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Figure 1.1 Application of field emission electron sources.
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Figure 1.2 Graphene honeycomb network with lattice vectors a; and az. The chiral vector

Cy=5a;+3a; represents a possible wrapping of the two-dimensional graphene sheet into a

tubular form. The direction perpendicular to Cy is the tube axis!2¢l,
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Figure 1.4 Band structure and density of states for a (5, 5) armchair nanotube within the

zone-folding model. The Fermi level is located at zero energy!?6l,
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Figure 1.5 Band structure and density of states for a (10, 0) zigzag nanotube within the

zone-folding model. The Fermi level is located at zero energy!?Sl.
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Figure 1.6 Calculation of energy separation Eii(d;) for all (n, m) values as a function of
CNT diameter d¢, with 0.7<d<3.0 nm. Crosses and open circles denote the peaks of

semiconducting and metallic tubes, respectively. Solid squares denote E;(d¢) values for zigzag

tubes!?9],
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Figure 1.10 Fabrication and structural characterization of ultralong CNTBs. (a) Schematic
illustration of ultralong CNTBs composed of continuous CNTs. (b) SEM image of
horizontally aligned ultralong CNT arrays. Inset: high-resolution TEM images of the as-
grown ultralong CNTs with single, double and triple walls. (¢) Schematic illustration of the
in situ fabrication of CNTBs by the GFF method. (d) Illustration of synchronous tightening

and relaxing treatment of CNTBs. (e) A schematic illustration showing that the TiO2

nanoparticles work as a sheath to enhance the intertube connection inside a CNTB!57),
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Figure 1.11 Polarization Dependence of the Optical Absorption of Single-Walled Carbon
Nanotubes. (a) Absorption spectra measured from a vertically aligned SWNT film. The
incident angle was varied from 0° (bottom spectrum) to 45° (topmost spectrum). (b)
Dependence of each Lorentzian amplitude on 6. Curves fitted by sin? 8 and cos? 0 are also
shown. (¢) Calculated bare optical cross sections parallel and perpendicular to the SWNT

axis(é3],
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Figure 1.12  Single-Electron Transport in Ropes of Carbon Nanotubes (a) The I-V
characteristics of a 12 nm-diameter bundle of about 60 SWNTs is measured using a four-
probe method. The right inset shows the band structure of a metallic tube near the band

crossing point at the Fermi level. (b) Conductance G vs. gate voltage Vg at T=1.3 K. (¢)

Schematic energy-level diagrams!2.
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Figure 1.13 The 1V characteristics of a nanotube FET for various values of the gate
voltage. A negative Vg leads to ohmic behavior while a positive Vg results in a strong

suppression of the current at low bias voltage V and nonlinear I-V curves at higher bias!"l,
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Figure 1.14 Schematics of field-electron emission mechanism
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ionization, MPI) B X% P24 (high-order harmonic generation, HHG)\ &%t
B PR %— R EE RIS LI, F R BEE RO R SM R
MHEERCERARABZMENRETFR, BEET AR ERER.
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PEEZHRMEI, MIEZLELTHENEENETRTFH FHERNBIRET XK
S,

LR, DEBNDEGYBIHANEF S FIRREMEE, TEEHK
ML, X EERYEMRLEE B RAS T ARG R R . B imn]
LR R R BT B FRRME Y, EA 5 SEIRIZNLE]: e 8 R AT LR
TN BB RSN 12D R . SR, DU B Tk LR IR B T R S AL Y
BEERIFARBENEW, B —PRANA. E6EF0 FHEBRER
(Keldysh #i), ANTHIE B T 9K EHEIROE BF R R BRI HESE . Keldysh
IS YR SRR EANFEFHEEINS, RS Bunkin M Fedorov ¥R E|
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B H RS HLE: 26T REHLE] (Multiphoton photoemission, MPP) (y>>1)F1)63% |
REHLE (Optical field emission, OFE) (y<<1). Keldysh Z#{ y AI&R~79:

y= |2 (125)
20, |

Hr, © RMEIThES, Up RERSIANS, BHHEBTEAGTIREGH
FEIEhEE

ezFOZ

dmao’
EbhmMeNHEBFREMNLETER, o BEIUNE, FpF, p RN

RIRHIGIEIRE T, FRIAIHRE. Ll Keldysh 241 y HATRFRAN:

U =

p

(1.26>

o\ 2m®
efF

LR FRHEIRIEFABYNERE, MARENEATFRES M TFHRELS
GESRIRMTEL . ELRFREVEIT (B 1150), TRIRHEFTELN
B/ THEN N, WATHEN P, JemitiEE PN SR, Tl LR
RESHRTRIFREIATEL T REERIETH (B 1150), HTFER
5 BRORE 1) RS SMORBK AR 2 . 615 R AR —FR IR R R ST AL, H ST
JIF T MR R TS B2 MAMEEN (B 115c). B kHRHETL
IR T RS . BRI T, BT R AR S A iR 420 8] P A
BOREE MR R B AR HE . Eil, YR e DR £ R a A BT
2 FE R B 4 B TR |

BT R FEE RN B AR (<0.76V), B EE (REA<S ),
D RABEBEEEE (6F, EERNBDER. SR BT R AEEL N
FEEI[46~48], B SBOLMRS . RRAELI A DB R, 2K
st e TR 3 S D T DUA BRI RS B AT, S R 5T A T B 263 V),
BAUAERIE RSO S B, SE4E SR8 K 4T f T I8 Ao AR T i T IR T
FE A

(1.27)
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B 1.15 FMPCEFREVS . () £IETF RS (Multiphoton photoemission , MPP) , H
FRRE N TFREEBRERTRIIBEMNEY; (b)) B_LKH (Above-threshold
photoemission , ATP) , ELZNHTRHFFRIHITFEEL TRMERIIETFE: () XF
K5 (Optical field emission, OFE) , 3Bt USEMNREREHLFHERL, £

KFTF, BFTUERLME BN RREN R AR EMEN SRR LR THE,
Figure 1.15 Mechanisms of ultrafast photoemission. (a) Multiphoton photoemission (MPP).

An electron absorbs the energy of a number of photons to overcome the vacuum barrier for
photoemission. (b) Above-threshold photoemission (ATP). In a multiphoton regime, more
than the minimum required number of photons can be absorbed for photoemission. (¢)
Optical-field emission (OFE). A strong optical-field induces a periodically varying vacuum
level with an optical frequency (®). When the optical-field is strong enough to create a
penetrable tunneling barrier, electrons tunnel from the Fermi level in a fraction of a negative

half optical-cycle.
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Figure 1.16 Localized multiphoton emission of femtosecond electron pulses from metal
nanotips. (a) Experimental setup of multiphoton photoemission. (b) Power dependence of the
electron signal for bias voltages of 0 and 880 V. Inset: Interferometric autocorrelation of the
laser pulses detected via the electron signal. (¢) Illustration of the tunneling model. (d)
Voltage dependence of the electron emission for four different incident powers and predicted

currents from the inferred nonequilibrium carrier distributions®s.
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Figure 1.17 Tip-enhanced strong-field photoemission . (a) Measured number of emitted
electrons as a function of pulse energy (circles) , referred to as the I-P curve, from an Au
nanotip. A kink is observed at a pulse energy of 0.4nJ. (b) Theoretically calculated transition
rate of a single channel and total sum as a function of y. The calculation reveals that the
kinks are a result of the channel-closing effect when the laser intensity increases (y

decreases) %%,
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Figure 1.18 Strong-field above-threshold photoemission from sharp metal tips. (a) Energy
diagram of the metal-vacuum interface with respect to the Fermi energy with an applied dc
field of 0.8 GV/m. (b) Electron count rate as a function of the electron energy. Upper inset:

Positions of the peaks of the curve at 1.2 x10! W/cm? The peak positions are extracted from

a fit to the data with multiple Gaussians. Lower inset: Total tip current vs intensity in a

double-logarithmic plotl7],
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2010 4, Peter Hommelhoff %5 AP7E A& ¥ B0 (B 800nm, BKFEL
5.5fs, EEMR 80MHz) #F RBE KRB B FRFKER PRI T EBEHROE
EREIS B 1.18 FELRI BT R IE AT UE RS 9 NH=E6E
TFEE LR E, Yk BE H5ESHA, NTSHE A TFRIHEERA.

2015 %€, Benjamin Schroder 2 APSE L T BIGK R AR S B BUTIEIRE
REEHRERIZ T RET . RIS REZEDEFierh, BYLHHE
BH R F RS E RS, B4R T IRREHKISMERR SN . IMAAKEER
SR TFIRA B R AT BTk, A TERETRA.
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Figure 1.19 An ultrafast nanotip electron gun triggered by grating-coupled surface
plasmons . (a) Schematic of the experimental setup. (b) Schematic field line distribution for a
voltage setting resulting in electron extraction from the entire tip (blue lines). (c) A more
negative suppression voltage prevents emission (red lines) from the grating and shaft. (d)
Scanning electron micrograph of the tip including the nanofabricated grating (12 grooves,
200 nm width, and 500 nm depth). () and (f) Color-coded maps of the detected electron
count rate (logarithmic scale) as a function of the focal position in the xy-plane, obtained by

raster scanning the lens®%,
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Figure 1.20 Carrier-envelope phase modulation in photoelectron spectra. (a) Carrier-
envelope phase-averaged electron count rate as function of energy (blue solid curve). The
green points depict the modulation depth of the count rate when varying the carrier-
envelope phase. (b) Contour plot of the electron count rate as function of carrier-envelope
phase offset and energy. Yellow circles show the position of the cut-off for a given carrier-

envelope phase offset (red curve, sinusoidal fit) [,
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Figure 1.21 Strong-field, CEP-sensitive photoemission currents. (2) Sketch of example
device and experimental arrangement. (b) Emitter current versus pulse energy for the
nanorod and nanotriangle arrays. (c) (Top) Optical microscope image of an emitter array.
(Bottom) Scanning electron micrographs of example nanotriangle and nanorod arrays. (d)
Field-direction-sensitive emission: the nanotriangles have significant enhancement only at

their apex; the nanorods emit from both red and blue half-cyclesl,
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Figure 1.22 Terahertz control of nanotip photoemission. (a) Control of nanotip
photoemission with terahertz pulses. (b) Terahertz-streaking spectroscopy of nanotip

photoemission and photocurrent modulation from spectrogram 219,
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Figure 1.23 CNT-based ultrafast optical field emission. (a) Emission dynamics. (b)
Normalized emission current (I) as a function of the angle of polarization (8) of the input
optical source. (c) Emission current as a function of laser power (P) (bottom abscissa) and
laser field (F0) (top abscissa) at a bias voltage (Vb) of 50 V. In the low-power range, a
multiphoton regime is noted, while access to the OFE regime is noted in the higher power
range. (d) Corresponding dI/dV curves. The width of the peaks (FWHM) indicates the
energy spreads (AE) [11],
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Figure 1.24 Application of ultrafast electron source
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Figure 1.25 Time scale of ultrafast dynamics
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Figure 1.26 Engineering single-atom dynamics with electron irradiation. (a, b) Intentional
control over the P direct exchange, The yellow crosses indicate the location where the
electron beam was parked for 10 s to purposefully move the P atom by one lattice site. Insets:
The region of interest after applying a Gaussian filter. (c) A schematic plot of the control
process, where the electron beam is represented by a green cone focused on the neighbor C

atom!4],
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Figure 1.27 Diagram of ultrafast X-ray generation and detection
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WRABRIRE N HR-TEM BB, (0 BRIKETHRENRE, RIARMKENERN
0.75-2.6 nm. (d) UPS JUBBRIKERITHRECN .46V,

Figure 2.1 Characterization of CNTs. (a) Scanning electron microscopy image of the as-
grown CNT cluster array. (b) High resolution transmission electron microscopy image of an
individual single-walled carbon nanotube. (¢c) Raman spectrum of the CNT cluster,
indicating diameters ranging from 0.75 to 2.6 nm. (d) The work function of carbon

nanotubes measured by UPS is 4.4eV..
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22 BUAZEEHEE

Figure 2.2 Electrochemical etching device

" 4oopm [ SUS090 20.0%V 6.8mm %120k SE(L) ]

2.3 BALSR AR SEM B

Figure 2.3 SEM image of tungsten nanotips by electrochemical etching
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B 24 EBRDGEARBERIKREHR. () EERIUEARBEBRAKE. b) 2R
BERAREHR. (o PRABRIKEHR. (@) BOPORBRICRERRE R
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Figure 2.4 Pick-up method for assembly of single-walled carbon nanotube tips. (a) Pick-up
method for assembly of single-walled carbon nanotube tips. (b) A single single-walled carbon
nanotube tip. (c) Fewer single-walled carbon nanotube tips. (d) Local magnification of the

tips of a few carbon nanotubes in Fig (¢).
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Polarizer %Iectron trajectory

Objective <t A
UHV -
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Figure 3.1 Experimental setup (CCD, charge-coupled device. BS, beam splitter. HV, high

CCD

vacuum).
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(PO 820nm, BKFE 100fs) WRBERTFRIN L-F HigR, WPNBHREETH: £
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OFE) CEARRD.

Figure 3.2 Extreme nonlinear OFE of CNT. (a) Experimentally obtained log-log plot of
optical-field (F) dependent total photoemission current (I) for a CNT cluster before aging,
driven by 100-fs laser pulses with a central wavelength of 820 nm. Two linear behaviors are
observed, as shown by different colors: multiphoton photoemission (MPP) (gray pentagonal
dots); OFE (green square dots). (b) I-F curve of aged CNT cluster in which the metallic tubes
have been removed. Three linear behaviors are observed: MPP (gray pentagonal dots); CB-

OFE (green square dots) ; VB-OFE (purple circular dots).
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B 3.3 BYOKERRIERE RN LTINS ) RPRTAHRATRE. (b) FRE
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Figure 3.3 Operation principle of extreme nonlinear OFE, (a) Diagram of OFE from
CNT. (b) llustration of the nonlinear photoemission I-F curve in log-log plot. The upward
bending of the curve is a result of transition from CB-OFE (green line) to VB-OFE (red line).
(c) Diagram of CB-dominated OFE (CB-OFE) that occurs at a relatively low optical-field
strength. (d) Diagram of transition into VB-dominated OFE (VB-OFE) that occurs when the

optical-field strength is increasing,.
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Figure 3.4 Equipment diagram for CEP dependence of carbon nanotube ultrafast

photoemission current
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Figure 3.5 CEP dependence of carbon nanotube ultrafast photoemission current. (a) CEP-
stabilized measurement of the I-F curve of the same emitter, by using 7-fs few-cycle laser
pulses centered around 800 nm. A slope of K = 40 is obtained as well. (b) The CEP-
dependent photoemission current at a fixed laser intensity with a peak F= 1.3 V/nm with a

cosine fit (solid line).
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Figure 3.6 CEP dependence tests for the other four carbon nanotube clusters. All curves

show a higher modulation depth (from 50% to 100%), and the black line is the cosine fit.
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W 3.6 fim. X—SRIERHRE, TF AN K SHLET LY CEP B
Yo & B RS R, X R FRIERB T LIRS R CEP HRl
2%, It — DR S Rb I E AR A R .
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AL, BATREASYBEFT LML MERIT &, FASH S —thRE#T
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RFFTFRESFSOHLRHEEEMEFIUTE, TUNRKREE EERLiryET
o FRARFITE, TTURZEMAREMEL 2 FEBMESKCI RS, T
HAlUHEBETHEESHM, ETFRANEESTFRBELE.

341 TDDFT HE&TFEHE

EIEA R IR IR GRS E, RATER TN T & BRI E M Sk
PERRGPUKE SR EREI AR . FIFAEEEZ BEiP (Time-dependent density
functional theory, TDDFT) I+ H A& LM FRHME (35) iR ETE (38)
FURSTIEREI B0, & THABERYLRENER. SBERAKE (6,6)
FRAREBRGKE (10, 00, FFHBRIKENERENT 1om, LI HTHB
EHRUEA, WA 2.1 R. HEFAAS AE Rk, F0 K 800nm,
FKE 7fs.

TDDFT MU FEF WS LR B, ETEEZEHEIL (Density functional
theory, DFT) i+ EBZIHMMAKERAWESE L, BHEMALKIE TSR
4. G, KA TDDFT BiERHERDCIZ B gR & A > 8] i
FEAEH, 182 I-F fh& AR B TR,

Wk 3.7 fron, BATEET DFT 8 TIRYURE BB EMAMESE T, &8
PRRPIKE (6, 6) MY RARMERYLKE (10,00 —HBEHHHSE. BT
TFHERGRDOBRAEL R &M, H—mASEFEREBERAEN, WA
CoooHio B - BIVKERRFEMN T ILFBEET, ZANATHEMESKIRE N
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& 3.7 TDDFT##l. (a) &BEBRIKRE (6,6) BENTEE. (b) FIEERGPKE

(10,00 HMEMAEE. (o HEEH. EFRUFETEEMER 0.20m &, ZERH

TUHEERANRE T AL F R PEAETR FRUESR. @ £8: TEFRF

MERTH LF #i%k. A8: EETEHXKR (REXKB) LlKRNARETEE dEH
BoEm.

Figure 3.7 TDDFT simulation. (a), (b) Density of states (DOS) of the two simulated models.
(¢) Simulation model. The polarization of incident light field is consistent with the tube axial.
An electron detection plane is set in front of the capped end with a distance d = 0.2 nm,
which can count the electron number crossed the plane in both vertical directions, and detect
their kinetic energy. (d) Left panel, calculated I-F curves at different plane (S) distance (d).
The slope of the curves at high field region (grey region) display a exponentially increasing

with d, as shown in the right panel.
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b5 ATH LR TDDFT & Tt Mgk g > MM E/EM . et
TDDFT %7~ DFT X & B REEHI)T AL, TDDET 7] LA B R At f F IR R
B R U R B Fi83), SSUTER IR IESREIRGS T sert BRBE AR5 /12291
%, AT RR LRI S A SRR, B0 S OB A A R
TRE. BEl, CRMIET W% TDDFT MA T4 FREES RS TF. A 0E
£ BF Kohn-Sham (TDKS) J72#id T #t-YRARE /A -

i%% (r.t)= [——;—Vz + V0 (73 8) F Ve [ 1] (75 8) + V4 [n](r,t):| o,(rt) G2

n(rt) =2l ()]
A, o) RBR T KS & (MY KS HUE), vex(r,t) 2 3577 £ Kb A4 %
HISMEB RS, VHaree[n] (0 RIER BF 2 4 R PI935 M E/EF K Hartree 3,
Vxe[n] (L) R AR KRS, B AIEFE IEF LS AETER, T n(t) 2 2 EBTFHE.
EREZIMT Vex(r,H) 9 0 B, TDKS 2R ARED KS Fi2. BAVERKEM
SRHER N7 AN — 4 BB B BERR KB Y B AR ELIE A, HeHip BRI R BAIGE
B FIH AW=0 F veu=-E(O)z. FTHEMMMISM 9 RIR T 198 B BE TR 4K B 1T 1O
TRk

(3.3)

0_2

E(t)=Fcos(a)t)exp{——Q;—t°22—} (3.4)

FE 0 9 3.5fs, ©=1.55eV(A=800nm), Bt BiE & K IRSE F HIRT 8] 24 to=158s.
BEEJATTTE TR EF B, OCTOPUS /8 FH 5225 /8] P& BS B fk Sk £ % Kohn-
Sham HMETFEE. BRI BEHALT M SHE AT EHERER. 3
THRTBESHERENEEL, TR RN S RBA R ERN ., S2258 Mk
ERFEEM A Z —R Kohn-Sham HHTEEL oi(r, O EEEAEMER (W0PHERE
R TEERAAE) FMBE M. Bk i 5 & AT LS el 18] BE AN A HUAE 19
KRR, BN AEMTHERA . BRITBIESNMETFRESR— I LRN
6A, [AIBE 0.2A MIBRTE X e A EFIRG . BTid BRI S8 mT LAJR 173 P-4
THEREEMEA . [, 4R F/IBIEM (ALDA) T35 K %0, F Troullier—
Martins SR AN BFHREFZZEAHLER. ERIMEE G, Sekat2
IS TR oir, OEER T1EHE 28000 25 (KHEH K5 0.002fs) Skfiik. 7ok
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W, BTN sin” FRBRH# LT RGER, DHREOLERE. FHik, &
A O B B EE T 2 7 ARG E FE LR, R ES9K
EIREREERR 2A.

i
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1(t)=] j(zt)-ds (3.6)

S 18 B A B BB B % T T MO A M O B 1 (0) = [ eI (1) e
WEE 798 F I REKE E (o)t T k.

BEfE3A11E A SIESTA HHJ TDAP (time-dependent ab initio package) T+#
KS HIEASHE e . BIEREEARERES T B FHE R SRR KB
RENF1% . 5L MG, RA R KSR FHREERERE AR/ g,
FREBENEFRKETHAETERRINREELTFRENITESA, AR
RTHNEEIREE.

%T%%%ﬁ%ﬁ?*ﬁ%%%ﬁ%,&M%@N%Kmm%mn§%m&
I EA (=0) Kohn-Sham &, ¢m = 0, H& n M m BHEMEERERCH
WSHH

2

P, = (3.7

CANEY

SAHRASBERFHLPNERTHESEM. EXMELT, BIESHTE
) BB ARSI, WTRMEE OCBUR A B TR 2 E
BERNESR. BrEFHNEESHEMR, AREFRNAELK (0.05) 0
Bt EERE. |

ET B HEH S, BANHE THRAKERRIER T ER, RMERETE
) I-F fiZZ A 3.8@FMOb)FiR. HEER SRR MR &EIEHRIAA
B AP E FIR T AR . WE 3.8@FT7xw, RERT, &k
A RBERECCR, RPNZATF RIS EECETHAR TE M, KH
FRIRETF RS T RIS EEEBIERIKE R G MRt m £
TR, XE5AXKICERF AN KIR - . ME38bFixR, EREt
BT, RS AMHRAKREFAL LT h&hEAEN T, ARTERMS
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& 3.8 TDDFT #HEAGRHTA. (a), (b) B TDDFT 45HH)&BERIKE
(6,6) F(b)¥BEMBIKE (10,00 B LF k. BRRFBHTFRENS, KGR
R IF HER L. (c-o) FHEREDFIFEHEIEERIKRE (10,00 HW=4K
RIS
Figure 3.8 OFE behavior revealed by TDDFT calculation. (a) The calculated I-F curve of
(6, 6) metallic CNT model. (b) The calculated I-F curve of (10, 0) semiconducting CNT
model. The simulated laser pulse is centered around 800 nm (4v = 1.55 eV) with a pulse
width of 7 fs. MPP regime is indicated by a dashed line. Gray area indicates the curve
bending up. (c-¢) Excitation states of the semiconducting model (10,0) tube at three points
marked by arrows in (b). (¢) At F=1 V-nm, the number (An) of excited electrons clearly
show a peak at 1.5 eV (in gray area). Photon-driven electrons are represented by blue square
dots, while ﬁeld-driveh electrons are represented by yellow circular dots. (d) At F=3 V-nm’],
the peak is unchanged, which also indicates a photondriven dominated regime. (¢) At F=5
V-nm, the peak moves to 0.9 €V, and the excitation number decreases rapidly as the energy
level goes deeper, which demonstrates field-driven tunneling behavior. The DOS data are

plotted as a gray solid line in (c-e). VBM is marked by the dashed line
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Figure 3.9 I-F curves of other four different CNTs cluster emitters. All of four curves show

bending up at high field region. The slope (X) of the curves (grey region) varies from 24 to

N T REREIX TP AR, BATE I AE ¥R B B 7 25 AR ZL ) (Simple man model)
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FR-IN TG ERE, ke RBREEELD), Fro (D RRGRGHIHESG S, T
(EF)RBEME. AR AEEN 0, BE R EREN T ARF Pen(t).
}R#E Wentzel-Kramers-Brillouin (WKB) E{litE 53R o #2171,

22m

h

I_T(E,F)=®(F)exp[.‘ IOZE\/V(Z,F)+CD—EdZ) (3.10) |

Hir, 0 (x) RIBEZEEMKEE (Heaviside step function), m Z2ETEHH
FRE, h RANEHFTEL, 0=44eV BREBEHKENTIRS (LR UPS W
BRYUKE I TIRECH 4.4eV). RE BRI I 38 MR S A4 BE 7= A
FRI. BENEMBTFETHENVE z2HV (25, F) + 0=E#%E.

(a) Exponentially decay field ()
10F .
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=
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Figure 3.10  Simpleman model. (a) Diagram of the employed two-step Simpleman model.
Blue shading indicates field decay. (b) Calculated dependency of tunnel exit position
(distance to the tip surface) on energy level, at an enhanced optical-field of 22 V nm-1 at the
tip. It is noticed that the typical values of tunnel exit for energy level higher than -3 eV are

smaller than 1nm, which is comparable to the electron wavelength (1.2 nm at 1 eV).
NS B e 4 R 2 T

Foot 2/, 2

gz=°(’):l;e/(;l:_g° cos(a)t+¢)exp(~21r12xt [z ) (3.11)
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3
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FEb. BTINE, KNETESEYD sa (2, ) {EHTHAERSI/INE.

Jer T TR B DAL B TR TR INE Otz 5a B MR i 2 98 B2 ED .
BURRES R B TR FIERBK, REMSIRMD. 3T B HAWIMHEEN E 8
BT, HESHRL()=—ee, (2.t)/m RBINHLE 2(1;) = 2, FIEE 2(1;) =0
IR B9 Runge-Kutta J7iE4UER 2B 2], E3.10 (b) NABRKHHVE. ETE
R ERST A ANRRAMEN | PERBEME. N8BT RiEshiils,
BINVBE ST RIS b MBBWBERL ¢ MRIREEE v(1,,¢) MEHEE

o () = 20 (1,9)]
BRTERE S, RITRE T -1 8ERE (En=1.5¢V), E3188/NT En 1K
BEETFIEREE. BREE | AR KSR, RASRMERBERE:
jo [ty [dEP(E,t,)@[ &, (t5,8) - E,, |O[v(15.6)] (3.14)
BEIRAR R TEEIE F(e):
T

F(g)oc.[dtBJ.dEP(E,tB)(@[aK(tB,¢)—E,,,]®[v(tB,¢)][8_8,(Zﬂ¢):|2+F2 (3.15)

Het, T ARRESPE.
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&BNRE BT BB A A A R 55 . A& 3.11(b)Frm 2 1 A 64T I IE] BB X (time-
of-flight spectrometer, TOF) E MR TR, AANRMWiEIEALE, &
REPEARE T H 0 RIS B IR S B F RS E T AL, (AR LR % A
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Figure 3.11 I-V curve and photoelectron spectrum of carbon nanotubes. (a) dependency of
photoemission current on bias voltage at fixed laser field (F=1.2V/nm). (b) experimentally

measured electron energy spectrum at incidence fields F=1.2V/nm.
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Figure 3.12 Illustration of bandgap dependency by Simpleman model calculation. (a)
Contour plot of the F-dependent number (G, normalized at each F point) of emitted
electrons from different energy levels, for a CNT model with a bandgap of ~1.0 eV. I-F curve
(solid yellow line) is plotted. Transition points between different regimes are marked by red
points. A transition point at F 1.1 V nm 1 is noted, before which the electrons mainly emit
from CB states (above zero energy level) , after which the electrons mainly emit from VB
states (below zero energy level). At the same point, an upward bending of the I F curve
occurs. (b) I-F curves of three CNT models with different bandgaps: left (cyan) 0.5 eV,
middle (gray) 1.0 eV, and right (purple) 1.5 eV. Higher bandgap is associated with greater
nonlinearity. Note that the FN model-based simulation is only valid when y < 1, which is the
OFE regime. Here, we plot a longer F range to clearly show the transition from CB-OFE to
VB-OFE. The multiphoton photoemission is not considered in low driving field limit (y > 1)

in the present calculations
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Figure 4.2 Carbon single-electron point source controlled by Coulomb blockade. (a)
Experimental and simulated staircase-like current-voltage characteristics, I(V) , in
semilogarithmic (upper panel) coordinates, and the corresponding oscillations of the
normalized differential conductivity (lower panel) , (dI/dV) /(I/V) , with a period of AV. The
inset shows a field emitter consisting of a carbon nanowire attached to a diamond needle-like

crystal covered by an a-C layer. (b) Energy diagrams of the double-barrier system!!38I,
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Figure 4.3 Coulomb blockade and quantum confinement in field electron emission from
heterostructured nanotips. (a) Schematic illustration of the emitter and corresponding
energy diagrams at different stages of the FE-induced structure modification. (b)
Experimental I(V) characteristics a small nanowire. (¢) Simulation of normalized differential

conductance!13%,
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Figure 4.4 Femtosecond laser induced resonant tunneling in an individual quantam dot
attached to a nanotip. (a) Experimental energy spectrum of the emitted electrons from a
quantum dot for different femtosecond laser intensities and a fixed applied voltage of 290 V.
(b) Simulated energy spectrum of the emitted electrons from a quantum dot for different
femtosecond laser powers. Inset: energy band diagram of the tunneling barrier for field
emission with a quantum dot. (c) Experimental energy spectrum of the emitted electrons
from a quantum dot for different voltages at a fixed laser power of 10 mW. (d) Simulated

energy spectrum of the emitted electrons from a quantum dot for different fields!140],
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Figure 4.5 Diagram of resonant tunneling of carbon nanotubes

42 FRENAKREBIREFRGTIIRERBEE
421 It

ARRITREL DA BT B IR BT R AR 1T T RIS, A
A 410nm B WRDBOLERSEI T BPUKERDOC BT R4, RS B TrI8E
EMERE 025V, MHATHRAKERTEMERZE, PRANFELEH. O
D SH X AR E KO K STHEREE & E R 9 T 3 — SR RIRPKE
FB PR TR ST RO, AL SE B IR GURE IR B T R R E R IR R A E ER,
BAE R B AT R B B S 5L R X EZ WA S/, Wit 7
4.6 FInBISEiRE, BILIEEBOBKURRE, HIRAERPKE BRI B
R .

. 67



ETHRAKENBRET RS

410~ 1200 nm 820 nm

Ti:Sa Oscillator

Source meter -
-V -A
White light | :

. (>
Polarizer Iectron trajectory

Object

B 4.6 BRGPREERES BMEFEEBUIHENREEREE Figure 4.6 Equipment

diagram for the temperature-dependent of ultrafast photoemission current of carbon

ive

UHV

cch

nanotubes

Nk 4.6 F7R, Ak E ENRRYCKE B RS BB E KRBT, K
BUR JEIRA—A Ti:Sapphire BRI EE (Spectra-Physics, Mai Tai-Series, SHG),
FEAE Bk OB R LIy 820nm, EESME N 80MHz, Bkt FEEN 100fs.
820nm WOLIEIL NI IRA 410nm B, BOLTEBEHRE . F A UL AIRIR
FJE, B SORREBGPUKRE BRI RIG . FIEL R T AIRER St
ZIREThERMAEKE (Thorlabs S130C) W HMERITIE . KA B ERHE
&2 (CCD) MERE B A EFAFIEIETEHR . B BT 283 7 FURIR Fr R 12+
BOtHRIRA . ATHRRGAREREERTEH L, RITETEHENE, Bk
GIREREBEN BN L. BOLBIDEEREIHMPKRERMN, KEELAN
2.5um, BHEREERMFALR 60°. RERIMNEL=LEHKAMUBEE (10nm 53
PR BHREREBER (Keithley6430) ME K KSR K, HHRPKER
i EIF A EREMHE L. RE—HEY TREWMHPVKE, BREEKIREF,
—EE A FRGURE DRI, FER— DN ERNGRRE, BITNAZXREE
MRS, BEREKISEENN . BMNPRAE—-MEESEE (107Torr)
i, HREEBIHEAH, TAERBEIERK 10K BRERELAN 13.6K),
WA SR RN SRR RS, HRiR4a%. R TFRIS R, RykE
54 P I BEZ 9 lmm. FIVEZE (Keithley6430) FERHRIN S0V Rl &ERIE, H

68



F4E ROKXELRBFERNERBETRE

ﬁ%%ﬁ%%ﬁ,%4%%&%%%ﬂm&ﬁ§%%%%ﬁ?ﬁﬁo

422 HERESHW

LS, RATA 14Viam 1EBOESE BRI E HFuk — B IE]
(—RESREND, ATZUBIRE, REERENLRERARE, &
FRESEMBIRE . 2 ERA14 51 820nm B65 4100m LMK T gk
EERERE THERRSER 1 EOCTIE P WEBHXR, WRAERNE
4.7(a),(0)FTR . MAANEHREFLLEH, HBRERERK, FEAERTESELRE
[ I-F ek ML = BRRMAT AR R AT R, BB RS E
FhpRkEt (CB-OFE) ZFH#iER, XRETHEERK, EALESWHET
E B BR B MHE, SRETRFRIBEER, F5 P BREENZHTFR
SHILE A AN Y BT R AT

(a) CNT-820nm (b) CNT-410nm
T T T T T M T T T T L} T
10000 |- @ 1 10000 4
CREES . [
[ Jx ¢
o 167K |4
1000 L - 1000 -
z Z
& &
€ k=~
g 1w} o "-l:’ 100 4
5 >
) / ;
w0l E 104
1 i ) L 1 T T T T T =TT
5 10 15 20 2 1 2 3 4 B 6 78910
Power (W) Power (mW)

B 47 FREEBET, BROKEERITEREECIRATLRR. (a) 820nm FRHAT,
BORTERRBE T P B, (b)410nm BMENXT, BIKEEAREFETH I-P
2.

Figure 4.7 Power dependence of emission current of carbon nanotubes at different
temperatures. (a) I-P curves of carbon nanotubes at different temperatures driven by 100-fs
laser pulses with a central wavelength of 820 nm. (b) The I-P curves of carbon nanotubes at

different temperatures driven by 100-fs laser pulses with a central wavelength of 410 nm.
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Figure 4.8 The negative differential resistance phenomenon. The I-V characteristic curve
of the ultrafast photoemission current of carbon nanotubes excited by 410nm femtosecond

laser at low temperature, and the negative differential resistance phenomenon is found.
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Figure 4.9 The relationship between the local electronic states of carbon nanotubes and the

applied electric field with different position.
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Figure 4.10 Schematic diagram of resonance tunneling electron emission based on carbon

nanotubes

FER IUBRANA BB TR fB T R AT IR T F R BV A SEIRBE 2 R AT AL S » FA1D
GREERT FBRGUR E B IR A ST IR [V R B R PR IE E B IAT A, LB ATERR YN
RERXFPNA 2 LEWREREERHEEYN. 0 4.11()2FKAITH 410nm
OOCEUR IS FNRE T BRI E B SRR ST FRIATRY -V #i4k; 171 4.11(b) | 2 FA
7E S0V WEmRET, ARBOLTIRERT, BYKEBIRES BRMEIEERE
Wik, B 4.11@FATLEL, ERIREET, 7 0-200V KR EEEA R -
V & ANERE —ANiE; MESRRET, TUERHMNE. FRiFEEREA
=, PN B A (B BE N TR, X URBAEAS B A BEIRE T m T R, SR
GUKEE RMENEZ BN S BE 3 T LUEHERIKE NBRETF R
G 77 7E BEAG P ZE ML

72



F4E BOXEIIRBFIERMNBRET RS

(a) (b) 0 100 200 300
* 3.5 ' i '
81(!)0‘-J
z
e
Em.
1400
Jawo o ®
1200 L 2
of
1000 & a0
=z 25200 |
8 B0f X
8
E 800 | Emmo.
g g
O ol o R *
(]
0 L 18
i ® 2.5
0 - MT0F
| g
L 1 1 L ) £ 0L
&0 0 50 100 150 200 g
Bias (V) 8 290 |
[ ]
ol a
L 1 L
9 100 200 300
TK)

B 411 BRORERRRFETRN. () TREETRIKEBRRL AR -V i
%, WOLEKN 410nm; (b) 7 S0V IERET, FRABKIIHERT, HRIREBREK
STERBEEERRER BOLRKHN 4100m.

Figure 4.11 Resonance tunneling electron emission based on carbon nanotubes. (a) I-V
curves of carbon nanotubes at different temperatures driven by 100-fs laser pulses with a
central wavelength of 410 nm. (b) Ultrafast emission current of carbon nanotubes as a

function of temperature under different laser power with 50V collection bias.
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Figure 4.12 SEM image of gold nanotip prepared by electrochemical etching
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Figure 4.13  Ultrafast photoemission from Au nanotip at low temperature. (a) I-V

characteristics of ultrafast photoemission current of Au nanotip at low temperature(25K).
(b) Intensity dependence of ultrafast photoemission current of gold nanotip at room

temperature and low temperature (25K).
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Figure 5.1  Ultrafast dynamics of materials was characterized by ultrafast electron
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Figure 5.3 Field-driven photoemission from nanostructures quenches the quiver motion.
(a) Experimental (circles) and simulated (solid lines) kinetic energy distributions of
photoelectrons for increasing intensities at wavelength 3.8 mm. Tip radii are 12 nm (solid
circles) and 22 nm (open circles) ; intensity enhancements are 52 and 34, respectively. (b)
Trajectories of photoelectrons generated by intense optical fields depend strongly on whether
the quiver amplitude is smaller (top, short-wavelength excitation) or larger (bottom, long-
wavelength excitation) than the characteristic decay length of the optical near-field (bright

white region). (¢) Simulated electron trajectories!®,
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Figure 5.4 Schematic diagram of setup for testing carbon nanotubes ultrafast

photoemission electron spectroscopy
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Figure 5.6 Parameters calibrate of time-of-flight spectrometer. (a) CCD imaging. (b) The
relationship between the number of electrons and the time of flight under different UDC. (c)
Electron energy spectra under different UDCs in Fig (b). (d) The log curve corresponding to

the electron energy spectrum of carbon nanotubes in Fig (c).
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Figure 5.7 Photoelectron spectra of carbon nanotubes. (a) The log curve of the electron
energy spectrum of a sample tested for five repeats at a laser intensity of 400pW and a UDC
of -20V. (b) Log curve of electron energy spectrum of ultrafast photoemission of carbon

nanotubes under different laser intensities at fixed UDC of -20V.
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Figure 5.8 The divergence angle of the electron beam of carbon nanotubes. The main peak
intensity of electron energy spectra of carbon nanotubes is basically the same under different

collection bias.
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Figure 5.9 CEP dependent properties of electron energy spectra of different carbon

nanotube tip in optical field emission.
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Figure 5.10 Photon-assisted resonant tunneling emission
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Figure 5.11  Photoelectron spectra of Au nanotip. (a) SEM image of Au nanotip. (b)

Ultrafast photoemission of Au nanotip.
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(b) Ultrafast photoemission of LaB6 nanowires.
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