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. Fueum = Fg, takes the form
I e Ik o ka'[’ (VII1.4.02)

However, the warning of pages 180 and 200 must be repeated, i.e.,
that (VI1.2.23), (V11.4.04);, and (VIIL.4.02) are simplifying assump-
tions which, to take an example, are not fulfilled in the case of the
cubic faee—-centpred lattice at one band edge (the upper for negative
exchange integral, the lower for positive excha.nge mt.egra.l) Even if
at_the band edge k= k¢ Eq. (VIIL.4. 02) is fulfilled, it is not strictly
correct 1o use the same Mo higher up in the band.

If we compare the equation derwed from (VIII.4.02) : .

~

[k — ko = Y2t (i _ oy

with (VIL.1.02) and if we substitute E.., — E¢, m — m.,, and k— k
~ — kg, we can repeat exactly the computation of the density of states
I D(E) carried out for the model of the potential well, and in analogy
[ to (VIIL.1.05) we obtain

e -
2D(E) dE = V - Ne 1‘/;( o) d (kT) (VILL403)
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. where the effective density of states IV in the potential well is replaced
by the effective density of states N¢ in the conduction band.! Corre-
spondingly, the definition of N¢ is derived from that of N [Eq.

[ (VIIL.1.04)] by the substitution m — me: :

¥ 3% 34
Nog=2- (Mhif-g) = 2.5 - 10*° (E;T") i (—30-%() ‘ Icm"‘
' ' (VIIL.4.04)

¥ Using (VII1.4.03) in (VII1.4.01) and introducing the integration
variable n = (B — E¢)/kT as well as the concentration n = N/V, one
obtains as the determining equation for Eg: j

[.;‘ L " peeon
2 1 -
— [ e Vady = T;"; (VIII.4.05)
g Lo o KT iy

Finally, by compaﬁng_ (VIII.4.05) with the deﬁnipg equai;ion (A.IL1)

11t is apparent from (VI'I_I..4.03) that the hypothesis (VII1.4.02) leads to zero
state density D(E) at the band edge E = E¢. Only in the linear case this does
not apply, see Fig. VII.2.7. .
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- of the fu.nctmn & dlscussad in Appendix II on page 384, one gets

e ;(_}:‘Tc) . (VIIL4.06)

Hence, on the basts of the assumption (VII1.4.02) the conduction elec-
trons behave like a free electron gas with a potential energy which equals
the tolal energy Eq of the electrons at the lower edge of the conduction band.
For the mass of the electrons, one has to use the effective mass

Y
P Mt = TS - (VIL.6.23)
The foregoing treatment in which the fully occupied band below
the conduction band'is ignored and where the concentration n of the
conduction electrons is considered temperature independent is per-
missible! only as long as
n > Ng

The number of conducfion electrons in metals is about one per atom;
hence n =~ 10?2 em~3, For N¢ to reach this order of magnitude, one
has to have :

AN
Ng = 2.5 - 10% (30311{) em—® = 10*2 em—3

1022 ¥ o
55 701) = 300°K - (4 - 10%)% = 300 K'_55
' = 16,500°K

At such temperatures the metal is molten and therefore the case
n < Nc is of no interest. This means: The electron gas in metals is
always ;trong!y degenerate.

In many problems, therefore, the hrmtmg value given by Eq.
AIIS) can heuaedforg'm (VIIL.4.06)

o= o (%)” o (NG)” ‘ (‘;..11.3)

From this, together with (VIII.4.04), one obtains for § the tempera-

r-Tﬁ300°K-(

! In this case, { is positive and the Fermi level Er = Eg + ¢ will lie within the
conduction band in the temperature range in which we are interested. The band
below the conduction band lies so far below the Fermi level Ep that it will remain
fully occupwd with great accuracy even when the slope of the Fermi distribution
flattens with increasing temperature and the electrons move from states below Ep
to states above Er. The band below the conduction band lies, in the case n >> Ng,
too far below Epr to be noticeably affected by this process.
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determine the conduction process.
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ture-independent’ value

Fi='z (81) L ' (VII1.4.07)

mw
Using the equation ~ Er — Be = ¢ = % o2, (VIII.4.08)

one obtains for the velocity vy of those electrons which are, ener-
getically, at the Fermi level Ep

3\* h m PR

= | — k= « 107 —gec—1 . "
i (81!') Magr g {1 i0lem _Bec ‘m.n) (10” cm“‘)
; (VIIL.4.09) *

in other words, the order of magnitude of v 18 10® cm-sec=2. Here the
thermal velocity vy, has been computed as the velocity of the electrons

_at the Fermi level. This seems reasonable if one bears in mind that

in a Fermi gas an increment of energy—be it from an external field
or in the form of heat—changes only the energetic distribution of the
electrons near the Fermi level while
the electrons in the lower energy \
levels are not affected. : | Ry
There are two other methods for y
estimating the velocity of the elec-
trons at the Fermi level (= certer
of the band), which predominantly

First, by limitation to a one-dimen-

. sional case, one can derive directly = - :

 from Eq. (VIL5.10) the equation ~ 0% %
: ' ' ARIE S
o — 1 dE = 1 AE Fia. VIII.4.3. Computation of the
h dk ~ h Ak electron velocity in the band center.

in which one can substitute for AF a band width of the order® of
10 ev = 1.6 - 10~!! cm? g-sec~? and for Ak a quantity of the order of
w/a = 1-10"® em~'. Thus one obtains the value

HIBE S .. 1.6 -10-!! cm? g-sec?
1-1072" cm? g-sec™! 1-10+8 cm™!

v = =1.8"- :l'(}8 em-sec—!

. which, according to Fig. VIII.4.3, is somewhat too low. Thé alterna-

1 Owing to this temperature independence, the approximation (A.IL.8) is not
sufficient where the specific heat of the electron gas is concerned.

% See, e.g., F. Herman, Phys. Rev., 88: 1210 (1952), where a width of 22 ev is
computed for the valenee band of dmmond
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tive method consists of using the approximation (VIII.4.02) in the

: . 1dE .
.eq‘ufluon v =i Tk with the result

If we now use for m. the electron mass 9 - 1072 g and for %k the vﬁ]ue
Yer/a = 35 - 10® e~ in the center of the band, we obtain
w1072 om? ggec!- 1

1
" 8 —lirg = +8 7 =,
0 10 g 2 10+8 em 5 10+% em-sec™? .

In other words, all three estimations result in the same order of
magnitude.

¢. The Band Model of the Tnsulator and of the Intrinsic
Semiconductor” at Temperatures 7' > 0'

It can be seen from Fig. VIIL.4.2 that at temperatures > 0°K
valence band 11 below conduction band III is no longer fully occupied.?
Since at all temperatures the total number of electrons in the crystal
must be the same to maintain neutrality, the number of electrons in
the conduction band must equal the number of vacancies or “holes”
in valence band II below the conduction band.? In the case of Fig.
VII1.4.2 it is therefore no longer permissible to consider only the

- conduction band and the number of electrons therein. The number
of electrons is now no longer the same at all temperatures but varies
greatly with temperature. The simplified procedure which in the
case of Fig. VIII.4.1, previously described, consisted of ignoring bands
I and II and of considering only band III has in the case of Fig.
VIII.4.2 to be modified so that only band I isignored. The discussion
must cover bands II and III and all the electrons which have to be
accommodated-in these two bands and whose number may again with
fair accuracy be regarded as temperature independent.

_ The significance of the following discussion would be greatly reduced
if explicit expressions were used for the density of staics in the whele
valence band II below the conduction band. Fortunately, an expedi-
ent relieves us from this necessity. This expedient consists of con-

1 8ee pages 16 to 20 concerning this term.

2 In principle, this was true in the case of Fig. VII[.4.1 just eons:de.red. How-
ever, there the number of vacancies or ‘‘holes” in valence band II is practically
negligible as compared with the number of electrons in conduction band II.

3 Strictly speaking, the holes in the electron occupancy of band I should also
be considered. However, their number is again negligibly small.
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sidering, instead of the distribution of elecirons over the states of
valence band II, the distribution of the vacancies or “holes”’ or “defect
electrons.”! If the probability of an electron level B being occupied
by an electron is, according to (VII1.10.01),

f(B) = ——~,,'f,,, (VI1.10.01)
e XT +1
then the probabiiit.y that this energy level E is not ogcupied is
E—Er
kT 1—=1 1
1'— f(B) = &gk = s (VIIL4.10)

’ e KT 1 1+ e ¥

On the other hand, for the computation of the density of states D(E),
one makes the assumption, in accordance with Eq. (VII1.4.02), that

" Py _ﬁ' e 2
. B =FHy e |k — ky| (VIII.4:11)

(m, = absolute value of the effective mass of the electrons at the upper
edge of the valence band?) from which it follows that

Ik — ky| = Y2 (1, — s

Comparison with (VIIL.1.02) shows that we have to carry out the

- substitutions

E—Fuyw—By—E m—>m, and k—ok—ky

and that hence we have now for the number of electron places in the
energy interval [E, E + dF] the expression®

J —V-.N, -2 (By —EN* .(E
2D() al = V - Ny 2 (_W) d(k_) (VITL4.12)

Here NNy is the effective density of states in the valence band :
¢ o ZEmkT\* - NN L
Ny = 2( h’;—_-) ~ 2.5 . 101 (-;:—’) 300°% ) oMt (VIIL.4.13)

! This procedure is not limited to intrinsic semiconductors. The equations
derived below are, therefore, of general validity for semiconductors—with the
exception of (VIIL.4.24), (VIIL.4.25), and (VIIL4.28) where the relation n = P
(VIII.4.24), which defines the intrinsic semiconductor, enters decisively.

* The effective mass of the electrons at the upper edge of the valence band is

 negative, i.e., —my.

_ *Here the density of states D() is of course zero at the upper band edge
E = By. BSee also footnote 1, p. 208. v
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1

If we introduce the number P or the concentration'p = P/V of the
vacancies or holes in the almost complete electron occupancy at the -
upper edge of the valence band, we obtain’ for P :

E=Evy
B e f D(E) - (1 — f(E)) dE
B
N R AN | E
=VNV———-I yis 2 -d(——)
T = kT
\/;x-—o k e KT 1]
) i Ay e—B
or, with 1

as in‘g.egrat.ion variable
N

2 1
N f rom— Va 3,?3; (VIIL4.14)
Vr ). _

?__k'?"‘" + 1
By comparison with the defining equation (A.IL.1) of the function
¢, one can again derive STt

e s (ﬁ";) : (VIIL.4.15)

With regard to the eléct.roh concentration n in the conduction band,
we obtain in the present case of the insulator, as with a metal, in
aceordance with (VIII.4.06), : '

o (—};‘;) (VIIL.4.16)

where in the definition of the effective density of states N¢ in the con-
duction band :

: T % %
N¢=2(ﬂ;'k-;z) — 2.5 10 (%) (ﬁ?}ﬁ) em-t  (VIIL4.17)

we now call the effective mass of the conduction electrons m, in order
to achieve complete analogy with (VIII.4.13). : j

In Eqgs. (VII1.4.15) and (VII1.4.16) Ey can be eliminated and one
can see that the equation '

Gt (Nc) + (N,, By — Eo(<0)  (VIIL4.18)
1 The lower int-egmtion limit E = — 8 unMportnnt because accordi s

(VII1.4.10) 1 — f(E) approaches zero very quickly as E— ~ « and no further
important contributions to the integral arise. .
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must always hold, independent of the position Er of the Fermi level.
This equation will now be shown to represent the generalization of the
law of mass action (see Eq. 1.3.03) np = n} between electrons and
holes, valid even in the case of degeneracy. ’
We can assume that at the edges of the conduction and of the valence
band the effective masses m, and m, of the electrons will not differ
in order of magnitude from the mass m of the freé¢ electron. Hence,
as long as the temperature is not excessively low, N¢ and Ny represent
very high concentrations and we have! '

p&Ny and n<Ne (VIIL.4.19)
Now the logarithmic limiting expression (A.IL2) for ¢ can be used.
in (VIIL4.15), (VIIL4.10) and (VIIL4.18) dnd we obtain

o s kT e (VIII.4.20)

N;r .
Ep = E¢ + kT In ﬁ— (VIIL.4.21)
: | c
and . kT In = +len~—N-'='-—(Ec—Ev) _
3 _EBc—Ev ; e
or ; ine p=No-Ny-e X (VIII.4.22)
This is—as just mentioned—the important law of mass action
3 n:p=n} B (1.3.03)

between electrons and holes. By comparison with (VIIIA.QZ), one
obtains for the ‘“‘inversion density ny’ (see page 26)

1 Ec—Ev

=N/ Nch e 2 A d
N 19 -3 m“ ml‘ § F%E-Uk:gl Al
2.5 - 10" em -3-0—0;—1-{ e (VIII.4.23 )

In the present case of the insulator we have already noted (page 802)

that the number of all electrons in valence and conduction band taken

1If one bears in mind that in the first approximation m = my and bence
No =~ Ny, one can see that the later result VIII.4.25 confirms these assumptions
for low temperatures as well. - In other words, in the case of the intrinsic semi-
conductor with which we are dealing here, the concentrations n and p decrease
much faster with temperature than No and Ny.

However, as in footnote 1, p. 308, it, should be emphasuad once again that
Eqs. (VIIL.4.20) to (VIIL4. 23) do not hold only for intrinsic semiconductors but
also for impurity semiconductors in which the assumption (VIII.4.19) of non-
degeneracy is fulfilled as long as the doping is not excessive. Only the assumption .
(VIII.4.24) effects the limitation to the case of intrinsic conductors.
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together must be temperature-independent and we have concluded
from this that the concentration of the conduction electrons in the
conduction band must be equal to the concentration of the holes in
‘the valence band: T,

n=p ' . (VIIL.4.24)
From the combi;mtion of (VII1.4:22) and (VILI. 4.24) follows
| _1Ee-Ey -
n.= p.= n;__ = "\/ NcNV e kT (VIII.4.25)

With the aid of these expressions the energetic position Er of the
Fermi level -can be computed from (VIIT.4.20) and (VIII.4.21):

By =3 (Bo+Ey) + kT In e (VIIL.4.26)

In this equation the definitions (VIII.4.13) and (VIIL.4.17) for. the
state densities Ny and No have been used. Thus one can seé that in
an insulator the Fermi level Er lies practically halfway between the lower
edge Eg of the conduction band and the upper edge Ey of the valence band.
This result is independent of the temperature T, apart from a small
" correction that may be required to allow for any differences in the
effective masses m, and m,. ' -

This result could have been obtained, even without calculation, from
the symmetry of the distribution functions f(£) and 1 — f(E) around
the Fermi level Er (see Fig. V11.10.1). Owing to this symmetry, the
condition “concentration n of the electrons = concentration p of
vacancies or holes” is just fulfilled if the Fermi level Er lies halfway
be_tween Ec and Er. »

: Thus the complete picture for the insulater at temperatures T' > 0

_encommpasses an electron gas in the conduction band and a gas consist-

ing of “holes” or “defect electrons” in the valence band. Stated
more precisely, the assumptions (VIII.4.02) and (VIIL.4.11) lead to
the conclusion that the electron gas has an apparent potential energy
'Eg (lower edge of the conduction band) and the hole gas has an appar-
ent potential energy Ey (upper edge of the valence band). Within
these potential wells of depth E¢ and Ey, respectively, the electron and
hole gases, respectively, are “‘ quasi-free.””* Both gases have very low
concentration and behave completely like Maxwell gases. Hence the
thermal velocity v of the electrons can be computed from the equation®

1 An influence of the lattice beyond these apparent poteutis;l energies Fo and By
is expressed in the substitutions m — m, and m— my.
2 Mean energy per degree of freedom = }¢kT (priuciple of equipartition). Bee
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' 3
Tk = G kT

BTl s SR [T
oo = 1.168 - 107.cm sec 300°K \/mos (VII1.4.27)

Therefore, vy, in insulators {and semiconductors) is of the order of
magnitude 10~7 em-sec—! (at 300°K).

L]
tobe 9, =

§5. Fermi Statistics in Semiconductprs s
In §3 of Chap. I we have seen that at temperature 7' = 0 a semi-
conductor is an insulator because it does not contain any free charge

carriers. These are created only if the temperature is raised. First,
electrons are then supplied by donor impurities (n-type conduction).

- Becondly, electrons are pulled out of valence bands. by temperature

excitation’and captured by acceptor impurities. The vacancies in the
totality of valence. electrons are then available as “defect electrons’
for the transport of current (p-type or hole conduction). Finally,
at high enough temperatures, electrons are raised directly from the
valence band into the conduction band, and the current is then earried
by equal numbers of excess electrons in the conduction band and of
holes in the valence band.

We intend to calculate the position of the Fermi level Ep, first in an
n-type semiconductor, then in a p-type semiconductor, and finally in
& semiconductor with donors and acceptors. From the point of view
of Fermi statistics, we are concerned (for example, in an n-type semi-
conductor) with the distribution of a certain total number of electrons
among the donor levels and the levels of the conduction band. In
Chap. II the same problems have been considered from the point of
view of imtpurity, reactions and the laws of mass action. Where we
spoke hefore, for instance, of a ‘“neutral donor DX,” we shall now

. describe the same situation as an ‘“electron at a donor level.” At the

end of §5, we shall return to the earlier point of view and derive an
expression for the mass-action constant. This will form a transition
to Chap. IX in which the law of mass action will be considered again,
this time from the dynamit point of view. . This will also be an oppor-
tunity to indicate the treatment of the inertia of _im})urity reactions,

- whereas in Chap. I and also here thermal equilibrium between the

impurities and the electrons and holes is always assumed.

G. Joos, “Theoretical Physics,” 2d od., p. 587, Hafner Publishing Company,
New York, 1950. ¢
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a. Semiconductors with Donors: n-Type Semiconductors

In analogy to the previous discussion of metals and insulators where
we did not have to consider the electrons in the lower bands explicitly,
we can now again ignore the lower bands, including the valence band,
and need deal only with the conduction band and the donor levels

=
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Fra. VIIL.5.1, Position of Fra. VIIL.5.2. Graphic determination
- the Fermi level Er in the of the Fermi level Er in n-type con-
band model; n-type con- ductors; impurity saturation; E¢ —
ductor; impurity satura~ Ep = 2kT; np = 10~* No.
tion.

below it (see Fig. VIIL.5.1). For the density of states in the conduc-
tion band we use again the expression (VII1.4.03) based on the assump-
tion (VIII.4.02) and obtain, as previously for metals and insulators,

Er=FEo+¢ (-}%)  (VIIL4.06)

i.e., a functional correlation Ep(n) or n(Er), respectively, between the
- Fermi level £y and the concentration n of the electrons in‘the conduc-
tion band. n as a function of Er provides one of the two curves of
Fig. VIIL.5.2. ' .

According to the principles of Fermi statistics, the probability with
which a donor level E) is oceupied by an electron is!

t8ee Appendix III. W



i §5. Fermi Statistics in Semiconductors ; 309

' f(Bp) = 1 (VIII.5.01)

1
% e+w(ﬂn—3’) + 1

Hence if we have in unit volume np donors at the energy level Ep, |
the fraction np -f(Ep) is occupied by an electron! and is therefore

1+2e

The functional dependence of this positive charge density np+ on Ep
provides the se¢ond curve in Fig, VIIL.5.2. To preserve the neutrality
of the semiconductor as a whole, the concentration n of the negative
electrons must be equal to the density np+ of the positive donors that
remain. 'The resulting value Er of the Fermi level the soluiion of the
s equation y

B n(Ep) = ﬂp+(Er) (VIII.5.04.)

E is determined by the intersection of the two curves in Fig. VIII.5.2.
. ~ With the assumed va.Iues for Ec — Ep and np, a situation arises in
B - which

neutral: , :
_ : npx = Np : (VIIL.5.02)
f:.‘ : ; % +kT(3’n Er) + 1
Hence the concentration of the positively charged donors is
; I
! .ﬂD+=np—an=nD 1— +1E 3
b 1y e T g
E 1
B Nip+ = Np - 11.5.03
E D2 +pg(Br—Ep) (VI )

n = Np+ ﬁ np _v(VIII.5.05)

i.e:, in which almost all donors are dissociated In this state of ‘“‘donor
B saturation,””? the Fermi level lies below the donor level (Br < Ep),
E and just for this reason the majority of the donor levels are not occupied. _
F For the (B¢ — Ep) values assumed in Figs. VIIL.5.3 and VIIL.5.4, on
E the other hand, we have an ‘“‘impurity reserve”

n = Np+ << Np ( 0111.50’6)
|
| 11f the Fermi level Er is several kT below the donor level Ep, t.he number of
- electrons in the donor level is consequently

2np e+ﬁ(3"—ﬂn}

This observation will be needed for footnote 1, p. 318.
* S8ee Chap. 11, §6, particularly p. 50.
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Fia. VII1.5.3. Position of Fra. VIIL.5.4. Graphic determination
the Fermi level Ep in the of the Fermi level Er in n-type con-
band model; n-type con- duectors; impurity reserve; Eg — Ep
ductor; impurity reserve. = 8]:'.7‘, ap = 107! Ng.

The Fermi level lies above t.he donor level (Br > Ep), and therefore
most of the donor levels are occupied.

b. Semiconductors with Acceptors: p-Type Semiconductors

Here we have 1. investigate the distribution of the electrons among
the valence band and the acceptor levels above it (see Fig. VIIL.5.5).
With the assumption (VII1.4.11) and the resulting density of states
~ (VIIL4.12) in the valence band, we obtain the following functional

_correlation between the hole concentrahon p in the valence band and
the Fermi level Ep

i e ; (.ﬁl’..) (VIIL.4.15)

With the aid of this equation, the curve p(Er) in Fig. VIIL5.6 can be

drawn. Of the n, acceptors in unit volume, the fraction f(E4) is
occupied by an electron and therefbre negatively charged:

Na- = N4 i ! = (VIIIfﬁ.O’T) :

2e+wij— ?)+1

This supplies the curve n,-(Er) in Fig, VIIL5.6. To maintain
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neutra.lity : ;
p(Er) = na-(Br) (VIIL5.08)

is again required so that the actual Fermi level in Fig. VII1.5.6 can be
found from the intersection of the concentration curve p(ZLr) of the
~ positive holes and the concentration curve ns-(Fr) of the negatively
charged acceptors The assumptions made in Figs. VIIL.5.5 and
« - VIIL.5.6 concermng; By — BV and ny lead to impurity saturation

Na- = N4 _ (VIIL.5.09)
B > Ey by XY
Figs. VII1.5.7 and VII1.5.8, however, lead to an impurity reserve:
' P, NS 0 01 693 (1))
Er < By ;

¢ Semiconductors with Donors and Acceptors

The poisoning of an n-type conduclor by added “acceptors and of a
p-type conductor by added doneors. 1f the donor com:em;ra.tiop in an
n-type conductor is increased (see Fig. VIIL.5.9), the intersection of
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Fra. VIILA. 9 Yariation of the Fermi Fig, VIIL.5.10, Variation of the Fermi

iavel Ey and the electron concentra- level Ep and the hole concentration
tiom n with the donmor concentration  p with the acceptor concentration
nn(Bg — Bp = 8kT). na(Ba — By = 8kI). |

the np+ and of the n curve moves upward and to the right, i.e., the
Fermi level Er and particularly the electron concentration n assume
higher and higher values. Hence the n-type conductivity of the semi-
conductor under consideration increases with the donor concentration
np, at first proportionally with np as long as ove does not leave the
range of saturation. In the Teserve range it 111(31’83.8881 vnth ng [see

L A further attenustion of the increase occurs whsn the electron concentratlon
exceeds the value Ng and degeneracy sets 11}.
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Eqgs. (I1.6.15) and (II'6.17)]. Correspondingly, addition of acceptors
to a p-type conductor increases the hole concentration and thereby the

| . hole conduction (see Fig, VIII.5.10).

These results are not at all surprising. - It is ‘the donor content that
makes a semiconductor into an n-type conductor; hence it seems
obvious that an increase in the number of donors enhances the n-type
conductivity. However, this argument might lead one to expect that
addition of acceptors to an n-type conductor causes side by side with
the n-type conduction additional p-type conduction, thus improving
the total conductivity. In fact, however, the reverse effect takes
place. The total conductivity: decreases because the n-type conduec-
tion is poisoned by the added acceptors and additional p-type conduc-
tion is not produced

This effect is easy to understand if one remembers that the acceptors
have a tendency to capture electrons. By capturing (“trapping”’)
.of conduction electrons, the number of free carriers-is reduced. Alter-
natively, one can say that the introduction of neutral acceptors pro-
duces additional deep eleetron levels without a corresponding increase
of the total number of electrons which have to be accommodated.
Hence it is certain that the Fermi level is lowered, with the result that -

_the occupation of the states in the conduction band is reduced, i.e.,
that the concentration of conduction electrons is reduced.

Again, a complete understanding can be provided only by a quan-
titative treatment; therefore, in Figs. VIIL.5.11' and VIIL.5.12, and
VIIL.5.13 and VIIL.5.14 the situations are shown which arise when
acceptors are introduced into the impurity semiconductors of Figs.
VIIL5.1 to VIIL.5.4, the concentration of the acceptors in both cases
being half an order of magnitude below that of the donor concentration.

. The condition for neutrality is then expressed by
Bl e e (VIIL5.11)

5

-From Figs. VIIL.5.12 and VIIL.5.14 one can see that in both cases

" - the hole concentration p is of no practical importance. The Fermi

level E lies so high above the states of the valence band that these are
all filled, with the exception of a negligible number (see Figs. VIIL.5.11
and VIII.5.13). The same applies to the acceptors so that for all B
values of mterest the term n4- in the charge balance (VIIL5.11) is
; constant

* If the same applies for the donors, i.e., if there exmta even in the
~ absence of acceptors, saturation of donors

n=rnps~np and Ep<BEp (VIIL5.05)

/



3 v VIII, Fermi Statistics of l.i:é"l!‘febtrons in & Crystal

(Figs. VIIT.5.1 and VI11:5.2, and VIIL5.11 and VII1.5.12), the poison-
ing effect of the acceptors is readily understood guantitatively. The
addition of acceptors creates additional deep levels and thereby pre-
duces a lowering of the Fermi level and thus, if unything, enhances

o' gt vJ"hc" 1o°
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Fre. VIIL.5.11. Po- Fra. VIIL5.12. Grapbic determi-

gition of the Fermi nation of the Fermi level Ep in a

level Epintheband semiconductor with donors and ac-

model;semiconduc-  ceptors: FEeg — Ep = 2kT'; Eg —

torwithdonorsand Ei = 22k7; E¢ — Ev = 30kT,

acceptors. : np = 107 N; ng=3-10"* N;
N = Ng = NY ST

the donor saturation (VIII.5.05). In the charge balance (VIILS5. 11)
the two terms ns- and np+ are then practically independent of the
position, of the Fermi level E;, and the term p becomes negligible.

Hence almply
: M= Np+.— Ng- : -
n = np — N4 (VI11.5:12)
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§5. Fermi Statistics in Semicopductors ‘
Figures VIIL.5.13 and VIIIL5.14 show the more complicated case
where a donor reserve existed before the introduction of acceptors. -

315

Into the impurity semiconductor of Figs. VIIL5.3 and VIIL 54, an

- acceptor concentration is introduced whose value is again one third

£
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Fre. VII1.5.13. Po-
sition of the Fermi
. level Erin the band
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of the donor concentration.

i

=-l= o5 !
Fia. VIIL5.14. Graphic deter-
mination of the Fermi level Er
in a semiconductor with donors
and acceptors: Ey — Ep = '
8kT; Ec — E4 = 22kT; Ey —

£ Ey -301{2', Nnp = 10"1N; na.

-3'19_’N;NV-N0-N.

A’coxhpa.rison of Figs. VIIL5.4 and

VIIL5.14 shows that the electron concentration is reduced by about

a factor 10 while in the preceding case the factor was only about:84.
The temperature 7' enters into the graphic determination of the
Fermi level, e.g., in Fig. VIIL5.12, first, in the seale unit k7T of
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abscissas, but a.]st\);'-secondl'y, in the scale unit of the ordinates

(2amkT\*
vimia (2T

To determine the temperature dependence of the Fermi level Er and
- théreby of the electron concentration in the different levels, the graphic
construction has to be carried out for a number of temperatures.
Figure VIIL.5.15 ghows the result! for assumptions which apply

Conduction band - &Y
lower edge —=— O

-0l ny=10" em’®

1 02.0.0.1,08,09,1-10
’ I/

03 ,
: Center of \ﬁ \\\\j&
— — — — — Ml a1 J e b

forbidden band

- - — = Accepior tewls'—'-‘o‘? —
psspon —— Upper edge —e |-
valence band

(o] 100 200 300 400 500
; ‘ - T/oK—>
Fra. VIIL.5,15. Temperature dependence of the Fermi level Ey. Germanium with
10% donors per em?® and varying acceptor concentration. W

approximately to the case of germanium.. Essentially; the Fermi
level Er is lowered with increasing temperature. Hence, with increas-
ing temperature the donors are all dissociated. At higher tempera-
tures, the Fermi level lies in the center of the band, independent of the -

impurity concentrations np and 7. This corresponds to the state

1 For similar investigations, see H. Mueser, Z. Naturforsch., 5A: 18 (1950).
K. Beiler, Z. Naturforsch., 5A: 303 (1950). R. A. Hutner, E. 8. Rittner, and
F. K. DuPré, Philips Research Reépts., 5: 188 (1950). W. Shockley,’ “Flectrons
and Holes in Semiconductors,” pp. 465ff., D. Van Nostrand Company, Ine.,
Princeton, N.J., 1950. Y Tas
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.' -~ of intrinsic conduction which will therefore be reached in every semi-
conductor at high enough temperatures, provided that the crystal does

not melt first [see Eq. (VIIL.4.25) and the discussion on page 25].

. We now refer again to the fact that with known position of the
Fermi level Er the electron concentrations in the various levels are
given by the equations (VIII 5. 02), (VIIL.5.07) and (VIII 4.06),
(VIIL.4.15). In the case of nondegeneracy

n < Ng (VIIL.5.13)
p & Ny - (VIIL.5.14)

the last two equations can be replaced by (VIIL. 4 20) and (VIII.4.21).
From these follow

o I ' '
i = o (Bo ~ By) (VIIL5.15)
 Eape
I B S ) (VIIL5.16)

Hence the distances B¢ — Ey and Ey — Hy between Fermi level Ey and
the band edges E¢ and Ev, respectively, measured in units of kT, are a
logarithmic measure of the concentrations n and p, respectively. How-

- ever, if the Fermi level does not lie in the forbidden zone but, for
instance, in the valerice band, then (VIII.5.16) would lead to a hole
concentration p = Ny and the assumption (VIIL.5.14) is no longer
valid, i.e., degeneracy has set in. Therefore the equations (VIII.4.20),
(VIIL.4.21) and (VIIL.5.15), (VIIL.5.16), respectively, apply with
reasonable accuracy only when the Fermi level is several k7 away from
the band edges. In this case the results can be translated into the
language of the laws of mass action, which has certain adva.nta.ges

d. The Law of Mass Acnon

The computation of the concentr.ation of the conduction electrons
and the related problem of the saturation and of the reserve of one type

- of impurities have been treated in Chap. II, by using the reaction e.quar

s ¥

| ozt L2 iy

tions and the laws of mass action,

At that time it was noted that the application of the laws of mass
action presupposes ‘“sufficient’’ dilution of the electron gas. How-
ever, it could not be stated prec:aely what degree of dilution was
sufficient, nor was it possible to ‘give a reason for.the given value of
the mass-action constant.

From our new point of view tHe following can be said concerning
these two questions. The dilution of the electron gas is sufficient for
the law of ‘mass action to be valid, provided that

YL g <IN i1 (VIIL5.13)

\
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because then we are in the linear part of the n(fir) curve of Figs.
VIIL.5.2, VIIL5.4, VII1.5.12, and VIIL5.14. Since in these figures
n has been plotted on a logarithmioc scale, this means the validity of the
approximation (VII.4.21), which by solving for the concentration n of
the conduction electrons results inl : '

it S Ll _ {(VIIL5.17)

From this, together with Eqs. (VII1.5.02)'and (VIIL5.03), we obtain
the expression ' :

+yp(Bo— Br) + i

5 Bal { ]
“;‘D LIS 11 e Ng e TErEr— B9 e -
! 1 2e+ﬁ( i ; ;
A N + L EBr~E) @ +i(Bo—En)
=l KT Jo v
, X g -
Henoe nos: 1 No - paltis (VIIL5.18)
nnpx ; 2 ;
where st e (VIIL5.19)

We can see that the Fermi level Fr which depends on the electron
concentration n has been eliminated and that with a constant inde-
pendent of concentration '

K 529 o~ FTE% (VIIE:5.20)

the law of mass action _
Np+ ' N = K_u * TLpx £ (VIII.5'.21_)

is valid* The “internal work function E¢p of the donors” occurring
in the expression (VIIL5.20) for the mass-action constant Kp is the

1 If we compare (VIIL.5.17) with footnote 1, p. 206, we see that the continuum.
of the available states in the conduction band behaves effectively like Ngstates /cm?,
with a uniform energy level Bo. For this reason, Shockley chose the term “effec~
tive density of states” for No. - (See Shockley, op. eit., p. 240.) Bee also footnote
1, v 285. : ; .

3 In addition to this statistical proof, we have already mentioned a kinetic proof,
for the law of mass action on p. 46 which we shall didcuss in more detail in Chap.
IX. Finally, the law of mass action can be derived from the general equilibrium
condition of footnote 1, p. 294. -

(Wlectrochemicsl potential)siae 1 = (electrochemioal potential)giaw 1

if we use in this equilibrium condition the expression for the chemical potential
of a Maxwell gas as obtained-from -thermodynamics. However, withouf, the aid
of statistics, the constant of the law of mass action remains undefined because
the entropy constant in thermodynamics is undefined. See W. Weizel, '‘ Theo-
retische Physik,” pp. 732, 733, and 1237, Springer-Verlag OHG, Berlin, 1949.
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_aetwahon enelgy wh:aéh has to he supplied to an electron to raisé it
- from a denor level into the conduction bangd (see Fig. VIIL.5.16).
A corresponding law of mass action applies to the acceptors:

_ na-1p = Ky ngx . (VIIL5.22)

i - A ; Ny Ear ; _
) wath 0 I R - ¢ KT, . (VII1.5.23)
and with = By =Ey — Ey >0 (VIIL5.24)

if the concentration p of the holes is sufﬁclently small

Using the example of the sémiconduct.or with donors and acceptors,
we want to indicate briefly the treatment of such a somewhat complex

FIG VIII 5.16. Activation energies of mapunt.les

prcblem mth the methods of Teaction kinetics! instead of a purely
statistical procedure.
In this case, we have the three laws of mass actmn

: : : nps - n = Kpnpx i A 01 21)
AR 5y na-p = Kangx  (VI11.5.22)
S n:p = n} ; (1:3.03) .
' Furthermore we }mve two expressions for the impurities :
e iz : n.ﬂ"‘ + np+ = np j (VIII526)
: SRR R ) - nax -{— N4~ = N4 T (VI1L.5.27)
and ﬁ.nally a neutrality eon(ﬁtlon :
Na-+n=npr+p (VIIL5.11)

18ee W. Schottky, Z. Elekirockem., 451 33 (1939).

S e e Ny - (VIIL5.25) . -
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These are six equations with the six unknowm’s_' n, P, Npx, Np+, N4-, and
nax which are thus “determined,” i.e., expressed in terms of the mate-
rial constants Kp, K4, n; and the total impurity contents np and na.

¢ _ §6. Problems

1. Plot the temperature dependence of the Fermi level for a semiconductor with
the following properties: Ec — By = 0.72 ev, Ng = }§N, Ny = N, Ec — Ep = 0.04
ev, np — ny = 10! cm™? ny = 0. )

2. Figure VIIL5.15 shows that the Fermi level for 7' = 0 does not lie halfway
between the donor level and the conduction band but at the donor level itself if
" the semiconductor contains acceptors as well as donors. Under what conditions,
then, does the Fermi level rise initially with temperature, that is, under what
conditions is : L '

dEy |

AT |1

3. Plot the temperature.dependence of the Fermi level for a “partly compen-
sated’” semiconductor with a constant donor excess, np — n4, of 10'* cm~, but
with different donor and acceptor densities. Assume the same numerical values as
in Prob. 1, except for the following values of the acceptor density: ny = 10t em™3,
3. 1015 ¢m~3, 101 em~3, and 10'7 em~% and corresponding donor densities. Plot
the curves only for the low-temperature range where they differ from the curve
obtained in Prob. 1, with ny = 0. ! L ¢

4. Plot the room-temperature Fermi level as a function of the “net’’ impurity .
concentration np — ny for a semiconductor whose other properties are given in
Prob. 1. : ; - ;

5.% In Bq. (VIIT.4.07) a temperature-independent approximation was given
for the Fermi level in a metal. This value was obtained by replacing the actual
Fermi function for a finite temperature by that for T = 0. The value obtained,
therefore, holds only for 7' = 0 but is a good approximation otherwise. . Calculate
the first order deviation of the actual Fermi level from this approximation, that
is, calculate the quantity : .

: dg
- : _A;' “ T (Ef) T'=0
6.* Determine the room-temperature Fermi level in an intrinsic semicon-
ductor like indium antimonidé which has a very narrow forbidden band and a
very low effective mass for the electrons. Assume the following numerical values:
Ea = 0.18 ev, m, = 0.03m, m, = m. Note: Make use of the graph of Fig. A.IL.1
for the determination of the Feruii level. ! '

>0



. CHAPTER IX

- The Dynamic Approach to :'[rhpurity
Equilibria and the Inertia
of Impurity Reactions

_In the investigation of any semiconducting material, one of the most
- important tasks is the determination of the number of free charge
carriers, e.g., of the concentration of excess electrons in the conduction
band. While the experimental methods for this purpose are charac-
terized by the terms ‘“Hall effect”” and thermoelectric power, their
counterparts in the realm of theory are ‘‘Fermi statistics” and “laws
of mass action.”” We have discussed the statistical method in' detail
in Chap. VII, §10, and in the whole of Chap. VIII. The laws of mass
action have been treated in Chap. II, §6, and on pages 317 to 319.
. 1t was shown that the statistical method is more comprehensive than
-the method of the laws of mass action be¢ause it is also applicable for
| large concentrations! n > N¢ and, furthermore, because it supplies
- the magnitude of the proportionality factors in the laws of mass action
¢ which remain undetermined in the thermodynamic treatment.? On
. the other hand, the laws of mass action have the advantage of great '
simplicity. _
. . These remarks refer in the first place to the treatment of equilibrium
| .states, but they are all the more valid when dynsamic processes are
- under consideration, e.g., the slow rise and decay of luminescence in
phosphors' or the behavior of rectifying boundary layers at high
frequencies.? . 3 : ¢
I Inthe case of dynamic processes the statistical method, just because
I of its comprehensive and fundamental character, creates a number of
¢ very difficult problems.¢ Furthermore, it uses several concepts (life-
! No = effective density of states in the conduction band. See Eqs. (VIII.1.04)
_E ‘and (VIII.4.04). y - hetdsri ' ;
' * Bes, for instance, W. Weizel, “Lehrbuch der theoretischen Physik,” pp. 732-
783, Springer-Verlag OHG, Berlin, 1949.
i Y'W. Schottky, Z. Physik, 1321 261 (1952),
ks * W. Schottky, Ann. Physik, 63 193 (1949).
= T 321 3
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time, formation’ rata) which are introduced and defined more eaaily
on the basis of the laws of mass action than within the scope of the
statistical methad itself. For this purpose, however, the laws of mass
action have to be exterded beyond the equilibrium form. This will
e done below. In §1 we shall deal in a general way with the definition
of the so-called mean lifetime 7, while the lifetimes of charged and
neutral donors will be discussed specifically m §2 and §3. 1In §4, Eqs. |
(IX.4.02) and (1X.4.03) will give the previously mentioned Bxiension
of the simple law of mass sction np+ - n = Kp npx for dynamic
processes. In addition, the case of cquilibrium will be reviewed once
more from the newly gan;ed point of view, Finally, in §5 a simple:
typical example of 2 nonstationary process will be considered and the
timé constant obtained for 1t will be dizcussed. prla it

gl. Relaxation Time and Mean Lifetime for a
Particular Type of Imperfection

An meunty, o.¢., & donor 1), which can react according to DR

D* 4 © is by no means permanent}y in the charged state D*;instead, °

after a shorter or longer' period of time, it will associate w1th a free
conduction electron. and change inte a neutral donor ﬁx;' Correspond-
ingly, the state D* is not permanent or final, but it too will, after a
shorter or longer penod of time, cissociate again by thermal excitation
into D* + ©. In the first process, we have the “death” of a D+ and
the “birth” of a DX, in the second process the “death” of a DX and
‘the “birth” of a D*: extending this nomenclature, we cail the period
of time for which the impurity is in the charged (neutral) state its
“lifetime” i thecharged (neutral) state. The processes just described
are statisvical events, and therefore the time intervals during which the
donors of & given hype are neutral or charged are by no means uni-
formly the same. Ience statements regarding, o.g., the temperature
dependence of these fimes will primarily refer to mean values, ie.,
rean lifetimes 7p« or rp-.  Later on we shall have to discuss the fact
that different mean lifetimes can be defined for a given particle. How-
ever, before we come {0 that we introduce a rela,mtmn time 7.4 which
is deﬁned as fohows ,

We cnn.a:der & group of Ng partieles of a g;ven type' 8. The indi-

1 ],"or ithe remaining dizcussions of §1, type S may comprise, in addition to D>,
Dt, A% A— theminority carriers, i.e., the holes in an n-type conductor or tha
electmns in & psdype conductor. In that. ease the relaxation time r,.1 defined by
(IX,1.01) is the “lifetime 7, or 74" of the holes or the electrons. A detailed treat-
ment of the lifetimes of minority curriers in connestion with traps can be found in
W. Shockley and W, T. Read Jr., Phys., Roev., 87+ 835 (1952),
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4 V;dual members of this group die one aftar the other in statistical

irregularity. According to definition, we do not include in the group

new particles of type S which were bom after the beginning ¢ = £ of .
the observation. Then the number N5 decreases steadily, and a decay

or relaxation time 7. can be defined by the equation . °

dNg = — -—Ngdt (IX.1.01)

In formulatmg tlns defining equation, one thinks in the first place
of the casge of sufficient dilution in which the fates of individual group
members are independent of each other.! Then the probability that a
given group member dies during the time from ¢ to ¢ + df is the same
for all group members because it was postulated that they were all °
identical. Hence the number |[dNs| = —dNs of deaths during this
time element (¢, ¢{ 4 df) is proportional to the number N, s(t) of the
group members still alive at time . Further, the expression (1X.1.01)

 refers to particles whose death is a purely ra.ndom event which is quite

independent of its previous history.? Then the time ¢ cannot enter
the nuinber —dN s of deaths-during the time (¢, ¢ + dt) explicitly but

- only by way of the number Ng(f) of the surviving group members at

time ¢. 'This, hewever, presupposes that any physical parameters
affecting the placé and the environment of the events (such as the
temperature) do not vary with time.®* Hence 7., i3 a constant inde-

pendent of time and concentration if the three assumptions of ““suffi-

cient dilution,” “independence of the individual fate from previous
history,” and “ constancy of environment in tirae’’ are satisfied. Inte-
gmtwn of (IY 1.01) lea.dB for this case, to
_ _i=t .
A ¥ _ Ns(t) = Ng(t)) & ™ (IX.1.02)
Here the relaxation tlrhe defined by (1X.1.01) is also related tothe

_ initially mentioned mean lifetimes 7 because the concentration of

a group Nga(fo) = »(lo) dlo of particles born durmg ‘the time interval
(to, &y -+ diy) decreases according to (I.X 1.02), as expressed by the
equahon

Ns(l) = v(to) e ™ di,

"' Hence the number of group members with s lifetime between r = ¢ — {g

and 7 + dr = { — 3 + di is, in accordance with Fig. IX.1.1,
L)
Id’\’sl = - y(tu} e "l dtadt = y(to) diy a Tl d( )
Trel
. Oppos:t.e Fermi gas! '

32 Oppesite: A group of living bemgs where age ar!‘ecta the future fate deamwly
? Opposite: See end of §2, partxcularly footnote 1, p. 327.
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The mean lifetime 7 can be computed by ascertaining the mean value
only for the members of the group of particles characterized by identical
birth date to :

v |dNs|  »(te) dto f re mid (L) ,
+ Trel
Ay il U = r—O-n
-0 . é’ r
f Ingi !'(to) dtu f '“" d (
Trel
=0 r==0

If we integrate, we obtain
' : ' T == Trel

Hence the relaxation time .., defined by (IX.1.01) has also significance '
‘ i .

| ] b L mem
\ oo { Mg, o group momoers
he Nymber of mbors
f N i =g {w?rrr? Tife fina_between I-to
i

.l s

to

Ng(_ﬂ

and t-to +dt

FNglt+dt) = [N f
it {..ﬂw}#: ?m?:f",ﬂ:?:"‘b“

-~

t

t—io-i-dt:s

!~—tn . f.--tn

1 1 Trel
dN = AL Nt e e (te) e cdlo - dt
Trel Trol
as a mean value provided that 7. is time-independent as in the fore-
' going case.

Incldenta.ﬂy, the demonstrabed identity of relaxation time 7., and
mean lifetime of all particles born at the same time £ is by no means a
matter of course. ‘For instance, if we take the mean value 7 of the
lifetimes of all particles existing mmultaneously at a given time ¢;, we
ha.ve to compute

to={1 .

’ f v(to) dto f Te i d (—')
5 = lgm= — r={1—1
_' [ te-h. TV ®
R f »(to) dto f o 7 d = !)
to= — = =1~ 3

d

Assuming, by way of example, that the number of births »(to) is con-
stant in time we obtain for the.thus deﬁned mean lifetime 7 = 27,..

]
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. Assuming, in another example, that no particles were born at all in

the time interval t, = #; — 107, to fo = 1, then when the mean values
are ascertained at the time ¢; there exist only particles with lifetimes

" 2 107w. In this case, the mean value 7. must become greater than

10‘?’“1

Hence we have to be careful with the statement that the relaxatzon
time 7. defined by (IX.1.01) is equal to the mean lifetimé. For
instance, the statement is correct if 7., is time-independent and if the
mesan value is taken for all simultaneously born particles of the type
under consideration. If the mean value is taken for all particles

~_simyltaneously alive at a given moment ¢, the statement is not correct

because in this total the long lifetimes are favored.

Theoretical deductions frequently refer to Eq. (IX.1.01), and there-
fore the relaxation time 7., of the particle type concerned which is
defined by this equation is sometimes more important than any mean
values of the statistically distributed lifetimes. It is now common
practtce to talk of 7., simply as the mean lifetime = of the particles
concerned although, as we have just shown, this identity depends on
several assumptions which are often not fulfilled. The situation is
similar to that concerning the mean collision time of the conduction
electrons (see page 253). Here, too, in the continued development of
the theory, the original character of a real mean value has given way
to that of a relaxation or decay time of a group of particles, while the
original name of ‘““mean collision time’”’ has been retained. In the
following we, too, shall call the time value defined by Eq. (IX.1.01)
simply 7, = mean lifetime of the particles of type 8. In §2 and §3,
the particle types S will be represented by the charged donors D+,
and the neutral donors D%, go that in §2 we have 8§ = Dt and in §3,
S = DX,

§2. Physical Statements about the Lifetime 75+

The death of a charged donor D+ occurs when it associates with a
free conduction eleetron ©. The frequency of such recombination
events will be proportional to the concentrations! np- and ng, assuming
low enough concentrations, i.e., sufficient ‘““dilution’ of the two reac-
tion partners D* and ©; hence

T

Number of association processes
(Unit time) - (unit volume) rongnp+ (1X.2.01)

1 As in Chap. IT we denote the electron coneentratmn with ng, instead of simply
with n a.s in the rest of this book.
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One eondition for such recombination events is that the two partners
meet in space; then an electron @ will be sufficiently close to a given
donor D* more often if more electrons © are in thermal motion.
* Therefore the frequency of the association processes is proportiongl to
the electron concentration ng. On the other hand, an electron @,
during its random thermal motion, will meet a charged donor D+
more often if more such charged donors D* are present, i.e., if np+
is great.er This is the reason why the number of recombmat;on
processes is proportional to np+. ;

Fhe proportionality factorin (IX.2.01) is the so-called recombmatlon
_coefficient rp. It is frequently split up into the two factors of effective -
cross section op+ and mean thermal velocity v of the electrons ©

o = ap+ v ) (IX.2.02)
where according to (VIIT.4.27) .

. 1 J3KT i O Torie | 225
Pl ?1:‘—‘=1.168 10 Eé?;\"/ml T (VIII.4.27)

This splitting-up is based on the following consideration. One pic-
tures the stationary donors D+ as spheres of radius B while the elec-
trons © are supposed to be without spatial extent. Now, if such a
point electron passes the center of a donor sphere at a distance smaller
than R, a collision occurs (see, however, below). In its: gigzag flight
with the velocity v, each one of the ng electrons therefore sweeps out
in’ unit time a broken cylindrical tube having the volume 7R? - * Vyne
This volume contains np+ - rR%,, charged donors D+, and a collision
takes place with each one of them (however, see beiow) Therefore
the number of collisions per unit tite of one point electron © is

and tha.t of ng point electrons is
: ‘I‘Rxﬂm np+ﬂe = Ooonlsn * MWD+ ° ﬂ-e

. with o, = #R? = collision cross section, :

Fach collision need not necessarily lead to a recombination, and
sometimes only a fraction of the collisions is successful. One a.llows
for this by introducing, in place of the cross section ey, the'

“Pffective cross section op+« for the reeombmataon Dt + o — DX”

. and obtains

- Number of recombination prc_:cesses‘_
(Unit time) - (unit volume)

‘Comparison of (IX.2.01) and (IX.2.03) results in Eq. (IX.2.02).

= 0ps e 0 10 (IX.2.03)
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! Here it must be emphasized that it is proper to assume the effective

eross section op+ for the recombination to be smaller than, or at most
aqual to, the collision eross section.  However, there would be no

_ justification at ali for equating the collision cross section to the

“geometmc” cross section of the donors D* and sssuming it to be
& 10~1% cm?, ' Quantitative statements regarding oeu can be made

~ only on the basis of a thorough and usually quite difficult analysis
 of the collision process, quite apart from the fact that the value

(3 - 1078 em)? for the “geometric 7 cross section is also based on quite

arbitrary assumptions. , -
Now we want to turn to the computation of the 11fet1me rp+ of the

donors in the charged state. We consider a group of charged donors

~ D* at time ¢ whose concentration np+ decreases durmg the subsequent

time interval dt by _
‘-‘dﬂj;w == Tp ﬂe Npn+ di (IX 2 04)

since each reeombmatmn process ‘causes the death of a donor and

_because accordmg to BEq. (IX.2.01) the number of recombination

processes in unit time and unit volume is rpngnp+ and, finally, because,

" as agreed, charged donors D+ created by dissociation of neutral donors

D* during the time interval (¢, ¢ + df) under consideration must not be
counted when Eq. (IX.1.01) is used. Next we want to compare Eq.

- (IX.1.01) with Eq. (1X.2.04), and we obta.m for the mean lifetime 7p+
; of the charged donors D+

AT rone (1}{.2.05)

Wl "= TDF

The presence of the concentration ng of the reactmn partner © in

 the expression for rp+ requires some caution in the use of this lifetime.

In dynamie processes, all concentrations will usually vary, including

‘ne- In this case, rp+ is no longer a constant but will vary with ti.me,

which must be remembered if integrations have to be carried out

83. Phy'sical Statements ahout fp'x

This inconvenient though'unavoidable difficulty does not arise in

 the case of the lifetime 7px of donors in the associated and, hence,

L}

neutral state. “Whether a D* dissociates or not can depend only on

i Here we ha.ve an exsmple of the case mentioned in §1, where a “lifetime’” is
not constant in time because the “‘environment’ varies with time. This is so
because the environment comprises not only the dielectric constant of the funda--
mental lattice, the teraperature of the crystal, etc., but also the concéntration of
an?' reaction partners.
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the properties of the DX and on the available thermal energy, i.e., on
the temperature 7', but not on any other concentration because no
reaction partner is required. The concentration npx itself , too, cannot -
play any role provided that the dilution is adequate. Therefore in
dynamic processes 7px will not be time-dependent and can be treated
as a constant because dynamic processes usually take place too fast

for any change of temperature to ocour.

The time-independence of 7px (at constant temperature) will be

confirmed when, in §4, we shall derive the following expression for
1/7px (see page 330):
. _Eon. _Eco '
It =rp-~%'-e kT =ob~'i=m'f—v2—c'e kT (IX.3.01)

TD*

Here Ng is the effective density of states in the conduction band!

(VIIL4.04)

One can see that only the temperature I’ can cause a time depend-
ence of 7px because, apart from T, Eq. (IX.3.01) contains only atomic
constants ¢, m, h, k, and the following factors which characterize the

type of impurity:
g

_Effective cross section ¢p+ and dissociation energy Hop

The presence of the latter is not surprising. At a given temperature
T, the more energy is required to remove the electron © from the
donor core D+, the less frequently will the thermal energy kT suffice

~ to cause dissociation and, hence, the larger will be the lifetime 7px.

Apart from this, the number of dissociations in unit time and unit
volume is, of course, greater the more associated donors D are present
because the probability of dlssocmmon is equally grea.t for each D*.
Therefore we have -

~ Number of dissociation processes 1
~(Unit time) - (unit volume) rpx (IX.3.02)

By appropriate application of (IX.1.01) it follows that the propor-

tionality factor is 1/7px.

§4. The Generalization of the Law of Mass Action for
Dynamic Processes
The concentration ng of an impurity type S and its variation with
time dng/dt are determined by the opposing actions of birth and death
i Soo Eqs, (VITL1.04) and (VIILAO4). :
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rp.te:
dns _ 4 number of births . number of deaths
' -\ dt (unit time) - (unit volume)  (unit time) - (unit volume)
(IX.4.01)

For dissociated charged donors D+, dissociations represent births
and associations represent deaths. Equations (IX.3.02) and (IX.2.01)
and application of (IX.4.01) to the 1mpur1ty type 8 = Dt lead, there-
fore, to

dnp+
dt

In the case of impurity type S = DX, i.e., of associated neutral
donors, we have the reverse situation where dissociations take the
role of deaths and associations the role of births:

= + - npx — rongnn: (IX.4.02)

ARBACEy i i iy (IX.4.03)
dt TDx
e ] dnp+ , dnpx _
Addition yields 7 -+ T 0

_The total concentration np of all donors (= np+ 4 npx) rema.ms con-
stant in dynamic processes.!
Equations (IX.4.02) and (IX.4.03) are generalizations of the law
of mass action which is valid only in the case of equilibrium

np+*ng = Kpnpx (I1.6.04) or (VIIL.5.21)

It is worth while to review the case of equilibrium from the newly
gained point of view. In the case of equilibrium, the concentrations
must be constant in time:

dnp+ 101, dnpx
dt dt

Hence, in accordance with (IX.4.02) or (IX.4.03),

=0

Ng *Np+r = Npx (IX.4-04)

rpTpx

If we compare this form of the law of mass action with the form in
which it is usually written, (11.6.04) or (VIII.5.21), we obtain

f‘p‘rprD' = (IX.405)

Using the expression (VIII.5.20), derived from Fermi statistics, for :
the mass-action constant Kp and also Eq. (IX.2.02), we obtain the

1 See also footnote 8, p. 47.
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expression previousiy discussed in §3

_Eou - Bop g
Lo ,.DEQ e T = gpr-vp; No e ¥ . (IX.3,01)
D, 2 2

which we shall now compa,re once more with the expression for 1/mp+
from §2:

;}1; = rpng = “ephand \ (IX.2.05)

Both equations have general validity, i.e., not only for the case of
equilibrium.!

For the special case of equilibrium we obtain from (IX.4.04) by
multiplication with 7p :

155
rphg ' Np+t = ;;npx

- and further with the aid of (1X.2.05)

ol *fip+ = 1—_&; “mpx (only valid in the case of equilibrium)

™Dt
(I1X.4.08)
and

.- ‘ :z’: = :‘__i’" ~ (only valid in the case of equilibrium) (IX.4.07)

In the form of (IX.4.06) the condition of ethbrlum i8 agam apparant
because it says:

Number of deaths of

D+ (au number of births of Dx) = number of deaths of D"
hence ;
¢ Number of births = number of deaths for_D>< :

* It can be seen from (IX.4.07) that for the case of reserve (np+ K npx)

we have - X
' mp, K Tpx (IX.4.08)

The equilibrium in this case of few D+ is produced by the fact that,

while these few D+ die relatively quickly, an equivalent birth rate is
achieved by the dissociation of many D* at great time intervals 7px.
In the reverse case of safuration (np+>> npx) we have :

PSSR AT A 5 (ERNA100)
1 Bquation (IX,4.05) used for the derivation of (IX.3.01) was obtained by con-

. sidering the case of equilibrium; however, (IX.4.05) is a relationship between

concentration-independent constants so that its limitation to the case of equi-
librium is not even possible. ;
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In conclusion, it may be mentioned that a change from a Btat,e of
stronger association to a state of weaker association (npx decreasing)
is obtainable not only by enhanced dissociation. It can also happen
that the association falls far below the value required for the preserva-
tion of the instantaneous state so that an unchanged or only slightly
~ reduced dissociation is no longer fully compensated. This remark will
be of importance at the end of §5.

8§5. The Detltérmining Time Constant in
~~ Nonstationary Processes

Owing to the finite lifetimes rpx and 7p+, the concentrations npx and
. np+ cannot, after external interference, adjust themselves instan-
taneously to their new equilibrium values - The resulting inertia of
impurity reactions can be of interest, for m.sta.nce, for the high-fre-
quency behavior of rectifier boundary layers.® The relevant time con-
stant.in this case is obtained by integration of the differential equations
(IX.4.02) and (IX.4.03).

We carry out the integration in a particularly simple typical case
(see Fig. IX.5.1): The electron concentration ng, after having varied
in an irregular fashion for some time so that an equilibrium could not
be established, retains, beginning at mme ¢t = 0, a certaim value ; ng
(see Fxg IX. 5.1)

ng = const  fort > 0 ' (IX.5.01)

Then, in the o course of time, an impurity equilibrium will be established
‘which is determined by the following two conditions:
1. (Death rate of the D+ 5) birth rate of the D* = death rate of the
i : 1 el :
. T DY =i DX (IX.5.02)
TP+ Tp*
2. Total number of donors = const j
; N p+ + Npx = Np (IX 5. 03) .

From the foregomg result the equilibrium concentrahons which are
.reached aeymptot.ma.lly fori— ]

Tp*
np=( ) b e L] (I1X.5.04)
np+(®) = g{%‘r;;ﬂn (IX.5.05)

L8ee W. Schottky, Z. Physik, 132: 261 (1952).

§IcE, :



332 AL THe Dymmlc Approach to Impunty Equilibria

Durmg the process of adjustment the conceni—.ratmna npx and np+
deviate from these equilibrium values by slowly decreasing amounts
A(t), one toward higher values, the other toward lower values, so that
at any time ¢ the sum of all donors accordmg to (1X.5.08) is equal to
np: .

o B t) N D i TXE5,06)
npd(t) = np+(=) — A(f) (IX.5.07)

With the agreed premises, the differential equations (IX.4.02) and
(IX.4.03) which govern the process of adjustment are simplified

= N

© variation of electron concentration ng

5 S

Tp* L
i

" Variation of life fimes Tpx and Ty

== - ¥ =
= m - Mpx
A i s
'-‘---‘._-.;_I__-‘.--‘Ia(o} 1 i t- it
o e D A B o i 4T

Variation of total concentration ng
and of concentrations np* and Not

) : O I'Tres 2'Tres 3'Tres 4:Tres 7
Variation of dissociation rate pps/rox
‘ond of recombination rate np+/vp+

Fig. IX.5.1. The establishment of equilibrium.

because (IX.5.01) leads to a time-independent! rpng = 1/rp+ while
 1/rpx is time-independent anyway

; :
‘;f* AR f_i_ 5 ,.,,D,((g,) + = npe(t) (IX.5.08)
w1th Tp® = constl and 7p+ = consty -
; 17 i
d:;? ol ) g e () (IX..5.09)
I Tp+ ThHhx : ,

1f we now insert (1X.5.06) and (IX.5.07) and bear i mind (I1X.5.02),
» This eliminates the objections to the tise of rp+ mentioned at the end of §2.
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we obtain for the deviation A(f) from (IX.5.08) as well as from
(IX.5.09) the same differential equation:

At) = — (—I-L L A Y e oA () TXBY10)
S TD* TD+ Tres
Here 7., 18 & résu]t_,ant time constant which according to
: ] Jrorait)

R eL Sy ST (IX.5.11)
! Tres TD* Th+ .
A ‘ _ 7D+ TDx e
i Tl : (IX.5.12) .

Integration of (IX.5.10) gives

i

A@) = A@Q):e ™ T axi5a3)

and thus we obtain from (IX.5.06) and (IX 5 07) and using (IX 5.04)
and (IX.5.05) ﬁnally

T 1 F ¢
e eins '
npx(t) = g e -+ Alg())‘ e (IX.5.14)
: Al 2 3.
! nps (t) s e N (IX.5.15)

Hence the relevant time constant .., is given by I'q. (IX.5.11). If,
3 for instance; we have reserve during the whole process (np+ < npx),
we ha.ve accordmg to (IX 5.02) 7p+ K rpx and according to (IX.5.12)

Tres = Tp+ K Tpx B (BReE 1 6)
(Reserve npx>> np )

Inversely in the case of saturation

| Tres & Tpx K TD+ (IX.5.17)
(Saturation npx & np+) '

The resultant time constant is, therefore, always practically equal to .
~ the smaller one of the two time constants rp+ and rpx. '

This result may look surprising.at first, but a physical understanding
is obtained if we compute the number of dissociations and associations
in. unit time and unit .volume. From (IX.3.02), (IX.5.06), and
(IX.5.13) and from (IX.2. 01) and (IX 2.05), (IX.5.07) and (IX.5.13),
we obtain

Number of dissociations o ﬂ.px(t) e nﬁx(oo)r. i A(0) 4w
(Unit time) - (unit volume) rox | Tpx “Tpx
g (IX.5.18).

]
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Number of associations _ np+(f) np+(oo) L NAD) s
(Unit time) - (unit volume)  7p+ Tp+ TD+

’ (IX.E.H.D

According to (IX.5.02), the first time-independent terms npx()/7px
and np+(®)/rp+ represent in each case the final equilibrium rates.
The final state of equilibrium is reached by the presence and the com-
bined effect of the exponential terms in both equations, the determining
exponential term being the one with the greater amplitude. Since the
numerators of the amplitudes are equal, only the denominators rpx
and 7p+ are of importance. Therefore the term with the smaller time
constant has the larger amplitude. This makes it also plausible that
this shorter lifetime dominates the course of the whole procass (see
Fig. IX.5.1).

Finally a word about the orders of magmt.ude of 7px and 7p+ with
which we have:-to reckon. Both terms contain the recombination
coefficient rp or the effective cross section gp+, respectively. Using
op+ =~ (3 10~% cm)? (IX.2.02) and (VIIL.4.27) would lead to

rp = 10*7 cm-sec™! - 10~% cm? = 10~® em? sec™!
With ng = 10¢ em—3, we would then obtain for 7p+ = 1/rpng

1
108 cm' gec—! - 1016 cm—3

') %

Assuming, for axample, a dissociation energy Ecp = 0.2 ev for the

donors, we obtain A
v 2 - 2 )

e “Eo = 0 om’® sec | - 2.5 - 10" em

roNge XT
- 2

2.5 - 10 sec™!
However, it has been mentioned on page 327 that the assumption
op+ = 10-15 ¢cm? is completely arbitrary. Other authors estimate
values for the effective cross section which are several orders of mag-

nitude smaller and lead to a correspondmg increase of the lifetimes?
TDX and TO+-

= 10~%sec

Dt ==

310 = 2108 sec

§6. Problems (Recombination)

The recombination of injected electron-hole pairs is of great importance in
aemmonduetor physics and technology. This recombination may take place by
the electron dropping into the valence band across the forbidden band, releasing
the energy difference in form of a photon or a phonon. In germanium,

18ee W. Schottky, Z, Physik, 132: 261 (1952), partieularly p. 276.
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* this process would lead to a carrier lifetime of roughly 1 sec. It cannot, therefore,

account for the much smaller observed lifetimes of the order of 107 to 103 sec.
The recombination is greatly enhanced, however, if the electron first falls into an

. impurity level within the forbidden band and from there into the valence band.

We assume that the number of electrons fa.llm,g into the impurity level is pro-
portional to the number of electrons present in the conduction band and to the
probability. that the.impurity levels are empty, Furthermore, the number of
electrons retum'mg to the conduction band is assumed to be proportional to the

. number of states in that band and to the probability that the impurity levels are

occupied. If the latter probability 1s fr, we therefore have

dn na(l —fr) Nefr
T SR e
Tn T,

(IX.6.01)

where r, and 7, are—as yet undetermined—constants with the dimensions of a
lifetime. Thase constants are related to the number of the impurity centers and
to their eapture cross section.

An equation analogous to (IX.6.01) can be derived for the change of the hole
density, introducing two addmona.l constants, 7, and 7,:

Q 21 -_f_f.!_NV{l"‘ff) (XI.G.M)

di To 75

1.* Derive a relationship between r, and r, and between r, and r,, utilizing the

“fact that in thermal equxhbnu.m no net changes take place. Assuming that the

recombination center density is small, so that no carriers can be stored in the
recombination centers, eliminate f7 and show that the net 'recombination rate is
given by an expression of the form : ¢
’ L |
dn _dp _ np — ng
d - d " Tt + 0 + 2% G0
What is the meaning of the quantities n* and p*?

2. Define from HEgs. (IX.1.01) and (IX.6.03) a lifetime for the excess carriers.
Give the limiting values for low and for high injection levels. Under what con-
dition do they eoincide?

3. How does the low-level lifetime vary with the position of the recombination
level inside the forbidden band, with the simplifying assumption that v, and 75
do not vary with this position? How does this affect the recombination actlwty
of unpunby levels close to the band edges, which determine the conduetivity, in
comparison with levels deep inside the forbidden band wluch have little influence
upon the eonduothty?

4. What is the hole lifetime in an n-type germanium ct_'ystsl with a resistivity
of 10 ohm-cm if one assumes a recombination level 0.22 ev above the valence band
and the values r, = 100 _musec, 7, = 10 psec? How does this lifetime depend on
temperature if the r’s are tempersture—mdependent?

5. Answer the questions of Prob. 4 for a p-type germanium erystal with a resis-
tivity of 0.1 ohm-em.
~ 6.* At what conductivity has the low-level lifetime in a semwonductor lta
maximum, if one assumes that the r's do not depend on the coneentration of con-
ductivxty—det.ermmmg impurities? Give numerical values for germanium, assum- -

ing rai7p = 10:1, p* = 3000, n* = l4gons




CHAPTER X

'Bou:qdafy Layers in Semiconduétors
and the Métal-Semiconductor Contact

gl. The Elect:rostatlc Macropotentlal and the Energ;
' of an Electron in a Solid

When the potential inside msohd is' mentioned, we think nowadays
automatically of the periodic potential U in Fig. 1.2.2. We have
become so accustomed to the atommt.m point of view in this connection
that we base our thoughts more or less automatically on the micro-

scopic scale and have lost the more
s et SoFe®  primitive viewpoint of a macro-
' scopic continuum.

As long’ as the conditions in
the solid under consideration are
macroscopically homogeneous, this
atomistic treatment is satisfactory. .

e However, the present chapter is
potential V © ° « concerned with phenomena at the
~surfaces and in the boundary layers -

: of semiconductors, and here it'is

ENgL o ; just _the dgvib,t.io? fram_ t}.le n}acfo-
static - scopic homogeneity, emstm_g-gslfle
energy-eV the solid, which is characteristic.
Therefore weé have to supplement

the results previously obtained, by

Fia. X.1.1. Electrostatic energy of an.  means of the atomistic treatment,
electron in the field of a plate con- % e, : ;
denser. with macroscopic considerations,
For this purpose we shall; first of .
all, consider the energy of an electron within a solid qmte simply from

thm macroscopic viewpoint of a continuum.
Consider an insulator as the dielectric between the plates of a charged

~ plate condenser (Fig. X.1.1).. Then, by way of example, we have high

potential values on the right side of this insulator and low values on
356
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§1. Uhe Electrostatic Macropotential : (AU BRT

the left. Hence, because of its negative cha.rge, an electron has S

low electrostatic energy on the right side and a high one on the left.
This statement at first contradicts the position-independent! energy
values in the level schemes of Iligs. 1.3.6 and 1.3.8 to 1.3.11. The
contradiction is caused by the fact that the representation in Chap. 1
does not concern the total energy of an electron although it was specifi-
cally-a plot of the sum'of kinetic and potential energy.* Even so, it

would have been incorrect to call these energy values total energies,
because only the microscopic aspect of the problem was considered,
while macroacopic forces such as the condenser field in the ’preced.mg
example were neglected.

To describe the previous situation, we could also say that in the
level diagrams of Figs. 1.3.6 and 1.3.8 to 1.3.11, only the electron energy

'E within the lattice was plotted, this energy being the result of the

binding forces exerted by the crystal lattice on the electron.® ‘To

. obtain the total energy E of an electron, an electric energy term —eV

has to be added to the lattice energy K, this additional energy being
due to a macropoten L1a.l Vv ' ‘

E = E-—eV : (XlOl)

The sources of the macropotentlal ¥V are macroscopic surface or

: space charges, double layers, etc.* The following relationships show

the kinetic and potential character,® respectively, of the lattice energy

! 8ee p. 21 concerning the mdependenee of position of the energy levels of the

undisturbed lattice in contrast to the dependende on position of donor a.nd acceptor

levels. -
* See footnote 3, p. 7. :
* These binding forces are sometimes called chemical binding forces, and ecorre-

spondingly the lattice energy is called chemical binding energy. These terms are

used to emphasize that the chemical characteristics of the solid under considera-
tion affect this component of the energy in particular.

4 It appears at least doubtful whether in all possible cases suc.h a subdivision of
the total energy into electrostatic energy and lattice energy is unique. C. Herring
‘and M. H. Nichols, in Revs. Mod. Phys., 21: 185-270 (1949), define the electro-
static macropotential by ascertaining the mean value of the electrostatic micro-
potential, W. Schottky, in Physik regelmdss. Ber., 3: 17 (1935), particularly in
footnote 1, page 19, has introduced a so-called Leerraumpotem:al to define the elec-
trostatic macropotential aceurately. We believe that in the boundary layers of
semiconductors, to be discussed later, there can be no doubt how one has to formu-
late the electrostatic energy —eV of the semiconductor electrons and how great
their lattice energy ¥ is,

*In quantum mechanics, too, a subdivision of the energy according to

E = Bun + Epix b
is possible. Here, however, Eyx and E,. have to be considered as quantum-
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E and of the electrostatic energy portion —eV:

IS Y Al S (X.1.02)
’_—r‘-_.\

— E]:;., + Emg e 8V i (X.1.03)

e R (X.1.04)

The lattice energy F has, therefore, partly kinetic! and part]y poten-
tial character,? while the elect.rostatm portion of. t.he energy is solely
potential.

It need not worry us that the total energy of an electron is known
-only apart from an additive constant, i.e., that the zero level of the
‘electron has to be fixed arbitrarily.  Itis only important,in considering
two different solids, such as a metal and a semiconductor, that the
total energy of the electrons in both solids be referred to the same zero
level. Naturally, nothing can be said about the sign of the electro-
static-energy produced by the macropotential. However, the con-
tributions of the lattice energy in.the various bands are negative
because they have the nature of binding energies. Thus we obtain,
by way of example, the energy diagram of Fig. X.1.2? for a metal in

mechanical mean values, because the operators of the kinetic and of the potential
energy are not, as a rule, interchangeable with the Hamilton operator (Ewa -+
Egot)op. Hence, a ¢ function éannot be the eigenfunction of all three operators
simultaneously. Usually, one considers a stafi solution of the Schrédinger
equation, i.e., an eigenfunction of the Hamilton operator (Bwin + Kpot)op. Then
the electron represented by such a ¥ function has only a sharply defined lattice
energy E. Kinetic energy Fyi. and pot.entml energy Ky can be g:ven only a8
quantum-mechanical mean values.

! Thig applies also to the lowest and the hlghest. states of each bm::d , though in
these the y function has the character of a standing wave, and one may therefore
be tempted, without justification, to assume the kinetic energy to be zero at these
band edges. See also p. 208, footnote 1. :

2 At first sight it may seem strange that a chemical bmdmg energy is not puroly

- potential in character but contains also 2 kinetic portion. Yet, in the case of the
single stom, we do not object to equating the binding energy of an electron to the
atom core t0 the ionization energy of the electron cencerned. However, if we fix

' the zero point in the usual way (the separated stationary electron havmg the

energy zero), the binding energy will be equal to the energy of the.electron in the
appropriate atomic state and therefore has, by way of example, in the ground state
of the H atom a potential portion —Z%?*/n, and a kinetic portion +16Z%?%/n%a,,

Z = atomic number = 1 for the H atom, n = principal quantum number = 1 for

the ground state, a; = radius of the first Bohr orbit. [See also H. A. Bethe in

H. Geiger and K. Scheel, “Handbuch der Physik,” 2d ed., vol. XXV, part 1,

p. 287, Eq. (3.29), Springer-Verlag OHG, Berlin, 1933.] Thus in.this case, too,

the chemical binding energy contains a considerable kmeuc portion.
2 Tn the figures of this chapter, the shading indicates only the presence of a
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which, because of the extremely high conductivity, the same macro-

- potential V prevails throughout.

On the other hand, in & semiconductor the eléctrostatic macropo-
tential ¥ need not by any means have the same value everywhere.
For instance, the electrostatic energy can decrease or increase in layers

AE § E=E-eV= total energy of an electron .
5 Zero level of the electron energy
(o] Q : ; :
_ —e.Mocropotential . L Electrostatic energy -eV<Q
-gV L]
° : Crystal energy E<Q
Upper edge of conduction band '{f"':.“"?“" 'T'“‘:'?z‘“'fﬂﬂ
SasassenRas AL e ARRAARAALS At dny level o con-
SRRy At \Er_%f pAA 5E el duci?on band E<O
; LG LAt the lower f 1
Tt B

:11‘

At theFermi level Ep<O

Ee E¢
! f Ep-Ec=$>0
L oes .
05 1 ! {
f(E)— Space coordingte ==

Fra. X.1.2. Band model of a metal.
E = total energy of an electron, counted from zero level of the electron energy, .
E = crystal energy of an electron, counted from the macropotential, :
—eV = electrostatic energy of an electron. g

t

several microns in thickness near the surface of a semiconductor.! In
fact, this is usually the case, as will be discussed later in' §6 and §7.
At the moment, we are mainly concerned to prove that such a bending
of the potential curve carries along the whole remaining energy dia-
gram. This is so because the chemical binding forces, being deter-

continuum of states in which electrons can be accommodated, not the density of
actual occupancy, in contrast to the figures in Chap. VIIL

+An upper edge of the eonduction band has been drawn in Fig. X.1.2 mainly
for didactic reasons. The use of the Wigner-Seits cellular method (see p. 200) has
shown that in solids, such as Na, K, etc., the conduction band and the bands
above it always overlap so that one cannot speak any longer of an upper edge of
the conduction band. Therefore, an upper edge of the conduction band is omitted
in the subsequent figures. : :

1 0f course in such a case thée additive composition of electrostatic energy —eV
-and of lattice energy F can possess only the character of an approximation. The
expression s :

Total potential = periodic lattice potential U + macropotent.ial. 14

is now no longer entirely periodic. Hence, we have discarded in principle the
basis for the gomputation of a particular lattice energy. However, if the local
variation of the macropotential V is sufficiently small, the method described repfe-
sents a good approximation. A more detailed discussion of this problem will be -
found in B. Kockel, Z: Naturforsch., TA: 10-16 (1852).
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. mined b}ir the crystal lattice itself , have the same effect throughout the

semiconductor; thus the binding portion 7 of each individual lattice
level, for instance, E; for the lower edge of the conduction band, has
the same value throughout the semiconductor. The same applies to
the upper edge of the valence band and for the impurity levels. Thus
we obtain, for instance, Fig. X.1.3.
Finally, no binding forces whatever act in vacuum:
. £ gy oY .

E =0 - (X1.05) ¢
Apart from the electrostatic energy —eV(x) as potential energy and
the kinetic energy 1 [2m1p1 ', no other energy term need be considered

E_

— V() (X.1.06)

Comparison with (VIII.I.OI)I shows that at point z the electron

E E= total energy of anzalacllro PRI,
p ero level 0 glactron aner”_
0 static
-1 * e e m ~av<0
X ""'a--._._. a e o P O by -
: e —- EBL 08, [Kmailc energy
E Fermi level Polential -
E 1 E
o
flE}—-- Space coordinate —

Fiag. X.1. 4 Energy diagram in vacuum. Linear variation of the: elect.roatatlc
potential. The concentration of the electron gas is assumed to be so small that

$ the potential curve does not noticeably deviate from a atraight_.lline.

- gas can be considered as being in a potential well of depth —eV (z), and
from (VII1.1.08) we can derive for the Fermi level

Byt ’3%@) ol TRt TS v RALO)

Figure X.1.4 shows an (ﬁ,:b) representation correspondi;ig to Figs.
X.1.2 and X.1.3 for the case of a uniform potential rise, or a constant
electric field,” in the vacuum region under consideration.

vIn Chap. VIII, §1, the potential well is eonsidered as the simplest model of a
solid. Therefore E,. in this case has the character of a chemical binding energy
and F is used rather than E. If we wishéd to include a macropotential ¥ in this
simple model, the potential energy of the electrons outside the well would not be
zero but would be —eV. Correspondingly, the potential energy within the well
would not be Epe but Epee — eV (z). However, the consideration of a macro-
potential V (x) is introduced only in the present Chap: X,

* Figures X.2.4 and X.3.1 show an experimental arrangement in whlch 4 linear
potential variation is achieved at thermal equilibrium.
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82. Thermal Equi]ihnum between Two Metals.
Gy The Galvani Voltage

In Figs. X.1.2 to X.1.4 the Fermi level is drawn horizontal and the
same occupancy funetion is used in all parts of the volume (hence in
all layers in the plane problem under consideration), This is only a
special application of the law concerning the thermal equilibrium
between different phases which was derived on pp. 288 to 292. The
application of this law acquires special significance if we now turn to
the consideration of the thermal equilibrium between different solids,
for example, between two metals which are in close contact. To
begin with, Fig. X.2.1 shows the two metals separated.. Thermal

 Zero leve! of the electron energy

-e.Macropotential. ~*%. 3 . s
E .
Fermi level : El:;
" Lower edge of I
conduction band - ' 4 (21
Metal T " Vacuum Metal I

Fra. X.2.1. Two metals, I and II, separated by vacuum. Each metal in equi-
librium in itself, Equilibrium between I and II not yet established.

equilibrium exists within each metal, so that the Fermi level is hori-
zontal within each individual metal. We assume that thermal equi-

librium has not yet been established between the two metals, and

. hence the Fermi levels are of different height in the two metals.? If
the two metals are now brought into intimate contact (Fig. X.2.2),
thermal equilibrium is established between them and the Fermx levels
must adjust themselves to the same height.

The question arises how this is achieved. The distances Eq, and
Eoy; between the edges of the conduction bands (drawn as dotted lines)
and the dot-dash lines representing the electrostatic energy are chemical
binding energies of an electron in the lowest levels of the two conduec-
tion bands and are thus fixed by the respective crystal properties.
The heights ¢; and ¢;; of the Fermi levels, drawn as heavy continuous
lines, above the lower edges of the conduction bands, drawn as dotted

“lines, are fixed by the electron concentrations n; and ni [see Eq.

1 As a nonequilibrium state this state is naturally largely dependent on the pre-
vious history, Hence the relative position of the Fermi levels in the two metals
is essentially arbitrary. ¢
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(VIIL.4.07)]. None of these.values is changed by making contact
between the two metals. Hence, only the electrostatic energ;es are
left for the adjustment of the Fermi levels, i., the distances —eV;
and —eVy, respectwely, between the common zero level of the electron
energy ‘and the dot-dash lines. Therefore, the macropotentials V;
and Vy; in the two metals I'and II must assume a definite difference
relative to each other so that the Fermi level may be at the same height
in both metals. The question arises as to what actual physical process
brings this about, in other words, what happens when contact is made
between the two metals, i.e., during the transition from Fig. X.2.1 to
X.2.2. A certain number of electrons from the uppermost atomic
Jayer of one metal passes into the uppermost atomic layer of the other

‘metal. Thus the surface of one metal is charged positive, the surface

Zero level of the elecfron energy

et B s g '3 e e- Galvani voltage &P R
Fermil level EG‘ i E‘;n
¢ 1y : > kL‘,
Metal 1 AR

Fie. X.2.2. Two metals, I and II, in intimate contact. Thermal ethbnum
DLﬁerance Vi1 — Vi between the two macropatentials = Galvani voltage.

of the other metal is charged negative, and the resulting double layer
produces a jump between the two macropotentials, i.e., the two dot-
dash lines are displaced relative to each other. This process continues
until the resulting potential gradient suffices to establish the Fermi
levels at the same height, i.e., until thermal equilibrium is reached.
The potential difference bet.ween the two internal values of the macro-
potential, which is charact.anstlc for the two metals, is called the

Galvani voltage.

If three or more metals at the same ‘temperature are combined into a
closed circuit and if no current flows through this circuit, i.e., if all
these metals are in thermal equilibrium (see Fig. X.2.3), the Fe.rm:
level, drawn in heavy print, must be at the same height in all metals.

The values of the electrostatic energy —eV:, —eVy, —eV i are not

ﬁXEd, but the he‘ightﬁ i-E:CI‘ = f:[, lEcul — g';i, |Ecu:| 223 g':n of 'the elec-
trostatic energy, in dot-dash lines, above the Fermi level, in heavy
print, are determined by the lattice properties. Therefore, after
moving through the circuit from left to right, we return in metal I .
to the same level of the dot-dash electrostatic energy and we can see
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that the sum of all Galvani 'V'Oltages Gn 1 + Gu] I + G; 111 in tmversing.
a conducting loop must be exactly zero. We shall use this result
below (see page 361). . \ .
Finally, it is known that hot metal surfaces emit electrons into th
vacuum. We have to assume such an electron emission even for
metals at normal temperature although it will be orders of ‘magnitude

Zero level of the electron energy

8V 1 =eVy

1 ; 'QVI “Wn b
Gy
; G
!V . Cux 5 o
E':I. | ) Ecm £, Fermi level
;1 ECI 1;. ;I
4
Metal 1 Mefal x Metal Matal

Frg. X.2.3. The sum of the Galvani voltages of a closed cirouit equals zero:
; GIII+GIIII‘I+GIIII"0 :

Zero level of the electron energy

e =V | - |-eVv ! eV
=e-macropotential ll_ PRI B s I S, LB
VIR TR "e.Golvani voltage :
| Svocvum=0 7 e
Fermi ievel. E""x y : E“!l
e E : _
Lower et?ae of j by t,
conduction band e000 :
Metai [ : Vacuum ; Metal 1

Fra. X.2.4. Two metals, I and II, sepa.rﬁted by vacuum. Thermal equilibrium
between I and II. No atomic double layers at the surfaces. Galvani voltage = .
difference of the internal values of the macropotential. :

smaller than for hot surfaces. Therefore, even between the spatially
separated metals of Fig. X.2.1, electrons will be exchanged, and this
exchange will be stronger in one direction than'in the other until
thermal equilibrium is established, i.e, until the correct potential
difference between the macropotentials V; and V; has been established
and the Fermi levels have thus been brought to the same height, (Fig.

X.2.4)." Here the positively or negatively charged metal surfaces are

UIn the case of hot surfaces this will oceur relatively soon, but with cold surfaces
+ it will take an extremely long time.
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not in close proximity but cause an electric field right across the
vacuum, corresponding to a imear potemt.lal grachent through the
vacoum in Fig. X.2.4; -

§3. Surface Double Layers. The Volta Potentlal
Difference (Contact Potential)

The situation represented in Fig. X.2.4 by no means corresponds to
reality, because at the boundary between each metal and the vacuum
we have to assume a sponta.neous double layer which can be due to
many causes.

1. Within the metal the electrons are in vigorous thermal random
motion. The electrons moving toward the surface of the metal, even
if their energy is insufficient to leave the metal, will move gsomewhat
beyond the lattice of the fixed positive ions before they turn back.
Hence a thin negative skin is formed above a thin positive skin, in
brief, a double layer.

2. At the metal-vacuum boundary a fattice exists only on one ss)de,
while the other side borders on essentially empty space. Hence the
ions of the uppermost atomic layer are, by comparison with the bulk
of the metal, subject only from one side to the ‘“proper” forces of a
complete lattice, while from the other side the near vacuum exerts
practically no, i.e., *“wrong,” forces. Therefore'the ions of the upper-
most atomic layers take up displaced positions relative to the con-
figuration in the bulk of the metal. Since quasi-neutrality prevails
in the bulk of the metal, charges will result at the surface of the metal.
However, neutrality must obtain in the total system, and therefore
a double layer results. ;

3. A further contribution to the sponta.neoas double layer can be
supplied, apart from the ion displacements discussed under 2, by ion
deformations, i.e., polarizations of the ion cores which do not occur in
the uppermost atomic layers in the same way as in the bu]k of the
metal because of the “wrong” forces of the vacuum.

" 4. Finally, we must also recall the well-known phenomena of mon--

. atomic impurity layers on metal surfaces. We may mention, by way

of example, the problem of surface layers of thorium or cesium or
other elements on tungsten which has been investigated in detail by
Langmuir and his school. Here the adsorbed foreign atoms are pulled
apart to form dipoles, which explams their adhesion as well as their
double—layer effect.

' Hence, in place of the continuous change of the electrostatic poten-
tial at the metal surfaces in Fig. X.2.4, we must assume s potential
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jump of unknown magnitude arising from spontaneous double lsyers
(Fig. X.3.1), As a result the difference of the surface potentials is
no longer identical with the difference of the macropotentials within
the two metals as in Fig. X.2.4. Therefore we need a new name for
this difference of the surface potentials which is usually different from
the Galvani voltage. We call this potential d.lﬁerence Yolta potential
difference or contact potential.!
Zero level of the electron energy

. —pmmms [ Doubi
P e-Volta potenfial dif ¥ layer ]I.I:!p n -eVyg
Jlor erco potential
Ee, e 4 'ﬁ | mf_' W | 2
14 | _ o 3
Metadl 3 Vacuum Metal

Fic. X.3.1. Two metals, I and II, with atomic double layers at the surfaces.
Difference of the external surface potentials = Volta potential difference or con-'
tact potential, The figure indicates the validity of the statement: Volta potential
difference (or contact potential) = difference of the vacuum work functions.

In contrast to the Galvani voltage, the cont.act potential can be
determined directly by experiment. Here we mention only the case
of the vacuum tube where the contact potential between cathode and
grid has to be considered in the determination of .the efféective gnd
potent.w.l i

§4. The Work Funcuon and the Photoelectnc
Activation Energy of Metals

Whereas the Fermi gas of electrons in metals is degenerate because of
the extremely high electron concentration (~10%* cm~*), the electron
concentrations in vacuum are so low that the Maxwell-Boltzmann
special case of Fermi statistics obtains. This, because of n KN,
sunphﬁes Eq (X.1.07) in accordance with Eq. (A.IL2) to :

Er =t — eV ~ kT In-- — eV - (X4.01)

We apply this equation to the situation in the vacuum 1mmed1ately

1 We doubt whether the name contact potential is a happy choice. Experience
has shown that the word ““contact” in this name distracts attention from the fact
that we deal with a potential differencé hetween two free surfaces which are not
in contact with each other but are separated by a large distance. The fact that
the two solids are in intimate contact somewhere else only ensures thermal
equilibrium between them and could in principle be replaced by waiting for a
sufficiently long time if the solids were separated.
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in front of the surface of metal I, where {; is negative. We replace

- this by introducing the positive work funetion

W= - = —(Er+eVi) = —eVi— Er

'(aee Fig. X.3.1) and obtam

i crale h ¢
nvunun T Ne k - i (X.4.02)
Here we have assumed thermal equlhbnum Henece the number of

" electrons leaving the metal surface in unit time exactly equals the

number of electrons returning to the metal surface in unit time. A
unidirectional thermal current away from the metal surface is just
compensated by a unidirectional thermal current in the opposite
direction.

Of much greater importance experimentally are two deviations from
thermal equilibrium: (1) that in which the electrode facing the metal
surface under consideration has a much lower temperature than this
surface and hence practically does not emit at all and (2) that in which

~ the electric field between the two metals can be altered arbitrarily

with a battery. In contrast to the case of thermal equilibrium we
can now arrange, by applying the proper polarity, that fewer electrons
return from the vacuum into the metal than leave the metal surface.
In other words, an emission current can be drawn from the hot metal
surface. Now, the larger the value of the suitably directed electric

_ field is made, the smaller will be the number of electrons returning to

the metal surface and the larger will be the emission current until
beyond a certain field strength all electrons which have left the metal

* are carried away into the vacuum and no lon.ger return to the metal

surface. By further increase of the field, the emission current cannot,
for the time being, be increased any furt.her, i.e.,.we have saturation
current, : ’

Although this state of “complete stationary transport’ and the

state of thermal equilibrium differ tremendously and must be kept

apart conceptually, a more detailed discussion! shows that the two
cases are intimately related inasmuch as the saturation current, in
the case of gomplete stationary transport, is-equal to the unidirectional
thermal current in the case of thermai equilibrium:
Tt = umd1rectclona1 thermal current density

2 + = 4w 4 .

Wi, =e- f | f : f 0.+ n(oa0,0,) - dv. du, dv, (X.4.03)

Va=0 gym—w p=—w

" 1W. Schottky, Physik der Glithelektroden, in Wien and Harma, ‘Handbuch

" der Experimentalphysik,” vol. 13, part 2; particularly pp. 81-42, Akndemmche

Verla.gsgeaellscha{h, Leipsig, 1928
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~ Bince Nysewum <K N, we must here use the Boltzmann distribution for the

distribution’ function n(2.9,2;). The former is derived from Eq.
(VIIL.1.12), in the form here required, by the following transformations:

3 2 B — Epm. 7 "E_T}!!m E '._'Enut \ 3
e

+14 mp?
o N or e RN R L e i
02 (2kT) 08 2%
+36 0 _ mat
N(E) dE = N + x—% 21:'1') e 2T . 42 gy

With a transformation of the variables and simultaneous tranéitic:n
from the total numbers N to the densities n, we finally get

' m \tH  _msttuiten
n(vyv,) dv, dv, dv; = n -5~ % (ﬁ) Ve InL « dv. dv, dv,
' (X.4.04)
Using this in (X.4.03) we obtain
: B ey
: AL
‘-u: 7 2l - ik nﬂouumr = T—‘,i (gi‘—'T) il f e vt U, du‘s . f et du!f
= Us =0 | ; Uy = '-'.“’ :
: e |
e “du,
'nt i (A0 nv-tmum a3 _H (2kT 1 2 ‘\/'; i \/;-
and with (X.4.02) i
' .1 forT\Y o fiaig
Taat = §'3 ';'m“) Ve n el b (X.4.05)
Using (VIIL.1.04), we finally obta;in
. _ dwemk? kr=. i‘?'_. .B( T ;i ;fwi‘f
Toat = '_h' T2 e AT?2e 120 Ry degree K e 9
: (X.4.06)

This is the. well-known Richardson law for the. saturataon current

density from a hot surface. \
The decisive term ¥ in the exponent of the Rachardson law (X.4. Oﬁ)

_ is called the thermal metal-vacuum work function. We see from

Fig. X.3.1 that in such a representation this thermal metal-vacuum

W(}rk function appears as the distance between the Fermi level and the
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electrostatic potential immediately in front of the metfal surface.
From Fig. X.3.1 we can hence derive the important law:

The difference of the thermal work functz.one of two metals equals the
relative Volia potential difference of these two metals.

Finally, for later application, we mention that according to Fig.
X.3.1 we havel :

¥ = E'o,,,.,m {2 (double layer) metal vaonam (X,4_,07)‘

Means other than thermal excitation can be used to liberate elec-
trons from the binding forces of the solid and to push them into the
vacuum. In particular we must mention here the photoelectric proc-
ess, where the incident photon has to impart to the electron an increase
of energy which is at least equal to the difference between the energy
of an electron bound in the solid and the energy of a stationary electron
in the vacuum in front of the metal surface. Since the crystal states
above the Fermi level are very sparsely occupied by comparison with
the states below the Fermi level, the described process will occur with
great frequency only if the energy #w of the light quantum is sufficient?
to lift an electron from the Fermi level to the. electrostatic surface
potential. In the limiting case 7' — O this ““red limit”’? of the photo-
effect becomes quite sharp, and this minimum energy required, in the
limiting case T'— 0, for the'liberation of an electron by impact with
a light quantum can simply be called the photoelectric activation
energy. In metals thig energy is equal to the thermal work function
because it is equal to the difference between the electrostatic surface
potential and the Fermi level.

The fact that this equality happens to obtain for metals and the
fact that this subject has in the past usually been discussed only in
relation to metals have led to a replacement of the somewhat abstract
thermodynamic definition of the thermal work function as the decisive
term in the exponent of a Richardson law, by the undoubtedly simpler
definition of the photoelectric activation energy. However, we shall
see in the following pa.ragra.ph that this is not permmslble in the case
of semiconductors.

1 On this occasion we must remember that the several terms in Eq. (X.4.07J,
and hence also the work function ¥ itself, cannot a priori be considered independent
of temperature. Aslong as the temperature dependence of ¥ is not known exactly,
(X.4.06) does not give definite information about the temperature dependence
of the saturation current. See W. Schottky and H. Rothe, Physik der Gliihelek-
troden, in Wien and Harms, op. cit., vol. 13, part 2, particularly Chap. 6.

2 = angular frequency = 2xf; % = (1/2r)h = 1.054 - 107*" cm?* g-sec™".

3 The condition @ > wmin establishes a low-frequency, or long wavelength (ie.,
“yred”’ light), limit to the photoelectrically active spectrum.
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g5. The Work Function and the Photoelectric
Activation Energy of Semiconductors

If we now consider, instead of two metals,”a metal and a semicon-
ductor at a great distance from each other, we obtain Fig. X.5.1 when
equilibrium is established.!

This means that an equilibrium concentratmn ntof the electrons

" exists also in front of semiconductor surfaces.. Using the separation

»e\{.‘m S ALY Al Zero level of the eleciron energy
: T T—e-Yolia potential XV
£ Vet __ ddifferencelor ¢ -contact potentiol) . ___ e e
el Fermi level 'l'..m* A e o D
¥
I ;"'." 4 ; ; Lsom
Eveem
© Metal 4 Vacuum Semiconductor

Fra. X.5.1. Metal and semiconductor widely separated by vacuum. Again the
statement is valid: Volta potential difference (or contact potentml) = difference of
the vacuum work funutlons

,,.. of the Fermi level from the electrostatic potentaal we obtain, just
a8 before for the metal, the equation

¥som

ni= Ne X0 , (X.5.01) -
corresponding to Eq. (X.4.02) whereupon we can then carry out the
transition to the Richardson equation, just as in §4:

g — ¥oom 2 — ¥som
A,m___ (2kT - W=£-§§£T’e kT

L L e '
| =120 =3 ( e K) e T (X.5.02)
From this it can be seen that in the semiconductor, too, the distance
¥,... between electrostatic surface potential and Fermi level yields the
decisive term in the exponent of the Richardson law, i.e., the thermal
work function.

1 This may be accomplished by electron emission from both sides into the vacuum
" and then ‘requires a relatively long time. As an alternative, we can imagine the
metal and semiconductor to be bent in ring shape. At the surfaces under considera-
‘ tion they are far apart, but somewhere else they are in direct contact with other
parts of their surface. In this way, the equilibrium can be established guickly.

-
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In analogy to (X.4.07) one can derive from Fig. X.5.1
: Yoom = |Bowul + [Cron] £ (double layer),....  (X.5.03)

In contrast to metals there is now no longer any relationship between
this thermal work funection and any significant photoelectric activation
energy which is related to some threshold wavelength of the photo-
electric effect. In metals the Fermi level is, in the limiting case
T'— 0, the highest occupied electron level and therefore the most
favorable starting point for an electron which is to be released photo-
electrically. In.the semiconductor, however, the Fermi level, except
in the case of degeneracy, lies in the forbidden zone where, apart from

Zero level I Zero level ; Zero level

acuum

s_emicond:.ictor semiconductor

Fra. X.5.2. Photoelectric activation energy fwiim and thermionic work function .

Limiting case of 7' — 0.

. the discrete impurity levels, no levels exist which can accommodate

electrons. Hence, in the limiting case T — 0, the photoelectric emis-
sion of electrons can originate only from an impurity-level or from the
fully occupied valence band; for T' > 0, in addition, from the Maxwell

: tail in the conduction band. This shows that only in a few well-

defined special cases! the Fermi level in the semiconductor can be the

-source of photoemission of an electron. Hence, thermionic work

function V..., and photoelectric activation energy are not identical in

~ the semiconductor (see also Fig. X.5.2).

!In a semiconductor with a large number of impurities, degeneracy can set in;
then the Fermi level lies in the lower part of the conduction band and is therefore
occupied by electrons, Another special case iz the transition from “saturation’’

~ to “reserve,” where the Fermi level coincides with the impurity level.

Inboth these cases, there exist electrons with even higher energy, and therefore,

" in these special cases, too, the thermionic work function Wyom, referred to the Fermi

level, does not appear as the photoelectric activation energy which is related to a
long watelel{g_th threshold. ; ]
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In order to retain this identity which is so useful for the understand-

ing of the physical meaning, we might be tempted to change the defini-

~ tion of the work function of semiconductors. For instance, we might

choose for it the separation of the electrostatic surface pot’pntml and
the lower edge of the conduction band:

el — EEC,,,,,J (double layer)..mm (X.5.04)
Comparison mth (X.5.03) ylelda
W = WP (Ol (X.5.05) -

At the low electron concentrations ng in the semiconductor, we -
usually have the limiting case ng < N, and in accordance with Eq.
\ (A 11.2)

Com = kT ]n%% <0 (X.5.06)

Using (X. 505) and (X. 506) in the Richardson law (X.5.02), we
. obtain : :

1 _v..lll __“E
i.tﬁ%ﬂ(%%”')_\?a k ~e_l
. A 1 Yeemt
Taat = € (5 )2-713-1"2-0 Y .(X‘5‘07)

The term V¥, oceurring in this form of the emission la.w can, as pre-
viously mentioned, be plausibly defined as the work required to raise
~ an electron from the lower edge of the conduction band to a position
at rest in front of the surface. This procedure has the disadvantage
‘that, in contrast to the numerical coefficient 4remk?/h® = 120 amps/cm? |
of form (X.5.02) of the Richardson law, the numerical coefficient
e(k/2xm)% - ny of Eq. (X.5.07) is no longer a universal quantity because
of ng and will also be strongly temperature dependent in many semi-
conductors, again because of ng Furthermore, the correlation
between work function and contact potential is lost. Finally, this
whole transformation of the Richardson law is limited to cases where
the electron gas in the semiconductor is not degenerate. However,
in very highly conductmg samples of Si and Ge, degeneracy is quite
likely.
For all these reasons, the form (X.5.02) of the Richardson law has
" been retained in the literature for semiconductors, together with the
corresponding definition of the semiconductor work function as referred
to the Fermi level.
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It must be emphasized that in semiconductors the work function
V... is definitely not temperature independent because of the tempera-
ture dependence of the Fermi level. This requires even more care in

the interpretation of an experimental [In ,,, versus 1/7] plot than in

the case of metals.

~ §6. Semiconductor Boundary Layers. The
Metal-Semiconductor Contact :

‘Figure X.5.1 was based specifically on the case of metal and semi-

_ conductor surfaces which are far apart. The purpose of this assump-

tion was to keep the electric field due to the contact potential suffi-
ciently small. Strong fields would cause special effects even with
metal surfaces, such as lowering of the work function by image forces
(Schottky emission) and also by the tunnel effect. In semiconductor

- surfaces we have to reckon, in addition, with the fact that charges
" must be located at the e.nds of the field lines which are due to the

Volta potential difference. At the suMface of a metal, considerable
surface charges can be accommodated by slightly increasing or decreas-
ing the large metallic electron density in the uppermost atomic layer.
On the other hand, the accommodation of an equal amount of surface
charge on the semiconductor surface requires! very large increases or
decreases of the electron density in & layer up to 1,000 to 10,000 atoms
deep because the available electron density is smaller by several orders
of magnitude. We therefore deal no longer with an actual surface
charge; instead, the field lines penetrate partly up to 10~* or 10~ cm
into the semiconductor and end successively at the charges of a space
charge distributed over distances up to 10~* cm (see Fig. X.6.1).

In a metal, the sudden ending of all field lines at a surface charge
causes a break in the potential curve, whereas in' a semiconductor the
gradual dissipation of the field in a spatially extended space charge
causes a curving of the potential variation over some distance. If the
semiconductor had the dielectric constant unity, like vacuum, the
absence of surface charge would cause the potential variation to trav-
erse the semiconductor surface with constant slope. In the general
case € > 1, it is not the field strength E = —dV /dx that has to be con-
tinuous at the surface but the dielectric displacement D = —edV /dz.
This means that the curved potential variation in the semiconductor

starts at the surface with a slope that is smaller by the factor 1/¢ than

that with which it ends at the vacuum side of the surface. In any
1 Bee, however, the later discussion of surface states.
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case we can see that, when semiconductor and metal come close
together, a space charge will be established in a boundary layer of
the semiconductor, resulting in a curvature in the plot of the electro-
static electron energy —eV. The strength of the chemical binding,
however, does not change because it is determined by the crystal struc-
ture. Therefore, the dotted line representing the lower edge F¢ of
the conduction band must have the same curvature (Fig. X.6.2),.
while the Fermi level Ep, indicated by a heavy continuous line, will -
remain horizontal as long as thermal equilibrium obtains. In the
boundary layer, therefore, the distance E¢ — Ep changes. According

7

A

Vacuum Mefal . Vacuum  Semiconductor
 Potentio) V : Potential V.

Palinre aids

> ' 1

istance x Distance x g
%ommmfua from the surface

Fra. X.6.1. Vacuum field ending at a metal or semiconductor surface.

to page 317 and Eq. (VIII.5.15) this distance is & logarithmic measure

for the electron concentration n:

Bo-Br~xtnes0  gornane (X601

Thus the electron concentration n varies in the boundary layer and,
since it deviates from its neutral value ng, a space charge is created.
Atomic double layers on the metal and on the semiconductor which, -
for greater clarity, were neglected in the potential representations of
Fig. X.6.1, have been taken into consideration in Fig. X.6.2.

When the metal and semiconductor surfaces (see Fig. X.6.2) come
infinitely close together, the dot-dash line indicating the electrostatic
energy term —eV has, in the end, to be raised so miutch that the whole"
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F1g. X.6.2. A semiconductor surface approaching a metal surface. Gradual dis-
tortion of the bands in the semiconductor by an amount equal to the diffusion
voltage Vp. Hence the limiting condition of continuous transition of dielectric
. displacement ¢E st the semiconductor surface is fulfilled; & space-charge boundary

layer is created.
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potential difference, i.e., the Volta potential difference, which was
previously in the vacuum, occurs now within the semiconductor.
Since we call the potential difference within the boundary the diffusion
voltage Vi (see page 76), the above discussion leads to the statement
that the diffusion voltage Vp in a semiconductor boundary layer must.
be equal to the Volta potential difference between the elect.rode metal
and the sem.lconductor '

VD — ‘I,mtvm T Qumm : . (X.G.OZ)

‘We have to make many reservations with regard to this statement.
To begin with, a quantitative discussion of the process of bringing the
surfaces together, which is only qualitatively represented in Fig.
X.6.2, shows that the deviations of the diffusion voltage Vp from the
. Volta potential difference are very considerable,! even for an approach
within atomic distances, and would bécome zero only when the dis-
tance between the two surfaces disappears completely. It may be
doubted, however, whether the assumption of the two surfaces
approaching each other within subatomic distances is meaningful.
Further, it was assumed in Fig. X.6,2 that the values of the potential
jumps at the surfaces remain constant while they come closer together.
However, during the approach the field between the two surfaces
increases, and a polarizing effect of this field on the surface double
layers can, of course, not be excluded. In this case the equality of
diffusion voltage and Volta potential difference, derived for the two
surfaces at a great distance, is no longer valid. Finally, just because
of the existence of such surface double layers, it is awkward to talk of
the Volta potential difference between the electrode metal and the
semiconductor. One can expect a value characteristic of the two.
~ materials only with perfectly clean surfaces. Yet it has been shown
more and more clearly during the last few years how difficult it is to
prepare really clean surfaces. While it is difficult enough to measure
~a Volta potential difference between the separated metal and semi-

conductor surfaces without obtaining wrong results due to impurity
layers, it is an even greater problem to avoid all contamination during
the process of making contact. In fact, experiments to prové a rela-
tionship between diffusion voltage and Volta potential difference have
been only partmlly successful.? : ;

1 This is particularly true in a semiconductor with very many impurities where
* even a small rise in potential, and the small déviations from neutrality linked with
it, releases strong space charges.

2 Hee, for instance, 8. Poganski, Z. Physik, 134: 469 (1953), particularly Fig. 3.
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S ,. §7. Semiconductor Boundary Laye:rs The

Metal-Semiconductor Work Function and the
Diffusion Voltage V5,

The method of representation used so far dominates the literature
in English, in which, therefore, the term diffusion voltage is not intro-
duced as a special name for the curving of the potential plot in the
semiconductor, but where it is simply stated that the potential plot
in the semieconductor has to be raised or lowered by the value of the
contact potential in order to compensate for the contact potential.

A\
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Fig. X.7.1. Metal and n-type semiconductor in intimate contact. Definition of
work function ¢ ... Note that this work function is not identical with the
diffusion voltage V. Case of depletion boundary layer.

- However, at the end of the previous paragraph we saw that the
relationship
- Diffusion voltage Vp = Volta potential difference

has only approximate validity. Therefore it may be useful, following
the ideas of W. Schottky,! to regard the diffusion voltage Vp, after
intimate contact has been established between metal and semicon-
ductor, as an independent new term which is identical neither with the
(Galvani voltage nor with the Volta potential difference (= contact
potential), nor with thé vacuum work function, nor with the photo-
electric activation energies. The question now arises whether, in the
description of the intimate contact between metal and semiconductor,
it is at all useful to start from the case of widely separated solids. If,

iIn the publications of Schottky, these matters are treated rather briefly.
The author is in the happy position of being able to refer to uncompleted and
therefore unpublished manuseripts of Schottky.
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instead, we depart directly from the case of intimate contact between
metal and semiconductor, we obtain, by way of example, Fig. X.7.1 .
or X.7.2. In thermal equilibrium an electron concentration nyp is
established! in the semiconductor at the boundary with the metal.
Applying Eq. (X.6.01) to the semiconductor boundary, we obtam ng: -
the case of degeneracy s

ng = Nge ¥ (X.7.01)

Here ¥, ... = (D¢ — Ir)peuna i8 the distance, measured at the bound-
ary, of the conduction band from the Fermi level drawn as a heavy
continuous line.

In analogy to (X.4.02) and (X.5. 01), we can interpret ¥, as a
thermionic work function for the emission of electrons from the metal

_Zerolevel of the electron energy '%'"
Vingt Doutle layer /::':.—. sceocoenende -ot*cu&y\n.oo
v A * _§-Coem .._]:,\ _________ }i\? ECrem
: Ecmat Fermi level < | 11— LSk lﬂﬂ"o :
vl .
l"‘ﬂf’o E\'um
AL A L] ...I....“.I.Il........-l..-.l. . ;
...oaonoocooooa-ooootoooi sessene

Fr. X.7.2. Metal and n-type semiconductor in intimate contact. Case of aceumu-
lation boundary layer.

into the semiconductor. The main justification for such an inter-
pretation is the fact that this term is independent of the impurity
content of the semiconductor and of the position of the Fermi level
" which i is, 80 to speak, acmdenta} Thus we have, according to Fig.
X‘? l

U = B — fmes + (doublé 18yer) metsm — [Boum| (X.7.02)

Compared with the thermionic work function for the emission: of
electrons into vacuum [see Eq. (X.4.07)], we have only one new term,
the binding energy Fo,.., i.e., & characteristic of the undisturbed semi-
conductor lattice. g :

Therefore the chemical binding of the electrons in the metal lattice
(B¢ rat), the number of the electrons therein ({,..), the surface conditions
at the boundary metal semiconductor (double layer), and the chemical

‘binding of the electrons in the semiconductor (Zq,...) determine a work

! The subscript B indicates the semiconductor boundary.
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-, funection ¥, ... for the emission of electrons from the metal into the
semiconductor and thereby, at least in thermal equilibriur, a boundary
concentration ng of the electrons quite independent of the impurity
~ content of the semiconductor and of the position of the Fermi level in
[" the semiconductor. Conversely, the electron concentration deep
within the semiconductor is decisively influenced by the impurity con-
tent of the semiconductor because this impurity content enters, here,
i into the quasi-neutrality condition which, in turn, determines a value
ns of the electron concentration. Therefore a boundary layer must
~ be formed in which a gradual transition takes place from the boundary
value 7 to the semiconductor value! ng. We have a depletion layer -
| or an accumulation layer according to whether np < ns (Fig, X.7.1) or
ns > ng (Fig. X.7.2). Therefore, in this transition zone, i.e., in the
boundary layer, electron concentrations prevail which deviate from
the neutral value ng. Consequently, we have here, instead of the
quasi-neutrality within the semiconductor, a space charge of the density
p(z). In accordance with the Poisson equation

L

AR I S i (X.7.03)

this space charge causes a curvature in the plot of the electrostatic
energy —eV, represented by dot-dash lines in our figures. This is the
cause of the diffusion voltage ¥ p between the semiconductor boundary
and the inside of the semiconductor. The name is explained by the
fact that the field current generated by the diffusion voltage Vo
balances out the diffusion current generated by the concentration
gradient from ng to 2z 8o that the zero current of thermal equilibrium-
is established. This has already been discussed on pages 76f1.,
together with the difficulties involved in visualizing the existence of an

: electrostatic potential difference within & conductor with zero current.
“ We want to discuss these difficulties once more from the newly gained
point of view and note, to begin with, that the objections arise from
an assumption that there is a law to the effect that the potential in a
conductor is constant in the absence of a current. This law is incor-
rect if we mean by the potential the electrostatic potential represented
by dot-dash lines in our figures. All the same, the law contains a core
of truth, because in the thermodynamics of electric systems it is proved
that this law is correct if we mean by the potential the electrochemical
potential** The electrochemical potential is the sum of electrostatic

1 The subseript S indicates the value for the semiconductor.
2 Bee, for instance, W, Schottky and H. Rothe, Physik der Gl_ﬁhelektrodeu, in
Wien and Harms, op. cit., vol. 13, part 2, chap. III, in particular Eq. (5), p. 18.
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energy per particle and chemical potential (= free energy per particle).
The electrostatic energy per electron is —eV. The other term of the
sum can be gomputed, with the usual assumptions of solid-state physics,
as chemical potential of a Fermi gas which is not free but has a poten-
tial energy equal to the total energy F¢ < 0 of the lower edge of the '
conduction band (see pages 300 and 306). The chemical potential of a -
free Fermi gas with the concentration n is equal® to ¢(n). According
. to pages 300 and 806, the conduction electrons can be treated, under
certain assumptions, not as a free gas, but as a gas in a potential well of
depth E¢. Theirchemical potentialis, therefore, expressed by Eo -+ ¢(n)
and their electrochemical potential by —eV + Hg + £(n). The law
of the constancy of the electrochemical potential in a conductor in
thermal equilibrium, i.e., with zero current, requires therefore that
o . Galvani voltage=+3V '
+2V +2V +2V +5V

+8V ) Galvani
+4V | voltage=—1V

+2V | Golvani
-05VJ voltage=-2.5V

OV -0.5V
{ + Galvani voltage=+05V
Fra. X.7.3 i Fia. X.7.4

the sum —eV + Ee + [ be constant. This, however, is just the dis-
tance of the Fermi level (in heavy type) from the zero level of the

electron energy. Thus we have again a proof, from the thermo- .
dynamic point of view, that the Fermi level must be horizontal
throughout all conductors and parts of conductors, provided that
thermal equilibrium obtains. 3 -

. Incidentally, it is this electrochemical potential which we use, with-

- out ever worrying about the thermodynamics of electric systems, in
the usual considerations concerning potential distributions in electric
circuits in everyday work. < To take a simple example, in the circuit of
Fig. X.7.3 we would use the indicated potential values without trou- -
bling about the fact that the different parts - f the conductors are made
of different metals. The point is that we deal here with values of the

1See L. Brillouin, “Die Quantenstatistik,” Springer-Verlag OHG, Berlin, 1931,

~ . Eq. (32a) on p. 141 in connection with Eq. (28) on p. 189. A very simple and ele-

- gant proof, unfortunately based on incorrect arguments, is given in H. Frohlich,
“Elektronentheorie der Metalle,” p. 64, Springer-Verlag OHG, Berlin, 1936,

,and by A. Sommerfeld in Geiger and Scheel, op. cit., vol. 24, part 2, p. 342. How-
ever, the derivation in the latter can be corrected by elementary mathematical
means.- ; ) -
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elebtgochemical potential, whereas indicating the electrostatic macro-
W&Jﬂmght lead to Fig. X.7.4. Since the Galvani potential

' m‘mﬁqhmmed over the complete circuit add up exactly to zero (see

page'844 and Fig. X.2.3), we obtain by this procedure the same value

. of 2 volts for the terminal voltage as prenou.aly Wheu we used the

electrochémical potential.l

In other words, the initial difficulty in understanding the existence
of electrostatic potential differences within a semiconductor with zero
current may be due to a confusion between terminal voltage and a dif-
ference of ‘electrostatic potentials, whereas in reality the terminal
voltage which disappears in the case of zero current is equal to the

Zero level of the electron energy
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Fra. X.7.5. Maeal and p-type semiconductor in intimate contact. Case of deple-
tion boundary layer. .

difference of the electrochemical pot.antm.ls The latter are, in fact,
commc-nly used in everyday work, probably quite intuitively.

Figures X.7.5 and X.7.6 show a depletion and an accumulation
layer in a p-type semiconductor. Here a work function ¥, _ for
the emission of holes from the metal into the semiconductor is shown.
At first sight, this term may appear somewhat strange. But we have
shown in Chap. TIT that one can always describe the totality of elec-
trons in a band also as a tota.hty of holes (see pages 65 to 66) and
that, correspondmgly, one can mterpret the transition of a number of

’valence electrons inte a neighboring metal electrode as the escape of a

number of holes from the meta.l into the valence band. We also recall

! Here it mny be recalled t.hat, just becs.use of the existence of Volta pot.en'r.w.l
differences and the resulting vacuum fields, one has to take care in electrostatic
measurements of terminal potentials that the two poles or knife edges or plates
of the electrostatic instrument.be made of the same material, This precaution
is, of course, superfluous if the terminal voltage is measured galvanometrically,
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that the distance Bp — Ey of the Fermi level Ky from the upm
Ey of the valence band usually equals —¢(p/Nv) [see Eq. (V :
and, in the Maxwell-Boltzmann case, becomes eqlml to kfﬂ:ww’p
[see Eq. (VIIL.5.16)]. Accordingly, this distance is a logarithmic
measure of the concentration p of the holes (see page 317). Using
- this relationship for the semiconductor boundary, we obtain for the
boundary density ps of the holes -

_ ¥ et sam

ps = Nye X7 - (X.7.04)

The analogy to Eds. (X.4.02), (X.5.01), and (X.7.01) shows tha.t
we are justified in introducing a work function ¥, ... for holes.
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Fra. X.7.6. Metal and p-type semiconductor in intimate conta.et Case of accumu-
lation boundary layer

Since we have deﬁned (Be — Er)vouns = Y& .. and
By — Ev)vouna = ¥E, 0
‘we obtain by addition the expreemon :
W W = Fo— By (X.7.05)

The sum of electron and hole work functions in a metal-semiconductor
combination s independent of the metal and of any surface double layers
and is equal to the width Ec — By of the forbidden gap in the semiconductor.

We can summarize as follows: In §6 and §7 we have compared two
different descriptions for the situation prevailing at the boundary of a
metal and of a semiconductor. The second treatment, originated by
Schottky, considers at once the intimate contact between metal and
semiconductor. It starts with the concept of the thermionic work
funetion ¥, . for the emission of electrons from the metal into the
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semiconductor, then points out the difference in electron concentra-
tions n within the semiconductor (ns) and at the boundary (nz) and
thus arrives at the decisive diffusion voltage Vp. The semiconductor
density ns is determined by the impurity content and the neutrality
condition; the boundary denmty ns, on the other hand, by the work
function W, .
The first treatment, used nua.mly in the literature in Enghsh
describes the intimate contact of semiconductor and metal as the
limiting case of the two solids separated by finite distances a, assuming
that the solids are in thermal equilibrium even in the state of spatial
separvation. This treatment is unobjectionable as long as the possi-
bility is recognized that the surface double layers on the metal and
on the semiconductor can be polarized during the process of approach.
However, the relationship resulting from this treatment:

Diffusion volta;ge = contact potential of the widely separated solids
' = difference of the thermionic vacuum work func-
tions

is valid only if the surface double layers do not change during the
process of approach. Otherwise, the relationship has only approximate
validity. '

§8. .Experimental Results for the Work Function
of Semiconductors and the

Metal-Semiconductor Contact :

“In the course of the last few years, it has been finally realized that
in commercial selenium rectifiers and in point detectors we do not deal
with semiconductor-metal contacts but with disguised p-n rectifiers.’

- Prior to that, however, many experiments were carried out to obtain

evidence for the behavior of semiconductor-metal contacts in accord-
‘ance with the Schottky theory. In the first place we have to mention
H. Schweickert? who produced contacts between selenium and a num-
ber of different )'netals and who found a connection between the
blocking resistance and the work function of the metal with whmh the
contact is made.

i 8. Poganski, Z. Physik, 134: 469 (1953). A. Hoffmann and F. Rose, Z. Physik,
136: 152 (1953). R. Thedieck, Physik. Verhandl., 3: 31 (1952); 3: 212 (1952);
Z. angew. Phys., 5: 166 (1953). L. B. Valdes, Proc. IRE, 40: 445 (1952).

t H. Schweickert, Verhandl. deut. physik. Ges., 3: 99 (1939). The results of
Bchweickert are also reproduced in W. Schottky, Z. tech. Phystk, 21: 322 (1940).
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From Egs. (IV.4.23) and (IV.4.24) for the chsra.ctemrncs, one
obtams for the zero resistance! .

v 5 kT TN
Ro- e m W.'lth Vii= H-e—— ='25. 9 (m) 102 volt
and with the aid of (X.7.01) :
i y L & v +\ff?]:;-_‘ . >
. Ro = me (X.SOI)

We have é.lready noted on pé.ge 358 that the vacuum work function
W, ... and the semiconductor work function ¥, ... of a metal contain
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Fre. X.8.1. Work function and" Fra. X.8.2. Belenium rectifier without

. registance of selenium rectifiers ~ barrier layer. Dependence of the

[from H. Schweickert, Verhandl. zero resistance upon the electron work

deut, physik. Ges. 3, 99 (1939)]. function of the metal of the blocking

. ? electrode. [From 8. Poganski, Z.
Physik, 134, 476 (1953)].

a number of identical terms. If we make contact between the same
semiconductor, selenium, and a variety of metals we would therefore
expect that the ¥, ... vary in the same way as the ¥, . and that
_therefore, in view of (X.8.01), we would find that the resistance Ry
varies strongly with the vacuum work function of the metal with
which contact is made. The measurements of Schweickert which are
reproduced in Fig. X.8.1 show, in fact, such an effect. At first it may

* H." Schweickert plots in his diagram the maximum blocking resistances of the
semiconductor-metal contacts under consideration. However, the maximum
blocking resistance is outside the scope of the boundary-layer theory. Therefore,
we use the differential resistance at zero bias voltage, the so-called zero resistance,
to demonstrate the relationships to be expected from the boundary-layer theory.

[
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seem surprising that with increasing work function the resistance R,
decreases rather than increases. The explanation is the fact that
selenium is a p-type conductor and that instead of (X.8.01) one has to

use the expression
A +1pl,?m.‘ somm

A\ ' .
Roi= gzt _ (X.8.02)
From this one obtains with the aid of (X.7.05)
p V v +Bc-——Er ?t‘)m u- _i’“’mt som
| Ry = GMNVEB kT ¢ T ~e K7 (X.8.03)

- and thus the decrease of the contact resistance with the vacuum work
function of the contact-forming metal which has, in fact, been observed
by Schweickert.

Other authors! obtain only in part results similar to those of
Schweickert. It has become more and more apparent that it is
extremely difficult to obtain a real metal-semiconductor eontact with-
out intermediate layers of reaction products and to clean the surfaces
sufficiently before making the contact. 8. Poganski’ has probably
carried out the neatest comparison between measurements on metal-
semiconductor contacts and the boundary-layer theory, with very good
qualitative agreement. Quantitatively, however, the variation of
blocking characteristics with the work function of the electrode mate-

~  rial is much too small (see Fig. X.8.2).

In the course of the quoted investigations, a large number of Volta
potential differences and work functions have been determined. The
methods used will be descnbed below, partly because they are of con-
giderable intrinsic interest, but also because they represent excellent
material for getting fa.rmhar with the use of the terms introduced in
§1 to §6, such as photoelectric activation energy, Galvani voltage, etc.

a. Methods for Measuring Volta Potential Difference
and Work Function

The experimental arrangement (see Fig. X.8.3) shows two parallel
plane surfaces of the two solids to be investigated, facing each other.
These are not in thermal equilibrium, but a current of electrons flows
across the vacuum from surface I to surface II. The energy for this

1 Unpublished work by Brattain and Shive at Bell Telephone I.aboratoriea', 1940;
see J. Bardeen, Phys. Rev., 711 2 (1947). A. V. Joffe, J. Phys. U.S.S.R., 10: 49
(1946). W. E. Meyerhof, Phys Rev., T1: 727 (1947). S Benger, J. Appl Phys.,
20: 804 (1949).

2 4, Poganski, Z. Physik, 134: 469 (1953).
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Fic. X.8.3. The decrease of Ug lowers the whole level diagram of metal IT during
the transition from the top via the intermediate to the lower figure. Within the
metal I, Fii, joins this downward trend, at least to begin with. In the top figure
(Ewin < Er)no electrons at all reach metal TT owing to excessive retarding potential
Ug (I = 0). Electrons reach metal IT in the intermediate figure (Eni, > EF) so
that I # 0 (retarding field current). On transition from the intermediate to the
lower figure, however, the upper end of the double arrow % which defines the Euia
level gets “stuck” at the upper edge of the double layer of metal I and E..., no
longer takes part in the downward movement. The current I is no longer
dependent upon Ug (saturation).
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current flow is supplied either by heating or by illumination of solid I.
The polarity of the battery in the diagram is such that it provides a
retarding potential so that the current can be partially or completely
cut off.!

As a first case we consider the photoelectric emission of electrons.
In Fig. X.8.3 it is assumed that both solids I and II are metals. As
a simplification it is also assumed that both metals are at temperature
T = 0.

We now consider an electron on the lattice energy level E. Let a
photon transfer its total energy® fiw to this electron. If the electron
obtains a velocity component in the direction of the surface, it can
leave the metal I, provided that Aw is large enough, i.e., v > ¥; +
(By ~ E). In this process it will first lose the energy Er — E up to
the Fermi level and then the work function ¥; so that in vacuum,
Jright in front of the surface I, it has the kinetic energy

Bu=ho— ¥ — (Br — E) (X.8.04)
The electron has to overcome the electrostatic potential difference
(1/e) (¥:; — ¥,) + Ug with this kinetic energy, to reach the metal II

and thus to contribute to the current J from I and II.

This requires at least? :

By =hw — V¥ — By — B) = Yy — ¥ + eUg  (X.8.05)
. Hence only the electrons in the levels above : :
Bow = By — [hw — ¥3; — eUg] (X.8.06)

contribute to the current J from I to II. '
 If the retarding potential Ug is too large, the term in parenthesis in

Eq. (X.8.06) becomes negative and X, i8 above the Fermi level .
However, at 7 = 0 the levels above Er are not occupied by electrons
so that the energy % of the photons is not large enough to raise a
single electron from'I to IT and the current J is zero (see Fig, X.8.3).
The limit U, where an electron transition from I to II is jusi possible
in the most favorable case, is reached when the term in parenthesis in
(X.8.06) becomes zero:

U = 2 (o~ ¥ . (X807)

11n the actual performance of such measurements, cyimdﬂcal or spherically
symmetrical arrangements are preferable because of the reduced edge distortions.

10 = angnﬂarfrequency 2cf; A = 2—._}5 = 1.054 - 10~ cm? g see™l,

3 A part of B is likely to be associated with lateral velocity components wlnoh :
are of no use in overcoming the electrostatic potential differance.
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It is surprising that this limit depends only on the work function
¥, of the anode, while the work function ¥, of the cathode from which
the electrons are released has dropped out. With decreasing retarding
potential Ug < UY, more and more lattice energy levels £ < Hyr can
. contribute to the current J and therefore J increases (see Fig. X.8.4).

However, this increase is not unlimited. "'When the retarding poten-
tial Ug has become so small that no rise of the electrostatic potential
has to be overcome in the vacuum (see Fig. X.8.3, bottom), then
condition (X.8.05) has to be replaced by the condition

o B = - ¥i— (B —E) 20 (X.8.08)
According to (X.8.08) the levéls from _

B By it Tl 0o it Bt e (FSBI00)
now contribute to the ourrent'J, independdnt of the magnitude of the

; [Loqr
‘II ; o4 Saturation
Ronge of 4 current -
| relarding ! Saturation .
o field _
1 Saturation
I curyent
H
1
i i
P H

: S
(3
- (0 &) o= Yo Y
Us Ug Ug '

" * Fia. X.8.4. Plot of I as a function of Fra. X.8.5. Plot of log I as a function
Ug in photoelectric emission (dia- of Ug in thermionic em.lﬂm"u(dm-
grammatic), . : grammatic). -

‘retarding potential Us. Thus the current J is saturated at a ret.a.rdiﬁg

potential Ugq for which we obtain from (X.8.08) and (X.8.05)

U g%(\p,_— Fph (X.8.10)

(see Fig. X.8.4). Therefore, plotting a current-voltage characteristic,
‘with an arrangement abcording to Fig. X.8.3, provides information
concerning the work funetion ¥, of the anode through measurement
of the limiting voltage U§ according to (X.8.07) and concerning the
Volta potential difference (1/¢)(¥; — ¥y;) between cathode T and
anode II through measurement of the saturation voltage U$ according
to (X.8.10). Hence UY and UY, between them, also provide infor-
mation econcerning the work function ¥; of the cathode.
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Nothing is changed in the foregoing considerations if the anode II
is not & metal but a semiconduetor. But the situation is quite different
when = metal is replaced by a semiconductor in the cathode L. Asis
emphasized in Fig. X.5.2, we now have to bear in mind that the Fermi
level Er of a semiconductor is not occupied by electrons. Further,
the situation for T = 0°K differs now in some respects basically from

_thatfor T > 0°K. We have to refer the interested reader to special-

ized papers,! also with regard to the conclusions that can be drawn
from the shape of the current rise between U and U§> in Fig. X.8.4
concerning the distribution N(E) dE of the electron levels B below
the Fermi level Ep. ; '

We can now deal more briefly with the thermionic emission current J
from T to II. Here we need modify only the computation of the
emission current density of §4 in so far as we have to integrate over
the z component v, of the velocity, not from 0 to o, but from the
value? \/(2/m)(¥y — ¥: + eUg), required to overcome the electro-
static potential difference (1/e)(¥n — %) + Ug, to . Thus we
obtain an expression for the retarding-field current

1
gl gmaie RECTSERNLLLL (X.8.11)

- Of course, the retarding-field current cannot exceed the saturation

value (X.4.05), and so we obtain again the Volta potential difference
U = 1 (¥ — ¥o) (X.8.12)

as saturation value of the retarding potential Ug (see Fig. X.8.5).
Thus, for thermionic emission of the currentJ from I to II, the work

o function ¥y of the anode can be determined® ‘by measuring the retard-

ing-field current and the variation of i/AT? with temperature at a
constant retarding voltage Us, while the transition into the saturation
range indicates the Volta potential difference. _

Condition (X.8.10) and (X.8.12) for the onset of saturation mean
that the plot of the electrostatic potential in vacuum is horizontal (see
Fig. X.8.6). However, this disappearance of the vacuum field between
the two surfaces I and I also necessitates the disappearance of charges

1L. Apker, E. Taft, and J. Dickey, Phys. Rev., 73: 48 (1948); T4: 1462 (1948);
76: 270 (1949). E. Taft and L. Apker, Phys. Rev., 75: 344 (1949). See also J. A,
Becker, Elec. Eng., 68: 937 (1949). , :

* This is the immediate result of (X.8.05) with Exa = (m/2)v3.

# See, for instance, S. Sano, Elec. J. Tokyo, 5: 75 (1941); and H. Benda, Freguenz,
71+ 226232 (1953).
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on the two surfaces. The condition “surface charge zero" can be
tested experimentally, for example, by moving the two surfaces relative
to each other. If the surfaces are not charged, no current can flow
through a wire connecting the two solids I and 1I. These considera-
tions indicate another method! for measuring the Volta potential dif-
ference. One varies the voltage Uy between the two surfaces until
no current flows through a connecting wire when the surfaces are
moved relative to each other (see Fig. X.8.7).

This method has also been used by W. H. Meyerhof? when he tried
to measure the Volta potential difference between strongly n-type and
strongly p-type silicon. We mention this particular example because
it shows again clearly that two solids can, from the viewpoint of
semiconductor physics, be entirely different materials although they
differ only by impurities in the order of 10~ and are therefore both

Metal 1 : Metal 11

-u-—a-o—-----dn.—-—.b-_.T-!L’_'—'_‘- -

£ W aT

F1a. X.8.6. Saturation occurs when the electrostatic potential m vacuum is &
straight horizontal line

Ua ()i (\h i)

“gilicon’’ in ordinary chemical language. In strongly n-type silicon,
the Fermi level is close to the lower edge F¢ of the conduction band;in
strongly p-type silicon, on the other hand, close to the upper edge Ey
of the valence band.  Hence, according to Fig. X.8.8, a Volta potential
difference of almost 1.2 volts must be generated between the two sur-
faces, corresponding to the width of the forbidden zone in silicon. It
must be mentioned that in Fig. X.8.8 the surface double layers on the
n-type and on the p-type silicon are assumed to produce jumps of the
same magnitude. This is an improbable assumption in the presence
of accidental impurities in the surface layers, and hence it is not sur-
prising that the expected potential difference of 1.2 volts has not been
measured without special precautions in'the cleaning process. The
cleaning methods that were used led Meyerhof to a value of only 0.3
volt and W. H. Brattain and W. Shockley? to a value of only 0.6 volt.

1 This is the ongmﬂ method of A, Volta, dnn. chim. et phys., 40: 225 (1801).
2 W. E. Meyerhof, Phys. Rev., T1: 727 (1947).
3'W. H. Brattain and W. Sho:,k]ey, Phys. Rev., T2: 345 (1947).
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Fia. X.8.7. Measurement of the Volta potential difference with the condenser

method. With suitable choice of Us, namely Ua = : (41 — Y1) = Volta potential

differencer 11, the vacuum field vanishes (see Fig. X.8.6). In this case the surface
charges vanish too for all values of the distance a. Hence on displacing the plates
no current will flow in the connecting wire. g

n- type silicon 4 p-type silicon
: =
o H
e-volta pofential difference
0 '

= P

J_ Width of the
forbidden band

enres

.....

Volta potential difference between strongly n-doped and strongly

silicon. In this case the Volta potential difference is almost equal to the

_width of the forbidden band, st least as long as one can assume the same double
layer on both the n-type and the p-type silicon.

b. Surface States

These experiments and other facts led J. Bardeen! to discuss the
presence and the effect of so-called surface states in semiconductors.
In the undisturbed periodic field within the crystal, the energy values
between the conduction and the valence band cannot be occupied

1J. Bardeen, Phys. Rev., T1: T17 (1947).
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- under stationary conditions, However, at the surface of the crystal,
* the periodic: potential is radically disturbed because the continuation
into the vacuum is not periedic. I. Tamm! and a number of other
workers after him have discussed the problem as to whether these dis-
turbances create additional energy states in the forbidden zone. We
also Rave to reckon with imputity atoms and lattice vacancies at the
semiconductor surface which can produce additional localized energy
levels in the forbidden zone similar to their effect within the erystal.
Without committing himself to any ome of these causes for additional
energy states, Bardeen assumes that at a semiconductor surface there
¢an exist surface states whose number can be comparable with the .
number of the surface atoms. -~ .. ot : '
~ According to the degree to which these surface levels are occupied,
the surface is assumed to have & greater or smaller negative charge
which, in turn, generates a positive space-charge layer in the semi-
conductor. In this way boundary layers are proditced, even in free
surfaces of semiconductors without & contact, and the whole represents
something halfway between the previously mentioned two-dimensional
double layers at the surfaces of metals and semiconductors and the
- three-dimensional double layers in & p-n junction. In the case con-
sidered by Bardeen, a two-dimensional charge is located on the surface
while the charge of opposite sign is spatially distributed through a
boundary layer of the semiconductor. '

With such “spontaneous’ boundary layers, Bardeen explained the
independence of the contact potential observed for most commercial
rectifiers, this independence being incompatible with the Schottky
boundary-layer theory. However, the actual intermediate layers
. which aze produced by chemical reaction are several hundred atomic

layers thick so that even here the concept of a two-dimensional surface
charge is not correet. This is certainly true for detectors made of
n germanium, where a surface layer of 20 to 30 u thickness may be
converted into p germanium by forming. SRR e .

All the same, in the discussion of boundary-layer preblems in solid--
state physics one has always to bear in mind the possibility, emphasized -
by Bardeen, that the surface charges up and induces next to it s three-
dimensional space-charge boundary layer of opposite polarity.?

' I Tamm, Physik. Z. Sowjetunion, 1: 733 (1932). R. H. Fowler, Proc. Roy. Soec.

(London), AX41: 56 (1933). 8. Rijanow, Z. Pkysik, 89: 806 (1934). A. W. Maue,

7. Physik, 94: 717 (1935). E. T. Goodwin, Proc. Cambridge Phil. Soc., 853 2085,
- 221, 232 (1939). W. G. Pollard, Phys. Rev., 56: 324 (1939). W. Shockley, Phys.
' Rev, 56: 317 (1939). H. Stats, Z. Naturforsch, 5A: 534 (1950), K. Artmann,
Z. Physik, 181: 244 (1952). ; '

*8ee W. H. Brattain and J. Bardeen, Hell System T'ech. F., 32: T (1953).
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§9: The Electrochemical Potentials Ey° and EY of
Ele(,trons ‘and Holes

In §6 and §7 we have shown how in the boundary layer of a semi-
conductor-metal contact the whole band diagram of the semiconductor
is deformed by the action of the metal while the Fermi level, alone,
remains horizontal throughout the boundary layer. However, this
applies only in thermal equilibrium, i.e., in the case of zero current.
Yet, in Chap. VIII, §3, we have shown that the Fermi level, being
identical with the electrochemical potential, retains its significance
even in nonequilibrium cases. We now show in Fig. X.9.1 the no
longer horizontal Fermi level in a boundary layer, both in the forward
and in the blocking direction. The representation is based on the
same assumptions as in Fig. IV.5.1. From the plot of the concentra-
tion n(x) in this figure, we obtain the plot: of ES"(::) with the aid of
the defining equation?!

Ep = —eV(z) + Ec + ¢ "(")) ~ —eV(@) + Ec + kT In “JS‘)

(X.9.01)

Comparison of Figs. IV.5.1 and X.9.1 shows that in the so-ealled
Boltzmann zone the Fermi level is almost horizontal. This must be
so because in the Boltzmann zone we approach compensation of dif-
fusion current and field current, i.e., we approach thermal equilibrium.
The slope of the Fermi level is related to the total current by Eq.
(VIIL.3.05) so that we obtain for the current density of the particles,
owing to the negative charge of the electrons,

i d 1
(—_:'-é hqt) = 8p = —lUaN a (-E ’E'y')) (X.9.02)

In other words, the electrons roll down the slope of their Fermi level
E{, in agreement with their tendency in the energy-band diagrams
to fall downward of their own accord and to be raised upward only by
thermal exmtat.lon, by an mcxdent photon, or by & similar external
interference.

1 For the derivation of this defining equa.tmn, see pp. 369 . We shall soon intro-
duce an electrochemical potential of holes, and therefore we now call the electro-
chemical potential of the negative electrons E{Y. TFor the evaluation of (X.9.01)
we need, in addition to the concentration n(z), also the plot of the potential ¥ (z).
Sece E. Spenke, Z. Physik, 126: 67 (1949).
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Exactly the opposite applies to the holes. = Let us consider, for exam-
- ple, the recombination of a hole @ with a negative acceptor 4—, which
is accompanied by a loss of energy! and therefore takes place spon-
taneously. If we, further, remember that this is represented in the
energy-band diagram by the rise of a hole from the valence band into
an acceptor level above it, we can see that the holes, like air bubbles in
water, have an urge to rise upward in the energy-band diagram and
that only external effects, such as thermal or optical excitation, can
‘push them down. If we now wish to define the electrochemical poten-
tial or the Fermi level E{ of holes, we have to expect that the holes
climb up the slope of this Fermi level and that, accordingly, the current
density of the particles is given by the equation

: d (1
o0 = +mp o (L Ep) (X.9.09
If this is, in fact, to be correct, we have to define

Ep = By —eV(z) — ¢ (%‘?) ~Be=eV(z) = kT In %&,_’;?

% (X.9.04)
because then we obtain

P - V) - d“”)pcc) ~ + o(—=V'(@)) —kT},p'(x);
o twop (! E;)) = +u,pE@) + ’j; d“fﬂ »'(@))

=~ upE(z) + m (—7'(2)

and with the aid of the Nernst-~Townsend-Einstein relation (VIII.3.10)
; and its generalization (VIII.3.08) we obtain in fact

+ upp (gp( E}”) = Stield + Sair = 8p

The signs have been chosen accordingly in the diagrams of Fig.
X.9.2, in which the depletion boundary layer of an n-type semicon-
ductor for the cases of forward, back, and zero current is shown.
We need not go into further details, but we want to mention that the
choice of signs for the definition of the Fermi level E{’ of holes has the
additional advantage that in thermal equilibrium we obtain

EP = Eg = Ey (X.9.05)
1 In thie process the hole loses energy while the lattice (for example) gains energy.
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For thermal equilibrium, we can use in the defining equation (X.9.04)
the generalized law of mass action (VIIL.4.18), and we can write

Ep = By — V(@) — ¢ (ﬁ?’;) = By — eV(z) — (E,- ~ B — ;(_}%))
Hence Ep = Ec — V(@) +¢ (}"V?EE)

and with (X.9.01)
_ Ep - Ep

Thus by the chosen definition we have achieved that in thermal
equilibrium the electrochemical potentials Ef” and Ef’ of electrons
and holes coincide in the common horizontal Fermi level Ep. If cur-
rent flows, i.e., in nonequilibrium, the two Fermi levels Ef> and Ef’
separate. They also are no longer horizontal; instead their slopes
represent the forces acting on the two current densities of particles
s, and s,, which can also be computed from (X.9.02) and (X.9.03).
This means that the electrons “voluntarily” fall down along their
Fermi level E§’ while the holes “voluntarily’”’ climb up their Fermi
level E. :

Using these principles, we now draw in Fig. X.9.3 band diagrams
of a p-n junction for forward current, reverse current, and thermal
equilibrium. We use as a basis the special case of low recombination
according to Shockley. ‘Then we have still approximately Boltzmann
equilibrium (see page 100) in the junction zone, and therefore the
Fermi levels in this zone have to be drawn approximately horizontal.
From this we obtain for the separation of Ef and E{? in the junction
zone the values ¢Usey and eUs,. Hence we get for the concentration~
at the beginning of the diffusion tails the values

+i:%£‘- Utorw +f5 Utorw

. [ &

Ny € (or 7, e_ﬁ'u'f") and pae (or pae KT
This is so because the distance of the Fermi level Ef” from the lower
edge —eV + E¢ of the conduction band, ie., the term (—eV + Eg)
— E{, is, according to Eq. (X.9.01), a logarithmic measure of the
electron concentration n in the Maxwell-Boltzmann case. Corre-
sponding considerations apply to the hole concentration according to
Eq. (X.9.04). '

On page 100, these results were explained by the identity of the
logarithmieally plotted concentration curve with the potential curve
V(z) in the case of exact or approximate Boltzmann equilibrium.

Finally, we have to mention that the case

Egi) > E.?)
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‘ F1a. X.9.3. Plot of 'ths Fermi. levels E»™ and Er® in a p-n junction. Top: case
of current flow: @ — «@. Middle: case of no current flow. . Bottom: case of
blocking, direction of eurrent: «— @ o —.

leads, according to the defining equations (X'..Q.OI) and (X.9.04), to

Koy S NolVy
. np
and with the aid of (VIIL.4.23) to
np > n}

« and thus, according to page 26, signifies that recombination outweighs
dissociation. According to Fig. X.9.3, top, the junction zone of a
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p-n junotion is such a region if it is polarized in the forward direction
(see page 94).

Correspondingly, Ef < E}:" signifies a region where dissociation
predominates. An example, according to Fig. X.9.3, bottom, is the
junction zone of a p-n junction which is polarized in the reverse
direction. ;

$10. Problems

1. A parallel-plate condenser of 1 cm? area has two plates made of different
metals. The condenger plates are connected by a wire. Calculate the current in
the wire if the two metals have a work function difference of 1 volt, and if the two
plates are vibrating against each other at & frequency of 100 cycles/sec such that
their separation varies between dy and ds, Assume d; = 0.01 ¢m, and ecalculate
the current as a function of ds. For what value of d: does the current attain one-
half of its maximum possible value? Note: The current will, in general, not be
ginusoidal. Use the average of the absolute value [7] as a measure. !

2. The two plates in a vibrating condenser such as that of Prob. 1 are connected
through a battery with a fixed voltage of 1,56 volts. The current is found to be
1.2 ma. If the battery is reversed, a current of 0.7 ma and of opposite phase

" is obtained. What is the work function difference of the two metals? °

3. According to Richardson’s law the plot of log (ig/T*) versus 1/T should be a
straight line. 'The slope of the smught line is determined by the work function
while the intercept with the ordinate axis should be the same for sll materials.

a. Show that the plot is still & straight; line if the work funetion varies linearly
with temperature. What are now the values of the slope of the line and of the
intercept?

b. A plot of log (is/T*) vs. 1/T for 8 certain metal is a straight line with a slope
corresponding to 6.50 ev while the intercept is 6,500 amp/cm?/°C*? rather than
120 amp/em?/°C%. What is the actual work function at 800°C if Richardson’s
law is assumed to be correct? .

4. An electron which is held a short distance from a metal surface induces posi-
tive charge on this surface which, in turn, attracts the electron (the so-called
“image force’”). Calculate the image force and the potential energy of the electron
if the potential energy at infinite distance is normalized to zero. At what distance -
from the metal surface is the image force equal to the force exerted by an electric
field of 10¢ vol ~1 on the electron?

5.* Calculate the total potential energy of an electron under the influence of
both the image force and an electric field of a polarity such as to pull electrons out

- of the metal. . As a reference potential energy, choose the potential energy right
. at the metal surface in the absence of an image force. How much is the work

function lowered by an electric field of 5 - 104 volt cm—1?
6. How are the results of Prob. 5 modified if the electron is not in vacuum but
in a ae:m-oonduct.or with a dleleotnc constant ¢ = 167
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¥y e=tla _
The Integral [ 0@ e*d
q

L

In the integral over the fundamental domain

=*+gc

2
T f U(z) e de (A.L1)

(7]
Tm ——qa

: 3
let U(x) be a lattice-periodic function
U@ — na) = U(z) (A.1.2)
Let the wave number k have the following values, compatible with
the requirement of periodicity in the fundamental domain [see Eq.

(VIL2.05)]:
‘ _ k_m?&’--g n=0, %1, %2 ..., +5 (AL3)
We then maintain that
=0 except for k = 0 (A.14)

To prove this we carry out the integration, step by step, for one lattice
cell at a time:
n--i—g—l z=(n41)a

I = Z f U(z) e de (A.L5)

nm—=  T=ne
g

Now we split off in the integrand the phase rotation e which is
already present at the beginning of the nth cell and leave under the
integral sign only the advance of the phase rotation within the cell
e/k=—na) With the use of (A.I.2) we obtain

G
7= +§—‘1 r—no=a
I = 2 eitna f Uz — na) e*=n dz  (A.L6)
,,.._?, z—na=0 3

2
381
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Iritrdducihg the integration'variable z — na = £ we see that the
integral is now independent of the summation index and can therefore
be placed in front of the sum sign.: ;

f=a o oa=tfey
L= [ U@ereag.- ) ot
t=0 o= —— '
? il (A.L7)
i bR T @
L f U() et dg - o773 . e""“(“+§)
E=0 nt3=0

The sum is now a simple geometric progression

L4+ qg+g - - - +q1,:_(}£1‘—_9':;> :

and by carrying out the summation with q = erina andl =@ — 1, i.e.,
{4+ 1 =@, we obtain for the wanted integral :

f=a . G i@
L= [ Uentas e "“2-11—% (A.L8)
¥ E=0 . §

According to (A.1.3) we have ka -G = 2xn. Therefore, the last
numerator in (A.1.8) becomes 1 — 1 = 0 and the inegral 7, vanishes,
a8 was stated. The argument fails only when % = 0 because then
each term of the geometric progression in (A.L.7) will be one to begin
with and the summation formula (1 — ¢*1)/(1 — ¢) will be unusable
because numerator and denominator . vanish simultaneously. The
result of the summation will then simply be G, and the integral will be

f=a

Lo=G- [ U®ade A
while we have I,=0 for k # 0 (A.1.10)

Thus the preceding statement is proved in its entirety.

In conclusion, we mention that integrals of the type under .congidera-
tion oceur in the computation of coefficients of a Fourier expansion
with the fundamental domain @ - as period. In this context, the
proof just given means that in such a Fourier expansion the ¢ Fourier
coefficients : -

C__o; C_a

2. nEts

;.--U__I 0-'.1;"'0 ;O
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vanish if the represented function has, in reality, not the period @ - a,
but the much smaller period a. This is so because in the Fourier
expansion of such a function the periéd a is the greatest wavelength
which occurs. However, the coefficients just mentioned are associated
with the wavelengths 2x/|k/, i.e., according to Eq. (A.1.3)

Gra .G gy o Gl G'a__'.. G-a G-a
R LR T e R
22 2 2

or Z2a; - 2'23;---(}'-{: G-a; - - - 1220.; 2a
ST _ La

which are all greater than a.
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The Function :x/n)

We define a function {(n/N) by the equation
SRS :

- f Vidn =% (AIL1)

2 wils AT kr Lty | :

We want to find out how the quantity { depends on n/N.

Since the definition (A.IL.1) is solved for the independent vari-
able n/N, we determine, first, the inverse function n/N as a func-
tion of {. Here we shall discuss in detail only the two limiting cases
¢ strongly negative’ and ‘¢ strongly positive.”

1. { —» — ., In this case the exponential term'in the denominator
of the integrand is very large compared with 1. Hence we can wnte
as a first approximation

S y— .,
2 —rtids n
VT j; 5 ﬁd””z‘_\'.
v
‘_“'
A ) j,
B+tﬂ"_$ ] e"\/_dﬂ"‘ T, %%
n=0

Since we have assumed the term ¢ to be strongly negative to obtain
this approximation, we have

ﬂ .
ﬁ«l or n<<N

4 :
Solving the approximation ek” ~ n/N derived for {; we obtain the
wanted function {(n/N) for the limiting case n < N:

; n
FEkTIng T (AIL2)
2. ¢ — 4 . In this case the exponential term in the denominator

of the integrand is very small compared with 1 as long as 7 < {/kT.
m . -
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As soon as 7 > {/kT, the exponential term very soon outweighs the
term 1 and greatly reduces the value of the intggrand. We, therefore,
obtain an approximation if in the integration range 0 < n < {/kT
we write 1 for the q_enbnﬁnator and in the integration range {/kT <

10
9
i /
: //
6
5 2 1 2
3\% % ¢ 3
T a Ts“r“(T) - (_E.) =|_gog(%f_
3
L2 : <
kT
i L
(o} = J
a4 Fa '\\,
-2 .rr/ é‘{ﬁ%
ot
= ==
-4 =
=5
001 2 345 7 Ql 2 345 7 1 NI IBETRD 2 345 7 00
A1l
N
¢

Fig. A.IL.1. The function o

n < « the value . Thus we obtain the approximation
£
T=kT
2 f - n
e i an. =y
‘\/; . \/; n N
; s
s N I e
/7 3 \KT N
To obtain this g.pproxima.t.ioﬁ we assumed the teria ¢ to be strongly
positive. Hence we now have
n
N >1 g AOr n>N

| 2 2 g-' ¥ n , ;
If we solve 7; 3 (}—I—iﬁ) ~ N for ¢, we obtain the wanted function
t(n/N) for the limiting case n > N:

¢ ~ kT (%)% ¥ (—},)“ A3
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The Occupation Probabilities _
faon and f, . of Donors and Acceptors’

L

Let a group of stationary states be characterized by the dizst_l_-ibution
'D(E) dE of their energy values X along an energy scale. We now want
to know how N electrons are distributed among these states in thermal

equilibrium. - Using the occupation probability

B ot yinan - Le (ATILOD)

Fermi _sfa.tist.ics answers this question as follows: The number of elec-
trons with energies between E and E + dF is

: N(E) dE = 2D(E) - f(E) - dE (A.IIT.02)
If now the problem has to be solved how N electrons have to be dis-

tributed among the states of the conduction band and among Np
donors, the following seems to be the simple answer: The number

N = Nox = f ID(E)f(E) dE = 2 f ‘;@*(—E)‘" dE  (A.IIL03)
E=E ¥ Gl
=Fa Ew=~Ea

goes into the conduction band and the number

Nox= No-f(Bp) = No gog——  (AJILOY)

goes into the Np donor levels B = Ep.

! Bee on this subject, N, ¥, Mott and R. W. Gurney, “Electronic Processes in
Ionic Crystals,” Pp- 157ff,, Clarendon Press, Oxford, 1948. W. Shockley, ‘ Elec-
trons and Holes in Semlconductors p- 248, prob. 1, and p. 475, prob. 2, D. Van
Nostrand Company, Inec., Pr:ncet.on, N.J., 1950. P T. Landsberg, Proc. Phys.
Soc. (London), 65A: 604 (1952) E. A. Guggenhel.m Proc. Phys. Soc. (London),
66A: 121 (1953). P. T. Landsberg, Proc. Phys. Soc. (London), 66A: 662 (1953).
J. H. Crawford and D. K. Holmes, Proc. Phys. Soc. (London), 67As 294 (1954).

387
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In this solution the N'p donors are considered as N'p available places,
but this involves an incorrect assumption. An electron can be
" attached with #wo different spin directions to an empty donor, in the
same way as it can be attached to a hydrogen nucleus. At first
sight one might think that the mistake could be eliminated by replac-
ing Np with 2Np. But this procedure ignores the fact that when an
electron has been attached to a positive donor core the latter has
become electrically neutral so that a second electron with -opposite
spin no longer encounters a potential trough and thus cannot be
attached, for electrostatic reasons. In other words, before an electron
has been attached the donor core offers {wo places to an electron, but
after the electron has been attached it offers only one place, which is
already occupied by the attached electron. This means that Np
donors offer neither N available places nor twice that number 2N D
Rather, the number of available places depends on the momentary
degree of occupation, one might say it changes during the process of
occupation. Thus it is apparent that the distribution of N’ electrons
among the conduction band and the Np donor levels is not the type of
problem in which a fized number of available places have to be filled with
N electrons.” Hence, to solve this problem we have to reconsider the
usual arguments, which in nermal problems lead to the oceupation
probability T

J(E) = *E—_ﬁé— ~ (AIILOY)

: e kT ]

' The “normal” type of problem (occupation of Np places P with the energy
value Ep) still has the same solution

1
Nr %%

e KTy

If Er lies several k7' below Ep, this expression takes on the simpler form

y + x’k—TBP
Npe

This remark is relevant for the footnote 1, p. 318. AL

The oecupation of the conduction band alone is covered by the normal type of
problem, because the quantum states of the conduction band result from a one-
electron problem with fixed potential which has been chosen in such a way that
the electrostatic effects of the many electrons which have later to be accommodated
in these quantum states have been taken into aceount (self-consistent potential).
Therefore, on pages 285 and 299, the possibility of spin reversal in the states of
the conduction band could be allowed for simply by a factor 2 in front of the num-
ber of these states. |
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However, we Bha.ll have to refer to the Ilterature’ for the wave-mechani-
cal basis of the counting rules (‘‘each place can be occupied by only
| . 0 or 1 electron,” “the electrons cannot be distinguished from each
. ‘other”).
: We subdivide the energy scaﬂe-into intervals 1, 2, . . . 7 which are
I grouped around the values By, B, . . . E;and contain Z,, Z,, . . . Z;
available places. The occupa.tmn of the ith interval with N electrons
can be realized in .

Z;!
NNZ; — Nyl
different ways. This can be derived as follows: One numbers the Z;

available places of the considered sth.interval from 1 to Z and arranges
them in this sequence (see Fig. A.IIL.1, top). Then, starting from the -

(AI.III.US}

Places | 1| 2| 3] 4|5|6]7]|8| n11011ziw[lsiufml1a|1?113[19}m121!22i23|24|25| Zi'm 25

00660096008 Ni = 10

Zi — Ni =15
Places | 2| 8| 5] 7! s|11[13114|17]24i 1] 4| ]9 [10]12]15]16]18]|19]20{21|22|28| 25| Z:! permutations

e of all places

Places| 2| 8| 5|7 | 8 |11|13|14]24}17| 1| 4] 6] 9|10]12|15]16]18|19]20|21|22|23|25| N:! permutations
60690008888 :i::mocoupled

A Places | 2| 3| 5| 7| 8]11)18]14|2417| 1| 4| 6| 9 {10]12|15|16]18|19|20|21|22|25]23| (Z: — N:)! per-

e Be6BOB6B66686 mutations of
J : : the unoecupied

places

? Fia. A. III 1. Different ocoupations of Z: = 25 plm of the ith energy mt.enral
5 with N; = 10 electrons.

; _W?‘“[“J\n)i different combmatwns are pOBBib‘!e

v

left, one fills the N, first places and leaves the remaining (Z; — N,)
places unoccupied. The occupation of the 7th interval with N; elec-
trons can be realized in a different way if one arranges the Z; available
places in a different sequence, i.e., in a different permutation, and if .
one again fills the N; places on the left while the (Z; — N;) places to
the right remain empty (see Fig. A.IIL.1, second line). This procedure
can be repeated Z;! times, but it leads only to a novel possibility if
during the permutation at least one unoccupied place is exchanged for
a filled one. Permutation of the N; filled places at the left among

. themselves (Fig. A.IIL.1: transition from second to third line) and

1 See, for instance, L. Nordheim in Miiller-Pouillet, “Lehrbuch der Physik,”
vol. IV, part 4, p, 251, Vieweg-Verlag, Brunswick, Germany, 1933; or R. C.
Tolman, “The Principles of Statistical Mechanics,” pp. 364ff., Oxford University
Press, 1938; or W. Weizel, “Lehrbuch der theoretischen Physﬂ: * yol.. 11, pp. 1193 '
and 1044& , Springer-Verlag OHG, Berlin, 1950..
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permutation of the (Z; — N,) unoceup:ed places at the nghﬁ (Fig.
ALIIL.1: transition from third to fourth line) do not lead to a novel
possibility. Therefore the number of possibilities for the occupation

of the ith interval with N; electrons is not Z!, but only ; .

A 7! L
Nii(Z: = W e (oL
Occupation of the whole energy range with Ny, Na, . . . N; elec-
trons can therefore be realized in : '
i Z :
NAZ, = VD! (A.III.O'??

f=t
different ways.

‘We have repeated these well-known arguments based on the usual
Fermi statistics, in such detail because with. the aid of the same argu-
ments it can now be stated immediately that N px electrons can be dis-
tributed among the N donor levels in :

Np!
Noxl(Np — NIl

different ways, provided that the possibilities are narrowed down by
a]lomg, for mst.a.n'ce, only electrons with clockwise spin. In this
case the problem is Identmal with the one just discussed in detail,
namely, how N; electrons can be distributed among' the Z; avallhhlo
places of the 7th interval.

However, in the oceupation of t.he donors it is by no means only the
electrons with clockwise spin that are allowed. If the spin of only one
donor electron, e.g., at the donor farthest to the left, is reversed

o b g e
Nopx!(Np — Npx)!

(A.IIL.08)

£ (]
- new poss:blhttes are crea.t.ed corresponding to a factor 2 = 2! in front
of the number of possibilities. In the same way the spin reversal of
all Npx accommodated electrons produces a factor 2 for each electron
hence a total factor of 2¥2* so that finally . |

N
No<l(Np — No»)!

is the number of possibilities in Whlch t.he Np* electrons can be accom-

2Nn’-

(AIIL09).

. modated in Np donor levels.
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With the aid of (A.TT1.09) and (A.I11.07) we thus obtain for the dis-
tribution, characterized by Npx, N1, Na, . . . N;of

Nk }: Ni=N (A.111.10)

i=1
electrons among Np donor levels and the conduction band the following
number of possibilities

=

— ONp* ND' I Z.! ;
W= 2 No@s = Mool H N:(Z; — N)! (AIIL.11)
im1 "

“In equilibrium the distribution with the largest number of realizable
possibilities will be established. 'The occupation numbers Npx, Ni,
N, ., . N:have to be varied until W or

Np<ln 2 + In Np! — I NSl i (N ~ Nip)
1“W=l 2 {In Zd — In Nid —In (Z — N1} (AJIL12)

is & maximum. But it must be remembered that, in addition to the
side condition (A.II1.10), another side condition must be fulfilled,
namely, that the total energy

U= NoEp + ) Nibii (A.IIL.13)
i=1
must* be conserved. We take the side conditions (A.II1.10) and
(A.IT1.13) into account, using two Lagrange factors « and 8 in the
conventional way, by differentiating, not In W, but

ln W+a(h s '5‘ N) +B(c = NS~ me
--const+NDx]n2—lanx'—ln (N})—pr)l

= z {n ¥l + In (Z: — N)!} + aN + U — aNpx
im1
; ~ BNuip —' Y {al; + BN} (ATIL14)
i=1
for the variables }\IH,N,,, .. .,Ny,. .., Npxa, and g and by equat-
ing the derivations Wlth zero. In thJ:« procedurP we use the Stirling

formula .
mAl= AIn 4 — A (A.TI1.15)
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which leads to the differentiation rule RS 5

R%h]A!ﬁlenA+A%—'l=lnA (A.IIL16)

By differentiation for each of the variables N;, N R ," N, ... we
obtain a system of equations

—INi+In (Zi—N) — (@+pE) =0 §=1,2) ... - "
: _ (AIIL17)
Differentiating (A.IT1.14) for N~ we obtain
+1In2 —In Npx+ In (Np — Npx) — (a + BEp) = 0 (A.IIL.18)

and differentiating for « and § we finally obtain again the side con-
ditions
z Ni+Nox=N = (AILlo0)

f=1
©

Z N.E; + NpxEp = U - (AJIL13)

fm]
From (A.IT1.17) we obtain at once the occupation probability

o el
Z.-_'e““""-!-l

of the states in the conduction band and from (A.II1.18), correspond-
ingly, the occupation probability Npx/Np of the donor levels

(A.ITL.19)

Npx 1
N»o IS 14 eetffo 4]

(A.TT1.20)

With these two equations the problem under discussion is already
solved, because the occupation probability (A.ITI.19) of the states
1, 2, . . . in the conduction band must be identical with the Fermi
occupation probability (A.II1.01). From comparison of the two equa-
tions we obtain
' 1
A= T
Ep

and e : ol ! (A.I11.22)

(AITL.21)

Hence, using (A II1.20) for the occupation probability of the donor
levels Ep, we obtain
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- N px i
, Jaon(Ep) = ND i 1
; R Ve L

(A.IT1.23)

! f
instead of the original incorrect equation (A.I11.04).

Finally, we want to consider briefly the case where, apari from the
conduction band, N, acceptor levels have to be filled, rather than Np
donor levels. By occupation with an electron a donor level changes
from & D* to a DX, and hence the number of electrons accommodated
in donor levels is Npx. Acceptor levels, by occupation with an elec-
tron, are changed from 4Xinto A—, and hence the number of electrons

_accommodated in acceptor levels is N4-. If we ignore the question of

spin reversal, the number W of realization possibilities maust, in the
acceptor case, follow from Eq. (A.IIL.11) by replacing Npx with N4-
and Np with Ns. This results in the expression

Nyl X H “' Z;!
N4 WN4y — NI NA(Z; = Nyl

i=1

However, in determining the power of 2 in front of this expression, the
preceding formal substitutions have to be supplemented by some new
considerations. In the case of those donor levels in which an additional
electron was accommodated, i.e., in the DX, the spin of an individual

eléctron could be reversed (see Fig. A.II 1.2), whereas this did not apply

to the empty donor levels D*. The spin reversal in the N px filled
dopor Jevels led in (A.ITI.11) to the factor 2¥°*. On the other hand,
in the acceptor levels there is a single electron with reversible spin
associated with the “‘empty”’ acceptors A% and not with-the filled
levels A* (see Fig. A.III.2). Hence we must now use the factor

2N4% = QN4~N4)

and we obtain for the number W of the realization possibilities

- I NA' Z‘I
= A—N4
W = 2~ N4-I(N4 = NI HN‘-I(‘Z; =Nyl (A.IIT1.24)

1f we apply the same considerations that were used in connection with
(AIL.11) do (A.IT1.24) we obtain, generally speaking, equations
derived from the earlier ones by replacing DX with A~ and D with 4.
The only modification is that the changed power of the factor 2 pro-
duces the term (N, — N 4-) In 2 in the equation corresponding to



o*hns_ only electron pairs. D'} hos o single 5™ valence
No spin can be reversed. glectron whose 'spin con be
réversed. e

Fondt has an unsaturoted pair A has only elsctron pairs.
bond, in which the spin of No spin can be reversed.
the single volence electron ;
can be reversed. ( e

Fia. A.IIL2. A reversible spin is available at DX and at A%,

(A.II1.12) and after differentiating for N 4-, in the equation corregpond-
ing to (A.I11.18), it leads to the term —In 2 instead of + In 2. Thus,
in place of (A.II1.23) we finally obtain . . -
: ; ;
_ gy (A.II1.25)
v A 28"_—"('3‘_3") 41
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