L

: ﬁwes of E with respect t.o one of its componente kz, Ky, or k.. ‘4
For the special case (VII 6.19), the evaluation of (VII 5.10) yields an

!fequat.mn ‘
t ve=z E"qkw;) (k — kw) 4 (VIIG%)
';'_"’:Diﬁerentiation with respect to time results in

E"(|k.m..al) k . (vILe21)

w]:uch with (VII 6. 12), leads o R 3 . J
B (|Kpouma) -+ F _ (VIL6.22)

}"l

‘ Gompamon of this relation (VI1.6. 22) for an electron in a erystal with
* Bq. (VIL.6.18) for a free electron shows that for an electron in a crystal
o the electron mass is replaced, in aocelerstlon processes, by an effective
' j m . (VIL6.23
* ¥ Mogt E”(Ikboudl) : ( )
.-" Before turmng to the 1mportant physieal consequences of this equa-
g ﬂon, we shall consider the case of a more general variation E(k).
 To thisend we dlﬁerent.mte e.K., tha x component of (VILS5. 10) with

reupecttotlme
2 ) 2 i
2K aE k]

....__?'3“‘ m[ B(ks, by ')] [ak’ ket g5 3 b 9. o,

. and combine. thla equatnon with the correapondmg ones for iy and #, in

_ 1 8 E { i :
where the aymbol 6‘E/Bk; ak,.. denotes the tensor ' i,

a*E 3PE 3P ]
ok ok, dk, Ok, ok,

ko aE  9E ?_’E
e | Ok, Ok, Ok, dk, ok} |

o ¢ ..'w
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9’E 3 FE OF
(ak; ak_) ok, k. ok: ok, ok, (VII'(?.'%).
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to (V11.6.18) the equation

IR o L (oo Lol '
'—"f;f(ax-;‘az; o oy L Oy

We see tﬁat, in general; the reciprocal effective mass of an electron in
a crystal has the character of a tensor, By the choice of suitable axial
directions z, y, 2, such 8 tensor may be transformed to principal axes or,
in other words, the nondiagonal terms 9*E/dk. dk,, 9°E/dk, ok, etc.,
can be made to vanish. Equation (VII 6.26) can then be replaced by
three component equations

1 8°E . 18E 198
9s='__'_'°Fs f.’ —-4‘—5‘3'13 .="""-—'Fl
& f”’ﬁki % lak h ‘ik (VIL6.27)
£ — Jppt—e s . = - " — F‘
0 - Maett Fa 4 My ot y A My otr

We see, then, that three effective masses determine the acceleration in -

the directions of the three principal axes

h? h? : 1 R i
g e SR AR I M SR E T B AN )
. ak? - ok} ok} .

For a force F pointing in an arbitrary direction, the accéleration ¥ will
thus, in general, no longer have the same direction as the force F.

What are now the: physical consequences of Eqs. (VII.6:22) and
(VIL.6.23) and (VI'I 6.26) and (VIL.6.28)? The most striking feature
of these relations is perhaps that Eqs. (VII1.6.23) and (VII.6.28) lead
to & negative effective mass at the upper edge of the band, where E(k)
has a maximum! (see Figs. VII.3.10 to VIL.3.12), so that the second
derivative of the energy with respect to the wave number becomes
negative. For a force acting in the direction of motion, an electron
energetically close to the upper band edge is hence decelerated instead
of accelerated.? : , '

1 This apparently so obvious statement doea.nsot. apply with such generality.
In three-dimensional lattices, the relations at the band edges can become very
. complex. We mentioned this already on p 180 with reference to the face—centered
cubic lattice.

3 We should note t,hat. the transition from pos1t1ve effective masses in the lower
part of the band to negative effective masses in the upper part of the band does
not take place by way of m.q = 0, but by way of my = «. This applies, how-
“ever, only for one coordinate direction at a time, c.g., the z direction. In the

‘three-dimensional ¢ase an electron with the particular energy pertaining hereto

will fail to react only to a force acting purely in the z direction because of mey = w0,

whereas for the y and 2 directions the effective masses will remain finite. Thus, '

[ R
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This statement ceases to be objectionable as soon as it is remembered
t almost absurd procedure was followed in defining the effective
s. An electron in a crystal is subject, first of all, to very strong
exerted by the lattice. In defining the effective mass by the
gﬁu&t&on Vv = F/m.., we in effect disregard the lattice forces and act as
Gl.lgh the added external force F alone were present. It must not
rise us if, in this procedure, strange values are obtained for the
tive mass, since the lattice forces disregarded in the equation of
finition ¥ = F/m.q express themselves in these anomalous values.

L E() et 0t AED]

e,

N

il ¥ . Aoothng :_ : . *c L i
=X eorTa % 00 F ST TR
{ Fig. VII.6.3. Relation between binding and tesr.
Strongfmdmg _ s Weakjlainding
Narrow bands " Widebands .
E”(k)l amu & s”(:;_)l large
Mott lnrge LI . i Mot sma'.ll { N

In parhxcular for an e.lectmn lying energetlcally close below an upper
g of a band, the clrcumstanoea are such that a force acting in the
etion of motion further increases t.he energy, so that the electron is
ught still closer to the band edge. As a result, its elgenfunctwn
jcomes still more nearly a standing wave by increased Bragg reflec-
on of the lattice and the mean velocity of the electron decreases. It
n clearly how the action of the lattice, which is dmregarded in the
uation of definition v = F/m. is responsible for the seemingly
ge behavior of the electron.

We had noted on page 200, item 6, that strong binding of the elec-
ons to the atomic cores lead.s to narrow allowed energy bands. Now
VIL.6.3 shows that for DAITOW energy ba.nds E"(k) is sma.ll and

hermogt elodtrons of & half-filled band will never f&ll 1o react to forces of
ry direction; 'thu' mabihty to cha.nge thmr veloolty ex.lsts ‘at most for spe-
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' oloclty operator h/;m grad and is henoe a mmple consequence of the

. veloclty operator may then be identified with the group veloclty both
_ for the electron in a crystal and for a free electron.
2. From the analogy of Egs. (VII 6.12) and (VII 6.32) we see that W

~ the same role as the ordinary momentum p for the free electron In
-' ": _general, p = Ak applies only for the free electron.

. 3. Equations (VIL.6.27) and (VIL.6. 28) a.pply in this simple form

 only when the tensor 0*E/ky Ok [see Eq. (VIL.6.25)] has already been'
t‘.ra.nﬂiormed to pnnmpal axes.

§7 The 'I‘rans1tmns of an Electron into the Next
ngher Band Eﬂ‘ected by an External Force F

ln §6 we have seen that the stationary solutions
.p(r k) = u(r; k) elkr _ (VII 7.01)

?.-,, of the i’erce—free problem have a certain sigunificance also for the
J lbeha.vmr of an electron under the mﬂuance of an extemal force F It

x "V II.?.OI) ‘At the same time, the wave vector k did not remain con-
b tzmt but va.ned accordmg to the law

J'c = EI«; | (VI1.6.12)
Tn treating, here, the transitions of an electron into another band
der the influence of an external force F in a manner originally
mployed by Zener,! we ut:hze another Slg;nlﬁmnce which’ the sta-
ionary solutions of the force-free problem retain in the transition to
the problem with an external foree. To explain this significance we
all the well-known wave-mechanical calculations on the trans-
mission of an electron _through a potential barrier (tunnel effect).
re the potential barrier is not treated as an external force, and there
18 no attempt to seek solutions varying with time of bha force-free
1 blem instead, a stationary solution is obtained of the problem with
otential barrier.  The solution in front of the barrier is then composed
two stationary solutions of the force-free problem, which may be

L C. Zever, Proc. Roy. Sec. (London), A145: 523 (1934).
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interpreted.as incident and reflected waves and thus represent electrons
which are moving toward the potential barrier and have been reflected
by it, respectively.! In the space beyond the potential barrier the
golution is identieal with ene stationary solution of the force-free prob-
lem and is interpreted as a transmitted wave. The desired probability
of transmission of the electrons through the barrier is the ratio of the
squares of the amplitudes of the transmitted and the incident wave
i.e., of two stationary solutions of the force-free problem. -
Zener utilizes this significance of the stationary solutions of the
force-free problem for the problem with an external force—a signifi-
cance entirely different from that in Houston’s procedure—for the
treatment of the transition of electrons into another band. Just asin
the treatment of the tunnel effect, we first obtain a stationary solution
of the problem with external force. In one part of space this solution
is identified with electrons in the lower band, in another part of space,
on the other hand, with electrons which have passed over into the

upper band. 5 I : _
Zener obtains the stationary solution of the problem with external

force? F 2 ' :
0 21;_‘ V(@) — (eUlz) + F - 2)Y(x) = Ey(x) (VIL7.02)

by the following consideration: Even field strengths of the order of the
‘breakdown field strengths (e.g., 10® to 108 volts em~!) produce poten-
tial differences of only 3 - 10~* to 3 - 10~* volt within a lattice constant
(e.g., 3102 cm). On the other hand, the variations in the lattice
potential U resulting from the atom cores within a lattice constant are
of the order of 10 volts.* We see hence that in (VIL.7.02) the term
F - z is practically constant, as compared to the lattice potential U(x),

1 It should be recalled that an unlimited plane wave of finite amplitude is inter-
preted most simply, in view of normalization difficulties in infinite space, as a
representation of a beam of many electrons of equal velocity rathersthan as a
representation of a single electron. The square of the amplitude of this wave
is then a measure for the intensity of this “cathoderay beam.” : .

2 For simplicity we consider the one-dimensional problem. For the reason for
- employing E in place of E, see p. 226. o _ , :

3 Along a straight line ‘along which there lies a row of atom cores the variations
of potential aré even infinitely large since the potential energy of an electron
becomes negatively infinite when it approaches the nucleus of an atom core arbi-
trarily closely. Since the valence electrons, which are here of interest, remain at a
certain distance from the auclei of the atom cores, the ionization potentials give &
reasonable order of magnitude for the potential variations in question. These are,
however, of the order of 10 volts, The Fourier coefficients of the threefold periodic
function U(z, y, #) are of the same order of magnitude. See H. A, Bethe in Geiger

and Scheel, op. cit., vol. XXIV, part 2, p. 423.
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' over & range of many lattice constants (w0 g VILT. ig, For this
rehson Zener claims that £ :
= v o %

£l k(‘)# _

Y(z) = u(:c k(z)) e =0 iy (V11703)

;g;a good appronm.n,t.e so!,uhon of (~VII 7 02) Here the wave number
. k(=) isnow a function of # in so far ag it depends in the samé manner on
‘eE+anaonEmtheforce—£reecaas,1e asmFlga VIISlOto

i i et Achnl variation of potential mqr -eUia) =

] i Uit S o R s 4

*’nn R T e Xn4-3

Lo F r'E.' s g
Hlely =E+Fx,.+l i_E'+Fx.',.',.z’['-

Volues o? crysra! energy of the electr
: m ﬂw sever01~ miérvals

B o) TRV 2 SR i e sy SR

Determination of the wave, numbers pertaining
i to the several intervals from the relationship
- between wave. number ond crygtnl energy

an VIL7.1. The ongmof Zener’s appmxsmat.a solution

BT . O A B Lol gt RRY . Ise s

}‘ k (a)_ss
V@) =uG; k(z}) e"'” :

’VII 3.12.! This is seen m.ost. simply by subdividing the axis into
\ intervals z;, 2, . . . By Tngly v and‘a.pprommstmg Eq. (VIL.7.02)
within an interval z.. & < Taps covering several lattice constants by

= 2—";&’ () — eU@W(2) = Eoyuu ¥ (2) (VIL.7.04)

" 180 far Figs. VIL3.10 to VIL3.12 have always been regarded as reprosentations
3 of the dependence of the energy in the crystal E on the wave number k. In quite
e same manner they represent the inverse function, i.e., the dependence of the

vanumberkontheenmmthourymﬂﬁw
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with Foyea = E + Fz,, i.e., by the force-free Schrédinger equation
with the value E + Fz, for the energy of the electron in the crystal.

To explain the concept of the energy of the electron in the crystal
By, We note that the energy of the electron in the crystal is in part
kinetic, in part potential in nature. In the potential energy we can
again distinguish between the part which arises from the lattice poten-
tial U(z) and the part which arises from the external force /. 'We now
combine the kinetic energy of the electron in the erystal with the por-
tion of the potential energy arising from the lattice potential in the
“energy of the electron in the crystal” FEuyuw, since thiz part of the
total energy E arises simply from the fact that the electron occupies &
certain quantum state in the force field of the crystal. - If an external
force F is applied to the crystal, the energy of the electron in the
crystal at the point z = 0 and at the point # must differ by the araount
F - 2. In this manner the potential energy supplied by the external
field of force is compensated, and the total energy E of the electron

has the same value as that for a solution of the stationary problem

(VIL7.02).

' The subdivision of the total energy E into a pm —F - z arising from
the external force F and into the energy in the crystal Fo . is meaning-
ful only because the forces under consideration are so small compared

to the lattice forces that —F - x varies very slowly in comparison with'

the rapid variations of —eU(z). Thus, in U(z) we are dealing with a
micropotential, in (1/e)F - , with a macropotential. This distinction
will be found highly important in Chap. X. For this reason we dis-
tinguish even now between the symbol employed for the total energy
E and that for the energy in the crystal Feyua or simply E. If we
denote the macropotential by V(:r:), we have

E = FBuyua + (—6) - V(.‘-":)
or, in the present case, E = Fo,ua — Fz. See also pages 336 to 338.
Zener's formulation (VIL.7.03) may also be written in the form

' i ‘*(‘J“"‘ [ k(z)d= | .
V(z) = u(z; k(z)) - e [81.0 : zv-[:. ]

Trezy f P
¢ J f k@de § f k(z)dz
= u(z; k(x)) e *=° S S

In the interval considered this becomes, because of k(z) = (%),

i Mol :
Y(z) = u(@; k(za)) v =7° . @ik (en) () :
5 Y(x) = const - u(z; k(z,)) - ef@= (VIL.7.05)
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- This, however, is the ‘solution of the subatltute force-free ppoble:n‘
| (VI11.7.04) introduced: for the interval 2, < z < Zuys

inAs long as the value E + F - z of the energy of the electron in the
crystal falls into an allowed energy band of the force-free problem
(VI1.7.04) (see Fig. VIL.7.2), the wave number k is real and (VIL.7.03)
has the usual chara.cterof a latti ce-modulsted plane wave, though with

frah ; 1 | ‘T" ’
k real e k complex —»1-= k real

' Fra. VIL7.2. The regions of real and complex wave number in the passage of an
deetmn through s forbidden band.

the energy of the electron in the crystal enters a forbndden band, the
vave number k becomes complex, and (VIL.7.03) falls off exponenna.lly
e page 199, item 2, also Eq. (VIL.7.05)]. As, for further increase in
, the value E+F -z of the énergy of the alectron in the crystal
ally entersthenext.band e.g., at z = z¢g > zg, the wave number k
omes once more real and (VII.7.03) assumes again the character of
tice-modulated wave. As for the tunnel effect, the trg.nsmission
bility w of the electron through the forbidden band is given by
tio.mxc)l"/lw'(xa)’ 5. With (vu 7.03) this leads to

{ kﬁ(s)dx
|¢'(3=o){ lu(xe; k(-‘b'c))i

lﬁ(z.s) ; : i Z! L oot :

Iu(za, k(zn))| - e i 15

(iﬂ(:uc, k(:rg))] f Tin t(z)dx)
= \[u(@s; k@a))] °

.- er wnt.ea, by way of approximation,

: o
-2 [ Imks

w=e 2 (VIL.7.06)

Similar reasoning might justify the solution u(z; k(z)) e’*® = As compared

h Zener’s formula (VIL.7.03), this solution would have the drawback that the

se rotation between, e.g., an arbitrary point z = zj and the point z = 0 would

&>
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assuming that the lattice-periodic modulation factors u(2e; k(ze)) and
u(zp; k(xp)) are immaterial for an estimate of the order of magnitude.!

To evaluate (VII.7.06), an explicit formulation of the dependence of
the wave number k on the energy of the electron in the crystal £ yse is
required, Zener here utilizes papers by Hill and specializes Hill’s
results for a lattice potential U(z) = 2V cos 2m(z/a) with a small
amplitude V1, thus coming within the range of the Brillouin approxima-
tion. The result given by him? 2 d ol

. ke =2(1 540 /7= wap)  vinen

can "tiierqforg' also be obtained by carrying through the Brillouin
approximation.. Substitution of the imaginary part of (VIL.7.07) in
(VI1.7.06) finally leads to . :
' e ol . w® maEg 4

| w = exp [—- W —F"-——"] . (VIL.7.08)
Here Eoy = 2V is the energy gap between the conduction band C' and
the valence band ¥, i.e., the width of the forbidden band traversed.®

be determined by the wave vector at one point only, namely, z = zr. In the
Zener approximation (V11.7.03), the integral form of the exponent )
s ' N

P % z=0 [ !
takes cave that the wave vector appropriate to any one point of the interval =
0 - - - zr enters into the progression of the phase at this-point.

Apart from this, Zener’s approximate solution is the proper application to the
electron in the crystal of the method of Wentzel, Kramers, and Brillouin (W.K.B. =

method). Zener's solution corresponds to the zero step in the W.K.B. method.

With regard to the W.K.B. method, see, e.g., W. Weizel, “Lehrbuch der theo-
retischen Physik,” vol. II, p. 1010, Springer-Verlag OHG, Berlin, 1950. -

" 1This has led to a eriticism by F. Cernuschi, Prac. Cambridge Phil. Soc., 32: 276
(1936).. % .
 Zener gives for the factor abead of the root mistakenly 8ma?/h?. Zener’s final

" result is again correct, however. : 3
37t was noted already on p. 217 that Houston’s approach, as presented in §6,
when carried further must also answer the question of Zener transitions. Houston
himself has obtained in this manner s result which deviates from (VIL.7.08) by the =
factor (2x)%. In fact, this approach yields Zener's result (VIL.7.08) except for the s
entirely immaterial factor (x/3)%. This is particularly satisfying because Zener’s
calculation is not wholly convincing in several respects. Thus Zener’s formula
(VIL7.03), unlike Houston’s formulas in §8, does not pass over’into an exact
solution in the transition to the limit from an electron in a crystal to a free electron
(amplitude of the potential variations — 0). An attempt at verification shows this
immediately. The fact that, in Zener's considerations, a wave reflected at the

* upper band edge does not occur may be related to this. i . j
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This is, thus, the probability that an electron striking the upper edge

~ of the band passes through the forbidden -bar';d into the next higher
" band. How often in unit time does an electron acted upon by the

force F strike the upper edge of the band in which it happens to be?
In'§6 we saw that the wave number k changes at the rate k=F/h
under the influence of F. In this process the electron oscillates ener-
getically back and forth between the upper and the lower band edge, as
indicated by Figs. VIL3.10 to VIL.3.12. A k interval 2r/a must be
traversed for a full cycle from the upper band edge to the lower band
edge and back to the upper band edge. At a rate k = F/h this
requires a time. (2x/a)/(F'/h) = h/aF. Thus the electron strikes the
upper band edge a¥/h times in unit time. P :

The number of transitions per second into the upper band is thus

given by ; ‘e . . )
X aF g ke | 58 E—jmaE%y. '. . ;
| R QL0
In Fig. VIL7.3 this equation has been evaluated for ¢ = 3 - 10~® cm
and different widths Eey of the forbidden band. We see that

the effect is'completely negligible up to a certain, very high, field
strength |E| = F'/¢ and sets in here quite abruptly. This confirms the
statement in §6 that, for normal field strengths, Zener transitions of a

Jattice electron into the next higher band are entirely negligible.

To complete the picture, it should be noted that the oscillation in
‘energy of the electron is accompanied by an oscillation in space. Thus, -

. for the states with 0 < k < +=/a we have in the lowest band of Fig.

 VIL.3.10 and according to (VIL5.10) positive velocities v = E'(k)/h,

+  whereas for the states +x/a < k < -+2r/a the velocities are negative,
 etc. For the distance of oscillation we obtain, therefore, '

e T

e [oa= [ 3EG Goa
= Hpctiom =0
; e L O6
ot S fE(k) e

Jiy g w5 A

 With (VIL6.12) this becomes

x

z,.=;[';-3'(k)-%.

i),
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| Breakdown field strength
o' of the best insulators
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Fia. VII.7.3. Numbar of trammons par second of an electron in the crystal into
the next band. :

Enr = mdth of forbl_dden band
E = field strength

Based on Eq. (VII.7.09) or (VI1.7.13) with

-ZmaF
Mott = M 7 =44/

(Brillouin approxlmatton)

*and furthennoré, because of the constancy of ¥ _in__ time and space,

Ay
a
e = % f B(k) dk = Tes et (VIL.7.10)
k=0 x

If the external force I arises from an electrical field E, we have

& By = Bri)

low = E (VII.?T?II)
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_With the aid of this equation we shall show on pages 257 t0258 that,
for normal field strengths E, a full realization of this oscillation is pre-
vented by collisions of the electron with phonons and lattice defects.

Further discussion is needed to settle whether this remark is appli-
cable to valence electrons. To begin with, it can be applied with safety
only to the excess electrons in the conductlon band and to the holes in
the valence band. For a valence band which is fully occupied by elec-
trons, it becomes meaningless to speak of collision processes. Since

' all states are. occupied, a collision process could consist only of an

exchange of states between two electrons; in view of the indistinguish-

. ability of the electrons, this cannot be regarded as a real effect. (The

Schrodinger funetion for a many-electron system is a Slater determi-
nant and merely changes its sign for an exchange of two rows.) By
the same reasoning, only a formal significance can be attached to the

B oscillation of the valence electrons in the fully occupied valence band.

We shall not discuss the question further to what extent the thermal
loosening of the occupation of the valence band alters the situation and
to what extent it may be meaningful, after all, to speak of thermal
collisions in connection with the valence electrons at the upper edge
of the valence band, i.e., just before the Zener transition into the next
higher band.

In any case, we have here arrived at a point where we have the
impression that the band model, with its electrons in various energy
. - states (in the valence band) spread over the entire crystal, is no longer
b adequate to the facts. In viewing the totality of valence electrons in a

~ germanium crystal, with two electrons accommodated in each of the
t.etrahedrally arranged valence bonds, we can scarcely escape the
1mpreemon that the atomistic approa.ch is more appropriate.

The atomistic treatment of the Zener effect could be carried out to
a rough approximation by treating the liberation by a strong field

through tunneling of an electron bound in a potential well. - The work

required to free the electron classically, i.e., without tunnel effect,

would be, just as in the band model, Eey; for, in such a liberation, a
~ valence electron is converted into a conduction elgctmn We can
- get an idea of the results to be expected from the papers of W. Franz,!

- which, however, must be modified somewhat in detail. Inany case, we
b obtmn in this manner a law in- whlch the exponential factor takes the

form A
exp[ ARy 2m"' (Eev)”] (VIL7.12)

1 W, Franz, Ergeb. exakt, Naturw., 271 13, Eq. (34) (1953).
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A corresponding variation with

o[- 508 o]

i8 obta._ined also for the field emission of electrons from cold metallic
surfaces.' iy ,

It may seem at first sight that there are material differences between
these variations and the Zener formula (VIL.7.08). The occurrence:
of the bandwidth Ecy in the second power in the Zener formula, as
contrasted with the 3¢ power in the field emission laws, is particularly -
striking. g : : 3

However, we can separate out, in the exponents of (VIL.7.08) and

(VIL.7.09), the factor g WG, 4
o malidy _ [am?eBoy
o % Al h3s o

and interpret it as A/mqy, Where m is the effective mass obtained in
carrying through the Brillouin approximation.* Equation (VII.7.09)
then takes on the following form: ;

' Number of transitions
Number of valence electrons : unit time . i

al L i smt fmia\ A By -
“Te"l’_[‘z(—z‘“‘) Faple

= exp [— TV (Ecv)**'] (VIL7.13)

In this form (VII.7.13) of the Zener formula (VII.7.09), the expo-
nential factor is in fact very similar to that of the field emission laws.
Thus, compared with (V11.7.12), the only difference in the exponentis
the difference between the factors 4§ and r/4. The form (VII.7.13) is
preferred by several authors® as being less tied to details and peculiar-

1 8ee H. A. Bethe in Geiger and Scheel, op. cit., vol. XXIV, part 2, p. 439, Egs.
(19.12) and (19.13). . A . - i

* H. Froblich, “Elektronentheorie der Metalle,” bottom of p. 44, Eq. (24),
Springer-Verlag OHG, Berlin, 1936.

3 See, e.g.; K. B. McAfee, E. J. Ryder, W, Shockley, and M. Sparks, Phys. Kev.,
83: 650 (1951). In Eq. (1) of this paper the exponent is too large by a factor 2.

7 . This seems to be simply a printer’s error, however, since in the numerical equation

(3) of the same paper the exponent has agein the right value.
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~ ities of the Brillouin approximation than (VIL.7.09). Hence we
i plot in Fig. VIL.7.4 the results obtained from an evaluation of Eq.
- (VII.7.13) for the same data as those employed with Eq. (VIL.7.09) in
~ Fig. VII.7.3. We see that the principal characteristic of the effect,
4 g;amely, the abrupt onset at a field strength of the order of 10 to
. 10¢ volts om™!, remains unaltered.
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Y. VIL.7.4. Number of transitions per second of an electron in a crystal into the

next band. Fey = width of the forbidden band. E = field strengt.h Based on

«(VIL.7.13) Wlt-h Matt = M. .

Fmaliy, we note t.hat Zener himself was inclined to beheve that the
ffect under consideration was of importance for the breakdown of

Y

insulators.! At presant there is some question as to whether break-

£ 1 We have seen on pp. 12 and 16 that an insulating crystal has a fully occupied
and hence nonconducting valence band and empty conduction band (sec also
p. 263.and 296). The insulating crystal can be made conducting only by intro-
ducing electrons into the empty conductlon band. This could ocour through the,
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down may not set in at lower field strengths as a result of other effects,
However, the interest in the Zener effect has been materially increased
recently, since McAfee, Ryder, Shockley, and Sparks have related to
it the failure of rectifiers at high reverse voltages.'

§8. The Effect of an Optical Alternating Field on an
Electron in a Crystal

In §6 and §7 we have studied the effect of an added force, constant in
time, and'more particularly of an electrostatie field, on an electron in a
crystal. It was found that an electron in a cryst.al is accelerated in
accord with the law?

bk = F | (VII.8.01)

Transitions into the next higher band are possible only at very high
field strengths, of the order of the breakdown field strength. The
electron then passes over into that state of the next higher band which
has the same reduced wave vector k as the original state. However,
such transitions are completely negligible for field strengths which lie
a power of 10 below the breakdown field strength. The acceleration
process (VIL.8.01) is then confined entirely to the same energy band.

We now claim that the action of an optical alternating field is, con-
versely, such that transitions of the electron into that state of the
next higher band are excited for which the reduced wave vector k is
the same as for the original sta.te whereas transitions within t.he same
band are forbidden.

At first sight this statement may seem somewhat strange We
might well expect that the effects of the electrostatic field would
follow from those of the electromagnetic alternating field in passing to

Zener effect above certain field strengths. Since the effect sets in very suddenly
as the field strength is increased (Fig. VII.7.3), the crystal would suddenly become
very highly conducting above a certain field strength, i.e., exhibit the phenomenon
of “breakdown.”

18¢e also G. K. McKay and K. B, McAfee, Phys. Rev., 91: 1079 (1953); and
G. K. McKay, Phys. Rev., 941 877 (1954).

? The quantity Ak thus assumes the role of a generalized momentum. For this
reason it is frequently called the *crystal momentum” (Shockley, op. cit., p. 143).
For a free electron the quantum-mechanical mean value p of the momentum, for
which we have derived the formula p = {m/h) gradx E(k), is, in fact, identical
with the quantity ak. See Eq. (VI1.6.31).. :

B e
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~ the limit
d Angular frequency — 0
~An unbridgeable contradiction appears to separate the two statements
. “continuous acceleration within a band and no transitions into higher
bands” and “no transitions within the same band, but only transitions
~ to higher bands with conservation of the wave vector.”*
We must comment on this point that for the transition to the limit
~ w— 0 not only an electrostatic but also a magnetostatic field of equal
magnitude is left. We shall see in the study of the calculations
- reported below that a further reason for the difficulties encountered in
~ the passage to the limit @ — 0 may rest in the fact that the perturba-
. tion loses its periodicity in space in this limiting case. This makes it
impossible to work with & finite fundamental domain of the crystal and
with energy states of the unperturbed problem which are at least in
- principle discrete. However, the size of the fundamental domain
should have no physical significance, and we do not readily see how,
from this point of view, we can arrive at a decision, below which fre-
~ quency w transitions within the same band dominate and transitions
into the next higher band are insignificant.? Apart from this we have
~ the impression that the prohibition of optical transitions within the
same band is statistical in nature. In the following calculations only
" matter, namely, the electron in the crystal, is subjected to statistical
. quantum laws, whereas the electromagnetic alternating field is treated
" classically. We hope that the question may eventually be solved
whether, under these circumstances, working with an infinitely large
~ fundamental domain, with a continuous distribution of allowed energy
~ values within the allowed bands, and with a consequently necessary
~ wave-packet formulation for the electron, leads to a finite probability

' The situation is not simplified by the fact.that the calculation for an electro-
~ -magnetic alternating field given below permits the transition to the limif “‘angular
- fréquency — 0'' at least formally and that here transitions to neighboring states
~ of the same band remain forbidden. In carrying through the calculation, we shall
- expressly indicate for what initial assumptions such a formal passage to the limit
- “angular frequency — 0’ becomes inadmissible. :

A However, the contradiction is tempered to a certain extent by the fact that
~ even a field which is constant in time effects transitions into higher bands; it is
.~ true that-this has been noted so far only for strong external fields (Zener effect,
§7). More recently it has been found, however, that these transitions into higher
bands play a role in certain problems even for weak constant fields. [See D.

| Pirsch and E. Spenke, Z. Physik, 137: 309 (1954).]

2 Here a comparison of the angular frequency w of the alternating field with the
- angular frequency Ecy /% pertaining to the transition conducnon band — valence
band’” may be more appropmte

)
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for transitions within the same band even for an alternating field in
satisfactory manner, so that in the limit w-— 0 this probability for
transitions within the same band dominates and the probability of
transitions into the next higher band becomes of minor importance.

After these preliminary remarks, we reproduce the description of
the action of an electromagnetic alternating field on an electron in a
crystal which is now customary.! The electromagnetic field strengths
E and H are derived from a vector potential®

: A = (A0, 0]
A ey E‘g i @ - a) (VIL.8.02)

with the aid of the equations
E=/—Zis (VIL8.03)
H=calA .. (VIL8.04)

The quantity F has here the meaning of a force amplitude, since E
and H take the form -

| E - {£,0,0] _
withi<: Bt %-F cos Sy —ct) (VI1.8.05)
and SR =0, O H A T
with H, =+ Focos®(y — ) - (VIL8.06)

In the presence of a veotor potential A, the Schrédinger equation
beopmes' :

—-iAgfa—eU(r) lp-—y-!lé-A gra.d¢---}-3h 1,!/ (VIIS[}'?)

1 See, e.g., Frbhhch op. cil,, pp. 354 and 355.
* For simplicity; we have here assumed a crystal withe = 1 and 4 = 1. Other-
wise; a refractive index n = /gy would have to be introduced in (VII.8.02)

4. wnﬂd—?mnw (u-—t)
and (VI1.8.04) would have to take the form 4H = curl A. Incidentally, ¢ = velos-

ity of light = 3 - 10!° crn-sec™2,
3 See, e.g., Weizel, op. eil., vol. II, p. 881, Eq, (24).
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or specifically for (VIL.8.02)

f'——A¢—eU(r);b+F h o HEw—e) _ f”cy d)]ai-"’.“_""fﬁ%‘ﬁ’
B (VII1.8.08) .
* To obtain a solution we write }

W, 1) = Zcz(t)'h(l',;ﬂ _ (VIL.8.09)

~ where the ¢,(r, t) = Yu(r) e 7E/? are all the solutions (for all bands) of
t.he unperturbed equa.hon, 1.e., of (VIL.8.08) for F = 0. These solu-
tlons are periodic in space, w1th the fundamental domain of the crystal
‘as period. The formula (VII.8.09) can hence represent a solution of.
" the perturbed problem (VIL.8.08) with ¥ > 0 only if this solution is
~ also periodic in the fundamental domain. However, for w — 0 the
- perturbation term takes the form . ' s

Fh :
iy —.ct)%d’

,g;nd ceases to be periodic. Under these circumstances the solution
~ Y(r, ¢) also cannot be periodic in space with a period constant in time,
~ le, in a fixed fundamental domain. Hence the formula (VII.8.09),
. w]:ueh is periodic in space, can no longer represent ¢(r, £).! Thus, with
 the formulation (V11.8.09) we renounce even now the possibility of a
'_':'.‘ meaningful transition to the limit w — 0.

~ Substitution of (VIL.8.09) in (VII.8.08) and utilization of the fact
~ that the ¢,(r, ) satisfy the unperturbed equation [i.e., (VII.8.08) with
F = 0] lead to :

I'h

2me
;

g ;(t) e et o = h E &), (VIL8.10)
To determine the mﬁmt.e number of unknown coefficients ¢i(t), we
~ multiply from the left with ¢*(r, {) and integrate over the fundamental
.." QOma.m In view of the ort‘.hogonality of the ¥a(x), ¢i(r) we then

1 The case of the free electron acted upon by an external field F, which is treated
. ~ at the beginning of §6, is apparently an example to the contrary. Here also the
&ohrﬁchnger equation (VII.6.08) contains an aperiodic term. Nevertheless, the
verified solution (VII 6.07) is pcrrod:c at every instant of time {. However, this
gppoamg example is not valid since the period is time dependent, whereas, as
emphasized above, (VI1.8.09) has the fundamental dom.um as a fixed, mva.ﬂable

penod at all times.
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obtain
] 1 _forn=1 A
WL V¥ AV = 8= |0 forn 1 (VH'g_'ll)
$ 1IN an [ v o™~ E 2 e ay
{ ¥tund

2 Z &(t) b (VIL8.12)

1

On the right side of (VII.8.12), we utilize (VII.8.11). On the left

- side we place the time factors, which are constant in space, ahead of

the integral and obtain

2. 1—E, / 7 ,{';F 3 I
+"—z£nw Emm IS il f YA e e - }‘5""5 Wi(x) dV
! F

Veund

L 0y
Sairaal el i [ VE(r) e c”.‘?

Viand

V() V] = éa() (VILS.13)

. QJ}Q_,

If we proceed from an initial state in which only one partiéular.

state | = s is occupied, we must set for{ = 0 |

g 1 forl = s
00 lo forls

As long as ¢, = 1 and c;«:(¢) K 1, we can then write by way of approxi-
mation!

L ;(x.—x,.ﬁ«n St e—f—.m.—x.u-a..):] 5 c;(‘)

_ (VIL.8.14)

where we have used the abbreviations .

= [ @™ Ly ay

Yifiind (VIL8.15)

b B —2yh a

’R‘(,.: o / ‘pn (l') Gl 3 'é— (l') dv

Viund [

. 1 These assumptions are certainly fulfilled for a while at the beginning of the
process. The ‘“smallness of the perturbation” remains valid longer in proportion
as the force amplitude F' is smaller,
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' Carrying out the integration with respect to the time then yields

a j
F .."—{.Er"'!-'bh“
F [rm e ‘ =il

Gg(t o
2 L @, ~ B + 1)

e %(Et Fil En Y h“’)

1 E:—En

S ) R G Y RS
2'"’“"‘ "'2_1.1(E. v En + W)

Ey—En 17 E:i—Ex \
e .r-( -»)t +.+~( Y -a)t _:1 B,—Rn “)‘
- - I\ &
sgul (BB, : ]
% Y
.1@ )
sinz | ———— + o R
= ¥ . 2 2 h ‘e 2( +)‘
2mhew | T @ B, )
2 nPC)
.gm—m; ;
e B.l'l.'l2 ﬁ, l B. B‘ )‘
sy
1 (E. T En G
2 \aTex
sin 1 ( =5 = E’) t 1/ E.—E
) = g | ) —2 ’ A
2mﬁw 1 _-_E- ""‘El
2\ h
.1( &—m)
8lN — | w + 5 T En—E,
a2 A e (G (VIL.8.16)
1 : + Eﬁ e E‘ : 1
I A

We shall now compare the absolute valtie of the two terms in the

“brackets. The exponentials in the two terms are immaterial in this
* respect since their exponent i& imaginary, so that they are simply phase
factors with absolute value 1. We consider below an absorption

process in which the energy £. of the electron after the process is
greater than that before the process (%,)

E,>E, (VII.8.17)
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e Be . goim b RO
Then the time factor of the first term in brackets is
. sin }§éw -
Ua'.rml'. inlaut %Gw
$8w and that of the second term -in
S| e i brackets 13 ’
: wng + 58w : 8in (wa, + Y50w)t
M. ALANAACAN ‘ @as + J50
O BN SN SN N SN ) 4 i
: 10 20 30 Figure VIL.8.1 shows the time
s, S variation of the two factors for
dw = w,,/6. Both factors increase

Fra. VII.8.1. Concerning the interpre-
tation of Eq. (VIL.8.16).

over, whereas the first factor rises to much higher values. Hence we
can neglect the second term in (VII.8.16) and obtain for the probability
of occupation of the state n after a time ¢

fea)f -_—(ij—hw) (x&h)? [m%}éf"’_ w""“)t] (VIL.8.19)

Furthermore, we see from Fig.- VII.8.1 that the time factor in
(VII.8.19) attains increasingly high values as « approaches

)

mu.."" % h

" i.e., as the law of conservation of energy

B, =B +ho . (V11.8.20)

Final energy of the electron = initial energy of the electron
+ energy of the light quantum

is more nearly satisfied. A‘.'part from the fulfillment of the law of con-
servation of energy, we also demand a relation concerning the momen-
tum. This follows from the factor (ri’)* in (VIL.8.19). From
(VI1.8.15), we have.

LD f Vi) o e " " — W@ dV  (VIL8.15)

Viued

initially in proportion to ¢. After -
a short time the second factor bends -

SR UL ——.
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2 If we substitute the form'u(i-; k) e~ for the eigenfunction ¢(r) of the
~ electron in the crystal we obtain

.\ TH'] s f u (r k,) ( kyu(r; k,) -_J'é;u(r k)) 3 (kfjeld-He—ka)r JT7
e Viund

| (VI1.8.21)
. 0} ; © o o (VILS.22)

al€

. Here y kﬂ.u = 'IO,

is the wave vector of the electromagnetic wave propagated in the y
du'ectmn g0 that kyaa ' * = (w/c)y.

(i Since the modulation fa.ctors w(r; k) have lattice periodicity, this
s true also of their derivatives. Hence the entire factor in the inte-
grand ahead of the exponential also has lattice periodicity. If now
the fundamental domain is so chosen that its edges are integer multi- -
plea of the wavelength of the electromagnetic wave, which is possible
~ in view of the arbitrary choice of the fundamental domain, the expo-
" nential factor in the integrand is periodic in the fundamental domain
 and the theorem of Appendix I may be applied. Hence the integral =i
‘ ~a.nd with it, the transition probability from state s to state n vamsh
3 oompletely unless the exponent

bt~ =0 (VIL.8.23)

This means that the crystal momentum #k of the electron after the
~ absorption process is equal to the sum of the momentum of the light
quantum hkgme and of the crystal momentum of the electron before
the absorption process:

ﬁk ﬁkfmd -+ fik, (VI1.8.24)

Thus the law of conserva.tion of momentum (VII .8.23) or (VI1.8.24)
must be safisfied in addition to the law of conservation of energy
(VII.8.20)..

For an emission process we have E,. < E,. Then the second term
 in the brackets of (VI1.8.16) is the critical term. The law of conserva-
. tion of energy takes the form

B - F = F, — ho
"Fmal energy of elactron = initial energy of electron
| - — energy of emitted light quantum

L

An examnatmn of the coefﬁment r‘-’ yields the law of conservation
of momentum ) ' ’
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hk, = hk, — kg
Final value of crystal momentum
= initial value of erystal momentum ;
— momentum of emitted light quantum

If the electromagnetic wave is a light wave, the wave number Kgoa
is of the order of 10® em~! since the wavelength is of the order of 10-%
cm. Compared with the range 2r/a = 2 - 108 em™! of the wave num-
ber k of the electron in the crystal, the change in the electron wave
vector 'k by the light wave vector ku. is thus very slight.! If the
transition of the electron would take place hetween two states of the
same band, this would be a transition between closely adjoining states,
and the laws of conservation of energy and momentum, (VII.8.20)
and (VII.8.24), respectively, could be written in the form

AE = hw
ﬁ|AkI =Hh: Ikri-m' = h%

- Division of the first etiu:ation by the second
j 1
5 lgradc B = ¢

-and application of Eq. (VII.5.10) lead to the value of the electron
velocity v
vl =¢

Thus the velocity of the electron in the two closely adjoining states,
- between which' a transition would be effected by collision with a light
quantum, would have to be equal to the velocity of light ¢. In fact,
the electrons are much slower than this,* both in metals and in semi-
conductors [see Eqs. (VIIL.4.09) and (VIIL.4.27)]. For these slow
electrons a collision with a light quantum cannot possibly lead to a
transition to a neighboring state in the same band; instead, in an
optical absorption process, the electron must pass over into another
band effectively with conservation of its wave vector.
This theorem is of great importance in the theory of crystalline
- phosphors. Here we are concerned with an understanding of the
experimentally established fact that an electron raised by the absorp-
tion of a light quantum from the valence band into the conduction

! This does not apply for the abgorption of X-rays in view of their short wave-
length.

* Apart from this the, simple Schrodinger equation employed in the discussion
up to now would not be adequate for electron velocities of the order of that of light.
All relations which have been derived would have to be modified relativistically,
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band cannot simply return to the valence band with the emission of
light.

This impossibility is made plausible by the fact that the requirement
of conservation of the wave vector k permits only a single state of the
valence band to serve as final state for the fransition. It is extremely
improbable that just this state is unoccupied. The combination of
the two requirements for an emission process, namely, (1) final state
unoccupied and (2) conservation of the k vector, makes an emission
process in the ideal crystal practically impossible. The theory of

‘erystal phosphors concludes from these considerations that optical

emission processes in these solids are tied to the presence of defects
in the-ideal lattice. However, we cannot enter into details on this
point.! s

§9. The Influence of Atomic Imperfections and of
Thermal Lattice Vibrations on the Motion of an
Electron in a Crystal

a. Four Different Types of Deviations from Ideal

Lattice Periodicity

In our past discussions, exact lattice periodicity was assumed for
the potential energy of an electron in a crystal. This assumption
applies only for an ideal occupancy of the lattice sites in the crystal
under consideration. In real crystals, such an ideal occupation of
lattice sites is out of question. We must expect vacancies at lattice
sites and occupation of interstitial sites as well as the substitution of
foreign atoms for lattice atoms. We have discussed such atomic imper-
fections? or lattice defects in greater detail in Chap. IT.

Apart from these atomic imperfections, we find in a real crystal
so-called structural defects, such as mosaic structures and dislocations.
Furthermore, a material may frequently be available only in poly-
crystalline form. Then the complete crystal is traversed by an infi-
nite number of erystallite boundaries.

We must also note that, apart from these pertu.rbatmm. of ideal
lattice periodicity which are constant in time, the atoms, ions, or
molecules composing the crystal vibrate about their positions of rest

lSee, e.g., N, Riehl and M. Schén, Z. Physik, 114: 682 (1939), in particular

p. 687; or N. Riehl, “Physik und technische Anwendung der Lumin‘eszem," Pp.
1033 Springer-Verlag OHG, Berlin, 1940.

2 With regard to the comncepts of dislocations and lattice defects see, e.g., H. G. F.
Winkler, “Struktur und Eigenschaften der Krystalle,” Springer-Verlag OHG,
B&'ﬁn. 1950- *
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with an amplitude depending on the temperature of the crystal. These
thermal Jattice vibrations also have a strong influence on the motion of
the electron in the crystal. :

Of the deviations from ideal lattice periodicity which have been
named, the first and the last have been investigated more closely with
respect to their eifects on the motion of an electron in a crystal. How-
ever, we shall not report here on the results obtained, much less give
their derivation. These matters are too complicated for that, at least
for this introductory treatment. We are rather concerned with . clari-
fying the concepts which are commonly employed in this conneetion,
such as the collision mean free time r, the mean free path [, and the
electron mobility u. : 3 B

These concepts originated in the classical electron theory of Riecke,
Drude, and H. A. Lorentz at the beginning of this century and were
carried over into the modern electron theory, which was developed on &
wave-mechanical basis around 1930. In this process, the ¢oncepts in
question lost much of their original graphic meaning. Hence an out-
line of the original classical reasoning seems necessary just for an
understanding of the terminology used. After this, we shall indicate
the concrete meaning of the collision time r, the mean free path I,
and the electron mobility x from the presently accepted quantum-
mechanical point of view. : ' .

b. Collision Time 7, Mean Free Path [, Electron Mobility g,
- and Conduectivity ¢ in Classical Electron Theory

The classical electron theory of metals praceeds from the hypothesis
‘that, in a metal, many electrons—of the order of 1 per atom—are so
freely mobile that they behave like a classical Maxwell-Boltzmann
gas. Thus, a particular electron moves with uniform veloecity v,
through the lattice until it suffers, after a time 7y, & collision and
hence changes its velocity abruptly into va.! : i

The electron retains this new velocity for a time interval =, up
to the next collision, at which the velocity is changed to vs, etc. We
now make the crude simplifying assumption

Ta, = Tiy = Ti, = * ° ° = 7 = collision time? (VI1.9.01)

1 The lattice atoms and the remaining electrons were naturally regarded as col-
lision partners. We shall see later, on p. 250, what difficulties arose herefrom,

* This unfortunately widely accepted designation is not very apt. After all,
we are concerned with the time which elapses between: two collisions and not with
the duration of g collision itself. A designation such as “free time of flight” or
“mean free time’’ appears more appropriate in view of its parallelism with “mean
free pat‘h'” - :



~ hence

§9. Influence of Atomic Imperfections 245

Furthermore, only the direction, but not the magnitude, of the
vglocity will be assumed to be changed i ina oolhsmn

|vll [va| = |vqf = sy ?Ju. (VIL.9.02)

: ) 'Then between two suceeaswe colhslons, the electron a.lways travels

the distance . - .
T vm = | = mean -free_pa.th ! (VII1.9.03)

 Figure VIL.9.1 shows the path of an electron under these circumstances.

' So far, we have assumed the absence of external forces. We now
1magme a voltage. applied ‘to the crystal, so that an electrostatic field
E exists within the crystal. This exerts
a force F = —¢E on the electron.

Every one of the originally straight
paths between two collisions is now dis-
torted into a parabola (see Fig. VII.9.2)
since the external force effects an ac-
celeration

Fia, VII.9.1.

1 ot _
—~—F -—EE (VIL.9.04)

i

and hence a veloeity increment
Diraction of exfernol force —e Al ok

Fia. VIL.9.2 Vi = — — Et (VII1.9.05)

* Path of an electron with and ) m 3 AT
without external force for the = i '
. simplifying assumption of con- As long as ;

Qi a s icoo pathlongth, _ R | (VI1.9.06)

- during the entire time between two eollisions, there is practically no
--change in the collision time r. and the velocity increment (VII1.9.05)
~ increasesin a smgle free flight from 0 to (e/m) Er,. Tts mean value is

vagtauoi E?%Er, LAl (VIL9.07)
The proportionality factor | :

- _ / uo= ﬂf—%f with! = = Y1,

- (———“ ——) = 1.76 - 1015 (L) i
" . \em?/volt-sce 3 \sec

- 2The “mean” collision time r would thus be‘equal to half the arithmetic mean

_:'.-"_vnlue of the individual collision times 7, Tim, Tty » . « Tw,. The factor 3§
. obtained in this crude consideration must not be f,aken too seriously, however.
In actuality, much more complex averaging processes lead finally to a mean _col-
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is called the electron mobility. The reason for this will become plainer
presently, on page 248. Its dimension em?/(volt-sec) follows from the
ratio of velocity em-sec—! and field strength volt-cm™. :

We might be satisfied with this digression into classical electron
theory. However, for much that follows it will be advantageous to
proceed on this classical basis to the conductivity formula.

To this end we shall make our notions somewhat ‘more concrete (see
Fig. VI1.9.3). Let the crystal volume under consideration be a block

with a cross section @ and a length L. A volt-
age U is applied by a battery and an external |
" metallic circuit to the end surfaces of the block
by means of large surface electrodes. This pro-
duces within the crystal a field strength
+ : _ el
E=+ (VI1.9.09)
: :
o The lines of force originating from an arbitrary
f:: ;Ell{-,%f}; i 22 el?u‘:: selected electron produce induced charges on the
duced by it on the elec- electrodes at the end surfaces. If the electron
trodes of the crystal. js displaced by a distance v - dt, these induced
me':?&“‘f df:m charges are changed: The charge required for
ment of the electron and ~ this 18 supplied or withdrawn by the metallic
a corresponding current circuit.. Thus, for every motion v of a single
5o the external 1o ¢tad electron there exists a current Iying, in
the external circuit. Its magnitude follows
simply from the law of conservation of energy. The field E within
the crystal does an amount of work :

v-F-dt= —ev -E-dt . (VIL9.10)

Crystal

-

- ]+ ++

+ 4+ i rs

on the electron in question and thus increases, e.g., the kinetic energy
of the electron. This energy must ultimately be supplied by the
battery, from which the energy U - Luinge * dtis withdrawn for a current
I,inge in & time df. Hence we must have ' '

oy Tl = U Tangiar O (VILO.11)

and hence
Finin = — € V5 3 C L (VIL9.12)

lision time 7, and this involves many modifications in numerical factors. For
the sketchy considerations wHich follow, it is sufficient to identify = simply with
the arithmetic mean value 7.
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For the simple geometry assumed we have, according to (V11.9.09),
_ i

Illn‘lu = —el; E

if the z direction corresponds to the long.itudinal dimension of the

~ crystal. The mean current density referred to the cross section Q of

the crystal is

. 11
frnge = —€0s 7 53 = = —%u., (VIL9.18)

" Herewith Eq. (VIL5.13) found on page 208 has been derived on a

corpuscular basis.
From here it is but a short step to the basic formula for the con-

~ductivity. Since all the conduction electrons contribute to the con-

duction of a body, we shall—at least for this digression into classical

| electron theory—pass briefly beyorid the bounds established by the

“behavior of the single electron” even for this §9 and deal with the
totality of the conduction electrons. The electron gas represents a
cloud of particles which, in the absence of an external field, pass each

 other along the rectilinear zigzag paths of Fig. VIL9.1. Here equally
' large positive and negative z components of the velocity are, on the

average, equally frequent so that the current contributions (VII.9.13)

- of the individual electrons cancel each other on the average. Hence

there is no current. However, if an external field is applied, the zigzag

- paths are made up of parabolic arcs as in Fig! VII.9.2. According to

Eq. (VI1.9.07) every particle receives on the average a velocity inere-
ment —uE, and since this average velocity increment is the same for
all particles of the cloud, the cloud as a whole drifts slowly with the
common drift velocity ;

. £ e R 7 ) (VIL.9.07)

The contributions (VIL.9.13) of the individual electrons no longer
cancel, but add to lead to a total current density

i=N-(-%)-vd.m=(—e%)'(—';&1§)'

Introducing the concentration of the electrons

=N
| NEE
we obtain _ i = eunk (VIL.9.14)
- Comparison with Ohm’s law
i=o:E
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leads to a_;,: expression for the conductivity o

¢ = eun

or (0’51—1‘“—__‘“1 =t ) 1.6 10— == /volt sec) (cm“) (VII 9.15)

The meaning of the designation “mobility’’ for the proportionality
factor u becomes here particularly plain, since (VIL.9.15) shows that
the conductivity o of the crystal increases with the “mobility”’ of the
n conduction electrons of the crystal. For the concentration n of the
conduction electrons in metals we may in general substitute the num-
ber of valence electrons, i.e., approximately 4 - 102 em—2, which cor-
responds to 1 per atom. For a metallic conductivity of about 4 - 10¢
ohm—! em~!, we then obtain a mobility! u = 60 cm? volt—! sec—
For this mobility Eq. (VIL.9.08) yields a collision time r = 3.6 10714
sec¢ and (VII.9.03) a mean free path ruvw = 2rvy = 7 : 107% em if we
write for the thermal velocity in metals vy = 10* cm sec'.*  For a
lattice constant 3 - 10-8 em, this mean free path is equal to 200 lattice
constants! We shall discuss presently, on page 250, the difficulties
which arose for the classical theory out of these large values of the
mean free path. :

“The past discussions perxmt us to check, from what ﬁald strengths
on Ohm’s law (VIL.9.14) must fail (apart from the deviations which
may result at lower field strength from experimental imperfections,
such as boundary resistances between individual ecrystallites). As
soon as the drift velocity (VII.9,07) becomes comparable with the
thermal velocity v, the condition (VII.9.06) is violated and the time

of free flight of an electron is mo longer determined primarily by its |

initial velocity after its last collision. The simple proportionality
(VIL.9.04) between mean velocity increment and field strength is then
lost, and Ohm’s law is no longer valid.

The critical field strength is t.hu.a obtained from'

IV]d.-m = iEl = Dn -
Ven (VII1.9.16)
B ~ 2

1 The metallic mobilities lie in fa.ct. in the range from 10 to 100 cm? volt—! sec™.
See, e.g., F. Seitz, “The Modern Theory of Solids,”’ p. 183, McGraw-Hill Book
Company, Inc., New York, 1040. i
. * For this va.lue see Eq. (VIIT.4.09).

* The condition uE < ven may be multiplied with the concentration n and states
then that the particle current density unE in the field must be very small compared
with the unidirectional thermal particle current density vw -n/+/6r. (With
regard to the ufidirectional thermal current, see p. 82, footnote 1. The factor

i,

s "
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L |

We shall make plausible on pages 301 and 307 that we may write

. for the order of magnitude of the thermal velocity in metals 108 em

sec—! (independently of temperature!) and in semiconductors 107 cm

“sec—! /T/300°K (see also page 256).

For the metallic' mobilities! between 10 and 100 em? volt—! seec™!
estimated on page 248, we thus obtain for metals critical field strengths
between 10° and 107 volt em=". These are values whose experimental
realization is out of question.

For semiconductors and insulators, the range of mobilities is much
larger. Thus, for germanium with x = 3.6 - 103 cm? volt—! sec—!, the .
critical field strength at room temperature would be about 3 - 10® volt
em~!, In faet, we observe true deviations from Ohm’s law for ger-
manium even at 6 - 10? volt em~',? Only a much more careful study

‘of the collision processes makes possible an understandmg of these

phenomena.®

Even within the scope of classical theory the past considerations have
merely created a formal basis on which a theory might be constructed.
In particular, the collision processes must be investigated, and this
demands a statement regarding the collision partners. As already

' mentioned in footnote 1, page 244, from a classical point of view the
- lattice atoms and the remaining elect.rons come here primarily into

consideration.
In the absence of more precise views regarding the structure of

- atoms at the time in question (1900-1910), studies of the collisions of
‘electrons with hard, immobile spheres were carried out. For this

model the magnitude of the electron velocity after the collision is

- exactly equal to that before the collision, and for the direction of the’

electron after the collision every direction is equally probable, regardleaa .

of the direction of the electron before the collision.

Thus, in this model, the electron has no ‘“memory of its pa.st before
the colhsmn” with: respect to its direction. We shall see presently
what basic ob]ecfaons can be raised against this collision model.

- Before this, we shall sketch briefly a consequence of this model which

will be of importance for what follows.

In the calculation of the electrical eonductawty to be d1seussed in
§10, we shall have to answer the question how many electrons of a
group of uniform velocity and direction are eliminated by collision

1/4/6x can be added on the right since we are a.t any rate dealing only with order-
of-magnitude considerations.) '

1 Bee Beitz, op. cit., p. 183,

2 E. J. Ryder and W Shockley, Phys, Rev., 81: 139 and 140 {1951)

# W, Shockley, Bell System Tech. J., 30: 990 (1951},



250. + VII. The Band Model
processes in a time interval df“ If, on the average, a time r elapaea

between two collisions of an electron, dt/r terminal points of such

' times fall on the average into the time interval di. Thus an electron
suffers in the interval di on the average dt/- collisions, and N electrons
suffer N di/r collisions. Thus collisions eliminate in an interval dt on
the average

AN‘= N - ﬁ e (VIL.9.17)

electrons from a group with uniform velocity and direction. The
number N of the electrons of this group with umform veloecity hence

decreases exponentially with tlme
1

N=N@Oe (VIL.9:18)

"The mean collision time 7, which was first thought of as the arith-
metic mean of a series of times of free flight 7u,, Tu, . « | Ti,, thus
attains the meaning of a relaxation time which controls the decay in
time of an electron group of uniform velocity. Ata later point (page
252) it will prove very important that the mean collision time 7 enters
the calculation of the conductivity not as an arithmetic. mean of suc-
cessive free times of flight, but as a relaxation time.

We now turn to the already mentioned basic difficulties which arise

for the classical electron theory from the fact that the observed values
of the metallic conductivities lead to mean free paths of the order of
102 lattice constants,’ as we have seen on page 248.

Since the classical electron theory had to regard the lattice atoms

~ themselves (as well as the remaining electrons) as collision partners,
" it became incomprehensible how an electron could fly freely through
some hundred closely packed collision partners without suffering a
change in direction.” - '

Nothing was changed in this respect when first W. Pauli? and then
A. Sommerfeld 4in 1927‘apphed Fermi statistics in place of Maxwell-
Boltzmann statistics to the gas of the free conduction electrons and
were thus able to overcome other b&sm difficulties of the classical elec-

1 For germanium, even up to,500 lattice constants.
2 An effort to evade the difficulty by assuming that the range of inferasfion of

the atoms with their neighbors, which determines Iattice binding, is much greater -

than the effective cross soetion for high-speed conduction electrons is simply
another formulation of a situation which is ineomprehensible from a classical
standpoint. .

3 W. Pauli, Z. Phymk 41: 81 (1927).

LA Boamnerfeld Naturwiss., 152 825 (1927); 16: 374 (1928).

[T
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tron theory.! It is true that Sommerfeld demanded even at the end
of his first paper: “To perfect the theory it would be necessary to
introduce the mean free path in a more physical manner, e.g:; in the
sense of wave mechanics, by studying the scattering of the de Broglie
waves at the lattice of the metal atoms, taking at the same time due
account of the thermal agitation of this lattice.”

This was accomplished by F. Bloch.? It then became clear that an
ideal lattice constituted no obstacle whatsoever for electrons of suitable
wave number so that the observed mean free paths of hundreds of
lattice .constants were in no sense incomprehensible. Bloch showed,
furthermore, that deviations from exact lattice periodicity constituted
the real obstacles to electron motion and considered in this connection
thermal lattice vibrations in particular. At a much later date, Con-
well and Weisskopf? investigated the effect of another type of devia-
tions from lattice periodicity, namely, the scattering of electrons by
charged atomic impurities,. We shall defer the consideration of the
lattice vibrations and consider first impurity scattering. With these .
spatially defined collision partners, it is of course more nearly possible
to establish a relationship with classical notions than for the mﬁmtely
extended thermal lattice vibrations. =

¢c. Scattering of an Electron in a Crystal
by a Charged Imperfecnon

It is after all our objective to translate the concepts of collision time
r and mean free path [ which have been elucidated on a classical cor-
puscular basis into present-day wave-mechanical terms. Hence we
shall consider impurity scattering first from a classical corpuscular
standpoint. The problem is here the same as that of the familiar
- Rutherford scattering of particles by heavy atomic nuclei. The
negative electron, e.g., moves about the positively charged impurity
on a hyperbolic path (Fig. VIL.9.4) or turns away from a negatively
charged impurify along a hyperbolic path (Fig. VIL.9.5).

From a mathematical treatment of ‘these circumstances, we obtain
the so-called transition probabilities, i.e., the proba.bilities that an

1Pauli explained the temperature independence and weakness of the para-
" magnetism of the alkali metals, Sommerfeld the absence of a contribution to the
specific heat of a solid from the conduction electrons (apart from other results).

* F, Bloch, Z. Physik, 52: 5565 (1928); 57: 545 (1929). Shortly before then,
~ Sommerfeld’s student . W. V. Houston had treated the scattering of electron waves
in analogy with Debye scattering of X-rays at thermal density va.rmtlons in the
erystal, see Z. Physik, 48: 449 (1928).

2 B. Conwell and V. F. Weisskopf, Phys. Rev., 692 258 (1946); 77: 388 (1950).
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electron have a velocity v’ after “collision’’ with the charged impurity,
if it had the velocity v before the collision. Once again, we shall not
enter into details, but indieate merely that the results for Rutherford
scattering are quite different from those for the collision of electrons
with hard spheres, where all directions of motion were equally proba-
ble after the collision. For Rutherford scattering the electron does
not lose its memory of its original direction, but continues to show a
definite preference for it. Deviations by small angles are more proba-
ble than deviations by large angles. This has an important conse-
quence in the transition from the arithmetic mean value of successive
free times of flight to a relaxation time.

- If we now define a relaxation time by the decay of a current carried
initially by a group of N electrons with uniform velocity and direction,
the decay of this current is identical with the decay of the number N

/ - Fia. VII.O.4. The negafive

: electron flies around a positive
\ lattice defect.
\ / Fio. VILO.5. The negative
O electron is deflected away °
; ~ from a negative lattice defect.
. } \"‘\\\‘ . K «

of the electrons, provided that the collisions blot out memory. In this
case, the velocities of the electrons which have been removed from the
~ group by collisions are equally distributed over all directions and do
. not contribute to the current. However, as soon as the original direc-
tion is preferred (or discriminated against) after the collisions, the
electrons which have been removed from the group continue to con-
tribute to the current and the current decays more slowly, (or more
rapidly) than the number N of the electrons which ha.ve remained in
the group.

We must, therefore dlstlﬂglns}.l between the re]axatlon time of the
number N of the electrons of uniform velocity and dlrectmn on the
one hand, and the relaxation time of the current carried by them, on
the ‘other.. The relaxation time of the number N continues to be
identical with the arithmetic mean 7 of the successive times of free
flight. This is not true, however, of the relaxation time of the current
contribution when the collisions do not blot out memory, as, e. 8 for
1mpur1ty seattering. -
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This current relaxation time is of primary importance for the cal-
culation of the conductivity. Even so, it is commonly designated as
mean collision time. We see how the simple graphic meaning as an

_arithmetic mean value of successive free times of flight has gradually

evaporated. We see furthermore that, for the calculation of the mean
collision time as relaxation time of a current contribution, we are con-
cerned only with the knowledge of certain transition probabilities
between a state before the ‘“‘collision’” and the states after the “col-
lision.” This is important because the wave-mechanical treatment
of scattering processes does not readily lead to the picture of the

. thermal zigzag path in Fig. VIL.9.2.

The scattering of an electron at a charged impurity has alse been
treated with the aid of the Schrédinger equation for a point charge.!
This exact treatment on a wave-mechanical basis has given the same
values for the transition probabilities as the previously deseribed clas-
sical corpuscular treatment with the hyperbolic paths of an electron

particle. This is not too surprising since we know from general

quantum mechanics that, by the formation of wave packets, we can
demonstrate the corpuscular traits of particle behavior in so far as this

* is consistent with the uncertainty relations. We shall make i 1ncreasmg

et
ot

[

B

use of the possibility of represénting wave-mechanical results in par-
ticle language.

~ d. Scattering of an Electron in a Crystal by Thermal

Lattice Yibrations :
Apart from impurity scattering, the thermal vibrations of the lattice

_eomponents about their positions of rest have claimed the special atten-

tion of the modern theory of solids as further obstacles to the motion
of an electron in a crystal. The vibrations of the individual lattice
components are coupled by the strong forces which lead to the forma-

- tion of the lattice. Low frequencies among these vibrations can oceur
. only when neighboring lattice components move approximately in

phase, We are then dealing with elastic or acoustic vibrations. At
high frequencies, neighboring lattice components will vibrate in phase

‘opposition. If the neighbors have opposite electric charge (heteropolar

ionic lattices, such as NaCl), such a vibration leads to a high-frequency

electric dlpole moment and an electromagnetw wave is emitted. We

speak, then, of optical v1brat10ns
The distinction between acoustical and op’acal vibrations becomes
mandatory when a lattice is made up of components of different

I'W Gordon, Z. Physik, 48: 180 (1928). N, E. Mott, Proc. Roy. Soc. (London),
Al118: 542 (1928). 8. Temple, Proc. Roy. Soc. (London), A121: 673 (1028).
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masses. Then the total spectrum of the characteristic oscillations of
the crystal splits into several branches. Of these, the acoustical :
branch embraces the frequencies 0 up to a limiting frequency for which
the heavy components alone are in oscillation, whereas the light com-
ponents are at rest (Fig. VIL9.6). Finally, at the lowest opticsl
frequency the heavy components are at rest and the light ones alone
in oscillation.! The highest optical frequency is that at which the
two sublattices oscillate in opposition without deformation (Fig.
Vil.9.6). ] RAREYY

At a finite temperature, all these oscillations are excited to some
degree. The exact lattice periodicity is perturbed. The perturbation
potential which is superposed on the lattice potential U(r) is also
periodic, with the wavelength of the lattice wave in question as period.
The potential energy of the electron depends on its position relative
%o the wave. Thus the coordinates of the lattice components and the
coordinates of the electron enter into the perturbation potentia!. The
perturbation potential couples the lattice wave and the electron wave.

In the treatment of this perturbation problem we find, as for the
perturbation of an electron in a c¢rystal by an electromagnetic wave
(88), that an electron with wave vector k is excited to transitions into
.another state k’, Just as there, such & transition must satisfy the law
of conservation of energy

- E(k) = E(k) & hoauice G (VIL.9.19)
and the “law of conservation of momentum’’ I
K=k 4+ Kuis’ L ((VILI20),

Hquations  (VI1.9.19) and (VII.9.20) show that the scattering
process of an electron by a lattice wave can also be described in cor-
puscular terms by stating that an electron collides with a “phonon’’*
and absorbs or emits the energy and momentum of a phonon. It is
plausible that, again, 8 mean collision time may be calculated as relaxa-
tion time with the aid of computed transition probabilities.

Figure VI1.9.6 shows incidentally that the thermal lattice vibrations
have wavelengths down to twe lattice constants. Hence the wave

1Tn comparing the highest acoustical and the lowest optical oscillations, the
distinction between acoustical and optical oscillations, which is still apparent in
a comparison of low or median acoustical oscillations with optical oscillations, i
thus effaced, Tor further detail regarding these types of oscillations see, e.g.,
Weizel, op. eit., vol. 11, p. 1385.

% fee pp. 18 to 14 and Fig. 1.2.9.
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numbers 2x/a of these vibrations traverse the same interval (—=/a,
+/a) as the k numbers of the electron waves [sce Eq. (VII.2.08)].
This contrasts sharply with the wave numbers 2x/\ of lightt waves
which, because of the relatively long waves of visible light, are small

! . o Light component
M‘ Heavy component

Low oy

m o Mediuty LACOUStical

vibration

Highest

Zo W

. | Optical
Meculh vibration

S E T o

YA W SO ] SR V) Yl W BTV )

Fia. VII.Q.g. Acoustical and optical vibrations of a diatomic lattice, Mass ratio
Mmeimg = 2:1. .

In principle, the heavy masses vibrate with larger amplitude than the light
masses for all acoustical vibrations (i.e., also for the low and medium vibrations at
the very top). This effect vanishes only for A\ = e«. For the wavelengths
A = 24 ¢ and A = 48 a assumed above it can no longer be demonstrated in a draw-
ing; however. Similarly, for the medium optical vibration the amplitude ratio
is practically already — 14, though this value is attained exactly only for X = w.
a = equilibrium distance between O and ® = half the lattice constant.

Highest )

compared to w/a. Thus the argument of page 242, which led to the
conclusion that collisions with photons could result only in electron
transitions ihto the next higher band with approximate conservation
of the k numbers, does not apply for thermal lattice vibrations. In
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collisions with phonons, transitions beiween guantum states of the
same band are entirely possible. Transitions into the next higher
_band, on the other hand, do not occur in general for phonon collisions.
The energy of the thermal lattice vibrations does not suffice for this—
except in the special case of the intrinsic semiconductor (see pages
16 to 18). ,

The quantitative development of these ideas constitutes unques-
tionably one of the most complex phases of solid-state theory. Thus
extensive discussions have dealt with the question of whether the elec-
‘trons participate in the distribution of the internal thermal energy of
the crystal over the several degrees of: freedom.! Furthermore,
Rardeen and Shockley? have introduced the so-called deformation
potentials By, and Ey, in an effort to relate the electron mobility to
other properties of the crystal. 2 T

However, we cannot, discuss any of these maftters in greater detail.

Here we are merely concerned with showing roughly how the con-
cepts of mean collision time r, mean free path I, and electron mobility
4, with definitions originally derived from corpuscular models, can be
carried over into wave-mechanical theory and, furthermore, that the
results of exact wave-mechanical calculations can also be expressed in
corpuscular terms. : : i

The results can then always be expressed in the classical form:

Mean free path: S l=gacr (VIL.9.21)
Mean thermal ‘
electron Py = leT i =
velocity IpvIGeTs 7 (VIL.9.22)
for semi- L SRS B (A /m : ’_ﬁ_o_
conductors:® o 5€C Nme N300°K
electron - i3 Hop % (independent of
- velocity for Uo = \gr ) moa temperature)

metals? Ve : m e T he, \Coe S
gelo?iry ﬂf) (cmTeefl) A L g '(1‘.6*_‘_= cm—=) :
ermi leve Yty y ¥ ’

4 3 '(VII.9.23)

1 The so-called Peierls reversal processes play here an important fole. See
H. A. Bethe in Geiger and Scheel, op. if., vol. XX1V, part 2, p. 536.

* W. Shockley and J. Bardeen, Phys. Rev., 771 407 (1950); Shockley, op. cit., pp.

+For derivation, see Eq. (VII1.4.27).

4 For derivation, see Eq. (VII11.4.09).

-
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Drift velocity: Vann = —pE (VII.9.24)
e
B = - T ;
Hstingn Mets (VIL9.25)
mobility: n m T
e e Yi g6 10 (et
cm?/volt-sec Mgt sec
Mean current densi@y : e

of. gingle electron: Kaingle i 07 Vil V.\.g.-m. (VII.9.26)

Conduc- . . : G s n
stieplh s (AT | S #1071 - :

tivity: (0] = cm..;) 1.60 - 10 (cm’/ vo‘lt—sec) (cm—s)
i (VI1.9.27)

Carrying the ideasindicated here to their logical conelusion will then
give information concerning the relationship of the quantities I, 7,
vw, n, and p with the temperature and the crystal parameters (such
as the elastic constants of the crystal, the deformation potentials #,,
and E,,, etc.) for any particular model, as for instance, a metal or a
gemiconductor with a given impurity concentration.

e. Zener’s Oscillation and the Mt_zan Free Path

We shall end with a note on the oscillation of the electrons in an
energy band under the influence of a constant external force, as
described in §7. According to (VII.9.26), such an oscillation would be
accompanied by an alternating current. We would obtain the strange
result that a field E, constant in time, would produce an alternating

current. The oscillation of an electron in its energy band was a

consequence of the validity, unrestricted in time, of the acceleration

" lawk = F/A. If, according to classical ideas, the acceleration process
~ is permitted to last indefinitely, a constant field will also fail to produce

a constant current, but instead a current which increases without limit.

~ In fact, this is prevented by collisions, and similarly, collisions prevent

the full development of the Zener oscillations. We have Seen in §7,
page 230, that the oscillation is not limited to the energy band, but
that the electron would also oscillate back and forth in space over a
distance (Hip — Frowwm)/(¢|E|). For a width of the energy band

Eﬁ,p BT Ehnom = 1 eV
and at a field strength of 1 volt em~ this distance would be 1 em.
Since the mean free paths are of the order of 10-* to 10~% em, the elec-
tron is deflected by collisions long before it can traverse a full cycle of

oscillation.. Only for field strengths of 10° to 10° volt em—! would the
oscillation amplitude become smaller than the mean free path so that
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the oscillation may take precedence over the disordered thermal

motion. However, at these field strengths there is a rapid increase in
the probability that the electron leaves its band and passes over into
the next band (see §7). Thus, even if such field strengths could be
realized experimentally, a constant field would not produce alternating
current.. Thus we are still left with the form of motion of an electron
under the simultaneous influence of a field and of collisions with
phonons and impurities which was represented in corpuscular terms
in Fig. VIL.9.2.

§10. The Transition to the Many-electron Problem
and the Calculation of the Conductivity

a. Introduction

Even in the introductory paragraph (page 166) we have pointed out
that the transition from the one-electron problem treated in preceding
paragraphs to the many-electron problem existing in reality need not
involve the construction of suitable many-electron eigenfunctions.
For many purposes it suffices to specify how the electrons of the solid
body are distributed over the energy states of the one-electron problem,
i.e.; the quantum states of the band model.

Th1s question is in part answered by the Pauli prmclple, which
states that a quantum state can be occupied by only two electrons,
which must have opposite spins. From this it follows that the state

‘of lowest energy, i.e., the normal state, is realized when the electrons

of the crystal oceupy the system of levels of the band spectrum from
the bottom up with just two! electrons per state. It is true that, this

* normal state is realized only at absolute zero temperature. At finite

temperatures, that nmcroscopm state will be observed for which the

number of microscopic states realizing it is a maximum. The deter- ,

~ mination ef the number of microscopic possibilities of realization and

the finding of the macrostate with the maximum number of these
possibilities is a problem of statistics. Because of the Pauli principle,
an electron ensemble is governed by Fermi statistics. Fermi statistics
teach that at finite temperatures there occurs, as compared with the
normal state in which the quantum states are occupied from the bottom
up with two electrens apiece, a loosening up which is described by the
function i
] 1 ;
A = e (VIL,10.01)
: e kT 1 -

1 Two because of the spin!

Lo S ——
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The function f(E) indicates the probability that a quantum state with
energy E is occupied. Figure VII.10.1 shows' that practically all
states with energies below the ““Fermi level” Er are occupied and prac-
tically all states above the Fermi level £r are unoccupied. The transi-
tion takes place within a few multiples of kT’ (k = Boltzmann constant)
and hence becomes discontinuous for T'— 0. Quantum states whose

* 4
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energy coincides with the Fermi level Ep are just half occupied and
half unoccupied, since

7 1 1

fEr) = o T 3T o (V11.10.02)

The position and the.temperature dependence? of the Fermi level Er
. depend on the distribution of the quantum states along the energy -

1n graphic representations of the function f(E), the energy FE js commonly

- plotted as abscissa and f(E) as ordinate. Since, however, in a later application of

{(E) in an energy-level diagram the energy is always plotted on the vertical axis,
the same was done in the present representation of f(¥f). We thus arrive directly
at the horizontal Fermi level Ep, which will later become of great importance.

% The difference # — Ep has been plotted instead of the encxgy E on the ordinate
soale of the left graph of Fig. VIL.10.1. This representation should not mislead
us into thinking that the Fermi level is independent of temperature. It is true
that this is approximately, but not strictly, so for metals. For semiconductors
the Fermi level normally depends strongly on temperature.
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scale, since By is determined by the requirement that the total number
of electrons to be accommodated is fixed, e.g., equal to N:

E e w E=m
1

2 [ ow g ar-2 [ p@) gy —dm-w

E=—o Em= - (<] kT +1

(VI1.10.03)

Here D(E) is the density of quantum states in an energy interval
(E, E + dB) which can be occupied with two electrons apiece. - The
functional dependence D(E) depends ent1rely on the crystal in question
or the model under consideration.

We shall defer the quantitative treatment of speciﬁc models to
Chap. VIII and derive here only a few fundamental results which rest
on the fact that only the energy Z of the quantum state in question
appears in (VIL.10.01) and no other parameters of the state such as,
- in particular, the wave vector k. |

On the basis of this fact,, we shall show first of all that there is no
current at thermal equilibrium. This result is, of course, merely a
test of the ideas and models developed so far. For a true thermo-
dynamic ethbnum the principle of detailed balancing tells us that
every mmroprocess is as frequent as its opposite and the current con-
tribution from any one electron is balanced by an electron moving in
the opposite direction. Hence, if the models and ideas developed so

far would lead to a current even at thermal equilibrium, this would

prove only the incorrectness of these models and ideas.
We then proceed to a brief consideration of fluctuations about the

state of equilibrium and obtain thus a first proof that a crystal w1th-

only fully occupied bands must be an insulator.

We obtain two further proofs for this statement as we leave, sub—
sequently, the study of the state of thermal equilibrium and consider
the totality of the electrons under the influence of an external field.
In this instance there may be a net current it may be calculated in
two ways.

First, the current contributions of the individual electrons may be
aummed Second, the distribution of the electrons over the quantum
states of the crystal in k space may be considered. For thermal
equilibrium, this is centrally symmetric. An external force distorts
it asymmetrically. This distortion results, in general, in a current.

Both methods yield the currentszero for a fully occupied band and
‘thus provide the two proofs mentioned regarding the dropping out of
a fully occupied band with respect to the conductivity. We apply
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the first method also to a partly oceupied band. It yields then the
~ relation for the conductivity which was already obtained in KEq.

(VI1.9.27) on the basis of classical electron theory:
o = eun

b. Thermal Equilibrium
Here the electrons are distributed over the several quantum states

'~ in accord with the Fermi probability of occupation (VII.10.01). The

latter contains only thé energy F of the quantum state in question,
not its wave vector k. It may now be shown that for every crystal

the relation
EXk) = E(—k) _ (VIL.10.04)

- must be satisfied.

Thus the funetion F(k) must always be centrally symmetric in k
space. Hence, in the one-dimensional example, it cannot vary as

E

k

- " : K :
Fig. VI1.10.2. Asymmetric E(k)-varia- Fia. VII.10.3. Symmetrical ¥ (k)-varia-
tion. Both -k and —k belong to tion. Both <k and =k belong to

. specific eigenvalues E. However, this every arbitrary eigenvalue E.
_is not generally true.

shown in Fig. VII.10.2, but must vary instead as shown in Fig. VII.10.3.
Thus for every eigenvalue there must be apart from ¥(z; k) with the

" wave factor et#= a second eigenfunction with the wave factor e=#=,

This follows quite generally from the fact that the Hamiltonian oper-

B ator — (h?/(2m))A — eU(r) is real. For, if we pass from.the normal

PO
R

'to its complex conjugate

Schrodinger equation ) i
b (Ho, — E)ir; k) =0

(Hop b E)'p*(r; k) =0

we see that for the same eigenvalue £ there is both an eigenfunctidn

" [ie., ¢(r; k)] with the wave factor e+ and one [i.e., ¥*(r; k)] with the

T

wave factor e %7 = et ®* which was to be proved
Thus it follows from Eqs (VI1.10.01) and (VII.10.04) that a state
+k and a state —k are occupied with equal probability at thermal

- equilibrium. However, as a further consequence of central symmetry
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(V11.10.04), their contributions to the current density

1

[see Eq. (VII 5.13) on page 208] are equal and opposite. Thus, at.

thermal equilibrium, current contributions of opposite sign always
occur with equal probability. Hence there is no current. In cor-
puscular terms we may say simply: At thermal equilibrium, electrons
with equal, but oppositely directed, velocity oceur with equal frequency
and hence compensate each other with respect to the current.

¢. Thermal Noise

The preceding statement, that at thermal equilibrium the proba-
_ hility of occupation of a quantum state by an electron depends only
on its energy K and not on its wave vector k, applies only for a time
average. Spontaneous fluctuations take place about this mean dis-
tribution of the electrons, giving rise to the so-called thermal noise of
ohmic resistances.

Here we must already make a distinction between two cases which
will play an.important role in what follows. :

As we discuss, in Chap. VIII, the distribution of the electrons over
the quantum states of the one-electron problem in greater detail, we
shall encounter, as one possible case, the situation that all places in
the uppermost energy band containing any electrons whatsoever are
fully occupied. The next allowed band is empty. In another case,
the uppermost allowed energy band containing electrons is partly
occupied.

Since electrons can leave the band in which they find themselves

only by the action of very strong fields (§7) or that of photon collisions -

{§8) and since we have excluded such external forces for the present,
thermal fluctuations can lead only to transitions to other states in the
same band. In a fully occupied band, these states are, however,
occupied. Now it is immaterial whether we say that in a fully oecupied
band thermal fluctuations consist of an exchange of places between
~ electrons or whether we say that in a fully occupied band thermal
* fluctuations are not possible. From the standpoint of quantum theory,
electrons are indistinguishable. It matters only whether a state is

occupied by any electron, not by which electron.! Hence there can be

1 If two electrons exchange places, the eigenfunction of the many-electron prob-
lem (in zero approximation, the so-called Slater determinant) merely changes sign.
This does not signify a change in the “physical situation’’ of the state of the many-
electron problem. 1

The wave-mechanical equivalent of the ‘“corpuseular’’ statement of the indis-
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no thermal fluctuations in a fully occupied band. If a crystal has
only fully oceupied bands and no partly occupied band, it can exhibit
no thermal noise. Otherwise, the mean-square fluctuation current
I? within a frequency band df for a short-circuited conductor at tem-
perature 7' is related to the chmic resistance R of the conductor accord-
ing to the well-known theorem of Nyquist* by the relation

02 = ilﬂ’ df (ifﬂ.lo.os)

By this equation, thermal noise vanishes only for R = e, i.e., for an

insulator. We have here a first indication that a crystal with only

fully occupied bands is an insulator. This will be confirmed when,
next, we consider the totality of the electrons in a crystal under the
influence of an external force.

d. Calculation of the Conductivity by Summing the
Contributions of the Individual Electrons

The electric field E exerts on every electron the force
F = —eE (VI1.10.06)

We have seen on page 213, Eq. (VI1.6.12), that the electrons change
their state k in aceord with the law

wk=F (VI1.6.12)

In §9 we followed the fate of an individual electron under the simul-
taneous influence of an external force F and of collisions with phonons
and impurities and determined its contribution to the current density.
If we now sum over all the electrons, we must obtam the total current
density.

In carrying out the summation, we shall limit ourselves to the
“one-dimensional” case so as to avoid unnecessary mathematical

' y t.ihguinhabiﬁty of the electrons is the axiom that among all the solutions of the

Schrodinger equation of a many-particle problem only the symmetrical or the
antisymmetric solutions have physical reality and, hence, need be considered.

‘From this standpoint, the counting prescriptions of Bose and Fermi statistics

represent simply the counting of the symmetrical and antisymmetric eigenfunc-
tions, respectively, of a many-electron problem; see, e.g., .. Nordheim in Miiller-
Pouillet, “Lehrbuch der Physik,” vol. IV, part 4, p. 251.

» H. Nyquist, Phys. Rev., 32: 110 (1928). We prefer to introduce the mean-
square current fluctuation I* of a short-circuited conductor rather than the mean-

square voltage utat the ends of a conductor in open circuit because in the latter
case a spontaneous primary fluctuation produces a field within the conductor.
We then no longer have the force-free case here under conudera.uon
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complications, Thus the motion of the electrons has only one degree

of freedom, namely, the x axis. Similarly, the field strength points

in the z direction and the lattice potential U = U(wx) depends only
on #. In order to be able to separate clearly the concepts of current
and current density, we consider, in spite of the restriction of the direc-
tion of the force and the electron motion to the x axis, & crystal which

has & cross section @ perpendicular to the z axis and has a length of -
@ lattice constants a along the z axis, so that its volume is @ -Ga.

Then we obtain from (VIL.9.26), (VIL.9.24), and (VIL.9.25)

i 1 elr
siagte = 0 - Ga Men(k)

The summation of the individual contributions follows, for the assump-
tion that the quantum states are filled up to a k number Kyouna:

k = +k bound '
A Jortbg g} aljnh |
g f R S ST O Egpydus (VIRA0.07)
= — bou:

The number dN of electrons which can be accommodated in the k
interval (k, k + dk) is equal to twice! the number of the quantum
states in this interval, According to page 170, a quantum state
olaims an interval 2r/aG on the k axis. Thus there are Ga : dk/2x
quantum states in the interval (k, k + dk), and ;

aN =252 a, (VIL.10.08)
electrons can be accommodated. If we use Eq. (VII.6.28) for the
effective mass in (V11.10.07), we obtain

k= 4k bound
) (5 1 Ga
i = e’Er B (k) -—-—0_&22'6,:@ . |
il S e S
= o B () — B/~ Frsd)]

In view of the general central symmetry (VIL.10.04) of E(k), we
can conclude, furthermore, that , : '

i B o (k) (VIL10.09)

Q =h?
Let us consider first the case of the fully occupied band. Since at a
band edge the E(k) curve is horizontal (see Figs. VI1.3.10¢ to VI1.3.12),

1 Because of the electron spin, a quantum state can be occupied by two electrons.

i o SO T e
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.’, we have in this case B (Fpem) = 0. We thus have the result that the
~ fully oceupied band supplies no current, in the presence of an electrie:

field E as well as at thermal equilibrium. A fully occupled band does

~ not contribute to the conductivity.

. As our next example we consider a very shght.ly occupied band.
‘ Then only the states close to the bottom edge of the band are occupied.
‘Here the approximation

E = K¢ + S k’ (VI1.10.10)
is valid. Hence

2 4
E' (kvouna) = ;;Ef * Kbouna (VIL.10:11)

On the other ha.nd Kiouna may be expressed with the aid of (VII 10.08)
in terms of the total number N of electrons in the volume V = Q -Ga
of the crystal:

N = %GG [(+kbund) e (_kbound)] = EGakbuund (V111012)

N
or k""“‘hﬁﬁ

Wlth (VII.10.11) and (VIL.10.12), (VIL.10.09) becomes
e’Er 1 1 h? N '

NSl s S ) A T
Q ?B_i Mot 2 @a
or, introducing the concentration n = N/(Q -Ga) of the electrons,

§ ='aih a PR (VII.10.13)
Motr
For a sllghtly occupied band the conductivity, defined by
i=c¢"'E (VI1.10.14)
thus becomea s ;
4 c=e'n-p (VII.10.15)

Here we have introduced the electron mobility

uo= é 7 (WI.9‘.25)

which oceurred in Eq. (VIL.9.07) or (VI 9.24) as a proportionality

| factor between the mean velocity increment of an electron and the

field strength E. This leads to a purely corpuscular standpoint.
It was shown on pages 246 to 248 how the conductivity formula
(VII1.10.15) is obtained from it.
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b ' \ } |
e, The Distortion of the Equilibrium Distribution of the
Electrons and the Calculation of the Conductivity

At the beginning of §10 we noted that we could obtain important
results from general traits of the electron distribution over the several
‘quantum states, without concerning ourselves with details. As one
such trait we have utilized the fact that at thermal equilibrium the
electrons occupy symmetrically the centrally symmetric pattern

2% -F o0 +% +2% +3% w 2F - 0 +% +2% 43
Fic. VIL10.4. In the absence of an Fic. VIL.10.5. In the presence of an

external force the occupation of the external force the occupation of the
E(k)-states is symmetrical. E(k)-states becomes asymmetric.

E(k) (see Fig. VIT.10.4). Now, an external field perturbs the equi-
‘librium distribution. = All electrons uniformly seek, in accord with Eq.
(VIL.6.12), :

&= %F . (VIL6.12)

to oceupy other k vectors, which point more nearly in the direction of
F. Since (VIL.6.12) does not contain the quantum state k itself, we
find that the equilibrium distribution of the electrons in k space tends
to drift with uniform velocity without change in shape' or density.
At the same time, we have seen in connection with the treatment
of the ““oscillation” within a band of a single electron, on pages 257
to 258, that collisions with phonons and impurities prevent an actual
development of this oscillation. In considering the totality of the
electrons, we must similarly take account of the fact that, in fact,
thermal equilibrium is attained through collisions of the electrons with
phonons and impurities and that in case of a deviation from thermal
equilibrium these collisions provide a retarding impulse which tends to
reconvert the perturbed distribution into the equilibrium distribution.
Thus we see that the application of an external field E to the crystal
results in a slightly perturbed distribution of the electrons over the

1 For the one-dimensional example of Fig. VII.10.4, the “shape” of the k dis-
tribution is simply the width of the occupied k interval, .
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quantum states, of such nature that the equilibrium distribution is

shifted slightly from its symmetrical position in the direction of larger

k numbers (Fig. VI1.10.5). The resulting current and hence the con-

duetivity are derived from the mag-

nitude of the shift. , ‘
We shall not carry this idea fur-

ther at this point. Instead, we

E(k).

that, from this standpoint, the drop- _
ping out of a fully occupied band -~ AR AL AN 1 O

L i i
e el .
for the conductivity is easily recog- 26 "o O & *2F £3F K
nized. In Fig. VII.10.6 we have VE(k)

shown the occupation of a full band
with and without external field.
Since the states in the k interval
+x/a < k < --3x/a are fully equiv-
alent to the states in the interval "
—x/a <k < +n/a,thestateswhich -2% -I o

X o R P 3

are missing in the interval —x/a
< k < +x/a after application of

~ the field are exactly compensated

Fia. VIL10.6. The occupation of the
E(k) states for a fully occupied band.
Upper figure: without external force.
Lower figure: with external force.

. of the quantum state k, which is net generally correct.
- fistical scattering of the free times of flight and, particularly, the
- ecoupling of the velocities before and after collision render very difficult
| the precise realization of the method first described, in which the cur-
rent is calculated from the contributions of the individual electrons.
~ Even in classical electron theory, this led H. A. Lorentz to abandon

by those which have been added in

the interval +r/a < k < +3x/a. Thus the application of the field

- has actually made no change in the distribution of the electrons. Just

as in the absence of a field, there is no current.

f. Concluding and Summarizing Remarks

It must be emphasized repeatedly that the argument of §9 and §10
represents only a superficial outline of theories which are very complex
in substance. Thus we have treated the collision time  asindependent
The sta-

this method, which had been used by Riecke and Drude, and to replace
it by considerations of the deviation from the equilibrium distribution.
The second method is also tied less closely to the corpuscular picture

- and makes it possible to work directly with transition probabilities

~ at a collision,

Hence all authors have used'it in effect for more precise

' wave-mechanical treatment of the ideas outlined here in §9 and §10.
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§11. €onclusions from the Band Model Regarding the
Conduction of a Particular Crystal Lattice

In the solutien of practical problems we frequently seek electronic -

sohds with quite definite conduection properties. [Examples: (1)
Resistivity = 10! to 10* ohm-cm, temperature coefficient of resistance
' as small as possible; or (2) resistivity as small as possible, temperature
coefficient as large as possible; or (3) resistivity as large as possible
and, at the same time, electron mobility u as large as possible.] No
proof is needed to show that a theory of conductivity which might
predict whether a certain element or compound is a conductor or

insulator would be of value in meeting such requirements. ' The person -

who is less familiar with the field may be surprised, however, that such
‘“predictions” of theory are of great value even in the study of the
conduction properties of a chemical compound which is already avail-
able, at least in the laboratory. We might think that in such a case
a measurement would attain the objective more quickly, and, in par-
ticular, with greater certainty than an application of theory. =

However, a purely experimental procedure can lead to crude errors.
In conductivity measurements, difficulties frequently arise simply
fromthe fact that the contacts commonly introduce barrier layers.
The measurement of voltages with zero-current probes proves helpful,
but demands relatively large specimens. The main difficulty, how-
ever, arises from the fact that the conductivity of most semiconductors
and insulators is extremely sensitive to minimal impurities or defects
in structure and texture. Hence it is often extremely doubtful
whether the measured specimens have those conduction properties of
* the material in question which are characteristic of it in a hlghly
perfect state.

A historiecal example may show that this a.sse.rtxon is by no means
contrived. For a long time it was undecided whether the elements
silicon and germanium, in their purest form, were metals or lnsulators,
and in 1930 reputable experimenters decided emphat:cally in favor of
their metallic character. However, when these two elements, approxi-
ma.toly ten years later, attained importance as materials for detectors,
specimens of inereasing perfection became available for measurements,
and just the reverse was found to be correct. Today silicon and ger-
manium are even regarded as prototypes of electronic semiconductors.

What potentialities does the theory have for determining the con-
duction properties of & solid? The nearest starting point is here, of
course, the assertion of the band model that a fully occupied band does
not contribute to the conductivity (see pages 263, 264, and 267) and
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that a solid body. can be a conductor only if its band model includes
“incompletely occupied bands. A’ very simple procedure, which, how-

ever, may frequently lead to erroneous conclusions, suggests itself for
the application of this statement. We can observe the occupation of
the individual electron levels of the atoms forming the lattice and con-
clude from the complete or incomplete occupation of these atomic
levels regarding the complete or incomplete occupation of the ““corre-

- sponding”’ bands of the crysts,l lattice.

From this point of view it is to be expected that the lattices of the
condensed noble gases (Ne, Ar; Kr, X) with closed shells of eight in
the individual atoms are insulators. This is so in fact. Also for the
alkali metals Li, Na, K, Rb, and Cs this primitive argument applies.
From the fact that there is here a single s electron outside a closed
shell of eight, we deduce half-occupancy of a corresponding s band and
hence metallic conductivity. It scarcely requires mention that for
an ionic lattice (e.g., NaCl) the complete or incomplete occupation of
shells in the ions Nat and Cl- and not in the neutral atoms Na and
Cl must be considered. In any case, in view of the shells of eight of
Nat and Cl-, we must regard the insulating character of the NaCl lat-
tice as another confirmation of the elementary standpoint.

The alkaline earths Be, Mg, Ca, Sr, and Ba have two s electrons in
their outermost shell. From the foregoing elementary point of view,
their crystals should have a fully occupied s band and hence be insu-
lators. The contrary is known to be true. The explanation may be

~ sought in the fact that for these atoms an empty p term:lies above the
fully occupied s term. When the atoms are ‘brought together in a

crystal, these terms split up into bands and .overlap apparently, so
that the insulating gap betweerr the s and p bands is closed.
" A further failure of the primitive point of view occurs for the la.ttlce

of solid hydrogen. * Like the alkali atoms, the hydrogen atom has a

single s electron. Nevertheless, solid hydrogen is an insulator, in' -

‘contrast with Li, Na; K, Rb, and Cs. We shall see that the explana-

tion rests in the fact tha.t hydrogen does not form an atomic lattice,
but a molecular lattice,! i.e., a hexagonal close-packed lattice? in which
the individual lattice pomts have a separation of 3.75 A and are
occupied by H; molecules rather than by H atoms. Within the
molecules, the two H atoms are known to have a separation of 0.74 A.?

In & molecular lattice (see, e.g., Fig. VIL11.1). we are no longer

18ee, e.g., J. D’ Ab.s and E. Lax, ‘“‘Taschenbuch fiir Chemlker- u.nd Physiker,”’
pp. 164 and 178, Springer-Verlag OHG, Berlin, 1943.

* See, e.g., P. P. Ewald, ‘“Kristalle und Réntgenstrahlen,” p. 150, Springer-
Verlag OHG, Berlin, 1923. ;

3 See D’Ans and Lax, op. cit., p. 118.

L}
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(ieah'ng with a “simple translation lattice” (commonly designated as

Bravais lattice), but- with a ‘““translation lattice with basis.”

Fig. VII.11.1. Carbon tetraiodide as
“example of a molecular lattice.
C atoms: white. I atoms: black.

corner of the unit cell to the m atoms in the cell, from these corners.
lattice can be described in infinitely many ways.?

R;

For
these ‘lattices we no longer obtain
all! lattice points by giving the com-
ponents Uy, Iy, I of the number trio
1 = (U, la, L) in the equation for the
radius vector R; of & lattice point

Liay - Las + Las (VIL11.01)

all positive and negative integer val-
ues; in this manner we obtain only
the corners of the individual unit
cell, and we must extend the *basis”’
of the unit cell, namely, the m vec-
tors ¥y . . . 1, which lead from the

A

Thus the face-cen-

tered cubic and the body-centered cubic lattices (see Figs. VII.11.2 and

Fia.
lattice. ¢
First representation: translation

lattice with basis; orthogonal axes of
. translation: 04, OB, OC.  Four atoms
of basis: 0, 1, 2, 3

Second representatlon: simple trans-
lation lattice; oblique axes of trans-
lation: 01, 02, 03,

From P. P. Ewald in Geiger and
Scheel, vol. XXIII, part 2, p. 239,
Fig. 46.

VIL.11.2. Face-centered cubic

Fia. VIL 113 Body-cant.ared cubic - -

lattice.

First represenfation: translation,
lattice-with basis; orthogonal axes of
translation: 4B, AC, AD. Two
atoms of basis: 4, 0.

Second represenfation: simple
translation lattice; oblique axes of
translation: 01, 02, 03. - '

From P. P, Ewsld in Gaiger and
Scheel, vol. XXIII, pa.rt. 2, p. 239,
Fig. 47

g L]

VIL.11.3) cease to be simple translation lattices if orthogonal axes of
translation a,, a;, a; are employed, but become instead lattices with a
basis of four and two atoms, respectively. With oblique axes of trans-
' lation a;, aj, ag, they can be represented as simple translation latticés.
1 More preclsély, all and only all lattice points. 1In this connection, see the dis-

cussion on p. 271 on the diamond Iattice and Fig. VII.11.4 (.orrospondmg to it.
2 See Ewald, op. cit., p. 272.
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(0)

Every C atom has four neighbors placed
at the corners of a tetrahedron.
tices.

(b)

Formation of the diamond lattice by
two interlaced face-centered cubic la.t-

Fig. VI1.11.4, Diamond lattice: all atoms C ;

Zinc blende lattice: black atoms Zn,
white atoms 8.

Tn a molecular lattice this cannot be done in any way; the geometri-
cal relationships themselves prevent representation as a simple trans-

molecular lattice.
be regarded as a simple translation lattice;
it consists of two face-centered cubic lattices
which are displaced by a quarter of a body
1t is true that translation axes a,,
a,, a; can readily be indicated for which every
C atom has a radius vector lja; + las + las
with mteger El, Ez, La.
all positive and negative integer values to the
li, 3, 13, we meet many points which are not
occupied by Catoms. This carninoi happen in
a simple translation lattice, in whose definition

on page 270 we should speak more precisely of

‘““all and only all” lattice points rather than
simply of ‘‘all” lattice points (see also footnote
1, page 270). Whereas for the molecular lat-
tice and the diamond lattice purely geometri-
cal circumstances prevent representation as a

» Bravais translation lattice, we find that for

compounds such as NaCl the occupation of the

However, if we assign

This is not true exelusively for a
The diamond lattice (see Fig. VII 11.4) also cannot

]
e 0

F1a. VII.11.5. The NaCl
lattice mlgh; be regarded
as a simple translation
lattice with three orthog-
onal axes a/2 if the alter-
nating occupation of the
lattice points by Na and
Cl avoms did not demand
a different representa-
tion, e.g., as lattice with -
three orthogonal axes a
and a basis of four Na
and four Cl atoms.

lattice points by different kinds of atoms or ions forces us to regard
them as translation lattices with basis (see Fig. VII.11.5), even when
geometry alone would lead us to describe them as simple u'ansla.t.lon
lattwes
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Figure VII.11.6 shows one-dimensional analogues of an atomic and
a molecular lattice. These linear arrangements are more easily
handléd mathematically than the actual three-dimensional ones; Fig.
VIL.11.7 shows the result of such calculations.! = On the left half of the
figure, an s term of one particular atom type splits into a band when
in a linear atom lattice the identical lattice distance a between adjoin-
ing potential wells is gradually reduced from very large values to the
small value b.  The band contains two piaces per atom (see page 179).

1

Atomic loﬂiée : Molecular lattice
- ¥F1a. VII.11.6. Linear chains.

A Etectron .mrqy E

States per atom ;
States per atom : Loosening level
e —ae= of pair of

-"/\‘3-"0' eb- ; potential wells

o

Atomic y
States per atom

level Binding level

of pair of
potential wells

L ] > L ] Feresress v v v L34
; bissbaltbiieh
Bringing together equi- Separation of individual
distant potential wells - pairs .?f potmthll wells to
fo on “atomic”:lattice : form "molecular” lattice

Fra. VII.11.7. Splitting up of an atomic lattice band in the formation of a molecular
lattice. = Qualitative representation. The thin lines within the band indicate the
total number of states in the band lying below them.. To the lower “molecular’’
level belongs a “binding’” eigenfunction y.(r) = Vas(rs) + Yue(n). To the
upper “molefular” level belongs a “loosening’’ eigenfunction ¥_(r) = yu(re) —
Vas(n). Bee Egs. (VI.2.01 and 2.02) and footnote on p. 155. L2 A

In the right half of. the figure, the atoms are again separated. How-
ever, in this process the atoms retain the separation b in pairs and only
the separation between adjoining pair centers is continuously increased.
Thus, in the same right half of the figure, a linear molecular lattice is
dilated until the molecules are practically separate. We see that the

! Since, as in the band model, we are here dealing with the one-electron problem
(in a periodic potential field), the solution for the limiting case of separated mole-
cules can also be compared only with the eigenfungtions of the molecular ion, from
which the procedure of Hund and Mulliken can then construct the many-electron
eigenfunctions of the molecule by linear combinations. See also the legend of

Fig. VIL1L.7.
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. continuous energy band of the atom lattice splits in the middle and

that we obtain two separate bands with one place per atom. Thus,

if the lattice points in such & linear molecular lattice are oceupied by
. hydrogen atoms, electrons just fill completely all places of the lower
. band. The upper band remains empty. Thus we obtain an insulator.

The transfer of these considerations to the three-dlmenmona.l H lattice

_ is certainly permissible.

In the example just described of a diatomic molecular lattice, there
are two atoms in a unit cell. Each of the bands, therefore, has again
two places per cell, Hence if we replace the ph.ra.se “two places per .

| atom” with the phrase “two places per elementary unit cell of trans-

lation,” we would seem to cover correctly both atomic and molecular
lattices and might hope to arrive, at a generally valid rule—eventually
after introduction of a statistical weight » for an atomic level with
(o — 1)-fold degeneracy. However, this also is an illusion. A cal-
culation for the case described—e.g., with the aid of Bloch’s approxima-
tion—shows that the splitting between the two molecular bands
vanishes when the distances of an atom from its two neighbors become

 just equal (we now traverse Fig. VII.11.7 from the right to the left).

i i N

—

The fact that the rule “two places per elementary cell” applies also.

for the atomic lattice arises from the fact that at the instant at which

the separations of an atom from its two nearest neighbors become

equal the elementary cell becomes half as large as before in the molecu-

-lar lattice. Thus the number of elementary cells is doubled, and

hence the doubling of places in the one band which resulted from the
closing of the gap between the molecular bands is just compensated.
Now the equalizing of the distances to the neighbors need not always
be accompanied by the appearance of a smaller unit cell. Even 80,
two molecular bands can merge into a single atomic band. Thus 1f
two face-centered cubic lattices are so placed that they are displaced
relative to each other by a small fraction of a body diagonal, we have

‘2 molecular lattice. If the lattice points are occupied by atoms with

an s electron, we have once more two molecular bands with two places
in an energy band for each elementary unit cell (constructed with the

- surface diagonals! See Fig. VII.11.2). If, now, the lattices, are dis-
-placed further, we reach the diamond la.ttwe for a displacement by

one-fourth of the body diagonal. The separations of an atom from
its four neighbors become equal. The molecular bands merge mto a
single s band. However, no smaller unit cell is obtained, so that we
have a band with four places per elementary unit cell in such a lattice.

The instructive example of the actual diamond lattice (atom with

two 25 and two 2p electrons), which we shall discuss next, shows in
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addition that the atomic stafes, which are split up in bringing the
atoms together, can group themselves quite differenily from the atom,
so that the setting up of a more or less sutomatic rule for counting the
~ places in the bands becomes entively impossible, In the isolated C
atom, the 2p level is occupied by only two electrons, although, by the
- Pauli principle, there is place for six electrons. Hence the primitive

Actuoi Crossing .
dsomond iotlice ~ point |
0 I
iy
——
>
&lo
Lo
§|x -oa |-
S
L
e
5 KPICH
8|2
w5
g -o8 |
S
-1.0 . >
(0] 2 4 6 8 19

(Sepurmmn of neighboring c-otoms)_h
first Bohr hydrogen radius ’

Fig. VII.11.8, Bnergy bands of diamond according to ¥. Hund and B. Mrowka.
For large atomic separations the 23 band contaius two states per atom. The
2p band contains 6 states per atom, of which, in the present approximation, only
the central third splits up; the lower and the upper thirds of the 2p states are
represented by the heavily drawn boundaries of the 2p band. See the text with
respect to the behavior for smaller atomic separations,

standpoint might lead us to expect metallic conductivity for diamond.
Such a consideration is valid, however, only for very widely separated
C atoms; a caleulation for diamond yields the system of levels shown«
in Fig. VIT.11.8.1 We have a 2s band with two places per atom and a
2p band with six places per atom only for very large values of the

1 F. Hund and B. Mrowka, Ber. Verhandl. siichs Akad. Wms Leipzig, Mnth—fpkya
Kl.,, 87: 185 and 325 (1935), in particular p. 192. Since in the iolated C atom
there are not only two 28 electrons but also two 2p electrons, it seems reasonable
to suggest that the Bloch approximation “should be carried out with p functions.
Hund and’ Mrowka have, however, carried out the Bloch approximation with

- s functions only and have utilized p functions only in the cellular method of Wigner
and Seitz. Thus Eq. (VII.11.02) indicates only the band sphttmg of the atomic
2 level and says nothing regarding the band sphtt.mg of the atomic 2p level above
it.

i
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 lattice ‘constant. As the lattice constant is reduced contmuously,

retaining the tetrahedral arrangement of the individual C atoms—i.e.,

for geometrically similar reduction of the lattice dimensions —the

lower edge of the 2p band and the upper edge of the 2s band cross.
The decisive point i3 that, at the crossing, a fractional band of two
places per atom leaves the upper band and merges with the 2s band
below it, so that to the left of the crossing point the lower band has
four places per atom and the band lying above it has also only four
places per atom. Thus, to the left of the crossing the four electrons
of the L shell of the C atom fill completely the lower band, which is
followed by an insulating gap, and the band with four more piaces per
atom lying above it remains empty.

- Another surprising phenomenon occurring in the band theory of the

diamond lattice may be related to this peculiar behavior of the 2p

states. The Brillouin approximation, starting from free electrons,
leads to a theorem regarding polyhedra in k space, the Brillouin zones
(see page 189). In the Bloch approximation, starting from bound
electrons; we also meet a polyhedron in k space, the periodicity poly-
hedron, outside of which the energy values repeat themselves peri-
odlca.lly (see page 181). For the cubic, facé-centered cubic, and body-
centered cubic lattices treated in most textbooks, the Bloch periodicity
polyhedron and the first Brillouin zone are identical. This is no
longer true for the diamond lattice. According to Hund and Mrowka,!

the Bloch approximation with atomic s functions yields for the diamond
lattice

.E'=,E‘-‘+4C-

| Gr . oos® O R DT A
iZRJl+cos§k, 0082k,+0082k, coszk,+eoszk, 008,2}‘:’
- (VIL.11.02)

whereas for a simple face-centered cubic lattice we hs.ve’

e .4A (cos =

! a a a a @5
5 K= cos 5 ky ++ cos 5k, cosik,-i-cos-z-k,-cos—k)

(VIL11 03)
' The dependence on the components kz, ky, k. of the wave vector k

- thus occurs for both lattices through the same expression cos ak,/2 -

ST ) el

1 Thid. : i
2 See, e.g.,, A. Sommerfeld and H. A. Bethe in Geiger and Scheel, op. cit., vol.
XXIV, part 2, p. 387, Eq. (12.15). .
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Bloch
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F1e. VI1.11.9. Concerning the Bloch and Brillouin approximdta’ons_ for d_is‘mond. -

cos aky/2 + cos aky/2 - cos ak,/2 + cos ak,/2 - cos ak;/2. Thus both
lattices have the same Bloch periodicity polyhedron, i.e., the octa- -
hedron with the points cut off shown in Fig VII.11.9.

.Concerning the first Brillouin zone of the diamond lattice, we know
that it must be at least as large as that of the face-centered cubic
" lattice, since no additional Bragg reflections are produced by inserting
_ into each other the two face-centered cubic lattices of which the dia-

mond lattice consists (see Fig. VII.11.4).! On the other hand, certain

1 Ewald, op. cit.,, p. 91.
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reflections tan drop out, since the beams reflected by the two sublat-
tices can cancel each other because of suitable phase differences.! In

~ fact, for diamond the (200) planes, cutting off the points of the octa-

hedron, drop cut, so that the first Brillouin zone of diamond is the
complete (111) octahedron. For the second Brillouin zone, a rhombic
dodecahedron, formed by the (220) planes, is obtained (see Fig.
VII.11.9).2

In the Bloch approximation, nothing is changed as compared with
a face-centered cubic lattice in so far as we still obtain an s band with
two places per atom. We reeognize this as follows: According to Fig.

VIL.11.9, the Bloch periodicity polyhedron has, by elementary geom-

etry, a volume 4¢~%. According to §2, page 182, a k state requires a

‘4 ~ volume (2r)®/Vyaa in k space and a volume 1/Vi,q in the k/2r space

used in Fig. VII.11.9 because the vector k/2r is also plotted in the
construction of the Brillouin zones (gee Figs. VIL.3.5 and VII.8.6).
We can hence acéommodate 4Vqa—* different k states in the perio-
dicity polyhedron with the volume 4a¢~* On the other hand, the
fundamental domain contains Vi.a/a® elementary cubes with edge a.
For the face-centered cubic lattice, every elementary cube contains
four atoms. Thus there are 4V,.a? atoms in the fundamental
domain. Thus, for the face-centered cubic lattice the periodicity

‘polyhedron provides space for 4Vuaaa—* different k states for 4V sma?

atoms, or one k state per atom. B8ince by (VII.11.03) one energy

- value in the s band belongs to every k state, we obtain for the face-

centered cubic lattice an s band with one energy value per atom or,
‘because of the spin, two places per atom.

In the diamond lattice there are instead eight atoms in the elemen-
tary cube a®. It would seem, hence, that we would obtain an s band,
with only one place per atom. However, according to (VII.11.02),

" the s band of the diamond lattice consists of two sub-bande, because

of the two signs of the root; these merge,-however, since the term
under the radical vanishes, e.g., for ak./2 = , ak,/2 = 0, ak./2 = x/2.

1 The condition for this is that the “structure factor’

o =
Sh - Z g—tw ity
é=1

forthereﬂmuomntafamﬂyofphmhvanmhee The summation index ¢ = 1,
- 2, . .., m indicates the several sublattices in this expression; the m vectors i
construct the basis within a unit cell. See, e.g., Ewald, op. cil,, p. 279.

28ee N. F. Mott and H. Jones, “PmpartmofMetﬂnandAﬂoyu”p 159,
GlarandonPreu Oxford, 1936.
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The complete s band formed by the two sub-bands thus contains twice
as many places as for the face-centered cubic lattice. Hence the
doubling of the number of atoms in an elementary cube is,compensated,
and we obtain once more an s band with two places per atom. This
evidently corresponds to the conditions for a diamond lattice with very

- large lattice constant, i.e., the level system to the right of the crossing

point in Fig. VIL.11.8.

We can draw the following conclusion from the Brillouin approxlma-
tion: Since the cubes with edge a contain four atoms in the face-centered
cubic lattice and eight atomsdin the diamond lattice, the number of
places per atom in diamond is half as large as for the face-centered cubic
lattice. Thus we would obtain one place per atom in-the diamond

- Jattice. Since, however, the points of the octahedron are not cut off

for the diamond lattice, an exact calculation yiclds 1.125 places per
atom, provided that we restrict ourselves to the first Brillouin zone.
Only the next Brillouin zone, namely, the rhombic (220) dodecahedron,
contains together with the first zone again a whole number of places
per atom, namely, four. If we assume that there is band‘overlap

between the first and second zone, but not between: the second and

the third zone, we obtain an energy band which is completely filled
by the four valence electrons in the L shell of the C atom. This evi-
dently corresponds to the circumstances for a diamond lattice with'
small lattice constant, i.e., the system of levels in Fig. VII.11.8 to

‘the left of the crossing point. Thus, here the behavior of the valence
. electrons is to some extent covered by the Brillouin approximation,
- whereas the two strongly bound 1s electrons must be added to the-

- nucleus.

Thus we see that the insulat.iné character of diamond is by no means
obvious from the gtandpoint of the band model and can be understood

~ only with the aid of a more careful study of the splitting of the atomic

states, in particular the 2p states. Whereasin this instance the “more
careful study’’ has been carried out by Hund and Mrowka! on the one
hand and by Kimball! on the other,? the same does not apply to cobalt
monoxide, CoO. = Yet here also the high resistance (p ~ 10* ohm-cm)
found experimentally is rather difficult to understand. CoO crystal-
lizes in a rock-salt lattice, whose lattice points are occupied by Cot+

L ¥, Hund and B. Mrowka, Ber. Verhandl. sichs. Akad. Wiss. Leipzig, Math.-
phys. Kl., 87 185 and 325 (1935); G. . Kimball, J. Chem. Phys., 3: 560 (1935).

? Large-scale investigations of the band structure of the diamond lattice have
been undertaken in the last few years by Herman (Radio Corporation of America).

. See . Herman, Phys. Rev., 88: 1210 (1952); and 93: 1214 (1954); F. Herman and

J. Callaway, Phys. Rev., 89: 518 (1953); and . Herman, J. Callaway, and F. 8.
Acton, Phys. Rev., 95: 371 (1954). : i
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and O~ ~ions.! Whereas the O~ —ions have a closed shell of 8 electrons,
the 3d level of the Cott ious is occupied by only 5 electrons, whereas
it could accommodate 10 electrons. We, therefore, expect a half-
ornupwd 3d band in the crystal and, hence, metallic condactivity, in
cont.radxctwn with experiment. Hund'*‘ suggests as 8 way out that
the 2d band is so narrow and consequently the efiective mass of the
electrons so large that, in spite of a normsal mean free path of the con-
duetion electrons, very small mobilities and, hence, very small con-
ductivity are obtained. In this way we might “‘just about understand

the insulating nature of these crystals.”’®

MnO represents a similar case. In fact, these compounds with
incompletely filled 3d sbelis of the cations quite generally lead to
difficulties. 'The existence of these ‘‘cpen-band semiconductors’” has
at times been regarded ss a failure of the band model, and the conduc-
tion mechanism in these compounds has been treated on the basis of
atomistic models.

Finally, we note tha.t; simple conclusions from’ the occupation, of the

i shells in isolated atoms or jons regarding the occupation of the bands

in the crystal and, hence, the insulator or metal character of the lattice

. in question are quite unreliable in view of the phenomena which have

been discussed—namely, band overlap, splitting of bands with the
formation of molecules, branching off of a sub-band at & crossing point
of band boundaries, and the possibility of very narrow bands with iarge

effective masses and hence small mobility of the conduction electrons.

This unreliability can be reduced only if, in the particular case in

- question, the level splitting is calculated by the methods of Wigner

and Seitz® or of Slater.7

-1 8ee D‘AnsandLax, op. cit;, p. 180.

* F. Hund, Physik, Z., 363 725 (1935), in: part.xcular, p. 728. Also reprmt.ed in
Z. tech. Phys., 163 331 (1935), in particular p. 334, s

3 Ibid.

4J. H. de Boer and E. J. W. Verwey, Proc. Phys. Soc. (Londmt] 49: 59 | 19‘35),
W. Schottky, Z. Elekirochem., 45: 33 (1939), in particular, p. 57; H. Dressnandt,

Z. Physik, 115, 369 (1640); C Wagner and E. Koch, Z. physik. C'hem 032: 439 .

(1936); R. Peierls, Proc. Phys. Soc. (London), 49: 72 (1937)

In the evaluation of past experimental results for these compounds we should
never forget that the preparation of satisfactory specimens is made very diftrcult
by deviations from stoichiometric composition, by Inhomogeneous structure of
the specimens, and by polycrystalhmt.y We have aiready seen from the pre-
viously mentioned erroneous conciusions regarding the nature of conduetion ia 8i

and Ge what basic errors can result from measurerents on imperfect specimens.

5 B, Wigner and F. Secitz, Phys. Rev., 43: 804 (1933). -«
¢ J. C. Bldter, Phys. Rev., 45: 794 {1934)
7 The reader will find a compﬂatlon of more recent work in this field in G. V.

 Raynor, Repte. Progr. Phys., 15: 173 (1952).

&
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Even when such generally extensive studies are carried out, thers
always remains an uncertainty regarding the justification of the band
model itself. We must not forget that, as a one-electron approxima-
tion for a many-electron problem, the band model can at best take
summary account of the interaction of the electrons through the poten--
tial curve employed in the approximation of Wigner, Seitz, and Slater.
No final answer has as yet been given to the valid question as to
whether this is alway: admissible or whether, in some cases, the failure
of the remaining electrons to get out of the way of the reference elec-
tron may undercut the basis of the band model namely, the periodicity.
of the potential field. y =
~ Thus the band model can only give some pointers tega.rdmg the . '
likelihood that a particular crystal may be a conductor or an insulator )
or an intrinsic semiconductor. It will be advantageous here to employ
methods which are largely empirical, such as comparisons with erystals .
of the same structure but different composition, utilization of regulari-
. ties in the periodic system of elements, etc. This opens up the broad
field of erystal chemistry, for which we shall merely indicate the refer-
ence texts.!

'§l2 ‘Problems : y

Problems on One-dimensional Periodic Potentials

1. Many of the essential features of the band picture can be shown evem by
very simple one-dimensional models. Consider, for example, a one-dimensional i
lattice, consisting of (positive) delta functions, with « lattice constant : i

U@ = + 8 E 3(nd) (VIL12.01)
e —e oy e
~ Between the & functions the ¥ functions are plane waves:
Vz) = 4 os +Bews = %i”‘}‘:". (VI1.12.02)

At the potential wells thasa waves hava to be mateched properly, as shown in Prob
1 of Chap. VI, §5. This provides two equations for the relationship between the  *
coefficients A and Bin adjoining cells. Two additional equations follow from the '

! U. Dehlinger, ‘“Chemische Physik der Metalle und Legierungen,”’ Akademische
Verlagsgesellschaft, Leipzig, 1939; A. Eucken, “Lehrbuch der chemischen Physik,”’
vol, I, part 2, 3d ed., Leipzig, 1949; F. Halla, “Kristallchemie und Kristallphysik
metallischer Werkatoﬂe,” J. Al Bart.h Leipmg! W. Hume-Rothery, “The Structure
‘of Metals and Alloys,” Monograph and ‘Report Series of the Institute of Metals,
No. 1, London, 1950; k. Pauling, ‘““The Natire of the Chemical Bond,” 2d ed.,
, New York/LOnan, 1945; A, F. Wells, “Structural Inorganic Chemmtry,” Claren-
don Press, Oxford, 1945; H. Q. F. Winckler, “Struktur und Ezgemchaften der
Kryst.alle,“ Springer-Verlag OI-IG Berlin, 1950,

>t
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requirement that ¢ multiplies itself simply with e/® in advancing by exactly one
lattice spacing l. These, then, are four homogeneous linear equations for the
four coefficients 4 and B in two adjoining cells. In order that these four equations
be compatible, their determinant must vanish. This provides an equation for &
as a function of x and, therefore, as a function of the energy as well.
Set up the four equations mentioned, and" ahow that thelr determinant vanishes
if ;i
P mS .
cos kl = cos x»l 7ty S xl (VII.12.03)

2. Plot the rlght side of Eq. (VII.12.03) as a fugctlon of xl (qualitatively!) and
show that it follows from Eq. (VII1.12.03) that allowed and forbidden bands alter-
nate up to the highest energies. Show that the forbidden bands correspond to 2
Bragg reflection. At what energy inside the forbidden band is the Bragg condition

~ fulfilled exactly?

3. Give an approximation formula for the widths of the forbidden bands as a
funetion of the band number and of the quantities S and .
4.% Calculate the efEectn[‘e masgses of the electrons near the upper and lower

~ edges of the allowed bands. How do they depend upon the band number and

upon S andI?

5. Assume that § in Eq. (VII.12.01) is negatlve Show, then, that for E > 0,
Eq. (VI1.12,03) still holds, and give the corresponding equation for £ < 0. Show
that for E < 0 always one and only one allowed band exists.

6.* Show that each allowed band splits into two bands if the delta functaons
are no longer equidistant and equally strong, but when instead

a. Bither'their distance alterngtes between I + Al and [ — Al or,

b. Their strength alternates between 8 + AS and S — AS.

Explain this splitting in terms of Bragg reflections and of the structure of the

°  Brillouin zone.} -

7. In Prob. 1, replace the delta functmns by regular square potential barriers
of the width b and the height V.. Show that Eq. (VII.12.03) is then replaced for

" 0<E < Vyby

coukl-ncoah)«booum+ th Bmh)\bmnxa . (VIL.12.04)

_ where x has the same meaning as previously and

A= 2’:‘ (Vo — E) (V11.12.05)

a=l—b _ - (VIL.12.06)

‘Answer the questions of Prob. 2 for this new case.

8.* It has been shown that the forbidden bands cormspond to Bragg reflections
of the electrons inside the crystal. This is most clearly demonstrated by the delta
potential where the contribution of each atom to the reflected wave comes from a
single point. When the atoms have a finite extension, the different parts of the
individual atom all contribute separately to the reflected wave. For certain
energies and directions, the contributions from the different parts of the same
atom can destroy themselves mutually so that no reflection could oceur even if the

1 For & more geneml trestmemt see Saxon and Hutner, Philips Research Re‘p-‘-s
4: 81 (1949).

»
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Bragg reflection condition were satisfied. = For certain values of the lattice con-

stant, the Bragg condition and the condition for zero amplitude of the scattered

waves actually do coincide. The forbidden band will, then, have zero widih.

" Analyze this situation for the potential of Prob. 7. fhow that the different for-
bidden bands vanish for certain lattice constants, and show that this happens
when fhe waves mﬂected from the front of the square barriers interfere with those
reflected from the back in such a way as to destroy esch other,

Problems on Deomtwm from Ohm's Law

9, In Eq. (VI1.9:06) it was assumed that the kinetic energy gained by an electron
between two collisions is small compared to its thermal kinetic cuergy. This
resulted in a proportionality between the drift velocity v and the electric field, that

‘i, in A constant meblhty It was also ghown in §9 that in high clectric fields the
initial assumption may no longer hold. While & rigorous treatment of this subject
would be beyond the scope of this book, one can obtain u qualitative understanding

from the following simplified model. Calculate the current-voltage relationship

for fields ¥ such that
eEl > 3gkT

making the following assumptions: (a) the mean free path [ is independent of both -

the field and the particle veloeity, and (b) the electron loses all its kinetie energy
during every collision,

Caleulate the differential conductivity di/dE at an Plect.rlc field of E = 10¢
volt-cm—* for n-type germanium of | ohm-cm low-field resistivity. Assume

ja = 3,600 cm? volt—* gee ™ and mege = Jim.

10. How is the result of the preceding problem mod:ﬁed if the mean free path
is constant only for velocities below a certain vc-lomt.y Vinax, 80d if the electrons lose
all their kinetic energy as soon as they have heen accelerated up to vmax? This is
the kind of assumption one would have to make if there existed a scaitering
mechanism that is inactive below a. certain kinetic energy but has a very high

scattering efficiency above. Shockley! has pointed out that the scattering of
electrons by the so-called optical phonons would be such a process.

11. In the two preceding problems it was tacitly assumed that the electron is
not accelerated to such high energies that the effective mass changes. Small
mass changes would, of course, have no great mﬂunnce upon the current-voltage
relationship. But if the electron is actually driven into & region of negative mass,
it will be decclerated and the Zener vscillations described in §7 and §9 will set in.
As mentioned in $9e, for mean free path lengths [ of about 10°* em, the fields
necessary for this to happen lie above the breakdown ficlds. But at higher values

of I, the oscillations could actually set in before breakdown.

It was also previously assumed that at every collision the electron loses all its

- energy. This again may not hold at very high fields sihce the maximum energy
an electron can transfer to the lattice in a collision is equal t0 AVmax, Where rmex i
the highest vibrational frequency of the lattice. One may, therefore, expect that
in very high ﬁelda the average energy loss per collision wﬂl approach s limiting
value. '

What would bb the current-field raiat.mnsh:p for fields so high that Zener oscilla-

~ tions do oceur (but not breakdown), assuming that both the collision frequency

and the amount of energy lost per collision are independent of the field?

1 V. Shockley, Bell System Tech. J., 301 990 (1951). .
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CHAPTER VIII
Fermi Statistics of the Electrons

in a Crystal

»

In this chapter, as mentioned on page 260, the connection between

~ the position of the Fermi level Er and the electron concentration n
‘will be computed for a number of models. In §2 it will be shown that

within a solid or within a systenr of solids in thermal equilibrium the
Fermi level Fr has everywhere the same value. This statement is
often formulated in the concise, though perhaps not rigorously correet,
rule: “In thermal equilibrium, the Fermi' level is horizontal.” To
begin with, the Fermi distribution and the Fermi level K ate defined

~ only for sta.tes of thermal eqmi]bnum However, if the relationship

between concentration n and Fermi level ¢ is established for non-
equilibrium states, a Fermi level Er is deﬁned whose slope depends
on the total current. This subject will be discussed in §3, together

~ with the related subject of the identity of Fermi level £ » and electro-
I chemical potential. In §4 we shall deal with the Fermi Statistics of

- Sh et S

T T
=T = S

?f.'!'-.

_electrons in metals and insulators. ‘The simplest case of an impurity
semiconductor will be examined in §5. Among the main results of
" these last two paragraphs will be the law of mass action (I.3.03)

between electrons and holes ‘and the law of mass action (IL.6. 04)
between donors and conduction electrons.

gl. The Electron Gas in a Potential Well
On page 263 a method was indicated: whereby the relationship

‘between Er and n is obtained. The first madel to which we apply this

method is an electron gas with concentration n, which is confined in a
well because a high positive potential exists within the well so that the
potential energy F.., of the electrons is strongly negative while it is
assumed to be zero outside the well (Fig. VIIL.1.1). In this case the
total energy F of an electron is :

Bty %ﬂ 2 (VIIL1.01)
283
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In order to establish the density of states D(E), we could determine

the eigenfunctions and the energy eigenvalues % of an electron in the '

potential avell under consideration. However, this treatment would
be beyond the scope of this book, and it would also preclude a direct
application of the results to the next model to be discussed, i.e., a
crystal with metallic properties. We shall therefore use a treatment
: i3 which can be applied directly to crystals,
E Space coordinate x  though it may seem very artificial in con-
nection with the model of the electron gas
in the potential well. >
According to this treatment, we regard
the constant potential within the well as a

(o} s

E: special case of a periodic lattice potential

(i.e., the special case where the “amplitude”
of the potential equals zero), and we intro-
duce “unit cells” of arbitrary magnitude a.
Fro. VIIT.L1. Potential well.  Further, we combine an arbitrary number
G of unit cells in each axial direction to a
“fundamental domain”’ of volume Vi = (Ga)®. We can then apply
the result obtained on page 182: ¢ A quantum state requires a volume
(2r)%/V funa in k space.’’? !
The question now arises as to what volume in k space belongs to the
energies between E and E + dE. To answer this we use (VII.6.04)
and replace (VIII.1.01) by

Mo
where k is the wave vector of the electron, or
K =k = Y27 (B — B (VIIL1.02)

Hence in the gpace of the wave vectors k, E = const represents spheri-
cal surfaces about the origin, and the condition

E < energy of the states to be counted < E + dE

defines a spherical shell of volume 4xk? - dk.
Now, according to page 182, a single quantum state requires a vol-
ume (2x)?/V in k space; hence the number D(E) dE of the quantum

1 The number N of the electrons which have to be accommodated in the arbitrary
fundamental domain is nV; hence. the arbitrary volume ¥ of the fundamental
domain will drop out on p. 285 and a result will be obtained which is free from
these arbitrary assumptions (VIII.1.07). 5
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states in the energy range & E + dE] is gwen by the equation

47k? dk

: D(E) dE = @V
; 1 dk
or DE) =V 5 k? — dE.

. Finally, using (VIII.1.02), one obtains

DB =V 5r2 35 (B — o) - 2’"’2 (B — By

| With A = h/2r, the number of electrons that can be accommodated
~(equal to fwice the number of the quantum states) is

ﬁ -
2m\* o _ By dE

2D(E) dE = TV - 2( T)” 2 (E L d(%) (VIIL1.03)

We now introduce an “effective density of states N in the potential

well ! v
3% I y
N=2- (2"““1) © = 2.5 101 (—‘lﬁ) em  (VIIL1.04)

h? 300°

“and for the number 2D(E) dE of the electrons that can be accom-
modated in the energy range between F and F + dF (equal to twice
* the number of the quantum states in this range), we finally obtain

|
I
B

v
I
B
]

4

i : ' 2 (B — E.\* j
.. 2D(E)dE=V-N-W(—-———4”—‘- d(—g— (VIIL1.05)

R\ KT

- Hence' the reuirement (VII.10.03) established on page 260, in the
©  case of the present model of the electron gas in the potential well
takes the form ;

i E— E,,
w2 T ) () -
e“’ el

Intmductlon of the mtegrat.lon vanable

B~ B,
¥ kT
1 Here it must be mentioned that /V is not a density of states in the same sense
L as the term D(E). D(E) represents a number of states per unit of the energy scale
| and hence has the dimension (energy)~* = cm=%g '-seg®. On the other hand, N has
. the dimension cm~* and can therefore be regarded as a number of states per unit
- volume of the potential well (or, later, of the crystal). See footnote 1, p. 318.

TR
b e

e
\
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and of the concentration of the electron ga.é
Al"
leads finally to the determining equation for #:
: .,‘.-.- ® 1 5
& n .
Ve f TECEm  —Vdi=§ ° (VIILLO7)
; kT + 1 1

n=0

M L

A comparison of (VIIL.1.07) with the defining equation (A.IL.1) of

the funetion {(n/NN), which is treated in Appendix 11, shows that-in

HE) oG . - fE), - D(E)

Fre. VIIL1.2, ¥ew clectrons in the po- Fra. VIIL1.3. Many electrons in the po- -

tential well. 7 « N: no degeneracy. tential well. 7> N: strong degeneracy.
- Maxwell-gas. Fermi-gas. .

order to satisfy (VIL10.03) and (VII1.1.07) the Fermi level By must
be formulated as follows: 3 AR

f “ [(n ; ]
By 2 Bt t N) . (VIIL1.08)
We now consider the two limiting cases of small and large concen-
tration: According to Eg. (A.IL.2), one obtains for n < N

n

“ Bp=Ep+ kT -Ing (VIIL.1.09)

In this case the Fermi level lies below the lowest available energy level
E,, because In n/N < 0 since n KN (see Fig. VIIL.1.2). In the
energy distribution of the electrons

N(E) dE = 2D(E)f(E) dE

- 2 R AN ] B
g5 VN._.._( PNl d(— (VIIL1.10)
. VvV \ kT :kf L kT .

-

n= (VIIL1.06) _
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- E—E E—FEpot  Epot—E —B

g 'wghave E_F’-_—G k.s.ewl:Tr>eEwL:T > 1

. because F — F,. is positive in any case and E,u — Eris strongly
. positive in the present case. Hence the general formula (VIII.1.10)
applicable for the model under consideration ecan, in the limiting case
of small concentration n << IV, be mmphﬁed to

N(E)dE = VNV/_ kl‘w) e d H‘)

! Er — Epot : KR et
—= 2 B - ze B
{1 ke O s A P e i L
N(E) dE VN_e ( 7 e 'k d(]T

V=
T ~ (VIIL.1.11)
Using (VI1.1.09) and (VIIL.1.06), we finally obtain

,_- 14 HE-—-E ot .
Ny ag = N2 :‘._fiw) S d(‘%ﬂ‘) (VIIL1.12)

- We see that the effective density of states N, in whose definition
I (VIIL.1.04) the Planck constant appearcd, has dropped out completely.
 The electron gas shows the classical Maxwell distribution. I f the
electron gas is sufficiently diluted, it behaves like a Mazwell gas in a
space with the potential energy Foo.
In the opposite limiting case of n >> IV, one obtalns from equat.lon :
(A.TL.3)

TR T T T T YT

T T, i

= p

4
| By = Bu + kT (z) o (—;) . (VHLL)
or, using (VIIL.1.04), : ._

oo

EF = Epol + (Sﬂ') mn”

“In other words, the Fermi level lies now above the lowest available
level B, (see Fig. VITL.1.3). No general simplifications can be applied
" in the energy distribution of the electrons (VIIL.1.10). The gas shows
nonclassical behavior, and we talk of a degenerate or Fermi gas. We
call the concentration above which degeneracy occurs the degeneracy
concentration. It is approxlma.tely equal to the effective density of

states N.
However, at high eIect.ron energles E > Ep, the exponential term
in the denominator of the distribution function f(¥) predominates
| again and the equation (VIIL.1.10) is simplified for the distribution
¢ of the high-energy electrons to

4 E—Er
N(E) dE = VN\?,_(E _kTE"’_‘) i d(—) (VIILL14)
L ;

s o 3 Do AT~ saaie

e e
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Comparison with (VIII.1.12) shows that this tail of the electron
distribution in the direction of high energies' £ > Ey > E,.. corre-
sponds almost to a Maxwell gas of potential energy Hr and concentra~
tion N (‘“‘Maxwell tail”’). The analogy would be complete if instead of
the factor [(E — E,.)/kT]# we would have the factor [(E — Ey)/kTV%,
However, this difference is immaterial at the high energies which we
are considering.

For the problem of surmounting potent.ml barriers, for instance, for
the question of how many electrons can leave the potential well, only
the high-energy electrons are of importance. Hence in problems of
this type a Fermi gas can be treated like a Maxwell gas with the con-
centration N and the potential energy! Er.

-

§2. The General Condition for Thermal
Equilibrium: #; = const

The last remark makes the solution of the following problem rela-
tively simple. Let two potential wells I and II be separated by a high
" potential barrier (see Fig. VIII.2.1). After a certain period of time,
the electron concentrations in these will adjust themselves in such a
- way that as many electrons will surmount or tunnel through the poten-
tial barrier in unit time from left fo right as from right to left. There-
after, the concentrations n; and ny; will not change any more, i.e., ther-
mal equilibrium is established. It may now be asked what is the ratio
.of the ¢concentrations n; and n;; in this stationary final state?

‘We have just learned that the electron current emerging from poten-
tial well I can be computed as thongh the potential well contained a
Maxwell gas of concentration N with the potential energy EF: Cor-
respondingly, the number of electrons emerging per unit time from
well II is equal to the emission current which would be produced by a
Maxwell gas of the same concentration N with the potential energy
Er,. Hence the emission currents can be equal only if

By = Er, . (VIIL.2.01)

1 This makes it plausible that the emission law for a Fermi gas is derived from
the Richardson emission law for a Maxwell gas by inserting into the equation
applicable for the Maxwell gas the value of IV defined by (VIII.1.04) for the con-
centration of the gas and the difference between the potential energy outside the
well and the Fermi level Er for the depth of the potential well. Regarding the
emission law for a Fermi gas see, e.g., A. Sommerfeld in H. Geiger and K. Scheel,
“Handbuch der Physik,” vol. XXIV, part 2, p. 350, Eq. (4.13), Springer-Verlag
OHG, Berlin, 1933. In this equation one has to use G = 2 (ibid., p. 337). Regard-
ing the Richardson emission law for a Maxwell gas:see tbid., p. 351, Eq. (4.15).
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If the electron concentration in both wells is so low that degeneracy
has not yet set in and that therefore the thermal equilibrium between
two Maxwell gases of different potential energy has to be determined,
the Fermi levels By, and Er, are ‘computed from (VIIL1.09) and
(VII1.2.01) changes into 05 o _

Byt kT 1:% = By, + 1;'1'-1:1"3--1\‘,1

* Epotyy— Epoty

m=nuge (VIIL.2.02)

This, however, is the well-known “Boltzmann equilibrium” between
two Maxwell gases.! :

If the electron concentrations are high enough for degeneracy, the
equilibrium condition (VII1.2.01) is still valid, but it has now to be
used with (VIIL.1.13) instead of { :

(VIII.1.09). However, wedonot !T - '
want to discuss this in detail but - % v, ot
rather look once more at condi- ! _ = .
tion (VIII.2.01). fyyat

i v dt il
£ ! Space coordinate x ‘ X1 ;

> 4 Energy E Space coordinate x
1 it

Eporn

Fre. VIII.2.1. Two potential wells in Fig. VIII.2.2. Thermal equilibrium of

thermal equilibrium: Ey, = Ep,,. two spaces I and II'with different po-
' tential energy Epet, and Epot;.

The validity of this condition Er = const extends far beyond the
particular example under consideration. In order to prove this, we
start by dropping the high potential barrier between the two potential
wells (see Fig. VIIL2.2). Furthermore, we think of the principle of
detailed balancing, according to which every microprocess is as fre-
quent as the reverse process if a real thermal equilibrium exists.

! See the very instructive discussion of the barometrie altitude formula in R.

Becker, “Vorstufe sur theoretischen Physik,’’ p. 137, Springer-Verlag OHG,
Berlin, 1950. :



299 . VHI. Fermi Statistica of the Electrons in a Crystal

Therefore the condition of equality for the electron currents in the two
directions has to be defined more rigorously by saying that this condi-
tion applies not only for the fotal currents through an imaginary sepa-
rating plane between the two spaces I and II, but also for any arbi-
trary velocity group of a given magnitude and direction.

For a gquantitative derivation we start from the fact that a gmup.of
electrons with velocities between {v., vy, v,} and {v. + dv.y, v, + doy,
v, + dv,} occupy the volume dv., dv,, dv, in velocity space. The
wave numbers k., k,, k. are conhected with the velocities, according
to (VIL.6.31) and (VIL.5.09), by

1 m :
k:=sz=%v; _k,=—ﬁ-v,, k;

il

3;{ v, (VIIT.2.03)

Hence the group of electrons under ('oms:deratmn occupies the volume
(m/h)® dva dv, d, in k space which! contains

) waman |
~(@n0)° = ; (ﬁ) dvn dvydv,  (VIIL2.04)
7

quantum states and, because of the spin, can accommada.te twice as
many electrons.
Of the available places a fra.ctaon

1
1
FTEErll

is occupied. Hence in the volume V' of ordinary space we have

(_,;)s ’ G0y iy .V (VIIL2.05)
ek—-,[fwt,+f§-(-_.1'+u.'+o-‘),—Er;] A : )

electrons of the velocity group under consideration.

During the time df all those electrons of the velocity group under
consideration which are within the parallelepiped of Fig. VIIL.2.2
pass through a unit area dy-dz of an imaginary separating plane
between the two spaces I and IT. As the parallelepiped vqlume is
dy dz vy di, one obtains for the number of electrons, with the use of
(VIIL.2 05) ,

1Acr;.ordmg to p. 182, one quantum state requires the volume (2x)3/V in k
space. A :



§2. General Condition for Thermal Equilibrium 291

3 5 o .
g.(%) gt dydzdi (VITL2.06)
eﬁk—,f,[ oty 3 0s1+uy2 ) — B | o

After entering space II, these electrons have the velocity v., vy, vs,
because the tangential component does not change. The law of con-
gervation of energy states that

By, + % 03 + 0 + 08) = By, + 3 020 + 03 + 0 (VITL2.07)

. Differentiation yields
Vo Aot = Urt AUanr ’ (VIII1.2.08)

The microscopic reverse process to an electron of group {v., v,, v.}
traversing the element of area dy-dz consists of an electron of
group { —vam, —v,, —v.} traversing the same element of area dy - dz.
In analogy to (VIIL.2.06), the frequency of this reverse process during
the time dt is !

o on (1 4 ¥ Vo1 Qanr dv, do,
h a +i!1'l[ Epotyy +§(v.n=+ vy ust) — By

dydzdi (VIII.2.09)

I

The detailed balance at thermal equilibrium requires the equality
of (VIIL.2.06) and (VIII.2.09). If we now bear in mind (VIIL.2.08)
and (VIII.2.07), we obtain '

Ey, = Er,, '- (VIIL.2.10)

~ This proves that the condition #y = const also applies to the case

of two neighboring potential wells wethout a high separating barrier
and, furtnermore, that it ensures detailed balancing at thermal equi-
librium. It is obvious that this result can be generalized by approxi-
mating continuous E,..(z) curves! with stepped variations.

! Here we think in the first place of the space variation of the electrostatic
macropotential which we have encountered in Chaps. IV and V in the barrier
layers of rectifiers and p-n junctions.

Apart from this, Thomag and Fermi have regarded the electron shell of a
heavy atom, by way of a model, as a highly degenerate electron gas which is con-
tained in a potential well. The atomic nucleus as well as the electron shell con-
tribute to the potential variation in space in accordance with the Poisson equation:

© AV = —4xp = f-4dxen

Thomas and Fermi obtain a relation between locsal potential V(z) and electron
concentration n(z) from the condition that the Fermi level Ep = —eV + ¢ must
be constant in space. For { they use the value applicable for the limiting case of .
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An electron gas filling a space in which the potential energy F,.. of

an electron varies from place to place will in thermal equilibrium dis-

tribute itself in this space in such a way that the Fermi level Ep
" beeomes independent of the position:

Er = const (VIII.2.11)

As the Fermi level Er can be computed from the potential energy

E..(2) and the density n(z) by (VIII.1.08), the condition (VIIL.2.11)

“ relates the change of concentration n(z) and the spatial distribution
" E,.(z) of the potential energy of an electron by

Er = Eu(@) +'¢ (f—%-)*) = gonst (VIII.2.12)
In the case of sufficient dilution
; n(x) KN
the general equilibrium condition (VIIL.2.12) changes with the aid of
equation ‘(A.II.Z) into the well-known Boltzmann principle

- n(z) ~ o REE) (VII1.2.13)
of the Maxwell gas. '

§3. The Significance of the Fermi Level
Eriz=iEonte) & Z‘%) for Nonequilibrium States

We have seen in the last bara.graph that the concentration n(z) of
an electron gas* adjusts itself at thermal equilibrium in a region with

" a highly degenerate gas (V 111.4.07) :
' oL 173 \¥h
Sl

They obtain thus "
x : b b i Nl
At a great distance from the ntou'z, the electron concentration n = 0, If we
set here also the potential V = 0, the constant becomes zero and we obtain
; ~ 8 3 !
. n(z) -3m (Qr.mV(x)).ﬁ_ ~ (VIIL2.131)
By using this expression for n in.the Poisson equation, we obtain the Thomas-
~ Fermi differential equation. [See A. Sommerfeld, ‘“ Atombau und Spektrallinien,”
vol. II, p. 693, Eq. (14), Vieweg-Verlag, Brunswick, Germany, 1944.] Equation
(VIIL.2.131) is the exact counterpart to the Boltzmann principle (VIIT.2.13).
1 With some changes in sign, the following discussion can also be applied
holes. See pp. 375 and 377. : :
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§3. Significance of Fermi Level for Nog;equilibrium States 293
potential energy E,..(x) varying in space, so as to fulfill the condition
Eou(z) + ¢ ”(”)) Ep = const  (VIIL2.12)°
We now assume that the potential energy E,. is produced by an elec-
trostatic potential ¥V (z) with field strength E(z) = —V’(z):
a
dz
If we differentiate (VIII.2.12) with respect to z, utilize (VIII.3.01),

and finally multiply by the electron mobility ua a.nd the concentration
n(z), we ?btmn

+ epnn(z) - E(a:) + u,. n(z) - = '(z) =0 (VIIL.3.02)

) e )= R (o) o (VT30

The thermal equilibrium therefore results from the mutual compensa-~
tion of the field current eu.n(z)E(z) and of a current component
+pan () (dt /dn)n! (z), which is caused by a concentration gradient
n’(z) and which must consequently be regarded as a generalized diffu-
sion current. Since the quantity ¢ is a function of the concentration n
only (see Fig. A.Il.1 in Appendix II) the expression usn(z)(df/dn)n'(z)
does not contain the field strength-E(z) at all and hence represents the
diffusion current even in those cases where the electric field does not

" have exactly the value required for the compensation of the diffusion

current. Therefore, even in nonequilibrium cases, one has to_use for

‘the diffusion current . the equation derived from the equilibrium

condition (VIII.3.02)
far = +pan(z) g;'i ‘n'(z) = +J-l-s b g ‘n(z) (VIIL3.03)
or
fure = o 2 () -%;  (VIIL3.04)

If one adds to this genél;alized diffusion current the field current
+epn(z) - (—dV /dz), one obtains. for the total current under non-
equilibrium conditions A

o = 1 (8) S [V @) + E@)] = 1 @) & [Bp(a) + £(2)]

3 | ho = tn (@) L Epm)  (VIIL3.05)

~ If we compare (VIII.3.04) and (VIII.3.05) with

tnen = epan(@)E(@) = pan(z) - (—e) - V'(z)
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i.e., with i : '
inaa = Fin 1) & Br(a) (VIIL3.06)

we arrive at the following conclusion.

The Fermi level Er(z) and the function {(z) play the same role for
the total current 7, and the diffusion current s, respectively, as
does the potential energy F,u = —eV(z) for the field current i
Hence the function {(z) is called the chemical potential and Fy the
electrochemical potential of the electron gas.!

* If we compare Eq. (VIIL.3.03) for the d.xﬁ'umon current with the
form in which it is usually written

= (—e) - (=D - () (VIIL3.07) -
we obtain the following equation for the diffusion coefficient
Hn di’ (ﬂ)
D=ttt (VIII.3.08)

This means that the diffusion coefficient is, as a rule, a function of the
concentration; for instance, in the Fermi limiting case n >> N of page
301, Eq. (VII1.4.07)

Megs

will result for the chemical potential. 'This leads to the following
expression for the diffusion coefficient:

;—1.( il (VIIL4.07)
2 ; 1

1 . SO
o (&_) s = ;( n) (VII1.3.09)
On the other hand, in the Maxwell imiting case n < N,
{=FkTIn 1

[see Eq. (A 11.2)] causes the diffusion coefficient to become mdependent
of the concent.rstmn

! In the use of these tarma, one generally does not differentiate between ‘‘poten-
tial” and “potential energy.” However, this is not done in mechanics either, so
that the procedure in electrostatics constitutes an exception. Besides, the terms
chemical and eleetrochemical potential are derived from thermodynamics where the
equilibrium. condition “electrochemical potential = eenst’” is deduced from the
second law. ‘See W. Schottky and H. Rothe, Physik der Glihelektroden, in
Wien and Harms, “Handbuch der Experimentalphysik,” vol. 13, part 2, p- 18,
Eq. (5), Akademische Verlagsgesellschaft, Le:pmg, 1928,

¢
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. kT

{

D = u, (VIIIL3.10)

This is the well-known Nernst-Townsend-Einstein equation.!
The use of the electron mobility u, in the preceding discussion and

* the interpretation of the expression eu.n(z)E(z) as field current indi-

cate that only a negligible deviation from thermal equilibrium has
been assumed. Ohm’s equation LAY

Field current density = conductivity X field strength

- and the diffusion equation

Diffusion current density _ :
= diffusion coefficient X concentration gradient

are justified only if the condition is fulfilled that the field and diffusion
currents are small in relation to the thermal current in one direction

(see page 248, footnote 1). This assumption is, in fact, contained in

the word electron “gas.”” The typical example of the reverse case is
represented by the electrons in a vacuum tube; here the thermal
velocities are negligibly small compared with the common rush of the
electrons from cathode to anode, and one therefore does not usually
talk of an electron gas but rather of an ‘““electron avalanche’’ or a simi-
lar term. Hence, if the concept of the electrochemical potential is
to be used in nonequilibrium applications, one has to make sure that

* the resulting current is small compared with the unidirectional thermal

current, i.e., that the deviation from thermal equilibrium is slight.

! W. Nernst, Z. Phys. Chem., 2: 613 (1888), particularly, p.815. J.S. Townsend,
Trans, Roy. Soc. (London), A193: 129 (1900), particularly, p. 1563. A. Einstein,
Ann. Physik, 17: 549 (1905), particularly pp. 554 and 555, 7 -

C. Wagner in Z. physik. Chem., B11: 139 (1931), and, particularly, in Z.
physik. Chem., B21: 25 (1933), generalizes the ideas expressed in the above papers
by leaving open the functional dependence of the chemical potential ¢ on the con-

centration. For this reason, he obtains the relationship between current, density -

(or migration veloeity) and the gradient of the electrochemical potential in a

 general form [see Z. physik. Chem., B21: 20 (1933), Eq. (). W. Schottky, in
- Wiss. Verdffentl. Siemens-Werken, 14: No. 2, 1 (1935), particularly p- 4, Eqgs. (1),

(19, (2), (2') and p. 12, Eq. (15), has also found in a general form the proportionality
between current density and the gradient of the electrochémical potential. The
same applies to C. Herring and M. H. Nichols in Revs. Mod. Phys., 21: 185 (1949),
particularly p. 196, Eq.. (1.6.2). T

In Beil System Tech. J., 28:-435 (1949), W. Shockley discusses the case of the
Méxwell gas and introduces the electrochemical potentials of the electrons and
holes under the name of “quasi Fermi levels” or “‘imrefs” whereby he can prove
the proportionality of the total current of the- particle type concerned with the
gradient of a generalized potential, i.e,, the electrochemical potential [ibid., p. 451,

- Bq. 3.5)).
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84, Fermi Statistics in Metals and Insulators

In the preceding paragraphs we have discussed the electron gas in
the potential well as a first model and inserted, subsequently, considera-
tions concerning equilibrium and nonequilibrium states in regions with
space-varying potential. We shall now turn from the single-electron

£) r2E 0(E) (- HE—0(E)
Bond I
conduction band{ E- H
B :
Baond T {
Band I { S

Cose T=0 Case T>0
Fic. VIII.4.1. Band model of a metal: Ex > Ec.

o 05 | ftE) —— D) (2P H(E); (E)

Band I
conduction
band
Ee

Ep
Bond T { Ey

valence
band

v

Band I { m

— [® =y

; J g Cus&' T=0 Case T>0
Fic. VIII.4.2. Band model of an insulator: Er = Y%(Ec + Ev).

problem to the many-electron problem, i.e., we shall carry out the
“distribution of the electrons among the quantum states of the single-
electron problem in the case of a crystal, from the point of view of
Fermi statistics. We have seen' in Chap. VII, §2 to §4, that here the
quantum states are arranged in bands so that we have to distinguish
between two cases, namely, that in which the Fermi level at the

L}
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temperature 7' = 0 falls into an. allowed band and t.hat in which it
falls into a forbidden band (see Figs. VIII.4.1 and VIII.4.2).

a. . The Band Models of a Metal and of an Insulator at

Temperature 7' = 0

We have seen on pages 263 and 267 that a fully occupied band cannot
produce a current and therefore drops out for the conduction process.
The case of Fig. VIII.4.1 with the Fermi level within an allowed band
leads to a band that is only partially occupied; in other words, .on
applying an external field, a current is produced andswe have the case
of & metal. The partially occupied band is called the ‘““conduction
band.”” On the other hand, in the case of Fig. VIII.4.2 with the
Fermi level Ky between two allowed bands, the bands below the Fermi
level By are completely occupied and therefore drop out for the con-
duction process. The band above the Fermi level, however, in which
conduction processes could take place if any electrons were present

~ and which is therefore called the conduction band, is empty. Such

a crystal does not carry any current when an external field is applied
(at least at T' = 0); we have the case of an insulator or of an “mtnnmc
semiconductor’’ (see pages 16 to 20). :

During the last few years the lattices of Group IV of the periodic
system which are insulators at T' = (0, namely, carbon in the form of dia-
mond, silicon, germanium, and gray tin, have gained particular impor-
tance. The four outer valence electrons of these elements just fill the
last band below the Fermi level Er completely at 7' = 0. - Therefore
this band is often called the valence band. A more general term is

" “bound electron band.”?

If one is interested, beyond these general statements, in the exact
position of the Fermi level Er in & metal or in an insulator which is,

! If one explains the elimination of the “valence band” for conduction processes,
not with the considerations of pages 263 to 267, but by the fact that the electrons
oceupying this band are tightly bound to the four neighboring atoms by homopolar

' pair formation, one leaves the whole eoncept of the bdand model (the Hund-Mul-

liken approximation) and passes over to the atomistic model (Heitler-London

- approximation). The same consideration applies, if, for instance, one explains the

insulating nature of an NaCl crystal by the strong binding of the electrons in the M

. shell of the-Clion (the L shell of the Na* which is also fully occupied lies at a lower

level; hence the highest fully occupied band is not associated with it). See, for
instance, F. Hund, Z. tech. Phys., 16: 333 (1935), Fig. 3.
One need not worry about this oscillation between the band model and the

~ atomistic concept. On the contrary, one can have greater confidence in the result

obtained from one concept if it is also derived from the other concept, as is the
case here with the elimination of a fully occupied band from the conduction
processes.
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for mstance important for work-function problems as was mentioned
above on page 287, information about the density of states D(F) is
essential. In discussing these problems, we shall consider tempera-
tures 7' > 0 right from the start.

b. The Band Model of a Metal at Temperatures 7 > 0

In the case drawn in Fig. (VIIL.4.1), bands I and IT a.repra.ctmﬁlly
completely occupied, not only at temperature 7' = 0, but also at
higher temperatures. (Concerning the case of extremely high tem-
peratures see page 300.) Hence, for the calculation of the position
of the Fermi level Er in accordance with condition (VII.10.03), one
can use either all the electrons and all three bands I, T¥, and ¥II or
only the “conduction electrons” of the ‘“‘conduction band IIL’" In
the second procedure, one reduces the number of available electron
places and the number of electrons to be accommodated by the same
number, i.e., the number of electron places in I and IT. If we decide

to make the computation only with the conduction electrons and
. only with the places available in band III, this is done mainly for

reasons of simplicity. In this case, we require information only about .

the nature of the density of states D(E) within the conduction band.!
Furthermore, in view of the discussion in Chap. VI, the description of
the behavior of the strongly bound electrons in the lower energy levels
with the aid of the band model, i.e., with the Hund-Mulliken approxi-

mation, is of doubsful validity. Thereforé it is desirable for funda-

mental reasons, too, that the inner electron shells of each atom be
“added to the atom cores causing the periodic potential and that the

band model be applied only to the electrons of the outermost shell.
In the determining equation (VII.10.03) for Ep, we now must use

the energy E¢ of the lower edge of the conduction band as the lower

integration limit:
3‘“ i
2 [ DE)5—p—dBE=N (VIIL.4.01)
A YA '

where N is now the number of conduction electrons in the conduction
band. Naturally, a more or less explicit evaluation of (VIII.4.01) can
be attempted only if more accurate information about the distribution
of the density, of states D(E) in the conduction band is available. Here
/one starts frequently from the approximation (VII.4.04) or (VII.6.19)
which, with the aid of Eq. (VII.6.23), mue = h*/E"(|kc|), and ‘with

1 Congerning the shape of D(E) which is shown only diagrarmatically im Flg
VIiI.4.1, see p. 299, footnote 1 and p. 303, footnote 3.
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