¢+¢':;gradtﬁ")-dv’
7'.[ i fund
" 8, 0, F. Fues in Wien and Harms, “Handbuch der Experimentalphysik,

. Erginzungswerk,” p. 150, Eq. (5.6).
2 ]bid., p. 149, Eq. (5.5).



208 VII. The Band Model

and, furthermore, if we utilize the momentum opergtor and its Hermit-
ian character,

: iy '

g ";%'V—:zU i AR ‘f wp:rpw*drf]
i fund 3 Tund

i o b SRl *

Iningls — m Vh-d / w popv dV \

Viund
According to Eq. (VII.5.02), the integral is equal to the quantum-
mechani¢al mean value p of the momentum. We obtain, therefore,

gt s Sl (VIL5.12)

If, finally, we make use of (VII.5.09) and (VII.5.10), we obfain

PL il MEy % grade B(k)  (VIL5.13)

idm T V.fund . i V!’umi

If we recall that

e L

p=— é

fund

is the charge density for uniform distribution of the electron charge —e
over the volume V.4 of the fundamental domain, we find complete
analogy with the classical formula

Current density = charge density - velocity of convection

The same formula could have been derived with the aid of wave
packets, for which the velocity of the center of gravity equals the
group velocity v of the ¥(r; k) waves. Such a derivation would, how-
ever, fit in with corpuscular notions. We prefer to give, in §9, pages
246 to 247, a derivation of the equation y '

- i (2
linge = — 7 V
Vv

from a completely corpuscular standpoint.

8§6. The Effect of an External Field on an Electron in
a Crystal and the Effective Mass of an Electron in

a Crystal

Conduetivity questions require a clarification of the action of an
added external force on an electron in a crystal, We shall treat this
matter first for a free electron.

*
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k. The Free Electron under t_he Influence of an External Force F

~ If an electron is accelerated by a force F, its energy E increases with
~time. Hence, the determination of the law of acceleration is not
facilitated by a derivation of the stationary states from the time-free
- Schrodinger equation with the aid of some boundary conditions, a
~ course which is appropriate in a great majority of quantum-mechanical
'_ problems Instead, we must proceed from the hme-dependent
e Schrﬁdmger equation

: T M« + By ¥ = jh— ‘3"° (VIL6.01)

and follow the evolution in time Y(r, ¢) of a given imtlal state ¥(x, 0).
- If the free electron is subject to no external force, its potential energy
3 18 constant in space:

By = —eU (VIL.6.02)
-;.a,:_]d (VII.G.O]) is solved by the plane wave

) We may check this by substitution of (VII.6.03) in (VII. 6.01) and will
*then find for the dependence of the energy  on the wave number

T L g e = [k|= (VIL.6.04)

. Let, now, the electron be subject to an external force F wh.lch for
~ﬁhe sake of convenience, we shall assume to be constant in space. It is
b hence derived as a negatlve space gradient from a potential —F - r! so
tha.t the potential energy E,.. is given by >

2 mstead of by (VII.6.02). Equation (VII.6.01) therefore assumes the
,' 1 Thus, in component notation we have

P SR i B D E )

Fo= ~ 2 (-F. 2 —F, .y = Fu-2)

F = -——-(—F m-—F,-y—-F.-z)

y m‘, in a single vector equation,
F = — grad (--F r)

Ve ) = i Ry o idre LB i o)

T R e N R (VIL6.05)

Fl
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form

) e : . pidy a‘b' . :
— o= AW — eUnb — F-xy = jh o (VIL.6.06)

We shall see that this equation is solved by the following formula:

Tt

W(x, 1) = ¥(r; k() - exp [——;} f E(k(r)) d,]

70
T

et [k(t) = —% [ E(k(r)) -dr] (VIL.6.07)

r=0

Here the wave number k is assumed to have the following time
dependence:

K@® = k@O + ;Ft o k@®=;F (VIL6.0S)

By definition, we understand by E(k(t)) the same functional depend-
ence of the energy on the wave vector k as for the absence of an external
force. Hence, also by definition, Eq. (YII.6.04)

EE®) = —eUo+ g0 k(OFF  (VIL6.0Y)

continues to be valid for a k(f) varying with time. We shall verify the
formula (VII.6.07) by substitution in (VII.6.06).

Before this, some of our readers may welcome a somewhat more
concrete description of the physical situation expressed by the for-
mulas (VII1.6.05), (VII.6.06) and the solution (VII.6.07), (VIL.6.08),
which up to now has been presented in purely mathematical and hence
rather abstract terms.

We have assumed the force to be constant in space, so that there
exists a constant force field throughout infinite space. The picture
contains neither the origin of the lines of force at some surface charge
nor their ending at some other surface charge. The solenoidal elec-
trical field in the accelerating tube of a betatron may serve as an
. example for such a field. The field is produced by the time variation
of a central magnetic flux. Its lines of force are therefore circles.
They do not originate at or end on electrical charges, but form closed
loops. - If the accelerating tube has a very large radius, we can forget
about its curvature, and we have an unbounded, though not infinite,
space in which the same force F prevails everywhere—at least in the
direction of the field—as soon as the central magnetic flux has begun
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; to ohange. If, at the matant ¢t =0, ‘even beforé the “mtcbmg on” of .
. the force F, electrons are travehng in the accelerating tube, they will
-1 “be. represented by a wave with an appropriate wave vector k (see Fig. -
~, VIL6.1). ‘Solution (VII.6.07), in combination with (VII.6.08), tells
’_ us that the electrons in the accelerating tube are represented also after

the mtchmg on of the force by an unlimitec "plsne” wave whose

! &(1,0} G Tl wixt)

Fm VILS. 1 ]'*.‘lacm:an wave a,t. tho hme Fia. VII 8.2. l':ﬂsctroﬂ wave at a later
-0 - : . timet >0, sforethavi.ﬂg act.ed since
1 S T o t=0. o

% wavelers:;th remains GOnst&nt m spaee, but becomes umformly smaller :

with time (see Fig. VIL.6. 2)
We now proceed to the venﬁcatmn of {'.he solution _ (VII 607),

- (vu 6.08) and obtain first from (VIL6.07) by differentiation
a,,w(r 0 = gh) ¥, )
ax, x"(r, ) = ~k=(t) Vet

— ——--A(b(r, ) = o 2 lk(t)l’ &(r t)

2 % M,(,, 1) = [E(k(t)) + eU.l \b(r, f)

j.'_". .;,, it b imp(r, - eU..p(r, 3= E(k(t)) U, 8 (VII&OB)
. " We could have wnt.ten down Eq. (VII 6. 09) even without calcula—

':‘7.' ‘tion, since, by daﬁmt;on, ¥(r; k) = A e®T satisfies the stationary
- Schrﬁdmger equatmn in the a.bse.noa of an external force: 2

ot 5 M(r, o)l o k) = E(k)\b(r, k)
If k, instead of belng constsnt varies with a pammeter which does not

- occur in the stationary equation, namely, time, this does not detract
= from the fulfillment of the stationary Schrodinger equation provided
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we must form

'1'-‘

l%ll'(r; ) = {u{r k(t)) - expzl-k(t) ro- f E(k(r)) d‘r]}

=)

S [k(t} x— Lok |y, 0 + (ELUI0

A au(r;'k(t)} kn(‘) S ?E_(_ELE_(QA f;;‘“)) exp 7lises vl

% \(w(r, ) =j []L(i!) i —E’(k(t))] y(r, 2) + grady u(r; k(?)) - k()

T

- exp ;,:'_ [k(t) PRIy j E(k(z)) dr]
r=0

With (VII.6.12) we then find

2w ) = —(F -, ) + BR@O)WG, 1) + JF - ghady ur; k()

rom=f

exp:;[k(!) r— 2 f E(k(r)) d‘r] (V11614)

" A combination of (VIL.6.13) and (VIL6.14) then shows that’
(VIL1.6.11) almost satisfies the Schrbdmger equation (VIL.6.10). The
term jF - grady u(r; k(2)) - exp j[ - - - ] on the right side of (VII.6.10)
remains uncompensated, however. ;

We shall now show that this failure of the assumption (VII.6.12)
arises from the fact that it does not take account of transitions of the
electron into higher bands which may take place under the influence of
the added force F. To this end, we shall try to improve on formula
(VIL.6.11). It appears reasonable to replace the simple expression
(VI1.6.11) by a sum of such expressions with initially unknown ampli-
tudes 4: ' -

) n-+-—-—1

A&(:c, £) = 2 E Anapne (:c kw + 5 Ft)

N'ml n'= =%

" exp [;'" % f E'N'-(k.‘ S %F‘r) d‘r] (VfI.S.IS) ;
=0 L3

For the sake of simplicity we have passed over to the one-dimen-
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.0“31 case. Hence Eq. (VII 2.05) gives for the mdxwdual ‘wave-
& umber values : '

a

k=

Q=

'J The summ.atnon over ' in (VII 6.15) thus encompasses all G eigen-
. functions of a band, the summation over N’, the several bands. Even
h é’hm extended formula, however, does not lead closer to the goal, since
"m we have on the right side of Eq. (VILG. 1(}) a sum of ‘uncom-

JAwwE 6% uy’ (,,;..k;, i 1F¢) expil + - ¢ ]

qu‘im (5)%"( kv + 5 F‘) exp [_E f Ey (kn +th) ]

'4 n'-+-——1

E E qu‘im (&)Y (x b 5 Ft)

N’-l;a‘-—-ﬁ : : . i
. reaf " i
axp[ ﬁfENf(k,f-}- F‘r)dr] v
- =0 : !
B s e fa : o ' .
‘_ g + 2 JAN' e(t) -F - &‘l&m (z;-k“: +%F¢) _

2. 1 ..
exp:[(k. + Ft) z—3 f EN*(.’# +hFr)dr] .

i (VIL6.16)
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i 'For every arbitrary but fixed point of time:

" _' uy (’:c; ka + %Ft)’-' E%ux (z; kv + %Ft)

..”.4"..(:) - —1F E Ann® J ;;, (zk s %Fz)

N'=1
f ; : Bkun-(z,k.+ﬁFt) av L VRGBT

- ; r=i )
:' * exp (-{- % f [EN'_(E:“ + iFf — B (k. + %F-r)] d_rl
A 0

o=

. The dropping out of the summation over n’ indicates in particular
_ that for an electron which at the time { = 0 is represented by a fune-
tion ¥n(2; k») no other wave numbers k. play a role. More precisely,
~ the action of the added force F changes the wave number k in aceord
with the time variation (VIL.6.12), and the simple assumption
~ (VIL6.11) would describe the behavior of the eleetron completely if
~ states with equal k() = k. + Ft/h were not excited in other bands
- N’ # N in the course of time. Equation (VII.6.17) teaches in effect
at, even if at ¢ = 0 only a single coefficient Ay, differed from zero
2 %d the electron occupied accordingly only the state k, in the band No, -
pii §ll other coefficients A y', will, in principle, be different from zero after
& hme t, 80, th,s; the added force I/ effects transitions into every other
d N’ = Ny mth & certain probabﬂlty This probability is meas-
ured by the squagre of the absolute value of 4y Carrying the treat-
ment of the system of differential equations (VIL6.17) for the infinite
ber of coefficients Axv, further should indicate with what fre-
ncy transitions of the electron into another band occur for a given
mgnﬂ.ude of the force #.! However, we shall be able to answer this

1 We would use Eq. (VII.B.17) for this purpose. ‘The preceding presentation
il ows W. V. Houston, Phys. Rev., 57: 184 (1940).  We should also mention in this
nnection ¥. Bloch, z Physik, 521555 (1928); R. Peierls, Z. Physik, 53: 255 (1929);
A,Bet.hemGeIgerandSoheel ‘op. cit., vol. XX1V, part 2, p. 507; 1. Jones and

Zener, Proc. Roy. Soc. (London), 144: 1(]1--117 (1934); J. C. Sls.ter, Revs. Mod.
M 6: 200 (1934), particularly p. 259; and A. H. Wilson, “The Theory of
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question more simply in another manner in §7. We shall see here also
that only extraordinarily large forces can effect the transition of elec-
trons into other bands with appreciable frequency. For forees of
ordinary magnitude we can state simply that the electron is repre-
sented continuously by one! solution ¢(r; k) of the stationary Schréd-
inger equation in the absence of an external force, the variation of the
wave vector with time being given by -

L %F - (VIL6.12)

- Equation (V-II.6.12) has very important physical consequences,
which we shall discuss next. _
¢c. The Effective Mass of an Electron in a Crystal
Equation (VIL.6.12) together with (VII.5.10) lead to an analogy
for the equation for a free electron ;
1
m

O ) (VIL6.18)

For the sake of simplicity and to obtain a general view of the situa-
tion, we proceed from the variation E(k) (VI1.4.04) which is com-
monly assumed for the neighborhood of the band edges and which we
shall now write in the form?

B = Brs o+ Y55 (Ko [(Be — Favornd)? + (B = Fyrousa)?
+ (kl e _klwund)’] (VII-G{IQJ

In fhis particular variation of E(k) with the wave vector k, the second
derivative B’ (kuu) With respect to the absolute value of the wave

/

Metals,” Cambridge University Press, London, 1835. The books of Fréhlich,
Seitz, and Moti and Jones give a very simple proof for (V11.6.12) with the aid of
an energy theorem. We fear, however, that in this very simple proof & very
important part of the matter to be proved—namely, the continuous representation
of an electron in the crystal by the solution ¥(r; k) of the stationary Schrédinger
equation in the absence of an external force—is implicit in the formulation of the
‘energy theorem so that the further deductions only give a more precise picture of
the nature of the time dependence of k. For a further objection to this argument,
see Shockley, op. cit., pp. 424-425. With regard to this whole series of questions,
see also 1. Phrsch and 1. Spenke, Z. Physik, 137: 309 (1954). .

1 More recently it has been found, however, that inc ertain problems (related to
Ehrenfest’s theorem) transitions to higher bands must be considered even for
weak forces [see D. Pfirsch and E. Spenke, Z. Physik, 137: 309 (1954)].

¢ The replacement of “const” in Eq. (VII.4.04) by }4E" (|kpounal) 38 obtained
from a Taylor expausion of the function F(k) about the point k = kpoand.





